"Science, Faculty of"@en . "Botany, Department of"@en . "DSpace"@en . "UBCV"@en . "Eady, Karen"@en . "2011-03-31T20:47:22Z"@en . "1971"@en . "Doctor of Philosophy - PhD"@en . "University of British Columbia"@en . "During the summers of 1968 and 1969, a plant ecological\r\nstudy was carried out on Big White Mountain, in the Okanagan Highland of southern British Columbia. The main objectives of the research were to produce an ecosystematic classification of the vegetation, and to determine the environmental factors important in differentiating the plant communities.\r\nThe vegetation was studied by the phytosociological methods of Braun-Blanquet, as modified by Krajina. A number of environmental\r\nfeatures were noted for each plot, and soil samples were collected by horizon. Physical and chemical analyses of the soils were done in the laboratory.\r\nFourteen plant associations, with nine variations, were distinguished in the study area. These communities were compared with one another, using an index of floristic similarity. In general, there is a very low degree of similarity among the communities, thus supporting the initial classification system. The communities were compared with those described in other alpine and subalpine areas.\r\nTrees occurring in the subalpine parkland were found to be much older than the krummholz forms found in the alpine area. It was suggested that there has been a recent migration of tree species into the alpine area. The occurrence^ of conifer seedlings\r\nin alpine and timberline communities was presented. No conifer seedlings were found in the tree island communities.\r\nThe soils were classified according to the Canadian system of soil classification. Four orders are represented in the research\r\narea: Brunisolic, Regosolic, Podzolic and Gleysolic. The soils are generally shallow, with weak horizon development. Important chemical properties are the acidic pH, narrow carbon: nitrogen ratios, low cation exchange capacities, and very low amounts of exchangeable cations.\r\nIn an analysis of environmental variables, the communities were grouped according to hygrotope. The environmental data were summarized for each group. From an analysis of variance, all the factors were significant either at the 1% or 5% level, except relief. Based on Duncan's New Multiple Range Test, each community was discussed, mentioning the environmental factors which were found to be significant in differentiating it. It was concluded that general environmental factors (with hygrotope the most important) are more significant in distinguishing the communities than the physical and chemical soil properties.\r\nDetailed soil moisture data were presented for a number of alpine and subalpine communities. Several of the communities were found to undergo soil moisture stress.\r\nIn the zonation of the research area, the subalpine parkland\r\narea was placed in the Engelmann Spruce - Subalpine Fir Zone. The alpine and low alpine areas constitute the Alpine Zone. The timberline vegetation is composed of the subalpine parkland and parts of the low alpine area. The alpine zone of Big White Mountain is not as well developed as it is in the coastal area or the Rocky Mountains. It was concluded that much further work needs to be done in order to properly characterize the alpine zone in British Columbia."@en . "https://circle.library.ubc.ca/rest/handle/2429/33162?expand=metadata"@en . "ECOLOGY OP THE ALPINE AND TIMBERLINE VEGETATION OP BIG WHITE MOUNTAIN, BRITISH COLUMBIA by KAREN EADY B.Sc., M c G i l l U n i v e r s i t y , 1 9 6 5 M. S c , U n i v e r s i t y of C a l g a r y , 1 9 6 7 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OP DOCTOR OF PHILOSOPHY i n the Department of Botany We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OP BRITISH COLUMBIA January, 1 9 7 1 In presenting t h i s t h e s i s in p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree t h a t permission f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . It i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission. Department of Botany The U n i v e r s i t y of B r i t i s h Columbia Vancouver 8, Canada Date F e b . 1 . 1 9 7 1 i i A b s t r a c t During the summers of 1968 and 1969, a p l a n t e c o l o g i c a l i study was c a r r i e d out on B i g White Mountain, i n the Okanagan Highland of southern B r i t i s h Columbia. The main o b j e c t i v e s of the r e s e a r c h were to produce an ecosystematic c l a s s i f i c a t i o n o f the v e g e t a t i o n , and to determine the environmental f a c t o r s important i n d i f f e r e n t i a t i n g the p l a n t communities. The v e g e t a t i o n was s t u d i e d by the p h y t o s o c i o l o g i c a l methods of Braun-Blanquet, as m o d i f i e d by K r a j i n a . A number of e n v i r o n -mental f e a t u r e s were noted f o r each p l o t , and s o i l samples were c o l l e c t e d by h o r i z o n . P h y s i c a l and chemical analyses of the s o i l s were done i n the l a b o r a t o r y . Fourteen p l a n t a s s o c i a t i o n s , with nine v a r i a t i o n s , were d i s t i n g u i s h e d i n the study a r e a . These communities were compared wit h one another, u s i n g an index o f f l o r i s t i c s i m i l a r i t y . In g e n e r a l , there i s a very low degree o f s i m i l a r i t y among the communities, thus s u p p o r t i n g the i n i t i a l c l a s s i f i c a t i o n system. The communities were compared wi t h those d e s c r i b e d i n ot h e r a l p i n e and subalpine a r e a s . Trees o c c u r r i n g i n the subalpine parkland were found to be much o l d e r than the krummholz forms found i n the a l p i n e a r e a . I t was suggested t h a t there has been a r e c e n t m i g r a t i o n of t r e e s p e c i e s i n t o the a l p i n e a r e a . The occurrence^ of c o n i f e r seed-l i n g s i n a l p i n e and t i m b e r l i n e communities was presented. No c o n i f e r s e e d l i n g s were found i n the tr e e i s l a n d communities. The s o i l s were c l a s s i f i e d a c c o r d i n g t o the Canadian system of s o i l c l a s s i f i c a t i o n . Four orders are r e p r e s e n t e d i n the r e -se a r c h area: B r u n i s o l i c , R e g o s o l i c , P o d z o l i c and G l e y s o l i c . \u00E2\u0080\u00A2 i i i The s o i l s are g e n e r a l l y shallow, with weak h o r i z o n development. Important chemical p r o p e r t i e s are the a c i d i c pH, narrow carbon: n i t r o g e n r a t i o s , low c a t i o n exchange c a p a c i t i e s , and very low amounts of exchangeable c a t i o n s . In an a n a l y s i s of environmental v a r i a b l e s , the communities were grouped a c c o r d i n g to hygrotope. The environmental data were summarized f o r each group. Prom an a n a l y s i s of v a r i a n c e , a l l the f a c t o r s were s i g n i f i c a n t e i t h e r a t the 1% or 5% l e v e l , except r e l i e f . Based on Duncan's New M u l t i p l e Range T e s t , each community was d i s c u s s e d , mentioning the environmental f a c t o r s which were found to be s i g n i f i c a n t i n d i f f e r e n t i a t i n g i t . I t was concluded t h a t g e n e r a l environmental f a c t o r s (with hygrotope the most important) are more s i g n i f i c a n t i n d i s t i n g u i s h i n g the communities than the p h y s i c a l and chemical s o i l p r o p e r t i e s . D e t a i l e d s o i l moisture data were presented f o r a number of a l p i n e and subalpine communities. S e v e r a l o f the communities were found t o undergo s o i l moisture s t r e s s . In the z o n a t i o n of the r e s e a r c h a r e a , the subalpine park-land area was p l a c e d i n the Engelmann Spruce - Subalpine F i r Zone. The a l p i n e and low a l p i n e areas c o n s t i t u t e the A l p i n e Zone. The t i m b e r l i n e v e g e t a t i o n i s composed of the' subalpine parkland and p a r t s of the low a l p i n e a r e a . The a l p i n e zone of B i g White Mountain i s not as w e l l developed as i t i s i n the c o a s t a l area or the Rocky Mountains. I t was concluded t h a t much f u r t h e r work needs to be done i n order to p r o p e r l y c h a r a c t e r i z e the a l p i n e zone i n B r i t i s h Columbia. i v TABLE OF CONTENTS Page 1. I n t r o d u c t i o n 1 2 . D e s c r i p t i o n of Study Area 5 A. G e o g r a p h i c a l L o c a t i o n and Physiography 5 B. Climate 5 C. V e g e t a t i o n 10 D. S o i l s 11 3. Methods 14 A. V e g e t a t i o n A n a l y s i s 14 B. S o i l A n a l y s i s 16 C. V e g e t a t i o n S y n t h e s i s 19 D. Computational Methods 20 i . F l o r i s t i c S i m i l a r i t y Index 20 i i . Environment A n a l y s i s 21 4 . A l p i n e and T i m b e r l i n e Communities 23 J u n i p e r u s communis A s s o c i a t i o n 24 Ante n n a r i a l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n . . . 31 Juncus p a r r y i A s s o c i a t i o n 43 A n t e n n a r i a l a n a t a A s s o c i a t i o n 51 Phyllodoce empetriformis - Antennaria l a n a t a A s s o c i a t i o n 58 P i c e a engelmannii A s s o c i a t i o n 69 Abies l a s i o c a r p a A s s o c i a t i o n 73 Abies l a s i o c a r p a - P i c e a engelmannii - Vacclnium scoparium A s s o c i a t i o n 78 Abies l a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n . . . . 86 Page Carex s p e c t a b i l i s A s s o c i a t i o n 92 V a l e r i a n a s l t c h e n s i s - C a s t i l l e j a e l m e r i A s s o c i a t i o n . . . 98 Carex n i g r i c a n s A s s o c i a t i o n 109 P o l y t r i c h u m norveglcum A s s o c i a t i o n 121 Drepanocladus exannulatus A s s o c i a t i o n 127 5 . D i s t r i b u t i o n of Tree Species 133 6 . V e g e t a t i o n R e l a t i o n s h i p s 138 7. Vegetation-Environment R e l a t i o n s h i p s 151 A. A n a l y s i s of Environmental V a r i a b l e s 152 B. S o i l Moisture l 6 i C. T o p o g r a p h i c - A l t i t u d i n a l R e l a t i o n s h i p s 166 D. S o i l Types and P l a n t Communities 169 8 . V e g e t a t i o n Zonation 173 9 . Summary and Conc l u s i o n s 176 10. L i t e r a t u r e C i t e d 182 Appendix 1. C h e c k l i s t of V a s c u l a r P l a n t s , Bryophytes and Lichens 194 Appendix 2. S o i l Types of B i g White Mountain c l a s s i f -i e d a c c o r d i n g to the American, German and World FA0/UNESC0 C l a s s i f i c a t i o n s 202 Appendix 3 . Iron and Aluminum Determinations 205 Appendix 4. C l a s s L i m i t s f o r Environmental V a r i a b l e s . 211 Appendix 5. S t a t i s t i c a l A n a l y s i s 214 v i LIST OF TABLES Table Page 1 Some C l i m a t i c Data f o r the B i g White Area 9 2 Mean Monthly Temperature (\u00C2\u00B0F) f o r B i g White Mountain ( e l e v . 6050 f t . ) 9 3 P r e c i p i t a t i o n ( i n . ) f o r B i g White Mountain ( e l e v . 6050 f t . ) 9 4 S p e c i e s S i g n i f i c a n c e Scale 15 5 S o c i a b i l i t y Scale 15 6 General Environment, Juniperus communis A s s o c i a t i o n . 25 7 J u n i p e r u s communis A s s o c i a t i o n 26 8 F l o r i s t i c S i m i l a r i t y Indices f o r the Juniperus communis A s s o c i a t i o n 27 9 S o i l T e x t u r e , Juniperus communis A s s o c i a t i o n 28 10 S o i l Chemical A n a l y s i s , Juniperus communis A s s o c i a t i o n 29 11 G e n e r a l Environment, Antennaria l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n 32 12 A n t e n n a r i a l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n 33 13 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the A n t e n n a r i a l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n 35 14 S o i l T e x t u r e , Antennaria l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n 37 15 S o i l Chemical A n a l y s i s , Antennaria l a n a t a -S i b b a l d i a procumbens A s s o c i a t i o n 38 16 General Environment, Juneus p a r r y i A s s o c i a t i o n 45 17 Juncus p a r r y i A s s o c i a t i o n 46 v i i Table Page 18 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Juncus p a r r y i A s s o c i a t i o n 47 19 S o i l T e x t u r e , Juncus p a r r y i A s s o c i a t i o n 48 20 S o i l Chemical A n a l y s i s , Juncus p a r r y i A s s o c i a t i o n . . . 49 21 G e n e r a l Environment, Antennaria l a n a t a A s s o c i a t i o n . . 52 22 A n t e n n a r i a l a n a t a A s s o c i a t i o n 53 23 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the A n t e n n a r i a l a n a t a A s s o c i a t i o n 54 24 S o i l T e x t u r e , A n t e n n a r i a l a n a t a A s s o c i a t i o n 55 25 S o i l Chemical A n a l y s i s , A n t e n n a r i a l a n a t a A s s o c i a t i o n 56 26 General Environment, Phyllodoce e mpetriformis -A n t e n n a r i a l a n a t a A s s o c i a t i o n 59 27 Phyllodoce empetriformis - A n t e n n a r i a l a n a t a A s s o c i a t i o n 60 28 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Phyllodoce e m petriformis - A n t e n n a r i a l a n a t a A s s o c i a t i o n 62 29 S o i l T e xture, Phyllodoce empetriformis - A n t e n n a r i a l a n a t a A s s o c i a t i o n 64 30 S o i l Chemical A n a l y s i s , Phyllodoce empetriformis -A n t e n n a r i a l a n a t a A s s o c i a t i o n ; 65 31 General Environment, P i c e a engelmannii A s s o c i a t i o n . . 70 32 P i c e a engelmannii A s s o c i a t i o n 71 33 S o i l T e x t u r e , P i c e a engelmannii A s s o c i a t i o n 72 34 S o i l Chemical A n a l y s i s , P i c e a engelmannii A s s o c i a t i o n 72 35 General Environment, Abies l a s l o c a r p a A s s o c i a t i o n . . . 74 36 Abies l a s l o c a r p a A s s o c i a t i o n 75 v i i i Page S o i l T e x t u r e , Abies l a s i o c a r p a A s s o c i a t i o n 76 S o i l Chemical A n a l y s i s , Abies l a s i o c a r p a A s s o c i a t i o n 77 General Environment, Abies l a s i o c a r p a - P i c e a engelmannii - Vaccinium scoparium A s s o c i a t i o n 79 Abies l a s i o c a r p a - P i c e a engelmannii - Vaccinium scoparium A s s o c i a t i o n 80 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Abies l a s i o c a r p a - P i c e a engelmannii - Vaccinium scoparium A s s o c i a t i o n 82 S o i l T e x t u r e , Abies l a s i o c a r p a - P i c e a engelmannii -Vacci'nium scoparium A s s o c i a t i o n 83 S o i l Chemical A n a l y s i s , Abies l a s i o c a r p a - P i c e a engelmannii - Vaccinium scoparium A s s o c i a t i o n 84 General Environment, Abies l a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n 87 Abies l a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n . 88 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Abies l a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n 89 S o i l T e x t u r e , Abies l a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n 90 S o i l Chemical A n a l y s i s , Abies l a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n 91 General Environment, Carex s p e c t a b i l i s A s s o c i a t i o n . . 93 Carex s p e c t a b i l i s A s s o c i a t i o n 94 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Carex s p e c t a b i l i s A s s o c i a t i o n 95 S o i l T e xture, Carex s p e c t a b i l i s A s s o c i a t i o n 96 i x Table Page 53 S o i l Chemical A n a l y s i s , Carex s p e c t a b i l i s A s s o c i a t i o n 97 54 General Environment, V a l e r i a n a s l t c h e n s i s -C a s t i l l e j a e l m e r l A s s o c i a t i o n 100 55 V a l e r i a n a s l t c h e n s i s - C a s t i l l e j a e l m e r i A s s o c i a t i o n 101 56 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the V a l e r i a n a s l t c h e n s i s - C a s t i l l e j a e l m e r i A s s o c i a t i o n 102 57 S o i l T e xture, V a l e r i a n a s l t c h e n s i s - C a s t i l l e j a e l m e r i A s s o c i a t i o n . 105 58 S o i l Chemical A n a l y s i s , V a l e r i a n a s i t c h e n s i s -C a s t i l l e j a e l m e r i A s s o c i a t i o n 106 59 G e n e r a l Environment, Carex n i g r i c a n s A s s o c i a t i o n . . . . 110 60 Carex n i g r i c a n s A s s o c i a t i o n I l l 61 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Carex n i g r i c a n s A s s o c i a t i o n 113 62 S o i l T e x t u r e , Carex n i g r i c a n s A s s o c i a t i o n 115 63 S o i l Chemical A n a l y s i s , Carex n i g r i c a n s A s s o c i a t i o n . 1 1 6 64 General Environment, P o l y t r i c h u m norvegicum A s s o c i a t - : i o n 122 65 . P o l y t r i c h u m norvegicum A s s o c i a t i o n 123 66 S o i l T e x t u r e , P o l y t r i c h u m norvegicum A s s o c i a t i o n . . . . 1 2 4 67 S o i l Chemical A n a l y s i s , P o l y t r i c h u m norvegicum A s s o c i a t i o n 125 68 General Environment, Drepanocladus exannulatus A s s o c i a t i o n 128 69 Drepanocladus exannulatus A s s o c i a t i o n 129 X Table Page 70 S o i l T e x t u r e , Drepanocladus exannulatus A s s o c i a t i o n 131 71 S o i l Chemical A n a l y s i s , Drepanocladus exannulatus A s s o c i a t i o n 131 72 Diameter, Height and Age Measurements of Abies l a s i o c a r p a and P i c e a enge l m a n n i i 135 73 Age of Tree Species i n A l p i n e and Subalpine Parkland Areas 136 74 Occurrence of C o n i f e r S e e d l i n g s and Shrubs i n A l p i n e and T i m b e r l i n e Communities 13? 75 S y n t h e s i s Table f o r a l l A s s o c i a t i o n s 139 76 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r a l l Communities.... 141 77 Summary of General Environmental V a r i a b l e s f o r a l l Communities 153 78 Summary of P h y s i c a l and Chemical S o i l Data f o r a l l Communities 15^ 79 S o i l Moisture Percentages f o r S e l e c t e d A l p i n e Communities 163 80 S o i l Moisture Percentages f o r S e l e c t e d Subalpine Communities 164 81 F Values f o r Environmental V a r i a b l e s 215 82 S i g n i f i c a n t Environmental V a r i a b l e s between Communities 216 83 Key to Environmental V a r i a b l e s 217 x i LIST OF FIGURES F i g u r e Page 1 L o c a t i o n of B i g White Mountain 6 2 Topographic Map of B i g White Mountain and surround-i n g Area 7 3 J u n i p e r u s communis A s s o c i a t i o n 30 4 A n t e n n a r i a - S i b b a l d l a A s s o c i a t i o n , A n t e n n a r i a -S i b b a l d i a - S a l i x V a r i a t i o n 39 5 S o i l P r o f i l e o f A n t e n n a r i a - S i b b a l d i a A s s o c i a t i o n , A n t e n n a r i a - S i b b a l d i a - S a l i x V a r i a t i o n 39 6 A n t e n n a r i a - S i b b a l d i a A s s o c i a t i o n , Carex phaeocephala V a r i a t i o n 42 7 A n t e n n a r i a - S i b b a l d i a A s s o c i a t i o n , Carex brewer! V a r i a t i o n 42 8 Juncus p a r r y i A s s o c i a t i o n 50 9 A n t e n n a r i a l a n a t a A s s o c i a t i o n 57 10 S o i l p r o f i l e of A n t e n n a r i a l a n a t a A s s o c i a t i o n 57 11 Phyllodoce - A n t e n n a r i a A s s o c i a t i o n , Phyllodoce -A n t e n n a r i a V a r i a t i o n 67 12 S o i l p r o f i l e o f Phyllodoce - A n t e n n a r i a A s s o c i a t i o n , Phyllodoce - A n t e n n a r i a V a r i a t i o n 67 13 Phyllodoce - Antennaria A s s o c i a t i o n , A n t e n n a r i a -Vaccinium V a r i a t i o n r 68 14 S o i l p r o f i l e o f Phyllodoce - A n t e n n a r i a A s s o c i a t i o n , A n tennaria - Vaccinium V a r i a t i o n 68 15 Abies - P i c e a - Vaccinium A s s o c i a t i o n 85 x i i F i g u r e Page 16 S o i l p r o f i l e o f Abies - P i c e a - Vaccinium A s s o c i a t i o n 85 17 V a l e r i a n a - C a s t i l l e j a A s s o c i a t i o n , V a l e r i a n a -C a s t i l l e . 1 a V a r i a t i o n 104 18 S o i l p r o f i l e o f V a l e r i a n a - C a s t i l l e j a A s s o c i a t i o n , V a l e r i a n a - C a s t i l l e ,1a V a r i a t i o n 104 19 V a l e r i a n a - C a s t i l l e . j a A s s o c i a t i o n , T r o l l i u s laxus V a r i a t i o n 108 20 Carex n i g r i c a n s A s s o c i a t i o n , Carex - P o l y t r i c h a d e l -phus V a r i a t i o n 117 21 S o i l p r o f i l e of Carex n i g r i c a n s A s s o c i a t i o n , Carex-P o l y t r i c h a d e l p h u s V a r i a t i o n , P l o t 7 1 118 22 S o i l p r o f i l e o f Carex n i g r i c a n s A s s o c i a t i o n , Carex -P o l y t r i c h a d e l p h u s V a r i a t i o n , P l o t 77 118 23 Carex n i g r i c a n s A s s o c i a t i o n , Juncus - Carex -Drepanocladus V a r i a t i o n 120 24 S o i l p r o f i l e of Carex n i g r i c a n s A s s o c i a t i o n , J uncus - Carex - Drepanocladus V a r i a t i o n 120 25 P o l y t r i c h u m norvegicum A s s o c i a t i o n 126 26 Drepanocladus exannulatus A s s o c i a t i o n 132 27 S o i l p r o f i l e of Pre pan o cladus exannulatus A s s o c i a t i o n 132 x i i i Acknowledgements I would l i k e t o express my thanks to my s u p e r v i s o r , Dr. V . J . K r a j i n a , f o r h i s advice and C r i t i c i s m , f o r the v e r i f i c a t i o n of the v a s c u l a r p l a n t s , and i d e n t i f i c a t i o n of c e r t a i n bryophytes. I would a l s o l i k e to thank Dr. W.B. S c h o f i e l d f o r the v e r i f i c -a t i o n and i d e n t i f i c a t i o n of the bryophytes, Mr. George Otto f o r the v e r i f i c a t i o n and i d e n t i f i c a t i o n of the l i c h e n s , and Dr. C.D. B i r d of the U n i v e r s i t y of Calgary f o r the i d e n t i f i c a t i o n of c e r t a i n l i c h e n s . My thanks are a l s o extended to Dr. L.M. L a v k u l i c h of the Department of S o i l Science f o r h i s ^ a d v i c e on s o i l s and e n v i r o n -mental a n a l y s e s ; to Mr. B. von S p i n d l e r of the Department of S o i l Science f o r performing many of the s o i l chemical a n a l y s e s ; to Mr. Stephen Borden of the B i o l o g y Data Centre f o r h i s h e l p w i t h computational and s t a t i s t i c a l a n a l y s e s ; and t o Dr. Jack Maze f o r h i s h e l p f u l d i s c u s s i o n s on s e v e r a l a s p e c t s of the r e s e a r c h . I would l i k e t o acknowledge the c o o p e r a t i o n of the Kelowna S k i Club and the B i g White S k i Development L i m i t e d i n p r o v i d i n g accommodation and access to the r e s e a r c h area; and to my f i e l d a s s i s t a n t s Miss T e r r y Odium and Miss Linda M a j e s k i . T h i s r e s e a r c h was supported through a N a t i o n a l Research C o u n c i l S c h o l a r s h i p and B u r s a r y , a N a t i o n a l Research C o u n c i l grant to Dr. V . J . K r a j i n a , and a grant from the A r c t i c and A l p i n e Committee of the U n i v e r s i t y of B r i t i s h Columbia. F i n a l l y , I would l i k e t o thank my husband, Frank, without whose encouragement and support t h i s r e s e a r c h would not have been completed. I 1 1. I n t r o d u c t i o n y The ecology of the a l p i n e r e g i o n has been l i t t l e s t u d i e d i n Canada, e s s e n t i a l l y due to the i n a c c e s s i b i l i t y and the h a rsh environmental c o n d i t i o n s of such a r e a s . In B r i t i s h Columbia, Archer ( 1 9 6 3 ) c o n t r i b u t e d a s y n e c o l o g i c a l study i n G a r i b a l d i Park. K r a j i n a ( 1 9 5 9 * 1 9 6 5 * 1 9 6 9 ) has d e s c r i b e d some ge n e r a l c h a r a c t e r i s t i c s f o r the a l p i n e zone. P r a s e r ( 1 9 7 0 ) s t u d i e d s u c c e s s i o n a l t r e n d s on r e c e n t l y d e g l a c i a t e d t e r r a i n i n G a r i b a l d i Park. The t i m b e r l i n e area has been more f u l l y documented i n the work of Peterson ( 1 9 6 4 ) and Brooke ( 1 9 6 6 ) , who d e s c r i b e d the v e g e t a t i o n and environment i n the p a r k l a n d subzone of the c o a s t -a l s u balpine zone. B r i n k ( 1 9 5 9 ) d i s c u s s e d the subalpine f o r e s t -heath ecotone i n G a r i b a l d i Park. A l a t e r work by B r i n k ( 1 9 6 4 ) d e a l t w i t h p l a n t e s t a b l i s h m e n t i n a l p i n e and subalpine r e g i o n s . B r i e f mention of the a l p i n e zone i n the c o a s t a l area has been made by C a l d e r and T a y l o r ( 1 9 6 8 ) i n the Queen C h a r l o t t e I s l a n d s , and C a r l ( 1 9 ^ 4 ) and Hardy ( 1 9 5 5 ) i n the Forbidden P l a t e a u a r e a of Vancouver I s l a n d . No d e t a i l e d e c o l o g i c a l work has p r e v i o u s l y been done i n the i n t e r i o r of B r i t i s h Columbia. Cooper ( 1 9 1 6 ) s t u d i e d s u c c e s s i o n a l trends i n the subalpine zone of the Mount Robson a r e a , and mentioned the occurrence of an a l p i n e zone. Munro and Cowan ( 1 9 4 4 ) i n Kootenay N a t i o n a l Park, and C a r l and Hardy ( 1 9 4 5 ) i n the Columbia V a l l e y b r i e f l y d i s c u s s e d a l p i n e v e g e t a t i o n . Raup ( 1 9 3 ^ * 1 9 ^ 5 ) made notes of a l p i n e and timber-l i n e v e g e t a t i o n i n northern B r i t i s h Columbia. In A l b e r t a , a g e n e r a l d e s c r i p t i o n of a l p i n e v e g e t a t i o n was given by Moss ( 1 9 5 5 ) . A d e t a i l e d study was c a r r i e d out by the author (Beder, 1 9 6 7 ) . R e c e n t l y , Bryant and Scheinberg (1970) s t u d i e d the I n t e r a c t i o n of v e g e t a t i o n and f r o s t a c t i v i t y i n an a l p i n e f e l l f i e l d . A g r e a t amount of work has been done i n the United S t a t e s , much of the emphasis b e i n g on a u t e c o l o g i c a l s t u d i e s . Important works i n t h i s f i e l d are B i l l i n g s and B l i s s (1959) , B i l l i n g s and Mooney (.1968), B l i s s (1956, 1962), Mooney and B i l l i n g s (1961) , Mooney ( 1963) , Spomer (1964) , and Spomer and S a l i s b u r y ( 1968) . Many v a l u a b l e s y n e c o l o g i c a l s t u d i e s have a l s o been done. B l i s s (1963) worked on a l p i n e communities i n the P r e s i d e n t i a l Range of New Hampshire. Marr (1961) has d e s c r i b e d the v a r i o u s eco-systems i n the Fro n t Range i n Colorado. Bamberg and Major (1968) worked i n s e v e r a l a l p i n e r e g i o n s i n Montana. Daubenmire has d i s -cussed a l p i n e t i m b e r l i n e s (1955) and v e g e t a t i o n a l z o n a t i o n i n the Rocky Mountains (19^3). Other d i s c u s s i o n s of t i m b e r l i n e are given i n Griggs (1938, 1946). Wardle (1965) compared t i m b e r l i n e s i n North America with those i n New Zealand. A number of re c e n t s t u d i e s have been done i n Washington and Oregon. F r a n k l i n and Trappe (1963) and F r a n k l i n and Dyrness (1969) d e s c r i b e d a l p i n e and subalpine meadow communities. F r a n k l i n et a l . (1966) d i s -cussed i n v a s i o n o f subalpine meadows by t r e e s i n Mount R a i n i e r N a t i o n a l Park. Douglas (1969) worked on subalpine t r e e groups i n the North Cascade Mountains. The upper subalpine zone i n the Olympic Mountains was s t u d i e d by Kuramoto (1968) and by Fonda and B l i s s (1969) . The mountain communities o f Sc o t l a n d have been s t u d i e d by Poore and McVean (1957) , and McVean and R a t c l i f f e (1962) . Other B r i t i s h e c o l o g i s t s who have d e a l t w i t h a l p i n e v e g e t a t i o n are T a n s l e y ( 1949) , P e a r s a l l ( 1950) , and Watt and Jones (1948). In 3 A u s t r a l i a , C o s t i n (1957) and McVean (1969) have d e s c r i b e d the a l p i n e v e g e t a t i o n . B i l l i n g s and Mark (1961), and Mark and B u r r e l l (1966) worked i n a l p i n e areas of New Zealand. In c e n t r a l 11 Europe, the Z u r i c h - M o n t p e l l l e r s c h o o l has s t u d i e d the c l a s s i f i c -a t i o n and e c o l o g i c a l r e l a t i o n s o f communities i n the a l p i n e r e g -i o n (Braun-Blanquet and Jenny, 1926; Braun-Blanquet, 1948). P h y s i o l o g i c a l ecology s t u d i e s i n c l u d e those o f T r a n q u i l l i n i (1963, 1964) . K r a j i n a (1933) and Hadac ( 1969) , working i n Cze c h o s l o v a k i a , and S z a f e r , Pawlowski and K u l c z y n s k i (1923) and Pawlowski (1935)* working i n Poland, have s t u d i e d the h i g h moun-t a i n v e g e t a t i o n o f the T a t r a Mountains. In S c a n d i n a v i a , Nord-hagen (1936) s t u d i e d the s u b a l p i n e - a l p i n e v e g e t a t i o n of Norway. Dahl (1956) s t u d i e d the v e g e t a t i o n of Rondane, i n southern Norway. G j a e r e v o l l (1956) has worked on the Scandinavian a l p i n e snowbeds. D e t a i l e d a l p i n e e c o l o g i c a l work has been done i n the U.S.S.R. by many b o t a n i s t s (Sukachev, 1965). Many of the e c o l o g i c a l s t u d i e s mentioned above a l s o d e a l w i t h a l p i n e and subalpine s o i l s . F o r B r i t i s h Columbia, F a r s t a d and Rowles ( i 9 6 0 ) b r i e f l y mentioned s e v e r a l a l p i n e s o i l s . R e c e n t l y , d e t a i l e d work has been done by Sneddon (1969) and van Ryswyk (1969). B a p t i e (1968) s t u d i e d the s o i l s o f an a l p i n e v a l l e y i n A l b e r t a . The Canadian system o f s o i l c l a s s i f i c a t i o n (Canada S o i l Survey Committee, 1970) d i s c u s s e d the d i s t r i b u t i o n of a l p i n e s o i l s . The major segment of i n f o r m a t i o n f o r North America i s d e r i v e d from the work of Retzer (1956, 1962, 1965) l n the Rocky Mountains, Nimlos and McConnell (1962, 1965) i n Montana, and Johnson and C l i n e (1965) i n Colorado. Kubiena (1953) i s the b a s i c r e f e r e n c e work f o r European s o i l s . More r e c e n t l y , Romans e t a l . (1966) worked on a l p i n e s o i l s i n S c o t -l a n d . In A u s t r a l i a , a l p i n e s o i l s have been d e s c r i b e d by C o s t i n (1955). As can be seen from t h i s b r i e f l i t e r a t u r e review, much work i s b e i n g done throughout the world, both from s y n e c o l o g i c a l and a u t e c o l o g i c a l approaches. The o r i g i n a l aim o f the present study was to provide d e t a i l e d s y n e c o l o g i c a l i n f o r m a t i o n on a l p i n e ecosystems i n the i n t e r i o r o f B r i t i s h Columbia. Although B i g White Mountain has only a very l i m i t e d a r e a o f a l p i n e veget-a t i o n , i t was s e l e c t e d because of i t s a c c e s s i b i l i t y . The p r o j e c t was then expanded to i n c l u d e the t i m b e r l i n e a r e a of the mountain. T h i s ecotone area of t i m b e r l i n e , while i n t e r e s t i n g i n i t s e l f , i s important i n an understanding o f the a l p i n e zone. The r e s e a r c h was c a r r i e d out d u r i n g the summers of 1968 and 1969, w i t h the f o l l o w i n g o b j e c t i v e s : l ) t o provide data on v e g e t a t i o n and e n v i r -onment i n an a l p i n e - t i m b e r l i n e a r e a , 2) to produce an ecosystem-a t i c c l a s s i f i c a t i o n of the a l p i n e and t i m b e r l i n e v e g e t a t i o n , and 3) t o e l u c i d a t e the environmental f a c t o r s r e s p o n s i b l e i n the formation of d i f f e r e n t p l a n t communities. 5 2. D e s c r i p t i o n of Study Area A. G e o g r a p h i c a l L o c a t i o n and Physiography B i g White Mountain, with an e l e v a t i o n of 7603 f e e t , i s l o c a t e d approximately t h i r t y m i l e s southeast of Kelowna, i n the Okanagan Highland, a s u b d i v i s i o n of the I n t e r i o r P l a t e a u ( P i g . 1 and 2 ) . Access i s a f f o r d e d by a g r a v e l road from Highway 33 to the l o c a l s k i area a t 6050 f e e t . The f o l l o w i n g summary i s based on H o l l a n d (1964). The Okanagan Highland l i e s between the Monashee Mountains to the e a s t and the Thompson P l a t e a u on the west. I t c o n s i s t s of rounded mountains and r i d g e s , and g e n t l e s l o p e s . During the P l e i s t o c e n e , i c e covered the h i g h l a n d , but e r o s i o n was not g r e a t . There was some rounding of s u r f a c e s , but the main e f f e c t was the d e p o s i t i o n of d r i f t . A l a r g e p a r t of the area i s u n d e r l a i n by Shuswap g n e i s s e s . On B i g White Mountain, the main rock types are g r a n i t e and p o r p h y r i t i c g r a n i t e , which comprise the V a l h a l l a I n t r u s i o n s , dated t o the Lower C r e t -aceous ( L i t t l e , 1957). The h i g h l a n d i s d r a i n e d and d i s s e c t e d by the Okanagan and K e t t l e R i v e r s and t h e i r t r i b u t a r i e s . As seen i n P i g . l , B i g White Mountain i s s i t u a t e d between the K e t t l e and West K e t t l e R i v e r s . The v a l l e y of the K e t t l e R i v e r a c t u a l l y forms the e a s t e r n boundary o f the Okanagan Highl a n d . B. -Climate There are no c l i m a t i c s t a t i o n s i n the a l p i n e and t i m b e r l i n e r e g i o n o f the r e s e a r c h a r e a . None were set up d u r i n g the course o f . s t u d y due to the l o g i s t i c d i f f i c u l t i e s i n v o l v e d . Table 1 summarizes some approximate c l i m a t i c data f o r the g e n e r a l a r e a , based on a number of A.R.D.A. maps ( B r i t i s h Columbia, Canada 1 Land I n v e n t o r y ) . A few d i f f e r e n c e s between these data and those 120\u00C2\u00B0 U.S.A. Scale : I inch = 30 miles Based on ac. Dept. of Mines & Petroleu Resources Map No. U P S f i g . 1. Location of Big White Mountain. 7 Fig 2. Topographic map of Big White Mountain and surrounding area. Scale: 1 inch = 2 miles. Taken from B.C. Department of Lands and Forests, National Topographic Series, Sheets 82 E/NW and 82 E/NE. 8 presented by K r a j i n a (1959, 1965, 1969) f o r the Al p i n e Tundra Zone are the h i g h e r mean J u l y temperature (60\u00C2\u00B0P compared t o 44-52\u00C2\u00B0F), h i g h e r a b s o l u t e maximum temperature (95\u00C2\u00B0F compared to 70-83\u00C2\u00B0P) and lon g e r f r o s t - f r e e p e r i o d (60 days compared t o l e s s than 25) a t B i g White. Temperature and p r e c i p i t a t i o n have been recorded s p o r a d i c -a l l y a t an e l e v a t i o n o f 6050 f e e t on B i g White. T h i s a l t i t u d e corresponds t o the Engelmann Spruce - Subalpine F i r Zone of K r a j i n a (1965) . Tables 2 and 3 present the a v a i l a b l e i n f o r m a t i o n ( B r i t i s h Columbia Department of A g r i c u l t u r e , 1965-1968). From these d a t a , i t appears t h a t B i g White has a maritime p r e c i p i t -a t i o n p a t t e r n w i t h a w i n t e r maximum and summer minimum. Snow i s a very important f a c t o r i n a l p i n e and t i m b e r l i n e a r e a s . Snow may f a l l d u r i n g any summer month. In 1969, there were s n o w f a l l s on June 2 8 , J u l y 4 and J u l y 6 . In 1968, i t snowed on August 18. Impassable road c o n d i t i o n s d u r i n g the s p r i n g thaw of 1969 prevented any attempt a t / o b t a i n i n g snow depth measurements. When the summer f i e l d season began d u r i n g the l a s t week of June, most of the snow had disappeared, w i t h the e x c e p t i o n o f l a t e - l y i n g snowbanks. The B r i t i s h Columbia Department of Lands, F o r e s t s and Water Resources operates a number of snow courses throughout the p r o v i n c e . One o f these i s l o c a t e d on B i g White a t an e l e v a t i o n o f 55OO f e e t . Measure-ments have been made si n c e 1966 ( B r i t i s h Columbia Department of Lands, F o r e s t s and Water Resources, 1966-1969). In 1966, the maximum snow depth of 48.1 inches o c c u r r e d a t the end of February. By the end of May, the snow depth was 7 .8 i n c h e s . The c o r r e s -ponding f i g u r e s f o r 1967 are 71.6 inches a t the end of March Table 1 9 Some Climatic Data for the Big White Area Period of observations Mean January temperature \u00E2\u0080\u00A2 15\u00C2\u00B0F 1950-1964 Mean July temperature 60\u00C2\u00B0F 1950-1964 Absolute minimum temperature -40\u00C2\u00B0F 1930-1964 Absolute maximum temperature 95\u00C2\u00B0F 1930-1964 Average frost-free period 60 days 1950-1964 Mean annual precipitation 30-40 i n . 1930-1964 Average precipitation May through September 10 i n . 1930-1963 Mean annual snowfall 150-200 in . 1963-1964 Table 2 Mean Monthly Temperature (\u00C2\u00B0F) for Big White Mountain (elev. 6050 f t . ) Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec. 1965 - 19 - 48 55 54 42 41 - 19 1966 17 21 22 33 44 45 - 50 35 25 22 1967 20 23 22 29 39 - 55 62 54 33 25 11 1968 16 29 28 28 41 43 -Table 3 Precipitation ( in.) for Big White Mountain (elev. 6050 f t . ) Jan. Feb. Mar. Apri1 May June July Aug. Sept. Oct. Nov. Dec. Annual 1965 - - 3.80 - - 0.40 1.92 5.65 2.55 0.86 2.57 5.83 -1966 4.58 5.43 2.65 3.45 2.51 3.63 2.91 - 1.58 2.90 7.38 8.26 -1967 11.03 6.39 8.07 6.54 2.41 1.65 1.25 0.53 1.40 9.91 3.39 10.16 62.73 1968 7.05 3.35 4.89 9.32 4.05 4.88 - . - - 1 -and 35 .0 inches a t the end of May; f o r 1968, 59.5 inches air~fehe end of March and 2 6 . 0 inches a t the end of May; f o r 1969, 64.0 inches a t the end of February and 9 . 8 inches a t the end of May. I t must be remembered t h a t the snow depths i n the r e s e a r c h a r e a , which i s approximately 2000 f e e t h i g h e r than the snow course, would be s u b s t a n t i a l l y g r e a t e r . Winter s n o w f a l l at the 605O f t . s t a t i o n on B i g White has been r e p o r t e d as b e i n g 270.9 inches f o r the 1965-1966 w i n t e r and 479.9 inches d u r i n g the 1967-1968 w i n t e r ( B r i t i s h Columbia Department of A g r i c u l t u r e , 1966, 1968). The l a t t e r f i g u r e seems u n u s u a l l y h i g h , s i n c e H o l l y b u r n Ridge i n the c o a s t a l subalpine mountain hemlock zone averages only 301.5 inches ( B r i t i s h Columbia Department o f A g r i c u l t u r e , 1966). C. V e g e t a t i o n The p o r t i o n of B i g White which was s t u d i e d ranged i n a l t i -tude from ca . 7100 to 7600 f e e t . Three a l t i t u d i n a l l y - d e l i m i t e d areas have been d i s t i n g u i s h e d : a l p i n e (ca.7500-7600 f e e t ) , low a l p i n e (ca.7400-7500 f e e t ) , and subalpine p a r k l a n d (ca.7100-7400 f e e t ) . The subalpine parkland and p a r t s of the low a l p i n e areas c o n s t i t u t e the t i m b e r l i n e v e g e t a t i o n , which i s an ecotone between the c l o s e d subalpine f o r e s t ( o c c u r r i n g below 7100 f e e t on B i g White) and the a l p i n e r e g i o n . A more d e t a i l e d d i s c u s s i o n of z o n a t i o n i s presented i n s e c t i o n 8 . Tree s p e c i e s present i n the a r e a are Abies l a s i o c a r p a ^ P i c e a engelmannii, Pinus c o n t o r t a v a r . l a t i f o l i a and Pinus a l b i c a u l i s . The two s p e c i e s of pine are r a r e on the mountain. 1 A u t h o r i t i e s of b o t a n i c a l names are l i s t e d i n Appendix 1. There seems to be no evidence of r e c e n t f i r e i n the study a r e a . However, examination of a core from a subalpine f i r i n the p a r k l a n d area r e v e a l e d t h a t the t r e e had been burned on one s i d e . T h i s was p o s s i b l y due to a l i g h t n i n g s t r i k e . No evidence of f i r e was noted from another f i r i n the same t r e e i s l a n d . Fourteen p l a n t a s s o c i a t i o n s have been d i s t i n g u i s h e d i n the present study. T h e i r h a b i t a t s vary from dry r i d g e tops and rock outcrops t o snowpatches and seepage s l o p e s . Although there are few s p e c i e s of bryophytes and l i c h e n s present i n the a r e a , they c o n s t i t u t e an important p a r t of some communities. D. S o i l s Four orders of the Canadian system of s o i l c l a s s i f i c a t i o n (Canada S o i l Survey Committee, 1970) are represented i n the study area - B r u n i s o l i c , R e g o s o l i c , P o d z o l i c and G l e y s o l i c . None of the s o i l g r e a t groups or subgroups are r e s t r i c t e d t o a p a r t i c u l a r community. The B r u n i s o l i c Order i s represented by the A l p i n e D y s t r i e B r u n i s o l subgroup, which occurs over a wide range of h a b i t a t c o n d i t i o n s , from r i d g e s and heather communities to snowpatches. and seepage s l o p e s . O r t h i c Regosols are a l s o i n the above-mentioned h a b i t a t s . The P o d z o l i c Order i s dominated by Sombric Humo-Ferric Podzols and Sombric Ferro-Humic Podzols. Sombric Humo-Ferric Podzols are mainly i n heather communities and on rocky s l o p e s , while Sombric Ferro-Humic Podzols predominate vin t r e e i s l a n d s , as w e l l as on rocky s l o p e s . Of i n f r e q u e n t p c c u r -rence are M i n i Ferro-Humic Podzols and an O r t h i c Humic P o d z o l . A l l the p o d z o l i c s o i l s l a c k an Ae h o r i z o n . The G l e y s o l i c Order 12 i s r e p r e s e n t e d mainly by Rego Humic G l e y s o l s , and l e s s f r e q u e n t l y by F e r a Humic G l e y s o l s , O r t h i c Humic G l e y s o l s and Rego G l e y s o l s . These s o i l s occur only on seepage s l o p e s , i n snowpatches and wet moss communities, and u s u a l l y have an Ah-Cg h o r i z o n sequence. The s o i l s of B i g White are g e n e r a l l y shallow ( l e s s than one f o o t i n d e p t h ) , w i t h weak h o r i z o n development ( e x c l u d i n g the p o d z o l s ) . S o i l development i s proceeding s l o w l y , and has not y e t reached the p o i n t a t which p l a n t communities can be d i f f -e r e n t i a t e d by t h e i r s o i l t y p e s . The s o i l s are a l l a c i d i c , w i t h a pH range from 4 . 1 to 6 . 