"Arts, Faculty of"@en . "Geography, Department of"@en . "DSpace"@en . "UBCV"@en . "Forbes, Donald Lawrence"@en . "2010-03-26T23:39:53Z"@en . "1981"@en . "Doctor of Philosophy - PhD"@en . "University of British Columbia"@en . "Inputs, transfer processes, and storage characteristics of water and sediment have been investigated in a 40-km\u00C2\u00B2 estuarine system on the central Yukon coast. The setting is transgressive, microtidal, and high-latitude (69\u00C2\u00B0N). The Babbage Estuary system can be subdivided into fluvial, tidal-distributary, delta-plain, intertidal, lagoon,\nmarginal-supratidal, and barrier subsystems, each associated with one or more distinctive depositional environments and characteristic lithofacies assemblages. The structure of the system has been examined in terms of links between subsystems and overall system response to input perturbations. Although the propagation of tide and surge within the estuary may be treated as a quasi-linear stochastic process, transfers of fluvial water and sediment through the system are highly non-linear. Furthermore, the parameters of the system change dramatically on an annual cycle.\nInputs and associated system responses are dominated in the short run by seasonal- and synoptic-scale variance, the former reflecting major seasonal adjustments in the phase distribution, circulation process, iand input regime of the estuary. The annual salinity cycle, with a range of at least 60 ppt, exhibits a short reaction and long relaxation response to major snowmelt runoff inputs in May or June, when salt water\n\nis flushed completely out of the estuary. Wind-generated waves are effectively absent from the system during 8-9 months of the year, but play a major role during the open-water season. Although direct transport of sediment by ice is relatively unimportant, ice effects are pervasive; they include, in addition to restriction of winter runoff and surface wave generation, creation of hypersaline conditions, control of the sedimentologically important flood events on deltaic supratidal flats, enhanced rates of coastal recession due to thermal degradation of ground ice, and production of distinctive thermokarst morphology on supratidal surfaces. Water level, storage volume, salinity, and suspended sediment series during the open-water season in the lagoon are dominated by synoptic-scale wind effects. In the delta, the major synoptic-scale anomalies of sediment concentration are related to storm runoff. Fluvial clastic sediment inputs to the estuary exceed 10\u00E2\u0081\u00B8 kg A\u00E2\u0081\u00BB\u00C2\u00B9 almost an order of magnitude greater than the estimated littoral transport input. More than 97% of the fluvial input may occur in June; of this, approximately half may be exported directly from the system.\nAt long time scales, the estuarine system has been dominated by rising sea level and coastal recession; Holocene climatic fluctuations may also have been important. A transgressive sequence has developed, including various distinctive features, notably the absence or limited development of aeolian, backbarrier-margin, tidal-delta, and intertidal marsh facies, a largely afaunal intertidal\n\ncomponent, and deltaic deposits with poorly developed levees and abundant lake basins. The basal fluvial component includes a sinuous gravel channel assemblage of a hitherto poorly documented type. The Babbage Estuary barrier sequence is primarily transgressive, but incorporates localized elements of progradational and inlet-migration models. Examples of major transgressive, progradational, and inlet-fill barrier sequences occur in close proximity on the central Yukon coast."@en . "https://circle.library.ubc.ca/rest/handle/2429/22782?expand=metadata"@en . "B A B B A G E R I V E R D E L T A A N D L A G O O N : H Y D R O L O G Y A N D . S E D I M E N T O L O G Y O F A N A R C T I C E S T U A R I N E S Y S T E M b y D O N A L D L A W R E N C E F O R B E S M . A . , U n i v e r s i t y o f T o r o n t o , 1 9 7 3 T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L M E N T O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F D O C T O R O F P H I L O S O P H Y i n T H E F A C U L T Y O F G R A D U A T E S T U D I E S ( D e p a r t m e n t o f G e o g r a p h y ) We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A A p r i l 1 9 8 1 \u00C2\u00A9 D o n a l d L a w r e n c e F o r b e s , 1 9 8 1 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department n f Geography The U n i v e r s i t y o f B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 .10 September .1981 i i ABSTRACT I n p u t s , t r a n s f e r p r o c e s s e s , and s t o r a g e c h a r a c t e r i s t i c s of water and sediment have been i n v e s t i g a t e d i n a 40-km 2 e s t u a r i n e system on the c e n t r a l Yukon c o a s t . The s e t t i n g i s t r a n s g r e s s i v e , m i c r o t i d a l , and h i g h - l a t i t u d e (69\u00C2\u00B0N). The Babbage E s t u a r y system can be s u b d i v i d e d i n t o f l u v i a l , t i d a l - d i s t r i b u t a r y , d e l t a - p l a i n , i n t e r t i d a l , l a g o o n , m a r g i n a l - s u p r a t i d a l , and b a r r i e r subsystems, each a s s o c i a t e d w i t h one or more d i s t i n c t i v e d e p o s i t i o n a l environments and c h a r a c t e r i s t i c l i t h o f a c i e s assemblages. The s t r u c t u r e of the system has been examined i n terms of l i n k s between subsystems and o v e r a l l system response t o i n p u t p e r t u r b a t i o n s . A l t h o u g h the p r o p a g a t i o n of t i d e and surge w i t h i n the e s t u a r y may be t r e a t e d as a q u a s i - l i n e a r s t o c h a s t i c p r o c e s s , t r a n s f e r s of f l u v i a l water and sediment t h r o u g h the system a r e h i g h l y n o n - l i n e a r . F u r t h e r m o r e , the parameters of the system change d r a m a t i c a l l y on an annua l c y c l e . I n p u t s and a s s o c i a t e d system responses a r e dominated i n the s h o r t run by s e a s o n a l - and s y n o p t i c - s c a l e v a r i a n c e , the former r e f l e c t i n g major s e a s o n a l a d j u s t m e n t s i n the phase d i s t r i b u t i o n , c i r c u l a t i o n p r o c e s s , i a n d i n p u t regime of the e s t u a r y . The a n n u a l s a l i n i t y c y c l e , w i t h a range of a t l e a s t 60 p p t , e x h i b i t s a s h o r t r e a c t i o n and l o n g r e l a x a t i o n response t o major snowmelt r u n o f f i n p u t s i n May or June, when s a l t water i s f l u s h e d c o m p l e t e l y out of the e s t u a r y . Wind-generated waves ar e e f f e c t i v e l y absent from the system d u r i n g 8-9 months of the y e a r , but p l a y a major r o l e d u r i n g the open-water season. A l t h o u g h d i r e c t t r a n s p o r t of sediment by i c e i s r e l a t i v e l y u n i m p o r t a n t , i c e e f f e c t s a r e p e r v a s i v e ; they i n c l u d e , i n a d d i t i o n t o r e s t r i c t i o n of w i n t e r r u n o f f and s u r f a c e wave g e n e r a t i o n , c r e a t i o n of h y p e r s a l i n e c o n d i t i o n s , c o n t r o l of the s e d i m e n t o l o g i c a l l y i m p o r t a n t f l o o d e v e n t s on d e l t a i c s u p r a t i d a l f l a t s , enhanced r a t e s of c o a s t a l r e c e s s i o n due t o t h e r m a l d e g r a d a t i o n of ground i c e , and p r o d u c t i o n of d i s t i n c t i v e t h e r m o k a r s t morphology on s u p r a t i d a l s u r f a c e s . Water l e v e l , s t o r a g e volume, s a l i n i t y , and suspended sediment s e r i e s d u r i n g the open-water season i n the lagoon a r e dominated by s y n o p t i c - s c a l e wind e f f e c t s . In the d e l t a , the major s y n o p t i c - s c a l e a n o m a l i e s of sediment c o n c e n t r a t i o n a r e r e l a t e d t o storm r u n o f f . F l u v i a l c l a s t i c sediment i n p u t s t o the e s t u a r y exceed 10\" kg a - 1 , almost an o r d e r of magnitude g r e a t e r than the e s t i m a t e d l i t t o r a l t r a n s p o r t i n p u t . More than 97% of the f l u v i a l i n p u t may occur i n June; of t h i s , a p p r o x i m a t e l y h a l f may be e x p o r t e d d i r e c t l y from the system. At l o n g time s c a l e s , the e s t u a r i n e system has been dominated by r i s i n g sea l e v e l and c o a s t a l r e c e s s i o n ; Holocene c l i m a t i c f l u c t u a t i o n s may a l s o have been i m p o r t a n t . A t r a n s g r e s s i v e sequence has d e v e l o p e d , i n c l u d i n g v a r i o u s d i s t i n c t i v e f e a t u r e s , n o t a b l y the absence or l i m i t e d development of a e o l i a n , b a c k b a r r i e r - m a r g i n , t i d a l - d e l t a , ' a n d i n t e r t i d a l marsh f a c i e s , a l a r g e l y a f a u n a l i n t e r t i d a l i v component, and d e l t a i c d e p o s i t s w i t h p o o r l y d e v e l o p e d l e v e e s and abundant l a k e b a s i n s . The b a s a l f l u v i a l component i n c l u d e s a s i n u o u s g r a v e l c h a n n e l assemblage of a h i t h e r t o p o o r l y documented t y p e . The Babbage E s t u a r y b a r r i e r sequence i s p r i m a r i l y t r a n s g r e s s i v e , but i n c o r p o r a t e s l o c a l i z e d elements of p r o g r a d a t i o n a l and i n l e t - m i g r a t i o n models. Examples of major t r a n s g r e s s i v e , p r o g r a d a t i o n a l , and i n l e t - f i l l b a r r i e r sequences o c c u r i n c l o s e p r o x i m i t y on the c e n t r a l Yukon c o a s t . V TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES v i i i LIST OF FIGURES x i i ACKNOWLEDGEMENTS xxx i i i INTRODUCTION 1 1.1 Preamble 1 1.1.1 D e f i n i t i o n of study 1 1.2 C o n c e p t u a l approach 4 1.2.1 G e o p h y s i c a l systems 4 1.2.2 Environments and f a c i e s 9 1.2.3 E s t u a r i n e systems 11 1.3 The p r e s e n t study 17 1.3.1 Babbage e s t u a r i n e system 17 REGIONAL CONTEXT: NORTHERN YUKON AND BEAUFORT SEA 26 2.1 Geography and palaeogeography 26 2.1.1 Contemporary geography 26 2.1.2 L a t e - Q u a t e r n a r y palaeogeography 38 2.2 Atmospheric environment 45 2.2.1 Contemporary c l i m a t e 45 2.2.2 Low-frequency v a r i a b i l i t y of c l i m a t e 56 2.3 Oceanographic environment 62 2.3.1 Water and c i r c u l a t i o n i n Mackenzie Bay 62 2.3.2 I c e i n the s o u t h e r n B e a u f o r t Sea 69 2.3.3 T i d e s and storm surges 76 2.3.4 Wave c l i m a t e 84 v i HYDROLOGICAL SUBSYSTEM 94 3.1 F r e s h w a t e r i n p u t s t o the e s t u a r y 94 3.1.1 Runoff and p r e c i p i t a t i o n i n p u t s 94 3.2 Marine i n p u t s t o the e s t u a r y 118 3.2.1 Water l e v e l s a t the marine boundary 118 3.3 System response 144 3.3.1 T i d a l p r o p a g a t i o n w i t h i n the e s t u a r y 144 3.3.2 S u p r a t i d a l f l o o d i n g 155 3.3.3 I c e i n the e s t u a r y 170 3.3.4 P r o p e r t i e s of water i n the e s t u a r y 185 3.3.5 The n o n - t i d a l c i r c u l a t i o n 207 3.3.6 Water budget and s t r u c t u r e of the system 230 SEDIMENTOLOGICAL SUBSYSTEM 243 4.1 F l u v i a l sediment i n p u t s t o the e s t u a r y 243 4.1.1 Sediment s o u r c e s and m a t e r i a l s 243 4.1.2 F l u v i a l t r a n s p o r t p r o c e s s e s 252 4.1.3 T o t a l f l u v i a l sediment i n p u t 289 4.2 M a r i n e sediment i n p u t s t o t h e e s t u a r y 296 4.2.1 Sediment s o u r c e s and m a t e r i a l s 296 4.2.2 L i t t o r a l t r a n s p o r t p r o c e s s e s 303 4.2.3 T o t a l marine sediment i n p u t 314 4.3 System response 317 4.3.1 Sediment t r a n s f e r s w i t h i n the e s t u a r y 317 4.3.2 S e d i m e n t a t i o n and e r o s i o n 347 4.3.3 Sediment budget and s t r u c t u r e of the system 367 4.4 Sediment s t o r a g e component 376 4.4.1 G e n e r a l c h a r a c t e r i s t i c s 376 4.4.2 F l u v i a l f a c i e s 392 v i i 4.4.3 D e l t a p l a i n f a c i e s 398 4.4.4 D i s t r i b u t a r y and i n t e r t i d a l f a c i e s 414 4.4.5 Lagoon, b a r r i e r , and m a r g i n a l f a c i e s 422 4.4.6 The t r a n s g r e s s i v e sequence 435 CONCLUSIONS * 447 REFERENCES 457 APPENDICES 495 OF TABLES S c a l e s of v a r i a n c e i n A r c t i c e s t u a r i n e systems Morphometry of lagoons and b a r r i e r s of the Yukon c o a s t M o n t h l y p r e c i p i t a t i o n d a t a , Kay P o i n t S e l e c t e d o b s e r v a t i o n s of s u r f a c e s a l i n i t y i n embayments of the c e n t r a l Yukon c o a s t and i n a d j a c e n t waters of Mackenzie Bay P o t e n t i a l f e t c h w i t h \u00C2\u00A33/10 i c e , Kay P o i n t , 1975 P o t e n t i a l f e t c h w i t h <3/10 i c e , Kay P o i n t , 1976 P r i n c i p a l t i d a l c o n s t i t u e n t s a t T u k t o y a k t u k and Kay P o i n t Mean sea l e v e l and summer anomaly, T u k t o y a k t u k , 1962-1975 Summary s t a t i s t i c s f o r catchments d r a i n i n g t o Babbage E s t u a r y E s t i m a t e s of annu a l peak d i s c h a r g e , Babbage R i v e r at BI and Deep Creek a t D l , 1974-1977 Major t i d a l c o n s t i t u e n t s a t Kay P o i n t by month 121 Summary of d i s s o l v e d c o n s t i t u e n t s i n water samples from the Babbage E s t u a r y system and P h i l l i p s Bay 189 S t r a t i f i c a t i o n and c i r c u l a t i o n parameters f o r the Babbage E s t u a r y a t s t a t i o n 12 d u r i n g s u c c e s s i v e ten-day i n t e r v a l s i n the summer of 1976. 210 Product-moment c o r r e l a t i o n c o e f f i c i e n t s f o r mean d e n s i t y , t r a n s v e r s e s t r a t i f i c a t i o n , and v e r t i c a l s t r a t i f i c a t i o n i n Babbage E s t u a r y e n t r a n c e ( s t a t i o n s 5-7) 223 Comparison of water t r a n s f e r e s t i m a t e s f o r Babbage E s t u a r y e n t r a n c e s e c t i o n (Ml) as o b t a i n e d from c u r r e n t meter d a t a and by e q u a t i o n 3.3.6-1 233 Water budget f o r Babbage E s t u a r y , January 1976 and June-August 1976 240 Summary of d i s s o l v e d c o n s t i t u e n t s i n water samples from the Babbage R i v e r and Deep Creek d r a i n a g e ba s i n s 248 P e t r o g r a p h i c a n a l y s e s of sand and g r a v e l from Babbage R i v e r c h a n n e l between Tulugaq (Crow) R i v e r c o n f l u e n c e and s e c t i o n B l 250 Sediment t r a n s p o r t summary, Babbage R i v e r below Crow R i v e r 290 S e d i m e n t t r a n s p o r t s u m m a r y , D e e p C r e e k a b o v e B a b b a g e d i s t r i b u t a r y 2 9 1 D i s t r i b u t i o n o f s e d i m e n t t r a n s p o r t b y t y p e , B a b b a g e R i v e r a n d D e e p C r e e k 2 9 4 S u m m a r y o f n e t w a v e - g e n e r a t e d l o n g s h o r e s e d i m e n t t r a n s p o r t f o r p r o x i m a l a n d d i s t a l K a y P o i n t s p i t a n d N i a k o l i k f o r e s h o r e , 1 9 7 5 - 1 9 7 6 3 1 5 S t a t i s t i c s o f S e c c h i e x t i n c t i o n d e p t h f o r s t a t i o n s i n t h e B a b b a g e E s t u a r y , 1 9 7 6 3 4 1 F l u s h i n g t i m e s f o r t h e B a b b a g e E s t u a r y 3 4 3 T h i c k n e s s o f f r e s h l y d e p o s i t e d s e d i m e n t a t s i t e s o n v e g e t a t e d s u p r a t i d a l f l a t s , B a b b a g e D e l t a , 8 J u n e 1 9 7 6 3 4 9 E r o s i o n a n d s e d i m e n t a t i o n o n i n t e r t i d a l s u r f a c e s o f t h e B a b b a g e D e l t a , s u m m e r 1 9 7 6 3 5 5 S e d i m e n t a c c u m u l a t i o n r a t e s i n t r a p s d e p l o y e d i n B a b b a g e L a g o o n a n d i n l a k e s o f t h e B a b b a g e D e l t a , 1 9 7 6 3 5 8 A n a l y s i s o f v a r i a n c e t o d e t e r m i n e s i g n i f i c a n c e o f d i f f e r e n c e s i n s e d i m e n t t r a p d a t a b e t w e e n s i t e s , B a b b a g e E s t u a r y , 1 9 7 6 3 5 9 A p p r o x i m a t e s e d i m e n t b u d g e t f o r B a b b a g e E s t u a r y s y s t e m , J a n u a r y , J u n e , J u l y , a n d A u g u s t , 1 9 7 6 3 6 9 XI 30 Lit h o f a c i e s types of lower Babbage River and Babbage Estuary 379 31 Benthic invertebrates in Ekman dredge samples from the Babbage Estuary near station 7a, 24 July 1975 425 32 A: Delaware s u r f i c i a l transgressive sequence (adapted from Kraft, 1971); B: Babbage Lagoon s u r f i c i a l transgressive sequence 437 33 Babbage Delta s u r f i c i a l transgressive sequence 444 x i i L I S T OF FIGURES Map o f t h e Yukon c o a s t , s h o w i n g l o c a t i o n o f B abbage E s t u a r y s y s t e m a n d o t h e r t o p o g r a p h i c f e a t u r e s , i n c l u d i n g m a j o r l a g o o n s and e s t u a r i e s 2 2 Map o f t h e Babbage E s t u a r y s y s t e m , s h o w i n g m a j o r s a m p l i n g s t a t i o n s , l o c a t i o n s o f t i d e a n d s t a g e r e c o r d e r s , h y d r o m e t r i c s e c t i o n s , and l o c a t i o n o f m e t e o r o l o g i c a l s t a t i o n a t Kay P o i n t 3 B a t h y m e t r y o f Babbage E s t u a r y i n 1975; v i e w a c r o s s m a i n e n t r a n c e s e c t i o n t o w a r d Kay P o i n t s p i t , w i t h B abbage L a g o o n t o r i g h t , Kay P o i n t i n d i s t a n c e , a n d N i a k o l i k P o i n t i n f o r e g r o u n d 4 A: v i e w o f t h e Babbage D e l t a , s h o w i n g i n t e r t i d a l a n d s u p r a t i d a l s u r f a c e s ; B: l o w e r Babbage R i v e r , l o o k i n g d o w n s t r e a m t o w a r d s e c t i o n B I 21 5 Babbage D e l t a and s o u t h e r n l a g o o n , s h o w i n g c o o r d i n a t e s y s t e m , i n t e r t i d a l t r a n s e c t s , s i t e s w here t h e t h i c k n e s s o f f r e s h s e d i m e n t was m e a s u r e d on the d e l t a p l a i n a nd on i c e , and l o c a t i o n s o f s e d i m e n t t r a p s , e x c l u d i n g s i t e s i n t h e n o r t h e r n l a g o o n Babbage E s t u a r y s y s t e m , s h o w i n g g r i d n e t w o r k , b o r e h o l e l o c a t i o n s and l o c a t i o n s o f s h o r t c o r e s o r e x p o s u r e s 24 7 W e s t e r n p a r t o f Yukon C o a s t a l P l a i n w i t h B r i t i s h M o u n t a i n s i n b a c k g r o u n d ; A: B a c k h o u s e L a g o o n ; B: F i r t h R i v e r f a n w i t h N u n a l u k L a g o o n i n f o r e g r o u n d XI 1 1 A : h e a d w a t e r s o f B a b b a g e R i v e r w i t h T e r t i a r y p e d i m e n t a n d i c i n g , 2 9 A u g u s t 1 9 7 6 ; B : u p p e r T r a i l R i v e r b a s i n i n B r i t i s h M o u n t a i n s n e a r M o u n t S e d g e w i c k 2 8 9 M a s s i v e g r o u n d i c e i n i c e - t h r u s t s e d i m e n t s e x p o s e d b e t w e e n K a y P o i n t a n d K i n g P o i n t , M a c k e n z i e B a y c o a s t 3 0 1 0 B a r r i e r s a n d l a g o o n s a t S t o k e s P o i n t ( A ) a n d a t K i n g P o i n t ( B ) , c e n t r a l Y u k o n c o a s t 3 3 1 1 H y p s o m e t r i c c u r v e s f o r B a b b a g e R i v e r a n d D e e p C r e e k d r a i n a g e b a s i n s 36 1 2 T e n t a t i v e l a t e - W i s c o n s i n a n a n d 1 8 2 6 p a l a e o g e o g r a p h y b e t w e e n K a y P o i n t a n d H e r s c h e l I s l a n d 3 9 1 3 P r o f i l e a l o n g a x i s o f B a b b a g e V a l l e y a n d H e r s c h e l B a s i n , s h o w i n g h y p o t h e s i z e d l a t e - W i s c o n s i n a n w a t e r l e v e l i n L a k e H e r s c h e l a n d p r e s e n t , v a l l e y - a x i s s l o p e s o f B a b b a g e R i v e r a n d t r i b u t a r i e s 42 1 4 D a t a b a s e a n d t e n t a t i v e h i s t o r y o f l a t e W i s c o n s i n a n a n d H o l o c e n e s e a l e v e l s i n M a c k e n z i e D e l t a a n d o n t h e Y u k o n c o a s t ( a f t e r F o r b e s , 1 9 8 0 ) 4 4 1 5 M o n t h l y t e m p e r a t u r e a n d p r e c i p i t a t i o n d a t a f o r K o m a k u k B e a c h a n d S h i n g l e P o i n t o n t h e Y u k o n c o a s t a n d f o r O l d C r o w ( s o u t h o f t h e m o u n t a i n s ) 4 6 1 6 C u m u l a t i v e p r e c i p i t a t i o n a t s t a t i o n s i n t h e n o r t h e r n Y u k o n T e r r i t o r y , s u m m e r 1 9 7 4 5 1 XIV 17 V a r i a n c e d e n s i t y spectrum of h o u r l y a t m o s p h e r i c p r e s s u r e a t Kay P o i n t , summer 1976 18 R e l a t i v e f r e q u e n c i e s of h o u r l y wind speed (m/s) by d i r e c t i o n , 1975 and 1976 summer r e c o r d s , Kay P o i n t . 19 V a r i a n c e d e n s i t y ^ s p e c t r a f o r n o r t h e a s t e r l y and n o r t h w e s t e r l y components of h o u r l y wind s t r e s s . , Kay P o i n t , 1976 20 R e p r e s e n t a t i v e t emperature and s a l i n i t y p r o f i l e s i n Mackenzie Bay 21 Landsat image 1-1422-20185-5, 18 September 1973, showing Mackenzie R i v e r plume s p r e a d i n g n o r t h and e a s t , w i t h an a b r u p t western boundary i n Mackenzie Bay 22 P o r t i o n of Landsat image 1-1460-20292-6, 26 October 1973, showing open water i n Mackenzie Bay and t h i n i c e i n H e r s c h e l B a s i n , i n P h i l l i p s Bay, west of H e r s c h e l I s l a n d , and i n a l l l a g o o n s 23 P o r t i o n of Landsat image 1-1317-20374-6, 5 June 1973, showing narrow band of l a n d f a s t i c e west of H e r s c h e l I s l a n d , e x t e n s i v e l a n d f a s t i c e i n Mackenzie_Bay, and l e a d i n t h e shear-zone between l a n d f a s t i c e and s e a s o n a l pack 52 53 55 64 66 71 71 24 Frequency d i s t r i b u t i o n of extreme monthly water l e v e l s a t Tuktoyaktuk 81 P l o t s of e s t i m a t e d v e r s u s observed wave p e r i o d and h e i g h t , Kay P o i n t s p i t \u00E2\u0080\u00A2 88 R e f r a c t i o n of waves a t T=4.2s a p p r o a c h i n g from the NNW and of waves a t T=4.9s a p p r o a c h i n g from the e a s t ; s i t e s f o r which h i n d c a s t c o m p u t a t i o n s and l o n g s h o r e sediment t r a n s p o r t e s t i m a t e s were o b t a i n e d a re a l s o p l o t t e d 90 Frequency d i s t r i b u t i o n s of t a n g e n t i a l and normal components of wave power a t the d i s t a l end of Kay P o i n t s p i t , based on h i n d c a s t wave a n a l y s i s 93 D a i l y r u n o f f (Babbage R i v e r at B l ) and d a i l y p r e c i p i t a t i o n a t Kay P o i n t and S h i n g l e P o i n t , 1974-1976 97 C u m u l a t i v e p r e c i p i t a t i o n a t S h i n g l e P o i n t and c u m u l a t i v e r u n o f f i n Babbage R i v e r ( B l ) and Deep Creek ( D I ) , 1975 and 1976 101 Time of d i u r n a l peak f l o w d u r i n g summer r e c e s s i o n i n Babbage R i v e r a t B l , 1975 and 1976 106 Babbage R i v e r d i s c h a r g e , s e c t i o n B l , 21 June t o 2 J u l y 1976 108 Storm hydrographs, Babbage R i v e r , August 1976, showing n o n - e x p o n e n t i a l c h a r a c t e r of r e c e s s i o n s 110 Frequency d i s t r i b u t i o n s of d a i l y r u n o f f f o r snowmelt and summer seasons 1974-1976, Babbage R i v e r a t B l 113 x v i 34 Variance d e n s i t y spectra of hourly discharge: Babbage River at BI, summer 1975; Deep Creek at D l , summer 1976 115 35 Hourly water l e v e l at marine boundary of Babbage Estuary: summer 1974, summer 1975, and breakup+summer 1976 119 36 Variance d e n s i t y spectrum of hourly water l e v e l at Kay Point s p i t (gauge A, CHS s t a t i o n 6515), 12 J u l y t o 12 September 1975 37 Cumulative normalized variance spectra for hourly water l e v e l at marine boundary, Babbage Estuary 120 124 38 Variance d e n s i t y spectrum of hourly water temperature at s t a t i o n 5, Babbage Estuary, during 20 days of record in August 1975 128 39 Wind, atmospheric pressure, and water l e v e l at Kay Point during 1975, i l l u s t r a t i n g phase correspondence between low-pass water l e v e l and northwesterly wind speed but v a r i a b l e amplitude of surge response 131 40 Wind, atmospheric pressure, and water l e v e l at Kay Point during 1976, i l l u s t r a t i n g phase correspondence between low-pass water l e v e l and northwesterly wind speed 132 41 P a r t i a l coherence between water l e v e l and northwesterly wind s t r e s s 135 x v i i 42 Frequency d i s t r i b u t i o n s of daily-maximum h o u r l y water l e v e l f o r the l a t e June t o e a r l y September season i n t h r e e d i f f e r e n t y e a r s , Kay P o i n t s p i t d a t a 138 43 H i g h - f r e q u e n c y and t r a n s i e n t response of water l e v e l t o wind a s s o c i a t e d w i t h c o l d - f r o n t passage, 30 J u l y 1976 140 44 Minor surge w i t h a b r u p t shock f r o n t and h i g h - f r e q u e n c y l o w - a m p l i t u d e v a r i a n c e superimposed on N i a k o l i k P o i n t (gauge-B) t i d a l r e c o r d f o r 6 August 1976 141 45 Water l e v e l s a t gauges A and E, 19-25 August 1975 146 46 Water l e v e l sequence a t gauge C, d i s t a l Babbage D e l t a , l a t e J u l y 1976 146 47 P a r t i a l c o herence: (A) between gauge-A and gauge-E water l e v e l s ; (B) between B l and gauge-E water l e v e l s 148 48 Comparison between v a r i a n c e d e n s i t y s p e c t r a of ?E'(t) and of 5 E ( t ) , showing c l o s e agreement a t f<10\" 1 c h \" 1 151 49 G a i n f u n c t i o n f o r Babbage E s t u a r y c o o s c i l l a t i n g t i d a l system 152 50 Lag f u n c t i o n f o r Babbage E s t u a r y c o o s c i l l a t i n g t i d a l system 154 x v i i i 51 Complete d u r a t i o n sequences f o r h o u r l y water l e v e l , Babbage E s t u a r y marine boundary, summer 1975 and spring-summer 1976 156 52 D r i f t w o o d d e p o s i t s marking the p r e s e n t t r a n s g r e s s i v e l i m i t near Kay P o i n t and near gauge E i n the v a l l e y 158 53 D i s t r i b u t i o n of major d r i f t w o o d d e p o s i t s i n the Babbage E s t u a r y system, 22 August 1944 and 20 August 1970 159 54 Record of storm-surge e v e n t , 27 August 1975: water l e v e l s a t gauges A and E 162 55 Water l e v e l f u n c t i o n of summer 1976 a t N i a k o l i k P o i n t (gauge B) as a Babbage R i v e r d i s c h a r g e , s p r i n g and 164 56 Babbage R i v e r d i s c h a r g e , gauge-B water l e v e l , and b o t t o m f a s t i c e t h i c k n e s s a t a s i t e i n the Babbage E s t u a r y near gauge B, 1-30 June 1976 57 S u p r a t i d a l f l o o d i n g of Babbage D e l t a w i t h b o t t o m f a s t i c e i n the l a g o o n , 9 t h and 1 0 t h of June 1974 166 167 58 Schematic p l o t of monthly i c e t h i c k n e s s ( a f t e r S c h e l l , 1974) and p r o p o r t i o n s of e s t u a r i n e s t o r a g e volume i n s o l i d and l i q u i d phases 171 59 I c e i n the n o r t h e r n Babbage Lagoon and i n the p r o x i m a l Babbage D e l t a , l a t e May 1974 17.2 x i x 60 61 C h r o n o l o g y of breakup i n the Babbage E s t u a r y , 1974-1976 A: S p r i n g R i v e r , showing snowmelt r u n o f f c o n t a i n e d and d e f l e c t e d by the S p r i n g R i v e r b a r r i e r ; o v e r f l o w of Babbage R i v e r water onto i c e o u t s i d e Babbage E s t u a r y i s v i s i b l e i n the background, 30 May 1974; B: i c e f l o a t i n g i n main d i s t r i b u t a r y c h a n n e l of Babbage E s t u a r y between d i s t a l d e l t a and N i a k o l i k P o i n t , 9 June 1974 177 178 62 D r a i n a g e h o l e s through i c e o u t s i d e main e n t r a n c e s e c t i o n and g e n e r a l view of c e n t r a l l a g o o n , showing l i m i t e d e x t e n t of f l o o d i n g o v e r - i c e and open water i n e n t r a n c e c h a n n e l 30 May 1974 182 63 Schematic p l o t of monthly water temperature and s a l i n i t y i n the Babbage E s t u a r y , based on 1976 o b s e r v a t i o n s f o r the summer months and 1974 d a t a ( a f t e r S t e i g e n b e r g e r e t a l . , 1975) f o r A p r i l , w i t h o t h e r v a l u e s i n t e r p o l a t e d 191 64 D a i l y sequence of water t e m p e r a t u r e , s, d e n s i t y , p , and v i s c o s i t y , n , E s t u a r y e n t r a n c e , June-September 1976 65 D a i l y sequence of water t e m p e r a t u r e , s, d e n s i t y , P , and v i s c o s i t y , n , a t Babbage D e l t a , June-September 1976 , s a l i n i t y , i n Babbage 9 , s a l i n i t y , s t a t i o n 12, 194 195 66 D a i l y t e m p e r a t u r e , s a l i n i t y , d e n s i t y , and v i s c o s i t y i n Babbage E s t u a r y , 24 J u l y t o 5 August 1977 197 67 E s t i m a t e s of the v a r i a n c e of water d e n s i t y f o r s e t s of d a t a a t v a r i o u s s a m p l i n g i n t e r v a l s , A t 199 XX 68 Time sequence i n c l u d i n g the storm surge event of 27 August 1975: 12h maximum, minimum, and i n s t a n t a n e o u s a i r t e m p e r a t u r e ; h a l f - h o u r l y water t e m p e r a t u r e ; wind speed and d i r e c t i o n a t Kay P o i n t ; water l e v e l a t gauge A; and Babbage R i v e r d i s c h a r g e a t BI 202 69 S u r f a c e s a l i n i t y i n the Babbage E s t u a r y f o l l o w i n g the storm of 27 August 1975 204 70 Examples of s a l i n i t y s t r a t i f i c a t i o n i n main d i s t r i b u t a r y c h a n n e l and e n t r a n c e s e c t i o n of Babbage E s t u a r y , 1 September 1976 and 31 J u l y 1975 213 71 Change i n p a t t e r n of s a l i n i t y s t r a t i f i c a t i o n i n main d i s t r i b u t a r y and e n t r a n c e s e c t i o n of Babbage E s t u a r y over a 3-4h p e r i o d of ebb f l o w , 30 J u l y 1975 214 72 Changes i n the p a t t e r n of s a l i n i t y s t r a t i f i c a t i o n over n i n e - h o u r i n t e r v a l , 31 J u l y t o 1 August 1975 215 73 S u r f a c e Babbage 1976 v e l o c i t y d i s t r i b u t i o n i n Ml s e c t i o n , E s t u a r y , d u r i n g ebb 1423-1603h 10 August 74 S u r f a c e and near-bottom v e l o c i t i e s i n Ml s e c t i o n , Babbage E s t u a r y e n t r a n c e , d u r i n g f l o o d 1200-1330h 3 August 1976, showing c o n t i n u e d ebb f l o w a t a l l depths over the c e n t r a l s h o a l , w i t h water e n t e r i n g a t d e p th v i a c h a n n e l s near s t a t i o n s 5 and 7 218 220 75 Time sequence of s u r f a c e and bottom s a l i n i t y a t s t a t i o n s 2, 5, and 7 i n Babbage E s t u a r y , of gauge-A water l e v e l , and of wind speed and d i r e c t i o n a t Kay P o i n t , showing response of v e r t i c a l s a l i n i t y d i s t r i b u t i o n s t o w i n d - i n d u c e d m i x i n g ; wave h e i g h t s a r e superimposed on t h e s a l i n i t y sequence 221 x x i 76 L o n g i t u d i n a l and t r a n s v e r s e components of v e l o c i t y a t s t a t i o n 5, low-pass and h i g h - p a s s f i l t e r e d components, and water l e v e l a t gauge A, Babbage E s t u a r y , 12-31 August 1975 225 77 C a p a c i t y of the Babbage E s t u a r y as a f u n c t i o n of water l e v e l 231 78 Net exchange f l o w t h r o u g h Ml s e c t i o n , gauge-B water l e v e l , and Babbage R i v e r d i s c h a r g e t h r o u g h BI s e c t i o n , June 1976 234 79 H o u r l y s t o r a g e volume i n the Babbage E s t u a r y d u r i n g summer 1975 235 80 V a r i a n c e d e n s i t y spectrum of h o u r l y s t o r a g e volume i n the Babbage E s t u a r y d u r i n g summer 1975 237 81 P a r t i a l coherence between Babbage R i v e r d i s c h a r g e , Q f ( t ) , and Ml net output sequence, Q n ( t ) , showing extreme n o n - l i n e a r i t y of r u n o f f t r a n s f e r s t h r ough the e s t u a r y , p a r t i c u l a r l y i n the s y n o p t i c f r e q u e n c y band i n which most of the v a r i a n c e of r u n o f f r e s i d e s 238 82 S i m p l i f i e d c a n o n i c a l s t r u c t u r e of the h y d r o l o g i c a l subsystem d u r i n g l a t e - w i n t e r , snowmelt, and summer seasons, showing d r a m a t i c changes i n the number and c h a r a c t e r of i n t e r n a l and e x t e r n a l l i n k s 242 83 I n c i s e d m i d d l e c o u r s e of Babbage R i v e r : (A) major exposure of C r e t a c e o u s or e a r l i e r sediments a d j a c e n t t o the c h a n n e l ; (B) T e r t i a r y g r a v e l over o l d e r sediments i n a spur above the r i v e r 244 A: s t e e p b r a i d e d c h a n n e l s d r a i n i n g u n v e g e t a t e d r i d g e s i n Barn M o u n t a i n s , e a s t e r n p a r t of Babbage R i v e r b a s i n , August 1976; B: b l o c k slumping due t o t h e r m o - e r o s i o n a l n i c h e development, lower Babbage R i v e r , l a t e J u l y 1976 245 R e p r e s e n t a t i v e p a r t i c l e - s i z e d i s t r i b u t i o n s f o r source m a t e r i a l s and f o r sediments s t o r e d i n the c h a n n e l system, Babbage R i v e r b a s i n 250 A: i n c o m b u s t i b l e suspended sediment and t o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n s (mg/L) i n Babbage R i v e r a t B l , 1975; B: i n c o m b u s t i b l e suspended sediment and t o t a l d i s s o l v e d s o l i d s t r a n s p o r t (kg/s) 254 A: t o t a l suspended sediment and t o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n s (mg/L) i n Babbage R i v e r a t B l , 1976; B: t o t a l suspended and t o t a l d i s s o l v e d s o l i d s t r a n s p o r t (kg/s) 255 A: t o t a l suspended sediment and t o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n s (mg/L) i n Deep Creek a t DI, 1976; B: t o t a l suspended and t o t a l d i s s o l v e d s o l i d s t r a n s p o r t (kg/s) 256 D i s s o l v e d , suspended, and b e d l o a d r a t i n g s , Babbage R i v e r a t B l , 1976 258 D i s s o l v e d , suspended, and b e d l o a d r a t i n g s , Deep Creek a t DI, 1976 259 T o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n as a f u n c t i o n of d i s c h a r g e , Babbage R i v e r a t B l , 1976 262 T o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n as a f u n c t i o n of d i s c h a r g e D e e p Creek a t DI, 1976 263 Water d i s c h a r g e and t o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n ( e s t i m a t e d \"from s p e c i f i c c o n d u c t i v i t y c o r r e c t e d f o r 0 W ), showing two t r a n s i e n t s of h i g h TDS c o n c e n t r a t i o n d u r i n g .breakup and snowmelt f l o o d of June 1975, Babbage R i v e r 266 Phase r e l a t i o n s between i n c o m b u s t i b l e suspended sediment c o n c e n t r a t i o n (mg/L) and d i s c h a r g e ( m 3 s _ 1 ) , Babbage R i v e r a t B l , 1975 and 1976 269 Phase r e l a t i o n s between i n c o m b u s t i b l e suspended sediment c o n c e n t r a t i o n (mg/L) and d i s c h a r g e ( m 3 s - 1 ) , Deep Creek a t DI, 1975 and 1976, showing h y s t e r e s i s d u r i n g a n n u a l snowmelt f l o o d s 270 H y s t e r e s i s i n s u s p e n d e d - s e d i m e n t / d i s c h a r g e r e l a t i o n d u r i n g Babbage R i v e r f l o o d of 8 June 1974, showing peaks i n TSS c o n c e n t r a t i o n both b e f o r e and a f t e r peak stage and c o u n t e r - c l o c k w i s e h y s t e r e s i s l o o p f o r the f l o o d as a whole 272 Sample d a t a and t h e o r e t i c a l r a t i n g s f o r b e d l o a d t r a n s p o r t , Babbage R i v e r a t B l , 1976 277 P a r t i c l e - s i z e d i s t r i b u t i o n s f o r v a r i o u s samples of sediment i n c h a n n e l d e p o s i t s or moving as b e d l o a d , Babbage R i v e r a t B l 281 Three s e t s of e m p i r i c a l r e s u l t s f o r the h i d i n g f a c t o r ^ as a f u n c t i o n of D/D 5 Q i n rough t u r b u l e n t f l o w 282 Channel bed p r o f i l e s a t s e c t i o n BI (Babbage R i v e r ) between 28 May and 8 June 1975, showing d e g r a d a t i o n of b o t t o m f a s t i c e 286 Channel bed p r o f i l e s a t s e c t i o n BI (Babbage R i v e r ) ; A, 1975: scour d u r i n g r i s i n g l i m b of an n u a l snowmelt h y d r o g r a p h , showing development of s c o u r - h o l e a g a i n s t bank i n t h a l w e g ; B, 1976: p r o f i l e s s h o r t l y a f t e r peak f l o w on 6 June and 26 June, net f i l l 10-15 June, and net scour 15-19 June 288 C u m u l a t i v e p e r c e n t of t o t a l sediment t r a n s p o r t i n Babbage R i v e r a t BI i n 1975 and 1976 293 A: c o a s t a l segment 1 near Kay P o i n t , showing u n d e r c u t t i n g and f a i l u r e of p o l y g o n a l b l o c k s formed by ice-wedge thaw or f r a c t u r e , J u l y 1976; B: c o a s t a l segment 2, showing major impact of r e t r o g r e s s i v e - t h a w and a s s o c i a t e d mudflow t r a n s p o r t of f i n e sediment a c r o s s the beach, August 1977 298 T u r b i d Mackenzie R i v e r water o f f c e n t r a l Yukon c o a s t ; A: p a r t of Landsat image 1-1089-20020-5, 17 J u l y 1975, showing a d v e c t i o n of suspended sediment p a s t Kay P o i n t ; B: l e a d i n g edge of Mackenzie R i v e r plume o f f Kay P o i n t , 28 J u l y 1976 301 V e r t i c a l photograph of Kay P o i n t and Babbage E s t u a r y , showing l o n g s h o r e t r a n s p o r t of suspended sediment westward p a s t Kay P o i n t and wide shore-normal d i s p e r s i o n i n P h i l l i p s Bay; p a r t of NAPL photograph A22975-56, 4 August 1972 304 D a i l y l o n g s h o r e sediment t r a n s p o r t a t d i s t a l end of Kay P o i n t s p i t , p o s i t i v e toward t h e main e n t r a n c e s e c t i o n ( M l ) , computed from h i n d c a s t wave d a t a u s i n g e q u a t i o n 4.2.2-6 310 P r o x i m a l end of Kay P o i n t s p i t , showing temporary (M3) i n l e t ; p a r t of NAPL photograph A21830-2, 18 August 1970 312 V i s c o s i t y , S t o k e s s e t t l i n g v e l o c i t y f o r D=l ym, and t o t a l suspended s o l i d s c o n c e n t r a t i o n a t s t a t i o n 7, Babbage E s t u a r y , 1976 319 Scanning e l e c t r o n m i c r o g r a p h s of sediment from the Babbage E s t u a r y ( s i t e 021125), showing s i l t - and c l a y - s i z e m i n e r a l p a r t i c l e s and v a r i o u s composite p a r t i c l e s of s i l t s i z e 322 Scanning e l e c t r o n m i c r o g r a p h s of sediment from the Babbage E s t u a r y ( s i t e 010140), showing both p e l l e t i z e d and a n g u l a r forms of a g g l o m e r a t i o n 323 P a r t i c l e - s i z e d i s t r i b u t i o n s f o r bottom sediment and f o r suspended sediment c o l l e c t e d i n t r a p s a t s i t e 010140, Babbage Lagoon, showing e f f e c t s of v a r i o u s t r e a t m e n t s 325 L o n g i t u d i n a l t h a l weg p r o f i l e s i n the main d i s t r i b u t a r y c h a n n e l of the Babbage D e l t a , showing (A) predominance of e b b - d i r e c t e d t r a n s p o r t and (B) r a r e o c c u r r e n c e of f l o o d - d i r e c t e d bedforms downstream from s t a t i o n 10 329 H o r i z o n t a l r e f l e c t o r s i n c r o s s - s e c t i o n s of lower Deep Creek c h a n n e l , s u g g e s t i n g presence of f l u i d - m u d 331 Time sequence of t o t a l suspended s o l i d s c o n c e n t r a t i o n a t s t a t i o n 12, Babbage D e l t a , w i t h wind speed and d i r e c t i o n a t Kay P o i n t and Babbage R i v e r d i s c h a r g e , s p r i n g and summer 1976 333 x x v i 115 D i s t r i b u t i o n of C T ( 0 ) i n the Babbage E s t u a r y d u r i n g the storm-surge of 27 August 1975 (A) and on 14 August 1976 ( B ) , when a plume of t u r b i d water f i l l e d P h i l l i p s Bay as f a r n o r t h e a s t as Kay P o i n t 116 Water l e v e l and l o n g i t u d i n a l v e l o c i t y ( s t a t i o n 5; h-z=0.9 m), second h a l f of August 1975; uppermost r e c o r d i s time sequence c u r r e n t speed, showing d i s t r i b u t i o n of v a l u e s e x c e e d i n g an approximate e n t r a i n m e n t t h r e s h o l d of 0.15 m/s 117 E s t i m a t e d c o n c e n t r a t i o n of t o t a l suspended sediment, based on h o u r l y S e c c h i e x t i n c t i o n d a t a a t s t a t i o n s 5, 6, and 7 i n the e n t r a n c e s e c t i o n and s t a t i o n 12 i n the d e l t a d u r i n g a 48-h p e r i o d i n J u l y 1976 118 119 120 337 338 340 I c e r a f t i n g of sediment p l a i n , June 1976 onto s u p r a t i d a l d e l t a 346 I c e i n Babbage D e l t a l a k e s a f t e r s p r i n g f l o o d i n g , showing b a s i n s w i t h and w i t h o u t sediment on i c e ; (A) 15 June 1974; (B) 18 June 1976 Sediment on i c e , f o r m e r l y b o t t o m f a s t ; (A) i n lagoon near the d i s t a l end of the s p i t (015080), a p p a r e n t l y r a f t e d from a l o c a t i o n c l o s e r t o the d e l t a ; and (B) i n P h i l l i p s Bay near s e c t i o n Ml ( s i t e 000050) 351 353 121 Sediment t r a p l o c a t i o n s and d i s t r i b u t i o n of a c c u m u l a t i o n r a t e s (kg m \" 2 d a y _ 1 ) f o r the i n t e r v a l 24 June t o 16 J u l y i n 1976 357 Rates of sediment a c c u m u l a t i o n (kg m _ 2 d a y \" 1 ) i n t r a p s d e p l o y e d a t l a g o o n - and l a k e - b o t t o m s i t e s i n the Babbage E s t u a r y system, June-September 1976 360 D i s t r i b u t i o n of sediment a c c u m u l a t i o n (kg m \" 2 d a y _ 1 ) i n t r a p s i n the Babbage E s t u a r y , 8/9-14/15 August 1976 362 Area of s u p r a t i d a l f l a t l o s t t o bank e r o s i o n a l o n g west e r n and main d i s t r i b u t a r y c h a n n e l s of the Babbage D e l t a , August 1944 t o August 1970, de t e r m i n e d from a i r p h o t o g r a p h s ; e x t e n t of e r o s i o n i n d i c a t e d by s h a d i n g 365 D e g r a d a t i o n of v e g e t a t e d s u p r a t i d a l f l a t s , d i s t a l Babbage D e l t a , August 1975 366 T o t a l suspended sediment c o n c e n t r a t i o n a t s e c t i o n B l , Babbage R i v e r , and e s t i m a t e d t o t a l suspended sediment c o n c e n t r a t i o n , based on S e c c h i e x t i n c t i o n d e p t h , a t s t a t i o n s 5, 6, 7, and 7a i n the e s t u a r y d u r i n g June 1976 371 P a r t of NAPL photograph A13383-151, 1952, showing c o n f i g u r a t i o n of d i s t r i b u t a r y c h a n n e l s seaward of the d i s t a l d e l t a margin v e r y d i f f e r e n t from the 1972 morphology ( c f . F i g u r e 105) 373 C a n o n i c a l s t r u c t u r e of the sedi m e n t a r y component of the Babbage E s t u a r y system, showing s e a s o n a l changes i n the l i n k a g e network 374 Map of Babbage E s t u a r y system showing d i s t r i b u t i o n of major d e p o s i t i o n a l environments and r e p r e s e n t a t i v e l i t h o f a c i e s t y p e s 378 x x v i i i 130 Sediment s a m p l i n g l o c a t i o n s i n the Babbage E s t u a r y , c l a s s i f i e d a c c o r d i n g t o d e p o s i t i o n a l e n v i ronment 381 131 T e r n a r y diagrams showing p r o p o r t i o n s of sand p l u s g r a v e l , s i l t , and c l a y , f o r v a r i o u s components of the Babbage E s t u a r y system 132 T e r n a r y diagram showing p r o p o r t i o n s of g r a v e l , sand, and mud i n sediments of the Babbage R i v e r and E s t u a r y 382 386 133 R e l a t i o n between g r a p h i c s t a n d a r d d e v i a t i o n s and g r a p h i c mean D f o r s u r f a c e sediments of the Babbage D e l t a and E s t u a r y 134 B o r e h o l e d a t a , Babbage E s t u a r y and D e l t a 388 390 135 D i s t r i b u t i o n of Holocene c h a n n e l d e p o s i t s i n the lower v a l l e y , as i n t e r p r e t e d from s u r f a c e morphology and l i m i t e d e x p o s u r e s , showing major impact of Tulugaq r i v e r f a n on s e d i m e n t a t i o n i n t h i s p a r t of the v a l l e y 393 136 Lower Babbage R i v e r between T r a i l R i v e r and f u r t h e s t - s e a w a r d g r a v e l r i f f l e , i n 1954 ( l e f t ) and 1976 ( r i g h t ) ; p a r t s of NAPL photographs A14406-48 and A24502-170 394 137 D i s t r i b u t i o n of l i t h o f a c i e s t y p e s a t the s u r f a c e , Babbage R i v e r and d i s t r i b u t a r y c h a n n e l i m m e d i a t e l y downstream from s e c t i o n B I ; p a r t of NAPL photograph A21826-87, August 1970 395 x x i x 138 A i r and ground views of Babbage D e l t a , showing d i s t r i b u t a r y , l a c u s t r i n e , and s u p r a t i d a l components of the sediment system 139 Topographic p r o f i l e of c e n t r a l Babbage D e l t a a l o n g g r i d l i n e yyy=040 (see F i g u r e 5 ) ; p r o x i m a l d e l t a a t l e f t , d i s t a l margin w i t h anomalous e l e v a t e d s u r f a c e a t r i g h t 3 9 9 400 140 Frequency d i s t r i b u t i o n s of s u r f a c e a r e a f o r v a r i o u s s u b s e t s of the pond and l a k e p o p u l a t i o n on the Babbage D e l t a ; a l s o p l o t t e d a r e d i s t r i b u t i o n s f o r an a r e a of lagoon-margin s u p r a t i d a l f l a t s , f o r anomalous s u r f a c e w i t h rugged m i c r o r e l i e f on d i s t a l d e l t a , and f o r a r e p r e s e n t a t i v e a r e a i n the lower v a l l e y 402 141 Long p r o f i l e of t i d a l c h a n n e l and c r o s s - p r o f i l e s of t h r e e l a k e s i n the c e n t r a l Babbage D e l t a 403 142 Levees i n the Babbage D e l t a ; A: prominent l e v e e b e s i d e minor d i s t r i b u t a r y c h a n n e l , n o r t h e r n d i s t a l margin of d e l t a p l a i n ; B: bank w i t h n e g l i g i b l e l e v e e development, more t y p i c a l of t h e d i s t a l d e l t a , r i g h t bank of main d i s t r i b u t a r y c h a n n e l between s t a t i o n s 10 and 12 405 143 P r o x i m a l d e l t a p l a i n ; (A) l o o k i n g u p v a l l e y , showing v e g e t a t e d s u p r a t i d a l s u r f a c e w i t h l a k e s a t l e f t and f l o o d - s p l a y u n i t a t bottom r i g h t ; note abandonned Babbage R i v e r c h a n n e l i n m i d d l e d i s t a n c e ; (B) s p a r s e l y v e g e t a t e d s u p r a t i d a l f l o o d - s p l a y s u r f a c e 406 144 F l o o d - s p l a y s e d i m e n t a t i o n s u r f a c e a d j a c e n t t o main d i s t r i b u t a r y c h a n n e l , c e n t r a l Babbage D e l t a ; p a r t of NAPL photograph A21826-81, August 1970 407 XXX 145 A: spruce l o g s ( d r i f t w o o d ) i n s u p r a t i d a l sediments of the Babbage D e l t a ; B: s t r a t i f i e d o r g a n i c s i l t s of the s u p r a t i d a l d e l t a p l a i n , p a r t of s e c t i o n 405 i n the c e n t r a l d e l t a 146 Anomalous r a i s e d s u r f a c e of rugged m i c r o r e l i e f a t d i s t a l margin of c e n t r a l d e l t a p l a i n , June 1976 147 M a r g i n a l s u p r a t i d a l f l a t s of Babbage D e l t a , showing t h e r m o k a r s t morphology a r i s i n g i n p a r t , a t l e a s t , from d e g r a d a t i o n of ice-wedge p o l y g o n n e t s 409 411 412 148 A: 7-kHz r e c o r d from main d i s t r i b u t a r y c h a n n e l , p r o x i m a l d e l t a ; B: i n t e r p r e t a t i o n of 7-kHz r e c o r d from main d i s t r i b u a r y , d i s t a l d e l t a near s t a t i o n 10 415 149 A: f l o o d - d i r e c t e d dune- and r i p p l e - s c a l e bedforms on d i s t r i b u t a r y - m a r g i n s u r f a c e near t r a n s e c t 4, p r o x i m a l Babbage D e l t a ; B: i c e - r a f t e d g r a v e l on d i s t r i b u t a r y - m a r g i n i n t e r t i d a l - s u r f a c e , c e n t r a l d e l t a 416 150 Channel-margin and lagoon-margin i n t e r t i d a l s u r f a c e s i n the Babbage D e l t a , August 1974 418 151 A: i n t e r t i d a l f l a t s near t r a n s e c t 8, d i s t a l Babbage D e l t a , showing t i d a l c h a n n e l network, w i t h p a t c h e s of c o l o n i z i n g P u c c i n e l l i a on l e v e e s , and e r o s i o n of s u p r a t i d a l s u r f a c e , September 1976; B: d e s s i c a t i o n c r a c k s , a s s o c i a t e d s m a l l - s c a l e s c o u r , and d r a i n a g e v e n t s on low i n t e r t i d a l s u r f a c e . 419 152 Core s e c t i o n s from h i g h i n t e r t i d a l s u r f a c e i n s h a l l o w b a s i n , d i s t a l d e l t a p l a i n ( s i t e 406, F i g u r e 6) 420 P r o f i l e of Ml (main e n t r a n c e ) s e c t i o n , Babbage E s t u a r y marine boundary 423 G r a v e l f o r m i n g low i n t e r t i d a l s h o a l i n Babbage Lagoon ( s i t e 032080), showing l i n e a r grooves a t t r i b u t e d t o i c e scour 425 A: Kay P o i n t b a r r i e r , w i t h P h i l l i p s Bay a t r i g h t and Babbage Lagoon a t l e f t , showing wide backshore s u r f a c e l a r g e l y snow-free, May 1976; B: S h i n g l e P o i n t s p i t , showing e x t e n s i v e and complex b a c k b a r r i e r d e p o s i t s 427 A: D i s t a l Kay P o i n t s p i t , 27 August 1975, f o l l o w i n g a severe storm and moderate s u r g e , showing l i m i t e d e x t e n t of washover d e p o s i t s , a e o l i a n sand a c c u m u l a t i o n near l a r g e l o g s on berm, and i c e i n c o r p o r a t e d i n f o r e s h o r e s e d i m e n t s ; (B) d i s t a l end of s p i t , 2 August 1974, showing s u b t i d a l b a c k b a r r i e r p l a t f o r m and post-1972 e x t e n s i o n of the s p i t 428 Schematic s e c t i o n t h r o u g h Kay P o i n t s p i t , showing d i s t r i b u t i o n of upper b a r r i e r l i t h o f a c i e s 429 A: lagoon-margin s u p r a t i d a l f l a t s a t n o r t h end of Babbage Lagoon, showing numerous l a k e s and ponds, l o c a l rugged m i c r o r e l i e f , and m a r g i n a l beach and washover f a c i e s ; B: C a r e x - P u c c i n e l l i a and Elymus communities and the landward l i m i t of m a r g i n a l washover sand 432 P a r t s of c o r e taken i n ephemeral pond near edge of s u p r a t i d a l f l a t s , showing ( a t l e f t ) n e a r - s u r f a c e i n t e r l a m i n a t e d a l g a l mud, p e a t , and sand, and (at r i g h t ) p e b b l y sand washover u n i t a t a depth of 400 mm 433 x x x i i 160 S e c t i o n t h r ough Babbage Lagoon, Kay P o i n t s p i t , and P h i l l i p s Bay, showing the d i s t r i b u t i o n of sand and g r a v e l l y - s a n d l i t h o f a c i e s and the t r a n s g r e s s i v e c h a r a c t e r of the b a r r i e r sequence 438 161 Changes i n the K i n g P o i n t b a r r i e r , 1954-1972, showing development of an i n l e t - f i l l sequence by d i s t a l e x t e n s i o n of the s p i t ; p a r t s of NAPL photographs A14363-54 (1954) and A22879-105 (1972) 440 162 A: l o w - l e v e l o b l i q u e photograph of s u r f a c e morphology on the K i n g P o i n t b a r r i e r b a c k s h o r e , August 1975; B: Running R i v e r d e l t a near S h i n g l e P o i n t , showing beach and washover f a c i e s a t the seaward margin of d e l t a i c s u p r a t i d a l f l a t s 441 163 S p r i n g R i v e r b a r r i e r i n 1952 ( p a r t of NAPL photograph A13383-155) and changes o c c u r r i n g between 1952 and 1970 442 164 Schematic diagram showing h y p o t h e t i c a l d i s t r i b u t i o n of l i t h o f a c i e s f o r m i n g t r a n s g r e s s i v e sequence beneath the Babbage D e l t a 445 x x x i i i ACKNOWLEDGEMENTS I t i s a p l e a s u r e t o acknowledge the h e l p of many i n d i v i d u a l s and o r g a n i z a t i o n s d u r i n g the cour s e of t h i s s t u d y . The p r o j e c t was s u p p o r t e d by the G e o l o g i c a l Survey of Canada, T e r r a i n S c i e n c e s D i v i s i o n . M a jor c o n t r i b u t i o n s were a l s o r e c e i v e d from the N a t i o n a l R e s e a r c h C o u n c i l of Canada (now NSERC) t h r o u g h g r a n t s t o Dr M. Church and from the U n i v e r s i t y of B r i t i s h C olumbia. P e r s o n a l s u p p o r t was p r o v i d e d by the G e o l o g i c a l Survey, by a N a t i o n a l R esearch C o u n c i l P o s t g r a d u a t e S c h o l a r s h i p , and by a M a c M i l l a n F a m i l y F e l l o w s h i p . L o g i s t i c a l s u p p ort was p r o v i d e d by T e c h n i c a l F i e l d Support S e r v i c e s , by the P o l a r C o n t i n e n t a l S h e l f P r o j e c t , and by the I n u v i k R e s e a r c h L a b o r a t o r y (now ISRC). I w i s h t o e x p r e s s p a r t i c u l a r a p p r e c i a t i o n t o two i n d i v i d u a l s f o r t h e i r w i d e - r a n g i n g support and g e n e r a l encouragement over the y e a r s . I am g r a t e f u l t o M. Church, who a c t e d as r e s e a r c h s u p e r v i s o r , f o r h i s c o n c e r n , h e l p f u l c r i t i c i s m , and p e r s i s t e n t c o n f i d e n c e ; and t o C P . L e w i s , f o r h i s p a r t i n i n i t i a t i n g t he s t u d y , f o r i n v a l u a b l e a d m i n i s t r a t i v e and t e c h n i c a l . s u p p o r t , and f o r h e l p and c o l l a b o r a t i o n i n the f i e l d . I thank F. Stephenson, I n s t i t u t e of Ocean S c i e n c e s , P a t r i c i a Bay, f o r p r o v i s i o n of water l e v e l r e c o r d e r s and c u r r e n t meters and f o r a s s i s t a n c e i n the f i e l d ; Dr J.W. Murray, x x x i v U n i v e r s i t y of B r i t i s h C olumbia, f o r l e n d i n g c o r i n g equipment; L. V e t o , U n i v e r s i t y of B r i t i s h Columbia, f o r SEM imagery; H. Wood, Water Survey of Canada, I n u v i k , f o r l e n d i n g h y d r o m e t r i c equipment; and Dr W. B l a k e , J r , G e o l o g i c a l Survey of Canada, f o r r a d i o c a r b o n a n a l y s e s . For major a s s i s t a n c e i n the f i e l d , under c o n d i t i o n s t h a t were a t times v e r y d i f f i c u l t and a t t i m e s i d y l l i c , I am e s p e c i a l l y g r a t e f u l t o B i l l B a r r i e , L i n d a F o r b e s , Ian G a l e , S t u a r t H o t z e l , Annie K r a s k e r , M i c h a e l Krastman, and John O ' L o u g h l i n . Important c o n t r i b u t i o n s were a l s o made by Dr R. G i l b e r t , Roland Wahlgren, and many o t h e r i n d i v i d u a l s i n v o l v e d i n the c o a s t a l s t u d i e s p r o j e c t a t Kay P o i n t . I am e s p e c i a l l y i n d e b t e d t o Helen K e r f o o t f o r much f r i e n d l y a s s i s t a n c e w i t h l o g i s t i c a l problems, both i n and out of the f i e l d , and f o r s u b s t a n t i a l c o n t r i b u t i o n s t o t h e f i e l d d a t a . R i c h a r d L e s l i e p r o v i d e d v a l u a b l e t e c h n i c a l a d v i c e and a s s i s t a n c e . Audrey V y c i n a s c a r r i e d out much of t h e l a b o r a t o r y work i n Vancouver. P e t e r R i c h a r d s h e l p e d w i t h the t i d a l a n a l y s i s . Naomi Bergh, L i n d a F o r b e s , J u l i a P u r c e l l , and Margaret R i t c h i e h e l p e d w i t h p r o d u c t i o n of the r e p o r t . I am g r a t e f u l t o Dr B.C. McDonald f o r e a r l y s u pport of the p r o j e c t and t o Dr C.F.M. Lewis f o r h i s i n t e r e s t and encouragement. F i n a l l y , I am happy t o acknowledge the guidance and support of Dr J.R. Mackay, Dr W.H. Mathews, and Dr 0. Slaymaker, members of my r e s e a r c h s u p e r v i s o r y committee a t the U n i v e r s i t y of B r i t i s h Columbia. i 1 1 INTRODUCTION 1.1 PREAMBLE 1.1.1 DEFINITION OF STUDY T h i s i s a study of water and sediment t r a n s f e r s i n a s m a l l d e l t a - e s t u a r y of the s o u t h e r n B e a u f o r t Sea c o a s t ( F i g u r e 1 ) . I t i s an i n v e s t i g a t i o n of sediments and geomorphology on a t r a n s g r e s s i v e m i c r o t i d a l c o a s t under A r c t i c c o n d i t i o n s . I t i s a l s o an a n a l y s i s of s t r u c t u r e and v a r i a b i l i t y i n an e s t u a r i n e system, w h e r e i n energy and mass i n p u t s imposed by the r e g i o n a l and l o c a l e nvironments produce a s s o c i a t e d o u t p u t s and s t o r a g e components. The p h y s i c a l c o n f i g u r a t i o n of an e s t u a r y r e f l e c t s p a t t e r n s of mass s t o r a g e i n d y n a m i c a l l y i n t e r a c t i n g h y d r o l o g i c a l and s e d i m e n t o l o g i c a l subsystems. The s t o r a g e component of the h y d r o l o g i c a l subsystem i s r e l a t e d t o water l e v e l and a f f e c t s , among o t h e r f a c t o r s , the net n o n - t i d a l c i r c u l a t i o n , t h r o u g h the e f f e c t of d e n s i t y s t r a t i f i c a t i o n on c i r c u l a t i o n i n the e s t u a r y . The s t o r a g e component of the s e d i m e n t o l o g i c a l subsystem d e t e r m i n e s , i n l a r g e p a r t , the s u r f a c e morphology of the e s t u a r y and, t o the e x t e n t t h a t a net g a i n i n s t o r a g e o c c u r s over t i m e , may y i e l d a p a r t i a l h i s t o r i c a l r e c o r d and a model f o r i n t e r p r e t a t i o n of s i m i l a r a n c i e n t d e p o s i t s . The Babbage E s t u a r y system e x h i b i t s d i s t i n c t i v e water and 2 FIGURE 1 Map of the Yukon c o a s t , showing l o c a t i o n of Babbage E s t u a r y system and o t h e r t o p o g r a p h i c f e a t u r e s , i n c l u d i n g major l a g o o n s and e s t u a r i e s (code numbers d e f i n e d i n T a b l e 2 ) . 3 sediment s t o r a g e p a t t e r n s and d i s t i n c t i v e system response c h a r a c t e r i s t i c s r e f l e c t i n g v a r i o u s a s p e c t s of the g e o g r a p h i c a l s e t t i n g . These p r o v i d e , i n some c a s e s , new i n s i g h t s i n t o the e f f e c t s of i c e , r u n o f f regime, c o a s t a l s e t t i n g , and h i s t o r i c a l c o n t e x t i n the development of an e s t u a r i n e system. F u r t h e r m o r e , they i n d i c a t e the r e l a t i v e importance of v a r i o u s s c a l e s of i n p u t and parameter v a r i a n c e f o r d i f f e r e n t components of the e s t u a r i n e system. The Babbage system e x h i b i t s s i g n i f i c a n t v a r i a b i l i t y a t time s c a l e s r a n g i n g from 1 0 3 t o 1 0 1 2 s , the range c o r r e s p o n d i n g t o s c a l e s of obser v e d or i n f e r r e d f l u c t u a t i o n s of mass i n p u t s and system p a r a m e t e r s . The n a t u r e of the s e f l u c t u a t i o n s , the p a t t e r n s of system response ( i n c l u d i n g system s t r u c t u r e , r e a c t i o n - r e l a x a t i o n e f f e c t s , and s t o r a g e d i s t r i b u t i o n ) , and d i s t i n c t i v e f e a t u r e s of the system r e l a t e d t o i t s t r a n s g r e s s i v e , m i c r o t i d a l , or h i g h - l a t i t u d e s e t t i n g , a r e major themes of the p r e s e n t s t u d y . 4 1.2 CONCEPTUAL APPROACH 1.2.1 GEOPHYSICAL SYSTEMS R e l a t i o n s h i p s among v a r i o u s g e o p h y s i c a l phenomena may be examined i n the c o n t e x t of g e o p h y s i c a l systems, s t r u c t u r e d s e t s \"of components or v a r i a b l e s ... t h a t e x h i b i t d i s c e r n i b l e r e l a t i o n s h i p s w i t h one a n o t h e r and o p e r a t e t o g e t h e r as a complex whole, a c c o r d i n g t o some ob s e r v e d p a t t e r n \" ( C h o r l e y and Kennedy, 1971, pp.1-2). G e o p h y s i c a l systems may be v a r i o u s l y d e f i n e d , w i t h v a r i a b l e s h a v i n g d i f f e r e n t or l i k e d i m e n s i o n s . A s i m p l e system may i n v o l v e an independent or i n p u t v a r i a b l e , x ( t ) ; an i n t e r m e d i a t e o p e r a t i o n or t r a n s f o r m a t i o n , f , c o n d i t i o n e d by the s t r u c t u r e , p a r a m e t e r s , and s t a t e of the system; and a dependent, or r e s p o n s e , or ou t p u t v a r i a b l e , y ( t ) = f [ x ( t ) ] . G e o p h y s i c a l systems may i n v o l v e energy or mass t r a n s f e r s w i t h i n and between g e o g r a p h i c a l l y d e f i n a b l e p h y s i c a l e n t i t i e s ; they may i n v o l v e s t r u c t u r e d g e o m e t r i c a l , s t a t i s t i c a l , or o t h e r r e l a t i o n s h i p s among p h y s i c a l p r o p e r t i e s ; or they may i n v o l v e b o t h . C h o r l e y and Kennedy (1971) have d i s t i n g u i s h e d t h r e e t y p e s of g e o p h y s i c a l system: the cascade system, the m o r p h o l o g i c a l system, and the p r o c e s s - r e s p o n s e system. A cascade system, r e p r e s e n t i n g energy or mass t r a n s f e r p r o c e s s e s , g e n e r a l l y i n c o r p o r a t e s a c h a i n of subsystems, w i t h mass or energy p a s s i n g from subsystem t o subsystem, i n each of which one or more s t o r a g e compartments may o c c u r . A m o r p h o l o g i c a l system i n c o r p o r a t e s - a s t r u c t u r e d s e t of p h y s i c a l p r o p e r t i e s , w hich may or may not have m o r p h o l o g i c a l e x p r e s s i o n , and which 5 t a k e on p a r t i c u l a r i n s t a n t a n e o u s v a l u e s as a r e s u l t of i n t e r a c t i o n w i t h energy or mass c a s c a d e s ; t h i s t y pe of system may be termed, w i t h more g e n e r a l i t y , a parameter system. I n t e r a c t i n g parameter and cascade systems may be c o n s i d e r e d t o form t o g e t h e r a p r o c e s s - r e s p o n s e system, i n which the parameters and s t o r a g e p r o d u c t of the cascade system a r e r e p r e s e n t e d by i n d i v i d u a l components and s t r u c t u r e s of t h e parameter system [ c f . C h o r l e y and Kennedy (1971, f i g u r e 1.3); t h i s f o r m u l a t i o n and t e r m i n o l o g y a r e i n debt t o e a r l i e r ' p r o c e s s - r e s p o n s e model' c o n c e p t s ' e n u n c i a t e d by, among o t h e r s , Krumbein and S l o s s (1963, c h a p t e r 7 ) , Krumbein (1963), and W h i t t e n ( 1 9 6 4 ) ] . Components of the parameter system may be m o r p h o l o g i c a l (e.g. c h a n n e l geometry or sediment t e x t u r e ) or n o n - m o r p h o l o g i c a l (e.g. d e n s i t y or a l b e d o ) ; most parameter systems i n c l u d e b o t h . Cascade systems may have m u l t i p l e i n p u t s and o u t p u t s . The i n t e r v e n i n g t r a n s f e r s or t r a n s f o r m a t i o n s i n v o l v e s t o r a g e l o c a t i o n s and d i s t r i b u t i o n c o n t r o l terms or r e g u l a t o r s ( C h o r l e y and Kennedy, 1971, pp.5-7). The t r a n s f o r m a t i o n from i n p u t t o o u t p u t may i n v o l v e v a r i o u s r o u t e s , r a t e s , and i n t e r r u p t i o n s ( s t o r a g e ) , y i e l d i n g v a r i a b l e r e a c t i o n and r e l a x a t i o n e f f e c t s i n the output ( c f . A l l e n , 1974). In the case of sediment c a s c a d e s , the t r a n s f e r p r o c e s s e s a r e c h a r a c t e r i s t i c a l l y s i z e - d e p e n d e n t ; as a r e s u l t , s e d i m e n t a r y d e p o s i t s commonly e x h i b i t :size s o r t i n g e f f e c t s , w hich c o n t r i b u t e t o l i t h o f a c i e s d i f f e r e n t i a t i o n , w h i l e s i z e - d e p e n d e n t l a g t i m e s may a l s o be a n t i c i p a t e d . The i d e n t i f i c a t i o n of l a g s i s i n some c a s e s 6 d i a g n o s t i c and may c o n s t i t u t e a v a l u a b l e f i n d i n g i n i t s e l f [ c f . S t e n b o r g (1970) f o r an example i n g l a c i a l h y d r o l o g y and A l l e n (1973) f o r examples . i n v o l v i n g s e d i m e n t a r y b e d f o r m s ] . System response b e h a v i o u r r e f l e c t s a number of f a c t o r s , i n c l u d i n g the s t a t e of i n t e r n a l s t o r a g e and r e g u l a t i o n terms, the magnitude, v a r i a n c e , and fr e q u e n c y d i s t r i b u t i o n of system i n p u t s , the e x i s t e n c e of t h r e s h o l d s , the c o m p l e x i t y of the system, and the i n t e g r a t i o n of v a r i o u s o utput component l a g s . In p a r t i c u l a r , t h r e s h o l d s and feedback mechanisms i n the system may produce t r a n s i e n t u n s t a b l e or m e t a s t a b l e r e s p o n s e s , i n v o l v i n g a brupt s h i f t s of the mean, w h i l e v a r i a b l e i n t e r n a l t r a j e c t o r i e s may g i v e l a g or r e l a x a t i o n e f f e c t s t h a t a r e frequency-dependent ( c f . Bendat and P i e r s o l , 1971, p.31). I f the i n p u t p r o c e s s of a s i m p l e s i n g l e - i n p u t , s i n g l e - o u t p u t , p h y s i c a l c a s c a d i n g system i s s t a t i o n a r y and e r g o d i c , i f the system i s f r e e of t h r e s h o l d s or u n s t a b l e p o s i t i v e feedback w i t h i n some range of i n p u t s , and i f the system response i s l i n e a r w i t h i n t h i s range, then t h e o r e t i c a l r e s u l t s f o r l i n e a r systems may be a p p l i e d . The output of a p h y s i c a l l y - r e a l i z a b l e l i n e a r system i s g i v e n by the c o n v o l u t i o n where h ( T ) i s a w e i g h t i n g f u n c t i o n and T i s a l a g term i n the time domain. In the fr e q u e n c y domain, the F o u r i e r t r a n s f o r m s , X ( f ) and Y ( f ) of x ( t ) and y ( t ) , a r e r e l a t e d t h r ough a f r e q u e n c y response f u n c t i o n , H ( f ) : where H ( f ) i s the F o u r i e r t r a n s f o r m of M T ) . The modulus, y ( t ) = -h(x ) x ( t - x )dx , (1.2.1-1) Y ( f ) = H ( f ) X ( f ) , (1.2.1-2) 7 | H ( f ) | r i s the g a i n f a c t o r of the system and the argument, M f ) , i s the phase f a c t o r . For a h y p o t h e t i c a l s i n u s o i d a l i n p u t a t f r e q u e n c y f , | H ( f ) | i s the r a t i o of the output a m p l i t u d e t o the i n p u t a m p l i t u d e and M f ) d e f i n e s the phase s h i f t of the system (Bendat and P i e r s o l , 1971, p.41). Frequency-dependent system response c h a r a c t e r i s t i c s can be i n v e s t i g a t e d by t h i s s t r a t e g y i f the system s a t i s f i e s the r a t h e r s t r i n g e n t assumptions l i s t e d above. L i n e a r system t h e o r y can be extended t o c o v e r m u l t i p l e - i n p u t and -ou t p u t systems and the approach can be a p p l i e d , w i t h g r e a t e r c o m p l e x i t y , t o some n o n - l i n e a r systems as w e l l ( c f . , f o r example, Amorocho and B r a n d s t e t t e r , 1971). In any c a s e , the r e s u l t s a r e l i m i t e d t o f i x e d - p a r a m e t e r system response w i t h s t a t i o n a r y i n p u t s . Most g e o p h y s i c a l systems a r e n o n - l i n e a r beyond some l i m i t e d range of i n p u t c o n d i t i o n s and many a r e n o n - l i n e a r t h r o u g h o u t . I n an energy cascade between c o u p l e d water and sediment cascade systems, water and sediment t r a n s f e r s may be c o n s i d e r e d t o r e p r e s e n t parameters of the p r o c e s s - r e s p o n s e system t h a t forms the c o u p l i n g . In g e n e r a l , t h i s , system i s n o n - l i n e a r , v i z . : b J = aQ +c+e, b * l , where J i s the sediment t r a n s p o r t r a t e , Q i s the water d i s c h a r g e , a, b, and c a r e e m p i r i c a l . c o e f f i c i e n t s and e i s an e r r o r or v a r i a n c e term. For b e d l o a d t r a n s p o r t , i n p a r t i c u l a r , the exponent i s t y p i c a l l y v e r y h i g h (b>>l) and dependent on d i s c h a r g e (db/dQ^O; see s e c t i o n 4.1.2). In the case of 8 suspended sediment t r a n s p o r t , because J = C O where C i s the S S sediment c o n c e n t r a t i o n , the exponent b=l i f and o n l y i f dC s/dQ=0 ( i . e . i f the c o n c e n t r a t i o n i s c o n s t a n t ) . In many n a t u r a l systems, i t i s found t h a t the c o n c e n t r a t i o n of suspended sediment v a r i e s as a p o s i t i v e l o g a r i t h m i c f u n c t i o n of d i s c h a r g e , l n ( C s ) = a ln(Q) + c + e, and the J=f(Q) system may be t r e a t e d as l i n e a r a f t e r l o g a r i t h m i c t r a n s f o r m a t i o n ( c f . Sharrna and D i c k i n s o n , 1979). 9 1.2.2 ENVIRONMENTS AND FACIES An environment may be viewed as the t o t a l i t y of e x t e r n a l phenomena a f f e c t i n g the n a t u r e and time-space d i s t r i b u t i o n of i n p u t s t o a system and c o n s t r a i n t s on i t s response. In a sense, t h i s d e f i n i t i o n i n v o l v e s two parameter systems, one e x t e r n a l and one i n t e r n a l t o a g i v e n p r o c e s s - r e s p o n s e system. The e x t e r n a l parameters a r e p a r t of l a r g e r p r o c e s s - r e s p o n s e systems i n which the g i v e n system i s imbedded; the i n t e r n a l p a r a m e t e r s c o n s t i t u t e the p a r a m e t r i c component of the g i v e n system. A s e d i m e n t a r y environment has been d e f i n e d as a \"complex of p h y s i c a l , c h e m i c a l , and b i o l o g i c a l c o n d i t i o n s under which a sediment a c c u m u l a t e s \" (Krumbein and S l o s s , 1963, p.324; c f . S c r u t o n , 1960, pp.92-93). In t h i s sense, a sedimentary environment and a s s o c i a t e d sediments a r e e q u i v a l e n t t o a se d i m e n t a r y p r o c e s s - r e s p o n s e system as d e f i n e d above. Moreover, a c l o s e f u n c t i o n a l r e l a t i o n s h i p e x i s t s between the geomorphology of a p a r t i c u l a r s e d i m e n t a r y environment and the s t o r a g e components of the s e d i m e n t a r y system. I t has l o n g been r e c o g n i z e d t h a t l a n d s c a p e s and d e p o s i t s may be c l a s s i f i e d i n t o d i s t i n c t i v e groups, not o n l y by e v o l u t i o n a r y or s t r a t i g r a p h i c p o s i t i o n , but a l s o i n terms of e n v i r o n m e n t a l c o n t e x t or a s s o c i a t e d p r o c e s s s e t s . G r e s s l y (1838) i n t r o d u c e d the term ' f a c i e s ' t o d i s t i n g u i s h s t r a t i g r a p h i c a l l y e q u i v a l e n t u n i t s t h a t d i f f e r l a t e r a l l y i n l i t h o l o g y or p a l a e o n t o l o g y . The f a c i e s c oncept has s i n c e been 10 broadened t o i n c l u d e s e d i m e n t a r y s e t s s h a r i n g common e n v i r o n m e n t a l a t t r i b u t e s but not n e c e s s a r i l y r e l a t e d i n a s t r a t i g r a p h i c c o n t e x t . F a c i e s may be viewed as t h e m o r p h o l o g i c a l or d e p o s i t i o n a l p r o d u c t s of i n d i v i d u a l cascade subsystems, and i n p a r t i c u l a r as s t o r a g e components of t h e s e subsystems w i t h i n the sediment t r a n s p o r t c a s c a d e . D i s t i n c t i v e d e p o s i t i o n a l environments u s u a l l y g e n e r a t e d e p o s i t s h a v i n g d i s t i n c t i v e s e t s of t e x t u r a l and s t r u c t u r a l c h a r a c t e r i s t i c s ( s e e , f o r example, B l a t t e t a l . , 1972, c h a p t e r 6; Reineck and S i n g h , 1973; and Walker, 1979). These l i t h o l o g i c a l a t t r i b u t e s may be d e s c r i b e d by use of v a r i o u s r a t i o - s c a l e measures and s t a t i s t i c s d e r i v e d from them. They may a l s o u s e f u l l y be summarized i n terms of d i s t i n c t i v e assemblages of s t a n d a r d l i t h o f a c i e s t y p e s , each d e f i n e d by a l i m i t e d range of p a r t i c l e s i z e , s p e c i f i e d c o m p o s i t i o n a l p r o p e r t i e s , s t r u c t u r a l c h a r a c t e r i s t i c s , or o t h e r c r i t e r i a . A l i t h o f a c i e s c l a s s i f i c a t i o n of t h i s k i n d , d e v e l o p e d by M i a l l (1977, 1978) f o r a p p l i c a t i o n t o b r a i d e d r i v e r d e p o s i t s , has been adopted f o r the p r e s e n t study i n an amended and expanded form (see s e c t i o n 4.4.1). 11 1.2.3 ESTUARINE SYSTEMS An e s t u a r y or e s t u a r i n e system may be d e f i n e d as a s e t of phenomena caused by or p e r t a i n i n g t o the i n f l o w of f r e s h w a t e r r u n o f f t o an ocean or m a r g i n a l sea [ t h i s f o r m u l a t i o n i s s i m p l e r than the w i d e l y c i t e d d e f i n i t i o n proposed by Cameron and P r i t c h a r d ( 1 9 6 3 ) ] . As c o a s t a l f i l t e r s t h r o u g h which r u n o f f e n t e r s the s e a , e s t u a r i e s form p a r t of a r e l a t i v e l y minor l i n k i n the g l o b a l h y d r o l o g i c a l system, p a s s i n g o n l y about seven per c e n t of t o t a l p r e c i p i t a t i o n (More, 1967). However, due t o the o c c u r r e n c e of c o o s c i l l a t i n g t i d e s , due t o the d i f f e r e n c e i n d e n s i t y between f r e s h w a t e r r u n o f f and seawater, and due t o the e x t r a o r d i n a r y v a r i e t y of c i r c u l a t i o n p r o c e s s e s which o c c u r as a r e s u l t of t h e s e and o t h e r e f f e c t s , e s t u a r i e s form remarkably complex h y d r o l o g i c a l systems. These systems f r e q u e n t l y form sediment t r a p s ( c f . Meade, 1969) and a r e of c o n s i d e r a b l e e c o l o g i c a l and socioeconomic importance ( c f . O f f i c e r et a l . , 1977). P e r i o d i c t i d a l s t o r a g e of water i s a c h a r a c t e r i s t i c f e a t u r e of e s t u a r i n e systems. The volume of water s t o r e d d u r i n g a g i v e n t i d e i s a f u n c t i o n of the t i d a l range and of c e r t a i n m o r p h o l o g i c a l parameters of the e s t u a r y , which determine the p o t e n t i a l s t o r a g e volume and c o n t r o l t i d a l - c u r r e n t h y d r a u l i c s . N o n - p e r i o d i c water s t o r a g e f l u c t u a t i o n s o c c u r due t o v a r i o u s o t h e r e f f e c t s , i n c l u d i n g s t e r i c a d j u s t m e n t s ( c f . P a t t u l l o e t a l . , 1955; B e a l , 1968), m e t e o r o l o g i c a l f o r c i n g p r o c e s s e s ( s e e , f o r example, Doodson, 1924; Proudman, 1955; S m i t h , 1979; Wang, 1979), and changes i n 12 t h e backwater c u r v e due t o f l u c t u a t i o n s of r i v e r d i s c h a r g e ( V o l k e r , 1966). I n d i v i d u a l systems d i f f e r i n the r e l a t i v e importance of the v a r i o u s s t o r a g e components; i n d e e d , s i g n i f i c a n t s e a s o n a l and o t h e r f l u c t u a t i o n s i n the d i s t r i b u t i o n of v a r i a n c e may o c c u r w i t h i n a g i v e n system. F u r t h e r m o r e , the f r e s h w a t e r f r a c t i o n or volume of r u n o f f water s t o r e d i n the e s t u a r y may be h i g h l y v a r i a b l e , depending on the c i r c u l a t i o n regime and o t h e r system p a r a m e t e r s . T h i s has i m p o r t a n t i m p l i c a t i o n s w i t h r e s p e c t t o f l u s h i n g r a t e s and the p a r t i t i o n between s h o r t - and l o n g - t e r m s t o r a g e of suspended sediment and o t h e r p o l l u t a n t s . E s t u a r i n e systems commonly s t o r e l a r g e volumes of sediment, i n a v a r i e t y of d i s t i n c t i v e d e p o s i t s , i n c l u d i n g m a r i n e - d e l t a i c , i n t e r t i d a l , b a r r i e r , l a g o o n , and marsh f a c i e s ( c f . Postma, 1967; Hayes, 1975; F r e y and Basan, 1978) and i n f i n e - s e d i m e n t s u s p e n s i o n s , which can a c h i e v e v e r y h i g h c o n c e n t r a t i o n s ( I n g l i s and A l l e n , 1957; A l l e r s m a e t a l . , 1966; K i r b y and P a r k e r , 1977) and r e p r e s e n t a form of s h o r t - or medium-term s t o r a g e . The d e p o s i t i o n a l p r o d u c t i n many d e l t a s i s s i g n i f i c a n t l y i n f l u e n c e d by e s t u a r i n e e f f e c t s , i n c l u d i n g d e n s i t y s t r a t i f i c a t i o n and t i d a l motions ( c f . B a t e s , 1953; S c r u t o n , 1960; Coleman et a l . , 1970; N e l s o n , 1970; W r i g h t , 1970; G a l l o w a y , 1976). Sediment t r a n s p o r t i n the e s t u a r i n e system i s powered p r i m a r i l y by water motions and a s s o c i a t e d energy d i s s i p a t i o n ( c f . B agnold, 1966). I t i s t h e r e f o r e a p p r o p r i a t e t o t r e a t water and sediment t r a n s p o r t and s t o r a g e as e n e r g e t i c a l l y - c o u p l e d c a s c a d i n g subsystems. A l t h o u g h sediments 13 a r e p r e d o m i n a n t l y c o n s e r v a t i v e , sediment s u s p e n s i o n s a r e n o t ; as a r e s u l t , s e d i m e n t o l o g i c a l and h y d r o l o g i c a l subsystems may respond d i f f e r e n t l y t o a g i v e n i n p u t e v e n t . N e v e r t h e l e s s , c e r t a i n s t r u c t u r a l s i m i l a r i t i e s can be a n t i c i p a t e d . F u r t h e r m o r e , sediment s t o r a g e phenomena determine i n p a r t the m o r p h o l o g i c a l parameters of the h y d r o l o g i c a l subsystem, w h i l e s e d i m e n t a r y f a c i e s or f a c i e s assemblages may be i d e n t i f i e d w i t h g e o g r a p h i c a l l y d e f i n e d subsystems of the h y d r o l o g i c a l c a s c a d e . The p r e s e n t study i s concerned w i t h an A r c t i c e s t u a r i n e system, c h a r a c t e r i z e d by g r e a t s e a s o n a l v a r i a n c e of net r a d i a t i o n , extreme t e m p e r a t u r e s and abundant i c e . I t i s a t h e s i s of the p r e s e n t work t h a t d i s t i n c t i v e dynamic and m o r p h o l o g i c a l c h a r a c t e r i s t i c s may be a s s o c i a t e d w i t h e s t u a r i e s o c c u r r i n g i n such an environment. R e l a t i v e l y few comprehensive s t u d i e s of A r c t i c e s t u a r i e s have preceded t h i s i n v e s t i g a t i o n ; c o n t r i b u t i o n s t h a t d e a l w i t h v a r i o u s p h y s i c a l a s p e c t s of the A r c t i c e s t u a r i n e environment i n c l u d e r e p o r t s by A l e x a n d e r e t a l . ( 1974), Barber (1968), Barnes and R e i m n i t z (1972), Dygas and B u r r e l l (1976), F o r d and H a t t e r s l e y - S m i t h (1965), Hume (1971), Ince (1962), Kinney e t a l . (1972), K n i g h t (1971), K n i g h t and Church (1970), Lake and Walker (1973), L e w e l l e n (1973), L e w i s (1977), Mackay (1963a), Matthews (1979, i n p r e s s ) , M o r i s o n and T a y l o r (1978), R e i m n i t z and Bruder (1972), S h o r t (1979), Tucker and B u r r e l l (1977), Walker (1969, 1971, 1972, 1973, 1974), and Wiseman (1979). An approach t o A r c t i c e s t u a r i n e systems as a p o t e n t i a l l y d i s t i n c t i v e s e t i n v o l v e s c e r t a i n assumptions about the 14 r e l e v a n c e of g l o b a l - s c a l e v a r i a b i l i t y t o the mechanics of s m a l l hydrodynamic systems. G l o b a l - s c a l e v a r i a b l e s i n c l u d e i n e r t i a l or C o r i o l i s e f f e c t s and l a r g e - s c a l e energy s o u r c e s , n o t a b l y s o l a r r a d i a t i o n and g r a v i t a t i o n a l p o t e n t i a l energy. The t i d a l p o t e n t i a l e x h i b i t s some l a t i t u d e - d e p e n d e n c e and t i d e s i n the A r c t i c Ocean a r e g e n e r a l l y s m a l l i n a m p l i t u d e and p r e d o m i n a n t l y s e m i d i u r n a l . C o r i o l i s e f f e c t s a r e p a r t i c u l a r y s t r o n g a t h i g h e r l a t i t u d e s and the i n e r t i a l p e r i o d i n the s o u t h e r n B e a u f o r t Sea i s a p p r o x i m a t e l y s e m i d i u r n a l ( S v e r d r u p , 1926). F i n a l l y , the h i g h - l a t i t u d e r a d i a t i o n regime e x h i b i t s a pronounced a n n u a l c y c l e t h a t , d i r e c t l y or i n d i r e c t l y , a f f e c t s a g r e a t v a r i e t y of p r o c e s s e s o p e r a t i n g i n the e s t u a r i n e environment. Most d i s t i n c t i v e f e a t u r e s of h i g h - l a t i t u d e e s t u a r i n e systems can be a s c r i b e d u l t i m a t e l y t o the r a d i a t i o n and tem p e r a t u r e regime. The r e c o g n i t i o n of a quasi-homogeneous d e p o s i t i o n a l p r o d u c t or l i t h o f a c i e s assemblage i m p l i e s an assumption of e q u i l i b r i u m i n the e s t u a r i n e s e d i m e n t a r y environment, b r o a d l y analogous t o c o n c e p t s of e q u i l i b r i u m i n e r o s i o n a l systems ( s e e , e.g., S t r a h l e r , 1950; Langbein and L e o p o l d , 1964). Both may be i n t e r p r e t e d i n terms of the c o n s i s t e n t b e h a v i o u r of a c o n s t a n t - p a r a m e t e r p r o c e s s - r e s p o n s e system under a s t a t i s t i c a l l y s t a t i o n a r y i n p u t regime. Changes i n the system output and i n the p a t t e r n of i n t e r n a l s t o r a g e may occur due t o changes of system p a r a m e t e r s , which may be due t o a t h r e s h o l d e f f e c t or may r e s u l t from n o n - s t a t i o n a r i t y of one or more i n p u t v a r i a b l e s . N o n - s t a t i o n a r i t y of i n p u t s a r i s e s due t o changes i n o t h e r 15 TABLE 1 S c a l e s of v a r i a n c e i n A r c t i c e s t u a r i n e s y s t e m s c l a s s _s c a l e s ub d i u r n a l d i u r n a l synop t i c s e a s o n a l a n n u a l d e c a d a l m i l l e n i a l c h a r a c t e r i s t i c p r o c e s s per\u00C2\u00B1od_ 3 m i c r o -meso-macro-mega- { t u r b u l e n c e g r a v i t y waves t i d a l and d i u r n a l v a r i a n c e c y c l o n i c s y s t e m s e a r t h o r b i t y e a r - t o - y e a r v a r i a n c e of h e m i s p h e r i c c i r c u -l a t i o n s h o r t - t e r m c l i m a t i c v a r i a n c e l o n g - t e r m c l i m a t i c changes T<10' 3 5 10 100 s s e c o n d s d d ay s a y e a r s \u00C2\u00AB 16 cascade systems t h a t i n t e r f a c e w i t h the system under c o n s i d e r a t i o n . For example, a d j u s t m e n t s of t h i s s o r t may occur as a r e s u l t of c l i m a t i c f l u c t u a t i o n s , changes i n l a n d - u s e , t e c t o n i c a c t i v i t y , or e r o s i o n a l t h r e s h o l d s . A p a r t from such d i s c r e t e changes, i t appears t h a t the d e f i n i t i o n of s t a t i o n a r i t y f o r any g i v e n i n p u t s e r i e s depends on the time o s c a l e c o n s i d e r e d ( B a t h , 1974, p.108; c f . Schumm and L i c h t y , 1965; M a n d e l b r o t and W a l l i s , 1969). The i n p u t s t o an e s t u a r i n e system may be s t a t i o n a r y over i n t e r v a l s of a few m i n u t e s , weeks, or y e a r s , but h i g h l y n o n - s t a t i o n a r y over i n t e r v a l s c o r r e s p o n d i n g t o t i d a l , s y n o p t i c , s e a s o n a l , or l o n g e r - t e r m v a r i a n c e . F or the purposes of t h i s work, the time s c a l e of a p r o c e s s i s t a k e n t o connote the c h a r a c t e r i s t i c , dominant, or modal p e r i o d ( i n v e r s e f r e q u e n c y ) and the t e r m i n o l o g y p r e s e n t e d i n T a b l e 1 i s employed. 17 1.3 THE PRESENT STUDY 1.3.1 BABBAGE ESTUARINE SYSTEM The e s t u a r i n e system a t the c o n f l u e n c e of the Babbage R i v e r and Deep Creek, on the c e n t r a l Yukon c o a s t near Kay P o i n t (69\u00C2\u00B018'N, 138'24'W; see F i g u r e 1 ) , was chosen as t h e f o c u s of the p r e s e n t i n v e s t i g a t i o n . The p r o j e c t was i n i t i t i a t e d i n 1974 under the a u s p i c e s of t h e G e o l o g i c a l Survey of Canada, t o g e t h e r w i t h a companion study d e s i g n e d t o examine a s p e c t s of c o a s t a l e r o s i o n , n e a r s h o r e sediment t r a n s p o r t , and beach dynamics i n the v i c i n i t y of Kay P o i n t ( L e w i s , 1975). E a r l y r e s u l t s of the combined i n v e s t i g a t i o n were r e p o r t e d by Lewis and Forbes (1974, 1975). The major f e a t u r e s of the Babbage E s t u a r y system a r e i l l u s t r a t e d i n F i g u r e 2. The s e t t i n g can be summarized as l o w - A r c t i c , t r a n s g r e s s i v e , and m i c r o t i d a l , w i t h s e a s o n a l l y r e s t r i c t e d f e t c h and a h i g h l y v a r i a b l e n i v a l r u n o f f regime. A b a r r i e r - s p i t some 4.4 km i n l e n g t h extends southwestward from Kay P o i n t , p a r t i a l l y e n c l o s i n g an e x t e n s i v e s h a l l o w lagoon ( F i g u r e 3 ) . Depths i n t h e lagoon average about 1 m r e l a t i v e t o mean water l e v e l . A l o n g narrow s h o a l p a r a l l e l t o the b a r r i e r t r a n s e c t s the main lagoon b a s i n . A s m a l l , quasi-permanent t i d a l i n l e t o c c u r s toward the d i s t a l end of the b a r r i e r (M2, F i g u r e 2) and s h o r t - l i v e d i n l e t s (denoted M3) d e v e l o p from time t o time near the p r o x i m a l end. A major i n l e t , 2 km wide, r e f e r r e d t o as the e s t u a r y e n t r a n c e or main e n t r a n c e s e c t i o n ( M l ) , l i e s between the d i s t a l end of Kay P o i n t s p i t and N i a k o l i k P o i n t . T h i s i n l e t i s c h a r a c t e r i z e d by a broad c e n t r a l FIGURE 2 Map of the Babbage E s t u a r y system, showing major s a m p l i n g s t a t i o n s , l o c a t i o n s of t i d e and s t a g e r e c o r d e r s , h y d r o m e t r i c s e c t i o n s , and the l o c a t i o n of t h e m e t e o r o l o g i c a l s t a t i o n a t Kay P o i n t (see F i g u r e 1 f o r r e g i o n a l s e t t i n g ) . 