@prefix vivo: . @prefix edm: . @prefix ns0: . @prefix dcterms: . @prefix skos: . vivo:departmentOrSchool "Forestry, Faculty of"@en ; edm:dataProvider "DSpace"@en ; ns0:degreeCampus "UBCV"@en ; dcterms:creator "Runesson, Ulf Torarind"@en ; dcterms:issued "2011-02-18T00:46:23Z"@en, "1991"@en ; vivo:relatedDegree "Doctor of Philosophy - PhD"@en ; ns0:degreeGrantor "University of British Columbia"@en ; dcterms:description """A general review of the mountain pine beetle (Dendroctonus ponderosae Hopkins) - lodgepole pine (Pinus contorta Dougl.) complex, including previous broad-band remote sensing studies aimed at early detection, is provided. The main emphasis of this thesis is on the utility of waveform analysis, based on in-situ spectroscopy, to successfully differentiate between tree canopies experiencing various degrees of stress. Damage to the tree canopies was both beetle-induced and artificial. In support of the spectroscopy, foliar analysis was performed. In addition, for comparative purposes, large-scale color-infrared photographs were both visually interpreted and measured for dye layer densities. Further, airborne digital broad-band data for the same study site were also acquired and analyzed. Despite significant differences in pigmentation levels and moisture status, the analysis showed poor detection success with both the densitometry and visual interpretation of the color-infrared photographs. This is in sharp contrast with previous studies and is concluded to be attributed to the natural variation from year to year and from site to site. The analysis of the digital airborne data resulted in equally poor differentiation between healthy and damaged tree canopies. The main objective of utilizing waveform analysis to take advantage of anticipated pigmentation reductions in stressed trees yielded very positive results. There were significant blue-shifts in the red-edge positions of currently attacked tree canopies. The data suggest that in a situation where conventional detection means such as those based on photo sensitivity fail, a suitable red-edge threshold can be determined from attacked trees and used to successfully differentiate healthy from currently attacked lodgepole pines."""@en ; edm:aggregatedCHO "https://circle.library.ubc.ca/rest/handle/2429/31483?expand=metadata"@en ; skos:note "CONSIDERATIONS FOR EARLY REMOTE DETECTION OF MOUNTAIN PINE BEETLE IN 6REEN-F0LIA6ED L0D6EP0LE PINE by ULF TORARIND RUNESSON H.B.Sc.For., Lakehead U n i v e r s i t y , 1982 A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department o f Forestry / R e m o t e Sensing) We ac c e p t t h i s t h e s i s as co n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA J u l y , 1991 @ U l f T o r a r i n d R u n e s s o n In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) i i A b s t r a c t A g e n e r a l r e v i e w o f t h e m o u n t a i n p i n e b e e t l e (Dendroctonus ponderosae H o p k i n s ) - l o d g e p o l e p i n e (Pinus contorta D o u g l . ) c o m p l e x , i n c l u d i n g p r e v i o u s b r o a d - b a n d r e m o t e s e n s i n g s t u d i e s a i m e d a t e a r l y d e t e c t i o n , i s p r o v i d e d . T h e m a i n e m p h a s i s o f t h i s t h e s i s i s o n t h e u t i l i t y o f w a v e f o r m a n a l y s i s , b a s e d o n i n - s i t u s p e c t r o s c o p y , t o s u c c e s s f u l l y d i f f e r e n t i a t e b e t w e e n t r e e c a n o p i e s e x p e r i e n c i n g v a r i o u s d e g r e e s o f s t r e s s . D a m a g e t o t h e t r e e c a n o p i e s w a s b o t h b e e t l e - i n d u c e d a n d a r t i f i c i a l . I n s u p p o r t o f t h e s p e c t r o s c o p y , f o l i a r a n a l y s i s w a s p e r f o r m e d . I n a d d i t i o n , f o r c o m p a r a t i v e p u r p o s e s , l a r g e - s c a l e c o l o r -i n f r a r e d p h o t o g r a p h s w e r e b o t h v i s u a l l y i n t e r p r e t e d a n d m e a s u r e d f o r d y e l a y e r d e n s i t i e s . F u r t h e r , a i r b o r n e d i g i t a l b r o a d - b a n d d a t a f o r t h e s a m e s t u d y s i t e w e r e a l s o a c q u i r e d a n d a n a l y z e d . D e s p i t e s i g n i f i c a n t d i f f e r e n c e s i n p i g m e n t a t i o n l e v e l s a n d m o i s t u r e s t a t u s , t h e a n a l y s i s s h o w e d p o o r d e t e c t i o n s u c c e s s w i t h b o t h t h e d e n s i t o m e t r y a n d v i s u a l i n t e r p r e t a t i o n o f t h e c o l o r -i n f r a r e d p h o t o g r a p h s . T h i s i s i n s h a r p c o n t r a s t w i t h p r e v i o u s s t u d i e s a n d i s c o n c l u d e d t o b e a t t r i b u t e d t o t h e n a t u r a l v a r i a t i o n f r o m y e a r t o y e a r a n d f r o m s i t e t o s i t e . T h e a n a l y s i s o f t h e d i g i t a l a i r b o r n e d a t a r e s u l t e d i n e q u a l l y p o o r d i f f e r e n t i a t i o n b e t w e e n h e a l t h y a n d d a m a g e d t r e e c a n o p i e s . T h e m a i n o b j e c t i v e o f u t i l i z i n g w a v e f o r m a n a l y s i s t o t a k e a d v a n t a g e o f a n t i c i p a t e d p i g m e n t a t i o n r e d u c t i o n s i n s t r e s s e d t r e e s y i e l d e d v e r y p o s i t i v e r e s u l t s . T h e r e w e r e s i g n i f i c a n t b l u e - s h i f t s i n t h e r e d - e d g e p o s i t i o n s o f c u r r e n t l y a t t a c k e d t r e e i i i c a n o p i e s . T h e d a t a s u g g e s t t h a t i n a s i t u a t i o n w h e r e c o n v e n t i o n a l d e t e c t i o n m e a n s s u c h a s t h o s e b a s e d o n p h o t o s e n s i t i v i t y f a i l , a s u i t a b l e r e d - e d g e t h r e s h o l d c a n b e d e t e r m i n e d f r o m a t t a c k e d t r e e s a n d u s e d t o s u c c e s s f u l l y d i f f e r e n t i a t e h e a l t h y f r o m c u r r e n t l y a t t a c k e d l o d g e p o l e p i n e s . i v Table of Contents Abstract i i Table of Contents i v L i s t of Tables v i L i s t of Figures v i Acknowledgements v i i i Declaration of O r i g i n a l i t y i x 1 Introduction 1 2 Objectives • 4 3 L i t e r a t u r e Review 6 3.1 The Mountain Pine B e e t l e Problem 6 3.1.1 B i o l o g y and Ecology 6 3.1.2 Lodgepole Pine - a B r i e f D e s c r i p t i o n . . . 13 3.1.3 C o n t r o l S t r a t e g i e s 16 3.2 P l a n t Reflectance Response t o Insect-induced S t r e s s 20 3.2.1 Broad-band C h a r a c t e r i s t i c s 20 3.2.2 Narrow-band C h a r a c t e r i s t i c s 27 3.3 Photography-based Remote Sensing 30 3.3.1 F i l m Format 30 3.3.2 F i l m 33 3.3.3 Densitometry 39 3.3.4 Scale 42 3.3.5 Timing 44 3.4 M u l t i s p e c t r a l Scanner-based Remote S e n s i n g . — 46 4 Methods 51 4.1 I n i t i a l C h l o r o p h y l l A n a l y s i s 52 4.2 Main Experiment - Test S i t e B 55 4.2.1 F i e l d Data C o l l e c t i o n and Measurements. 57 4.2.2 A n a l y s i s of F o l i a r Sampling 61 4.2.3 A n a l y s i s of F i e l d S p e c t r a l Data 62 4.2.4 Airborne Data C o l l e c t i o n 65 V 4.2.5 A n a l y s i s o f A i r b o r n e Data 66 4.2.5.1 D e n s i t o m e t r y 66 4.2.5.2 V i s u a l Photo I n t e r p r e t a t i o n . . . 67 4.2.5.3 MEIS-II A n a l y s i s 67 5 R e s u l t s 7 0 5.1 I n i t i a l C h l o r o p h y l l Study 70 5.2 Main Experiment - T e s t S i t e B 76 5.2.1 A n a l y s i s o f F o l i a r S a mpling 77 5.2.2 A n a l y s i s o f F i e l d S p e c t r a l Data 82 5.2.3 D e n s i t o m e t r y 86 5.2.4 V i s u a l Photo I n t e r p r e t a t i o n 87 5.2.5 MEIS-II a n a l y s i s 89 6 D i s c u s s i o n o f R e s u l t s 93 6.1 I n i t i a l C h l o r o p h y l l Study 93 6.2 Main E x p e r i m e n t - T e s t S i t e B 98 6.2.1 F o l i a r S a mpling 100 6.2.2 F i e l d S p e c t r a l Data 104 6.2.3 D e n s i t o m e t r y 108 6.2.4 V i s u a l Photo I n t e r p r e t a t i o n 110 6.2.5 MEIS-II H I 6.3 F o r e s t Management C o n s i d e r a t i o n s 114 7 C o n c l u s i o n s 119 L i t e r a t u r e C i t e d 123 Appendix I I n i t i a l study raw d a t a 136 Appendix I I I n i t i a l study a n a l y s i s o f v a r i a n c e f o r f o l i a r f e a t u r e s 144 Appendix I I I I n i t i a l study a n a l y s i s o f v a r i a n c e f o r c h l o r o p h y l l c h a r a c t e r i s t i c s 14 6 Appendix IV Main study s t a t i s t i c s from f o l i a r a n a l y s i s 14 8 Appendix V Main study s t a t i s t i c s from f i e l d s p e c t r o s c o p y 172 Appendix VI Main study normal c o l o r and c o l o r - i n f r a r e d views o f t r e e canopies 189 v i Appendix V I I Main study s t a t i s t i c s from densitometry. 194 Appendix V I I I Main study s t a t i s t i c s from a i r b o r n e scanner data a n a l y s i s 210 Appendix IX Main study r e g r e s s i o n a n a l y s i s 233 Appendix X S e n s i t o m e t r i c p l o t t i n g sheet w i t h c h a r a c t e r i s t i c curves 237 L i s t o f T a b l e s 3.1: D e s c r i p t i o n o f damage t y p e s f o r c o l o r - i n f r a r e d p hoto i n t e r p r e t a t i o n a t a s c a l e o f 1 : 2 0 0 0 o r l a r g e r 2 7 3.2: M o d i f i c a t i o n s t o dye form d e n s i t y v a l u e s 41 3 . 3 : S o l a r e l e v a t i o n s i n degrees f o r l a t 5 0 . 8 4 1 N and l o n g 120.620 W a t 1100, 1200, 1300, 1400, and 1500 hour s a t s e l e c t e d d a t e s 45 4.1: D e s i g n o f f a c t o r i a l e x p e r i m e n t 55 4.2: E x p e r i m e n t a l d e s i g n - randomized complete b l o c k . 5 6 4.3: N o r m a l i z e d c o r r e c t e d r e g r e s s e d v a l u e s 64 5.1: R e s u l t s o f 2x2x2x2 f a c t o r i a l e v a l u a t i o n o f c h l o r o p h y l l 73 5.2: Summary o f f o l i a r a n a l y s i s 77 5.3: F i e l d d a t a c o r r e l a t i o n m a t r i x 81 5.4: Summary o f f i e l d s p e c t r o s c o p y 84 5.5: Summary o f d e n s i t o m e t r y 87 5.6: VM p r e s e n c e . ( i n c l u d i n g t h e normal t r e e s i n b r a c k e t s ) 87 5.7: C l a s s i f i c a t i o n c a t e g o r i e s f o r t h e 5 t r e a t m e n t c a t e g o r i e s b ased on 1:1,400 s c a l e c o l o r - i n f r a r e d p h o t o g r a p h s 88 5.8: M u l t i p l e c o r r e l a t i o n m a t r i x f o r MEIS 89 5.9: Summary o f MEIS d a t a a n a l y s i s 92 L i s t o f F i g u r e s 3.1: Lodgepole p i n e f i r e c y c l e showing t h e c o m p l e x i t i e s o f t h e many i n t e r r e l a t i o n s h i p s i n v o l v e d 14 3.2: S p e c t r a l r e s p o n s e c h a r a c t e r i s t i c s f o r green v e g e t a t i o n 20 3.3: Wavelength o f red-edge (nm) p l o t t e d a g a i n s t c h l o r o p h y l l c o n t e n t p e r u n i t l e a f a r e a 29 3.4: C o l o r f o r m a t i o n w i t h c o l o r f i l m 34 3.5: S p e c t r a l s e n s i t i v i t i e s o f t h e t h r e e dye l a y e r s • i n c o l o r - i n f r a r e d f i l m 35 v i i 3 . 6 : C o l o r f o r m a t i o n w i t h c o l o r - i n f r a r e d f i l m 3 6 4 . 1 : L o d g e p o l e p i n e t r e e t o p v i e w 6 0 4 . 2 : G r a p h i c m a s k f i l e s f o r c a p t u r i n g n o n - s h a d e d p o r t i o n s o f t r e e c r o w n s 68 5 . 1 : L i g h t a b s o r p t i o n b y c h l o r o p h y l l a a n d b 7 1 5 . 2 : L o d g e p o l e p i n e a b s o r p t i o n s p e c t r u m 7 2 5 . 3 : R e l a t i v e c h l o r o p h y l l b c o n t e n t 7 4 5 . 4 : R e l a t i v e c h l o r o p h y l l a c o n t e n t 7 5 5 . 5 : C h l o r o p h y l l r e l a t i o n s h i p s a f t e r 8 - 1 1 d a y s i n s o l u t i o n 7 6 5 . 6 : L e a f - w a t e r p o t e n t i a l 7 8 5 . 7 : C h l o r o p h y l l a s t a t u s n o r m a l i z e d t o t r e a t m e n t c a t e g o r y 4 7 9 5 . 8 : C h l o r o p h y l l b s t a t u s n o r m a l i z e d t o t r e a t m e n t c a t e g o r y 4 8 0 5 . 9 : C h l o r o p h y l l a ( i n d e p e n d e n t ) g r a p h e d a g a i n s t n i t r o g e n 81 5 . 1 0 : C h l o r o p h y l l b ( i n d e p e n d e n t ) g r a p h e d a g a i n s t n i t r o g e n 8 2 5 . 1 1 : N o r m a l i z e d r e f l e c t a n c e c u r v e s f o r t w o b r a n c h e s a n d a s e t o f d e t a c h e d n e e d l e s f r o m a n i n d i v i d u a l h e a l t h y p i n e 8 3 5 . 1 2 : N o r m a l i z e d r e f l e c t a n c e c u r v e s f o r h e a l t h y a n d s u c c e s s f u l l y a t t a c k e d t r e e s 84 5 . 1 3 : R e d - e d g e ( i n d e p e n d e n t ) g r a p h e d a g a i n s t c h l o r o p h y l l a 8 5 5 . 1 4 : R e d - e d g e ( i n d e p e n d e n t ) g r a p h e d a g a i n s t c h l o r o p h y l l b 8 6 5 . 1 5 : T e s t S i t e B 90 5 . 1 6 : T r e a t m e n t c a n o p i e s 90 5 . 1 7 : I l l u m i n a t e d t r e a t m e n t c a n o p i e s . . . 91 5 . 1 8 : T r e a t m e n t a v e r a g e s f o r c h a n n e l s 5 9 0 ( 5 9 0 / 5 2 1 ) a n d 8 7 1 ( 8 7 1 / 5 2 1 ) 92 6 . 1 : D i u r n a l c y c l e o f x y l e m w a t e r p o t e n t i a l 1 0 1 6 . 2 : N o r m a l i z e d a v e r a g e r e f l e c t a n c e c u r v e s f o r h e a l t h y a n d s u c c e s s f u l l y a t t a c k e d t r e e s 1 0 6 v i i i Acknowledgements I w o u l d l i k e t o t h a n k D r . P . A . M u r t h a , my t h e s i s a d v i s o r , f o r h i s i n i t i a l g u i d a n c e t o e s t a b l i s h t h i s r e s e a r c h p r o j e c t a n d h i s c o n t i n u e d s u p p o r t d u r i n g t h e d u r a t i o n o f t h e s t u d y . I a l s o t h a n k t h e o t h e r m e m b e r s o f my c o m m i t t e e - D r . J . A . M c L e a n , D r . G . F . W e e t m a n , a n d D r . H . E . S c h r e i e r . My e x - w i f e , D e b o r a h R e n n i e , p r o v i d e d me w i t h i n v a l u a b l e a s s i s t a n c e d u r i n g t h e l o n g h o u r s o f f i e l d w o r k . T h e f o l l o w i n g d e p a r t m e n t s a t U . B . C . p r o v i d e d l a b o r a t o r y s p a c e a n d p r o v i d e d t h e n e c e s s a r y e q u i p m e n t ; B i o - R e s o u r c e E n g i n e e r i n g , B o t a n y , C o m p u t e r S c i e n c e , F o r e s t R e s o u r c e s M a n a g e m e n t , F o r e s t S c i e n c e s , a n d S o i l S c i e n c e . M r s . J a n n a K u m i a t M a c M i l l a n - B l o e d e l ( N a n a i m o ) p e r f o r m e d t h e n u t r i e n t a n a l y s i s . A s p e c i a l t h a n k s i s g i v e n t o my l o n g - t i m e f r i e n d G w e n M c G i m p s e y w h o h a s g i v e n me u n l i m i t e d a m o u n t s o f m o r a l s u p p o r t a s w e l l a s e d i t o r i a l h e l p . T h e f u n d i n g f o r t h i s p r o j e c t w a s i n p a r t d e r i v e d f r o m a N . S . E . R . C . g r a n t t o D r . P . A . M u r t h a . I d e d i c a t e t h i s s t u d y t o my l a t e f a t h e r w h o p r o v i d e d t h e i n s p i r a t i o n . i x D e c l a r a t i o n o f O r i g i n a l i t y I d e c l a r e t h a t u n l e s s o t h e r w i s e a c k n o w l e d g e d o r c r e d i t e d t h i s t h e s i s r e p r e s e n t s my o w n o r i g i n a l w o r k . U l f T , R u n e s s o n J u l y / 1 9 9 1 1 C h a p t e r 1 I n t r o d u c t i o n Current t r e n d s i n n a t u r a l resource p o l i c y and management s t r a t e g i e s are c l e a r l y t o promote m u l t i p l e use of our i n c r e a s i n g l y s c a r c e renewable r e s o u r c e s . C o n s e r v a t i o n w i l l p l a y an i n c r e a s i n g r o l e i n any f u t u r e development schemes, e s p e c i a l l y i n view of the l a r g e areas c u r r e n t l y e v a l u a t e d f o r n a t i v e l a n d c l a i m i s s u e s , as w e l l as g l o b a l r e s o u r c e c o n s e r v a t i o n e f f o r t s . I n t e n s i f i e d s i l v i c u l t u r e e f f o r t s w i l l be c r u c i a l i n these attempts i n order t o continue the management f o r t r a d i t i o n a l economic v a l u e s such as timber u t i l i z a t i o n . In view of t h i s s c e n a r i o , i g n o r i n g economic change, timber l o s s e s r e l a t e d t o w i l d f i r e and pest are d i s t u r b i n g . In the l o n g term, w i t h b e t t e r access, removal of over-mature age c l a s s e s , improved stand t e n d i n g , and b e t t e r u t i l i z a t i o n , these l o s s e s may be s i g n i f i c a n t l y d i m i n i s h e d . In t h i s context, i t s h o u l d be p o i n t e d out t h a t the c u r r e n t p o l i t i c a l t r e n d s at stemming r e s o u r c e c o n f l i c t s by d e s i g n a t i n g p o l i t i c a l l y s e n s i t i v e areas as parks (or by e s t a b l i s h i n g moratoriums on u t i l i z a t i o n ) may a c t u a l l y worsen the s i t u a t i o n by s e v e r e l y l i m i t i n g the a v a i l a b l e management o p t i o n s . On a more s h o r t - t e r m b a s i s , the occurrence and extent o f w i l d f i r e and p e s t s are h e a v i l y i n f l u e n c e d by weather. Hence, we can expect c o n t i n u e d s e r i o u s impacts. One of the most severe problems i s the mountain p i n e b e e t l e {Dendroctonus ponderosae Hopk.), a major i n s e c t p e s t o f lodgepole pine (Pinus contorta Dougl. v a r . latifolia Engelm.) i n 2 the western U n i t e d S t a t e s and Canada. T h i s i s a p e r f e c t example of where a n a t u r a l e c o l o g i c a l phenomenon i s s e v e r e l y hampering the e f f o r t s of resource managers t r y i n g t o implement s u s t a i n e d y i e l d p r a c t i c e s . Pine m o r t a l i t y due t o epidemic p r o p o r t i o n s of the b e e t l e i n the past decade was indeed s p e c t a c u l a r . For example, est i m a t e s of the B r i t i s h Columbia s i t u a t i o n i n 1983 i n d i c a t e d t h a t more than 43 m i l l i o n mature t r e e s were k i l l e d i n over 6440 i n f e s t a t i o n s (Wood et al. 1984). Losses d u r i n g an epidemic can f l u c t u a t e h e a v i l y due t o f a c t o r s such as o v e r w i n t e r i n g brood s u r v i v a l , as e x e m p l i f i e d by the 198 6 a t t a c k s t a t i s t i c s of \"only\" 6 m i l l i o n t r e e s (Wood et al. 1987). U n f o r t u n a t e l y , p u b l i c concern, f o r e s t management p o l i c y , and s c i e n t i f i c e f f o r t aimed at l e s s e n i n g the impact of t h i s p e s t have, t o v a r i o u s degrees, been c l o s e l y guided by the c u r r e n t a t t a c k s i t u a t i o n . Hence, the e f f o r t has been low d u r i n g endemic s i t u a t i o n s and o f t e n i n an i n e f f i c i e n t p a n i c mode d u r i n g epidemics. I f the aim i s t o compete wit h the b e e t l e s f o r the r i g h t s t o the timber, t h e r e are b a s i c a l l y two approaches: a long-term e f f o r t aimed at r e d u c i n g the r i s k o f epidemics, and/or d i r e c t c o n t r o l once an epidemic i s i n p r o g r e s s t o a l l o w time f o r l o g g i n g to remove s u s c e p t i b l e timber ( S a f r a n y i k 1982). In view of r e c e n t and f o r e c a s t l o s s e s , long-term management must u s u a l l y be supplemented wi t h some form of d i r e c t c o n t r o l . To e f f e c t i v e l y implement s u p p r e s s i o n work, e a r l y d e t e c t i o n of new i n f e s t a t i o n s as w e l l as ongoing s u r v e i l l a n c e o p e r a t i o n s are necessary. E a r l y d e t e c t i o n r e f e r s to the d e t e c t i o n of 3 s u c c e s s f u l b a r k b e e t l e a t t a c k s p r i o r t o any u n a i d e d v i s u a l s i g n s o f damage. A f u n c t i o n a l remote s e n s i n g a pproach has g r e a t p o t e n t i a l t o f i l l an i m p o r t a n t r o l e i n an i n t e g r a t e d f o r e s t p e s t management s t r a t e g y . The r e c e n t a c c e p t a n c e and e x p a n s i o n o f c o m p u t e r i z e d g e o g r a p h i c i n f o r m a t i o n systems (GIS) i n t h e n a t u r a l r e s o u r c e s e c t o r has made remote s e n s i n g t e c h n o l o g y and i t s d e r i v e d r e s u l t s more a t t r a c t i v e t o managers. However, t h e r e i s s t i l l no f u l l y a c c e p t e d o p e r a t i o n a l system b a s e d on remote s e n s i n g f o r e a r l y d e t e c t i o n . To d e v e l o p an e f f i c i e n t remote s e n s i n g system, t h e p r i m a r y t a r g e t , l o d g e p o l e p i n e , and i t s r e s p onse t o b e e t l e a t t a c k must be f u l l y u n d e r s t o o d . U n f o r t u n a t e l y , t h e s p e c t r a l r e s p o n s e c h a r a c t e r i s t i c s ( i n c l u d i n g t h e degree o f v a r i a b i l i t y ) o f l o d g e p o l e p i n e t o b a r k b e e t l e a t t a c k s a r e s t i l l s u b j e c t t o a c o n s i d e r a b l e amount o f u n c e r t a i n t y . 4 C h a p t e r 2 O b j e c t i v e s The l i t e r a t u r e r e v i e w p r e s e n t e d i n C h a p t e r 3 has c l e a r l y d e m o n s t r a t e d t h a t , a l t h o u g h remote s e n s i n g t e c h n o l o g y has been a p p l i e d t o t h e p r o blem o f e a r l y d e t e c t i o n o f b a r k b e e t l e s f o r many y e a r s , c u r r e n t o p e r a t i o n a l i n v e n t o r y , methodology s t i l l r e l i e s p r i m a r i l y on f i e l d work. A t t h e o n s e t o f t h i s p r o j e c t i n t h e f a l l o f 1984, t h e r e were no a v a i l a b l e f o l i a r a n a l y s e s and h i g h - r e s o l u t i o n s p e c t r a a v a i l a b l e f o r l o d g e p o l e p i n e i n c o n j u n c t i o n w i t h b e e t l e a t t a c k s . More r e c e n t l y , t h e one s t u d y t h a t s p e c i f i c a l l y d e a l t w i t h l o d g e p o l e p i n e (Ahern 1988), a d d r e s s e d some o f t h e o r i g i n a l o b j e c t i v e s o f t h i s s t u d y , bu t o v e r l a p s v e r y l i t t l e - i n scope, d e s i g n , sample s i z e , a n a l y s i s , and r e s u l t s . The main o b j e c t i v e o f t h i s s t u d y was t o c o n t r a s t t h e p o t e n t i a l f o r narrow-band waveform a n a l y s i s f o r e a r l y d e t e c t i o n w i t h a number o f broad-band t e c h n i q u e s . To do t h i s , i t was i m p o r t a n t t o get an i n d i c a t i o n o f t h e n a t u r a l v a r i a b i l i t y i n r e s p onse (and i t s i m p l i c a t i o n s on d e t e c t i o n s t r a t e g i e s ) e x h i b i t e d by l o d g e p o l e p i n e t o p e s t s s uch as t h e mountain p i n e b e e t l e . The s p e c i f i c o b j e c t i v e s o f t h e s t u d i e s were t o : 1) f i n d t h e s i g n i f i c a n c e o f t y p e s and d u r a t i o n o f p r e - a n a l y s i s s t o r a g e o f f o l i a g e samples. 2) v e r i f y p r e v i o u s l y p u b l i s h e d s u g g e s t i o n s (which l a c k e d a c t u a l data) t h a t c h l o r o p h y l l c o n c e n t r a t i o n s a r e s i g n i f i c a n t l y l o w e r e d 5 p r i o r t o the obvious v i s u a l f a d i n g of f o l i a g e i n the s p r i n g i n the year f o l l o w i n g s u c c e s s f u l a t t a c k s . 3) t e s t the h y p o t h e s i s t h a t , w i t h i n sampled canopies, h i g h -r e s o l u t i o n s p ectroscopy would d e t e c t a b l u e - s h i f t o f the r e d -edge as a r e s u l t of s u c c e s s f u l bark b e e t l e a t t a c k s . 4) t e s t the h y p o t h e s i s t h a t the b l u e - s h i f t can be l i n k e d t o t o t a l c h l o r o p h y l l and n u t r i e n t c o n c e n t r a t i o n s as w e l l as moisture s t a t u s . 5) d e t e c t d i f f e r e n c e s i n a t t a c k s t a t u s w i t h data d e r i v e d from a broad-band m u l t i s p e c t r a l a i r b o r n e scanner and compare these numbers w i t h o p t i c a l d e n s i t i e s d e r i v e d from c o l o r - i n f r a r e d photographs. 6) v i s u a l l y i n t e r p r e t c o l o r - i n f r a r e d photographs of the same t r e e canopies addressed i n o b j e c t i v e s 3 t o 5, and c o n t r a s t the i n t e r p r e t a t i o n r e s u l t s w i t h the other methods. D i g i t a l scanning and subsequent image a n a l y s i s of c o l o r -i n f r a r e d photographs were not i n c l u d e d i n t h i s study. I t i s r e c o g n i z e d however t h a t scanning, d e s p i t e some problems w i t h i t s p r a c t i c a l implementation f o r d e t e c t i o n s t r a t e g i e s , may shed some a d d i t i o n a l l i g h t on s p e c t r a l responses and p r o v i d e d i r e c t i o n s f o r f u r t h e r work, as has been shown by Murtha and Wiart (198 9a) and Banner (198 6) . Although c o l l e c t i o n of narrow-band a i r b o r n e scanner data i s a l o g i c a l p r o g r e s s i o n of t h i s study, i t was pre-mature at the s t a r t of t h i s work and i s beyond the scope of t h i s d i s s e r t a t i o n . 6 C h a p t e r 3 L i t e r a t u r e R e v i e w 3 . 1 T h e M o u n t a i n P i n e B e e t l e P r o b l e m 3 . 1 . 1 B i o l o g y a n d E c o l o g y M o u n t a i n p i n e b e e t l e i s n a t i v e t o w e s t e r n l o d g e p o l e a n d p o n d e r o s a p i n e (Pinus ponderosa L a w s . ) f o r e s t s . T h e b e e t l e s , a c c o m p a n i e d b y e v e n t u a l f i r e s , h a v e i n t h e p a s t p l a y e d t h e n a t u r a l r o l e o f \" r e c y c l i n g \" l o d g e p o l e p i n e . T h e b e e t l e s k i l l l a r g e n u m b e r s o f m a t u r e p i n e s o v e r a s h o r t t i m e - s p a n a n d , a s a r e s u l t , l a r g e f u e l l o a d s a r e c r e a t e d . H i s t o r i c a l l y , w i l d f i r e s f o l l o w b e e t l e e p i d e m i c s a n d h e l p p e r p e t u a t e t h e s e r o t i n o u s l o d g e p o l e p i n e (Amman 1 9 8 2 ) . H o w e v e r , t h i s f i r e a s s o c i a t i o n h a s n o t b e e n o b v i o u s d u r i n g t h e l a s t d e c a d e ' s b e e t l e e p i d e m i c i n B r i t i s h C o l u m b i a . I n t h e l i f e c y c l e o f t h e b e e t l e , a s i n g l e g e n e r a t i o n i s n o r m a l l y c o m p l e t e d e a c h y e a r . T h e i n s e c t s m a t u r e , e m e r g e , a n d f l y t o a t t a c k n e w t r e e s b e t w e e n J u n e a n d S e p t e m b e r ( R y k e r a n d R u d i n s k y 1 9 7 9 ) . T h e v a s t m a j o r i t y o f t h e b e e t l e s f l y o v e r a r e l a t i v e l y s h o r t t i m e p e r i o d ( 1 - 2 w e e k s ) (Amman 1 9 8 2 ) . T h e f l y i n g b e e t l e s h a v e a p r e f e r e n c e f o r l a r g e d i a m e t e r , m a t u r e t r e e s o f l o w e r v i g o r . S u c c e s s f u l a t t a c k s r e q u i r e a l a r g e c o n c e n t r a t i o n o f b e e t l e s o n i n d i v i d u a l t r e e s — t h e b e e t l e s e x h i b i t a v e r y s o p h i s t i c a t e d c h e m i c a l m e s s e n g e r s y s t e m ( s e m i o c h e m i c a l s a n d h o s t o d o r s ( t e r p e n e s ) ) t o e n s u r e a n a d e q u a t e n u m b e r o f b e e t l e s o n e a c h t r e e . W h e n i n s e c t s a t t a c k e n m a s s e , t h e i n d i v i d u a l t r e e s ' d e f e n s e s y s t e m s a r e u s u a l l y i n a d e q u a t e t o 7 f i g h t o f f t h e i n t r u d e r s . U n s u c c e s s f u l a t t a c k s a r e c a u s e d b y a c o m b i n a t i o n o f a n i n a d e q u a t e n u m b e r o f b e e t l e s a n d e x c e s s i v e r e s i n o s i s o f t h e i n n e r b a r k — t h e t r e e m a n a g e s t o \" p i t c h o u t \" t h e a t t a c k i n g b e e t l e s . W h e r e t h i s d e f e n s e m e c h a n i s m f a i l s , t h e a d u l t b e e t l e s b o r e t h r o u g h t h e o u t e r b a r k a n d e x c a v a t e v e r t i c a l e g g g a l l e r i e s , w h e r e t h e f e m a l e b e e t l e s d e p o s i t t h e i r e g g s . T h e r e s u l t i n g l a r v a e ( e g g s h a t c h w i t h i n t w o w e e k s ) m i n e s h o r t h o r i z o n t a l g a l l e r i e s t h a t g r a d u a l l y b e c o m e l a r g e r a s t h e l a r v a e c h a n g e i n s t a r s ( f o u r i n a l l ) . T h e l a r v a e o v e r - w i n t e r i n t h e g a l l e r i e s ( d o r m a n t s t a g e ) a n d c o n t i n u e f e e d i n g o n t h e p h l o e m i n t h e s p r i n g . W h e n f u l l y g r o w n , t h e l a r v a e e x c a v a t e o v a l p u p a l c h a m b e r s a n d t r a n s f o r m i n t o p u p a e . B y J u l y , d e p e n d i n g o n t h e w e a t h e r , t h e p u p a e t r a n s f o r m i n t o m a t u r e b e e t l e s , w h i c h e m e r g e t o a t t a c k n e w t r e e s ( R y k e r a n d R u d i n s k y 1 9 7 9 ) . T h e l a r v a l f e e d i n g e f f e c t i v e l y d i s r u p t s t h e f u n c t i o n i n g o f t h e p h l o e m . T r a n s l o c a t i o n o f o r g a n i c c o m p o u n d s , s u c h a s c a r b o h y d r a t e s , c a n n o t p r o c e e d i n t h e s e s u c c e s s f u l l y g i r d l e d t r e e s . T h e b e e t l e a t t a c k s a l s o s e r v e t o i n t r o d u c e t w o b l u e s t a i n f u n g i (Ceratocystis montia R u m b . a n d Europhium s p p . ) i n t o t h e t r e e s ( R e i d e t al. 1 9 6 7 ) . T h e s e f u n g i i n t e r r u p t t h e m o v e m e n t o f t r a n s l o c a t e s , p r i m a r i l y i n t h e x y l e m , a n d t h u s c a u s e m o i s t u r e a n d n u t r i e n t s t r e s s i n t h e t r e e s . N o t o n l y d o t h e f u n g i a i d i n t h e k i l l i n g o f t h e t r e e s b u t t h e y a l s o p r o v i d e a n e c e s s a r y f o o d s o u r c e f o r t h e i n s e c t d u r i n g t h e i m m o b i l e s t a g e s o f i t s l i f e c y c l e . T h e p u p a l c h a m b e r s a r e l i n e d w i t h f u n g a l f r u i t i n g b o d i e s o n w h i c h t h e i n s e c t s f e e d s h o r t l y b e f o r e a n d a f t e r t h e p u p a l 8 s t a g e . N o r m a l l y , t h e f i r s t v i s u a l e v i d e n c e i n t h e w o o d o f b l u e s t a i n f u n g i i s o b v i o u s l y t h e b l u e s t a i n w h i c h i s c a u s e d b y p i g m e n t s f o r m e d b y t h e f u n g i . T h i s u s u a l l y b e c o m e s e v i d e n t w i t h i n t w o w e e k s o f t h e s u c c e s s f u l b e e t l e a t t a c k . I n s o m e t r e e s , p i g m e n t s d o n o t f o r m a l t h o u g h t h e w o o d i s i n f e c t e d b y t h e f u n g i . T h e f u n g a l h y p h a e s p r e a d r a d i a l l y a n d v e r t i c a l l y u n t i l a l l s a p w o o d i s i n f e c t e d . T h i s r a p i d d r y i n g o f t h e s a p w o o d c a u s e s t h e t r e e s t o e x h i b i t s e r i o u s c h e c k i n g , n o r m a l l y s t a r t i n g i n t h e s u m m e r f o l l o w i n g s u c c e s s f u l a t t a c k s . B y t h e s e c o n d s u m m e r f o l l o w i n g a s u c c e s s f u l a t t a c k , w o o d d e s t r o y i n g i n s e c t s , s u c h a s f l a t h e a d e d w o o d b o r e r s (Buprestis s p p . ) , b e c o m e c o m m o n a n d r e s u l t i n s e v e r e m i n i n g o f t h e s a p w o o d . T h i s n a t u r a l d e s t r u c t i v e p r o c e s s f o l l o w i n g s u c c e s s f u l b e e t l e a t t a c k s c l e a r l y p u t s a s t r i c t t i m e r e s t r i c t i o n o n s a l v a g e o p e r a t i o n s . T r e e s c a n r e s i s t t h e a t t a c k i n g b e e t l e s t h r o u g h a n e x c e s s i v e r e s i n f l o w , w h i c h e i t h e r d r o w n s t h e b e e t l e s o r f o r c e s t h e m t o a b a n d o n t h e t r e e , t h u s i s o l a t i n g t h e f u n g i ( S h r i m p t o n 1 9 7 3 ) . T h i s r e s i n o s i s c o n s i s t s o f t w o c a t e g o r i e s , p r i m a r y a n d s e c o n d a r y r e s i n . P r i m a r y r e s i n i s r e l e a s e d w h e n t h e r e s i n d u c t s a r e p u n c t u r e d b y t h e b e e t l e s . I t i s t h i s r e s i n t h a t f o r m s t h e c o n s p i c u o u s p i t c h t u b e s a r o u n d t h e e n t r y h o l e s o n t h e o u t s i d e o f a t t a c k e d t r e e s . S e c o n d a r y r e s i n i s f o r m e d w i t h i n l i v i n g p a r e n c h y m a c e l l s o f t h e p h l o e m a n d s a p w o o d ( r a y a n d p h l o e m p a r e n c h y m a ) . S e c o n d a r y r e s i n g r a d u a l l y s o a k s t h e s a p w o o d i n w a r d s t o w a r d s t h e h e a r t w o o d , b u t s o m e t i m e s a l s o e x t r u d e s t o t h e o u t s i d e o f t h e t r e e t o f l o w d o w n t h e b o l e . D u r i n g t h i s 9 e x p a n s i o n , s e c o n d a r y r e s i n f r o m r a y p a r e n c h y m a e x t r u d e s i n t o a d j a c e n t t r a c h e i d s ( R e i d e t al. 1 9 6 7 ) . T h i s s e c o n d a r y r e s i n p l a y s a n i m p o r t a n t r o l e i n p r e v e n t i n g b r o o d s f r o m s u r v i v i n g i n t h e g a l l e r i e s a n d i n i s o l a t i n g t h e f u n g i . I n s u c c e s s f u l l y a t t a c k e d t r e e s , s e c o n d a r y r e s i n o s i s i s v e r y s m a l l o r a b s e n t , a n d a s a r e s u l t t h e t r e e s a r e r a p i d l y c o l o n i z e d b y b e e t l e b r o o d s a n d b l u e s t a i n f u n g i . T h e r a p i d d r y i n g o f t h e s a p w o o d t h a t f o l l o w s s u c c e s s f u l a t t a c k i s d u e t o t h e c o l o n i z i n g o f t h e w o o d r a y s b y t h e f u n g i , t h u s l i m i t i n g w a t e r a n d m i n e r a l t r a n s l o c a t i o n . P i t c h - o u t , a s a r e s u l t o f e x c e s s i v e p r i m a r y r e s i n f l o w d o e s n o t n e c e s s a r i l y p r e v e n t t h e g r o w t h o f t h e f u n g i i n t h e l i v i n g t i s s u e s o f t h e p h l o e m a n d x y l e m , a n d t r e e s m a y s t i l l d i e a s a r e s u l t o f t h e o r i g i n a l b e e t l e a t t a c k . T h i s d e f e n s e m e c h a n i s m d e c r e a s e s i n e f f i c i e n c y w i t h t r e e a g e . I t i s v e r y w e a k i n t r e e s 8 0 y e a r s a n d o l d e r . I n m a t u r e t r e e s , t h e n a t u r a l d e f e n s e c a p a b i l i t y s h o w s a r a p i d s e a s o n a l d e c l i n e , a n d i s g e n e r a l l y v e r y l o w b y t h e t i m e t h e b e e t l e s f l y i n l a t e s u m m e r . I t h a s b e e n o b s e r v e d t h a t r e s i s t a n t t r e e s h a v e f a s t e r d i a m e t e r g r o w t h a n d t h i c k e r p h l o e m t h a n n o n - r e s i s t a n t t r e e s (/Amman 1 9 8 2 ) . W h e n s u c c e s s f u l l y a t t a c k e d , t h e s e f a s t g r o w i n g t r e e s w i t h t h i c k p h l o e m a l s o p r o d u c e t h e l a r g e s t b e e t l e b r o o d s (Amman 1 9 7 1 ) . T h e r e a r e m a n y t h e o r i e s t o e x p l a i n t h e i n i t i a l r e s i s t a n c e o f a p i n e t o b a r k b e e t l e a t t a c k . O n e b a s e d o n l o b l o l l y p i n e (Pinus taeda L . ) a n d t h e s o u t h e r n p i n e b e e t l e (Dendroctonus frontalis Z i m m . ) f o c u s e s o n a t r e e ' s a b i l i t y t o c a r r y o u t o l e o r e s i n s y n t h e s i s ( L o r i o 1 9 8 6 ) . T h e t h e o r y a s s u m e s a n i n i t i a l 1 0 p h a s e w h e r e e x t e r n a l c o n d i t i o n s s u c h a s w a t e r , n u t r i e n t s a n d t e m p e r a t u r e a r e n o r m a l . W a t e r a v a i l a b i l i t y i s t h e d e c i d i n g f a c t o r c o n t r o l l i n g t h e i n i t i a l r e s i s t a n c e . L o r i o ( 1 9 8 6 ) c l a i m s t h a t a m i l d r e d u c t i o n i n a v a i l a b l e w a t e r c a u s e s l e s s g r o w t h ( w i t h o u t a f f e c t i n g p h o t o s y n t h e s i s a n d s u g a r t r a n s p o r t ) , h e n c e l e s s s u g a r i s c o n s u m e d i n g r o w t h . F r o m t h i s f o l l o w s t h a t t h e r e m a y b e a n e x c e s s o f s u g a r w h i c h c a n b e u s e d f o r r e s i n s y n t h e s i s . H o w e v e r , i t m u s t b e s t r e s s e d t h a t t h e f u l l r o l e o f r e s i n s i n p r o t e c t i o n i s n o t f u l l y u n d e r s t o o d ( K r a m e r a n d K o z l o w s k i 1 9 7 9 ) . A n o t h e r t h e o r y l i n k s t r e e s ' r e s i s t a n c e t o s u c c e s s f u l b a r k b e e t l e a t t a c k s d i r e c t l y w i t h t r e e v i g o r ( C h r i s t i a n s e n e t al. 1 9 8 7 ) . T h e t h e o r y ' s m a i n p o i n t i s t h a t t h e c a r b o n b a l a n c e o f a t r e e i s t h e d e c i d i n g f a c t o r i n h o w w e l l a t r e e c a n d e f e n d i t s e l f . C h r i s t i a n s e n e t al. ( 1 9 8 7 ) s t a t e t h a t d e f e n s i v e w o u n d r e a c t i o n s a r e d i r e c t l y l i n k e d t o t h e a m o u n t o f s u g a r s t h a t c a n b e u t i l i z e d a t t i m e s o f b e e t l e a t t a c k s . T h i s i s i n p a r t i a l a g r e e m e n t w i t h L o r i o ' s ( 1 9 8 6 ) t h e o r y . T h e d i f f e r e n c e i s , t h a t w h i l e L o r i o ( 1 9 8 6) e m p h a s i z e d t h e i m p o r t a n c e o f m i l d w a t e r s t r e s s t o i n c r e a s e d r e s e r v e c a r b o h y d r a t e s , C h r i s t i a n s e n e t al. ( 1 9 8 7 ) s t r e s s e d t h e i n f l u e n c e o f e x t e n d e d d r o u g h t s ( a m o n g o t h e r t h i n g s ) a s r e a s o n s f o r d e p l e t i o n s o f c a r b o n r e s e r v e s . F u r t h e r , a s t r e e s g r o w o l d e r , l e s s c a r b o h y d r a t e s a r e a v a i l a b l e f o r d e f e n s e m e c h a n i s m s . T h e h i g h e r t h e w o o d p r o d u c t i o n p e r a r e a o f f o l i a g e , t h e h i g h e r t h e r e s i s t a n c e t o b a r k b e e t l e s . T h i s i s b a s e d o n t h e f a c t t h a t t r e e s t h a t a r e c a p a b l e o f p r o d u c i n g a l o t o f s t e m w o o d g e n e r a l l y h a v e r e s e r v e c a p a c i t y o f c a r b o h y d r a t e s 11 because t h e o t h e r , h i g h e r p r i o r i t y c a r b o h y d r a t e s i n k s (such as r o o t s and sh o o t s ) have a l r e a d y been s u f f i c i e n t l y s u p p l i e d . Stemwood p r o d u c t i o n can be enhanced by t h i n n i n g , t h u s t h i n n i n g o p e r a t i o n s a r e g e n e r a l l y a c c e p t e d as e f f e c t i v e means t o improve s t a n d r e s i s t a n c e (Matson e t al. 1987; L a r s s o n e t al. 1983). Waring and Pi t m a n (1985) have shown t h a t l o d g e p o l e p i n e g r o w i n g on n i t r o g e n d e f i c i e n t s o i l s responds w e l l t o n i t r o g e n f e r t i l i z a t i o n and t h a t t h i s a l s o improves r e s i s t a n c e t o s u c c e s s f u l b e e t l e a t t a c k s . The improved r e s i s t a n c e was a t t r i b u t e d t o t r e e growth e f f i c i e n c y (enhanced stemwood p r o d u c t i o n ) . Some t r e e s a r e o n l y p a r t i a l l y g i r d l e d by t h e b e e t l e s , and as a r e s u l t t h e f u n g i w i l l n o t be i n o c u l a t e d t h r o u g h o u t t h e e n t i r e c i r c u m f e r e n c e o f t h e b o l e . These t r e e s u s u a l l y s u r v i v e t h e f i r s t y e a r o f a t t a c k as t h e r e i s some f u n c t i o n i n g phloem and xylem s t i l l i n t a c t . However, t h e f u n g i may e v e n t u a l l y conquer t h e r e m a i n d e r o f t h e h e a l t h y sapwood, and i n any event t h e t r e e s s t a n d l i t t l e chance t o r e s i s t a complete a t t a c k i n t h e f o l l o w i n g y e a r . The mountain p i n e b e e t l e has a number o f n a t u r a l enemies, a l t h o u g h t h e i r p r e c i s e r o l e s a r e not w e l l known. Woodpeckers ar e a common s i g h t i n b e e t l e - i n f e s t e d a r e a s and sometimes c o m p l e t e l y debark t h e t r e e s i n t h e y e a r f o l l o w i n g s u c c e s s f u l a t t a c k s . One o f t h e most common i n s e c t p r e d a t o r s i s t h e l a r v a e o f a f l y (Medetera aldrichii W h e e l e r ) , w h i c h f e e d s on a l l l i f e forms e x c e p t t h e mature b e e t l e s ( R e i d 1963). L a r v a l and a d u l t 1 2 c l e r i d b e e t l e s {Enoclerus sphegeus F . ) a r e a l s o v e r y c o m m o n (Amman 1 9 7 0 ) . T h e m o s t p r e v a l e n t p a r a s i t e i s t h e l a r v a e o f a w a s p (Coeloides dendroctoni C u s h m a n ) . M a t u r e l a r v a e a r e a t t a c k e d b y t h i s p a r a s i t e ( R e i d 1 9 6 3 ) . T h e s e n a t u r a l e n e m i e s m a y p l a y a n i m p o r t a n t r o l e i n r e g u l a t i n g l o w , e n d e m i c p o p u l a t i o n s o f t h e b e e t l e . I t h a s b e e n s u g g e s t e d t h a t p r e d a t i o n a n d p a r a s i t i s m m a y p r o l o n g o u t b r e a k s b y r e d u c i n g t h e c o m p e t i t i o n a m o n g b r o o d s ( R u d i n s k y 1 9 6 2 ) . T h e a c t u a l c a u s e f o r m a s s i v e o u t b r e a k s i s s u b j e c t t o s o m e c o n t r o v e r s y a m o n g r e s e a r c h e r s . T h e u n c e r t a i n t y i s w h e t h e r o u t b r e a k s a r e t r i g g e r e d b y p h y s i o l o g i c a l c h a n g e s r e l a t e d t o . s t r e s s o r g o o d v i g o r . T h e c o n t r o v e r s y a s i d e , A m m a n ( 1 9 8 2 ) l i s t s f o u r c o n d i t i o n s t h a t m u s t b e m e t f o r o u t b r e a k s t o o c c u r : l a r g e d i a m e t e r t r e e s , t h i c k p h l o e m , o p t i m a l a g e o f t r e e s , a n d o p t i m a l t e m p e r a t u r e f o r b e e t l e d e v e l o p m e n t . T h e o p t i m a l a g e i s r e l a t e d t o t h e b r e a k d o w n o f r e s i s t a n c e i n f a s t g r o w i n g t r e e s w i t h t h i c k p h l o e m . H o t a n d d r y s u m m e r s a n d m i l d w i n t e r s f a v o u r b r o o d s u r v i v a l , a n d t h u s t h e r i s k f o r e p i d e m i c s . C h r i s t i a n s e n e t al. ( 1 9 8 7 ) s t a t e t h a t t h e t r a n s i t i o n f r o m a n e n d e m i c t o a n e p i d e m i c s i t u a t i o n i s l i n k e d t o a r e d u c t i o n i n t r e e o r s t a n d v i g o r ( i . e . r e d u c e d h o s t - t r e e r e s i s t a n c e ) . T h i s r e d u c t i o n i n s t a n d v i g o r m a y b e l i n k e d t o f a c t o r s s u c h a s d r o u g h t s o r e x c e s s i v e m o i s t u r e , r o o t r o t s , s e v e r e c o m p e t i t i o n , n u t r i e n t d e f i c i e n c i e s , a n d t r e e s e n e s c e n c e . 1 3 3 . 1 . 2 L o d g e p o l e P i n e - a B r i e f D e s c r i p t i o n L o d g e p o l e p i n e i s a n e c o n o m i c a l l y i m p o r t a n t s p e c i e s i n w e s t e r n N o r t h A m e r i c a , p a r t i c u l a r l y i n C a n a d a ( V a n H o o s e r a n d K e e g a n 1 9 8 4 ; K e n n e d y 1 9 8 4 ) . I t i s w i d e l y r e c o g n i z e d t h a t t h e f u t u r e o f t h e s p e c i e s a s a m a j o r t i m b e r r e s o u r c e h e a v i l y d e p e n d s o n p r o t e c t i o n f r o m p e s t s a n d f i r e , p a r t i c u l a r l y t h e m o u n t a i n p i n e b e e t l e ( D e r m o t t 1 9 8 4 ) . B e s i d e s t h e m o u n t a i n p i n e b e e t l e , t h e r e a r e o t h e r p e s t s t h a t a r e c a p a b l e o f c a u s i n g s e r i o u s d a m a g e . S e c o n d a r y b a r k b e e t l e s s u c h a s Pityogenes knechteli S w a i n e a n d Pityophthorus confertus S w a i n e m a y s e r v e a r o l e i n m a i n t a i n i n g t h e m o u n t a i n p i n e b e e t l e d u r i n g l o w p o p u l a t i o n l e v e l s . T h e s e s e c o n d a r y b e e t l e s k i l l s m a l l a n d w e a k e n e d t r e e s , a n d t h e m o u n t a i n p i n e b e e t l e s u b s e q u e n t l y a t t a c k s t h e s a m e t r e e s w h e r e s o m e b r o o d s u r v i v a l c a n b e m a i n t a i n e d (Amman a n d S a f r a n y i k 1 9 8 4 ) . Ips pini ( S a y ) a n d Ips latidens ( L e C o n t e ) a l s o c a u s e s o m e m o r t a l i t y i n s m a l l e r a n d / o r w e a k e n e d t r e e s . T r e e s m a y a l s o b e w e a k e n e d a n d p r e d i s p o s e d t o t h e m o u n t a i n p i n e b e e t l e b y t h e l o d g e p o l e p i n e b e e t l e (Dendroctonus murrayanae H o p k i n s ) a n d t h e r e d t u r p e n t i n e b e e t l e (Dendroctonus valens L e C o n t e ) . T h e r e a r e s o m e d e f o l i a t o r s c a p a b l e o f c a u s i n g g r o w t h r e d u c t i o n s a n d s o m e t i m e s m o r t a l i t y i n l o d g e p o l e p i n e . E x a m p l e s o f t h e s e a r e s a w f l i e s (Neodiprion s p p . ) a n d n e e d l e m i n e r s (Coleotechnites s p p . ) . I t a p p e a r s t h a t d e f o l i a t o r s o f s e v e r a l s p e c i e s i n c o m b i n a t i o n , h a v e t h e g r e a t e s t p o t e n t i a l t o c a u s e s e v e r e d a m a g e (Amman a n d S a f r a n y i k 1 9 8 4 ) . B e s i d e s i n s e c t s , a n u m b e r o f d i s e a s e s , s u c h a s d w a r f m i s t l e t o e (Archeuthobium americanum 14 N u t t . ex. Engelm.), stem r u s t s , and r o o t d i s e a s e s can cause s i g n i f i c a n t damage t o l o d g e p o l e p i n e and p r e d i s p o s e t h e t r e e t o seco n d a r y i n s e c t s such as b a r k b e e t l e s (van d e r Kamp and Hawksworth 1984) . F i r e i s fundamental t o l o d g e p o l e p i n e . The major cause f o r ground f u e l a c c u m u l a t i o n i s t h e t r e e m o r t a l i t y c a u s e d by t h e mountain p i n e b e e t l e (Lotan e t a l . 1984). F l a m m a b i l i t y o f a s t a n d i s enhanced by t h e b e e t l e , as w e l l as dwarf m i s t l e t o e . F i g u r e 3.1 below i l l u s t r a t e s t h e complex r o l e o f f i r e i n l o d g e p o l e p i n e s t a n d s . F i g u r e 3.1: Lodgepole p i n e f i r e c y c l e showing t h e c o m p l e x i t i e s o f t h e many i n t e r r e l a t i o n s h i p s i n v o l v e d (Lotan e t a l . 