3 . T h i s i s to be expected, as the parent m a t e r i a l i s predominantly g r a n i t e , which i s an a c i d i c r o c k . In some of the very shallow s o i l s , o r g a n i c matter moves downward and accumulates i n the G h o r i z o n o v e r l y i n g a l i t h i c c o n t a c t . T h i s o c c a s i o n a l l y c r e a t e s a h i g h e r o r g a n i c matter content i n the C h o r i z o n than i n the Ah h o r i z o n . The carbon:nitrogen r a t i o s of the s o i l s are g e n e r a l l y narrow, r a n g i n g from 10 t o 20; the value f o r c u l t i v a t e d s o i l s i s between 8 and 15. A narrow carbon:nitrogen r a t i o i n d i c a t e s t h a t n i t r o g e n should be a v a i l a b l e f o r h i g h e r p l a n t s . There are a number of cases i n which the percentage of n i t r o g e n i s very low, thus c r e a t i n g a very wide carbon:nitrogen r a t i o . T h i s can be due e i t h e r t o a l o s s of n i t r o g e n d u r i n g the a i r - d r y i n g of the s o i l sample, or t o the presence of undecomposed o r g a n i c matter i n the case of an L-H or Ah h o r i z o n . Phosphorus ranges from a low of 2 ppm t o a h i g h o f 28 ppm. C a t i o n exchange c a p a c i t i e s are g e n e r a l l y low, r a n g i n g from 4 . 6 t o 163.0 me/100 g. (the l a t t e r i n an L-H h o r i z o n ) . Exchangeable c a t i o n s are present i n very low q u a n t i t i e s . The ranges are as f o l l o w s : c a l c i u m 0.02-7.40 me/100 g., magnesium 0.01-1.58 me/100 g., sodium 0.02-0.84 me/100 g., and potassium 0.00-3.26 me/100 g. l 14 3 . Methods A. V e g e t a t i o n A n a l y s i s The g e n e r a l approach used accepts the f a c t t h a t while veg-e t a t i o n can be con s i d e r e d t o be continuous, i t i s s t i l l pp.ssible t o d i s t i n g u i s h d i s c r e t e communities (Daubenmire, 1966, 1968). The communities were s e l e c t e d s u b j e c t i v e l y f o r homogeneity i n v e g e t a t i o n and h a b i t a t . T r a n s i t i o n a l communities were not sampled, w i t h one e x c e p t i o n . A s i n g l e r e c t a n g u l a r p l o t was used t o sample each community. The p l o t s i z e s v a r i e d c o n s i d e r a b l y , as a s i n g l e p l o t s i z e would not have adequately sampled many of the communities. The major-i t y of the p l o t s ranged from 10 to 30 m 2 i n a r e a . A t o t a l of 82 sample p l o t s were a n a l y z e d . The v e g e t a t i o n a n a l y s i s was based on the Braun-Blanquet method as m o d i f i e d by K r a j i n a (1933) . S u b j e c t i v e e s t i m a t i o n s of s p e c i e s s i g n i f i c a n c e (coverage, combined wi t h abundance, of a s p e c i e s i n the p l o t ) and s o c i a b i l i t y (amount of aggregation or s p a c i n g o f the i n d i v i d u a l s of a s p e c i e s ) were made s e p a r a t e l y f o r each s p e c i e s i n the d i f f e r e n t l a y e r s . The percentage c o v e r -age of each l a y e r was a l s o e s t i m a t e d . The l a y e r s d i s t i n g u i s h e d we r e : B l a y e r - shrubs, 20 cm.-10 m i n h e i g h t C l a y e r - herbs and dwarf shrubs, l e s s than 20 cm. i n h e i g h t D l a y e r - bryophytes and l i c h e n s E l a y e r - ep i p h y t e s The s c a l e s used f o r e s t i m a t i n g s p e c i e s s i g n i f i c a n c e and 15 s o c i a b i l i t y ( a f t e r K r a j i n a , 1933) are shown i n T a b l e s 4 and 5 . Table 4 Species S i g n i f i c a n c e Scale C l a s s D e s c r i p t i o n Midpoint W) +\u00E2\u0080\u00A2 Quite s o l i t a r y , very low dominance (0-1$) 0 .5 1 Seldom, very low dominance (1-2$) 1.5 2 Very s c a t t e r e d , low dominance (2-3$) 2.5 3 S c a t t e r e d , low dominance (3-5$) 4 . 0 4 Covering 5-10$ of the p l o t 7.5 5 Covering 10-20$ of the p l o t 15.0 6 Covering 20-33$ of the p l o t 26 .5 7 Covering 33-50$ of the p l o t 4 l . 5 8 Covering 50-75$ o f the p l o t 62 .5 9 Covering 7 5-less than 100$ of the p l o t 8 7 . 0 10 Covering 100$ o f the p l o t 100.0 Table 5 S o c i a b i l i t y S c a le C l a s s D e s c r i p t i o n + S o c i a b i l i t y 0 ( i n d i v i d u a l p l a n t s ) 1 Groups, up to 4x4 cm 2 2 Groups, up to 25x25 cm 2 3 Groups, up to 50x50 cm 2 4 Groups, up to 1/3 - 3/4 m 2 5 Groups, up to 1-2 m 2 6 Groups, up t o 5 m 2 7 Groups, up to 25-50 m 2 8 Groups, up to 100 m 2 9 Groups, up t o 200-250 m 2 10 Groups, up to 500 m 2 16 C o l l e c t i o n s were made of a l l v a s c u l a r p l a n t s , bryophytes and l i c h e n s . These were l a t e r i d e n t i f i e d i n the l a b o r a t o r y . A number of environmental f e a t u r e s were noted f o r each p l o t . These i n c l u d e d e l e v a t i o n , exposure, s l o p e , land form, wind i n f l u e n c e , r e l i e f , e r o s i o n , and percentage cover of humus, m i n e r a l s o i l and rock. R e l i e f d e s c r i b e s the su r f a c e shape of the p l o t (convex, concave, hummocky or s t r a i g h t ) . Wind I n f l u e n c e and e r o s i o n were assessed s u b j e c t i v e l y , on f o u r - p o i n t s c a l e s ( s l i g h t , moderate, s t r o n g , very s t r o n g f o r wind; none, s l i g h t , moderate, s t r o n g f o r e r o s i o n ) . B. S o i l A n a l y s i s One s o i l p i t was dug i n each p l o t , and the h o r i z o n s des-c r i b e d f o r depth and c o l o u r . S o i l depth, r o c k i n e s s , r o o t d i s -t r i b u t i o n , and the presence of ground water were noted f o r each p r o f i l e . A t o t a l o f 230 s o i l samples were c o l l e c t e d f o r p h y s i c a l and chemical a n a l y s e s . The s o i l s were then c l a s s i f i e d a c c o r d i n g to the Canadian system of s o i l c l a s s i f i c a t i o n (Canada S o i l Survey Committee, 1970), based p r i m a r i l y on s o i l morphology observed i n the f i e l d . C o r r e l a t i o n s of the Canadian system with the American, German and World c l a s s i f i c a t i o n s are p r e s -ented i n Appendix 2 . The s o i l samples were screened through a 2 mm. s c r e e n . A l l a n a l y s e s , both p h y s i c a l and chemical, were done on the l e s s than 2 mm. s i z e f r a c t i o n . The p h y s i c a l p r o p e r t i e s determined were t e x t u r e , moisture percentage, and water r e t e n t i o n . Texture was done by the r e v i s e d hydrometer method (Bouyoucos, 1962), u s i n g a r e c i p r o c a l shaker 17 t o a g i t a t e the s o i l suspension. The t e x t u r a l c l a s s i f i c a t i o n f o l l o w e d t h a t o f the United S t a t e s Department o f A g r i c u l t u r e (sand \u00E2\u0080\u0094 2 . 0 0 to 0 .05 mm., s i l t = 0 .05 to 0 .002 mm., c l a y = l e s s than 0.002 mm.). The f o l l o w i n g a b b r e v i a t i o n s were used i n the s o i l t e x t u r e t a b l e s : S = sand, LS = loamy sand, SL = sandy loam, S i L = s i l t loam, L = loam. Moisture percentage was determined d i r e c t l y by c o l l e c t i n g s o i l samples, weighing i n the f i e l d , and oven-drying t o constant weight a t 105\u00C2\u00B0C (moisture percentage thus c a l c u l a t e d on a dry weight b a s i s ) . A t o t a l of 122 samples were c o l l e c t e d a t three depths (0-3 i n . , 9-12 i n . , 15-18 i n . ) , where p o s s i b l e , from 12 s i t e s . C o l l e c t i o n s were made f o u r times d u r i n g the summer o f 1969. Water r e t e n t i o n was s t u d i e d on the o r i g i n a l samples c o l l e c t e d by h o r i z o n , u s i n g a pressure p l a t e and pressure membrane apparatus a t 1/3 and 15 atmospheres to approximate f i e l d c a p a c i t y and permanent w i l t i n g percentage (Richards and Weaver, 1943; R i c h a r d s , 1965). The chemical p r o p e r t i e s measured were pH, t o t a l carbon, t o t a l n i t r o g e n , a v a i l a b l e phosphorus, exchangeable c a t i o n s , c a t i o n exchange c a p a c i t y , and o x a l a t e - e x t r a c t a b l e i r o n and alum-inum. The d e t e r m i n a t i o n s of carbon, n i t r o g e n , phosphorus, c a t i o n exchange c a p a c i t y , i r o n and aluminum were done by Mr. B. von S p i n d l e r of the Department of S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h Columbia. The d e t e r m i n a t i o n s of pH and exchangeable c a t i o n s were done i n the Department of Botany. A n a l y s i s of pH was done u s i n g a Beckman model N pH meter and a Radiometer pH meter, number 24 on s o i l samples mixed t o a paste c o n s i s t e n c y (Wilde and V o i g t , 1955). A Leco t o t a l carbon 18 a n a l y z e r was used t o determine percent t o t a l carbon ( A l l i s o n , B o l l e n and Moodie, 1965). These f i g u r e s , when m u l t i p l i e d by the f a c t o r 1 .72, were used to express percentage of o r g a n i c matter. T o t a l n i t r o g e n , expressed as a percentage, was measured by the se m i m i c r o - K j e l d a h l method (Bremner, i 9 6 0 ) . A v a i l a b l e phosphorus, expressed -in.parts per m i l l i o n , was determined c o l o r -i m e t r i c a l l y by the d i l u t e a c i d - f l u o r i d e e x t r a c t i o n method of Bray and Kurtz (19^5). Exchangeable c a t i o n s ( c a l c i u m , magnesium, sodium and potassium) were e x t r a c t e d by l e a c h i n g s o i l samples with IN ammonium a c e t a t e (pH a d j u s t e d t o 7) and f i l t e r i n g g r a v i -m e t r i c a l l y (Peech e t a l . , 1947). The c o n c e n t r a t i o n s of the c a t -ions were determined on a Perkin-Elmer, model 303* atomic absorp-t i o n spectrophotometer. The r e s u l t s were expressed i n m i l l i -e q u i v a l e n t s per hundred grams of s o i l (me/100 g . ) . C a t i o n ex-change c a p a c i t y (CEC), expressed i n me/100 g., was analyzed by the KC1 s a t u r a t i o n method (Jackson, 1958). The methods f o r the det e r m i n a t i o n o f n i t r o g e n , phosphorus, exchangeable c a t i o n s and c a t i o n exchange c a p a c i t y were those used by the Department o f S o i l S c i e n c e , U n i v e r s i t y o f B r i t i s h Columbia. Percentages of i r o n and aluminum were determined only on a s e l e c t e d number o f samples, i n order t o c l a s s i f y the sample as a B f , B f h , Bhf or Bm h o r i z o n . The samples were ground t o 100 mesh and e x t r a c t e d f o l l o w i n g the a c i d ammonium oxa l a t e procedure of McKeague and Day (1966) . The c o n c e n t r a t i o n s o f i r o n and aluminum i n the e x t r a c t s were determined by atomic a b s o r p t i o n spectrophotometry. The i r o n and aluminum d e t e r m i n a t i o n s are presented i n Appendix 3 . 19 C. V e g e t a t i o n S y n t h e s i s A s s o c i a t i o n t a b l e s were made up f o r each a s s o c i a t i o n , show-i n g v a r i a t i o n s s e p a r a t e l y , where p r e s e n t . The s y n t h e t i c v a l u e s of presence and average s p e c i e s s i g n i f i c a n c e were determined f o r each s p e c i e s . Presence i s d e f i n e d as the percentage of p l o t s of a p a r t i c u l a r a s s o c i a t i o n i n which-.a s p e c i e s o c c u r s . The presence percentages were converted t o c l a s s e s as f o l l o w s : Presence C l a s s $ o f P l o t s I 1-20 I I 21-40 I I I 41-60 IV 61-80 V 81-100 In the cases of communities having fewer than f o u r p l o t s , the f r a c t i o n o f p l o t s i n which a s p e c i e s o c c u r r e d was used i n s t e a d o f presence (eg. 2 / 3 ) . In c a l c u l a t i n g average s p e c i e s s i g n i f i c a n c e , the numbers of the s p e c i e s s i g n i f i c a n c e c l a s s were converted t o percentages u s i n g the midpoint value (see Table 4 ) . The average percentage was then converted back t o a s p e c i e s s i g n i f i c a n c e c l a s s number. In the a s s o c i a t i o n t a b l e s , the s p e c i e s are arranged by l a y e r s , by d e c r e a s i n g presence value w i t h i n each l a y e r , and by d e c r e a s i n g average s p e c i e s s i g n i f i c a n c e value w i t h i n each presence c l a s s . Average s p e c i e s s i g n i f i c a n c e and s o c i a b i l i t y are r e p r e s e n t e d by two numbers (eg. 4 . 2 ) . Sporadic s p e c i e s (those o c c u r r i n g i n only one p l o t ) are l i s t e d s e p a r a t e l y by l a y e r s . The a l t i t u d i n a l a r e a i s i n d i c a t e d as A ( a l p i n e ) , LA (low a l p i n e ) o r SB 20 ( s u b a l p i n e p a r k l a n d ) . The degree of presence t o g e t h e r w i t h the average s p e c i e s s i g n i f i c a n c e i n d i c a t e s the importance of a s p e c i e s i n the community. The s p e c i e s s e l e c t e d as the C h a r a c t e r i s t i c Combinat-io n of Spe c i e s are those w i t h the h i g h e s t v a l u e s o f both presence and average s p e c i e s s i g n i f i c a n c e , o r s p e c i e s which are more or l e s s r e s t r i c t e d to the p a r t i c u l a r community. A summary of presence and average s p e c i e s s i g n i f i c a n c e f o r the major s p e c i e s t o g e t h e r w i t h a l l the a s s o c i a t i o n s i s p r o v i d e d i n a s y n t h e s i s t a b l e (Table 7 5 ) . Only s p e c i e s o c c u r r i n g i n a t l e a s t one a s s o c i a t i o n w i t h a presence of IV or V (or correspond-i n g f r a c t i o n ) were used. In a d d i t i o n , a few s p e c i e s w i t h a presence l e s s than IV are l i s t e d , as they are c h a r a c t e r i s t i c s p e c i e s f o r some a s s o c i a t i o n s . D. Computational Methods i . F l o r i s t i c S i m i l a r i t y Index The S/^rensen Index of F l o r i s t i c S i m i l a r i t y was used to compare the d i f f e r e n t p l o t s r e p r e s e n t i n g a p a r t i c u l a r a s s o c i a t -i o n . The index c a l c u l a t e d was t h a t based on dominance, K g (j (Dahl, 1956), the formula b e i n g K g d = 2c. x 100 a + b where a\u00E2\u0080\u0094sum of s p e c i e s s i g n i f i c a n c e values o f a l l s p e c i e s i n one p l o t b = sum of s p e c i e s s i g n i f i c a n c e v a l u e s o f a l l s p e c i e s i n second p l o t c = sum of the l e s s e r of the two s p e c i e s s i g n i f i c a n c e v a l u e s of each s p e c i e s i n common to both p l o t s 21 The index ranges from 0 t o 100, the h i g h e s t value o c c u r r i n g when a = b = c. T h i s index was a l s o used t o compare the d i f f e r e n t communit-i e s w i t h each o t h e r . The i n d i c e s were c a l c u l a t e d u s i n g a computer program d e v e l -oped by Ream (1965) and m o d i f i e d by Mr. Stephen Borden of the B i o l o g y Data Centre, U n i v e r s i t y of B r i t i s h Columbia, i i . Environment A n a l y s i s Among the twenty-three environmental v a r i a b l e s d e a l t with i n t h i s study, twelve had values taken a t s e v e r a l depths i n the s o i l p r o f i l e . Since a l l p l o t s d i d not have the same h o r i z o n s , comparisons on a h o r i z o n b a s i s would not have been p o s s i b l e . I t was thus c o n s i d e r e d t h a t comparisons between p l o t s and communities would be f a c i l i t a t e d by having o n l y one value per p l o t f o r each environmental f a c t o r . In o r d e r to do t h i s , the v a r i a b l e s were weighted by depth i n the f o l l o w i n g manner (method by Mr. Stephen Borden, B i o l o g y Data Centre, U n i v e r s i t y of B r i t i s h Columbia). For every v a r i a b l e which had been meas-ured a t s e v e r a l depths, the value f o r each h o r i z o n was m u l t i -p l i e d by the depth o f t h a t h o r i z o n . The sum of these v a l u e s f o r a l l h o r i z o n s was d i v i d e d by the t o t a l depth of the s o i l t o give an average value f o r the p l o t . A one-way a n a l y s i s of v a r i a n c e between communities was done f o r each environmental v a r i a b l e , u s i n g the weighted v a l u e s , where necess a r y . In the a n a l y s i s of environmental v a r i a b l e s ( s e c t i o n 7A), the terms \"low\", \"medium\" and \"hi g h \" are based on the average 22 (weighted or,unweighted) value f o r each community. 23 4. A l p i n e and T l m b e r l i n e Communities A t o t a l of f o u r t e e n p l a n t a s s o c i a t i o n s , w i t h nine v a r i a t i o n s , are d i s t i n g u i s h e d i n t h i s study. They are d e s c r i b e d below, arranged a l o n g a g e n e r a l g r a d i e n t of i n c r e a s i n g m o i s t u r e , from the x e r i c J u n i perus communis A s s o c i a t i o n to the subhydric drepanocladus exannulatus A s s o c i a t i o n . An a l t e r n a t i v e , more c o n v e n t i o n a l , method of a r r a n g i n g the communities would be to group them by a l t i t u d i n a l zone ( a l p i n e or s u b a l p i n e ) . Within each of these groups, the communities co u l d then be ordered by hygrotope. T h i s method, however, i s not w e l l s u i t e d t o the present study, s i n c e the communities do not segregate e a s i l y a c c o r d i n g to a l t i t u d e . Much of the study area i s a c t u a l l y an ecotone between the a l p i n e and subalpine zones; thus, many of the communities are represented i n both a r e a s . To present the d e s c r i p t i o n of the communities i n such a manner would be more c o n f u s i n g than i n s t r u c t i v e , s i n c e i t would be r e p e t i t i o u s . Hygrotope was found t o be the most important f a c t o r i n d e l i m i t i n g the communities (see s e c t i o n 7A) , and i s t h e r e f o r e used as the b a s i s f o r the present arrangement. The a l t i t u d i n a l a r e a (s) f o r each community i s mentioned i n the d e s c r i p t i o n . Despite u s i n g a moisture g r a d i e n t i n the present s e c t i o n , the a l t i t u d i n a l approach i s s t i l l c o n s idered t o be a u s e f u l one. The topographic and a l t i t u d i n a l r e l a t i o n s h i p s o f the communities are summarized i n s e c t i o n 7 C In the d e s c r i p t i o n of each a s s o c i a t i o n , the f l o r i s t i c s i m i -l a r i t y i n d i c e s of the p l o t s comprising the a s s o c i a t i o n are g i v e n . T h i s p r o v i d e s an o b j e c t i v e check on the s u b j e c t i v e c l a s s i f i c a t i o n , s i n c e p l o t s w i t h i n an a s s o c i a t i o n should have t h e i r h i g h e s t s i m i l a r i t i e s t o each other r a t h e r than to a p l o t l n another a s s o c i a t i o n . I f the s i m i l a r i t y v a l u e s among a l l the p l o t s of an a s s o c i a t i o n are h i g h , the a s s o c i a t i o n i s c o n s i d e r e d to be homogeneous. An a s s o c i a t i o n with a very l a r g e number of s p e c i e s i s u s u a l l y l e s s homogeneous than one w i t h few s p e c i e s . Few s t u d i e s have u t i l i z e d t h i s technique, and thus the e v a l u a t -i o n of the i n d i c e s i s s t r i c t l y e m p i r i c a l . Nonetheless, the method i s b e l i e v e d to be of c o n s i d e r a b l e v a l u e . J u n i p e r u s communis A s s o c i a t i o n (Ref. Tables 6 , 1, 8 , 9 , 10; F i g . 3) C h a r a c t e r i s t i c Combination of Species J u n i p e r u s communis Carex phaeocephala A r e n a r i a c a p i l l a r i s F e s t u c a b r a c h y p h y l l a P o l y t r i c h u m p i l i f e r u m T o r t u l a r u r a l i s P e l t i g e r a malacea T h i s a s s o c i a t i o n occurs over rock outcrops on r i d g e s and s l o p e s i n the low a l p i n e and a l p i n e a r e a s . The r e l i e f shape i s g e n e r a l l y s t r a i g h t , and the exposure i s u s u a l l y southeast. Slope g r a d i e n t s range from 26 to 70$. Rock comprises 85-95$ of the ground s u r f a c e and humus 4 -10$, with very l i t t l e m i n e r a l s o i l exposed. No e r o s i o n was observed. The hygrotope i s r a t e d as x e r i c . There i s a we11-developed B l a y e r , r a n g i n g from 85-100$ o f the coverage, p o o r l y developed C and D l a y e r s , and an o c c a s i o n a l occurrence o f an E l a y e r . The C l a y e r covers 10-35$ of the T a b l e 6 G e n e r a l E n v i r o n m e n t J u n i p e r u s : communis A s s o c i a t i o n . P l o t No.. 50 47 48 52 E l e v a t i o n ( f t . ) 7550 7450 7450 _ 7425 Phy s-io g r a p h y L a n d f c r m l e d g e s l o p e r i d g e r i d g e R e l i e f s h a p e s t r a i g h t c o n v e x s t r a i g h t s t r a i g h t E x p o s u r e SW SE SE SE S l o p e g r a d i e n t (%) 70 29 35 26 L a y e r C o v e r a g e (%) B l a y e r C l a y e r D l a y e r E l a y e r 100 10 20 1 98 35 .10 0 98 30 7 1 85 25 35 0 P l o t C o v e r a g e (%) Humus M i n e r a l s o i l R o c k 5 0 95 4 1 95 10 0 90 10 5 85 S o i l H y g r o t o p e E r o s i o n H o r i z o n d e p t h ( i n . ) Ah C R C l a s s i f i c a t i o n 0-5 5-10 10+ x e r x c - none 0-6 0-12 . 0-15 6-12 12+ 12+ 15+ L i t h i c O r t h i c R e g o s o l Table 7 Juniperus communis Assoc!ation 26 Plot No. 50 47 48 52 Plot Size (m2) 12 26 14 14 Extent of type (m2) 12 26 14 14 Elevation ( f t . ) 7550 7450 7450 7425 Altitudinal area A LA LA LA B layer Presence Aver.Sp Signifi 1 Juniperus communis 10.7 9.7 9.7 9.6 V 9 C layer 2 Carex phaeocephala 4.2 3.2 5.2 3.2 V 4 3 Arenaria capillaris 1.2 2.2 3.2 3.1 V 2 4 Festuca brachyphylla 2.2 2.2 3.2 1.2 V 2 5 Vaccinium scoparium 1.2 5.2 - 4.2 IV 4 6 Antennaria lanata 1.2 2.2 - 4.2 IV 2 7 Selaginella densa - 3.1 1.1 2.1 IV 2 8 Sibbaldia procumbens - 2.1 1.1 1.2 IV 1 9 Luzula spicata 1.1 - +.+ 2.1 IV 1 10 June us parryi - 4.2 - 4.2 I I I 3 11 Potent!11 a di vers!fol!a - 2.2 2.2 - I I I 1 12 Erigeron peregrinus - 2.2 - 1.2 I I I 1 13 Trisetum spicatum 1.2 - 2.1 - I I I 1 14 Arenaria obtusiloba - - 1.1 1.2 I I I + D layer Bryophytes 15 Polytrichum piliferum Dh 2.2 4.2 3.1 6.2 V 5 16 Tortula rural is Dh 2.2 2.2 3.2 3.1 V 3 17 Barb!1ophozi a hatcheri Dh 3.2 2.1 +.1 - IV 1 18 Dicranum scoparium Dh 1.1 1.2 - 2.1 IV 1 19 Bryum capillare Dh 1.1 1.1 - - I I I + Lichens 20 Cetraria ericetorum Dh 3.2 - 2.1 4.2 IV 3 21 Peltigera malacea Dh - 3.2 +.+ 2.2 IV 1 22 Cladonia ecmocyna Dh - 1.1 - 4.2 I I I 2 23 Lecidea granulosa Dh - 1.1 - 1.1 111 + 24 Sol ori na crocea Dh 1.1 1.1 . - - I I I + E layer 25 Cetraria pinastri EB 1.1 - +.+ - I I I + Total Species (incl.sporadics ) 21 25 21 23 26 27 28 29 30 31 32 33 Sporadic Species C layer Carex spectabilis Haplopappus l y a l l i i Hieracium gracile Saxifraga bronchial is Vaccinium caespitosum D layer Bryophytes Barb! 1 ophozi a lycopodi oides Drepanocladus uncinatus Hypnum revolutum 47(4.2) 50(1.2) 52(2.1) 48(1.2) 48(1.2) 52(1.1) 50(4.2) 48(2.2) 34 35 36 37 38 39 40 41 42 43 44 Polytrichadelphus l ya l l i i Rhacomitri um canescens ? Tetraplodon mnioides Lichens Cetraria islandica Cladonia carneola Corn! cul ar! a aculeata Peltigera canina Stereocaulon alpinum E layer Alectoria minu'scula Parmeliopsis hyperopta Psoroma hypnorum 47(1.1) 47(1.1) 52(3.1) 47(2.1) 47(1.1) 50(1.2) 50(1.1) 52(4.1) 48(+.+) 48(+.+) 50(1.1) 27 p l o t , while the D l a y e r occupies 7 - 3 5 $ . The E l a y e r only occurs i n two p l o t s , w i t h a cover of one p e r c e n t . Juniperus communis, which i s the dominant s p e c i e s i n the community, i s the o n l y s p e c i e s i n the B l a y e r , w i t h a presence of V and average s p e c i e s s i g n i f i c a n c e of 9 . There are only three constant s p e c i e s i n the C l a y e r , a l l w i t h low cover v a l u e s . These are Carex phaeocephala, A r e n a r i a c a p i l l a r i s and F e s t u c a b r a c h y p h y l l a . P o l y t r i c h u m p i l l f e r u m and T o r t u l a r u r a l i s com-p r i s e the constant bryophytes, while there are no l i c h e n s w i t h a presence of c l a s s V. P e l t i g e r a malacea, w i t h a presence of IV, and T o r t u l a r u r a l i s show a h i g h preference f o r t h i s a s s o c i a t i o n . Table 8 g i v e s the f l o r i s t i c s i m i l a r i t y i n d i c e s f o r the f o u r p l o t s comprising the a s s o c i a t i o n . The v a l u e s are a l l very h i g h , i n d i c a t i n g t h a t the a s s o c i a t i o n i s homogeneous. Table 8 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Juniperus communis Assoc-i a t i o n 50 4 7 48 5 2 ' 50 69 76 63 4 7 70 74 48 6 7 5 2 The s o i l s are a l l c l a s s e d as L i t h i c O r t h i c Regosols, having an Ah-C-R h o r i z o n sequence. Both the A and C h o r i z o n s are coarse t e x t u r e d . A l l the samples are c l a s s i f i e d as loamy sands. P l o t No. Ah H o r i z o n T e x t u r a l c l a s s Sand (%) S i l t (%) C l a y (%) C H o r i z o n T e x t u r a l c l a s s S a n d (%) S i l t (%) C l a y (%) 28 T a b l e 9 S o i l T e x t u r e J u n i p e r u s communis A s s o c i a t i o n 50 47 , 4 8 52 LS LS LS LS 77.4 82.8 84.8 79.4 22.6 17.2. 15.2 19.0 0 0 0 1.6 LS LS 73.9 79.2 26.1 20.4 0 0.4 29 T a b l e 10 S o i l C h e m i c a l A n a l y s i s J u n i p e r u s communis A s s o c i a t i o n .ot No. 50 47 48 52 i H o r i z o n pH 4.9 4.9 4.8 4.5 C (%) 12.1 7.8 9.2 12.7 OM (% ) 20.8 13. 4 15.8 21.8 N (%) 0.1 0.5 0.6 0.9 C/N 201. 17. 15. 15. P (ppm) 7. 9. 17. 18. Ca (me/lOOg) 0. 32 0.08 1. 39 0.13 Mg (me/lOOg) 0.12 0.08 0.14 0.09 Na (me/lOOg) 0.04 0.03 0.02 0.12 K (me/lOOg) 0.23 0. 07 0. 25 0.14 CEC (me/lOOg) 36.6 27.3 74.8 121.0 H o r i z o n pH 5.0 5.2 - -C (%) 8.9 5.7 - -OM- (-%\u00E2\u0080\u00A2) 15. 3 9.9 - -N (%) 0.8 0.3 - -C/N 11. 18. - -P (ppm) 8. 6. - -Ca .(me/100g) 0.05 0.27 - -Mg (me/lOOg) 0.07 0.05 - -Na (me/lOOg) 0.04 0.04 - -K (me/lOOg) 0.07 0.02 - -CEC (me/100g) 21.5 23.5 - -30 P i g . 3 . Juniperus communis A s s o c i a t i o n , P l o t 47 . Table 10 p r e s e n t s the s o i l chemical data f o r t h i s a s s o c i a t -i o n . The pH v a l u e s are s l i g h t l y lower i n the Ah than i n the C h o r i z o n , but a l l v a l u e s are s t r o n g l y a c i d i c . Organic matter decreases somewhat wit h depth, but due to the very shallow nature of the s o i l s , there i s s t i l l a c o n s i d e r a b l e amount of o r g a n i c matter i n the C h o r i z o n . Carbon-.nitrogen r a t i o s are g e n e r a l l y narrow. There i s an extremely low percentage o f t o t a l n i t r o g e n i n the Ah h o r i z o n of p l o t 5 0 , thus making the C/N r a t i o very wide. The amount of phosphorus and sodium i s approximately the same i n the A and C h o r i z o n s . Magnesium, potassium and c a t i o n exchange c a p a c i t y decrease w i t h depth; c a l c i u m decreases i n one case and i n c r e a s e s i n another. In g e n e r a l , phosphorus, c a t i o n exchange c a p a c i t y and a v a i l a b l e c a t i o n s are q u i t e v a r i a b l e among the p l o t s o f the a s s o c i a t i o n ; carbon:nitrogen r a t i o s are s i m i l a r . A n t e n n a r i a l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n (Ref. T a b l e s 11, 12, 13, 14, 15; P i g . 4, 5 , 6 , 7) C h a r a c t e r i s t i c Combination of Species A n t e n n a r i a l a n a t a S i b b a l d i a procumbens P o l y t r i c h u m p i l i f e r u m U m b i l i c a r i a hyperborea A l e c t o r i a minuscula Rhizocarpon geographicum T h i s a s s o c i a t i o n occurs on r i d g e t o p s , predominantly i n the a l p i n e a r e a . The r e l i e f shape i s g e n e r a l l y s t r a i g h t . Expos-ure i s v a r i a b l e , b e i n g south, southwest, n o r t h , northwest or n e u t r a l . Slope g r a d i e n t s range from 0 to 28$. The ground s u r f a c e i s covered by 5-85$ rock, 5-70$ humus and 0-25$ m i n e r a l Table 11 General Environment Antennaria lanata - Sibbaldia procumbens Association Antennaria - Sibbaldia - Salix Van* ati on Carex phaeocephala Vari ati on 32 Carex breweri Variati on Plot No. 10 Elevation ( f t . ) 7600 Physi ography Landform 22 7600 13 7500 28 7500 9 7600 ridge D T x u J. \u00E2\u0080\u00A2 ux straight , . , , convex to Relief shape straight . straight to convex concave convex to straight 17 7500 ridge 67 7325 straight straight 45 7500 46 7490 ridge c l i f f face straight convex , to convex Exposure N S neutral SW SW S neutral neutral NW Slope gradient 17 6 0 15 13 12 0 0 28 Layer Coverage {%) B layer 0 5 2 0 0 0 0 0 0 C layer 35 45 30 35 40 30 50 75 60 D layer 50 85 65 90 60 80 75 15 40 Plot Coverage {%) Humus 36 10 38 5 27 20 55 70 58 Mineral Soil 4 10 2 10 3 5 0 25 2 Rock 60 80 60 85 70 75 45 5 40 Soil Hygrotope Erosi on Horizon depth ( in.) L-H Ah B C R AM 0-2 Ah2 2-4 Bm 4-12 12+ . xeric strong 0-2 0-3 Bf 3-6 2-12 Cgj 6-14 12+ 14+ 0-6 6-14 14+ 1 2J-0 0-3^ xeric moderate strong none 0-4^ 3^ -12 4J--13 12+ 13+ 0-7 7+ xeric xeric strong moderate 0-6 Bf 6-15 Cg 15+ AM 0-7 Ah2 7-10 10+ Classification Alpine Lithic Dystric Orthic Brunisol Regosol Lithic Gleyed Sombric Humo-Ferric Podzol Lithic Orthic Regosol Lithic Orthic Regosol Gleyed Sombric 0 r t h i c Humo-Ferric Regosol Podzol Table 12 Antennaria lanata - Sibbaldia croc\u00E2\u0080\u0094tens As^ oci all on Antennaria lanata - Sibbaldia Carex phaeoqeshala _procu:bens - Sallx cascaden^ fs Variation Variation Carex breserl .Variation Plot No. 10 22 13 23 9 \u00E2\u0080\u00A217 67 45 46 Plot Size Cn2) 70 70 70 50 120 105 8 6 .5 Extent of type (n?) 210 104 500 96 360 105 16 6 5 Elevation (ft.) 7600 7600 7500 75 00 7600 7500 7325 75 00 7*90 Altitudinal area A A LA A A. LA \u00E2\u0080\u00A2 SP. A A B layer Aver.Species Aver.Spec'les Sign!flcance Significance Picea engelnannii - +.+ +.+ + '\u00E2\u0080\u00A2 _ ' _ Association Aver,Species p r e s e n c e Aver.Species Significance Sigr.i f lcar.ce C layer . 2 Carex phaeocephala 3 Antennaria lanata Sibbaldia procumbens _ Antennaria untJri nel 1 a Festuca'brachyphylla Arenaria capillaris Arenaria obtusiloba Sallx cascadensis Haplopappus lyallii Agrostis variabilis Luzula splcata Trlsetun splcatun Potentilla diversifolia Seduilanceolatun Juniperus consunls Juncus parryl Selaginella densa Carex-breweri Oryas octopetala Carex spectabilis\" Vacclnlua scopariun Luzula arcuata Saxifraga bronchial is Pinus albicaulis Q layer Bryophytes Polytrichum piliferun Barbllophozla hatcher! Orthocaulis floerkii Bryun capillare Ceratodon purpureus Gricicla alpestris tophozla alpestris Lichens 33 Solorina crocea 34 Uablllcaria hyperborea 35 Alectoria ninuscula 36 Lectdea granulosa 37 Rhlzocarpon geographicuni 38 Cladonia carneola 39 Peltigera canlna 40 Cetraria erfcetorua 41 Cetraria Island 1ca 42 Stereocaulon alpinun 43 Cornicularia aculeata 44 Cladonia eccocyna 45 Cladonia chiorophaea 3.2 3.2 4.2 3.2 4.2 5.2 .4.2 5.2 3.2 4.2 5.2 5.2 3.2 4.2 5.1 2.1 4.2 3.1 4.1 4.2 1.1 2.2 1.2 1.1 3.1 3.2 3.2 2.1 4.2' 5.2 6.2 3.2 4.2 4.2 4.2 4.2 - 3.1 4.1 \u00E2\u0080\u00A2 4.2 2.) 2.1 3.1 3.1 2.1 2.1 3.1 3.2 2.2 2.2 3.2 2.2 1.1 1.1 1.1 1.1 +.+ 1.+ +.+ _ - 3.2 . 1.2 - 1.1 1.1 1.1 6.3 5.3 _ ' _ - 2.2 - 1.2 2.2 2.2 2.2 : 1.* Oh 5.2 5.2 6.2 7.2 Oh - 2.1 - 1.1 Oh 2.1 - 2.1 _ Oh 1.1 - _ _ Oh . 1.1 - _ Or - - 1.1 _ Oh - - - 1.1 Dh 3.1 3.2 4.2 4.2 Dr 5.3 6.2 5.3 7.3 Dr 5.3 6.2 5.3 7.3 Dh 2.1 4.2 . 2.1 Or 3.1 4.1 3.1 4.2 Dh 3.1 4.2 2.1 . Oh 2.1 +.+ _ 1.1 Oh - 4.2 4.2 _ Oh 2.1 - _ 3.1 Oh - - 1.1 Oh 3.1 - 4.2 Oh - - 2.1 Dh - - . 3.2 6.3 6.3 7.2 6 4.2 . 3 V 5 4.2 3.2 3.2 .4 ' 7.2 4.2 6 V - 5 4.2 4.2 5.2 . . 4\" 4.2 5.2 5 V 5 2J 2.1 5.2 4 . : 3.2 2.1 3 V . 4 4.2 2.2 4.2 4 4.2' . 3.2. 4 v \u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2 ^ 3.2 3.2 6.2 5 . 2.1 - \u00E2\u0080\u00A2\u00E2\u0080\u00A2 1' \"'\u00E2\u0080\u00A2 V 3 3.2 3.2 2.1 .3 2.2 1.1 . 1 . .V 3 - 2.2 - . .'\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 5.2 1.2 4 IV . 3.3 2.2 2 4.2 3 IV 3 - 3.2 4.2 . 3 3.1 - ' 1 IV 3 3.2 3.2 4.2 \u00E2\u0080\u00A2 . 4 - IV 3 3.2 1.1 - 1 2.2 - 1 IV 2 2.2 2.1 - 1 - - - IV 1 - 2.1 - + 1.1 - + IV . i 1.+ +.+ \u00E2\u0080\u00A2 - . - IV + 2.2 +.2 - + - III + - 1.1 \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 - III \u00E2\u0080\u00A2 - - - - 8.3 7.2 II. 5 - - - \u00E2\u0080\u00A2 - - II 3 - 2.2 - \u00E2\u0080\u00A2 , II + - - 1.2 1.1 II - - - .2.1 2 II + - : - - - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2'-. II. + ' II + 4.2 5.2 6.2 5 \u00E2\u0080\u00A2 4.2 6.2 5 V ' - 5 - 1.1 - \u00E2\u0080\u00A2 3.1 - 1 III 1 1.1 - - \u00E2\u0080\u00A2 - - -' II + 1.1 - - \u00E2\u0080\u00A2 - - II - - - . - 1.1 - + II + - 1.1 - \u00E2\u0080\u00A2 - - II \u00E2\u0080\u00A2 ' ~ - - 1.1 . + II + 2.2 3.1 2 2.2 4.2 3 V 3 5.3 6.3 5.1 5 _ _ IV 5 5.3 6.3 . 5 - m IV 5 - - 8.1 6 1.1 2.1 1 IV 4 3.1 3.1 5.1 4 - _ _ IV 1, - 1.2 3.1 1 2.1 3.1 3 IV 2 1.1 \u00E2\u0080\u00A2.2 - \u00E2\u0080\u00A2 2.1 1 IV - 3.2 4.1 3 - ZA \u00E2\u0080\u00A2 1 . III 3 3.2 2.2 - 2 2.2 - 1 III 1 1.1 1.1 - * 1.1 - + III \u00E2\u0080\u00A2- - - . _ II - - \u00E2\u0080\u00A2 3.1 1 3.2 1 II 1 - 1.2 - \u00E2\u0080\u00A2 - - - II + 27 33 20 24 20 Total Species (incl.sporadics) 32 34 29 32 Sporadic Species C layer Ranunculus eschscholtzli Saxifraga ferrugtnea 9(1.1) 46 Abies lasiocarpa 22(1.*) 55 Solldago rultiradiata 17(1.1) 60 47 Carex nardlna 46(6.2) 56 Stellarla laeta 10(1.1) 48' Carex pyrenalca 22(2.2) 49 Erigeron peregrinus 28(1.2) 0 layer 61 SO Hieraclun gracile 67(3.1) Bryophytes 62 51 Luzula lahlenbergil 46(4.2) 63 52 Picea-engelnannii 101+.+) 57 Barbilophozla lycopodioidss 3(1.!) 64 Olcranun-scopariun Pohlia gracilis Pohlia nutans Lichens 13(2.1) 28(1.1) 46(1.1) 46(2.1) 9(2.1) 9(1.2) . 10(3.2) 34 s o i l . E r o s i o n i s moderate to s t r o n g , wind b e i n g the important f a c t o r . The hygrotope i s r a t e d as x e r i c . A p o o r l y - d e v e l o p e d shrub l a y e r occurs i n only two p l o t s , c o v e r i n g 2-5$ of the a r e a . The moderately-developed herb l a y e r covers 30-75$, while the we11-developed bryophyte and l i c h e n l a y e r o ccupies 15-90$. A n t e n n a r i a l a n a t a and S i b b a l d i a procumbens are the dominant s p e c i e s i n the C l a y e r . Other constant sub-dominants are Carex phaeocephala, A n t e n n a r i a u m b r i n e l l a , F e s t u c a b r a c h y p h y l l a , A r e n a r i a c a p i l l a r i s and A r e n a r i a o b t u s i l o b a . P o l y t r i c h u m p l l l -ferum i s the o n l y constant bryophyte. S o l o r i n a c r o c e a i s the only constant l i c h e n , but due to i t s low cover and low p r e f e r -ence f o r t h i s community, i t i s not c o n s i d e r e d as a c h a r a c t e r i s -t i c s p e c i e s . However, U m b i l i c a r i a hyperborea, A l e c t o r i a minus-c u l a and Rhlzocarpon geographicum are c o n s i d e r e d to be c h a r a c t -e r i s t i c s p e c i e s because of t h e i r h i g h preference f o r t h i s a s s o c -i a t i o n . The a s s o c i a t i o n i s s u b d i v i d e d i n t o three v a r i a t i o n s , based mainly on f l o r i s t i c composition. The v a r i a t i o n s are: a. A n t e n n a r i a l a n a t a - S i b b a l d i a procumbens - S a l i x c a s c a d e n s i s V a r i a t i o n b. Carex phaeocephala V a r i a t i o n c. Carex b r e w e r i V a r i a t i o n Table 13 shows the f l o r i s t i c s i m i l a r i t y i n d i c e s f o r the nine p l o t s of the a s s o c i a t i o n . The b l o c k e d - i n areas r e p r e s e n t the three v a r i a t i o n s . I t can be seen t h a t the v a l u e s are g e n e r a l l y h i g h e r w i t h i n the v a r i a t i o n s than among them. The i n d i c e s are s t i l l f a i r l y h i g h between the Antennaria - S i b b a l d i a - S a l i x and the Carex phaeocephala v a r i a t i o n s , but are much lower w i t h the Carex brewer! V a r i a t i o n . Table 13 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Ante n n a r i a l a n a t a -S i b b a l d i a procumbens A s s o c i a t i o n 10 22 13 28 9 17 67 45 46 10 68 64 53 22 64 65 13 62 28 61 51 57 51 56 69 59 62 33 40 51 41 9 17 67 45 46 38 42 40 36 35 32 24 28 28 38 35 22 26 30 The v a r i a t i o n s are d e s c r i b e d below, by g e n e r a l h a b i t a t , f l o r i s t i c s and d e t a i l e d s o i l d a t a . a. A n t e n n a r i a l a n a t a - S i b b a l d i a procumbens - S a l i x c a s c a d e n s l s V a r i a t i o n T h i s v a r i a t i o n , which i s the type f o r the a s s o c i a t i o n , occurs on r i d g e s i n the a l p i n e and low a l p i n e a r e a s , w i t h a r e l i e f shape v a r y i n g from s t r a i g h t through convex to concave. Exposure v a r i e s from n o r t h t o south and southwest. Slope g r a d i e n t s range from 0 to 17$. The ground s u r f a c e i s 60-85$ rock, 5-38$ humus and 2-10$ m i n e r a l s o i l . E r o s i o n i s s t r o n g , and the hygrotope i s x e r i c . The bryophyte and l i c h e n l a y e r i s the most prominent, c o v e r i n g 50-90$ of the a r e a . The herb l a y e r covers 3 0 - 4 5 $ , while the shrub l a y e r covers 0 - 5 $ . In a d d i t i o n t o the dominant s p e c i e s l i s t e d f o r the a s s o c -i a t i o n , the f o l l o w i n g s p e c i e s are important i n d i f f e r e n t i a t i n g t h i s v a r i a t i o n from the o t h e r s : S a l i x c a s c a d e n s i s , Haplopappus l y a l l i i , Sedum lanceolatum (which a l l show a h i g h preference f o r t h i s v a r i a t i o n ) , and Dryas o c t o p e t a l a , which i s e x c l u s i v e to t h i s v a r i a t i o n . S o i l types a s s o c i a t e d w i t h t h i s v a r i a t i o n are L i t h i c O r t h i c Regosol (2), A l p i n e D y s t r i c B r u n i s o l ( l ) and L i t h i c Gleyed Sombric Humo-Ferric Podzol ( l ) . G e n e r a l l y , the C h o r i z o n has a c o a r s e r t e x t u r e than the Ah or B h o r i z o n s . The t e x t u r e s of the Ah h o r i z o n range from sandy loam to loamy sand and sand. The B h o r i z o n , where p r e s e n t , i s c l a s s e d as sandy loam or loamy sand. The C h o r i z o n i s e i t h e r sand, sandy loam or loamy sand. In one case, f i n e n e s s o f t e x t u r e i n c r e a s e s w i t h depth ( c l a y content i n c r e a s e s from 0 to 7 $ ) . The s o i l chemical data are given i n Table 15. The pH i n c r e a s e s s l i g h t l y w i t h depth, but a l l v a l u e s are s t r o n g l y a c i d i c . Organic matter and n i t r o g e n decrease s t e a d i l y with depth, and the carbon:nitrogen r a t i o s are narrow. Phosphorus, magnesium, potassium and c a t i o n exchange c a p a c i t y decrease w i t h depth. In g e n e r a l , c a l c i u m decreases from the A to the B h o r i z o n , then i n c r e a s e s somewhat from the B t o the C h o r i z o n . & Table 14 Soil Texture Antennaria lanata - Sibbaldia procumbens Association 37 Vari ati on Plot No. 10 22 13 28 Ah Horizon Textural cl ass LS SL S LS Sand {%) 73.4 67.4 89.4 78.6 Si l t (?) 26.5 31.8 10.6 21.4 Clay {D 0.1 0.8 0 0 B Horizon Textural class SL - LS -Sand (%) 63.6 - 84.2 -Sil t {%) 35.6 - 15.8 -Clay (I) 0.8 - 0 -C Horizon Textural class S LS SL S Sand (?) 90.8 \u00E2\u0080\u00A2 82.8 74.0 92.2 Si l t (%) 9.2 17.2 19.0 7.8 Clay {%) 0 0 7.0 0 LS 73.8 24.8 1.4 SL 73.8 21.8 4.4 Carex phaeocephal a Carex breweri Variation Variation 9 17 67 45 46 LS LS SiL LS SL 75.8 78.4 36.4 71 .4 59.1 24.2 21.2 56.8 28.6 38.2 0 0.4 6.8 0 2.7 LS 81.6 18.4 0 LS 84.0 15.8 0.2 LS 76.4 23.2 0.4 Table 15 ' P l o t No. . L-H Horizon \u00E2\u0080\u00A2 pH . C (I) OH (1) N (I) C/N \u00E2\u0080\u00A2 P (pps) Ca (oe/100g) Bg (w/IOOg) Na (ne/lOOg) X (oe/IOOg) CEC (oe/IOOg) Ah Horizon pH C (I) oa (J) N (j) . C/N p (pp\u00C2\u00BB) Ca (oe/IOOg) Hg (oe/IOOg) Na (oe/IOOg) K (ce/IOOg) CEC (oe/IOOg) B Horizon pH\" C (J) OK (!) N (J) C/N P (ppn) Ca (oe/IOOg) Kg (oe/IOOg) Na (oe/IOOg) K (oe/100g) CEC (oe/IOOg) C Horizon pH C (I) OM (I) N (I) C/N P (ppe) Ca (oe/IOOg) Bg W l O O g ) Na (m/tOOg) K (n/IOOg) CEC (w/IOOg) Antennaria - Sibbaldia - S a l i x Vari a t i on Sol) Choral cal Analysts Antennaria lanata \u00E2\u0080\u00A2 Sibbaldia procurabene Association Carex phaeocephala V a r i a t i o n 4.7 9.3 16.0 ' 0.6 16. 14. U 6 0.17 ' O . H 0.18 33.7 28 17 67 4.7 16.8 29.0 0.7 24. 17. . 0 . 9 * 0.20 0.17 0.08 61.8 Carex brenerl ' V a r i a t i o n 4.9 . 4 . 9 5.1 5.2 4 . 9 4 . 9 5.1 5.4 8 . * 7.0 \u00E2\u0080\u00A2 7.6 . . . 10.1 *.o 8.9 10.0 6.8 14.5 12.1 13.1 17.3 . 6 . 9 15.4 17.2 11.7 0.4 . 0 . * 0.5 . 0 . 6 0 . 2 - 0.5 0 .7 0.5 20. 18. 15. 1B. . \u00E2\u0080\u00A2 . 18. 20. 14. 14. 10. 8. \u00E2\u0080\u00A2 11. 21. 5 . 17. 4. 7. 1 .9* . 1.06 \u00E2\u0080\u00A2 0.47 0 . 2 * 0.27 1.38 ' 0.78 0.42 0.2B 0.11 . 0.09 0.03 0.03 0.17 \u00E2\u0080\u00A2 0.09 0.02 0.23 0.16 0.12 0.10 0.15 0.14 . 0.05 0.07 0 . 3 * 0.20 0.13 0.02 0.08 0.13 0.16 0.00 2 * . 6 25.9 37.9 * 8 . 3 H . O 28.5 14.9 . 32.3 5.5 5.1 _ _ 5 . 3 3.7 - - 2.8 - - 2.1 6.4 - 4.8 \u00E2\u0080\u00A2 - _ 3.5 0.3 - 0.2 - - _ 0.1 _ 12. - 16. - _ 17. m 3. - 7. - - . . . 6. 0.23 - 0.47 - 0.27 m 0.03 - 0.02 -\u00E2\u0080\u00A2 0.01 m 0.13 - \u00E2\u0080\u00A2 0.18 - _ _ 0.05 m 0.03 - 0.04 - - 0.00 m 8.3 19.9 .\" - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - - 22.6 . -5.6 \u00E2\u0080\u00A2 5 . 3 5.8 . 5.2 5 . 3 5.5 ' 5 . 8 5.7 1.1 2 . 0 ' 0.5 2.1 5.5 1.0 0.5 2.9 1.9 3.4 0.9 3.6 9.5 1.7 0 . 8 5.0 0.1 0.2 0 . 0 0.1 0.4 0.1 0 . 0 0.2 18. 11. 13. 21. 16. 12. - 15. 19. 5 . ' 7. 4. 8. 11. 4. 6. 5 . 0.33 0.42 0.80 2.23 0.30 0.40 0.47 0.80 0.02 0.03 . 0.01 0.02 0.02 0.01 . \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - 0.02 0.02 0.14 0.15 0.32 . 0.55 0.10 0.16 0.08 0.09 0.02 0.04 0.02 0.00 0.04 0.03 0.00 0.08 16.5 17.9 . 16.3 12.8 11.7 22.0 28.5 31.5 39 F i g . 4 . Antennaria - S i b b a l d i a A s s o c i a t i o n , A n t e n n a r i a -S i b b a l d i a - S a l i x V a r i a t i o n , P l o t 28 . Note h i g h coverage of rock l i c h e n s . Krummholz belongs to Abies l a s l o c a r p a A s s o c i a t i o n and P i c e a engelmannii A s s o c i a t i o n . F i g . 