19 FIGURE 3 Bathymetry of Babbage Estuary in 1975 and view across main entrance section toward Kay Point spit with Babbage Lagoon to r i g h t , Kay Point in distance, and Niakolik Point in foreground. 20 p l a t f o r m and two m a r g i n a l c h a n n e l s , w i t h maximum depths of about 2 m a t mean t i d e . S u p r a t i d a l ( s t o r m - f l o o d ) s u r f a c e s are found a t the n o r t h e a s t and southwest ends of the l a g o o n ; s u p r a t i d a l f l a t s of the Babbage D e l t a e x t e n d a c r o s s the v a l l e y o p p o s i t e the e n t r a n c e s e c t i o n . Four major d i s t r i b u t a r y c h a n n e l s c a r r y f l u v i a l d i s c h a r g e a c r o s s the d e l t a t o the l a g o o n . The l a r g e s t of t h e s e , r e f e r r e d t o as the main d i s t r i b u t a r y c h a n n e l , can be i d e n t i f i e d i n F i g u r e 2 by the l i n e of s a m p l i n g s t a t i o n s . E x t e n s i v e i n t e r t i d a l s u r f a c e s o c c u r on the lagoon margin of the d e l t a p l a i n and l o c a l l y w i t h i n the d e l t a ( F i g u r e 4A). A l a r g e p a r t of the d e l t a p l a i n i s o c c u p i e d by l a k e s and ponds, some of which a r e connected by narrow t i d a l c h a n n e l s t o the main d i s t r i b u t a r y c h a n n e l network ( F i g u r e 5 ) . The t o t a l subaqueous and s u b a e r i a l a r e a of the d e l t a and lagoon complex below the l i m i t of r e c e n t storm-surge f l o o d i n g i s a l i t t l e o ver 40 km 2. Deep Creek, the Babbage R i v e r , and two n o n - t i d a l d i s t r i b u t a r i e s f l o w i n g t o Deep Creek from the Babbage, form an anastomosing c h a n n e l system i n the lower v a l l e y above the d e l t a . The l i m i t of storm-surge backwater extends upstream t o the lower of t h e s e d i s t r i b u t a r i e s ( F i g u r e 2 ) . The lower Babbage R i v e r i s a s i n u o u s g r a v e l - b e d stream w i t h a l o w - A r c t i c n i v a l d i s c h a r g e regime. The c h a n n e l i s l o c a l l y d i v i d e d and i s dominated by a l t e r n a t i n g l a t e r a l or p o i n t b a r s , by d i a g o n a l b a r s i n some r e a c h e s , and by a prominent p o o l - r i f f l e sequence ( F i g u r e 4B). FIGURE 4 A: i n t e r t i d a l and s u p r a t i d a l s u r f a c e s of the Babbage D e l t a , w i t h main d i s t r i b u t a r y c h a n n e l i n d i s t a n c e , September 1976; lagoon i s out of the p i c t u r e t o the r i g h t ; B: lower Babbage R i v e r , l o o k i n g downstream toward h y d r o m e t r i c s e c t i o n B l , 2 August 1974. 22 FIGURE 5 Babbage D e l t a and s o u t h e r n l a g o o n , showing c o o r d i n a t e system, i n t e r t i d a l t r a n s e c t s ( ), s i t e s where sediment a c c u m u l a t i o n was measured on the d e l t a p l a i n ( # ) and on i c e (OK a n d l o c a t i o n s of sediment t r a p s (0 ), e x c l u d i n g t r a p s i n the n o r t h e r n l a g o o n ; p a r t of NAPL photograph A22975-55, 4 August 1972. 23 The e s t u a r i n e system as d e f i n e d f o r the p r e s e n t study i s l a t e r a l l y bounded by the pre-Holocene up l a n d s u r f a c e and d e l i m i t e d a t the marine end by Kay P o i n t s p i t and the main e n t r a n c e s e c t i o n (the 'marine boundary'). At the headward end, the l i m i t s of the system a r e d e t e r m i n e d by the l o c a t i o n s of h y d r o m e t r i c s e c t i o n s ( F i g u r e 2) t h a t were e s t a b l i s h e d on Deep Creek a t D l and on the Babbage R i v e r a t BI ( F i g u r e 4B), above the uppermost d i s t r i b u t a r y . S e c t i o n BI was l o c a t e d 5 km downstream from th e c o n f l u e n c e w i t h two major t r i b u t a r i e s , the T r a i l and the Tulugaq ( a l s o known as the C r o w ) . 1 P o s i t i o n s w i t h i n the e s t u a r i n e system have been r e f e r r e d t o a g r i d network ( F i g u r e s 5 and 6 ) , w i t h l i n e s a t 500-m i n t e r v a l s . S i x - d i g i t c o o r d i n a t e s (xxxyyy) i d e n t i f y p o s i t i o n s t o the n e a r e s t 50 m. S t a n d a r d s t a t i o n s e s t a b l i s h e d i n the lagoon and d e l t a f o r r e g u l a r s a m p l i n g and in. s i t u o b s e r v a t i o n s of water p r o p e r t i e s and suspended sediment c o n c e n t r a t i o n s are shown i n F i g u r e 2, which a l s o i n c l u d e s l o c a t i o n s of the m e t e o r o l o g i c a l s t a t i o n , of h y d r o m e t r i c s e c t i o n s , and of water l e v e l r e c o r d e r s . D r i l l h o l e s i t e s and o t h e r l o c a t i o n s f o r which s h a l l o w s t r a t i g r a p h i c i n f o r m a t i o n i s a v a i l a b l e a r e i n d i c a t e d i n F i g u r e 6. A b r i e f summary of the o b s e r v a t i o n program and p r o c e d u r e s i s g i v e n i n Appendix A.2; f u r t h e r d e t a i l s a r e p r e s e n t e d where a p p r o p r i a t e w i t h i n the t e x t and i n o t h e r a p p e n d i c e s (A.3, A.4, A.8, and A.12). 1 ' T u l u g a q R i v e r ' i s the o f f i c i a l name, but 'Crow R i v e r ' appears on many maps. 24 FIGURE 6 Babbage E s t u a r y system, showing g r i d network and l o c a t i o n s of b o r e h o l e s , s h o r t c o r e s , and e x p o s u r e s . 25 The cascade system of the Babbage E s t u a r y may be s u b d i v i d e d i n t o f l u v i a l , t i d a l - d i s t r i b u t a r y , d e l t a - p l a i n , i n t e r t i d a l , l a g o o n , m a r g i n a l s u p r a t i d a l , and b a r r i e r subsystems. The s t r u c t u r e of the system may be examined i n terms of the v a r y i n g n a t u r e of l i n k s between t h e s e subsystems. Each subsystem may be viewed as a s i n g l e d e p o s i t i o n a l environment o r , depending upon the s c a l e , may be seen t o encompass a number of subenvironments. Thus, the f l u v i a l subsystem i n c l u d e s , c h a n n e l and overbank e n v i r o n m e n t s ; the t i d a l c h a n n e l subsystem i n c l u d e s c h a n n e l and c h a n n e l - m a r g i n environments and may be extended t o i n c l u d e l a k e s w i t h o u t c l o s u r e ; the d e l t a p l a i n i n c o r p o r a t e s v e g e t a t e d h i g h and low s u p r a t i d a l f l a t s , ephemeral ponds, and l a k e s w i t h c l o s u r e ; the i n t e r t i d a l subsystem can be d i v i d e d i n t o h i g h and low i n t e r t i d a l s u r f a c e s on the b a s i s of exposure f r e q u e n c y or o t h e r c r i t e r i a ; t h e m a r g i n a l s u p r a t i d a l i n c l u d e s v e g e t a t e d s u p r a t i d a l f l a t s , l a k e s w i t h and w i t h o u t c l o s u r e , ephemeral ponds, and m a r g i n a l beach and washover e n v i r o n m e n t s ; the lagoon subsystem can be s u b d i v i d e d i n t o exposed lagoon ( ' o p e n - e s t u a r y ' ) , p r o t e c t e d b a s i n ( 'lagoon'), and lagoon s h o a l e n v i r o n m e n t s ; and, f i n a l l y , the b a r r i e r encompasses f o r e s h o r e , b a c k s h o r e , and b a c k - b a r r i e r p l a t f o r m components. 26 2 REGIONAL CONTEXT: NORTHERN YUKON AND BEAUFORT SEA 2.1 GEOGRAPHY AND PALAEOGEOGRAPHY 2.1.1 CONTEMPORARY GEOGRAPHY The p r e s e n t c o n f i g u r a t i o n of the Yukon c o a s t i s i l l u s t r a t e d i n F i g u r e 1. P r e v i o u s g e n e r a l i n v e s t i g a t i o n s i n c l u d e s u r v e y s by F r a n k l i n (1828), O ' N e i l l (1924), Bostock (1948), Mackay (1960), Hughes (1972), McDonald and Lewis (1973), L e w i s and Forbes (1974), and Rampton (1974a, i n p r e s s ) . The c o a s t i s conterminous w i t h the n o r t h A l a s k a c o a s t i n the west, where the s u b a e r i a l c o a s t a l p l a i n i s l e s s than 10 km wide near the Backhouse R i v e r ( F i g u r e 7A); f u r t h e r e a s t , the p l a i n expands t o approach 40 km i n w i d t h near the Babbage R i v e r . The c o a s t a l p l a i n i s f l a n k e d on the so u t h by the B r i t i s h , Barn, and R i c h a r d s o n M o u n t a i n s , p a r t s of the Romanzoff U p l i f t and A k l a v i k A r c h ( N o r r i s , 1973), w i t h e l e v a t i o n s up t o 1600 m i n the n o r t h e r n Yukon ( F i g u r e s 7 and 8 ) . The Yukon C o a s t a l P l a i n i s u n d e r l a i n by J u r a s s i c and Cr e t a c e o u s f l y s c h , m o l a s s e , and e p i c o n t i n e n t a l c l a s t i c s e d i m e n t s . P a l a e o z o i c e l a s t i c s and c a r b o n a t e s occur i n the R i c h a r d s o n , B a r n , and B r i t i s h mountains, i n c l u d i n g p a r t s of t h e upper Babbage R i v e r b a s i n ( N o r r i s et a l . , 1963). Precambrian m e t a c l a s t i c s of the Neruokpuk F o r m a t i o n a r e exposed i n the B r i t i s h M o u n t a i n s , i n c l u d i n g p a r t s of the western Babbage (Tulugag and T r a i l ) b a s i n s ; c r y s t a l l i n e i n t r u s i v e s of Devonian FIGURE 7 Western p a r t of Yukon C o a s t a l P l a i n w i t h B r i t i s h Mountains i n background; A: Backhouse Lagoon; B: F i r t h R i v e r fan w i t h Nunaluk Lagoon i n f o r e g r o u n d . 28 FIGURE 8 A: headwaters of Babbage R i v e r w i t h T e r t i a r y pediment and i c i n g , 29 August 1976; B: upper T r a i l R i v e r b a s i n i n B r i t i s h M o u ntains near Mount Sedgewick. 29 age a r e found a t Mount Sedgewick i n the upper T r a i l R i v e r b a s i n ( N o r r i s e t a l . , 1963; P e l l e t i e r , 1980). An e x t e n s i v e p o s t - P a l a e o c e n e pediment (Hughes, 1972; Rampton, i n p r e s s ) r i s e s from the c o a s t a l p l a i n toward and i n t o the mountains ( F i g u r e 8A); t h i s s u r f a c e and u n d e r l y i n g beds have a mean s l o p e toward the n o r t h w e s t of about 7.5x10\" 4 (Rampton, i n p r e s s ) , such t h a t the c o a s t a l b l u f f west of the M alcolm R i v e r i s g e n e r a l l y l e s s than 10 m h i g h ( F i g u r e 7A), w h i l e i n the e a s t near the Blow R i v e r i t exceeds 30 m i n h e i g h t . The major r i v e r s west of H e r s c h e l I s l a n d (Malcolm and F i r t h ) a r e p r e d o m i n a n t l y a g g r a d a t i o n a l on the c o a s t a l p l a i n , f o r m i n g l a r g e fans t h a t e x t e n d n o r t h t o the c o a s t ( F i g u r e 7B), s i m i l a r t o the e x t e n s i v e f a n s a l o n g t h e e a s t e r n n o r t h A l a s k a c o a s t . F u r t h e r e a s t , the major r i v e r s ( n o t a b l y S p r i n g , Babbage, Running, and Blow) a r e i n c i s e d below the g e n e r a l l e v e l of the c o a s t a l p l a i n , the d e pth of i n c i s i o n i n c r e a s i n g e a s t w a r d . P e r m a f r o s t i s c o n t i n u o u s beneath most s u b a e r i a l s u r f a c e s , e x c e p t i n g l a r g e l a k e s , and extends t o depths of 600 m or more (J.R. Mackay, p e r s o n a l communication, 1981; c f . G o l d and L achenbruch, 1973, p.10). I t o c c u r s a l s o under p a r t s of the B e a u f o r t Sea s h e l f (Mackay, 1972; Hunter et a l . , 1978). Widespread massive ground i c e , some of which i s o l d e r than 40000 y e a r s (Mackay et a l . , 1972, p.1322), o u t c r o p s i n c o a s t a l and o t h e r e x p o s u r e s , where thaw p r o c e s s e s e x e r t a major e r o s i o n a l impact ( F i g u r e 9). i \u00E2\u0080\u00A2 ' \u00E2\u0080\u00A2 FIGURE 9 M a s s i v e ground i c e exposed between Kay Mackenzie Bay c o a s t ; 1975. i n i c e - t h r u s t s e d i m e n t s P o i n t and K i n g P o i n t , A: August 1977; B: August 31 The Yukon C o a s t a l P l a i n i s an a r e a of t u n d r a v e g e t a t i o n , c h a r a c t e r i z e d by wet sedge meadows i n f l a t a r e a s and sedge t u s s o c k t u n d r a on s i t e s w i t h b e t t e r d r a i n a g e (Welsh and Ri g b y , 1971). Low shrub w i l l o w ( S a l i x sp.) and b i r c h ( B e t u l a nana and B. g l a n d u l o s a ) a r e l o c a l l y abundant, w h i l e t a l l shrub w i l l o w ( e s p e c i a l l y S a l i x a l e x e n s i s ) i s a major element of r i p a r i a n v e g e t a t i o n , p a r t i c u l a r l y on the e a s t e r n c o a s t a l p l a i n . Spruce ( P i c e a g l a u c a ) o c c u r s l o c a l l y i n t h e lower F i r t h V a l l e y t o w i t h i n 30 km of the c o a s t (Wein et a l . , 1974) and i n the upper Babbage R i v e r b a s i n a t Spruce Creek. The Yukon c o a s t i s bounded on the e a s t by the Mackenzie D e l t a , which o c c u p i e s a g l a c i a l l y s c o u r e d s t r u c t u r a l d e p r e s s i o n , d e v e l o p e d by l a t e - C r e t a c e o u s b l o c k f a u l t i n g ( Y o r a t h , 1973). T h i s d e p r e s s i o n extends seaward t o Mackenzie Canyon as a p a r t i a l l y i n f i l l e d b o x - l i k e t r o u g h ( S h e a r e r , 1972) t r e n d i n g northwest a c r o s s the s h e l f t o i n t e r s e c t the c o n t i n e n t a l s l o p e a t a depth of about 400 m. East of the canyon, the s h e l f has a w i d t h of about 100 km t o the s h e l f break a t a depth of about 70 m; west of the canyon, the s h e l f i s a p p r o x i m a t e l y 50 km wide. Depths near t h e c o a s t a r e h i g h l y v a r i a b l e , b e i n g l e s s than 10 m i n the e a s t over the subaqueous Mackenzie D e l t a , i n c r e a s i n g t o 50 m w i t h i n 10 km of Kay P o i n t and t o 100 m the same d i s t a n c e o f f H e r s c h e l I s l a n d . A submarine r i d g e , w i t h a maximum de p t h of about 14 m, exten d s from Kay P o i n t northwest t o H e r s c h e l I s l a n d , s e p a r a t i n g a deep d e p r e s s i o n known i n f o r m a l l y as H e r s c h e l B a s i n from Mackenzie Bay. H e r s c h e l B a s i n s h o a l s toward the s o u t h e a s t and the waters 32 of P h i l l i p s Bay, o f f the Babbage E s t u a r y , a r e g e n e r a l l y s h a l l o w w i t h depths i n the range 5-7 m some 3 km o f f s h o r e . The t o t a l l e n g t h of t h e Yukon c o a s t i s a p p r o x i m a t e l y 250 km. Of t h i s , some 58 per c e n t t a k e s the form of a c o a s t a l c l i f f d e v e l o p e d i n f r o z e n u n c o n s o l i d a t e d Quaternary s e d i m e n t s , f r o n t e d by a narrow beach ( F i g u r e s 7A and 9 ) . The remainder c o n s i s t s of d e l t a i c , b a r r i e r - l a g o o n , and t i d a l i n l e t f e a t u r e s . The combined l e n g t h of b a r r i e r s h o r e l i n e i s a p p r o x i m a t e l y 67 km. E x t e n s i v e s h a l l o w lagoons a r e p r e s e n t b e h i n d the c o a s t a l b a r r i e r s ( F i g u r e 1 0 ) . Morphometric d a t a f o r Yukon c o a s t b a r r i e r s and lagoons a r e g i v e n i n Table 2. Twenty lagoons have been c a t a l o g u e d , r a n g i n g i n a r e a from 6.8x10 4 t o 4.5x10 7 m2; the Babbage E s t u a r y i s among the l a r g e s t . I n d i v i d u a l b a r r i e r systems range i n l e n g t h from ^100 m t o more than 20 km ( i n c l u d i n g i n l e t s ) , w i t h i n l e t / b a r r i e r l e n g t h r a t i o s r a n g i n g from z e r o t o more than one. The b a r r i e r s a r e t y p i c a l l y narrow and low (mean w i d t h l e s s than 200 m, mean berm h e i g h t l e s s than 2 m). Many of the lagoon systems a r e s t r o n g l y i n f l u e n c e d by f r e s h w a t e r r u n o f f , p a r t i c u l a r l y d u r i n g and f o l l o w i n g the snowmelt season. V a l u e s of t h e r a t i o A J _ , / A D , where A L i s l a g o o n a r e a and A D the a r e a d r a i n i n g t o the lagoon system, p r o v i d e a rough measure of p o t e n t i a l snowmelt r u n o f f impact on the e s t u a r i n e system, a l t h o u g h the hypsometry of the d r a i n a g e b a s i n may be i m p o r t a n t and deeper s u b m e r g e d - v a l l e y e s t u a r i e s can be e x p e c t e d t o respond i n a manner d i f f e r e n t t o t h a t of s h a l l o w FIGURE 10 B a r r i e r s and lagoons at S t o k es P o i n t (A) and a t K i n g P o i n t ( B ) , c e n t r a l Yukon c o a s t ; A: August 1976; B: August 1975. T A B L E 2 Morphometry o f l a g o o n s and b a r r i e r s o f t h e Yukon c o a s t . (m 2) ( t\u00C2\u00BB 2 ) ma p , a b . c , d code name I A 1 C l a r e n c e 3 .2x10* 2 .9x10, 2 Backhouse 1 .9x10^ 8 .6x10' 3 Mai colm-1 2 .8x10* 1 .8x10 ' 4 Malcolm-2 1 .4x10\u00C2\u00B0 3 .3x10' 5 Nunaluk 1 .5x10 ' 7 .3x10' 6 Workboat 4 . 5 x l o ' 4 .4x10' 7 P a u l i n e 2 .6x10^ 2 .7x10\u00C2\u00B0 8 P t a r m i g a n h .1x10* 5 .2x10' 9 un-n ame d 9 .0x10, 1 .1x10\u00C2\u00B0 10 Whale 2 .3x10* 1 .9x10' 11 r i a- 1 . 1 \u00E2\u0080\u00A2 3 x l 0 f t 5 .1x10* 12 Ro l.an d J. .8x10\u00C2\u00B0 2 .7x10* 13 S t okes-1 1 .9x10\u00C2\u00B0 3 .7x10* 1A . St o k e s - 2 6 \u00E2\u0080\u00A2 l x l 0 6 1 .1x10* 15 S p r i n g - P h i l l i p s 1 .6x10\u00C2\u00B0 8 .0x10\u00C2\u00B0 16 Babbage 2 . 8 x l o ' 5 .0x10\" 17 K i n g 6 .3x10= 1 .6x10\u00C2\u00B0 18 r i a - 2 6 .8x10* 3 .6x10, 19 r i a- 3 6 .3x10, 4 .7x10' 20 S h i n g l e 4 . 0x10 4 . 7x10 (m) (m) (n>) (o) A / A r \u00E2\u0080\u0094\u00C2\u00A3B---B--0 01 30 2 750 1200 0 00 = 20 = 200 860 0 02 0 1500 190 0 04 0 5250 270 0 00 [1370] 18750 750 163 1.49 1 0 [2125! 6050 5500 0 10 750 525 200 0 08 [ 0] 5000 820 0 08 0 675 130 0 12 <40 1550 1500 0 03 0 = 100 1300 0 01 <70 570 2800 0 51 [<300] r \u00C2\u00B0<3000 630 0 56 [ 0] = 2000 310 0 00 <400 5250 280 0 01 2020 4380 4400 61 0.90 0 39 o n 1500 420 0 19 <10 120 \u00E2\u0080\u00A2 566 0 01 <20 350 1800 0 09 10500 7250 2300 141 1.53 a : see F i g u r e 1 b: some names i n f o r m a l c : a r e a of l a g o o n d: d r a i n a g e a r e a ( i n p a r t a f t e r McDonald and L e w i s , 1973, t a b l e I I ) e: t o t a l i n l e t w i d t h f : l a g o o n w i d t h measure b* = A T / ( L - + L-) L L I D [ ] : e x c l u d e s p a s s a g e s between l a g o o n s a f t e r Lewis and F o r b e s , 1974 h: mean s u b a e r i a l b a r r i e r w i d t h i : mean berm h e i g h t j : mean f o r e s h o r e s l o p e k: mean n e a r s h o r e s l o p e tn: opened between 1970 and 1972 n: c l o s e d b e f o r e 1972; i n 1954, geometry was L I=300m, L g=1200m Table 2 35 e s t u a r i e s such as the Babbage. The r a t i o A L / A D ranges from l e s s than 0.01 t o a maximum of 1.02; f o r the Babbage E s t u a r y , A L/A D=0.01. The r a t i o of lagoon a r e a t o b a r r i e r - p l u s - i n l e t l e n g t h , kL/(L-B+L1) , has the d i m e n s i o n of l e n g t h and may be c o n s i d e r e d a measure of mean c o a s t - n o r m a l lagoon w i d t h . By t h i s measure, the Babbage E s t u a r y , Workboat Passage (between H e r s c h e l I s l a n d and the m a i n l a n d s h o r e ) , Roland Bay, the embayment b e h i n d S h i n g l e P o i n t s p i t , and the l a r g e submerged v a l l e y e a s t of K i n g P o i n t C r i a 3') s t a n d a p a r t from the o t h e r systems. R o l a n d Bay, r i a - 3 , and the Babbage E s t u a r y a r e a l l v a l l e y systems submerged d u r i n g the l a t e - H o l o c e n e t r a n s g r e s s i o n , as a r e the Backhouse Lagoon, the s o u t h e r n p o r t i o n of the S p r i n g - P h i l l i p s system, and the o t h e r unnamed lagoons i d e n t i f i e d as r i a s i n T a b l e 2. The S p r i n g R i v e r v a l l e y was undoubtedly f l o o d e d a l s o , but has s i n c e been f i l l e d w i t h sediment. Other l a g o o n s , such as those a t K i n g P o i n t and Whale Bay, appear t o have deve l o p e d i n former l a k e b a s i n s breached by c o a s t a l e r o s i o n . McDonald and Lewis (1973) have p r e s e n t e d morphometric d a t a f o r t h i r t e e n d r a i n a g e b a s i n s t h a t empty i n t o the B e a u f o r t Sea a l o n g the Yukon c o a s t . These i n c l u d e the F i r t h , w i t h a d r a i n a g e a r e a of 6200 km 2, the Babbage w i t h 5000 km 2, the Blow w i t h 3700 km 2, and the Malcolm w i t h 1100 km 2. Hypsometric c u r v e s f o r the Babbage and f o r Deep Creek, the two r i v e r s of p r i m a r y i n t e r e s t i n the p r e s e n t c o n t e x t , a r e g i v e n i n F i g u r e 11. There i s a marked c o n t r a s t between the two b a s i n s , Deep Creek b e i n g l a r g e l y c o n f i n e d t o the c o a s t a l p l a i n , w h i l e 36 O O C M - i A R E A (%) FIGURE 11 H y p s o m e t r i c c u r v e s f o r Babbage R i v e r and Deep Creek d r a i n a g e b a s i n s ( m o d i f i e d a f t e r McDonald and L e w i s , 1973, f i g u r e 6 ) . 37 the Babbage and t r i b u t a r i e s d r a i n p a r t s of the Barn and B r i t i s h M o u n t a i n s . As a r e s u l t , r u n o f f response from the two b a s i n s , p a r t i c u l a r l y snowmelt r u n o f f , may be e x p e c t e d t o d i f f e r s i g n i f i c a n t l y (McDonald and L e w i s , 1973, p.22; c f . s e c t i o n 3.1.1 b e l o w ) . A c c u m u l a t i o n s of d e l t a i c sediment a t the c o a s t v a r y c o n s i d e r a b l y i n s i z e and morphology. The fan d e l t a s of the Malcolm and F i r t h and i n e a s t e r n C l a r e n c e Lagoon a r e dominated by b r a i d e d c h a n n e l networks; a t o t h e r l o c a t i o n s , the d e l t a s are c h a r a c t e r i z e d by low s u p r a t i d a l f l o o d p l a i n s w i t h numerous l a k e s and t i d a l d i s t r i b u t a r y c h a n n e l s . The l a r g e s t d e l t a s of the l a t t e r type a r e the Blow and the Babbage (McCloy, 1970, 1971; McDonald and L e w i s , 1973; Lewis and F o r b e s , 1974). Major changes i n the p h y s i c a l environment of the Yukon c o a s t r e g i o n have o c c u r r e d d u r i n g l a t e Q u a t e r n a r y t i m e ; i n d e e d , r a p i d c o a s t a l e r o s i o n has produced s u b s t a n t i a l changes i n the c o a s t a l c o n f i g u r a t i o n d u r i n g the p a s t c e n t u r y and a h a l f , s i n c e the r e c o n n a i s s a n c e by F r a n k l i n (1828). The e x i s t i n g geomorphology, l o n g - t e r m t r e n d s i n the b e h a v i o u r of the e s t u a r i n e systems, and the n a t u r e of sediment s t o r a g e , can o n l y be u n d e r s t o o d i n the c o n t e x t of t h e s e changes, which a r e the s u b j e c t of the f o l l o w i n g s e c t i o n . 38 2 . 1 . 2 L A T E - Q U A T E R N A R Y P A L A E O G E O G R A P H Y R a p i d e r o s i o n a l t r a n s g r e s s i o n i s o c c u r r i n g a l o n g m u c h o f t h e Y u k o n c o a s t a t p r e s e n t . P h o t o g r a m m e t r i c w o r k c a r r i e d o u t b y G . M i z e r o v s k y ( M c D o n a l d a n d L e w i s , 1 9 7 3 ) h a s r e v e a l e d t h a t a s m u c h a s 88 m o f c o a s t a l r e c e s s i o n o c c u r r e d a t K a y P o i n t d u r i n g t h e i n t e r v a l 1 9 5 2 - 1 9 7 0 . M a c k a y ( 1 9 6 3 b ) d i s c u s s e d h i s t o r i c a l a n d g e o m o r p h o l o g i c a l e v i d e n c e f o r l o n g - t e r m c o a s t a l r e c e s s i o n , i n c l u d i n g t h e v i r t u a l d i s a p p e a r a n c e o f a m a j o r p r o m o n t o r y a t S a b i n e P o i n t s i n c e 1 9 0 5 , s u b s t a n t i a l c h a n g e s d u r i n g t h e s a m e i n t e r v a l a t K i n g P o i n t ( F i g u r e 1 0 B ) a m o u n t i n g t o s e v e r a l m e t r e s o f r e c e s s i o n p e r y e a r a t t h e w e s t e r n e n d o f t h e l a g o o n , a n d r e m a r k a b l y r a p i d c o a s t a l r e t r e a t a t K a y P o i n t s i n c e F r a n k l i n ' s s u r v e y i n 1 8 2 6 . K a y P o i n t i s t h e m o s t r a p i d l y r e t r e a t i n g p a r t o f t h e c o a s t a t t h e p r e s e n t t i m e ( M c D o n a l d a n d L e w i s , 1 9 7 3 ) . A n i n t e r p r e t a t i o n o f F r a n k l i n ' s m a p , t a k i n g i n t o a c c o u n t t h e p r e s e n t b a t h y m e t r y a n d . h i s o b s e r v a t i o n o f l a t i t u d e ( 6 9 \u00C2\u00B0 1 8 ' 4 5 \" N ) i n t h e v i c i n i t y o f t h e 1 8 2 6 s p i t ( F r a n k l i n , 1 8 2 8 , a p p e n d i x V ) , s u g g e s t s t h e t e n t a t i v e 1 8 2 6 s h o r e l i n e p l o t t e d i n F i g u r e 1 2 . T h i s i n t e r p r e t a t i o n y i e l d s a n e x t r a o r d i n a r y m e a n r e c e s s i o n r a t e f o r t h e K a y P o i n t p r o m o n t o r y i n e x c e s s o f 4 0 m a \" 1 . I t i n d i c a t e s t h a t t h e p l a n f o r m a n d d y n a m i c e n v i r o n m e n t o f t h e B a b b a g e E s t u a r y m a y h a v e b e e n r a d i c a l l y d i f f e r e n t a s r e c e n t l y a s 1 5 0 y e a r s a g o . C o n t i n e n t a l i c e o f e a r l y - o r p r e - W i s c o n s i n a g e f l o w e d w e s t a l o n g t h e Y u k o n c o a s t a s f a r a s t h e p r e s e n t F i r t h R i v e r o u t l e t , w e s t o f H e r s c h e l I s l a n d ( H u g h e s , 1 9 7 2 ) . T h i s a d v a n c e h a s b e e n t e r m e d t h e B u c k l a n d G l a c i a t i o n . b y R a m p t o n ( i n p r e s s ) . I t FIGURE 12 T e n t a t i v e l a t e - W i s c o n s i n a n and 1826 palaeogeography between Kay P o i n t and H e r s c h e l I s l a n d ( i n p a r t a f t e r F r a n k l i n , 1826). 40 caused w i d e s p r e a d d e f o r m a t i o n of p r e - e x i s t i n g f r o z e n sediments and a s s o c i a t e d ground i c e (Mackay, 1959; Mackay e t a l . , 1972) and may have c r e a t e d H e r s c h e l B a s i n , e m p l a c i n g much of the m a t e r i a l now forming H e r s c h e l I s l a n d (Mackay, 1959). A prominent moraine r i d g e p a r a l l e l t o the Yukon c o a s t , p r e v i o u s l y c o n s i d e r e d a p o s s i b l e l a t e - W i s c o n s i n a n i c e l i m i t ( c f . Hughes, 1972; Mackay et a l . , 1972), i s now c o n s i d e r e d t o r e p r e s e n t the s o u t h e r n margin of a major s t i l l s t a n d or readvance, termed the Sabine phase, of the B u c k l a n d G l a c i a t i o n (Rampton, i n p r e s s ) . The major v a l l e y now o c c u p i e d by Deep Creek and the Babbage D e l t a , p a r a l l e l t o the Yukon c o a s t and a l i g n e d w i t h the major a x i s of H e r s c h e l B a s i n , may be a t t r i b u t a b l e i n p a r t t o g l a c i a l s c our and i n p a r t t o l a t e - B u c k l a n d p r o g l a c i a l r u n o f f ( c f . Mackay, 1959). I c e of the l a t e - W i s c o n s i n a n g l a c i a t i o n advanced seaward t h r o u g h the Mackenzie D e l t a t o a l i m i t i n the v i c i n i t y of the d i s t a l d e l t a (J.R. Mackay, p e r s o n a l communication, 1979; Rampton, i n p r e s s ) . T h i s l i m i t i s based on the i n t e r s e c t i o n of the upper i c e s u r f a c e w i t h p r e s e n t sea l e v e l (Rampton, i n p r e s s , f i g u r e 1 8 ) . L a t e - W i s c o n s i n a n i c e i s b e l i e v e d t o have a t t a i n e d i t s maximum e x t e n t i n the r e g i o n between 13500 and 14000 r a d i o c a r b o n y e a r s B.P. ( P r e s t , 1969). The Yukon c o a s t was not d i r e c t l y a f f e c t e d by g l a c i a t i o n a t t h a t t i m e . E v i d e n c e f o r p o s t - B u c k l a n d marine t r a n s g r e s s i o n t o l e v e l s h i g h e r than p r e s e n t sea l e v e l i n the n o r t h e r n Yukon and M a ckenzie D e l t a r e g i o n i s f r a g m e n t a r y and i n c o n c l u s i v e (see F o r b e s , 1980, pp.. 76-77). D u r i n g the l a t e - W i s c o n s i n a n 41 g l a c i a t i o n , on the other hand, sea l e v e l ' appears to have dropped to a minimum some 60-80 m below the present l e v e l (Forbes, 1980), leading to creation of a lake (here designated Lake Herschel) at about -15\u00C2\u00B11 m elevation in Herschel Basin (Figure 12). The Babbage River may have drained to Lake Herschel for 15000 years or more. An extensive terrace at the southeast end of the Lake Herschel basin (Figures 12 and 13) is interpreted as a delta formed by sediments from the Babbage River and t r i b u t a r i e s , including Spring River. Available data and associated ambiguities r e l a t i n g to p o s t g l a c i a l sea levels in the southern Beaufort Sea have been discussed in d e t a i l by Forbes (1980). Information relevant to the Holocene transgression i s extremely fragmentary. It appears that limited i s o s t a t i c depression beneath late-Wisconsinan ice may have occurred in the Mackenzie Delta area and to the southeast, while a marginal forebulge may have existed to the north and west. There i s some evidence, also, of recent and perhaps continuing regional submergence. Despite ambiguities at individual s i t e s , data available from the Yukon coast (Appendix A.13), from the outer Mackenzie Delta (Mackay, 1963a, pp.88-94; Mackay and Stager, 1966), and from the Alaska coast (Faas, 1966; E . Reimnitz, personal communication, 1978), provide strong c o l l e c t i v e support for r i s i n g sea l e v e l throughout the mid- to late Holocene, in excess of the trend attributable to global variation in g l a c i a l volume during the past few thousand years (cf. Walcott, 1975). The data therefore point to a hypothesis of broad regional submergence 42 FIGURE 13 P r o f i l e a l o n g a x i s of Babbage V a l l e y and H e r s c h e l B a s i n , showing h y p o t h e s i z e d l a t e - W i s c o n s i n a n water l e v e l i n Lake H e r s c h e l (broken l i n e ) and p r e s e n t y a l l e y - a x i s s l o p e s of Babbage R i v e r and t r i b u t a r i e s . 43 on t h e Yukon c o a s t d u r i n g t h e H o l o c e n e . The t e n t a t i v e s e a l e v e l h i s t o r y i l l u s t r a t e d i n F i g u r e 14 s h o u l d be r e g a r d e d f o r t h e t i m e b e i n g a s an e d u c a t e d g u e s s a t b e s t . I t c o n f o r m s i n g e n e r a l o u t l i n e t o a p l a u s i b l e s e q u e n c e i n v o l v i n g some i s o s t a t i c r e b o u n d i n t h e M a c k e n z i e D e l t a f o l l o w i n g d e g l a c i a t i o n , f o l l o w e d by s u b s i d e n c e a s a m a r g i n a l f o r e b u l g e moved t h r o u g h t h e a r e a , a c c o m p a n i e d by r a p i d s e d i m e n t a t i o n ( F o r b e s , 1 9 8 0 ) . On t h i s b a s i s , t h e b e g i n n i n g o f t h e H o l o c e n e m a r i n e t r a n s g r e s s i o n i n H e r s c h e l B a s i n a n d t h e Babbage R i v e r v a l l e y may be a s s i g n e d a t e n t a t i v e d a t e o f a b o u t 6000 y e a r s B.P. D a t e s f r o m t h e Babbage D e l t a a n d H e r s c h e l I s l a n d ( A p p e n d i x A.13) s u g g e s t t h a t s e a l e v e l i n t h i s a r e a may h ave been a s much a s 1 m b e l o w p r e s e n t datum a s r e c e n t l y a s 1000 y e a r s a g o ; t h e d a t a a r e somewhat a m b i g u o u s , due t o t h e p o s s i b i l i t y o f thaw s u b s i d e n c e a t t h e s i t e s . 44 2 0 T 1 0 0 -- 1 0 - -- 2 0 - --I - 3 0 - -z o 0 3 D 2 R-|3 D3 5 -40+-> LJ - 5 0 - 6 0 - -- 7 0 - -REGION 1 southern Banks Island 2 Mackenzie Delta 3 Yukon coast 4 Alaska coast ORIGINAL POSITION LTD above datum I H at datum below datum 4 \ \u00E2\u0080\u00A2 2 D 2 1 2 3 4 TIME B.P. (xlOOO years) 1 0 11 1 2 1 3 1 4 1 5 FIGURE 14 Data base and t e n t a t i v e h i s t o r y of l a t e Wisconsinan and Holocene sea l e v e l s i n Mackenzie D e l t a and on the Yukon coast ( a f t e r Forbes, 1980). 45 2.2 ATMOSPHERIC ENVIRONMENT 2.2.1 CONTEMPORARY CLIMATE The p r e s e n t r e g i o n a l c l i m a t e of the n o r t h e r n Yukon and s o u t h e r n B e a u f o r t Sea i s s t r o n g l y s e a s o n a l , w i t h s e v e r e w i n t e r s and c o o l summers, marked by a pronounced mesoscale temperature g r a d i e n t normal t o the c o a s t . The monthly mean a i r temperature a t S h i n g l e P o i n t (68\u00C2\u00B057'N, 137\u00C2\u00B013'W) ranges from a maximum of 10.7\u00C2\u00B0C i n J u l y t o a minimum of -27.7\u00C2\u00B0C i n F e b r u a r y ( F i g u r e 1 5 ) . The t e m p e r a t u r e regime a t Komakuk Beach, some 75 km t o t h e west of Kay P o i n t , i s s i m i l a r , w i t h somewhat c o o l e r t e m p e r a t u r e s i n J u l y , due i n p a r t t o the p e r s i s t e n c e of sea i c e c l o s e t o the c o a s t west of H e r s c h e l I s l a n d . The mean a n n u a l s c r e e n t e m p e r a t u r e i s -10.4\u00C2\u00B0C a t S h i n g l e P o i n t (1959-1973) and -11.6\u00C2\u00B0C a t Komakuk Beach (R.E. Wahl, A.E.S. Yukon Weather O f f i c e , p e r s o n a l communication, 1978); t h i s compares w i t h a contemporary mean annua l n e a r - s u r f a c e ground temperature on the Yukon C o a s t a l P l a i n of a p p r o x i m a t e l y -8.5\u00C2\u00B11.5\u00C2\u00B0C (Mackay, 1975b, pp.173-174). E q u i l i b r i u m ground temperature v a r i e s l o c a l l y w i t h v a r y i n g snow c o n d i t i o n s (Judge, 1973; Mackay and MacKay, 1974), w i t h p r o x i m i t y t o major water b o d i e s , and of c o u r s e w i t h d e p t h . Mean a n n u a l p r e c i p i t a t i o n t o t a l s a r e low throughout the r e g i o n , amounting t o 188 mm (of which 76 mm f a l l s as snow) a t S h i n g l e P o i n t , 127 mm (51 mm as snow) a t Komakuk Beach, and 206 mm (97 mm as snow) a t O l d Crow, s o u t h of t h e mountains. In w i n t e r , the r e g i o n i s dominated by a dome of r e l a t i v e l y c o l d and s t a b l e c o n t i n e n t a l A r c t i c (cA) a i r , which d i v e r t s most f r o n t a l lows around i t s p e r i p h e r y (Burns, 1973, pp.18-19). 4 6 FIGURE 15 M o n t h l y t e m p e r a t u r e and p r e c i p i t a t i o n d a t a f o r Komakuk Beach and S h i n g l e P o i n t , on t h e Yukon c o a s t , and f o r O l d Crow, s o u t h of the mountains ( d a t a c o u r t e s y A t m o s p h e r i c Environment S e r v i c e ) . 47 Anomalous warming t r e n d s a s s o c i a t e d w i t h o c c a s i o n a l p e n e t r a t i o n of l o w - p r e s s u r e c e n t r e s i n t o the r e g i o n may produce temperature e x c u r s i o n s as g r e a t as +30K (Wiseman and S h o r t , 1976, p.236); i n some c a s e s , these events c u l m i n a t e i n p o s i t i v e a i r te m p e r a t u r e s a l o n g the Yukon c o a s t and may ge n e r a t e w i n t e r storm s u r g e s . The t r a n s i t i o n from w i n t e r t o summer, of p a r t i c u l a r importance because of the major r o l e of snowmelt r u n o f f i n the sediment t r a n s p o r t p r o c e s s , i s marked by r a p i d l y i n c r e a s i n g r a d i a t i o n i n p u t s , changes i n a l b e d o due t o snow a b l a t i o n , n orthward r e t r e a t of cA a i r , and more f r e q u e n t c y c l o n i c a c t i v i t y ( B u r n s , 1973, p.16). In summer, the Yukon c o a s t i s dominated by c o o l and moist m a r i t i m e A r c t i c (mA) a i r , w h i l e r e l a t i v e l y warm and dry P a c i f i c a i r p e n e t r a t e s t o the c o a s t , on average, about 20 per cen t of the time i n J u l y ( B r y s o n , 1966). The modal J u l y p o s i t i o n of the A r c t i c / P a c i f i c f r o n t a l zone l i e s a c r o s s the n o r t h e r n Yukon (Reed and K u n k e l , I960; B r y s o n , 1966). Low p r e s s u r e systems p a s s i n g eastward through the r e g i o n a l o n g the A r c t i c f r o n t g e n e r a t e much of the summer p r e c i p i t a t i o n (Hare, 1969, p.188; Burns, 1973, p.19). C y c l o n i c a c t i v i t y i s a t a maximum i n J u l y and August, which a r e the w e t t e s t months of the year ( B u r n s , 1973, p.18; F i g u r e 15).. P r e c i p i t a t i o n a l s o a r i s e s from i n s t a b i l i t y of mA a i r moving a c r o s s the warmer c o a s t a l p l a i n and a d j a c e n t mountains, where i t i s heated from below. E x t e n s i v e low c l o u d i n e s s and fog a r e common d u r i n g the summer months, when c o a s t a l waters a r e l a r g e l y i c e - f r e e . 48 P r e c i p i t a t i o n was measured a t Kay P o i n t d u r i n g p a r t s of the 1974-1976 summer seasons, i n support of the h y d r o l o g i c a l i n v e s t i g a t i o n s d e s c r i b e d below. Summary s t a t i s t i c s a r e p r e s e n t e d i n Ta b l e 3. Note the s t r i k i n g d i f f e r e n c e s between y e a r s , p a r t i c u l a r l y the h i g h J u l y p r e c i p i t a t i o n i n 1974 and the l a r g e number of t r a c e e v e n t s i n 1975. The g r e a t e r p a r t of J u l y 1975 p r e c i p i t a t i o n o c c u r r e d near the end of the month; t h e t o t a l f o r the 30-day i n t e r v a l 16 June t o 15 J u l y amounted t o o n l y 2.03 mm p l u s n i n e t r a c e e v e n t s ( t h i s r e s u l t e d i n ex t r e m e l y low r u n o f f r a t e s i n the Babbage R i v e r i n l a t e J u l y : Q<0.2 mm/day; see s e c t i o n 3.1.1). G i v e n t h e s i z e and hypsometry of the Babbage R i v e r b a s i n ( F i g u r e 1 1 ) , i t i s improbable t h a t p r e c i p i t a t i o n a t the c o a s t i s r e p r e s e n t a t i v e of the mean b a s i n p r e c i p i t a t i o n . There a r e no s t a t i o n s i n the mountains of the n o r t h e r n Yukon T e r r i t o r y , but d a t a f o r a s i n g l e summer season (1974) a r e a v a i l a b l e from a camp a t Sam Lake (68\u00C2\u00B025'N, 138\u00C2\u00B037'W; Pearson and Nagy, 1976). These d a t a ( f u r n i s h e d by R.E. Wahl, p e r s o n a l communication, 1978) p r o v i d e some i n d i c a t i o n of the s p a t i a l v a r i a b i l i t y of n e a r - s u r f a c e c o n d i t i o n s d u r i n g an u n u s u a l l y c o o l and wet season. P r e c i p i t a t i o n d a t a were a l s o c o l l e c t e d a t H e r s c h e l I s l a n d i n 1974 (Canada, A t m o s p h e r i c Environment S e r v i c e , M o n t hly Record) and an u n u s u a l l y complete p i c t u r e of geographic v a r i a b i l i t y i s t h e r e f o r e a v a i l a b l e f o r t h a t season. C u m u l a t i v e p r e c i p i t a t i o n s e r i e s , b e g i n n i n g w i t h the f i r s t date of o b s e r v a t i o n s a t Kay P o i n t , have been computed f o r Komakuk Beach, H e r s c h e l I s l a n d , Kay P o i n t , and S h i n g l e P o i n t , t o y i e l d 49 TABLE 3 M o n t h l y p r e c i p i t a t i o n d a t a , Kay P o i n t . p r o p o r t i o n number e s t i m a t e d t o t a l of r e c o r d o b s e r v e d of t r a c e t o t a l snow month/^ear m i s s i n g p_r e c i p_i t a t i o n _ e v e n t s EE\u00C2\u00A3\u00C2\u00A3iEi\u00C2\u00A3\u00C2\u00A3\u00C2\u00A3i\u00C2\u00A3!!_\"\u00C2\u00A3\u00C2\u00A3\u00C2\u00A3E % mm mm mm J u l y 1974 32 (17. 74) 3 >18. 1 0 Aug 1974 32 (22. 34) 3 >22 . 7 0 J une 1975 40 ( 2. 03) 4 > 2 . 5 >0 J u l y 1975 0 7 . 07 14 8. 8 0 Aug 1975 0 25 . 47 17 27 . 6 = 1 June 1976 0 29 . 76 6 30 . 5 T J u l y 1976 0 8. 74 1 8 . 9 4 Aug 1976 0 24 . 10 3 24 . 5 0 Sept 1976 67 ( 3. 00) 1 . > 3. 1 >0 50 an e a st-west t r a n s e c t a l o n g the c o a s t , and f o r Sam Lake and O l d Crow, t o y i e l d a n o r t h - s o u t h t r a n s e c t a c r o s s the mountains; the s e r i e s a r e p l o t t e d i n F i g u r e 16. In 1974, the p r e c i p i t a t i o n t o t a l s were v e r y much h i g h e r on the s o u t h f l a n k of the mountains than a l o n g the c o a s t . A p a r t from the H e r s c h e l I s l a n d d a t a , p r e c i p i t a t i o n t o t a l s appear t o have been r e l a t i v e l y c o n s i s t e n t a l o n g the c o a s t , b e i n g somewhat h i g h e r i n the e a s t a t S h i n g l e P o i n t ; t h i s p a t t e r n h e l d f o r 1975 and 1976 a l s o . I t appears t h a t S h i n g l e P o i n t d a t a may p r o v i d e the b e s t a v a i l a b l e e s t i m a t e s of p r e c i p i t a t i o n i n the Deep Creek b a s i n but a r e a r e l a t i v e l y u n r e l i a b l e g u i d e t o c o n d i t i o n s i n the upper Babbage R i v e r . Much of the i m p o r t a n t s y n o p t i c - s c a l e v a r i a n c e i n e s t u a r i n e systems of t h e Yukon c o a s t i s a s s o c i a t e d w i t h c y c l o n i c a c t i v i t y i n J u l y and August. The v a r i a n c e d e n s i t y spectrum of h o u r l y p r e s s u r e a t Kay P o i n t d u r i n g summer 1976 i s p r e s e n t e d i n F i g u r e 17. The spectrum i s e s s e n t i a l l y monotonic, w i t h v a r i a n c e d e n s i t y v a r y i n g as f \" 5 , a p p r o x i m a t e l y , i n the range 0.5 10\" 1 Cf F R E Q U E N C Y ( c y c l e s / h r O ID-FIGURE 17 V a r i a n c e d e n s i t y spectrum o f . h o u r l y a t m o s p h e r i c p r e s s u r e a t Ray P o i n t , summer 1976; the 90% c o n f i d e n c e i n t e r v a l , assuming a c h i - s q u a r e d i s t r i b u t i o n w i t h 10 degrees of freedom, i s g i v e n a t upper r i g h t . 53 N 1 9 7 5 w s N 1976 FIGURE 18 R e l a t i v e f r e q u e n c i e s of h o u r l y wind speed (m/s) by d i r e c t i o n , 1975 and .1976 summer r e c o r d s , Kay P o i n t . 54 F i g u r e 18. The Kay P o i n t d a t a i n d i c a t e p r e v a i l i n g and dominant winds from the northwest i n these two seasons, w i t h a s t r o n g secondary maximum out of the s o u t h e a s t i n 1976. Winds a t the c o a s t may d i f f e r s i g n i f i c a n t l y from winds o f f s h o r e ; Burns (1973, p.176) has p o i n t e d out t h a t winds over the water may be two t o f o u r t i m e s g r e a t e r than a t nearby c o a s t a l s t a t i o n s , p a r t i c u l a r l y i n the p r e s ence of a s u r f a c e c o l d f r o n t or of a t r o u g h of warm a i r a l o f t . V a r i a n c e d e n s i t y s p e c t r a of n o r t h e a s t e r l y and n o r t h w e s t e r l y components of wind s t r e s s a t Kay P o i n t ( F i g u r e 19) show maxima a t a p p r o x i m a t e l y T=5 days, w h i l e the n o r t h e a s t e r l y component e x h i b i t s a peak at T=l day, a s c r i b e d t o a l a n d - s e a breeze e f f e c t . However, the p a r t i c u l a r f r e q u e n c i e s or p e r i o d s c o r r e s p o n d i n g t o v a r i a n c e d e n s i t y peaks i n the s y n o p t i c range are of l e s s concern here than the r e l a t i v e d i s t r i b u t i o n of v a r i a n c e among m a c r o s c a l e , m e s o s c a l e , and m i c r o s c a l e p r o c e s s e s . In an a n a l y s i s of the e s t u a r i n e system, the p a r t i t i o n between mesoscale ( s y n o p t i c - and s e a s o n a l - s c a l e ) e v e n t s and e v e nts a s s o c i a t e d w i t h d i u r n a l or s h o r t e r p e r i o d s ( e s p e c i a l l y t i d a l e f f e c t s ) i s of major i n t e r e s t . S y n o p t i c - s c a l e p r o c e s s e s , i n p a r t i c u l a r , may assume c o n s i d e r a b l e importance i n m i c r o t i d a l s e t t i n g s such as the s o u t h e r n B e a u f o r t Sea. FIGURE 19 V a r i a n c e d e n s i t y s p e c t r a f o r n o r t h e a s t e r l y and n o r t h w e s t e r l y components of h o u r l y wind s t r e s s , Kay P o i n t , 1976. 56 2.2.2 LOW-FREQUENCY VARIABILITY OF CLIMATE When a n a t u r a l h y d r o l o g i c a l or s e d i m e n t o l o g i c a l system i s observ e d over a p e r i o d of a few y e a r s o n l y , hypotheses and c o n c l u s i o n s may be s e r i o u s l y b i a s e d by the presence of u n d e t e c t e d t r e n d s i n i n p u t v a r i a b l e s (see below) or even i n the parameters of the system, as e x e m p l i f i e d by the t r e n d s of sea l e v e l and c o a s t a l r e t r e a t d e s c r i b e d above ( s e c t i o n 2.1.2). F u r t h e r m o r e , w h i l e s i g n i f i c a n t d i f f e r e n c e s may be d e t e c t e d between y e a r s , the n a t u r e and magnitude of the lo w - f r e q u e n c y v a r i a n c e may not be r e a d i l y d e t e r m i n e d . For the s e r e a s o n s , the y e a r - t o - y e a r and l o n g e r - t e r m v a r i a b i l i t y of the ocean-atmosphere system, as they a f f e c t c o n d i t i o n s on the c e n t r a l Yukon c o a s t , a r e of g r e a t r e l e v a n c e t o the p r e s e n t s t u d y . Walsh and Johnson (1979) have i d e n t i f i e d y e a r - t o - y e a r v a r i a t i o n s of A r c t i c i c e e x t e n t e x c e e d i n g f i v e degrees of l a t i t u d e a t most l o n g i t u d e s and a s i g n i f i c a n t p o s i t i v e t r e n d of t o t a l i c e cov e r over the p a s t few y e a r s . Markham (1975, pp.35-45) p r e s e n t e d a c l a s s i f i c a t i o n of summer i c e c o n d i t i o n s i n the s o u t h e r n B e a u f o r t Sea and r e l a t e d t h e s e t o a s i m p l e model of. i c e c i r c u l a t i o n d r i v e n by the e a r l y w i n t e r s u r f a c e p r e s s u r e over the A r c t i c Ocean ( c f . A c k l e y and H i b l e r , 1977). Other models have been i n v e s t i g a t e d , i n c l u d i n g c o r r e l a t i o n s w i t h mean summer t e m p e r a t u r e s a t c o a s t a l s t a t i o n s and w i t h l o n g - t e r m p e r i o d i c i t i e s i n temperature (Rogers, 1978). C l a s s i f i c a t i o n s such as t h a t of Markham (1975) have l e d t o the i n t e r p r e t a t i o n t h a t a f o u r - or f i v e - y e a r p e r i o d i c i t y i s 57 c h a r a c t e r i s t i c of i c e c o n d i t i o n s o f f the B e a u f o r t Sea c o a s t (e.g . McLeod and Hodder, 1978). A n a l y s i s of summer te m p e r a t u r e s a t P o i n t Barrow (Rogers, 1978) shows s t a t i s t i c a l l y n o n - s i g n i f i c a n t v a r i a n c e peaks i n the band 415ppt) a g a i n s t the Yukon c o a s t w i t h both e a s t e r l y and w e s t e r l y winds. T h i s s i t u a t i o n a p p a r e n t l y d i d not h o l d i n the summer of 1974, when onshore winds and p e r s i s t e n t i c e cov e r c l o s e t o the c o a s t s i g n i f i c a n t l y a l t e r e d the s u r f a c e c i r c u l a t i o n and s a l i n i t y d i s t r i b u t i o n ( T a ble 4 ) . 68 TABLE 4 S e l e c t e d o b s e r v a t i o n s of s u r f a c e s a l i n i t y i n embayments of the c e n t r a l Yukon c o a s t and i n a d j a c e n t w a t e r s of M a c k e n z i e Bay. 1 a s t a t i o n s o u r c e b d a t e s 5.5 m s \" 1 f o r more than one hour. The c o m p u t a t i o n s were c a r r i e d out u s i n g mean h o u r l y windspeed a t Kay P o i n t over the d u r a t i o n of the e v e n t , e v e n t s b e i n g p a r t i t i o n e d when windspeed was h i g h l y v a r i a b l e . Comparison w i t h h o u r l y h i n d c a s t e s t i m a t e s f o r s e l e c t e d storms s u g g e s t s t h a t the s i m p l i f i e d p rocedure adopted may o v e r e s t i m a t e the mean s i g n i f i c a n t wave h e i g h t and p e r i o d . On the o t h e r hand, c o a s t a l wind d a t a might be e x p e c t e d t o y i e l d u n r e a l i s t i c a l l y low v a l u e s (see d i s c u s s i o n i n s e c t i o n 2.2.1 a b o v e ) . The t r e a t m e n t of n o r t h w e s t e r l y wind e v e n t s posed some d i f f i c u l t y , inasmuch as Kay P o i n t s p i t i s exposed t h r o u g h a narrow f e t c h window t o deepwater waves w i t h p e r i o d s T>4 s ge n e r a t e d northwest of H e r s c h e l I s l a n d . The f e t c h window has a w i d t h of about 1.3 km f o r T=5.4 s. R e f r a c t e d wave o r t h o g o n a l s converge on the b a t h y m e t r i c a l l y complex s h o a l a r e a n o r t h - n o r t h w e s t of Kay P o i n t . T h i s i s the. ar e a i n which e x t r a o r d i n a r i l y h i g h r a t e s of e r o s i o n appear t o have o c c u r r e d i n the r e c e n t p a s t (see s e c t i o n 2.1.2). The bathymetry i s s u f f i c i e n t l y complex t h a t o p e r a t o r e r r o r i n the r e f r a c t i o n 87 a n a l y s i s i s p r o b a b l y q u i t e s i g n i f i c a n t . Seven s i t e s have been i d e n t i f i e d w i t h c h a r t d e p t h s 0.24.5 s, f o r which the h i n d c a s t p r o c e d u r e appears t o y i e l d u n r e a l i s t i c a l l y low e s t i m a t e s . E s t i m a t e s of b r e a k e r h e i g h t show g r e a t e r s c a t t e r , perhaps r e f l e c t i n g a d d i t i o n a l e r r o r s i n the c o m p u t a t i o n of the b r e a k e r h e i g h t index (see b e l o w ) , as w e l l as e r r o r s i n t h e v i s u a l d a t a due t o s u b j e c t i v e assessment A WAVE PERIOD B WAVE HEIGHT T observed (s) observed H b lm) FIGURE 25 P l o t s of e s t i m a t e d v e r s u s o b s e r v e d wave p e r i o d and h e i g h t , Kay P o i n t s p i t . 89 of predominant wave h e i g h t . The b r e a k e r h e i g h t i n d e x , H B/H6, i s a f u n c t i o n of HQ/A and of ta n B ( I v e r s e n , 1953). Hb i s the s i g n i f i c a n t b r e a k e r h e i g h t ; HQ=K rH 0; K r i s a r e f r a c t i o n c o e f f i c i e n t ; A =gT 2 /27r and H 0 a r e the deepwater wavelength and waveheight, r e s p e c t i v e l y ; HQ/A i s a measure of the i n c i d e n t wave s t a b i l i t y ; and tan B i s the s h o r e f a c e s l o p e . The b r e a k e r h e i g h t index was computed from e m p i r i c a l r e s u l t s of Goda (summarized i n U.S.A. C o a s t a l E n g i n e e r i n g Research C e n t e r , 1973, f i g u r e 2-65), and r e f r a c t i o n c o e f f i c i e n t s , K r, were o b t a i n e d by g r a p h i c a l r e f r a c t i o n a n a l y s i s f o r a l l d i r e c t i o n s of i n c i d e n t wave approach and r e p r e s e n t a t i v e v a l u e s of i n c i d e n t wave p e r i o d , f o l l o w i n g s t a n d a r d p r o c e d u r e s ( c f . U.S.A. C o a s t a l E n g i n e e r i n g Research C e n t e r , 1973). Examples of the r e f r a c t i o n p a t t e r n s f o r waves a p p r o a c h i n g from the n o r t h - n o r t h w e s t and from the e a s t a r e g i v e n i n F i g u r e 26. For l i n e a r A i r y waves, the t o t a l wave energy per u n i t a rea i s g i v e n by E=PgH 2/8 and the energy f l u x or wave power can be shown t o be P=ECn, where C=[gT t a n h ( 2 i r h / A ) ]/2 ^ i s the phase speed, Cn i s the . group speed, and n = [ l + 2 k h / s i n h ( 2 k h ) ] / 2 , k=2^/X ( s e e , f o r example, Komar, 1976b, p. 4 6 ) . Because sediment t r a n s p o r t i s a p p a r e n t l y governed by the r a t e of energy d i s s i p a t i o n per u n i t bed a r e a (Bagnold, 1963), and because the l o n g s h o r e t r a n s p o r t r a t e i s p r o p o r t i o n a l t o the l o n g s h o r e or t a n g e n t i a l component of the wave power i n the br e a k e r zone (Komar and Inman, 1970), the components ( p t ' P n ) t a n g e n t i a l and normal t o shore a t the depth of b r e a k i n g a r e among the most i m p o r t a n t measures of c o a s t a l 5 m i s o b a t h w a v e o r t h o g o n a l ' O h i n d c a s t s i te \" FIGURE 26 R e f r a c t i o n of waves a t T=4.2s a p p r o a c h i n g from t h e NNW and of waves a t T=4.9s a p p r o a c h i n g from the e a s t ; s i t e s f o r w h i c h h i n d c a s t c o m p u t a t i o n s and l o n g s h o r e sediment t r a n s p o r t e s t i m a t e s were o b t a i n e d a r e a l s o p l o t t e d . 91 wave c l i m a t e . The components of wave power a t the b r e a k e r depth a r e g i v e n by pt = ( E b C b n b ) s i n < > b (2.3.4-1) p n = ( E b C b n b ) c o s a b (2.3.4-2) where a f c i s the a n g l e between the b r e a k i n g wave c r e s t s and the sh o r e ; E b=pgH b/16 because H - l \u00C2\u00AB 4 2 H r m s ( L o n g u e t - H i g g i n s , 1952) and the energy computed from the s i g n i f i c a n t wave h e i g h t i s t h e r e f o r e t o o h i g h by a f a c t o r of two (Komar, 1976b, p.206); C b and n b a r e e v a l u a t e d u s i n g the de p t h a t b r e a k i n g , h b , and the c o r r e s p o n d i n g wavelength, X , o b t a i n e d u s i n g e m p i r i c a l r e s u l t s f o r h f o as a f u n c t i o n of H b/gT 2 and t a n B (U.S.A. C o a s t a l E n g i n e e r i n g Research C e n t e r , 1973, f i g u r e 2-66) and n u m e r i c a l s o l u t i o n s f o r Mh) [ t a b u l a t e d by W e i g e l (1954) and i n c l u d e d i n U.S.A. C o a s t a l E n g i n e e r i n g R e s e a r c h C e n t e r (1973, Appendix C ) ] . H i n d c a s t e s t i m a t e s of b r e a k i n g wave c o n d i t i o n s were ge n e r a t e d from summer 1975 da t a f o r a s i t e a t the d i s t a l end of Kay P o i n t s p i t , t a k i n g the normal component of wave power, P , p o s i t i v e toward shore and the t a n g e n t i a l component, P t , p o s i t i v e i n t h e down-spit d i r e c t i o n toward t h e e s t u a r y e n t r a n c e (0 =220\u00C2\u00B0T). E s t i m a t e s were g e n e r a t e d from 1976 da t a f o r the same s i t e as w e l l as f o r s i t e s a t the p r o x i m a l end of the s p i t and a l o n g the shore of P h i l l i p s Bay west of N i a k o l i k P o i n t ( F i g u r e 2 6 ) . A summary of the s y n t h e s i z e d r e s u l t s i s g i v e n i n Appendix A.6. 92 F i g u r e 27 i s a c u m u l a t i v e frequency p l o t f o r components of h i n d c a s t wave power a t the d i s t a l s p i t s i t e i n 1975 and 1976, a d j u s t e d t o the common i n t e r v a l 19 J u l y t o 4 September ( r e p r e s e n t i n g a p p r o x i m a t e l y 83 per cent of the open-water season i n 1975 and about 70 per cen t i n 1976). The d i s t r i b u t i o n s a r e h i g h l y skewed. The skewness of the t a n g e n t i a l components r e f l e c t s the predominance of low p o s i t i v e v a l u e s of a l o n g s h o r e wave power. In f a c t , n e g a t i v e v a l u e s of P t had a r e l a t i v e f r e q u e n c y of 0.002 i n the 1976 h i n d c a s t r e c o r d and d i d not occur a t a l l i n the 1975 s e r i e s . T h i s r e s u l t i l l u s t r a t e s the f u n c t i o n of c o a s t a l p r o m o n t o r i e s such as Kay P o i n t , which may o p e r a t e as u n i d i r e c t i o n a l g a t e s i n the l i t t o r a l t r a n s p o r t system. The d i s t r i b u t i o n s of P n i n F i g u r e 27 e x h i b i t a d i s t i n c t i v e break between a low-power segment, P n<200 W m~1, w i t h a c u m u l a t i v e f r e q u e n c y g r e a t e r than 74 per c e n t i n both y e a r s , and a high-power segment, 200

975 A Pn E ^ 1 9 7 6 .--\u00E2\u0080\u00A2(975 A Pt I. -y L _ I _ ^'--\"l976 PERCENT FREQUENCY FIGURE 27 Frequency d i s t r i b u t i o n s of t a n g e n t i a l and normal components of wave power a t t h e d i s t a l end of Kay P o i n t s p i t , based on h i n d c a s t wave a n a l y s i s ; shaded a r e a r e p r e s e n t s p o r t i o n of the d i s t r i b u t i o n which cannot be r e s o l v e d . 94 3 HYDROLOGICAL SUBSYSTEM 3.1 FRESHWATER INPUTS TO THE ESTUARY 3.1.1 RUNOFF AND PRECIPITATION INPUTS F r e s h w a t e r r u n o f f can e x e r t a p r o f o u n d i n f l u e n c e on the h y d r o l o g y of an e s t u a r y t o which i t d r a i n s (Simmons, 1955), a f f e c t i n g water c h e m i s t r y , f l o o d l e v e l s , c i r c u l a t i o n dynamics, and d i s p e r s i o n of s a l t , sediment, and p o l l u t a n t s . The importance of the r u n o f f i n p u t t o the e s t u a r y depends, i n l a r g e p a r t , on the r a t e of d i s c h a r g e r e l a t i v e t o the t i d a l p r i s m (volume of water added from ocean r e s e r v o i r t o e s t u a r y s t o r a g e d u r i n g a f l o o d t i d e ) and t o the t o t a l s t o r a g e volume of the e s t u a r y . The s u r f a c e a r e a d r a i n i n g t o the Babbage E s t u a r y i s a p p r o x i m a t e l y 5000 km 2, of which about 4200 km 2 d r a i n s v i a t h e Babbage R i v e r t h rough s e c t i o n B l , 700 km 2 d r a i n s v i a Deep Creek t h r o u g h s e c t i o n DI (see F i g u r e 2 f o r s e c t i o n l o c a t i o n s ) , and the a r e a d r a i n i n g d i r e c t l y t o the e s t u a r y ( c o n t r i b u t i n g r u n o f f unaccounted f o r by d i s c h a r g e t h r o u g h t h e B l and DI gauging s e c t i o n s ) i s taken as 100 km 2. The c h a r a c t e r of the two b a s i n s c o n t r i b u t i n g gauged r u n o f f i s summarized i n T a b l e 9. D u r i n g t h r e e y e a r s of r e c o r d (1974-1976), the o b s e r v e d d a i l y t o t a l r u n o f f volume from the Babbage R i v e r and Deep Creek ranged between 0.0 and 5 . 3 x l 0 7 m3 ( F i g u r e 2 8 ) . T h i s compares 95 TABLE 9 Summary s t a t i s t i c s f o r c a t c h m e n t s d r a i n i n g to Babbage E s t u a r y Deep ab ove C r e e k , d e l t a Babbage R i v e r above d e l t a T o t a l a r e a , A 700 , 2 km 4225 km^ 2 A r e a o f l a k e s , - 28 km^ 16 km^ 1 0 0 ( A T / A ) .4 % 0 . 4 % 3 2 2 A r e a of i c i n g s , A^ . 0 km 12 km LOOCAj/A) 0 % 0.3 % B a s i n r e l i e f 530 m 1300 m 4 H y p s o m e t r i c i n t e g r a l , r 0 .21 0 . 29 5 C i r c u l a r i t y r a t i o , r^. 0 .26 0 . 43 S o u r c e s : M c D o n a l d and L e w i s (1973, p. 2 3 ) ; NTS maps 117A, 117B and 117D, s c a l e 1:250,000; f i e l d o b s e r v a t i o n s . ' ' ' S t a t i s t i c s f o r gauged c a t c h m e n t s n o t s i g n i f i c a n t l y d i f f e r e n t . 2 2 L a k e s l a r g e r t h a n 0.2 km i n a r e a . 3 E s t i m a t e d maximum e x t e n t o f i c i n g s i n l a t e w i n t e r . 4 R a t i o o f a r e a under h y p s o m e t r i c c u r v e to t o t a l a r e a bounded by axes ( S t r a h l e r , 1 9 5 2 ) . ^ R a t i o of t o t a l b a s i n a r e a to a r e a of c i r c l e w i t h c i r c u m f e r e n c e e q u a l to b a s i n p e r i m e t e r . 96 w i t h d a i l y ' t i d a l ' p r i s m t o t a l s between 0.0 and 1 . 9 x l 0 7 m3 ( ' t i d a l ' q u a l i f i e d because the maximum and minimum volumes o c c u r r e d when storm-surge and f l u v i a l e f f e c t s p r e d o m i n a t e d ) . The t o t a l s t o r a g e volume of the e s t u a r y ranged between 8 x l O e and 5 x l 0 7 m3 d u r i n g the same p e r i o d ( s e c t i o n 3.3.6). These da t a emphasize the importance of f l u v i a l d i s c h a r g e , and i t s v a r i a b i l i t y , i n the regime of the Babbage E s t u a r y ; t h e impact of v a r i a b l e f r e s h w a t e r r u n o f f on s a l i n i t y and c i r c u l a t i o n i s examined i n d e t a i l i n s e c t i o n s 3.3.4 and 3.3.5 below. Both catchments d r a i n i n g t o the e s t u a r y e x h i b i t pronounced l o w - A r c t i c n i v a l r u n o f f r e g i m e s , i n which th e major v a r i a n c e and a l a r g e p r o p o r t i o n of t o t a l a n n u a l r u n o f f a r e c o n c e n t r a t e d i n the month of June. The r e l a t i v e l y e a r l y date of peak f l o w d i s t i n g u i s h e s t h e s e l o w - A r c t i c b a s i n s from h i g h e r - l a t i t u d e a nalogues i n which the major n i v a l f l o o d o c c u r s i n J u l y (MacKay, 1966; P i s s a r t , 1967; Church, 1974; Cogley and McCann, 1975). The a n n u a l hydrograph i s dominated by a l o n g p e r i o d of n e g l i g i b l e f l o w i n w i n t e r . Four d i s t i n c t i v e r u n o f f seasons may be i d e n t i f i e d : (1) l a t e - w i n t e r z e r o - f l o w ; (2) snowmelt r u n o f f ; (3) summer r e c e s s i o n ; (4) e a r l y - w i n t e r r e c e s s i o n . These p e r i o d s c o r r e s p o n d t o the l a t e - w i n t e r , s p r i n g , summer p l u s f a l l , and e a r l y - w i n t e r d i v i s i o n s of the h y d r o l o g i c a l y e a r , r e c o g n i z e d by Arnborg e t a l . (1966, p.202) i n t h e i r study of the C o l v i l l e R i v e r . E x c e p t i o n s t o the l a t e - w i n t e r z e r o - f l o w c o n d i t i o n occur a t f i v e or more s i t e s of groundwater d i s c h a r g e i n the Babbage R i v e r b a s i n . W i n t e r groundwater d i s c h a r g e and a s s o c i a t e d i c i n g FIGURE 28 D a i l y r u n o f f (Babbage R i v e r a t BI) and d a i l y p r e c i p i t a t i o n a t Kay P o i n t (\u00E2\u0080\u00A2) and S h i n g l e P o i n t (|), 1974-1976. 98 f o r m a t i o n have been r e p o r t e d from most major catchments on the Yukon-Alaska N o r t h S l o p e (van E v e r d i n g e n , 1974; C h i l d e r s e t a l . , 1977; Harden et a l . , 1977). In a few c a s e s , most n o t a b l y on the F i r t h and Kongakut R i v e r s , w i n t e r f l o w o c c u r s a t or near the c o a s t . Most of the r i v e r s , however, a r e b e l i e v e d t o have z e r o d i s c h a r g e a t the c o a s t i n mid- t o l a t e w i n t e r , a l t h o u g h e x c e p t i o n s d u r i n g r a r e w i n t e r r a i n e v e n t s may occur (see be l o w ) . The snowmelt r u n o f f season u s u a l l y b e g i n s i n e a r l y May w i t h a c c u m u l a t i o n of m e l t w a t e r i n the r i p e n i n g snowpack on and a d j a c e n t t o stream c h a n n e l s ( a l t h o u g h i n many reaches c h a n n e l i c e i s blown l a r g e l y c l e a r of snow). The a r e a l v a r i a b i l i t y of the snowpack and s u r f a c e r e t e n t i o n c a p a c i t y of the b a s i n have been i d e n t i f i e d as major v a r i a b l e s c o n t r o l l i n g peak snowmelt r u n o f f on the A l a s k a c o a s t a l p l a i n ( C a r l s o n e t a l . , 1972). Runoff p r o d u c t i o n may be p o s i t i v e l y c o r r e l a t e d w i t h a i r tempe r a t u r e and p r e c i p i t a t i o n d u r i n g May and June, but i s p r i m a r i l y c o n t r o l l e d by net r a d i a t i o n ( W e l l e r and Holmgren, 1974, pp.859-862; c f . . P i s s a r t , 1967, p.219). A c c o r d i n g t o r e s u l t s of W e l l e r and Holmgren, eddy s e n s i b l e heat f l u x and e v a p o r a t i o n make r e l a t i v e l y s m a l l c o n t r i b u t i o n s t o the t o t a l snow a b l a t i o n p r o c e s s a t P o i n t Barrow ( A l a s k a ) . On the o t h e r hand, Benson (1969, pp.33-39) r e p o r t e d t h a t e v a p o r a t i o n may be q u i t e i m p o r t a n t , e s p e c i a l l y where the snow c o v e r i s broken by exposed t u s s o c k s or o t h e r v e g e t a t i o n , a common c o n d i t i o n i n the Babbage and Deep Creek b a s i n s . F u r t h e r m o r e , where v e g e t a t i o n p r o t r u d e s t h r o u g h the snow, the al b e d o i s g r e a t l y reduced and 99 absorbed r a d i a t i o n c o r r e s p o n d i n g l y i n c r e a s e d . Under these c o n d i t i o n s , r a p i d a b l a t i o n may o c c u r a t a i r t e m p e r a t u r e s below 0\u00C2\u00B0C ( c f . e x t e n s i v e e a r l y a b l a t i o n observed i n n o r t h e r n A l a s k a by Holmgren et a l . , 1975, pp.363-364). In t h i s c a s e , a l a r g e p r o p o r t i o n of the water e q u i v a l e n t s t o r e d i n the snowpack may be e v a p o r a t e d (Benson, 1969, p.39) and w i l l not be a v a i l a b l e f o r r u n o f f , a l t h o u g h some i n f i l t r a t i o n and r e f r e e z i n g may a l s o occur ( P i s s a r t , 1967, p.219). The h i g h e s t observed f l o w s i n the Babbage R i v e r and i n Deep Creek ( T a b l e 10) were a l l a s s o c i a t e d w i t h p e r i o d s of warm sunny weather and presumed h i g h p o s i t i v e net r a d i a t i o n . The 1974 r u n o f f i n the Babbage R i v e r was somewhat e x c e p t i o n a l i n t h a t a c o n s i d e r a b l e volume of snowmelt had a l r e a d y been d i s c h a r g e d a t moderate f l o w s d u r i n g the 10 days p r i o r t o peak f l o w ( F i g u r e 28) and because the w i n t e r p r e c i p i t a t i o n t o t a l was a n omalously low. I n Deep Creek, th e f i r s t f l o w o c c u r r e d on June 3 i n b o t h 1975 and 1976, much l a t e r than i n the Babbage R i v e r ; s i m i l a r l y , peak d i s c h a r g e l a g g e d peak f l o w i n the Babbage by two days i n 1975 and by f i v e . t h e f o l l o w i n g y e a r . The 1975 h y drograph i n both, r i v e r s was c h a r a c t e r i z e d by a s i n g l e l a r g e f l o o d , w i t h s m a l l e r e v e n t s superimposed on the Babbage R i v e r r e c o r d ( F i g u r e 2 8 ) . In 1976, two major f l o o d s o c c u r r e d d u r i n g June, but the second was p r i m a r i l y due t o storm r u n o f f . I f S h i n g l e P o i n t p r e c i p i t a t i o n i s taken as an index of snow s t o r a g e i n the b a s i n (see s e c t i o n 2.2.1), snowmelt r u n o f f 100 TABLE 10 E s t i m a t e s of a n n u a l peak d i s c h a r g e , Babbage R i v e r a t B l and Deep C r e e k a t DI, 1974-1977. BABBAGE RIVER 1974 1975 1976 1977 3\u00E2\u0080\u009E-l 380 m^s 554 m 3 s - 1 529 m Js 3 s e\"l 580 m 3-\" 1 9 J une ab 15 J une 6 J u n e 0 n o t o b s e r v e d ace DEEP CREEK 1 9 7 5 >9 7 . 6 m 3 s _ 1 17 J u n e J 1 9 7 6 > 6 3 . 0 m 3 s - 1 11 June a: peak s t a g e e s t i m a t e d f r o m d e b r i s - l i n e e l e v a t i o n ; d i s c h a r g e computed f r o m s t a g e - d i s c h a r g e r e l a t i o n b: r i v e r was n o t o b s e r v e d d u r i n g 11-14 J u n e ; however s t a g e was f a l l i n g on t h e 1 0 t h and t h e r e was no e v i d e n c e on t h e 1 5 t h o f h i g h e r l e v e l s d u r i n g t h e p r e c e d i n g 5 days c: peak d i s c h a r g e e s t i m a t e d by e x t r a p o l a t i o n o f s t a g e -d i s c h a r g e r e l a t i o n d: maximum me a s u r e d d i s c h a r g e ; p r o b a b l y u n d e r e s t i m a t e s i n s t a n t a n e o u s f l o w e: r i v e r was n o t o b s e r v e d d u r i n g t h e snowmelt r u n o f f ; peak d i s c h a r g e may have been o v e r e s t i m a t e d i f b o t t o m f a s t i c e o r i c e - j a m b a c k w a t e r o c c u r r e d a t t i m e of peak f l o w 1 0 1 F I G U R E 2 9 C u m u l a t i v e p r e c i p i t a t i o n a t S h i n g l e P o i n t a n d c u m u l a t i v e r u n o f f i n B a b b a g e R i v e r ( B l ) a n d D e e p C r e e k ( D I ) , 1 9 7 5 a n d 1 9 7 6 ; s e e t e x t f o r e x p l a n a t i o n o f p r e c i p i t a t i o n s e q u e n c e s A a n d B , 1 9 7 5 . 1 0 2 would appear t o have been l a r g e l y completed by 15 June i n 1976 ( F i g u r e 2 9 ) . As the f o r e g o i n g d i s c u s s i o n i m p l i e s , however, the a v a i l a b l e d a t a cannot p r o v i d e r e l i a b l e e s t i m a t e s of snow s t o r a g e a t the s t a r t of r u n o f f . The S h i n g l e P o i n t p r e c i p i t a t i o n t o t a l , cumulated from 1 October 1974 ( F i g u r e 29A, sequence-A), i s thought t o o v e r e s t i m a t e the water e q u i v a l e n t of s u r f a c e snow s t o r a g e a t the s t a r t of May 1975. I f a r e p o r t e d r e d u c t i o n i n snow depth of a p p r o x i m a t e l y 380 mm d u r i n g J a nuary 1975 (Canada, Atmospheric Environment S e r v i c e , Monthly Record) i s assumed t o have been l o s t t h r o u g h e v a p o r a t i o n ( r a t h e r than merely r e d i s t r i b u t e d by b l o w i n g or by melt and subsequent r e f r e e z i n g ) , one may, as an a l t e r n a t i v e , e s t i m a t e the water e q u i v a l e n t i n s t o r a g e i n the b a s i n s from r e p o r t e d l a t e - w i n t e r snow depths ( F i g u r e 29A, sequence-B). The r e p o r t e d depth of snow on the ground a t S h i n g l e P o i n t a t the end of May 1975 was 152 mm, y i e l d i n g a water e q u i v a l e n t of 59 mm i f the mean d e n s i t y i s taken as 390 kg m\"3 ( c f . Benson, 1969, f i g u r e 14).. T h i s r e s u l t p r o b a b l y r e p r e s e n t s an u n d e r e s t i m a t e of the a c t u a l volume of water s t o r e d i n the b a s i n s , because snow depth and snow d e n s i t y a re h i g h l y v a r i a b l e . The h i g h f r e q u e n c y of b l o w i n g snow (Benson, 1969; Wendler, 1978) l e a d s t o c o n c e n t r a t i o n of a l a r g e p r o p o r t i o n of t o t a l snow i n d r i f t s . Assuming, t h e n , t h a t p r e c i p i t a t i o n sequences A and B i n F i g u r e 29A p r o v i d e upper and lower bounds on the volume of water a v a i l a b l e f o r r u n o f f and t h a t a l l p r e c i p i t a t i o n i n May o c c u r r e d as snow, one may c o n c l u d e t h a t snowmelt r u n o f f i n 1975 was completed sometime between June 15 and l a t e J u l y : a date i n 103 l a t e June i s c o n s i d e r e d r e a l i s t i c . On the 8 t h of June, w e l l b e f o r e peak f l o w i n t h e Babbage R i v e r , t h e lower b a s i n was l a r g e l y snow-free. However, because the r e m a i n i n g snow was c o n c e n t r a t e d i n d r i f t s , the a c t u a l p r o p o r t i o n a b l a t e d i s as d i f f i c u l t t o a s s e s s as was the o r i g i n a l t o t a l s t o r a g e volume. F u r t h e r m o r e , e x t e n s i v e s t a n d i n g water a t t e s t e d t o c o n s i d e r a b l e s u r f a c e r e t e n t i o n of m e l t w a t e r . W h i l e s u r f a c e s t o r a g e may be e x p e c t e d t o have i n t r o d u c e d a s i g n i f i c a n t l a g i n t o the snowmelt r u n o f f p r o c e s s (the Babbage R i v e r peaked on 15 June, Deep Creek on the 1 7 t h ) , i t a l s o i m p l i e s t h a t e v a p o r a t i o n of snow-derived water from s u r f a c e s t o r a g e may be an i m p o r t a n t p r o c e s s t e n d i n g t o reduce t h e o v e r a l l r u n o f f volume ( c f . h i g h e v a p o r a t i o n r a t e s i n the p o s t - m e l t p e r i o d , r e p o r t e d by W e l l e r and Holmgren, 1974, f i g u r e 7 ) . A marked d i u r n a l c y c l e i s apparent i n the Babbage R i v e r r u n o f f hydrograph d u r i n g much of the snowmelt season. The time of peak f l o w i s h i g h l y v a r i a b l e , depending i n p a r t on the a r e a of the b a s i n c o n t r i b u t i n g r u n o f f . D a i l y r e c e s s i o n c u r v e s conform a p p r o x i m a t e l y t o an e x p o n e n t i a l model Q( t ) = Q ( t + T ) . e x p ( - T / t * ) (3.1.1-1) where Q ( t ) i s the d i s c h a r g e a t time t , Q(t + x ) the d i s c h a r g e a t some time l a g x , and t * the r e c e s s i o n c o n s t a n t . D a i l y r e c e s s i o n c o n s t a n t s f o r the snowmelt r u n o f f p e r i o d were i n the range 33 < t * ^ 86 h. Because the e f f e c t i v e c o n t r i b u t i n g a r e a i s unknown, an a p p r o p r i a t e n o r m a l i z a t i o n of t * f o r comparison w i t h o t h e r b a s i n s i s d i f f i c u l t t o a c h i e v e . The t r a n s i t i o n from snowmelt t o summer r e c e s s i o n i n 1975 104 i s b e l i e v e d t o c o r r e s p o n d t o a pronounced change i n the s l o p e of the c u m u l a t i v e r u n o f f s e r i e s ( F i g u r e 29A). D u r i n g the d r y e a r l y summer of 1975, d i s c h a r g e from the Babbage R i v e r d e c l i n e d t o Q < 10 m^s'1 ( s p e c i f i c r u n o f f Q s < 0.21 mm/day). T h i s i s an or d e r of magnitude l e s s than the p r o b a b l e mean r a t e of e v a p o t r a n s p i r a t i o n (Mather and T h o r n t h w a i t e , 1956; Brown et a l . , 1968; C a r l s o n and Kane, 1975). I t i s b e l i e v e d t h a t a l a r g e p r o p o r t i o n of the f l o w a t t h i s time was d e r i v e d from groundwater s o u r c e s , both d i r e c t l y from s p r i n g d i s c h a r g e and i n d i r e c t l y from groundwater s t o r e d i n i c i n g s . I c i n g s p e r s i s t u n t i l l a t e i n the summer ( F i g u r e 8A) and s u r v i v e , i n some c a s e s , u n t i l a c c u m u l a t i o n b e g i n s a g a i n the f o l l o w i n g w i n t e r . A rough e s t i m a t e of the maximum a r e a l e x t e n t of i c i n g development i n the Babbage R i v e r b a s i n under p r e s e n t c o n d i t i o n s i n l a t e w i n t e r i s hx =12 km 2 ( T a b l e 9 ) . Assuming a mean t h i c k n e s s of about 1 m, the t o t a l volume of groundwater i n s t o r a g e a t the b e g i n n i n g of the r u n o f f season would be about l x l O 7 m3. I f one assumes, f u r t h e r , t h a t i c i n g development o c c u p i e s some 220 days, a mean groundwater d i s c h a r g e r a t e of 0.5 m 3s\" 1 i s o b t a i n e d . Measured t o t a l d i s c h a r g e r a t e s f o r s p r i n g s a t t h r e e s i t e s i n the b a s i n range from 0.2 t o 2.3 m 3s\" 1 (measurements i n November 1972 and A p r i l 1973 by A q u a t i c Environments L t d , C a l g a r y ; c i t e d by van E v e r d i n g e n , 1974, p.88). The s t o r a g e e s t i m a t e a p p e a r s , t h e r e f o r e , t o be of the c o r r e c t o r d e r of magnitude. Assuming t h a t 1 0 7 m3 of water i s r e l e a s e d a t a c o n s t a n t r a t e over 100 days d u r i n g the r u n o f f season, a c o n s t a n t d i s c h a r g e of .1.2 m 3 s _ 1 i s o b t a i n e d , 105 s u g g e s t i n g a t o t a l groundwater b a s e f l o w of -1.7 m 3 s - 1 . The volume of a d d i t i o n a l c o n t r i b u t i o n s from s e a s o n a l thaw i n the a c t i v e l a y e r and from such s o u r c e s as ice-wedge melt i n c u t - b a n k s or m e l t i n g of massive g r o u n d - i c e i n r e t r o g r e s s i v e - f l o w h e a d w a l l s , i s d i f f i c u l t t o e v a l u a t e : n e i t h e r the t o t a l volume of i c e nor the e f f e c t i v e c o n t r i b u t i n g a r e a are known. Nor a r e the e f f e c t s of l a k e c o n t r o l , a l t h o u g h t h e s e are b e l i e v e d t o be n e g l i g i b l e ; l a k e s occupy o n l y 0.4 per c e n t of the t o t a l b a s i n area ( T a b l e 9 ) . The r u n o f f d a t a s u g g e s t , however, t h a t the sum of c o n t r i b u t i o n s from t h e s e s o u r c e s and from groundwater i s of the o r d e r of 10 n ^ s \" 1 i n the Babbage R i v e r b a s i n i n mid-summer. In Deep Creek, the average d i s c h a r g e d e c l i n e d t o Q<1.0 n ^ s \" 1 ( Q s <0.12 mm/day) d u r i n g 32 days i n August and September of 1976, the minimum b e i n g Q=0.35 n ^ s \" 1 on August 7. A l t h o u g h minor s p r i n g s o c c u r i n the Deep Creek b a s i n ( S t e i g e n b e r g e r e t a l . , 1975, pp.217-224), no i c i n g f o r m a t i o n has been obse r v e d t h e r e and the b a s e f l o w i n Deep Creek may be s u p p l i e d p r i m a r i l y by a c t i v e - l a y e r s t o r a g e and by thaw of wedge-ice, massive g r o u n d - i c e , and s e g r e g a t e d i c e i n the a c t i v e l a y e r . Lakes occupy some f o u r per c e n t of the a r e a of t h i s b a s i n and may p l a y a s i g n i f i c a n t r o l e . The summer r e c e s s i o n i n t h e Babbage R i v e r i s c h a r a c t e r i z e d by a d i s t i n c t d i u r n a l f l u c t u a t i o n , a f e a t u r e l a r g e l y . absent from the Deep Creek r e c o r d , s u g g e s t i n g t h a t the d i u r n a l v a r i a n c e may be a s s o c i a t e d p r i m a r i l y w i t h m e l t w a t e r p r o d u c t i o n from i c i n g s , i n p a r t i c u l a r from the nearby Tulugaq (Crow) R i v e r FIGURE-30 Time of d i u r n a l peak f l o w d u r i n g summer r e c e s s i o n i n Babbage R i v e r a t B I , 1975 and 1976. c 107 i c i n g . As the s e a s o n a l r e c e s s i o n p r o g r e s s e s , peak f l o w tends t o occur l a t e r i n the day ( F i g u r e 3 0 ) , r e f l e c t i n g g r e a t e r t r a v e l t i m e s a t lower f l o w . The d i u r n a l r e c e s s i o n c u r v e s i n summer a g a i n conform a p p r o x i m a t e l y t o an e x p o n e n t i a l model ( e q u a t i o n 3.1.1-1). A l t h o u g h i t appears t o i n c r e a s e w i t h t i m e , the r e c e s s i o n c o n s t a n t f o r the d a i l y r e c e s s i o n i n summer i s h i g h l y v a r i a b l e (35^t*^273 h ) , i n p a r t p o s s i b l y because of v a r i a b l e c o n t r i b u t i o n s t o the d i u r n a l r u n o f f from n o n - i c i n g s o u r c e s a t v a r i a b l e d i s t a n c e s from the gauging s e c t i o n . However, t o t a l d i s c h a r g e under non-storm c o n d i t i o n s d u r i n g the summer r e c e s s i o n i s so low t h a t the d i u r n a l v a r i a n c e a t t h i s time has l i t t l e impact on e s t u a r i n e p r o c e s s e s . A more im p o r t a n t f e a t u r e of the summer f l o w regime i s the storm r u n o f f a s s o c i a t e d w i t h c o n v e c t i o n a l or c y c l o n i c p r e c i p i t a t i o n ( c f . s e c t i o n 2.2.1). W h i l e the former may be h i g h l y l o c a l i z e d and i s more common over the s o u t h e r n p a r t of the b a s i n remote from the c o a s t , the l a t t e r may d e p o s i t v a r y i n g amounts of water over the e n t i r e b a s i n . F r e q u e n t l y , p r e c i p i t a t i o n from c y c l o n i c systems f a l l s as snow a t h i g h e r l e v e l s and the v a r i a b l e l a g of r u n o f f a s s o c i a t e d w i t h subsequent p r o g r e s s i v e r i s e of the m e l t i n g l e v e l may be r e s p o n s i b l e f o r p a r t of the a t t e n u a t i o n and v a r i a b i l i t y of t * o b s e r v e d i n late-summer storm h y d r o g r a p h s . The h i g h e s t storm f l o w r e c o r d e d i n t h e Babbage R i v e r a t B l was Q=477 m 3s~ l, d u r i n g the l a t e - s p r i n g f l o o d of 26 June 1976 ( F i g u r e s 28 and 31). The t o t a l storm r u n o f f amounted t o almost 70 per c e n t of the 13-mm p r e c i p i t a t i o n r e c o r d e d near the mouth 1 I I 1 1 1 1 1 1 1 1 1 21 22 23 24 25 26 27 28 29 30 1 2 J U N E 1976 J U L Y FIGURE 31 Babbage R i v e r d i s c h a r g e , s e c t i o n B l , 21 June t o 2 J u l y 1976; note e x p o n e n t i a l r e c e s s i o n s , b o t h d i u r n a l - and s y n o p t i c - s c a l e . 109 and 60 per cen t of the c o r r e s p o n d i n g p r e c i p i t a t i o n a t S h i n g l e P o i n t . A l t h o u g h p r e c i p i t a t i o n may have been g r e a t e r toward the s o u t h , t h e s e a re re m a r k a b l y h i g h p r o p o r t i o n s n o n e t h e l e s s . Brown e t a l . (1968, p.10) r e p o r t e d r u n o f f / r a i n f a l l r a t i o s between 0.01 and 0.69 f o r a s m a l l b a s i n , 1.6 km 2 i n a r e a , near P o i n t Barrow ( A l a s k a ) . A mean v a l u e of about 0.05 was o b t a i n e d f o r summer r u n o f f i n 1966, when summer p r e c i p i t a t i o n was above avera g e . H i g h e r p r o p o r t i o n s ( w i t h a mean v a l u e of 0.41) p r e v a i l e d i n 1963, an e x c e p t i o n a l l y wet year when most of t h e b a s i n may have been c o n t r i b u t i n g r u n o f f . At the time of the Babbage R i v e r f l o o d i n l a t e June 1976, l i t t l e s e a s o n a l thaw had o c c u r r e d i n the a c t i v e l a y e r and s u r f a c e s t o r a g e i n l o w - r e l i e f p a r t s of the b a s i n may have been p a r t i a l l y f u l l . I t may be t h a t the c h a r a c t e r i s t i c Babbage R i v e r storm response e a r l y i n the r u n o f f season i s analogous t o t h a t o b s e r v e d under v e r y wet ant e c e d e n t c o n d i t i o n s i n the s m a l l b a s i n near P o i n t Barrow. I t i s a l s o c o n c e i v a b l e t h a t some snow a b l a t i o n o c c u r r e d d u r i n g the event of 26 June 1976 and c o n t r i b u t e d t o an apparent h i g h r u n o f f r a t i o . S m a l l e r storm f l o o d s c h a r a c t e r i s t i c of l a t e summer ( F i g u r e 28) a r e sometimes a s s o c i a t e d w i t h c y c l o n i c systems t h a t g e n e r a t e p o s i t i v e storm s u r g e s a t t h e c o a s t . A l t h o u g h a peak f l o w of 226 m 3 s _ 1 a r i s i n g from c y c l o n i c p r e c i p i t a t i o n was obs e r v e d i n August 1974, maximum d i s c h a r g e d u r i n g such e v e n t s i s more commonly l e s s than 100 m 3 s _ 1 ( F i g u r e 3 2 ) . F u r t h e r m o r e , t h e storm r e c e s s i o n s a r e not e x p o n e n t i a l i n l a t e summer but e x h i b i t a p r o g r e s s i v e i n c r e a s e of the e f f e c t i v e decay 110 12 14 16 18 20 22 24 26 28 AUGUST FIGURE 32 Storm h y d r o g r a p h s , Babbage R i v e r , August 1976, showing n o n - e x p o n e n t i a l c h a r a c t e r of r e c e s s i o n s . I l l p arameter. The f i n a l s l o p e of the r e c e s s i o n i s n e a r l y h o r i z o n t a l , as e x p e c t e d from s m a l l - b a s i n s t u d i e s i n s i m i l a r e nvironments (eg. Brown e t a l . , 1968; L i k e s , 1966). These i n d i c a t e e x t r e m e l y l a r g e v a l u e s of t * , due, i t i s h y p o t h e s i z e d , t o the l a r g e s u r f a c e s t o r a g e c a p a c i t y and h i g h l y r e t e n t i v e sodmat c h a r a c t e r i s t i c of the c o a s t a l p l a i n t u n d r a . In 1977, the Water Survey of Canada e s t a b l i s h e d a gauging s t a t i o n on the Babbage R i v e r below C a r i b o u Creek. The d r a i n a g e a r e a above the s t a t i o n i s 1510 km 2. Records a re complete f o r August and September 1977 and from January 1978 on. The d a t a suggest a h i g h l y v a r i a b l e 'snowmelt r u n o f f response (maximum d a i l y r u n o f f t o t a l s of 30.8mm i n 1978 and 4.25mm i n 1979), i n c o n t r a s t t o more c o n s i s t e n t v a l u e s r e c o r d e d or e s t i m a t e d f o r BI and D l d u r i n g the y e a r s 1974-1977 ( T a b l e 1 0 ) . I n a d d i t i o n , the Water Survey r e c o r d s i n d i c a t e a major late-summer storm f l o o d , which peaked a t 388 m 3 s _ 1 , w i t h a d a i l y t o t a l of 17.5mm on 28 August 1979. T h i s was the l a r g e s t f l o w of the y e a r , f a r s u r p a s s i n g t h e snowmelt r u n o f f peak. The e a r l y - w i n t e r r e c e s s i o n , the f o u r t h d i v i s i o n of the r u n o f f y e ar r e c o g n i z e d above, i s t a k e n t o b e g i n when tem p e r a t u r e s drop s u f f i c i e n t l y t h a t some storm p r e c i p i t a t i o n i s r e t a i n e d i n the b a s i n i n d e f i n i t e l y as snow. P r e c i p i t a t i o n may f a l l as snow a t any season; however, the p r o b a b i l i t y of p r o l o n g e d snow s t o r a g e and a s s o c i a t e d r u n o f f l a g s g e n e r a l l y i n c r e a s e s w i t h time a f t e r mid-summer. Snow f e l l over much of the Babbage R i v e r b a s i n d u r i n g 7-9 J u l y 1976, but d a i l y maximum temp e r a t u r e s a t the c o a s t remained p o s i t i v e a nd the a s s o c i a t e d 112 l a g i n the r u n o f f p r o c e s s was not g r e a t . In 1975, 43.7 mm w a t e r - e q u i v a l e n t , most or e n t i r e l y snow, f e l l a t S h i n g l e P o i n t d u r i n g the p e r i o d 4-7 September ( F i g u r e 29A). A l t h o u g h d i s c h a r g e r e c o r d s were t e r m i n a t e d on 4 September, c a s u a l o b s e r v a t i o n suggested t h a t most of t h i s snow remained i n p l a c e f o r about one week b e f o r e r u n o f f o c c u r r e d . The o n l y l a t e - s e a s o n d a t a a v a i l a b l e f o r the Babbage R i v e r a r e the Water Survey r e c o r d s i n the upper b a s i n ; the l a s t d a t e s f o r which i n c r e a s e s i n the d a i l y mean d i s c h a r g e o c c u r r e d were 26 September i n 1978 and 22 September i n 1979; the r i v e r ceased f l o w i n g d u r i n g the f i r s t week of November i n b o t h y e a r s . V ery e x c e p t i o n a l c i r c u m s t a n c e s may produce r u n o f f much l a t e r i n the w i n t e r , as i n e a r l y J a n u a r y 1974, when 0.51 mm of r a i n f e l l a t Komakuk Beach on 5 January and maximum tem p e r a t u r e s of +5.5\u00C2\u00B0C and +4.4\u00C2\u00B0C were r e c o r d e d on t h e 4 t h and 5 t h r e s p e c t i v e l y . At t h i s t i m e , a p o s i t i v e storm-surge o c c u r r e d (Huggett e t a l . , 1975), the Babbage D e l t a a r e a became snow-free, and t h e d e l t a was p a r t i a l l y f l o o d e d (R. MacKenzie, p e r s o n a l communication, 1974). A r a r e m i d - w i n t e r r u n o f f event -may have o c c u r r e d , t e r m i n a t i n g on 6 J a n u a r y , when t e m p e r a t u r e s at Komakuk Beach dropped t o -8\u00C2\u00B0C and -22\u00C2\u00B0C maximum and minimum. The f r e q u e n c y d i s t r i b u t i o n of d a i l y d i s c h a r g e f o r the snowmelt-runoff and summer-recession seasons ( F i g u r e 33) i s h i g h l y skewed. The skewness would be s u b s t a n t i a l l y i n c r e a s e d i f complete r u n o f f d a t a f o r the e n t i r e year were i n c o r p o r a t e d i n the a n a l y s i s , because d i s c h a r g e d u r i n g the t w o - t h i r d s of the year not i n c l u d e d i s c o n s i s t e n t l y low or z e r o . The FIGURE 33 Frequency d i s t r i b u t i o n s of d a i l y r u n o f f f o r snowmelt and summer seasons 1974-1976, Babbage R i v e r a t B I . 