TY - ELEC
AU - Malay Ghosh
PY - 2019
TI - Bayesian High Dimensional Multivariate Regression with Shrinkage Priors
LA - eng
M3 - Moving Image
AB - We consider sparse Bayesian estimation in the classical multivariate linear regression model with p regressors and q response variables. In univariate Bayesian linear regression with a single response y, shrinkage priors which can be expressed as scale-mixtures of normal densities are a popular approach for obtaining sparse estimates of the coefficients. In this paper, we extend the use of these priors to the multivariate case to estimate a p times q coefficients matrix B. Our method can be used for any sample size n and any dimension p. Moreover, we show that the posterior distribution can consistently estimate B even when p grows at nearly exponential rate with the sample size n. Concentration inequalities are proved and our results are illustrated through simulation and data analysis.
N2 - We consider sparse Bayesian estimation in the classical multivariate linear regression model with p regressors and q response variables. In univariate Bayesian linear regression with a single response y, shrinkage priors which can be expressed as scale-mixtures of normal densities are a popular approach for obtaining sparse estimates of the coefficients. In this paper, we extend the use of these priors to the multivariate case to estimate a p times q coefficients matrix B. Our method can be used for any sample size n and any dimension p. Moreover, we show that the posterior distribution can consistently estimate B even when p grows at nearly exponential rate with the sample size n. Concentration inequalities are proved and our results are illustrated through simulation and data analysis.
UR - https://open.library.ubc.ca/collections/48630/items/1.0383294
ER - End of Reference