"Science, Faculty of"@en . "Botany, Department of"@en . "DSpace"@en . "UBCV"@en . "Bell, Marcus Arthur Money"@en . "2011-10-06T23:52:57Z"@en . "1964"@en . "Doctor of Philosophy - PhD"@en . "University of British Columbia"@en . "Five plant associations and one Alluvial Complex are recognized for the Dry Subzone of the Interior Western Hemlock Zone of British Columbia. These include 22 phytocoenoses, here described as biogeocoenoses or forest types. Additionally 3 intrazonal Pinus ponderosa plant associations and 2 interzonal ecotones are discussed. In phytosociological analysis modified Zurich-Montpellier techniques are employed. For tree studies, dominance/ frequency/density (DFD) indices and standard forestry methods are applied. Phytocoenose descriptions are based on synthesis tables which include plant lists (total 538 species), habitat descriptions and tree growth data from 15.5 one-fifth acre plots. Forest types comprise: 1) Lichen association (Cladonietum) - open stands with Pseudotsuga menziesii as the edaphic climax dominant, occurring on xeric rock outcrops; 2) Moss association (Pachistimeto-Callier gonelletum) - closed stands with Tsuga heterophylla as the climatic climax dominant, occuring on me sic sites; this includes 6 forest types; 3) Aralia Oakfern association (Aralieto-Gymnocarpietum) - closed stands with Tsuga heterophylla, Thuja plicata as the edaphic climax codominants, occuring on moist sites; this includes 7 forest types; 4) Devil's Club association (Oplopanacetum) - closed stands with Thuja plicata as the edaphic climax dominant, occurring on wet sites; this includes 4 forest types; 5) Skunk Cabbage association (Lysichitetum) - open stands with Thuja plicata as the edaphic climax dominant, occurring on water-saturated ground; this includes 2 forest types; 6) Alluvial Complex - unstable riverside vegetation dominated by Populus trichocarpa. The Lichen, Skunk Cabbage and Alluvial Complex communities are floristically the most clearly defined, and are readily recognizable on the basis of lesser vegetation dominants alone. Recognition of mesic communities relies on a characteristic combination of species.\r\nThe zonal (climatic climax) biogeocoenose is the Slope Normal Moss forest type of the Moss Association. The dynamic relationships of forest types are discussed.\r\nSecondary succession may go from the deforested stage directly to the climax, if edaphotope disturbance is minimal, but normally a pioneer-tree stage intervenes. This Subzone is unique in that, the pioneer stage of the zonal community may differ substantially from the climatic climax if humus is removed by fire. On mesic sites, proceeding from pioneer-conifer to climax stages, crown cover decreases and lesser vegetation increases. Tsuga heterophylla is the exclusive dominant of the climax forest\u00E2\u0080\u009E\r\nIn decreasing order of importance, as determined by DFD indices, Subzone trees are Tsuga heterophylla, Thuja plicata. Pinus monticola, Pseudotsuga menziesii, Betula papyrifera, Picea engelmannii, Larix occidentalis, Populus tremuloides, Pinus contorta, Populus trichocarpa. Abies lasiocarpa and Abies grandis.\r\nMost rapid tree height growth of Thuja plicata, Pseudotsuga menziesii, Pinus monticola and Picea engel-mannii occurs in Devil's Club communities; of Tsuga heterophylla, Larix occidentalis, Pinus contorta, Betula papyrifera, Populus tremuloides in Aralia Oakfern communities; and of Populus trichocarpa in Alluvial Complexes.\r\nForest types are more productive in pioneer than in climax stages. Estimates of net primary productivity and standing crop of forest types for tree trunks of all tree species summed as one, showed that the greatest pioneer- conifer stand productivity (1251 kilogram/ hectare/year) and climax stand standing crop (180 x 10\u00C2\u00B3 kg/ha) belong to the Devil's Club association, and the least productive (126 kg/ha/yr) and lowest standing crop (15 x 10\u00C2\u00B3 kg/ha) to the Lichen association.\r\nIt is concluded that biogeocoenotic classification provides a sound basis for land use planning in this region, and should be applicable to other areas."