@prefix vivo: . @prefix edm: . @prefix ns0: . @prefix dcterms: . @prefix skos: . vivo:departmentOrSchool "Science, Faculty of"@en, "Botany, Department of"@en ; edm:dataProvider "DSpace"@en ; ns0:degreeCampus "UBCV"@en ; dcterms:creator "Ashton, Emily Miriam Ruth"@en ; dcterms:issued "2011-10-24T23:49:56Z"@en, "1932"@en ; vivo:relatedDegree "Master of Arts - MA"@en ; ns0:degreeGrantor "University of British Columbia"@en ; dcterms:description "[No abstract available]"@en ; edm:aggregatedCHO "https://circle.library.ubc.ca/rest/handle/2429/38225?expand=metadata"@en ; skos:note "U!B .C . LIBRARY A(£. NO. 7fc^7 mBioioaxcAL wwmm OF RAPIAIT B i l l y Miriam Rath Ashton. A ffeesis submitted f o r the degree of l a the M P A l f s I l i f OF -BOf A l l . the Snipers it y of B r i t i s h Gelaalia Ap r i l * 1932. 0 0 ft f R I f S. Introduction .... Page 1 Aekn owled gment s . . . . . . . . . . . 2 Experimental f o r k - Part A. Introduction and Review of l i t e r a t u r e .... 3 Experimental Work-Part 1....... 8 Part 2....... 14 Comparison of Results 21 Soanary of Results 24 Experimental Work- Part 3. Introd uct ion .... £6 Review o f L i t e r a t u r e 28 Experimental fork-Part 1. ..... 29 Part 2. ..... 43 Snsmary ©f Results 61 Liter a t u r e c i t e d ........... 53 HH3I0L06ICAL EFFECTS OF RAPIAHf ENERGY INTRQPOeflOH. Since the very e a r l i e s t tines light has been worshipped as the g i v e r of h e a l t h and as the enemy o f darkness and o f death, but i t i s only i n comparatively recent years that s c i e n t i f i c enqniry has been carries' on as to i t s a c t u a l b i o l o g i c a l and p h y s i o l o g i c a l e f f e c t s . The amount of l i t e r a t u r e on the subject i s immense and v a r i e d , so t h a t i t i s impossible to pive a comprehensive account of any bat the r e s u l t s 010st p e r t i n e n t t o the work described i n t h i s d i s c u s s i o n . For the past f o u r years work on the e f f e c t of Radiant Energy on Protoplasm has been c a r r i e d on under the direction of Dr. Hutchinson and i n order to understand the reasons l e a d i n g up to the i n v e s t i g a t i o n of ensyae a c t i o n oatlined i n the l a t t e r p o r t i o n of t h i s paper, i t i s nec-essary to d e s c r i b e the p r e l i m i n a r y work. I t was t h e r e f o r e thought advisable t o d i v i d e this paper i n t o two p a r t s , A and B; h to consist of a d e s c r i p t i o n of the work on Protoplasm and 3 to c o n s i s t of a description of the effect of Radiant Rnerpy on ensyae action in p a r t i e a l a r . ACMOlOTKMlSfS G r a t e f u l acknowledgment i s mace to Dr. A. H» Hutchinson, under whose d i r e c t i o n t h i s work has been done, f o r h i s u n f a i l i n g help and encouragement. fhe author i s a l s o indebted to the N a t i o n a l Research C o u n c i l of Canada f o r the nee of l i g h t sources and i n s t r u a e n t s i n t h e i r p o s s e s s i o n . 3 PARS A. f E l EFFECT OF RABIAIf KfTEROY OH PROTOPLASM. IHTROB0CTIOH. Man's control of the effects of l i g h t and more especially u l t r a v i o l e t l i g h t i s at present incomplete and although the effects nay d i f f e r with wave length and i n t e n s i t y and with the subject, irradiated l i t t l e Is known a© to the why or the wherefore of the r e s u l t s obtained. It was thought that a comparison between the effect of Radiant Energy and more p a r t i c u l a r l y Mono-chromatic Light on animal and plant protoplasm might help towards the understanding of these phenomena and towards t h e i r more h e l p f u l u t i l i s a t i o n . REVIEW OF LITERATURE. 1. Effect of Light on Animal Protoplasm* Light can have no e f f e c t unless It i s absorbed and according to Boyle (3) \"rays a f f e c t protoplasm at the place where they are absorbed, and observed physiological disturbances are the responses on the part of the organism to i t s injured protoplasm\". In am p l i f i c a t i o n of t h i s statement Bovie and h i s co-workers (4) have demonstrated the effect of various l i g h t rays on Protoplasm. Para-moeoiuos caniatna was exposed to u l t r a v i o l e t l i g h t i n a 4 f l u e r i t e chamber and the organism was rendered extremely sensitive to heat, so much so that i t was k i l l e d by an amount of heat which would not affect i t normally. The Sehoaaan region (5) i s a region of general absorption for nearly a l l substances and has an immediate ef f e c t on infus-o r i a , causing marked stimulation followed by c y t o l y s i s and With s u f f i c i e n t exposure, death- Packard (25) finds that Paramecium i s susceptible to Badina radiations and that the s u s c e p t i b i l i t y to these radiations varies with the permeability of the surface layer of the c e l l . He suggests that the increased permeability i s the cause of the acceler-ation i n the d i v i s i o n rate observed. Hutchinson and Ashton (18) found that moderate increase i n rate of plasnolysis accompanied increase In c e l l d i v i s i o n in the same organism and that an excessive Increase i n rate of plasaolysis accom-panied decrease in growth r a t e , but whether t h i s change i n plasmolytic rate was due to a changed permeability or to the change in the osmotic content of the c e l l has not been determined. According to Hughes and Bovie (16) c y t o l y s i s i n Paraaoeciura can be caused by exposure to u l t r a v i o l e t l i g h t , an exposure s u f f i c i e n t to o&nae c y t o l y s i s i n h i b i t i n g c e l l d i v i s i o n . With short exposures the i n h i b i t i o n i s t r a n s i t o r y and i s followed by an increase i n c e l l d i v i s i o n over that ©f the co n t r o l . 5 * &. L i g h t responses - Animal. f o r k on m u l t i c e l l u l n r organisms shows that r a d i a n t energy has a pr of o and e f f e c t on growth and development* Loeb (23) found t h a t u n f e r t i l i s e d eggs of A r b a c i a , when treated w i t h rays from a quarts mercury lamp formed a f e r t i l i s a t i o n membrane and i n some oases developed i n t o l a r v a e , though not proceeding beyond the g a s t r a l a stage- Higgins and Sheard (15) found that u l t r a v i o l e t l i g h t e f f e c t e d the development of the eggs of Rana p i p i e n s and that the r e g i o n s of highest metabolic a c t i v i t y were most responsive t o r a d i a t i o n . X-rays have an even more f a r reaching e f f e c t , i l n l l u r and Weinstein (37) obtained a n t a t l o n s , producing v i s i b l e and l e t h a l e f f e c t s as w e l l as genetic m o d i f i c a t i o n s of frequency of c r o s s i n g over i n B r o s o p h i l a exposed to these rays and attachment between genes of d i f f e r e n t chroaosones, p o i n t i n g to a profound e f f e c t on the r e p r o d u c t i v e c e l l s and the chromosomes the as e l v e s . Reaction t o s p e c i f i c wave lengths has a l s o been recorded. B i g g i n s and Sheard (14) found t h a t i n the absence of u l t r a v i o l e t l i g h t , as when blue or amber screens were used, h y p e r p l a s i a of the parathyroid glands of chickens r e s u l t e d , and that the best development took place i n d i r e c t s u n l i g h t . Abbot t l ) s t a t e s t h a t Formi -a dakotensis s p e c u l a r i s responded to l i g h t of the same i n t e n s i t y In the f o l l o w i n g order, y e l l o w , w h i t e , r e d . V i s a c h e r and Luce (36) found that 6300 A°-o 5450 A were most e f f e c t i v e i n causing r e a c t i o n on the l a r v a e o of barnacles. There i s a decrease i n effectiveness to 4200 A 6 and a d i s t i n c t s t i m u l a t i n g e f f e c t i n the u l t r a v i o l e t . For the cure of r i c k e t s In animals u l t r a v i o l e t l i g h t of various wave lengths i s e f f i c a c i o u s . 6. B. Manghan (£4} showed that the wave lengths between 3132 Ao o and 2650 A are most e f f e c t i v e i n t h i s r e s p e c t . The c u r a t i v e e f f e c t of wave lengths s h o r t e r than 2896 A 0 seeded t o he sma l l and that of wave l e n g t h 3132 A 0 I t s e l f to he n i l . The r e s u l t of c a r e f n l a n a l y s i s showed that 2968 A 0 was the most o e f f e c t i v e f o r the care of r i c k e t s and t h a t 3024 A was per-haps a f o u r t h as potent. 3. Llftht responses - P l a n t s . P r i e s t l e y (29) has performed experiments on the growth of see d l i n g s that show that b r i e f expos are to l i g h t has very marked e f f e c t s . A l i g h t exposure of one to two minutes per day to a r e l a t i v e l y weak a r t i f i c i a l l i g h t w i l l remove e f f e c t i v e l y the most c h a r a c t e r i s t i c morphological features of e t i o l a t i o n , w h i l e the expanded l e a f w i l l f a i l to produce any c h l o r o p h y l l . E l o g i n s and Sheard (14) found that the l e s s e r wave lengths used, 3200 A 0- 2700 A 0, stimulated and accelerated the time of germination w h i l e greater wave lengths i n h i b i t e d germination, growth being a c c e l e r a t e d by I r r a d i a t i o n i n the near u l t r a - v i o l e t , 4000A°-3000 A 0; 2900 A 0 and below being d e f i n i t e l y l e t h a l . l o t a b l e r e s u l t s have been obtained i n p l a n t s by Goodspeed and 01sen (11). tobacco i n f u l l f lower was exposed to X-rays. P l a n t s grown from seeds I r r a d i a t e d at t h i s early stage Ineladed many v a r i a t i o n s . A c y t o l o g i e a i i n v e s t i g a t i o n showed that chromosome disturbances had occurred and that these mod i f l e s t ions were i n a l l p r o b a b i l i t y primary to the ext e r n a l v a r i a t i o n s i n form. Popp (£8) removed definite regions of the spectrum In the blue-violet and noted the e f f e c t on p l a n t s . E l i m i n -a t i n g a l l l i n e s below 5890 A 0 r e s u l t e d i n p l a n t s having an etiolated appearance. E l i m i n a t i n g below 4720 A 0 produced the same e f f e c t , bat a f t e r e l i m i n a t i o n of a l l u l t r a v i o l e t vary l i t t l e d i f f e r e n c e was seen. From t h i s result i t may be i n f e r r e d that u l t r a v i o l e t rays are not indis p e n s a b l e but that the bine v i o l e t end of the spectrum i s necceesary f o r normal vigorous growth. 