TY - ELEC
AU - Todd, Mike
PY - 2018
TI - Slow/fast mixing/escape
LA - eng
M3 - Moving Image
AB - In order to obtain a good statistical theory for a system with a hole in it, the heuristic is that the (exponential) speed of mixing must dominate the (exponential) rate at which mass leaks from the system: so the hole must be appropriately `small'. I'll present joint work with Mark Demers where we analysed this idea for a simple class of systems (Manneville-Pomeau maps with certain `geometric' equilibrium states), giving a complete picture of how the competition between mixing and escape lead to different statistical behaviour. We show a transition from the usual picture of good statistical properties, through a (non-trivial) zone where mixing and escape match exactly, with a terminal transition to subexponential mixing.
N2 - In order to obtain a good statistical theory for a system with a hole in it, the heuristic is that the (exponential) speed of mixing must dominate the (exponential) rate at which mass leaks from the system: so the hole must be appropriately `small'. I'll present joint work with Mark Demers where we analysed this idea for a simple class of systems (Manneville-Pomeau maps with certain `geometric' equilibrium states), giving a complete picture of how the competition between mixing and escape lead to different statistical behaviour. We show a transition from the usual picture of good statistical properties, through a (non-trivial) zone where mixing and escape match exactly, with a terminal transition to subexponential mixing.
UR - https://open.library.ubc.ca/collections/48630/items/1.0372089
ER - End of Reference