@en . "https://circle.library.ubc.ca/rest/handle/2429/37824?expand=metadata"@en . "PHYTOCOENOSES IN THE DRY SUBZONE OF THE INTERIOR WESTERN HEMLOCK ZONE OF BRITISH COLUMBIA by Marcus Arthur Money B e l l B.S.F., The U n i v e r s i t y of B r i t i s h Columbia, 1957 M.F. Yale U n i v e r s i t y , 1958 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy i n the Department of Bio l o g y and Botany We accept t h i s t h e s i s as conforming to the req u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study* I f u r t h e r agree that per-m i s s i o n f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood that copying or p u b l i -c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission* Department of ^/at^oCY <^ \"T^As 7 The U n i v e r s i t y of B r i t i s h Columbia, Vancouver 8, Canada Date The University of B r i t i s h Columbia FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of MARC ARTHUR MONEY BELL B.S.F., The University of B r i t i s h Columbia, 19. M.F., Yale University, 1958 FRIDAY, OCTOBER 9, 1964, AT 2;00 P.M. IN ROOM 3332, BIOLOGICAL SCIENCES BUILDING COMMITTEE IN CHARGE Chairman% I. McT. Cowan J. E. Bier P. G. Haddock V. J\u00E2\u0080\u009E Kraj ina G. E. Rouse External Examiner: C. A. Rowles W. B. Schofield G. H. N. Towers D. J . Wort R. F. Daubenmire Professor o f Botany Washington State University Pullman, Washington PHYTOCOENOSES IN THE DRY SUBZONE OF THE INTERIOR WESTERN HEMLOCK ZONE OF BRITISH COLUMBIA ABSTRACT Five plant associations and one A l l u v i a l Complex are recognized for the Dry Subzone of the I n t e r i o r Western Hemlock Zone of B r i t i s h Columbia. These include 22 phyto-coenoses, here described as biogeocoenoses or forest types. A d d i t i o n a l l y 3 intrazonal Pinus ponderosa plant associations and 2 interzonal ecotones are discussed. In phytosociological analysis modified Zurich-Montpellier techniques are employed. For tree studies, dominance/ frequency/density (DFD) indices and standard f o r e s t r y methods are applied, Phytocoenose descriptions are based on synthesis tables which include plant l i s t s ( t o t a l 538 species), habitat descriptions and tree growth data from 15.5 o n e - f i f t h acre plots. Forest types comprise: 1) Lichen a s s o c i a t i o n (Cladonietum) - open stands with Pseudotsuga menziesii as the edaphic climax dominant, occurring on xeric rock outcrops; 2) Moss assoc i a t i o n (Pachistimeto-Callier^gonelletum) - closed stands with Tsuga heterophylla as the c l i m a t i c climax dominant, occuring on me sic s i t e s ; t h i s includes 6 forest types; 3) A r a l i a Oakfern association ( A r a l i e t o -Gymnocarpietum) - closed stands with Tsuga heterophylla, Thuja p l i c a t a as the edaphic climax codominants, occuring on moist s i t e s ; t h i s includes 7 forest types; 4) Devil's Club association (Oplopanacetum) - closed stands with Thuja p l i c a t a as the edaphic climax dominant, occurring on wet s i t e s ; t h i s includes 4 forest types; 5) Skunk Cabbage asso c i a t i o n (Lysichitetum) - open stands with Thuja p l i c a t a as the edaphic climax dominant, occurring on water-saturated ground; t h i s includes 2 forest types; 6) A l l u v i a l Complex - unstable r i v e r s i d e vegetation dominated by Populus trichocarpa. The Lichen, Skunk Cabbage and A l l u v i a l Complex communities are f l o r i s t i c a l l y the most c l e a r l y defined, and are r e a d i l y recognizable on the basis of lesser vegetation dominants alone. Recognition of mesic communities r e l i e s on a c h a r a c t e r i s t i c combination of species. The zonal (climatic climax) biogeocoenose i s the Slope Normal Moss forest type of the Moss Association. The dynamic r e l a t i o n s h i p s of forest types are discussed. Secondary succession may go from the deforested stage d i r e c t l y to the climax, i f edaphotope disturbance i s minimal, but normally a pioneer-tree stage intervenes. This Subzone i s unique in that, the pioneer stage of the zonal community may 'differ s u b s t a n t i a l l y from the cl i m a t i c climax i f humus i s removed by f i r e . On mesic s i t e s , proceeding from pioneer-conifer to climax stages, crown cover decreases and lesser vegetation increases. Tsuga heterophylla i s the exclusive dominant of the climax forest\u00E2\u0080\u009E In decreasing order of importance, as determined by DFD indices, Subzone trees are Tsuga heterophylla, Thuja p l i c a t a . Pinus monticola, Pseudotsuga menziesii, Betula papyrifera, Picea engelmannii, Lar i x occidental i s , Populus tremuloides, Pinus contorta, Populus trichocarpa. Abies lasiocarpa and Abies grandis. Most rapid tree height growth of Thuja p l i c a t a , Pseudotsuga menziesii, Pinus monticola and Picea engel-mannii occurs i n Devil's Club communities; of Tsuga heterophylla, L a r i x o c c i d e n t a l i s , Pinus contorta, Betula papyrifera, Populus tremuloides i n A r a l i a Oakfern communities; and of Populus