1984) The f u e l l o a d i n g s r e s u l t i n g from b a r k b e e t l e i n f e s t a t i o n s a r e o f t e n l a r g e enough t o a l l o w s e r i o u s h i g h i n t e n s i t y s t a n d 1 5 r e p l a c e m e n t f i r e s t o d e v e l o p . T h e s e f i r e s s e r v e t o e l i m i n a t e c o m p e t i n g c l i m a x v e g e t a t i o n ( l o d g e p o l e p i n e i s s e r a i ) a n d k e e p t h e l o d g e p o l e p i n e c y c l e r e n e w e d (Amman a n d S c h m i t z 1 9 8 8 ) . B e s i d e s i t s c l o s e a s s o c i a t i o n w i t h w i l d f i r e s , a n o t h e r c h a r a c t e r i s t i c w o r t h m e n t i o n i n g f o r l o d g e p o l e p i n e i s l i n k e d t o i t s s t o m a t a l f u n c t i o n i n g . A s w i l l b e d i s c u s s e d l a t e r , s t o m a t a f u n c t i o n i n g p l a y s a n i m p o r t a n t r o l e i n p l a n t r e f l e c t a n c e . C a r b o n d i o x i d e a n d w a t e r v a p o r d i f f u s i o n , i n a n d o u t o f t h e l e a f r e s p e c t i v e l y , a r e p r i m a r i l y c o n t r o l l e d b y s t o m a t a l c l o s u r e . P a r t i a l s t o m a t a l c l o s u r e i s m o r e r e s t r i c t i v e t o w a t e r v a p o r t h a n t o c a r b o n d i o x i d e , h e n c e a p l a n t c a n p a r t i a l l y r e d u c e t h e t r a n s p i r a t i o n d u r i n g w a t e r s t r e s s w i t h o u t s e v e r e l y a f f e c t i n g p h o t o s y n t h e s i s . T h i s h o w e v e r d o e s n o t m e a n t h a t s t o m a t a l a p e r t u r e i s n o t c l o s e l y c o r r e l a t e d t o p h o t o s y n t h e s i s — t u r g o r p r i m a r i l y c o n t r o l s s t o m a t a l f u n c t i o n ; w i t h o p e n e d s t o m a t a , p h o t o s y n t h e s i s c a n t a k e p l a c e ( K r a m e r a n d K o z l o w s k i 1 9 7 9 ) . T h e s t o m a t a i n l o d g e p o l e p i n e , i n p a r t i c u l a r , a r e v e r y s e n s i t i v e t o m o i s t u r e s t r e s s , m o r e s o t h a n w i t h i t s c o m m o n a s s o c i a t e s ( B a s s m a n 1 9 8 4 ) . P h o t o s y n t h e s i s i n l o d g e p o l e p i n e i s a l s o s e n s i t i v e t o l o w t e m p e r a t u r e s . T h e l o w r a t e o f p h o t o s y n t h e s i s i n l o d g e p o l e p i n e d u r i n g l o w t e m p e r a t u r e s i s r e l a t e d t o t h e f a c t t h a t t h e s t o m a t a t e n d t o s t a y c l o s e d d u r i n g l o w t e m p e r a t u r e s ( B a s s m a n 1 9 8 4 ) . B a s s m a n ( 1 9 8 4 ) a l s o s t a t e s t h a t l o d g e p o l e p i n e i n p a r t i c u l a r i s v e r y s e n s i t i v e t o l o w l i g h t l e v e l s . S t o m a t a c l o s e w i t h l o w l i g h t l e v e l s a n d r e s p o n d r a p i d l y t o l i g h t . 1 6 3 . 1 . 3 C o n t r o l S t r a t e g i e s T h e r e a r e b a s i c a l l y t w o r o u t e s o n e c a n f o l l o w t o w a r d s c o n t r o l o f t h e m o u n t a i n p i n e b e e t l e . T h e f i r s t i s p r e v e n t a t i v e , l o n g - t e r m f o r e s t m a n a g e m e n t t e c h n i q u e s a i m e d a t r e d u c i n g t h e r i s k f o r e p i d e m i c s t o o c c u r . T h e s e c o n d i s t h a t , o n c e e p i d e m i c s h a v e b e c o m e e s t a b l i s h e d , s u p p r e s s i o n t e c h n i q u e s c a n b e a p p l i e d t o a l l o w a d e q u a t e t i m e f o r s a l v a g e . T h i s a p p r o a c h i s o f t e n e q u a t e d w i t h \" c r i s i s - m a n a g e m e n t \" o f t h e v a l u a b l e f o r e s t r e s o u r c e s . D u e t o t h e b e e t l e s ' p r e f e r e n c e f o r l a r g e d i a m e t e r , m a t u r e t r e e s ( 8 0 + y e a r s ) , i t a p p e a r s r e a s o n a b l e t o h a r v e s t s t a n d s b e f o r e t h e y r e a c h o v e r - m a t u r i t y . I n a d d i t i o n t o e v e n - a g e d m a n a g e m e n t , t h e r e i s a l s o t h e p o s s i b i l i t y o f o p e r a t i n g t h e s t a n d s o n a n u n e v e n - a g e d b a s i s ( p a t c h w o r k s o f e v e n - a g e d u n i t s — m i n i m u m s t o c k o f s u s c e p t i b l e t i m b e r a t a n y o n e t i m e ) . I t s e e m s p o s s i b l e t h a t i n t e n s i v e s i l v i c u l t u r e p r a c t i c e s w h i c h e n h a n c e t r e e v i g o r , s u c h a s f e r t i l i z a t i o n a n d t h i n n i n g , c a n c r e a t e a n e g a t i v e e n v i r o n m e n t f o r u n c o n t r o l l a b l e b u i l d - u p s o f b e e t l e p o p u l a t i o n s ( S c h m i d t 1 9 8 2 ) . T h e l o d g e p o l e p i n e c y c l e , a s d e s c r i b e d i n C h a p t e r 3 . 1 . 2 , w i l l ( i f u n i n t e r r u p t e d ) g u a r a n t e e c o n t i n u e d s e r i o u s p r o b l e m s w i t h b a r k b e e t l e s . T h e d e n s e n a t u r a l r e g e n e r a t i o n t h a t f o l l o w s w i l d f i r e s w i l l e v e n t u a l l y l e a d t o i n t e n s e c o m p e t i t i o n a n d l o w v i g o r , a n d t h u s i n c r e a s e t h e r i s k f o r e p i d e m i c s . T h i n n i n g a n d f e r t i l i z a t i o n c a n a l t e r t h i s n a t u r a l c y c l e b y e n s u r i n g t h a t s t a n d v i g o r r e m a i n s s u f f i c i e n t l y h i g h t o w a r d o f f o u t b r e a k s . T h e s u c c e s s o f f e r t i l i z a t i o n 17 depends on s i t e c o n d i t i o n s ; i f n u t r i e n t s a r e not t h e l i m i t i n g f a c t o r s t o wood p r o d u c t i o n , f e r t i l i z a t i o n w i l l have l i t t l e o r no e f f e c t (Matson e t a l . 1987). However, s i n c e most l o d g e p o l e p i n e s t a n d s i t e s a r e d e f i c i e n t i n n i t r o g e n , l o d g e p o l e p i n e s t a n d s r e s p o n d w e l l t o f e r t i l i z a t i o n (Weetman e t al. 1984). A l t h o u g h a v e r y l o n g - t e r m approach, g e n e t i c improvement t o enhance r e s i s t a n c e may a l s o e v e n t u a l l y y i e l d p o s i t i v e r e s u l t s . E s t a b l i s h m e n t o f s p e c i e s m o s a i c s o r s p e c i e s mixes may p r o v i d e i n f e s t a t i o n impact l i m i t a t i o n s , p r o v i d i n g t h e o t h e r s p e c i e s can t h r i v e on t h e same s i t e s as l o d g e p o l e p i n e and a r e not s u s c e p t i b l e t o some o t h e r s e r i o u s p e s t s (Anon. 1985). W h i l e t h e s e \" t e x t b o o k \" examples o f f o r e s t management a r e h i g h l y d e s i r a b l e i n v i e w o f t h e b e e t l e problem, i t i s w e l l known t h a t Canadian s o f t w o o d s i l v i c u l t u r e p r a c t i c e s a r e u s u a l l y not i n t e n s i v e . Even w i t h e f f e c t i v e , l o n g - t e r m s i l v i c u l t u r a l measures i n p l a c e on p r o d u c t i v e f o r e s t l a n d , b e e t l e p o p u l a t i o n s w h i c h know no a r t i f i c i a l b o u n d a r i e s can b u i l d up t o e p i d e m i c p r o p o r t i o n s w i t h i n w e s t e r n Canada's e x t e n s i v e p a r k systems where management a l t e r n a t i v e s a r e s e v e r e l y l i m i t e d (Brennan 1982). W i t h t h i s i n mind, t o g e t h e r w i t h t h e f a c t t h a t w e s t e r n Canada has enormous t r a c t s o f s u s c e p t i b l e mature t i m b e r p r o t e c t e d from f i r e s (not t o mention o t h e r softwoods t h r e a t e n e d by o t h e r b a r k b e e t l e s and d e f o l i a t o r s ) , c o n t i n u e d e p i d e m i c l e v e l s o f t h e b e e t l e s a r e e x p e c t e d , and t h u s , d i r e c t , s h o r t - t e r m c o n t r o l measures p l a y an i m p o r t a n t r o l e ( S a f r a n y i k 1982). 18 A s w a s p o i n t e d o u t e a r l i e r , d i r e c t c o n t r o l , e v e n i f s u c c e s s f u l , d o e s n o t e l i m i n a t e t h e b e e t l e p r o b l e m , b u t o n l y s e r v e s t h e f u n c t i o n o f a t t e m p t i n g t o e n s u r e t h a t t h e w o o d w i l l b e f o r t h e b e n e f i t o f p e o p l e a n d n o t t h e b e e t l e s . D i r e c t c o n t r o l i s a l s o u s e d b y p a r k a u t h o r i t i e s i n a n a t t e m p t t o h a l t t h e s p r e a d o f b e e t l e i n f e s t a t i o n s f r o m p a r k s t o a d j a c e n t n o n -p a r k a r e a s ( T u r n b u l l 1 9 8 2 ) . D i r e c t c o n t r o l c a n t a k e m a n y f o r m s . I t c a n e i t h e r b e d i r e c t e d t o w a r d s k i l l i n g t h e b e e t l e s o r p r o t e c t i n g t r e e s f r o m s u c c e s s f u l a t t a c k ( S a f r a n y i k 1 9 8 2 ) . T h e c o n v e n t i o n a l a p p r o a c h t o b e e t l e k i l l i n g ( t h e m a i n a i m o f d i r e c t c o n t r o l ) i s t o d o i t w h i l e t h e b e e t l e s a r e u n d e r t h e b a r k . T h i s c a n b e a c c o m p l i s h e d w i t h p e s t i c i d e s , d e b a r k i n g , o r b u r n i n g . T h e u s u a l o p e r a t i o n a l a p p r o a c h i s t o c l e a r - c u t t h e i n f e s t e d s i t e f o l l o w e d b y p r o m p t r e m o v a l o f t h e w o o d , w h i c h t h e n c a n b e s a l v a g e d . O b v i o u s l y , c l e a r - c u t t i n g i s n o t a l w a y s a c c e p t a b l e o r f e a s i b l e d u e t o f a c t o r s s u c h a s i n a d e q u a t e a c c e s s , p a r k p o l i c i e s , a n d s i m p l y t h a t t h e i n f e s t a t i o n i s t o o s m a l l o r s c a t t e r e d . I n t h e s e c a s e s , s i n g l e t r e e r e m o v a l i s t h e a l t e r n a t i v e . P r o t e c t i o n o f t r e e s c a n b e a c c o m p l i s h e d t h r o u g h t h e u s e o f c h e m i c a l s ( s e m i o c h e m i c a l s a n d h o s t t r e e t e r p e n e s ) a n d / o r s o m e f o r m o f b e e t l e - t r a p p i n g r e g i m e ( S m i t h e t al. 1 9 7 7 ; B o r d e n e t a l . 1 9 8 3 ) . T h e u s e o f a g g r e g a t i o n s e m i o c h e m i c a l s f o r m a s s - t r a p p i n g o f b a r k b e e t l e s i s t h e o r e t i c a l l y a p o t e n t i a l l y v a l i d a p p r o a c h . H o w e v e r , l a r g e -s c a l e o p e r a t i o n a l t r i a l s i n S c a n d i n a v i a h a v e i n d i c a t e d t h a t t h e p o s i t i v e e f f e c t s o f m a s s - t r a p p i n g o f b a r k b e e t l e s i n e p i d e m i c 1 9 p r o p o r t i o n s a r e q u e s t i o n a b l e . H o w e v e r , t h e r e a r e i n d i c a t i o n s t h a t t h e u s e o f s e m i o c h e m i c a l s m a y b e e f f e c t i v e i f a p p l i e d b e f o r e - t h e b e e t l e s h a v e r e a c h e d e p i d e m i c p o p u l a t i o n l e v e l s ( B a k k e a n d S t r a n d 1 9 8 1 ; A n o n . 1 9 8 0 ) . T h e l o g i s t i c s o f d i r e c t c o n t r o l a s i d e , t h i s k i n d o f a c t i o n ( i n c l u d i n g s a l v a g e l o g g i n g ) r e q u i r e s s o m e m e c h a n i s m f o r e a r l y d e t e c t i o n , a s w e l l a s s u r v e i l l a n c e o f k n o w n i n f e s t a t i o n s i t e s . T h e c o n v e n t i o n a l a p p r o a c h t o i n v e n t o r y o f b a r k b e e t l e a c t i v i t i e s i s t h r o u g h g r o u n d s u r v e y s a n d a e r i a l s k e t c h - m a p p i n g . T h e s e s u r v e y s a r e i n i t i a l l y d i r e c t e d f r o m e s t i m a t e s o f t h e c u r r e n t i n f e s t a t i o n i n t e n s i t y ( a e r i a l s k e t c h - m a p p i n g ) , i n f e s t a t i o n s i z e , s t a n d h a z a r d r a t i n g s , d i s t a n c e f r o m o t h e r i n f e s t a t i o n s , a c c e s s , a n d s t a n d v a l u e ( A n o n . 1 9 8 5 ) . S h o u l d t h e i n i t i a l p r o b e s w a r r a n t f u r t h e r c o n c e r n , s u c h a s p r i o r i z e d o r a c c e l e r a t e d h a r v e s t s c h e d u l i n g , t h e a f f e c t e d a r e a s a r e g e n e r a l l y g r i d - c r u i s e d t o e s t a b l i s h b o u n d a r i e s . T h e a e r i a l s k e t c h - m a p p i n g p r o v i d e s m a n a g e r s w i t h a n o v e r v i e w o f t h e m o r t a l i t y c a u s e d b y t h e p r e v i o u s y e a r s ' a t t a c k s , b u t p r o v i d e s n o e s t i m a t e s o f c u r r e n t a t t a c k ( h e n c e , t h e c o n t i n u o u s n e e d f o r g r o u n d s u r v e y s ) . D u e t o t h e v a s t a r e a s o f s u s c e p t i b l e t i m b e r i n w e s t e r n C a n a d a , t h e a e r i a l s u r v e y s m u s t b e p r i o r i t i z e d b a s e d o n p r e - d e t e r m i n e d p r o b a b i l i t i e s f o r a t t a c k ( s t a n d h a z a r d r a t i n g ) a n d s p e c i f i c m a n a g e m e n t o b j e c t i v e s f o r a n a r e a ( A n o n . 1 9 8 5 ) . A l o o k a t i n f e s t a t i o n r e c o r d s c l e a r l y i n d i c a t e s t h a t e i t h e r c u r r e n t o p e r a t i o n a l i n v e n t o r y t e c h n i q u e s a r e n o t a d e q u a t e o r d i r e c t c o n t r o l e f f o r t s a r e n o t s u f f i c i e n t , o r b o t h . 20 3.2 P l a n t R e f l e c t a n c e Response t o I n s e c t - i n d u c e d S t r e s s 3.2.1 Broad-band C h a r a c t e r i s t i c s The s p e c t r a l r e f l e c t a n c e of v e g e t a t i o n can p r o v i d e v a l u a b l e i n f o r m a t i o n r e g a r d i n g the h e a l t h s t a t u s . F i g u r e 3.2 shows a t y p i c a l r e f l e c t a n c e curve f o r green v e g e t a t i o n ( l e a f r e f l e c t a n c e ) . 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 Wavelength (itm) F i g u r e 3.2: S p e c t r a l response c h a r a c t e r i s t i c s f o r green v e g e t a t i o n (adapted a f t e r Swain and Davis 1979) In the v i s i b l e p a r t of the e l e c t r o m a g n e t i c spectrum (400 - 700 nm), pigmentation i s the major c o n t r i b u t o r t o the r e f l e c t e d energy - e s p e c i a l l y c h l o r o p h y l l a and b (Murtha 1972) . I n t e r n a l , p h y s i o l o g i c a l c h a r a c t e r i s t i c s of the l e a f s t r u c t u r e s are p r i m a r i l y r e s p o n s i b l e f o r the response i n the n e a r - i n f r a r e d r e g i o n of the spectrum (700 - 1,300 nm) ( K n i p l i n g 1970). Water 21 a b s o r p t i o n p roduces c h a r a c t e r i s t i c s p e c t r a l f e a t u r e s c e n t e r e d a t a p p r o x i m a t e l y 1,400, 1,900, and 2,600 nanometers ( f i g u r e 3.2). When c h l o r o p h y l l p r o d u c t i o n i s d e c r e a s e d and e x i s t i n g c h l o r o p h y l l s t a r t s t o d i s i n t e g r a t e as a r e s u l t o f s t r e s s , l e a v e s w i l l a b s o r b l e s s l i g h t i n t h e c h l o r o p h y l l a b s o r p t i o n bands. The r e s u l t i s h i g h e r l e a f r e f l e c t a n c e , e s p e c i a l l y t owards t h e c h l o r o p h y l l w e l l l o c a t e d a p p r o x i m a t e l y a t 680 nm (Rock e t a l . 1988). A r e d u c t i o n i n c h l o r o p h y l l c o n t e n t u s u a l l y means t h a t y e l l o w and r e d pigments ( c a r o t e n e s , x a n t h o p h y l l s , and a n t h o c y a n i n ) e v e n t u a l l y become more v i s i b l e . Kramer and K o z l o w s k i (1979) a l s o s t a t e t h a t t a n n i n s may be r e s p o n s i b l e f o r c o l o r changes (such as f a l l d i s c o l o r a t i o n ) . I n l o d g e p o l e p i n e , t h e above i s e x e m p l i f i e d by t h e c h a r a c t e r i s t i c b r i e f y e l l o w i n g ( i n t h e s p r i n g f o l l o w i n g s u c c e s s f u l a t t a c k s ) and subsequent r e d d e n i n g o f t h e f o l i a g e (Moody 1982). Ponderosa p i n e f o l i a g e f a d e s t o y e l l o w , not r e d , about a y e a r a f t e r s u c c e s s f u l a t t a c k s (Ryker and R u d i n s k y 1979) . L e a f components such as stomata, n u c l e i , c e l l w a l l s , c e l l w a l l / a i r - s p a c e i n t e r f a c e s , c r y s t a l s , and c y t o p l a s m a r e m a i n l y r e s p o n s i b l e f o r t h e r e f l e c t a n c e on t h e n e a r - i n f r a r e d p l a t e a u o f t h e spectrum (Gausman 1977). The m a j o r i t y o f n e a r - i n f r a r e d l i g h t i s e i t h e r r e f l e c t e d o r t r a n s m i t t e d t h r o u g h t h e l e a f (very l i t t l e i s a b s o r b e d ) . There a r e i n d i c a t i o n s and e v i d e n c e t h a t t h e r e a r e changes (as a r e s u l t o f s t r e s s ) i n n e a r - i n f r a r e d r e f l e c t a n c e p r i o r t o t h e v i s u a l changes mentioned above ( L i l l e s a n d e t al. 1975; Murtha 1978; Murtha and H a m i l t o n 1969; 22 H a l l 1 9 8 1 ; H o b b s 1 9 8 3 ) . P h y s i o l o g i c a l c h a n g e s w i t h i n t h e l e a f ( a s r e l a t e d t o r e f l e c t a n c e ) , f o l l o w i n g s o m e e v i d e n c e o f s t r e s s ( l i k e s u c c e s s f u l b a r k b e e t l e a t t a c k s ) , h a v e b e e n p a r t l y e x p l a i n e d a n d h y p o t h e s i z e d u p o n b y m a n y i n v e s t i g a t o r s . O n e s u c h d e s c r i p t i o n i s t h e s o - c a l l e d s p o n g y m e s o p h y l l t h e o r y . T h i s t h e o r y i s b a s e d o n t h e o b s e r v a t i o n t h a t l e a v e s d e v e l o p e d u n d e r s t r e s s h a v e a r e l a t i v e c o m p a c t c e l l a r r a n g e m e n t i n t h e m e s o p h y l l , r e s u l t i n g i n f e w i n t e r c e l l u l a r s p a c e s . N o r m a l l e a v e s ( n o s t r e s s d u r i n g d e v e l o p m e n t ) h a v e a l o o s e l y a r r a n g e d ( s p o n g y ) m e s o p h y l l , w i t h n u m e r o u s i n t e r c e l l u l a r s p a c e s ( C o l w e l l 1 9 5 6 ) . F r o m t h i s f o l l o w s t h e g e n e r a l p e r c e p t i o n o f a d e c r e a s e d n e a r -i n f r a r e d r e f l e c t a n c e a f t e r e v i d e n c e o f s t r e s s — t h e m o r e \" s p o n g y \" ( m a n y a i r c a v i t i e s ) m e s o p h y l l , t h e h i g h e r t h e n e a r - i n f r a r e d r e f l e c t a n c e . S o m e m o r e r e c e n t l i t e r a t u r e r e p o r t s t h a t i t i s n o t t h e v o l u m e o f a i r - s p a c e i n t h e s p o n g y m e s o p h y l l t h a t i s t h e m o s t i m p o r t a n t f a c t o r f o r n e a r - i n f r a r e d r e f l e c t a n c e , b u t t h e c e l l w a l l / a i r - s p a c e i n t e r f a c e . T h e l a r g e r t h e t o t a l a r e a o f t h e s e i n t e r f a c e s , t h e h i g h e r t h e n e a r - i n f r a r e d r e f l e c t a n c e ( G a u s m a n 1 9 7 4 ) . T h i s i s b a s e d o n t h e k n o w l e d g e t h a t w h e n l i g h t p a s s e s t h r o u g h m e d i a o f d i f f e r e n t d e n s i t y ( c e l l w a l l v e r s u s a i r ) i t s c a t t e r s . T h e m o r e s c a t t e r i n g , t h e h i g h e r t h e p r o b a b i l i t y f o r i n c i d e n t l i g h t t o b e r e f l e c t e d r a t h e r t h a n t r a n s m i t t e d ( T u c k e r 1 9 8 0 ) . L o s s o f t u r g i d i t y ( c e l l c o l l a p s e ) a s a r e s u l t o f s t r e s s w i l l t h u s c a u s e a n i n c r e a s e i n n e a r - i n f r a r e d r e f l e c t a n c e ( T h o m a s e t a l . 1 9 6 6 ) . A f t e r s o m e t i m e , t h e c e l l w a l l s s t a r t t o b r e a k 23 d o w n , c a u s i n g t h e i n t e r n a l l e a f m a s s t o c o m p a c t . T h i s w i l l c a u s e a d r o p i n n e a r - i n f r a r e d r e f l e c t a n c e . I n a d d i t i o n t o t h e c e l l w a l l / a i r - s p a c e i n t e r f a c e s , a s m a l l p o r t i o n o f t h e n e a r -i n f r a r e d r e f l e c t a n c e c o m e s f r o m c e l l u l a r c o n s t i t u e n t s , c r y s t a l s a n d c y t o p l a s m . R e d u c t i o n o f t h e s e c o n s t i t u e n t s , a s a r e s u l t o f s t r e s s , r e d u c e s r e f l e c t a n c e . I t h a s a l s o b e e n s h o w n t h a t m u c h o f t h e n e a r - i n f r a r e d r a d i a t i o n e x i t s t h e f o l i a g e t h r o u g h t h e s t o m a t a l o p e n i n g s ( G a u s m a n 1 9 7 4 ) . C o n s e q u e n t l y , r e f l e c t a n c e f r o m t h i s s o u r c e w i l l d e c r e a s e a s a r e s u l t o f m o i s t u r e s t r e s s ( c l o s e d s t o m a t a ) . T h e s i g n i f i c a n c e o f t h i s i n p i n e s m a y b e d e b a t e d a s s t o m a t a a r e c o n c e n t r a t e d o n t h e l o w e r s u r f a c e o f a n e e d l e . H o w e v e r , a n a d i r v i e w o f t h e u p p e r p o r t i o n s o f a p i n e c a n o p y ( a s s e e n f r o m a r e m o t e s e n s i n g p l a t f o r m ) r e s u l t s i n a v a r i e t y o f n e e d l e o r i e n t a t i o n s , i n c l u d i n g t h e l o w e r s u r f a c e s . T h e r e s t i l l a p p e a r s t o b e a g r e a t d e a l o f u n c e r t a i n t y r e l a t e d t o t h e d e g r e e a n d d i r e c t i o n o f c h a n g e i n r e f l e c t a n c e a s a r e s u l t o f s t r e s s . P a r t o f t h i s p r o b l e m i s d u e t o t h e g r e a t v a r i a b i l i t y b e t w e e n v e g e t a t i o n / t r e e s i n a g i v e n a r e a . H o w e v e r , d e s p i t e t h i s d i l e m m a , i t a p p e a r s a s t h o u g h s o m e c h a n g e s a r e d e t e c t a b l e e a r l i e r i n t h e n e a r - i n f r a r e d t h a n i n t h e v i s i b l e w a v e l e n g t h s . A n o t h e r s o u r c e o f t h i s u n c e r t a i n t y i s r e l a t e d t o l a c k o f s p e c i e s - s p e c i f i c i n f o r m a t i o n . M o s t d e t a i l e d r e s e a r c h a i m e d a t a b e t t e r u n d e r s t a n d i n g o f p l a n t r e f l e c t a n c e h a s b e e n b a s e d o n l a b o r a t o r y w o r k w i t h a g r i c u l t u r a l c r o p s . W i t h a t h e o r e t i c a l b a s i s c e n t e r e d o n a g r i c u l t u r a l c r o p s , r e s e a r c h e r s h a v e u t i l i z e d a i r b o r n e p h o t o g r a p h i c s e n s o r s t o g a t h e r 24 information about conifers. Lodgepole pine, as well as ponderosa pine have been the subject of over two decades of airborne photographic assessments i n search of a formula for successful early detection. As was indicated e a r l i e r , water stress has a s i g n i f i c a n t influence on the reflectance of energy in the middle-infrared. Again, t h i s observation i s based on laboratory studies with a g r i c u l t u r a l crops, aided by the known physical properties of water i n regard to absorption of l i g h t . So far, the descriptions have dealt with s i n g l e - l e a f reflectance only, but i n a remote sensing scheme canopy reflectance cannot be ignored. It i s very d i f f i c u l t to generalize about spectral behavior of tree canopies as i s often done with l e a f reflectance. Since reflectance i s a measured c h a r a c t e r i s t i c , the i l l u m i n a t i o n - medium -observer/detector geometry i s very important. A change i n any one of the these three components a f f e c t s the reflectance. Canopy reflectance i s the t o t a l reflectance from a l l the i n d i v i d u a l leaves as well as background surfaces such as bark; i t includes the e f f e c t s of l e a f - l a y e r i n g , l e a f orientation, shadows within the crown, and shadowed portions of the crown. The location, shape, and abundance of shadows are d i r e c t l y dependent on the azimuth and elevation of the sun (Kleman and Fagerlund 1981). Variations i n i l l u m i n a t i o n geometry, i f not considered, may seriously mask the e f f e c t s of l e a f parameters on measured r e f l e c t i o n spectra (Koch et al. 1990; Curtiss and Ustin 1989; Walter-Shea et al. 1989; Guyot 1990; Deering 1989). 25 V e g e t a t i o n i n d i c e s , such as a n o r m a l i z e d d i f f e r e n c e v e g e t a t i o n i n d e x (NDVI - d i f f e r e n c i n g r a t i o s between n e a r - i n f r a r e d and red) w h i c h a r e u sed as e s t i m a t e s o f p h o t o s y n t h e t i c a c t i v i t y , o r g r een biomass o r l e a f - a r e a i n d e x , have been used t o compensate f o r c h a n g i n g i l l u m i n a t i o n , s u r f a c e s l o p e , e t c . ( L i l l e s a n d and K i e f e r 1987). However, t h e s e i n d i c e s a r e s t i l l s e n s i t i v e t o c h a n g i n g i l l u m i n a t i o n geometry ( D e e r i n g 1989). Changing i l l u m i n a t i o n geometry w i l l a l s o change t h e shadow s t r u c t u r e o f a t y p i c a l canopy. The i n f l u e n c e o f shadows i s more s e v e r e l y i n t h e n e a r -i n f r a r e d t h a n i n t h e r e d ; hence, i n d i c e s t h a t u t i l i z e b o t h r e d and n e a r - i n f r a r e d r e f l e c t a n c e w i l l be a f f e c t e d . S p e c t r a l r e f l e c t a n c e from background s o i l s a l s o a f f e c t s canopy s p e c t r a . S i n c e s o i l s a r e not s p e c t r a l l y f l a t , t h e i r c o n t r i b u t i o n can add a g r e a t d e a l o f c o n f u s i o n (Koch e t al. 1990; Guyot 1990). The homogeneous n a t u r e o f a g r i c u l t u r a l c r o p s a l l o w s f o r t h e c o n s t r u c t i o n o f r e f l e c t a n c e models t h a t t a k e i n t o account t h e c o m p l e x i t y o f canopy geometry ( L e p r i e u r 1989; N i l s o n and Kuusk 1989). S i n c e p l a n t l e a v e s e x h i b i t n o n - L a m b e r t i a n p r o p e r t i e s , t h e s e models need good e s t i m a t e s o f p l a n t s ' b i d i r e c t i o n a l r e f l e c t a n c e d i s t r i b u t i o n f u n c t i o n s . I n most f i e l d - d e r i v e d s p e c t r a l measurements, a rough e s t i m a t e o f b i d i r e c t i o n a l r e f l e c t a n c e i s a p p r o x i m a t e d by d i v i d i n g t h e canopy r a d i a n c e w i t h t h e r a d i a n c e from a l e v e l r e f e r e n c e s t a n d a r d ( D e e r i n g 1989). More d e t a i l e d e s t i m a t e s o f b i d i r e c t i o n a l r e f l e c t a n c e d i s t r i b u t i o n s a r e d e r i v e d from measurements w i t h v a r y i n g i l l u m i n a t i o n 1 - t a r g e t - d e t e c t o r g e o m e t r i e s (Walter-Shea e t al. 2 6 198 9/ Brakke e t al. 198 9 ) . No models have been d e v e l o p e d f o r t h e v e r y i r r e g u l a r c a n o p i e s o f l o d g e p o l e p i n e . As such, i t i s i m p e r a t i v e t o t a k e as many p r e c a u t i o n s as p o s s i b l e d u r i n g s p e c t r a l f i e l d assessments t o en s u r e u n i f o r m c o n d i t i o n s from t i m e t o t i m e . Murtha (1985a) d e s c r i b e s a n o t h e r s c e n a r i o f o r l e a f r e f l e c t a n c e n o t c o v e r e d i n o t h e r l i t e r a t u r e . T h i s s c e n a r i o i s ba s e d on t h e c o n t r a s t i n hue, as seen on c o l o r - i n f r a r e d p h o t o g r a p h s , a l o n g b r a n c h e s between h e a l t h y and a t t a c k e d t r e e s . H e a l t h y c o n i f e r s a r e s a i d t o have a magenta hue, w i t h d a r k e r and l i g h t e r v a r i a t i o n s . T h i s hue changes a l o n g t h e bra n c h e s t o g i v e a m o t t l e d appearance w h i c h Murtha (1985a) c a l l s v a r i e g a t e d magenta (or v a r i e g a t e d g reen i n t h e case o f c o l o r p h o t o g r a p h y ) . Age c l a s s d i f f e r e n c e s i n t h e f o l i a g e i s g i v e n as t h e cause. A f t e r a t r e e i s s u c c e s s f u l l y a t t a c k e d , and t h e t r e e s t a r t s t o d r y and l o s e i t s greenness due t o c h l o r o p h y l l breakdown, t h e t o n a l d i f f e r e n c e s a l o n g t h e b r a n c h e s d i s a p p e a r w i t h i n weeks, a t l e a s t i n t h e t o p p o r t i o n s o f t h e crown (Murtha 1985b; Murtha and W i a r t 198 9b). These o b s e r v a t i o n s were not accompanied by f o l i a r a n a l y s i s . However, a st u d y by Ahern (1988) sheds some l i g h t on th e m o t t l e d r e f l e c t a n c e appearance a l o n g b r a n c h e s o f h e a l t h y t r e e s . T h i s s t u d y , w h i c h i n c l u d e d r e f l e c t a n c e measurement o f c u r r e n t and o l d e r f o l i a g e , c o n c l u d e d t h a t i n h e a l t h y t r e e s , c u r r e n t f o l i a g e i s b r i g h t e r between 520 nm t o 640 nm. The r e f l e c t a n c e d i f f e r e n c e s between c u r r e n t and o l d e r f o l i a g e i n s u c c e s s f u l l y a t t a c k e d p i n e s were found t o be l e s s pronounced and 27 r e s t r i c t e d t o two narrow r e g i o n s between 470 nm t o 510 nm and 660 nm t o 690 nm. Table 3.1 i l l u s t r a t e s Murtha's c l a s s i f i c a t i o n system f o r p i n e s . Table 3.1: D e s c r i p t i o n of damage types f o r c o l o r -i n f r a r e d photo i n t e r p r e t a t i o n at a s c a l e of 1:2,000 or l a r g e r 1 Damage Type D e s c r i p t i o n VM V a r i e g a t e d Magenta (VM). Unattacked t r e e s . M o t t l e d or v a r i e g a t e d appearance of branches, u s u a l l y w i t h l i g h t - p i n k magenta branch ends and darker magenta towards the t r e e t r u n k . The normal t r e e . VM/IIIOa Same as above VM t r e e s , but the o v e r a l l crown magenta hue i s s l i g h t l y d arker than normal. VM/IIIOb Same as above VM t r e e s , but the o v e r a l l crown magenta hue i s s l i g h t l y l i g h t e r than normal. IIIOa-T The VM e f f e c t i s absent. The f o l i a g e i s d i s t i n c t l y d arker magenta t o tan-magenta than the normal. S u c c e s s f u l a t t a c k i n c u r r e n t year. IIIOb-H The VM e f f e c t i s absent. The f o l i a g e i s d i s t i n c t l y l i g h t e r than the normal. F o l i a g e may appear w h i t i s h and t r e e may have a \"Halo\" appearance. S u c c e s s f u l a t t a c k i n c u r r e n t or p r e v i o u s year. IIIG The f o l i a g e appears y e l l o w . S u c c e s s f u l a t t a c k i n p r e v i o u s year. IB The crown i s d e f o l i a t e d . Tree has been dead f o r more than 2 y e a r s . 1 Adapted from Murtha 1985b 3.2.2 Narrow-band C h a r a c t e r i s t i c s A f i r s t glance at f i g u r e 3.2 suggests t h a t t y p i c a l p l a n t r e f l e c t a n c e c h a r a c t e r i s t i c s can e x c l u s i v e l y be c l a s s i f i e d as broad-band (>20 nm) events. However, t h e r e are narrow-band f e a t u r e s of which the steep s l o p e between the r e d c h l o r o p h y l l a b s o r p t i o n w e l l and the n e a r - i n f r a r e d r e f l e c t a n c e p l a t e a u i s the 2 8 most obvious. This r e f l e c t a n c e shoulder, or red-edge as i t i s of t e n r e f e r r e d t o , was f i r s t d e s c r i b e d by Gates et a l . (1965) as being dependent on c h l o r o p h y l l c o n c e n t r a t i o n s . The p o s i t i o n of the edge (here d e f i n e d as the wavelength of maximum slope as determined from f i r s t d e r i v a t i v e r e f l e c t a n c e s p e c t r a (Demetriades-Shah et al. 1990)) has been l i n e a r l y r e l a t e d t o t o t a l c h l o r o p h y l l . The red-edge which i s l o c a t e d between the c h l o r o p h y l l w e l l at approximately 680 nm and the n e a r - i n f r a r e d p l a t e a u at 780 nm responds t o a decrease i n t o t a l c h l o r o p h y l l (as w e l l as t o a d d i t i o n s of tannins) by a s h i f t towards s h o r t e r wavelengths, and has proven a s u c c e s s f u l i n d i c a t o r of s t r e s s i n f o r e s t v e g e t a t i o n ( C o l l i n s and Chiu 1979; H o r l e r et al. 1980a; H o r l e r et a l . 1980b; H o r l e r et al. 1982; H o r l e r et a l . 1983a; H o r l e r et a l . 1983b; Chang and C o l l i n s 1983; Gauthier and N e v i l l e 1985; Lourim and Buxton 1988; Rock et a l . 1988, Hare et a l . 1984; C u r t i s s and U s t i n 1989; L i c h t e n t h a l e r 1989). The s h i f t ( t y p i c a l l y <20 nm) appears t o have a two-phase r e l a t i o n s h i p w i t h c h l o r o p h y l l (Horler et a l . 1983b). Figure 3.3 i s an example of t h i s two-phased r e l a t i o n s h i p . 29 730 725 720 715 -710 -705 -700 -695 -690 • phase 2 Q „ „ D O un ° ° 8 aa a 8 a a a a phase 1 a a • • a ° 0 Q a • a a ~r ~r T 20 40 60 CHLOROPHYLL 80 F i g u r e 3.3: Wavelength of red-edge (nm) p l o t t e d a g a i n s t c h l o r o p h y l l content per u n i t l e a f area (adapted from H o r l e r et a l . 1983b) The f i r s t phase corresponds t o lower c h l o r o p h y l l c o n c e n t r a t i o n s and red-edge wavelengths ( l a r g e s h i f t s ) , and phase 2 i s a s s o c i a t e d w i t h an upper s e t of v a l u e s . Phase 2 r e p r e s e n t s a g r e a t e r p o s i t i v e slope of the l i n e a r r e l a t i o n s h i p . T h i s i s the key t o red-edge measurements f o r s t r e s s d e t e c t i o n as i t i n d i c a t e s a g r e a t e r s e n s i t i v i t y t o s l i g h t r e d u c t i o n s i n t o t a l c h l o r o p h y l l c o n c e n t r a t i o n s . As s t a t e d by H o r l e r et a l . (1983b): \" . . . r e d edge measurements may be p a r t i c u l a r l y s e n s i t i v e f o r d e t e c t i n g s l i g h t c h l o r o p h y l l changes i n dark green l e a v e s and may be v a l u a b l e f o r e a r l y s t r e s s d e t e c t i o n . \" Small r e f l e c t a n c e changes (as a r e s u l t of s t r e s s ) i n v e g e t a t i o n , when measured (as radiances) by v a r i o u s broad-band sensors, are o f t e n masked by the h i g h degree of v a r i a t i o n i n r a d i a n c e caused by f a c t o r s such as v a r y i n g viewing geometry, i l l u m i n a t i o n , and canopy d e n s i t y . 30 T h i s w e l l r e c o g n i z e d p r o blem can be a d d r e s s e d by narrow-band s e n s i n g b ased on t h e red-edge approach; s p e c t r a l waveform a n a l y s i s i s not c o n c e r n e d w i t h t h e a b s o l u t e amounts o f r a d i a t i o n , and t h u s , i s l e s s a f f e c t e d by t h e above mentioned s o u r c e s o f v a r i a b i l i t y i n broad-band s e n s i n g . However, as d e m o n s t r a t e d by Guyot (1990), red-edge measurements a r e not immune t o e x t e r n a l f a c t o r s and c a r e s h o u l d be t a k e n t o ensure u n i f o r m i t y i n p r o c e d u r e s . Broad-band s e n s i n g d a t a s uggest t h a t l e a f c h l o r o p h y l l c o n t e n t s a r e r e d u c e d s u b s t a n t i a l l y ( p r i o r t o v i s u a l f a d i n g ) a f t e r s u c c e s s f u l b a r k b e e t l e a t t a c k s ( H e l l e r 1968; Hobbs 1983; Weber and P o l c y n 1972). However, e s p e c i a l l y i n l o d g e p o l e p i n e , t h e r e i s l i t t l e e x p e r i m e n t a l d a t a t o s u b s t a n t i a t e t h i s . One p a r t i c u l a r s t u d y t h a t a d d r e s s e s l o d g e p o l e p i n e s p e c i f i c a l l y d e a l s w i t h t h r e e h e a l t h y and f o u r a t t a c k e d t r e e s (Ahern 1988). T h i s s t u d y i n d i c a t e d t h a t a s h i f t o f t h e red-edge can be e x p e c t e d i n a t t a c k e d t r e e s . The p u b l i s h e d r e s u l t s were based on r e f l e c t a n c e s p e c t r a o b t a i n e d from n e e d l e samples ( s i n g l e y e a r f o l i a g e ) , hence t h e c o m p l e x i t y o f canopy r e f l e c t a n c e was not a d d r e s s e d . 3.3 P h o t o g r a p h y - b a s e d Remote S e n s i n g 3.3.1 F i l m Format Mou n t a i n p i n e b e e t l e damage has been photographed w i t h a range o f f i l m f o r m a t s , from t h e r a t h e r odd panoramic 120 frame (4.5 x 50 i n c h e s ) used i n t h e I t e k KA80A o p t i c a l b a r camera t o 31 35-mm f o r m a t s . H i g h r e s o l u t i o n p a n o r a m i c c a m e r a s a r e v e r y u s e f u l f o r o v e r a l l s t r a t i f i c a t i o n o f i n f e s t a t i o n i n t e n s i t y f r o m v e r y h i g h a l t i t u d e s , s i n c e t h e g r o u n d c o v e r a g e i s e x t r e m e l y l a r g e ( K l e i n e t al. 1 9 8 0 ) . T h e r e a r e i n d i c a t i o n s t h a t h i g h -r e s o l u t i o n p h o t o g r a p h y w i t h c a m e r a s s u c h a s t h e I t e k o p t i c a l b a r c a n r e p l a c e c o n v e n t i o n a l a e r i a l s k e t c h m a p p i n g o v e r l a r g e a r e a s w i t h r e t a i n e d o r b e t t e r a c c u r a c y a t m u c h r e d u c e d c o s t s ( C i e s l a a n d K l e i n 1 9 7 8 ; D i l l m a n e t al. 1 9 7 9 ; K l e i n 1 9 8 2 ) . B e s i d e s p a n o r a m i c s y s t e m s w i t h t h e i r i n h e r e n t g e o m e t r i c p e c u l i a r i t i e s ( s c a l e d e c r e a s e s w i t h i n c r e a s i n g a n g l e s o f f t h e n a d i r ) , t h e c o m m o n c h o i c e s i n f o r m a t a r e b e t w e e n 2 3 cm (9 i n ) m a p p i n g c a m e r a s , 1 3 cm (5 i n ) a n d 70-mm o r 35-mm s y s t e m s . M a p p i n g c a m e r a s , w i t h t h e i r l a r g e f i l m f o r m a t , h a v e t h e a d v a n t a g e o f p r o v i d i n g r e l a t i v e l y l a r g e g r o u n d c o v e r a g e s o n e a c h f r a m e f o r a g i v e n s c a l e . T h e s e c a m e r a s , h o w e v e r , a r e n o t d e s i g n e d f o r e x c e p t i o n a l l y h i g h r e s o l u t i o n , b u t a r e , a s t h e n a m e i m p l i e s , b u i l t t o p r o v i d e i m a g e r y w i t h m i n i m a l g e o m e t r i c d i s t o r t i o n ( W o l f 1 9 7 4 ) . N e e d l e s s t o s a y , m a p p i n g c a m e r a s a r e n o t o p t i m a l f o r v e r y l a r g e s c a l e p h o t o g r a p h y ( > 1 : 5 , 0 0 0 ) . A d d i t i o n a l l y , t h e e x c e s s i v e r a d i a l d i s p l a c e m e n t c a n m a k e s t e r e o -v i e w i n g o f t r e e c r o w n s v e r y d i f f i c u l t ( M e y e r a n d F r e n c h 1 9 6 7 ) . D e s p i t e t h e r a t h e r p o o r r e s o l v i n g p o w e r o f m a p p i n g c a m e r a s ( c o m p a r e d t o 70-mm r e c o n n a i s s a n c e c a m e r a s ) , t h e y h a v e b e e n u s e d f o r l a r g e - s c a l e p h o t o s a m p l i n g o f b a r k b e e t l e d a m a g e ( m o r t a l i t y m a p p i n g ) ( C i e s l a e t al. 1 9 6 7 ) . I f t h e o b j e c t i v e o f a s u r v e y f l i g h t i s t o o b t a i n i n f o r m a t i o n c o m p a r a b l e t o w h a t i s 32 t h e o r e t i c a l l y p o s s i b l e w i t h a e r i a l s k e t c h mapping, l a r g e format cameras a r e d e f i n i t e l y t h e b e s t c h o i c e i n v i e w o f p r a c t i c a l i t y and e f f i c i e n c y (Murtha 197 6 ) . T h i s may be argued by a d v o c a t s o f panoramic o p t i c a l b a r photography, b u t t h e f a c t i s t h a t 23 cm mapping photography i s h i g h l y p r o v e n and a v a i l a b l e t o t h e r e s o u r c e community. When i t comes t o e a r l y d e t e c t i o n o f s t r e s s , v e r y l a r g e -s c a l e p h otography i s advantageous, and h e r e , a e r i a l r e c o n n a i s s a n c e cameras, such as V i n t e n and H a s s e l b l a d a e r i a l 70-mm systems, a r e u s e f u l . These systems do not have o u t s t a n d i n g g e o m e t r i c c h a r a c t e r i s t i c s , b u t a r e b u i l t f o r maximum r e s o l v i n g power. The s m a l l f i l m format does not l e n d i t s e l f t o e x t e n s i v e c o v erage o f a r e g i o n , b u t t h e s e 7 0-mm systems have t h e i r p r o p e r p l a c e i n s a m p l i n g regimes o f v a r i e d i n t e n s i t y ( L i l l e s a n d and K i e f e r 1979). I n a d d i t i o n t o t h e rugged a e r i a l mapping and r e c o n n a i s s a n c e camera systems, t h e r e a r e a l s o t h e s i m p l e and r a t h e r i n e x p e n s i v e 35-mm systems. The major drawback o f 70-mm systems, w h i c h i s l i m i t e d ground c o v e r a g e , i s even more s e v e r e w i t h 35-mm systems; t h e ground coverage o f 35-mm systems i s l e s s t h a n 29% o f 70-mm cov e r a g e . F o r v e r y s m a l l a r e a s , 35-mm photography i s a v i a b l e approach, p r o v i d i n g n o t h i n g b e t t e r i s a v a i l a b l e ( L i l l e s a n d and K i e f e r 1979). B e s i d e s t h e l i m i t e d c o v e r a g e , t h e 35-mm format has a n o t h e r major f a u l t ; u s e r s have a l i m i t e d c h o i c e o f f i l m t y p e s . Some a e r i a l f i l m s a r e not ma n u f a c t u r e d i n t h e 35-mm fo r m a t . 3 3 3 . 3 . 2 F i l m F i l m i s a b r o a d - b a n d d e v i c e . G e n e r a l l y , b a n d w i d t h s l e s s t h a n 5 0 nm ( w h i c h a r e s i m p l y a c h i e v e d t h r o u g h t h e u s e o f i n t e r f e r e n c e f i l t e r s ) a r e n o t p o s s i b l e w i t h a e r i a l f i l m s . A e r i a l f i l m s a r e t y p i c a l l y u s e d w i t h s h o r t e x p o s u r e t i m e s t o a v o i d i m a g e b l u r . T h i s c l e a r l y l i m i t s t h e p o s s i b l e r a n g e o f s e n s i t i v i t y ; w i t h n a r r o w b a n d s (<20 nm) t h e r e i s n o t e n o u g h l i g h t a v a i l a b l e t o p r o p e r l y e x p o s e t h e f i l m . T h i s i s p a r t i c u l a r l y e v i d e n t w i t h c o l o r - i n f r a r e d f i l m d u e t o e m u l s i o n i n s t a b i l i t y a n d f r e q u e n t n e e d t o a d j u s t c o l o r b a l a n c e w i t h c o l o r c o r r e c t i o n f i l t e r s a f t e r e m u l s i o n c a l i b r a t i o n . T h e v a s t m a j o r i t y o f a e r i a l p h o t o g r a p h y f o r b a r k b e e t l e a s s e s s m e n t h a s u t i l i z e d o n e o f t h e f o l l o w i n g f i l m s : K o d a k A e r o c h r o m e MS 2 4 4 8 , K o d a k A e r o c o l o r N e g a t i v e 2 4 4 5 , a n d K o d a k A e r o c h r o m e 2 4 4 3 . T h e f i r s t t w o f i l m s , 2 4 4 8 a n d 2 4 4 5 , a r e n o r m a l c o l o r f i l m s . T h e 2 4 4 8 f i l m i s d e v e l o p e d t h r o u g h a p o s i t i v e p r o c e s s ( y i e l d i n g t r a n s p a r e n c i e s ) , w h i l e t h e f i r s t g e n e r a t i o n o f t h e 2 4 4 5 f i l m i s a n e g a t i v e ( f o r s u b s e q u e n t p r i n t p r o c e s s i n g ) . T h e 2 4 4 3 i s a c o l o r - i n f r a r e d f i l m w i t h p o s i t i v e p r o c e s s i n g ( C o l w e l l 1 9 8 3 a ) . T h e n o r m a l c o l o r f i l m s m e n t i o n e d a b o v e , a r e o n l y s e n s i t i v e t o t h e v i s i b l e p o r t i o n o f t h e s p e c t r u m . F i g u r e 3 . 4 i l l u s t r a t e s t h e m a n n e r i n w h i c h c o l o r s a r e f o r m e d w i t h t h e s e f i l m s . 34 (a) Reflectance of objects in original scene (b) Film after exposure Blue sensitive layer Green (and blue) sensitive layer Red (and blue) sensitive layer (c) Photograph after processing Yellow dye layer Magenta dye layer Cyan dye layer Blue Green Red Reflected • infrared (Exposure 1 1 Film not sensitive to reflected infrarer. Activated Blue absorbing filter 1 Activated | Activated | [White light) j (Processing) 1 k 1 \\ I ' | j Clear Yellow ) Yellow .,',';[:}••. Yellow j t 1 i I Magenta Clear Magenta | Magenta 1 '. Cyan '• a;;j;\"v:;Cyarv'.v Clear Cyan (d) Resulting color when viewed Blue Green Red Black F i g u r e 3.4: C o l o r f o r m a t i o n w i t h c o l o r f i l m ( L i l l e s a n d and K i e f e r 1979) For the ass e s s m e n t / d e t e c t i o n of b e e t l e damage which has caused v i s u a l r e f l e c t a n c e changes i n the f o l i a g e , the c h o i c e o f normal c o l o r or c o l o r - i n f r a r e d f i l m appears mainly t o be a matter of i n t e r p r e t e r p r e f e r e n c e ( H e l l e r 1968, 1978; C i e s l a et a l . 1967). I n f r a r e d photography, i n the s i t u a t i o n o f v i s u a l evidence of b e e t l e a c t i v i t y , has the advantage (over normal c o l o r f i l m ) o f good haze p e n e t r a t i o n ( t h i s advantage i n c r e a s e s w i t h i n c r e a s i n g a l t i t u d e s ) , as w e l l as b e t t e r v i s u a l c o n t r a s t between h e a l t h y and d i s e a s e d t r e e s . T h i s i s due t o the v e r y h i g h n e a r - i n f r a r e d r e f l e c t a n c e from h e a l t h y v e g e t a t i o n ( C o l w e l l 1983a). F i g u r e 3.5 shows how c o l o r - i n f r a r e d f i l m c aptures v i s i b l e and n e a r - i n f r a r e d r e f l e c t a n c e . 35 0.40 0.50 0.60 0.70 Wavelength (Mm) O.SO 0.90 F i g u r e 3.5: S p e c t r a l s e n s i t i v i t i e s o f t h e t h r e e dye l a y e r s i n c o l o r - i n f r a r e d f i l m ( L i l l e s a n d and K i e f e r 1979) As i n d i c a t e d i n f i g u r e 3.5, c o l o r - i n f r a r e d f i l m i s composed o f t h r e e - l a y e r e m u l s i o n . Kodak Aerochrome 2443 i s known as a s u b t r a c t i v e r e v e r s a l c o l o r f i l m ; t h e dye r e s p o n s e s ( y e l l o w , magenta, and cyan dyes) i n t h e p r o c e s s i n g o f t h e f i l m a r e i n v e r s e l y p r o p o r t i o n a l t o t h e e x p o s u r e s t h a t were r e c e i v e d by t h e r e s p e c t i v e e m u l s i o n l a y e r s . As t h e name i m p l i e s , c o l o r -i n f r a r e d f i l m was s p e c i f i c a l l y d e v i s e d t o c a p t u r e t h e t y p i c a l l y h i g h n e a r - i n f r a r e d r e f l e c t i v i t y o f h e a l t h y v e g e t a t i o n . I t causes h e a l t h y v e g e t a t i o n t o e x h i b i t a s t r o n g p h o t o g r a p h i c c o l o c o n t r a s t w i t h r e s p e c t f e a t u r e s t h a t do not r e f l e c t w e l l i n t h e n e a r - i n f r a r e d ( C o l w e l l 1983a). H e a l t h y v e g e t a t i o n i s r e p r e s e n t e d by reddish-magenta on c o l o r - i n f r a r e d f i l m . The e f f e c t o f scene r e f l e c t a n c e on t h i s f i l m i s shown by f i g u r e 3.6 36 (a) Reflectance of objects in original scene Blue Green Red Reflected infrared (Exposure) Blue aosorBing tiller on camera Red (and blue) sensitive layer (c) Photograpn after processing Cyan dye layer VeHow dye layer Magenta dye layer 1di Resulting color when viewed : Activated:.': (White light) 8 G R | (Processing) B G R (b) Film after exoosure j 1 Reflected infrared (and blue) | I | j Activated j sensitive layer t Green land blue) sensitive layer j ' Activated I I I I 1 1 1 » 1 1 * 1 1 Cyan | Cyan: Cyan Clear 1 i I I I I Yellow Clear Yellow: Yellow: 1 ! 