@prefix vivo: . @prefix edm: . @prefix ns0: . @prefix dcterms: . @prefix skos: . vivo:departmentOrSchool "Science, Faculty of"@en, "Botany, Department of"@en ; edm:dataProvider "DSpace"@en ; ns0:degreeCampus "UBCV"@en ; dcterms:creator "Smith, Barry D."@en ; dcterms:issued "2010-03-03T23:17:06Z"@en, "1979"@en ; vivo:relatedDegree "Master of Science - MSc"@en ; ns0:degreeGrantor "University of British Columbia"@en ; dcterms:description """Appropriate sampling and experimental programs resulted in a qualitative and quantitative assessment of seaweed litter biomasses, decomposition rates and concomitant changes in nitrogen content; detritus biomass and decomposition rates; and faunal distribution patterns for the significant species within a successional seaweed community in the Strait of Georgia, British Columbia, Canada. A simulation model incorporating suitable data obtained from these sampling and experimental programs facilitated prediction of detritus formation rates, biomass, nitrogen content and the seasonal availability of detritus as a food resource for fauna. Soluble matter release rates from decomposing seaweed litter and its nitrogen content were also determined. Of the ca 43 taxa identified within the seaweed litter collections, Fucus distichvs L. (41%), Irldaea cordata (Turner) Bory (26%), Nereocystis 1uetkeana (Mertens) Postels and Ruprecht (27%), and Laminaria (4%) (L. saccharina (L.) Lamouroux and L. groenlandica Rosenvinge) accounted for more than 97% of total litter deposition. The mean peak summer biomass of all litter was ca 5 g ash-free dry weight (AFDW)/m² with this figure approaching zero during January and February. Litter distribution was patchy and there was sufficient evidence to conclude that most litter was retained, and underwent decomposition, in the immediate vicinity of its place of deposition. Litter decomposition experiments performed on the 10 most significant contributors to seaweed community structure indicated that decomposition of seaweed litter occurs rapidly compared to vascular plant litter. The time required for seaweed litter to disappear from 2 mm mesh litter bags ranged from six days, for the lamina of Nereocystis luetkeana, to ca 70 days, for Fucus distichus. Some similarity in decomposition rates was observed amongst species displaying taxonomic and/or morphologic affinities. Assessment of nitrogen content of decomposing seaweed litter revealed that nine of the 10 species assayed lost nitrogen less rapidly than total litter biomass. As determined by assaying microbial consumption of particulate material, the time required for detritus (particle size < 1 mm, dry) to fully decompose was short. Of the 10 species tested, Iridaea cordata detritus decomposed most rapidly at a rate of 5.7% per day while rates for Gigartina papillata (C. Agardh) J. Agardh, Laminaria groenlandica, Laminaria saccharina and Nereocystis luetkeana ranged from 2-4% per day. Data for the remaining species were less conclusive although all decomposed at rates less than one percent per day. Variation in specific decomposition rates was shown to be correlated with the structural composition of the detritus. Those species with a relatively small percentage of crude fibre as a component of their particulate fraction decomposed more rapidly than those species with a higher percentage of crude fibre. For the two most rapidly decomposing species, Iridaea cordata and Nereocystis luetkeana, a trend toward a more rapid decomposition rate as mean particle size decreased was evident. Natural detritus (particle size < 2 mm, wet) biomass accumulation within the study site peaked at ca 1.4 g AFDW/m² during the latter half of August 19 76. This value represents 1-5% of the quantity of detritus predicted to have been formed from seaweed litter alone and a lesser percentage of the total quantity of seaweed detritus formed. Exportation out of the seaweed zone is believed to be responsible for this discrepancy. The predicted rates of detritus formation and soluble matter release from decomposing seaweed litter peaked at ca 0.6 and 0.5 g AFDW/m²per day, respectively, in early September 1976 from a low near zero in February. In total, ca 56% of litter biomass formed detritus, the remainder being released as soluble matter. The mean nitrogen contents of the detritus formed and the soluble matter released were 2.48 ± 0.03% and 1.36 ± 0.03% of their dry weights, respectively. The annual contribution of seaweed litter biomass via detritus and soluble matter to local coastal waters is estimated to be in the range of 70-85 g C/m². Detritus formed from seaweed litter was determined to have a C:N ratio of 10-13:1, rendering it suitably nutritious for utilization by fauna as a food resource, however it could not be shown conclusively that the coincidence, en masse, of specific fauna and maximum detritus availability was a response to the availability of detritus as a food resource. The possibility of such a correlation is discussed with reference to two species of caprellids, Caprella alaskana Mayer and Metacaprella anomala Mayer, and the benthic gastropod Lacuna marmorata Dall."""@en ; edm:aggregatedCHO "https://circle.library.ubc.ca/rest/handle/2429/21466?expand=metadata"@en ; skos:note "A QUALITATIVE AND QUANTITATIVE ASSESSMENT OF SEAWEED DECOMPOSITION IN THE STRAIT OF GEORGIA by BARRY DOUGLAS SM ITH B . S c . ( H o n o u r s ) , U n i v e r s i t y o f New B r u n s w i c k , 1974 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of Botany) We a c c e p t t h i s - t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d T H E U N I V E R S I T Y OF B R I T I S H C O L U M B I A J u n e , 1979 (c) B a r r y D o u g l a s S m i t h , 1979 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date ABSTRACT A p p r o p r i a t e s a m p l i n g a n d e x p e r i m e n t a l p r o g r a m s r e s u l t e d i n a q u a l i t a t i v e a n d q u a n t i t a t i v e a s s e s s m e n t o f s e a w e e d l i t t e r b i o m a s s e s , d e c o m -p o s i t i o n r a t e s a n d c o n c o m i t a n t c h a n g e s i n n i t r o g e n c o n t e n t ; d e t r i t u s b i o m a s s a n d d e c o m p o s i t i o n r a t e s ; a n d f a u n a l d i s t r i b u t i o n p a t t e r n s f o r t h e s i g n i f i c a n t s p e c i e s w i t h i n a s u c c e s s i o n a l s e a w e e d c o m m u n i t y i n t h e S t r a i t o f G e o r g i a , B r i t i s h C o l u m b i a , C a n a d a . A s i m u l a t i o n m o d e l i n c o r p o r a t i n g s u i t a b l e d a t a o b t a i n e d f r o m t h e s e s a m p l i n g a n d e x p e r i m e n t a l p r o g r a m s f a c i l i t a t e d p r e d i c t i o n o f d e t r i t u s f o r m a t i o n r a t e s , b i o m a s s , n i t r o g e n c o n t e n t a n d t h e s e a s o n a l a v a i l a b i l i t y o f d e t r i t u s a s a f o o d r e s o u r c e f o r f a u n a . S o l u b l e m a t t e r r e l e a s e r a t e s f r o m d e c o m p o s i n g s e a w e e d l i t t e r a n d i t s n i t r o g e n c o n t e n t w e r e a l s o d e t e r m i n e d . O f t h e ca 43 t a x a i d e n t i f i e d w i t h i n t h e s e a w e e d l i t t e r c o l l e c -t i o n s , F u c u s distichvs L . ( 4 1 % ) , Irldaea cordata ( T u r n e r ) B o r y ( 2 6 % ) , Nereocystis 1 lEtkeana ( M e r t e n s ) P o s t e l s a n d R u p r e c h t ( 2 7 % ) , a n d Laminaria (4%) (L. saccharina ( L . ) L a m o u r o u x a n d L. groenlandica R o s e n v i n g e ) a c c o u n t e d f o r m o r e t h a n 9 7 % o f t o t a l l i t t e r d e p o s i t i o n . T h e mean p e a k summer b i o m a s s o f a l l l i t t e r was ca 5 g 2 a s h - f r e e d r y w e i g h t (AFDW)/m w i t h t h i s f i g u r e a p p r o a c h i n g z e r o d u r i n g J a n u a r y a n d F e b r u a r y . L i t t e r d i s t r i b u t i o n was p a t c h y a n d t h e r e was s u f f i c i e n t e v i d e n c e t o c o n c l u d e t h a t m o s t l i t t e r wa s r e t a i n e d , a n d u n d e r w e n t d e c o m p o s i t i o n , i n t h e i m m e d i a t e v i c i n i t y o f i t s p l a c e o f d e p o s i t i o n . L i t t e r d e c o m p o s i t i o n e x p e r i m e n t s p e r f o r m e d o n t h e 10 m o s t s i g n i -f i c a n t c o n t r i b u t o r s t o s e a w e e d c o m m u n i t y s t r u c t u r e i n d i c a t e d t h a t d e c o m p o s i t i o n o f s e a w e e d l i t t e r o c c u r s r a p i d l y c o m p a r e d t o v a s c u l a r p l a n t l i t t e r . T h e t i m e r e q u i r e d f o r s e a w e e d l i t t e r t o d i s a p p e a r f r o m 2 rrrn m e s h l i t t e r b a g s r a n g e d f r o m s i x d a y s , f o r t h e l a m i n a o f Nereocystis lnetkeana, t o ca 70 d a y s , f o r F u c u s distichus . Some s i m i l a r i t y i n d e c o m p o s i t i o n r a t e s was o b s e r v e d a m o n g s t s p e c i e s displaying taxonomic and/or morphologic a f f in i t i e s . Assessment of nitrogen content of decomposing seaweed l i t t e r revealed that nine of the 10 species assayed lost nitrogen less rapidly than tota l l i t t e r biomass. As determined by assaying microbial consumption of particulate material, the time required for detritus (particle size < 1 mm, dry) to ful ly decompose was short. Of the 10 species tested, Iridaea cordata detritus decom-posed most rapidly at a rate of 5.7% per day while rates for Gigartina papillata (C. Agardh) J . Agardh, Laminaria groenlandica, Laminaria saccharina and Nereocys-tis luetkeana ranged from 2-4% per day. Data for the remaining species were less conclusive although a l l decomposed at rates less than one percent per day. Variation in specif ic decomposition rates was shown to be correlated with the structural composition of the detritus. Those species with a relat ively small percentage of crude fibre as a component of their particulate fraction decomposed more rapidly than those species with a higher percentage of crude f ibre. For the two most rapidly decomposing species, Iridaea cordata and Nereocystis luet-keana, a trend toward a more rapid decomposition rate as mean part ic le size decreased was evident. Natural detritus (particle size < 2 mm, wet) biomass accumulation 2 within the study site peaked at ca 1.4 g AFDW/m during the lat ter half of August 19 76. This value represents 1-5% of the quantity of detritus predicted to have been formed from seaweed l i t t e r alone and a lesser percentage of the total quan-t i ty of seaweed detritus formed. Exportation out of the seaweed zone is believed to be responsible for this discrepancy. The predicted rates of detritus forma-tion and soluble matter release from decomposing seaweed l i t t e r peaked at ca 0.6 2 and 0.5 g AFDW/m per day, respectively, in early September 1976 from a low near zero in February. In to ta l , ca 56% of l i t t e r biomass formed detritus, the re-mainder being released as soluble matter. The mean nitrogen contents of the detritus formed and the soluble matter released were 2.48 ± 0.03% and 1.36 ± 0.03 of t h e i r dry weights, r e s p e c t i v e l y . The annual contribution of seaweed l i t t e r biomass v i a d e t r i t u s and soluble matter to l o c a l coastal waters i s estimated to 2 be i n the range of 70-85 g C/m . Detritus formed from seaweed l i t t e r was determined to have a C:N r a t i o of 10-13:1, rendering i t s u i t a b l y n u t r i t i o u s f o r u t i l i z a t i o n by fauna as a food resource, however i t could not be shown conclusively that the coincidence, en masse, of s p e c i f i c fauna and maximum d e t r i t u s a v a i l a b i l i t y was a response to the a v a i l a b i l i t y of d e t r i t u s as a food resource. The p o s s i b i l i t y of such a c o r r e l a t i o n i s discussed with reference to two species of c a p r e l l i d s , Caprella alaskana Mayer and Metacaprella anomala Mayer, and the benthic gastropod Lacuna marmorata D a l l . i v TABLE OF CONTENTS ABSTRACT LIST OF TABLES v i i LIST OF FIGURES i x ACKNOWLEDGEMENTS '. x i INTRODUCTION 1 METHODS The Study Area 7 Sampling L i t t e r assessment 7 Detritus assessment 10 Faunal assessment 11 F i e l d Experiments L i t t e r decomposition experiments 12 L i t t e r senescence experiments 13 Laboratory Experiments Detritus decomposition Experiment 1 (microbial oxygen consumption) 15 Experiment 2 (microbial consumption of particulate material) 15 Nitrogen content of decomposing l i t t e r 17 St r u c t u r a l composition of species contributing to l i t t e r .... 17 Model Development and Data Analysis 19 RESULTS L i t t e r assessment 20 St r u c t u r a l composition of species con t r i b u t i n g to l i t t e r .... 40 L i t t e r decomposition experiments 42 L i t t e r senescence experiments 54 Nitrogen content of decomposing l i t t e r 54 Detritus decomposition Experiment 1 (microbial oxygen consumption) 57 Experiment 2 (microbial consumption of particulate material) 62 Detritus assessment 72 Faunal assessment 72 DISCUSSION L i t t e r assessment 80 L i t t e r decomposition experiments 82 Nitrogen content of decomposing l i t t e r 85 Detritus decomposition • 86 Detritus assessment 91 Faunal assessment 92 v SIMULATION MODEL OF LITTER AND DETRITUS PROCESSING Introduction 9 8 Model development 99 Results 1 0 5 Discussion I l l SUMMATION 117 LITERATURE CITED 119 APPENDICES I L i t t e r assessment data 12 7 II Faunal assessment data 144 III Detritus assessment data 153 IV Depth data 156 V L i t t e r decomposition experimental data 157 VT Detritus decomposition data (Experiment 1) 159 VTI Detritus decomposition data (Experiment 2) 160 VIII Simulation model computer program 161 v i LIST OF TABLES T a b l e 1: Mean b i o m a s s p e r m o f t h e m a j o r c o n t r i b u t o r s t o t h e l i t t e r p o o l w i t h i n S i t e 1 b a s e d o n t h e c o l l e c t i o n s o f 27 J u l y a n d 3 A u g u s t 1 9 7 6 . 21 T a b l e 2 : C o m p a r i s o n b e t w e e n t h e n u m b e r o f l i v i n g Nereocystis luet-keana p l a n t s w i t h i n a t r a n s e c t b e l t a n d t h e q u a n t i t y o f Nereocystis luetkeana l i t t e r c o l l e c t e d w i t h i n t h e same b e l t . 2 8 T a b l e 3: C o m p a r i s o n o f t h e t o t a l q u a n t i t y a n d s p e c i f i c c o m p o s i t i o n o f l i t t e r c o l l e c t e d w i t h i n t h e t r a n s e c t a t 95 m w i t h i n S i t e 1 o n 9 N o v e m b e r 1975 a n d t h e t o t a l q u a n t i t y a n d s p e c i f i c c o m -p o s i t i o n o f l i t t e r c o l l e c t e d w i t h i n t h e t r a n s e c t a t S i t e 2 o n 10 N o v e m b e r 1 9 7 5 (gr A F D W / t r a n s e c t ) . 31 T a b l e 4 : T h e p e r c e n t a g e s o f e a c h o f t h e s o l u b l e , m o d e r a t e l y r e s i s t a n t a n d c r u d e f i b r e c o m p o n e n t s o f t h e s i g n i f i c a n t s p e c i e s w i t h i n S i t e 1. 41 T a b l e 5 : N u m b e r o f d a y s r e q u i r e d f o r l i v i n g p o r t i o n s o f t h e m a j o r c o n t r i b u t o r s t o t h e l i t t e r p o o l w i t h i n S i t e 1 t o l e a v e a 1.0 cm m e s h l i t t e r b a g u n d e r s h a d e d a n d e x p o s e d c o n d i t i o n s , 55 T a b l e 6 : P e r c e n t a g e n i t r o g e n c o n t e n t o f t h e m a t e r i a l r e m a i n i n g w i t h -i n t h e l i t t e r b a g s a t t h e t e r m i n a t i o n o f t h e i r i n c u b a t i o n p e r i o d . 56 T a b l e 7: A n a l y s i s o f v a r i a n c e t a b l e f o r t h e r e s u l t s o f E x p e r i m e n t 1, d e m o n s t r a t i n g t h e e f f e c t s o f p a r t i c l e s i z e , d e t r i t a l s p e c i e s a n d l e n g t h o f i n c u b a t i o n p e r i o d o n t h e o x y g e n c o n s u m p t i o n b y m i c r o b e s u t i l i z i n g t h e d e t r i t u s a s a c a r b o n s o u r c e . 59 T a b l e 8: a) S u b s e t s d e l i m i t e d b y D u n c a n ' s New M u l t i p l e R a n g e T e s t . E a c h s u b s e t c o n t a i n s t h o s e d e t r i t a l s p e c i e s w h i c h show a s i g n i f i -c a n t (p < . 0 5 ) d e g r e e o f a f f i n i t y w i t h r e s p e c t t o t h e q u a n t i -t y o f o x y g e n c o n s u m e d b y m i c r o b e s d e c o m p o s i n g t h e d e t r i t u s , b ) T h e a v e r a g e p e r c e n t a g e s o l u b l e c o n t e n t o f t h e s u b s e t s i n T a b l e 8 a . 6 3 T a b l e 9 : A n a l y s i s o f v a r i a n c e t a b l e f o r t h e r e s u l t s o f E x p e r i m e n t 2 , d e m o n s t r a t i n g t h e e f f e c t s o f p a r t i c l e s i z e , d e t r i t a l s p e c i e s a n d l e n g t h o f i n c u b a t i o n p e r i o d o n t h e c o n s u m p t i o n o f p a r t i -c u l a t e m a t e r i a l b y m i c r o b e s u t i l i z i n g d e t r i t u s a s a c a r b o n s o u r c e . 65 T a b l e 1 0 : S u b s e t s d e l i m i t e d b y Newman - K e u l ' s R a n g e T e s t . E a c h s u b -s e t c o n t a i n s t h o s e d e t r i t a l s p e c i e s w h i c h show a s i g n i f i c a n t (p < . 0 5 ) d e g r e e o f a f f i n i t y w i t h r e s p e c t t o t h e q u a n t i t y o f p a r t i c u l a t e m a t e r i a l c o n s u m e d b y m i c r o b e s d e c o m p o s i n g t h e d e t r i t u s . 6 8 v i i Table l i b : Table 11a: The tota l number of each faunal species summed over the 28 July, 18 August and 12 September 1976 transect col lec-tions. The percentage that this number represents of the total number of occurrences over the entire sampling period is in parentheses. 74 The total dry weight of each faunal species summed over the 28 July, 18 August and 12 September 1976 transect collections. The percentage that this figure represents of the total dry weight of individuals collected over the entire sampling period is in parentheses. 75 Table 12: History of the occurrence (per m?) of two species of Cap-re l l idae , Caprella alaskana and Metacaprella anomala, with-in the summer faunal collections of Dr. R. E . Foreman (un-published) . 95 Table 13: Mean monthly temperatures (a) and the corresponding decom-position rate adjustment factor (b) for the period November 19 75 unt i l October 1976. 102 Table 14: Comparison of the percentage contributions by the major contributors to the l i t t e r pool within Site 1 as deter-mined by l i t t e r biomass alone and application of the de-composition rates of these species to l i t t e r biomass data. 10 7 v i i i LIST OF FIGURES Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Location of f i e ld study s i tes . 8 Spatial characteristics of l i t t e r biomass for the major contributors to the l i t t e r pool within Site 1 based on the collections of 27 July and 3 August 1976. 22 Distribution of Laminaria l i t t e r collected along the tran-sect at Site 2 on 10 November 1975 relative to depth below mean sea level . 29 Depth contours (zn below mean sea level) for Site 1. 32 Seasonal distribution of l i t t e r biomass for the major con-tributors to the l i t t e r pool within Site 1 based on col lec-tions along the 95 m transect location at 3-4 week intervals for the period 20 August 1975 unt i l 2 October 1976. 33 L i t t er decomposition curves (submodels) calculated from data obtained in the l i t t e r bag experiments. 4 3 Plot demonstrating an increase in the rat io of nitrogen: dry weight biomass of decomposing l i t t e r relative to unde-composed l i t t e r . 58 Cumulative oxygen consumption by microbes decomposing the 10 de tr i ta l species in Experiment 1. 61 Relationship between the percentage soluble contents of the 10 detr i ta l species (exclusive of Iridaea cordata) and the quantity of oxygen consumed by microbes decomposing the de tr i -tus after five days of incubation, as determined in Experiment 1. 64 Figure 10: Cumulative loss of particulate material from the 10 de tr i -t a l species decomposed in Experiment 2. 67 Figure 11: Cumulative loss of particulate material from Iridaea cor-data and Nereocystis luetkeana (stipe and lamina combined) detritus. For each species the results for the three de tr i -t a l part ic le sizes are presented. 70 Figure 12: Relationship between the maximum percentage loss of part icu-late material from the 10 detr i ta l species decomposed in Experiment 2 and the percentage of crude fibre in the p a r t i -culate material of each de tr i ta l species. 71 Figure 13: Contour representation of detritus biomass along the 95 m transect location within Site 1 for the period 28 May unt i l 7 October 1976. 73 Figure 14: Seasonal distribution histograms of the tota l number and dry weight (g) of Cancer oregonensis, Metacaprella anomala and Lacuna marmorata occurring within the seven transect col lec-tions from 25 May unt i l 7 October 1976. ix F i g u r e 1 5 : S e a s o n a l t r e n d i n t h e mean d r y w e i g h t (g) p e r i n d i v i d u a l o f Lacuna marmorata f o r t h e p e r i o d 25 May u n t i l 7 O c t o b e r 19 7 6 . 78 F i g u r e 1 6 : S p a t i a l d i s t r i b u t i o n a l o n g t h e 9 5 m t r a n s e c t l o c a t i o n w i t h -i n S i t e 1 o f Lacuna marmorata ( n u m b e r s a n d b i o m a s s ) a n d d e t r i -t u s b i o m a s s d e m o n s t r a t i n g a c o i n c i d e n c e i n t h e o c c u r r e n c e o f t h e i r max imum a b u n d a n c e s . 79 F i g u r e 1 7 : T e n t h d e g r e e p o l y n o m i c c u r v e f i t t e d t o t h e s e a s o n a l b i o m a s s d a t a o b t a i n e d f r o m l i t t e r c o l l e c t i o n s a l o n g t h e 9 5 m t r a n -s e c t l o c a t i o n w i t h i n S i t e 1 f r o m 20 A u g u s t 1975 u n t i l 2 O c t o b e r 1 9 7 6 . 101 F i g u r e 1 8 : F l o w c h a r t o u t l i n i n g t h e m a j o r o p e r a t i o n s i n v o l v e d i n t h e s i m u l a t i o n o f l i t t e r a n d d e t r i t u s p r o c e s s i n g w i t h i n S i t e 1. 106 F i g u r e 1 9 : S e a s o n a l p r o f i l e s f o r t h e f o r m a t i o n r a t e o f d e t r i t u s a n d t h e r e l e a s e r a t e o f s o l u b l e m a t t e r f r o m d e c o m p o s i n g s e a -w e e d l i t t e r b i o m a s s w i t h i n S i t e 1. 1 0 8 F i g u r e 2 0 : D e t r i t u s b i o m a s s p r e d i c t e d f o r t h e 9 5 m t r a n s e c t l o c a t i o n ' w i t h i n S i t e 1 b a s e d o n l i t t e r c o l l e c t i o n s f r o m t h a t l o c a -t i o n o n l y . 109 F i g u r e 2 1 : D e t r i t u s b i o m a s s p r e d i c t e d f o r S i t e 1 b a s e d o n l i t t e r c o l -l e c t i o n s f r o m a l l t r a n s e c t l o c a t i o n s w i t h i n S i t e 1. 1 1 0 x ACKNOWLEDGEMENTS Many p e r s o n s n e e d t o b e c r e d i t e d f o r t h e i r c o n t r i b u t i o n t o -w a r d t h e s u c c e s s f u l c o m p l e t i o n o f t h i s t h e s i s . I a p p r e c i a t e t h e s u p e r v i s i o n o f D r . R o n a l d E . F o r e m a n who p r o v i d e d r e s e a r c h f a c i l i t i e s a n d f i r s t h a n d e x -p e r i e n c e w i t h t h e s t u d y o f m a r i n e m a c r o p h y t e s y s t e m s . M r . T h o m a s N i c o l was v e r y h e l p f u l w i t h c o m p u t i n g p r o b l e m s , p a r t i c u l a r l y d u r i n g d e v e l o p m e n t o f t h e s i m u l a t i o n m o d e l . P e r h a p s t h e m o s t i m p o r t a n t c o n t r i b u t i o n t o t h i s w o r k was t h e e f f o r t o f my S C U B A p a r t n e r s . I am e s p e c i a l l y g r a t e f u l t o M r . E r i c L . C a b o t who was my d i v i n g b u d d y f o r m o s t o f t h e f i e l d s a m p l i n g e x e r c i s e s . T h e s t a f f s o f t h e W o o d w a r d B i o m e d i c a l L i b r a r y a n d t h e U . B . C . C o m p u t i n g C e n t r e p r o v i d e d e x c e l l e n t s e r v i c e . I t h a n k Ms . N a n c y A . S m i t h f o r h e r a s -s i s t a n c e w i t h t h e t y p i n g . x i - . 1 -INTRODUCTION P r i m a r y p r o d u c t i o n b y t e r r e s t r i a l a n d a q u a t i c p l a n t s i s t h e m a j o r s o u r c e o f f o o d e n e r g y f o r c o n s u m e r o r g a n i s m s . I n many c a s e s i t h a s b e e n shown t h a t h e t e r o t r o p h i c u t i l i z a t i o n o f p r i m a r y p r o d u c t i o n i n v o l v e s l a r g e l y a d e l a y e d c o n s u m p t i o n o f d e t r i t u s . D a r n e l l - ( 1 9 7 6 a ) d e f i n e s d e t r i t u s a s b e i n g \" a l l t y p e s o f b i o g e n i c m a t e r i a l i n v a r i o u s s t a g e s o f m i c r o b i a l d e c o m -p o s i t i o n w h i c h r e p r e s e n t p o t e n t i a l e n e r g y s o u r c e s f o r c o n s u m e r s p e c i e s \" . T h i s d e f i n i t i o n i s a p p r o p r i a t e , b u t i n c l u d e s m a t e r i a l t h a t t h i s s t u d y i n t e r p r e t s a s ' l i t t e r ' , d e f i n e d a s l a r g e r , l e s s f r a c t u r e d m a t e r i a l w h o s e b i o g e n i c o r i g i n c a n b e e a s i l y r e c o g n i z e d . T h e i m p o r t a n c e o f d e t r i t u s a s a f o o d s o u r c e f o r c o n s u m e r s h a s b e e n d e m o n s t r a t e d f o r s e v e r a l e c o s y s t e m t y p e s . I n a n e a s t c o a s t s a l t m a r s h s t u d i e d b y T e a l ( 1 9 6 2 ) o n l y 7% o f t h e n e t p r i m a r y p r o d u c t i o n was u t i l i z e d i n h e r b i v o r e r e s p i r a t i o n w h i l e 4 7 % was u t i l i z e d b y d e c o m p o s e r o r g a n i s m s a s s o c i a t e d w i t h d e t r i t u s d e r i v e d f r o m Spartina l i t t e r . S i m i l a r l y , d a t a f o r s e v e r a l t e r r e s t r i a l s y s t e m s i n d i c a t e t h a t 6 2 - 1 0 0 % o f n e t p r i m a r y p r o d u c t i o n e n t e r s t h e l i t t e r p o o l ( R o d i n a n d B a z i l e v i c h 1 9 6 7 ) w i t h f u t u r e p r o c e s s i n g f o r m i n g d e t r i t u s . A n e x c e p t i o n t o t h i s t r e n d i s f o u n d i n p l a n k t o n b a s e d s y s t e m s w h e r e Up t o 9 0 % o f t h e p r i m a r y p r o d u c t i o n may b e c o n s u m e d b y z o o p l a n k t o n g r a z e r s . I n s u c h c a s e s a l a r g e p o r t i o n o f t h e m a t e r i a l c o n s u m e d may p a s s t h r o u g h t h e g u t o f t h e z o o p l a n k t e r s w i t h o u t b e i n g a s s i m i l a t e d , a n d e n t e r t h e d e c o m p o s e r f o o d c h a i n . T h i s i s e s p e c i a l l y t r u e d u r i n g b l o o m c o n d i t i o n s ( C u s h i n g 1 9 6 4 ) . T o d a t e , s t u d i e s c o n c e r n i n g d e t r i t u s f o r m a t i o n a n d u t i l i z a t i o n i n c o a s t a l m a r i n e e c o s y s t e m s h a v e d e a l t m a i n l y w i t h a q u a t i c v a s c u l a r p l a n t s s u c h a s Zostera marina L . ( H a r r i s o n a n d Mann 1975 a & b , H a r r i s o n 1977, T e n o r e et a l .1977) , Thalassia testudinum B a n k s e x K o n i g ( F e n c h e l 1970, W o l f f 1976, K n a u e r a n d A y e r s 1977) , m a n g r o v e s ( H e a l d 1 9 6 9 ) a n d Spartina alterniflora L o i s e l a s w e l l a s o t h e r s a l t m a r s h p l a n t s (Odum a n d d e l a C r u z 1967, d e l a C r u z - 2 -and Gabriel 1974, Gosselink and Kirby 1974, de l a Cruz 19 75, Gallagher et a l . 1976, P i c k r a l and Odum 1976, Hanson and Weibe 1977). This work has been re-viewed by Fenchel (1972, 1973). The importance of associated microorganisms in t h i s process has been stressed by Johannes' (1965), Seki (1972), Fenchel and Harrison (1976), and Heinle et al. (1977). These studies have been l a r g e l y of a q u a l i t a t i v e nature with l i t t l e attempt to quantify plant d e t r i t a l contribu-tions to coastal energy flow. There are but a few studies concerning d e t r i t u s formation by attached marine macrophytes. Although estimates of primary production for the coastal seaweed zone i n d i c a t e that these areas are amongst the most highly pro-ductive i n the world (Clendenning 19 71, Mann 19 72a) very l i t t l e i s known of the fate of t h i s production. With the macrophytic fringe of the oceans having a p r o d u c t i v i t y that may be up to 40 times that of the ocean (Mann 19 72a) and a standing crop exceeding that of phytoplankton by 100 f o l d (Blinks 1955) , the p o s s i b i l i t y of i t s having a more than token contribution to the energy flow i n near-shore ecosystems of which some commercial f i s h species may be components becomes a r e a l i t y . Salmon (Oncorhynchus spp.) and h e r r i n g (Clupea harengus pallasii Valenciennes), currently the most valuble f i s h to the B r i t i s h Columbia economy ( S t a t i s t i c s Canada 1976) spend c r i t i c a l times of t h e i r l i v e s i n near-shore waters. Herring are dependent on seaweed as substrate for t h e i r spawn (Taylor 1964). Young salmon feed i n estuarine waters (Sibert et al.1977). Mann (1972b) estimates the yearly p r o d u c t i v i t y of the seaweed 2 zone i n St. Margaret's Bay at 1750 g C/m . This makes the seaweed zone the only primary marine resource with a confirmed yearly production greater than 1 kg C/m2. Possible fates of seaweed production are: 1. exudation as soluble matter - 3 -2. c o n s u m p t i o n b y h e r b i v o r e s 3. e r o s i o n a n d f r a g m e n t a t i o n f r o m l a m i n a t i p s 4 . r e l e a s e a s r e p r o d u c t i v e s t r u c t u r e s 5 . n a t u r a l m o r t a l i t y 1) T h e r e l e a s e o f s o l u b l e o r g a n i c c o m p o u n d s f r o m m a r i n e s e a -w e e d s wa s f i r s t d e m o n s t r a t e d b y C r a i g i e a n d M a c L a c h l a n ( 1 9 6 4 ) . L a t e r S i e b u r t h a n d J e n s e n ( 1 9 6 8 ) a n d S i e b u r t h ( 1 9 6 9 ) e s t a b l i s h e d t h a t e x u d a t i o n f r o m m a r i n e m a c r o p h y t e s i s c o m p a r a b l e t o t h a t o f p h y t o p l a n k t o n w h i c h F o g g ( 1 9 6 6 ) s t a t e s t o l i e b e t w e e n 5% a n d 35% o f t o t a l c a r b o n f i x e d w i t h i n a p o p u l a t i o n . F u c u s vesi-c u l o s i s L . was e s t i m a t e d t o l o s e 3 0 . 7 % o f i t s t o t a l c a r b o n b u d g e t a s e x u d a t e , a t an a v e r a g e r a t e o f 4 1 . 6 mg C / 1 0 0 g/hr. T h e s e r a t e s a r e c o m p a r a b l e t o t h o s e o b t a i n e d f o r o t h e r P h a e o p h y t a ; 4 4 . 6 , 3 7 . 8 a n d 3 1 . 3 f o r Laminaria d i g i t a t a ( L . ) L a m o u r o u x , Laminaria agardhii K j e l l m a n , a n d Ascophyllum nodosum ( L . ) L e J o l i s , r e s p e c t i v e l y . Chondrus crispus S t a c k h o u s e ( R h o d o p h y t a ) wa s s i g n i f i c a n t l y l o w e r a t 4 . 4 mg C / 1 0 0 g/hr. J o h n s t o n e t al. ( 1 9 7 7 ) d e t e r m i n e d t h a t u p t o 36% o f t o t a l c a r b o n f i x e d b y Laminaria saccharina (L.) L a m o u r o u x wa s r e l e a s e d e x t r a c e l l u l a r l y . B r y l i n s k y ( 1 9 7 7 ) e x a m i n e d t w o s p e c i e s e a c h o f R h o d o p h y t a , Acanthophora spicifera ( V a h l ) B o r g e s e n a n d Chondria dasyphylla (Woodward ) C . A g a r d h , a n d n o n - k e l p P h a e o -p h y t a , Dictyota dichotoma ( H u d s o n ) L a m o u r o u x a n d Sargassum natans ( L . ) M e y e n , a n d d e t e r m i n e d p h y s i o l o g i c a l r e l e a s e r a t e s o f l e s s t h a n 4 . 0 % o f t o t a l c a r b o n , d i s c l o s i n g an a p p a r e n t d i s p a r i t y i n r e l e a s e r a t e s b e t w e e n k e l p - l i k e s e a w e e d s a n d o t h e r s . 2) S e a u r c h i n s a r e g e n e r a l l y r e c o g n i z e d a s t h e m o s t s i g n i f i c a n t a n d p r o m i n e n t g r a z e r s i n t e m p e r a t e s e a w e e d s y s t e m s . M i l l e r a n d Mann ( 1 9 7 3 ) c o n c l u d e d t h a t t h e g r e e n s e a u r c h i n Strongylocentrotus droebachiensis M u l l e r , t h e a p p a r e n t m a j o r h e r b i v o r e i n e a s t e r n C a n a d a , c o n s u m e d o n l y 1 -7% o f s e a w e e d n e t p r o d u c t i o n d u r i n g t h e i r p e r i o d o f s t u d y . W i t h Strongylocentrotus droebachi-ensis a c c o u n t i n g f o r 80% o f t h e h e r b i v o r y i n ' t h i s a r e a ( M i l l e r e t al. 1 9 7 1 ) , - 4 -c o n s u m p t i o n o f s e a w e e d b i o m a s s a p p r o a c h e d 10% o f n e t p r o d u c t i o n . On o c c a s i o n l a r g e n u m b e r s o f s e a u r c h i n s h a v e s e v e r e l y p e r -t u r b a t e d t h e s e a w e e d z o n e ( L e i g h t o n e t al. 1 9 6 6 , P a i n e a n d V a d a s 1 9 6 9 , L e i g h t o n 1 9 7 1 , M i l l e r a n d Mann 1 9 7 3 , B r e e n a n d Mann 1 9 7 6 , F o r e m a n 1 9 7 7 , Mann 1 9 7 7 ) . T h i s h a s s o m e t i m e s r e s u l t e d i n t o t a l d e n u d a t i o n o f t h e a f f e c t e d a r e a b o t h b y d i r e c t g r a z i n g a n d b y d e t a c h i n g p l a n t s f r o m t h e s u b s t r a t e . D u r -i n g t h e s e p e r i o d s t h e d e t a c h e d p l a n t s c o m p l e m e n t d e a d p l a n t m a t e r i a l f r o m o t h e r s o u r c e s i n c o n t r i b u t i n g t o t h e p o o l o f m a r i n e p l a n t l i t t e r . 3) J o h n s t o n et al. ( 1 9 7 7 ) p r e s e n t q u a n t i t a t i v e i n f o r m a t i o n o n e r o s i o n f r o m l a m i n a t i p s . T h e y e s t i m a t e t h a t f o r Laminaria saccharina g r o w i n g i n a s h e l t e r e d l o c a t i o n n e a r t h e h e a d o f L o c h C r e r a n , S c o t l a n d , 4 0 - 5 0 % o f a n n u a l g r o s s p r o d u c t i o n i s l o s t b y d i s t a l d e c a y , r e s u l t i n g i n a c o n t r i b u -t i o n t o e i t h e r t h e d e t r i t a l o r l i t t e r p o o l s d e p e n d i n g o n w h e t h e r t h e l o s s i s v i a e r o s i o n o r f r a g m e n t a t i o n , r e s p e c t i v e l y . P l a n t s g r o w i n g i n m o r e e x p o s e d l o c a t i o n s m i g h t b e e x p e c t e d t o l o s e a h i g h e r p e r c e n t a g e o f t h e i r c a r b o n b u d g e t b y d i s t a l d e c a y . L a y c o c k ( 1 9 7 4 ) d e m o n s t r a t e d t h a t l a r g e p o p u l a t i o n s o f b a c t e r i a a s s o c i a t e d w i t h t h e l a m i n a t i p s o f Laminaria longicruris d e l a P y l a i e w e r e a t l e a s t p a r t i a l l y r e s p o n s i b l e f o r d i s t a l d e c a y . 4) A s r e l e a s e o f r e p r o d u c t i v e s t r u c t u r e s w o u l d b e i n d i s t i n -g u i s h a b l e f r o m t h e e x u d a t i o n o f s o l u b l e m a t t e r o r l o s s o f p a r t i c u l a t e b i o m a s s , t h e n e e d t o c o n s i d e r r e p r o d u c t i v e l o s s e s s e p a r a t e l y i s p r e c l u d e d . 5) N a t u r a l m o r t a l i t y c o n s t i t u t e s t h e f i n a l e x i t p a t h w a y . T h e d e a t h o f t h e s e a w e e d s i n i t i a t e s t h e i r e n t r y i n t o t h e p o o l o f m a r i n e p l a n t l i t t e r w h e r e t h e y u n d e r g o d e c o m p o s i t i o n c o n c o m i t a n t w i t h t h e f o r m a t i o n o f d e t r i t u s a n d d e t r i t u s p r o c e s s i n g . I n a n a t t e m p t t o p l a c e t h e v a r i o u s a s p e c t s o f t h e s e a w e e d ' b i o m a s s b u d g e t ' i n t o p e r s p e c t i v e , K h a i l o v a n d B u r l a k o v a ( 1 9 6 9 ) p r o p o s e d a - 5 -q u a n t i t a t i v e p a r t i t i o n i n g o f t h e t o t a l g r o s s p r o d u c t i o n o f s e a w e e d s i n t o s u i t a b l e c o m p a r t m e n t s . F r o m e x p e r i m e n t s w i t h f i v e s p e c i e s o f B a r e n t s S e a m a c -r o p h y t e s a n d 13 s p e c i e s o f B l a c k S e a m a c r o p h y t e s t h e y j u d g e l o s s d u e t o c o n -s u m p t i o n b y h e r b i v o r e s t o b e ca 1 1 . 2 % a n d c a l c u l a t e t h a t 3 7 . 3 % o f g r o s s p r o -d u c t i o n i s r e p r e s e n t e d b y l i v i n g b i o m a s s , t h e m a j o r s o u r c e o f d e t r i t u s , e i t h e r v i a e r o s i v e o r l i t t e r p a t h w a y s . W i t h t h e r e a l i z a t i o n t h a t t h e c o n t r i b u t i o n o f s e a w e e d p r o -d u c t i o n t o t h e d e t r i t a l p o o l may e x c e e d i t s c o n s u m p t i o n b y h e r b i v o r e s b y t h r e e t o f o u r f o l d i t d o e s n o t s e e m u n r e a s o n a b l e o r p r e m a t u r e t o s u g g e s t t h a t d e t r i t u s p r o c e s s i n g i s a n e s s e n t i a l a s p e c t o f e n e r g y f l o w i n n e a r s h o r e e c o s y s t e m s . T o c o n f i r m t h i s h y p o t h e s i s i t i s n e c e s s a r y t h a t t h e d y n a m i c s o f s e a w e e d l i t t e r d e c o m p o s i t i o n a l o n g w i t h s u b s e q u e n t d e t r i t u s f o r m a t i o n , p r o c e s s i n g , a n d u t i l i z a -t i o n b e i n v e s t i g a t e d . T h i s t h e s i s d e s c r i p t i v e l y a n d q u a n t i t a t i v e l y a s s e s s e s t h e c o n -t r i b u t i o n o f s e a w e e d l i t t e r b i o m a s s t o t h e d e t r i t a l p o o l . T h e o b j e c t i v e s o f t h e s t u d y w e r e : 1) t o d e t e r m i n e t h e t o t a l q u a n t i t y a n d s e a s o n a l a b u n d a n c e o f s e a w e e d l i t t e r a v a i l a b l e a s a s o u r c e o f d e t r i t u s i n a d e f i n e d a r e a 2) t o d e t e r m i n e t h e f o r m a t i o n r a t e , l o n g e v i t y a n d d e c o m p o s i t i o n r a t e o f d e t r i t u s f o r m e d f r o m s e l e c t e d s e a w e e d s p e c i e s 3) t o p r e d i c t t h e s e a s o n a l r a t e s o f d e t r i t u s f o r m a t i o n , i t s b i o m a s s a n d n i t r o g e n c o n t e n t f o r a d e f i n e d a r e a , a n d a s s e s s i t s i m p o r -t a n c e a s a f o o d r e s o u r c e f o r f a u n a 4) t o c h a r a c t e r i z e s e l e c t e d s e a w e e d s p e c i e s i n t e r m s o f t h e i r ' s o l u b l e ' , ' m o d e r a t e l y r e s i s -t a n t ' , a n d ' c r u d e f i b r e ' c o m p o n e n t s a n d c o r -r e l a t e d i f f e r e n c e s i n t h e r e l a t i v e q u a n t i t i e s o f t h e s e c o m p o n e n t s w i t h o b s e r v e d d e c o m p o s i -t i o n r a t e s f o r l i t t e r a n d d e t r i t u s . - 6 -These o b j e c t i v e s were r e a l i z e d by conducting s p e c i f i c samp-l i n g and experimental programs and by execution of a s i m u l a t i o n model of l i t t e r and d e t r i t u s p r o c e s s i n g based on data acquired from these programs. - t -METHODS T H E STUDY AREA A l l f i e l d w o r k was c a r r i e d o u t i n t h e s h a l l o w s u b l i t t o r a l z o n e a d j a c e n t t o t h e s o u t h e a s t e r n s h o r e o f B a t h I s l a n d , B r i t i s h C o l u m b i a , t h e e a s t -e r n m o s t o f a c l u s t e r o f s m a l l i s l a n d s k n o w n a s T h e F l a t T o p s . T h e s e i s l a n d s a r e ca 32 km w e s t o f t h e m o u t h o f t h e F r a s e r R i v e r , a n d h u g t h e s o u t h e a s t e r n e x t e n s i o n o f G a b r i o l a I s l a n d , t h e n o r t h e r n m o s t o f a g r o u p o f i s l a n d s c a l l e d T h e G u l f I s l a n d s ( F i g u r e 1 ) . B a t h I s l a n d i s 3.2 h e c t a r e s i n a r e a , i t s m a i n g e o l o g i c a l c o m p o n e n t b e i n g s a n d s t o n e c o m p l e m e n t e d w i t h m i n o r a m o u n t s o f s h a l e a n d c o n g l o m e r a t e ( M u l l e r 1 9 7 1 ) . T h e m a i n r e s e a r c h a r e a i s a g e n t l y s l o p i n g o n e h e c t a r e p l o t w e l l e x p o s e d t o t h e s o u t h e a s t . T h e p l o t c a n b e a p p r o p r i a t e l y d e s -c r i b e d a s a s u c c e s s i o n a l k e l p b e d d u e p a r t i c u l a r l y t o t h e e x t e n s i v e s t a n d o f Nereocystis luetkeana ( M e r t e n s ) P o s t e l s a n d R u p r e c h t w h i c h d o e s w e l l t h e r e ( F o r e m a n . 