trichocarpa i n A l l u v i a l Complexes. Forest types are more productive i n pioneer than i n climax stages. Estimates of net primary productivity and standing crop of fo r e s t types for tree trunks of a l l tree species summed as one, showed that the greatest pioneer- conifer stand p r o d u c t i v i t y (1251 kilogram/ hectare/year) and climax stand standing crop (180 x 10^ kg/ha) belong to the Devil's Club association, and the least productive (126 kg/ha/yr) and lowest standing crop (15 x 10^ kg/ha) to the Lichen association. I t i s concluded that biogeocoenotic c l a s s i f i c a t i o n provides a sound basis for land use planning i n t h i s region, and should be applicable to other areas, PUBLICATION 1959 Forest C l a s s i f i c a t i o n s of B r i t i s h Columbia. In Forestry Handbook for B r i t i s h Columbia, 2nd ed., pp. 572-616. Forest Club, University of B r i t i s h Columbia, GRADUATE STUDIES F i e l d of Study: Botany Forest Autfecology Forest Synecology Bryology Advanced Plant Taxonomy Plant Phylogenet.ics Plant Physiology V. J. Krajina V. J. Krajina V. J\u00E2\u0080\u009E Krajina T. M. G. Taylor \u00E2\u0080\u00A2G. E\u00E2\u0080\u009E Rouse D\u00E2\u0080\u009E J. Wort Other Studies: Forest Research Methods J. H. G\u00E2\u0080\u009E Smith S o i l Genesis, and C l a s s i f i c a t i o n C\u00E2\u0080\u009E A. Rowles Soil-Pl a n t Relationships J. D. Beaton Forestry Graduate Seminar Forestry Faculty i i from Upper Arrow Lake. near Nakusp \" - - - a most sublime view - - - w i t h l o f t y snowy peaks i n a l l d i r e c t i o n s . Contrasted w i t h t h e i r dark shady bases densely covered w i t h P i n e , the deep r i c h hue of Pinus canadensis (Tsuga h e t e r o p h y l l a ) w i t h i t s feathery cloudy branches q u i v e r i n g i n the breeze, and the l i g h t t i n t s but more m a j e s t i c height of Pinus strobus (Pinus monticola) e x a l t i n g t h e i r l o f t y tops beyond any other tree of the f o r e s t , imparts an i n d e s c r i b a b l e beauty to the scene.\" From the Jo u r n a l kept by David Douglas During His T r a v e l s i n North America, 1823-1827 (page 250). W i l l i a m Wesley and Son. London. (parentheses my own). i i i ABSTRACT F i v e p l a n t a s s o c i a t i o n s and one A l l u v i a l Complex are recognized f o r the Dry Subzone of the I n t e r i o r Western Hemlock Zone of B r i t i s h Columbia. These i n c l u d e 22 phytocoenoses, here described as biogeocoenoses or f o r e s t types. A d d i t i o n a l l y 3 i n t r a z o n a l Pinus ponderosa p l a n t a s s o c i a t i o n s and 2 i n t e r z o n a l ecotones are discussed. In p h y t o s o c i o l o g i c a l a n a l y s i s modified Z u r i c h - M o n t p e l l i e r techniques are employed. For t r e e s t u d i e s , dominance/ frequency/density (DFD) i n d i c e s and standard f o r e s t r y methods are a p p l i e d . Phytocoenose d e s c r i p t i o n s are based on s y n t h e s i s t a b l e s which i n c l u d e p l a n t l i s t s ( t o t a l 538 s p e c i e s ) , h a b i t a t d e s c r i p t i o n s and t r e e growth data from 155 o n e - f i f t h acre p l o t s . Forest types comprise: 1) Lichen a s s o c i a t i o n (Cladonie-tum) - open stands w i t h Pseudotsuga m e n z i e s i i as the edaphic climax dominant, o c c u r r i n g on x e r i c rock outcrops; 2) Moss a s s o c i a t i o n (Pachi s time to-Ca11i er-gonelletum) - c l o s e d stands w i t h Tsuga h e t e r o p h y l l a as the c l i m a t i c climax dominant, o c c u r r i n g on mesic s i t e s ; t h i s i n c l u d e s 6 f o r e s t types; 3) A r a l i a Oakfern a s s o c i a t i o n (Aralieto-Gymnocarpietum) - c l o s e d stands w i t h Tsuga h e t e r o p h y l l a . Thuja p l i c a t a as the edaphic climax codominants, o c c u r r i n g on moist s i t e s ; t h i s i n c l u d e s 7 f o r e s t types; 4) D e v i l ' s Club a s s o c i a t i o n (Oplopanacetum) - c l o s e d stands with Thuja p l i c a t a as the edaphic climax dominant, o c c u r r i n g on wet s i t e s ; t h i s i n c l u d e s 4 f o r e s t types; 5) Skunk Cabbage a s s o c i a t i o n (Lysichitetum) - open stands w i t h Thuja p l i c a t a as the edaphic climax dominant, o c c u r r i n g on water-saturated ground; t h i s i n c l u d e s 2 f o r e s t types; 6) A l l u v i a l Complex - unstable r i v e r s i d e v e g e t a t i o n dominated by Populus t r i c h o c a r p a . The L i c h e n , Skunk Cabbage and A l l u v i a l Complex communities are f l o r i s t i c a l l y the most c l e