8. sxPSsx-iEHfAL IOBK. Bart 1. E f f e c t of monochromatic l i g h t on ParamoecIran fhe f i r s t part of the experimental work was to a s c e r t a i n the e f f e c t o f Monochromatic Light on animal proto-plasm, Paraaoeclna e a o l a t o a being the organise! need. fhe apparatus used throughout a l l the f o l l o w i n g work was a Cooper Hewitt '\\L#*b-are\" f o r the source of l i g h t . I t was operated on an a l t e r n a t i n g onrrent of 110 v o l t s w i t h a r e s i s t a n c e of IS ohms i n s e r i e s and fnnet ioned trader these c o n d i t i o n s as a low pressor© mercury a r c . A Monochromatic I l l u m i n a t o r o f Adam F i l g e r , Ltd.., f i t t e d w i t h qaartz prism and lenses and reading d i r e c t l y to wave lengths was used to r e s o l v e the l i g h t t fhe instrument was standardised fey readings on the sodina 33 l i n e . Par&aoeeia were placed i n a quartz c e l l which f i t t e d Into the s l o t of the lonochroaatlc i l l u m i n a t o r , the c o n t r o l being kept i n a s i m i l a r c e l l i n the dark. fhe e f f e c t of v a r i o u s monochromatic l i n e s of the llereary Arc Spectrum on the rat e o f d i v i s i o n of the organism was ascertained and a l s o the e f f e c t on the r a t e o f p l a s m o l y s i s . PIBCOBSIQH OP FPBULTS. 1. Rate o f growth. { f a b l e 1.) from the accompanying graph f P l a t e 1.) i t w i l l PMfB I S t i m u l a t i o n and R e t a r d a t i o n of Growth i n Paranaoeeirea expressed as namher o f Paramoeeia gr e a t e r or l e s s than i n the c o n t r o l . 9. fABLB I Bffeel of various wave-lengths of • l i R h t on the rate of d i t r -i l ion ox J?araaoeeinffl oaadatna. lave I in & •gngth Somber of Para»eeaina Hamber of Paraaoeeinm . • a .iter, © boars. a f t e r 24 hours. Irraa iated Control B i f f . Irradiated Control B i f f 6152 ' 13.4 18*8 0.6 15. & 14.35 0.85 6819-5769 12.85 12.85 0.0 17.0 15.4 1.6 4968-4916 9.1 13.0 -3.9 15.0 16»8 —1.0 4359-4348 14.1 13.0 1.1 19.1 17.0 2.1 4078-3984 13.2 13.4 -0.8 12.9 14.7 -1.8 3881 11. 4 11.3 0.1 12.7 13*3 -0.6 3663-3666 18.1 11* 3 0.8 13.6 12.4 1.2 3352-3348 11 • § 10.5 1.0 12.9 12.2 0.? 3138 12* 3 12 .1 0.2 13.4 12. 9 0.5 3088 12.0 13.0 -1.0 14.2 15.5 -1.3 8967 10.4 11*6 -1.8 10.3 12* 2 - l . f 8804 9.9 11» 9 —2 .0 9.6 13*5 -3.9 8700 10.4 12 . & -1.8 9*6 14.3 -4.7 £535 10.0 14*8 -4.2 7.8 14.8 -7.0 2054 9.9 13.8 —3*9 8.6 14.0 -5.5 10. fee seen that there are two regions which d e f i n i t e l y and consistently i n h i b i t the growth rate of Paramoeeina; that region areand 4960 A 0, the indigo bine end of the spectrna, o and that beyond 3132 A , the u l t r a v i o l e t and f a r u l t r a v i o l e t portion, there also seem to fee three regions of stimulation, the yellow orange, 5916 A 0 and the v i o l e t i n -digo, 4359 A 0 , and a s l i g h t stimulatory effect at the be-ginning of the u l t r a v i o l e t 3821 A°-3348 A 0, feat at no time does the magnitude of stimulation approach that of the most extreme r e s u l t s o f retardation. lave length aid not i n t e n s i t y i s the determining f a c t o r , f o r the greatest r e s u l t s are obtained with many of the l i n e s of least i n t e n s i t y ( ex. 2054 A°, 4960 A 0 ) . In cases of s l i g h t and t r a n s i t o r y i n h i b i t i o n of growth r a t e , a period ©f acceleration follows ( 5819 A 0, 3821 A 0 and 3132 A°), s u f f i c i e n t to res u l t i n an actual increase i n the number of Irradiated i n d i v i d u a l s as compared to non-irrad iated c o n t r o l ; shoald the period of i n h i b i t i o n be prolonged the organism does not recover i t s normal growth, rate and i n extreme cases t o t a l i n h i b i t i o n r e s u l t s { 3022 A 0 onwards J. these findings correspond i n general with the re s u l t s of Bovie and Hughes (16) f o r ray 2800 A°. where c y t o l y s i s of Paramoeciua was caused by prolonged i r r a d i a t i o n and exposure Ins u f f i c i e n t to produce c y t o l y s i s caused i n h i b i t i o n of c e l l d i v i s i o n followed fey stimulation. Ho effect with s l i g h t 11. i r r a d i a t i o n say be dne to the i n a b i l i t y o f the rays t o penetrate and e f f e e t the mieleus. 2. I f f e a t on r a t e of Plasmo l y s i s . ( f a b l e 8.) f h e e f f e c t s of monochromatic l i g h t on the r a t e of p l a s o t o l y s i s i n Paraaoeciua, using v a r y i n g concentrations of BaCl.show that there are again two or perhaps three r e g i o n s of greatest e f f e c t . ( P l a t e s £ and 3.) In no case was a decrease i n r a t e n o t i c e d , even w i t h the l i n e s causing most e f f e c t e i t h e r i n s t i m u l a t i o n or i n h i b i t i o n of growth; a l l wave lengths seemingly having some s t i m u l a t o r y e f f e c t on p l a s m o l y t i c r a t e . A f t e r s i x hours i r -r a d i a t i o n the r e s u l t s are a l i t t l e e r r a t i c , those l i n e s around 365GAe-3Q£2 A° being c o n t r a d i c t o r y , but even a f t e r t h i s short time three regions ©anaing increase i n r a t e can be noted. A f t e r twenty-four hoars the regions 4960 A 0, 4078 A 0, and 3022 A° down to the f a r u l t r a v i o l e t cause the greatest i n -crease i n r a t e . These r e s u l t s when compared w i t h the e f f e c t on the r a t e of growth of Paramoeelurn show a marked s i m i l a r i t y , ( see p l a t e s 2 and 3.) the regions causing most I n h i b i t i o n i n growth corresponding to those causing greatest increase i n r a t e of p l a s m o l y s i s . Those regions causing l i t t l e e f f e e t on growth, or s t i m u l a t i n g s l i g h t l y , correspond w i t h those causing the l e a s t increase i n the r a t e of p l a s m o l y s i s . 12 TAMIM 2/ Effect of varioas wave-lengths of l i g h t on the rate of plasaolvsis of garastoeclnja eamdatoa* Increase i n rata of increase\" over control rate.' a expressed as percentage l a v t h 0.7 Molar Soilnffl Chloride Solutions 6 hours 24 h o u r s 0.3 Molar 6 hoars 24 hours 6152 30 29 37 41 §819-5769 19 21 26 27 4960-4916 41 39 33 48 4359 -4348 80 34 26 33 4078-3984 39 39 32 46 3881 26 40 35 45 3663-3656 88 27 40 25 3358-3342 9 11 34 31 3132 86 81 37 20 3022 44 18 35 24 296? 34 36 37 39 2804 40 51 34 43 2054 51 51 58 57 Comparison of the e f f e c t oa growth of Paraaoeeina ano on p l a s m o i y s l s In sod iota c h l o r i d e s o l u t i o n s . P l a s r a o l y s i s expressed as percent i n c r e a s e i n r a t e Comparison of the e f f e e t on growth of Pftramoeciam and on pl a s m o l y s i s i n sodlnm c h l o r i d e e o l a t i o n s . P l a s a o l y s i s expressed as percent increase i n r a t e 13 fhas i t would seem that t h e r e i e a c o r r e l a t i o n Between d i v i s i o n r a t e and plasmolyt Ic r a t e In Pararaoec iua. Packard (E6j working on the same organism found that the p e r m e a b i l i t y of the c e l l s exposed to l i g h t was gre a t e r than the c o n t r o l s kept i n darkness, fhe change i n p e r m e a b i l i t y was also demonstrated i n c e l l s exposed t o monochromatic red l i f c h t , becoming greater as the wave length shortened and reaching a maximum i n the near u l t r a - v i o l e t . A change i n the r a t e of plasaaolysis may be caused by various f a c t o r s . Blacknan and Paine (2) record th«t l i g h t has a marked e f f e c t on the p e r m e a b i l i t y of the c e l l s of Mimosa pud i c a to e l e c t r o l y t e s , probably due t o the \"disappearance or i n a c t i v a t i o n of the osmotic substances of the c e l l \" . On the other hand l i g h t being absorbed by the c e l l membrane, i t i s probable t h a t the membrane I t s e l f changes I t s p e r m e a b i l i t y , perhaps due to the a c t i o n of l i g h t on the l i p o i d substances which are believed t o be one of i t s c o n s t i t u e n t s . It can be d e f i n i t e l y s t a t e d , however, that con- d i t i o n s accompanying moderate increase i n r a t e of plasmol-ysis a l s o accompany increase i n r a t e of c e l l d i v i s i o n and that condition© accompanying extreme increase i n r a t e of pla s m o l y s i s r e s u l t i n decrease In growth. 