@prefix vivo: . @prefix edm: . @prefix ns0: . @prefix dcterms: . @prefix skos: . vivo:departmentOrSchool "Education, Faculty of"@en, "Curriculum and Pedagogy (EDCP), Department of"@en ; edm:dataProvider "DSpace"@en ; ns0:degreeCampus "UBCV"@en ; dcterms:creator "Russell, Susan Leilani"@en ; dcterms:issued "2010-03-26T03:26:07Z"@en, "1981"@en ; vivo:relatedDegree "Master of Physical Education - MPE"@en ; ns0:degreeGrantor "University of British Columbia"@en ; dcterms:description "An experiment was designed to test the effects of increased availability of FB cues through the use of augmented concurrent error information on the acquisition of the continuous, gross motor skill of consecutive forward outside edges in figure skating. Each of 2 groups of 10 Ss per group skated 20 trials, consisting of 6 consecutive outside edges, on each of 2 days. Percent time spent on edge was measured as the dependent variable. In addition to verbal KR and instructional information, received from an instructor working in a double blind condition, the experimental group also received immediate, concurrent, response generated error information from a telemetric monitoring device. On day 2, all subjects from both groups performed an additional 10 trials, without the aid of KR, instructional information, or information from the monitoring device. Two hypotheses were tested. Hypothesis 1, which stated that subjects having increased accessibility to relevant FB cues would show a faster rate of skill acquisition, was supported by the results of this study and is in keeping with closed-loop motor control theory. Hypothesis 2, which stated that artificially enhancing error information does not inhibit progress to the motor stage of skill acquisition as reflected in performance maintenance when KR is withdrawn, was also supported by the results. There was no significant change in performance when KR and the telemetric monitoring device were withdrawn on Day 2 of the experiment."@en ; edm:aggregatedCHO "https://circle.library.ubc.ca/rest/handle/2429/22576?expand=metadata"@en ; skos:note "AUGMENTED CONCURRENT ERROR INFORMATION AND THE ACQUISITION OF THE CONTINUOUS GROSS MOTOR SKILL OF FORWARD OUTSIDE EDGES IN FIGURE SKATING by SUSAN LEILANI RUSSELL B.P.E., U n i v e r s i t y of B r i t i s h Columbia, 1978 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHYSICAL EDUCATION i n THE FACULTY OF GRADUATE STUDIES School of P h y s i c a l E d u c a t i o n and R e c r e a t i o n We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA March 1981 (c)Susan L e i l a n i R u s s e l l , 1981 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be gra n t e d by the head o f my department o r by h i s o r her r e p r e s e n t a t i v e s . I t i s understood t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department of Pk^<, i CL.t± V ^ u c ^ - U o The U n i v e r s i t y o f B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 ABSTRACT An experiment was designed to t e s t the e f f e c t s o f i n -creased a v a i l a b i l i t y of FB cues through the use of augmented concurrent e r r o r i n f o r m a t i o n on the a c q u i s i t i o n of the c o n t i n -uous, gross motor s k i l l o f cons e c u t i v e forward o u t s i d e edges i n f i g u r e s k a t i n g . Each of 2 groups of 10 Ss per group skated 20 t r i a l s , j c o . n s i s t i n g of 6 cons e c u t i v e o u t s i d e edges, on each of 2 days. P e r c e n t time spent on edge was measured as the dependent v a r i a b l e . In a d d i t i o n to v e r b a l KR*and i n s t r u c t i o n -a l i n f o r m a t i o n , r e c e i v e d from an i n s t r u c t o r working i n a double b l i n d c o n d i t i o n , the experimental group a l s o r e c e i v e d immediate, concurrent, response generated e r r o r i n f o r m a t i o n from a t e l e m e t r i c m o n i t o r i n g d e v i c e . On day 2, a l l s u b j e c t s from both groups performed an a d d i t i o n a l 10 t r i a l s , without the a i d of KR, i n s t r u c t i o n a l i n f o r m a t i o n , or i n f o r m a t i o n from the m o n i t o r i n g d e v i c e . Two hypotheses were t e s t e d . Hypothesis 1, which s t a t e d t h a t s u b j e c t s having i n c r e a s e d a c c e s s i b i l i t y to r e l e v a n t FB cues would show a f a s t e r r a t e of s k i l l a c q u i s i t i o n , was sup-po r t e d by the r e s u l t s of t h i s study and i s i n keeping w i t h c l o s e d - l o o p motor c o n t r o l theory. Hypothesis 2, which s t a t e d t h a t a r t i f i c i a l l y enhancing e r r o r i n f o r m a t i o n does not i n h i b i t p r o g r e s s to the motor stage of s k i l l a c q u i s i t i o n , a s ^ r e f l e e t e d i n performance maintenance when KR i s withdrawn, was a l s o sup-po r t e d by the r e s u l t s . • There was no s i g n i f i c a n t change i n performance when KR and the t e l e m e t r i c m o n i t o r i n g device were withdrawn on Day 2 of the experiment. i i i TABLE OF CONTENTS Page LIST OF TABLES v LIST OF FIGURES v i CHAPTER I STATEMENT OF THE PROBLEM 1 Introduction . . . . 1 Statement of the Problem 5 Hypotheses 6 D e f i n i t i o n s 7 Delimitations 9 Assumptions 9 Limitations 11 II REVIEW OF THE LITERATURE 12 Adams' Closed-Loop Motor Control Theory 12 Selective Attention Implications . . . 21 A l l o c a t i o n of Attention 22 Some Considerations 26 III METHODS AND PROCEDURES 29 Subjects 29 Apparatus 29 Experimental Design 31 Procedures 33 IV RESULTS AND DISCUSSION 37 Results from Experiment One 37 i v Page D i s c u s s i o n of R e s u l t s from Experiment One kl R e s u l t s from Experiment Two k5 D i s c u s s i o n of R e s u l t s from Experiment two k6 Summary of R e s u l t s 51 V SUMMARY AND CONCLUSIONS 53 c C o n c l u s i o n s 55 D i s c u s s i o n 55 Suggestions f o r F u r t h e r Research . . . . 57 BIBLIOGRAPHY 59 APPENDICES. A. Apparatus 6k B. I n s t r u c t i o n s to Su b j e c t s 69 C. T r i a l Scores By S u b j e c t s 72 V LIST OF TABLES TABLE Page 1 Mean P e r c e n t On-Edge Times f o r Groups i n E x p e r i m e n t One 38 2 ANOVA Table f o r E x p e r i m e n t One 39 3 ANOVA Table f o r E x p e r i m e n t Two 47 4 Mean Performance S c o r e s f o r Groups l a i n E x p e r i m e n t Two 48 A - l P e r c e n t On-Edge by S u b j e c t f o r the E x p e r i m e n t a l Group i n E x p e r i m e n t One 73 A-2 P e r c e n t On-Edge by S u b j e c t f o r the C o n t r o l Group i n E x p e r i m e n t One 75 A - 3 P e r c e n t On-Edge by E x p e r i m e n t a l S u b j e c t s i n L a s t F i v e T r i a l s o f E x p e r i m e n t Two . 77 A -4 P e r c e n t On-Edge by C o n t r o l S u b j e c t s i n L a s t F i v e T r i a l s o f E x p e r i m e n t Two . 78 v i LIST OF FIGURES FIGURE Page 1 Edge p a t t e r n d u r i n g t e s t s i t u a t i o n s 10 2 Comparison of f l a t and edge t r a c i n g s . . . . 10 3 S t r i p c h a r t r e c o r d i n g of e d g e / f l a t times . . 32 k P a t t e r n f o r c o n s e c u t i v e forward o u t s i d e edges a l o n g a c o i n c i d e n t a l a x i s f o r an experimental t r i a l 35 5 S i g n i f i c a n t t r i a l s e f f e c t showing g e n e r a l improvement of performance s c o r e s over time -^0 6 Slopes of l e a r n i n g curves f o r experiment one k2 7 Mean performance scores f o r q u a r t e r segments of t r i a l one kk 8 Average performance s c o r e s by groups and c o n d i t i o n s k9 9 Mean performance scores f o r l a s t f i v e t r i a l s of experiment one and l a s t f i v e t r i a l s of experiment two 50 A - l Device a r c h i t e c t u r e 65 1 CHAPTER I STATEMENT OF THE PROBLEM I n t r o d u c t i o n The importance of edge c o n t r o l to the s p o r t of f i g u r e s k a t i n g cannot be overemphasized. The c o n t r o l l e d , c u r v i n g edge i s the b a s i s of v i r t u a l l y a l l s k i l l s r e q u i r e d and must be mastered before p r o f i c i e n c y i n any area of the s p o r t can be a t t a i n e d . To t h i s p o i n t , t h e r e f o r e , i t i s of g r e a t im-portance to the f i g u r e s k a t i n g coach t h a t beginners i n the s p o r t a c q u i r e edge c o n t r o l with good technique as e a r l y i n the s k a t e r ' s c a r e e r as p o s s i b l e , i n order t h a t p r o g r e s s i o n to advanced work can occur. C o n t r o l and p e r f e c t i o n of the edge i s a t t a i n e d through t r a i n i n g on compulsory f i g u r e s , to which s k a t e r s d e d i c a t e many hours of p r a c t i c e . In motor l e a r n i n g terminology, the s k i l l o f s k a t i n g a compulsory f i g u r e i s d e f i n e d i n terms of a continuous s k i l l , r e q u i r i n g r e g u l a t i o n by the s k a t e r d u r i n g h i s / h e r p e r f o r -mance ( F i t t s and Posner, 1967)• The r u l e s of the s p o r t of f i g u r e s k a t i n g r e q u i r e t h a t only one edge of the hollow ground blade p r o f i l e be i n c o n t a c t w i t h the i c e a t one time d u r i n g the e x e c u t i o n of a compulsory f i g u r e . V i o l a t i o n of t h i s procedure r e s u l t s i n the occurrence of a f l a t , where 2 \"both edges of the blade are i n c o n t a c t w i t h the i c e a t the same time. A f l a t i s d e f i n e d by the r u l e s of compulsory f i g u r e s k a t i n g as an e r r o r , and can be r e a d i l y i d e n t i f i e d by l o o k i n g a t the marks or t r a c i n g l e f t by the s k a t e r on the i c e as a r e s u l t of the performance. A f l a t t r a c i n g i s c h a r a c t e r i z e d by a double t r a c k as opposed to a s i n g l e t r a c k l e f t by a c l e a n l y skated edge (F i g u r e 2 ). Thus the angle of the