1 1 1 Magenta.: Magenta: a ear Magenta: i a 1 G 1 R Black aiue Green Red F i g u r e 3.6: C o l o r f o r m a t i o n w i t h c o l o r - i n f r a r e d f i l m ( L i l l e s a n d and K i e f e r 1979) W i t h t h i s f i l m , t h e y e l l o w dye i s l i n k e d t o t h e g r e e n -s e n s i t i v e e m u l s i o n l a y e r , magenta t o t h e r e d - s e n s i t i v e l a y e r , and cyan t o t h e i n f r a r e d - s e n s i t i v e l a y e r . The consequence o f t h e dye ass i g n m e n t s i s t h a t g reen p h o t o g r a p h s as b l u e (the more green l i g h t , t h e l e s s y e l l o w dye i s formed d u r i n g p r o c e s s i n g ; t h u s , l e s s b l u e l i g h t i s r e m o v e d — y e l l o w dye i s t h e complementary c o l o r o f b l u e ) , r e d l i g h t as g r e e n , and i n f r a r e d l i g h t , as mentioned e a r l i e r , p h o tographs i n r e d . S i n c e scene (canopy) r e f l e c t a n c e i s not a s i m p l e case o f monochromatic f e a t u r e s (e.g. green o n l y ) , t h e r e s u l t i n g e f f e c t on f i l m i s t h e 37 p r e s e n c e o f v a r y i n g amounts o f c o l o r dyes ( y e l l o w , magenta, and cyan) (Murtha 1978). In normal c o l o r p hotography, t h e b l u e p o r t i o n o f t h e spectrum i s not f i l t e r e d o u t , b u t i s a l l o w e d t o a c t i v a t e t h e b l u e s e n s i t i v e l a y e r o f t h e f i l m . T h i s makes sense, s i n c e normal c o l o r s , as p e r c e i v e d by t h e human eye, a r e c o m b i n a t i o n s o f a l l t h r e e p r i m a r y c o l o r s ( b l u e , g r e e n , and r e d ) . However, t h e p r e s e n c e o f b l u e o f t e n c r e a t e s a p r o b l e m i n a e r i a l f i l m s t h r o u g h a t m o s p h e r i c s c a t t e r i n g ; random d i f f u s i o n o f r a d i a t i o n by s m a l l (much s m a l l e r t h a n t h e w a v e l e n g t h s o f t h e r e f l e c t e d r a d i a t i o n ) p a r t i c l e s i n t h e atmosphere. T h i s k i n d o f s c a t t e r i n g , R a l e i g h s c a t t e r i n g , m a i n l y t a k e s p l a c e i n t h e s h o r t ( u l t r a v i o l e t and b l u e ) w a v e l e n g t h s ( C o l w e l l 1983b). The e f f e c t o f t h i s s c a t t e r i n g (which i n c r e a s e s w i t h i n c r e a s i n g a l t i t u d e s ) on c o l o r f i l m i s a b l u i s h - g r e y \" t i n g e \" . F o r t h i s r e a s o n , UV-f i l t e r s a r e o f t e n u sed t o reduce some o f t h i s i m a g e - d e g r a d i n g haze on t h e p h o t o g r a p h s . W i t h c o l o r - i n f r a r e d f i l m , a l l t h r e e e m u l s i o n l a y e r s a re h i g h l y s e n s i t i v e t o b l u e l i g h t (which i s o f minimum v a l u e f o r v e g e t a t i o n s t r e s s a n a l y s i s ) , and as a r e s u l t , t h e b l u e l i g h t i s removed by a b l u e - a b s o r b i n g W r a t t e n #12 ( y e l l o w ) f i l t e r on t h e camera ( f i g u r e 3.6). The e f f e c t o f t h i s f i l t e r i n g i s a d r a m a t i c i n c r e a s e i n image s h a r p n e s s ( C o l w e l l 1983a). N o r m a l l y , h e a l t h y g reen f o l i a g e has a reddish-magenta c o l o r (RED + b l u e ) on c o l o r - i n f r a r e d f i l m . A d e c r e a s e i n n e a r -i n f r a r e d r e f l e c t a n c e ( v i s i b l e r e f l e c t a n c e h e l d c o n s t a n t ) causes 3 8 a n i n c r e a s e i n t h e d e n s i t y o f t h e c y a n d y e l a y e r , w h i c h m e a n s t h a t m o r e r e d l i g h t i s s u b t r a c t e d , c a u s i n g a d a r k e n i n g o f t h e m a g e n t a . C o n v e r s e l y , a n i n c r e a s e i n n e a r - i n f r a r e d r e f l e c t a n c e r e s u l t s i n l e s s c y a n d y e , a n d h e n c e , t h e m a g e n t a a p p r o a c h e s r e d ( M u r t h a 1 9 7 8 ) . T h i s r e l i a n c e o n m a g e n t a a p p e a r a n c e c a n s o m e t i m e s c a u s e a p r o b l e m d u r i n g i n t e r p r e t a t i o n . T h e p r o b l e m l i e s i n f i l m c a l i b r a t i o n . T h i s f i l m i s o r d i n a r i l y p u r c h a s e d i n 1 0 0 f t r o l l s , a n d K o d a k d o e s n o t g u a r a n t e e i d e n t i c a l s e n s i t i v i t y f o r e a c h e m u l s i o n b a t c h . T h u s e x p o s u r e m a y v a r y f r o m r o l l t o r o l l . U n l e s s e a c h i n d i v i d u a l r o l l i s c a l i b r a t e d p r i o r t o u s e ( t h e c a l i b r a t i o n m u s t b e d o n e f a i r l y s h o r t l y b e f o r e u s e a s t h e s e n s i t i v i t y i s d e p e n d e n t o n l e n g t h o f s t o r a g e ) , a c e r t a i n a m o u n t o f e x p o s u r e v a r i a t i o n m u s t b e e x p e c t e d . I t i s p o s s i b l e t o p r o c e s s t h i s f i l m a s a n e g a t i v e ( m o s t f i l m s c a n b e a l t e r e d b y c h a n g i n g t h e c h e m i c a l p r o c e s s i n g ) a n d t h u s h a v e a c e r t a i n a m o u n t o f c o n t r o l o f e x p o s u r e l a t i t u d e d u r i n g t h e p r i n t i n g p r o c e s s . H o w e v e r , t h i s r e m o v e s t h e m a j o r a d v a n t a g e s o f t r a n s p a r e n c y p r o d u c t s ; t h e c o n t r a s t w i l l i n c r e a s e ( t h i s m a y h i d e s u b t l e d i f f e r e n c e s t h a t w o u l d b e d e t e c t a b l e o n a t r a n s p a r e n c y ) a n d t h e s h a r p n e s s w i l l d e c r e a s e . C h a n g e s i n d y e l a y e r d e n s i t i e s c a u s e d b y o f c h a n g e s i n c a n o p y r e f l e c t a n c e ( c h a n g e s t h a t a r e o f s u c h a m a g n i t u d e t h a t t h e y a r e n o t m a s k e d b y v a r i o u s e x t e r n a l f a c t o r s ) , m a y b e t o o m i n u t e t o b e d e t e c t e d b y v i s u a l i n t e r p r e t a t i o n o f t h e f i l m . D e n s i t o m e t r i c m e t h o d s c a n b e a p p l i e d t o a c c u r a t e l y m e a s u r e t h e d e n s i t y o f t h e d i f f e r e n t d y e l a y e r s . 39 3.3.3 D e n s i t o m e t r y W h a t e v e r t h e d i r e c t i o n o f c h a n g e i n r e f l e c t a n c e f o l l o w i n g s u c c e s s f u l b e e t l e a t t a c k , t h e m a g n i t u d e i s i n i t i a l l y v e r y m i n u t e . T o q u a n t i t a t i v e l y d e f i n e t h e e f f e c t o f s m a l l r e f l e c t a n c e c h a n g e s ( l a r g e e n o u g h t o b e r e c o r d e d o n f i l m ) o n p h o t o g r a p h i c i m a g e r y , d e n s i t o m e t r y t e c h n i q u e s c a n b e u s e d . D e n s i t o m e t r y h a s p r o v e n u s e f u l f o r e a r l y d e t e c t i o n o f v e g e t a t i o n s t r e s s ( M u r t h a a n d H a m i l t o n 1969; H a l l e t a l . 1983; H o b b s 1983). T r a n s m i s s i o n d e n s i t o m e t e r s m e a s u r e t h e a m o u n t o f l i g h t t h a t i s a l l o w e d t o p a s s t h r o u g h t h e f i l m t r a n s p a r e n c y o v e r a s p e c i f i c a r e a ( d e t e r m i n e d b y t h e a p e r t u r e o f t h e d e n s i t o m e t e r ) . T h e l o w e r t h e t r a n s m i t t a n c e , t h e h i g h e r t h e d e n s i t y . T o b e o f a n y p r a c t i c a l u s e , t h e i m a g e d e n s i t y i s d e t e r m i n e d f o r e a c h o f t h e t h r e e d y e l a y e r s s e p a r a t e l y t h r o u g h t h e u s e o f c u t - o f f f i l t e r s . T h e u n d e r l y i n g p u r p o s e o f t h i s m e t h o d i s t o r e l a t e f i l m d e n s i t y v a l u e s t o t h e o r i g i n a l f i l m e x p o s u r e . T h e n , s i n c e f i l m e x p o s u r e ( a t a g i v e n p o i n t ) i s d i r e c t l y r e l a t e d t o s c e n e r e f l e c t a n c e , c o n c l u s i o n s a b o u t t h e r e f l e c t a n c e p a t t e r n o f a t r e e c a n b e d r a w n ( S c a r p a c e a n d F r i e d e r i c h s 1978). U n l e s s t h e d e n s i t o m e t e r a p e r t u r e ( i e . r e s o l u t i o n ) a p p r o a c h e s t h e g r a i n - s i z e o f t h e f i l m , d e n s i t o m e t r y d a t a a r e s p a t i a l l y s i m i l a r t o t h e d i g i t a l f o r m a t o f m u l t i s p e c t r a l s c a n n e r s — t h e d e n s i t y r e a d i n g i s a n a v e r a g e o f w h a t e v e r e x i s t s w i t h i n t h e a r e a m e a s u r e d b y t h e d e n s i t o m e t e r . I n o t h e r w o r d s , d e n s i t o m e t r y o n a e r i a l p h o t o g r a p h s w i l l i n c l u d e n o t o n l y t h e 40 l e a v e s , b u t a l s o o f t e n w o o d y b r a n c h e s , s h a d o w s ( e v e n o n t h e i l l u m i n a t e d s i d e o f t h e c r o w n ) , a n d s o m e t i m e s a l s o v a r i o u s b a c k g r o u n d s s u c h a s s o i l a n d u n d e r s t o r y v e g e t a t i o n . T h u s , d e p e n d i n g o n t h e a p e r t u r e o f t h e i n s t r u m e n t , s u b t l e l o c a l i z e d r e f l e c t a n c e c h a n g e s m a y n o t b e d e t e c t e d b y d e n s i t o m e t r y . T h e r e a r e t w o d i f f e r e n t a p p r o a c h e s t o d e n s i t o m e t r y . A s p o t d e n s i t o m e t e r , s u c h a s t h e M a c B e t h TR-524 T r a n s m i s s i o n R e f l e c t i o n D e n s i t o m e t e r , m e a s u r e s t h e d e n s i t y o f a m a n u a l l y s e l e c t e d s p o t . O f t e n , s e v e r a l a d j a c e n t o r p a r t i a l l y o v e r l a p p i n g m e a s u r e m e n t s a r e t a k e n t o o b t a i n a n a v e r a g e ( t o m i n i m i z e t h e e f f e c t o f e x c e s s i v e c o n t a i n e d s h a d o w s w i t h i n t h e c r o w n ) . A s c a n n i n g d e n s i t o m e t e r , s u c h a s t h e O p t r o n i x f i l m s c a n n e r , m e a s u r e s t h e d e n s i t y o f s m a l l e l e m e n t s o v e r a n e n t i r e i m a g e , r e s u l t i n g i n a m a t r i x o f p i x e l s , w i t h k n o w n p i x e l d i g i t a l n u m b e r s f o r e a c h d y e l a y e r . T h i s m a t r i x i s d i g i t i z e d f o r a n a l y s i s o n a n i m a g e a n a l y s i s s y s t e m ( e a c h d y e l a y e r o c c u p i e s a s e p a r a t e c h a n n e l ) . G e n e r a l l y , t h e s c a n n i n g a p p r o a c h p r o v i d e s f o r m o r e f l e x i b i l i t y i n t h e s u b s e q u e n t a n a l y s i s t h a n s p o t d e n s i t o m e t r y , s i n c e t h e a n a l y s t ( d u r i n g t h e v i s u a l i n t e r p r e t a t i o n o f t h e d i g i t i z e d p r o d u c t ) g e t s a b e t t e r p i c t u r e o f r e f l e c t a n c e v a r i a t i o n s w i t h i n t h e t r e e c r o w n s ( p r o v i d i n g t h e r e s o l u t i o n a l l o w s f o r m a n y p i x e l s w i t h i n a s i n g l e c a n o p y ) . M u r t h a a n d W i a r t ( 1 9 8 9 a ) , u s i n g d i g i t a l c l u s t e r i n g t e c h n i q u e s o n 1:2,000 s c a l e s c a n n e d (20 cm p i x e l s ) c o l o r - i n f r a r e d p h o t o g r a p h s , h a v e s h o w n p r o m i s i n g r e s u l t s w i t h e a r l y d e t e c t i o n . T h e i r r e s u l t s s h o w s u c c e s s i n v e r i f y i n g 41 the presence of the v a r i e g a t e d magenta p a t t e r n s d e s c r i b e d i n chapter 3.2.1 and t a b l e 3.1. The a n a l y s i s of the d e n s i t y v a l u e s from each dye l a y e r o f t e n i n c l u d e s r a t i o s . Normally, the use o f num e r i c a l r a t i o s h e l p s t o remove m u l t i p l i c a t i v e extraneous e f f e c t s such as d i f f e r e n t i a l i l l u m i n a t i o n a c r o s s a scene as a r e s u l t o f sun angle. T h i s i s u s e f u l i f comparisons are t o be made w i t h data from d i f f e r e n t l o c a t i o n s . In a d d i t i o n , the use of r a t i o s i s very u s e f u l i n h i g h l i g h t i n g r e f l e c t a n c e p a t t e r n s - i . e . s i g n i f i c a n t r e l a t i o n s h i p s between r e f l e c t a n c e i n s p e c i f i c wavelength r e g i o n s (dye l a y e r s ) . Hobbs (1983) used m o d i f i e d r a t i o s f o r the a n a l y s i s o f d e n s i t y . The m o d i f i c a t i o n s were used i n response t o the f a c t t h a t the emulsion l a y e r s i n c o l o r -i n f r a r e d f i l m o v e r l a p i n t h e i r s e n s i t i v i t y . Hobbs based her m o d i f i c a t i o n s , which she termed Moore Tr a n s f o r m a t i o n s , on data p r e s e n t e d by Moore (1980). Table 3.2 i l l u s t r a t e s these m o d i f i c a t i o n s . Table 3.2: M o d i f i c a t i o n s t o dye form d e n s i t y v a l u e s 1 Dye l a y e r O r i g i n a l source o f r e f l e c t a n c e y e l l o w 100% green magenta 12% green, 88% r e d cyan 12% green, 36% red, 52% near-IR m o d i f i e d ( t o t a l ) green = TG = 100% of y e l l o w d e n s i t y v a l u e , + 12% o f magenta + 12% of cyan m o d i f i e d ( t o t a l ) r e d = TR = 88% o f magenta, 36% of cyan m o d i f i e d ( t o t a l ) near-IR = TIR = 52% of cyan 1 m o d i f i e d a f t e r Hobbs (1983) 42 Once t h e above has been a c h i e v e d , i t i s a m a t t e r o f r e l a t i v e l y s i m p l e s t a t i s t i c s t o d e t e r m i n e t h e most s i g n i f i c a n t c o r r e l a t i o n s between i n d i v i d u a l d e n s i t i e s , r a t i o s , and damage c l a s s e s . P r i n c i p a l component o r d i s c r i m i n a n t a n a l y s e s a r e u s e f u l f o r t h i s t a s k ( S o k a l and R o h l f 1981). Hobbs (1983) used a n a l y s i s o f v a r i a n c e t o c o n c l u d e t h a t t h e r e a r e s i g n i f i c a n t d i f f e r e n c e s i n dye d e n s i t y between h e a l t h y and c u r r e n t l y a t t a c k e d p i n e s . 3.3.4 S c a l e The amount o f d e t a i l one can e x p e c t t o f i n d i n an a e r i a l p h o t o g r a p h i s d i r e c t l y dependent on t h e s c a l e (among o t h e r t h i n g s ) . P h o t o g r a p h i c s c a l e , and t h e approach o f o b t a i n i n g a s p e c i f i c one, a r e c r u c i a l t o t h e s u c c e s s o f an a e r i a l i n v e n t o r y . I f t h e photography over a g i v e n a r e a i s t o be used f o r p u r p o s e s o t h e r t h a n s t r e s s d e t e c t i o n , compromises may have t o be made, l i m i t i n g t h e p o t e n t i a l f o r d e t e c t i o n o f s m a l l l o c a l i z e d r e f l e c t a n c e changes w i t h i n t h e t r e e crowns. I f t h e purpose o f t h e photography i s t o g a t h e r t h e same i n f o r m a t i o n as a e r i a l s k e t c h mapping, ground c o v e r a g e , not s c a l e , becomes t h e p r i m a r y c o n c e r n . P i n e m o r t a l i t y mapping (based on c o u n t i n g v i s u a l l y f a d e d t r e e s ) has s u c c e s s f u l l y been done w i t h p h o t o s c a l e s s m a l l e r t h a n 1:30,000 (at n a d i r ) w i t h h i g h a l t i t u d e panoramic cameras e q u i p p e d w i t h h i g h r e s o l u t i o n c o l o r - i n f r a r e d f i l m ( K l e i n e t al. 1980; C i e s l a and K l e i n 1978; Demars e t a l . 1979; D i l l m a n e t al. 1979). These s m a l l s c a l e s , however, were o b t a i n e d w i t h t h e I t e k o p t i c a l b a r camera mounted i n t h e NASA ER-2 h i g h a l t i t u d e 4 3 a i r c r a f t , a s y s t e m n o t g e n e r a l l y a v a i l a b l e i n C a n a d a . H o w e v e r , t h i s m a y c h a n g e w i t h b e t t e r c o o p e r a t i o n b e t w e e n p r o v i n c i a l a n d s t a t e g o v e r n m e n t s i n C a n a d a a n d t h e U n i t e d S t a t e s . I n f a c t , a s u c c e s s f u l d e m o n s t r a t i o n f l i g h t w i t h t h e . I t e k s y s t e m w a s p e r f o r m e d o v e r A l b e r t a i n 1 9 8 8 ( M o o r e a n d P o l z i n 1 9 9 0 ) . T h e 1 : 1 5 , 0 0 0 t o 1 : 3 0 , 0 0 0 s c a l e b l a c k - a n d - w h i t e , 2 3 cm p a n c h r o m a t i c p h o t o g r a p h y t h a t i s p r e s e n t l y b e i n g u s e d b y m o s t p r o v i n c i a l a g e n c i e s f o r g e n e r a l f o r e s t i n v e n t o r y i s n o t w e l l s u i t e d f o r m o r t a l i t y m a p p i n g . B e s i d e s t h e a b s e n c e o f c o l o r , t h e f i l m e m u l s i o n s a r e c o m m o n l y o f t o o p o o r a q u a l i t y t o a l l o w f o r f i n e d e t a i l ( W o l f 1 9 7 4 ) . T h e r e a r e , h o w e v e r , h i g h r e s o l u t i o n a e r i a l f i l m s a v a i l a b l e ( s u c h a s t h e K o d a k P a n a t o m i c - X A e r o g r a p h i c I I - 2 4 1 2 ) . I f t h e s e p r o d u c t s g a i n p o p u l a r i t y w i t h i n t h e r e s o u r c e c o m m u n i t y , i t m a y b e p o s s i b l e t o u s e g e n e r a l f o r e s t i n v e n t o r y p h o t o g r a p h y f o r m a p p i n g b e e t l e - c a u s e d p i n e m o r t a l i t y . B e s i d e s t h e h i g h r e s o l u t i o n U-2 m i s s i o n , s u c c e s s f u l p i n e m o r t a l i t y m a p p i n g h a s b e e n a c h i e v e d w i t h s c a l e s r a n g i n g f r o m 1 : 5 , 0 0 0 t o 1 : 1 2 , 0 0 0 ( M e y e r a n d F r e n c h 1 9 6 7 ; H a r r i s e t al. 1 9 8 2 ) . F o r e a r l y d e t e c t i o n o f s t r e s s s y m p t o m s , t h e o f t e n m i s u s e d t e r m \" o p e r a t i o n a l \" m u s t b e p r o p e r l y d e f i n e d . I f t h e a e r i a l s u r v e y i s t o r e p l a c e c o s t l y a n d t i m e c o n s u m i n g b u t f a i r l y a c c u r a t e g r o u n d a s s e s s m e n t , t h e n t h e a p p r o p r i a t e d e f i n i t i o n o f o p e r a t i o n a l s c a l e i s o n e t h a t a l l o w s t h e i n t e r p r e t e r t o o b t a i n a n a c c e p t a b l e a c c u r a c y f o r t h e s a m e ( o r l e s s ) c o s t a n d t i m e a s f o r t h e g r o u n d s u r v e y . I n o t h e r w o r d s , a r b i t r a r i l y d e t e r m i n e d 44 p h o t o s c a l e s t h a t a l l o w f o r c o n f o r m a t i o n t o c o n v e n t i o n a l i d e a s a b o u t m i n i m u m c o s t a n d m a x i m u m c o v e r a g e , b u t t h a t f a i l t o m e e t t h e r e q u i r e d a c c u r a c y , a r e n o t o p e r a t i o n a l . N o b o d y h a s d e t e r m i n e d a u n i v e r s a l o p t i m a l p h o t o s c a l e f o r e a r l y s t r e s s d e t e c t i o n . I t h a s , h o w e v e r , r e p e a t e d l y b e e n s h o w n t h a t t h e a c c u r a c y o f d a m a g e c l a s s i f i c a t i o n o n a e r i a l p h o t o g r a p h s i n c r e a s e s w i t h i n c r e a s i n g p h o t o s c a l e s ( H o b b s 1983). M u r t h a (1983) i n d i c a t e d t h a t s m a l l r e f l e c t a n c e c h a n g e s ( e a r l y s t r e s s s y m p t o m s ) c a n n o t a c c u r a t e l y b e d e t e c t e d o n 1:4,000 s c a l e 70-mm c o l o r - i n f r a r e d p h o t o g r a p h y ( b a s e d o n i n f e s t e d D o u g l a s - f i r (Pseudotsuga menziesii v a r . glauca ( B e i s s n . ) F r a n c o ) ) . I t m u s t b e p o i n t e d o u t t h a t t h e g r e a t m a j o r i t y o f r e m o t e s e n s i n g t e c h n i q u e s a p p l i e d t o b a r k b e e t l e d a m a g e h a v e d e a l t w i t h m o r t a l i t y m a p p i n g a n d n o t e a r l y d e t e c t i o n . T h i s f a c t m a y e x p l a i n t h e a p p a r e n t l a c k o f r e s e a r c h r e l a t e d t o o p t i m a l p h o t o g r a p h i c s c a l e s . 3 . 3 . 5 T i m i n g F l i g h t p l a n n i n g i s a v e r y i m p o r t a n t f a c t o r i n t h e s u c c e s s o r f a i l u r e o f a p r o j e c t . A s m e n t i o n e d e a r l i e r , v i s u a l s i g n s o f m o u n t a i n p i n e b e e t l e a c t i v i t y d o n o t b e c o m e e v i d e n t u n t i l t h e s p r i n g o r s u m m e r f o l l o w i n g t h e y e a r o f t h e a t t a c k . T o e n s u r e t h a t t h e m a x i m u m n u m b e r o f a t t a c k e d t r e e s , i n a g i v e n y e a r , f a d e b e f o r e m o r t a l i t y m a p p i n g i m a g e r y i s o b t a i n e d , i t i s w i s e t o w a i t u n t i l t h e l a t e s u m m e r i n t h e y e a r a f t e r a t t a c k . D e l a y i n g t h e p h o t o g r a p h y i n t o t h e f a l l c a n b e r i s k y . D e p e n d i n g o n l a t i t u d e , 45 t h e d u r a t i o n o f h i g h sun a n g l e s ( f o r maximum i l l u m i n a t i o n and minimum shadows) d e c r e a s e s as one d e l a y s t h e phot o g r a p h y . T h i s , i n c o m b i n a t i o n w i t h h i g h e r p r o b a b i l i t y f o r c l o u d y weather towards t h e f a l l , may s e r i o u s l y l i m i t t h e chance o f s u i t a b l e imagery. An example o f t h e sun a n g l e dependence on f l i g h t d a t e i s shown i n t a b l e 3.3 below (these d a t a a r e from t h e s t u d y s i t e d e s c r i b e d i n c h a p t e r 4). T a b l e 3.3: S o l a r e l e v a t i o n s i n degrees f o r l a t 50.841 N and l o n g 120.620 W a t 1100, 1200, 1300, 1400, and 1500 hours a t s e l e c t e d d a t e s Date Time o f Day 1100 1200 1300 1400 1500 AUGUST 15 45 51 53 52 47 AUGUST 20 44 49 51 50 45 AUGUST 25 42 48 50 48 43 AUGUST 30 41 46 48 46 42 SEPTEMBER 5 39 44 46 44 39 SEPTEMBER 10 38 42 44 42 37 SEPTEMBER 15 36 41 42 40 35 SEPTEMBER 20 34 39 40 38 34 SEPTEMBER 25 33 37 38 36 32 I f 40 degrees i s s e t as a minimum a c c e p t a b l e sun a n g l e , t a b l e 3.3 shows t h a t September 15 i s t h e c u t o f f d a t e f o r t h i s p a r t i c u l a r s i t e (at l e a s t 2 hours o f f l i g h t o p p o r t u n i t y ) . F o r e a r l y d e t e c t i o n o f mountain p i n e b e e t l e a t t a c k s ( i e . s u r v e y f l i g h t i n t h e same y e a r o f t h e a t t a c k ) , t h e f l i g h t s h o u l d be done as l a t e as p o s s i b l e i n t h e season, w i t h t h e r e s t r i c t i o n s p o i n t e d out i n t a b l e 3.3 i n mind. The dilemma i s t h a t nobody has d e t e r m i n e d how soon a f t e r s u c c e s s f u l a t t a c k one can e x p e c t t o d e t e c t some p r e v i s u a l damage (the m a j o r i t y o f t h e b e e t l e s f l y i n l a t e June and J u l y , depending on t h e w e a t h e r ) . I t may j u s t 46 be that no accurate time-frame can be applied due to the great inherent v a r i a b i l i t y of b i o l o g i c a l material. With t h i s i n mind, the best that can be done i s to f l y as la t e as possible, which may mean acceptance of very low sun angles. Sun angles as low as 30 degrees may be used despite the excessive shadowing. As mentioned e a r l i e r , c o l o r - i n f r a r e d f i l m may need a correction of the color balance - t h i s may cause some problems with adequate exposure during l a t e f a l l photography. Since the s e n s i t i v i t y curves for the emulsion layers i n c o l o r - i n f r a r e d f i l m are not p a r a l l e l , underexposure of the f i l m w i l l not only cause dark, high contrast images, but also an undesirable s h i f t i n the color balance. The consequence of f l y i n g e a r l i e r i s simply that the insect may not have induced enough damage to s p e c t r a l l y change the f o l i a g e . The exact timing of a photography mission i s also quite often determined by the a v a i l a b i l i t y and scheduling of a e r i a l contractors. For operational reasons, i t i s wise to be quite f l e x i b l e i n the time allowance when an a e r i a l contract i s prepared. After a l l , the weather cannot be con t r o l l e d . 3.4 Mul t i s p e c t r a l Scanner-based Remote Sensing Theoretically, multispectral scanner (MSS) data are s i m i l a r i n format to the output of scanning densitometry of photography. The obvious difference i s that MSS eliminates one generation of imagery - photography. In addition to the spectral range obtainable with photographic systems (400 - 900 nm), some 47 m u l t i s p e c t r a l l i n e s c a n n e r s c a n c a p t u r e w a v e l e n g t h s i n t h e f a r -i n f r a r e d ( t h e r m a l ) r e g i o n o f t h e s p e c t r u m . T h e r m a l d a t a f o r f o r e s t f i r e m a n a g e m e n t a r e w e l l d o c u m e n t e d a n d o p e r a t i o n a l l y u s e d , b u t t h e y h a v e a l s o b e e n t r i e d a s a d e t e c t i o n t o o l f o r s t r e s s i n c o n i f e r s ( N e u b e r t 1 9 6 9 ; P u r i t c h 1 9 8 1 ) . T r e e s u n d e r m o i s t u r e s t r e s s a r e g e n e r a l l y w a r m e r t h a n h e a l t h y t r e e s , b u t t h e r e i s n o p u b l i s h e d e v i d e n c e t h a t i n d i c a t e s t h a t t h e u s e o f t h e r m a l s c a n n e r s c a n d e t e c t t h i s s t r e s s s y m p t o m . T h e r e a s o n f o r t h e l a c k o f s u c c e s s m a y p a r t i a l l y b e d u e t o w i n d t u r b u l e n c e , p o o r s e n s o r r e s o l u t i o n ( a l t h o u g h r e c e n t t e c h n o l o g y a l l o w s f o r m u c h i m p r o v e d s p a t i a l r e s o l u t i o n s ) , d i u r n a l s o i l t e m p e r a t u r e r e g i m e s , m i c r o c l i m a t i c e f f e c t s , t e m p e r a t u r e i n v e r s i o n s , a n d t h e i n f l u e n c e o f s u r r o u n d i n g v e g e t a t i o n ; i n d i v i d u a l w a r m ( s t r e s s e d ) t r e e s m a y b e t h e r m a l l y m a s k e d b y m o r e a b u n d a n t h e a l t h y t r e e s . B e s i d e s t h e t h e r m a l a p p r o a c h , t h e r e a r e t w o b a s i c k i n d s o f MSS s y s t e m s . T h e m o s t c o m m o n s y s t e m i s t h e o p t i c a l - m e c h a n i c a l s c a n n i n g d e v i c e . T h e s c e n e i s m e c h a n i c a l l y s c a n n e d ( p e r p e n d i c u l a r t o t h e l i n e o f f l i g h t ) t h r o u g h t h e u s e o f a m i r r o r ( o s c i l l a t i n g o r r o t a t i n g ) . P i x e l b y p i x e l i s s c a n n e d u n t i l t h e e n t i r e s w a t h i s c o v e r e d , a n d t h e c o m b i n e d s w a t h s m a k e u p t h e e n t i r e s c e n e . T h e s c e n e r a d i a n c e i s b r o k e n i n t o s p e c i f i c b a n d s t h r o u g h t h e u s e o f o p t i c s . T h e e n e r g y f r o m e a c h b a n d i s r e c o r d e d b y a s p e c i f i c d e t e c t o r , c o n v e r t e d i n t o a d i g i t a l f o r m a t , a n d t h e n s t o r e d o n m a g n e t i c t a p e . A n e w e r g e n e r a t i o n o f MSS s y s t e m s f a l l s i n t o t h e e l e c t r o -o p t i c a l o r p u s h - b r o o m s e n s o r c a t e g o r y . W i t h t h e s e s y s t e m s , t h e 48 e n t i r e s w a t h b e n e a t h t h e s e n s o r p l a t f o r m i s r e c o r d e d i n s t a n t a n e o u s l y t h r o u g h t h e u s e o f a l i n e a r a r r a y o f d e t e c t o r s ( a 1,000 p i x e l s w a t h r e q u i r e s 1,000 d e t e c t o r s i n t h e a r r a y ) , r e q u i r i n g n o m o v i n g p a r t s . M u l t i p l e b a n d s a r e r e c o r d e d w i t h m u l t i p l e l i n e a r d e t e c t o r a r r a y s . A v a r i a t i o n o f t h e p u s h - b r o o m a p p r o a c h i s a p r o g r a m m a b l e a r r a y - t h e s e n s o r c a n b e o p t i m i z e d f o r e i t h e r v e r y f i n e s p a t i a l r e s o l u t i o n ( w i t h f e w s p e c t r a l b a n d s ) , o r ( b y r e s t r i c t i n g t h e s p a t i a l s a m p l i n g i n a g r a t i n g f a s h i o n ) v e r y h i g h s p e c t r a l r e s o l u t i o n ( w i t h m a n y s p e c t r a l b a n d s ) . T h e p u s h - b r o o m a p p r o a c h h a s s o m e s i g n i f i c a n t a d v a n t a g e s o v e r t h e c o n v e n t i o n a l o p t i c a l - m e c h a n i c a l s c a n n i n g ; t h e p u s h -b r o o m s e n s o r c a n s a m p l e t h e g r o u n d l o n g e r f o r e a c h r e s o l u t i o n e l e m e n t ( f o r t h e s a m e s p e e d o f f l i g h t f o r t h e t w o s e n s o r s ) . L o n g e r s a m p l i n g i m p r o v e s t h e s e n s i t i v i t y , w h i c h m a y m e a n t h a t t h e s m a l l r e f l e c t a n c e d i f f e r e n c e s o n e w o u l d e x p e c t a t a n e a r l y d a t e f o l l o w i n g s u c c e s s f u l b a r k b e e t l e a t t a c k s m i g h t b e d e t e c t e d . T h i s h i g h r a d i o m e t r i c s e n s i t i v i t y a l s o m e a n s t h a t n a r r o w - b a n d s e n s i n g , a s d e s c r i b e d i n c h a p t e r 3 . 2 . 2 m a y b e a t t e m p t e d . N a r r o w - b a n d s e n s i n g r e s u l t s i n v e r y l o w e n e r g y r e c e p t i o n a t t h e d e t e c t o r s , b u t w i t h a d e q u a t e s a m p l i n g a n d s e n s i t i v i t y , t h e s i g n a l m a y b e a m p l i f i e d w i t h o u t e x c e s s i v e n o i s e . P u s h - b r o o m s c a n n i n g a l s o m e a n s i m p r o v e d s p a t i a l r e s o l u t i o n o v e r c o n v e n t i o n a l M S S . A i r b o r n e o p t i c a l - m e c h a n i c a l s y s t e m s a r e t y p i c a l l y c a p a b l e o f r e s o l u t i o n s b e t w e e n 2 . 5 t o 3 m i l l i r a d i a n s , w h i l e p u s h - b r o o m s e n s o r s c a n d o b e t t e r t h a n 1 m i l l i r a d i a n . I m p r o v e d s p a t i a l r e s o l u t i o n m e a n s a h i g h e r p o t e n t i a l f o r 49 adequate canopy s e p a r a t i o n and r a d i a n c e e v a l u a t i o n . I n o t h e r words, h i g h s p a t i a l r e s o l u t i o n a l l o w s f o r a l a r g e sample o f r e c o r d e d r a d i a n c e s from each canopy (Runesson 1985). A l o o k a t p a s t e f f o r t s o f u s i n g MSS t e c h n o l o g y f o r b a r k b e e t l e assessment i s v e r y d i s c o u r a g i n g . B o t h v i s u a l and c o m p u t e r - a s s i s t e d c l a s s i f i c a t i o n o f L a n d s a t MSS d a t a o v e r b a r k b e e t l e i n f e s t a t i o n s have f a i l e d t o show any p r o m i s e (Weber e t a l . 1972). T h i s o b v i o u s l y i s p a r t l y due t o t h e poor r e s o l u t i o n o f L a n d s a t d a t a . The poor r e s u l t s a r e not a l l s u r p r i s i n g i n v i e w o f t h e f a c t t h a t c o m p u t e r - a s s i s t e d c l a s s i f i c a t i o n o f L a n d s a t d a t a f o r s i m p l e f o r e s t t y p e mapping has n o t been s u c c e s s f u l due t o poor map a c c u r a c y (Bryant e t al. 1980). I f s i g n i f i c a n t p o r t i o n s o f t h e t r e e s i n a w a t e r s h e d a r e k i l l e d , t h e a b i l i t y t o d e f i n e i n d i v i d u a l t r e e s may not be n e c e s s a r y . However, t h e s u c c e s s o f a mapping p r o j e c t i s p a r t i a l l y dependent on t h e a b i l i t y t o f i n d i n d i v i d u a l o r s m a l l p o c k e t s o f k i l l e d t r e e s . A i r b o r n e MSS t r i a l s have shown l i m i t e d s u c c e s s i n p i n e m o r t a l i t y mapping, and none i n e a r l y d e t e c t i o n (Weber and P o l c y n 1972; T e i l l e t e t a l . 1981). The p r o b l e m a g a i n , a t l e a s t p a r t l y , i s w i t h i n a d e q u a t e r e s o l u t i o n . Kneppeck and Ahern (198 9) have shown s u c c e s s w i t h push-broom s c a n n i n g f o r m o r t a l i t y mapping. T h i s work was based on t h e use o f a MEIS-II a i r b o r n e s c a n n e r f l o w n w i t h a s p a t i a l r e s o l u t i o n o f 1.4 m. Other work w i t h push-broom imagers f o r red-edge d e t e c t i o n have been somewhat i n c o n c l u s i v e , d e s p i t e t h e c l e a r e v i d e n c e o f t h e p r e s e n c e o f s p e c t r a l s h i f t s . F r a s e r e t al. (1985) c o n c l u d e d t h a t red-edge 50 a n a l y s i s w i t h t h e M E I S - I I s c a n n e r i s d i f f i c u l t . B a n n i n g e r ( 1 9 8 8 ) f o u n d n o s i g n i f i c a n t c h a n g e s i n t h e r e d - e d g e p o s i t i o n w h i l e u s i n g t h e F l u o r e s c e n c e L i n e I m a g e r o v e r s t r e s s e d a n d n o n -s t r e s s e d t r e e s . T h e s e r e s u l t s c l e a r l y j u s t i f i e s A h e r n ' s ( 1 9 8 8 ) c a l l f o r f u r t h e r r e s e a r c h o n r e f l e c t a n c e s p e c t r a d e r i v e d n o t f r o m n e e d l e s a m p l e s , b u t f r o m w h o l e c a n o p i e s . I t m u s t b e p o i n t e d o u t t h a t a l t h o u g h h i g h r e s o l u t i o n , a s p r o v i d e d b y p u s h - b r o o m s e n s o r s , i s h i g h l y d e s i r a b l e f r o m a d e t e c t i o n v i e w p o i n t , i t c r e a t e s a s i g n i f i c a n t c o m p u t e r s t o r a g e a n d a n a l y s i s p r o b l e m ( e v e n i n v i e w o f r e c e n t d e v e l o p m e n t s a n d p r o l i f e r a t i o n o f h i g h - s p e e d p r o c e s s o r s a n d f a s t a c c e s s , l a r g e -c a p a c i t y d i s k d r i v e s ) . T h i s m a y l i m i t a \" f u l l - b l o w n \" o p e r a t i o n a l u s e o f a i r b o r n e d i g i t a l d a t a ( p r o v i d i n g i t w o r k s f o r e a r l y d e t e c t i o n ) a t t h e p r e s e n t . T h i s d i l e m m a i s a l s o s h a r e d b y h i g h r e s o l u t i o n s c a n n i n g d e n s i t o m e t r y o f p h o t o g r a p h y . 51 Chapter 4 Methods Two t e s t s i t e s w e r e u s e d i n t h e T r a n q u i l l e V a l l e y n e a r K a m l o o p s , B r i t i s h C o l u m b i a . T e s t S i t e A w a s c h o s e n b e c a u s e o f i t s p r o x i m i t y t o a n a l l - w e a t h e r r o a d f o r y e a r - r o u n d a c c e s s a n d t h e e x i s t e n c e o f p r e v i o u s c o l o r - i n f r a r e d p h o t o g r a p h y . F u r t h e r , H o b b s (1983) u s e d t h e s i t e f o r h e r b a r k b e e t l e s t u d y . T h i s s i t e , l o c a t e d a t l a t 50.84 N a n d l o n g 120.62 W a t 760 m a . s . l . , i s e v e n l y s t o c k e d b y a n e v e n m a t u r e m i x o f l o d g e p o l e p i n e , w h i t e s p r u c e {Picea glauca ( M o e n c h ) V o s s ) , a n d D o u g l a s - f i r . T h e p i n e c o m p o n e n t a v e r a g e d 90 y e a r s i n a g e . T h e p r o b l e m w i t h T e s t S i t e A w a s a l a c k o f h e a l t h y , d o m i n a n t l o d g e p o l e p i n e . T h i s w a s t h e r e s u l t o f s e v e r a l y e a r s o f h i g h l e v e l s o f b a r k b e e t l e s . T e s t S i t e B , w h i l e h a v i n g p o o r a c c e s s , h a d b e t t e r g r o w t h a n d f o r m o f t h e l o d g e p o l e p i n e c o m p o n e n t (70 % p i n e , 10 % p o p l a r , a n d 20 % D o u g l a s - f i r ) . T h e a g e s t r u c t u r e w a s t h e s a m e a s T e s t S i t e A . T e s t S i t e B , l o c a t e d a t l a t 50.80 N a n d l o n g 120.59 W a t a n a v e r a g e e l e v a t i o n o f 1,080 m a . s . l . , i s r e l a t i v e l y f l a t w i t h a m o d e r a t e n o r t h - n o r t h - e a s t s l o p e . T e s t S i t e A w a s o r i g i n a l l y s l a t e d f o r a c o m p a r i s o n b e t w e e n c o l o r - i n f r a r e d p h o t o g r a p h y a n d M E I S - I I c o v e r a g e ( f i v e b r o a d - b a n d c h a n n e l s ) . I n p r e p a r a t i o n f o r t h e a i r b o r n e d a t a , e x t e n s i v e f i e l d w o r k w a s p e r f o r m e d t o d e f i n e t h e p o s i t i o n a n d c h a r a c t e r i s t i c s o f 50 h e a l t h y a n d 50 c u r r e n t l y a t t a c k e d l o d g e p o l e p i n e s . T h e f i e l d w o r k w a s p e r f o r m e d w i t h i n t h e s a m e w e e k o f t h e a i r b o r n e d a t a a c q u i s i t i o n s . T o p r e c i s e l y m a r k t h e 52 l o c a t i o n o f each sampled t r e e f o r subsequent i d e n t i f i c a t i o n on t h e a c q u i r e d a i r b o r n e d a t a , 35-mm c o l o r a e r i a l s t e r e o p h o tographs ( p r i n t e nlargements) were o b t a i n e d i n advance. Each a t t a c k e d t r e e was g i r d l e d t o d e t e r m i n e t h e amount o f phloem consumed by t h e l a r v a e . Due t o t h e s c a r c i t y o f h e a l t h y , dominant p i n e s l e f t i n t h e s t a n d , t h e 100 t r e e s were q u i t e s p r e a d o u t . As i t t u r n e d o u t , t h e s e d a t a were c o l l e c t e d i n v a i n , b ut s e r v e d as a good l e a r n i n g e x p e r i e n c e f o r t h e i n v e s t i g a t o r . The r e a s o n f o r t h e o m i s s i o n o f t h e ground d a t a i n t h i s s t u d y was based on problems w i t h t h e a i r b o r n e m i s s i o n s . The MEIS-II m i s s i o n had s e r i o u s n a v i g a t i o n a l p r o b l e m s , w i t h t h e r e s u l t t h a t o n l y a f r a c t i o n o f t h e sampled s t u d y s i t e was c o v e r e d . The p h o t o g r a p h i c m i s s i o n (performed s e p a r a t e l y from t h e MEIS-II m i s s i o n ) had equipment f a i l u r e . One o f t h e two V i n t e n 70-mm cameras mounted i n t h e w i n g t i p s d i d n o t f u n c t i o n , and t h e r e were s e r i o u s exposure problems w i t h t h e r e m a i n i n g p h o t o g r a p h s . These mishaps were beyond any c o n t r o l o f t h e i n v e s t i g a t o r . Due t o s c h e d u l i n g and bad weather, t h e f a i l e d m i s s i o n s were n ot r e p e a t e d f o r s i t e A. I n v i e w o f t h e s e c i r c u m s t a n c e s , T e s t S i t e B became t h e main t e s t s i t e . T e s t S i t e A was used f o r a p r e l i m i n a r y c h l o r o p h y l l s t u d y . 4.1 I n i t i a l C h l o r o p h y l l A n a l y s i s A t o t a l o f 10 l o d g e p o l e p i n e s (mature, dominant, and non-fa d e d as seen from t h e g r o u n d ) , were s e l e c t e d a t random i n Jan u a r y (onset o f w i n t e r and s u b - z e r o t e m p e r a t u r e s t o o k p l a c e i n 5 3 e a r l y O c t o b e r ) f r o m a l i m i t e d h o m o g e n e o u s a r e a ( i n r e g a r d t o d e n s i t y a n d s l o p e c o n d i t i o n s ) . H a l f t h e t r e e s w e r e s u c c e s s f u l l y a t t a c k e d b y t h e m o u n t a i n p i n e b e e t l e , w h i l e t h e o t h e r f i v e w e r e b e e t l e - f r e e . T h e a t t a c k e d t r e e s h a d e v i d e n c e o f b l u e s t a i n f u n g i a r o u n d t h e e n t i r e c i r c u m f e r e n c e o f t h e b o l e s ( t h e t r e e s w e r e f e l l e d a n d g i r d l e d ) . F o l i a g e ( a n e q u a l m i x o f c u r r e n t a n d 2 - y e a r o l d n e e d l e s ) w a s c o l l e c t e d a t r a n d o m f r o m t h e u p p e r - m o s t p o r t i o n s o f t h e c r o w n s . H a l f t h e s a m p l e s c o n s i s t e d o f n e e d l e s s t o r e d i n s e a l e d p o l y e t h y l e n e b a g s , w h i l e t h e r e s t o f t h e n e e d l e s w e r e l e f t i n t a c t o n b r a n c h e s . T h e b a s e s o f t h e b r a n c h e s w e r e d e b a r k e d ( a b o u t 7 - 1 0 cm o f b a r k w a s s t r i p p e d o f f ) a n d p l a c e d i n d i s t i l l e d w a t e r . A l l s a m p l e s w e r e s t o r e d i n t h e d a r k a t 0 t o 5 ° C . I n t h e l a b , 2 5 g o f f r e s h - w e i g h t n e e d l e s f r o m e a c h s a m p l e w e r e s e l e c t e d . T h e n e e d l e s i n e a c h s a m p l e w e r e s p r e a d o u t o n m m - g r i d d e d s h e e t s a n d p h o t o g r a p h e d o n t o h i g h - r e s o l u t i o n p o s i t i v e f i l m . E s t i m a t e s o f t o t a l s u r f a c e a r e a f o r e a c h 2 5 g s a m p l e w e r e o b t a i n e d f r o m p r o j e c t i o n s o f t h e p o s i t i v e f i l m . E s t i m a t e s o f t o t a l s u r f a c e a r e a w i t h i n t h e 2 5 g s a m p l e s w e r e c a l c u l a t e d b a s e d o n t o t a l n e e d l e n u m b e r s , a v e r a g e d i a m e t e r s a n d a v e r a g e n e e d l e l e n g t h s . N e x t , t h e n e e d l e s i n e a c h 2 5 g s a m p l e w e r e m a c e r a t e d a n d b l e n d e d w i t h 8 0 % a c e t o n e . T h e s o l u t i o n s w e r e b o t t l e d a n d s t o r e d i n d a r k a n d c o l d c o n d i t i o n s f o r 3 h o u r s p r i o r t o s u c t i o n -f i l t e r i n g , d u r i n g w h i c h a d d i t i o n a l a c e t o n e w a s a d d e d t o r i n s e o u t t h e b o t t l e s . T h e s e a c e t o n e e x t r a c t s o f c h l o r o p h y l l w e r e 54 i n i t i a l l y a s s a y e d s p e c t r o p h o t o m e t r i c a l l y by t h e method d e s c r i b e d by Arnon (194 9 ) . A G i l f o r d s u c t i o n s p e c t r o p h o t o m e t e r was used on t h e samples w h i c h had been d i l u t e d w i t h a c etone t o f i t t h e range o f t h e machine. T h i s approach i s based on measurements t h r o u g h a b s o r p t i o n o f l i g h t o f t h e d e n s i t y o f t h e e x t r a c t s a t 664 nm (the peak o f c h l o r o p h y l l a) and a t 645 nm (the peak o f c h l o r o p h y l l b ) . The measurements were not c a l i b r a t e d a g a i n s t a known s t a n d a r d , hence t h e r e s u l t s were r e l a t i v e and a n a l y z e d as u n i t l e s s a b s o r p t i o n s q u a n t i t i e s . Measurements were p e r f o r m e d a t 664 nm, 652 nm ( t h i s w a v e l e n g t h f a l l s a t t h e i n t e r s e c t i o n o f t h e peaks o f c h l o r o p h y l l a and b, and can be used t o e s t i m a t e t o t a l c h l o r o p h y l l ) , and 645 nm. A l i m i t e d number o f samples were measured on a s c a n n i n g s p e c t r o p h o t o m e t e r (Pye Unicam SP 8-100), w h i c h r e v e a l e d t h a t c h l o r o p h y l l b i n t h e samples was not c h a r a c t e r i z e d by measurements a t 645 nm. As a r e s u l t , measurements a t 457 nm were used i n s t e a d t o q u a n t i f y c h l o r o p h y l l b. The e x p e r i m e n t (a 2x2x2x2 f a c t o r i a l ) was s e t up as a c o m p l e t e l y randomized d e s i g n w i t h 4 t r e a t m e n t s : A = h e a l t h s t a t u s w i t h 2 l e v e l s ( h e a l t h y and damaged) B = t y p e o f p r e s e r v a t i o n w i t h two l e v e l s ( n e e d l e s i n t a c t on bra n c h e s and bagged n e e d l e s ) C = t i m e i n s t o r a g e between f i e l d and s o l u t i o n w i t h two l e v e l s (4 days and 1 day) D = t i m e i n s o l u t i o n p r i o r t o s p e c t r o s c o p y w i t h two l e v e l s ( 1 - 3 days and 8 - 1 1 days) 55 T a b l e 4.1 i l l u s t r a t e s t h e d e s i g n . T a b l e 4.1: D e s i g n o f f a c t o r i a l e x p e r i m e n t Degrees Source o f Freedom 1 A 1 (i-D B 1 (j-D AB 1 (i-1)(j-1) C 1 (k-1) AC 1 (i-1)(k-1) BC 1 (j-1)(k-1) ABC 1 (i-1)(j-1) (k-1) D 1 (m-1) AD 1 (i-1)(m-1) BD 1 (j-1)(m-1) ABD 1 (i-1) (j-D (m-1) CD 1 (k-1)(m-1) ACD 1 (i-1)(k-1) (m-1) BCD 1 (j-1)(k-1) (m-1) ABCD 1 (i-1)(j-1) (k-1)(m-1) E r r o r 64 iikm(n-1) T o t a l 79 iikmn-1 1 t o t a l t r e a t m e n t c o m b i n a t i o n s = 2 4 = 1 6 , n = 5 (5 r e p l i c a t e s f o r each t r e a t m e n t c o m b i n a t i o n ) , t o t a l samples = 80 In a d d i t i o n t o t h e f a c t o r i a l e x p e r i m e n t , a s m a l l number o f samples were remeasured (at 457 nm and 664 nm) a f t e r an a d d i t i o n a l 53 days i n s o l u t i o n . UBC ANOVAR ( G r e i g and O s t e r l i n 1978) was used f o r t h e c o m p u t a t i o n o f t h e a n a l y s i s o f v a r i a n c e model. 4.2 Main E x p e r i m e n t - T e s t S i t e B The s t u d y i n v o l v e d 75 l o d g e p o l e p i n e (mature, f r e e from o b v i o u s p h y s i c a l damage, and dominant) d i v i d e d i n t o 5 t r e a t m e n t c a t e g o r i e s : A = s u c c e s s f u l l y a t t a c k e d t r e e s 56 B = s i m u l a t e d p i t c h - o u t w i t h b l u e - s t a i n f u n g i r e m a i n i n g (no g i r d l i n g , o n l y i n o c u l a t i o n ) C = s i m u l a t e d s u c c e s s f u l l y a t t a c k e d t r e e s ( t h e s e t r e e s were 100 % stem g i r d l e d and i n o c u l a t e d w i t h b l u e - s t a i n f u n g i ) D = h e a l t h y , n o n - a t t a c k e d t r e e s E = s u c c e s s f u l l y a t t a c k e d b a i t e d t r e e s The 5 t r e a t m e n t s were l a i d out w i t h a randomized complete b l o c k d e s i g n w i t h 5 o b s e r v a t i o n s p e r t r e a t m e n t p e r b l o c k . The ex p e r i m e n t was b l o c k e d w i t h r e s p e c t t o t i m e o f assessments (3 s e p a r a t e t i m e p e r i o d s o f measurements) and not p h y s i c a l a r e a a l l o c a t i o n . T a b l e 4.2 below i l l u s t r a t e s t h e d e s i g n . T a b l e 4.2: E x p e r i m e n t a l d e s i g n - randomized complete b l o c k Degrees Source o f Freedom' Treatments 4 (k-1) B l o c k s 2 (n-1) E x p e r i m e n t a l E r r o r 8 (k-1)(n-1) Sampling E r r o r 60 kn (m-1) T o t a l 74 knm-1 1 m= 5 r e p l i c a t i o n s p e r b l o c k The s u c c e s s f u l l y a t t a c k e d t r e e s ( t r e a t m e n t A) were stem g i r d l e d a t t h e t i m e o f t h e f i e l d assessments t o a s s u r e t h a t t h e y were not o n l y s t r i p - a t t a c k e d . I n o c u l a t i o n s o f t h e b l u e - s t a i n i n g f u n g i f o r t r e a t m e n t s B and C were done w i t h 2.5 cm d i a m e t e r d r i l l c o r e s from t r e e s t h a t were s u c c e s s f u l l y a t t a c k e d i n t h e p r e v i o u s y e a r . H o l e s (6 p e r t r e e ) were d r i l l e d i n t h e t r e a t m e n t t r e e s a t a h e i g h t o f 1.8 meters and f i l l e d t i g h t l y w i t h t h e 5 7 d r i l l c o r e s . T h e i n j u r e d b a r k w a s t h e n c o v e r e d w i t h a p i n e - t a r r e s i n . T h e d r i l l c o r e s w e r e e x t r a c t e d i m m e d i a t e p r i o r t o i n s e r t i o n i n t o t h e t r e a t m e n t t r e e s . T r e a t m e n t C , i n a d d i t i o n t o t h e i n o c u l a t i o n , c o n s i s t e d o f a 4 0 cm l o n g 1 0 0 % s t e m g i r d l i n g c e n t e r e d a t a h e i g h t o f 1 . 