14. Experimental Berk. 2. fhe e f f e e t of Bafliant Energy oa the growth and s.poralatlon o f G o l l e t o t r i c h a m ghomoides. fhe experiment8 to he described d e a l w i t h the e f f e e t of r a d i a n t energy on 1) growth 2) spornlation, of Goll e t o t r i c h t t m pboooides, a common cause of r i p e r o t of tomatoest19). Potato dextrose agar was used as the n u t r i e n t medium, s i n g l e p l a n t i n g s being made on the agar and allowed to grow f o r three days before i r r a d i a t i o n . gxperlaent 1. I r r a d i a t i o n w i t h f a l l l i g h t from a Mercury arc lamp. 1. S i n g l e spore c u l t u r e s of three days growth were exposed to the f u l l light, from a quarts mercury lamp at a d i s t a n c e of 12 cms. from the source, part of the c u l t u r e being protected by a h a l f c i r c l e of bl a c k cardboard. The l i n e of s e p a r a t i o n was evident w i t h i n a few minutes o f i r r a d i a t i o n , caused by the c o l l a p s e of the a e r i a l mycelium i n the exposed p a r t ; i n a l l cases growth was retarded and s p o r u l a t i o n a c c e l e r a t e d i n the area i r r a d i a t e d . ( P l a t e 4 ) . 2. S i n g l e spore c u l t u r e s of three days growth were i r r a d i a t e d f o r pe r i o d s o f three minutes to t h i r t y seconds w i t h the l i g h t from a quarts mercury lamp. I t was found t h a t I r r a d i a t i o n f o r three minutes caused s t u n t i n g flATM 4 » I f f e e t on a p o r u l a t l o n ana growth of I r -r a d i a t l n g \" h a i f of three-aay c u l t u r e s w i t h the aeretiry vapour arc spectrum, lower sid e exposed. npper s i d e normal. A. C u l t u r e , 14 days a f t e r 4 rain, exposure. 3. C u l t u r e , 3 days a f t e r 15 mia. exposure. 15. from which the c o l t ore d i d not afterwards regain the normal growth r a t e . ( f a b l e 3.) I r r a d i a t i o n of from f i f t e e n seconds to two minutes caused s t u n t i n g i n d i r e c t r e l a t i o n to the time of exposure, but from which the c u l t u r e recovered and u l t i m -a t e l y exceeded the c o n t r o l i n growth* D i r e c t i r r a d i a t i o n of the t h r e e day c u l t u r e r e s u l t s a f t e r about twenty-four hours i n the formation of numerous a c e r v u l i , mostly in clumps, the max-imum development of a c e r v u l i t a k i n g p lace a f t e r t h i r t y seconds to one minute exposure, longer periods of i r r a d i a t i o n a c c e l -e r a t i n g development but i n smaller q u a n t i t i e s . Development of a c e r v u l i i n the c o n t r o l did not. u s u a l l y take place u n t i l the e i g t h da# of growth. 3. I r r a d i a t i o n o f a suspension of spores. A suspension of spores i n s t e r i l e water was i r r a d i a t e d w i t h the f u l l i l l u m i n a t i o n from a quarts mercury lamp and the spores then pl a t e d out on bacto potato dextrose agar. I r r a d i a t i o n of spores f o r periods of more than t h i r t y seconds caused an i n t e n s i v e i n i t i a l s t u n t i n g from which the c u l t u r e d id not r e g a i n normal growth r a t e . I r r a d i a t i o n f o r f i f t e e n seconds a l s o caused i n i t i a l s t r m t i n g but the growth r a t e g r a d u a l l y approached norma}.. I t would seem from these r e s u l t s that the e f f e c t of i r r a d i a t i o n i s more d r a s t i c in the case of the spores than the growing rayeeliwffi, but i t should be born i n mind that many of the spores i r r a d i a t e d may have germinated, and that the germination tube was exposed to the rays which proved more harmful to i t than t o the older mycelium 16 msm a . B f f e e t of f a l l l l l a m i n a t i o n w i t h the mercer? arc lamp npon Exposure S i?,e o f c o l t ore I n ems * Bays 4th# 5t h . 6th 7th. 8th. 9 t h . C o n t r o l a .4 3.23 4.1 4.3 5.6 6.3 3 minutes 2.1 2.5 - 4.1 5.1 5.6 2 minutes 2.15 2.4 . — . 4.3 5.35 6.1 1 alnnt© 2.1 2.9 4.7 6.6 6.3 30 seconds 2.25 3.0 _ 4*9 5.7 6.5 15 seconds P. 3 . 3.1 V 4.8 5.7 6.5 * « » * * « . a 10th. 11th. 7.1 6.6 7.1 7.3 7.5 7.4 7.8 7.2 8.2 7.9 8.3 7.9 TA3LE 4. E f f e c t of f a i l I l l u m i n a t i o n w i t h the mercury are lamp anon CoIIetotrtchqgi B P ore' \"s^epani'lona. Expos ore Slae of c u l t u r e In cms. Bays ¥4h. 5 t h . 6th. 7th. 8 t h . 9th. 10th 11th C o n t r o l £.4 3.28 4.1 4.8 5.6 6.3 7.1 7.8 2 a i n n t ee 2.0 2.7 - ft.O 5.1 5.9 6.5 7.2 1 minute 1.95 2.7 * 4.4 5.1 5.9 6.6 7.4 30 seconds 2.1 2.9 - 4.6 5.2 6.1 6.7 7.5 16 seconds 2.1 3* X - 4.7 5.5 6.2 7.0 7.8 17 of the three day c u l t u r e s . In a l l cases development of a c e r v n l i was hastened, being noted i n the i r r a d i a t e d c u l t u r e s e v e r a l days before t h e i r development i n the c o n t r o l , iiaximum development seemed to take place i n c u l t u r e s i r r a d i a t e d f o r not more than t h i r t y seconds. Experiment £» I r r a d i a t i o n of spores In suspension by fflonoo.hr oaat le l l ^ h t . A suspension of spores i n s t e r i l e water was p l a c e t i n a quarts c o n t a i n e r i n the s l i t of the Mono-chromatic I l l u m i n a t o r and was i r r a d i a t e d w i t h various mono-chromatic l i n e s of the mercury arc spectrum. The e f f e c t of i r r a d i a t i o n of the spores by spec-i f i c wave lengths was seemingly confusing u n t i l d i v i ded i n t o f o u r c l a s s e s . ( f a b l e 5.J Cl a s s 1. 3ti.anls.tion continuous. 6819 A°, 4078 A°, 3656 A° and 3348 A° cause s t i m u l a t i o n of growth c o n t i n u i n g throughout the eleven day p e r i o d , except i n the case of 3 3 4 2 A 0 where the maximum s t i m u l a t i o n i s reached at the f o u r t h day. Glass £. Retardation followed by s t i m u l a t i o n . I r r a d i a t i o n by l i n e s i n t h i s c l a s s r e s u l t s i n a primary r e t a r d a t i o n of s m a l l degree followed by s t i m -u l a t i o n which i s g e n e r a l l y i n inverse? p r o p o r t i o n t o the i n i t i a l r e t a r d a t i o n . This e f f e c t i s caused by wave lengths 18 fABX.S 5. S p e o i f i o effects of Renoohreaatio l i g h t apon the growth of C o l l e t 6 trlafaqg, spore suspensions* l a v e length, Jfccp. S i s e o f c o l t ore i n cms. ** A \" In hrs. \" \" ' m Ai ©oat r o i C l a s s 1. 4078-3984 3656-3660 3342 Class 2. 6 leg~ 4 t h . 5th. 6 t h . 7th. 8 t h . 9th« Wave 2.4 3.28 4.1 4.8 5.6 6.3 7.1 lengths causing c o n s i s t e n t s t i m u l a t i o n 7.8 1 2.4 3.2 4.0 5*0 5.7 6.3 7.2 8.0 £ 2.6 3.5 4.5 5.7 6.4 7.0 7.4 8.1 1 8.6 3.2 4.0 4.9 5.6 6.9 7.5 8.1 2 2. 6 3.1 4.1 5.2 6.6 7.6 8.2 1 3.0 3.6 4.3 4.7 5.6 6.3 7.1 7.8 2 £.8 3.5 4.2 5.3 6*0 7.3 7.8 8.4 11 2*9 3.4 3.9 4.8 5,8 6.3 7.1 7.8 'aye lengths causing, r e t a r d a t i o n f o l l o w e d av s t i m u l a t i o n , ^ STB 3.1 4.1 4.8 a , 6'673\" 7.1 \"~ ' 2 2.3 3.0 4.1 5.0 5.8 7.2 8.0 8.5 3881 1 2.3 3.1 4.5 4.9 5.4 5.8 7.0 7.8 2 2* 3 3.1 4.2 5.0 6.0 6.8 7.6 8.5 3132- I 2.1 2*8 4.0 4.9 5.9 6.7 7.6 8*1 3126 2 2.3 3.2 3.7 4.8 6.1 6.8 7.6 8.6 2967 1 2*2 3.1 3.9 4.8 5.7 6.7 7.4 8.1 2 1.9 2.8 4.0 5.0 5.5 6.6 7.4 8.4 2700 1 3.2 4.0 4.7 6.1 6*4 7.2 8.3 8 3.2 4.0 4.7 6.1 6.5 7.3 8.5 Cla s s 3* Wave lengths causing complete r e t a r d a t i o n . 4960- 1 1.9 8*9 3.8 4.8 5.6 6.3 7.0 7.7 4916 2 1.9 2*7 3.6 4.8 5.5 6.1 6.9 7.6 3028 1 1.5 2.1 3.6 4*2 5.2 5.5 6*0 7.0 2 1.4 2. 1 2.8 3.5 4.2 5.7 6.3 7.2 2804 1 1.6 2.2 2.8 3*3 4.4 5.4 6.1 7.7 £ 1* £ £.1 2.6 3.4 4.2 4.7 §.7 6.5 2064 1 1.5 2.5 3*4 4.0 5.0 5.9 7.0 7.7 2 1*5 2.8 8.8 3.5 4.6 5.1 6.0 -1849 1 2.0 3.1 3.8 4.4 5*5 6.1 7.1 7.8 £ 1.8 2.5 3.3 4.8 5.1 6.1 7.0 7.7 19. 6152 A 0, 3JL32 A 0 , 3821 A°, 2700 A 0 and 8967 A°. Glass 3. Continued r e t a r d a t i o n . Continued r e t a r d a t i o n i s caused by wave-lenfltbs:-4960 A 0, 3028 A°, 8804 A f t, 2054 A 0 and 1849 A°. fhe growth of the mycelium i s stunted during the f i r s t few days a f t e r I r r a d i a t i o n , and the normal growth r a t e i s never reached over the period measured- I t w i l l be noted, however, that where the i n i t i a l s t u n t i n g i s not so intense the growth r a t e ap-proxiaates more c l o s e l y to nornai (2804 A 0 and 1849 A 0 } . Class 4. go e f f e c t . 4359 A does no a f f e c t the r a t e of growth t o any a p p r e c i a b i e e z t e n t . ( See P i a t e 5.). DISCUSSIQW OF R^DXffS. fhe e f f e c t of d i r e c t i r r a d i a t i o n of growing c u l -t u r e s and of suspension of spores In s t e r i l e water, on the •rate o f growth of the orpanlon can i n both eases be seen to be profoundly a f f e c t e d . I t i s apparent that the i r r a d i a t i o n o f spores has a acre narked e f f e e t than the i r r a d i a t i o n of the three day c u l t u r e s , emphasising the f a c t that the e f f e c t must be p u r e l y protoplasmic, nnd not due to changes i n the c u l t u r e ned inn causes by i r r a d i a t i o n . I t w i l l be seen fro© P l a t e 6 that when r e t a r d -a t i o n of growth extends ever the t e n day period , s p o r u l a t i o n BlAfB S. fhe p r o g r e s s i v e e f f e c t o f v a r i o u s linmm o f the mercury are speetrnm on t h e growth of OoTle'r\"--t o t r l c h o s i phomoides at t i n e i n t e r v a l s n-p \"WZZ* and t e n d a y s . ' • —= =• B f f e e t expressed as cms. increase or decrease over c o n t r o l c u l t u r e growth. PXAgB 6 The r e l a t i o n s between the e f f e c t of mono-ohronat 1c i l f l h t on the growth and s p o r n l a t l o n of C o l l e t otriehnsi. the c o n t r o l represented as zero. 80 i s hastened. I t may he noted, however, that when the f u l l mercury arc spectrum Is used f o r i r r a d i a t i o n , s p o r u l a t i o n