5 . S o i l p r o f i l e of Antennaria - S i b b a l d i a A s s o c i a t i o n , Antennaria - S i b b a l d i a - S a l i x V a r i a t i o n , P l o t 22 . T h i s s o i l i s c l a s s i f i e d as a L i t h i c O r t h i c Regosol, with an Ah-C-R h o r i z o n sequence. ko In one case, i t i n c r e a s e s c o n s i d e r a b l y from the A to the C h o r i z o n . Sodium i n c r e a s e s w i t h depth, b. Carex phaeocephala V a r i a t i o n T h i s v a r i a t i o n a l s o occurs on r i d g e s , with a s t r a i g h t r e l i e f shape. Exposures are south and southwest. Slope g r a d -i e n t s range from 0-13$. The ground s u r f a c e i s 45-75$ rock, 20-55$ humus, and 0-5$ m i n e r a l s o i l . E r o s i o n v a r i e s from none to s t r o n g . The hygrotope i s x e r i c . T h i s v a r i a t i o n occurs main-l y i n the a l p i n e a r e a , w i t h one occurrence i n the subalpine park-l a n d . As i n the p r e v i o u s v a r i a t i o n , the D l a y e r i s the most impor-t a n t , c o v e r i n g 60-80$ o f the a r e a . The herb l a y e r coverage i s approximately the same, occupying 30-50$. There i s no shrub l a y e r . The s p e c i e s important i n the d i f f e r e n t i a t i o n o f t h i s v a r i a -t i o n are Carex phaeocephala and A r e n a r i a c a p i l l a r l s , both with a much h i g h e r average s p e c i e s s i g n i f i c a n c e than i n the o t h e r two v a r i a t i o n s . The s o i l s are a l l c l a s s e d as L i t h i c O r t h i c Regosols, w i t h an Ah-C h o r i z o n sequence. The Ah h o r i z o n i n the a l p i n e s i t e s i s a loamy sand, while i t i s a s i l t loam i n the subalpine p l o t . The C h o r i z o n , where pr e s e n t , i s e i t h e r a loamy sand or sandy loam. The chemical data on pH, o r g a n i c matter, n i t r o g e n and carbon:nitrogen r a t i o s are as d e s c r i b e d f o r the Antennaria -S i b b a l d i a - S a l l x V a r i a t i o n . In p l o t 9> o r g a n i c matter i s s t i l l r e l a t i v e l y h i g h i n the C h o r i z o n because of the shallowness of the s o i l . Phosphorus, magnesium, potassium and c a t i o n exchange c a p a c i t y decrease with depth, and sodium i n c r e a s e s , as i n the prev i o u s v a r i a t i o n . Calcium i n c r e a s e s from the A to the C h o r i z o n . The a v a i l a b l e c a t i o n s are present i n s m a l l e r q u a n t i t -i e s i n the A h o r i z o n of the Carex phaeocephala V a r i a t i o n as compared t o the An t e n n a r i a - S i b b a l d i a - S a l i x V a r i a t i o n . In the C h o r i z o n , there i s l e s s c a l c i u m and sodium, and s i m i l a r amounts of magnesium and potassium, c. Carex b r e w e r i V a r i a t i o n T h i s v a r i a t i o n occurs i n the a l p i n e area on r i d g e s and c l i f f f a c e s . The r e l i e f shape i s convex to s t r a i g h t . Exposure i s northwest f o r one p l o t and n e u t r a l f o r the o t h e r . The slope g r a d i e n t i s 28$ i n one \u00C2\u00A3lot and 0 i n the o t h e r . The ground s u r f a c e i s only 5-40$ rock, which i s much l e s s than In the othe r two v a r i a t i o n s . There i s a much h i g h e r cover of humus, occupying 58-70$ of the a r e a . M i n e r a l s o i l ranges from 2-25$ of the p l o t coverage. E r o s i o n i s moderate t o s t r o n g . The hygrotope i s x e r i c . As i n the Carex phaeocephala V a r i a t i o n , there i s no shrub l a y e r . The herb l a y e r i s the most prominent, c o v e r i n g 60-75$ of the a r e a . The bryophyte and l i c h e n l a y e r i s reduced t o 15-40$ coverage, t h i s b e i n g mainly due t o the l a c k o f the rock l i c h e n s U m b i l l c a r i a hyperborea, A l e c t o r l a minuscula and Rhlzo-carpon geographicum. T h i s community i s a c l o s e d one, whereas the o ther two are open. The important s p e c i e s d i f f e r e n t i a t i n g t h i s v a r i a t i o n are Carex b r e w e r i , which i s e x c l u s i v e t o i t , and L u z u l a a r c u a t a , 42 F i g . 6. A n t e n n a r i a - S i b b a l d i a A s s o c i a t i o n , Carex phaeocephala V a r i a t i o n , P l o t 9. F i g . 7. Antennaria - S i b b a l d i a A s s o c i a t i o n , Carex breweri V a r i a t i o n , P l o t 4 5 . Note hi g h coverage of A n t e n n a r i a l a n a t a ( l i g h t green l e a v e s ) . which has a h i g h preference f o r i t . The s o i l s vary from O r t h i c Regosol t o Gleyed Sombric Humo-F e r r i c P o d z o l . Texture becomes c o a r s e r w i t h depth i n p l o t 46. A l l samples, except f o r one Ah h o r i z o n , are c l a s s e d as loamy sands. The Ah h o r i z o n i n p l o t 46 i s a sandy loam. The pH v a l u e s f o r the Ah h o r i z o n are s l i g h t l y h i g h e r than i n the o t h e r two v a r i a t i o n s , but they i n c r e a s e i n the C h o r i z o n to s i m i l a r v a l u e s . Organic matter, n i t r o g e n , c a r b o n : n i t r o g e n r a t i o , magnesium and sodium are as d e s c r i b e d f o r the o t h e r v a r i a t i o n s . Potassium and c a l c i u m decrease w i t h depth i n one case, and i n c r e a s e i n another. C a t i o n exchange c a p a c i t y i n c r e a s e s w i t h depth or remains the same. In the A h o r i z o n , the exchangeable c a t i o n s are a l l present i n s m a l l e r q u a n t i t i e s than i n the A n t e n n a r i a - S i b b a l d i a - S a l i x V a r i a t i o n . There i s more c a l c i u m and l e s s sodium than i n the Carex phaeocephala V a r i a t i o n . In the B h o r i z o n , there i s l e s s magnesium, sodium and potassium than i n the A n t e n n a r i a - S i b b a l d i a - S a l i x community. In the C h o r i z o n , there i s l e s s sodium and p o t a s -sium than i n the type v a r i a t i o n , and l e s s potassium than i n the Carex phaeocephala V a r i a t i o n . Juncus p a r r y i A s s o c i a t i o n (Ref. T a b l e s 16, 17, 18, 19, 20; F i g . 8) C h a r a c t e r i s t i c Combination of Species Juncus p a r r y i Antennaria lanata Polytrichum p i l i f e r u m Lecidea granulosa This assoc ia t ion occurs on south-facing slopes i n the alpine and low alpine areas . It i s less wel l developed in the subalpine parkland, occurr ing there on slopes and ridges having a southern exposure. Slope gradients range from 10 to 35$ > the steeper slopes being In the a lpine zone. R e l i e f shape var ies from s t ra igh t to convex to concave. The slopes are f a i r -ly rocky, rocks covering 15 to 60$ of the ground surface . Humus covers 35-82$, while exposed mineral s o i l occupies only 0 - 2 0 $ . Eros ion var ies from none to moderate and, i n one case, s trong. The hygrotope i s rated as subxeric . The herb layer i s very we l l developed, occupying 40-85$ of the area . The bryophyte and l i chen layer I s i l e s s wel l developed, coverage being 15-60$. In the C l a y e r , Juncus p a r r y i , with an average species s ign i f i cance of 8 , and Antennaria lanata , with an average species s ign i f i cance of 5 , are the dominant p l a n t s . Other constant species are Arenaria c a p i l l a r i s , Hieracium g r a c i l e and S i b b a l -d i a procumbens. Vaccinium scoparium and Erigeron peregrinus are prominent i n a few p l o t s . In the D l a y e r , Polytrichum p i l i f e r u m i s the only constant bryophyte, with an average species s i g n i f -icance of 6 . Among the l i c h e n s , Lecidea granulosa Is the only constant, with an average species s ign i f i cance of 5 . Table 18 gives the f l o r i s t i c s i m i l a r i t y indices for the e ight p lo ts comprising the a s s o c i a t i o n . The majority of the Table 16 General Environment Juncus parryi Associ ation 45 Plot No. 12 Elevation ( f t . ) 7575 Physi ography Landform Relief shape straight Exposure SE Slope gradient {%) 24 7550 21 7550 40 7500 30 7420 sl ope' straight straight to convex to convex S 34 S 25 convex to concave 35 S 24 59 7350 7325 ridge SE 10 14 63 7275 base of ridge convex straight concave concave SE 12 Layer Coverage {%) C layer 85 D layer 15 70 40 60 45 70 40 65 40 75 45 40 60 75 25 Plot Coverage {%) Humus Mineral Soil Rock 10 65 0 35 35 5 60 65 5 30 65 5 30 55 5 40 35 0 65 70 20 10 Soil Hygrotope Erosi on Horizon depth ( in.) L-H 1-0 Ah 0-5 .1 moderate 0-5 Bfh 5-15j Bhf 5-16 Cg 15y + 16+ 0-6 6-13 13+ \u00E2\u0080\u0094 subxeric none strong 0-5 Bhf 5-8 Bm 8-20 20+ none none moderate 0-6 Bm 6-12 12+ 0-9 9-13 13+ 0-7 Bfh 7-10 10+ 0-4 4+ Classification 61 eyed Sombric Humo-Ferric Podzol Sombric Lithic Ferro-Humic Orthic Podzol Regosol Sombric Alpine Lithic Sombric Ferro-Humic Dystric Orthic Humo-Ferric Podzol Brunisol Regosol Podzol Orthic Regosol Table 17 Juncus parry! Association Plot Ho. 12 8 21 . 40 30 59 68 63 Plot Size (n?) 10 10 10 . 10 10 8 \u00E2\u0080\u00A26 10 Extent of type (B-) 20 21 27 ' 16 27 15 11 18. Elevation (ft.) 7575 7550 7550 75 00 7420 7350 7325 7275 Altitudinal area A A A LA LA SP SP SP C layer ' Presence. Aver.Sp' Signifii 1 Juncus parry! 8.2 8.2 8.2 8.2 7.2 8.2 7.2 8.2 V 8 2 Antennaria lanata 4.2 4.2 5.2 5.2 4.2 7.2 4.2 7.2 . V. 5 3 Arenaria capillaris '4.2 3.2 3.1 2.2 3.2 . 3.1 . 6.2 . V 4 * Hieraclua graclle 6.2 +.2 . 4.2 3.2 6.2 2.1 2.1 V 4 5 Sibbaldia procur.bens 4.2 3.2 4.2 5.2 . 5.2 3.2 4.2 - V . 4 6 Vacclnluiii scoparius - 3.1 . 1.2 6.2 5.2 _ 3.1 IV. 4 7 Carex phaeocephala 2.2 5.2 4.2 2.2 3.2 3.2 IV 3 8 Antennaria unbrinella 2.1 - 2.2 2.1 2.1 - 3.2 IV . 1 .9 Luzula splcata 1.1 1.1 1.1 - 2.1 3.2 - IV 1 10 Erigeron peregrin'us \u00E2\u0080\u00A2- -' -.- 6.2 3.2 5.2 \u00E2\u0080\u00A2 - 2.2 III 4 11 Agrostls variabilis 1.1 +.1 4.2 - 2.1 - - - III 1 12 Carex pyrenalca 1.2 - - - 4.2 \u00E2\u0080\u00A2 - 3.2 - II 1 13 Carex spectabilis - - 2.2 - 4.2 - 2.2 - II 1 14 Claytonla lanceolata - - - - - 4.1 4.1 II 1 15 festuca brachyphylla - 4.2 1.1 - 3.1 - - - l l 1 16 Luplnus 1ati foli us - - - 1.2 4.2 II 1 17 Poa cusicki1 +.+ - - +.+ - - 5.2 . II 1 18 Selaglnella densa 1.1 2.1 4.1 '- - - - II 1 19 Trisetua spicatun . +.1 1.1 _ - 4.2 - ' - II 1 20 luzula wahlenbergti 2.2 . 3.2 1.2 - - - II + 21 Arenaria obtusiloba - - 1.1 - 1.1 - _ - II + 22 Carex nigricans 2.3 - ' - . - - 1.2 - II + 23 Luzula sp. - - - - - - 3.2 1.2 II + 0 layer Bryophytes 24 Polytrlchun piliferum 0h4.2 7.2 7.3 .6.2 5.2 6.1 7.2 5.2 V- . 6 25 Ceratodon purpureus Oh . 2.1 - 1.1 1.1 2.1 - I l l + 26 Polytrichadelphus lyal l i i Dh2.2 - - 4.2 - - - 3.1 II 1 27 Polytrlchun fornosun Dh 3.1 - - 2.2 1.1 - - - II + Lichens 28 Lecidea granulosa Dh - 1.1 3.2 1.1 3.1 4.1 8.2 3.1 V 5 29 Cladonia carneola Oh - 3.2 2.1 4.2 1.1 1.1 IV 2 30 Solorina crocea 0h+.+ 2.1 3.+ 3.1 . 3.1 IV 1 31 Cladonia ecnocyna Dh - 3.2 2.1 3.2 4.2 - 111 2 32 Cetraria tslandica Dh - 3.1 3.2 2.2 - - - II 1 33 Cetraria ericetorun Dh - - - 4.2 - 3.1 II 1 . 34 Peltigera canina Dh +.+ 1.1 - 1.1 - - II + 35 Cladonia sp. Oh - 2.1 - - . 2.1 II + 36 Cladonia pyxidata Oh - 2.1 1.1 - II + Total Species (Incl.sporadics) 23 22 25 21 26 18 15 18 Sporadic Species . C layer 0 layer 37 Anenone occidentals 63(2.2) Bryophytes 38 Arnica 1atifolia. 63(1.1) .39 Carex brevlpes 63(2.1) .49 Barbllophozla hatched 21(3.1) 40 DeschazipsU atropurpurea 59(3.2) . 50 Desr.atodon latifolius 59(3.1) 41 Juniperus co.-nunls 2K+.+) Lichens 42 Luzula glabrata 12(2.2) 43 Phleun alpir.un 12(1.2) 51 Alectorla ninuscula 8(2.1) 44 Potentllla diversifolia 21(1.2) 52 Peltigera canina var. rufescens 40U.+) 45 Sedun lanceolatun 2K+.+) 53 Peltigera lepidcphora 21(+.+) 46 Vacclnlu.i caespi tosur, 8(1.1) 54 Rhizocarpo.i geographicu: 8(4.2) 47 Valeriana sitchensis 63(1.2) 55 Stereocaulon alplnuT 12(1.1) 48 Veronica sornskjoldil 12(3.2) 56 Ur.bi Tlcarla hyperborea 8(4.2) 47 v a l u e s are q u i t e h i g h . Table 18 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Juncus p a r r y i A s s o c i a t i o n 12 8 21 40 30 59 68 63 12 56 58 64 51 58 45 52 8 74 60 50 54 54 50 21 68 57 57 60 51 40 59 66 53 55 30 50 55 42 59 42 65 68 36 62 The s o i l s a s s o c i a t e d w i t h t h i s community are Sombric Humo-F e r r i c Podzol ( 2 ) , Sombric Ferro-Humic Podzol ( 2 ) , O r t h i c Regosol ( 3 ) , and A l p i n e D y s t r i c B r u n i s o l ( l ) . Podzols predomin-ate i n the a l p i n e s i t e s , while r e g o s o l s are the major s o i l c l a s s i n the subalpine p l o t s . The s o i l t e x t u r e r e s u l t s are shown In Table 19. Texture becomes c o a r s e r w i t h depth. The A h o r i z o n samples are mainly loamy sands or sandy loams. The B h o r i z o n ranges from sandy loam to sand. Sands predominate i n the C h o r i z o n . P l o t 68, which occurs i n the subalpine p a r k l a n d , i s a f i n e r t e x t u r e d s o i l , a l l h o r i z o n s b e i n g sandy loams. Table 20 presents the s o i l chemical data f o r the a s s o c i a t -i o n . The v a l u e s f o r pH i n c r e a s e s l i g h t l y w i t h depth, but a l l 48 T a b l e 19 S o i l T e x t u r e J u n c u s p a r r y i A s s o c i a t i o n .ot No. 12 8 21 40 30 59 68 63 L H o r i z o n T e x t u r a l c l a s s LS LS LS SL LS SL SL LS S a n d (\u00E2\u0080\u00A2%-)\u00E2\u0080\u00A2 8-3.2 71. 8 8-2-. 0 5 5.4 79.6 68.8 59. 8 78.0 S i l t (%) 16.8 28.2 18.0 41.4 20.4 28.0 36. 4 21.6 C l a y (%)\u00E2\u0080\u00A2 0 0 0 3.2 0 3.2 3.8 0.4 H o r i z o n T e x t u r a l c l a s s S LS - LS LS - SL -S a n d (%) 89. 4 73.4 - 74.4 84.6 - 54.8 \u00E2\u0080\u00A2 -S i l t (%) 10. 6 26.6 - 25.6 15.4 - 42.4 -C l a y (%) 0 0 - 0 0 - 2.8 -H o r i z o n T e x t u r a l c l a s s S S S LS S S SL S S a n d (%) 94. 8 93.4 85.6 83.2 90.2 88.4 57.8 87.2 S i l t (%) 5.2 6.6 14.4 16.8 9.8 9.8 33.8 12.4 C l a y (%) 0 0 0 0 0 1.8 8.4 0.4 Table 20 Soil Chemical Analysis Juncus parryi Association 49 Plot No. 12 8 21 Ah Horizon pH 4.7 4.7 5.0 C (%) 8.4 15.1 7.9 OM {%) 14.4 26.0 13.6 N (?) 0.5 0.8 0.8 C/N 16. 18. 10. P (ppm) 6. 13. 18. Ca (me/1OOg) 0.29 1.03 0.62 Mg (me/1OOg) 0.05 0.20 0.07 Na (me/1OOg) 0.14 0.12 0.14 K (me/1OOg) 0.14 0.10 0.13 CEC (me/1OOg) 27.5 31.6 38.4 Horizon pH 4.9 5.2 -C {%) 4.5 8.1 -OM {%) 7.7 14.0 -N {%) 0.3 0.5 -C/N 16. 15. -P (ppm) 5. 6. -Ca (me/1OOg) 0.05 0.38 -Mg (me/1OOg) 0.04 0.04 -Na (me/1OOg) 0.14 0.12 -K (me/1OOg) 0.08 0.03 -CEC (me/1OOg) 8.9 12.0 -Horizon pH 5.1 5.1 5.2 C (%) 1.7 2.9 2.1 OM {%) 2.9 4.9 3.6 N il) 0.1 0.2 0.1 C/N 17. 15. 16. P (ppm) 3. 5. 6. Ca (me/1OOg) 0.32 0.08 0.91 Mg (me/1OOg) 0.01 0.04 0.01 Na (me/1OOg) 0.13 0.13 0.31 K (me/1 OOg) 0.09 0.03 0.01 CEC (me/1OOg) 4.6 6.3 7.3 40 30 59 68 63 4.8 4.8 4.6 4.6 4.7 11.4 6.1 10.5 15.0 7.2 19.7 10.5 18.1 25.9 12.3 0.7 0.1 0.6 0.7 0.3 17. 122. 18. 20. 21. 9. 10. 17. 14. 7. 0.11 0.25 0.95 0.12 0.37 0.07 0.03 0.25 0.05 0.05 0.07 0.12 0.13 0.14 0.14 0.09 0.01 0.37 0.10 0.17 26.4 34.1 28.4 41.2 26.9 5.0 4.9 5.2 7.7 5.7 - 4.0 -13.3 9.7 - 6.9 -0.5 0.3 - 0.2 -16. 20. - 19. -10. 15. - 6. -0.05 0.22 - 0.13 -0.03 0.02 - 0.01 _ 0.05 0.13 - 0.14 -0.01 0.00 - 0.04 _ 22.4 13.2 - 7.3 -5.1 5.1 4.7 5.1 5.0 4.1 3.3 5.1 2.2 2.2 7.1 5.6 8.7 3.8 3.8 0.3 0.2 0.3 0.1 0.2 15. 19. 16. 18. 14. 6. 5. 1 1 . 5. 2. 0.23 0.26 0.29 0.27 0.44 0.02 0.01 0.05 0.01 0.03 0.06 0.13 0.10 0.14 0.11 0.00 0.00 0.13 0.03 0.18 24.9 20.0 17.0 8.9 7.0 P i g . 8. J u n c u s p a r r y i A s s o c i a t i o n , P l o t 8. 51 v a l u e s are s t r o n g l y a c i d i c . Organic matter and n i t r o g e n dec-rease s t e a d i l y w i t h depth. Carbon:nitrogen r a t i o s are g e n e r a l l y narrow. There i s a very low amount o f n i t r o g e n In the Ah h o r i z o n o f p l o t 3 0 , thus making the carbon:nitrogen r a t i o very wide. Phosphorus, magnesium, potassium and c a t i o n exchange c a p a c i t y a l l decrease i n q u a n t i t y with depth; c a l c i u m and sodium are v a r i a b l e , d e c r e a s i n g i n some p l o t s and I n c r e a s i n g i n o t h e r s . Carbon:nitrogen r a t i o s , phosphorus and c a t i o n exchange c a p a c i t y are g e n e r a l l y s i m i l a r among the v a r i o u s p l o t s ; the exchangeable c a t i o n s vary w i d e l y . A n t e n n a r i a l a n a t a A s s o c i a t i o n (Ref. T a b l e s 2 1 , 2 2 , 2 3 , 24, 2 5 ; F i g . 9 , 1 0 ) C h a r a c t e r i s t i c Combination of Species Antennaria l a n a t a S a l i x c ascadensis Gentiana g l a u c a P o l y t r i c h u m p i l l f e r u m T h i s a s s o c i a t i o n occurs a t the base of s l o p e s , on r i d g e s and on s l o p e s l n the a l p i n e and low a l p i n e a r e a s . The r e l i e f shape i s hummocky. Exposure i s v a r i a b l e , and the s l o p e s are very g e n t l e , r a n g i n g from 0-9$. Most of the ground s u r f a c e i s covered by humus (64-90$), w i t h very few rocks ( 0 - 1 2 $ ) . There i s u s u a l l y some m i n e r a l s o i l exposed ( 0 - 3 5 $ ) . E r o s i o n v a r i e s from none t o s t r o n g . The hygrotope i s mesic. The herb l a y e r i s predominant, c o v e r i n g 70 - 8 5 $ of the a r e a . The D l a y e r i s f a i r l y we 1 1-developed, although there are few s p e c i e s . Coverage i s 40-60$. Anten n a r i a l a n a t a Is the dominant s p e c i e s , with an average 52 T a b l e 21 G e n e r a l E n v i r o n m e n t A n t e n n a r i a l a n a t a A s s o c i a t i o n P l o t No. 3 4 16 32 E l e v a t i o n ( f t . ) 7600 7575 7475 7450 P h y s i o g r a p h y L a n d f o r m r i d g e b a s e o f s l o p e \u00E2\u0080\u00A2 b a s e o f s l o p e s l o p e R e l i e f s h a p e E x p o s u r e n e u t r a l NE n e u t r a l S S l o p e g r a d i e n t (%) 0 1 0 9 L a y e r C o v e r a g e (%) C l a y e r 70 70 85 85 D l a y e r 50 40 40 60 P l o t C o v e r a g e ( %) Humus 64 73 90 88 M i n e r a l s o i l 35 25 10 0 Rock 1 2 0 12 S o i l H y g r o t o p e E r o s i o n s t r o n g m o d e r a t e none none H o r i z o n d e p t h ( i n . ) L-H - - 2 1/2-0 -Ah 0-6 0-3 0-2 0-2 B Bm 6-10 B f h 3-15 Bm 2-13 1/2 B h f 2 1 C g j 10-19 Cg 19 + C 15-21 Cg 21+ 13 1/2+ 8 1/2 C l 8 1/2-16 1/2 C2 16 1/2+ C l a s s i f i c a t i o n G l e y e d G l e y e d A l p i n e S o m b r i c D y s t r i c H u m o - F e r r i c B r u n i s o l P o d z o l A l p i n e D y s t r i c B r u n i s o l M i n i F e r r o -Humic P o d z o l Table 22 Antennaria lanata Associ ati on 53 Plot No. \u00E2\u0080\u00A2 3 4 16 32 Plot Size (m2) 10 10 10 10 Extent of type (m ) 40 126 196 24 Elevation ( f t . ) 7600 7575 7475 7450 Altitudinal area A A LA LA Aver.Species C layer Presence Significance 1 Antennaria lanata 8.3 8.3. 7.3 7.2 V 8 2 Salix cascadensis 5.2 5.2 7.2 5.2 V 6 3 Carex pyrenai ca 4.2 3.2 5.2 3.2 V 4 4 Gentiana glauca 3.1 2.1 4.2 4.2 V 4 5 Phyllodoce empetriformis 1.2 4.2 1.2 4.2 V 3 6 Sibbaldia procumbens 2.1 3.2 3.2 3.2 V 3 7 Juncus parryi 1.1 2.2 2.2 2.2 V 2 8 Luzula spicata 2.1 1.1 2.1 1.1 V 1 9 Luzula wahlenbergii ' +.+ 1.1 1.2 2.2 V 1 10 Carex spectabilis 1.2 5.3 - 6.2 IV 5 11 Agrostis variabilis 3.1 - 4.2 2.2 IV 3 12 Arenaria obtusiloba 2.1 1.1 2.1 IV 1 13 Festuca brachyphylla - 3.1 4.2 111 2 14 Erigeron peregrinus - 1.1 - 3.2 I I I 1 15 Vacci ni urn scopari urn - - +.+ 3.2 I I I 1 16 Carex phaeocephala 2.2 - 1.2 111 + 17 Arenaria capillaris - 1.1 +.1 I I I + D layer Bryophytes 18 Polytrichum pi 1 iferum Dh 7.3 7.3 6.2 5.2 V 6 19 Lophozia alpestris Dh - +.+ +.+ 2.1 IV + 20 Barbi 1 ophozia hatcheri Dh - +.+ - 2.1 Ml + 21 Ceratodon purpureus Dh - +.+ - 2.1 I I I + 22 Pohlia nutans Dh - 1.1 1.1 I I I + Lichens 23 Lecidea granulosa Dh 3.1 3.1 5.2 5.2 V 4 24 Cladonia carneola Dh 2.1 3.1 1.2 4.2 V 3 25 Sol ori na crocea Dh 2.1 2.1 3.2 3.2 V 3 26 Cetraria islandica Dh 5.2 2.1 2.1 IV 3 27 Cladonia ecmocyna Dh 2.1 - 1.2 4.2 IV 2 28 Cetraria ericetorum Dh - - 4.2 3.2 I I I 2 Total Species (incl.sporadics) 21 26 31 31 Sporadic Species 38 Bryum sp. 16(1.1) C layer 39 Cephaloziella subdentata 16(+.+) 29 Deschampsia atropurpurea 32(1.1) 40 Dicranum scoparium 4(1.1) 30 Hieraci urn gracile 32(2.2) 41 Kiaeria b ly t t i i 32(4.2) 31 Juncus drummondii 16(2.2) 42 Orthocaulis f loerki i 16(1.1) 32 Juniperus communis 32(+ .+) 43 Paraleucobryum enerve 32(3.2) 33 Luzula arcuata 3(+.1) 44 Polytrichadelphus l ya l l i i 3(1.+) 34 Picea engelmannii 32(+ .+ ) 45 Polytrichum formosum 16(3.1) 35 Poa cusickii 4(3.1) 46 Polytrichum ? juniperinum 32(5.2) 36 Vaccinium caespitosum 32(6.2) 47 Polytrichum norvegicum 4(3.1) D layer Lichens Bryophytes 16(1.1) 48 Pel t i ge ra canina 32(1.1) 37 Bryum capillare 49 Stereocaulon alpinum 16(1.2) 54 s p e c i e s s i g n i f i c a n c e o f 8 . The o t h e r s p e c i e s of h i g h cover i n the C l a y e r i s S a l i x c a s c a d e n s i s , w i t h an average s p e c i e s s i g -n i f i c a n c e o f 6 . Other constant s p e c i e s are Carex p y r e n a i c a , Gentiana g l a u c a , Phyllodoce e m p e t r i f o r m i s , S i b b a l d i a procumbens, Juncus p a r r y i , L u z u l a s p i c a t a and Luzula w a h l e n b e r g i i . Gentiana g l a u c a i s c o n s i d e r e d as a c h a r a c t e r i s t i c s p e c i e s because of i t s e x c l u s i v e n e s s f o r t h i s a s s o c i a t i o n . In the D l a y e r , P o l y t r i c h u m p i l l f e r u m i s the constant bryophyte, w i t h an average s p e c i e s s i g n i f i c a n c e of 6 . Constant l i c h e n s i n c l u d e L e c l d e a g r a n u l o s a , C l a d o n l a c a m e o l a and S o l o r l n a c r o c e a , a l l w i t h low cover v a l u e s . Table 23 shows the f l o r i s t i c s i m i l a r i t y i n d i c e s f o r the f o u r p l o t s making up the a s s o c i a t i o n . P l o t s 3 and 4 , In p a r t i c -u l a r , have a very h i g h s i m i l a r i t y . Table 23 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the A n t e n n a r i a l a n a t a A s s o c i a t -i o n 3 4 16 32 3 80 63 49 4 59 57 16 54 22 The s o i l s of t h i s community are c l a s s e d as A l p i n e D y s t r i c B r u n i s o l s , Gleyed Sombric Humo-Ferric Podzol;,and M i n i F e r r o -Humic Podzol. T a b l e 24 S o i l T e x t u r e A n t e n n a r i a l a n a t a A s s o c i a t i o n P l o t No. Ah H o r i z o n T e x t u r a l c l a s s S a nd (%)\u00E2\u0080\u00A2 S i l t (%) C l a y (%) B H o r i z o n T e x t u r a l c l a s s S a n d (%) S i l t (%) C l a y (%) C H o r i z o n T e x t u r a l c l a s s S a nd (%) S i l t (%) C l a y (%) 3 4 16 SL S i L SL 5-5.6 47. 2 60 .4 H4.4 50.0 37.2 0 2.8 2.4 SL S i L SL 55.2 46.4 57.2 43.2 51.0 40.4 1.6 2.6 2.4 LS 8 3.3 16.5 0.2 S 94.7 5.3 0 . S 94.0 5.6 0.4 Plot No. L-H Horizon pH C (?) OM (?) N (?) C/N P (ppm) Ca (me/lOOg) Mg (me/lOOg) Na (me/lOOg) K (me/lOOg) CEC (me/lOOg) Ah Horizon pH C (?) OM (?) N (?) C/N P (ppm) Ca (me/lOOg) Mg (me/lOOg) Na (me/lOOg) K (me/lOOg) CEC (me/lOOg) B Horizon pH C (?) OM (?) N (?) C/N P (ppm) Ca (me/lOOg) Mg (me/lOOg) Na (me/lOOg) K (me/lOOg) CEC (me/lOOg) C Horizon pH C (?) OM (?) N (?) C/N P (ppm) Ca (me/lOOg) Mg (me/lOOg) Na (me/lOOg) K (me/lOOg) CEC (me/lOOg) Table 25 Soil Chemical Analysis Antennaria lanata Association 3 4 16 32 .4.2 I9;3 33.3 -1.5 13. 6 . : 1.66 0.31 0.34 0.78 29.9 4.9 5.0 4.5 4.5 13.0 10.9 13.0 14.0 22.3 18.7 22.3 24.1 0.8 0.7 0.1 0.9 16. 16. 118. 15. 15. 20. 9. 18. 0.14 0.16 0.19 0.76 0.08 0.06 0.08 0.24 .0.16 . 0.13 0.17 0.13 0.16 0.12 0.17 0.30 32.5 ' 71.3 18.3 78.7 5.8 5.4 5.0 5.1 2.8 5.2 6.6 7.6 4.8 8.9 11.4 13.1 0.2 0.4 0.5 0.5 13. 13. 14. 17. 8. 7. 3. 11. 0.13 0.19 0.10 0.03 0.02 0.02 0.02 0.02 0.16 0.18 0.15 0.11 0.04 0.04 0.06 0.00 21.8 22.8 9.9 31.5 5.9 5.5 5.1 5.2 0.8 0.9 1.3 1.9 1.4 1.6 2.2 3.2 0.1 0.1 0.1 0.1 16. 18. 16. 19. 7. 4. 3. 9. 0.43 0.33 0.03 0.22 0.02 0.01 0.01 0.01 0.12 0.10 0.13 0.10 0.02 0.02 0.07 0.00 21.5 6.8 4.6 15.2 57 F i g . 9. A n t e n n a r i a l a n a t a A s s o c i a t i o n , P l o t 3. F i g . 10. S o i l p r o f i l e of A n t e n n a r i a l a n a t a A s s o c i a t i o n , P l o t 3. T h i s s o i l i s c l a s s i f i e d as a Gleyed A l p i n e D y s t r i c B r u n i s o l w i t h Ah, Bm, Cgj and Cg h o r i z o n s . S o i l t e x t u r e i s c o a r s e r i n the G h o r i z o n than i n the A or B h o r i z o n s . The A h o r i z o n samples range from s i l t loam to loamy sand. The B h o r i z o n i s predominantly loamy sand. The C h o r i z o n s o i l s are c l a s s e d as sands and loamy sands. The s o i l chemical data are given i n Table 2 5 . The pH values i n c r e a s e w i t h depth and are a l l a c i d i c . Organic matter and n i t r o g e n decrease with depth. Carbon:nitrogen r a t i o s are narrow. The percentage of n i t r o g e n i n the Ah h o r i z o n of p l o t 16 i s very low; thus, the carbon:nitrogen r a t i o i s extremely wide. Phosphorus, c a t i o n exchange c a p a c i t y and exchangeable c a t i o n s decrease i n amount wit h depth, w i t h the e x c e p t i o n of c a l c i u m , which i n c r e a s e s i n h a l f the p l o t s . Carbon:nitrogen r a t i o s , phosphorus, sodium and magnesium (the l a t t e r In the B and C h o r i z o n s ) are s i m i l a r among the f o u r p l o t s , while c a t i o n exchange c a p a c i t y , c a l c i u m and potassium are v a r i a b l e . Phyllodoce empetrlformis - A n t e n n a r i a l a n a t a A s s o c i a t i o n (Ref. Tables 2 6 , 27 , 2 8 , 2 9 , 30; F i g . 11, 12, 13, 14) C h a r a c t e r i s t i c Combination of Species Phyllodoce empetrlformis A n t e n n a r i a l a n a t a Vaccinium scoparium P o l y t r i c h u m p i l i f e r u m Dicranum scoparium L e c i d e a g r a n u l o s a T h i s a s s o c i a t i o n occurs mainly on s l o p e s , i n the a l p i n e , low a l p i n e and subalpine p a r k l a n d a r e a s . R e l i e f shape v a r i e s from hummocky to s t r a i g h t . Exposure i s v a r i a b l e , and slope g r a d i e n t s range from 5 to 28$. Humus covers most o f the ground s u r f a c e , from 58-98$. There i s very l i t t l e m i n e r a l s o i l Table 26 General Envlronaent Phyllodoce ontpotrlf orals - Antennaria lanata Association Phyllodoce - Antennaria Variat ion Plot Ko. 5 6 19 27 31 37 55 5 7 76 66 72 Elevation ( f t . ) 7575 7500 7500 7460 7450 745 0 7425 7400 7375 7300 7300 Physiography Landfon \u00E2\u0080\u0094 ^ \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 slope of ' r idge 5 ' 0 t \" sl opa ridge Rel ief shape humnocky hunoocky straight hunaocky ^ ^ n y e x ^uanocky c o n c a v e _ straight hunaocky Exposure E HE SE S S \u00C2\u00A3 SI NI NI NI 1 Slope gradient (J) 15 B 28 12 15 11 . 27 5 6 14 . 9 Layer Coverage (1) C layer 80 80 90 80 85 60 75 . 85 85 95 . D layer 40 45 50 50 65 50 45 60 \u00E2\u0080\u00A2 60 75 50 Plot Coverage (I) KUQUS 98 94 80 70 90 95 95 95 95 95 98 Klneral so i l 2 3 5 20 0 0 0 0 0 0 0 Rock 0 3 15 10 10 5 5 5 '. 5 5 2 Soi l . ' \u00E2\u0080\u00A2 Hygrotop* \u00E2\u0080\u00A2 . \u00E2\u0080\u00A2 . . . \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Basic . Erosion \u00E2\u0080\u00A2 \u00E2\u0080\u0094\u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 . \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2 none . Horizon depth (in.) L-H 2-0 - ty.0 - - - -Ah . 0-7 0-9 0-2 H-Ah 0-4 0-7 0-3 0-12 B Bf 7-14 6 i 9-21 B> 2-14 Bg 4-12 Bfh 7-17 Bf 3-11 -C Cg 14* 21+ Cg 14+ 12+ 17+ 11-16 Cg 16+ 12-18 0-3J- 0-4 0-8 En 4.10 Bn 8-13 *\u00E2\u0080\u00A2 10+ 13+ 0-3j-10+ Cl.s .m\u00C2\u00BBt1.n Gleyed A | p ) n e Gleyed ^ ^ Gleyed ^ M ( RuIc-ferrlc \u00C2\u00B0 ' 5 , , r , c 1 DystHc J \" ' ' \" , \"7-f\u00C2\u00AB\"-'< HumolVerrle D 0 r t M c I Alpine Dystric Brunisol Ferro-Hu.lc Podzol B n \" \" \" ' Brunisol 6 \u00E2\u0084\u00A2 \" \" ' Podzol R \" o s ' ' , P M Antennaria - Vacclntui Var iat i on 20 7 23 41 29 7580 . 7550 7550 7475 7400 \" slope \u00E2\u0080\u00A2 straight straight . . . . . . straight . . \u00E2\u0080\u00A2 straight stra ight , to convex to concave . . to convex 1 S . E . SI ' SE 19 23 25 13 15 90 \u00E2\u0080\u00A2' 65 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 75 60 90 50 ' 50 \u00E2\u0080\u00A2 50 50 . 60 90 83 5B 92 . 94 2 \" 2 2 0 0 8 .15 '\u00E2\u0080\u00A2' 40 8 6 meslc \u00E2\u0080\u00A2 I... submeslc \u00E2\u0080\u00A2 Male ' n n n * slight - 4-0 -w 0-3 0-3 4-12 Bn 3-9. B i 3-11 12+ 9+ 11+ 0-3T 0-6 . . . . . Cg12j-\u00C2\u00AB Gleyed ,, , , . Alpine .A lp ine Dystric Bruniso l , * p , Oystrlc Dystric ' , . n . t Brunisol Brunisol _Phy11cwioco t--cetrlfar;Ii - A-ttmnrla ..mat a i-.-.octaHon Antannirla l.ii Variation Plot \u00C2\u00AB\u00C2\u00BB. Plot S i l l lo') s 6 19. 27 11 37 55 57 76 ec 72 20 7 2] (1 29 24 24 2( 21 24 21 2( 24 2( 2( 2( 2a 2a 29 2a \u00E2\u0080\u00A2 28 E.tint ol lipa iV) 56 UO 75 189 60 320 32 375 \u00E2\u0080\u00A2 150 ICS 155 66 % (6 75 50 El . . , l ion III.) 757b 75 00 75 OO 7(50 7150 7(50 7(25 7(00 .7375 7J00 7300 7510 75S0 .7550 7(75 7(00 Iltltudlnal ar.a > U I 4 U LA SP SP SP SP SP \u00C2\u00BB < 4 Ll u J>ver.Sp\u00C2\u00ABctn Slo.nl 1 Ph,tloJoc. ( \" Ic t . ' l ferali ! . l B.l !.3 8.3 a. 3 1.3 8.2 9.3 ! .! i.j 9.3 6.2 5.2 5.2 2.2 2.2 5 V 7 2 Antannarla 1 .fiat i 7.3 6.2 7.2 7.2 7.2 6.2 7.2 8.2 6.2 !.2 6.? 7 8.2 1.2 7.2 8.2 7.2 a \u00E2\u0080\u00A2 V 7 ] Vacclnlm scopjrlm 6.3 2.1 7.2. 6.2 6.2 5.2 7.2 6.2 7.2 6.2 5.2 7.2 7.2 7.2 8.2 7.2 7 V - 6 4 Crlgeron pcrgjrln'js 5.2 (.2 4.2 (.2 (.2 (.2 6.2 (.2 2.1 6.2 (.2 3.2 3.2 \u00E2\u0080\u00A2 1.2 (.2 4.2 4 V 4 5 Juncus pirry 1 2.1 2.1 3.? 3.2 2.1 3.Z 3.2 . (.2 . 5.2 3.2 4.2 2.2 6.2 5 . V ' 4 6 Slb.'aldla procu.-ians I.I 3.1 1.2 2.2 2.1 2.2 3.1 3.1 1.1 2.1 3.2 1.1 1.2 1.1 2.2 2 V 2 7 C. ra i srectal'11] ri- - 3.2 (.2 3.2 (.2 2.2 5.2 . . . 1.1 5.2 (.2 . 7.2 6.2 . 5 IV 1 S mer.:lun orjclle 2.1 3.1 3.2 3.2 (.2 . 3.2 1.1 3.1 2.1 3.2 3.1 3.1 2 IV 2 9 Carai nigricans 3.1 - 2.1 3.2 2.1 3.2 1.1 2.1 (.2 3.2 3.2 \u00E2\u0080\u00A2 . IV 2 10 irr-.arla papillaris 1.1 - 3.2 . 2.2 2.2 1.2 - l.t 3.2 3.1 3.2 (.2 2.2 3 IV 2 11 Dtscl-a-psla atrgpurpurea 1.1 2.1 - 3.2 2.1 3.2 . 3.1 . 1.1 . 1.2 1.1 1.1 \u00E2\u0080\u00A2 IV \u00E2\u0080\u00A2 1 12 Irr.lca latlfolla - - - 1.2 - 1.2 6.2 3.2 2.1 3.2 5.2 . III 3 13 Luljla fihlent.rsl 1 (.1 (.2 - 5.2 3.2 _ 3.2 1.2 3.2 3.2 2 III 2 14 Lulula glabraba - - 5.2 3.2 (.2 - (.2 . II 2 15 ls l .1 l IP. 1.1 - II 1 16 Cla/tcnta lancealata - 1.1 - - - - 4.1 1.1 3.1 3.1 3.1 1 17 Poa cuslcUl 1.1 - - - 4.2 - - - 3.2 II ' 18 Stti.fr.el.ii dema (9 lupin.,,, I.Mfallu-. 20 Carn p,resileJ 21 Vicclrlu-i caeipltoiun 22 Casttlleja i lreri 23 U-iul\u00C2\u00BB parvlftora 24 Valeria.-) tltchensls ' 25 C i r u phiescaghil a 26 ft.luca brachyprflli 27 luiula splcata . 20 Sallx canadensis 29 Irlietui jplcatun Alienation Awtr.Spflcfoi Presence *'.\u00E2\u0080\u00A2\u00C2\u00AB'.';\u00E2\u0080\u00A2\u00C2\u00AB Us Sign. Meance- Sit;.-, f ierce 4.2 1.1 3.2 2,7 1.2 2.1 1.1 \u00E2\u0080\u00A2' 6r,o?k.ftm 30 Pol.trlcfc'ji p l t l f e m 31 Okr-ici jeaearl un 12 U ^ c i U alee. t rU 33 PBlytrlchidelphut l y i l l l l 34 Polftrlchua forsoiua 35 Pol|trkhj^ nar.e;lcun 36 Dts-atodan lattfallus 37 Ciratotjon purpureus 38 Klaerla Myttl l 39 Polytrich.ua ]unlperlnus 40 PoMla nut J in 41 BarbllcB^oMa lycopodloliiti \u00E2\u0080\u00A242 Barbllophiuta hatcherl \" Dl> 6.3 (.2 (.2 5.2 5.2 5.2 7.2 7.2 4.2 5.2 Oh (.2 3.3 1.1 3.1. 3.2 1.2 3.1 5.2 3.1 3.2 6.2 Oti 2.1 3.2 1.1 3.1 - 3.1 6.2 5.1 (.1 _ Oh - - - _ - 2.2 3.1 5.2 Oh - - 1.1 - 3.2 (.2 - -Oh 3.1 (.1 3.2 3.1 Oh - 2.1 1.1 -Oh - . 3.1 - 3.1 S.2 -Oh - 3.1 _ 5.2 - 2.1 Oh - 1.1 1.1 Oh - - 1.1 - \u00E2\u0080\u00A2 - - - - - \u00E2\u0080\u00A2 6.2 7.3 3.2 2.1 2.1. 3.1 6.2 3.2 3.1 1] Llctdaa granulosa Oh 7.2 6.2 6.2 6.2 6.2- 7.2 3.1 7.2 7.2 5.1 3.1 E 6.2 4.2 6.2 7.2 6.2 6 V 6 44 Cladonia fC.nocyna Oh 3.2 2.1 2.2 3.2 4.2 3.2 3.1 3.2 3.2 - 3 3.2 3.1 - 2.1 3.2 2 V ] 45 Cladonia earreola Oh \u00E2\u0080\u00A2 _ . 3.2 3.2 3.2 _ 2.1 2.1 3.1 1 3.2 . 2.1 2.1 \u00E2\u0080\u00A23.2 2 IV 2 46 C.trarli arte.torui Oh 2.1 2.2 3.2 - - 3.1 - - 1 ' _ 2.1 2.1 2.2 2.2 1 III 1 47 Sglorlna cfOMa Oh . - - ' t.l 2.2 . - - - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1.1. 1.1 . 2.1 2.1 1 . III . 48 Cttrarla subalplna Oh . 3.2 - 2.2 3.1 - - - t.2 - 1 ; 11 1 49 Cttrarla lllandlcl- : Dh - . - I.I - 2.2 3.2 \u00E2\u0080\u00A2 3.2 - - . II SO Cl .Ionia cMoropha.a Dh - - - - 3.1 3.1 1 51 Peltigera canina Oh - - - \u00E2\u0080\u00A2.* - - - - - - \u00E2\u0080\u00A2 - 1.1 3.2 1 1 52 Peltigera oalacea Oh - - - - - - - - - - 1.. - 2.1 \u00E2\u0080\u00A2 - * 1 * fetal Sp.cltl (Incl.sporadic:) 19 21 27 26 24 2S 2( 20 21 21 24 31 23 20 20 19 Ssoradlc Species 57 Castllleja rhealloiW T21S.2I 64 Potefitllle dHarslfolla 7(1.1) 67 OrlhocauJIl Moor.ll 31(3.1) C l au r 53 tplloblun alplnun 27(1.1) 65 Veronica aar.nskjoldll SSI2.1) 6! Rnaco-.l trlun carescens 7(1.1) 59 Juncus drunondll 72(2.2) 63 lortula norvtglca 13(1.1) S3 Igrostls variabilis 20(1.2) 60 Luruta glabrata-tihlcnbergll 31(4.2) 0 la.er Lichens 54' artraria obtuslloba 7(..l) 61 r-dlcularls bructeosa 72(2.2) . Bryopnytos 55 Irnlca sollls 72(1.1) 62 Fhlaun alplnun 20I..I) 70 Ic'idophl la trlcetoru.i 27(1.2) 56 Carta p,renjlca-nlgrlcans 27(2.2) 63 Plcia tngel.'anall 57(\u00C2\u00BB..) 66- Bryun sp. 19(2.1) - 71 Paltlqara canina var. rufasct ! 1.(2.1) exposed (0-20$). There i s usual ly some rock coverage (0-40$). There i s no evidence of eros ion . The hygrotope i s placed as submesic to mesic. Two vegetation layers are present - the herb layer and the bryophyte- l ichen l a y e r . The C layer has a high coverage, from 75 to 95$. The D layer i s f a i r l y wel l developed, covering 40-75$ of the area . The dominant plants i n the C layer are Phyllodoce empetri-formis , Antennaria lanata and Vaccinium scoparium. Other con-stant species of lower coverage are Erigeron peregrinus , Juncus p a r r y i and S ibba ld ia procumbens. In the D l a y e r , Polytrichum p l l i f e r u m and Dicranum scoparium are the constant bryophytes, while Lophozla a l p e s t r i s , with a presence of IV, i s a l so impor-tant . Among the l i c h e n s , Lecidea granulosa and Cladonia ecmo-cyna are constant. The assoc ia t ion i s d iv ided into two v a r i a t i o n s : a \u00C2\u00AB Phyllodoce empetriformis - Antennaria lanata V a r i a t i o n b . Antennaria lanata - Vaccinium scoparium V a r i a t i o n Table 28 gives the f l o r i s t i c s i m i l a r i t y indices for the sixteen p lo t s comprising the a s s o c i a t i o n . The two v a r i a t i o n s are shown separate ly . The values are a l l very h i g h . The values are higher within each v a r i a t i o n than between them. 62 Table 28 F l o r i s t i c S i m i l a r i t y Indices for the Phyllodoce empetriformis -Antennaria lanata Assoc iat ion 5 6 19 27 31 37 55 57 76 66 72 20 7 23 41 22 5 6 19 27 31 37 55 57 76 66 72 71 79 82 83 78 68 76 75 74 52 73 75 72 76 52 59 68 60 50 83 79 71 66 63 74 63 52 83 79 65 71 74 72 55 79 66 71 68 67 50 54 67 76 68 53 60 59 61 52 68 72 56 54 46 20 7 23 41 29 65 58 67 63 61 55 42 47 41 44 67 62 70 57 64 65 57 63 55 61 71 63 69 60 68 59 47 55 52 54 59 60 59 50 54 61 60 59 59 51 59 49 57 53 52 56 50 50 54 45 24 28 30 24 2S 76 72 72 76 78 69 66 66 76 74 The v a r i a t i o n s are described below, by general h a b i t a t , f l o r i s t i c s and s o i l data . a . Phyllodoce empetriformis - Antennaria lanata V a r i a t i o n This i s the type v a r i a t i o n for the a s s o c i a t i o n . I t occurs on slopes i n the a l p i n e , low alpine and subalpine parkland areas . R e l i e f shape i s predominantly hummocky, but can a l so be s t ra igh t or concave. Exposure i s v a r i a b l e , and slope gradients range from 5 to 28$. The ground surface i s covered by 70-98$ humus, 0-20$ mineral s o i l and 0-15$ rock. No erosion was observed. The hygrotope i s rated as mesic. The herb layer i s very we l l developed, covering 75-95$ of the area . The bryophyte and l i chen layer has a coverage of 40-75$. 63 In a d d i t i o n t o the dominant s p e c i e s l i s t e d f o r the a s s o c i a -t i o n , the f o l l o w i n g s p e c i e s are important i n the d i f f e r e n t i a t i o n o f t h i s v a r i a t i o n : Carex n i g r i c a n s , A r n i c a l a t i f o l i a and C l a y -t o n i a l a n c e o l a t a i n the C l a y e r (these are l a c k i n g i n the Anten-n a r i a - Vaccinium V a r i a t i o n ) ; Dicranum scoparium, Lophozia a l p e s t r i s (both w i t h a h i g h e r cover) and C e t r a r i a s u b a l p l n a (which has a h i g h p r e f e r e n c e f o r t h i s community) i n the D l a y e r . The predominant s o i l s a s s o c i a t e d w i t h t h i s v a r i a t i o n are A l p i n e D y s t r i c B r u n i s o l s ( 6 ) . Other s o i l s are Sombric Humo-F e r r i c Podzols (3)* Sombric Ferro-Humic Podzol ( l ) and L i t h i c O r t h i c Regosol ( l ) . S o i l t e x t u r e (Table 29) becomes c o a r s e r w i t h depth. Samples of the A and B h o r i z o n s are c l a s s e d as loamy sands or sandy loams. The C h o r i z o n ranges from sandy loam t o sand. Table 30 p r e s e n t s the s o i l chemical d a t a . The v a l u e s f o r pH are s t r o n g l y a c i d i c , and i n c r e a s e s l i g h t l y with depth. Organic matter and n i t r o g e n decrease s t e a d i l y w i t h depth. Carbon: n i t r o g e n r a t i o s are g e n e r a l l y narrow. The percentage o f n i t r o g -en i n the B h o r i z o n of p l o t 19 i s very low. Phosphorus, c a t i o n exchange c a p a c i t y , magnesium and potassium decrease i n amounts with depth; c a l c i u m and sodium i n c r e a s e i n some cases and dec-rease in. o t h e r s , b. A n t e n n a r i a l a n a t a - Vaccinium scoparium V a r i a t i o n T h i s v a r i a t i o n a l s o occurs on s l o p e s , but onl y i n the a l p i n e and low a l p i n e a r e a s . R e l i e f shape i s mainly s t r a i g h t , i n c o n t r a s t t o the hummocky t e r r a i n o f the Phyllodoce -A n t e n n a r i a V a r i a t i o n . Exposure v a r i e s , but i s never: n o r t h e r l y . Tab!* 29 S o i l Texture Phyllodoca e n p o t r l f o r u l s - Antennaria lanata A s s o c i a t i o n Phyllodoce - Antennaria V a r i a t i o n Antennaria - V a c c l n l m V a r i a t i o n ' l o t No. 5 6 19 27 31 37 55 57 76 66 72 20 7 23 41 29 ,h Horizon Textural c l a s s IS LS LS LS SL SL SL SL SL SL SL SL SL LS LS S Sand (J) 73.6 75.6 75.2 72.4 64.0 56.4 66.8 73.0 66.6 56.8 72.2 66.8 56.4 80.8 78.0 S6.0 S l i t (I) 26.4 24.4 24.8 27.6 36.0 43.6 32.4 23.2 33.4 39.4 22.6 32.6 43.6 19.2 22.0 14.0 Clay (I) 0 ' 0 0 0 0 0 0 . 8 3 . 8 \u00E2\u0080\u00A2 0 1.8 5.2 0.6 0 0 0 0 l Horizon Textural c l a s s LS LS SL SL LS LS - LS SL LS SL S LS S LS LS Sand (J) 79.6 74.4 66.2 56.4 75.6 80.8 - 75.0 50.8 84.8 58.4 85.2 81.0 88.4 70.0 77.6 S i l t (1) 20.4 25.6 . 33.8 41.8 24.4 19.2 - 22.4 45.2 10.4 36.4 14.8 19.0 11.6 30.0 22.4 Clay (J) 0 . 0 0 1.8 0 0 - 2.6 4 . 0 4.8 5.2 0 0 0 0 0 Horizon Textural c l a s s S '\u00E2\u0080\u00A2\u00E2\u0080\u00A2 L S \u00E2\u0080\u00A2. S . LS S LS . LS SL 5 LS SL S S S LS S Sand ( i ) 86.4 82.4 91.2 86.4 \u00E2\u0080\u00A2 66.6 76.5 78.0 69.8 67.8 87.4 66.6 92.6 93.8 88.4 78.4 65.6 S i l t (I) 13.6 17.6 8.8 11.B 13.4 23.6 18.4 24.0 9.2. 5 . 8 26.6 7.0 6.2 11.6 21.2 14.4 Clay (I) 0 0 0 1.6 0 0.5 3.6 . 6 . 2 3 . 0 6.B 6 . 8 0.2 0 0 0.4 0 1 t I 1 1 .1 > 1 1 1 1 33S2--355S2 - 3 2 5 3 5 5 3 3 4 t \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 1 I 1 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 332S--33353 2 - 2 2 - - 5 3 55- . 23S5 - -55532 \u00E2\u0080\u00A2 1 t 1 1 1 1 1 \" 1 1 \u00C2\u00AB 3333 r i s J3\u00C2\u00A7333 ---3--23353 - 3 - 5 - - 3 I 3 3 2 2S32 - -35533 2-S2 - - 2 5 3 5 -i i i i i i < i \u00C2\u00AB. i i 3 3 2 3-.\u00E2\u0080\u00A235335 3532--33553 5.0 3.1 5.3 0.1 21. t. 0.33 0.01 0.13 0.05 18.3 3 2 2 3 ^ 3 5 5 3 5 -335^-33533 S332 - - 2 5 5 3 -i i i i i t i i i * \u00E2\u0080\u00A2 332----S5S33 -235e-,-25353 - 3233^-53335 - 3 -33--53S35 33S5--S5333 t i t i \u00E2\u0080\u00A2 \u00C2\u00AB t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 i 3 333,,-333 5 3 S -22 - -53353 - 23 2 - - 5 5 5 3 3 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00AB \u00C2\u00AB * \u00E2\u0080\u00A2 \u00C2\u00AB ) \u00E2\u0080\u00A23333^35353 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 '\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - 3333--3353g \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 i \u00E2\u0080\u00A2 t i i \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 i i 3^3 =--55S23 - 3 3 2--3153;- 2 - 2 2 - - 3 5 5 3 3 i \u00C2\u00AB j III \u00C2\u00AB '\u00C2\u00BB t i > 3335=-c-33553 2323 - -5355S -3-5 - -55533 * \u00E2\u0080\u00A2 t i \u00E2\u0080\u00A2 i i i < i i .3 333 3--35 53 s. - 3 3 2 - - I 5 3 3 3 -335--55512 3555,5-33333 3-S3--33552 2-2S--55553 SS33 - -5553S \u00E2\u0080\u00A2 1 1 \u00E2\u0080\u00A2 1 1 > 1 1 1 1 3 3 2 3 - - 5 3 S 3 3 -333 - - 3 3 5 3 2 - 3 - 5 - - 5 3 - 3 3 1 I t 1 1 1 t \u00E2\u0080\u00A2 1. 1 t 3333 e--53s53 -325---SSS3 ggggg s s s 112133 ggggg 1 s s s 333233 ggggg ! ===.323333 ggggg i s s s 333233 66 Slope g r a d i e n t s are g r e a t e r than i n the type v a r i a t i o n , r a n g i n g from 13 to 25$. The ground i s covered by 58-94$ humus, 0-2$ m i n e r a l s o i l and 6-40$ rock. There i s no e r o s i o n . The hygro-tope ranges from submesic t o mesic. The herb l a y e r i s s t i l l o f h i g h cover, b e i n g 75-90$ of the ar e a . There i s a l s o a we 1 1-developed D l a y e r , c o v e r i n g 5 0 - 6 0 $ . There i s a s h i f t i n the r e l a t i v e dominance of the major s p e c i e s , w i t h Phyllodoce empetriformis b e i n g reduced, and Ant e n n a r i a l a n a t a assuming the primary r o l e , a l o n g w i t h V a c c i n -ium scoparium. Juncus p a r r y i i s a l s o more important i n t h i s community. Carex s p e c t a b i l i s and A r e n a r i a c a p i l l a r l s have h i g h e r v a l u e s o f average s p e c i e s s i g n i f i c a n c e i n t h i s v a r i a t i o n than i n the type v a r i a t i o n . Although t h i s community has been p l a c e d i n the Phyllodoce empetriformis - A n t e n n a r i a l a n a t a A s s o c i a t i o n , i t i s probably b e s t regarded as a t r a n s i t i o n b e t -ween t h i s a s s o c i a t i o n and the An t e n n a r i a l a n a t a A s s o c i a t i o n . The s o i l s are a l l c l a s s e d as A l p i n e D y s t r i c B r u n i s o l s . S o i l t e x t u r e appears t o be c o a r s e r than i n the type v a r i a -t i o n . The A h o r i z o n samples are sandy loams, loamy sands or sand. The B h o r i z o n c o n s i s t s o f loamy sands or sands, while the C h o r i z o n i s predominantly sand. The s o i l chemical data a l l appear t o be as d e s c r i b e d f o r the type v a r i a t i o n , except t h a t c a l c i u m i s prese n t i n s m a l l e r q u a n t i t i e s i n the B and C h o r i z o n s o f t h i s v a r i a t i o n . 