114 d i s t r i b u t i o n s p l o t t e d i n F i g u r e 33 may be c o n s i d e r e d t o i n c o r p o r a t e a t l e a s t t h r e e s e p a r a t e p o p u l a t i o n s : b a s e f l o w , s t o r m f l o w , and snowmelt r u n o f f . Indeed s i g n i f i c a n t n o n - s t a t i o n a r i t y may e x i s t i n the l o w - f l o w s e r i e s , as m e l t - d e r i v e d c o n t r i b u t i o n s t o the b a s e f l o w d e c l i n e throughout the summer, w h i l e i r r e g u l a r i t i e s i n the storm and snowmelt r u n o f f d i s t r i b u t i o n s may e x i s t due t o i n h o m o g e n e i t i e s (such as v a r y i n g c o n t r i b u t i n g a rea) of r u n o f f p r o d u c t i o n ( c f . L i k e s , 1966; Church, 1972, p.38). A l t h o u g h both b a s i n s y i e l d a p p r o x i m a t e l y e q u i v a l e n t volumes of s p e c i f i c r u n o f f , the t o t a l d i s c h a r g e from the Babbage R i v e r i s an o r d e r of magnitude g r e a t e r than t h a t from Deep Creek. T h e r e f o r e i t i s the f r e q u e n c y s t r u c t u r e of Babbage R i v e r r u n o f f t h a t dominates the p r o c e s s of f r e s h w a t e r s u p p l y t o the e s t u a r y . I t i s noteworthy t h a t c o n s i d e r a b l e d i f f e r e n c e s i n the f r e q u e n c y s t r u c t u r e of the major r u n o f f i n p u t s t o the Babbage E s t u a r y occur between y e a r s . V a r i a n c e d e n s i t y s p e c t r a f o r Deep Creek and Babbage R i v e r d i s c h a r g e a r e i l l u s t r a t e d i n F i g u r e 34. Because of t h e h i g h degree of n o n - s t a t i o n a r i t y i n the snowmelt r u n o f f p o r t i o n of the d i s c h a r g e s e r i e s , the s p e c t r a l a n a l y s e s d i d not i n c l u d e t h i s p a r t of the r e c o r d and the s p e c t r a cannot be used t o i l l u s t r a t e the y e a r - t o - y e a r v a r i a b i l i t y d e s c r i b e d above. R a t h e r , they demonstrate the c h a r a c t e r of summer r e c e s s i o n f l o w and storm r u n o f f d u r i n g J u l y and August. S p e c t r a f o r b o t h streams e x h i b i t an e s s e n t i a l l y monotonic i n c r e a s e of v a r i a n c e d e n s i t y w i t h i n c r e a s i n g p e r i o d . The v a r i a n c e d e n s i t y v a r i e s 115 F R E Q U E N C Y (ch _ l) FIGURE 34 V a r i a n c e d e n s i t y s p e c t r a of h o u r l y d i s c h a r g e : Babbage R i v e r a t B l , summer 1975 ( ) ; Deep Creek a t DI, summer 1976 (-*\u00E2\u0080\u0094*-) . 116 k a p p r o x i m a t e l y as f , w i t h k=-3.1 f o r Babbage R i v e r d i s c h a r g e and k=-2.3 f o r Deep Creek (approximate v a l u e s p r e v a i l i n g i n the f r e q u e n c y range 10\" 2< f <10 _ 1 c h \" 1 ) . A minor peak v a r i a n c e d e n s i t y a t T=24 h i s prominent i n the Babbage R i v e r spectrum; an e q u i v a l e n t f e a t u r e may be p r e s e n t i n the spectrum f o r Deep Creek, r e v e a l i n g a minor d i u r n a l r u n o f f c y c l e i n t h a t b a s i n t o o . In n e i t h e r case i s the d i u r n a l f e a t u r e s t a t i s t i c a l l y s i g n i f i c a n t ; however, the p h y s i c a l r e a l i t y of a d i u r n a l f l u c t u a t i o n i n the Babbage R i v e r i s w e l l e s t a b l i s h e d and a weak d i u r n a l s i g n a l i n Deep Creek i s t h e o r e t i c a l l y p l a u s i b l e , though extreme a t t e n u a t i o n may be e x p e c t e d . In c o n c l u d i n g t h i s d i s c u s s i o n of the c h a r a c t e r and s o u r c e s of r u n o f f i n p u t s t o the Babbage E s t u a r y , i t may be w o r t h w h i l e t o re-emphasize the predominance of v a r i a n c e a t a p e r i o d of one y e a r . The s e a s o n a l t r e n d of r u n o f f , dominated as i t i s by a v e r y l o n g p e r i o d of n e g l i g i b l e f l o w i n the w i n t e r months, a f t e r which r u n o f f i n c r e a s e s r a p i d l y t o peak v a l u e s of the o r d e r of 10 mm/day ( 5 x l 0 7 m 3/day), c o n s t i t u t e s one of the o v e r r i d i n g e x t e r n a l c o n t r o l s on the c i r c u l a t i o n regime of the e s t u a r y . The mean s t o r a g e volume of the Babbage E s t u a r y i s a p p r o x i m a t e l y 2 . 4 x l 0 7 m3. T h i s c o r r e s p o n d s t o 5.7 mm d i s t r i b u t e d over the 4200-km 2 Babbage R i v e r catchment and t o 34.3 mm over the 700-km 2 a r e a d r a i n e d by Deep Creek. T o t a l r u n o f f from the Babbage d u r i n g June i n both 1975 and 1976 was between 100 and 110 mm ( F i g u r e 29) or r o u g h l y 17-20 t i m e s the mean s t o r a g e volume of the e s t u a r y . T o t a l r u n o f f from Deep Creek i n June of each y e a r , a l s o a p p r o x i m a t e l y 110 mm, amounted 117 t o r o u g h l y t h r e e times the e s t u a r y s t o r a g e volume. C o n t r i b u t i o n s of r u n o f f from t h e n o m i n a l 100 km 2 a r e a d r a i n i n g d i r e c t l y t o the e s t u a r y and of d i r e c t p r e c i p i t a t i o n on the e s t u a r y s u r f a c e (mean a r e a a p p r o x i m a t e l y 28 km 2) may be e s t i m a t e d by c o n s i d e r a t i o n of mean p r e c i p i t a t i o n f o r Komakuk Beach and S h i n g l e P o i n t ( c f . s e c t i o n 2.2.1). A d o p t i n g a h y d r o l o g i c a l year b e g i n n i n g 1 O c t o b e r , the mean annual t o t a l p r e c i p i t a t i o n amounted t o 170 \u00C2\u00B115 mm f o r the p e r i o d October 1973 t o September 1976 (Canada, At m o s p h e r i c Environment S e r v i c e , M o nthly R e c o r d ) . Assuming t h a t 50 per c e n t of the t o t a l a n n u a l p r e c i p i t a t i o n runs o f f (Brown et a l . , 1968, p.17), we may e s t i m a t e an a n n u a l c o n t r i b u t i o n from the 100-km 2 d i r e c t d r a i n a g e a r e a of 8.5x10' m3 or 0.35 times the mean s t o r a g e volume of the e s t u a r y . In p r a c t i c e , the p r o p o r t i o n of t h e t o t a l p r e c i p i t a t i o n t h a t runs o f f may be much l e s s than 50 per c e n t , because of e v a p o r a t i o n from the snow and from snowmelt water i n s u r f a c e s t o r a g e (see d i s c u s s i o n a b o v e ) . T o t a l a n n u a l d i r e c t p r e c i p i t a t i o n on the e s t u a r y may amount t o an a d d i t i o n a l 4.8x10' m3. There a r e i n s u f f i c i e n t d a t a t o e s t i m a t e the c o r r e s p o n d i n g e v a p o r a t i v e l o s s , which may be of the same o r d e r of magnitude. However, d i r e c t p r e c i p i t a t i o n , d i r e c t d r a i n a g e and e v a p o r a t i o n from the e s t u a r y s u r f a c e a r e a l l n e g l i g i b l e r e l a t i v e t o o t h e r terms i n the water b a l a n c e of the e s t u a r y (see s e c t i o n 3.3.6). 118 3.2 MARINE INPUTS 3.2.1 WATER LEVELS AT THE MARINE BOUNDARY H o u r l y water l e v e l s r e c o r d e d a t gauge A, l o c a t e d on the lagoon shore of Kay P o i n t s p i t near a s m a l l t i d a l pass ( F i g u r e 2 ) , a r e i l l u s t r a t e d i n the summary time s e r i e s p l o t s of F i g u r e 35. D u r i n g the breakup p e r i o d i n 1976, water l e v e l s were r e c o r d e d a t gauge-B near N i a k o l i k P o i n t , due t o i c e c o n d i t i o n s a t gauge-A. The d a t a i n d i c a t e t h a t h i g h water a t gauge-A l a g g e d h i g h water a t gauge-B by some 8 minutes (mean l a g f o r p e r i o d 12-18 J u l y 1976), w h i l e the mean range a t gauge-B was g r e a t e r by a p p r o x i m a t e l y 14mm. T i d a l p r o p a g a t i o n w i t h i n t h e e s t u a r y i s c o n s i d e r e d f u r t h e r i n s e c t i o n 3.3.1. A s t r o n o m i c a l t i d e s a r e a major component of meso-frequency v a r i a n c e i n most e s t u a r i e s . The v a r i a n c e spectrum of water s u r f a c e e l e v a t i o n a t the Kay P o i n t s p i t gauge d u r i n g the summer of 1975 i s i l l u s t r a t e d i n F i g u r e 36. S i g n i f i c a n t peaks a t d i u r n a l and s e m i d i u r n a l p e r i o d s r e f l e c t the mixed c h a r a c t e r of the t i d e . R e s u l t s of a c o n v e n t i o n a l harmonic a n a l y s i s ( o b t a i n e d w i t h a m o d i f i e d v e r s i o n of the program d e s c r i b e d by Foreman, 1977, f o l l o w i n g p r o c e d u r e s o u t l i n e d by Go d i n , 1972) were p r e s e n t e d i n Ta b l e 7. The s e m i d i u r n a l M2 c o n s t i t u e n t i s dominant i n a l l c a s e s , w i t h a m p l i t u d e i n the range 51^a^84mm. One may e s t i m a t e the mean s p r i n g - t i d e range ( D e f a n t , 1953) as R s =2(M2+S2) o (3.2.1-1) 1 1 9 7 4 < o . o J MAY | JUNE | JULY | AUGUST | SEPT-FIGURE 35 Hourly water l e v e l at marine boundary of Babbage Estuary, summer 1974, summer 1975, and breakup+summer 1976. FIGURE 36 Variance d e n s i t y spectrum of hourly water l e v e l at Kay Point s p i t (gauge A, CHS s t a t i o n 6515), 12 J u l y to 12 September 1975; the 90% confidence i n t e r v a l , assuming a chi-squared d i s t r i b u t i o n w i t h 10 degrees of freedom, i s given at upper r i g h t . 1.21 TABLE 11 M a j o r t i d a l c o n s t i t u e n t s a t K a y P o i n t b y m o n t h . 01 K1 M2 S2 a S a g a g a g August September 1 9 7 4 1 9 7 4 5 5 . 3 4 . 1 6 7 . 8 1 5 1 . 0 5 1 . 5 5 . 114.2 1 2 0 . 0 7 9 . 84. 2 5 9 . 5 242.6 5 8 . 4 5 . 2 9 5 . 8 2 8 3 . 2 J u l y August 1 9 7 5 1 9 7 5 3 1 . . 3 2 . 1 7 7 . 1 1 7 5 . 6 5 2 . 5 5 . 1 5 5 . 6 1 4 1 . 0 7 2 . 7 4 . 2 7 8 . 5 274.5 5 4 . 5 4 . 5 2 9 . 9 3 2 8 . 0 June J t i l y August 1 9 7 6 1 9 7 6 1 9 7 6 2 8 . 2 8 . 3 7 . 1 7 0 . 5 1 7 2 . 2 144.8 40. 4 1 . 2 5 . 1 5 8 . 4 1 4 0 . 2 159.5 5 1 . 7 7 . 7 6 . 2 8 9 . 9 2 7 4 . 7 2 6 5 . 0 2 7 . 2 9 . 5 7 . 5 2 7 . 8 326.1 5 1 2 . 0 a amplitude (mm) g Greenwich phase l a g (degrees) a l l computations i n GMT' 122 where the c o n s t i t u e n t symbols denote r e s p e c t i v e a m p l i t u d e s . The Kay P o i n t r e c o r d s g i v e 0.151.5 d a y s ) . Indeed, t h e s e l o w - f r e q u e n c y p r o c e s s e s dominate the spectrum of water l e v e l s , a c c o u n t i n g f o r as much of 67% of the t o t a l v a r i a n c e i n the summer of 1976 and 82% i n 1975 ( F i g u r e 3 7 ) . The c o n t r a s t between y e a r s i s s t r i k i n g , as i s t h a t between seasons w i t h i n a g i v e n y e a r . The d i f f e r e n c e s a r e p r e d o m i n a n t l y i n the n o n - t i d a l p o r t i o n s of the spectrum. A p o r t i o n of t h e lo w - f r e q u e n c y v a r i a n c e i n the Kay P o i n t r e c o r d s i s due t o a s t r o n o m i c a l f o r c i n g . However, Henry (1975) note d , w i t h r e f e r e n c e t o Tuktoyaktuk d a t a , the g r e a t v a r i a b i l i t y of computed t i d a l c o n s t i t u e n t s a t p e r i o d s g r e a t e r than one day and suggested the p r o b a b i l i t y - t h a t m e t e o r o l o g i c a l e f f e c t s a r e dominant i n t h i s f r e q u e n c y range. At Kay P o i n t , the computed a m p l i t u d e of the f o r t n i g h t l y c o n s t i t u e n t MSf was 0.06m i n 1976 (Table 7 ) , comparable t o the a m p l i t u d e of M2, whereas i n 1975 the MSf a m p l i t u d e was o n l y 0.02m. The o v e r a l l range of water l e v e l i n 1975 exceeded 1.1m. S p r i n g t i d e s a c c o u n t e d o n l y f o r a s m a l l p o r t i o n of the t o t a l range; f o r example, i n J u l y 1975, the mean s p r i n g t i d e range was R s=0.212m ( e q u a t i o n 3.2.1-1) w h i l e the o v e r a l l range f o r the month was R=0.625m, almost t h r e e times g r e a t e r . I t i s c l e a r t h a t n o n - t i d a l l o w - f r e q u e n c y p r o c e s s e s account f o r most of the v a r i a n c e of water l e v e l i n the Babbage E s t u a r y . PERIOD (days) 0.1 FREQUENCY (h ) FIGURE 37 Cumulative normalized variance s p e c t r a f o r hourly water l e v e l s at marine boundary, Babbage Estu a r y ; gauge-A data f o r 12/07/75-12/09/75 (1975) and 15/07/76-12/09/76 (1976), gauge-B data f o r 09/06/76-27/07/76 (1976a). 125 S e v e r a l f a c t o r s i n f l u e n c e the l o w - f r e q u e n c y b e h a v i o u r of t h e system. These i n c l u d e : bathymetry, f l u v i a l d i s c h a r g e , s u r f a c e s l o p e and i c e d i s t r i b u t i o n i n the e s t u a r y , s p e c i f i c volume of the water column, a t m o s p h e r i c p r e s s u r e , wind s t r e s s , and t h e c h a r a c t e r of c i r c u l a t i o n i n c o a s t a l waters of the B e a u f o r t Sea. The f i r s t f o u r f a c t o r s a r e e s s e n t i a l l y parameters of the e s t u a r i n e r e sponse t o water l e v e l s imposed a t the ocean boundary (see s e c t i o n s 3.3.1, 3.3.2, and 3.3.3). E f f e c t s of the r e m a i n i n g f a c t o r s on the imposed water l e v e l s a r e d i s c u s s e d below. The a m p l i t u d e of the an n u a l c y c l e of water l e v e l i s c o n s i d e r a b l y l e s s than t h a t of s y n o p t i c - s c a l e v a r i a b i l i t y . N e v e r t h e l e s s , a t a p e r i o d of one y e a r , s p e c i f i c volume (or s t e r i c ) f l u c t u a t i o n s and h y d r o s t a t i c p r e s s u r e e f f e c t s a r e known t o occur i n the B e a u f o r t Sea. The annual range of monthly mean sea l e v e l a t Tuktoyaktuk i s a p p r o x i m a t e l y 0.44 \u00C2\u00B10.03m (based on s i x y e a r s of r e l a t i v e l y complete r e c o r d i n the i n t e r v a l 1961-1975). A maximum s e a s o n a l - s c a l e range of 0.43 m was r e p o r t e d a t P o i n t Barrow by B e a l (1968), who ac c o u n t e d f o r most of the v a r i a t i o n i n terms of a 0.23-m s t e r i c d i f f e r e n c e and a 0.10-m h y d r o s t a t i c p r e s s u r e e f f e c t (due t o an o b s e r v e d d i f f e r e n c e of 1 kPa i n the mean a t m o s p h e r i c p r e s s u r e between summer and w i n t e r ) . In the same paper, B e a l (1968, f i g u r e 10) r e p o r t e d d a t a from Mackenzie Bay i n d i c a t i n g a summer s t e r i c anomaly of +0.21 m, e q u i v a l e n t t o the v a l u e o b t a i n e d by assuming an 8-m annual range i n the depth of the h a l o c l i n e and a d e n s i t y d i f f e r e n c e Ap = 25 kg m~3 between s u r f a c e and 126 u n d e r l y i n g water (Henry, 1975). The a n n u a l f l u c t u a t i o n s of s p e c i f i c volume and h y d r o s t a t i c e q u i l i b r i u m a r e g e n e r a l l y i n - p h a s e , both a t m o s p h e r i c p r e s s u r e and s u r f a c e water d e n s i t y b e i n g lower i n summer. The Babbage E s t u a r y and most s h a l l o w l agoons a l o n g t h i s c o a s t a re l a r g e l y f r o z e n t o the bottom i n mid- t o l a t e w i n t e r , when the a n n u a l minimum sea l e v e l commonly o c c u r s . T h e r e f o r e , a n n u a l f l u c t u a t i o n s i n the freq u e n c y of i n u n d a t i o n of v a r i o u s i n t e r t i d a l s u r f a c e s may be l e s s i m p o r t a n t f o r n u t r i e n t and sediment budgets i n t h i s environment, and i n the A r c t i c g e n e r a l l y , than has been p o s t u l a t e d f o r m i d - l a t i t u d e e s t u a r i e s ( e . g . by K j e r f v e e t a l . , 1978). A d i f f e r e n t a n n u a l c y c l e dominated by s p r i n g f l o o d i n g i s i m p o r t a n t i n some B e a u f o r t Sea e s t u a r i e s t h a t r e c e i v e major r u n o f f i n p u t s d u r i n g the breakup season. The Babbage E s t u a r y i s such a case (see e a r l y 1976 d a t a i n F i g u r e 35; a l s o s e c t i o n 3.3.2 b e l o w ) . The t i d a l r e c o r d s a t Kay P o i n t a r e too s h o r t t o p e r m i t i d e n t i f i c a t i o n of dominant f r e q u e n c i e s i n t h e s y n o p t i c - s c a l e p o r t i o n of the spectrum, i f indeed the system e x h i b i t s any p r e f e r r e d f r e q u e n c i e s . I t i s c l e a r from F i g u r e 37 t h a t most of the v a r i a n c e r e s i d e s i n the range f < 0.01 c h \" 1 ( c o r r e s p o n d i n g t o p e r i o d s T > 4 d a y s ) . A p o r t i o n of t h i s v a r i a n c e may r e l a t e t o n o n - s t a t i o n a r i t y of the summer t i d a l r e c o r d ( i n c l u d i n g the an n u a l c y c l e d e s c r i b e d a b o v e ) , but e x a m i n a t i o n of F i g u r e 35 s u g g e s t s t h a t much of i t r e l a t e s t o s y n o p t i c e v e n t s a t p e r i o d s 2 < T < 20 days a p p r o x i m a t e l y . A t m o s p h e r i c f o r c i n g , p a r t i c u l a r l y i n the g e n e r a t i o n of p o s i t i v e storm s u r g e s , i s a 127 w i d e l y r e c o g n i z e d p r o c e s s and has been w e l l documented i n the B e a u f o r t Sea (Matthews, 1970; Henry, 1975). However, storm s u r g e s have been t r e a t e d l a r g e l y as t r a n s i e n t e f f e c t s and the preponderance of l o w - f r e q u e n c y v a r i a n c e due t o a t m o s p h e r i c f o r c i n g throughout the r e c o r d s has r e c e i v e d l i t t l e a t t e n t i o n . S t e r i c e f f e c t s a r e b e l i e v e d t o p l a y a r e l a t i v e l y minor r o l e i n the s y n o p t i c - f r e q u e n c y range. At the mouth of the Babbage E s t u a r y , d e n s i t y changes as g r e a t as Ap = 13 kg n r 3 have been observed over one day, a s s o c i a t e d w i t h the abrupt r i s i n g l i m b of the annua l s a l i n i t y c y c l e i n l a t e J u l y (see s e c t i o n 3.3.4). F l u c t u a t i o n s of the same magnitude can occur over i n t e r v a l s as s h o r t as two days i n response t o r i v e r f l o o d s l a t e r i n t h e summer. S p e c t r a l data f o r h o u r l y water temperature have been o b t a i n e d from 20 days of r e c o r d i n the e s t u a r y e n t r a n c e d u r i n g August 1975 ( F i g u r e 3 8 ) . W h i l e the d e n s i t y changes r e l a t e p r i m a r i l y t o s a l i n i t y a t the e s t u a r y e n t r a n c e , temperature e f f e c t s a l s o p l a y a minor r o l e and s u b s t a n t i a l coherence between temperature and s a l i n i t y s p e c t r a can be argued on p h y s i c a l grounds. A l t h o u g h the s p e c t r a l d e n s i t y f o r the 1975 water temperature r e c o r d i s g r e a t e s t a t s y n o p t i c - s c a l e f r e q u e n c i e s , t h e r e i s r e l a t i v e l y h i g h v a r i a n c e a t d i u r n a l and s e m i - d i u r n a l p e r i o d s a l s o . The d i u r n a l v a r i a n c e may r e f l e c t b o t h daytime h e a t i n g and t i d a l t r a n s p o r t ( o n l y the l a t t e r w i l l appear i n the s a l i n i t y s p e c t r u m ) ; the narrow peak a t T = 12.5 h i s assumed t o r e f l e c t a d v e c t i v e t r a n s p o r t on the s e m i d i u r n a l t i d e . 1 2 8 F I G U R E 38 V a r i a n c e d e n s i t y s p e c t r u m o f h o u r l y w a t e r t e m p e r a t u r e a t s t a t i o n 5 , B a b b a g e E s t u a r y , d u r i n g 2 0 d a y s o f r e c o r d i n A u g u s t 1 9 7 5 ; t h e 90% c o n f i d e n c e i n t e r v a l , a s s u m i n g a c h i - s q u a r e d d i s t r i b u t i o n w i t h 1 0 d e g r e e s o f f r e e d o m , i s g i v e n a t u p p e r r i g h t . 129 S y n o p t i c - s c a l e temperature and s a l i n i t y f l u c t u a t i o n s a r e r e l a t i v e l y l o c a l and are l a r g e l y c o n f i n e d t o a s h a l l o w s u r f a c e l a y e r . I f we assume a u n i f o r m change A p = i 3 . o kg m\"3 over the Babbage E s t u a r y and a d j a c e n t p a r t s of P h i l l i p s Bay w i t h a mean depth of 2 m, the s t e r i c e f f e c t can be computed f o r a t h i n s i n g l e - l a y e r case such as t h i s w i t h o u t r e f e r e n c e t o p r e s s u r e or dynamic u n i t s ( c f . D e f a n t , 1961, c h a p t e r 9 ) . T a k i n g a r e a l i s t i c i n i t i a l d e n s i t y P q=1002 kg m~3 and h Q=2 m, the mass of water per u n i t a r e a i s 2004 kg m~2. I f t h e d e n s i t y then i n c r e a s e s t o P =1015 kg m\"3, the s p e c i f i c volume i s reduced and 1^=2004/1015=1.974 m. The maximum s t e r i c change i n sea l e v e l t o be e x p e c t e d a t s y n o p t i c - s c a l e f r e q u e n c i e s i s t h e r e f o r e A h=0.026 m, an o r d e r of magnitude l e s s than the a n n u a l s t e r i c e f f e c t and r o u g h l y two o r d e r s l e s s than the o b s e r v e d range of water l e v e l s . The range of a t m o s p h e r i c p r e s s u r e i s a p p r o x i m a t e l y 4 kPa i n the s y n o p t i c - f r e q u e n c y band. T h e r e f o r e , the maximum response of water l e v e l t o a t m o s p h e r i c p r e s s u r e f l u c t u a t i o n s i s of the o r d e r of 10\" 1 m, assuming a h y d r o s t a t i c d e p r e s s i o n of 0.1 m per 1-kPa r i s e i n p r e s s u r e . Complete h y d r o s t a t i c response may not be r e a l i z e d a t s y n o p t i c f r e q u e n c i e s (Doodson, 1924). However, K j e r f v e e t a l . (1978) r e p o r t an a m p l i f i e d n o n - h y d r o s t a t i c response i n a s m a l l South C a r o l i n a e s t u a r y . The v a r i a n c e spectrum of h o u r l y p r e s s u r e a t Kay P o i n t i n 1976 was i l l u s t r a t e d i n F i g u r e 17. The coherence w i t h water l e v e l , w i t h i n the s y n o p t i c - f r e q u e n c y range,' r e a c h e s a maximum 130 of Y 2 = 0.64. However, assuming a model i n which water l e v e l responds t o t h r e e i n p u t s ( p r e s s u r e and two components of wind s t r e s s ) , the maximum p a r t i a l coherence between water l e v e l and A p r e s s u r e i s Y 2 = 0.35 a t T = 3.7 d a y s . 1 The g a i n a t t h i s f r e q u e n c y i s | H ( f ) | = 0.06, c o n s i s t e n t w i t h an a t t e n u a t e d h y d r o s t a t i c response. Smoothed v e r s i o n s of the 1975 and 1976 water l e v e l r e c o r d s , o b t a i n e d u s i n g a 25-h moving average as a s i m p l e low-pass f i l t e r , a re p l o t t e d i n F i g u r e s 39 and 40, b e f o r e and a f t e r c o r r e c t i o n f o r a h y d r o s t a t i c p r e s s u r e e f f e c t . The magnitude of the p r e s s u r e c o r r e c t i o n i s , i n most c a s e s , s m a l l . In 1975, the v a r i a n c e of o b s e r v e d h o u r l y water l e v e l s , \u00C2\u00B0 2 = 0.029 m2, was reduced by a p p r o x i m a t e l y 14% a f t e r a djustment f o r p r e s s u r e . In 1976, the p r e s s u r e c o r r e c t i o n e f f e c t e d an i n c r e a s e i n the v a r i a n c e from 0.014 t o 0.016 m2. The c o n t r a s t i n g response i s b e l i e v e d t o r e f l e c t d i f f e r e n c e s i n the c h a r a c t e r , s c a l e , or t r a c k of c y c l o n i c systems p r o d u c i n g n o r t h w e s t e r l y winds at Kay P o i n t . A s t r o n g phase c o r r e l a t i o n between the water l e v e l r e c o r d and the n o r t h w e s t e r l y component of wind v e l o c i t y i s apparent i n F i g u r e s 39 and 40. The g e n e r a l o b s e r v a t i o n t h a t major p o s i t i v e storm surges a l o n g t h i s c o a s t a r e a s s o c i a t e d w i t h winds from ' E v i d e n t l y the r e l a t i v e l y h i g h s i n g l e - i n p u t coherence may a r i s e because the s u r f a c e wind f i e l d i s c o h e r e n t w i t h a i r p r e s s u r e . T h i s i l l u s t r a t e s the p o i n t t h a t the c h o i c e o f . p a r a m e t e r s i s a c r i t i c a l i s s u e i n e m p i r i c a l r e s e a r c h of t h i s k i n d ( c f . Bath, 1974, p.443). NE c o m p o n e n t w i n d ( m / s ) s-i NW c o m p o n e n t w i n d ( m / s ) CC Q-a i i -CO m UJ a i r p r e s s u r e (kPa) l o w - p a s s w a t e r l e v e l w i t h a n d w i t h o u t a d j u s t m e n t f o r e f f e c t o f p r e s s u r e (m) 12 3 4 5 6 8 9 10 o b s e r v e d h o u r l y -w a t e r l e v e l (m) 4-FIGURE 39 CMYS Wind, a t m o s p h e r i c p r e s s u r e , and water l e v e l a t Kay P o i n t d u r i n g 1975, i l l u s t r a t i n g phase corre s p o n d e n c e between low-pass water l e v e l and n o r t h w e s t e r l y wind speed but v a r i a b l e a m p l i t u d e of surge r e s p o n s e . 132 NE component wind (m/s) A. NW component wind (m/s) a i r p r e s s u r e (kPa) low-pass water l e v e l a f t e r adjustment f o r h y d r o s t a t i c p r e s s u r e e f f e c t (m) low-pass water l e v e l Joo.o OPTS FIGURE 40 W i n d , a t m o s p h e r i c p r e s s u r e , a n d w a t e r l e v e l a t K a y P o i n t d u r i n g 1 9 7 6 , i l l u s t r a t i n g p h a s e c o r r e s p o n d e n c e b e t w e e n l o w - p a s s w a t e r l e v e l a n d n o r t h w e s t e r l y w i n d s p e e d . 133 the n o r t h w e s t and t h a t n e g a t i v e surges a re a s s o c i a t e d w i t h e a s t e r l y winds, which generate an o f f s h o r e Ekman t r a n s p o r t , was mentioned p r e v i o u s l y ( s e c t i o n 2.3.3). Data i n F i g u r e s 39 and 40 appear t o c o n f i r m t h i s p a t t e r n f o r l o w - f r e q u e n c y f l u c t u a t i o n s of s m a l l a m p l i t u d e a l s o . I t i s the h o r i z o n t a l shear s t r e s s g e n e r a t e d by s u r f a c e winds t h a t appears most d i r e c t l y i n the c o u p l i n g between a t m o s p h e r i c motion and water s u r f a c e e l e v a t i o n (Groen and Groves, 1962). In the p r e s e n t s t u d y , n o r t h w e s t e r l y and n o r t h e a s t e r l y components of s t r e s s were computed from v e l o c i t i e s measured at z = 10 m above the t u n d r a s u r f a c e a t Kay P o i n t . The wind s t r e s s was computed as T =p C n u l u l (3.2.1-2) a a D 1 1 assuming a i r d e n s i t y p = 1.25 kg m~3 and a d o p t i n g a c o n s t a n t drag c o e f f i c i e n t C D = 1.6x10\" 3, based on r e s u l t s from the n o r t h A l a s k a c o a s t (Wiseman et a l . , 1973). The v a r i a b i l i t y of P a and the c o n j e c t u r a l n a t u r e of the C D v a l u e , t o g e t h e r w i t h i t s dependence on wind speed and o t h e r f a c t o r s , a r e r e c o g n i z e d but n e g l e c t e d f o r the purpose of t h i s d i s c u s s i o n . V a r i a n c e d e n s i t y s p e c t r a f o r the two components of wind s t r e s s a r e p l o t t e d i n F i g u r e 19 ( s e c t i o n 2.2.1). The spectrum f o r the n o r t h e a s t e r l y component of wind s t r e s s (normal t o the c o a s t ) l e v e l s o f f a t T > 4 days and e x h i b i t s a maximum a t T = 1 day, r e v e a l i n g a weak l a n d - s e a breeze p a t t e r n . The v a r i a n c e d e n s i t y a t s y n o p t i c f r e q u e n c i e s i s a p p r o x i m a t e l y two o r d e r s of magnitude lower than t h a t of the n o r t h w e s t e r l y component. The l a t t e r has a broad maximum i n the range 134 2.3 < T < 10 days, w i t h a peak v a r i a n c e d e n s i t y a t T = 5.4 days. P a r t i a l coherence f u n c t i o n s have been e s t i m a t e d , assuming the model o u t l i n e d above, i n which p r e s s u r e and the two components of wind s t r e s s a r e c o n s i d e r e d as i n p u t s t o a l i n e a r system w i t h o u t p u t ( t ) , the water l e v e l a t Kay P o i n t s p i t (gauge A ) . The n o r t h e a s t e r l y component of wind s t r e s s i s e s s e n t i a l l y i n c o h e r e n t w i t h water l e v e l a t T > 1 day. However, the p a r t i a l coherence between water l e v e l and n o r t h w e s t e r l y wind s t r e s s , ( F i g u r e 4 1 ) , i s maximized a t T = 3.7 days w i t h 2 = 0.67; the coherence f a l l s o f f r a p i d l y a t h i g h e r and lower f r e q u e n c i e s . I t may be t e m p t i n g t o c o n c l u d e t h a t the system i s a p p r o x i m a t e l y l i n e a r a t T = 3.7 days, inasmuch as p r e s s u r e e x h i b i t e d a p a r t i a l coherence maximum a t the same f r e q u e n c y . In n e i t h e r c a s e , however, i s the coherence e s t i m a t e s i g n i f i c a n t a t = 0.10 ( f o l l o w i n g Groves and Hannan, 1968, p.153), a l t h o u g h f o r i t i s n e a r l y so. For o t h e r f r e q u e n c y bands, i n which the v a r i a n c e of water l e v e l remains h i g h , the model i s i n c o m p l e t e or the system h i g h l y n o n - l i n e a r or b o t h . Major f a c t o r s c o n t r i b u t i n g t o t h i s r e s u l t i n c l u d e : (1) the inadequacy of l o c a l p o i n t wind d a t a t o d e s c r i b e the wind f i e l d i n f l u e n c i n g a l a r g e - s c a l e surge phenomenon; (2) poor c o r r e l a t i o n between winds a t the c o a s t and o f f s h o r e winds; (3) a d d i t i o n a l components and n o n l i n e a r i t y i n the system; (4) e f f e c t s of v a r i a b l e s e a - i c e c o v e r on the atmosphere-ocean c o u p l i n g . W i th r e f e r e n c e t o f a c t o r 3, a d d i t i o n a l components ( i n \u00E2\u0080\u00A2 i ro a=0.10 F R E Q U E N C Y Cc h*]' FIGURE 41 P a r t i a l c o h e r e n c e between water l e v e l and n o r t h w e s t e r l y wind s t r e s s , a f t e r removing e f f e c t s of a i r p r e s s u r e and n o r t h e a s t e r l y wind s t r e s s ; the 10% l e v e l of s i g n i f i c a n c e was computed f o l l o w i n g Groves and Hannan ( 1 9 6 8 ) , w i t h 8 degrees of freedom. 136 e f f e c t c o u p l i n g terms) i n the system i n c l u d e a volume t r a n s p o r t (or u n i t - w i d t h c u r r e n t ) q and a sea-bottom shear s t r e s s T b . In the e q u i l i b r i u m c a s e , and assuming q = 0 and T b = -m (m<0.5 c h~ l) i s superimposed on t i d a l r e c o r d s from the Babbage E s t u a r y . An example from t h e N i a k o l i k P o i n t r e c o r d f o r 30 J u l y 1976 i s p r e s e n t e d i n F i g u r e 43. The most prominent f e a t u r e of t h i s r e c o r d i s an abrupt t r a n s i e n t of h e i g h t H = 0.11 m, a s s o c i a t e d w i t h a sudden wind s h i f t and i n c r e a s e i n T n w , peak water l e v e l l a g g i n g t h e l o c a l wind s h i f t by l e s s than one hour. A s i m i l a r phenomenon was o b s e r v e d on 6 August 1976 ( F i g u r e 4 4 ) , a l t h o u g h the l a g was g r e a t e r and the 140 FIGURE 43 H i g h - f r e q u e n c y and t r a n s i e n t r e s p o n s e of water l e v e l t o wind a s s o c i a t e d w i t h c o l d - f r o n t p a s s a g e , 30 J u l y 1976. 141 TIME Ch) FIGURE 44 Mi n o r surge w i t h a b r u p t shock f r o n t and h i g h - f r e q u e n c y l o w - a m p l i t u d e v a r i a n c e superimposed on N i a k o l i k P o i n t (gauge-B) t i d a l r e c o r d f o r 6 August 1976. 142 r e l a x a t i o n more p r o l o n g e d . The r e c o r d s i n F i g u r e s 43 and 44 a l s o show v e r y l o w - a m p l i t u d e v a r i a n c e w i t h p e r i o d s i n the range 0.2 < T < 1 h a p p r o x i m a t e l y . As i s e v i d e n t from the d a t a f o r 6 August, t h e s e l o n g waves a r e not c o r r e l a t e d w i t h l o c a l winds. The a m p l i t u d e and f r e q u e n c y a r e c o n s i s t e n t w i t h a h y p o t h e s i s of s h e l f resonance ( c f . Munk, 1962). A l t h o u g h no p a r t i c u l a r e x c i t i n g mechanism can be i d e n t i f i e d , i n t e r n a l waves over the s h e l f (or i n Mackenzie Canyon) and f a r - f i e l d m e t e o r o l o g i c a l e f f e c t s are p l a u s i b l e c a n d i d a t e s . I t i s p o s s i b l e t h a t t h i s o s c i l l a t i o n i s a l s o a m p l i f i e d by resonance w i t h i n the Babbage E s t u a r y ( f o r example, w i t h i n the e l l i p t i c a l b a s i n s o u t h of N i a k o l i k P o i n t , f o r which a fundamental p e r i o d T=0.5 h has been e s t i m a t e d ) . I t i s not known whether t h i s ' s u r g i n g ' phenomenon has any a p p r e c i a b l e e f f e c t on c i r c u l a t i o n i n the Babbage E s t u a r y . In summary, v a r i a b i l i t y of water l e v e l a t the ocean boundary, r e l e v a n t t o the e s t u a r i n e c i r c u l a t i o n and water budget, o c c u p i e s a v e r y broad s p e c t r a l band i n the range T > 1 0 3 s, the upper bound b e i n g perhaps of o r d e r l O 1 0 s, comparable t o the age of the e s t u a r y (see s e c t i o n 2.1.2). Annual and s y n o p t i c - s c a l e v a r i a n c e r e l a t e d t o weather e f f e c t s dominate the system i n the s h o r t term. I f we c o n s i d e r t i d a l and h i g h e r - f r e q u e n c y v a r i a n c e as n o i s e superimposed on a s y n o p t i c - s c a l e s i g n a l , we o b t a i n a s i g n a l - t o - n o i s e r a t i o of o r d e r 1 0 1 [ c f . 10\u00C2\u00B0 f o r the Texas G u l f c o a s t near Corpus C h r i s t i ( S m i t h , 1977), 10' 2 f o r Bermuda (Wunsch, 1 9 7 2 ) ] . S e a - i c e i s i d e n t i f i e d as a major f a c t o r , a f f e c t i n g the g e n e r a t i o n of 143 s y n o p t i c - s c a l e f l u c t u a t i o n s i n t h i s r e g i o n . The f o r c i n g mechanisms a r e i d e n t i f i e d as p r e d o m i n a n t l y f a r - f i e l d , i n the sense t h a t they are i n i t i a t e d a t a d i s t a n c e or o p e r a t e over a broad r e g i o n of the s h e l f , but l o c a l e f f e c t s a t h i g h frequency may o c c u r . Water l e v e l s a t the ocean boundary a r e of fundamental importance t o the e s t u a r i n e and d e l t a i c systems. They r e p r e s e n t the base l e v e l f o r r i v e r d i s c h a r g e and i n f l u e n c e the s u r f a c e s l o p e w i t h i n the e s t u a r y , such t h a t t i d a l and o t h e r g r a v i t y waves can p r o p a g a t e i n t o the lagoon and d e l t a . I n p a r t i c u l a r , over a range of f r e q u e n c i e s w i t h p e r i o d s from 0.2 h t o one year and l o n g e r , v a r i a t i o n s i n the ocean s u r f a c e e l e v a t i o n c o n t r o l the s t o r a g e volume of the e s t u a r y , i n f l u e n c e the e x t e n t of f l o o d i n g i n i n t e r t i d a l and s u p r a t i d a l zones, and d r i v e a f l u c t u a t i n g net exchange between the e s t u a r y and P h i l l i p s . B a y . 144 3.3 SYSTEM RESPONSE 3.3.1 TIDAL PROPAGATION WITHIN THE ESTUARY Water l e v e l f l u c t u a t i o n s a t the ocean boundary propagate i n t o the e s t u a r y as g r a v i t y waves, g e n e r a t i n g a c o o s c i l l a t i n g t i d e . In g e n e r a l , frequency remains c o n s t a n t but a m p l i t u d e and phase v a r y i n response t o s e v e r a l e f f e c t s , n o t a b l y r e f l e c t i o n , r e f r a c t i o n , and f r i c t i o n , a c c o r d i n g t o the d e t a i l e d morphology of t he e s t u a r y . The c o o s c i l l a t i n g t i d e i s of i n t e r e s t here because, under most r i v e r d i s c h a r g e c o n d i t i o n s , i t d e t e r m i n e s the p r e s s u r e g r a d i e n t and a s s o c i a t e d water t r a n s f e r s w i t h i n the e s t u a r y ; because i t d e t e r m i n e s the d i s t r i b u t i o n of t i d a l a m p l i t u d e s and t h e r e f o r e the v e r t i c a l e x t e n t of the i n t e r t i d a l zone; because, through i t s dependence on the geomorphology, i t r e v e a l s a feedback p r o c e s s l i n k i n g t he h y d r o l o g i c a l and s e d i m e n t o l o g i c a l subsystems of the e s t u a r y ; and f i n a l l y because the dynamics of t i d a l p r o p a g a t i o n p r o v i d e a measure of t h e t i d a l energy a v a i l a b l e f o r m i x i n g , a major f a c t o r i n the n o n t i d a l c i r c u l a t i o n . The t i d e undergoes r e l a t i v e l y minor m o d i f i c a t i o n w i t h i n the Babbage E s t u a r y . The a m p l i t u d e i s reduced headward from N i a k o l i k P o i n t t h r o u g h the d e l t a and a l s o up the lag o o n toward Kay P o i n t . H i g h water a t gauge E (11 km upstream from the e n t r a n c e s e c t i o n ; see F i g u r e 2 f o r gauge l o c a t i o n s ) l a g s h i g h water a t the marine boundary by r o u g h l y 50 minut e s . R e p r e s e n t a t i v e gauge-E and gauge-A (marine boundary, s e c t i o n 145 M2) r e c o r d s a r e superimposed i n F i g u r e 45 t o show the minor d i f f e r e n c e s i n mean, a m p l i t u d e , and phase. The mean water l e v e l appears t o be s l i g h t l y h i g h e r a t gauge E than a t gauge A [ ( ? E - ? A ) = 26 mm], as i s a p p r o p r i a t e f o r maintenance of r i v e r d i s c h a r g e seaward through the e s t u a r y . A more pronounced s u r f a c e s l o p e may e x i s t d u r i n g h i g h snowmelt d i s c h a r g e and, of c o u r s e , i n the event of i c e - j a m backwater a t gauge E. The t i d a l range a t gauge E i s s i g n i f i c a n t l y l e s s than a t the marine boundary [ a =0.025, (n-2)=134, S t u d e n t ' s t=1.22], a l t h o u g h the d i f f e r e n c e i s not g r e a t (R E/R A=0.912). I n a d d i t i o n , some asymmetry of the gauge-E t i d e i s e v i d e n t i n F i g u r e 45. T h i s i s a common f e a t u r e of s h a l l o w - w a t e r t i d a l waves, due t o the depth-dependence of the phase v e l o c i t y C0=(qh)^2. I t i s seen too i n the d e l t a , f o r example a t gauge C ( F i g u r e 4 6 ) , a l t h o u g h the d e t a i l e d form of the t i d a l c u r v e v a r i e s c o n s i d e r a b l y . Pronounced asymmetry can be seen i n p a r t of the r e c o r d , n o t a b l y 26-27 J u l y , and the p r o l o n g e d low t i d e s of the 2 8 t h and 29th may r e p r e s e n t the same phenomenon. D i s t o r t i o n and h i g h - f r e q u e n c y f l u c t u a t i o n s a s s o c i a t e d w i t h weather or o t h e r e f f e c t s a r e a l s o p r e s e n t i n the gauge-C d a t a ( e . g . 20-21 J u l y , F i g u r e 4 6 ) . Note a l s o the t r a n s i e n t event of 30 J u l y d i s c u s s e d e a r l i e r ( s e c t i o n 3.2.1). The c o o s c i l l a t i n g t i d e may be t r e a t e d as a m e c h a n i c a l system t h a t i s e x c i t e d a t the marine boundary and a t e n t r y - p o i n t s of t r i b u t a r y s treams. The system has (n+m) i n p u t f u n c t i o n s , where n i s the number of t r i b u t a r i e s and m the number of t i d a l i n l e t s . The major parameters of the system 146 Water l e v e l sequence a t gauge C, d i s t a l Babbage D e l t a , l a t e J u l y 1976. 147 depend on the morphology a t v a r i o u s s c a l e s . R e f r a c t i o n and r e f l e c t i o n of the t i d a l wave a r e determined by the g r o s s morphology of the e s t u a r y , w h i l e the boundary shear and t u r b u l e n t energy d i s s i p a t i o n r e f l e c t i n l a r g e p a r t ' the f r i c t i o n a l e f f e c t s of s m a l l - s c a l e c h a n n e l roughness. The c o o s c i l l a t i n g system i n the Babbage E s t u a r y can be r e p r e s e n t e d by a two-input model, assuming d i s c h a r g e from Deep Creek and exchange f l o w t h r o u g h i n l e t s e c t i o n M2 t o be n e g l i g i b l e . The water l e v e l a t gauge E may be adopted a r b i t r a r i l y as the system output f u n c t i o n , w h i l e s t a g e a t BI on the Babbage R i v e r and water l e v e l a t gauge A a r e taken as the i n p u t f u n c t i o n s . A l t h o u g h the p h y s i c a l system i s undoubtedly n o n l i n e a r ( c f . F j e l d s t a d , 1929), the p a r t i a l c oherence, Y M f ) = 0 . 9 8 , between the gauge-A and the gauge-E r e c o r d s a t T=12.5 h, computed f o r a sample of l e n g t h N=512 h i n August 1975, demonstrates t h a t the s e m i d i u r n a l t i d e can be r e p r e s e n t e d by a l i n e a r a p p r o x i m a t i o n . The p a r t i a l coherence f u n c t i o n i s p l o t t e d i n F i g u r e 47A, which shows a l s o t h a t more than 80 per c e n t of the r e s i d u a l v a r i a n c e i s c o h e r e n t a t p e r i o d s T>24 h, w i t h a peak of Y|,(f)=0.92 a t T=2.2 days; i n o t h e r words, the system behaves i n a q u a s i - l i n e a r f a s h i o n a t s y n o p t i c f r e q u e n c i e s as w e l l . These r e s u l t s a c c o r d w i t h the r e p o r t e d s u c c e s s of l i n e a r i z e d v e r s i o n s of the c l a s s i c a l t h e o r y (e.g. Ippen and Harleman, 1961). The p a r t i a l coherence between stage a t BI (which i s a s u r r o g a t e , d i m e n s i o n a l l y more a p p r o p r i a t e i n t h i s c a s e , f o r Babbage R i v e r d i s c h a r g e ) and water l e v e l a t gauge E i s p l o t t e d 148 B 10s FREQUENCY Cc h~1) FIGURE 47 P a r t i a l c o herence: (A) between gauge-A and gauge-E water l e v e l s ; (B) between B l and gauge-E water l e v e l s . 149 i n F i g u r e 47B. A p a r t from the h i g h coherence a t T<3 h, f o r which the output v a r i a n c e d e n s i t y i s n e g l i g i b l e , the r e s u l t s a r e not s i g n i f i c a n t a t <* =0.10, and i t i s c o n c l u d e d t h a t r u n o f f a t d i s c h a r g e s Q<75 m 3s~ l, the h i g h e s t v a l u e i n the l a t e summer r e c o r d examined h e r e , has l i t t l e e f f e c t on t h e s t o r a g e volume of the e s t u a r y or t h a t any such e f f e c t i s h i g h l y n o n l i n e a r . T h i s does not mean, however, t h a t f l u c t u a t i o n s of d i s c h a r g e have no i n f l u e n c e on the e s t u a r i n e c i r c u l a t i o n , d e n s i t y s t r u c t u r e , or sediment t r a n s p o r t p r o c e s s . The d a t a do suggest t h a t the c o o s c i l l a t i n g t i d e a t gauge E may be r e p r e s e n t e d by a s i m p l e s i n g l e - i n p u t model w i t h the marine boundary t i d e as the i n p u t . C o n s i d e r a s i n g l e - i n p u t , t i m e - i n v a r i a n t , l i n e a r s t o c h a s t i c model of the form where ? ( t ) and ? ( t ) a r e observ e d water l e v e l s a d j u s t e d t o E A J z e r o mean ( lE = ? A = 0 ) , e ( t ) i s a n o i s e f u n c t i o n , and h ( T ) i s the system w e i g h t i n g ( i m p u l s e response) f u n c t i o n . In the fr e q u e n c y domain, the F o u r i e r t r a n s f o r m of ? R ( t ) i s ,co C _ ( t ) = h ( x ) c , ( t - x ) d x + e ( t ) E l A (3.3.1-1) = c ( t ) + e ( t ) f N / 2 -2 irf i t Z E ( f ) = N\" 1 ' - N / 2 S E ( t ) e dt (3.3.1-2) where N i s the t o t a l l e n g t h of r e c o r d , i = ( - l ) 1 2 , and f i s f r e q u e n c y . Then 150 Z E ( f ) = H ( f ) Z A ( f ) (3.3.1-3) where Z A ( f ) i s the F o u r i e r t r a n s f o r m of ^ A ( t ) and H ( f ) i s the system f r e q u e n c y response f u n c t i o n , the F o u r i e r t r a n s f o r m of the w e i g h t i n g f u n c t i o n h ( T ) (Bendat and P i e r s o l , 1971, p.40). The f r e q u e n c y response f u n c t i o n r e p r e s e n t s the system f i l t e r b e h a v i o u r , i n t h i s case the e f f e c t s of e s t u a r i n e morphology and c h a n n e l roughness on the a m p l i t u d e and phase of the c o o s c i l l a t i n g t i d e . The a m p l i t u d e i s governed by the g a i n f u n c t i o n , | H ( f ) | , w h i l e the phase i s d e t e r m i n e d by the argument of H, * ( f ) . The v a r i a n c e d e n s i t y spectrum of the e s t i m a t e d gauge-E water l e v e l , ? E ( t ) , computed from gauge-A d a t a , ? A ( t ) , i s compared i n F i g u r e 48 w i t h the spectrum of o b s e r v e d water l e v e l a t gauge E, t, ( t ) . The model i s r e l a t i v e l y u n s u c c e s s f u l a t h i g h f r e q u e n c i e s , f>0.1 c h \" 1 , r e f l e c t i n g i n p a r t t h e n o n l i n e a r i t y of the system i n the range 0.10.3 c h \" 1 . W i t h i n the range of f r e q u e n c i e s c o n t a i n i n g most of the v a r i a n c e , however, the model i s a u s e f u l r e p r e s e n t a t i o n and we may examine the response f u n c t i o n , H ( f ) , f o r e v i d e n c e of f r e q u e n c y dependence i n the t i d a l p r o p a g a t i o n system. The computed g a i n f u n c t i o n , | H ( f ) | , i s p l o t t e d i n F i g u r e 49. The p a r t i a l g a i n f u n c t i o n , i n which the l i n e a r e f f e c t s of r i v e r s t a g e on the gauge-E water l e v e l a r e e l i m i n a t e d , i s shown not t o d i f f e r s i g n i f i c a n t l y from the s i n g l e - i n p u t s i m p l i f i c a t i o n adopted i n the model. F u r t h e r m o r e , 151 FIGURE 48 Comparison between v a r i a n c e d e n s i t y s p e c t r a of \u00C2\u00A3 E(t) ( ) and of C E ( t ) ( ), showing c l o s e agreement a t f<10\" 1 c h \" 1 . 152 FIGURE 49 Gain f u n c t i o n (-*- ) f o r Babbage Estuary c o o s c i l l a t i n g t i d a l system; p a r t i a l gain f u n c t i o n , w i t h e f f e c t s of stage f l u c t u a t i o n s at B l e l i m i n a t e d , i s a l s o p l o t t e d ( ); v e r t i c a l bars represent 95% confidence l i m i t s on | H ( f ) | . 153 a t a=0 . 0 5 , we cannot r e j e c t the h y p o t h e s i s t h a t | H ( f ) | = l f o r a l l o b s e r v e d f . N e v e r t h e l e s s , the sample v a l u e s e x h i b i t an i n t e r e s t i n g f r e q u e n c y dependence. For the s e m i d i u r n a l t i d e , f=0.08 c h ~ l , | H ( f ) | < l as the e a r l i e r d i s c u s s i o n of t i d a l range would s u g g e s t , g i v e n the predominance of the s e m i d i u r n a l c o n s t i t u e n t M2. For f<0.05 c h \" 1 (T>20 h ) , however, | H ( f ) | > l , i n d i c a t i n g an a m p l i f i c a t i o n of t h e t i d e . Indeed, some a m p l i f i c a t i o n i s d i s c e r n i b l e a t T=24 h i n F i g u r e 45 and storm surge d a t a p r e s e n t e d i n s e c t i o n 3.3.2 below i n d i c a t e s t r o n g a m p l i f i c a t i o n of s y n o p t i c - s c a l e i n p u t s . The phase f u n c t i o n , $ ( f ) , p r o v i d e s an i n d i c a t i o n of the time l a g between h i g h water a t the e n t r a n c e and h i g h water a t the response l o c a t i o n as a f u n c t i o n of frequ e n c y f . The phase l a g i s g i v e n by the n e g a t i v e of $ ( f ) (Kanasewich, 1975, p.34) and we may compute the l a g as t ( f ) = [ - $ ( f ) / 2 i r f ] (3.3.1-4) (Bendat and P i e r s o l , 1971, p.34). T h i s f u n c t i o n i s p l o t t e d i n F i g u r e 50. W i t h i n t h e range of f r e q u e n c i e s f o r which t h e l i n e a r model h o l d s ( r o u g h l y f<0.1 c h \" 1 ) , the mean l a g i s x=1.3 h. The l a g i s l e s s f o r the s e m i d i u r n a l t i d e and a g a i n i n the range T=1.7 days; g r e a t e r f o r the d i u r n a l t i d e and i n the range T>2 days. F i n a l l y , w h i l e the phase l a g , - $ ( f ) , d e c r e a s e s w i t h i n c r e a s i n g p e r i o d i n the s y n o p t i c range of the spectrum, the time l a g x ( f ) becomes g r e a t e r . 154 FIGURE 50 Lag f u n c t i o n f o r Babbage E s t u a r y c o o s c i l l a t i n g t i d a l system. 155 3.3.2 SUPRATIDAL FLOODING The lower l i m i t of the s u p r a t i d a l zone i n the Babbage E s t u a r y has been taken a t ?=0.70 m, which c o r r e s p o n d s t o the approximate lower boundary of c o n t i n u o u s v e g e t a t i o n on the d e l t a p l a i n . A l t h o u g h v e g e t a t i o n l i m i t s may r e f l e c t a v a r i e t y of p h y s i c a l and b i o t i c f a c t o r s i n t e g r a t e d over time ( c f . D a h l s k o g , 1966, p.86; G i l l , 1972) and may not be r e l a t e d s i m p l y t o parameters of the water l e v e l d i s t r i b u t i o n (some c o l o n i z i n g v e g e t a t i o n appears on lower s u r f a c e s ) , the 0.70 m l i m i t i s e q u i v a l e n t t o C g 7 f o r summer 1976 water l e v e l s (when m e t e o r o l o g i c a l e f f e c t s were few and minor) and t o C g 3 f o r summer 1975 (when t h r e e storm surges were r e c o r d e d ) . I t s h o u l d be emphasized t h a t the d e l t a p l a i n does not become e x t e n s i v e l y f l o o d e d below a l e v e l of r o u g h l y C =0.75 m ( C g g f o r summer 1976; see F i g u r e 51). S u p r a t i d a l f l o o d e v e n t s a r e g e n e r a t e d i n d e p e n d e n t l y by storm surges and by r i v e r f l o o d d i s c h a r g e . I c e e f f e c t s a r e im p o r t a n t i n both c a s e s , a l t h o u g h the c i r c u m s t a n c e s d i f f e r . The g e n e r a t i o n of storm surges and the mode r a t i n g i n f l u e n c e of sea i c e on surge h e i g h t were d i s c u s s e d i n s e c t i o n 3.2.1. While s u r g e s have been r e c o r d e d i n the w i n t e r months, the frequ e n c y and mean h e i g h t a re g r e a t e s t i n l a t e summer and e a r l y f a l l , when i c e cov e r i n the B e a u f o r t Sea i s t y p i c a l l y l e a s t e x t e n s i v e . The parameters of the f l o o d - l e v e l d i s t r i b u t i o n a s s o c i a t e d w i t h storm surge e v e n t s i n the Babbage E s t u a r y may v a r y w i t h a p e r i o d *of one year i n a p a t t e r n q u a l i t a t i v e l y s i m i l a r t o t h a t of F i g u r e 24. The frequency d i s t r i b u t i o n of 156 0.1 2 10 22 50 90 98 99.9 CUMULATIVE FREQUENCY F i g u r e 51 Comple te d u r a t i o n s e q u e n c e s f o r h o u r l y water l e v e l , Babbage E s t u a r y m a r i n e b o u n d a r y , summer 1975 and s p r i n g - s u m m e r 1 9 7 6 . 157 f l o o d l e v e l s a s s o c i a t e d w i t h h i g h r i v e r d i s c h a r g e a l s o v a r i e s on an a n n u a l c y c l e (major f l o o d s b e i n g l a r g e l y c o n f i n e d t o the snowmelt-breakup season) and i s s t r o n g l y i n f l u e n c e d by the o c c u r r e n c e of i c e i n the l a g o o n , the i c e i n t h i s case t e n d i n g t o i n c r e a s e the h e i g h t of f l o o d i n g (see below).' The a p p r o ximate upper l i m i t of r e c e n t storm surge f l o o d i n g i s d e l i n e a t e d by a d i s c o n t i n u o u s d r i f t w o o d d e p o s i t ( F i g u r e 52). Lower s u r f a c e s seaward of t h i s l i m i t i n c l u d e Kay P o i n t s p i t , i s l a n d s and s h o a l s i n the l a g o o n , s u p r a t i d a l s u r f a c e s a t the n o r t h and s o u t h ends of t h e l a g o o n , and most of t h e Babbage D e l t a ( F i g u r e 5 3 ) . That th e s e s u r f a c e s a r e s u b j e c t t o i n t e r m i t t e n t f l o o d i n g i s apparent not o n l y from the d i s t r i b u t i o n of d r i f t w o o d and o t h e r d e b r i s , but a l s o from m o r p h o l o g i c a l and b o t a n i c a l e v i d e n c e , n o t a b l y the n a t u r e of t h e r m o k a r s t development on s u p r a t i d a l s u r f a c e s and the o c c u r r e n c e of s a l t - t o l e r a n t f l o r a (see s e c t i o n s 4.4.2 and 4.4.4) . At the s c a l e of F i g u r e 53, the maximum h o r i z o n t a l e x t e n t of s u p r a t i d a l f l o o d i n g i s w e l l d e f i n e d . The d i s t r i b u t i o n of d r i f t w o o d 18 days b e f o r e the major storm of 1944 i s p l o t t e d i n F i g u r e 53A. F i g u r e 53B shows the d i s t r i b u t i o n a p p r o x i m a t e l y 28 days b e f o r e the major storm of September 1970. Photographs ta k e n i n 1972 show no s i g n i f i c a n t changes a t t r i b u t a b l e t o the 1970 storm, which was r e p o r t e d t o have been the worst i n the memory of the o l d e s t r e s i d e n t s of T u k t o y a k t u k , a l t h o u g h the c r i t e r i a a r e not s p e c i f i e d and the 1944 storm was c o n s i d e r e d a lmost as s e v e r e ( F a t h e r LeMeur and Codex H i s t o r i c u s de l a 158 A B FIGURE 52 D r i f t w o o d d e p o s i t s marking the p r e s e n t t r a n s g r e s s i v e l i m i t near Kay P o i n t (A and B) and near gauge E i n the v a l l e y ( C ) ; see F i g u r e 53B f o r l o c a t i o n s . 159 FIGURE 53 ' D i s t r i b u t i o n of major d r i f t w o o d d e p o s i t s i n the Babbage E s t u a r y system, 22 August 1944 and 20 August 1970; c i r c l e s i n A i d e n t i f y a r e a s where major changes o c c u r r e d between 1952 and 1970; c i r c l e d numbers i n B i d e n t i f y l o c a t i o n s and o r i e n t a t i o n of photographs i n F i g u r e 52: (1) 52A; (2) 52B; (3) 52C. 160 M i s s i o n de T u k t o y a k t u k , c i t e d i n Canada, P u b l i c Works, 1971b, pp.17 and 2 2 ) . E v i d e n c e from the n o r t h A l a s k a c o a s t s u g g e s t s t h a t the 1970 surge was the h i g h e s t s i n c e 1889 or e a r l i e r , a l t h o u g h a v e r y o l d d r i f t w o o d d e p o s i t 1-2 m above the 1970 l i m i t has been r e p o r t e d i n the v i c i n i t y of H a r r i s o n Bay ( R e i m n i t z and Maurer, 1979, pp.337-338). Two major surges o c c u r r e d i n the Mackenzie D e l t a a r e a i n 1905 and 1929 (R.F. Henry, c i t e d by R e i m n i t z and Maurer, 1978, p.14). However, c o n s i d e r i n g the e x c e l l e n t s t a t e of p r e s e r v a t i o n and exposure of 1944 d r i f t w o o d v i s i b l e i n 1970 photography, one may assume t h a t the 1905 and 1929 s u rges d i d not e x t e n d beyond the l i m i t s i n d i c a t e d on F i g u r e 53A. The e x t r a o r d i n a r y f e a t u r e of the d r i f t w o o d r e c o r d i n the Babbage E s t u a r y i s t h a t 1952 photography shows no change from the d i s t r i b u t i o n p r i o r t o the 1944 e v e n t . In s h o r t , the two major documented storms of r e c e n t decades (1944 and 1970) caused no d e t e c t a b l e r e d i s t r i b u t i o n of d r i f t w o o d ; y e t , sometime between 1952 and 1970, a s u b s t a n t i a l t r a n s g r e s s i o n of major d r i f t w o o d d e p o s i t s o c c u r r e d near Kay P o i n t and i n the v a l l e y (see s i t e s c i r c l e d i n F i g u r e 53). I t i s c o n s i d e r e d improbable t h a t such a change c o u l d o c c u r as a r e s u l t of snowmelt/breakup f l o o d i n g (see b e l o w ) . The a l t e r n a t i v e h y p o t h e s i s , however, i s t h a t a storm surge h i g h e r than the 1944 and 1970 e v e n t s o c c u r r e d on the c e n t r a l Yukon c o a s t between 1952 and 1970. A n e c d o t a l and i n c o m p l e t e water l e v e l d a t a i n c l u d e no e v i d e n c e of an e x c e p t i o n a l surge d u r i n g t h i s i n t e r v a l i n the v i c i n i t i e s of Prudhoe Bay and T u k t o y a k t u k , s u g g e s t i n g t h a t the extreme 161 f l o o d event may be q u i t e l o c a l i z e d . T h i s r e s u l t r a i s e s i n t e r e s t i n g q u e s t i o n s c o n c e r n i n g s p a t i a l v a r i a b i l i t y of f l o o d f r e q u e n c y on the B e a u f o r t Sea c o a s t . A l t h o u g h the h o r i z o n t a l e x t e n t of f l o o d i n g i n the study a r e a i s r e a d i l y mapped from the d i s t r i b u t i o n of d r i f t w o o d on a i r p h o t o g r a p h s , the v e r t i c a l l i m i t s a r e more d i f f i c u l t t o e s t a b l i s h . Surge p r o p a g a t i o n w i t h i n an e s t u a r i n e system may be t r e a t e d as a c o o s c i l l a t i o n analogous t o t h a t of the a s t r o n o m i c a l t i d e s ( c f . s e c t i o n 3.3.1 above). I n c o n t r a s t t o the s e m i d i u r n a l t i d e , however, storm surges a re a m p l i f i e d w i t h i n the Babbage E s t u a r y . T h i s b e h a v i o u r y i e l d s the p o s i t i v e g a i n o b s e r v e d a t low f r e q u e n c i e s i n F i g u r e 49. Data a r e a v a i l a b l e f o r t h r e e r e l a t i v e l y s m a l l surges i n August 1975 (see F i g u r e 3 5 ) . The r e c o r d s f o r the August 27 event ( F i g u r e 54) a r e t y p i c a l : on t h i s o c c a s i o n the surge peaked a t the head of the e s t u a r y (gauge E) a p p r o x i m a t e l y t h r e e hours l a t e r and 240 mm h i g h e r than at the s p i t (gauge A ) . The r a t i o of the a m p l i t u d e a t the head of the system t o t h a t a t the marine boundary ranged between 1.20 and 1.36 f o r the t h r e e e v e n t s of August 1975. R i v e r d i s c h a r g e was not a f a c t o r i n t h i s a m p l i f i c a t i o n : low fr e q u e n c y s t a g e f l u c t u a t i o n s a t B l were not co h e r e n t w i t h water l e v e l s a t gauge E ( F i g u r e 47B) and r i v e r d i s c h a r g e was c o n s i s t e n t l y low (26-g 10-1 < CO / / / / / M M I J I J I A I S r i v e r f l o w i n g N I D e s t u a r y i c e - f r e e FIGURE 63 Schematic p l o t of monthly water t e m p e r a t u r e and s a l i n i t y i n the Babbage E s t u a r y , based on 1976 o b s e r v a t i o n s f o r the summer months and 1974 d a t a ( a f t e r S t e i g e n b e r g e r e t a l . , 1975) f o r A p r i l , w i t h o t h e r v a l u e s i n t e r p o l a t e d . 192 i n a d r i l l - h o l e a t the Babbage D e l t a f r o n t i n March 1974 (R. G i l b e r t , p e r s o n a l communication, 1974; Lewis and F o r b e s , 1974, p.17) may be a t t r i b u t a b l e i n p a r t t o b r i n e c o n c e n t r a t i o n i n an 8-m deep scour h o l e of the main d i s t r i b u t a r y c h a n n e l a d j a c e n t t o the d r i l l i n g s i t e . S a l i n i t i e s i n e x c e s s of 60ppt have been r e p o r t e d from the C o l v i l l e D e l t a ( c o n d u c t i v i t y d a t a i n A rnborg e t a l . , 1966) and from numerous lagoons on the A l a s k a n n o r t h c o a s t ( S c h e l l and H a l l , 1972, pp.7 and 1 0 ) . These v a l u e s a r e comparable t o extremes due t o exce s s e v a p o r a t i o n i n h y p e r s a l i n e l a g o o n s a t lower l a t i t u d e s (eg. Behrens, 1969; C a r p e l a n , 1969; Krumgalz e t a l . , 1980). W h i l e much of the u n f r o z e n water r e m a i n i n g i n the e s t u a r y i n l a t e w i n t e r i s i s o l a t e d by b o t t o m f a s t i c e , w a t e r s t h a t a r e not so r e s t r i c t e d may be w e l l - m i x e d or weakly s t r a t i f i e d , w i t h the s a l t f l u x m a i n t a i n e d p r i m a r i l y by t u r b u l e n t d i f f u s i o n and a weak g r a v i t a t i o n a l c o n v e c t i o n due t o s o l u t e r e j e c t i o n a t the f r e e z i n g p l a n e ( c f . Matthews, i n p r e s s ) . When snowmelt r u n o f f t o t h e e s t u a r y b e g i n s , u s u a l l y sometime i n May, s a l t water i s f l u s h e d r a p i d l y from the d e l t a and l a g o o n . T h i s e v e n t , which r e p r e s e n t s an a b r u p t t h r e s h o l d i n the a n n u a l regime of the e s t u a r y ( F i g u r e 6 3 ) , i s accompanied by a major change i n the e s t u a r i n e c i r c u l a t i o n . S u b s e q u e n t l y , f r e s h w a t e r c o n d i t i o n s p r e v a i l t h r o u g h o u t the e s t u a r y u n t i l sometime i n J u l y i n most y e a r s . D a i l y s a l i n i t y d a t a f o r 1976 ( F i g u r e s 64 and 65) demonstrate t h a t v e r y low s a l i n i t i e s were m a i n t a i n e d i n the lagoon and d e l t a u n t i l l a t e - J u l y of t h a t y e a r , when a r a t h e r a b r u p t i n t r u s i o n of b r a c k i s h water 193 o c c u r r e d . The l e n g t h of the l a g between the end of s p r i n g f l o o d i n g and the f i r s t major s a l i n i t y i n t r u s i o n i n the lagoon s u g g e s t s t h a t m i x i n g between r i v e r e f f l u e n t and c o a s t a l waters o u t s i d e the lagoon proceeds s l o w l y . I c e r e m a i n i n g a g a i n s t the c o a s t u n t i l e a r l y J u l y p r e v e n t s w i n d - i n d u c e d m i x i n g and i c e - m e l t may p r o v i d e an a d d i t i o n a l source of r e l a t i v e l y f r e s h water a t the s u r f a c e . A l t h o u g h c o a s t a l w a t e r s were i c e - f r e e some time b e f o r e the mid-summer s a l i n i t y i n t r u s i o n i n b o t h 1975 and 1976, the t i m i n g of the i n t r u s i o n may be p a r t l y r e l a t e d t o i c e c l e a r a n c e . However, t h e a b r u p t n e s s of t h e i n t r u s i o n i m p l i e s s t r o n g l o c a l s a l i n i t y g r a d i e n t s i n P h i l l i p s Bay and t h e r e f o r e l i m i t e d v e r t i c a l m i x i n g . I n any c a s e , t h e mid-summer i n t r u s i o n r e p r e s e n t s a second major t h r e s h o l d i n the annua l c y c l e of the e s t u a r i n e system. A s s o c i a t e d changes i n the c i r c u l a t i o n a r e d i s c u s s e d i n s e c t i o n 3.3.5 below. The a b r u p t t r a n s i t i o n from h y p e r s a l i n e t o f r e s h c o n d i t i o n s r e f l e c t s the importance of the r u n o f f regime as a major e x t e r n a l parameter of the e s t u a r i n e system ( c f . Simmons, 1955). Runoff i n A r c t i c b a s i n s i s h i g h l y v a r i a b l e a t a s e a s o n a l s c a l e and l a r g e l y c o n c e n t r a t e d d u r i n g a s h o r t n i v a l f l o o d ( s e c t i o n 3.1.1), c a u s i n g s e v e r e d i s t o r t i o n of the a n n u a l s a l i n i t y c y c l e i n s h a l l o w e s t u a r i e s . In c o m b i n a t i o n w i t h w i n t e r b r i n e c o n c e n t r a t i o n , the r u n o f f sequence g e n e r a t e s extreme s e a s o n a l - s c a l e v a r i a n c e i n A r c t i c e s t u a r i n e systems, g r e a t e r even than t h a t o b s e r v e d i n some monsoon-dominated e s t u a r i e s ( s e e , f o r example, N a g a r a j a , 1966; Dyer and 1 9 4 F I G U R E 64 D a i l y s e q u e n c e o f w a t e r t e m p e r a t u r e , Q , s a l i n i t y , s , d e n s i t y , P , a n d v i s c o s i t y , n , i n B a b b a g e E s t u a r y e n t r a n c e , J u n e - S e p t e m b e r 1 9 7 6 . 195 FIGURE 65 D a i l y sequence of s a l i n i t y , s, d e n s i t y , s t a t i o n 12, Babbage 1976. water t e m p e r a t u r e , Q , p , and v i s c o s i t y , n , a t D e l t a , June-September 196 Ramamoorthy, 1969). The magnitude of the s e a s o n a l - s c a l e v a r i a n c e may d i s t i n g u i s h A r c t i c e s t u a r i e s from most o t h e r h y p e r s a l i n e systems, which t y p i c a l l y show r e l a t i v e l y s m a l l i n t r a - a n n u a l v a r i a b i l i t y , w i t h the e x c e p t i o n of h i g h - t i d e p o o l s s u b j e c t t o s e a s o n a l r a i n d i l u t i o n (Jones et a l . , 1978, p.258) and of h y p e r s a l i n e lagoons exposed t o h u r r i c a n e surge and r u n o f f (Behrens, 1969); i n the l a t t e r c a s e , the s e a s o n a l - s c a l e v a r i a n c e may be e x t r e m e l y n o n - s t a t i o n a r y and g r e a t between-years v a r i a b i l i t y i s common. Whereas the v a r i a n c e of d e n s i t y i n the Babbage E s t u a r y i s dominated by s a l i n i t y f l u c t u a t i o n s , v i s c o s i t y i s more s e n s i t i v e t o t e m p e r a t u r e e f f e c t s . D a i l y v i s c o s i t y d a t a f o r 1976 e x h i b i t a g e n e r a l i z e d minimum i n mid-summer ( F i g u r e s 64 and 6 5 ) . A l t h o u g h computation of extreme w i n t e r v i s c o s i t i e s i n v o l v e s e x t r a p o l a t i o n beyond the domain of e m p i r i c a l r e s u l t s ( c f . M i l l e r o , 1974), the v i s c o s i t y of h y p e r s a l i n e water (s=67ppt) a t the f r e e z i n g p o i n t temperature ( 9 =-3.7\u00C2\u00B0C) can be e x p e c t e d t o exceed n=1.9x10\" 3 N s m\"2. The l o w e s t v a l u e s computed from summer 1976 d a t a a r e somewhat l e s s than n =1.1x10\" 3 N s m\"2, g i v i n g an a n n u a l range i n e x c e s s of 7 x 1 0 \" 4 N s m\"2. A l t h o u g h the a n n u a l t r e n d of v i s c o s i t y i s a t a minimum i n l a t e J u l y , r e l a t i v e l y h i g h v a l u e s may o c c u r b r i e f l y a t t h a t time i n a s s o c i a t i o n w i t h c o l d s a l i n e i n t r u s i o n s i n the e n t r a n c e . For example, water a t 0 =0\u00C2\u00B0C and s=25ppt was e n c o u n t e r e d below a depth of 1 m a t s t a t i o n 5 on 28 J u l y 1977 ( F i g u r e 6 6 ) ; t h i s water had a computed v i s c o s i t y of 1.9x10\" 3 N s m\"2. Over the next f o u r days, the s a l i n i t y station 1 station 5 station 7 0.0021 \" \u00E2\u0080\u00A2 \u00E2\u0080\u0094 , J U L Y A U G U S T J U L Y A U G U S T J U L Y A U G U S T F I G U R E 66 D a i l y t e m p e r a t u r e , s a l i n i t y , d e n s i t y , a n d v i s c o s i t y a t s t a t i o n s 1 , 5 , a n d 7 i n t h e B a b b a g e E s t u a r y , 24 J u l y t o 5 A u g u s t 1 9 7 7 . 198 d e c r e a s e d r a p i d l y , the temperature i n c r e a s e d , and the v i s c o s i t y dropped t o a minimum of 1.2x10\"3 N s m\"2. Other major e x c u r s i o n s of v i s c o s i t y a r e apparent i n the 1976 r e c o r d f o r s t a t i o n 5 ( F i g u r e 6 4 ) . S y n o p t i c - s c a l e v a r i a n c e i s reduced headward i n t o the d e l t a ( c f . s t a t i o n 12 d a t a , F i g u r e 65) and i n the upper lagoon ( s t a t i o n 1, F i g u r e 6 6 ) . The i m p l i c a t i o n s of h i g h - and l o w - f r e q u e n c y v i s c o s i t y f l u c t u a t i o n s f o r the s e d i m e n t a t i o n regime i n the e s t u a r y a r e c o n s i d e r e d i n s e c t i o n 4.3.1 below. Some a p p r e c i a t i o n of the r e l a t i v e c o n t r i b u t i o n s of v a r i o u s frequency bands t o the t o t a l v a r i a n c e of d e n s i t y may be g a i n e d from F i g u r e 67. T h i s i n c l u d e s v a r i a n c e e s t i m a t e s d e r i v e d from the s e r i e s of monthly d e n s i t y , from s u c c e s s i v e 10-day s e t s of d a i l y d a t a , and from two s e t s of o b s e r v a t i o n s a t 1-h and 3-h i n t e r v a l s , r e s p e c t i v e l y , over p e r i o d s of two t o t h r e e days. The 95% c o n f i d e n c e l i m i t s f o r t o t a l v a r i a n c e of water d e n s i t y , computed from the v a r i o u s s u b s e t s of d a t a , a r e p l o t t e d a g a i n s t t i m e . L i m i t s were computed from the i n e q u a l i t i e s f o p 2 / >c 2 (0.025) < Op2 < f S p 2 / x 2 (0.975) (3.3.4-1) where & 2 i s the sample e s t i m a t e of the v a r i a n c e , cr 2 i s the P c P p o p u l a t i o n v a r i a n c e , and f = ( n - l ) i s the number of degrees of freedom, on the assumption t h a t the samples a r e drawn from n o r m a l l y d i s t r i b u t e d p o p u l a t i o n s ( s e e , f o r example, Snedecor and Cochran, 1967, pp.74-76). The d i s t r i b u t i o n of vp2 i s s e n s i t i v e t o n o n - n o r m a l i t y , s p e c i f i c a l l y t o d e v i a t i o n s from normal k u r t o s i s . The v a r i a n c e of &2 i s g i v e n by v a r ( &\u00E2\u0080\u00A2\u00C2\u00BB) = ( 2 o V f H l + [ ( K - 3 ) f ] / [ 2 ( f + l ) ] } (3.3.4-2) P 199 i i i i i i i i i 170 ~ 180 190 200 210 220 230 240 250 days J U N E J U L Y A U G FIGURE 67 E s t i m a t e s of the v a r i a n c e of water d e n s i t y f o r s e t s of d a t a a t v a r i o u s s a m p l i n g i n t e r v a l s , A t ; the 95% c o n f i d e n c e i n t e r v a l s f o r o 2 a r e p l o t t e d . 200 where < i s the c o e f f i c i e n t of k u r t o s i s , e q u a l t o 3.0 f o r a normal d i s t r i b u t i o n , and 2 a 4 / f i s the v a r i a n c e of a2 f o r samples drawn from a normal p o p u l a t i o n (Snedecor and Cochran, 1967, p.89). In the Babbage E s t u a r y d a t a , K<3..0 f o r a l l but t h r e e of the samples. T h i s s u g g e s t s t h a t the t r u e v a r i a n c e of c}2 \" may be l e s s than p l o t t e d , a l t h o u g h the s a m p l i n g v a r i a b i l i t y of ic i s h i g h . In two c a s e s , d a i l y d a t a f o r 17412\u00C2\u00B0C and s<7ppt. A g a i n , on August 1, p e r s i s t e n t e a s t e r l y winds and u n u s u a l l y low water l e v e l s d e v e l o p e d , c o n t i n u i n g t o the end of the r e c o r d , when extreme c o n d i t i o n s (9 =0.5\u00C2\u00B0C and s=24ppt) were a g a i n o b s e r v e d . Data o b t a i n e d d u r i n g p o s i t i v e storm surges i n d i c a t e t h a t , a t l e a s t f o r the s m a l l - t o - m o d e r a t e storms of August 1975, extreme temperature and s a l i n i t y c o n d i t i o n s d i d not d e v e l o p i n the e s t u a r y . H a l f - h o u r l y t e m p e r a t u r e d a t a a r e a v a i l a b l e from s t a t i o n 5 f a t (h-z)=0.9 m] f o r the surge of 27 August 1975 ( F i g u r e 6 8 ) . A water t e m p e r a t u r e maximum of 8.7\u00C2\u00B0C o c c u r r e d d u r i n g the e v e n i n g of 25 August under a moderate, warm, s o u t h e r l y wind. D u r i n g the f o l l o w i n g f l o o d t i d e , water temperature dropped r a p i d l y ; the a b r u p t change i n temperature can be e x p l a i n e d p l a u s i b l y by a p p e a l e i t h e r t o a s t r a t i f i e d c o n d i t i o n w i t h a r i s i n g t h e r m o c l i n e , or t o s t r o n g h o r i z o n t a l t emperature g r a d i e n t s i n a v e r t i c a l l y homogeneous s i t u a t i o n . Water temperature remained low t h r o u g h 26 August w h i l e the wind dropped and ve e r e d t o n o r t h w e s t . The temperature r e c o r d f o r the 26th e x h i b i t s h i g h - f r e q u e n c y v a r i a n c e c o h e r e n t but out of phase w i t h t h e h i g h - f r e q u e n c y f l u c t u a t i o n s of water l e v e l . L a t e on the 26th the water temperature began t o r i s e , i n c r e a s i n g by j u s t 1.0K over 36h, w i t h e x t r e m e l y low v a r i a n c e about the t r e n d ( a^ 2=0.01K 2) and no p e r c e p t i b l e d i s r u p t i o n by the s t r o n g n o r t h w e s t e r l y winds and a s s o c i a t e d storm surge e a r l y FIGURE 69 S u r f a c e s a l i n i t y ( p p t ) i n the Babbage E s t u a r y f o l l o w i n g the storm of 27 August 1975. 205 on the 2 7 t h . A s y n o p t i c s u r v e y of the e s t u a r y was c a r r i e d out between 1400 and 1600h l o c a l (9-11 h a f t e r the surge peaked and 1-3 h b e f o r e the major o u t f l o w began); the r e s u l t s showed s u r f a c e s a l i n i t i e s i n the range 1925ppt a t 10 m, s^30ppt below 20 m; H e r l i n v e a u x e t a l . , 1976), so t h a t u p w e l l i n g a s s o c i a t e d w i t h o f f s h o r e winds might p o t e n t i a l l y have brought more s a l i n e water t o the s u r f a c e a t the c o a s t . However, the summer of 1974 was c h a r a c t e r i z e d by a r e l a t i v e absence of e a s t e r l y and s o u t h e r l y winds n o r m a l l y 206 a s s o c i a t e d w i t h u p w e l l i n g i n Mackenzie Bay and no o c c u r r e n c e s of s a l i n i t y s>2.5ppt were o b s e r v e d i n the Babbage E s t u a r y , a l t h o u g h a r e g u l a r program of o b s e r v a t i o n s was not m a i n t a i n e d . I t i s p r o b a b l e t h a t r e l a t i v e l y s a l i n e water moved i n t o the Babbage E s t u a r y by mid-September, when p e r s i s t e n t low water l e v e l s were r e c o r d e d a t Kay P o i n t s p i t , gauge A ( F i g u r e 3 5 ) . S a l i n i t i e s i n 1975 (Table 4) and i n 1976 ( F i g u r e 64) were more r e p r e s e n t a t i v e of the mean summer c o n d i t i o n , under which s u r f a c e w a t e r s c l o s e t o the c o a s t remain g e n e r a l l y b r a c k i s h , but s a l i n i t i e s i n exce s s of 20ppt a r e o c c a s i o n a l l y o b s e r v e d i n the Babbage E s t u a r y . The mean s a l i n i t y a t s t a t i o n s i n the e n t r a n c e was 11.4\u00C2\u00B10.4 ppt i n August 1976 and 14.3\u00C2\u00B11.0 ppt f o r the p e r i o d 24 J u l y t o 6 August 1977; mean s a l i n i t y i n l a t e J u l y and e a r l y August 1974 may have been no g r e a t e r than 2 p p t . I t app e a r s , t h e r e f o r e , t h a t seasons w i t h r e l a t i v e l y low f r e q u e n c i e s of o f f s h o r e winds and p e r s i s t e n t heavy i c e c o n c e n t r a t i o n near the c o a s t may be a s s o c i a t e d w i t h a d e p r e s s i o n of the mean mid-summer s a l i n i t y of the o r d e r of l O p p t . T h i s may have an i m p o r t a n t i n f l u e n c e on c i r c u l a t i o n and sediment d i s p e r s a l d u r i n g the open-water season. 207 3.3.5 THE NON-TIDAL CIRCULATION V a r i a b i l i t y of d e n s i t y and o t h e r water p r o p e r t i e s has an i m p o r t a n t b e a r i n g on t h e c i r c u l a t i o n of water and t h e d i s p e r s a l of c l a s t i c sediment i n an e s t u a r y , as summarized i n the i n t r o d u c t i o n t o s e c t i o n 3.3.4. A l t h o u g h wind and i c e a r e major f a c t o r s i n the c i r c u l a t i o n regime of s h a l l o w l a g o o n s on the B e a u f o r t Sea c o a s t (Dygas and B u r r e l l , 1976; Matthews, i n p r e s s ) , t h e e f f e c t s of t i d a l f l o w s , r i v e r d i s c h a r g e , and geomorphology i n the presence of a l o n g i t u d i n a l d e n s i t y g r a d i e n t a r e n e v e r t h e l e s s p e r v a s i v e . Major a d j u s t m e n t s i n the summer c i r c u l a t i o n r e l a t e d t o s e a s o n a l v a r i a b i l i t y of r u n o f f and water d e n s i t y can be r e c o g n i z e d . The c i r c u l a t i o n regime i n the absence of wind and i c e can be r e g a r d e d as a r e f e r e n c e c o n d i t i o n from which major d e v i a t i o n s occur ( i n p r a c t i c e the r e f e r e n c e c o n d i t i o n can be s p e c i f i e d o n l y i n the most g e n e r a l t e r m s ) . In a narrow r e c t i l i n e a r e s t u a r y , assumed l a t e r a l l y homogeneous, the . v e r t i c a l d e n s i t y g r a d i e n t and the net n o n - t i d a l c i r c u l a t i o n (mean v e l o c i t y f i e l d a t a time s c a l e t h a t i s l a r g e r e l a t i v e t o the dominant t i d a l p e r i o d s ) depend l a r g e l y on the f o l l o w i n g p a r a m e t e r s : (1) the l o n g i t u d i n a l d e n s i t y g r a d i e n t ( p f - P Q ) / L , where i s the d e n s i t y of the f r e s h w a t e r i n p u t and p Q the d e n s i t y of the water a t the e n t r a n c e (the o r i g i n i s t a k e n a t the e n t r a n c e and L may be taken t o r e p r e s e n t the l e n g t h of the s a l i n i t y i n t r u s i o n ) ; (2) the l o n g i t u d i n a l p o s i t i o n 0^x, where i . 1 i s l a t i t u d e and $ the a n g u l a r v e l o c i t y of the e a r t h . In the l a t i t u d e of the Babbage E s t u a r y ( =69.25\u00C2\u00B0N), the C o r i o l i s e f f e c t amounts t o f v = ( l . 3 6 x 1 0 \" 4 ) v m s \" 2 . The t r a n s v e r s e d i s t r i b u t i o n of s u r f a c e d e n s i t y i n the Babbage E s t u a r y e n t r a n c e ( s t a t i o n s 5-7) has been examined u s i n g 1976 d a i l y o b s e r v a t i o n s and h o u r l y d a t a f o r the p e r i o d 19-21 J u l y 1976. A p p l y i n g W i l c o x o n ' s p a i r e d - s a m p l e t e s t (see, 217 e.g., Snedecor and Cochran, 1967, pp.128-129), the n u l l h y p o t h e s i s t h a t p ( 5 ) = P(7) i s r e j e c t e d a t a =0.0001 (n=82, Z=3.71), the mean d e n s i t y a t s t a t i o n 7 ( l e f t s i d e f a c i n g seaward) b e i n g l o w e r . A s i m i l a r c o n c l u s i o n i s i n d i c a t e d f o r the h o u r l y d a t a i n m i d - J u l y ( a =0.0001,' n=48, St u d e n t ' s t=15.3). These r e s u l t s would seem, a t f i r s t s i g h t , t o i n d i c a t e t h a t a p r e f e r e n t i a l o u t f l o w of f r e s h w a t e r on t h e r i g h t s i d e of the e n t r a n c e ( s t a t i o n 5) does not occur f r e q u e n t l y . However, i f the o r i e n t a t i o n of the main d i s t r i b u t a r y o u t l e t o f f N i a k o l i k P o i n t i s e x t r a p o l a t e d toward Kay P o i n t s p i t , s t a t i o n s 5-7 may be viewed as p o i n t s on a l o n g i t u d i n a l s e c t i o n i n an o u t e r e s t u a r i n e r e a c h w i t h s t a t i o n 5 most d i s t a l , i n which case one would expect lower s a l i n i t y a t s t a t i o n 7. S u r f a c e f r o n t s sometimes occur near s t a t i o n 6 i n the e n t r a n c e s e c t i o n , s e p a r a t i n g the r i v e r plume on the N i a k o l i k P o i n t s i d e from b r a c k i s h marine and lagoon water t o the n o r t h ( F i g u r e 70B). These a r e u s u a l l y s h o r t - l i v e d , the more t y p i c a l c o n d i t i o n b e i n g a r e l a t i v e l y weak h o r i z o n t a l d e n s i t y g r a d i e n t a t the s u r f a c e . The bathymetry of the e n t r a n c e s e c t i o n o f f N i a k o l i k P o i n t ( F i g u r e 73) shows a t h alweg p a t t e r n t h a t may f a v o u r f l o w d e f l e c t i o n normal or p a r a l l e l t o the e n t r a n c e s e c t i o n , a c c o r d i n g t o the p r e v a i l i n g dynamic c o n d i t i o n s . Most of the a v a i l a b l e v e l o c i t y d a t a appear t o f a v o u r a model of e f f l u e n t e x p a n s i o n seaward of N i a k o l i k P o i n t , w i t h the a x i s of the f l o w FIGURE 73 S u r f a c e v e l o c i t y d i s t r i b u t i o n i n Ml s e c t i o n , Babbage E s t u a r y , d u r i n g ebb, 1423-1603h 10 August 1976; wind from 135\u00C2\u00B0T a t 7.7 m s _ 1 , Babbage R i v e r d i s c h a r g e Q=27 m 3 s _ 1 , v e l o c i t y f i e l d i n e n t r a n c e s e c t i o n a p p r o x i m a t e l y u n i f o r m w i t h d e p t h . The 1\u00E2\u0080\u0094m i s o b a t h ( r e l a t i v e t o gauge datum) i s a l s o p l o t t e d . 219 l y i n g i n i t i a l l y q u a s i - p a r a l l e l t o the l i n e of s t a t i o n s 5-7 and t u r n i n g seaward i n the v i c i n i t y of s t a t i o n s 5 and 6. T h i s i s th e p a t t e r n suggested by an ob s e r v e d ebb-flow i l l u s t r a t e d i n F i g u r e 73. In another example, s u r f a c e o u t f l o w observed d u r i n g a f l o o d - t i d e ( F i g u r e 74) was o v e r r i d i n g a l a y e r of f l o o d - d i r e c t e d f l o w i n t h e deeper c h a n n e l s near s t a t i o n s 5 and 7 but formed a s i n g l e e b b - d i r e c t e d boundary l a y e r over the c e n t r a l s h o a l near s t a t i o n 6. Wind p l a y s a major r o l e i n the m i x i n g and c i r c u l a t i o n regime of t h e Babbage Lagoon. C i r c u l a t i o n i n s h a l l o w lagoons i s o f t e n found t o be wind-dominated, a p a t t e r n c o n f i r m e d f o r open-water c o n d i t i o n s i n c e r t a i n l agoons of the n o r t h A l a s k a c o a s t (Wiseman e t a l . , 1973, pp.48-49; Dygas and B u r r e l l , 1976; Matthews, 1979). Wind s t r e s s e n t e r s the e q u a t i o n s of h o r i z o n t a l motion as terms of the form ( 1 / P ) ( 3 T x / 3 Z ) and ( l / p ) ( 3 T ^ / 3 Z ) . I f a l i n e a r shear p r o f i l e i s assumed, t h e s e terms can be e v a l u a t e d as ( T a - T b )/Ph (Dyer, 1977, p.26), where T and T B a r e , r e s p e c t i v e l y , the components of the s u r f a c e and boundary shear s t r e s s . Assuming TD-Q ( f u l l y - d e v e l o p e d r e s p o n s e ) , P w=1010 kg m\"3, p &=1.25 kg m - 3, C D=1.6xlO\" 3 (Wiseman e t a l . , 1973, p.29), a wind speed of 2.5 m s \" 1 y i e l d s an a c c e l e r a t i o n of 1.2x10\" 5 m s \" 2 i n 1 m of water ; a wind speed of 10 m s \" 1 and a depth of 1 m g i v e s an a c c e l e r a t i o n of a p p r o x i m a t e l y 2x10\" 4 m.s\" 2. T h i s i s a t l e a s t one o r d e r of magnitude g r e a t e r t h a t the a n t i c i p a t e d v a l u e s of c e n t r i p e t a l and C o r i o l i s terms. L o c a l l y v a r i a b l e response of v e r t i c a l s a l i n i t y d i s t r i b u t i o n s t o w i n d - g e n e r a t e d m i x i n g p r o c e s s e s can near-bottom / \u00E2\u0080\u0094 surface M KAY PT SPIT \ \ * < U - J 0.25 NIAKOLIK m/s F I G U R E 74 S u r f a c e a n d n e a r - b o t t o m v e l o c i t i e s i n M l s e c t i o n , B a b b a g e E s t u a r y e n t r a n c e , d u r i n g f l o o d 1 2 0 0 - 1 3 3 0 h 3 A u g u s t 1 9 7 6 , s h o w i n g c o n t i n u e d e b b f l o w a t a l l d e p t h s o v e r t h e c e n t r a l s h o a l , w i t h w a t e r e n t e r i n g a t d e p t h v i a c h a n n e l s n e a r s t a t i o n s 5 a n d 7 ( s e e F i g u r e s 3 a n d 7 5 f o r b a t h y m e t r y ) ; w i n d f r o m 3 1 5 \u00C2\u00B0 T a t 2 . 5 m s \" 1 , B a b b a g e R i v e r d i s c h a r g e Q = 1 6 . 5 m 3 s - 1 . 221 JULY 30 JULY 31 AUGUST 1 FIGURE 7 5 Time sequence of s u r f a c e and bottom s a l i n i t y a t s t a t i o n s 2, 5, and 7 i n Babbage E s t u a r y , of gauge-A water l e v e l , and of wind speed and d i r e c t i o n a t Kay P o i n t , showing r e s p o n s e of v e r t i c a l s a l i n i t y d i s t r i b u t i o n s t o w i n d - i n d u c e d m i x i n g ; wave h e i g h t s a r e superimposed on the s a l i n i t y sequence. 222 be seen i n F i g u r e 75. The e f f e c t s of wind s t r e s s and c i r c u l a t i o n parameters on h o r i z o n t a l and v e r t i c a l d e n s i t y g r a d i e n t s i n the e n t r a n c e s e c t i o n were i n v e s t i g a t e d u s i n g s i m p l e c o r r e l a t i o n p r o c e d u r e s and the d a i l y d e n s i t y d a t a f o r 1976. The maximum v e r t i c a l and t r a n s v e r s e d e n s i t y d i f f e r e n c e s , ( A p ) and ( A p ) , i n each s e t of v t o b s e r v a t i o n s were t a k e n as t h e output v a r i a b l e s . The f l o w r a t i o R/P (Simmons, 1955), where R i s the t o t a l f r e s h w a t e r r u n o f f d u r i n g a t i d a l c y c l e and P i s the t i d a l p r i s m , was s e l e c t e d as a s i m p l e c i r c u l a t i o n parameter; a l t h o u g h i t i s i n a p p r o p r i a t e f o r c o m p a r a t i v e a n a l y s i s of d i f f e r e n t e s t u a r i e s , due t o the dynamic importance of m o r p h o l o g i c a l f a c t o r s , i t p r o v i d e s a u s e f u l summary of s y n o p t i c - s c a l e v a r i a b i l i t y w i t h i n a s i n g l e system and i t i s p r o p o r t i o n a l t o the t i d a l m i x i n g parameter of Hansen and R a t t r a y (1966, p.324), the p r i n c i p a l f a c t o r a f f e c t i n g v e r t i c a l s t r a t i f i c a t i o n i n the absence of wind. Other v a r i a b l e s c o n s i d e r e d were mean d e n s i t y , p ( t ) ; n o r t h w e s t e r l y and n o r t h e a s t e r l y components of h o u r l y wind s t r e s s (see s e c t i o n 3.2.1) back t o s i x hours p r i o r t o the o b s e r v a t i o n s ; water l e v e l C ( t ) ; and t i d a l phase. The s i g n i f i c a n t p o r t i o n of the c o r r e l a t i o n m a t r i x i s g i v e n i n T a b l e 14. The two o u t p u t v a r i a b l e s , ( A P ) v and ( A P ) f c , e x h i b i t e d the h i g h e s t c o r r e l a t i o n (r=0.64). Both t r a n s v e r s e and v e r t i c a l g r a d i e n t s showed weak p o s i t i v e c o r r e l a t i o n w i t h the t r a n s f o r m e d c i r c u l a t i o n parameter l o g ( R / P ) , ( A p ) b e i n g more h i g h l y c o r r e l a t e d than ( A p ) v . On the o t h e r hand, the v e r t i c a l s t r a t i f i c a t i o n responded i n v e r s e l y t o n o r t h w e s t e r l y TABLE 14 Product-moment c o r r e l a t i o n c o e f f i c i e n t s f o r mean d e n s i t y , t r a n s v e r s e s t r a t i f i c a t i o n , and v e r t i c a l s t r a t i f i c a t i o n i n t h e Babbage E s t u a r y e n t r a n c e ( s t a t i o n s 5 - 7 ) . C o e f f i c i e n t s n o t s i g n i f i c a n t at a=0.05 have been o m i t t e d . P ( t ) ( A p ) ( A p ) v l o g (R/P) T nw ( t - l + k ) T nw (t-2+k) T nw (t-3+k) T nw (t-4+k) nw (t-5+k) T nw (t-6+k) T ne ( t - l + k ) p ( t ) 1.00 0. 44 ( A p ) ( 1.00 0.64 0 .42 ( A p ) v 0 .64 1 .00 -0 .26 0 .29 -0 . 35 -0 . 36 -0 . 38 -0 .40 -0 . 38 -0 . 