i n c r e a s e * w i t h exposure's o f from f i f t e e n seconds to two min utes i n d u r a t i o n , hut decreased when exposures were f o r longer than two minutes, f h l s seems to i n d i c a t e that the time of s p o r u l a t i o n i s an Inverse expression of growth r a t e only w i t h i n c e r t a i n l i m i t s and that there i s an op-timum amount of I r r a d i a t i o n causing s p o r u l a t i o n . I t w i l l a l s o he noted from P l a t e 6 that r e -t a r d a t i o n and extreme s t i m u l a t i o n of growth are accompanied by e a r l y s p o r u l a t i o n , w h i l e i r r a d i a t i o n causing I n t e r -mediate s t i m u l a t i o n o f growth has no a p p r e c i a b l e e f f e c t on the time of development of a c e r v u l i . Stevens (34) working on various f u n g i found that i r r a d i a t i o n \"almost i n s t a n t l y i n i t i a t e s the d e v e l -opment of r e p r o d u c t i v e stnuctures i n great numbers where they would not have occurred without i r r a d i a t i o n \" . He sug-gests that these r e s u l t s may be due t o a sudden I n h i b i t i o n of growth caused by the r a y s . On the other hand Ramsey and B a i l e y (30) I r r a d i a t e d Maerosporlna and Pnsariura and s t a t e that there i s a d e f i n i t e s t i m u l a t i o n of s p o r u l a t i o n caused by u l t r a - v i o l e t l i g h t , w h i c h s e e i s to be a d i r e c t r e s u l t of s t i m u l a t i o n r a t h e r than the i n d i r e c t r e s u l t o f o i n h i b i t i o n . Greatest s p o r u l a t i o n was obtained at 8800 A -2535 A 0. S t i m u l a t i o n of spore production occurred below 8535 A° but there was some l e t h a l e f f e c t a l s o and r e -21. t a r d a t i o n o f m y c e l i a l development, fhese authors a l s o found that long exposure t o d i r e c t s u n l i g h t through f i l t e r s t r a n s -m i t t i n g no lower than 3132 A° induced abundant s p o r u l a t l o n both i n , iCacrosporium and Fusarium. F u l t o n and Coblent?, (8) i r r a d i a t e d the spores of eiany species of f u n g i w i t h u l t r a v i o l e t l i g h t and found that the l e t h a l e f f e c t r e s u l t e d a f t e r comparatively short exposures, although the time required t o V i l l v aried w i t h the type of fundus. D i l l o n Weston (6) a l s o r e p o r t s that thw primary r e a c t i o n on Fusarium i s that of r e t a r d a t i o n , sub-sequently, however, i r r a d i a t e d c u l t u r e s sporulated very abundantly, whereas the n o n - i r r a d i a t e d c u l t uses sporulated s p a r s e l y . From these various experiments i t #111 be seen that l i g h t has a profound e f f e c t on the production o f spores, but whether t h i s a c c e l e r a t i o n of spore production i s the d i r e c t r e s u l t of i r r a d i a t i o n or the r e s u l t of r e t a r d a t i o n of the m y c e l i a l growth causing a s t i m u l a t i o n of spore pro-d u c t i o n has not yet been determined. Upaparlson of the e f f e c t s of Monochromatic Light on animal protoplasts ( Pararaoecina) and on plant p r e t o p l a s a (Golletotrlofaips) In order t o f a c i l i t a t e comparison we w i l l d e a l w i t h the r e s u l t s i n e l a s s e s , i . e . , C l a s s 1, those l i n e s caus-ing s t i m u l a t i o n i n C o l l e t o t r i e h n m ; C l a s s 2, those l i n e s that g i v e r i s e t o r e t a r d a t i o n followed by s t i m u l a t i o n i n C o l l e t otrichnm and C l a s s 3, l i n e s that cause constant r e t a r d -a t i o n i n C o l l e t o t r i o h u i . { See P l a t e 7 ) . Cl a s s 1. 5819 A°, 3656 A°, 3342 A 0 and 4078 A 0 show continued s t i m u l a t i o n i n C o l l e t otrichnm. Of these 5819 A 0 and 3656 A° show s i m i l a r s t i m u l a t i o n i n Paramoeoiuta, 4078 A 0 g i v i n g s t i m u l a t i o n followed by r e t a r d a t i o n . C l a s s 2. 6158 A°, 3132 A°, 3821 A 0 and 8967 A 0 g i v e r i s e t o r e t a r d a t i o n followed by s t i m u l a t i o n i n C o l l e t o t r i c h u m . In Paramo©oiurn the e f f e c t s of the f i r s t three l i n e s are not that o f r e t a r d a t i o n but i t w i l l be noticed that a f t e r twenty-f o u r hours the growth i s more than that reported f o r the c o n t r o l , showing that the e f f e c t i s one of l e s s to more s t i m -u l a t i o n . 2967A0 t however, caused r e t a r d a t i o n i n Paramoeciurn. Class 3. 4960 A 0, 3022 A 0, 2804 A 0, 2535 A° and 2054 A 0 are found to retard, growth i n both Paramoecium and C o l l e t -otrichum. S i m i l a r r e s u l t 8 were reported by Hutchinson and lewton (20) i n t h e i r work on Yeast. I t can be seen from these r e s u l t s that there i s a decided c o r r e l a t i o n between the two s e t s of r e s u l t s . ( P l a t e 7} In C l a s s 3, where i n h i b i t i o n i s reported i n a l l cases i t would seem that the f a r u l t r a v i o l e t has a pro-found e f f e c t on both animal and plant protoplasm and that o o c e r t a i n regions i n the v i s i b l e ppectrum, 4960 A -4916 A , P M E 7 . Diagram of the ooanaratlTa e f f e c t s of monochromatic l i g h t on C o l l e t e t r i c h n m a n a . Paraaoeclna, the c o n t r o l r e pres-entee\" as aero. r to CO e s q S3 i tn < X * X - X » X t o - Q be —CJ ii< i — [,-XXXXX, \"US !/>/yyy/ LU CD 3 1 a: CO to 2 CJ Lu a H •< Jm 23 als o exert an Went l e a l e f f e e t . Where the e f f e c t s a r e not. so f a r - r e a c h i n g , d i f f e r e n c e s may he found Between the two r e s u l t s , prob-a b l y due t o the varied s u s c e p t i b i l i t i e s of the organisms used and the d i f f e r e n c e i n amount of l i g h t absorbed by the protoplasm. 24 SOMtARY Of R*:SgLTS. 1. There are two regione i n the Mercury Are Spectrum that d e f i n i t e l y i n h i b i t the growth r a t e of Paramoecina caudatnm:~ 4960 A 0, 3132 A 0 and a l l s h o r t e r wave lengths used* 2. t h e r e are two regions of the deroury Arc Spectrum that cause s t i m u l a t i o n i n Paramoecium caudatua growth r a t e : -5819 A 0 and 4359 A 0. 3. Under the c o n d i t i o n s of these experiments wave length and not i n t e n s i t y i s the determining f a c t o r . 4. S l i g h t t r a n s i t o r y i n h i b i t i o n i n growth r a t e i s u s u a l l y followed B?- a period of a c c e l e r a t i o n both In Paramoecium and C o l l e t o t r i o h m a . 5. A l l l i n e s of the Mercury Arc Spectrum t& ed i n these experiments caused an Increase i n the rate o f pl a s m o l y s i s of Paramoecium can.datua i n Sodium C h l o r i d e s o l u t i o n s . 6. f h e r e i s a d e f i n i t e c o r r e l a t i o n between d i v i s i o n r a t e and p 1 asmolytic r a t e i n Paramoecium caudatum. 7. I r r a d i a t i o n of three day c u l t u r e s of C o l l e t o t r i c h u r n phomoides caused r e t a r d a t i o n of growth and a c c e l e r a t i o n of s p o r u l a t i o n when the f u l l i l l u m i n a t i o n from a Quarts Mercury Arc lamp was used. 8. Suspensions of spores of OolietotKiehnm phomoid es i r r a d i a t e d w i t h the Mercury Are Spectrum haa growth r a t e retarded and s p o r u l a t i o n a c c e l e r a t i o n . £5 9. fhe e f f e c t of monochromatic l i g h t on spore suspensions i s of three k i n d s , i . e . . s t i m u l a t i o n of growth, r e t a r d a t i o n followed by s t i m u l a t i o n and r e t a r d a t i o n of growth. 10. R e t a r d a t i o n or extreme s t i m u l a t i o n of grcrth i s accompanied by e a r l y s p o r u l a t i o n , i r r a d i a t i o n causing s l i g h t s t i m u l a t i o n of growth having no apparent e f f e c t on development of a c e r v u l i . 11. A c o r r e l a t i o n can be seen between the e f f e c t of l i g h t on Paramoeciui and on C o l l e t o t r i o h u m , but i t i s Impossible to say a t t h i s stage whether t h i s holds f o r a l l animal protoplasm as compared w i t h plant protoplasm. £6. PAR? B. fm OF RAPlAKf MBRQY OS M.