67 F i g . 11. Phyllodoce - A n t e n n a r i a A s s o c i a t i o n , Phyllodoce -A n t e n n a r i a V a r i a t i o n , P l o t 31 . F i g . 12. S o i l p r o f i l e of Phyllodoce - A n t e n n a r i a A s s o c i a t i o n , Phyllodoce - A n t e n n a r i a V a r i a t i o n , P l o t 57. T h i s s o i l i s c l a s s i f i e d as an A l p i n e D y s t r i c B r u n i s o l , w i t h an Ah-Bm-C h o r i z o n sequence. 68 F i g . 13. Phyllodoce - Antennaria A s s o c i a t i o n . A n t e n n a r i a -Vaccinium V a r i a t i o n , P l o t 7. F i g . 14. S o i l p r o f i l e of Phyllodoce - Antennaria A s s o c i a t i o n , A n t e n n a r i a - Vaccinium V a r i a t i o n , P l o t 7. T h i s s o i l i s c l a s s i f i e d as an A l p i n e D y s t r i c B r u n i s o l w i t h L-H, Ah, Bm and C h o r i z o n s . 69 P i c e a engelmannii A s s o c i a t i o n (Ref. T a b l e s 31 , 3 2 , 3 3 , 3*0 T h i s a s s o c i a t i o n i s r e p r e s e n t e d by only one p l o t i n the study a r e a . I t occurs on a r i d g e i n the a l p i n e r e g i o n . The r e l i e f shape i s s t r a i g h t . Exposure i s southeast, w i t h a slope g r a d i e n t of 29$. Humus and rock each cover 50$ of the ground s u r f a c e . There i s no m i n e r a l s o i l exposed. There i s no e v i d -ence of e r o s i o n . The hygrotope i s r a t e d as submesic. There are f o u r v e g e t a t i o n l a y e r s i n the community. The shrub l a y e r covers 100$, the herb and b r y o p h y t e - l i c h e n l a y e r s each 15$, and the epiphyte l a y e r 5 $ . The p l o t i s composed of one P i c e a engelmannii i n d i v i d u a l i n the B l a y e r , which has a s p e c i e s s i g n i f i c a n c e value of 9 . There are few s p e c i e s i n the o t h e r l a y e r s . The most important s p e c i e s i n the C l a y e r are Carex phaeocephala and A n t e n n a r i a l a n a t a . B a r b i l o p h o z l a h a t c h e r i and P o l y t r i c h u m p i l i f e r u m are the most important bryophytes, while C e t r a r i a e r i c e t o r u m and S o l o r i n a crocea are the dominant l i c h e n s . There are j u s t two e p i p h y t e s : P a r m e l i o p s i s ambigua-Vand P a r m e l i o p s i s hyperopta. The s o i l i s c l a s s i f i e d as a L i t h i c O r t h i c Regosol, w i t h an Ah-C-R h o r i z o n sequence. T e x t u r a l l y , the A h o r i z o n i s a sandy loam, while the C h o r i z o n i s a loamy sand. The pH i n c r e a s e s from the A to the C h o r i z o n , but Is s t r o n g l y a c i d i c i n both cases. Organic matter and n i t r o g e n decrease i n q u a n t i t y w i t h depth. The c a r b o n : n i t r o g e n r a t i o s are narrow. Phosphorus, c a t i o n exchange c a p a c i t y and the a v a i l a b l e c a t i o n s decrease from the A to the C h o r i z o n , w i t h the e x c e p t i o n o f sodium, T a b l e 31 G e n e r a l E n v i r o n m e n t P i c e a e n g e l m a n n i i A s s o c i a t i o n P l o t No. 49 E l e v a t i o n ( f t . ) 7600 P h y s i o g r a p h y L a n d f o r m r i d g e R e l i e f s h a p e s t r a i g h t E x p o s u r e SE S l o p e g r a d i e n t (%) 2 9 L a y e r C o v e r a g e (%) B l a y e r 100 C l a y e r 15 D l a y e r 15 E l a y e r 5 P l o t C o v e r a g e (%) Humus 50 M i n e r a l s o i l 0 R ock 50 D e c a y i n g wood 0 S o i l H y g r o t o p e s u b m e s i c E r o s i o n none H o r i z o n d e p t h ( i n . ) . Ah 0-3 C 3-12 R 12 + C l a s s i f i c a t i o n L i t h i c O r t h i c R e g o s o l 71 T a b l e 32 P i c e a e n g e l m a n n i i A s s o c i a t i o n P l o t No. 2 49 P l o t s i z e (m ) 2 & E x t e n t o f t y p e (m ) 6 E l e v a t i o n ( f t . ) 7600 A l t i t u d i n a l a r e a A B l a y e r 1. P i c e a e n g e l m a n n i i 9.7 C l a y e r 2. C a r e x p h a e o c e p h a l a 4.2 3. A n t e n n a r i a l a n a t a 3.2 4. F e s t u c a b r a c h y p h y l l a 2.2 5. V a c c i n i u m c a e s p i t o s u m 2.2 iff \u00E2\u0080\u00A2** 6. V a c c i n i u m s c o p a r i u m 2.2 7. A g r o s t i s v a r i a b i l i s 1.1 8. A n t e n n a r i a u m b r i n e l l a 1.1 9. A r e n a r i a c a p i l l a r i s 1.2 10. A r e n a r i a o b t u s i l o b a 1.2 1 1 . L u z u l a s p i c a t a 1.1 12. S e l a g i n e l l a d e n s a 1.1 1 3 . S i b b a l d i a p r o c u m b e n s 1.1 14 . T r i s e t u m s p i c a t u m 1.1 D l a y e r B r y o p h y t e s 1 5 . B a r b i l o p h o z i a h a t c h e r i Dh 4.2 16. P o l y t r i c h u m p i l i f e r u m Dh 4.2 17. Bryum c a p i l l a r e Dh 1.1 18 . P o h l i a n u t a n s Dh 1.1 L i c h e n s 1 9 . C e t r a r i a e r i c e t o r u m Dh 3.2 20. S o l o r i n a c r o c e a Dh 3.2 2 1 . . L e c i d e a g r a n u l o s a Dh 1.1 22. C l a d o n i a c a r n e o l a Dh +.+ 23. P e l t i g e r a c a n i n a Dh +.+ E l a y e r 24. P a r m e l i o p s i s a m b i g u a E R 2.1 25. P a r m e l i o p s i s h y p e r o p t a E R 2.1 T a b l e 3 3 S o i l T e x t u r e P i c e a e n g e l m a n n i i A s s o c i a t i o n P l o t No, 49 H o r i z o n T e x t u r a l c l a s s S a nd (%) S i l t (%) C l a y (%) T a b l e 34 S o i l C h e m i c a l A n a l y s i s P i c e a e n g e l m a n n i i A s s o c i a t i o n P l o t No. 49 H o r i z o n Ah C p.H 4.8 5.3 C (%) 10.2 2.6 OM (%) 17.6 4.4 N . (%) 0.7 0.2 C/N 14. 13. P (ppm) 13. 4. Ca (me/lOOg) 1.90 0.60 Mg (me/lOOg) 0.26 0.03 Na (me/lOOg) 0.02 0.03 K (me/lOOg) 0.42 0.08 CEC (me/lOOg) 58.0 14.5 Ah SL 59.2 38.0 2.8 C LS. 83.4 16.6 0 73 which i n c r e a s e s s l i g h t l y . Abies l a s i o c a r p a A s s o c i a t i o n (Ref. T a b l e s 35 , 36, 37 , 38) C h a r a c t e r i s t i c Combination of Species Abies l a s i o c a r p a P a r m e l i o p s i s hyperopta T h i s a s s o c i a t i o n , r e p r e s e n t e d by only two p l o t s , occurs on r i d g e s i n the a l p i n e a r e a . R e l i e f shape Is e i t h e r s t r a i g h t o r convex. The exposure i s southwest, w i t h a slope g r a d i e n t of 27-30$. Humus covers 55-65$ of the ground s u r f a c e , rock 35-40$ and m i n e r a l s o i l 0 - 5 $ . E r o s i o n i s s l i g h t o r none. The hygro-tope v a r i e s from submesic t o mesic. The shrub l a y e r occupies 95$ of the a r e a . There i s a very sparse herb l a y e r , coverage b e i n g 5 - 7 $ . The bryophyte and l i c h -en l a y e r i s somewhat b e t t e r developed, c o v e r i n g 5 - 3 0 $ . The epiphyte l a y e r i s very p o o r l y developed i n one p l o t (only 3$ c o v e r ) , but w e l l developed In the other p l o t (30$ c o v e r ) . The only s p e c i e s l n the B l a y e r i s Abies l a s i o c a r p a , w i t h an average s p e c i e s s i g n i f i c a n c e o f 9 . There are onl y two con-s t a n t s p e c i e s i n the C l a y e r , both with very low average s p e c i e s s i g n i f i c a n c e v a l u e s : Carex s p e c t a b i l i s and S i b b a l d i a procumbens. No bryophyte s p e c i e s are c o n s t a n t . C e t r a r i a e r i c e t o r u m and Le c i d e a g r a n u l o s a are the constant l i c h e n s , both w i t h very low coverage. Among the e p i p h y t e s , P a r m e l i o p s i s hyperopta, w i t h an average s p e c i e s s i g n i f i c a n c e o f 5 , and P a r m e l i o p s i s ambigua, wi t h a value o f 3 , are c o n s t a n t . The f l o r i s t i c s i m i l a r i t y index f o r the two p l o t s of the T a b l e 35 G e n e r a l E n v i r o n m e n t A b i e s l a s i o c a r p a A s s o c i a t i o n P l o t Mo. E l e v a t i o n ( f t . ) P h y s i o g r a p h y L a n d f o r m R e l i e f s h a p e E x p o s u r e S l o p e g r a d i e n t (%) L a y e r C o v e r a g e (%) B l a y e r C l a y e r D l a y e r E l a y e r P l o t C o v e r a g e (%) Humus M i n e r a l s o i l R ock D e c a y i n g wood S o i l H y g r o t o p e E r o s i o n H o r i z o n d e p t h ( i n . ) H Ah B 53 7550 44 7535 C R C l a s s i f i c a t i o n s t r a i g h t SW 27 95 5 5 30 55 5 40 0 s u b m e s i c s l i g h t 0-6 6-13 13 + L i t h i c O r t h i c R e g o s o l - r i d g e -c o n v e x SW 30 95 7 30 3 65 0 35 0 m e s i c none 2-0 0-2 Bh 2-4 B h f 4-12 BC 12-17 17 + L i t h i c M i n i F e r r o - H u m i c P o d z o l Table 36 75 Abies lasiocarpa Association Plot No. 53 Plot Size (m2) 30 Extent of type (m2) 96 Elevation ( f t . ) 7550 Altitudinal area A B layer 1 Abies lasiocarpa 9.7 C layer 2 Carex spectabilis 1.2 3 Sibbaldia procumbens +.+ 4 Vaccinium scoparium 5 Antennaria lanata 6 Carex phaeocephala 7 Vaccinium caespitosum 8 Agrostis variabilis 9 Arenaria capillaris 10 Erigeron peregrinus 11 Festuca brachyphylla 12 Luzula spicata D layer Bryophytes 13 Tortula ruralis Dh -14 Barbilophozia lycopodioides Dh -15 Bryum capillare Dh -16 Barbilophozia hatcheri Dh -17 Polytrichum piliferum Dh -18 Bryum bimum Dh 2.2 19 Dicranum scoparium Dh 2.2 20 Orthocaulis f loerki i Dh 1.1 21 Brachythecium starkei Dh -22 Lescuraea baileyi Dh -23 Lescuraea radicosa Dh -24 Paraleucobryum enerve Dh -Lichens 25 Cetraria ericetorum Dh 2.1 26 Lecidea granulosa Dh 2.1 27 Cladonia macrophyl 1 odes Dh -E layer 28 Parmeliopsis hyperopta Eg 6.1 29 Parmeliopsis ambigua Eg 3.1 30 Cetraria pinastri Eg -44 25 25 7535 A Aver.Species Presence Significance 9.7 2/2 9 2.2 2/2 1 1.1 2/2 + 3.2 1/2 2 2.2 1/2 1 1.2 1/2 + 1.2 1/2 + +.+ 1/2 + +.1 1/2 + +..+ 1/2 + +.+ 1/2 + +.+ 1/2 + 5.2 1/2 4 4.2 , 1/2 3 4.2 1/2 3 3.1 1/2 2 3.2 1/2 2 1/2 1 1/2 1 1/2 + +.2 1/2 + +.2 1/2 + +.1 1/2 + +.1 1/2 + +.2 2/2 1 +.2 2/2 1 1.1 1/2 + 2.1 2/2 5 2.1 2/2 3 +.1 1/2 + Total Species 10 27 76 T a b l e 3 7 S o i l T e x t u r e A b i e s l a s i o c a r p a A s s o c i a t i o n P l o t No. 5 3 44 Ah H o r i z o n T e x t u r a l c l a s s LS LS Sand (%) 80.8 73.8 S i l t (%) 18.0 26.2 C l a y (%) 1.2 0 B H o r i z o n T e x t u r a l c l a s s - LS Sand (%) - 72.7 S i l t (%) - 27.3 C l a y (%) - 0 C H o r i z o n T e x t u r a l c l a s s LS LS Sand (%) 77.2 78.0 S i l t (%) 22.0 22.0 C l a y (%) 0.8 0 Table 38 Soil Chemical Analysis Abies lasiocarpa Associ ati on Plot No. 53 44 H Horizon pH - 4.6 C (?) - 27.8 OM (?) - 47.8 N (? ) - 1.7 C/N - 16. P (ppm) ' - 25. Ca (me/1 OOg) - 7.40_ Mg (me/1OOg) - 1.04 \u00E2\u0080\u00A2 Na (me/1OOg) - 0.02 K (me/1OOg) - 0.76 CEC (me/1OOg) - 163.0 Ah Horizon pH 4.7 4.2 C (?) 9.8 17.5 OM (?) 16.8 30.1 N (?) 0.4 1.1 C/N 23. 16. P (ppm) 15. 16. Ca (me/lOOg) 0.22 1.63 Mg (me/1OOg) 0.07 0.37 Na (me/1OOg) 0.12 0.03 K (me/lOOg) 0.13 0.46 CEC (me/1OOg) 108.0 61.5 B Horizon pH - 4.4 C (?) - 10.7 OM (?) - 18.4 N (?) - 0.6 C/N - 18. P (ppm) - 10. Ca (me/1OOg) - 0.16 Mg (me/1OOg) - 0.07 Na((me/I00g) - 0.04 K (me/lOOg) - 0.10 CEC (me/1OOg) - 50.9 C Horizon pH 4.6 4.8 C (?) 12.1 6.1 OM (?) 20.9 10.5 N (?) 0.8 0.3 C/N 15. 18. P (ppm) 13. 11. Ca (me/1OOg) 0.08 0.19 Mg (me/100g) 0.06 0.03 Na (me/1OOg) 0.12 0.04 K (me/1OOg) 0.11 0.03 CEC (me/IOOg) 103.0 33.1 78 assoc ia t ion i s 6 7 , which i s r e l a t i v e l y h i g h . The s o i l s are c lassed as L i t h i c Orth ic Regosol and L i t h i c Min i Ferro-Humic Podzol . T e x t u r a l l y , a l l the samples from the A, B and C horizons are loamy sands. Among the chemical data , pH general ly increases s l i g h t l y with depth, a l l values being strongly a c i d i c . In one p l o t , organic matter and nitrogen dec-rease i n amount with depth; in the other, they increase . The increase i n organic matter i s probably due to i t s downward move-ment and accumulation i n the very shallow s o i l . There should be an ample supply of nitrogen ava i lab le for higher p l a n t s , as ind icated by the narrow carbon:nitrogen r a t i o . Phosphorus, cat ion exchange capac i ty , ca lc ium, magnesium and potassium dec-rease i n quanti ty with depth; sodium increases s l i g h t l y . In a l l the chemical data , there i s a wide v a r i a b i l i t y between the two p l o t s . Abies las iocarpa - Picea engelmannii - Vaccinium scoparium Assoc iat ion (Ref. Tables 3 9 , 40, 41, 42, 43 ; F i g . 15, 16) C h a r a c t e r i s t i c Combination of Species Abies la s iocarpa Picea engelmannii Vaccinium scoparium Dicranum scoparium Parmellopsis hyperopta C e t r a r i a p i n a s t r i This assoc ia t ion occurs mainly on ridges i n the a l p i n e , low alpine and subalpine parkland areas . R e l i e f shape var ies from s t r a i g h t to convex to concave. Exposure i s usual ly southwest, with slope gradients of 2-25$. Humus covers 40-70$ of the T a b l e 3 9 G e n e r a l E n v i r o n m e n t A b i e s l a s i o c a r p a - P i c e a e n g e l m a n n i i - V a c c i n i u m s c o p a r i u m A s s o c i a t i o n P l o t No. E l e v a t i o n ( f t . ) P h y s i o g r a p h y L a n d f o r m R e l i e f s h a p e 51 7540 l e d g e c o n v e x ' t o c o n c a v e E x p o s u r e SW S l o p e g r a d i e n t (%) 2 5 54 7500 61 7350 - r i d g e -SW 15 SW 2 70 7300 s t r a i g h t s t r a i g h t c o n c a v e NW 24 L a y e r C o v e r a g e (%) B l a y e r C l a y e r D l a y e r E l a y e r 95 7 10 5 85 60 60 30 95 45 50 10 95 60 25 20 P l o t C o v e r a g e (%) Humus M i n e r a l s o i l R ock D e c a y i n g wood 70 0 30 0 65 10 25 0 40 0 40 20 60 0 30 10 S o i l H y g r o t o p e m e s i c E r o s i o n none H o r i z o n d e p t h ( i n . ) Ah 0-4 B Bh 4-12 C R 12-19 19 + m e s i c s l i g h t s u b m e s i c none 0-4 1/2 0-3 B h f 4 1/2- B h f 3 - 1 1 14 1/2 14 1/2+ C g l l + m e s i c none 0-3 B h f 3-12 12 + C l a s s i f i c a t i o n L i t h i c O r t h i c Humic P o d z o l S o m b r i c F e r r o -Humic P o d z o l G l e y e d S o m b r i c F e r r o -Humic P o d z o l S o m b r i c F e r r o -Humic P o d z o l Table 40 Abies laslocarm 5cea ennelnannll - Vacclnlui scoparlun Association Plot No. .. 5' . ' 54 \u00E2\u0080\u00A2 61 70 Plot Size (V) \u00E2\u0080\u00A227 .; 30 . 30 105 Extent of type (u )^ 27 ' 30 30 .105 Elevation (ft.) 75i0 . .75 00 7350 7300 Altitudinal area A : LA SP SP Presence Aver.Specks ' B layer Significance 1 Abies lasiocarpa 7.7 7.6 8.6 8.8 V 8 2 \u00E2\u0080\u00A2Picea engelnannil C layer 5.7 \u00E2\u0080\u00A2 . 7 - 6 ' . 7.6 ' 6.6 V. . 7 \u00E2\u0080\u00A2 3 Vacciniun scopariun \u00E2\u0080\u00A24.2 \u00E2\u0080\u00A2 6.2 7.2 5.2 V . 6 4 Antennaria lanata 1.2 4.2 3.2 2.2 V 3 5 Phyllodocs-ecpctri forais - 2.2 4.2 7.3 IV . 5 6 Arenaria capiMaris . 2.2 3.1 +.+ IV 1 7 Luzula sp. - . - 2.1 6.3 III 5\" 8 Carex phaeocephala 3.2 3.2 111 1 9 Festuca brachyphylla 2.2 3.2 - , - m: 1 \"\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 10 Sibbaldia prpcunbens 1.1 ' 3.1 - H I 1 11 Potenti1 la diversifolia 1.1 2.1 . - - in + : 12 Hieraciira gracile - 1.1 1.1 - in 13 Erigeron peregrinus, 0 layer Bryophytes 1.1 in + 14 Dicranuij scopariun Qh 1.2 2.1 5.1 5.2 V 4 15 Polytrichua piliferun C- 2.2 4.2 3.1 - IV 3 16 Lophozia alpestris Or. 1.1 4.1 3.1 - IV 3 17 Pohlia nutans Gh 1.1 - 7.2 - III 5 18 Orthocaulis floerkii Lichens Dh 4.2 2.1 ~ \u00E2\u0080\u0094 III 2 19 Cladonia ecnocyna :-. 2.2 2.1 3.1 3.1 V 3 . 20 Lecidea granulosa 6.2 3.1 - IV 4 21 Cetraria ericetorun L - 3.2 1.1 . 1.1 - IV 1 \u00E2\u0080\u00A2-22 Sblorina crocea E layer :-. i . i 2.1 +.\u00E2\u0080\u00A2 IV 1 23 Parceliopsis hyperopta E; 3.2 6.1 4.1 4.1 V 5 24 Cetraria pinastri \u00C2\u00A3:-3.2 4.1 - 5:1 IV 4 25 Parmeliopsis anbigua E: 3.2 - 4.1 4-1 IV 3 Total Species (incl.sporadic :) 31 32 22 14 Sporadic Species C layer 26 Agrostis variabilis 27 Arenaria obtusiloba 28 Carex spectabilis 29 Oeschanpsia atropurpurea 30 Haplopappus l ya l l i i 31 Juncus parryi 32 Luzula spicata 33 Salix cascadensis. 34 Trisetup spicatun D layer 8ryophytes 35 Barbilophozia barbata 36 Barbilophozia hatched 37 Barbilophozia lycopodioide 51(2.2) 54(1.2) 54(1.2) 70(2.1) 51(+.2) 54(2.2) 54(1.1) 54(2.2) 51(1.2) 54(1.1) 5K+.1) 70(4.1) 38 Brachytheciun starke1 61(3.1) 39 Drepanocladus uncinatus 51(1.1) 40 Kiaeria blytt i i 70(5.1) 41 Lescuraea bailey! 61(1.1) 42 Lophozia ? kunzeana 61(4.1) 43 Pohlia elongata 54(3.1) 44 Polytrichadelphus l ya l l i i 61(3.1) Lichens 45 Cladonia carneola 54(3.1) 46 Cladonia chlorophaea 54(2.1) 47 Cladonia coccifera 51(1.1) 48 Cladonia pleurota 51(1.1) 49 Peltigera oalacea 54(1.1) 50 Stereocaulon al pi nun 510.1) E laver 51 Alectoria anerlcana 51(1.1) 81 ground s u r f a c e and rock 25-40$. M i n e r a l s o i l i s exposed In only one p l o t . Decaying wood occurs In two p l o t s ( 1 0 - 2 0 $ ) . There i s g e n e r a l l y no observable e r o s i o n . The hygrotope ranges from submesic to mesic, most p l o t s b e i n g mesic. Since t h i s community i s a t r e e i s l a n d , the B l a y e r i s p r e -dominant, coverage b e i n g 85-95$ o f the a r e a . The C l a y e r i s mainly w e l l developed, c o v e r i n g 7 -60$. The D l a y e r i s a l s o w e l l developed, w i t h a cover of 10-60$. The E l a y e r covers 5 - 3 0 $ . The B l a y e r Is composed o f two s p e c i e s , which are both dominant i n the community - Abies l a s i o c a r p a , w i t h an average s p e c i e s s i g n i f i c a n c e o f 8 , and P i c e a engelmannii, w i t h a value of 7. Vaccinium scoparium dominates the C l a y e r , w i t h an a v e r -age s p e c i e s s i g n i f i c a n c e o f 6 . The only o t h e r constant s p e c i e s i n the herb l a y e r i s Antennaria l a n a t a . Phyllodoce e m p e t r l f o r m i s , w i t h a presence o f IV and average s p e c i e s s i g n i f i c a n c e of 5 , i s important i n most p l o t s . Dicranum scoparium i s the dominant bryophyte, while C l a d o n i a ecmocyna i s the dominant l i c h e n . P a r m e l i o p s i s hyperopta i s the only constant e p i p h y t e . C e t r a r i a p l n a s t r i , though not const a n t , i s c o n s i d e r e d a c h a r a c t e r i s t i c s p e c i e s , because i t reaches i t s h i g h e s t cover value i n t h i s a s s o c i a t i o n . Table 41 g i v e s the f l o r i s t i c s i m i l a r i t y i n d i c e s f o r the f o u r p l o t s o f the a s s o c i o n . The h i g h e s t v a l u e s are ob t a i n e d between the two a l p i n e p l o t s ( 5 1 , 5^) and between the two subalpine p l o t s ( 6 l , 7 0 ) . 82 Table 41 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Abies l a s i o c a r p a - P i c e a engelmannll - Vaccinium scoparium A s s o c i a t i o n 51 54 61 70 51 60 51 44 54 56 43 61 58 1\u00C2\u00B0 Most of the s o i l s are Sombric Ferro-Humic Podzols. One s o i l i s c l a s s i f i e d as a L i t h i c O r t h i c Humic P o d z o l . The subalpine s o i l s are f i n e r - t e x t u r e d than the a l p i n e s o i l s . A l l the samples from the A, B and C h o r i z o n s of the subalpine s o i l s are sandy loams. The a l p i n e A h o r i z o n s are loamy sands; the B h o r i z o n Is a sandy loam or loamy sand; the C h o r i z o n i s a loamy sand or sand. Table 43 p r e s e n t s the s o i l chemical d a t a . The pH v a l u e s are a l l s t r o n g l y a c i d i c , and i n c r e a s e s l i g h t l y w i t h depth. Organic matter and n i t r o g e n decrease s t e a d i l y w i t h depth. The c a r b o n : n i t r o g e n r a t i o s are r e l a t i v e l y narrow. Phosphorus, c a t i o n exchange c a p a c i t y , magnesium and potassium decrease i n q u a n t i t y w i t h depth; sodium i n c r e a s e s , while c a l c i u m decreases from the A to the B h o r i z o n , then i n c r e a s e s from the B t o the C h o r i z o n . Organic matter and n i t r o g e n vary widely among the f o u r p l o t s . Phosphorus and c a t i o n exchange c a p a c i t y are s i m i l a r i n the A and C h o r i z o n s . Calcium and sodium are s i m i l a r i n the B h o r i z o n T a b l e 42 S o i l T e x t u r e A b i e s l a s i o c a r p a - P i c e a e n g e l m a n n i i - V a c c i n i u m s c o p a r i u m A s s o c i a t i o n P l o t No. 51 54 61 70 Ah H o r i z o n T e x t u r a l c l a s s LS LS SL SL S a n d (%) 79.6 73.6 71.6 69.6 S i l t (%) 20.4 25. 0 25.0 2 8.4 C l a y (%) 0 1.4 3.4 2.0 B H o r i z o n T e x t u r a l c l a s s SL LS SL SL S a n d (%) 58.6 79 .6 56.6 71.4 S i l t (%) 38. 8 19. 0 41. 0 24. 2 C l a y (%) 2.6 1.4 2.4 4.4 C H o r i z o n T e x t u r a l c l a s s LS S SL SL Sand (%) 7 4-.6 89. 0 58.0 70.4 S i l t (%) 24.4 11.0 32.0 20.0 C l a y (%) 1.0 0 10.0 9.6 Abies lasiocarpa Table Soil Chemical - Picea engelmannii 43 Analysis - Vaccinium scoparium Associ ati on Plot No. 51 54 61 70 Ah Horizon pH C (?) OM (?) N (?) C/N P (ppm) Ca (me/lOOg) Mg (me/1OOg) Na (me/1OOg) K (me/1OOg) CEC (me/1OOg) 4.2 13.2 22.6 0.7 20.. 10. 0..40 0..17 0.04 0.28 62.8 4.1 6.8 11.6 0.5 14. 7. 1.99 0.31 0.11 0.26 24.6 4.4 12.8 22.0 0.8 16. 23. 0.15 0.16 0.29 0.20 29.9 4.1 9.7 16.7 0.5 18. 9. 0.34 0.21 0.13 0.33 22.0 Horizon PH C (?) OM (?) N (?) C/N P .. (ppm) Ca (me/1OOg) Mg (me/1OOg) Na (me/1OOg) K (me/1OOg) CEC (me/1OOg) 4.6 7.7 13.3 0.4 20. 6. 0.13 0.04 0.04 0.01 48.4 4.8 8.2-14.1 0.4 20. 3. 0.05 0.03 0.12 0.04 17.1 4.8 6.2 10.7 0.4 16. 3. , 0.09 0.03 0.13 0.04 7.5 4.6 6.2 10.6 0.3 23. 3. 0.07 0.03 0.13 0.05 6.1 C Horizon pH C (?) OM (?) N (?) C/N P (ppm) Ca (me/1OOg) Mg (me/1OOg) Na (me/1OOg) K (me/1OOg) CEC (me/1OOg) 4.7 3.8 6.6 0.3 14. 6. 0.25 0.03 0.10 0.02 37.3 5.0 2.6 4.5 0.1 26. 2. 0.45 0.02 0.15 0.02 11.6 4.8 3.2 5.5 0.2 18. 5. 0.42 0.01 0.27 0.03 12.8 4.7 3.8 6.5 0.1 27. 3. 0.27 0.02 0.14 0.04 11.6 85 F i g . 15. Abies - P i c e a - Vaccinium A s s o c i a t i o n , P l o t 51 . T a l l e r t r e e s p e c i e s i s P i c e a engelmannii. In l e f t foreground i s A ntennaria - S i b b a l d i a A s s o c i a t i o n . F i g . 16. S o i l p r o f i l e of Abies - P i c e a - Vaccinium A s s o c i a t i o n , P l o t 54. T h i s s o i l Is c l a s s i f i e d as a Sombric Ferro-Humic Podzol, w i t h an Ah-Bhf-C h o r i z o n sequence. 86 o n l y . Magnesium and potassium are f a i r l y s i m i l a r i n a l l h o r i z o n s . Abies l a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n (Ref. T a b les 44 , 4 5 , 46 , 47 , 48) C h a r a c t e r i s t i c Combination of Species Abies l a s i o c a r p a V a l e r i a n a s i t c h e n s i s A r n i c a l a t i f o l i a P o l y t r i c h a d e l p h u s l y a l l i i P a r m e l i o p s i s hyperopta T h i s a s s o c i a t i o n occurs on seepage s l o p e s i n the subalpine p a r k l a n d . R e l i e f shape i s concave t o s t r a i g h t . The exposure i s southwest, with a slope g r a d i e n t r a n g i n g from 21 t o 39$. The amount of rock c o v e r i n g the ground s u r f a c e i s v a r i a b l e , from 5 to 65$. Humus covers 35-75$, while there i s no m i n e r a l s o i l exposed. Decaying wood i s prese n t i n two p l o t s , w i t h a cover of 10-20$. No evidence o f e r o s i o n was observed. The hygrotope i s r a t e d as subhygric t o h y g r i c . The shrub l a y e r occupies 75-95$ of the a r e a . The herb l a y e r coverage v a r i e s from 20 t o 80$. The bryophyte and l i c h e n l a y e r i s s p a r s e l y developed, c o v e r i n g only 10$ of the p l o t . The e p i p h y t i c l a y e r i s b e t t e r developed, coverage b e i n g 5 -20$. Abies l a s i o c a r p a i s the only s p e c i e s i n the B l a y e r , w i t h an average s p e c i e s s i g n i f i c a n c e of 9 . V a l e r i a n a s i t c h e n s i s and A r n i c a l a t i f o l i a dominate the C l a y e r , w i t h average s p e c i e s s i g n i f i c a n c e v a l u e s o f 6 and 5 , r e s p e c t i v e l y . Other constant s p e c i e s , of lower coverage, are Vaccinium scoparium, Senecio t r i a n g u l a r i s , Ve r a t rum v i r i d e t C l a y t o n l a l a n c e o l a t a , C a s t i l l e ,1a A b i e s T a b l e 44 G e n e r a l E n v i r o n m e n t 1 a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n P l o t .No. E l e v a t i o n ( f t . ) P h y s i o g r a p h y L a n d f o r m R e l i e f s h a p e E x p o s u r e S l o p e g r a d i e n t (%) L a y e r C o v e r a g e (%) B l a y e r C l a y e r D l a y e r E l a y e r P l o t C o v e r a g e (%) Humus M i n e r a l s o i l R o c k D e c a y i n g wood S o i l H y g r o t o p e E r o s i o n H o r i z o n d e p t h ( i n . ) Ah Bin C 56 62 74 7400 7300 7200 \u00E2\u0080\u0094 s e e p a g e s l o p e \u00E2\u0080\u0094 c o n c a v e c o n c a v e s t r a i g h t SW SW SW 39 21 22 85 95 75 35 80 20 10 10 10 5 20 20 35 70 75 0 0 0 65 20 5 0 10 20 h y g r i c s u b h y g r i c s u b h y g r i c .\u00E2\u0080\u0094none 0-6 0-3 0-7 1 6-12 3-13 7 1/2-15 12+ 13+ 15 1/2+ C l a s s i f i c a t i o n \u00E2\u0080\u00A2 A l p i n e D y s t r i c B r u n i s o l Table 45 Abies lasiocarpa - Valeriana sitchensis Associ ati on 88 Plot No. 56 62 74 Plot Size (m2) 41 126 35 Extent of type (m2) 41 126 35 Elevation ( f t . ) 7400 7300 7200 Altitudinal area SP SP SP B layer Presence Aver.Species Significance 1 Abies lasiocarpa C layer 9.7 9.8 8.6 3/3 9 2 Valeriana sitchensis 6.3 8.3 4.2 3/3 6 3 Arnica la t i fo l ia 5.2 6.2 4.2 3/3 5 4 Vacci ni um scopari um 3.2 5.2 2.2 3/3 4 5 Senecio triangularis 4.2 2.2 3.2 3/3 3 6 Veratrum viride 2.2 4.3 3.2 3/3 3 7 Claytonia lanceolata 3.2 3.1 2.1 3/3 3 .8 Castilleja elmeri 3.2 3.1 1.2 3/3 3 9 Mi te l l a breweri 3.2 3.2 1.2 3/3 3 10 Luzula sp. - 7.3 2.2 2/3 5 11 Carex spectabilis 4.2 5.2 - 2/3 4 12 Phyllodoce empetriformis - 4.2 3.2 2/3 3 13 Pedicularis bracteosa - 3.2 3.2 2/3 2 14 Erigeron peregrinus - 3.1 1.2 2/3 1 15 Lupinus 1 ati fol i us - 2.1 2.2 2/3 1 16 Arnica mollis D layer Bryophytes 2.2 1.1 2/3 1 17 Polytrichadelphus l ya l l i i Dh 2.1 4.1 4.2 3/3 4 18 Lophozia alpestris E layer Dh 3.1 3.2 2/3 2 19 Parmeliopsis hyperopta EB 2.1 4.1 4.1 3/3 4 20 Parmeliopsis ambigua EB 3.1 - 4.1 2/3 3 Total Species (incl.sporadics) 26 26 25 Sporadic Species C layer 21 Anemone occidentalis 62(2.1) 22 Antennaria lanata 62(3.2) 23 Arenaria capi 11 aris 62(2.1) 24 Deschampsia atropurpurea 74(1,1) 25 Juncus drummondii 56(1.1) 26 Luzula glabrata 56(3.2) 27 Ranunculus eschscholtzii 62(2.1) 28 Saxifraga ferruginea 56(1.1) 29 Sibbaldia procumbens 56(1.1) 30 Trollius laxus 56(2.2) D layer Bryophytes 31 Barbilophozia hatcheri 62(+.+) 32 Barbilophozia lycopodioides 56(3.1) 33 Brachytheci um curtum 56(2.1) 34 Brachythecium starkei 62(2.2) 35 Bryum 1 pseudotriquetrum 56(1.1) 36 Cephaloziella sp. 74(1.1) 37 Ceratodon purpureus 74(1.1) 38 Dicranum scopari um 62(2.1) 39 Kiaeria b ly t t i i 56(2.1) 40 Lescuraea incurvata 62(1.1) 41 Pohlia gracilis 74(1.1) 42 Pohlia nutans 74(1.1) 43 Pohlia wahlenbergii 56(4.1) 44 Polytrichum piliferum 74(2.2) 45 Rhacomitrium sudeticum 56(2.1) 46 Scapania undulata 56(+.+) E layer 47 Cetraria pinastri 62(4.1) 89 e l m e r i and M i t e l l a brewer!. In the D l a y e r , Polytr 1chadelphus l y a l l i i Is the o n l y constant bryophyte. Due to the wet c o n d i t -i o n s , there are no ground l i c h e n s i n t h i s community. Among the e p i p h y t e s , P a r m e l i o p s i s hyperopta i s a constant dominant. Table 46 p r e s e n t s the f l o r i s t i c s i m i l a r i t y i n d i c e s f o r the three p l o t s comprising the a s s o c i a t i o n . The v a l u e s are reason-a b l y h i g h . Table 46 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Abies l a s i o c a r p a -V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n 56 62 74 56 62 61 62 51 14 The s o i l s are a l l c l a s s e d as A l p i n e D y s t r i c B r u n i s o l s , w i t h an Ah-Bm-C h o r i z o n sequence. S o i l t e x t u r e g e n e r a l l y becomes c o a r s e r w i t h depth. The A h o r i z o n samples are c l a s s e d as sandy loams or loamy sand. The B h o r i z o n i s a loamy sand. The C h o r i z o n ranges from sandy loam t o sand. The s o i l chemical d a t a are shown i n Table 48. The pH i s s t r o n g l y a c i d i c i n a l l h o r i z o n s , and i n c r e a s e s s l i g h t l y w i t h depth. Organic matter and n i t r o g e n decrease w i t h depth. In p l o t 56 , there i s s t i l l a c o n s i d e r a b l e amount of o r g a n i c matter A b i e s l a s i o c a r p a -T a b l e 4 7 S o i l T e x t u r e V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n P l o t No. 56 62 74 Ah H o r i z o n T e x t u r a l c l a s s LS SL SL Sand (%) 76.0 63.0 68.0 S i l t (%) 23.4 33.6 31.2 C l a y (%) 0.6 3.4 0.8 Bm H o r i z o n T e x t u r a l c l a s s LS LS LS Sand * ( % ) 79.6 7 3.6 7 3.4 S i l t (%) 18.6 24.0 25.2 C l a y (%) 1.8 2.4 1.4 C H o r i z o n T e x t u r a l c l a s s S SL LS Sand (%) 87.0 64.0 77.2 S i l t (%) 12.2 31.0 16.6 C l a y (%) 0.8 5.0 6.2 Table Soil Chemical Abies lasiocarpa - Valeriana 48 Analysis sitchensis Association Plot 56 62 74 Ah Horizon pH C (?) OM (?) N (%) C/N P (ppm) Ca (me/lOOg) Mg (me/lOOg) Na (me/lOOg) K (me/1OOg) CEC (me/1OOg) 4.7 13.8 23.7 1.0 14. 6. 0.47 0.25 0.15 0.34 44.4 4.2 11.0 18.9 0.7 15. 8. 1.06 0.26 0.27 0.30 23.5 4.7 12.9 22.1 0.9 14. 12. 0.30 0.19 0.27 0.34 26.0 Horizon pH C (?) OM {%) N (I) C/N P (ppm) Ca (me/1OOg) Mg (me/1OOg) Na (me/1OOg) K (me/1OOg) CEC (me/1OOg) 4.7 7.4 12.8 0.5 14. 11. 0.39 0.13 0.14 0.18 36.8 4.7 6.5 11.3 0.4 17. 11. 0.38 0.07 0.12 0.13 13.8 4.8 7.0 12.1 0.5 15. 8. 0.20 0.06 0.15 0.08 24.3 C Horizon pH C {%) OM {%) N (?) C/N P (ppm) Ca (me/1OOg) Mg (me/1OOg) Na (me/1OOg) K (me/1OOg) CEC (me/1OOg) 4.8 6.7 11.5 0.4 16. 8. 0.69 0.13 0.26 0.16 19.3 4.9 2.7 4.6 0.2 16. 4. 0.42 0.02 0.15 0.04 8.3 5.1 1.7 3.0 0.1 14. 7. 0.36 0.02 0.15 0.04 12.0 92 i n the C h o r i z o n due to the shallowness o f the s o i l . Carbon: n i t r o g e n r a t i o s are narrow. C a t i o n exchange c a p a c i t y , magnesium and potassium decrease i n q u a n t i t y w i t h depth. Calcium and sodium decrease from the A to the B h o r i z o n , then i n c r e a s e somewhat from the B t o the C h o r i z o n . Phosphorus decreases down the p r o f i l e i n one p l o t , but i n the others i t i n c r e a s e s from the A to the B h o r i z o n , and then decreases from the B to the C h o r i z o n . Organic matter, n i t r o g e n and phosphorus appear t o be f a i r l y s i m i l a r among the three p l o t s , whereas c a t i o n exchange c a p a c i t y i s v a r i a b l e . The value s f o r c a l c i u m are s i m i l a r o n l y In the B h o r i z o n . Magnesium i s s i m i l a r i n the A h o r i z o n ; i n the B and C h o r i z o n s , p l o t s 62 and 70 are c l o s e i n v a l u e . Sodium has s i m i l a r v a l u e s i n the B h o r i z o n ; p l o t s 62 and 70 are s i m i l a r i n the A and C h o r i z o n s . The three p l o t s are s i m i l a r i n p o t a s s -ium i n the A h o r i z o n ; only p l o t s 62 and 70 are s i m i l a r i n the C h o r i z o n . Carex s p e c t a b i l i s A s s o c i a t i o n (Ref. Tables 4 9 , 5 0 , 5 1 , 5 2 , 53) C h a r a c t e r i s t i c Combination of Spe c i e s Carex s p e c t a b i l i s A n t e n n a r i a l a n a t a P o l y t r i c h u m p i l i f e r u m T h i s a s s o c i a t i o n occurs on slop e s w i t h some seepage, mainly i n the a l p i n e and low a l p i n e a r e a s . The r e l i e f shape i s predom-i n a n t l y s t r a i g h t . Exposure i s south, west or southwest, w i t h slope g r a d i e n t s r a n g i n g from 9 to 50$. Humus covers most of the ground s u r f a c e , from 70 to 95$. Exposed m i n e r a l s o i l i s mostly Table 49 General Environment Carex spectabilis Associ ati on 93 Plot No. Elevation ( f t . ) Physiography Landform Exposure 11 7575 depression channel Relief shape straight SW Slope gradient (?) 9 14 7500 straight to concave S 50 26 7500 straight 11 slope 39 7475 straight to convex 26 7475 straight S 28 Layer Coverage (?) C layer 65 D layer 20 96 35 85 5 90 40 Plot Coverage (?) Humus 70 Mineral Soil 25 Rock 5 2 10 95 0 5 75 0 25 90 5 5 hygric Soil Hygrotope Erosion Horizon depth ( in.) L-H 1-0 Ah B C R 0-3 3-7 7+ subhygric 0-12 Bhf 12-18 18+ subhydric \u00E2\u0080\u0094 none \u00E2\u0080\u0094 3-0 0-8 8+ subhydric 0-6 6-13 13+ submesic H-Ahi 0 - t j Ah2 1y-12 Bm 12-18 18+ Classification Alpine Dystric Brunisol Sombric Ferro-Humic Podzol Orthic Regosol Lithic Orthic Regosol Alpine Dystric Brunisol Table 50 Carox spectabilis Association Plot No. 11 14 26 39 18 Plot Size (V) 30 27 20 24 30 Extent of type (m )^ 110 30 35 36 76 Elevation (ft.) 7575 7500 7500 7475 7475 Altitudinal area A LA A - LA' SP C layer Presence Aver.Spec les Significance 1 Carex spectabilis 8.4 . 9.5 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 8.4 9.4' 8.4 V '8 . 2 Antennaria lanata 4.2 5.2 5.2 2.2 5.2 V . 5 . 3 Erigeron. peregrinus 2.2 5.2 3.2 , 4.2 3.2 V \u00E2\u0080\u00A2 4 4 Sibbaldia procumbens 1.1 1.1 4.2 .1.1 ' 4.2 V 3 5 Vaccinium scopari um 1.2 4.2 3.2 - 4.2 IV 3 6 Arenaria capillaris 3.1 2.2 3.2 3.2 IV 2 7 Juncus parryi \u00E2\u0080\u00A2 -\u00E2\u0080\u00A2 4.2 5.2 III 4 \u00E2\u0080\u00A2 .8 Phi eun alpinum 4.2 - . 4.2 2.2 '\u00E2\u0080\u00A2 - III 3 9 Carex pyrenaica 4.2 4.2 - - - 1.2 III . 3 10 Veronica wormskjoldii 1.1 - 3.2 2.2 111 1.' .11 Hieraciun gracile - . 1.1 1.2 . 3.2 III 1 12 'Luzula spicata 1.1 - - +.+ 2.1 III + 13 Phyllodoce e^petriforals 1.2 - 1.2 1.2 - 111 + 14 Juncus drummondi i 2.2 5.2 - - II 3 15 Arnica noil is - . - 5.3 1.2 . - 1! 3 16 Carex nigricans 4.2 - 3.2 - . - II 2 17 Potentilla diversifolia - - 4.2 - 1.1 ' II 1 18 Claytonia lanceolata +.+ 4.2 - - - II 1 19 Agrostis variabilis \u00E2\u0080\u00A2 - - - 1.2 3.2 II .1 20 Antennaria fries!ana 3.2 - - - 1.1 l l \u00E2\u0080\u00A2 1 21 Trisetura spicatun - - 1.1 3.2 - II 1 22 Poa cuslcki i 1.1 - 1.1 - \u00E2\u0080\u00A2 - II + 0 layer Bryophytes 23 Polytrichum piliferum Oh 4.2 3.2 1.1 3.2 3.2 V 3 24 Polytrichum junlperinum Dh - - 3.2 2.2 5.2 III 3 25 Polytrichum formosum Oh 1.1 1.1 3.2 - ' - III 1 26 Oicranun scoparium Oh 2.1 - 2.1 - - II + 27 Oesnatodon 1 ati fol i us Oh - 1.1 - 2ll - II + 28 Drepanocladus uncinatus Oh 2.1 - 1.1 - - II + 29 Pohlia gracilis Oh - 1.1 2.1 - ' - II + Lichens 30 Cladonia carneola Oh 3.1 - 2.1 - 4.2 III 2 31 Cladonia ecnocyna Dh - - 2.1 - 4.2 II 1 32 Lecldea granulosa Dh 1.1 - - - 3.2 II 1 33 Cetraria ericetorum Dh 1.1 - - - 2.2 II + 34 Stereocaulon alpinum Dh 2.1 - - '.' - \u00E2\u0080\u00A2 1.1 II + Total Species (incl.sporad \u00E2\u0080\u00A2cs) 28 33 21 28 Sporadic Species C layer 0 layer 35 Arenaria obtusiloba 18C+.1) Bryophytes 36 Arnica lat i fo l ia 39(1.2) 51 Barbilophozla hatcheri 26(2.1) 37 Carex phaeocephala 26(1.1) 52 Cephaloziella subdentata 14(+.+) 38 Oeschanpsia atropurpurea 11(1.1) 53 Ceratodon purpureus 26(2.1) 39 Festuca brachyphylla 18(4.2) 54 Klaeria blytti l 11(4.2) 40 Juncus mertensianus 26(1.2) 55 Lophozia alpestris 26(3.1) 41 Juniperus communis 18(1.+) 56 Orthocaulis floerkil 18(1.1) 42 Lupinus 1 a t i foli us 39(2.2) 57 Pohlia nutans 18(1.1) 43 Luzula glabrata 11(3.2) Lichens 44 Luzula nahlenbergii 11(3.2) 45 Luzula sp. 26(3.2) 58 Cetraria subalplna 26(1.2) 46 Salix cascadensis .11(6.2) 59 Cladonia chlorophaea 26(2.1) 47 Seneclo triangularis 26(1.2) 60 Cladonia deformls 26(1.1) 48 Silene parryi 39(3.2) 61 Cladonia sp. . 14(+.+) 49 Sol 1 dago cul11radi 18(4.2) 62 Peltigera canlna . 18(2.1) 50 Vaccinium caespitosum 39(3.2) 63 Solori na crocea 18(1.1) 95 very s p a r s e . Rock covers 5-25$ of the a r e a . There i s no e v i -dence of e r o s i o n . . The hygrotope ranges from submesic t o sub-h y d r i c . The herb l a y e r i s predominant i n t h i s community, coverage b e i n g 6 5 - 9 6 $ . The bryophyte and l i c h e n l a y e r i s moderately w e l l developed, c o v e r i n g 5 - 4 0 $ . Carex s p e c t a b i l i s , the dominant s p e c i e s , has an average s p e c i e s s i g n i f i c a n c e of 8 . In the C l a y e r , A ntennaria l a n a t a i s the subdominant, wi t h an average s p e c i e s s i g n i f i c a n c e of 5 . Other constants are E r i g e r o n p e r e g r i n u s and S i b b a l d i a procumbens. The only important bryophyte i s P o l y t r i c h u m p i l i f e r u m . None of the l i c h e n s i s of importance i n t h i s wet h a b i t a t . The f l o r i s t i c s i m i l a r i t y i n d i c e s f o r the f i v e p l o t s o f the a s s o c i a t i o n are shown i n Table 51 . The v a l u e s are lower than was the case w i t h many of the p r e v i o u s l y - d e s c r i b e d communities. However, these p l o t s a l l have t h e i r h i g h e s t v a l u e s of s i m i l a r i t y w i t h each o t h e r r a t h e r than w i t h any other a s s o c i a t i o n . Table 51 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Carex s p e c t a b i l i s A s s o c i a t -i o n 11 14 26 39 18 11 54 57 49 50 14 52 75 60 26 51 55 39 54 18 T a b l e 5 2 S o i l T e x t u r e C a r e x s p e c t a b i l i s A s s o c i a t i o n P l o t No. Ah H o r i z o n T e x t u r a l c l a s s S a n d (%) S i l t (%) C l a y (%) B H o r i z o n T e x t u r a l c l a s s S a n d (%) S i l t (%) C l a y (%) C H o r i z o n T e x t u r a l c l a s s S a nd (%) S i l t (%) C l a y (%) 11 14 SL SL 66.8 50.2 33.2 49.4 0 0.4 26 39 SL SL 58.0 . 65.0 39.8 32.8 2.2 2.2 18 H - A h l Ah2 SL LS 54.8 78.4 45.2 21.0 0 0.6 LS 82.2 17. 8 0 SL 70. 8 27.8 1.4 S 90.4 9.6 0 S 92.4 7.6 0 S 99.0 1.0 0 S 9 0.2 9 . 8 0 S 85.4 14.6 0 LS 76.0 23.6 0.4 Table' 53 Soil Chemical Analysis Carex spectabilis Association lot No. 11 14 26 39 18 -H Horizon H-Ahi pH - _ 4.8 _ 4.5 C (?) - - 30.1 15.1 OM (?) _ _ 51.8 25.9 N (?) _ _ 0.2 a* 1.0 C/N _ _ 167. _ 15. P (ppm) - - 16. 17. Ca (me/1OOg) - _ 4.50 0.10 Mg (me/1OOg) - 1.20 0.21 Na (me/1OOg) - _ 0.25 - 0.32 K (me/1OOg) - _ 1.06 0.44 CEC (me/1OOg) - - 163.0 - 96.5 ) Horizon pH 4.8 4.6 4.4 4.6- 4.9 C (?) 16.1 16.3 12.1 12.1 5.6 OM (?) 27.7 28.1 20.8 20.7 9.7 N (?) 0.1 0.8 0.6 0.5 0.3 C/N 134. 20. 21. 25. 18. P (ppm) 7. 20. 15. 13. 12. Ca (me/1OOg) 0.09 1.28 0.53 1.72 0.15 Mg (me/1OOg) 0.06 0.23 0.16 0.33 0.02 Na (me/1OOg) 0.13 0.27 0.21 0.03 0.14 K (me/1OOg) 0.02 0.54 0.10 0.44 0.04 CEC (me/lOOg) 51.6 62.8 36.6 61.4 48.6 Horizon pH 5.1 4.7 - - 5.0 C (?) 7.5 7.6 - - 3.2 OM (?) 12.9 13.1 - - 5.5 N (?) 0.4 0.5 - - 0.1 C/N 18. 17. - - 23. P (ppm) 4. 21. - - 6. Ca (me/1OOg) 0.29 0.04 - - 0.22 Mg (me/1OOg) 0.02 0.08 - - 0.01 Na (me/1OOg) 0.15 0.31 - - 0.17 K (me/1OOg) 0.03 0.25 - 0.02 CEC (me/1OOg) 14.8 43.9 - - 13.6 Horizon pH 5.0 5.1 4.7 4.8 5.1 C (?) 2.3 1.6 5.6 7.4 2.1 OM (?) 4.0 2.7 9.6 12.8 3.7 N (?) 0.2 0.1 0.4 0.5 0.1 C/N 15. 26. 16. 14. 16. P (ppm) 4. 5. 6. 18. 4. Ca (me/lOOg) 2.26 0.44 0.38 0.69 0.43 Mg (me/1OOg) 0.02 0.01 0.06 0.13 0.01 Na (me/1OOg) 0.49 0.17 0.12 0.04 0.16 K (me/1OOg) 0.02 0.03 0.04 0.19 0.01 CEC (me/1OOg) 6.8 7.0 18.3 79.3 19.5 98 The s o i l s a s s o c i a t e d w i t h t h i s community are A l p i n e D y s t r i c B r u n i s o l s , O r t h i c Regosols and a Sombric Ferro-Humic P o d z o l . The s o i l s are f i n e r - t e x t u r e d i n the s u r f a c e Ah h o r i z o n than i n the B or C h o r i z o n s . Surface h o r i z o n s are c l a s s e d mainly as sandy loams. The B h o r i z o n , where p r e s e n t , v a r i e s from sandy loam t o sand. The C h o r i z o n s are mainly c o a r s e -t e x t u r e d sands. Table 53 p r e s e n t s the s o i l chemical d a t a . The p\"H i n c r e a s e s s l i g h t l y w i t h depth, a l l v a l u e s b e i n g s t r o n g l y a c i d i c . Organic matter and n i t r o g e n decrease w i t h depth, and carbon : n i t r o g e n r a t i o s are g e n e r a l l y narrow. The values f o r n i t r o g e n i n the L-H h o r i z o n o f p l o t 26 and i n the Ah h o r i z o n o f p l o t 11 are very low. C a t i o n exchange c a p a c i t y decreases w i t h depth. I t i s v ery h i g h i n the L-H h o r i z o n of p l o t 26; t h i s i s due to the h i g h o r g a n i c matter content. Phosphorus, magnesium and p o t a s s -ium decrease i n q u a n t i t y with depth. Calcium and sodium are both v a r i a b l e , i n some cases i n c r e a s i n g w i t h depth and i n others d e c r e a s i n g . Most o f the chemical data are v a r i a b l e among the p l o t s o f the a s s o c i a t i o n . Phosphorus i s s i m i l a r i n the L-H, Ah and C h o r i z o n s . V a l e r i a n a s i t c h e n s i s - Ca s t i l l e , 1 a e l m e r i A s s o c i a t i o n (Ref. T a b l e s 5 4 , 5 5 , 5 6 , 57 , 58; F i g . 17, 18, 19) 99 C h a r a c t e r i s t i c Combination o f Species V a l e r i a n a s i t c h e n s i s C a s t i l l e j a e l m e r i Carex s p e c t a b i l i s A r n i c a m o l l i s E r i g e r o n p e r e g r i n u s Senecio t r i a n g u l a r i s Ranunculus e s c h s c h o l t z i i Aulacomnium p a l u s t r e P h i l o n o t i s americana Brachythecium asperrimum T h i s a s s o c i a t i o n occurs on seepage s l o p e s i n the subalpine p a r k l a n d and, l e s s f r e q u e n t l y , i n the a l p i n e and low a l p i n e a r e a s . The r e l i e f shape i s mainly concave o r s t r a i g h t . Expos-ure i s v a r i a b l e , with slope g r a d i e n t s r a n g i n g from 1 0 to 2 8 $ . The ground s u r f a c e i s predominantly covered by humus ( 9 2 - 1 0 0 $ ) , w i t h p r a c t i c a l l y no m i n e r a l s o i l exposed. The s i t e s are r a r e l y rocky ( r o c k i n e s s 0 - 1 0 $ ) . There i s no observable e r o s i o n . The hygrotope v a r i e s from sub h y g r i c t o s u b h y d r i c . Both the herb l a y e r and the bryophyte l a y e r are w e l l d e v e l -oped. The herb l a y e r coverage i s 9 0 - 1 0 0 $ , while t h a t o f the bryophyte l a y e r i s 1 5 - 9 5 $ . T h i s meadow community i s very r i c h i n s p e c i e s . The domin-ant s p e c i e s i n the C l a y e r are V a l e r i a n a s i t c h e n s i s , C a s t i l l e , 1 a e l m e r i , Carex s p e c t a b i l i s ( a l l w i t h an average s p e c i e s s i g n i f i c -ance of 6 ) , A r n i c a m o l l i s , E r i g e r o n p e r e g r i n u s and Senecio t r i a n g u l a r i s ( a l l w i t h an average s p e c i e s s i g n i f i c a n c e of 5 ) . Other constant s p e c i e s i n c l u d e A ntennaria l a n a t a , Vaccinium scoparium, Carex n i g r i c a n s , Juncus drummondii, V e r o n i c a wormsk.1 -o l d i i and S i b b a l d i a procumbens. Ranunculus e s c h s c h o l t z i i i s co n s i d e r e d a c h a r a c t e r i s t i c s p e c i e s because o f i t s h i g h Tibia 54 General Envlronaent Valeriana sltchensla - CastlTleJa alaorl Association Valeriana - Caat lHe la Vari ati on Tro l l 1 u \u00C2\u00AB 1a\u00C2\u00BBua Vari at i on Plot % . Elevation ( f t . ) Physiography Landfora Re l ie f shape 38 7475 42 7475 34 7450 43 7375 .seepage s l o p e . 