5 m. T h e i n o c u l a t i o n a n d g i r d l i n g o p e r a t i o n s w e r e d o n e i n t h e m i d d l e o f J u l y . T r e a t m e n t D - t h e h e a l t h y , u n a t t a c k e d t r e e s s e r v e d a s t h e c o n t r o l f o r t h e e x p e r i m e n t . T h e 1 5 t r e e s i n t r e a t m e n t E w e r e b a i t e d w i t h m o u n t a i n p i n e b e e t l e t r e e b a i t s a t a h e i g h t o f 1 .8 m . T h e s e b a i t s c o n t a i n e d t r a n s - v e r b e n o l , e x o - b r e v i c o m i n . a n d m y r c e n e . T h e t r e e s w e r e b a i t e d i n t h e t h i r d w e e k o f J u n e . N o t r e e s f r o m o t h e r t r e a t m e n t s w e r e i n c l o s e p r o x i m i t y t o t h e b a i t e d t r e e s . 4 . 2 . 1 F i e l d D a t a C o l l e c t i o n a n d M e a s u r e m e n t s T h e f i e l d w o r k t o a s s e s s t h e t r e a t m e n t c a t e g o r i e s c o m m e n c e d o n t h e t h i r d w e e k o f S e p t e m b e r . T o a l l o w a d e q u a t e t i m e f o r t h e v a r i o u s a c t i v i t i e s ( i n c l u d i n g m i s h a p s s u c h a s e q u i p m e n t m a l f u n c t i o n i n g ) , t h e '75 t r e e s w e r e a s s e s s e d o n d i f f e r e n t d a y s i n 3 g r o u p s o f 2 5 t r e e s . E a c h t r e e w a s f e l l e d a n d t o p p e d . W i t h i n 5 m i n u t e s o f f e l l i n g e a c h t r e e , m o i s t u r e s t a t u s ( w a t e r p o t e n t i a l ) w a s d e t e r m i n e d w i t h a p r e s s u r e c h a m b e r . T h e t r e e f e l l i n g a n d m e a s u r e m e n t o f m o i s t u r e s t a t u s w e r e d o n e b e t w e e n m i d n i g h t a n d 4 : 3 0 a . m . ( w i t h a m b i e n t t e m p e r a t u r e s l e s s t h a n 5 ° C e l s i u s ) . N e e d l e s w e r e c o l l e c t e d a p p r o x i m a t e l y 1 . 3 m f r o m t h e t o p , a n d s t o r e d i n s e a l e d p o l y e t h y l e n e b a g s a t t e m p e r a t u r e s b e t w e e n 0 58 t o 5 ° C e l s i u s . T h e s a m p l e s c o n s i s t e d o f a n e v e n m i x b e t w e e n c u r r e n t a n d 2 - y e a r o l d n e e d l e s . S u b s e q u e n t l y , t h e f o l i a r s a m p l e s w e r e s h i p p e d t o t h e l a b o r a t o r y f o r s t a n d a r d i z e d a n a l y s i s f o r c h l o r o p h y l l a a n d b , n i t r o g e n , i r o n , c a l c i u m , p h o s p h o r o u s , a n d p o t a s s i u m . T h e c h l o r o p h y l l a s s e s s m e n t w a s p e r f o r m e d s p e c t r o p h o t o m e t r i c a l l y w i t h a c e t o n e e x t r a c t s a c c o r d i n g t o t h e p r o c e d u r e s d e s c r i b e d b y S e s t a k e t al. ( 1 9 7 1 ) a n d e x p r e s s e d i n m i l l i g r a m s p e r s q u a r e c e n t i m e t e r . T h e n u t r i e n t a n a l y s i s w a s p e r f o r m e d o n s a m p l e s t h a t w e r e p r e p a r e d b y o v e n - d r y i n g ( 7 0 ° C) a n d p a s s i n g t h r o u g h a 2 0 - m e s h s c r e e n . T o t a l n i t r o g e n (%) w a s d e r i v e d t h r o u g h a H2SO4 - H-2®2 m i c r o - k j e l d a h l d i g e s t w i t h s e l e n i u m a d d e d a s a c a t a l y s t ( P a r k i n s o n a n d A l l a n 1 9 7 5 ) . T h e r e s u l t s w e r e d e t e r m i n e d c o l o r i m e t r i c a l l y ( s a l i c y l a t e / n i t r o p r u s s i d e ) b y a T e c h n i c o n A u t o a n a l y s e r . T o t a l p h o s p h o r o u s (%) w a s d e r i v e d w i t h t h e s a m e d i g e s t a s f o r t o t a l n i t r o g e n . T h e r e s u l t s w e r e d e t e r m i n e d c o l o r i m e t r i c a l l y ( a b s o r b i c a c i d / m o l y b d a t e - a n t i m o n y ) b y a T e c h n i c o n A u t o a n a l y s e r . T h e s a m e d i g e s t w a s a g a i n u s e d f o r t h e d e r i v a t i o n o f t o t a l p o t a s s i u m a n d c a l c i u m (% ) , a s w e l l a s f o r i r o n ( p p m ) . T h e c o n c e n t r a t i o n s w e r e d e t e r m i n e d w i t h a n a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t e r . S t e m s e c t i o n s w e r e c o l l e c t e d f r o m e a c h t r e e a t b o t h 3 0 cm o f f g r o u n d a n d a t 1 . 5 m. T h e c o o k i e s w e r e l a t e r u s e d t o v e r i f y t h e p r e s e n c e o f b l u e - s t a i n , a n d e s t a b l i s h a v e r a g e d i a m e t e r a n d a g e . 59 A f i e l d l a b o r a t o r y was c o n s t r u c t e d and used t o f a c i l i t a t e s p e c t r a l d a t a g a t h e r i n g . The l a b o r a t o r y was c o n s t r u c t e d w i t h t h r e e d i f f e r e n t s e t s o f l i g h t s o u r c e s . A v o l t a g e r e g u l a t o r was u sed w i t h t h e f i e l d g e n e r a t o r t o e n s u r e c o n s i s t e n c y i n l i g h t i n t e n s i t y . One s e t o f l i g h t s was c a l i b r a t e d f o r t h e use o f Kodak Ektachrome ( t u n g s t e n t y p e ) c o l o r p o s i t i v e f i l m . A n o t h e r s e t was c a l i b r a t e d f o r t h e use o f Ektachrome c o l o r - i n f r a r e d f i l m . The t h i r d s e t o f l i g h t s was r e g u l a r i n c a n d e s c e n t f l o o d s . These l i g h t s were used i n c o n j u n c t i o n w i t h a b a r i u m s u l p h a t e s t a n d a r d f o r t h e r a d i o m e t e r a s s e s s m e n t s . The s t a n d a r d p l a t e (60 cm by 60 cm) was s p r a y e d w i t h b a r i u m s u l p h a t e i n s o l u t i o n t o e n s u r e a porous s u r f a c e t e x t u r e . The i n t e r i o r o f t h e f i e l d l a b o r a t o r y was p a i n t e d f l a t b l a c k . B l a c k c l o t h i n g was used d u r i n g t h e a s s essments. An a i r - c o n d i t i o n e r was used i n t h e e n c l o s e d l a b o r a t o r y t o keep t h e t e m p e r a t u r e c o n t r o l l e d (± 2° C e l s i u s ) d u r i n g s p e c t r o s c o p i c a s sessments, t h u s p r e v e n t i n g s i g n i f i c a n t s e n s i t i v i t y d r i f t s o f t h e s p e c t r o r a d i o m e t e r (the i n c a n d e s c e n t f l o o d s d i d g e n e r a t e a s i g n i f i c a n t amount o f h e a t ) . The a p p a r a t u s used was an I n t e r n a t i o n a l L i g h t I L 700 s e r i e s s p e c t r o r a d i o m e t e r , w h i c h was f a c t o r y c a l i b r a t e d i m m e d i a t e l y p r i o r t o t h e f i e l d measurements. The t o p 1.5 m o f each t r e e was p l a c e d i n a c l a m p i n g d e v i c e i n t h e l a b o r a t o r y , and t h e r a d i o m e t e r was mounted p e r p e n d i c u l a r above each t r e e a t a d i s t a n c e o f 75 cm. F i g u r e 4.1 i l l u s t r a t e s t h e v i e w as p r e s e n t e d t o t h e r a d i o m e t e r . F i g u r e 4.1: Lodgepole p i n e t r e e top view The f i e l d - o f - v i e w of the radiometer was r e s t r i c t e d and c a l i b r a t e d with an a u x i l i a r y l e n s b a r r e l t o cover a major p o r t i o n of the t r e e crowns (to approximate the a i r b o r n e view of the s u n l i t p o r t i o n of a t y p i c a l t r e e canopy). The f i e l d - o f - v i e w chosen was 25°. The l i g h t sources were a l s o from above, and arranged i n such a manner t h a t no p o r t i o n s of the crown were shadowed. In t h i s manner, each t r e e top was assessed with an i d e n t i c a l geometry s i t u a t i o n f o r i l l u m i n a t i o n - t a r g e t - v i e w i n g . The radiometer was operated at 5 nm increments w i t h a 4.25 nm bandwidth between 500 to 850 nm. The barium s u l p h a t e r e f e r e n c e p l a t e was p l a c e d 1 m p e r p e n d i c u l a r below the radiometer ( i n p l a c e of the t r e e tops) and assessed p r i o r t o each t r e e assessment. The dark c u r r e n t i n the radiometer was a l s o assessed and f a c t o r e d out p r i o r t o each t r e e assessment. In a d d i t i o n to the t r e e tops, a sample of s h o r t branches from a h e a l t h y t r e e were p i l e d approximately 10 cm h i g h and 61 s p e c t r a l l y measured. S u b s e q u e n t l y , a l l t h e n e e d l e s from t h e s e b r a n c h e s were s e p a r a t e d and a g a i n s p e c t r a l l y measured. These measurements were a l s o done i n c o n j u n c t i o n w i t h t h e b a r i u m s u l p h a t e s t a n d a r d . To o b t a i n a permanent v i s u a l r e c o r d ( f o r r e f e r e n c e purposes) o f t h e t r e e crowns as t h e y were a s s e s s e d , two 35-mm cameras were mounted above t h e t r e e s . Each t r e e t o p was pho t o g r a p h e d i n f u l l w i t h b o t h c o l o r p o s i t i v e and c o l o r - i n f r a r e d p o s i t i v e f i l m . I n a d d i t i o n , one i n d i v i d u a l b r a n c h from each t r e e was a l s o p h o t o g r a p h e d i n t h i s manner. 4.2.2 A n a l y s i s o f f o l i a r s a m p l i n g The d e r i v e d d a t a s e t s from t h e f o l i a r samples ( c h l o r o p h y l l a and b, n i t r o g e n , i r o n , c a l c i u m , phosphorous, p o t a s s i u m , and wat e r p o t e n t i a l ) were g r a p h i c a l l y checked f o r c o m p l i a n c e w i t h a normal d i s t r i b u t i o n . The BMDP S t a t i s t i c a l S o f t w a r e package (Dixon e t al. 1985) (program P:5D H i s t o g r a m s and U n i v a r i a t e P l o t s ) was used t o produce t h e n e c e s s a r y normal p r o b a b i l i t y p l o t s . The d a t a were a l s o s u b j e c t e d t o a B a r t l e t t ' s t e s t f o r homogeneity o f v a r i a n c e s (BMDP P:9D M u l t i w a y D e s c r i p t i o n o f Gr o u p s ) . Data s e t s t h a t p a s s e d t h e s e t e s t s (normal d a t a and acc e p t a n c e o f t h e n u l l h y p o t h e s i s f o r e q u a l v a r i a n c e s ( H Q : ^ ? = g?2^ 1 w e r e s u b j e c t e d t o a p a r a m e t r i c t e s t f o r two-way a n a l y s i s o f v a r i a n c e . Data s e t s t h a t r e j e c t e d t h e n u l l h y p o theses f o r e q u a l t r e a t m e n t means ( H Q : U J _ = Ug) were s u b j e c t e d t o Duncan's New M u l t i p l e - R a n g e T e s t . UBC G e n l i n g e n e r a l l e a s t 62 s q u a r e s a n a l y s i s o f v a r i a n c e p r o g r a m w a s u s e d f o r t h i s p u r p o s e ( m i s s i n g v a l u e s w e r e n o t r e p l a c e d ) ( G r e i g a n d B j e r r i n g 1 9 8 0 ) . D a t a s e t s t h a t d i d n o t m e e t t h e a s s u m p t i o n s f o r A N O V A w e r e e i t h e r l o g a r i t h m i c a l l y t r a n s f o r m e d a n d r e - t e s t e d , o r a n a l y z e d w i t h a n o n - p a r a m e t r i c t e s t ( K r u s k a l - W a l l i s ) f o r o n e - w a y ( t h e b l o c k i n g w i t h r e s p e c t t o t i m e w a s i g n o r e d , a n d a s a c o n s e q u e n c e , m i s s i n g v a l u e s w e r e n o t r e p l a c e d ) a n a l y s i s o f v a r i a n c e (BMDP P : 3 S N o n p a r a m e t r i c A n a l y s i s ) . T h e r e l a t i o n s h i p s b e t w e e n t h e c h l o r o p h y l l d a t a a n d n i t r o g e n w e r e a n a l y z e d w i t h c o r r e l a t i o n a n d r e g r e s s i o n (BMDP P : 8 D C o r r e l a t i o n s w i t h O p t i o n s f o r I n c o m p l e t e D a t a a n d BMDP P : 5 R P o l y n o m i a l R e g r e s s i o n ) . T h e s e c o m p a r i s o n s w e r e d o n e i n c o n j u n c t i o n w i t h t h e r e d - e d g e d a t a d e s c r i b e d i n c h a p t e r 4 . 2 . 3 . 4 . 2 . 3 A n a l y s i s o f f i e l d s p e c t r a l d a t a S p e c t r a l d a t a f r o m t h e r e d - e d g e r e g i o n ( 6 7 5 t o 7 7 5 n a n o m e t e r s ) w a s s u b s e t a n d f i t t e d t o c u r v e s w i t h p o l y n o m i a l r e g r e s s i o n . T h e BMDP S t a t i s t i c a l S o f t w a r e p a c k a g e ( p r o g r a m P : 5 R P o l y n o m i a l R e g r e s s i o n ) w a s u s e d t o c o m p u t e t h e l e a s t s q u a r e s f i t o f f i f t h o r d e r p o l y n o m i a l s ( y = b n + b-^x + b £ X ^ + b 3 x 3 + b 4 x 4 + b 5 x 5 ) . T h e f i t (R^) f o r e a c h r e g r e s s i o n w a s c o m p u t e d . A c o r r e c t i o n f a c t o r w a s a p p l i e d t o e a c h e q u a t i o n t o c o u n t e r a c t t h e y - s h i f t t h a t o c c u r s b e t w e e n o b s e r v e d a n d r e g r e s s e d v a l u e s d u e t o r o u n d i n g o r t r u n c a t i o n o f d e c i m a l s . T h e c o r r e c t i o n f a c t o r w a s d e f i n e d a s t h e a v e r a g e d e v i a t i o n o f t h e 2 1 o b s e r v e d a n d 63 r e g r e s s e d d a t a p o i n t s between 675 and 775 nanometers (5 nanometer i n t e r v a l s ) . F i r s t ( f ( a ) = l i m f ( x ) - f ( a ) ) and second x-*a x-a (d^y/dx^) d e r i v a t i v e s were c a l c u l a t e d t o d e r i v e b o t h a n u m e r i c a l and g r a p h i c d e r i v a t i o n o f t h e red-edge (the c u r v e ' s p o i n t o f i n f l e c t i o n ) . The d i f f e r e n c e method d e s c r i b e d by D e m e t r i a d e s -Shah et al. (1990) was u sed f o r t h e d e r i v a t i v e c a l c u l a t i o n s . The p o i n t where t h e second d e r i v a t i v e d a t a i n t e r s e c t w i t h t h e x-a x i s (the e q u i v a l e n t o f a s s i g n i n g z e r o t o y i n y\" = 2b^ + 6b^x + 1 2 b 4 x 2 + 20b5x3 and s o l v i n g f o r x (the w a v e l e n g t h a t t h e p o i n t o f i n f l e c t i o n ) ) was c a l c u l a t e d from t h e d a t a s e t where p o s i t i v e numbers changed t o n e g a t i v e . The f i r s t n e g a t i v e number i n t h e d a t a s e t was s u b t r a c t e d from t h e l a s t p o s i t i v e number t o ge t t h e range between t h e w a v e l e n g t h s (one nanometer i n t e r v a l s ) . S u b s e q u e n t l y , t h e l a s t p o s i t i v e number was d i v i d e d by t h e p r e v i o u s l y c a l c u l a t e d d i f f e r e n c e (range) and added t o t h e w a v e l e n g t h c o r r e s p o n d i n g t o t h e l a s t p o s i t i v e number. T a b l e 4.3 i l l u s t r a t e s t h e t a b u l a r d a t a p r o c e d u r e s . The second d e r i v a t i v e d a t a were a l s o p l o t t e d t o g e t a v i s u a l v e r i f i c a t i o n o f t h e x-a x i s i n t e r c e p t . Complete c u r v e s (from 500 t o 850 nm) as w e l l as t h e r e d -edge c u r v e s (675 t o 775 nm) were n o r m a l i z e d t o a l l o w d i r e c t c o m p arison o f waveform w i t h o u t t h e e f f e c t o f d i f f e r i n g a m p l i t u d e (the r e s u l t o f p l a n t morphology and g e o m e t r y ) . The p r o c e d u r e f o r t h e n o r m a l i z a t i o n f o l l o w s one o u t l i n e d by L o u r i m and Buxton (1988). Observed o r r e g r e s s e d c o r r e c t e d d a t a v a l u e s were n o r m a l i z e d by s u b t r a c t i n g t h e l o w e s t v a l u e i n t h e range, and 64 d i v i d i n g t h i s new d i f f e r e n c e by t h e d i f f e r e n c e o f t h e maximum and minimum d a t a v a l u e . T a b l e 4.3 i l l u s t r a t e s n o r m a l i z e d d a t a v a l u e s compared t o o b s e r v e d o r c o r r e c t e d r e g r e s s e d v a l u e s , as w e l l as t h e p r o c e d u r e t o d e f i n e t h e z e r o c r o s s i n g o f t h e 2nd d e r i v a t i v e (the o b s e r v e d v a l u e s a r e not a c t u a l r e s u l t s from t h e canopy assessments, but were d e r i v e d from a s e t u p t e s t w i t h t h e r a d i o m e t e r ) . T a b l e 4.3: N o r m a l i z e d c o r r e c t e d r e g r e s s e d v a l u e s y = b Q + b-]_x + b 2 x 2 + b 3 x 3 + b 4 x 4 + b 5 x 5 c o e f f i c i e n t s : d a t a columns: 5«: - 117968 .6 a l = 840133 .9 a2 = i: -2387520 .5 a3 = 3384479 .3 a4 = b4 = -2393348 .5 a5 — b 5 = 675474 .4 a6 = a7 = c o r r e c t i o n f a c t o r = 0.00742 a l a2 a3 a4 a5 a6 a7 1 675 0.207 0.21776 0.21034 0.002905 2 676 0.21506 0.20764 -0.00269 0.001267 0.001078 3 677 0.21364 0.20622 -0.00142 0.001263 0.000111 4 678 0.21347 0.20605 -0.00016 0.001257 0 5 679 0.21457 0.20715 0.001093 0.001248 0.000741 39 713 0.82749 0.82007 0.027239 0.000056 0.416209 40 714 0.85478 0.84736 0.027296 0 . 0 0 0 0 1 2 1 0.434711 41 715 0.873 0.88209 0.87467 0.027308 -0 .00003 0.453223 42 716 0.90937 0.90195 0.027276 -0.00007 0.471712 99 773 1.67325 1.66583 0.006280 0.000929 0.989509 100 774 1.68046 1.67304 0.007210 0.001054 0.994397 101 775 1.680 1.68873 1.68131 0.008265 1 1 w a v e l e n g t h p o s i t i o n a t z e r o c r o s s i n g o f 2nd d e r i v a t i v e : l a s t p o s i t i v e d e r i v a t i v e (t) a t 714 nm= 0.000012 f i r s t n e g a t i v e d e r i v a t i v e (b) a t 715 nm= -0.00003 714 nm + t / ( t - b ) = 714.3 nm = red-edge 65 F u r t h e r t o t h e z e r o c r o s s i n g s o f t h e 2nd d e r i v a t i v e s , t h e d a t a were a l s o t e s t e d f o r t h r e e d i f f e r e n t s p e c t r a l r a t i o s ; 800/680, 550/680, and 800/550. The d a t a (red-edge and r a t i o s ) were t e s t e d s t a t i s t i c a l l y i n t h e same way as d e s c r i b e d p r e v i o u s l y f o r t h e f o l i a r samples. F u r t h e r , as d e s c r i b e d i n c h a p t e r 4.2.2, t h e r e l a t i o n s h i p s between t h e red-edge and c h l o r o p h y l l d a t a were a s s e s s e d w i t h c o r r e l a t i o n and r e g r e s s i o n . 4.2.4 A i r b o r n e Data C o l l e c t i o n A e r i a l p h o tographs f o r r e f e r e n c e p u r p o s e s were a c q u i r e d i n l a t e s p r i n g . C o n t a c t s c a l e s v a r i e d from 1:1,000 t o 1:10,000. These photographs were 35-mm c o l o r p r i n t s ( s t e r e o s c o p i c and h a n d - h e l d ) . T h e i r s o l e f u n c t i o n was t o show t h e l o c a t i o n o f t h e t r e e s i n t h e f i v e t r e a t m e n t c a t e g o r i e s . These l o c a t i o n s were l a t e r t r a n s f e r r e d t o t h e photographs used f o r a n a l y s i s . I n mid-September, t h e t e s t s i t e was photographed s t e r e o s c o p i c a l l y w i t h 70-mm c o l o r - i n f r a r e d f i l m (Kodak 2443) a t s c a l e s o f 1:1,400 and 1:4,000 (fixed-boom H a s s e l b l a d p h o t o g r a p h y ) . The f i l m was s e n s i t o m e t r i c a l l y c a l i b r a t e d ( s t a n d a r d step-wedge) p r i o r t o t h e m i s s i o n and th e r e s u l t a n t c h a r a c t e r i s t i c c u r v e i n d i c a t e d an IR b a l a n c e o f 56. To c o r r e c t f o r t h e degraded f i l m , a CC50M f i l t e r ( i n a d d i t i o n t o a W r a t t e n 12) was us e d t o change t h e IR b a l a n c e t o 31 ( s l i g h t l y enhanced). MEIS-II imagery was o b t a i n e d a t t h e end o f August w i t h a s p a t i a l r e s o l u t i o n o f a p p r o x i m a t e l y 43 cm. The o r i g i n a l r e q u e s t f o r t h e MEIS d a t a s t i p u l a t e d t h e use o f s i x narrow-band f i l t e r s 66 c o n c e n t r a t e d a t t h e red-edge ( c e n t e r w a v e l e n g t h s o f 682, 703, 713, 743, 753, 798, and 798 nm), as w e l l as 2 o r d i n a r y b r o a d -bands ( c e n t e r w a v e l e n g t h s o f 445 and 550 nm); however, t h e narrow-bands were not p r o v i d e d . I n s t e a d , t h e f o l l o w i n g b r o a d -bands were used (bandwidths i n b r a c k e t s ) : 445 (431-460), 521 (507-535), 550 (535-565), 590 (573-606), 673 (658-687), 687 (672-703), 871 (843-897), and 1021 (973-1064) nm. 4.2.5 A n a l y s i s o f A i r b o r n e Data 4.2.5.1 D e n s i t o m e t r y The 1:1,400 s c a l e 70-mm phot o g r a p h s were s u b j e c t e d t o d e n s i t o m e t r i c a n a l y s i s w i t h a Macbeth TR-524 T r a n s m i s s i o n R e f l e c t a n c e D e n s i t o m e t e r . Dye l a y e r d e n s i t i e s o f t h e i l l u m i n a t e d p o r t i o n s o f t h e t r e e c a n o p i e s from t h e f i v e t r e a t m e n t c a t e g o r i e s were measured w i t h t h e 1 mm a p e r t u r e o f t h e d e n s i t o m e t e r . The mean d e n s i t i e s from 3 measurements each o f th e cyan, magenta, and y e l l o w dye l a y e r s were r e c o r d e d . R a t i o s o f t h e dye l a y e r r e a d i n g s were used f o r t h e s t a t i s t i c a l a n a l y s i s ( g r a p h i c g o o d n e s s - o f - f i t (BMDP P:5D), B a r t l e t t ' s t e s t (P:9D), and one-way a n a l y s i s o f v a r i a n c e (UBC G e n l i n ) ) . The f o l l o w i n g r a t i o s were used: y e l l o w / c y a n , magenta/cyan, and yellow/magenta. In a d d i t i o n t o t h e s e r a t i o s , t h e same m o d i f i c a t i o n s u s e d by Hobbs (1983) ( t a b l e 3.2) were employed t o g e t a c o m p a r a t i v e a n a l y s i s t o Hobbs's 1983 b a r k b e e t l e s t u d y . A g a i n r a t i o s were used: TG/TIR, TR/TIR, and TG/TR. 67 4.2.5.2 V i s u a l Photo I n t e r p r e t a t i o n The v i s u a l a n a l y s i s o f t h e 1:1,400 s c a l e p hotographs f o l l o w e d Murtha's (1985b) c l a s s i f i c a t i o n system. The t r e e s were r e c o d e d from numbers t o random l e t t e r codes t o a v o i d b i a s due t o known t r e a t m e n t c a t e g o r i e s (numbers 1 t o 15 were o r i g i n a l l y d e s i g n a t e d t o t r e a t m e n t A, 16-30 t o t r e a t m e n t B, and so o n ) . To a v o i d e v e n t u a l b i a s due t o i n a d e q u a t e i n t e r p r e t e r e x p e r i e n c e w i t h t h e c l a s s i f i c a t i o n system, a h i g h l y t r a i n e d photo i n t e r p r e t e r p e r f o r m e d t h e v i s u a l a n a l y s i s . The r e s u l t s were t a b u l a t e d as g e n e r a l c l a s s i f i c a t i o n c a t e g o r y v e r s u s t r e a t m e n t , VM c a t e g o r y v e r s u s t r e a t m e n t , and VM c a t e g o r y v e r s u s h e a l t h y and s u c c e s s f u l l y a t t a c k e d t r e e s . 4.2.5.3 MEIS-II A n a l y s i s D i g i t a l a n a l y s i s o f t h e MEIS d a t a s e t was c o n d u c t e d a t t h e UBC L a b o r a t o r y f o r C o m p u t a t i o n a l V i s i o n (LCV) w i t h LCV s o f t w a r e on a DEC VAX 11/780 c o u p l e d t o a R a s t e r T e c h n o l o g i e s Model One/25 image d i s p l a y w o r k s t a t i o n . I n i t i a l l y , t h e computer c o m p a t i b l e t a p e s (CCT's) were l o a d e d on t h e system as s e p a r a t e 8 - b i t c h a n n e l s w i t h no attempt a t g e o m e t r i c o r r a d i o m e t r i c c o r r e c t i o n s . The x,y l o c a t i o n s o f t h e t r e a t m e n t t r e e s were d e r i v e d w i t h t h e h e l p o f t h e v a r i a b l e s c a l e c o l o r r e f e r e n c e a e r i a l p r i n t s , as w e l l as w i t h t h e 1:4,000 s c a l e c o l o r IR t r a n s p a r e n c i e s . Next, g r a p h i c masks were m a n u a l l y p r o d u c e d t o i s o l a t e t h e i l l u m i n a t e d p o r t i o n s o f t h e t r e a t m e n t t r e e s . The c r i t e r i a f o r t h e canopy mask d e f i n i t i o n s 68 were based on t h r e s h o l d d i g i t a l numbers f o r the shadows i n each of the 8 bands (applied a f t e r the s p e c i f i c canopies had been manually i s o l a t e d from other t r e e crowns and understory v e g e t a t i o n ) . Figure 4.2 i l l u s t r a t e s the masks. Figure 4.2: Graphic mask f i l e s f o r c a p t u r i n g non-shaded p o r t i o n s of t r e e crowns The masks were a p p l i e d t o a l l 8 bands i n the MEIS data s e t , and 8 new images were produced w i t h the i l l u m i n a t e d canopies and zero-valued backgrounds. These new images were subset f o r each i n d i v i d u a l i l l u m i n a t e d canopy t o a 32 by 32 p i x e l format, hence a t o t a l of 600 (8 channels x 75 canopies) new images were w r i t t e n . These 32 by 32 p i x e l images were subset onto 8 new images (one per channel) side by s i d e , and organized i n order of treatment f o r a v i s u a l reference. The non-zero p i x e l s (the i l l u m i n a t e d canopies) i n the six-hundred 32 by 32 p i x e l images were e x t r a c t e d and converted to ASCII format f o r s t a t i s t i c s e x t r a c t i o n . The average i n t e n s i t y f o r each i l l u m i n a t e d canopy 69 w a s c a l c u l a t e d . A c o r r e l a t i o n m a t r i x f o r t h e 8 c h a n n e l s w a s p r o d u c e d w i t h BMDP P:8D ( C o r r e l a t i o n s w i t h O p t i o n s f o r I n c o m p l e t e D a t a ) . B a s e d o n t h e c o r r e l a t i o n m a t r i x , r a t i o s w e r e c a l c u l a t e d f o r a l l e i g h t c h a n n e l s . T h e s e r a t i o s w e r e t h e n s u b j e c t e d t o t h e s a m e s t a t i s t i c a l t e s t s a s d e s c r i b e d e a r l i e r f o r t h e d e n s i t o m e t r y . D a t a s e t s t h a t f a i l e d t h e a s s u m p t i o n s f o r A N O V A w e r e l o g a r i t h m i c a l l y t r a n s f o r m e d a n d r e - t e s t e d . 70 C h a p t e r 5 R e s u l t s 5 . 1 I n i t i a l C h l o r o p h y l l S t u d y T h e f i r s t a n a l y s i s o f t h e d a t a ( r e f e r t o a p p e n d i x I f o r a l l r a w d a t a ) w a s t o d e t e r m i n e i f t h e 2 5 g s a m p l e s f r o m t h e h e a l t h y a n d d a m a g e d t r e e s w e r e d i f f e r e n t f r o m e a c h o t h e r i n r e g a r d t o p h y s i c a l c h a r a c t e r i s t i c s o t h e r t h a n c h l o r o p h y l l . A n a l y s e s o f v a r i a n c e w e r e p e r f o r m e d o n t h e f o l l o w i n g d a t a s e t s : n e e d l e n u m b e r , n e e d l e d i a m e t e r , n e e d l e l e n g t h , a n d t o t a l s u r f a c e a r e a ( a p p e n d i x I I ) . T h e r e w e r e n o s i g n i f i c a n t d i f f e r e n c e s ( a t a 9 5 % c o n f i d e n c e l e v e l ) b e t w e e n h e a l t h y a n d d a m a g e d t r e e s f o r t h e 2 5 g s a m p l e s . T h e a p p r o a c h d e s c r i b e d b y A r n o n ( 1 9 4 9) u t i l i z e s k n o w n s p e c i f i c a b s o r p t i o n c o n s t a n t s f o r c h l o r o p h y l l a a n d b a t 6 6 4 nm a n d 6 4 5 nm r e s p e c t i v e l y . T h e s e c o e f f i c i e n t s , t o g e t h e r w i t h s p e c t r a l m e a s u r e m e n t s a t t h e s e t w o w a v e l e n g t h s a r e u s e d t o a r r i v e a t a b s o l u t e c o n c e n t r a t i o n s ( g r a m s p e r l i t e r ) i n t h e s o l u t i o n s . T h e m e t h o d a s s u m e s t h a t c h l o r o p h y l l a a n d b s e p a r a t e w e l l a t t h e s e w a v e l e n g t h s a s s h o w n i n f i g u r e 5 . 1 . 71 700 nm F i g u r e 5.1: L i g h t a b s o r p t i o n by c h l o r o p h y l l a and b - note t h e a b s o r p t i o n peaks a t 645 and 664 nm (from Nyholm e t al. 1975) However, as shown by f i g u r e 5.2, i n l o d g e p o l e p i n e , t h e 645 nm c h l o r o p h y l l b peak i s masked by c h l o r o p h y l l a. T h i s f a c t meant t h a t o n l y r e l a t i v e measures o f c h l o r o p h y l l a and b c o u l d be d e r i v e d from t h i s d a t a s e t . I n s t e a d o f 645 nm, t h e b l u e a b s o r p t i o n peak o f c h l o r o p h y l l b a t 457 nm was measured. The masking e f f e c t o f c h l o r o p h y l l a was not d i s c o v e r e d u n t i l t r e a t m e n t D was i n i t s second l e v e l . The G i l f o r d s p e c t r o p h o t o m e t e r i s d e s i g n e d f o r m u l t i p l e measurements a t s i n g l e w a v e l e n g t h s . The i n s t r u m e n t must be m a n u a l l y c a l i b r a t e d a g a i n s t a s t a n d a r d - - 8 0 % acetone i n t h i s c a s e — f o r each w a v e l e n g t h , and t h u s , does not p r o v i d e t h e u s e r w i t h a c o n v e n i e n t approach t o \" e x p l o r e \" beyond t h e p r e s e l e c t e d w a v e l e n g t h s . As a r e s u l t , o n l y r e l a t i v e measures o f c h l o r o p h y l l a (664 nm) were used i n t h e a n a l y s i s o f t h e 2x2x2x2 f a c t o r i a l 72 e x p e r i m e n t . The r e l a t i v e measures o f c h l o r o p h y l l were a d j u s t e d t o a f i x e d average s u r f a c e a r e a t o remove t h e e f f e c t o f v a r y i n g s u r f a c e a r e a w i t h i n t h e 25 g f r e s h - w e i g h t samples. I n o t h e r words, t h e r e l a t i v e measures o f c h l o r o p h y l l amount ( c h l o r o p h y l l a) were e x p r e s s e d as p e r u n i t a r e a ( i n t h i s c a s e , t h e average t o t a l s u r f a c e a r e a f o r a l l t h e 25 g s a m p l e s ) . 400 450 500 550 600 650 700 750 800 850 nanometers F i g u r e 5.2: Lodgepole p i n e a b s o r p t i o n spectrum - n o t e t h e l a c k o f an a b s o r p t i o n peak a t 645 nm ( d e r i v e d w i t h a Pye Unicam SP 8-100 s c a n n i n g s p e c t r o p h o t o m e t e r ) T a b l e 5.1 summarizes t h e r e s u l t s o f t h e f a c t o r i a l e x p e r i m e n t . 73 T a b l e 5.1: R e s u l t s o f 2x2x2x2 f a c t o r i a l e v a l u a t i o n o f c h l o r o p h y l l F a c t o r V a r i a b l e l e v e l cone A: H E A L T H l e v e l 1 : h e a l t h y l e v e l 2:damaged 0.868a 1 0.803b B: PRESERVATION l e v e l 1:branches l e v e l 2:bagged 0.787b 0.884a C: TIME IN STORAGE l e v e l 1:1 day l e v e l 2:4 days 0.816a 0.854a D: TIME IN SOLUTION l e v e l 1:1-3 days l e v e l 2:8-11 davs 0.943a 0 .727b 1 Means, w i t h i n f a c t o r s , f o l l o w e d by s i g n i f i c a n t l y d i f f e r e n t , P < 0.05 t h e same l e t t e r , not At a 95% c o n f i d e n c e l e v e l t r e a t m e n t s A, B, and D showed s i g n i f i c a n t d i f f e r e n c e s . H e a l t h y (no b e e t l e a t t a c k ) t r e e s had a h i g h e r c h l o r o p h y l l c o n t e n t t h a n s u c c e s s f u l l y a t t a c k e d t r e e s . T h i s was not v i s u a l l y e v i d e n t from t h e appearance o f t h e n e e d l e s . N e e d l e s t h a t were s t o r e d i n s e a l e d p o l y e t h y l e n e bags s u f f e r e d l e s s c h l o r o p h y l l breakdown i n s t o r a g e t h a n n e e d l e s s t o r e d i n t a c t on b r a n c h e s . Acetone e x t r a c t s o f c h l o r o p h y l l t h a t were s t o r e d t h e l o n g e s t had t h e l e a s t amount o f c h l o r o p h y l l . Treatment C showed no s i g n i f i c a n t d i f f e r e n c e . There was no d i f f e r e n c e i n c h l o r o p h y l l c o n t e n t as a r e s u l t o f s t o r a g e t i m e o f t h e n e e d l e s p r i o r t o m a c e r a t i o n . As was mentioned above, measurements a t 457 nm were g a t h e r e d a t t h e second l e v e l f o r t r e a t m e n t D, as w e l l as 53 days 74 l a t e r . F i g u r e 5.3 i l l u s t r a t e s t h e r e l a t i v e amounts o f c h l o r o p h y l l b a t t h e s e two d a t e s . 1.4 1.3 1.2 1.1 r-1 o.g f-0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1b 1b2 9s2 3b I 362 132 9b 9b2 3s2 tree #'s 1.9 = healthy :: 3.10 = attack | 8 -11 days 5 3 - 5 6 days I 10*82 I 10b 10b2 F i g u r e 5.3: R e l a t i v e c h l o r o p h y l l b c o n t e n t f o r h e a l t h y and a t t a c k e d t r e e s a f t e r 2 d i f f e r e n t l e n g t h s o f s o l u t i o n s t o r a g e (average f o r h e a l t h y t r e e s a t 8-11 days = 1.16, average f o r h e a l t h y t r e e s a t 53-56 days = 1.13, average f o r a t t a c k e d t r e e s a t 8-11 days = 0.89, average f o r a t t a c k e d t r e e s a t 53-56 days = 0.88 - see appendix I f o r t h e data) The o b v i o u s o b s e r v a t i o n s from f i g u r e 5.3 a r e t h a t n o n - a t t a c k e d t r e e s c o n t a i n a h i g h e r c o n c e n t r a t i o n o f c h l o r o p h y l l b, and t h a t t h e a d d i t i o n a l 53 days i n s t o r a g e c a u sed a s l i g h t r e d u c t i o n i n t h e c o n c e n t r a t i o n . F i g u r e 5.4 shows how c h l o r o p h y l l a r e a c t e d t o s t o r a g e i n s o l u t i o n . 75 1.2 1.1 > 1 tree #'a 1,9 = healthy :: 3,10 = attack Egggg 1-3 days £SS 8-11 days VZ&k 5 3 - 5 6 days F i g u r e 5.4: R e l a t i v e c h l o r o p h y l l a c o n t e n t f o r h e a l t h y and a t t a c k e d t r e e s a f t e r 3 d i f f e r e n t l e n g t h s o f s o l u t i o n s t o r a g e (average f o r h e a l t h y t r e e s a t 1-3 days = 1.08, average f o r h e a l t h y t r e e s a t 8-11 days = 0.84, average f o r h e a l t h y t r e e s a t 53-56 days = 0.82, average f o r a t t a c k e d t r e e s a t 1-3 days = 0.82, average f o r a t t a c k e d t r e e s a t 8-11 days = 0.67, average f o r a t t a c k e d t r e e s a t 53-56 days = 0.64 - see app e n d i x I f o r t h e data) F i g u r e 5.4 i n c l u d e s b o t h l e v e l s o f t r e a t m e n t D as w e l l as t h e r e s u l t s o f t h e a d d i t i o n a l 53 days i n s t o r a g e . As w i t h c h l o r o p h y l l b, h e a l t h y t r e e s c o n t a i n e d more c h l o r o p h y l l a t h a n a t t a c k e d t r e e s . There was a sha r p r e d u c t i o n i n c h l o r o p h y l l a between l e v e l 1 and 2 o f t r e a t m e n t D, and as w i t h c h l o r o p h y l l b, 53 a d d i t i o n a l days o f s t o r a g e d i d not g r e a t l y reduce t h e amount of. c h l o r o p h y l l a. C h l o r o p h y l l a/b r a t i o s were computed a t l e v e l 2 f o r t r e a t m e n t D, and a r e shown i n f i g u r e 5.5. 76 V > HH-457 DD-457 HH-664 DD-664 HH-A/B DD—A/B HH = HEALTHY, DD=ATTACKED, A/B=664/457 minimum values AVERAGE VALUES V///)i maximum values F i g u r e 5.5: C h l o r o p h y l l r e l a t i o n s h i p s a f t e r 8-11 days i n s o l u t i o n The s u c c e s s f u l l y a t t a c k e d t r e e s had l o w e r a/b r a t i o s , w h i c h shows t h a t c h l o r o p h y l l a b r e a k s down f a s t e r t h a n c h l o r o p h y l l b i n damaged t r e e s . There were no s i g n i f i c a n t 2-, 3-, o r 4 - f a c t o r i n t e r a c t i o n s between t h e main e f f e c t s . The complete s t a t i s t i c a l a n a l y s i s f o r t h e above i s found i n appendix I I I . 5.2 Main E x p e r i m e n t - Te s t S i t e B The l a y o u t o f t h e exp e r i m e n t w i t h f i v e t r e a t m e n t s was u n a v o i d a b l y s e n s i t i v e t o l a t e b e e t l e a c t i v i t y - t r e a t m e n t c a t e g o r i e s B and C assumed no n a t u r a l b e e t l e a c t i v i t y . One t r e e i n t r e a t m e n t B and t h r e e t r e e s i n t r e a t m e n t C were h e a v i l y a t t a c k e d , and as a r e s u l t were removed from a l l f u r t h e r 77 a n a l y s i s . The f u n g a l s p r e a d i n t r e a t m e n t s B and C was complete i n t h a t t h e e n t i r e c i r c u m f e r e n c e s o f t h e t r e e s were c o v e r e d , b u t was not as advanced r a d i a l l y t h r o u g h o u t t h e sapwood as f o r t h e n a t u r a l l y a t t a c k e d t r e e s . 5.2.1 A n a l y s i s o f F o l i a r S a m p l i n g The f i e l d c o l l e c t i o n and subsequent l a b o r a t o r y a n a l y s i s o f n e e d l e samples were p e r f o r m e d w i t h o u t any s i g n i f i c a n t mishaps. T a b l e 5.2 summarizes t h e r e s u l t s o f t h e a n a l y s i s o f t h e f o l i a r samples. T a b l e 5.2: Summary o f f o l i a r a n a l y s i s T r e a t 1 C h i a 5 C h l b N Fe K3 P Ca A 0.106c 2 0.082b 0. 99b 48. 3a 180.4 0. 48a 0. 13a 0. 15b B 0.160a 0.110a 1. •10a 54. 9a 110.8 0. 46a 0. 13a 0. 21a C 0.129b 0.089b 1. 00b 46. 5a 108.7 0. 45a 0. 13a 0. 15b D 0.155a 0.116a 1. 15a 51. 8a 117.1 0. 48a 0. 12a 0. 16b E 0 .103c 0.081b 1. Q2b 53. 9a 171.5 0, 48a 0, 13a 0, 15b 1 Treatment c a t e g o r i e s : A = a t t a c k e d , B = s i m u l a t e d p i t c h - o u t C = s i m u l a t e d a t t a c k s , D=healthy, E = a t t a c k e d & b a i t e d 2 Means w i t h columns f o l l o w e d by t h e same l e t t e r , n o t s i g n i f i c a n t l y d i f f e r e n t , Duncan's M u l t i p l e Range T e s t , P < 0.05 3 N o n - p a r a m e t r i c t e s t 4 S i g n i f i c a n t d i f f e r e n c e s between t r e a t m e n t means, b u t no range t e s t p e r f o r m e d 5 U n i t s : C h l a & Chlb= mg/cm2, N= t o t a l %, Fe= ppm, H 20= p s i , K= t o t a l %, P= t o t a l %, Ca= t o t a l % The f i e l d - d e r i v e d p a r ameter, m o i s t u r e s t a t u s , prompted a r e j e c t i o n o f t h e n u l l h y p o t h e s i s ; hence s i g n i f i c a n t d i f f e r e n c e s e x i s t e d among t h e f i v e t r e a t m e n t means. F i g u r e 5.6 i l l u s t r a t e s t h e r e s u l t s o f t h e l e a f - w a t e r p o t e n t i a l measurements. The average l e a f - w a t e r p o t e n t i a l f o r t r e a t m e n t groups B, C and D i s 78 a p p r o x i m a t e l y -8 b a r s ( t a b l e 5.2 shows w a t e r p o t e n t i a l i n p s i ) . Treatment groups A and E (the s u c c e s s f u l l y a t t a c k e d t r e e s ) showed i n d i v i d u a l t r e e s as low as -20 t o -22 b a r s , and an average o f a p p r o x i m a t e l y -12.5 b a r s . No t r e e s i n t r e a t m e n t groups B, C and D r e a c h e d t h e average f o r t h e s u c c e s s f u l l y a t t a c k e d t r e e s . 20 1 2 3 5 treatment categories ESS based on max values BASED ON AVE V A L U E S ^ 3 based on min values F i g u r e 5.6: L e a f - w a t e r p o t e n t i a l n o r m a l i z e d t o t r e a t m e n t c a t e g o r y 4 (1 = s u c c e s s f u l l y a t t a c k e d t r e e s , 2 = s i m u l a t e d p i t c h - o u t , 3 = s i m u l a t e d s u c c e s s f u l l y a t t a c k e d t r e e s , 5 = s u c c e s s f u l l y a t t a c k e d b a i t e d t r e e s ) . The z e r o - l i n e f o r t r e a t m e n t c a t e g o r y 4 r e p r e s e n t s t h e minimum, maximum, and average v a l u e s The c h l o r o p h y l l a and b assessments b o t h showed s i g n i f i c a n t d i f f e r e n c e s among t h e t r e a t m e n t a v e r a g e s . The h e a l t h y and i n o c u l a t e d t r e e s had s i g n i f i c a n t l y h i g h e r l e v e l s o f c h l o r o p h y l l 79 t h a n t h e o t h e r t r e a t m e n t groups. F i g u r e s 5.7 and 5.8 show t h e r e s u l t s o f t h e c h l o r o p h y l l a n a l y s i s . 10 treatment categories B88a based on min values BASED ON AVE VALUESt??ZI based on max values F i g u r e 5.7: C h l o r o p h y l l a s t a t u s n o r m a l i z e d t o t r e a t m e n t c a t e g o r y 4 (1 = s u c c e s s f u l l y a t t a c k e d t r e e s , 2 = s i m u l a t e d p i t c h - o u t , 3 = s i m u l a t e d s u c c e s s f u l l y a t t a c k e d t r e e s , 5 = s u c c e s s f u l l y a t t a c k e d b a i t e d t r e e s ) . The z e r o - l i n e f o r t r e a t m e n t c a t e g o r y 4 r e p r e s e n t s t h e minimum, maximum, and average v a l u e s 80 10 o a c -10 --20 -30 --40 --50 -60 1 2 3 5 treatment categories based on min value-s BASED ON AVE VALUES0?%1 based on max values F i g u r e 5.8 C h l o r o p h y l l b s t a t u s n o r m a l i z e d t o t r e a t m e n t c a t e g o r y 4 (1 = s u c c e s s f u l l y a t t a c k e d t r e e s , 2 = s i m u l a t e d p i t c h - o u t , 3 = s i m u l a t e d s u c c e s s f u l l y a t t a c k e d t r e e s , 5 = s u c c e s s f u l l y a t t a c k e d b a i t e d t r e e s ) . The z e r o - l i n e f o r t r e a t m e n t c a t e g o r y 4 r e p r e s e n t s t h e minimum, maximum, and average v a l u e s The n i t r o g e n a n a l y s i s showed t h e same t r e n d s as f o r c h l o r o p h y l l b w i t h t h e same two homogeneous s u b s e t s ; t h e h e a l t h y and i n o c u l a t e d t r e e s had s i g n i f i c a n t l y h i g h e r l e v e l s o f n i t r o g e n t h a n t h e o t h e r t h r e e t r e a t m e n t groups. The r e l a t i o n s h i p s between c h l o r o p h y l l a and b (as w e l l as red-edge) and n i t r o g e n a r e i l l u s t r a t e d i n t a b l e 5.3. 81 T a b l e 5.3: F i e l d d a t a c o r r e l a t i o n m a t r i x 1 T R E A T M E N T AKLORO BKLORO N I T R O REDEDGE 2 3 4 5 AKLORO 2 1.0000 BKLORO 3 0.8792 1.0000 N I T R O 4 0.7706 0.7437 1.0000 R E D E D G E 5 0.8324 0.7856 0.7993 1.0000 1 BMDP P:8D The r e s u l t s from t h e r e g r e s s i o n a n a l y s i s f o r c h l o r o p h y l l and n i t r o g e n d a t a a r e shown i n f i g u r e s 5.9 and 5.10 (see appendix IX f o r t h e data) 1.35 1.3 1.25 1.2 1.15 1.1 1.05 1 0.95 0.9 0.85 • • • a m • a a +a • -1 I L J ' • 1_ ' ' I I I L_ 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 chlorophyll a (mg/cm square) • observed data + predicted data 0.22 F i g u r e 5.9: C h l o r o p h y l l a (independent) graphed a g a i n s t n i t r o g e n : y = 0.78083 + 0.20899x R 2 = 0.59377 82 1.35 1.3 1.25 1.2 1.15 1.1 1.05 1 0.95 0.9 0.85 - • • • • D ° D D n 0 0 : ** • • • + + + np 9* a ° a a * % a + u • • • i i i J i i i 1 1 1 1 1 0.04 0.06 0.08 0.1 0.12 0.14 chlorophyll b (mg/cm square) • observed data + predicted data F i g u r e 5.10: C h l o r o p h y l l b (independent) graphed a g a i n s t n i t r o g e n : y = 0.77356 + 2.93087x R 2 = 0.55313 The c a l c i u m a n a l y s i s showed s i g n i f i c a n t l y h i g h e r c o n t e n t s f o r t h e t r e e s i n t h e i n o c u l a t e d t r e a t m e n t group as compared t o t h e o t h e r f o u r t r e a t m e n t s . The n u l l h y p o t h e s i s was not r e j e c t e d f o r b o t h i r o n and phosphorous; hence, t h e f i v e t r e a t m e n t s had no d i s c e r n a b l e e f f e c t on t h e c o n c e n t r a t i o n s . The complete a n a l y s i s f o r t h e f o l i a r samples can be found i n a p p e n d i c e s IV and IX. 5.2.2 A n a l y s i s o f F i e l d S p e c t r a l Data The s q u a r e s o f t h e m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t s (R 2) f o r t h e f i f t h o r d e r p o l y n o m i a l s were v e r y h i g h . No m u l t i p l e R 2 was l o w e r t h a n 0.99. The s i m p l e v e r i f i c a t i o n o f t h e s m a l l s i g n i f i c a n c e o f canopy s t r u c t u r e and morphology on waveform a n a l y s i s based on branc h e s and d e t a c h e d n e e d l e s from an i n d i v i d u a l t r e e i s i l l u s t r a t e d i n f i g u r e 5.11. The n o r m a l i z e d 83 r e s u l t c l e a r l y i n d i c a t e d t h a t t h e c u r v e d i d not s h i f t between t h e b r a n c h e s and t h e d e t a c h e d n e e d l e s . wavelength (nm) Q needles — branch 1 — branch 2 F i g u r e 5.11: N o r m a l i z e d r e f l e c t a n c e c u r v e s f o r two br a n c h e s and a s e t o f d e t a c h e d n e e d l e s from an i n d i v i d u a l h e a l t h y p i n e F i g u r e 5.12 shows n o r m a l i z e d c u r v e s f o r h e a l t h y and s u c c e s s f u l a t t a c k e d t r e e s . T h i s f i g u r e i l l u s t r a t e s t h e outcome o f t h e a n a l y s i s o f v a r i a n c e f o r t h e f i v e t r e a t m e n t s ; t h e n u l l h y p o t h e s i s was r e j e c t e d - s i g n i f i c a n t d i f f e r e n c e s e x i s t e d between t h e averages o f red-edge p o s i t i o n s f o r t h e f i v e t r e a t m e n t s . 84 480 530 580 630 660 730 780 830 wavelength (nm) • attock + attack o attack healthy F i g u r e 5.12: N o r m a l i z e d r e f l e c t a n c e c u r v e s f o r h e a l t h y and s u c c e s s f u l l y a t t a c k e d t r e e s T a b l e 5.4 i l l u s t r a t e s t h e r e s u l t s o f t h e f i e l d s p e c t r o s c o p y s t u d y . T a b l e 5.4: Summary o f f i e l d s p e c t r o s c o p y T r e a t 1 Red-edge 4 A F S 3 800/680 BFS 550/680 CFS 800/550 LogAFS 3 A 7 1 0 . 5 c 2 6.98 1.71a 4.04a 0.83a B 713.8ab 7.12 1.68a 4.18a 0.83a C 712.4bc 8.66 1.92a 4.33a 0.90a D 715.6a 7.33 1.71a 4.27a 0.85a E 710.5c 7.44 1.68a 4.38a 0.85a 1 Treatment c a t e g o r i e s : A = a t t a c k e d , B = s i m u l a t e d p i t c h - o u t C = s i m u l a t e d a t t a c k s , D=healthy, E = a t t a c k e d & b a i t e d 2 Means w i t h columns f o l l o w e d by t h e same l e t t e r , not s i g n i f i c a n t l y d i f f e r e n t , Duncan's M u l t i p l e Range T e s t , P < 0.05 3 Non-homogeneous v a r i a n c e s f o r AFS, LogAFS t e s t e d non-s i g n i f i c a n t i n B a r t l e t t t e s t 4 U n i t : nm The h e a l t h y t r e e s had h i g h e r red-edge v a l u e s (average o f 715 nm) t h a n t h o s e o f t h e s u c c e s s f u l l y a t t a c k e d t r e e s (average o 8 5 710.5 nm). The t e s t o f r a t i o s showed no s i g n i f i c a n t d i f f e r e n c e s f o r 800/680, 550/680, and 800/550. F i g u r e s 5.13 and 5.14 i l l u s t r a t e t h e r e g r e s s i o n a n a l y s i s f o r red-edge and c h l o r o p h y l l (see appendix I X f o r t h e d a t a ) . o 0.23 0.22 0.21 0.2 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.04 • a ft •m no a + + ^ & ft, a + ° • a •• • • LJ 1_ J I I L. ' ' ' 1 I I 1-701 703 705 707 709 711 713 715 717 719 721 red—edge (nm) • observed data + predicted data F i g u r e 5.13 Red-edge (independent) graphed a g a i n s t c h l o r o p h y l l a: y = -5.76894 + 0.008278x R 2 = 0.69295 86 E E 0.16 0.15 0.14 0.13 0.12 0.1 1 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 -a a a -a _ o J . + — -• • • + o • o a • a • D • • a •a + 1 1 1 • i i i i i i i i i i i i i i i i 701 703 705 707 709 711 713 715 717 719 721 red-edge (nm) • observed data + predicted data F i g u r e 5.14: Red-edge (independent) graphed a g a i n s t c h l o r o p h y l l b: y = -3.75205 + 0.005399x R 2 = 0.61712 The complete a n a l y s i s f o r t h e s p e c t r a l measurements i s found i n ap p e n d i c e s V and IX. Normal c o l o r and c o l o r - i n f r a r e d v i e w s o f 5 c a n o p i e s (one from each t r e a t m e n t c a t e g o r y ) a r e found i n a ppendix V I . 