^YMR ACf 101 ISTBODPCflOH I t would seem from r e s u l t s obtained In Part A of t h i s work and i n experiments undertaken by other authors, t h a t l i g h t has a profound e f f e c t on both plant • \\ mi animal protoplasm and t h a t t h i s e f f e c t must be based on ©ne or more f a c t o r s . What these f a c t o r s are has yet to be determined. S e v e r a l t h e o r i e s , however, have been propounded. According to F. I». Sates (9) the e f f e c t o f measured monochromatic u l t r a v i o l e t energy used to k i l l b a c t e r i a shows c h a r a c t e r i s t i c and s i m i l a r curves at each wave l e n g t h , but an appreciable amount of energy must be i n c i d e n t on the b a c t e r i a before any of them succumb, and w i d e l y d i f f e r e n t i n t e r m i t iea of energy are required to produce these curves at d i f f e r e n t wave len g t h s , f h e r e -c i p r o c a l s of these curves are s i m i l a r to the absorption curves of c e r t a i n d e r i v a t i v e s of the nucleo-proteins which are r e l a t e d to c e l l growth and reproduction. This con-c l u s i o n i s supported by the known f a c t t h a t the a c t i v e agent of chicken t umours i s associated w i t h a n n c l e o - p r o t e i n , which, i n a l l cases of sarcomatous c e l l s , gives a p o s i t i v e Feulgen r e a c t i o n . I t i s t h e r e f o r e p o s s i b l e that the l e t h a l e f f e c t and the i n h i b i t i o n of c e l l d i v i s i o n caused by u l t r a 2? v i o l e t l i g h t may he r e l a t e d t o I t s a c t i o n on the nucleo-p r o t e i n s of the nucleus. I. I . H a r r i s and R. S. Eoyte {13} prepared a pure c u l t u r e of Pararaoecinm and a second c u l t u r e suspended i n a s o l u t i o n o f aromatic amino a c i d s , f h e suspension was i r r a d i a t e d d i r e c t l y and the pure c u l t u r e through a s h i e l d formed by a l a y e r of the a c i d s o l u t i o n and i n both cases the t o x i c i t y was decreased. T h i s r e s u l t suggested the p o s s i b i l i t y that the s u s c e p t i b i l i t y of protoplasm t o u l t r a - v i o l e t l i g h t i s conditioned by the s e l e c t i v e ab-s o r p t i o n of the t o x i c rays by the aromatic amino a c i d r a d i c a l s of the p r o t e i n s . Hutchinson and Ashton (17} have suggested t h a t resonance phenomena may be i n v o l v e d , and t h a t c e r t a i n p a r t i c l e s i n a c o l l o i d a l or other s t a t e possess v i b r a t i o n periods such that t h e i r movements are a f f e c t e d by the s p e c i f i c frequences of the r a d i a n t energy* On t h i s b a s i s subsequent e f f e c t s may d i f f e r from the i n i t i a l ones owing to a s s o c i a t e d changes i n the c o l l o i d a l c o n d i t i o n . As there i s a c e r t a i n d ependance of ensyme a c t i v i t y on the c o l l o i d a l s t a t e i t was thought that the e f f e c t of ra d i a n t energy on enzyme a c t i o n might throw some l i g h t on these b a s i c f a c t o r s causing l e t h a l or s t i m u l a t o r y e f f e c t s on protoplasm. 28. BETiBw OF Lxyrmggas. Light i n f l u e n c e s enzyme a c t i o n s by destroying the ensyme i t s e l f or fey modifying i t s a c t i v i t y . Lockman, f h i e s and Wiekern (82) found that the i n h i b i t o r y e f f e c t of d i f f u s e d l i g h t on peroxidase and blood c a t a l a s e was i n the f o l l o w i n g order, white>blne> red > d a r t . H e i n l e (31) fonnd that the methylene bine formaldehyde reductase r e a c t i o n of cow's m i l k was reduced by the a c t i o n of u l t r a v i o l e t l i g h t . G e t c h e l l and Walter (10) s t a t e d that u l t r a v i o l e t l i g h t was more potent i n the d e s t r u c t i o n o f peroxidase a c t i v i t y than e i t h e r X-rays, radium or v i s i b l e l i g h t . Pincuasen (87) found that the a c t i o n o f l i g h t on d i a s t a s e and urease was dependent on the d i l u t i o n of the ensyme, the v a r i o u s i m p u r i t i e s present and upon the r e a c t i o n . Radium r a d i a t i o n s were a l s o found to be i n j u r i o u s t o rennet but to have a s t i m u l a t i v e e f f e c t on d i a s t a s e . X-rays a l s o have varied e f f e c t s on enzymes, the d i a s t a t i c a c t i v i t y o f u r i n e , serum and v a r i o u s f l u i d s being unchanged w h i l e that of pepsin and amylase was c o n s i d e r a b l y a l t e r e d . H. 3. F u l l e r (7) experimented w i t h plant t i s s u e i n j u r e d by u l t r a v i o l e t r a d i a t i o n In respect t o c a t a l a s e anc d i a s t a s e a c t i v i t y and found that the a c t i v i t y of these enssyaes a c t u a l l y increased t o a considerable extent i n t i s s u e s exposed to d e s t r u c t i v e wave lengths and t h a t there was no evidence whatsoever of a d i m i n n i t i o n of ensyme B 9 . a c t i v i t y , a c o n d i t i o n c o n t r a r y to the r e s u l t s of previous I n v e s t i g a t o r s . This anthor b e l i e v e s t h a t the i n j u r i o u s e f f e c t s of u l t r a v i o l e t l i g h t must be tr a c e a b l e t o some p h y s i o l o g i c a l A«; angeaent other that the i n a o t i v a t i o n of enaymea. I t would sees t h a t various forms of r a d i a n t energy have varying e f f e c t s on enaymes from d iff©rent sources and the work reported here i s an attempt t o f i n d some c o r r e l a t i o n between the e f f e c t of l i g h t on plant emsymes and on animal ensymes i n the hope that sons d e f i n i t e c l a s s i f i c a t i o n might be found and t h a t some con-n e c t i o n might be es t a b l i s h e d between these r e s u l t s and the r e s u l t s p r e v i o u s l y reported on the e f f e c t on growth and r e -prod u c t i o n . W2?MmmTAi WORK;. PART 3». E f f e c t of Radiant Energy on Diest a s e . PARS I I . E f f e c t of Radiant Bnergy on Oxidase A c t i v i t y of Potato e x t r a c t . ^ X* The most wid e l y d i s t r i b u t e d ensymes that c o n t r o l the breaking down Of the higher carbohydrates are the Diastases ( Amylases). These ensymes break down carbohydrates t o an end product of maltose w i t h the intermediate production of erythro and aohroo-dextrlns. In these experiments the 3© animal amylase need was P t y a l i n , the d i a a t a t i c enayme pres-ent i n human s a l i v a , the plant enzyme used was rfe.lt D i a s t a s e , fro® geminated b a r l e y . fhe divergence In r e s u l t s obtained d u r i n g the breaking down of s t a r c h by d i a s t a s e of v a r i o u s o r i g i n s has led t o the b e l i e f In the presence of two enzymes, a saccharogenio enzyme and a s t a r c h l i q u i f y i n g ©n&yae. Sherman and So h i ©singer (33) and Kendal and Sherman (?.l) have demonstrated that the l i q u i f y i n g a c t i o n i s predominant i n p a n c r e a t i c amylase and the s a c c h a r i f y i n g i n malt d i a s t a s e , and have a l s o shown that the l i q u i f y i n g enzyme i s predom-inant i n s a l i v a r y d i a s t a s e . These workers found that the p r o p o r t i o n o f the two a c t i o n s was u s u a l l y constant f o r each p a r t i c u l a r ensyme although great d i f f e r e n c e s i n prop-o r t i o n were n o t i c e a b l e i n en^ymea of varied sources, t h i s d i f f e r e n c e being ascribed \"to the presence of complements or a c t i v a t o r s which are required f o r s p l i t t i n g up of c e r t a i n d e f i n i t e atomic groups'*. Sow i t was thought t h a t l i g h t , having a d e f i n i t e e f f e c t on ensyme a c t i o n , might have a varying e f f e c t on the two enzymes present In D i a s t a s e , a c t i n g as an i n h i b i t o r or a c t i v a t o r o f the d i f f e r e n t groups, fhe experiments here described were t h e r e f o r e c a r r i e d out on the a n x i o l y t i c a c t i o n of d i a s t a s e as d i s t i n c t from the saccharogenio a c t i o n , hut i t Is hoped i n the near f u t u r e t o a s c e r t a i n the effeet on the sugar forming ensyme and t o f i n d whether t h e d i f f e r e n c e s 31 are. l i m i t e d t o e i t h e r plant or animal amylase or possessed by both. HAfSRlAja 1. riialt D i a s t a s e . .76 grms. of jAalt D i a stase were shaken f o r 16 minates i n £50 c e . d i s t i l l e d water and then f i l t e r e d . Shie s o l u t i o n plus two drops of toluene as a p r e s e r v a t i v e was kept i n the dark i n a stoppered b o t t l e . £. S a l i v a r y d i a s t a s e . Samples of s a l i v a were obtained thus:- the mouth was washed out wi t h d i s t i l l e d water at 40 °F. 80 c o . of water was then held i n the month f o r one minute and ^ c o l l e c t e d • f h i e was repeated t w i c e , fh® 40 c c were then shaken, f i l t e r e d and. the r e s u l t i n g s o l -u t i o n kept i n the dark, i t was found that the a c t i v i t y of the s o l u t i o n became l e s s on the t h i r d day so that a f r e s h s o l u t i o n was made up every three days and was found to be remarkably constant i n i t s a c t i v i t y , f h e achromio point o f the s a l i v a was ascertained and i f i t varied g r e a t l y from four minutes adjustment was made of the con-c e n t r a t i o n of the s o l u t i o n to on t a i n an a chromic point of constant value. 3. Substrate used. C. P. s o l u b l e s t a r c h was used throughout a l l the experiments. S o l u t i o n s of s t a r c h were made up of the f o l l o w i n g c o n c e n t r a t i o n s : - 0.1$, 0.8 ?4, 0.3 $ r 0.* ft, 0.75 1.0^, 32. 2.0$, 2.5f§, 3.0^, 4.0$, 5.0fl, In the ease of S a l i v a r y Diastase £6 o.o. o f a phosphate h n f f e r of 6.7 pH were naed t o maintain the pE maximum at 6.7, which I s the opt imam pE f o r p t y a i i n a c t -i v i t y . £5 c c . of Ifk NaCl were a l s o added as the a c t i o n of animal amylase has been proved to be conditioned by the presence of n e u t r a l s a l t s i n q u a n t i t i e s v a r y i n g fro® .02^ t o 8.0 p. the G.l$ s t a r c h s o l u t i o n would therefore be made up as f o l l o w s : -4 c.o. 5$ s t a r c h s o l u t i o n . 25 c c . S u f f e r 25 c c . 1£ l a C l 146 c c D i s t i l l e d water. fh e other s o l u t i o n s being made up w i t h the required p r o p o r t i o n s of s t a r c h and d i s t i l l e d water. In the ease of the Malt Diastase the same concentrations of s t a r c h s o l u t i o n were lade up, but the pH was 3 ept between 4.8 and 5.2 by means of a p t h a l a t e h n f f e r . The 0.1^ s t a r c h s o l u t i o n being made up as f o l l o w s 4 c c . 