60 7300 65 7300 75 7200 ' 25 7500 36 7400 24 7375 .64 7300 ' 69 7300 . seepage alope -concave straight straight convex to concave to straight straight concave straight to concave 73 7275 straight ' concave convex Exposure .SI ' S SI II SS SI SI 1 S S\u00C2\u00AB SI NI I Slope gradient {%) 25 16 15 14 10 17 '9 26 18 28 17 22 13. Layer Coverage (X) ' \u00E2\u0080\u00A2 C layer 100 90 95 95 100 95 98 . 92 100 97 95 98 98 0 layer 40 15 45 60 65 85 60 . 60 90 85 95 \u00E2\u0080\u00A2 60 95 Plot Coverage (J) Huaua 100 90 95 95 100 96 95 89 100 100 100 .: 100 98 Mneral Soil 0 0 5 0 0 2 0 1 0 0 0 0 0 Rock 0 10 0 \u00E2\u0080\u00A2'. 5 . 0 2 5 . 10 0 . : 0 0 0 2 So i l Hygrotope \u00E2\u0080\u00A2 hygrlc hygrlc subhydrlc subhydrlc hygrlc subhygric hygrlc hygrlr Eroslon nonn nnnn Horlion depth ( tn. ) L-H - - - - - - - 2-0 . H 8-0 - - - -Ah 0-12 0-8 0-12 0-6 0-10 0-8 0-6 - 0-4 0-12 .0-12 0-12 B - - Bhfg JJ-TJ- - - \u00E2\u0080\u00A2 - - Bg 4-8 - - - . -C Cg 12-15 Cg] 8-12 *\u00E2\u0080\u00A2 Cg 12.16 Cg 6+ 10+ 6+ Cg 6+ Cg 0-11 Cg 8+ Cg 12+ . Cg 12+'. -15+ 12+ 16+ _ - 11+ _ _ 12+ C lass i f i c a t i on L i th i c Rego Kunlc Gleysol Gleyed L i th i c Orthic Regosol Fera Hunlc Gleysol L i th i c Rego Huralc Gleysol Rego Huntc . Gleysol Orthic Regosol' Orthic \u00E2\u0080\u00A2 Regosol Rego L i th i c \u00E2\u0080\u00A2Humlc Rego Gleysol Gleysol . Orthic Hunt C Gleysol Rego Huralc Gleysol Rego. \u00E2\u0080\u00A2 L i t h i c . -Hunlc Orthic Gleysol Regosol. Table 55 Val er: \u00C2\u00A3-a sitchensis - Castllleja elrc-rl Association 101 Valerl ana sitchensis - CastiT!;.-: sl^ ert Varlatlo Trol 11 us laj 3.1 - \u00E2\u0080\u00A2 - - 1 34 Trlsetun splcatun 2.1 - - - - - - + 1.1 - - - - - + 1 D layer Bryophytes .35 Aulaconnlun palustre Dh 2.1 2.1 6.2 4.r 7.2 8.2 5 _ 7.5 9.2 8.3 _ .9.3 7 IV 36 Philonotis anerlcana Dh - - 3.2 2.1 5.1 7.2 4 7.5 1.2 1.1 IV 37 Brachytheciun asperriraun Dh 3.2 - 2.1 - 5.1 3 2.1 2.1 _ 2 III 38 Scapanla subalplna' Oh 2.1 - 2.1 2.1 4.1 2 t . 1 + IM 39 Polytrichadelphus lyallii Oh - - 5.2 1.1 4.1 5.2 4 6.2 3 II 40 Polytrlchun junlperlnun Dh - 3.2 - - - 4.1 1 7.2 _ 1.1 4 II 41 Polytrlchun forraosun Dh 6.2 3.1 1.1 - 3 _ 1.1 _ + II 42 Pohlia nutans Oh - - - 5.2 5.1 3 1.1 t . i II 43 Bryum pseudotrlquetrun Dh - - - - 5.1 - ' 2 1.1 + II 44 Brachythectun starkel Dh - - - - . - _ _ - 1.1 4.1 3.1 3.2 2 .11 45 Bryun nuehlenbeckll Dh - - - - . *.1 - + +.+ _ _ 5.2 .... _ 2 II 46 Olcranun scopariun Dh - - 3.2 - 3.1 3.1 1 2 .1 ' _ + II 47 Lophozla alpestris Oh - - 1.1 - 2.1 3.1 .-- \u00E2\u0080\u00A2 1 2.1 * II 48 Oescatodon latifollus Oh - - - 3.1 - _ _\u00E2\u0080\u00A2 _ 6.2 3 49 Ceratodon purpureus Oh - - 3.1 - t.1 m _ _ _ 1 50 Tortula rural Is 'Dh - - - - - - _ 1.1 _ 3.1 m 1 51 Barbilophozia hatcher] Oh - - - _ m + 1 52 Dicranella sp. Oh - - - - - +.t - - - - + 1 Lichens 53 Cladonia sp. Dh - 1.1 - - 1.1 - \u00E2\u0080\u00A2_ _ + 1 Association Aver.Specles Significance 6 6 6 Total Species (Incl.sporadlcs) 22 25 29 3 ; 11 26 27 44 23 24 26 24 26 Sporadic Species 62 Picea engelcannll 69K-) 70 Drepanocladus unclnatus 25(1.1) C layer 63 Potentllla d l v B r s l f o l l a 25(2.2) 71 Lophozla obtusa 36(2.1) 0 layer 72 Snlun blyttil 64(5.2) 54 Antennaria frieslana 25(1.1) 73 Pohlia lahlenbergll 25(3.1) 55 Arenaria capf11 a r ts 25(2.1) Bryophytes 74 Polytrlchun norveglcua 43(1.1) 56 Festuca saxlnontana 25(1.2) 54 Barbilophozia lycopodloldes 69(2.1) 75 Polytrlchun plllferun 42(3.2) 57 Gaultheria hunlfusa 24(4.2) 55 crachytheclun c u r t u n 34(1.1) Lichens 58 Juncus parry] 25(2.2) 55 Bryun blflum 25(1.1) 59 Kalnia polifolla ' 36N-.1) 57 Bryul sp. 64(6.3) 76 Cladonia chlorophaea 43(1.1) 60 Luzula lahlenbergll 25(4.2) 69 Cephalozlella subdentata 25(+.+) 77 Leprarla neglecta 42(1.1) 61 Pedlcularls bracteosa 75(1.1) E3 Drepanocladus exannulatus 25(1.1) 78 Peltigera canina wr. rufescens 25(1.+) 102 p r e f e r e n c e f o r t h i s a s s o c i a t i o n . The dominant bryophytes i n the D l a y e r are Aulacomnium p a l u s t r e and P h i l o n o t i s amerlcana, which both have a very h i g h p r e f e r e n c e f o r t h i s community. Bra c h y t h e c-ium asperrimum i s e x c l u s i v e to the a s s o c i a t i o n , and thus i s regarded as a c h a r a c t e r i s t i c s p e c i e s . Very few l i c h e n s are found, due t o the wetness of the h a b i t a t . The a s s o c i a t i o n i s d i v i d e d i n t o two v a r i a t i o n s : a. V a l e r i a n a s i t c h e n s i s - C a s t i l l e , 1 a e l m e r i V a r i a t i o n b. T r o l l i u s laxus V a r i a t i o n Table 56 g i v e s the f l o r i s t i c s i m i l a r i t y i n d i c e s f o r the t h i r t e e n p l o t s making up the a s s o c i a t i o n . The two v a r i a t i o n s are shown s e p a r a t e l y . The v a l u e s w i t h i n each v a r i a t i o n are g e n e r a l l y h i g h e r than between them. F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the V a l e r i a n a s i t c h e n s i s -Table 56 C a s t i l l e , 1 a e l m e r i A s s o c i a t i o n 38 42 34 43 60 65 75 25 36 24 64 69 73 38 42 34 43 60 65 75 25 36 24 64 69 II 50 64 53 30 23 21 45 44 46 43 40 60 52 37 42 50 42 44 55 52 65 31 24 24 24 18 22 25 16 22 32 42 33 37 32 30 31 35 28 31 38 36 39 33 38 25 23 28 37 44 38 36 40 35 48 43 49 29 27 42 51 45 58 713 113 37 46 33 61 47 3^ 42 60 45 73 51 63 51 103 The v a r i a t i o n s are d e s c r i b e d below, by g e n e r a l h a b i t a t , f l o r i s t i c s and s o i l d a t a . a. V a l e r i a n a s i t c h e n s i s - Ca s t i l l e , 1 a e l m e r i V a r i a t i o n T h i s i s the type v a r i a t i o n f o r the a s s o c i a t i o n . I t occurs on seepage s l o p e s i n the subalpine p a r k l a n d and the low a l p i n e a r e a . R e l i e f shape v a r i e s from concave t o s t r a i g h t . Exposure i s mainly southwest, and slope g r a d i e n t s range from 10-25$. Humus covers 95-100$ of the ground s u r f a c e , m i n e r a l s o i l 0 - 5 $ , and rock 0 - 1 0 $ . There i s no evidence o f e r o s i o n . The hygrotope i s r a t e d as subhygric to s u b h y d r i c . The herb l a y e r has a very h i g h coverage o f 90-100$. The bryophyte l a y e r i s l e s s w e l l developed, but s t i l l very s i g n i f i c -ant, w i t h a coverage o f 15-85$. In a d d i t i o n t o the dominant s p e c i e s l i s t e d f o r the a s s o c i a -t i o n , the f o l l o w i n g s p e c i e s are important i n the d i f f e r e n t i a t i o n o f t h i s v a r i a t i o n : P o t e n t i l l a drummondii (which i s e x c l u s i v e t o t h i s v a r i a t i o n ) and Vaccinium caespitosum, which are both miss-i n g i n the T r o l l l u s laxus V a r i a t i o n ; M i t e l l a b r e w e r i , Ranunculus e s c h s c h o l t z i i and P o l y t r i c h a d e l p h u s l y a l l l i , which are a l l p r e s e n t i n g r e a t e r q u a n t i t i e s i n t h i s v a r i a t i o n . The s o i l s a s s o c i a t e d w i t h t h i s v a r i a t i o n are Rego Humlc G l e y s o l s (3)\u00C2\u00BB O r t h i c Regosols (3) and F e r a Humic G l e y s o l ( l ) . Texture g e n e r a l l y i s c o a r s e r a t g r e a t e r depths. The A h o r i z o n ranges from sandy loams t o loamy sands. The C h o r i z o n i s mostly sands or loamy sands. Table 58 p r e s e n t s the s o i l chemical d a t a . The pH i n c r e a s e s s l i g h t l y w i t h depth, a l l v a l u e s b e i n g s t r o n g l y a c i d i c . Organic 104-P i g . 17. V a l e r i a n a - C a s t i l l e ,1a A s s o c i a t i o n , V a l e r i a n a -C a s t i l l e ,1a V a r i a t i o n , P l o t 38 . Y e l l o w f l o w e r s a re Senec io t r i a n g u l a r i s and A r n i c a m o l l i s , r e d f l o w e r s a re C a s t i l l e ,1a e l m e r i , and l i g h t - c o l o u r e d f l o w e r s a re E r i g e r o n p e r e g r i n u s . F i g . 18. S o i l p r o f i l e o f V a l e r i a n a - C a s t i l l e ,1a A s s o c i a t i o n , V a l e r i a n a - C a s t i l l e ,1a V a r i a t i o n , P l o t 3 8 . T h i s s o i l i s c l a s s i f i e d as a L i t h i c Rego Humic G l e y s o l , w i t h an Ah-Cg-R h o r i z o n sequence . Plot No. Ah Horizon Textural class Sand (?) Si l t (?) Clay (?) B Horizon Textural class Sand' (?) Si l t (?) Clay (?) C Horizon Textural class Sand (?) S i l t (?) Clay (?) Table 57 Soil Texture Valeriana sitchensis - Castilleja elmeri Association Valeriana - Castilleja Variation Trollius laxus Variation 38 42 34 43 60 65 75 25 36 24 64 69 73 SL LS LS SL SL ' LS LS SL LS-S SL SL SL 6 1 . 4 77.6 7 6 . 0 5 0 . 2 6 1 . 2 77 .2 7 2 . 0 6 2 . 4 - 8 5 . 0 6 0 . 2 6 8 . 6 6 9 . 6 3 8 . 4 2 2 . 0 2 2 . 8 4 8 . 0 : 3 6 - 0 2 1 . 4 2 8 . 0 3 6 . 8 - 1 5 . 0 3 8 . 0 3 0 . 6 2 9 . 0 0 . 2 0 . 4 1 . 2 1 . 8 2 . 8 1 . 4 0 0 . 8 0 1 . 8 0 . 8 1 . 4 LS 8 0 . 8 1 9 . 2 0 s S S LS LS , LS SL S S LS SL 9 2 . 8 9 3 . 2 9 8 . 0 7 2 . 0 8 2 . 2 8 5 . 8 6 9 . 2 9 0 . 4 8 6 . 8 8 0 . 4 ' 6 5 . 2 7 . 2 6 . 8 2 . 0 2 8 . 0 1 7 . 8 11 .4 2 8 . 4 9 . 6 1 3 . 2 19.6 2 7 . 4 0 0 0 0 0 2 . 8 2 . 4 0 0 o 7 . 4 s 8 5 . 6 14.4 0 Plot Ko. 3B 141 Horl i o n pH C (J) OS (I) N (J) C/N P (ppm) Ca (\u00E2\u0084\u00A2/100j) Kg (ne/IOOg) Na (ne/IOOg) K (ne/lOOg) CEC (i>o/100g) Ah Horizon 4.8 C (J) 13.2 OH (J) 22.7 N (t) 0.9 C/N 15. P (ppi) 19. Ca WlOOg) 0.72 Hg (ne/100g) 0.30 Na (ne/IOOg) . 0.10 K (ms/IOOg) 0.57 CEC (ne/IOOg) . , . 59.7 8 Horizon pH C (I) OM (J) N (J) C/N P (pp>) Ca (ra/IOOg) Kg (m/IOOg) Na (m/100j) K (ne/IOOg) CEC (w/IOOg) . C Horizon A.8 C (t) 6.1 ON \u00C2\u00AB ) 10.5 N (J) 0.3 C/N . 21. P (ppn) \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 16. Ca (ne/IOOg) . 0.33 Kg (n/lOOg)' 0.09 Na (oe/lOOg) 0.06 K (oe/100g) 0.24 CEC (\u00C2\u00AB/100g) 33.8 Tabla 58 Soil Chanlcal Analysis Valeriana sitchensis - Cast!He la elmeri Association Valeriana . Castlllele Variation Trot 11 us laxus Variation 34 43 60 65 75 . 25 36 24 64 - -- --4.2 4.8 5.3 4.7 4.7 4.8 13.3 16.9 11.5 16.8 8.1 13.7 22.8 29.1 19.7 26.9 13.9 23.5 1.0 1.3 1.0 1.3 0.4 1.0 14. 13. 12. 13. 19. 13. 28. 17. 10. 20. 21. 5. 0.56 0.95 0.51 0.91 0.72 0.59 0.31 0.37 0.20 0.42 0.19 0.26 0.08 0.02 0.14 0.84 0.14 0.28 0.37 0.56 0.29 0.68 0.41 0.60 68.3 53.8 33.6 38.6 28.3 23.4 4.6 5.1 33.2 20.9 - -57.0 35.9 - - ' - \u00E2\u0080\u00A2 1.9 . 1.6 - - -17. 13. 21. 15. 3.88 2.22 -1.20 0.80 ' 0.60 ' 0.60 - -2.84 0.22 - -145.0 29.4 - -4.5 4.7 4.8 5.0 4.9 11.2 - 18.5 11.8 8.8 12.3 19.2 \u00E2\u0080\u00A2 31.9 20.3 15.2 21.2 0.7 - 1.0 0.1 0.7 0.7 16. - 18. 118. 14. 18. 17. - 6. 8. 8. 11. 0.57 - 1.01 0.73 0.73 1.00 0.19 0.40 0.34 0.18 0.28 0.23 - 0.34 0.48 0.27 0.28 0.21 0.71 0.72 0.30 0.66 36.5 - 55.1 19.5 11.0 34.0 7.5 12.8 -0.5 - 16. - - \u00E2\u0080\u00A2. _ 13. _ -_ 0.37 - - _ ' _ 0.08 -0.14 . - - -- 0.10 - -- 29.1 - - \u00E2\u0080\u00A2 -4.9 ' 5.1 5.2 5.0 5.1 5.3 6.7 3.6 '\u00E2\u0080\u00A27.4 3.7 5.3 6.1 11.4 6.2 12.7 6.3 9.2 10.4 0.3 0.2 0.5 0.3 0.3 0.3 27. 24. . 14. 11. 17. 19. 13. 8. 12. 8. 12. . \u00E2\u0080\u00A2 6. 0.21 0.32 0.23 0.35 0.44 0.33 0.05 0.04 0.09 0.05 0.08 0.05 0.05 0.13 0.08 0.15 0.15 0.16 0.05 0.01 0.09 0.09 0.16 0.12 49.6 9.6 , 36.8 6.9 12.4 6.9 6.2 _ - 10.7 - -- - 0.4 -- 16. _ _ -- 5. 0.22 . -_ 0.08 - -- - 0.11 _ 0.07 - - _ - - 31.4 - - -4.7 5.7 5.2 5.2 4.2 4.6 1.1 3.2 -7.2 7.8 1.9 5.5 0.3 0.3 0.1 0.2 16. 17. 16. . - 14. 19. 7. 7. 9. ' -.0.50 1.12 0.40 0.72 -0.09 0.13 0.02 0.06 . -0.11 0.16 0.12 0.19 0.08 0.01 0.00 0.09 -32.7 22.0 25.6 14.8 -107 matter and n i t r o g e n decrease with depth, and carbon : n i t r o g e n r a t i o s are narrow. Organic matter i s f a i r l y h i g h i n some of the C h o r i z o n s , because the s o i l s are very shallow. Phosphorus, c a t i o n exchange c a p a c i t y and the a v a i l a b l e c a t i o n s a l l decrease In amount with depth. Potassium i s present i n p a r t i c u l a r l y l a r g e q u a n t i t i e s i n the A h o r i z o n o f t h i s community, b. T r o l l i u s laxus V a r i a t i o n T h i s v a r i a t i o n a l s o occurs on seepage s l o p e s , but almost e x c l u s i v e l y i n the subalpine p a r k l a n d . R e l i e f shape v a r i e s from concave t o s t r a i g h t t o convex. Exposure i s v a r i a b l e , w i t h slope g r a d i e n t s r a n g i n g from 13 t o 28$. Humus covers 89-100$ o f the ground s u r f a c e . Exposed m i n e r a l s o i l i s only p r e s e n t i n one p l o t ( 1 $ ) , and rocks occur i n onl y two p l o t s ( 2 - 1 0 $ ) . There i s no d i s c e r n i b l e e r o s i o n . The hygrotope i s h y g r i c . The herb l a y e r i n t h i s v a r i a t i o n i s a l s o very h i g h i n coverage, b e i n g 92-100$. The bryophyte l a y e r i s much b e t t e r developed than i n the type v a r i a t i o n , w i t h a coverage o f 6 0 - 9 5 $ . The dominant s p e c i e s i n t h i s v a r i a t i o n i s T r o l l i u s l a x u s , w i t h an average s p e c i e s s i g n i f i c a n c e of 8 . The dominant s p e c i e s l i s t e d f o r the a s s o c i a t i o n are prese n t i n somewhat l e s s e r amounts. Other s p e c i e s important i n d i f f e r e n t i a t i n g t h i s v a r i a t i o n from the type v a r i a t i o n are C a l t h a l e p t o s e p a l a , which i s present w i t h much h i g h e r cover, and Brachythecium s t a r k e i , which i s l a c k i n g i n the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n . The s o i l s of t h i s v a r i a t i o n are c l a s s e d as Humie G l e y s o l s (4) , Rego G l e y s o l ( l ) and L i t h i c O r t h i c Regosol ( l ) . The Ah h o r i z o n i s f i n e r - t e x t u r e d than i n the type v a r i a t i o n , P i g . 19. V a l e r i a n a - C a s t i l l e j a A s s o c i a t i o n , T r o l l i u s l a x u s V a r i a t i o n , P l o t 25. W h i t e f l o w e r s b e l o n g t o T r o l l i u s . 109 b e i n g c l a s s e d mainly as sandy loam. The C h o r i z o n i s s i m i l a r t o t h a t of the V a l e r i a n a - C a s t i l l e .ja V a r i a t i o n , w i t h a range from sandy loam to sand. The s o i l chemical d a t a are as d e s c r i b e d f o r the type v a r i a t i o n , except t h a t phosphorus i n c r e a s e s s l i g h t l y w i t h depth i n s t e a d of d e c r e a s i n g . The q u a n t i t y of n i t r o g e n i n the Ah h o r i z o n of p l o t 64 i s very low. The amounts o f c a l c i u m and sodium d i f f e r between the two v a r i a t i o n s . There i s more ca l c i u m i n the C h o r i z o n and more sodium i n the A h o r i z o n of t h i s v a r i a t i o n than i n the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n . Carex n i g r i c a n s A s s o c i a t i o n (Ref. T a b l e s 59, 6 0 , 6 1 , 6 2 , 63; F i g . 20, 21, 22, 2 3 , 24) C h a r a c t e r i s t i c Combination of Species Carex n i g r i c a n s Deschampsia at r o p u r p u r e a C l a y t o n i a l a n c e o l a t a E p i l o b i u m alpinum P o l y t r i c h u m norvegicum P o l y t r i c h a d e l p h u s l y a l l i i T h i s a s s o c i a t i o n occurs i n snow b a s i n s , d e p r e s s i o n s and temporary ponds In the a l p i n e , low a l p i n e and subalpine parkland a r e a s . R e l i e f shape v a r i e s from hummocky to s t r a i g h t t o concave. Exposure i s mainly southeast o r southwest, w i t h slope g r a d i e n t s r a n g i n g from 0 to 21$. Humus covers most of the ground s u r f a c e (89-100$). M i n e r a l s o i l occurs o n l y i n two p l o t s , w i t h a cover of 5-10$. There are u s u a l l y no rocks p r e s e n t . No evidence of e r o s i o n was observed. The hygrotope i s r a t e d as mesic to h y d r i c . The herb l a y e r and bryophyte l a y e r are both very w e l l developed. Coverage of the herb l a y e r i s 45-100$, while the 110 Table 59 . General Environnent Carex nigricans Association Carex - Polytrlchadelphus Variatio Juncus - Carex - Drepanocladus Variation Plot lio. 1 2 15 33 ; 35 .78 58 77 71 81 Elevation (ft.) 7600 .7575 ' 7475 7460 7450 7400 7380 7350 7300 7450 Physiography Landforn depression depression sno\u00C2\u00BB channel snos . channel slope , snoa channel snos basin . Snos basin sno\u00C2\u00AB . channel temporary pond . Relief shape hucinocky hunocky straight straight straight to concave concave straight , concave concave straight Exposure . SE SE SE SB \ S SB \u00E2\u0080\u00A2 Sill neutral neutral W Slope gradient (?) 1 3 11 9 8 \u00E2\u0080\u00A2 10 . 0 0 2 Layer coverage (?) C layer 95 90 97 100 100 . 99 100 ' 99 100 D layer 60 50 5 80 80 85 . 70 85 85 50 Plot Coverage (?) Hunus 99- 89 95 100 . 100 100 100 100 100 96 Mineral Soil 0 10 5 0 . 0 0 0 0 0 0 Rock 1 1 0 0 0 o 0 0 0 4 Soil Hygrotope hygric hygrlc subhydrlc . hygrlc neslc subhygric hygric hydrlc - hygric Erosion none none Horizon depth (in .) tj-0 L-H 1-0 - . - .' - - H 6-0 \u00E2\u0080\u00A2 -Ah 0-3 \u00E2\u0080\u00A24 Ah 0-2 Ahf 2-4. 0-5 0-12 .0-9 . 0-18 0-6 0-5 0-4 B C Bra 3-11 Bn 3J-HJ Cg 11+ Cgj D j - 18 Cg 18+ Bhf 4-6 Bra 6-15 15+ - Bhfg 12-30 Cg 5+ Cg 30+ Cg 9-18 18+ 18+ Bn1 6-9 Bm2 9-15 15+ Cg 5+ Classification Gleyed Alpine Dystric Brunisol Gleyed Alpine Dystric Brunisol Sonbric Rego Ferro-h'unlc Huaic Podzol Gleysol Fera Hunlc Gleysol Lithic Rego Hunlc Gleysol Orthic Regosol Alpine Dystric Brunisol Rego . Hunlc Gleysol Rego Hunlc Gleysol I l l . Table 60 Carex nigricans Association \u00E2\u0080\u00A2' Juncus wtensianus - Carex Larex nigricans - Polytrichadelphus l ya l l i i Vari at! on \u00E2\u0080\u00A2 nigricans - .Verianoclndus exannul atus Variation Plot lio. 1 2 15 33 35 .78 : 58 77 71 81 Plot Size (n2) 10 10 10 10 10 10 10 10.. 10 103 Extent of type (a2) 44 70 120 175 28 162 36 .119 . 120 108 Elevation (ft.) 7600 7575 7475 7460 7450 7400 7360 7350 73 00 7450 Altitudlnal area A A LA LA LA SP .SP . SP . SP LA \" Aver.Specles Assoclation C layer Presence Aver.Species Slgni ficance bigni ficance \u00E2\u0080\u00A2 1 Carex nigricans 9.4 9.4 9.3 9.6 9.6 9.6 ' 9.6 9.5 9.6 9 6.4' V / g 2 Deschanpsia -atropurpurca 1.+ 2-1 +.1 4.2 4.2. \u00E2\u0080\u00A24.2 3.1 4.1 . 3 - IV 3 3 Clayton)a lanceolata - +.+ 7.2 +.+ 2.1 6.1 _ 2.1 4 III 4 4 Antennaria lanata 3.2 3.1 6.2 - - 2.2 5.2 1.1 4 : III III 4 5 Veronica wornskjoldi i 1.+ 2.1 -\u00E2\u0080\u00A2 - 6.2 5.2 +.+ . _ \u00E2\u0080\u00A2 4 3 6-\u00E2\u0080\u00A2 Erigeron-peregrinus 1.1 3,1 3.2 2.2. . 4.2 - ,2 III 1 '7 Juncus drunaondii - 3.1 4.2 3.2 1.2 \u00E2\u0080\u00A2 - :. 1.2 _ 2 1 1 8 Hieraciun gracile - - 3.2 - 2.1. 2.2 - 3.1 \u00E2\u0080\u00A2 1.1 1 1.1 III. . 9 Sibbaldia procunbens 2.1 2.1 2.1 - 2.1 _ _ 1 1 10 Phyllodoce enpetrifornis 1.1 +.1 - - 1.1 2.2 + I l l + 11 Arnica lat i fo l ia - - - - +.1 1.1 6.2 _ 1.1 . 3 II 2 12 Juncus parryi 3.2 - 5.2 - \u00E2\u0080\u00A2 - 4.2 - . \u00E2\u0080\u00A2 - 2 - II 2 13 Arnica nol1is '- - 2.2 4.2 \u00E2\u0080\u00A2 _ \u00E2\u0080\u00A2 1 1.2 II. 1 14 Luzula sp. - - - - - 2.1 - 3.2 1.1 + II + 15 Luzula sahlenbargii - 2.2 2.2 1.2 - _ _ + .11 + 16 EpiI obi un alpinua - . - 1.1 - 2.1 - 1.1 + 2.1 II + 17 Carex spectabilis - - - +.3 -\u00E2\u0080\u00A2 - 1.2 + 1.3 II + 18 Juncus certensianus - - - - - - 2.1 - _ + 7.3. 1 3 19 Phleun alpi nun - - - 5.2 1.1 - 1 - 1 . 1 20 Luzula glabrata 3.2 ' 4.2 - \u00E2\u0080\u00A2 - - - _ 1 - 1 1 21 Arenaria capillaris +.1 - \u00E2\u0080\u00A2\u00E2\u0080\u00A2 1.1 - \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2' \".'+ - 1 + D layer Bryophytes 22 Polytrichua norvegicun Dh 8.2 1.1 - - 1.1 2.1 +.+ 4.2 3.1 4 2.1 IV 4 23 Polytrichadelphus l ya l l i i Dh - 1.1 - 9.2 - 8.2 8.2 8.2 2.2 6 . III 6 24 Lophozia alpestris Dh 1.1 1.1 . - - - 2.1 - 3.1 ; 5.1 2 III 2 25 Pohlia nutans Dh - - - - - 2.1 - 1.1 + 3.1 II + 26 Polytrichua piliferun Dh - +.1 3.2 - - - - 1.1 - - II + 27 Ceratodon purpureus Dh 1.1 - 1.1 - - 2.1 - - - \u00E2\u0080\u00A2 + II + '28 Pohlia gracilis Dh 1.1 2.1 1.1 - - - - - + II + 29 Polytrichua foraosun Oh - 7.2 - - 9.3 - . - - - \u00E2\u0080\u00A2 5 - . 1 5 30 Orepanocladus exannulatus Dh - - - - - - - - - - 6.2 1 2 31 Brachytheciua coll i nun Dh 5.1 2.1 - - - - - - - 1 1 1 32 Orepanocladus aduncus Dh - - - - - - - - . - 5.2 1 1 33 Barbilophozia hatcheri Dh 2.1 - - - - - - 1.1 . - + 1 + 34 Cephaloziella rubella Oh - - . - - - - - . - - - 3.2 1 + 35 Cephaloziella subdentata Dh - - - - . - +.+ - + 1 + Lichens 36 Lecidea granulosa Dh 3.2 1.1 +.1 - - - - 1.1 - + II + 37 Cladonia sp. Dh +.1 +.+ +.+ - - - - . +.+ + .11 + Total Species (incl.sporadics) 23 20 19 8 16 18 12 14 15 11 Sporadic Species 42 Brachytheciua starkei 58(3.1) C laver 43 Oicranun scopariua 71(4.1) 44 Klaeria blytt i i 2(1.1) 38 Antennaria friesiana 1(1.1) 45 Lophozia ? ventrlcosa 1(1.1) 39 Antennaria unbrinella 15(1.1) 46 Orthocaulis floerkii 71(7.1) 40 Vacclnlun scopariun 1(1.1) 47 Philonotis anerlcana 1(1.1) 0 layer 48 Pohlia druKiondii 35(1.1) 49 Scapanla subalpina 35(1.1) Bryophytes Lichens 41 Brachytheciua curtun 71(5.1) 50 Cetraria Islandica K+.+) 112 bryophyte l a y e r covers 5 -85$. The dominant s p e c i e s i s Carex n i g r i c a n s , which has an average s p e c i e s s i g n i f i c a n c e of 9. I t i s the only constant s p e c i e s i n the a s s o c i a t i o n . Other important s p e c i e s i n the C l a y e r , a l l of much lower cover, are Deschampsia a t r o p u r p u r e a , C l a y t o n i a l a n ceo l a t a , A n t e n n a r i a l a n a t a and V e r o n i c a wormsk.joldil. E p i l o b i u m alpinum i s c o n s i d e r e d as a c h a r a c t e r i s t i c s p e c i e s because of i t s p r e f e r e n c e f o r t h i s a s s o c i a t i o n . The D l a y e r i s dominated by bryophytes,as .lichens are very sparse i n t h i s wet community. The important s p e c i e s are P o l y t r i c h u m norvegicum and P o l y t r l c h a d e l p h u s l y a l l i i . P o l y t r i c h u m formosum has a very h i g h cover l n two p l o t s . The a s s o c i a t i o n i s d i v i d e d i n t o two v a r i a t i o n s : a. Carex n i g r i c a n s - P o l y t r i c h a d e l p h u s l y a l l i i V a r i a t i o n D \u00E2\u0080\u00A2 Juncus mertensianus - Carex n i g r i c a n s - Drepanocladus exannulatus V a r i a t i o n The f l o r i s t i c s i m i l a r i t y i n d i c e s f o r the ten p l o t s of the a s s o c i a t i o n are shown i n Table 6 l . Some of the v a l u e s are not too h i g h , but these p l o t s a l l have t h e i r h i g h e s t a f f i n i t y w i t h each o t h e r . I t can be seen t h a t the Juncus - Carex - Drepano-cladu s V a r i a t i o n ( p l o t 8 l ) i s not very s i m i l a r to the Carex -P o l y t r l c h a d e l p h u s V a r i a t i o n . However, i t i s i n c l u d e d w i t h i n the Carex n i g r i c a n s A s s o c i a t i o n mainly because of the h i g h coverage of Carex n i g r i c a n s . Table 61 F l o r i s t i c S i m i l a r i t y I n d i c e s f o r the Carex n i g r i c a n s A s s o c i a t i o n 1 2 15 33 78 58 77 71 81 1 60 52 47 42 52 43 55 50 18 2 58 55 68 56 48 57 55 19 15 48 44 52 59 51 49 18 33 45 78 73 83 52 17 35 53 40 44 48 18 78 71 81 53 20 58 73 47 17 77 54 21 71 20 81 The v a r i a t i o n s are d e s c r i b e d below, by g e n e r a l h a b i t a t , f l o r i s t i c s and s o i l s d a t a . a. Carex n i g r i c a n s - P o l y t r i c h a d e l p h u s l y a l l i i V a r i a t i o n T h i s i s the type v a r i a t i o n f o r the a s s o c i a t i o n . I t occurs In snow b a s i n s and d e p r e s s i o n s i n the a l p i n e , low a l p i n e and suba l p i n e p a r k l a n d a r e a s . R e l i e f shape v a r i e s from hummocky to s t r a i g h t to concave. Exposure i s g e n e r a l l y southeast o r south-west, and slope g r a d i e n t s range from 0 to 21$. Humus covers 8 9 -100$ of the ground s u r f a c e , m i n e r a l s o i l 0-10$, and rock 0 - 1 $ . There i s no e r o s i o n . The hygrotope ranges from mesic t o sub-h y d r i c . The herb l a y e r covers 90-100$ of the a r e a . The bryophyte 114 l a y e r a l s o has a f a i r l y h i g h coverage, of 5 -85$. The dominant s p e c i e s l i s t e d f o r the a s s o c i a t i o n a l s o char-a c t e r i z e t h i s snowpatch v a r i a t i o n . Deschampsia a t r o p u r p u r e a , C l a y t o n l a l a n c e o l a t a , A n t e n n a r i a l a n a t a , V e r o n i c a w o r m s k j o l d i i and P o l y t r i c h a d e l p h u s l y a l l i i , which are important i n t h i s v a r i a t i o n , are l a c k i n g i n the Juncus - Carex - Drepanocladus V a r i a t i o n . The s o i l s a s s o c i a t e d w i t h t h i s v a r i a t i o n are Rego Humic G l e y s o l (3), F e r a Humic G l e y s o l ( l ) , A l p i n e D y s t r i c B r u n i s o l (3), Sombric Ferro-Humic Podzol ( l ) , and O r t h i c Regosol ( l ) . Texture i s g e n e r a l l y c o a r s e r a t g r e a t e r depths. The A h o r i z o n v a r i e s from sandy loam t o s i l t loam, sandy loam b e i n g predominant. The B h o r i z o n samples are a l l sandy loams. The C h o r i z o n i s mainly a loamy sand or a sandy loam. The s o i l chemical d a t a are shown i n Table 63. The pH va l u e s i n c r e a s e w i t h depth, but a l l the valu e s are s t r o n g l y a c i d i c . Organic matter and n i t r o g e n g e n e r a l l y decrease w i t h i n c r e a s i n g depth. There i s s t i l l a c o n s i d e r a b l e amount of o r g a n i c matter i n some of the C h o r i z o n s due to the very shallow nature of the s o i l s . The amount of n i t r o g e n i n the C h o r i z o n of p l o t 2 appears t o be very h i g h , whereas the q u a n t i t y l n the C h o r i z o n of p l o t 78 i s very low. The carbo n : n i t r o g e n r a t i o s are narrow. Phosphorus, c a t i o n exchange c a p a c i t y , magnesium and potassium decrease i n q u a n t i t y with depth. Calcium and sodium decrease i n some cases; i n o t h e r s , they decrease from the A t o the B h o r i z o n , then i n c r e a s e from the B t o the C h o r i z o n . Plot No. 1 Ah Horizon, Textural class SL Sand (?) 65.6 Si l t (?) 34.4 Clay (?) 0 B Horizon Textural class SL Sand (?) 61.2 Si l t (?) 38.8 Clay (?) 0 C Horizon Textural class LS Sand (?) 84.8 S i l t (?) 15.2 Clay (?) 0 Table 62 Soil Texture Carex nigricans Association Carex - Polytrichadelphus Variati 2 15 33 35 78 SL SL SL SiL SL 66.8 66.2 60.0 46.4 48.0 32.8 33.3 38.6 50.4 48.6 0.4 0.5 1.4 3.2 3.4 SL SL SL 52.2 65.2 - 52.4 -47.4 33.3 - 44.4 -0.4 1.5 - 3.2 -LS LS LS LS SL 80.4 83.0 80.6 84.0 68.0 17.8 16.6 19.4 16.0 31.4 1.8 0.4 0 0 0.6 Juncus - Carex -Drepanocl adus Variation 58 77 71 81 SL SL L SL 63.0 55.2 51.2 51.0 31.8 40.4 37.6 42.2 5.2 4.4 11.2 6.8 SL - 48.0 - -- 49.5 - -- 2.5 - -SL SL SiL SiL 70.8 62.6 32.2 36.0 22.4 33.8 63.6 51.2 6.8 3.6 4.2 12.8 Plot No. L-H Horizon pH C (J) 0,1 (J) . N (J) C/N P (ppn) Ca (ne/IOOg) \u00C2\u00BBg (ne/IOOg) Na (ne/IOOg) K (ne/IOOg) CEC (WlOOg) Ah Horizon pH C (J) oa \u00C2\u00AB) N (J) c/\u00C2\u00AB P (ppn) Ca (ite/IOOg) Bg <\u00C2\u00AB/100g) Na (ne/IOOg) K (m/100g) CEC WlOOg) 6 Horizon pH C (I) 0\u00C2\u00BB (J) N (J) C/N P (ppn) Ca (ne/IOOg) Bg (ne/IOOg) Na (ne/IOOg) K (ne/IOOg) CEC (ne/IOOg) C Horizon pH C (J) OK (J) N (J) C/N P (pp>) Ca (ne/IOOg) Bg (ne/100g) Na (m/IOOg) K (ne/IOOg) CEC (\u00E2\u0080\u00A2e/IOOg) Table 63 \u00E2\u0080\u00A2 , , ' \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ' Soil Chemical Analysis Carex nigricans Association Juncus - Carex -Carex - Polytrichadelphus Variation Drepanocladus \u00E2\u0080\u0094 Variation 1 2 15 33 35 78 , . 58 77 71 ' 81 '.5 4.3 _ 4.6 _ 23.9 _ 19.0 - - \u00E2\u0080\u00A2 22.1 \u00E2\u0080\u00A2 -41.1 32.6 _ - - 38.0 \u00E2\u0080\u00A2 1.3 1.3 - - - \u00E2\u0080\u00A2 - 1.6 -18. - 15. - - - '. - . 14. -16. 16. - - \u00E2\u0080\u00A2 - 21. -3.20 \u00E2\u0080\u00A2 0.56 - _ - - - 0.12 -1.58 0.35 - 0.25 -0.23 0.26 - 0.43 -3.26 0.98 - - . - \u00E2\u0080\u00A2 '- 0.35 -138.0 - 53.6 - - \u00E2\u0080\u00A2 58.4 4.8 4.6 \u00E2\u0080\u00A2 4.6 4.9 5.1 4.8 5.0 4.6 5.0 5.6 14.1 . 14.6 12.1 12.5 6.6 13.3 5.6 15.9 14.0 2.5 24.3 25.2 20.9 21.6 11.7 22.9 9.7 27.4 24.0 . 4.3 0.9 1.0 \u00E2\u0080\u00A2 0.7 0.9 0.5 1.0 0.4 0.9 1.1 0.3 15.' 15. ' 17. 14. 15. 14. 15. 18. 13. 8. 8. 8. 10. . 21. 6. 12. 9. 6. 4. 7. O.08 0.25 . 0.04 0.27 0.61 0.44 0.42 0.03 0.03 0.97 0.10 0.28 0.05 0.13 0.06 0.15 0.05 0.14 ' 0.03 0.19 0.16 0.13 0.15 0.15 . 0.44 0.27 0.26 . 0.27 0.19 . 0.16 0.35 0.59 0.20 0.07 0.00 0.22 0.09 0.27 0.05 0.13 36.4 41.9 35.1 . 41.3 24.3 17.0 . 16.2 31.6 24.1 18.9 5.4 5.3 4.9 5.2 5.6 4.5 5.8 . 8.2 - 7.5 - 3.0 - -7.7 10.0 14.1 12.8 - 5.2 - -0.4 0.4 ' 0.5 - 0.5 - . - 0.2 - -12. 14. 16. - 15. - - 15. - \u00E2\u0080\u00A2 -3. 6. 10. - 8. - 6. - -0.03 0.06 0.02 ' - 0.44 _ 0.08 \u00E2\u0080\u00A2 -0.02 0.01 0.02 0.04 - _ 0.02 \u00E2\u0080\u00A2 0.13 0.10 \u00E2\u0080\u00A2 0.13 0.24 - - 0.14 -0.05 0.03 0.11 - . 0.00 - 0.04 - -12.3 . 18.3 12.7 - \u00E2\u0080\u00A2 27.6 - - 13.9 - -5.4 5.4 \u00E2\u0080\u00A2 4.9 5.1 5.5 5.0 5.4 5.2 5.5 6.3 1.1 0.9 , 4.4 4.1 2.5 9.1 4.1 1.7 3.5 1.8 1.8 1.5 7.5 .7.1 4.3 15.7 7.1 2.9 6.0 3.0 0.1 0.6 0.2 0.2 0.2 0.1 0.3 0.1 0.3 0.2 13. 2. 18. 18. 15. 76. 16. 14. 11. 9. 3. 4. 4. 16. 8. 11. 2. 5. 2. 5. 0.29 0.37 0.19 0.44 0.38 0.09 0.32 0.23 0.11 1.17 0.01 0.01 0.01 . 0.03 0.02 0.02 0.02 ' 0.02 . 0.01 0.23 0.14 0.14 0.12 0.14 0.13 0.13 0.14 0.15 0.14 0.15 0.04 0.03 0.10 - 0.07 0.00 0.05 \u00E2\u0080\u00A2 0.06 0.04 0.03 0.15 16.1 15.8 8.3 \u00E2\u0080\u00A2 21.6 16.1 21.5 11.6 18.4 22.0 25.1 F i g . 20. C a r e x n i g r i c a n s A s s o c i a t i o n , C a r e x -P o l y t r l c h a d e l p h u s V a r i a t i o n , P l o t Jl, N o t e l a t e - l y i n g snow. P h o t o t a k e n J u l y 5,1969. 118 F i g . 2 1 . S o i l p r o f i l e of Carex n i g r i c a n s A s s o c i a t i o n , Carex -P o l y t r i c h a d e l p h u s V a r i a t i o n , P l o t 7 1 . T h i s s o i l i s c l a s s i f i e d as a Rego Humic G l e y s o l with H, Ah and Cg h o r i z o n s . F i g . 22. S o i l p r o f i l e of Carex n i g r i c a n s A s s o c i a t i o n , Carex -P o l y t r i c h a d e l p h u s V a r i a t i o n , P l o t 7 7 . T h i s s o i l i s c l a s s i f i e d as an A l p i n e D y s t r i c B r u n i s o l , w i t h an Ah-Bml-Bm2-C h o r i z o n sequence. 119 b. Juncus mertensianus - Carex n i g r i c a n s - Drepanocladus exannulatus V a r i a t i o n T h i s community i s r e p r e s e n t e d by only one p l o t ( 8 l ) . I t occurs In a temporary pond i n the low a l p i n e a r e a . The r e l i e f shape i s s t r a i g h t . Exposure i s northwest, w i t h a slope g r a d i e n t of 2 $ . Humus covers 96$ of the ground s u r f a c e , and rock 4 $ . There i s no exposed m i n e r a l s o i l . No evidence of e r o s i o n i s p r e s e n t . The hygrotope ranges from h y d r i c t o h y g r i c . The herb l a y e r and the bryophyte l a y e r have s i m i l a r cover-age v a l u e s . The C l a y e r covers 45$ of the a r e a , and the D l a y e r 50$. There I s thus a much lower coverage of p l a n t s than i n the type v a r i a t i o n . The herbs grow mainly In l a r g e clumps, which stand up above the water l e v e l while the pond i s s t i l l i n e x i s t e n c e . The dominant s p e c i e s i n t h i s v a r i a t i o n i s Juncus m e r t e n s i a -nus, w i t h a s p e c i e s s i g n i f i c a n c e of 1. Of the important s p e c i e s i n the C l a y e r l i s t e d f o r the a s s o c i a t i o n , the only one present here i s Carex n i g r i c a n s , w i t h a lower cover than i n the type v a r i a t i o n . In the D l a y e r , s e v e r a l s p e c i e s d i f f e r e n t i a t e t h i s v a r i a t i o n : Drepanocladus exannulatus, which Is l a c k i n g i n the type v a r i a t i o n , Drepanocladus aduncus and C e p h a l o z i e l l a r u b e l l a , both o f which are e x c l u s i v e t o t h i s v a r i a t i o n . The s o i l i s c l a s s e d as a Rego Humic G l e y s o l . The s o i l t e x t u r e becomes f i n e r w i t h depth, u n l i k e the Carex - F o l y t r i c h a -delphus V a r i a t i o n . The A h o r i z o n i s a sandy loam, while the C h o r i z o n i s a s i l t loam. The pH i n c r e a s e s w i t h depth; the v a l u e s are h i g h e r than f o r the type v a r i a t i o n . Organic matter and 120 P i g . 2 3 . Carex n i g r i c a n s A s s o c i a t i o n , Juncus - Carex -Drepanocladus V a r i a t i o n , P l o t 8 l . Large clumps are Carex n i g r i c a n s , s m a l l e r clumps are Juncus mertensianus. P i g . 24. S o i l p r o f i l e o f Carex n i g r i c a n s A s s o c i a t i o n , Juncus -Carex - Drepanocladus V a r i a t i o n , P l o t 8 l . T h i s s o i l i s c l a s s i f i e d as a Rego Humic G l e y s o l , w i t h Ah and Cg h o r i z o n s . 121 n i t r o g e n decrease w i t h depth, and carbon:nitrogen r a t i o s are narrow. The amount of o r g a n i c matter present i n the A h o r i z o n i s very low. Phosphorus and sodium decrease w i t h depth, as d e s c r i b e d f o r the type v a r i a t i o n . However, c a t i o n exchange c a p a c i t y , c a l c i u m , magnesium and potassium a l l i n c r e a s e i n amounts with depth. In the A h o r i z o n , c a l c i u m and magnesium are present i n g r e a t e r q u a n t i t i e s than i n the type v a r i a t i o n ; i n the C h o r i z o n , there i s more c a l c i u m , magnesium and potassium. P o l y t r i c h u m norvegicum A s s o c i a t i o n (Ref. T a b l e s 64, 6 5 , 6 6 , 67; F i g . 25) C h a r a c t e r i s t i c Combination of Species P o l y t r i c h u m norvegicum Juncus mertensianus T h i s a s s o c i a t i o n , which i s r e p r e s e n t e d by only two p l o t s , occurs i n temporary ponds i n the a l p i n e a r e a . The r e l i e f shape i s s t r a i g h t . The exposure i s n e u t r a l , and thus there i s no slope g r a d i e n t . Humus covers 15-75$ of the ground s u r f a c e , m i n e r a l s o i l 0-15$ and rock 25-70$. There i s no evidence o f e r o s i o n . The hygrotope ranges from h y d r i c t o h y g r i c . The D l a y e r i s the conspicuous one, c o v e r i n g 60-80$ o f the a r e a . The C l a y e r i s very s p a r s e l y developed, coverage b e i n g only 10$. P o l y t r i c h u m norvegicum i s the dominant s p e c i e s , w i t h an average s p e c i e s s i g n i f i c a n c e o f 8 . I t i s a l s o the only constant bryophyte. Lichens are p r a c t i c a l l y l a c k i n g , due t o the wetness of the s i t e . The only two constant s p e c i e s i n the C l a y e r are Juncus mertensianus and Carex s p e c t a b i l i s , both w i t h lower T a b l e 64 G e n e r a l E n v i r o n m e n t P o l y t r i c h u m n o r v e g i c u m A s s o c i a t i o n P l o t No. E l e v a t i o n ( f t . ) P h y s i o g r a p h y L a n d f o r m R e l i e f s h a p e E x p o s u r e S l o p e g r a d i e n t (%) 79 7575 80 7575 - t e m p o r a r y p o n d s t r a i g h t n e u t r a l 0 L a y e r C o v e r a g e (%) C l a y e r D l a y e r 10 80 10 60 P l o t C o v e r a g e (%) Humus M i n e r a l s o i l Rock 75 0 25 15 15 70 S o i l H y g r o t o p e E r o s i o n H o r i z o n d e p t h ( i n . ) Ah B f Cg - h y d r i c - h y g r i c -none 0-5 5-14 14 + 0-5 5 + C l a s s i f i c a t i o n G l e y e d S o m b r i c H u m o - F e r r i c P o d z o l Rego Humic G l e y s o l 123 T a b l e 6 5 P o l y t r i c h u m n o r v e g i c u m A s s o c i a t i o n P l o t No. ? 79 80 P l o t s i z e (m ) 9 10 40 E x t e n t o f t y p e (m ) 10 40 E l e v a t i o n ( f t . ) 7575 7575 A l t i t u d i n a l a r e a A A C l a y e r P r e s - A v e r . e n c e S p e c i e s S i g n i f i -c a n c e 1. J u n c u s m e r t e n s i a n u s 3.1 4.2 2/2 4 2. C a r e x s p e c t a b i l i s 4.2 2.2 2/2 3 3. J u n c u s d r u m m o n d i i - 2.2 1/2 1 4. P h l e u m a l p i n u m 2.1 - 1/2 1 5. P o a c u s i c k i i 2.1 - 1/2 1 6. Car^ex n i g r i c a n s - 1.3 1/2 + D l a y e r B r y o p h y t e s 7. P o l y t r i c h u m n o r v e g i c u m Dh 9.6 7.3 2/2 8 8. A n t h e l i a j u r a t z k a n a Dh - 4.2 1/2 3 9. P o h l i a g r a c i l i s Dh - 4.2 1/2 3 10. K i a e r i a b l y t t i i Dh 2.1 - 1/2 1 1 1 . A u l a c o m n i u m p a l u s t r e Dh 1.1 - 1/2 + 12. Bryum s p . Dh - 1.1 1/2 + L i c h e n s 1 3 . L e c i d e a g r a n u l o s a Dh 1.1 - 1/2 + T o t a l S p e c i e s 8 8 T a b l e 6 6 S o i l T e x t u r e P o l y t r i c h u m n o r v e g i c u m A s s o c i a t i o n P l o t No. 79 80 Ah H o r i z o n T e x t u r a l c l a s s SL LS Sand (%) 70.8 81.2 S i l t (%) 22.8 14.4 C l a y (%) 6.4 4.4 B f H o r i z o n T e x t u r a l c l a s s SL S a n d (%) 76.4 S i l t (%) 16.8 C l a y (%) 6.8 Cg H o r i z o n T e x t u r a l c l a s s SL SL S a n d (%) 72.0 72.4 S i l t (%) 21.2 15.2 C l a y (%) 6.8 12.4 Table 67 Soil Chemical Analysis Polytrichum norvegicum Associ ati on 125 Plot No. 79 80 Ah Horizon pH 5.0 5.3 C (?) 7.3 1.8 OM (?) 12.6 3.1 N (?) 0.7 0.2 C/N 10. 11. P (ppm). 8. 2. Ca (me/1OOg) 0.29 0.39 Mg (me/1OOg) 0.05 0.02 Na (me/1OOg) ' 0.12 0.14 K (me/1OOg) 0.13 0.07 CEC (me/1OOg) 13.6 8.7 Bf Horizon pH 4.8 C (?) 2.6 OM (?) 4.5 N (? ) 0.2 C/N 16. P (ppm) 4. \u00E2\u0080\u00A2 Ca (me/1OOg) 0.46 Mg (me/1OOg) 0.01 Na (me/lOOg) 0.12 K (me/1 OOg) 0.07 CEC (me/1OOg) 11.0 Cg Horizon pH 5.0 5.5 C (?) 1.0 0.9 OM (? ) 1.8 1.5 N (?) 0.1 0.1 C/N 20. 14. P (ppm) 2. 3. . Ca (me/1OOg) 0.39 0.52 Mg (me/1OOg) 0.01 0.02 Na (me/lOOg) 0.13 0.16 K (rae/lOOg) 0.04 0.09 CEC (me/1OOg) 6.3 14.0 126 F i g . 25. P o l y t r i c h u m n o r v e g i c u m A s s o c i a t i o n , P l o t 79. In f o r e g r o u n d i s t r a n s i t i o n t o C a r e x n i g r i c a n s A s s o c i a t i o n . In b a c k g r o u n d a r e clumps o f C a r e x s p e c t a b i l i s . 127 cover v a l u e s . The f l o r i s t i c s i m i l a r i t y index f o r the two p l o t s i s 53. The s o i l s are c l a s s i f i e d as a Gleyed Sombric Humo-Ferric Podzol and a Rego Humic G l e y s o l . T e x t u r a l l y , the s o i l s are f a i r l y f i n e - t e x t u r e d . The A h o r i z o n i s e i t h e r a sandy loam or loamy sand. The B h o r i z o n , where p r e s e n t , i s a sandy loam. The C h o r i z o n i s a sandy loam. In p l o t 8 0 , the t e x t u r e becomes f i n e r w i t h depth. Table 67 p r e s e n t s the s o i l chemical d a t a . The pH i n c r e a s e s w i t h depth, and a l l the v a l u e s are s t r o n g l y a c i d i c . Organic matter and n i t r o g e n decrease w i t h depth. There i s very l i t t l e o r g a n i c matter i n the Ah h o r i z o n of p l o t 8 0 . Carbon:nitrogen r a t i o s are g e n e r a l l y narrow. Amounts of phosphorus, c a t i o n ex-change c a p a c i t y and exchangeable c a t i o n s have no p a r t i c u l a r r e l a t i o n s h i p w i t h depth t h a t can be judged from the two r e p r e s -e n t a t i v e p l o t s . The q u a n t i t i e s of the c a t i o n s are a l s o v a r i a b l e between the two p l o t s . Drepanocladus exannulatus A s s o c i a t i o n (Ref. Tables 6 8 , 6 9 , 7 0 , 71; F i g . 2 6 , 27) T h i s a s s o c i a t i o n , r e p r e s e n t e d by o n l y one p l o t , occurs as a narrow band around the edge o f a temporary pond i n the sub-a l p i n e p a r k l a n d . The r e l i e f shape i s concave. Exposure i s n e u t r a l and t h e r e f o r e there i s no slope g r a d i e n t . The e n t i r e s u r f a c e i s covered by humus, wit h no m i n e r a l s o i l o r r o c k . There i s no d i s c e r n i b l e e r o s i o n . The hygrotope v a r i e s from h y d r i c t o h y g r i c . 128 T a b l e 6 8 G e n e r a l E n v i r o n m e n t D r e p a n o c l a d u s e x a n n u l a t u s A s s o c i a t i o n P l o t No. E l e v a t i o n ( f t . ) P h y s i o g r a p h y L a n d f o r m R e l i e f s h a p e E x p o s u r e 82 7350 edge o f t e m p o r a r y p o n d c o n c a v e n e u t r a l S l o p e g r a d i e n t (%) L a y e r C o v e r a g e (%) C l a y e r D l a y e r 8 95 P l o t C o v e r a g e (%) Humus 100 S o i l H y g r o t o p e E r o s i o n H o r i z o n d e p t h ( i n . ) Ah Cg h y d r i c - h y g r i c none 0-12 12+ C l a s s i f i c a t i o n Rego Humic G l e y s o l D r e p a n o c l a d u s T a b l e 69 e x a n n u l a t u s A s s o c i a t i o n P l o t No. 82 2 P l o t s i z e (m ) 5 2 E x t e n t o f t y p e (m ) 5 E l e v a t i o n ( f t . ) 7350 A t t i t u d i n a l a r e a SP C l a y e r C a l a m a g r o s t i s c a n a d e n s i s 3.1 J u n c u s m e r t e n s i a r i u s 2.2 D l a y e r B r y o p h y t e s D r e p a n o c l a d u s e x a n n u l a t u s Dh 9.6 D i c r a n e l l a s p . Dh 4.1 Sphagnum nemoreum Dh 3.1 130 The D l a y e r i s predominant, c o v e r i n g 9 5 $ of the a r e a . The C l a y e r i s very s p a r s e l y developed, with a coverage o f 8 $ . Drepanocladus exannulatus i s the dominant s p e c i e s , w i t h an average s p e c i e s s i g n i f i c a n c e of 9 . Only two o t h e r bryophytes are found here: D i c r a n e l l a sp. and Sphagnum nemoreum. T h i s community i s the o n l y l o c a l i t y f o r Sphagnum i n the r e s e a r c h a r e a . The only two s p e c i e s In the C l a y e r are Calamagrostis canadensis and Juncus mertensianus. Calamagrostis i s not found i n any o t h e r community. The s o i l i s c l a s s e d as a Rego Humic G l e y s o l . Texture becomes f i n e r w i t h depth. The A h o r i z o n i s a sandy loam, while the C h o r i z o n i s a s i l t loam. The pH i n c r e a s e s s l i g h t l y w i t h depth, but s t i l l remains s t r o n g l y a c i d i c . Organic matter and n i t r o g e n decrease w i t h depth, and the c a r b o n : n i t r o g e n r a t i o s are narrow. Phosphorus, c a t i o n exchange c a p a c i t y , c a l c i u m , magnesium and potassium decrease i n amounts w i t h depth, while sodium i n c r e a s e s s l i g h t l y . T a b l e 70 S o i l T e x t u r e D r e p a n o c l a d u s e x a n n u l a t u s A s s o c i a t i o n P l o t No. 82 H o r i z o n Ah Cg T e x t u r a l c l a s s SL S i L S a nd (%) 61.4 38.0 S i l t (%) 34.8 59.2 C l a y (%) 3.8 2.8 T a b l e 71 S o i l C h e m i c a l A n a l y s i s D r e p a n o c l a d u s e x a n n u l a t u s A s s o c i a t i o n P l o t No. 8 2 H o r i z o n Ah Cg pH 5.5 5.6 C (%) 6.6 2.5 OM (%) 11.4 4.3 N (%) 0.6 0.3 C/N 11- 9. P (ppm) 8. 