5.2.3 D e n s i t o m e t r y The s t a t i s t i c a l a n a l y s i s o f t h e d e n s i t o m e t r i c d a t a showed t h a t t h e n u l l h y p o t h e s i s c o u l d not be r e j e c t e d f o r a l l s i x t e s t r a t i o c a t e g o r i e s ; t h e r e were no s i g n i f i c a n t d i f f e r e n c e s among t h e f i v e t r e a t m e n t means f o r t h e YC, MC, YM, TGR, TGIR, and TRIR d e n s i t y r a t i o s . The r e s u l t s a r e summarized i n t a b l e 5.5. 87 T a b l e 5.5: Summary of d e n s i t o m e t r y T r e a t 1 YC MC YM TGR TGIR TRIR A 3.29a 2 2.04a 1.64a 1.71a •7.04a 4.15a B 3.53a 2.29a 1.55a 1.66a 7.54a 4.56a C 3.56a 2.18a 1.65a 1.74a 7.57a 4.38a D 3.34a 2.22a 1.51a 1.62a 7.16a 4.44a E 3.40a 2.16a 1.59a 1. 68a 7.28a 4.35a 1 Treatment c a t e g o r i e s : A = a t t a c k e d , B = s i m u l a t e d p i t c h - o u t C = s i m u l a t e d a t t a c k s , D= h e a l t h y , E= a t t a c k e d & b a i t e d 2 Means w i t h columns f o l l o w e d by t h e : same l e t t e r , n o t s i g n i f i c a n t l y d i f f e r e n t , P < 0.05 The complete s t a t i s t i c a l a n a l y s i s i s found i n a ppendix V I I 5.2.4 V i s u a l Photo I n t e r p r e t a t i o n The s l i g h t l y enhanced ( I R - c o l o r b a l a n c e o f 31) 1:1,400 s c a l e p h otographs were c o r r e c t l y exposed (the c h a r a c t e r i s t i c c u r v e s o f t h e f i l m , d e r i v e d from t h e p r e - e x p o s e d s t e p wedge a r e found i n appendix X ) . T a b l e 5.6 i l l u s t r a t e s t h e p r e s e n c e o f t h e v a r i e g a t e d magenta c o n d i t i o n (based on s t e r e o s c o p i c e x a m i n a t i o n ) among t h e 71 t r e e s i n t h e 5 t r e a t m e n t c a t e g o r i e s . T a b l e 5.6: VM p r e s e n c e TREATMENT STATUS A: 8 (5 n o r m a l 1 ) o f 15 t r e e s (53 %) : s u c c e s s f u l l y a t t a c k e d t r e e s B: 11 (6 normal) o f 14 t r e e s (79 %) : s i m u l a t e d p i t c h - o u t C: 8 (2 normal) o f 11 t r e e s (73 %) : s i m u l a t e d s u c c e s s f u l l y a t t a c k e d t r e e s D: 11 (4 normal) o f 15 t r e e s (73 %) : h e a l t h y , non-a t t a c k e d t r e e s E: 10 (3 normal) o f 15 t r e e s (67 %) : s u c c e s s f u l l y a t t a c k e d b a i t e d t r e e s t h e normal t r e e s a r e shown i n b r a c k e t s 88 Table 5.7 shows the a c t u a l c l a s s i f i c a t i o n r e s u l t s f o r the 5 treatment c a t e g o r i e s . Table 5.7: C l a s s i f i c a t i o n c a t e g o r i e s f o r the 5 treatment c a t e g o r i e s based on 1:1,400 s c a l e c o l o r - i n f r a r e d photographs Treatment A Treatment B Treatment C s u c c e s s f u l l y a t t a c k e d s i m u l a t e d p i t c h - o u t s i m u l a t e d s u c c e s s f u l l y t r e e s a t t a c k e d t r e e s 1 HIOb-H 16 Ob-H/IIIX 31 Ob-H/IIIX 2 VM 17 VM 32 VM/IIIX 3 VM 18 IIIOb-H 33 VM/IIIX 4 VM/IIIX 19 VM PINK 34 VM/IIIX 5 IIIOb-H 20 VM/IIIX 35 VM/IIE 6 VM 21 VM 36 VM 7 Ob-H/IIIX 23 VM/Ob 37 Ob/IIIX 8 VM/IIIOb 24 VM 38 Oa PINK 9 VM/IIE 25 VM/IIIOb 39 VM 10 IIIOb-H 26 VM 40 VM/IIIX 11 VM 27 VM/IIIOb PINK 41 VM/IIIX 12 VM 28 VM/IIE 42 VM/IIIOb 13 IIIOb-H 29 IIIOb-H 14 Ob-H/IIIX 30 VM 15 PINK Treatment D Treatment E h e a l t h y , s u c c e s s f u l l y non-attacked a t t a c k e d t r e e s b a i t e d t r e e s 46 IIIOb-H 61 IIIOb-H 47 IIIOb-H 62 IIIOb-H/IIIX 48 VM/IIIX 63 IIIOb-H PINK 49 VM/IHOa 64 IIIOa-T 50 VM 65 VM IIIOb-H PINK 51 VM 66 VM/IIIX 52 I I I O b / I I I X / I I E 67 VM 53 VM/IIIOb/IIIX 68 VM/IIIX 54 VM/IIIOb 69 VM/IIIOa 55 VM//IIIOa/IIIX 70 VM 56 VM/IHOa 71 VM/IIIX 57 VM/IIIOb 72 IIIOa-T 58 VM 73 VM 59 VM 74 VM/IIE 60 IIIOa-T/IIIX 75 VM/IIIX 89 5.2.5 MEIS-II a n a l y s i s The computed c o r r e l a t i o n matrix f o r the 8 MEIS channels y i e l d e d t h a t the channel centered at 521 nm (the 8 channels w i l l h e r e i n a f t e r be named a f t e r t h e i r center wavelength) was h i g h l y c o r r e l a t e d w i t h channel 550. As a consequence, channel 521 was used i n a r a t i o w i t h the other 7 channels. Channel 521 was r a t i o e d w i t h channel 550. Table 5.8 shows the c o r r e l a t i o n m a t r i x . Table 5.8: M u l t i p l e c o r r e l a t i o n matrix f o r MEIS 1 CHANNEL 445 521 550 590 673 687 871 1021 445 1.000 521 0.849 1.000 550 0.796 0.967 1.000 590 0.861 0.947 0.967 1.000 673 0.893 0.819 0.781 0.894 1.000 687 0.251 0.206 0.215 0.215 0.239 1.000 871 0.279 0.519 0.583 0.438 0.210 0.223 1.000 1021 0.328 0.473 0.532 0.426 0.267 0.091 0.896 1.000 1 BMDP P:8D Figur e 5.15 i s a normal c o l o r r e n d i t i o n of 3 MEIS channels of Test S i t e B. Figure 5.16 shows the same channel assignment w i t h each treatment t r e e i n order, i n c l u d i n g the immediate surroundings. F i n a l l y , f i g u r e 5.17 shows the same t r e e s a f t e r the graphic masks have been a p p l i e d t o s i n g l e out the i l l u m i n a t e d p o r t i o n of each t r e e canopy. 90 F i g u r e 5.15: T e s t S i t e B ( M E I S c h a n n e l s 673, 550, a n d 445 a s RGB) F i g u r e 5.16: Treatment c a n o p i e s (MEIS c h a n n e l s 673, 550, and 445 as RGB) - row 1= t r e a t m e n t A (column 1= t r e e #1), row 2= t r e a t m e n t B (column 1= t r e e #16) , row 3= t r e a t m e n t C (column 1= t r e e #31), row 4= t r e a t m e n t D (column 1= t r e e #46), row 5= t r e a t m e n t E (column 1= t r e e #61) 91 F i g u r e 5.17: I l l u m i n a t e d t r e a t m e n t c a n o p i e s (MEIS c h a n n e l s 871, 673, and 550 as RGB) - row 1= t r e a t m e n t A (column 1= t r e e #1), row 2= t r e a t m e n t B (column 1= t r e e #16), row 3= t r e a t m e n t C (column 1= t r e e #31) , row 4= t r e a t m e n t D (column 1= t r e e #4 6 ) , row 5= t r e a t m e n t E (column 1= t r e e #61) The a n a l y s i s o f v a r i a n c e f o r t h e 8 r a t i o s , f o r t h e 71 t r e e s , y i e l d e d t h a t t h e n u l l h y p o t h e s i s c o u l d not be r e j e c t e d f o r t h e f o l l o w i n g c h a n n e l s : 445, 521, 550, 673, 687, and 1021. The f i v e t r e a t m e n t s d i d produce s i g n i f i c a n t l y d i f f e r e n t measurements w i t h t h e MEIS scanne r f o r c h a n n e l s 590 and 871. A Duncan's t e s t (at 5% p r o b a b i l i t y l e v e l ) f o r c h a n n e l 590 y i e l d e d two homogeneous s u b s e t s o f t r e a t m e n t s a v e r a g e s . The same t e s t f o r c h a n n e l 871 a l s o produced two homogeneous s u b s e t s . T a b l e 5.9 i l l u s t r a t e s t h e a n a l y s i s o f t h e MEIS d a t a . 92 T a b l e 5.9: Summary o f MEIS d a t a a n a l y s i s T r e a t #445^ #521 #550 #590 #673 3 #687 3 #871 #1021 A 0.97a 2 1.41a 0.71a 1.23ab 0.82a 0.65a 1.94b 1.95a B 1.03a 1.40a 0.72a 1.23ab 0.81a 0.60a 2.09ab 2.16a C 1.00a 1.37a 0.73a 1.27a 0.86a 0.63a 2.18a 2.18a D 1.02a 1.40a 0.71a 1.20b 0.78a 0.65a 2.15a 2.18a E 1.00a 1.38a 0.72a 1.24ab 0.80a 0.77a 2.19a 2.16a Treatment c a t e g o r i e s : A = a t t a c k e d , B = s i m u l a t e d p i t c h - o u t C = s i m u l a t e d a t t a c k s , D=healthy, E = a t t a c k e d & b a i t e d Means w i t h columns f o l l o w e d by t h e same l e t t e r , not s i g n i f i c a n t l y d i f f e r e n t , Duncan's M u l t i p l e Range T e s t , P < 0.05 N o n - p a r a m e t r i c t e s t F i g u r e 5.18 shows t h e t r e a t m e n t averages f o r c h a n n e l s 590 and 871. 2.4 treatment categories BgOjXj ratio channel 590 ratio channel 871 F i g u r e 5.18: Treatment averages f o r c h a n n e l s 590 (590/521) and 871 (871/521) The complete s t a t i s t i c a l t e s t s f o r t h e MEIS d a t a a r e found i n appendix V I I I . 93 Chapter 6 D i s c u s s i o n o f R e s u l t s One o f t h e s t a t e d o b j e c t i v e s o f t h i s r e s e a r c h was t o g e t an i n d i c a t i o n o f t h e n a t u r a l v a r i a b i l i t y i n t h e t r e e r e s p o n s e f o l l o w i n g s u c c e s s f u l a t t a c k s . The s t u d y c l e a r l y shows some p r o m i s i n g avenues, but a t t h e same t i m e i l l u s t r a t e s t h a t t h e r e i s no f o o l - p r o o f way t o p e r f o r m e a r l y d e t e c t i o n . There i s a s t r o n g s u g g e s t i o n i n t h e d a t a t h a t t h e t i m i n g o f t h e s u r v e y i s c r u c i a l , but t h e o p t i m a l t i m e cannot r e a d i l y be d e t e r m i n e d . The i n h e r e n t v a r i a b i l i t y i n t h e b i o l o g y o f t h e i n s e c t and i t s e f f e c t on canopy r e f l e c t a n c e s t i p u l a t e a f l y i n g d a t e as l a t e as p o s s i b l e i n t h e f a l l . However, equipment a v a i l a b i l i t y , t h e o n s et o f low sun a n g l e s and bad weather s t i p u l a t e an e a r l y , f l e x i b l e d a t e . I t i s t e m p t i n g t o i g n o r e t h e s e p r a c t i c a l i s s u e s i n v i e w o f t h e e x p e r i m e n t a l r e s u l t s t h a t show t h a t h e a l t h y t r e e s a r e g e n e r a l l y s p e c t r a l l y d i f f e r e n t t h a n s u c c e s s f u l l y a t t a c k e d t r e e s . The d i s c u s s i o n t h a t f o l l o w s w i l l f i r s t d e a l w i t h t h e s p e c i f i c s o f t h e s t u d y r e s u l t s and s e c o n d l y w i t h t h e p r a c t i c a l m a n a g e r i a l i m p l i c a t i o n s . 6.1 I n i t i a l C h l o r o p h y l l Study The f a i l u r e t o use a b s o r p t i o n measurements a t 645 nm t o q u a n t i f y c h l o r o p h y l l b i s most l i k e l y due t o a masking e f f e c t o f t h e c h l o r o p h y l l a a b s o r p t i o n band. F o r t h e purpose o f t h i s s t u d y , t h e s w i t c h t o measurements a t 457 nm was adequate. Demetriades-Shah e t al. (1990) p o i n t out t h e p o s s i b l e use o f 94 d e r i v a t i v e m e t h o d s ( s i m i l a r t o t h o s e u s e d i n n a r r o w - b a n d r e m o t e s e n s i n g ) t o b e t t e r q u a n t i f y c h l o r o p h y l l a a n d b l e v e l s . T h i s a p p r o a c h w o u l d n e c e s s i t a t e t h e u s e o f a s c a n n i n g s p e c t r o p h o t o m e t e r . T h e f a c t t h a t m e a s u r e d f o l i a g e c h a r a c t e r i s t i c s , o t h e r t h a n c h l o r o p h y l l , d i d n o t d i f f e r f r o m h e a l t h y t o s u c c e s s f u l l y a t t a c k e d t r e e s c o r r e s p o n d s w e l l w i t h t h e a c c e p t e d c o n c e p t i o n t h a t b a r k b e e t l e s d o n o t u s e f o l i a g e c h a r a c t e r i s t i c s a s c r i t e r i a f o r a t t a c k . T h e h e a l t h y t r e e s i n t h i s s t u d y w o u l d p r o b a b l y h a v e s u c c u m b e d t o t h e b e e t l e s i n t h e n e x t f e w y e a r s h a d t h e y n o t b e e n f e l l e d . T h e s l i g h t l y h i g h e r n u m b e r o f n e e d l e s ( a l t h o u g h n o n -s i g n i f i c a n t ) i n t h e d a m a g e d f r e s h - w e i g h t s a m p l e s w a s m o s t p r o b a b l y d u e t o l o w e r m o i s t u r e c o n t e n t a s a r e s u l t o f t h e a t t a c k s . T h i s s t u d y s u c c e e d e d t o s h o w t h a t , a l t h o u g h l o d g e p o l e p i n e f o l i a g e s h o w s n o v i s u a l s i g n s o f d a m a g e f o r s e v e r a l m o n t h s f o l l o w i n g s u c c e s s f u l a t t a c k s , c h l o r o p h y l l c o n t e n t d o e s i n d e e d d e c r e a s e s i g n i f i c a n t l y — a n i m p o r t a n t p r e r e q u i s i t e f o r t h e m a i n s t u d y d i s c u s s e d b e l o w . S i n c e t h e o n s e t o f d o r m a n c y c o m e s r e l a t i v e l y e a r l y a t t h i s B r i t i s h C o l u m b i a i n t e r i o r l o c a t i o n ( c o n s i s t e n t b e l o w f r e e z i n g t e m p e r a t u r e s d i d o c c u r t o w a r d s t h e e n d o f S e p t e m b e r ) , t h e d e t e c t e d d i f f e r e n c e s b e t w e e n h e a l t h y a n d s u c c e s s f u l l y a t t a c k e d t r e e s w e r e m o s t l i k e l y i n p l a c e s e v e r a l m o n t h s b e f o r e t h e m e a s u r e m e n t s w e r e m a d e . T h e r e s e a r c h n e e d e d t o f u l l y u n d e r s t a n d t h e s p e c t r a l c h a r a c t e r i s t i c s o f l o d g e p o l e p i n e u n d e r v a r i o u s c o n d i t i o n s 95 n e c e s s i t a t e s f i e l d s p e c t r o s c o p y ( r e f l e c t a n c e ) d a t a and c h l o r o p h y l l e v a l u a t i o n s . However, f i e l d e x p e r i m e n t s i n remote a r e a s a r e o f t e n c o n s t r a i n e d by f a c t o r s such as a c c e s s , t i m i n g and weather. S p e c t r o s c o p y s h o u l d p r e f e r a b l y be p e r f o r m e d i n -s i t u , and i n t h e case o f mountain p i n e b e e t l e , i t cannot be done u n t i l t h e f a l l i n t h e y e a r o f t h e a t t a c k . I n - s i t u measurements a r e q u i t e f e a s i b l e f o r a g r i c u l t u r a l a s s essments, but a r e v e r y i m p r a c t i c a l when mature c o n i f e r s a r e i n v o l v e d . The o b j e c t i v e d u r i n g f i e l d s p e c t r o s c o p y i s t o a s s e s s p l a n t r e f l e c t a n c e i n a f a s h i o n t h a t r e s e m b l e s t h e geometry o f an a i r - o r spaceborne s e n s o r approach. T h i s i d e a l l y c a l l s f o r t h e placement o f t h e r a d i o m e t e r above t h e canopy. W h i l e t h i s may be done f o r a few t r e e s (at g r e a t expense and e f f o r t ) , i t i s h i g h l y u n f e a s i b l e f o r a more e l a b o r a t e s t u d y i n v o l v i n g many t r e e s . I n r e s p o n s e t o t h i s p r a c t i c a l problem, r a d i o m e t e r s have been d e s i g n e d w i t h o p t i c s t h a t a r e t o be aimed from t h e ground up i n t o t h e canopy. U n f o r t u n a t e l y , t h i s i s not adequate f o r l o d g e p o l e p i n e as t h e b r a n c h e s have a v e r y s p e c i f i c upward arrangement i n t h e upper p o r t i o n s o f t h e canopy. W i t h t h i s i n mind, compromises may have t o be made w i t h r e g a r d t o t h e i n - s i t u r e q u i r e m e n t . The t r e e s must be f e l l e d f o r p r o p e r a c c e s s t o t h e upper canopy and subsequent a n a l y s i s i f t h e o b j e c t i s a canopy assessment and not j u s t i n d i v i d u a l b r a n c h e s . T h i s o b v i o u s l y means t h a t s t o r a g e t i m e may p l a y a r o l e i n a c h i e v i n g r e l i a b l e r e s u l t s from t h e a n a l y s e s . I f t h e weather c o - o p e r a t e s ( r e l a t i v e l y c l o u d - f r e e o r h i g h o v e r c a s t ) , t h i s s t o r a g e t i m e can be v e r y s h o r t as t h e 96 s p e c t r a l d a t a can i m m e d i a t e l y be a c q u i r e d and samples can be s e n t away f o r c h l o r o p h y l l a n a l y s i s . However, as i s o f t e n t h e case w i t h f i e l d s p e c t r o s c o p y , samples may have t o be s t o r e d i n w a i t o f adequate l i g h t i n g c o n d i t i o n s ( u n l e s s , o f c o u r s e , a f i e l d l a b o r a t o r y w i t h an a r t i f i c i a l l i g h t s o u r c e i s u s e d ) . I n any e v e n t , t h e r e i s always some p e r i o d o f s t o r a g e i n v o l v e d f o r c h l o r o p h y l l a n a l y s i s . W i t h t h e p r e c e d i n g p a r a g r a p h i n mind, t h e r e s u l t s from t h i s s t u d y r e g a r d i n g s t o r a g e a r e e n c o u r a g i n g . The r e s u l t s c l e a r l y i n d i c a t e t h a t f o l i a g e can be s t o r e d ( c o o l and dark) f o r a few days w i t h o u t a s i g n i f i c a n t l o s s o f c h l o r o p h y l l . The f a c t t h a t bagged n e e d l e s s u f f e r l e s s c h l o r o p h y l l l o s s t h a n n e e d l e s s t i l l i n t a c t on t h e b r a n c h e s (and b o t t l e d ) i s i m p o r t a n t from a p r a c t i c a l s t a n d p o i n t s i n c e bagged n e e d l e s a r e e a s i e r t o h a n d l e i n a f i e l d s i t u a t i o n . The r e a s o n f o r t h i s d i f f e r e n c e i s most l i k e l y due t o t h e f a c t t h a t bagged ( s e a l e d ) n e e d l e s were d e p r i v e d o f oxygen, t h u s a b e t t e r r e d u c t i o n o f r e s p i r a t i o n was a c h i e v e d t h a n compared t o t h e b o t t l e d samples w h i c h had an u n l i m i t e d s u p p l y o f oxygen. The f a c t t h a t bagged n e e d l e s s t o r e w e l l f o r a few days c o r r e s p o n d s w e l l w i t h a s i m i l a r s t u d y i n w h i c h w h i t e oak (Quercus alba) l e a v e s were s t u d i e d (broad-band r e f l e c t a n c e measurements were used i n p l a c e o f a c e t o n e e x t r a c t c h l o r o p h y l l a n a l y s i s ) ( L a b o v i t z et al. 1984). The r a t h e r d r a s t i c d e c r e a s e i n c h l o r o p h y l l between l e v e l 1 and 2 o f t r e a t m e n t D may be a t t r i b u t e d t o t h e t e m p e r a t u r e a t w h i c h t h e samples were s t o r e d (0 t o 5 ° C ) . The a d d i t i o n a l 53 days o f s t o r a g e o f t h e 97 solutions at -20° C without an appreciable amount of pigment destruction strongly suggests that the destruction between l e v e l 1 and 2 of treatment D could, at least p a r t i a l l y , have been avoided with lower storage temperatures (the freezing point of acetone i s -95° C). Chlorophyll a/b r a t i o s are indicators of the r e l a t i v e rate of breakdown for the two types of pigments. The reduction of the a/b r a t i o for successfully attacked trees i s p e r f e c t l y i n l i n e with the knowledge that chlorophyll a i s destroyed more rapidly than chlorophyll b i n water-stressed fo l i a g e (Kramer and Kozlowski 1979). Thus, a/b r a t i o s are good stress i n d i c a t o r s . The objective for chlorophyll analysis i n conjunction with spectral data (where stress i s suspected) i s to determine i f measured differences i n radiances are due to more or less chlorophyll, or to determine i f a reduction i n chlorophyll r e s u l t s i n a detectable increase i n v i s u a l reflectance. Hence, for the purpose of c o r r e l a t i n g remotely sensed data with pigment concentration, r e l a t i v e measures (as were used i n t h i s study) of chlorophyll (based on surface area) are p e r f e c t l y adequate. For comparative reasons, however, absolute numbers are preferable. Although the use of a f a c t o r i a l design was very e f f i c i e n t for the purpose of t h i s study, some caution should be expressed about some po t e n t i a l problems. For l o g i s t i c a l reasons, the number of experimental units are often quite low. This may lead to problems i n t e s t i n g the s i g n i f i c a n c e of possible i n t e r a c t i o n s . The number chosen for the r e p l i c a t i o n s for each 98 main e f f e c t c o m b i n a t i o n was a compromise t o a c h i e v e a c c e p t a b l e d egrees o f freedom f o r t h e e r r o r t e r m and s i m u l t a n e o u s l y keep t h e f i e l d and l a b o r a t o r y work w i t h i n a r e a s o n a b l e e f f o r t . I n v i e w o f t h e c o m p l e x i t y o f i n t e r p r e t i n g i n t e r a c t i o n s between main e f f e c t s (the chosen d e s i g n had 6 p o s s i b l e f i r s t - o r d e r i n t e r a c t i o n s , 4 s e c o n d - o r d e r , and 1 t h i r d - o r d e r ) , i t was f o r t u n a t e t h a t t h e s t a t i s t i c a l t e s t s d i d n o t i n d i c a t e any such s i g n i f i c a n t i n t e r a c t i o n s . However, due t o t h e n a t u r e o f t h e main e f f e c t s , i n t e r d e p e n d e n c e was n o t e x p e c t e d ; hence t h e r e s u l t s f o l l o w e d l o g i c . 6 . 2 Main E x p e r i m e n t - T e s t S i t e B A f t e r t h e a n a l y s i s o f t h e r e s u l t s i t has become e v i d e n t t h a t a s t u d y o f t h i s n a t u r e would b e n e f i t from an e x p a n s i o n o f t h e e x p e r i m e n t a l scope t o i n c l u d e m u l t i p l e s t u d y s i t e s and m u l t i p l e a n a l y s i s d a t e s . However, t h i s s t u d y forms a b a s i s from w h i c h f u r t h e r r e s e a r c h e n d eavors can p r o c e e d . The work c l e a r l y f l a g s some q u e s t i o n s about p r e v i o u s work on e a r l y d e t e c t i o n , and h i g h l i g h t s some o f t h e f a c t s and dilemmas t h a t w i l l make e a r l y d e t e c t i o n e x t r e m e l y d i f f i c u l t t o implement o p e r a t i o n a l l y . The f a c t t h a t some t r e e s i n t h e e x p e r i m e n t a l l a y o u t were a c c i d e n t a l l y a t t a c k e d had no s e r i o u s impact on t h e r e s u l t s s i n c e t h e y were dropped from t h e a n a l y s i s . However, t h e s i t u a t i o n c o u l d have been worse - t h e r e was no way t o s e c u r e t h a t some o r a l l o f t h e t r e a t m e n t t r e e s would n ot be a t t a c k e d , s h o r t o f h a v i n g a much l a r g e r t e s t s i t e t h a t w o u l d have p e r m i t t e d t r e e 99 p r o t e c t i o n t h r o u g h m a s s i v e t r e e b a i t i n g . T h e a r t i f i c i a l d a m a g e c a t e g o r i e s , t r e a t m e n t B a n d C , a l t h o u g h d r a s t i c i n n a t u r e , w e r e n o t a s d e s t r u c t i v e t o t h e t r e e s a s t h e b e e t l e s . T h e r e a s o n f o r t h i s w a s m o s t l i k e l y d u e t o a s l o w e r s p r e a d o f t h e f u n g i t h a n i n n a t u r a l l y a t t a c k e d t r e e s . T r e a t m e n t B s e r v e d t h e r o l e o f s i m u l a t i n g a p i t c h - o u t s i t u a t i o n , a n d p r o b a b l y p l a y e d t h a t r o l e q u i t e w e l l . T h e e f f e c t s o n t h e t r e e s w e r e m a r g i n a l a t t h e t i m e o f a s s e s s m e n t . H o w e v e r , s o m e t r e e s t h a t m a n a g e t o p i t c h o u t t h e b e e t l e s w i l l e v e n t u a l l y s h o w s i g n s o f t h e a t t a c k s d u e t o t h e p r e s e n c e o f s o m e f u n g i t h a t w i l l s p r e a d , a l b e i t s l o w l y . T h i s w i l l u n d o u b t e d l y w e a k e n t h e d e f e n c e c a p a b i l i t y o f t h e s e t r e e s f o r r e n e w e d a t t a c k s i n s u b s e q u e n t y e a r s . T h e i n t e n t w i t h t r e a t m e n t C w a s t o s i m u l a t e a s u c c e s s f u l a t t a c k , b u t i t i s q u i t e c l e a r f r o m t h e r e s u l t s t h a t t h e s i m u l a t i o n w a s n o t a d e q u a t e . T h e r e a s o n f o r t h e i n a d e q u a c y i s m o s t l i k e l y t h e c o n c e n t r a t i o n o f i n o c u l a t i o n s . T r e a t m e n t D r e c e i v e d s i x i n o c u l a t i o n s a t o n e s p e c i f i c h e i g h t o n t h e t r e e , w h i l e a s u c c e s s f u l l y a t t a c k e d t r e e r e c e i v e s n u m e r o u s i n o c u l a t i o n s a t t h e t i m e o f a t t a c k . F u r t h e r , i n a n a t u r a l s i t u a t i o n , t h e f u n g i i s f u r t h e r s p r e a d a r o u n d t h e c i r c u m f e r e n c e o f t h e s t e m b y t h e l a r v a l f e e d i n g . T h e s t a t e d i n a d e q u a c y s t r o n g l y i l l u s t r a t e s t h e s e v e r i t y o f a n a t u r a l a t t a c k o n a p e r f e c t l y h e a l t h y t r e e . T r e a t m e n t s A a n d E a r e b a s i c a l l y t h e s a m e , a s i s c l e a r l y e v i d e n t b y t h e r e s u l t s . T h e b a i t i n g w a s p u t i n p l a c e t o g u a r a n t e e t h a t a g r o u p o f t r e e s w o u l d b e a t t a c k e d , t h u s e n s u r i n g s u c c e s s o f t h e e x p e r i m e n t a l d e s i g n . I t w a s p o s s i b l e t h a t t h e a t t a c k s i n t h e a r e a f o r t h e p a r t i c u l a r 1 0 0 . f l i g h t s e a s o n w o u l d h a v e b e e n m i n i m a l . T h i s w o u l d c l e a r l y h a v e p u t t h e s t u d y i n j e o p a r d y . 6 . 2 . 1 F o l i a r S a m p l i n g A s h a d a l r e a d y b e e n s u g g e s t e d b y t h e p r e l i m i n a r y s t u d y a t T e s t S i t e A , s u c c e s s f u l l y a t t a c k e d t r e e s e x h i b i t i n t e r n a l c h a n g e s i n t h e f o l i a g e . T h e x y l e m w a t e r p o t e n t i a l , a s m e a s u r e d b y t h e p r e s s u r e c h a m b e r , d e s c r i b e s t h e n e g a t i v e p r e s s u r e w i t h i n a p l a n t . I f t h i s q u a n t i t y i s m e a s u r e d w i t h c a r e , i t i s a n e x c e l l e n t c o m p a r a t i v e t o o l f o r p l a n t m o i s t u r e s t r e s s b e t w e e n p l a n t s . S i n c e t h e t r e e s i n t h i s s t u d y w e r e a s s e s s e d i n t h e p r e -d a w n h o u r s w i t h i n a v e r y s h o r t t i m e a f t e r t r e e - f e l l i n g w i t h m u l t i p l e m e a s u r e m e n t s f o r e a c h t r e e , t h e r e s u l t s s h o u l d b e c o n s i d e r e d r e l i a b l e . T h e d i u r n a l c y c l e o f t h e x y l e m w a t e r p o t e n t i a l c r e a t e s s o m e l o g i s t i c p r o b l e m s f o r t h i s k i n d o f r e s e a r c h . G r a p h C i n f i g u r e 6 . 1 i l l u s t r a t e s t h e g e n e r a l n a t u r e o f p l a n t m o i s t u r e s t r e s s w h e n s o i l m o i s t u r e i s n o t l i m i t e d . T h e g r a p h c l e a r l y s h o w s t h e a d v a n t a g e o f p r e - d a w n m e a s u r e m e n t s . W h i l e i t w o u l d h a v e b e e n a l o t m o r e c o n v e n i e n t a n d s a f e r t o d o t h e t r e e - f e l l i n g d u r i n g t h e d a y , t h e g r a p h i l l u s t r a t e s t h e p r o b l e m o f r a p i d l y c h a n g i n g m o i s t u r e s t a t u s d u r i n g t h e d a y . I t w o u l d h a v e b e e n d i f f i c u l t t o g e t u s e f u l i n - s i t u d a t a f o r c o m p a r a t i v e p u r p o s e s d u e t o t h e r e l a t i v e s h o r t p e a k p e r i o d i n t h e a f t e r n o o n . T h i s w o u l d o b v i o u s l y n o t p r e s e n t a s e r i o u s p r o b l e m i n a f u t u r e a i r b o r n e a s s e s s m e n t o f t h e s h o r t w a v e -i n f r a r e d ( d u e t o t h e s h o r t - d u r a t i o n n a t u r e o f s u c h a m i s s i o n ) . 101 1 ? i i n? r 0 1 6 12 18 I 24 DAWN DUSK Time of day in hours A = Oiumal March of PMS when soil moisture is not limited. 8 =• Oiurnal March of PMS when soil moisture is limited. C = Atmospheric Energy Demand. F i g u r e 6.1: D i u r n a l c y c l e o f xylem w a t e r p o t e n t i a l (or p l a n t m o i s t u r e s t r e s s ) (adapted a f t e r Day and Walsh 1980) At t h e ti m e o f t h e f i e l d d a t a g a t h e r i n g , t h e r e was no a i r b o r n e equipment a v a i l a b l e t o s p e c t r a l l y a s s e s s t h e sh o r t w a v e -i n f r a r e d , and more s p e c i f i c a l l y t h e edges o f t h e m o i s t u r e a b s o r p t i o n band l o c a t e d a t a p p r o x i m a t e l y 1,400 nm. Waveform a n a l y s i s o f t h i s a b s o r p t i o n f e a t u r e appears t o have some f u t u r e p o t e n t i a l . Koch e t a l . (1990) have shown t h a t d e c r e a s i n g w a t e r c o n t e n t i n c o n i f e r n e e d l e s f i r s t shows up as an i n c r e a s e i n s h o r t w a v e - i n f r a r e d r e f l e c t a n c e . A q u i c k g l a n c e a t t h e r e s u l t s i n d e e d shows t h a t t h e r e i s no doubt t h a t m o i s t u r e s t a t u s i s an e x c e l l e n t i n d i c a t o r o f s u c c e s s f u l a t t a c k s . However, w h i l e i t i s beyond any doubt t h a t s u c c e s s f u l l y a t t a c k e d t r e e s as a group s i g n i f i c a n t l y e x h i b i t m o i s t u r e s t r e s s , not e v e r y a t t a c k e d t r e e 102 f o l l o w s t h e t r e n d . G i v e n m o r e t i m e p r i o r t o a s s e s s m e n t s , a l l s u c c e s s f u l l y a t t a c k e d t r e e s s h o u l d u n d o u b t e d l y s h o w s i g n s o f s e v e r e m o i s t u r e s t r e s s , u n t i l s u c h t i m e w h e n t h e t r e e c a n b e d e c l a r e d t e c h n i c a l l y d e a d a n d n o n - f u n c t i o n i n g . A t t h i s t i m e , w a v e f o r m a n a l y s i s m a y b e v e r y e f f i c i e n t . T h e d i l e m m a i s t h a t i t i s n o t v e r y l i k e l y t h a t t h e t i m e r e q u i r e d f o r a l l t r e e s t o r e s p o n d w i t h s e v e r e m o i s t u r e s t r e s s i s s h o r t e n o u g h t o o c c u r b e f o r e t h e n o r m a l s e a s o n f o r r e m o t e s e n s i n g i s o v e r . T h e f a c t t h a t t h e s i m u l a t e d d a m a g e c a t e g o r i e s d i d n o t p r o d u c e a n o t i c e a b l e i n c r e a s e i n m o i s t u r e d e f i c i e n c y i s m o s t l i k e l y d u e t o t h e f u n g i s i t u a t i o n d e s c r i b e d p r e v i o u s l y ; t h a t i s , a t t h e t i m e o f t h e m e a s u r e m e n t s , t h e f u n g i i n t h e s i m u l a t e d t r e a t m e n t c a t e g o r i e s h a d n o t a d v a n c e d a s m u c h a s i n t h e n a t u r a l l y a t t a c k e d c a t e g o r i e s . T h e p i g m e n t a n a l y s i s s h o w e d t h e e x p e c t e d ; c h l o r o p h y l l l e v e l s a r e a f f e c t e d s o o n a f t e r a t t a c k s , a n d t h u s j u s t i f y t h e u s e o f w a v e f o r m a n a l y s i s f r o m a r e m o t e s e n s i n g p l a t f o r m . T h e s i m u l a t e d a t t a c k s ( t r e a t m e n t C) s h o w e d d e c r e a s e d p i g m e n t l e v e l s w h i c h w a s e x p e c t e d s i n c e t h e p h l o e m f u n c t i o n i n g h a d b e e n h a m p e r e d , r e s u l t i n g i n d e c r e a s e d t r a n s l o c a t i o n o f n u t r i e n t s . T h e s i m u l a t e d p i t c h - o u t c a t e g o r y ( t r e a t m e n t B) b e h a v e d t h e s a m e a s h e a l t h y t r e e s . W i t h s u f f i c i e n t t i m e , s o m e o f t h e s e t r e e s m a y h a v e s h o w n r e d u c e d p i g m e n t l e v e l s , b u t t h e r e s u l t s i l l u s t r a t e a s e r i o u s d e t e c t i o n p r o b l e m ; t h a t i s , m o s t p i t c h - o u t t r e e s c a n n o t b e d e t e c t e d b y r e m o t e s e n s i n g . H o w e v e r , d e p e n d i n g o n a s s e s s m e n t 1 0 3 t i m i n g a n d b i o l o g i c a l d e v e l o p m e n t , i t i s p o s s i b l e t h a t s o m e p i t c h - o u t t r e e s m a y b e d e t e c t e d e a r l y . T h e r e s u l t s o f t h e n i t r o g e n a s s e s s m e n t s f o l l o w e d l o g i c ; s i n c e n i t r o g e n i s x a v i t a l c o m p o n e n t o f c h l o r o p h y l l , a r e d u c t i o n o f c h l o r o p h y l l s h o u l d b e l i n k e d t o r e d u c e d l e v e l s o f n i t r o g e n . T h e o v e r a l l r e s u l t s a l s o i l l u s t r a t e t h e g e n e r a l c o n c e p t i o n o f a n o v e r a l l n i t r o g e n d e f i c i e n c y i n B r i t i s h C o l u m b i a i n t e r i o r l o d g e p o l e p i n e . S i n c e c h l o r o p h y l l s t a t u s c a n b e i n f e r r e d t h r o u g h r e m o t e s e n s i n g , t h e r e s u l t s o f t h e r e g r e s s i o n a n a l y s i s , w h i c h i l l u s t r a t e d t h e p o s i t i v e c o r r e l a t i o n b e t w e e n c h l o r o p h y l l a n d n i t r o g e n , c l e a r l y s h o w t h e p o t e n t i a l f o r r e m o t e s e n s i n g f o r n e e d a n d r e s p o n s e a s s e s s m e n t f o r f u t u r e m a c r o - n u t r i e n t f e r t i l i z a t i o n e f f o r t s . P l u m m e r ( 1 9 9 0 ) i n f e r r e d t h e s a m e r e s u l t s f r o m a b r o a d - b a n d s t u d y w i t h t u r f . H e f o u n d t h a t a r e d u c e d l e a f n i t r o g e n c o n t e n t i s l i n k e d t o a n i n c r e a s e i n v i s i b l e r e f l e c t a n c e . H o w e v e r , t h a t l i n k w a s n o t e v i d e n t u n t i l t h e e f f e c t s o f b i o m a s s a n d c a n o p y g e o m e t r y w e r e r e d u c e d t h r o u g h r a t i o i n g . T h e s i m u l a t e d p i t c h - o u t ( t r e a t m e n t B ) s h o w e d a n i n c r e a s e d c a l c i u m l e v e l . T h e r e a s o n f o r t h i s i s u n c e r t a i n a n d s h o u l d p r o b a b l y b e t r e a t e d a s a n i n s i g n i f i c a n t a n o m a l y o f t h i s s t u d y . A l t h o u g h i r o n a n d p h o s p h o r o u s c o n c e n t r a t i o n s w e r e n o t s i g n i f i c a n t l y a l t e r e d a t t h e t i m e o f t h e s t u d y a s a r e s u l t o f t h e b e e t l e i m p a c t , i t i s e x p e c t e d t h a t a d d i t i o n a l t i m e w o u l d h a v e c a u s e d a d i f f e r e n c e . H a d t h e b i o l o g y o f t h e b e e t l e b e e n d i f f e r e n t a n d t h e i m p a c t o f a n a t t a c k s e t i n e a r l i e r , t h e 104 n u t r i e n t a n d p i g m e n t r e s p o n s e w o u l d l i k e l y b e m u c h m o r e d r a m a t i c . 6 . 2 . 2 F i e l d S p e c t r a l D a t a A h e r n (1988) e m p h a s i z e d t h e n e e d f o r d e s c r i p t i v e s p e c t r a l w o r k i n c o n i f e r s b a s e d o n c a n o p i e s r a t h e r t h a n , a s i n t h e p a s t , w i t h n e e d l e s a m p l e s . T h e g e n e r a l l a c k o f p u b l i s h e d i n - s i t u d a t a f o r t r e e c a n o p i e s i s e a s y t o u n d e r s t a n d i n v i e w o f t h e p r a c t i c a l c o m p l e x i t i e s c a n o p y m e a s u r e m e n t s p r e s e n t . A s a c o n s e q u e n c e o f t h e e x p e r i m e n t a l d e s i g n a n d t h e a v a i l a b l e r e s o u r c e s , t h e u s e o f a n a s s e s s m e n t t e c h n i q u e i n v o l v i n g s t a n d i n g t r e e s w a s n o t d e e m e d f e a s i b l e . H o w e v e r , t h e u s e o f s e v e r e d t r e e t o p s f o r t h e s p e c t r a l a s s e s s m e n t s h o r t l y a f t e r t r e e f e l l i n g p r o v i d e d a s e n s i n g s i t u a t i o n t h a t v e r y c l o s e l y a p p r o x i m a t e s a n a i r b o r n e a s s e s s m e n t . T h e d e c i s i o n t o g o w i t h a n a r t i f i c i a l l i g h t s o u r c e f o r t h e s t u d y r a t h e r t h a n s u n l i g h t w a s b a s e d o n t h e n e e d f o r c o n s i s t e n t s e n s i n g g e o m e t r y a n d i l l u m i n a t i o n . T h e t i m e n e e d e d t o s p e c t r a l l y a s s e s s 7 5 t r e e c a n o p i e s ( i n c l u d i n g s e q u e n t i a l m e a s u r e m e n t s o f t h e r e f e r e n c e s t a n d a r d ) , a n d t h e p o t e n t i a l f o r u n e x p e c t e d i n t e r r u p t i o n s d u e t o e q u i p m e n t p r o b l e m s , m a d e t h e r e l i a n c e o n d a y - l i g h t a v e r y r i s k y p r o p o s i t i o n . I n c l e m e n t w e a t h e r w a s a n o t h e r r e a s o n w h y a f i e l d l a b o r a t o r y w a s b u i l t t o a l l o w t h e u s e o f a n a r t i f i c i a l l i g h t s o u r c e . S i n c e a l l c a n o p i e s a s s e s s e d w e r e e q u a l l y l o n g a n d m o u n t e d i d e n t i c a l l y u n d e r n e a t h t h e r a d i o m e t e r , t h e i l l u m i n a t i o n - t a r g e t - s e n s o r g e o m e t r y w a s h e l d c o n s t a n t . 105 T h e r e a r e s e v e r a l ways t o d e s c r i b e and a n a l y z e t h e 5 nm i n c r e m e n t a l d a t a . The use o f h i g h - o r d e r p o l y n o m i a l r e g r e s s i o n and z e r o - c r o s s i n g s o f second d e r i v a t i v e s may not be t h e u l t i m a t e o r o p t i m a l approaches t o a f u t u r e a i r b o r n e s p e c t r o s c o p y m i s s i o n , b u t f u n c t i o n e d w e l l f o r t h e p u r p o s e s o f t h i s s t u d y . Other methods i n c l u d e i n t e g r a t i n g s p e c t r o m e t e r s c a p a b l e o f r e c o r d i n g f i r s t d e r i v a t i v e s p e c t r a ( H o r l e r e t al. 1983b), l i n e a r r e g r e s s i o n ( G a u t h i e r and N e v i l l e 1985), and t h e use o f t h e common i n v e r s e g a u s s i a n model as d e s c r i b e d by M i l l e r e t al. (1985). F i f t h - o r d e r p o l y n o m i a l s p r o v i d e d n e a r p e r f e c t f i t f o r t h e d a t a o ver t h e red-edge r e g i o n . The e x t r e m e l y good f i t s l e a v e t h e d a t a almost i n t a c t w i t h t h e r e g r e s s i o n s s e r v i n g t h e apparent f u n c t i o n o f smoothing t h e d a t a . The n o r m a l i z a t i o n r o u t i n e employed was not n e c e s s a r y f o r t h e red-edge d e f i n i t i o n s , but made v i s u a l comparisons o f t h e c u r v e s f e a s i b l e . A graph showing a s e l e c t i o n o f c u r r e n t l y a t t a c k e d t r e e s t h a t have shown a d e t e c t a b l e s h i f t i n t h e red-edge p o s i t i o n as compared t o a number o f h e a l t h y t r e e s was p r e s e n t e d e a r l i e r i n f i g u r e 5.12. F i g u r e 6.2 i s a v a r i a t i o n o f t h e f i g u r e 5.12 and shows averages f o r h e a l t h y and s u c c e s s f u l l y a t t a c k e d t r e e s . 4905105305505705906106306506706907{0730750770790810830850 wavelength (nm) D attack — — healthy F i g u r e 6.2: N o r m a l i z e d average r e f l e c t a n c e c u r v e s f o r h e a l t h y and s u c c e s s f u l l y a t t a c k e d t r e e s T h i s f i g u r e i l l u s t r a t e s t h e g e n e r a l i z e d e a r l y r e s p o n s e o f l o d g e p o l e p i n e t o s u c c e s s f u l b e e t l e a t t a c k s . A s i d e from t h e a f o r e m e n t i o n e d broad-band p i g m e n t - r e l a t e d r e s p o n s e i n t h e v i s i b l e r e g i o n o f t h e spectrum, t h e above f i g u r e a l s o i l l u s t r a t e s t h e more s i g n i f i c a n t b l u e - s h i f t i n t h e red-edge p o s i t i o n o f damaged t r e e s . However, as a d e t e c t i o n t o o l , r e d -edge a n a l y s i s must cope w i t h t h e n o t i o n t h a t not a l l s u c c e s s f u l l y a t t a c k e d t r e e s , a t t h e t i m e o f assessment, show a s i g n i f i c a n t b l u e - s h i f t . The s t u d y c l e a r l y shows t h e p r e s e n c e o f b l u e - s h i f t s , as i n d i c a t e d by t h e r e j e c t i o n o f t h e n u l l h y p o t h e s i s f o r t h e s t a t i s t i c a l t e s t o f e q u a l i t y o f t r e a t m e n t means, but an i n s p e c t i o n o f t h e red-edge d a t a i n appendix V shows t h e o b v i o u s dilemma from a nonacademic and o p e r a t i o n a l p o i n t - o f - v i e w ; i f a d e t e c t i o n t h r e s h o l d f o r c u r r e n t l y a t t a c k e d t r e e s i s based on t h e maximum red-edge v a l u e , many h e a l t h y t r e e s 1 0 7 w i l l b e c l a s s i f i e d a s a t t a c k e d . A m o r e s o p h i s t i c a t e d a t t a c k t h r e s h o l d d e r i v a t i o n b a s e d , f o r e x a m p l e , o n t h e a v e r a g e r e d - e d g e p o s i t i o n p l u s o n e s t a n d a r d d e v i a t i o n w o u l d r e s u l t i n a b e t t e r s c e n a r i o w i t h l e s s c o n f u s i o n . I f t h i s c l a s s i f i c a t i o n r u l e w o u l d b e a p p l i e d t o t h e t r e e s i n t r e a t m e n t s A a n d D , t h e t h r e s h o l d w o u l d b e a p p r o x i m a t e l y 7 1 4 n m . T h i s w o u l d r e s u l t i n 1 3 t r e e s i n t r e a t m e n t A c l a s s i f i e d c o r r e c t l y a s a t t a c k e d a n d 1 3 t r e e s i n t r e a t m e n t D a s h e a l t h y . I f t h e s e r e s u l t s w o u l d s t a n d u p t o r e p l i c a t i o n a n d c o u l d b e o b t a i n e d f r o m a n a i r b o r n e p l a t f o r m , t h e 8 6 % c l a s s i f i c a t i o n a c c u r a c y i s i n d e e d p r o m i s i n g . T h e a p p l i c a t i o n o f t h e a b o v e t e n t a t i v e r u l e i s e q u a l l y p r o m i s i n g f o r t r e a t m e n t E . T h e s e r e s u l t s s h o u l d b y n o m e a n s b e t a k e n a s c l e a r e v i d e n c e o f t h e o p e r a t i o n a l f e a s i b i l i t y o f s p e c t r o s c o p y f o r e a r l y d e t e c t i o n , b u t t h e d a t a s t r o n g l y s u g g e s t t h a t r e d - e d g e a n a l y s i s w a r r a n t s f u r t h e r a t t e n t i o n . I t w o u l d b e p r e m a t u r e , b a s e d o n t h i s s t u d y , t o s u g g e s t a s u i t a b l e c l a s s i f i c a t i o n s t r a t e g y . S u c h a s t r a t e g y w o u l d b e h e a v i l y d e p e n d e n t o n t h e v a r i a t i o n i n s p e c t r a l r e s p o n s e t o a t t a c k s a s w e l l a s t o t h e s e n s i n g e q u i p m e n t a n d m e t h o d o l o g y e m p l o y e d . A s s t a t e d a n d d e m o n s t r a t e d e a r l i e r , c h l o r o p h y l l c o n c e n t r a t i o n s a r e p o s i t i v e l y c o r r e l a t e d w i t h n i t r o g e n s t a t u s . T h i s f a c t c o u p l e d w i t h t h e d e m o n s t r a t e d h i g h c o r r e l a t i o n b e t w e e n r e d - e d g e m e a s u r e m e n t s a n d p i g m e n t c o n c e n t r a t i o n s h o l d p r o m i s e f o r f u t u r e p o s s i b i l i t i e s i n a s s e s s m e n t s o f n u t r i e n t s t a t u s . 108 6 . 2 . 3 D e n s i t o m e t r y Hobbs (1983) found d e n s i t o m e t r y a f e a s i b l e , i f not p r a c t i c a l , method f o r showing s p e c t r a l d i f f e r e n c e s between h e a l t h y and s u c c e s s f u l l y a t t a c k e d p i n e s . The i n c l u s i o n o f d e n s i t o m e t r y i n t h i s s t u d y was not an endorsement o f t h e d e n s i t o m e t r y approach, but was used as a d i r e c t c o m p a r i s o n w i t h p r e v i o u s work. I f photo i n t e r p r e t a t i o n y i e l d s u s e f u l r e s u l t s , on p a r w i t h what c o u l d be f e a s i b l e w i t h d e n s i t o m e t r y , t h e r a t i o n a l e f o r d e n s i t o m e t r y i s i n doubt. I f , however, d e n s i t o m e t r y can be shown t o be more c o n s i s t e n t t h a n i n t e r p r e t a t i o n , p o t e n t i a l a p p l i c a t i o n s may be a t hand. One major advantage o f d e n s i t o m e t r y o v e r photo i n t e r p r e t a t i o n l i e s i n t h e e l i m i n a t i o n o f i n t e r p r e t e r s u b j e c t i v i t y t h r o u g h t h e a c q u i s i t i o n o f q u a n t i t a t i v e s p a t i a l measurements. The use o f s p o t d e n s i t o m e t r y as used i n t h i s s t u d y i s not w i t h o u t problems, d e s p i t e t h e s i m p l i c i t y o f d o i n g t h e measurements. The f i x e d a p e r t u r e o f t h e d e n s i t o m e t e r can cause problems w i t h s m a l l e r s u n l i t c a n o p i e s , as shadows may be i n c l u d e d . S l i g h t v a r i a t i o n s i n t h e placement o f t h e p h otographs r e l a t i v e t o t h e spot d e n s i t o m e t e r may cause some v a r i a t i o n s i n r e p e a t e d measurements as s t a t e d by Banner (1986). These problems can be e l i m i n a t e d by r e p l a c i n g t h e s p o t d e n s i t o m e t r y by r a s t e r s c a n n i n g , but i t i n t u r n p r e s e n t s o t h e r l o g i s t i c c o n s i d e r a t i o n s . However, t h e above problems were not s i g n i f i c a n t i n t h i s s t u d y and as a r e s u l t , t h e measured dye d e n s i t i e s must be t r e a t e d as v a l i d . 1 0 9 T h e r e s u l t o f t h e a s s e s s m e n t i s i n d i r e c t c o n t r a s t t o t h e r e s u l t s p r e s e n t e d b y H o b b s ( 1 9 8 3 ) . H e r d a t a , w h i c h w e r e a c q u i r e d a t s t u d y s i t e A , i n d i c a t e d t h a t t h e r e w e r e s i g n i f i c a n t d i f f e r e n c e s b e t w e e n t r a n s f o r m e d d y e d e n s i t i e s ( i n c l u d i n g r a t i o s ) o f h e a l t h y a n d a t t a c k e d t r e e s . T h e H o b b s d a t a w a s a c q u i r e d a l m o s t f o u r w e e k s e a r l i e r t h a n t h e d a t a p r e s e n t e d h e r e . D e s p i t e t h e a d d e d t i m e i n t h i s s t u d y t o a l l o w s u c c e s s f u l l y a t t a c k e d t r e e s t o p r o d u c e b r o a d s p e c t r a l c h a n g e s , t h e d a t a s h o w n o s i g n i f i c a n t d i f f e r e n c e s b e t w e e n t h e t r e a t m e n t c a t e g o r i e s . A s t h e p r o c e d u r e s t o o b t a i n d e n s i t o m e t r i c d a t a w e r e i d e n t i c a l t o t h o s e u s e d b y H o b b s , t h e d i f f e r e n t f i n d i n g s m u s t b e a t t r i b u t e d t o a v a r i a t i o n d u e t o t i m e o r b i o l o g y o f t h e t r e e r e s p o n s e s f o l l o w i n g s u c c e s s f u l a t t a c k s . A n o t h e r p o s s i b l e r e a s o n m a y l i e i n d i f f e r e n t f i l m c h a r a c t e r i s t i c s b e t w e e n t h e t w o s t u d i e s . T h e r e s u l t o f a f i l m c a l i b r a t i o n w a s n o t d e s c r i b e d i n H o b b s ' s t u d y . I f t h e f i l m w a s c a l i b r a t e d a n d n o t f o u n d t o b e d e g r a d e d , t h e n H o b b s ' u s e o f a C C 2 0 M f i l t e r w o u l d h a v e r e s u l t e d i n a m o r e e n h a n c e d I R b a l a n c e t h a n t h e 3 1 u s e d i n t h i s s t u d y . T h e r e l e v a n c e o f t h e t r a n s f o r m a t i o n s u s e d , a s w e l l a s t h e r a t i o s d o n o t w a r r a n t a s p e c u l a t i v e d i s c u s s i o n h e r e i n v i e w o f t h e r e s u l t s . I t i s d o u b t f u l t h a t a r e p l a c e m e n t o f s p o t d e n s i t o m e t r y w i t h t h e s t a t i s t i c a l a n a l y s i s o f r a s t e r s c a n n e d d a t a w o u l d h a v e y i e l d e d b e t t e r r e s u l t s . F u r t h e r , t h e l o g i s t i c s r e l a t i v e t o t i m e , m o n e y , a n d r e s o u r c e s o f r a s t e r s c a n n i n g w i t h a n a d e q u a t e s p a t i a l r e s o l u t i o n m u s t b e s e r i o u s l y q u e s t i o n e d . 