blade to the i c e i s c r i t i c a l throughout the performance of an edge. I t i s important t h a t the s k a t e r makes use of k i n e s t h e t i c i n f o r m a t i o n so t h a t he can l e a r n to \" f e e l \" the d i f f e r e n c e between an edge and a f l a t , and c o r r e c t h i s performance when a f l a t o c c u r s . T h i s view i s c o n s i s t e n t with c l o s e d loop c o n t r o l t h e o r i e s of motor s k i l l a c q u i s i t i o n , where feedback a r i s i n g from an ongoing response i s compared to a c e n t r a l r e f e r e n c e of c o r r e c t n e s s f o r e r r o r d e t e c t i o n . The major f u n c t i o n of a c l o s e d loop system i s to minimize the e x t e n t of e r r o r i n terms of the d e v i a t i o n of a system's output from a c e n t r a l r e f e r e n c e of c o r r e c t n e s s or d e s i r e d g o a l (Schmidt, 1 9 7 6 ) . In s k a t i n g edges, the d i f f e r e n c e between s k a t i n g an edge and a f l a t u s u a l l y only r e q u i r e s a 'very f i n e a d j u s t -ment to the b l a d e - i c e angle, and thus f o r t h i s refinement to occur, there must be a very accurate i n t e r n a l r e f e r e n c e of c o r r e c t n e s s to d e t e c t the e r r o r . In Adams' Clo s e d Loop 3 Motor C o n t r o l Theory (1971). the i n t e r n a l r e f e r e n c e of c o r r e c t n e s s i s r e f e r r e d to as the p e r c e p t u a l t r a c e (PT), and i s s a i d to be weak and i l l - d e f i n e d d u r i n g e a r l y stages of l e a r n i n g . The PT c o n s i s t s of a 'pool' o f t r a c e s or images from p a s t performances, making i t weak, u n r e l i a b l e , and s u b j e c t to f o r g e t t i n g d u r i n g e a r l y stages of l e a r n i n g where few p a s t experiences with the task have o c c u r r e d . Thus the d e t e c t i o n of a f l a t based on the i n t e r a c t i o n of feedback and the PT i s not n e c e s s a r i l y dependable. Sub-j e c t s a t these e a r l y stages must r e l y h e a v i l y on p e r i p h e r a l r a t h e r than c e n t r a l mechanisms f o r e r r o r d e t e c t i o n . Adams c l a i m s t h a t d u r i n g these e a r l y stages of s k i l l a c q u i s i t i o n , l e a r n e r s use feedback (FB) i n r e l a t i o n to knowledge of r e s u l t s (KR) to a d j u s t t h e i r performances towards a c r i t e r i o n . T h i s e a r l y dependence on KR i s charac-t e r i s t i c o f what Adams has termed the verbal-motor stage of s k i l l a c q u i s i t i o n . KR i s used to draw the performer's a t -t e n t i o n to a p p r o p r i a t e FB cues which would otherwise go unattended. T h i s a l l o w s the s u b j e c t to form a s t r o n g per-c e p t u a l t r a c e which w i l l a c t as a r e f e r e n c e of the c r i t e r i o n response when KR i s no l o n g e r a v a i l a b l e . When the per-former can use the PT f o r the c o n t r o l of h i s performance i n the absence of KR, and performance can be maintained, he i s s a i d to be f u n c t i o n i n g i n the motor stage. I* T r a d i t i o n a l l y , KR i s g i v e n a f t e r a performance i s completed. S t u d i e s \"by B i l o d e a u and B i l o d e a u (1958) show t h a t KR d e l a y does not a f f e c t l e a r n i n g except i n cases of continuous t a s k s . In a continuous task, such as s k a t i n g edges, performers must r e l y on some form of s h o r t term memory (STM) to r e t a i n the motor i n f o r m a t i o n of a perform-ance so t h a t i t may l a t e r be used i n r e l a t i o n to KR to be compared to a c r i t e r i o n response. During the p e r i o d of time where a s k a t e r i s h o l d i n g i n f o r m a t i o n about a pre-v i o u s l y skated edge, hist-performance i s c o n t i n u i n g , thus adding more and more i n f o r m a t i o n to be r e t a i n e d and p r o c -essed. F i t t s and Posner (1967) d e f i n e STM as a system which l o s e s i n f o r m a t i o n r a p i d l y i n the absence of s u s t a i n e d a t t e n t i o n . Due to the l i m i t e d p r o c e s s i n g c a p a c i t y of the c e n t r a l nervous system (CNS), i n d i v i d u a l s have to s e l e c t p e r t i n e n t items from t h i s temporary sto r e depending on the demands and g o a l s of the c u r r e n t a c t i v i t y . Unattended i n -f o r m a t i o n fades away so t h a t i t cannot be r e c a l l e d , conse-quently, a l l environmental and sensory i n f o r m a t i o n face the same l i m i t a t i o n s due to the process of s e l e c t i v e a t -t e n t i o n . Before a s t r o n g PT can be l a i d down, the l e a r n e r has f i r s t to p e r c e i v e the a p p r o p r i a t e e r r o r i n f o r m a t i o n by a t t e n d i n g to i t , and then ho l d t h i s attended i n f o r m a t i o n i n memory so t h a t a t the end of the performance, i t can be used i n r e l a t i o n to KR to a d j u s t subsequent responding. The l e a r n e r w i l l not a t t e n d to, hence not r e t a i n , informa-5 t i o n about an e r r o r i f i n f a c t he i s not aware t h a t an e r r o r has o c c u r r e d . I n f o r m a t i o n t h a t i s not attended to stands s u b j e c t to f a d i n g and f o r g e t t i n g , and thus may not be a v a i l a b l e f o r use i n r e l a t i o n to KR. Based on these t h e o r e t i c a l c o n s i d e r a t i o n s the e f -f i c i e n c y of l e a r n i n g a continuous task under t r a d i t i o n a l KR d e l a y methods can be questioned. I t would seem p l a u -s i b l e t h a t i n a s i t u a t i o n where a p p r o p r i a t e e r r o r informa-t i o n c o u l d be made a v a i l a b l e f o r a t t e n t i o n immediately a t the onset of the e r r o r , l e a r n i n g would occur a t a f a s t e r r a t e . T h i s study was designed to i n v e s t i g a t e the e f f e c t s of i n c r e a s e d a v a i l a b i l i t y of FB i n f o r m a t i o n to a per-former' s a t t e n t i o n on the a c q u i s i t i o n of the continuous g r o s s motor s k i l l of s k a t i n g c o n s e c u t i v e forward o u t s i d e edges. Statement of the Problem T h i s study i s a p r a c t i c a l a p p l i c a t i o n of the the-o r e t i c a l r a t i o n a l e of c l o s e d - l o o p l e a r n i n g , as i t - ' p e r t a i n s to the a c q u i s i t i o n of the continuous gross motor s k i l l of s k a t i n g forward o u t s i d e edges. The purpose of the i n -6 v e s t i g a t i o n i s two - f o l d . The f i r s t concern i s to examine the e f f e c t s of i n c r e a s e d a v a i l a b i l i t y of r e l e v a n t feedback cues to a p e r f o r m e r ' s . a t t e n t i o n on the r a t e of a c q u i s i t i o n of the s e l f - p a c e d continuous gross motor s k i l l of s k a t i n g forward o u t s i d e edges. The second concern i s to determine whether or not a i d i n r e c o g n i z i n g the important feedback cues through a FB augmenting device w i l l a f f e c t the pro-g r e s s i o n o f performers from the v e r b a l motor stage of s k i l l a c q u i s i t i o n , to the motor stage, t h a t i s , w i l l the l e a r n e r develop a dependency which w i l l d e b i l i t a t e per-formance once the device i s withdrawn. Hypotheses The hypotheses are: 1. S u b j e c t s having i n c r e a s e d a c c e s s i b i l i t y to r e l e v a n t FB cues w i l l show a f a s t e r r a t e of s k i l l a c q u i s i -t i o n , as r e f l e c t e d v i a a r e d u c t i o n i n e r r o r s c o r e s . 2. A r t i f i c i a l l y enhancing e r r o r i n f o r m a t i o n w i l l not i n h i b i t p r ogress to the motor stage, as r e f l e c t e d i n maintenance of performance when KR and the m o n i t o r i n g device are withdrawn. A str o n g PT w i l l be i n f e r r e d from performance maintenance when KR i s w i t h h e l d . 7 D e f i n i t i o n s C l o s e d - l o o p motor c o n t r o l . Behaviour which i s s e l f -r e g u l a t e d and a c c o r d i n g l y a d j u s t e d f o r c o r r e c t n e s s \"by comparing c u r r e n t FB to a c e n t r a l l y e s t a b l i s h e d r e f e r e n c e mechanism i s c o n s i d e r e d c l o s e d - l o o p i n nature (Adams, 1968,1971) • Knowledge of r e s u l t s (KR). I n f o r m a t i o n which i s ex-t e r n a l l y p r o v i d e d r e l a t i n g d i s c r e p a n c i e s between d e s i r e d and achieved responding i s considered knowledge of r e s u l t s . Feedback (FB). Sensory i n nature, feedback r e f e r s to the i n t e r n a l a f t e r e f f e c t s of responding. P e r c e p t u a l t r a c e (PT). In Adams' c l o s e d - l o o p motor c o n t r o l theory (1968), the r e f e r e n t i a l memory system which i s made up of p a s t movement consequences and i s used to compare c u r r e n t i B ^ a g a i n s M f o r the d e t e c t i o n and a d j u s t -ment of e r r o r s , i s c a l l e d the p e r c e p t u a l t r a c e . The p e r c e p t u a l t r a c e c o n s i s t s of a complex d i s t r i b u t i o n of t r a c e s from a l e a r n i n g s i t u a t i o n t h a t c o n s i s t s of a s e r i e s of t r i a l s (Adams, 1971)• 8 Rate o f l e a r n i n g . In t h i s study, r a t e of l e a r n i n g w i l l he determined by change i n performance over t r i a l s , as r e f l e c t e d i n e r r o r s c o r e s . Edges. When a skate blade i s sharpened the bottom of the blade i s hollowed the l e n g t h of the blade, producing two 'edges', one on e i t h e r side o f the hollow. The s k a t e r may t i l t h i s blade s l i g h t l y to l i f t one of these edges o f f the i c e . When a s k a t e r leans h i s body so t h a t h i s weight i s on the l a t e r a l side of the f o o t , he has l i f t e