1 9 7 7 ) . T h i s o n e h e c t a r e p l o t w i l l b e k n o w n a s S i t e 1. A s e c o n d l o c a -t i o n , n e a r S i t e 1, w i l l b e r e f e r e n c e d a s S i t e 2 . A l l l a b o r a t o r y w o r k w a s p e r f o r m e d i n t h e D e p a r t m e n t o f B o t a n y a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a . S A M P L I N G T h r e e s a m p l i n g p r o g r a m s w e r e i m p l e m e n t e d : 1) t o d e t e r m i n e t h e s e a s o n a l a n d s p a t i a l d i s t r i b u t i o n o f s e a w e e d l i t t e r b i o m a s s w i t h i n S i t e 1 2) t o d e t e r m i n e t h e s e a s o n a l d i s t r i b u t i o n o f d e t r i t u s b i o m a s s w i t h i n S i t e 1 3) t o d e t e r m i n e t h e s e a s o n a l a n d s p a t i a l d i s t r i b u t i o n o f i n v e r t e b r a t e f a u n a w i t h i n S i t e 1. L i t t e r A s s e s s m e n t : T h e m a i n , p e r m a n e n t l y m a r k e d t r a n s e c t l o c a t i o n i n t e r s e c t e d t h e s h o r e a t 9 5 m a l o n g t h e 1 0 0 m s h o r e f r o n t f o r m i n g t h e b a s e o f S i t e 1. A t t i m e s - 8 -F i g u r e 1. L o c a t i o n s o f f i e l d s t u d y s i t e s . a) F i a t T o p I s l a n d s i n r e l a t i o n t o t h e l o w e r m a i n l a n d o f B r i t i s h C o l u m b i a . b ) S i t e 1 a n d S i t e 2 i n r e l a t i o n t o t h e F l a t T o p I s l a n d s . o f s a m p l i n g a l i n e 100 m i n l e n g t h was e x t e n d e d f r o m t h e h i g h i n t e r t i d a l z o n e ( u p p e r l i m i t o f b a r n a c l e s ) t o a p o i n t b e y o n d t h e z o n e o f m o s t s e a w e e d c o v e r . No s i g n i f i c a n t a c c u m u l a t i o n s o f l i t t e r w e r e o b s e r v e d o u t s i d e o f t h e z o n e s a m p l e d . Two s c u b a d i v e r s t h e n p r o c e e d e d t o c o l l e c t a l l s e a w e e d l i t t e r t h a t l a y w i t h i n a m e t r e o n e i t h e r s i d e o f t h e t r a n s e c t l i n e . T h e t r a n s e c t wa s s e g m e n t e d i n t o t e n 20 m2 q u a d r a t s w i t h t h e c o l l e c t i o n s f r o m e a c h b e i n g p l a c e d i n a n a p p r o p r i a t e l y l a b e l l e d b a g . On o c c a s i o n , w h e n t h e q u a n t i t y o f l i t t e r w i t h i n a s t a n d a r d 20 m2 q u a d r a t was m o r e t h a n c o u l d b e e a s i l y c o l l e c t e d , t h e q u a d r a t s w e r e s u b s a m p l e d i n a r e p r e s e n t a t i v e f a s h i o n . S a m p l i n g a t t h i s s i t e w a s c a r r i e d o u t a t c a 3 - 4 w e e k i n t e r v a l s f r o m A u g u s t 1975 u n t i l O c t o b e r 1 9 7 6 . T h e s e d a t a w e r e u s e d t o d e t e r m i n e t h e s e a s o n a l i t y o f t h e b i o m a s s o f s e a w e e d l i t -t e r . On 3 A u g u s t 1976 s i m i l a r t r a n s e c t s w e r e s a m p l e d f r o m 5 , 35 a n d 65: m a l o n g t h e b a s e i n o r d e r t o d e t e r m i n e t h e s p a t i a l d i s t r i b u t i o n o f l i t t e r w i t h i n S i t e 1. On o n e o c c a s i o n (10 N o v e m b e r 1 9 7 5 ) a s i n g l e t r a n s e c t was c o l l e c t e d a t S i t e 2 , ca 2 0 0 m away a n d l e s s e x p o s e d t h a n S i t e 1, a l l o w i n g a c o m p a r i s o n o f t h e t w o a r e a s t o b e m a d e . When c o l l e c t i o n s w e r e made a s e a w e e d was c l a s s i f i e d a s l i t t e r i f i t c o u l d b e d e s c r i b e d b y o n e o f t h e f o l l o w i n g p h r a s e s : 1) d e t a c h e d a n d h a v i n g s e t t l e d t o t h e b o t t o m , g e n e r a l l y s n a g g e d a m o n g s t r o c k s o r d e b r i s 2 ) a t t a c h e d b u t a p p a r e n t l y d e a d 3) i n t h e c a s e o f Nereocystis luetkeana s t i p e s , a t t a c h e d o r u n a t t a c h e d a n d l y i n g p r o n e , t h e p n e u m a t o c y s t h a v i n g f l o o d e d . F o r e a c h s i t e a t r a n s e c t d e p t h p r o f i l e wa s r e c o r d e d a n d f o r e a c h q u a d r a t t h e s u b s t r a t e wa s d e s c r i b e d . O n 3 A u g u s t 1 9 7 6 t h e n u m b e r o f l i v i n g Nereocystis luetkeana p l a n t s i n e a c h q u a d r a t o f t h e f o u r t r a n s e c t s l o c a t e d - 10 -w i t h i n S i t e 1 was e n u m e r a t e d . A l l c o l l e c t i o n s w e r e t r a n s p o r t e d t o t h e l a b o r a t o r y w h e r e t h e y w e r e s o r t e d a n d i d e n t i f i e d a s p r e c i s e l y a s p o s s i b l e a c c o r d i n g t o W i d d o w s o n ( 1 9 7 3 , 1 9 7 4 ) a n d L i n d s t r o m et al. ( 1 9 7 4 ) . Laminaria saccharina a n d Laminaria groenlandica w e r e n o t a l w a y s d i s t i n g u i s h a b l e a n d s o w e r e o f t e n r e c o r d e d o n l y a s Laminaria. Nereocystis luetkeana was s u b s c r i p t e d a s e i t h e r s t i p e o r l a m i n a l i t t e r . F o r e a c h t a x o n i n e v e r y q u a d r a t t h e w e t w e i g h t , d r y w e i g h t (24 h o u r s a t 100 C) a n d a s h - f r e e d r y w e i g h t (12 h o u r s a t 425 C) w e r e r e c o r d e d . D e t r i t u s A s s e s s m e n t : F r o m May 1 9 7 6 u n t i l O c t o b e r 19 76 a t ca t h r e e w e e k i n t e r v a l s t h e b i o m a s s o f d e t r i t u s w i t h i n S i t e 1 was d e t e r m i n e d . N i n e p e r m a n e n t q u a -d r a t l o c a t i o n s w e r e f i x e d , r o u g h l y c o r r e s p o n d i n g t o 2 0 , 3 0 . . . 100 m a l o n g a t r a n s e c t p e r p e n d i c u l a r t o t h e s h o r e a t 95 m a l o n g t h e b a s e o f S i t e 1. T h e a c t u a l p o s i t i o n i n g o f t h e q u a d r a t was d e t e r m i n e d b y t h e a v a i l a b i l i t y o f r e l a -2 t i v e l y f l a t , c o n t i n u o u s s u b s t r a t e e x t e n s i v e e n o u g h t o a c c o m m o d a t e a 0 . 0 6 2 5 m q u a d r a t . E a c h o f t h e s e q u a d r a t l o c a t i o n s was i n i t i a l l y s c r u b b e d c l e a n w i t h a w i r e b r u s h , a n d a g a i n f o l l o w i n g e a c h s a m p l i n g p e r i o d . D e t r i t u s was c o l l e c t e d u s i n g a h a n d pump d e s i g n e d f o r b a i l i n g s m a l l b o a t s . I t was m o d i f i e d b y s e c u r i n g an 11 lb p l a s t i c b a g t o t h e e x h a u s t p o r t . By o p e r a t i n g t h e pump i n a n o r m a l f a s h i o n , p a s s i n g t h e i n t a k e p o r t o v e r t h e q u a d r a t , a l l l o o s e m a t e r i a l was s u c k e d i n t o t h e b a g . C o n t r o l s a m p l e s w e r e c o l l e c t e d b y d r a w i n g s e a w a t e r i n t o t h e b a g w h i l e t h e i n t a k e p o r t was w e l l a b o v e t h e s u b s t r a t e . U p o n r e t u r n i n g t o s h o r e , t h e c o n t e n t s o f e a c h b a g w e r e s c r e e n e d t h r o u g h 2 mm m e s h h o u s e h o l d s c r e e n i n g t o r e m o v e l a r g e p a r t i c l e s , t h e n p a s s e d t h r o u g h p r e w e i g h e d Wha tman G F / C ^ g l a s s f i b r e f i l t e r s ( 2 - 3 pm p o r e s i z e ) u s i n g a M i l l i p o r e ® f i l t e r a p p a r a t u s . T h e r e s i d u u m was d r y w e i g h e d (12 h o u r s a t 100 C) a n d a s h - f r e e d r y w e i g h e d (4 h o u r s a t 42 5 C ) . - 11 -Faunal Assessment: From May u n t i l October 1976 at approximately three week i n t e r v a l s , faunal c o l l e c t i o n s were made within S i t e 1. The sampling procedure involved the 2 c o l l e c t i o n of 0.0625 m quadrats at 30,40...100 m along the permanently located transect at 95 m along the base of Si t e 1. The organisms were c o l l e c t e d using an underwater a i r l i f t (Foreman 1977) and trapped i n a c o l l e c t i n g bag made from panty hose. Samples were transported to the laboratory while fresh where they were sorted, i d e n t i f i e d according to Kozloff (1974), counted, and wet and dry (24 hours at 100 C) weighed. FIELD EXPERIMENTS Two f i e l d experiments were performed during July and August 19 76. The f i r s t was designed to obtain in situ rates of decomposition for k i l l e d sea-weeds, the second to estimate senescence times for those species contributing s i g n i f i c a n t l y to the l i t t e r within S i t e 1. L i t t e r Decomposition Experiments: Seaweeds were chosen for the l i t t e r decomposition experiments on the basis of t h e i r contributions to the standing crop of l i v i n g seaweed biomass within S i t e 1 ( c o r a l l i n e algae excluded). As S i t e 1 overlaps almost e n t i r e l y the one hectare p l o t Foreman (1977) defined f or h i s biomass studies i n 1972, his data were used as a c r i t e r i o n f o r ranking the seaweeds. They are, i n de-cending order of t h e i r 'importance values' (Foreman unpub.) : Iridaea cordata (Turner) Bory Constantinea subulifera S e t c h e l l Laminaria (L. saccharina, L. groenlandica Rosenvinge) Fucus distichus L. Odonthalia floccosa (Esper) Falkenberg Rhodomela larix (Turner) C . Agardh Plocamium coccineum var. pacificum (Kylin) Dawson Gigartina papillata ( C . Agardh) J . Agardh Nereocystis luetkeana The above species accounted f o r j u s t over 80% of seaweed standing crop biomass, exclusive of c o r a l l i n e algae, as t h e i r contribution to l i t t e r would be minor. In the l i t t e r bag experiments Laminaria saccharina and Laminaria groenlandica were considered separately as were the stipe and lamina sections of Nereocystis luetkeana, bringing the t o t a l count of i n d i v i d u a l experiments to 11. The appropriate seaweeds were c o l l e c t e d l i v e , cut int o portions s u i t a b l e for the l i t t e r bags, wet weighed and k i l l e d by p l a c i n g them i n a seawater bath at ca 50 C f o r 10-15 minutes. A separate portion of each seaweed, a co n t r o l , was wet and dry weighed without undergoing decomposition. - 13 -The remaining portions were placed i n 15 cm x 15 cm l i t t e r bags made from p l a s t i c household screening (2 mm mesh). Three l i t t e r bags were pre-pared f o r each seaweed tested with the exception of Fucus distichus for which four bags were prepared. Each l i t t e r bag was placed i n a larger (1 cm mesh) bag and suspended from the mesh (5 cm) forming the roof of an aluminum framed cage (2.0 m x 1.5 m x 0.5 m) constructed as a precaution to reduce the i n t e r -ference of large animals which might graze upon or otherwise i n t e r a c t with the decomposing seaweed. The cage was placed on the bottom at ca 6 m below mean sea l e v e l i n a r e l a t i v e l y sheltered embayment (Site 2). From preliminary experiments i t was judged that the breakdown of the seaweeds would be rapid, therefore the l i t t e r bags were r e t r i e v e d based on v i s u a l observations of the progression of the decomposition process rather than according to a predeter-mined schedule. The material which remained i n the l i t t e r bags at the termina-t i o n of the incubation period was removed, dry weighed and saved f o r nitrogen determination. Following completion of a l l incubations the dry weights were normalized with respect to the control and expressed as a percentage of the o r i g i n a l dry weight of the material placed i n the l i t t e r bags. L i t t e r Senescence Experiments: A second experiment was performed to determine the time required for the seaweeds which appeared to be the more s i g n i f i c a n t contributors to the l i t t e r within S i t e 1 to die once having entered the l i t t e r pool. Death i s con-sidered to be the time when t i s s u e breakdown by a u t o l y t i c or saprophytic means begins. The species chosen were Nereocystis luetkeana (stipe and lamina sec-tions) , Laminaria saccharina, Laminaria groenlandica and Iridaea cordata. Live portions of each of these seaweeds were placed i n 1 cm mesh l i t t e r bags (not necess a r i l y a s i n g l e species per bag) and secured to the substrate within S i t e 1 at ca 3-5 m depth. Some bags were l e f t exposed while others were placed between rocks or within shaded crevices. These bags were observed over f i v e weeks, - 14 -noting changes in the condition of their contents. The time required for a seaweed to die was estimated by as-suming that once dead, the number of days required for seaweed biomass to leave a 1 cm mesh l i t t e r bag was about one half the number of days required for i t to leave a 2 mm mesh bag. The lat ter data are known from the l i t t e r decomposition experiments. By subtracting the lat ter number of days from the number of days required for the unkilled seaweed to disappear from the 1 cm mesh bags, the length of time required for fresh l i t t e r to die was e s t i -mated. - 15 -LABORATORY EXPERIMENTS Detritus Decomposition: Detritus was created from seaweed species which had been c o l l e c -® ted l i v e , washed, cleaned, dried, crushed by hand and processed i n a Wiley m i l l . Three s i z e f r a c t i o n s of detr i t u s (1000-420 ym, 250-149 ym and 44-0 pm) q were then c o l l e c t e d by shaking the crushed seaweed through a ser i e s of Endicott sieves. The r a t i o of surface area exposed to microbial attack for the three size categories w i l l be, from the l a r g e s t to the smallest, ca 1:4:32, when a l l are present i n equal mass. By s e t t i n g the upper l i m i t of d e t r i t a l p a r t i c l e s i z e at 1.0 mm (dry) the d e t r i t u s decomposition experiments can be considered a continuation of the l i t t e r decomposition experiments which assessed the forma-ti o n rate of d e t r i t a l p a r t i c l e s < 2.0 mm (wet). The det r i t u s was derived from the same 10 species used i n the l i t t e r bag experiments, the st i p e and lamina sections of Nereocystis luetkeana being considered separately. Two experiments were performed to assess the microbial u t i l i z a -t i o n of t h i s d e t r i t u s , one based on oxygen consumption, the second based on microbial consumption of p a r t i c u l a t e material. Both experiments were structured around a 3 x 3 x 11 f a c t o r i a l design (Hicks 19 73) incorporating three p a r t i c l e s i z e s , three incubation periods, and 11 experimental sets (10 species). Experiment 1 (Microbial Oxygen Consumption): Assessment of oxygen consumption required 12 acid-washed, 300 mL Biochemical Oxygen Demand (BOD) b o t t l e s for each incubation set. Oxygen content was assayed by the Winkler method (Str i c k l a n d and Parsons 1972) . Into three of each subset of four b o t t l e s , a 1.0 mg plug of d e t r i t u s of a si n g l e s i z e class was placed; the fourth remained a c o n t r o l . This procedure was repeated for the other two si z e classes. An inoculum of 1.0 mL of fresh seawater was pipett e d i n t o each BOD b o t t l e as a source of microbes, following which a l l b o t t l e s were - i n -f i l l e d with f i l t e r e d (0.45 ym) and aerated seawater. The b o t t l e s were capped and incubated i n a 15 C water bath and agitated d a i l y . Bottles represen-t i n g each p a r t i c l e s i z e , and a control (four i n tot a l ) were removed a f t e r each of 5, 10, and 20 days of incubation. They were immediately f i x e d with the appropriate reagents. Twenty days was s u f f i c i e n t time to allow a s i g n i f i c a n t drop i n the oxygen content of the bo t t l e s while avoiding depletion. This procedure was repeated for a l l 11 sets. Experiment 2 (Microbial Consumption of Particulate Material) .-Each incubation set for the experiments to assess loss of p a r t i -culate matter required eighteen 250 mL Erlenmyer flasks (six flasks per si z e class) as culture vessels. A 0.1 g plug of de t r i t u s representing a si n g l e s i z e class was added to each f l a s k . These 18 flasks were divided i n t o two equal sets. To one set, the c o n t r o l , 100 mL of 0.45 pm f i l t e r e d , s t e r i l e seawater containing KCN at a concentration of 0.1% (Harrison and Mann 1975b) was added. The second set received 100 mL of the s t e r i l e seawater enhanced with 0.15 g/L of NaNO^ (Gosselink and Kirby 1974) and was inoculated with 1.0 mL of fresh seawater. Each experimental fla s k was thus paired with a control f l a s k . A l l flasks were incubated at 15 C and agitated r e g u l a r l y . That s t e r i l i t y p r e v a i l e d i n the con-t r o l flasks was confirmed by the c l a r i t y of the control f l a s k s when compared to the experimental f l a s k s . At 10, 20, and 30 day i n t e r v a l s an experimental f l a s k and a con-t r o l f l a s k of each p a r t i c l e s i z e ( s i x i n tot a l ) were ret r i e v e d . The contents of ® each fla s k were f i l t e r e d through preweighed Whatman GF/C glass f i b r e f i l t e r s . The f i l t e r s were dried (4 hours at 100 C) and weighed. The loss of p a r t i c u l a t e ma-t e r i a l f o r any treatment group was determined by subtracting the residue weight for each experimental f l a s k from that of the control f l a s k . Nitrogen Content of Decomposing L i t t e r : The t o t a l nitrogen content of the seaweed material which re-mained i n the l i t t e r bags at the time they were r e t r i e v e d was determined using a macro-Kjeldahl method (Skoog and West 1969). The quantity of nitrogen obtained i n each assay was expressed as a percentage of the t o t a l dry weight of the mater-i a l assayed. S t r u c t u r a l Composition of Species Contributing to L i t t e r : For a l l 10 seaweed species and the s t i p e and lamina sections of Nereocystis luetkeana the contribution by each of three b a s i c s t r u c t u r a l com-ponents to l i v i n g seaweed biomass was determined on a dry weight bas i s . These components w i l l be referred to as the 'soluble', 'moderately r e s i s t a n t ' and 'crude f i b r e ' components. For experimental purposes material which passed through a f i l t e r of 2-3 pm pore s i z e was c l a s s i f i e d as 'soluble'- 'Moderately r e s i s t a n t ' refers to material which i s p a r t i c u l a t e and e a s i l y metabolized by microbes, being com-posed l a r g e l y of low molecular weight and non-structural polymeric compounds within the c e l l matrix. 'Crude f i b r e ' consists mainly of c e l l u l o s i c sugar poly-mers that are somewhat r e s i s t a n t to the attack of microbes. These polymers are generally responsible f o r the s t r u c t u r a l i n t e g r i t y of c e l l walls (Steward 1974). Both the soluble and crude f i b r e components were determined ex-p l i c i t l y . The quantity of soluble matter was determined i n Experiment 2 of the detritus decomposition experiments. The weight of the residuum obtained from f i l t e r i n g (2-3 ym pore size) the contents of the co n t r o l flasks at the end of each incubation period was subtracted from the i n i t i a l weight (0.1 g) of the material i n the f l a s k s , t h i s being the quantity of material passed through the f i l t e r , i . e . the soluble content. Accepted values for soluble content were ob-tained by averaging the r e s u l t s of the 10 and 20 day incubation periods since - 18 -by day 30 there were indications that some of the control flasks were no longer s ter i l e . An analysis was performed using the method described by Strickland and Parsons (1972) to determine the percentage of crude fibre present in seaweed biomass. The dry weight of the crude fibre fraction was determined following extraction of the alkal i /acid-soluble components of 30 mg samples of ground seaweed (0-44 urn part ic le s ize) . Crude fibre carbohydrate content (expressed as an equivalent amount of glucose) was determined spectrophotometrically. Sample sizes were 1.0 mg. - 19 -MODEL DEVELOPMENT AND DATA ANALYSIS Much of the data required from the previously described sam-p l i n g and experimental programs were s u i t a b l e f o r incorporation i n t o a mathe-matical model created to simulate the transport of decomposing seaweed biomass through d e t r i t a l pathways. Most of the data were acquired with t h i s end i n mind. The model also incorporated environmental data measured during 1975 and 1976 as a part of an ongoing program by Foreman (unpublished) to describe the meteorological and oceanographic conditions of the area. The model was written i n FORTRAN G and debugged and executed by the IBM 370 computer at the University of B r i t i s h Columbia Computing Centre. In addition, numerous support programs and subroutines were used i n the analysis of experiments and presentation of r e s u l t s . -3.0-RESULTS Lit ter Assessment: Five species (four genera) of seaweeds were responsible for more than 97% of the plant l i t t e r collected over the 14 month sampling period from 20 August 1975 unt i l 2 October 1976. These species were Fucus distichus, Iridaea cordata, Nereocystis luetkeana, Laminaria saccharina and Laminaria groenlandica. In a l l , about 43 taxa were recognized within the l i t t e r col lec-tions. Table 1 summarizes the distribution of l i t t e r biomass collected from the transects at 5, 35 and 65 m within Site 1 on 3 August and at 95 m on 2 7 July 1976. These transects w i l l be referred to col lect ively as the midsummer l i t t e r collections. Figure 2 (a-e) presents spatial representations of the d i s tr ibu-tion of l i t t e r at midsummer of 1976, near the time of maximum l i t t e r accumula-t ion. The area defined by the abcissa and ordinate represents Site 1 as though i t were being observed from above. Note that the l i t t e r derived from Fucus distichus and Iridaea cordata, whose normal habitats are the in ter t ida l and upper subtidal zones, respectively (Lindstrom 1973), is retained almost exclu-sively within the shallow subtidal zone. Nereocystis luetkeana and Laminaria l i t t e r is retained in deeper water, in the zone where these plants grow ^ abun-dantly. Table 2 demonstrates a positive correlation between the number of l i v ing Nereocystis luetkeana plants observed during each of the midsummer co l -lections and the quantity of Nereocystis luetkeana l i t t e r within these same collections, indicating that l i t t e r tends to be retained where i t was deposited. From Figure 3 i t can be seen that Laminaria l i t t e r at Site 2 was collected almost entirely within the outer extent of the transect, in a depth range of 4-5 m below MSL. This range is comparible to the kelp community zone delimited by Lindstrom (1973). Visual examination of the area confirmed a large standing crop biomass of Laminaria in the v ic in i ty of Site 2 and within this depth range. Table 1. Mean biomass per m of the major contributors to the l i t t e r pool within S i t e 1 based on the co l l e c t i o n s of 27 July and 3 August 1976 • Species Wet weight (%1 Dry weight (%1 Ash-free dry weig Fucus distichus 27.3 (65.8) 5.40 (70.3) 3.96 (72.0) Iridaea cordata 4.6 (11.1) 1.20 (15.6) 0.83 (15.0) Nereocystis luetkeana (stipe) 1.2 ( 2.9) 0.16 ( 2.1) 0.11 ( 2.0) Nereocystis luetkeana (lamina) 6.3 (15.2) 0.62 ( 8.1) 0.41 ( 7.5) Laminaria 0.88 (2.1) 0.13 ( 1.7) 0.09 ( 1.6) A l l other species 1.18 ( 2.8) 0.17 ( 2.2) 0.11 ( 2.0) TOTAL 41.46 7.68 5.51 - 22 -Figure 2. S p a t i a l c h a r a c t e r i s t i c s of l i t t e r biomass for the major contributors to the l i t t e r pool within S i t e 1 based on the co l l e c t i o n s of 27 July and 3 August 1976. Contour i n t e r v a l s are i n g ash-free dry weight per 10 IT?. S o l i d c i r c l e s i n d i c a t e pockets of l i t t e r . Contour i n t e r v a l a) Fucus distichus as l a b e l l e d b) Iridaea cordata as l a b e l l e d c) Nereocystis luetkeana (stipe) 1.0 d) Nereocystis luetkeana (lamina) 4.0 e) Laminaria as l a b e l l e d - 23 -a) Fucus distichus o a 143 68 M 56 M 1261 1 1 1 1 1 0.0 20.0 40.0 60.0 80.0 100.0 DISTRNCE ALONG SHORE M) - 24 -b) Iridaea cordata a LU (Da C C S \" 1 cr: l— CD —I • , LU CJ -z. c r i— co°. • — i o _ | 16 51 227 1 1 1 I 1 0.0 20.0 40.0 60.0 80.0 100.0 DISTANCE ALONG SHORE (M) - -c) Nereocystis luetkeana (stipe) - 26 -e) Laminaria - 28 -Table 2. Comparison between the number of l i v i n g Nereocystis luetkeana plants within a transect b e l t and the quantity of Nereocystis luetkeana l i t t e r c o l l e c t e d within the same b e l t . Transects at 5, 35, 65 and 95 m along the base of Si t e 1 were c o l l e c t e d e i t h e r on 27 July or 3 August 1976. The transect at S i t e 2 was c o l l e c t e d on 10 November 1975. Number of l i v i n g Nereocystis luetkeana (per transect) Site 1: 05 14 35 7 65 9 95 38 Si t e 2: 0 Quantity of Nereocystis luetkeana l i t t e r c o l l e c t e d (g AFDW/transect) Stipes Lamina To t a l 4.21 32.04 36.25 6.18 27.47 33.65 4.55 26.17 30.72 27.90 76.57 104.47 2.71 4.09 6.80 Figure 3. D i s t r i b u t i o n of Laminaria l i t t e r c o l l e c t e d along the transect at S i t e 2 on 10 November 1975 r e l a t i v e to depth below mean sea l e v e l . - 30 -Table 3 indicates that at both Sites I and 2 more than 90% of the l i t t e r c o l l e c -ted was composed of the seaweeds most c h a r a c t e r i s t i c of each area, Nereocystis luetkeana and Laminaria/Agarum f o r Si t e s 1 and 2, re s p e c t i v e l y . The lack of a s i g n i f i c a n t Nereocystis luetkeana contribution to the l i t t e r at Si t e 2 supports the i n t e r p r e t a t i o n that l i t t e r i s not transported long distances away from i t s place of deposition. The nearest l i v i n g Nereocystis luetkeana plant to S i t e 2 was no clo s e r than 100 m. The large accumulation of Laminaria l i t t e r at S i t e 2 may be due to i t s sheltered l o c a t i o n , thereby rendering the area p a r t i c u l a r l y s u i t a b l e f o r retention of l i t t e r deposited within the immediate v i c i n i t y . Within S i t e 1 there was a s i m i l a r tendency f o r l i t t e r t o be re-tained i n shelters or pockets formed by the substrate. A l l large deposits of l i t t e r were found i n depressions or where the slope of the substrate was more gradual than usual. This can be confirmed by r e f e r r i n g to the depth contours for S i t e 1 (Figure 4). Comparison of the regions of l i t t e r retention (Figure 2) to the contour l i n e s demonstrates that the greatest accumulations of l i t t e r are where recognizable depressions i n the substrate e x i s t . I t i s important to note that Tridaea cordata and Fucus distichus l i t t e r c o l l e c t e d i n separate poc-kets, although the pocket containing Iridaea cordata i s only 1.1 m deeper than the pocket containing Fucus distichus. This i s further evidence that l i t t e r tends to remain i n the zone where i t was deposited. This e f f e c t i s less evident i n the outer extent of Si t e 1 where much less l i t t e r was c o l l e c t e d . L i t t e r entrapment i n t h i s region i s f a c i l i t a t e d by rocks and boulders which provide the topographic r e l i e f a i d i ng i n the retention of the l i t t e r . The seasonal trend i n the biomasses of s p e c i f i c and t o t a l l i t t e r c o l l e c t e d within S i t e 1 i s presented i n Figure 5 ( a - f ) . The most important fea-ture of each of these p r o f i l e s i s that a peak perio d of l i t t e r accumulation occurs i n August or September i n both of 1975 and 1976, with a low near zero i n January and February 1976. Figure 5c demonstrates that the presence of Nereocystis luetkeana s t i p e s i n the l i t t e r i s prolonged over the autumn season. - 31 -Table 3. Comparison of the t o t a l quantity and s p e c i f i c composition of l i t t e r c o l l e c t e d within the transect at 95 m within S i t e 1 on 9 November 1975 and the t o t a l quantity and s p e c i f i c composition of l i t t e r c o l l e c t e d within the transect at S i t e 2 on 10 November 1975 (g AFDW/transect)• S i t e 1 and S i t e 2 are separated by ca 200 m, the l a t t e r being a less exposed area. Species 95 m within S i t e 1 (j0 S i t e 2 (%) Fucus distichus 0.66 ( 0.66) 7.81 ( 0.49) Iridaea cordata 0.51 ( 0.51) 16.70 ( 1.05) Nereocystis luetkeana (stipe) 90.28 (90.28) 2.71 (0.17) Nereocystis luetkeana (lamina) 4.79 ( 4.79) 4.09 ( 0.26) Laminaria 1.24 ( 1.24) 1385.26 (86.77) Agarum * 1.82 ( 1.82) 94. 39 ( 5.91) A l l other species 0.71 ( 0.70) 85.81 ( 5.37) TOTAL 100.01 1596.47 * Agarum fimbriatum Harvey & Agarum cribrosum (Mertens) Bory - 32 -Figure 4. Depth contours (m below mean sea level) f o r S i t e 1. Contour i n t e r v a l s are 0.5 m. - 33 -Figure 5. Seasonal d i s t r i b u t i o n of l i t t e r biomass f o r the major contributors to the l i t t e r pool within S i t e 1 based on co l l e c t i o n s along the 95 m transect l o c a t i o n at 3-4 week i n t e r v a l s f o r the period 20 August 1975 u n t i l 2 October 19 76. Contour i n t e r v a l s are g ash-free dry weight per 10 m2. Contour i n t e r v a l a) Fucus distichus 5 .0 b) Iridaea cordata 5 .0 c) Nereocystis luetkeana (stipe) 5 .0 d) Nereocystis luetkeana (lamina) 5 .0 e) Laminaria 5 .0 f) T o t a l l i t t e r 10 .0 a) Fucus distichus a c) Nereocystis luetkeana ( s t i p e ) 0 230.0 275.0 320.0 1975 365.0 45.0 90.0 DRY OF THE YEAR T 135.0 S I 0 1 N 1 D I J I F I M I f l l M I J I J I 1976 ~i 180.0 225.0 270, d) Nereocystis luetkeana (lamina) DRY OF THE YEAR e) Laminaria f) T o t a l l i t t e r DRY OF THE YEAR - 40 -This i s expected since Nereocystis luetkeana i s the most l o n g - l i v e d of the annual plants which contribute s i g n i f i c a n t l y to the l i t t e r within Site 1. The stipes p r e v a i l i n the l i t t e r longer than the lamina of Nereocystis luet-keana as the lamina are more e a s i l y detached during rough weather. Str u c t u r a l Composition of Species contributing to L i t t e r : The r e s u l t s for a l l 10 seaweed species are presented i n Table 4. There are considerable differences i n the percentages of soluble, moderately r e s i s t a n t and crude f i b r e components i n each species, but i t i s evident that some species having s i m i l a r percentages of these components also display taxonomic and/or morphological a f f i n i t i e s . Both species of Laminaria have s i m i l a r percentage compositions of these components as have the st i p e and lamina of Nereocystis luetkeana. Iridaea cordata and Gigartina papillata are both p a r t i c u l a r l y low in crude f i b r e content. Of a l l the species analysed, Constantinea subulifera has the lea s t percentage of moderately r e s i s t a n t material (29.4%) and the highest per-centage of soluble matter (65.6%). I t i s followed by Fucus distichus i n both of these categories, 32.8% and 60.7%, re s p e c t i v e l y , for moderately r e s i s t a n t and soluble material. Iridaea cordata has both the l e a s t percentage of crude f i b r e (0.86%) and the greatest percentage of moderately r e s i s t a n t material (71.0%). The v a r i a b i l i t y i n the percentages of these components among the various species has f a c i l i t a t e d the recognition of c o r r e l a t i o n s between the r e l a t i v e amounts of these components i n each species and decomposition parameters of these species. These r e l a t i o n s h i p s w i l l be discussed i n the context of the appropriate experiments. Of p a r t i c u l a r consequence i s the influence of the percentage content of soluble matter on observed rates of oxygen consumption (Experiment 1) and the influence of the percentage crude f i b r e content on observed rates of p a r t i c u l a t e matter consumption (Experiment 2) . - 41 -Table 4. The percentages of each of the soluble, moderately r e s i s t a n t and crude f i b r e components of the s i g n i f i c a n t species within S i t e 1. Each value i s expressed as a percentage of dry weight biomass. Crude f i b r e glucose refers to the amount of carbohydrate i n the crude f i b r e component expressed as an equivalent amount of glucose. The soluble content and crude f i b r e components are means of two determinations. Moderately Crude Fibre Component Soluble Resistant Species Component Component To t a l As glucose Plocamium coccineum war. pacificum 28.1 Rhodomela larix 30.1 Odonthalia floccosa 40.3 Iridaea cordata 28.1 Gigartina papillata 41.0 Constantinea subulifera 65.6 Fucus distichus 60.7 Nereocystis luetkeana (stipe) 41.1 Nereocystis luetkeana (lamina) 44.7 Laminaria saccharina 41.1 Laminaria groenlandica 36.6 Standard e r r o r : 59.2 12.70 (3.39) 60.0 9.86 (4.28) 54.7 5.01 (3.44) 71.0 0.86 (0.58) 57.7 1.30 (1.21) 29.4 4.99 (2.26) 32.8 6.48 (1.86) 55.4 3.48 (2.29) 51.6 3.71 (2.27) 52.6 6.30 (3.14) 55.7 7.67 (3.37) — ±0.62 ±0.61 L i t t e r D e c o m p o s i t i o n E x p e r i m e n t s : T h e r e s u l t s f o r a l l 11 l i t t e r b a g e x p e r i m e n t s a r e p r e s e n t e d i n F i g u r e 6 ( a - k ) . A s o n e l i t t e r - b a g f r o m t h e s e r i e s o f l i t t e r b a g s c o n t a i n i n g Laminaria saccharina was l o s t , a n d t h e r e b e i n g a n a p p a r e n t s i m i l a r i t y b e t w e e n t h e d e c o m p o s i t i o n r a t e s o f b o t h s p e c i e s o f Laminaria, t h e d a t a f o r t h e s e t w o s p e c i e s w e r e c o m b i n e d . F i v e c u r v e m o d e l s w e r e a p p l i e d t o e a c h d a t a s e t w i t h t h e m i n i m a l r e s i d u a l e r r o r b e i n g t h e c r i t e r i o n f o r a c c e p t a n c e , p r o v i d e d t h e c u r v e m a i n t a i n e d a s m o o t h , n e g a t i v e s l o p e . F o r p l o t s w h e r e a l o g a r i t h m i c c u r v e was c h o s e n t o r e p r e s e n t t h e d a t a , 2 . 0 % o f o r i g i n a l d r y w e i g h t wa s a r b i t r a r i l y c h o s e n t o r e p r e -s e n t z e r o p e r c e n t f o r g r a p h i c p u r p o s e s , a s t h i s c u r v e m o d e l a p p r o a c h e s t h e X - a x i s a s y m p t o t i c a l l y . T h e f i v e c u r v e m o d e l s a r e a s f o l l o w s : 1. L i n e a r : Y = aX + 1 0 0 . 0 2 . Q u a d r a t i c : Y = a X 2 + b X + 1 0 0 . 0 3. L o g a r i t h m i c : l n Y = a ( l n X ) + 1 0 0 . 0 4 . P a r a b o l i c : Y = (X - a ) 2 / 4 b ; a 2 / 4 b = 1 0 0 . 0 5 . H y p e r b o l i c : Y = a + ( b / ( X - c ) ) ; a - ( b / c ) = 1 0 0 . 0 w h e r e : 1 X i s t h e i n d e p e n d e n t v a r i a b l e Y i s t h e d e p e n d e n t v a r i a b l e a , b a n d c a r e c o e f f i c i e n t s l n i s t h e n a t u r a l l o g a r i t h m L o s s o f b i o m a s s f r o m t h e l i t t e r b a g s wa s r a p i d b u t t h e t i m i n g a n d p a t t e r n o f d e c o m p o s i t i o n w a s v a r i a b l e among t h e s p e c i e s . T h e l a m i n a o f Nereo-cystis luetkeana d e c o m p o s e d m o s t r a p i d l y , r e q u i r i n g o n l y s i x d a y s t o d i s a p p e a r f r o m t h e l i t t e r b a g s . T h e m o s t s l o w l y d e c o m p o s i n g s p e c i e s w a s F u c u s d i s t i c h u s , r e q u i r i n g ca 70 d a y s t o d i s a p p e a r f r o m t h e l i t t e r b a g s . L i s t e d i n o r d e r o f d e -c r e a s i n g d e c o m p o s i t i o n r a t e s t h e r e m a i n i n g s p e c i e s a r e Iridaea cordata (13 d a y s ) , Laminaria (ca 14 d a y s ) , Nereocystis luetkeana s t i p e (ca 18 d a y s ) , Gigartina p a p i l l a t a ( 27 d a y s ) , Rhodomela l a r i x ( 2 7 d a y s ) , Constantinea subulifera ( 43 d a y s ) , Odonthalia floccosa (46 d a y s ) a n d Plocamium coccineum v a r . pacificum (49 d a y s ) . - 4tJ -F i g u r e 6 . L i t t e r d e c o m p o s i t i o n c u r v e s ( s u b m o d e l s ) c a l c u l a t e d f r o m d a t a o b t a i n e d i n t h e l i t t e r b a g e x p e r i m e n t s . T h e c u r v e m o d e l ( s e e t e x t ) , t h e c o e f f i c i e n t s ( a , b , c ) a n d t h e c o e f f i c i e n t o f d e t e r m i n a t i o n ( r ^ ) a r e g i v e n b e l o w f o r e a c h s p e c i e s . S p e c i e s M o d e l a) Plocamium coccineum v a r . pacificum P b ) Rhodomela l a r i x L c ) Odonthalia floccosa P d) Iridaea cordata Q e) Gigartina p a p i l l a t a P f ) Constantinea subulifera P g) F u c u s d i s t i c h u s LN h ) Nereocystis luetkeana ( s t i p e ) L N i ) Nereocystis luetkeana ( l a m i n a ) P j ) Laminaria L N a b £ r (%) 4 9 . 4 0 6 . 0 9 9 - 9 9 . 4 5 3 . 7 2 0 1 0 0 . 0 - 9 8 . 4 6 4 5 . 6 9 5 . 2 2 0 - 9 7 . 5 2 - 0 . 4 4 8 - 1 . 9 7 8 1 0 0 . 0 0 9 9 . 9 0 2 7 . 0 0 1 . 8 2 3 - 9 9 . 9 4 4 3 . 4 2 4 . 7 1 2 - 9 7 . 6 5 - 0 . 0 5 9 4 . 6 0 5 - 9 4 . 0 6 - 0 . 2 1 0 4 . 6 0 5 - 9 9 . 9 0 6 . 0 2 2 0 . 9 0 7 - 9 8 . 5 6 - 0 . 2 7 7 4 . 6 0 5 - 9 6 . 8 0 L : l i n e a r Q : q u a d r a t i c L N : l o g a r i t h m i c P : p a r a b o l i c H : h y p e r b o l i c PERCENTAGE OF ORIGINAL DRY WEIGHT A PERCENTAGE OF ORIGINAL DRY WEIGHT a — • TIME (DAYS) - 54 -O n l y Iridaea cordata a n d Rhodomela l a r i x d i d n o t s u b s c r i b e t o a d e c o m p o s i t i o n p a t t e r n w i t h a d e c e l e r a t i n g r a t e o f b i o m a s s l o s s . Iridaea cordata was c h a r a c -t e r i z e d b y a n i n i t i a l l a g p h a s e f o l l o w e d b y a n a c c e l e r a t i n g r a t e o f b i o m a s s l o s s . Rhodomela l a r i x m a i n t a i n e d a l i n e a r d e c o m p o s i t i o n r a t e . L i t t e r S e n e s c e n c e E x p e r i m e n t s : T h e e x p e r i m e n t s t o d e t e r m i n e t h e t i m e f o r t h e s i g n i f i c a n t c o n -t r i b u t o r s t o t h e l i t t e r t o d i e w e r e n o t p a r t i c u l a r l y d e c i s i v e d u e t o t h e q u a l i t a t i v e n a t u r e a n d i n f r e q u e n c y o f t h e o b s e r v a t i o n s . T h e r e s u l t s a r e p r e s e n -t e d i n T a b l e 5 . A t t h e t i m e t h e s e e x p e r i m e n t s w e r e p e r f o r m e d t h e s i g n i f i c a n c e o f t h e c o n t r i b u t i o n b y Fucus d i s t i c h u s wa s u n d e r e s t i m a t e d . T h e e s t i m a t e d t i m e f o r a s e a w e e d t o d i e was d e t e r m i n e d f o r t h e s h a d e d c o n d i t i o n o n l y . C o n t i n u a l d e p o s i t i o n o f new l i t t e r u p o n e x i s t i n g l i t t e r p r o b a b l y means t h a t m o s t l i t t e r i s a t l e a s t p a r t i a l l y s h a d e d ; t h e r e f o r e t h i s c o n d i t i o n was a c c e p t e d a s g i v i n g a m o r e r e a l i s t i c e s t i m a t e o f t h e t i m e r e q u i r e d f o r t h e d e a t h o f t h e s e a w e e d t o o c c u r . T h e s e d a t a w e r e o b t a i n e d i n o r d e r t h a t t h e t i m e t a k e n f o r s e a w e e d l i t t e r t o f o r m d e t r i t u s c o u l d b e m o r e p r e c i s e l y m o d e l l e d . A s t h e s p e c i f i c l i t t e r c o m p o n e n t s t e s t e d d e m o n -s t r a t e d a s i m i l a r i t y i n t h e i r s e n e s c e n c e t i m e s , s i x d a y s was a c c e p t e d a s a g e n e r a l e s t i m a t e f o r s i m p l i c i t y i n m o d e l l i n g . Fucus d i s t i c h u s may h a v e a l o n g e r s e n e s c e n c e t i m e , b u t t h e o v e r a l l s i g n i f i c a n c e o f t h i s e r r o r i s e x p e c t e d t o b e m i n o r . N i t r o g e n C o n t e n t o f D e c o m p o s i n g L i t t e r : T h e n i t r o g e n c o n t e n t o f s e a w e e d l i t t e r a t v a r i o u s s t a g e s o f d e c o m p o s i t i o n i s p r e s e n t e d i n T a b l e 6 f o r t h e 10 s p e c i e s a s s a y e d . T h e m o s t n o t a b l e f e a t u r e o f t h e s e r e s u l t s i s t h a t a l l s p e c i e s e x c e p t Iridaea cordata d e m o n s t r a t e d a n i n c r e a s e i n t h e n i t r o g e n : t o t a l b i o m a s s r a t i o o f m a t e r i a l r e m a i n i n g i n t h e l i t t e r b a g s a s d e c o m p o s i t i o n p r o c e e d e d , - 55 -T a b l e 5 . N u m b e r o f d a y s r e q u i r e d f o r u n k i l l e d p o r t i o n s o f t h e m a j o r c o n -t r i b u t o r s t o t h e l i t t e r p o o l w i t h i n S i t e 1 t o l e a v e a 1 .0 cm m e s h l i t t e r b a g u n d e r s h a d e d a n d e x p o s e d c o n d i t i o n s . T h e ' e s t i m a t e d t i m e f o r s e n e s c e n c e ' i s an e s t i m a t i o n o f t h e n u m b e r o f d a y s r e q u i r e d f o r a s p e c i f i c l i t t e r c o m p o n e n t t o d i e o n c e h a v i n g e n t e r e d t h e l i t t e r p o o l . S e e t e x t f o r a f u l l e x p l a n a t i o n . E s t i m a t e d t i m e S p e c i e s E x p o s e d S h a d e d f o r s e n e s c e n c e Iridaea cordata 2 4 - 3 0 1 0 - 1 4 5 Nereocystis luetkeana ( s t i p e ) 2 4 - 3 0 1 5 - 2 3 9 Nereocystis luetkeana ( l a m i n a ) 1 5 - 2 3 6 - 1 0 6 Laminaria saccharina 2 4 - 3 0 1 0 - 1 4 5 Laminaria groenlandica 2 4 - 3 0 1 0 - 1 4 5 - 56 -T a b l e 6 . P e r c e n t a g e n i t r o g e n c o n t e n t o f t h e m a t e r i a l r e m a i n i n g w i t h i n t h e l i t t e r b a g s a t t h e t e r m i n a t i o n o f t h e i r i n c u b a t i o n p e r i o d . P e r c e n t a g e o f S p e c i e s o r i g i n a l d r y w e i g h t P e r c e n t a g e n i t r o g e n Plocamium coccineum v a r . pad fi cum 1 0 0 . 