a r l y d e f i n e d , and are r e a d i l y recognizable on the b a s i s of l e s s e r v e g e t a t i o n dominants alone. Recognition of mesic communi-t i e s r e l i e s on a c h a r a c t e r i s t i c combination of s p e c i e s . i v The zonal ( c l i m a t i c climax)biogeocoenose i s the Slope Normal Moss f o r e s t type of the Moss a s s o c i a t i o n . The dynamic r e l a t i o n s h i p s of f o r e s t types are discussed. Secondary succession may go from the deforested stage d i r e c t l y to the clim a x , i f edaphotope disturbance i s minimal, but normally a pioneer-tree stage i n t e r v e n e s . This Subzone i s unique i n that the pioneer stage of the zonal community may d i f f e r s u b s t a n t i a l l y from the c l i m a t i c climax i f humus i s removed by f i r e . On mesic s i t e s , proceeding from pioneer-cOnifer to climax stages, crown cover decreases and l e s s e r v e g e t a t i o n i n c r e a s e s . Tsuga h e t e r o p h y l l a i s the e x c l u s i v e dominant of the climax f o r e s t . In decreasing order of importance, as determined by DFD i n d i c e s , Subzone trees are Tsuga h e t e r o p h y l l a . Thuja p l i c a t a . Pinus m o n t i c o l a . Pseudotsuga m e n z i e s i i . Betula p a p y r i f e r a . P i c e a engelmannii. L a r i x o c c i d e n t a l i s . Populus tremuloides. Pinus c o n t o r t a . Populus t r i c h o c a r p a . Abies l a s i o c a r p a and Abies grandis. Most r a p i d tree height growth of Thuja p l i c a t a . Pseudotsuga m e n z i e s i i . Pinus monticola and P i c e a engelmannii occurs i n D e v i l ' s Club communities; of Tsuga h e t e r o p h y l l a . L a r i x o c c i d e n t a l i s . Pinus c o n t o r t a . B e t u l a p a p y r i f e r a . Populus tremuloides i n A r a l i a Oakfern communities; and of Populus t r i c h o c a r p a i n A l l u v i a l Complexes. F o r e s t types are more productive i n pioneer than i n climax stages. E s t i -mates of net primary p r o d u c t i v i t y and standing crop of f o r e s t types f o r tree trunks of a l l t r e e species summed as one, showed t h a t the great e s t pioneer-c o n i f e r stand p r o d u c t i v i t y (1251 kilogram/hectare/year) and climax stand 3 standing crop (180 x 10 kg/ha) belong to the D e v i l ' s Club a s s o c i a t i o n , and 3 the l e a s t productive (126 kg/ha/yr) and lowest standing crop (15 x 10 kg/ha) to the Lichen a s s o c i a t i o n . I t i s concluded t h a t biogeocoenotic c l a s s i f i c a t i o n provides a sound b a s i s f o r land use planning i n t h i s r e g i o n , and should be a p p l i c a b l e to other areas. V CONTENTS Page ACKNOWLEDGEMENT INTRODUCTION 1 C l a s s i f i c a t i o n and Land Use 1 Ecosystem C l a s s i f i c a t i o n i n B r i t i s h Columbia 3 DESCRIPTION OF THE STUDY AREA 6 METHOD 11 S o c i o l o g i c a l A n a l y s i s 11 P l a n t c o l l e c t i o n and photographic record 12 S o c i o l o g i c a l s y n t h e s i s 12 Synthesis t a b l e s - p l a n t a s s o c i a t i o n s 12 Forest types 13 Secondary succession stages . . . . . . . . . . 1 4 C h a r a c t e r i s t i c combination of species 14 L i f e form 16 Fore s t trees 16 RESULTS 18 Lichen a s s o c i a t i o n 19 Moss a s s o c i a t i o n 25 Slope Normal Moss f o r e s t type . . 28 Slope Dry Moss f o r e s t type . . 34 Slope Bunchberry Moss f o r e s t type 36 Slope Bunchberry Moss, southern v a r i a n t , f o r e s t type . . 40 A l l u v i a l Normal Moss f o r e s t type . 41 A l l u v i a l Dry Moss f o r e s t type 45 A r a l i a Oakfern a s s o c i a t i o n . . 47 Slope A r a l i a Oakfern f o r e s t type . 5 1 Slope A r a l i a Oakfern, pioneer hardwood v a r i a n t , f o r e s t type 56 v i Page Slope A r a l i a Oakfern, southern v a r i a n t , f o r e s t type . . . 58 Degraded A r a l i a Oakfern f o r e s t type 61 Degraded A r a l i a Oakfern, northern v a r i a n t , f o r e s t type . 63 A l l u v i a l A r a l i a Oakfern f o r e s t type 65 A l l u v i a l Bunchberry A r a l i a Oakfern f o r e s t type 69 D e v i l ' s Club a s s o c i a t i o n 70 Slope D e v i l ' s Club f o r e s t type 75 Slope D e v i l ' s Club, northern v a r i a n t , f o r e s t type . . . . 79 Tufa D e v i l ' s Club f o r e s t type 80 A l l u v i a l D e v i l ' s Club f o r e s t type 84 Skunk Cabbage A s s o c i a t i o n . . . . . 86 Creek Skunk Cabbage f o r e s t type 90 Depression Skunk Cabbage f o r e s t type 94 A l l u v i a l Complex 96 Wet A l l u v i a l Complex 98 Dry A l l u v i a l Complex 101 I n t r a z o n a l and Ecotone Communities . . 