d the i n -sid e edge of the blade o f f the i c e and i s s k a t i n g on the out s i d e edge of the bl a d e . Conversely, i f a s k a t e r l e a n s to t h a t the weight i s t r a n s f e r r e d to the medial si d e of the f o o t , he i s s k a t i n g on the i n s i d e edge. During the e x e c u t i o n of an 'edge', the s k a t e r must be on one f o o t s k a t i n g on a c o n t r o l l e d curve. In a t e s t s i t u a t i o n s k a t e r s are asked to skate consecutive i n s i d e or c o n s e c u t i v e outside edges on a l t e r n a t e s i d e s of a c o i n c i d e n t a l a x i s , thereby n e c e s s i t a t i n g the changing o f f e e t at the end of each completed h a l f c i r c l e ( F i g u r e 1 ) . F l a t s . A f l a t occurs when both edges of the blade are i n c o n t a c t w i t h the i c e a t the same time. In the ex e c u t i o n o f an edge, a f l a t i s con s i d e r e d a f a u l t and 9 can be r e a d i l y i d e n t i f i e d by the double t r a c k mark i t l e a v e s on the i c e , as opposed to a s i n g l e t r a c k mark l e f t by an edge (F i g u r e 2> ). Novice s k a t e r . In t h i s study, novice s k a t e r w i l l r e f e r to s k a t e r s who are capable o f p a s s i n g a t l e a s t the f i r s t two N a t i o n a l S k a t i n g T e s t s , but no h i g h e r than the f o u r t h t e s t . D e l i m i t a t i o n s 1. The study i s d e l i m i t e d to s k a t e r s ages 17 y e a r s and over who are not capable o f p a s s i n g any h i g h e r than the f o u r t h N a t i o n a l S k a t i n g T e s t . 2. L e a r n i n g w i l l be assessed over 40 t r i a l s , spread evenly over two days. 3« The study i s d e l i m i t e d to the e f f e c t s of wearing the t e l e m e t r i c m o n i t o r i n g d e v i c e . Assumptions 1. T h i s study i s based upon the assumption t h a t Adams' c l o s e d - l o o p theory of motor c o n t r o l i s v a l i d and i n t h i s s i t u a t i o n : the task of s k a t i n g forward o u t s i d e edges i s s u b j e c t to c l o s e d - l o o p c o n t r o l . 10 Fi g u r e 2. Comparison of f l a t and edge t r a c i n g s . 11 2. An i n t e r n a l r e f e r e n c e of c o r r e c t n e s s such as the p e r c e p t u a l t r a c e does e x i s t , and development of the p e r c e p t u a l t r a c e r e s u l t s i n l e a r n i n g . L i m i t a t i o n s 1. T h i s study i s l i m i t e d by the sample s i z e of twenty s u b j e c t s . 2. T h i s study i s l i m i t e d to novice s k a t e r s age seventeen y e a r s and over. 12 CHAPTER I I REVIEW OF THE LITERATURE I t i s the i n t e n t i o n of t h i s review of l i t e r a t u r e to o u t l i n e Adams' c l o s e d - l o o p motor c o n t r o l theory as a t h e o r e t i c a l framework upon which t h i s study i s based, and to review r e l a t e d t h e o r e t i c a l a reas. Adams' Closed-Loop Motor C o n t r o l Theory In 1971, Adams proposed a c l o s e d - l o o p motor c o n t r o l theory f o r s e l f - p a c e d motor behaviour which d i f f e r e d from p r e v i o u s attempts to e x p l a i n t h i s process i n t h a t i t a f f o r d e d feedback (FB) a j o i n t l e a r n i n g and performance r o l e . U n t i l t h i s theory was i n t r o d u c e d , views on the r o l e of FB i n c o n t r o l l i n g motor \"behaviour were c l e a r l y d i v i d e d . One group of r e s e a r c h e r s , l e a d by James (1890) w i t h h i s response c h a i n i n g hypotheses, gave FB a pure performance r e g u l a t i o n r o l e , with no l a s t i n g e f f e c t s on behaviour. As an a l t e r n a t i v e to the response c h a i n i n g hypotheses, L a s h l e y and h i s a s s o c i a t e s (Lashley, 1917, 1951; L a s h l e y and B a l l , 1929; L a s h l e y and McCarthy, 1926) proposed a motor programming theory, f o l l o w i n g the concept of some 13 c e n t r a l i n t e r n a l i z e d c o n t r o l p l a n being l a i d down f o r each movement sequence. C l e a r l y , L a s h l e y and h i s a s s o c i a t e s saw FB as a pure l e a r n i n g v a r i a b l e . I t i s beyond the scope of t h i s study to d i s c u s s a l l the t h e o r i e s and s t u d i e s on FB and l e a r n i n g . (For a complete review of FB t h e o r i e s , see Adams, 1968). In an attempt to overcome the inadequacies and prob-lems of e i t h e r a continuous response produced s t i m u l u s c o n t r o l l e d theory (such as James, 1890), or an open-loop motor program theory (such as L a s h l e y , 1917), Adams i n -troduced h i s theory of motor c o n t r o l where feedback serves two f u n c t i o n s (Adams, 1968, 1971). In i t s f i r s t r o l e , feedback p r o v i d e s i n p u t f o r the f o r m a t i o n of an e r r o r d e t e c t i o n mechanism c a l l e d the p e r c e p t u a l t r a c e , the f u n c t i o n b e i n g a r e f e r e n t i a l memory system a g a i n s t which f u t u r e responding can be e v a l u a t e d . T h i s r e f e r e n t i a l memory system i s made up of p a s t movement consequences. I t i s not a s i n g l e t r a c e as i t s name i m p l i e s , but r a t h e r a complex d i s t r i b u t i o n of t r a c e s i n a l e a r n i n g s i t u a t i o n t h a t has a s e r i e s of t r i a l s (Adams, 1971)- In a d i s c u s s i o n of Adams' theory, Marteniuk (1976) d e s c r i b e s the p e r c e p t u a l t r a c e as , ... the image of environmental and response produced s t i m u l i , a large p a r t of which i s k i n a s t h e t i c i n o r i g i n , which ac t s as an i n d i -v i d u a l ' s reference l e v e l when determining the appropriateness of a response. Evidence f o r a c e n t r a l l y represented image formed \"by feedback t h a t i n f l u e n c e s a motor response has been found i n s t u d i e s by Greenwald and A l b e r t (1968), and Zeloz n i k and Spring (1976), who i n s i m i l a r experiments found t h a t passive subjects could l e a r n a given response by watching a c t i v e subjects performing the response. The r e s u l t s from these s t u d i e s suggest that subjects form an image of the r e q u i r e d response from the v i s u a l cues of the a c t i v e s u b j e c t s . Studies by Adams and Goetz (1973) and M a r s h a l l (1972) show tha t t h i s image i s used a f t e r a response to detect e r r o r , f i t t i n g a closed-loop schema. Once t h i s e r r o r d e t e c t i o n mechanism i s formed, the second f u n c t i o n of feedback i s to provide input to the above mechanism f o r comparison and e v a l u a t i o n so that e r r o r s can be detected. W i t h i n h i s closed loop framework, Adams (1971) proposes two memory s t a t e s that are i n d i v i d u a l l y respon-s i b l e f o r the i n i t i a t i o n of an appropriate response when a stimulus occurs, and f o r the r e g u l a t i o n and e v a l u a t i o n of the response i n terms of co r r e c t n e s s . The concept of 15 two memory s t a t e s was d e r i v e d from v e r b a l l e a r n i n g r e s e a r c h where d i f f e r e n c e s between r e c o g n i t i o n and r e c a l l s t a t e s have been demonstrated (Luh, 1922; Bahrick, 1965; Postman, J.enkins and Postman, 1948; K i n t c h , 1968). Evidence of the e x i s t e n c e of separate r e c a l l and r e c o g n i t i o n s t a t e s i n motor memory can be found i n Adams and Goetz (1973), C h r i s t i n a and Merriman (1977), M a r s h a l l (1972), Newell (1974), Newell and Chew (1974), Schmidt and White (1972), and Schmidt and Wrisberg (1973a, b ) . The medium of motor r e c a l l i n Adams' theory i s the memory t r a c e which i s r e s p o n s i b l e f o r the s e l e c t i o n and i n i t i a -t i o n of the a p p r o p r i a t e response to a g i v e n s t i m u l u s . The memory t r a c e i s a l i m i t e d , open-loop motor program which determines the i n i t i a l d i r e c t i o n of a response. The r e c o g n i t i o n medium of a movement i n Adams' theory i s the p e r c e p t u a l t r a c e and, as p r e v i o u s l y d i s c u s s e d , operates i n a c l o s e d - l o o p manner as the r e f e r e n c e mechanism a g a i n s t which c u r r e n t feedback i s compared f o r response e v a l u a t i o n . The s t r e n g t h of the r e c o g n i t i o n mechanism, h e n c e f o r t h c a l l e d the PT i s a f u n c t i o n of the amount of r e l e v a n t feedback s t i m u l i and the amount of exposure to them (Adams, Goetz, and Marshall;. 1972; Adams, Gopher and L i n t e r n , 1977; M a r s h a l l , 1972; Newell, 1974; Wallace, De Oreo and Roberts, 1976; Z e l a z n i k and S p r i n g , 1976). On any g i v e n t r i a l , feedback s t i m u l i from an ongoing response are compared 16 a g a i n s t p e r c e p t u a l t r a c e s from p r e v i o u s responses. Thus, \"both s t i m u l i , which p e r s i s t from pa s t t r i a l s through l e a r n -i n g , as w e l l as momentary s t i m u l i from a c u r r e n t t r i a l , determine behaviour g i v i n g feedback a d u a l l e a r n i n g and performance r o l e . Before the PT can a c t as the primary response c o n t r o l mechanism i n a motor s k i l l s i t u a t i o n , i t must be developed. I n e a r l y stages of l e a r n i n g where the p e r c e p t u a l t r a c e i s weak and i l l - d e f i n e d , knowledge of r e s u l t s (KR) i s used i n a d d i t i o n to feedback to d i r e c t s u b j e c t s towards the c r i -t e r i o n response to be l e a r n e d (Adams, 1971). B i l o d e a u and B i l o d e a u (1961) c o n s i d e r KR to be the s t r o n g e s t v a r i a b l e i n v o l v e d i n l e a r n i n g and performance. A w e l l e s t a b l i s h e d p r i n c i p l e i n motor l e a r n i n g i s t h a t KR i s necessary f o r l e a r n i n g , hence improvement i n performance, to occur (Adams, 1971). As e a r l y as 1927, Thorndike, u s i n g a l i n e drawing task, found no improvement i n performance scores f o r s u b j e c t s who were not g i v e n KR. Trowbridge and Cason (1932) asked b l i n d f o l d e d s u b j e c t s to draw a three i n c h line., and found t h a t i n s i t u a t i o n s where no augmented KR was given, s u b j e c t s f a i l e d to im-prove . S i m i l a r f i n d i n g s have been r e p o r t e d by Baker and Young ( I 9 6 0 ) , McGuigan, Hutchens, Eason and Reynolds (1964), E l w e l l and Grindley,(1938). 