36 -0.27 0=k^l 224 wind s t r e s s , the l a r g e s t n e g a t i v e c o r r e l a t i o n b e i n g a t a l a g of a p p r o x i m a t e l y 3.5 h. In o r d e r t o a s s e s s t h e r e l a t i v e f r e q u e n c y of v a r i o u s c i r c u l a t i o n p a t t e r n s i n the e n t r a n c e s e c t i o n , both f o r an u n d e r s t a n d i n g of the c i r c u l a t i o n dynamics and as i n p u t t o sediment budget c o m p u t a t i o n s , c u r r e n t meters and o t h e r i n s t r u m e n t a t i o n were moored a t s t a t i o n s 5 and 7 i n 1975 and 1976. U n f o r t u n a t e l y , r e l i a b l e r e s u l t s were o b t a i n e d o n l y f o r the 1975 mooring of an Aanderaa RCM-4 c u r r e n t meter and a s s o c i a t e d t emperature sensor a t s t a t i o n 5. Due t o depth and mooring l i m i t a t i o n s , the i n s t r u m e n t was p l a c e d a t a nominal e l e v a t i o n of 0.9 m above the bed. H o u r l y v a l u e s of l o n g i t u d i n a l and t r a n s v e r s e v e l o c i t y components, low-pass and h i g h - p a s s f i l t e r e d sequences, and h o u r l y water l e v e l a t gauge A a r e g i v e n i n F i g u r e 76. The d a t a were f i l t e r e d u s i n g a 39-h n o n r e c u r s i v e f i l t e r d e veloped by Groves (1955). The components a r e r e f e r r e d t o a r i g h t - h a n d c o o r d i n a t e system i n which x and u are p o s i t i v e toward 118\u00C2\u00B0T ( p o s i t i v e on f l o o d ) and y and v a r e p o s i t i v e toward 208\u00C2\u00B0T ( p o s i t i v e toward s t a t i o n s 6 and 7 ) . These c o o r d i n a t e s , d e t e r m i n e d by the o v e r a l l a l i g n m e n t of the s e c t i o n , do not n e c e s s a r i l y c o r r e s p o n d t o a x i a l and t r a n s v e r s e components of the mean f l o w ( c f . f i g u r e s 73 and 7 4 ) . The o b s e r v a t i o n s c o v e r some 20 days, b e g i n n i n g two days a f t e r the moderate storm surge of 10 August and i n c l u d i n g two f u r t h e r s u r g e s on August 17 and 27, 225 FIGURE 76 L o n g i t u d i n a l and t r a n s v e r s e components of v e l o c i t y a t s t a t i o n 5, low-pass and h i g h - p a s s f i l t e r e d components, and water l e v e l a t gauge A, Babbage E s t u a r y , 12-31 August 1975. 226 S e v e r a l i m p o r t a n t c o n c l u s i o n s may be drawn from t h e s e d a t a . F i r s t , p e r i o d s of n e g l i g i b l e f l o w w i t h an e x t r e m e l y weak t i d a l component appear t o have f o l l o w e d the two moderate surges of 10 and 27 August. Second, the da t a i n c l u d e o n l y about seven days (230^t^237) when s y n o p t i c - s c a l e storm e f f e c t s d i d not dominate the v e l o c i t y f i e l d . T h i r d , d u r i n g t h i s p e r i o d of q u a s i - e q u i l i b r i u m c o n d i t i o n s , the t r a n s v e r s e component was c o n s i s t e n t l y n e g a t i v e and the l o n g i t u d i n a l component c o n t a i n e d by f a r the g r e a t e r p a r t of the s e m i d i u r n a l t i d a l s i g n a l . T h i s i s c o n s i s t e n t w i t h a h y p o t h e s i s of r i v e r d i s c h a r g e p a r a l l e l t o the s e c t i o n , w i t h t i d e - d r i v e n d e f l e c t i o n e i t h e r seaward or i n t o the lagoon near s t a t i o n 5. I n t e r p r e t a t i o n of the v e l o c i t y r e c o r d i s c o m p l i c a t e d by the o c c u r r e n c e of s t r a t i f i c a t i o n f o r which t h e r e i s no r e l i a b l e i n d i c a t o r i n the h o u r l y d a t a . Low v e l o c i t i e s p e r s i s t i n g f o r s e v e r a l days f o l l o w i n g the two l a r g e r storm surges may r e p r e s e n t the development of pronounced s t r a t i f i c a t i o n i n the ch a n n e l a t s t a t i o n 5, a p p r o a c h i n g an a r r e s t e d salt-wedge c o n d i t i o n d u r i n g the p r o l o n g e d z e r o f l o w a f t e r August 27 ( a l t h o u g h no independent c o r r o b o r a t i o n of the response i s a v a i l a b l e ) . Pronounced v e r t i c a l s a l i n i t y d i f f e r e n c e s were obser v e d a t s t a t i o n 5 on the 12th and 13th of August, f o l l o w i n g t h e 10 August s u r g e , d i f f e r e n c e s amounting t o 8.1ppt and 7.2ppt r e s p e c t i v e l y . The a b r u p t s h i f t from p o s i t i v e t o n e g a t i v e u l a t e on the 1 3 t h (t=225.9) may r e f l e c t a v e r t i c a l m i x i n g event due t o wind d u r i n g the a f t e r n o o n and e v e n i n g ; a temperature i n c r e a s e of almost 4K accompanied t h i s e v e n t . 227 The response d u r i n g storms i s h a r d e r t o g e n e r a l i z e , i n p a r t perhaps because l o c a l wind a c c e l e r a t i o n s p l a y a major r o l e i n the c i r c u l a t i o n dynamics a t t h e s e t i m e s . E r r a t i c h i g h - f r e q u e n c y f l u c t u a t i o n s i n the section-mean v e l o c i t y , [ u ] , e s t i m a t e d from the water l e v e l d a t a , a r e p a r t l y r e p r o d u c e d i n the l o n g i t u d i n a l v e l o c i t y r e c o r d f o r s t a t i o n 5. The l o n g i t u d i n a l component was f l o o d - d i r e c t e d d u r i n g the surge i n f l o w e a r l y on the 27th (t=238), but the t r a n s v e r s e component of f l o w ( d i r e c t e d a c r o s s the s e c t i o n from N i a k o l i k P o i n t toward s t a t i o n 5) remained s t r o n g , i n c r e a s i n g r a p i d l y as soon as the surge peaked. By the end of the day, the v e l o c i t y had dropped t o near z e r o , where i t remained (except f o r b r i e f i n t e r v a l s of f l o o d - d i r e c t e d f l o w ) u n t i l the end of the r e c o r d . Storm r u n o f f from the Babbage R i v e r peaked a t Q=61 m 3 s _ 1 c l o s e t o noon on August 28 (see F i g u r e 6 8 ) . I t i s i n t r i g u i n g t o note t h a t t h e l a r g e s t e x c u r s i o n s of v e l o c i t y d u r i n g the two storm surges (August 17 and August 27) o c c u r r e d i n the t r a n s v e r s e component, t h a t they d i f f e r e d i n s i g n on the two o c c a s i o n s , and t h a t on the. 17th the l o n g i t u d i n a l component was e b b - d i r e c t e d t hroughout the s u r g e , e xcept f o r a b r i e f i n t e r v a l c o i n c i d i n g w i t h t h e surge maximum. In summary, i t appears t h a t s h o r t - t e r m f l u c t u a t i o n s of d e n s i t y and o t h e r p h y s i c a l p a r a m e t e r s of water i n the e s t u a r y e x t e n d over a wide range of f r e q u e n c y , w i t h most of the v a r i a n c e a t s y n o p t i c and s e a s o n a l s c a l e s , the dominant p e r i o d b e i n g T=l y e a r . Abrupt changes i n the mean d e n s i t y o c c u r d u r i n g breakup and a g a i n i n mid-summer, as the e s t u a r y s w i t c h e s 228 from h y p e r s a l i n e t o f r e s h c o n d i t i o n s and then back a g a i n t o h i g h e r s a l i n i t i e s i n the range 0 t h e n u l l h y p t h e s e s t h a t a=0 and b = l c a n n o t be r e j e c t e d a t a=0.1 ( t = | b - 1 | / s =0.89; t=|a-0|/s =1.46). D Si 234 J U N E 1976 TIME ( d a y s ) FIGURE 78 Net exchange f l o w t h r o u g h Ml s e c t i o n , gauge-B water l e v e l , and Babbage R i v e r d i s c h a r g e t h r o u g h BI s e c t i o n , June 1976. 235 190 210 230 250 DRYS FIGURE 79 H o u r l y s t o r a g e volume i n the Babbage E s t u a r y d u r i n g summer 1975? note r a p i d d o u b l i n g of volume i n s t o r a g e d u r i n g e a r l y August st o r m s u r g e . Time i n days w i t h o r i g i n a t OOOOh 1 J a n u a r y (see Appendix A.3 d a t a l i s t f o r c o n v e r s i o n t o d a t e ) . 2 3 6 d a t a ) . D u r i n g the f i r s t of t h e s e s u r g e s , the t o t a l volume of water s t o r e d i n the system i n c r e a s e d by 91 per c e n t over 20 hours and more than d o u b l e d over a 31-h i n t e r v a l . The August storm surges were the most prominent e v e n t s of the 1975 s e r i e s , but s y n o p t i c - s c a l e v a r i a b i l i t y w i t h a range of mean d a i l y volume a p p r o a c h i n g 1 0 7 m3 was e v i d e n t i n J u l y a l s o . Indeed, the f r e q u e n c y s t r u c t u r e of V ( ? ) ( F i g u r e 80) was almost i d e n t i c a l t o t h a t of water l e v e l , s ( t ) , which was dominated by s y n o p t i c - s c a l e v a r i a n c e . S u b t i d a l f r e q u e n c i e s were much l e s s pronounced i n the net exchange f l o w sequence, Q 0 ( t ) . T h i s was not unexpected because the magnitude of the r u n o f f component was r e l a t i v e l y s m a l l i n l a t e summer, such t h a t Q Q ( t ) - dV/dt and most s y n o p t i c - s c a l e s t o r a g e a d j u s t m e n t s were accomodated by l i m i t e d m o d u l a t i o n of the t i d a l - f r e q u e n c y exchange p r o c e s s . The 1975 exchange sequence has been decomposed i n t o a net i n p u t sequence, Q o ( t ) , and a net output sequence, Q o ( t ) . The o u t p u t , Q ~ ( t ) , can be r e g a r d e d as a system response t o two major i n p u t s , Q f ( t ) and Q o ( t ) . E x a m i n a t i o n of the p a r t i a l coherence f u n c t i o n f o r the r u n o f f i n p u t and system output p r o c e s s e s ( F i g u r e 81) r e v e a l s the extreme n o n l i n e a r i t y of r u n o f f t r a n s f e r s t h r o u g h the e s t u a r y . T h i s r e s u l t e f f e c t i v e l y e l i m i n a t e s s i m p l e a p p l i c a t i o n of l i n e a r s t o c h a s t i c models such as e q u a t i o n s 1.2.1-1 or 3.3.1-1 t o r e p r e s e n t movement of f l u v i a l water and sediment i n p u t s t h r o u g h the e s t u a r i n e system, even i f t h e system parameters c o u l d be c o n s i d e r e d c o n s t a n t and 237 F I G U R E 80 V a r i a n c e d e n s i t y s p e c t r u m o f h o u r l y s t o r a g e v o l u m e i n t h e B a b b a g e E s t u a r y d u r i n g s u m m e r 1 9 7 5 ; t h e 90% c o n f i d e n c e i n t e r v a l , a s s u m i n g a c h i - s q u a r e d d i s t r i b u t i o n w i t h 1 0 d e g r e e s o f f r e e d o m , i s g i v e n a t u p p e r r i g h t . FIGURE 81 P a r t i a l c o herence between Babbage R i v e r d i s c h a r g e , Qf (t) , and Ml net o u t p u t sequence, Q ^ ( t ) , showing extreme n o n - l i n e a r i t y of r u n o f f t r a n s f e r s t h r o u g h the e s t u a r y , p a r t i c u l a r l y i n the s y n o p t i c f r e q u e n c y band i n which most of the v a r i a n c e of r u n o f f r e s i d e s . 239 i f the net n o n - t i d a l c i r c u l a t i o n .did not i n t r o d u c e a d d i t i o n a l exchanges unaccounted f o r i n the Q^(t) and Q^(t) s e r i e s . D u r i n g major r u n o f f e v e n t s , p a r t i c u l a r l y d u r i n g breakup when the t i d a l s i g n a l i s weak and d e n s i t y s t r a t i f i c a t i o n i s n e g l i g i b l e , much g r e a t e r coherence may e x i s t between Q f and Q~ (which may then account f o r the e n t i r e exchange p r o c e s s ) . T h i s i s s u g g e sted by the time s e r i e s f o r the f l o o d of e a r l y June 1976 ( F i g u r e 78). A c o n s i s t e n t o u t f l o w was m a i n t a i n e d i n the e n t r a n c e s e c t i o n f o r a t l e a s t t h r e e days. The e s t i m a t e d maximum net o u t f l o w on June 6 (Q\"=-572 m 3 s - 1 ) was a p p r o x i m a t e l y e q u i v a l e n t t o the peak d i s c h a r g e a t B l (Q=529 m 3 \" 1 ) . The out p u t peaked some 15 hours a f t e r the i n p u t ; i c e e f f e c t s a r e b e l i e v e d t o have c o n t r i b u t e d t o the v e r y l o n g l a g t i m e . D u r i n g the 26 June f l o o d , when a w e l l - d e v e l o p e d t i d a l s i g n a l was p r e s e n t i n the e n t r a n c e exchange f l o w , i n p u t from P h i l l i p s Bay was a g a i n suppressed f o r a time and the low t i d e l e v e l some 8 hours a f t e r the r u n o f f peak was u n u s u a l l y h i g h ( F i g u r e 7 8 ) , i n d i c a t i n g a s i g n i f i c a n t s h o r t - t e r m anomaly i n the s t o r a g e volume of the e s t u a r y a t t r i b u t a b l e t o the r u n o f f i n p u t . The monthly water budget, p r e s e n t e d i n Ta b l e 16, emphasizes the extreme s e a s o n a l v a r i a n c e c h a r a c t e r i s t i c of the Babbage E s t u a r y system. The budget c o v e r s f o u r months i n 1976, t h r e e summer months f o r which time s e r i e s d a t a a r e a v a i l a b l e and one w i n t e r month f o r which the budget can be e s t i m a t e d on the b a s i s of an assumed z e r o r u n o f f i n p u t , an assumed c o n s t a n t i c e s u r f a c e e l e v a t i o n , and a d o p t i o n of S h i n g l e P o i n t d a t a f o r the p r e c i p i t a t i o n i n p u t . Assuming t h a t e v a p o r a t i v e l o s s e s were 2 4 0 T A B L E 16 W a t e r b u d g e t f o r B a b b a g e E s t u a r y , J a n u a r y 1 9 7 6 a n d J u n e - A u g u s t 1 9 7 6 . Volumes in cubic metres date AT January 2.7x10^ 0.0 2.7x10^ 0.0 0.0 7 0.0 <0.0 June -1.1x107 5.OX108 6.5x106 -1.4x10\u00C2\u00B0 -5.2x108 ^7.2x107 <-5.8x108 July -1.0x107 1.3x108 2.9x105 -1.4x10\u00C2\u00B0 -1.4x108 \u00C2\u00BB2.2x10\u00C2\u00B0 <-3.5x10u August +5.1x106 7.5x107 8.8x105 -1.4x106 -7.8x107 ,>3.Ox108 <-3.3x108 MEASURED: AT, ESTIMATED: q d, 0^ RESIDUAL: QQ, .0.*, Q~ Notes: 1. Storage elements, AT, at a time scale of order one day due to t i d a l exchanges are sometimes of the order of 10? vii. on a monthly basis, however, values of AV computed using daily mean volumes are equivalent to those shown above, except in August, when a value of +4.2x10\u00C2\u00B0 m' i s obtained. 2. Volume changes may occur due to steric effects or ice melt, without transfer of mass across system boundaries. At the start of June 1976 a large part of the total volume stored in the eBtuary remained as ice; assuming that half of the total 4x10? v? i a storage was ice, the change i s total volume due to phase changes in June would be of the order of 10^ n>3, Steric effects would be smaller (see section 3.2.1). 3. Qd for June includes an estimated 5.5x10^ snowmelt runoff, computed assuming 69 mm water equivalent stored in the snowpack or as retained meltwater at the start of June and 20 per cent evaporation loss. Direct runoff from precipitation occurring during June, July, and August has been estimated on the assumption that 5 per cent of total precipitation runs off (Brown et a l . , 1968). 241 n e g l i g i b l e , the J a nuary budget shows d i r e c t p r e c i p i t a t i o n of o r d e r 1 0 5 m3 g o i n g e n t i r e l y i n t o s t o r a g e as snow, w i t h r u n o f f and net exchange f l o w b oth z e r o ( a l t h o u g h presumably Q* = -Q^ > 0 ) . In June, J u l y , and August, the r u n o f f i n p u t s and r e s i d u a l o u t p u t s a t the marine boundary were a p p r o x i m a t e l y e q u a l i n magnitude, the i n p u t term Q* b e i n g an o r d e r of magnitude s m a l l e r i n June and an o r d e r of magnitude l a r g e r i n August. D u r i n g the s p r i n g and summer months, r e s i d u a l s t o r a g e a d j u s t m e n t s were c o n s i s t e n t l y an o r d e r of magnitude s m a l l e r than the f l u v i a l i n p u t and r e s i d u a l o utput terms, and of v a r i a b l e s i g n . The budget summary c l e a r l y i n d i c a t e s t h a t t h e e s t u a r i n e system v a r i e s i n c o m p l e x i t y and i n output b e h a v i o u r on a s e a s o n a l b a s i s , i n response b o t h t o v a r y i n g i n p u t c o n d i t i o n s and t o s e a s o n a l l y v a r y i n g i n t e r n a l p a r a m e t e r s . A s i m p l i f i e d r e p r e s e n t a t i o n of the c a n o n i c a l s t r u c t u r e f o r v a r i o u s seasons ( F i g u r e 82) demonstrates the d r a m a t i c changes i n the number and c h a r a c t e r of i n t e r n a l l i n k a g e s between subsystems i n the e s t u a r i n e cascade t h a t r e c u r on an a n n u a l c y c l e . These changes i n the c a n o n i c a l s t r u c t u r e of the h y d r o l o g i c a l subsystem have i m p o r t a n t i m p l i c a t i o n s f o r sediment d i s p e r s a l i n t h e e s t u a r y , a s u b j e c t t a k e n up i n the f o l l o w i n g pages. A B i i i i . 8-K) H \"B\u00C2\u00B0'\"1 t deltaic aupratidal margins! supratidal Snowmelt flood i L A I : _ A A i I lagoon ft supratidal r \" r W marginal supratidal vK7 -6e Summer i i i i ~ i i _ ^ liuvial i^ l^ dittr KH>[ . b u t . , , t deltaic aupfatioai H > marginal supratidal FIGURE 82 S i m p l i f i e d c a n o n i c a l s t r u c t u r e of t h e h y d r o l o g i c a l subsystem d u r i n g l a t e - w i n t e r , snowmelt, and summer s e a s o n s , showing d r a m a t i c changes i n t h e number and c h a r a c t e r of i n t e r n a l and e x t e r n a l l i n k s . p p r e c i p i t a t i o n e e v a p o r a t i o n r r u n o f f i i c e - t r a n s p o r t t t i d a l t r a n s p o r t a n o n - t i d a l a d v e c t i v e t r a n s p o r t d n o n - t i d a l d i s p e r s i v e t r a n s p o r t 243 4 SEDIMENTOLOGICAL SUBSYSTEM 4.1 FLUVIAL SEDIMENT INPUTS TO THE ESTUARY 4.1.1 SEDIMENT SOURCES AND MATERIALS The Babbage R i v e r and Deep Creek d r a i n a g e b a s i n s encompass a d i v e r s i t y of sediment s o u r c e m a t e r i a l s and t o p o g r a p h i c c o n d i t i o n s . Bedrock l i t h o l o g i e s a r e almost e x c l u s i v e l y s e d i m e n t a r y ( c f . s e c t i o n 2.1.1). The Babbage R i v e r i s i n c i s e d t hroughout much of i t s m i d d l e c o u r s e and major o u t c r o p s of C r e t a c e o u s or o l d e r sediments occur a d j a c e n t t o the c h a n n e l ( F i g u r e 83A). However, much of the sediment moving i n the Babbage R i v e r i s undoubtedly s u p p l i e d from T e r t i a r y and Qua t e r n a r y a l l u v i a l and c o l l u v i a l d e p o s i t s ( F i g u r e 83B). Sediments i n Deep Creek a r e d e r i v e d p r i m a r i l y from u n c o n s o l i d a t e d Q u a t e r n a r y d e p o s i t s . Most of the d r a i n a g e network c o n s i s t s of r e l a t i v e l y s t a b l e s i n g l e - t h r e a d c h a n n e l s formed i n a l l u v i a l g r a v e l ( F i g u r e 83A). Major e x c e p t i o n s i n c l u d e the lower Tulugaq (Crow) R i v e r and reaches downstream from l a r g e groundwater s o u r c e s , where e x t e n s i v e i c i n g s and wide u n s t a b l e c h a n n e l zones d e v e l o p . S i x s i t e s have been i d e n t i f i e d a t which i c i n g s accumulate r e g u l a r l y t o . such a s i z e t h a t i c e p e r s i s t s i n t o August or l a t e r ( c f . F i g u r e 8A). On a b a s i n - w i d e s c a l e , r eaches a f f e c t e d by i c i n g growth r e p r e s e n t major sediment s t o r a g e s i t e s . I FIGURE 83 I n c i s e d m i d d l e c o u r s e of Babbage R i v e r : (A) major exposure of C r e t a c e o u s or e a r l i e r sediments a d j a c e n t t o the c h a n n e l ; (B) T e r t i a r y g r a v e l over o l d e r sediments i n a spur above the r i v e r . 245 FIGURE 84 A: s t e e p b r a i d e d c h a n n e l s d r a i n i n g u n v e g e t a t e d r i d g e s i n Barn M o u n t a i n s , e a s t e r n p a r t of Babbage R i v e r b a s i n , August 1976; B: b l o c k slumping due t o t h e r m o - e r o s i o n a l n i c h e development, lower Babbage R i v e r , l a t e J u l y 1976. 2 4 6 There i s , u n f o r t u n a t e l y , l i t t l e i n f o r m a t i o n on which t o base an assessment of w e a t h e r i n g p r o c e s s e s and sediment p r o d u c t i o n i n the s e b a s i n s . P e r m a f r o s t , g r o u n d - i c e , w i n t e r f r e e z i n g , and a v a r i e t y of thaw p r o c e s s e s a re major d e t e r m i n a n t s of sediment p r o d u c t i o n i n the N o r t h S l o p e environment. F r o s t - s h a t t e r ( f r e e z i n g p r e s s u r e ) e f f e c t s can be assumed t o p l a y an im p o r t a n t r o l e , as i n o t h e r h i g h - l a t i t u d e l o c a l i t i e s ( c f . Washburn, 1969). S o l u t i o n p r o c e s s e s may a l s o be i m p o r t a n t , p a r t i c u l a r l y i n a s s o c i a t i o n w i t h snowmelt and on c a r b o n a t e s , a l t h o u g h many r e a c t i o n s a r e i n h i b i t e d by low t e m p e r a t u r e s . W i l l i a m s (1949) has emphasized the r e l a t i v e l y c o r r o s i v e n a t u r e of snowmelt wate r ; however, r e c e n t e v i d e n c e appears t o c o n t r a d i c t t h i s view (T. G a l l i e , p e r s o n a l communication, 1979). N i v a t i o n p r o c e s s e s a l s o may r e p r e s e n t an im p o r t a n t component of the sediment d e l i v e r y system. In some p a r t s of the Babbage R i v e r b a s i n , sediments a r e d e l i v e r e d from u n v e g e t a t e d h i g h - e l e v a t i o n s u r f a c e s v i a s t e e p b r a i d e d c h a n n e l s ( F i g u r e 84A). However, sediment d e l i v e r y from s i t e s away from c h a n n e l s i s l i m i t e d by the r e l a t i v e l y g e n t l e s l o p e s and s m a l l - s c a l e roughness c h a r a c t e r i s t i c of much of the catchment a r e a ( F i g u r e 8 ) . S o l i f l u c t i o n t r a n s p o r t i s a c t i v e l o c a l l y a t some s i t e s i n the mountains, where r a t e s of movement ex c e e d i n g 15 mm a - 1 are r e p o r t e d t o be common on g e n t l e s l o p e s (Rampton and D u g a l , 1974). R e t r o g r e s s i v e - t h a w p r o c e s s e s r e p r e s e n t a n o t h e r means whereby v a l l e y - s i d e m a t e r i a l s a r e d e l i v e r e d t o the c h a n n e l network. R e t r o g r e s s i v e thaw i s i n i t i a t e d by exposure of i 247 massive ground i c e due t o c h a n n e l m i g r a t i o n or o t h e r causes and can be v e r y r a p i d l o c a l l y . F a i l u r e proceeds back from the i n i t i a l e x p o s u r e , w i t h sediment b e i n g t r a n s f e r r e d downslope from the n e a r - v e r t i c a l h e a d w a l l p r i m a r i l y by mudflow, sheetwash, and g u l l y i n g p r o c e s s e s . A l a r g e a c t i v e r e t r o g r e s s i v e - t h a w f e a t u r e on the Babbage R i v e r above the T r a i l d e s e r v e s mention as a p o t e n t i a l l y i m p o r t a n t p o i n t source of sediment (see McDonald and L e w i s , 1973, p.52). R e t r o g r e s s i v e - t h a w p r o c e s s e s a r e o f t e n i n a c t i v e d u r i n g snowmelt f l o o d i n g due t o snow a c c u m u l a t i o n i n the thaw b a s i n s . Where c h a n n e l banks a r e formed i n f i n e - g r a i n e d a l l u v i u m or s i m i l a r d e p o s i t s , b l o c k s l u m p i n g may occur due t o u n d e r c u t t i n g by the r i v e r . U n d e r c u t t i n g i s promoted i n i c e - r i c h bank m a t e r i a l s by m e l t i n g of i n t e r s t i t i a l i c e . T h e r m o - e r o s i o n a l n i c h i n g may p r o ceed a c o n s i d e r a b l e d i s t a n c e back from the bank fa c e (Walker and A r n b o r g , 1966; McDonald and L e w i s , 1973, p.49). The n i c h i n g p r o c e s s i s w i d e s p r e a d and e f f e c t i v e i n the b a s i n s under d i s c u s s i o n ( F i g u r e 84B) and i s a major cause of l a t e r a l e r o s i o n . Whether r a t e s of bank e r o s i o n a r e i n c r e a s e d or d i m i n i s h e d by the p r e s ence of p e r m a f r o s t and r e l a t e d p r o c e s s e s i s a debate not r e s o l v e d here ( c f . S c o t t , 1978). However, bank e r o s i o n i s c l e a r l y a major s o u r c e of f i n e sediment i n the Babbage and Deep Creek b a s i n s . The c h a r a c t e r of d i s s o l v e d m a t e r i a l s i n s u r f a c e waters d r a i n i n g t o the Babbage E s t u a r y i s summarized i n T a b l e 17 (data from van E v e r d i n g e n , 1974; S t e i g e n b e r g e r e t a l . , 1975). The d a t a i n c l u d e r e s u l t s from f o u r s p r i n g s , which w i t h one 248 TABLE 17 Summary o f d i s s o l v e d c o n s t i t u e n t s i n water s a m p l e s f r o m t h e Babbage R i v e r and Deep C r e e k d r a i n a g e b a s i n s (data f rom v a r i o u s s o u r c e s as i n d i c a t e d ) . C o n c e n t r a t i o n s i n m g / L . date/ season TDS s i o 2 ua ng wai-r, n.u^v^ <-\u00C2\u00B1 ~ 4 S O, C \"\" M \"\" Na+K+ fCo\"+CO C l \" S0~~ pH .Fish Hole Creek3\" w 184. .7 3.9 35. .0 6. .9 1. .0 w . 39. 3 7. .5 0. .8 1. .8 w . 88. 0 17. .0 3 , .3 0. .6 123.2 C 0.4 14.0 soring 4. JS U o.s i . u J-\".-: \" \" \" \" \" - 25.6\u00C2\u00B0 1.1 2.5 57.3\u00C2\u00B0 0.2 9.5 ic i n g r i v e r Crow R i v e r 1 ' 2 spring w 269.8 3.9 59.0 5.0 2.3 . 184.2 C 1.2 14.0 river3 w 40.6 '9.1 0.6 0.3 29.2 C 0.1 2.4 r i v e r 4 9/7/73 185.6 2.0 32.8 a 6.3? 1 1 0 - 2 * 1 - 9 1 2 \u00E2\u0080\u00A2 8 - \u00C2\u00B0 r i v e r 3 26/3/74 260.8 3.4 34.4a13.1 110.0 0.5 15. 7.9 T r a i l R i v e r 2 r i v e r 5 5/7/73 172.6 1.6 32.8 3 4.4 118.2 0.7 10. -8.1 Eabbage R i v e r 1 ' 2 s p r i n g 6 w 247.2 5.2 48.0 8.3 1.2 170.3\u00C2\u00B0 . 0.3 13.0 7.5 r i v e r 5 10/7/73 2.5 25.6 a 6.8^ 8 6 - 5 d \u00C2\u00B0- 2 4 \" 8 , 1 r i v e r 7 25/3/74 992.2 5.7 98.5a56.9 3 4 8 - 3 d 3 - 3 1 9 5 - 7 - 1 lake 8 17/7/73 55.2 0.5 2.4a 3.4^ 1 5 - 9 n \u00C2\u00B0- \u00C2\u00B0- 6 - s lake 8 17/7/73 78.3 0.3 5.63 1.57 15.9^ 0.5 0. , 6.9 lake \" 25/3/74 33(^.8 3.2 48.9 a24.8^ 1 2 7 - 8 < A 1 8 - 7 1 9 - 6 - 7 lake 25/3/74 306.8 3.5 \u00E2\u0080\u00A2 51.3*23.5 134.1164. 16. Deep Creek 2 river= 11/7/73 197.5 2.0 16.8 a 4.4\"' 76.2 .b :vu r i v e r f 13/7/73 329.1 2.0 7.6 5.1 42.7 d lake 9 18/7/73 59.1 0. 4.0 1.5 10.1 lake 18/7/73 82.9 0.4 3.2 2.9 10.4 sp r i n g 9 18/7/73 103.0 0. 4.0 2.9 3.7 0. 18. 7.8 0. .2 14. 8.0 1. .9 0. 7.1 3. .3 8. 7.2 4. .7 0. 7.0, sources of data: jVan Everdingen Q.974) Steigenberger et a l . CL975) sample s i t e s : 3 at i c i n g in v i c i n i t y of spring at CAGP crossing upstream from 5 i c i n g g a t CAGP crossing _upper Babbage River i s o l a t e d unfrozen pool near . CAGP crossing oxbow lake at-69\u00C2\u00B001'N 138\u00C2\u00B012 ' W above T r a i l River; summer samples from surface and bottom lake and spring at 68\u00C2\u00B057'N 137\u00C2\u00B0 30'W: surface, bottom, spring computational procedures: a C a + + computed as 0.400 (Ca-hardness as CaCO,) b -M* Mg computed as 0.244 ((t o t a l hardness as CaC0 3)-(Ca-hardness as CaCO^)) Creported as fEO^ only d f E 0 ~ = 1.219 (total a l k a l i n i t y as CaCO ) when phenolphthalein a l k a l i n i t y i s zero; otherwise both. HC03 and C0 3 are present w: indicates winter or early spring, sampling 249 e x c e p t i o n a r e not s i g n i f i c a n t l y d i f f e r e n t i n i o n i c c o m p o s i t i o n from the r i v e r and l a k e w a t e r s . Water from sub-permafrost a q u i f e r s i s h a r d ( t o t a l hardness as CaCO^>115 mg/L) and h i g h l y m i n e r a l i z e d (1850.2 mm) moving c l o s e t o the bed and s u b j e c t t o i n t e r c e p t i o n w i t h 76.2x76.2-mm H e l l e y - S m i t h b e d l o a d samplers ( H e l l e y and Smith, 2 5 4 1 3 5 .15.5 175 195 215 235 255 TIME (days) FIGURE 86 A: i n c o m b u s t i b l e suspended sediment and t o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n s (mg/L) i n Babbage R i v e r a t B l , 1975; sample d a t a and r a t i n g e s t i m a t e s ; B: i n c o m b u s t i b l e suspended sediment and t o t a l d i s s o l v e d s o l i d s t r a n s p o r t ( k g / s ) . 2 5 5 A: t o t a l suspended sediment and t o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n s (mg/L) i n Babbage R i v e r a t B I , 1976; sample d a t a and r a t i n g e s t i m a t e s ; B: t o t a l suspended and t o t a l d i s s o l v e d s o l i d s t r a n s p o r t ( k g / s ) . 256 FIGURE 88 A: t o t a l suspended sediment and t o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n s (mg/L) i n Deep Creek a t DI, 1976; sample d a t a and r a t i n g e s t i m a t e s ; B: t o t a l suspended and t o t a l d i s s o l v e d s o l i d s t r a n s p o r t ( k g / s ) . 257 1971; Emmett, 1980). T h i s makes p o s s i b l e ' a s t a n d a r d i z e d s a m p l i n g p r o c e d u r e f o r b e d - c o n t a c t l o a d ( b e d l o a d i n the sense of Bagnold, 1966), but a c c o u n t s f o r o n l y a p a r t (presumably a v a r y i n g p a r t ) of b e d - m a t e r i a l l o a d (bedload i n the sense of E i n s t e i n , 1950). These d e f i n i t i o n s form the b a s i s f o r o b s e r v a t i o n a l d a t a and r a t i n g e s t i m a t e s p r e s e n t e d below. F i g u r e s 86 and 87 a r e time-sequence r e p r e s e n t a t i o n s of s o l u t e and suspended sediment c o n c e n t r a t i o n s , w i t h c o r r e s p o n d i n g t r a n s p o r t d a t a , f o r t h e Babbage R i v e r a t B l i n 1975 and 1976. F i g u r e 88 i s a s i m i l a r p l o t f o r Deep Creek a t DI i n 1976. The r a t i n g d a t a r e p r e s e n t h o u r l y e s t i m a t e s , except d u r i n g and p r i o r t o breakup. Note the extreme s e a s o n a l - s c a l e v a r i a b i l i t y i n the d a t a . Whereas suspended sediment and b e d l o a d t r a n s p o r t a r e s t e e p l y i n c r e a s i n g f u n c t i o n s of the v o l u m e t r i c f l o w , s o l u t e t r a n s p o r t i s a n e a r l y l i n e a r f u n c t i o n of d i s c h a r g e , i m p l y i n g r e l a t i v e l y c o n s t a n t c o n c e n t r a t i o n s . The g e n e r a l i z e d p a t t e r n s of d i s s o l v e d , suspended, and b e d l o a d response t o water d i s c h a r g e a r e shown i n F i g u r e s 89 and 90. The dynamic b a s i s and s y s t e m a t i c c h a r a c t e r of t h e s e r e l a t i o n s , and of t h o s e between c o n c e n t r a t i o n and d i s c h a r g e , a r e the s u b j e c t of the p r e s e n t s e c t i o n . S p e c i f i c r a t i n g e q u a t i o n s adopted f o r the t r a n s p o r t e s t i m a t e s a r e g i v e n i n Appendix A.4; computed t r a n s p o r t t o t a l s are p r e s e n t e d i n the f o l l o w i n g s e c t i o n ( 4 . 1 . 3 ) . In g e n e r a l , s o l u t e t r a n s p o r t v a r i e s as Q k where k < l . 258 \u00E2\u0080\u0094 TDS \u00E2\u0080\u0094 TSS \u00E2\u0080\u0094 TBS DISCHARGE Cm3/s) FIGURE 89 D i s s o l v e d , suspended, and b e d l o a d r a t i n g s , Babbage R i v e r a t B I , 1976. 2 5 9 . 3 10 100 1000 D I S C H A R G E (m 3 /s) F I G U R E 90 D i s s o l v e d , suspended, and b e d l o a d r a t i n g s , Deep Creek a t D l , 1976. 260 R e g r e s s i o n of TDS c o n c e n t r a t i o n on d i s c h a r g e , w i t h a l l Babbage R i v e r d a t a taken t o g e t h e r , y i e l d s a r e l a t i o n w i t h s l o p e not s i g n i f i c a n t l y d i f f e r e n t from z e r o . One i n t e r p r e t a t i o n , t h e r e f o r e , i s t h a t s o l u t e c o n c e n t r a t i o n C D i s c o n s t a n t , v i z . J D=C DQ and k = l . However, p a r t i t i o n of the d a t a by season i n d i c a t e s k 380 m 3 s _ 1 a p p r o x i m a t e l y ( F i g u r e 91) and are i n t e r p r e t e d as r e f l e c t i n g p r i m a r i l y the i n f l u e n c e of f i n e suspended m a t e r i a l (D < 0.45 ym), a l t h o u g h t r a n s i e n t s o l u t e v a r i a t i o n may a l s o p l a y a r o l e . k T o t a l suspended l o a d J T a l s o v a r i e s as Q , where 1.26 10\" 10' 101 DISCHARGE(M3/S) DEEP CREEK FIGURE 92 T o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n as a f u n c t i o n of di s c h a r g e D e e p Creek a t D l , 1976, showing phase r e l a t i o n s f o r p e r i o d from f i r s t f l o w (shaded symbols) t h r o u g h major snowmelt f l o o d ; heavy broken l i n e r e p r e s e n t s g e n e r a l l e a s t - s q u a r e s r a t i n g ( s l o p e not s i g n i f i c a n t l y d i f f e r e n t from z e r o ) : see d i s c u s s i o n i n t e x t . 264 e s t i m a t e a r e r a t h e r l a r g e . T h i s undoubtedly r e f l e c t s both h i g h s a m p l i n g v a r i a b i l i t y ( c f . Oguss and E r l e b a c h , 1976; K l e i b e r and E r l e b a c h , 1977) and the o c c u r r e n c e of m i x i n g p r o c e s s e s t h a t the s i m p l e r a t i n g model cannot accomodate. M i x i n g of waters from d i f f e r e n t s o u r c e s w i t h s i g n i f i c a n t l y d i f f e r e n t c o n c e n t r a t i o n s may produce c o n s i d e r a b l e v a r i a n c e about the s i m p l e d i s c h a r g e r a t i n g . F u r t h e r m o r e , because i n d i v i d u a l i o n t y p e s may e x h i b i t d i s t i n c t i v e p a t t e r n s of v a r i a t i o n w i t h d i s c h a r g e (Johnson et a l . , 1969), m i x i n g of s o u r c e w a t e r s of d i f f e r e n t c o m p o s i t i o n can produce complex d e p a r t u r e s from the mean. In homogeneous b a s i n s , a r e l a t i v e l y s i m p l e i n v e r s e r e l a t i o n t o d i s c h a r g e i s commonly o b s e r v e d , due t o d i l u t i o n of base f l o w by storm r u n o f f ( c f . Gunnerson, 1967). A b r o a d l y analogous p a t t e r n i s assumed t o h o l d i n the b a s i n s c o n s i d e r e d h e r e , a l t h o u g h i t cannot be d e f i n e d unambiguously. D u r i n g t h e snowmelt r e c e s s i o n , s o l u t e c o n c e n t r a t i o n s may be e x p e c t e d t o i n c r e a s e as d i s c h a r g e d i m i n i s h e s and the p r o p o r t i o n of snowmelt d e c r e a s e s . At v e r y low f l o w s i n mid-summer, groundwater s o u r c e s may r e p r e s e n t a s i g n i f i c a n t p a r t of the t o t a l d i s c h a r g e , d e s p i t e e x t e n s i v e p e r m a f r o s t (see s e c t i o n 3.1.1). However, low f l o w s i n the e a r l y snowmelt p e r i o d a r e a l m o s t e n t i r e l y m e l t - d e r i v e d , a t l e a s t i n reaches such as DI w e l l downstream from groundwater s o u r c e s , and s o l u t e c o n c e n t r a t i o n s a r e c o r r e s p o n d i n g l y low ( c f . f i r s t o b s e r v a t i o n s i n Deep Creek, 1976, d i s t i n g u i s h e d by shaded symbols i n F i g u r e 9 2 ) . Abrupt and s h o r t - l i v e d i n c r e a s e s i n c o n d u c t i v i t y were observ e d o c c a s i o n a l l y i n the Babbage R i v e r a t r e l a t i v e l y h i g h 265 f l o w s d u r i n g the breakup p e r i o d . Two such o c c u r r e n c e s i n 1975 are i l l u s t r a t e d i n F i g u r e 93. The f i r s t of thes e was noted some hours a f t e r the annual f l o o d peak on 15 June when the d i s c h a r g e was Q=400 m 3 s _ 1 ; the second, f o u r days l a t e r , d u r i n g an u n e v e n t f u l r e c e s s i o n when the d i s c h a r g e was Q=180 m 3 s _ 1 . Re l e a s e of c o n c e n t r a t e d water from w i n t e r p o o l s under i c e p r o v i d e s a p l a u s i b l e e x p l a n a t i o n . In the Babbage R i v e r , s o l u t e t r a n s p o r t r a t e s may exceed suspended sediment l o a d a t f l o w s as h i g h as 100 m 3 s _ 1 ( F i g u r e 89; c f . F i g u r e 8 6 ) , a l t h o u g h not d u r i n g the snowmelt season. In c o n t r a s t , due t o h i g h e r suspended sediment c o n c e n t r a t i o n s and lower TDS v a l u e s i n Deep Creek, suspended l o a d exceeds s o l u t e l o a d a t d i s c h a r g e s as low as Q > 6 m 3s\" 1. The g r e a t e r t u r b i d i t y of Deep Creek water i s o f t e n apparent a t i t s c o n f l u e n c e w i t h the Babbage R i v e r . D u r i n g a s h o r t p e r i o d i n June 1976, f l u v i a l sediment s u p p l i e d from Deep Creek exceeded t r a n s p o r t i n the Babbage R i v e r . For the most p a r t , however, the s o l u t e and sediment l o a d i n Deep Creek i s v e r y s m a l l ( o f t e n n e g l i g i b l e ) compared t o the q u a n t i t i e s t r a n s p o r t e d by the Babbage R i v e r . Suspended sediment c o n c e n t r a t i o n and l o a d can be e s t i m a t e d u s i n g r a t i n g s of the same form as those adopted f o r s o l u t e l o a d . T h i s approach has been f o l l o w e d w i d e l y as a p r a g m a t i c a l t e r n a t i v e t o c o n t i n u o u s s a m p l i n g i n many d i f f e r e n t e n v i r o n m e n t a l c o n t e x t s (eg. S t r a u b , 1935; Campbell and Bauder, 1940; L e o p o l d and Maddock, 1953; J a r o c k i , 1957; B o b r o v i t s k a y a , 1967). In most c a s e s , water d i s c h a r g e Q i s found t o account 266 600 _1 O) E o 500 400 -Q -< o and 300 - \ \ -f\u00E2\u0080\u0094\ w 200 f A V _ E 100 1 / 1 \/ D \ V O o \u00E2\u0080\u00A2 ; *7 \u00E2\u0080\u0094 - \u00E2\u0080\u00A2 \u00E2\u0080\u0094 *- _ \u00E2\u0080\u0094 r \u00C2\u00BB 14 15 16 17 18 19 20 JUNE 1975 FIGURE 93 Water d i s c h a r g e and t o t a l d i s s o l v e d s o l i d s c o n c e n t r a t i o n ( e s t i m a t e d from s p e c i f i c c o n d u c t i v i t y c o r r e c t e d f o r \u00C2\u00A9 w ) , showing two t r a n s i e n t s of h i g h TDS c o n c e n t r a t i o n d u r i n g breakup and snowmelt f l o o d of June 1975, Babbage R i v e r a t B l . 267 f o r a l a r g e p a r t of the v a r i a n c e of suspended sediment c o n c e n t r a t i o n , a l t h o u g h much s c a t t e r about the r a t i n g r e l a t i o n may sometimes remain. Numerous f a c t o r s have been i d e n t i f i e d t o e x p l a i n the a d d i t i o n a l v a r i a n c e . In p a r t i c u l a r , one may d i s t i n g u i s h between wash and b e d - m a t e r i a l components of the suspended l o a d ( d e f i n e d w i t h r e s p e c t t o a g i v e n r e a c h ) : the l a t t e r i s de t e r m i n e d by the h y d r a u l i c c o n d i t i o n s i n the rea c h and i s t h e r e f o r e c l o s e l y c o r r e l a t e d w i t h d i s c h a r g e ; the former may be o n l y weakly r e l a t e d t o d i s c h a r g e , b e i n g d e t e r m i n e d by the dynamics of e r o s i o n and sediment d e l i v e r y throughout the catchment or i n v a r y i n g s o u r c e a r e a s . In p r a c t i c e , the two components of suspended l o a d cannot e a s i l y be d i s t i n g u i s h e d and f a c t o r s a f f e c t i n g wash l o a d must be c o n s i d e r e d t o e x p l a i n the v a r i a n c e of measured suspended l o a d . S u p p l y - l i m i t a t i o n has been p o s t u l a t e d i n some c a s e s (Campbell and.Bauder, 1940) and appears t o be a f a c t o r i n N o r t h Slope r i v e r s (see b e l o w ) . S e r i a l c o r r e l a t i o n over a wide range of t i m e l a g s , r e f l e c t i n g r e a c t i o n and r e l a x a t i o n e f f e c t s ( A l l e n , 1974) a t many f r e q u e n c i e s , i s another common f e a t u r e of suspended sediment c o n c e n t r a t i o n i n r i v e r s . These e f f e c t s , which, s t r i c t l y s p e a k i n g , i n v a l i d a t e the use of r e g r e s s i o n t e c h n i q u e s f o r r a t i n g e s t i m a t i o n , r e s u l t from t h e o c c u r r e n c e and i n t e r a c t i o n of many f a c t o r s , i n c l u d i n g s h i f t s i n the r a t i n g caused by ch a n n e l adjustment d u r i n g f l o o d s (Campbell and Bauder, 1940; Brown and R i t t e r , 1971); y e a r - t o - y e a r and l o n g e r - t e r m weather f l u c t u a t i o n s (Abrahams and K e l l e r h a l s , 1973); s e a s o n a l - s c a l e 268 v a r i a b i l i t y of weather and r e l a t e d h y d r o l o g i c a l and s e d i m e n t a r y p r o c e s s e s (eg. Guy, 1964; H a l l , 1967); and s h o r t - t e r m e f f e c t s t h a t may a r i s e from a complex s e t of v a r i a b l e s i n c l u d i n g p r e c i p i t a t i o n p a t t e r n s , a n t e c e d e n t s o i l c o n d i t i o n s , c o n t r i b u t i n g a r e a , sediment t y p e , and c h a n n e l h y d r a u l i c s . S e r i a l c o r r e l a t i o n i n suspended sediment c o n c e n t r a t i o n s appears as h y s t e r e s i s i n the c o n c e n t r a t i o n - d i s c h a r g e r e l a t i o n ( F i g u r e s 94 and 95). H y s t e r e s i s has been e x t e n s i v e l y documented ( s e e , f o r example, H j u l s t r o m , 1935; A l l e n , 1974), and may r e f l e c t phase s h i f t s a t v a r i o u s f r e q u e n c i e s ( 1 0 3 < l / f < 1 0 8 s ) . H i g h - f r e q u e n c y e f f e c t s may be superimposed on lo w - f r e q u e n c y e f f e c t s : f o r example, d i f f e r e n c e s between r i s i n g and f a l l i n g s t a g e f o r i n d i v i d u a l s h o r t - t e r m e v e n t s (noted by E i n s t e i n e t a l . , 1940; Johnson, 1943) may be superimposed on an annual snowmelt hydrograph. Such a p a t t e r n , s i m i l a r i n some r e s p e c t s t o o b s e r v a t i o n s i n R l a r a l v e n (Sundborg, 1956)., can be seen i n the 1975 Babbage R i v e r d a t a ( F i g u r e 94A). S e p a r a t i o n of r a t i n g s on the b a s i s of r i s i n g and f a l l i n g s t a g e can g r e a t l y improve the p r e c i s i o n of r a t i n g e s t i m a t e s i n some c a s e s ( N i l s s o n , 1971, 1972; W. F. Rannie _in Church and G i l b e r t , 1975). The Babbage R i v e r d a t a e x h i b i t no c o n s i s t e n t p a r t i t i o n i n terms of the s i g n of i n s t a n t a n e o u s dQ/dt. R e g r e s s i o n e q u a t i o n s computed s e p a r a t e l y f o r r i s i n g and f a l l i n g s t a g e a r e not s i g n i f i c a n t l y d i f f e r e n t . T h i s r e s u l t may be due i n p a r t t o the o c c u r r e n c e of a weak d i u r n a l melt p a t t e r n (see s e c t i o n 3.1.1) which d e t e r m i n e s the s i g n of dQ/dt, but has a r a t h e r minor e f f e c t on suspended sediment c o n c e n t r a t i o n s , t h i s 269 FIGURE 94 Phase r e l a t i o n s between i n c o m b u s t i b l e suspended sediment c o n c e n t r a t i o n (mg/L) and d i s c h a r g e ( m ' s - 1 ) , Babbage R i v e r a t B I , 1975 and 1976. Numbered e v e n t s i n 1976: (1) 5-6 June; (2) 15-16 June; (3) 26 June; c f . f i g u r e 87. FIGURE 95 P h a s e r e l a t i o n s b e t w e e n i n c o m b u s t i b l e s u s p e n d e d s e d i m e n t c o n c e n t r a t i o n ( m g / L ) a n d d i s c h a r g e ( m ' s \" 1 ) , D e e p C r e e k a t D I , 1 9 7 5 a n d 1 9 7 6 , s h o w i n g h y s t e r e s i s d u r i n g a n n u a l s n o w m e l t f l o o d s . 271 e f f e c t b e i n g l a r g e l y masked by l o w e r - f r e q u e n c y e v e n t s . T h i s i s not t o say, however, t h a t s h o r t - t e r m h y s t e r e s i s i s l a c k i n g . Phase l a g s over p e r i o d s of one or more days a r e i l l u s t r a t e d ( F i g u r e 94B) f o r t h r e e d i s t i n c t f l o o d e v e n t s i n the Babbage R i v e r d u r i n g June 1976 ( c f . F i g u r e 8 7 ) . I n the two major f l o o d s of the season [ ( 1 ) 6 June and (3) 26 J u n e ] , suspended sediment c o n c e n t r a t i o n l a g g e d d i s c h a r g e ( a l t h o u g h the d e t a i l e d h o u r l y p a t t e r n cannot be r e s o l v e d f o r the f l o o d of 6 J u n e ) . D u r i n g the f l o o d of 26 June 1976, suspended sediment c o n c e n t r a t i o n peaked a p p r o x i m a t e l y 3-4 hours a f t e r d i s c h a r g e . In c o n t r a s t , the s m a l l e r f l o o d [ ( 2 ) 15-16 June] e x h i b i t e d h i g h e r suspended sediment c o n c e n t r a t i o n s on the r i s i n g l i m b , but a g a i n the d e t a i l e d h o u r l y p a t t e r n near the f l o o d maximum cannot be r e s o l v e d ( i n d e e d the s a m p l i n g i n t e r v a l s were such t h a t some a l i a s i n g may be p r e s e n t i n the apparent h y s t e r e s i s p a t t e r n s of e v e n t s 1 and 3 ) . Data f o r 8 June 1974 ( F i g u r e 96) demonstrate the degree of i d e a l i z a t i o n i n v o l v e d i n a s i n g l e - i n p u t concept of sediment response. The double peak i n suspended sediment c o n c e n t r a t i o n may r e p r e s e n t i n t e r a c t i o n -of wash l o a d a r r i v i n g from d i f f e r e n t s o u r c e s ( t r i b u t a r y b a s i n s ) w i t h d i f f e r e n t l a g c h a r a c t e r i s t i c s , d i f f e r e n t i n p u t c o n d i t i o n s , or b o t h . A l t e r n a t i v e l y , i t may demonstrate c o n t r a s t i n g responses of wash l o a d and b e d - m a t e r i a l l o a d i n s u s p e n s i o n . C o u n t e r c l o c k w i s e h y s t e r e s i s l o o p s such as those of 8 June 1974 and 26 June 1976 s u g g e s t , i n the c a s e of s t e e p l y i n c r e a s i n g f u n c t i o n s of a s i m p l e harmonic independent v a r i a b l e (eg. d i s c h a r g e ) , a phase l a g T < TT /4 r a d i a n s ( A l l e n , 272 FIGURE 96 H y s t e r e s i s i n s u s p e n d e d - s e d i m e n t / d i s c h a r g e r e l a t i o n d u r i n g Babbage R i v e r f l o o d of 8 June 1974, showing peaks i n TSS c o n c e n t r a t i o n b o t h b e f o r e and a f t e r peak s t a g e and c o u n t e r - c l o c k w i s e h y s t e r e s i s l o o p f o r the f l o o d as a whole. 273 1974, f i g u r e 8 ) . However, t h i s i n t e r p r e t a t i o n i g n o r e s the p o s s i b i l i t y of m u l t i - f r e q u e n c y components i n the response v a r i a t e and u ndoubtedly o v e r s i m p l i f i e s the sediment s u p p l y p r o c e s s e s i n the b a s i n . The c o m p u t a t i o n of a f r e q u e n c y response f u n c t i o n f o r the water-sediment system, g i v i n g phase r e l a t i o n s as a f u n c t i o n of f r e q u e n c y [ s e e , f o r example, the s t u d y by Sharma and D i c k i n s o n (1979), u s i n g d a i l y d a t a ] r e q u i r e s e s s e n t i a l l y c o n t i n u o u s s a m p l i n g (At<a wide range of d i s c h a r g e , 3460 m 3 s _ 1 . I 1 I 10\" 3 1 0 1 00 1 000 D I S C H A R G E Cm3/s) FIGURE 97 Sample d a t a and t h e o r e t i c a l r a t i n g s f o r b e d l o a d t r a n s p o r t , Babbage R i v e r a t B I , 1976; open symbols (o) denote d a t a c o n s i d e r e d u n r e l i a b l e ; shaded symbols (\u00E2\u0080\u00A2) r e p r e s e n t d a t a c o n s i d e r e d r e a l i s t i c . 278 E i n s t e i n ' s b e d l o a d model, as m o d i f i e d and a p p l i e d t o g r a v e l - b e d r i v e r s by M. Church ( p e r s o n a l communication, 1977), i n c l u d e s the f o l l o w i n g d i s t i n c t i v e c h a r a c t e r i s t i c s : sediment e n t r a i n m e n t and d e p o s i t i o n a r e r e c o g n i z e d as s t o c h a s t i c p r o c e s s e s ; e x p l i c i t c o n s i d e r a t i o n i s g i v e n t o p a r t i c l e - s i z e d i s t r i b u t i o n s f o r d e t e r m i n a t i o n of e f f e c t i v e r e s i s t a n c e , h i d i n g e f f e c t s , and t o t a l t r a n s p o r t r a t e s ; t o t a l f l o w r e s i s t a n c e i s p a r t i t i o n e d ( i n e f f e c t f o l l o w i n g S t r i c k l e r , 1923) t o o b t a i n t h a t p o r t i o n , r e l a t e d o n l y t o s m a l l - s c a l e s u r f a c e roughness of the bed, which i s e f f e c t i v e i n the c o n t e x t of p a r t i c l e e n t r a i n m e n t ; measured h y d r a u l i c parameters ( r a t h e r than the v a l u e s computed i n E i n s t e i n ' s o r i g i n a l p r o c e d u r e ) a r e employed i n the c a l c u l a t i o n s . The major assumptions of the model a r e summarized i n Appendix A.4. I t i s i m p l i c i t l y assumed t h a t sediment s u p p l y i s not l i m i t e d . The dry-mass u n i t - w i d t h t r a n s p o r t r a t e i s computed, f o r homogeneous sediment, a s : 3 B = P s ( Y s - l ) 1 2 g 3 Z D 3 2 * * (4.1.2-2) where * = f K 1 (4.1.2-3) * * as g i v e n by E i n s t e i n (1950, f i g u r e 9, e q u a t i o n 57). For g r a v e l r i v e r s ( h y d r o d y n a m i c a l l y rough f l o w ) : ^ = 0.67 5 ( y s - 1 ) D 3 5 / R g t a n B e = 0 . 6 7 ? ( Y S - 1 ) P W D 3 5 / T g (4.1.2-4) where R g i s h y d r a u l i c r a d i u s c o r r e s p o n d i n g . t o g r a n u l a r shear r e s i s t a n c e ( t o t a l f l o w r e s i s t a n c e minus form r e s i s t a n c e ) , i s 279 boundary shear p e r t a i n i n g t o g r a n u l a r r e s i s t a n c e , t a n B e i s the h y d r a u l i c energy s l o p e , and C i s a h i d i n g f a c t o r ( E i n s t e i n , 1950, f i g u r e 7 ) . E s s e n t i a l l y , t h e n , j B = f [ P s , D a , D i , T , C ] (4.1.2-5) where D a r e f e r s t o the s i z e d i s t r i b u t i o n of sediment a t the ch a n n e l boundary ( t h e armour l a y e r i n g r a v e l r i v e r s ) , d e f i n e d f o r c o m p u t a t i o n a l purposes by D 3 5 and D 6 5. The t r a n s p o r t r a t e f o r i n d i v i d u a l s i z e f r a c t i o n s i s o b t a i n e d as n'f. , where f. i s the p r o p o r t i o n of t o t a l b e d - m a t e r i a l i n a g i v e n f r a c t i o n r e p r e s e n t e d by e q u i v a l e n t d i a m e t e r . T o t a l t r a n s p o r t t h r o u g h the s e c t i o n i s then J B = b (T j B ), where b i s the w i d t h of i the c h a n n e l . The m o d i f i e d E i n s t e i n p r o c e d u r e (adapted t o compute o n l y b e d - c o n t a c t l o a d as d e f i n e d h e r e i n ) has been a p p l i e d w i t h c o n s i d e r a b l e s u c c e s s t o rea c h e s of the Elbow R i v e r (M. Church, p e r s o n a l communication, 1977) and of t h e C h i l l i w a c k R i v e r (D. McLean, p e r s o n a l communication, 1977). I t was found t h a t the E i n s t e i n model was the o n l y one of a l a r g e s e l e c t i o n of e s t a b l i s h e d b e d l o a d f u n c t i o n s ( e x c l u d i n g the Bagnold model, which was not i n v e s t i g a t e d ) not t o o v e r e s t i m a t e s i g n i f i c a n t l y the t r a n s p o r t r a t e of b e d l o a d i n Elbow R i v e r , r e l a t i v e t o measured t r a n s p o r t r a t e s r e p o r t e d by H o l l i n g s h e a d (1971); r a t h e r , the E i n s t e i n f u n c t i o n tended t o u n d e r e s t i m a t e b e d l o a d t r a n s p o r t . To some e x t e n t , t h i s r e s u l t may r e f l e c t the extreme s e n s i t i v i t y of E i n s t e i n ' s model t o g r a i n s i z e p a r a m e t e r s . At h i g h f l o w s , moreover, when c h a n n e l armouring i s removed and g e n e r a l e n t r a i n m e n t ( ' l i v e - b e d ' ) c o n d i t i o n s p r e v a i l , the h i d i n g i 280 f a c t o r \u00C2\u00A3 : >1.0 f o r a l l p a r t i c l e s i z e s . Church o b t a i n e d improved r e s u l t s f o r C h i l l i w a c k R i v e r d a t a u s i n g t h i s m o d i f i c a t i o n . W i t h l i v e - b e d c o n d i t i o n s , however, t h e boundary roughness parameters o r i g i n a l l y s p e c i f i e d w i l l no l o n g e r a p p l y and the t h e o r e t i c a l b a s i s of the model i s undermined. The m o d i f i e d E i n s t e i n model has been implemented f o r computation of be d l o a d t r a n s p o r t i n the Babbage R i v e r a t B I , u s i n g a program due t o M. Church. Sediment s i z e parameters were o b t a i n e d from samples of sediment moving as bedl o a d and of m a t e r i a l i n s t o r a g e on the BI bar ( F i g u r e 9 8 ) . For c o n d i t i o n s p r e v a i l i n g i n t h e Babbage R i v e r a t B I , computed t r a n s p o r t r a t e s a r e g r o s s l y u n d e r e s t i m a t e d a t low f l o w s u s i n g E i n s t e i n ' s h i d i n g f a c t o r \u00C2\u00A3 ( F i g u r e 9 7 ) . T h i s r e s u l t was a n t i c i p a t e d by E i n s t e i n (1950, p.41) and more r e c e n t work has c o n f i r m e d t h e need f o r a new e v a l u a t i o n of the h i d i n g f a c t o r (Yano et a l . , 1969). On the o t h e r hand, i f the h i d i n g f a c t o r i s e l i m i n a t e d ( 5 =1), computed t r a n s p o r t r a t e s a r e much g r e a t e r than o b s e r v e d v a l u e s or e x t r a p o l a t e d e s t i m a t e s , except perhaps a t Q>300 m 3 s _ 1 , when s i g n i f i c a n t c h a n n e l scour may o c c u r . The Babbage R i v e r d a t a ( F i g u r e 97, shaded symbols) i n d i c a t e a m o d i f i e d h i d i n g f u n c t i o n \u00C2\u00A3' = 0.99+0.01 \u00C2\u00A3 . E i n s t e i n ' s f u n c t i o n , the e m p i r i c a l m o d i f i c a t i o n adopted h e r e , and e x p e r i m e n t a l r e s u l t s of Yano e t a l . (1969) a r e p l o t t e d i n F i g u r e 99. R a t i n g s g e n e r a t e d by e q u a t i o n 4.1.2-5 u s i n g \u00C2\u00A3 =1 and \u00C2\u00A3\u00E2\u0080\u00A2=\u00C2\u00A3'. r e s p e c t i v e l y a r e a s y m p t o t i c a t h i g h f l o w . However, i f g e n e r a l bed scour o c c u r s , c e r t a i n a s sumptions of the model FIGURE 98 P a r t i c l e - s i z e d i s t r i b u t i o n s f o r v a r i o u s samples of sediment i n c h a n n e l d e p o s i t s or moving as b e d l o a d , Babbage R i v e r a t B l . (1) sand and g r a v e l c o l l e c t e d i n b e d l o a d s a m p l e r s ( s i e v e d a t a , mass f r e q u e n c y ; (2) s u b s u r f a c e sediment i n bar ( s i e v e d a t a , mass f r e q u e n c y ) ; (3) sediment on bar s u r f a c e , 1976 (photo d a t a , number f r e q u e n c y ) ; (4) sediment on bar s u r f a c e , 1972 ( a f t e r McDonald and L e w i s , 1973; t r a n s e c t d a t a , number f r e q u e n c y ) . See K e l l e r h a l s and Bray (1971) f o r e q u i v a l e n c e of number f r e q u e n c y r e s u l t s f o r s u r f a c e samples and mass f r e q u e n c y r e s u l t s f o r s u b s u r f a c e b u l k samples. 100 FIGURE 99 Three s e t s of e m p i r i c a l r e s u l t s f o r the h i d i n g f a c t o r \u00C2\u00A3 as a f u n c t i o n of D/D 5 0 i n rough t u r b u l e n t f l o w . 283 ( n o t a b l y 3, 5, and 8; see Appendix A.4) may be s e r i o u s l y v i o l a t e d and parameters D a cannot be d e t e r m i n e d . I n t h i s c a s e , n e i t h e r v e r s i o n of the E i n s t e i n model may be v a l i d and an a l t e r n a t i v e s t r a t e g y must be sought. The model p r e s e n t e d by Bagnold (1966, 1973) appears t o p r o v i d e the f i r m e s t p h y s i c a l b a s i s f o r e s t i m a t i o n of t r a n s p o r t r a t e s under t h e s e c o n d i t i o n s . Bagnold's model proceeds from the argument t h a t sediment t r a n s p o r t i n v o l v e s m e c h a n i c a l work, which may be t a k e n as the p r o d u c t of a v a i l a b l e power and e f f i c i e n c y ( B a g n o l d , 1966, p . 5 ) . The a v a i l a b l e power per u n i t l e n g t h of stream i s d e r i v e d from l o s s of p o t e n t i a l energy and d e f i n e d by P =P gQS (4.1.2-6) w f o r the e n t i r e s e c t i o n ; o r , per u n i t a r e a , by p = P/b = xu. (4.1.2-7) The f r a c t i o n of t o t a l power u t i l i z e d f o r sediment t r a n s p o r t may be d e f i n e d as e T p , where e T i s an e f f i c i e n c y f a c t o r r e l a t e d t o t o t a l sediment t r a n s p o r t . The bed l o a d work r a t e may be d e f i n e d as i B . [ t a n ( f )-tan (B) ], where t a n ( B ) i s the s l o p e and t a n ( f ) i s a f r i c t i o n c o e f f i c i e n t f o r i n t e r m i t t e n t s o l i d c o n t a c t , b e l i e v e d t o be a p p r o x i m a t e l y e q u i v a l e n t t o the c o n v e n t i o n a l s o l i d f r i c t i o n c o e f f i c i e n t tan(). On e v i d e n c e p r e s e n t e d by Bagnold (1973, pp.480-481), t a n ( f ) = 0 . 6 3 may be taken as a r e a s o n a b l e v a l u e , a l t h o u g h t h i s c l e a r l y remains a p o i n t of u n c e r t a i n t y . S e t t i n g power e x p e n d i t u r e e q u a l t o b e d l o a d work r a t e , we o b t a i n : i B [ t a n ( f )-tan(B) ] = e B p (4.1.2-8) where e B0.13 f o r Q>400m 3s~ 1 a p p r o x i m a t e l y , the Bagnold model has been p r e f e r r e d f o r be d l o a d t r a n s p o r t e s t i m a t e s under t h e s e c o n d i t i o n s . I t was p o s t u l a t e d a t the o u t s e t of the study t h a t s u p p l y l i m i t a t i o n might be an i m p o r t a n t f a c t o r i n the bedl o a d t r a n s p o r t regime of an A r c t i c r i v e r . W i n t e r r e d u c t i o n of d i s c h a r g e t o z e r o or n e a r - z e r o i s accompanied, i n the r i v e r s 285 d e s c r i b e d h e r e , by f r e e z i n g of water r e m a i n i n g i n s h a l l o w l o w - f l o w c h a n n e l s . The i c e i s b o t t o m f a s t except i n the deepest p o o l s and forms a temporary r a p i d l y - d e g r a d i n g c h a n n e l - b e d ( F i g u r e 100) d u r i n g i n i t i a l s p r i n g d i s c h a r g e (McDonald and L e w i s , 1973; E g g i n t o n , 1978; F o r b e s , 1979). I t has been h y p o t h e s i z e d t h a t b o t t o m f a s t i c e i n h i b i t s c h a n n e l scour d u r i n g the o v e r f l o w p e r i o d . However, scour of a d j a c e n t bar s u r f a c e s above the b o t t o m f a s t i c e l e v e l may be a c c e l e r a t e d by the presence of the i c e , which causes anomalously h i g h stage f o r a g i v e n d i s c h a r g e . P r o t e c t i o n from scour by b o t t o m f a s t i c e w i l l a l s o be s i g n i f i c a n t o n l y i f major f l o w s o c c u r \u00E2\u0080\u00A2 w h i l e the i c e i s i n p l a c e ; no major f l o o d e v e n t s were o b s e r v e d over b o t t o m f a s t i c e i n the Babbage R i v e r , but h i g h f l o w s d i d o c c u r over i c e i n Deep Creek. A f t e r d e g r a d a t i o n of b o t t o m f a s t i c e , sediment e n t r a i n m e n t might s t i l l be i n h i b i t e d i f the c h a n n e l p e r i m e t e r remains f r o z e n . I t i s d i f f i c u l t t o d e f i n e the r e l a t i v e impact of b o t t o m f a s t i c e and f r e e z i n g e f f e c t s on the sediment regime of the r i v e r , g i v e n the r e m a i n i n g g e n e r a l d e f i c i e n c i e s of sediment t r a n s p o r t t h e o r y and measurement p r a c t i c e . N e v e r t h e l e s s , t h e s e low-temperature f e a t u r e s r e p r e s e n t a d d i t i o n a l parameters of the sediment t r a n s p o r t system p e c u l i a r t o h i g h - l a t i t u d e streams. The e f f e c t s of b o t t o m f a s t i c e and a f r o z e n c h a n n e l bed a r e a d d i t i o n a l t o those of s u r f a c e a r m o u r i n g , which i s i m p o r t a n t a t a l l s easons. The s u r f a c e l a g d e p o s i t i s b e l i e v e d t o be the major f a c t o r p o t e n t i a l l y l i m i t i n g b e d l o a d s u p p l y i n the Babbage R i v e r c a s e . The phenomenon i s w i d e s p r e a d , but has not y e t been 2 8 6 0 10 20 40 60 80 Y Cm) F I G U R E 1 0 0 C h a n n e l b e d p r o f i l e s a t s e c t i o n B I ( B a b b a g e R i v e r ) b e t w e e n 28 M a y a n d 8 J u n e 1 9 7 5 , s h o w i n g d e g r a d a t i o n o f b o t t o m f a s t i c e ; l o w e r m o s t p r o f i l e s h o w s t h e c h a n n e l i c e - f r e e a t t h e e n d o f t h i s p e r i o d . 287 s a t i s f a c t o r i l y e v a l u a t e d t h e o r e t i c a l l y , as the f o r e g o i n g d i s c u s s i o n of the h i d i n g and e f f i c i e n c y f a c t o r s d e m o n s t r a t e s . The c h a r a c t e r of the s u r f a c e armour i n the Babbage R i v e r i s i l l u s t r a t e d i n F i g u r e 98, where the d e p l e t i o n of f i n e f r a c t i o n s i n s u r f a c e sediments i s r e a d i l y a p p a r e n t . P r a g m a t i c r e c o g n i t i o n of the p o s s i b i l i t y of s u p p l y l i m i t a t i o n might be a c c o m p l i s h e d by s u b s t i t u t i o n of an e m p i r i c a l e f f i c i e n c y f a c t o r e B<0.13 i n e q u a t i o n 4.1.2-9. An e m p i r i c a l v a l u e e B =0.022 f o r D 5 0=8 mm ( L e o p o l d and Emmett, 1976, f i g u r e 1) y i e l d s lower e s t i m a t e s of be d l o a d t r a n s p o r t t h r o u g h s e c t i o n B l ( J B ^ 4 0 k g / s ) . The lower e s t i m a t e s s t i l l exceed the measured t r a n s p o r t r a t e s by a t l e a s t a f a c t o r of t e n . A l t e r n a t i v e r a t i n g s based on the Bagnold model ( w i t h e\u00E2\u0080\u009E =0.02 and e_ =0.13) and on the m o d i f i e d E i n s t e i n model ( w i t h ? = ? E , ? = 5 ' , a n d ? = l ) a r e p r e s e n t e d i n F i g u r e 97. The model o u t l i n e d i n F i g u r e 89 ( m o d i f i e d E i n s t e i n model a t Q<380 m 3s\" 1, Bagnold model w i t h eg=0.13 a t h i g h e r d i s c h a r g e ) has been p r e f e r r e d on t h e o r e t i c a l grounds and on e v i d e n c e t h a t some scour does occur i n the B l s e c t i o n d u r i n g major f l o w e v e n t s ( F i g u r e 101). The e v i d e n c e f o r g e n e r a l scour ( l i v e - b e d c o n d i t i o n s ) i s not c o m p e l l i n g and i t must be r e c o g n i z e d t h a t s u p p l y l i m i t a t i o n may be i m p o r t a n t i n the b e d l o a d t r a n s p o r t regime of r i v e r s such as the Babbage. 288 FIGURE 101 Channel bed p r o f i l e s a t s e c t i o n BI (Babbage R i v e r ) ; A, 1975: s c o u r d u r i n g r i s i n g l i m b of a n n u a l snowmelt h y d r o g r a p h , showing development of s c o u r - h o l e a g a i n s t bank i n t h a l w e g ; B, 1976: p r o f i l e s s h o r t l y a f t e r peak f l o w on 6 June and 26 June, net f i l l 10-15 June, and net s c o u r 15-19 June. 289 4.1.3 TOTAL FLUVIAL SEDIMENT INPUT The t o t a l sediment y i e l d ( i n c l u d i n g s o l u t e s ) from Babbage R i v e r and Deep Creek d r a i n a g e b a s i n s has been e s t i m a t e d u s i n g r a t i n g e q u a t i o n s based on d a t a and i n t e r p r e t a t i o n s d i s c u s s e d above ( s e c t i o n 4.1.2). Computed sediment t r a n s p o r t t o t a l s a r e summarized i n T a b l e s 19 and 20. The d a t a p e r m i t a p r o v i s i o n a l e s t i m a t e of annual sediment y i e l d from two c o n t r a s t i n g N o r t h Slope b a s i n s . A l t h o u g h the sample i s s m a l l , t h e r e i s some e v i d e n c e t o suggest t h a t v a r i a n c e of a n n u a l sediment p r o d u c t i o n may be r e l a t i v e l y low i n t h e s e b a s i n s (Cooper and H o l l i n g s h e a d , 1973; S c o t t , 1978). The t o t a l mass of sediment s u p p l i e d from the Babbage R i v e r b a s i n d u r i n g the p e r i o d June t o August i n c l u s i v e was found t o be a p p r o x i m a t e l y 2.3x10\u00C2\u00B0 kg i n 1974, 3.8x10\u00C2\u00B0 kg i n 1975, and 3.0x10\" kg i n 1976 (due t o gaps i n , t h e 1974 r e c o r d , the t o t a l f o r t h a t season may have been u n d e r e s t i m a t e d ) . These d a t a i n d i c a t e s p e c i f i c y i e l d s of 0.055, 0.091, and 0.072 kg n r 2 r e s p e c t i v e l y . In Deep Creek, t o t a l t r a n s p o r t computed f o r the same p e r i o d i n 1976 was 0.4x10\" kg or 0.057 kg m.\"2. S u b s t a n t i a l l y l e s s sediment was s u p p l i e d from Deep Creek d u r i n g June 1975 than d u r i n g the same month i n 1976, a p a t t e r n t h a t c o n t r a s t e d w i t h c o n d i t i o n s i n the Babbage R i v e r . The combined y i e l d from the Babbage R i v e r and Deep Creek p r o v i d e s an e s t i m a t e of t o t a l f l u v i a l sediment s u p p l y t o the Babbage E s t u a r y , amounting t o 3.7x10\u00C2\u00B0 kg i n June 1975 and 3.4x10\" kg d u r i n g June-August 1976. 290 TABLE 19 S e d i m e n t t r a n s p o r t summary, Babbage R i v e r below T u l u g a q (Crow) R i v e r , 1974-1976. . , Sediment transport i n units of 10^ kg month miss'' comg 2 TDS TSS TBS t o t a l TKS May 1974 26 3 0 37.08 June 14 0 30.84 103.96 48.94 183.74 70.94 July 5 26 18.89 8.40 1.70 28.49 26.38 Aug 17 8 8.80 8.86 1.90 19.56 9.78 Sept 30 0 May 1975 22^ 0 4.0 8.0 0.5 12.5 6.02 June 0 1 37.30 238.46 78.35 354.11 354.11 July 0 31 12.14 0.72 0.03 12.90 12.90 Aug 0 31 14.68 1.54 0.07 16.29 16.29 Sept 27 3 1.47 May 1976 31 5 0 June 1 5 32.17 167.63 66.42 266.22 249.13 July 1 28 17.09 4.13 0.38 21.60 18.96 Aug 5 26 12.76 1.20 0.08 14.04 13.49 Sept 11 19 10.8 0.3 0.01 11.1 7.37 1974 26 May - 15 August 60.66 138.23 60.19 259.09 144.18 1975 23 May - 3 Sept 67.76 244.67 78.66 391.12 391.12 1976 1 June - 19 Sept 69.21 173.12 66.89 309.22 288.95 TDS: t o t a l d i s s o l v e d s o l i d s TSS: t o t a l s u s p e n d e d s o l i d s TBS: t o t a l b e d - c o n t a c t s o l i d s t o t a l : sum o f TDS+TSS+TBS computed f r o m r a t i n g s , w i t h i n t e r p o l a t i o n or l i m i t e d e x t r a p o l a t i o n TMS: t o t a l t r a n s p o r t f r o m r a t i n g s f o r i n t e r v a l s w i t h o b s e r v a t i o n a l d a t a number o f days m i s s i n g f r o m r e c o r d number o f days w i t h c o n t i n u o u s s t a g e r e c o r d a p p a r e n t f i r s t f l o w 16 May 1974 no m a j o r f l o w b e f o r e s t a r t of o b s e r v a t i o n s 23 May 1975 f l o w ^30 m ^ s - 1 e s t i m a t e d f r o m a i r 10 May 1976; r i v e r o b s e r v e d r e g u l a r l y f r o m 26 May; J une t o t a l s arethought to i n c l u d e f i r s t m a j o r f l o w e v e n t TABLE 20 Sed i m e n t t r a n s p o r t summary, Deep C r e e k above Babbage d i s t r i b u t a r y , 1975 and 1976. month miss comD Sediment transport in units of 10 kg TDS TSS . TBS total TMS May 1975 22 ' JuDe J u l y 5 May 1976 June July Aug Sept 10 H 3 1 6 0 0. 12 0 0 3 i 31 18 0. 2 .78 0. 25 .27 3.30 33.38 0.78 1.76 0.28 0 .17 0.11 0.004 0. 0 .80 0 .30 0.002 0 .000 0.000 0. 28 .85 0 . 2 7 . 2 7 36.64 35.81 2 .54 2 .54 0.1*5 0.1*5 0.11 0 .07 TDS: t o t a l d i s s o l v e d s o l i d s TSS: t o t a l s u s p e n d e d s o l i d s TBS: t o t a l b e d - c o n t a c t s o l i d s t o t a l : sum of TDS+TSS+TBS computed f r o m r a t i n g s , w i t h i n t e r p o l a t i o n o r l i m i t e d e x t r a p o l a t i o n TMS: t o t a l t r a n s p o r t f r o m r a t i n g s f o r i n t e r v a l s w i t h o b s e r v a t i o n a l d a t a 1: number o f days m i s s i n g f r o m r e c o r d 2: number o f days w i t h c o n t i n u o u s s t a g e r e c o r d 3: r i v e r o b s e r v e d f r o m 23 May 1975: no f l o w i n May 4: f i r s t f l o w i n snow o v e r b o t t o m f a s t i c e 3 J u n e ; t r a n s p o r t e s t i m a t e s b a s e d on s i n g l e d a i l y d i s c h a r g e measurements w i t h TDS and TSS d e t e r m i n a t i o n s 5: no e s t i m a t e s f o r J u l y and A u g u s t due to p e r s i s t e n t f a i l u r e of s t a g e r e c o r d e r 6: i r r e g u l a r o b s e r v a t i o n s s u g g e s t t h a t l i t t l e o r no f l o w o c c u r r e d d u r i n g May 1976 292 The h i g h p r o p o r t i o n of t o t a l sediment d e l i v e r y o c c u r r i n g d u r i n g the snowmelt and breakup p e r i o d i s i l l u s t r a t e d i n F i g u r e 102, a p l o t of c u m u l a t i v e p e r c e n t sediment t r a n s p o r t t h r o u g h s e c t i o n BI (Babbage R i v e r ) d u r i n g 1975 and 1976. As much as 18 per c e n t of t o t a l a n n u a l t r a n s p o r t (and 25 per c e n t of the a n n u a l suspended l o a d ) may occur i n a s i n g l e day (as on 26 June 1976). More than 90 per cent of the a n n u a l suspended sediment y i e l d (and more than 99 per c e n t of the b e d l o a d t r a n s p o r t ) may occur d u r i n g June. The r e l a t i v e p r o p o r t i o n s of f l u v i a l sediment d e l i v e r e d by d i s s o l v e d , suspended, and b e d - c o n t a c t t r a n s p o r t a r e summarized i n T a b l e 21. S o l u t e s (and f i n e suspended sediment, D<0.45 ym) c o n s t i t u t e as much as 25 per c e n t of a n n u a l t r a n s p o r t i n the Babbage R i v e r and r o u g h l y 10 per c e n t of a n n u a l t r a n s p o r t i n Deep Creek. On a monthly b a s i s , t h e s e p r o p o r t i o n s may r i s e t o more than 95 per cent of t o t a l l o a d i n l a t e summer. Suspended sediment t r a n s p o r t a c c o u n t s f o r as much as 63 per c e n t of t o t a l a n n u a l sediment l o a d i n the Babbage R i v e r and almost 90 per c e n t i n Deep Creek. The p r o p o r t i o n of b e d l o a d i n Deep Creek i s e s t i m a t e d t o be r o u g h l y 2 per c e n t , i n the Babbage R i v e r a p p r o x i m a t e l y 22 per c e n t . A l t e r n a t i v e c o m p u t a t i o n s of b e d l o a d t r a n s p o r t a t h i g h f l o w i n the Babbage R i v e r ( c f . s e c t i o n 4.1.2) l e a d t o e s t i m a t e s r a n g i n g from 6 per cent t o 23 per c e n t of t o t a l a n n u a l sediment t r a n s p o r t . I t i s p r o b a b l e t h a t the t r u e p r o p o r t i o n l i e s somewhere between. These e s t i m a t e s f o r the p r o p o r t i o n of sediment moving as b e d - c o n t a c t l o a d i n the Babbage R i v e r a r e p a r t i c u l a r l y i n t e r e s t i n g , i n view of the h i g h 293 SEPT FIGURE 102 C u m u l a t i v e p e r c e n t o f t o t a l o b s e r v e d s e d i m e n t t r a n s p o r t i n Babbage R i v e r a t B l , 1975 and 1976. 294 TABLE 21 D i s t r i b u t i o n o f s e d i m e n t t r a n s p o r t by t y p e , Babbage R i v e r and Deep C r e e k . Babbage R i v e r a t B l p e r j ent of t o t a t r a n s p o r t \u00E2\u0080\u00A2a L month/yr d i s s o l v e d i n c - s u s p . ' t o t a l - s u s p b e d l o a d June 1974 16. 8 49. 7 56.6 26.6 J u l y 1974 66.3 24. 4 29.5 4 2 Aug. 1974 45.0 37.4 45 .3 9 7 JUII-5AUE7 4 25.5 45.5 52.7 21 8 May 1975 32.0 52.0 64.0 4 0 June 1975 10.5 55.5 67.3 22 1 J u l y 1975 94.1 4.6 . 5.6 0 2 Aug. 1975 90.1 7.8 9.5 0 4 Jun-Aug75 16.5 51.6 62.6 20 9 June 1976 12 .1 51.7 63.0 24 9 J u l y 1976 79.1 13.1 19.1 1 8 Aug. 1976 90.9 7.2 8.5 0 6 Sep. 1976 97.2 1.8 2.7 0 1 Jun-Aug76 20.8 47.2 56 .9 22 3 B : Deep Creek' at DI month/yr per j d i s s o l v e d ent o f t o t a i n c - s u s p . ' t r a n s p o r t \" t o t a l - s u s p 3 b e d l o a d ^ June 1975 9.6 87.8 2.4 June 1976 J u l y 1976 Aug. 1976 Sep. -1976 -10. 0 30 .7 62.2 96.8 73.5 61.3 35 .2 3.0 90.1 69.3 37.8 3.2 0.9 0.01 0.00 0.00 Jun-Aug76 10 .5 73.7 87 .7 1.8 1: t o t a l r e s i d u e p a s s i n g 0.45-um membrane f i l t e r 2: n o n - f i l t e r a b l e r e s i d u e a f t e r c o m b u s t i o n a t 5 5 0 \u00C2\u00B0 C f o r 2h 3: t o t a l n o n - f i l t e r a b l e r e s i d u e 4: s e d i m e n t s u p p o r t e d by c o n t i n u o u s o r i n t e r m i t t e n t bed c o n t a c t 295 w i d t h - d e p t h r a t i o s , p o o l - r i f f l e morphology w i t h prominent d i a g o n a l b a r s , and armoured g r a v e l bed, f e a t u r e s o f t e n taken t o i n d i c a t e v e r y h i g h p r o p o r t i o n s of be d l o a d t r a n s p o r t . 296 4.2 MARINE SEDIMENT SUPPLY TO THE ESTUARY 4.2.1 SEDIMENTARY SOURCES AND MATERIALS McDonald and Lewis (1973) n o t e d , from m o r p h o l o g i c a l e v i d e n c e , the o c c u r r e n c e of s e v e r a l d i s t i n c t l i t t o r a l t r a n s p o r t c e l l s ( c f . S t a p o r , 1971) on t h e Yukon c o a s t . Each c e l l c o n s t i t u t e s a p a r t i a l l y c l o s e d system i n which sediment d e r i v e d from c o a s t a l e r o s i o n shows a net l o n g s h o r e t r a n s p o r t toward a sediment s i n k , i n which a l a r g e p a r t of the t o t a l sediment s u p p l y i s presumably s t o r e d , a l t h o u g h f i n e sediment may be d i s p e r s e d o f f s h o r e ( c f . S w i f t and Ludwick, 1976). Sediment s i n k s o c c u r a t Demarcation Bay ( i m m e d i a t e l y west of the Yukon-Alaska boundary), i n Workboat Passage (between H e r s c h e l I s l a n d and the a d j a c e n t m a i n l a n d s h o r e ) , a t S h i n g l e P o i n t , and i n P h i l l i p s Bay ( F i g u r e 1 ) . The P h i l l i p s Bay s i n k , which may be c o n s i d e r e d t o i n c l u d e the S p r i n g R i v e r and Babbage e s t u a r i e s , r e c e i v e s sediment p r i m a r i l y from some 15 km of c o a s t west t o Rol a n d Bay and from a 15 km s e c t i o n of the Mackenzie Bay c o a s t i n Babbage B i g h t , e x t e n d i n g s o u t h e a s t from Kay P o i n t . Onshore t r a n s p o r t of sediment may be another i m p o r t a n t s o u r c e . F l u v i a l sediment i s the t h i r d major i n p u t component. The c h i e f s o u r c e s of marine sediment s u p p l y t o the Babbage E s t u a r y l i e i n c o a s t a l exposures of Babbage B i g h t and p o s s i b l y i n bottom d e p o s i t s of P h i l l i p s Bay, i n c l u d i n g m a t e r i a l f o r m i n g t h e . s h o a l s n o r t h - n o r t h w e s t of Kay P o i n t . Some sediment moving s o u t h e a s t a l o n g the western shore of P h i l l i p s Bay may a l s o f i n d i t s way i n t o the Babbage E s t u a r y . A l l of the s e s o u r c e s expose u n c o n s o l i d a t e d Q u aternary s e d i m e n t s , which i n the c o a s t a l c l i f f 297 exposures are f r o z e n and may c o n t a i n c o n s i d e r a b l e excess i c e (Mackay, 1959; Mackay et a l . , 1972; Rampton, 1974a; c f . F i g u r e 9 ) . The sediments i n c l u d e a g r e a t v a r i e t y of g l a c i a l , f l u v i o g l a c i a l , f l u v i a l , l a c u s t r i n e , mudflow, m a r i n e , and o t h e r f a c i e s of f o r m a t i o n s r a n g i n g i n age from p r e - B u c k l a n d t o Holocene (Rampton, 1974b). Sou t h e a s t from Kay P o i n t , the s e c t i o n of c o a s t forming the major c l i f f s o u r c e of sediment f o r the Babbage E s t u a r y can be s u b d i v i d e d i n t o two segments (Lewis and F o r b e s , 1974, p.21). The f i r s t segment, 1.5 km i n l e n g t h b e g i n n i n g a t Kay P o i n t , i s c h a r a c t e r i z e d by a low s t e e p b l u f f l e s s than 10 m h i g h ( F i g u r e 103A) i n which a g r e a t v a r i e t y of sediment o c c u r s , i n c l u d i n g mud, sand, g r a v e l , t i l l , and p e a t . Large i c e wedges c o n s t i t u t e the major volume of ground i c e i n t h e s e d e p o s i t s . Sediment d e l i v e r y t o the l i t t o r a l t r a n s p o r t system i s dominated by ice-wedge thaw or f r a c t u r e (or b o t h ) , g u l l y i n g a l o n g ice-wedge a x e s , u n d e r c u t t i n g by m e c h a n i c a l and t h e r m a l p r o c e s s e s , and f a i l u r e of p o l y g o n a l b l o c k s . The beach on t h i s segment of c o a s t i s u s u a l l y narrow or n o n - e x i s t a n t ; however, r i d g e and r u n n e l f e a t u r e s d e v e l o p a t t i m e s d u r i n g the open-water season. In the second segment of c o a s t s o u t h e a s t of Kay P o i n t , the c l i f f s i n c r e a s e i n h e i g h t t o as much as 100 m but become l e s s s t e e p ( F i g u r e 103B). Most exposures a r e i n the h e a d w a l l s of r e t r o g r e s s i v e - t h a w f e a t u r e s and t y p i c a l l y r e v e a l r o u g h l y 15 m of i c e - r i c h mud and minor g r a v e l , sometimes o v e r l a i n by sand or t i l l (Canada, P u b l i c Works, 1971a; Rampton, 1974a). The i c e - r i c h sediments a r e h i g h l y c o n t o r t e d , a p p a r e n t l y due t o 298 FIGURE 103 A: c o a s t a l segment 1 near Kay P o i n t , showing u n d e r c u t t i n g and f a i l u r e of p o l y g o n a l b l o c k s formed by ice-wedge thaw or f r a c t u r e , J u l y 1976; B: c o a s t a l segment 2, showing major impact of r e t r o g r e s s i v e - t h a w and a s s o c i a t e d mudflow t r a n s p o r t of f i n e sediment a c r o s s the beach, August 1977. 299 p. i c e - t h r u s t i n g d u r i n g the B u c k l a n d G l a c i a t i o n (Mackay, 1959; Mackay et a l . , 1972; Rampton, i n p r e s s ) . A 60-m h o l e d r i l l e d a t the c l i f f - t o p b e h i n d a s t a b i l i z e d f a i l u r e zone a p p r o x i m a t e l y 6 km s o u t h e a s t of Kay P o i n t (Lewis and F o r b e s , 1974, f i g u r e 11) e n c o u n t e r e d about 3 m of f i n e sand and s i l t over mud e x t e n d i n g t o the bottom of the h o l e ; i c e c o n t e n t d e c r e a s e d from 50-60 per c e n t by volume a t the s u r f a c e t o 10-15 per cent a t 10 m depth. R e t r o g r e s s i v e - t h a w and a s s o c i a t e d mudflow t r a n s p o r t dominate the sediment d e l i v e r y p r o c e s s on t h i s segment of c o a s t ; i n some p l a c e s , mudflow d e p o s i t s extend a c r o s s the beach so t h a t l a r g e q u a n t i t i e s of f i n e sediment can be m o b i l i z e d i n the s u r f zone d u r i n g storms ( F i g u r e 103B). G u l l y i n g and slopewash may a l s o be i m p o r t a n t ( c f . r e s u l t s of H a r p e r , 1978, from the Chukchi c o a s t west of P o i n t Barrow, A l a s k a ) . C o a s t a l exposures on the s o u t h e r n and western shores of P h i l l i p s Bay range up t o 30 m i n h e i g h t . The c l i f f s west of N i a k o l i k P o i n t , p a r t i a l l y p r o t e c t e d by a broad s h a l l o w f o r e s h o r e , expose up t o 5 m of t i l l or sand and g r a v e l o v e r l a i n by s i l t , sand, and p e a t ; c l i f f s n o rthwest of S p r i n g R i v e r expose more than 7 m of i c y . p e b b l y c l a y , o v e r l a i n by t i l l , g r a v e l , and mud (McDonald and L e w i s , 1973, map 4, d a t a due t o . V.N. Rampton). O f f s h o r e sediment s o u r c e s i n c l u d e m a t e r i a l s on the e x t e n s i v e s h a l l o w bottom of P h i l l i p s Bay and i n t h e s h o a l complex n o r t h - n o r t h w e s t of Kay - P o i n t . The l a t t e r i s i n t e r p r e t e d as an e r o s i o n a l remnant c o n t a i n i n g m a t e r i a l s 300 s i m i l a r t o those p r e s e n t i n the c l i f f s s o u t h e a s t of Kay P o i n t . G r a v e l has been r e p o r t e d a t s e v e r a l s i t e s on the s h o a l complex and o f f Kay P o i n t on the Mackenzie Bay s i d e . Sediment over much of the bottom seaward of Kay P o i n t s p i t i s b e l i e v e d t o be sand. Dune-scale bedforms w i t h l e e s l o p e s f a c i n g onshore have been e n c o u n t e r e d l o c a l l y , seaward of one or two n e a r s h o r e b a r s up t o 1 m i n h e i g h t p a r a l l e l t o the s p i t (Lewis and F o r b e s , 1974, p.25). Hunter (1975) has r e p o r t e d on the p e t r o g r a p h y of t h r e e l a r g e sediment samples c o l l e c t e d a t p r o x i m a l , c e n t r a l , and d i s t a l s i t e s on Kay P o i n t s p i t . The median s i z e of berm sediment d e c r e a s e s from a p p r o x i m a t e l y 32 mm a t the p r o x i m a l s i t e t o about 3 mm a t the d i s t a l end of the s p i t . E i g h t l i t h o l o g i e s have been r e c o g n i z e d , a l l of which occur i n t h e mountains a d j a c e n t t o the c o a s t a l p l a i n . The predominant l i t h o l o g i e s i n the s p i t g r a v e l a r e sandstone and s i l t s t o n e , q u a r t z i t e , and c h e r t (Hunter, 1975, p.32). F i n a l l y , i t s h o u l d be noted t h a t the Mackenzie R i v e r r e p r e s e n t s a p o t e n t i a l s ource of sediment i n p u t t o the Babbage E s t u a r y . Landsat imagery f o r 17 J u l y 1975 ( F i g u r e 104A) shows suspended sediment of the Mackenzie R i v e r plume b e i n g a d v e c t e d westward a l o n g the Yukon c o a s t ; l i t t l e i f any of t h i s sediment was d i s p e r s e d i n t o P h i l l i p s Bay. The l e a d i n g edge of the plume d u r i n g a n o t h e r such event was photographed from Kay P o i n t on 28 J u l y 1976 ( F i g u r e 104B). The c o n c e n t r a t i o n of suspended sediment (TSS) i n the s u r f a c e water of the plume a t t h i s time was 34 mg/L, the s a l i n i t y s=3.2ppt. Events s u c h as t h i s were FIGURE 104 T u r b i d Mackenzie R i v e r water o f f c e n t r a l Yukon c o a s t ; A: p a r t of Landsat image 1-1089-20020-5, 17 J u l y 1975, showing a d v e c t i o n of suspended sediment p a s t Kay P o i n t ; B: l e a d i n g edge of Mackenzie R i v e r plume o f f Kay P o i n t , 28 J u l y 1976. 302 v e r y r a r e l y o b s e r v e d d u r i n g f i e l d work f o r the p r e s e n t study and i t i s b e l i e v e d t h a t the Mackenzie R i v e r does not c o n s t i t u t e a s i g n i f i c a n t sediment s o u r c e f o r the P h i l l i p s Bay sediment s i n k or the Babbage E s t u a r y system. 303 4.2.2 LITTORAL TRANSPORT PROCESSES Sediment s u p p l i e d from c o a s t a l s o u r c e s s o u t h e a s t of Kay P o i n t , a l o n g Kay P o i n t s p i t , and west of N i a k o l i k P o i n t , i s t r a n s p o r t e d a l o n g s h o r e under the i n f l u e n c e of o b l i q u e l y i n c i d e n t waves. As i n r i v e r s , sediment e n t r a i n e d i n the s u r f zone may move as bedl o a d or i n s u s p e n s i o n . Suspended sediment c o n c e n t r a t i o n s a r e q u i t e h i g h on some o c c a s i o n s a l o n g the Yukon c o a s t , where l a r g e q u a n t i t i e s of f i n e sediment a r e a v a i l a b l e t o the l i t t o r a l t r a n s p o r t system ( F i g u r e 103B). The d i s t i n c t i o n between wash l o a d and bed m a t e r i a l l o a d ( c f . s e c t i o n 4.1.2; E i n s t e i n e t a l . , 1940) may be i m p o r t a n t a l s o i n the l i t t o r a l e n v ironment, p a r t i c u l a r l y near r i v e r s and lagoon i n l e t s . I n Mackenzie Bay, suspended sediment of the Mackenzie R i v e r plume c o n s t i t u t e s a wash l o a d i n t h e l i t t o r a l t r a n s p o r t system when i t i s a d v e c t e d westward a l o n g the Yukon c o a s t ( F i g u r e 104). F u r t h e r m o r e , f i n e sediment e n t r a i n e d by s u r f a l o n g the c o a s t s o u t h e a s t of Kay P o i n t may be d i s p e r s e d w i d e l y a c r o s s the nea r s h o r e zone a f t e r r e f r a c t i o n around Kay P o i n t ( F i g u r e 105); west of the p o i n t , t h e n , i t may c o n s t i t u t e a wash l o a d w i t h r e s p e c t t o l o c a l l i t t o r a l t r a n s p o r t a l o n g Kay P o i n t s p i t . B agnold (1956, 1963, 1966) has deve l o p e d an e n e r g e t i c s model of b e d l o a d sediment t r a n s p o r t i n which the immersed weight t r a n s p o r t r a t e i s l i n e a r l y r e l a t e d t o the t o t a l energy e x p e n d i t u r e due t o boundary r e s i s t a n c e ( e q u a t i o n 4.1.2-8). Where the power i s p r o v i d e d by s u r f a c e g r a v i t y waves w i t h energy f l u x per u n i t c r e s t l e n g t h e q u a l t o P = ECn = (pgH 2Cn)/8, (4.2.2-1) 304 FIGURE 105 V e r t i c a l photograph of Kay P o i n t and Babbage E s t u a r y , showing l o n g s h o r e t r a n s p o r t of suspended sediment westward p a s t Kay P o i n t and wide shore-normal d i s p e r s i o n i n P h i l l i p s Bay; p a r t of NAPL photograph A22975-56, 4 August 1972. 305 the r a t e of energy d i s s i p a t i o n per u n i t a rea i s g i v e n by p = d(ECn)/dx. (4.2.2-2) The t o t a l immersed weight t r a n s p o r t per u n i t w i d t h may be e x p r e s s e d as i - i B + i s = pUe / ( t a n p - t a n B ) ] + [e \u00E2\u0080\u00A2 (1-e )/(W /U - t a n B ) ] } i J 'Si D S S = pK (4.2.2-3) where i s i s the u n i t - w i d t h immersed-weight suspended l o a d , e g i s t he c o r r e s p o n d i n g e f f i c i e n c y f a c t o r , Wg i s the s e t t l i n g speed of the sediment i n s t i l l w a t e r , U s i s the mean t r a n s p o r t speed of suspended sediment, and K i s a d i m e n s i o n l e s s c o e f f i c i e n t ( B a g n o l d , 1963, p.517). The c o e f f i c i e n t K i s b e l i e v e d t o r e a c h a maximum v a l u e t h a t i s c o n s t a n t f o r a g i v e n system, a h y p o t h e s i s s u p p o r t e d by a e o l i a n and f l u v i a l t r a n s p o r t d a t a (e.g. B a g n o l d , 1941, pp.105-106; Bagnold, 1973; L e o p o l d and Emmett, 1976). In the case of sediment e n t r a i n e d by an o s c i l l a t o r y wave mo t i o n , Bagnold (1963, p.518) argued t h a t the immersed weight of sediment s u p p o r t e d over u n i t bed a r e a would be i / 5 , where U s i s the mean v e l o c i t y of the o s c i l l a t o r y sediment m o t i o n , and f u r t h e r t h a t once e n t r a i n e d the sediment would be t r a n s p o r t e d i n any d i r e c t i o n 9 by a p r e v a i l i n g c u r r e n t Ug [ e m p i r i c a l c o r r o b o r a t i o n of t h i s h y p o t h e s i s has been r e p o r t e d by Komar and Inman (1970) and by Le s h t e t a l . ( 1 9 7 9 ) ] . By t h i s l i n e of r e a s o n i n g , the u n i t w i d t h immersed weight t r a n s p o r t r a t e i s g i v e n by i e = K p u f l / u 0 (4.2.2-4) 306 where uo i s the h o r i z o n t a l o r b i t a l v e l o c i t y t aken a t the same d i s t a n c e above the bed as u e and i t i s assumed t h a t the r a t i o of sediment v e l o c i t i e s i s a p p r o x i m a t e l y e q u i v a l e n t t o the r a t i o of c o r r e s p o n d i n g water v e l o c i t i e s (Ug/UQ - u e / u Q ) . C o n s i d e r i n g f o r the moment o n l y the l o n g s h o r e t r a n s p o r t , where Ug=u t, t a n g e n t i a l t o the shore i n the b r e a k e r zone, Komar and Inman (1970) have demonstrated the e m p i r i c a l r e l a t i o n I = 0.77 P' (4.2.2-5) t t or J t = 0 . 