103 I n t r a z o n a l Ponderosa pine communities . . . . . 104 Pinus ponderosa - Agropyron spicatum a s s o c i a t i o n . . . . 105 Pseudotsuga m e n z i e s i i - A r c t o s t a p h y l o s u v a - u r s i Calamagrostis rubescens a s s o c i a t i o n 106 Pseudotsuga m e n z i e s i i - Calamagrostis rubescens a s s o c i a t i o n 108 D o u g l a s - f i r Zone / Hemlock Zone Ecotone I l l Pseudotsuga m e n z i e s i i - Arctostaphylos u v a - u r s i -Calamagrostis rubescens / Moss ecotone I l l Pseudotsuga m e n z i e s i i - Tsuga h e t e r o p h y l l a - Smilacina s t e l l a t a / A l l u v i a l A r a l i a Oakfern ecotone 113 v i i Page DISCUSSION 117 The zonal community 117 Zonal c h a r a c t e r i s t i c combination of species 117 Constant species composition 118 Dynamics of f o r e s t types 120 Primary succession 120 Secondary succession 122 Change i n t r e e composition 123 Change i n l e s s e r v e g e t a t i o n 125 Change i n bryophytes on decaying wood 126 R e l a t i o n s h i p of l e s s e r v e g e t a t i o n cover and t r e e d e n s i t y . . 126 Importance of trees i n f o r e s t types 128 P r o d u c t i v i t y of f o r e s t types 133 SUMMARY AND CONCLUSIONS 138 LITERATURE CITED 146 APENDICES A C h e c k l i s t of p l a n t s 155 B Table of constant species 168 C Forest Inventory Summary and DFD values 173 D Tree growth and p r o d u c t i v i t y of f o r e s t types 183 E L i s t of f o r e s t types; numerical l i s t of stands 196 F Methods - a d e t a i l e d account; s y n t h e s i s t a b l e s ; toposequence diagrams . . . . . . . . . . 204 v i i i Tables Table Page 1 Lichen a s s o c i a t i o n : c h a r a c t e r i s t i c combination of species . . 23 2 Lichen a s s o c i a t i o n : tree data summary 25 3 Moss a s s o c i a t i o n : c h a r a c t e r i s t i c combination of species . . . 26 4 Slope Normal Moss f o r e s t type: t r e e data summary 33 5 Slope Dry Moss f o r e s t type: tre e data summary 35 6 Slope Bunchberry Moss f o r e s t type: tre e data summary 38 7 Slope Bunchberry Moss, southern v a r i a n t , f o r e s t type: t r e e data summary 41 8 A l l u v i a l Normal Moss f o r e s t type: t r e e data summary 43 9 A l l u v i a l Dry Moss f o r e s t type: tre e data summary . . . . . . . 46 10 A r a l i a Oakfern a s s o c i a t i o n : C h a r a c t e r i s t i c combination of species . . . . . 49 11 Slope A r a l i a Oakfern f o r e s t type: tree data summary 56 12 Slope A r a l i a Oakfern, pioneer hardwood v a r i a n t , f o r e s t type: tree data summary 58 13 Slope A r a l i a Oakfern, southern v a r i a n t , f o r e s t type: t r e e data summary 60 14 Degraded A r a l i a Oakfern f o r e s t type: tree data summary . . . . 63 15 Degraded A r a l i a Oakfern, northern v a r i a n t , f o r e s t type: t r e e data summary 64 16 A l l u v i a l A r a l i a Oakfern f o r e s t type: tre e data summary . . . . 67 17 A l l u v i a l Bunchberry A r a l i a Oakfern f o r e s t type: tre e data summary 70 18 D e v i l ' s Club a s s o c i a t i o n : c h a r a c t e r i s t i c combination of species 73 19 Slope D e v i l ' s Club f o r e s t type; tre e data summary 78 i x Tables (cont'd.) Page 20 Slope D e v i l ' s Club.northern v a r i a n t , f o r e s t type: tr e e data summary 80 21 Tufa D e v i l ' s Club f o r e s t type: tr e e data summary 83 22 A l l u v i a l D e v i l ' s Club f o r e s t type: tr e e data summary . . . . 86 23 Skunk Cabbage a s s o c i a t i o n : c h a r a c t e r i s t i c combination of species 88 24 Creek Skunk Cabbage f o r e s t type: tree data summary . . . . . 93 25 Depression Skunk Cabbage f o r e s t type: tree data summary . . 95 26 A l l u v i a l Complex: c h a r a c t e r i s t i c combination of species . . 96 27 Wet A l l u v i a l Complex: tree data summary 101 28 Dry A l l u v i a l Complex: t r e e data summary 103 29 Pinus ponderosa - Agropftyron spicatum a s s o c i a t i o n : t r e e data summary 106 30 Pseudotsuga m e n z i e s i i - A r c t o s t a p h y l o s u v a - u r s i -Calamagrostis rubescens a s s o c i a t i o n : tree data summary . . . 108 31 Pseudotsuga m e n z i e s i i - Calamagrostis rubescens a s s o c i a t i o n tree data summary 110 32 Pseudotsuga m e n z i e s i i - A r c t o s t a p h y l o s u v a - u r s i -Calamagrostis rubescens / Moss ecotone: tr e e data summary. . 