Non UBC
DSpace
John Wright
2020-01-13T10:07:09Z
2019-07-16T14:01
One of the most confounding open problems in quantum computing is whether we can approximate the quantum value of a nonlocal game, and, if so, how quickly. So far, our progress has been dismal: in spite of decades of work on this problem, we still have not even devised a *finite* time algorithm to solve it! Recent results have hinted that this might not be due to a failing of our imagination, but rather that this problem might be intrinsically hard, even undecidable (which would imply the Connes embedding conjecture is false). Thomas Vidick showed that this problem is NP-hard, and, in follow-up work with Anand Natarajan, strengthened this lower bound to QMA-hard. In this talk, I will discuss joint work with Anand, incomparable to the QMA-hardness result, which strictly improves on Thomas' original NP-hardness result. In the language of computational complexity theory, we show that NEEXP is contained in MIP*. Our result crucially uses self-testing. in particular the quantum low-degree test introduced by Anand in his previous talk.
https://circle.library.ubc.ca/rest/handle/2429/73309?expand=metadata
44.0 minutes
video/mp4
Author affiliation: Massachusetts Institute of Technology (MIT)
Banff (Alta.)
10.14288/1.0388287
eng
Unreviewed
Vancouver : University of British Columbia Library
Banff International Research Station for Mathematical Innovation and Discovery
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Researcher
BIRS Workshop Lecture Videos (Banff, Alta)
Mathematics
Functional Analysis, Quantum Theory
Nonlocal games are harder to approximate than we thought!
Moving Image
http://hdl.handle.net/2429/73309