6. Ca (me/lOOg) 0.22 0.16 Mg (me/lOOg) 0.03 0.01 Na (me/lOOg) 0.12 0.12 K (me/lOOg) 0.08 0.06 CEC (me/lOOg) 24.6 21.7 132 F i g . 26 . Drepanocladus exannulatus A s s o c i a t i o n , P l o t 8 2 , i s re p r e s e n t e d by the narrow, dark band around the margin of the pond. In foreground i s p a r t o f V a l e r i a n a - C a s t i l l e j a A s s o c i a t i o n , with Senecio t r i a n g u l a r i s i n f l o w e r . Photo taken Aug. 3 , 1969. F i g . 27. S o i l p r o f i l e of Drepanocladus exannulatus A s s o c i a t i o n , P l o t 8 2 . T h i s s o i l i s c l a s s i f i e d as a Rego Humic G l e y s o l , with an Ah-Cg h o r i z o n sequence. Photo taken Aug. 2 9 , 1969, a f t e r pond has d r i e d out. t 133 5. D i s t r i b u t i o n o f Tree S p e c i e s T h i s s e c t i o n p r e s e n t s i n f o r m a t i o n on growth h a b i t s , d i s t r i b -u t i o n p a t t e r n s , measurements of diameter, h e i g h t and age, and occurrence of s e e d l i n g s and shrubs of tr e e s p e c i e s . These d a t a are somewhat scanty, s i n c e they were not the major aim of the r e s e a r c h . However, i t i s b e l i e v e d t h a t they are of v a l u e , p a r t i c u l a r l y i n judging the f u t u r e v e g e t a t i o n development of the area; t h a t i s , f o r e s t versus open v e g e t a t i o n . More d e t a i l e d a u t e c o l o g i c a l work should be done on t h i s aspect i n o r d e r to draw v a l i d c o n c l u s i o n s . As mentioned p r e v i o u s l y , there are f o u r t r e e s p e c i e s p r e s e n t i n the study a r e a : Abies l a s i o c a r p a , P i c e a engelmannii, Pinus a l b i c a u l i s and Pinus c o n t o r t a . Plnus c o n t o r t a was observed only i n one l o c a l i t y (a Juncus p a r r y i community), growing as a s i n g l e very low shrub one and a h a l f f e e t i n h e i g h t (see Table 7*0. Plnus a l b i c a u l i s i s s l i g h t l y more f r e q u e n t , but i s s t i l l r a r e . Only two very low shrubs were noted, the remainder of the occurrences b e i n g as s e e d l i n g s . Abies l a s i o c a r p a and P i c e a engelmannii are thus the predominant t r e e s p e c i e s . In the a l p i n e a r e a 1 , Abies occurs mostly i n low krummholz c o l o n i e s , while P i c e a occurs as s o l i t a r y or a few clumped s p e c i -mens, u s u a l l y t a l l e r than Abies and not growing i n krummholz form. In the subalpine p a r k l a n d , A b i e s , i n p a r t i c u l a r , grows much t a l l e r , and i n some cases i s as t a l l as P i c e a . 1 Throughout t h i s s e c t i o n , \" a l p i n e area\" i n c l u d e s the low a l p i n e a r e a . 134 In the a l p i n e a r e a , the t r e e s p e c i e s occur on r i d g e s , which have l e s s snow cover than the surrounding t e r r a i n , and are thus f r e e o f snow e a r l i e r i n the growing season. T h i s i s the s i t u a t i o n i n a r e g i o n of h i g h s n o w f a l l , as i n the c o a s t a l a l p i n e zone ( K r a j i n a , 1965). In the subalpine p a r k l a n d the t r e e s occur not only on r i d g e s but a l s o on seepage s l o p e s . Table 72 p r e s e n t s the diameter, h e i g h t and age measurements made on the o l d e s t specimens i n each t r e e i s l a n d community which was sampled. Table 73 summarizes the ages. In c o n s i d e r i n g e i t h e r the a l p i n e a r e a or the subalpine p a r k l a n d , Abies l a s l o -carpa i s o l d e r than P i c e a engelmannii. The more i n t e r e s t i n g comparison i s t h a t the subalpine t r e e s are much o l d e r than those i n the a l p i n e a r e a . These ages, combined with the f a c t t h a t no dead wood was observed, suggest t h a t there has been a recent m i g r a t i o n o f t r e e s p e c i e s i n t o the a l p i n e a r e a . I t was hoped t h a t ' t h e s e m i g r a t i o n s c o u l d be c o r r e l a t e d with a c l i m a t i c change, but there i s I n s u f f i c i e n t t r e e mensuration and c l i m a t i c data t o do t h i s . Such a task would be a separate p r o j e c t i n i t s e l f . F r a n k l i n e t a l . (1966) have c o r r e l a t e d t r e e i n v a s i o n s i n t o subalpine meadows i n the P a c i f i c Northwest with a warming tre n d i n the e a r l y p a r t o f t h i s century. I t i s p o s s i b l e that t h i s may be the case f o r the B i g White area a l s o . Table 72 Diameter, Height and Age Measurements^ of Abies lasiocarpa and Picea enoelnannll Community Plot Species\" Olaneter Height ( , Height Range (In.) Range (ft.) ( f t j Age ^ Height Estimated (yrs.) (ft) Age (yrs.) Picea engelmannii Association Abies lasiocarpa Association sitchensis Assoclati on engelmannii - Vacci ni um scoparium Assoc! ati on 49 (A) Picea engel. - - 4.0 8 36 2.0 41 39 0.7 44 (A) Abies laslo. 1-3 2.5-8 3.0 8 52 2.5 109 86 1.0 > 2.0 7 47 2.5 . 60 52 1.5 53 (A) Abies laslo. . 3-8 2.5 8 36 3.0 51 48 0.5 1.5 6.5 72 2.0 98 85 1.0 56(SP) Abies lasio. 3-5 7-11 6.0 10 43 2.5 98 65 1.5 62 (SP) Abies lasio. 1.5-8.5 5-15 8.5 15 162 2.0 162+ 7.0 12 105 2.0 229 167 1.0 74 (SP) Abies lasio. 0.8-8.0 5-18 . 8.0 18 98 3.0 116 105 1.0 6.0 17 134 2.0 274 204 1.0 51 (A) Abies lasio. 1-2.5 5-6 2.5 6 55 2.0 55+ 1.3 5 31 2.0 31+ Picea engel. 5-6 - 6.0 12 56 2.5 \u00E2\u0080\u00A2 80 75 0.5 6.0 10 52 2.5 60 57 1.0 54 (LA) Abies lasio. 1.5 5.5 23 2.0 53 38 1.0 2.0 5 35 2.0 70 58 0.7 Picea engel. - - 7.0 11 49 2.0 67 58 1.0 3.0 11 37 2.0 48 44 0.7 61 (SP) Abies laslo. 3-7 2.5 7 58 2.0 58+ 2.0 . 7 72 2.0 106 89 1.0 Picea engel.. - - 9.0 12 57 2.0 91 74 1.0 10.0 13 74 2.0 83 80 0.7 70 (SP) Abies laslo. 0.5-7 \"3.5-18 \" 7.0 15 139 2.0 267 203 1.0 6.0 18 126 3.0 315 189 2.0 Picea engel. 0.8-9.5 5.5-18 9.5. 18 121 2.0 121+ 4.8 \u00E2\u0080\u00A2 12 55 2.0 105 80 1.0 Age of oldest trees Table 73 A g e 1 o f Tree Species i n A l p i n e and Subalpine Parkland Areas Species Area Average Range Abies l a s l o c a r p a A l p i n e 2 74 (6) 51-109 Subalpine 201 (7) 98-315 P i c e a engelmannii A l p i n e 59 (5) 41-80 Subalpine 100 (4) 83-121+ 1 Age of o l d e s t i n d i v i d u a l s 2 Includes low a l p i n e area Table 74 shows the occurrence of c o n i f e r s e e d l i n g s and shrubs i n a l p i n e and t i m b e r l i n e communities, e x c l u s i v e of the sampled t r e e i s l a n d s . No c o n i f e r s e e d l i n g s were observed i n the t r e e i s l a n d communities. P i c e a engelmannii s e e d l i n g s are the most common, and they are s c a t t e r e d among f o u r communities. More s e e d l i n g s were found i n the An t e n n a r i a - S i b b a l d i a - S a l i x community than i n any o t h e r . T h i s corresponds t o the statement made e a r l i e r t h a t the t r e e s p e c i e s occur mainly on r i d g e s i n the a l p i n e a r e a , s i n c e t h i s community occurs on r i d g e s . Table 74 Occurrence of C o n i f e r S e e d l i n g s and Shrubs i n A l p i n e and T i m b e r l i n e Communities 1 No. of s e e d l i n g s Community Carex phaeocephala V a r i a t i o n Juncus p a r r y i A s s o c i a t i o n A n t e n n a r i a l a n a t a A s s o c i a t i o n Phyllodoce empetriformis - Antennaria l a n a t a A s s o c i a t i o n Phyllodoce - Antennaria V a r i a t i o n V a l e r i a n a s i t c h e n s i s - C a s t i l l e , j a e l m e r i A s s o c i a t i o n T r o l l i u s laxus V a r i a t i o n 1 E x c l u s i v e of sampled t r e e i s l a n d s P l o t No. Abies P i c e a Pinus a. Shrubs Antennaria l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n Antennaria - S i b b a l d i a - S a l i x V a r i a t i o n 10 (A 22 (A 13 L 17 (LA Outside 68 (SP) 32 (LA) Outside 27 (A) Outside 31 (LA) 57 (SP) 69 (SP) - 1 1 2 \u00E2\u0080\u0094 \u00E2\u0080\u0094 l P i c e a 1 P i c e a 1 Plnus c o n t o r t a d t ft.) A b i e s , P i c e a C6~ f t 7 T ~ S e v e r a l P i c e a (8 ftT) ->3 138 6. V e g e t a t i o n R e l a t i o n s h i p s . R e l a t i o n s h i p s between the communities on a v e g e t a t i o n a l b a s i s are presented i n t h i s s e c t i o n . In order t o compare a l l the a s s o c i a t i o n s w i t h one another, a s y n t h e s i s t a b l e was c o n s t r u c t e d (Table 75) i n which the major s p e c i e s are l i s t e d w ith t h e i r presence and average s p e c i e s s i g n i f i c a n c e v a l u e s shown f o r a l l a s s o c i a t i o n s . The a s s o c i a t i o n s are arranged a l o n g a g r a d i e n t o f i n c r e a s i n g moisture (as d e s c r i b e d i n s e c t i o n 4). In t h i s manner, i t i s p o s s i b l e t o show the f l o r i s -t i c d i s t i n c t n e s s o f some a s s o c i a t i o n s and the o v e r l a p o f s p e c i e s l n o t h e r a s s o c i a t i o n s . The f i r s t h a l f o f the t a b l e (down t o Juncus mertensianus) prese n t s s p e c i e s which are c h a r a c t e r i s t i c o f a t l e a s t one a s s o c -i a t i o n . The s p e c i e s which are boxed show the c h a r a c t e r i s t i c s p e c i e s f o r t h a t p a r t i c u l a r a s s o c i a t i o n . The second p a r t o f the t a b l e (beginning with S e l a g l n e l l a d e n s a K l i s t s s p e c i e s which occur i n a t l e a s t one a s s o c i a t i o n w i t h a presence o f IV or V (or cor r e s p o n d i n g f r a c t i o n ) . The s p e c i e s e n c l o s e d by do t t e d l i n e s are the high-presence s p e c i e s f o r t h a t a s s o c i a t i o n . I t can be seen t h a t there i s some o v e r l a p o f s p e c i e s In the mesic a s s o c i a t i o n s , as expected, but i n g e n e r a l , both the c h a r a c t e r i s t i c s p e c i e s and the high-presence s p e c i e s f o l l o w the moisture t r e n d . That i s , there i s a d i f f e r e n t group of s p e c i e s which i s most important f o r each community, from the dry a s s o c i a t i o n s through t o the wet ones. Sp e c i e s o c c u r r i n g i n a s s o c i a t i o n s f o r which they are not c h a r a c t e r i s t i c are u s u a l l y much l e s s important i n those a s s o c i a t i o n s . Table 75 Syntheslt Table for all Association! Juniperus conuunis Carex phaeocephala Arenaria caplllarls Festuca brachyphylla Tortula ruralls Peltigera raalacea Rhizocarpon geographicura Sibbaldia procumbens Unbillcarla hyperborea Alectorla mlnuscula Polytrlchun piliferum Antennaria lanata Juncus parryI Lecidea granulosa Sallx cascadensls Gentlana glauca Phyllodoce empetriforrais Vaccinium scoparium Dicranum scoparium Picea engelmannii Cetraria plnastri Abies lasiocarpa Parmeliopsis hyperopta Arnica latlfolta Valeriana sitchensis Polytrichadelphus lyallii Carex spectabilis Castllleja elmeri Arnica noil Is Erfgeron peregrinus Senecio triangularis Ranunculus eschscholtzii Aulacoranlum palustre Philonotis ame He ana Brachytheclui asperriraun Carex nigricans Oeschampsfa atropurpurea Clayton!a lanceolata Epi1 obiua alpi nun Polytrichum norveglcua Juncus mertensianus Selaglnella densa Barbilophozia hatcherl luzula spicata Peltigera canina Trlsetum splcatum Sedun lanceolatum Potentllla dlverslfolia Haplopappus lyalllt Antennaria umbrinella Cladonia cameo]a Solorina crocea Hieracium graclle Arenaria obtusiloba Agrostis variabilis Carex pyrenalca Luzula lahlenbergll Cetraria Islandica Cladonia ecmocyna Lophozla alpestris Cetraria erlcetorum Parmeliopsis ambigua Luplnus latifollus Pedicularis bracteosa Luzula sp. Veratrun virlde Ml tell a breierl Caltha leptosepala Juncus drunnondll Phleuo alplnua Troll I us laxus Veronica \u00E2\u0080\u00A2ormskjoldll V.5 V.* V.2 V.2 V.3 IV.1 IV.1 ED IV.2 III.3 IV.* IV.1 III. IV. * V. 5 V.3 V.* IV. 3 V. * 11.1 IV.* -V.5 v.* IV.5 -IV.5 -V.5 i .0 V.5 V.5 III.* V.8 IV.* v.5 IV.* -III.* _ III.2 V.3 \u00E2\u0080\u00A28 I.* IV.2 I.* I. V.2 II.* V.2 V.* H V.3 111.1 U. v.* rnrt i.+ II.I in.* n.* II.I IV.5 111.1 III.3 I.+ 11.1 IV. * !.\u00E2\u0080\u00A2 V. * IV.2 IV.1 11.1 11.1 o innll | 1 | 3 Ablei - Plcti -.* 1/2.* 111.1 -.i 1/2.* IV.1 -.2 Ml.* 111.1 - 1/2.* --.1 2/2.+ 111.1 -.* 1/2.2 IV.3 -.3 1/2.1 V.3 -.1 2/2.1 IV.* - - IV.5 -.2 1/2.2 U - 1/2.1 v.* -.9 - V.T 1/2.+ IV.* - 2/2.9 V.8 -.2 V,1 2/2.1 1/2.* III.* 8 \u00E2\u0080\u00A2s IV.2 V.3 I.* I.. V.1 111.1 v.* 2/3.3 3/3.* 37579' 3/3.* 3/3.5 3/3.6 MM 2/3.* 3/3.3 2/3.1 2/3.1 3/3.3 3/3.3 II.*' _ II.I _ II.* IV.2 IV.3 v.* II.+ 11.1 \ III.* c m - II.3 rvTel V.b - V.6 11.3 V.5 v.* V.5 - V.5 - IV.2 - IV.6 - IV.* _ I I I . ? 11.2 V.4 _ IV.3 11.1 11.1 III.* 11.2 1/2.-rrrm 11.1 in.i V.9 IV.3 III.* EA 2/2.3 .1/2.+ 1/2.+ 11.2 1 . 3 17275 JTvlFJ in.* 11.1 _ 11.+ -.1 _ - - -nv.1i _ III.* 1.+ -.\u00C2\u00AB 1/2.2 - - I.+ 1.+ - -1 . 1 sn- i.+ -.1 1/2.+ - - III.* - \u00E2\u0080\u00A2 - - -;iv.*, 11.* - 1.+ -.+ \u00E2\u0080\u00A2 - - - -' - - -111.1 ' IV.2 | 11.1 - 1.+ -.1 - - 11.1 - - -JlV.1 ' _ - _ - - - - - \u00E2\u0080\u00A2 - - -111.1 1iv.1 ! - - - - - in.* - 11.1 - - - -- \u00E2\u0080\u00A2IV.3 , ' v.*, - --.1 - - - - - --! IV.2 1 \u00E2\u0080\u00A2 V..2 1 -,+ - - . - 111.2 . - - - -111.+ jv.i: ivjj III^ * -.3 mz - - - - - -- [tVj \u00E2\u0080\u00A2 - - in.* - 111.1 I.* 111.1 - \u00E2\u0080\u00A2 -111.+ 11.* ;rv:n -.1 - - - - - - --111.1 11.1 11.* IIVJ! |v.*' \u00C2\u00BBV.1J I.* III.2 -.1 1/2.+ - -11.1 III.3 - II.* - -111.1 11.1 llv.3l II.* . \u00E2\u0080\u00A2 _ _ - - - - -111.2 11.1 III.2 . P i c e a enge l m a n n i i Assoc-i a t i o n . These a f f i n i t i e s are due mainly t o the t r e e s p e c i e s . T h i s a s s o c i a t i o n a l s o shows s i m i l a r i t i e s with the Phyllodoce -Antennaria V a r i a t i o n , but at a lower l e v e l ( 3 4 $ ) . The Abies - V a l e r i a n a A s s o c i a t i o n has i t s h i g h e s t a f f i n i t y f o r the Abies l a s i o c a r p a A s s o c i a t i o n , w i t h a s i m i l a r i t y value of 53$. I t has a lower s i m i l a r i t y t o the Abies - P i c e a -Vaccinium A s s o c i a t i o n ( 4 l $ ) . I t shows some a f f i n i t i e s w i t h the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n ( 3 6 $ ) , due to the common p r e s -ence of s e v e r a l meadow s p e c i e s , such as V a l e r i a n a s i t c h e n s i s , C a s t i l l e j a e l m e r i , Senecio t r i a n g u l a r i s and Veratrum v i r i d e . The Carex s p e c t a b i l i s A s s o c i a t i o n has low i n d i c e s o f s i m i -l a r i t y with the other communities. I t s h i g h e s t s i m i l a r i t i e s are with the An t e n n a r i a l a n a t a A s s o c i a t i o n ( 3 6 $ ) , the A n t e n n a r i a -Vaccinium V a r i a t i o n ( 3 6 $ ) , the Juncus p a r r y i A s s o c i a t i o n (34$) and the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n ( 3 4 $ ) . The V a l e r i a n a - C a s t i l l e j a and the T r o l l i u s laxus V a r i a t -i o n s are grouped i n t o the V a l e r i a n a - C a s t i l l e j a A s s o c i a t i o n . The V a l e r i a n a - C a s t i l l e j a V a r i a t i o n does have i t s h i g h e s t a f f i n i t y w i t h the T r o l l i u s laxus V a r i a t i o n , the s i m i l a r i t y index b e i n g 52$. I t a l s o has a f f i n i t i e s with the Abies -V a l e r i a n a A s s o c i a t i o n and the Carex s p e c t a b i l i s A s s o c i a t i o n , but a t much lower l e v e l s of s i m i l a r i t y (36$ and 34$, r e s p e c t -i v e l y ) . The T r o l l i u s laxus V a r i a t i o n i s most s i m i l a r t o the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n ( 5 2 $ ) . I t has q u i t e low a f f i n i t i e s f o r any oth e r community: 26$ f o r the Abies -145 V a l e r i a n a A s s o c i a t i o n , 22$ f o r the Carex s p e c t a b i l i s A s s o c i a t i o n , and 20$ f o r the Phyllodoce - Antennaria V a r i a t i o n . Thus, the i n i t i a l c l a s s i f i c a t i o n i s supported. The Carex - P o l y t r l c h a d e l p h u s and the Juncus - Carex -Drepanocladus V a r i a t i o n s are c l a s s i f i e d as the Carex n i g r i c a n s A s s o c i a t i o n . I t can be seen t h a t the Carex - P o l y t r l c h a d e l p h u s V a r i a t i o n has no h i g h s i m i l a r i t y t o any o t h e r community. I t only has a 20$ s i m i l a r i t y value f o r the Juncus - Carex -Drepanocladus V a r i a t i o n . The Juncus - Carex - Drepanocladus V a r i a t i o n a c t u a l l y has a s l i g h t l y h i g h e r s i m i l a r i t y f o r the Drepanocladus exannulatus A s s o c i a t i o n ( 2 5 $ ) , but i s i n c l u d e d i n the Carex n i g r i c a n s A s s o c i a t i o n because of the h i g h cover of Carex n i g r i c a n s . T h i s a s s o c i a t i o n i s thus very homogeneous. The P o l y t r i c h u m norvegicum A s s o c i a t i o n has no h i g h a f f i n -i t i e s f o r any oth e r community. The s i m i l a r i t y v a l u e s are a l l extremely low, the h i g h e s t b e i n g f o r the Carex n i g r i c a n s Assoc-i a t i o n (9$ and 10$) and f o r the Carex s p e c t a b i l i s A s s o c i a t i o n ( 9 $ ) . T h i s community i s a l s o very homogeneous. The Drepanocladus exannulatus A s s o c i a t i o n has only one s i m i l a r i t y value which i s g r e a t e r than 3$J t h i s i s a value o f 25$ f o r the Juncus - Carex - Drepanocladus V a r i a t i o n . T h i s value i s due t o the common presence of Drepanocladus exannulatus. However, as mentioned p r e v i o u s l y , the Juncus - Carex - Drepano-cladus V a r i a t i o n i s r e t a i n e d i n the Carex n i g r i c a n s A s s o c i a t i o n . Dahl (1956) g i v e s some g e n e r a l r u l e s f o r d i s t i n g u i s h i n g d i f f e r e n t a s s o c i a t i o n s , a l l i a n c e s and o r d e r s . T h i s can be ex-tended t o v a r i a t i o n s of a s s o c i a t i o n s , i n which case the v a r i a t i o n s of an a s s o c i a t i o n should have h i g h e r i n d i c e s of s i m i -l a r i t y w i t h each other than w i t h any o t h e r a s s o c i a t i o n . Table 76 i n d i c a t e s t h a t a l l the v a r i a t i o n s do f u l f i l t h i s r u l e . In g e n e r a l , there i s a very low degree of s i m i l a r i t y among the communities. T h i s s u b s t a n t i a t e s the f a c t t h a t they are d i s t i n c t groupings of s p e c i e s , which are r e c o g n i s a b l e i n the f i e l d . Thus, the i n d i c e s of s i m i l a r i t y support the c l a s s i f -i c a t i o n system. S i m i l a r c o n c l u s i o n s were reached by Dahl (1956) and B l i s s ( 1963) . Many of the p l a n t communities r e c o g n i z e d on B i g White Mountain are e c o l o g i c a l l y comparable to ones d e s c r i b e d i n the mountains of S c a n d i n a v i a , S c o t l a n d , the United S t a t e s , the U.S.S.R., Europe, A l b e r t a and other p a r t s o f B r i t i s h Columbia. Juniperus communis communities on exposed rock outcrops have been d e s c r i b e d from the a l p i n e zone o f G a r i b a l d i Park (Archer, 1963), where Penstemon m e n z l e s i i , which i s absent on B i g White, i s a co-dominant. T h i s community i s a l s o found i n Washington and Oregon i n the subalpine p a r k l a n d ( F r a n k l i n and Dyrness, 1969). McVean and R a t c l i f f e (1962) d e s c r i b e a compar-able community i n the low a l p i n e zone of the S c o t t i s h Highlands, i n which J u n i p e r u s communis ssp. nana i s the dominant. The An t e n n a r i a l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n does not seem to have a c o u n t e r p a r t elsewhere. Dryas o c t o p e t a l a has a very l i m i t e d occurrence i n t h i s a s s o c i a t i o n . Dryas o c t o p e t a l a communities have been d e s c r i b e d i n A l b e r t a , Colorado, Montana, S c a n d i n a v i a , S c o t l a n d , the U.S.S.R. and the Pyrenees of Spain and France (Beder, 1967; Marr, 1961; Bamberg and Major, 147 1968; Johnson and B i l l i n g s , 1962; Dahl, 1956; McVean and R a t c l i f f e , 1962; Sukachev, 1965; Braun-Blanquet, 1948). T h i s Dryas o c t o p e t a l a community i s more widespread on c a l c a r e o u s parent m a t e r i a l s i n c e the s p e c i e s i s c a l c i c o l o u s . The presence of a c i d i c parent m a t e r i a l on B i g White thus e x p l a i n s i t s reduced d i s t r i b u t i o n i n the a r e a . S i b b a l d i a procumbens a s s o c i a t i o n s have been d e s c r i b e d i n S c a n d i n a v i a ( G j a e r e v o l l , 1956) and B r i t i s h Columbia (Archer, 1963) as snowpatch communities. On B i g White, t h i s community occurs on exposed r i d g e t o p s . E i t h e r these r i d g e s do have a heavy accumulation of snow, or e l s e a d i f f e r e n t ecotype of the s p e c i e s has developed here which does not r e q u i r e as much moisture as p r o v i d e d i n snowbeds. The Juncus p a r r y i A s s o c i a t i o n on B i g White may be e c o l o g i c -a l l y e q u i v a l e n t to the dwarf shrub heath-rush community, wit h Juncus t r i f l d u s , found i n the P r e s i d e n t i a l Range of New Hamp-s h i r e ( B l i s s , 1963). I t Is a l s o comparable to the Juncus t r i -f l d u s a s s o c i a t i o n l n C z e c h o s l o v a k i a , which i s p l a c e d In the o r d e r C a r i c e t a l i a curvulae ( K r a j i n a , 1933). Since i t i s found on warm dry s l o p e s , i t may be the community most comparable t o the a l p i n e g r a s s l a n d s of A l b e r t a and e a s t e r n Oregon and Wash-i n g t o n . A l p i n e g r a s s l a n d s are t y p i c a l of the e a s t s l o p e s of mountains i n western North America because of the r a i n shadow e f f e c t produced t h e r e . T h e r e f o r e , w i t h regard t o amount of p r e c i p i t a t i o n , B i g White shows g r e a t e r s i m i l a r i t y to the c o a s t a l mountains than to the R o c k i e s . The A n t e n n a r i a l a n a t a A s s o c i a t i o n seems to be unique t o the study a r e a . An A n t e n n a r i a l a n a t a v a r i a n t of the Carex 148 n i g r i c a n s A s s o c i a t i o n h a s b e e n d e s c r i b e d i n A l b e r t a ( B e d e r , 1967), b u t t h e e c o l o g y o f t h i s c ommunity a p p e a r s t o be d i f f e r e n t , s i n c e i t o c c u r s i n s n o w p a t c h e s . M a r r (1961) d e s c r i b e s a W i l l o w -Sedge Hummock S t a n d - T y p e i n C o l o r a d o , w h i c h i s e c o l o g i c a l l y s i m i l a r t o t h e A n t e n n a r i a l a n a t a A s s o c i a t i o n i n t h a t t h e h a b i t a t c o n s i s t s o f hummocks e l e v a t e d b y i c e b e n e a t h them. The E u r o p e a n c o u n t e r p a r t o f t h i s a s s o c i a t i o n I s f o u n d i n t h e C a r i c e t a l i a c u r v u l a e o f B r a u n - B l a n q u e t a n d J e n n y ( 1926) . The P h y l l o d o c e e m p e t r i f o r m i s - A n t e n n a r i a l a n a t a A s s o c i a t -i o n c o r r e s p o n d s t o t h e P h y l l o d o c e g l a n d u l i f l o r a - V a c c i n i u m s c o p a r i u m A s s o c i a t i o n i n A l b e r t a ( B e d e r , 1967) and t h e P h y l l o d o c e c o e r u l e a - V a c c i n i u m m y r t l l l u s c o m m u n i t y i n S c a n d i n a v i a ( D a h l , 1956). A s i m i l a r h e a t h c o mmunity i s d e s c r i b e d i n B r i t i s h C o l u m b i a a n d W a s h i n g t o n ( A r c h e r , 1963; B r o o k e , 1966; P e t e r s o n , 1964; F r a n k l i n a n d D y r n e s s , 1969; K u r a m o t o , 1968) , w h i c h c o n -s i s t s o f P h y l l o d o c e a n d C a s s l o p e m e r t e n s l a n a . I t i s i n t e r e s t i n g t h a t C a s s i o p e i s c o m p l e t e l y a b s e n t f r o m t h e s t u d y a r e a . The E u r o p e a n e q u i v a l e n t o f t h i s c o m m u n i t y i s f o u n d i n t h e R h o d o r e t o -V a c c i n i o n a l l i a n c e o f B r a u n - B l a n q u e t a n d J e n n y (1926) a n d K r a j i n a ( 1933) . The o c c u r r e n c e o f k r u m m h o l z a n d t r e e i s l a n d s a t t i m b e r l i n e i s a we 1 1-documented phenomenon. The t r e e s p e c i e s p r e s e n t d e p -e n d on t h e g e o g r a p h i c a l a r e a . A r c h e r (1963) d e s c r i b e s an A b i e s l a s i o c a r p a - C h a m a e c y p a r i s n o o t k a t e n s i s a s s o c i a t i o n i n G a r i b a l d i P a r k . T h i s a r e a was c o n s i d e r e d a s t r a n s i t i o n a l b e t w e e n t h e c o a s t a l a n d i n t e r i o r a l p i n e z o n e s . F o u r t r e e i s l a n d c o m m u n i t i e s are., d i s t i n g u i s h e d on B i g W h i t e , a l l i n d i c a t i v e o f t h e i n t e r i o r zone: the P i c e a engelmannii A s s o c i a t i o n , the Abies l a s i o c a r p a A s s o c i a t i o n , the Abies l a s l o c a r p a - V a l e r i a n a s i t c h e n s i s Assoc-i a t i o n , and the Abies l a s i o c a r p a - P i c e a engelmannii - Vaccinium scoparium A s s o c i a t i o n . The l a t t e r a s s o c i a t i o n has been d e s c r i b -ed i n A l b e r t a by O g i l v i e (1961) . The Carex s p e c t a b i l i s A s s o c i a t i o n has been d e s c r i b e d i n the a l p i n e zone of G a r i b a l d i Park (Archer, 1963) and i n the subalpine p a r k l a n d i n Washington and Oregon ( F r a n k l i n and Dyrness, 1969). T h i s community seems t o have c o a s t a l a f f i n i t i e s , w i t h no r e p o r t e d occurrences i n the Rocki e s . The V a l e r i a n a s i t c h e n s i s - C a s t i l l e j a e l m e r i A s s o c i a t i o n i s s i m i l a r t o communities d e s c r i b e d elsewhere i n B r i t i s h Columbia, i n Washington and the U.S.S.R. Archer (1963) i n c l u d e s such a community i n an a l p i n e meadow group. F r a s e r (1970) d e s c r i b e s a V a l e r i a n a - Lupinus - E p i l o b i u m a n g u s t i f o l i u m community on seepage s l o p e s i n G a r i b a l d i Park. A V a l e r i a n a s i t c h e n s i s community occurs i n the subalpine p a r k l a n d and i n the lower p a r t o f the a l p i n e zone i n Washington ( F r a n k l i n and Dyrness, 1969). Subalpine moist meadows wit h V a l e r i a n a , T r o l l -i u s and C a l t h a are d e s c r i b e d i n the U.S.S.R. (Sukachev, 1965). The Carex n i g r i c a n s snowpatch community i s common i n North America, i n both a l p i n e and subalpine p a r k l a n d a r e a s . I t has been documented i n A l b e r t a (Beder, 1967), B r i t i s h Columbia (Archer, 1963; Peterson, 1964; Brooke, 1966) and Washington (Kuramoto, 1968; F r a n k l i n and Dyrness, 1969). Comparable communities are the Po l y t r i c h u m alpinum - Carex b i g e l o w l i snowbeds i n S c o t l a n d (McVean and R a t c l i f f e , 1962) and the Carex 150 b i g e l o w i l a s s o c i a t i o n i n S c a n d i n a v i a ( G j a e r e v o l l , 1956). I t i s w e l l known t h a t bryophytes form the main cover i n h a b i t a t s w i t h an extremely l o n g snow d u r a t i o n . The P o l y t r i c h u m norvegicum A s s o c i a t i o n on B i g White has p r e v i o u s l y been des-c r i b e d i n B r i t i s h Columbia by Archer (1963) i n the a l p i n e zone, Peterson (1964) and Brooke (1966) i n the subalpine p a r k l a n d . Archer's a s s o c i a t i o n i n c l u d e s Gymnomitrlum v a r i a n s as a co-dominant. T h i s community i s a l s o known from S c o t l a n d (McVean and R a t c l i f f e , 1962), where Dicranum s t a r k e i i s a co-dominant, S c a n d i n a v i a ( G j a e r e v o l l , 1956), C z e c h o s l o v a k i a ( K r a j i n a , 1933), c e n t r a l Europe (Braun-Blanquet and Jenny, 1926) and the Pyrenees (Braun-Blanquet, 1948). Reference t o the Drepanocladus exannulatus A s s o c i a t i o n was found i n a study by Dahl (1956) i n S c a n d i n a v i a and another i n the T a t r a Mountains of Cz e c h o s l o v a k i a by K r a j i n a ( 1933) . T h i s community does not appear t o be very common, and has not been p r e v i o u s l y d e s c r i b e d from North America. I t can be seen from the above d i s c u s s i o n t h a t although f l o r a s d i f f e r c o n s i d e r a b l y among g e o g r a p h i c a l a r e a s , s i m i l a r i t -i e s i n environment produce comparable communities. In a d d i t i o n , many of the communities d i s t i n g u i s h e d on B i g White are not onl y e c o l o g i c a l l y but a l s o f l o r i s t i c a l l y s i m i l a r t o those of oth e r a l p i n e and subalpine a r e a s . 151 7. Vegetation-Environment R e l a t i o n s h i p s T h i s s e c t i o n p r e s e n t s r e l a t i o n s h i p s between communities on an environmental b a s i s . No attempt i s made to show c a u s a l r e l a t i o n s , as t h i s i s impossible to prove without d e t a i l e d a u t e c o l o g i c a l s t u d i e s . The s e c t i o n i s s u b d i v i d e d i n t o f o u r p a r t s : A. An a n a l y s i s of a l l environmental v a r i a b l e s measured, wi t h the b a s i c aim of d e t e r m i n i n g which f a c t o r s are important i n d i f f e r e n t i a t i n g the communities B. A d e t a i l e d study of s o i l moisture f o r a number o f a l p i n e and subalpine communities C. A summary of t o p o g r a p h i c - a l t i t u d i n a l r e l a t i o n s h i p s among the communities D. A d i s c u s s i o n of the communities a s s o c i a t e d w i t h each s o i l type S u c c e s s i o n a l r e l a t i o n s h i p s among the communities are not d e a l t w i t h i n the p r e s e n t study f o r s e v e r a l reasons. One i s the f a c t t h a t the r e s e a r c h was not o r g a n i z e d f o r the purpose of s t u d y i n g s u c c e s s i o n , as only d i s t i n c t homogeneous stands were chosen f o r a n a l y s i s . I f t r a n s i t i o n a l areas had a l s o been s t u d i e d , more co u l d have been s a i d about changes t a k i n g place i n the communities. Secondly, the v e g e t a t i o n of the study a r e a i s developed on parent m a t e r i a l of uniform age. Thus, i t i s not p o s s i b l e t o produce a scheme showing changes i n v e g e t a t i o n d e v e l -opment w i t h d i f f e r e n t times s i n c e d e g l a c i a t i o n , as was done by P r a s e r ( 1 9 7 0 ) . F i n a l l y , I t i s b e l i e v e d t h a t the p l a n t communit-i e s i n such an a l p i n e a r e a are r e l a t i v e l y s t a b l e and u n d i s t u r b e d , 152 and the r a t e s of development are slow. T h e r e f o r e , In t h i s environment, the s u c c e s s i o n a l approach Is of very l i m i t e d use (Dahl, 1956). On a l a r g e r s c a l e , i t can be s p e c u l a t e d whether f o r e s t s w i l l take over the a l p i n e a r e a , o r whether the a l p i n e a r e a w i l l m a i n t ain i t s e l f . In s e c t i o n 5* i t was suggested t h a t there had been a r e c e n t m i g r a t i o n of t r e e s p e c i e s from the sub-a l p i n e to the a l p i n e a r e a . There are i n s u f f i c i e n t data to d e t e r -mine p r e c i s e l y the d i r e c t i o n of change i n t r e e e s t a b l i s h m e n t . I t appears t h a t i n t h i s ecotone area d i s c o n t i n u o u s changes i n c l i m a t e may cause changes i n f o r e s t development i n a c o n s t a n t l y s h i f t i n g p a t t e r n . However, a c c i d e n t a l f a c t o r s such as seed p r o d u c t i o n and d i s p e r s a l are a l s o Important. A. A n a l y s i s of Environmental V a r i a b l e s General environmental v a r i a b l e s and p h y s i c a l and chemical s o i l d ata are summarized f o r a l l the communities i n T a b l e s 77 and 78 . Instead of p r e s e n t i n g a c t u a l v a l u e s , the terms \" h i g h \" , \"medium\" and \"low\" are used. The l i m i t s f o r these terms (given i n Appendix 4) were chosen i n r e f e r e n c e t o the present data o n l y . These g e n e r a l terms are b e l i e v e d to be more u s e f u l f o r comparis-on of the communities. The communities are grouped on the b a s i s of hygrotope, because i t i s c o n s i d e r e d to be the most important f a c t o r i n d e l i m i t i n g the v a r i o u s communities. The communities are d i s c u s s e d i n f o u r groups: x e r i c , mesic, h y g r i c and s u b h y d r i c . The x e r i c group c o n t a i n s f i v e communities: the Juniperus communis A s s o c i a t i o n ,the three v a r i a t i o n s of the A n t e n n a r i a -S i b b a l d i a A s s o c i a t i o n , and the Juncus p a r r y i A s s o c i a t i o n (the Table 77 Community Summary of General Environmental Variabl A l t i t . Expos. Slope .Relief 1 es for all Communities Wind Erosion Hygrotope Mineral Humus Soil Rock Soi Dep Juniperus communis Association M S hi straight strong n ne xeric L L H L Antennaria - Sibbaldia Association \u00E2\u0080\u00A2 Antennaria - Sibbaldia - Salix Variation H SSW L straight-convex very strong strong xeric L M H M Carex phaeocephala Variation M SE L straight very strong moderate xeric M L M L Carex breweri Variation 111 SSE M convex very strong strong xeric M H L M Juncus parryi Association M S M straight-convex strong slight subxeric M M M M Antennaria lanata Association H ENE L hummocky moderate slight mesic H M L H Phyllodoce - Antennaria Association Phyllodoce - Antennaria Variation M SSW HI hummocky moderate none mesic H L L H Antennaria - Vaccinium Variation H S M straight moderate none submesic H L L M Picea enqelmannii Association H ESE H straight strong none submesic M L M L Abies lasiocarpa Association H WSW H straight-convex strong slight mesic M L M L Abies - Picea - Vaccinium Association M SW H straight strong sl ight mesic M L L M Abies - Valeriana Association L WSW H concave moderate none subhygric M L L Id Carex spectabilis Association H SSW M straight moderate none hygric H G H Valeriana - Castilleja Association Valeriana - Castilleja Variation L WSW M concave slight none hygric H L L i Trollius laxus Variation L WSW III straight-concave slight none hygri c H L L M Carex niqricans Association Carex - Polytrichadelphus Variation M SE L straight-concave slight none hygric H L L H Juncus - Carex - Drepanocladus Variation IH NNUI L straight slight none subhydric H L L M Polytrichum norveqicum Association H L straight slight none subhydric M M M L Drepanocladus exannulatus Association L L concave slight none subhydric H L L M L = low, M = medium, H = high See Appendix 4 for class limits Table 78 Summary of Physical and Chemical Soil Data1 for all Communities C \" ' t y Sand Si l t Clay pH Ca Mg Na Juniperus communis Association H L L L L L L Antennaria - Sibbaldia Association Antennaria - Sibbaldia - Salix Variation I f L L ' M H L H Carex phaeocephala Variation M M M M M -L M Carex breweri Variation H L L M M \"L L Juncus parrvi Association H L L L L L M Antennaria lanata Association H L L M L L M Phyllodoce - Antennaria Associ ati on Phyllodoce - Antennaria Variation H L L M L L M Antennaria - Vaccinium Variation H L L M M L M Picea engelmannii Associ ati nn H L L M H L L Abies lasiocarpa Associ ati nn H L L L M M L Abies - Picea - Vaccinium Association hi L M L L L M Abies - Valeriana Association H L L L L M ft| Carex spectabilis Association H L L L H M H Valeriana - Castllleja Associ ati on Valeriana - Castilleia Variation H L L L M M M Trollius laxus Variation M L L M H H H Carex nigricans Associ ati on Carex - Polytrichadelphus Variation M M L M L L H Juncus - Carex - Drepanocladus Variation L H H H H H M Polytrichum norvegicum Association H L H M L L ft] Drepanocladus exannulatus AssnMatinn (_ H L H L i M L = low, III = medium, H = high See Appendix 4 for class limits 155 l a t t e r i s i n c l u d e d even though i t s hygrotope i s r a t e d as sub-x e r i c ) . Among the ge n e r a l environmental f a c t o r s , exposure, s l o p e , e r o s i o n , m i n e r a l s o i l and rock vary among the communities. A l t i t u d e i s g e n e r a l l y medium (except f o r the Antennaria - Sibbal-j-d i a - S a l i x V a r i a t i o n ) , r e l i e f v a r i e s from s t r a i g h t to convex, wind i s s t r o n g t o very s t r o n g ( i n the Antennaria - S i b b a l d i a A s s o c i a t i o n ) , humus i s medium to low, and s o i l depth i s medium to low. Among the p h y s i c a l and chemical s o i l f a c t o r s , c a l c i u m , sodium, c a t i o n exchange c a p a c i t y , o r g a n i c matter, n i t r o g e n and phosphorus are v a r i a b l e among the communities. Sand i s g e n e r a l l y h i g h , while s i l t and c l a y are low (the e x c e p t i o n i n a l l cases b e i n g the Carex phaeocephala V a r i a t i o n ) . The pH ranges from medium i n the Ant e n n a r i a - S i b b a l d i a A s s o c i a t i o n to low i n the other communities. Magnesium i s low, as i s potassium (with the exc e p t i o n o f the Juniperus communis A s s o c i a t i o n ) . The mesic group c o n s i s t s of s i x communities: the Ant e n n a r i a l a n a t a A s s o c i a t i o n , both v a r i a t i o n s of the Phyllodoce - Antenn-a r i a A s s o c i a t i o n (one of which i s submesic), the P i c e a e n g e l -mannii A s s o c i a t i o n ( r a t e d as submesic), the Abies l a s i o c a r p a A s s o c i a t i o n and the Abies - P i c e a - Vaccinium A s s o c i a t i o n . Among the g e n e r a l environmental f a c t o r s , exposure, slope and s o i l depth are v a r i a b l e . A l t i t u d e ranges from h i g h t o medium, and r e l i e f i s g e n e r a l l y s t r a i g h t . Wind i s s t r o n g i n the t r e e i s l a n d communities and moderate i n the o t h e r s . E r o s i o n v a r i e s from none t o s l i g h t . Humus i s medium i n the t r e e i s l a n d commun-i t i e s and h i g h i n the other two. M i n e r a l s o i l i s low, except f o r the Ant e n n a r i a l a n a t a A s s o c i a t i o n , and rock i s low to 156 medium ( i n the P i c e a and Abies A s s o c i a t i o n s ) . Among the p h y s i c a l and chemical s o i l f a c t o r s , c a l c i u m , c a t i o n exchange c a p a c i t y , o r g a n i c matter, n i t r o g e n and phosphorus vary among the communit-i e s . Sand i s h i g h , while s i l t and c l a y are low (medium c l a y i n the Abies - P i c e a - Vaccinium A s s o c i a t i o n ) . The pH ranges from low i n the Abies l a s i o c a r p a and Abies - P i c e a - Vaccinium Assoc-i a t i o n s t o medium i n the other communities. Magnesium i s g e n e r a l l y low (the e x c e p t i o n b e i n g the Abies l a s i o c a r p a A s s o c i a -t i o n ) . Sodium i s medium and potassium i s low (exceptions f o r both b e i n g the P i c e a and Abies A s s o c i a t i o n s ) . The h y g r i c group c o n t a i n s f i v e communities: the Abies -V a l e r i a n a A s s o c i a t i o n ( r a t e d as s u b h y g r i c ) , the Carex s p e c t a b i l i s A s s o c i a t i o n , both v a r i a t i o n s of the V a l e r i a n a - C a s t i l l e j a Assoc-i a t i o n , and the Carex - P o l y t r i c h a d e l p h u s V a r i a t i o n of the Carex n i g r i c a n s A s s o c i a t i o n . A l t i t u d e , exposure, slope and s o i l depth are the g e n e r a l environmental f a c t o r s which vary among the communities. R e l i e f ranges from s t r a i g h t t o concave. Wind i s moderate i n the Abies - V a l e r i a n a and Carex s p e c t a b i l i s Assoc-i a t i o n s , and s l i g h t i n the o t h e r s . There i s no evidence of e r o s i o n i n any of these communities. Humus i s h i g h (except f o r the Abies - V a l e r i a n a A s s o c i a t i o n ) , m i n e r a l s o i l i s low (the e x c e p t i o n b e i n g the Carex s p e c t a b i l i s A s s o c i a t i o n ) , and rock i s low. Calcium, magnesium, potassium and c a t i o n exchange c a p a c i t y arewthe s o i l f a c t o r s which are v a r i a b l e among the communities. Sand ranges from h i g h to. medium, while s i l t and c l a y are low (with the e x c e p t i o n of s i l t i n the Carex - P o l y t r i c h a d e l p h u s V a r i a t i o n ) . The pH ranges from low to medium. Sodium ranges 157 from h i g h t o medium. Organic matter i s h i g h i n the V a l e r i a n a -Ca s t i l l e , 1 a A s s o c i a t i o n , and medium l n the ot h e r communities. N i t r o g e n i s g e n e r a l l y h i g h (except f o r the Carex s p e c t a b i l i s A s s o c i a t i o n ) , and phosphorus i s medium (the e x c e p t i o n b e i n g the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n ) . Three communities make up the subhydric group: the Juncus -Carex - Drepanocladus V a r i a t i o n of the Carex n i g r i c a n s A s s o c i a t -i o n , the P o l y t r i c h u m norvegicum