0 0 3 . 7 4 6 5 . 2 6 3 . 6 8 4 2 . 5 0 3 . 8 9 2 8 . 2 2 4 . 6 4 Rhodomela l a r i x 1 0 0 . 0 0 4 . 2 4 8 6 . 2 0 4 . 4 3 4 8 . 7 3 4 . 7 4 Odonthalia floccosa 1 0 0 . 0 0 4 . 2 4 5 5 . 3 5 3 . 7 1 3 4 . 5 1 4 . 5 0 Iridaea cordata 1 0 0 . 0 0 1 . 9 4 9 7 . 3 9 1 . 9 4 5 5 . 6 6 1 . 6 3 Gigartina p a p i l l a t a 1 0 0 . 0 0 2 . 5 4 3 8 . 5 0 3 . 1 4 1 6 . 7 9 4 . 2 6 2 . 7 2 6 . 3 4 Constantinea subulifera 1 0 0 . 0 0 2 . 6 1 6 2 . 3 0 2 . 7 0 4 5 . 2 0 - 3 . 1 7 Fucus d i s t i c h u s 1 0 0 . 0 0 1 . 7 3 6 1 . 0 8 2 . 2 1 3 9 . 9 9 2 . 3 7 Nereocystis luetkeana ( s t i p e ) 1 0 0 . 0 0 1 . 5 0 2 9 . 7 0 2 . 1 6 Nereocystis luetkeana ( l a m i n a ) 1 0 0 . 0 0 2 . 3 8 5 2 . 8 0 3 . 7 6 Laminaria saccharina 1 0 0 . 0 0 1 . 9 8 1 3 . 7 0 3 . 7 0 Laminaria groenlandica 1 0 0 . 0 0 2 . 6 4 3 0 . 1 4 4 . 1 0 1 1 . 1 6 5 . 2 0 - 57 -a l t h o u g h t o t a l n i t r o g e n c o n t e n t d e c r e a s e d . T h e g r e a t e s t p e r c e n t a g e n i t r o g e n c o n t e n t wa s o b s e r v e d f o r Gigartina p a p i l l a t a , m o s t l i k e l y b e c a u s e i t was t h e m o s t f u l l y d e c o m p o s e d o f a l l t h e s p e c i e s w h e n f i n a l n i t r o g e n c o n t e n t was a n a l y z e d . T h e n i t r o g e n : t o t a l b i o m a s s r a t i o o f n e a r l y f u l l y d e c o m p o s e d Gigartina p a p i l l a t a i n c r e a s e d o v e r t h a t o f u n d e c o m p o s e d Gigartina . p a p i l l a t a b y 2 5 0 % . F i g u r e 7 , w h i c h i n c o r p o r a t e s d a t a f r o m a l l s p e c i e s a s s a y e d , d e m o n s t r a t e s t h a t a h y p e r b o l i c c u r v e a p p r o x i m a t e s t h e t r e n d o f i n c r e a s i n g n i t r o g e n : t o t a l b i o m a s s r a t i o v e r y w e l l , i n d i c a t i n g a n a c c e l e r a t i n g i n c r e a s e i n l i t t e r n i t r o g e n c o n t e n t r e l a t i v e t o o t h e r b i o m a s s c o m p o n e n t s a s d e c o m -p o s i t i o n p r o c e e d s . D e t r i t u s D e c o m p o s i t i o n : B o t h e x p e r i m e n t s t e s t e d t h e f o l l o w i n g t h r e e m a j o r e f f e c t s f o r t h e i r i m p a c t o n d e c o m p o s i t i o n r a t e s : . 1. L e n g t h o f t h e i n c u b a t i o n p e r i o d 2 . S o u r c e o f t h e d e t r i t u s , i . e . t h e s e a w e e d f r o m w h i c h i t was c r e a t e d 3 . S i z e o f t h e d e t r i t a l p a r t i c l e s F o r b r e v i t y e a c h o f t h e s e e f f e c t s w i l l o f t e n b e r e f e r r e d t o a s t h e ' i n c u b a -t i o n p e r i o d ' , ' d e t r i t a l s p e c i e s ' , a n d ' p a r t i c l e s i z e ' e f f e c t s , r e s p e c t i v e l y . Experiment 1 (Microbial Oxygen Consumption): A n A n a l y s i s o f V a r i a n c e (ANOVA) was p e r f o r m e d o n t h e o x y g e n c o n s u m p t i o n d a t a o b t a i n e d i n t h i s e x p e r i m e n t . T h e r e s u l t s o f t h e a n a l y s i s a r e p r e s e n t e d i n T a b l e 7 . R e f e r r i n g t o t h e t h r e e m a j o r e f f e c t s , i t c a n b e c o n c l u d e d t h a t o n l y t w o o f t h e m , t h e d e t r i t a l s p e c i e s a n d t h e l e n g t h o f t h e i n c u b a t i o n p e r i o d , a r e s i g n i f i c a n t (p < . 05 ) c o n t r i b u t o r s t o t h e o b s e r v e d d i f f e r e n c e s i n t h e o x y g e n c o m s u m p t i o n r a t e s . I n c o n s i d e r a t i o n o f t h e l a t t e r e f f e c t , s u c h a r e s p o n s e m u s t b e e x p e c t e d s i n c e t h e o x y g e n w i t h i n g u r e 7. P l o t d e m o n s t r a t i n g a n i n c r e a s e i n t h e r a t i o o f n i t r o g e n : d r y w e i g h t b i o m a s s o f d e c o m p o s i n g l i t t e r e x p r e s s e d r e l a t i v e t o a r a t i o o f 1:1 f o r u n d e c o m p o s e d l i t t e r . A l l 10 s p e c i e s a s s a y e d a r e i n c o r p o r a t e d w i t h i n t h e p l o t . T h e s o l i d l i n e i n d i c a t e s t h e b e s t f i t t h r o u g h t h e p o i n t s . Table 7. Analysis of variance table for the results of Experiment 1, demonstrating the e f f e c t s of p a r t i c l e s i z e , d e t r i t a l species and length of incubation period on the oxygen consumption by microbes u t i l i z i n g the detritus as a carbon source. Source of variance Degrees of freedom P a r t i c l e s i z e (PS): D e t r i t a l species (DS): PS - DS i n t e r a c t i o n : Incubation period (IP) PS - IP i n t e r a c t i o n : DS - IP i n t e r a c t i o n : Residual e r r o r : T o t a l : 2 10 20 3 6 30 60 131 Sum of squares 0.12379E-02 0.65865 0.18062E-01 5.1409 0.21561E-02 0.29697 0.82011E-01 6.2000 Mean sum of squares 0.61894E-03 0.65865E-01 0.90311E-03 1.1736 0.35934E-03 0.98989E-02 0.13668E-02 P r o b a b i l i t y 0.6 3799 0.0 * 0.84772 0.17613E-52 0.95198 0.72414E-10 * s i g n i f i c a n t f o r a = 0.05 - 60 -t h e BOD b o t t l e i s c o n t i n u a l l y b e i n g c o n s u m e d . T h a t d e t r i t u s o f d i f f e r e n t b i o g e n i c o r i g i n s c o n t r i b u t e d s i g n i f i c a n t l y t o t h e o b s e r v e d v a r i a t i o n i n t h e o x y g e n c o n s u m p t i o n r a t e s i m p l i e s t h a t some s p e c i e s o f d e t r i t u s a r e m o r e s u s c e p t i b l e t o b r e a k d o w n b y m i c r o b e s t h a n o t h e r s . F o r t h e t h i r d m a j o r e f f e c t , p a r t i c l e s i z e , t h e r e was n o d e t e c t a b l e d i f f e r e n c e a m o n g t h e o x y g e n c o n s u m p t i o n s o f t h e t h r e e p a r t i c l e s i z e s . A n y r e s p o n s e t h a t may h a v e o c c u r r e d c o u l d h a v e b e e n e a s i l y a t t r i b u t e d t o c h a n c e . T h e s e c o n d s o u r c e o f s i g n i f i c a n t v a r i a t i o n w i t h i n t h e e x p e r i m e n t c a n b e e x p l a i n e d i n t e r m s o f a n i n t e r a c t i o n b e t w e e n t h e d e t r i t a l s p e c i e s a n d t h e i r r e s p o n s e o v e r t h e i n c u b a t i o n p e r i o d s . T h e e s s e n c e o f t h e i n t e r a c t i o n i s t h a t u t i l i z a t i o n o f t h e o x y g e n i n t h e BOD b o t t l e s f o l l o w s a p a t t e r n d e p e n d e n t u p o n t h e b i o g e n i c o r i g i n o f t h e d e t r i t u s . B y o b s e r v i n g F i g u r e 8 , w h i c h r e l a t e s t h e c u m u l a t i v e o x y g e n c o n s u m p t i o n t o t h e l e n g t h o f t h e i n c u b a t i o n p e r i o d f o r a l l 10 s p e c i e s , i t c a n b e s e e n t h a t t h e s i g n i f i c a n c e o f t h e i n t e r a c t i o n t e r m i s a r e s u l t o f t h e r e l a t i v e l y s t e e p s l o p e m a i n t a i n e d b y Fucus d i s t i c h u s d u r i n g t h e 1 0 - 2 0 d a y i n c u b a t i o n p e r i o d a n d t o t h e h e t e r o g e n e i t y o f t h e s l o p e s w i t h i n t h e 1 0 - 1 5 d a y i n c u b a t i o n p e r i o d . T h r e e ' a p o s t e r i o r i ' r a n g e t e s t s w e r e p e r f o r m e d o n t h e d a t a i n a n a t t e m p t t o d e l i m i t a f f i n i t i e s a n d d e t e c t o u t l i e r s a m o n g t h e r e s p o n s e s t o t h e s i g n i f i c a n t m a j o r e f f e c t s . T h e s e t e s t s w e r e : 1. D u n c a n ' s New M u l t i p l e R a n g e T e s t 2 . Newman - K e u l ' s T e s t 3 . T u k e y ' s T e s t N o t u n e x p e c t e d l y , e a c h i n c u b a t i o n p e r i o d ( 0 , 5 , 1 0 , a n d 20 d a y s ) was r e n d e r e d u n i q u e a n d i n d e p e n d e n t . O n l y D u n c a n ' s T e s t d e f i n e d e x c l u s i v e s u b s e t s f o r t h e e f f e c t o f d e t r i t a l s p e c i e s o n o x y g e n c o n s u m p t i o n r a t e s . B o t h t h e Newman - K e u l ' s T e s t a n d T u k e y ' s T e s t p e r m i t t e d e n t i t i e s t o h a v e 61 -F i g u r e 8 . C u m u l a t i v e o x y g e n c o n s u m p t i o n b y m i c r o b e s d e c o m p o s i n g t h e 10 d e t r i t a l s p e c i e s i n E x p e r i m e n t 1. E a c h d a t a p o i n t i s t h e mean r e s u l t f o r t h e t h r e e d e t r i t a l p a r t i c l e s i z e s . Plocamium coccineum v a r . pacificum Rhodomela larix Odonthalia floccosa Iridaea cordata Gigartina papillata Constantinea subulifera Fucus distichus Nereocystis luetkeana ( s t i p e ) Nereocystis luetkeana ( l a m i n a ) Laminaria saccaharina Laminaria groenlandica - U a -0.0 5.D 10.0 15.0 20.0 INCUBATION TIME (DAYS) - 62 -a membership i n more than one subset such that a f f i n i t i e s were more d i f f i -c u l t to detect. The subsets defined by Duncan's Test are presented i n Table 8a. To t e s t for the possible influence of the soluble compon-ent on the r e s u l t s obtained, the oxygen consumed by each d e t r i t a l species a f t e r f i v e days of incubation (mean of three p a r t i c l e sizes) was regressed on the percentage soluble content of each species. The r e s u l t i s s i g n i f i -cant (p < .01) and conclusive i f Iridaea cordata d e t r i t u s i s excluded from consideration. The r e l a t i o n s h i p between oxygen consumption and soluble content i s presented i n Figure 9. About 77% of the v a r i a t i o n i n oxygen consumption can be accounted for by differences i n the soluble content of the d e t r i t a l species. Reference to Table 8b indicates the mean percentage soluble content of the species comprising each subset. The trend of increasingly higher percentage soluble contents for the subsets characterized by the more r a p i d l y decomposing species i s evident, with the exception that Iridaea cordata decomposes r a p i d l y although containing a r e l a t i v e l y small percentage of soluble matter. Experiment 2 (Microbial Consumption of Particulate Material): The r e s u l t s of an ANOVA on the decomposition data obtained i n t h i s experiment are presented i n Table 9. Reference to i t shows that there are four s i g n i f i c a n t sources of v a r i a t i o n (p < .05) . As was the case i n Experiment 1, only two major e f f e c t s were s i g n i f i c a n t , incubation period and d e t r i t a l species. Two other s i g n i f i c a n t sources of v a r i a t i o n were an i n t e r a c t i o n between incubation period and d e t r i t a l species and an i n t e r a c t i o n between p a r t i c l e s i z e and d e t r i t a l species. Table 8. a) Subsets delimited by Duncan's New Multiple Range Test. Each subset contains those d e t r i t a l species which show a s i g n i f i c a n t (p < .05) degree of a f f i n i t y with respect to the quantity of oxygen consumed by microbes decomposing the d e t r i t u s . Subset 1 Subset 2 Subset 3 Subset 4 Plocamium coccineum va r. pacificum Gigartina papillata Rhodomela larix Odonthalia floccosa Nereocystis luetkeana (stipe) Nereocystis luetkeana (lamina) Laminaria saccharina Laminaria groenlandica Iridaea cordata Constantinea subulifera Fucus distichus b) The average percentage soluble content of the subsets i n Table 8a. Subset 1 Subset 2 Subset 3 Subset 4 34.9 ± 7.2% 40.9 ± 4.1% C. subulifera 65.6 ± 2.8% I. cordata 28.1 ± 0.1% 60.7 ± 3.8% F i g u r e 9. R e l a t i o n s h i p b e t w e e n t h e p e r c e n t a g e s o l u b l e c o n t e n t s o f t h e 10 d e t r i t a l s p e c i e s ( e x c l u s i v e o f Iridaea cordata) a n d t h e q u a n t i t y o f o x y g e n c o n s u m e d b y m i c r o b e s d e c o m p o s i n g t h e d e t r i t u s a f t e r f i v e d a y s o f i n c u b a t i o n , a s d e t e r m i n e d i n E x p e r i m e n t 1. T h e s o l i d l i n e i n d i c a t e s t h e b e s t f i t t h r o u g h t h e p o i n t s . T a b l e 9 . A n a l y s i s o f v a r i a n c e t a b l e f o r t h e r e s u l t s o f E x p e r i m e n t 2 , d e m o n s t r a t i n g t h e e f f e c t s o f p a r t i c l e s i z e , d e t r i t a l s p e c i e s a n d l e n g t h o f i n c u b a t i o n p e r i o d o n t h e c o n s u m p t i o n o f p a r t i c u l a t e m a t e r i a l b y m i c r o b e s u t i l i z i n g d e t r i t u s as a c a r b o n S o u r c e . S o u r c e o f v a r i a n c e D e g r e e s o f f r e e d o m P a r t i c l e s i z e (PS) : D e t r i t a l s p e c i e s ( D S ) : PS - DS i n t e r a c t i o n : I n c u b a t i o n p e r i o d ( I P ) PS - I P i n t e r a c t i o n : DS - I P i n t e r a c t i o n : R e s i d u a l e r r o r : T o t a l : 2 10 20 3 6 30 6 0 1 3 1 Sum o f s q u a r e s 1 3 5 . 2 2 4 1 8 7 7 . 0 1 8 7 5 . 8 1 4 2 0 0 . 0 3 6 3 . 5 9 1 5 2 2 7 . 0 3 1 1 6 . 1 7 6 7 9 5 . 0 Mean sum o f s q u a r e s 6 7 . 6 1 1 4 1 8 7 . 7 9 3 . 7 8 8 4 7 3 3 . 4 6 0 . 5 9 9 5 0 7 . 5 6 5 1 . 9 35 P r o b a b i l i t y 0 . 2 7 9 6 0 0 . 0 * 0 . 4 0 8 2 3 E - 0 1 0 . 9 5 9 8 9 E - 2 1 0 . 3 3 6 0 8 0 . 1 5 3 2 9 E - 1 2 * s i g n i f i c a n t f o r a = 0 . 0 5 - 66 -T h e s i g n i f i c a n t r e s p o n s e f o r t h e l e n g t h o f t h e i n c u b a t i o n p e r i o d was e x p e c t e d a s t h e g e n e r a l t r e n d w o u l d b e a c o n t i n u a l l o s s o f p a r t i c u l a t e m a t e r -i a l a s t i m e p r o c e e d s ; h o w e v e r , t h i s d i d n o t a l w a y s o c c u r . T h e s e c o n d s i g n i f i -c a n t r e s p o n s e wa s d u e t o t h e d i f f e r e n t d e c o m p o s i t i o n r a t e s o f t h e v a r i o u s d e t r i t a l s p e c i e s . F i g u r e 10 i n d i c a t e s an i n i t i a l d e c a y r a t e f o r Iridaea cordata w h i c h w o u l d r e d u c e i t t o z e r o i n 18 d a y s . I n c o m p a r i s o n , t h e r e a p p e a r t o b e some a n o m a l o u s r e s u l t s f o r Plocamium coccineum v a r . pacificum, Rhodomela l a r i x , Odonthalia flocossa, a n d Fucus d i s t i c h u s , a l l o f w h i c h show a n i n c r e a s e i n d r y w e i g h t o f p a r t i c u l a t e m a t t e r f o l l o w i n g 10 d a y s o f i n c u b a t i o n . A s t h e r e was a s i g n i f i c a n t i n t e r a c t i o n b e t w e e n d e t r i t a l s p e c i e s a n d i n c u b a t i o n p e r i o d , r a n g e t e s t s w e r e p e r f o r m e d t o d e l i m i t a n y g r o u p i n g s w h i c h m i g h t p r o v i d e i n s i g h t i n t o t h e r e a s o n s f o r t h e i n t e r a c t i o n . N o n e o f t h e t h r e e r a n g e t e s t s d e l i m i t e d e x c l u s i v e s u b s e t s . T h e m o s t d e f i n i t i v e wa s Newman -K e u l ' s T e s t w h i c h d e l i m i t e d f i v e s u b s e t s , w i t h Laminaria groenlandica b e i n g a member o f t w o o f t h e m . A s t h e o v e r a l l mean f o r Laminaria groenlandica was c l o s e r t o t h a t o f Laminaria saccharina t h a n o f Nereocystis luetkeana ( s t i p e ) , i t s n e a r -e s t n e i g h b o u r s i n e a c h o f t h e s u b s e t s i n w h i c h i t was p l a c e d , i t w a s p l a c e d w i t h Laminaria saccharina. T h i s r e n d e r e d a l l t h e s u b s e t s u n i q u e i n c o m p o s i t i o n . T h e c o m p o s i t i o n o f t h e s u b s e t s i s p r e s e n t e d i n T a b l e 1 0 . T h e r e i s a l s o a s i g n i f i c a n t i n t e r a c t i o n b e t w e e n p a r t i c l e s i z e a n d d e t r i t a l s p e c i e s . T h e i m p l i c a t i o n i s t h a t t h e r e may b e s o m e s p e c i e s o f d e t r i t u s w h o s e d e c o m p o s i t i o n r a t e i s d e p e n d e n t u p o n t h e s i z e o f t h e d e t r i t a l p a r t i c l e s . C l o s e r i n s p e c t i o n o f t h e d a t a r e v e a l e d t h a t t h e t w o m o s t r a p i d l y d e c o m p o s i n g s p e -c i e s , Iridaea cordata a n d Nereocystis luetkeana ( s t i p e a n d l a m i n a s e c t i o n s c o m -b i n e d ) , d i s p l a y e d a t r e n d t o w a r d a m o r e r a p i d d e c o m p o s i t i o n r a t e a s mean p a r t i -c l e s i z e d e c r e a s e d . A d e t e c t a b l e d i f f e r e n c e i n d e c o m p o s i t i o n r a t e s i n r e s p o n s e t o p a r t i c l e s i z e i s m o s t l i k e l y f o r t h e m o s t r a p i d l y d e c o m p o s i n g s p e c i e s s i n c e t h e e x p e r i m e n t a l e r r o r w o u l d b e a s m a l l e r p r o p o r t i o n o f t h e t o t a l v a r i a n c e t h a n - 67 -F i g u r e 10. C u m u l a t i v e l o s s o f p a r t i c u l a t e m a t e r i a l f r o m t h e 10 d e t r i t a l s p e c i e s d e c o m p o s e d i n E x p e r i m e n t 2. E a c h d a t a p o i n t i s t h e mean r e s u l t f o r t h e t h r e e d e t r i t a l p a r t i c l e s i z e s . Plocamium coccineum v a r . pacificum Rhodomela larix Odonthalia floccosa Iridaea cordata Gigartina papillata Constantinea subulifera Fucus distichus Nereocystis luetkeana ( s t i p e ) Nereocystis luetkeana ( l a m i n a ) Laminaria saccharina Laminaria groenlandica PERCENTAGE OF ORIGINAL DRY WEIGHT T a b l e 1 0 . S u b s e t s d e l i m i t e d b y Newman -d e t r i t a l s p e c i e s w h i c h show a s i g n i f i c a n t (p q u a n t i t y o f p a r t i c u l a t e m a t e r i a l c o n s u m e d b y K e u l ' s Range T e s t . E a c h s u b s e t c o n t a i n s t h o s e < . 0 5 ) d e g r e e o f a f f i n i t y w i t h r e s p e c t t o t h e m i c r o b e s d e c o m p o s i n g t h e d e t r i t u s . S u b s e t 1 S u b s e t 2 S u b s e t 3 S u b s e t 4 S u b s e t 5 i Plocamium coccineum Gigartina papillata Laminaria saccharina Nereocystis luetkeana Iridaea cordata v a r . pacificum ( s t i p e ) co Laminaria groenlandica 1 F u c u s distichus Nereocystis luetkeana ( l a m i n a ) Rhodolema larix Odonthalia floccosa Constantinea subulifera - 69 -for less r a p i d l y decomposing species. Figure 11 (a,b) graphically presents the res u l t s f o r both of these species. Note i n p a r t i c u l a r that the difference i n decomposition rates for the three p a r t i c l e sizes i s most evident a f t e r only 10 days of incubation, while the conditions within the culture vessels are s t i l l s u f f i c i e n t l y fresh to maximize the experimental e f f e c t s . Because of adverse e f f e c t s caused by the leng t h i e r periods of incubation, the e f f e c t of p a r t i c l e s i z e could not be shown to be s t a t i s t i c a l l y s i g n i f i c a n t f o r e i t h e r species. Two regression analyses were performed to t e s t the hypothesis that the decomposition rates of seaweed de t r i t u s were at least p a r t i a l l y a func-t i o n of the crude f i b r e content of the d e t r i t u s . The dependent variable i n both cases was the maximum percentage loss (mean of 3 p a r t i c l e sizes) of p a r t i c u l a t e ma-t e r i a l observed f o r each d e t r i t a l species i n Experiment 2. For the species which showed an i n i t i a l increase i n dry weight as time proceeded, the rate of loss of p a r t i c u l a t e material was determined i n r e l a t i o n to the maximum dry-weight attained. The independent variables were crude f i b r e content and crude f i b r e carbohydrate expressed i n glucose equivalents. Both were expressed as a percentage of the t o t a l p a r t i c u l a t e component (crude f i b r e plus moderately r e s i s -tant material). The re s u l t s of both regression analyses were s i g n i f i c a n t ( p < .05). Figure 12a demonstrates the r e l a t i o n s h i p between maximum percentage loss of par-t i c u l a t e material and percentage crude f i b r e content. Figure 12b presents an equivalent r e l a t i o n s h i p using percent glucose as the independent v a r i a b l e . Since decomposition rates would t h e o r e t i c a l l y never be expected to reach zero, an exponential decay curve was considered the most appropriate model. The re-gression analyses accounted for 42.8% and 39.9% of the variance observed i n Figures 12a and 12b, respectively. - 70 -Figure 11. Cumulative loss of p a r t i c u l a t e material from a) Iridaea cordata b) Nereocystis luetkeana (stipe and lamina combined) d e t r i t u s . For each species the r e s u l t s f o r the three d e t r i t a l p a r t i c l e s i z e s are presented. The three par-t i c l e s i z e s are as follows: a) 1000-420 urn 0) 250-149 urn y) 44-0 ym PERCENTAGE OF ORIGINAL DRY WEIGHT _T > 0 £ -- 71 -Figure 12. Relationship between the maximum percentage loss of particulate material from the 10 detr i ta l species decom-posed in Experiment 2 and the percentage of crude fibre in the particulate material of each de tr i ta l species. The so l id lines indicate the best f i t through the points. a) crude fibre expressed as a percentage of the dry weight of the particulate material. b) crude fibre carbohydrate expressed as an equivalent amount of glucose and as a percentage of the dry weight of the particulate material. PERCENTAGE OF CRUDE FIBRE GLUCOSE - 72 -D e t r i t u s A s s e s s m e n t : T h e b i o m a s s o f d e t r i t u s a l o n g t h e p e r m a n e n t t r a n s e c t l o c a t i o n w i t h i n S i t e 1 i s b e s t r e p r e s e n t e d g r a p h i c a l l y b y F i g u r e 1 3 . T h i s t h r e e - d i m e n -s i o n a l r e p r e s e n t a t i o n d e m o n s t r a t e s t h a t t h e a v a i l a b i l i t y o f d e t r i t u s r e a c h e d a max imum o f ca 1 .4 g AFDW/m a b o u t t h e m i d d l e o f A u g u s t i n 1 9 7 6 . T h e p e a k o c c u r s n e a r t h e t i m e o f max imum l i t t e r b i o m a s s a n d w i t h i n t h e c e n t r a l z o n e o f t h e s e a -w e e d b e d . T h e q u a n t i t y o f d e t r i t u s d i m i n i s h e s t o w a r d s t h e i n n e r a n d o u t e r e d g e s o f t h e b e d t o 1 5 - 3 0 % o f t h e max imum v a l u e . D u r i n g t h e summer o f 19 75 n a t u r a l d e t r i t u s was p e r i o d i c a l l y e x -a m i n e d m i c r o s c o p i c a l l y f o r c h a r a c t e r i s t i c s w h i c h m i g h t a i d i n d e t e r m i n a t i o n o f i t s o r i g i n . I t s c o m p o s i t i o n was d e t e r m i n e d t o b e a m o r p h o u s , c o n s i s t i n g m o s t l y o f v a r i o u s l y s h a p e d c o l o u r l e s s u n i d e n t i f i a b l e p a r t i c l e s , a s w e l l a s some d i a -t o m a c e o u s m a t e r i a l . T h e l a t t e r a c c o u n t e d f o r ca 10% o f t h e m a t e r i a l o b s e r v e d . F a u n a l A s s e s s m e n t : I n o r d e r t o r e c o g n i z e a c o i n c i d e n c e o f t h e o c c u r r e n c e o f s p e c i f i c f a u n a a n d t h e max imum a v a i l a b i l i t y o f d e t r i t u s » t h e s u m s , b y n u m b e r s a n d d r y w e i g h t s , f o r e a c h s p e c i e s o c c u r r i n g w i t h i n t h e summer f a u n a l c o l l e c t i o n s o f 28 J u l y , 18 A u g u s t a n d 12 S e p t e m b e r w e r e e x p r e s s e d a s a p e r c e n t a g e o f t h e t o t a l f o r t h e s e v e n c o l l e c t i o n s f r o m May u n t i l O c t o b e r . T h e s e r e s u l t s a r e p r e s e n t e d i n T a b l e s 1 1 a ( n u m b e r s ) a n d l i b ( d r y w e i g h t ) . T h o s e s p e c i e s w h o s e o c c u r r e n c e c o i n -c i d e s w i t h t h e max imum a v a i l a b i l i t y o f d e t r i t u s w e r e d e l i m i t e d o n t h e b a s i s o f t h e f o l l o w i n g , s o m e w h a t a r b i t r a r y , c r i t e r i o n . T h e q u a l i f y i n g s p e c i e s m u s t h a v e b e e n r e p r e s e n t e d b y m o r e t h a n 75% o f t h e i r t o t a l n u m b e r a n d d r y w e i g h t d u r i n g t h e s u m m e r c o l l e c t i o n s . T h e t h r e e s p e c i e s w h i c h m e t t h i s q u a l i f i c a t i o n w e r e : Cancer oregonensis D a l l Wetacaprella. anomala M a y e r Lacuna marmorata D a l l - 73 -Figure 13. Contour representation of d e t r i t u s biomass along the 95 m transect l o c a t i o n within S i t e 1 for the peri o d 28 May u n t i l 7 October 1976. Contour i n t e r v a l s are 0.2 g ash-free dry weight per nr. - 74 -Table 11a. The t o t a l number of each faunal species summed over the 28 July, 18 August and 12 September 1976 transect c o l l e c t i o n s . The percentage that t h i s number represents o f the t o t a l number of occurrences over the en t i r e sampling period i s i n parentheses. An * denotes those species which are represented by more than 75% of t h e i r t o t a l number of occurrences within the samples c o l l e c t e d on the above three dates. Species Number Percentage of t o t a l Acmaea mitra Rathke 1 (12.5) Alvinia spp. 119 (16.9) Amphilochus sp. 11 (44.0) Amphithoe sp. 1 (1.4) Balcis mi cans Carpenter 9 (60.0.) Bittium eschrichtii Middendorff 56 (49.1) Cancer oregonensis 19 (100.0) * Chlamys hastatus Sowerby 4 (33.3) Clinocardium sp. 12 (34.4) Granulina margaritula 161 (54.9) Hemigrapsus nudus Dana 3 (50.0) Hiatella arctica L. 6 (31.6) Lacuna marmorata 6018 (88.6) * Lirularia lirulata 66 (57.4) Margarites pupillus Gould (juvenile) 1111 (37.6) Margarites pupillus (parental) 449 (39.5) Metacaprella anomala 9 (100.0) * Mitrella gouldii Carpenter 109 (46.5) Mytilus edulis L. 858 (30.6) Nereis pelagica L. 1 (11.1) Notoacmea scutum Rathke 8 (40.0) Ocenebra sp. 25 (48.1) Odostomia spp. 116 (70.1) Pag.urus kennerlyi Stimpson 1 (8.3) Pugettia richii Dana 10 (30.4) Strongylocentrotus droebachiensis 4 (33.3) Tonicella lineata Wood 53 (31.8) - 75 -Table l i b . The t o t a l dry weight of each faunal species summed over the 28 July, 18 August and 12 September 1976 transect c o l l e c t i o n s . The percentage that t h i s figure represents of the t o t a l dry weight of i n d i v i d u a l s c o l l e c t e d over the ent i r e sampling period i s i n parentheses. An * denotes those species which are represented by more than 75% of t h e i r t o t a l dry weight within the samples c o l l e c t e d on the above three dates. Species Dry Weight Percentage of t o t a l Acmaea mitra 2.178 (14.8' Alvinia spp. 0.1963 (18.6) Amphilochus sp. 0.0100 (33.6 Amphithoe sp. 0.0029 (0.7] Balcis mi cans 0.0378 (57.7 Bittium eschrichtii 3.474 (42.1 Cancer oregonensis 0.1142 (100.0) Chlamys hastatus 0.0460 (41.0 Clinocardium sp. 0.3748 (31.6 Granulina margaritula 0.4882 (54. 3) Hemigrapsus nudus 1.115 (94.2) Hiatella arctica 1.66 7 (47.1, Lacuna marmorata 12.2 3 (75.0 Lirularia lirulata 0.6519 (52.1 Margarites pupillus (juvenile) 3.247 (26.9] Margarites pupillus (parental) 11.49 (42.7) Metacaprella anomala 0.0108 (100.0) Mitrella gouldii 3.711 (41.5) Mytilus edulis 62.94 (62.1) Nereis pelagica 0.0079 (4.5) Notoacmea scutum 2.163 (42.7) Ocenebra sp. 1.061 (21.5) Odostomia spp. 0.3368 (63.3) Pagurus kennerlyi 0.1475 (55.1) Pugettia richii 1.942 (27.9) Strongylocentrotus droebachiensis 0.4500 (6.3) Tonicella lineata 8.064 (21.0) - 76 -For each of these species histograms are presented i n Figure 14 (a-c) to des-cribe the temporal d i s t r i b u t i o n s of numbers and dry weight over the period sam-pled, permitting a graphic i n t e r p r e t a t i o n of t h e i r seasonal abundances. A l l three species demonstrate a trend of increasing numbers and biomass toward a strong midsummer peak followed by a decrease i n these parameters i n September and October, implying that the sampling program i s a s u f f i c i e n t documentation of t h e i r seasonal abundance patterns i n 1976. For Lacuna marmorata, which was p a r t i c u l a r l y abundant throughout the summer months, a d d i t i o n a l trends were evident. Concomitant with an increase i n numbers and dry weight of Lacuna marmorata i s a decrease i n the mean dry weight per i n d i v i d u a l . Figure 15 indicates that the greater increase i n numbers r e l a t i v e to dry weight appears following the second sampling date (14 June 1976) and i s due to the occurrence of a large number of juvenile i n d i v i d u a l s . Most Lacuna marmorata, and i n p a r t i c u l a r the j u v e n i l e s , were generally found amongst the d e t r i t u s and debris accumulated on the bottom and consolidated by the plants comprising the s u b t i d a l t u r f community. There i s evidence that the abundance of juvenile Lacuna marmorata i n the d e t r i t u s and debris i s due to t h e i r u t i l i z i n g the d e t r i t u s as a food re-source. Figure 16 demonstrates that 100% of the t o t a l number and dry weight of Lacuna marmorata were c o l l e c t e d within the quadrats at 30, 40 and 50 m along the transect. Results from the d e t r i t u s c o l l e c t i o n s of 20 August 1976 determined t h i s to be the area where most d e t r i t u s retention occurred. - 77 -F i g u r e 1 4 . S e a s o n a l d i s t r i b u t i o n h i s t o g r a m s o f t h e t o t a l n u m b e r a n d d r y w e i g h t (g) o f a) Cancer oregonensis b) Metacaprella anomala c ) Lacuna marmorata o c c u r i n g w i t h i n t h e s e v e n t r a n s e c t c o l l e c t i o n s f r o m 25 May u n t i l 7 O c t o b e r 1 9 7 6 . O p e n b a r s : n u m b e r s S o l i d b a r s : b i o m a s s NUMBER 0 2.5E3 5.0E3 I I I - 78 -F i g u r e 1 5 . S e a s o n a l t r e n d i n t h e mean d r y w e i g h t (g) p e r i n d i v i d u a l o f Lacuna marmorata f o r t h e p e r i o d 25 May u n t i l 7 O c t o b e r 1 9 7 6 . T h e o c c u r r e n c e o f j u v e n i l e i n d i v i d u a l s i s e v i d e n c e d b y a d e c r e a s e i n t h e mean d r y w e i g h t p e r i n d i v i d u a l a f t e r t h e s e c o n d (14 J u n e ) s a m p l i n g d a t e . rv a D i -cr: d o o o 00 LU o 1 CD Q_ O CO 1 cr: LU O Q_ o CSl o S p a t i a l d i s t r i b u t i o n a l o n g t h e 9 5 m t r a n s e c t l o c a t i o n w i t h i n S i t e 1 o f Lacuna marmorata ( n u m b e r s a n d b i o m a s s ) a n d d e t r i t u s b i o m a s s d e m o n s t r a t i n g a c o i n c i d e n c e i n t h e o c c u r r e n c e o f t h e i r max imum a b u n d a n c e s . * A c o l l e c t i o n a t 20 m o n t h i s d a t e c o n t a i n e d n o Lacuna marmorata. D e t r i t u s b i o m a s s (20 A u g u s t 1 9 7 6 ) Lacuna marmorata ( n u m b e r s ) (18 A u g u s t 1976 ) Lacuna marmorata ( b i o m a s s ) (18 A u g u s t 1 9 7 6 ) 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 DISTANCE ALONG TRANSECT (M) DISCUSSION L i t t e r Assessment: In order to assess d e t r i t u s formation and subsequent processing within S i t e 1, i t i s necessary to know the contributions of s i g n i f i c a n t sources of d e t r i t u s within the system. In such a coastal area there i s p o t e n t i a l for input from both t e r r e s t r i a l and marine sources. Bath Island i s removed from s a l t marshes and domestic sewage input, so the p o t e n t i a l sources are reduced to plankton, faunal excreta, d r i f t wood and seaweed. Plankton w i l l not be an im-portant contributor, at a biomass ca 1% that of seaweed (Blinks 1955). Faunal excreta i s not l i k e l y to exceed that amount as i t i s two trophic l e v e l s removed from plant production. Perhaps the most s i g n i f i c a n t allochthonous l i t t e r source i n B r i t i s h Columbia waters i s d r i f t wood (Perkins 1974). The seaweed zone of Bath Island i s not characterized by a noticeable settlement of wood p a r t i c l e s , such that seaweeds can be considered the only important source of l i t t e r . I t i s d i f f i c u l t to compare l i t t e r accumulation at Bath Island to other areas as quantities are a function of the geology and biology of the area being studied. Zobell (1971), i n a study of d r i f t seaweeds cast upon San Diego County beaches i n C a l i f o r n i a between 19 36 and 1954, estimated as much as 184 of seaweeds per 150 m of shoreline on the beach at c e r t a i n times. In contrast to Zobell's r e s u l t s v i r t u a l l y no l i t t e r was c o l l e c t e d i n t e r t i d a l l y or s u p r a t i d a l l y at Bath Island, and the quantity of l i t t e r c o l l e c t e d s u b t i d a l l y was very small i n comparison to Zobell's i n t e r t i d a l assessment. The difference i n the regions of l i t t e r deposition i s a t t r i b u t a b l e to beaches being accretion areas whereas rocky shores are excretion areas. The only s i g n i f i c a n t comparison that can be made i s that the phaeophytes were the dominant contributors to the l i t t e r pool i n both studies, at 75% and 86% for C a l i f o r n i a and Bath Island, respectively, on a wet weight b a s i s . - 81 -The seaweeds contributing the most biomass to the l i t t e r i n S i t e 1 are r e l a t i v e l y productive species. Both Jridaea cordata and Nereocystis luetkeana grow r a p i d l y during the spring, a t t a i n i n g t h e i r maximum standing crop biomasses during the summer. This i s followed by a period of increasing l i t t e r deposition. At t h i s time the plants have reached a s i z e where they become les s able to withstand the onslaught of current and waves, t h e i r v u l n e r a b i l i t y r e s u l -t i n g i n some plants becoming detached from the subtrate. For Nereocystis luet-keana the lamina are the more s i g n i f i c a n t contributors to the l i t t e r . Occasion-a l l y healthy plants become detached at t h e i r bases and d r i f t subject to the e f f e c t s of winds and current, due to a pneumatocyst keeping the plants a f l o a t . Neither the fate of these plants nor the number that l e f t S i t e 1 during the course of t h i s study are known; however i t i s known that they are not generally cast ashore at e i t h e r S i t e 1 or S i t e 2. Rarely was a Nereocystis luetkeana l i t t e r fragment observed upon the shore and only once during the e n t i r e study was Nereocystis luetkeana l i t t e r c o l l e c t e d within an i n t e r t i d a l quadrat. This i s not unexpected as rocky shores are areas of excretion. Laminaria and Fucus dis-tichus, although tending to be perennial, contribute s i g n i f i c a n t l y to the l i t t e r pool a f t e r having f i n i s h e d most of t h e i r seasonal growth. Slower growing seaweeds are disproportionately represented i n the l i t t e r c o l l e c t i o n s . Constantinea subulifera, a dominant, long-lived contributor to seaweed standing crop biomass i n S i t e 1 was not c o l l e c t e d during the l i t t e r sampling program. By v i r t u e of the sampling scheme undertaken, i t has been p o s s i b l e to assess the biomass of seaweed l i t t e r within S i t e 1 i n four dimensions. The midsummer c o l l e c t i o n s create an a r e a l p r o f i l e f o r the s i t e and d e l i m i t the s p a t i a l * c h a r a c t e r i s t i c s of l i t t e r d i s t r i b u t i o n . The 14-month sampling program at the 95 m transect l o c a t i o n within S i t e 1 contributes a temporal dimension. This - 82 -f a c i l i t a t e s an extrapolation of the midsummer areal p r o f i l e over the period of a f u l l year f o r the f i v e species contributing s i g n i f i c a n t l y to the l i t t e r . I t w i l l be seen i n a l a t e r discussion concerning the development of a mathematical model to simulate l i t t e r decomposition that the most impor-tant observation with respect to the temporal d i s t r i b u t i o n of l i t t e r biomass i s the s i m i l a r i t y of the seasonal patterns of the f i v e major contributors. Although the longevity of Nereocystis luetkeana s t i p e s within the l i t t e r exceeds that of other l i t t e r , t h e i r t o t a l contribution i s r e l a t i v e l y minor. Any loss of informa-t i o n r e s u l t i n g from usage of a si n g l e curve model to approximate the seasonal d i s t r i b u t i o n f o r t o t a l l i t t e r w i l l be almost n e g l i g i b l e . The quantity of l i t t e r a v a i l a b l e f o r decomposition i s the u l t i -mate d r i v i n g variable i n an attempt to simulate i t s entry i n t o , and processing within, l i t t e r and d e t r i t a l pathways. Although these c o l l e c t i o n s are most repre-sentative of the l i t t e r d i s t r i b u t i o n patterns within Site 1, one must be c a r e f u l not to accept immediately that these data represent the true proportion of each species' contribution to t o t a l l i t t e r input since neither the decomposition rate for each species nor the residence time f o r l i t t e r i n Si t e 1 have been considered. L i t t e r Decomposition Experiments: There are three components of plant l i t t e r which are known to i n -fluence i t s decomposition rate. The so l u b l e , moderately r e s i s t a n t and crude f i b r e components respond d i f f e r e n t l y during the decomposition process. E x t r i n s i c influences must be considered as w e l l . Environmental factors such as temperature, moisture, nutr i e n t a v a i l a b i l i t y and microbial composition i n t e r a c t i v e l y exert an e f f e c t on the decomposition rates and patterns adding to the complexity of the process. Some authors ( G r i l l and Richards 1964, Minderman 1968, Otsuki and Hanya 1972) chose a ' t h e o r e t i c a l l y preferable' curve model to represent t h e i r data on l i t t e r decomposition which Olson (1963) introduced as an exponential - 83 -decay curve with a constant 'k' re l a t e d to the h a l f - l i f e of the substance under-going decomposition. For such a simple model to be s a t i s f a c t o r y the process i t describes must be simple as we l l . This i s not the case with l i t t e r decomposi-t i o n . Although the curve may adequately describe the i n d i v i d u a l components of the decomposition process, t h e i r combination may defy a simple des c r i p t i o n . Hunt (1977) demonstrated t h i s point well and i l l u s t r a t e d the u n s u i t a b i l i t y of applying an exponential decay curve to the decomposition data of Pendleton (1972). The r e s u l t produced curves which obviously misrepresented the data. With t h i s i n mind i t was more su i t a b l e to s e l e c t a curve which e x t r i n s i c a l l y f i t the data w e l l rather than accept an i n t r i n s i c model based s o l e l y on t h e o r e t i c a l considerations. Furthermore, acceptance of an i n t r i n s i c model re-duces the p r o b a b i l i t y f o r success of a p r a c t i c a l a p p l i c a t i o n of such information when compared to e f f o r t s based on a more r e a l i s t i c representation of the data. The most consistent trend observed i n the l i t t e r bag experiments was the i n i t i a l rapid loss of material followed by a decrease i n th i s rate as time proceeds. A s i m i l a r trend i s normally observed f o r t e r r e s t r i a l l i t t e r , a l -though over a much longer time period, and i s explained as follows. There i s an i n i t i a l rapid loss through leaching of the soluble and more e a s i l y metabolised components (Nykvist 1963, Petersen and Cummins 1974, Suberkropp et al. 1976) leaving behind a s t r u c t u r a l backbone of ref r a c t o r y material which slowly decompo-ses over a period of months (Lousier and Parkinson 1975, Stachurski and Zimka 1975, 1976 a&b, Gasith and Lawacz 1976). As the ref r a c t o r y material becomes more prev-alent i t s resistance to metabolism by microbes r e s u l t s i n the decomposition pro-cess slowing down. Only two species, Rhodomela larix and Iridaea cordata, d i f f e r e d from t h i s trend. Iridaea cordata displayed an acc e l e r a t i n g decomposition rate as time proceeded while Rhodomela larix maintained a l i n e a r rate of decomposition. Iridaea cordata i s unique by having the lowest observed percentages of soluble and crude f i b r e components. Having a low soluble content would reduce the • - 84 -length of an i n i t i a l period of leaching and the paucity of crude f i b r e would f a c i l i t a t e a r e l a t i v e l y r a pid decomposition rate following t h i s period. The i n i t i a l l a g phas'e may be due to the maintenance of s t r u c t u r a l i n t e g r i t y during the primary stages of decomposition and the i n a b i l i t y of the small amount of soluble matter to mask t h i s e f f e c t as i t apparently does f o r other species. The l i n e a r decomposition curve for Rhodomela larix can perhaps be explained by i t s having a predominance of short, stubby branches which may become su i t a b l y