0> s t a r c h s o l u t i o n 25 c c B u f f e r 171 c c d i s t i l l e d water. PROCTORS 3 c c of enzyme s o l u t i o n were placed i n each of two quarts tubes* One tube was f i t t e d i n t o the s l i t of the monochromatic i l l u m i n a t o r or i r r a d i a t e d d i r e c t l y i n f r o n t of the quarts mercury lamp and the other was 33. kept i n the dark as & c o n t r o l . In the case of s a l i v a r y d i a s t a s e 1 c.c. o f the i r r a d i a t e d so l o t i o n was d i l u t e d to 100 c.c. w i t h d i s t -i l l e d water and 1 c.c. of t h i s s o l u t i o n placed i n each of the s e r i e s of t e s t tubes c o n t a i n i n g 5 c.c. of each of the s t a r c h s o l u t i o n s . ?hus 0.01 c.c. of ensyme was present i n each t e s t tube plus 5 c-.c# s t a r c h s o l u t i o n , fhe same pro-cess was repeated f o r the c o n t r o l . One drop o f toluene was added t o each t e s t tube, which was then shal en, and placed i n an oven at 38°-40°F. 3 drops of the i r r a d i a t e d malt d i a s t a s e were added by means of a dropping pippett to the s t a r c h s e r i e s w i t h 8 drops of toluene per t e s t tube, shaken, and placed i n the oven at 38°-40°F. Three drops of the n o n - i r r a d i a t e d c o n t r o l a l s o being added t o another s e r i e s and that i n t u r n placed i n the oven. At stated i n t e r v a l s of time one drop was taken from each of the s e r i e s of t e s t tubes, i r r a d i a t e d and c o n t r o l , placed on a g l a s s p l a t e , using a dropping p i p e t t e , and one drop of 1/10 Iodine added, fhe f i r s t appearance of red c o l o u r a t i o n , denoting conversion of s t a r c h to d e x t r i n , was noted and the number of the t e s t tube r e -corded . 3 4 . BSSTOta. S a i l v a r y M a a t a s e . 1 « 3?oo e f f e c t o f f a l l i l l u m i n a t i o n from a quarts mercury 1««*P on the a m g l o l y t i c a c t i o n of s a l i v a . a) , f b r e e e.e. o f ensyme were i r r a d i a t e d at v a r i o u s d i s t a n c e s from a quarts mercury lamp f o r a period of one hour and the aehroaic point of the s o l u t i o n a s c e r t a i n e d . { f a b l e 6.) These r e s u l t s show t h a t the a c t i v i t y of the ensyme i s g r e a t l y reduced by the f i c t i o n of l i g h t i n d i r e c t p r o p o r t i o n to the d i s t a n c e from the source. b) . f h r e e c.c. samples of s a l i v a r y d i a s t a s e were i r -r a d i a t e d f o r one hour at d i s t a n c e s of 10, 7, 5 and 3 erne, from the source of l i g h t . The e f f e c t of the various i r -r a d i a t e d ensyme s o l u t i o n s on the s e r i e s of s t a r c h tubes as p r e v i o u s l y described was ascertained at varj-ing periods of time, and a comparison made -vith the c o n t r o l . ( f a b l e 7, P l a t e 8). I t w i l l be seen that the f u l l l i g h t from a mercury are lamp has a decided i n h i b i t o r y a c t i o n on the a c t i v i t y of s a l i v a r y d i a s t a s e , e v i d e n t l y i n proportion t o the i n t e n s i t y of the l i g h t , fhe r i s e i n temperature of the ex-t r a c t s so i r r a d i a t e d was n e g l i g a b l e as compered w i t h the c o n t r o l except i n the case of i r r a d i a t i o n at a d i s t a n c e of 3 cms. from the sourfe of l i g h t when the temperature was r a i s e d about 3°C. above room temperature, f h e almost t o t a l 35 ffA3&3 6. fhe e f f e c t of I r r a d i a t i o n on the achroalo point of s a l i v a . ~\" Distance from Ac hr pale P o i n t . L i g h t Soarce 30 cms. 4 tains. 80 mm* 6 mine. 10 cms. IB rains. 7 cms. 36 mine. 5 ems. 64 tains. 3 cms. Ho end p o i n t . fASLE'-7. f K l e f f e c t of f u l l I l l u m i n a t i o n from a gjiartu mercury lamp on the a c t i v i t y of S a l i v a r y Diastase. A c t i v i t y of ensyrae expressed as amount of star«fh reduced* ( Percentage concentration of s o l u t i o n J . Hours. I S 3 4 6 6 7 8 9 10 84 48 96 C o n t r o l .5 1.0 1.5 - - E.O - - - 8.5 3.0 4.0 5.0 10 cms..5 .75 1.0 - - 1.5 - - E.O 8.5 3.0 4.0 7 cms. *£ - .6 » - 1.0 - - 1.5 2.0 £.6 3.0 5 cms. ..£ - .3 - - .5 - - - .75 1.0 1.5 8.0 PIAfB 8 B f f e c t of f n l l i l l u m i n a t i o n f r o g a gnarts aero or j lamp on the amylolyTic a c t i o n of s a l i v a ana of malt d i a s t a s e . Qrdinates. Ski^yme a c t i v i t y expressed percentage c o n c e n t r a t i o n of s t a r c h s o l at i o n reduced. A b s c i s s a e , SDime a f t e r c e s s a t i o n of I r r a d i a t i o n . A. B f f e o t on S a l i v a r y D i a s t a s e . B. S f f e c t on Malt Diastase. V 36. i n a c t i v a t i o n of the mnjme so i r r a d i a t e d may he t h e r e f o r e p a r t l y due t o the d e s t r u c t i v e a c t i o n of the wave lengths of the longer p a r t of the spectrum. I t i s o f i n t e r e s t t o note that an experiment was c a r r i e d out to a s c e r t a i n the approximate e f f e c t of f u l l i l l u m i n a t i o n on the amount o f reducing sugar formed and the e f f e c t was proved t o he d e c i d e d l y i n h i b i t o r y i n nature* B. f h e s p e c i f l e e f f e c t s of Monochromatic Light on S a l i v a r y i f as t as®. ' f a k i n g these r e s u l t s i n c l a s s e s we have:-C1*8B i« l a v e lengths having no e f f e c t . these i n c l u d e 6152 A°, 5819 A° and 3821 A°, which exert no measurable e f f e c t on the a c t i v i t y o f the enzyme. C l a s s 2* l a v e lengths having a s t i m u l a t i n g e f f e c t . 4359 A 0 and 4078 A 0 appear to have a s l i g h t s t i m u l a t o r y e f f e c t , which i s l o s t , however, a f t e r some hours. 3663 A 0 on the other hand e x e r t s a s l i g h t i n h i b i t o r y e f f e c t at f i r s t , followed by a s t i m u l a t i o n which i s maintained through-out the experiment. C l a s s .3. Save lengths causing a r e t a r d a t i o n In a c t i o n . 5461 A°* 4916 A°, 3132A 0 w i t h a l l l i n e s of s h o r t e r wave leng t h possess a decided i n h i b i t o r y e f f e c t , which i s maintained throughout the p e r i o d . In the case of 3022 A 0 the i n h i b i t i o n i s - n l y i n i t i a l and f a l l recovery takes p l a c e by the completion of the experiment. 37. g a b l e 8. The s p e c i f i c e f f e c t s of Monochromatic Light on P a l l y D i a s t a s e . A c t i v i t y of the enayme expressed as amount of s t a r c h reduced, percentage c o n c e n t r a t i o n of s o l u t i o n * Readings a f t e r twenty-four hours I r r a d i a t i o n . Hours. 1 3 4 5 6 7 8 9 10 84 48 96 Control • 5 1.0 1*5 - 2.0 - - _ 2/S 5.0 4.0 5.0 616EA 0 So e f f e c t .. - * » » * # * * * * * • * * * 5819AO f o e f f e c t .. * A ft * * « * * • * • • • • » « • • • * * * • « • * • « 5461A° .3 . 5 .75 - 1.0 - - 1.5 — - 2.5 3.0 4.0 4916A0 .3 • 5 .75 1.0 - 1.5 - - - 2.0 2.5 3.0 4.0 4359A0 .75 1.0 1.5 - £.0 8.0 3.0 4.0 5.0 4078A0 .75 1.0 1.5 - 2.0 - - 2.0 3.0 4.0 5.0 3821A0 l o e f f e c t .. » * * • 4 * * * * * a * * 3663AO .5 1.0 1*5 - 2.0 - - _ 3.0 4.0 6.0 3132A0 .3 .3 .5 - .75 - 1.0 - 8.0 3.0 4.0 3G22A 0 .3 .5 .75 - - 1.0 - - - - 3.0 4.0 4.0 2967A 0 .3 .5 .75 - - 1.0 - - - - 2.6 3.0 4.0 2804A 0 .3 .5 .75 - 1.0 - - - £.5 3.0 4.0 8700A0 .5 .5 .75 - 1.0 - - 8.0 3.0 4.0 2535A 0 .3 .5 .75 - 1.0 - — 1.5 - 2.0 8.5 3.0 38 • B e s a l l s M a l t Diastase*. 1* fhe e f f e e t o f f u l l I l l u m i n a t i o n from a guarta mercury lamp on the a c t i v i t y of malt d i a s t a s e * A decided I n h i b i t o r y e f f e c t i s recorded., i n c r e a s -i n g w i t h the i n t e n s i t y of the l i g h t , the greatest I n h i b i t i o n being found when the e o l a t i o n s were i r r a d i a t e d a t 3 ems. d i s t a n t from the source of i g h t . f P l a t e 8) 2. The s p e c i f i c e f f e c t s o f monochromatic l i g h t on the a c t i v i t y of malt d i a s t a s e * it was foand t h a t only f o u r wave lengths, i * e . , o _ 5461 A , 4916 A , 31'2 A 0 and 3022 A 0 had any e f f e c t on the d l a s t a t i c a c t i o n of the malt s o l u t i o n . The lack o f e f f e c t i n the s h o r t e r wave lengths may be due l a r g e l y t o the f a c t that the i n t e n s i t y o f the i n c i d e n t l i g h t was not s u f f i c i e n t to e f f e c t any change i n ensyae a c t i o n , although i t must be noted that 3132 A 0 , 3022 A 0 and 4916 A 0 are a l l l i n e s o f very low i n t e n s i t y , e s p e c i a l l y as compared t o 5461 A 0, and a l l exert a d e c i d e d l y i n h i b i t o r y a c t i o n , p o i n t -ing to the f a c t t h a t i n t e n s i t y Is not the c o n t r o l l i n g f a c t o r i n t h i s o ase* COfeCPARISOy OF HKBgXffS» 1. In both cases, th«t of s a l i v a r y and malt d i a s t a s e f u l l i l l u m i n a t i o n from a quarts mercury lamp has a decided i n h i b i t o r y e f f e c t on the a c t i v i t y of these ensymee. In the case of s a l i v a the most intense i l l u m i n a t i o n used 39. TARLK 9. g f f e o t o f f a l l I l l u m i n a t i o n from a quart* mercury lamp on the a c t i v i t y of H a l t P i a s t a a e . Kusyme a c t i v i t y expressed as amount of s t a r c h reduced. Headings a f t e r twenty-four hours i r r a d i a t i o n . B^ys. 1 8 3 4 6 6 ? 