17 B i l o d e a u and B i l o d e a u (1958) used a l e v e r p o s i t i o n i n g task to show t h a t withdrawing KR i n e a r l y t r i a l s o f l e a r n i n g l e d to a s u b s t a n t i a l decrement i n performance. However, a f t e r s u f f i c i e n t p r a c t i c e , performance was maintained on KR withdrawal t r i a l s . Newell (197^) i n d i c a t e d the need f o r KR i n e a r l y p r a c t i c e t r i a l s , u s i n g a l i n e a r , b a l l i s t i c displacement task. Adams, Goetz and M a r s h a l l (1972) conducted a s e l f - p a c e d l i n e a r p o s i t i o n i n g task experiment, v a r y i n g amounts of KR and p r a c t i c e , and found t h a t s k i l l a c q u i s i t i o n was best i n s i t u a t i o n s where KR was h i g h l y augmented. A second p r i n c i p l e of KR i s t h a t the r a t e of improve-ment depends on the p r e c i s e n e s s of KR (Adams, 1971; M a g i l l , 1980). Trowbridge and Cason (1932) v a r i e d the amount and p r e c i s i o n of KR i n a l i n e drawing task and found improve-ment was bes t i n c o n d i t i o n s o f more p r e c i s e KR. A study by Smoll (1972) u s i n g a bowling s k i l l showed b e t t e r r e s u l t s were achieved by groups r e c e i v i n g more p r e c i s e KR. Howe-ver, the amount of time needed to make use of KR i n f o r m a t i o n has been found to be dependent on the p r e c i s e n e s s o f the KR. Too p r e c i s e KR can a c t u a l l y be d e t r i m e n t a l to l e a r n -i n g (Rogers, 1974) u n l e s s s u f f i c i e n t time i s a l l o t t e d f o r i n f o r m a t i o n p r o c e s s i n g . A t h i r d p r i n c i p l e of KR concerns the frequency o f i t s occurrence. F i n d i n g s i n t h i s area show the more f r e q u e n t l y 18 KR i s given, the b e t t e r l e a r n i n g and performance become. (B i l o d e a u and B i l o d e a u , 1958; M a g i l l , 1980; Marteniuk, 1976). The f o u r t h p r i n c i p l e of KR i s of p a r t i c u l a r importance to t h i s study and regards the t i m i n g of KR. In a l e a r n i n g s i t u a t i o n there are two time p e r i o d s which are of concern. The f i r s t p e r i o d i s the time between performance and KR and i s c a l l e d the KR d e l a y i n t e r v a l . Most s t u d i e s i n t h i s area have been conducted u s i n g d i s c r e t e motor t a s k s and have found t h a t KR d e l a y s of up to one hour do not a f f e c t l e a r n -i n g . However, where performance i n v o l v e s r e p e t i t i o n s of the movement, l e a r n i n g i s a d v e r s e l y a f f e c t e d i f a r e p e t i t i o n occurs between the o r i g i n a l movement and d e l i v e r y of i t s r e l a t e d KR ( I . B i l o d e a u , 1956; Lavery and Suddon, 1962). Thus, the t i m i n g of KR i n regards to the KR delay i n t e r v a l seems of p a r t i c u l a r importance to continuous motor s k i l l s where a c q u i s i t i o n i s a d v e r s e l y a f f e c t e d by KR d e l a y . How-ever, there are few s t u d i e s documenting t h i s e f f e c t , s i n c e the bulk of s t u d i e s d e a l i n g w i t h KR delay have used d i s c r e t e motor t a s k s . The second time p e r i o d of importance i s c a l l e d the post KR d e l a y i n t e r v a l and r e f e r s to the time which e l a p s e s between KR and the s t a r t of the next performance. The 19 f i n d i n g s from s t u d i e s on post-KR delay i n d i c a t e t h a t there must he s u f f i c i e n t time f o r i n f o r m a t i o n p r o c e s s i n g to occur. The time needed f o r i n f o r m a t i o n p r o c e s s i n g w i l l v ary w i t h the p r e c i s e n e s s of KR, and the stage of l e a r n i n g of the performer. In summary, KR as i n f o r m a t i o n to d i r e c t e r r o r c o r r e c -t i o n i s necessary f o r l e a r n i n g to occur i n e a r l y stages of s k i l l a c q u i s i t i o n ( E l w e l l and G r i n d l e y , 1938; B i l o d e a u and Bil o d e a u , 1961; Newell 197^; M a g i l l , 1980; Stelmach, 1970; Baker and Young,I960; McGuigan, Hutchens, Eason and Reynolds, 1964; Thorndike, 1927). There i s no tendancy f o r respond-i n g to move towards a p r e c i s e c r i t e r i o n when KR i s absent. KR h e l p s to ensure the proper development of a r e p r e s e n t a t i v e model of c r i t e r i o n responding. T h i s i s achieved through matching sensory FB from a performance w i t h KR. T h i s pro-cess enhances the a c q u i s i t i o n o f a s k i l l by f a c i l i t a t i n g the l e a r n i n g process, when used over a r e l a t i v e l y l a r g e number of KR t r i a l s A c c o r d i n g to Adams' theory, s u b j e c t s use FB i n r e l a t i o n to KR to a d j u s t subsequent responding towards a c r i t e r i o n performance. S u f f i c i e n t p r a c t i c e w i t h KR al l o w s feedback to l a y down a s t r o n g PT t h a t w i l l a c t as a r e f e r e n c e of the c r i t e r i o n when KR i s no l o n g e r a v a i l a b l e . 20 I n s i t u a t i o n s where KR i s not forthcoming, the PT \"becomes the dominant response c o n t r o l mechanism, a c t i n g as an i n -t e r n a l , s u b j e c t i v e form of KR. The s h i f t i n response c o n t r o l from KR to PT a f t e r s u f f i c i e n t c r i t e r i o n l e v e l p r a c t i c e i n Adams' theory i s d e f i n e d i n terms of two stages. The f i r s t , or the v e r b a l motor, stage i s c h a r a c t e r i z e d by a weakly d e f i n e d PT due to l a c k of exposure and p r a c t i c e w i t h a p p r o p r i a t e and r e l -evant s t i m u l i . The s u b j e c t i s f o r c e d to use feedback cues i n r e l a t i o n to KR from outside sources i n order to form v e r b a l s t r a t e g i e s pursuant to f u t u r e performances. During the v e r b a l motor stage, response accuracy d e t e r i o r a t e s i f KR i s w i t h h e l d (Adams, Goetz and M a r s h a l l , 1972; B i l o d e a u , B i l o d e a u , and Schumsky, 1959; B o u l t e r , 1964; Newell, 1974; B i l o d e a u and B i l o d e a u , 1958).because of the weak p e r c e p t u a l t r a c e and i t s s u s c e p t i b i l i t y to f o r g e t t i n g or p r o g r e s s i v e ambiguity i n the absence of v e r b a l i n t e r v e n t i o n . In the motor stage, a s t r o n g PT has been formed over a r e l a t i v e l y l a r g e number of KR t r i a l s and takes over as the dominant c o n t r o l mechanism of motor performance. S u b j e c t s can r e l y on matching c u r r e n t feedback to the PT f o r e r r o r d e t e c t i o n without e x t e r n a l d i r e c t i v e s . In the motor stage, response accuracy w i l l not d e t e r i o r a t e i f KR i s withdrawn. T h i s 21 e f f e c t has been shown by B i l o d e a u and B i l o d e a u (1958), Newell (1974) and B i l o d e a u , B i l o d e a u and Schumsky (1959). In summary, the key v a r i a b l e s f o r s t r e n g t h e n i n g the PT are the amount of r e l e v a n t feedback s t i m u l i ( q u a n t i t y ) and the amount of p r a c t i c e (frequency) w i t h them. The l e a r n e r must p e r c e i v e the r e l e v a n t s t i m u l i from amongst the many i r r e l e v a n t s t i m u l i which bombard him from the environment before s t r e n g t h e n i n g of a r e p r e s e n t a t i v e PT can occur. Beginners experience d i f f i c u l t y i n l e a r n i n g a new s k i l l due to t h e i r I n a b i l i t y to determine f o r them-s e l v e s what t h e i r e r r o r s are and how to c o r r e c t them. In e a r l y stages of s k i l l a c q u i s i t i o n , the l e a r n e r uses FB i n r e l a t i o n to KR to attend to r e l e v a n t s t i m u l i , d e t e r -mine e r r o r s and develop an i n t e r n a l r e f e r e n c e of c o r r e c t -ness. The process by which t h i s i d e n t i f i c a t i o n and s e l e c -t i o n of p e r t i n e n t i n f o r m a t i o n e v e n t u a l l y occurs i s c a l l e d s e l e c t i v e a t t e n t i o n . S e l e c t i v e A t t e n t i o n I m p l i c a t i o n s In a s k i l l s i t u a t i o n r e l e v a n t cues from the e n v i r o n -ment must be attended to before i n f o r m a t i o n p r o c e s s i n g can proceed. G e n t i l e (1972) r e f e r s to these r e l e v a n t cues as the r e g u l a t o r y s t i m u l u s subset, as opposed to non-regula-t o r y i n f o r m a t i o n w i t h i n the l e a r n i n g environment. These 22 cues are r e f e r r e d to as r e g u l a t o r y s i n c e the movement p a t t e r n must conform to them i f the predetermined g o a l i s to be accomplished. The process whereby an i n d i v i d u a l a t t e n d s to the r e g u l a t o r y s t i m u l u s subset a t the e x c l u s i o n of other environmental i n f o r m a t i o n i s c a l l e d s e l e c t i v e a t t e n t i o n w i t h p e r c e p t i o n b e i n g the end r e s u l t . S e l e c t i v e a t t e n t i o n i s necessary due to the l i m i t e d i n f o r m a t i o n pro-c e s s i n g c a p a c i t y of our c e n t r a l nervous system. A l l o c a t