fractured to escape the l i t t e r bag before i t s r e l a t i v e l y high crude f i b r e content l i m i t s i t s decomposition rate i n the l a t e r stages. Loss of seaweed biomass from the l i t t e r bags was rapid. When compared to t e r r e s t r i a l l i t t e r , seaweed l i t t e r decomposes at l e a s t f i v e times f a s t e r . Odum and de l a Cruz (1967) and de l a Cruz (1975) demonstrated that s a l t marsh plants decompose at about the same rate as t e r r e s t r i a l p l ants. Most plants they studied had a considerable amount of t h e i r o r i g i n a l dry weight remaining a f t e r 300 days. S i m i l a r l y , de l a Cruz and Gabriel (1974) determined loss of Juncus roemerianus Scheele from l i t t e r bags to be ca 40% per year. Adding aquatic vascular plants to the comparison, Harrison and Mann (1975b) found that Zostera marina l o s t only 35% of i t s o r i g i n a l dry weight i n 100 days, under laboratory conditions. Hunter (1976) studied two freshwater plants, Lemna minor L. and Chara contraria A. Braun ex Kutzing, and found both to re-ta i n ca 75% of t h e i r o r i g i n a l dry weight a f t e r ten weeks of submersed incubation i n l i t t e r bags. That t e r r e s t r i a l , aquatic and marine vascular plants decompose much more slowly than seaweeds, even when submersed, implies that the r a p i d i t y of seaweed decomposition i s more a function of t h e i r composition than of t h e i r environment. The influence of the r e l a t i v e q u a n t i t i e s of seaweed s t r u c t u r a l components on decomposition rates i s discussed i n r e l a t i o n to the de t r i t u s de-: composition experiments (Experiments 1 and 2). - 85 -Nitrogen Content of Decomposing L i t t e r : The r e s u l t s of t h i s study are p a r t i c u l a r l y s i g n i f i c a n t i n that they demonstrate a difference between vascular plant decomposition and seaweed decomposition with respect to nitrogen content. For vascular p l a n t l i t t e r there i s generally an increase i n both the concentration and absolute content of n i t r o -gen following an i n i t i a l period of leaching during which most of the soluble com-ponents escape (Nykvist 1963, Petersen and Cummins 1974, Suberkropp et al. 1976). As most nitrogen escapes as soluble matter i t has to be reacquired from the sur-rounding environment by organisms associated with the l i t t e r (Bocock 1964). A l -t e r n a t i v e l y , t h i s study indicates that the r e l a t i v e increase i n nitrogen content of decomposing seaweed l i t t e r i s due to a p r e f e r e n t i a l release of chemical con-s t i t u e n t s low i n nitrogen. That the increase i s due to the incorporation of inorganic nitrogen into the l i t t e r by the a c t i v i t y of microbes i s u n l i k e l y as i t requires that the microbes have phenomenally rapid growth and nitrogen incorpora-ti o n rates at a time when inorganic nitrogen i n the seawater at S i t e 1 i s at a low concentration (Tully and Dodimead 1957). This argument i s enhanced by demonstrating that C:N r a t i o s of 8:1 or less would be very d i f f i c u l t to a t t a i n by metabolic processes. C:N r a t i o s of t h i s order are implied by the data obtained i n t h i s study. I f the highest percentage nitrogen contents obtained for Laminaria saccharina (3.70%) and Rhodomela larix (4.74%) are r e l a t e d to the percentage carbon contents for Lamin-aria saccharina (26.76%) and an unspecified Rhodomela (28.32%) (Vinogradov 1953), a C:N r a t i o of 6-8:1 r e s u l t s . With a value of 6.4% nitrogen content obtained i n t h i s study for 9 7% decomposed Gigartina papillata and a value of 24% carbon con-tent f o r Gigartina acicularis (Wulfen) Lamouroux ( N i e l l 1976) a C:N r a t i o of less than 4:1 r e s u l t s , assuming there i s a reasonable degree of generic s i m i l a r i t y i n percentage carbon contents. The C:N r a t i o f o r b a c t e r i a i s ca 5.7:1 (Spector 1956). To a t t a i n - 86 -C:N r a t i o s approaching t h i s figure the material i n the l i t t e r bags would have to be composed almost e n t i r e l y of microbial biomass, unless a considerable propor-t i o n of the nitrogen was a component of the i n i t i a l seaweed biomass. Whyte and Englar (1975) suggest that a large proportion of the protein i n seaweeds, Nereo-cystis luetkeana i n p a r t i c u l a r , i s bonded to the c e l l u l o s i c f i b r e s of the c e l l w a l l . This would prevent the easy release of protein nitrogen since c e l l u l o s e i s a p a r t i c u l a r l y r e s i s t a n t component. The hyperbolic curve presented i n Figure 7 i s consistent with a protein - c e l l u l o s e bond hypothesis. An ac c e l e r a t i n g i n -crease i n r e l a t i v e nitrogen content implies the rate of nitrogen loss i s inde-pendent of the rate of loss of the more abundant biomass components. Hunter (1976) used l i t t e r bags to assess the decomposition rate of Fucus vesiculosus on a rocky shore and within a s a l t marsh. His re s u l t s are comparable to those presented i n t h i s study with respect to decomposition rates, r e l a t i v e nitrogen content and C:N r a t i o . A d d i t i o n a l l y , f o r the aquatic plants Lemna minor and Chara contraria, he demonstrated no consistent trend for the same parameters, maintaining the uniqueness of seaweeds i n t h i s regard. Detritus Decomposition: For the subsets delimited i n Experiment 1 (Table 8a) the wi t h i n -group a f f i n i t i e s are somewhat apparent. A l l groups are composed of species of a si n g l e taxonomic class and can be categorized according to the morphology and habit of the seaweeds they contain. Subset 1 contains four species of branched Rhodophyta which are found i n t e r t i d a l l y or i n the shallow s u b t i d a l zone. Sub-set 2 contains three species of s u b t i d a l kelp (Laminariales). One other phae-ophyte, Fucus distichus, i s placed by i t s e l f i n Subset 4. I t resembles the other phaeophytes neither i n morphology nor habit, being dichotomously branched and i n h a b i t i n g the i n t e r t i d a l zone. Subset 3 contains two bladed rhodophytes known to coexist i n the shallow s u b t i d a l zone (Foreman unpub.). S i m i l a r l y , f o r Experiment 2, the within group a f f i n i t i e s can be e a s i l y detected. Subset 1 contains a l l the 'r e s i s t a n t ' species, those which did - 87 -not e x h i b i t a continual • los.s of p a r t i c u l a t e biomass, and Constantinea subuli-fera. Constantinea subulifera decomposed faster than a l l other species i n Subset 1 and i s the only species that did not e x h i b i t an increase i n p a r t i c u -l a t e biomass as decomposition proceeded. I t i s the only bladed seaweed i n Subset 1. Although Newman-Keul's Test did not separate Constantinea sublifera from the other species, Duncan's Test delimited an equivalent subset excepting Constantinea subulifera. The increase i n p a r t i c u l a t e biomass can be explained as a r e s u l t of increased microbial biomass due to p r e f e r e n t i a l metabolism of soluble matter as demonstrated i n Experiment 1. I f the growth rate of microbes u t i l i z i n g the soluble matter exceeds the decomposition rate of the p a r t i c u l a t e f r a c t i o n of the d e t r i t u s a net increase i n p a r t i c u l a t e biomass w i l l r e s u l t . Fucus distichus (60.7%) and Constantinea subulifera (65.6%) have soluble con-tents considerably higher than the eight other species. Although low in soluble content, Rhodomela larix (4.28%), Odonthalia flocossa (3.44%) and Plocamium coccineum var. pacificum (3.39%) have the highest percentages of crude f i b r e carbohydrate. Experiments 1 and 2, re s p e c t i v e l y , demonstrated that soluble matter i s p r e f e r e n t i a l l y metabolized and decomposition i s slower for seaweeds with a high crude f i b r e content. Laminaria saccharina and Laminaria groenlandica comprise Sub-set 3. Subset 4 contains the lamina and s t i p e sections of Nereocystis luet-keana. Kelp being delimited from the other seaweeds indicates taxonomic s i m i l a r i t i e s with regard to decomposition s u s c e p t a b i l i t y . Subsets 2 and 5 contain s i n g l e species each. Iridaea cordata i s i s o l a t e d because of i t s rapid decomposition r a t e . Gigartina papillata i s placed between Subset 1 and the subsets containing more e a s i l y decomposable species. I t i s the only i n t e r t i d a l species not contained within Subset 1. I t has an a f f i n i t y with the species i n the other three subsets, a l l of which are bladed seaweeds, i n that i t has a tendency to be f o l i o s e . - 88 -There i s a basic s i m i l a r i t y i n the composition of the subsets delimited i n Experiment 1 and Experiment 2. Any differences can r e a d i l y be ex-plained by the influence of d e t r i t a l soluble matter content on the rates of oxy-gen consumption obtained i n Experiment 1. Referring to Table 8a, the e f f e c t of the high soluble contents of Fucus distichus and Constantinea subulifera on t h e i r oxygen consumption rates can be negated by p l a c i n g them i n Subset 1 with the other 'resistant' species. A l l four subsets are now less dissected equi-valents of those delimited i n Table 10. The i n a b i l i t y to d i s s o c i a t e Nereocys-t i s luetkeana from Laminaria saccharina and Laminaria groenlandica, and Gigar-tina papillata from the other members of the Subset 1 i s l i k e l y due to the an-a l y s i s becoming less powerful as a r e s u l t of the e r r o r contributed by the co-variance of oxygen consumption with the quantity of soluble matter i n the d e t r i -tus, as demonstrated by Figure 9 and Table 8b. As a f i n a l judgement, three generalizations can be made concern-ing the decomposition rates observed. Detritus derived from i n t e r t i d a l seaweeds i s apparently more r e s i s t a n t to decomposition than d e t r i t u s derived from sub-t i d a l seaweeds. Detritus derived from the f a s t e r growing seaweeds decomposes more quickly than d e t r i t u s derived from the slower growing seaweeds. Seaweed morphology appears to correlate with decomposition s u s c e p t i b i l i t y , the more f o l i o s e the seaweed, the more quickly d e t r i t u s derived from the seaweed decomposes. A l l three of the above considerations are c l o s e l y i n t e r r e l a t e d . Other factors are l i k e l y to be involved as w e l l , i n p a r t i c u l a r the resistance of seaweeds to at-tack by microbes. The presence of a n t i b a c t e r i a l chemicals i n some species i s known to enhance resistance (Sieburth 1968). In Experiment 1 oxygen consumption rates were shown to c o r r e l a t e with the soluble content of s p e c i f i c d e t r i t u s (Figure 9). Consumption was higher f o r species having r e l a t i v e l y high soluble matter contents. Only Iridaea cor-data defied t h i s trend. The oxygen consumption rate of microbes decomposing - 89 -.Iridaea cordata d e t r i t u s was second only to Fucus distichus, although i t has the lowest percentage soluble content (28.1%) observed amongst a l l species. Its r a p id decomposition rate may be p a r t i a l l y due to i t containing only a very small quantity of crude f i b r e at 0.86% of i t s dry weight. This was the lowest quantity observed amongst a l l the species. This lack of r e s i s t a n t material may render Iridaea cordata more vulnerable to attack by microorganisms such that i t decomposes rapidly r e l a t i v e to other species with a s i m i l a r or greater percentage of soluble matter. The decomposition rates obtained i n Experiments 1 and 2 are com-plementary. Iridaea cordata provides the best comparison due to i t s having very l i t t l e crude f i b r e , a low soluble matter content, and a rapid decomposition rate. By assuming that the p a r t i c u l a t e component of d e t r i t u s i s composed mostly of carbohydrate, ca 1.07 mg of oxygen would be required to f u l l y decompose the 1.0 mg plug of d e t r i t u s introduced i n t o each BOD b o t t l e . At the average oxygen consumption rate of 0.052 mg O2 per day observed for Iridaea cordata over the f i r s t 10 days of incubation, 20.5 days would be required to f u l l y decompose the d e t r i t u s . The rate of loss of p a r t i c u l a t e matter obtained for Iridaea cordata during the f i r s t 10 days of incubation i n Experiment 2 was 5.7% per day. At t h i s rate, 18 days would be required to f u l l y decompose the d e t r i t u s , i n close agree-ment with the 20.5 days estimated by the oxygen consumption method. Comparing the decomposition rates obtained i n Experiments 1 and 2 to those obtained by other persons f o r vascular plant d e t r i t u s , the most ap-parent difference i s the r e l a t i v e r a p i d i t y of seaweed d e t r i t u s decomposition. Odum and de l a Cruz (1967) measured oxygen consumption of natural coarse Spar-tina alterniflora d e t r i t u s (that which was retained by a 0.239 mm aperture) at ca 1.8 mg 02/g AFDW/hr at 15 C. This study obtained rates i n the range of .2.7-7.0 mg 02/g AFDW/hr for equivalently s i z e d d e t r i t u s from Plocamium coccineum var. pacificum and Iridaea cordata, r e s p e c t i v e l y , also at 15 C. The data were - 90 -m o s t r e l i a b l e f o r t h e s e t w o s p e c i e s s i n c e t h e i r l o w s o l u b l e c o n t e n t s m i n i m a l l y a f f e c t e d o b s e r v e d o x y g e n c o n s u m p t i o n r a t e s . D i f f e r e n c e s i n d e c o m p o s i t i o n r a t e s f o r v a r i o u s p a r t i c l e s i z e s o f a q u a t i c v a s c u l a r p l a n t d e t r i t u s h a v e b e e n s h o w n f o r Phragmites communis T r i n i u s l e a v e s ( H a r g r a v e 1 9 7 2 ) , Spartina alterniflora (Odum a n d de l a C r u z 1 9 6 7 , G o s s e -l i n k a n d K i r b y 1 9 7 4 ) a n d Thalassia testudinum ( F e n c h e l 1 9 7 0 ) . T h a t a s i m i l a r r e s p o n s e wa s s h o w n f o r Nereocystis luetkeana a n d Iridaea cordata d e t r i t u s i n d i -c a t e s t h a t d e c o m p o s i t i o n r a t e may b e i n f l u e n c e d b y t h e a m o u n t o f s u r f a c e a r e a e x p o s e d t o m i c r o b i a l a t t a c k . P a r t o f t h e d i f f i c u l t y i n d e t e r m i n i n g a r e l a t i o n s h i p b e t w e e n p a r -t i c l e s i z e a n d t h e p a r a m e t e r s t e s t e d i n E x p e r i m e n t s 1 a n d 2 may b e e x p l a i n e d b y t h e r e b e i n g o n l y a s m a l l a m o u n t o f c r u d e f i b r e p r e s e n t i n s e a w e e d b i o m a s s . R e -f r a c t o r y m a t e r i a l a c c o u n t s f o r a l a r g e p r o p o r t i o n o f v a s c u l a r p l a n t d e t r i t u s , a n d i s c o m p o s e d l a r g e l y o f l i g n i n s , c e l l u l o s e s a n d h e m i c e l l u l o s e s w h i c h s l o w l y d e c o m p o s e ' o v e r a p e r i o d o f m o n t h s ( L o u s i e r a n d P a r k i n s o n 1 9 7 5 , S t a c h u r s k i a n d Z i m k a 1 9 7 5 , 1 9 7 6 a & b , G a s i t h a n d L a w a c z 1 9 7 6 ) . L i g n i n i s t h e m o s t r e s i s t a n t o f t h e s e c o n s t i t u e n t s , h a v i n g a h a l f - l i f e o f a b o u t o n e y e a r a t 30 C a n d u n d e r o p t i m a l c o n d i t i o n s f o r m i c r o b i a l d e c o m p o s i t i o n ( A c h a r y a 1 9 3 5 ) . T h e a m o u n t o f l i g n i n p r e s e n t i n l e a v e s wa s g i v e n a r a n g e o f 1 6 - 4 2 % b y J e n s e n ( 1 9 7 4 ) , who s u m -m a r i z e d t h e w o r k o f s e v e r a l a u t h o r s . W i t h t h e a m o u n t o f m a t e r i a l l o s t b y l e a -c h i n g r a n g i n g f r o m ca 2 7 - 4 0 % ( O t s u k i a n d W e t z e l 1 9 7 4 , S u b e r k r o p p e t al. 1 9 7 6 ) , l i g n i n may a c c o u n t f o r up t o 70% o f t h e p a r t i c u l a t e f r a c t i o n o f t h e d e t r i t u s . I n c o n t r a s t t o v a s c u l a r p l a n t s , m a c r o p h y t i c a l g a e c o n t a i n n o l i g -n i n , a l t h o u g h t h e i r c e l l w a l l s d o c o n t a i n c e l l u l o s e s a n d h e m i c e l l u l o s e s ( S t e w a r d 1 9 7 4 ) w h i c h a r e m o d e r a t e l y r e s i s t a n t . T h e c r u d e f i b r e c o n t e n t f o r t h e 10 s p e c i e s a s s a y e d i n t h i s s t u d y r a n g e d f r o m 1 . 2 - 1 7 . 7 % o f t h e p a r t i c u l a t e c o m p o n e n t . A s v a s c u l a r p l a n t s c o n t a i n a m u c h g r e a t e r a m o u n t o f c r u d e f i b r e t h a n s e a w e e d s i t i s r e a s o n a b l e t o c o n c l u d e t h a t t h e r a p i d d e c o m p o s i t i o n r a t e s o f s e a w e e d l i t t e r a n d d e t r i t u s i s a t l e a s t p a r t i a l l y d u e t o a p a u c i t y o f r e s i s t a n t m a t e r i a l . Figures 12a (crude fibre) and 12b (glucose) demonstrate the r e l a t i o n s h i p between decomposition rate and r e s i s t a n t material content; however t h i s parameter was shown to account f o r only 42.8% of the variance associated with Figure 12a and 39.9% of the variance associated with Figure 12b. Other factors must be involved as w e l l . No doubt some of the variance i s due to l i m i t a t i o n s i n the data, but factors determining the resistance and s u s c e p t i b i l -i t y of seaweeds to attack by microbes are l i k e l y to play important r o l e s . The three major s t r u c t u r a l components o f seaweeds have been shown to influence the decomposition process independently. In Experiment 1 soluble matter was i s o l a t e d from the remaining two components as being p r e f e r e n t i a l l y metabolized. From the r e s u l t s of Experiment 2 the crude f i b r e component was i d e n t i f i e d as an influence on the decomposition rates of the p a r t i c u l a t e f r a c -t i o n ; the greater the quantity of crude f i b r e , the slower the decomposition rate. The three components can thus be ranked i n order of soluble, moderately r e s i s t a n t and crude f i b r e with respect t o the ease with which each i s metaboliz-ed, as has been previously documented f o r vascular plant material. Detritus Assessment: The accuracy of d e t r i t u s biomass estimations i s questionable. A major c r i t i c i s m i s the assumption that the f l a t , h o r i z o n t a l areas chosen as c o l l e c t i n g surfaces are equally as receptive to d e t r i t u s settlement as uneven surfaces. Such surfaces would be expected to r e t a i n a greater proportion of the d e t r i t u s than the l e v e l surfaces. A second c r i t i c i s m i s that the biomass data do not take i n t o consideration the decomposition rate of natural d e t r i t u s . Data i n t h i s study i n d i c a t e that turnover of seaweed d e t r i t u s i s ra p i d . For Iridaea cordata d e t r i t u s ca 18-21 days are required, other species r e q u i r i n g a longer turnover time. With sampling i n t e r v a l s of about three weeks, the quan-t i t y of d e t r i t u s deposited on the bottom i n S i t e 1 w i l l p o t e n t i a l l y be under-estimated by 50%, i f i t s biogenic o r i g i n i s seaweed biomass. As microscopic - 92 -e x a m i n a t i o n o f t h e d e t r i t u s d e t e r m i n e d i t t o b e c o m p o s e d o f ca 10% d i a t o m a c e o u s m a t e r i a l , t h e m o s t s i g n i f i c a n t c o m p o n e n t o f p h y t o p l a n k t o n i n t h e S t r a i t o f G e o r g i a ( H u t c h i n s o n a n d L u c a s 19 31) , s e a w e e d r e m a i n s t h e o n l y s o u r c e a b u n d a n t e n o u g h t o a c c o u n t f o r t h e r e m a i n i n g 90% o f d e t r i t u s b i o m a s s . I t i s l i k e l y t h a t d e t r i t u s d e p o s i t i o n w i t h i n S i t e 1 w i l l b e u n d e r e s t i m a t e d , p e r h a p s by more t h a n 5 0 % ; h o w e v e r , t h i s w i l l n o t p r e c l u d e t h e p o s s i b i l i t y o f m a k i n g j u d g e m e n t s r e g a r d -i n g t h e f a t e o f d e t r i t u s f o r m e d from seaweed b i o m a s s . F a u n a l A s s e s s m e n t : V a s c u l a r p l a n t d e t r i t u s i s a c o n f i r m e d s o u r c e o f f o o d f o r f i s h a n d i n v e r t e b r a t e s ( K a u s h i k a n d H y n e s 1 9 6 8 , I v e r s o n 1 9 7 3 , T e n o r e 1 9 7 5 , K o s t a l o s and Seymour 19 7 6 , S i b e r t e t al. 19 7 7 ) . Seaweed d e t r i t u s d e r i v e d from t h e phaeo-phyte Dictyopteris zonarioid.es Farlow has been shown t o be i n g e s t e d by the e p i -b e n t h i c d e p o s i t - f e e d i n g h o l o t h u r i a n Parastichopus parvimensis C l a r k ( Y i n g s t 19 7 6 ) . Fucus vesiculosus d e t r i t u s h a s b e e n u t i l i z e d b y t h e b r i n e s h r i m p Acartia tonsa D a n a (Roman 1 9 7 7 ) a n d t h e m o l l u s c s Hydrobia ulvae P e n n a n t a n d Macoma balthica L . ( N e w e l l 1 9 7 5 ) . I n e a c h o f t h e s e e x p e r i m e n t s s e a w e e d d e t r i t u s wa s t h e o n l y f o o d s o u r c e s u c h t h a t n o i n d i c a t i o n o f t h e a n i m a l s ' p r e f e r e n c e f o r t h i s f o o d r e -s o u r c e wa s a t t a i n e d . I n t h i s s t u d y Lacuna marmorata, Metacaprella anomala a n d Cancer oregonensis w e r e d e l i m i t e d a s p o s s i b l e r e s p o n d e n t s t o t h e a v a i l a b i l i t y o f n a t u r a l s e a w e e d d e t r i t u s a s a f o o d r e s o u r c e o n t h e b a s i s o f t h e o c c u r r e n c e o f a t l e a s t 75% o f t h e i r n u m b e r s a n d b i o m a s s d u r i n g t h e t h r e e m i d s u m m e r f a u n a l c o l l e c -t i o n s . A c r i t i c a l c o n s i d e r a t i o n o f t h e s e s p e c i e s r e v e a l s t h a t Cancer oregonensis i s a n u n l i k e l y r e s p o n d e n t a s i t s h a b i t i s c a r n i v o r o u s a n d , f u r t h e r m o r e , o n l y 1 9 i n d i v i d u a l s w e r e c o l l e c t e d s u c h t h a t i t s q u a l i f i c a t i o n may b e an a r t i f a c t o f i n -a d e q u a t e s a m p l i n g . Cancer oregonensis w i l l n o t b e c o n s i d e r e d a n y f u r t h e r . I n a d e q u a t e s a m p l i n g may a l s o b e a r g u e d a s t h e r e a s o n f o r Meta-caprella anomala q u a l i f y i n g a s o n l y n i n e i n d i v i d u a l s w e r e c o l l e c t e d . A l t h o u g h n o t a b u n d a n t d u r i n g t h e summer o f 1 9 7 6 , Metacaprella anomala h a s b e e n a b u n d a n t - 93 -a t S i t e 1 i n p r e v i o u s y e a r s ( F o r e m a n u n p u b . ) . C i r c u m s t a n t i a l e v i d e n c e t h a t Metacaprella anomala i s a d e t r i t u s u t i l i z e r wa s o b t a i n e d i n t h i s s t u d y w h e n t h e y w e r e o b s e r v e d a t t a c h e d t o t h e e x p e r i m e n t a l l i t t e r b a g s i n n u m b e r s f r o m 1 0 - 1 0 0 i n d i v i d u a l s a b o u t t h e e n d o f J u l y . T h i s wa s t h e o n l y t i m e d u r i n g t h e summer o f 1 9 7 6 w h e n t h e i r p r e s e n c e wa s o b v i o u s . Lacuna marmorata wa s v e r y a b u n d a n t a t S i t e 1 d u r i n g t h e summer o f 19 76 w i t h a b o u t 7400 i n d i v i d u a l s b e i n g c o l l e c t e d a t d e n s i t i e s a p p r o a c h i n g 7 0 , 0 0 0 / m 2 ( F i g u r e 1 6 ) . O f p a r t i c u l a r s i g n i f i c a n c e i s t h e m o r e t h a n 1 0 - f o l d i n -c r e a s e i n t h e n u m b e r a n d d r y w e i g h t o f j u v e n i l e Lacuna marmorata i n d i v i d u a l s d u r i n g m i d s u m m e r . P r e l i m i n a r y c o n s i d e r a t i o n o f o t h e r s p e c i e s w h i c h may h a v e q u a l i -f i e d a t a l e s s e r p e r c e n t a g e i n d i c a t e d t h e y w e r e l e s s l i k e l y t o b e s i g n i f i c a n t l y d e p e n d e n t o n a summer p u l s e o f d e t r i t u s . A d d i t i o n a l s p e c i e s w h i c h w o u l d h a v e q u a l i f i e d a t a 50% a c c e p t a n c e l e v e l a r e Odostomia s p p . , L i r u l a r i a l i r u l a t a C a r p e n t e r a n d Granulina margaritula C a r p e n t e r . Odostomia c a n b e r e m o v e d f r o m c o n s i d e r a t i o n a s t h e y a r e g e n e r a l l y e c t o p a r a s i t i c i n h a b i t ( F r e t t e r a n d G r a h a m 1 9 4 9 ) . Granulina margaritula a n d L i r u l a r i a l i r u l a t a w e r e n o t p a r t i c u l a r l y a b u n -d a n t i n t h e f a u n a l c o l l e c t i o n s , d i d n o t d i s p l a y s t r o n g m i d s u m m e r p e a k s i n n u m b e r s o r b i o m a s s , p r e s e n t e d n o e v i d e n c e o f t h e o c c u r r e n c e o f j u v e n i l e s a n d a s t h e i r d i e t s a r e u n d o c u m e n t e d i t i s n o t p o s s i b l e t o d i s c u s s t h e i r o c c u r r e n c e i n r e l a t i o n t o t h e a v a i l a b i l i t y o f d e t r i t u s f r o m a p o s i t i v e p e r s p e c t i v e . A n i n d i c a t i o n t h a t t h e o c c u r r e n c e o f s p e c i f i c m a r i n e f a u n a m i g h t b e a r e s p o n s e t o t h e a v a i l a b i l i t y o f s e a w e e d d e t r i t u s a s a f o o d s o u r c e , w h i c h was s h o w n i n t h i s s t u d y t o o c c u r a b o u t t h e m i d d l e o f A u g u s t , was o b t a i n e d i n t h e s u m -m e r o f 1 9 7 5 w h e n an e x t e n s i v e ' b l o o m ' o f c a p r e l l i d a m p h i p o d s , m a i n l y Caprella alaskana M a y e r wa s o b s e r v e d i n S i t e 1. T h e y w e r e e s t i m a t e d t o b e p r e s e n t a t a d e n s i t y o f h u n d r e d s p e r s q u a r e m e t r e . A l s o e v i d e n t a t t h i s t i m e was a ' s c u m ' o f d e t r i t u s o v e r t h e b o t t o m , p a r t i c u l a r l y i n t h e c e n t r a l a r e a o f t h e k e l p b e d . T h a t - 94 -t h i s i s a t l e a s t a p e r i o d i c p h e n o m e n o n was c o n f i r m e d b y r e f e r e n c e t o F o r e m a n ' s ( u n p u b . ) f a u n a l d a t a w h i c h c o n t a i n e d a r e c o r d o f Caprella alaskana a t a d e n s i t y o f 5 2 0 / m 2 a n d Metacaprella anomala a t 3 1 2 / m 2 i n 1 9 7 3 a n d 1 9 7 2 , r e s p e c t i v e l y , a n d a t l e s s e r d e n s i t i e s i n o t h e r y e a r s ( T a b l e 1 2 ) . C a i n e ( 1 9 7 7 ) p r e s e n t s e v i d e n c e t h a t t h e s e t w o s p e c i e s may u t i l i z e d e t r i t u s . A l t h o u g h n e i t h e r o n e i s r e p r e s e n t e d i n h i s s t u d y , h e d e m o n -s t r a t e d ( w i t h r e f e r e n c e t o o t h e r a u t h o r s ) t h a t d e t r i t u s wa s f e d u p o n b y 15 o f t h e 16 s p e c i e s w h i c h h e i n v e s t i g a t e d . T h e i r mode o f f e e d i n g wa s v a r i a b l e , i n -v o l v i n g v a r i o u s c o m b i n a t i o n s o f f i l t e r f e e d i n g , s c a v e n g i n g a n d s c r a p i n g . F o o d a c q u i s i t i o n was d e t e r m i n e d t o b e r e l a t e d t o t h e p r e s e n c e o r a b s e n c e o f p l u m o s e s e t a e o n t h e i r s e c o n d a n t e n n a e , t h o s e s p e c i e s w i t h s u c h a n t e n n a e o b t a i n i n g a s i g n i f i c a n t a m o u n t o f t h e i r f o o d b y s c r a p i n g a n d / o r f i l t e r i n g p a r t i c u l a t e m a t t e r . T h e s e c o n d a n t e n n a e o f b o t h Metacaprella anomala a n d Caprella alaskana a r e c h a r a c t e r i z e d b y t h e p r e s e n c e o f p l u m o s e s e t a e , a n d s i n c e C a i n e o b s e r v e d t h a t 75% o f t h e s t o m a c h c o n t e n t s o f c a p r e l l i d s w i t h s u c h s e t a e c o n s i s t e d o f d i a t o m s a n d d e t r i t u s i t i s r e a s o n a b l e t o c o n c l u d e t h a t d e t r i t u s c o n t r i b u t e s s i g n i f i c a n t l y t o t h e d i e t o f t h e s e t w o s p e c i e s . A n y a r g u m e n t t h a t Caprella a l a s -kana a n d Metacaprella anomala are r e s p o n d i n g t o t h e a v a i l a b i l i t y o f d i a t o m s i s w e a k . S u c h a r e s p o n s e w o u l d h a v e b e e n e x p e c t e d t o o c c u r e a r l i e r i n t h e y e a r a t t h e t i m e o f t h e s p r i n g b l o o m o f d i a t o m s a n d o t h e r p h y t o p l a n k t o n i n t h e S t r a i t o f G e o r g i a ( H u t c h i n s o n et al.1929, G r a n a n d T h o m p s o n 1 9 3 0 ) , n o t d u r i n g t h e s u m m e r w h e n n u t r i e n t l e v e l s i n t h e S t r a i t o f G e o r g i a a r e l o w ( T u l l y a n d D o d i m e a d 1 9 5 7 ) . D i a t o m s c o m p r i s e d o n l y c a 10% o f t h e b i o m a s s o f d e t r i t u s s a m p l e s c o l l e c t e d f r o m t h e s u b s t r a t u m i n S i t e 1 d u r i n g t h e summer o f 1 9 7 5 . No ' b l o o m ' o f c a p r e l l i d s wa s d e t e c t e d w i t h i n S i t e 1 d u r i n g t h e s u m m e r o f 1 9 7 6 w h e n t h i s s t u d y was c o n d u c t e d . T h e s c a r c i t y o f b o t h Caprella alaskana a n d Metacaprella anomala d u r i n g t h e s u m m e r o f 1 9 7 6 c a n n n o t b e e x p l a i n e d w i t h c e r t a i n t y b u t i t i s p o s s i b l e t h a t u n u s u a l e n v i r o n m e n t a l c o n d i t i o n s d u r i n g T a b l e 1 2 . H i s t o r y o f t h e o c c u r r e n c e ( p e r m ) o f t w o s p e c i e s o f C a p r e l -l i d a e , Caprella alaskana a n d Metacaprella anomala, w i t h i n t h e s u m m e r f a u n a l c o l l e c t i o n s o f D r . R. E . F o r e m a n ( u n p u b l i s h e d ) . F o r e m a n ' s t r a n s e c t u n i t s a r e u s e d , b u t t h e y a r e e s s e n t i a l l y e q u i v a l e n t t o t h e t r a n s e c t u n i t s i n t h i s s t u d y . N u m b e r Y e a r D i s t a n c e a l o n g t r a n s e c t jm) C. alaskana M. anomala A u g u s t 1 9 7 2 J u l y 1 9 7 3 J u l y 1 9 7 5 A u g u s t 19 75 75 80 6 0 65 70 75 80 85 95 55 6 0 85 9 0 95 5 0 - 9 0 2 0 0 2 76 324 4 5 6 5 2 0 8 4 8 312 28 4 16 8 4 16 s e v e r a l h u n d r e d / m * * v i s u a l e s t i m a t i o n o f a b u n d a n c e - 96 -A u g u s t , g e n e r a l l y t h e w a r m e s t m o n t h , w e r e a t l e a s t p a r t i a l l y r e s p o n s i b l e . T h e V a n c o u v e r W e a t h e r O f f i c e , ca 35 km f r o m B a t h I s l a n d a t V a n c o u v e r I n t e r n a t i o n a l A i r p o r t , r e p o r t e d A u g u s t 1 9 7 6 t o b e o n e o f t h e c o l d e s t o n r e c o r d . T h e mean a i r t e m p e r a t u r e f o r A u g u s t 1 9 7 6 was 1 5 . 9 C . T h e n o r m a l mean a i r t e m p e r a t u r e f o r A u g u s t i s 1 7 . 1 C. On o n l y t w o o c c a s i o n s s i n c e 1 9 3 7 wa s a l o w e r mean a i r t e m p e r a -t u r e r e c o r d e d d u r i n g A u g u s t . W a t e r t e m p e r a t u r e w a s s i m i l a r l y i n f l u e n c e d . B a s e d o n d a i l y r e a d i n g s n e a r S i t e 1 ( F o r e m a n u n p u b . ) t h e mean w a t e r t e m p e r a t u r e f o r t h e f i r s t h a l f o f A u g u s t 1 9 7 6 wa s 3 . 6 4 C b e l o w t h e mean t e m p e r a t u r e f o r A u g u s t 1 9 7 5 ( 1 2 . 3 6 C a n d 1 6 . 2 C, r e s p e c t i v e l y ) w h e n Caprella alaskana was v e r y a b u n d a n t . A s m e t a b o l i s m i s a f u n c t i o n o f t e m p e r a t u r e , p e r s i s t e n t c o o l t e m -p e r a t u r e s c o u l d a p p r e c i a b l y l o w e r t h e g r o w t h p o t e n t i a l o f a n o r g a n i s m . M i c r o -b i a l d e c o m p o s i t i o n r a t e s o f s e a w e e d l i t t e r w o u l d b e s i m i l a r l y a f f e c t e d , r e d u c i n g t h e q u a n t i t y o f d e t r i t u s a v a i l a b l e . A l t h o u g h b a s e d o n l y o n a v i s u a l i n t e r p r e t a -t i o n , t h e q u a n t i t y o f d e t r i t u s w h i c h a c c u m u l a t e d o n t h e b o t t o m d u r i n g A u g u s t 1 9 7 6 wa s o b s e r v e d t o b e much l e s s t h a n t h e q u a n t i t y o b s e r v e d i n 19 75 w h e n a l a r g e b l o o m o f Caprella alaskana was o b s e r v e d . I n c o n c l u s i o n , i t i s r e a s o n a b l e t o s u g -g e s t t h a t t h e e f f e c t o f l o w t e m p e r a t u r e s o n t h e g r o w t h r a t e s o f b o t h Caprella alaskana a n d Metacaprella anomala, c o u p l e d w i t h l o w d e t r i t u s a v a i l a b i l i t y a s a f o o d r e s o u r c e , may h a v e b e e n s u f f i c i e n t t o p r e v e n t a p r o l i f e r a t i o n o f t h e s e s p e c i e s i n 1 9 7 6 . I t h a s n o t b e e n s h o w n e x p e r i m e n t a l l y t h a t Lacuna marmorata u t i l -i z e s d e t r i t u s a s a f o o d s o u r c e , h o w e v e r E . C a b o t ( p e r s . comm.) e x a m i n e d t h e g u t c o n t e n t s o f i n d i v i d u a l s c o l l e c t e d n e a r S i t e 1 a n d f o u n d a n a b u n d a n c e o f d i a t o m s a n d a m o r p h o u s m a t e r i a l w h o s e b i o g e n i c o r i g i n c o u l d n o t b e i d e n t i f i e d . He c l a s -s i f i e d t h i s l a t t e r m a t e r i a l a s d e t r i t u s w h i l e c o n c e d i n g i t may h a v e b e e n l i v i n g m a t e r i a l r e n d e r e d u n r e c o g n i z a b l e d u e t o m a s t i c a t i o n d u r i n g a n d f o l l o w i n g i n g e s -t i o n . Lacuna a r e k n o w n g r a z e r s o f s e a w e e d s . P o w e l l ( 1 9 6 4 ) d e m o n s t r a t e d t h a t Lacuna f e d u p o n Constantinea subulifera. T h e a u t h o r h a s o b s e r v e d a d u l t Lacuna marmorata g r a z i n g u p o n Nereocystis luetkeana l a m i n a . - 97 -T h e s e r e p o r t s r e f e r o n l y t o a d u l t s n a i l s . J u v e n i l e s n a i l s c o m -p r i s e d t h e b u l k o f t h e i n d i v i d u a l s o f Lacuna marmorata c o l l e c t e d w i t h i n S i t e 1 d u r i n g t h e p e r i o d o f max imum d e t r i t u s a v a i l a b i l i t y . F i g u r e 16 d e m o n s t r a t e s t h a t 100% o f t h e t o t a l n u m b e r a n d d r y w e i g h t o f Lacuna marmorata w e r e c o l l e c t e d i n t h e z o n e 3 0 - 5 0 m a l o n g t h e p e r m a n e n t t r a n s e c t . N o t o n l y i s t h i s t h e t u r f c o m m u n i t y z o n e ( L i n d s t r o m 1 9 7 3 ) , w h i c h a i d s i n t h e r e t e n t i o n o f t h e d e t r i t u s a n d p r o v i d e s a h a b i t a t f o r Lacuna marmorata, i t i s a l s o w h e r e max imum d e t r i t u s b i o m a s s was o b s e r v e d d u r i n g t h e summer ( s e e a l s o F i g u r e 1 3 , p a g e 7 3 ) . B a s e d o n t h i s e v i d e n c e , a n d t h e r e s u l t s f r o m t h e s i m u l a t i o n o f l i t t e r a n d d e t r i t u s p r o c e s s i n g w h i c h i n d i -c a t e s e a w e e d d e t r i t u s t o b e s u i t a b l y n u t r i t i o u s f o r f a u n a , i t d o e s n o t s e e m u n -r e a s o n a b l e t o i n f e r t h a t t h e s u c c e s s o f a m i d s u m m e r r e c r u i t m e n t o f j u v e n i l e Lacuna marmorata i n d i v i d u a l s i s d e p e n d e n t o n t h e a v a i l a b i l i t y o f s e a w e e d d e t r i t u s a s a f o o d r e s o u r c e . - -SIMJLATION MODEL OF LITTER AND DETRITUS PROCESSING I n t r o d u c t i o n : T o d a t e d e c o m p o s i t i o n m o d e l s d e v e l o p e d t o s i m u l a t e s p e c i f i c a s -p e c t s o f l i t t e r a n d d e t r i t u s d e c o m p o s i t i o n h a v e b e e n l i m i t e d t o t h e t e r r e s t r i a l e n v i r o n m e n t . B o l i n g et al. ( 1975 ) w e r e p r i m a r i l y c o n c e r n e d w i t h s i m u l a t i n g a n a s p e c t o f l e a f a n d b r a n c h l i t t e r d e c o m p o s i t i o n b y c o n s i d e r i n g t h e i n t e r a c t i o n b e t w e e n f r a c t i o n a t i o n o f t h e m a t e r i a l b y p h y s i c a l a b r a s i o n a n d m i c r o b i a l c o n d i -t i o n i n g o f t h e r e s u l t i n g p a r t i c l e s . F l a n a g a n a n d B u n n e l l ( 1 9 7 6 ) d e v e l o p e d a m o d e l t o d e a l w i t h t h e i n f l u e n c e o f m o i s t u r e , o x y g e n , t e m p e r a t u r e a n d l i t t e r c o m p o s i t i o n o n t h e r e s p i r a t i o n r a t e s o f m i c r o b e s a s s o c i a t e d w i t h l i t t e r , a n d a n o t h e r t o a s s e s s t h e d e c o m p o s i t i o n r a t e s o f t e r r e s t r i a l p l a n t s u n d e r t h e i n f l u -e n c e o f c h a n g i n g s u b s t r a t e q u a l i t y . T h e n e e d f o r t h i s d e g r e e o f r e s o l u t i o n b e c o m e s m o r e a p p a r e n t a s t h e c o m p l e x i t y o f t h e s y s t e m i n c r e a s e s . M o i s t u r e c o n t e n t , t e m p e r a t u r e a n d o x y -g e n t e n s i o n w i t h i n s o i l c a n v a r y d a i l y a n d s e a s o n a l l y , g r e a t l y i n f l u e n c i n g t h e d e c o m p o s i t i o n r a t e s o f s o i l b o r n e l i t t e r ( N y h a n 1 9 7 6 ) . T h i s r e q u i r e s t h a t t h e y b e i n c o r p o r a t e d i n t o m o d e l s s i m u l a t i n g t e r r e s t r i a l d e c o m p o s i t i o n p r o c e s s e s ( H u n t 1 9 7 7 , R e u s s a n d I n n i s 1 9 7 7 ) . D e c o m p o s i t i o n r a t e s a r e a l s o d e p e n d e n t u p o n t h e a v a i l a b i l i t y o f i n o r g a n i c n u t r i e n t s , p a r t i c u l a r l y n i t r o g e n ( K a u s h i k a n d H y n e s 1 9 7 1 , N i c h o l s a n d K e e n e y 1 9 7 3 , H o w a r t h a n d F i s h e r 1 9 7 6 ) . I n a m a r i n e s y s t e m many o f t h e s e c o m p l i c a t i o n s c a n b e a v o i d e d . T h e b u f f e r i n g q u a l i t y o f s e a w a t e r h e l p s a l l e v i a t e t h e p o t e n t i a l v a r i a b i l i t y i n many p a r a m e t e r s . T h e r e a r e s e a s o n a l v a r i a t i o n s i n t h e c o n t e n t s o f i n o r g a n i c n i t r o g e n a n d o x y g e n i n t h e S t r a i t o f G e o r g i a , b u t i t i s u n l i k e l y t h e i r c o n c e n -t r a t i o n s d r o p t o a l e v e l l i m i t i n g t h e d e c o m p o s i t i o n r a t e s o f t h e s p e c i e s s t u d i e d . O x y g e n c o n c e n t r a t i o n s i n t h e u p p e r 10 m o f t h e S t r a i t o f G e o r g i a a r e c o n s i s t e n -t l y n e a r 100% s a t u r a t i o n ( T u l l y a n d D o d i m e a d 1 9 5 7 ) . D u r i n g l i t t e r c o l l e c t i o n s , p o c k e t s o f l i t t e r w e r e o c c a s i o n a l l y f o u n d c o n t a i n i n g s o m e s e a w e e d s u n d e r g o i n g - 99 -anaerobic decomposition, however, the quantity was i n s i g n i f i c a n t compared to the amount of l i t t e r undergoing aerobic decomposition. As seaweed l i t t e r tends to r e t a i n nitrogen p r e f e r e n t i a l l y during the decomposition process, the a v a i l -a b i l i t y of nitrogen i s probably not a factor i n f l u e n c i n g the decomposition rate of most seaweed l i t t e r . Substrate q u a l i t y , temperature, and moisture content remain the major factors to be considered. The e f f e c t of substrate q u a l i t y i s accounted f o r i n t r i n s i c a l l y within the derived l i t t e r decomposition curves leaving temperature the only e f f e c t needing to be incorporated i n t o the model. Moisture i s obviously not an i n f l u e n t i a l f a c t o r . The numerical objectives of the simulation were: 1) to p r e d i c t the seasonal formation rates, biomass, and longevity of det r i t u s derived from decaying seaweed l i t t e r within S i t e 1 2) to pr e d i c t the seasonal release rates and quantity of soluble matter released from sea-weed l i t t e r at S i t e 1 3) to estimate the nitrogen contents of the det r i t u s formed and soluble matter released from decomposing seaweed l i t t e r . Determination of these parameters f a c i l i t a t e d a comparison be-tween the biomass of d e t r i t u s predicted to be ava i l a b l e as a food resource with-i n S i t e 1 and the biomass of de t r i t u s obtained from the sample c o l l e c t i o n s . A d d i t i o n a l l y , an estimate of the seasonal contribution of d e t r i t u s and soluble matter derived from seaweed l i t t e r to the S t r a i t of Georgia was obtained. Model Development: I n i t i a l l y , a four dimensional matrix representing the pool of sea-weed l i t t e r , the d r i v i n g variable i n the model, was created to permit l i t t e r to be referenced i n terms of i t s biogenic o r i g i n , the quadrat within the transect from which i t was c o l l e c t e d , and the l o c a t i o n of the transect. Only Fucus distichus, Iridaea cordata, Nereocystis luetkeana (stipe and lamina sections con-sidered i n d i v i d u a l l y ) and Laminaria (L. saccharina and L. groenlandica combined), the species accounting for more than 97% of the quantity of l i t t e r c o l l e c t e d , - 100 -were incorporated into the model. Extrapolation of the areal prof i le for each of these species (Figure 2) was fac i l i ta ted by prorating the 14 month seasonal collections (Figure 5) according to a tenth degree polynomic curve which approx-imates the seasonal trend in l i t t e r biomass. This curve is presented in Figure 17 for total l i t t e r biomass. The l i t t e r decomposition curves for these species are presented in Figure 6 ( d , g , h , i , j ) , page 43. For Fucus distichus, Nereocystis luetkeana (stipe) and Laminaria, which decompose exponentially, 1.0% of or ig inal dry weight was considered the termination of the decomposition process. The rates were modified by a temperature dependent adjustment factor which accounts for the effect of seasonal temperature differences on decomposition rates. Monthly mean temperatures are presented in Table 13a, based on regular measurements taken at or near Site 1. Temperatures were converted to a decomposition rate adjustment factor (Table 13b) by the following formula, assuming a of 2.0 approximates the effect of temperature on decomposition rates (Boling et al 1975, Reuss and Innis 1977). where : 13.4 - T F = 2 10 F is the decomposition rate adj ustment factor T is the temperature in C The mean temperature during the period when the l i t t e r bag experiments were performed was 13.4 C. The adjustment factor was estimated for each day of the year by f i t t ing the following cyc l i ca l curve to the adjustment factors determined from the above formula. The formulae for calculation of the following curve are in Croxton et al.