8 9 10 11 IE dontreX 1.6 8.0 - 8.5 - - 3.0 - - 4.0 10 ems. 1.0 1.6 - - - 8«6 - - 3.0 7 cms 1.0 1.6 - - 8.0 - - - 8.5 3.0 5 cms .75 1.0 - - 1.5 - - - - 2.5 - 3.0 fl cms•.3 .5 - .76 - 1.0 - - - 1.5 10. S p e c i f i c e f f e c t s of i*ioaocbroaatlo l i g h t on the a c t i v i t y of Malt D i a s t a s e . C o n t r o l 1.5 8.0 - 2.5 - - 3.0 4.0 5461A 0 1.5 - - 2.0 - - 8.5 - - 3.0 4916A 0 1.5 - - - 8.0 - 8.5 - - 3.0 - 4.0 3138A 0 1.6 - 8.0 - - - 8.6 - - 3.0 - 4.0 3088A° 1.6 - - 2.0 - - - 2.5 3.0 - 4.0 40. ( Seas, d i s t a n t ) has an almost completely p a r a l y s i n g e f f e c t i n c o n t r a s t to malt d i a s t a s e , which shows gradual recovery from the e f f e c t s of i r r a d i a t i o n at that distance ( P l a t e 8). I t must be rembered, however, that the normal a c t i v i t y of the two amylases i s very d i f f e r e n t , the s t a r c h l i q u i f y i n g ensyme i n s a l i v a being many times more r a p i d i n I t s a c t i o n than the l i q u i f y i n g p o r t i o n in malt d i a s t a s e , fhese r e s u l t s may be i n part a t t r i b u t a b l e to t h i s d i f f e r e n c e i n a c t i v i t y , the l e a s t a c t i v e ensyme being the l e a s t a f f e c t e d . 2. fhe r e s u l t s from I l l u m i n a t i o n w i t h mono-chromatic l i g h t are i n t e r e s t i n g i n that f o u r l i n e s , 5461 A 0, 4916 A 0, 3132 A 0 and 3022 A 0 i n a l l cases exert a decidedly I n h i b i t o r y a c t i o n on the a c t i v i t y of the ensymes. fh a t t h i s i s due s o l e l y to wave length and not to i n t e n s i t y can be o c l e a r l y seen by comparing the r e l a t i v e i n t e n s i t i e s of 8461 A and 4916 A 0, l i n e s which e x e r t , e s p e c i a l l y i n the case of Malt d i a s t a s e , p r a c t i c a l l y the same amount o f . I n h i b i t i o n w i t h very unequal i n t e n s i t i e s . fhewave lengths that cause s t i m u l a t i o n i n s a l i v a r y d i a s t a s e have no e f f e c t on Malt d i a s t a s e , i . e . , 4359 A 0, 4078 A° and 3663 A°. In s a l i v a r y d i a s t a s e a l l wave lengths s h o r t e r than 3022 A 0 exert a decidedly i n h i b i t o r y e f f e c t on the ensyme a c t i v i t y but have no e f f e c t on that of malt d i a s t a s e . PMfE 9 Comparison of the e f f e c t of aonochrotaat lo l i g h t on the growth of Baramoeoinm oaudatnm ana on the a c t i v i t y of animal diastase\": Paramoecium - increase or decrease i n n ran her of e e l l s a f t e r twenty-four hours i r r a d i a t i o n over the c o n t r o l count. Ensyme a c t i v i t y * - expressed as percentage con-c e n t r a t i o n of s t a r c h s o l u t i o n reduced at periods of three and twenty-four hours a f t e r i r r a d i a t i o n . utt siii 3t5b mi mi MM « 7 z mi mi i%i WK mn uis zos'tK 41. Comparison of the e f f e c t of n i t r e v i o l e t 1ight on growth w i t h the e f f e c t on ensyme a c t i o n . 1. Comparison of the e f f e c t of Monochromatic l i g h t on growth of animal protoplasm end en the a c t i v i t y of animal i i a a t a s e . ( P l a t e 9.) f h e r e appears to be some c o r r e l a t i o n between the r e s u l t s of these experiments. f%e l i n e causing the g r e a t e s t o s t i m u l a t i o n o f growth i n Paramoeniurn, i . e . , A , shows the maximum s t i m u l a t o r y e f f e c t on the a c t i v i t y of s a l i v a r y d i a s t a s e . Those l i n e s that only s l i g h t l y s t i m u l a t e growth appear t o hr-ve no e f f e c t on the a c t i v i t y of the enzyme. She s h o r t e r wave le n g t h s , causing an i n h i b i t i o n of growth i n Paramoeoina, exert a decided i n a c t i v a t i n g e f f e c t on the eawyme. 4078 A 0, causing I n h i b i t i o n i n growth does not e f f e c t the ensyme a c t i v i t y and 31?»E A 0, having no e f f e c t on growth, has an i n a c t i v a t i n g e f f e c t on ensyme a c t i o n , but apart from these two l i n ^ s g i v i n g divergent r e s u l t s there appears to be a c o r r e l a t i o n between growth r a t e and d i a s t -a t i c a c t i v i t y under the c o n d i t i o n s of these experiments. { P l a t e 9.) 2. Comparison of the e f f e c t of monochromatic l i g f c t on the growth of plant protoplasm and on the a c t i v i t y of plant d i a s t a s e . There seems to be no evident c o r r e l a t i o n between the r e s u l t s obtained f o r malt d i a s t a s e and those on the 42. growth mi s p o r u l a t i o n o f C o l l e t o t r i c h r a a , although 4916 A° and 3022 A® cause i n h i b i t i o n i n a l l oases. This l a c k of c o r r e l a t i o n i s perhaps due t o the f a c t that malt d i a s t a s e i s an ensyme from a p l a n t c o n t a i n i n g c h l o r p h y l l and C o l l e t o t r i e h u m i s a fungus, f h e r e may be a d i f f e r e n c e between the s e n s i t i v i t y of enzymes i n photosynthetic p l a n t s and i n those l a c k i n g c h l o r o p h y l l . Experiments are t o be undertaken on enaymes obtained from fungi i n order to c l a r i f y t h i s p o i n t . S u f f i c i e n t data has not yet been obtained to enable any d e f i n i t e statement to be mode, but the r e s u l t s so f a r point to the f a c t t h a t plant d i a s t a s e i s l e s s sen-s i t i v e to l i g h t of v a r i o u s wave lengths than animal d i a s t a s e . 43 B&Rf, B. fhe e f f e c t of Radiant Energy OR the Oxidase a c t i v i t y o f Potato J u i c e * Potato e x t r a c t was used i n the f o l l o w i n g ex-periments to determine the e f f e c t of n l t r a v i o l e t l i g h t and monochromatic l i g h t on oxidase a c t i v i t y . fhe method of measuring the oxidase a c t i v i t y was based on th a t o u t l i n e d by G u t h r i e (1 2 .) Be noted t h a t potato j u i c e contained a substance that might be t i t r a t e d w i t h i o d i n e i n a c i d s o l u t i o n ( t r i c h l o r a c e t i c a c i d ) and that t h i s t i t r a t i o n value decreased on exposure to a i r . However, i n some cases the t i t r a t i o n was found Jre be very much Increased and i t was believed to be due t o a low content of oxidase, the \"substance r e s p o n s i b l e f o r the i o d i n e r e a c t i o n not being oxidised In the pro-cess of e x t r a c t i o n f o r t h i s reason\". G u t h r i e found t h a t glucose warmed w i t h d i l u t e HaOE contained a carbo-hydrate d e r i v a t i v e capable f reducing Iodine In acid s o l u t i o n . T h i s t i t r a t i o n decreased on exposure to a i r and the o x i d a t i o n was catalysed by p o t a t o j u i c e . I t would t h e r e f o r e be p o s s i b l e to measure the a c t i v i t y of the ox-idase i n the potato j u i c e -y the amount of i o d i n e r e -duced by j u i c e and s u b s t r a t e . :HB?P0PS. 1. P r e p a r a t i o n of s u b s t r a t e v 40 g r a s . of glucose were d i s s o l v e d i n 400 c,c. of Normal sodium hydroxide, placed i n a 500 c.e. f l a s k and immersed 44. i n a water-bath at 80°C f o r IS minutes. The s o l u t i o n was removed and n e u t r a l i s e d at once by adding 10 c.c. of 85$> phosphoric a c i d . 2b grins, of d e c o l o u r i z i n g c h a r c o a l was added and the mixture allowed t o stand overnight, fhe mixture was then f i l t e r e d and another 25 grms. of char-c o a l added and allowed t o stand f o r 15 minutes and again f i l t e r e d , fhe pE was then adjusted to 6.5 by means of H/10 sodium h y d r t x i d e or h y d r o c h l o r i c a c i d . 2. P r e p a r a t i o n and i r r a d i a t i o n of ensyme e x t r a c t * An e x t r a c t of potato j u i c e c o n t a i n i n g the ensyme was ob-tained by g r i n d i n g up a measured amount of potato and squeezing the ground m a t e r i a l through cheese c l o t h w i t h a potato masher. 3 c c . of the e x t r a c t so obtained was placed i n a quarts c o n t a i n e r , stoppered w i t h cotton wool, and e i t h e r i r r a d i a t e d by the f u l l i l l u m i n a t i o n from a quarts mercury lamp ar placed i n the s l o t of the mono-chromatic i l l u m i n a t o r , f o r v a r y i n g periods of time. 3. Meaanreaerit of oxidase a c t i v i t y . 80 c c of the s u b s t r a t e d i l u t e d 1:1 w i t h d i s t i l ' ed water was placed i n each of two a e r a t i o n tubes, A and B. fO A was added 3 c c of potato e x t r a c t which had been kept In the dark d u r i n g the i r r a d i a t i o n period to act as a c o n t r o l , f o B. was added 3 c.c. of i r r a d i a t e d e x t r a c t . 5 drops of p a r a f f i n o i l were added to each to act as a foam breaker, and both A and 3 were aerated f o r one hour w i t h increase or decrease c o n t r o l t i t r a t i o n s . Wave length Time in A 0 I r r a d . Headings a f t e r 5 minutes. Read i i 10 6158 3 h r s . 18 hours 3.3 - 2.2 1.5 -1.4 5819 3 hours 18 hours 1.4 .6 2.1 1.4 5461 3 hours 18 hours 1. 3 8.9 0 5.2 4960 3 hours 18 hours 1.3 8.6 .6 2.0 4359 3 hours .6 0 4078 3 hours .6 .6 3881 3 hours 1. 8 .6 3132 3 hours 18 hours -1.3 -2.4 -1.3 -8.4 3082 3 hours 18 hours -3.7 .65 —11.3 2804 3 hours -2.4 -2*5 2700 3 hours -3.0 -3.0 2535 3 hours -1.8 - .6 £054 3 hours -1.6 - .5 over igs a f t e r minutes. 59. .