i o n o f A t t e n t i o n E a r l y s t u d i e s on s e l e c t i v e a t t e n t i o n (Broadbent, 1958; Moray, 1959; Cherry, 1953) show c o n s i s t e n t l y t h a t an unattended s i g n a l has l i t t l e chance of r e a c h i n g memory or conscious awareness. Moray (1959) presented two d i f -f e r e n t messages s i m u l t a n e o u s l y (one to the r i g h t e ar and one to the. l e f t ) to s u b j e c t s , a s k i n g them to repeat the message of one ear. The r e s u l t s from t h i s study i n d i c a t e t h a t there was no memory f o r the unattended message. S i m i l a r l y , Cherry (1953) presented two simultaneous mes-sages to s u b j e c t s . a s k i n g them to pay a t t e n t i o n to the message i n one ear by r e p e a t i n g what they heard. At the end of the messages s u b j e c t s were asked q u e s t i o n s about what they heard on the unattended ear. S u b j e c t s n o t i c e d o n l y very g e n e r a l c h a r a c t e r i s t i c s of the messages such as 23 changes i n language spoken, v o i c e , e t c . , w i t h almost no r e c a l l of i t s v e r b a l content. Mowbray (1953) showed t h a t even when s u b j e c t s were asked to a t t e n d to two messages, they were unable to d i v i d e t h e i r a t t e n t i o n between them. C o n s i s t e n t l y , r e c a l l on one of the two messages was poor. In a p e r c e p t u a l motor s k i l l s i t u a t i o n the performer i s bombarded with s i m u l t a n e o u s l y presented i n f o r m a t i o n from a v a r i e t y of sources. Due to the l i m i t s imposed by s e l e c t i v e a t t e n t i o n , an i n e x p e r i e n c e d motor performer f i n d s h i m s e l f s e v e r e l y handicapped i n h i s a b i l i t y to process r e l e v a n t i n f o r m a t i o n and, t h e r e f o r e , perform a s p e c i f i c s k i l l . S t u d i e s by Cherry (1953) and Mowbray (1953) show dramatic l i m i t a t i o n s i n our a b i l i t i e s to d e a l w i t h s i m u l -t a n e o u s l y presented i n f o r m a t i o n . R e s u l t s of these s t u d i e s show t h a t when two messages a r r i v e s i m u l t a n e o u s l y and only one i s attended to, the unattended message i s p o o r l y analyzed w i t h almost no s p e c i f i c c h a r a c t e r i s t i c s a v a i l a b l e f o r r e c a l l . I n a complex motor s k i l l , a novice performer must d e a l w i t h i n f o r m a t i o n from h i s environment, p l u s many a p p r o p r i a t e feedback cues from h i s response. R e s u l t s from s e l e c t i v e a t t e n t i o n s t u d i e s suggest t h a t the novice performer may be unable to a t t e n d to more than one source of i n f o r m a t i o n and thus the many mistakes c h a r a c t e r i s t i c of a novice performance .'.may., be the r e s u l t of p e r c e p t u a l l i m i t a -t i o n s imposed by poor u t i l i z a t i o n of s e l e c t i v e a t t e n t i o n 24 (Marteniuk, 1976). F u r t h e r , the f a c t t h a t a performer can d e t e c t , r e c o g n i z e and compare i n f o r m a t i o n does not guarantee t h a t he w i l l a t t e n d to the i n f o r m a t i o n t h a t i s r e l e v a n t f o r a s u c c e s s f u l performance. The performer must l e a r n from past experience and/or e x t e r n a l i n f o r m a t i o n sources to a t t e n d to and s e l e c t the r e l e v a n t cues while d i s r e g a r d i n g or a t t e n u a t i n g the o t h e r s . Not y e t capable of d i s t i n g u i s h i n g what i s r e l e v a n t from what i s not, the e a r l y l e a r n e r begins, (Adams' 'verbal-motor' stage) and he i s f o r c e d to r e l y on KR from o u t s i d e sources to draw h i s a t t e n t i o n to the r e l e -vant feedback cues. I n turn, the i n d i v i d u a l uses the i n -f o r m a t i o n gained from KR, i n r e l a t i o n to FB cues, to e v a l -uate h i s performance i n order to modify f u t u r e attempts. I f the performer i s unable to r e t a i n feedback i n f o r m a t i o n from h i s p r e v i o u s attempt, e v a l u a t i o n and subsequent mod-i f i c a t i o n of performance i s not p o s s i b l e . Thus, we are concerned w i t h the performer's a b i l i t y to r e t a i n informa-t i o n over s h o r t p e r i o d s of time so t h a t the i n f o r m a t i o n can be used to evaluate and modify h i s motor performance, when used i n r e l a t i o n to KR. S t u d i e s by B i l o d e a u (1956\") and Lavery and Suddon (1962) have shown t h a t i n motor t a s k s where r e p e t i t i o n s of the movement take p l a c e between the o r i g i n a l movement and i t s KR, l e a r n i n g i s a d v e r s e l y a f f e c t e d . T h i s e f f e c t 25 i s presumably due to the l i m i t s imposed by the c a p a c i t y and d u r a t i o n of s h o r t term memory (STM) and subsequent i n f o r m a t i o n p r o c e s s i n g . In the case of s k a t i n g edges, where a s k a t e r i s h o l d i n g i n f o r m a t i o n i n memory about a p r e v i o u s l y skated edge, h i s performance i s c o n t i n u i n g , adding more and more i n f o r m a t i o n to be r e t a i n e d i n STM f o r post-performance a n a l y z i n g and p r o c e s s i n g . Short term memory i s a storage system t h a t i s l i m i t e d i n i t s o p e r a t i o n , c a p a c i t y and d u r a t i o n . F i t t s and Posner (1967) d e f i n e i t as a system which l o s e s i n f o r m a t i o n r a p i d l y i n the absence of s u s t a i n e d a t t e n t i o n . A c l a s s i c e x p e r i -ment by S p e r l i n g ( I 9 6 0 ) demonstrated t h a t much more i n -f o r m a t i o n i s a c c e s s i b l e to STM t h a t can be r e c a l l e d . He demonstrated t h a t while s u b j e c t s were i d e n t i f y i n g items i n memory, oth e r items were b e i n g l o s t . F o r items where a t t e n t i o n had not been focussed, r e c a l l was very poor. P e t e r s o n and Peter s o n (1959) and Broadbent (195^), i n s i m i l a r experiments, showed t h a t f o r g e t t i n g i n STM i s due to l a c k of a t t e n t i o n . Thus, i f an item i s not attended to i n STM i t w i l l fade w i t h i n a v e r y s h o r t p e r i o d o f time so t h a t i t i s no l o n g e r a v a i l a b l e f o r r e c a l l . I f an e a r l y l e a r n e r doesn't at t e n d to the proper feedback cues, he w i l l f i n d i t d i f f i c u l t to use KR i n comparison to them i n h i s attempt to c r e a t e the proper PT. 26 Some C o n s i d e r a t i o n s The l i m i t s imposed by s e l e c t i v e a t t e n t i o n and STM s e v e r e l y handicap the e a r l y l e a r n e r i n the development of the PT which i s necessary f o r the e v e n t u a l p r o g r e s s i o n to the motor stage of s k i l l a c q u i s i t i o n . I n a s i t u a t i o n where augmented e r r o r i n f o r m a t i o n c o u l d be generated to draw a t t e n t i o n to the a p p r o p r i a t e and r e l e v a n t cues, one would expect a more p o s i t i v e performance and an a c c e l e r a t e d l e a r n i n g curve. In an attempt to show t h i s a f f e c t , G o l d s t e i n and Rittenhouse (195^) produced d i s a p p o i n t i n g r e s u l t s . U s i n g a t a r g e t s h o o t i n g task, s u b j e c t s i n the e xperimental group r e c e i v e d a buzzer when t h e i r guns were on t a r g e t . As would be expected, the performance of the e xperimental group was much b e t t e r than the c o n t r o l group, who r e c e i v e d no e r r o r c o r r e c t i o n . However, performance dropped o f f c o n s i d e r a b l y when the buzzer produced KR was removed. T h i s suggested t h a t the buzzer had acted as a performance r e g u l a t i n g f a c t o r r a t h e r than as a l e a r n i n g a i d . The major drawback of t h i s experiment was t h a t the r e s e a r c h e r s d i d not provide s u b j e c t s with true e r r o r i n -f o r m a t i o n . Rather than r e c e i v i n g c r i t i c a l e r r o r informa-t i o n , the s u b j e c t s had only to wait to hear the buzzer and f i r e . I n \" e a r l y stages of l e a r n i n g , performers do not t r y to r e p e a t the p r e v i o u s behaviour, but i n s t e a d they attempt to modify t h e i r behaviour to make i t more c o r r e c t . 27 When l e a r n e r s make e r r o r s e a r l y i n l e a r n i n g , and KR value s are l a r g e , they are not responding on the b a s i s o f move-ments t h a t they r e c o g n i z e as having made before, because t h i s would cause them to repeat p a s t e r r o r s . For l e a r n i n g to occur, performers must use KR to make the next response d i f f e r e n t from the p r e v i o u s one; he must use the p e r c e p t u a l t r a c e i n r e l a t i o n to KR from an outside source (the c r i -t e r i o n r e f e r e n c e standard) and a d j u s t the response accord-i n g l y on the next t r i a l (Adams, 1971)- The i n f o r m a t i o n p r o v i d e d i n the G o l d s t e i n and Rittenhouse experiment l e t performers repeat r a t h e r than c o r r e c t p a s t performances. The s u b j e c t s became r e l i a n t on a cue which was not a p a r t of the d e s i r e d task and t h a t was only r e l e v a n t to the on-going performance. I t seems l o g i c a l t h a t had the buzzer sounded when s u b j e c t s were i n e r r o r , the s u b j e c t s would become more s e n s i t i v e to the r i g h t response i n order to e l i m i n a t e the sound of the buzzer, i . e . , e r r o r . In a s i m i l a r study by Annett (1959). u t i l i z i n g a t a r g e t pressure task, augmented, concurrent FB r e s u l t e d i n much b e t t e r performance scores, but when withdrawn, performance de-t e r i o r a t e d r a p i d l y and d r a m a t i c a l l y i n d i c a t i n g no l e a r n i n g e f f e c t . I t i s hypothesized t h a t had these s t u d i e s employed the augmented e r r o r i n f o r m a t i o n i n such a way as to a l l o w 28 subjects to modify previous responses, i . e . , learning FB versus performance or action FB, the withdrawal t r i a l s would not have produced the performance decrements observed. The following experiment examined the e f f e c t s of increased a v a i l a b i l i t y of FB cues through the use of im-mediate, concurrent, augmented KR on the a c q u i s i t i o n of the continuous gross motor s k i l l of skating forward out-side edges. 