113 33 Pseudotsuga m e n z i e s i i - Tsuga h e t e r o p h y l l a - Sm i l a c i n a s t e l l a t a / A l l u v i a l A r a l i a Oakfern ecotone: tr e e data summary 116 34 DFD values f o r s e l e c t e d trees i n stage 1 (climax) of a l l p l a n t a s s o c i a t i o n s 124 35 Average l a y e r coverage i n the D e v i l ' s Club a s s o c i a t i o n . . . 128 36 Height growth of pioneer c o n i f e r s at 50 years 136 X I l l u s t r a t i o n s F i g u r e F o l l o w i n g page 1 Map of study area showing g l a c i e r s and 4000 f o o t contour . . . . 6 2 Looking north on Slooan Lake. Steep f o r e s t e d slopes to waters edge preclude lowland farming 7 3 Snow s l i d e roads on f o r e s t e d slope above Trout Lake 7 4 Farmland near Nakusp , 8 5 Rugged h i g h country of S e l k i r k mountains (over 9000 f e e t ) near Trout Lake 9 6 Broad f o r e s t e d a l l u v i a l t e r r a c e (Makinson f l a t s ) i n Mosquito V a l l e y n o r t h of Arrow Park 9 7 Constancy diagram f o r Lichen a s s o c i a t i o n 20 8 Lichen a s s o c i a t i o n : a) average cover of constant dominant s p e c i e s ; b) v e g e t a t i o n l i f e form spectrum 20 9 Open Li c h e n a s s o c i a t i o n stand on rock outcrop 21 10 C l o s e r view of Lichen a s s o c i a t i o n 21 11 Constancy diagram f o r Moss a s s o c i a t i o n 28 12 Moss a s s o c i a t i o n : a) average cover of constant dominant s p e c i e s ; b) v e g e t a t i o n l i f e form spectrum 28 13 C l i m a t i c c l i m a x Slope Normal Moss f o r e s t type 30 14 Dense immature SNM stand 30 15 Mature Slope Dry Moss stand 34 16 Climax Slope Bunchberry Moss stand 37 17 Ground v e g e t a t i o n i n c l i m a x SBM stand 37 18 Dense young stand of Tsuga h e t e r o p h y l l a on nudum ANM s i t e . . . 42 19 Climax A l l u v i a l Normal Moss stand 42 20 Constancy diagram f o r A r a l i a Oakfern a s s o c i a t i o n 50 21 A r a l i a Oakfern a s s o c i a t i o n : a) average cover of constant dominant s p e c i e s ; b) v e g e t a t i o n l i f e form spectrum . . 50 x i I l l u s t r a t i o n s (cont'd.) F i g u r e F o l l o w i n g paj 22 85 year o l d SAO stand dominated by vigorous Pinus monticola . . 52 23 Ground v e g e t a t i o n i n young SAO stand . . . . . 52 24 Ground v e g e t a t i o n i n climax SAO stand 54 25 Young SAOp stand showing vigorous Populus tremuloides . . . . 56 26 Ground v e g e t a t i o n i n DAO stand 61 27 Mature AAO stand on a l l u v i a l outwash 65 28 Ground v e g e t a t i o n beneath young AAO stand . 66 29 Dense Epilobium a n g u s t i f o l i u m and Rubus p a r v i f l o r o u s on an AAO s i t e a f t e r l o g g i n g and burning 66 30 Mature ABAO stand on coarse outwash p l a i n 69 31 Ground v e g e t a t i o n i n clim a x ABAO 69 32 Constancy diagram f o r D e v i l ' s Club a s s o c i a t i o n 75 33 D e v i l ' s Club a s s o c i a t i o n : a) average cover of constant dominant s p e c i e s ; b) v e g e t a t i o n l i f e form spectrum 75 34 D e v i l ' s Club a s s o c i a t i o n 76 35 Ground v e g e t a t i o n i n D e v i l ' s Club stand 76 36 Thick t u f a deposit exposed by road cut near Trout Lake . . . . 81 37 Edaphic climax A l l u v i a l D e v i l ' s Club stand of vigorous Thuja p l i c a t a 84 38 Vigorous Oplopanax h o r r i d u s grows over 10 f t . high i n some AD stands 85 39 Ground v e g e t a t i o n on bank of small stream i n AD stand . . . . 85 40 Constancy diagram f o r Skunk Cabbage a s s o c i a t i o n 90 41 Skunk Cabbage a s s o c i a t i o n : a) average cover of constant dominant s p e c i e s ; b) v e g e t a t i o n l i f e form spectrum 90 42 Tsuga h e t e r o p h y l l a . Pinus m o n t i c o l a . and Pseudotsugs m e n z i e s i i growing on r a i s e d ground i n CSC stand . . . . . 91 x i i I l l u s t r a t i o n s (cont'd) F i g u r e F o l l o w i n g page 43 Ground v e g e t a t i o n i n CSC stand 91 44 Edaphic climax Depression Skunk Cabbage stand 94 45 Constancy diagram f o r A l l u v i a l Complex 98 46 A l l u v i a l Complex: a) average cover of constant dominant s p e c i e s ; b) ve g e t a t i o n l i f e form spectrum 98 47 Wet A l l u v i a l Com p l e x stands on s i l t y f l o o d p l a i n of Lardeau R i v e r 99 48 S c a t t e r e d Pinus ponderosa stands on rocky s o u t h - f a c i n g slopes across Columbia R i v e r from Burton 104 49 P a r k l i k e A-C a s s o c i a t i o n on r i d g e above Burton 106 50 The S/AAO ecotone stand, SB 173, near Salmo 113 51 Microcommunity i n S/AAO stand 113 52 Cover graphs of a l l constant species showing dominance (cover) i n each p l a n t a s s o c i a t i o n 119 53 D i a g n o s t i c c h a r t of s e l e c t e d constant dominant species 120 54 Diagram showing dynamic r e l a t i o n s h i p of f o r e s t types: primary succession to c l i m a t i c climax Slope Normal Moss community 121 55 I d e a l i z e d toposequences showing f o r e s t types on slopes . . . . 