1 1 0 6 . 2 . 4 V i s u a l P h o t o I n t e r p r e t a t i o n O n e c o n c e r n f o r t h e p h o t o i n t e r p r e t a t i o n w a s i n t e r p r e t e r b i a s . A s i g n i f i c a n t a m o u n t o f t i m e h a d b e e n s p e n t w i t h t h e t r e a t m e n t t r e e s , w h i c h c l e a r l y v i o l a t e d t h e p r i n c i p l e o f n o t p r o v i d i n g t h e i n t e r p r e t e r w i t h t h e t r u t h p r i o r t o t h e a n a l y s i s . A s t h e r e w e r e v e r y f e w i n d i v i d u a l s w i t h e x p e r i e n c e u s i n g t h e c l a s s i f i c a t i o n s y s t e m a v a i l a b l e a t t h e t i m e o f a n a l y s i s , t h e s c e n a r i o w i t h m u l t i p l e i n t e r p r e t e r s t o c i r c u m v e n t a n y k i n d o f b i a s w a s r u l e d o u t . T h e p r o b l e m w a s s o l v e d t h r o u g h t h e u s e o f a h i g h l y s k i l l e d i n t e r p r e t e r , c l o s e l y f a m i l i a r w i t h t h e c l a s s i f i c a t i o n s y s t e m , b u t w i t h n o a p r i o r i f a m i l i a r i t y w i t h t h e t r e a t m e n t t r e e s . T h e m i d - S e p t e m b e r p h o t o a c q u i s i t i o n w a s u n e v e n t f u l a n d y i e l d e d a c c e p t a b l e m a t e r i a l . I n v i e w o f t h e a b o v e , t h e r e s u l t s o f t h e p h o t o i n t e r p r e t a t i o n a r e v e r y d i s c o u r a g i n g , a n d i n s h a r p c o n t r a s t t o p r e v i o u s w o r k e m p l o y i n g t h e s a m e m e t h o d o l o g y ( M u r t h a 1 9 8 5 b , H o b b s 1 9 8 3 ) . T h e a s s e s s m e n t b a s e d o n t h e p r e s e n c e o f t h e v a r i e g a t e d m a g e n t a (VM) b r a n c h a p p e a r a n c e i n h e a l t h y t r e e s , r e s u l t e d i n 18 o u t o f 3 0 s u c c e s s f u l l y a t t a c k e d t r e e s b e i n g c l a s s i f i e d a s \" h e a l t h y \" . O n t h e s a m e b a s i s , t h e i n t e r p r e t a t i o n o f t h e 1 5 h e a l t h y t r e e s r e s u l t e d i n 11 \" h e a l t h y \" l a b e l s , t h e s a m e a s f o r t h e s i m u l a t e d p i t c h - o u t c a t e g o r y . O f t h e 1 1 t r e e s i n t h e h e a l t h y t r e a t m e n t c a t e g o r y , o n l y f o u r w e r e c l a s s i f i e d a s V M o n l y ( n o r m a l ) . I n c o m p a r i s o n , t h e t r e e s i n t r e a t m e n t A ( s u c c e s s f u l l y a t t a c k e d ) h a d f i v e n o r m a l l a b e l s . T h e f a c t t h a t t h e m a j o r i t y o f t h e t r e e s i n e a c h o f t h e f i v e t r e a t m e n t s w e r e I l l c l a s s i f i e d a s h a v i n g t h e V M l a b e l , a n d o n l y 4 o u t o f 1 5 h e a l t h y t r e e s w e r e c l a s s i f i e d a s n o r m a l , c a s t s a s h a d o w o f d o u b t o n t h e v a l i d i t y o f t h e c l a s s i f i c a t i o n s y s t e m . A l t h o u g h t h e s y s t e m h a d p r e v i o u s l y b e e n u s e d f o r p h o t o i n t e r p r e t a t i o n o f b a r k b e e t l e a c t i v i t y i n l o d g e p o l e p i n e , i t h a d n o t u n d e r g o n e r i g o r o u s t e s t i n g . T h e b a s i s f o r t h e s y s t e m w a s o r i g i n a l l y d e v e l o p e d f o r s p r u c e a n d l a t e r m o d i f i e d t o i n c l u d e p i n e . T h e o b v i o u s c o n c l u s i o n s o n e m u s t d r a w f r o m t h e f a i l u r e o f t h e c l a s s i f i c a t i o n t o g i v e m e a n i n g f u l d a t a i s t h a t t h e b i o l o g i c a l v a r i a t i o n o f t h e l o d g e p o l e p i n e - m o u n t a i n p i n e b e e t l e c o m p l e x i s r e s p o n s i b l e f o r t h e d i s c r e p a n c i e s , o r t h a t t h e c l a s s i f i c a t i o n s y s t e m n e e d s f u r t h e r m o d i f i c a t i o n s . O n l y a m u c h e x p a n d e d s t u d y w i t h m u l t i p l e s i t u a t i o n c a t e g o r i e s s u c h a s s i t e , t i m i n g , y e a r , e t c . , c a n w i t h s o m e c e r t a i n t y t e l l i f t h e c l a s s i f i c a t i o n s y s t e m c a n b e v a l i d u n d e r a m a j o r i t y o f c i r c u m s t a n c e s . T h i s s t u d y c l e a r l y a d d r e s s e s s o m e i n c o n s i s t e n c i e s w i t h t h e c l a s s i f i c a t i o n s y s t e m , b u t i t w o u l d b e p r e m a t u r e t o d i s p e l i t . 6 . 2 . 5 M E I S - I I T h e p r o c e s s o f m a n u a l l y b u i l d i n g g r a p h i c m a s k s t o s e p a r a t e t h e l o d g e p o l e p i n e c o m p o n e n t , w h i l e s t r a i g h t f o r w a r d , w a s f a r f r o m e x p e d i t i o u s . T h e 0 . 4 3 m s p a t i a l r e s o l u t i o n o f t h e d i g i t a l d a t a w a s s u f f i c i e n t f o r m a n u a l c a n o p y s e p a r a t i o n a n d i t w a s g e n e r a l l y q u i t e s t r a i g h t f o r w a r d t o m a n u a l l y d i s t i n g u i s h t h e p i n e c a n o p i e s f r o m t h o s e o f o t h e r c o d o m i n a n t a n d u n d e r s t o r y s p e c i e s . T h e u s e o f s p e c t r a l t h r e s h o l d s t o d e l i n e a t e c a n o p y m a s k s ( a s 1 1 2 u t i l i z e d i n t h i s s t u d y ) i s v e r y s i m p l e , b u t i s n o t a d e q u a t e t o s e p a r a t e l o d g e p o l e p i n e c a n o p i e s f r o m o t h e r d o m i n a n t s p e c i e s a n d i l l u m i n a t e d g r o u n d a n d u n d e r s t o r y v e g e t a t i o n . A s a r e s u l t , t h e m a n u a l e f f o r t o f \" c l e a n i n g \" t h e c a n o p y m a s k i m a g e s c a n b e s u b s t a n t i a l . S i n c e t h e i m a g e a n a l y s i s p r o c e d u r e s w e r e c o m p l e t e d f o r t h i s s t u d y , m o r e s o p h i s t i c a t e d s o f t w a r e h a s c o m m e r c i a l l y b e e n m a d e a v a i l a b l e . W h i l e n e w s o f t w a r e p a c k a g e s h a v e m a d e d e n s i t y s l i c i n g e a s i e r t o a p p l y , t h e f a c t o f a g e n e r a l , s i n g l e b a n d , s p e c t r a l i n s e p a r a b i l i t y b e t w e e n l o d g e p o l e p i n e a n d s u r r o u n d i n g v e g e t a t i o n s t i l l h o l d s . F u r t h e r , t h e l a r g e a m o u n t o f d e t a i l a n d s p e c t r a l c o m p l e x i t y o f t h e d a t a s e t m a k e s a n \" a u t o m a t i c \" a p p r o a c h t h r o u g h a c o n v e n t i o n a l s t a t i s t i c a l c l a s s i f i e r u n r e a l i s t i c . T h e d e v e l o p m e n t a n d i n c l u s i o n o f a \" s m a r t \" c l a s s i f i e r w a s f a r b e y o n d t h e s c o p e o f t h i s r e s e a r c h . A s i g n i f i c a n t l y c o a r s e r s p a t i a l r e s o l u t i o n w o u l d h a v e m a d e c a n o p y s e p a r a t i o n u n r e l i a b l e a n d p u t t h e s p e c t r a l s a m p l i n g i n d o u b t . T h e s i t u a t i o n m a y b e l e s s c o m p l e x i n p u r e c o v e r t y p e s , w h e r e v i r t u a l l y e v e r y s u n l i t c a n o p y c a n b e a s s u m e d t o b e a l o d g e p o l e p i n e . I n s u c h a s c e n a r i o , i n d i v i d u a l t r e e r e c o g n i t i o n m a y n o t b e n e c e s s a r y , h e n c e t h e s p a t i a l r e s o l u t i o n c a n b e d e c r e a s e d f o r o p e r a t i o n a l e f f i c i e n c y . T h e f u n c t i o n o f a s c a n n e r i n s u c h a s i t u a t i o n c o u l d b e t o f l a g s p e c t r a l a n o m a l i e s o f t h e c o m b i n e d c a n o p i e s a l o n g r e f e r e n c e d f l i g h t l i n e s i n a s a m p l i n g f a s h i o n . H o w e v e r , p u r e c o v e r t y p e s w i l l s t i l l p r e s e n t l o g i s t i c s p r o b l e m s d u e t o a n u m b e r o f f a c t o r s s u c h a s s u n l i t c a n o p y o p e n i n g s w i t h d i f f e r e n t k i n d s o f u n d e r s t o r y v e g e t a t i o n . 1 1 3 T h e r e j e c t i o n o f t h e n u l l h y p o t h e s i s f o r t w o o f t h e r a t i o e d c h a n n e l s u n f o r t u n a t e l y d o e s n o t l e a d t o a n y p a r t i c u l a r l y u s e f u l i n f o r m a t i o n . C h a n n e l s 5 9 0 a n d 8 7 1 d i d p r o d u c e s i g n i f i c a n t d i f f e r e n c e s a m o n g t h e t r e a t m e n t c a t e g o r i e s , b u t i n b o t h i n s t a n c e s , h e a l t h y t r e e s c o u l d n o t b e s e p a r a t e d f r o m t h e s u c c e s s f u l l y a t t a c k e d c a t e g o r i e s . T h e l a c k o f u s e f u l d i f f e r e n c e s i n t h e M E I S d a t a i s i n l i n e w i t h t h e r e s u l t s o b t a i n e d w i t h t h e d e n s i t o m e t r i c a n a l y s i s . I t c a n b e s p e c u l a t e d t h a t s o m e u s e f u l d i f f e r e n c e s m a y h a v e b e e n e v i d e n t w i t h a l a t e r f l i g h t d a t e , e s p e c i a l l y i n v i e w o f t h e s u p e r i o r s p e c t r a l s e n s i t i v i t y o f M E I S a c q u i s i t i o n s a s c o m p a r e d t o p h o t o g r a p h y . T h e n o n o p e r a t i o n a l c h a r a c t e r i s t i c s o f t h e M E I S p r o g r a m c a u s e d b y t h e f a c t t h a t o n l y o n e s c a n n e r w a s i n e x i s t e n c e a t t h e t i m e o f t h e d a t a a c q u i s i t i o n r e s u l t e d i n a n u n f o r t u n a t e f a c t ; t h e M E I S f l i g h t w a s d o n e t w o w e e k s e a r l i e r t h a n t h e p h o t o a c q u i s i t i o n a s a r e s u l t o f s c h e d u l i n g p r o b l e m s . A s a c o n s e q u e n c e , d i r e c t c o m p a r i s o n s o f t h e e f f i c i e n c y b e t w e e n M E I S a n d p h o t o g r a p h i c s e n s i n g c a n n o t b e m a d e . O n e c a n o n l y s p e c u l a t e w h a t a n a d d i t i o n a l t w o w e e k s w o u l d h a v e m e a n t f o r t h e d e t e c t i o n c a p a b i l i t y o f t h e M E I S d a t a g a t h e r i n g m i s s i o n . F u r t h e r , a s p o i n t e d o u t e a r l i e r , t h e o r i g i n a l f l i g h t r e q u e s t c a l l i n g f o r n a r r o w - b a n d f i l t e r s w a s a l t e r e d d u e t o f i l t e r c a l i b r a t i o n p r o b l e m s . T h e u s e o f a v e r a g e s f o r t h e s u n l i t p i x e l s w i t h i n a c a n o p y m a y b e v i e w e d a s a w e a k e n i n g o f t h e h i g h s p a t i a l r e s o l u t i o n o f t h e d a t a . T h i s i s d u e t o t h e l o s s o f s e n s i t i v i t y t o d e t e c t 1 1 4 s p e c t r a l d i f f e r e n c e s w i t h i n t h e c a n o p i e s . A t f i r s t g l a n c e , t h e a r g u m e n t a p p e a r s v a l i d , b u t w i t h t h e l o w s u n a n g l e s e x p e r i e n c e d i n t h e f a l l , t h e s m a l l s i z e o f t h e s u n l i t p o r t i o n s o f t h e p i n e c a n o p i e s d i c t a t e a n o t h e r s c e n a r i o . A s p a t i a l r e s o l u t i o n o f 0 . 4 3 m i s n o t a d e q u a t e t o b u i l d a p i c t u r e o f t h e s p e c t r a l v a r i a b i l i t y w i t h i n a t r e e c a n o p y . T h e c h o s e n r e s o l u t i o n o f 0 . 4 3 m e n s u r e d t h a t t h e c a n o p i e s c o u l d b e p o s i t i v e l y i d e n t i f i e d a n d t h a t t h e a v e r a g e d s p e c t r a l i n f o r m a t i o n w a s d e v o i d o f s i g n i f i c a n t v a r i a t i o n s d u e t o i n c l u s i o n s o f s h a d o w e d r e g i o n s . B r o a d - b a n d d a t a o f t h i s n a t u r e c a n b e v e r y s e n s i t i v e t o m i x e d p i x e l e f f e c t s ( C u r t i s s a n d U s t i n 1 9 8 9 ) . I t i s b e y o n d a n y d o u b t t h a t t h i s t y p e o f d a t a w o u l d b e t e c h n i c a l l y , i f n o t o p e r a t i o n a l l y , c a p a b l e o f d e t e c t i n g t h e p r e v i o u s y e a r ' s s u c c e s s f u l l y a t t a c k e d t r e e s . H o w e v e r , t h e r e a r e m o r e r e a d i l y a v a i l a b l e m e t h o d s f o r m o r t a l i t y m a p p i n g . 6 . 3 F o r e s t M a n a g e m e n t C o n s i d e r a t i o n s T h e c u r r e n t i n v e n t o r y p r o c e d u r e s , w h i c h u t i l i z e a e r i a l o b s e r v a t i o n s t o d e t e c t r e d - a t t a c k ( m o r t a l i t y m a p p i n g ) w i t h s u b s e q u e n t g r o u n d p r o b e s a n d g r i d s a m p l i n g , m a y n o t b e t h e u l t i m a t e s o l u t i o n a s e v i d e n c e d b y t h e \" o u t - o f - c o n t r o l \" s t a t u s o f c o n t r o l e f f o r t s i n t h e l a s t d e c a d e . H o w e v e r , t h e p r o c e d u r e s a r e s o l i d l y i n p l a c e a n d c o u l d p r o b a b l y f u n c t i o n r e a s o n a b l y w e l l w i t h a n i n t e n s i f i c a t i o n i n r e s o u r c e s a n d e f f o r t s . I n t h e c o n t e x t o f t h i s s t u d y , o n e m a j o r p r o b l e m h a s b e e n a n d w i l l 115 c o n t i n u e t o b e t h e e f f i c i e n t d e t e c t i o n o f c u r r e n t l y a t t a c k e d t r e e s . T h e w i d e s p r e a d a c c e p t a n c e o f d i g i t a l d a t a b a s e s f o r s t o r a g e a n d m a i n t e n a n c e o f r e s o u r c e d a t a h a s m a d e t h e i n t r o d u c t i o n o f a m u l t i s t a g e d r e m o t e s e n s i n g i n v e n t o r y a p p r o a c h m o r e f e a s i b l e . H o w e v e r , i f r e m o t e s e n s i n g t e c h n o l o g y c a n n o t p r o v i d e r e s o u r c e m a n a g e r s w i t h a n a c c u r a t e s y s t e m f o r d e t e c t i n g a n d a c c u r a t e l y l o c a t i n g m o s t o f t h e c u r r e n t y e a r ' s a f f e c t e d t r e e s i n a r e a s o f p r i o r i t y , i n t e n s i v e g r o u n d s a m p l e s w i l l c o n t i n u e t o b e r e q u i r e d . I n s u c h a s c e n a r i o , r e m o t e s e n s i n g w i l l a t b e s t r e p l a c e t h e c u r r e n t p r a c t i c e o f a e r i a l s k e t c h - m a p p i n g f o r r e d - a t t a c k , t h a t i s , i f t h e c o s t s c a n b e o n p a r o r l e s s t h a n c u r r e n t m e t h o d s . W i t h t h e e x p e r i e n c e o f t h e l a s t d e c a d e ' s d e s t r u c t i v e l e v e l s o f b e e t l e a t t a c k s , i t i s b e y o n d a n y d o u b t t h a t o n e o f t h e m o s t p r e s s i n g n e e d s f r o m a n i n v e n t o r y p o i n t o f v i e w i s a m o r e e f f i c i e n t m e a n s t o l o c a t e n e w e p i c e n t e r s a n d d e t e r m i n e t h e e x t e n t o f c u r r e n t a t t a c k a t t h e s e l o c a t i o n s . T h i s c l e a r l y s t i p u l a t e s a s i n g l e t r e e c a p a b i l i t y o f t h e d e t e c t i o n m e c h a n i s m . I n v i e w o f t h e v a s t a r e a s o f l o d g e p o l e p i n e i n C a n a d a , t h e l o g i s t i c s o f a s s e m b l i n g a b e t t e r s y s t e m f o r e p i c e n t e r l o c a t i o n a n d d e t e c t i o n o f c u r r e n t a t t a c k a r e i n d e e d e x t r e m e l y c o m p l i c a t e d . A f u t u r e r e m o t e s e n s i n g s y s t e m f o r t h e a b o v e t a s k s h o u l d p r o b a b l y b e a b l e t o p e r f o r m a t l e a s t t h e f i r s t p h a s e ( e p i c e n t e r l o c a t i o n ) i n r e a l - t i m e . T h e i d e a l s y s t e m m u s t r e l y o n s u r v e i l l a n c e f l i g h t s w i t h n o p e r m a n e n t d a t a g a t h e r i n g , u n l e s s i t 115 c o n t i n u e t o b e t h e e f f i c i e n t d e t e c t i o n o f c u r r e n t l y a t t a c k e d t r e e s . T h e w i d e s p r e a d a c c e p t a n c e o f d i g i t a l d a t a b a s e s f o r s t o r a g e a n d m a i n t e n a n c e o f r e s o u r c e d a t a h a s m a d e t h e i n t r o d u c t i o n o f a m u l t i s t a g e d r e m o t e s e n s i n g i n v e n t o r y a p p r o a c h m o r e f e a s i b l e . H o w e v e r , i f r e m o t e s e n s i n g t e c h n o l o g y c a n n o t p r o v i d e r e s o u r c e m a n a g e r s w i t h a n a c c u r a t e s y s t e m f o r d e t e c t i n g a n d a c c u r a t e l y l o c a t i n g m o s t o f t h e c u r r e n t y e a r ' s a f f e c t e d t r e e s i n a r e a s o f p r i o r i t y , i n t e n s i v e g r o u n d s a m p l e s w i l l c o n t i n u e t o b e r e q u i r e d . I n s u c h a s c e n a r i o , r e m o t e s e n s i n g w i l l a t b e s t r e p l a c e t h e c u r r e n t p r a c t i c e o f a e r i a l s k e t c h - m a p p i n g f o r r e d - a t t a c k , t h a t i s , i f t h e c o s t s c a n b e o n p a r o r l e s s t h a n c u r r e n t m e t h o d s . W i t h t h e e x p e r i e n c e o f t h e l a s t d e c a d e ' s d e s t r u c t i v e l e v e l s o f b e e t l e a t t a c k s , i t i s b e y o n d a n y d o u b t t h a t o n e o f t h e m o s t p r e s s i n g n e e d s f r o m a n i n v e n t o r y p o i n t o f v i e w i s a m o r e e f f i c i e n t m e a n s t o l o c a t e n e w e p i c e n t e r s a n d d e t e r m i n e t h e e x t e n t o f c u r r e n t a t t a c k a t t h e s e l o c a t i o n s . T h i s c l e a r l y s t i p u l a t e s a s i n g l e t r e e c a p a b i l i t y o f t h e d e t e c t i o n m e c h a n i s m . I n v i e w o f t h e v a s t a r e a s o f l o d g e p o l e p i n e i n C a n a d a , t h e l o g i s t i c s o f a s s e m b l i n g a b e t t e r s y s t e m f o r e p i c e n t e r l o c a t i o n a n d d e t e c t i o n o f c u r r e n t a t t a c k a r e i n d e e d e x t r e m e l y c o m p l i c a t e d . A f u t u r e r e m o t e s e n s i n g s y s t e m f o r t h e a b o v e t a s k s h o u l d p r o b a b l y b e a b l e t o p e r f o r m a t l e a s t t h e f i r s t p h a s e ( e p i c e n t e r l o c a t i o n ) i n r e a l - t i m e . T h e i d e a l s y s t e m m u s t r e l y o n s u r v e i l l a n c e f l i g h t s w i t h n o p e r m a n e n t d a t a g a t h e r i n g , u n l e s s i t 116 d e t e c t s r e d - a t t a c k . I n o t h e r w o r d s , t h e s y s t e m w o u l d b e s i m i l a r t o c u r r e n t s y s t e m s f o r f i r e d e t e c t i o n . I n v i e w o f t h e c o m p l e x i t y o f t h e a n a l y s i s o f t h e s p e c t r a l i n f o r m a t i o n f r o m i n d i v i d u a l t r e e c a n o p i e s , c u r r e n t a t t a c k i n v e n t o r y w o u l d b e d o n e i n a p o s t f l i g h t i n t e r p r e t a t i o n o f r e c o r d e d d a t a a n d w o u l d t h e n b e t r a n s f e r r e d t o t h e d i g i t a l d a t a b a s e . S u c h a b r i g h t s c e n a r i o f o r t h e f u t u r e i s u n f o r t u n a t e l y d e p e n d e n t o n t h e b i o l o g i c a l v a r i a b i l i t y o f t h e l o d g e p o l e p i n e - m o u n t a i n p i n e b e e t l e c o m p l e x . T h e p o o r r e s u l t s o f t h e v i s u a l i n t e r p r e t a t i o n a n d t h e a n a l y s i s o f d y e d e n s i t i e s o f t h e l a r g e - s c a l e p h o t o g r a p h s , a s w e l l a s t h e e q u a l l y m e d i o c r e r e s u l t s o f t h e a i r b o r n e s c a n n e r d a t a , a r e g o o d r e a s o n s f o r c o n c e r n . P r e v i o u s a p p a r e n t l y p r o m i s i n g r e s u l t s w i t h c o l o r - i n f r a r e d p h o t o g r a p h s w e r e n o t o b t a i n e d i n t h i s s t u d y . T h i s i s m o s t u n f o r t u n a t e a s t h e p h o t o g r a p h i c a p p r o a c h w o u l d b e r e l a t i v e l y e a s y t o i m p l e m e n t a n d a p p e n d t o c u r r e n t p r a c t i c e s . F u r t h e r w o r k w i t h v i s u a l p h o t o i n t e r p r e t a t i o n o f a w i d e v a r i e t y o f a t t a c k c o n d i t i o n s m a y y e t y i e l d a v i a b l e s y s t e m , b u t a t t h e p r e s e n t i t i s v e r y u n l i k e l y t h a t i t w i l l r e p l a c e o r r e d u c e g r o u n d s a m p l i n g . T h e h i g h - r e s o l u t i o n s p e c t r a l a p p r o a c h a s p r e s e n t e d i n t h i s s t u d y i n t h e c o n t e x t o f r e d - e d g e a n a l y s i s m a y h o l d t h e k e y t o t h e f u t u r e . H o w e v e r , f r o m a f o r e s t m a n a g e m e n t p e r s p e c t i v e i t w i l l t a k e c o n s i d e r a b l e t i m e b e f o r e a w o r k a b l e s y s t e m c a n b e c o n s i d e r e d . T h e r e i s c u r r e n t l y n o s y s t e m c a p a b l e o f r e d - e d g e d e t e c t i o n t h a t w o u l d p a s s t h e t e s t f o r c u r r e n t n e e d s . S u c h a s y s t e m w o u l d n e c e s s i t a t e m u l t i p l e p l a t f o r m s t o b e a b l e t o c o p e 1 1 7 w i t h t h e n e e d f o r m a n y f l i g h t a c q u i s i t i o n s o v e r a v a s t a r e a w i t h i n a v e r y n a r r o w t i m e w i n d o w . F u r t h e r , t h e c o s t f o r a c q u i s i t i o n a n d a n a l y s i s m u s t d r a s t i c a l l y b e l o w e r e d f r o m c u r r e n t l e v e l s w i t h t h e f e w s y s t e m s t h a t c a n h a n d l e n a r r o w - b a n d d a t a . T h e c u r r e n t a p p r o a c h b y p r o v i n c i a l r e s o u r c e m a n a g e r s t o p e r f o r m m o s t o f t h e i n v e n t o r y p r o c e s s , i n c l u d i n g s u p p l e m e n t a l a e r i a l p h o t o g r a p h y i n - h o u s e , m a y n o t p r o v e f e a s i b l e f o r t h e c o m p l e x n a t u r e o f e a r l y d e t e c t i o n b a s e d o n r e d - e d g e a n a l y s i s . F u r t h e r , t h e f u t u r e p o s s i b i l i t y a n d e x i s t e n c e o f a u s e f u l s y s t e m w i l l n o t o n l y d e p e n d o n t h e n e e d f o r e a r l y d e t e c t i o n , b u t a l s o o n t h e u s e a n d n e e d f o r w a v e f o r m a n a l y s i s f o r o t h e r r e s o u r c e d i s c i p l i n e s s u c h a s m i n i n g a n d a g r i c u l t u r e . A p p l y i n g m o r e t e c h n o l o g y t o a n u n s o l v e d p r o b l e m o f t e n j u s t a d d s t o t h e c o m p l e x i t y , u n l e s s t h e o r i g i n a l p r o b l e m i s t h o r o u g h l y u n d e r s t o o d . T h e c o m p l e x i t i e s s u r r o u n d i n g t h e i n t e r a c t i o n b e t w e e n m o u n t a i n p i n e b e e t l e a n d l o d g e p o l e p i n e a r e n o t y e t f u l l y r e s o l v e d . H o w e v e r , o n e f a c t o r s t a n d s o u t ; t h e s u c c e s s o f a n y r e m o t e s e n s i n g d e t e c t i o n s y s t e m i s h i g h l y d e p e n d e n t o n t h e t i m i n g o f t h e p h y s i o l o g i c a l e v e n t s t h a t t a k e p l a c e i n a t r e e f o l l o w i n g s u c c e s s f u l a t t a c k . T h i s o b s e r v a t i o n j u s t i f i e s t h e t r i a l o f y e t a n o t h e r t e c h n o l o g y - t h e a s s e s s m e n t o f c h l o r o p h y l l f l u o r e s c e n c e . S u c c e s s f u l a t t a c k s r e s u l t i n a l o w e r e d p h o t o s y n t h e t i c a c t i v i t y , w h i c h i n t u r n i n c r e a s e t h e c h l o r o p h y l l f l u o r e s c e n c e ( o r c o n v e r s e l y , t h e g r e e n e r t h e l e a f , t h e l o w e r i t s c h l o r o p h y l l f l u o r e s c e n c e i n t e n s i t y ) . T h i s p r o p e r t y c a n b e m e a s u r e d a s l a s e r - i n d u c e d f l u o r e s c e n c e w i t h a n 1 1 8 a i r b o r n e l i d a r ( l i g h t d e t e c t i o n a n d r a n g i n g ) s y s t e m ( L i c h t e n t h a l e r 1 9 8 9) . S i n c e l i d a r i s a n a c t i v e r e m o t e s e n s i n g s y s t e m , t h e u s u a l c o n s t r a i n t s o f l o w s u n a n g l e s o r c l o u d y s k i e s i n t h e f a l l c a n b e c i r c u m v e n t e d ; h e n c e , t h e f l i g h t s e a s o n c a n b e e x t e n d e d . T h e r e i s n o g u a r a n t e e t h a t l i d a r w i l l s o l v e t h e p r o b l e m o f e a r l y d e t e c t i o n , b u t i t s p o t e n t i a l d e f i n i t e l y w a r r a n t s f u t u r e r e s e a r c h . 119 Chapter 7 Conclusions P r o m p t d e t e c t i o n o f i n f e s t a t i o n s i t e s i s e s s e n t i a l t o t h e e f f e c t i v e s h o r t - t e r m c o n t r o l a n d s a l v a g e a c t i o n s a g a i n s t t h e m o u n t a i n p i n e b e e t l e p r o b l e m . T h e m a j o r f o c u s o f t h i s s t u d y w a s t o s h o w t h e u t i l i t y o f w a v e f o r m a n a l y s i s o f h i g h - r e s o l u t i o n r e f l e c t a n c e s p e c t r a , f r o m 500 t o 850 n m , f o r d e t e c t i o n o f c u r r e n t a t t a c k . T h e i n t e n t w a s a l s o t o a p p l y v a r i o u s b r o a d - b a n d m e t h o d o l o g i e s t o t h e s a m e d a t a s e t s f o r c o m p a r a t i v e p u r p o s e s a n d t o g e t a n i n d i c a t i o n o f t h e b i o l o g i c a l v a r i a b i l i t y o f l o d g e p o l e p i n e t o b e e t l e a t t a c k s . A m i n o r p u r p o s e w a s t o s h o w t h a t f o l i a r a n a l y s i s f o r c h l o r o p h y l l s t a t u s i s f e a s i b l e i n v i e w o f t h e p r a c t i c a l c o n s i d e r a t i o n s a n d p r o b l e m s a s s o c i a t e d w i t h i n - s i t u w o r k . T h e s t a t e d p u r p o s e s w e r e a c c o m p l i s h e d . T h e f o l i a r a n a l y s e s s h o w e d t h a t c u r r e n t l y a t t a c k e d t r e e s e x p e r i e n c e i n t e r n a l c h a n g e s , s u c h a s r e d u c e d n i t r o g e n a n d p i g m e n t a t i o n l e v e l s , a s w e l l a s a n i n c r e a s e d l e v e l o f m o i s t u r e s t r e s s . F u r t h e r , t h e s t u d y s h o w e d t h a t i f t h e f o l i a r s a m p l e s a r e p r o p e r l y h a n d l e d i n t h e f i e l d , a c o n s i d e r a b l e a m o u n t o f t i m e c a n p a s s b e t w e e n s a m p l e c o l l e c t i o n a n d s u b s e q u e n t a n a l y s i s f o r c h l o r o p h y l l . T h i s a l l o w s f o r a g o o d d e a l o f f l e x i b i l i t y d u r i n g t h e f i e l d w o r k , w h i c h m a y p r o v e v a l u a b l e f o r t h e f u t u r e w o r k t h a t i s n e e d e d t o f u l l y c h a r a c t e r i z e p i g m e n t a t i o n l e v e l s o f l o d g e p o l e p i n e u n d e r a w i d e v a r i e t y o f c o n d i t i o n s . T h e c h a n g e s w e r e , h o w e v e r , n o t d r a s t i c e n o u g h t o a l l o w a s u c c e s s f u l d i f f e r e n t i a t i o n o f a t t a c k s t a t u s b y b r o a d - b a n d s p e c t r a l m e a n s . 1 2 0 V i s u a l i n t e r p r e t a t i o n as w e l l as dye d e n s i t y measurements o f c o l o r - i n f r a r e d p h o tographs d i d not produce a c c e p t a b l e r e s u l t s . As p r e v i o u s s t u d i e s w i t h photography i n t h e same a r e a have y i e l d e d f a v o r a b l e r e s u l t s , t h e d i s c r e p a n c y must be a t t r i b u t e d t o t h e f a c t t h a t t r e e r e s p o n s e s do not f o l l o w t h e same t i m e s c a l e from y e a r t o y e a r . The f a i l u r e o f broad-band MEIS d a t a , a c q u i r e d a t t h e same t i m e o f y e a r as a p r e v i o u s dye d e n s i t y s t u d y w h i c h showed f a v o r a b l e r e s u l t s , t o show s i g n i f i c a n t s p e c t r a l d i f f e r e n t i a t i o n i s a f u r t h e r i n d i c a t i o n o f b i o l o g i c a l v a r i a b i l i t y . The r e s u l t s i n t h i s s t u d y do not s u p p o r t f u r t h e r work w i t h d i g i t a l broad-band t e c h n i q u e s such as MEIS and r a s t e r s c a n n i n g o f a e r i a l p h o t o g r a p h s . The expenses r e l a t e d t o t h e s e t e c h n i q u e s a r e p r o h i b i t i v e i n v i e w o f t h e i r d e m o n s t r a t e d p e r f o r m a n c e s . In v i e w o f t h e f a i l u r e o f broad-band approaches t o produce adequate d i f f e r e n t i a t i o n d e s p i t e s i g n i f i c a n t d i f f e r e n c e s i n p i g m e n t a t i o n l e v e l s , t h e r e s u l t s o f t h e waveform a n a l y s i s a r e v e r y e n c o u r a g i n g . I n t e n s i f i e d s i l v i c u l t u r a l e f f o r t s w i l l u n d o u b t e d l y p l a y an i m p o r t a n t r o l e i n t h e f u t u r e o f Canada's f o r e s t s . T h i s i s e s p e c i a l l y t r u e f o r v a s t expanses o f l o d g e p o l e p i n e s t a n d s t h a t a r e o r may be t h r e a t e n e d by b a r k b e e t l e s and w i l d f i r e s . T h i n n i n g w i l l p r o b a b l y be t h e p r i m a r y t o o l i n m a i n t a i n i n g o r i m p r o v i n g s t a n d v i g o r . S i n c e most l o d g e p o l e p i n e s i t e s are d e f i c i e n t i n a v a i l a b l e n i t r o g e n , f e r t i l i z a t i o n regimes may a l s o be c o n s i d e r e d . The d e m o n s t r a t e d h i g h c o r r e l a t i o n s between narrow-band s p e c t r a l d a t a and c h l o r o p h y l l and n i t r o g e n 121 c o n c e n t r a t i o n s , are v e r y p r o m i s i n g i n v i e w o f a n t i c i p a t e d f u t u r e needs. The i n i t i a l and s u s t a i n e d e f f e c t s from y e a r t o y e a r o f a w i d e s p r e a d f e r t i l i z a t i o n program may be m o n i t o r e d by remote s e n s i n g . As t h i s s t u d y has not s p e c i f i c a l l y shown t h e v a l i d i t y o f u s i n g red-edge a n a l y s i s f o r d i f f e r e n t i a t i n g between s t a t u s quo n i t r o g e n c o n c e n t r a t i o n s a t (or under) t h e 1 % l e v e l (normal p r e - f e r t i l i z a t i o n l e v e l s ) and p o s t - f e r t i l i z a t i o n l e v e l s t h a t a r e a t l e a s t d o u b l e d , f u r t h e r r e s e a r c h e f f o r t s a r e needed and recommended. T h i s s t u d y has i n d i c a t e d t h e v a l i d i t y o f u s i n g red-edge a n a l y s i s t o d e t e c t n i t r o g e n l e v e l s ( t h r o u g h t h e dependance on c o r r e l a t e d c h l o r o p h y l l c o n c e n t r a t i o n s ) below s t a t u s quo. B e s i d e s t h e s i g n i f i c a n t b l u e - s h i f t o f c u r r e n t l y a t t a c k e d t r e e s , t h e r e were no o t h e r o b v i o u s narrow-band c h a r a c t e r i s t i c s p r e s e n t i n t h e 5 nm i n c r e m e n t d a t a s e t . The use o f s m a l l e r i n c r e m e n t s t h a n 5 nm from an a i r b o r n e p l a t f o r m may d e t e c t some s i g n i f i c a n t i n f o r m a t i o n . However, s i n c e a i r b o r n e s p e c t r a w i l l u n d o u b t e d l y a l s o d e t e c t n o i s e due t o gaseous a b s o r p t i o n , t h e subsequent use o f a smoothing f u n c t i o n w i l l remove any narrow f e a t u r e s . A g e n e r a l i n c r e a s e i n v i s i b l e r e f l e c t a n c e , a l t h o u g h s l i g h t , was e v i d e n t i n t h e s p e c t r a o f a t t a c k e d t r e e s . The r e s u l t s may be even more s t r i k i n g i n a s i t u a t i o n where b r o a d -band approaches work. The h y p o t h e t i c a l c l a s s i f i c a t i o n r u l e based on a t h r e s h o l d l e v e l d e r i v e d from t h e v a r i a b i l i t y i n t h e red-edge response o f c u r r e n t l y a t t a c k e d t r e e s , r e s u l t e d i n a v e r y r e s p e c t a b l e d e t e c t i o n l e v e l o f 86%. W h i l e i t i s h i g h l y 122 premature t o c o n c l u d e a u n i v e r s a l a p p l i c a b i l i t y o f red-edge a n a l y s i s t o t h e p r o c e s s o f a c c e p t a b l e e a r l y d e t e c t i o n , t h e r e s u l t s c l e a r l y show t h a t waveform a n a l y s i s w a r r a n t s f u r t h e r a t t e n t i o n . The magnitude o f t h e n a t u r a l v a r i a b i l i t y i n canopy r e f l e c t a n c e between d i f f e r e n t t r e e s , s i t e s , and y e a r s must be b e t t e r u n d e r s t o o d . a n d q u a n t i f i e d b e f o r e t h e red-edge approach can be a c c e p t e d i n an a i r b o r n e e n v i r o n m e n t . A f u t u r e m u l t i -s i t e , m u l t i - y e a r s t u d y t o a s s e s s t h e v a r i a b i l i t y o f t h e l o d g e p o l e p i n e - b a r k b e e t l e complex, may d e r i v e u s e f u l r e s u l t s from a v a r i e t y o f e x p e r i m e n t a l d a t a . A v a i l a b l e r e s o u r c e s may not always a l l o w f o r t h e s a m p l i n g o f s p e c t r a l d a t a . I n t h e s e s i t u a t i o n s , c h l o r o p h y l l and/or n i t r o g e n d a t a can a c t as s u b s t i t u t e s t o red-edge measurements. 123 L i t e r a t u r e C i t e d Ahern, F . J . 1988. The e f f e c t s o f b a r k b e e t l e s t r e s s on t h e f o l i a r s p e c t r a l r e f l e c t a n c e o f l o d g e p o l e p i n e . I n t . J . o f Remote S e n s i n g 9 ( 9 ) : 1451-1468. Amman, G.D. 1970. P r e y consumption and v a r i a t i o n s i n l a r v a l b i o l o g y o f Enoclerus sphegeus (Coleoptera: Cleridae) . Can. E n t . 102: 1374-1378. Amman, G.D. 1971. Mountain p i n e b e e t l e b r o o d p r o d u c t i o n i n r e l a t i o n t o t h i c k n e s s o f l o d g e p o l e p i n e phloem. J . Econ. E n t . 65: 138-140. Amman, G.D. 1982. The mountain p i n e b e e t l e -i d e n t i f i c a t i o n , b i o l o g y , causes o f o u t b r e a k s , and e n t o m o l o g i c a l r e s e a r c h needs. P r o c e e d i n g s o f th e J o i n t Canada/USA Workshop on Mo u n t a i n P i n e B e e t l e R e l a t e d Problems i n Western N o r t h A m e r i c a , Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t R e s e a r c h C e n t r e , R e p o r t BC-X-230. pp. 7-12. Amman, G.D. and L. S a f r a n y i k . 1984. I n s e c t s o f l o d g e p o l e p i n e : i m p a c t s and c o n t r o l . L odgepole p i n e t h e s p e c i e s and i t s management. Symposium P r o c e e d i n g s . Washington S t a t e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n , pp. 107-124. Amman, G.D. and R.F. S c h m i t z . 1988. Mount a i n p i n e b e e t l e -l o d g e p o l e p i n e i n t e r a c t i o n s and s t r a t e g i e s f o r r e d u c i n g t r e e l o s s e s . Ambio. 1 7 ( 1 ) : 62-68. Anon. 1980. G r a n b a r k b o r r e n s v a r t a c k l a d o v e r 10 a r i Varmland. Skogen 14: 52-53. Anon. 1985. P r o t e c t i o n Manual. B r i t i s h C olumbia M i n i s t r y o f F o r e s t s , R e v i s i o n 4. F.S. BB4 S B4/3. Arnon, D.I. 1949. Copper enzymes i n i s o l a t e d c h l o r o p l a s t s . P o l y p h e n o l o x i d a s e i n B e t a v u l g a r i s . P l a n t Phys. 24 (1) : 1-15. Bakke, A. and L. S t r a n d . 1981. Pheromones and t r a p s as p a r t o f an i n t e g r a t e d c o n t r o l o f t h e s p r u c e b a r k b e e t l e - some r e s u l t s from a c o n t r o l program i n Norway i n 1979 and 1980. Norwegian F o r e s t R e s e a r c h I n s t i t u t e , R e s e a r c h Paper 5/81, As, Norway. 39 pp. Banner, A.V. 1986. D e t e c t i o n o f b a r k b e e t l e - a t t a c k e d s p r u c e u s i n g computer-based image a n a l y s i s . M.Sc. T h e s i s , Department o f F o r e s t r y , U n i v e r s i t y o f B r i t i s h Columbia, Vancouver, B.C. 145 pp. 124 B a n n i n g e r , C. 1988. S p e c t r a l r e s p o n s e c h a r a c t e r i s t i c s o f a m e t a l - s t r e s s e d c o n i f e r o u s f o r e s t as measured by F L I a i r b o r n e i m a g i n g s p e c t r o m e t e r . P r o c e e d i n g s o f IGARSS Symposium, E d i n b u r g h , S c o t l a n d , ESA SP-284. pp. 1331-1334. Bassman, J.H. 1984. S e l e c t e d p h y s i o l o g i c a l c h a r a c t e r i s t i c s o f l o d g e p o l e p i n e . Lodgepole p i n e t h e s p e c i e s and i t s management. Symposium P r o c e e d i n g s . Washington S t a t e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n , pp. 27-43. Borden, J.H., J.E. Conn, L.M. F r i s k i e , B.E. S c o t t , L . J . Chong, H.D. P i e r c e , J r . , and A.C. O e h l s c h l a g e r . 1983. S e m i o c h e m i c a l s f o r t h e mountain p i n e b e e t l e , Dendroctonus ponderosae (Coleoptera: Scolytidae), i n B r i t i s h C o l u m b i a : b a i t e d - t r e e s t u d i e s . Can. J . F o r . 13: 325-333. Brakke, T.W., J.A. Smith, and J.M. Harnden. 1989. B i d i r e c t i o n a l s c a t t e r i n g o f l i g h t from t r e e l e a v e s . Remote S e n s i n g o f Env. 29: 175-183. Brennan, J.A. 1982. The need f o r a c t i o n - what i s b e i n g done i n t h e f o r e s t s o f A l b e r t a and p l a n s f o r t h e f u t u r e . I n : P r o c e e d i n g s o f t h e J o i n t Canada/USA Workshop on Mo u n t a i n P i n e B e e t l e R e l a t e d Problems i n Western N o r t h A m e r i c a , Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t R e s e a r c h C e n t r e , R e p o r t BC-X-230. pp. 41-43. B r y a n t , E., A.G. Dodge, and S.D. Warren. 1980. Landsat f o r p r a c t i c a l f o r e s t t y p e mapping : a t e s t c a s e . Photogramm. Eng. and Remote S e n s i n g 4 6 ( 1 2 ) : 1575-1584. Chang, S.H. and W. C o l l i n s . 1983. C o n f i r m a t i o n o f t h e a i r b o r n e b i o g e o p h y s i c a l m i n e r a l e x p l o r a t i o n t e c h n i q u e u s i n g l a b o r a t o r y methods. Econ. G e o l . 78: 723-736. C h r i s t i a n s e n , E., R.H. Waring, and A.A. Berryman. 1987. R e s i s t a n c e o f c o n i f e r s t o b a r k b e e t l e a t t a c k : s e a r c h i n g f o r g e n e r a l r e l a t i o n s h i p s . F o r e s t E c o l o g y and Management 22: 89-106. C i e s l a , W.M., J.C. B e l l , and J.W. C u r l i n . 1967. C o l o r photos and t h e s o u t h e r n p i n e b e e t l e . Photogramm. Eng. 3 3 : 8 8 3 - 8 8 8 . 125 C i e s l a , W . M . and W . H . K l e i n . 1978. I n v e n t o r y o f b a r k b e e t l e m o r t a l i t y i n c o n i f e r o u s f o r e s t s w i t h c o l o r and c o l o r IR p hotography. P r o c e e d i n g s o f t h e I n t e r n a t i o n a l Symposium on Remote S e n s i n g f o r O b s e r v a t i o n and I n v e n t o r y o f E a r t h R esources and t h e Endangered Environment, IUFRO, F r e i b u r g , F e d e r a l R e p u b l i c o f Germany, pp. 2001-2011. C o l l i n s , W. and H.Y. C h i u . 1979. S i g n a t u r e e v a l u a t i o n o f n a t u r a l t a r g e t s u s i n g h i g h s p e c t r a l r e s o l u t i o n t e c h n i q u e s . P r o c e e d i n g s o f t h e T h i r t e e n t h Symposium on Remote S e n s i n g o f t h e E n v i r o n m e n t , pp. 567-582. C o l w e l l , R.N. 1956. D e t e r m i n i n g t h e p r e v a l e n c e o f c e r t a i n c r o p d i s e a s e s by means o f a e r i a l p h o t o g r a p h y . H i l g a r d i a 26: 223-286. C o l w e l l , R.N. 1983a. Remote s e n s i n g - a i d e d assessment o f n a t u r a l r e s o u r c e s . A S y l l a b u s P r e p a r e d f o r use i n t h e E l e v e n t h A l b e r t a Remote S e n s i n g Course, Volume I , Edmonton, A l b e r t a . C o l w e l l , R.N. 1983b. Manual o f Remote S e n s i n g , Second E d i t i o n , A merican S o c i e t y o f Photogrammetry, F a l l s Church, V i r g i n i a . C u r t i s s , B. and S.L. U s t i n . 1989. P a r a m e t e r s a f f e c t i n g r e f l e c t a n c e o f c o n i f e r o u s f o r e s t s i n t h e r e g i o n o f c h l o r o p h y l l pigment a b s o r p t i o n . P r o c e e d i n g s o f IGARRS '89/12th Can. Symp. on Remote S e n s i n g , Vancouver, B.C. pp. 2633-2636. Day R.J. and, S.J. Walsh. 1980. A manual f o r u s i n g t h e p r e s s u r e chamber i n n u r s e r i e s and p l a n t a t i o n s . Lakehead U n i v e r s i t y , S c h o o l o f F o r e s t r y S i l v i c u l t u r a l R e p o r t . 50 pp. D e e r i n g , D.W. 1989. F i e l d measurements o f b i d i r e c t i o n a l r e f l e c t a n c e . Theory and a p p l i c a t i o n s o f o p t i c a l remote s e n s i n g . John W i l e y & Sons, I n c . , New York, pp. 14-65. DeMars, C.J., F.P. H a i n , and G.W. S l a u g h t e r . 1979. D i s t r i b u t i o n and abundance o f p h o t o - d e t e c t e d t r e e m o r t a l i t y o ver t i m e . C o n t r o l T a c t i c s f o r t h e S o u t h e r n P i n e B e e t l e , USDA, F o r e s t S e r v i c e , T e c h n i c a l B u l l e t i n 1613. pp. 63-74. Demetriades-Shah, T.H., M.D. S t e v e n , and J.A. C l a r k . 1990. H i g h r e s o l u t i o n d e r i v a t i v e s p e c t r a i n remote s e n s i n g . Remote S e n s i n g o f Environment 33: 55-64. 126 Dermott, C A . 1984. F u t u r e o f l o d g e p o l e p i n e f o r e s t r y : a p u b l i c manager's p e r s p e c t i v e i n Canada. Lodgepole p i n e t h e s p e c i e s and i t s management. Symposium P r o c e e d i n g s , Washington S t a t e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n , pp. 359-365. D i l l m a n , R.D., B.B. Eav, and J.C. P r i l l . 1979. E v a l u a t i o n o f h i g h - a l t i t u d e imagery f o r assessment on mountain p i n e b e e t l e . P r o c e e d i n g s o f t h e Seventh B i e n n i a l Workshop on A e r i a l C o l o r Photography i n t h e P l a n t S c i e n c e s , D a v i s , C a l i f o r n i a , pp. 165-177. D i x o n , W.J., M.B. Brown, L. Engelman, J.W. F r a n e , M.A. H i l l , R . I . J e n n r i c h , and J.D. Toporek. 1985. BMDP S t a t i s t i c a l S o f t w a r e Manual. U n i v e r s i t y o f C a l i f o r n i a P r e s s . 734 pp. F r a s e r , S.J., J.F. H u n t i n g t o n , A.A. Green, M.R. S t a c e y , and G.P. R o b e r t s . 1985. D i s c r i m i n a t i o n o f i r o n o x i d e s and v e g e t a t i o n a n o m a l i e s w i t h t h e MEIS narrow band im a g i n g system. P r o c e e d i n g s f o r t h e 4 t h Thematic C o n f e r e n c e , Remote S e n s i n g f o r E x p l o r a t i o n Geology, San F r a n c i s c o , CA. V o l . 1. pp. 233-253. Gates, D.M., H.J. Keegan, J.C. S c h l e t e r , and V.R. Weidner. 1965. S p e c t r a l p r o p e r t i e s o f p l a n t s . A p p l . O p t i c s 4: 11. Gausman, H.W. 1974. L e a f r e f l e c t a n c e i n t h e n e a r - i n f r a r e d . Photogramm. Eng. 40: 183-191. Gausman, H.W. 1977. R e f l e c t a n c e o f l e a f components. Remote S e n s i n g o f Environment 6: 1-9. G a u t h i e r , R.P. and R.A. N e v i l l e . 1985. Narrow-band m u l t i s p e c t r a l imagery o f t h e v e g e t a t i o n r e d r e f l e c t a n c e edge f o r use i n g e o b o t a n i c a l remote s e n s i n g , P r o c e e d i n g s o f t h e 3 r d I n t e r n a t i o n a l C o l l o q u i u m on S p e c t r a l S i g n a t u r e s o f O b j e c t s i n Remote S e n s i n g , Les A r c s , F r a n c e . ESA SP-247: 233-236. G r e i g , M. and J . B j e r r i n g . 1980. UBC GENLIN, A g e n e r a l l e a s t s q uares a n a l y s i s o f v a r i a n c e program. Computing C e n t r e , U n i v e r s i t y o f B r i t i s h C olumbia, Vancouver, B.C. 56 pp. G r e i g , M. and D. O s t e r l i n . 1978. UBC Anovar - a n a l y s i s o f v a r i a n c e and c o v a r i a n c e . Adapted from Brigham Young U n i v e r s i t y Documentation, Computing C e n t r e , U n i v e r s i t y o f B r i t i s h C olumbia, Vancouver, B.C. 69 pp. 127 Guyot, G. 1990. O p t i c a l p r o p e r t i e s o f v e g e t a t i o n c a n o p i e s . I n : A p p l i c a t i o n s o f remote s e n s i n g i n a g r i c u l t u r e . B u t t e r w o r t h , Stoneham, MA. pp. 19-44. H a l l , P.M. 1981. Remote s e n s i n g o f d o u g l a s - f i r t r e e s newly i n f e s t e d by b a r k b e e t l e s . M.Sc. T h e s i s , Department o f F o r e s t r y , U n i v e r s i t y o f B r i t i s h C olumbia, Vancouver, B.C. 68 pp. H a l l , P.M., J.A. McLean, and P.A. Murtha. 1983. D y e - l a y e r d e n s i t y a n a l y s i s i d e n t i f i e s new d o u g l a s - f i r b e e t l e a t t a c k . Can. J . F o r . Res. 1 3 ( 2 ) : 279-282. Hare E.W., G.R. Edwards, and J.R. M i l l e r . 1984. G e o b o t a n i c a l remote s e n s i n g o f s m a l l l o c a l i z e d swamps and bogs i n n o r t h e r n O n t a r i o . P r e s e n t e d a t the I n t e r n a t i o n a l Symposium on Remote S e n s i n g o f Environment, T h i r d Thematic C o n f e r e n c e , Remote S e n s i n g f o r E x p l o r a t i o n Geology, C o l o r a d o S p r i n g s , C o l o r a d o . H a r r i s , J.W.E., A.F. Dawson, and R.G. Brown. 1982. E v a l u a t i o n o f mountain p i n e b e e t l e damage u s i n g a e r i a l p hotography - F l a t h e a d R i v e r , B.C., 1980. Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t r y R e s e a r c h C e n t r e , R e p o r t BC-X-228, V i c t o r i a , B.C. 10 pp. H e l l e r , R.C. 1968. P r e v i s u a l d e t e c t i o n o f ponderosa p i n e s d y i n g from b a r k b e e t l e a t t a c k . P r o c e e d i n g s o f th e F i f t h Symposium on Remote S e n s i n g o f t h e Environment, pp. 387-434. H e l l e r , R.C. 1978. Case a p p l i c a t i o n s o f remote s e n s i n g f o r v e g e t a t i o n damage assessment. Photogramm. Eng. and Remote S e n s i n g 4 4 ( 9 ) : 1159-1166. Hobbs, A . J . 