7 7 P ' t [ P s / ( P s - P w ) g ] (4.2.2-6) where P ^ = ( E C n ) b c o s a b s i n a b i s t h e s h o r e - t a n g e n t component of i n c i d e n t wave power per u n i t l e n g t h of beach (Pt' = P t c o s a b ; c f . s e c t i o n 2.3.4). T h i s r e l a t i o n i s a l s o s u p p o r t e d by r e s u l t s of Watts (1953), C a l d w e l l (1956), and Knoth and Nummedal (1977). The q u a n t i t y (ECn ) b cosa^, r e p r e s e n t s the t o t a l i n c i d e n t power per u n i t l e n g t h of beach. I f i t i s assumed t h a t t h i s power i s e n t i r e l y d i s s i p a t e d i n t h e s u r f zone, then e q u a t i o n 4.2.2-5 may be viewed as an i n t e g r a t i o n of e q u a t i o n 4.2.2-3 a c r o s s the w i d t h of t r a n s p o r t . The c o e f f i c i e n t i n c o r p o r a t e s an index of the p r o p o r t i o n of t o t a l power d i s s i p a t e d by boundary r e s i s t a n c e ( c f . Inman and Bag n o l d , 1963, p.546). E q u a t i o n 4.2.2-6 has been used i n c o n j u n c t i o n w i t h the wave h i n d c a s t d a t a d e s c r i b e d e a r l i e r ( s e c t i o n 2.3.4) t o compute approximate sediment t r a n s p o r t r a t e s a l o n g Kay P o i n t s p i t and on the N i a k o l i k P o i n t s h o r e . In p r i n c i p l e , the t r a n s p o r t model ( e q u a t i o n 4.2.2-4) s h o u l d be a p p l i c a b l e t o the onshore sediment t r a n s p o r t , i n view 307 of the onshore mean t r a n s p o r t v e l o c i t y , u n , o b s e r v e d by Bagnold (1940). U n f o r t u n a t e l y , the e x i s t i n g t h e o r y d e s c r i b i n g u n ( L o n g u e t - H i g g i n s , 1953; L o n g u e t - H i g g i n s rn R u s s e l l and O s o r i o , 1958) i s i n a p p l i c a b l e when d i s p e r s e d sediment i s p r e s e n t (Bagnold, 1963, p.524) and, i n d e e d , i n the case of a v e r y rough f i x e d boundary ( B i j k e r e t a l . , 1974). F u r t h e r m o r e , Inman and Bowen (1963) have demonstrated t h a t a r e l a t i v e l y s m a l l mean c u r r e n t superimposed on a wave motion over a r i p p l e d bed may. reduce the symmetry of the system s u f f i c i e n t l y t o cause phase-dependent e f f e c t s a s s o c i a t e d w i t h p e r i o d i c sediment s u s p e n s i o n b u r s t s t o dominate the t r a n s p o r t p r o c e s s , such t h a t K becomes s m a l l and v a r i a b l e . In the wave-dominated environment, t r a n s p o r t of s u f f i c i e n t l y f i n e sediment may be f u l l y d e v e l o p e d w i t h i n the b r e a k e r zone, but i s a p p a r e n t l y not so over r i p p l e d s u r f a c e s f u r t h e r seaward. The p h y s i c a l system i s f u r t h e r c o m p l i c a t e d when an onshore wind d r i f t o c c u r s a t the s u r f a c e , b a l a n c e d by an o f f s h o r e r e t u r n f l o w a t d e p t h . I n a d d i t i o n , t h e r e i s now e v i d e n c e t o support the concept of C o r n i s h (1898) t h a t shore-normal sediment t r a n s p o r t i s s i g n i f i c a n t l y i n f l u e n c e d by v e l o c i t y asymmetry a s s o c i a t e d w i t h harmonics of the fundamental wave motion .(see Bowen, 1980b). The f o r e g o i n g c o m p l i c a t i o n s must be a d d r e s s e d i n the a p p l i c a t i o n of any t r a n s p o r t model (e.g. K a l k a n i s , 1964; E i n s t e i n , 1972; Madsen and G r a n t , 1976) and i t i s c o n c l u d e d t h a t shore-normal sediment t r a n s p o r t cannot at p r e s e n t be d e t e r m i n e d r e l i a b l y o t h e r than as a r e s i d u a l i n the l i t t o r a l sediment budget. The shore-normal t r a n s p o r t 308 problem remains one of the major o u t s t a n d i n g i s s u e s i n the f i e l d of sediment t r a n s p o r t mechanics (Bowen, 1980a). F i g u r e 105 p r o v i d e s an i n s t r u c t i v e i l l u s t r a t i o n of r e f r a c t i o n e f f e c t s and of the p o t e n t i a l magnitude of the wash l o a d i n t h e l i t t o r a l t r a n s p o r t system a t Kay P o i n t . The deepwater wavelength can be e s t i m a t e d from the photograph and from t h i s one can compute an e s t i m a t e of. the p e r i o d T=(2 i r A o / g ) 1 2 = 4.2 s. Assuming t h a t the waves were f e t c h - l i m i t e d by the c o a s t a t about 100 km, the SMB h i n d c a s t waveheight i s H = 1.1 m. The r e f r a c t i o n c o e f f i c i e n t f o r b r e a k i n g waves a l o n g c o a s t a l segment 1 e a s t of Kay P o i n t i s Kr=0.6 and t h e b r e a k e r a n g l e i s a p p r o x i m a t e l y 40\u00C2\u00B0. Assuming r e a l i s t i c v a l u e s f o r the beach s l o p e and water d e n s i t y , t h e l o n g s h o r e t r a n s p o r t r a t e can be e s t i m a t e d u s i n g e q u a t i o n 4.2.2-6 as J t - 5X10 1 kg/s. A l o n g the p r o x i m a l s p i t s h o r e , K r=0.2 and t h e b r e a k e r a n g l e i s about 55\", y i e l d i n g an e s t i m a t e J t - 5x10\u00C2\u00B0 kg/s. I f 50 per c e n t of the l i t t o r a l t r a n s p o r t a r r i v i n g a t Kay P o i n t was s i l t and c l a y r e m a i n i n g i n s u s p e n s i o n o f f the p r o x i m a l s p i t , then the t o t a l t r a n s p o r t unaccounted f o r o f f t h a t p a r t of the c o a s t i s r o u g h l y f i v e t i m e s g r e a t e r than the computed t r a n s p o r t . A p o r t i o n of t h i s f i n e sediment may be i n p u t t o the e s t u a r y ; however, f o r p r e s e n t purposes i t has been assumed t h a t most washload sediment i s d i s p e r s e d o f f s h o r e and c o n t r i b u t i o n s from t h i s s o u r c e t o the e s t u a r y have been n e g l e c t e d . Inasmuch as the computed sediment i n p u t s a r e o v e r w h e l m i n g l y c o n c e n t r a t e d d u r i n g n o r t h w e s t e r l y wave e v e n t s , t h i s a s s u m p t i o n i s not thought t o be a s i g n i f i c a n t cause of 309 b i a s . Computed v a l u e s of d a i l y l o n g s h o r e t r a n s p o r t a t the d i s t a l end of Kay P o i n t s p i t ( p o s i t i v e toward the e n t r a n c e s e c t i o n Ml) a r e p l o t t e d i n F i g u r e 106. T h i s shows the major importance of n o r t h w e s t e r l y waves ( i n d i c a t e d by the v e r t i c a l b a r s ) , the c o n s i s t e n t l y p o s i t i v e s i g n of the t r a n s p o r t , the extreme s y n o p t i c - and s e a s o n a l - s c a l e v a r i a n c e , and the g e n e r a l c h a r a c t e r of y e a r - t o - y e a r v a r i a b i l i t y . Computations were a l s o c a r r i e d out f o r p r o x i m a l s p i t and N i a k o l i k shore s i t e s , u s i n g 1976 h i n d c a s t d a t a ; the summary r e s u l t s of t h e s e c o m p u t a t i o n s as they r e l a t e t o e s t i m a t e s of the t o t a l sediment s u p p l y , a r e g i v e n i n t h e ' f o l l o w i n g s e c t i o n . A l o n g b a r r i e r c o a s t s , s i g n i f i c a n t q u a n t i t i e s of sediment may be moved i n t o l agoons by washover t r a n s p o r t ( c f . Andrews, 1970; Hayes, 1975; S c h w a r t z , 1975; B a r t b e r g e r , 1976? Leatherman, 1976), e s p e c i a l l y where the b a r r i e r i s narrow and t h e r e a r e no dunes o b s t r u c t i n g f l o w . Washover p r o c e s s e s a r e i m p o r t a n t i n the maintenance of b a r r i e r w i d t h d u r i n g marine t r a n s g r e s s i o n , such as has o c c u r r e d a t Kay P o i n t s p i t i n r e c e n t time ( c f . s e c t i o n 2.1.2). The backshore s u r f a c e of the Kay P o i n t s p i t e x h i b i t s a d i s t i n c t shore-normal l i n e a t i o n r e s u l t i n g from washover t r a n s p o r t , a l t h o u g h major washover l o b e s a r e a b s e n t . E x t e n s i v e washover f l o w s a r e not common; l a t e r a l l y r e s t r i c t e d washover c h a n n e l s o c c a s i o n a l l y d e v e l o p d u r i n g moderate storm s u r g e s , as a t Kay P o i n t d u r i n g the surge of 9-10 August 1975 (Lewis and FIGURE 106 D a i l y l o n g s h o r e sediment t r a n s p o r t a t d i s t a l end of Kay P o i n t s p i t , p o s i t i v e toward t h e main e n t r a n c e s e c t i o n ( M l ) , computed from h i n d c a s t wave d a t a u s i n g e q u a t i o n 4.2.2-6; b r e a k s i n wind r e c o r d d u r i n g open-water c o n d i t i o n s a r e i n d i c a t e d by l i g h t e r l i n e i n h o r i z o n t a l a x i s ; n o te a s s o c i a t i o n between n o r t h w e s t e r l y wind e v e n t s ( i n d i c a t e d by v e r t i c a l b a r s ) and the major sediment t r a n s p o r t o c c u r r e n c e s . 311 F o r b e s , 1975, p.57). Storm c h a n n e l s of t h i s k i n d , i f s c o u r e d d e e p l y enough, may remain a f t e r the surge has abated as temporary or quasi-permanent t i d a l i n l e t s . The i n l e t i l l u s t r a t e d i n F i g u r e 107 d e v e l o p e d sometime b e f o r e t h e e x c e p t i o n a l storm of September 1970, which o c c u r r e d l e s s than one month a f t e r the photograph was t a k e n . At the time i t was photographed, t h i s i n l e t was p r o v i d i n g a c c e s s t o the lagoon f o r suspended sediment moving a l o n g s h o r e p a s t Kay P o i n t . The presence of the i n l e t may have a l t e r e d the parameters of the e s t u a r i n e system s u f f i c i e n t l y t o change i t s response t o a major storm. The change may have i n v o l v e d , f o r example, h i g h e r r a t e s of s e d i m e n t a t i o n i n the n o r t h end of the l a g o o n than would o t h e r w i s e have o c c u r r e d ( c f . response t o s m a l l e v e n t s i n the absence of i n l e t M3, s e c t i o n 4.3.2 b e l o w ) . I t i s not known t o what e x t e n t the development of washover c h a n n e l s a c r o s s Kay P o i n t s p i t i s l i m i t e d by the f r o z e n s u b s t r a t e ; t h i s r e p r e s e n t s an a d d i t i o n a l p o t e n t i a l l y s i g n i f i c a n t f a c t o r i n the development of h i g h - l a t i t u d e b a r r i e r systems. Because of the h i g h l y e p i s o d i c n a t u r e of washover t r a n s p o r t , an assessment of the magnitude of t h i s i n p u t component i s d i f f i c u l t t o a c h i e v e . A r o u g h - e s t i m a t e may be based on the mean 41-m t r a n s g r e s s i v e m i g r a t i o n of the b a r r i e r b ackshore i n t o the lagoon d u r i n g the i n t e r v a l 1952-1970 (measurements t a k e n from photomosaic a t 1:25000 s c a l e ) . I f a nominal t h i c k n e s s of 1 m i s adopted i n the c o m p u t a t i o n , an a n n u a l volume of l x l O 4 m3 i s o b t a i n e d ; t h i s c o r r e s p o n d s t o about 1.6x10 7 kg a \" 1 . 500 HI-FI GURE 107 P r o x i m a l end of Kay P o i n t s p i t , showing temporary (M3) i n l e t ; p a r t of NAPL ph o t o g r a p h A21830-2, 18 August 1970. 313 T i d a l c u r r e n t s a re a major cause of sediment t r a n s p o r t i n many b a r r i e r i n l e t s e t t i n g s and undoubtedly generate some sediment i n p u t s t o the Babbage E s t u a r y system t h r o u g h i n l e t s Ml and M2. However, an e s t i m a t e of the magnitude of the t i d a l t r a n s p o r t has not been a t t e m p t e d , i n p a r t because the a v a i l a b l e d a t a a r e q u i t e i n a d e q u a t e f o r t h e purpose; i n p a r t because v e l o c i t y d a t a f o r s t a t i o n 5 suggest t h a t t h r e s h o l d c o n d i t i o n s , i n the absence of waves, a r e r a r e l y exceeded ( c f . s e c t i o n 4.3.1). The e n t r a n c e bathymetry ( F i g u r e 3) shows no e v i d e n c e of the d i s t i n c t i v e t i d e - g e n e r a t e d f e a t u r e s d e s c r i b e d from m e s o t i d a l and from some m i c r o t i d a l systems e l s e w h e r e (e.g. by Hayes, 1975; R e i n s o n , 1977; B o o t h r o y d , 1978; Owens and McCann, 1980) and i t i s judged t h a t the e r r o r i n v o l v e d i n n e g l e c t i n g t i d a l t r a n s p o r t i s s m a l l under most c o n d i t i o n s . 314 4.2.3 TOTAL MARINE SEDIMENT INPUT Longshore sediment t r a n s p o r t t o t a l s were computed u s i n g e q u a t i o n 4.2.2-6 f o r i n d i v i d u a l h i n d c a s t wave ev e n t s a t the s i t e s i n d i c a t e d i n F i g u r e 26; t r a n s p o r t a t a l l s i t e s was d e f i n e d p o s i t i v e toward the southwest. The r e s u l t s , p r e s e n t e d as monthly t o t a l s i n Ta b l e 22, i n d i c a t e a t o t a l t r a n s p o r t a t the d i s t a l end of Kay P o i n t s p i t (K2) amounting t o a p p r o x i m a t e l y 3.6x10 7 kg f o r the p e r i o d 19 J u l y t o 4 September 1975 (83 per cent of the open-water season) and about 3 . 4 x l 0 7 kg f o r the same i n t e r v a l i n 1976 ( l e s s than 70 per cen t of the open-water s e a s o n ) . G i v e n the u n c e r t a i n t i e s i n the comp u t a t i o n p r o c e d u r e , t h e s e r e s u l t s a r e not s i g n i f i c a n t l y d i f f e r e n t . The annual i n p u t of c l a s t i c sediment from c o a s t a l and o f f s h o r e s o u r c e s i s e s t i m a t e d t o have been l e s s than 5x10 7 kg i n each y e a r . T h i s i s somewhat g r e a t e r than the lo n g - t e r m mean v a l u e f o r b a r r i e r washover t r a n s p o r t (undoubtedly h i g h l y v a r i a b l e from year t o yea r ) e s t i m a t e d i n the p r e c e d i n g s e c t i o n , v e r y a p p r o x i m a t e l y , a t 2 x l 0 7 kg a \" 1 . E b b - t i d e c u r r e n t s , r i p c u r r e n t s , and w i n d - d r i f t r e t u r n f l o w r e p r e s e n t t h r e e mechanisms whereby sediment a r r i v i n g a t the Babbage E s t u a r y e n t r a n c e may be d i v e r t e d o f f s h o r e . I n the absence of r e l i a b l e p r o c e d u r e s f o r the com p u t a t i o n of shore-normal t r a n s p o r t and of t r a n s p o r t i n combined w i n d - c u r r e n t systems, however, the r e s u l t s i n Ta b l e 22 p r o v i d e the best a v a i l a b l e e s t i m a t e s of the o r d e r of magnitude of marine sediment s u p p l y t o the e s t u a r i n e system. I t i s noteworthy t h a t the e s t i m a t e d t o t a l sediment i n p u t a c r o s s the 315 TABLE 22 Summary o f n e t w a v e - g e n e r a t e d l o n g s h o r e s e d i m e n t t r a n s -p o r t f o r p r o x i m a l and d i s t a l Kay P o i n t s p i t and f o r s i t e west o f N i a k o l i k P o i n t , 1975-1976. Note e x t r e m e s e a s o n a l s t r u c t u r e due to i c e e f f e c t s . K l : p r o x i m a l end o f Kay P o i n t s p i t K2: d i s t a l end o f Kay P o i n t s p i t [ s e e F i g u r e 26] N I : f o r e s h o r e west o f N i a k o l i k P o i n t T o t a l l o n g s h o r e t r a n s p o r t computed u s i n g e q u a t i o n 4.2.2-6 and h i n d c a s t wave d a t a ; t r a n s p o r t p o s i t i v e t o w a r d t h e s o u t h w e s t ( t o w a r d Ml s e c t i o n a t K l and K2; away f r o m Ml s e c t i o n a t N I ) . d a v s i \u00C2\u00B0 ~ w 2 6 month miss miss t o t a l transport i n units of 10 kg K1 K2 N1 Jan 1975 31 0 0. 0. 0. Feb 28 0 0. 0. 0. Mar 31 0 0. 0. 0. Apr 30 0 0. 0. 0. May 31 0 0. 0. 0. Jun 30 0 0. 0. 0. J u l 18 10 >13.1 Aug 0 0 21.8 Sep 26 0 0.77 Oct 31 0 0. 0. 0. Nov 30 0 0. 0. 0. Dec 31 0 0. 0. 0. Jan 1976 31 0 0. 0. 0. Feb 29 0 0. 0. 0. Mar 31 0 0. 0. 0. Apr 30 0 0. 0. 0. May 31 0 0. 0. 0. Jun 30 0 0. 0. 0. J u l 15 0 1.78 4.68 0.23 Aug 0 0 7.30 18.8 -2.93 , Sep 18 18 >1.48 >10.0 (-1.29)3 Oct 31 8 >0. > 0. Nov 30 0 0. 0. 0. Dec 31 0 0. 0. 0. 1975 1976 >10.6 > 35.9 > 33.5 (-3.99)5 1 number of days missing from hindcast wave record 2 number of days with open-water missing from record 3 net t o t a l for period of record 316 marine boundary i s an o r d e r of magnitude l e s s than the f l u v i a l sediment y i e l d ( T a b l e s 19 and 2 0 ) . Note a l s o t h a t the marine i n p u t s a r e h i g h l y s e a s o n a l and t h a t f l u v i a l and marine i n p u t p r o c e s s e s a r e maximized a t d i f f e r e n t t i m e s of the y e a r . A f i n a l p o i n t on the s u b j e c t of sediment s o u r c e s c o n c e r n s the p o t e n t i a l c o n t r i b u t i o n from o f f s h o r e s i t e s . The t r a n s p o r t t o t a l computed f o r the d i s t a l s p i t l o c a t i o n was about t h r e e t imes g r e a t e r than the t o t a l computed f o r the p r o x i m a l s p i t . I f t h i s d i f f e r e n c e i s s i g n i f i c a n t , c o n t i n u i t y s u g g e s t s t h a t the a d d i t i o n a l sediment at the d i s t a l s i t e must have been d e r i v e d from the e s t u a r y v i a i n l e t M2, from the s p i t s h o r e f a c e , or from seaward of the s u r f zone. Supply t h r o u g h M2 can p r o b a b l y be n e g l e c t e d . The second source would r e q u i r e a mean l o s s of about 3.3 m3/m of s h o r e f a c e a l o n g the l e n g t h of the s p i t , assuming a d r y b u l k d e n s i t y of 1590 kg m - 3 ( T e r z a g h i and Peck, 1967, p.28). T a k i n g account a l s o of u n c e r t a i n t i e s c o n c e r n i n g the p o t e n t i a l r o l e of r i p c u r r e n t s , the d a t a p r o v i d e no u n e q u i v o c a l e v i d e n c e f o r net onshore t r a n s p o r t of sediment a l o n g Kay P o i n t s p i t . 317 4.3 SYSTEM RESPONSE 4.3.1 SEDIMENT TRANSFERS WITHIN THE ESTUARY Sediment t r a n s p o r t a t i o n i n a subaqueous environment i s f u n d a m e n t a l l y c o n t r o l l e d by l o c a l i n s t a n t a n e o u s hydrodynamic c o n d i t i o n s and by f i x e d p r o p e r t i e s of the sediment. The r e s u l t i n g sediment d i s p e r s a l p a t t e r n s depend upon the i n t e g r a t i o n of t h i s p r o c e s s , which i n c l u d e s l a g and r e l a x a t i o n e f f e c t s (Postma, 1954; A l l e n , 1974) over the t r a n s p o r t p a t h of the sediment. A d i s t i n c t i v e s e t of a t t r i b u t e s of the e s t u a r i n e environment i n f u e n c e s the l a r g e r - s c a l e d i s p e r s a l of sediment i n e s t u a r i n e systems. These phenomena i n c l u d e : (1) t i d a l asymmetry; (2) t e m p o r a l v a r i a b i l i t y of mean d e p t h ; (3) e r o s i o n a l and d e p o s i t i o n a l l a g s ; (4) r o t a t i o n and h o r i z o n t a l s e g r e g a t i o n of t i d a l c u r r e n t s ; (5) net n o n - t i d a l c i r c u l a t i o n i n the e s t u a r y ; (6) w i n d - g e n e r a t e d waves; (7) s e a s o n a l l y and s y n o p t i c a l l y v a r i a b l e r a t e s of e s t u a r i n e f l u s h i n g ; (8) t e m p o r a l v a r i a b i l i t y of d e n s i t y and v i s c o s i t y ; (9) changes i n the n a t u r e of the sediment i t s e l f , due t o a g g l o m e r a t i o n by f l o c c u l a t i o n , by f i l t e r - f e e d i n g o r g a nisms, or by o t h e r p r o c e s s e s ; and (10) r e w o r k i n g and b i n d i n g of bottom sediments by b e n t h i c o r g a n i s m s . In A r c t i c e s t u a r i e s and i n many m i d - l a t i t u d e systems, i c e i s an a d d i t i o n a l f a c t o r . The f o l l o w i n g d i s c u s s i o n emphasizes phenomena i n v e s t i g a t e d i n the Babbage E s t u a r y and c o n s i d e r e d p a r t i c u l a r l y r e l e v a n t t o the s e d i m e n t a t i o n p r o c e s s i n t h a t system. S u r f a c e g r a v i t y waves can cause r e s u s p e n s i o n of bottom sediment i n e s t u a r i e s and t i d a l f l a t s (Anderson, 1971, 1976; 318 C o l l i n s and Amos, 1973), may i n h i b i t mud d e p o s i t i o n and l i m i t the v e r t i c a l growth of i n t e r t i d a l s u r f a c e s (Postma, 1961, p.184), and may s u p p l y major q u a n t i t i e s of sand t o the e s t u a r y by l o n g s h o r e t r a n s p o r t t o i n l e t s and by b a r r i e r washover ( c f . s e c t i o n 4.2.2). There i s e v i d e n c e t o suggest t h a t r e s u s p e n s i o n of bottom sediments i n the Babbage Lagoon may be an i m p o r t a n t f e a t u r e of the system storm r e s p o n s e , w h i l e e r o s i o n of the d i s t a l d e l t a margin i s o c c u r r i n g a t some s i t e s (see s e c t i o n 4.3.2). I n n e r - l a g o o n beach and washover f a c i e s are an i m p o r t a n t f e a t u r e of lagoon-margin d e p o s i t s i n the Babbage E s t u a r y (see s e c t i o n 4.4.5). S t i l l w a t e r s e t t l i n g v e l o c i t i e s , both of muds s e t t l i n g a c c o r d i n g t o Stokes (1851) and of sands, which may f o l l o w the r e l a t i o n proposed by G i b b s e t a l . (1971), depend upon t h e d e n s i t y and v i s c o s i t y of the f l u i d , which can e x h i b i t pronounced s e a s o n a l - and s y n o p t i c - s c a l e f l u c t u a t i o n s ( s e c t i o n 3.3.4). The time s e r i e s of S t o k e s s e t t l i n g speed Ws = gD 2 ( p s - P w ) / 1 8 n (4.3.1-1) computed from d a i l y d a ta f o r s t a t i o n 7, Babbage E s t u a r y (1976), shows the magnitude of the s e a s o n a l v a r i a b i l i t y i n W s ( F i g u r e 108). The s e t t l i n g speed computed f o r D = 1 ym ranged from a minimum.-of 5.0x10\" 7 m s _ 1 on 7 June t o a maximum of 8 . 3 x l 0 - 7 m s \" 1 on 21 J u l y , an i n c r e a s e of 66 per c e n t . However, the t r u e s e t t l i n g speed may be much g r e a t e r than e q u a t i o n 4.3.1-1 s u g g e s t s , due t o t u r b u l e n t e f f e c t s or t o p a r t i c l e a g g l o m e r a t i o n . The s e t t l i n g v e l o c i t y of a g i v e n s e d i m e n t a r y p a r t i c l e may 3 1 9 DRTS F I G U R E 1 0 8 V i s c o s i t y , S t o k e s s e t t l i n g v e l o c i t y f o r D = l v m , a n d t o t a l s u s p e n d e d s o l i d s c o n c e n t r a t i o n a t s t a t i o n s 7 a n d 7 a , B a b b a g e E s t u a r y , 1 9 7 6 . B o x e s r e p r e s e n t s a m p l e T S S v a l u e s , c r o s s e s r e p r e s e n t e s t i m a t e s b a s e d o n t r a n s m i s s o m e t e r b e a m a t t e n u a t i o n , a n d , 1 i n e s r e p r e s e n t e s t i m a t e d c o n c e n t r a t i o n , C x , b a s e d o n S e c c h i e x t i n c t i o n d e p t h . 320 be a f u n c t i o n , not o n l y of the f l u i d p r o p e r t i e s , but a l s o of the a g g l o m e r a t i o n h i s t o r y of the p a r t i c l e s i n c e e n t e r i n g the e s t u a r y ( E i n s t e i n and Krone, 1962; Schubel and Kana, 1971; Zabawa, 1978), i f not b e f o r e ( N e l s o n , 1959). A g g l o m e r a t i o n p r o c e s s e s i n an e s t u a r y may i n c l u d e e l e c t r o c h e m i c a l f l o c c u l a t i o n (Glangeaud, 1938; van S t r a a t e n and Kuenen, 1957; S c h u l t z and Simmons, 1957), c o a g u l a t i o n ( B l a c k e t a l . , 1965; Chang and Anderson, 1968), p r o d u c t i o n of f e c a l and p s u e d o - f e c a l p e l l e t s by f i l t e r - f e e d i n g organisms (Moore, 1931; Verwey, 1952), and a g g l o m e r a t i o n by diatoms (Brockmann, 1935) or by m i c r o f l o r a l s e c r e t i o n s ( P a e r l , 1973). The r e l a t i v e importance of the v a r i o u s a g g l o m e r a t i o n phenomena remains v e r y p o o r l y known; i t may be e x p e c t e d t o v a r y g e o g r a p h i c a l l y and t e m p o r a l l y , but t h e r e appear t o be no d a t a a d e q u a t e l y documenting such v a r i a b i l i t y . I t may be i m p o r t a n t because the r a t i o w a / w s ' where Wa i s the s e t t l i n g v e l o c i t y of the agglomerate and Ws the s e t t l i n g v e l o c i t y of i n d i v i d u a l m i n e r a l p a r t i c l e s w i t h i n i t , may be r e l a t i v e l y h i g h f o r p e l l e t s (W a/W s>>l) and v e r y much lower f o r i n o r g a n i c a g g l o m e r a t e s (Wa/Ws-1) (Sherman, 1953; Smayda, 1969; Zabawa, 1978). B i o g e n i c r e w o r k i n g of e s t u a r i n e bottom sediments i s an i m p o r t a n t p r o c e s s t h a t r e s u l t s , not o n l y i n the p r o d u c t i o n of d i s t i n c t i v e , o f t e n abundant, s e d i m e n t a r y s t r u c t u r e s ( e . g . van S t r a a t e n , 1952; Evans, 1965), but a l s o i n d e s t a b i 1 i z a t i o n of the s e d i m e n t s , i n c r e a s i n g the p r o b a b i l i t y of r e s u s p e n s i o n (Rhoads, 1971; Y i n g s t and Rhoads, 1978). On the o t h e r hand, s t a b i l i z a t i o n by m i c r o f l o r a l mucus or a l g a l mats 321 may p l a y an i m p o r t a n t s e a s o n a l l y - v a r i a b l e r o l e , w h i l e v a r i o u s p l a n t s p e c i e s may enhance s e d i m e n t a t i o n r a t e s by t h e i r e f f e c t s on the l o c a l hydrodynamic environment ( G i n s b u r g and Lowenstam). S u p e r f i c i a l r e w o r k i n g of muds by amphipods and ' i s o p o d s has been observed i n the Babbage Lagoon d u r i n g the p r e s e n t s t u d y . Sampling by Kendel et a l . (1975) i n d i c a t e d t h a t the abundance of amphipods may exceed 2000 m~2 (see s e c t i o n 4.4.5). However, i n c o n t r a s t t o many l o w e r - l a t i t u d e systems, t h e r e i s a r e l a t i v e s c a r c i t y of m o l l u s k s ; o n l y two s p e c i e s a r e known from the lagoon (Kendel e t a l . , 1975), w h i l e none has been obse r v e d i n the i n t e r t i d a l zone. A l g a l mats d e v e l o p i n summer on ephemeral pond muds of the d e l t a i c and m a r g i n a l s u p r a t i d a l f l a t s , but are not thought t o p l a y a major r o l e i n the sedi m e n t a r y p r o c e s s . T h i s c o n t r a s t s w i t h r e s u l t s i n temperate r e g i o n s ( c f . K e l l e r h a l s and Murray, 1969; F r o s t i c k and McCave, 1979). The n a t u r e of a g g l o m e r a t i o n i n Babbage 'Estuary sediments was examined u s i n g s c a n n i n g e l e c t r o n m i c r o s c o p e imagery and s e t t l i n g v e l o c i t y e x p e r i m e n t s . Bottom sediment from the n o r t h e r n lagoon b a s i n ( s i t e 021125; see F i g u r e s 5 and 6 f o r r e f e r e n c e g r i d ) i n c l u d e d a n g u l a r and subangular s i l t p a r t i c l e s ( F i g u r e 109A) and a v a r i e t y of c l a y a gglomerates of s i l t s i z e , i n b o t h p e l l e t and r e l a t i v e l y amorphous forms ( F i g u r e 109B, 109C, 109D). In some c a s e s , c l a y - s i z e p l a t e s were a t t a c h e d t o p e l l e t - l i k e p a r t i c l e s i n an a n g u l a r c o n f i g u r a t i o n ( F i g u r e 109C). Bottom m a t e r i a l from s i t e 010140 ( F i g u r e 110) showed s i m i l a r p e l l e t - l i k e c o m p o s i t e p a r t i c l e s i n a d d i t i o n t o open agglomerates of the s o r t a s s o c i a t e d w i t h f l o c c u l a t i o n 322 1 0 pm 1 0 um FIGURE 109 S c a n n i n g e l e c t r o n m i c r o g r a p h s of s e d i m e n t from th e Babbage E s t u a r y ( s i t e 021125), showing s i l t - and c l a y - s i z e m i n e r a l p a r t i c l e s and v a r i o u s c o m p o s i t e p a r t i c l e s of s i l t s i z e . 323 10 mm FIGURE 110 Scanning electron micrographs of sediment from the Babbage Estuary ( s i t e 010140), showing both p e l l e t i z e d and angular forms of agglomeration. 324 p r o c e s s e s . The p e l l e t s were more common i n bottom sediment; the open agglomerates i n m a t e r i a l s c o l l e c t e d from sediment t r a p s a t the s i t e . I t may be, t h e r e f o r e , t h a t b i o g e n i c p e l l e t i z a t i o n o c c u r s p r i m a r i l y on the bottom and i s not a major f a c t o r i n i n i t i a l s e d i m e n t a t i o n ; the s e t t l i n g v e l o c i t y s h o u l d , however, be h i g h e r i n l a t e r r e s u s p e n s i o n e v e n t s . A l s o i t i s not c l e a r t o what e x t e n t the open agglomerates observed i n bottom sediments r e f l e c t f l o c c u l a t i o n p r o c e s s e s i n the water column, inasmuch as f l o c c u l a t i o n r e q u i r e s c o l l i s i o n s between p a r t i c l e s i n s u s p e n s i o n . The p r o b a b i l i t y of c o l l i s i o n s i s r e l a t i v e l y low a t the c o n c e n t r a t i o n s u s u a l l y p r e v a i l i n g i n the Babbage E s t u a r y ( c f . E i n s t e i n and Krone, 1962) but i n c r e a s e s r a p i d l y w i t h i n c r e a s i n g c o n c e n t r a t i o n v e r y c l o s e t o the bottom. E x p e r i m e n t s were conducted w i t h sediment from s i t e 010140 to examine the e f f e c t s of d i s a g g r e g a t i o n and of s a l i n i t y on the p a r t i c l e s i z e d i s t r i b u t i o n . R e p l i c a t e a n a l y s e s , a f t e r d i s a g g r e g a t i o n w i t h sodium metaphosphate s o l u t i o n , of m a t e r i a l s c o l l e c t e d i n sediment trap's a t 010140 d u r i n g the i n t e r v a l s 8-14 and 14-25 August 1976 y i e l d e d median e q u i v a l e n t d i a m e t e r s i n the ranges 5.5 20 0. 0. 2 3 9 + 3. 1 20 + 7. + 5. 2 4 o \u00E2\u0080\u00A2 + 0.5 '? 20 + 6. + 4. 2 5 o + 6. 7 20 +10. + 9. 3 7 8 +22. -31. 8 + 1. -15. 3 6 8 + 5. -34. 8 + 14. + 5. 3 1 7 +29. -29. 9 0. -26. 20 +18. + 18. 3 2 7 0. -35. 9 + 3. -10. 20 + 3. -17. 3 3 7 + 5. + 5. 9 + 3. -99. 20 + 5. + 5. 3 4 7 0. 0. o y + 3. - 3. 20 0. 0. 3 5 . 7 0. 0. 9 0. 0. 20 0. - 4. 4 1 6 + 2. 0 8 + 5. + 5. 17 + 4. + 3. 4 2 8 + 3. + 3. 8 0. - 1. 17 0. 0. 4 3 8 + 15. + 5. 8 + 2. + 2. 17 + 6. -14. 4 4 8 0. - 2. 8 0. - 3. 17 + 9. - 3. 4 5 8 0. -' 1. 8 0. 0. 17 + 1. 0. 5 1 8 + 2. -13. 8 + 1. - 4. 20 + 9. + 5. 5 2 8 0. 0. \u00E2\u0080\u00A2 8 + 5. -12. 20 0. 0. 5 3 8 0. 0. 8 0. 0. 20 0. 0. 5 4 8 0. 0. 8 0. - 1. 20 0. 0. 5 5 8 0. 0. 8 0. 0. 20 0. 0. 6 1 6 + 2. -51. 8 + 3. _ c 19 + 3. + 3. 6 2 6 + 7. -18. 8 + 6. 6. 19 + 5. + 2. 6 3 6 0. -35. 8 + 5. 0. 19 + 5. + 1. 6 4 6 0. -25. 8 + 4. -19. 19 + 5. 0. 6 5 6 0. -15. 8 0. - 6. 19 + 2. 0. 7 1 7 + 2. - 3. 8 0. -^ \u00E2\u0080\u00A2 19 + 3. + 3. 7 2 . 7 0. -35. 8 0. 0. 19 0. 0. 7 3 7 0. 0. 8 0. o. 19 0. 0. 7 4 7 0. 0. 8 0. 0. 19 0. 0. 7 5 7 0. 0. 8 0. 0. 19 0, 0. 8 1 6 0. 0. 8 0. 0. 19 + 1. + 1. 8 2 6 0. 0. 8 0. 0. 19 + 3. + 3. 8 3 6 0. 0. 8 0. 0. 19 + 1. + 1. 8 4 6 0. -20. 8 + 10. -12. 19 + 7. + 7. 8 5. 6 +93. - 5. 8 + 15. + 15. 19 + 17. + 1. 3 5 6 H / D = 0 . 3 2 a n d a n e x p o s u r e ' ( e x p o s u r e - a r e a / b a s a l - a r e a ) r a t i o A e / A b = l ; 8 3 w e r e p l a c e d a t 14 s i t e s i n t h e B a b b a g e L a g o o n a n d s i x s i t e s i n d e l t a l a k e s d u r i n g p a r t s o f t h e 1 9 7 6 a n d 1 9 7 7 o p e n - w a t e r s e a s o n s ( s e e F i g u r e s 5 a n d 1 2 1 f o r l o c a t i o n s ) . T h r e e t r a p s w e r e p l a c e d a t e a c h o f t w o s i t e s , o n e i n t h e s o u t h e r n l a g o o n b a s i n a n d o n e i n t h e n o r t h e r n l a g o o n , w h e r e a f o u r t h t r a p o f a d i f f e r e n t d e s i g n [ H / D = 0 . 1 1 , A = 1 . 0 0 ; d e s c r i b e d b y H a k a n s o n ( 1 9 7 6 ) ] w a s a l s o d e p l o y e d . T h e d a t a f o r s u m m e r 1 9 7 6 a r e p r e s e n t e d i n T a b l e 2 7 . N o d a t a w e r e o b t a i n e d f o r t h e n o r t h e r n e n d o f t h e l a g o o n d u r i n g t h e f i r s t d e p l o y m e n t d u e t o i c e r e m a i n i n g i n t h e a r e a . S i t e s i n d e l t a l a k e s w e r e n o t o c c u p i e d u n t i l t h e s e c o n d d e p l o y m e n t i n m i d - J u l y . D a t a a r e m i s s i n g f o r l a t e r i n t e r v a l s a t s i t e s w h e r e t r a p s c o u l d n o t b e r e c o v e r e d . R e p l i c a t i o n a t t w o s i t e s , a l t h o u g h m i n i m a l , m a d e p o s s i b l e a n a s s e s s m e n t o f t h e r e l a t i v e i m p o r t a n c e o f w i t h i n -a n d b e t w e e n - s i t e v a r i a n c e i n t h e s e d i m e n t t r a p d a t a . A n a l y s e s o f v a r i a n c e f o r t w o d e p l o y m e n t s ( T a b l e 2 8 ) i n d i c a t e d t h a t d i f f e r e n c e s b e t w e e n s i t e s w e r e s i g n i f i c a n t a t a = 0 . 0 2 5 . T h e t i m e s e q u e n c e o f t r a p r e t e n t i o n r a t e s ( i n k g n r - 2 d a y ~ x ) i s i l l u s t r a t e d i n F i g u r e 1 2 2 . S e d i m e n t a t i o n r a t e s i n d e l t a l a k e s w e r e r e l a t i v e l y l o w , w i t h a n o v e r a l l m e a n o f 0 . 0 6 \u00C2\u00B1 0 . 0 2 k g n r 2 d a y _ 1 , b u t w i t h e x t r e m e s i n t w o l a k e s o f 0 . 2 2 a n d 0 . 3 5 k g i r r 2 d a y _ 1 d u r i n g t h e w e e k o f 9 - 1 5 A u g u s t . D u r i n g t h e f i r s t d e p l o y m e n t , w h e n t h e s e c o n d m a j o r r u n o f f e v e n t o f t h e s e a s o n o c c u r r e d o n 26 J u n e , d e p o s i t i o n r a t e s i n t h e l a g o o n d e c r e a s e d s e a w a r d f r o m t h e d i s t a l d e l t a , w i t h t r a p r e t e n t i o n r a t e s o f o r d e r 1 k g m _ 2 d a y _ 1 a t t h e d e l t a f r o n t ( F i g u r e 1 2 1 ) , . 357 \u00E2\u0080\u00A2 traps recovered 16 July 1976 FIGURE 121 Sediment t r a p l o c a t i o n s and d i s t r i b u t i o n of a c c u m u l a t i o n r a t e s (kg m ^ d a y \" 1 ) f o r the i n t e r v a l 24 June t o 16 J u l y i n 1976. 358 TABLE 27 S e d i m e n t a c c u m u l a t i o n r a t e s i n t r a p s d e p l o y e d i n Babbage Lagoon and i n l a k e s o f t h e Babbage D e l t a , 1976. d e p l o y m e n t d a t e s : 1 : 24 June -- 15/16 J u l y 22- 23 days 2 : 15/16 J u l y -- 8/ 9 A u g u s t 23- 25 days 3 : 8/ 9 Aug -- 14/15 Augus t 5- 7 days 4 : 14/15 Aug \u00E2\u0080\u00A2 - 11/12 September 17- 19 days s i t e t r a p env i ronment s e d i m e n t a t i o n i n k g - 2 J - 1 m day deployment deployment deployment deployment deployment 1 2 3 4 5 A 1 l a g o o n S 0 . 7 3 9 B 6 l a g o o n . 0 . 6 5 9 0 . 7 7 6 C 11 l a g o o n 1 .675 D 2 l a g o o n S 0 . 546 0 . 0 7 2 1 . 7 7 4 D 14 l a g o o n S 0 . 1 1 6 1 .114 D 16 l a g o o n S 0 . 1 0 0 0 . 9 1 9 E 3 l a g o o n S 0 . 1 0 7 0 . 1 1 5 0 . 6 1 0 0 . 1 0 7 0 . 2 9 9 F 4 l a g o o n N 0 . 4 3 1 0 . 3 0 8 1 . 4 8 1 G 2 2 l a g o o n N 0 . 0 7 8 H 8 l a g o o n N O . 0 9 8 0 . 1 3 7 1 .283 I 12 l a g o o n N 0 . 072 J 18 l a g o o n N 0 . 0 5 0 0 . 3 3 5 K 19 l a g o o n K 0 . 0 7 8 0 . 2 7 2 L 13 l a g o o n N 0 . 0 3 6 0 . 1 9 7 0 . 1 2 6 0 . 0 5 4 M 15 l a g o o n N 0 . 0 5 3 0 . 2 7 5 O . 0 6 1 K 17 l a g o o n N 0 . 0 4 5 0 . 5 1 1 0 . 0 6 5 0 . 0 5 7 M 2 3 l a g o o n H 0 . 044 0 . 2 6 2 0 . 0 6 4 M Ua l a g o o n N ( 0 . 1 2 9 ) ( 0 . 0 3 0 ) (0 .045) N 20 d e l t a S 0 . 0 0 9 0 . 0 2 4 0 . 0 2 3 0 . 0 0 7 0 24 d e l t a S 0 . 0 3 4 0 . 2 2 2 0 . 0 7 4 P 21 d e l t a S 0 . 0 0 9 0 . 0 0 2 0 . 0 0 0 Q 2 6 d e l t a O . 0 8 3 ' 0 . 3 4 7 O . 0 5 1 0 . 092 H 2 5 d e l t a 0 . 0 7 7 0 . 0 6 5 0 . 0 3 9 0 . 0 1 4 S 2 7 d e l t a 0 . 0 5 8 D O . 0 9 6 1 .269 i 0 . 0 1 3 \u00C2\u00B1 0 . 259 M 0 . 0 4 7 0 . 2 8 3 0 . 0 6 3 1 0 . 0 0 3 \u00C2\u00B1 0 . 0 1 5 \u00C2\u00B1 0 . 0 0 1 359 T A B L E 2 8 A n a l y s i s o f v a r i a n c e t o d e t e r m i n e s i g n i f i c a n c e o f d i f f e r e n c e s b e t w e e n s i t e s i n s e d i m e n t t r a p d a t a f r o m t h e B a b b a g e E s t u a r y , 1 9 7 6 D e p l o y m e n t 2 ( 1 5 J u l y - 8 A u g u s t ) : SS MS F b e t w e e n s i t e s 1 0 . 0 0 3 6 0 . 0 0 3 6 1 3 . 6 * w i t h i n _ s i t e g 4 2 ^ 2 2 i 2 _ P ^ 0 0 0 3 t o t a l 5 0 . 0 0 4 6 D e p l o y m e n t 3 ( 8 A u g u s t - 14 A u g u s t ) : d_. f SS MS F b e t w e e n s i t e s 1 1 . 4 5 9 1 . 4 5 9 1 4 . 5 * w i t h i n _ s i t e s 4 0^40 3 2 .^ l ^ i t o t a l 5 1 . 8 6 2 b o t h s i g n i f i c a n t a t a = 0 . 0 2 5 360 J U N E FIGURE 122 R a t e s of sediment a c c u m u l a t i o n (kg m\"*day\" 1) i n t r a p s d e p l o y e d a t l a g o o n - and l a k e - b o t t o m s i t e s i n the Babbage E s t u a r y system, June-September 1976. 361 D u r i n g the week i n mid-August, when the h i g h e s t t r a p r a t e s i n the d e l t a l a k e s o c c u r r e d , h i g h a c c u m u l a t i o n r a t e s were observed a t s e v e r a l s i t e s i n the l a g o o n , the mean v a l u e f o r e i g h t s i t e s (12 t r a p s ) b e i n g 0.74\u00C2\u00B10.16 kg m\" 2day\" 1, i n c o n t r a s t t o a mean of 0.08\u00C2\u00B10.01 kg m\" 2day _ 1 d u r i n g the p r e c e d i n g s a m p l i n g i n t e r v a l . A l t h o u g h the t r a p s were d e p l o y e d a l m o s t f o u r t i m e s l o n g e r d u r i n g the p r i o r i n t e r v a l , these r e s u l t s c l e a r l y i n d i c a t e a major s e d i m e n t a t i o n event d u r i n g the week b e f o r e 15 August. In t h i s case ( F i g u r e 123), t r a p r a t e s a p p a r e n t l y i n c r e a s e d toward the exposed s e c t i o n of the lagoon between the e n t r a n c e and t h e . d e l t a . Due t o t r a p r e c o v e r y f a i l u r e s , t he r a t e s of s e d i m e n t a t i o n i n the exposed a r e a cannot be d e t e r m i n e d . Trap r e t e n t i o n r a t e s a p p a r e n t l y exceeded 1 kg m\" 2day _ 1 over a wide area i n the c e n t r a l l a g o o n . D u r i n g the week of 9-15 August, the e s t i m a t e d net l o n g s h o r e t r a n s p o r t of l i t t o r a l sediment t o the e s t u a r y e n t r a n c e was about 9.0x10' kg, more than t h e t o t a l of 6.6x10* kg f o r the e n t i r e season up t o August 8 and almost 20 per c e n t of the e s t i m a t e d annual t r a n s p o r t ( c f . T a b l e 2 2 ) . A storm r u n o f f event a l s o o c c u r r e d d u r i n g the week of 9-15 August (see F i g u r e 114), c o n t r i b u t i n g some 6.1x10 s kg of p a r t i c u l a t e sediment ( p o s s i b l y as much as 1.2x10' kg i f l a t e - s e a s o n d e v i a t i o n s from the summer r a t i n g a r e c o n s i d e r e d ) . Assuming complete r e t e n t i o n of a t o t a l i n p u t amounting t o l x l O 7 kg, d i s t r i b u t e d e q u a l l y over the a r e a of the e s t u a r y a t mean water l e v e l (2.8X10 1 m 2), one o b t a i n s a mean s e d i m e n t a t i o n r a t e of a p p r o x i m a t e l y 0.06 kg m \" 2 d a y _ 1 , an o r d e r of magnitude l e s s than \u00E2\u0080\u00A2 traps recovered 1 4 / 1 5 August 1976 FIGURE 123 D i s t r i b u t i o n of sediment a c c u m u l a t i o n (kg m~2&ay~1) i n t r a p s i n the Babbage E s t u a r y , 8/9-14/15 August 1976. 363 the o b s e r v e d mean. I t i s p r o b a b l e ( i n p a r t because samp l i n g s i t e s appear t o have been b i a s e d toward a r e a s of lower a c c u m u l a t i o n ) t h a t much of the sediment c o l l e c t e d i n the t r a p s d u r i n g the week ending August 15 had been resuspended w i t h i n the l a g o o n . The r e s u l t s would a l s o seem, however, t o f a v o u r a h y p o t h e s i s of h i g h t r a p e f f i c i e n c y f o r the e s t u a r y as a whole d u r i n g l a t e - s e a s o n e v e nts (as s u g g e s t e d by e v i d e n c e p r e s e n t e d e a r l i e r i n s e c t i o n s 3.3.5 and 4.3.1). N e v e r t h e l e s s , the b a l a n c e between onshore and o f f s h o r e t r a n s p o r t i n the s u r f zone on the e n t r a n c e s h o a l , d u r i n g l a r g e wave events such as the 11-13 August storm, cannot be r e l i a b l y e s t i m a t e d ( s e c t i o n 4.2.1) and an o u t f l o w ( r e t u r n f l o w b a l a n c i n g s u r f a c e wind d r i f t , r i p c u r r e n t , or o t h e r e s t u a r i n e o u t p u t ) may be p r e s e n t i n p a r t of the e n t r a n c e s e c t i o n , even d u r i n g i n t e r v a l s of net surge i n p u t t o the e s t u a r y . F u r t h e r m o r e , the plume obse r v e d i n P h i l l i p s Bay on 14 August a t t e s t s t o s i g n i f i c a n t e x p o r t of f l u v i a l or resuspended lagoon-bottom sediment from the system a t t h a t t i m e . Due t o u n c e r t a i n t i e s c o n c e r n i n g hydrodynamic c o n d i t i o n s i n the immediate v i c i n i t y of the sediment t r a p s , a b s o l u t e s e d i m e n t a t i o n r a t e s e s t i m a t e d from the t r a p d a t a may show some b i a s . In p a r t i c u l a r , a dependence on a s p e c t r a t i o i s apparent a t s i t e M, where v a l u e s o b t a i n e d w i t h t r a p Ua (H/D=0.11) were a p p r o x i m a t e l y h a l f t h o s e r e c o r d e d i n the o t h e r t h r e e t r a p s (H/D=0.32) d u r i n g deployments 3 and 4, and somewhat lower d u r i n g deployment 5 (Table 2 7 ) . T h i s i s c o n s i s t e n t w i t h 364 r e s u l t s of Hargrave and Burns (1979), who c o n c l u d e d t h a t t r a p e f f i c i e n c y i s independent of a s p e c t r a t i o i n calm water, but i n c r e a s e s w i t h i n c r e a s e i n the r a t i o under t u r b u l e n t c o n d i t i o n s . Rates of bank e r o s i o n i n the Babbage D e l t a have been i n v e s t i g a t e d by comparison of bank p o s i t i o n s i n 1944 and 1970 a e r i a l photography (see example i n F i g u r e 124). The a n a l y s i s y i e l d s an e s t i m a t e of 9x10* m2 f o r the ar e a of d e l t a i c s u p r a t i d a l f l a t l o s t d u r i n g the 26-year p e r i o d . I f a mean t h i c k n e s s of 1 m and a dry b u l k d e n s i t y of 1100 kg nr 3 are assumed, the mass of sediment m o b i l i z e d by bank e r o s i o n a l o n g d i s t r i b u t a r y c h a n n e l s may be e s t i m a t e d a t about 4x10' kg a - 1 . A d d i t i o n a l e r o s i o n i s o c c u r r i n g on the d i s t a l d e l t a p l a i n ( F i g u r e 1 2 5 ) , but no s i g n i f i c a n t d i f f e r e n c e s were d e t e c t a b l e i n the a e r i a l p hotographs. A f u r t h e r 8.5x10* m2 of lagoon-margin s u p r a t i d a l f l a t was l o s t t o bank e r o s i o n d u r i n g the 18-year i n t e r v a l 1952-1970 (McDonald and L e w i s , 1973, map 4 ) . Assuming a mean t h i c k n e s s of 0.5 m and a b u l k d e n s i t y of 1100 kg n r 3 f o r t h i s component, a l o s s of 3x10' kg a \" 1 i s o b t a i n e d . Whereas sediment removed from d i s t r i b u t a r y banks i n the d e l t a r e p r e s e n t s one component of a c h a n n e l s h i f t i n g p r o c e s s , i n which a b a l a n c e may be a c h i e v e d by d e p o s i t i o n on the i n t e r t i d a l c h a n n e l margin s u r f a c e o p p o s i t e , l o s s e s from the d i s t a l d e l t a p l a i n and from lagoon-margin f l a t s a r e not compensated i n t h i s f a s h i o n . 365 FIGURE 124 Area of s u p r a t i d a l f l a t l o s t t o bank e r o s i o n a l o n g w e s t e r n and main d i s t r i b u t a r y c h a n n e l s of the Babbage D e l t a , August 1944 t o August 1970, d e t e r m i n e d from a i r p h o t o g r a p h s ; e x t e n t of e r o s i o n i n d i c a t e d by s h a d i n g ; l o c a t i o n s of s t a t i o n s 10 and 12 a r e shown f o r r e f e r e n c e . FIGURE 125 D e g r a d a t i o n of v e g e t a t e d s u p r a t i d a l f l a t s , d i s t a l Babbage D e l t a , August 1975; h o r i z o n t a l b a r s a t l e f t margin of upper photo i n d i c a t e p e r son's h e i g h t . 367 4.3.3 SEDIMENT BUDGET AND STRUCTURE OF THE SYSTEM Most s i g n i f i c a n t terms i n the Babbage E s t u a r y sediment budget have now been c o n s i d e r e d . I t i s the purpose of t h i s s e c t i o n t o p r e s e n t a summary of the 1976 sediment budget, i n s o f a r as i t can be r e s o l v e d , and t o summarize the s e a s o n a l v a r i a b i l i t y of sediment i n p u t s , of the t r a p e f f i c i e n c y of the e s t u a r y , and of i n t e r n a l l i n k a g e s i n the system. F l u v i a l sediment i n p u t s , d e s i g n a t e d J f , were g i v e n i n T a b l e s 19 and 20. For p r e s e n t p u r p o s e s , J i s d e f i n e d as the sum of t o t a l suspended sediment (TSS) and bedl o a d (-TBS) i n p u t s . The magnitude of i n p u t s , J * , a c r o s s the marine boundary was d i s c u s s e d i n s e c t i o n 4.2.3. D i r e c t i n p u t s due t o ungauged s u r f a c e r u n o f f and c l i f f r e c e s s i o n a r e c o n s i d e r e d n e g l i g i b l e ; c l i f f s a l o n g the e a s t e r n shore of the e s t u a r y e x h i b i t e d no s i g n i f i c a n t r e t r e a t d u r i n g the i n t e r v a l 1952-1970 (McDonald and L e w i s , 1973, map 4 ) . E r o s i o n of the s u p r a t i d a l s u r f a c e i n the d e l t a and b o r d e r i n g the lagoon ( s e c t i o n 4.3.2) r e p r e s e n t s m a t e r i a l r e l e a s e d from l o n g - t e r m s t o r a g e w i t h i n the system and does not c o n s t i t u t e a s e p a r a t e i n p u t . A f u r t h e r term, J e , r e p r e s e n t i n g a e o l i a n t r a n s p o r t , may have e i t h e r p o s i t i v e or n e g a t i v e r e s i d u a l v a l u e s , but i s i n any case c o n s i d e r e d n e g l i g i b l e . V a r i o u s components of the s t o r a g e term, AM, were examined i n the p r e c e d i n g s e c t i o n and some e v i d e n c e f o r s e a s o n a l v a r i a b i l i t y i n the t r a p e f f i c i e n c y of the e s t u a r y was adduced. The c o m p l e x i t y of the sediment t r a n s p o r t p r o c e s s i n the main 368 e n t r a n c e s e c t i o n i s such t h a t measurements of J Q t o the same p r e c i s i o n as those of J f would r e q u i r e a v e r y l a r g e l o g i s t i c a l e f f o r t . N e v e r t h e l e s s , by making c e r t a i n r e a s o n a b l e a s s u m p t i o n s , one can o b t a i n a q u a l i t a t i v e p i c t u r e of the e s t u a r i n e sediment budget ( T a b l e 2 9 ) . The t e n t a t i v e n a t u r e of th e s e r e s u l t s d e s e r v e s p a r t i c u l a r emphasis. In m i d - w i n t e r , f l u v i a l i n p u t s a re z e r o and a l l o t h e r terms a r e p r o b a b l y n e g l i g i b l e , a l t h o u g h some a e o l i a n t r a n s p o r t of b a r r i e r sand onto i c e i n the lagoon may occur and l i m i t e d sediment movement may t a k e p l a c e i n deeper p a r t s of the e n t r a n c e s e c t i o n , p a r t i c u l a r l y i n the event of a w i n t e r storm surge ( c f . R e i m n i t z and Maurer, 1978). The sediment budget f o r June i s dominated by f l u v i a l sediment i n p u t s c a r r i e d by snowmelt r u n o f f w i t h , i n 1976, an a d d i t i o n a l storm r u n o f f event i n l a t e June. C o n t i n u o u s o u t f l o w was m a i n t a i n e d t h r o u g h the Ml e n t r a n c e s e c t i o n u n t i l 8 June 1976 ( c f . F i g u r e 7 8 ) . D u r i n g t h i s t i m e , a r a t i n g r e l a t i o n s h i p ( l o g C T = 1.3731ogQo\"0.959, r 2=0.785) appeared t o e x i s t between suspended sediment c o n c e n t r a t i o n and d i s c h a r g e i n the Ml s e c t i o n . T h i s r a t i n g y i e l d s an e s t i m a t e f o r t o t a l suspended sediment output from the Babbage E s t u a r y system, t o 2400h 8 June 1976, of 7 . 1 x l 0 7 kg, w i t h upper and lower 90% t o l e r a n c e l i m i t s of 1.4x10\" and 3 . 7 x l 0 7 kg r e s p e c t i v e l y . D i f f e r e n c e s between suspended sediment c o n c e n t r a t i o n , C T, i n the Babbage R i v e r a t BI and e s t i m a t e d c o n c e n t r a t i o n , based on S e c c h i e x t i n c t i o n d a t a , i n the e n t r a n c e ( F i g u r e 126) were 369 TABLE 29 A p p r o x i m a t e s e d i m e n t b u d g e t f o r Babbage E s t u a r y s y s t e m , 1976, J a n u a r y and J u n e - A u g u s t . M J ,. J J + J ~ f _ _ _ _ o _ _ o o J a n u a r y =0. 0.0 0. >0. <0. June < 1 . 5 x l 0 8 2 . 7 x l 0 8 < ( - 1 . 2 x l 0 8 ) =0. < ( - 1 . 2 x l 0 8 ) J u l y <1. x l O 7 6 . 3 x l 0 6 < 4 . 6 x l 0 6 = 4 . 6 x l 0 6 < 0. A u g u s t < 2 i _ x l 0 7 i\u00C2\u00BB 5 x l 0 ^ _ < _ _ 1 ^ 8 x l 0 ^ _ _ ^ U 8 x l 0 7 _ _ < _ _ 0 _ : 1976 <2. x l O 8 3. x l O 8 < ( - l . x l O 8 ) <5. x l 0 ? < ( - l . x l O 8 ) 370 n o t s i g n i f i c a n t a t a = 0 . 1 0 , e x c e p t f o r two o c c a s i o n s d u r i n g t h e e a r l y s n o w m e l t r u n o f f p r i o r t o 8 J u n e , when C T i n t h e e n t r a n c e f e l l s i g n i f i c a n t l y , a n d d u r i n g t h e r e c e s s i o n f o l l o w i n g t h e 26 J u n e f l o o d , when c o n c e n t r a t i o n s i n t h e e s t u a r y r e m a i n e d s i g n i f i c a n t l y h i g h e r . A s s u m i n g v a l u e s a t M l e q u a l t o t h o s e a t B I f o r t h e p e r i o d 9-30 J u n e , a nd t a k i n g t h e l o w e r l i m i t ( 3 . 7 x l 0 7 kg) o f t h e e s t i m a t e d o u t p u t f o r t h e e a r l i e r i n t e r v a l (1-8 J u n e ) , one o b t a i n s an e s t i m a t e o f a b o u t 1.2x10\" kg f o r t h e o u t p u t t e r m , J ^ , f o r J u n e . T h i s r e s u l t s i n a t e n t a t i v e u p p e r l i m i t o f 1.5x10\" kg f o r t h e mass o f s e d i m e n t r e t a i n e d i n s t o r a g e , o r l e s s t h a n 4 1 % o f t h e t o t a l s u s p e n d e d s e d i m e n t i n p u t f r o m t h e r i v e r s . I f , on t h e o t h e r h a n d , t h e e s t i m a t e d o u t p u t o f 7 . 1 x l 0 7 kg were a d o p t e d f o r t h e p e r i o d 1-8 J u n e , t h e n e t g a i n t o t h e s y s t e m w o u l d be o n l y 24% o f t h e f l u v i a l s u s p e n d e d s e d i m e n t i n p u t o r 4 3 % o f t h e t o t a l f l u v i a l t r a n s p o r t , J f . A d d i t i o n a l s e d i m e n t may h a v e been e x p o r t e d f r o m t h e s y s t e m a s b e d l o a d d u r i n g J u n e 1976. D e p l o y m e n t o f a H e l l e y - S m i t h b e d l o a d s a m p l e r i n s e c t i o n M l y i e l d e d n e g l i g i b l e s a m p l e w e i g h t s , a l t h o u g h a c c u m u l a t i o n o f c o a r s e s u s p e n d e d o r g a n i c s on t h e s a m p l e r s c r e e n i s b e l i e v e d t o h a v e s i g n i f i c a n t l y r e d u c e d t h e h y d r a u l i c e f f i c i e n c y o f t h e d e v i c e . R e t e n t i o n c h a r a c t e r i s t i c s o f t h e Babbage E s t u a r y s y s t e m d u r i n g t h e summer months h a v e n o t been w e l l d e t e r m i n e d b u t t h e t r a p e f f i c i e n c y i s assumed t o be h i g h e r i n summer t h a n d u r i n g t h e s n o wmelt s e a s o n ( s e e s e c t i o n s 4.3.1 a n d 4 . 3 . 2 ) . An u p p e r l i m i t f o r AM i n J u l y , A u g u s t , a n d S e p t e m b e r o f 1976 may be e s t i m a t e d a s t h e sum o f f l u v i a l a n d l o n g s h o r e t r a n s p o r t t o t a l s , 371 CJ) E < DC t-Z LU o z o o CO CO 1000 500 h 200 h 100 50 h 150 160 JUNE 1976\" 170 180 days FIGURE 126 T o t a l suspended sediment c o n c e n t r a t i o n a t s e c t i o n B l , Babbage R i v e r ( - \u00E2\u0080\u00A2 - ) , and e s t i m a t e d TSS c o n c e n t r a t i o n , based on S e c c h i e x t i n c t i o n d e p t h , a t s t a t i o n s 5, 6, 7, and 7a i n the e s t u a r y ( ), d u r i n g June 1976. 372 y i e l d i n g r e s u l t s an o r d e r of magnitude s m a l l e r than the e s t i m a t e d upper l i m i t f o r June ( T a b l e 2 9 ) . C o n s i d e r i n g the year as a whole, the f o r e g o i n g a ssumptions and a p p r o x i m a t i o n s l e a d t o an e s t i m a t e d upper l i m i t of 2x10 s kg f o r t h e mass of sediment r e t a i n e d i n t h e e s t u a r y i n 1976. The t o t a l was p r o b a b l y c o n s i d e r a b l y l e s s . T a k i n g a low b u l k d e n s i t y of 1100 kg n r 3 , i t appears t h a t the g a i n i n sediment s t o r a g e volume was somewhat l e s s than 1 . 8 x l 0 5 m3, or l e s s than 0.8 per c e n t of the p r e s e n t c a p a c i t y of t h e e s t u a r y , V(\u00C2\u00A3), a t mean water l e v e l . A l t h o u g h the s e d i m e n t a t i o n r a t e d u r i n g a s i n g l e y e ar ( o r d u r i n g a s i n g l e decade, f o r t h a t m a t t e r ) can h a r d l y be c o n s i d e r e d a r e l i a b l e g uide t o the l o n g - t e r m a c c u m u l a t i o n r a t e , an annual net g a i n of o r d e r 1 0 s m3 might be expected t o produce a more o b v i o u s e x p a n s i o n of i n t e r t i d a l s u r f a c e a r e a over a 20-year i n t e r v a l than i s apparent i n a comparison of 1952 and 1972 a e r i a l photographs [ c f . F i g u r e 127 (1952) and F i g u r e 105 ( 1 9 7 2 ) ] . The most s t r i k i n g f e a t u r e of the sediment budget (Table 2 9 ) , however i m p r e c i s e the a b s o l u t e v a l u e s f o r i n d i v i d u a l terms, i s a g a i n the extreme s e a s o n a l - s c a l e v a r i a n c e of mass i n p u t s and system r e s p o n s e . The s e a s o n a l v a r i a b i l i t y of the monthly budget r e f l e c t s , i n p a r t , an i n t e r a c t i o n between n o n l i n e a r response t o f l u v i a l i n p u t s ( c f . s e c t i o n 3.3.6) and extreme s e a s o n a l - s c a l e v a r i a n c e i n the f l u v i a l s u p p l y ( s e c t i o n 3.1.1); i n p a r t , the time s e p a r a t i o n between major r i v e r i n p u t s and l o n g s h o r e t r a n s p o r t e v e n t s , due t o p e r s i s t e n c e of i c e on c o a s t a l w a t e r s throughout the snowmelt r u n o f f season; and, i n 373 FIGURE 127 P a r t of NAPL photograph A13383-151, 1952, showing c o n f i g u r a t i o n of d i s t r i b u t a r y c h a n n e l s seaward of the d i s t a l d e l t a margin v e r y d i f f e r e n t from the 1972 morphology ( c f . F i g u r e 105). 374 A l a t e w i n t e r 1 a+d KH> t deltaic supratidal marginal supratidal B snowmelt f l o o d FHX i I ^.j distributary ^ z lagoon L_Ts deltaic supratidal marginal supratidal C e a r l y summer fluvial l W a+d D l a t e summer H H > | k H > distributary <]-\u00C2\u00A3> lagoon <]-\u00C2\u00A3> deltaic supratidal 1 a+d KK* . marginal supratidal fe al le a+d t deltaic supratidal E e a r l y w i n t e r marginal supratidal a+d FIGURE 128 deltaic supratidal p^STI intertidal a+d lagoon <}-^ marginal supratidal C a n o n i c a l s t r u c t u r e o f t h e s e d i m e n t a r y component o f t h e Babbage E s t u a r y s y s t e m , showing s e a s o n a l c h a n g e s i n t h e l i n k a g e n e t w o r k . g g r a v i t a t i o n a l t r a n s p o r t e a e o l i a n t r a n s p o r t t t i d a l t r a n s p o r t a n o n - t i d a l a d v e c t i v e t r a n s p o r t d n o n - t i d a l d i s p e r s i v e t r a n s p o r t i i c e r-raf t i n g 375 p a r t , s i g n i f i c a n t s e a s o n a l changes i n the i n t e r n a l s t r u c t u r e of the e s t u a r i n e system. A h e u r i s t i c r e p r e s e n t a t i o n of s e a s o n a l changes i n the c a n o n i c a l s t r u c t u r e of the Babbage E s t u a r y system i s p r o v i d e d by the s i m p l i f i e d l i n k a g e diagrams of F i g u r e 128. A l t h o u g h the numbers and t y p e s of l i n k a g e s bear a s t r o n g resemblance t o those of the h y d r o l o g i c a l subsystem ( F i g u r e 8 2 ) , the r e l a t i v e magnitudes of t r a n s p o r t v i a v a r i o u s l i n k s may be q u i t e d i f f e r e n t . The same ) g e n e r a l p a t t e r n of s e a s o n a l change i s n e v e r t h e l e s s a p p a r e n t . In p a r t i c u l a r , . the cascade system i s r e l a t i v e l y i n a c t i v e d u r i n g the w i n t e r months, w i t h n e g l i g i b l e t r a n s f e r s o c c u r r i n g w i t h i n or between most subsystems. Major changes o c c u r i n the r e l a t i v e importance and r e s i d u a l d i r e c t i o n of v a r i o u s t r a n s p o r t l i n k a g e s , i n c l u d i n g e x t e r n a l l i n k s t h r o u g h the e n t r a n c e s e c t i o n ( c f . T a b l e 2 9 ) . The number of i n t e r n a l l i n k s , as d e f i n e d i n F i g u r e 128, ranges from one i n l a t e w i n t e r t o f i f t e e n i n l a t e summer. Under such c i r c u m s t a n c e s , no f i x e d - p a r a m e t e r r e p r e s e n t a t i o n of the e s t u a r i n e system can be e x p e c t e d t o y i e l d m e a n i n g f u l r e s u l t s . 376 4.4 THE SEDIMENT STORAGE COMPONENT 4.4.1 GENERAL CHARACTERISTICS Hav i n g d e s c r i b e d the k i n e m a t i c response of t h e e s t u a r i n e system t o v a r y i n g sediment i n p u t s , p a r t i c u l a r l y a t s y n o p t i c and s e a s o n a l s c a l e s , i t i s a p p r o p r i a t e t o examine the n a t u r e of the sediment r e t a i n e d i n s t o r a g e . In an environment of net d e p o s i t i o n , which P h i l l i p s Bay and the Babbage E s t u a r y system r e p r e s e n t , the sediment body p r o v i d e s a p a r t i a l r e c o r d , not o n l y of the m i c r o - and mesoscale e v e n t s emphasized t h u s f a r , but of m a c r o s c a l e ( a n n u a l , d e c a d a l , and l o n g e r - t e r m ) v a r i a n c e , t y p i c a l l y i n c l u d i n g l o n g - t e r m n o n - s t a t i o n a r i t y i n the i n p u t regime and changes i n system parameters (see T a b l e 1 f o r d e f i n i t i o n s of s c a l e s of v a r i a n c e ) . In a d e p o s i t i o n a l system, t h e l a r g e - s c a l e geometry of the sediment body i s a s s o c i a t e d w i t h l a r g e time s c a l e s i n the d e p o s i t i o n a l p r o c e s s . Due t o ch a n g i n g p a r a m e t e r s , however, the l a r g e - s c a l e f e a t u r e s may not be p r e d i c t a b l e by a model based on the s h o r t - t e r m b e h a v i o u r of the system, even i f n o n - s t a t i o n a r i t y of the i n p u t s i s taken i n t o a c c o u n t . Sediments r e t a i n e d i n s t o r a g e commonly e x h i b i t h o r i z o n t a l v a r i a b i l i t y r e f l e c t i n g i n h o m o g e n e i t i e s i n t h e d e p o s i t i o n a l e n vironment. S o r t i n g p r o c e s s e s i n c l u d e v a r i a b l e response of d i f f e r e n t s i z e f r a c t i o n s t o h y d r a u l i c g r a d i e n t s i n the system, as w e l l as si z e - d e p e n d e n t l a g e f f e c t s w i t h i n a homogeneous hydrodynamic environment ( c f . S w i f t e t a l . , .1972). In a d d i t i o n , s p a t i a l d i f f e r e n t i a t i o n may occur i f p a r t s of a system r e c e i v e sediment p r e d o m i n a n t l y from d i f f e r e n t s o u r c e s , 377 or a r e l i n k e d t o the sediment cascade d u r i n g c e r t a i n seasons or events o n l y ( c f . F i g u r e 128), when d i s t i n c t i v e i n p u t or o t h e r c o n d i t i o n s may p r e v a i l . Sediment s o r t i n g p r o c e s s e s o p e r a t e t o produce d i s t i n c t i v e f a c i e s t y p e s w i t h i n quasi-homogeneous d e p o s i t i o n a l environments (see s e c t i o n 1.2.2). The major subenvironments of the Babbage E s t u a r y system are shown i n F i g u r e 129, t o g e t h e r w i t h r e p r e s e n t a t i v e l i t h o f a c i e s t y p e s . The l a t t e r a re i d e n t i f i e d by codes d e f i n e d i n T a b l e 30, which p r e s e n t s an amended and expanded v e r s i o n of the c l a s s i f i c a t i o n proposed by M i a l l (1977, 1978). A d d i t i o n s t o the s e t of l i t h o f a c i e s p r e v i o u s l y d e f i n e d i n c l u d e d r i f t w o o d ( l i t h o f a c i e s W), i c e ( l i t h o f a c i e s I ) , and two t y p e s c h a r a c t e r i s t i c of t i d e - or wave-dominated environments (Sb and F f ) . A l t h o u g h i c e i s ephemeral i n the l o n g - t e r m s t r a t i g r a p h i c c o n t e x t , i t can be a major d e t e r m i n a n t of f a c i e s geometry and s u r f a c e morphology i n h i g h - l a t i t u d e systems. F u r t h e r m o r e , major i c e b o d i e s may be p r e s e r v e d i n the r e c o r d over i n t e r v a l s of o r d e r 1 0 4 - 1 0 5 y e a r s , as i n some of the sediments exposed a l o n g the c e n t r a l Yukon c o a s t (Mackay e t a l . , 1972; c f . F i g u r e 9 ) . D e p o s i t s formed i n a g i v e n d e p o s i t i o n a l environment may be c h a r a c t e r i z e d by d i s t i n c t i v e s e t s of l i t h o f a c i e s t y p e s . S h o r t - t e r m macro- or s m a l l e r - s c a l e v a r i a n c e i n a system i n p u t sequence may g e n e r a t e v e r t i c a l v a r i a b i l i t y i n the n a t u r e of i n d i v i d u a l l i t h o f a c i e s or i n the r e l a t i v e p r o p o r t i o n s of l i t h o f a c i e s t y p e s w i t h i n a g i v e n environment. N e v e r t h e l e s s , assuming a c o n s t a n t parameter system w i t h a s t a t i o n a r y i n p u t B A B B A G E R FIGURE 129 Map of Babbage E s t u a r y system showing d i s t r i b u t i o n of major d e p o s i t i o n a l e n v i r o n m e n t s ( l a r g e symbols) and r e p r e s e n t a t i v e l i t h o f a c i e s t y p e s ( s m a l l symbols; see T a b l e 3 0 ) . D e p o s i t i o n a l e n v i r o n m e n t s : B b a r r i e r ; M l a g o o n - m a r g i n s u p r a t i d a l ; L l a g o o n ; T i n t e r t i d a l ; C c h a n n e l ; D d e l t a p l a i n ; A a l l u v i a l t e r r a c e . 3 7 9 TABLE 30 L i t h o f a c i e s t y p e s of l o w e r Babbage R i v e r and Babbage E s t u a r y , f a c i e s code l i thology_ s t r u c t u r e G s a n d y - g r a v e l (D^Q>2mm) u n d i f f e r e n t i a t e d Gin g r a v e l , s a n d y - g r a v e l m a s s i v e or h o r i z o n t a l l y b e d d e d ; commonly i m b r i c a t e Gt s a n d y - g r a v e l d u n e - s c a l e s c o u r s w i t h m a s s i v e or t r o u g h c r o s s - s t r a t i f i e d f i l l Gp g r a v e l , s a n d y - g r a v e l p l a n a r c r o s s - s t r a t i f i e d Gins m u d d y - g r a v e l m a t r i x - s u p p o r t e d ; m a s s i v e S s a n d , g r a v e l - s a n d , s i l t y - or muddy-sand, (0.060.063 mm), s i l t (0.004 the e n t r a n c e s h o a l d u r i n g snowmelt r u n o f f i n June 1976. A p a r t from the o p e n - e s t u a r y sands, n o n - g r a v e l i f e r o u s sediments i n the lagoon a r e muds, sandy muds, and muddy sands, w i t h s i l t / c l a y r a t i o s i n e x c e s s of 1.5 and h i g h l y v a r i a b l e sand p r o p o r t i o n s , r a n g i n g from 2 t o 55 per c e n t . In c o n t r a s t , g r a v e l s , g r a v e l l y s i l t y sands, and g r a v e l l y muds, c o n t a i n i n g more than 5 per c e n t g r a v e l (D>2 mm), denoted by a shaded box (\u00E2\u0080\u00A2) i n F i g u r e s 130 and 131A, e x h i b i t v a r i a b l e s i l t / c l a y r a t i o s 384 as low as 0.5 and g r a v e l f r a c t i o n s r a n g i n g up t o 52 per c e n t . These m a t e r i a l s occur l o c a l l y and form s h o a l s exposed a t low water i n some p l a c e s . They may be r e l i c t Holocene beach or ch a n n e l d e p o s i t s or pre-Holocene sediments. The muddier examples may r e p r e s e n t m i x t u r e s of lagoon mud w i t h pre-Holocene or i c e - r a f t e d Holocene g r a v e l . The g r a v e l a t s i t e 010100 near the b a r r i e r may be r e l a t e d i n some way t o the former p r o x i m i t y of i n l e t M2 c.1950 ( c f . F i g u r e 127). Sediments of the m a r g i n a l s u p r a t i d a l f l a t s ( F i g u r e 131B) are sandy muds w i t h s i l t / c l a y r a t i o s between 0.6 and 1.5; the sample from the most seaward s i t e (010160) c o n t a i n e d some g r a v e l ( 4 . 9 % ) . The s i l t f r a c t i o n i s g e n e r a l l y lower than i n sediments of the d e l t a i c s u p r a t i d a l f l a t s , which a r e p r e d o m i n a n t l y s i l t s of r e m a r k a b l y c o n s i s t e n t t e x t u r a l c o m p o s i t i o n . The d e l t a i c sample p l o t t i n g c l o s e t o the m a r g i n a l s u p r a t i d a l d a t a i s taken from an extreme d i s t a l s i t e (050100) and might a p p r o p r i a t e l y be c l a s s i f i e d n o n - d e l t a i c . The h i g h l y anomalous sand from the d e l t a p l a i n , p l o t t i n g near the t o p of F i g u r e 131B, might be i n t e r p r e t e d a s . an i c e - r a f t d e p o s i t , a l t h o u g h o t h e r e x p l a n a t i o n s i n c l u d i n g a e o l i a n or overbank f l o o d t r a n s p o r t from i n t e r t i d a l c h a n n e l margin s u r f a c e s nearby a r e e q u a l l y p l a u s i b l e . Sediments of the i n t e r t i d a l f a c i e s ( F i g u r e 131C) e x h i b i t v e r y c o n s i s t e n t low p r o p o r t i o n s of c l a y and h i g h l y v a r i a b l e s a n d / s i l t r a t i o s . The wide o v e r l a p between i n t e r t i d a l and d i s t r i b u t a r y c h a n n e l f i e l d s r e f l e c t s the major importance of . t i d a l p r o c e s s e s on i n t e r t i d a l b a r s i n the d e l t a i c c h a n n e l 385 network. Except f o r ve r y r a r e i c e - r a f t e d d e p o s i t s , g r a v e l i s e n t i r e l y absent from i n t e r t i d a l and d e l t a d i s t r i b u t a r y s i t e s . In c o n t r a s t , f l u v i a l c h a n n e l samples c o n t a i n v e r y low p r o p o r t i o n s of s i l t and c l a y ( F i g u r e 131D) and l a r g e g r a v e l f r a c t i o n s . Almost a l l g r a v e l t r a n s p o r t e d t h r o u g h s e c t i o n B l i s d e p o s i t e d i n the r i v e r above the d e l t a . F i g u r e 132 i s a t e r n a r y p l o t showing r e l a t i v e p r o p o r t i o n s of g r a v e l , sand, and mud (D<0.063 mm) f o r r e p r e s e n t a t i v e samples from t h e r i v e r and v a l l e y and f o r a l l o t h e r samples c o n t a i n i n g m a t e r i a l l a r g e r than 2 mm. Data f o r b a r r i e r samples a r e t a k e from Hunter (1975). G r a v e l s i n t h e r i v e r and b a r r i e r c o n t a i n n e g l i g i b l e p r o p o r t i o n s of mud. G r a v e l i s p r e s e n t i n t r a c e q u a n t i t i e s i n a few samples from most o t h e r e n v i r o n m e n t s . Only i n the pre-Holocene s o u r c e m a t e r i a l s and i n t h e lagoon are s i g n i f i c a n t f r a c t i o n s of b o t h g r a v e l and mud p r e s e n t . Due t o the l a r g e p r o p o r t i o n s of c l a y i n some samples, s t a t i s t i c a l moments f o r the e s t u a r i n e sediments c o u l d not be computed w i t h o u t some dubious assumptions about lower s i z e l i m i t s . L i k e w i s e , because, f o r many samples w i t h extreme f i n e t a i l s , the f i f t h p e r c e n t i l e i s l e s s than 0.5 vm, g r a p h i c measures r e q u i r i n g t h i s s t a t i s t i c c o u l d not be employed. V a r i o u s e x t r a p o l a t i o n p r o c e d u r e s have been s u g g e s t e d f o r f i n e sediments (e.g. by F o l k , 1966; Jaquet and V e r n e t , 1976), but a r b i t r a r y e x t r a p o l a t i o n cannot r e v e a l d i s t i n c t i v e f e a t u r e s i n the t a i l s of i n d i v i d u a l sample d i s t r i b u t i o n s . I t seems more a p p r o p r i a t e , t h e r e f o r e , t o i n t e r p r e t o n l y known p a r t s of the d i s t r i b u t i o n s ; i f i n f o r m a t i o n i s r e q u i r e d on the .very f i n e gravel FIGURE 132 T e r n a r y d i a g r a m showing p r o p o r t i o n s of g r a v e l , sand, and mud i n s e d i m e n t s of the Babbage R i v e r and E s t u a r y ; symbols as i n F i g u r e 131, e x c e p t < 3 : s o u r c e m a t e r i a l s i n v a l l e y . 387 f r a c t i o n of a sample, an a n a l y s i s procedure s h o u l d be adopted t h a t can d i s c r i m i n a t e v e r y s m a l l p a r t i c l e s i z e s [ f o r example, the lower l i m i t can be extended t o about 0.01 ym u s i n g c e n t r i f u g a l s e d i m e n t a t i o n a t o r d e r 10 3rpm ( I r a n i and C a l l i s , 1 9 6 3 ) ] . F u r t h e r m o r e , i t appears t h a t the Folk-Ward g r a p h i c measures of skewness and k u r t o s i s ( F o l k and Ward, 1957) a r e h i g h l y e r r a t i c (Swan e t a l . , 1978), a l t h o u g h t h e g r a p h i c mean and g r a p h i c s t a n d a r d d e v i a t i o n a r e h i g h l y c o r r e l a t e d w i t h the c o r r e s p o n d i n g grouped or ungrouped w e i g h t - f r e q u e n c y parameters ( D a v i s and E r l i c h , 1970; J o n e s , 1970; Swan et a l . , 1978). For p r e s e n t p u r p o s e s , t h e r e f o r e , the g r a p h i c mean, D, where l o g D = [ l o g ( D ^ 6 D 5 0 D g 4 ) ] / 3 ( a f t e r F o l k and Ward, 1957), and the g r a p h i c s t a n d a r d d e v i a t i o n , s = ( l o g 2 D g 4 - l o g 2 D i 6 )/2 ( a f t e r Inman, 1952), have been computed (Appendix A.12); skewness and k u r t o s i s , however, have not been examined o t h e r than q u a l i t a t i v e l y . \u00E2\u0080\u00A2 The sediments of the Babbage E s t u a r y a r e p r e d o m i n a n t l y n e g a t i v e skewed ( p h i skewness p o s i t i v e ) . The r e l a t i o n between s and D i s p r e s e n t e d i n F i g u r e 133. T h i s i n d i c a t e s a p a r t i a l s e p a r a t i o n between s t o r a g e components of the v a r i o u s e s t u a r i n e subsystems. The d e l t a p l a i n sediments a r e much b e t t e r s o r t e d (s <2.7 p h i ) than m a t e r i a l s from t h e m a r g i n a l s u p r a t i d a l (s >4.4 p h i ) , w i t h the s i n g l e e x c e p t i o n of the d i s t a l d e l t a sample (050100) noted e a r l i e r as b e i n g s i m i l a r t o m a r g i n a l s u p r a t i d a l s e d i m e n t s . V a l u e s of s >2.7 p h i a r e r a r e ; however, some of the g r a v e l i f e r o u s m a t e r i a l s from the lagoon and f o u r o t h e r anomalous lagoon samples c o n t a i n i n g l e s s than 4 per cent g r a v e l a r e p o o r l y s o r t e d (s >2.9 p h i ) . Sample 388 FIGURE 133 R e l a t i o n b e t w e e n ^ g r a p h i c s t a n d a r d d e v i a t i o n I and g r a p h i c mean D f o r s u r f a c e s e d i m e n t s of th e Babbage D e l t a and E s t u a r y ; see F i g u r e 131 f o r l e g e n d . 389 030010 i s v e r y p o o r l y s o r t e d (s =4.66 p h i ) but c o n t a i n s no g r a v e l ; p r o x i m i t y t o shore and t o the s i t e of a s h o a l v i s i b l e i n 1952 photography ( F i g u r e 127) a r e the o n l y o b v i o u s s i t e a n o m a l i e s . Open-estuary, l a g o o n , i n t e r t i d a l , d i s t r i b u t a r y , and d e l t a p l a i n sediments cannot be d i f f e r e n t i a t e d on the b a s i s of s, a l t h o u g h t h e lower boundary of t h e lagoon envelope f a l l s below t h a t f o r the d e l t a p l a i n and some ope n - e s t u a r y samples are b e t t e r s o r t e d than samples from o t h e r p a r t s of the l a g o o n . Open-estuary and d i s t r i b u t a r y s ediments can be \" l a r g e l y d i f f e r e n t i a t e d from o t h e r m a t e r i a l s on the b a s i s of mean s i z e D. The i n t e r t i d a l d a t a tend t o f a l l above and t o the r i g h t of the d e l t a p l a i n and lagoon e n v e l o p e s . There i s , i n g e n e r a l , a s t r i k i n g c o r r e s p o n d e n c e between the lagoon ( p r o t e c t e d - b a s i n ) and d e l t a i c s u p r a t i d a l f i e l d s , b o th i n F i g u r e 133 and i n the t e r n a r y diagrams of F i g u r e 131. Q u a l i t a t i v e i n f o r m a t i o n on s u b s u r f a c e sediments i s a v a i l a b l e from s e i s m i c r e f r a c t i o n p r o f i l i n g i n the lagoon and i n a d j a c e n t p a r t s of P h i l l i p s Bay (Carson e t a l . , 1975) and from b o r e h o l e s a t l a g o o n , d e l t a , and a l l u v i a l t e r r a c e s i t e s ( F i g u r e 134). Because the t e x t u r a l i n t e r p r e t a t i o n of the s e i s m i c d a t a depends i n p a r t on whether the m a t e r i a l i s ice-bonded, and because both ice-bonded and non-bonded sediments were en c o u n t e r e d beneath the lagoon d u r i n g d r i l l i n g , o n l y the b o r e h o l e d a t a w i l l be p r e s e n t e d h e r e . There appear t o be some c o n f l i c t s between the two s e t s of r e s u l t s , but these may r e f l e c t s i g n i f i c a n t l o c a l h o r i z o n t a l v a r i a b i l i t y r a t h e r nw To \u00E2\u0080\u00A2 10 20 30 17 m S M S / Z M nw 0 10 20 30 M 4 3 12 6 M Is 14 O se 1 1 I H ice G tH gravel S M sand Z D silt M \u00E2\u0080\u00A2 mud O \u00E2\u0080\u00A2 organic 10 ?s se 15 nw 1 I G R Z M km FIGURE 134 B o r e h o l e d a t a , Babbage E s t u a r y and D e l t a . 391 than e r r o r s of i n t e r p r e t a t i o n . B a r r i e r sands and g r a v e l s up t o 11 m t h i c k ( b o r e h o l e 3 and a nearby b o r e h o l e r e p o r t e d by Lewis and F o r b e s , 1974, p.25) a r e u n d e r l a i n by s i l t s and muds s i m i l a r t o those found beneath the lagoon ( b o r e h o l e s 6,- 12, 13, 14, and 15, F i g u r e 134). In the d e l t a p l a i n ( b o r e h o l e s 7,. 8, and 1 0 ) , s i l t s and o r g a n i c s i l t s 6-21 m t h i c k a r e u n d e r l a i n by sand and g r a v e l , except i n bo r e h o l e 11. Segregated i c e up t o 2.1 m t h i c k i s common a t ver y s h a l l o w depths i n the d e l t a p l a i n . E x t e n s i v e g r a v e l s o c c u r r i n g a t depth beneath the Babbage D e l t a have been i n t e r p r e t e d as f l u v i o g l a c i a l v a l l e y f i l l ( L e w is and F o r b e s , 1974; Carson e t a l . , 1975); however, o t h e r i n t e r p r e t a t i o n s a r e p l a u s i b l e (see s e c t i o n 4.4.6). Sand and g r a v e l a t depths no g r e a t e r than 14 m may r e p r e s e n t f l u v i a l c h a n n e l d e p o s i t s of l a t e - W i s c o n s i n a n and Holocene age. 392 4.4.2 FLUVIAL FACIES The lower Babbage R i v e r may be c o n s i d e r e d p a r t of the e s t u a r i n e sediment cascade t o the e x t e n t t h a t the g r a v e l f r a c t i o n p a s s i n g s e c t i o n B l i s d e p o s i t e d a t p r e s e n t upstream from the d e l t a . The r i v e r may t h e r e f o r e be re g a r d e d as the f i r s t s i n k f o r f l u v i a l sediment e n t e r i n g the e s t u a r i n e system. The lower Babbage R i v e r ( F i g u r e s 135 and 136) i s a si n u o u s g r a v e l - b e d stream s i m i l a r t o the poorly-documented c l a s s - 5 meandering c h a n n e l f a c i e s assemblage of J a c k s o n (1978). F u r t h e r m o r e , the Babbage and two narrow d i s t r i b u t a r i e s f l o w i n g t o Deep Creek form an anastomosing c h a n n e l system i n the sense of Smith and Smith (1980). The morphology and d i s t r i b u t i o n of ch a n n e l d e p o s i t s i n the lower v a l l e y have been s t r o n g l y i n f l u e n c e d by sediment d i s c h a r g e from t h e b r a i d e d t r i b u t a r y Tulugaq (Crow) R i v e r and by d e p o s i t i o n and c h a n n e l a v u l s i o n on the Tulugaq fan ( F i g u r e 135). Some f l u v i a l sediments a r e b e l i e v e d t o have been p r e s e r v e d a t the base of a Holocene t r a n s g r e s s i v e sequence beneath the Babbage D e l t a (see s e c t i o n 4.4.6). The Babbage R i v e r c h a n n e l between the Tulugaq R i v e r and the l i m i t of storm-surge backwater has a s i n u o s i t y of 1.89, a v a r i a b l e w i d t h / d e p t h r a t i o (24 * 1 r 1 1 1 0 20 40 60 80 100 metres FIGURE 148 A: 7-kHz r e c o r d from main d i s t r i b u t a r y c h a n n e l , p r o x i m a l d e l t a ; B: i n t e r p r e t a t i o n of 7-kHz r e c o r d from main d i s . t r i b u a r y , d i s t a l d e l t a near s t a t i o n 10. These r e c o r d s show bo t h d u n e - s c a l e c r o s s - s t r a t i f i c a t i o n of l i t h o f a c i e s St and b a r - s c a l e c r o s s - b e d d i n g of l i t h o f a c i e s Sp. I FIGURE 149 A: f l o o d - d i r e c t e d dune- and r i p p l e - s c a l e bedforms on d i s t r i b u t a r y - m a r g i n s u r f a c e near t r a n s e c t 4, p r o x i m a l Babbage D e l t a ; B: i c e - r a f t e d g r a v e l on d i s t r i b u t a r y - m a r g i n i n t e r t i d a l s u r f a c e , c e n t r a l d e l t a (probe i s 10x10 mm i n s e c t i o n and g r a d u a t e d a t 100-mm i n t e r v a l s ) . 417 f l o o d - o r i e n t e d d e p o s i t s of l i t h o f a c i e s Sp have been observed o n l y a d j a c e n t t o major c h a n n e l s . Sediments of the upper i n t e r t i d a l appear t o be a c c u m u l a t i n g over an eroded s u p r a t i d a l s u r f a c e and t o be i n f i l l i n g former l a k e b a s i n s of the s u p r a t i d a l f l a t s (Fig-ures 150 and 151A; c f . F i g u r e 125). D e n d r i t i c t i d a l c h a n n e l networks a r e w e l l d e v e l o p e d i n some a r e a s ( F i g u r e 151A). Patches of c o l o n i z i n g v e g e t a t i o n , p r i m a r i l y P u c c i n e l l i a phryganodes, occur on low hummocks and l e v e e s b o r d e r i n g the s m a l l c h a n n e l s ; s t a n d s of the same s p e c i e s b o r d e r i n g the t i d a l b a s i n s appear t o be v e s t i g e s of s u p r a t i d a l s u r f a c e , over which t i d a l sediments a re p r o g r a d i n g from the b a s i n s i d e , w h i l e e r o s i o n of the d i s t a l edge ( o f t e n a low s c a r p ) c o n t i n u e s (see F i g u r e 151A). Sediments of the i n t e r t i d a l subsystem a r e sands and s i l t s (34100 y e a r s ) i s dominated by p a r a m e t r i c changes a s s o c i a t e d w i t h c o a s t a l e r o s i o n and sea l e v e l a d j u s t m e n t s , i n a d d i t i o n t o n o n - s t a t i o n a r i t y of energy and mass i n p u t s due t o c l i m a t i c f l u c t u a t i o n s . The remarkable r e c e s s i o n of Kay P o i n t s i n c e 1826, s u g g e s t e d by d a t a of F r a n k l i n (1828), was documented i n s e c t i o n 2.1.2. In a d d i t i o n , t h e r e i s some e v i d e n c e t o s u p p o r t the c o n c e p t of a l a t e - H o l o c e n e , p o s s i b l y c o n t i n u i n g , submergence of the c e n t r a l Yukon c o a s t ( F o r b e s , 1980). The contemporary s t r a t i g r a p h i c c o n t e x t of t h e Babbage E s t u a r y system i s , t h e r e f o r e , t r a n s g r e s s i v e i n the sense both of a landward t r a n s l a t i o n of t h e b a r r i e r complex and of a r i s i n g r e l a t i v e sea l e v e l . T h i s appears t o have been the case t h r o u g h o u t Holocene t i m e . W h i l e the n a t u r e of the s e d i m e n t a r y body w i t h i n a g i v e n subsystem of the e s t u a r y i s determined l a r g e l y by s h o r t - t e r m c o n d i t i o n s , i t i s the response of the system t o l o n g - t e r m t r e n d s t h a t e s t a b l i s h e s the p r e s e r v a t i o n p o t e n t i a l and s t r a t i g r a p h i c r e l a t i o n s h i p of the v a r i o u s s t o r a g e components. In a t r a n s g r e s s i v e c o n t e x t , a sequence ( p r o g r e s s i n g seaward) of s u r f i c i a l f a c i e s assemblages p r o v i d e s a p r e d i c t i v e model f o r the v e r t i c a l sequence t o be expected i f a l l f a c i e s a r e p r e s e r v e d . K r a f t (1971, pp.2140-2145) has p r e s e n t e d a s u r f i c i a l t r a n s g r e s s i v e sequence, f o r s e d i m e n t a r y environments on the c o a s t of Delaware (U.S.A.), which i s b r o a d l y analogous t o the v e r t i c a l sequence found beneath the Delaware c o a s t a l 436 b a r r i e r . An adapted v e r s i o n of K r a f t ' s s u r f i c i a l sequence f o r a m i d - l a t i t u d e m e s o t i d a l system, w i t h a t e n t a t i v e assignment of l i t h o f a c i e s codes, i s p r e s e n t e d i n T a b l e 32A. The s u r f i c i a l t r a n s g r e s s i v e sequence at the n o r t h end of the Babbage Lagoon i s p r e s e n t e d i n T a b l e 32B. Major c o n t r a s t s between the Delaware and Babbage sequences i n c l u d e the n a t u r e of the t r a n s g r e s s i v e l i m i t , of lagoon-margin s u r f a c e s , and of the b e n t h i c community i n the c e n t r a l l a g o o n ; b a c k b a r r i e r margin and a e o l i a n dune components a r e m i s s i n g from the Babbage sequence. S i m i l a r i t i e s between the two c a s e s i n c l u d e the p r e s e nce of an i n n e r lagoon beach and washover u n i t and the g e n e r a l p a t t e r n of l a g o o n - m a r g i n , l a g o o n , and b a r r i e r e n v i r o n m e n t s . In the Babbage E s t u a r y system, much of the Holocene b a r r i e r and lagoon r e c o r d , a t l e a s t f o r the r e c e n t p a r t of the t r a n s g r e s s i o n , may have been e l i m i n a t e d due t o t h e v e r y r a p i d r a t e of b a r r i e r m i g r a t i o n i n h i s t o r i c a l time and the s h a l l o w depths of i n l e t c h a n n e l s . F i g u r e 160 shows a s e c t i o n normal t o the b a r r i e r a x i s , a c r o s s the Babbage Lagoon, Kay P o i n t s p i t , and the s h o r e f a c e i n P h i l l i p s Bay. The p a t t e r n c l e a r l y conforms t o the t r a n s g r e s s i v e b a r r i e r model of K r a f t (1971). I f the l a r g e lagoon d e p i c t e d i n F i g u r e 12 was deeper than the p r e s e n t l a g o o n , s p e c i f i c a l l y i f depths exceeded 6 m seaward of the p r e s e n t b a r r i e r , then the e n t i r e sand u n i t o b s e r v e d beneath the s h o r e f a c e may r e p r e s e n t b a r r i e r f a c i e s of. Kay P o i n t s p i t ; o t h e r w i s e , an u n d e t e c t e d u n c o n f o r m i t y e x i s t s w i t h i n the l a r g e sand u n i t seaward of the b a r r i e r and l i t t l e or none of the A37 TABLE 32 A D e l a w a r e s u r f i c i a l t r a n s e r e s s i v e _ s e q u e n c e ( a d a p t e d f r o m K r a f t , 1971) 1. HIGH GROUND; P l e i s t o c e n e s u r f a c e . 2. TRANSGRESSIVE LIMIT; marsh f r i n g e w i t h sand, s i l t , and c l a y ; stumps, r o o t s , and marsh f l o r a ( F l , C) 3. LAGOON MARGIN; S p a r t i n a a l t e r n i f l o r a and patens marshes ( F l , C) . It. INNER LAGOON BEACH AND WASHOVER; sand ( S I , S p ) . 5. SHALLOW LAGOON; sand and mud (S, F s c ) . 6. CENTRAL LAGOON; c l a y - s i l t w i t h E l p h i d i u m - C r a s s o s t r e a community, abundant m o l l u s c a n fauna ( F s c ) . 7. BACKBARRIER PLATFORM; sand (Sb, S p ) . 8. BACKBARRIER MARGIN; S p a r t i n a marsh and P i n u s community ( F l , C, S ) . 9. AEOLIAN DUNES; sand ( S e ) . 10. BARRIER BERM-WASHOVER; sand ( S I , Sh, S p ) . 11. BARRIER BEACHFACE; sand ( S I , Sp) . 12. SHOREFACE;. sand ( S ) . B B a b b a g e _ L a g o o n s u r f i c i a l t r a n s e r e s s i v e s e q u e n c e 1. HIGH GROUND; H o l o c e n e p e a t and c o l l u v i u m o v e r p r e - H o l o c e n e s e d i m e n t s . 2. TRANSGRESSIVE LIMIT; d r i f t w o o d (W). 3. SUPRATIDAL FLAT; s i l t and c l a y w i t h Elymus, C a r e x -P u c c i n e l l i a , H i p p u r l s , and a l g a l communities ( F l , F s c , C ) . 4. INNER LAGOON BEACH AND WASHOVER; p e b b l y sand ( S I , S p ) . 5. SHALLOW LAGOON; sand and mud (S, F s c ) . 6. LAGOON SHOAL; muddy g r a v e l (G, Gms). 7. CENTRAL LAGOON; mud w i t h A m p h i p o d a - P o l y c h a e t a - I s o p o d a community ( F s c ) . 8. BACKBARRIER WASHOVER AND BEACH; g r a v e l - s a n d , sand (Sp, S I , S b ) . 9. BARRIER BERM; g r a v e l - s a n d and sand (Sh, S I , Se, W). 10. BARRIER BEACHFACE; g r a v e l - s a n d and sand ( S I , S p ) . 11. SHOREFACE; sand (S,Sp, S r ) . 438 FIGURE 160 S e c t i o n t h r o u g h Babbage Lagoon, Kay P o i n t s p i t , and P h i l l i p s Bay, showing th e d i s t r i b u t i o n of sand and g r a v e l l y - s a n d l i t h o f a c i e s and the t r a n s g r e s s i v e c h a r a c t e r of the b a r r i e r sequence (see F i g u r e 6 f o r b o r e h o l e l o c a t i o n s ) . 439 former b a r r i e r d e p o s i t may be p r e s e r v e d . S i m i l a r l y , the depth of the former lagoon would d e t e r m i n e whether or not lagoon f a c i e s a r e p r e s e n t beneath P h i l l i p s Bay. I t i s i n s t r u c t i v e t o compare the l a t e Holocene d e p o s i t s of the Babbage E s t u a r y system w i t h b a r r i e r sequences elsewhere on the Yukon c o a s t . At K i n g P o i n t , where s p i t p r o g r a d a t i o n between 1954 and 1972 c l o s e d the i n l e t t o i s o l a t e the lagoon ( F i g u r e 161), much of the b a r r i e r backshore p r e s e r v e s s m a l l - s c a l e beach r i d g e topography, i n t e r p r e t e d as the s u r f i c i a l e x p r e s s i o n of l a r g e - s c a l e i n l e t - f i l l c r o s s - s t r a t i f i c a t i o n (see F i g u r e 162A). At the r i g h t - h a n d s i d e of the photograph, the o r i g i n a l morphology has been obscured by washover d e p o s i t s i n f i l l i n g the s w a l e s ; note the l i m i t of r e c e n t washover j u s t v i s i b l e i n the extreme t o p r i g h t c o r n e r ( c f . F i g u r e 10B). The S p r i n g R i v e r b a r r i e r complex l i e s d i r e c t l y o p p o s i t e the Babbage E s t u a r y on the western shore of P h i l l i p s Bay (see F i g u r e 1 2 ) . Whereas Kay P o i n t s p i t conforms t o the t r a n s g r e s s i v e model of K r a f t (1971), the S p r i n g R i v e r b a r r i e r appears s u p e r f i c i a l l y t o resemble the p r o g r a d i n g model of Be r n a r d and L e b l a n c (1965). A l t h o u g h some e r o s i o n o c c u r r e d on the p r o x i m a l s p i t shore between 1952 and 1970, t h e r e was s u b s t a n t i a l a c c r e t i o n a t the d i s t a l end ( F i g u r e 163) and the m u l t i p l e r i d g e s a t t e s t t o l o n g - t e r m b a r r i e r p r o g r a d a t i o n . S w i f t (1975) proposed an i n f o r m a l model f o r s h o r e f a c e p r o f i l e adjustment on a t r a n s g r e s s i v e b a r r i e r c o a s t , based on F I G U R E 1 6 1 C h a n g e s i n t h e K i n g P o i n t b a r r i e r , 1 9 5 4 - 1 9 7 2 , s h o w i n g d e v e l o p m e n t o f a n i n l e t - f i l l s e q u e n c e b y d i s t a l e x t e n s i o n o f t h e s p i t ; p a r t s o f N A P L p h o t o g r a p h s A 1 4 3 6 3 - 5 4 ( 1 9 5 4 ) a n d A 2 2 8 7 9 - 1 0 5 ( 1 9 7 2 ) . FIGURE 162 A: l o w - l e v e l o b l i q u e photograph of s u r f a c e morphology on the K i n g P o i n t b a r r i e r b a c k s h o r e , August 1975; B: Running R i v e r d e l t a near S h i n g l e P o i n t , showing beach and washover f a c i e s a t the seaward margin of d e l t a i c s u p r a t i d a l f l a t s . 