TY - THES AU - Guo, Ningning PY - 1991 TI - GSH : a new candidate neuropeptide in the CNS KW - Thesis/Dissertation LA - eng M3 - Text AB - The physiological significance of glutathione (GSH) in the mammalian central nervous system is still uncertain, although some evidence has indicated that GSH may play an important role in the CNS. To address the question of whether GSH may be a candidate for a neuropeptide in the CNS, one step is to establish that GSH receptors are present. In the present study, biotinyl-GSH was synthesized and purified to detect the GSH receptor in the CNS. Histochemical experiments showed that GSH binding sites appeared on the white matter ( such as cingulum, dorsal hippocampal commissure, cerebral peduncle, fasciculus retrbflexus, mammillothalamic tract etc.) of the rat brain. It thus suggested that the GSH receptors might be on astrocytes or oligodendrocytes. Radioactive receptor assays were performed on cultured astrocytocytes using [³⁵S]GSH. Scatchard analysis revealed two binding sites of K₁ = 4.67±0.75 nM, Bmax₂ =70±9.2 fmoles / 6.4 x10⁵ cells (or Bmax₁=6.6 x10⁴molecules / cell), Kd₂=35.14±2.1 nM, Bmax₂=260±12.77 fmole / 6.4 x10⁵ cell (or Bmax₂ = 2.4 x10⁵ molecules / cell). The association and dissociation kinetics studies gave a K₊₁ of 0.003nM⁻¹min¹, and a K₋₁ of 0.0168 min⁻¹for site I. These rate constants gave a K₁ of 5.6 nM, consistent with that from Scatchard analysis. Colloidal gold technique and immunofluorescence double staining also showed the GSH binding sites on cultured astrocytes, and suggested that the binding sites might be GSH receptors. The present study is the first to report the presence of GSH receptors on astrocytes. Based on receptor binding assays and cytochemical experiments, this study not only depicts the biochemical characteristics of GSH receptors in the brain, but also shows the receptor at the cellular level. These results support the view that GSH might be a neuroactively signal substance in the CNS. N2 - The physiological significance of glutathione (GSH) in the mammalian central nervous system is still uncertain, although some evidence has indicated that GSH may play an important role in the CNS. To address the question of whether GSH may be a candidate for a neuropeptide in the CNS, one step is to establish that GSH receptors are present. In the present study, biotinyl-GSH was synthesized and purified to detect the GSH receptor in the CNS. Histochemical experiments showed that GSH binding sites appeared on the white matter ( such as cingulum, dorsal hippocampal commissure, cerebral peduncle, fasciculus retrbflexus, mammillothalamic tract etc.) of the rat brain. It thus suggested that the GSH receptors might be on astrocytes or oligodendrocytes. Radioactive receptor assays were performed on cultured astrocytocytes using [³⁵S]GSH. Scatchard analysis revealed two binding sites of K₁ = 4.67±0.75 nM, Bmax₂ =70±9.2 fmoles / 6.4 x10⁵ cells (or Bmax₁=6.6 x10⁴molecules / cell), Kd₂=35.14±2.1 nM, Bmax₂=260±12.77 fmole / 6.4 x10⁵ cell (or Bmax₂ = 2.4 x10⁵ molecules / cell). The association and dissociation kinetics studies gave a K₊₁ of 0.003nM⁻¹min¹, and a K₋₁ of 0.0168 min⁻¹for site I. These rate constants gave a K₁ of 5.6 nM, consistent with that from Scatchard analysis. Colloidal gold technique and immunofluorescence double staining also showed the GSH binding sites on cultured astrocytes, and suggested that the binding sites might be GSH receptors. The present study is the first to report the presence of GSH receptors on astrocytes. Based on receptor binding assays and cytochemical experiments, this study not only depicts the biochemical characteristics of GSH receptors in the brain, but also shows the receptor at the cellular level. These results support the view that GSH might be a neuroactively signal substance in the CNS. UR - https://open.library.ubc.ca/collections/831/items/1.0098466 ER - End of Reference