29 CHAPTER I I I METHODS AND PROCEDURES The continuous, s e l f - p a c e d motor s k i l l used i n t h i s study was t h a t o f s k a t i n g c o n s e c u t i v e forward o u t s i d e edges along a c o i n c i d e n t a l a x i s . S u b j e c t s Twenty female v o l u n t e e r novice s k a t e r s , ages 17 and over, were r e c r u i t e d from the U n i v e r s i t y of B r i t i s h Columbia's student and s t a f f p o p u l a t i o n . S u b j e c t s were randomly d i v i d e d i n t o two groups of ten per groups Apparatus A t e l e m e t r i c m o n i t o r i n g device was designed to monitor a s k a t e r ' s blade p o s i t i o n and a c t i v i t y on the i c e , i n terms of b l a d e / i c e angle, d u r i n g the attempted e x e c u t i o n o f forward o u t s i d e edges along a c o i n c i d e n t a l a x i s . E r r o r i n f o r m a t i o n based on the measurement of the s k a t e r ' s performance was pro v i d e d to the s k a t e r d u r i n g 30 performances i n the form of a n o n - i r r i t a t i n g , e l e c t r o n i c \"beeping noi s e . The apparatus c o n s i s t e d of an o u t r i g g e r s t y l e d , i c e angle sensor which was f a s t e n e d to the s k a t e r ' s \"blade p r i o r to performance and, v i a a s m a l l \"battery pack at t a c h e d to the s k a t e r ' s \"belt, t r a n s m i t t e d s i g n a l s both to an earphone worn by the s k a t e r and to a t e l e m e t r y r e -c e i v e r w i t h i t s a s s o c i a t e d r e c o r d i n g equipment (see Appendix A f o r a d e t a i l e d d e s c r i p t i o n ) . In p a r t i c u l a r , an a u d i b l e tone was generated through the earphone whenever the b l a d e - i c e angle exceeded a predetermined v a l u e . T h i s predetermined value was the angle at which both edges of the blade c o n t a c t e d the i c e a t the same time r e s u l t i n g i n a f l a t , or beyond t h i s p o i n t where onl y the i n s i d e edge of the blade was i n c o n t a c t w i t h the i c e . The e r r o r tone generated through the earphone p e r s i s t e d u n t i l the blade-i c e angle was c o r r e c t e d and brought back i n t o the c r i t i c a l range of the d e s i r e d movement, thus produ c i n g the e x e c u t i o n of an a c c e p t a b l e o u t s i d e edge. The i c e - a n g l e sensor was c o n s t r u c t e d of aluminum f o r i t s durable and l i g h t weight c h a r a c t e r i s t i c s , and was of an o u t r i g g e r d e s i g n t h a t c l i p p e d onto the top of the skate blades, where i t would not impede performance, and would run a l o n g the i c e surface p a r a l l e l to the c o n t r o l b l a d e . 31 During each t r i a l the t e l e m e t r y s i g n a l was t r a n s -m i t t e d to a data c o l l e c t i o n s t a t i o n where blade a c t i v i t y i n terms of e d g e / f l a t times was recorded on a s t r i p c h a r t f o r purposes of the m o n i t o r i n g and f u t u r e a n a l y s i s o f per-formance (see Fi g u r e 3 )• The t o t a l system c o n s i s t e d of a p a i r o f sensors to convert the b l a d e - i c e angle to an e l e c t r i c a l s i g n a l , a d e t e c t o r to analyze the angle s i g n a l , an earphone, and a s s o r t e d standard d e v i c e s to t r a n s m i t and r e c o r d the d e t e c t o r output (see AppendixAA ) . E x p e r i m e n t a l Design The experiment c o n s i s t e d of two phases. I n the f i r s t phase, s u b j e c t s were r e q u i r e d to skate twenty t r i a l s on each of two days, f o r a t o t a l o f f o r t y t r i a l s . Each t r i a l c o n s i s t e d o f s i x cons e c u t i v e forward o u t s i d e edges, per-formed a c r o s s the width of the i c e su r f a c e (Figure 4 ) . An average experimental s e s s i o n from phase one of t h i s experiment r e q u i r e d approximately 25 minutes to complete. In the second phase of the experiment, which o c c u r r e d on the second day of t e s t i n g a f t e r t r i a l s 21 - 40 were completed, s u b j e c t s were r e q u i r e d to perform an a d d i t i o n a l 10 t r i a l s while wearing, but without r e c e i p t of any i n -1 . i a l b 1. A sample s t r i p c h a r t produced b y the performance of forward outside edges b y a novice skater. P o i n t s a and b i n d i c a t e a change of s k a t i n g f o o t . 2. A sample s t r i p c h a r t produced b y .the performance of forward outside edges b y a s k i l l e d s kater. P o i n t s a and b i n d i c a t e a change of s k a t i n g f o o t . F i g u r e 3- S t r i p c h a r t r e c o r d i n g s f o r e d g e / f l a t times. 33 f o r m a t i o n from, the t e l e m e t r i c m o n i t o r i n g device or the i n s t r u c t o r . An experimental s e s s i o n from phase two r e -q u i r e d approximately 35 minutes to perform. Each s u b j e c t ' s t o t a l t r i a l time v a r i e d as d i d h i s time per a r c . The e r r o r i n f o r m a t i o n recorded on the s t r i p c h a r t p e r m i t t e d the p r e c i s e measurement of each attempt, thus each t r i a l . From t h i s c h a r t r e c o r d i n g a l l c a l c u l a t i o n s were made p o s s i b l e and the percentage t r i a l time spent on edge was recorded as the dependent measure of t h i s study. The data was analyzed as a 2 X 2 X 20 randomized groups d e s i g n u s i n g a n a l y s i s of v a r i a n c e , w i t h repeated measures on the l a s t two f a c t o r s , e.g., 2 groups, 2 days, 20 t r i a l s per day. I n a d d i t i o n , the l a s t f i v e t r i a l s of phase two of the experiment were analyzed w i t h the l a s t f i v e t r i a l s o f phase one i n a 2 X 2 X 5 randomized.groups d e s i g n w i t h repeated measures on the l a s t f a c t o r f o r the pur-pose of d e t e c t i n g any changes i n performance when the mo n i t o r i n g device was removed. Procedure s The experimental group i n t h i s study wore the t e l e -m e t r i c m o n i t o r i n g device which p r o v i d e d Ss with i n s t a n -3^ taneous error information every time response execution was imperfect, i . e . , they went 'off-edge'. In addition, at the end of each t r i a l each subject received verbal \"KR about the success of t h e i r performance, as well as teacher generated i n s t r u c t i o n a l information on how to improve the next performance. The in s t r u c t o r f o r the experiment was unaware of the group (experimental or control) to which the subject belonged. This experiment was conducted i n t h i s b l i n d manner i n order to control experimenter bias. The control group also wore the telemetric monitoring device for the performance recording purposes but did not receive the error generated tone through the earphone from i t . P r i o r to the s t a r t of an experimental session the angle sensors were attached to the skate blades and the c r i t i c a l angles were set by manually manipulating the skates on a f l a t surface and adjusting the angle threshold con-t r o l s . The Ss then put t h e i r skates on and the c r i t i c a l angles were rechecked. P r i o r to each session each skater was given the same verbal i n s t r u c t i o n s which were read to them by the experi-menter. The skater's task was to learn to skate six consec-utive forward outside edges (three r i g h t , three l e f t ) along a coincidental axis as cleanly as possible (see Figure 4 ) . 35 i . ' F i g u r e 4 . S k a t e r s w e r e a s k e d t o s k a t e c o n s e c u t i v e f o r w a r d o u t s i d e e d g e s a l o n g a c o i n c i d e n t a l a x i s . 36 A f t e r r e c e i v i n g t h e i r i n s t r u c t i o n s , the s k a t e r s observed a demonstration of a sample t r i a l and then a t -tempted the appointed task f o r themselves. S u b j e c t s were i n s t r u c t e d to commence the next t r i a l immediately a f t e r r e c e i v i n g i n f o r m a t i o n from the i n s t r u c t o r r e g a r d i n g the p r e v i o u s performance, i . e . , an e f f o r t was made to c o n t r o l the d u r a t i o n of the i n t e r t r i a l i n t e r v a l . . Only one s u b j e c t was present d u r i n g an experimental s e s s i o n to prevent Ss from o v e r h e a r i n g FB b e i n g g i v e n to othe r Ss. A l l s u b j e c t s were g i v e n the same d i r e c t i o n s p r i o r to the experiment (see Appendix B). 