442 FIGURE 163 Spring River b a r r i e r i n photograph A13383-155) between 1952 and 1970. 1952 (part of NAPL and changes o c c u r r i n g 443 c o n t i n u i t y p r i n c i p l e s . He demonstrated the t h e o r e t i c a l p l a u s i b i l i t y both of s h o r e f a c e r e t r e a t , where l o n g s h o r e sediment e x p o r t s e q u a l or exceed i m p o r t s ( c f . Bruun, 1962), and of s h o r e f a c e advance, where i m p o r t s exceed e x p o r t s ( c f . C u r r a y et a l . , 1969). The r e s u l t s from the Yukon c o a s t c o n f i r m t h a t c o n t r a s t i n g p r o g r a d a t i o n a l and e r o s i o n a l regimes may occur i n c l o s e p r o x i m i t y where d i f f e r i n g b a r r i e r o r i e n t a t i o n or o t h e r f a c t o r s a l t e r the l o c a l sediment budget. Owens and McCann (1980) have noted a s i m i l a r j u x t a p o s i t i o n on the e a s t c o a s t of t h e Magdalen I s l a n d s , G u l f of St Lawrence. The s u r f i c i a l t r a n s g r e s s i v e sequence f o r the Babbage D e l t a , s e t out i n T a b l e 3 3 ) , i n c l u d e s a l l the major environments of the d e l t a i c e s t u a r i n e system, w i t h the e x c e p t i o n of the l a t e r a l l y d i s c o n t i n u o u s f l u v i a l c h a n n e l component and anomalous e l e v a t e d s u r f a c e s w i t h extreme m i c r o r e l i e f ( F i g u r e 146). A t h r e e - d i m e n s i o n a l schematic r e p r e s e n t a t i o n of the f l u v i a l and d e l t a i c sequence (components 1-6 i n T a b l e 33) i s shown i n F i g u r e 164. T h i s i l l u s t r a t e s the h y p o t h e s i z e d geometry of c h a n n e l , g r a v e l s produced under the contemporary Babbage R i v e r regime and a c o n c e p t u a l model f o r the v e r t i c a l t r a n s i t i o n t o d e l t a i c and e s t u a r i n e f a c i e s . In p r a c t i c e , i t i s u n c l e a r t o what e x t e n t l a t e - W i s c o n s i n a n and Holocene sediments analogous t o the s i n u o u s g r a v e l r i v e r assemblage observed a t p r e s e n t i n the lower v a l l e y have been p r e s e r v e d beneath t r a n s g r e s s i v e d e p o s i t s of the Babbage D e l t a . Assuming t h a t the t e r r a c e i n H e r s c h e l B a s i n a t -15\u00C2\u00B11 m d e v e l o p e d as a d e l t a i n the l a t e - W i s c o n s i n a n / e a r l y - H o l o c e n e 4 4 4 TABLE 33 Babbage D e l t a s u r f i c i a l _ t r a n s g r e s s i y e s e q u e n c e 1. ALLUVIAL TERRACE; sand, s i l t , and p e a t ( F I , She, C) . 2. TRANSGRESSIVE LIMIT; d r i f t w o o d (W). 3. DELTAIC SUPRATIDAL FLAT; s i l t and c l a y w i t h Elymus, C a r e x - P u c c i n e l l i a . H i p p u r i s t and a l g a l communities ( F I , F s c ) . 4. FLOOD-SPLAY; sand and sandy s i l t ( F I , Fm, S r , Sh, S e ) . 5. DISTRIBUTARY CHANNEL; sand ( S t , Sb, S r , Sh, S p ) . 6. DISTRIBUTARY MARGIN; sand and s i l t (Sp, S r , Sh, F f ) . 7. INTERTIDAL FLAT; sand and s i l t w i t h l o c a l p a t c h e s of A r c t o p h i l a and P u c c i n e l l i a ( S r , F f ) . 8. SHALLOW LAGOON; sand and mud ( S r , F s c ) . 9. LAGOON SHOAL; muddy g r a v e l (G, Gms). 10. CENTRAL LAGOON; mud w i t h A m p h i p o d a - P o l y c h a e t a - I s o p o d a community ( F s c ) . 11. BACKBARRIER PLATFORM; p e b b l y muddy sand ( S I , S r , Fm) 12. BACKBARRIER WASHOVER AND BEACH; g r a v e l - s a n d and sand (Sp, S I ) . 13. BARRIER BERM; g r a v e l - s a n d and sand (Sh, S I , Se, W). 14. BARRIER BEACHFACE; g r a v e l - s a n d and sand ( S I , S p ) . 15. SHOREFACE; sand ( S , S r , S p ) . Note t h a t u n i t s 8-10 and 12-15 c o r r e s p o n d to u n i t s 5-11 of the Babbage Lagoon sequence ( T a b l e 32B). FIGURE 164 Schematic d i a g r a m showing h y p o t h e t i c a l d i s t r i b u t i o n of l i t h o f a c i e s f o r m i n g t r a n s g r e s s i v e sequence beneath t h e Babbage D e l t a . See T a b l e 30 f o r e x p l a n a t i o n of l i t h o f a c i e s c o d e s . Note l a t e r a l d i s c o n t i n u i t y of c h a n n e l , overbank, and l a c u s t r i n e f a c i e s . S m a l l numbers r e f e r t o b o r e h o l e s ( F i g u r e s 6 and 134). C i r c l e d numbers r e f e r t o u n i t s of the t r a n s g r e s s i v e sequence ( T a b l e 3 3 ) . 446 Lake H e r s c h e l ( F i g u r e 1 2 ) , e x t r a p o l a t i o n of r e a l i s t i c v a l l e y - a x i s s l o p e s would put the r i v e r w e l l below l a k e l e v e l a t the s i t e of the former d e l t a , even assuming a h i g h e r c h a n n e l e l e v a t i o n than p r e s e n t i n the v i c i n i t y of the modern e s t u a r y (see F i g u r e 1 3 ) . I t i s t h e r e f o r e p o s t u l a t e d t h a t a g r a v e l - t o sand-bed t r a n s i t i o n , due t o a change i n g r a d i e n t , may have been p r e s e n t i n the Babbage R i v e r downstream from the p r e s e n t e s t u a r y d u r i n g l a t e W i s c o n s i n a n t i m e . C o n s i d e r a t i o n of the v a l l e y geometry s u g g e s t s 10 m as a maximum p l a u s i b l e depth f o r l a t e W i s c o n s i n a n Babbage R i v e r g r a v e l s beneath the modern d e l t a . I t appears t h a t the g r a v e l s o c c u r r i n g e x t e n s i v e l y a t depths g r e a t e r than 10 m beneath the Babbage D e l t a may be e a r l y W i s c o n s i n a n outwash g r a v e l s of the B u c k l a n d G l a c i a t i o n (see s e c t i o n 2.1.2) or even p r e - B u c k l a n d sediments [ c f . g r a v e l s exposed i n c o a s t a l c l i f f s nearby (Rampton, 1 9 7 4 a ) ] . Given the h y p o t h e s i z e d r i s e i n sea l e v e l of o r d e r 1 m over the p a s t 1000 y e a r s , t r a n s g r e s s i o n of e s t u a r i n e and d e l t a i c sediments over Babbage R i v e r a l l u v i u m can be assumed t o have o c c u r r e d , but the Holocene t r a n s g r e s s i v e sequence may be q u i t e t h i n . Whereas e x t e n s i v e i n t e r t i d a l s u r f a c e s a r e p r e s e n t a t the seaward margin of the Babbage D e l t a , i n t e r t i d a l f a c i e s a r e p o o r l y d e v e l o p e d i n the S p r i n g and Running R i v e r d e l t a s , which o t h e r w i s e s t r o n g l y resemble the Babbage. In t h e Running R i v e r system ( F i g u r e 162B), an i n n e r - l a g o o n beach and washover complex, w i t h heavy d r i f t w o o d a c c u m u l a t i o n , i s p r e s e n t a t the seaward margin of the d e l t a i c s u p r a t i d a l f l a t s . In the Babbage D e l t a , t h i s j u x t a p o s i t i o n i s found o n l y a t the f a r - l a t e r a l 447 d i s t a l m a r g i n s . These o b s e r v a t i o n s suggest t h a t , as i n the case of t h e b a r r i e r sequences d e s c r i b e d above, l o c a l v a r i a b i l i t y i n the sediment budgets of d e l t a i c systems may l e a d t o c o n t r a s t i n g p a t t e r n s of sediment s t o r a g e and t h e r e f o r e t o d i f f e r e n t v e r t i c a l sequences i n the s e d i m e n t a r y r e c o r d . Because changes i n the sediment budget may r e s u l t from a d j u s t m e n t s of system i n p u t s or parameters over t i m e , analogous d i f f e r e n c e s may e x i s t i n the form of the t r a n s g r e s s i v e sequence w i t h i n d e p o s i t s a s s o c i a t e d w i t h a s i n g l e system. For example, the d e l t a i c t r a n s g r e s s i v e sequence produced i n the Babbage E s t u a r y system 6000-4000 y e a r s B.P. may have been somewhat d i f f e r e n t from the sequence b e i n g produced a t the p r e s e n t t i m e . Such d i f f e r e n c e s r e p r e s e n t t h e l o n g - t e r m end of the spectrum of v a r i a n c e i n t r o d u c e d i n s e c t i o n 1.1.1. i 448 5 CONCLUSIONS The n a t u r e of the e s t u a r i n e system d u r i n g d e p o s i t i o n of much of the sediment now i n s t o r a g e i s not e n t i r e l y open t o r e s o l u t i o n by s h o r t - t e r m i n v e s t i g a t i o n s such as the p r e s e n t s t u d y , or even by c o n t i n u e d m o n i t o r i n g over many decades. T h i s i s t r u e , i n p a r t , because of l o n g - t e r m s t a t i s t i c a l dependence i n the i n p u t s e r i e s ( c f . M a n d e l b r o t and W a l l i s , 1969), whereby a m o n i t o r i n g program of any p r a c t i c a l d u r a t i o n may never see the f u l l range of s e d i m e n t o l o g i c a l l y s i g n i f i c a n t i n p u t c o n d i t i o n s or system t h r e s h o l d s . F u r t h e r m o r e , a system s u b j e c t t o such r a p i d marine t r a n s g r e s s i o n as seems t o be o c c u r r i n g near Kay P o i n t may change s i g n i f i c a n t l y over a time i n t e r v a l t h a t i s s h o r t r e l a t i v e t o the time r e q u i r e d f o r a c c u m u l a t i o n of a s i g n i f i c a n t t h i c k n e s s of sediment. Whatever i n a c c u r a c i e s may 6 e x i s t i n F r a n k l i n ' s map of the 1826 s h o r e l i n e i n the Babbage E s t u a r y , t h e r e can be l i t t l e doubt t h a t the lagoon has been reduced i n s i z e d u r i n g h i s t o r i c a l t i m e , such t h a t the system parameters of the 1970s may have borne l i t t l e resemblance t o the parameters of the 1770s and even l e s s t o those 1000 y e a r s e a r l i e r . C l e a r l y , any attempt t o u n d e r s t a n d the f u l l range of v a r i a n c e i n such a system must employ b o t h d i r e c t and i n d i r e c t measures. Sediments i n s t o r a g e p r o v i d e one form of i n d i r e c t r e c o r d , 449 more complete i n some s e t t i n g s than i n o t h e r s . Whereas the e n t i r e body of b a r r i e r sediment i n the p r e s e n t s p i t a t Kay P o i n t can be r e l a t e d w i t h some c o n f i d e n c e t o e n v i r o n m e n t a l c o n d i t i o n s of the r e c e n t p a s t , the nearby p r o g r a d a t i o n a l S p r i n g R i v e r b a r r i e r may r e c o r d a l o n g e r i n t e r v a l of a c c u m u l a t i o n ; o l d e r sediments p r e s e n t i n the d e p o s i t may have accumulated under c o n d i t i o n s q u i t e d i f f e r e n t from those p r e v a i l i n g at the p r e s e n t t i m e . R e c o g n i t i o n of major l o c a l d i f f e r e n c e s i n the morphology and a n t i c i p a t e d f a c i e s r e l a t i o n s h i p s of b a r r i e r f e a t u r e s on the c e n t r a l Yukon c o a s t , i n c l u d i n g examples of t r a n s g r e s s i v e , p r o g r a d i n g , and i n l e t - f i l l sequences, a l l o c c u r r i n g w i t h i n a 40-km segment of c o a s t , i s an i m p o r t a n t f i n d i n g of t h i s s t u d y . J u s t as major d i f f e r e n c e s i n the e s t u a r i n e t r a n s g r e s s i v e sequence can occur w i t h i n a r e l a t i v e l y s m a l l r e g i o n , so too the dynamic c h a r a c t e r i s t i c s of Yukon c o a s t e s t u a r i e s may be h i g h l y v a r i a b l e , due t o v a r i a b l e g e o m e t r i e s , l a r g e d i f f e r e n c e s i n catchment s i z e r e l a t i v e t o lagoon a r e a , and d i f f e r e n c e s i n the volume of the t i d a l p r i s m r e l a t i v e t o i n l e t w i d t h (see T a b l e 2 ) . The r o l e of f l u v i a l i n p u t s i n the e s t u a r i n e c i r c u l a t i o n p r o c e s s , emphasized many y e a r s ago by Simmons (1955), has been shown t o be e s p e c i a l l y marked i n the Babbage E s t u a r y , where the l a r g e a m p l i t u d e of the A r c t i c n i v a l r u n o f f regime c o n t r i b u t e s t o development, on an a n n u a l c y c l e , of a wide spectrum of s a l i n i t y , s t r a t i f i c a t i o n , and c i r c u l a t i o n c o n d i t i o n s . T h i s spectrum ranges from f r e s h t o h y p e r s a l i n e , from h i g h l y - s t r a t i f i e d t o w e l l - m i x e d , and from a c a s c a d i n g 450 r e s e r v o i r system through a d i s p e r s i o n - d o m i n a t e d system t o a regime i n which g r a v i t a t i o n a l c o n v e c t i o n p l a y s an i m p o r t a n t r o l e , but i s f r e q e n t l y d i s r u p t e d by w i n d - i n d u c e d m i x i n g e v e n t s . In the Babbage E s t u a r y system, the v a r i a n c e of s a l i n i t y , t e m p e r a t u r e , and r u n o f f i n p u t s - i s a p p a r e n t l y maximized a t T=l y e a r . R a p i d f l u s h i n g of the d e l t a and lagoon by e a r l y snowmelt r u n o f f , f o l l o w e d c l o s e l y by breakup, produces a v e r y r a p i d t r a n s i t i o n between the two extremes of the a n n u a l s a l i n i t y c y c l e ( F i g u r e 63) and c o n s t i t u t e s a major p e r i o d i c t h r e s h o l d i n the c i r c u l a t i o n regime. A second s e a s o n a l t h r e s h o l d o c c u r s i n l a t e J u l y , i n most y e a r s , when b r a c k i s h water i n t r u d e s , from P h i l l i p s Bay ( F i g u r e 64). Other systems on the c e n t r a l Yukon c o a s t , such as the S t o k e s P o i n t lagoon complex ( F i g u r e 10A), which r e c e i v e s v e r y l i t t l e f r e s h w a t e r d i s c h a r g e , a r e not f l u s h e d c o m p l e t e l y d u r i n g the snowmelt r u n o f f and r e t a i n h y p e r s a l i n e water near the bottom u n t i l mid-summer or l a t e r ( s e e , f o r example, Kendel et a l . , 1975; c f . Wiseman, 1979). N e v e r t h e l e s s , t h e s e systems t o o e x h i b i t a s t r i k i n g s e a s o n a l - s c a l e v a r i a n c e t h a t i s l a r g e l y p r e d i c t a b l e , a l t h o u g h the t i m i n g of the t r a n s i t i o n s i s somewhat v a r i a b l e , the a n n u a l c y c l e b e i n g modulated by s y n o p t i c - s c a l e e v e n t s or p e r s i s t e n t a n o m a l i e s i n the l a r g e - s c a l e c i r c u l a t i o n of the atmosphere. Dramatic s e a s o n a l changes i n the c a n o n i c a l s t r u c t u r e of the Babbage E s t u a r y system ( F i g u r e s 82 and 128) r e f l e c t s e a s o n a l changes i n the c i r c u l a t i o n regime and the presence of v a r i o u s t h r e s h o l d s t h a t determine the o c c u r r e n c e and n a t u r e of i n t e r n a l l i n k s . 451 The r o l e of i c e , a s e a s o n a l - s c a l e v a r i a b l e , i n l i t t o r a l , e s t u a r i n e , and f l u v i a l environments of the n o r t h e r n Yukon, i s more c l e a r l y d i s c e r n i b l e as a r e s u l t of t h i s s t u d y . A l t h o u g h i c e has a t t r a c t e d c o n s i d e r a b l e a t t e n t i o n as a dominant f e a t u r e of the h i g h - l a t i t u d e c o a s t a l environment ( e . g . Owens and McCann, 1960; N i c h o l s , 1961; S c h a l k and Hume, 1966; R e i m n i t z and B r u d e r , 1972; T a y l o r , 1977), i t can be i m p o r t a n t at lower l a t i t u d e s as w e l l ( c f . Dionne, 1969; Dionne and L a v e r d i e r e , 1972; Owens, 1976). F u r t h e r m o r e , L e f f i n g w e l l (1919), i n the f i r s t comprehensive account of g e o m o r p h o l o g i c a l p r o c e s s e s on the B e a u f o r t Sea c o a s t , c o n c l u d e d t h a t wind and waves are more im p o r t a n t than i c e as agents of sediment t r a n s p o r t and m o r p h o l o g i c a l change i n the c o a s t a l zone. R e s u l t s of the p r e s e n t s t u d y support L e f f i n g w e l l ' s c o n c l u s i o n t o the e x t e n t t h a t i c e - t h r u s t and i c e - r a f t i n g p r o c e s s e s have been found t o be r e l a t i v e l y u n i m p o rtant i n the c o a s t a l zone of Mackenzie Bay, sediment t r a n s p o r t i s o v e r w h e l m i n g l y dominated by f l u v i a l and storm-wave dynamics, waves a r e r a r e l y f e t c h - l i m i t e d by i c e d u r i n g the open-water season, and i c e - g e n e r a t e d s t r u c t u r e s ( a p a r t from thaw b a s i n s i n d e l t a i c and'lagoon-margin s u p r a t i d a l d e p o s i t s ) a r e not common i n the e s t u a r i n e s e d i m e n t a r y r e c o r d . N e v e r t h e l e s s , the i n d i r e c t e f f e c t s of i c e a r e p e r v a s i v e and i n c l u d e the f o l l o w i n g : (1) s t o r a g e of p r e c i p i t a t i o n as snow and of groundwater i n i c i n g s causes c e s s a t i o n of r i v e r f l o w i n w i n t e r , p r o f o u n d l y a f f e c t i n g c o n d i t i o n s i n the e s t u a r i e s ; (2) i c e f o r m a t i o n i n s h a l l o w e s t u a r i e s may produce h y p e r s a l i n e c o n d i t i o n s ( w i t h v a l u e s as h i g h as 122 p p t ) i n r e m a i n i n g 452 u n f r o z e n water; i n the absence of f r e s h w a t e r r u n o f f , a r e v e r s e g r a v i t a t i o n a l c i r c u l a t i o n may d e v e l o p ; and water i n deep b a s i n s may become i s o l a t e d by b o t t o m f a s t i c e ; (3) the s e d i m e n t o l o g i c a l l y i m p o r t a n t s p r i n g f l o o d e v e n t s on s u p r a t i d a l f l a t s of the Babbage D e l t a a r e c o n t r o l l e d by i c e jamming i n the d e l t a , b o t t o m f a s t i c e i n the l a g o o n , or b o t h ; (4) scour of bottom sediments by f r e s h w a t e r r u n o f f d r a i n i n g t h rough i c e [ s t r u d e l - s c o u r of R e i m n i t z and Bruder (1972)] may form s h a l l o w d e p r e s s i o n s beneath lagoon and n e a r s h o r e w a t e r s ; i n the Babbage E s t u a r y , the i c e - s u r f a c e e x p r e s s i o n of t h e s e f e a t u r e s was o b s e r v e d i m m e d i a t e l y o u t s i d e the e n t r a n c e s e c t i o n but never w i t h i n the l a g o o n ; (5) storm-surge development i s i n h i b i t e d and h i g h - f r e q u e n c y storm-wave g e n e r a t i o n p r e c l u d e d by i c e c o v e r on c o a s t a l waters d u r i n g some 8-9 months of the year [ c f . 3-4 months i n the G u l f of St Lawrence (Owens, 1 9 7 6 ) ] ; (6) thaw of ground i c e i n c o a s t a l exposures c o n t r i b u t e s s u b s t a n t i a l l y t o v e r y r a p i d r a t e s of c o a s t a l r e c e s s i o n ; (7) the morphology of d e l t a i c and lagoon-margin s u p r a t i d a l s u r f a c e s i n the Babbage E s t u a r y system i s dominated by pond and l a k e b a s i n s b e l i e v e d t o be l a r g e l y of t h e r m o k a r s t o r i g i n . S y n o p t i c - s c a l e wind e f f e c t s have been w i d e l y r e c o g n i z e d as a dominant f e a t u r e of the c i r c u l a t i o n , exchange p r o c e s s , d e n s i t y s t r u c t u r e , and s e d i m e n t o l o g y of s h a l l o w lagoons ( e . g . Posner, 1959; Behrens, 1969; K j e r f v e , 1975; Dygas and B u r r e l l , 1976; S m i t h , 1978), w h i l e wind and storm r u n o f f e f f e c t s have a l s o been d e s c r i b e d , w i t h i n c r e a s i n g f r e q u e n c y i n r e c e n t y e a r s , from f j o r d s and o t h e r t y p e s of e s t u a r i e s as w e l l 453 (e.g. P e t t e r s o n , 1920; Farmer, 1972; S c h u b e l , 1974; E l l i o t t , 1976; Weisberg, 1976; N i c h o l s , 1977; Grano and P r i t c h a r d , 1978) . In the Babbage E s t u a r y , s y n o p t i c - s c a l e wind p r o c e s s e s dominate the spectrum of p o s t - b r e a k u p water l e v e l s t o an extreme degree (see s e c t i o n 3.2.1) and account f o r the l a r g e s t a n o m a l i e s of suspended sediment c o n c e n t r a t i o n o b s e r v e d i n the la g o o n . D u r i n g n o r t h w e s t e r l y storms, the t o t a l volume of water s t o r e d i n the system may more than double over 24-36 hours ( F i g u r e 7 9 ) , w h i l e suspended sediment c o n c e n t r a t i o n may i n c r e a s e by more than two o r d e r s of magnitude i n the same l e n g t h of time ( F i g u r e 108). L a t e summer s a l i n i t y and temperature i n the lagoon appear t o be dominated by s y n o p t i c - s c a l e p r o c e s s e s ( s e c t i o n 3.3.4); r e a c t i o n and r e l a x a t i o n t i m e s a re s h o r t . In the Babbage D e l t a , major s y n o p t i c - s c a l e anomalies a r e r e l a t e d t o storm r u n o f f ( F i g u r e 114), peak suspended sediment c o n c e n t r a t i o n s may l a g the r u n o f f peak 15 km upstream by some 24 h o u r s , and r e l a x a t i o n t i m e s a r e l o n g , i n p a r t p r o b a b l y because of the l o n g time s c a l e of l a t e summer r e c e s s i o n s i n the r i v e r ( s e c t i o n 3.1.1). A r e l a t i v e l y minor storm i n August 1976, which a c c o u n t e d f o r about 18 per cent ( 9 x l 0 6 kg) of the e s t i m a t e d t o t a l a n n u a l l o n g s h o r e sediment t r a n s p o r t t o the lagoon e n t r a n c e ( 5 x l 0 7 kg) and was f o l l o w e d by storm r u n o f f c o n t r i b u t i n g some 1x10 s kg of f l u v i a l sediment, produced a major i n c r e a s e i n s e d i m e n t a t i o n r a t e s w i t h i n the lagoon and an e x t e n s i v e plume of t u r b i d water f i l l i n g P h i l l i p s Bay. 454 In 1976, f o u r storms a c c o u n t e d f o r 67 per cent of the e s t i m a t e d l o n g s h o r e sediment t r a n s p o r t d u r i n g the f i e l d season at the d i s t a l end of Kay P o i n t s p i t . T h i s r e s u l t a c c o r d s w i t h o b s e r v a t i o n s of Wiseman e t a l . (1973) on the B e a u f o r t and Chukchi c o a s t s of A l a s k a , where storm t r a n s p o r t was found t o be even more i m p o r t a n t . In the f l u v i a l t r a n s p o r t system ( s e c t i o n s 4.1.2 and 4.1.3), a p p r o x i m a t e l y 25 per cen t ( 4 . 4 x l 0 7 kg) of the annual suspended sediment t r a n s p o r t t h r o u g h s e c t i o n BI ( 1 . 7 x l O B kg) o c c u r r e d on 26 June 1976 and more than 90 per cen t of the o b s e r v e d a n n u a l suspended sediment d i s c h a r g e was d e l i v e r e d i n June; more than 99 per cent of t o t a l a n n u a l b e d l o a d t r a n s p o r t may o c c u r d u r i n g t h e same month. The e s t u a r i n e system, i n i t s p r e s e n t c o n f i g u r a t i o n , responds t o the major a n n u a l i n p u t of f l u v i a l sediment d u r i n g the snowmelt and immediate post-snowmelt season by moving a l a r g e p r o p o r t i o n d i r e c t l y t h r ough the system i n t o P h i l l i p s Bay. I t i s e s t i m a t e d t h a t a t l e a s t 59 per cen t of suspended sediment d i s c h a r g e d t o the e s t u a r y d u r i n g June 1976 was e x p o r t e d t o d e p o s i t i o n a l s i t e s seaward of the b a r r i e r and e n t r a n c e s e c t i o n . The low r e t e n t i o n i s a s c r i b e d t o the s h o r t f l u s h i n g t i m e , n o n - c o n v e c t i o n a l c i r c u l a t i o n , low s e t t l i n g v e l o c i t i e s , and p a r t i a l l y i n o p e r a t i v e a g g l o m e r a t i o n p r o c e s s e s c h a r a c t e r i s t i c of the system a t t h i s time of y e a r . The sediment t r a p e f f i c i e n c y of the e s t u a r y appears t o be much g r e a t e r l a t e r i n the summer, when most marine sediment i n p u t s o c c u r . A l t h o u g h the p r o p a g a t i o n of t i d a l and s y n o p t i c - s c a l e water 455 l e v e l p e r t u r b a t i o n s w i t h i n the e s t u a r y may be t r e a t e d as a q u a s i - l i n e a r s t o c h a s t i c p r o c e s s , t r a n s f e r s of r u n o f f and f l u v i a l sediment i n p u t s t h r o u g h the system a r e h i g h l y n o n - l i n e a r . F u r t h e r m o r e , the parameters of t h e system change d r a m a t i c a l l y on a s e a s o n a l t i m e - s c a l e . The s h o r t - t e r m b e h a v i o u r of the Babbage E s t u a r y system i s dominated by extreme s y n o p t i c - and s e a s o n a l - s c a l e v a r i a n c e . T i d a l p r o c e s s e s p l a y a r e l a t i v e l y minor r o l e i n the o p e r a t i o n of the system; the l a r g e - s c a l e e s t u a r i n e morphology e x h i b i t s none of the d i s t i n c t i v e t i d a l d e l t a phenomena c h a r a c t e r i s t i c even of many m i c r o t i d a l systems. Water l e v e l , s t o r a g e volume, s a l i n i t y , and suspended sediment sequences i n the lagoon d u r i n g the open-water season a r e dominated by s y n o p t i c - s c a l e wind e f f e c t s . On an a n n u a l b a s i s , however, the s y n o p t i c - s c a l e v a r i a n c e of s a l i n i t y , d e n s i t y , and sediment t r a n s p o r t p r o c e s s e s i s g r e a t l y exceeded by s e a s o n a l - s c a l e e f f e c t s . At l o n g e r i n t e r v a l s , opening or c l o s i n g of i n l e t s t h r ough the b a r r i e r and o t h e r changes i n the c o n f i g u r a t i o n of the e s t u a r y may a l t e r t he parameters of the system response t o i n p u t v a r i a n c e over a broad range of f r e q u e n c i e s . The mean and v a r i a n c e of the i n p u t terms may a l s o change s i g n i f i c a n t l y a t d e c a d a l and l o n g e r time s c a l e s . In the l o n g r u n , system parameters and se d i m e n t a r y d e p o s i t s i n the e s t u a r i n e system a r e p r o f o u n d l y a f f e c t e d by t r a n s g r e s s i o n due t o r i s i n g sea l e v e l and c o a s t a l e r o s i o n . D i s t i n c t i v e f e a t u r e s of the t r a n s g r e s s i v e sequence i n the Babbage E s t u a r y system i n c l u d e the absence or l i m i t e d 4 5 6 development of a e o l i a n , b a c k b a r r i e r - m a r g i n , t i d a l - d e l t a , and i n t e r t i d a l marsh f a c i e s , a l a r g e l y a f a u n a l i n t e r t i d a l component, and d e l t a i c d e p o s i t s w i t h p o o r l y d e v e l o p e d l e v e e s and numerous l a k e b a s i n s o c c u p y i n g a v e r y l a r g e p r o p o r t i o n of the t o t a l a r e a . Lagoon-margin s u p r a t i d a l s u r f a c e s a r e m o r p h o l o g i c a l l y s i m i l a r to p a r t s of the d e l t a p l a i n . Whereas the s m a l l - s c a l e c h a r a c t e r i s t i c s of l i t h o f a c i e s s e t s w i t h i n i n d i v i d u a l subsystems of the e s t u a r y r e f l e c t a q u a s i - c o n s i s t e n t system response t o i n p u t v a r i a n c e a t annual and s h o r t e r time s c a l e s , the l a r g e - s c a l e f e a t u r e s of the sediment body r e s u l t from l o n g - t e r m n o n - s t a t i o n a r i t y i n the i n p u t regime and changes i n the c o n f i g u r a t i o n or o t h e r parameters of the system. 457 REFERENCES Aagaard, K., and Coachman, L.K., 1977, Recent s t u d i e s on A r c t i c c u r r e n t s ; in M.J. Dunbar, ed., P o l a r oceans; P r o c e e d i n g s , P o l a r Oceans C o n f e r e n c e , May 1974; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , C a l g a r y ; pp. 87-98. Abrahams, A.D., and K e l l e r h a l s , R., 1973, C o r r e l a t i o n s between water d i s c h a r g e and c o n c e n t r a t i o n of suspended s o l i d s f o r f o u r l a r g e P r a i r i e r i v e r s ; i_n F l u v i a l p r o c e s s e s and s e d i m e n t a t i o n ; P r o c e e d i n g s , Hydrology Symposium no. 9, Edmonton, May 1973; pp. 96-113. A c k l e y , S.F., and H i b l e r , W.D. I l l , 1977, Measurements of A r c t i c Ocean i c e d e f o r m a t i o n and f r a c t u r e p a t t e r n s from s a t e l l i t e imagery; i_n M.J. Dunbar, ed., P o l a r oceans; P r o c e e d i n g s , P o l a r Oceans C o n f e r e n c e , May 1974; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , C a l g a r y ; pp. 227-238. A l e x a n d e r , V., B u r r e l l , D.C, Chang, J . , Cooney, R.T., Coulon, C , Crane, J . J . , Dygas, J.A., H a l l , C.E., K i n n e y , P .J., K o g l , D., Mowatt, T.C., N a i d u , A.S., Osterkamp, T.E., S c h e l l , D.M., S e i f e r t , R.D., and T u c k e r , R.W., 1974, E n v i r o n m e n t a l s t u d i e s of an e s t u a r i n e system; U n i v e r s i t y of A l a s k a , I n s t i t u t e of M a r i n e S c i e n c e , I.M.S. Report R-74-1; 543 p. A l l e n , J.R.L., 1973, Phase d i f f e r e n c e s between. bed c o n f i g u r a t i o n and f l o w i n n a t u r a l e n v i r o n m e n t s , and t h e i r g e o l o g i c a l r e l e v a n c e ; S e d i m e n t o l o g y , v. 20, pp. 323-329. A l l e n , J.R.L., 1974, R e a c t i o n , r e l a x a t i o n and l a g i n n a t u r a l s e d i m e n t a r y systems: g e n e r a l p r i n c i p l e s , examples and l e s s o n s ; E a r t h - S c i e n c e Reviews, v. 10, pp. 263-342. A l l e r s m a , E., H o e k s t r a , A . J . , and B i j k e r , E.W., 1966, T r a n s p o r t p a t t e r n s i n the Chao Phya e s t u a r y ; P r o c e e d i n g s , 10th Conference on C o a s t a l E n g i n e e r i n g , Tokyo; v. 1, pp. 632-650. Amorocho, J . , and B r a n d s t e t t e r , A., 1971, D e t e r m i n a t i o n of n o n - l i n e a r f u n c t i o n a l response f u n c t i o n s i n r a i n f a l l - r u n o f f p r o c e s s e s ; Water Resources R e s e a r c h , v. 7, pp. 1087-1101. Amundsen, R., 1908, The n o r t h west'passage; A. C o n s t a b l e , London; 2 volumes. 458 Anderson, F.E., 1971, Resu s p e n s i o n of e s t u a r i n e sediments by low a m p l i t u d e waves [ a b s t r a c t ] ; in_ D.S. G o r s l i n e , ed., A b s t r a c t volume, 2nd N a t i o n a l C o a s t a l and S h a l l o w Water Res e a r c h C o n f e r e n c e ; U n i v e r s i t y of Southern C a l i f o r n i a , Los A n g e l e s ; p. 10. Anderson, F.E., 1976, R a p i d s e t t l i n g r a t e s o b s e r v e d i n sediments resuspended by boat waves over a t i d a l f l a t ; N e t h e r l a n d s J o u r n a l of Sea R e s e a r c h , v.10, pp. 44-58. Anderson, J . C , and Anderson, R.J., 1974 , P r o g r e s s r e p o r t on w i n t e r d i s t r i b u t i o n of f l o w i n the Mackenzie D e l t a , N.W.T.; Canada, E n v i r o n m e n t a l - S o c i a l Committee, N o r t h e r n P i p e l i n e s , Task F o r c e on N o r t h e r n O i l Development, Report 74-12; pp. 225-258. Andrews, P.B., 1970, F a c i e s and g e n e s i s of a h u r r i c a n e washover f a n , St Joseph I s l a n d , c e n t r a l Texas c o a s t ; U n i v e r s i t y of Texas, A u s t i n ; Bureau of Economic Geology, Report of I n v e s t i g a t i o n no. 67; 147 p. Armon, J.W., 1979, Landward sediment t r a n s f e r s i n a t r a n s g r e s s i v e b a r r i e r i s l a n d system, Canada; i_n S.P. Leatherman, ed., B a r r i e r i s l a n d s from t h e G u l f of St Lawrence t o the G u l f of M e x i c o ; P r o c e e d i n g s of a c o a s t a l r e s e a r c h symposium, B o s t o n , March 1978; Academic P r e s s , New York; pp. 65-80. Armon, J.W., 1980, C h a n g e a b i l i t y i n s m a l l f l o o d t i d a l d e l t a s and i t s e f f e c t s , Malpeque b a r r i e r system, P r i n c e Edward I s l a n d ; i n S.B. McCann, ed., The c o a s t l i n e of Canada; G e o l o g i c a l Survey of Canada, Paper 80-10; pp. 41-50. A r n b o r g , L., Walker, H.J., and P e i p p o , J . , 1966, Water d i s c h a r g e i n the C o l v i l l e R i v e r , A l a s k a , 1962; G e o g r a f i s k a A n n a l e r , v. 48A, pp. 195-210. A x e l s s o n , V., 1967, The L a i t a u r e d e l t a : a s t u d y of d e l t a i c morphology and p r o c e s s e s ; G e o g r a f i s k a A n n a l e r , v. 49A, 127 p. Bagnold, R.A., 1940, Beach f o r m a t i o n by waves; some model e x p e r i m e n t s i n a wave t a n k ; J o u r n a l of the I n s t i t u t e of C i v i l E n g i n e e r i n g , v. 15, pp. 27-52. Bagn o l d , R.A., 1941, P h y s i c s of blown sand and d e s e r t dunes; W i l l i a m Morrow, New York; r e p r i n t e d 1954 by Methuen, London; 265 p. Bagnold, R.A., 1956, Flow of' c o h e s i o n l e s s g r a i n s i n f l u i d s ; P h i l o s o p h i c a l T r a n s a c t i o n s , R o y a l S o c i e t y (London), v. 249A, pp. 235-297. 459 Bagnold, R.A., 1963, Mechanics of marine s e d i m e n t a t i o n ; in M.N. H i l l , ed., The sea: i d e a s and o b s e r v a t i o n s on p r o g r e s s i n the s t u d y of the s e a s ; J . W i l e y and Sons, New York; v. 3, p. 507. Bagnold, R.A., 1966, An approach t o the sediment t r a n s p o r t problem from g e n e r a l p h y s i c s ; U.S. G e o l o g i c a l Survey, P r o f e s s i o n a l Paper 422-1; 37 p. B a g n o l d , R.A., 1973, The n a t u r e of s a l t a t i o n and of 'bed-load' t r a n s p o r t i n water; P r o c e e d i n g s , R o y a l S o c i e t y (London), v. 322A, pp. 473-504. B a r b e r , F.G., 1968, On the water of Tuktoyaktuk Harbour; Canada, Marine S c i e n c e s Branch, M a n u s c r i p t Report S e r i e s no. 9; 32 p. Barnes, P.W., and R e i m n i t z , E., 1972, R i v e r o v e r f l o w onto sea i c e o f f the n o r t h c o a s t of A l a s k a s p r i n g 1972 [ a b s t r a c t ] ; T r a n s a c t i o n s , American G e o p h y s i c a l U n i o n , v. 53, p. 1020. B a r t b e r g e r , C.E., 1976, Sediment s o u r c e s and s e d i m e n t a t i o n r a t e s , Chincoteague Bay, M a r y l a n d and V i r g i n i a ; J o u r n a l of Sedimentary P e t r o l o g y , v. 46, pp. 326-336. B a r w i s , J.H., and Makurath, J.H., 1978, R e c o g n i t i o n of a n c i e n t t i d a l i n l e t sequences: an example from the Upper S i l u r i a n K eyser Limestone i n V i r g i n i a ; S e d i m e n t o l o g y , v. 25, pp. 61-82. B a t e s , C.C., 1953, R a t i o n a l t h e o r y of d e l t a f o r m a t i o n ; American A s s o c i a t i o n of P e t r o l e u m G e o l o g i s t s B u l l e t i n , v. 37, pp. 2119-2161. Ba t h , M., 1974, S p e c t r a l a n a l y s i s i n g e o p h y s i c s ; E l s e v i e r S c i e n t i f i c P u b l i s h i n g Company, Amsterdam; 563 p. B e a l , M.A., 1968, The s e a s o n a l v a r i a t i o n i n sea l e v e l a t Barrow, A l a s k a ; i n J.E. S a t e r , c o o r d i n a t o r , A r c t i c d r i f t i n g s t a t i o n s ; A r c t i c I n s t i t u t e of N o r t h A m e r i c a ; pp. 327-341. Behrens, E.W., 1969, H u r r i c a n e e f f e c t s on a h y p e r s a l i n e bay; _in_ A.A. C a s t a n a r e s and F.B. P h l e g e r , eds, Lagunas c o s t e r a s , un s i m p o s i o ; P r o c e e d i n g s , I n t e r n a t i o n a l Symposium on C o a s t a l Lagoons, M e x i c o , D.F., November 1967; pp. 301-311. Bendat J.S., and P i e r s o l , A.G., 1971, Random d a t a : a n a l y s i s and measurement p r o c e d u r e s ; W i l e y - I n t e r s c i e n c e , New York; 407 p. 460 Benson, C.S., 1969, The s e a s o n a l snow co v e r of A r c t i c A l a s k a ; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , Research Paper no. 51; 86 p. B e r n a r d , H.A., and L e b l a n c , R.J., 1965, Resume of the Q u a t e r n a r y geology of the n o r t h w e s t e r n G u l f of Mexico P r o v i n c e ; in H.E. W r i g h t , J r , and D.G. F r e y , eds, The Q u a t e r n a r y of the U n i t e d S t a t e s ; P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n ; pp. 137-185. B i j k e r , E.W., K a l k w i j k , J.P.Th., and P i e t e r s , T., 1974, Mass t r a n s p o r t i n g r a v i t y waves on a s l o p i n g bottom; P r o c e e d i n g s , 14th Conference on C o a s t a l E n g i n e e r i n g , Copenhagen; American S o c i e t y of C i v i l E n g i n e e r s , New York; pp. 447-465. B l a c k , A.P., B i r k n e r , F.B., and Morgan, J . J . , 1965, D e s t a b i l i z a t i o n of d i l u t e c l a y s u s p e n s i o n s w i t h l a b e l l e d p o l y m e r s ; J o u r n a l of the American Water Works A s s o c i a t i o n , v. 57, pp. 1547-1560. B l a t t , H., M i d d l e t o n , G., and Murray, R., 1972, O r i g i n of s e d i m e n t a r y r o c k s ; P r e n t i c e - H a l l , Englewood C l i f f s , N.J..; 634 p. B o b r i v i t s k a y a , N.N., 1967, D i s c h a r g e of suspended sediments as a f u n c t i o n of h y d r o l o g i c a l c h a r a c t e r i s t i c s ; S o v i e t H y d r o l o g y , no. 4, pp. 173-183. Bo o t h r o y d , J . C , 1978, M e s o t i d a l i n l e t s and e s t u a r i e s ; i_n R.A. D a v i s , ed., C o a s t a l s e d i m e n t a r y e n v i r o n m e n t s ; S p r i n g e r - V e r l a g , New York; c h a p t e r 6, pp. 287-360. B o r n h o l d , B.D., 1975, Suspended m a t t e r i n the s o u t h e r n B e a u f o r t Sea; Canada, Department of Environment, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report 25b; 23 p. B o s t o c k , H.S., 1948, P h y s i o g r a p h y of the Canadian C o r d i l l e r a , w i t h s p e c i a l r e f e r e n c e t o the a r e a n o r t h of the f i f t y - f i f t h p a r a l l e l ; G e o l o g i c a l Survey of Canada, Memoir 247; 106 p. Bowden, K.F., 1953, Note on wind d r i f t i n a c h a n n e l i n the presence of t i d a l c u r r e n t s ; P r o c e e d i n g s , R o y a l S o c i e t y (London), v. 219A, pp. 426-446. Bowen, A . J . , 1980a, Simple models of n e a r s h o r e s e d i m e n t a t i o n ; beach p r o f i l e s and l o n g s h o r e b a r s ; i_n S.B. McCann, ed., The c o a s t l i n e of Canada; G e o l o g i c a l Survey of Canada, Paper 80-10; pp. 1-11. 461 Bowen, A . J . , 1980b, Nearshore v e l o c i t y measurements and beach e q u i l i b r i u m ; i_n P r o c e e d i n g s , Canadian C o a s t a l Conference 1980; B u r l i n g t o n , A p r i l 1980; pp. 21-30. Brockmann, C , 1935, [Diatoms and mud i n J a d e - G e b e i t ( i n German)]; Abh. Senckenberg. N a t u r f . Ges., 430, 64 p.; c i t e d by van S t r a a t e n (1961). Brown, J . , Dingman, S., and L e w e l l a n , R., 1968, Hyd r o l o g y of a d r a i n a g e b a s i n on the A l a s k a n c o a s t a l p l a i n ; U.S.A., C o l d Regions Research and E n g i n e e r i n g L a b o r a t o r y , Research Report 240; 18 p. Brown, W.M., and R i t t e r , J.R., 1971, Sediment t r a n s p o r t and t u r b i d i t y i n the E e l R i v e r b a s i n , C a l i f o r n i a ; U.S. G e o l o g i c a l Survey, Water Supply Paper 1986. Bruun, P., 1962, Sea l e v e l r i s e as a cause of shore e r o s i o n ; J o u r n a l of the Waterways and Har b o r s D i v i s i o n , P r o c e e d i n g s , American S o c i t e y of C i v i l E n g i n e e r s , v. 88, pp. 117-13-. B r y s o n , R.A., 1966, A i r masses, s t r e a m l i n e s and the b o r e a l f o r e s t ; G e o g a p h i c a l B u l l e t i n , v. 8, pp. 228-269. B r y s o n , R.A., 1974, A p e r s p e c t i v e on c l i m a t i c change; S c i e n c e , v. 184, pp. 753-760. Burns, B.M., 1973, The c l i m a t o l o g y of the Mackenzie V a l l e y -B e a u f o r t Sea; Canada, Department of Environment, Atmospheric Environment S e r v i c e , C l i m a t o l o g i c a l S t u d i e s 24, 2 volumes. C a l d w e l l , J.M., 1956, Wave a c t i o n and sand movement near Anaheim Bay, C a l i f o r n i a ; U.S.A., Beach E r o s i o n Board, T e c h n i c a l Memorandum no. 68; 21 p. Cameron, W.M., 1953, Hydrography and oceanography of the s o u t h e a s t B e a u f o r t Sea and Amundsen G u l f ; p a r t 2: h y d r o g r a p h i c and oc e a n o g r a p h i c o b s e r v a r t i o n s i n the B e a u f o r t Sea 1952; U n i v e r s i t y of B r i t i s h Columbia, I n s t i t u t e of Oceanography. Cameron, W.M., and P r i t c h a r d , D.W., 1963, E s t u a r i e s ; in M.N. H i l l , ed., The s e a : i d e a s and o b s e r v a t i o n s on p r o g r e s s i n the study of the seas; J . W i l e y and Sons, New York; v. 2, pp. 306-324. Ca m p b e l l , F.B., and Bauder, H.A., 1940, A r a t i n g c u r v e method f o r d e t e r m i n i n g s i l t d i s c h a r g e of streams; T r a n s a c t i o n s , American G e o p h y s i c a l U n i o n , v. 21, pp. 603-607. 462 Canada, Department of P u b l i c Works, 1971a, H e r s c h e l I s l a n d : f e a s i b i l i t y of a marine t e r m i n a l ; E n g i n e e r i n g Programs Branch, Ottawa; 141 p. and 19 p l a t e s . Canada, Department of P u b l i c Works, 1971b, B e a u f o r t Sea storm, September 13-16, 1970: i n v e s t i g a t i o n of e f f e c t s i n the Mackenzie D e l t a r e g i o n ; E n g i n e e r i n g Programs B r a n c h , Ottawa; 22 p. Canadian H y d r o g r a p h i c S e r v i c e , 1971, H e r s c h e l I s l a n d t o Kay P o i n t ; s c a l e 1:60,000; C h a r t 7603. Canadian H y d r o g r a p h i c S e r v i c e , 1972, Mackenzie Bay; s c a l e 1:150,000? C h a r t 7602. C a r l s o n , R.F., and Kane, D.L., 1975, H y d r o l o g y of A l a s k a ' s A r c t i c ; i n G. W e l l e r and S.A. B o w l i n g , eds, C l i m a t e of the A r c t i c ; P r o c e e d i n g s , 2 4 t h A l a s k a S c i e n c e C o n f e r e n c e , F a i r b a n k s , August 1973; U n i v e r s i t y of A l a s k a , G e o p h y s i c a l I n s t i t u t e , F a i r b a n k s ; pp. 367-373. C a r l s o n , R.F., N o r t o n , W., and B i r t c h , R., 1972, M o d e l l i n g snowmelt r u n o f f i n an A r c t i c c o a s t a l b a s i n ; i_n The r o l e of snow and i c e i n h y d r o l o g y ; P r o c e e d i n g s of the Banff Symposia; Symposium on Measurement and F o r e c a s t i n g ; B a n f f , September 1972; v. 2, pp. 1004-1016. C a r p e l a n , L.H., 1969, P h y s i c a l c h a r a c t e r i s t i c s of s o u t h e r n C a l i f o r n i a c o a s t a l l a g o o n s ; in A.A. C a s t a n a r e s and F.B. P h l e g e r , eds, Lagunas c o s t e r a s , un s i m p o s i o ; P r o c e e d i n g s , I n t e r n a t i o n a l Symposium on C o a s t a l Lagoons, M e x i c o , D.F., November 1967; pp. 319-334. Ca r s o n , J.M., Hunter, J.A., and L e w i s , C P . , 1975, Marine s e i s m i c r e f r a c t i o n p r o f i l i n g , Kay P o i n t , Yukon T e r r i t o r y ; i n Report of A c t i v i t i e s , P a r t B; G e o l o g i c a l Survey of Canada, Paper 75-1B; pp. 9-12. Chang, C.W., and Anderson, J.V., 1968, F l o c c u l a t i o n of c l a y s and s o i l s by o r g a n i c compounds; S o i l S c i e n c e S o c i e t y of A m e r i c a , P r o c e e d i n g s , v. 32, pp. 23-27. C h i l d e r s , J.M., S l o a n , C.E., M e c k e l , J.P., and Nauman, J.W., 1977, H y d r o l o g i c r e c o n n a i s s a n c e of the e a s t e r n N o r t h S l o p e , A l a s k a , 1975; U.S. G e o l o g i c a l Survey, Anchorage; O p e n - f i l e Report 77-492; 65 p. C h o r l e y , R.J., and Kennedy, B., 1971, P h y s i c a l geography: a systems approach; P r e n t i c e - H a l l I n t e r n a t i o n a l , London; 370 p. 463 Church, M., 1972, B a f f i n I s l a n d s a n d u r s : a study of A r c t i c f l u v i a l p r o c e s s e s ; G e o l o g i c a l Survey of Canada, B u l l e t i n 216; 208 p. Church, M., 1974, H y d r o l o g y and p e r m a f r o s t w i t h r e f e r e n c e t o n o r t h e r n N o r t h A m e r i c a ; i_n P e r m a f r o s t h y d r o l o g y ; P r o c e e d i n g s of a workshop seminar, C a l g a r y , F e b r u a r y 1974; Canada, Department of Environment, Canadian N a t i o n a l Committee, I n t e r n a t i o n a l H y d r o l o g i c a l Decade; pp. 7-20. Church, M., and G i l b e r t , R., 1975, P r o g l a c i a l f l u v i a l and l a c u s t r i n e e n v i r o n m e n t s ; i j i A.V. J o p l i n g and B.C. McDonald, eds, G l a c i o f l u v i a l and g l a c i o l a c u s t r i n e s e d i m e n t a t i o n ; S o c i e t y of Economic P a l e o n t o l o g i s t s and M i n e r a l o g i s t s , S p e c i a l P u b l i c a t i o n no.' 23, pp. 22-100. Church, M. , and Jones, D. , i n p r e s s , _in R.D. Hey, ed., E n g i n e e r i n g problems i n the management of g r a v e l - b e d r i v e r s ; J . W i l e y and Sons, C h i c h e s t e r . Coachman, L.K., 1963, Water masses of the A r c t i c ; i_n P r o c e e d i n g s , A r c t i c B a s i n Symposium, Hershey, Pa., October 1962; A r c t i c I n s t i t u t e of N o r t h A m e r i c a ; pp. 143-172. Coachman, L.K., and B a r n e s , C.A., 1962, S u r f a c e water i n the E u r a s i a n B a s i n of the A r c t i c Ocean; A r c t i c , v. 15, pp. 251-277. C o g l e y , J.G., and McCann, S.B., 1975, S u r f a c e r u n o f f c h a r a c t e r i s t i c w of an a r c t i c n i v a l catchment: Mecham R i v e r , C o r n w a l l i s I s l a n d ; i n P r o c e e d i n g s , Canadian H y d r o l o g y Symposium; pp. 282-288. Coleman, J.M., G a g l i a n o , S.M., and Smith, W.G., 1970, S e d i m e n t a t i o n i n a M a l a y s i a n h i g h t i d e t r o p i c a l d e l t a ; _in J.P. Morgan, ed., D e l t a i c s e d i m e n t a t i o n , modern and a n c i e n t ; S o c i e t y of Economic P a l e o n t o l o g i s t s and M i n e r a l o g i s t s , T u l s a , Oklahoma; S p e c i a l P u b l i c a t i o n no. 15; pp. 185-197. C o l l i n s , M.B., and Amos, C.L., 1973, The e f f e c t of waves on an i n t e r t i d a l sand f l a t of the Wash; _in J . H a i l s and A. C a r r , eds, Nearshore sediment dynamics and s e d i m e n t a t i o n , an i n t e r d i s c i p l i n a r y r e v i e w ; J . W i l e y and Sons, London; pp. 304-306. Cooper, P.F., J r , 1974, L a n d f a s t i c e i n the s o u t h e a s t e r n p a r t of the B e a u f o r t Sea; in J.C. Reed and J.E. S a t e r , eds, The c o a s t and s h e l f of the B e a u f o r t Sea; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , A r l i n g t o n , Va.; pp. 235-242. 464 Cooper, R.H., and H o l l i n g s h e a d , A.B., 1973, R i v e r bank e r o s i o n i n r e g i o n s of p e r m a f r o s t ; i_n F l u v i a l p r o c e s s e s and s e d i m e n t a t i o n ; P r o c e e d i n g s , H ydrology Symposium no. 9; Edmonton, May 1973; pp. 272-283. C o r n i s h , V., 1898, On sea beaches and sand banks; G e o g r a p h i c a l J o u r n a l , v. 2, pp. 628-674. C u r r a y , J.R., Emmel, F . J . , and Crampton, P.J.S., 1969, Holocene h i s t o r y of a s t r a n d p l a i n , l a g o o n a l c o a s t , N a y a r i t , M e x i c o ; in A.A. C a s t a n a r e s and F.B. P h l e g e r , eds, Lagunas c o s t e r a s , un s i m p o s i o ; P r o c e e d i n g s , , I n t e r n a t i o n a l Symposium on C o a s t a l Lagoons, Me x i c o , D.F., November 1967; pp. 63-100. D a h l s k o g , S., 1966, S e d i m e n t a t i o n and v e g e t a t i o n i n a L a p l a n d mountain d e l t a ; G e o g r a f i s k a A n n a l e r , v. 48A, pp. 86-101. D a v i d s o n - A r n o t t , R.G.D., and Greenwood, B., 1976, F a c i e s r e l a t i o n s h i p s on a b a r r e d c o a s t , Kouchibouguac Bay, New B r u n s w i c k , Canada; ij\u00C2\u00B1 R.A. D a v i s , J r , and R.L. E t h i n g t o n , eds, Beach and n e a r s h o r e s e d i m e n t a t i o n ; S o c i e t y of Economic P a l e o n t o l o g i s t s and M i n e r a l o g i s t s , S p e c i a l P u b l i c a t i o n no. 24, pp. 149-168. D a v i e s , J . L . , 1964, A morphogenic approach t o w o r l d s h o r e l i n e s ; Z e i t s c h r i f t f u r Geomorphologie, v. 8, pp. 127-142. D a v i s , M.W., and E r l i c h , R., 1970, R e l a t i o n s h i p s between measures of s e d i m e n t - s i z e - f r e q u e n c y d i s t r i b u t i o n s and the n a t u r e of sediments; G e o l o g i c a l S o c i e t y of America B u l l e t i n , v. 81, pp. 3537-3548. D e f a n t , A., 1953, [Ebb and f l o w of the t i d e s of the sea, atmosphere, and e a r t h ( i n German)]; S p r i n g e r - V e r l a g , B e r l i n ; t r a n s l a t e d and p u b l i s h e d i n E n g l i s h , 1958: Ebb and f l o w : t h e t i d e s of e a r t h , a i r , and water; U n i v e r s i t y of M i c h i g a n P r e s s , Ann A r b o r ; 121 p. D e f a n t , A., 1961, P h y s i c a l oceanography; Pergamon P r e s s , O x f o r d ; v. 1. Dey, B., 1980, O r b i t a l s e n s i n g of Mackenzie Bay i c e dynamics; A r c t i c , v. 33, pp. 280-291. Dionne, J - C , 1969, T i d a l f l a t e r o s i o n by i c e a t La P o c a t i e r e , St Lawrence E s t u a r y ; J o u r n a l of Sedimentary P e t r o l o g y , v. 39, pp. 1174-1181. Dionne, J - C , and L a v e r d i e r e , C , 1972, I c e - f o r m e d beach f e a t u r e s from Lake St J e a n , Quebec; Canadian J o u r n a l of E a r t h S c i e n c e s , v. 9, pp. 979-990. 465 D i t t m a r , W., 1884, Report on the s c i e n t i f i c r e s u l t s of the e x p l o r i n g voyage of H.M.S. C h a l l e n g e r ; P h y s i c s and . c h e m i s t r y ; H.M. S t a t i o n e r y O f f i c e , London; v. 1. Doodson, A.T., 1924, M e t e o r o l o g i c a l p e r t u r b a t i o n s of s e a - l e v e l and t i d e s ; M o n t h l y N o t i c e s , R o y a l A s t r o n o m i c a l S o c i e t y , G e o p h y s i c a l Supplement 1; pp. 124-127. Dyer, K.R., 1973, E s t u a r i e s : a p h y s i c a l i n t r o d u c t i o n ; J . W i l e y and Sons, New York; 140 p. Dyer, K.R., 1974, The s a l t b a l a n c e i n s t r a t i f i e d e s t u a r i e s ; E s t u a r i n e and C o a s t a l M arine S c i e n c e , v. 2, pp. 273-281. Dyer, K.R., 1977, L a t e r a l c i r c u l a t i o n e f f e c t s i n e s t u a r i e s ; i n E s t u a r i e s , g e o p h y s i c s , and the environment; N a t i o n a l Academy of S c i e n c e s , Washington, D.C; pp. 22-29. Dyer, K.R., and Ramamoorthy, K., 1969, S a l i n i t y and water c i r c u l a t i o n i n the V e l l a r E s t u a r y ; Limnology and Oceanography, v. 14, pp.4-15. Dygas, J.A., and B u r r e l l , D.C, 1976, Wing and c u r r e n t p a t t e r n s i n an a r c t i c c o a s t l a g o o n ; Ocean E n g i n e e r i n g , v. 3, pp. 317-327. E g g i n t o n , P.A., 1978, The e f f e c t of b o t t o m f a s t i c e on the s t a g e - d i s c h a r g e r e l a t i o n ; in C u r r e n t R e s e a r c h , P a r t A; G e o l o g i c a l Survey of Canada, Paper 78-1A; pp. 493-495. E i n s t e i n , H.A., 1950, Th b e d l o a d f u n c t i o n f o r sediment t r a n s p o r t a t i o n i n open c h a n n e l f l o w s ; U.S.D.A. T e c h n i c a l B u l l e t i n 1026; 70 p. E i n s t e i n , H.A., 1972, Sediment t r a n s p o r t by wave a c t i o n ; P r o c e e d i n g s , 13th Conference on C o a s t a l E n g i n e e r i n g , Vancouver, J u l y 1972; American S o c i e t y of C i v i l E n g i n e e r s , New York; v. 2, pp. 933-952. E i n s t e i n , H.A., Anderson, A.G., and Johnson, J.W., 1940, A d i s t i n c t i o n between b e d - l o a d and suspended l o a d i n n a t u r a l s t r e a m s ; T r a n s a c t i o n s , American G e o p h y s i c a l U n i o n , v. 21, pp. 628-633. E i n s t e i n , H.A., and Krone, R.B., 1961, E s t u a r i a l sediment t r a n s p o r t p a t t e r n s ; J o u r n a l of the H y d r a u l i c s D i v i s i o n , P r o c e e d i n g s , American S o c i e t y of C i v i l E n g i n e e r s , v. 87, p. 51. E i n s t e i n , H.A., and Krone, R.B., 1962, E x p e r i m e n t s t o d e t e r m i n e modes of c o h e s i v e sediment t r a n s p o r t i n s a l t w a t e r ; J o u r n a l of G e o p h y s i c a l R e s e a r c h , v. 67, pp. 1451-1461. 466 E l l i o t t , A . J . , 1976, A s t u d y of the e f f e c t of m e t e o r o l o g i c a l f o r c i n g on the c i r c u l a t i o n i n the Potomac e s t u a r y ; Chesapeake Bay I n s t i t u t e , The Johns Hopkins U n i v e r s i t y , B a l t i m o r e , S p e c i a l Report 56. Emmett, W.W., 1980, A f i e l d c a l i b r a t i o n of the s e d i m e n t - t r a p p i n g c h a r a c t e r i s t i c s of the H e l l e y - S m i t h b e d l o a d sampler; U.S. G e o l o g i c a l Survey, P r o f e s s i o n a l Paper 1139; 44 p. Evans, G., 1965, I n t e r t i d a l f l a t 'sediments and t h e i r e n v i r o n m e n t s of d e p o s i t i o n i n t h e Wash; Q u a r t e r l y J o u r n a l , G e o l o g i c a l S o c i e t y of London, v. 121, pp. 209-241. Faas, R.W., 1966, P a l e o e c o l o g y of an a r c t i c e s t u a r y ; A r c t i c , v. 19, pp. 343-348. Farmer, D.M., 1972, The i n f l u e n c e of wind on the s u r f a c e waters of A l b e r n i I n l e t ; Ph.D. d i s s e r t a t i o n , U n i v e r s i t y of B r i t i s h C o lumbia, Vancouver. F i s c h e r , H.B., 1972, Mass t r a n s p o r t mechanisms i n p a r t i a l l y s t r a t i f i e d e s t u a r i e s ; J o u r n a l of F l u i d M e c h a n i c s , v. 53, pp. 671-687. F j e l s t a d , J.E., 1929, C o n t r i b u t i o n s t o the dynamics of f r e e p r o g r e s s i v e t i d a l waves; Norwegian N o r t h P o l a r E x p e d i t i o n w i t h the Maud, 1918-1925; S c i e n t i f i c R e s u l t s , v. 4, 80 p. F o l k , R.L., 1966, A r e v i e w of g r a i n - s i z e p a r a m e t e r s ; S e d i m e n t o l o g y , v. 6,, pp. 73-93. F o l k , R.L., and Ward, W.C., 1957, Brazos R i v e r bar -- a study i n t h e s i g n i f i c a n c e of g r a i n s i z e p a r a m e t e r s ; J o u r n a l of Sedimentary P e t r o l o g y , v. 27, pp. 3-26. F o r b e s , D.L., 1979, B o t t o m f a s t i c e i n n o r t h e r n r i v e r s : h y d r a u l i c e f f e c t s and h y d r o m e t r i c i m p l i c a t i o n s ; P r o c e e d i n g s , Canadian H y d r o l o g y Symposium: 79, C o l d C l i m a t e H y d r o l o g y ; Vancouver, May 1979; pp. 175-184. F o r b e s , D.L., 1980, L a t e - Q u a t e r n a r y sea l e v e l s i n the s o u t h e r n B e a u f o r t Sea; in C u r r e n t R e s e a r c h , P a r t B; G e o l o g i c a l Survey of Canada, Paper 80-1B; pp. 75-87. F o r d , W.L., and H a t t e r s l e y - S m i t h , G., 1965, On the oceanography of the Nansen Sound f i o r d system; A r c t i c , v. 18, pp. 158-171. Foreman, M.G.G., 1977, Manual f o r t i d a l h e i g h t s a n a l y s i s and p r e d i c t i o n ; Canada, Department of F i s h e r i e s and the Environment, I n s t i t u t e of M a r i n e S c i e n c e s , P a t r i c i a Bay, B.C.; P a c i f i c M a r i n e S c i e n c e Report 77-10; 97 p. 467 F r a n c i s , J.R.D., 1973, E x p e r i m e n t s on the motion of s o l i t a r y g r a i n s a l o n g the bed of a water stream; P r o c e e d i n g s of the R o y a l S o c i e t y (London), v. 332A, pp. 443-471. F r a n k l i n , J . , 1828, N a r r a t i v e of a second e x p e d i t i o n t o the s h o r e s of the P o l a r Sea i n the y e a r s 1825, 1826, and 1827; John Murray, London; r e p r i n t e d 1969 by Greenwood, New York; 320 p. w i t h a p p e n d i c e s . F r e y , R.w., and Basan, P.B., 1978, C o a s t a l s a l t marshes; in R.A. D a v i s , J r , ed., C o a s t a l s e d i m e n t a r y e n v i r o n m e n t s ; S p r i n g e r - V e r l a g , New York; pp. 101-169. F r o s t i c k , L., and McCave, I.N., 1979, S e a s o n a l s h i f t s of sediment w i t h i n an e s t u a r y mediated by a l g a l growth; E s t u a r i n e and C o a s t a l M arine S c i e n c e , v. 9, pp. 569-576. F y l e s , J.G., 1966, Quaternary s t r a t i g r a p h y , Mackenzie D e l t a and A r c t i c c o a s t a l p l a i n ; i n Report of A c t i v i t i e s , May-October 1965; G e o l o g i c a l Survey of Canada, Paper 66-1; pp. 30-31. G a l l o w a y , W.E., 1976, Sediments and s t r a t i g r a p h i c framework of the Copper R i v e r f a n - d e l t a , A l a s k a ; J o u r n a l of Sedimentary P e t r o l o g y , v. 46, pp. 726-737. Gardner, G.B., and S m i t h , J.D., 1978, T u r b u l e n t m i x i n g i n a s a l t wedge e s t u a r y ; i_n J . C . J . N i h o u l , ed., Hydrodynamics of e s t u a r i e s and f j o r d s ; P r o c e e d i n g s , 9th I n t e r n a t i o n a l L i e g e C o l l o q u i u m on Ocean Hydrodynamics; E l s e v i e r S c i e n t i f i c P u b l i s h i n g Company, Amsterdam; pp. 79-108. G a r f i n k e l , H.L., and B r u b a k e r , L.B., 1980, Modern c l i m a t e \u00E2\u0080\u0094 t r e e growth r e l a t i o n s h i p s and c l i m a t i c r e c o n s t r u c t i o n i n s u b - a r c t i c A l a s k a ; N a t u r e , v. 286, pp. 872-874. G a r l a n d , G.D., and Lennox, D.H., 1962, Heat f l o w i n w e s t e r n Canada; R o y a l A s t r o n o m i c a l S o c i e t y , G e o p h y s i c a l J o u r n a l , v. 6, pp. 245-262. G i b b s , R.J., Matthews, M.D., and L i n k , D.A., 1971, R e l a t i o n s h i p between sphere, s i z e and s e t t l i n g v e l o c i t y ; J o u r n a l of Sedimentary P e t r o l o g y , v. 41, pp. 7-18. G i l l , D., 1972, The p o i n t bar environment i n the Mackenzie R i v e r D e l t a ; Canadian J o u r n a l of E a r t h S c i e n c e s , v. 9, pp. 1382-1393. G i n s b e r g , R.N., and Lowenstam, H.A., 1958, The i n f l u e n c e of marine bottom communities on the d e p o s i t i o n a l environment of s e d i m e n t s ; J o u r n a l of Geology, v. 66, pp. 310-318. 468 Glangeaud, L., 1938, [ T r a n s p o r t and s e d i m e n t a t i o n i n the G i r o n d e E s t u a r y ( i n F r e n c h ) ] ; B u l l e t i n de l a S o c i e t e G e o l o g i q u e de F r a n c e , 5e s e r . , 8, pp. 599-631. God i n , G., 1972, The a n a l y s i s of t i d e s ; U n i v e r s i t y of Toronto P r e s s , T o r o n t o ; 264 p. G o l d , L.W., and Lachenbruch, A.H., 1973, Thermal c o n d i t i o n s i n p e r m a f r o s t \u00E2\u0080\u0094 a r e v i e w of N o r t h American l i t e r a t u r e ; _in P e r m a f r o s t , N o r t h American c o n t r i b u t i o n , 2nd I n t e r n a t i o n a l C o n f e r e n c e , Y a k u t s k , J u l y 1973; N a t i o n a l Academy of S c i e n c e s , Washington; pp. 3-25. G o l d b e r g , E.D., 1963, The oceans as a c h e m i c a l system; in_ M.N. H i l l , ed., The sea: i d e a s and o b s e r v a t i o n s on p r o g r e s s i n the study of the seas; J . W i l e y and Sons, New York; v. 2, pp. 3-25. Gordon, CM., 1974, Sediment t r a n s p o r t i n t i d e s ; Eos, v. 56; p. 1139. Grano, V., and P r i t c h a r d , D.W., 1978, W i n d - d r i v e n , n o n t i d a l c i r c u l a t i o n of the upper Chesapeake Bay; Eos, v.50, p. 1102. Greenwood, B., and H a l e , P.B., 1980, Depth of a c t i v i t y , sediment f l u x , and m o r p h o l o g i c a l change i n a b a r r e d n e a r s h o r e environment; _in S.B. McCann, ed., The c o a s t l i n e of Canada; G e o l o g i c a l Survey of Canada, Paper 80-10; pp. 89-109. Gre g o r y , K . J . , and W a l l i n g , D.E., 1973, D r a i n a g e b a s i n form and p r o c e s s : a g e o m o r p h o l o g i c a l approach; Edward A r n o l d , London; 485 p. G r e s s l y , A., 1838, [ G e o l o g i c a l o b s e r v a t i o n s i n the S o l o t h u r n i a n J u r a ( i n F r e n c h ) ] ; Neue D e n k s c h r i f t f u r A l l g e m e i n e S c h w e i z e r i s c h e G e s e l l s c h a f t ges. N a t u r w i s s e n s c h a f t . , v. 2, pp. 1-112; c i t e d by Krumbein and S l o s s (1963, p. 607). G r i g g s , R.F., 1937, T i m b e r l i n e s as i n d i c a t o r s of c l i m a t i c t r e n d s ; S c i e n c e , v. 85, pp. 251-255. Groen, P., and Groves, G.W., 1962, Surges; ija M.N. H i l l , ed., The s e a : i d e a s and o b s e r v a t i o n s on p r o g r e s s i n the s t u d y of the seas; J . W i l e y and Sons, New York; v. 1, pp. 611-646. Groves, G.W., 1955, N u m e r i c a l f i l t e r s f o r d i s c r i m i n a t i o n a g a i n s t t i d a l p e r i o d i c i t i e s ; T r a n s a c t i o n s , American G e o p h y s i c a l U n i o n , v. 36, pp. 1073-1084. 469 Groves. G.W., and Hannan, E . J . , 1968, Time s e r i e s r e g r e s s i o n of sea l e v e l on weather; Reviews of G e o p h y s i c s , v. 6, pp. 129-174. Gunnerson, C.G., 1967, Streamflow and q u a l i t y of the Columbia R i v e r b a s i n ; J o u r n a l of the S a n i t a r y E n g i n e e r i n g D i v i s i o n , American S o c i e t y of C i v i l E n g i n e e r s , v. 39, pp. 1-16. Guy, H.P., 1964, An a n a l y s i s of some s t o r m - p e r i o d v a r i a b l e s a f f e c t i n g stream sediment t r a n s p o r t ; U.S. G e o l o g i c a l Survey, P r o f e s s i o n a l Paper 462-E. Hakanson, L. , 1976, A bottom sediment t r a p f o r r e c e n t s e d i m e n t a r y d e p o s i t s ; Limnology and Oceanography, v. 21, pp. 170-175. H a l l , D.G., 1967, The p a t t e r n of sediment movement i n the R i v e r Tyne; I n t e r n a t i o n a l A s s o c i a t i o n of S c i e n t i f i c H y d r o l o g y , P u b l i c a t i o n 75; G e n e r a l Assembly of B e r n , Symposium on R i v e r Morphology; pp. 117-140. Hansen, D.V., and R a t t r a y , M., J r , 1965, G r a v i t a t i o n a l c i r c u l a t i o n i n s t r a i t s and e s t u a r i e s ; J o u r n a l of Marine R e s e a r c h , v. 23, pp. 104-122. Hansen, D.V., and R a t t r a y , M., J r , 1966, New d i m e n s i o n s i n e s t u a r y c l a s s i f i c a t i o n ; Limnology and Oceanography, v.11, pp. 319-326. Harden, D., Barnes, P., and R e i m n i t z , E., 1977, D i s t r i b u t i o n and c h a r a c t e r of n a l e d s i n n o r t h e a s t e r n A l a s k a ; A r c t i c , v. 30, pp. 28-40. Hare, F.K., 1969, The a t m o s p h e r i c c i r c u l a t i o n and A r c t i c m e t e o r o l o g y ; A r c t i c , v. 22, pp. 185-194. H a r g r a v e , B.T., and Burns, N.M., 1979, Assessment of sediment t r a p c o l l e c t i o n e f f i c i e n c y ; Limnology and Oceanography, v. 24, pp. 1124-1136. Harleman, D.R.F., and Ippen, A.T., 1967, Two-dimensional a s p e c t s of s a l i n i t y i n t r u s i o n i n e s t u a r i e s : a n a l y s i s of s a l i n i t y and v e l o c i t y d i s t r i b u t i o n s ; U.S.A., Corps of E n g i n e e r s , Committee on T i d a l H y d r a u l i c s , T e c h n i c a l B u l l e t i n 13. Harms, J.C., and Fahnestock, R.K., 1965, S t r a t i f i c a t i o n , bed forms, and f l o w phenomena ( w i t h an example from the R i o Grande); i_n G.V. M i d d l e t o n , ed., P r i m a r y s e d i m e n t a r y s t r u c t u r e s and t h e i r hydrodynamic i n t e r p r e t a t i o n ; S o c i e t y of Economic P a l e o n t o l o g i s t s and M i n e r a l o g i s t s , S p e c i a l P u b l i c a t i o n 12; pp. 84-115. 470 H a r p e r , J.R., 1978, C o a s t a l e r o s i o n r a t e s a l o n g the Chukchi Sea c o a s t near Barrow, A l a s k a ; A r c t i c , v. 31, pp. 428-433. Hayes, M.O., 1975, Morphology of sand a c c u m u l a t i o n s i n e s t u a r i e s ; in L.E. C r o n i n , ed., E s t u a r i n e r e s e a r c h ; v. 2, Geology and e n g i n e e r i n g ; Academic P r e s s , New York; pp. 3-22. Hayes, M.O., 1979, B a r r i e r i s l a n d morphology as a f u n c t i o n of t i d a l and wave regime; i_n S.P. Leatherman, ed. , B a r r i e r i s l a n d s from the G u l f of St Lawrence t o the G u l f of Me x i c o ; Academic P r e s s , New York; pp. 1-27. He a l e y , D.A., 1971, Oceanographic o b s e r v a t i o n s i n t h e B e a u f o r t Sea, J u l y 15- Sepetmber 4, 1970; Canada, Marine S c i e n c e s Branch, P a c i f i c R e g i o n , V i c t o r i a ; 36 p. H e l l e y , E . J . , and Sm i t h , W., 1971, Development and c a l i b r a t i o n of a p r e s s u r e - d i f f e r e n c e b e d l o a d sampler; U.S. G e o l o g i c a l S urvey, O p e n - f i l e R e p o r t ; 18 p. Hem, J.D., 1959, Study and i n t e r p r e t a t i o n of t h e c h e m i c a l c h a r a c t e r i s t i c s of n a t u r a l water; U.S. G e o l o g i c a l Survey, Water Supply Paper 1473; 269 p. ( r e v i s e d e d i t i o n p u b l i s h e d i n 1970). Henry, R.F., 1975, Storm s u r g e s ; Canada, Department of Environment, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report 19; 41 p. Henry, R.F., and Foreman, M.G.G., 1977, N u m e r i c a l model s t u d i e s of s e m i - d i u r n a l tide's i n the s o u t h e r n B e a u f o r t Sea; Canada, Department of F i s h e r i e s and the Environment, I n s t i t u t e of Ocean S c i e n c e s , P a t r i c i a Bay, B.C.; P a c i f i c M a r i n e S c i e n c e Report 77-11; 71 p. Henry, R.F., and Heaps, N.S., 1976, Storm surges i n the s o u t h e r n B e a u f o r t Sea; J o u r n a l of the F i s h e r i e s R e s e a r c h Board of Canada, v. 33, pp. 2362-2376. H e r l i n v e a u x , R.H., and de Lange Boom, B.R., 1975, P h y s i c a l oceanography of t h e s o u t h e a s t e r n B e a u f o r t Sea; Canada, Department of Environment, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report 18; 97 p. H e r l i n v e a u x , R.H., de Lange Boom, B.R., and W i l t o n , G.R., 1976, S a l i n i t y , t e m p e r a t u r e , t u r b i d i t y and m e t e o r o l o g i c a l o b s e r v a t i o n s i n the B e a u f o r t Sea: summer 1974, s p r i n g and summer 1975; Canada, Department of Environment, I n s t i t u t e of Ocean S c i e n c e s , P a t r i c i a Bay; P a c i f i c M a r i n e S c i e n c e Report 76-26; 224 p. 471 H i n e , A.C., 1975, Bedform d i s t r i b u t i o n and m i g r a t i o n p a t t e r n s on t i d a l d e l t a s i n the Chatham Harbor E s t u a r y , Cape Cod, M a s s a c h u s e t t s ; i_n L.E. C r o n i n , ed., P r o c e e d i n g s , 2nd I n t e r n a t i o n a l E s t u a r i n e Research C o n f e r e n c e ; Academic P r e s s , New York; v. 2, pp. 235-254. H j u l s t r o m , F., 1935, S t u d i e s of the m o r p h o l o g i c a l a c t i v i t y of r i v e r s as i l l u s t r a t e d by the R i v e r F y r i s ; B u l l e t i n of the G e o l o g i c a l I n s t i t u t e of U p p s a l a , v. 25, pp. 221-527. H o l l i n g s h e a d , A.B., 1971, Sediment t r a n s p o r t a t i o n measurements i n a g r a v e l r i v e r ; J o u r n a l of the H y d r a u l i c s D i v i s i o n , American S o c i e t y of C i v i l E n g i n e e r s , v. 97, pp. 1817-1834. Holmgren, B., Benson, C , and W e l l e r , G., 1975, A study of t h e breakup of the a r c t i c s l o p e of A l a s k a by ground, a i r c r a f t , and s a t e l l i t e o b s e r v a t i o n s ; rn G. W e l l e r and S.A. B o w l i n g , eds, C l i m a t e of the A r c t i c ; P r o c e e d i n g s , 24th A l a s k a S c i e n c e C o n f e r e n c e , F a i r b a n k s , August 1973; U n i v e r s i t y of A l a s k a , G e o p h y s i c a l I n s t i t u t e , F a i r b a n k s ; pp. 358-366. Howard, A.D., 1965, G e o m o r p h o l o g i c a l systems \u00E2\u0080\u0094 e q u i l i b r i u m and dynamics; American J o u r n a l of S c i e n c e , v. 263, pp. 302-312. Hoyt, J.H., 1967, B a r r i e r i s l a n d f o r m a t i o n ; G e o l o g i c a l S o c i e t y of America B u l l e t i n , v. 78, pp. 1125-1136. H u f f o r d , G.L., 1975, Some c h a r a c t e r i s t i c s of the B e a u f o r t Sea s h e l f c u r r e n t ; J o u r n a l of G e o p h y s i c a l R e s e a r c h , v. 80, pp. 3465-3468. Huggett, W.S., Woodward, M.J., Stephenson, F., H e r m i s t o n , F.V., and Douglas, A., 1975, Near bottom c u r r e n t s and o f f s h o r e t i d e s ; Canada, Department of Environment, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report 16; 38 p. Hughes, F.W., and R a t t r a y , M., J r , 1980, S a l t f l u x and m i x i n g i n the Columbia R i v e r E s t u a r y ; E s t u a r i n e and C o a s t a l M a r i n e S c i e n c e , v. 10, pp. 479-493, Hughes, O.L., 1972, S u r f i c i a l geology of n o r t h e r n Yukon T e r r i t o r y and n o r t h w e s t e r n D i s t r i c t of Ma c k e n z i e , Northwest T e r r i t o r i e s ; G e o l o g i c a l Survey of Canada, Paper 69-36; 11 p. Hume, J.D., 1971, Sedimentology of E l s o n Lagoon, A r c t i c A l a s k a [ a b s t r a c t ] ; _in D.S. G o r s l i n e , ed. , A b s t r a c t volume, 2nd N a t i o n a l C o a s t a l and S h a l l o w Water R e s e a r c h C o n f e r e n c e ; U n i v e r s i t y of South e r n C a l i f o r n i a , Los A n g e l e s ; p. 114. 472 Hume, J.D., and S c h a l k , M. , 1967, S h o r e l i n e p r o c e s s e s near Barrow, A l a s k a : a comparison of the normal and the c a t a s t r o p h i c ; A r c t i c , v. 20, pp. 86-103. Hunter, D.R., 1975, Three A r c t i c s p i t s ; u n p u b l i s h e d B.Sc. d i s s e r t a t i o n , U n i v e r s i t y of W a t e r l o o , W a t e r l o o , O n t a r i o ; 44 p. and a p p e n d i x . H u n t e r , J.A., Neave, K.G., MacAulay, H.A., and Hobson, G.D., 1978, I n t e r p r e t a t i o n of sub-seabottom p e r m a f r o s t i n the B e a u f o r t Sea by s e i s m i c methods; P a r t 1: s e i s m i c r e f r a c t i o n methods; in P r o c e e d i n g s , 3rd I n t e r n a t i o n a l C onference on P e r m a f r o s t , Edmonton, J u l y 1978; N a t i o n a l R e s e a r c h C o u n c i l of Canada, Ottawa; pp. 514-520. I n c e , S., 1962, W i n t e r regime of a t i d a l i n l e t i n the A r c t i c and the use of a i r b u b b l e r s f o r the p r o t e c t i o n of wharf s t r u c t u r e s ; P r o c e e d i n g s , 8 t h I n t e r n a t i o n a l C o n f e r e n c e on C o a s t a l E n g i n e e r i n g , M e x i c o ; pp. 521-532. I n g l i s , C.C., and A l l e n , F.H., 1957, The regime of the Thames E s t u a r y as a f f e c t e d by c u r r e n t s , s a l i n i t i e s , and r i v e r f l o w ; P r o c e e d i n g s , I n s t i t u t e of C i v i l E n g i n e e r s , v. 7, pp. 827-878; d i s c u s s i o n , v. 8, pp. 437-439. Inman, D.L., 1952, Measures f o r d e s c r i b i n g the s i z e d i s t r i b u t i o n of s e d i m e n t s ; J o u r n a l of Sedimentary P e t r o l o g y , v. 22, pp. 125-145. Inman, D.L., and Bagnold, R.A., 1963, L i t t o r a l p r o c e s s e s ; in. M.N. H i l l , ed., The sea: i d e a s and o b s e r v a t i o n s on p r o g r e s s i n the study of the seas; J . W i l e y and Sons, New York; v. 3, pp. 529-553. Inman, D.L., and Bowen, A . J . , 1963, Flume e x p e r i m e n t s on sand t r a n s p o r t by waves and c u r r e n t s ; P r o c e e d i n g s , 8 t h Conference on C o a s t a l E n g i n e e r i n g , American S o c i e t y of C i v i l E n g i n e e r s ; pp. 137-150. Ippen, A.T., 1966, S e d i m e n t a t i o n i n e s t u a r i e s ; in A.T. Ippen, ed., E s t u a r y and c o a s t l i n e hydrodynamics; McGraw-Hi.ll, New York; c h a p t e r 15, pp. 648-672. 473 Ippen, A.T., and Harleman, D.R.F., 1961, One-dimensional a n a l y s i s of s a l i n i t y i n t r u s i o n i n e s t u a r i e s ; U.S.A., Corps of E n g i n e e r s , Committee on T i d a l H y d r a u l i c s , T e c h n i c a l B u l l e t i n 5; 52 p. and 4 t a b l e s . I r a n i , R.R., and C a l l i s , C.F., 1963, P a r t i c l e s i z e : measurement, i n t e r p r e t a t i o n , and a p p l i c a t i o n ; J . W i l e y and Sons, New York. I v e r s e n , H.W., 1953, Waves and b r e a k e r s i n s h o a l i n g w a t e r ; P r o c e e d i n g s , 3 r d Conference on C o a s t a l E n g i n e e r i n g , Cambridge, M a s s a c h u s e t t s . J a c k s o n , R.G. I I , 1978, P r e l i m i n a r y e v a l u a t i o n of l i t h o f a c i e s models f o r meandering a l l u v i a l s treams; i n A.D. M i a l l , ed., F l u v i a l s e d i m e n t o l o g y ; Canadian S o c i e t y of P e t r o l e u m G e o l o g i s t s , Memoir 5; pp. 543-576. J a g u e t , J-M., and V e r n e t , J-P., 1976, Moment and g r a p h i c s i z e p arameters i n sediments of Lake Geneva ( S w i t z e r l a n d ) ; J o u r n a l of Sedimentary P e t r o l o g y , v. 46, pp. 305-312. J a r o c k i , W., 1957, [ E m p i r i c a l methods f o r t h e c a l c u l a t i o n of m a t e r i a l i n s u s p e n s i o n ( i n F r e n c h ) ] ; I n t e r n a t i o n a l A s s o c i a t i o n of S c i e n t i f i c H y d r o l o g y , Toronto G e n e r a l Assembly, v. 1, pp. 387-398. Johnson, C.W., Engleman, R.L., Sm i t h , J.P., and Hanson, C.L., 1977, H e l l e y - S m i t h b e d l o a d s a m p l e r s ; American S o c i e t y of C i v i l E n g i n e e r s , J o u r n a l of the H y d r a u l i c s D i v i s i o n , v. 103, pp. 1217-1221. Johnson, J.W., 1943, D i s t r i b u t i o n graphs of suspended matter c o n c e n t r a t i o n s ; T r a n s a c t i o n s , American S o c i e t y of C i v i l E n g i n e e r s , v. 69, pp. 941-956. Johnson, N.M. , L i k e n s , G.E., Bormann, F.H., F i s h e r , D.W., and P i e r c e , R.S., 1969, A wo r k i n g model f o r the v a r i a t i o n i n stream water c h e m i s t r y a t the Hubbard Brook E x p e r i m e n t a l F o r e s t , New Hampshire; Water Resources R e s e a r c h , v. 5, pp. 1353-1363. J o n e s , D.A., P r i c e , A.R.G., and Hughs, R.N., 1978, E c o l o g y of the h i g h s a l i n e l a g o o n s Dawhat as Sayh, A r a b i a n G u l f , Saudi A r a b i a ; E s t u a r i n e and C o a s t a l M arine S c i e n c e , v. 6, pp. 253-262. Judge, A.S., 1973, The p r e d i c t i o n of p e r m a f r o s t t h i c k n e s s ; Canadian G e o t e c h n i c a l J o u r n a l , v. 10, pp. 1-11. K a l k a n i s , G., 1964, T r a n s p o r t a t i o n of bed m a t e r i a l due t o wave a c t i o n ; U.S.A., C o a s t a l E n g i n e e r i n g R e s e a r c h C e n t e r , T e c h n i c a l Memorandum no. 2; 38 p. 474 Kana, T.W., 1977, Suspended sediment t r a n s p o r t a t P r i c e I n l e t , South C a r o l i n a ; _in C o a s t a l sediments '77; P r o c e e d i n g s , 5 t h Symposium of Waterway, P o r t , C o a s t a l and Ocean D i v i s i o n , American S o c i e t y of C i v i l E n g i n e e r s , New York; pp. 366-382. Kanasewich, E.R., 1975, Time sequence a n a l y s i s i n g e o p h y s i c s ; U n i v e r s i t y of A l b e r t a P r e s s , Edmonton; 2nd r e v i s e d e d i t i o n ; 364 p. K e l l e r h a l s , R., and B ray, D.L., 1971, Sampling p r o c e d u r e s f o r c o a r s e f l u v i a l s e d i m e n t s ; J o u r n a l of the H y d r a u l i c s D i v i s i o n , American S o c i e t y of C i v i l E n g i n e e r s , v. 97, pp. 1165-1180. K e l l e r h a l s , P., and Murray, J.W., 1969, T i d a l f l a t s a t Boundary Bay, F r a s e r R i v e r D e l t a , B.C.; B u l l e t i n of Canadian P e t r o l e u m Geology, v. 17, pp. 67-91. K e n d e l , R.E., J o h n s t o n , R.A.C., L o b s i g e r , U., and Kozak, M.D., 1975, F i s h e s of the Yukon c o a s t ; Canada, Department of Environment, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report 6; 114 p. K e u l e g a n , G.H., 1938, Laws of t u r b u l e n t f l o w i n open c h a n n e l s ; J o u r n a l of R e s e a r c h , N a t i o n a l Bureau of S t a n d a r d s (U.S.A.), v. 21, pp. 707-741. K i n n e y , J . J . , S c h e l l , D.M., A l e x a n d e r , V., B u r r e l l , D.C, Cooney, R., and N a i d u , A.S., 1972, B a s e l i n e d a t a s t u d y of t h e A l a s k a n A r c t i c a q u a t i c environment; U n i v e r s i t y of A l a s k a , I n s t i t u t e of M a r i n e S c i e n c e , F a i r b a n k s , Report R72-3; 257 p. K i r b y , R.R., and P a r k e r , W.R., 1977, The p h y s i c a l c h a r a c t e r i s t i c s and e n v i r o n m e n t a l s i g n i f i c a n c e of f i n e - s e d i m e n t s u s p e n s i o n s i n e s t u a r i e s ; in E s t u a r i e s , g e o p h y s i c s and the environment; N a t i o n a l Academy of S c i e n c e s , Washington, D.C; pp. 110-120. K j e r f v e , B., 1975, T i d e and f a i r - w e a t h e r wind e f f e c t s i n a b a r - b u i l t L o u i s i a n a e s t u a r y ; _in L.E. C r o n i n , ed., P r o c e e d i n g s , 2nd I n t e r n a t i o n a l E s t u a r i n e Research C o n f e r e n c e ; Academic P r e s s , New York; v. 2, pp. 47-62. K j e r f v e , B., G r e e r , J.E., and C r o u t , R.L., 1978, Low-frequency response of e s t u a r i n e sea l e v e l t o n o n - l o c a l f o r c i n g ; in M.L. W i l e y , ed., E s t u a r i n e i n t e r a c t i o n s ; P r o c e e d i n g s , 4 t h I n t e r n a t i o n a l E s t u a r i n e R esearch C o n f e r e n c e ; Academic P r e s s , New York; pp. 497-513. 475 K l e i b e r , P., and E r l e b a c h , W.E., 1977, L i m i t a t i o n s of s i n g l e water samples i n r e p r e s e n t i n g mean water q u a l i t y ; I I I , E f f e c t of v a r i a b i l i t y i n c o n c e n t r a t i o n measurements on e s t i m a t e s of n u t r i e n t l o a d i n g s i n t h e Squamish R i v e r , B.C.; Canada, Department of Environment, Water Q u a l i t y B r a nch, Vancouver, ; T e c h n i c a l B u l l e t i n no. 103; 9 p. K n i g h t , J . , 1971, D i s t r i b u t i o n a l t r e n d s i n the r e c e n t marine sediments of T a s i u j a q Cove of Ekal u g a d F i o r d , B a f f i n I s l a n d , N.W.T.; M a r i t i m e Sediments, v. 7, pp. 1-18. K n i g h t , R.J., and Church, M., 1970, T a s i u j a q Cove, E k a l u g a d F i o r d , B a f f i n I s l a n d ; Canadian Oceanographic Data C e n t r e , 1970 Data Record S e r i e s , no. 1, pp. 31-45, 57-62. Knoth, J.S., and Nummedal, D., 1977, Longshore sediment t r a n s p o r t u s i n g f l u o r e s c e n t t r a c e r ; i_n C o a s t a l sediments '77; P r o c e e d i n g s , 5 t h Symposium of Waterway, P o r t , C o a s t a l and Ocean D i v i s i o n of American S o c i e t y of C i v i l E n g i n e e r s , C h a r l e s t o n , S . C, November 1977; American S o c i e t y of C i v i l E n g i n e e r s , New York; pp. 383-398. Knudsen, M. , ed., 1901, H y d r o g r a p h i c a l t a b l e s ; G.E.C. Gad, Copenhagen. Komar, P.D., 1976a, The t r a n s p o r t of c o h e s i o n l e s s sediments on c o n t i n e n t a l s h e l v e s ; ijn D.J. S t a n l e y and D.J.P. S w i f t , eds, Marine sediment t r a n p o r t and e n v i r o n m e n t a l management; American G e o l o g i c a l I n s t i t u t e and J . W i l e y and Sons, New York; pp. 107-125. Komar, P.D., 1976b, Beach p r o c e s s e s and s e d i m e n t a t i o n ; P r e n t i c e - H a l l I n c . , Englewood C l i f f s , N.J.; 429 p. Komar, P.D., and Inman, D.L., 1970, Longshore sand t r a n s p o r t on beaches; J o u r n a l of G e o p h y s i c a l R e s e a r c h , v. 75, pp. 5914-5927. Kovacs, A., and M e l l o r , M., 1971, I n v e s t i g a t i o n of i c e i s l a n d s i n Babbage B i g h t ; C r e a r e I n c . , Hanover, N.H.; T e c h n i c a l Note TN-118; 17 p. and 7 f i g u r e s . Kovacs, A., and M e l l o r , M., 1974, Sea i c e morphology and i c e as a g e o l o g i c agent i n the s o u t h e r n B e a u f o r t Sea; i_n J.C. Reed and J.E. S a t e r , eds, The c o a s t and s h e l f of the B e a u f o r t Sea; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , A r l i n g t o n , Va.; pp. 113-161. K r a f t , J . C , 1971, Sedimentary f a c i e s p a t t e r n s and g e o l o g i c h i s t o r y of a Holocene marine t r a n s g r e s s i o n ; G e o l o g i c a l S o c i e t y of America B u l l e t i n , v. 82, pp. 2131-2158. 476 Krumbein, W.C., 1963, A g e o l o g i c a l p r o c e s s - r e s p o n s e model f o r a n a l y s i s of beach phenomena; U.S.A., Beach E r o s i o n Board, B u l l e t i n 17; pp. 1-15. Krumbein, W.C., and S l o s s , L.L., 1963, S t r a t i g r a p h y and s e d i m e n t a t i o n ; 2nd e d i t i o n ; W.H. Freeman and Company, San F r a n c i s c o and London; 660 p. Krumgalz, B.S., Hornung, H., and Oren, O.H., 1980, The study of a n a t u r a l h y p e r s a l i n e l a g o o n i n a d e s e r t a r e a (the B a r d a w i l Lagoon i n n o r t h e r n S i n a i ) ; E s t u a r i n e and C o a s t a l M a r i n e S c i e n c e , v. 10, pp. 403-415. Kumar, N., and Sanders, J.E., 1974, I n l e t sequence: a v e r t i c a l s u c c e s s i o n of s edimentary s t r u c t u r e s and t e x t u r e s c r e a t e d by the l a t e r a l m i g r a t i o n of t i d a l i n l e t s ; S e d i m e n t o l o g y , v. 21, pp. 491-532. Lachenbruch, A.H., and Brewer, M.C., 1961, Geothermal e v i d e n c e f o r r e c e n t c l i m a t i c change near Barrow, A l a s k a [ a b s t r a c t ] ; G e o l o g i c a l S o c i e t y of A m e r i c a , S p e c i a l Paper 68; p. 117. L a c henbruch, A.H., and M a r s h a l l , B.V., 1969, Heat f l o w i n the A r c t i c ; A r c t i c , v. 22, pp. 300-311. Lake, R.A., and W alker, E.R., 1973, Notes on t h e oceanography of d ' I b e r v i l l e F i o r d ; A r c t i c , v. 26, pp. 222-229. L a n g b e i n , W.B., and L e o p o l d , L.B., 1964, Q u a s i - e q u i l i b r i u m s t a t e s i n c h a n n e l morphology; American J o u r n a l of S c i e n c e , v. 262, pp. 782-794. Leatherman, S.P., 1976, B a r r i e r i s l a n d dynamics: overwash p r o c e s s e s and e o l i a n t r a n s p o r t ; P r o c e e d i n g s , 15th I n t e r n a t i o n a l Conference on C o a s t a l E n g i n e e r i n g , H o n o l u l u ; pp. 1958-1974. L e f f i n g w e l l , E. de K., 1919, The Canning R i v e r r e g i o n , n o r t h e r n A l a s k a ; U.S. G e o l o g i c a l Survey, P r o f e s s i o n a l Paper 109; 251 p. L e o p o l d , L.B., and Emmett, W.W., 1976, Bedload measurements, E a s t Fork R i v e r , Wyoming; P r o c e e d i n g s , N a t i o n a l Academy of S c i e n c e (U.S.A.), v. 73, pp. 1000-1004. L e o p o l d , L.B., and Maddock, T.M., J r , 1953, The h y d r a u l i c geometry of stream c h a n n e l s and some p h y s i o g r a p h i c i m p l i c a t i o n s ; U.S. G e o l o g i c a l Survey, P r o f e s s i o n a l Paper 252; 56 p. L e s h t , B.M., C l a r k e , T.L., Young, R.A., and S w i f t , D.J.P., 1979, P o i n t measurement of sediment f l u x i n a combined wave-current f l o w : o b s e r v a t i o n s compared w i t h c a l c u l a t e d t r a n s p o r t [ a b s t r a c t ] ; Eos, v. 60, p. 285. 477 L e w e l l e n , R.I., 1973, The o c c u r r e n c e and c h a r a c t e r i s t i c s of n e a r - s h o r e p e r m a f r o s t ; in P e r m a f r o s t , N o r t h American c o n t r i b u t i o n ; 2nd I n t e r n a t i o n a l C o n f e r e n c e , Y a k u t s k , J u l y 1973; N a t i o n a l Academy of S c i e n c e s , Washington, D.C; pp. 131-136. L e w i s , C P . , 1975, Sediments and sedimentary p r o c e s s e s , Yukon B e a u f o r t Sea c o a s t ; in Report of A c t i v i t i e s , P a r t B; G e o l o g i c a l Survey of Canada, Paper 75-1B; pp. 165-170. L e w i s , C P . , 1977, D e l t a i c p r o c e s s e s and d e l t a morphology, Mackenzie D e l t a , N.W.T. [ a b s t r a c t ] ; i_n G e o l o g i c a l A s s o c i a t i o n of Canada, Program w i t h A b s t r a c t s , v. 2, p. 32. L e w i s , C P . , and F o r b e s , D.L., 1974, Sediments and s e d i m e n t a r y p r o c e s s e s , Yukon B e a u f o r t Sea c o a s t ; Canada, E n v i r o n m e n t a l - S o c i a l Committee, N o r t h e r n P i p e l i n e s , Task F o r c e on N o r t h e r n O i l Development, Report no. 74-29; 40 p. L e w i s , C P . , and F o r b e s , D.L., 1975, C o a s t a l sedimentary p r o c e s s e s and sediments, s o u t h e r n Canadian B e a u f o r t Sea; Canada, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report 24; 68 p. L i k e s , E.H., 1966, S u r f a c e water d i s c h a r g e of Ogotoruk Creek; i n N.J. W i l i m o v s k y and J.N. W o l f e , eds, Environment of the Cape Thompson r e g i o n , A l a s k a ; U.S. Atomic Energy Commission; pp. 125-131. L i s i t z i n , E., 1957, On the r e d u c i n g i n f l u e n c e of sea i c e on the p i l i n g - u p of water due t o wind s t r e s s ; S o c i e t a s S c i e n t i a r u m F e n n i c a , P h y s i c s - M a t h e m a t i c s ; pp. 20-27. Loewy, E., 1970, Model t e s t s and s t u d i e s f o r P o r t R a s h i d , D u b a i ; in P r o c e e d i n g s , 12th C o a s t a l E n g i n e e r i n g C o n f e r e n c e , Washington, D.C, September 1970; American S o c i e t y of C i v i l E n g i n e e r s , New York; pp. 1137-1149. L o n g u e t - H i g g i n s , M.S., 1952, On the s t a t i s t i c a l d i s t r i b u t i o n of the h e i g h t of sea waves; J o u r n a l of Marine R e s e a r c h , v. 11, pp. 245-266. L o n g u e t - H i g g i n s , M.S. 1953, Mass t r a n s p o r t i n water waves; P h i l o s o p h i c a l T r a n s a c t i o n s , R o y a l S o c i e t y (London), v. 245A, pp. 535-581. McCann, S.B., 1979, B a r r i e r i s l a n d s i n the s o u t h e r n Gulf, of St Lawrence, Canada; i_n S.P. Leatherman, ed., B a r r i e r i s l a n d s from the G u l f of St Lawrence t o the G u l f of M e x i c o ; P r o c e e d i n g s of a c o a s t a l r e s e a r c h symposium, Bos t o n , M a s s a c h u s e t t s , 1978; Academic P r e s s , New York; pp. 29-63. 