@prefix vivo: . @prefix edm: . @prefix ns0: . @prefix dcterms: . @prefix skos: . vivo:departmentOrSchool "Other UBC"@en ; edm:dataProvider "DSpace"@en ; ns0:degreeCampus "UBCV"@en ; dcterms:creator "Ip, Alvin"@en, "Chen, Zhen"@en, "Lam, Tania"@en ; dcterms:issued "2012-06-08T00:03:45Z"@en, "2012-03-24"@en ; dcterms:description "There are over 300,000 Canadians living with the effects of stroke. A stroke damages one side of the brain, resulting in motor impairments to the other half of the body. This leads to asymmetrical walking; the weaker leg is used less in propelling and supporting the body compared to the stronger leg. Improving symmetry is important because asymmetrical walking leads to impaired balance, decreased bone strength, and increased falls. However, little research has looked at improving walking symmetry. This study tests whether applying resistance against the stronger leg can improve walking symmetry in people with stroke. To increase the use of the weaker leg, we make the stronger leg harder to use. Six participants were fitted into the Lokomat, a gait therapy device with a treadmill, harness, and leg-cuffs. The Lokomat was programmed to apply resistance, equivalent to 10% of the hip and knee flexors' maximal voluntary contraction, against the stronger leg. Force-sensitive resistors and motion capture cameras were used to respectively measure single-support stance time and stride length, in order to determine the use of each leg during walking. Subjects walked consecutively for 50 strides with no resistance, 50 strides with resistance against the stronger leg, and 50 strides with resistance removed. We found that applying resistance against the stronger leg can improve walking symmetry and increase the use of the weaker leg to propel and support the body during walking. The study demonstrated the feasibility of this intervention and uncovered aspects of the design to be improved upon."@en ; edm:aggregatedCHO "https://circle.library.ubc.ca/rest/handle/2429/42462?expand=metadata"@en ; skos:note """Improving  walking  symmetry  in   people  with  stroke:     a  pilot  study   Alvin  Ip   Dr.  Zhen  Chen,  MD,  PhD     Dr.  Tania  Lam,  PhD     UBC  MURC    |    March  24,  2012   Stroke   •  Occurs  when  blood  flow  to  a  part  of  the  brain   stops   •  Brain  cells  die  without  access  to  blood  and   oxygen   •  Causes  permanent  damage  to  one  side  of  the   brain,  resulOng  in  motor  impairments  to  the   other  half  of  the  body   Walking  asymmetry     •  Hallmark  characterisOc  of  stroke  paOents   (PaSerson  et  al.,  2008)   1.  Weaker  leg  spends  less  Ome  in  single-­‐support   stance  phase  (Beauchamp  et  al.,  2009)   2.  Weaker  leg  has  a  shorter  stride  length  (Reisman   et  al.,  2007)     Weaker  Leg  =  Less  SUPPORT  and  Less  PROPULSION   Why  does  it  maSer?   •  Walking  asymmetry  leads  to:     – Impaired  balance  (PlaSs  et  al.,  2006)   – Decreased  bone  strength  (Jorgenson  et  al.,  2000)   – Joint  problems  (PaSerson  et  al.,  2008)   – Increased  falls  (Poole,  2002)   Aim   •  To  improve  walking  symmetry  by  increasing   the  use  of  the  weaker  leg   •  How?     •  By  placing  resistance  (more  weight)  against   the  stronger  leg,  making  it  harder  to  use   Hypothesis   •  When  resistance  is  applied  against  the   stronger  leg,  the  weaker  leg  will  be  used  more   •  Increased  single-­‐support  stance  Ome  of  the   weaker  leg   •  Increased  stride  length  of  the  weaker  leg   Methods   ParOcipants   •  6  people  with  stroke   – Ambulatory   – All  subjects  gave  wriSen  informed  consent   Equipment   •  Lokomat  gait  therapy  device   Equipment   •  Lokomat   •  Force-­‐sensiOve  resistors  (FSR)   – Placed  under  feet   – Detect  when  feet  are  on  ground  to  measure   length  of  Ome  spent  in  single-­‐support  stance   •  MoOon  capture  cameras   – Placed  infrared  markers  on  feet   – Record  foot  trajectory  to  measure  stride  length     Protocol   •  ParOcipants  walked  consecuOvely  for:     – 50  strides  with  no  resistance   – 50  strides  with  resistance  against  the  stronger  leg     – 50  strides  with  resistance  removed   •  Resistance  was  scaled  to  10%  of  the   individual’s  hip  and  knee  flexors'  maximal   voluntary  contracOon   Results   0.5   0.6   0.7   0.8   Baseline   First  5  strides  of   Resistance   Last  5  strides  of   Resistance   First  5  strides  of   Aeer-­‐Effects   Ti m e   (s )   CondiFons   PareFc  single-­‐support  stance  Fme   When  resistance  is  applied,  the  weaker  leg  