1983. E f f e c t s o f a i r - p h o t o s c a l e on e a r l y d e t e c t i o n o f mountain p i n e b e e t l e i n f e s t a t i o n . M.Sc. T h e s i s , Department o f F o r e s t r y , U n i v e r s i t y o f B r i t i s h C olumbia, Vancouver, B.C. 136 pp. H o r l e r , D.N.H., J . B a r b e r , and A.R. B a r r i n g e r . 1980a. New co n c e p t s f o r t h e d e t e c t i o n o f g e o c h e m i c a l s t r e s s i n p l a n t s . P r o c e e d i n g s o f t h e E i g h t A n n u a l C o n f e r e n c e o f t h e Remote S e n s i n g S o c i e t y , pp. 113-123. H o r l e r , D.N.H., J . B a r b e r , and A.R. B a r r i n g e r . 1980b. E f f e c t s o f heavy m e t a l s on t h e absorbance and r e f l e c t a n c e s p e c t r a o f p l a n t s . I n t . J . o f Remote S e n s i n g 1: 121-136. 128 H o r l e r , D.N.H., M. Dockray, J . B a r b e r , and A.R. B a r r i n g e r . 1982. Red edge measurements f o r r e m o t e l y s e n s i n g p l a n t c h l o r o p h y l l c o n t e n t . P r o c e e d i n g s o f t h e 24t h COSPAR P l e n a r y Meet. Remote S e n s i n g and M i n e r a l E x p l o r a t i o n . H o r l e r , D.N.H., J . B a r b e r , J.P. Darch, D.C. F e r n s , and A.R. B a r r i n g e r . 1983a. Approaches t o d e t e c t i o n o f ge o c h e m i c a l s t r e s s i n v e g e t a t i o n . Adv. Space. Res 3: 175-179. H o r l e r , D.N.H. M. Dockray, J . B a r b e r . 1983b. The r e d edge of p l a n t r e f l e c t a n c e . I n t . J . o f Remote S e n s i n g 4: 273-288. Kennedy, R.W. 1984. Lodgepole p i n e as a com m e r c i a l r e s o u r c e i n Canada. Lodgepole p i n e t h e s p e c i e s and i t s management. Symposium P r o c e e d i n g s . Washington S t a t e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n , pp. 21-23. K l e i n , W.H. 1982. E s t i m a t i n g b a r k b e e t l e - k i l l e d l o d g e p o l e p i n e w i t h h i g h a l t i t u d e panoramic p h o t o g r a p h y . Photogramm. Eng. and Remote S e n s i n g 4 8 ( 5 ) : 733-737 . K l e i n , W.H., D.D. B e n n e t t , and R.W. Young. 1980. E v a l u a t i o n o f panoramic r e c o n n a i s s a n c e a e r i a l p h otography f o r meas u r i n g a n n u a l m o r t a l i t y o f Lodgepole p i n e caused by t h e mountain p i n e b e e t l e . USDA, F o r e s t S e r v i c e , R e p o r t No. 80-2. 21 pp. Kleman, J . and E. F a g e r l u n d . 1981. S p e c t r a l s i g n a t u r e measurements o f b a r l e y c r o p s - t h e i n f l u e n c e o f i r r i g a t i o n and f e r t i l i z a t i o n . S i g n a t u r e s s p e c t r a l e s d ' o b j e t s i n t e l e d e t e c t i o n , A v i g n o n , F r a n c e , pp. 417-424. Kneppeck, J.D. and F . J . Ahe r n . 1989. A comparison o f images from a pushbroom s c a n n e r w i t h normal c o l o r a e r i a l p h o t ographs f o r d e t e c t i n g s c a t t e r e d r e c e n t c o n i f e r m o r t a l i t y . Photogramm. Eng. and Remote S e n s i n g (55)3: 333-337. K n i p l i n g , E.B. 1970. P h y s i c a l and p h y s i o l o g i c a l b a s i s f o r th e r e f l e c t a n c e o f v i s i b l e and n e a r - i n f r a r e d r a d i a t i o n from v e g e t a t i o n . Remote S e n s i n g o f Environment 1: 155-159. 129 Koch, B., U. Ammer, T. S c h n e i d e r , and H. W i t t m e i e r . 1990. S p e c t r o r a d i o m e t e r measurements i n t h e l a b o r a t o r y and i n t h e f i e l d t o a n a l y z e t h e i n f l u e n c e o f d i f f e r e n t damage symptoms on t h e r e f l e c t i o n s p e c t r a o f f o r e s t t r e e s . I n t . J . o f Remote S e n s i n g 11 (7) : 1145-1163. Kramer, P . J . and T.T. K o z l o w s k i . 1979. P h y s i o l o g y o f Woody P l a n t s . Academic P r e s s I n c . , New York. 811 pp. L a b o v i t z , M.L., E . J . Masuoka, and S.G. Feldmann. 1984. Changes i n v e g e t a t i o n s p e c t r a w i t h l e a f d e t e r i o r a t i o n under two methods o f p r e s e r v a t i o n . Photogramm. Eng. and Remote S e n s i n g 50 (12) : 1737-1745. L a r s s o n , S., R. Oren, R.H. Waring, and J.W. B a r r e t . 1983. A t t a c k s o f mountain p i n e b e e t l e as r e l a t e d t o t r e e v i g o r o f ponderosa p i n e . F o r e s t S c i e n c e 2 9 ( 2 ) : 395-402. L e p r i e u r , C.E. 1989. Red edge measurements and canopy s t r u c t u r e : a f i r s t l o o k w i t h AVIRIS d a t a . P r o c e e d i n g s o f IGARRS '8 9/12th Can. Symp. on Remote S e n s i n g , Vancouver, B.C. pp. 2093-2096. L i c h t e n t h a l e r , H.K. 1989. P o s s i b i l i t i e s f o r remote s e n s i n g o f t e r r e s t r i a l v e g e t a t i o n by a c o m b i n a t i o n o f r e f l e c t a n c e and l a s e r - i n d u c e d c h l o r o p h y l l f l u o r e s c e n c e . P r o c e e d i n g s o f IGARRS '89/12th Can. Symp. on Remote S e n s i n g , Vancouver, B.C. pp. 134 9-1354 . L i l l e s a n d , T.M., R.H. Brock, J.L. R o b e r t s , and W.L. Johnson. 1975. Tree s t r e s s d e t e c t i o n t h r o u g h s p e c t r a l r a t i o n i n g o f c o l o r f i l m r e c o r d s . P r o c e e d i n g s o f t h e F i f t h B i e n n i a l Workshop on C o l o r A e r i a l Photography, A m erican S o c i e t y o f Photogrammetry. pp. 79-107. L i l l e s a n d , T.M. and R.W K i e f e r . Image I n t e r p r e t a t i o n . York. 612 pp. L i l l e s a n d , T.M. and R.W K i e f e r . Image I n t e r p r e t a t i o n . Sons, I n c . , New York. 1979. Remote S e n s i n g and John W i l e y & Sons, I n c . , New 1987. Remote S e n s i n g and Second E d i t i o n , John W i l e y & 721 pp. L o r i o , P.L. 1986. L o b l o l l y p i n e s e a s o n a l development and i n i t i a l r e s i s t a n c e t o SPB a t t a c k . Workshop p r e s e n t a t i o n a t t h e T h i r t y - s e v e n t h A n n u a l F o r e s t I n s e c t Work C o n f e r e n c e , V i c t o r i a , B.C. 130 L o t a n , J.E., J.K. Brown, and L.F. Neuenschwander. 1984. R o l e o f f i r e i n l o d g e p o l e p i n e f o r e s t s . Lodgepole p i n e t h e s p e c i e s and i t s management. Symposium P r o c e e d i n g s . Washington S t a t e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n , pp. 133-152. Lour i m , J . and R.A.H. Buxto n . 1988. A s p e c t r a l g e o b o t a n i c a l s u r v e y o f an e l e v a t e d a r s e n i c - g o l d p r o p e r t y i n mountainous t e r r a i n i n B r i t i s h C o lumbia, Canada. P r o c e e d i n g o f t h e 6 t h Thematic C o n f e r e n c e , Remote S e n s i n g f o r E x p l o r a t i o n Geology, Houston, TX, V o l . I I . pp 613-621. Matson, P.A., F.P. H a i n , and W. Mawby. 1987. I n d i c e s o f t r e e s u s c e p t i b i l i t y t o b a r k b e e t l e s v a r y w i t h s i l v i c u l t u r a l t r e a t m e n t i n a l o b l o l l y p i n e p l a n t a t i o n . F o r e s t E c o l o g y and Management 22: 107-118 . Meyer, M.P. and D.W. F r e n c h . 1967. D e t e c t i o n o f d i s e a s e d t r e e s . Photogramm. Eng. 37: 1035-1040. M i l l e r , J.R., E.W. Hare, R.A. N e v i l l e , R.P. G a u t h i e r , W.D. M c C o l l , and S.M. T i l l . 1985. C o r r e l a t i o n o f m e t a l c o n c e n t r a t i o n w i t h a n o m a l i e s i n narrow band m u l t i s p e c t r a l imagery o f t h e v e g e t a t i o n r e d r e f l e c t a n c e edge. P r o c e e d i n g s o f t h e I n t e r n a t i o n a l Symposium on Remote S e n s i n g o f t h e Environment, F o u r t h Thematic C o n f e r e n c e , Remote S e n s i n g f o r E x p l o r a t i o n Geology, San F r a n c i s c o , C a l i f o r n i a , pp. 143-154. Moody, B.H. 1982. The r o l e , i n f o r m a t i o n a l r e q u i r e m e n t s , and major p e s t problems o f t h e f o r e s t i n s e c t and d i s e a s e s u r v e y . Uses o f Remote S e n s i n g i n F o r e s t P e s t Damage A p p r a i s a l , C o m p i l e d by R.J. H a l l , Canadian F o r e s t r y S e r v i c e , N o r t h e r n F o r e s t R e s e a r c h C e n t r e , I n f o r m a t i o n R e p o r t NOR-X-238, Edmonton, A l b e r t a , pp. 43-50. Moore, R.E. 1980. F i l m - f i l t e r c o m b i n a t i o n s f o r a e r i a l c o l o r p h otography. Can. Energy Mines and R e s o u r c e s , Surveys and Mapping B r . , I.C.A.S., Ottawa, No. SMP-1263E: 32. Moore, W. and T. P o l z i n . 1990. ER-2 h i g h a l t i t u d e r e c o n n a i s s a n c e : a case s t u d y . F o r . Chron. 66 (5) : 4 8 0 - 4 8 6 . Murtha, P.A. 1972. 'A g u i d e t o a i r photo i n t e r p r e t a t i o n o f f o r e s t damage i n Canada. Canadian F o r e s t r y S e r v i c e , P u b l i c a t i o n #1291. 63 pp. 131 Murtha, P.A. 1976. I n v e n t o r y and m o n i t o r i n g o f f o r e s t d i s e a s e s and damages by remote s e n s i n g -c o n s i d e r a t i o n s about p r o m i s i n g ways t o do i t . I n : P r o c e e d i n g s o f t h e S i x t e e n t h IUFRO Wo r l d Congress, O s l o , Norway, pp. 385-397. Murtha, P.A. 1978. Remote s e n s i n g and v e g e t a t i o n damage: a t h e o r y f o r d e t e c t i o n and assessment. Photogramm. Eng. and Remote S e n s i n g 44: 1147-1158. Murtha, P.A. 1983. Some a i r - p h o t o s c a l e e f f e c t s on D o u g l a s -f i r damage t y p e i n t e r p r e t a t i o n . Photogramm. Eng. and Remote S e n s i n g 4 9 ( 3 ) : 327-335. Murtha, P.A. 1985a. Photo I n t e r p r e t a t i o n o f s p r u c e b e e t l e -a t t a c k e d s p r u c e . Can. J . o f Remote S e n s i n g (11)1: 93-102. Murtha, P.A. 1985b. I n t e r p r e t a t i o n o f l a r g e - s c a l e c o l o r - i r p h o t ographs f o r b a r k b e e t l e i n c i p i e n t a t t a c k d e t e c t i o n . P e c o r a 10 P r o c e e d i n g s , C o l o r a d o S t a t e U n i v e r s i t y , F o r t C o l l i n s , C o l o r a d o , pp. 209-219. Murtha, P.A. and L.S. H a m i l t o n . 1969. D e t e c t i o n o f s i m u l a t e d damage on c o n i f e r s u s i n g n e a r - i n f r a r e d f i l m . J . o f F o r . 6 7 ( 1 1 ) : 827-829. Murtha, P.A. and R.J. W i a r t . 1989a. C l u s t e r a n a l y s i s o f p i n e crown f o l i a g e p a t t e r n s a i d i d e n t i f i c a t i o n o f mountain p i n e b e e t l e c u r r e n t - a t t a c k . Photogramm. Eng. and Remote S e n s i n g 5 5 ( 1 ) : 83-86. Murtha, P.A. and R.J. W i a r t . 1989b. PC-based d i g i t a l a n a l y s i s o f mountain p i n e b e e t l e c u r r e n t - a t t a c k e d and n o n - a t t a c k e d l o d g e p o l e p i n e . Can. J . o f Remote S e n s i n g 15 (1) : 70-76. Neubert, R.W. 1969. Trees w i t h t e m p e r a t u r e s . Am. F o r . 75 (4) : 6-7, 46-47. N i l s o n , T. and A. Kuusk. 1989. A r e f l e c t a n c e model f o r t h e homogeneous p l a n t canopy and i t s i n v e r s i o n . Remote S e n s i n g o f Env. 27: 157-167. Nyholm, K.-G., S. Suneson, and S. O s t e r l i n d . 1975. Gymnasie b i o l o g i 2. T r e d j e Upplagan, E s s e l t e Studium AB, Nacka. 145 pp. P a r k i n s o n , J.A. and S.E. A l l a n . 1975. A wet o x i d a t i o n p r o c e d u r e f o r t h e d e t e r m i n a t i o n o f n i t r o g e n and m i n e r a l n u t r i e n t s i n b i o l o g i c a l m a t e r i a l . Comm. i n S o i l S c i e n c e P l a n t A n a l y s i s 6 ( 1 ) : 1-11. 132 Plummer, S.E. 1988. R e l a t i o n s h i p s between t h e n i t r o g e n c o n t e n t o f g r a s s and r e f l e c t a n c e . P r o c e e d i n g s o f IGARRS '88 Symp. on G e o s c i e n c e and Remote S e n s i n g , E d i n b u r g h , S c o t l a n d , pp. 265-267. P u r i t c h , G.S. 1981. N o n v i s u a l remote s e n s i n g o f t r e e s a f f e c t e d by s t r e s s . A Review. Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t r y R e s e a r c h C e n t r e , F o r e s t r y T e c h n i c a l R e p o r t 30, V i c t o r i a , B.C. 10 pp. R e i d , R.W. 1963. B i o l o g y o f t h e mountain p i n e b e e t l e , Dendroctonus monticolae H o p k i n s , i n t h e E a s t Kootenay Region o f B r i t i s h C o l u m b i a . I I I . I n t e r a c t i o n between t h e b e e t l e and i t s h o s t , w i t h emphasis on b r o o d m o r t a l i t y and s u r v i v a l . Can. E n t . 95: 225-238. R e i d , R.W., H.S. Whitney, and J.A. Watson. 1967. R e a c t i o n s o f l o d g e p o l e p i n e t o a t t a c k by Dendroctonus ponderosae Hopkins and b l u e s t a i n f u n g i . Can. J . o f Botany 45: 1115-1126. Rock, B.N., T. H o s h i z a k i , and J.R. M i l l e r . 1988. Comparison o f i n - s i t u and a i r b o r n e s p e c t r a l measurements o f t h e b l u e s h i f t a s s o c i a t e d w i t h f o r e s t d e c l i n e . Remote S e n s i n g o f Env. 24: 109-127. R u d i n s k y , J.A. 1962. E c o l o g y o f Scolytidae. Ann. Rev. Entomol. 7: 327-348. Runesson, U.T. 1985. The uses o f e l e c t r o n i c s c a n n e r s t o d e t e c t s t r e s s . Paper p r e s e n t e d a t t h e CIF/CNC Seminar: Remote S e n s i n g - A p p l i c a t i o n s f o r F o r e s t r y , P r i n c e George, B.C. 7 pp. Ryker, L.C. and J.A. R u d i n s k y . 1979. F i e l d r e c o g n i t i o n and i d e n t i f i c a t i o n o f b a r k b e e t l e s and t h e i r damage. F o r e s t I n s e c t Survey and C o n t r o l , E d i t e d by J.A. R u d i n s k y , F o u r t h e d i t i o n , Oregon S t a t e U n i v e r s i t y , C o r v a l l i s , Oregon, pp. 210-213. S a f r a n y i k , L. 1982. A l t e r n a t i v e s o l u t i o n s , p r e v e n t a t i v e management and d i r e c t c o n t r o l . P r o c e e d i n g s o f t h e J o i n t Canada/USA Workshop on M o u n t a i n P i n e B e e t l e R e l a t e d Problems i n Western N o r t h A m e r i c a , Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t R e s e a r c h C e n t r e , R e p o r t BC-X-230. pp. 29-32. Scarp a c e , F.L. and G.A. F r i e d e r i c h s . 1978. A method o f d e t e r m i n i n g s p e c t r a l a n a l y t i c a l dye d e n s i t i e s . Photogramm. Eng. and Remote S e n s i n g 4 4 ( 1 0 ) : 1293-1301. 133 Schmidt, W . C . 1982. A l t e r n a t i v e s o l u t i o n s t o t h e mountain p i n e b e e t l e , t h e s i l v i c u l t u r e p e r s p e c t i v e . P r o c e e d i n g s o f t h e J o i n t Canada/USA Workshop on Mountain P i n e B e e t l e R e l a t e d Problems i n Western N o r t h A m e r i c a , Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t R e s e a r c h C e n t r e , R e p o r t BC-X-230. pp. 33-40. S e s t a k , Z., J . C a t s k y , and P.G. J a r v i s . 1971. P l a n t p h o t o s y n t h e t i c p r o d u c t i o n . Manual o f Methods. Dr. W. Junk N.V. P u b l i s h e r s The Hague, N e t h e r l a n d s , pp. 672-701. Shrimpton, D.M. 1973. Age- and s i z e - r e l a t e d r e s p o n s e o f l o d g e p o l e p i n e t o i n o c u l a t i o n w i t h Europhium clavigerum. Can. J . o f Botany 51: 1155-1160 . Smith, R.H., G.C. T r o s t l e , and W.F. McCambridge. 1977. P r o t e c t i v e s p r a y t e s t s on t h r e e s p e c i e s o f b a r k b e e t l e s ' i n t h e w e s t e r n U n i t e d S t a t e s . J . Econ. Entomol. 70: 119-125. S o k a l , R.R. and F . J . R o h l f . 1981. B i o m e t r y . Second E d i t i o n , W.H. Freeman and Company, San F r a n c i s c o , C a l i f o r n i a . 859 pp. S t e e l , R.G.D.' and J.H. T o r r i e . 1980. P r i n c i p l e s and p r o c e d u r e s o f s t a t i s t i c s . Second E d i t i o n , McGraw-H i l l Book Company, New York. 633 pp. Swain, P.H. and S.M. D a v i s . 1979. Remote s e n s i n g : The q u a n t i t a t i v e a pproach. M c G r a w - H i l l Book Company, New York. 396 pp. T e i l l e t , P.M., D.G. Goodenough, and B. Guindon. 1981. D i g i t a l a n a l y s i s o f s p a t i a l and s p e c t r a l f e a t u r e s from a i r b o r n e MSS o f a f o r e s t e d r e g i o n . Paper p r e s e n t e d a t t h e F i f t e e n t h I n t e r n a t i o n a l Symposium on Remote S e n s i n g o f Environment, Ann A r b o r , M i c h i g a n . 22 pp. Thomas, J.R., V . I . Myers, M.D. Heilman, and C L . Wiegand. 1966. F a c t o r s a f f e c t i n g l i g h t r e f l e c t a n c e o f c o t t o n . P r o c e e d i n g s o f t h e F o u r t h Symposium on Remote S e n s i n g o f t h e Environment, pp. 305-312. Tucker, C.J. 1980. Remote s e n s i n g o f l e a f w a t e r c o n t e n t i n t h e near i n f r a r e d . Remote S e n s i n g o f Env. 10: 23-32 . 1 3 4 T u r n b u l l , W.C. 1982. P a r k s Canada management p o l i c i e s and t h e i r r e l a t i o n t o mountain p i n e b e e t l e p e s t management programs. P r o c e e d i n g s o f t h e J o i n t Canada/USA Workshop on Moun t a i n P i n e B e e t l e R e l a t e d Problems i n Western N o r t h A m e r i c a , Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t R e s e a r c h C e n t r e , R e p o r t BC-X-230. pp. 58-59. van d e r Kamp, B . J . and F.G. Hawksworth. 1984. Damage and c o n t r o l o f t h e major d i s e a s e s o f l o d g e p o l e p i n e . Lodgepole p i n e t h e s p e c i e s and i t s management. Symposium P r o c e e d i n g s . Washington S t a t e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n , pp. 125-131. Van Hooser, D.D. and C.E. Keegan. 1984. Lodgepole p i n e as a commercial r e s o u r c e i n t h e U n i t e d S t a t e s . Lodgepole p i n e t h e s p e c i e s and i t s management. Symposium P r o c e e d i n g s . Washington S t a t e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n , pp. 15-19. W a l t e r - S h e a , E.A., J.M. Norman, and B.L. B l a d . 1989. L e a f b i d i r e c t i o n a l r e f l e c t a n c e and t r a n s m i t t a n c e i n c o r n and soybean. Remote S e n s i n g o f Env. 29: 161-174 . Waring, R.H. and G.B. P i t m a n . 1985. M o d i f y i n g l o d g e p o l e p i n e s t a n d s t o change s u s c e p t i b i l i t y t o mountain p i n e b e e t l e a t t a c k . E c o l o g y 6 6 ( 3 ) : 889-897. Weber, F.P. and F.C. P o l c y n . 1972. Remote s e n s i n g t o d e t e c t s t r e s s i n f o r e s t s . Photogramm. Eng. 28: 163-175. Weber, F.P., T.H. Waite, and R.C. H e l l e r . 1972. Trend and s p r e a d o f b a r k b e e t l e i n f e s t a t i o n s i n t h e B l a c k H i l l s . USDA, F o r e s t S e r v i c e , P a c i f i c Southwest F o r e s t and Range Exp e r i m e n t S t a t i o n , F i n a l R e p o r t , pp. 112-120. Weetman, G.F., R.C. Yang, and I.E. B e l l a . 1984. N u t r i t i o n and f e r t i l i z a t i o n o f l o d g e p o l e p i n e . Lodgepole p i n e t h e s p e c i e s and i t s management. Symposium P r o c e e d i n g s . Washington S t a t e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n , pp. 225-232. Wolf, P.R. 1974. Elements o f Photogrammetry. M c G r a w - H i l l Book Company, New York. 562 pp. Wood, C.S., G.A. Van S i c k l e , and T.L. Shore. 1984. F o r e s t i n s e c t and d i s e a s e c o n d i t i o n s , B r i t i s h Columbia and Yukon, 1983. Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t R e s e a r c h C e n t r e , I n f o r m a t i o n R e p o r t BC-X-246, V i c t o r i a , B.C. 27 pp. 135 Wood, C.S., G.A. Van S i c k l e , and L.M. Humble. 1987. F o r e s t i n s e c t and d i s e a s e c o n d i t i o n s , B r i t i s h Columbia and Yukon, 1987. Canadian F o r e s t r y S e r v i c e , P a c i f i c F o r e s t R e s e a r c h C e n t r e , I n f o r m a t i o n R e p o r t BC-X-296, V i c t o r i a , B.C. 40 pp. 136 Appendix- I . I n i t i a l s t u d y raw d a t a The f o l l o w i n g t h r e e d a t a s e t s c o n t a i n a b s o r p t i o n r e a d i n g s a t 457, 645, and 664 nanometers. S u r f a c e a r e a i s shown i n cm (based on 25 g f r e s h - w e i g h t s a m p l e s ) . H e a l t h s t a t u s i s shown as HH f o r h e a l t h y t r e e s , and DD f o r s u c c e s s f u l l y a t t a c k e d t r e e s . N e e d l e s t h a t were s t o r e d i n p o l y e t h y l e n e bags a r e l a b e l l e d as b and b2 samples. N e e d l e s t h a t were s t o r e d i n t a c t on t h e bra n c h e s a r e l a b e l l e d as s and s2 samples. N e e d l e s t h a t were s t o r e d l o n g e r p r i o r t o m a c e r a t i o n a r e l a b e l l e d b2 and s 2 . Time 1 r e f e r s t o n e e d l e s t h a t were p r e p a r e d and measured 1 day a f t e r c o l l e c t i o n . Time 2 r e f e r s t o n e e d l e s from t i m e 1 t h a t had been i n s o l u t i o n f o r 3 days, and n e e d l e s t h a t were p r e p a r e d and measured 4 days a f t e r c o l l e c t i o n . Time 3 r e f e r s t o n e e d l e s from t i m e 1 and 2 t h a t had been i n s o l u t i o n f o r 8 t o 11 days r e s p e c t i v e l y . Time 4 r e f e r s t o samples t h a t were measured 53 days l a t e r t h a n t i m e 3. The second row o f a b s o r p t i o n r e a d i n g s a r e a d j u s t e d v a l u e s based on an average s u r f a c e a r e a o f 2151.177 square c e n t i m e t e r s : average a r e a * a c t u a l r e a d i n g = a d j u s t e d v a l u e a c t u a l s . a r e a 457 nanometers sample a r e a s t a t u s t i m e l time2 t i m e 3 t i m e 4 I s 2207.69 HH 1.10 1.07 2s 2044.62 HH 0.29 0.31 3s 2616.13 DD 0.66 0.54 4s m i s s i n g DD 5s 2027.68 DD 0.91 0.97 6s 2036.24 DD 1.10 1.16 7s 2310.72 HH 0.98 0.91 8s m i s s i n g HH 9s 1978.78 HH 0.89 0.97 10s 2135.93 DD 0.88 0.89 l b 2444.54 HH 1.30 1.14 1.27 1.12 2b 2212.31 HH 1.02 0.99 3b 2792.44 DD 1.27 0.98 1.27 0.98 4b 2374.68 DD 1.12 137 1.01 5b 1976.70 DD 1.05 1.14 6b 2048.51 DD 1.31 1.38 7b 2172.68 HH 1.02 1.01 8b 2357.88 HH 2.17 1. 98 9b 2259.19 HH 1.36 1.29 1.35 1.29 10b 2097.88 DD 0.87 0.89 0.86 0.88 l s 2 2133.07 HH 1.25 1.26 1.16 1.17 2s2 2279.23 HH 0.89 0.84 3s2 2300.99 DD 0.99 0.93 0.99 0.93 4s2 2317.40 DD 0.92 0.85 5s2 2042.89 DD 0.98 1.03 6s2 1828.49 DD 1.02 1.20 7s2 2379.78 HH 0.90 0.81 8s2 2328.48 HH 1.03 0.95 9s2 2163.78 HH 1.09 1.08 1.07 1.06 10s2 2058.56 DD 0.77 0.80 0.77 0.80 l b 2 2228.82 HH 1.17 1.13 1.15 1.11 2b2 2271.95 HH 1.02 0.97 3b2 2502.19 DD 0.96 0.83 0.94 0.81 4b2 2271.44 DD 1.02 0.97 5b2 2043.12 DD 1.05 1.11 6b 2 2087.72 DD 1.12 1.15 7b2 2177 .78 HH 0.93 0.92 8b2 1924.65 HH 1.01 1.13 9b2 2251.07 HH 1.12 1.07 1.07 1.02 10b2 2209.91 DD 0.96 0.93 0.93 0.91 138 645 nanometers sample a r e a s t a t u s t i m e l t ime2 t i m e 3 t i m e 4 I s 2207.69 HH 0 .53 0.37 0.52 0.36 2s 2044.62 HH 0.29 0.13 0.31 0.14 3s 2616.13 DD 0.33 0.23 0.27 0.19 4s m i s s i n g DD 5s 2027.68 DD 0.42 0.28 0.45 0.30 6s 2036.24 DD 0.45 0.35 0.48 0.37 7s 2310.72 HH 0.42 0.30 0.39 0.28 8s m i s s i n g HH 9s 1978.78 HH 0.59 0.37 0.64 0.40 10s 2135.93 DD 0.46 0.46 l b 2444.54 HH 0.61 0.45 0.35 0.54 0.40 0.31 2b 2212.31 HH 0.47 0.34 0.46 0.33 3b 2792.44 DD 0.58 0.40 0.35 0.45 0.31 0.27 4b 2374.68 DD 0.52 0.35 0.47 0.32 5b 1976.70 DD 0.43 0.30 0.47 0.33 6b 2048.51 DD 0.57 0.41 0.60 0.43 7b 2172.68 HH 0.48 0.35 0.48 0.35 8b 2357.88 HH 0.53 0.49 0.48 0.45 9b 2259.19 HH 0.59 0.44 0.37 0.56 0.42 0.35 10b 2097.88 DD 0.38 0.27 0.23 0.39 0.28 0.24 l s 2 2133.07 HH 0 .56 0.42 0.35 0 .56 0.42 0.35 2s2 2279.23 HH 0 .42 0.29 0 .40 0.27 3s2 2300.99 DD 0 .44 0.33 0.28 0 .41 0.31 0.26 4s2 2317.40 DD 0 .54 0.28 0 .50 0.26 5s2 2042.89 DD 0 .42 0.31 0 .44 0.33 6s2 1828.49 DD 0 .44 0.32 139 0.52 0.38 7s2 2379.78 HH 0.48 0.29 0.43 0.26 8s2 2328.48 HH 0.53 0.34 0.49 0.31 9s2 2163.78 HH 0.57 0.35 0.28 0.57 0.35 0.28 10s2 2058.56 DD 0.36 0.23 0.20 0.38 0.24 0.21 lb2 2228.82 HH 0.55 0.41 0.33 0.53 0.40 0.32 2b2 2271.95 HH 0.53 0.35 0.50 0.33 3b2 2502.19 DD 0.47 0.34 0.26 0.40 0.29 0.22 4b2 2271.44 DD 0.57 0.32 0.54 0.30 5b2 2043.12 DD 0.44 0.34 0.46 0.36 6b2 2087 .72 DD 0.50 0.35 0.52 0.36 7b2 2177.78 HH 0.56 0.30 0.55 0.30 8b2 1924.65 HH 0. 60 0.34 0.67 0.38 9b2 2251.07 HH 0.63 0.39 0.28 0.60 0.37 0.27 10b2 2209.91 DD 0.44 0.32 0.25 0.43 0.31 0.24 sample area s t a t u s t i m e l t ime2 t ime 3 t ime' Is 2207.69 HH 0.98 0.79 0.95 0.77 2s 2044.62 HH 0.51 0.32 0.54 0.34 3s 2616.13 DD 0.67 0.52 0.55 0.43 4s m i s s i n g DD 5s 2027.68 DD 0.88 0.64 0.93 0.68 6s 2036.24 DD 0.93 0.76 0.98 0.80 7s 2310.72 HH 0.92 0.64 0.86 0.60 8s m i s s i n g HH 9s 1978.78 HH 1.16 0.82 1.26 0.89 10s 2135.93 DD 0.86 0.59 0.87 0.59 l b 2444.54 HH 1.13 0.97 0.94 0.99 0.85 0.83 140 2b 2212.31 HH 0.98 0 . 95 0.81 0.79 3b 2792.44 DD 1.17 0.90 0.97 0.75 0. 97 0.75 4b 2374.68 DD 1.02 0 . 92 0.72 0.65 5b 1976.70 DD 0.90 0.98 0.64 0.70 6b 2048.51 DD 1.14 1.20 0.88 0.92 7b 2172.68 HH 0.93 0.92 0.80 0.79 8b 2357.88 HH 1.05 0.96 0.99 0.90 9b 2259.19 HH 1.16 1.10 1.01 0.96 1.00 0.95 10b 2097.88 DD 0.71 0.73 0.63 0.65 0.63 0.65 l s 2 2133.07 HH 1.06 1.07 0.94 0.95 0.89 0.90 2s2 2279.23 HH 0.86 0.81 0.72 0.68 3s2 2300.99 DD 0.94 0.88 0.81 0.76 0.78 0.73 4s2 2317.40 DD 1.05 0.97 0.57 0.53 5s2 2042.89 DD 0.88 0.93 0.71 0.75 6s2 1828.49 DD 0.92 1.08 0.73 0.86 7s2 2379.78 HH 0.85 0.77 0.64 0.58 8s2 2328.48 HH 0.98 0.91 0.80 0.74 9s2 2163.78 HH 1.11 1.10 0.79 0.79 0.78 0.78 10s2 2058 .56 DD 0.69 0.72 0.53 0.55 0.53 0.55 lb2 2228.82 HH 1.08 1.04 0.87 0.84 0.87 0.84 2b2 2271.95 HH 1.08 1.02 0.82 0.78 3b2 2502.19 DD 0.98 0.84 0.79 0.68 0.74 0.64 4b2 2271.44 DD 1.09 1.03 0. 65 0.62 5b2 2043.12 DD 0.94 0.99 0.77 0.81 6b2 2087 .72 DD 1.03 1.06 0.82 0.84 7b2 2177.78 HH 0.99 0.98 0.67 0.66 8b2 1924.65 HH 1.11 0.78 141 1.24 0.87 9b2 2251.07 HH 1.17 0.83 0.79 1.12 0.79 0.75 10b2 2209.91 DD 0.88 0.69 0.64 0.86 0.67 0.62 The f o l l o w i n g d a t a s e t c o n t a i n s t h e averages o f t h e measurements from t h e 25 g samples p r i o r t o m a c e r a t i o n . The s u r f a c e a r e a c a l c u l a t i o n s were done as f o l l o w s : The n e e d l e s were assumed t o be c y l i n d r i c a l (made up o f two h a l v e s ) i n form. W i t h t h e use o f t o t a l l e n g t h ( i n cm) and m i d - d i a m e t e r ( i n mm) t h e s u r f a c e a r e a f o r each h a l f was computed ( f o r 30 n e e d l e s from each 25 g sample) and summed. The average s u r f a c e a r e a from t h e 30 n e e d l e s was t h e n m u l t i p l i e d by t h e t o t a l number o f n e e d l e s . Sample 10b 4b 7s Needle#= 325 Needle#= 436 Needle#= 412 l e n g t h d i a l e n g t h d i a l e n g t h d i a AVG 7.363 1.705 6.74 1.571 6.693 1.54 STD 0.787 0.114 0.612 0.074 0.528 0.086 AREA 2097.876 2374.676 2310.720 (cm 2) Sample 5s 6s I s Needle#= 444 Needle#= 370 Needle#= 413 l e n g t h d i a l e n g t h d i a l e n g t h d i a AVG 5.811 1.528 6.883 1.555 6.87 1.513 STD 0.567 0.073 0.594 0.075 0.643 0.040 AREA 2027.680 2036.238 2207.694 (cm 2) Sample 9s 6s2 4s2 Needle#= 352 Needle#= 309 Needle#= 401 l e n g t h d i a l e n g t h d i a l e n g t h d i a AVG 7.076 1.545 7.338 1.568 7.205 1.56 STD 0.702 0.065 0.498 0.072 0.804 0.062 AREA 1978.780 1828.487 2317.397 (cm 2) Sample l s 2 2s2 9s2 Needle#= 382 Needle#= 468 Needle#= 352 l e n g t h d i a l e n g t h d i a l e n g t h d i a AVG 6.976 1.556 6.35 1.491 7.848 1.523 STD 0.628 0.080 0.649 0.069 0.850 0.042 AREA 2133.067 2279.234 2163.778 (cm 2) 142 Sample AVG STD AREA (cm 2) Sample AVG STD AREA (cm 2) Sample AVG STD AREA (cm 2) Sample AVG STD AREA (cm 2) Sample AVG STD AREA (cm 2) Sample AVG STD AREA (cm 2) 5s2 Needle#= 448 l e n g t h d i a 5.796 1.53 0.272 0.061 2042.892 6b Needle#= 341 l e n g t h d i a 7.418 1.575 0.618 0.119 2048.514 7b Needle#= 441 l e n g t h d i a 6.608 1.45 0.697 0.098 2172.682 3b Needle#= 591 l e n g t h d i a 6.603 1.391 0.954 0.096 2792.438 2b Needle#= 413 l e n g t h d i a 6.58 1.583 0.936 0.112 2212.309 9b Needle#= 337 l e n g t h d i a 8.065 1.616 0.655 0.101 2259.188 3s2 Needle#= 447 l e n g t h d i a 7.22 1.386 0.822 0.075 2300.988 8b2 Needle#= 347 l e n g t h d i a 7.089 1.521 0.726 0.082 1924.651 3b2 Needle#= 521 l e n g t h d i a 6.876 1.358 0.824 0.093 2502.186 6b2 Needle#= 357 l e n g t h d i a 7.153 1.59 0.599 0.096 2087 .716 4b2 Needle#= 413 l e n g t h d i a 6.741 1.586 0.715 0.079 2271.436 l b 2 Needle#= 404 l e n g t h d i a 7.028 1.526 0.684 0.057 2228.823 10b2 Needle#= 343 l e n g t h d i a 7.201 1.74 0.873 0.128 2209.907 7b2 Needle#= 410 l e n g t h d i a 6.665 1.55 0.794 0.093 2177.776 7s2 Needle#= 469 l e n g t h d i a 6.408 1.54 0.548 0.074 2379.777 8s2 Needle#= 394 l e n g t h d i a 7.051 1.63 0.590 0.124 2328.484 2s Needle#= 388 l e n g t h d i a 6.81 1.505 0.653 0.037 2044.621 3s Needle#= 507 l e n g t h d i a 6.913 1.451 0.634 0.043 2616.134 143 Sample 10s 8b 5b Needle#= 350 Needle#= 384 Needle#= 427 l e n g t h d i a l e n g t h d i a l e n g t h d i a AVG 7.065 1.68 7.41 1.611 6.076 1.481 STD 0.544 0.081 0.686 0.104 0.632 0.087 AREA 2135.930 2357.883 1976.703 (cm 2) Sample l b 2b2 9b2 Needle#= 401 Needle#= 426 Needle#= 321 l e n g t h d i a l e n g t h d i a l e n g t h d i a AVG 7.251 1.635 6.816 1.521 8.191 1.665 STD 0.703 0.117 0.713 0.083 0.744 0.109 AREA 2444.542 2271.950 2251.071 (cm 2) Sample 10s2 5b2 Needle#= 337 Needle#= 449 l e n g t h d i a l e n g t h d i a AVG 7.128 1.666 5.841 1.515 STD 0.639 0.112 0.595 0.070 AREA 2058.563 2043.117 (cm 2) The f o l l o w i n g d a t a s e t c o n t a i n s t h e dbh o f t h e 10 t r e e s t h a t were used f o r t h i s s t u d y . t r e e # h e a l t h s t a t u s dbh (cm) 1 HH 16 2 HH 19 3 DD 20 4 DD 20 5 DD 18 DD average dbh= 19.2 cm 6 DD 19 HH average dbh= 18.2 cm 7 HH 19 8 HH 17 9 HH 2 0 10 DD 19 144 A ppendix I I . I n i t i a l s t u d y a n a l y s i s o f v a r i a n c e f o r f o l i a r f e a t u r e s A n o v a - p h y s i c a l c h a r a c t e r i s t i c s : The f o l l o w i n g f o u r a n a l y s e s o f v a r i a n c e f o l l o w t h e d e s c r i p t i o n s by S t e e l and T o r r i e (1980) f o r anovas w i t h subsamples (4 samples p e r t r e e f o r a t o t a l o f 40 s a m p l e s ) . ANALYSIS OF VARIANCE FOR VARIABLE NEEDLE # SRC. SUM OF MEAN NO . SOURCE DF SQUARES SQUARE F VALUE F c r i t i c a l 1 TREATMENT 1 2280.1 2280.1 0.17 5.32 non-2 EXP.ERROR 8 109249 13656.125 s i g 3 SAMPL . ERR 30 22676 755.867 4 TOTAL 39 134205.1 F=EXP.ERROR MEAN SQUARE/SAMPL.ERR MEAN SQUARE = 18.07 = s i g n i f i c a n t (F c r i t i c a l (95%) = 2.21, so t r e a t m e n t i s t e s t e d a g a i n s t e x p . e r r o r ) ANALYSIS OF VARIANCE FOR VARIABLE NEEDLE DIA SRC. SUM OF MEAN NO . SOURCE DF SQUARES SQUARE F VALUE F c r i t i c a l 1 TREATMENT 1 0.00033 0.00033 0.013 5.32 non-2 EXP.ERROR 8 0.20567 0.02571 s i g 3 SAMPL.ERR 30 0.05076 0 .00169 4 TOTAL 39 0.2567 6 F=EXP.ERROR MEAN SQUARE/SAMPL.ERR MEAN SQUARE = 15.21 = s i g n i f i c a n t (F c r i t i c a l (95%) = 2.27, so t r e a t m e n t i s t e s t e d a g a i n s t e x p . e r r o r ) ANALYSIS OF VARIANCE FOR VARIABLE NEEDLE LENGTH SRC. SUM OF MEAN NO . SOURCE DF SQUARES SQUARE F VALUE F c r i t i c a l 1 TREATMENT 1 0.404 0.404 0.38 5.32 non-2 EXP.ERROR 8 8.560 1.070 s i g 3 SAMPL. ERR 30 1.900 0 . 063 4 TOTAL 39 10.8 64 F=EXP.ERROR MEAN SQUARE/SAMPL.ERR MEAN SQUARE = 16.98 = s i g n i f i c a n t (F c r i t i c a l (95%) = 2.27, so t r e a t m e n t i s t e s t e d a g a i n s t e x p . e r r o r ) 145 ANALYSIS OF VARIANCE FOR VARIABLE SURFACE AREA SRC. SUM OF MEAN NO . SOURCE DF SQUARES SQUARE F VALUE F c r i t i c a l 1 TREATMENT 1 1977.636 1977.636 0.018 5.32 non-2 EXP.ERROR 8 878680.816 109835.102 s i g 3 SAMPL.ERR 30 480175.124 16005.837 4 TOTAL 39 1360833.576 F=EXP.ERROR MEAN SQUARE/SAMPL.ERR MEAN SQUARE = 6.8 6 = s i g n i f i c a n t (F c r i t i c a l (95%) = 2.21, so t r e a t m e n t i s t e s t e d a g a i n s t e x p . e r r o r ) 146 Appendix I I I . I n i t i a l s t u d y a n a l y s i s o f v a r i a n c e f o r c h l o r o p h y l l c h a r a c t e r i s t i c s UBC Anovar: ANALYSIS OF VARIANCE/COVARIANCE PROCESSOR MODEL,CONC=A+B+C+D+AB+AC+AD+BC+BD+CD+ABC+ABD+ACD+BCD+ABCD+E LIMITS,2,2,2,2 DATA,CHLORO MEANS, A, B, C, D INPUT, A (1) ,B(3) ,C(5) ,D(7) ,CONC(9,4) (14) (19) (24) (29) ANALYSIS OF VARIANCE/COVARIANCE-REPORT PHASE NO. OF VARIATES 1 NO. OF COVARIATES 0 NO. OF OBSERVATIONS 80 INDEX RANGE A INDEX 2 B INDEX 2 C INDEX 2 D INDEX 2 ANALYSIS OF VARIANCE/COVARIANCE OVERALL MEANS CONC 0 . 8354 OVERALL STANDARD DEVIATIONS CONC 0.1812 ANALYSIS OF VARIANCE/COVARIANCE FOR VARIABLE CONC SRC NO. SOURCE DF SUM OF SOUARES MEAN SOUARE F VALUE F PROB 1 A 1 8.385125E- 02 8.385122E- 02 4 .1700* 0 .0429 2 B 1 1.872113E- 01 1.872112E- 01 9 .3102* 0 .0034 3 AB 1 1.035125E- 02 1.035125E- 02 0 .5148 0 .4824 4 C 1 2.850125E- 02 2.850125E- 02 1 .4174 0 .2365 5 AC 1 1.125000E-05 1.125000E-05 0 .0006 0 .9300 6 BC 1 1.953125E-02 1.953125E- 02 0 .9713 0 .3299 7 ABC 1 6.612500E- 04 6.612500E-04 0 .0329 0 .8344 8 D 1 9.352813E- 01 9.352812E- 01 4 6.5126* 0 .0000 9 AD 1 1.512500E- 04 1.512500E- 04 0 .0075 0 .8917 10 BD 1 1.125000E-•05 1.125000E- 05 0 .0006 0 . 9300 11 ABD 1 2.812500E-•04 2.812499E-•04 0 .0140 0 .8729 12 CD 1 5.951250E-•03 5.951248E-•03 0 .2960 0 .5950 13 ACD 1 1.051250E- 03 1.051250E-•03 0 .0523 0 .8047 14 BCD 1 1.711125E-•02 1.711125E-•02 0 .8510 0 .3628 15 ABCD 1 1.711125E-•02 1.711125E- 02 0 .8510 0 .3628 16 ERROR 64 1.286920 2.010812E-•02 17 TOTAL 79 2.593989 147 MEANS FOR SOURCE= A FACTOR LEVELS CONC A DIVISOR FREQ MEAN STD DEV 1 40 40 0.868 0.187 2 40 40 0.803 0.171 MEANS FOR SOURCE= B FACTOR LEVELS CONC B DIVISOR FREQ MEAN STD DEV' 1 40 40 0.787 0.195 2 40 40 0.884 0.154 MEANS FOR SOURCE= C FACTOR LEVELS CONC C DIVISOR FREQ MEAN STD DEV 1 40 40 0.816 0.193 2 40 40 0.854 0.169 MEANS FOR SOURCE= D FACTOR LEVELS • CONC D DIVISOR FREQ MEAN STD DEV 1 40 40 0.943 0.154 2 40 40 0.727 0.137 DATA, CHLORO 1 1 1 1 0 . 95 0 .54 0 .86 0 .90 1 .26 1 1 1 2 0 .77 0 .34 0 .60 0 . 65 0 .89 1 1 2 1 1 .07 0 .81 0 .77 0 .91 1 .10 1 1 2 2 0 . 95 0 . 68 0 .58 0 .74 0 .79 1 2 1 1 0 . 99 0 . 95 0 .92 0 . 96 1 .10 1 2 1 2 0 .85 0 .79 0 .79 0 . 90 0 .96 1 2 2 1 1 .04 1 . 02 0 .98 1 .24 1 .12 1 2 2 2 0 .84 0 .78 0 .66 0 .87 0 .79 2 1 1 1 0 .55 0 .83 0 .93 0 .98 0 .87 2 1 1 2 0 .43 0 . 63 0 .68 0 .80 0 .59 2 1 2 1 0 .88 0 .97 0 .93 1 .08 0 .72 2 1 2 2 0 .76 0 .53 0 .75 0 .86 0 .55 2 2 1 1 0 .90 0 .92 0 .98 1 .20 0 .73 2 2 1 2 0 .75 0 . 65 0 .70 0 .92 0 .65 2 2 2 1 0 .84 1 .03 0 .99 1 .06 0 .86 2 2 2 2 0 . 68 0 . 62 0 .81 0 .84 0 .67 148 Appendix IV. Main s t u d y s t a t i s t i c s from f o l i a r a n a l y s i s TESTS FOR NORMALITY BMDP5D - HISTOGRAM AND UNIVARIATE PLOTS / PROBLEM / INPUT TITLE IS 'NORMAL'. VARIABLES ARE 9. CASES ARE 71 UNIT IS 4 . FORMAT IS FREE. / VARIABLE NAMES ARE ID, AKLORO, BKLORO, NITRO, IRON, WATER, POTASS, PHOSPH, CALC. / PLOT TYPES ARE HIST, NORM. SIZE IS 40 , 2 5 . / END HISTOGRAM OF VARIABLE AKLORO (CHLOROPHYLL A) SYMBOL COUNT MEAN ST.DEV. X 71 0 .130 0 .037 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 ' 15 20 25 30 35 PERCENTAGE + + + ._+ + +- + +_ INT. CUM. * . 0 5 5 0 0 0 +X 1.4 1.4 * . 0 6 6 0 0 0 + 0.0 1.4 * . 0 7 7 0 0 0 +XXX 4.2 5.6 * . 0 8 8 0 0 0 +XXXXX 7.0 1 2 . 7 * . 0 9 9 0 0 0 +XXXXXX 8.5 21 .1 * . 1 1 0 0 0 0 +XXXXX 7.0 2 8 . 2 * . 1 2 1 0 0 0 +XXXXXXXX 1 1 . 3 39 .4 * . 1 3 2 0 0 0 +XXXXXXXXXX 14 .1 5 3 . 5 * . 1 4 3 0 0 0 + x x x x x x x x x x x x 1 6 . 9 70 .4 * . 1 5 4 0 0 0 +XXX 4.2 7 4 . 6 * . 1 6 5 0 0 0 +XXX 4.2 7 8 . 9 * . 1 7 6 0 0 0 +XXXXXX 8.5 8 7 . 3 * . 1 8 7 0 0 0 +XXXX 5.6 93 .0 * . 1 9 8 0 0 0 +X 1.4 94 .4 * . 2 0 9 0 0 0 +XX 2.8 97 .2 * . 2 2 0 0 0 0 +XX 2.8 100 .0 5 10 15 20 25 30 35 40 149 NORMAL PLOT OF VARIABLE AKLORO D _ * E - / X 2 + //* p /* E C T E 1 + /* _ **** _ * * * N - **/ 0 - */ R 0 + M A L V -1 + A L U - */* E - /* * * * * * * -2 + // / , + + + + + . . 04 .12 .20 .08 .16 AKLORO VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 150 HISTOGRAM OF VARIABLE BKLORO (CHLOROPHYLL B) SYMBOL COUNT MEAN ST.DEV. X 71 0 . 0 9 6 0 . 0 2 6 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + + + + + - INT. CUM. * . 0 3 7 5 0 0 + 0 . 0 0 . 0 * . 045000 +X 1 . 4 1 . 4 * . 052500 +XX 2 . 8 4 . 2 * . 060000 +XXXX 5 . 6 9 . 9 * . 0 6 7 5 0 0 +XXXX 5 . 6 1 5 . 5 * . 075000 +XXXXXX 8 . 5 2 3 . 9 * . 082500 +XXXXX 7 . 0 3 1 . 0 * . 0 9 0 0 0 0 +XXXXXXXX 1 1 . 3 4 2 . 3 * . 0 9 7 5 0 0 +XXXXXXX 9 . 9 5 2 . 1 * . 105000 +XXXXXXX 9 . 9 6 2 . 0 * . 112500 +XXXXXXXXXX 1 4 . 1 7 6 . 1 * . 120000 +XXXX 5 . 6 8 1 . 7 * . 127500 +XXX 4 . 2 8 5 . 9 * . 135000 +XXXX 5 . 6 9 1 . 5 * . 142500 +XXX 4 . 2 9 5 . 8 * . 1 5 0 0 0 0 +XXX 4 . 2 1 0 0 . 0 ^ -j 1 1 1 1 1 1 — + 5 10 15 20 25 30 35 40 151 NORMAL PLOT OF VARIABLE BKLORO . . . . + + + , _ * E II X 2 + */ P E C - /* T E 1 + */* D ** * * N 0 R 0 + / * M A L ** * * * * * V -1 + ** A - **/ L U - /* E - * -2 + /* // _ * . + + + + + . , .03 .09 .15 .06 .12 BKLORO VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 152 HISTOGRAM OF V A R I A B L E N I T R O (NITROGEN) SYMBOL COUNT MEAN S T . D E V . X 71 1 . 0 5 4 0 . 1 0 1 E A C H ' S Y M B O L R E P R E S E N T S 1 O B S E R V A T I O N I N T E R V A L FREQUENCY NAME 5 10 15 20 25 30 35 P E R C E N T A G E + + + + + + + +- C U M . I N T . * . 7 7 7 0 0 0 + 0 . 0 0 . 0 * . 8 1 4 0 0 0 + 0 . 0 0 . 0 * . 8 5 1 0 0 0 +X 1 . 4 1 . 4 * . 888000 + 0 . 0 1 . 4 * . 9 2 5 0 0 0 +XXXX 5 . 6 7 . 0 * . 962000 +XXXXXXXXXXXXXX 1 9 . 7 2 6 . 8 * . 999000 +XXXX 5 . 6 3 2 . 4 * 1 . 0 3 6 0 0 +XXXXXXXXXX 1 4 . 1 4 6 . 5 * 1 . 0 7 3 0 0 +XXXXXX 8 . 5 5 4 . 9 * 1 . 1 1 0 0 0 +XXXXXXXXXXXX 1 6 . 9 7 1 . 8 * 1 . 1 4 7 0 0 +XXXXXXX 9 . 9 8 1 . 7 * 1 . 1 8 4 0 0 +XXX 4 . 2 8 5 . 9 * 1 . 2 2 1 0 0 +XXXXXX 8 . 5 9 4 . 4 * 1 . 2 5 8 0 0 +XXX 4 . 2 9 8 . 6 * 1 . 2 9 5 0 0 +X 1 . 4 1 0 0 . 0 * 1 . 3 3 2 0 0 + 0 . 0 1 0 0 . 0 5 10 15 20 25 30 35 40 153 NORMAL PLOT OF VARIABLE NITRO - * _ E II -X 2 + */ + P - I* -E - ** _ C //* T - / / * * _ E 1 + */ + D ** -_ * * _ N - ** 0 — * * * — R 0 + * / * * + M - *** -A • - * * */ -L - ***// **// V -1 + */ + j± - ** _ L - II* U - //** E -II* -2 +/ * + _* _ NITRO VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 154 HISTOGRAM OF VARIABLE IRON SYMBOL COUNT MEAN ST.DEV. X 71 5 1 . 2 2 5 15 .571 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE CUM. INT. * 1 2 . 0 0 0 0 + 0.0 0 .0 * 1 8 . 0 0 0 0 + 0.0 0.0 * 2 4 . 0 0 0 0 + 0.0 0 .0 * 3 0 . 0 0 0 0 +XXXX 5.6 5.6 * 3 6 . 0 0 0 0 +XXXXXXXX 1 1 . 3 1 6 . 9 * 4 2 . 0 0 0 0 +XXXXXXXXXX 14 .1 31 .0 * 4 8 . 0 0 0 0 +XXXXXXXXXXXXXXXX 2 2 . 5 5 3 . 5 * 5 4 . 0 0 0 0 +XXXXX 7.0 6 0 . 6 * 6 0 . 0 0 0 0 +XXXXXXXXX 12 .7 7 3 . 2 * 6 6 . 0 0 0 0 +XXXXXXX 9.9 83 .1 * 7 2 . 0 0 0 0 +XXXXXX 8.5 91 .5 * 7 8 . 0 0 0 0 + 0.0 91 .5 * 8 4 . 0 0 0 0 +XXX 4.2 95 .8 * 9 0 . 0 0 0 0 +XX 2.8 9 8 . 6 * 9 6 . 0 0 0 0 +x 1.4 100 .0 * 1 0 2 . 0 0 0 + 0.0 100 .0 + + + + — 5 10 15 20 25 30 35 40 155 NORMAL PLOT OF VARIABLE IRON ...+....+....+....+....+. _ * -E - II -X 2 + II * + P - I * -E - II * -C - *// * I J I _ * * — E 1 + */* + D - */* _ *** -N - */ 0 - **/* R 0 + * / / + M * */ A - */ L - * */ */ V -1 + */* + A - * * -L - II* U - II* * E -I * -2 + * + +....+....+....+....+....+....+....+. 27 45 63 81 36 54 72 90 IRON VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 156 HISTOGRAM OF V A R I A B L E WATER SYMBOL COUNT X 71 MEAN S T . D E V . 1 3 9 . 2 9 6 6 3 . 0 2 2 E A C H SYMBOL R E P R E S E N T S 1 O B S E R V A T I O N I N T E R V A L NAME 5 10 15 20 25 30 35 + + + + + + + +-* 9 6 . 0 0 0 0 +XXXXX * 112 . 0 0 0 + XXXXXXXXXXXXXXXXXXXXXXX * 1 2 8 . 0 0 0 + XXXXXXXXXXXXXXXXXXXXXX * 1 4 4 . 0 0 0 +XXXXXXXX * 1 6 0 . 0 0 0 +X * 1 7 6 . 0 0 0 +XX * 1 9 2 . 0 0 0 + * 2 0 8 . 0 0 0 +X * 2 2 4 . 0 0 0 + * 2 4 0 . 0 0 0 + * 2 5 6 . 0 0 0 + * 2 7 2 . 0 0 0 +X * 2 8 8 . 0 0 0 +X * 3 0 4 . 0 0 0 +XXXXX * 3 2 0 . 0 0 0 +X * 3 3 6 . 0 0 0 +X 5 10 15 20 25 30 35 FREQUENCY I N T . C U M . 7 . 0 7 . 0 3 2 . 4 3 9 . 4 3 1 . 0 7 0 . 4 1 1 . 3 8 1 . 7 1 . 4 8 3 . 1 2 . 8 8 5 . 9 0 . 0 8 5 . 9 1 . 4 8 7 . 3 0 . 0 8 7 . 3 0 . 0 8 7 . 3 0 . 0 8 7 . 3 1 . 4 8 8 . 7 1 . 4 9 0 . 1 7 . 0 9 7 . 2 1 . 4 9 8 . 6 1 . 4 1 0 0 . 0 --+ 40 157 NORMAL PLOT OF VARIABLE WATER . . . .+ + + + + , * * _ * E - // X 2 + // P - // E - // C - // T - *// E 1 + * ** // + D - * // \" _ * * * / / -N - ** // 0 - * / / ' R 0 + ** // + M - * / / A - **/ L _ ** - //* V -1 +/ * + A L U E _ * -_ . * — _ * — + * + _ * -. . . . + . + + + + 150 250 100 200 300 WATER VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 158 HISTOGRAM OF VARIABLE POTASS (POTASSIUM) SYMBOL COUNT MEAN ST.DEV. X 71 0.472 0.052 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE CUM. INT. * .352000 +XXX 4.2 4.2 * . 368000 + 0.0 4.2 * .384000 +XX 2.8 7.0 * .400000 +XXX 4.2 11.3 *. 416000 + 0.0 11.3 * .432000 +XXXXXXX 9.9 21.1 * .448000 +XXXXX 7.0 28.2 * .464000 +XXXXXXXXXXXX 16.9 45.1 * .480000 +XXXXXXXXXX 14.1 59.2 *. 496000 +XXXXXX 8.5 67.6 * .512000 +XXXXXXXXXXX 15.5 83.1 *. 528000 +XXX 4.2 87.3 * .544000 +XX 2.8 90.1 * .560000 +XXX 4.2 94.4 * .576000 +XX 2.8 97.2 *. 592000 +XX 2.8 100.0 5 10 15 20 25 30 35 40 159 NORMAL PLOT OF VARIABLE POTASS ...+....+....+....+....+....+....+....+.... _ * -E- /\" X 2 + /* + P - /* E - */ * -C - /* T - **// E 1 + * */ + D */ \" _ */* -N ** 0 - */* R 0 + */* + M - /** A - * * L - • */* _ / * * . -V -1 + /* * + A - */ * L - */* U - *// E -* // -2 +* / + - // _ * — ...+....+....+....+....+....+....+....+.... .39 .45 .51 .57 .36 .42 .48 .54 POTASS VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 160 HISTOGRAM OF V A R I A B L E PHOSPH (PHOSPHOROUS) SYMBOL COUNT MEAN S T . D E V . X 71 0.130 0.016 E A C H SYMBOL R E P R E S E N T S 1 O B S E R V A T I O N I N T E R V A L FREQUENCY NAME 5 10 15 20 25 30 35 P E R C E N T A G E + + + + + + + + - C U M . I N T . .095000 + 0.0 0.0 * . 100000 +XX 2.8 2.8 * .105000 + 0.0 2.8 * .110000 +XXXXXXXXXXX 15.5 18.3 * . 115000 + 0.0 18.3 * .120000 +XXXXXXXXXXXXXXXXXX 25.4 43.7 .125000 + 0.0 43.7 .130000 +XXXXXXXXXXXXXXXXX 23.9 67.6 .135000 + 0.0 67.6 * . 140000 +XXXXXXXXXXX 15.5 83.1 .145000 + 0.0 83.1 .150000 +XXXXX 7.0 90.1 .155000 + 0.0 90.1 .160000 +XXXXX 7.0 97.2 * .165000 + 0.0 97.2 * .170000 +XX 2.8 100. 5 10 15 20 25 30 35 40 161 NORMAL PLOT OF VARIABLE PHOSPH .+....+....+....+....+....+....+....+....+. /* \" E I ~ X 2 + // * + P - /* -E // * C - // * -rp \"k — E 1 + * //* + D - *// /* N * // * 0 - * / • R 0 + */ + M - * //* A - *// L - /* // * V -1 + * / + A - */ L - //* U - // * E -// * -2 + * + - * -.+....+....+....+....+....+....+....+....+. .099 .117 .135 .153 .171 .108 .126 .144 .162 PHOSPH VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 162 HISTOGRAM OF VARIABLE CALC (CALCIUM) SYMBOL COUNT MEAN ST.DEV. X 71 0 .165 0.051 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + + + + +- CUM. INT. * .090000 +XX 2.8 2.8 * . 108000 +XX 2.8 5.6 * . 1 2 6 0 0 0 +XXXXXXXXXXX 1 5 . 5 21 .1 * . 1 4 4 0 0 0 +XXXXXXXXXXXX 1 6 . 9 38 .0 * . 1 6 2 0 0 0 +XXXXXXXXXXXXXX 19 .7 5 7 . 7 * . 1 8 0 0 0 0 +XXXXXXXXXXX 1 5 . 5 7 3 . 2 * . 1 9 8 0 0 0 +XXX 4.2 7 7 . 5 * .216000 +XXXXXX 8.5 8 5 . 9 * . 234000 +XXX 4.2 90 .1 * .252000 +XXX 4.2 94 .4 * .270000 +x 1.4 95 .8 * .288000 +x 1.4 97 .2 * .306000 +x 1.4 9 8 . 6 * . 324000 + 0.0 9 8 . 6 * . 342000 + 0.0 9 8 . 6 * . 3 6 0 0 0 0 +x 1.4 100 .0 + + + + + + + + + 5 10 15 20 25 30 35 40 163 NORMAL PLOT OF VARIABLE CALC . + + + + + E - / X 2 + ' I I * P - / * E * * C - /** T - */ E 1 + */ j} _ * * * _ * * j N - **/ 0 - * * R 0 + **/ M - */ A - * * L - */ V - 1 + / * A - I* L - // * U / * * E - II * -2 +1 * - * . + + + + + . .06 .18 .30 .12 .24 CALC VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 164 TESTS FOR HOMOGENEOUS VARIANCES BMDP9D - MULTIWAY DESCRIPTION OF GROUPS / PROBLEM / INPUT / VARIABLE / GROUP / TABULATE / END TITLE IS 'BARTLETT'. VARIABLES ARE 2. UNIT IS 4. FORMAT IS FREE. NAMES ARE TREATMENT, MEASURE. CODES(1) ARE 1, 2, 3, 4, 5. NAMES(1) ARE TRAP, FUNGI, GIRDLE, HEALTHY, ATTACK. GROUPING IS TREATMENT. CELL NUMBER 1 2 3 4 5 TREATMENT TRAP FUNGI GIRDLE HEALTHY ATTACK TEST FOR CHLOROPHYLL A CELL NUMBER FREO, MEAN STD.DEV. 1 2 3 4 5 HOMOG. OF VARIANCE 15. 14 , 12, 15. 15 0.10558 0.15958 0.12910 0.15471 0.10310 0 0. 0 0 0 0298 0333 0245 0290 0260 BARTLETT TEST APPROX. F D.F.'S PROB. (F) 1.44702 0.35088 NON-SIG. 4. 6416. 0.8436 TEST FOR CHLOROPHYLL B CELL NUMBER FREO, MEAN STD.DEV. 1 2 3 4 5 HOMOG. OF VARIANCE 15. 14 . 12. 15. 15. 0 0. 0 0 0 08200 11033 08857 11565 08112 BARTLETT TEST APPROX. F D.F.'S PROB.(F) 0.0227 0.0238 0.0219 0.0184 0.0200 1.15576 0.28024 NON-SIG. 4. 6416. 0.8909 165 TEST FOR NITROGEN CELL NUMBER FREQ. MEAN STD. DEV. 1 15. 0.99000 0.0654 2 14. 1.09714 0.1068 3 12. 1.00167 0.0807 4 15. 1.14800 0.0637 5 15. 1.02467 0.0882 HOMOG. BARTLETT TEST 5.10742 OF APPROX. F 1.23916 NON-SIG. VARIANCE D.F.'S 4. 6416. PROB. (F) 0 .2918 TEST FOR IRON CELL NUMBER FREQ. MEAN STD.DEV. 1 15. 48.33333 15.1312 2 14. 54.92856 17.7524 3 12. 46.50000 15.5534 4 15. 51.79999 10.3178 5 15. 53.86665 18.5621 HOMOG. BARTLETT TEST 5.14746 OF APPROX. F 1.24889 NON-SIG. VARIANCE D.F.'S 4. 6416. PROB.(F) 0.2878 TEST FOR WATER CELL NUMBER FREQ . MEAN STD. DEV. 1 15. 180.39999 85.0233 2 14. 110.78571 13.7962 3 12. 108.66666 13.3167 4 15. 117.06667 14.5134 5 15. 171.53333 83.8636 HOMOG. BARTLETT TEST 82.85400 OF APPROX. F 20.34126 SIG. VARIANCE D.F.'S 4. 6416. PROB. (F) 0 .0000 A NONPARAMETRIC TEST FOR ANALYSIS OF VARIANCE WILL BE USED 166 TEST FOR POTASSIUM CELL NUMBER FREO. MEAN STD.DEV. 1 15. 0.47867 0.0645 2 14 . 0.46214 0.0261 3 12 . 0.45333 0.0 62 6 4 15. 0.47600 0.0481 5 15. 0.48333 0.0545 HOMOG. BARTLETT TEST 10.76855 OF APPROX. F 2.61491 ; VARIANCE D.F. ' S 4. 6416 PROB. (F) 0.0334 A NONPARAMETRIC TEST FOR ANALYSIS OF VARIANCE WILL BE USED TEST FOR PHOSPHOROUS CELL NUMBER FREO. MEAN STD.DEV. 1 15. 0.13333 0.0195 2 14 . 0.13357 0.0160 3 12. 0.13167 0.0175 4 15. 0.12133 0.0106 5 15. 0.12933 0.0162 HOMOG. BARTLETT TEST 5.11499 OF APPROX. F 1.24100 NON-SIG. VARIANCE D.F.'S 4. 6416. PROB.(F) 0.2910 TEST FOR CALCIUM CELL NUMBER FREO. MEAN STD.DEV. 1 15. 