478 McCave, I.N., 1970, D e p o s i t i o n of f i n e - g r a i n e d suspended sediment from t i d a l c u r r e n t s ; J o u r n a l of G e o p h y s i c a l R e s e a r c h , v. 75, pp. 4151-4159. McCloy, J.M., 1970, H y d r o m e t e o r o l o g i c a l r e l a t i o n s h i p s and t h e i r e f f e c t s on the l e v e e s of a s m a l l A r c t i c d e l t a ; G e o g r a f i s k a A n n a l e r , v. 52A, pp. 223-241. McCloy, J.M., 1971, A c c r e t i o n a r y c h a n n e l f e a t u r e s i n a s m a l l A r c t i c d e l t a [ a b s t r a c t ] ; _i_n D.S. G o r s l i n e , ed. , A b s t r a c t volume, 2nd N a t i o n a l C o a s t a l and Sh a l l o w Water Research C o n f e r e n c e , U n i v e r s i t y of Southern C a l i f o r n i a , Los An g e l e s ; p. 139. McDonald, B.C., and L e w i s , C P . , 1973, Geomorphic and s e d i m e n t o l o g i c p r o c e s s e s of r i v e r s and c o a s t , Yukon C o a s t a l P l a i n ; Canada, E n v i r o n m e n t a l - S o c i a l Committee, N o r t h e r n P i p e l i n e s , Task Force on N o r t h e r n O i l Development, Report 73-39; 245 p. McDowell, D.M., and O'Connor, B.A., 1977, H y d r a u l i c b e h a v i o u r of e s t u a r i e s ; M a c m i l l a n , London; 292 p. MacKay, D.K., 1966, C h a r a c t e r i s t i c s of r i v e r d i s c h a r g e and r u n o f f i n Canada; G e o g r a p h i c a l B u l l e t i n , v. 8, pp. 219-227. Mackay, J.R., 1959, G l a c i e r i c e - t h r u s t f e a t u r e s of the Yukon c o a s t ; G e o g r a p h i c a l B u l l e t i n , no. 13, pp. 5-21. Mackay J.R., 1960, Notes on s m a l l boat h a r b o u r s of the Yukon c o a s t ; G e o g r a p h i c a l B u l l e t i n , no. 15, pp. 19-30. Mackay, J.R., 1963a, The Mackenzie D e l t a a r e a , N.W.T.; Canada, Department of Mines and T e c h n i c a l S u r v e y s , G e o g r a p h i c a l Branch, Memoir 8; 202 p. Mackay, J.R., 1963b, Notes on the s h o r e l i n e r e c e s s i o n a l o n g the co a s t of the Yukon T e r r i t o r y ; A r c t i c , v. 16, pp. 195-197. Mackay, J.R., 1972, O f f s h o r e p e r m a f r o s t and ground i c e , sou t h e r n B e a u f o r t Sea, Canada; Canadian J o u r n a l of E a r t h S c i e n c e s , v. 9, pp. 1550-1561. Mackay, J.R., 1975a, R e l i c t i c e wedges, P e l l y I s l a n d , N.W.T. (107 C/12); i r i Report of A c t i v i t i e s , P a r t A; G e o l o g i c a l Survey of Canada, Paper 75-1A; pp. 469-470. Mackay, J.R., 1975b, The s t a b i l i t y of p e r m a f r o s t and r e c e n t c l i m a t i c change i n the Mackenzie V a l l e y , N.W.T.; i n Report of A c t i v i t i e s , P a r t B; G e o l o g i c a l Survey of Canada, Paper 75-1B; pp. 173-176. 479 Mackay, J.R., 1976, I c e wedges as i n d i c a t o r s of r e c e n t c l i m a t i c change, western A r c t i c c o a s t ; i_n Report of A c t i v i t i e s , P a r t A; G e o l o g i c a l Survey of Canada, Paper 76-1A; pp. 233-234. Mackay, J.R., 1978, F r e s h w a t e r s h e l l e d i n v e r t e b r a t e i n d i c a t o r s of p a l e o c l i m a t e i n n o r t h w e s t e r n Canada d u r i n g l a t e g l a c i a l t i m e s : d i s c u s s i o n ; Canadian J o u r n a l of E a r t h S c i e n c e s , v. 15, pp. 461-462. Mackay, J.R., and MacKay, D.K., 1974, Snow c o v e r and ground t e m p e r a t u r e s , G a r r y I s l a n d , N.W.T.; A r c t i c , v. 27, pp. 287-296. Mackay, J.R., and S t a g e r , J.K., 1966, The s t r u c t u r e of some p i n g o s i n the Mackenzie D e l t a a r e a , N.W.T.; G e o g r a p h i c a l B u l l e t i n , v. 8, pp. 360-368. Mackay, J.R., Rampton, V.N., and F y l e s , J.G., 1972, R e l i c P l e i s t o c e n e p e r m a f r o s t , western A r c t i c , Canada; S c i e n c e , v. 176, pp. 1321-1323. McLeod, W.R., and Hodder, D.T., 1978, An e x a m i n a t i o n of lo n g term i c e f o r e c a s t and p e r i o d i c i t i e s of the B e a u f o r t Sea; i n D.B. Muggeridge, ed., P r o c e e d i n g s , 4 t h I n t e r n a t i o n a l C o n f e r e n c e on P o r t and Ocean E n g i n e e r i n g under A r c t i c C o n d i t i o n s ; Memorial U n i v e r s i t y , St John's, Newfoundland, 1977; v. 2, pp. 1035-1050. M a c N e i l l , M.R., and G a r r e t t , J . F . , 1975, Open water s u r f a c e c u r r e n t s ; Canada, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report no. 17; 113 p. Madsen, O.S., and G r a n t , W.D., 1976, Q u a n t i t a t i v e d e s c r i p t i o n of sediment t r a n s p o r t by waves; ir\ P r o c e e d i n g s , 15th Con f e r e n c e on C o a s t a l E n g i n e e r i n g , H o n o l u l u , J u l y 1976; American S o c i e t y of C i v i l E n g i n e e r s , New York; v. 2, pp. 1093-1112. M a n d e l b r o t , B.B., and W a l l i s , J.R., 1969, Some l o n g - r u n p r o p e r t i e s of g e o p h y s i c a l r e c o r d s ; Water Resources R e s e a r c h , v. 5, pp. 321-340. Mann, H.B., and Whitney, D.R., 1947, On a t e s t pf whether one of two random v a r i a b l e s i s s t o c h a s t i c a l l y l a r g e r than the o t h e r ; A n n a l s of M a t h e m a t i c a l S t a t i s t i c s , v. 18, pp. 52-54. Markham, W.E., 1975, I c e c l i m a t o l o g y of the B e a u f o r t Sea; Canada, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report no. 26; 87 p. 480 Marko, J.R., 1975, S a t e l l i t e o b s e r v a t i o n s of the B e a u f o r t Sea i c e c o v e r ; Canada, B e a u f o r t Sea P r o j e c t , T e c h n i c a l Report no. 34; 114 p. \" Mather, J.R., and T h o r n t h w a i t e , C.W., 1956, M i c r o c l i m a t i c i n v e s t i g a t i o n s a t P o i n t Barrow, A l a s k a , 1956; D r e x e l I n s t i t u t e of Technology, C e n t e r t o n , N.J., L a b o r a t o r y of C l i m a t o l o g y ; P u b l i c a t i o n s i n C l i m a t o l o g y , v. 9, 51 p. Matthews, J.B., 1970, T i d e s a t P o i n t Barrow; The N o r t h e r n E n g i n e e r , v. 2, pp. 12-13. Matthews, J.B., 1979, C i r c u l a t i o n i n a s e a s o n a l l y i c e - c o v e r e d A r c t i c lagoon e s t u a r y [ a b s t r a c t ] ; in A b s t r a c t s , I n t e r d i s c i p l i n a r y Symposia, I n t e r n a t i o n a l Union of Geodesy and G e o p h y s i c s , 1 7 t h G e n e r a l Assembly, C a n b e r r a , December 1979; p. 124. Matthews, J.B., i n p r e s s , O b s e r v a t i o n s of u n d e r i c e c i r c u l a t i o n i n a s h a l l o w lagoon i n the A l a s k a n B e a u f o r t Sea; Ocean Management. Meade, R.H., 1969, Landward t r a n s p o r t of bottom sediments i n e s t u a r i e s of the A t l a n t i c C o a s t a l P l a i n ; J o u r n a l of Sedimentary P e t r o l o g y , v. 39, pp. 222-234. M i a l l , A.D., 1977, A r e v i e w of t h e b r a i d e d - r i v e r d e p o s i t i o n a l environment; E a r t h S c i e n c e Reviews, v. 13, pp. 1-62. M i a l l , A.D., 1978, L i t h o f a c i e s t y p e s and v e r t i c a l p r o f i l e models i n b r a i d e d r i v e r d e p o s i t s : a summary; _in A.D. M i a l l , ed., F l u v i a l s e d i m e n t o l o g y ; Canadian S o c i e t y of P e t r o l e u m G e o l o g i s t s , Memoir 5; pp. 597-604. M i c h e l , B., 1978, I c e mechanics; Les P r e s s e s de l ' U n i v e r s i t e L a v a l , Quebec; 499 p. M i d d l e t o n , G.V., 1976, H y d r a u l i c i n t e r p r e t a t i o n of sand s i z e d i s t r i b u t i o n s ; J o u r n a l of Geology, v. 84, pp. 405-426. M i g n i o t , C , 1968, [ I n v e s t i g a t i o n of p h y s i c a l p r o p e r t i e s and h y d r a u l i c b e h a v i o u r of d i f f e r e n t v e r y f i n e sediments ( i n F r e n c h ) ] ; La H o u i l l e B l a n c h e , v. 23, pp. 591-620. M i k h a i l o v , V.N., 1966, H y d r o l o g y and f o r m a t i o n of r i v e r mouth b a r s ; i_n S c i e n t i f i c problems of the humid t r o p i c a l zone d e l t a s and t h e i r i m p l i c a t i o n s ; P r o c e e d i n g s , Dacca Symposium;. UNESCO, P a r i s ; pp. 59-64. M i l e s , M., 1976, An i n v e s t i g a t i o n of r i v e r b a n k and c o a s t a l e r o s i o n , Banks I s l a n d , D i s t r i c t of F r a n k l i n ; i_n Report of A c t i v i t i e s , P a r t A; G e o l o g i c a l Survey of Canada, Paper 76-1A; pp. 195-200. 481 M i l e s , M., 1977, C o a s t a l and r i v e r b a n k s t a b i l i t y on Banks I s l a n d , N.W.T., Canada; in P r o c e e d i n g s , 3 r d N a t i o n a l H y d r o t e c h n i c a l C o n f e r e n c e , Quebec, May 1977; pp. 972-991. M i l l e r o , F . J . , 1974, Seawater as a multicomponent e l e c t r o l y t e s o l u t i o n ; i j i E.D. G o l d b e r g , ed., The s e a : i d e a s and o b s e r v a t i o n s on p r o g r e s s i n the study of the se a s ; J . W i l e y and Sons, New York; v. 5, pp. 3-80. M i t c h e l l , J.M., J r , 1961, Changes of mean temperature s i n c e 1870; A n n a l s of the New York Academy of S c i e n c e s , v. 95, pp. 235-250. Moore, H.B., 1931, The s p e c i f i c i d e n t i f i c a t i o n of f a e c a l p e l l e t s ; J o u r n a l of the M a r i n e B i o l o g i c a l A s s o c i a t i o n of the U n i t e d Kingdom, v. 17 ( n . s . ) , p. 325. More, R.J., 1967, H y d r o l o g i c a l models and geography; ir\ R.J. C h o r l e y and P. Ha g g e t t , eds, Models i n geography; Methuen, London; pp. 145-185. M o r i s o n , S.R., and T a y l o r , R.B., 1978, P h y s i c a l c h a r a c t e r i s t i c s and s e a s o n a l changes i n an A r c t i c e s t u a r i n e environment; i n C u r r e n t R e s e a r c h , P a r t B; G e o l o g i c a l Survey of Canada, Paper 78-1B; pp. 101-106. Munk, W.H., 1962, Long ocean waves; in M.N. H i l l , ed., The sea: i d e a s and o b s e r v a t i o n s on p r o g r e s s i n the study of the seas; J . W i l e y and Sons, New York; v. 1, pp. 647-663. N a g a r a j a , V.N., 1966, H y d r o m e t e o r o l o g i c a l and t i d a l problems of the d e l t a i c a r e a s i n I n d i a ; _in S c i e n t i f i c problems of the humid t r o p i c a l zone d e l t a s and t h e i r i m p l i c a t i o n s ; P r o c e e d i n g s , Dacca Symposium, February-March 1964; UNESCO, P a r i s ; pp. 115-120. N e l s o n , B.W., 1959, T r a n s p o r t a t i o n of c o l l o i d a l sediment i n the f r e s h w a t e r marine t r a n s i t i o n zone [ a b s t r a c t ] ; i_n M. S e a r s , ed., 1 s t I n t e r n a t i o n a l Oceanographic Congress p r e p r i n t s ; American A s s o c i a t i o n f o r the Advancement of S c i e n c e , Washington, D.C; pp. 640-641. N e l s o n , B.W., 1970, Hydrography, sediment d i s p e r s a l , and r e c e n t h i s t o r i c a l development of the Po R i v e r D e l t a , I t a l y ; ijn J.P. Morgan, ed., D e l t a i c s e d i m e n t a t i o n , modern and a n c i e n t ; S o c i e t y of Economic P a l e o n t o l o g i s t s and M i n e r a l o g i s t s , T u l s a , Oklahoma; S p e c i a l P u b l i c a t i o n no. 15; pp. 152-184. N i c h o l s , R.L., 1961, C h a r a c t e r i s t i c s of beaches formed i n p o l a r c l i m a t e s ; American J o u r n a l of S c i e n c e , v. 259, pp. 694-708. 482 N i c h o l s , M.M., 1977, Response and r e c o v e r y of an e s t u a r y f o l l o w i n g a r i v e r f l o o d ; J o u r n a l of Sedimentary P e t r o l o g y , v. 47, pp. 1171-1186. N i c h o l s , M.M., and Poor, G., 1967, Sediment t r a n s p o r t i n a c o a s t a l p l a i n e s t u a r y ; J o u r n a l of the Waterways and Harbors D i v i s i o n ; P r o c e e d i n g s , American S o c i e t y of C i v i l E n g i n e e r s , v. 93, pp. 83-95. N i l s s o n , B., 1971, [Sediment t r a n s p o r t i n Swedish r i v e r s , an I n t e r n a t i o n a l H y d r o l o g i c a l Decade p r o j e c t ; p a r t 1, methods ( i n S w e d i s h ) ] ; U p p s a l a U n i v e r s i t e t , N a t u r g e o g r a f i s k a I n s t i t u t i o n e n , UNGI Rapport 4; 83 p. and appe n d i x . N i l s s o n , B., 1972, [Sediment t r a n s p o r t i n Swedish r i v e r s , an I n t e r n a t i o n a l H y d r o l o g i c a l Decade p r o j e c t ; p a r t 2, catchment a r e a s , s t a t i o n s and r e s u l t s i n 1967-69 ( i n S w e d i s h ) ] ; U p p s a l a U n i v e r s i t e t , N a t u r g e o g r a f i s k a I n s t i t u t i o n e n , UNGI Rapport 16; 250 p. N o r r i s , D.K., 1973, T e c t o n i c s t y l e s of n o r t h e r n Yukon T e r r i t o r y and n o r t h w e s t e r n D i s t r i c t of Mackenzie, Canada; i r i M.C. R i t c h e r , ed., A r c t i c g e o l o g y ; American A s s o c i a t i o n of P e t r o l e u m G e o l o g i s t s , Memoir 19; pp. 23-40. N o r r i s , D.K., P r i c e , R.A., and Mountjoy, E.W., 1963, Geology, n o r t h e r n Yukon T e r r i t o r y and n o r t h w e s t e r n D i s t r i c t of Ma c k e n z i e ; G e o l o g i c a l Survey of Canada, Map 10-1963. O f f i c e r , C.B., 1976, P h y s i c a l oceanography of e s t u a r i e s (and a s s o c i a t e d c o a s t a l w a t e r s ) ; J . W i l e y and Sons, New York; 465 p. O f f i c e r , C.B., and G e o p h y s i c s Study Committee, 1977, Overview and recommendations; i_n E s t u a r i e s , g e o p h y s i c s , and the environment; N a t i o n a l Academy of S c i e n c e s , Washington, D.C; pp. 1-10. Oguss, E., and E r l e b a c h , W.E., 1976, L i m i t a t i o n s of s i n g l e water samples i n r e p r e s e n t i n g mean water q u a l i t y ; I , \u00E2\u0080\u00A2Thompson R i v e r a t Shaw S p r i n g , B r i t i s h C olumbia; Canada, Department of Environment, Water Q u a l i t y Branch, Vancouver; T e c h n i c a l B u l l e t i n no. 95; 7 p. and Appendix. O ' N e i l l , J . J . , 1924, Geology of the A r c t i c c o a s t of Canada, west of the Kent P e n i n s u l a ; in Report of Canadian A r c t i c e x p e d i t i o n 1913-1918; v. 2, Geology and geography; pp. 10A-18A. Owens, E.H., 1975, B a r r i e r beaches and sediment t r a n s p o r t i n the s o u t h e r n G u l f of St Lawrence, Canada; i r i P r o c e e d i n g s , 14th C o a s t a l . E n g i n e e r i n g C o n f e r e n c e , Copenhagen, June 1974; American S o c i e t y of C i v i l E n g i n e e r s , New York; v. 2, pp. 1177-1193. 4 8 3 Owens, E.H., 1976, The e f f e c t s of i c e on the l i t t o r a l zone, R i c h i b u c t o Head, e a s t e r n New B r u n s w i c k ; Revue de Geographie de M o n t r e a l , v. 30, pp. 95-104. Owens, E.H., 1976, Temporal v a r i a t i o n s i n beach and n e a r s h o r e dynamics; J o u r n a l of Sedimentary P e t r o l o g y , v. 47, pp. 168-190. Owens, E.H., and McCann, S.B., 1970, The r o l e of i c e i n the A r c t i c beach environment w i t h s p e c i a l r e f e r e n c e t o Cape R i c k e t t s , southwest Devon I s l a n d , N.W.T., Canada; American J o u r n a l of S c i e n c e , v. 268, pp. 397-414. Owens, E.H., and McCann, S.B., 1980, The c o a s t a l geomorphology of the Magdalen I s l a n d s , Quebec; rn S.B. McCann, ed., The c o a s t l i n e of Canada; G e o l o g i c a l Survey of Canada, Paper 80-10; pp. 51-72. P a e r l , H.W., 1973, D e t r i t u s i n Lake Tahoe: s t r u c t u r a l m o d i f i c a t i o n by a t t a c h e d m i c r o f l o r a ; S c i e n c e , v. 180, pp. 496-498. P a q u e t t e , R.G., and Bourke, R.H., 1974, O b s e r v a t i o n s on the c o a s t a l c u r r e n t of A r c t i c A l a s k a ; J o u r n a l of Marine R e s e a r c h , v. 32, pp. 195-207. P a r t h e n a i d e s , E., 1977, U n i f i e d view of wash l o a d and b e d - m a t e r i a l l o a d ; J o u r n a l of the H y d r a u l i c s D i v i s i o n , American S o c i e t y of C i v i l E n g i n e e r s , v. 103, pp. 1037-1057. P a t t u l l o , J . , Munk, W., R e v e l l e , R., and S t r o n g , E., 1955, The s e a s o n a l o s c i l l a t i o n s i n sea l e v e l ; J o u r n a l of Marine R e s e a r c h , v. 14, pp. 88-156. Peake, J.S., and Walker, H.J., 1971, Albedo changes i n an A r c t i c d e l t a [ a b s t r a c t ] ; jin D.S. G o r s l i n e , ed. , A b s t r a c t Volume, 2nd N a t i o n a l C o a s t a l and S h a l l o w Water Research C o n f e r e n c e , U n i v e r s i t y of Southern C a l i f o r n i a , Los A n g e l e s ; p. 176. P e a r s o n , A.M., and Nagy, J . , 1976, The summer c l i m a t e a t Sam Lake, Yukon T e r r i t o r y ; A r c t i c , v. 29, pp. 159-164. P e l l e t i e r , B.R., 1980, Geology, B e a u f o r t - M a c k e n z i e B a s i n , D i s t r i c t of Mackenzie and Yukon T e r r i t o r y ; G e o l o g i c a l Survey of Canada, Map 1509A. P e r k i n , R.G., and Walker, E.R., 1971, S a l i n i t y c a l c u l a t i o n s from rn s i t u measurements; Canada, Department of Environment, P a c i f i c M a r i n e S c i e n c e Report no. 71-1. 484 P e t t e r s o n , H., 1920, I n t e r n a l movements i n c o a s t a l waters and m e t e o r o l o g i c a l phenomena; G e o g r a f i s k a A n n a l e r , v. 1, pp. 32. P i s s a r t , A., 1967, [The n a t u r e of the r u n o f f regime on P r i n c e P a t r i c k I s l a n d , Canadian A r c t i c ) ( i n F r e n c h ) ] ; B i u l e t y n P e r i g l a c j a l n y , v. 16, pp. 217-224. Posner, G.S., 1959, P r e l i m i n a r y o c e a n o g r a p h i c s t u d i e s of the p o s i t i v e b a r - b u i l t e s t u a r i e s of N o r t h C a r o l i n a , U.S.A. [ a b s t r a c t ] ; in M. S e a r s , ed., 1 s t I n t e r n a t i o n a l Oceanographic Congress p r e p r i n t s ; American A s s o c i a t i o n f o r the Advancement of S c i e n c e , Washington, D.C; pp. 704-705. Postma, H., 1954, H ydrology of the Dutch Wadden Sea; A r c h i v e s N e e r l a n d a i s e s de Z o o l o g i e , v. 10, pp. 405-511. Postma, H., 1961, T r a n s p o r t and a c c u m u l a t i o n of suspended m a t t e r i n the Dutch Wadden Sea; N e t h e r l a n d s J o u r n a l of Sea R e s e a r c h , v. 1, pp. 148-190. Postma, H.,-1967, Sediment t r a n s p o r t and s e d i m e n t a t i o n i n the e s t u a r i n e environment; ir\ G. L a u f f , ed., E s t u a r i e s ; American A s s o c i a t i o n f o r the /Advancement of S c i e n c e , P u b l i c a t i o n 83; pp. 158-179. Postma, H., and K a l l e , K., 1955, [The o r i g i n of the t u r b i d i t y zone i n the lower reaches of r i v e r s ( i n German)]; Deutsche H y d r o g r a p h i s c h e Z e i t s c h r i f t , v. 8, pp. 137-144. P r e s t , V.K., 1969, R e t r e a t of W i s c o n s i n and Recent i c e i n N o r t h A m e r i c a ; G e o l o g i c a l Survey of Canada, Map 1257A. P r i c e , W.A., 1963, P a t t e r n s of f l o w and c h a n n e l i n g i n t i d a l i n l e t s ; J o u r n a l of\" Sedimentary P e t r o l o g y , v. 33, pp. 279-290. P r i t c h a r d , D.W., 1955, E s t u a r i n e c i r c u l a t i o n p a t t e r n s ; American S o c i e t y of C i v i l E n g i n e e r s , P r o c e e d i n g s , v. 8, pp. 717/1-717/11. P r i t c h a r d , D.W., 1956, The dynamic s t r u c t u r e of a c o a s t a l p l a i n e s t u a r y ; J o u r n a l of M a r i n e R e s e a r c h , v. 15, pp. 33-42. Proudman, J . , 1955, The p r o p a g a t i o n of t i d e and surge i n an e s t u a r y ; P r o c e e d i n g s , R o y a l S o c i e t y (London)., v. 231A, pp. 8-24. Rampton, -V.N., 1974a, T e r r a i n e v a l u a t i o n w i t h r e s p e c t t o p i p e l i n e c o n s t r u c t i o n , Mackenzie T r a n s p o r t a t i o n C o r r i d o r , n o r t h e r n p a r t , l a t i t u d e 68\u00C2\u00B0N t o c o a s t ; Canada, E n v i r o n m e n t a l - S o c i a l Committee, N o r t h e r n P i p e l i n e s , Task F o r c e on N o r t h e r n O i l Development, Report no. 73-47; 44 p. 485 Rampton, V.N., 1974b, S u r f i c i a l g e o l o g y, H e r s c h e l I s l a n d map-sheet; _in G e o l o g i c a l Survey of Canada, O p e n - f i l e no. 191. Rampton, V.N., i n p r e s s , Q u a t e r n a r y geology of the Yukon C o a s t a l P l a i n ; G e o l o g i c a l Survey of Canada, B u l l e t i n 317. Rampton, V.N., and D u g a l , J.B., 1974, Q u a t e r n a r y s t r a t i g r a p h y and geomorphic p r o c e s s e s on the A r c t i c c o a s t a l p l a i n and a d j a c e n t a r e a s , Demarcation P o i n t , Yukon T e r r i t o r y , t o M a l l o c h H i l l , D i s t r i c t of Mackenzie; in Report of A c t i v i t i e s , P a r t A; G e o l o g i c a l Survey of Canada, Paper 74-1A; p. 283. R a n n i e , W.F., 1978, An approach t o the p r e d i c t i o n of suspended sediment r a t i n g c u r v e s ; in R. D a v i d s o n - A r n o t t and W. N i c k l i n g , eds, Research i n f l u v i a l geomorphology; P r o c e e d i n g s , 5 t h Guelph Symposium on Geomorphology, 1977; Geo A b s t r a c t s , Norwich ( i n a s s o c i a t i o n w i t h U n i v e r s i t y of G u e l p h ) ; pp. 149-167. Reed, R.J., and K u n k e l , B.A., 1960, The A r c t i c c i r c u l a t i o n i n summer; J o u r n a l of M e t e o r o l o g y , v. 17, pp. 489-506. R e i m n i t z , E., and B r u d e r , K.F., 1972, R i v e r d i s c h a r g e i n t o an i c e - c o v e r e d ocean; G e o l o g i c a l S o c i e t y of America B u l l e t i n , v. 83, pp. 861-866. R e i m n i t z , E., and Maurer, D.K., 1978, Storm surges i n the A l a s k a n B e a u f o r t Sea; U.S. G e o l o g i c a l S u r v e y , O p e n - f i l e Report 78-593; 26 p. R e i m n i t z , E., and Maurer, D.K., 1979, E f f e c t s of storm surges on the B e a u f o r t Sea c o a s t , n o r t h e r n A l a s k a ; A r c t i c , v. 32, pp. 329-344. R e i n e c k , H.E., and S i n g h , I.B., 1973, D e p o s i t i o n a l s e d i m e n t a r y e n v i r o n m e n t s , w i t h r e f e r e n c e t o t e r r i g e n o u s e l a s t i c s ; S p r i n g e r - V e r l a g , New York; 439 p. R e i n s o n , G.E., 1977, T i d a l - c u r r e n t c o n t r o l of submarine morphology a t the mouth of the M i r a m i c h i E s t u a r y , New B r u n s w i c k ; Canadian J o u r n a l of E a r t h S c i e n c e s , v. 14, pp. 2524-2532. R e i n s o n , G.E., 1979, F a c i e s models 6: b a r r i e r i s l a n d systems; i n R.G. Walker, ed., F a c i e s models; G e o s c i e n c e Canada, R e p r i n t s e r i e s no. 1; pp. 57-74. R e i n s o n , G.E., 1980, V a r i a t i o n s i n t i d a l - i n l e t morphology and s t a b i l i t y , n o r t h e a s t New B r u n s w i c k ; i_n S.B.McCann, ed., The c o a s t l i n e of Canada; G e o l o g i c a l Survey of Canada, Paper 80-10; pp. 23-39. 486 Rhoads, D.C, 1971, Near-bottom t u r b i d i t y r e l a t e d t o b i o g e n i c r e w o r k i n g of bottom muds [ a b s t r a c t ] ; _in D.S. G o r s l i n e , ed., A b s t r a c t Volume, 2nd N a t i o n a l C o a s t a l and S h a l l o w Water Research C o n f e r e n c e , U n i v e r s i t y of Southern C a l i f o r n i a , Los A n g e l e s ; p. 189. R i t c h i e , J . C , 1972, P o l l e n a n a l y s i s of l a t e - Q u a t e r n a r y sediments from the A r c t i c t r e e l i n e of the Mackenzie R i v e r D e l t a r e g i o n , Northwest T e r r i t o r i e s ; in D.E. K e r f o o t , ed., Mackenzie D e l t a Monograph; Brock U n i v e r s i t y , St C a t h e r i n e s , O n t a r i o ; pp. 29-50. R i t c h i e , J . C , and Hare, F.K., 1971, L a t e - Q u a t e r n a r y v e g e t a t i o n and c l i m a t e near the A r c t i c t r e e l i n e of n o r t h w e s t e r n N o r t h America; Quaternary R e s e a r c h , v. 1, pp. 331-342. Rogers, J . C , 1978, A m e t e o r o l o g i c a l b a s i s f o r long-range f o r e c a s t i n g of summer and e a r l y autumn sea i c e c o n d i t i o n s i n the B e a u f o r t Sea; i_n D.B. Muggeridge, ed., P r o c e e d i n g s , 4 t h I n t e r n a t i o n a l C onference on P o r t and Ocean E n g i n e e r i n g under A r c t i c C o n d i t i o n s ; Memorial U n i v e r s i t y , St John's, Newfoundland, 1977; v. 2, pp. 952-962. R u s s e l l , R.C.H., and O s o r i o , J.D.C., 1958, An e x p e r i m e n t a l i n v e s t i g a t i o n of d r i f t p r o f i l e s i n a c l o s e d c h a n n e l , w i t h appendix by M.S. L o n g u e t - H i g g i n s ; _in P r o c e e d i n g s , 6 th Con f e r e n c e on C o a s t a l E n g i n e e r i n g , C o u n c i l on Wave Re s e a r c h , U n i v e r s i t y of C a l i f o r n i a ; pp. 171-183. S c h a l k , M., and Hume, J.D., 1966, Sea i c e movement of beach m a t e r i a l i n the v i c i n i t y of P o i n t Barrow, A l a s k a [ a b s t r a c t ] ; J o u r n a l of G e o p h y s i c a l R e s e a r c h , v. 66, pp. 2558-2559. S c h e l l , D.M., 1974, S e a s o n a l v a r i a t i o n i n n u t r i e n t c h e m i s t r y and c o n s e r v a t i v e c o n s t i t u e n t s i n c o a s t a l A l a s k a n B e a u f o r t Sea w a t e r s ; in V. A l e x a n d e r e t a l . , E n v i r o n m e n t a l s t u d i e s of an A r c t i c e s t u a r i n e system; U n i v e r s i t y of A l a s k a , I n s t i t u t e of Marine S c i e n c e , Report R-74-1; 543 p. S c h e l l , D.M., and H a l l , C , 1972, Water c h e m i s t r y and n u t r i e n t r e g e n e r a t i o n p r o c e s s s t u d i e s ; _in P.J. K i n n e y , D.M. S c h e l l , and V. A l e x a n d e r , B a s e l i n e d a t a study of the A l a s k a n A r c t i c a q u a t i c environment; U n i v e r s i t y of A l a s k a , I n s t i t u t e of Marine S c i e n c e , Report R-72-3; pp. 3-28. S c h u b e l , J.R., 1968, T u r b i d i t y maximum of the n o r t h e r n Chesapeake Bay; S c i e n c e , v. 161, pp. 1013-1015. S c h u b e l , J.R., 1974, E f f e c t s of t r o p i c a l storm Agnes on the suspended s o l i d s of the n o r t h e r n Chesapeake Bay; in R.J. G i b b s , ed., Suspended s o l i d s i n water ; Plenum P r e s s , New York. 487 S c h u b e l , J.R., and Kana, T.W., 1972, A g g l o m e r a t i o n of f i n e - g r a i n e d suspended sediment i n n o r t h e r n Chesapeake Bay; Powder Technology, v. 6, pp. 9-16. S c h u l t z , E.A., and Simmons, H.B., 1957, F r e s h w a t e r - s a l t w a t e r d e n s i t y c u r r e n t s , a major cause of s i l t a t i o n i n e s t u a r i e s ; U.S.A., Corps of E n g i n e e r s , Committee on T i d a l H y d r a u l i c s , T e c h n i c a l B u l l e t i n no. 2; 28 p. Schumm, S.A., and L i c h t y , R.W., 1965, Time, space, and c a u s a l i t y i n geomorphology; American J o u r n a l of S c i e n c e , v. 263, pp. 110-119. S c h w a r t z , P.K., 1975, Nature and g e n e s i s of some storm washover d e p o s i t s ; U.S.A., Corps of E n g i n e e r s , C o a s t a l E n g i n e e r i n g R e search C e n t e r , T e c h n i c a l Memorandum 61; 69 p. S c o t t , K.M., 1978, E f f e c t s of p e r m a f r o s t on stream c h a n n e l b e h a v i o u r i n A r c t i c A l a s k a ; U.S. G e o l o g i c a l Survey, P r o f e s s i o n a l Paper 1068; 19 p. S c o t t , A . J . , Hoover, R.A., and McGowen, J.H., 1969, E f f e c t s of h u r r i c a n e B e u l a h on Texas c o a s t a l l agoons and b a r r i e r s ; _in A.A. C a s t a n a r e s and F.B. P h l e g e r , eds, Lagunas c o s t e r a s , un s i m p o s i o ; P r o c e e d i n g s , I n t e r n a t i o n a l Symposium on C o a s t a l Lagoons, Me x i c o , D.F., November 1967; pp. 221-236. S c r u t o n , P . C , 1960, D e l t a b u i l d i n g and the d e l t a i c sequence; i n F.P. Shepard, F.B. P h l e g e r , and T j . van A n d e l , eds, Recent s e d i m e n t s , northwest G u l f of M e x i c o ; American A s s o c i a t i o n of P e t r o l e u m G e o l o g i s t s , T u l s a , Oklahoma; pp. 82-102. Sharma, T . C , and D i c k i n s o n , W.T., 1979, U n i t s t e p and f r e q u e n c y response f u n c t i o n s a p p l i e d t o the watershed f l u v i a l system; J o u r n a l of H y d r o l o g y , v. 40, pp. 323-335. S h e a r e r , J.M, 1972, G e o l o g i c s t r u c t u r e of the Mackenzie Canyon ar e a of the B e a u f o r t Sea; in Report of A c t i v i t i e s , P a r t A; G e o l o g i c a l Survey of Canada, Paper 72-1A; pp. 179-180. S h e a r e r , J.M., and B l a s c o , S., 1975, F u r t h e r o b s e r v a t i o n s of the s c o u r i n g phenomenon i n the B e a u f o r t Sea; in Report of A c t i v i t i e s , P a r t A; G e o l o g i c a l Survey of Canada, Paper 75-1A; pp. 483-493. Sherman, I . , 1953, F l o c c u l e n t s t r u c t u r e of sediment suspended i n Lake Mead; T r a n s a c t i o n s , American G e o p h y s i c a l U n i o n , v. 34, pp. 394-406. S h o r t , A.D., 1979, B a r r i e r i s l a n d development a l o n g the Alaska-Yukon c o a s t a l p l a i n s ; G e o l o g i c a l S o c i e t y of America B u l l e t i n , p a r t I I , v. 90, pp. 77-103. 488 S h o r t , A.D., and Wiseman, W.J., J r , 1974, Fre e z e - u p p r o c e s s e s on A r c t i c beaches; A r c t i c , v. 27, pp. 215-224. S h o r t , A.D., and Wiseman, W.J., J r , 1975, C o a s t a l breakup i n the A l a s k a n A r c t i c ; G e o l o g i c a l S o c i e t y of America B u l l e t i n , v. 86, pp. 199-202. S h p a i k h e r , A.O., Fe d e r o v a , Z.P., and Y a n k i n a , Z.S., 1968, [ V a r i a t i o n s of t h e r m a l c o n d i t i o n s i n the Chukchi Sea d u r i n g the l a s t decade ( i n R u s s i a n ) ] ; Problemy A r k t i k i i A n t a r k t i k i , v. 29, pp. 19-28. Simmons, H.B., 1955, Some e f f e c t s of upland d i s c h a r g e on e s t u a r i n e h y d r a u l i c s ; P r o c e e d i n g s , American S o c i e t y of C i v i l E n g i n e e r s , v. 81, pp. 1-20. Simmons, H.B., 1965, Channel depth as a f a c t o r i n e s t u a r i n e s e d i m e n t a t i o n ; _in_ P r o c e e d i n g s , F e d e r a l I n t e r a g e n c y S e d i m e n t a t i o n C o n f e r e n c e , 1963; U.S. Department of A g r i c u l t u r e , M i s c e l l a n e o u s P u b l i c a t i o n 970; pp. 722-730. Simmons, H.B., 1966, F i e l d e x p e r i e n c e i n e s t u a r i e s ; _iri A.T. Ippen, ed., E s t u a r y and c o a s t l i n e hydrodynamics; M c % g r a w - H i l l , New York; c h a p t e r 16, pp. 673-690. Slaymaker, H.O., and C h o r l e y , R.J., 1964, The v i g i l network system; J o u r n a l of. H y d r o l o g y , v. 2, pp. 19-24. Smayda, T., 1969, Some measurements of the s i n k i n g r a t e of f e c a l p e l l e t s ; Limnology and Oceanography, v. 14, p. 621. Sm i t h , N.P., 1977, M e t e o r o l o g i c a l and t i d a l exchanges between Corpus C h r i s t i Bay, Texas, and the n o r t h w e s t e r n G u l f of Mexic o ; E s t u a r i n e and C o a s t a l Marine S c i e n c e , v. 5, pp. 511-520. S m i t h , N.P., 1978, L o n g - p e r i o d , e s t u a r i n e - s h e l f exchanges i n response t o m e t e o r o l o g i c a l f o r c i n g ; _in J . C . J . N i h o u l , ed. , Hydrodynamics of e s t u a r i e s and f j o r d s ; P r o c e e d i n g s , 9 t h I n t e r n a t i o n a l L i e g e C o l l o q u i u m on Ocean Hydrodynamics; E l s e v i e r S c i e n t i f i c P u b l i s h i n g Company, Amsterdam; pp. 147-159. Sm i t h , N.P., 1979, M e t e o r o l o g i c a l f o r c i n g of c o a s t a l waters by the i n v e r s e barometer e f f e c t ; E s t u a r i e s and C o a s t a l Marine S c i e n c e , v. 8, pp. 149-156. Sm i t h , D.G., and Sm i t h , N.D., 1980, S e d i m e n t a t i o n i n anastomozed r i v e r systems: examples from a l l u v i a l v a l l e y s near B a n f f , A l b e r t a ; J o u r n a l of Sedimentary P e t r o l o g y , v. 50, pp. 157-164. 489 Snedecor, G.W., and Cochran, W.G., 1967, S t a t i s t i c a l methods; 6 t h e d i t i o n ; Iowa S t a t e U n i v e r s i t y P r e s s , Ames, Iowa; 593 p. S t a p o r , F.W., 1971, Sediment budgets on a compartmented low-to-moderate energy c o a s t i n northwest F l o r i d a ; M a rine Geology, v. 10, pp. M1-M7. S t e i g e n b e r g e r , L.W., R o b e r t s o n , R.A., Johansen, K., and E l s o n , M.S., 1975, B i o l o g i c a l / e n g i n e e r i n g e v a l u a t i o n of the proposed p i p e l i n e c r o s s i n g s i t e s i n n o r t h e r n Yukon T e r r i t o r y ; Canada, Department of Environment, F i s h e r i e s and Marine S e r v i c e , P a c i f i c R e g i o n , Report PAC/T-75-11; 456 p. S t e n b o r g , T., 1970, Delay of r u n o f f from a g l a c i e r b a s i n ; G e o g r a f i s k a A n n a l e r , v. 52A, pp. 1-30. S t o k e s , G.G., 1851, On the e f f e c t of the i n t e r n a l f r i c t i o n of f l u i d s on the motion of pendulums; P h i l o s o p h i c a l T r a n s a c t i o n s , Cambridge, v. 9, pp. 8-106. Stommel, H., and Farmer, H.G., 1952, Abrupt change i n w i d t h i n t w o - l a y e r open-channel f l o w ; J o u r n a l of M a r i n e R e s e a r c h , v. 11, pp. 205-214. S t r a h l e r , A.,S., 1950, E q u i l i b r i u m t h e o r y of e r o s i o n a l s l o p e s approached by f r e q u e n c y d i s t r i b u t i o n a n a l y s i s ; American J o u r n a l of S c i e n c e , v. 248, pp. 673-696, 800-814. S t r a h l e r , A.N., 1952, Hypsometric ( a r e a - a l t i t u d e ) a n a l y s i s of e r o s i o n a l topography; G e o l o g i c a l S o c i e t y of America B u l l e t i n , v. 63, pp. 1117-1142. S t r a u b , L.G., 1935, M i s s o u r i R i v e r ; 73rd U.S. Congress, S e s s i o n 2, House Document 238, Appendix 6; pp. 1032-1235. S t r i c k l e r , A.,.1923, [ C o n t r i b u t i o n t o the study of t h e v e l o c i t y f o r m u l a and the r e s i s t a n c e c o e f f i c i e n t f o r streams, c a n a l s , and c l o s e d p i p e s ( i n German)]; M i t t e i l u n g e n des Amtes f u r W a s s e r w i r t s c h a f t , B e r n ; no. 16; 77 p. S t r i n g e r , W.J., 1974, Morphology of the B e a u f o r t Sea s h o r e f a s t i c e ; _in J.C. Reed and J.E. S a t e r , eds, The c o a s t and s h e l f of t h e B e a u f o r t Sea; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , A r l i n g t o n , Va.; pp. 165-172. Sundborg, K., 1956, The r i v e r K l a r a l v e n : a s t u d y of f l u v i a l p r o c e s s e s ; G e o g r a f i s k a A n n a l e r , v. 38. S v e r d r u p , H.V., 1926, Dynamics of t i d e s on the N o r t h S i b e r i a n s h e l f , r e s u l t s from the Maud e x p e d i t i o n ; G e o f i z i s k e P u b l i k a s j o n e r , v. 4, no. 5, pp. 1-75. 490 Swan, D., C l a g u e , J . J . , and L u t e r n a u e r , J . L . , 1978, G r a i n - s i z e s t a t i s t i c s I : e v a l u a t i o n of the F o l k and Ward measures; J o u r n a l of Sedimentary P e t r o l o g y , v. 48, pp. 863-878. S w i f t , D.J.P., 1975, B a r r i e r - i s l a n d g e n e s i s : e v i d e n c e from the c e n t r a l A t l a n t i c s h e l f , e a s t e r n U.S.A.; Sedimentary Geology, v. 14, pp. 1-43. S w i f t , D.J.P., and Ludwick, J.C., 1976, S u b s t r a t e response t o h y d r a u l i c p r o c e s s : g r a i n - s i z e f r e q u e n c y d i s t r i b u t i o n s and bed forms; ijn D.J. S t a n l e y and D.J.P. S w i f t , eds, Marine sediment t r a n s p o r t and e n v i r o n m e n t a l management; American G e o l o g i c a l I n s t i t u t e ; J . W i l e y and Sons, New York; c h a p t e r 10, pp. 159-196. S w i f t , D.J.P., Ludwick, J.C., and Boehmer, W.R., 1972, S h e l f sediment t r a n s p o r t : a p r o b a b i l i t y model; i_n D.J.P. S w i f t , D.B. Duane, and O.H. P i l k e y , eds, S h e l f sediment t r a n s p o r t : p r o c e s s and p a t t e r n ; Dowden, H u t c h i n s o n and Ross, S t r o u d s b u r g , P e n n s y l v a n i a ; pp. 195-223. T a y l o r , R.B., 1977, The o c c u r r e n c e of grounded i c e r i d g e s and shore i c e p i l i n g a l o n g the n o r t h e r n c o a s t of Somerset I s l a n d , N.W.T.; A r c t i c , v. 31, pp. 133-149. T e r z a g h i , K., and Peck, R.B., 1967, S o i l mechanics i n e n g i n e e r i n g p r a c t i c e ; 2nd e d i t i o n ; J . W i l e y and Sons, New York; 729 p. Thompson, H.R., 1953, Geology and geomorphology i n the s o u t h e a s t e r n N o r d a u s t l a n d ( N o r t h e a s t L a n d ) , S p i t s b e r g e n ; P r o c e e d i n g s , G e o l o g i s t s ' . A s s o c i a t i o n , v. 64, pp. 293-312. T r e s h n i k o v , A.F., 1977, Water masses of the A r c t i c B a s i n ; in M.J. Dunbar, ed., P o l a r oceans; P r o c e e d i n g s , P o l a r Oceans Co n f e r e n c e , M o n t r e a l , May 1974; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , C a l g a r y ; pp. 17-31. T r e s h n i k o v , A.F., and Baranov, G.I., 1977, The s t r u c t u r e of the c i r c u l a t i o n and budget dynamics of the w a t e r s of the N o r t h P o l a r r e g i o n ; _in M.J. Dunbar, ed., P o l a r oceans; P r o c e e d i n g s , P o l a r Oceans C o n f e r e n c e , M o n t r e a l , May 1974; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , C a l g a r y ; pp. 33-44. T r e s h n i k o v , A.F., B o r i s e n k o v , E.P., N i k i f o r o v , E.G., M u s t a f i n , N.V., C h a p l y g i n , E . I . , and S h p a i k h e r , A.O., 1968, [ F u l l - s c a l e experiment on the problem of ocean-atmosphere i n t e r a c t i o n ( i n R u s s i a n ) ] ; Problemy A r k t i k i i A n t a r k t i k i , v. 28, pp. 5-20. T u c k e r , R.W. , and B u r r e l l , D.C, 1977, The s e d i m e n t a r y environment of a lagoon on the B e a u f o r t Sea c o a s t of A l a s k a ; M a r i n e S c i e n c e Communications, v. 3, pp. 93-116. 491 U g o l i n i , F.C., 1975, I c e - r a f t e d sediments as a cause of some th e r m o k a r s t l a k e s i n the Noatak R i v e r D e l t a , A l a s k a ; S c i e n c e , v. 188, pp. 51-53. U.S.A., C o a s t a l E n g i n e e r i n g Research C e n t e r , 1973, Shore p r o t e c t i o n manual; U.S.A., Corps of E n g i n e e r s , F o r t B e l v o i r , Va.,; 3 volumes. van Dorn, W.G., 1953, Wind s t r e s s on an a r t i f i c i a l pond; J o u r n a l of Marine R e s e a r c h , v. 12, pp. 249-276. van E v e r d i n g e n , R.O., 1974, Groundwater i n p e r m a f r o s t r e g i o n s of Canada; i_n P e r m a f r o s t h y d r o l o g y ; P r o c e e d i n g s of workshop seminar, C a l g a r y , F e b r u a r y 1974; Canada, Department of Environment, Canadian N a t i o n a l Committee, I n t e r n a t i o n a l H y d r o l o g i c a l Decade; pp. 83-93. van S t r a a t e n , L.M.J.U., 1952, Biogene t e x t u r e s and the f o r m a t i o n of s h e l l beds i n the Dutch Wadden Sea; P r o c e e d i n g s , K o n i n k l i j k e N ederlandse Akademie van Wetenschappen, v. B55, pp. 500-516. van S t r a a t e n , L.M.J.U., 1960, T r a n s p o r t and c o m p o s i t i o n of sedi m e n t s ; j j n Das Ems-Estuarium, Nordsee; V e r h a n d e l i n g e n K o n i n k l i j k Nederlande G e o l o g i s c h Mijnbouwkundig Genootschap, G e o l o g i s c h e S e r i e 19; pp. 279-292. van S t r a a t e n , L.M.J.U., and Kuenen, Ph.H., 1957, A c c u m u l a t i o n of f i n e - g r a i n e d sediments i n the Dutch Wadden Sea; G e o l o g i e en Mijnbouw, v. 19, pp. 329-354. van S t r a a t e n , L.M.J.U., and Kuenen, Ph.H., 1958, T i d a l a c t i o n as a cause f o r c l a y a c c u m u l a t i o n ; J o u r n a l of Sedimentary P e t r o l o g y , v. 28, pp. 406-413. van Veen, J . , 1950, [Ebb- and f l o o d - c h a n n e l systems i n Dutch t i d a l w aters ( i n D u t c h ) ] ; i_n Waddensymposium, t i j d s c h r i f t n e d e r l a n d s e A a r d r i j k s k u n d e Genootschap, pp. 43-65. Verwey, J . , 1952, On the e c o l o g y of d i s t r i b u t i o n of c o c k l e and mussel i n the Dutch Wadden Sea, t h e i r r o l e i n s e d i m e n t a t i o n and the s o u r c e of the food s u p p l y ; A r c h i v e s N e e r l a n d a i s e s de Z o o l o g i e , v. 10, pp. 171-239. V o l k e r , A., 1966, S u r f a c e h y d r o l o g y of d e l t a i c a r e a ; _in S c i e n t i f i c problems of t h e humid t r o p i c a l zone d e l t a s and t h e i r i m p l i c a t i o n s ; - P r o c e e d i n g s , ' Dacca Symposium, February-March 1964; UNESCO, P a r i s ; pp. 143-150. W a l c o t t , R . I . , 1975, Recent and l a t e Q u a t e r n a r y changes i n water l e v e l ; Eos, v. 56, pp. 62-72. 492 Walker, H.J., 1969, Some a s p e c t s of e r o s i o n and s e d i m e n t a t i o n i n an A r c t i c d e l t a d u r i n g breakup; i n H y d r o l o g i e des d e l t a s ; A s s o c i a t i o n I n t e r n a t i o n a l e d ' H y d r o l o g i e S c i e n t i f i q u e , A c t e s du C o l l o q u e de B u c a r e s t ; pp. 209-219. Walker, H.J., 1971, S a l i n i t y changes o c c u r r i n g d u r i n g breakup i n an A r c t i c d e l t a [ a b s t r a c t ] ; in_ D.S. G o r s l i n e , ed., A b s t r a c t Volume, 2nd N a t i o n a l C o a s t a l and S h a l l o w Water Res e a r c h C o n f e r e n c e , U n i v e r s i t y of Southern C a l i f o r n i a , Los A n g e l e s ; p. 247. Walker, H.J., 1972, S a l i n i t y changes i n the C o l v i l l e R i v e r D e l t a , A l a s k a , d u r i n g breakup; ir\ The R o l e of snow and i c e i n h y d r o l o g y ; P r o c e e d i n g s of the Ba n f f Symposia; B a n f f , September 1972; v. 1, pp. 514-527. Walker, H.J., 1973, S p r i n g d i s c h a r g e of an A r c t i c r i v e r d e t e r m i n e d from s a l i n i t y measurements beneath sea i c e ; Water Resources R e s e a r c h , v. 9, pp. 474-480. Walker, H.J., 1974, The C o l v i l l e R i v e r and the B e a u f o r t Sea: some i n t e r a c t i o n s ; i_n J.C. Reed and J.E. S a t e r , eds, The c o a s t and s h e l f of the B e a u f o r t Sea; A r c t i c I n s t i t u t e of N o r t h A m e r i c a , A r l i n g t o n , Va.; pp. 513-540. Walker, H.J., and A r n b o r g , L., 1965, P e r m a f r o s t and ice-wedge e f f e c t s on r i v e r b a n k e r o s i o n ; ir\ P e r m a f r o s t , P r o c e e d i n g s , 1 s t I n t e r n a t i o n a l C o n f e r e n c e , Purdue U n i v e r s i t y , West L a f a y e t t e , I n d i a n a , 1963; pp. 164-171. Walker, R.G., 1979, F a c i e s and f a c i e s models 1: g e n e r a l i n t r o d u c t i o n ; in R.G. Walker, ed., F a c i e s models; G e o s c i e n c e Canada, r e p r i n t s e r i e s no. 1; pp. 1-7. Walsh, J.E., and Johnson, CM., 1979, An a n a l y s i s of A r c t i c sea i c e f l u c t u a t i o n s , 1953-1977; J o u r n a l of P h y s i c a l Oceanography, v. 9, pp. 580-591. Wang, D-P., 1979, S u b t i d a l sea l e v e l v a r i a t i o n s i n the Chesapeake Bay and r e l a t i o n s t o a t m o s p h e r i c f o r c i n g ; J o u r n a l of P h y s i c a l Oceanography, v. 9, pp. 413-421. Washburn, A.L., 1969, W e a t h e r i n g , f r o s t a c t i o n and p a t t e r n e d ground i n the M e s t e r s V i g d i s t r i c t , n o r t h e a s t G r e e n l a n d ; M e d d e l e l s e r om G r o n l a n d , v. 176, no, 4, 296 p. Watts, G.M., 1953, A st u d y of sand movement a t South Lake Worth I n l e t , F l o r i d a ; U.S.A., Beach E r o s i o n Board, T e c h n i c a l .Memorandum no. 42; 24 p. W e i g e l , R.L., 1954, G r a v i t y wave t a b l e s of f u n c t i o n s ; C o u n c i l on Wave Re s e a r c h , E n g i n e e r i n g F o u n d a t i o n , U n i v e r s i t y of C a l i f o r n i a , B e r k e l e y ; c i t e d by Komar (1976b, p. 74). 493 Wein, R.W., H e t t i n g e r , L.R., J a n z , A.V., and Cody, W.J., 1974, V a s c u l a r p l a n t range e x t e n s i o n s i n n o r t h e r n Yukon T e r r i t o r y and n o r t h w e s t e r n Mackenzie D i s t r i c t , Canada; Canadian F i e l d N a t u r a l i s t , v. 88, pp. 57-66. Weisberg, R.H., 1976, The n o n t i d a l f l o w i n the P r o v i d e n c e R i v e r of N a r r a g a n s e t t Bay; a s t o c h a s t i c approach t o e s t u a r i n e c i r c u l a t i o n ; J o u r n a l of P h y s i c a l Oceanography, v. 6, pp. 721-734. Welder, F.A., 1959, P r o c e s s e s of d e l t a i c s e d i m e n t a t i o n i n the lower M i s s i s s i p p i R i v e r ; L o u s i a n a S t a t e U n i v e r s i t y , Baton Rouge; C o a s t a l S t u d i e s I n s t i t u t e , T e c h n i c a l Report no. 12; 90 p. W e l l e r , G., and Holmgren, B., 1974, The m i c r o c l i m a t e s of the A r c t i c t u n d r a ; J o u r n a l of A p p l i e d M e t e o r o l o g y , v. 13, pp. 854-862. Welsh, S.L., and R i g b y , J.K., 1971, B o t a n i c a l and p h y s i o g r a p h i c r e c o n n a i s s a n c e of n o r t h e r n Yukon; Brigham Young U n i v e r s i t y , S c i e n c e B u l l e t i n , B i o l o g i c a l S e r i e s , v. 14; 64 p. Wendler, G., 1978, Snow b l o w i n g and snow f a l l on the N o r t h S l o p e , A l a s k a ; U n i v e r s i t y of A l a s k a , F a i r b a n k s ; G e o p h y s i c a l I n s t i t u t e , Report U.A.G. R-259; 22 p.; p r e p a r e d f o r A r c t i c P i p e l i n e Study Group. W h i t t e n , E.H.T., 1964, P r o c e s s - r e s p o n s e models i n ge o l o g y ; G e o l o g i c a l S o c i e t y of America B u l l e t i n , v. 75, pp. 455-464. W i l l i a m s , J.E., 1949, Chemical w e a t h e r i n g a t low t e m p e r a t u r e s ; G e o g r a p h i c a l Review, v. 39, pp. 129-135. W i l l i a m s , H.B., F a r r u g i a , V., E k k e r , A., and Haden, E.L., 1964, C h l o r i n i t y d e t e r m i n a t i o n i n e s t u a r i n e waters by p h y s i c a l measurement; J o u r n a l of Marine R e s e a r c h , v. 22, pp. 190-196. W i l s o n , H.P., 1974, Winds and c u r r e n t s i n the B e a u f o r t Sea; _in J.C. Reed and J.E. S a t e r , eds, The c o a s t and s h e l f of the B e a u f o r t Sea; A r c t i c I n s t i t u e of N o r t h A m e r i c a , A r l i n g t o n , Va.; pp. 13-23. Wiseman, W.J., J r , 1979, H y p e r s a l i n e bottom water: Peard Bay, A l a s k a ; E s t u a r i e s , v. 2, pp. 189-193. Wiseman, W.J., J r , and S h o r t , A.D., 1976, Mesos c a l e t h e r m a l v a r i a t i o n s a l o n g the A r c t i c N o r t h S l o p e ; i r i D.W. Hood and D.C. B u r r e l , eds, Assessment of the A r c t i c marine environment: s e l e c t e d t o p i c s ; U n i v e r s i t y of A l a s k a , F a i r b a n k s ; I n s t i t u t e of Marine S c i e n c e , O c c a s i o n a l P u b l i c a t i o n no. 4; pp. 229-240. 494 Wiseman, W.J., J r , Coleman, J.M., G r e gory, A., Hsu, S.A., S h o r t , A.D., Suhayda, J.N., W a l t e r s , C D . , J r , and W r i g h t , L.D., 1973, A l a s k a n . A r c t i c c o a s t a l p r o c e s s e s and morphology; L o u i s i a n a S t a t e U n i v e r s i t y , Baton Rouge; C o a s t a l S t u d i e s I n s t i t u t e , T e c h n i c a l Report no. 149; 171 p.. W r i g h t , L.D., 1970, C i r c u l a t i o n , e f f l u e n t d i f f u s i o n and sediment t r a n s p o r t , mouth of South P a s s , M i s s i s s i p p i R i v e r D e l t a ; L o u i s i a n a S t a t e U n i v e r s i t y , Baton Rouge; C o a s t a l S t u d i e s I n s t i t u t e , T e c h n i c a l Report no. 84; 56 p. W r i g h t , L.D., 1977, Sediment t r a n s p o r t and d e p o s i t i o n a t r i v e r mouths: a s y n t h e s i s ; G e o l o g i c a l S o c i e t y of America B u l l e t i n , v. 88, pp. 857-868. Wunsch, C , 1972, Bermuda sea l e v e l i n r e l a t i o n t o t i d e s , weather, and b a r o c l i n i c f l u c t u a t i o n s ; Reviews of G e o p h y s i c s and Space P h y s i c s , v. 10, pp. 1-49. Yano, K., T s u c h i y a , Y., and M i c h i y e , M., 1969, S t u d i e s on the sand t r a n s p o r t i n streams w i t h t r a c e r s ; B u l l e t i n of the D i s a s t e r P r e v e n t i o n Research I n s t i t u t e , Kyoto U n i v e r s i t y , v. 18, p a r t 3, no. 141; 16 p. Y i n g s t , x J.Y., and Rhoads, D.C, 1978, S e a f l o o r s t a b i l i t y i n c e n t r a l Long I s l a n d Sound: p a r t 2, b i o l o g i c a l i n t e r a c t i o n s and t h e i r p o t e n t i a l importance f o r s e a f l o o r e r o d i b i l i t y ; i n M.L. W i l e y , ed., E s t u a r i n e i n t e r a c t i o n s ; P r o c e e d i n g s , 4 t h I n t e r n a t i o n a l E s t u a r i n e R esearch C o n f e r e n c e , Mount Pocono, P e n n s y l v a n i a , O c t o b e r , 1977; Academic P r e s s , New York; p. 245. Y o r a t h , C.J., 1973, Geology of B e a u f o r t - M a c k e n z i e B a s i n and e a s t e r n p a r t of n o r t h e r n I n t e r i o r P l a i n s ; in M.C R i t c h e r , ed., A r c t i c Geology; American A s s o c i a t i o n of P e t r o l e u m G e o l o g i s t s , Memoir 19; pp. 41-47. Zabawa, C.F., 1978, M i c r o s t r u c t u r e of a g g l o m e r a t e d suspended sediments i n n o r t h e r n Chesapeake Bay e s t u a r y ; S c i e n c e , v. 202, pp. 49-51. APPENDIX A . l LIST OF NOTATION x\u00C2\u00B1e sample mean and s t a n d a r d e r r o r [ x] section-mean v a l u e reach-mean v a l u e x e s t i m a t e d v a l u e or sample s t a t i s t i c x mean v a l u e =^ a p p r o x i m a t e l y e q u a l ' v of o r d e r of magnitude A a r e a , c r o s s - s e c t i o n a l a r e a A D d r a i n a g e - b a s i n a r e a A i c i n g a r e a A L lagoon or l a k e a r e a A b b a s a l a r e a A e exposure a r e a a a m p l i t u d e B s l o p e ( a n g l e ) B e e n e r g y - s l o p e ( a n g l e ) b w i d t h C phase speed C c o n c e n t r a t i o n (mass per u n i t volume) C D d r a g c o e f f i c i e n t 496 C D c o n c e n t r a t i o n of t o t a l d i s s o l v e d s o l i d s Cj c o n c e n t r a t i o n of incombustible suspended s o l i d s C s c o n c e n t r a t i o n of suspended sediment C T c o n c e n t r a t i o n of t o t a l suspended s o l i d s D p a r t i c l e s i z e D n n - p e r c e n t i l e s i z e (0^n\u00C2\u00A3100%) D \u00E2\u0080\u00A2\u00E2\u0080\u00A2 a r e p r e s e n t a t i v e p a r t i c l e s i z e i n armour l a y e r D graphic mean s i z e (logD=log(Dg^D 5 QD 1 6)/3 d sediment t h i c k n e s s E energy e e r r o r term e f f i c i e n c y f a c t o r , bedload t r a n s p o r t e s e f f i c i e n c y f a c t o r , suspended load t r a n s p o r t e f f i c i e n c y f a c t o r , t o t a l t r a n s p o r t f frequency f f r i c t i o n angle \u00E2\u0080\u00A2f i r e l a t i v e frequency, c l a s s i f i h o r i z o n t a l C o r i o l i s parameter 9 g r a v i t a t i o n a l a c c e l e r a t i o n H F o u r i e r transform of h(T ) H wave height HE Secchi e x t i n c t i o n depth H b breaking wave height H n \u00E2\u0080\u00A2 n - p e r c e n t i l e wave height (0^n<100%) H 0 deepwater wave height u r m s r.m.s. wave height h weighting f u n c t i o n 497 h d e p t h h* mean d e p t h h*=A/b I t t o t a l l o n g s h o r e t r a n s p o r t r a t e ( i m m e r s e d w e i g h t ) i B u n i t - w i d t h b e d l o a d t r a n s p o r t r a t e ( i m m e r s e d w e i g h t ) i s u n i t - w i d t h s u s p e n d e d l o a d t r a n s p o r t r a t e ( i m m e r s e d w e i g h t ) J mass t r a n s p o r t r a t e ( d r y m a s s ) , t o t a l t r a n s p o r t b e d l o a d t r a n s p o r t r a t e ( d r y mass) J D s o l u t e t r a n s p o r t r a t e ( d r y mass) J e a e o l i a n s e d i m e n t i n p u t t o e s t u a r i n e s y s t e m f l u v i a l s e d i m e n t i n p u t t o e s t u a r i n e s y s t e m J o s e d i m e n t e x c h a n g e a c r o s s m a r i n e b o u n d a r y o f s y s t e m J T t o t a l s u s p e n s i o n t r a n s p o r t r a t e ( d r y mass) j u n i t - w i d t h t r a n s p o r t r a t e ( d r y mass) J B u n i t - w i d t h b e d l o a d t r a n s p o r t r a t e ( d r y mass) j d d e p o s i t i o n r a t e ( d r y mass) K \u00E2\u0080\u00A2V r e f r a c t i o n c o e f f i c i e n t k p h a s e a n g l e p e r u n i t d i s t a n c e (wave number) k e x p o n e n t L b a s i n o r e s t u a r y l e n g t h i n l e t l e n g t h L B b a r r i e r l e n g t h M mass o f s e d i m e n t i n s t o r a g e m mass N r e c o r d l e n g t h N c o e f f i c i e n t o f eddy v i s c o s i t y n s a m p l e s i z e 498 group speed c o e f f i c i e n t power shore-normal component of wave power per u n i t c r e s t l e n g t h s h o r e - t a n g e n t component of wave power per u n i t c r e s t l e n g t h s h o r e - t a n g e n t component of wave power per u n i t beach l e n g t h power per u n i t boundary a r e a p r e s s u r e p r o b a b i l i t y d i s c h a r g e (volume t r a n s p o r t r a t e ) d i r e c t p r e c i p i t a t i o n i n p u t t o e s t u a r i n e system e v a p o t r a n s p i r a t i o n o u t p u t from e s t u a r i n e system f l u v i a l i n p u t t o e s t u a r i n e system volume t r a n s f e r a c r o s s marine boundary r e s i d u a l volume t r a n s f e r s p e c i f i c r u n o f f R a y l e i g h parameter Reynolds parameter h y d r a u l i c r a d i u s s p r i n g - t i d e range r a d i u s of c u r v a t u r e c i r c u l a r i t y r a t i o h y p s o m e t r i c i n t e g r a l d e v i a t i o n of s about s a t t i d a l f r e q u e n c y s a l i n i t y t i d a l mean s a l i n i t y 499 s' h i g h - f r e q u e n c y d e v i a t i o n of s s e mean s a l i n i t y of e s t u a r y s h bottom s a l i n i t y s Q s a l i n i t y a t e s t u a r y e n t r a n c e s g s u r f a c e s a l i n i t y s g r a p h i c s t a n d a r d d e v i a t i o n s= ( l o g 2 D g Z f - l o g 2 D 1 6 )/2 T p e r i o d T = l / f T a d i m e n s i o n l e s s w i n d - s t r e s s parameter t t i m e , d u r a t i o n t * r e c e s s i o n c o n s t a n t U d e v i a t i o n of u about u a t t i d a l f r e q u e n c y U mean speed of ( o s c i l l a t o r y ) sediment m o t i o n U. speed of sediment i n d i r e c t i o n e 6 u speed, l o n g i t u d i n a l component of v e l o c i t y u t i d a l mean v a l u e of u u' h i g h - f r e q u e n c y d e v i a t i o n of u u f i n t e g r a l mean v e l o c i t y u =Q/bh u g l o n g i t u d i n a l v e l o c i t y a t s u r f a c e UQ speed i n d i r e c t i o n 8 U Q h o r i z o n t a l o r b i t a l v e l o c i t y u^ maximum o r b i t a l v e l o c i t y u s h o r e - n o r m a l c u r r e n t n u t s h o r e - t a n g e n t ( l o n g s h o r e ) c u r r e n t V v o l u m e t r i c c a p a c i t y of system V d e v i a t i o n of v about v a t t i d a l f r e q u e n c y v t r a n s v e r s e component of v e l o c i t y v t i d a l mean v a l u e of v v' h i g h - f r e q u e n c y d e v i a t i o n of v s e t t l i n g v e l o c i t y s t i l l - w a t e r s e t t l i n g v e l o c i t y s t i l l - w a t e r s e t t l i n g v e l o c i t y of agglomerated p a r t i c l e d e v i a t i o n of. w about w a t t i d a l f r e q u e n c y v e r t i c a l component of v e l o c i t y t i d a l mean v a l u e of w h i g h - f r e q u e n c y d e v i a t i o n of w about w F o u r i e r t r a n s f o r m of x ( t ) C h a r a c t e r i s t i c g r a i n s i z e of sediment m i x t u r e system i n p u t l o n g i t u d i n a l d i s t a n c e F o u r i e r t r a n s f o r m of y ( t ) system output t r a n s v e r s e d i s t a n c e s t a n d a r d i z e d normal d e v i a t e v e r t i c a l d i s t a n c e p r o b a b i l i t y of t y p e - I e r r o r phase s h i f t a n g l e between b r e a k i n g wave c r e s t and shore coherence s p e c i f i c g r a v i t y of sediment d i s s i p a t i o n parameter n o i s e f u n c t i o n F o u r i e r t r a n s f o r m of \u00C2\u00A3(t) water l e v e l n - p e r c e n t i l e water l e v e l ( 0 ^ n ^ l 0 0 % ) dynamic v i s c o s i t y t emperature 501 K c o e f f i c i e n t o f k u r t o s i s X P o i s s o n p a r a m e t e r X w a v e l e n g t h X 0 d e e p w a t e r w a v e l e n g t h p d a m p i n g c o e f f i c i e n t V d i f f u s i v e f r a c t i o n o f h e a d w a r d s a l t f l u x i n e s t u a r y \u00C2\u00A3 h i d i n g f a c t o r h i d i n g f a c t o r a c c o r d i n g t o E i n s t e i n ( 1 9 5 0 ) 5 ' m o d i f i e d h i d i n g f a c t o r P d e n s i t y , w a t e r d e n s i t y P a a i r d e n s i t y P f f r e s h w a t e r d e n s i t y P h w a t e r d e n s i t y a t b o t t o m ( z = h ) p o w a t e r d e n s i t y a t e s t u a r y e n t r a n c e ( x = 0 ) P s w a t e r d e n s i t y a t s u r f a c e ( z = 0 ) ; s e d i m e n t d e n s i t y -P w w a t e r d e n s i t y a 2 v a r i a n c e T l a g t i m e T s h e a r s t r e s s T a w i n d s t r e s s T g s h e a r d u e t o g r a n u l a r r e s i s t a n c e o n l y T n e n o r t h e a s t e r l y c o m p o n e n t o f w i n d s t r e s s T n w $ n o r t h w e s t e r l y c o m p o n e n t o f w i n d s t r e s s p h a s e $ * d i m e n s i o n l e s s t r a n s p o r t c o e f f i c i e n t s t r e a m f u n c t i o n l a t i t u d e s o l i d f r i c t i o n a n g l e parameter of c h i - s q u a r e d i s t r i b u t i o n d i m e n s i o n l e s s shear c o e f f i c i e n t a n g u l a r v e l o c i t y of the e a r t h phase a n g l e per u n i t t ime ( r a d i a l f r e q u e n c y ) 503 APPENDIX A.2 FIELD INVESTIGATIONS AND PROCEDURES Runoff i n p u t s t o the Babbage E s t u a r y t h r o u g h s e c t i o n s BI (Babbage R i v e r ) and D l (Deep Creek) were d e t e r m i n e d d u r i n g p a r t s of 1974-1976 u s i n g stage r e c o r d s and s t a g e - d i s c h a r g e r e l a t i o n s e s t a b l i s h e d f o r each s e c t i o n (see Appendix A.3 be l o w ) . S t i l l i n g w e l l s w i t h Stevens type-A35 and type-F r e c o r d e r s were m a i n t a i n e d a t each s e c t i o n d u r i n g the summer months. P r i o r t o i c e c l e a r a n c e , when s t i l l i n g w e l l s c o u l d not be i n s t a l l e d and the s t a g e - d i s c h a r g e r e l a t i o n was u n s t a b l e due t o i c e e f f e c t s , e s t i m a t e s Of f l o w through the Babbage R i v e r s e c t i o n were o b t a i n e d from d i s c h a r g e measurements taken a p p r o x i m a t e l y once d a i l y and from f r e q u e n t d i r e c t o b s e r v a t i o n s of s t a g e f o r i n t e r p o l a t i o n of d i s c h a r g e . In Deep Creek, d a i l y d i s c h a r g e measurements were und e r t a k e n and the r e s u l t s adopted as r e p r e s e n t a t i v e f o r the day. D i s c h a r g e measurements were c a r r i e d out w i t h P r i c e - G u r l e y type-622AA meters suspended from the bow of a boat h e l d s t a t i o n a r y i n the c u r r e n t a g a i n s t a t a g w i r e . C u r r e n t meters were c a l i b r a t e d by the H y d r a u l i c s D i v i s i o n , Canada C e n t r e f o r I n l a n d Waters, b e f o r e and a t the end of the s t u d y ; the c a l i b r a t i o n s showed r e l a t i v e l y minor changes. I n i t i a l (1974) c a l i b r a t i o n s were adopted f o r 1974 and 1975 measurements; subsequent (1977) c a l i b r a t i o n s were employed f o r 1976 measurements. Net exchanges between the e s t u a r y and c o a s t a l waters of P h i l l i p s Bay were d e t e r m i n e d u s i n g w a t e r - l e v e l r e c o r d s w i t h c o r r o b o r a t i o n from v e l o c i t y measurements i n s e c t i o n M l . W a t e r - l e v e l r e c o r d e r s were e s t a b l i s h e d a t v a r i o u s s i t e s w i t h i n the e s t u a r y (see F i g u r e 2 f o r l o c a t i o n s ) . Stevens type-F r e c o r d e r s on s t i l l i n g w e l l s were used a t gauge s i t e s C and D i n the d e l t a ; Foxborough p r e s s u r e - d i a p h r a g m gauges were i n s t a l l e d a t s i t e s B and E; and an O t t b o r o p r e s s u r e - d i a p h r a g m gauge was employed a t s i t e A (C.H.S. s t a t i o n 6515), l o c a t e d on the lagoon s i d e of Kay P o i n t s p i t near the s m a l l i n l e t M2. D u r i n g p a r t s of 1974, 1975, and 1976, a m e t e o r o l o g i c a l s t a t i o n was o p e r a t e d near Kay P o i n t a t a t u n d r a s i t e ( F i g u r e 2) a p p r o x i m a t e l y 6 m above sea l e v e l . O b s e r v a t i o n s i n c l u d e d h o u r l y mean wind v e l o c i t y a t z=10 m; a t m o s p h e r i c p r e s s u r e ; a i r temperature and r e l a t i v e h u m i d i t y ; 12-h maximum and minimum a i r t e m p e r a t u r e ; 12-h p r e c i p i t a t i o n t o t a l s ; and 12-h v i s i b i l i t y and c l o u d c o n d i t i o n s . E s t i m a t e s of f l u v i a l s e d i m e n t . i n p u t s were based on sample 504 da t a f o r suspended sediment c o n c e n t r a t i o n , o b t a i n e d u s i n g DH48 d e p t h - i n t e g r a t i n g s a m p l e r s , and b e d l o a d t r a n s p o r t d a t a o b t a i n e d w i t h H e l l e y - S m i t h b e d l o a d s a m p l e r s . R a t i n g s were e s t a b l i s h e d f o r d i s s o l v e d and p a r t i c u l a t e s o l i d s t r a n s p o r t u s i n g the sample da t a and f o r b e d l o a d t r a n s p o r t u s i n g m o d i f i e d - E i n s t e i n and Bagnold models, p a r t i a l l y c a l i b r a t e d by the H e l l e y - S m i t h r e s u l t s (see s e c t i o n 4.1.2 and Appendix A.4). Water samples f o r d e t e r m i n a t i o n of f i l t e r a b l e and n o n - f i l t e r a b l e s o l i d s were c o l l e c t e d u s i n g van Dorn samplers under v a r i o u s s a m p l i n g regimes a t s t a t i o n s i n d i c a t e d i n F i g u r e 2. N o n - f i l t e r a b l e s o l i d s c o n c e n t r a t i o n s were d e t e r m i n e d u s i n g 0.45-wn membrane f i l t e r s . The sample d a t a supplemented i n s i t u measurements of water t e m p e r a t u r e , c o n d u c t i v i t y , and l i g h t a t t e n u a t i o n , o b t a i n e d w i t h YSI SCT-33 t e m p e r a t u r e - c o n d u c t i v i t y meters, I n t e r o c e a n and H y d r o p r o d u c t s 0.lOm-pathlength beam t r a n s m i s s o m e t e r s , and s t a n d a r d 0.30-m S e c c h i d i s k s on rods g r a d u a t e d a t 5-mm i n t e r v a l s . S e d i m e n t a t i o n i n the lagoon and i n s e l e c t e d d e l t a l a k e s was m o n i t o r e d w i t h t r a p s d e p l o y e d d u r i n g p a r t s of the 1976 and 1977 open-water seasons ( F i g u r e 5 ) . S e d i m e n t a t i o n due t o snowmelt f l o o d i n g was e s t i m a t e d from measurements of a c c u m u l a t i o n on b o t t o m f a s t i c e and over p r i o r - s e a s o n v e g e t a t i o n . E r o s i o n and s e d i m e n t a t i o n on i n t e r t i d a l s u r f a c e s were m o n i t o r e d u s i n g s t a k e s w i t h l i g h t - c h a i n scour i n d i c a t o r s a t 41 s i t e s on e i g h t t r a n s e c t s ( F i g u r e 5 ) . Long-term s e d i m e n t a t i o n r a t e s were e s t i m a t e d from r a d i o c a r b o n d a t e s on o r g a n i c m a t e r i a l s a t s e l e c t e d s i t e s i n the d e l t a and lower v a l l e y . B a t h y m e t r i c s u r v e y s were c a r r i e d out w i t h a Raytheon DE719 200-kHz narrow-beam (3\u00C2\u00B0) sounding system, mounted on 1 6 - f o o t b o a t s . A d d i t i o n a l s u r v e y s were conducted w i t h a Raytheon RTT1000 200- and 7-kHz system, supplemented by s i d e - s c a n s o n a r , mounted on a 1 9 - f o o t boat. H o r i z o n t a l c o n t r o l was p r o v i d e d by t r a n s e c t i o n , u s i n g t h e o d o l i t e s and two-way r a d i o communication, and by t r i l a t e r a t i o n u s i n g \" a ComDev Marine t r i s p o n d e r system w i t h a nominal p r e c i s i o n of \u00C2\u00B11 m. Bathymetry of r i v e r and d e l t a c h a n n e l s was o b t a i n e d i n c r o s s - s e c t i o n s a t 250-m i n t e r v a l s , supplemented by numerous l o n g i t u d i n a l p r o f i l e s ; b a t h y m e t r i c s u r v e y s were a l s o c a r r i e d out i n s e l e c t e d l a k e s i n the Babbage D e l t a . Topographic p r o f i l e s and e l e v a t i o n c o n t r o l were o b t a i n e d w i t h Z e i s s Ni-2 l e v e l s and bubble-equipped survey r o d s . S u r f a c e sediment samples were c o l l e c t e d f o r p a r t i c l e s i z e , b u l k d e n s i t y , c o m b u s t i b l e f r a c t i o n , and o t h e r a n a l y s e s , a t s i t e s i n d i c a t e d i n F i g u r e 130 and a t a d d i t i o n a l c h a n n e l and t e r r a c e s i t e s i n the lower v a l l e y . Samples (m>0.5 kg) were c o l l e c t e d from subaqueous s u r f a c e s w i t h an Ekman box sampler; 505 samples from s u b a e r i a l s u r f a c e s were o b t a i n e d w i t h s i m p l e c y l i n d r i c a l samplers or spades. S u b s u r f a c e samples were o b t a i n e d u s i n g modified-CRREL c o r e r s i n f r o z e n d e p o s i t s and a s i m p l e p i s t o n c o r e r , c u s t o m - b u i l t a t UBC, i n n o n - f r o z e n m a t e r i a l s . L a r g e r samples (m<50 kg) were c o l l e c t e d as r e q u i r e d f o r s t a t i s t i c a l l y v a l i d a n a l y s e s of g r a v e l i f e r o u s d e p o s i t s . P a r t i c l e s i z e a n a l y s e s were conducted by s t a n d a r d d r y s i e v e and hydrometer p r o c e d u r e s (see Appendix A.12). 506 APPENDIX A.3 DAILY DISCHARGE DATA, BABBAGE RIVER AND DEEP CREEK Runoff i n p u t s t o the Babbage E s t u a r y t h r o u g h s e c t i o n s BI (Babbage R i v e r ) and D l (Deep Creek) were d e t e r m i n e d d u r i n g p a r t s of 1974-1976 u s i n g s t a g e r e c o r d s and s t a g e - d i s c h a r g e r e l a t i o n s e s t a b l i s h e d f o r each s e c t i o n a c c o r d i n g t o p r o c e d u r e s o u t l i n e d i n Appendix A.2. The r a t i n g c u r v e f o r i c e - f r e e c o n d i t i o n s i n the Babbage R i v e r s e c t i o n was based on 16 d e t e r m i n a t i o n s i n 1975 and 18 i n 1976. A minor s y s t e m a t i c d i f f e r e n c e between y e a r s may be p r e s e n t i n the d a t a , r e f l e c t i n g the a d o p t i o n of d i f f e r e n t meter c a l i b r a t i o n s , changes i n the r e f e r e n c e e l e v a t i o n , or c h a n n e l a d j ustmennts d u r i n g the f l o o d of 5-6 June 1976. The h i g h e s t measured f l o w t h r o u g h s e c t i o n b l was Q=435 m 3 s _ 1 ; h i g h e r d i s c h a r g e s were e s t i m a t e d by e x t r a p o l a t i o n of the s t a g e - d i s c h a r g e r e l a t i o n . The Deep Creek r a t i n g was based on 25 d i s c h a r g e measurements under i c e - f r e e c o n d i t i o n s i n 1976. The r a t i n g s adopted f o r summer-season d a t a p r e s e n t e d i n t h i s r e p o r t were as f o l l o w s ( e l e v a t i o n s i n metres above a r b i t r a r y l o c a l datum): Babbage R i v e r a t B l log(Q)=3.4671og(z)+0.733, r 3=0.961, s =0.076 Deep Creek a t D l Q>23.3 m 3s' 1: log(Q)=2.7131og(z)+0.209, r 2=0.974, s =0.026 Q<23.3 m's - 1: log(Q)=6.5341og(z)-1.422, r 3=0.985, s =0.024 507 Mean, maximum, and minimum d a i l y d i s c h a r g e a r e g i v e n below. For days f o r which c o n t i n u o u s stage r e c o r d s a re not a v a i l a b l e , observed maximum and minimum i n s t a n t a n e o u s d i s c h a r g e o n l y a r e g i v e n ; when c o n t i n u o u s stage r e c o r d s a r e a v a i l a b l e , the d a t a have been sampled a t h o u r l y i n t e r v a l s , y i e l d i n g 24 h o u r l y d i s c h a r g e v a l u e s and the d a i l y mean Q g i v e n below. Babbage R i v e r be low Crow R i v e r 1974 ; 3 -1 d a t e 0 (m s ) max. m i n . 146 . 27 May 1974 >163 4 <163 4 147 . 28 May 1974 >200 7 <174 1 148 . 29 May 1974 >230 2 <229 0 149 . 30 May 1974 >253 4 <237 4 150. 31 May 1974 >232 1 <223 5 151 . 1 June 1974 >229 0 <226 9 152 . 2 June 1974 >236 0 <215 4 153. 3 June 1974 >192 4 <178 5 154 . 4 J u n e 1974 > 197 5 <197 5 155 . 5 June 1974 >124 0 <124 0 156 . 6 J u n e 1974 >148 1 <135 3 157 . 7 June 1974 >282 4 < 144 1 158 . 8 June 1974 >320 7 <245 3 159 . 9 June 1974 >275 4 <235 3 160. 10 June 1974 >31 1 6 <31 1 6 165 . 15 June 1974 > 15 1 6 < 1 5 1 6 167 . 17 June 1974 >109 8 < 62 9 168 . 18 June 1974 > 57 1 < 27 5 169 . 19 June 1974 > 59 9 < 34 4 170. 20 June 1974 > 42 1 < 30 2 17 1. 21 June 1974 > 36 3 < 15 4 181 . 1 J u l y 1974 >108 2 <108 2 182 . 2 J u l y 1974 >146 9 <146 9 184 . 4 J u l y 1974 42 .0 53 1 51 9 185 . 5 J u l y 1974 46 . 7 50 3 45 2 186 . 6 J u 1 y 1974 44 . 2 45 5 43 1 187 . 7 J u l y 1974 55 . 1 66 6 45 3 188 . 8 J u l y 1974 69 .6 83 6 64 5 189 . 9 J u l y 1974 82 .2 86 7 74 6 190. 10 J u l y 1974 67 .6 \" 72 3 65 1 191 . 1 1 J u l y 1974 63 . 1 68 7 58 6 192 . 12 J u l y 1974 70 . 2 77 4 66 4 193 . 13 J u l y 1974 64 . 1 69 3 59 2 194 . 14 Ju 1 y 1974 57 . 2 62 4 52 5 195 . 15 J u l y 1974 50 . 2 55 0 47 2 196 . 16 Ju 1 y 1974 45 . 2 49 9 41 8 197 . 17 J u l y 1974 41 . 8 47 2 38 8 198 . 18 J u l y 1974 40 .9 44 1 38 0 199 . 19 J u l y 1974 39 . 2 42 6 36 5 200 . 20 J u l y 1974 40 . 5 45 9 37 4 201 . 21 J u l y 1974 50 . 5 80 5 44, A 202 . 22 J u l y 1974 103 . 4 1 10 4' 92 8 508 A.3 continued 203 . 23 Jul y 1974 204 . 24 Ju 1 y 1974 205 . 25 Ju ly 1974 . 206 . - 26 Ju ly 1974 -207 . 27 Ju ly 1974 208 . 28 Ju ly 1974 209 . 29 Ju 1 y 1974 2 10. 30 Jul y 1974 38 6 4 1 3 36 6 2 11. 31 Ju ly 1974 35 0 38 9 32 6 212. 1 Augt 1974 31 8 33 9 29 7 213. 2 Augt 1974 31 0 33 2 29 7 214 . 3 Augt 1974 36 1 37 8 34 5 215 . 4 Augt 1974 33 0 35 5 30 6 216 . 5 Augt 1974 217. 6 Augt 1974 218 . 7 Augt 1974 219. 8 Augt 1974 220. 9 Augt 1974 221 . 10 Augt 1974 222 . 1 1 Augt 1974 223 . 12 Augt 1974 224 . 13 Augt 1974 39 0 47 0 34 8 225. 14 Augt 1974 131 4 226 1 47 8 L_. A.3 c o n t i n u e d Babbage River ( s e c t i o n B1) below Crow River 3 - 1 date Q (m s ) max. min. 142 . 23 May 1975 > 3 4 < 3 4 143 . 24 May 1975 > 2 6 < 1 0 144 . 25 May 1975 > 3 4 < 3 4 145 . 26 May 1975 > 26 0 < 4 3 146 . 27 May 1975 > 23 5 < 20 1 147 . 28 May 1975 > 41 0 < 34 3 148 . 29 May 1975 > 72 8 < 55 2 149 . 30 May 1975 > 84 4 < 61 1 150. 31 May 1975 > 102 8 < 61 1 151 . 1 dune 1975 > 63 6 < 61 9 152 . 2 dune 1975 > 56 9 < 53 5 153 . 3 dune 1975 > 54 0 < 44 8 154 . 4 dune 1975 > 78 9 < 53 2 155 . 5 dune 1975 > 1 1 1 5 < 77 2 156 . 6 dune 1975 >1 18 1 <107 3 157 . 7 dune 1975 > 136 9 < 126/ ' 1 158 . 8 dune 1975 >154 2 <135 1 159 . 9 dune 1975 > 186 2 <166 5 160. 10 dune 1975 >205 1 <183 9 161 . 1 1 dune 1975 >252 2 <241 2 162 . 12 dune 1975 >309 6 <293 7 163 . 13 dune 1975 >413 8 <343 2 164 . 14 dune 1975 >409 9 <394 4 165 . 15 dune 1975 >554 4 <489 4 166 . 16 dune 1975 >379 2 <296 9 167 . 17 dune 1975 >429 9 <281 4 168 . 18 dune 1975 >281 4 <210 0 169 . 19 dune 1975 > 188 5 < 144 4 170. 20 dune 1975 >138 7 <108 o 171 . 2 1 dune 1975 > 146 3 <133 2 172 . 22 dune 1975 >233 1 <152 2 173 . 23 dune 1975 >205 1 <158 2 174 . 24 dune 197.5 > 146 3 <109 6 175. 25 dune 1975 >1 12 7 < 89 0 176 . 26 dune 1975 > 97 4 < 74 8 177 . 27 dune 1975 > 77. 2 < 65 5 178 . 28 dune 1975 > 71 2 < 62 3 179 . 29 dune 1975 > 65 1 < 56 1 180. 30 dune 1975 56 4 62 3 52 2 181 . 1 dul y 1975 58 6 65 5 53 2 182 . 2 dul y 1975 52 7 58 1 47 0 183 . 3 dul y 1975 4 1 9 49 4 38 1 184 . 4 du 1 y 1975 36 3 40 5 31 7 185 . 5 dul y 1975 30 8 37 0 25 2 1S6 . 6 du 1 y 1975 25 4 31 7 22 8 187 . 7 du 1 y 1975 24 5 29 7 22 1 188 . 8 dul y 1975 25 8 29 7 22 1 189. 9 dul y 1975 25 6 30 7 21 3 190. 10 dul y 1975 24 2 29 7 20 6 191 . 1 1 du 1 y 1975 21 8 26 1 18 6 192 . 12 dul y 1975 20 1 25 2 17 3 193 . 13 dul y 1975 20 3 22 8 18 6 194 . 14 duly 1975 20 7 22 8 19 2 195 . 15 dul y 1975 20 2 23 6 17 9 510 A.3 c o n t i n u e d 3 - 1 d a t e Q (m s ) max. m i n . 196 . 16 du 1 y 1975 18 4 20 6 16 1 197 . 17 du 1 y 1975 17 8 21 3 15 5 198 . 18 du 1 y 1975 15 6 17 3 . 13 9 199. 19 d u l y 1975 14 6 16 1 13 4 200 . 20 du 1 y 1975 13 6 14 4 12 4 201 . 21 du l y 1975 12 3 12 9 1 1 5 202 . 22 du l y 1975 1 1 4 1 1 9 1 1 1 203 . 23 d u l y 1975 10 9 1 1 5 10 6 204 . 24 du 1 y 1975 1 1 1 1 1 9 10 2 205 . 25 du l y 1975 10 3 \u00E2\u0080\u00A2 10 6 . 9 8 206 . 26 dul y 1975 9 6 10 2 9 1 207 . 27 du 1 y 1975 9 7 ' 10 2 9 1 208 . 28 dul y 1975 10 3 \" 1 1 5 9 1 209 . 29 du l y 1975 12 0 12 4 1 1 5 210 . 30 d u l y 1975 12 7 13 4 1 1 9 211 . 31 du l y 1975 13 8 14 4 13 4 211 . 1 Augt 1975 14 2 15 0 13 4 213 . 2 Augt 1975 13 2 13 4 12 9 214 . 3 Augt 1975 13 7 14 4 12 9 215 . 4 Augt 1975 13 7 14 4 12 9 216 . 5 Augt 1975 12 8 13 4 1 1 9 217 . 6 Augt 1975 13 5 14 4 1 1 9 218 . 7 Augt 1975 19 0 22 1 15 0 219 . 8 Augt 1975 22 7 22 8 22 1 220 . 9 Augt 1975 27 2 38 1 22 8 22 1 . 10 Augt 1975 58 3 70 1 40 5 222 . 1 1 Augt 1975 57 0 65 5 50 3 223 . 12 Augt 1975 48 2 50 3 47 0 224 . 13 Augt 1975 40 4 47 0 34 8 225 . 14 Augt 1975 30 6 34 8 27 9 226 . 15 Augt 1975 27 5 29 7 26 1 227 . 16 Augt 1975 37 8 41 8 30 7 228 . 17 Augt 1975 31 5 35 9 28 8 229 . 18 Augt 1975 27 3 29 7 26 1 230 . 19 Augt 1975 25 9 26 9 25 2 231 . 20 Augt 1975 24 5 25 2 23 6 232 . 21 Augt 1975 22 7 23 6 21 3 233 . 22 Augt 1975 20 7 22 1 19 2 234 . 23 Augt 1975 19 3 19 9 18 6 235 . 24 Augt 1975 18 6 19 2 17 9 236 . 25 Augt 1975 18 7 19 2 17 9 237 . 26 Augt 1975 19 8 21 3 18 6 238 . 27 Augt 1975 33 4 52 2 22 1 239 . 28 Augt 1975 59 1 61 2 53 2 240 . 29 Augt 1975 53 2 58 1 48 4 24 1 . 30 Augt 1975 44 9 48 4 43 0 242 . 31 Augt 1975 40 5 43 0 39 3 243 . 1 Sep t 1975 38 1 39 3 37 0 244 . 2 Sept 1975 37 0 38 1 35 9 245 . 3 Sep t 1975 33 2 34 8 31 7 511 A.3 c o n t i n u e d Babbage R i v e r ( s e c t i o n B1) be low Crow R i v e r - 3 -1 d a t e 0 (m s ) max. m i n . 150. 30 May 1976 > 63 < 63 151 . 31 May 1976 > 88 < 88 152 . 1 June 1976 >151 < 1 5 1 153 . 2 June 1976 >326 <326 154 . 3 June 1976 >3 1 1 <31 1 155 . 4 June 1976 >282 <282 156. 5 June 1976 289 0 434 0 237 0 157 . 6 June 1976 445 0 529 0 365 0 158. 7 June 1976 367 7 407 0 27 1 0 159. 8 June 1976 179 6 261 0 120 0 160. 9 June 1976 121 5 137 0 93 0 161 . 10 June 1976 103 9 1 19 0 90 0 162 . 11 June 1976 123 8 150 0 91 0 163 . 12 June 1976 126 5 138 0 1 13 0 164 . 13 June 1976 145 3 165 0 1 12 0 165 . 14 June 1976 190 8 226 0 154 0 166 . 15 June 1976 196 0 228 0 153 0 167 . 16 June 1976 161 7 187 0 126 0 168 . 17 June 1976 1 15 6 126 0 105 0 169 . 18 June 1976 80 0 104 0 40 0 170. 19 June 1976 37 3 4 1 0 32 0 17 1. 20 June 1976 38 3 43 0 33 0 172 . 21 June 1976 50 4 60 8 40 7 173 . 22 June 1976 69 3 83 4 52 8 174 . 23 June 1976 78 6 87 6 .65 1 175 . 24 June 1976 78 3 82 8 70 6 176 . 25 June 1976 86 8 149 3 69 3 177 . 26 June 1976 381 7 477 0 202 0 178 . 27 June 1976 180 9 274 0 122 0 179 . 28 June 1976 1 16 9 121 0 1 12 0 180. 29- June 1976 102 6 1 12 0 94 0 181 . 30 June 1976 1 19 7 14 1 0 96 0 182 . 1 J u l y 1976 94 0 1 14 4 77 5 183 . 2 J u l y 1976 70 3 76 7 56 3 184, 3 J u l y 1976 51 8 55 0 49 3 185 . 4 J u 1 y 1976 53 9 59 6 48 6 186 . 5 Ju 1 y 1976 50 3 53. 3 47 8 187 . 6 Ju 1 y 1976 52 5 57 7 46 5 188 . 7 d u l y 1976 44 7 50 6 4 1 9 189 . 8 J u l y 1976 38 6 41 8 36 7 190. 9 du 1 y 1976 44 6 54 1 38 9 191 . 10 J u l y 1976 63 0 14 1 53 1 192 . 1 1 du 1 y 1976 140 193 . 12 Ju 1 y 1976 68 3 194 . 13 du l y 1976 58 2 68 3 49 0 195 . 14 J u l y 1976 42 6 48 0 38 7 196 . 15 d u l y 1976 35 4 38 3 34 1 512 A.3 c o n t i n u e d d a t e 0 3 - 1 (m s ) max . min. 197 . 16 Jul y 1976 30 . 7 33 . 7 29 1 198 . 17 Ju 1 y 197,6 27 .0 29 8 25 7 199 . 18 Jul y 1976 24 . 6 27 0 23 2 200. 19 Jul y 1976 23 . 2 25 . 2 22 2 201 . 20 Ju 1 y 1976 25 . 2 27 6 24 0 202 . 21 Jul y 1976 25 .9 27 6 24 7 203 . 22 Ju ly 1976 23 .0 25 4 2 1 6 204 . 23 Jul y 1976 22 .0 23 6 20 5 205 . 24 Jul y 1976 21 .6 23 2 20 1 206 . 25 Jul y 1976 22 .5 23 8 2 1 1 207 . 26 Jul y 1976 2 1 . 3 22 8 20 1 208. 27 Jul y 1976 19 . 8 20 9 18 4 209 . 28 Ju 1 y 1976 18 . 3 18 9 17 4 210. 29 Ju 1 y 1976 18 .6 19 1 17 6 2 11. 30 Jul y 1976 18 . 2 19 2 17 2 2 12. 31 Ju 1 y 1976 17 . 8 18 6 17 1 213. 1 Augt 1976 17 . 7 18 9 16 6 214 . 2 Augt 1976 16 . 8 17 4 16 1 2 15. 3 Augt 1976 16 . 4 16 9 15 6 216 . 4 Augt 1976 16 . 3 16 6 15 8 217 . 5 Augt 1976 17 .8 18 1 16 9 2 18. 6 Augt 1976 219. 7 Augt 1976 220. 8 Augt 1976 221 . 9 Augt 1976 222 . 10 Augt 1976 223 . 1 1 Augt 1976 24 . 7 27 7 22 3 224 . 12 Augt 1976 21 .9 23 0 21 6 225. 13 Augt 1976 69 . 1 90 3 23 8 226 . 14 Augt 1976 53 . 1 68 4 42 7 227. 15 Augt 1976 36 . 3 42 0 31 8 228 . 16 Augt 1976 28 . 4 31 4 26 5 229 . 17 Augt 1976 25 .6 26 4 24 9 230. 18 Augt 1976 26 6 29 9 25 0 231 . 19 Augt 1976 34 1 35 2 30 4 232 . 20 Augt 1976 44 1 55 2 34 0 233. 21 Augt 1976 45 .9 53 0 40 3 234 . 22 Augt 1976 35 . 2 39 2 31 8 235. 23 Augt 1976 29 .6 31 6 27 7 236 . 24 Augt 1976 26 2 27 6 25 0 237 . 25 Augt 1976 23 9 24 9 22 9 238 . 26 Augt 1976 22 1 22 8 21 4 239 . 27 Augt 1976 20 7 21 4 20 0 240. 28 Augt 1976 19 5 20 0 19 0 241 . 29 Augt 1976 18 6 19 0 18 1 242 . 30 Augt 1976 18 0 . 18 2 17 8 243 . 31 Augt 1976 17 8 18 0 17 6 244 . 1 Sept 1976 17 7 17 8 17 6 245 . 2 Sept 1976 23 5 27 6 17 7 246 . 3 Sept 1976 24 8 26 6 23 8 247 . 4 Sept 1976 22 8 23 7 22 1 248 . 5 Sept 1976 21 7 22 0 21 6 249 . 6 Sept 1976 21 5 21 7 2 1 1 250. 7 Sept 1976 20 5 21 1 19 8 251 . 8 Sept 1976 19 2 19 8 18 6 252. 9 Sept 1976 18 1 18 5 17 8 253. 10 Sept 1976 17 8 18 0 17 6 254 . 1 1 Sept 1976 17 6 17 7 17 6 251) . 12 Sept 1976 17 4 17 6 17 1 256 . 13 Sept 1976 16 7 17 1 16 4 257 . 14 Sept 1976 16 0 16 3 15. 7 258 . 15 Sept 1976 15 6 15 8 15 3 259 . 16 Sept 1976 16 2 17 0 15 8 260. 17 Sept 1976 17 7 18 2 17 . 1 513 A.3 c o n t i n u e d Deep C r e e k above Babbage R i v e r d i s t r i b u t a r y ( s e c t i o n D1) 1975 3 -1 d a t e Q (m 28 MAY 1975 0 . 29 MAY 0. 30 MAY 0. 31 MAY 0. 1 JUNE 0 . 2 JUNE 0 . 3 JUNE 0 .02 4 JUNE 0.1 5 JUNE 0 . 1 6 JUNE 0 . 1 7 JUNE 0 . 1 8 JUNE 0 . 1 9 JUNE 0 . 1 10 JUNE 0 . 3 11 JUNE 10. 12 JUNE 35 . 13 JUNE 50 . 14 JUNE 70 . 15 JUNE 87 . 16 JUNE 90 . 17 JUNE 98 . 18 JUNE 75 . 19 JUNE 63 . 20 JUNE 39 . T1 JUNE 38 . 22 JUNE 39 . 23 JUNE 37 . 24 JUNE 35 . 25 JUNE 29 . 26 JUNE 30 . 27 JUNE 21 . 28 JUNE 17 . 29 JUNE 15 . 30 JUNE 14 . 1 JULY 13 . 2 JULY 1 1 . 3 JULY 10. 4 JULY 8 . 7 JULY 6 . 26 JULY 3 . 514 A.3 c o n t i n u e d Deep C r e e k above Babbage R i v e r d i s t r i b u t a r y ( s e c t i on D1) 1976 3 - 1 d a t e 0 (m s ) max. m i n . 154 . 3 dune 1976 > 1 2 < 1 2 155 . 4 dune 1976 > 3 7 < 3 7 158 . 7 dune 1976 >36 4 <36 4 159 . 8 dune 1976 >49 9 <49 9 160. 9 dune 1976 >57 1 <57 1 161 . 10 dune 1976 >60 0 <60 0 162 . 1 1 dune 1976 >63 0 <63 0 163 . 12 dune 1976 >49 9 <49 9 164 . 13 dune 1976 >54 3 <54 3 165. 14 dune 1976 >59 3 <59 3 166 . 15 dune 1976 >59 6 <59 6 168 . 17 dune 1976 >36 7 <36 7 169 . 18 dune 1976 >31 5 <31 5 170. 19 June 1976 >25 3 <25 3 17 1. 20 dune 1976 >22 3 <22 3 172 . 21 dune 1976 >21 7 <21 7 173 . 22 dune 1976 >23 9 <23 9 174 . 23 dune 1976 >23 2 <23 2 175 . 24 dune 1976 >21 9 <21 9 176 . 25 dune 1976 >20 0 <20 0 177 . 26 dune 1976 >32 4 <32 4 178 . 27 dune 1976 >31 1 <31 1 179 . 28 dune 1976 >27 4 <27 4 180. 29 dune 1976 >22 1 <22 1 181 . 30 dune 1976 >20 4 <20 4 182 . 1 d u l y 1976 >19 1 <18 2 183 . 2 d u l y 1976 16 1 17 7 14 5 184 . 3 Ju 1 y 1976 13 4 14 4 1 1 9 185 . 4 du 1 y 1976 1 1 3 1 1 7 10 7 186 . 5 du l y 1976 10 4 10 6 10 2 187 . 6 du l y 1976 9 9 10 2 9 1 188 . 7 d u l y 1976 8 1 9 0 7 5 189 . 8 d u l y 1976 7 0 7 4 6 7 190. 9 d u l y 1976 6 5 6 7 6 4 191 . 10 d u l y 1976 6 7 6 9 6 6 192 . 11 d u l y 1976 8 8 1 1 4 6 9 193 . 12 du l y 1976 12 7 13 4 1 1 4 194 . 13 d u l y 1976 1 1 6 12 9 10 0 195. 14 d u l y 1976 8 6 9 9 7 5 196 . 15 du l y 1976 6 6 7 4 5 9 197 . 16 J u l y 1976 5 2 5 8 4 8 198 . 17 du l y 1976 4 5 9 9 3 8 199 . 18 du l y 1976 3 5 3 8 3 2 200 . 19 du 1 y 1976 3 1 3 3 3 0 201 . 20 du l y 1976 2 8 3 0 2 6 202 . 21 du l y 1976 2 4 2 6 2 3 203 . 22 d u l y 1976 2 2 2 3 2 1 204 . 23 d u l y 1976 2 0 2 1 1 9 205 . 24 du l y 1976 1 8 1 9 1 6 206 . 25 du l y 1976 1 5 1 6 1 4 207 . 26 dul y 1976 1 4 1 4 1 3 208 . 27 du l y 1976 1 2 1 3 1 1 209 . 28 du l y 1976 1 1 1 1 1 0 210 . 29 d u l y 1976 1 0 1 0 0 9 2 1 1 . 30 du l y 1976 0 8 0 9 0 8 212 . 31 du l y 1976 0 7 0 8 0 7 515 A.3 c o n t i n u e d 3 -1 date 0 (m s ) max. min. 213. 1 Augt 1976 0. 6 0.7 0.6 214 . 2 Augt 1976 0. 5 0.6 0.5 215. 3 Augt 1976 0 4 0.5 0.4 216 . 4 Augt 1976 0 5. 0.5 0.4 217 . 5 Augt 1976 0 5 0.5 0.5 218 . 6 Augt 1976 0 4 0.5 0.4 219 . 7 Augt 1976 0 4 0.4 0.4 220. 8 Augt 1976 0 4 0.4 0.4 221 . 9 Augt 1976 0 5 0.5 0.4 222 . 10 Augt 1976 0 6 0.7 0.4 223 . 1 1 Augt 1976 1 0 1 . 7 0.7 224 . 12 Augt 1976 1 9 2.2 1 . 7 225 . 13 Augt 1976 4 3 7 . 5 2 . 2 226 . 14 Augt 1976 6 7 8.6 5 . 9 227 . 15 Augt 1976 8 2 8 . 8 6 . 9 228 . 16 Augt 1976 5 5 6.7 4.5 229 . 17 Augt 1976 3 7 4.4 3.2 230. 18 Augt 1976 2 7 3 . 1 2 . 3 231 . 19 Augt 1976 2 1 2 . 3 2.0 232. 20 Augt 1976 1 9 2.0 1 . 8 233 . 21 Augt 1976 1 8 1 .9 1 .7 234 . 22 Augt 1976 1 9 2.2 1 .8 235 . 23 Augt 1976 2 2 2 . 3 2 . 1 236. 24 Augt 1976 1 9 2 . 1 1 .8 237 . 25 Augt 1976 1 7 1 .8 1 .6 238 . 26 Augt 1976 1 4 1 .6 1 . 4 239 . 27 Augt 1976 1 3 1 . 3 1 . 2 240. 28 Augt 1976 1 1 1 .2 1 .' 1 241 . 29 Augt 1976 1 0 1 .1 1 .0 242 . 30 Augt 1976 0 9 1 .0 0.9 243 . 31 Augt 1976 0 8 0.9 0.8 244 . 1 Sept 1976 0 8 0.8 0.7 245. 2 Sept 1976 0 7 0.7 0.7 246 . 3 Sept 1976 0 7 0.7 0.7 247 . 4 Sept 1976 0 7 0.7 0.7 248 . 5 Sept 1976 0 8 0.9 0.8 249 . 6 Sept 1976 0 8 0.9 0.8 250. 7 Sept 1976 0 7 0.8 0.7 251 . 8 Sept 1976 0 7 0.7 0.7 252 . 9 Sept 1976 0 6 0.7 0.6 253 . 10 Sept 1976 . 0 6 0.6 0.6 254 . 1 1 Sept 1976 0 5 0.6 0.5 .255 . 12 Sept 1976 0 5 0.5 0.4 256 . 13 Sept 1976 0 4 0.4 0.4 257 . 14 Sept 1976 0 5 0.5 0.4 258 . 15 Sept 1976 0 .5 0.5 0.5 259 . 16 Sept 1976 0 5 0.6 0.5 260. 17 Sept 1976 0 6 0.6 0.6 516 APPENDIX A.4 SEDIMENT TRANSPORT MEASUREMENTS DEEP CREEK AND RATINGS, BABBAGE RIVER AND Water samples were c o l l e c t e d f o r d e t e r m i n a t i o n of suspended and d i s s o l v e d s o l i d s c o n c e n t r a t i o n s u s i n g US-DH48 d e p t h - i n t e g r a t i n g s a m p l e r s . On the b a s i s of f i v e s e t s of samples c o l l e c t e d t o determine the t r a n s v e r s e v a r i a b i l i t y of suspended sediment t r a n s p o r t , i t was c o n c l u d e d t h a t the t r a n s p o r t r a t e e s t i m a t e d from a d e p t h - i n t e g r a t e d sample a t a s i n g l e v e r t i c a l near mid-channel was not s i g n i f i c a n t l y d i f f e r e n t a t a=0.05 from the t r a n s p o r t r a t e d e t e r m i n e d from da t a a t t h r e e v e r t i c a l s . The r e p o r t e d t r a n s p o r t d a t a a r e t h e r e f o r e based on c o n c e n t r a t i o n s a t a s i n g l e s t a t i o n . D i s s o l v e d and suspended f r a c t i o n s were d e f i n e d on the b a s i s of f i l t r a t i o n t h r o ugh 0.45 ym membrane f i l t e r s , as d e s c r i b e d i n s e c t i o n 4.1.2 of the t e x t . T o t a l n o n - f i l t e r a b l e r e s i d u e per u n i t volume (mg/L) was taken t o be the t o t a l suspended s o l i d s (TSS) c o n c e n t r a t i o n , Cp ; t h e n o n - f i l t e r a b l e r e s i d u e a f t e r a s h i n g f o r 2 h a t 550\u00C2\u00B0C was d e f i n e d as the i n c o m b u s t i b l e suspended s o l i d s (ISS) f r a c t i o n , g i v i n g an ISS c o n c e n t r a t i o n C i ; the c o m b u s t i b l e f r a c t i o n (CSS) was o b t a i n e d as the d i f f e r e n c e TSS-ISS. T o t a l f i l t e r a b l e r e s i d u e , which may c o n t a i n v e r y f i n e suspended p a r t i c u l a t e s , was taken t o r e p r e s e n t the t o t a l d i s s o l v e d s o l i d s (TDS) f r a c t i o n , y i e l d i n g a c o n c e n t r a t i o n C D. The sample d a t a a r e g i v e n .in accompanying l i s t s below. Separate r a t i n g s were adopted f o r t r a n s p o r t of suspended and d i s s o l v e d s o l i d s under d i s t i n c t i v e r e g imes, d e f i n e d by s e a s o n a l s h i f t s or a b s o l u t e d i s c h a r g e c r i t e r i a (see s e c t i o n 4.1.2). The r a t i n g e q u a t i o n s employed f o r the t o t a l t r a n s p o r t e s t i m a t e s a r e s e t out below. Suspended sediment r a t i n g s , Babbage R i v e r , 1974: b e f o r e 25 June: log(C I)=1.6241og(Q)-1.665 l o g ( C x ) = 1 . 4 6 8 l o g ( Q ) - 1 . 0 3 6 a f t e r 25 June: log(C I)=1.8071og(Q)-1.665 l o g ( C T ) = l o g ( Q ) - 1 . 5 8 1 Suspended sediment r a t i n q s , Babbage R i v e r , 1975 b e f o r e 11 June: log(C T)=0.7371og(Q)+0.757 log(C T)=0.7371og(Q)+0.841 11-25 June: log(C x)=1.5271og(Q)-1.127 log(C T)=1.5271og(Q)-1.043 a f t e r 25 June: log(Cj)=1.8071og(Q)-1.665 log(C T)=1.8071og(Q)-1.581 Suspended sediment r a t i n g s , Babbage R i v e r , 1976 b e f o r e 4 June log(C x)=1.6241og(Q)-1.473 and 8-25 June: log(C T)=1.4681og(Q)-1.036 4-7 June (major l o g (C-,-) =1. 6241og (Q)-1. 