(1967). F = 1. 375 + (0.20187 sin ( 2Tr/366) + 0.29821 cos (2TT/366) ) x I where: F i s the decomposition rate adjustment factor I is the day of the year The model was operated over the time period of 28 February 1976, - 101 -Figure 17. Tenth degree polynomic curve f i t ted to the seasonal biomass data obtained from l i t t e r collections along the 95 m transect location within Site 1 from 20 August 19 75 unt i l 2 October 1976. Biomass is in g ash-free dry weight per The curve model is as follows: PB = Z ( p i D Y 1 _ 1 ) ; i = 1,11 where: PB is the predicted l i t t e r biomass DY is the day of the year p. are the coefficients l The coefficients are as follows: 1) 0. 3115825195312500E+01 2) -0. 155 3213977813721E+00 3) 0. 5167517066001892E-02 4) -0. 9613301604986191E-•04 5) 0. 1075271284207702E-05 6) -0. 7727231263743306E-•08 7) 0. 3657364633369298E-•10 8) -0. 1130370536756020E- 12 9) 0. 2186710082213890E- 15 10) -0. 2393779959900677E-•18 11) 0. 1127717301078564E-•21 - 102 -T a b l e 1 3 . M e a n m o n t h l y t e m p e r a t u r e s (a) a n d t h e c o r r e s p o n d i n g d e c o m p o -s i t i o n r a t e a d j u s t m e n t f a c t o r (b) f o r t h e p e r i o d N o v e m b e r 1 9 7 5 u n t i l O c t o b e r 19 7 6 . T h e t e m p e r a t u r e d a t a a r e b a s e d o n p e r i o d i c r e a d i n g s n e a r S i t e 1 ( F o r e m a n u n p u b . ) . S e e t e x t f o r a n e x p l a n a t i o n o f t h e a d j u s t m e n t f a c t o r . M o n t h a) T e m p e r a t u r e (C) b ) A d j u s t m e n t f a c t o r J a n u a r y 5 . 6 1 . 7 1 7 F e b r u a r y 6 . 1 1 . 6 5 9 M a r c h 6 . 4 1 . 6 2 5 A p r i l 7 . 6 1 . 4 9 5 May 8 . 4 1 . 4 1 4 J u n e 1 1 . 8 1 . 1 1 7 J u l y 1 3 . 4 1 . 0 0 0 A u g u s t 1 2 . 5 1 . 0 6 4 S e p t e m b e r 1 3 . 6 0 . 9 8 6 O c t o b e r 9 . 6 1 . 3 0 1 N o v e m b e r 7 . 7 1 . 4 8 5 D e c e m b e r 6 . 3 1 . 6 3 6 - 10 3 -when l i t t e r biomass was e s s e n t i a l l y zero, u n t i l 31 December 1976. Since no l i t t e r c o l l e c t i o n s were made beyond 2 October 1976, data from the autumn of 19 75 were used f o r the period of October through December 1976. With d a i l y increments beginning on 28 February 1976 l i t t e r was mathematically processed according to the temperature corrected s p e c i f i c submodels. L i t t e r biomass a v a i l a b l e to be decomposed each day was determined by applying the equation for the curve i n Figure 17 to the r a t i o o f s p e c i f i c l i t t e r : t o t a l l i t t e r f o r the most recent samp-l i n g date. The onset of decomposition was delayed by an estimated senescence delay of s i x days (temperature adjusted) as explained on page 5 4 . S p e c i f i c l i t t e r i n each quadrat was processed independently during the simulation. S t a r t i n g on 28 February 1976, l i t t e r which decomposed on t h i s date was subtracted from the l i t t e r biomass at the beginning of the day. This c a l c u l a t i o n was then performed f o r every subsequent day required to reduce the l i t t e r biomass to zero, assuming no further l i t t e r deposition. For each of these subsequent days, the remaining l i t t e r biomass was subtracted from l i t t e r biomass at the beginning of the day to account for d a i l y biomass l o s s . Remaining l i t t e r w i l l be supplemented with freshly deposited l i t t e r and undergo decomposi-t i o n on future days. Following performance o f t h i s cycle f or each species i n every quadrat, the data were summed to y i e l d the t o t a l quantity of de t r i t u s formed and soluble matter released on 28 February 1976, with p a r t i a l sums f o r the immediately subsequent days. This e n t i r e procedure was then repeated, with d a i l y increments, fo r the duration of the simulation. During the simulation a l l soluble matter was released i n advance of the p a r t i c u l a t e material. U n t i l the remaining l i t t e r biomass reached the per-centage equal to the p a r t i c u l a t e material content for that species, a l l export-ation was reg i s t e r e d as soluble matter. Further decomposition formed d e t r i t u s . Concomitant with l i t t e r decomposition, the nitrogen content o f the d e t r i t u s formed and the soluble matter released was determined. Unfortun-- 1 0 4 -a t e l y , d u e t o t h e r a p i d d e c o m p o s i t i o n r a t e s o f t h e s p e c i e s i n v o l v e d i n t h e s i m u -l a t i o n , m i n i m a l n i t r o g e n d a t a w e r e o b t a i n e d f o r t h e s e s p e c i e s . T h e d a t a a r e i n -s u f f i c i e n t t o s u p p o r t f i r m c o n c l u s i o n s b u t a r e ' s u i t a b l e f o r a p p r o x i m a t i n g t r e n d s f o r t h e p u r p o s e o f m o d e l l i n g . C u r v e m o d e l s f o r e s t i m a t i n g l i t t e r n i t r o g e n c o n t e n t w e r e s e l e c t e d f r o m t h o s e i n t r o d u c e d o n p a g e 4 2 , w i t h t h o s e y i e l d i n g t h e b e s t f i t b e i n g a c c e p t e d . T h e y a r e a s f o l l o w s : F u c u s d i s t i c h u s Y = - 1 . 0 9 E - 0 2 X + 2 . 8 3 (L ) Iridaea cordata Y 7 . 0 4 E - 0 3X + 1 . 2 4 (L) Nereocystis luetkeana ( s t i p e ) Y = - 9 . 3 3 E - 0 3 X + 2 . 4 4 (L ) Nereocystis luetkeana ( l a m i n a ) Y = - 2 . 9 2 E - 0 3 X + 5 . 3 0 (L) Laminaria Y = 7 . 8 5 E - 0 5 X 2 -- 3 . 3 9 E - 0 2 X + 4 . 9 2 (Q) w h e r e : X i s t h e p e r c e n t a g e o f l i t t e r r e m a i n i n g i n t h e l i t t e r b a g Y i s t h e p e r c e n t a g e n i t r o g e n c o n t e n t o f t h e m a t e r i a l r e m a i n i n g i n t h e l i t t e r b a g T h e f o r m u l a d e r i v e d f o r c a l c u l a t i n g t h e n i t r o g e n c o n t e n t o f d e -t r i t u s a n d s o l u b l e m a t t e r i s a s f o l l o w s : N. = Q L . ( P L U . , - P L U . ) (PN. + P N . J ( ( PN . , ) ( P L U . J / P L U . ) l 1 1 -1 1 l 1 -1 1 -1 1 -1 1 _ 2 * ( ( P N . . ) ( P L U . _ ) / P L U . ) l - l l - l l - P N . - PN i - 1 w h e r e : N i s t h e q u a n t i t y o f n i t r o g e n r e l e a s e d a s s o l u b l e m a t t e r o r a s a c o m p o n e n t o f d e t r i t u s o n d a y i Q L i s t h e q u a n t i t y o f l i t t e r a v a i l a b l e f o r d e c o m p o s i t i o n o n d a y i P L U i s t h e p r o p o r t i o n o f o l d e r l i t t e r y e t u n d e c o m p o s e d ( a f u n c t i o n o f t h e l i t t e r d e c o m p o s i t i o n s u b m o d e l s , F i g u r e 6) PN i s t h e p r o p o r t i o n o f n i t r o g e n i n t h e l i t t e r ( a f u n c t i o n o f t h e l i t t e r n i t r o g e n c o n t e n t s u b m o d e l s l i s t e d a b o v e ) i i s a c o u n t e r f o r t h e d a y d u r i n g t h e s i m u l a t i o n D e t r i t u s d e c o m p o s i t i o n was s i m u l a t e d b y u s a g e o f t h e d e t r i t u s d e -c o m p o s i t i o n r a t e s o b t a i n e d f o r t h e i n i t i a l 0-10 d a y i n c u b a t i o n p e r i o d i n E x p e r i -m e n t 2. F o r Fucus distichus t h e d e c o m p o s i t i o n r a t e f o r 20-30 d a y s w a s u s e d . A l l r a t e s w e r e l i n e a r a n d a r e a s f o l l o w s : F u c u s d i s t i c h u s 0.76% p e r d a y Iridaea cordata 5 . 6 5 % p e r d a y Nereocystis luetkeana ( s t i p e ) 3.12% p e r d a y Nereocystis luetkeana ( l a m i n a ) 3.48% p e r d a y Laminaria 2.93% p e r d a y - 105 -A s t h e c h a n g e i n n i t r o g e n c o n t e n t o f d e c o m p o s i n g d e t r i t u s wa s n o t d e t e r m i n e d , i t wa s m o d e l l e d a s t h o u g h i t d e c o m p o s e d a t t h e same r a t e a s o t h e r d e t r i t u s c o m p o n e n t s . S o l u b l e m a t t e r wa s n o t d e c o m p o s e d . T o r e d u c e t h e v o l u m e o f o u t p u t p r o d u c e d b y t h e s i m u l a t i o n , d a i l y i n c r e m e n t a l d a t a w e r e summed a n d a v e r a g e d o v e r 3 - 4 w e e k i n t e r v a l s . G r e a t e r r e s o l u t i o n wa s s u p e r f l u o u s a n d u n m a n a g e a b l e . A f l o w c h a r t o u t l i n i n g t h e m a j o r o p e r a t i o n s i n v o l v e d i n t h e p e r f o r m a n c e o f t h e s i m u l a t i o n i s p r e s e n t e d i n F i g u r e 1 8 . R e s u l t s : O p e r a t i o n o f t h e s i m u l a t i o n m o d e l d e t e r m i n e d t h e p r o p o r t i o n a l c o n t r i b u t i o n s o f F u c u s d i s t i c h u s , Iridaea cordata, Nereocystis luetkeana a n d Laminaria t o t h e l i t t e r . T a b l e 14 c o m p a r e s t h e t r u e p r o p o r t i o n a l c o n t r i b u t i o n s o f e a c h s p e c i e s t o t h e i r e s t i m a t e d c o n t r i b u t i o n s b a s e d o n s a m p l e d l i t t e r b i o m a s s a l o n e . A s e x p e c t e d , t h e p r o p o r t i o n a l c o n t r i b u t i o n b y Fucus d i s t i c h u s was c o n -s i d e r a b l y l o w e r t h a n i n d i c a t e d b y t h e b i o m a s s d a t a , d u e t o i t s p a r t i c u l a r l y s l o w d e c o m p o s i t i o n r a t e r e l a t i v e t o t h e o t h e r s p e c i e s . T h e p r o p o r t i o n a l c o n t r i b u t i o n s b y a l l o t h e r s p e c i e s i n c r e a s e d , m o s t d r a m a t i c a l l y f o r Nereocystis luetkeana ( l a m i n a ) . T h e u n r e l i a b i l i t y o f l i t t e r b i o m a s s a s a n e s t i m a t o r o f t h e t r u e q u a n -t i t y o f l i t t e r w h i c h u n d e r g o e s d e c o m p o s i t i o n i s a p p a r e n t . F i g u r e 19 d i s p l a y s t h e s e a s o n a l p r o f i l e f o r t h e r a t e o f d e t r i t u s f o r m a t i o n a n d r e l e a s e o f s o l u b l e m a t t e r f r o m d e c o m p o s i n g s e a w e e d l i t t e r w i t h i n S i t e 1. B o t h a r e s e a s o n a l p h e n o m e n a w i t h p e a k s o c c u r r i n g d u r i n g l a t e s u m m e r . 2 M a x i m u m o b s e r v e d r a t e s w e r e c a 0 . 6 a n d 0 . 5 g AFDW/m p e r d a y f o r d e t r i t u s f o r m a -t i o n a n d s o l u b l e m a t t e r r e l e a s e , r e s p e c t i v e l y . I n t o t a l , ca 56% o f d e c o m p o s i n g l i t t e r f o r m s d e t r i t u s , t h e r e m a i n d e r b e i n g r e l e a s e d a s s o l u b l e m a t t e r . F i g u r e 2 0 d i s p l a y s t h e p r e d i c t e d d e t r i t u s b i o m a s s f o r m e d f r o m l i t t e r d e p o s i t e d a l o n g t h e p e r m a n e n t t r a n s e c t l o c a t i o n (95 m) i n S i t e 1. F i g u r e 21 p r e s e n t s a s i m i l a r p i c t u r e b a s e d o n t o t a l l i t t e r d e p o s i t i o n w i t h i n S i t e 1. - 106 -F i g u r e 1 8 . F l o w c h a r t o u t l i n i n g t h e m a j o r o p e r a t i o n s i n v o l v e d i n t h e s i m u l a t i o n o f l i t t e r a n d d e t r i t u s p r o c e s s i n g w i t h i n S i t e 1. L I T T E R B IOMASS w i t h i n S i t e 1: s u b s c r i p t e d t o s p e c i e s , q u a d r a t , t r a n s e c t a n d d a y o f t h e y e a r ; a s d e t e r m i n e d f r o m t h e e q u a t i o n f o r F i g u r e 17 p r o r a t e d b y t h e r a t i o o f s p e c i f i c l i t t e r : t o t a l l i t t e r f o r t h e i m m e d i a t e l y p r e c e d i n g s a m p l i n g d a t e . L I T T E R N I T R O G E N C O N T E N T S P E C I F I C S U B M O D E L S : i n t r o d u c e d o n p a g e 1 0 4 . D E T R I T A L / S O L U B L E MATTER N ITROGEN CONTENT C A L C U L A T I O N : i n t r o d u c e d o n p a g e 1 0 4 ; r e q u i r e s i n p u t f r o m LITTER BIOMASS, LITTER DECOMPO-SITION RATE a n d NITROGEN CONTENT SPECIFIC SUBMODELS. L I T T E R DECOMPOSI S P E C I F I C SUBMODE i n F i g u r e 6 , p a g T I O N R A T E L S : i n t r o d u c e d e 4 3 . L I T T E R DECOMPOSI T E M P E R A T U R E A D J L L A T I O N : i n t r o d u c T I O N RATE STMENT C A L C U -e d o n p a g e 1 0 0 . I F t h e p e r c e n t a g e o f s p e c i f i c l i t t e r b i o m a s s p r o c e s s e d i s l e s s t h a n t h e e q u i v a l e n t p e r c e n t a g e o f s o l u b l e m a t t e r i n t h e l i t t e r , s o l u b l e m a t t e r a n d s o l u b l e n i t r o g e n a r e r e l e a s e d ; a l t e r n a t i v e l y , d e t r i t u s a n d d e t r i t a l n i t r o g e n a r e f o r m e d . P R E D I C T E D T O T A L D E T R I T U S AND D E T R I T A L N I T R O G E N B IOMASS f o r m e d w i t h i n S i t e 1: s u b s c r i p -t e d t o s p e c i e s , q u a d r a t , t r a n -s e c t a n d d a y o f t h e y e a r . D E T R I T U S AND D E T R I T A L N I T R O G E N DECOMPOS IT ION RATE S P E C I F I C SUBMODELS : i n t r o d u c e d o n p a g e 1 0 4 . P R E D I C T E D D E T R I T U S AND D E T R I T A L N I T R O G E N B IOMASS A C C U M U L A T I O N w i t h i n S i t e 1. s u b s c r i p t e d t o q u a d r a t , t r a n s e c t a n d d a y o f t h e y e a r . P R E D I C T E D T O T A L S O L U B L E M A T T E R A N D S O L U B L E N I T R O G E N r e l e a s e d w i t h i n S i t e 1: s u b s c r i p t e d t o d a y o f t h e y e a r . - 10 7 -T a b l e 1 4 . C o m p a r i s o n o f t h e p e r c e n t a g e c o n t r i b u t i o n s b y t h e m a j o r c o n t r i b u t o r s t o t h e l i t t e r p o o l w i t h i n S i t e 1 a s d e t e r m i n e d b y : a) l i t t e r b i o m a s s a l o n e b ) a p p l i c a t i o n o f t h e d e c o m p o s i t i o n r a t e s o f t h e s e s p e c i e s t o l i t t e r b i o m a s s d a t a . T h e s e p e r c e n t a g e s w e r e d e t e r m i n e d o n a n a s h - f r e e d r y w e i g h t b a s i s . S p e c i e s F u c u s d i s t i c h u s Iridaea cordata Nereocystis luetkeana ( s t i p e ) L i t t e r b i o m a s s 7 1 . 9 8 1 5 . 0 7 1 . 9 5 Nereocystis luetkeana ( l a m i n a ) 7 . 3 6 L i t t e r b i o m a s s c o u p l e d w i t h d e c o m p o s i t i o n r a t e s 4 0 . 8 4 2 6 . 2 2 3 . 5 7 2 3 . 7 2 Laminaria 1 . 6 9 3 . 7 0 F i g u r e 1 9 . S e a s o n a l p r o f i l e s f o r t h e f o r m a t i o n r a t e o f d e t r i t u s a n d t h e r e l e a s e r a t e o f s o l u b l e m a t t e r f r o m d e c o m p o s i n g s e a w e e d l i t t e r biomass w i t h i n S i t e 1. R a t e s a r e i n g a s h - f r e e d r y w e i g h t p e r m p e r d a y . - 109 -F i g u r e 2 0 . D e t r i t u s b i o m a s s p r e d i c t e d f o r t h e 95 m t r a n s e c t l o c a t i o n w i t h i n S i t e 1 b a s e d o n l i t t e r c o l l e c t i o n s f r o m t h a t l o c a t i o n 2 o n l y . C o n t o u r i n t e r v a l s a r e 2 . 0 g a s h - f r e e d r y w e i g h t p e r m - 110 -F i g u r e 21. D e t r i t u s b i o m a s s p r e d i c t e d f o r S i t e 1 b a s e d o n l i t t e r c o l l e c t i o n s f r o m a l l t r a n s e c t l o c a t i o n s w i t h i n S i t e 1 C o n t o u r i n t e r v a l s a r e 10.0 g a s h - f r e e d r y w e i g h t p e r - I l l -R e f e r e n c e t o F i g u r e 13 ( p a g e 73) h i g h l i g h t s a n o b v i o u s d i s c r e p -a n c y b e t w e e n p r e d i c t e d a n d o b s e r v e d d e t r i t u s b i o m a s s . B a s e d o n s a m p l i n g d a t a , d e t r i t u s b i o m a s s a l o n g t h e p e r m a n e n t t r a n s e c t l o c a t i o n p e a k e d a t 1 .4 g A F D W / n 2 9 w h e r e a s t h e p r e d i c t e d q u a n t i t y was ca 30 g AFDW/ra i f a l l d e t r i t u s was d e p o s i t e d o n t h e s u b s t r a t e . I f d e t r i t u s b i o m a s s i s m o r e a c c u r a t e l y p r e d i c t e d b y i n c o r p o r -a t i n g a l l l i t t e r d a t a f o r S i t e 1, ca 80 g A F D W / m 2 i s e s t i m a t e d . A c c e p t i n g t h a t t h e d a t a i n c o r p o r a t e d i n t o t h e m o d e l a r e r e a s o n a b l y a c c u r a t e , t h e i m p l i c a t i o n i s t h a t d e t r i t u s a c c u m u l a t i o n i n S i t e 1 a m o u n t s t o o n l y 1 -5% o f t h e q u a n t i t y o f d e t r i t u s f o r m e d f r o m s e a w e e d l i t t e r w i t h i n S i t e 1, t h e r e m a i n d e r b e i n g e x p o r t e d . A l t e r n a t i v e l y , t h e d i f f e r e n c e b e t w e e n p r e d i c t e d a n d o b s e r v e d d e t r i t u s b i o m a s s i s a r e s u l t o f l i t t e r d e p o s i t e d w i t h i n S i t e 1 u n d e r g o i n g d e c o m -p o s i t i o n e l s e w h e r e , i t s r e s i d e n c e t i m e i n S i t e 1 b e i n g v e r y s h o r t . T h r e e a r g u -m e n t s d i s c o u n t t h i s h y p o t h e s i s . M o s t s p e c i f i c l i t t e r wa s c o l l e c t e d n e a r s t a n d s o f t h e same s p e c i e s . V e r y l i t t l e l i t t e r wa s o b s e r v e d o u t s i d e t h e s e a w e e d z o n e . T h e s i m u l a t i o n d e m o n s t r a t e d t h a t l i t t e r d e c o m p o s i t i o n r a t e s c o u l d a c c o u n t f o r t h e d i s a p p e a r a n c e o f a l l b u t 3% o f t h e l i t t e r d e p o s i t e d w i t h i n S i t e 1. T h e mean n i t r o g e n c o n t e n t o f d e t r i t u s a t t h e t i m e o f i t s f o r m a t i o n was p r e d i c t e d t o b e 2 . 4 8 - 0 . 0 3 % o f i t s d r y w e i g h t o v e r t h e p e r i o d o f t h e s i m u l a -t i o n . T h e q u a n t i t y o f n i t r o g e n r e l e a s e d w i t h t h e s o l u b l e m a t t e r was a l e s s e r a m o u n t a t 1 .36 t 0 . 0 3%. D i s c u s s i o n : D a t a o b t a i n e d i n t h i s s t u d y i n d i c a t e t h a t ca 80 g A F D W / f a 2 o f d e t r i t u s was f o r m e d f r o m s e a w e e d l i t t e r d u r i n g 1 9 7 6 . When s o l u b l e m a t t e r i s a d d e d t o t h i s f i g u r e i t i s i n c r e a s e d t o 145 g A F D W / n 2 . W i t h c a r b o n a c c o u n t i n g f o r 5 0 -2 60% o f t h e e l e m e n t a l c o m p o s i t i o n o f t h e o r g a n i c m a t t e r ( R o u n d 1 9 6 5 ) , 7 0 - 8 5 g C/m i s t h e e s t i m a t e f o r t h e a m o u n t o f c a r b o n l e a v i n g s e a w e e d b i o m a s s v i a l i t t e r d e c o m p o s i t i o n i n S i t e 1. - 112 -T h i s a m o u n t a c c o u n t s f o r c a 45% o f t h e q u a n t i t y o f s e a w e e d b i o -mas s l o s t f r o m t h e same a r e a a s d e t e r m i n e d f r o m s e a s o n a l d i f f e r e n c e s i n s t a n d i n g c r o p b i o m a s s ( F o r e m a n u n p u b . ) . T h e r e m a i n i n g b i o m a s s m u s t b e a c c o u n t e d f o r b y d e t r i t u s f o r m a t i o n d i r e c t l y v i a l a m i n a t i p e r o s i o n a n d b y Nereocystis luetkeana l e a v i n g S i t e 1 when d e t a c h e d b y w i n d s a n d w a v e s . J o h n s t o n e t al. ( 1 9 7 7 ) e s t i -m a t e d Laninaria saccharina t o l o s e 4 0 - 5 0 % o f i t s g r o s s p r i m a r y p r o d u c t i o n b y l a m i n a t i p e r o s i o n , a c e r t a i n p e r c e n t a g e o f w h i c h w o u l d b e e x p e c t e d t o f o r m d e t r i t u s w i t h o u t b e i n g s h u n t e d t h r o u g h t h e l i t t e r p o o l . I t m u s t a l s o b e c o n s i d e r e d t h a t s e a s o n a l c h a n g e s i n s t a n d i n g c r o p b i o m a s s may i n a d e q u a t e l y e s t i m a t e t h e t o t a l q u a n t i t y o f d e t r i t u s f o r m e d f r o m s e a w e e d s . Mann ( 1 9 7 2 b ) e s t i m a t e s t h e r a t i o o f y e a r l y p r o d u c t i o n r i n i t i a l b i o m a s s f o r p o p u l a t i o n s o f Laninaria d i g i t a t a a n d Lan i n a r i a l o n g i c r u r i s t o b e 9 . 8 a n d 7 . 2 , r e s p e c t i v e l y . Agarum w a s l e s s p r o d u c t i v e a t 4 . 2 . T h u s , w i t h o u t n e c e s s a r i l y c o n s t i t u t i n g a m a j o r p o r t i o n o f t h e s t a n d i n g c r o p b i o m a s s w i t h i n t h e s e a w e e d z o n e , t h e s e k e l p s c a n a c c o u n t f o r a l a r g e p o r t i o n o f t h e n e t p r o d u c t i o n . S u c h a n e x t e n s i v e t u r n o v e r o f b i o m a s s r e s u l t s i n s t a n d i n g c r o p b i o m a s s u n d e r -e s t i m a t i n g t o t a l p r o d u c t i o n a n d s u b s e q u e n t d e t r i t u s f o r m a t i o n a n d s o l u b l e m a t t e r r e l e a s e . A s Laminaria a n d Agarum a r e c h a r a c t e r i s t i c o f b o t h S i t e 1 a n d M a n n ' s ( 1 9 7 2 b ) s y s t e m t h i s c o n s i d e r a t i o n i s p r o b a b l y a p p r o p r i a t e ; h o w e v e r , t h e i n d i c a t i o n s a r e t h a t Nereocystis luetkeana h a s t h e h i g h e s t b i o m a s s t u r n o v e r o f t h e p l a n t s w i t h i n S i t e 1 ( F o r e m a n u n p u b . ) . A s Nereocystis luetkeana w a s r a n k -e d t e n t h i n ' i m p o r t a n c e ' o f t h e ' s i g n i f i c a n t ' s p e c i e s w i t h i n S i t e 1 a n d t h i r d i n i t s c o n t r i b u t i o n t o t h e l i t t e r p o o l , c h a n g e s i n b i o m a s s may n o t s e v e r e l y u n d e r e s t i m a t e t o t a l d e t r i t u s f o r m a t i o n a n d s o l u b l e m a t t e r r e l e a s e w h e n t h e e n t i r e s y s t e m i s c o n s i d e r e d . T h i s i s s u p p o r t e d b y F o r e m a n ' s s e a s o n a l b i o m a s s d a t a w h i c h i n d i c a t e t h a t 45% o f t h e b i o m a s s l o s s o c c u r r e d i n t h e d e p t h r a n g e 0 - 3 m b e l o w mean s e a l e v e l . T h i s i s t h e z o n e d o m i n a t e d b y Fucus d i s t i c h u s a n d Iridaea - 1 1 3 -cordata, t h e t w o d o m i n a n t c o n t r i b u t o r s t o t h e l i t t e r p o o l . A l a r g e b i o m a s s t u r n o v e r h a s n o t b e e n s h o w n t o b e c h a r a c t e r i s t i c o f t h e s e s p e c i e s . T h e r e -m a i n i n g b i o m a s s l o s s i s a c c o u n t e d f o r b y t h e o t h e r e i g h t ' s i g n i f i c a n t ' s p e c i e s m o s t o f w h i c h a r e f o u n d i n t h e d e p t h r a n g e o f 1 0 - 3 0 m b e l o w mean s e a l e v e l . O f t h e s e , o n l y Nereocystis luetkeana a n d p o s s i b l y Laminaria a r e c h a r a c t e r i z e d b y h i g h b i o m a s s t u r n o v e r . T h e l i t t e r a n d d e t r i t u s b i o m a s s d a t a ( F i g u r e s 5, a n d 20 a n d 2 1 , r e s p e c t i v e l y ) i n d i c a t e t h e p e a k p e r i o d o f d e t r i t u s f o r m a t i o n f r o m s e a w e e d o c c u r s d u r i n g l a t e s u m m e r . T h i s w o u l d b e c o n s i s t e n t w i t h a h y p o t h e s i s t h a t max imum p r o d u c t i v i t y o c c u r s d u r i n g t h e summer m o n t h s , b a s e d o n M a n n ' s ( 1 9 7 2 a ) i n t e r p r e t a t i o n o f t h e r e s u l t s o f K r e y ( 1 9 6 7 ) a n d S u t c l i f f e ( 1 9 7 2 ) w h i c h i m p l y a p e a k i n p a r t i c u l a t e m a t e r i a l b i o m a s s d e r i v e d f r o m s e a w e e d d u r i n g e a r l y s p r i n g , a t t h e t i m e o f max imum s e a w e e d p r o d u c t i v i t y i n S t . M a r g a r e t ' s B a y (Mann 1 9 7 2 a ) . A s o n l y 1-5% o f d e t r i t u s p r e d i c t e d t o h a v e b e e n f o r m e d f r o m s e a w e e d l i t t e r , a n d a l e s s e r p e r c e n t a g e o f t o t a l d e t r i t u s f o r m e d f r o m s e a w e e d b i o m a s s , a c c u m u l a t e d w i t h i n S i t e 1, t h e m a j o r i t y o f s e a w e e d d e t r i t u s m u s t b e p r o c e s s e d e l s e w h e r e . W e b s t e r e t al. ( 1 9 7 5 ) c o l l e c t e d a n a m o u n t o f o r g a n i c m a t t e r e q u i v a l e n t t o 15% o f t o t a l p l a n t p r o d u c t i o n i n s e d i m e n t t r a p s p l a c e d a t d e e p s t a t i o n s (60 a n d 65 m ) i n S t . M a r g a r e t ' s B a y , N o v a S c o t i a . D a t a f r o m s h a l l o w e r s t a t i o n s w e r e l e s s r e l i a b l e . D u r i n g t h e y e a r o f t h e i r s t u d y Laminaria p r o d u c -t i o n a l o n e e x c e e d e d p h y t o p l a n k t o n p r o d u c t i o n b y t h r e e f o l d , a n d w i t h t h e m a j o r s e t t l e m e n t p e a k s o c c u r r i n g w h e n p l a n k t o n p r o d u c t i o n wa s l o w , t h e y c o n c l u d e s e a w e e d d e t r i t u s t o b e t h e m o s t l i k e l y o r i g i n o f t h e o r g a n i c m a t t e r c o l l e c t e d . D a t a f r o m t h i s s t u d y i n d i c a t e t h a t < 5% o f s e a w e e d d e t r i t u s i s d e p o s i t e d w i t h i n t h e s e a w e e d z o n e , l e a v i n g a t l e a s t 80% t o b e e x p o r t e d , a n d s u b s e q u e n t l y d e c o m -p o s e d i n c o a s t a l w a t e r s , a l o n g w i t h t h e s o l u b l e m a t t e r r e l e a s e d . L e n z ( 1 9 7 7 ) o b t a i n e d r e s u l t s w h i c h may b e c o n s i d e r e d e v i d e n c e - 114 -o f t h e p r e s e n c e o f s e a w e e d d e t r i t u s i n c o a s t a l w a t e r . I n a n a t t e m p t t o show a p o s i t i v e c o r r e l a t i o n b e t w e e n t h e s t a n d i n g c r o p b i o m a s s e s o f p h y t o p l a n k t o n a n d / o r z o o p l a n k t o n a n d t h a t o f d e t r i t u s i n t h e K i e l B i g h t , W e s t B a l t i c S e a , o n l y d a t a f r o m s t a t i o n s b e l o w 15 m d e p t h s u p p o r t e d h i s h y p o t h e s i s . I n w a t e r a b o v e 15 m d e p t h n e g a t i v e ( a l t h o u g h n o n s i g n i f i c a n t ) c o r r e l a t i o n s w e r e o b t a i n e d . T h e s u g g e s t i o n i s t h a t t h e d e t r i t u s i s o f a n a l l o c h t h o n o u s n a t u r e , c o n t r a r y t o L e n z ' s h y p o t h e s i s t h a t i t wa s f o r m e d a u t o c h t h o n o u s l y . S o u r c e s s u c h a s a i r -b o r n e d u s t , c o a s t a l e r o s i o n a n d s e d i m e n t w e r e d i s c o u n t e d b u t s e a w e e d s w e r e n o t r e f e r e n c e d . S e a w e e d s a r e a n o r m a l f e a t u r e o f t h e W e s t e r n B a l t i c c o a s t l i n e , a n d w i t h t h e K i e l B i g h t b e i n g an e n c l o s e d a r e a a p o s s i b l e e x p l a n a t i o n o f h i s r e s u l t s h a s b e e n o v e r l o o k e d . Odum a n d d e l a C r u z (196 7) d e t e r m i n e d a max imum r a t e o f 1 .4 g AFDW/m^ p e r d a y f o r t h e e x p o r t a t i o n o f o r g a n i c m a t t e r f r o m a n e a s t c o a s t e s t u -a r i n e s a l t m a r s h . T h e a v e r a g e d a i l y r a t e o f d e t r i t u s f o r m a t i o n f r o m s e a w e e d l i t t e r i s i n t h e r a n g e o f 0 . 2 - 0 . 4 g A F D W / m 2 , b u t t h e t o t a l a m o u n t f o r m e d may b e a t l e a s t d o u b l e t h i s f i g u r e w h e n c o m p l e m e n t e d b y d e t r i t u s f r o m e r o s i v e p a t h w a y s . I f t h e s e d a t a a r e t y p i c a l , d e t r i t u s f o r m e d f r o m s e a w e e d s s h o u l d e x c e e d c o n t r i -b u t i o n s f r o m o t h e r p l a n t s y s t e m s u n l e s s s u c h s y s t e m s a r e m o r e a b u n d a n t t h a n t h e s e a w e e d z o n e . I n t h e S t r a i t o f G e o r g i a , w h e r e t h e s e a w e e d z o n e i s a m a r k e d f e a t u r e o f t h e c o a s t l i n e , t h i s i s n o t t h e c a s e . T h e r e a r e m a j o r e s t u a r i n e s a l t m a r s h e s a t t h e m o u t h s o f t h e F r a s e r a n d S q u a m i s h R i v e r s , b u t t h e y a c c o u n t f o r a s m a l l p r o p o r t i o n o f t h e t o t a l c o a s t l i n e . E e l g r a s s (Zostera marina) m e a -dows a r e a l s o p r e s e n t i n t h e S t r a i t o f G e o r g i a , n e a r R o b e r t ' s B a n k ( F o r b e s 1 9 7 2 , M o o d y 1978 ) a n d N a n a i m o ( F o r e m a n 1 9 7 5 , S i b e r t e t al. 1 9 7 7 ) . R a t e s o f f o r m a t i o n o f Zostera marina d e t r i t u s a r e n o t a v a i l a b l e f o r t h e e c o s y s t e m l e v e l b u t t h e r e i s n o e v i d e n c e t o s u g g e s t t h e y w i l l b e s i g n i f i c a n t l y h i g h e r t h a n t h o s e o b t a i n e d f o r t h e s a l t m a r s h s y s t e m s . I t i s u n l i k e l y t h a t d e t r i t u s o r i g i n a t i n g f r o m e i t h e r - 115 -s y s t e m w i l l e x c e e d t h e q u a n t i t y o r i g i n a t i n g f r o m s e a w e e d b i o m a s s o t h e r t h a n i n t h e i m m e d i a t e v i c i n i t y o f t h e r e s p e c t i v e s y s t e m s . T h e e c o l o g i c a l r o l e s o f s e a w e e d d e t r i t u s a n d v a s c u l a r p l a n t d e t r i t u s w i l l b e d i s s i m i l a r d u e t o t h e c o m p o s i t i o n o f t h e b i o m a s s u n d e r g o i n g d e c o m p o s i t i o n . S e a w e e d d e t r i t u s a p p e a r s t o b e t o o s h o r t - l i v e d a n d o n l y s e a -s o n a l l y a v a i l a b l e t o p r o v i d e a l o n g t e r m f o o d r e s o u r c e f o r f a u n a . A l t e r n a -t i v e l y , v a s c u l a r p l a n t d e t r i t u s h a s b e e n d o c u m e n t e d a s a l o n g t e r m f o o d r e s o u r c e f o r f a u n a d u r i n g p e r i o d s w h e n p r i m a r y p r o d u c t i o n i s l o w ( D a r n e l l 1 9 6 7 b ) . T h e p r e d i c t e d n i t r o g e n c o n t e n t o f s e a w e e d d e t r i t u s , d e t e r m i n e d i n t h i s s t u d y t o b e c a 2 . 4 8 % o f i t s d r y w e i g h t , i s p r o b a b l y u n d e r e s t i m a t e d . T h i s i s p a r t i a l l y due t o t h e s p e c i f i c s u b m o d e l s f o r t h e s p e c i e s i n c o r p o r a t e d i n -t o t h e s i m u l a t i o n ( p a g e 104 ) g e n e r a t i n g l e s s r a p i d i n c r e a s e s i n t h e r e l a t i v e n i t r o g e n c o n t e n t o f d e c o m p o s i n g l i t t e r t h a n i n d i c a t e d b y t h e t r e n d i n F i g u r e 7 ( p a g e 5 8 ) . A d d i t i o n a l l y , t h e s i m u l a t i o n d e c o m p o s e d d e t r i t a l n i t r o g e n a t t h e same r a t e a s o t h e r d e t r i t a l c o m p o n e n t s . T h i s i s p r o b a b l y a n u n d e r e s t i m a t i o n o f i t s t r u e d e c o m p o s i t i o n r a t e when c o n s i d e r i n g t h e p a t t e r n o b s e r v e d f o r l i t t e r d e c o m p o s i t i o n . T o o b t a i n an i n d i c a t i o n o f t h e s u i t a b i l i t y o f s e a w e e d d e t r i t u s a s a f o o d r e s o u r c e f o r f a u n a a C : N r a t i o was e s t i m a t e d f o r t h e d e t r i t u s f o r m e d . G e n e r i c a n d / o r c l a s s e s t i m a t e s o f t h e e l e m e n t a l c a r b o n c o n t e n t s , a s a p e r c e n -t a g e o f d r y w e i g h t , f o r t h e f i v e s p e c i e s m o d e l l e d a r e a s f o l l o w s : Nereocystis luetkeana ca 20% ( J . W h y t e p e r s . comm.) F u c u s s p i r a l i s a n d F u c u s vesiculosus 3 3 - 3 6 % ( V i n o g r a d o v 1 9 5 3 , N i e l l 1976 ) Laminaria 1 2 - 2 7 % ( V i n o g r a d o v 1 9 5 3 , N i e l l 1976 ) R h o d o p h y t a ( i n g e n e r a l ) 2 0 - 3 8 % ( N i e l l 1976 ) T h e s e d a t a w e r e p r o r a t e d a c c o r d i n g t o t h e p e r c e n t a g e c o n t r i b u t i o n b y e a c h s p e c i e s t o d e t r i t a l b i o m a s s t o y i e l d a C : N r a t i o o f 1 0 - 1 3 : 1 . T h i s i s l e s s t h a n t h e v a l u e o f 1 7 : 1 w h i c h R u s s e l l - H u n t e r ( 1 9 7 0 ) c o n s i d e r s t h e m i n i m u m n i t r o g e n c o n t e n t r e n d e r i n g a f o o d r e s o u r c e s u i t a b l y n u t r i t i o u s f o r m o s t f a u n a . T h e C : N - 116 -r a t i o o f t h e s o l u b l e m a t t e r r e l e a s e d i s i n t h e r a n g e o f 1 8 - 2 4 : 1 a n d m u s t b e c o n s i d e r e d n u t r i t i v e l y p o o r . A s t h e C :N r a t i o f o r d e t r i t u s i s p r o b a b l y a n o v e r e s t i m a t i o n , i t f o l l o w s t h a t t h e r a t i o f o r s o l u b l e m a t t e r i s a n u n d e r -e s t i m a t i o n . I n c o m p a r i s o n , v a s c u l a r p l a n t d e t r i t u s u s u a l l y u n d e r g o e s a c o n s i d e r a b l e d e g r e e o f p r o c e s s i n g b e f o r e i t a t t a i n s a n u t r i t i v e v a l u e t h a t r e n d e r s i t s u i t a b l e f o r c o n s u m p t i o n b y p o t e n t i a l c o n s u m e r s . H a r r i s o n a n d Mann (19 75b) f o u n d t h a t b e t w e e n 35 a n d 102 d a y s w e r e r e q u i r e d f o r m i c r o b e s t o r e -d u c e t h e C :N r a t i o o f Zostera marina d e t r i t u s f r o m an i n i t i a l v a l u e o f 2 0 . 2 : 1 t o l e s s t h a n 1 7 : 1 . I v e r s o n ( 1 9 7 3 ) p e r f o r m e d p r e f e r e n c e e x p e r i m e n t s w h i c h d e m -o n s t r a t e d t h a t d e c o m p o s i n g l e a v e s w e r e n o t f e d u p o n u n t i l n i t r o g e n e n r i c h m e n t o c c u r r e d . I n t h i s s t u d y Lacuna marmorata, Caprella alaskana a n d Meta-caprella anomala w e r e d e l i m i t e d a s p o s s i b l e u t i l i z e r s o f n a t u r a l s e a w e e d d e t r i t u s , b a s e d o n t h e i r m o r p h o l o g y , h a b i t , s p a t i a l a n d / o r t e m p o r a l d i s t r i b u -t i o n p a t t e r n s . T h e i m p l i c a t i o n was t h a t t h e s e s p e c i e s may b e r e s p o n d i n g t o a summer p u l s e i n t h e a v a i l a b i l i t y o f s u f f i c i e n t l y n u t r i t i o u s s e a w e e d d e t r i t u s . I t i s n e c e s s a r y t h a t e x p e r i m e n t s b e p e r f o r m e d t o d e t e r m i n e t h e s e s p e c i e s ' f o o d p r e f e r e n c e , a n d t h e i r g r o w t h a n d s u r v i v a l w h i l e u t i l i z i n g t h i s r e s o u r c e , i n o r d e r t o c o n c l u d e w i t h c e r t a i n t y t h a t t h e y c a n r e s p o n d t o t h e a v a i l a b i l i t y o f s e a w e e d d e t r i t u s a s a f o o d r e s o u r c e . - \\ n -SUMMATION P r e v i o u s e x a m i n a t i o n s o f t h e r o l e o f o r g a n i c d e t r i t u s i n c o a s t a l e c o s y s t e m s h a v e c o n s i s t e n t l y u n d e r p l a y e d t h e s i g n i f i c a n c e o f t h e c o n -t r i b u t i o n b y d e t r i t u s o r i g i n a t i n g f r o m s e a w e e d b i o m a s s ( D a r n e l l 1 9 6 7 b , F e n c h e l 1 9 7 2 , 1 9 7 3 , P e r k i n s 1 9 7 4 ) . T h a t d e t r i t u s d e r i v e d f r o m s e a w e e d b i o m a s s may c o n t r i b u t e s i g n i f i c a n t l y t o c o a s t a l e n e r g e t i c s wa s f i r s t s e r i o u s l y c o n s i d e r e d b y Mann ( 1 9 7 2 a ) . T h i s s t u d y s u p p o r t s t h e i n t e r p r e t a t i o n t h a t s e a w e e d d e t r i t u s b i o m a s s e x p o r t e d t o c o a s t a l w a t e r s i s l i k e l y t h e m a j o r m a c r o p h y t i c s o u r c e o f p a r t i c u l a t e o r g a n i c m a t e r i a l f o r t h e S t r a i t o f G e o r g i a , B r i t i s h C o l u m b i a , a n d p e r h a p s e x c e e d s t h e c o n t r i b u t i o n f r o m p l a n k t o r i i c s o u r c e s d u r i n g n o n - b l o o m p e r i o d s . I t i s r e a s o n a b l e t o e x t r a p o l a t e t h a t t h e p a r t i c u l a t e m a t e r i a l c o n -t e n t o f e n c l o s e d a r e a s c h a r a c t e r i z e d b y a s e a w e e d z o n e ( e . g . S t . M a r g a r e t ' s B a y , K i e l B i g h t ) r e c e i v e s a s i g n i f i c a n t c o n t r i b u t i o n f r o m s e a w e e d b i o m a s s . T h e a n n u a l q u a n t i t y o f s e a w e e d d e t r i t u s f o r m e d a n d s o l u b l e m a t t e r r e l e a s e d f r o m t h e s y s t e m s t u d i e d i s e s t i m a t e d t o b e a t l e a s t 45% d e r i v e d f r o m s e a w e e d l i t t e r , w i t h a max imum r a t e o f d e t r i t u s f o r m a t i o n b e i n g o b s e r v e d d u r i n g l a t e s u m m e r . T h i s a m o u n t i s c o m p l e m e n t e d b y d e t r i t u s f o r m e d d i r e c t l y v i a e r o s i o n o f k e l p l a m i n a t i p s . D e c o m p o s i t i o n e x p e r i m e n t s i n d i c a t e d t h a t s e a w e e d l i t t e r d e c o m -p o s e s v e r y r a p i d l y , s e a w e e d d e t r i t u s i s s h o r t - l i v e d , a n d t h a t t h i s w a s a t l e a s t p a r t i a l l y d u e t o i t s p a u c i t y o f s t r u c t u r a l m a t e r i a l r e s i s t a n t t o m e t a b o l -i s m b y m i c r o b e s . T h i s h a s p r o b a b l y b e e n a r e a s o n f o r u n d e r e s t i m a t i o n s o f s e a w e e d d e t r i t u s a n d s o l u b l e m a t t e r c o n t r i b u t i o n s t o t o t a l c o a s t a l o r g a n i c m a t e r i a l r e l a t i v e t o o t h e r c o a s t a l m a c r o p h y t e s b a s e d o n s a m p l e d b i o m a s s a l o n e . T h e i n a b i l i t y t o d i s t i n g u i s h a d e q u a t e l y b e t w e e n o r g a n i c m a t e r i a l o r i g i n a t i n g f r o m p h y t o p l a n k t o n a n d s e a w e e d b i o m a s s f u r t h e r c o m p l i c a t e s t h i s p r o b l e m ( S u t c l i f f e 1 9 7 2 , W e b s t e r e t al. 1 9 7 5 ) . - 118 -P r e v i o u s a u t h o r s ' u n a w a r e n e s s o f t h e d e g r e e t o w h i c h s e a w e e d d e t r i t u s b i o m a s s c o n t r i b u t e s t o c o a s t a l f o o d r e s o u r c e s h a s p r e c l u d e d a n i n t e r p r e t a t i o n o f t h e i m p o r t a n c e o f t h i s r e s o u r c e t o b e n t h i c a n d p e l a g i c f a u n a l d i s t r i b u t i o n p a t t e r n s . T h i s s t u d y h a s c o n f i r m e d t h a t s e a w e e d d e t r i t u s i s s u i t a b l y n u t r i t i o u s f o r f a u n a , h a v i n g a C : N r a t i o o f 1 0 - 1 3 : 1 o r l e s s . S e a -w e e d d e t r i t u s i s t h u s m o r e a c c e p t a b l e t h a n l i v i n g s e a w e e d b i o m a s s w h i c h h a s C : N r a t i o s r a n g i n g f r o m 1 3 . 8 : 1 t o 2 7 . 2 : 1 f o r Laminaria (Mann 1 9 7 2 a ) a n d 4 0 : 1 t o 8 0 : 1 f o r k e l p s i n g e n e r a l ( R u s s e l l - H u n t e r 1 9 7 0 ) . A l t h o u g h t h i s s t u d y c o u l d n o t c o n c l u d e w i t h c e r t a i n t y t h a t s e a w e e d d e t r i t u s i s a f o o d r e s o u r c e r e l i e d u p o n b y s p e c i f i c b e n t h i c f a u n a , t h e r e i s c i r c u m s t a n t i a l e v i d e n c e t h a t some s p e c i e s a r e a t l e a s t p e r i o d i c a l l y d e p e n d e n t u p o n i t s a v a i l a b i l i t y . T h e i m p l i c a t i o n i s t h a t t h e q u a n t i t y a n d r e l a t i v e l y h i g h n i t r o g e n c o n t e n t o f s e a w e e d d e t r i t u s r e n d e r s i t p a r t i c u l a r l y s u i t a b l e a s a f o o d r e s o u r c e s u c h t h a t o n e m u s t e x p e c t t h a t i t h a s a v e r y s i g n i f i c a n t r o l e i n t h e s t r u c t u r e a n d f u n c t i o n o f c o a s t a l e c o s y s t e m s . - uq-LITERATURE CITED Acharya, C.N., 19 35: Studies on the anaerobic decomposition of plant materials. J J J . Comparison of the course of decomposition of r i c e straw under anaerobic, aerobic and p a r t i a l l y aerobic conditions. Biochem. J. 29 :1116-1120 Bocock, K.L., 1964: Changes i n the amounts of dry matter, nitrogen, carbon and energy i n decomposing woodland l e a f l i t t e r i n r e l a t i o n to the a c t i v i -t i e s of the s o i l fauna. J. E c o l . 