37 CHAPTER IV RESULTS AND DISCUSSION R e s u l t s From Experiment 1 R e s u l t s from Experiment 1, as shown i n Table 1, c l e a r l y i n d i c a t e performance of the experimental group was b e t t e r than t h a t o f the c o n t r o l group, as i n d i c a t e d by h i g h e r percentage pn-edge s c o r e s . A 2 X 2 X 20 a n a l y s i s of v a r i a n c e was employed and confirmed a s i g n f i c a n t groups e f f e c t (p<.001) (Table 2). While the mean performance over both days f o r the experimental group was approximately 77%, i t was onl y 39% f o r the c o n t r o l group, averaged over the same p e r i o d of time. I n f a c t the experimental group means f o r each of the performance days g r e a t l y exceeded those of the c o n t r o l group. The ANOVA f u r t h e r confirmed a s i g n i f i c a n t t r i a l s e f f e c t showing g e n e r a l improvement of performance s c o r e s over time ( F i g u r e :5)• The nature of the t r i a l s e f f e c t w i t h i n days was d i f f e r e n t between Day 1 and Day 2, and t h i s d i f f e r e n c e was not constant between groups, r e s u l t i n g i n a s i g n i f i c a n t Groups X Days X T r i a l s i n t e r a c t i o n e f f e c t 38 Table 1 Mean Percentage On-Edge Time f o r Groups on Day 1 and Day 2 i n Experiment 1. Group 1 Group 2 ( C o n t r o l ) (Experimental) x=70.09fo x=39.89f* x=8k.37fo X=39.02% X=77-23fo Table 2 ANOVA Table f o r Experiment One Source Sum of Degrees of Mean &,a\\t F p< squares freedom square G Error 357299.85 173843.12 1 181 357299.85 9657-95 37 -00 0.0001 D D X G Error 3107 .08 979.92 6797^.77 1 1 18 3107.08 979.92 3776.38 0 .82 0 .26 0.3764 0.6167 T T X G Error 20889-29 198<7? 75 67150.42 19 19 342 1099.44 104.62 196.35 5 .60 0-53 0.0001 0.9472 D X T D X T X G Error 4622.30 6125.82 55916.48 19 19 342 243.28 322.41 163.50 1.49 1 -97 0.0867 0.0094 100 * * Experimental Control • • 90 J 80 J * * * * * * * * * * * * * * j # # * * # * * * c+ H . 7 o CD §60 CD ^ c n CD 50 40 30 20 10 Day 1 8 10 i2 1'4 1'6 18 T r i a l s 2b 22 Day 2 IE 26 28 3 'o 3'2 3 ^ 36 IB *Jo F i g u r e 5 - S i g n i f i c a n t t r i a l s e f f e c t showing general improvement of performance scores over time. 41 (p<.01). T h i s i n t e r a c t i o n e f f e c t was due p r i m a r i l y to a G X D X T l i n e a r component. On Day 1 the performance of the e xperimental group improved by approximately 26%> from t r i a l 1 to t r i a l 20, while the c o n t r o l groups' performance o n l y improved by approximately 12%. A l i n e a r r e g r e s s i o n a n a l y s i s r e v e a l e d the slope of the experimental group's improvement scores on Day 1 to be 1.3, as compared to the c o n t r o l group's slope o f only .63. By Day 2, the e x p e r i -mental group's performance had s t a b i l i z e d (slope =.12), while the- c o n t r o l group showed e r r a t i c but steady improve-ment (slope =1.09) ( F i g u r e 6) . D i s c u s s i o n o f R e s u l t s from Experiment 1 The purpose of Experiment 1 was to determine the v a l i d i t y o f h y p o t h e s i s one which s t a t e d s u b j e c t s having i n c r e a s e d a c c e s s i b i l i t y to r e l e v a n t FB cues through im-mediate, concurrent KR would show a g r e a t e r r a t e of s k i l l a c q u i s i t i o n as r e f l e c t e d i n e r r o r s c o r e s . The mean per-formance score of the c o n t r o l group f o r each of the t r i a l s a t no time matched or even approached the mean performance of the experimental group.. I n i t i a l i n s p e c t i o n of the data caused concern over the l a r g e d i f f e r e n c e (approximately 26%) which e x i s t e d between the experimental group and the c o n t r o l group 100 A * * E x p e r i m e n t a l C o n t r o l 90 J 80 CD §60 CD CD 50 * * * *^¥T* t ^ o j - o p e 1.3 * * * * # * I\" * * * * * * » Slope = .12 40 30 20 -10 Slope = .63 Day 1 Slope = 1.09 Day 2 1 Jl I F T < 5 12 1% l'6 18 3 ) 2 l 31 26 28 3»0 3'2 34 36 3&\" \"~-New York: John Wiley and Sons, 1976, 62 Oswald, I . , T a y l o r , A., & Treisman, M. D i s c r i m i n a t i o n responses to s t i m u l a t i o n d u r i n g human s l e e p . B r a i n , I 9 6 0 , 3 , 440 - 4 5 3 . Peterson, L.R., & Peterson, M.J. Short term r e t e n t i o n of i n d i v i d u a l v e r b a l items. J o u r n a l of E x p e r i m e n t a l Psychology; , 1 9 5 9 , 58, 193-198. Postman, L., Jenk i n s , W.O., & Postman, D.L. An exper-i m e n t a l comparison of a c t i v e r e c a l l and r e c o g n i t i o n . American J o u r n a l of Psychology, 1948, 6 l , 511-519-Reynolds, A.G., & F l a g g , P.W. C o g n i t i v e psychology. Cambridge, Mass.: Winthrop, 1977-Robb, M.D. The dynamics of motor s k i l l a c q u i s i t i o n . New J e r s e y : P r e n t i c e - H a l l , 1972. Schmidt, R.A. C o n t r o l processes i n motor s k i l l s . E x e r c i s e and Sport S c i e n c e s Reviews, 1976, 4, 229-2 6 T ! Schmidt, R.A., & White, J.L. Evidence f o r an e r r o r d e t e c t i o n mechanism i n motor s k i l l s : A t e s t of Adams' c l o s e d - l o o p theory. J o u r n a l o f Motor Behavior, 1972, 4, 143-153-Schmidt, R.A., & Wrisberg, C.A. F u r t h e r t e s t s o f Adams' c l o s e d - l o o p theory: ...Response produced feedback and the e r r o r d e t e c t i o n mechanism-. I n I.D. W i l l i a m s and L.M. Wankel (Eds.), Proceedings of the Fo u r t h Canadian Psycho-Motor L e a r n i n g and Sport Psychology Symposium. F i t n e s s and Amateur Sport D i r e c t o r a t e , Department o f N a t i o n a l H e a l t h and Welfare, Ottawa, Canada, 1973-Schmidt, R.A., & Wrisberg, C.A. F u r t h e r t e s t s of Adams' c l o s e d - l o o p theory: Response-produced feedback and the e r r o r d e t e c t i o n mechanism. J o u r n a l o f Motor Behavior, 1973, 5, 155-164. Singer, R.N. Motor l e a r n i n g and human performance (3rd ed.). New York: MacMillan, 1980. Smoll, F.L. E f f e c t s of p r e c i s i o n of i n f o r m a t i o n feedback upon a c q u i s i t i o n of a motor s k i l l . Research Q u a r t e r l y , 1972, 43, 489-493-S p e r l i n g , G. I n f o r m a t i o n a v a i l a b l e i n b r i e f v i s u a l p r e s e n t a t i o n . P s y c h o l o g i c a l Monographs, I 9 6 0 , 74, 1-498. 63 S t a f f o r d , E.M. Knowledge of r e s u l t s and the p e r c e p t u a l t r a c e . Unpublished Master's T h e s i s , U n i v e r s i t y of B r i t i s h Columbia, 1978. Stelmach, G. L e a r n i n g and response c o n s i s t e n c y w i t h augmented feedback. Ergonomics, 1970, 13, 421-425-Stelmach, G. ( E d . ) . Motor c o n t r o l : Issues and t r e n d s . New York: Academic, 1976. Stelmach, G. L e a r n i n g and response c o n s i s t e n c y w i t h augmented feedback. Ergonomics, 1970, 13, 421-425. Stelmach, G., K e l s o , J . , & McCullagh, P. P r e s e l e c t i o n and response b i a s i n g i n s h o r t term motor memory. Memory and C o g n i t i o n , 1976, 4, 62-66. Treisman, A.M. M o n i t o r i n g and storage o f i r r e l e v a n t messages i n s e l e c t i v e a t t e n t i o n . J o u r n a l o f V e r b a l L e a r n i n g and V e r b a l Behavior, 1964c, 3, 449-459-Treisman, A.M. S e l e c t i v e a t t e n t i o n i n man. B r i t i s h M e d i c a l B u l l e t i n , 1964d, 20, 12-16. Wallace, S.A., De Oreo, K.L., & Roberts, G.C. Memory and p e r c e p t u a l t r a c e development i n b a l l i s t i c t i m i n g . J o u r n a l of Motor Behavior, 1976, 8, 133-137-Welford, A.T. S k i l l e d performance: P e r c e p t u a l and motor s k i l l s l London: S c o t t & Foresman, 1976 Whiting, H.T.A. Input and p e r c e p t u a l processes i n s p o r t s s k i l l , l l n E . J . G l e n c r o s s (Ed.), Psychology and S p o r t . A u s t r a l i a : H i l l , 1978. Z e l a z n i k , H., & S p r i n g , J . Feedback i n response recog-n i t i o n and p r o d u c t i o n . J o u r n a l of Motor Behavior, 1976, 8, 309-312. 64 APPENDIX A Apparatus 65 Righ t |-Sensor comparing c i r c u i t R i g h t S e t - P o i n t Knob earphone earphone jack r a d i o t r a n s m i t t e r Experimenter's S t a t i o n r a d i o waves Clock (Runs on 'no \"beep' = on edge time f o r t r i a l ) Chart Recorder I n t e r f a c e Radio [_J. (Radio jack) F i g u r e A - l . Device A r c h i t e c t u r e 66 The apparatus used c o n s i s t s of a p a i r of sensors to convert b l a d e - i c e angle to an e l e c t r i c a l s i g n a l , a d e t e c t o r to analyze the angle s i g n a l , a headphone and a s s o r t e d standard d e v i c e s to t r a n s m i t and r e c o r d the de-t e c t o r output. Input Generator B l a d e - i c e angle i s measured by a mechanical sensor t h a t i s at t a c h e d to the skate blade. The sensor i s equipped w i t h a p a i r o f o u t r i g g e r - s t y l e d i c e - t r a c k i n g arms t h a t are arranged to r o t a t e the s h a f t of a potentiometer which i s connected so as to output a v o l t a g e t h a t i s a monotonic f u n c t i o n of b l a d e - i c e angle. Since the i c e manouevers executed by the s u b j e c t uses l e f t and r i g h t f e e t a l t e r n a t e l y , one b l a d e - i c e angle sensor i s f i t t e d to each skate. The r i g h t skate sensor i s equipped w i t h a switch t h a t determines whether the l e f t or the r i g h t sen-sor s i g n a l d r i v e s the apparatus. When the r i g h t skate blade i s on the i c e , the r i g h t skate sensor s i g n a l i s used, when the r i g h t skate blade i s l i f t e d o f f the i c e the l e f t skate sensor i s used. 6? Tone Generator The sensor s i g n a l s are processed by a p o r t a b l e , a d j u s t a b l e t h r e s h o l d d e t e c t o r . When the a c t i v e sensor s i g n a l exceeds the s e t p o i n t value, the d e t e c t o r emits an audio-frequency tone s i g n a l t h a t s i m u l t a n e o u s l y t r a n s -m i t t e d to the s u b j e c t v i a an earphone and to the e x p e r i -menter's s t a t i o n v i a frequency modulated VHF r a d i o t e l e -metry l i n k . Separate t h r e s h o l d adjustments e x i s t f o r each skate. As a f u n c t i o n i n g u n i t the s e n s o r - d e t e c t o r s e t p r o v i d e s s i g n a l s to the s u b j e c t and experimenter whenever b l a d e - i c e angle of the c u r r e n t l y a c t i v e skate exceeds the c r i t i c a l v a l u e . Recording Equipment Equipment a t the experimenter's s t a t i o n c o n s i s t s of a t e l e m e t r y r e c e i v e r t h a t d r i v e s the measuring equip-ment. C u r r e n t measuring equipment c o n f i g u r a t i o n i n c l u d e s a c h a r t r e c o r d e r w i t h simple manual event marker, used f o r g e n e r a l s e s s i o n h i s t o r y r e c o r d i n g and f o r measurement of s e s s i o n d u r a t i o n , and a h i g h r e s o l u t i o n event timer, used f o r measuring t o t a l time spent over the b l a d e - i c e angle t h r e s h o l d i n each s e s s i o n . 