572 snowmelt f l o o d : log(C T)=1.6241og(Q)-1.489 a f t e r 25 June: log(C x)=1.8071og(Q)-1.665 log(C T)=1.8071og(Q)-1.581 S o l u t e r a t i n g s , Babbage R i v e r , 1974: Q<382 m's\" 1: log(C D)=-0.4431og(Q)+2.934 Q>382 m's - 1: log(C D)=4.5781og(Q)-10.05 S o l u t e r a t i n g s , Babbage R i v e r , 1975: Q<443 m 3s\" 1 b e f o r e 13 June: l o g ( C )=-0.1491og(Q)+2.156 a f t e r 13 June: l o g ( C )=-0.4431og(Q)+2.934 Q>443 m 3s\" 1: log(C^)=4.5781og(Q)-10.05 518 S o l u t e r a t i n g s , Babbage R i v e r , 1976: b e f o r e 6 June Q<369 m 3 s _ 1 : b e f o r e 6 June Q>369 m 3s- 1 , 6-21 June l o g ( C D ) -2.7791og(Q)+8.529 Q>443 m 3 s _ 1 21-26 June l o g ( C D ) 4.5781og(Q)-10.05 Q<383 m 3s- x: a f t e r 21 June Q>383 m 3s\" 1: a f t e r 26 June Q<383 m 3s- 1: l o g ( C D ) -0.1491og(Q)+2.156 l o g ( C D ) 4.5781og(Q)-10.05 l o g ( C D ) -0.4431og(Q)+2.934 Suspended sediment r a t i n g s , Deep Creek, 1976: b e f o r e 13 June: log(C r)=0.5421og(Q)+1.202 log(C T)=0.2641og(Q)+1.833 from 13 June: log(C x)=1.1651og(Q)+0.789 log(C T)=1.2101og(Q)+0.793 S o l u t e r a t i n g s , Deep Creek, 1976:: l o g ( C )=-0.1411og(Q)+1.798 The f o r e g o i n g r e l a t i o n s were e s t a b l i s h e d on the b a s i s of sample d a t a g i v e n i n t h e f o l l o w i n g d a t a l i s t i n g , i n t e r p r e t a t i o n s of s e a s o n a l a d j u s t m e n t s b e i n g supplemented w i t h i n s i t u t u r b i d i t y and c o n d u c t i v i t y d a t a . Due t o the e v i d e n t i n s t a b i l i t y of the r a t i n g s w i t h r e s p e c t both t o a b s o l u t e d i s c h a r g e r a t e and d a t e , and i n view of the h y s t e r e s i s e f f e c t s d e s c r i b e d i n s e c t i o n 4.1.2, m e a n i n g f u l e r r o r terms f o r the t r a n s p o r t e s t i m a t e s a r e d i f f i c u l t t o e s t a b l i s h . Suspended sediment t r a n s p o r t , i n p a r t i c u l a r , i s h i g h l y e p i s o d i c , w i t h a v e r y l a r g e p r o p o r t i o n of the t o t a l t r a n s p o r t o c c u r r i n g d u r i n g b r i e f extreme e v e n t s t h a t a r e not r e a d i l y m o d e l l e d u s i n g r e g r e s s i o n t e c h n i q u e s . F u r t h e r m o r e , as was p o i n t e d out i n the t e x t , s e r i a l c o r r e l a t i o n i n t h e sediment c o n c e n t r a t i o n s e r i e s v i o l a t e s an i m p o r t a n t assumption of r e g r e s s i o n t h e o r y . 519 The d a t a l i s t s below and on the f o l l o w i n g two pages' g i v e suspended and d i s s o l v e d s o l i d s c o n c e n t r a t i o n s i n mg/L, w i t h c o r r e s p o n d i n g v a l u e s of the d i s c h a r g e Q i n m 3 s _ 1 , and the date and time i n u n i t s of days ( w i t h o r i g i n a t OOOOh 1 Ja n u a r y ; see da t a l i s t , Appendix A.3, f o r c o n v e r s i o n t o d a t e ) . 1975 BABBAGE RIVER d a t e 0 ISS m 3 s - ' ' mg/L 143 . 69 1 . 5 9 .03 143 .69 1 . 5 26 .60 145 .54 4 . 8 18 .60 146 .65 20 . 1 46 .54 147 .54 38 . 166 .0 147 . 79 34 . 54 .61 148 . 56 67 . 161 . 1 149 . 77 67 . 95 .20 150 . 49 103 . 84 . 8 1 151 .67 6 3 . 83 . 73 152 .46 56 . 96 . 35 154 .52 6 0 . 84 .69 155 .50 81 . 157 .9 156 .67 108 . 214 . 6 157 .70 131 . 267 . 3 158 .85 154 . 294 . 5 159 .79 173 . 408 .6 161 . 77 244 . 330 . 3 162 .58 304 . 496 . 6 163 .81 4 10. 685 .8 164 .46 4 15. 760 . 7 165 . .66 489 . 932 . 9 166 . .85 297 . 4 12 . 4 167 , , 76 330 . 622 .0 168 . .5.1 270 . 382 . 1 169 . ,81 165 . 183 .5 170. ,66 115. 1 19. .6 171 . ,52 146 . 1 10. .0 172 . ,82 171 216 . .8 .174 . 60 142 . 132. , 3 175. 42 111. 82 . ,43 176 . 81 83 . 78 . . 23 179. 69 58 . 41 . 18 180. 79 58 . 44 . ,81 181 . 76 62 . 27 , .09 184 . 77 41 . 21 . , 19 213 . 58 13 . 3 . ,43 220 . 83 31 . 12. 46 221 . 75 69 . 69 . 1 1 227 . 71 38 . 67 . ,91 5 2 0 A.4 c o n t i n u e d 1976 BABBAGE R I V E R concentrations i n mg/L date 0 TSS ISS CSS TDS 152 . 82 203 . 6 298 . 18 259 . 94 38 . 24 139 . 3 153 . 53 326 . 1 643 . 26 586 . 70 56 . 56 36 . 6 154 . 62 668 . 34 609 . 89 58 . 45 56. 1 156 . 16 245 . 5 196. 22 172. 75 23. 47 68 . 3 157 . 08 464 . 685. 44 620. 42 65. 02 69 . 4 157 . 61 435 . 9 619 . 93 559 . 63 60. 30 50. 8 158. 82 329. 8 586. 23 525. 25 60. 98 122. 9 160. 66 119. 0 147 . 44 122 . 54 24 . 90 68 . 0 161 . 59 113. 9 80. 21 62 . 45 17 . 75 49 . 1 162 . 87 140. 2 162 . 21 125. 18 37 . 03 51 . 4 163 . 43 135 . 1 102 . 33 79 . 09 23. 24 50. 1 164 . .87 147 . , 3 157 . 85 132 . 36 25. 49 58. 8 165 , ,83 166 . ,9 222 . 91 182 . 41 40. 50 166 . . 69 203 . . 3 179 . 96 147 . 28 32 . 68 67 . 6 167 , .42 177 , . 7 151 . 65 114. 40 37 . 25 72 . 6 170. .82 40 . 2 25. 59 12. 67 12. 92 133 . 5 156 .80 286 . 7 338 : 50 290. 18 48 . . 32 . 50. ,4 172 .68 60 .8 36 . .74 23. 89 12 . , 85 76 . . 8 173 . 82 70 . 1 61 . .67 44 . 63 17 . .04 49 . .9 173 .82 70 . 1 46 . .02 40. .40 5. .62 87 .5 173 .82 70 . 1 46 , ,66 43. ,61 3 .05 84 . 3 174 .65 87 .5 35. .04 33 . .89 1 . 15 75 .4 177 .4 1 463 .0 1 157 .65 1050 . 39 107 .26 89 .9 177 .56 464 .2 1598 . 77 1463 . 53 135 . 24 258 . 7 177 .62 449 .0 1770 . 17 1592 .49 103 . 8 177 . 77 385 .0 1322 . 73 1204 .44 1 18 .29 63 . 2 178 .85 131 .0 7 1 .25 66 .29 4 .96 91 . 5 178 .85 131 .0 182 .81 157 .06 25 . 75 99 .6 196 .68 35 . 1 5 .93 6 .00 225 .08 24 .6 22 .87 20 . 77 2 . 10 234 .75 33 .5 19 .48 20 .73 169 .5 245 . 73 27 .4 2 .82 2 . 19 0 .63 214 . 1 262 .30 19 .5 0 . 32 0 .98 521 A.4 c o n t i n u e d 1975 DEEP CREEK concentrations i n mg/L date 0 ISS 159 .71 .07 77 .93 160 .71 . 34 44 . 58 162 .75 35 . 87 . 65 163 . 65 50 . 95 . 68 164 .52 70 . 209 .5 165 .72 88 . 158 .4 166 . 88 90 . 436 . 8 167 . 7 1 98 . 451 .6 168 . 54 75 . 543 .5 169 .58 63 . 582 . 4 170. .79 . . 3 9 , - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 537 .8 171 , ,58 38 . 395 . 3 172 . .84 39 . 384 . 4 174 . . 67 35 . 347 . . 3 175 . . 44 29 . 218 . 5 176 . .54 30 . 262 .0 177 . . 58 21 . 102 . 3 179 . .64 15. 47 .35 181 . .58 13 . 24 . .55 184 . .69 8 .0 46 .63 187 . . 72 5 . 7 17 , . 19 1976 DEEP CREEK date 0 TSS ISS CSS TDS 154 . 77 1 .2 69 .78 12 .01 57 . 77 30 .4 155 . 52 3 . 7 105 .20 58 .92 46 . 28 21 . 5 158 .80 36 . 1 17 .99 70 . 24 47 . 75 72 .4 159 .66 50 . 137 . 19 86 .05 51 . 14 16 . . 5 160 .63 57 . 217 .83 144 . 96 72 .87 161 .92 60 . 182 . 18 1 10 .69 7 1 .49 17 . 1 162 .85 63 . ^77 . 15 129 .63. 47 . 52 42 . 1 163 .67 50 . 206 .45 162 . 66 43 . 79 23. . 1 164 . 70 54 . 402 .41 334 . 13 68 . 28 25; .3 165 .64 59 . 896 .76 810 .57 86 . 19 32 , , 2 166 . 48 60 . 1236 . 14 1 120 .07 1 16 .07 25. .0 168 .98 37 . 626 . 17 522 . 34 103 . 83 40, , 5 169 . 67 32,. 509 .88 422 . 43 87 . 45 30, , 1 170 . 53 25 . 360 .68 267 .97 92 .71 49 , , 2 17 1 . 46 22 . 238 . 56 168 .92 69 .64 33 , .3 172 .86 22 . 179 .01 131 .08 47 .93 78 , , 7 173 . 72 24 . 230 . 26 171 , .42 58 . 84 132 , 1 173 . 72 24 . 181 .05 182 , 77 28 , ,8 173 , . 72 24 . 178 . 30 162 . 46 15 , .84 25 . 1 174 . .48 23 . 261 . 27 211. , 14 50 . 13 175 , , 44 22 . 424 . 76 357 . .65 67 . 1 1 42 . , 4 176 . .49 20. 196 .43 144 . ,69 51 , . 74 177 . .89 32 . 592 .82 496 . .81 96 , .01 50. 7 178 . .67 31 . 369 . .8 67 . 8 179 . .06 27 . 984 . .27 876 . .21 109, ,06 37 . 7 180. .48 22 . 409 .06 346 . .98 62 . .08 4 1 . 5 181 . .43 20 . 161 . . 74 117, .47- \u00E2\u0080\u00A2 44 . 27 85 . 5 182 . .47 19 . 100. . 38 92 . 71 7 . .67 183. .55 16 . 151 . ,60 138 . ,53 13 , ,07 63 . 3 184 . 60 13. 111. , 75 104 . , 13 7 , 62 37 . 5 185 . 55 1 1 . 101 . ,92 91 . 61 10, ,31 122 . 3 186 . 76 1 1 . 64 . , 64 61 . 38 3 . .26 22 . 4 187 . 50 10. 73 . .71 68 . 03 5 . 68 96 . 5 188 . 54 8 . 0 52 . .07 50. 35 1 . , 72 57 . 6 196 . 76 6 . 3 53 . ,41 49 . 07 4 . 34 39 . 2 229 . 67 3 .6 177 . ,93 164 . ,96 12 . .97 94 . 4 262 . 3 0 . 9 3. ,22 4 . 19 522 Bedload t r a n s p o r t r a t e s were computed u s i n g m o d i f i e d - E i n s t e i n and Bagnold models, as d e s c r i b e d i n s e c t i o n 4.1.2. The d e r i v a t i o n of the m o d i f i e d E i n s t e i n t r a n s p o r t model assumes the f o l l o w i n g ( E i n s t e i n , 1950, pp. 8-9 and 30-33): (1) en t r a i n m e n t and d e p o s i t i o n a r e i n e q u i l i b r i u m , w i t h a c o n s t a n t mass (number) of p a r t i c l e s i n motion a t any i n s t a n t , t h i s mass b e i n g r e p r e s e n t e d by an 'exchange p r o b a b i l i t y ' , p; (2) the p r o b a b i l i t y of p a r t i c l e e n t r a i n m e n t i s a f u n c t i o n of p a r t i c l e c h a r a c t e r i s t i c s and l o c a l h y d r a u l i c c o n d i t i o n s o n l y ; (3) en t r a i n m e n t i s de t e r m i n e d s o l e l y i n terms of i n s t a n t a n e o u s dynamic l i f t g r e a t e r than immersed w e i g h t ; (4) the p r o b a b i l i t y of d e p o s i t i o n i s e q u a l a t a l l p o i n t s where the l o c a l l i f t f o r c e i s l e s s than c r i t i c a l ; (5) the average t r a v e l d i s t a n c e i s c o n s t a n t f o r a g i v e n p a r t i c l e s i z e and i s assumed t o eq u a l 100D; (6) s a l t a t i o n may be n e g l e c t e d ( e x p l i c i t a n t i t h e s i s of Bagnold's t h e o r y ) ; (7) t h e dynamic l i f t f o r c e i s n o r m a l l y d i s t r i b u t e d ; (8) the v e r t i c a l v e l o c i t y p r o f i l e i s a d e q u a t e l y r e p r e s e n t e d by the l o g a r i t h m i c models of Keulegan (1938), even over v e r y rough b o u n d a r i e s ; (9) u n l i m i t e d sediment s u p p l y . P a r t i c u l a r s o u r c e s of e r r o r may be a n t i c i p a t e d i n assumptions 3, 5, 6, 8, and 9. Major assumptions of the Bagnold model i n c l u d e the f o l l o w i n g (Bagnold, 1966, 1973): (1) motion by s h e a r i n g of s u c c e s s i v e l a y e r s of g r a n u l a r s o l i d s immersed i n f l u i d of l e s s e r d e n s i t y ; (2) motion m a i n t a i n e d by t r a c t i v e f o r c e i n d i r e c t i o n of t r a n s p o r t ; (3) stea d y open-channel f l o w w i t h a l l f o r c e s i n s t a t i s t i c a l e q u i l i b r i u m ; (4) u n l i m i t e d sediment s u p p l y ; (5) f l o w may be l a m i n a r or t u r b u l e n t ( c f . F r a n c i s , 1973, f o r e x p e r i m e n t a l j u s t i f i c a t i o n ) ; (6) b e d l o a d i s d e f i n e d as f r a c t i o n of t o t a l sediment t r a n s p o r t w h o l l y s u p p o r t e d by s o l i d - c o n t a c t normal s t r e s s . B edload t r a n s p o r t d a t a were o b t a i n e d u s i n g H e l l e y - S m i t h s a m p l e r s w i t h i n l e t s e c t i o n a r e a of 76.2x76.2 mm2 and- 0.21-mm mesh s c r e e n s ( H e l l e y and Smith, 1971; Emmett, 1980). The samplers were d e p l o y e d a t t h r e e t o f i v e s i t e s a c r o s s the s e c t i o n f o r i n t e r v a l s r a n g i n g from 3.3 t o 16 m i n u t e s ; the l o n g e r deployment t i m e s were chosen t o take account of the i n t e r m i t t e n t b e h a v i o u r of bedl o a d t r a n s p o r t . Bed c o n d i t i o n s ranged from c o a r s e c o b b l e - g r a v e l a r m o u r i n g , w i t h which the sampler s i n t e r f a c e d p o o r l y , t o r i p p l e d sand moving over g r a v e l ; d u n e - s c a l e bedforms i n sand were not ob s e r v e d . Problems were e n c o u n t e r e d w i t h c o a r s e suspended o r g a n i c m a t e r i a l c l o g g i n g the s c r e e n s a t h i g h d i s c h a r g e r a t e s ; under t h e s e c o n d i t i o n s , the h y d r a u l i c e f f i c i e n c y of the samplers was reduced r a p i d l y and l o n g e r deployment t i m e s were undoubtedly d i s a d v a n t a g e o u s . T h i s i s b e l i e v e d t o have been a major cause of the anomalously low t r a n s p o r t r a t e s o b s e r v e d a t Q>60 m 3 s _ 1 . I n s u f f i c i e n t sample s i z e may have been a f a c t o r i n some c a s e s a l s o ( c f . s t a n d a r d p r o c e d u r e proposed by Emmett, 1980). The r e s u l t s of the b e d l o a d s a m p l i n g program i n the Babbage R i v e r and Deep Creek are summarized below. Observed r a t e s of bedload t r a n s p o r t , Babbage River at B1 date 1976 J B (kg/s) 5 June 313 0.210 10 June 106 0 . 1 7 \u00C2\u00B0 11 June 146 0.161 24 June 80 0.020 26 June 428 1.56 26 June 402 0.577 30 June 133 0.194 3 J u l y 52 0.045 4 J u l y 58 0.143 5 J u l y 53 0.277 6 J u l y 57 0.100 7 J u l y 42 0.029 15 J u l y 3^ 0.002 Observed r a t e s of bedload t r a n s p o r t , Deep Creek at D1 date 1976 Q (m^s\" 1) J B (kg/s) 19 June 25 0.022 24 June 22 0.013 27 June 31 0.435 2 J u l y ; 17 0. ;003 3 J u l y 14 0.001 4 J u l y 10 0.001 6 J u l y 10.. 0.001 -\u00E2\u0080\u00A2-7 J u l y 8 0 .000 524 APPENDIX A.5 DAILY SEDIMENT TRANSPORT, BABBAGE RIVER AT B l Babbage River (sect i on B1) DAILY TRANSPORT TOTALS (TONNES) -1975 1976 date TDS ISS TSS TBS TDS ISS TSS TBS 1 JUNE 392. 602. 730. 5. 102 . 219. 76. 2 JUNE 305 . 435 . 527 . 6 . 42 . 755. 270. 3 JUNE 507 . 668 . 810. 4 . 48 . 430. 234 . 4 JUNE 416 . 654 . 789 . 18 . 57 . 332. 180. 5 JUNE 582 . 1330. 1609 . 50. 1352 . 7026 . 8519 . 4851 . 6 JUNE 619 . 1629 . 1975 . 200. 3215. 21437. 25992. 13846. 7 JUNE 916 . 2885 . 3493 . 528 . 1890. 13215. 15849. 9551 . 8 JUNE 924 . 3213 . 3897 . 714 . 1024 . 2679 . 3201 . 1275 . 9 JUNE 1012 . 4047 . 4907 . 1096 . 736. 877 . 1129. 343. 10 JUNE 1063 . 4666 . 5657 . 1445 . 644 . 581 . 766 . 202 . 1 1 JUNE 1337 . 7005 . 8494 . 2764 . 747 . 948 . 1212 . 376 . 12 JUNE 2068. 16595. 20122. 7423 . 762. 963. 1234 . 384 . 13 JUNE 1634 . 20062. 24327. 9491 . 857 . 1412 . 1765 . 598 . 14 JUNE 3092 . 25060. 30400. 9500. 1081 . 2908 . 3480. 1374 . 15 JUNE 4 145. 42265. 51242. 17253. 1 106 . 3100. 3698 . 1475 . 16 JUNE 2629 . 23600. 28610. 11157. 939 . 1882 . 231 1 . 834 . 17 JUNE 1936 . 18260. 22140. 8321 . 706 . 759. 986 . 288 . 18 JUNE 1314 . 6440. 7810. 2624 . 514 . 321 . 436 . 91 . 19 JUNE 1548 . 3730. 4520. 1276 . 269 . 39 . 59. 1 . 20 JUNE 1032 . \u00E2\u0080\u00A2 1130. 1370. 313 . 276 . 42 . 64 . 1 . 21 JUNE 1337 . 1990. 2410. 603 . 347 . 89 . 131 . 9 . 22 JUNE 1374 . 3985 . 4835 . 1437. 455 . 205. 287 . 45 . 23 JUNE 1223. 2345. 3445. 970. 508 . 278 . 383 . 70. 24 JUNE 1045 . 1460. 1780. 437 . 506 . 271 . 375 . 67 . 25 JUNE 1052 . 810. 980. 192 . 552. 419 . 556. 1 14 . 26 JUNE 849 . 480. 580. 93 . 3235. 36081. 43746. 10234. 27 JUNE 844 . 320. 390. 52 . 1333 . 4742 . 5749 . 1340. 28 JUNE 708 . 200. 240. 25 . 1053 . 1 192 . 1445 . 299. 29 JUNE 662 . 140. 180. 12 . 979 . 832 . 1010. 188 . 30 JUNE 711. 157 . 191 . 14 . 1064 . 1316 . 1596 . 329 . 1 JULY 716. 173. 210: 18. 931 . 665. 807. 141 . 2 JULY 675 . 128 . 155. 8 . 792 . 291 . 353 . 45. 3 JULY 594 . 67 . 82 . 1 . 669 . 121 . 146 . 7 . 4 JULY 548 . 45. 54 . 0. 684 . 137 . 166 . 10. 5 JULY 500. 28. 35 . 0. 658 . 111. 135 . 6 . 6 JULY 449 . 16 . 20. 0. 673 . 127 . 154 . 9 . 7 JULY 44 1 . 14 . 18 . 0. 616. 80. 97 . 2. 8 JULY 453 . 17 . 2 1 . 0. 568 . 53 . 64 . 1 . 9 JULY 451 . 17 . 20. 0. 615 . 8 1 . 99 . 3 . 10 JULY 437 . 14 . 17 . 0. 700. 420. 34 . 525 tinued date 1975 1976 ISS TSS TBS TDS ISS TSS TBS TDS 11 JULY 412 . 10. 13 . 0 . 683 . 742. 61 . 12 JULY 394 . 8 . 10. 0 . 382 . 170. 206 . 29 . 13 JULY 397 . 8 . 10. 0 . 713 . 171 . 208 . 18 . 14 JULY 401 . 9 . 1 1 . 0 . 599 . 70 . 8 5 . 2 . 15 JULY 395 . 8 . 10. 0 . 54 1 . 41 . 50 . 0 . 16 JULY 375 . 6 . 8 . 0 . 500 . 27 . 33 . 0 . 17 JULY 369 . 6 . 7 . 0 . 465 . 19 . 23 . 0 . 18 JULY 343 . 4 . 5 . 0 . 44 1 . 14 . 17 . 0 . 19 JULY 330 . 3. 4 . 0 . 423 . 12 . 15. 0 . 20 JULY 317 . 2. 3. 0 . 448 . 15. 19 . 0 . 21 JULY 301 . 2 . 2 . 0 . 455 . 17 . 20 . 0 . 22 JULY 288 . 2. 2 . 0 . 426 . 12 . 15 . 0 . 23 JULY 280. 1 . 2 . 0 . 4 15. 10. 13. 0 . 24 JULY 284 . 1 . 2 . 0 . 411 . 10. 12 . 0 . 25 JULY 272 . 0 . 1 . 0 . 420 . 1 1 . 13 . 0 . 26 JULY 261 . 0 . 0 . 408 . 9 . 1 1 . 0 . 27 JULY 263 . 0 . 1 . 0 . 391 . 8 . 9 . 0 . 28 JULY 272 . 1. 1 . 0 . 374 . 6 . 7 . 0 . 29 JULY 295. 2 . 2 . 0 . 378 . 6 . 7 . 0 . 30 JULY 306 . 2 . 2 . 0 . 373 . 6 . 7 . 0 . 31 JULY 320 . 2 . 3 . 0 . 369 . 5 . 7 . 0 . 1 AUGT 325 . 3 . 3 . 0 . 368 . 5 . 7 . 0 . 2 AUGT 312 . 2 . 2 . 0 . 357 . 5 . 5 . 0 . 3 AUGT 318 . 2 . 3 . 0 . 353 . 4 . 5 . 0 . 4 AUGT 319 . 2 . 3 . 0 . 351 . 4 . 5 .. 0 . 5 AUGT 306 . 2 . 2. 0 . 369 . 6 . 7 . 0 . 6 AUGT 316 . 2 . 3 . 0 . 7 AUGT 382 . 7 . 9 . 0 . 8 AUGT 422 . 12 . 13 . 0 . 9 AUGT 466 . 20 . 25 . 0 . 10 AUGT 712 . 179 . 217 . 20 . 1 1 AUGT 705 . 161 . 195 . 15 . 345 . 1 1 . 13 . 0 . 12 AUGT 643 . 9 8 . 120. 3 . 414 . 10. 12 . 0 . 13 AUGT 582 . 61 . 74 . 1 . 772 . 340 . 412 . 60 . 14 AUGT 499 . 27 . 33 . 0 . 676 . 136 . 165. 12 . 15 AUGT 469 . 20 . 24 . 0 . 548 . 45 . 54 . 0 . 16 AUGT 560 . 50 . 61 . 0 . 478 . 22 . 27 . 0 . 17 AUGT 506 . 29 . 36 . 0 . 451 . 16 . 20 . 0 . 18 AUGT 468 . 19 . 24 . 0 . 461 . 18 . 22 . 0 . 19 AUGT 454 . 16 . 21 . 0 . 530 . 37 . 45 . 0 . 20 AUGT 440 . 14 . 17 . 0 . 608 . 85 . 103 . 4 . 21 AUGT 422 . 1 1 . 13 . 0 . 625 . 87 . 106 . 3 . 22 AUGT 401 . 9 . 1 1 . 0 . 539 . 4 1 . 50 . 0 . 23 AUGT 386 . 7 . 9 . 0 . 489 . 25 . 30 . 0 . 24 AUGT 378 . 6 . 8 . 0 . 457 . 17 . 21 . 0 . 25 AUGT 379 . 7 . 8 . 0 . 435 . 13 . 16 . 0 . 26 AUGT 391 . 8. 10. 0 . 416 . 10. 13 . 0 . 27 AUGT 519 . 42 . 51 . 1. 401 . 8 . 10. 0 . 28 AUGT 720 . 175. 213 . 18. 388 . 7 . 9 . 0 . 29 AUGT 679 . 131 . 159. 8. 378 . 6 . 8 . 0 . 30 AUGT 618 . 81 . 9 9 . 2 . 371 . 6 . 7 . 0 . 31 AUGT 583 . 60 . 74 . 0 . 369 . 6 . 6 . 0 . 1 SEPT 563 . 51 . 61 . 0 . 367 . 5 . 6 . 0 . 2 SEPT 553 . 46 . 56 . 0 . 429 . 13 . 16 . 0 . 3 SEPT 521 . 35 . 42 . . 0 . 444 . 15 . 18 . 0 . 4 SEPT 423 . 1 1 . 14 . 0 . 5 SEPT 412 . 10. 12 . 0 . 6 SEPT 409 . 9 . 12 . 0 . 7 SEPT 399 . 8 . 10. 0 . 8 SEPT 385 . 7 . 8 . 0 . 9 SEPT 373 . 6 . 7 . 0 . 10 SEPT 369 . 6 . 6 . 0 . 1 1 SEPT 367 . 5 . 6 . 0 . 12 SEPT 364 . 5 . 6 . 0 . 13 SEPT 356 . 5 _ 6 . 0 . 14 SEPT 348 . 4 . 5 . 0 . 15 SEPT 342 . 3 . 5 . 0 . 16 SEPT 350. 4 . 5 . 0 . 526 APPENDIX A.6 OBSERVED WIND AND HINDCAST WAVE CONDITIONS Wave da t a were s y n t h e s i z e d u s i n g Kay P o i n t wind r e c o r d s and the SMB h i n d c a s t p r o c e d u r e , as d e s c r i b e d i n s e c t i o n 2.3.4 of t h e t e x t . The mean wind speed and d i r e c t i o n , storm d u r a t i o n , and h i n d c a s t maximum s i g n i f i c a n t wave c o n d i t i o n s a r e t a b u l a t e d below f o r each storm event. B r e a k e r h e i g h t , H , and the u n i t s h o r e l e n g t h component of t a n g e n t i a l wave power, P', were computed a c c o r d i n g t o p r o c e d u r e s g i v e n i n s e c t i o n 4.2.2. Distal e\u00C2\u00BBd Kay Point spit, 1975 hindeast wave conditions date u wind t T H b 1 P t startup m/ s 0^1 It s B 0 W/n; 19/07 15.9 515 15 3.0 0.70 5 64. 20/07 18,9 315 12 5.4 0.88 5 112. 21/07 26.5 515 9 4 .0 1.55 10 612. 21/07 15.5 515 24 5.0 0.70 5 64. 23/07 16.0 515 15 5.0 0.70 5 64. 24/07 20.3 90 4 4.2 0.53 35 58. 25/07 15.7 90 24 4.4 0.35 35 69. 26 /0? 13.5 112 8 5.6 0.14 50 7. 26/07 15.1 45 7 5.8 0.62 47 288. 27/07 51.0 515 5 4.5 1.58 11 1024. 27/07 24.1 515 7 5.8 1.18 8 369. 27/07 29.5 515 4 4.2 1.45 10 771. 28/07 18.2 515 20 5.3 O.83 5 98. 50/07 10.3 515 5 2 .5 0.39 5 15. 51/07 12.4 90 10 5.6 0.24 40 28. 1 /08 12.3 45 8 5.4 0.49 47 165. 2 /08 10.9 90 11 3.3 0.20 ^5 18. 2 /08 10.8 90 5 2.7 0.14 55 7. V 0 8 15.1 155 9 4.3 0.20 50 22 . 4 /08 19.? 155 6 4.5 0.22 50 28 . 5/08 13.5 515 5 2 .8 0.60 5 4 3 . 5/08 23-7 515 5 3.8 1.16 8 352. 6 /08 21.4 515 9 \u00E2\u0080\u00A2 3.6 1.57 8 503. 6 /08 17.7 515 15 3.5 0.97 5 141. 7 /08 14.1 515 . 8 2 .8 0.63 5 49 . 8/08 18.8 315 5 5.4 0.88 5 113. 8/08 12.5 155 4 2.9 0.09 50 3. 9/o8 25.3 315 8 5.9 1.26 0 487. 9/08 .31.6 515 3 4.4 1.61 11 1090. 10/08 25.0 315 16 5.9 1.26 9 487. 11/08 13.0 515 3 2.7 0:56 5 37. 11/08 11.5 135 2 2.3 0.06 50 1. 12/06 13.8 155 8 3.7 0.15 50 9. 14 /08 14.5 515 2 3.0 0.67 5 58. 15/08 11.0 155 2 2.2 0.06 50 1. 16/08 20 .9 515 7 3.5 0.99 6 179. 17/08 24.2 515 12 3.8 1.19 9 422. 17/08 16.5 315 12 3.1 0.74 5 73 . 18/08 11.6 515 7 2.5 0.78 5 74 . 20 /08 13.4 315 6 2 .8 0.57 5 39 . 21/08 10.7 315 3 2.4 0.42 5 18. 22/08 11.7 515 5 2.5 0.78 5 74. 24/08 10.5 90 2 2 .2 0.09 55 0. 25/08 13.5 90 2 2 .6 0.12 55 2. 26/08 16.7 515 11 3.2 0.76 5 8 0 . . 27/08 28 .0 515 5 4.2 1.46 10 780. 27/08 36.0 515 5 4.7 1.86 12 1692. 27/08 24.8 515 9 3 .9 1.27 9 494. 50/08 10.5 90 6 2 .0 0.07 55 1. 50/08 15.5 155 2 2.5 0.07 50 1. 51/08 12.1 515 12 2.6 0.50 5 27. 31/08 10.9 315 7 2.4 0.43 5 19. 1/09 15.1 515 20 3.0 0 .69 5 6 1 . 2/09 12.5 515 5 2.7 0.49 5 27 . 3 /09 11.5 155 4 2.2 0.06 50 1. 5/09 15.0 515 2 2.7 0.53 5 32. 4 /09 14.0 515 3 2 .8 0 .59 5 42. 4 /09 12.8 315 6 2.7 0.53 5 32 . 527 A.6 c o n t i n u e d Distal end Kay Point spit. 1976 hindcast wave conditions date u wind t T Pt start m/s Orp h s 0 m b 0 W /m 16/07 13.0 45 3 2.8 0.35 47 67 . 7/ 14.5 90 12 4.1 0.29 30 39. 18/07 16.8 315 2 2.6 0.54 5 33. 19/07 15.6 112 10 4.3 0.20 50 17. 20/07 11.1 315 7 2.5 0.47 5 24. 21/07 10.9 315 8 2.5 0.47 5 24. 23/07 10.9 45 20 3.3 0.45 47 133. 24/07 11.7 45 14 3.3 0.47 47 143. 25/07 10.6 45 4 2.6 0.35 47 70. 26/07 15.2 112 21 4.2 0.19 50 15. 27/07 11.3 315 11 2.5 0.47 5 24. 28/07 13.4 90 6 3.4 0.21 40 19. 28/07 12.5 135 4 2.9 0.09 50 3. 29/07 19.3 112 10 4.8 0.25 50 32. 30/07 21.8 315 9 3.7 1.08 8 299. 31/07 14.7 315 3 2.9 0.68 5 59. 31/07 11.8 68 7 3.2 0.22 38 22. 1/08 12.6 68 5 3.2 0.22 38 22. 1/08 11.5 90 6 3.4 0.21 40 20 . 2 /08 15.2 112 19 4.2 0.19 50 16. 3/08 14.4 135 3 3.1 0.10 50 3. 3/08 19.5 315 19 3.4 0.93 5 130. 4/08 18.8 315 3 3.3 O.89 5 116. 5/08 15.6 ' 315 4 3.0 0.72 5 68 . 6/08 18.7 ' 337 9 4.2 0.27 33 37. 7/08 11.3 22 3 2.6 0.26 28 27 . 8/08 11.2 0 3 2.6 0.34 35 59 . 8/08 12.6 68 3 2.7 0.18 38 13. 9/08 17.3 112 16 4.1 0.18 50 14. 10/08 13.9 112 9 3.8 0.15 50 9. 12/08 20.1 315 5 3.5 0.97 6 173. 12/08 16.8 315 10 3.2 0.79 5 87. 12/08 23.9 315 11 3.8 1.17 8 369. 12/08 30.5 315 13 4.3 1.53 11 961. 12/08 20.1 315 8 3.5 0.97 6 173. 13/08 18.3 90 13 4.8 0.40 30 92. 14/08 18.5 135 9 4.3 0.19 50 17. 16/08 19.6 315 17 3.4 0.93 5 130. 18/08 19.4 315 17 3.4 0.93 5 130. 20/08 13.7 135 12 3.4 0.13 50 6. 21/08 26.6 315 14 4.0 1.31. 10. 605. 22/08 12.3 68 6 3.2 0.23 38 24. 23/08 18.6 315 7 3.3 0.89 5 116. 24/08 17.3 135 6 4.1 O.18 50 14. 25/08 14.7 112 9 4.0 0.17 50 13. 26/08 19.6 90 8 4.9 0.43 30 105. 27/08 15.1 90 11 4.2 0.32 35 56 . 1/09 13.4 292 3 2.4 O.38 \u00E2\u0080\u00A2 -16 - 4 3 . 1/09 12.1 315 4 2.6 0.54 5 33. 3/09 13.2 90 3 2 .8 0.15 55 8. 4/09 17.2 315 5 3.5 0.97 6 173. 4/09 25.9 315 20 4 . 0 1.31 10 605. 5/09 15.3 90 3 3.2 0.18 40 14. 7/09 13.3 315 4 2.7 0.60 5 44 . 7/09 15.1 135 7 3.8 0.15 50 8. 8/09 14.0 112 8 3.8 0.15 50 9. 9/09 16.8 315 10 3.2 0.79 5 87. 9/09 25 .0 315 15 3.9 1.25 9 478. 10/09 18.5 135 30 4.2 0.20 50 18. 12/09 13.9 135 6 3.5 0.13 50 7. 12/09 16.1 135 12 3.9 0;16 50 11. 5 2 8 APPENDIX A.7 LONGSHORE SEDIMENT TRANSPORT Computed v a l u e s of the l o n g s h o r e sediment t r a n s p o r t f o r i n d i v i d u a l storm e v e n t s i n 1976, o b t a i n e d u s i n g e q u a t i o n 4.2.2-6 and the h i n d c a s t wave d a t a , a r e s e t out below. E s t i m a t e s a r e p r e s e n t e d f o r two l o c a t i o n s on Kay P o i n t s p i t and one l o c a t i o n west of N i a k o l i k P o i n t . A l t h o u g h the da t a a r e s u b j e c t t o c o n s i d e r a b l e u n c e r t a i n t y , they p r o v i d e o r d e r of magnitude e s t i m a t e s of l o n g s h o r e sediment s u p p l y t o the Babbage E s t u a r y and a s t r i k i n g i l l u s t r a t i o n of l o c a l a l o n g s h o r e v a r i a b i l i t y i n the sediment budget. 1976 TONNES event starting Droximal spit d i s t a l s s i t Niakolik foreshore no. date K1 K2 N1 1 16 July 2 8 . 92. 3 17 436. 212. 76. It 18 2 . 3 0 . -67. . 5 19 66. 79. 14. ' 6 20 6. 76. - 5 1 . i 7 21 8. 86. - 5 8 . ! .8 23 394. 1221. 291 . 9 24 294. 900. 222. 10 25 38. 127. 52. 11 26 123. 144. 2 5 . 12 27 11. 119. - 7 9 . 13 28 93. 52 . 14. 14 28 4 . 6. , 1. 15 29 136. 148. 2 8 . 16 30 58. 1230. - 2 2 8 . 17 31 6. 8 1 . - 5 3 . 18 31 76. 71 . 31 . 19 1 August 54. 50. 2 2 . 20 1 95. 54 . . 14. 21 2 122. 137. 2 5 . 22 3 4 . 4 . 1. 23 3 8 6 . 1130. - 4 7 3 . 24 4 12. 159. - 7 5 . 25 5 9. 124. - 9 1 . 26 6 898. 149. 0 . 27 7 46, 37. 0 . 28 8 8 0 . 8 0 . 0 . 29 8 19. 17. 11. 30 9 8 9 . 98. 18. 31. 10 34. 39. 7. 32 12 2785. 9010. -1412. 33 13 1100. 548. 170. 3^ 14 6 2 . 71. 13. 35 16 77. 1010. -423. 36 18 77. 1010. -423. 37 20 3 0 . 35. 6 . 38 21 152. 3890. - 3 8 6 . 39 22 72. 67. 30. 40 23 2 8 . 373. - 174. 41 24 33. 37. 7. 42 25 45. 5 2 . 9. 43 26 770. 386. 112. 4 4 . 27 524. 281 . 78. : 45. 1 September -40. - 5 8 . 0 . 46. 1 5- 61 . -41. i 47. 3 2 1 . 12. 3 . 48. 4 743. 5830. - 6 5 5 . 49. 5 35 . 19. 5. 5 0 . 7 6. 81 . - 5 5 . 51 7 24. 2 5 . 2.-52 8 3 0 . 35. 2 . 53 9 380. 3690. - 6 1 3 . 54 10 211. . 238. 4 5 . : 56 12 16. 19. 3 . 57 '12 5 1 . ' 6 1 . 11. 529 APPENDIX A.8 DETERMINATION OF WATER PROPERTIES AND SEDIMENT CONCENTRATIONS In s i t u measurements of temperature and c o n d u c t i v i t y were o b t a i n e d u s i n g YSI model 33. SCT meters w i t h YSI 3300 s e r i e s c o n d u c t i v i t y and temperature p r o b e s . Two or more meters w i t h a s s o c i a t e d probes were m a i n t a i n e d i n the f i e l d f o r c r o s s - c h e c k i n g . A l t h o u g h r e a d i n g s were u s u a l l y w i t h i n the 6% wo r s t - c a s e e r r o r s p e c i f i e d by the m a n u f a c t u r e r , d e v i a t i o n s e x c e e d i n g 15% were o c c a s i o n a l l y e n c o u n t e r e d , the major presumed causes b e i n g water a t the probe j a c k , or i n s i d e the meter, and o i l or o r g a n i c f o u l i n g of pro b e s . P a r t i c u l a r c a r e was taken d u r i n g the 1976 f i e l d season t o a v o i d t h e s e problems. E m p i r i c a l c o r r e l a t i o n between the l o g a r i t h m of the TDS c o n c e n t r a t i o n d e t e r m i n e d from sample d a t a and t h e l o g a r i t h m of the _in s i t u . c o n d u c t i v i t y , a d j u s t e d t o 25\u00C2\u00B0C ( f o l l o w i n g P e r k i n and Walker, 1971), y i e l d e d a c o e f f i c i e n t of d e t e r m i n a t i o n r z=0.951 (n=59). S a l i n i t y was computed from the i_n s i t u t emperature and c o n d u c t i v i t y d a t a u s i n g r e s u l t s of P e r k i n and Walker (1971). E r r o r s i n the s a l i n i t y d a t a a r e b e l i e v e d t o be l e s s than \u00C2\u00B1 1 ppt i n most c a s e s . D e n s i t y , p(s,\u00C2\u00A9 ), was de t e r m i n e d from the temperature and s a l i n i t y r e s u l t s u s i n g the s t a n d a r d h y d r o g r a p h i c a l t a b l e s of Knudsen (1901). D i f f e r e n c e s between the d e n s i t y d e t e r m i n e d by t h i s p r o c e d u r e and d e n s i t y computed from sample TDS c o n c e n t r a t i o n s d i d not exceed 10 kg m~3 (n=59). V i s c o s i t y , n ( s , S ), was computed u s i n g e q u a t i o n s d e v e l o p e d by M i l l e r o (1974) from e x p e r i m e n t a l d a t a . The e q u a t i o n used was n ( s , e ) = n(0,e ) [I+A(CD 1 2+B(ci) ] where CI, the volume c h l o r i n i t y , i s the p r o d u c t of c h l o r i n i t y and s p e c i f i c g r a v i t y ; the c h o l o r i n i t y was computed as (s-0.03)/l.805 (Knudsen, 1901, p . i i i ) ; and the c o n s t a n t s A and B, d e t e r m i n e d e x p e r i m e n t a l l y o n l y a t 5\u00C2\u00B0C and 25\u00C2\u00B0C, were o b t a i n e d f o r o t h e r t e m p e r a t u r e s by l i n e a r i n t e r p o l a t i o n or e x t r a p o l a t i o n . Water samples were c o l l e c t e d u s i n g 1-L van Dorn samplers and were s t o r e d i n new 1-L p o l y e t h y l e n e b o t t l e s . A f t e r d e t e r m i n a t i o n of sample volume, samples were passed t h r o u g h pre-weighed S a r t o r i u s 13106 47-mm di a m e t e r c e l l u l o s e n i t r a t e membrane f i l t e r s h a v i n g a nominal pore d i a m e t e r of 0.45 ym. F i l t e r s were d r i e d a t 105\u00C2\u00B0C, c o o l e d i n a d e s s i c a t o r , and re-weighed t o the n e a r e s t 0.01 mg t o o b t a i n t o t a l .suspended 530 s o l i d s (TSS) c o n c e n t r a t i o n . The i n c o m b u s t i b l e f r a c t i o n (ISS) was d e t e r m i n e d by a s h i n g f o r 2 h a t 550\u00C2\u00B0C. T o t a l d i s s o l v e d s o l i d s (TDS) c o n c e n t r a t i o n was d e t e r m i n e d by e v a p o r a t i o n of an a l i q u o t of the sample a f t e r f i l t r a t i o n t h r o u g h the 0.45-um membrane f i l t e r . The TDS r e s u l t s are c o n s i d e r e d good t o w i t h i n 1 mg/L. The major sou r c e of e r r o r i n the suspended sediment d a t a i s due t o undetermined r e s i d u a l s a l t r e m a i n i n g on the f i l t e r b e f o r e d r y i n g . A c o r r e c t i o n f o r the r e m a i n i n g s a l t was a p p l i e d t o the c o n c e n t r a t i o n d a t a f o r samples from s t a t i o n s i n the e s t u a r y . The c o r r e c t i o n was based on the water s a l i n i t y and the e s t i m a t e d volume of v o i d s i n the f i l t e r and r e t a i n e d sediment; was n e g l i g i b l e p r i o r t o the mid-summer s a l i n i t y i n t r u s i o n ; and exceeded 3 mg/L i n o n l y s i x c a s e s , the most extreme b e i n g 7.2 mg/L. R e s i d u a l s a l t on f i v e f i l t e r s t r e a t e d w i t h samples of s a l i n i t y 18.260%, a p p r o x i m a t e l y , r e l a t i v e t o a s t a n d a r d of 100% i n d i s t i l l e d w a t e r . C a l i b r a t i o n s adopted f o r e s t i m a t i o n of CT a r e g i v e n below (the c o e f f i c i e n t s assume HE i n metres and C T i n mg/L). H y d r o p r o d u c t s 0.10-m p a t h l e n g t h beam t r a n s m i s s o m e t e r : ln(C T)=-0.052T L+4.541, r 2=0.724, s =0.695, n=48 I n t e r o c e a n 0.10-m p a t h l e n g t h beam t r a n s m i s s o m e t e r : ln(C T)=-0.042T L+4.323, r 2=0.830, s =0.372, n = 15 S e c c h i d i s k 0.30-m d i a m e t e r : l n(C T)=-1.4421n(H E)+2.189, r 2=0.868, s =0.572, n 532 APPENDIX A.9 DAILY TEMPERATURE, SALINITY, DENSITY, AND VISCOSITY, BABBAGE ESTUARY, 1976 (IN SITU DATA) Data f o r s t a t i o n s 5-7 a r e r e f e r e n c e d t o date i n days w i t h o r i g i n a t OOOOh 1 January 1976 (see d a t a l i s t , Appendix A.3 f o r c o n v e r s i o n t o d a t e ) . Babbage E s t u a r y s t a t i o n 5 1976 D a i l y t e m p e r a t u r e , s a l i n i t y , d e n s i t y , and v i s c o s i t y n e a r - s u r f a c e (z=0) and near-bottom (z=h) date time 9(0) s(0) P(0) n(0) 9(h) s(h) P ( h ) n(h) 3 2 3 2 days hr/m1n \u00C2\u00B0C ppt kg/m N s/m *C ppt kg/m N s/m 163 . 774 1835 5 . 1 0. 2 1000. . 3 0 .0015 15 5 . 1 0. 2 1000, , 3 0 .0015.15 164 .726 1725 7 .9 0. 3 1000. .2 0 .001391 7 .9 0. 3 1000. . 2 0 .001391 165 .840 2010 6 . 4 0. 1 1000. .2 0 .001455 6 . 4 0. 1 1000, .2 0 .001455 166 .802 1915 5 .0 0. 2 1000. . 3 0 .001520 5 .0 0. 2 1000. . 3 0 .001520 167 .861 2040 5 .5 0. 2 1000, .3 0 .001496 5 .5 0. 2 1000, . 3 0 .001496 168 .953 2252 3 . 5 0. 2 1000. . 3 0 .001594 3 . 5 0. 2 100O, . 3 0 .001594 169 .7 17 1712 2 . 5 0. 3 1000. . 3 0 .001647 2 .5 0. 3 1000. . 3 0 .001647 170 .667 1600 3 .6 0. 6 1000, 6 0 .001590 3 .6 0. 6 1000. .6 0, .001590 17 1 .999 2359 2 .0 0. 6 1000. .6 0, .001675 2 .0 0. 6 1000. .6 0 .001675 172 .650 1536 8 . 3 0. 3 1000. ,2 0, .001374 7 .4 0. 9 1000. 6 0, .0014 1 3 173 .873 2057 8 . 1 0. ' 1 1000. . 1 0. .001382 5 .0 1 . 0 1000. 8 0 .001522 174 .833 2000 7 .9 0. 3 1000'. . 2 0, .001391 7 .9 0. 3 1000. , 2 0 .001391 175 .800 1912 12 .4 0. 2 999 , . 7 0 .001222 1 1 . 2 0. 2 999 . 8 0 .001264 176 . 947 2243 9 .0 0. 2 1000 , 1 0, .001346 9 .0 0. 2 1000. , 1 0, .001346 177 . 878 2105 9 .0 0. 2 1000. . 1 0, .001346 9 .0 0. 2 1000. 1 0, .001346 178 .838 2007 7 .0 0. 2 1000. . 2 0, .001429 7 .0 0. 2 1000. , 2 0 .001429 179 .809 1925 7 .5 0. 1 1000. . 1 0, .001407 7 .5 0. 1 1000. , 1 0 .001407 180 .862 2041 7 . 5 0. 1 1000. 1 0, .001407 7 . 5 0. 1 1000. , 1 0, .001407 181 . 792 1901 7 .8 0. 2 1000. 2 0. .001395 5 .0 0. 6 1000. ,6 0 .001521 182 .970 2317 8 .6 0. 1 1000. 0 0, ,001362 8 .6 0. 1 1000. ,0 0, .001362 183 . 782 1846 10 . 1 . 0. 1 999 . 9 0, ,001303 9 . 7 0. 2 1000. ,0 0 .0013 19 184 .837 2005 10 . 1 0. 2 1O00. .0 0, ,001304 10 . 1 0. 2 1000. ,0 0 .001304 185 , .774 1835 1 1 .3 0. 1 999 . 8 0. .001260 1 1 , . 3 0. 1 999 . 8 0, .001260 186, .631 1508 1 1 .5 0. 2 999. 9 0, .001253 1 1 , . 5 0. 2 999 . 9 0, .001253 187 .764 1820 11 .0 0. 1 999 . 8 0. .001270 1 1 , .0 0. 1 999 . 8 0, ,001270 188 , . 750 1800 8 .0 0. 1 1000. 1 0, 001386 8 .0 0. 1 1000. 1 0, .001386 189 . 598 142 1 6 .2 0. 7 1000. 6 0. .001465 6 , .2 0. 7 1000. 6 0, ,001465 190. . 701 1650 4 . 8 0. 2 1000. 3 0, .001529 4 .9 0. 5 1000. 5 0, .001525 191 , . 44 1 1035 1 .0 0. 7 1000. 6 0, ,001733 1 .0 0. 7 1000. 6 0, ,001733 192 . 747 1755 7 . 3 0. 7 1000. 6 0. .001417 7 , . 3 0. 7 1000. 6 0, .001417 193 . 642 1525 2 .5 0. 7 1000. 6 0. ,001648 2 , 5 0. 7 1000. 6 0, ,001648 194 . 726 1725 10 .8 0. 9 1000. 4 0. OO1280 10, .8 0. 9 1000. 4 0. 001280 195. ,726 1725 1 1 .0 0. 1 999 . 8 0. .001270 10, .0 0. 5 1000. 2 0. ,001308 196 . 858 2035 10.. .0 0. 7 1000. 4 0. .001309 10. ,0 0. 7 1000. 4 0. ,001309 197 . 783 1848 10 . 1 0. 7 1000. 4 0. 001305 10. 1 0. 7 1000. 4 0. ,001305 198 . 861 2040 7 .0 1. 5 1001 . 2 0. .001432 7 . ,0 1. 5 1001 . 2 0. ,001432 199 . 885 2115 1.3 . 5 0. 6 999 . 9 0. 001187 13 . 0 1. 0 1000. 2 0. 001204 200. .875 2100 10. .0 2 . 2 1001 . 5 0. 00131.2 10. ,0 2 . 2 1001 . 5 0. ,001312 201 . 875 2 100 12 . 2 1. 4 1000. 6 0. 0O1232 12 . 2 1. 4 1000. 6 0. 001232 202 . 542 1300 15. . 1 0. 9 999 . 9 0. 001138 15 . 1 0. 9 999 . 9 0. 001138 204 . 798 1909 13-. .0 1. 2 1000. 4 0. 001204 13 . 0 ,1. 2 1O00. 4 0. ,OO1204 205. .819 1940 12 . , 4 1. 9 1001 . 0 0. 001226 8 . 0 3 . 7 1002. 8 0. 001395 206 . 622 1455 9 . 9 3 . 1 1002 . 2 0. 001318 9 . 9 3 . 1 1002 . 2 0. 0013 18 207. .583 1400 10, , 7 2 . 9 1002. 0 0. 001288 8 . 5 3 . 2 1002 . 4 0. 001373 208 . 858 2035 11 , 3 6 . 7 1004 . 8 0. 001275 5 . 0 16 . 0 1012 . 7 0. 001558 209 . 566 1335 10, , 5 6 . 3 1004 . 6 0. 001303 8 . 2 1 1 . 0 1008. 5 0. ,001403 210. 635 1515 15 . , 6 5 . 2 1003 . 1 0. 001132 15 . ,6 5 . 2 1003 . 1 0. ,001132 I 533 A.9 c o n t i n u e d s t a t i o n 5 21 1 .545 1305 3 . 8 18 .5 1014 . 7 0 .001624 3 .8 18 . 5 1014 . 7 0 .001624 212 .795 1905 13 .0 9 .2 1006 . 5 0 .001222 13 .0 9 . 2 1006 .5 0 .001222 213 . 792 1900 14 . 3 8 . 4 1005 . 7 0 .001178 14 . 3 8 .4 1005 . 7 0 .001178 214 .833 2000 12 .5 1 1 . 8 1008 .6 0 .001244 7 . 1 15 .9 1012 .4 0 .001462 2 16 . 801 1914 10 . 1 1 1 . 1 1008 .4 0 .001329 10 . 1 1 1 . 1 1008 . 4 0 .001329 217 . 526 1238 1 . 2 16 .5 1013 .2 0 .001762 1 . 2 16 .5 1013 . 2 0 .001762 218 .438 1030 12 .0 9 . 7 1007 . 1 0 .001257 9 .9 10 .0 1007 . 6 0 .001334 219 .868 2050 8 .0 1 1 .2 1008 . 7 0 .0014 1 2 8 .0 1 1 .2 1008 .7 0 .001412 220 .858 2035 8 .8 10 .0 1007 . 7 0 .001377 8 .8 10 .0 1007 .7 0 .001377 221 .769 1827 10 .8 10 .4 1007 . 8 0 .001301 10 .8 10 .4 1007 .8 0 .001301 222 . 465 1 1 10 1 1 .0 8 .8 1006 .5 0 .001290 7 .9 14 .2 101 1 .0 0 .001423 223 . 684 1625 9 .0 1 1 .5 1008 .8 0 .001372 9 .0 1 1 .'5 1008 .8 0 .001372 224 . 708 1700 7 . 5 7 .0 1005 .4 0 .001423 7 . 5 7 .0 1005 . 4 0 .001423 225 . 597 1420 8 .2 10 .0 1007 . 7 0 .001401 7 . 5 12 .8 1010 .0 0 .001437 226 .542 1300 10 . 5 9 . 8 1007 . 3 0 .001311 7 . 2 9 .2 1007 . 2 0 .001441 227 .660 1550 6 . 1 17 .0 1013 . 4 0 .001509 6 . 1 17 .0 1013 .4 0 .001509 228 . 486 1 140 6 .9 13. . 2 1010 .3 0 .001464 4 .2 16 .3 1013 .0 0 .001598 229 .790 1858 9 . 8 12. .2 1009 . 3 0 .001343 6 .0 19 . 3 1015 . .2 0. .001519 230 . 533 1247 6 . 5 14 .4 101 1 . 3 0 .001485 6 . 5 14 . 4 101 1 . 3 0 .001485 231 . 504 1206 7 . 9 1 1 . .0 1008 . 5 0. .0014 16 6 . 7 16 . 8 1013 . 2 0 .001481 232 .876 2102 7 . 1 13, , 1 1010, . 2 0. .001455 5 , .5 17 . ,0 1013 . .4 0. ,001537 233. . 792 1900 4 . 5 16 . 0 1012 . .7 0. .001583 4 . 5 16 . 0 1012 . . 7 0 .001583 234 . ,497 1 155 3 . 4 7 . 6 1006. . 1 0, .001618 2 . 3 19. . 2 1015 . . 4 0. .001706 235. . 529 1242 5 . . 1 14 . 7 101 1 . . 7 0. .001550 5. 1 14 . 7 101 1 . . 7 0. .001550 236. .510 1215 6, .0 16 . 8 1013. .2 0. .001513 5 . .0 18 . 0 1014 . .2 0. .001563 237 . .618 1450 5 , .0 18 . 2 1014 . .4 0. .001564 5 . .0 18 . 2 1014 . .4 0. .001564 238 . .604 1430 7 . 3 16 . 5 1012 . .9 0 . .001454 7 . 3 16 . 5 1012 . .9 0. 001454 239 . . 278 0640 9 , .3 12 . 6 1009. 6 0 . 001363 9 . 0 15 . 0 101 1 . 5 0. 001380 241 , . 769 1827 10. .0 1 1 . 3 1008 . 6 0 . 001333 8 . 6 15 . 1 1011. 7 . 0. 001397 242 . .649 1535 8 . . 2 14 . 0 1010. 8 0 . 001410 6 . 9 16 . 0 1012 . 5 0. 00147 1 243 . 466 1111 8 . 1 1 1 . 0 1008 . 5 0 . 001408 7 . 9 14 . 1 101 1 . 0 0 . 001423 244 . 500 1200 8 . 0 13 . 8 1010. 7 0 . 001418 8 . 0 .13 . 8 1010. 7 0 . 001418 245 . 472 1 120 8 . 1 6 . 8 1005 . 2 0 . 001398 7 . 4 12 . 8 1010. 0 0 . 001441 246 . 848 2021 7 . 6 13 . 5 1010. 5 0 . 001434\" 6 . 8 16 . 1 1012 . 6 0 . 001475 247 . 725 1724 6 . 7 9 . 6 1007 . 5 0 . 001464 6. 7 9 . 6 1007. 5 0 . 001464 248 . 456 1056 6 . 2 13 . 7 1010. 8 0 . 001496 6 . 2 13 . 7 1010. 8 0 . 001496 249 . 719 1715 7 . 6 8 . 0 1006. 2 0 . 001422 6 . 8 14 . 7 101 1 . 5 0 . 001472 250 . 448 1045 4 . 8 14 . 9 101 1 . 8 0 . 001565 4 . 8 14 . 9 1011. 8 0 . 001565 251 . 578 1353 5. 2 13. 2 1010. 5 0 . 001542 4 . 5 14 . 8 101 1 . 8 0 . 001580 2 5 3 . 437 1029 5 . 2 9 . 0 1007 . 2 0 . 001532 4 . 1 14 . 1 101 1 . 2 0 . 001598 254 . 458 1 100 4 . 7 14 . 2 101 1 . 3 0 . 001568 3. 2 18 . 6 1014 . 8 0 . 001656 255 . 51 1 1216 4 . 1 16 . 8 1013 . 4 0 . 001605 2 . 7 20 . 5 1016 . 4 0 . 001687 534 A.9 c o n t i n u e d Babbage E s t u a r y s t a t i o n 6 1976 D a i l y t e m p e r a t u r e , s a l i n i t y , d e n s i t y , and v i s c o s i t y n e a r - s u r f a c e (z = 0) and n e a r - b o t t o m (z=h) date time 8(0) s(0) p (0) T) (0) 9(h) s(h) p(h) n(h) 3 2 3 2 days hr/mln C PPt kg/m N s/m C ppt kg/m N s/m 163 . 792 1900 4 . 0 0. 1 1000. 2 0. 001568 4 ,0 0. 1 1000. 2 0. 001568 164 . 701 1650 7 . ,0 0. 2 1000. 2 0. 001429 7 . ,0 0. 2 1000. 2 0, .001429 165 . 844 2015 6 , 9 0. 1 1000. 1 0. .001433 6 .9 0. 1 1000. 1 0. 001433 166 , . 806 1920 5 , 0 0. 2 1000. 3 0. .001520 5 . 0 0. 2 1000. 3 0. ,001520 167 . 865 2045 4 , .2 0, .1 1000. 2 0. .001558 4 . 2 0. 1 1000. 2 0. 001558 168 . 925 2212 3, ,5 0. 1 1000. 2 0. .001594 3 . 5 0. 1 1000. 2 0. 001594 169 . 721 17 18 3. . 1 0. 7 1000. 6 0. 001616 3 . 1 0. 7 1000. 6 0. 001616 170. .674 1610 4 . 5 0. 1 1000. 2 0. 001544 4 . 5 0. 1 1000. 2 0. .001544 17 1. . 997 2356 7 . 0 0. 9 1000. 7 0. .001430 7 .0 0. 9 1000. 7 0. 001430\" 172 . 646 1530 7 . 9 0. 1 1000. 1 0. .001390 7 .9 0. 1 1000. 1 0. .001390 173 . 912 2154 8 . 0 0. 1 1000. 1 0. .001386 8 .0 0. 1 1000. 1 0. .001386 174 . 840 2009 7 . 9 0. 3 1000. 2 0. .001391 \u00E2\u0080\u00A2 7 . .9 0. 3 1000. 2 0. 001391 175 , . 799 1910 12, .0 0. 1 999 . 7 0. .001235 12. .0 0. 1 999 . 7 0. .001235 176 . 944 2239 9 , 1 0. 1 1000. 0 0, .001342 9 . 1 0. 1 1000. 0 0. 001342 177 . 875 2100 9 , . 2 0. 2 1000. 1 0. .001338 9 . 2 0. 2 1000. 1 0. .001338 178 , 835 2003 7 , .6 0. 2 1000. .2 0. ,001403 7 .6 0. 2 1000. 2 0, ,001403 179 . 811 1928 6 , . 1 0. 1 1000. .2 0. ,001468 6 . 1 0. 1 1000. 2 0. .001468 180. . 860 2038 6 .5 0. 1 1O00. .2 0. ,001450 6 . 5 0. 1 1000. 2 0, 001450 181 , . 790 1858 8 , .9 0. 1 1000. 0 0, ,001350 8 .9 0. 1 1000. 0 0. .001350 182 , . 968 2314 9 . 3 0. 1 1000. 0 0, ,001334 9 .3 0. 1 1000. 0 0, .001334 183 . ,787 1853 10 .0 0. 1 999 . ,9 0. .001307 10 .0 0. 1 999 . 9 0. .001307 184 . 835 2003 10 , 1 '0. 1 999 . 9 0. ,001303 10 . 1 0. 1 999 . 9 0. .001303 185 , . 77 1 1830 1 1 . 2 . 0. 2 999 . 9 0. .001264 1 1 .2 0. 2 999 . 9 0. .001264 186 . 628 1505 '11 . 3 0. 3 999 . 9 0. .001260 1 1 .3 0. 3 999 . 9 0. .001260 187 . 767 1825 1 1 . 3 0. 1 999 . 8 0. .001260 1 1 . 3 0. 1 999 . 8 0. .001260 188 . 752 1803 7 . 8 0. 2 1000. . 2 0. .001395 7 .8 0. 2 1000, .2 0. .001395 189 . 593 14 14 6 .8 0. 3 1000. .3 0. .001438 \u00E2\u0080\u00A2 6 . 8 0. 3 1000. 3 0 .001438 190, .7 12 1705 5 .0 0. 3 \u00E2\u0080\u00A2 1000. 3 0. .001520 5 .0 0. 3 1000. . 3 0. .001520 191 . 447 1043 3., .0 0. 8 1000. .7 0. .001622 3 .0 0. 8 1000. , 7 0. .001622 192. .753 1805 8 . 1 0. 6 1000. ,4 0. .001383 8 . 1 0. 6 1000. ,4 0 .001383 193 , .647 1532 4 .0 0. 8 1000. , 7 0. .001570 4 .0 0. 8 1000. 7 0 .001570 194 . 729 1730 5 .0 1. 0 1000. .9 0. .001522 5 .0 1. 0 1000. ,9 0. .001522 195 , . 72 1 1718 12 . 5 0. 1 999 . 7 0, .001218 12 . 5 0. 1 999 . , 7 0 .001218 196 . 854 2030 1 1 , . 2 0. 3 1000. .0 0. .001264 1 1 . 2 0. 3 1000. .0 0 .001264 197 . , 781 1845 13 .0 0. 5 999 . 9 0, .001203 13 .0 0. 5 999 , 9 0 .001203 198 . 858 2035 7 . 7 \u00E2\u0080\u00A21. 3 1001 . 0 0. .001402 7 . 7 1. 3 1001 . 0 0. .001402 199 . 882 2110 14 .0 0. 5 999 . 8 0. .001171 14 .0 0. 5 999 . 8 0 .001171 200. .875 2100 9 . 7 2. 1 1001 . 4 0 .001324 9 . 7 2 . 1 1001 . 4 0 .001324 201 . 875 2100 13 .0 1. 0 1000. . 2 0. .001204 13 .0 1. 0 1000. . 2 0 .001204 202 , 542 1300 16 .4 0. 3 999 . 2 0. .001098 16 . 4 0. 3 999 , 2 0 ,001098 204 , . 796 1906 15 , .6 0. 3 999 . 4 0. .001121 15 . 6 0. 3 999 . 4 0 .001121 205 . , 826 1950 16 .0 1. 1 . 999. 9 0. .001112 16 .0 1 . 1 999 . ,9 0 .001112 206 . 624 1459 1 1 . 8 2 . 6 1001 . 6 0. .001248 1 1 . 8 2 . 6 1001 . 6 0 .001248 207 . 590 1410 1 1 . 3 2. 9 1001 . ,9 0, .001266 1 1 . 3 2 . 9 1001 . ,9 0 .001266 208 . 854 2030 7 .9 13 . 5 1010. .5 0. .001422 7 .9 13 . 5 1010. , 5 0 .001422 209 . , 573 1345 9 , . 8 6 . 1 1004 . 5 0. .001329 9 .8 6 . 1 1004 . ,5 0 .001329 210. .660 1550 15 . 5 5. 8 1003. .5 0. .001136 15 .5 5 . 8 1003 . ,5 0 .001136 211. .542 1300 4 .0 18 . 0 1014 . ,3 0. .001613 4 .0 18 . 0 1014 . , 3 0 .0016 1 3 A.9 c o n t i n u e d s t a t i o n 6 2 1 2 . 7 6 7 1825 2 1 3 . 7 6 4 1820 2 1 4 . 8 3 5 2002 2 1 6 . 7 9 9 1910 2 1 7 . 5 2 9 1242 2 1 8 . 4 4 0 1034 2 1 9 . 8 6 5 2045 220 .851 2025 221 .765 . 1821 2 2 2 . 4 7 2 1120 223 .681 1620 2 2 4 . 7 0 3 1653 2 2 5 . 6 1 8 1450 2 2 6 . 5 4 9 1310 2 2 7 . 6 6 7 1600 2 2 8 . 4 9 7 1155 2 2 9 . 7 8 5 1850 2 3 0 . 5 4 4 1303 2 3 1 . 5 1 3 1219 2 3 2 . 8 7 2 2055 2 3 3 . 7 9 9 1910 2 3 4 . 5 1 0 1215 2 3 5 . 5 3 3 1248 236 .521 1230 2 3 7 . 6 2 2 1455 2 3 8 . 6 0 8 1435 2 3 9 . 2 9 0 0657 2 4 1 . 7 7 7 1839 2 4 2 . 6 5 6 1545 2 4 3 . 4 7 0 1117 2 4 4 . 5 0 5 1207 2 4 5 . 4 7 9 1130 2 4 6 . 8 4 9 2023 2 4 7 . 7 2 9 1730 2 4 8 . 4 6 2 1105 2 4 9 . 7 2 4 1722 2 5 0 . 4 5 3 1052 2 5 1 . 5 8 5 1403 2 5 3 . 4 4 4 1040 2 5 4 , 4 6 5 1110 2 5 5 . 5 2 0 1229 14 .0 8 .9 1006 . 1 0 .001189 14 .8 8 . 3 1005 .6 0 .001163 10 . 3 13 . 8 1010 . 4 0 .001327 12 . 6 12 .6 1009 . 2 0 .001243 10 .6 13 . 4 1010 . 1 0 .001315 1 1 .0 10 . 5 1007 . 8 0 .001294 10 .5 10 .0 1007 .5 0 .001311 9 .0 6 . 1 1004 .6 0 .001360 12 .0 4 .9 1003 . 4 0 .001246 10 . 1 9 . 1 1006 .8 0 .001324 9 . 5 1 1 .0 1008 . 4 0 .001351 7 .5 5 .0 1003 .9 0 .001419 8 .0 9 .0 1007 .0 0 .001407 10 . 2 6 . 2 1004 .6 0 .0013 14 7 .0 16 .6 1013 .0 0 .001468 5 .0 18 .0 1014 . 2 0. .001563 9 . .0 13 . 8 1010 . 6 0 .001377 6 , . 4 16 . 2 1012 . 7 0 .001493 9 . . 3 6 .8 1005 . 1 0. .001350 9 . .5 5 , . 3 1003 .9 0. .001339 3 , .8 18 . ,2 1014 . .5 0. .001623 4 . 1 12 . 6 1010. . 1 0. .001594 5 . 0 16 . 0 1012 . . 7 \u00E2\u0080\u00A20. .001558 6 . .0 15 . 2 1012 . .0 0. 001509 5 . 5 17 . 4 1013 . 7 0. 001538 7 . 2 17 . 0 1013 . 3 0 . 001460 9 . 6 13 . 7 1010. 4 0 . 001354 10. 2 9 . 2 1006. 9 0 . 001321 8 . 5 14 . 0 1010. 8 0 . 001398 8 . 4 1 1 . 1 1008 . 6 0 . 001395 7 . 9 13 . 2 1010. 2 0 . 001421 7 . 9 9 . 6 1007 . 4 0 . 001413 8'. 2 1 1 . 5 1008 . 9 0 . 001405 6 . 8 12. 0 1009. 4 0 . 001466 5 . 5 1 1 . 4 1009 . 0 0 . 001523 6 . 8 13 . 2 1010. 3 0 . 001468 4 . 2 16 . 6 1013 . 2 0 . 001599 5 . 3 13 . 8 1010. 9 0 . 001538 4 . 7 9 . 1 1007 . 3 0 . 001556 5 . 0 12 . 1 1009. 6 0 . 001549 4 . 0 12 . 4 1009. 9 0 . 001599 14 .0 8 .9 1006 . 1 0 .001 18.9 14 .8 8 . 3 1005 .6 0 .001163 10 . 3 13 .8 1010 .4 0 .001327 12 .6 12 .6 1009 . 2 0 .001243 10 .6 13 .4 1010 . 1 0 .001315 1 1 .0 10 . 5 1007 . 8 0 .001294 10 . 5 10 .0 1007 .5 0 .001311 9 .5 9 . 1 1006 .9 0 .001347 12 .0 4 .9 1003 . 4 0 .001246 8 .9 1 1 . 7 1009 .0 0 .001377 9 .5 1 1 .0 1008 .4 0 .001351 7 .5 5 .0 1003 .9 0 .001419 8 .0 9 .0 1007 .0 0 .001407 8 .0 12 . 7 1009 .9 0 .001416 2 .9 20 . 3 1016 . 2 0 .001676 5 .0 . 18 .0 1014 .2 0 .001563 6 . 5 17 . 7 1013 . 9 0 .001492 6 . 4 16 . 2 1012 . 7 0 .001493 8 . 1 14 . 6 1011 . 3 0 .0014 1 6 7 . 5 13 . 7 1010 . 7 0 .001439 3. .8 18 . 2 1014 . .5 0. .001623 3 , .0 17 , . 5 1014 . ,0 0. .001664 5, .0 16 . 0 1012. . 7 0, .001558 6 . .0 16 . 7 1013 . . 1 0. 001513 5 . 5 17 . 4 1013 . 7 0. .001538 7 . 2 17 . 0 1013 . . 3 0. .001460 9 . 6 13 . 7 1010. 4 0 . 001354 8. 8 15 . 9 1012 . 3 0 . 001390 7 . 8 15 . 4 1012 . 0 0. 0014 30 8 . 2 14 . 4 101 1 . 2 0. 0014 1 1 7 . 9 13 . 2 1010. .2 0 . 001421 7 . 5 14 . 4 101 1 . 3 0 . 001441 7 . 3 15 . 6 1012 . 2 0 . 001452 6 . 8 12 . 0 1009 . 4 0 . 001466 5 . 6 14 . 6 1011. 5 0 . 001526 6 . 4 15 . 3 1012 . 0 0 . 001491 4 . 2 16 . 6 1013 . 2 0 . 001599 4 . 8 15 . 8 1012 . 5 0 . O01567 4 . 7 9 . 1 1007 . 3 0 . 001556 4 . 0 18 . 2 1014 . 5 0 . 001613 4 . 0 16 . 5 1013 . 1 0 . 001609 536 A.9 c o n t i n u e d Babbage E s t u a r y s t a t i o n 7 1976 D a i l y t e m p e r a t u r e , s a l i n i t y , d e n s i t y , and v i s c o s i t y n e a r - s u r f a c e (z = 0) and ne a r - b o t t o m (z=h) d a t e t i m e 8(0) s(0) p(0) n(0) 8(h) s (h) p(h) r\(h) 3 2 3 2 d a y s C p p t kg/m N s /m C ppt kg/m N s/m 163 . 785 1850 4 . 2 0. 1 1000. . 2 0. .001558 , 4 . , 2 0. 1 1000. 2 0, ,001558 164 . 705 1655 7 .0 0. 2 1000. . 2 0. .001429 7 . 0 0. 2 1000. 2 0, .001429 165 . 847 2020 7 . 8 0. 1 1000. 1 0. .001394 7 . , 8 0. 1 1000. 1 0, ,001394 166 .813 1930 5 .9 0. 2 1000. . 2 0. .001478 5 . 9 0. 2 1000. 2 0, .001478 167,, . 865 2045 5 . 4 0. 1 1000 . 2 0. .001500 5 . ,4 0. 1 1000. .2 0, ,001500 168 , .934 2225 4 .0 0. 1 1000. , 2 0. .001568 4 , .0 0. 1 1000. .2 0, .001568 169 . 724 1722 3 . 2 0. 2 1000. . 3 0, .001610 3, , 2 0. 2 1000. 3 0, .001610 170 .677 1615 4 . 1 0. 1 1000. , 2 0. .001563 4 . 1 0. 1 1000. . 2 0, .001563 171 , 994 2351 7 .3 0. 2 1000. ,2 0, .001416 7 , .6 0. 6 - 1000. .5 0, .001404 172, .635 1515 8. .0 0. 2 1000. 1 0. .001386 8 , .0 0. 2 1000. 1 0 .001386 173 , .861 2040 8 .0 0. 1 1000. 1 0. .001386 \u00E2\u0080\u00A28 , .0 0. 1 1000. 1 0 .001386 174 . 835 2003 9 .7 0.. 3 1000. 1 0. .0013 19 9 , . 7 0. 3 1000. . 1 0. .001319 175 , . 795 1905 12', .3 0. 4 999 . ,9 0. .001226 12 , . 3 0. 4 999 . .9 0, .001226 176 , .958 2300 9 . 1 0. 1 1000. 0 0. .001342 9 . 1 0. 1 1000. .0 0. .001342 177 , .872 2055 10 . 5 0. 2 1000. 0 0. .001289 10. .5 0. 2 1000. .0 0 .001289 178 , .832 1958 7 . 2 0. 2 1000. , 2 0, ,001420 7 . 2 0. 2 1000. . 2 0. .001420 179 , .813 1931 6 . 8 0. 1 1000. 1 0, .001437 6 , .8 0. 1 1000, . 1 0, .001437 180. .858 2035 7 . 8 0. 1 1000. , 1 0, .001394 7 , , 8 0. 1 1000. . 1 0 .001394 181 , . 787 1854 8 .9 0. 1 1000. 0 0, ,001350 8 , .9 0. 1 1000. .0 0. .001350 182 . 966 231 1 10 .8 0. 1 999 . 9 0, .001278 10, .8 0. 1 999 . 9 0, .001278 183 . , 790 1857 10 . 3 0. 1 999 . 9 0. ,001296 10, . 3 0. 1 999. 9 0. .001296 184 . 833 2000 10 .0 0. 1 999 . 9 0. 001307 10. .0 0. 1 999 . .9 0, .001307 185 . 771 1830 12 . 0 0. 1 999 . 7 0. ,001235 12 , .0 0. 1 999 . 7 0. .001235 186 , . 625 1500 10 .9 0. 2 999 . 9 0. ,001274 10. . 9 . 0. 2 999 . 9 0, .001274 187 , . 776 1837 ' 1 1 .4 0. 1 999 . ,8 0. .001256 1 1 . . 4 0. 1 999 . .8 0. .001256 188 . 754 1806 8 . 1 0. 2 1000. 1 0. 001382 8 . , 1 0. 2 1000. 1 0, .001382 189 . , 589 1408 7 .0 0. 2 1000. , 2 0, .001429 7 . 0 0. 2 1000. . 2 0. .001429 190, .715 1710 5 .7 0. 1 1000. 2 0. 001486 5 . . 7 0. 1 1000. 2 0, .001486 191 . 449 1047 5. . 1 0. 2 1000. 3 0. .001515 5 . 1 0. 2 1000. . 3 0. . 001515 192 . 764 1820 7 . 0 0. 1 1000. 1 0. .001428 7 . 0 0. 1 1000. . 1 0, .001428 193 , 651 1538 10 . 7 0. 3 1000. ,0 0. .001282 10, . 7 0. 3 1000. 0 0. .001282 194 . 729 1730 15 .0 0. 2 999. ,4 0. .001139 15 , .0 0. 2 999 . 4 0. .001139 195 . 717 1712 12 . 2 0. 1 999 . ,7 0. .001228 12. .2 0. 1 999 , .7 0, .001228 196 . 851 2025 1 1 . .0 0. 1 999 . .8 0. .001270 1 1 . .0 0. 1 999 , 8 0 .001270 197 . . 774 1835 12 .2 0. 1 999 . 7 0, ,001228 12. .2 0. 1 999 . . 7 0, ,001228 198 . 854 2030 15 .0 0. 3 999 . 5 0. .001139 15 , ,0 0. 3 999 . 5 0, .001139 199 , 878 2105 14 , .0 0. 2 999. ,5 0, ,001170 14 . 0 0. 2 999. ,5 0, .001170 200. .875 2100 15 .0 1. 5 1000. . 3 0. .001142 15 , .0 1. 5 1000. . 3 0 .001142 201 . 875 2100 14 , .9 0. 5 999 . 6 0, ,001143 14 . . 9 0. 5 999 . ,6 0, .001143 202 . , 542 1300 17 , . 1 0. 2 999 . 1 0. .001078 17 , . 1 0. 2 999. 1 0 .001078 204 . . 792 1900 16 , .0 0. 3 999 . 3 0. ,001110 16 . ,0 0. 3 999 . , 3 0, .001110 205 . , 830 1955 16 , . 7 0. 2 999 . 1 0. ,001089 8 . 5 3 . 7 1002 . 8 0, .001374 206 . 628 1504 14 . 3 1. 2 1000. 2 0. .001163 13 . . 8 1. 9 1000. .8 0, .001180 207 . . 592 1413 12 . 1 2 . 3 1001 . 3 0. .001237 10. .8 2 . 8 1001 . ,9 0, .001284 208 . .851 2025 9 , .0 11. 9 1009. 1 0. ,001373 9 . 0 1 1 . 9 1009 . 1 0, .001373 209. . 576 1350 10, .9 6 . 0 1004 . 3 0. .001288 8 . , 2 12 . 0 1009. , 3 0, .001406 210. .663 1555 14 , . 8 5 . 7 1003. 6 0. .001157 14 , .8 5. 7 1003 . ,6 0, .001157 211. 538 1255 4 .8 17 . 0 1013 . 5 0. .001570 4 .8 17 . 0 1013 . , 5 0 .001570 212 . . 740 1745 9 . 2 7 . 7 1005. .9 0. .001356 12 .6 8 . 8 1006. , 3 0, .001234 537 A.9 c o n t i n u e d s t a t i o n 7 213 . 719 17 15 15. 0 7 . 8 1005. 1 0 . 001156 1 1 . 0 9 . 6 1007 . 1 0 . 001292 214 . 831 1957 16 . 9 6 . 7 1004 . 0 0 . 001098 13 . 2 10. 4 1007 . 4 0 . 001218 216 . 792 1900 10. .5 12 . 3 1009. 3 0 . 001316 10. 5 12 . 3 1009. 3 0 . 001316 217 . 531 1245 8 . 2 13 . 5 1010. 4 0 . 001409 8 . 2 13 . 5 1010. 4 0 . 001409 2 18. 444 1040 1 1 . 1 9 . 8 1008. 0 0 . 001289 10. 5 1 1 . 2 1008 . 4 0 . 001314 219 . 854 2030 1 1 . 0 8 . 0 1005 . 9 0 . 001289 10. 1 10. 9 1008. 2 0 . 001328 220 . 847 2020 8 . 9 5 . 8 1004 . 4 0 . 001363 8 . 0 1 1 . 0 1008 . 5 0 . 001412 221 . 760 1814 1 1 . 2 5 . 1 1003. 6 0 . 001275 1 1 . 2 5 . 1 1003 . 6 0. 001275 222 . 478 1 128 9 . 6 1 1 . .0 1008. 3 0 . 001340 8 . 0 15 . 7 1012 . .2 0. 001423 223 . 677 1615 10. 3 9. .8 1007 . 4 0 . 0013 18 10. 3 9 . ,8 1007 . 4 0. 001318 224 . 698 1645 .7 . 9 5 . 6 1004 . 3 0 . 001403 7 . ,9 5. 6 1004 . . 3 0. .001403 225 . 625 1500 10. 0 4 . 2 1003 . 0 0 . 001317 10. 0 4 . ,2 1003. 0 0. .0013 17 226 . .563 1330 1 1 . .4 10. .3 1006 . 7 0 . 001279 9. 0 12 . ,9 1009 , .9 0. .001375 227 . .677 1615 8. .0 12 . 7 1009. 9 0 . 001416 3 . 0 19 . ,5 1015 . .6 0. .001669 228 . .500 1200 5 . 0 20. .0 1015 . 8 0 . 001568 5 . ,0 20. .0 1015 , .8 0. ,001568 229 . . 781 1845 13 . 0 6 . .0 1004 . 1 0 . 0012 15 13 . 0 15 , 5 101 1 . .4 0. .001235 230. . 551 1314 7 . 0 15 . ,5 1012 . 1 0 . 001465 7 . 0 15, ,5 1012 . . 1 0 .001465 231 . .518 1226 9 . .0 7 . 2 1005 . . 5 0. 001362 8 , .0 15 , 0 1011 .6 0 .001421 232 . . 867 2048 7 . ,8 6 .0 1003 . .2 0. .001408 7 , . 2 13 , . 8 1010. . 8 0, .001452 233 . .802 1915 3 . 5 21 .0 1016 . . 7 0. 001646 3 . 5 21 , 0 1016 . 7 0. .001646 234 . .517 1224 5. . 1 4 .3 1003 . .4 0. 001525 2 .4 20 , 1 1016 . 1 0 .001703 235 . . 537 1254 5 , . 5 16 .0 1012 . .6 0. 001534 5 .5 16 .0 1012 .6 0 .001534 236 , .531 1245 6 .5 17 .0 1013 . , 3 0. .001491 6 .5 17 .0 1013 . 3 0 .001491 237 . .630 1507 6 .9 10 . 2 1008. .0 0. .001457 5 . 2 18 . 7 1014 .8 0 .001555 238 , .619 1452 7 . 5 16 .5 1012 . . 9 0. ,001446 7 .5 16 .5 1012 .9 0 .001446 239 . . 290 0658 10 .0 1 1 .3 1008. .6 0. .001333 9 .0 14 .2 1010 .9 0 .001378 241 . ; 785 1850 10. . 1 10 .6 1008. .0 0. .001328 9 . 4 14 .8 101 1 .3 0 .001364 242 .660 1550 9 . 4 10 . 3 1007 .9 0. .001354 8 . 1 15 .4 101 1 .9 0 .001418 243 .476 1 125 8 .0 13 .5 1010 .5 0. .001418 7 .6 15 .5 1012 . 1 0 .001439 244 . 508 1212 7 .8 13 . 2 1010 . 3 0 .001425 7 .4 14 .4 101 1 .2 0 .001445 245 . 483 1 136 7 .8 13 . 7 1010 . 7 0 .001426 7 .8 13 .7 1010 . 7 0 .001426 246 . 838 2007 8 . 7 10 . 5 1008 . 1 0 .001382 7 . 7 15 . 1 101 1 . 8 0 .001434 247 . 735 1738 6 .4 13 . 7 1010 .8 0 .001487 6 .4 13 . 7 1010 .8 0 .001487 248 .469 1115 6 .0 1 1 . 2 1008 .8 0 .001500 5 .9 14 . 2 101 1 . 2 0 .001511 249 . 728 1728 6 .9 12 . 8 1010 :0 0 .001463 6 . 3 16 .2 1012 . 7 0 .001498 250 .458 1059 4 . 3 16 .8 1013 . 4 0 .001595 4 . 3 16 .8 1013 .4 0 .001595 251 . 590 1409 5 . 7 12 .0 1009 .5 0 .001515 4 .8 15 . 1 1012 .0 0 .001566 253 .452 1051 . 4 .8 .7. .6 1006 . 1 0 :001547 4 . 2 13 .3 1010 .6 0 .001591 254 .474 1 122 4 .9 13 .8 101 1 .0 0 .001558 3 .9 18 . 2 1014 . 5 0 .001618 255 . 527 1239 5 . 1 9 . 4 1007 .5 0 .001537 3 .4 18 . 7 1014 .9 0 .001645 A.9 c o n t i n u e d Babbage E s t u a r y s t a t i o n 12 1976 D a i l y t e m p e r a t u r e , s a l i n i t y , d e n s i t y , and v i s c o s i t y n e a r - s u r f a c e (z = 0) and n e a r - b o t t o m (z=h) time/date 1976 B(0) s(0) P(0) n(0) 6(h) s(h) p(h) l\(h) 1515h 13 June 7 . 0 0. 2 1000. 2 0. 001429 7 . 0 0. 2 1000. 2 0. 0014 29 1945h 14 June 6 . 9 0. 1 1000. 1 0. 001433 6 . 9 0. 1 1000. 1 0. 001433 1910h 15 June 5 . 1 0. 1 1000. 2 0. 001515 5 . 1 0. \u00E2\u0080\u00A21 1000. 2 0. 001515 2030h 16 June 5 . 5 0. 1 1000. 1 0. 001496 5 . 5 0. 1 1000. 1 0. 001496 21 10h 17 June 4 . 1 0. 1 1000. 2 0. 001563 4 . 1 0. 1 1000. 2 0. 001563 1745h 18 June 3 . 1 0. 1 1000. 2 0. 001615 3 . 1 0. 1 1000. 2 0. 001615 1645h 19 June 4 . 0 0. 1 1000. 2 0: 001568 4 . 0 0. 1 1000. 2 0. 001568 2330h 20 June 7 . 0 0. 1 1000. 1 0. 001428 7 . 0 0. 1 1000. 1 0. 001428 1655h 21 June 8 . 5 0. 2 1000. 1 0. 001366 8 . 5 0. 2 1000. 1 0. 001366 2030h 22 June 9 . 0 0. 1 1000. 0 0. 001346 9 . 0 0. 1 1000. 0 0. 001346 1930h 23 June 9 . 1 0. 1 1000. 0 0. 001342 9. 1 0. 1 1000. 0. 0. 001342 1945h 24 June 12 . 0 0. 1 999 . 7 0. 001235 12 . 0 0. 1 999 . 7 0. 001235 2220h 25 June 9 . 8 0. 1 999 . 9 0. 001315 9 . 8 0. 1 999 . 9 0. 001315 2030h 26 June 9 . 1 0. 1 1000. 0 0. 001342 9 . 1 0. 1 1000. 0 0. 001342 1710h 27 June 8 . 1 0. 1 1000. 1 0. 001382 8 . 1 0. 1 1000. 1 0. 001382 2230h 28 June 5 . 5 0. 1 1000. 2 0. 001496 5. 5 0. 1 1000. 2 0. 001496 2015h 29 June 7 . 2 0. 1 1000. 1 0. 001420 7 . 2 0. 1 1000. 1 0. 001420 1930h 30 June 8 . 2 0. 1 1000. 1 0. 001378 8 . 2 0. 1 1000. 1 0. 001378 2235h 1 Jul y 9 . 2 0. 1 1000. 0 0. 001338 9 . 2 0. 1 1000. 0 0. 001338 1915h 2 Jul y 10. .0 0. 1 999. 9 0. .001307 10. ,0 0. 1 999 . 9 0. ,001307 1925h 3 July 10. . 1 0. 1 999 . 9 0. .001303 10, , 1 0. 1 999 . 9 0. ,001303 1810h 4 July 12 . 0 0. 1 999 . 7 0, ,001235 12 . 0 0. 1 999. 7 0. ,001235 1410h 5 Jul y 1 1 . 8 0. 1 999 . 7 0 .001242 1 1 . .8 0. 1 999 . 7 0. .001242 1405h 6 Jul y 10 .9 0. 1 999 .8 0 .001274 10. .9 0. 1 999 . 8 0. .001274 1915h 7 Ju 1 y 1 1 .0 0. 1 999 .8 0 .001270 1 1 .0 0. 1 999 . 8 0 .001270 1330h 8 Ju 1 y 6 . 7 0. 2 1000 . 2 0 .001442 6 . 7 0. .2 1000 . 2 0 .001442 1746h 9 Jul y 5 .0 0. 1 1000 .2 0 .001519 5 .0 0. 1 1000 . 2 0 .001519 17 15h 1 1 Jul y 7 .8 0. 1 1000 . 1 0 .001394 7 .8 0. . 1 1000 . 1 0 .001394 17 10h 12 Jul y 10 . 2 0. 1 999 .9 0 .OO1300 10 . 2 0. . 1 999 . 9 0 .001300 1535h 13 Jul y 1 1 .9 0. , 1 999 . 7 0 .001239 1 1 .9 0 . 1 999 . 7 0 .001239 1410h 14 Jul y 12 .0 0. . 1 999 .7 0 .001235 12 .0 0. . 1 999 . 7 0 .001235 1740h 16 Jul y 12 .5 0. . 1 999 . 7 . 0 .001218 12 . 5 0 . 1 999 . 7 0 .001218 1240h 19 Ju 1 y 16 .4 0. . 3 999 . 2 0 .001098 16 .4 0 . 3 999 .2 0 .001098 1310h 20 Jul y 17 .0 ' 0 . 2 999 . 1 0 .001081 17 .0 0 . 2 999 . 1 0 .001081 1300h 21 July T9 .2 0 .2 998 . 7 0 .001023 19 .2 0 . 2 998 . 7 0 .001023 2025h 24 Jul y 16 . 1 0 .2 999 . 2 0 .001107 16 . 1 0 . 2 999 . 2 0 .001107 161 Oh 25 Jul y 16 . 3 0 . 1 999 . 1 0 .001100 16 .3 0 . 1 999 . 1 0 .001100 1520h 26 Jul y 15 .6 0 . 1 999 .2 0 .001121 15 .6 0 . 1 999 . 2 0 .001121 1825h \u00E2\u0080\u00A227 J L . 1 y 14 .9 0 . 1 999 . 3 0 .001142 13 .0 5 . 1 1003 . 4 0 .001213 14 10h 28 Jul y 10 . 8 0 . 1 999 .9 0 .001278 14 .6 0 . 9 1000 .0 0 .001153 1640h 29 Jul y 17 . 1 0 . 1 999 .0 0 .001078 17 . 1 0 . 4 999 . 2 0 .001079 12 15h 30 Ju 1 y 12 .0 0 . 8 1000 . 2 0 .001237 12 .0 0 .8 1000 .2 0 .001237 1640h 31 Jul y 17 . 2 0 . 1 999 .0 0 .001075 16 . 5 0 . 2 999 . 2 . 0 .001095 12 10h 1 Aug 17 .0 0 . 1 999 .0 0 .001081 16 .0 2 .0 1000 . 5 0 .001114 17 12h 3 Aug 18 . 1 o .9 999 . 4 0 .001053 15 .8 6 . 1 1003 . 7 0 .001128 A.9 c o n t i n u e d s t a t i o n 12 time/date 1976 6 (0 ) s ( 0 ) P (0) u ( 0 ) 9(h) s(h) p(h) q(h) 1535h \u00E2\u0080\u00A2 4 Aug 14 , .6 0. .5 999 . . 7 0. 001152 14 . 9 7 . 3 1004 . 8 0 . 001158 1346h 5 Aug 1 1 . . 5 1 . .0 1000. . 4 0. 001255 12 . 7 1 . 3 1000. 5 0 . 001215 1 1 10h 6 Aug 14 , . 1 2 . . 7 1001 . ,4 0. 001172 12 . 1 6 . 5 1004 . 6 0 . 001246 201 Oh 7 Aug 13 , 0 0. .9 1000. . 2 0. 001204 13 .0 4 . 1 1002 . 6 0 . 001211 1935h 8 Aug 10, ,0 0. .6 iooo, . 3 0. ,001309 9 .0 6 . 5 1004 . 9 0 . 001361 1535h 9 Aug 1 1 , .5 0, .3 999. .9 0. 001253 1 1 . . 5 0. 3 999. 9 0. 001253 1215h 10 Aug 12 , . 9 0. . 1 999, ,6 0. 001205 1 1 . . 2 0. 5 1000. 1 0 . 001264 1532h 1 1 Aug 12, . 1 0. . 1 999. , 7 0. 001232 12. . 1 0. 1 999. 7 0 . 001232 1425h 12 Aug 7 , .9 3 . 0 1002 . . 3 0. ,001397 7 . 9 3. ,0 1002. 3 0 . 001397 1625h 13 Aug 9, .0 1 . .2 1000, .8 0. ,001349 9 .0 1 . ,2 1000. ,8 0. 001349 1350h 14 Aug 10, , 9 0. .3 1000. .0 0. ,001275 10 .9 0. , 3 1000. ,0 0. 001275 1645h 15 Aug 13. .0 0, . 1 999 .6 0. ,001202 13 .0 0. , 1 999 . ,6 0. 001202 14 15h 16 Aug 13 , .0 1. . 9 1000 .9 0, ,001206 9 .0 13 . ,0 1010. ,0 0. 001376 1450h 17 Aug 14 . 0 0 . 8 1000 .0 0. .00117 1 13 .0 1 . . 1 1000. , 3 0. 001204 1819h 18 Aug 1 1 . 5 2 .O 1001 . 2 0 .001257 1 1 . 4 6 . 5 1004 . , 7 0. 00127 1 1945h 19 Aug 9 . 2 1 . . 1 1000 . 7 0. .001340 10 . 1 3 . 8 1002. , 7 0. 001312 1245h 20 Aug 9 , .0 0 . 1 1000 .0 0. .001346 9 .0 0. . 1 1000. ,0 0. 001346 1935h 21 Aug 6 , .0 2 .0 1001 .6 0 .001478 6 .0 2 . ,0 1001 . ,6 0. .001478 1313h 22 Aug 7 .3 0 . 8 1000 .6 0. .001417 6 . 2 7 . 1 1005. .6 0. .001481 1820h 23 Aug 7 , . 5 2 . . 7 1002 . 1 0. .001413 6 . 4 7 . 9 1006 . . 2 0. .001474 1745h 24 Aug 8, .2 1 .8 1001 .3 0. .001382 6 .0 14 . 6 101 1 , ,5 0. .001508 1G30h 25 Aug 8 .0 1 .8 1001 .3 0 .001390 8 .0 1 . .8 1001 , . 3 0. .001390 1510h 26 Aug 12 .0 3 . 2 1002 .0 0 .001243 10 . 1 10 : 2 1007 .7 0. ,001327 07 14h 27 Aug 1 1 .9 3 . 3 1002 . 1 0 .001246 10 . 4 13 .2 1010 .0 0. .001322 1910h 29 Aug 1 1 .9 2 . 8 1001 . 7 0 .001245 8 . 1 12 . 2 1009 .5 0. .001410 1 144h 31 Aug 10 . 5 1 .0 1000 . 5 0 .001291 8 . 9 12 . 2 1009 . 4 0. .001378 1330h 1 Sept 9 .5 1 .9 1001 .3 0 .001331 9 . 1 12 . 2 1009 . 4 0, .001370 1214h 2 Sept 9 .5 0 . 7 1000 ,4 0 .001328 8 . 7 12 . 4 1009 .6 0 .001386 1815h 3 Sept 9 .5 1 . 1 1000 . 7 0 .001329 7 .9 13 . 8 1010 . 7 0 .001422 1816h 4 Sept 7 .3 3 .6 1002 .8 0 .001424 7 .8 3 .8 1002 .9 0. .001403 1 140h 5 Sept 6 . 6 2 . 7 1002 . 1 0 .001452 6 .9 6 . 4 1005 .0 0 .001448 1743h 6 Sept 7 . 3 1 . 4 1001 . 1 0 .001419 6 . 2 8 .8 1006 . 9 0 .001485 1 125h 7 Sept 7 .0 2 . 5 1001 .9 0 .001434 6 . 7 1 1 . 6 1009 . 1 0 .001469 1437h 8 Sept 6 .8 2 . 7 1002 . 1 0 .001444 6 .0 13 .7 1010 .8 0 .001506 1 1 16h 10 Sept 5 . 2 2 . 1 1001 . 7 0 .001515 5 . 1 2 . 2 1001 .8 0 .001520 1 157h 1 1 S&pt 5 .4 4 . 7 1003 .8 0 .001512 5 .2 9 .0 1007 .2 0 .001532 1335h 12 Sept 5 .8 3 . 4 1002 . 7 0 .001490 5 .9 9 . 3 10O7 . 4 0 .001500 APPENDIX A.10 SUSPENDED AND DISSOLVED SOLIDS CONCENTRATIONS, BABBAGE ESTUARY, 197 6 (SAMPLE DATA) DATE STN DEPTH TSS(MG/L) ISS(MG/L) TDS(G/L) 16 JUNE 5 0. 219 . 96 212. 17 0. 10 17 JUNE 5 0. 150. 29 14 1. 19 0. 1 1 17 JUNE 5 0. 150. 10 14 1. 79 0. 09 26 JUNE 5 0. 767 . 65 706 . 59 0. 05 12 JULY 5 0. 88 . 22 77 . 31 0. 40 16 JULY 5 0. 31 . 57 29 . 75 0. 58 9 AUGT 5 0. 34 . 24 32 . 89 \u00E2\u0080\u00A2 12 . 70 12 AUGT 5 0. 290. 90 266 . 91 8 . 18 15 AUGT 5 0. 27 .22 23 . 60 20. 78 21 AUGT 5 0. 72 . 22 64 . 46 19 . 31 22 AUGT 5 0. 1 1 . 27 6 . 19 22 AUGT 5 1. 12. 38 7 . 15 19 . 24 22 AUGT 5 2 . 21 . 4 1 21 . 03 22 . 51 23 AUGT 5 0. 6 . 14 2 . 80 19 . 84 24 AUGT 5 0. 1 . 36 18 . 75 25 AUGT 5 . 0. .6 . 1 1 4 . 17 25 AUGT 5 1 . 1 10. 45 12 . 23 29 AUGT 5 0. 3. 53 3 . 13 14 . 26 4 SEPT 5 0. 101 . 7 1 89 . 85 15 . 37 16 JUNE 6 0. 188 . 22 0. 07 17 JUNE 6 0. 183 . 96 17 1. 60 0. 09 26 JUNE 6 0. 587 . 37 116. 94 0. 1 1 12 JULY 6 0. 138 . 83 128 . 00 0. 66 16 JULY 6 0. 49 . 80 44 . 45 0. ,26 30 JULY 6 . 0. 1 122 . .95 18. ,31 10 AUGT 6 0. 4 . 41 10 AUGT 6 0. 8 5 , 98 12 . 09 12 AUGT 6 0. 446 , . 17 404 . ,90 4 . 59 13 AUGT 6 0. 163 . 48 152 . 16 9 . 72 14 AUGT 6 0. 50 .21 40 .67 6 . 78 14 AUGT 6 0. 8 430 . 74 1 1 .23 15 AUGT 6 0. 47 .61 43 . 18 12 .52 15 AUGT 6 0. 7 48 . 22 45 . 74 22 . 39 21 AUGT 6 0. 87 . 1 1 73 .75 16 .73 29 AUGT 6 0. 1 .63 1 1 . 52 4 SEPT 6 0. 63 . 48 56 .59 19 .41 16 JUNE 7 0. 85 .39 76 .80 0 . 13 17 JUNE 7 0. 62 . 23 59 . 34 0 . 14 17 JUNE 7 0. 75 .61 72 .82 0 . 1 1 26 JUNE 7 0. 362 .68 334 . 54 0 . 15 12 JULY 7 0. 103 .88 97 .61 0 . 33 16 JULY 7 0. 34 . 39 34 . 36 0 .21 9 AUGT 7 0. 81 . 22 7 1 . 13 4 .24 12 AUGT 7 0. 309 .69 288 .06 15 AUGT 7 0. 32 .52 30 .60 16 .58 15 AUGT 7 1. .0 153 .42 128 .69 12 .46 18 AUGT 7 0 72 .69 66 . 19 20 . 35 21 AUGT 7 0 168 .86 154 . 35 23 . 29 23 AUGT 7 0 0 .98 0 .00 16 . 19 24 AUGT 7 0 9 . 55 8 . 75 15 .71 30 AUGT .7 0 0 .95 13 .38 4 SEPT 7 0. 35 . 21 28 . 63 31 MAY 73 0 19 .46 9 . 39 0 . 13 31 MAY 7s 0. 40 .02 8 .68 0 .05 3 JUNE 7i 0 184 . 84 144 .20 0 .09 3 JUNE 74 1 ' 213 . 16 161 .98 0 .06 8 JUNE 7a 0 187 .94 147 . 62 0 . 13 12 JUNE 13 0 250 . 56 210 . 32 0 .06 541 A.10 c o n t i n u e d DATE STN DEPTH TSS(MG/L) ISS(MG/L) TDS(G/L) 17 JUNE 12 0. 73. . 24 67 . 51 5 JULY 12 0. 80. ,48 1 1 JULY 12 0. 32 . , 39 0. 16 12 JULY 12 0. 44 . , 86 39 . 79 13 JULY 12 0. 33 . 09 14 JULY 12 0. 14 . 30 14 , 30 0. 10 15 JULY 12 0. 9 . 90 9 .50 0. 13 16 JULY 12 0. 13, . 36 10, , 14 17 JULY 12 0. 1 1 , . 14 7 , . 18 0. 10 18 JULY 12 0. 9 .62 7 .40 0. . 1 1 13 AUGT 12 0. 38 .81 35 , . 86 0, 51 14 AUGT 12 0. 176, .62 153, .00 15 AUGT 12 0. 46 . 10 42 , .75 0. 1 1 17 AUGT 12 0. 10, .59 0. 18 18 AUGT 12 0. ' 27 , .91 26 , .99 0. 18 18 AUGT 12 .5 . 1 21 .09 18 .80 19 AUGT 12 0. 22 . 26 20 .93 0. 19 20 AUGT 12 0. 21 , . 13 18 , .56 21 AUGT 12 0. 33 .00 31 .85 . 0. 68 25 AUGT 12 0. 6, .08 29 AUGT 12 0. 1 .57 0, .40 0. ,69 4 SEPT 12 0. 8 .75 8 . 75 2 . , 1 1 20 AUGT 13 0. 29 .92 26, . 28 0. . 22 542 APPENDIX A . 1 1 SUSPENDED SOLIDS CONCENTRATIONS IN BABBAGE ESTUARY, 1.976 The f o l l o w i n g l i s t i n g s i n c l u d e d a i l y S e c c h i e x t i n c t i o n d e p t h , H E , s u r f a c e and n e a r - b o t t o m t r a n s m i s s i v i t y , T L ( 0 ) and T^(h) ( H y d r o p r o d u c t s m e t e r ) , and e s t i m a t e d t o t a l suspended s o l i d s c o n c e n t r a t i o n , C T = f ( H E ) , f o r s t a t i o n s 5, 6 , 7 , 7 a , and 12 i n t h e Babbage E s t u a r y d u r i n g t h e 1976 open^water s e a s o n . D a t e s a r e g i v e n i n u n i t s o f d a y s , w i t h t h e o r i g i n a t OOOOh 1 J a n u a r y 1976 (see A p p e n d i x A . 3 f o r c o n v e r s i o n t o d a t e ) . U n i t s a r e : C T (jng/L) ; H E (m) ; T L (%) . date C H T (0) T (h) STATION 5 T E L L 158 88 697 . 0 050 163 77 246 . 0 100 164 73 87 . 0 200 165 56 111. 0 170 165 84 111. 0 170 166 54 289 . 0 090 166 80 344 . 0 080 167 46 289 . 0 090 168 95 122 . 0 160 169 72 122 . 0 160 170 67 134 . 0 150 172 00 87 . 0 200 172 65 71 . '0 230 173 46 52 . 0 280 173 87 38 . 0 350 174 83 31 . 0 400 175 80 50. 0 290 176 95 149 . 0 140 177 88 1 192 . 0 035 178 84 697 . 0 050 179 81 213. 0 1 10 180 86 289 . 0 090 181 79 149 . 0 140 182 97 187 . 0 120 183 78 75 . 0 220 184 84 41 . 0 330 185 77 4 1 . 0 330 186 63 47 . 0 300 187 76 59. 0 260 7 . 7 188 75 421 . 0 070 189 60 52 . 0 280 8 . 6 190 70 7 1 . 0 230 3 . 1 191 44 87 . 0 200 12 . 12 192 75 289 . 0 090 0. 0 193 64 59 . 0 260 14 . 13 194 73 66 . 0 240 15. 15 195 73 75 . 0 220 7 . 7 196 86 55 . 0 270 6 . 4 197 78 38 . 0 350 20. 20 198 86 59 . 0 260 12 . 12 199 89 26 . 0 450 200 88 33 . 0 380 201 88 20. 0 530 202 54 16 . 0 620 204 80 31 . 0 400 205 82 26. 0 450 206 62 30. 0 410 207 58 22 . 0 500 208 86 '18 . 0 580 25 . 10 209 57 18 . 0 580 46 . 46 210 64 19. 0 560 48 . 48 21 1 46 289 . 0 090 0. 0 211 .55 975 . 0 040 0. 0 2 12 4 1 17 . 0 600 38 . 37 543 A.11 c o n t i n u e d s t a t i o n 5 date C T H E T L ( 0 ) T^(h) 212 . 80 16 . 0 . 610 39 . 33 . 213 . 41 13 . 0 . 700 54 . 54 . 2 13. 79 9 . 0 . 880 55 . 51 2 14. 83 30 . 0. 410 215 . 62 42 . . 36 216 . 80 23 . 0. 490 25 . 25 217 . 53 31 . 0. 400 218 . 44 58 . 62 219 . 87 14 . 0 . 680 46 . 46 220 . 86 10. 0 . 850 '45 . 44 221 . 77 8 . 0 . 980 32 . 32 222 . 47 8 . 0 . 970 69 . 67 223 . 68 47 . 0 . 300 7 . 2 224 . 71 213 . 0. 1 10 225 . 60 75 . 0. 220 7 . 0 226 . .54 75 . 0. 220 8 . 8 227 . 66 35. 0. 370 2-4 . 15 228 . 49 62 . 0. 250 7 . 2 229 . . 79 10. 0. 850 44 . 38 230. .53 22 . o . 500 19 . 19 231 . 50 12 . 0. 730 41 . 20 232 . .88 7 . 1 . . 1 10 52 . 52 233 . , 79 45 . 0. .310 9 . 1 234 . .50 17 . 0, . 590 30. 21 235 , ,53 7 . 1, . 100 45 . 26 236 . 5.1 s>- 1. . 150 51 . 51 237 .62 4 . 1. .680 67 . 70 238 ,60 4 . 1. . 550 52 . 52 239 . 28 13 . 0. . 720 59 . 62 24 1 . 77 5 . 1. . 350 57 . 49 242 .65 3 . 1 .870 59 . 60 243 . 47 3 . 2 .000 68 . 66 244 .50 8 . 1 .000 49 . 33 245 . 47 4 . 1 .610 57 . 58 246 .85 63 . 63 247 .73 47 . 0 .300 10. 10 248 .46 16 . 0 . 620 37 . 30 249 .72 16 . 0 .630 39 . 51 250 . 45 9 . 0 .930 53 . 49 251 .58 3. 1 .770 65 . 64 253 .44 21 . 0 . 520 28 . 10 254 .46 19. . 0 . 560 31 . 12 255 .51 29 . 0 . 420 18 . 6 A.11 c o n t i n u e d s t a t i o n 6 STATION 6 date C H T (0) T (h) T E L L 83 697 . 0 050 163 79 187 . 0 120 164 70 87 . 0 200 165 53 102 . 0 180 165 84 149 . 0 140 166 55 289 . 0 090 166 81 246. 0 100 167 47 289 . 0 090 168 93 149 . 0 140 169 72 187 . 0 120 170 67 62 . 0 250 171 99 81 . 0 210 172 65 36 . 0 360 173 46 7 1 . 0 230 173 91 47 . 0 300 174 84 23 . 0 490 175 80 47 . 0 300 176 94 149 . , 0 140 177 88 975 . 0 040 178 84 530. 0 060 179 81 187 . 0 120 180 86 94 . 0 190 181 79 55 . 0 270 182 97 187 . 0 120 183 79 102 . 0 180 184 84 38. \u00E2\u0080\u00A2 0 350 185 77 39 . 0 340 186 63 55 . 0 270 187 77 45 . 0 310 13 . . 13. 188 75 134 . 0 150 189 59 29 . 0 420 27 . 27 . 190 7 1 23 . 0 480 24 . 24 . 191 45 102 . 0 180 5. 5 . 192 75 246 . 0 100 0. 0. 193 65 94 . 0 190 5 . 4 . 194 73 75. 0 220 10. 9 . 195 72 38 . 0 350 16 . 16 . 196 85 33 . 0 380 13 . 13 . 197 78 59 . 0 260 12 . 12 . 198 86 55. 0 270 12 . 12 . 199 88 33. 0 380 200 88 4 1 . 0 330 201 88 21 . 0 520 202 54 15 . 0 640 204 80 31 . 0 400 205 83 23 . 0 480 206 62 36 . 0 360 207 59 20. 0 540 208 85 26 . 0 450 16 . 16 . 209 57 17 . 0 600 45 . 45. 2 10 66 26 . 0 450 43. 43 . 21 1 46 530. 0 060 0. 0. 21 1 54 1502 . 0 030 0. 0. 212 41 23. 0 480 27 . 27 . 545 A.11 c o n t i n u e d s t a t i o n 6 date CT H. E T L(0) V 2 1 2 . 7 7 1 9 . 0 . 5 5 0 34 . 34 . 2 1 3 . 4 1 12 . 0 . 7 3 0 4 8 . 4 8 . 2 1 3 . 7 6 1 1 : 0 . 7 9 0 57 . 57 . 2 1 4 . 8 4 3 0 . 0 . 4 10 2 1 5 . 6 1 4 5 . 39 . 2 1 G . 8 0 7 5 . 0 . 2 2 0 5 . 1 . 2 1 7 . 5 3 5 9 . 0 . 2 6 0 2 1 8 . 44 5 9 . 5 9 . 2 1 9 . 8 7 2 4 . 0 . 4 7 0 2 6 . 26 . 2 2 0 . 8 5 12 . 0 . 7 5 0 51 . 1 9 . 2 2 1 . 77 6 2 . 0 . 2 5 0 13 . 13 . 2 2 2 . 4 7 9 . 0 . 8 9 7 1 . 71 . 2 2 3 . 6 8 7 5 . 0 . 2 2 0 5 . 2 . 2 2 4 . 7 0 2 4 6 . 0 . 1 0 0 2 2 5 . 6 2 166 . 0 . 1 3 0 . 6 . 6 . 2 2 6 . 5 5 6 2 . 0 . 2 5 0 1 0 . 0 . 2 2 7 . 6 7 75 . 0 . 2 2 0 7 . 1 . 2 2 8 . 5 0 3 7 9 . 0 . 0 7 5 0 . 0 . 2 2 9 . 79 1 0 . 0 . 8 6 4 7 . 47 . 2 3 0 . 54 4 5 . 0 . 3 1 0 1 0 . 1 0 . 2 3 1 . 5 1 13 . 0 . 7 1 0 4 0 . 3 0 . 2 3 2 . 87 14 . 0 . 6 7 0 39 . 3 9 . 2 3 3 . . 8 0 94 . 0 . 1 9 0 2 . 2 . 2 3 4 , 51 14 . 0 . 6 7 0 3 0 . 27 . 2 3 5 , . 5 3 7 . 1 . 0 5 0 44 . 44 . 2 3 6 . . 5 2 8 . 1 .OOO 4 8 . 4 8 . 2 3 7 . . 6 2 6 . 1 . 150 64 . 64 . 2 3 8 , . 61 8 . 0 . 9 5 44 . 44 . 2 3 9 . . 2 9 13 . 0 . . 7 0 0 5 3 . 53 . 24 1 . . 7 8 9 . 0 . 9 0 58 . 4 5 . 2 4 2 . 6 6 8 . 0 . . 9 5 58 . 55 . 2 4 3 . 4 7 1 0 . 0 . . 8 5 6 6 . 6 6 . 2 4 4 . 51 8 . 0 , , 9 5 55 . 4 6 . 2 4 5 . 4 8 7 . 1, . 0 9 5 7 . 61 . 2 4 6 . 8 5 6 2 . 6 2 . 2 4 7 . 7 3 6 2 . 0 . , 2 5 0 6 . 6 . 2 4 8 . 4 6 14 . 0 . 6 9 0 4 2 . 25 . 2 4 9 . 7 2 13 . 0 . 7 0 44 . 4 8 . 2 5 0 . 4 5 8 . 0 . , 9 5 0 5 2 . 51 . 2 5 1 . 5 9 9 . 0 . 9 3 61 . 61 . 2 5 3 . 44 23 . 0 . 4 9 0 2 5 . 24 . 2 5 4 . 4 7 18 . 0 . 5 8 0 32 . 16 . 2 5 5 . 52 19 . 0 . 5 5 0 3 0 . 7 . A.11 c o n t i n u e d s t a t i o n 7 STATION 7 d a t e C H T (0) T T E L L \u00E2\u0080\u00A2 158.81 530. 0 . 0 6 0 163.79 166 . 0. 130 165.48 94 . 0 . 190 165 .85 134 . 0 . 150 166.55 289 . 0 . 0 9 0 166.81 266 . 0 . 0 9 5 167.47 134 . 0 . 150 168.94 55 . 0 . 270 169.72 111. 0 . 170 170.68 62 . 0 . 250 171 .99 66 . 0 . 2 4 0 172.64 59 . 0 . 260 173 .46 28 . 0 . 4 3 0 173.86 38 . 0 . 350 174.83 23 . 0 . 480 175 . 79 50 . 0 . 290 176.96 122 . 0 . 160 177.88 470 . 0 . 0 6 5 178 .83 530. 0 . 0 6 0 179.81 166 . 0 . 130 180 .90 87 . 0 . 200 181 .79 47 . 0 . 3 0 0 182 .96 \" 149 . 0 . 140 183 .79 62 . 0 . 2 5 0 184.83 45 . 0 . 3 1 0 185.81 35 . 0 . 370 186.63 4 3 . 0 . 320 187.78 55 . 0 . 2 7 0 8 . 6 188 .75 5 9 . 0 . 260 189.58 19. 0 - 5 5 0 36 . 36 190.71 16 . 0 . 6 3 0 35 . 35 191.46 14. 0 . 6 8 0 42 . 42 192 .76 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 149. 0 . 1 4 0 4.. . 3 193 .65 81 . 0 . 2 1 0 . 4 . 3 194 .73 122. 0 . 160 3 . 3 195.71 4 1 . 0 . 3 3 0 13 . 12 196 .85 23 . 0 . 480 25 . 24 197.78 45 . 0 . 3 1 0 14'. 13 198.85 35 . 0 . 370 16 . 16 199.88 25 . 0 . 4 6 0 2 0 0 . 8 8 47 . 0 . 300 2 0 1 : 8 8 14 . 0 . 6 8 0 202 .54 10. 0 . 8 5 0 2 0 4 . 7 9 13 . 0 . 700 2 0 5 . 8 3 10. 0 . 8 5 0 2 0 6 . 6 3 19 . 0 . 560 2 0 7 . 5 9 22 . 0 . 5 0 0 2 0 8 . 8 5 14 . 0 . 6 7 0 19 . 15 209 .58 17 . 0 . 6 0 0 48 . 48 2 1 0 . 6 7 14 . 0 . 6 6 0 51 . 48 2 1 1 . 4 7 344 . 0 . 0 8 0 0. 0 . 211 .54 1 192 . 0 . 0 3 5 0 . 0 . 212 .41 14. 0 . 6 9 0 41 . 41 . 212 .74 . 17 . 0 . 590 46 . 35 . 547 A.11 c o n t i n u e d s t a t i o n 7 date \u00C2\u00B0T H E T L ( 0 ) V 213 .42 12 . 0. 730 46 . 44 . 213 . 72 9. 0. .890 61 . 45. 214 .83 55. 0. .270 215 .61 47 . 32 . 216 .68 19 . 0. .560 26 . 18. 216 . 79 27 . 0. .440 16 . 16 . 217 . 53 18 . 0. 570 2 18 .45 61 . 61 . 219 .85 13. 0. 700 44 . 28 . 220 .85 1 1 . 0. 780 51 . 35 . 221 .76 45 . 0. 310 14 . 14 . 222 .48 13 . 0. 700 70. 70. 223 . 68 18 . 0. 580 37 . 0. 224 .70 187 . 0. 120 225 .63 35 . 0. 370 26 . 18 . 226 .56 94 . 0. 190 27 . 6 . 227 . 68 66 . 0. 240 12 . 0. 228 .50 344 . 0. 080 0. 0. 229 .78 18 . 0. 580 42 . 2 . 230 .55 43 . 0. 320 9 . 9 . 231 .53 10. 0. 820 4 1. 31 . 232 .87 15 . 0. 650 39 . 26 . 233 .80 94 . 0. 190 2 . 2 . 234 .51 20. 0. 540 30. 22 . 235 . 54 4 . 1. 450 56. 8 . 236 . 54 1 1 . 0. 800 \u00E2\u0080\u00A24 1 . 25 . 237 . 63 10. 0. 830 53 . 60. 238 .62 12 . 0. 750 32 . 32 . 239 .29 10. 0. 840 51 . 48 . 24 1 . , 79 6 . 1. 190 58 . 42 . 242 .66 4 . 1. 55 58 . 49 . 243 . , 48 4 . 1. 45 66 . 63. 244 , 51 5 . 1. 400 57 . 45 . 245. .49 4 . 1. 450 61 . 59. 246 , .83 63 . 63. 247 . 74 21 . 0. 520 15 . 15 . 248 . 47 17 . 0. 600 38 . 25 . 249 . ,73 4 1 . 57 . 250. .46 6 . 1. 250 54 . 52 . 251 . 59 4 . 1. 46 61 . 61 . 253 . ,45 23. 0. 490 27 . 10. 254 . ,47 21 . 0. 520 30. 5 . 255 . 53 19 . o. 550 29 . 1 . 548 A.11 continued s t a t i o n 7a STATION 7a date c H T (0) T ( h ) T E L I 150.58 20. 0.530 151.4G 21 . 0.510 151.80 17 . 0.600 152.50 35. 0.370 153.54 314 . 0.085 153.73 213 . 0.110 154.50 187 . 0. 120 155.58 246 . 0. 100 158.04 530. 0.060 158.75 421 . 0.070 158.89 530. 0.060 159.50 289 . 0.090 159.77 246 . 0. 100 160.63 134 . 0. 150 162.76 66 . 0. 240 163.74 149 . 0. 140 164 .61 102 . 0. 180 165.48 166 . 0. 130 165.85 266 . 0.095 166.54 246 . 0. 100 166.81 344 . 0.080 167.47 266 . 0.095 169.73 122 . 0. 160 170.69 55 . 0.270 171.99 38 . 0. 350 172.63 30. 0.410 173 . 45 31 . 0.400 173.86 28 . 0.430 174.83 41 . 0. 330 175.81 39 . 0. 340 176.92 75 . 0.220 177.86 1502 . 0.030 178.44 379. 0.075 179.92 246 . 0. 100 180.85 87. 0.200 181 .83 39 . 0.340 182.96 122 . 0. 160 183.79 47 . 0.300 184.83 47 . 0. 300 185.77 41 . 0.330 186.66 31 . 0.400 187.61 59. 0.260 187.8.?: 45 . 0.310 13 . 13 . 188.76 102 . 0. 180 189.58 17 . 0.600 38 . 38 . 190.72 15 . 0.65 46 . 46 . 191.50 18 . 0.570 39 . 39 . 192.77 94 . 0. 190 6 . 6 . 193.66 36. 0. 360 17 . 17 . 194.72 94 . 0. 190 9 . 8 . 195.71 59 . 0. 260 9 . 9 . 196.84 15. 0.65 28 . 28 . 197.77 17 . 0.600 39. 39 . 198.85 26 . 0.450 34 . 33 . 199.85 20. 0.540 549 A.11 c o n t i n u e d s t a t i o n 12 STATION 12 d a t e C H T (0) T (h) T E L L 165 83 289 . 0 090 166 54 166 . 0 130 166 79 246 . 0 100 167 50 289 . 0 090 168 88 52 . 0 280 169 75 102. 0 180 170 7 1 50 . 0 290 17 1 42 52 . 0 280 172 00 33 . 0 380 172 7 1 15 . 0 650 173 88 28 . 0 430 174 83 33 . 0 380 175 83 4 3 . 0 320 176 92 43 . 0 320 177 46 1502 . 0 030 177 88 1975. 0 025 178 71 289 . 0 090 179 96 134 . 0 150 180 83 81 . 0 210 181 83 41 . 0 330 182 96 87 . 0 200 183 79 38 . 0 350 184 79 47 . 0 300 185 75 23 . 0 480 186 58 23 . 0 480 187 58 36 . 0 360 187 79 23. 0 490 29 . 29 . 189 54 9 . 0 910 59 . 59 . 190 75 8 . 1 000 49 . 49 . 192 63 1 1 . 0 800 43 . 43 . 193 71 55 . 0 270 1 1 . 10. 194 67 75 . 0 220 14 . 12. 195 58 38 . 0 350 27 . 28 . 196 71 1 1 . 0 770 36 . 35 . 197 75 15 . 0 640 50 . 43 . 198 79 13 . 0 700 199 75 10. 0 850 200 75 5 . 1 350 201 75 3 . 1 700 202 54 4 . 1 660 205 83 2 . 2 200 206 67 2 . 2 200 207 63 2 . 2 200 208 75 4 . 1 500 51 . 45 . 209 58 3 . 1 700 73 . 6 9 . 210 71 3 . 1 710 78 . 73 . 21 1 50 3 . 1 890 59 . 55 . 212 42 8 . 0 980 57 . 50 . 212 7 1 9 . 0 890 66 . 57 . 213 50 4 . 1 530 82 . 48 . 213 67 5 . 1 380 78 . 64 . 215 71 7 . 1 120 68 . 54 . 216 67 3 . 1 880 55 . 45 . 217 58 4 . 1 620 550 A.11 continued s t a t i o n 12 date C T H \u00C2\u00A3 T L ( 0 ) T^(h) 2 1 8 . 4 6 77 . 6 5 . 2 1 9 . 8 3 3 . 2 . 0 0 0 74 . 58 . 2 2 0 . 8 3 2 . 2 . 5 0 0 74 . 54 . 2 2 1 . 6 7 5 . 1 . 3 5 0 6 7 . 6 3 . 2 2 2 . 5 0 2 . 2 . 2 0 0 8 2 . 7 9 . 2 2 3 . 6 7 3 . 1 . 9 5 0 6 5 . 6 5 . 2 2 4 . 5 8 122 . 0 . 160 2 2 5 . 6 7 21 . 0 . 5 1 0 31 . 3 0 . 2 2 7 . 7 1 1 0 2 . 0 . 1 8 0 6 . 6 . 2 2 8 . 5 8 5 2 . 0 . 2 8 0 18 . 34 . 2 2 9 . 6 3 14 . 0 . 6 6 0 47 . 4 0 . 2 3 0 . 7 5 14 . 0 6 8 0 2 6 . 36 . 2 3 1 . 8 3 15 . 0 . 6 5 0 25 . 2 5 . 2 3 2 . 5 4 7 . 1 . 0 3 0 6 2 . 64 . 2 3 3 . 8 3 2 2 . 0 . . 5 0 0 22 . 2 2 . 2 3 4 . 5 4 3 2 . 0 . 3 9 0 24 . 31 . 2 3 5 . 5 8 2 0 . 0 . 5 3 0 2 3 6 . 7 5 7 . 1 . 0 8 0 57 . 4 8 . 2 3 7 . 7 1 4 . 1 . 4 5 0 67 . 58 . 2 3 8 . 6 3 9 . 0 . 9 0 0 27 . 44 . 2 3 9 . 2 9 3 . 1 . 8 6 0 76 . 5 8 . 24 1 . 7 9 2 . 2 . 2 0 0 6 2 . 5 3 . 2 4 2 . 6 7 2 . 2 . 2 0 0 6 2 . 54 . 2 4 3 . 5 0 2 . 2 . 2 0 0 71 . 61 . 2 4 4 . 5 8 2 . 2 . 2 0 0 64 . 54 . 2 4 5 . 5 0 3 . 1 . 9 0 0 6 7 . 56 . 2 4 6 . 7 5 2 . 2 . 3 0 0 7 1 . 6 3 . 2 4 7 . 7 5 6 . 1 . 2 5 0 4 2 . 4 0 . 2 4 8 . 5 0 5 . 1 . 3 5 0 59 . 51 . 2 4 9 . 7 5 3 . 1 . 9 5 0 61 . 4 9 . 2 5 0 . 4 6 4 . 1 . 5 5 0 6 3 . 4 9 . 2 5 1 . 6 3 3 . 2 . 0 0 0 4 5 . 38 . 2 5 3 . 4 6 5 . 1 . 4 0 0 \u00E2\u0080\u00A2 51 . 4 8 . 2 5 4 . 5 0 6 . 1 . 2 0 0 51 . 3 5 . 2 5 5 . 5 8 5 . 1 . 4 0 0 4 8 . 28 . 551 APPENDIX A.12 PARTICLE-SIZE DATA: SURFACE SEDIMENTS P a r t i c l e - s i z e d a t a a r e g i v e n below f o r s u r f a c e samples c o l l e c t e d a t g r i d - i n t e r s e c t i o n s ( F i g u r e 6 ) . Samples were s p l i t , t r e a t e d w i t h hydrogen p e r o x i d e , d r i e d a t 60\u00C2\u00B0C, weighed and w e t - s i e v e d t o s e p a r a t e c o a r s e and f i n e f r a c t i o n s a t D=0.063mm. Coarse f r a c t i o n s were d r y - s i e v e d f o r 20 minutes a t h a l f - p h i i n t e r v a l s . F i n e f r a c t i o n s were d i s a g g r e g a t e d w i t h 100 mL/L 5% sodium metaphosphate s o l u t i o n a t pH=10 and s t i r r e d f o r 3 minutes i n a m e c h a n i c a l m i x e r ; s u s p e n s i o n s were brought t o a t o t a l volume of 1L, mixed, and a l l o w e d t o s e t t l e a t c o n s t a n t t e m p e r a t u r e , p a r t i c l e s i z e b e i n g determined as e q u i v a l e n t d i a m e t e r u s i n g hydrometers and assuming e q u a t i o n 4.3.1-1 ( S t o k e s , 1851). See s e c t i o n 4.4.1 f o r d i s c u s s i o n and e x p l a n a t i o n of s t a t i s t i c s . depos i t i onal s i t e clay s i l t sand gravel D50 D s environment proportions (um) (0) (0) 000050 0. .00 0, . 15 0, .85 0 .00 107 .0 3 . 28 0, .63 E O O O O 6 O 0. ,00 0, , 12 0, .88 0 .00 104 .0 3 . 28 0 .57 E 000070 0 .00 0, .09 0. .01 0. .00 128 .0 3 .05 0, .58 E 000100 0, .00 0, .01 0. .99 0 .00 187 .0 2 .48 0 . 35 B 010050 0 .06 0. . 34 0. .60 0, .00 69 . 3 4 . 00 0, . 75 E 010060 0 .00 0. .04 0. 96 0 oo 1 17 .0 3 . 1 1 0, .38 E 01O070 0 . 14 0. . 23 0. .63 0 .00 79 .0 4 . 16 1, . 28 E 010080 0, . 10 0. 30 0. .60 0, .00 79 .0 4 . 15 1, .56 E 010090 0 . 16 0. ,62 0. .20 0 .02 30 . 5 5 .55 2, . 16 L 010100 0. .08 0. ,72 0. . 19 0, .01 43 .8 4 .78 1 . 05 L 010110 0, . 10 0. 82 0. .08 0, .00 38 .3 5 .07 1 . . 17 L 010120 0. .27 0. ,37 0. ,29 0. .07 35 . 5 6 . 13 5. .30 L 010130 0. .22 0. , 73 0. .05 0, .00 16 .0 6 . 73 2 . 27 L 010140 0. .34 0. ,64 0, ,02 0, oo 9 .0 7 , .41 2 . 64 L 010150 0. .21 0. ,53 0. . 26 0, .00 26 .0 5 .88 3 , . 13 L 010160 0. . 28 0. 40 0. .27 0, .05 18 .8 6 . 16 5. .08 M 020010 0. . 14 0. ,82 0. .04 0. .00 20 . 2 5 , .96 1 , 42 L 020020 0. , 13 0. 80 0. ,07 0. .00 25 . 2 5, .63 1 . , 37 L 020030 0. . 1 1 0. 77 0. , 12 0. ,00 29 .0 5 , . 32 1 . 23 L 020040 0. . 10 0. 61 0. 29 0, ,00 25 .2 5 , . 10 2 . ,07 L 020050 0. ,21 0. 56 0. ,23 0. ,00 24 .2 5 , .97 2 . 54 E 020060 0. ,09 0. 64 0. 27 0. .00 48, .8 4 , .55 0. ,92 E 020070 0. 02 0. 12 0. 86 0, .00 107 .0 3, .28 0, .62 E 020080 0. , 16 0. 63 0. ,21 0. .00 36 .0 5, .53 2. .06 L 020090 0. ,07 0. ,53 0. 40 0. .00 56 . 2 4 , .40 0. .94 L 020100 0. ,02 0. .06 0. 54 0, , 38 1 160 .0 -0. . 39 2 . 27 L 020110 0. 16 0. 45 0. 36 0. .03 45 .8 4 , . 62 3 .39 L 020120 0. , 14 0. 76 0. 10 0, ,00 26 .6 5 , .69 1 . 61 L 020130 0. ,21 0. 70 0. 09 0. .00 19 , .0 6, .40 2. . 14 . L 020140 0. .26 0. ,62 0. 12 0. ,00 16 , , 1 6 , 85 2 . 93 L 020150 0. .20 0. , 14 0. 38 0, ,28 500, .0 4 , 14 7 . ,58 L 020160 0. . 30 0. 45 0. ,25 0. ,00 17 , . 1 6 , 17 4 , 97 M 030010 0. . 28 0. 46 0. 28 0. .00 29 , .8 7 . ,05 4 , 66 L 030020 0. .05 0. 45 0. 50 0. .00 62 , .0 4 . 15 0. , 75 L 030030 0. .09 0. ,22 0. 69 0. ,00 94 , .0 4 . 06 1 . 62 C 030040 '0. ,00. 0. 1 1 0. 89 0. .00 132 . 0 3. .03 0. 63 c 030050 0. , 13 0. 43 0. 44 0. .00 56 . 5 4 . 46 1 . 18 E 030060 0. 00 0. 17 0. 83 0. .00 113. .0 3 . 28 0. 70 E 030070 0. 07 0. 41 0. 52 0. 00 64 . ,6 4 . 15 0. 97 E 030080 0. 00 0. 15 0. 53 0. 32 685 . 0 0. ,63 3 . ,21 L 552 A.12 c o n t i n u e d depositional s i t e c l a y s i l t sand gravel D50 D s environment proportions (um) (0) (0) 030086 0. 00 0. 02 0. 66 0. 32 030090 0. 09 0. 69 0. 21 0. 01 030100 0. 15 0. 54 0. 31 0. 00 030110 0. 17 0. 77 0. 5 0. 00 030120 0. 18 0. 58 0. 24 0. 00 030130 0. 00 0. 02 0. 98 0. oo 030150 0. 08 0. 58 0. 34 0. 00 030160 0. 32 0. 43 0. 25 0. 00 032080 0. 00 0. 04 0. 44 0. 52 040020 0. 06 0. 38 0. 56 0. 00 040030 0. 1 1 0. 25 0. 64 0. 00 040040 0. 08 0. 37 0. 55 0. 00 040050 0. 08 0. 34 0. 58 0. 00 040060 0. 13 0. 37 0. 50 0. 00 040070 0. 09 0. 54 0. 37 0. 00 040080 0. 16 0. 54 0. 30 0. 00 040090 0. 55 0. 00 040100 0. 07 0. 65 0. 28 0. 00 040110 0. 00 0. 04 0. 96 0. 00 040150 0. 44 0. 32 0. 24 0. 00 050020 0. 12 0. 52 0. 36 0. 00 050030 0. 00 0. 07 0. 93 0. 00 050040 0. 14 0. 48 0. 38 0. .00 050050 0. . 14 0. .44 0. 42 0. ,00 050060 0, . 10 0, . 42 0. 48 0. .00 O5O070 0. . 10 0. . 38 0. .52 0 .00 050080 o. . 13 0 . 36 0, ,51 0 .00 05OO90 0 . 1 1 0 . 34 0. .55 0 .00 050100 0 . 34 0 . 35 0 .31 0 .00 050110 0 . 10 0 .80 0 . 10 0 .00 060020 0 . 1 1 0 .61 0 .28 0 .00 060030 0 . 14 0 .40 0 . 46 0 .00 060040 0 . 13 0 .42 0 .45 0 .00 060050 0 . 14 0 .52 0 . 34 0 .00 060060 0 . 12 0 .56 0 .32 0 .00 060070 0 . 1 1 0 .59 0 .30 0 .00 060080 0 . 12 0 .72 0 . 16 0 .00 060090 0 . 22 0 .69 0 .09 0 .00 060100 0 .00 0 .00 0 .99 0 .01 070020 0 .07 0 .51 0 .42 0 .00 070030 0 . 12 0 .48 0 .40 0 .00 070050 0 . 15 0 .64 0 .21 0 .00 070060 0 . 10 0 .70 0 .20 0 .00 070070 0 . 12 0 .73 0 . 15 0 .00 070080 0 . 12 0 .68 o .20 0 .00 070090 0 . 18 0 .69 0 . 13 0 .00 080020 0 . 12 0 . 24 0 .64 0 .00 080030 0 .00 0 . 2 1 0 . 79 0 .00 080040 0 . 18 0 .68 0 . 14 0 .00 080050 0 . 29 0 .67 0 .04 0 .00 5500. 0 -1 . 91 2 . 25 L . 37 . 8 4 . 84 1 . 08 L 42 . 1 5 . 28 1 . 88 ' L 2 1 . 4 6 . 21 1 . 91 L 35 . 0 5 . 14 1 . 87 L 212. 0 2 . 25 0. 38 B 4 1 . 5 4 . 54 1 . 46 L 14 . 3 6 . 91 4 . 36 M 2060. 0 -0. 92 1 . 35 L 70. 2 4 . 14 1 . 29 L 96. 0 4 . 21 1 . 82 C 72 . 0 4 . 20 1 . 24 T 74 . 0 3 . 96 0. 96 T 62 . 5 4 . 73 1 . 82 T 54 . 1 4 . 35 0. 84 L 52. 0 5 . 32 2 . 24 L C 38. 2 4 . 80 1 . 30 T 184 . 0 2 . 45 0. ,59 B 6 . 7 7 . 66 4 . 64 M 48 . 2 4 . 85 1 . ,64 L 148 . 0 2 . 83 0, .51 C 41 . 0 5. ,01 2 , .23 T 50. .0 4 .92 2 . 39 T 59. .0 4 .51 1 .47 T 64 . 3 4 . 40 1 . 35 T 62 . 7 . 4 .61 1 .59 T 67 .0 4 .48 1 . 44 T 22 .6 7 . 33 5 .03 D 51 . 2 4 . 53 0 . 59 K 42 . 3 4 .81 1 .33 L 58 .0 4 .86 1 .94 T 57 .8 4 . 75 1 .82 T 47 .7 5 .03 1 .64 T 48 .4 4 .81 1 .48 T 45 . 2 4 . 78 1 . 43 T 36 .5 5 .29 1 .53 D 21 .4 6 .37 2 .42 D 225 .0 2 . 12 0 .55 B 56 .5 4 .33 0 .93 T 50 .9 4 .75 i .67 T 31 . 2 5 . 50 1 .96 D 34 . 2 5 .03 1 . 39 T 33 . 1 5 . 34 1 .52 T 35 . 2 5 .33 1 . 76 D 27 . 1 5 .92 2 . 17 D 92 .0 4 .24 1 .70 T 88 .0 3 .56 0 .49 C 25 .0 5 .94 2 . 14 D 10 .0 7 . 14 2 . 14 D 12 c o n t i n u e d depos1t i ona 1 s i t e c l a y s i l t sand gravel D50 D s environment proportions (um) (0) (0) 080060 0 . 08 0 . 42 0 . 50 0 . 00 080070 0 . 12 0 . 73 0 . 15 0 . 00 080080 0 . 25 0 . 67 0 . 08 0 . 00 080090 0 . 29 0 . 56 0 . 15 0 . 00 090010 0 . 13 0 . 7 1 0 . 16 0 . 00 090020 0 . 20 0 . 70 0 . 10 0 . 00 090030 0 . 00 0 . 06 0 . 94 0 . 00 090040 0 . 24 0 . 7 1 0 . 05 0 . 00 090050 0 . 13 0 . 72 0 . 15 0 . 00 090060 0 . 1 1 0 . 22 0 . 67 0 . 00 090070 0 . 16 0 . 64 0 . 20 0 . 00 090080 0 . 30 0 . 69 0 . 01 0 . 00 O9O090 0 . 31 0 . 61 0 . 08 0 . 00 100000 0 . 15 0 . 59 0 . 26 0 . 00 100010 0 . 17 0 . 48 0 . 34 0 . 00 100030 0 . 6 0 . 56 0 . 38 0, 00 100040 0 . 30 0 . 58 0 . 12 0, ,00 100060 0 . 16 0 . .35 0 . 49 0, .00 100070 0 . 22 0 . .66 0 . 12 0 .00 100080 0 . 14 0. 39 0. 47 0 .00 100090 0 . .30 0. .53 0. . 17 0 .00 110030 0. . 10 0. ,63 0. .27 0 .00 110040 0. . 30 0 .57 0 . 13 0 .00 110050 0 .22 0 .67 0 . 1 1 0 .00 110060 0 .00 0 . 13 0 . 87 0 .00 110070 0 .00 0 . 17 0 .83 0 .00 120020 0 .72 0 .00 120030 0 . 15 0 . 68 0 . 17 0 .00 120040 0 . 20 0 . 7 1 0 .09 0 . o o 120050 0 . 25 0 .62 0 . 13 0 .00 120060 0 .05 0 . 13 0 .82 0 .00 120070 0 . 24 0 .66 0 . 10 0 .00 120080 0 .30 0 .36 0 . 34 0 .00 130050 0 . 32 0 .65 0 .03 0 .00 T30060 0 .00 0 .20 0 .80 0 .00 130070 0 . 23 0 . 44 0 .33 0 .00 130080 0 . 22 0 .68 0 . 10 0 .00 140070 0 .27 0 .51 0 . 22 0 .00 -depositional environments: 8: beach E: open estuary (exposed basin L: lagoon (protected basin) T: I n t e r t i d a l M: lagoon-margin supratidal D: d e l t a i c - s u p r a t i d a l C: d i s t r i b u t a r y channel A: a l l u v i a l terrace K: l a c u s t r i n e 6 3 . 0 4 . 24 1 . 38 C 33 . 5 5 . 31 1 . 49 D 1 1 . 7 6 . 99 2 . 43 D 15 . 3 D 23 . 6 5 . 66 1 . 79 D 26 . 0 6 . 38 2. 70 D 124 . 0 3 . 05 0 . 44 C 12 . 9 6 . 62 2 . 00 D 14 . 5 5. 94 1 . 71 D 93 . 0 4 . 14 1 . 66 C 21 . 2 5 . 55 2. 34 D 9 . 9 D 10. 6 D 35 . 5 5 . 44 2 . 05 D 34 . .0 D 51 . .8 4 . 46 1 . .21 D 8 . 6 D 60 .0 4 .86 2 . .67 C 14 .4 6 .57 2. .42 D 58 .0 4 .82 2 .33 C 14 . 4 D 39 . 2 5 .03 1 .57 D 10 .0 D 13 .0 6 .61 2 .08 D 162 .0 2 .82 0 .84 C 107 .0 3 . 13 0 .93 D 143 C 20 .0 5 .83 1 .95 D 23 . 3 6 . 1 1 2 .31 D 17 . 7 6 .51 2 .62 D 198 .0 2 .76 1 . 24 C 1 1 .2 6 .76 2 .26 D 26 .4 A 8 . 3 7 . 27 2 .42 D 145 .0 2 .91 1 .24 A 38 . 5 5 .81 3 .24 A 1 1 .8 7 .08 2 .55 A 20 .0 6 . 34 3 .09 A 554 A . 1 3 RADIOCARBON DATES: LATE HOLOCENE OF CENTRAL YUKON COAST R a d i o c a r b o n d a t e s r e l e v a n t t o s e a - l e v e l h i s t o r y and s e d i m e n t a t i o n i n l a t e H o l o c e n e t ime on t h e c e n t r a l Yukon c o a s t a r e g i v e n be low . S i t e s i n t h e Babbage E s t u a r y a r e i d e n t i f i e d i n F i g u r e 6 . The l a b o r a t o r i e s a r e : G S C - G e o l o g i c a l Survey o f C a n a d a , O t t a w a ; S - N a t i o n a l R e s e a r c h C o u n c i l and U n i v e r s i t y o f S a s k a t c h e w a n , S a s k a t o o n . L a b . n o . s i t e e l e v a t i o n d e s c r i p t i o n d a t e r e f e r e n c e S - 1533 H e r s c h e l -0 .7m c h a r c o a l i n b a s a l I s l a n d midden b e l o w house f l o o r S - 1532 H e r s c h e l -0.7m c h a r c o a l i n b a s a l I s l a n d . midden S - 1534 H e r s c h e l -0.7m c h a r r e d f a t i n I s l a n d b a s a l midden : ST - 1481 Babbage 0 m s i l t y p e a t 0.62m s i t e 405 be low s u r f a c e o f d e l t a i c s i l t GSCr2691 Babbage 0 m s i l t y - p e a t 0.87m s i t e 405 be low s u r f a c e o f d e l t a i c s i l t GSCr2330 Babbage +0..8m sandy- p e a t 0.42m s i t e 408 b e l o w s u r f a c e i n . . d i s t a l d e l t a GSC^2323 Babbage r l . 3 m pea t , f rom base o f s i t e 408 2.6m i c e c r i c h . p e a t s i l t and sand o v e r m a s s i v e i c e S - 1482 Babbage -0 .5m p e a t u n d e r l y i n g s i t e 406 0.91m s t r a t i f i e d s i l t and sand 9 9 0 \u00C2\u00B1 95 B. W a l k e r - Y o r g a , p e r s . comm., 1979 1 5 7 0 \u00C2\u00B1 60 B. W a l k e r - Y o r g a , p e r s . comm., 1979 1 5 1 0 \u00C2\u00B1 90 B. W a l k e r - Y o r g a , p e r s . comm., 1979 3 0 7 5 \u00C2\u00B1 1 8 0 F o r b e s , 1980 2110+ 9.0 .13801 80 2 1 0 0 \u00C2\u00B1 80 F o r b e s , -1980 - F o r b e s f -1980. \u00E2\u0080\u00A2 F o r b e s , 1980 2 2 6 0 \u00C2\u00B1 1 3 0 F o r b e s , 1980' "@en . "Thesis/Dissertation"@en . "10.14288/1.0095397"@en . "eng"@en . "Geography"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Babbage River delta and lagoon : hydrology and sedimentology of an Arctic estuarine system"@en . "Text"@en . "http://hdl.handle.net/2429/22782"@en .