52:2 73-284 Blin k s , L.R., 1955: Photosynthesis and p r o d u c t i v i t y of l i t t o r a l marine algae. J. Mar. Res. 14:363-373 Boling, R.H., J r . , E.D. Goodman, J.A. van S i c k l e , J.O. Zimmer, K.W. Cummins, R.C. Petersen and S.R. Reice, 1975: Toward a model of d e t r i t u s processing i n a woodland stream. E c o l . 56:141-151 Breen, P.A., and K.H. Mann, 1976: Changing l o b s t e r abundance and the destruction of kelp beds by sea urchins. Mar. B i o l . 34:137-142 Brylinsky, M., 19 77: Release of dissolved organic matter by some marine macro-phytes. Mar. B i o l . 39:213-220 Caine, E.A., 1977: Feeding mechanisms and p o s s i b l e resource p a r t i t i o n i n g of the Caprellidae (Crustacea: Amphipoda) from Puget Sound, U.S.A. Mar. B i o l . 42:331-336 Clendenning, K.A., 1971: Organic p r o d u c t i v i t y i n kelp areas. In: W.J. North (Ed.), The biology of giant kelp beds (Macrocystis) i n C a l i f o r n i a : 259-263. Nova Hedwigia 32 (Suppl.) C r a i g i e , J.S., and J . McLachlan, 1964: Excretion of coloured u l t r a v i o l e t absorb-ing substances by marine algae. Can. J . Bot. 42:23-33 Croxton, F.E., D.J. Cowden and S. K l e i n , 1967: Applied general s t a t i s t i c s . 3rd ed. P r e n t i c e - H a l l , N.Y., 754 pp Cushing, D.H., 1964: The work of grazing i n the sea. In: D.J. Crisp (Ed.), Graz-ing i n t e r r e s t r i a l and marine environments:207-225. Blackwell, London Darnell, R.M., 1967a: The organic d e t r i t u s problem. In: G.H. Lauff (Ed.), Estuaries:374-375. Amer. Ass. Adv. S c i . Publ. 83, Washington, D.C. D a r n e l l , R.M., 1967b: Organic d e t r i t u s i n r e l a t i o n to the estuarine ecosystem. In: G.H. Lauff (Ed.), Estuaries:376-382. Amer. Ass. Adv. S c i . Publ. 83, Washington, D.C. de l a Cruz, A.A., and B.C. Gabriel, 1974: C a l o r i c , elemental, and n u t r i t i v e changes i n decomposing Juncus roemerianus leaves. E c o l . 55:882-886 de l a Cruz, A.A., 1975: Proximate n u t r i t i v e value changes during decomposition of s a l t marsh pl a n t s . Hydrobiol. 47:475-480 - 120 -Fenchel, T., 1970: Studies on the decomposition of organic d e t r i t u s derived from the t u r t l e grass Thalassia testudinum. Limnol. Oceanogr. 15:14-20 Fenchel, T., 1972: Aspects of decomposer food chains i n marine benthos. Verh. Deutch. Zool. Ges e l l . 65:14-22 Fenchel, T., 1973: Aspects of the decomposition of sea grasses. Manuscript. International Seagrass Workshop, Leiden, Netherlands, 18 pp Fenchel, T., and P.G. Harrison, 1976: The s i g n i f i c a n c e of b a c t e r i a l grazing and mineral c y c l i n g f or the decomposition of p a r t i c u l a t e d e t r i t u s . In: J.M. Anderson and A. Macfadyen (Eds.), The r o l e of t e r r e s t r i a l and aquatic organisms i n decomposition processes:285-299. 17th Symposium of the B r i t i s h E c o l o g i c a l Society, 15-18 A p r i l 1975, Blackwell, Oxford Flanagan, P.W., and F.L. Bunnell, 1976: Decomposition models based on c l i m a t i c v a r i a b l e s , substrate v a r i a b l e s , microbial r e s p i r a t i o n and production. In: J.M. Anderson and A. Macfadyen (Eds.), The r o l e of t e r r e s t r i a l and aquatic organisms i n decomposition processes:437-457. 17th Sym-posium of the B r i t i s h E c o l o g i c a l Society, 15-18 A p r i l 1975, Black-w e l l , Oxford Fogg, G.E., 1966: The e x t r a c e l l u l a r products of algae. In: H. Barnes, G. A l l e n (Eds.), Oceanogr. Mar. B i o l . Ann. Rev. 4:195-212. Unwin Ltd., London Forbes, R.D., 1972: A f l o r a l d e s c r i p t i o n of the Fraser River estuary and Boun-dary and Mud Bays, B.C. Report to B.C. Dept. of Rec. & Cons., F i s h & W i l d l i f e Br., 94 pp Foreman, R.E., 1975: Nanaimo River estuary macrophyte study. B.E.R.P. Report 75-3, 41 pp Foreman, R.E., 1977: Benthic community modification and recovery following intensive grazing by Strongylocentrotus droebachiensis. Helgolander wiss. Meeresunters. 30:468-484 Fr e t t e r , V. and A. Graham, 1949: The structure and mode of l i f e of the Pyrami-d e l l i d a e , p a r a s i t i c opisthobranchs. J . Mar. B i o l . Ass. U.K. 28:49 3-532 Gallagher, J.L., W.J. P f e i f f e r and L.W. Pomeroy, 1976: Leaching and microbial u t i l i z a t i o n of dissolved organic carbon from leaves of Spartina alter-niflora. Est. Coast. Mar. S c i . 4:467-471 Gasith, A., and W. Lawacz, 1976: Breakdown of l e a f l i t t e r i n the l i t t o r a l zone of a eutrophic lake. Ekol. Pol. 24:421-430 Gosselink, J.G., arid C.J. Kirby, 1974: Decomposition of s a l t marsh grass, Spar-tina alterniflora L o i s e l . Limnol. Oceanogr. 19:825-832 Gran, H.H., and T.G. Thompson, 1930: The diatoms and p h y s i c a l and chemical con-d i t i o n s of the seawater of the San Juan Archipelago. Pub. Puget Sound B i o l . Sta. 7:169-204 - 121 -G r i l l , E . V . , a n d F . A . R i c h a r d s , 1 9 6 4 : N u t r i e n t r e g e n e r a t i o n f r o m p h y t o p l a n k -t o n d e c o m p o s i n g i n s e a w a t e r . J . M a r . R e s . 2 2 : 5 1 - 6 9 H a n s o n , R . B . , a n d W . J . W i e b e , 1 9 7 7 : H e t e r o t r o p h i c a c t i v i t y a s s o c i a t e d w i t h p a r t i c u l a t e s i z e f r a c t i o n s i n a Spartina alterniflora s a l t - m a r s h e s t u a r y , S a p e l o I s l a n d , G e o r g i a , U . S . A . , a n d t h e c o n t i n e n t a l s h e l f w a t e r s . M a r . B i o l . 4 2 : 3 2 1 - 3 3 0 H a r g r a v e , B . T . , 1 9 7 2 : A e r o b i c d e c o m p o s i t i o n o f s e d i m e n t a n d d e t r i t u s a s a f u n c t i o n o f p a r t i c l e s u r f a c e a r e a a n d o r g a n i c c o n t e n t . L i m n o l . O c e a n o g r . 1 7 : 5 8 3 - 5 9 6 H a r r i s o n , P . G . , 1 9 7 7 : D e c o m p o s i t i o n o f m a c r o p h y t e d e t r i t u s i n s e a w a t e r : e f -f e c t s o f g r a z i n g b y a m p h i p o d s . O i k o s 2 8 : 1 6 5 - 1 6 9 H a r r i s o n , P . G . , a n d K . H . M a n n , 1 9 7 5 a : C h e m i c a l c h a n g e s d u r i n g t h e s e a s o n s a l c y c l e o f g r o w t h a n d d e c a y i n e e l g r a s s {Zostera marina L . ) o n t h e A t l a n t i c c o a s t o f C a n a d a . J . F i s h . R e s . B o a r d C a n . 3 2 : 6 1 5 - 6 2 1 H a r r i s o n , P . G . , a n d K . H . M a n n , 1 9 7 5 b : D e t r i t u s f o r m a t i o n f r o m e e l g r a s s (Zostera marina L . ) : t h e r e l a t i v e e f f e c t s o f f r a g m e n t a t i o n , l e a c h i n g a n d d e c a y . L i m n o l . O c e a n o g r . 2 0 : 9 2 4 - 9 3 4 H e a l d , E . J . , 1 9 6 9 : T h e p r o d u c t i o n o f o r g a n i c d e t r i t u s i n a s o u t h F l o r i d a e s t u -a r y . P h . D . t h e s i s , U n i v . o f M i a m i , 110 pp H e i n l e , D . R . , R . P . H a r r i s , J . F . U s t a c h a n d D . A . F l e m e r , 1 9 7 7 : D e t r i t u s a s f o o d f o r e s t u a r i n e c o p e p o d s . M a r . B i o l . 4 0 : 3 4 1 - 3 5 3 H i c k s , C . R . , 1 9 7 3 : F u n d a m e n t a l c o n c e p t s i n t h e d e s i g n o f e x p e r i m e n t s . H o l t , R i n e h a r t a n d W i n s t o n , N . Y . , 349 pp H o w a r t h , R .W. , a n d S . G . F i s h e r , 1 9 7 6 : C a r b o n , n i t r o g e n , a n d p h o s p h o r u s d y n a m i c s d u r i n g l e a f d e c a y i n n u t r i e n t e n r i c h e d s t r e a m m i c r o e c o s y s t e r n s . F r e s h -w a t e r B i o l . 6 : 2 2 1 - 2 2 8 H u n t , H . W . , 1 9 7 7 : A s i m u l a t i o n m o d e l f o r d e c o m p o s i t i o n i n g r a s s l a n d s . E c o l . 5 8 : 4 6 9 - 4 8 4 H u n t e r , R . D . , 1 9 7 6 : C h a n g e s i n c a r b o n a n d n i t r o g e n c o n t e n t d u r i n g d e c o m p o s i t i o n o f t h r e e m a c r o p h y t e s i n f r e s h w a t e r a n d m a r i n e e n v i r o n m e n t s . H y d r o -b i o l . 5 1 : 1 1 9 - 1 2 8 H u t c h i n s o n , A . M . , C . C . L u c a s a n d M. M c P h a i l , 1 9 2 9 : S e a s o n a l v a r i a t i o n s i n t h e c h e m i c a l a n d p h y s i c a l p r o p e r t i e s o f w a t e r i n t h e S t r a i t o f G e o r g i a i n r e l a t i o n t o p h y t o p l a n k t o n . T r a n s . R o y a l S o c . C a n . S e r i e s 3 , 2 3 : 1 7 7 - 1 8 3 I v e r s o n , T . M . , 1 9 7 3 : D e c o m p o s i t i o n o f a u t u m n - s h e d b e e c h l e a v e s i n a s p r i n g b r o o k a n d i t s s i g n i f i c a n c e f o r t h e f a u n a . A r c h . H y d r o b i o l . 7 2 : 3 0 5 - 3 1 2 J e n s e n , V . , 1 9 7 4 : D e c o m p o s i t i o n o f a n g i o s p e r m t r e e l e a f l i t t e r . I n : C . H . D i c k i n s o n a n d G . J . F . P u g h ( E d s . ) , B i o l o g y o f p l a n t l i t t e r d e c o m p o s i -t i o n , V o l 1 : 6 9 - 1 0 4 , A c a d e m i c P r e s s , L o n d o n - 122 -J o h a n n e s , R . E . , 1 9 6 5 : I n f l u e n c e o f m a r i n e p r o t o z o a o n n u t r i e n t r e g e n e r a t i o n . L i m n o l . O c e a n o g r . 1 0 : 4 3 4 - 4 4 2 J o h n s t o n , C . S . , R . G . J o n e s a n d R . D . H u n t , 1 9 7 7 : A s e a s o n a l c a r b o n b u d g e t f o r a l a m i n a r i a n p o p u l a t i o n i n a S c o t t i s h s e a - l o c h . H e l g o l a n d e r w i s s . M e e r e s u n t e r s 3 0 : 5 2 7 - 5 4 5 K a u s h i k , N . K . , a n d H . B . N . H y n e s , 1 9 6 8 : E x p e r i m e n t a l s t u d y o n t h e r o l e o f a u t u m n s h e d l e a v e s i n a q u a t i c e n v i r o n m e n t s . J . E c o l . 5 6 : 2 2 9 - 2 4 3 K h a i l o v , K . M . , a n d Z . P . B u r l a k o v a , 1 9 6 9 : R e l e a s e o f d i s s o l v e d o r g a n i c m a t t e r b y m a r i n e s e a w e e d s a n d d i s t r i b u t i o n o f t h e i r t o t a l o r g a n i c p r o d u c t i o n t o i n s h o r e c o m m u n i t i e s . L i m n o l . O c e a n o g r . 1 4 : 5 2 1 - 5 2 7 K n a u e r , G . A . , a n d A . V . A y e r s , 1 9 7 7 : C h a n g e s i n c a r b o n , n i t r o g e n , a d e n o s i n e t r i p h o s p h a t e , a n d c h l o r o p h y l l a i n d e c o m p o s i n g Thalassia testudinum l e a v e s . L i m n o l . O c e a n o g r . 2 2 : 4 0 8 - 4 1 4 K o s t a l o s , M . , a n d R . L . S e y m o u r , 1 9 7 6 : R o l e o f m i c r o b i a l e n r i c h e d d e t r i t u s i n t h e n u t r i t i o n o f Gammarus minus ( A m p h i p o d a ) . O i k o s 2 7 : 5 1 2 - 5 1 6 K o z l o f f , E . N . , 1 9 7 4 : K e y s t o t h e m a r i n e i n v e r t e b r a t e s o f P u g e t S o u n d , t h e S a n J u a n A r c h i p e l a g o , a n d a d j a c e n t r e g i o n s . U n i v . o f W a s h i n g t o n P r e s s , S e a t t l e , 226 pp K r e y , J . , 1 9 6 7 : D e t r i t u s i n t h e o c e a n a n d a d j a c e n t s e a . I n : G . H . L a u f f ( E d . ) , E s t u a r i e s : 3 8 9 - 3 9 6 . A m e r . A s s . A d v . S c i . P u b l . 8 3 , W a s h i n g t o n , D . C . L a c o c k , R . A . , 1 9 7 4 : T h e d e t r i t a l f o o d c h a i n b a s e d o n s e a w e e d s . J . B a c t e r i a a s s o c i a t e d w i t h t h e s u r f a c e o f Laminaria f r o n d s . M a r . B i o l . 2 5 : 2 2 3 -2 31 L e i g h t o n , D . L . , 1 9 7 1 : G r a z i n g a c t i v i t i e s o f b e n t h i c i n v e r t e b r a t e s i n s o u t h e r n C a l i f o r n i a k e l p b e d s . I n : W . J . N o r t h ( E d . ) , T h e b i o l o g y o f g i a n t k e l p b e d s (Macrocystis) i n C a l i f o r n i a : 4 2 1 - 4 5 3 . N o v a H e d w i g i a 32 ( S u p p l . ) L e i g h t o n , D . L . , L . G . J o n e s a n d W . J . N o r t h , 1 9 6 6 : E c o l o g i c a l r e l a t i o n s h i p s b e t w e e n g i a n t k e l p a n d s e a u r c h i n s i n s o u t h e r n C a l i f o r n i a . I n : E . G . Y o u n g a n d J . L . M c L a c h l a n ( E d s . ) , P r o c e e d i n g s o f t h e 5 t h I n t e r n a t i o n a l S e a w e e d S y m p o s i u m : 1 4 1 - 1 5 3 . P e r m a g o n P r e s s , O x f o r d L e n z , J . , 1 9 7 7 : On d e t r i t u s a s a f o o d s o u r c e f o r p e l a g i c f i l t e r f e e d e r s . M a r . B i o l . 4 1 : 3 9 - 4 8 L i n d s t r o m , S . C . , 1 9 7 3 : M a r i n e b e n t h i c a l g a l c o m m u n i t i e s i n t h e F l a t T o p I s l a n d s a r e a o f t h e G u l f I s l a n d s . M . S c . t h e s i s , U n i v . o f B r i t i s h C o l u m b i a , V a n c o u v e r , 1 0 7 pp L i n d s t r o m , S . C . , R . E . F o r e m a n a n d J . C . R o o t , 1 9 7 4 : A n i l l u s t r a t e d f i e l d k e y t o t h e m a r i n e m a c r o p h y t e s o f t h e S t r a i t o f G e o r g i a . U n p u b l i s h e d m a n u -s c r i p t , 88 pp L o u s i e r , J . D . , a n d D. P a r k i n s o n , 1 9 7 6 : L i t t e r d e c o m p o s i t i o n i n a c o o l t e m p e r a t e d e c i d u o u s f o r e s t . C a n . J . B o t . 5 4 : 4 1 9 - 4 3 6 - 12 3 -M a n n , K . H . , 1 9 7 2 a : M a c r o p h y t e p r o d u c t i o n a n d d e t r i t u s f o o d c h a i n s i n c o a s t a l w a t e r s . I n : D e t r i t u s a n d i t s r o l e i n a q u a t i c e c o s y s t e m s : 3 5 3 - 3 8 3 . Mem. 1 s t I t a l . I d r o b i o l . 2 9 ( S u p p l . ) M a n n , K . H . , 1 9 7 2 b : E c o l o g i c a l e n e r g e t i c s o f t h e s e a w e e d z o n e i n a m a r i n e b a y o n t h e A t l a n t i c c o a s t o f C a n a d a . II. P r o d u c t i v i t y o f t h e s e a w e e d s . M a r . B i o l . 1 4 : 1 9 9 - 2 0 9 M a n n , K . H . , 1 9 7 7 : D e s t r u c t i o n o f k e l p - b e d s b y s e a - u r c h i n s : A c y c l i c a l p h e n o -menon o r i r r e v e r s i b l e d e g r a d a t i o n ? H e l g o l a n d e r w i s s . M e e r e s u n t e r s 3 0 : 4 5 5 - 4 6 7 M i l l e r , R . J . , K . H . Mann a n d D . J . S c a r r a t t , 1 9 7 1 : P r o d u c t i o n p o t e n t i a l o f a s e a w e e d - l o b s t e r c o m m u n i t y i n e a s t e r n C a n a d a . J . F i s h . R e s . B o a r d C a n . 2 8 : 1 7 3 3 - 1 7 3 8 M i l l e r , R . J . , a n d K . H . M a n n , 1 9 7 3 : E c o l o g i c a l e n e r g e t i c s o f t h e s e a w e e d z o n e i n a m a r i n e b a y o n t h e A t l a n t i c c o a s t o f C a n a d a . I I I . E n e r g y t r a n s -f o r m a t i o n s b y s e a u r c h i n s . M a r . B i o l . 1 8 : 9 9 - 1 1 4 M i n d e r m a n , G . , 1 9 6 8 : A d d i t i o n , d e c o m p o s i t i o n , a n d a c c u m u l a t i o n o f o r g a n i c m a t -t e r i n f o r e s t s . J . E c o l . 5 6 : 3 5 5 - 3 6 2 M o o d y , R., 1 9 7 8 : T h e i n f l u e n c e o f t i d a l e l e v a t i o n o n s t a n d i n g c r o p , t u r i o n d e n s i t y a n d l e a f m e a s u r e m e n t o f Zostera marina L . o n R o b e r t s B a n k , B . C . M . S c . t h e s i s , U n i v . o f B r i t i s h C o l u m b i a , V a n c o u v e r , 106 pp M u l l e r , J . E . , 1 9 7 1 : G e o l o g i c a l r e c o n n a i s s a n c e map o f V a n c o u v e r I s l a n d a n d G u l f I s l a n d s . R e v i s e d . G e o l . S u r . C a n . , O p e n f i l e map N e w e l l , R. , 1 9 6 5 : T h e r o l e o f d e t r i t u s i n t h e n u t r i t i o n o f t w o m a r i n e d e p o s i t f e e d e r s , t h e p r o s o b r a n c h Hydrobia ulvae a n d Macoma b a l t h i c a . P r o c . Z o o l . S o c . L o n d . 1 4 4 : 2 5 - 4 5 N i c o l s , D . S . , a n d D .R . K e e n e y , 1 9 7 3 : N i t r o g e n a n d p h o s p h o r u s r e l e a s e f r o m d e -c a y i n g w a t e r m i l f o i l . H y d r o b i o l . 4 3 : 5 0 9 - 5 2 5 N i e l l , F . X . , 1 9 7 6 : C : N r a t i o i n some m a r i n e m a c r o p h y t e s a n d i t s p o s s i b l e e c o l o -g i c a l s i g n i f i c a n c e . B o t . M a r . 1 9 : 3 4 7 - 3 5 0 N y h a n , J . W . , - 1 9 7 6 : I n f l u e n c e o f s o i l t e m p e r a t u r e a n d w a t e r t e n s i o n o n t h e d e c o m -p o s i t i o n r a t e o f c a r b o n - 1 4 l a b e l l e d h e r b a g e . S o i l . S c i . 1 2 1 : 2 8 8 - 2 9 3 N y k v i s t , N . , 1 9 6 3 : L e a c h i n g a n d d e c o m p o s i t i o n o f w a t e r - s o l u b l e o r g a n i c s u b s t a n c e s f r o m d i f f e r e n t t y p e s o f l e a f a n d n e e d l e l i t t e r . S t u d . F o r . S u e c . 3 : 1 - 3 1 Odum, E . P . , a n d A . A . de l a C r u z , 1 9 6 7 : P a r t i c u l a t e o r g a n i c d e t r i t u s i n a G e o r g i a s a l t m a r s h - e s t u a r i n e e c o s y s t e m . I n : G . H . L a u f f ( E d . ) , E s t u a r i e s : 3 8 3 - 3 8 8 . A m e r . A s s . A d v . S c i . P u b l . 8 3 , W a s h i n g t o n , D . C . O l s o n , J . S . , 1 9 6 3 : E n e r g y s t o r a g e a n d t h e b a l a n c e o f p r o d u c e r s a n d d e c o m p o s e r s i n e c o l o g i c a l s y s t e m s . E c o l . 1 4 : 3 2 2 - 3 3 1 - 124 -O t s u k i , A . , a n d T . H a n y a , 1 9 7 2 : P r o d u c t i o n o f d i s s o l v e d o r g a n i c m a t t e r f r o m d e a d g r e e n a l g a l c e l l s J . A e r o b i c m i c r o b i a l d e c o m p o s i t i o n . L i m n o l . O c e a n o g r . 1 7 : 2 4 8 - 2 5 7 O t s u k i , A . , a n d R . G . W e t z e l , 1 9 7 4 : R e l e a s e o f d i s s o l v e d o r g a n i c m a t e r i a l b y a u t o l y s i s o f a s u b m e r s e d m a c r o p h y t e , Scirpus s u b t e r m i n a l i s . L i m n o l . O c e a n o g r . 1 9 : 8 4 2 - 8 4 5 P a i n e , R . T . , a n d R . L . V a d a s , 1 9 6 9 : T h e e f f e c t s o f g r a z i n g b y s e a u r c h i n s , Strongylocentrotus s p p . o n b e n t h i c a l g a l p o p u l a t i o n s . L i m n o l . O c e a n o g r . 1 4 : 7 1 0 - 7 1 9 P e n d l e t o n , D . F . , 1 9 7 2 : D e g r a d a t i o n o f g r a s s l a n d p l a n t s . M . S . t h e s i s , C o l o r a d o S t a t e U n i v . , F o r t C o l l i n s , C o l o r a d o , 37 pp P e r k i n s , E . J . , 1 9 7 4 : T h e m a r i n e e n v i r o n m e n t . I n : C H . D i c k i n s o n a n d G . J . F . P u g h ( E d s . ) , B i o l o g y o f p l a n t l i t t e r d e c o m p o s i t i o n , V o l . 2 : 6 8 3 - 7 2 1 , A c a d e m i c P r e s s , L o n d o n P e t e r s e n , R . C . , a n d K.W. C u m m i n s , 1 9 7 4 : L e a f p r o c e s s i n g i n a w o o d l a n d s t r e a m . F r e s h w a t e r B i o l . 4 : 3 4 3 - 3 6 8 P i c k r a l , J . C . , a n d W . E . Odum, 1 9 7 6 : B e n t h i c d e t r i t u s i n a s a l t m a r s h t i d a l c r e e k . E s t . P r o c e s s e s 2 : 2 8 0 - 2 9 2 P o w e l l , J . H . , 1 9 6 4 : T h e l i f e h i s t o r y o f t h e r e d a l g a Constantinea subulifera. P h . D . t h e s i s , U n i v . o f W a s h i n g t o n , S e a t t l e , 1 5 4 pp R e u s s , J . O . , a n d G . S . I n n i s , 1 9 7 7 : A g r a s s l a n d n i t r o g e n f l o w s i m u l a t i o n m o d e l . E c o l . 5 8 : 3 7 9 - 3 8 8 R o d i n , L . E . , a n d N . I . B a z i l e v i c h , 1 9 6 7 : P r o d u c t i o n a n d m i n e r a l c y c l i n g i n t e r r e s t r i a l v e g e t a t i o n . E n g l i s h e d . O l i v e r a n d B o y d , E d i n b u r g h , 2 8 8 pp R o m a n , M . R . , 1 9 7 7 : F e e d i n g o f t h e c o p e p o d Acartia tonsa o n t h e d i a t o m Nitzschia closterium a n d b r o w n a l g a e ( F u c u s vesiculosos) d e t r i t u s . M a r . B i o l . 4 2 : 1 4 9 - 1 5 5 R o u n d , F . E . , . 1 9 6 5 : T h e b i o l o g y o f t h e a l g a e . E . A r n o l d , L o n d o n , 2 6 9 pp R u s s e l l - H u n t e r , W . D . , 1 9 7 0 : A q u a t i c p r o d u c t i v i t y : a n i n t r o d u c t i o n t o some b a s i c a s p e c t s o f b i o l o g i c a l o c e a n o g r a p h y a n d l i m n o l o g y . C o l l i e r - M a c M i l l a n , L o n d o n , 306 pp S e k i , H . , 1 9 7 2 : M i c r o o r g a n i s m s i n t h e m a r i n e f o o d c h a i n . I n : D e t r i t u s a n d i t s r o l e i n a q u a t i c e c o s y s t e m s : 2 4 7 - 2 5 9 . Mem. 1 s t I t a l . I d r o b i o l . 29 ( S u p p l . ) S i b e r t , J . , T . J . B r o w n , M . C . H e a l e y a n d B . A . K a s k , 1 9 7 7 : D e t r i t u s - b a s e d f o o d w e b s : e x p l o i t a t i o n b y j u v e n i l e chum s a l m o n {Oncorhynchus keta) . S c i e n c e 1 9 6 : 6 4 9 - 6 5 0 S i e b u r t h , J . M c N . , 1 9 6 8 : T h e i n f l u e n c e o f a l g a l a n t i b i o s i s o n t h e e c o l o g y o f m a r i n e m i c r o o r g a n i s m s . I n : M . R . D r o o p a n d E . J . F . W o o d ( E d s . ) , A d v a n -c e s i n M i c r o b i o l o g y o f t h e S e a : 6 3 - 6 4 . A c a d e m i c P r e s s , L o n d o n a n d N . Y . - 125 -S i e b u r t h , J . M c N . , 1 9 6 9 : S t u d i e s o n a l g a l s u b s t a n c e s i n t h e s e a . III. T h e p r o d u c t i o n o f e x t r a c e l l u l a r o r g a n i c m a t t e r b y l i t t o r a l m a r i n e a l g a e . J . E x p . M a r . B i o l . E c o l . 3 : 2 9 0 - 3 0 9 S i e b u r t h , J . M c N . , a n d A . J e n s e n , 1 9 6 8 : P r o d u c t i o n a n d t r a n s f o r m a t i o n o f e x t r a -c e l l u l a r o r g a n i c m a t t e r f r o m l i t t o r a l m a r i n e a l g a e ; a r e s u m e . M a n u -s c r i p t . S y m p o s i u m o n C h e m i s t r y o f N a t u r a l W a t e r s , S e p t e m b e r 1 9 6 8 , U n i v . o f A l a s k a , 25 pp S k o o g , D . A . , a n d D.M. W e s t , 1 9 6 9 : F u n d a m e n t a l s o f a n a l y t i c a l c h e m i s t r y . 2 n d e d . H o l t , R i n e h a r t , W i n s t o n I n c . , U . S . A . , 835 pp S p e c t o r , W . S . , ( E d . ) , 1 9 5 6 : H a n d b o o k o f b i o l o g i c a l d a t a . W . B . S a u n d e r s , P h i l a d e l p h i a , 5 5 4 pp S t a c h u r s k i , A . , a n d J . R . Z i m k a , 1 9 7 5 : L e a f f a l l a n d t h e r a t e o f l i t t e r d e c a y i n some f o r e s t h a b i t a t s . E k o l . P o l . 2 3 : 1 0 3 - 1 0 8 S t a c h u r s k i , A . , a n d J . R . Z i m k a , 1 9 7 6 a : M e t h o d s o f s t u d y i n g f o r e s t e c o s y s t e m s : m i c r o o r g a n i s m a n d s a p r o p h a g e c o n s u m p t i o n i n t h e l i t t e r . E k o l . P o l . 2 4 : 5 7 - 6 7 S t a c h u r s k i , A . , a n d J . R . Z i m k a , 1 9 7 6 b : M e t h o d s o f s t u d y i n g f o r e s t e c o s y s t e m s : n u t r i e n t r e l e a s e f r o m t h e d e c o m p o s i n g l i t t e r . E k o l . P o l . 2 4 : 2 5 3 - 2 6 2 S t a t i s t i c s C a n a d a , 1 9 7 6 : F i s h e r i e s s t a t i s t i c s o f C a n a d a , C a n a d a s u m m a r y ( C a t a -l o g u e 2 4 - 2 0 1 A n n u a l ) . S t e w a r d , W . D . P . , ( E d . ) , 1 9 7 4 : A l g a l p h y s i o l o g y a n d b i o c h e m i s t r y . B o t . M o n o . 1 0 , U n i v . o f C a l i f o r n i a P r e s s , B e r k e l e y , 9 8 9 pp S t r i c k l a n d , J . D . H . , a n d T . R . P a r s o n s , 1 9 7 2 : A p r a c t i c a l h a n d b o o k o f s e a w a t e r a n a l y s i s . 2 n d e d . B u l l . F i s h . R e s . B o a r d C a n . 1 6 7 , 310 pp S u b e r k r o p p , K . , G . L . G o d s h a l k a n d M . J . K l u g , 1 9 7 6 : C h a n g e s i n t h e c h e m i c a l c o m p o s i t i o n o f l e a v e s d u r i n g p r o c e s s i n g i n a w o o d l a n d s t r e a m . E c o l . 5 7 : 7 2 0 - 7 2 7 S u t c l i f f e , W . H . J r . , 1 9 7 2 : Some r e l a t i o n s o f l a n d d r a i n a g e , n u t r i e n t s , p a r t i c u -l a t e m a t e r i a l s a n d f i s h c a t c h i n t w o e a s t e r n C a n a d i a n b a y s . J . F i s h . R e s . B o a r d C a n . 2 9 : 3 5 7 - 3 6 2 T a y l o r , F . H . C . , 1 9 6 4 : L i f e h i s t o r y a n d p r e s e n t s t a t u s o f B r i t i s h C o l u m b i a h e r r i n g s t o c k s . B u l l . F i s h . R e s . B o a r d C a n . 1 4 3 , 8 1 pp T e a l , J . M . , 1 9 6 2 : E n e r g y f l o w i n t h e s a l t m a r s h e c o s y s t e m o f G e o r g i a . E c o l . 4 3 : 6 1 4 - 6 2 4 T e n o r e , K . R . , 1 9 7 5 : D e t r i t a l u t i l i z a t i o n b y t h e p o l y c h a e t e , Capitella capitata. J. M a r . R e s . 3 3 : 2 6 1 - 2 7 4 T e n o r e , K . R . , J . H . T i e t j e n a n d J . J . L e e , 1 9 7 7 : E f f e c t o f m e i o f a u n a o n i n c o r p o r a -t i o n o f a g e d e e l g r a s s , Zostera marina, d e t r i t u s b y t h e p o l y c h a e t e Nephthys incisa. J . F i s h . R e s . B o a r d C a n . 3 4 : 5 6 3 - 5 6 7 - 1 2 6 -T u l l y , J . P . , a n d A . J . D o d i m e a d , 1 9 5 7 : P r o p e r t i e s o f t h e w a t e r i n t h e S t r a i t o f G e o r g i a , B r i t i s h C o l u m b i a a n d i n f l u e n c i n g f a c t o r s . J . F i s h . R e s . B o a r d C a n . 1 4 : 2 4 1 - 3 1 9 V i n o g r a d o v , A . P . , 1 9 5 3 : T h e e l e m e n t a r y c h e m i c a l c o m p o s i t i o n o f m a r i n e o r g a n -i s m s . Mem. S e a r s F o u n d . M a r . R e s . N o . 2 , 647 pp W e b s t e r , T . J . M . , M . A . P a r a n j a p e a n d K . H . M a n n , 1 9 7 5 : S e d i m e n t a t i o n o f o r g a n i c m a t t e r i n S t . M a r g a r e t ' s B a y , N o v a S c o t i a . J . F i s h . R e s . B o a r d C a n . 3 2 : 1 3 9 9 - 1 4 0 7 W h y t e , J . N . C . , a n d J . R . E n g l a r , 1 9 7 5 : B a s i c o r g a n i c c h e m i c a l p a r a m e t e r s o f t h e m a r i n e a l g a Nereocystis luetkeana o v e r t h e g r o w i n g s e a s o n . F i s h . R e s . B o a r d C a n . T e c h . R e p . 5 8 9 , 42 pp W i d d o w s o n , T . B . , 1 9 7 3 : T h e m a r i n e a l g a e o f B r i t i s h C o l u m b i a a n d n o r t h e r n W a s h i n g t o n : r e v i s e d l i s t a n d k e y s . P a r t I. P h a e o p h y t e s ( b r o w n a l g a e ) . S y e s i s 6 : 8 1 - 9 6 W i d d o w s o n , T . B . , 1 9 7 4 : T h e m a r i n e a l g a e o f B r i t i s h C o l u m b i a a n d n o r t h e r n W a s h i n g t o n : r e v i s e d l i s t a n d k e y s . P a r t II. R h o d o p h y c e a e ( r e d a l g a e ) . S y e s i s 7 : 1 4 3 - 1 8 6 W o l f f , T . , 1 9 7 6 : U t i l i z a t i o n o f s e a g r a s s i n t h e d e e p s e a . A q u a . B o t . 2 : 1 6 1 -1 7 4 Y i n g s t , J . Y . , 1 9 7 6 : T h e u t i l i z a t i o n o f o r g a n i c m a t t e r i n s h a l l o w m a r i n e s e d i -m e n t s b y an e p i b e n t h i c d e p o s i t - f e e d i n g h o l o t h u r i a n . J . E x p . M a r . B i o l . E c o l . 2 3 : 5 5 - 6 9 Z o b e l l , C . E . , 1 9 7 1 : D r i f t s e a w e e d s o n S a n D i e g o C o u n t y b e a c h e s . I n : W . J . N o r t h ( E d . ) , T h e b i o l o g y o f g i a n t k e l p b e d s (Macrocystis) i n C a l i f o r n i a : 2 6 9 - 3 1 4 . N o v a H e d w i g i a 32 ( S u p p l . ) - 12 7 -A P P E N D I X I A) N u m e r i c a l s p e c i e s c o d e f o r l i t t e r a s s e s s m e n t d a t a i n A p p e n d i x I ( B , C , D ) . B) L i t t e r a s s e s s m e n t d a t a f o r s e a s o n a l c o l l e c t i o n s a t 9 5 m w i t h i n S i t e 1. C) L i t t e r a s s e s s m e n t d a t a f o r c o l l e c t i o n s a t 5 , 3 5 , 65 a n d 95 m w i t h i n S i t e 1 o n e i t h e r 27 J u l y o r 3 A u g u s t 1 9 7 6 . D) l i t t e r a s s e s s m e n t d a t a f o r t h e c o l l e c t i o n a t S i t e 2 o n 10 N o v e m b e r 1 9 7 5 . A . 01 Plocamium coccineum v a r . pacificum 02 Gigartina papillata 0 3 Fucus distichus 0 4 ' Rhodomela larix 05 Odonthalia floccosa 0 6 Iridaea cordata 0 7 Nereocystis luetkeana ( s t i p e ) 0 8 Nereocystis luetkeana ( l a m i n a ) 09 Laminaria saccharina 10 Laminaria groenlandica 11 Constantinea subulifera 12 Ulva spp./Monostroma s p p . 13 Prionitis lanceolata H a r v e y 14 Sargassum muticum ( Y e n d o ) F e n s h o l t 15 Agarum s p p . 16 Zostera marina 17 Costaria costata ( T u r n e r ) S a u n d e r s 18 Laurencia spectabilis P o s t e l s a n d R u p r e c h t 19 Laminaria s p p . 20 Rhodymenia palmata ( L . ) G r e v i l l e 21 Halymenia s p p . 22 Analipus japonicus ( H a r v e y ) W y n n e 2 3 Gracilariopsis s j o e s t e d t i i ( K y l i n ) D a w s o n 24 Enteromorpha s p p . 25 Ceramium s p p . 26 Cryptopleura ruprechtiana ( J . A g a r d h ) K y l i n 27 Gelidium s p p . 28 Gigartina s p p . 29 Microcladia borealis R u p r e c h t 30 Rhodymenia pertusa ( P o s t e l s a n d R u p r e c h t ) J . A g a r d h 31 Gymnogrongus l i n e a r i s ( T u r n e r ) J . A g a r d h 32 Alaria s p p . 33 Porphyra torta K r i s h n a m u r t h y 34 Gloiosiphonia capillaris ( H u d s o n ) C a r m i c h a e l 35 Fauchea lanciniata J . A g a r d h 36 Rhodoptilum plumosum ( H a r v e y a n d B a i l e y ) K y l i n 37 Bossiella s p p . 38 Pterosiphonia bipinnata ( P o s t e l s a n d R u p r e c h t ) F a l k e n b e r g 39 Desmarestia v i r i d i s ( M u l l e r ) L a m o u r o u x 40 Polyneura latissima ( H a r v e y ) K y l i n 41 Callophyllis flabellulata H a r v e y 42 Bonnemaisonia nootkana ( E s p e r ) S i l v a 43 Gigartina exasperata H a r v e y a n d B a i l e y 99 U n i d e n t i f i e d l i t t e r - 128 -WET DRY ASH-FREE LOCATION SPECIES WEIGHT WEIGHT DRY WEIGHT DATE QUADRAT (G /10W 2 ) (G / 1 0 M 2 ) (G / 10M 2 ) 1 2 0 / 0 8 / 7 5 ' 1 95 10 - 2 0 03 3 . 5 4 0 0 0 . 6 950 0 . 4 6 5 0 2 2 0/08/75 ' 1 95 20 - 3 0 03 2 4 . 6 0 5 0 3 . 9 4 5 0 2 . 8 6 5 0 3 2 0 / 0 8 / 7 5 ' 1 95 20 - 3 0 14 0 . 4400 0 . 0 8 5 9 0 . 0 4 5 7 4 2 0 / 0 8 / 7 5 J 95 20 - 3 0 18 1 .0050 0. 1616 0 . 1 0 5 2 5 2 0 / 0 8 / 7 5 ' 1 95 20 - 3 0 12 0 . 1 1 5 0 0. 017 1 0 . 0 1 0 7 6 20/08/75 ' 1 95 20 - 3 0 13 0 . 2 2 0 0 0 . 069 1 0 . 0 4 0 7 7 2 0 / 0 8 / 7 5 ' 1 95 30 - 4 0 07 0 . 3 5 5 0 0 . 0 3 6 7 0 . 0 2 5 2 8 2 0 / 0 8 / 7 5 1 95 30 - 4 0 14 1 .7700 0 . 2 7 4 0 0. 1593 9 2 0 / 0 8 / 7 5 \" 1 95 40 - 5 0 07 133 . 9301 19. 6850 1 0 . 6 7 0 0 10 20/08/75 1 1 95 40 - 5 0 08 2 7 5 . 9 5 0 0 28 . 1050 1 6 . 2 3 5 0 11 2 0 / 0 8 / 7 5 ' 1 95 40 - 5 0 06 4 0 4 . 7 8 4 9 8 4 . 2 1 0 0 5 1 . 2 2 0 0 12 2 0 / 0 8 / 7 5 1 95 40 - 5 0 19 1 1 0 . 9 5 0 0 1 3 . 0 6 5 0 8 . 4 0 5 0 13 2 0 / 0 8 / 7 5 ' 1 95 40 - 50 15 1 8 . 0 5 0 0 2 . 7 1 0 0 1 .5350 14 2 0 / 0 8 / 7 5 ' 1 95 40 - 5 0 05 8 . 0 5 0 0 1 . 9150 1 .0850 15 2 0 / 0 8 / 7 5 ' 1 95 40 - 5 0 32 3 . 4 4 0 0 0. 3592 0 . 2 0 2 3 16 20/08/75 ' 1 95 40 - 5 0 12 1 0 . 8 0 5 0 1 . 9350 1. 2750 17 2 0 / 0 8 / 7 5 ' I 95 40 - 5 0 18 6 . 6 6 5 0 0. 8702 0 . 4 911 16 2 0 / 0 8 / 7 5 1 95 40 - 5 0 14 0 . 8 1 0 0 0. 1258 0 . 0 7 1 3 19 2 0 / 0 8 / 7 5 ' 1 95 40 - 5 0 26 0 . 5 2 0 0 0 . 0 0 9 8 0.0 044 20 2Q/08/75 ' 1 95 40 - 5 0 44 0 . 2 4 0 0 0 . 0256 0 . 0 1 5 5 21 2 0 / 0 3 / 7 5 \" 95 50 - 6 0 03 3 1 6 . 0 3 0 0 3 9 . 9 3 5 0 2 4 . 0 8 5 0 22 2 0/08/75 ' 1 95 50 - 6 0 07 489 .5400 60 . 5550 3 6 . 9 2 0 0 23 2 0 / 0 3 / 7 5 • 1 95 50 - 6 0 19 9 8 . 3 8 5 0 1 8 . 5 9 0 0 9 . 1 0 0 0 24 2 0 / 0 3 / 7 5 ' 1 95 50 - 6 0 06 7 . 9 6 0 0 0 . 9 6 0 0 0. 5501 25 2 0 / 0 8 / 7 5 ' 95 50 - 6 0 13 0 . 0 8 0 0 0 . 0097 0 . C049 26 2 0 / 0 3 / 7 5 ' 95 50 - 6 0 18 0 . 8 2 0 0 0 . 0 0 9 4 0 . 0 0 6 0 27 2 0 / C 6 / 7 5 ' 1 95 50 - 6 0 15 1 . 4 550 0. 2059 0 . 1 1 0 7 26 2 0 / 0 8 / 7 5 ' 1 95 50 - 6 0 17 2 . 1 0 0 0 0. 258 1 0 . 1 4 9 1 29 2 0 / 0 8 / 7 5 \" 95 50 - 6 0 21 0. 7700 0 . 0 958 0 . 0 5 8 3 3C 2 0 / 0 8 / 7 5 ' 1 95 60 -70 07 3 3 2 . 5 1 0 0 4 3 . 2 4 0 0 2 4 . 5 6 5 0 31 2 0 / 0 8 / 7 5 ' 1 95 60 - 7 0 0 3 3 4 2 . 2 1 4 8 4 2 . 5 7 5 0 2 5 . 8 6 5 0 32 20/08/75 ' 1 95 60 - 7 0 19 64 . 9350 1 1 . 3 6 5 0 6 . 4 2 0 0 33 2 0 / 0 8 / 7 5 \" 95 60 - 70 21 2 . 1 6 5 0 0. 2593 0 . 1 6 0 8 34 2 0/08/75 \" 95 60 - 7 0 32 2 . 0 2 5 0 0 . 3 2 5 2 0 . 1 9 7 3 35 2 0 / 0 8 / 7 5 ' 1 95 60 - 70 12 7 . 6 1 0 0 1 . 8 6 0 0 1 .0850 36 2 0/08/75 ' 1 95 70 - 8 0 07 6 2 . 1 8 5 0 6 . 3 4 3 0 3 .C050 37 20/0 8/75 ' 95 70 - 8 0 08 1 8 7 . 8 1 4 9 2 1 . 0 9 5 0 1 3 . 0 9 0 0 38 2 0/08/75 • 95 70 - 8 0 19 6 8 . 1 0 5 0 8. 3 4 0 0 5. 3 6 00 39 2 0 / 0 8 / 7 5 ' 1 95 70 - 8 0 06 0 . 1 2 5 0 0. 0148 0 . 0091 40 2 0 / 0 8 / 7 5 ' 1 95 30 - 9 0 07 1 3 2 . 0 9 0 0 13. 6600 9 . 0 6 0 0 41 2 0 / 0 8 / 7 5 ' 1 95 80 - 9 0 08 1 2 5 . 2 0 5 0 1 2 . 9 4 0 0 8 . 0 7 0 0 42 20/0 8/75 ' 1 95 80 - 9 0 14 0 . 7 4 0 0 0 . 1 5 9 2 0 . 0 9 8 2 43 2 0 / 0 3 / 7 5 ' 1 95 80 - 9 0 19 0 . 3 9 0 0 0. 0446 0 . 0 2 3 6 44 2 0 / 0 8 / 7 5 ' 1 95 9 0 - 100 07 8 5 . 6 0 5 0 12. 0700 7 . 0 0 5 0 45 2 0 / 0 8 / 7 5 ' 1 95 9 0 - 100 08 1 3 3 . 4 8 5 0 1 4 . 3 7 0 0 8 . 815C 46 2 0 / 0 8 / 7 5 ' 1 95 9 0 - 100 12 5 . 5 1 0 0 0 . 7 3 5 0 0 . 4 8 5 0 47 2 0 / 0 8 / 7 5 ' 1 95 9 0 - 100 19 1 4 . 4 0 5 0 1 . 9 1 5 0 1 .0850 48 0 2 / 0 9 / 7 5 ' ! 95 00 - 1 0 07 1 0 . 6 0 0 0 0 . 9 3 0 0 0 . 4 6 2 0 49 0 2 / 0 9 / 7 5 ' 1 95 20 - 3 0 03 1 9 1 . 1 4 0 0 5 2 . 9 1 5 0 3 9 . 9 0 0 0 50 0 2 / 0 9 / 7 5 ' 1 95 20 - 3 0 06 6 . 3 2 0 0 1 . 0 4 0 0 0 . 6 9 1 2 51 0 2 / 0 9 / 7 5 ' 1 95 20 - 3 0 12 1. 9700 0. 3 1 3 8 0 . 2 0 2 0 52 0 2 / 0 9 / 7 5 ' I 95 20 - 3 0 07 0 . 5 8 0 0 0 . 0 6 6 9 0 . 0 4 6 4 53 0 2 / 0 9 / 7 5 ' 1 95 20 - 3 0 13 2. 1500 0 . 4 8 3 7 0 . 3 1 6 6 54 0 2 / 0 9 / 7 5 1 1 95 20 - 3 0 04 0 . 7 3 9 0 0. 1219 0 . 0 7 8 8 55 0 2 / 0 9 / 7 5 ' 1 95 20 - 30 28 0 . 3 4 6 7 0. 1017 0 . 0 5 1 7 -129-56 0 2 / 0 9 / 7 5 1 95 20 - 3 0 14 0 . 1 4 2 8 0 . 0450 0 . 0 3 1 9 57 0 2 / 0 9 / 7 5 1 95 20 - 3 0 18 0 . 0 8 9 3 0 . 0 2 2 5 0 . 0 147 58 0 2 / 0 9 / 7 5 1 95 20 - 3 0 01 0 . 1 8 6 7 0 . 0 4 3 5 0 . 0 3 1 1 59 0 2 / 0 9 / 7 5 1 95 30 - 4 0 03 8 6 . 4 2 5 0 2 2 . 9 0 3 0 1 6 . 4 9 0 0 60 0 2 / 0 9 / 7 5 1 95 30 - 4 0 06 6 . 5 1 5 0 1 . 5 8 5 0 1. 0 900 61 0 2 / 0 9 / 7 5 1 95 30 - 4 0 14 3 . 2900 0 . 5 9 5 0 0 . 4 2 2 5 62 0 2 / 0 9 / 7 5 1 95 30 - 4 0 13 0 . 9 3 0 0 0 . 1849 0 . 1 1 7 6 63 0 2 / 0 9 / 7 5 1 95 30 - 4 0 18 7 . 3 0 5 0 0 . 8 7 5 0 0 . 6550 6a 0 2 / 0 9 / 7 5 1 95 30 - 4 0 12 6 . 2 3 5 0 1 . 0 3 0 0 0 . 6 2 2 6 65 0 2 / 0 9 / 7 5 1 95 3 0 - 4 0 07 0 . 2 5 8 5 0 . 0 3 5 0 0 . 0 2 1 2 66 0 2 / 0 9 / 7 5 1 95 30 - 4 0 08 0 . 2 1 4 5 0 . 0 3 5 0 0 . 0 1 9 9 67 0 2 / 0 9 / 7 5 1 95 30 - 4 0 05 0 . 1 8 9 2 0 . 0470 0 . 0291 68 0 2 / 0 9 / 7 5 1 95 40 - 5 0 19 1 6 3 . 8 2 5 0 2 8 . 6450 1 3 . 9 1 5 0 69 0 2 / 0 9 / 7 5 1 95 40 - 5 0 06 1 7 7 . 6 8 5 1 3 8 . 5 4 0 0 2 7 . 0 6 5 0 70 0 2 / 0 9 / 7 5 1 95 40 - 5 0 07 4 0 6 . 4 3 9 9 1 4. 4750 8 . 1 7 0 0 71 0 2 / 0 9 / 7 5 1 95 40 - 5 0 08 1 2 4 . 0 6 0 0 3 . 0 2 5 0 1 . 8 3 0 0 72 0 2 / 0 9 / 7 5 1 95 40 - 5 0 17 8 . 8 7 5 0 1 . 0 1 0 0 0 . 4 8 5 0 73 0 2 / 0 9 / 7 5 1 95 4 0 - 5 0 18 1 . 7 5 5 0 0 . 2 3 0 0 0 . 1 5 2 1 74 0 2 / 0 9 / 7 5 1 95 40 - 5 0 16 2 . 4 6 5 0 0 . 2900 0 . 1872 75 0 2 / 0 9 / 7 5 1 95 40 - 5 0 12 3 2 . 4 1 0 0 5 . 3 0 5 0 3 . 5800 76 0 2 / 0 9 / 7 5 1 95 40 - 5 0 18 7. 8900 1. 3700 0 . 9 0 5 0 77 0 2 / 0 9 / 7 5 1 95 5 0 - 6 0 07 5 . 5 2 5 0 0 . 7 7 2 6 0 . 4 5 0 0 78 0 2 / 0 9 / 7 5 1 95 50 - 6 0 08 6 . 2 0 0 0 0 . 8397 0 . 5 0 5 1 79 0 2 / 0 9 / 7 5 1 95 50 - 6 0 28 0 .6 950 0 . 2 0 6 3 0 . 1006 80 0 2 / 0 9 / 7 5 1 95 50 - 6 0 12 7 . 0 0 0 0 1 . 3 1 5 0 0 . 8 4 5 0 81 0 2 / 0 9 / 7 5 1 95 50 - 6 0 19 7 . 8300 5 . 0 3 0 0 2 . 5 7 0 0 82 0 2 / 0 9 / 7 5 1 95 50 - 6 0 06 8 5 . 3 9 0 0 1 2 . 7 1 5 0 9 . 0 9 5 0 83 0 2 / 0 9 / 7 5 1 95 60 - 7 0 15 4 9 . 0 5 5 0 7.3200 4 . 0 6 5 0 84 0 2 / 0 9 / 7 5 1 95 6 0 - 7 0 06 1 7 . 9 8 0 0 3 . 6 4 0 0 2 . 5 4 5 0 85 0 2 / 0 9 / 7 5 1 95 6 0 - 7 0 07 9 9 . 1 0 5 0 8.4450 5 . 3200 86 0 2 / 0 9 / 7 5 1 95 60 - 7 0 08 2 6 . 9 9 0 0 3 . 1100 1 . 7 7 0 0 87 0 2 / 0 9 / 7 5 1 95 6 0 - 7 0 15 8 . 6 1 5 0 1. 4850 0 . 8 3 0 0 88 0 2 / 0 9 / 7 5 1 95 60 - 7 0 17 2 . 2 3 0 0 0 . 2 2 5 0 0 . 1 1 6 2 89 0 2 / 0 9 / 7 5 1 95 6 0 - 7 0 18 0 . 7 4 1 7 0 . 0 4 3 0 0 . 2 9 3 0 90 0 2 / 0 9 / 7 5 1 95 60 - 7 0 01 0 . 0 4 3 7 0 . 0 0 7 1 0 . C 0 4 9 91 0 2 / 0 9 / 7 5 1 95 60 - 7 0 12 0 . 4 4 0 6 0 . 0 7 0 5 0 . 0 4 5 9 92 0 2 / 0 9 / 7 5 1 95 60 - 7 0 20 1 . 1 3 6 2 0. 1256 0 . 0 6 5 6 93 0 2 / 0 9 / 7 5 1 95 7 0 - 8 0 19 1 9 . 9 1 0 0 2 . 8 4 5 0 1 . 4 0 5 0 94 0 2 / 0 9 / 7 5 1 95 70 - 8 0 03 1 0 . 0 0 0 0 2 . 3 8 5 0 1 . 8 1 5 0 95 0 2 / 0 9 / 7 5 1 95 70 - 8 0 07 6 7 . 2 6 0 0 7.3500 4 . 3 5 5 0 96 0 2 / 0 9 / 7 5 1 95 70 - 8 0 08 4 5 . 6 3 0 0 4 . 8 1 5 0 2 . 8 7 0 0 97 0 2 / 0 9 / 7 5 1 95 7 0 - 8 0 12 1 2 . 0 4 0 0 1.5150 0 . 9 7 5 0 98 0 2 / 0 9 / 7 5 1 95 70 - 8 0 21 8.8900 1. 3 4 5 0 0 . 9 3 5 0 99 0 2 / 0 9 / 7 5 1 95 70 - 8 0 16 0 . 2 9 3 5 0. 0 2 7 1 0 . 0 1 7 0 1 00 0 2 / 0 9 / 7 5 1 95 80 - 9 0 14 0 . 3 3 7 0 0. 0 4 1 2 0 . 0 2 8 1 101 0 2 / 0 9 / 7 5 1 95 80 - 9 0 07 7 1 . 4 4 5 0 8.0600 4 . 2 5 0 0 102 0 2 / 0 9 / 7 5 1 95 80 - 9 0 08 7 1 . 0 2 0 0 6 . 8 7 5 0 3 . 9 5 5 0 103 0 2 / 0 9 / 7 5 1 95 80 - 9 0 03 6 . 2 1 0 0 1. 3950 1 . 0 3 5 0 1 04 0 2 / 0 9 / 7 5 1 95 80 - 9 0 12 9 . 1 5 5 0 1 . 3 3 0 0 0 . 8 7 0 0 105 0 2 / 0 9 / 7 5 1 95 80 - 9 0 14 1 . 3 2 1 7 0 . 2 3 0 9 0.1592 106 0 2 / 0 9 / 7 5 1 95 80 - 9 0 19 2 3 . 7 5 5 0 2 . 6 5 0 0 1 . 3 4 0 0 107 0 2 / 0 9 / 7 5 1 95 80 - 9 0 21 1 . 8 2 5 2 0.2312 0.1610 108 0 2 / 0 9 / 7 5 1 95 80 - 9 0 18 0 . 3 4 3 9 0.0392 0 . 0 2 7 0 109 0 2 / 0 9 / 7 5 1 95 9 0 - 100 08 4 3 . 2 1 5 0 3 . 7 6 0 0 2 . 1 1 0 0 1 10 0 2 / 0 9 / 7 5 1 95 9 0 - 100 12 4 . 1 1 0 0 0.8450 0 . 5 1 5 0 1 11 0 2 / 0 9 / 7 5 1 95 9 0 - 100 06 0 . 0 5 3 8 0.0040 0 . 0 0 2 3 112 0 2 / 0 9 / 7 5 1 95 9 0 - 100 16 0 . 7 1 7 8 0.0626 0 . 0 4 0 0 1 13 0 2 / 0 9 / 7 5 1 95 9 0 - 100 23 0 . 2 4 7 4 0.0531 0.0322 1 14 04 /10/75 1 95 10 - 2 0 07 1 2 . 3 9 0 0 1.4100 0 . 8 3 0 0 1 15 04/10 /75 1 95 20 - 3 0 03 6.1 100 1.3400 1 . 0 2 0 0 - 130 -116 04/10/75 ' 1 95 20 -30 07 0.8700 0. 0950 0. 0518 1 17 04/10/75 ' 1 95 20 -30 12 0.1150 0.0181 0. 0T19 1 18 04/10/75 1 95 40 -50 07 60.9600 7.2450 4. 3 250 119 04/10/75 1 1 95 40 -50 08 83.1600 9. 6650 5. 6300 120 04/10/75 ' 1 95 40 -50 06 19.2900 5. 1450 3. 7 150 121 04/10/75 ' 1 95 40 -50 12 10.1500 1. 8900 1. 2000 122 04/10/75 ' 1 95 40 -50 18 9.4900 1. 3700 0. 9450 123 04/10/75 * 95 50 -60 07 262.1899 42.4400 23. 5800 124 04/10/75 1 1 95 50 -60 08 30.9300 3.8550 2. 2550 125 04/10/75 \" 1 95 50 -60 19 12.9100 2. 6950 1. 3600 126 04/10/75 * 1 95 50 -60 15 6.5450 1. 1450 0. 6250 127 04/10/75 ' 1 95 50 -60 06 13.9450 3.4800 2. 4750 128 04/10/75 \" 1 95 50 -60 12 3.6850 0.5350 0. 3291 129 04/10/75 ' 1 95 60 -70 07 1 14.9350 17.7100 10.2800 130 04/10/75 1 95 60 -70 08 72.3450 9.2500 5. 5300 131 04/10/75 ' 1 95 60 -70 19 1.2200 0. 1800 0. 1024 132 04/10/75 1 95 60 -70 12 2.3250 0. 3800 0. 2303 133 04/10/75 \" I 95 60 -70 16 0.2228 0. 021 0 0. 0127 134 04/10/75 1 95 70 -80 08 38.9950 4.3850. 2. 6 150 135 04/10/75 ' 1 95 70 -80 07 100.8450 13.0300 7. 4350 136 04/10/75 \" 1 95 70 -80 12 5.9800 1.0500 0. 6585 137 0 4/10/75 ' 1 95 70 -80 21 1.4557 0.1303 0. 0910 138 04/10/75 ? 95 70 -80 19 19.4400 2. 6600 1. 3750 139 04/10/75 ' 1 95 80 -90 19 108.1300 20. 2000 10. 3550 140 04/10/75 ' 1 95 80 -90 07 11.2000 1.3600 0. 8350 141 04/10/75 1 95 80 -90 08 23.5900 3.2100 1. 8650 142 04/10/75 1 95 90- 100 07 55.7900 5.1950 2. 7350 143 04/10/75 ' 1 95 90- 100 08 33.8800 3.6400 2. 2 6 50 144 04/10/75 ' 1 95 90- 100 16 0.3900 0. 0635 0. 0409 145 04/10/75 ' 1 95 90- 100 03 0.7050 0. 1465 0. 1 069 146 04/10/75 ' 1 95 90- 100 14 0.4450 0. 1070 0. 0755 147 04/10/75 ' 1 95 90- 100 12 0.8600 0. 1765 0. 1 170 148 04/10/75 ' 1 95 90- 100 19 3.1100 0.4755 0. 2560 149 04/10/75 1 95 90- 100 25 0.2549 0. 0289 0. 0129 150 04/10/75 1 95 90- 100 24 0.0909 0. 007 3 0. 0 035 151 09/11/75 ! 95 10 -20 03 5.0100 0. 8650 0. 6600 152 09/11/75 ' 1 95 30 -40 07 34.8600 4.7850 3. 4300 153 09/11/75 1 95 30 -40 16 0.5560 0. 0577 0. 0351 154 09/11/75 1 95 30 -40 18 0.8350 0. 1046 0.0685 155 09/11/75 ' 1 95 40 -50 06 0.4977 0. 0980 0. 0682 156 09/11/75 ' 1 95 40 -50 08 4.9605 0.4310 0. 2520 157 09/11/75 ' 1 95 40 -50 07 225.6000 32.0000 17. 4800 158 09/11/75 1 95 40 -50 12 0.5860 0. 0893 0. 0585 159 09/11/75 1 95 40 -50 19 1.8 114 0.2257 0. 1201 160 09/11/75 ! 95 50 -60 07 106.3600 15. 8550 9. 0 100 161 09/11/75 1 95 50 -60 05 1.0163 0. 2070 0. 