will   have  increased  single-­‐support  stance  Ome   400   500   600   700   Baseline   First  5  strides  of   Resistance   Last  5  strides  of   Resistance   First  5  strides  of   Aeer-­‐Effects   St rid e   le ng th  (c m )   CondiFons   PareFc  stride  length   When  resistance  is  applied,  the  weaker  leg  will   have  increased  stride  length   200   300   400   500   600   700   800   1   10   19   28   37   46   55   64   73   82   91   St rid e   le ng th  (c m )   Stride  number  (against  resistance)   PareOc  stride  length  (adaptaOon  to   resistance)   200   300   400   500   600   700   800   1   10   19   28   37   46   55   64   73   82   91   St rid e   le ng th  (c m )   Stride  number  (against  resistance)   PareOc  stride  length  (adaptaOon  to   resistance)   200   300   400   500   600   700   800   1   10   19   28   37   46   55   64   73   82   91   St rid e   le ng th  (c m )   Stride  number  (against  resistance)   PareOc  stride  length  (adaptaOon  to   resistance)   0.4   0.6   0.8   1   1.2   1   10   19   28   37   46   55   64   73   82   91   Ti m e   (s )   Stride  number  (against  resistance)   PareOc  single-­‐support  stance  Ome   (adaptaOon  to  resistance)   0.4   0.6   0.8   1   1.2   1   10   19   28   37   46   55   64   73   82   91   Ti m e   (s )   Stride  number  (against  resistance)   PareOc  single-­‐support  stance  Ome   (adaptaOon  to  resistance)   0.4   0.6   0.8   1   1.2   1   10   19   28   37   46   55   64   73   82   91   Ti m e   (s )   Stride  number  (against  resistance)   PareOc  single-­‐support  stance  Ome   (adaptaOon  to  resistance)   Conclusions  and   Future  DirecOons   Conclusions   1.  Applying  resistance  to  the  stronger  leg  can   increase  the  use  of  the  weaker  leg  to  propel   and  support  the  body  during  walking   2.  Aspects  of  the  study  design  can  be  improved   – More  than  50  strides  of  walking  against  resistance   may  be  required   – Verbal  cueing  to  ensure  that  parOcipant  responds   in  the  intended  way  to  training   Future  DirecOons   •  More  research  on  this  novel  intervenOon  to   improve  walking  symmetry  in  people  with   stroke   •  Use  the  knowledge  and  experience  gained   from  this  pilot  study  to  inform  a  larger  study   References   Beauchamp  MK,  Skrela  M,  Southmayd  D,  Tick  J,  Van  Kessel  M,  Brunton  K,    Inness  E,  and  McIlroy  WE.  Immediate  effects  of  cane  use  on  gait    symmetry  in  individuals  with  subacute  stroke.  Physiother  Can  61:    154-­‐160,  2009.   Jorgenson  L,  Jacobsen  BK,  Wilsgaard  T,  and  Magnus  JH.  Walking  aeer  stroke:    does  it  maSer?  Changes  in  bone  mineral  density  within  the  first  12  months    aeer  stroke:  a  longitudinal  study.  Osteopros  Int  11:  381-­‐387,  2000.     PaSerson  KK,  Parafianowicz  I,  Danells  CJ,  Closson  V,  Verrier  MC,  Staines  WR,    Black  SE,  and  McIlroy  WE.  Gait  asymmetry  in  community-­‐ambulaOng    stroke  survivors.  Arch  Phys  Med  Rehabil  89:  304-­‐310,  2008.   Poole  KES,  Reeve  J,  and  Warburton  EA.  Falls,  fractures,  and  osteoporosis    aeer  stroke:  Time  to  think  about  protecOon?  Stroke  33:  1432-­‐1436,  2002.   References   Sungkarat  S,  Fisher  BE,  and  Kovindha  A.  Efficacy  of  an  insole  shoe  wedge  and    augmented  pressure  sensor  for  gait  training  in  individuals  with  stroke:  a    randomized  controlled  trial.  Clin  Rehabil  25:  360-­‐369,  2011.   PlaSs  MM,  Rafferty  D,  and  Paul  L.  Metabolic  cost  of  overground  gait  in    younger  stroke  paOents  and  healthy  controls.  Med  Sci  Sports  Exerc  38:    1041-­‐1046,  2006.   Reisman  DS,  Wityk  R,  Silver  K,  and  BasFan  AJ.  Locomotor  adaptaOon  on  a    split-­‐belt  treadmill  can  improve  walking  symmetry  post-­‐stroke.  Brain  130:    1861-­‐1872,  2007.     Thank  you!   Alvin  Ip    """@en ; edm:hasType "Presentation"@en ; edm:isShownAt "10.14288/1.0103635"@en ; dcterms:language "eng"@en ; ns0:peerReviewStatus "Unreviewed"@en ; edm:provider "Vancouver : University of British Columbia Library"@en ; dcterms:rights "Attribution-NonCommercial-NoDerivatives 4.0 International"@en ; ns0:rightsURI "http://creativecommons.org/licenses/by-nc-nd/4.0/"@en ; ns0:scholarLevel "Undergraduate"@en ; dcterms:isPartOf "University of British Columbia. Multidisciplinary Undergraduate Research Conference (MURC)"@en ; dcterms:title "Improving walking symmetry in people with stroke : a pilot study"@en ; dcterms:type "Text"@en ; ns0:identifierURI "http://hdl.handle.net/2429/42462"@en .