122 56 I d e a l i z e d toposequences showing f o r e s t types on a l l u v i a l f l a t s 122 57 Summary l a y e r coverage diagrams of stages i n a l l p l a n t a s s o c i a t i o n s . . . . . . 123 58 V a r i a t i o n i n tree composition i n the Moss a s s o c i a t i o n during secondary succession from bare land t o climax 124 59 V a r i a t i o n i n cover of some l e s s e r v e g e t a t i o n i n the Moss a s s o c i a t i o n d u ring secondary succession . 125 x i i i I l l u s t r a t i o n s (cont'd.) F i g u r e F o l l o w i n g page 60 V a r i a t i o n , i n the Moss a s s o c i a t i o n of: a) cover of decaying wood, and t o t a l bryophyte and l i c h e n cover on decaying wood; and b) some bryophytes c o n t r i b u t i n g to trend i n a) 126 61 Influence of dense pioneer c o n i f e r stands on cover of s e l e c t e d l e s s e r v e g e t a t i o n species i n the Moss a s s o c i a t i o n . . . 127 62 Curves of l a y e r coverage and b a s a l area i n the Moss a s s o c i a t i o n 128 63 Histograms showing r e l a t i v e importance of a l l t r e e s i n f o r e s t types 129 64 Summary height-age curves f o r f o r e s t types. Based on s t a n d averages of a l l dominants and codominants 132 65 Net primary p r o d u c t i v i t y of t r e e stems i n f o r e s t types 134 66 Average standing crop of l i v i n g t r e e stems i n climax stands of each f o r e s t type 135 67 Completed h a b i t a t data sheet 205 68 P o r t i o n s of completed v e g e t a t i o n a n l a y s i s sheets 208 69 Sample tree t a l l y sheet 208 70 Completed tre e measurement sheet 208 71 Sample stand and b a s a l area t a b l e 213 x i v ACKNOWLEDGEMENT I am indebted to Dr. V. J . K r a j i n a , Department of Bi o l o g y and Botany, U n i v e r s i t y of B r i t i s h Columbia, f o r h i s guidance throughout the research and f o r the considerable time he gave i n the e a r l y stages of f i e l d work; to Dr. R. G. McMinn, Canada Department of F o r e s t r y fbr o r i g i n a l f i e l d d a t a , a s s i s t a n c e , and f o r numerous h e l p f u l d i s c u s s i o n s ; and to Dr. W. B. S c h o f i e l d , Department of B i o l o g y and Botany, U n i v e r s i t y of B r i t i s h Columbia, f o r c o n s t r u c t i v e c r i t i c i s m s and suggestions i n the pr e p a r a t i o n of t h i s t h e s i s . A p p r e c i a t i o n i s expressed f o r the a s s i s t a n c e provided by personnel of the B.C. Fo r e s t S e r v i c e and timber companies of the Nelson and Kan loops F o r e s t D i s t r i c t s , and f o r the use of f a c i l i t i e s i n the Department of Bio l o g y and Botany, U n i v e r s i t y of B r i t i s h Columbia, and the Department of B i o l o g y , U n i v e r s i t y of V i c t o r i a . I am g r a t e f u l f o r the help of many s p e c i a l i s t s who v o l u n t a r i l y gave t h e i r time to i d e n t i f i c a t i o n of p l a n t c o l l e c t i o n s . Mr. F. M. Boas, V i c t o r i a , i d e n t i f i e d over 1500 bryophytes. Dr. Grace Howard, U n i v e r s i t y of Washington, i d e n t i f i e d most of the l i c h e n s . Dr. W. B. S c h o f i e l d , U n i v e r s i t y of B r i t i s h Columbia, Dr. E l v a Lawton, U n i v e r s i t y of Washington, and Dr. A h t i , H e l s i n k i , helped w i t h taxonomically d i f f i c u l t cryptogams. Dr. V. J . K r a j i n a , Dr. T. M. C. T a y l o r , and Mr. J . W. Eastham advised on d i f f i c u l t v a s c u l a r p l a n t s . F i n a n c i a l support, given by the f o l l o w i n g agencies, i s g r a t e f u l l y acknowledged: E. M. R. Grant 98, Canada Department of F o r e s t r y ; the N a t i o n a l Research C o u n c i l of Canada; and the U n i v e r s i t y of V i c t o r i a F a c u l t y Research Fund. To Dr. R. B. Smith, Canada Department of F o r e s t r y , whose bearded jowls appearing over the edge of the i n e v i t a b l e s o i l p i t earned him the a p p e l l a t i o n \" G r i z z l y of the Monashee\", I wish to express my si n c e r e thanks f o r companionship, cooperation, and u s e f u l d i s c u s s i o n i n a l l phases of the work. F i e l d work was brightened by the c h e e r f u l a s s i s t a n c