1 281 162 09/11/75 1 95 50 -60 06 1.2730 0.3269 0. 2370 163 09/11/75 1 95 60 -70 07 652.5750 99.5700 48. 5550 164 09/11/75 • 1 95 60 -70 08 11.9618 1. 1097 0. 6444 165 09/11/75 1 95 60 -70 15 8.0589 3. 2286 1. 8150 166 09/11/75 1 95 60 -70 12 0.5 117 0.0870 0. 0606 167 09/11/75 1 95 60 -70 19 1.8080 0.2693 0. 1 378 168 09/11/75 1 95 70 -80 08 17.0100 1.8850 1. 1000 169 09/11/75 ' 1 95 70 -80 07 39.0100 6. 0805 3. 3594 170 09/11/75 1 95 70 -80 19 1.9064 0.2548 0. 1280 171 09/11/75 ' 1 95 70 -80 12 0.5899 0.0915 0. 0613 172 09/11/75 1 95 80 -90 08 15.4150 1.3650 0. 7821 173 09/11/75 ' 1 95 80 -90 07 78.8750 7.3100 4. 4250 174 09/11/75 1 95 80 -90 • 19 13.6350 1.7300 0. 8524 175 09/11/75 1 95 90- 100 07 73.4850 7. 5550 4. 0200 -. 131 176 0 9 / 1 1 / 7 5 1 95 9 0 - 100 08 177 0 9 / 1 1 / 7 5 1 95 9 0 - 100 06 178 0 9 / 1 1 / 7 5 1 95 9 0 - 100 18 179 0 9 / 1 1 / 7 5 1 95 9 0 - 100 26 180 0 9 / 1 1 / 7 5 ' I 95 9 0 - 100 16 181 1 0 / 1 2 / 7 5 ' I 95 30 - 4 0 08 182 1 0/12/75 ' I 95 30 - 4 0 18 183 1 0/12/75 ' I 95 30 - 4 0 16 184 10/12/75 1 I 95 30 - 4 0 03 185 1 0/12/75 ' 95 40 - 5 0 07 186 10/12/75 * 95 40 - 5 0 08 187 1 0/12/75 1 95 40 - 5 0 12 188 10/12/75 ' I 95 40 - 5 0 03 189 1 0/12/75 ' I 95 40 - 5 0 13 190 1 0 / 1 2 / 7 5 ' I 95 50 - 6 0 07 191 1 0 / 1 2 / 7 5 ' I 95 50 - 6 0 18 192 1 0 / 1 2 / 7 5 ' I 95 50 - 6 0 03 193 1 0 / 1 2 / 7 5 ' I 95 50 - 6 0 12 194 1 0/12/75 ' I 95 50 - 6 0 08 195 1 0/12/75 ' 95 60 - 7 0 07 196 1 0 / 1 2 / 7 5 ' I 95 60 - 7 0 16 197 1 0/12/75 ' I 95 60 - 7 0 19 198 1 0/12/75 ' I 95 60 - 7 0 08 199 10/12/75 H 95 70 - 8 0 08 200 1 0/12/75 ' I 95 70 - 8 0 07 201 10/12/75 I 95 70 - 8 0 19 202 1 0/12/75 ' I 95 70 - 8 0 06 203 10/12/75 1 95 7 0 - 8 0 12 204 10/12/75 ' I 95 70 - 8 0 13 205 10/12/75 1 95 80 - 9 0 07 206 10/12/75 ' 1 95 80 - 9 0 08 207 10/12/75 ' 1 95 80 - 9 0 12 208 1 0/12/75 ' 1 95 80 - 9 0 19 209 1 0/12/75 ' 1 95 9 0 - 100 08 210 10/12/75 ' 1 95 . 90 - 100 07 211 10/12/75 ' 1 95 9 0 - 100 12 212 16/01/76 ' 1 95 30 - 4 0 07 213 16/01/76 ' 1 95 50 - 6 0 07 214 16/01/76 ' 1 95 50 - 6 0 16 215 16/01/76 ' 1 95 60 - 7 0 07 216 16/01/76 ' 1 95 70 - 8 0 07 217 16/01/76 ' 1 95 80 - 9 0 07 218 16/01/76 ' 1 95 9 0 - 100 07 219 2 8/02/76 ' 1 95 30 - 4 0 32 220 2 8 / 0 2 / 7 6 1 95 50 - 6 0 32 221 2 8 / 0 2 / 7 6 1 95 80 - 9 0 07 222 14/03/76 ' 1 95 20 - 3 0 03 223 14/03/76 ' 1 95 20 - 3 0 12 224 14/03/76 1 95 40 - 5 0 16 225 14/03/76 1 95 40 - 5 0 18 226 14/03/76 1 95 40 - 5 0 26 227 14/03/76 ' 1 95 40 - 5 0 12 228 14/03/76 ' 1 95 40 - 5 0 33 229 14/03/76 1 95 40 - 5 0 19 230 14/03/76 ' 1 95 40 - 5 0 03 231 14/03/76 ' 1 95 40 - 5 0 31 232 14/03/76 ' 1 95 50 - 6 0 19 233 14/03/76 1 95 50 - 6 0 30 234 14/03/76 ' 1 95 50 - 6 0 12 235 14/03/76 \\ 95 50 - 6 0 18 1 2 . 6 3 5 0 1. 0600 2. 0 150 0 . 9 5 9 3 0. 2815 0 . 2023 0 . 4 9 3 2 0. 075 2 0. 0549 0.9806 0. 2638 0. 1701 0 . 5 2 0 8 0. 1235 o . 0784 2 . 2 7 7 5 0 . 2320 0 . 1 3 5 9 0 . 2 3 3 4 0. 026 5 0 . 0179 0 . 9 1 2 8 0. 0884 0 . 0556 1 .0582 0. 2279 0 . 1731 1 1 9 . 4 4 5 0 6 . 4950 3. 1250 4 . 6 8 4 7 0. 3865 0 . 2 253 0 . 6 4 3 9 0 . 097 1 0 . 0518 4. 1573 1. 1567 0 . 7032 0.0621 0. 006 2 0 . 0042 3 1 . 4 5 0 0 2 . 8400 1. 8400 0 . 1 0 7 8 0. 0135 0. 0100 2 . 8 9 5 0 0 . 7 5 7 2 0 . 5 572 0 . 0 5 7 1 0 . 0090 0 . 0 5 9 0 7 . 6 8 0 0 0. 7192 0 . 4325 7 3 . 3 9 0 0 6. 6200 4 . 6200 0 . 9 7 7 1 0. 1003 0 . 0641 1 . 0150 0. 1 175 0 . 0612 1 .9200 0. 1798 0 . 1 039 2 5 . 7 9 0 0 2 . 6700 1. 5700 6 5 . 5 3 5 0 4. 3500 2 . 6650 3 . 8 4 9 8 0. 4 575 0. 2369 0. 9337 0. 1858 0. 1 405 0. 4 138 0. 0617 0 . 0 373 0 . 0 9 1 1 0 . 0 2 8 8 0 . 0 1 5 5 5 7 . 4 5 5 0 7. 2650 4. 0 150 1 2 . 7 201 1. 3770 0 . 7991 1 . 9476 0. 4317 0 . 2925 0 . 2939 0. 0455 0 . 0235 7 . 1 8 5 2 0. 727 1 0. 4500 6 3 . 8 8 0 0 3. 6650 1. 9550 0.4747 0. 0 855 0 . 0549 8 . 2 7 0 0 1. 9150 1. 2750 1 5 . 5 1 0 0 2. 6900 1. 4250 0 . 5 4 5 8 0 . 0633 0 . 3993 5 1 . 9 0 5 0 6. 4650 3 . 5 100 3 4 . 8 8 0 0 5. 2 800 3 . 4100 7 9 . 0 6 0 0 11 . 7350 9 . 2850 6 7 . 2 7 5 0 9. 1300 4. 5800 2 2 . 5 0 5 0 4 . 0750 2. 4500 1 2 . 4 8 5 0 2 . 2650 1. 4150 1 3 . 7 0 5 0 2. 1550 1. 3 350 1 7 . 8 3 0 0 3. 2100 2 . 3900 0 . 7 9 1 0 0. 1609 0. 1086 0 . 2 7 3 8 0. 0473 0 . 0316 0 . 9 9 3 7 0. 1304 0. 0914 0 . 5 3 0 4 0. 0924 0. 0622 4 . 3 8 0 6 0. 2620 0 . 1772 3 . 7 8 5 0 • 0. 8650 0 . 3490 5 . 1 5 5 0 0 . 6750 0 . 3840 4 . 4 8 0 0 0. 8600 0 . 6249 0.1194 0. 0229 0 . 0 137 1 3 . 5 9 5 0 1. 9850 1. 0200 0 . 1 3 9 2 0. 0298 0. 0 157 2 . 7 2 0 4 0. 4863 0 . 3219 0 . 7 5 6 6 0. 1380 0 . 0960 - 132 -236 14/0 3/76 1 1 95 50 -60 33 1.5219 0. 3209 0.1363 237 14/03/76 1 1 95 60 -70 19 33.3650 3. 4900 1.7900 238 14/03/76 ' 1 95 60 -70 12 4.4150 0.6050 0.4278 239 14/03/76 ' 1 95 60 -70 26 0.7586 0.1240 0.0822 240 14/03/76 ' 1 95 60 -70 23 0.7683 0.0613 0.0400 241 14/03/76 \" 95 70 -80 19 3. 5262 0. 8484 0.4551 242 18/04/76 \" 1 95 1 0 -20 06 33.5350 6.3150 4. 6000 243 18/04/76 ' 1 95 10 -20 03 3.9550 0.9200 0.7182 244 18/04/76 \" 1 95 10 -20 12 1.3579 0. 1828 0. 1251 245 18/04/76 ' 1 95 10 -20 01 0.1 107 0.0227 0.0 151 246 18/04/76 ' 1 95 10 -20 34 0.4318 0. 0667 0.0435 247 18/04/76 ' 1 95 20 -30 06 0. 1964 0. 0448 0.0306 248 18/04/76 ' 1 95 30 -40 12 0.9776 0. 1829 0.1385 249 18/04/76 ' 1 95 30 -40 18 0.0486 0. 0113 0.0078 250 18/0 4/76 ' 1 95 30 -40 35 0.4103 0.0799 0.0545 251 18/04/76 ' 1 95 30 -40 36 0.0078 0.0050 0.0038 252 18/04/76 ' 1 95 40 -50 37 0.6554 0.5 100 0.0720 253 18/0 4/7 6 1 95 40 -50 38 0.2803 0. 042 1 0.0254 254 18/04/76 1 95 40 -50 12 0.3239 0.0622 0.4720 255 18/04/76 ' 1 95 40 -50 19 2.2882 0.431 5 0.2497 256 18/04/76 • 1 95 50 -60 07 2.8460 0. 2307 0.0894 2 57 18/0 4/76 ' 1 95 50 -60 08 3.2728 0.3249 0. 1882 258 18/0 4/76 1 1 95 50 -60 12 3.7472 0.5568 0.3665 259 18/04/76 ' 1 95 50 -60 16 0.8896 0. 1290 0.0825 260 18/04/76 ' 1 95 50 -60 01 0.3636 0. 0524 0.0371 261 18/04/76 ' 1 95 50 -60 06 0.0931 0. 0146 0.0102 262 18/04/76 ' 1 95 60 -70 08 0.0709 0. 0142 0.0 102 263 18/04/76 ' 1 95 60 -70 12 0.5282 0. 0845 0.0610 264 18/04/76 1 95 60 -70 99 0.0509 0. 0 168 0.0073 265 18/04/76 ' 1 95 70 -80 08 0.2627 0. 0420 0.0252 266 18/04/76 1 95 70 -80 07 0.2610 0.0250 0. 0109 267 18/04/76 ' 1 95 70 -80 16 0.3000 0.0347 0.0221 268 18/04/76 • J 95 80 -90 12 2.0972 0. 3388 0. 2303 269 18/04/76 ' 95 80 -90 19 1.9176 0.4783 0.2449 270 18/04/76 • 1 95 90- 100 08 0.9496 0.0968 0.0558 271 18/04/76 \" 1 95 90- 100 03 7.5500 1. 3400 0.9851 272 18/04/76 ' 1 95 90- 100 19 6.7250 0.7950 0.5001 273 13/05/76 ' 1 95 20 -30 03 33.1000 5.5850 4.0319 274 13/05/76 ' 1 95 20 -30 12 2.7590 0.3973 0.2761 275 13/05/76 ' 1 95 30 -40 12 1.0404 0. 2515 0.1991 276 13/05/76 J 95 30 -40 01 3.9977 0. 7109 0.4999 277 13/05/76 ' 1 95 40 -50 19 9.0550 1.2250 0.7850 278 13/0 5/76 ' 1 95 40 -50 05 4.6226 0. 6578 0.4434 279 13/05/76 1 95 40 -50 06 0.6 114 0. 1356 0.0974 280 13/05/76 \" 1 95 40 -50 30 0.8033 0. 1418 0.0924 281 13/05/76 ' 1 95 40 -50 39 0. 4857 0.0716 0.0488 282 13/05/76 \" 1 95 40 -50 40 0.4606 0.0773 0.0522 283 13/05/76 ' 1 95 40 -50 12 2.4051 0.3856 0.2720 284 13/05/76 1 95 40 -50 01 0.3726 0.0574 0.0360 285 13/05/76 ' 1 95 40 -50 26 0.3832 0. 083 1 0.0581 286 13/05/76 \" 1 95 40 -50 08 0. 8949 0.1187 0.0768 287 13/05/76 1 95 40 -50 03 6.2472 1. 4914 1.1313 288 13/05/76 1 95 50 -60 08 15.8850 1.7550 0.8450 289 13/05/76 1 95 50 -60 12 1.9601 0.2736 0.1696 290 13/0 5/76 ' 1 95 50 -60 06 1.5374 0.3080 0.2148 291 13/05/76 \" 1 95 50 -60 01 0.9067 0.1276 0.0756 292 13/05/76 1 95 50 -60 17 4.6083 0. 4984 0.2685 293 13/05/76 ' 1 95 50 -60 18 0.7720 0. 1075 0.0620 294 13/05/76 \" 1 95 50 -60 32 2.0154 0.4179 0.1991 295 13/05/76 1 95 50 -60 36 0.3038 0. 0562 0.0242 - 133 -296 13/05/76 \" I 95 6 0-70 12 3.8245 0.4063 0.2288 297 13/05/76 \" I 95 60- 70 19 6.3100 0. 721 1 0.4 162 298 13/0 5/76 1 95 60- 70 08 6.3 182 0. 6107 0.2747 299 13/05/76 1 95 70- 80 19 60.1800 6.8250 3. 9050 300 13/05/76 ' 1 95 70- 80 08 14.5000 1.6200 0.8800 301 13/05/76 ' 1 95 70- 80 21 0.9292 0. 2889 0.2023 302 13/05/76 \" 1 95 70- 80 12 8.3423 0.9848 0.5673 303 13/05/76 1 95 80- 90 32 4.8430 0.7709 0.5019 304 13/05/76 ' 1 95 80- 90 08 2.2702 0.2221 0.1154 305 13/05/76 < 1 95 8 0-90 07 0.7471 0. 0873 0.0455 306 13/05/76 • 1 95 80- 90 17 0.9479 0.0558 0.0300 307 13/05/76 1 95 90-100 08 5.9302 0. 5884 0.2707 308 27/05/76 ' 1 95 20- 30 03 23.2200 3.7100 2.2250 309 27/0 5/76 • 1 95 3 0-40 08 16.6071 3.0046 1.0604 310 27/05/76 \" 1 95 30- 40 06 1.1753 0. 2220 0.1148 311 27/05/76 ' 1 95 30- 40 12 0.9594 0. 2078 0.1218 312 27/05/76 ' 1 95 40- 50 12 2.0550 0.2802 0.1687 313 27/05/76 ' I 95 40- 50 07 0.7146 0. 0560 0.0258 314 27/05/76 ' 1 95 40- 50 08 166.0100 19.3800 9. 1350 315 27/05/76 1 95 40- 50 21 0.2598 0. 0269 0.0142 316 27/05/76 \" 1 95 40- 50 39 2.2138 0. 2408 0. 1261 317 27/05/76 \" 1 95 40- 50 05 3.0646 0.5944 0.3627 318 27/05/76 \" 1 95 40- 50 06 7.2250 1. 5250 0.6750 319 27/05/76 1 95 40- 50 30 2.6233 0.4636 0. 2867 320 27/05/76 ' 1 95 40- 50 18 4.1712 0.6603 0.3398 321 27/05/76 ' 95 40- 50 99 8.8300 1. 6100 0. 7250 322 27/05/76 • 1 95 40- 50 28 2. 2480 0. 1582 0.0773 323 27/05/76 \" 1 95 40- 50 19 97.6350 13.7150 7.7 100 324 27/05/76 ' 1 95 50- 60 08 394.7700 41.5150 20.1500 325 27/05/76 ' 1 95 50- 60 03 53.4600 11.2350 8.3050 326 27/05/76 ' 1 95 50- 60 17 26.5650 2. 9600 1.7 2 00 327 27/05/76 1 95 50- 60 26 2.6600 0.5650 0. 4100 328 27/05/76 \" 1 95 50- 60 12 18.5000 2.2850 1.5350 329 27/05/76 ' 1 95 50- 60 19 162.4150 19.9450 12.6600 330 27/0 5/76 ' 1 95 50- 60 06 32.9950 6. 1750 4. 2350 331 27/05/76 1 95 50- 60 13 8.3400 1.2650 0. 8400 332 27/05/76 \" 1 95 50- 60 21 4.3400 0. 8400 0.6500 333 27/05/76 ' 1 95 5 0-60 05 14.2650 2. 6250 1. 4150 334 27/05/76 1 95 50- 60 28 4.8000 1.0700 0.8050 335 27/05/76 \" 1 95 50- 60 18 13.2500 1.9300 1.0800 336 27/05/76 ' 1 95 50- 60 41 1.5500 0.2700 0. 1750 337 27/05/76 \" 1 95 50- 60 99 1 5. 5350 2.9000 1.3300 338 27/0 5/7 6 1 95 60- 70 19 6.3724 0. 7580 0.4949 339 27/05/76 1 95 60- 70 12 1 .3167 0. 162 1 0.0983 340 27/05/76 ' 1 95 60- 70 05 0.0697 0.0120 0.0080 341 27/05/76 1 95 6 0- 70 08 109.5050 10. 1850 4.9050 342 27/05/76 \" 1 95 60- 70 07 0.2621 0.0214 0.0111 343 27/05/76 • 1 95 70- 80 07 40.3400 5.3600 3.5550 344 27/05/76 • 1 95 70- 80 08 56.5000 5.735 0 3.1100 345 27/05/76 1 95 70- 80 12 5.1486 0.6758 0.4 133 346 27/05/76 I 95 70- 80 39 1. 4528 0. 1386 0.0738 347 27/05/76 1 95 70- 80 16 0.6 961 0.0794 0.0521 348 27/05/76 ' ! 95 80- 90 08 61.9600 5.815 0 3. 0450 349 27/05/76 ' 1 95 80- 90 07 3.0702 0. 4064 0.2312 350 27/05/76 1 95 80- 90 12 50.0400 5. 1600 3.4700 351 27/05/76 1 95 80- 90 19 3.6000 0. 5200 0. 3500 352 27/05/76 J 95 50- 60 17 1.7334 0.1906 0.1218 353 27/05/76 1 95 50- 60 15 3.6784 0. 5265 0.3591 354 27/05/76 \" 1 95 50- 60 26 0.1844 0. 0317 0.0214 355 27/05/76 ' 1 95 50- 60 39 0.5353 0.0530 0.0273 - 134 -356 2 7 / 0 5 / 7 6 1 95 50 - 6 0 42 2 4 . 7 7 0 0 1 . 5 9 0 0 0 . 8 6 0 0 357 2 7 / 0 5 / 7 6 1 95 9 0- 100 08 6 1 . 2 0 0 0 5 . 1950 2 . 3750 358 2 7 / 0 5 / 7 6 1 95 9 0 - 100 12 2 . 3 7 9 3 0 . 2 6 7 8 0 . 1 5 9 0 359 2 7 / 0 5 / 7 6 1 95 9 0 - 100 18 1. 3191 0 . 1743 0 . 0 6 3 4 3 6 0 2 7 / 0 5 / 7 6 1 95 9 0 - 100 19 0 . 5 5 6 7 0 . 0 5 5 8 0 . 0 3 8 9 36 1 1 6 / 0 6 / 7 6 1 95 20 - 3 0 03 8 . 0 0 0 0 1 . 6 6 0 0 1 .2350 362 1 6 / 0 6 / 7 6 1 95 20 - 3 0 28 0 . 2831 0 . 0 8 0 4 0 . 0 6 0 2 363 1 6 / 0 6 / 7 6 1 95 20 - 3 0 14 2 . 8084 0 . 4 0 0 3 0 . 2 8 4 6 36U 1 6 / 0 6 / 7 6 1 95 20 - 3 0 18 2 . 0 0 1 2 0 . 2 5 4 6 0 . 1 5 9 6 3 6 5 1 6 / 0 6 / 7 6 1 95 2 0 - 3 0 08 1. 8 1 2 5 0 . 2 1 4 5 0 . 1 2 5 1 366 1 6 / 0 6 / 7 6 1 95 20 - 3 0 12 0 . 4 7 7 9 0 . 0 5 9 4 0 . 0 3 7 3 367 1 6 / 0 6 / 7 6 1 95 3 0 - 4 0 08 8 . 7181 0 . 8376 0 . 5 1 4 6 368 1 6 / 0 6 / 7 6 1 95 30 - 4 0 07 0 . 3 4 2 3 0 . 0450 0 . 0 3 1 1 369 1 6 / 0 6 / 7 6 1 95 30 - 4 0 19 4 . 8 4 4 9 0 . 5 6 2 5 0 . 3 7 9 5 3 7 0 1 6 / 0 6 / 7 6 1 95 30 - 4 0 04 0 . 2 7 3 2 0 . 038 1 0 . 0 2 6 2 371 1 6 / 0 6 / 7 6 1 95 30 - 4 0 16 0 . 3 6 9 5 0 . 0 3 8 7 0 . 0 2 3 5 372 1 6 / 0 6 / 7 6 1 95 30 - 4 0 18 1 . 3 9 3 0 0 . 1868 0 . 0 7 7 1 373 1 6 / 0 6 / 7 6 1 95 30 - 4 0 42 0 . 9 4 2 9 0 . 0 7 7 4 0 . 0 4 2 0 374 1 6 / 0 6 / 7 6 1 95 40 - 5 0 08 5 3 . 0 4 5 0 6 . 1950 3 . 4 9 5 0 375 1 6 / 0 6 / 7 6 1 95 40 - 5 0 07 1 . 7 7 1 9 0 . 3 1 9 6 0 . 1 5 1 3 376 1 6 / 0 6 / 7 6 1 95 40 - 5 0 21 1. 7 3 6 9 0 . 1 9 4 0 0 . 0 9 2 3 377 1 6 / 0 6 / 7 6 1 95 40 - 5 0 18 1. 0 0 2 6 0 . 1 2 2 4 0 . 0621 378 1 6 / 0 6 / 7 6 1 95 40 - 5 0 12 6 . 1 983 0 . 9 8 7 2 0 . 6 2 1 9 379 1 6 / 0 6 / 7 6 1 95 40 - 5 0 19 71 . 0 2 5 0 9 . 0 3 5 0 5 . 2500 3 8 0 1 6 / 0 6 / 7 6 1 95 50 - 6 0 07 1. 3 1 1 9 0 . 196 4 0 . 1 2 0 9 381 1 6 / 0 6 / 7 6 1 95 50 - 6 0 08 1 3 2 . 6 1 5 0 1 8 . 4 7 5 0 1 1 .3200 382 1 6 / 0 6 / 7 6 1 95 50 - 6 0 12 1. 6 8 5 2 0 . 4 2 5 6 0 . 2 5 3 1 383 1 6 / 0 6 / 7 6 1 95 50 - 6 0 18 1 . 2 1 6 9 0 . 2 0 0 2 0 .11 4 0 3 8 a 1 6 / 0 6 / 7 6 1 95 50 - 6 0 39 1. 8 8 3 4 0 . 3 0 2 9 0 . 1 9 5 3 3 85 1 6 / 0 6 / 7 6 1 95 5 0 - 6 0 06 8 . 0944 1 . 9 9 6 6 1 .3814 386 1 6 / 0 6 / 7 6 1 95 50 - 6 0 19 4 8 . 3 2 5 0 7 . 5250 4 . 9 7 5 0 387 1 6 / 0 6 / 7 6 1 95 50 - 6 0 31 0 . 7 3 4 7 0 . 1765 0 . 0 7 4 5 388 1 6 / 0 6 / 7 6 1 95 50 - 6 0 99 0 . 6 6 3 9 0 . 1714 0 . 0 6 7 9 389 1 6 / 0 6 / 7 6 1 95 6 0 - 7 0 19 4 3 . 4 1 5 0 5 . 5 4 5 0 3 . 3850 390 1 6 / 0 6 / 7 6 1 95 60 - 7 0 30 5 . 0 8 0 0 0 . 7 6 3 5 0 . 4 1 4 1 391 1 6 / 0 6 / 7 6 1 95 60 - 7 0 08 3 6 . 5 9 0 0 4 . 2 3 0 0 3 . 1 6 50 392 1 6 / 0 6 / 7 6 1 95 60 - 7 0 07 1 1 . 0 4 0 0 1 . 5 6 0 0 0 . 9 7 0 0 393 1 6 / 0 6 / 7 6 1 95 60 - 7 0 12 0 . 9285 0 . 1 136 0 . 0 6 7 7 394 1 6 / 0 6 / 7 6 1 95 60 - 7 0 06 2 . 3 6 2 1 0 . 4 6 0 2 0 . 2 8 1 1 395 1 6 / 0 6 / 7 6 1 95 70 - 8 0 08 5 2 . 6 1 5 0 6 . 0 2 0 0 5 . 1000 396 1 6 / 0 6 / 7 6 1 95 70 - 8 0 07 1 4 . 4 0 0 0 2 . 1950 1 . 4 7 5 0 3 9 7 1 6 / 0 6 / 7 6 1 95 70 - 8 0 19 2 . 9 3 8 9 0 . 3 1 7 3 0 . 1807 398 1 6 / 0 6 / 7 6 1 95 80 - 9 0 07 7 8 . 7 9 0 0 1 0 . 6 3 0 0 6 . 5 7 0 0 3 9 9 1 6 / 0 6 / 7 6 1 95 80 - 9 0 08 2 6 . 8 7 0 0 2 . 9 2 0 0 1 . 8 6 5 0 400 1 6 / 0 6 / 7 6 1 95 80 - 9 0 12 0 . 2 2 0 7 0 . 0 6 4 0 0 . 0 4 2 3 401 1 6 / 0 6 / 7 6 1 95 80 - 9 0 26 1. 5 1 6 9 0 . 2 4 2 4 0 . 1 3 3 1 4 0 2 1 6 / 0 6 / 7 6 1 95 80 - 9 0 21 0 . 6624 0 . 0 9 7 4 0 . 0 6 2 9 403 . 1 6 / 0 6 / 7 6 1 95 8 0 - 9 0 32 1 . 5 5 2 9 0 . 2 1 5 6 0 . 1 3 7 9 404 1 6 / 0 6 / 7 6 1 95 80 - 9 0 39 2 . 9886 0 . 4 0 5 7 0 . 2 2 4 0 405 1 6 / 0 6 / 7 6 1 95 9 0 - 100 07 2 0 . 5 4 0 0 2 . 0 9 5 0 1 .3450 406 1 6 / 0 6 / 7 6 1 95 9 0 - 100 08 2 4 . 9 8 5 0 2 . 3 8 5 0 1 . 3 6 5 0 407 1 6 / 0 6 / 7 6 1 95 9 0 - 100 03 4 . 8 5 0 0 0 . 9 8 0 0 0 . 4 4 5 0 408 0 7 / 0 7 / 7 6 1 95 20 - 3 0 19 4 . 3 4 4 6 0 . 7 5 3 8 0 . 5 2 9 2 409 0 7 / 0 7 / 7 6 1 95 20 - 3 0 08 0 . 3 8 2 8 0 . 0 5 1 1 0 . 0 3 3 5 4 1 0 0 7 / 0 7 / 7 6 1 95 30 - 4 0 06 1 0 . 5 8 8 1 1 . 7 8 6 8 1 . 2 4 7 9 411 0 7 / 0 7 / 7 6 1 95 30 - 4 0 26 1. 9508 0 . 2 8 1 3 0 . 2 0 7 6 412 0 7 / 0 7 / 7 6 1 95 30 - 4 0 12 0 . 2 424 0 . 0 2 9 9 0 . 0 2 1 5 413 0 7 / 0 7 / 7 6 1 95 40 - 5 0 08 3 1 3 . 4749 3 6 . 9 9 0 0 2 3 . 4 9 5 0 4 14 0 7 / 0 7 / 7 6 1 95 40 - 5 0 06 5 4 . 9 2 5 0 8. 9000 6 . 0 6 5 0 415 0 7 / 0 7 / 7 6 1 95 40 - 5 0 19 3 . 8 0 1 2 0 . 536 1 0 . 3 4 5 3 -. 13b -4 1 6 0 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 1 8 1 . 2 2 0 1 0 . 1 3 4 1 0 . 0 8 0 6 4 1 7 0 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 1 2 7 . 1 4 7 8 0 . 9 5 8 4 0 . 7 0 7 5 4 1 8 0 7 / 0 7 / 7 6 1 9 5 5 0 - 6 0 0 . 8 2 2 4 . 8 3 0 0 2 7 . 1 6 5 0 1 8 . 2 4 5 0 4 1 9 0 7 / 0 7 / 7 6 1 9 5 5 0 - 6 0 1 9 9 4 . 0 5 5 0 1 1 . 5 6 5 0 5 . 9 4 5 0 4 2 0 0 7 / 0 7 / 7 6 1 9 5 6 0 - 7 0 1 2 8 6 . 6 0 5 0 1 0 . 9 5 5 0 6 . 9 9 5 0 4 2 1 0 7 / 0 7 / 7 6 1 9 5 6 0 - 7 0 0 8 1 3 0 . 9 1 5 0 1 3 . 4 5 0 0 8 . 5 7 5 0 4 2 2 0 7 / 0 7 / 7 6 1 9 5 6 0 - 7 0 0 7 7 1 . 7 9 0 0 4 . 1 1 0 0 2 . 2 3 5 0 4 2 3 0 7 / 0 7 / 7 6 1 9 5 6 0 - 7 0 1 9 1 5 3 . 0 9 5 0 1 7 . 9 7 5 0 1 0 . 9 1 0 0 4 2 4 0 7 / 0 7 / 7 6 1 9 5 7 0 - 8 0 0 7 1 1 4 . 4 1 0 0 8 . 7 1 5 0 5 . 1 2 5 0 4 2 5 0 7 / 0 7 / 7 6 1 9 5 7 0 - 8 0 1 9 5 6 . 6 4 0 0 6 . 4 4 0 0 3 . 4 3 5 0 4 2 6 0 7 / 0 7 / 7 6 1 9 5 7 0 - 8 0 1 8 0 . 3 6 6 1 0 . 0 4 7 0 0 . 0 2 7 3 4 2 7 0 7 / 0 7 / 7 6 1 9 5 7 0 - 8 0 0 8 2 5 3 . 8 1 0 1 2 6 . 3 7 0 0 1 6 . 6 9 5 0 4 2 8 0 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 1 9 2 8 . 7 0 0 0 1 . 8 3 5 0 1 . 2 0 5 0 4 2 9 0 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 1 7 1 3 . 1 6 0 0 2 . 9 1 5 0 1 . 6 3 5 0 4 3 0 0 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 0 6 0 . 8 0 2 5 0 . 1 6 1 7 0 . 1 1 2 9 4 3 1 0 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 0 7 2 0 . 3 5 5 0 2 . 6 5 5 0 1 . 6 5 0 0 4 3 2 0 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 0 8 1 1 4 . 0 9 5 0 1 2 . 1 1 0 0 7 . 6 3 0 0 4 3 3 0 7 / 0 7 / 7 6 1 9 5 9 0 - 1 0 0 1 9 1 . 0 9 8 1 0 . 1 4 2 3 0 . 0 7 0 0 4 3 4 0 7 / 0 7 / 7 6 1 9 5 9 0 - 1 0 0 0 7 3 . 4 1 3 5 0 . 3 4 1 5 0 . 2 0 5 8 4 3 5 0 7 / 0 7 / 7 6 1 9 5 9 0 - 1 0 0 0 8 9 1 . 0 6 5 0 9 . 4 4 0 0 5 . 7 5 0 0 4 3 6 2 7 / 0 7 / 7 6 1 9 5 2 0 - 3 0 0 3 5 . 5 7 1 0 1 . 1 9 1 1 0 . 8 1 2 8 4 3 7 2 7 / 0 7 / 7 6 1 9 5 2 0 - 3 0 1 9 5 . 1 5 5 0 0 . 6 7 3 4 0 . 4 7 1 8 4 3 8 2 7 / 0 7 / 7 6 1 9 5 2 0 - 3 0 1 2 2 . 8 3 7 7 0 . 3 2 8 8 0 . 1 9 9 1 4 3 9 2 7 / 0 7 / 7 6 1 9 5 2 0 - 3 0 0 8 6 . 4 1 8 4 0 . 6 3 6 9 0 . 4 4 7 6 4 4 0 2 7 / 0 7 / 7 6 1 9 5 2 0 - 3 0 1 8 5 . 1 4 6 9 0 . 5 8 9 6 0 . 3 4 1 0 4 4 1 2 7 / 0 7 / 7 6 1 9 5 3 0 - 4 0 0 3 1 0 1 . 5 1 5 0 1 8 . 8 7 0 0 1 5 . 2 2 0 0 4 4 2 2 7 / 0 7 / 7 6 1 9 5 3 0 - 4 0 0 6 v 7 . 7 1 5 0 1 . 3 3 0 0 0 . 9 1 5 0 4 4 3 2 7 / 0 7 / 7 6 1 9 5 3 0 - 4 0 1 8 1 2 . 1 0 5 0 1 . 1 2 5 0 0 . 7 8 5 0 4 4 4 2 7 / 0 7 / 7 6 1 9 5 3 0 - 4 0 0 8 2 5 . 7 8 5 0 2 . 1 6 0 0 1 . 4 8 0 0 4 4 5 2 7 / 0 7 / 7 6 1 9 5 3 0 - 4 0 1 9 8 . 2 5 0 0 1 . 3 1 0 0 1 . 0 8 5 0 4 4 6 2 7 / 0 7 / 7 6 1 9 5 3 0 - 4 0 1 2 1 6 . 7 5 0 0 1 . 9 0 5 0 1 . 5 9 5 0 4 4 7 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 0 8 5 7 0 . 7 8 4 9 4 7 . 2 1 0 0 3 3 . 8 8 5 0 4 4 8 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 0 7 2 6 . 5 2 0 0 2 . 0 7 5 0 1 . 5 1 5 0 4 4 9 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 1 9 2 5 . 8 3 0 0 3 . 1 9 0 0 1 . 8 3 5 0 4 5 0 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 0 6 3 7 . 8 1 0 0 5 . 3 7 0 0 4 . 0 6 5 0 4 5 1 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 0 1 2 . 6 0 6 2 0 . 3 1 9 5 0 . 1 7 2 4 4 5 2 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 1 8 1 . 5 8 2 1 0 . 1 3 0 4 0 . 0 8 9 0 4 5 3 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 2 1 2 . 1 9 8 9 0 . 2 4 7 2 0 . 1 5 6 3 4 5 4 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 1 2 1 1 . 4 4 0 0 1 . 2 0 0 0 1 . 0 0 5 0 4 5 5 2 7 / 0 7 / 7 6 1 9 5 4 0 - 5 0 0 3 7 . 6 9 0 0 1 . 2 9 0 0 1 . 0 1 5 0 4 5 6 2 7 / 0 7 / 7 6 1 9 5 5 0 - 6 0 0 8 1 0 8 . 6 1 0 0 1 3 . 7 9 0 0 9 . 1 5 5 0 4 5 7 2 7 / 0 7 / 7 6 1 9 5 5 0 - 6 0 0 7 3 1 . 0 8 0 0 5 . 5 5 5 0 3 . 6 7 5 0 4 5 8 2 7 / 0 7 / 7 6 1 9 5 5 0 - 6 0 1 9 5 2 . 5 5 0 0 1 8 . 7 7 0 0 1 5 . 6 0 5 0 4 5 9 2 7 / 0 7 / 7 6 1 9 5 5 0 - 6 0 1 2 8 . 5 8 0 0 1 . 5 4 5 0 1 . 2 2 0 0 4 6 0 2 7 / 0 7 / 7 6 1 9 5 5 0 - 6 0 2 1 9 . 0 0 0 0 1 . 1 6 0 0 0 . 9 6 0 0 4 6 1 2 7 / 0 7 / 7 6 1 9 5 5 0 - 6 0 1 6 0 . 9 0 1 5 0 . 1 0 3 9 0 . 0 5 6 8 4 6 2 2 7 / 0 7 / 7 6 1 9 5 6 0 - 7 0 0 8 2 0 5 . 9 9 5 0 2 1 . 1 8 5 0 1 3 . 9 8 5 0 4 6 3 2 7 / 0 7 / 7 6 1 9 5 6 0 - 7 0 0 7 7 1 . 4 0 0 0 1 0 . 3 5 5 0 7 . 2 1 0 0 4 6 4 2 7 / 0 7 / 7 6 1 9 5 6 0 - 7 0 1 2 2 3 . 3 5 6 5 0 . 3 8 7 5 0 . 2 4 2 6 4 6 5 2 7 / 0 7 / 7 6 1 9 5 6 0 - 7 0 1 9 9 . 5 6 9 4 1 . 0 7 2 3 0 . 5 1 8 3 4 6 6 2 7 / 0 7 / 7 6 1 9 5 7 0 - 8 0 0 8 8 . 4 7 0 0 0 . 9 5 5 0 0 . 7 7 0 0 4 6 7 2 7 / 0 7 / 7 6 1 9 5 7 0 - 8 0 0 7 3 4 . 9 3 0 0 5 . 2 0 0 0 3 . 4 2 5 0 4 6 8 2 7 / 0 7 / 7 6 1 9 5 7 0 - 8 0 3 2 1 4 . 1 9 5 0 2 . 1 8 0 0 1 . 5 6 5 0 4 6 9 2 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 0 3 5 . 2 7 4 1 1 . 0 2 5 7 0 . 7 3 4 5 4 7 0 2 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 1 9 1 . 7 0 2 3 0 . 2 1 2 5 0 . 1 3 9 6 4 7 1 2 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 0 8 2 9 . 2 2 5 0 3 . 1 6 0 0 2 . 2 8 0 0 4 7 2 2 7 / 0 7 / 7 6 1 9 5 8 0 - 9 0 0 7 1 0 8 . 9 7 0 0 1 5 . 7 8 5 0 9 . 9 7 0 0 4 7 3 2 7 / 0 7 / 7 6 1 9 5 9 0 - 1 0 0 0 8 1 4 6 . 2 1 5 0 2 0 . 2 5 5 0 1 4 . 5 6 5 0 4 7 4 2 7 / 0 7 / 7 6 1 9 5 9 0 - 1 0 0 0 7 3 2 . 4 7 5 0 2 . 8 3 0 0 2 . 1 0 0 0 4 7 5 1 8 / 0 8 / 7 6 1 9 5 2 0 - 3 0 0 3 3 8 . 1 4 5 0 8 . 0 9 5 0 6 . 3 1 5 0 - 136 -476 18/08/76 1 95 20 -30 05 11.6100 2.0200 1. 5200 4 77 18/08/76 ' 1 95 20 -30 18 1. 5821 0. 1717 0. 1033 478 18/08/76 1 95 20 -30 12 1.8356 0. 1718 0. 1192 479 18/08/76 \" 1 95 20 -30 01 1.0314 0. 0882 0. 0478 480 18 /08/76 ' 1 95 20 -30 26 6.2800 1. 1698 0. 8461 481 18/0 8/76 1 95 30 -40 03 108.9950 16. 7100 11. 1 500 482 18/08/76 ' 1 95 30 -40 08 142.3800 16.6500 11. 2500 483 18/08/76 ' 1 95 30 -40 12 163.6450 20.4550 14. 4 6 50 484 18/08/76 ' 1 95 30 -40 41 5.3937 0. 6902 0. 4241 485 18/08/76 ' 1 95 30 -40 18 28.4650 3. 0950 1. 8600 486 18/08/76 ' 1 95 30 -40 06 103.9550 15.4400 11. 2000 487 18/08/76 ' 1 95 30 -40 26 26.6850 3.9900 2. 5300 488 18/08/76 ' I 95 30 -40 05 15.2850 2.2650 1. 3950 489 18/08/76 ' 1 95 30 -40 01 0. 2523 0. 0313 0. 0185 490 18/08/76 1 95 40 -50 08 502.6599 55. 1850 36.1600 491 18/0 8/76 \" 1 95 40 -50 12 220.1250 29.3550 20. 18 50 492 18/0 8/76 1 95 40 -50 19 32.6950 4. 3900 2. 7400 493 18/08/76 ' 1 95 40 -50 06 215.9700 40.8100 28. 3000 494 18/08/76 1 95 40 -50 03 135.1050 24.2950 17. 9800 495 18/08/76 ' 1 95 40 -50 18 27.5050 5.4500 3. 6150 496 18/08/76 ' 1 95 40 -50 05 8.1789 1.0795 0. 7041 4 97 18/0 8/76 ' 1 95 40 -50 26 39. 5900 5.4500 3 . 6150 498 18/08/76 1 95 40 -50 21 8.4 910 1. 0280 0. 7041 499 18/08/76 ' 1 95 40 -50 28 1.5597 0.3126 0.2304 500 18/08/76 ' 1 95 50 -60 08 485.7649 51.4300 35. 4600 501 18/08/76 ' ! 95 50 -60 17 38.6100 4. 0050 3 . 1 8 50 502 18/08/76 1 95 50 -60 12 21.2300 2.2950 1. 5850 503 18/08/76 \" 1 95 50 -60 21 23.8450 3.0150 2. 1 2 50 504 18/08/76 ' 95 50 -60 19 63.3800 6.9200 4. 7250 505 18/08/76 ' 1 95 50 -60 01 3.9344 0.6301 0. 3C80 506 18/0 8/76 1 95 50 -60 26 28.3250 3. 0300 1. 7850 507 18/08/76 ' 1 95 50 -60 07 1.3701 0. 1348 0. 0914 508 18/08/76 ' 1 95 60 -70 08 191.6700 21.4300 14. 6600 509 18/08/76 ' 1 95 60 -70 07 17.0700 2.7150 1 . 7600 510 18/08/76 1 95 60 -70 12 2.3436 0. 271 1 0. 1 897 511 18/08/76 ' 1 95 60 -70 17 14. 2900 5.7050 2. 3450 512 18/08/76 ' 95 70 -80 07 34.6350 5.0950 3. 2250 513 18/08/76 ' 1 95 70 -80 08 35.1 150 4. 1850 2. 1 400 514 18/08/76 1 95 70 -80 12 0.7280 0. 1040 0. 0832 515 18/0 8/76 ' 1 95 70 -80 19 2.0366 0. 276 1 0. 1289 516 18/08/76 ' 1 95 70 -80 18 0.1193 0. 0152 0. 0097 517 18/08/76 \" 1 95 80 -90 07 64.4550 10.0350 6. 5900 518 18/08/76 1 95 80 -90 08 2.4 27.8 0. 3023 0. 1847 519 18/08/76 • 1 95 80 -90 19 5.9485 0.7400 0. 4008 520 18/08/76 ' 1 95 90- 100 07 23.0500 3.6700 2. 5250 521 18/0 8/7 6 1 95 90- 100 08 6.3524 0. 7209 0. 4139 522 18/08/76 ' 1 95 90- 100 21 0.346 1 0.0468 0. 0307 523 18/08/76 ' 1 95 90- 100 17 16.9200 2.8200 1. 5300 524 12/09/76 1 95 20 -30 08 23.2000 2.4700 1. 4400 525 12/09/76 1 95 20 -30 14 10.6000 1.8350 0. 9850 526 12/09/76 1 95 30 -40 14 69.6250 10.0350 5. 7150 527 12/09/76 ' I 95 30 -40 03 94.9050 19.6250 14.1200 528 12/09/76 • 1 95 30 -40 06 93.5450 19.3950 13. 2500 529 12/09/76 1 95 30 -40 19 106.8550 19.7150 14. 6200 530 12/09/76 1 95 30 -40 08 242.0400 27.2200 16. 9900 531 12/09/76 1 95 30 -40 12 49.2850 7.6000 5. 0550 532 12/09/76 1 95 30 -40 4 1 21.3200 2.0650 1. 7150 533 12/09/76 1 95 30 -40 18 37.2750 5.8450 2. 7900 534 12/09/76 1 95 30 -40 26 11.6500 2.2050 1. 1950 535 12/09/76 1 95 40 -50 08 494.0750 53.0150 33. 1 850 - 137 -536 12/09 / 76 1 95 40 - 5 0 07 6 . 7 9 4 3 0.7635 0. 4728 537 12/09 / 76 1 95 40 - 5 0 12 1 1 0 . 7 1 5 0 1 6 . 3 1 0 0 1 1 . 2500 538 12/09 / 76 1 95 40 - 5 0 26 1 6 . 8 0 0 0 2 . 8 6 0 0 1. 7800 539 12/0 9 / 7 6 1 95 40 - 5 0 19 4 2 4 . 7 2 0 0 7 0 . 0 0 5 0 4 9 . 4300 540 12/09 / 76 1 95 40 - 5 0 03 1 6 7 . 2 5 0 0 3 0 . 9 4 0 0 2 2 . 5 9 0 0 541 12/0 9 / 7 6 1 95 40 - 5 0 18 3 5 . 0 9 5 0 4 . 8 5 0 0 2 . 5200 542 12/09 / 76 1 95 40 - 5 0 43 2 6 . 4 5 0 0 4 . 0 7 5 0 2 . 7 3 0 0 543 12/09 / 76 1 95 40 ' - 5 0 06 9 4 . 0 5 5 0 1 8 . 1 0 0 0 1 2 . 4500 544 12/09 /76 1 95 40 - 5 0 21 4 5 . 6 3 5 0 6 . 4 7 5 0 4 . 3200 5 4 5 12/09 / 76 1 95 40' - 5 0 14 2 . 5 1 6 0 0 . 3 7 5 8 0 . 2594 546 1 2 / 0 9 / 7 6 1 95 40 - 5 0 01 3 . 0 2 3 2 0 . 3 6 0 4 0 . 1587 5 4 7 1 2 / 0 9 / 7 6 1 95 40 - 5 0 41 7 . 0 5 6 9 0 . 8 6 4 7 0. 4507 548 1 2 / 0 9 / 7 6 1 95 50 - 6 0 19 1 6 3 . 5 0 0 0 2 3 . 5 1 5 0 1 5 . 1 8 0 0 549 1 2 / 0 9 / 7 6 1 95 50 - 6 0 08 1 0 0 . 5 5 5 0 1 0 . 8 8 0 0 6 . 7650 550 12/09 / 76 1 95 50 - 6 0 12 2 4 . 4 9 5 0 4 . 0 6 5 0 2 . 6050 551 1 2 / 0 9 / 7 6 1 95 50 - 6 0 06 1 2 . 2 1 5 0 2 . 7 0 5 0 1. 8050 552 12/09 / 76 1 95 50 - 6 0 0 5 0 . 9 1 5 9 0 . 2 7 3 8 0 . 1 1 3 4 553 1 2 / 0 9 / 7 6 1 95 50 - 6 0 13 0 . 2 1 1 1 0.0845 0 . 0 4 82 554 1 2 / 0 9 / 7 6 1 95 50 - 6 0 26 7 . 1 0 1 3 1 . 3 1 4 8 0 . 8489 555 1 2 / 0 9 / 7 6 1 95 50 - 6 0 07 7 . 0 3 0 5 0 . 8 0 6 4 0 . 4694 556 1 2 / 0 9 / 7 6 1 95 50 - 6 0 18 5 . 1 7 9 6 0 . 8 3 8 8 0 . 3636 557 12/09 / 76 1 95 50 - 6 0 41 8 . 9 1 0 0 1. 2 2 5 0 0 . 4850 558 12/09 /76 1 95 50 - 6 0 01 4 . 6 6 0 0 0 . 6 7 5 0 0 . 4600 559 1 2 / 0 9 / 7 6 1 95 5 0 - 6 0 03 5 . 7 3 0 0 1 . 3 8 5 0 0 . 3 0 0 0 560 1 2 / 0 9 / 7 6 1 95 60 - 7 0 08 9 4 . 4 6 0 0 10 . 7 1 5 0 6 . 6150 561 1 2 / 0 9 / 7 6 1 95 6 0 - 7 0 07 1 . 8 8 9 0 0 . 2 7 0 2 0 . 1686 562 1 2 / 0 9 / 7 6 1 95 60 - 7 0 19 5 0 . 1 8 5 0 7 . 2 9 5 0 4 . 8100 5 6 3 1 2 / 0 9 / 7 6 1 95 60-- 7 0 12 1 4 . 5 5 0 0 2 . 0 6 0 0 1. 2700 564 1 2 / 0 9 / 7 6 1 95 70 - 8 0 07 4 9 . 1 7 0 0 9 . 1 9 5 0 5 . 8850 565 1 2 / 0 9 / 7 6 1 95 70 - 8 0 08 7 0 . 5 9 0 0 8 . 1500 5 . 2500 566 1 2 / 0 9 / 7 6 1 95 70 - 8 0 32 3 . 1 7 6 5 0 . 5 8 3 5 0 . 3575 567 1 2 / 0 9 / 7 6 1 95 70 - 8 0 12 3 . 4 5 7 6 0 . 4 7 9 6 0 . 3 3 6 7 568 1 2 / 0 9 / 7 6 1 95 70 - 8 0 01 0 . 4 5 7 7 0 . 0 9 2 9 0 . 0407 5 6 9 1 2 / 0 9 / 7 6 1 95 70 - 8 0 18 0 . 6 4 2 2 0 . 1059 0 . 0579 570 1 2 / 0 9 / 7 6 1 95 70 - 8 0 03 1 . 2 3 8 1 0 . 2 4 4 8 0 . 1720 571 1 2 / 0 9 / 7 6 1 95 70 - 8 0 16 1 . 2 3 9 6 0 . 1758 0 . 1249 572 1 2 / 0 9 / 7 6 1 95 70 - 8 0 19 0 . 3 5 8 8 0 . 0 5 9 5 0 . 0 3 3 8 573 1 2 / 0 9 / 7 6 1 95 80 - 9 0 08 2 9 . 1 7 5 0 2 . 9 9 5 0 1. 7300 574 1 2 / 0 9 / 7 6 1 95 80 - 9 0 12 0 . 7 7 6 6 0 . 1930 0 . 1 180 5 7 5 1 2 / 0 9 / 7 6 1 95 80 - 9 0 07 2 9 . 2 9 5 0 4 . 2 3 5 0 2 . 5950 576 1 2 / 0 9 / 7 6 1 95 80 - 9 0 16 0 . 4 123 0.0803 0 . 0479 577 1 2 / 0 9 / 7 6 1 95 80 - 9 0 13 0 . 6 2 5 9 0. 1630 0 . 0806 578 1 2 / 0 9 / 7 6 1 95 80 - 9 0 17 1 . 7 1 7 0 0 . 2 7 6 3 0 . 1578 579 1 2 / 0 9 / 7 6 1 95 80 - 9 0 19 2 . 8 5 8 1 0 . 4 1 2 7 0 . 2221 580 . 1 2 / 0 9 / 7 6 1 95 9 0 - 100 17 5 . 0 9 9 9 0 . 641 3 0 . 3 9 9 2 581 1 2 / 0 9 / 7 6 1 95 9 0 - 100 08 3 . 9 5 0 0 0.4527 0. 2720 582 1 2 / 0 9 / 7 6 1 95 9 0 - 100 07 6 . 5 9 7 7 1. 0 5 3 8 0 . 7129 583 1 2 / 0 9 / 7 6 1 95 9 0 - 100 12 0 . 0 6 8 4 0 . 0 1 7 2 0 . 0 126 584 0 2 / 1 0 / 7 6 1 95 20 - 3 0 03 7 7 . 0 0 0 0 1 7 . 8 1 0 0 1 2 . 1050 585 0 2 / 1 0 / 7 6 1 95 20 - 3 0 12 2 . 9 6 2 1 0 . 6 8 8 0 0 . 5 2 0 2 586 0 2 / 1 0 / 7 6 1 95 20 - 3 0 06 8 . 2 0 5 0 2 . 5 3 5 0 1. 8100 587 0 2 / 1 0 / 7 6 1 95 20 - 3 0 14 3 . 6 1 7 2 0. 8 0 4 6 0. 4312 588 0 2 / 1 0 / 7 6 1 95 20 - 3 0 18 1 . 4 6 4 2 0. 3 2 1 2 0 . 1 420 589 0 2 / 1 0 / 7 6 1 95 20 - 3 0 05 0 . 2 6 2 8 0 . 1382 0 . 0954 590 0 2 / 1 0 / 7 6 1 95 30 - 4 0 19 2 5 0 . 6 8 5 1 4 7 . 4 4 5 0 3 3 . 9450 591 0 2 / 1 0 / 7 6 1 95 30 - 4 0 08 5 4 7 . 3 8 5 0 5 2 . 4 3 0 0 3 1 . 7250 592 0 2 / 1 0 / 7 6 1 95 30 - 4 0 06 1 3 3 . 7 3 5 0 3 5 . 0 6 0 0 2 4 . 8400 593 0 2 / 1 0 / 7 6 1 95 30 - 4 0 26 3 6 . 4 5 5 0 7 . 8 3 0 0 4 . 5650 594 0 2 / 1 0 / 7 6 1 95 30 - 4 0 28 1 2 . 1 5 5 0 2 . 5 1 0 0 1. 3950 595 0 2 / 1 0 / 7 6 1 95 30 - 4 0 03 4 8 . 5 3 5 0 1 0 . 4 2 5 0 7 . 5450 - 138 -596 0 2 / 1 0 / 7 6 1 95 30 - 4 0 05 1 1 . 8 9 5 0 3 . 8100 2 . 4800 597 0 2 / 1 0 / 7 6 1 95 30 - 4 0 18 5 1 . 2 05 0 8. 0500 3 . 7 950 598 0 2 / 1 0 / 7 6 1 95 30 - 4 0 12 5 6 . 9 3 5 0 8. 3 7 5 0 5. 6 400 599 0 2 / 1 0 / 7 6 1 95 40 - 5 0 19 2 7 1 . 4 2 5 0 5 3 . 1700 3 9 . 3750 600 0 2 / 1 0 / 7 6 1 95 40 - 5 0 08 3 5 6 . 4 1 9 9 3 2 . 8 100 19. 4 2 5 0 601 0 2 / 1 0 / 7 6 1 95 40 - 5 0 12 3 2 . 4 3 5 0 5. 1750 3. 5 4 5 0 6 02 0 2 / 1 0 / 7 6 1 95 40 - 5 0 03 1 5 . 6 2 0 0 4 . 4700 2. 9450 603 0 2 / 1 0 / 7 6 1 95 40 - 5 0 14 1 0 . 4 5 5 0 1. 8350 1. 0950 604 0 2 / 1 0 / 7 6 1 95 40 - 5 0 26 1 3 . 4 150 2. 9800 1 . 8500 605 0 2 / 1 0 / 7 6 1 95 40 - 5 0 18 1 . 9460 0 . 3532 0 . 17 75 606 0 2 / 1 0 / 7 6 1 95 40 - 5 0 06 1 7 . 5 4 0 0 4 . 6 7 0 0 3. 0 6 5 0 607 0 2 / 1 0 / 7 6 1 95 50 - 6 0 08 2 4 8 . 4 3 5 1 2 2 . 0 7 0 0 12 . 5000 608 0 2 / 1 0 / 7 6 1 95 50 - 6 0 07 6 4 . 6 1 0 0 4. 9 0 0 0 2 . 5 3 0 0 609 0 2 / 1 0 / 7 6 1 95 50 - 6 0 12 0 . 6 1 9 9 0 . 1287 0 . 0 9 1 7 6 10 0 2 / 1 0 / 7 6 1 95 50 - 6 0 03 3 . 6 9 4 7 0 . 7 1 9 7 0 . 5092 6 11 0 2 / 1 0 / 7 6 1 95 50 - 6 0 19 3 4 . 4 1 0 0 4. 2 600 2. 6 100 6 12 0 2 / 1 0 / 7 6 1 95 60 - 7 0 07 8 5 . 7 7 0 0 7 . 7 9 0 0 4 . 2400 6 13 0 2 / 1 0 / 7 6 1 95 60 - 7 0 08 2 9 . 2 0 0 0 4. 2600 2 . 4050 6 14 0 2 / 1 0 / 7 6 1 95 60 - 7 0 03 1 2 . 1 6 5 0 2 . 3 9 0 0 1. 7 200 6 15 0 2 / 1 0 / 7 6 1 95 6 0 - 7 0 19 2 . 7 120 0 . 2 7 9 5 0. 1468 6 16 0 2 / 1 0 / 7 6 1 95 60 - 7 0 12 2 . 2 0 7 3 0 . 5 147 0 . 2864 6 17 0 2 / 1 0 / 7 6 1 95 70 - 8 0 07 1 3 5 . 8 1 9 9 2 7 . 4 4 0 0 14 . 8400 6 1 8 0 2 / 1 0 / 7 6 1 95 70 - 8 0 08 4 2 . 5 6 5 0 4 . 4 7 0 0 2 . 4300 6 19 0 2 / 1 0 / 7 6 1 95 70 - 8 0 32 1 0 . 5 1 0 0 0 . 5 7 5 0 0 . 3700 6 20 0 2 / 1 0 / 7 6 1 95 70 - 8 0 19 7 .6 931 0 . 9 8 4 7 0 . 4 5 4 8 621 0 2 / 1 0 / 7 6 1 95 80 - 9 0 08 1 7 . 4 6 5 0 1. 9 9 5 0 0 . 9 4 5 0 6 22 0 2 / 1 0 / 7 6 1 95 80 - 9 0 07 4 3 . 5 8 5 0 7 . 6 800 4 . 3200 6 2 3 0 2 / 1 0 / 7 6 1 95 80 - 9 0 19 7 . 2 6 0 0 0. 9400 0 . 4650 624 0 2 / 1 0 / 7 6 1 95 9 0 - 100 08 6 . 0 3 3 2 0. 5654 0 . 2909 625 0 2 / 1 0 / 7 6 1 95 9 0 - 100 07 2 6 . 5 8 5 0 4 . 3 300 2. 3 4 5 0 - 139 -WET DRY ASH-FREE LOCATION SPECIES WEIGHT WEIGHT DRY WEIGHT DATE QUADRAT (G/IOM2) (G/10W 2) (G/10/f 2 ) 1 03/08/76 1 05 20 - 3 0 03 4 8 4 . 6 6 5 0 8 8 . 6 9 5 0 6 8 . 0 2 5 0 2 03/08/76 1 05 20 - 3 0 06 1 1 4 0 . 0 0 0 0 3 3 8 . 5798 2 2 7 . 5 2 5 0 3 0 3/08/76 1 05 20 - 3 0 26 1 6 . 4 5 5 0 2 . 7 0 0 0 1 .7650 4 0 3/08/76 1 05 20 - 3 0 08 7 . 6 5 8 8 0 . 8 0 8 0 0 . 5 5 8 8 5 0 3/08/76 1 05 20 - 3 0 18 1 2 . 6 6 0 0 1 .4950 1 . 0150 6 03/08/76 1 05 20 - 3 0 14 2 . 7 2 0 0 0 . 3 6 9 4 0 . 2 6 1 3 7 0 3/08/76 1 05 20 - 3 0 28 2 . 1 7 0 4 0 . 5 1 0 8 0 . 3 0 6 0 8 03/0 8/76 1 05 20 - 3 0 05 2 8 . 5 4 0 0 4 . 9 2 5 0 3 . 0 6 0 0 9 03/08/76 1 05 20-- 3 0 19 1 5 . 7 7 5 0 2 . 4 9 5 0 1. 9350 10 03/08/76 1 05 20 - 3 0 04 2 1 . 5 3 5 0 3 . 5 0 0 0 2 . 4 0 5 0 11 0 3 / 0 8 / 7 6 1 05 20 - 3 0 12 4 4 . 2 8 0 0 5 . 7 1 0 0 3 . 7 1 5 0 12 03/08/76 1 05 30 - 4 0 06 7 . 1 8 0 0 1 . 5 4 5 0 0 . 8 7 5 0 13 03/08/76 1 05 30 - 4 0 12 9 . 2 5 0 0 1 . 9250 1 . 1050 14 03/08/76 1 05 30 - 4 0 13 3 . 2001 0 . 5 7 7 4 0 . 4 2 7 7 15 03/08/76 1 05 40 - 5 0 06 3 2 0 . 5 8 5 0 6 9 . 7 7 5 0 5 1 . 6 0 5 0 16 0 3 / 0 8 / 7 6 1 05 40 - 5 0 03 1 0 4 . 6 8 0 0 2 0 . 8 3 5 0 1 2 . 4 6 0 0 17 0 3 / 0 8 / 7 6 1 05 40 - 5 0 26 8 . 4 3 5 0 1. 8100 1. 2750 18 03/08/76 1 05 40 - 5 0 28 0 . 9 0 0 0 0 . 2 4 5 0 0 . 1 7 5 0 19 0 3/08/76 1 05 40 - 5 0 12 1 3 . 8 0 5 0 2. 3150 1 .4200 20 0 3 / 0 8 / 7 6 1 05 40 - 5 0 05 1 2 . 3 3 0 0 2 . 2 1 0 0 1 . 3600 21 03/08/76 1 05 40 - 5 0 01 1 0 . 1 6 5 0 1 . 4200 0 . 8 8 0 0 22 03/08/76 1 05 40 - 5 0 17 2 . 5 4 0 0 0 . 3 2 0 0 0 . 2150 23 0 3/0 8/76 1 05 4 0 - 5 0 04 0 . 0 9 3 3 0 . 020 1 0 . 0 1 1 1 24 0 3/08/76 1 05 40 - 5 0 18 1. 2958 0. 1641 0 . 0 9 1 1 25 0 3/08/76 1 05 40 - 5 0 13 3 . 9 7 5 0 0 . 9 6 5 0 0 . 5 9 5 0 26 0 3/08/76 1 05 40 - 5 0 19 1. 9 421 0 . 3 4 4 9 0 . 2 3 6 7 27 0 3/08/76 1 05 40 - 5 0 21 0 . 2 5 6 9 0 . 0330 0 . 0 1 7 7 28 0 3 / 0 8 / 7 6 1 05 50 - 6 0 06 8 1 . 3 4 5 0 1 5 . 0 0 0 0 1 1 . 4 1 0 0 29 0 3/08/76 1 05 50 - 6 0 12 1 6 . 5 9 5 0 2 . 5 4 0 0 1 . 3350 30 03/08/76 1 05 50 - 6 0 08 2 5 . 5 9 5 0 2 . 3 4 5 0 1 . 4450 31 0 3 / 0 8 / 7 6 1 05 50 - 6 0 07 4 . 6 6 0 2 0 . 7 3 8 6 0 . 5 3 9 4 32 0 3 / 0 8 / 7 6 1 05 50 - 6 0 03 1 2 . 7 7 5 0 2 . 8 1 0 0 2 . 1 9 5 0 33 03/08/76 1 05 50 - 6 0 21 2 . 5 4 2 2 0 . 2 9 4 6 0 . 1 6 6 2 34 03/0 8/76 1 05 50 - 6 0 18 1 .3132 0. 1538 0 . 0 7 9 0 35 0 3/08/76 1 05 50 - 6 0 26 0 . 0 8 2 2 0 . 0 1 1 8 0 . 0 0 6 1 36 0 3/08/76 1 05 50 - 6 0 19 3 5 . 7 5 0 0 0 . 0 464 0 . 0 2 8 4 37 0 3 / 0 8 / 7 6 1 05 60 - 7 0 08 3 5 . 6 1 0 0 3 . 5 9 5 0 2 . 2 7 0 0 38 03/08/76 1 05 60 - 7 0 19 6 . 2 5 7 9 0 . 8 4 1 9 0 . 4 4 3 7 39 0 3/08/76 1 05 60 - 7 0 14 6 . 2 9 0 0 0 . 9 0 5 0 0 . 6 4 0 0 40 0 3 / 0 8 / 7 6 1 05 60 - 7 0 21 1 .9572 0 . 2 3 7 2 0 . 1 3 5 8 41 03/08/76 1 05 60 - 7 0 06 1 .1912 0 . 188 1 0 . 1 0 2 3 42 03/08/76 1 05 70 - 8 0 17 3 6 . 7 9 0 0 4 . 2 8 5 0 2 . 5 3 5 0 43 03/08/76 1 05 70 - 8 0 08 1 5 2 . 0 5 5 1 1 6 . 5 4 5 0 1 0 . 3 2 5 0 44 03/08/76 1 05 70 - 8 0 19 7 3 . 9 4 0 0 1 0 . 0 1 5 0 6 . 3 3 5 0 45 0 3/08/76 1 05 70 - 8 0 03 8 . 8 4 0 0 1 . 5800 0 . 9 9 0 0 46 0 3/08/76 1 05 70 - 8 0 04 0 . 0 2 3 9 0 . 0 0 8 0 0 . 0 0 5 0 47 03/0 8/76 1 05 70 - 8 0 12 0 . 2 4 7 9 0 . 0 4 1 9 0 . 0 2 4 6 48 0 3 / 0 8 / 7 6 1 05 80 - 9 0 08 8 5 . 1 2 0 0 8. 5000 5 . 2 6 5 0 49 03/08/76 1 05 80 - 9 0 06 4 . 5 8 8 6 0 . 8 6 3 6 0 . 3 2 9 6 50 03/08/76 1 05 80 - 9 0 19 7 5 . 2 1 0 0 7 . 6 6 0 0 4 . 6 9 5 0 51 0 3 / 0 8 / 7 6 1 05 80 - 9 0 03 1 .2371 0 . 248 3 0 . 1 7 4 1 52 0 3 / 0 8 / 7 6 1 05 9 0 - 100 19 1 6 . 5 3 5 0 2 . 6 1 0 0 1 . 6 1 5 0 53 0 3 / 0 8 / 7 6 1 05 9 0 - 100 06 1 6 . 5 4 5 0 2 . 4 8 0 0 1 . 4950 54 0 3/08/76 1 05 9 0 - 100 08 1 8 8 . 2 3 0 0 1 9 . 9 5 5 0 1 2 . 1 7 5 0 55 0 3/08/76 1 05 9 0 - 100 07 5 3 . 6 9 5 0 6 . 2 0 0 0 3 . 6 7 5 0 56 0 3 / 0 8 / 7 6 ' I 35 20- 30 57 0 3 / 0 8 / 7 6 ' I 35 20- 30 58 0 3 / 0 8 / 7 6 ' I 35 2 0- 30 59 0 3 / 0 8 / 7 6 \" I 35 20- 30 60 0 3 / 0 8 / 7 6 ' I 35 20- 30 61 03/08/76 1 35 20- 30 62 0 3 / 0 8 / 7 6 1 35 20- 30 63 0 3 / 0 8 / 7 6 ' 1 35 20- 30 64 03/08/76 ' J 35 30- 40 65 0 3 / 0 8 / 7 6 1 35 30- 40 66 0 3 / 0 8 / 7 6 1 35 30- 40 67 0 3 / 0 8 / 7 6 ' 1 35 30- 40 68 0 3 / 0 8 / 7 6 1 35 30- 40 69 0 3 / 0 8 / 7 6 ' 1 35 30- 40 70 0 3 / 0 8 / 7 6 1 35 30- 40 71 0 3 / 0 8 / 7 6 ' 1 35 3 0 - 40 72 0 3 / 0 8 / 7 6 1 35 30- 40 73 03/08/76 ' I 35 40- 50 74 0 3 / 0 8 / 7 6 * 1 35 40- 50 75 0 3 / 0 8 / 7 6 • 1 35 40- 50 76 0 3 / 0 8 / 7 6 ' 1 35 40- 50 77 0 3 / 0 8 / 7 6 ' 1 35 50- 60 78 0 3/0 8/76 ' 1 35 5 0-60 79 0 3 / 0 8 / 7 6 ' 1 35 50- 60 80 0 3 / 0 8 / 7 6 1 35 60- 70 81 0 3 / 0 8 / 7 6 -1 35 60- 70 82 0 3 / 0 8 / 7 6 ' 1 35 6 0-70 83 0 3 / 0 8 / 7 6 ' 1 35 60- 70 84 0 3 / 0 8 / 7 6 1 35 70- 80 85 03/08/76 ' 35 70- 80 86 0 3 / 0 8 / 7 6 ' 1 35 80- 90 87 0 3 / 0 8 / 7 6 ' 1 35 80- 90 88 0 3 / 0 8 / 7 6 1 35 80- 90 89 0 3 / 0 8 / 7 6 ' 1 35 80- 90 90 0 3 / 0 8 / 7 6 • 1 35 90- 100 91 0 3 / 0 8 / 7 6 ' 1 35 90-100 92 0 3 / 0 8 / 7 6 1 65 20- 25 93 0 3 / 0 8 / 7 6 ' 1 65 20- 25 94 0 3 / 0 8 / 7 6 ' 1 65 20- 25 95 0 3 / 0 8 / 7 6 \" ! 65 2 0 - 25 96 0 3 / 0 8 / 7 6 1 65 20- 25 97 0 3 / 0 8 / 7 6 1 65 20- 25 98 0 3 / 0 8 / 7 6 ' 1 65 30- 40 99 0 3 / 0 8 / 7 6 ' 1 65 30- 40 100 0 3 / 0 8 / 7 6 1 65 50- 60 101 0 3 / 0 3 / 7 6 1 65 50- 60 102 0 3 / 0 8 / 7 6 1 65 50- 60 103 0 3 / 0 8 / 7 6 1 65 50- 60 104 0 3 / 0 8 / 7 6 1 65 60- 70 105 0 3 / 0 8 / 7 6 ' 1 65 6 0 - 70 106 0 3 / 0 8 / 7 6 1 65 60- 70 107 0 3 / 0 8 / 7 6 ' 1 65 7 0 - 80 108 0 3 / 0 8 / 7 6 1 65 70- 80 109 0 3 / 0 8 / 7 6 1 65 70- 80 1 10 0 3 / 0 8 / 7 6 1 65 70- 80 1 1 1 0 3 / 0 8 / 7 6 1 65 70- 80 112 0 3 / 0 8 / 7 6 1 65 70- 80 1 13 0 3 / 0 8 / 7 6 ] 65 70- 80 1 14 0 3 / 0 8 / 7 6 1 65 80- 90 1 15 0 3 / 0 8 / 7 6 1 65 80- 90 140 -03 373.0649 76.5350 56.0650 08 17. 8650 1. 7500 1.2850 06 49.2500 10.5650 7.6650 05 11.3616 2.002 1 1.1739 12 2.7305 0.4110 0.2495 28 1.8208 0. 4086 0.2102 18 12.0039 1. 5051 0.7785 01 0.6768 0. 0846 0.0421 03 1036.5000 203.9650 143.2050 06 39.7750 7. 9550 5.7700 2 8 3.9950 1.0200 0.7950 05 2.6954 0. 5430 0.3551 18 0.3607 0. 0508 0.0310 26 2.3150 0. 5050 0.3650 29 1.8300 0. 2352 0. 1520 12 1.5361 0. 1964 0.1146 14 14.0000 1.9850 1.3550 07 21. 7600 3.3450 2.3150 08 154.9600 15.2900 10.1 100 06 34.9750 6.3100 3.1750 19 1.2517 0. 1280 0.0739 29 3. 3673 0. 4505 0.2928 19 1.4 92 8 0. 1998 0.1199 08 18.5050 2. 1300 1 .9300 08 102.9800 11. 1450 7.1450 07 35.4350 4. 8450 3. 2800 12 1.1846 0. 1553 0.0865 19 3.7344 0.4829 0.2993 08 52 .7950 5.8350 3.8250 12 2.1478 0.2111 0.1122 03 12.6550 1.970 0 0. 6700 19 1.8483 0.2728 0.1511 08 177.6650 6.3100 3.1750 07 12.9500 1. 0600 0.5850 06 104.7050 20.5750 16.0650 03 66.6900 15.4900 9.4050 03 8607.0000 1708.7400 1261.3799 12 10.4262 1. 2318 0.6441 18 2.1294 0. 2808 0.1809 01 5.9601 0. 8388 0.4581 26 2.1747 0.5115 0.3 060 28 8.9331 2.0253 1.2237 03 78.3000 15.0300 1 1.2 250 12 7.2684 0. 7425 0.4899 19 2.3463 0. 4283 0.3075 08 0.4096 • 0.0615 0.0410 07 37.5000 5. 1500 3.3800 18 0.1538 0. 0265 0.0132 08 15.4350 1. 7 95 0 1.2950 19 2.9700 0.4900 0.2500 06 4.1600 0.8750 0.5600 19 13. 2450 1.8850 1.1050 08 119.1200 12.8800 8.4250 07 13.3850 1.5500 1.0450 03 0.2005 0.0993 0.0765 26 0.0 84 1 0. 0299 0.0157 18 1.2598 0. 1914 0.0651 12 1. 7927 0. 2972 0.1431 08 159.4600 16.6100 9.4 350 07 0.9458 0. 1760 0.1261 - 141 -1 16 03/08/76 1 65 90- 100 08 102.8700 10.6850 6. 6050 117 03/08/76 1 65 90- 100 05 0.0289 0. 0115 0.0072 118 27/07/76 1 95 20 -30 03 5.5710 1.1911 0.8128 1 19 27/07/76 1 95 20 -30 19 5. 1550 0.6734 0.4718 120 27/07/76 1 95 20 -30 12 2.8377 0. 3288 0.1991 121 27/07/76 1 95 20 -30 08 6.4184 0.6869 0.4476 122 27/07/76 1 95 20 -30 18 5. 1469 0.5896 0.3410 123 27/07/76 1 95 30 -40 03 101.5150 18.8700 15.2200 124 27/07/76 1 95 30 -40 06 7.7150 1. 3300 0.9150 125 27/07/76 1 95 30 -40 18 12.1050 1. 1250 0.7850 126 27/07/76 1 95 30 -40 08 25.7850 2. 1600 1.4800 127 27/07/76 1 95 30 -40 19 8.2500 1.3100 1.0850 128 27/07/76 1 95 30 -40 12 16.7500 1.9050 1.5950 129 27/07/76 1 95 40 -50 08 570.7849 47.2100 33.8850 130 27/07/76 1 95 40 -50 07 26.5200 2.0750 1. 5150 131 27/07/76 1 95 40 -50 19 25.8300 3. 1900 1.8350 132 27/07/76 1 95 40 -50 06 37.8100 5.3700 4.0650 133 27/07/76 1 95 40 -50 01 2.6062 0.3195 0. 1724 134 27/07/76 1 95 40 -50 18 1.5821 0. 1304 0.0890 135 27/07/76 1 95 40 -50 21 2. 1 989 0. 2472 0.1563 136 27/07/76 1 95 40 -50 12 11.4400 1.2000 1.0050 137 27/07/76 1 95 40 -50 03 7.6900 1. 2900 1.0150 138 27/07/76 1 95 50 -60 08 108.6100 13.7900 9.1550 139 27/07/76 1 95 50 -60 07 31.0800 5. 5550 3.6750 140 27/07/76 1 95 50 -60 19 52.5500 18. 7700 15.6050 141 27/07/76 1 95 50 -60 12 8.5800 1.5450 1.2200 142 27/07/76 1 95 50 -60 21 9.0000 1. 1600 0.9600 143 27/07/76 1 95 50 -60 16 0. 9015 0. 1039 0.0568 144 27/07/76 1 95 60 -70 08 2 05.9 95 0 21. 1850 13.9850 145 27/07/76 1 95 60 -70 07 71.4000 10.3550 7.2100 146 27/07/76 1 95 60 -70 12 23.3 565 0. 3875 0.2426 147 27/07/76 1 95 60 -70 19 9.5694 1. 0723 0. 5183 148 27/07/76 1 95 70 -80 08 8.4700 0.9550 0.7700 149 2 7/07/76 1 95 70 -80 07 34.9300 5.2000 3. 4250 150 27/07/76 1 95 70 -80 32 14.1 950 2. 1800 1.5650 151 27/0 7/76 1 95 80 -90 03 5.2741 1.0257 0.7345 152 27/07/76 1 95 80 -90 19 1.7023 0.2125 0.1396 153 27/07/76 1 95 80 -90 08 29.2250 3. 1600 2.2800 154 27/07/76 1 95 8 0 -90 07 108.9700 15.7850 9.9700 155 27/07/76 1 95 90- 100 08 146.2150 20.2550 14.5650 156 27/07/76 1 95 90- 100 07 32.4750 2. 8300 2.1000 - 142 -ASH-FREE LOCATION SPECIES WEIGHT WEIGHT DRY WEIGHT DATE QUADRAT (G / i o / r ) (G/10M 2) (G/10M 2) 1 10/1 1/75 2 00 40- 50 15 So.3100 13.0600 2 10/1 1/75 2 00 40- 50 19 26.1500 3.5400 1.7950 3 i o / r 1/75 2 00 40- 50 21 1.8549 0. 2727 0.1930 4 10/1 1/75 2 00 40- 50 27 0.6478 0. 1043 0.0568 5 10/1 1/75 2 00 40- 50 16 0.5302 0.C886 0.0579 6 10/1 1/75 2 00 40- 50 12 9.1300 1.5100 1.1500 7 10/1 1/75 2 00 50- 60 19 590.7000 8 1. 6 20 0 43.2650 8 10/1 1/75 2 00 50- 60 28 33.1100 6. 4 100 3. 2950 9 10/1 1/75 2 00 50- 60 15 90.9900 11 . 4200 6.9050 10 10/1 1/75 2 00 50- 60 1 1 166.4399 26.8500 14.2150 11 10/1 ' 1/75 2 00 50- 60 26 29.7000 4. 0100 2.7850 12 10/1 1/75 2 00 50- 60 23 11.0400 1.2938 0.8025 13 10/1 1/75 2 00 50- 60 03 34.9100 8.5600 6.5050 14 10/1 1/75 2 00 50- 60 13 9.0900 2. 0218 1.3464 15 10/1 1/75 2 00 50- 60 08 19.1500 2. 1899 1.3032 16 10/1 1/75 2 00 50- 60 12 9.8900 1. 1897 0.8325 17 i o / r 1/75 2 00 50- 60 21 18. 0400 2.1508 1.5943 18 10/1' 1/75 2 00 50- 60 01 0.0839 0. 