68 Procedure At the s t a r t of an experimental s e s s i o n the angle sensors are a t t a c h e d to the skate blades and the c r i t i c a l angles are s e t by manually m a n i p u l a t i n g the skates on a f l a t s u r f a c e and a d j u s t i n g the t h r e s h o l d c o n t r o l s . Value of the c r i t i c a l angle i s s e t b e f o r e the skates are put on. 6 9 A P P E N D I X B I n s t r u c t i o n s t o S u b j e c t s 70 P r i o r to the commencement of each s u b j e c t ' s per-formance the experimenter read the f o l l o w i n g i n s t r u c t i o n s \"You w i l l be asked to perform the s k a t i n g s k i l l of forward o u t s i d e edges along the red l i n e on the i c e . An outs i d e edge c o n s i s t s of a one f o o t g l i d e on a curve, where the f o o t t h a t i s o f f the i c e w i l l be on the outside of t h a t curve. T h i s w i l l be demonstrated f o r you. You w i l l be asked to perform a t o t a l of 50 t r i a l s , 20 today, and the r e s t on one other day w i t h i n the week. Each t r i a l c o n s i s t s of 6 c o n s e c u t i v e o u t s i d e edges a c r o s s the i c e , a l t e r n a t i n g from r i g h t to l e f t f o o t , and s t a r t i n on the r i g h t f o o t . Your s t a r t i n g p o s i t i o n w i l l be g i v e n to you, and an example of a t r a i l w i l l be demonstrated. You w i l l r e c e i v e i n s t r u c t i o n s about how to improve your performance throughout the t r i a l s . The o b j e c t of t h i s e x e r c i s e i s to stay on the out s i d e of the blade f o r the e n t i r e curve t h a t you are s k a t i n g (minus your pushing t i m e ) . T h i s r e q u i r e s t h a t you keep your f o o t t i l t e d to the o u t s i d e . I f you r e c e i v e a tone from the earphone, t h i s means you are not on edge. To shut the tone o f f , you must c o r r e c t your f o o t p o s i t i o n by h o l d i n g your ankle 71 up over the edge. T h i s w i l l he demonstrated. As soon as you go \"back on edge, the tone w i l l cease. I t i s im-p o r t a n t to your f i n a l score t h a t you t r y to stay on edge as much as p o s s i b l e . Only the experimental group of t h i s study w i l l r e c e i v e the beep from the apparatus. The i n s t r u c t o r i s not aware of which group you are i n . I t i s important to the r e s u l t s of t h i s experiment t h a t t h i s i n f o r m a t i o n i s kept from her a t a l l times.\" 72 APPENDIX C T r i a l Scores by Subjects Table A - l Percent On-Edge T;ime by S u b j e c t f o r the E x p e r i m e n t a l group i n Experiment 1 . Day 1 SI S2 S3 S4 S5 S6 S7 S8 S9J S10 Tl 51 .8 91 .5 55-5 72.2. 25.6 62.6 50.0 10 . 3 71.5 92 .4 T2 47.6 74 .6 54.9 89-2 24.7 76.2 94.3 31.8 63.I 93-5 T3 38.1 79.3 36.9 64.2 40 .6 69.5 92.4 38.4 78.4 47.8 T4 45-4 36.8 90.5 75-2 83.6 68.8 66.0 10.2 84.2 91 .9 T5 20 . 9 47.2 82.2 65-6 56.3 75-6 97-6 86.9 92.4 95.7 T6 38.6 57-9 81.6 69-0 61.0 88 . 5 95.8 69-9 93-5 92 .8 T7 66.7 39-8 95.8 81.2 84.5 7 4 . 4 . 96.2 69-8 86.0 69-9 T8 74.2 71 -3 88 . 5 74.5 77.3 77.2 93.4 75-7 90.9 94.2 T9 81.8 84.2 83-5 78.0 84.5 94.0 96.8 73-9 86.2 96.1 T10 87.8 94.9 85 .4 64.1 96.3 77.1 94.9 77.9 73-6 . 96.3 T i l 70.7 97.5 91.0 77.8 76.9 75.9 98 . 9 90.9 69.6 95.1 T12 69.1 90.0 75-2 68.3 76.1 66.8 97.5 68.3 75-1 93-4 T13 70.4 97-7 88 . 9 74.6 68.0 73-5 97-1 95-0 77-5 87 . 6 T l 4 77.5 94.7 95.1 75.9 64 . 6 69.0 94.6 91.1 79.7 94.9 T15 74.1 94.6 92.9 64 . 6 87.O 66.5 99.1 95.8 70.7 92.9 T16 74.5 92 .3 94.4 82.7 89-1 74.6 98 . 9 97.1 72.2 85.2 T17 75-5 97 .4 95.7 69.3 87.O 70.7 92.9 96.3 67.9 91.6 T18 72.9 97.6 76.6 76.6 93-1 82.0 9 3 . ^ 91.1 97-5 87.7 T19 84.1 98.0 88 . 9 62.0 96.7 83.3 74.5 90.8 97-4 87.2 T20 73.4 94.8 87 - 9 71 -9 90.2 77-5 74.4 95.9 97\". 0 84.6 Table A - l (Continued) Percent fin-Edge Time by Subject f o r the Experimental Group i n Experiment 1. Day 2 SI S 2 S3 S 4 S5 S 6 S7 S 8 S9 S10 T21 44 .8 97-8 87 . 1 78.5 90.4 82.9 57-9 87-2 87-9 94.6 T22 64.3 95 .1 89.6 85 . 2 95-1 83.9 67-3 75.3 96 .2 92.4 T 2 3 76.9 91 . 2 83.9 88.4 96 .0 78.1 70 .8 90.5 89-9 92.5 T24 68.4 83-3 91 -3 86.6 94.4. 84.2 62 .1 91 . 1 92.5 91.4 T 2 5 67.4 63.6 92.0 80.5 85-3 85 .0 70 . 0 85-9 84 . 2 93-8 T 2 6 70.4 93-4 92 . 2 93-8 98.9 84.2 54 .2 83 .2 93.3 94.7 T 2 7 66 .1 92.3 8 0 . 0 90 .2 95 .8 89-5 51.6 88.9 90.6 92 . 8 •T28 74.9 91 .1 89-4 89.6 95-7 93-3 55-5 93-0 87 .8 93.5 T 2 9 59.3 84.7 8 9 - 0 94.6 93 .0 93-2 62 . 1 88.7 97-4 94.3 T 3 0 69.6 94.3 86 . 0 98 . 0 92 . 1 94 .0 56 .1 93-8 92 .2 95.5 T31 64.5 91.9 81 .9 85.4 8 8 . 8 91 .1 60 .2 79.7 8 2 . 0 86.7 T 3 2 62.3 89.7 81 .7 89-1 92.3 92 . 1 42.9 91.4 79.3 89-3 T33 91-9 8 8 . 1 87 .1 90.4 91.4 92.6 28 . 2 88.4 68.5 92.3 T34 93-4 92 .1 83-3 90.9 89-9 78.1 21 .0 92.9 83-3 91.6 T 3 5 94.6 88.7 91 . 8 90.9 95-6 90 .0 52.6 97.7 85-5 87-7 T36 95-9 96.5 91 . 1 8 8 . 2 84.9 93-7 21 .4 97-9 71 . 1 91.6 T 3 7 98 .2 93-9 86 . 0 92 .4 90.5 93-7 29 .2 95 .8 8 6 . 0 89-4 T38 95.6 95-0 84.8 92.5 91.5 91.7 23.4 95-8 92 . 0 91.3 T 3 9 90.9 95-1 90.3 93-2 98 .2 95-4 64.9 96.5 6 8 . 0 94.6 T40 90.7 94.5 78 .8 82.4 95 .1 93 .8 53 .1 94 .8 83.7 93-2 Table A-2 P e r c e n t dn-Edge Time by S u b j e c t f o r the C o n t r o l group i n E x p e r i m e n t 1. Day 1 SI S2 SS3 S4 S5 S6 S7 S8 S9 S10 TI 44.1 02.7 69.3 oo;-o 54.1 43.6 00.6 09.7 29.0 71.5 T2 34.5 05-0 64.9 00.8 58.4 56.7 00.2 13.3 60.9 33-1 T3 13-6 04.9 65-3 02.3 37.0 61.1 00 .6 07-3 56.8 39.3 T4 17.5 01.7 69.3 06.4 51.8 48.4 01 .0 07.2 32.1 37.6 T5 14.6 02 .6 58.9 17.1 68.6 58.5 00.8 06.6 79.0 34.6 T6 18,6 02 .4 84.1 09.5 60.9 43.9 00.8 26.2 82.5 40 .4 T7 35-6 01.9 78.6 04.2 62.1 59-9 03.0 26.7 89-7 29.1 T8 35.3 07 .1 64.2 05.3 65-1 50.8 00.1 20.3 94.6 51.1 T9 53.3 01.3 79.6 03.9 41.5 50.0 00.0 23.2 92.9 42.0 T10 44.3 00.5 90.3 01.7 68 .0 31.0 00.5 26.2 88.5 35-9 T i l 28.3 48.5 61.2 09.1 67.7 52.3 02.6 26.4 87.8 34.6 T12 28.4 46.9 62.4 06.9 43.8 46.3 01 .0 21.9 91.6 42 .2 T13 24.5 37.0 48.1 06.4 65.6 57.7 04.2 23.9 92.0 51 .1 Tl4 26.7 41 .5 68.3 07.6 64.2 55-1 02.9 38.4 86.4 63.4 T15 22.6 41.3 65-9 02.7 72.6 60.4 01 .8 38.0 42.3 71 .4 T16 27.1 29.1 64.8 01.6 76.9 55.8 00.5 40.1 59-9 52.4 T17 35-5 28.8 60.2 00.3 58.3 63.O 04.7 45.1 72.1 48.7 T18 36.6 34.1 69-4 15.6 50.8 48.7 05.2 46.5 56.8 52.1 T19 27.2 32 .2 56.8 04.1 49.5 50.1 13-5 51.3 70.3 52.9 T20 35-1 30 .4 49.8 07.9 66.1 52.6 13.3 31.7 73.7 45.3 Table A-2 (Continued) Percent Qn-Edge Time by Subject f o r the C o n t r o l group i n Experiment 1. Day 2 SI S2 S3 S4 S5 S6 S7 S8 S9 S10 T21 0 0 . 1 03.4 15.0 07.6 75-3 00.9 22.9 31.8 77-6 25 .3 T22 00.2 06.2 23 .3 00.8 63.1 00.6 17 .5 50.6 79.1 44.0 T 2 3 00 .0 01.8 63.6 07 .5 70.3 01.5 16.7 50.0 83-4 36.1 T24 00.7 01.5 51.8 08 .0 67.5 05.3 18.4 48.4 88.1 40 .5 T 2 5 00.0 06.0 42.0 01.7 71.0 03.5 09.8 51-5 85-9 48.1 T 2 6 12.8 19-4 08 .0 05.1 56.6 01.2 10.4 66.2 94.2 40 .5 T 2 7 14 .5 26.6 29.0 13 .5 23.9 00.8 15-9 80.3 88.9 43.6 T28 22.7 18.5 17.9 13-1 65.1 53.7 24 .7 84 .7 84.9 40 .8 T29 0 2.5 08.8 06.7 15.2 52 .5 54.1 40 . 5 85-5 84.9 48.8 T 3 0 12.8 20 .3 29-6 15.8 2 0.3 44.9 22 .8 64.2 87.0 28 .0 T 3 1 08 .5 39.0 21 .5 20.8 54.8 54.2 04.9 65-9 90.6 17-8 T 3 2 05.1 50.8 20 .1 44 .7 61.1 53.1 08 .9 50.6 85 . 0 19.3 T33 11 .5 47.5 37-0 66.3 76,7 50.2 25 .5 84.4 83.O 20.9 T34 08.8 36.0 57.8 63.4 23.5 50 .3 12.2 61.8 82 .7 44.4 T35 12.7 54.2 60.0 37-5 53-9 52.7 21 .4 82.4 84.2 49.8 T36 12.4 18 .3 26.0 55.2 19 .3 75-8 05.6 67-5 84.1 28 .5 T37 56.1 32 .3 23.1 65-8 60.7 78 .6 23.4 68.1 87.1 37-2 T38 33-8 55.9 17-6 63-6 68.7 66.1 16.0 51.9 87-5 17.2 T39 00.4 46.6 35-9 45.5 37-2 72.0 10.7 66.9 86.9 33-5 T40 02.0 51 .5 29.0 58.6 60.0 77.6 13 .5 73.8 87-5 33.0 Table A-3 Percent On-Edge Time by Experimental Subjects i n l a s t Eive T r i a l s of Experiment 2. T r i a l s SI S2 S3 S4 S5 S6 S7 S8 S9 S10 T6 82 .5 96.2 T7 82 .5 96.8 T8 76.8 97.6 T9 82.1 94.4 T10 86.2 96.6 96.3 95.2 94.4 92.6 72.6 94.9 90.5 92.8 6 8 . 7 88.1 94.9 94.9 76.3 91.9 92.6 84.5 96.9 94.1 91-6 94.0 6 7 . 8 91-6 8 6 . 2 8 9 - 5 6 9 - 0 9 5 - 8 7 6 . 6 9 0 . 4 7 8 . 1 8 9 - 4 8 6 . 7 9 4 . 3 8 2 . 0 9 4 . 2 8 8 . 6 91 .1 77-0 71-8 8 5 . 9 9 3 . 6 Table A-4 Percent th-Edge Time by Control Subjects i n Last Five T r i a l s of Experiment 2 . T r i a l s SI S2 S3 S4 S5 S6 S7 S8 S9 S10 T6 0 2 . 3 5 2 . 9 3 7 - 0 2 6 . 9 6 2 . 7 9 4 . 5 2 3 . 8 7 4 . 4 9 8 . 4 40 .7 T7 0 2 . 5 18 .0 5 0 . 7 5 2 . 6 6 2 . 9 9 2 . 2 3 6 . 2 7 9 . 0 81.5 40 .6 T8 14 .2 3 3 . 8 3 3 - 3 2 3 . 5 6 7 . 9 9 6 . 4 2 5 . 4 7 3 . 8 9 8 . 6 4 3 . 4 T9 04 .7 3 3 . 4 3 3 - 4 14.1 1 8 . 2 9 2 . 3 1 0 . 3 7 1 . 0 9 4 . 5 31-3 T10 0 1 . 7 5 2 . 4 3 4 . 6 3 3 . 4 4 9 . 2 9 6 . 7 3 4 . 9 8 3 . 4 79-7 4 2 . 0 "@en ; edm:hasType "Thesis/Dissertation"@en ; edm:isShownAt "10.14288/1.0077341"@en ; dcterms:language "eng"@en ; ns0:degreeDiscipline "Physical Education"@en ; edm:provider "Vancouver : University of British Columbia Library"@en ; dcterms:publisher "University of British Columbia"@en ; dcterms:rights "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en ; ns0:scholarLevel "Graduate"@en ; dcterms:title "Augmented concurrent error information and the acquisition of the continuous gross motor skill of forward outside edges in figure skating"@en ; dcterms:type "Text"@en ; ns0:identifierURI "http://hdl.handle.net/2429/22576"@en .