0.15067 0.0303 2 14 . 0.21357 0.0667 3 12. 0 .15083 0.0382 4 15. 0.15733 0.0479 5 15. 0.15200 0.0393 HOMOG. BARTLETT TEST 9.76538 OF APPROX. F 2.37095 NON-•SIG. VARIANCE D.F.'S 4. 6416. PROB. (F) 0.0501 167 ANALYSIS OF VARIANCE GENLIN 1 VARIABLES TREAT, BLOCK, MEASURE 2 LEVELS 5,3 3 MODEL MEASURE = TREAT + BLOCK + TREAT*BLOCK 4 MULRAN TYPE=D TERM=TREAT 5 INPUT FILE=GENDATA FORMAT=(Fl.0,IX,Fl.0,IX,F8.5) 6 OUTPUT HOMOGENEITY, TERMS=TREAT 7 MISSING MEASURE=BLANK 8 COMPUTE T E S T F O R C H L O R O P H Y L L A G E N L I N A n a l y s i s of vari a n c e t a b l e Source Sum of squares •DF Mean square F-r a t i o TREAT 0 . 41173E-01 4. 0.10293E-•01 12 .098 BLOCK 0.23332E- 03 2. 0.11666E- 03 0. 13712 TREAT*BLOCK 0.67837E- 02 8. 0.84796E- 03 0. 99664 Res i d u a l 0 . 47646E-•01 56. 0.85081E- 03 T o t a l 0.95880E-•01 70. M u l t i p l e range t e s t Duncan t e s t at 5% p r o b a b i l i t y l e v e l There are 3 homogeneous subsets which are l i s t e d as f o l l o w s : ( 5., 1. ) ( 3. ) ( 4., 2. ) 168 TEST FOR CHLOROPHYLL B GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0 .15263E-01 4. 0.38157E-02 8.1708 BLOCK 0.10800E-02 2 . 0 .53999E-03 1.1563 TREAT * BLOCK 0.29974E-02 8. 0.37467E -03 0 .80231 R e s i d u a l 0.26152E-01 56. 0.46700E -03 T o t a l 0.45813E-01 70. M u l t i p l e range t e s t Duncan t e s t a t 5% p r o b a b i l i t y l e v e l There a re 2 homogeneous s u b s e t s w h i c h a r e l i s t e d as f o l l o w s : ( 5., 1., 3. ) ( 2., 4. ) TEST FOR NITROGEN GENLIN A n a l y s i s o f v a r i a n c e t a b l e Source Sum o f squares DF Mean square F- r a t i o TREAT 0.26462 4. 0.66156E- 01 10 .185 BLOCK 0.19019E--02 2. 0.95097E- 03 0. 14640 TREAT*BLOCK 0.79804E -01 8. 0.99755E- 02 1. 5357 R e s i d u a l 0.36376 56. 0.64957E- 02 T o t a l 0.71127 70. M u l t i p l e range t e s t Duncan t e s t a t 5% p r o b a b i l i t y l e v e l There a re 2 homogeneous s u b s e t s w h i c h a r e l i s t e d as f o l l o w s : ( 1., 3., 5. ) ( 2., 4. ) 169 TEST FOR IRON GENLIN A n a l y s i s o f v a r i a n c e t a b l e Source Sum o f squares DF Mean square F-• r a t i o TREAT 74274. 4. 18569. 0. 81824 BLOCK 0 .27317E+06 2. 0.13659E+06 6. 0187 TREAT*BLOCK 83738. 8. 10467. 0. 46125 R e s i d u a l 0 .12708E+07 56. 22693. T o t a l 0.16972E+07 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.51899 TEST FOR PHOSPHOROUS GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Source s q u a r e s ; TREAT 0.15715E-02 BLOCK 0.10080E-02 TREAT*BLOCK 0.23551E-02 R e s i d u a l 0 .13925E-01 T o t a l Mean DF square F - r a t i o 4 . 0 . 3 9 2 8 8 E - 0 3 1.5800 2 . 0 . 5 0 3 9 8 E - 0 3 2 .0268 8. 0 . 2 9 4 3 9 E - 0 3 1 . 1 8 3 9 5 6 . 0 . 2 4 8 6 6 E - 0 3 0.18794E-01 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.19230 170 TEST FOR CALCIUM G E N L I N A n a l y s i s o f v a r i a n c e t a b l e Sum o f Source squares TREAT 0.41342E-01 BLOCK 0.72239E-02 TREAT*BLOCK 0.22386E-01 R e s i d u a l 0 .11103 T o t a l 0.18257 M e a n DF s q u a r e F - r a t i o 4. 0.10335E-01 5.2129 2. 0.36119E-02 1.8217 8. 0.27982E-02 1.4113 56. 0.19827E-02 70. M u l t i p l e r a n g e t e s t D u n c a n t e s t a t 5% p r o b a b i l i t y l e v e l T h e r e a r e 2 h o m o g e n e o u s s u b s e t s w h i c h a r e l i s t e d a s f o l l o w s : ( 3., 1., 5., 4. ) ( 2. ) BMDP3S - NONPARAMETRIC STATISTICS / / / / PROBLEM INPUT VARIABLE GROUP / TEST / END TITLE IS VARIABLES UNIT IS 4 FORMAT IS NAMES ARE GROUPING CODES(1) NAMES(1) ATTACK. TITLE IS KRUSKAL. KRUSKAL -ARE 2. •WALL IS ' FREE. TREATMENT, MEASURE. IS TREATMENT. ARE 1, 2, 3, 4, 5. ARE TRAP, FUNGI, GIRDLE, 'KRUSKAL-WALLIS TEST'. H E A L T H Y , 171 T E S T FOR WATER BMDP3S K R U S K A L - W A L L I S T E S T V A R I A B L E MEAN STANDARD MINIMUM MAXIMUM N O . NAME D E V I A T I O N 1 TREATMENT 3 . 0 1 4 0 6 9 1 . 4 5 8 9 0 0 1 . 0 0 0 0 0 0 5 . 0 0 0 0 0 0 2 MEASURE 1 3 9 . 2 9 5 5 3 2 6 3 . 0 2 1 8 6 6 8 5 . 0 0 0 0 0 0 3 2 3 . 0 0 0 0 0 0 K R U S K A L - W A L L I S ONE WAY A N A L Y S I S OF V A R I A N C E T E S T R E S U L T S GROUP N O . NAME 1 2 3 4 5 TRAP FUNGI G I R D L E H E A L T H Y A T T A C K FREQUENCY 15 14 12 15 15 RANK SUM 6 9 4 . 0 3 8 9 . 5 2 7 9 . 5 5 1 1 . 5 6 8 1 . 5 K R U S K A L - W A L L I S T E S T S T A T I S T I C 1 3 . 7 7 . L E V E L OF S I G N I F I C A N C E = 0 . 0 0 8 1 U S I N G C H I - S Q U A R E D I S T R I B U T I O N WITH 4 DEGREES OF FREEDOM T E S T FOR P O T A S S I U M BMDP3S K R U S K A L - W A L L I S T E S T V A R I A B L E MEAN N O . NAME 1 TREATMENT 3 . 0 1 4 0 6 9 2 MEASURE 0 . 4 7 1 5 4 8 STANDARD D E V I A T I O N 1 . 4 5 8 9 0 0 0 . 0 5 2 4 1 7 MINIMUM 000000 350000 MAXIMUM 5 . 0 0 0 0 0 0 0 . 5 8 0 0 0 0 K R U S K A L - W A L L I S ONE WAY A N A L Y S I S OF V A R I A N C E T E S T R E S U L T S GROUP FREQUENCY RANK N O . NAME SUM 1 TRAP 15 5 7 9 . 5 2 FUNGI 14 4 2 5 . 5 3 G I R D L E 12 3 8 0 . 0 4 H E A L T H Y 15 5 4 5 . 0 5 A T T A C K 15 6 2 6 . 0 K R U S K A L - W A L L I S T E S T S T A T I S T I C = 2 . 9 8 . L E V E L OF S I G N I F I C A N C E = 0 . 5 6 1 0 U S I N G C H I - S Q U A R E D I S T R I B U T I O N WITH 4 DEGREES OF FREEDOM 172 Appendix V. Main s t u d y s t a t i s t i c s from f i e l d s p e c t r o s c o p y The f o l l o w i n g s e c t i o n shows an example o f t h e s p e c t r a l d a t a a c q u i r e d from a s u c c e s s f u l l y a t t a c k e d canopy (red-edge = w i t h t h e I n t e r n a t i o n a l L i g h t r a d i o m e t e r as w e l l as t h e r e s u l t s from t h e r e g r e s s i o n a n a l y s i s (BMDP5R). w a v e l e n g t h raw d a t a r e g r e s s e d (nm) (x 1 0 \" 1 W/cm2) v a l u e s (x 1 0 \" 1 W/cm2) 675 0.224 0.231677 676 0.225220 677 0.221047 678 0.219077 679 0.219230 680 0.232 0.221430 681 0.225597 682 0.231655 683 0.239525 684 0.249133 685 0.266 0.260401 686 0.273255 687 0.287621 688 0.303425 689 0.320592 690 0.332 0.339052 691 0.358732 692 0.379561 693 0.401470 694 0.424388 695 0.443 0.448249 696 0.472984 697 0.498526 698 0.524811 699 0.551773 700 0.575 0.579348 701 0.607475 702 0.636092 703 0.665137 704 0.694553 705 0.740 0.724279 706 0.754260 707 0.784440 708 0.814763 709 0.845176 710 0.870 0.875627 711 0.906066 712 0.936442 713 0.966707 714 0.996814 715 1.007 1.026719 716 1.056376 717 1.085744 173 718 1.114781 719 1.143447 720 1.176 1.171705 721 1.199518 722 1.226851 723 1.253671 724 1.279946 725 1.311 1.305647 726 1.330744 727 1.355211 728 1.379023 729 1.402158 730 1.435 1.424595 731 1.446312 732 1.467295 733 1.487525 734 1.506990 735 1.536 1.525678 736 1.543579 737 1.560686 738 1.576991 739 1.592492 740 1.605 1.607187 741 1.621075 742 1.634161 743 1.646447 744 1.657941 745 1.664 1.668653 746 1.678592 747 1.687774 748 1.696213 749 1.703927 750 1.695 1.710938 751 1.717268 752 1.722941 753 1.727987 754 1.732434 755 1.736 1.736316 756 1.739667 757 1.742525 758 1.744930 759 1.746926 760 1.747 1.748556 761 1.749869 762 1.750916 763 1.751750 764 1.752428 765 1.759 1.753007 766 1.753549 767 1.754119 768 1.754784 769 1.755614 770 1.770 1.756682 174 771 1.758063 772 1.759836 773 1.762083 774 1.764889 775 1.759 1.768341 BMDP5R - POLYNOMIAL REGRESSION / PROBLEM TITLE IS 'CURVE #_ / INPUT VARIABLES ARE 2. CASES ARE 21. UNIT IS 4. FORMAT IS FREE. / VARIABLE NAMES ARE NM, RAD. / REGRESS DEPENDENT IS RAD. INDEPENDENT IS NM. DEGREE IS 5. / END RESULTS FOR POLYNOMIAL OF DEGREE 5 POLYNOMIAL COEFFICIENTS REGRESSION DEGREE COEFFICIENT 0 -0.23426221E+05 1 0.19296605E+06 2 -0.61673132E+06 3 0.96344793E+06 4 -0.73936142E+06 5 0.22375766E+06 MULTIPLE R-SQUARE = 0.99974 175 TEST FOR NORMALITY BMDP5D - HISTOGRAM AND UNIVARIATE PLOTS HISTOGRAM OF VARIABLE RED (RED-EDGE) SYMBOL COUNT MEAN ST.DEV. X 71 712.559 3.722 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + +——+ + +- INT. CUM. *703.200 +XX 2.8 2.8 *704 .400 + 0.0 2.8 *705.600 +X 1.4 4.2 *706.800 +XXXX 5.6 9.9 *708.000 +XX 2.8 12.7 *709.200 +XXXX 5.6 18.3 *710 .400 +XXXX 5.6 23. 9 *711 .600 +XXXXXX 8.5 32.4 *712 . 800 +xxxxxxxxxx 14.1 46.5 *714.000 +XXXXXXXXXXX 15.5 62.0 *715.200 +XXXXXXXXXXXXX 18.3 80.3 *716.400 +XXXXXXXX 11.3 91.5 *717.600 +XXX 4.2 95.8 *718.800 + 0.0 95.8 *720.000 +XX 2.8 98.6 *721.200 +x 1.4 100.0 + + + + + + + + + 5 10 . 15 20 25 30 35 40 NORMAL PLOT OF VARIABLE RED + + + + + . . . _ * -E - //-X 2 + * 4 p /* -E - * / -C - **// T - * * / E 1 + *// 4 D ** N I* -0 - / * * R 0 + /** 4 M - /*** A - /** L - /** -V -1 + /* 4 A - * * * L - **/ U - ** . E - *// -2 4 - * / 4 // . + 4- 4- + 4-. 708 716 704 712 720 RED VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 177 TEST FOR HOMOGENEOUS VARIANCES BMDP9D - MULTIWAY DESCRIPTION OF GROUPS TEST FOR RED-EDGE CELL NUMBER FREO. 1 2 3 4 5 HOMOG. OF VARIANCE 15. 14. 12. 15. 15. MEAN STD.DEV. 710, 713. 712, 715, 710. 52563 80591 43213 60571 49854 BARTLETT TEST APPROX. F D.F.'S PROB. (F) 4016 5682 9332 1861 7576 6 . 2 8 6 6 2 1 . 5 2 5 5 3 NON-SIG. 4 . 6 4 1 6 . 0 . 1 9 1 6 ANALYSIS OF VARIANCE GENLIN TEST FOR RED-EDGE A n a l y s i s o f v a r i a n c e t a b l e Source Sum o f squares DF Mean square F-• r a t i o TREAT 286.80 4. 71.699 6. 4646 BLOCK 0.10639E-01 2. 0.53193E-02 0. 47960E-03 TREAT*BLOCK 61.379 8. 7.6724 0. 69176 R e s i d u a l 621.10 56. 11.091 T o t a l 969.36 70. M u l t i p l e range t e s t Duncan t e s t a t 5% p r o b a b i l i t y l e v e l There a r e 3 homogeneous s u b s e t s w h i c h a r e l i s t e d as f o l l o w s : ( 5., 1., 3. ) ( 3., 2. ) ( 2., 4. ) 178 SPECTRAL RATIOS TESTS FOR NORMALITY BMDP5D - HISTOGRAM AND UNIVARIATE PLOTS HISTOGRAM OF VARIABLE AFJ3 (RATIO 800/680) SYMBOL COUNT MEAN ST.DEV. X 71 7 .463 2 .523 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + + + + +- INT. CUM. * 3 . 00000 +x 1.4 1.4 *4 . 00000 +XX 2.8 4 .2 * 5 . 00000 +XXXXX 7.0 1 1 . 3 * 6 . 0 0 0 0 0 +XXXXXXXX 1 1 . 3 2 2 . 5 * 7 . 00000 +XXXXXXXXXXXXXXXXXXXXX 2 9 . 6 52 .1 * 8 . 0 0 0 0 0 +XXXXXXXXXXXXXX 19 .7 7 1 . 8 * 9 . 0 0 0 0 0 +XXXXXXXXXX 14 .1 8 5 . 9 * 1 0 . 0 0 0 0 +XX 2.8 88 .7 * 1 1 . 0 0 0 0 +x 1.4 90 .1 * 1 2 . 0 0 0 0 +XXXX 5.6 95 .8 * 1 3 . 0 0 0 0 + 0.0 95 .8 * 1 4 . 0 0 0 0 +x 1.4 97 .2 * 1 5 . 0 0 0 0 + 0.0 97 .2 * 1 6 . 0 0 0 0 +x 1.4 9 8 . 6 * 1 7 . 0 0 0 0 + 0.0 9 8 . 6 * 1 8 . 0 0 0 0 +x 1.4 100 . 5 10 15 20 25 30 35 40 NORMAL PLOT OF VARIABLE AFS A L E - / X 2 + / / P - / E - * * C - //* rp _ * * * E 1 + * * / / D - * / _ * * / N - **// 0 - * / R 0 + * * / M - **/ V -1 + / * * A - /** L - // * U - / * * E -/* -2 +* . + + + + + . . 3. 9. 15 6. 12 AFS VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 180 HISTOGRAM OF VARIABLE BFS (RATIO 550/680) SYMBOL COUNT MEAN ST.DEV. X 70 1.716 0.323 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + 4- + + + - +_ INT. CUM. *1.10000 +X 1.4 1.4 *1.21000 +x 1.4 2.9 *1.32000 4-XX 2.9 5.7 *1.43000 4-XXXXXX 8.6 14.3 *1.54000 4-XXXXXXXX 11.4 25.7 *1. 65000 4-XXXXXXXXXXXX 17.1 42.9 *1.76000 +XXXXXXXXXXXXXXX 21.4 64.3 *1.87000 +XXXXXXXXXXXX 17.1 81.4 *1.98000 +XXX 4.3 85.7 *2.09000 +XXX 4.3 90.0 *2.20000 +XX 2.9 92.9 *2.31000 + 0.0 92.9 *2.42000 +X 1.4 94.3 *2. 53000 + 0.0 94.3 *2.64000 +XXX 4.3 98.6 *2.75000 +x 1.4 100.0 5 10 15 20 25 30 35 40 181 NORMAL PLOT OF VARIABLE BFS + . . . . . . . + , M A L E - / X 2 + // P - / E - / C *// * rn _ * * * / E 1 + * *// D ** / _ ** / N - * // 0 - **/ R 0 + **/ * * _ * -_ * * * -_ * * -/* V -1 + //* + A - / * L - / * U - //* * E - / * -2 + // * + -/ _ * - -+ + + + + . . . . 1.2 2.0 2.8 1.6 2.4 BFS VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 182 HISTOGRAM OF VARIABLE CFS (RATIO 800/550) SYMBOL COUNT MEAN ST.DEV. X 71 4.238 0.757 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE 4. + 4. + r + + + - INT. CUM. *1. 85000 + 0.0 0.0 *2. 22000 + 0.0 0.0 *2. 59000 +x 1.4 1.4 *2.96000 +XXX 4.2 5.6 *3.33000 +x 1.4 7.0 *3.70000 +XXXXXXXXXXXXX 18.3 25.4 *4 .07000 +XXXXXXXXXX 14.1 39.4 *4. 44000 +XXXXXXXXXXXXXX 19.7 59.2 *4.81000 +XXXXXXXXXXXXXXXXXX 25.4 84.5 *5.18000 +XXX 4.2 88.7 *5. 55000 +XXX 4.2 93.0 *5. 92000 +XXXX 5.6 98.6 *6.29000 + 0.0 98.6 *6.66000 +x 1.4 100.0 *7. 03000 + 0.0 100.0 *7 .40000 + 0.0 100.0 5 10 15 20 25 30 35 40 183 NORMAL PLOT OF VARIABLE CFS + + + + / E / X 2 + * P - * E - /* C T E 1 + **/ + D */ -2 * * * N 0 R 0 + J^J. _ * * * A - * * L - */ _ * V -1 + ** A - ** L - //* U - */ * E */ // ,+ + + + + , 3 5 7 4 6 CFS VALUES FROM NORMAL DISTRIBUTION WOULD LIE ON THE LINE INDICATED BY THE SYMBOL / 184 TESTS FOR HOMOGENEOUS VARIANCES BMDP9D - MULTIWAY DESCRIPTION OF GROUPS TEST FOR RATIO 800/680 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 6.98046 2.0421 2 14 . 7.12328 2.2347 3 12. 8.66341 4.1567 4 15. 7.32766 1.8044 5 15. 7.43613 2.1398 HOMOG. BARTLETT TEST 12.54861 OF APPROX. F 3.04798 : VARIANCE D.F. ' S 4. 6416 PROB. (F) 0.0160 A LOGARITHMIC TRANSFORMATION WILL BE USED FOR RE-TESTING HISTOGRAM OF VARIABLE LOG (RATIO 800/680T SYMBOL COUNT MEAN ST.DEV. X 71 0.851 0.138 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + + 4. + +- INT. CUM. * .500000 +XX 2.8 2.8 * .550000 +x 1.4 4.2 *.600000 + 0.0 4.2 *.650000 +x 1.4 5.6 * .700000 +XXXX 5.6 11.3 *.750000 +XXX 4.2 15.5 *. 800000 +XXXXXXXXXX 14.1 29.6 *.850000 +XXXXXXXXXXXXXXXXX 23.9 53.5 * . 900000 +xxxxxxxxxxxx 16.9 70.4 *.950000 +XXXXXXXXXX 14.1 84.5 *1.00000 +XXX 4.2 88.7 *1.05000 +x 1.4 90.1 *1.10000 +XXXX 5.6 95.8 *1.15000 +x 1.4 97.2 *1.20000 +x 1.4 98.6 *1.25000 +x 1.4 100.0 5 10 15 20 25 30 35 40 185 NORMAL PLOT OF VARIABLE LOG (RATIO 800/680) ...+....+....+....+....+....+....+....+.... _ * _ E - / X 2 + // * + P - /* E - /* C - / * * * T E 1 + **// D - **/ * * / ** N 0 R 0 + */ M A L - • /** / * V -1 + //*** A - /** L - /* U - /* * E '- * / -2 + * / // _* ...+....+....+....+....+....+....+....+.. .50 .70 .90 1.1 .60 .80 1.0 1.2 AFS VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 186 TESTS FOR HOMOGENEOUS VARIANCES BMDP9D - MULTIWAY DESCRIPTION OF GROUPS TEST FOR LOG (RATIO 800/680) CELL NUMBER FREO. MEAN STD.DEV. 1 15. 0.82573 0.1334 2 14. 0.83243 0.1421 3 12. 0.90017 0.1792 4 15. 0.85300 0.1058 5 15. 0.85240 0.1389 HOMOG. BARTLETT TEST 3.50000 OF APPROX. F 0.84896 NON-SIG. VARIANCE D.F. ' S 4. 6416. PROB. (F) 0.4939 TEST FOR RATIO 550/680 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 1.70660 0.3454 2 14. 1.67642 0.3171 3 12 . 1.92325 0.5040 4 15. 1.71106 0.2873 5 15. 1.67780 0.2565 HOMOG. BARTLETT TEST 7.18318 OF APPROX. F 1.74333 NON-•SIG. VARIANCE D.F. ' S 4. 6416. PROB. (F) 0.1373 TEST FOR RATIO 800/550 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 4.04073 0.6344 2 14 . 4.18099 0.6940 3 12. 4.33000 0.9152 4 15. 4.26826 0.6825 5 15. 4.38406 0.9024 HOMOG. BARTLETT TEST 3.09015 OF APPROX. F 0.74950 NON-SIG. VARIANCE D.F. ' S 4. 6416. PROB. (F) 0.5582 187 A N A L Y S I S OF V A R I A N C E T E S T FOR LOG (RATIO 800/680) G E N L I N A n a l y s i s o f - v a r i a n c e t a b l e Source Sum o f squares DF Mean square F - r a t i o TREAT 0.62556E-01 4. 0.15639E- 01 0 .86421 BLOCK 0.15345 2. 0.76727E- 01 4 .2399 TREAT*BLOCK 0 .12470 8. 0.15588E- 01 0 .86137 R e s i d u a l 1.0134 56. 0.18096E-•01 T o t a l 1.3350 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.49116 TEST FOR RATIO 550/680 GENLIN A n a l y s i s o f v a r i a n c e t a b l e Source TREAT BLOCK TREAT*BLOCK R e s i d u a l T o t a l Sum o f squares 0 .77440 1.2657 1.1708 5.4117 8.3908 Mean DF square 4. 2. 8. 56. 70. F - r a t i o 0.19360 2.0033 0.63287 6.5488 0.14635 1.5145 0.96638E-01 M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.10651 188 TEST FOR RATIO 800/550 GENLIN A n a l y s i s o f v a r i a n c e t a b l e Source TREAT BLOCK TREAT*BLOCK R e s i d u a l Sum o f squares 1.1781 1.8532 3.4516 33.727 Mean DF square 4. 0.29452 2. 0.92658 8. 0.43145 56. 0.60227 F - r a t i o 0.48901 1.5385 0.71637 T o t a l 40.097 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.74374 189 Appendix VI. Main study c o l o r and c o l o r - i n f r a r e d views of tr e e canopies CANOPY #1 (treatment A - normal co l o r ) CANOPY #1 (treatment A - c o l o r - i n f r a r e d ) 1 9 0 C A N O P Y #19 ( t r e a t m e n t B - normal c o l o r ) C A N O P Y #19 ( t r e a t m e n t B - c o l o r - i n f r a r e d ) 191 CANOPY #31 (treatment C - c o l o r - i n f r a r e d ) CANOPY #58 (treatmen t D - normal c o l o r ) CANOPY #58 (treatmen t D - c o l o r - i n f r a r e d ) 193 CANOPY #62 ( t r e a t m e n t E - c o l o r - i n f r a r e d ) 194 Appendix V I I . Main s t u d y s t a t i s t i c s from d e n s i t o m e t r y TESTS FOR NORMALITY BMDP5D - HISTOGRAM AND UNIVARIATE PLOTS HISTOGRAM OF VARIABLE YC SYMBOL COUNT MEAN ST.DEV. X 71 3.417 0 .332 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + +-- INT. CUM. * 2 . 80000 +XX 2.8 2.8 * 2 . 9 0 0 0 0 +xx 2 .8 5.6 * 3 . 0 0 0 0 0 +XX 2.8 8.5 * 3 . 1 0 0 0 0 +XXXXXXX 9.9 1 8 . 3 * 3 . 20000 +XXXXXXXXXX 14 .1 32 .4 * 3 . 30000 +XXXX 5.6 3 8 . 0 * 3 . 40000 +XXXXXXXX 1 1 . 3 4 9 . 3 * 3 . 50000 +XXXXXXXXX 12 .7 62 .0 * 3 . 6 0 0 0 0 +XXXXXXXXX 12 .7 7 4 . 6 * 3 . 70000 +XXXX 5.6 8 0 . 3 * 3 . 80000 +XXX 4.2 84 .5 * 3 . 9 0 0 0 0 +XXXX 5.6 90 .1 * 4 . 00000 +XXXX 5.6 95 .8 * 4 . 1 0 0 0 0 +XX 2.8 9 8 . 6 * 4 . 2 0 0 0 0 + 0.0 9 8 . 6 * 4 . 3 0 0 0 0 +x 1.4 100 .0 5 10 15 20 25 30 35 40 195 NORMAL PLOT OF VARIABLE YC ...+....+....+....+....+....+....+....+.... - * _ E - II -X 2 + * + P - I* -E - */* C - /* T — * * * — E 1 + *** + D - *** _ - *** _ N ** -0 - ** -R 0 + *** + M - *** _ A - * * * / _ L - **/ - * * _ V -1 + */ + A - /** L - /* U - /** E - /* -2 + * + -/ - * _ . . . + . . . . + . . . . + . . . . + . . . . + . . . . + . . . . + . . . . + . . . . 3.0 3.4 3.8 4. 2.8 3.2 3.6 4.0 YC VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 196 HISTOGRAM OF V A R I A B L E MC SYMBOL COUNT MEAN S T . D E V . X 71 2.176 0.296 E A C H SYMBOL R E P R E S E N T S 1 O B S E R V A T I O N I N T E R V A L FREQUENCY NAME 5 10 15 20 25 30 35 P E R C E N T A G E + + + + + + + +- I N T . C U M . *1.47900 +XX 2.8 2.8 *1.56600 + 0.0 2.8 *1.65300 +x 1.4 4.2 *1.74000 +XXXXX 7.0 11.3 *1.82700 +X 1.4 12.7 *1.91400 +XXXX 5.6 18.3 *2.00100 +XXXX 5.6 23.9 *2. 08800 +XXXXXX 8.5 32.4 *2'. 17500 +XXXXXXXXXXX 15.5 47.9 *2.26200 +XXXXXXXXX 12.7 60.6 *2. 34900 +XXXXXXXXX 12.7 73.2 *2. 43600 +XXXXXXX 9.9 83.1 *2 .52300 +XXXX 5.6 88.7 *2.61000 +XX 2.8 91.5 *2.69700 +XXXX 5.6 97.2 *2. 78400 +XX 2.8 100.0 + + + + + + + + + 5 10 15 20 25 30 35 40 197 NORMAL PLOT OF VARIABLE MC . . . . + . . . . + . . . . + + + + + , * -E - 1 ~ X 2 + . * / -P _ //* m _ / E 1 + **/ D \" ' N 0 R 0 + M - /** A - /** L V -1 ** * * •k ~k ~k J * * A - **//* L - **/ U - */ E - *// -2 + * / // _ * ....+....+....+....+....+....+....+....+. 1.4 1.8 2.2 2.6 1.6 2.0 2.4 2.8 MC VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 198 HISTOGRAM OF VARIABLE YM SYMBOL COUNT MEAN ST.DEV. X 71 1.586 0.154 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + + + + +- INT. CUM. * 1 . 2 4 0 0 0 + 0.0 0.0 * 1 . 3 0 2 0 0 + 0.0 0 .0 * 1 . 3 6 4 0 0 +XXX 4.2 4 .2 * 1 . 42600 +XXXXX 7.0 1 1 . 3 * 1 . 4 8 8 0 0 +XXXXXXXXXXXXX 1 8 . 3 2 9 . 6 * 1 . 5 5 0 0 0 +XXXXXXXXXX 14 .1 43 .7 * 1 . 6 1 2 0 0 +XXXXXXXXXXXXXXXXX 2 3 . 9 6 7 . 6 * 1 . 6 7 4 0 0 +XXXXXX 8.5 76 .1 * 1 . 7 3 6 0 0 +XXXXX 7.0 83 .1 * 1 . 7 9 8 0 0 +XXXXXX 8.5 91 .5 * 1 . 8 6 0 0 0 +XXX 4.2 95 .8 * 1 . 9 2 2 0 0 +x 1.4 97 .2 * 1 . 98400 + 0.0 97 .2 * 2 . 04600 +x 1.4 9 8 . 6 *2 .10800 + 0.0 9 8 . 6 * 2 . 1 7 0 0 0 +x 1.4 100 .0 5 10 15 20 25 30 35 40 199 NORMAL PLOT OF VARIABLE YM . . . . . . . + + + + + • • • _ * -E - / X 2 + / * + P - /* E - ** C - ** E 1 + ** + D ** _ * * * -N - **/ 0 - **/ R 0 + ** + M - ** A - ** L - ** V -1 + /* A - * * * L - ** U - //* E - / * -2 + / * -/ - * + + + + + . 1.4 1.8 2.2 1.6 2.0 YM VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 200 HISTOGRAM OF VARIABLE TGR SYMBOL COUNT MEAN ST.DEV. X 70 1.672 0.113 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + + + + + - INT. CUM. *1 .48000 +XXXX 5.7 5.7 *1.51700 +XXX 4.3 10.0 *1.55400 +XXX 4.3 14.3 *1.59100 +XXXXX 7.1 21.4 *1.62800 +XXXXXXXXXX 14.3 35.7 *1.66500 +XXXXXXXX 11.4 47.1 *1.70200 +XXXXXXXXXXXX 17.1 64.3 *1.73900 +XXXXXX 8.6 72.9 *1.77600 +XXXXXXX 10.0 82.9 *1. 81300 +XX 2.9 85.7 *1. 85000 +XXXXXX 8.6 94.3 *1.88700 +xx 2.9 97.1 *1.92400 +x 1.4 98.6 *1.96100 + 0.0 98.6 *1.99800 +x 1.4 100.0 *2.03500 + 0.0 100.0 5 10 15 20 25 30 35 40 201 NORMAL PLOT OF VARIABLE TGR +... .+.. . .+.. . .+.. . .+.. . .+.. . .+, E - / -X 2 + // * 4 P - . */ E - * C - ** lTJ — * * E 1 + *** 4 D ** _ * * / N - *** 0 - * * / R 0 + ** 4 l/[ - * * * A - ** L - ** V -1 + ** 4 — \"k \"k ic -L - ** U - /* E -/* -2 + * 4 _ * + . . . . + . . . . + . . . . 4 - . . . . 4- . . . . + . . . . 4 - . . . . + . . 1.52 1.68 1.84 2.00 1.60 1.76 1.92 TGR VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 202 HISTOGRAM OF VARIABLE TGIR SYMBOL COUNT MEAN ST.DEV. X 71 7.304 0.692 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + INT. CUM. *6.20000 +XXXX 5.6 5 .6 *6.40000 +XX 2.8 8.5 *6.60000 +XXXX 5.6 14.1 *6.80000 +XXXXXXXX 11.3 25.4 *7.00000 +XXXXXXXX 11.3 36.6 *7 .20000 +XXXXX 7.0 43.7 *7 .40000 +XXXXX 7.0 50.7 *7.60000 +XXXXXXXXXXXXX 18.3 69.0 *7.80000 +XXXXXX 8.5 77.5 *8.00000 +XXXXX 7.0 84.5 *8 .20000 +XX 2.8 87.3 *8 .40000 +XXXXX 7.0 94.4 *8.60000 +x 1.4 95.8 * 8 . 80000 +XX 2.8 98.6 *9.00000 + 0.0 98.6 *9.20000 +x 1.4 100.0 5 10 15 20 25 30 35 40 203 NORMAL PLOT OF VARIABLE TGIR + + + + + . . . / * -E - I ~ X 2 + /* + P - . //* -E ** C - /* rp _ * * * — E 1 + ** + * */ * * * D N 0 R 0 + */* + M - * * * — ^ _ * * / * _ L - */ _ * * -** -L - */* U - * E - */ -2 + //* + -/ - * -+ + + + + . . . 6.3 7.7 9.1 7.0 8.4 TGIR V -1 + A VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 204 HISTOGRAM OF VARIABLE TRIR SYMBOL COUNT MEAN ST.DEV. X 71 4.374 0.501 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE INT. CUM. *3.04000 + 0.0 0.0 *3. 20000 +XX 2.8 2.8 *3. 36000 + 0.0 2.8 *3. 52000 +x 1.4 4.2 *3.68000 +XXXXX 7.0 11.3 *3. 84000 +XX 2.8 14.1 *4 .00000 +XXXX 5.6 19.7 *4 .16000 +XXXXXXX 9.9 29.6 *4 .32000 +XXXXXXXXX 12.7 42.3 *4 .48000 +XXXXXXXXXXXX 16.9 59.2 *4.64000 +XXXXXXXX 11.3 70.4 *4 . 80000 +XXXXXXXXX 12.7 83.1 *4.96000 +XXXX 5.6 88.7 *5.12000 +XX 2.8 91.5 *5. 28000 +XXXX 5.6 97.2 *5.44000 +XX 2.8 100.0 5 10 15 20 25 30 35 40 205 NORMAL PLOT OF VARIABLE TRIR . + + + + + + . _ * _ E - II-X 2 + * / + P */ E - I* -C - /** T - **/ E 1 + * * * + D - **/ _ ** _ N ** 0 - ** R 0 + ** + M - /** A - /** L - *** _ / * * _ V - 1 + * * + A - **/* L - **/ U - * E - *// -2 + * / + // _ * _ . + + + + + + . 3.5 4.5 3.0 4.0 5.0 TRIR VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 206 T E S T S FOR HOMOGENEOUS V A R I A N C E S BMDP9D - MULTIWAY D E S C R I P T I O N OF GROUPS T E S T FOR YC C E L L NUMBER FREO . MEAN S T D . D E V . 1 1 5 . 3 . 2 9 3 1 9 0 . 3 0 9 0 2 1 4 . 3 . 5 2 7 7 1 0 . 2 9 8 3 3 1 2 . 3 . 5 5 5 4 9 0 . 3 7 4 6 4 1 5 . 3 . 3 3 9 9 3 0 . 2 9 9 6 5 1 5 . 3 . 4 0 4 8 6 0 . 3 4 8 3 HOMOG. B A R T L E T T T E S T 1 . 0 5 4 7 6 OF A P P R O X . F 0 . 2 5 5 7 5 N O N - S I G . V A R I A N C E D . F . ' S 4 . 6 4 1 6 . 115 P R O B . ( F ) 0 . 9 0 6 3 T E S T FOR MC C E L L NUMBER FREO . MEAN S T D . D E V . 1 1 5 . 2 . 0 4 2 3 3 0 . 3 2 2 0 2 1 4 . 2 . 2 8 7 5 7 0 . 2 7 9 7 3 1 2 . 2 . 1 8 0 0 8 0 . 3 4 0 8 4 1 5 . 2 . 2 1 5 5 3 0 . 2 2 6 1 5 1 5 . 2 . 1 6 1 2 6 0 . 2 9 1 9 HOMOG. B A R T L E T T T E S T 2 . 4 7 1 6 6 OF A P P R O X . F 0 . 5 9 9 4 4 N O N - S I G . V A R I A N C E D . F . ' S 4 . 6 4 1 6 . P R O B . ( F ) 0 . 6 6 3 0 T E S T FOR YM C E L L NUMBER FREO . MEAN S T D . D E V . 1 1 5 . 1 . 6 3 5 8 0 0 . 1 9 3 5 2 1 4 . 1 . 5 5 3 3 6 0 . 1 3 8 3 3 1 2 . 1 . 6 4 9 7 5 0 . 1 6 2 1 4 1 5 . 1 . 5 1 2 6 6 0 . 1 0 6 4 5 1 5 . 1 . 5 8 6 8 0 0 . 1 3 8 1 HOMOG. B A R T L E T T T E S T 5 . 3 1 3 3 4 OF A P P R O X . F 1 . 2 8 9 1 6 N O N - S I G . V A R I A N C E D . F . ' S 4 . 6 4 1 6 . P R O B . ( F ) 0 . 2 7 1 6 207 TEST FOR TGR CELL NUMBER FREQ . MEAN STD. DEV. 1 15. 1.70873 0.1458 2 14. 1.65957 0.1134 3 12. 1.73766 0.1175 4 15. 1.61573 0.0926 5 15. 1.67900 0.1119 HOMOG. BARTLETT TEST 2.97217 OF APPROX. F 0.72088 NON-SIG. VARIANCE D.F.'S 4. 6416. PROB.(F) 0.5775 TEST FOR TGIR CELL NUMBER FREQ . MEAN STD. DEV. 1 15. 7.03506 0.6516 2 14. 7.54285 0.6229 3 12. 7.57150 0.7899 4 15. 7.16486 0.6152 5 15. 7.27733 0.7245 HOMOG. BARTLETT TEST 1.16534 OF APPROX. F 0.28257 NON-SIG. VARIANCE D.F.'S 4. 6416. PROB.(F) 0.8894 TEST FOR TRIR CELL NUMBER FREQ . MEAN STD. DEV. 1 15. 4.14859 0.5447 2 14. 4.56349 0.4732 3 12. 4.38166 0.5769 4 15. 4.44173 0.3828 5 15. 4.34979 0.4940 HOMOG. BARTLETT TEST 2.4 662 6 OF APPROX. F 0.59813 NON-SIG. VARIANCE D.F.'S 4. 6416. PROB.(F) 0.6640 208 ANALYSIS OF VARIANCE TEST FOR YC GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0 . 7 2 2 9 8 4. 0 . 1 8 0 7 5 1 . 7 0 6 0 R e s i d u a l 6 . 9 9 2 6 6 6 . 0 . 1 0 5 9 5 T o t a l 7 . 7 1 5 6 7 0 . M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.15917 TEST FOR MC GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0.46917 4. 0.11729 1.3691 R e s i d u a l 5. 6544 66. 0.85673E-01 T o t a l 6.1236 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0 . 2 5 4 2 0 TEST FOR YM GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0.18155 4. 0.45387E-01 2.0146 R e s i d u a l 1. 4869 66. 0.22530E-01 T o t a l 1.6685 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.10254 209 TEST FOR TGR GENLIN A n a l y s i s o f v a r i a n c e t a b l e Source Sum o f squares DF Mean square F - r a t i o TREAT R e s i d u a l T o t a l 0 0 11982 91174 1.0316 4. 0.29954E-01 2.1683 66. 0.13814E-01 70 M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.08217 TEST FOR TGIR GENLIN A n a l y s i s o f v a r i a n c e t a b l e Source Sum o f squares DF Mean square F - r a t i o TREAT R e s i d u a l T o t a l 3.0433 30.498 33.541 4. 66. 70. 0.76083 0.46209 1.6465 M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.17308 TEST FOR TRIR GENLIN A n a l y s i s o f v a r i a n c e t a b l e Source Sum o f squa r e s DF Mean square F - r a t i o TREAT R e s i d u a l 1.3431 16.193 T o t a l 17 .536 4. 66, 0.33578 0.24535 1.3686 70 M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.25437 210 Appendix V I I I . Main s t u d y s t a t i s t i c s from a i r b o r n e s c a n n e r d a t a a n a l y s i s TESTS FOR NORMALITY BMDP5D - HISTOGRAM AND UNIVARIATE PLOTS HISTOGRAM OF VARIABLE CHANNEL 445 SYMBOL COUNT MEAN ST.DEV. X 71 1.004 0 .088 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + 4. + + + + - INT. CUM. * . 920000 +XXXX 5.6 5.6 * . 9 6 0 0 0 0 +XXXXXXXXXXXXXXX 21 .1 2 6 . 8 * 1 . 0 0 0 0 0 +XXXXXXXXXXXXXXXXXXXXXXXXX 3 5 . 2 62 .0 * 1 . 04000 +XXXXXXXXXXXXXXXX 2 2 . 5 8 4 . 5 *1 . 08000 +XXXX 5.6 90.1 * 1 . 1 2 0 0 0 +XXX 4 .2 94 .4 * 1 . 1 6 0 0 0 + 0.0 94 .4 * 1 . 2 0 0 0 0 +xx 2.8 97 .2 * 1 . 2 4 0 0 0 + 0.0 97 .2 * 1 . 2 8 0 0 0 +x 1.4 9 8 . 6 * 1 . 3 2 0 0 0 + 0.0 9 8 . 6 * 1 . 3 6 0 0 0 + 0.0 9 8 . 6 * 1 . 40000 + 0.0 9 8 . 6 * 1 . 4 4 0 0 0 + 0.0 9 8 . 6 * 1 . 4 8 0 0 0 + 0.0 9 8 . 6 * 1 . 5 2 0 0 0 +x 1.4 100 .0 5 10 15 20 25 30 35 40 NORMAL PLOT OF VARIABLE CHANNEL 4 45 . . + . . . . + . . . . + . . . . + . . . . + . . . . + . . . .+.. . .+ E - / -X 2 + / * + P - * — E - — C - * * / — T - * * / — E 1 + * * / + D - * / -- — N - * / — 0 - * / — R 0 + */ + M - */ — A - * * — L - /* — - / * * — V -1 + / * + A - / * — L - / * — U -/ * * — E - * — -2 + + _ ..+....+....+....+....+....+....+....+. .880 1.04 1.20 1.36 .960 1.12 1.28 1.44 CHANNEL 445 VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 212 HISTOGRAM OF V A R I A B L E CHANNEL 521 SYMBOL COUNT MEAN S T . D E V . X 71 1 . 3 9 3 0 . 0 4 6 E A C H SYMBOL R E P R E S E N T S 1 O B S E R V A T I O N I N T E R V A L FREQUENCY NAME 5 10 15 20 25 30 35 P E R C E N T A G E + + + + + + + +_ I N T . C U M . * 1 . 2 6 4 0 0 +X 1 . 4 1 . 4 * 1 . 2 8 0 0 0 + 0 . 0 1 . 4 * 1 . 29600 + 0 . 0 1 . 4 * 1 . 3 1 2 0 0 + 0 . 0 1 . 4 * 1 . 3 2 8 0 0 + 0 . 0 1 . 4 * 1 . 3 4 4 0 0 +XXXXXXXX 1 1 . 3 1 2 . 7 * 1 . 3 6 0 0 0 +XXXX 5 . 6 1 8 . 3 * 1 . 3 7 6 0 0 +XXXXXXXXXXXX 1 6 . 9 3 5 . 2 * 1 . 3 9 2 0 0 +XXXXXXXXXXXXXX 1 9 . 7 5 4 . 9 * 1 . 4 0 8 0 0 +XXXXXXXXX 1 2 . 7 6 7 . 6 * 1 . 4 2 4 0 0 +XXXXXXX 9 . 9 7 7 . 5 * 1 . 4 4 0 0 0 +XXXXXX 8 . 5 8 5 . 9 * 1 . 4 5 6 0 0 +XXX 4 . 2 9 0 . 1 * 1 . 4 7 2 0 0 +XX 2 . 8 9 3 . 0 * 1 . 4 8 8 0 0 +XX 2 . 8 9 5 . 8 * 1 . 5 0 4 0 0 +XXX 4 . 2 1 0 0 . 0 5 10 15 20 25 30 35 40 213 NORMAL PLOT OF VARIABLE CHANNEL 521 . . . . + . . . . + . . . . + . . . . + . . . . + . + . . . . + . . . . + . . . _ * -E - I -X 2 + / * + P - / * -E - /** -C - /** f j i _ k k k — E 1 + ** + D - */ _ * * / -N - * \" Q _ * * * -R 0 + * / + M - ** A - ** L - * V -1 + *** + A - /* L - /** U - /** E - / * -2 + // * + / _ * -... .+... .+... .+... .+... .+... .+... .+... .+... 1.24 1.32 1.40 1.48 1.28 1.36 1.44 1.52 CHANNEL 521 VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 214 HISTOGRAM OF VARIABLE CHANNEL 550 SYMBOL COUNT MEAN ST.DEV. X 71 0.719 0.024 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + INT. CUM. *.660000 + 0.0 0.0 *.670000 +XX 2.8 2.8 *.680000 +XXX 4.2 7.0 *.690000 +XXX 4.2 11.3 *.700000 +XXXXX 7.0 18.3 * .710000 +XXXXXXXXXX 14.1 32.4 * .720000 +XXXXXXXXXX 14.1 46.5 *. 730000 +XXXXXXXXXXXXXXXX 22.5 69.0 *. 740000 +XXXXXXXXXX 14.1 83.1 * .750000 +XXXXXXX 9.9 93.0 * .760000 +XXXX 5.6 98.6 * .770000 + 0.0 98.6 *.780000 + 0.0 98.6 *. 790000 + 0.0 98.6 * . 800000 + 0.0 98.6 *. 810000 +x 1.4 100.0 5 10 15 20 25 30 35 40 215 NORMAL PLOT OF VARIABLE CHANNEL 550 .+ + + .. + + + . _ * -E - II ~ X 2 + * / + P - * / E - **/ C - *// rp k k — E 1 + * * + D - */ */ N ** 0 * R 0 + /** + M — * * * — A - ** L - ** /* V -1 + ** + A - ** L - **/ U - **/ E - */ -2 + */ + - / _ /* . + + + + + + . .69 .75 .81 .66 .72 .78 CHANNEL 550 VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 216 HISTOGRAM OF VARIABLE CHANNEL 5 90 SYMBOL COUNT MEAN ST.DEV. X 71 1. 233 0 .059 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE INT. CUM. *1.11600 + 0.0 0.0 *1.13400 +XX 2.8 2.8 *1.15200 +XXX 4.2 7.0 *1.17000 +XXX 4.2 11.3 *1.18800 +XXXXXX 8.5 19.7 *1.20600 +XXXXXXXXXXXX 16.9 36.6 *1. 22400 +XXXXXXXX 11.3 47.9 *1.24200 +XXXXXXXXXXXXX 18.3 66.2 *1.26000 +XXXXXX 8.5 74. 6 *1.27800 +XXXX 5.6 80.3 *1.29600 +XX 2.8 83.1 *1.31400 +XXXX 5.6 88.7 *1 .33200 +XX 2.8 91.5 *1.35000 +XX 2.8 94.4 *1.36800 +X 1.4 95.8 *1.38600 +XXX 4.2 100.0 5 10 15 20 25 30 35 40 217 NORMAL PLOT OF V A R I A B L E CHANNEL 590 . . . . + . . . . + + . . . . + + + + + . • . /* E / X 2 + / / * + P - / / * -E - / * * C - / * * -T E 1 + £, _ ***/* -_ * * / -N - * * * / 0 - * * / R 0 + * * / + M - * * ~ A - * * / L ** * * * V - 1 + / * * A - / * * L - / / * U - / / * E - / * + //* - / _ * ....+....+....+....+....+....+....+....+.. 1 . 1 6 1 . 2 4 1 . 3 2 1 . 4 0 1 . 1 2 1 . 2 0 1 . 2 8 1 . 3 6 CHANNEL 590 V A L U E S FROM NORMAL D I S T R I B U T I O N WOULD L I E ON THE L I N E I N D I C A T E D BY THE SYMBOL / 218 HISTOGRAM OF VARIABLE CHANNEL 673 SYMBOL COUNT MEAN ST.DEV. X 71 0.812 0.086 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE INT. CUM. *.592000 + 0.0 0.0 *.629000 + 0.0 0.0 *.666000 +X 1.4 1.4 *.703000 +XXXX 5.6 7.0 * . 740000 +XXXXXXXXX 12.7 19.7 * .777000 +XXXXXXXXXXXXX 18.3 38.0 * . 814000 +XXXXXXXXXXXXXXXXX 23.9 62.0 *.851000 +XXXXXX 8.5 70.4 * . 888000 +XXXXX 7.0 77.5 * . 925000 +XXXXXXXXXX 14.1 91.5 *.962000 +XXX 4.2 95.8 *.999000 +x 1.4 97.2 * 1 . 03600 +x 1.4 98.6 *1.07300 + 0.0 98.6 *1.11000 +x 1.4 100.0 *1.14700 + 0.0 100.0 -1 1 ^ 1 1 — + - 1 — + — — + 5 10 15 20 25 30 35 40 219 NORMAL PLOT OF VARIABLE CHANNEL 673 + + + + / E - / X 2 + / / P - /* E C - */* T E 1 + D ** * * *** * * * -2 + N - **/ 0 - **// R 0 + **/ M - **/ A - ** L - ** - * * * V -1 + / * ~ A - /** L - //** ~ U - / * E -// * \" + + + + + . . .810 .990 .720 .900 1.08 CHANNEL 673 VALUES FROM NORMAL DISTRIBUTION WOULD LIE ON THE LINE INDICATED BY THE SYMBOL / 220 HISTOGRAM OF VARIABLE CHANNEL 687 SYMBOL COUNT MEAN ST.DEV. X 71 0.661 0.181 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE INT. CUM. * .500000 + 0.0 0.0 *.550000 +XXXXXXXXX 12.7 12.7 *.600000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 40.8 53.5 *.650000 +xxxxxxxxxxxxxxxxx 23.9 77.5 *.700000 +XXXXX 7.0 84.5 *.750000 +XX 2.8 87.3 * . 800000 + 0.0 87.3 * . 850000 + 0.0 87.3 *.900000 + 0.0 87.3 *.950000 + 0.0 87.3 *1.00000 + 0.0 87.3 *1.05000 +X 1.4 88.7 *1.10000 +XXX 4.2 93.0 *1.15000 +XX 2.8 95.8 *1.20000 +XX 2.8 98.6 *1.25000 +x 1.4 100.0 5 10 15 20 25 30 35 40 221 NORMAL PLOT OF VARIABLE CHANNEL 687 * — E — // -X 2 + / * + P - // * — E — / * — C - // ** — T - * / * * — E 1 + * * // + D - — - — N - * // — 0 - * / — R 0 + * // + M - * * / — A - */ — L - /* — - //** — V -1 + / + A / * — L - // * * — U -/ — E - * — -2 + * + * -.60 1.0 .40 .80 1.2 CHANNEL 687 VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 222 HISTOGRAM OF VARIABLE CHANNEL 871 SYMBOL COUNT MEAN ST.DEV. X 71 2 .106 0.248 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + + + + +- INT. CUM. * 1 . 5 7 5 0 0 +xx 2.8 2 .8 * 1 . 6 5 0 0 0 + 0.0 2 .8 * 1 . 7 2 5 0 0 +xx 2.8 5.6 * 1 . 8 0 0 0 0 +XXXX 5.6 1 1 . 3 * 1 . 87500 +XX 2.8 14 .1 * 1 . 95000 +XXXXXXXXX 12 .7 2 6 . 8 * 2 . 02500 +XXXXXXX 9.9 3 6 . 6 * 2 . 1 0 0 0 0 +XXXXXXXX 1 1 . 3 4 7 . 9 * 2 . 1 7 5 0 0 +XXXXXXXXXXXXX 1 8 . 3 66 .2 * 2 . 2 5 0 0 0 +XXXXXX 8.5 74 . 6 * 2 . 32500 +XXX 4.2 7 8 . 9 * 2 . 4 0 0 0 0 +XXXX 5.6 8 4 . 5 * 2 . 4 7 5 0 0 +XXXXXX 8.5 93 .0 * 2 . 5 5 0 0 0 +XX 2.8 95 .8 * 2 . 6 2 5 0 0 +XX 2.8 9 8 . 6 * 2 . 70000 +x 1.4 100 .0 5 10 15 20 25 30 35 40 223 NORMAL PLOT OF V A R I A B L E CHANNEL 871 + + + + _ * -E - I ~ X 2 + * / + p * E - * / * C - */ -T - / * E 1 + D * * N 0 - */ R 0 + ** + M — * * * — A - * * L * * * — _ * * -V - 1 + / * + A - * * -L - / * U - * / * E - / * - 2 + * / + / */ + -I- + + + 1 . 5 2 . 1 2 . 7 1 . 8 2 . 4 CHANNEL 871 * * * V A L U E S FROM NORMAL D I S T R I B U T I O N WOULD L I E ON THE L I N E I N D I C A T E D BY THE SYMBOL / 224 HISTOGRAM OF VARIABLE CHANNEL 1021 SYMBOL COUNT MEAN ST.DEV. X 71 2.123 0.259 EACH SYMBOL REPRESENTS 1 OBSERVATION INTERVAL FREQUENCY NAME 5 10 15 20 25 30 35 PERCENTAGE + + + + + + + +- INT. CUM. *1.70000 +XX 2.8 2.8 *1.80000 +XXX 4.2 7.0 *1.90000 +XXXXXXX 9.9 16.9 *2.00000 +XXXXXXXXXXXX 16.9 33.8 *2.10000 +XXXXXXXXXXXXX 18.3 52.1 *2.20000 +XXXXXXXXXX 14.1 66.2 *2.30000 +XXXXXXX 9.9 76.1 * 2 . 40000 +XXXXXXX 9.9 85.9 * 2 . 50000 +XXXXXX 8.5 94.4 *2.60000 +XX 2.8 97.2 * 2 . 70000 +x 1.4 98.6 * 2 . 80000 + 0.0 98.6 *2.90000 + 0.0 98.6 *3.00000 + 0.0 98.6 *3.10000 + 0.0 98.6 * 3 . 20000 +x 1.4 100.0 5 10 15 20 25 30 35 40 225 NORMAL PLOT OF VARIABLE CHANNEL 1021 . .+. . . .+. . . .+. . . .+. . . .+. . . .+. . . .+, * * / E - / X 2 + * P - */ E - **/ C T E 1 + ** D - ** _ *** N - **/ 0 - **/ R 0 + ** M - ** A - */ L - ** V -1 + /** j± - * * * L /* U /* E - // * -2 + * -/ _* ..+....+....+....+....+....+....+....+., 1.8 2.2 2.6 3.0 1.6 2.0 2.4 2.8 CHANNEL 1021 * -VALUES FROM NORMAL DISTRIBUTION WOULD L I E ON THE LINE INDICATED BY THE SYMBOL / 226 TESTS FOR HOMOGENEOUS VARIANCES BMDP9D - MULTIWAY DESCRIPTION OF GROUPS TEST FOR CHANNEL 445 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 0.97323 0.0577 2 14. 1.03002 0.1545 3 12. 0.99507 0.0691 4 15. 1.02027 0.0783 5 15. 0.99911 0.0375 HOMOG. BARTLETT TEST 30.16602 OF APPROX. F 7.34673 ; VARIANCE D.F.'S 4. 6416 PROB.(F) 0.0000 A NONPARAMETRIC TEST FOR ANALYSIS OF VARIANCE WILL BE USED TEST FOR CHANNEL 521 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 1.41148 0.0379 2 14 . 1.39553 0 .0578 3 12. 1.37133 0.0467 4 15. 1.40174 0.0432 5 15. 1.38173 0.0368 HOMOG. BARTLETT TEST 3.74829 OF APPROX. F 0.90922 NON-•SIG. VARIANCE D.F. ' S 4. 6416. PROB. (F) 0.4574 TEST FOR CHANNEL 550 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 0.70893 0.0187 2 14 . 0.71776 0.0310 3 12. 0.72995 0.0237 4 15. 0.71403 0.0217 5 15. 0.72420 0.0190 HOMOG. BARTLETT TEST 4.85034 OF APPROX. F 1.17674 NON-•SIG. VARIANCE D.F. ' S 4. 6416. PROB. (F) 0.3187 227 TEST FOR CHANNEL 590 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 1.23164 0.0505 2 14 . 1.23263 0.0706 3 12. 1.27413 0.0527 4 15. 1.19852 0.0441 5 15. 1.23587 0.0600 HOMOG. BARTLETT TEST 3.49414 OF APPROX. F 0.84754 NON-SIG. VARIANCE D.F. ' S 4. 6416. PROB. (F) 0.4948 TEST FOR CHANNEL 673 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 0.82035 0.0725 2 14 . 0.81361 0.0986 3 12. 0.85706 0.1170 4 15. 0 .77555 0.0487 5 15. 0.80429 0.0777 HOMOG. BARTLETT TEST 10.45654 OF APPROX. F 2.53902 SIG. VARIANCE D.F. ' S 4. 6416. PROB. (F) 0.0379 A NONPARAMETRIC TEST FOR ANALYSIS OF VARIANCE WILL BE USED TEST FOR CHANNEL 687 CELL NUMBER FREO . MEAN STD .DEV. 1 15. 0.64749 0.1928 2 14. 0.59909 0.0506 3 12. 0.62523 0.0566 4 15. 0.65406 0.1887 5 15. 0.76983 0.2604 HOMOG. BARTLETT TEST 41.66188 OF APPROX. F 10.16422 SIG. VARIANCE D.F.'S 4. 6416. PROB. (F) 0 .0000 A NONPARAMETRIC TEST FOR ANALYSIS OF VARIANCE WILL BE USED 228 TEST FOR CHANNEL 871 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 1.94051 0.2408 2 14 . 2.08716 0.1848 3 12. 2.18390 0.2612 4 15. 2.14648 0.2191 5 15. 2.18834 0.2693 HOMOG. BARTLETT TEST OF APPROX. F VARIANCE D.F.'S PROB. (F) 2.26302 0.54882 NON-SIG, 4. 6416. 0.6999 TEST FOR CHANNEL 1021 CELL NUMBER FREO. MEAN STD.DEV. 1 15. 1.95485 0.2188 2 14 . 2.16159 0.3261 3 12 . 2.17977 0.2440 4 15. 2.17554 0.2334 5 15. 2.15657 0.2198 HOMOG. BARTLETT TEST OF APPROX. F VARIANCE D.F.'S PROB. (F) 3.23062 0.78359 NON-SIG. 4. 6416. 0.5356 229 ANALYSIS OF VARIANCE TEST FOR CHANNEL 445 BMDP3S KRUSKAL-WALLIS TEST VARIABLE MEAN STANDARD MINIMUM MAXIMUM NO. NAME DEVIATION 1 TREATMENT 3.014069 1.458900 1.000000 5.000000 2 MEASURE 1.003514 0.088160 0.866700 1.504999 KRUSKAL-WALLIS ONE WAY ANALYSIS OF VARIANCE TEST RESULTS GROUP FREQUENCY RANK NO. NAME SUM 1 TRAP 15 403.5 2 FUNGI 14 474.0 3 GIRDLE 12 401.0 4 HEALTHY 15 667.0 5 ATTACK 15 610.5 KRUSKAL-WALLIS TEST STATISTIC = 6.56. LEVEL OF SIGNIFICANCE = 0.1612 USING CHI-SQUARE DISTRIBUTION WITH 4 DEGREES OF FREEDOM TEST FOR CHANNEL 521 GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0.13893E-01 4. 0.34732E-02 1.7284 R e s i d u a l 0 .13263 66. 0.20095E-02 T o t a l 0.14652 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.15421 230 TEST FOR CHANNEL 550 GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0.37412E-02 4. 0.93531E-03 1.7506 R e s i d u a l 0.35263E-01 66. 0.53428E-03 T o t a l 0.39004E-01 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.14945 TEST FOR CHANNEL 590 GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0.38289E-01 4. 0.95724E-02 3.0282 R e s i d u a l 0.20863 66. 0.31610E-02 T o t a l 0.24692 70. M u l t i p l e range t e s t Duncan t e s t a t 5% p r o b a b i l i t y l e v e l There a r e 2 homogeneous s u b s e t s w h i c h a r e l i s t e d as f o l l o w s : ( 4, 1, 2, 5 ) ( 1, 2, 5, 3 ) 231 TEST FOR CHANNEL 67 3 BMDP3S KRUSKAL-WALLIS TEST VARIABLE MEAN STANDARD MINIMUM MAXIMUM NO. NAME DEVIATION 1 TREATMEN 3.014069 1.458900 1.000000 5.000000 2 MEASURE 0.812365 0.085732 0.657100 1.103000 KRUSKAL-WALLIS ONE WAY ANALYSIS OF VARIANCE TEST RESULTS GROUP FREQUENCY RANK NO. NAME SUM 1 TRAP 15 605.5 2 FUNGI 14 510.0 3 GIRDLE 12 508.5 4 HEALTHY 15 420.0 5 ATTACK 15 512.0 KRUSKAL-WALLIS TEST STATISTIC = 4.20. LEVEL OF SIGNIFICANCE = 0.37 98 USING CHI-SQUARE DISTRIBUTION WITH 4 DEGREES OF FREEDOM TEST FOR CHANNEL 687 BMDP3S KRUSKAL-WALLIS TEST VARIABLE MEAN STANDARD MINIMUM MAXIMUM NO. NAME DEVIATION 1 TREATMENT 3.014069 1.458900 1.000000 5.000000 2 MEASURE 0.661419 0.180744 0.522500 1.219500 KRUSKAL-WALLIS ONE WAY ANALYSIS OF VARIANCE TEST RESULTS GROUP FREQUENCY RANK NO. NAME SUM 1 TRAP 15 438.5 2 FUNGI 14 475.0 3 GIRDLE 12 503.5 4 HEALTHY 15 4 98.0 5 ATTACK 15 641.0 KRUSKAL-WALLIS TEST STATISTIC = 4.63. LEVEL OF SIGNIFICANCE = 0.327 9 USING CHI-SQUARE DISTRIBUTION WITH 4 DEGREES OF FREEDOM 232 TEST FOR CHANNEL 871 GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0.61485 4. 0.15371 2.7463 R e s i d u a l 3.6940 66. 0.55970E-01 T o t a l 4.3089 70. M u l t i p l e range t e s t Duncan t e s t a t 5% p r o b a b i l i t y l e v e l There a r e 2 homogeneous s u b s e t s w h i c h a r e l i s t e d as f o l l o w s : ( 1/ 2 ) ( 2, 4, 3, 5 ) TEST FOR CHANNEL 1021 GENLIN A n a l y s i s o f v a r i a n c e t a b l e Sum o f Mean Source squares DF square F - r a t i o TREAT 0.54196 4. 0.13549 2.1566 R e s i d u a l 4 .1465 66. 0.62826E-01 T o t a l 4.6885 70. M u l t i p l e range t e s t F - r a t i o i s not s i g n i f i c a n t a t p r o b a b i l i t y 0.08357 233 Appendix IX. Main study r e g r e s s i o n a n a l y s i s Raw data used f o r r e g r e s s i o n s : t r e e * c h l o r o p h y l l a c h l o r o p h y l l b n i t r o g e n red-e< (ma/cm2 ) (ma/cm2 ) (%) (nm) 1 0.1566 0.1008 1.09 714.3 2 0.1560 0.1070 1.03 713.9 3 0.0994 0.0671 0.97 709.5 4 0.0881 0.0707 0.96 709.0 5 0.0830 0.0546 0.94 705.9 6 0.1288 0.1124 1.10 714.6 7 0.1233 0.0792 0.96 713.8 8 0.1254 0.1172 1.01 710.9 9 0.1136 0.0742 1.09 711.2 10 0.0462 0.0420 0.91 702.6 11 0.1061 0.0968 0.99 713.0 12 0.0784 0.0589 0.91 710.1 13 0.0785 0.0650 1.02 712.2 14 0.0934 0.0863 0.91 707.2 15 0.1068 0.0977 0.96 709.7 16 0.1233 0.0809 0.96 712.8 17 0.1689 0.1400 0.98 714.0 18 0.1899 0.1335 1.12 714.4 19 0.1796 0.1315 1.23 716.4 20 0.1251 0.0846 1.01 713.7 21 0.1123 0.0823 1.00 712.9 23 0.2122 0.1095 1.12 715.9 24 0.1496 0.1086 1.07 714.5 25 0.1316 0.0883 1.09 711.8 26 0.1144 0.0821 0.95 706.6 27 0.1717 0.1364 1.13 712.6 28 0.1809 0.1142 1.24 716.8 29 0.1726 0.1074 1.21 715.2 30 0 .2020 0.1453 1.25 715.7 31 0.1335 0.1130 1.07 713.3 32 0.1713 0.1291 1.11 719.9 33 0.1194 0.0840 0.95 711.0 34 0.1360 0.0769 1.02 713.7 35 0 .1582 0.0994 1.09 716.3 36 0.0832 0.0496 0.93 706.8 37 0.1078 0.0652 0.94 708.0 38 0.1383 0.1019 1.10 715.3 39 0.1256 0.0845 0.95 708.8 40 0.1201 0.0901 1.00 712.1 41 0.1509 0.1000 1.01 715.3 42 0.1051 0.0692 0.85 708.7 46 0.1483 0.0923 1.12 714.5 47 0 .1405 0.1085 1.12 714.4 48 0.1659 0.1264 1.15 714.8 49 0.1696 0.1114 1.21 717.2 50 0.2016 0.1430 1.21 720.4 51 0.1387 0.0827 1.08 715.0 234 52 0 .2142 0.1434 1.29 719.7 53 0.1818 0.1360 1.21 717.0 54 0.1764 0.1283 1.15 715.1 55 0 .1411 0.1101 1.19 716.4 56 0.1353 0.1067 1.11 714.4 57 0 .1371 0.1213 1.15 715.2 58 0.1333 0.1259 1.09 714.0 59 0.1214 0.0960 1.06 713.4 60 0.1154 0.1026 1.08 712.6 61 0.1383 0.1130 1.06 712.1 62 0 .1166 0.0837 0.97 711.9 63 0.0781 0.0719 1.01 710.5 64 0.0687 0.0577 0.92 701.7 65 0.0681 0.0487 0.93 706.4 66 0.1329 0.0967 1.08 714.0 67 0.0888 0.0721 1.04 711.0 68 0.0882 0.0614 0.96 704.8 69 0.0990 0.0704 1.01 711.8 70 0.1348 0.1060 1.14 715.0 71 0.1125 0.0847 1.12 712.7 72 0.0945 0.0963 0.93 709.7 73 0 .1314 0.1047 1.22 715.3 74 0.0689 0.0576 1.04 709.0 75 0.1257 0.0919 0.94 711.6 BMDP5R - POLYNOMIAL REGRESSION / PROBLEM TITLE IS 'REGRESSION'. / INPUT VARIABLES ARE 5. CASES ARE 71 UNIT IS 4. FORMAT IS FREE. / VARIABLE NAMES ARE NO, AKLORO, BKLORO, NITRO, REDEDGE. LABEL IS NO. / REGRESS DEPENDENT IS AKLORO. INDEPENDENT IS REDEDGE. DEGREE IS 1. / END 235 RESULTS FOR POLYNOMIAL OF DEGREE 1 REDEDGE (INDEPENDENT) AND AKLORO (CHLOROPHYLL A) POLYNOMIAL IN X REGRESSION STANDARD T DEGREE COEFFICIENT' ERROR VALUE 0 -0.57689356E+01 0.47273E+00 -12.20 1 0.82785555E-02 0.66341E-03 12.48 RESIDUAL MEAN SQUARE = 0.00043 (D.F = 69) MULTIPLE R-SOUARE = 0.69295 RESULTS FOR POLYNOMIAL OF DEGREE 1 REDEDGE (INDEPENDENT) AND BKLORO (CHLOROPHYLL B) POLYNOMIAL IN X REGRESSION STANDARD T DEGREE COEFFICIENT ERROR VALUE 0 - 0 . 3 7 5 2 0 5 7 3 E + 0 1 0 . 3 6 4 8 6 E + 0 0 - 1 0 . 2 8 1 0.53997648E-02 0.51204E-03 10.55 RESIDUAL MEAN SQUARE = 0.00025 (D.F = 69) MULTIPLE R-SOUARE = 0.61712 RESULTS FOR POLYNOMIAL OF DEGREE 1 AKLORO (CHLOROPHYLL A - INDEPENDENT) AND NITRO (NITROGEN) POLYNOMIAL IN X REGRESSION STANDARD T DEGREE COEFFICIENT ERROR VALUE 0 0.78082879E+00 0.28246E-01 27.64 1 0 . 2 0 9 8 8 4 3 3 E+01 0 . 20899E+00 10.04 RESIDUAL MEAN SQUARE = 0.00419 (D.F = 69) MULTIPLE R-SOUARE = 0.5 9377 236 RESULTS FOR POLYNOMIAL OF DEGREE 1 BKLORO (CHLOROPHYLL B - INDEPENDENT) AND NITRO (NITROGEN) POLYNOMIAL IN X REGRESSION STANDARD T DEGREE COEFFICIENT ERROR VALUE 0 0.77356200E+00 0.31375E-01 24.66 1 0 .29308687E+01 0.31714E+00 9.24 RESIDUAL MEAN SQUARE = 0.00461 (D.F = 69) MULTIPLE R-SOUARE = 0.55313 2 3 7 Appendix X. Sensitometric p l o t t i n g sheet with c h a r a c t e r i s t i c curves FILM TYPE: c^'/y'S DATE PROCESSED: / 6~ - f ~ & St\" ROLL NO. PROCESS: - 3 - AVERACE GRADIENT TEMPERATURE: . „ ., 0 -/.Jo /-WEATHER Clear Overcast Haze C.S.A. FILM SPEED FEET-PER-MINUTE V ROLL ASSESSMENT Cood Average Poor D-MAX RACKS: 2 REMARKS: D-MIN DENSITY RANCE NRC SENSITOMETER: Sensitoraeter Ca l i b ra t i on Report 19 N o - : PO-921 3.0 .9 .8 .7 .6 .5 .4 .3 .2 .1 2.0 •9o .85 .752 4 tn M . 3 H .2 .1 1.0 .9 .8 . 7 .6 .5 . 4 .3 .2 .1 0 2 LOG E 21 20 19 18 17 16 15 14 13 12 11 D, °7 o, i 2 ri w / / 3 a 4 /? 9 57 S si 7 f i I'' 8 S~/ » 7 • 10 f r /. •? II //•> 12 ri-' 13 //? 14 iff 13 If* ' : v IS ifl / 17 iri / 7 ? ^ 1 \" 14 1/^ • -> v 19 f ' / 2 0 /.• ? 21 3 / 7 "@en ; edm:hasType "Thesis/Dissertation"@en ; edm:isShownAt "10.14288/1.0100730"@en ; dcterms:language "eng"@en ; ns0:degreeDiscipline "Forestry"@en ; edm:provider "Vancouver : University of British Columbia Library"@en ; dcterms:publisher "University of British Columbia"@en ; dcterms:rights "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en ; ns0:scholarLevel "Graduate"@en ; dcterms:title "Considerations for early remote detection of mountain pine beetle in green-foliaged lodgepole pine"@en ; dcterms:type "Text"@en ; ns0:identifierURI "http://hdl.handle.net/2429/31483"@en .