A s s o c i a t i o n and the Drepanocladus exannulatus A s s o c i a t i o n . Among the g e n e r a l environmental f a c t o r s , a l t i t u d e i s v a r i a b l e . Exposure i s g e n e r a l l y n e u t r a l (except f o r the Juncus - Carex - Drepanocladus V a r i a t i o n ) , slope i s low, r e l i e f i s s t r a i g h t t o concave, wind i s s l i g h t , and there i s no e r o s i o n . Humus i s h i g h , m i n e r a l s o i l and rock are low, and s o i l depth i s medium (the e x c e p t i o n i n a l l cases b e i n g the P o l y t r i c h u m norvegicum A s s o c i a t i o n ) . Among the p h y s i c a l and chemical s o i l f a c t o r s , sand i s low, s i l t i s h i g h and pH i s h i g h (the e x c e p t i o n i n a l l cases b e i n g the P o l y t r i c h u m norvegicum A s s o c i a t i o n ) . C lay i s h i g h , while o r g a n i c matter and n i t r o g e n are low (with the e x c e p t i o n of the Drepanocladus exannulatus A s s o c i a t i o n ) . Calcium, magnesium and potassium are a l l low (except f o r the Juncus - Carex - Drepanocladus V a r i a t i o n ) . Sodium i s medium, while c a t i o n exchange c a p a c i t y and phosphorus are low. The two v a r i a t i o n s o f the Carex n i g r i c a n s A s s o c i a t i o n were p l a c e d i n d i f f e r e n t hygrotope groups i n the above d i s c u s s i o n . Prom Tables 77 and 7 8 , i t can be seen t h a t these communities do d i f f e r from one another mainly on the b a s i s o f p h y s i c a l and chemical s o i l f a c t o r s . T h i s does not mean t h a t the c l a s s i f i c a t i o n of these communities should be a l t e r e d , but merely i n d i c a t e s environmental d i f f e r e n c e s between them (which i s h e l p f u l i n sub-d i v i d i n g an a s s o c i a t i o n ) . I t i s i n t e r e s t i n g to note t h a t the v a r i a t i o n s of the V a l e r i a n a - C a s t i l l e j a A s s o c i a t i o n a l s o d i f f e r mainly due to s o i l f a c t o r s . However, the v a r i a t i o n s of the Phyllodoce - A n t e n n a r i a A s s o c i a t i o n and the A n t e n n a r i a - S i b b a l -d i a A s s o c i a t i o n d i f f e r e q u a l l y i n r e s p e c t to both g e n e r a l e n v i r -onmental f a c t o r s and p h y s i c a l and chemical s o i l f a c t o r s . A one-way a n a l y s i s of v a r i a n c e was done f o r each e n v i r o n -mental v a r i a b l e to determine which f a c t o r s are s i g n i f i c a n t l y d i f f e r e n t between communities. The P values are presented i n Table 8 l , Appendix 5 . A l t i t u d e , exposure, s l o p e , wind, e r o s i o n , hygrotope, humus, rock, s o i l depth, sand, s i l t , c l a y , pH, magnesium, sodium, potassium, c a t i o n exchange c a p a c i t y , o r g a n i c matter and n i t r o g e n are a l l s i g n i f i c a n t a t the 1% l e v e l . M i n e r a l s o i l , c a l c i u m and phosphorus are s i g n i f i c a n t a t the 5$ l e v e l . R e l i e f i s not s i g n i f i c a n t . In order to d i s t i n g u i s h the commun-i t i e s which are s i g n i f i c a n t l y d i f f e r e n t on the b a s i s of each environmental v a r i a b l e , Duncan's New M u l t i p l e Range T e s t was done, a t e s t which has proved to be a very u s e f u l t o o l . The r e s u l t s are shown i n Table 8 2 , Appendix 5 . Based on t h i s t a b l e , as w e l l as T a b l e s 77 and 7 8 , the communities are d i s c u s s e d below, mentioning ( i n o r d e r of importance) the group o f e n v i r -onmental f a c t o r s which are s i g n i f i c a n t i n d i f f e r e n t i a t i n g each community from a l l o t h e r s . The J u n i perus communis A s s o c i a t i o n i s b e s t d i f f e r e n t i a t e d by i t s low humus, h i g h rock, x e r i c hygrotope and h i g h s l o p e . I t 159 i s somewhat l e s s d i f f e r e n t i a t e d by i t s s t r o n g wind, h i g h c a t i o n exchange c a p a c i t y and low pH. In the Ante n n a r i a - S i b b a l d i a A s s o c i a t i o n , the An t e n n a r i a -S i b b a l d i a - S a l l x V a r i a t i o n i s d i f f e r e n t i a t e d by i t s h i g h rock, s t r o n g e r o s i o n , x e r i c hygrotope, low humus and very s t r o n g wind. Other l e s s Important f a c t o r s are i t s medium pH, low n i t r o g e n , low o r g a n i c matter and h i g h sand. The Carex phaeocephala V a r i a -t i o n i s b e s t separated by i t s medium rock, medium humus, x e r i c hygrotope and very s t r o n g wind. Another l e s s important f a c t o r i s i t s medium sand. The Carex brewer! V a r i a t i o n i s d i s t i n g u i s h e d by i t s x e r i c hygrotope, s t r o n g e r o s i o n and very s t r o n g wind, and, t o a l e s s e r degree, by i t s medium pH and medium humus. The Juncus p a r r y i A s s o c i a t i o n i s d i f f e r e n t i a t e d by i t s sub-x e r i c hygrotope, s t r o n g wind and medium humus, and, t o a l e s s e r degree, by i t s medium rock and low pH. The A n t e n n a r i a l a n a t a A s s o c i a t i o n i s b e s t separated by i t s medium m i n e r a l s o i l and mesic hygrotope, and l e s s by i t s h i g h s o i l depth, medium pH, low rock and moderate wind. In the Phyllodoce - Ant e n n a r i a A s s o c i a t i o n , the P h y l l o d o c e -A n t e n n a r i a V a r i a t i o n i s b e s t d i s t i n g u i s h e d by i t s mesic hygro-tope and, to a l e s s e r degree, by I t s h i g h humus, moderate wind, l a c k of e r o s i o n and low rock. The An t e n n a r i a - Vaccinium V a r i a t i o n i s bes t d i f f e r e n t i a t e d by i t s submesic hygrotope, and l e s s by i t s h i g h humus, low rock and moderate wind. The P i c e a engelmannii A s s o c i a t i o n i s separated by i t s sub-mesic hygrotope and, to a lower degree, by I t s medium humus, medium rock and s t r o n g wind. The Abies l a s i o c a r p a A s s o c i a t i o n i s d i s t i n g u i s h e d by i t s h i g h c a t i o n exchange c a p a c i t y , mesic hygrotope, medium humus and s t r o n g wind, and l e s s by i t s medium ro c k , low pH and h i g h o r g a n i c matter. The Abies - P i c e a - Vaccinium A s s o c i a t i o n i s best d i f f e r -e n t i a t e d by i t s mesic hygrotope and medium humus and, to a l e s s -e r degree, by i t s s t r o n g wind and low pH. The Abies - V a l e r i a n a A s s o c i a t i o n i s separated by i t s sub-h y g r i c hygrotope and medium humus, and l e s s by i t s moderate wind, low a l t i t u d e and low pH. The Carex s p e c t a b i l i s A s s o c i a t i o n i s bes t d i s t i n g u i s h e d by i t s h y g r i c hygrotope, and, to a lower degree, by i t s h i g h humus, low r o c k , moderate wind and low pH. In the V a l e r i a n a - C a s t i l l e , j a A s s o c i a t i o n , the V a l e r i a n a -C a s t i l l e j a V a r i a t i o n i s d i f f e r e n t i a t e d by i t s h y g r i c hygrotope, and l e s s by i t s h i g h humus, s l i g h t wind, low rock and low pH. T h e T r o l l i u s laxus V a r i a t i o n i s separated by i t s h i g h magnesium, h i g h potassium, h y g r i c hygrotope and h i g h humus, and, t o a l e s s e r degree, by i t s s l i g h t wind and low rock. In the Carex n i g r i c a n s A s s o c i a t i o n , the Carex - P o l y t r i c h -ade lphus V a r i a t i o n i s d i s t i n g u i s h e d by i t s h y g r i c hygrotope, s l i g h t wind and h i g h humus, and l e s s by i t s low ro c k , medium s i l t and medium sand. The Juncus - Carex - Drepanocladus V a r i a t i o n i s bes t d i f f e r e n t i a t e d by i t s h i g h pH, low sand, h i g h c l a y and subhydric hygrotope. I t i s l e s s w e l l d i f f e r e n t i a t e d by i t s h i g h humus, s l i g h t wind, h i g h s i l t , low o r g a n i c matter and low rock. 161 The P o l y t r i c h u m norvegicum A s s o c i a t i o n i s bes t separated by i t s h i g h c l a y , subhydric hygrotope, medium rock, n e u t r a l exposure and medium humus. Other l e s s important f a c t o r s are i t s low s l o p e , s l i g h t wind and low o r g a n i c matter. The Drepanocladus exannulatus A s s o c i a t i o n i s bes t d i s t i n -g uished by i t s subhydric hygrotope and h i g h humus, and l e s s w e l l d i f f e r e n t i a t e d by i t s h i g h pH, s l i g h t wind, low rock, h i g h s i l t and low sand. Prom the above d i s c u s s i o n , i t appears t h a t g e n e r a l e n v i r o n -mental f a c t o r s are more s i g n i f i c a n t i n d i s t i n g u i s h i n g the commun-i t i e s than are p h y s i c a l and chemical s o i l p r o p e r t i e s . Except-i o n s t o t h i s are the T r o l l i u s laxus V a r i a t i o n , the Juncus - Carex-Drepanocladus V a r i a t i o n , the Abies l a s i o c a r p a A s s o c i a t i o n and, to some e x t e n t , the P o l y t r i c h u m norvegicum A s s o c i a t i o n . Fonda and B l i s s (1969) found t h a t s o i l f e r t i l i t y l e v e l s had no e f f e c t on community type d i s t r i b u t i o n . Among the g e n e r a l environmental f a c t o r s , hygrotope i s the onl y one which c o n s t a n t l y c o n t r i b u t e s h i g h l y t o the d i f f e r e n t i a t i o n o f the communities. T h i s f a c t s u b s t a n t i a t e s the statement made e a r l i e r t h a t hygrotope i s the most important f a c t o r i n d e l i m i t i n g the v a r i o u s communities. B. S o i l Moisture S o i l moisture was s t u d i e d i n d e t a i l because of the prev-iously-mentioned f a c t t h a t hygrotope i s the most important f a c t o r i n d i s t i n g u i s h i n g the communities. Two main aspects are d i s c u s s e d below - a v a i l a b l e water and a c t u a l f i e l d moisture v a l u e s . A v a i l a b l e water i s con s i d e r e d t o be important because i t i s the only p o r t i o n o f the water supply which i s a c t u a l l y 162 a v a i l a b l e f o r p l a n t growth. The primary importance i n d i s c u s s -i n g the a c t u a l f i e l d moisture v a l u e s i s t o see whether t h i s value i s l e s s than the permanent w i l t i n g percentage, which would cause s o i l moisture s t r e s s to the p l a n t s . Tables 79 and 80 present s o i l moisture percentages f o r a s e l e c t e d number of communities i n the a l p i n e and subalpine park-land a r e a s . As expected, a v a i l a b l e water g e n e r a l l y decreases w i t h depth (Fonda and B l i s s , 1969) i n both the a l p i n e and subalpine commun-i t i e s . However, a v a i l a b l e water i n the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n i n the subalpine p a r k l a n d i s approximately the same i n the A and C h o r i z o n s . In the Phyllodoce - A n t e n n a r i a V a r i a t -i o n , a v a i l a b l e water i n c r e a s e s with depth i n the subalpine park-l a n d . A v a i l a b l e water a l s o i n c r e a s e s w i t h depth i n the Carex -P o l y t r i c h a d e l p h u s V a r i a t i o n , i n both the a l p i n e and subalpine a r e a s . The amount of a v a i l a b l e water i n the s u r f a c e and bottom h o r i z o n s i s s i m i l a r i n both a l p i n e and subalpine communities of the Juncus p a r r y i A s s o c i a t i o n . F o r the Phyllodoce - A n t e n n a r i a V a r i a t i o n , the s u r f a c e h o r i z o n has somewhat more a v a i l a b l e water i n the a l p i n e s i t e , whereas the bottom h o r i z o n has h i g h e r a v a i l a b l e water i n the subalpine s i t e . In the Abies - P i c e a -Vaccinium A s s o c i a t i o n , the s u r f a c e h o r i z o n has s i m i l a r q u a n t i t -i e s of a v a i l a b l e water i n both the a l p i n e and subalpine a r e a s . However, both the B and C h o r i z o n s have more a v a i l a b l e water i n the subalpine s i t e . Since t r e e s have deep r o o t i n g systems, the g r e a t e r amount of water a v a i l a b l e a t depth may be an e x p l a n a t i o n Table 79 Soil Moisture Percentages for Selected Alpine Communities (Aver of 2) Community Horizon 1/3 atm. ' 15 atm. Available Horizon July 6/69 July 18/69 Aug.3/69 Aug.29/69 Antennaria - Sibbaldia Associ ati on Antennaria - Sibbaldia - Salix Variation A 39.1 24.1 15.0 A 55.7 37.4 12.1 6.6 (Plot 22 - A) 26.7 C 11.1 15.6 C 60.6 38.5 24.3 16.5 Juncus parryi Association A 35.6 20.6 15.0 A 55.2 33.3 19.2 18.8 (Plot 12 - A) 29.3 15.2 B 14.1 B 44.6 75.9 31.8 23.2 C 16.7 10.5 6-2 B + C 36.5 46.2 17.8 25.4 Antennaria lanata Association A 67.9 31.2 36.7 . A 169.6 115.9 99.1 61.1 (Plot 4 - A) 65.2 22.2 43.0 B 8 67.9 40.8 60.7 33.1 C 13.9 6.3 7.6 C 90.1 101.1 44.6 39.0 Phyllodoce - Antennaria Association Phyllodoce - Antennaria Variation A 49.2 21.2 28.0 A 95.1 75.2 58.9 41.3 (Plot 5 - A) 41.4 12.B 28.6 B B 78.8 67.1 56.4 42.2 C 23.1 14.9 8 + C. 74.9 56.8 48.8 32.2 Abies - Picea - Vaccinium Association A 59.4 30.9 28.5 A 53.1 89.6 12.3 14.4 (Plot 54 - LA) 46.5 26.0 20.5 B B 49.8 43.4 25.4 27.7 C 17.3 10.0 7.3 C 58.2 61.1 25.1 27.1 Valeriana - Castilleia Association Valeriana - Castilleia Variation A 54.1 45.5 8.6 A1 245.5 182.3 27.9 47.8 (Plot 38 - LA) A2 178.0 115.0 63.0 31.7 Carex niqricans Association Carex - Polytrichadelphus Variation A 70.2 54.3 15.9 A 215.7 277.5 110.6 52.5 (Plot 2 - A) 62.5 23.0 -B 39.5 B 25.2 120.3 33.1 32.7 ON Table 80 Soil Moisture Percentages for Selected Subalpine Communities Community Horizon 1/3 tef - o f ; \l atm. Available Horizon July 6/69 July 18/69 Aug. 3/69 Auq.29/ Juncus parrvi Association (Plot 59) A 48.6 32.0 16.6 A 70.5 25.5 9.6 10.7 C 21.7 15.7 6.0 C 13.7 16.8 - 8.4 Phyllodoce - Antennaria Association Phyllodoce - Antennaria Variation (Plot 57) A 48.1 29.0 19.1 A 73.2 79*3 53^ 47.0 C 39.0 13.2 25.8 C1 C2 90.1 78.7 74.8 48.0 63.3 32.2 48.7 Abies - Picea - Vaccinium Association (Plot 61) A 66.4 37.6 28.8 A 110.6 86.3 26.6 21.2 B 58.3 21.8 36.5 J3.+ C 79.9 97.0 52.7 37.0 C 34.2 14.8 19.4 C 39 .4 65.9 - 26.3 Valeriana - Castilleia Association Valeriana - Castilleia Variation (Plot 60) A 75.1 64.6 10.5 A 200.0 303.9 257.9 223.1 C 23.9 13.3 10.6 C 138.4 54.8 34.5 108.4 Carex niqricans Association Carex - Polytrichadelphus Variation (Plot 58) A1 36.8 20.4 16.4 A1 60.5 59.0 17.6 14.1 A2 34.2 14.3 19.9 A2 49.7 51.1 42.6 30.1 C 32.9 14.1 18.8 A3 48.7 64.6 43.3 38.7 ON 165 f o r the better growth of trees i n the subalpine parkland. In a study by Patten ( 1 9 6 3 ) , a v a i l a b i l i t y of water was believed to be associated with the most common l i m i t i n g factors for tree growth and establishment i n the p a r t i c u l a r study area i n Montana. It was further stated that i f the a v a i l a b i l i t y of water were increased, the forested area would expand at the expense of the non-forested areas. Available water i n the surface horizon of the Valeriana - C a s t i l l e j a Variation i s s i m i l a r i n the alpine and subalpine parkland areas. For the Carex - Polytrichadelphus V a r i a t i o n , the surface horizon has s i m i l a r amounts of available water i n the alpine and subalpine s i t e s ; however, there i s much more available water i n the subsurface horizon i n the alpine s i t e . The actual f i e l d moisture values for each community are d i s -cussed below. In general, moisture decreased throughout the summer. For the Antennaria - Sibbaldia - S a l i x V a r i a t i o n , the surface horizon f e l l below permanent w i l t i n g percentage (PWP) from the beginning of August onward, while the subsurface horizon remained above w i l t i n g percentage. In the Juncus p a r r y i Association at the alpine s i t e , the surface horizon f e l l below PWP at the beginning of August, while the subsurface horizons always remained above f i e l d capacity. At the subalpine s i t e , the surface horizon dried out below PWP from the middle of July, and the subsurface horizon remained at or below w i l t i n g percent-age for most of the summer. The Antennaria lanata Association and the Phyllodoce - Antennaria Variation ( i n both the alpine and subalpine areas) generally remained above f i e l d capacity throughout the summer i n the s u r f a c e and subsurface h o r i z o n s . In the Abies - P i c e a - Vaccinium A s s o c i a t i o n , the s u r f a c e h o r i z o n f e l l below PWP from the b e g i n n i n g of August onward, i n both the a l p i n e and s u b a l p i n e s i t e s . The C h o r i z o n a t both s i t e s always remained above PWP. However, the B h o r i z o n i n the a l p i n e area f e l l below w i l t i n g percentage f o r a p e r i o d i n August. Both s u r f a c e and subsurface h o r i z o n s remained above f i e l d c a p a c i t y throughout the summer l n the subalpine V a l e r i a n a - C a s t i l l e , 1 a V a r i a t i o n , due to the constant supply of seepage water. In the a l p i n e a r e a , the s u r f a c e h o r i z o n d r i e d out below PWP d u r i n g a p e r i o d i n August, there b e i n g l e s s seepage on an a l p i n e slope than on a subalpine one. In the Carex - P o l y t r i c h a d e l p h u s V a r i a t i o n , the subsurface h o r i z o n s remained above PWP through-out the summer, at both the a l p i n e and subalpine s i t e s . At the subalpine s i t e , the s u r f a c e h o r i z o n f e l l below w i l t i n g p e r c e n t -age a t the b e g i n n i n g of August, whereas a t the a l p i n e s i t e t h i s d i d not occur u n t i l the end of August. Thus, c e r t a i n communities i n the study a r e a undergo s o i l moisture s t r e s s . T h i s has been r e p o r t e d i n a number of a l p i n e areas ( K l i k o f f , 1965; Johnson and B i l l i n g s , 1962; B i l l i n g s and B l i s s , 1959). In c o n t r a s t , B l i s s (1966) on Mt. Washington, New Hampshire, and Bamberg and Major ( 1968) , working i n Montana, found s o i l moisture not to be c r i t i c a l . C. T o p o g r a p h i c - A l t i t u d i n a l R e l a t i o n s h i p s In t h i s s e c t i o n , the communities are d i s c u s s e d a c c o r d i n g t o d e c r e a s i n g a l t i t u d e w i t h i n the topographic c a t e g o r i e s of r i d g e s , s l o p e s and d e p r e s s i o n s . T h i s arrangement i s e s s e n t i a l l y 167 a r e o r d e r i n g o f the sequence presented i n s e c t i o n 4, i n o r d e r to show the r e l a t i o n s h i p s of the communities from a d i f f e r e n t a s p e c t . In g e n e r a l , snow cover would i n c r e a s e from r i d g e s , which are wind-blown, to d e p r e s s i o n s with the g r e a t e s t accumu-l a t i o n of snow. In the a l p i n e a r e a , the Antennaria - S i b b a l d i a A s s o c i a t i o n occurs on the h i g h e s t r i d g e s . A c c o r d i n g to K r a j i n a ( p e r s o n a l communication), the presence of S i b b a l d i a procumbens i n d i c a t e s t h a t there i s heavy snow cover on these r i d g e s (perhaps as c o r n i c e s ) , c o n t r a r y to the g e n e r a l snow-free c o n d i t i o n e x i s t i n g on r i d g e t o p s . T h i s community i s prabably s u b h y g r i c a t the b e g i n n i n g of the v e g e t a t i v e season, becoming x e r i c a t the end of the v e g e t a t i v e season. The P i c e a engelmannii and Abies l a s i o c a r p a A s s o c i a t i o n s a l s o occur on r i d g e s i n the a l p i n e a r e a , but i n mesic h a b i t a t s . These three a s s o c i a t i o n s are not p r e s e n t i n the subalpine p a r k l a n d . The Abies - P i c e a - Vaccinium Assoc-i a t i o n , which i s a mesic community, occurs on lower r i d g e s i n the a l p i n e and low a l p i n e a r e a s , and on h i g h r i d g e s i n the sub-a l p i n e p a r k l a n d . T h i s a s s o c i a t i o n i s , of course, much more widespread i n the subalpine p a r k l a n d . Seven communities occur on s l o p e s . The A n t e n n a r i a l a n a t a A s s o c i a t i o n occurs on very g e n t l e s l o p e s l n the a l p i n e a r e a , but i s l a c k i n g i n the subalpine p a r k l a n d . I t i s a mesic community. The hummocky t e r r a i n found i n t h i s a s s o c i a t i o n may be the r e s u l t o f f r o s t a c t i v i t y . The Phyllodoce - A n t e n n a r i a A s s o c i a t i o n , a l s o mesic, i s found on medium s l o p e s i n both the a l p i n e and s u b a l p i n e p a r k l a n d a r e a s . The Juncus p a r r y i A s s o c i a t i o n occurs on somewhat s t e e p e r s l o p e s than the Phyllodoce - A n t e n n a r i a A s s o c i a t i o n . I t d i f f e r s c o n s i d e r a b l y from the l a t t e r i n b e i n g s u b x e r i c i n hygrotope, and would have s h o r t e r snow d u r a t i o n . I t occurs i n both the a l p i n e and subalpine p a r k l a n d a r e a s , but i s more p r e v a l e n t i n the a l p i n e a r e a . The Juniperus communis Assoc i a t i o n , a x e r i c community, i s found on very steep s l o p e s i n the low a l p i n e and a l p i n e areas o n l y . The Carex s p e c t a b i l i s Assoc-i a t i o n i s b e s t r e p r e s e n t e d i n the low a l p i n e a r e a on s l o p e s with temporary seepage; i t i s p r a c t i c a l l y l a c k i n g i n the s u b a l p i n e p a r k l a n d . I t i s a h y g r i c community. The V a l e r i a n a - Castille , 1 a A s s o c i a t i o n , a l s o h y g r i c , occurs on seepage s l o p e s r i c h i n n u t r i e n t s i n the low a l p i n e and subalpine p a r k l a n d a r e a s . T h i s a s s o c i a t i o n i s most frequent i n the subalpine p a r k l a n d . The subhygric Abies - V a l e r i a n a A s s o c i a t i o n occurs a l s o on seepage s l o p e s i n the subalpine p a r k l a n d . T h i s community i s pr e s e n t on the same slop e s as, and a d j a c e n t t o , the V a l e r i a n a - C a s t l l l e j a A s s o c i a t i o n , but i s much l e s s f r e q u e n t . The Carex n i g r i c a n s A s s o c i a t i o n , r a t e d as h y g r i c t o sub-h y d r i c , i s found i n d e p r e s s i o n s with a long d u r a t i o n of snow. T h i s community i s common i n the a l p i n e , low a l p i n e and subalpine p a r k l a n d a r e a s . The P o l y t r i c h u m norvegicum A s s o c i a t i o n , which i s s u b h y d r i c , occurs i n temporary ponds i n the a l p i n e a r e a . I t has the l o n g e s t snow d u r a t i o n of a l l the communities. There i s a s o r t i n g of rocks i n one p l o t , which may i n d i c a t e the e x i s t e n c e of f r o s t a c t i o n . A s i m i l a r h a b i t a t i n the subalpine p a r k l a n d i s occupied by the subhydric Drepanocladus exannulatus A s s o c i a t i o n . In t h i s case, the pond d r i e s up a t a l a t e r date than i n the 169 P o l y t r i c h u m norvegicum A s s o c i a t i o n . D. S o i l Types and P l a n t Communities In the community d e s c r i p t i o n s ( s e c t i o n 4 ) , the s o i l s a s s o c -i a t e d w i t h each community were mentioned. Very few communities are c o n f i n e d to one s o i l type. In t h i s s e c t i o n , the a l t e r n a t i v e approach i s f o l l o w e d : t h a t i s , the communities a s s o c i a t e d w i t h each s o i l type are presented. None of the s o i l g r e a t groups and only three subgroups are r e s t r i c t e d t o a p a r t i c u l a r commun-i t y . The use of both these approaches i s h e l p f u l i n p r o v i d i n g more i n f o r m a t i o n about the i n t e r r e l a t i o n s h i p s of s o i l s and veget-a t i o n . A l p i n e D y s t r i c B r u n i s o l s are found i n e i g h t communities, mainly i n the Phyllodoce - Antennaria A s s o c i a t i o n (both v a r i a t -i o n s ) and i n the Abies - V a l e r i a n a A s s o c i a t i o n . Other commun-i t i e s w i t h t h i s s o i l type are the Carex - P o l y t r i c h a d e l p h u s V a r i a t i o n o f the Carex n i g r i c a n s A s s o c i a t i o n , the Carex s p e c t -a b i l i s A s s o c i a t i o n , the Antennaria l a n a t a A s s o c i a t i o n , the Juncus p a r r y i A s s o c i a t i o n and the Ante n n a r i a - S i b b a l d i a - S a l l x V a r i a t i o n o f the Ante n n a r i a - S i b b a l d i a A s s o c i a t i o n . O r t h i c Regosols occur i n twelve communities, predominantly the J u n iperus communis A s s o c i a t i o n , the An t e n n a r i a - S i b b a l d i a A s s o c i a t i o n ( a l l three v a r i a t i o n s ) , the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n o f the V a l e r i a n a - C a s t l l l e j a A s s o c i a t i o n , and the Juncus p a r r y i A s s o c i a t i o n . Less frequent occurrences are wit h the Carex s p e c t a b i l i s A s s o c i a t i o n , the T r o l l i u s laxus V a r i a t i o n of the V a l e r i a n a - C a s t l l l e j a A s s o c i a t i o n , the Carex - P o l y -t r i c h a d e l p h u s V a r i a t i o n of the Carex n i g r i c a n s A s s o c i a t i o n , the Phyllodoce - A n t e n n a r i a V a r i a t i o n of the Phyllodoce - Ant e n n a r i a A s s o c i a t i o n , the Abies l a s i o c a r p a A s s o c i a t i o n and the P i c e a engelmannii A s s o c i a t i o n . In the P o d z o l i c Order, Sombric Humo-Ferric Podzols are a s s o c i a t e d w i t h s i x communities, mainly the Phyllodoce -An t e n n a r i a V a r i a t i o n of the Phyllodoce - A n t e n n a r i a A s s o c i a t i o n , and the Juncus p a r r y i A s s o c i a t i o n . The ot h e r communities are the A n t e n n a r i a - S i b b a l d i a A s s o c i a t i o n ( A n t e n n a r i a - S i b b a l d i a -S a l i x V a r i a t i o n and Carex b r e w e r i V a r i a t i o n ) , the Ant e n n a r i a l a n a t a A s s o c i a t i o n , and the P o l y t r i c h u m norvegicum A s s o c i a t i o n . Sombric Ferro-Humic Podzols occur mainly In the Abies - P i c e a -Vaccinium A s s o c i a t i o n and the Juncus p a r r y i A s s o c i a t i o n . Other occurrences are i n the Carex s p e c t a b i l i s A s s o c i a t i o n , the Phyllodoce - A n t e n n a r i a V a r i a t i o n of the Phyllodoce - Antennaria A s s o c i a t i o n , and the Carex - P o l y t r i c h a d e l p h u s V a r i a t i o n of the Carex n i g r i c a n s A s s o c i a t i o n . Of i n f r e q u e n t occurrence are M i n i Ferro-Humic Podzols, a s s o c i a t e d w i t h the A n t e n n a r i a l a n a t a Assoc-i a t i o n and the Abies l a s l o c a r p a A s s o c i a t i o n , and an O r t h i c Humic Podzol found i n the Abies - P i c e a - Vaccinium A s s o c i a t i o n . In the G l e y s o l i c Order, the predominant s o i l type i s the Rego Humic G l e y s o l , which occurs mainly i n the V a l e r i a n a -C a s t i l l e , j a A s s o c i a t i o n (both v a r i a t i o n s ) and the Carex n i g r i c a n s A s s o c i a t i o n (both v a r i a t i o n s ) . I t i s a l s o found with the Drep-anocladus exannulatus A s s o c i a t i o n and the P o l y t r i c h u m norvegicum A s s o c i a t i o n . The other s o i l types i n t h i s o r d e r occur very i n f r e q u e n t l y . The, F e r a Humic G l e y s o l i s a s s o c i a t e d w i t h the V a l e r i a n a - C a s t i l l e j a V a r i a t i o n o f the V a l e r i a n a - C a s t i l l e j a 171 A s s o c i a t i o n , and the Carex - P o l y t r i c h a d e l p h u s V a r i a t i o n of the Carex n i g r i c a n s A s s o c i a t i o n . The O r t h i c Humic G l e y s o l and Rego G l e y s o l are both found i n the T r o l l i u s laxus V a r i a t i o n of the V a l e r i a n a - C a s t i l l e j a A s s o c i a t i o n . S o i l s and v e g e t a t i o n have been c o n s i d e r e d as dependent v a r i a b l e s , both depending on the same group of ecosystem f a c t o r s , a c c o r d i n g to the f o l l o w i n g equation (Jenny, 1941; Major, 1951; Crocker, 1952): V and S = f ( c l , o, r , p, t ) where V i s veget-a t i o n , S i s s o i l , and the f a c t o r s are c l i m a t e , organisms, r e l i e f , parent m a t e r i a l and time. Thus s o i l s and v e g e t a t i o n are not c a u s a l l y r e l a t e d to each o t h e r . A g i v e n s e t o f environmental f a c t o r s produces a c e r t a i n v e g e t a t i o n type and a s o i l type. I t i s i n t e r e s t i n g t o note t h a t the v e g e t a t i o n types and s o i l types found i n the p r e s e n t study are not very c l o s e l y r e l a t e d . The Canadian s o i l c l a s s i f i c a t i o n scheme f o r a l p i n e s o i l s , as used here, i s e s s e n t i a l l y t e n t a t i v e , as very l i t t l e work has p r e v i o u s l y been done In a l p i n e r e g i o n s . I t i s the name of the s o i l , as such, which i s Important, but the processes which are a c t i n g t o produce a given s e t of h o r i z o n s which i s of s i g n i f -i c a n c e . U n f o r t u n a t e l y , very l i t t l e i s y e t known about s o i l g e n e sis i n a l p i n e environments. One reason f o r the l a c k of c o r r e l a t i o n between v e g e t a t i o n and s o i l s may be the r e l a t i v e l y young age of the a r e a , not enough time having e l a p s e d s i n c e g l a c i a t i o n f o r the maximum development of the s o i l s . Another e x p l a n a t i o n may be the f a c t t h a t p h y s i c a l environmental f a c t o r s (such as low temperature and f r o s t a c t i v i t y ) can reduce the e f f e c t of the time element, thus slowing the development of the 172 s o i l s . I t i s a l s o important to r e a l i z e t h a t the v e g e t a t i o n and s o i l s were compared a t d i f f e r e n t l e v e l s i n t h e i r r e s p e c t i v e c l a s s i f i c a t i o n systems. The v e g e t a t i o n u n i t used i s the a s s o c -i a t i o n ( o r v a r i a t i o n ) , which i s very s p e c i f i c , while the s o i l subgroup i s a more g e n e r a l i z e d a b s t r a c t c a t egory. A much c l o s e r c o r r e l a t i o n between s o i l types and v e g e t a t i o n types would be produced i f the p l a n t communities were compared with the s o i l s e r i e s , s i n c e the s e r i e s i s a s p e c i f i c u n i t of the landscape. However, such a comparison was not p o s s i b l e , as no d e t a i l e d s o i l map was a v a i l a b l e f o r the study a r e a . 173 '8. V e g e t a t i o n Zonation Throughout t h i s t h e s i s , r e f e r e n c e has been made to a l p i n e , low a l p i n e and subalpine p a r k l a n d a r e a s . I t i s necessary now to e x p l a i n how these areas f i t i n t o an a l t i t u d i n a l z o n a t i o n scheme. The lowest area Is the subalpine p a r k l a n d , r a n g i n g l n a l t i t u d e from ca. 7 1 0 0 to 7 ^ 0 0 f e e t . T h i s a r e a i s con s i d e r e d as the upper p a r t o f the i n t e r i o r Engelmann Spruce - Subalpine F i r Zone. T h i s zone has been d i v i d e d i n t o three geographic subzones, w i t h i n which p a r k l a n d areas occur a t the h i g h e r a l t i -tudes ( K r a j i n a , 1 9 6 9 ) . For the c o a s t a l subalpine zone, the parkl a n d a r e a has been d e s c r i b e d as a subzone of the Mountain Hemlock Zone ( K r a j i n a , 1 9 6 5 ) . The low a l p i n e ( c a . 7 ^ 0 0 - 7 5 0 0 f e e t ) and the a l p i n e ( c a . 7 5 0 0 - 7 6 0 0 f e e t ) areas comprise the Al p i n e Zone ( a f t e r K r a j i n a , 1 9 6 5 ) . The t i m b e r l i n e v e g e t a t i o n i s composed of the subalpine p a r k l a n d and p a r t s o f the low a l p i n e a r e a , and i s e s s e n t i a l l y a t r a n s i t i o n a r e a or ecotone between the c l o s e d subalpine f o r e s t and the a l p i n e zone. Since there i s such a s m a l l e l e v a t i o n a l d i f f e r e n c e between the subalpine p a r k l a n d and the summit of the mountain, i t may be suggested t h a t the e n t i r e study area belongs t o the E n g e l -mann Spruce - Subalpine F i r Zone. A c c o r d i n g t o K r a j i n a ( 1 9 5 9 ) , the A l p i n e Zone i n the southeast of B r i t i s h Columbia extends above 7 5 0 0 f e e t . T h i s would place the summit of B i g White i n the a l p i n e zone. An examination o f s p e c i e s l i s t e d as c h a r a c t e r i s t i c f o r the a l p i n e and/or i n t e r i o r s u b alpine zones by K r a j i n a ( 1 9 5 9 ) r e v e a l e d 174 the following information about the f l o r a of Big White: 56/73 vascular plants and 33/87 bryophytes and lichens on Big White are c h a r a c t e r i s t i c of the alpine zone; 26 vascular plants and 10 bryophytes and lichens are c h a r a c t e r i s t i c of the i n t e r i o r subalpine zone. Upon subtracting the number of species l i s t e d as c h a r a c t e r i s t i c f o r both the alpine and subalpine zones (18 vascular plants, and 8 bryophytes and l i c h e n s ) , the revised figures are as follows: 38 vascular plants and 25 bryophytes and lichens are c h a r a c t e r i s t i c of the alpine zone; 8 vascular plants and 2 bryophytes and lichens are c h a r a c t e r i s t i c of the subalpine zone. Therefore, f l o r i s t i c a l l y , the study area belongs to the alpine zone. This conclusion can be considered v a l i d , since i t i s based on a l i s t of plants c h a r a c t e r i s t i c of the alpine zone as found throughout B r i t i s h Columbia. However, a comparison can not be made from one geographic area, such as the Rocky Mountains or the coast, to another. As Krajina (1959) stated, \"there are possibly several alpine zones which could be separated on the basis of t h e i r phytogeographic and macroclimatic c h a r a c t e r i s t i c s . \" The alpine zone has been generally defined as the area above timberline. However, timberline i t s e l f i s variously interpreted as being the elevation of the forest l i n e (the upper edge of continuous f o r e s t ) , the tree l i n e (altitude of the highest stunted t r e e ) , or a point midway across the t r a n s i t i o n zone between forest and alpine tundra (Daubenmlre, 1955). The d e f i n i t i v e empirical climatic data which are used by Krajina (1965) to determine the alpine zone are the monthly mean 175 temperatures being below 50\u00C2\u00B0P throughout the year (after Koppen, 1936). Unfortunately, there are no detailed climatic measure-ments from the study area. However, cli m a t i c data from Old Glory Mountain, to the south of Big White, indicate that i t s summit (7700 feet) belongs to the alpine zone. This suggests that the summit of Big White w i l l also c l i m a t i c a l l y belong to the alpine zone. Much of the area studied i s located i n the t r a n s i t i o n area between the forest and alpine regions, and i s c a l l e d timberline vegetation. However, i t i s concluded that the upper part of Big White Mountain constitutes the Alpine Zone, although i t i s c e r t a i n l y not as well developed as i t i s in the coastal area or in the Rocky Mountains. As there are no other detailed veget-ation studies in alpine areas of i n t e r i o r B r i t i s h Columbia fo r comparison, no generalizations can be drawn from the present study as to the exact characterization of the i n t e r i o r alpine zone. Much further work thus needs to be done in t h i s neglected area of plant ecology i n B r i t i s h Columbia. 176 9. Summary and Con c l u s i o n s The purposes of t h i s r e s e a r c h were to o b t a i n data on veget-a t i o n and environment i n an a l p i n e - t i m b e r l l n e a r e a , to produce an e c o s y s t e m a t i c c l a s s i f i c a t i o n of the v e g e t a t i o n , and to d e t e r -mine the environmental f a c t o r s important i n the d i f f e r e n t i a t i o n of the p l a n t communities. The main r e s u l t s of t h i s study are summarized below: ( l ) Fourteen p l a n t a s s o c i a t i o n s , w i t h nine v a r i a t i o n s , are d i s t i n g u i s h e d and d e s c r i b e d a l o n g a g e n e r a l g r a d i e n t of I n c r e a s -i n g m o i s t u r e . The communities are compared with those d e s c r i b e d i n o t h e r a l p i n e and subalpine a r e a s . The Juniperus communis A s s o c i a t i o n occurs over rock outcrops on r i d g e s and s l o p e s i n the a l p i n e and low a l p i n e a r e a s . T h e A n t e n n a r i a l a n a t a - S i b b a l d i a procumbens A s s o c i a t i o n occurs on r i d g e tops, p r i m a r i l y i n the a l p i n e a r e a . The a s s o c -i a t i o n i s s u b d i v i d e d i n t o o t h r e e v a r i a t i o n s : A n t e n n a r i a l a n a t a -S i b b a l d i a procumbens - S a l i x c ascadensis V a r i a t i o n , Carex phaeo-cephala V a r i a t i o n , and Carex b r e w e r i V a r i a t i o n . The Juncus p a r r y i A s s o c i a t i o n occurs on s o u t h - f a c i n g s l o p e s In the a l p i n e and low a l p i n e a r e a s . I t i s l e s s w e l l developed i n the subalpine p a r k l a n d , o c c u r r i n g there on s l o p e s and r i d g e s w i t h a southern exposure. The Antennaria l a n a t a A s s o c i a t i o n occurs a t the base of s l o p e s , on r i d g e s and on s l o p e s i n the a l p i n e and low a l p i n e a r e a s . The Phyllodoce empetriformis - A n t e n n a r i a l a n a t a A s s o c i a t i o n occurs mainly on s l o p e s In the a l p i n e , low a l p i n e and subalpine 177 p a r k l a n d a r e a s . The a s s o c i a t i o n i s d i v i d e d i n t o two v a r i a t i o n s : Phyllodoce empetriformis - A n t e n n a r i a l a n a t a V a r i a t i o n , and A n tennaria l a n a t a - Vaccinium scoparium V a r i a t i o n . The P i c e a engelmannii A s s o c i a t i o n , r e p r e s e n t e d only by one p l o t , occurs on a r i d g e i n the a l p i n e a r e a . The Abies l a s l o c a r p a A s s o c i a t i o n a l s o occurs on r i d g e s i n the a l p i n e a r e a . The Abies l a s l o c a r p a - P i c e a engelmannii - Vaccinium scop-arium A s s o c i a t i o n occurs mainly on r i d g e s i n the a l p i n e , low a l p i n e and subalpine p a r k l a n d a r e a s . The Abies l a s i o c a r p a - V a l e r i a n a s i t c h e n s i s A s s o c i a t i o n occurs on seepage s l o p e s i n the subalpine p a r k l a n d . The Carex s p e c t a b i l i s A s s o c i a t i o n occurs on s l o p e s w i t h temporary seepage, mainly i n the a l p i n e and low a l p i n e a r e a s . The V a l e r i a n a s i t c h e n s i s - C a s t i l l e j a e l m e r i A s s o c i a t i o n occurs on seepage slo p e s i n the subalpine p a r k l a n d and, l e s s f r e q u e n t l y , i n the a l p i n e and low a l p i n e a r e a s . The a s s o c i a t i o n i s d i v i d e d i n t o two v a r i a t i o n s : V a l e r i a n a s i t c h e n s i s - C a s t i l l -e j a e l m e r i V a r i a t i o n , and T r o l l i u s laxus V a r i a t i o n . The Carex n i g r i c a n s A s s o c i a t i o n occurs i n snow b a s i n s , d e p r e s s i o n s and temporary ponds i n the a l p i n e , low a l p i n e and subalpine p a r k l a n d a r e a s . The a s s o c i a t i o n i s d i v i d e d i n t o two v a r i a t i o n s : Carex n i g r i c a n s - P o l y t r i c h a d e l p h u s l y a l l i i V a r i a t -i o n , and Juncus mertensianus - Carex n i g r i c a n s - Drepanocladus exannulatus V a r i a t i o n . The P o l y t r i c h u m norvegicum A s s o c i a t i o n occurs i n temporary ponds i n the a l p i n e a r e a . 