TY - THES
AU - Hayward, Geoffrey
PY - 1986
TI - Stochastic quantization of boson and fermion fields
KW - Thesis/Dissertation
LA - eng
M3 - Text
AB - We consider two strategies for stochastic quantization. With the first, one posits an additional time dimension (fictitious time) and describes the evolution of classical fields by means of the Langevin equation. One then evaluates stochastic averages of the field functions. In the limit that the fictitious time goes to infinity, these approach the time ordered correlation functions of canonically quantized field theory. We conclude that, while this strategy successfully describes QED and other quantum field theories, it is contrived and probably lacks deep physical significance.
With the second strategy for field quantization, one begins with a classical action in either one or two extra dimensions coupled to an external random source. We review a method of quantizing bosonic fields which uses this strategy. Furthermore, we present an analogous method for quantizing fermion fields and a possible new way of quantizing interacting fermion and boson fields. Finally, we discuss applications to quantum mechanics and stochastically quantize the simple harmonic oscillator.
N2 - We consider two strategies for stochastic quantization. With the first, one posits an additional time dimension (fictitious time) and describes the evolution of classical fields by means of the Langevin equation. One then evaluates stochastic averages of the field functions. In the limit that the fictitious time goes to infinity, these approach the time ordered correlation functions of canonically quantized field theory. We conclude that, while this strategy successfully describes QED and other quantum field theories, it is contrived and probably lacks deep physical significance.
With the second strategy for field quantization, one begins with a classical action in either one or two extra dimensions coupled to an external random source. We review a method of quantizing bosonic fields which uses this strategy. Furthermore, we present an analogous method for quantizing fermion fields and a possible new way of quantizing interacting fermion and boson fields. Finally, we discuss applications to quantum mechanics and stochastically quantize the simple harmonic oscillator.
UR - https://open.library.ubc.ca/collections/831/items/1.0096700
ER - End of Reference