TY - THES
AU - Yu, Wing Wa
PY - 2012
TI - Inversion of airborne electromagnetic data in 2.5D
KW - Thesis/Dissertation
LA - eng
M3 - Text
AB - In this work, we implement an inversion algorithm for airborne electromagnetic (AEM) data in the frequency domain by using 2D conductivity models. First, we discretize the 2.5D Maxwell's equations on a staggered grid and test the numerical accuracy of the forward solution. The inverse problem is then solved by regularized minimization approach using the limited memory BFGS variant of the quasi-Newton method. Next, EM responses from a synthetic 2D conductivity model are inverted to validate the algorithm. Finally, we use the algorithm on an AEM field dataset from a RESOLVE survey and compare the inversion results to those obtained from a well-established 1D implementation.
N2 - In this work, we implement an inversion algorithm for airborne electromagnetic (AEM) data in the frequency domain by using 2D conductivity models. First, we discretize the 2.5D Maxwell's equations on a staggered grid and test the numerical accuracy of the forward solution. The inverse problem is then solved by regularized minimization approach using the limited memory BFGS variant of the quasi-Newton method. Next, EM responses from a synthetic 2D conductivity model are inverted to validate the algorithm. Finally, we use the algorithm on an AEM field dataset from a RESOLVE survey and compare the inversion results to those obtained from a well-established 1D implementation.
UR - https://open.library.ubc.ca/collections/24/items/1.0073275
ER - End of Reference