178 The Drepanocladus exannulatus A s s o c i a t i o n , r e p r e s e n t e d by only one p l o t , occurs as a narrow band around the edge of a temporary pond i n the subalpine p a r k l a n d . ( 2 ) The s o i l s are c l a s s i f i e d a c c o r d i n g t o the Canadian system of s o i l c l a s s i f i c a t i o n (Canada S o i l Survey Committee, 1 9 7 0 ) . The orders and s o i l types r e p r e s e n t e d i n the study area a r e : B r u n i s o l i c - A l p i n e D y s t r i c B r u n i s o l ; R e g o s o l i c - O r t h i c Regosol; P o d z o l i c - Sombric Humo-Ferric Podzol, Sombric Ferro-Humic Podzol, M i n i Ferro-Humic Podzol, and O r t h i c Humic Podzol; G l e y -s o l i c - Rego Humic G l e y s o l , F e r a Humic G l e y s o l , O r t h i c Humic G l e y s o l , and Rego G l e y s o l . The communities a s s o c i a t e d w i t h each s o i l type are presented i n d e t a i l , w i t h a d i s c u s s i o n on the l a c k o f c l o s e c o r r e l a t i o n between s o i l types and v e g e t a t i o n t y p e s . ( 3 ) The s o i l s are g e n e r a l l y shallow, w i t h weak h o r i z o n d e v e l o p -ment ( e x c l u d i n g the p o d z o l s ) . S o i l development appears to be proceeding s l o w l y . Important chemical p r o p e r t i e s are the a c i d i c pH, narrow carbon:nitrogen r a t i o s , low c a t i o n exchange c a p a c i t i e s , and very low amounts of exchangeable c a t i o n s . (4) The d i s t r i b u t i o n of the tre e s p e c i e s i n the a r e a , t o g e t h e r w i t h s e l e c t e d diameter, h e i g h t and age measurements, i s d i s c u s s e d . The krummholz growth form of t r e e s occurs on r i d g e s i n the a l p i n e a r e a , while t r e e s occur on r i d g e s and seepage sl o p e s In the subalpine p a r k l a n d . The subalpine t r e e s are much o l d e r than those i n the a l p i n e a r e a . I t i s suggested t h a t there has been a r e c e n t m i g r a t i o n o f t r e e s p e c i e s i n t o the a l p i n e a r e a . There are i n s u f f i c i e n t data t o c o r r e l a t e the m i g r a t i o n s w i t h a 1 7 9 c l i m a t i c change. (5) The occurrence of conifer seedlings and shrubs i n alpine and timberline communities (exclusive of the sampled tree islands) i s presented. No conifer seedlings were observed in the tree i s l a n d communities. More seedlings were found i n the Antennaria-Sibbaldia - S a l i x community than in any other. (6) A synthesis table including c h a r a c t e r i s t i c species and high-presence species f o r a l l associations i s discussed. In general, both the c h a r a c t e r i s t i c species and the high-presence species follow the moisture trend. Species occurring i n associations for which they are not c h a r a c t e r i s t i c are usually much less Important in those associations. ( 7 ) F l o r i s t i c s i m i l a r i t y indices were calculated a) between a l l plots and b) between a l l associations and v a r i a t i o n s . Simi-l a r i t y matrices are included i n the description of the communit-ies to show the values of plots within an association. Plots within an association generally have t h e i r highest s i m i l a r i t i e s to each other rather than to a plot i n another association. Variations of an association show up c l e a r l y i n the s i m i l a r i t y matrix. In comparing the associations and variations with each other, the highest a f f i n i t i e s of each community are presented. In general, there i s a very low degree of s i m i l a r i t y among the communities. It i s concluded that the indices of s i m i l a r i t y support the c l a s s i f i c a t i o n system. (8) The topographic-altitudinal relationships of the alpine and subalpine communities are presented. (9) The environmental data are summarized fo r each community as being low, medium or high (in r e l a t i o n only to the present 180 d a t a ) . The communities are grouped a c c o r d i n g to hygrotope, and the environmental f a c t o r s are d i s c u s s e d f o r each group. (10) A one-way a n a l y s i s of v a r i a n c e was done f o r each e n v i r o n -mental v a r i a b l e . A l l f a c t o r s are s i g n i f i c a n t a t the 1% l e v e l except f o r m i n e r a l s o i l , c a l c i u m and phosphorus, which are s i g n i f i c a n t a t the 5$ l e v e l , and r e l i e f , which i s not s i g n i f i c -ant . (11) Based on Duncan's New M u l t i p l e Range T e s t , the environment-a l f a c t o r s which are s i g n i f i c a n t i n d i f f e r e n t i a t i n g each commun-i t y are o u t l i n e d . I t i s concluded t h a t the g e n e r a l environmental f a c t o r s are more s i g n i f i c a n t i n d i s t i n g u i s h i n g the communities than the p h y s i c a l and chemical s o i l p r o p e r t i e s . Hygrotope i s the most important of the g e n e r a l environmental f a c t o r s . (12) S o i l moisture was s t u d i e d f o r a number of communities i n the a l p i n e and subalpine p a r k l a n d a r e a s . A v a i l a b l e water gener-a l l y decreases w i t h depth. The amount of a v a i l a b l e water i n the s u r f a c e and subsurface h o r i z o n s i s compared f o r corresponding a l p i n e and subalpine communities. A g r e a t e r amount of a v a i l a b l e water a t depth i s proposed as an e x p l a n a t i o n f o r the b e t t e r growth of t r e e s i n the subalpine p a r k l a n d . The a c t u a l f i e l d moisture values are d i s c u s s e d f o r each community. A number of the communities f a l l below permanent w i l t i n g percentage f o r p a r t of the summer, and thus undergo s o i l moisture s t r e s s . (13) A d e t a i l e d d i s c u s s i o n of v e g e t a t i o n z o n a t i o n i s p r e s e n t e d . I t i s concluded t h a t the subalpine p a r k l a n d area belongs to the Engelmann Spruce - Subalpine F i r Zone, and the a l p i n e and low a l p i n e areas comprise the A l p i n e Zone. The subalpine p a r k l a n d and p a r t s of the low a l p i n e area c o n s t i t u t e the t i m b e r l i n e veget-a t i o n . The a l p i n e zone i n the study area i s not as w e l l d e v e l -oped as on the coast or i n the Rocky Mountains. (14) I t i s concluded t h a t much f u r t h e r work needs to be done In order t o p r o p e r l y c h a r a c t e r i z e the a l p i n e zone i n B r i t i s h Colum-b i a . 10. L i t e r a t u r e C i t e d A l l i s o n , L.E., W.B. B o l l e n and C.D. Moodie. 1965. T o t a l carbon. P. 1346-1366. In C.A. B l a c k ( e d . ) . Methods of s o i l a n a l y s i s , P a r t 2 . Agronomy No. 9 . Amer. Soc. Agron., Inc. Madison, Wisconsin. A r c h e r , A.C. 1963. Some s y n e c o l o g i c a l problems i n the a l p i n e zone o f G a r i b a l d i Park. M.Sc. T h e s i s , Dept. of B i o l o g y & Botany, Univ. of B.C. Bamberg, S.A. and J . Major. 1968. Ecology of the v e g e t a t i o n and s o i l s a s s o c i a t e d with c a l c a r e o u s parent m a t e r i a l s i n three a l p i n e r e g i o n s of Montana. E c o l . Monog. 38: 127-167. B a p t i e , J.B. 1968. Ecology of the a l p i n e s o i l s i n Snow Creek V a l l e y , B a n f f N a t i o n a l Park, A l b e r t a . M.Sc. T h e s i s , Dept. of B i o l o g y , Univ. of C a l g a r y . Beder, Karen. 1967. Ecology of the a l p i n e v e g e t a t i o n o f Snow Creek V a l l e y , B a n f f N a t i o n a l Park, A l b e r t a . M.Sc. T h e s i s , Dept. of B i o l o g y , Univ. of C a l g a r y . B i l l i n g s , W.D. and L.C. B l i s s . 1959.-An a l p i n e snowbank 0 environment and i t s e f f e c t s on v e g e t a t i o n , p l a n t d e v elop-ment and p r o d u c t i v i t y . Ecology 40: 388-397. B i l l i n g s , W.D. and A.F. Mark. 1 9 6 l . I n t e r a c t i o n s between a l p i n e tundra v e g e t a t i o n and p a t t e r n e d ground i n the mount-a i n s of southern New Zealand. Ecology 42: 18-31. B i l l i n g s , W.D. and H.A. Mooney. 1968. The ecology of a r c t i c and a l p i n e p l a n t s . B i o l . Rev. 43: 481-529. B i r d , C D . 1966. A catalogue of the l i c h e n s r e p o r t e d from A l b e r t a , Saskatchewan and Manitoba. Dept. of B i o l o g y , Univ. of C a l g a r y . 46 pp. B l i s s , L.C. 1956. A comparison of p l a n t development i n m i c r o -environments of a r c t i c and a l p i n e tundras. E c o l . Monog. 26: 303-337. B l i s s , L.C. 1962. Adaptations of a r c t i c and a l p i n e p l a n t s t o environmental c o n d i t i o n s . A r c t i c 15: 117-144. B l i s s , L.C. 1963. A l p i n e p l a n t communities of the P r e s i d e n t i a l Range, New Hampshire. Ecology 44: 678-697. B l i s s , L.C. 1966. P l a n t p r o d u c t i v i t y i n a l p i n e m i c r o e n v i r o n -ments on Mt. Washington, New Hampshire. Ecol.Monog. 36: 125-155. Bouyoucos, G.J. 1962. Hydrometer method improved f o r making p a r t i c l e s i z e a n a l y s i s of s o i l s . Agron. J . 54: 464-465. Braun-Blanquet, J . 1948. La v e g e t a t i o n a l p i n e des Pyrenees o r i e n t a l e s . B a r c e l o n a . 306 pp. Braun-Blanquet, J . and H. Jenny. 1926. V e g e t a t i o n s Entwick-lung und Bodenbildung i n der a l p i n e n Stufe der Z e n t r a l -a l p e n . Denkschr. schweiz. n a t u r f . Ges. 6 3 . 183 pp. Bray, R.H. and L.T. K u r t z . 1945. Determination of t o t a l , o r g a n i c and a v a i l a b l e forms of phosphorus i n s o i l s . S o i l S c i . 59: 39-45 . Bremner, J.M. i 9 6 0 . Determination of n i t r o g e n i n s o i l by K j e l d a h l method. J . A g r i c . S c i . 55: 11-33. B r i n k , V.C. 1959. A d i r e c t i o n a l change i n the subalpine f o r e s t -heath ecotone i n G a r i b a l d i Park, B r i t i s h Columbia. Ecology 40: 10-16. B r i n k , V.C. 1964. P l a n t e s t a b l i s h m e n t i n the h i g h s n o w f a l l a l p i n e and subalpine r e g i o n s of B r i t i s h Columbia. Ecology 45: 431-438. B r i t i s h Columbia, Canada Land Inventory, A.R.D.A. Map Nos. 2 , 3 , 4 , 5 , 13, 17, 18 & 21 . B r i t i s h Columbia Department o f A g r i c u l t u r e . 1965-1968. Climate of B r i t i s h Columbia. B r i t i s h Columbia Department of Lands, F o r e s t s and Water Resources. 1966-1969. B r i t i s h Columbia Snow Survey B u l l e t i n . Water I n v e s t i g a t i o n s Branch, Water Resources S e r v i c e . Brooke, R.C. 1966. Vegetation-environment r e l a t i o n s h i p s of subalpine mountain hemlock zone ecosystems. Ph.D. T h e s i s , Dept. of B i o l o g y & Botany, Univ. of B.C. 225 PP., App. 110 PP. B r y a n t , J.P. and E. Scheinberg. 1970. V e g e t a t i o n and f r o s t a c t i v i t y l n an a l p i n e f e l l f l e l d on the summit of P l a t e a u Mountain, A l b e r t a . Can. J . Bot. 48: 751-771. C a l d e r , J.A. and R.L. T a y l o r . 1968. F l o r a of the Queen Char-l o t t e I s l a n d s . P a r t 1. Systematics of the v a s c u l a r p l a n t s . Research Branch, Canada Department of A g r i c u l t u r e , Monograph No. 4 P a r t 1. Canada S o i l Survey Committee. 1970. The system of s o i l c l a s s -i f i c a t i o n f o r Canada. Canada Department of A g r i c u l t u r e . C a r l , G.C. 1944. The n a t u r a l h i s t o r y of the Forbidden P l a t e a u a r e a , Vancouver I s l a n d , B r i t i s h Columbia. B.C. Prov. Mus. Nat. H i s t . Report f o r 1943: 18-40. C a r l , G.C. and G.A. Hardy. 1945. F l o r a and fauna of the Para-d i s e Mine a r e a , B r i t i s h Columbia. B.C. Prov. Mus. Nat. H i s t . Report f o r 1944: 18-38. Cooper, W.S. 1916. P l a n t s u c c e s s i o n s l n the Mount Robson r e g i o n , B r i t i s h Columbia. P l a n t World 19: 211-238. C o s t i n , A.B. 1955. A l p i n e s o i l s i n A u s t r a l i a : with r e f e r e n c e to c o n d i t i o n s i n Europe and New Zealand. J . S o i l S c i . 6: 3 5 - 5 0 . C o s t i n , A.B. 1957. The h i g h mountain v e g e t a t i o n of A u s t r a l i a . A u s t r a l . J . Bot. 5: 173-189. Crocker, R.L. 1952. S o i l g e n e s i s and the pedogenic f a c t o r s . Quart. Rev. B i o l . 27: 139-168. Crum, H., W.C. Steere and L.E. Anderson. 1965. A l i s t of the mosses of North America. The B r y o l o g i s t 68: 377-432. Dahl, E. 1956. Rondane: Mountain v e g e t a t i o n i n south Norway and i t s r e l a t i o n to the environment. I . Kommisjon Hos. H. Aschehoug & Co. (W. Nygaard), O s l o . 374 pp. Daubenmlre, R.F. 1943. V e g e t a t i o n a l z o n a t l o n i n the Rocky Mountains. Botan. Rev. 9: 325-393. Daubenmire, R. 1955. A l p i n e t i m b e r l i n e s i n the Americas and t h e i r i n t e r p r e t a t i o n . B u t l e r Univ. Bot. S t u d i e s XI: 119-136. Daubenmire, R. 1966. V e g e t a t i o n : i d e n t i f i c a t i o n o f t y p a l communities. Science 151: 291-298. Daubenmire, R. 1968. P l a n t communities. A textbook of p l a n t synecology. Harper & Row, Publ. , New York. 300 pp. Douglas, G.W. 1969. Subalpine t r e e groups i n the western North Cascades. (Abs t r . ) Northwest Science 43: 3 4 - 3 5 . P a r s t a d , L. and C.A. Rowles, i 9 6 0 . S o i l s o f the C o r d i l l e r a n r e g i o n . Agr. I n s t . Review 15: 33-36, 50. Fonda, R.W. and L.C. B l i s s . 1969. F o r e s t v e g e t a t i o n o f the montane and subalpine zones, Olympic Mountains, Washington. E c o l . Monog. 39: 271-301; F r a n k l i n , J.F. and C.T. Dyrness. 1969. V e g e t a t i o n o f Oregon and Washington. U.S.D.A. F o r e s t S e r v i c e Res. Pap. PNW-80. P a c i f i c Northwest F o r e s t & Range Experiment S t a t i o n , P o r t l a n d , Oregon. 216 pp. F r a n k l i n , J.F. and J.M. Trappe. 1963. P l a n t communities o f \u00E2\u0080\u00A2 the northern Cascade Range: a reconnaissance. Northwest Science 37: 163-164. F r a n k l i n , . J.F., C.A. Wiburg and W.H. Moir. 1966. ' Invasion o f subalpine meadows by t r e e s i n Mount R a i n i e r N a t i o n a l Park. O f f i c e Report, F o r e s t r y Sciences Laboratory, P a c i f i c Northwest F o r e s t & Range Experiment S t a t i o n , U.S. F o r e s t S e r v i c e . 12 pp. F r a s e r , B.E.C. 1970. V e g e t a t i o n development on re c e n t a l p i n e g l a c i e r .forelands i n G a r i b a l d i Park, B r i t i s h Columbia. . Ph.D. T h e s i s , Dept. of Botany, Univ. of B.C. 259 pp. G j a e r e v o l l , 0 . 1956. The plant, communities of the Scandinavian a l p i n e snowbeds.' Det. K g l . Norske V i d . S e l s . Skr. No. 1. Trondheim, Norway. 405 pp. G r i g g s , R.F. 1938. T i m b e r l i n e s i n the n o r t h e r n Rocky Mountains. Ecology 19: 5^8-564. G r i g g s , R.F. 1946. The t i m b e r l i n e s of n o r t h e r n America and t h e i r i n t e r p r e t a t i o n . Ecology 27: 275-289. Hadac, E. 1969. Die P f l a n z e n g e s e l l s c h a f t e n des T a l e s \" D o l i n a Siedmich pramenov\" i n der B e l a e r T a t r a . S l o v . Akad. V i e d , B r a t i s l a v a . 343 PP. Hale, M.E.Jr. and W.L. Culberson. 1966. A t h i r d c h e c k l i s t of the l i c h e n s of the c o n t i n e n t a l U n i t e d S t a t e s and Canada. The B r y o l o g i s t 69: 141 -182. Hardy, G.A. 1955. The n a t u r a l h i s t o r y of the Forbidden P l a t e a u a r e a , Vancouver I s l a n d , B r i t i s h Columbia. B.C. Prov. Mus. Nat. H i s t . Report f o r 1954: 24 - 6 3 . H i t c h c o c k , C.L., A. C r o n q u i s t , M. Ownbey and J.W. Thompson. 1955-1969. V a s c u l a r p l a n t s of the P a c i f i c Northwest. V o l . 1-5. Univ. of Wash. Pre s s , S e a t t l e . H o l l a n d , S.S. 1964. Landforms of B r i t i s h Columbia, a p h y s i o -g r a p h i c o u t l i n e . B.C. Dept. of Mines & P e t r . Res. B u l l . No. 48. 138 pp. H u l t e n , E. 1968. The f l o r a of A l a s k a and n e i g h b o u r i n g t e r r i -t o r i e s . S t a n f o r d Univ. P r e s s , S t a n f o r d , C a l i f . 1008 pp. Jackson, M.L. 1958. S o i l chemical a n a l y s i s . P r e n t i c e - H a l l , Inc. N.J. 498 pp. Jenny, H. 1941. F a c t o r s of s o i l f o r m a t i o n : a system of quant-i t a t i v e pedology. McGraw-Hill, New York. 2 8 l pp. Johnson, D.D. and A.J. C l i n e . 1965. Colorado mountain s o i l s . Adv. Agron. 17: 233-281. Johnson, P.L. and W.D. B i l l i n g s . 1962. The a l p i n e v e g e t a t i o n of the B e a r t o o t h P l a t e a u i n r e l a t i o n t o cryopedogenic p r o -cesses and p a t t e r n s . E c o l . Monog. 32: 105-135. K l i k o f f , L.G. 1965. Microenvironmental i n f l u e n c e on v e g e t a t -i o n a l p a t t e r n near t i m b e r l i n e i n the C e n t r a l S i e r r a Nevada. E c o l . Monog. 35: 187-211. Koppen, W. 1936. Das Geographische System der Kli m a t e . In Koppen, W. and G. G e i g e r , Handbuch der K l i m a t o l o g l e . V o l . 1 , Part C. Gebrueder B o r n t r a e g e r , B e r l i n . K r a j i n a , V . J . 1933. Die P f l a n z e n g e s e l l s c h a f t e n des M l y n i c a -T a l e s i n den Vysoke T a t r y (Hohe T a t r a ) mit besonderer B e r u c k s i c h t i g u n g der okol o g i s c h e n V e r h a l t n i s s e . Bot. C e n t r a l b l . B e i h . (Abt. 2) 50: 774-957, 51: 1-224. K r a j i n a , V . J . 1959. B i o c l i m a t l c zones i n B r i t i s h Columbia. B o t a n i c a l S e r i e s No. 1. Univ. of B.C. 47 pp. K r a j i n a , V . J . 1965. B i o g e o c l i m a t i c zones and c l a s s i f i c a t i o n o f B r i t i s h Columbia. Ecology of Western North America 1: 1-17. Dept. of Botany, Univ. of B.C. K r a j i n a , V . J . 1969. Ecology of f o r e s t t r e e s i n B r i t i s h Columbia. Ecology of Western North America 2: 1-147. Dept. of Botany, Univ. of B.C. Kubiena, W.L. 1953. The s o i l s of Europe. Thomas Murby & Co., London. 318 pp. Kuramoto, R.T. 1968. Ecology of subalpine meadows i n the Olympic Mountains, Washington. Ph.D. T h e s i s , Univ I l l i n o i s . 149 PP. L i t t l e , H.W. 1957. Map 6 - 1957. Geology, K e t t l e R i v e r , B r i t i s h Columbia. G e o l o g i c a l Survey of Canada. Sheet 82E. Major, J . 1951. A f u n c t i o n a l , f a c t o r i a l approach to p l a n t ecology. Ecology 32: 392-412. Mark, A.F. and J u l i e t B u r r e l l . 1966. V e g e t a t i o n s t u d i e s on the Humboldt Mountains F i o r d l a n d . P a r t 1: The a l p i n e tussock g r a s s l a n d s . Proc. N.Z. E c o l . Soc. 13: 12-18. Marr, J.W. 1961. Ecosystems of the e a s t slope of the F r o n t Range i n Colorado. Univ. of Colorado S t u d i e s S e r i e s i n B i o l o g y No. 8 . Univ. of Colorado P r e s s , B o u l d e r . 134 pp. McKeague, J.A. and J.H. Day. 1966. D i t h i o n i t e and o x a l a t e -e x t r a c t a b l e Fe and A l as a i d s i n d i f f e r e n t i a t i n g v a r i o u s c l a s s e s of s o i l s . Can. J . S o i l S c i . 46: 13-22. McVean, D.N. 1969. A l p i n e v e g e t a t i o n of the c e n t r a l Snowy Mountains of New South Wales. J . E c o l . 57: 67-86. McVean, D.N. and D.A. R a t c l l f f e . 1962. P l a n t communities of the S c o t t i s h Highlands. Nature Conservancy Monograph No. 1. H.M.S.O., London. 445 pp. Mooney, H.A. 1963. P h y s i o l o g i c a l ecology of c o a s t a l , subalpine and a l p i n e p o p u l a t i o n s of Polygonum b l s t o r t o i d e s . Ecology 44: 812-816. Mooney, H.A. and W.D. B i l l i n g s . 1961. Comparative p h y s i o l o g i c a l ecology of a r c t i c and a l p i n e p o p u l a t i o n s of O x y r i a d i g y n a . E c o l . Monog. 31:\", 1-29. Moss, E.H. 1955. The v e g e t a t i o n of A l b e r t a . Botan. Rev. 21 : 493-567. Moss, E.H. 1959. F l o r a of A l b e r t a . Univ. o f Toronto P r e s s , Toronto. 546 pp. Muckenhausen, E. 1965. The s o i l c l a s s i f i c a t i o n system of the F e d e r a l R e p u b l i c of Germany. Pedologie I n t e r n a t . Symp. 3. S o i l c l a s s i f i c a t i o n . P. 57-74. Ghent, Belgium;' Munro, J.A. and I. McTaggart Cowan. 1944. P r e l i m i n a r y r e p o r t on the b i r d s and mammals of Kootenay N a t i o n a l Park, B r i t i s h Columbia. Can. F i e l d Nat. 58: 34-51. Nimlos, T . J . and R.C. McConnell.. 1962. The morphology of a l p i n e s o i l s i n Montana. Northwest Science 36: 99-112. Nimlos, T . J . and R.C. McConnell. 1965. A l p i n e s o i l s i n Montana. S o i l S c i . 99: 310-321. Nordhagen, R. 1936. Versuch e i n e r neuen E i n t e i l u n g d e r s u b a l p -i n e n - a l p i n e n V e g e t a t i o n Norwegens. Bergens Mus. Aarb. Naturv. rekke. 88 pp. Nyholm, E l s a . 1958. I l l u s t r a t e d moss f l o r a o f Fennoscandia. I I . Musci. F a s c . 3. P. 189-288. CWK Gleerup. Lund, Sweden. O g i l v i e , R.T. 1961. Ecology of spruce f o r e s t s on the e a s t slope of the Rocky Mountains i n A l b e r t a . Ph.D. T h e s i s , Wash. St a t e Univ. 189 pp. O t t o , G.F. and T. A h t i . 1967. Lichens of B r i t i s h Columbia, p r e l i m i n a r y c h e c k l i s t . Dept. of Botany, Univ. of B.C. 40 pp. P a t t e n , D.T. 1963. V e g e t a t i o n a l p a t t e r n i n r e l a t i o n t o e n v i r -onments i n the Madison Range, Montana. E c o l . Monog. 33: 375-406. II Pawlowski, B. 1935. Uber d i e K l i m a x a s s o c i a t i o n i n der a l p i n e n Stufe der T a t r a . B u l l . Acad. Polon. S c i . L e t t r e s . Krakow. P e a r s a l l , W.H. 1950. Mountains and moorlands. C o l l i n s , London. 312 pp. Peech, M., L.T. Alexander, L.A. Dean and J.F. Reed. 1947. Methods of s o i l a n a l y s i s f o r s o i l - f e r t i l i t y i n v e s t i g a t i o n s . U.S.D.A. C i r c . 757. 25 pp. P e t e r s o n , E.B. 1964. P l a n t a s s o c i a t i o n s i n the subalpine mountain hemlock zone i n southern B r i t i s h Columbia. Ph.D. T h e s i s , Dept. of B i o l o g y & Botany, Univ. of B.C. 171 PP. Poore, M.E.D. and D.N. McVean. 1957. A new approach to S c o t -t i s h mountain v e g e t a t i o n . J . E c o l . 45: 401 - 4 3 9 . Raup, H.M. 1934. Phytogeographic s t u d i e s i n the Peace and upper L i a r d R i v e r r e g i o n s , Canada. C o n t r i b . A r n o l d Arboretum V I . 230 pp. Raup, H.M. 1945. V e g e t a t i o n a l o n g the A l a s k a Highway and the North P a c i f i c c o a s t . Jour. N.Y. Bot. Gard. 46: 177-191. Ream, R.R. 1965. A standard computer program f o r d e t e r m i n i n g the index of s i m i l a r i t y among v e g e t a t i o n stands. A b s t r . B u l l . E c o l . Soc. Amer. 43: 9 8 . R e t z e r , J.L. 1956. A l p i n e s o i l s of the Rocky Mountains. J . S o i l S c i . 7: 22-32 . R e t z e r , J.L. 1962. S o i l survey of F r a s e r A l p i n e Area, Colorado, U.S.D.A. S e r i e s 1956, No. 2 0 . R e t z e r , J.L. 1965. Present s o i l - f o r m i n g f a c t o r s and p r o c e s s e s i n a r c t i c and a l p i n e r e g i o n s . S o i l S c i . 99: 38-44. R i c h a r d s , L.A. 1965. P h y s i c a l c o n d i t i o n of water i n s o i l . P. 128-152. In C.A. B l a c k ( e d . ) . Methods of s o i l a n a l y s i s , P a r t 1. Agronomy No. 9 . Amer. Soc. Agron., Inc. Madison Wisconsin. R i c h a r d s , L.A. and L.R. Weaver. 1943. Fifteen-atmosphere percentage as r e l a t e d to the permanent w i l t i n g percentage. S o i l S c i . 56: 331-340. Romans, J.C.C., J.H. Stevens and L. Robertson. 1966. A l p i n e s o i l s of n o r t h - e a s t S c o t l a n d . J . S o i l S c i . 17: 184-199. S c h o f i e l d , W.B. 1968a. A s e l e c t i v e l y annotated c h e c k l i s t of B r i t i s h Columbia mosses. S y e s i s 1: 163-175. S c h o f i e l d , W.B. 1968b. A c h e c k l i s t of Hepaticae and Anthocer-otae of B r i t i s h Columbia. S y e s i s 1: 157-162. S c h u s t e r , R.M. 1969. The Hepaticae and Anthocerotae of North America, e a s t of the hundredth m e r i d i a n . V o l . I I . Columbia Univ. P r e s s , N.Y. & London. 1062 pp. Sneddon, J . I . 1969. The genesis of some a l p i n e s o i l s i n B r i t i s h Columbia. M.Sc. T h e s i s , Dept. o f S o i l S c i e n c e , Univ. of B.C. 131 pp. Spomer, G.G. 1964. P h y s i o l o g i c a l ecology s t u d i e s of a l p i n e cushion p l a n t s . P h y s i o l . Plantarum 17: 717-724. Spomer, G.G. and F.B. S a l i s b u r y . 1968. E c o - p h y s i o l o g y of Geum turbinatum and i m p l i c a t i o n s c o n c e r n i n g a l p i n e e n v i r -onments. Bot. Gaz. 129: 33-49. Sukachev, V.N. ( e d i t . ) 1965. S t u d i e s on the f l o r a and vegetat i o n of high-mountain a r e a s . Problems of Botany, V o l . 5 . T r a n s . & E d i t , by I . Zuckerman and E. Rabinowitch. I s r a e l Program f o r S c i e n t i f i c T r a n s l a t i o n s , Jerusalem. 293 PP. S z a f e r , W., B. Pawlowski and S. K u l c z y n s k i . 1923. Die p f l a n z e n a s s o z i a t l o n e n des T a t r a g e b i r g e s . I . B u l l . I n t . Acad. Polon S c i . L e t t r e s . Krakow. T a n s l e y , A.G. 194-9. The B r i t i s h I s l a n d s and t h e i r v e g e t a t i o n . Cambridge Univ. P r e s s , Cambridge. T a y l o r , T.M.C. 1966. V a s c u l a r f l o r a of B r i t i s h Columbia, p r e l i m i n a r y c h e c k l i s t . Dept. of Botany, Univ. of B.C. 31 PP. T r a n q u i l l i n i , W. 1963. Climate and water r e l a t i o n s of p l a n t s i n the su b - a l p i n e r e g i o n . In_: The Water R e l a t i o n s o f P l a n t s . B r i t . E c o l . Soc. Symp. 3: 153-167. T r a n q u i l l i n i , W. 1964. The p h y s i o l o g y o f p l a n t s a t h i g h a l t i t u d e s . Ann. Rev. P l . P h y s i o l . 15: 345-362. U n i t e d S t a t e s Department of A g r i c u l t u r e (U.S.D.A.). i 9 6 0 . S o i l c l a s s i f i c a t i o n , a comprehensive system - the seventh approx i m a t i o n . 265 pp. van Ryswyk, A.L. 1969. F o r e s t and a l p i n e s o i l s of s o u t h c e n t r a l B r i t i s h Columbia. Ph.D. T h e s i s , Dept. o f Agronomy, Wash. Sta t e Univ., Pullman, Wash. D i s s . A b s t r . 30: 2993-B. Wardle, P. 1965. A comparison of a l p i n e t i m b e r l i n e s i n New Zealand and North America. New Z e a l . J o u r . Bot. 3 : 113-135. Watt, A.S. and E.W. Jones. 1948. The ecology o f the Cairngorms I. The environment and the a l t i t u d i n a l z o n a t i o n o f the v e g e t a t i o n . J . E c o l . 36: 283-304. Wilde, S.A. and G.K. V o i g t . 1955. A n a l y s i s of s o i l s and p l a n t s f o r f o r e s t e r s and h o r t i c u l t u r i s t s . J.W. Edwards, P u b l . Inc Ann Arbor, Mich. 117 PP. A p p e n d i x 1. C h e c k l i s t o f V a s c u l a r P l a n t s , B r y o p h y t e s a n d L i c h e n 195 The c h e c k l i s t of p l a n t s i s arranged a l p h a b e t i c a l l y . The nomenclature o f the v a s c u l a r p l a n t s i s a c c o r d i n g t o T a y l o r ( 1966) , H i t c h c o c k e t a l . (1955-1969), Hulten (1968) and Moss ( 1959) . The nomenclature of the bryophytes f o l l o w s S c h o f i e l d (1968a, 1968b), Crum e t a l . ( 1965) , Schuster (1969) and Nyholm (1958) . The nomenclature of the l i c h e n s i s a f t e r Otto and A h t i (1967) , Hale and Culberson (1966) and B i r d (1966) . Voucher specimens of a l l p l a n t s are d e p o s i t e d i n the herbarium o f the Department of Botany, U n i v e r s i t y of B r i t i s h Columbia. V a s c u l a r P l a n t s Abies l a s i o c a r p a (Hook.) Nutt. A g r o s t i s t h u r b e r i a n a H i t c h c . A g r o s t i s v a r i a b i l i s Rydb. Anemone o c c i d e n t a l i s S. Wats. An t e n n a r i a f r i e s i a n a ( T rautv.) Ekman Ant e n n a r i a l a n a t a (Hook.) Greene A n t e n n a r i a u m b r i n e l l a Rydb. A r e n a r i a c a p i l l a r i s P o i r . v a r . americana (Maguire) Davis A r e n a r i a o b t u s i l o b a (Rydb.) F e r n . A r n i c a l a t i f o l i a Bong. A r n i c a m o l l i s Hook. Calamagrostis canadensis (Michx.) Beauv. C a l t h a l e p t o s e p a l a DC. Carex b r e v i p e s B o o t t . Carex'brewer! B o o t t . Carex n a r d i n a F r i e s 196 Carex n i g r i c a n s C.A. Meyer Carex phaeocephala P i p e r Carex p y r e n a i c a Wahl. Carex p y r e n a i c a Wahl. x Carex n i g r i c a n s C.A. Meyer: i n t e r m e d i a t e Carex s p e c t a b i l i s Dewey C a s t i l l e j a e l m e r i F e r n a l d C a s t i l l e j a r h e x i f o l i a Rydb. C l a y t o n i a l a n c e o l a t a Pursh Deschampsia a t r o p u r p u r e a (Wahlenb.) Schule Dryas o c t o p e t a l a L. v a r . hookeriana (Juz.) B r e i t . E p i l o b i u m alpinum L. v a r . clavatum ( T r e l . ) C.L. HItchc. E r i g e r o n p e r e g r i n u s (Pursh) Greene ssp. ca l l i a n t h e m u s (Greene) Cronq. Pestuca b r a c h y p h y l l a S c h u l t e s Pestuca saximontana Rydb. G a u l t h e r i a humifusa (Grah.) Rydb. Gentiana g l a u c a P a l l . Habenaria d i l a t a t a (Pursh) Hook. Haplopappus l y a l l i i Gray Hieracium g r a c i l e Hook. Juncus drummbndii E. Meyer Juncus mertensianus Bong. Juncus p a r r y i Engelm. J u n i p e r u s communis L. v a r . montana A i t . Kalmia p o l i f o l i a Wang. v a r . m i c r o p h y l l a (Hook.) Rehd. Lupinus l a t i f o l i u s Agardh v a r . subalpinus ( P i p e r & Robins.) C P . Smith 197 L u z u l a a r c u a t a (Wahlenb.) Wahlenb. L u z u l a g l a b r a t a (Hoppe) Desv. Lu z u l a g l a b r a t a (Hoppe) Desv. x L u z u l a w a h l e n b e r g i i Rupr. : i n t e r m e d i a t e L u z u l a p a r v i f l o r a (Ehrh.) Desv. L u z u l a s p i c a t a (L.) DC. L u z u l a w a h l e n b e r g i i Rupr. Mite 11a breweri A. Gray P e d i c u l a r i s b r a c t e o s a Benth. Phleum alpinum L. Phyllodoce empetrlformis (Smith) Don P i c e a engelmannii Parry Pinus a l b i c a u l i s Engelm. Pinus c o n t o r t a Loudon v a r . l a t i f o l i a Engelm. Poa c u s i c k i i Vasey v a r . purpurascens (Beal) C;L. H i t c h c . P o t e n t i l l a d i v e r s i f o l i a Lehm. P o t e n t l l l a drummondii Lehm. Ranunculus e s c h s c h o l t z i i S c h l e c h t . S a l i x c a s c a d e n s i s Cook. S a x i f r a g a b r o n c h i a l i s L. v a r . austromontana (Wieg.) G.N. Jones S a x i f r a g a f e r r u g i n e a Grah. Sedum lanceolatum T o r r . S e l a g i n e l l a densa Rydb. v a r . scopulorum (Maxon) Tryon Senecio t r i a n g u l a r i s Hook. S i b b a l d i a procumbens L. S i l e n e p a r r y ! (S. Wats.) C.L. H i t c h c . & Maguire S o l l d a g o m u l t i r a d i a t a A i t . 198 S t e l l a r i a l a e t a R i c h a r d s . T r i s e t u m spicatum (L.) R i c h t e r T r o l l i u s laxus S a l i s b . Vaccinium caespitosum Michx. Vaccinium scoparium L e i b . V a l e r i a n a s i t c h e n s i s Bong. Veratrum v i r i d e A i t . V e r o n i c a w o r m s k j o l d i i R. & S. Bryophytes A n t h e l i a j u r a t z k a n a (Limpr.) T r e v i s Aulacomnium p a l u s t r e (Hedw.) Schwaegr. B a r b i l o p h o z i a b a r b a t a (Schmid) Loeske B a r b i l o p h o z i a h a t c h e r i (Evans) Loeske B a r b i l o p h o z i a l y c o p o d i o i d e s ( W a l l r . ) Loeske Brachythecium asperrimum ( M i t t . ) S u l l . Brachythecium c o l l i n u m ( S c h l e i c h . ) B.S.G. Brachythecium curtum Lindb. Brachythecium s t a r k e i ( B r i d . ) B.S.G. Bryum bimum ( B r i d . ) Turn. Bryum c a p i l l a r e Hedw. Bryum muehlenbeckii B.S.G. Bryum pseudotriquetrum (Hedw.) Gaertn., Meyer & Scherb. Bryum sp. C e p h a l o z i e l l a r u b e l l a (Nees) Douln C e p h a l o z i e l l a subdentata Warnst. C e p h a l o z i e l l a sp. Ceratodon purpureus (Hedw.) B r i d . Desmatodon l a t i f o l i u s (Hedw.) B r i d . D I c r a n e l l a sp. Dicranum scoparium Hedw. sens. l a t . The specimens c l o s e l y resemble D. muehlenbeckii B.S.G., but are not i d e n t i c a l to i t . They are thus r e t a i n e d w i t h i n D. scoparium Hedw. i n the broad sense. Drepanocladus aduncus (Hedw.) Warnst. Drepanocladus exannulatus (B.S.G.) Warnst. Drepanocladus uncinatus (Hedw.) Warnst. Grimmia a l p e s t r i s (Web. & Mohr.) Nees, Hornsch. & Sturm Hypnum revolutum ( M i t t . ) Lindb. K i a e r i a b l y t t i i (Schlmp.) B r o t h . Lescuraea b a i l e y i (Best & Grout) Lawt. Lescuraea i n c u r v a t a (Hedw.) Lawt. Lescuraea r a d i c o s a ( M i t t . ) Monk. Lophozia a l p e s t r i s ( S c h l e i c h . ) Evans . t i . Lophozia ? kunzeana (Huben.) Evans Lophozia obtusa (Lindb.) Evans Lophozia ? v e n t r i c o s a ( D i c k s . ) Dumort. Mnium b l y t t i i B.S.G. O r t h o c a u l i s f l o e r k i i (Web. & Mohr.) Buch Paraleucobryum enerve (Thed.) Loeske P h i l o n o t i s americana Dism. P o h l i a drummondii (C. Mull.) Andr. P o h l i a e l o n g a t a Hedw. P o h l i a g r a c i l i s (B.S.G.) Lindb. P o h l i a nutans (Hedw.) Lindb. 200 P o h l i a w a h l e n b e r g i i (Web. & Mohr.) Andr. P o l y t r i c h a d e l p h u s l y a l l i i M i t t . P o l y t r i c h u m formosum Hedw. Pol y t r i c h u m juniperinum Hedw. Po l y t r i c h u m norvegicum Hedw. Po l y t r i c h u m p i l i f e r u m Hedw. Rhacomitrium canescens (Hedw.) B r i d . Rhacomitrium sudeticum (Punck) B.S.G. Scapania s u b a l p i n a (Nees) Dumort. Scapania undulata (L.) Dumort. Sphagnum nemoreum Scop. ? T e t r a p l o d o n mnioldes (Hedw.) B.S.G. T o r t u l a n o r v e g i c a (Web.) Wahlenb. T o r t u l a r u r a l i s (Hedw.) Gaertn., Meyer & Scherb. Lichens A l e c t o r l a americana Mot. A l e c t o r i a minuscula N y l . C e t r a r i a e r i c e t o r u m Opiz C e t r a r i a i s l a n d i c a (L.) Ach. C e t r a r i a p i n a s t r i (Scop.) S. Gray C e t r a r i a s u b a l p i n a Imsh. C l a d o n i a c a r n e o l a ( F r . ) P r . . 1 1 . C l a d o n i a chlorophaea ( F l o r k e ) Spreng. C l a d o n i a c o c c i f e r a (L.) W i l l d . C l a d o n i a deformis (L.) Hoffm. C l a d o n i a ecmocyna (Ach.) N y l . C l a d o n i a macrophyllodes N y l . 201 C l a d o n i a p l e u r o t a ( P l b r k e ) Schaer. C l a d o n i a p y x i d a t a (L.) Hoffm. C l a d o n i a sp. C o r n i c u l a r i a a c u l e a t a (Schreb.) Aeh. Icmadadophlla e r i c e t o r u m (L.) Z a h l b r . L e c i d e a g r a n u l o s a (Hoffm.) Ach. L e p r a r i a n e g l e c t a (Nyl.) L e t t . Omphalodiscus v i r g i n i s (Schaer.) S c h o l . P a r m e l i o p s i s ambigua (Wulf.) N y l . P a r m e l i o p s i s hyperopta (Ach.) Arn. P e l t i g e r a canina (L.) W i l l d . P e l t i g e r a canina (L.) W i l l d . v a r . r u f e s c e n s (Weiss) Mudd P e l t i g e r a l e p i d o p h o r a (Nyl.) V a i n . P e l t i g e r a malacea (Ach.) Funck Psoroma hypnorum (Vahl.) S. Gray Rhizocarpon geographicum (L.) DC. S o l o r i n a crocea (L.) Ach. S t e r e o c a u l o n alpinum Laur. U m b i l i c a r i a hyperborea (Ach.) Ach. A p p e n d i x 2 . S o i l T y p e s o f B i g W h i t e M o u n t a i n c l a s s i f i e d a c c o r d i n g t o t h e A m e r i c a n , German a n d W o r l d FAO/UNESCO C l a s s i f i c a t i o n s Canadian American German World FAO/UNESCO Order: Brum sol Ic Order: Inceptisol Suborder: Ochrept Class: Braunerden Order: Cambisol Great Group: Dystric Brunisol Great Group: Dystrochrept Type: Braunerde Soil Unit: Dystric Cambisol Subgroup: Alpine Dystric Brunisol Order: Regosol ic Order: Entisol Class: A-C-BBden Order: Rhegosol Great Group: Regosol Suborder: Orthent Subgroup: Orthic Regosol Great Group: Udorthent or Cryorthent Type: Ranker Order: Gleysolic Class: Gleye Order: Gleysol Great Group: Humic Gleysol Order: Inceptisol Suborder: Aquept Soil Unit: Humic Gleysol Subgroup: Orthic Humic Gleysol Great Group: Humaquept Type: Anmoorgley : Rego Humic Gleysol : Haplaquept : \" : Fera Humic Gleysol : Humaquept Order: Entisol : \" Great Group: Gleysol Suborder: Aquent Soil Unit: Haplic Gleysol Subgroup: Rego Gleysol Great Group: Hapl aquent Type: Gley o Canadian^ Order: Podzolic Great Group: Humic Podzol Subgroup: Orthic Humic Podzol Great Group: Ferro-Humic Podzol Subgroup: Mini Ferro-Humic Podzol Subgroup: Sombric Ferro-Humic Podzol Great Group: Humo-Ferric Podzol Subgroup: Sombric Humo-Ferric Podzol American Order: Spodosol Suborder: Humod Great Group: Haplohumod Suborder: Orthod Great Group: Haplorthod Suborder: Orthod German^ Class: Podsolc Type: Podsol Type: Podsol Type: Podsol World FAQ/UNESCO^ Order: Podzol Soil Unit: Humic Podzol Soil Unit: Humo-Ferric Podzol Soil Unit: Humo-Ferric Podzol 1 The Canadian system follows Canada Soil Survey Committee (1970). 2 The American system follows U.S.D.A. (1960). . 3 The German system follows Mtickenhausen (1965), after Kubiena (1953). 4 The World FA0/UNESC0 system is taken from Canada Soil Survey Committee (1970). O 205 Appendix 3. Iron and Aluminum Determinations Community P l o t No. An t e n n a r i a - S i b b a l d i a A s s o c i a t i o n A n tennaria - S i b b a l d i a -S a l i x V a r i a t i o n 10 13 Carex brewer! V a r i a t i o n 45 Juncus p a r r y i A s s o c i a t i o n 8 12 30 40 68 Antennaria l a n a t a A s s o c i a t i o n 3 4 Horizon % Fe % A l %> F e * A l AFe+Al O.M./Fe Bm 0.49 0 .83 1.32 0.31 13.02 C 0.26 0.75 1.01 \u00E2\u0080\u0094 7.27 Bf 1.13 0.95 2.08 1.01 4.27 Cgj 0.69 0.38 1.07 \u00E2\u0080\u0094 1.32 Bf 0.74 0.98 1.72 0.89 4.78 Cg 0.32 0.51 0 .83 \u00E2\u0080\u0094 \u00E2\u0080\u0094 2.41 Bhf 1.06 0.98 2.04 1.22 13.21 C 0 . 4 3 0.39 0.82 \u00E2\u0080\u0094 11.49 B f h 0.87 1.46 2.33 1.13 8.84 Cg 0.39 o . 8 l 1.20 \u00E2\u0080\u0094 7.36 Bm 0.84 0.98 1.82 0.57 11.60 C 0 . 6 3 0.62 1.25 \u00E2\u0080\u0094 8.92 Bhf 1.02 1.06 2.08 0 .83 15.93 Bm 0.63 1.32 1.95 0.70 16.43 C 0.41 0.84 1.25 \u00E2\u0080\u0094 17.29 B f h 0.64 1.38 2.02 0.79 10.83 C 0.51 0.72 1.23 \u00E2\u0080\u0094 \u00E2\u0080\u0094 7 . 4 l Bm 0.63 1.06 1.69 O .69 7.67 Cgj 0.41 0.59 1.00 \u00E2\u0080\u0094 5.29 Bfh 0.49 0.96 1.45 O .87 18.22 C 0.21 0.37 O .58 -- 10.33 Community P l o t No, Antennaria l a n a t a A s s o c i a t i o n (continued) 16 32 Phyllodoce - Antennaria A s s o c i a t i o n Phyllodoce - Antennaria V a r i a t i o n 5 6 19 27 31 37 57 66 Horizon % Fe % A l % Fe+Al AFe+Al O.M./Fe Bm 0.49 0.68 1.17 0.35 23.24 C 0.43 0.39 0.82 \u00E2\u0080\u0094 5.16 Bhf 1.12 1.46 2.58 1.14 11.71 C l 0.61 0 . 8 3 1.44 6.54 Bf O .85 1.63 2.48 1.88 5 .65 Cg 0.21 0.39 0 .60 -- 10.48 Bm 0.53 0.71 1.24 O.25 14.02 C 0.49 0 .50 0.99 \u00E2\u0080\u0094 6.33 Bm 0 . 6 l 0 .92 1.53 \u00E2\u0080\u0094 10.21 Cg 0.84 1.33 2.17 - - 1.20 Bm 0.73 O .89 1.62 0.74 16.63 C 0.42 0.46 0.88 \u00E2\u0080\u0094 5.90 B f h 0.83 1.37 2.20 1.35 9 .29 C 0.26 0.59 0.85 \u00E2\u0080\u0094 9.35 Bf 1.32 1.28 2.60 1.39 3.17 C 0.48 0.73 1.21 \u00E2\u0080\u0094 18.77 Bm 0 . 6 l 0 .97 1.58 0.55 18.38 C 0.40 O .63 1.03 \u00E2\u0080\u0094 11.48 Bm 0.38 0.74 1.12 O.65 19.29 C 0.15 0.32 0.47 \u00E2\u0080\u0094 25.13 Community P l o t No, Phyllodoce - Antennaria V a r i a t i o n (continued) 72 76 Antennaria - Vaccinium V a r i a t i o n 7 20 23 29 41 Abies l a s i o c a r p a A s s o c i a t i o n 44 Abies - P i c e a - Vaccinium A s s o c i a t i o n 51 54 jo A l % Fe+Al AFe +A1 O.M./Fe Horizon % Fe Bhf 1.22 C 0.75 Bm 0.48 C 0 .31 Bm 0.68 C 0.49 Bm 0.76 C 0.53 Bm 0 .81 C 0.47 Bm 0.35 C 0 .20 Bm 0.37 Cg 0.41 Bhf 0.74 BC 0.28 1.63 2 .85 1.20 1.95 0.84 1.32 0.46 0.77 1.23 1.91 1.46 1.95 0.84 1.60 0.52 1.05 1.31 2 U 2 1.09 1.56 0.73 1.08 0.41 0 .61 1.06 1.43 0.73 1.14 0.93 I . 6 7 0.52 0 .80 O .90 10.59 6.51 0.55 18.27 5.45 17.78 12.22 0.55 17-42 9.96 O.56 11.17 5.19 0.47 18.00 IO .85 0.29 26.14 6.37 O .87 15.88 37.36 Bh 0 .32 C 0 .28 Bhf 1.26 C 0.74 0.48 0 . 8 0 0.37 O .65 1.37 2.63 1.06 1.80 0.15 41.56 23.57 O .83 11.21 6.04 Community P l o t No. H o r i z o n % Pe % A l \u00E2\u0080\u00A2 % F e + A l A F e + A l O.M . /F i A b i e s - P i c e a - V a c c i n i u m A s s o c i a t i o n ( c o n t i n u e d ) 61 B h f Cg 0.72 0.27 0.84 0.45 1.56 0.72 0.84 14.86 20.26 70 B h f C 0.58 0.32 1.05 0.47 1.63 0.79 0.84 18.28 20.25 A b i e s - V a l e r i a n a A s s o c i a t i o n 56 Bm C 0.47 0.53 1.02 0.74 1.49 1.27 0.22 . 27.19 21.64 62 Bm C 0.63 0.28 0.94 0.69 1.57 0.97 0 .60 17.86 16.54 74 Bm C 0.61 O . 5 1 0 .53 0.74 1.14 1.25 \u00E2\u0080\u0094 19.85 5.80 C a r e x s p e c t a b i l i s A s s o c i a t i o n 11 Bm C 0.64 0.73 0.59 0.48 1.23 1.21 0 . 0 2 20.19 5.47 14 B h f C 0.92 0.32 0.78 0 . 4 3 1.70 0.75 0.95 14.28 8.44 18 Bm C 0.57 0.31 0 . 8 3 0.47 1.40 0.78 0 . 6 2 9 .63 11.81 V a l e r i a n a - C a s t i l l e j a A s s o c i a t i o n V a l e r i a n a - C a s t i l l e j a V a r i a t i o n 34 B h f g 0.71 1.38 2.09 0.87 18.04 C 0.39 O .83 1.22 \u00E2\u0080\u0094 15.92 T r o l l i u s l a x u s V a r i a t i o n 24 B g 0.27 0 . 6 3 0 .90 0 . 0 3 39.70 Cg 0.16 0.71 0.87 I I . 6 9 Community P l o t No. Carex n i g r i c a n s A s s o c i a t i o n Carex - P o l y t r i c h a d e l p h u s V a r i a t i o n 1 2 15 35 71 77 P o l y t r i c h u m noryeglcum A s s o c i a t i o n 79 Horizon % Fe % A l % Fe+Al A P & * - A 1 O.M./Fe Bm 0 .55 0 . 8 9 1 .44 0.08 14.02 Cg 0 . 4 3 0 . 9 3 1 .36 -- 4.21 Bm 0 .71 1 .26 1 .97 0 . 2 3 14.10 Cgj 0.64 1.10 1 .74 -- 2 .61 Ahf 0.70 1.28 1 .98 0 .95 24 .54 Bhf 0 .8o 1.70 2.50 1.47 19.85 Bm 0.74 0 .99 1 .73 0.70 16.55 C 0 .39 0.64 1 .03 -- 19.23 Bhfg 0 . 8 6 1 .50 2.36 0.84 14.90 Cg 0 .54 0 . 9 8 1 .52 -- 7.87 Ah 0 . 4 3 0 . 8 6 1 .29 0.41 55.79 Cg 0 .57 0 .31 0 . 8 8 \u00E2\u0080\u0094 10 .53 Bml 0.74 1 .32 2.06 0 .49 10 .23 Bm2 0 . 8 3 0 .94 1 .77 0.20 3.37 C 0 .51 1 .06 1 .57 5.73 Bf 0 .74 1 .32 2 . 0 6 1.10 6.07 Cg 0 .32 0.64 0 .96 -- 5.47 A p p e n d i x 4. C l a s s L i m i t s f o r E n v i r o n m e n t a l V a r i a b l e s 212 The l i m i t s chosen are based on the range of values present f o r each v a r i a b l e . Var iab le A l t i tude Slope Humus Mineral S o i l Rock S o i l Depth Sand Limits H 75OO-76OO f t M 7400-7500 f t L<7400 f t . H 25 -40$ M 10' -25$ L 0--10$ H 66 -100% M 33 -66% L 0--33% H 12' -18$ M 6 -12% L 0--6% H 66 -100% M 33 -66% L 0--33% H 22--26 i n . M 17' -21 i n . L 12--16 i n . H 68--80$ M 54. -67$ L 40 \u00E2\u0080\u00A2 -53$ Variable S i l t Clay PH Ca (me/lOOg.) Mg (me/lOOg.) Na (me/lOOg.) K (me/lOOg.) Limits H 39-^9$ M 28-38$ L 17-27$ H 8-11$ M 4-7$ L 0-3$ H>5.5 M 5 . 0 - 5 . 5 L 4 . 5 - 5 . 0 H>0.8 M 0 . 5 - 0 . 8 L 0 . 2 - 0 . 5 H>0.18 M 0 . 1 0 - 0 . 1 8 L 0 . 0 2 - 0 . 1 0 H>0.18 M 0 . 1 0 - 0 . 1 8 L 0 . 0 2 - 0 . 1 0 H>0.25 M 0 . 14 -0 .25 L 0 . 0 3 - 0 . 1 4 Variab le Limits CEC (me/lOOg.) O.M. N P (ppm) H>40 M 25-40 L<25 H 15-20$ M 9-14$ L 3-8$ H>0.5$ M 0 .4 -0 .5$ L<0.4$ H 12-14 M 8-11 A p p e n d i x 5. S t a t i s t i c a l A n a l y s i s 215 T a b l e 8 l P Va lues f o r E n v i r o n m e n t a l V a r i a b l e s 1 V a r i a b l e F Va lue ** A l t i t u d e 2 . 4 2 Exposure 2 . 6 3 * * Slope 4 . 2 6 * * Wind ** 1 5 . 70* * R e l i e f 0 . 8 0 E r o s i o n 8 . 6 1 * * Hygro tope 4 4 . 7 8 * * Humus 2 0 . 4 4 * * M i n e r a l s o i l 1 .99* Rock 2 0 . 1 1 ^** Depth o f s o i l 2.58 Sand . ** 3 . 2 4 #* S i l t 2.59 Clay 4.53** PH 5.94** Ca 1.84* Mg ** 5.33 Na 2 . 4 1 * * K ** 3.99 CEC 3.63 OM 3 . 8 6 * * N 2 . 9 8 P 1 .84* 1 Community deg rees o f f reedom = 18 ; E r r o r deg rees o f f reedom b3 * S i g n i f i c a n t a t 5$ l e v e l , * * S i g n i f i c a n t a t 1$ l e v e l 3 5 \u00E2\u0080\u009E 5 3 < 3 - - 5 . . . . . . ? . h i j | \u00C2\u00AB. ? 2 3 9 5 .ii . 5 1 3 \u00C2\u00AB. \u00C2\u00A7\u00C2\u00A75 3\" < 3 H 5 5 ? , rr \u00C2\u00AB, \u00C2\u00BB \u00C2\u00A7 1 5 r- \u00E2\u0080\u00A2 s *\u00C2\u00A7, 3 5 s ~ 1 2 *!>=-- \u00E2\u0080\u009E -- \u00E2\u0080\u009E- 2 s *- r- * j . , 3\" 5 =-. ! ** Z- . 2 2 2 2! 2& S =-i & J = J \u00C2\u00A7 3 - 2 s 3-3-3 3 2. s-= 2 3?-3 3 . I , = = l-l- 1; 3 33 \u00E2\u0080\u00A2 ' 2 1 ? 5 . I. \u00E2\u0080\u00A2 2 .1 I . - c * ^ S ! J ! h > 2 2 5 ! S i i n : i Mil \u00C2\u00AB J \u00C2\u00AB . I ll IIII 11 i l l ! Table 83 Key to Environmental V a r i a b l e s V a r i a b l e Assigned Number A l t i t u d e 1 Exposure 2 Slope 3 Wind 4 E r o s i o n 5 Hygrotope 6 Humus 7 M i n e r a l s o i l 8 Rock 9 Depth of s o i l 10 Sand 11 S i l t 12 Clay 13 pH 14 Ca 15 Mg 16 Na 17 K 18 CEC 19 OM 20 N 21 P 22 "@en . "Thesis/Dissertation"@en . "10.14288/1.0101398"@en . "eng"@en . "Botany"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Ecology of the alpine and timberline vegetation of Big White Mountain, British Columbia"@en . "Text"@en . "http://hdl.handle.net/2429/33162"@en .