0108 0.0071 19 10/1' 1/75 2 00 50- 60 16 0.5793 0.0702 0.0450 20 10/1 1/75 2 00 50- 60 18 2.3471 0.2741 0.1905 21 10/1' 1/75 2 00 50- 60 05 0.3337 0. 0666 0.0414 22 10/1 1/75 2 00 50- 60 07 10.0801 1.9792 0.9223 23 10/1 1/75 2 00 50- 60 06 0.5 20 5 0.1276 0.0S18 24 i o / r 1/75 2 00 60- 70 27 0.1726 0. 0654 0.0313 25 10/1 ' 1/75 2 00 60- 70 19 616.5100 92.7200 48.9200 26 10/1\" 1/75 2 00 60- 70 15 302.3599 41.3500 24.7450 27 10/1' 1/75 2 00 60- 70 06 58.1200 12.8300 9.3200 28 10/1 1/75 2 00 60- 70 26 22.5000 4. 2200 2.7400 29 10 / r 1/75 2 00 60- 70 12 5.9400 1.0600 0.7250 30 10/1 1/75 2 00 60- 70 11 60.5000 20.3900 1 1.9400 31 10/1 1/75 2 00 60- 70 08 31.9000 2. 7600 1.6600 32 10/1 1/75 2 00 60- 70 05 3.2400 0.8537 0.5842 33 1 0 / T 1/75 2 00 60- 70 18 3.3416 0.4581 0.3434 34 10/1 1/75 2 00 60- 70 23 0.6200 0. 1018 0.0639 35 10/1 1/75 2 00 70- 80 19 15020.6500 2268.9805 1151.5C50 36 10/1 1/75 2 00 70- 80 15 781 .5999 87. 1000 49.5400 37 10/1 1/75 2 00 70- 80 12 111.5000 18.7000 12.5550 38 10/1 1/75 2 00 70- 80 13 10.8000 3.7795 2.6450 39 10/1 1/75 2 00 70- 80 26 37.7500 5. 2895 3.8552 40 10/1 1/75 2 00 70- 80 05 5.3965 1. 1315 0.8472 41 10/1 1/75 2 00 70- 80 01 1.6910 0.2190 0. 1560 42 10/1 1/75 2 00 70- 80 28 29.6500 8.1000 4.1550 43 10/1 1/75 2 00 70- 80 18 1.7778 0. 2200 0.1478 44 10/1 1/75 2 00 70- 80 27 8.1455 1.4740 0.8067 45 10/1 1/75 2 00 70- 80 17 57.3500 7.6000 4.3700 46 10/1 1/75 2 00 70- 80 29 21.3720 2.2630 1.5358 47 10/1 1/75 2 00 70- 80 30 9.1785 1.5230 0.9002 48 10/1 1/75 2 00 80- 90 15 46.8200 7.1250 4.1800 49 10/1 1/75 2 00 80- 90 19 1306.7649 200.6600 104.2400 50 10/1 1/75 2 00 80- 90 06 26.3450 9.6150 7.2650 51 10/1 1/75 2 00 80- 90 1 1 24.4850 5.0300 3.2100 52 10/1 1/75 2 00 80- 90 07 41.5800 2. 7650 1.6550 53 10/1 1/75 2 00 80- 90 . 08 16.2400 1.8950 1. 1250 54 10/1 1/75 2 00 80- 90 12 31.9700 5.8300 3.9100 55 10/1 1/75 2 00 80- 90 03 2.5750 0.6550 0.5300 - 143 -56 10/11/75 2 00 80 -90 26 15.1850 2. 9 150 1. 8100 57 10/11/75 2 00 80 -90 27 0.2763 0. 0824 0. 4553 58 10/11/75 2 00 80 -90 23 0.7448 0. 1144 0. 0730 59 10/11/75 2 00 80 -90 16 2.9408 0. 4470 0. 2853 60 10/11/75 2 00 80 -90 01 0.1499 0. 0324 0. 0215 61 10/11/75 2 00 90- 100 19 400.4800 64. 5100 35. 5350 62 10/11/75 2 00 90- 100 03 3.8900 1. 0567 0. 7789 63 10/11/75 2 00 90- 100 15 4.1800 0. 5678 0. 3295 64 10/11/75 2 00 90- 100 18 1.3172 0. 1758 0. 0668 65 10/11/75 2 00 90- 100 01 0.0603 0. 0095 0. 0069 66 10/11/75 2 00 90- 100 06 0.2573 0. 0366 0. 0263 67 10/11/75 2 00 90- 100 16 0.4718 0. 0538 0. 0344 68 10/11/75 2 00 90- 100 17 7.3291 0. 6472 0.3303 69 10/11/75 2 00 90- 100 11 0.3866 0. 1014 0. 0587 70 10/11/75 2 00 90- 100 21 1.6267 0. 212 1 0.1379 71 10/11/75 2 00 90- 100 31 0.2648 0. 0762 0. 0388 72 10/11/75 2 00 90- 100 07 1.9939 0. 2807 0. 1322 73 10/11/75 2 00 90- 100 12 0.6059 0. 0777 0. 0549 - 144 -APPENDIX II A) Numerical species code f o r faunal assessment data i n Appendix II (B). B) Faunal assessment data for seasonal c o l l e c t i o n s at 95 m within Site 1. A. 01 Mytilus edulis 02 Amphithoe sp. 03 Notoacmea scutum 04 Margarites pupillus (parental) 05 Margarites pupillus (juvenile) 06 Strongylocentrotus droebachiensis 07 Lacuna marmorata 08 Mitrella gouldii 09 Tonicella liniata 10 Gnorimosphaeroma oregonense Dana 11 Idotea wosnesenskii Brandt 12 U n i d e n t i f i e d polycheate 13 Pugettia richii 14 Amphilochus sp. 15 Metacaprella anomala 16 Alvinia spp. 17 Pandora sp. 18 Strongylocentrotus purpuratus Stimpson 19 Disporella sp. 20 Ocenebra sp. 21 Acmaea mitra 22 Cancer oregonensis 2 3 Odostomia spp. 24 Hiatella arctica 25 Granulina margaritula 26 Balcis mi cans 27 Bittium eschrichtii 28 Lirularia lirulata 29 Chi amys hastatus 30 Cancer branneri Rathbun 31 Nereis pelagica 32 Pagurus kennerlyi 33 Hemigrapsus nudus 34 Clinocardium sp. 35 Anatanias normani Richardson 36 Crepipatella lingulata Gould 37 Leptosynapta clarki Heding 38 Searlesia dira Reeve 39 Hyas lyratus Dana - 145 -B. WET DRY SPECIES WEIGHT WEIGHT DATE QUADRAT N/M (G/M2) (.G/M2) 1 25/05/76 30 04 1744 74. 7920 4 8. 539 2 2 25/05/76 30 06 32 50.3296 21.2704 3 25/0 5/76 30 01 48 0.3216 0. 2912 4 25/05/76 30 07 336 5.0624 4. 0352 5 25/05/76 30 08 128 8.7632 6. 7760 6 25/05/76 30 09 16 15.0528 9. 0064 7 2 5/0 5/76 30 02 384 11.3696 1. 9808 8 25/05/76 30 10 64 0.6432 0.244 8 9 25/05/76 30 1 1 16 0.5712 0. 2448 10 25/05/76 30 12 16 0.3072 0. 1424 11 25/05/76 30 13 32 6.0544 1. 6736 12 25/05/76 40 04 73 6 8.7520 4. 1920 13 25/05/76 40 09 144 9.8592 3.3936 14 25/05/76 40 02 16 0.9824 0. 1456 15 25/05/76 40 07 16 0.3008 0. 187 2 16 25/05/76 40 08 32 2.2448 1.3536 17 25/05/76 40 01 48 1.2480 0. 4576 18 25/0 5/76 40 14 48 0.2416 0.0400 19 25/05/76 40 27 16 0.7040 0. 5408 20 25/05/76 40 16 64 0.2592 0. 2384 21 25/05/76 40 17 32 1. 3008 0. 6880 22 25/05/76 50 04 640 23.0720 13.8928 23 25/05/76 50 06 16 51.5792 1 6. 3488 24 25/05/76 50 01 16 0.1760 0. 1744 25 25/05/76 50 09 96 3.8592 2. 4976 26 25/0 5/76 50 08 48 1.9360 1. 4672 27 25/05/76 50 07 16 0.2640 0. 1808 28 25/05/76 50 18 16 15.2992 8.0816 29 25/05/76 50 19 32 2.6224 0. 5712 30 25/05/76 50 20 48 1.0960 0. 6368 31 25/05/76 60 21 16 108.5984 81.137 6 32 25/05/76 60 17 16 1 .2720 0. 7936 33 25/05/76 60 03 16 0. 5952 0.3296 34 25/05/76 60 16 16 0.0208 0. 0064 35 25/05/76 70 01 608 4.7440 2. 3152 36 25/05/76 70 07 16 0.3136 0. 1376 37 25/05/76 70 09 64 10.0368 4.2112 38 25/0 5/76 70 04 64 0.4912 0. 3040 39 25/0 5/76 70 16 32 0.1104 0. 0768 40 25/05/76 70 23 32 0.2688 0. 0912 41 25/05/76 70 03 16 1. 0912 0. 4656 42 25/05/76 70 24 16 0.4080 0. 1408 43 25/05/76 80 13 16 0.8288 0. 3328 44 25/05/76 80 17 16 0.7472 0.5712 45 2 5/0 5/76 80 03 48 7.1456 3.4768 46 25/05/76 80 09 16 16.5360 8. 7424 47 25/0 5/76 80 04 48 2.1504 0. 7872 48 25/05/76 80 23 16 0.0752 0. 0592 49 25/05/76 80 16 32 0.0784 0. 0544 50 25/05/76 80 25 16 0.0656 0.046 4 51 25/05/76 80 26 16 0.0896 0. 056 0 52 25/05/76 90 09 192 95.3872 4 1. 3648 53 25/0 5/76 90 01 848 15.4192 4.2960 54 25/05/76 90 24 16 0.8448 0. 3232 55 25/05/76 100 09 64 34.8784 18. 5936 56 25/05/76 100 01 128 2.4640 1. 2656 57 25/05/76 100 28 16 0.4208 0. 2144 58 25/05/76 100 23 32 0.0960 0. 0560 59 25/05/76 100 26 16 0.1536 0. 1280 60 14/06/76 30 13 96 46.2352 16. 4960 61 14/0 6/76 30 08 400 20.4720 1 4. 2064 62 14/06/76 30 27 192 19.4672 16.2656 63 14/06/76 30 19 64 20.3312 8. 0240 6a 14/06/76 30 01 64 0.4560 0.4400 65 14/06/76 30 20 80 13.5344 10. 6256 66 14/06/76 30 17 16 0.4640 0.4592 67 14/0 6/76 30 09 32 4.9920 3.6784 68 14/06/76 30 07 96 1.7424 1.3664 69 14/06/76 30 25 192 0. 6784 0. 5392 70 14/06/76 30 29 32 0.6304 0. 2768 71 14/0 6/76 30 04 2112 49.9344 26. 0752 72 14/06/76 30 16 112 0.0496 0.0464 73 14/06/76 30 31 16 1.0048 0. 0608 74 14/06/76 30 02 256 0.6064 0. 1456 75 14/06/76 30 14 48 0.4960 0. 1024 76 14/06/76 30 32 48 1.8624 0.3712 77 14/06/76 30 23 80 0.2304 0.2016 78 14/06/76 40 04 1264 53.1856 34.3632 79 14/06/76 40 06 64 37.1632 52. 2160 80 14/06/76 40 13 96 58.1264 1 8. 9584 81 14/06/76 40 27 64 5.2336 4.4192 82 14/06/76 40 02 240 11.2000 2. 8640 83 14/06/76 40 31 32 8.3056 2.1440 84 14/06/76 40 01 96 3.0976 1. 9424 85 14/06/76 40 09 48 8.9104 6. 0048 86 14/06/76 40 07 144 3.1280 2. 1504 87 14/0 6/76 40 08 96 6.4160 4. 6064 88 14/06/76 40 29 32 0.5360 0. 4784 89 14/06/76 40 33 16 2. 7008 0. 1952 90 14/06/76 4 0 34 48 8.0576 4. 5248 91 14/06/76 50 01 1728 45.4352 1 5. 4976 92 14/06/76 50 04 432 16.1040 27.7840 93 14/06/76 50 02 48 1.7104 0. 403 2 94 14/06/76 50 14 32 0.2496 0. 0400 95 14/06/76 50 09 80 1 1. 8240 6.1936 96 14/06/76 50 27 48 1 .5856 1. 3024 97 14/06/76 50 24 96 2.2208 0. 9856 98 14/06/76 50 20 16 0.9648 0. 7664 99 14/06/76 50 03 16 2.8400 1.7952 100 14/06/76 50 25 16 0.0784 0. 0560 101 14/06/76 50 31 48 2.2560 0. 2832 102 14/06/76 60 09 160 20.7024 1 0. 2160 103 14/06/76 60 17 16 8.5616 5. 0768 104 14/06/76 60 04 48 1.1328 0. 7376 105 14/06/76 60 24 32 0.8640 0.4016 106 14/06/76 60 32 16 1.0064 0. 1360 107 14/06/76 60 16 16 0.0352 0. 022 4 108 14/06/76 60 07 16 0.9856 0. 6656 109 14/06/76 60 25 32 0.1568 0. 0832 1 10 14/06/76 60 01 15968 1047.8113 313.5952 111 14/06/76 60 26 32 0.1920 0. 0528 112 14/06/76 60 03 16 0.6736 0. 3280 1 13 14/06/76 70 01 5648 293.9121 129.1760 114 14/06/76 70 21 16 18.5600 1 2. 6832 1 15 14/06/76 70 09 64 71. 2096 39.2668 116 14/06/76 70 25 1 17 14/06/76 70 03 118 14/06/76 80 01 1 19 14/06/76 80 09 120 14/0 6/76 80 08 121 14/06/76 80 16 122 14/06/76 80 28 123 14/06/76 90 09 124 14/06/76 90 01 125 14/06/76 90 20 126 14/0 6/76 90 03 127 14/06/76 90 25 128 14/06/76 90 28 129 14/06/76 90 35 130 14/06/76 100 31 131 14/06/76 100 14 132 14/06/76 100 02 133 14/06/76 100 01 134 14/06/76 1 00 18 135 14/06/76 100 20 136 14/06/76 100 09 137 14/06/76 100 08 138 14/06/76 1 00 36 139 08/07/76 30 09 140 08/07/76 30 08 141 08/07/76 30 04 142 08/07/76 30 21 143 08/07/76 30 25 144 08/07/76 30 14 145 08/07/76 30 23 146 08/07/76 30 26 147 08/07/76 30 13 148 08/07/76 30 02 149 08/07/76 30 27 150 08/07/76 30 31 151 08/07/76 30 07 152 08/07/76 30 01 153 08/07/76 30 34 154 08/07/76 40 37 155 08/07/76 40 13 156 08/07/76 40 01 157 08/07/76 40 24 158 08/07/76 40 34 159 08/07/76 40 07 160 08/07/76 40 20 161 08/07/76 40 25 162 08/07/76 40 04 163 08/07/76 40 27 164 08/07/76 40 08 165 08/07/76 40 32 166 08/07/76 40 29 167 08/07/76 40 02 168 08/07/76 50 25 169 08/07/76 50 23 170 08/07/76 50 02 171 08/07/76 50 14 172 08/07/76 50 09 173 08/07/76 50 07 174 08/07/76 50 04 175 08/07/76 50 28 - 147 -16 0.0608 0. 0240 16 34. 81 12 23.1152 112 1.7824 0. 9040 32 3.4384 2. 2128 16 0.8400 0. 6336 32 0.0752 0. 0528 80 0.6256 0. 3872 128 49.4336 26.8400 2832 84.0800 33.0752 32 35.3648 25. 7392 48 16.2544 9. 6464 256 0.9808 0. 6704 16 0.0656 0. 0400 48 0.1952 0. 0608 16 1.3696 0. 0688 32 0.0512 0.0368 48 0.1072 0.0336 16 0.0800 0. 0352 16 3.0864 2. 1232 32 8.0512 5. 9120 48 6.8960 3.0128 64 2.1040 1.4880 16 1.4592 0. 9072 112 65.0576 36.7824 96 6.9744 5. 139 2 2048 86.1360 53. 0400 16 0.3680 0. 3232 80 0.36 16 0. 2496 32 0.1792 0. 0432 16 0.0736 0. 0560 16 0.0208 0.0112 16 1.8592 0. 3696 32 0.4896 0. 107 2 16 1. 0416 0. 8528 16 0.2512 0. 1296 54 4 3.8736 2. 5424 32 8.4880 4. 7728 16 0.5328 0. 3984 16 126.2608 7. 9184 48 85. 2464 1 8. 0976 16 18.9696 9. 0544 32 1. 2384 0. 7296 48 1.2448 0. 931 2 288 3.1168 1. 8688 32 4.8912 3.7920 32 0.1376 0.0784 768 26.5008 14.5776 304 39.3072 31. 0624 416 25.4128 17.1744 64 3.5104 1. 1184 32 0.4688 0. 3024 16 0.5136 0. 1440 16 0.1056 0. 0640 32 0.1072 0. 0720 16 0.1184 0. 0288 32 0.2224 0. 0544 32 3.2336 1. 6320 176 1.8496 0. 9504 496 23.6528 12.6944 112 5.2784 2. 8544 - -176 08/07/76 50 13 32 50.4272 1 1. 5120 177 08/07/76 50 33 16 5.6192 1.2320 178 08/07/76 50 01 48 0.7936 0.3664 179 08/07/76 50 19 48 11.9664 3. 1264 180 08/07/76 50 08 16 0.8400 0. 5888 181 08/07/76 60 09 96 67.9712 35. 321 6 182 08/07/76 60 07 80 1.5200 0. 8352 183 08/07/76 60 21 32 20.5600 15.0272 184 08/07/76 60 25 16 0.0976 0. 0608 185 08/07/76 60 08 16 0.7200 0. 5632 186 08/07/76 60 01 32 0.8272 0. 596 8 187 08/07/76 60 28 16 0.7776 0. 5024 188 08/07/76 60 20 16 0.4112 0. 3360 189 08/07/76 70 09 32 289.1968 133.9840 190 08/07/76 70 01 1296 93.9984 41.6960 191 08/07/76 70 25 48 0.2608 0. 1760 192 08/07/76 70 08 64 2.7376 1.8864 193 08/07/76 70 28 32 0.3536 0. 2176 194 08/07/76 80 09 32 62.1408 32. 3648 195 08/07/76 80 12 16 33.2800 0. 2720 196 08/07/76 80 21 16 112.5360 79.9024 197 08/07/76 80 25 16 0.0912 0.0736 198 08/07/76 80 01 112 2.5792 1.5712 199 08/07/76 80 07 16 1.5536 0. 4720 200 08/07/76 90 01 512 25.7472 12.8496 201 08/07/76 90 09 96 39.6304 21. 7296 202 08/07/76 90 21 16 16.6560 11.5264 203 08/07/76 90 25 32 0.2352 0. 1760 204 08/07/76 90 20 48 2.3056 1. 8544 205 08/07/76 90 33 16 0.2592 0. 1200 206 08/07/76 100 28 32 0.2032 0. 1504 207 08/07/76 100 02 48 0.1792 0. 0560 208 08/07/76 1 00 09 80 19.3760 1 0. 0704 209 08/07/76 100 25 272 1.1824 0. 7488 210 28/07/76 30 07 57088 175.6880 86.3280 211 28/07/76 30 04 640 32. 8736 18. 2752 212 28/07/76 30 08 176 12.9984 8. 7072 213 28/07/76 30 13 16 29.8256 6.9984 214 28/07/76 30 09 48 13.5872 6. 854 4 215 28/07/76 30 01 32 3.3152 1. 6688 216 28/07/76 30 29 16 0.6176 0. 3008 217 2 8/07/7 6 30 34 16 2.1728 1. 3952 218 28/07/76 30 27 32 4.3168 3.3664 219 28/07/76 40 25 32 0.2032 0. 1472 220 28/07/76 40 27 176 22.4224 17.3808 221 28/07/76 40 01 16 2.4400 0. 9456 222 28/07/76 40 09 80 13.4672 6. 6160 223 28/07/76 40 08 1 12 7.4816 4. 9728 224 28/07/76 40 02 16 0.1776 0. 0432 225 28/07/76 40 14 16 0.0896 0. 0576 226 28/07/76 40 29 32 0.7056 0. 4352 227 28/07/76 40 07 256 2.5216 1. 5376 228 28/07/76 40 13 32 41.3696 13. 1232 229 28/07/76 40 39 16 9.0400 1.9120 230 28/07/76 40 04 2064 89.1056 48. 844 8 231 28/07/76 50 01 128 3. 8032 . 0. 9872 232 28/07/76 50 24 48 1 .3872 0. 5600 233 28/07/76 50 13 32 8.3280 2. 4432 234 23/07/76 50 27 16 0.7456 0. 5536 235 28/07/76 50 14 16 0.0384 0. 017 6 236 28/07/76 50 08 16 0.9472 0.6272 237 28/07/76 50 28 96 3.4016 1. 8768 238 28/07/76 50 05 80 0.4448 0. 2256 239 28/07/76 50 09 32 1.3008 0. 673 6 240 28/07/76 50 16 32 0.0800 0. 0368 241 28/07/76 50 23 16 0.0368 0. 0192 242 28/07/76 50 07 48 0.6432 0.3936 243 28/07/76 50 26 16 0.0912 0. 0496 244 28/07/76 60 01 624 60.5008 19. 4144 245 28/07/76 60 20 48 2.4768 1.2976 246 28/07/76 60 09 32 16.1616 5.5120 247 28/07/76 60 03 32 1 1.8912 5. 2208 248 28/07/76 60 08 80 5.3120 3. 1232 249 28/07/76 70 01 3984 680.6001 312.9919 250 28/07/76 70 09 32 8.0448 3.2096 251 28/07/76 70 25 64 0.3760 0. 2128 252 28/07/76 70 07 16 0.7680 0. 5248 2 53 28/07/76 70 08 32 2.2256 1. 435 2 254 28/07/76 70 26 16 0.0912 0. 0272 255 28/07/76 80 21 16 55. 1056 34. 8400 256 28/07/76 80 09 16 24.7504 10.0736 257 28/07/76 80 25 16 0. 1024 0. 0640 258 28/07/76 80 16 16 0.0336 0. 0272 259 28/07/76 90 01 5888 951.0400 433. 9199 260 28/07/76 90 09 48 6.6208 2. 5856 261 28/07/76 90 20 48 4.8304 3. 2272 262 28/07/76 90 24 16 0.6192 0.2736 263 28/07/76 90 25 32 0.2144 0. 1184 264 28/07/76 1 00 09 48 9.4768 3.96 8 0 265 28/07/76 100 33 16 0.2240 0. 0480 266 28/07/76 1 00 22 16 36.9072 12.7424 267 28/07/76 100 16 16 0.0256 0. 0080 268 28/07/76 100 25 16 0. 1040 0. 0656 269 28/07/76 100 08 16 0.9200 0. 5888 270 28/07/76 1 00 20 32 6.3760 4. 0384 271 18/08/76 30 23 16 0.0848 0. 0656 272 18/08/76 30 07 11680 65.5968 24.6576 273 18/08/76 30 05 2048 4. 5472 2. 6832 274 18/08/76 30 04 1168 62.0896 35.0544 275 18/08/76 30 34 112 5.2224 3. 3408 276 18/08/76 30 08 64 4.2688 2. 9536 277 18/0 8/76 30 09 16 3.2416 1.8192 278 18/08/76 30 13 16 4.8176 1. 4304 279 18/0 8/7 6 30 24 16 3.2352 1. 4384 280 18/0 8/76 30 27 32 4.1568 3.2576 281 18/08/76 30 25 32 0.1776 0.1104 282 18/08/76 40 25 320 1.6000 1.0112 283 18/08/76 40 04 896 28.0512 15. 5920 284 18/08/76 40 05 2208 9.2720 4. 3888 285 18/08/76 40 15 32 0.1008 0. 0423 286 18/08/76 40 07 3008 1 5.7056 7. 5888 287 18/08/76 40 16 80 0. 1616 0. 0816 288 18/08/76 40 23 160 0.4032 0. 1872 289 18/0 8/76 40 08 16 1.2432 C . 9200 290 18/08/76 40 13 16 0.3120 0. 2416 291 18/03/76 40 22 32 0.4208 0. 1536 292 18/08/76 40 09 32 3.3232 1.4880 293 18/08/76 40 27 16 0.2608 0. 203 2 294 18/08/76 50 05 5920 37. 5568 1 9. 7600 295 18/08/76 50 07 368 1. 2928 0. 8320 - IbU -296 18/08/76 50 23 928 3.7280 2. 6880 297 18/08/76 50 16 688 1.8960 1.2128 298 18/08/76 50 15 32 0.1216 0. 0304 299 18/08/76 50 25 288 1.0528 0. 6560 300 18/08/76 50 06 32 0.6912 0. 3872 301 18/08/76 50 04 176 6. 9392 4.0704 302 18/0 8/76 50 28 528 7. 1216 4. 0272 303 18/08/76 50 27 448 17.2064 13. 7136 304 18/08/76 50 34 32 0.4432 0. 3424 305 18/08/76 50 20 80 2.1872 1. 6208 306 18/08/76 50 09 16 0.9040 0. 5648 307 18/08/76 50 08 496 10.6928 5. 8048 308 18/08/76 60 01 560 57. 0384 39. 0960 309 18/08/76 60 09 48 30.5504 1 5. 1232 310 18/08/76 60 03 16 0.3088 0. 3008 311 18/08/76 60 25 16 0.0640 0. 0384 312 18/08/76 60 23 32 0.1552 0. 1056 313 18/08/76 60 16 16 0.0304 0. 0144 314 18/08/76 70 01 912 193.1456 103.9456 315 18/08/76 70 09 32 7.2976 3.7664 316 1 8/08/76 70 33 16 8.9952 4. 3280 317 18/08/76 70 15 48 0.1712 0.0720 318 18/08/76 70 25 64 0.3312 0. 2160 319 18/03/76 70 23 16 0.0656 0. 0288 320 18/0 8/76 70 08 112 6.7600 4. 8432 321 18/0 8/76 70 16 16 0.0272 0. 0176 322 18/08/76 80 09 48 46.9456 22.8896 323 18/08/76 80 03 16 0.6192 0. 3872 324 18/08/76 80 08 48 1 .8448 1. 3008 325 18/0 8/76 80 20 32 1.0048 0. 784 0 326 18/08/76 80 25 48 0.2784 0. 1936 327 18/08/76 80 28 32 0.4112 0. 2464 328 18/08/76 90 0 1 256 10.7168 6.516 8 329 18/08/76 90 03 32 18.4032 1 1. 7728 330 18/08/76 90 09 32 8.3744 5. 0496 331. 18/08/76 90 20 48 0.9872 0. 7824 332 18/0 8/76 90 25 64 0.2912 0. 2192 333 18/08/76 90 20 16 1.8368 1. 3920 334 18/08/76 90 28 16 0.2768 0. 2032 335 18/08/76 100 28 128 2.0704 1. 3728 336 18/08/76 100 15 32 0.0816 0. 0272 337 18/08/76 100 08 144 7.1424 4. 9152 338 18/0 8/76 1 00 22 160 2.3824 0. 7984 339 18/08/76 1 00 25 272 1. 3600 0..9056 340 18/08/76 1 00 09 112 11.6592 6.435 2 341 18/08/76 100 20 48 1.9680 1.4816 342 18/0 8/76 1 00 13 16 2.5883 0. 8160 343 18/08/76 100 14 64 0.0976 0. 0352 344 12/09/76 30 05 1648 5.9104 3.7936 345 12/09/76 30 07 1 1760 62.9824 33.3792 346 12/09/76 30 23 96 0.5104 0. 3200 347 12/09/76 30 16 176 0.5376 0. 2832 348 12/09/76 30 13 16 14.5312 3. 6832 349 12/09/76 30 06 16 14. 4016 6.6304 350 12/09/76 30 34 16 0.8496 0. 5552 351 12/09/76 30 24 16 1.0144 0. 395 2 352 12/09/76 30 04 672 37.5696 22.0496 353 12/09/76 30 08 160 9.8400 7. 064 0 354 12/09/76 40 05 54\"0 22.1040 16. 0640 355 12/09/76 40 07 9840 50.6720 33.7200 356 12/09/76 40 25 357 12/09/76 40 23 358 12/09/76 40 16 359 12/09/76 40 04 360 12/09/76 40 12 361 12/09/76 40 27 362 12/09/76 40 08 363 12/09/76 40 32 364 12/09/76 40 13 365 12/09/76 40 20 366 12/09/76 40 28 367 12/09/76 50 27 368 12/09/76 50 08 369 12/09/76 50 33 370 12/09/76 50 05 371 12/09/76 50 07 372 12/09/76 50 23 373 12/09/76 50 16 374 12/09/76 50 28 375 12/09/76 60 09 376 12/09/76 60 01 377 12/09/76 60 22 378 12/09/76 60 07 379 12/09/76 60 05 380 12/09/76 60 06 381 12/09/76 60 28 382 12/09/76 60 08 383 12/09/76 60 26 384 12/09/76 60 16 385 12/09/76 60 23 386 12/09/76 70 01 387 12/09/76 70 09 388 12/09/76 70 05 389 12/09/76 70 22 390 12/09/76 70 34 391 12/09/76 70 20 392 12/09/76 70 28 393 12/09/76 70 25 394 12/09/76 70 26 395 12/09/76 70 31 396 12/09/76 80 09 397 12/09/76 90 09 398 12/09/76 90 01 399 12/09/76 90 03 400 12/09/76 90 25 401 12/09/76 1 00 22 402 12/09/76 1 00 09 403 12/09/76 100 25 404 12/09/76 100 13 405 12/09/76 1 00 28 406 12/09/76 1 00 14 407 12/09/76 100 20 408 07/10/76 30 05 409 07/10/76 30 07 4 10 07/10/76 30 30 411 07/10/76 30 34 412 07/10/76 30 20 413 07/10/76 30 08 4 14 07/10/76 30 25 4 15 07/10/76 40 13 - 151 -800 3.0080 2. 3120 480 1.8560 1.6160 560 1.0240 0. 8880 1568 70.8944 39. 9840 16 2.4160 0.4336 128 18.5264 14. 9632 240 15.6912 10.5376 16 4.9376 2. 3600 16 9. 8672 2. 7264 16 0.5728 0. 4976 112 1.4336 0. 9824 48 2.5504 2.1616 16 1 .1360 0.9072 16 0.3520 0. 2656 5472 29.5776 20. 1536 2192 8.2304 6. 2720 64 0.4272 0. 2816 27 2 0.5856 0. 5040 96 1.1488 0. 836 8 16 1.6224 1. 3680 352 50.8896 29. 939 2 32 0.5088 0. 3872 32 0.7232 0. 4128 320 0.9552 0.7312 16 0.1984 0. 1824 16 0.4144 0. 3008 16 0.9088 0. 684 8 16 0.0848 0. 0576 32 0.0896 0. 0672 48 0.1088 0. 0848 608 85.0928 34.4528 16 3. 1792 2. 0640 80 0.2768 0.219 2 32 0.2736 0. 2080 16 0.4096 0.3632 16 0. 1776 0. 1264 16 0.4832 0. 3248 160 0.7664 0. 6096 96 0.6128 0. 4704 16 0.2048 0. 1264 16 19.5952 12. 9728 80 14.5488 10.4736 368 32.1248 23. 2128 32 25.2224 16. 9328 80 0.3408 0. 2624 32 0.2784 0. 2320 48 7.8256 5.5136 . 176 0.7904 0. 6384 16 0.5328 0. 4336 16 0.3552 0.2592 80 0.0800 0. 0496 16 2.0464 1. 72C0 1 488 11.2128 7.4160 3072 35. 5760 2 1. 0624 16 2.2464 0. 8032 32 0.7920 0. 6544 16 11.1072 8.9712 112 7.9808 6. 004 8 144 0.6432 0. 4544 16 38.8848 1 2. 0320 416 07/10/76 40 30 48 18.9936 7. 5088 417 07/10/76 40 06 16 34.2896 17. 3856 418 07/10/76 40 09 16 0.9008 0. 6960 419 07/10/76 40 34 160 7.1328 5. 5264 420 07/10/76 40 27 128 17.2544 1 4. 6784 421 07/10/76 40 08 320 21.2240 16.2288 422 07/10/76 40 01 32 0.7584 0. 4400 423 07/10/76 40 25 144 0.5744 0. 4256 424 07/10/76 40 07 1648 20.5664 13.3760 425 07/10/76 40 05 2480 25. 8608 16.1504 426 07/10/76 40 04 176 8.2272 5.7280 427 07/10/76 40 23 32 0. 1344 0. 0928 428 07/10/76 40 16 16 0. 0624 0. 0224 429 07/10/76 50 25 464 2.3104 1.2464 430 07/10/76 50 28 304 5.0768 3. 2384 431 07/10/76 50 05 20064 174.7696 100.8064 432 07/10/76 50 07 5776 22.9680 15.2000 433 07/10/76 50 23 464 2.8576 2. 1888 434 07/10/76 50 16 8976 18.6352 13.0112 435 07/10/76 50 04 80 5.6576 3. 4848 436 07/10/76 50 27 160 9.1904 7. 4688 437 07/10/76 50 20 32 2. 1 152 1. 6080 438 07/10/76 50 34 16 1.2976 0. 9056 439 07/10/76 50 30 16 1.0704 0. 3648 440 07/10/76 50 09 16 5.5120 2. 9552 441 07/10/76 50 32 16 0.2448 0.108 8 442 07/10/76 60 32 16 0. 1248 0.0912 443 07/10/76 60 05 64 0.3120 0. 2256 444 07/10/76 60 0 1 112 0.5376 0. 3584 445 07/10/76 60 07 48 0.4640 0. 3088 446 07/10/76 70 09 16 13.9712 8. 7120 447 0 7/10/76 70 08 80 4.5664 3. 4224 448 07/10/76 70 28 48 0.6208 0.5088 449 07/10/76 70 01 704 53. 5872 36. 8704 450 07/10/76 70 20 16 0.7312 0. 5312 45 1 07/10/76 70 30 32 0.8192 0. 5712 452 07/10/76 80 01 16 0.2208 0. 0992 453 07/10/76 80 05 64 1.4656 0. 9264 454 07/10/76 80 09 16 2.4128 1. 1328 455 07/10/76 80 20 32 0.6960 0.4992 456 07/10/76 80 32 16 0.1600 0. 0944 4 57 07/10/76 80 25 32 0.1712 0. 0992 458 07/10/76 80 08 16 0.7424 0. 5088 459 07/10/76 80 28 112 1. 9696 1. 2480 460 07/10/76 80 16 128 0.2352 0. 1664 461 07/10/76 80 23 64 0.3856 0. 2960 462 07/10/76 90 09 64 16.5152 10. 0528 463 07/10/76 90 0 1 112 0.7088 0. 6144 464 07/10/76 90 12 16 0.5856 0.5040 465 07/10/76 90 03 16 11.5568 7.3088 466 07/10/76 90 02 32 0.0352 0. 0160 467 07/10/76 1 00 09 32 7.1264 3. 0128 468 07/10/76 1 00 38 64 49.2656 34. 3504 469 07/10/76 1 00 20 32 1.1936 0. 9504 470 07/10/76 1 00 08 80 2.7808 2. 0432 471 07/10/76 100 24 16 0.4592 0.4192 472 07/10/76 100 25 384 2.0944 1. 3008 473 07/10/76 100 07 64 0.2288 0. 1920 474 07/10/76 1 00 26 16 0.2480 0. 1952 475 07/10/76 100 28 16 0.3200 0. 2368 - 1 5 3 -A P P E N D I X I I I D e t r i t u s a s s e s s m e n t d a t a f o r s e a s o n a l c o l l e c t i o n s a t 95 m w i t h i n S i t e 1. - 154 -DRY ASH-FREE WEIGHT DRY WEIGHT DATE QUADRAT ( G/ti2 ) ( G/M2 ) 1 28/05/76 20 0. 13 0. 07 2 28/05/76 30 0. 62 0. 12 3 28/05/76 40 1. 15 0. 15 4 28/05/76 50 1. 01 0. 19 5 28/05/76 60 0. 60 0. 15 6 28/05/76 70 1. 39 0. 28 7 28/05/76 80 1. 61 0. 33 8 28/05/76 90 1. 75 0. 27 9 28/05/76 100 1. 54 0. 27 10 17/06/76 20 0. 25 0. 11 11 17/06/76 30 1. 19 0. 32 12 17/06/76 40 0. 87 0. 30 13 17/06/76 50 0. 86 0. 27 14 17/06/76 60 1. 01 0. 32 15 17/06/76 70 1. 17 0. 43 16 17/06/76 80 0. 76 0. 15 17 17/06/76 90 1. 23 0. 24 18 17/06/76 100 1. 48 0. 37 19 08/07/76 20 0. 32 0. 14 20 08/07/76 30 2. 20 0. 55 21 08/07/76 40 4. 46 0. 43 22 08/07/76 50 4. 13 0. 76 23 08/07/76 60 2. 11 0. 61 24 08/07/76 70 3. 97 0. 74 25 08/07/76 80 2. 52 0. 60 26 08/07/76 90 3. 63 0. 58 27 08/07/76 100 2. 98 0. 54 28 29/07/76 20 0. 28 0. 12 29 29/07/76 30 2. 99 0.72 30 29/07/76 40 2. 87 0. 48 31 29/07/76 50 1. 98 0. 50 32 29/07/76 60 2. 06 0. 57 33 29/07/76 70 1. 66 0. 46 34 29/07/76 80 2. 19 0. 54 35 29/07/76 90 2. 17 0. 50 36 29/07/76 100 2. 24 0. 54 37 20/08/76 20 0. 31 0.16 38 20/08/76 30 5. 38 1. 11 39 20/08/76 40 6. 60 1.39 40 20/08/76 50 6. 00 1. 20 41 20/08/76 60 1. 57 0.42 42 20/08/76 70 3. 35 0. 69 43 20/08/76 80 0. 58 0. 13 44 20/08/76 90 1. 17 0. 26 45 20/08/76 100 1. 05 0. 23 46 12/09/76 20 0. 45 0. 16 47 12/09/76 30 1. 48 0. 32 48 12/09/76 40 0. 61 0. 13 49 12/09/76 50 1. 02 0. 19 50 12/09/76 60 0. 61 0. 10 51 12/09/76 70 0. 78 0. 21 52 12/09/76 80 0. 49 0. 09 53 12/09/76 90 0. 99 0.20 54 12/09/76 100 0. 82 0. 20 55 07/10/76 20 0. 29 0. 10 - l b b -56 07/10/76 30 0. 52 0. 12 57 07/10/76 40 0. 97 0. 28 58 07/10/76 50 1. 91 0. 55 59 07/10/76 60 0. 93 0. 30 60 07/10/76 70 0. 72 0. 23 61 07/10/76 80 0. 78 0. 34 62 07/10/76 90 0. 61 0. 22 63 07/10/76 100 1 . 75 0. 45 - 156 -APPENDIX IV Depth data (m below mean sea level) f o r the transects at 5, 35, 65 and 95 m within S i t e 1. Transect l o c a t i o n Distance along transect (m) 00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 05 m -1.4 -0.6 0.5 0.8 2.3 2.9 2.3 2.6 2.9 3.4 3.8 4.1 4.4 4.9 5.0 5.5 6.3 6.7 7.2 7.6 8.1 35 m -1.2 -0.6 0.3 1.2 2.1 2.3 2.4 2.4 2.6 2.7 3.7 4.3 4.9 5.5 6.1 6.4 7.0 7.9 8.5 9.1 9.8 65 m -1.1 -0.8 -0.2 0.8 2.0 1.8 1.3 1.5 1.8 2 . 3 2.9 3.7 4.4 4.7 5.3 6.1 6.9 7.5 8.1 9.0 9.6 95 m -0.9 -0.3 0.6 1.2 1.5 2.1 2.7 3.7 4.1 4.9 5.5 5.5 6.1 6.4 6.4 6.7 6.7 7.0 7.3 7.6 7.9 - 157 -APPENDIX V L i t t e r decomposition experimental data. Length of Percentage of Species incubation p e r i o d (days) o r i g i n a l dry weight Plocamium coccineum var. pacificum 0 100.00 10 65.26 16 42.50 24 28.22 Rhodomela larix 0 100.00 6 86.20 13 48.73 25 6.48 Odonthalia floccosa 0 100.00 8 55.35 19 34.51 33 9.23 Iridaea cordata 0 100.00 2 97.39 8 55.66 13 0.13 Gigartina papillata 0 100.00 10 38.50 16 16.79 24 2.72 Constantinea subulifera 0 100.00 6 62.30 14 45.20 29 11.57 Fucus distichus 0 100.00 6 61.08 13 39.99 19 44.38 44 8.67 Nereocystis luetkeana (stipe) 0 100.00 6 29.70 13 5.38 19 0.01 Nereocystis luetkeana (lamina) 0 100.00 2 52.80 4 5.49 6 0.08 - 158 -Appendix V (continued) Laminaria saccharina 0 100.00 8 13.70 9 11.30 Laminaria groenlandica 0 100.00 3 30.14 8 11.16 9 10.13 - 159 -APPENDIX VI Oxygen consumed (mg) by microbes decomposing three p a r t i c l e s i z e s of the 10 d e t r i t a l species i n Experiment 1 following three periods of incubation. Species 5 days 10 days 20 days Plocamium coccineum var. pacificum 0.17 0.32 0.49 44-0 0.20 0.36 0.47 250-149 0.17 0. 33 0.47 1000-420 Rhodomela larix 0.22 0.31 0.42 0.16 0.29 0.45 0.25 0. 31 0.42 Odonthalia floccosa 0.19 0.37 0.46 0.15 0.28 0.49 0.19 0. 34 0.49 Iridaea cordata 0.50 0.57 0.65 0.42 0.45 0.64 0. 33 0.55 0.71 Gigartina papillata 0.26 0.28 0.38 0.20 0.33 0.42 0.22 0.30 0.36 Constantinea subulifera 0. 35 0.60 0.62 0. 37 0.54 0.67 0.35 0.52 0.64 Fucus distichus 0. 38 0.57 0.84 0.46 0.55 0.71 0. 39 0.63 0.85 Nereocystis luetkeana (stipe) 0.28 0. 36 0.52 0.29 0.35 0.50 0. 34 0.40 0.50 Nereocystis luetkeana (lamina) 0.29 0.36 0.57 0. 36 0.47 0.47 0.27 0.41 0.49 Laminaria saccharina 0.25 0.39 0.54 0.29 0. 37 0.46 0.29 0.32 0.47 Laminaria groenlandica 0. 31 0.35 0.45 0.25 0. 38 0.50 0.29 0.45 0.48 p a r t i c l e s i z e -160 -APPENDIX VII Percentage of p a r t i c u l a t e material remaining following three periods of incubation f o r three p a r t i c l e s i z e s of the 10 d e t r i t a l species decomposed i n Experiment 2. Species 10 days 20 days 30 days Plocamium coccineum var. pacificum Rhodomela larix Odonthalia floccosa 100.0 114.8 94.9 98.1 102.6 107.7 111. 3 123.3 95.0 101.4 86.7 109.5 102.0 110.0 106.6 101.3 110.7 92.4 95.6 77.3 94.5 95.0 96.7 103.5 100.0 104.6 97.7 44-0 urn\"1 250-149 urn| 1000-420 um; p a r t i c l e s i z e Iridaea cordata Gigartina papillata 22.4 45.4 62.8 74.1 101.1 89.1 20.7 22.5 24.0 70.0 99.6 89.4 24.2 29.5 25.8 77.3 97.2 63.1 Constantinea subulifera 100.7 94.9 93.3 97.1 109.5 89.3 88.1 94.5 75.5 Fucus distichus 123.7 101.1 104.8 100.9 99.6 106.4 96.0 97.2 103.5 Nereocystis luetkeana (stipe) Nereocystis luetkeana (lamina) 54.2 70.9 81.2 63.9 65.0 66.7 44.4 52.2 60.6 51.2 47.4 59.6 48.2 35.0 62.2 49.2 49.1 37.1 Laminaria saccharina 73.6 77.2 81.4 71.1 70.1 67.2 72. 3 45.1 70.6 Laminaria groenlandica 60.4 62.8 68.6 67.1 59.6 63.6 72.5 55.1 61.8 - 161 -APPENDIX V I I I FORTRAN G computer program f o r the simulation model of l i t t e r and d e t r i t u s processing within S i t e 1. Main program: Accepts parameters determining the data to be processed, i . e . wet, dry or ash-free dry weight; sets the s i g n i f i c a n c e l e v e l of the chi-square t e s t for patchiness i n l i t t e r d i s t r i b u t i o n ; c a l l s subroutines Ml, M2, M3 and M4. Ml: Creates a three dimensional matrix (species, quadrat, tran-sect) of l i t t e r biomass data de f i n i n g the a r e a l d i s t r i b u t i o n of l i t t e r within S i t e 1. The matrix i s based on data from the transect c o l l e c t i o n s at 5, 35, 65 m within S i t e 1 on 3 August and at 95 m on 27 July 1976. M2: Tests (chi-square) f o r patchiness i n the d i s t r i b u t i o n of s p e c i f i c l i t t e r w ithin equivalent quadrats of the four tran-sects d e f i n i n g the a r e a l d i s t r i b u t i o n of l i t t e r w ithin S i t e 1. I f the r e s u l t i s n o n - s i g n i f i c a n t , the data are averaged to reduce the influence of sampling v a r i a b i l i t y . M3: Calculates the equation (Figure 17) for the seasonal d i s t r i -bution of t o t a l l i t t e r biomass within S i t e 1. M4: Performs the operations o u t l i n e d i n the flow chart i n Figure 18. - 162 -1 INTEGER WTPAR 2 COMMON WTPAR /AREA1/ WTDAS(5,4,10) /AREA2/ DAY1(17), P ( l l ) , REGWT( +17) 3 COMMON /AREA3/ WT(4,5,17,10) , SDET(4,5,17,10) , SSOMP (4,5,17,10) , S +PROD(4,5,17,10), SPRODP(4,5,17,10), SPROSP(4,5,17,10), SDETP(4,5,1 +7,10) 4 15 WRITE(6,1) 5 1 FORMAT(' ','ENTER: WTPAR(I1)1/'WET WT=1'/'DRY WT=2'/'AFDW=31) 6 RE AD (5, 2) WTPAR 7 2 FORMAT(II) 8 IF((WTPAR.GT.3) .OR.(WTPAR.EQ.0)) GO TO 15 9 16 WRITE (6,3) 10 3 FORMAT(' ','ENTER: PROB-LEVEL(F4.0) @ .01,.05 OR .10') 11 READ(5,4) PROB 12 4 FORMAT(F4.0) 13 X2=0. 14 IF(ABS(PROB-.01).LT..0001) X2=11.341 15 IF(ABS(PROB-.05).LT..0001) X2=7.815 16 IF(ABS(PROB-.10).LT..0001) X2=6.251 17 IF(X2.EQ.O.) GO TO 16 18 WRITE (6.14) PROB,X2 19 14 FORMAT('-','PROB LEVEL=',F4.2,3X,1X2=',F6.3) 20 CALL Ml 21 CALL M2 22 CALL M3 2 3 CALL M4 24 STOP 25 END 26 BLOCK DATA 2 7 COMMON /AREA1/ WTDAS(5,4,10) 28 DATA WTDAS/200*0./ 29 END 30 SUBROUTINE Ml 31 INTEGER SP,WTPAR,DAS2,DATE,DAS,TX 32 DIMENSION DAS1(4) 33 COMMON WTPAR /AREA1/ WTDAS(5,4,10) 34 DAS=2 35 DO 2 N=l,156 36 READ(2,4) DAS2,SP 37 4 FORMAT(7X,I3,6X,I2) 38 IF(N.EQ.l) DAS1(1)=DAS2 39 IF((SP.NE.3).AND.(SP.NE.6).AND.(SP.NE.7).AND.(SP.NE.8).AND.(SP.NE. +19) ) GO TO 2 40 BACKSPACE2 41 IF(WTPAR.EQ.l) READ(2,5) TXDX1,DATA 42 IF(WTPAR.EQ.2) READ(2,5) TXDX1,B1,DATA 43 IF(WTPAR.EQ.3) READ(2,5) TXDX1,B1,B2,DATA 44 5 FORMAT(10X,F3.0,6X,3F10.0) 45 IF(SP.EQ.3) SP=1 46 IF(SP.EQ.6) SP=2 47 IF(SP.EQ.7) SP=3 48 IF(SP.EQ.8) SP=4 49 IF(SP.EQ.19) SP=5 50 IF(DAS2.EQ.DAS1(DAS-1)) GO TO 6 - 163 -51 DAS1(DAS)=DAS2 52 DAS=DAS+1 5 3 6 DO 7 TX=1,10 54 7 IF((TXDX1.EQ.(TX*10.)-10.).AND.(SP.LE.5)) WTDAS(SP,DAS-1,TX)=DATA+ +WTDAS(SP,DAS-1,TX) 55 2 CONTINUE 56 RETURN 5 7 END 58 SUBROUTINE M2 59 COMMON WTPAR /AREA2/ WTDAS(5,4,10) 60 COMMON /AREA3/ WT(4,5,17,10), SDET(4,5,17,10), SSOMP(4,5,17,10), S +PROD(4,5,17,10), SPRODP(4,5,17,10), SPROSP(4,5,17,10), SDETP(4,5,1 +7,10) 61 INTEGER SP, TXDX1, TX, WTPAR, DATE, DAS 62 DIMENSION SUM1(5), SUM2(5), WT(5,10), FREQ(5,10), CHISQ(5,10), CHI +WT(5,4,10), STAND(5,10) 63 DATA SUMl/5*0./, SUM2/5*0./, WT/50*0./ 64 DO 1 N=l,625 65 IF(WTPAR.EQ.l) READ(1,2) TXTXl,SP,DATA 66 IF(WTPAR.EQ.2) READ(1,2) TXDX1,SP,B1,DATA 67 IF(WTPAR.EQ.3) READ(1,2) TXDX1,SP,B1,B2,DATA 68 2 FORMAT(10X,I3,3X,I2,1X,3F10.0) 69 IF((SP.NE.3).AND.(SP.NE.6).AND.(SP.NE.7).AND.(SP.NE.8).AND.(SP.NE. +19) ) GO TO 1 70 IF(SP.EQ.3) SP=1 71 IF(SP.EQ.6) SP=2 72 IF(SP.EQ.7) SP=3 73 IF(SP.EQ.8) SP=4 74 IF(SP.EQ.19) SP=5 75 TX=(TXDX1/10) 76 WT(SP,TX+1)=WT(SP,TX+1)+DATA 77 SUM1(SP)=SUM1(SP)+DATA 78 1 CONTINUE 79 DO 3 SP=1,5 80 DO 3 TX=1,10 81 FREQ(SP,TX)=WT(SP,TX)/SUM1(SP) 82 3 SUM2(SP)=SUM2(SP)+WTDAS(SP,1,TX) 83C ** CORRECTIVE ADJUSTMENT FOR AN UNREPRESENTATIVE DATUM FOR 'IRIDAEA 84C ** CORDATA' OBTAINED FOR THE 2 7 JULY 1976 COLLECTION AT 95 M. 85 SUM2(2)=SUM2(2)+20. 86 DO 4 SP=1,5 87 DO 4 TX=1,10 88 4 STAND(SP, TX) =FREQ (SP, TX) *SUM2 (SP) 89 DO 5 SP=1,5 90 DO 5 TX=1,10 91 UNIT=WTDAS(SP,1,TX) 92 CHIWT(SP,1,TX)=STAND(SP,TX) 9 3 DO 12 DAS=2,4 94 CHIWT(SP,DAS,TX)=WTDAS(SP,DAS,TX) 95 12 IF((WTDAS(SP,DAS,TX).LT.UNIT).AND.(WTDAS(SP,DAS,TX).NE.O.)) UNIT=W +TDAS(SP,DAS,TX) 96 IF(UNIT.EQ.O) GO TO 5 97 IF((WTPAR.EQ.l).AND.(UNIT.GT.10.)) UNIT=10. 98 IF((WTPAR.EQ.2).AND.(UNIT.GT.2.)) UNIT=2. 99 IF((WTPAR.EQ.3).AND.(UNIT.GT.l.)) UNIT=1. - 164 -100 SUM1=0. 101 SUMl=SUMl+(STAND(SP,TX)/UNIT) 102 IF(SUM1.EQ.0.) GO TO 5 103 DO 6 DAS=2,4 104 6 SUM1=SUM1+(WTDAS(SP,DAS,TX)/UNIT) 105 EXP=SUMl/4. 106 SUM2=0. 107 SUM2=SUM2+((STAND(SP,TX)/UNIT)**2) 108 DO 7 DAS=2,4 109 7 SUM2=SUM2+((WTDAS(SP,DAS,TX)/UNIT)**2) 110 CHISQ(SP,TX)=(SUM2/EXP)-SUM1 111 IF(CHISQ(SP,TX).GE.X2) GO TO 5 112 DO 8 DAS=1,4 113 8 CHIWT(SP,DAS,TX)=EXP*UNIT 114 5 CONTINUE 115 DO 11 DAS=1,4 116 DO 11 SP=1,5 117 WRITE (7,13) DAS, SP 118 13 FORMAT(1 -',3X,'DAS=',12,3X,'SP=',12) 119 DO 11 DATE=1,17 120 DO 10 TX=1,10 121 10 WT(DAS,SP,DATE,TX)=(REGWT(DATE)/REGWT(14))*CHIWT(SP,DAS,TX) 122 11 WRITE(7,9) DATE, (WT(DAS,SP,DATE,TX),TX=1,10) 12 3 9 FORMAT(' ',1DATE=',12,2X,10F10.4) 124 RETURN 125 END 126 SUBROUTINE M3 127 COMMON WTPAR /AREA2/ DAYl(17), P ( l l ) , REGWT(17) 128 DIMENSION YRES(17), WT(17), SPRYY(411) 129 DIMENSION S(11), SIGMA(IO),'A(IO), B(10), DATEWT(17) 130 DOUBLE PRECISION YY(411), EXPO, RDATE 131 LOGICAL LK, ANSWER 132 INTEGER WTPAR,D,Y,DATE,DAS,TX 133 1 DATE=1 134 SUM1=0 135 REWIND1 136 DO 10 N=l,625 137 IF(WTPAR.EQ.l) READ(1,12) D,M,Y,DATA 138 IF(WTPAR.EQ.2) READ(1,12) D,M,Y,B1,DATA 139 IF(WTPAR.EQ.3) READ(1,12) D,M,Y,Bl,B2,DATA 140 12 FORMAT(312,13X3F10.0) 141 DAY2=JULDAY(M,D,Y+1900)-JULDAY(8,18,1975) 142 IF(N.EQ.l) DAY1(1)=DAY2 143 IF(DAY2.NE.DAY1(DATE)) GO TO 11 144 SUM1=SUM1+DATA/100. 145 IF(N.NE.625) GO TO 10 146 11 DATEWT(DATE)=SUM1 147 DATE=DATE+1 148 DAY1(DATE)=DAY2 149 IF(DATE.EQ.18) GO TO 10 150 SUM1=DATA 151 10 CONTINUE 152 NWT=0 153 K=10 154 N=17 155 LK=.TRUE. - ico -156 CALL OLQF(K.N.DAY1,DATEWT,REGWT,YRES,WT,NWT,S,SIGMA,A,B,SS,LK,P) 157 MAX=K+1 158 WRITE(7,2) (J, P ( J ) , J=1,MAX) 159 2 FORMAT(' ',3('P(',12,')',E20.12,2X)) 160 WRITE (7, 3) K, SS 161 3 FORMAT(' ','K= ',I2,2X,'SS= ',F10.4/) 162 WRITE(7,4) (L, DATEWT(L), REGWT(L), YRES(L),L=1,N) 163 4 FORMAT(' ',2('DAY=' ,12 , ' DATEWT= ',F6.2,' REGWT= ',F6.2,' YRES= ', +F6.2,5X)) 164 WRITE (6,13) 165 13 FORMATC ','IS A PLOT OF *'TOTAL LITTER VS TIME'' DESIRED? (T OR F +) ') 166 READ(5,14) ANSWER 167 14 FORMAT(Ll) 168 IF(.NOT.ANSWER) GO TO 15 169 DO 5 DATE=1,411 170 YY(DATE)=0. 171 RDATE=DATE 172 DO 5 J=1,MAX 173 EXPO=J-l 174 5 YY(DATE)=YY(DATE)+(P(J)*(RDATE**EXPO)) 175 DO 9 DATE=1,411 176 9 SPRYY(DATE)=YY(DATE) 177 CALL SCALE(SPRYY,411,6.,YMIN,DY,1) 178 CALL AXIS(0.,0.,'1975*,-4,3.,0.,230.,40.) 179 CALL PLOT(3.,0.,3) 180 CALL PLOT(4. ,0.,2) 181 CALL AXIS(4.,0.,'1976',-4,7.,0.,25.,40.) 182 CALL AXIS(0.,0.,'LITTER BIOMASS (G/M2:AFDW)',26,6.,90.,YMIN,DY) 183 CALL PLOT(0.05,SPRYY(2),3) 184 DO 7 DATE=3,411 185 W=DATE*0.025 186 7 CALL PLOT(W,SPRYY(DATE),2) 187 DO 8 DATE=1,17 188 V=DAY1(DATE)*0.025 189 U= DATEWT(DATE)*0.0 2 190 8 CALL SYMBOL(V,U,0.28,30,0.,-1) 191 CALL SYMBOL(3.7,-.5,.2,'DAY OF THE YEAR',0.,15) 192 CALL SYMBOL(4.,5.,.2,'TOTAL LITTER' ,0 . ,12) 193 CALL PLOTND 194 15 RETURN 195 END 196 SUBROUTINE M4 197 COMMON /AREA2/ DAY1(17), P ( l l ) , REGWT(17) 198 COMMON /AREA3/ WT(4,5,17,10), SDET(4,5,17,10), SSOMP(4,5,17,10), S +PROD(4,5,17,10), SPRODP(4,5,17,10), SPROSP(4,5,17,10), SDETP(4,5,1 +7,10) 199 INTEGER DATE1, DATE2, DATE3, DATE4, DATE5, DATE6, DATE7, DATE8, DA +TE9, DATE11, DATE12, SP, DAS, TX 200 DIMENSION DETP(523), SOMP(523), PROD(523), PRODP(523), PROSP(523), +DRATE(5), DET(523), DOM(5), YPROI(5), TEMFAC(523), SQLX(17) 201 DOUBLE PRECISION SUMl, SUM2, RATIO, PRATIO(ll), EXPO, DATE10 202 DOUBLE PRECISION QL, QLR(523), YWT(5,80), YWTI, YWTP, YWTC, YPRO(5 +,80), YPROP, YPROC, QLX(523) 203 DATA DRATE/.00760,.05651,.03123,.03479,.02934/, DOM/.393,.717,.589 +,.553,.611/, QLX/523*0./ - I b b -204 DATA YPROI/.10892347,.12155714,.09405,.14905,.14466232/ 205 DO 13 DATE12=1,80 206 YWT(1,DATE12)=EXP((-.059039*DATE12)+4.60517) 207 YWT(2,DATE12) = (-.448099 *DATE12 **2)-(1,97802*DATE12)+100. 208 YWT(3,DATE12)=EXP((-.209873*DATE12)+4.60517) 209 YWT(4,DATE12)=((DATE12-6.022245)**2)/(4*.0906686) 210 YWT(5,DATE12)=EXP((-.277057*DATE12)+4.60517 211 YPR0(1,DATE12)=(-.067956*YWT(1,DATE12))+17.688 212 YPR0(2,DATE12)=(.0440286*YWT(2,DATE12))+7.75285 213 YPRO(3,DATE12)=(-.05 8322*YWT(3,DATE12))+15.2 371 214 YPR0(4,DATE12)=(-.182204*YWT(4,DATE12))+33.1254 215 YPRO (5,DATE12) = (.490 395E-0 3*YWT(5,DATE12)* *2)-(.21176*YWT(5,DATE12 +))+30.7386 216 13 CONTINUE 217 A=0.20187 218 B=0.29821 219 DO 8 DATE11=1,52 3 220 8 TEMFAC(DATE11)=1.375+A*SIN((8.*ATAN(1.)/366.)*(DATEll+231))+B*COS( +(8.*ATAN(l.)/366.)*(DATE11+231)) 221 DO 1 DAS=1,4 222 DO 1 SP=1,5 22 3 DO 1 TX=1,10 224 RATIO=WT(DAS,SP,1,TX)/(REGWT(1)*10.) 225 DO 5 1=1,11 226 EXPO=I 227 5 PRATIO(I)=(P(I)*RATIO)/EXPO 228 DO 12 DATE11=1,52 3 229 DETP(DATEll)=0. 230 SOMP(DATE11)=0. 231 PROD(DATE11)=0. 232 PRODP(DATE11)=0. 233 PROSP(DATE11)=0. 234 DET(DATEll)=0. 235 QLR(DATEll)=0. 2 36 12 CONTINUE 237 DO 16 DATE11=194,522 238 DATE1=DATE11 239 IF(DATEll.GT.410) DATEl=DATEll-407 240 DATE10=DATE1 241 SUM1=0. 242 SUM2=0. 243 DO 2 1=1,11 244 EXPO=I 245 SUMl=SUMl+(PRATIO(I)*(DATE10**EXPO)) 246 2 SUM2=SUM2+(PRATIO(I)*(DATE10+1.D0)**EXPO) 247 QL=SUM2-SUM1-QLR(DATE11) 248 IF(QL.LT.O-) QLX(DATE11+1)=QLX(DATE11+1)-QL 249 IF(QL.LE.O.) GO TO 16 250 IF(DATEll.LE.201) QLR(DATEll+l)=QL+QLR(DATEll) 251 YWPT=1.D0 252 YPROP=YPROI(SP) 253 DO 3 DATE2=1,80 254 DATE 3=DATE 2 +DATE11+(6 *TEMFAC(DATE11)) 255 IF(DATE3.GT.523) GO TO 16 256 DATE3=(TEMFAC(DATE3)*DATE2)+DATE11+(6*TEMFAC(DATEll)) - J .O / -257 YPR0C=YPR0(SP,DATE2)/100. 258 YWTC=YWT(SP,DATE2)/100. 259 IF((DATE3.GT.523).OR.(YWTC.LT..01)) GO TO 16 260 QLR(DATE3)=QL*YWTC+QLR(DATE3) 261 YWTI=YWTP-YWTC 262 IF(YWTC.GE.DOM(SP)) GO TO 4 263 DETP(DATE 3)=DETP(DATE 3)+(YWTI*QL) 264 PR0DP(DATE3)=PR0DP(DATE3)+YWTI*QL*((YPROC+YPROP)/2.)*(((YPROP*YWTP +)/YWTC-YPROC)/((YPROP*YWTP)/YWTC-YPROP 265 GO TO 10 266 4 SOMP(DATE3)=SOMP(DATE3)+(YWTI*QL) 267 PROSP(DATE3)=PROSP(DATE3)+YWTI*QL*((YPROC+YPROP)/2.)*(((YPROP*YWTP +)/YWTC-YPROC)/((YPROP*YWTP)/YWTC-YPROP 268 10 YPROP=YPROC 269 YWTP=YWTC 270 3 CONTINUE 271 16 CONTINUE 272 DO 15 DATE7=194,523 2 73 DO 11 DATE8=1,80 274 DATE9=DATE 7+DATE8-1 275 IF(DATE9.GT.523) GO TO 15 276 DATE9=TEMFAC(DATE9)*(DATE8-1))+DATE7 277 IF(DRATE(SP)*(DATE8-1) .GT.1.) .OR. (DATE9.GT.52 3)) GO TO 15 278 DET(DATE9)=DETP(DATE 7)*(1.-(DRATE(SP)*(DATE8-1)))+DET(DATE9) 279 11 PROD(DATE9)=PRODP(DATE7)*(1.-(DRATE(SP)*(DATE8-1)))+PROD(DATE9) 280 15 CONTINUE 281 DO 6 DATEll=412,52 3 282 QXL(DATE11-409)=QLX(DATE11) 283 DETP(DATE11-409)=DETP(DATE11) 284 DET(DATE11-409)=DET(DATE11) 285 PRODP(DATE11-409)=PRODP(DATE11) 286 PROD(DATE11-409)=PROD(DATE11) 287 SOMP(DATE11-409)=SOMP(DATE11) 288 6 PROSP(DATE11-409)=PROSP(DATE11) 289 SDET(DAS,SP,1,TX)=0. 290 SSOMP(DAS,SP,1,TX)=0. 291 SPRODP(DAS,SP,1,TX)=0. 292 SPROSP(DAS,SP,1,TX)=0. 293 SDETP(DAS,SP,1,TX)=0. 294 SPROD(DAS,SP,1,TX)=0. 295 SUM3=0. 296 SUM4=0. 297 SUM5=0. 298 SUM6=0. 299 SUM7=0. 300 DATE5=1. 301 DO 14 DATE4=2,411 302 SUM3=SOMP(DATE4)+SUM3 303 SUM4=PRODP(DATE4)+SUM4 304 SUM5=PROSP(DATE4)+SUM5 305 SUM6=DETP(DATE4)+SUM6 306 SUM7+QLX(DATE4)+SUM7 307 IF(ABS(DAY1(DATE5)-DATE4).GT..001) GO TO 14 308 S DET(DAS,SP,DATE5,TX)=DET(DATE 4) 309 SSOMP(DAS,SP,DATE5,TX)=SUM3 310 SPRODP(DAS,SP,DATE5,TX)=SUM4 - i b B -311 SPROSP(DAS,SP,DATE5,TX)=SUM5 312 SDETP(DAS,SP,DATE5,TX)=SUM6 313 SPROD(DAS, SP,DATE5,TX)=PROD(DATE4) 314 SQLX(DATE5)=SUM7 315 SUM3=0. 316 SUM4=0. 317 SUM5=0. 318 SUM6=0. 319 SUM7=0. 320 DATE5=DATE5+1 321 14 CONTINUE 322 1 CONTINUE 32 3 DO 7 DAS=1,4 324 DO 7 SP=1,5 325 DO 7 DATE6=1,17 326 WRITE(8,9) DAS,SP,DATE6,(SDET(DAS,SP,DATE6,TX),TX=1,10) 327 WRITE(10,9) DAS,SP,DATE6,(SSOMP(DAS,SP,DATE6,TX),TX=1,10) 328 WRITE(11,9) DAS,SP,DATE6,(SPRODP(DAS,SP,DATE6,TX),TX=1,10) 329 WRITE(12,9) DAS,SP,DATE6,(SPROSP(DAS,SP,DATE6,TX),TX=1,10) 330 WRITE(13,9) DAS,SP,DATE6,(SDETP(DAS,SP,DATE6,TX),TX=1,10) 331 7 WRITE(14,9) DAS,SP,DATE6,(SPROD(DAS,SP,DATE6,TX),TX=1,10) 332 9 FORMAT(II,11,12,IX,10E11.4) 33 3 DO 18 DATE6=1,17 334 18 WRITE(6,17) DATE6, SQLX(DATE6) 335 17 FORMAT(' ',12,2X,E11.4) 336 RETURN 337 END "@en ; edm:hasType "Thesis/Dissertation"@en ; edm:isShownAt "10.14288/1.0094600"@en ; dcterms:language "eng"@en ; ns0:degreeDiscipline "Botany"@en ; edm:provider "Vancouver : University of British Columbia Library"@en ; dcterms:publisher "University of British Columbia"@en ; dcterms:rights "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en ; ns0:scholarLevel "Graduate"@en ; dcterms:title "A qualitative and quantitative assessment of seaweed decomposition in the Strait of Georgia"@en ; dcterms:type "Text"@en ; ns0:identifierURI "http://hdl.handle.net/2429/21466"@en .