•piscpssioiF OF nmmxa. From the r e s u l t s j u s t recorded i t would seen t h a t r i s i b l e and u l t r a v i o l e t l i g h t have an ap p r e c i a b l e e f f e c t on the oxidase a c t i v i t y of potato e x t r a c t under the con-d i t i o n s o f these experiments. V i s i b l e l i g h t , e s p e c i a l l y the y e l l o w p o r t i o n o f the spectrum, causes a s t i m u l a t i o n , although the t r a n s -i t i o n l i n e s around 4078 A 0 show a s l i g h t decrease i n a c t i v i t y , f h e near u l t r a v i o l e t l i n e s cause a decrease i n a c t i v i t y which becomes greater as the f a r u l t r a v i o l e t i s approached. f h e t o t a l e f f e c t of the l i n e s of the -alercury Arc Speotrma causing decrease i n a c t i v i t y seems t o be grea t e r than that caused by the s t i m u l a t i n g l i n e s , as i s shown when i r r a d i a t i o n i s c a r r i e d out i n g l a s s as compared t o quarts c o n t a i n e r s . In the case, of the quarts c o n t a i n e r s , which do not absorb l i g h t longer than about 8 6 0 C iA°, con-tinuous i n h i b i t i o n i s reported, whereas when g l a s s con-t a i n e r s , c u t t i n g out some of th near and a l l of the f a r u l t r a v i o l e t , are used, s t i m u l a t i o n i s found t o occur i n p r a c t i c a l l y a i l cases. SlftMABT OK BKaOLfS* 1. fhe a c t i v i t y of s a l i v a r y and malt d i a s t a s e i s r e i a o M by the act ion of l i g h t from a mercury aro lamp i n prop-o r t i o n t o the i n t e n s i t y . 2. fhe e f f e c t s of monochromatic l i g h t on the a c t i v i t y of s a l i v a r y d i a s t a s e arc? o f two k i n d s , s t i m u l a t o r y and i n -h i b i t o r y . 4359 A 0, 4078 A 0 and 3663 A 0 e x e r t i n g s t i m -u l a t i o n and 5461 A°, 4916 A°, 3132 A° and 3022 A° ex-e r t i n g an i n h i b i t o r y e f f e c t . 3. Four l i n e s only of the mercury arc spectrum exert any e f f e c t on the a c t i v i t y of malt d i a s t a s e , i . e . , 5461 A 0, 4916 A°, 3132 A 0 and 3022 A 0. This e f f e c t i s one of i n h i b i t i o n . 4. Under the c o n d i t i o n s of these experiments there appears t o be some c o r r e l a t i o n between the e f f e c t of the monochromatic 3 in.-js of the merenry a r c spectrum on the growth of Paramoeclorn and on the a c t i v i t y o f s a l i v a r y d i a s t a s e ; those l i n e s causing s t i m u l a t i o n i n growth i n most cases causing Inerea> e i n ensyme a c t i o n and those l i n e s causing i n h i b i t i o n of growth decreasing the a c t i v i t y of the ensyme. 6 . f h e r e appears t o be no c o r r e l a t i o n between the/results obtained f o r malt d i a s t a s e and f o r growth of Col? etotrichum. 6. f h e r e are i n d i c a t i o n s th- t under the c o n d i t i o n s of these experiments plant d i a s t a s e i s l e s s s e n s i t i v e t o l i g h t from the mercury arc spectrum than i s animal d i a s t a s e . 52. 7. fhe v i s i b l e and near u l t r a v i o l e t l i n e s of the mer-c u r y a rc spectrum cause an increase i n the oxidase a c t -i v i t y of potato e x t r a c t . 8. fhe f a r n l t r a v i o l e t cause a decrease i n oxidase a c t i v i t y of potato e x t r a c t . 9. ftie t o t a l e f f e e t of the l i n e s of the mercury arc spectrum causing i n h i b i t i o n of oxidase a c t i v i t y see;is t o be g r e a t e r than that o f the l i n e s causing increase i n a c t i v i t y 53. XJfKMfgRE C l f E D . 1. Afrhott. 0. E. fhe e f f e e t of monochromatic l i g h t oa Formica dakotensis s p e c n l a r i s . An. Ent. Soc. A®. 2- 117-123. 1927. 2. Blaekman, V. H. and Pa In em S. 0. Studies i n the p e r m a b l l i t y of the palv l n i i s 1 of «liaosa -pud i o a . Ann. Bot. 32: 69-85. 1918 3. Bovle W. -f. fhe l o c a l i s a t i o n of the p h y s i o l o g i c a l e f f e c t s of r a d i a t i o n w i t h i n the c e l l . J o u r. &ea. Bes. 39: 251-277. 1918 4 . Boy l e ^ W. f . and Daiand, g. C. fhe s e n s i t i z a t i o n of proto-ylasia t o heat by exposure t o l i g h t of short wave length. A m . Jour. Phys. 16: 55-66. 1923. 5. Bovle. W. f . and Hughes. D. M . fhe v i s i b l e e f f e c t s of '•> he Schumann r a y s on protoplasm. Bot. Gas. 5 4 : 149-153. 1915. 6. D i l l o n Weston. W.A.R. Studies on the r e a c t i o n of disease organisms to l i g h t t i l l } . Sc. A g r i c . 12, ( 6 ) . 351- 1932. 7. f u l l e r , E. J . Some e f f e c t s of u l t r a v i o l e t r a d i a t i o n on plant enzymes. Am. f o u r . Bot. 18. Abst. of paper presented before the Phya. S e c t i o n of 3 o t f Soc. Am. 1831. 8. F u l t o n . R. and Coblents. W. fhe f u n g i c i d a l a c t i o n o f u l t r a v i o l e t l i g h t . Jour. A g r i c . Research. 159-160. 1929. 9. Gates, g. L. On nu c l e a r d e r i v a t i v e s and the l e t h a l a c t i o n o f u l t r a - v i o l e t l i g h t . Science 68: 479-480. 1928. lO. O e t o h e l l . R. W. aad Walter. J . Factors i n f l u e n c i n g the a c t i v i t y of p e r i o x i d a s e . J . B i o l . Chem. 2: 413-433, 1931. 11.Goodspeed. f . R. and Olsen, A. R. Genetic and other e f f e c t s o f X-ray and radium treatment of seeds, growing p o i n t s and sex c e l l s of l i e o t i a n a s p e c i e s . Am. Jour. Bot. ABs. 15: v o l . 10, 622. 1928 18. 54 1£. G a t h r l e . 3. D. An i o d i r a e t r i c method f o r determining oxidase a c t I v l t y * Jour. Am. Chem, Soc. 58. 3614, 1930. 13. H a r r i s , g.I. and Royte. R . $ . She p o s s i b l e o r i g i n of the t o x i c i t y of u l t r a v i o l e t l i g h t . Science 46: 318^320. 1917. 14. B i g g i n s . S. M. and Sheard. C. P l a n t . Phys. 11. ( 3 ) . 325-358 . 1987. 15. B i g g i n s . 0. M. and Shfeard. 0. E f f e c t s of u l t r a v i o l e t l i g h t on the e a r l y l a r v a l development of San« p l p i e n s . J . Ex. Zoo. 46. 13). 333-344. 16. Eugte.es. D. a. and Bovie. W. f . fhe e f f e c t s of f l u o r i t e u l t r a v i o l e t l i g h t on the r a t e of d i v i s i o n of Paramoeeium eaudatua. 3, Med. Res. 34. 833-238. 1918. 17. Entehinson. A. R. and Ashton» g. R. S p e c i f i c e f f e c t s monochromatic l i g h t on the prowth of faramoecium. Can. Jour. R e s . l :892-304. 1989. 18. Eatehlnson. A. E. and Ashton. M. H. S p e c i f i c e f f e c t of monochromatic l i g h t upon p l a s n o l y s i s i n Paramoeeium. Can. Jour. Res. 4: 614-623. 1931. 10. Butehlnaen, A. E. and Ashton.. tf. R. fhe e f f e c t o f Radiant energy on growth and e p o r u l a t i o n i n C o l l e t o t -r i c h a f l phomolftes. Can. Jour. Res. 3: 187-199* 1930. 20. Hutchinson. A. B. and Sewton. P . fhe s p e c i f i c e f f e c t s of monochromatic l i g h t on the growth of yeast* Can. Sour. Res. 2: 249-863. 1930. 21. K e n d a l l . B. C. and Sherman. B.C. Studies i n Pancreatic Amylase. Jour. Am. Chem. Soc. 38. 1087. 1910. 22. Lockam . J . f h i e s . 3 and Wlekern. H. E f f e c t of d i f f e r e n t rays of l i g h t on peroxidase and blood c a t a l a s e . Jour. Phys. Cheat. 58: 395-431. 1909. 23. Iroeb. J . A c t i v a t i o n of the u n f e r t i l i s e d egg by u l t r a v i o l e t r a y s . Science, U.S. 40: 680. 1914. 55. 24. Maughan. G. K. U l t r a v i o l e t wave lengths valuable i n the care o f r i c k e t s i n chickens. An. Jour. Bhys. 87. ( 2 ) . 381-396. 19 h8. 25. Packard. C. fbe s u s c e p t i b i l i t y o f c e l l s to radium r a d i a t i o n s . B i o l B i o l . B u l l . Mar. B i o l . Lab. 46. 165-177. 1924. 86, Packard. C. E f f e c t of l i g h t on p e r m e a b i l i t y of Paramoeoium. Sour, Sen. Phys. ?. 363-372. 1925. 87. Pincnssen. L. Fermente und L i c h t . Biochem, %* 171. 1986. 2 8 # ??PP« H. W. A p h y s i o l o g i c a l study o f the e f f e c t of l i g h t of v; rione ranges of wave length on the growth of p l a n t s . An. Jour. 3ot. 13. 716-737. 1926. 89. P r i e s t l e y . J . B. The e f f e c t of b r i e f l i g h t exposure upon e t i o l a t e d p l a n t s , lew Phy. 84. ( 5 ) . 871-883. 1985. 30. Ramsay G. 3. and .Bailey.. A. E f f e c t s of u l t r a v i o l e t r a d i a t i o n upon s p o r n i a t i o n i n Maerosporlnm and Fuaar-iusi. Sot. Ga*. 89 ( 8 ) . 113-137. 1930. 31. H e i n l e . H. E f f e c t of 3ecquerel and Rontgen rays as w e l l as u l t r a v i o l e t l i g h t on peroxidase and the methylene blue f o r m a l i n reductase r e a c t i o n of cow's mil k . Bloc hem. 115. 1-81. 1921. 38. Sfaeard. G. and Bi g f t l n s . 0* M. E f f e c t s of s e l e c t i v e s o l a r r a d i a t i o n on growth and development. Se* Science. 67. 1741. 1928. 33. Sherman. H . C. and Sehl e e i n ^ e r . H . jp. Comparison of a m y l o e l a s t i c and eaeeharog&iiic powers of various • d i a s t a s e s . 34. Stevens. F. L. E f f e c t B of u l t r a v i o l e t r a d i a t i o n on various f u n g i . Bot. GAR. 86 (1) 810-280. 1988. 56 35. Stevens;,. F. L. fhe sexual stage of f u n g i induced* by u l t r a v i o l e t r a y s . Science 67. 514-515. 19S9. 36. Y l s s e h e r . J. P. and Ince» R. R. Reaction of the c y p r i d l a r v a e of barnacles to l i f t h t w i t h s p e c i a l reference to s p e c t r a l c o l o u r s . B i o l . B u l l . 54. 336-348. 19E8. 37. Welnsteln, A. fhe production of Butat ions and r e -arrangements o f genes by X-rays. Science 67. 1736. 19£8. "@en ; edm:hasType "Thesis/Dissertation"@en ; edm:isShownAt "10.14288/1.0105287"@en ; dcterms:language "eng"@en ; ns0:degreeDiscipline "Botany"@en ; edm:provider "Vancouver : University of British Columbia Library"@en ; dcterms:publisher "University of British Columbia"@en ; dcterms:rights "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en ; ns0:scholarLevel "Graduate"@en ; dcterms:title "Physiological effects of radiant energy"@en ; dcterms:type "Text"@en ; ns0:identifierURI "http://hdl.handle.net/2429/38225"@en .