e of Mr. R. W. Haigh. Of the many i n d i v i d u a l s who helped i n p r e p a r a t i o n of the manu-s c r i p t , I should l i k e to thank p a r t i c u l a r l y Mrs. P. C. Townsend, Miss E n i d Lemon and Miss E l i z a b e t h Swemle. The l o v i n g help and encouragement of my w i f e i n every aspect of the study i s deeply appr e c i a t e d . Without her a s s i s t a n c e much of the work would not have been completed. I share w i t h her the s a t i s f a c t i o n of p r e s e n t i n g the r e s u l t s i n t h e i r f i n a l form. INTRODUCTION 1. The need f o r c o r r e l a t i n g t r e e diseases w i t h e c o l o g i c s i t e c o n d i t i o n s l e d to an e c o l o g i c a l study of the Dry Subzone of the I n t e r i o r Western Hemlock Zone of B r i t i s h Columbia. Under the auspices of the Forest Biology Laboratory of the Canada Department of A g r i c u l t u r e , Dr. V.J. K r a j i n a of the U n i v e r s i t y of B r i t i s h Columbia, d i r e c t e d the research of R.B. Smith and myself. Work was d i v i d e d g e n e r a l l y i n t o two areas, 1) s t u d i e s of edaphotopes, undertaken by Smith (1963), and 2) s t u d i e s of v e g e t a t i o n i n c l u d i n g d e t a i l e d t r e e mensurational a n a l y s i s which I undertook. The purpose of t h i s t h e s i s i s to d escribe f o r e s t phytocoenoses i n the Subzone, and to i n c l u d e these phytocoenoses i n a c l a s s i f i c a t i o n of r e a d i l y r e cognizable ecosystematic u n i t s . Vegetation dynamics and t r e e p r o d u c t i v i t y are a l s o considered. The l i t e r a t u r e d e a l i n g w i t h the h i s t o r y of e c o l o g i c a l c l a s s i f i c a t i o n of n a t u r a l communities i s massive, and has been summarized r e c e n t l y by Becking (1957), Hanson (1958), and Whittaker (1962). E x c e l l e n t summaries of f o r e s t e c o l o g i c a l c l a s s i f i c a t i o n i n the P a c i f i c Northwest have been given by Becking (1954), Brayshaw (1954), Mueller-dombois (1959), and Smith (1963). C l a s s i f i c a t i o n and land use The h i s t o r y of science shows t h a t , g e n e r a l l y speaking, f i r s t steps i n any new f i e l d are d e s c r i p t i v e , and i n most cases a s s o c i a t e d very soon w i t h c l a s s i f i c a t i o n of media i n t o workable u n i t s . The mere \" n a t u r a l \" these u n i t s a r e , i . e . , the broader the base f o r t h e i r arrangement i n c l a s s e s , the b e t t e r the c l a s s i f i c a t i o n w i l l be. From such i n i t i a l c l a s s i f i c a t i o n f o l l o w s o b j e c t i v e a n a l y s i s , and from t h i s p o s s i b l y a r e a l i g n i n g of the groups p r e v i o u s l y c l a s s i f i e d . Formation of hypotheses on the nature of the media might then f o l l o w , and these hypotheses would be t e s t e d by f u r t h e r observ-a t i o n and e v e n t u a l l y by c o n t r o l l e d experiment. And so i t goes, becoming more and more o b j e c t i v e as knowledge i n c r e a s e s . Withrthe recent tremendous s t r i d e s i n o b j e c t i v e a n a l y s i s through bio-m e t r i c s and mathematics there i s o f t e n a s s o c i a t e d a d i s d a i n f o r the elem-entary and o f t e n tedious phase of s u b j e c t i v e d e s c r i p t i o n and c l a s s i f i c a t i o n . Yet i n ecology t h i s phase i s e s s e n t i a l to the proper s e q u e n t i a l development of the science (Poore, 1962). Poore p o i n t s out that o b j e c t i v e computational procedures f o r primary v e g e t a t i o n a l surveys, as f o r example the f a c t o r and gradient a n a l y s i s of Goodall (1953, 1954), and Hughes & L i n d l e y (1955) are inadequate f o r i n i t i a l c l a s s i f i c a t i o n . Such procedures may i n f a c t obscure v a r i a t i o n s , the causes of which would be p l a i n i n any d e t a i l e d s u b j e c t i v e f i e l d survey. I t should be evident then, that o r d e r l y a c q u i s i t i o n of knowledge g e n e r a l l y r e q u i r e s that 1) the f i r s t steps be e s s e n t i a l l y d e s c r i p t i v e and t h a t 2) d e s c r i p t i o n be immediately followed by arrangement of the described m a t e r i a l i n c l a s s e s , i . e . c l a s s i f i c a t i o n , from which g e n e r a l i z a t i o n s may be made. Without these two f i r s t steps science wallows. Indeed, without c l a s s i f i c a t i o n , there can be no science. To deny the need f o r t h i s most e s s e n t i a l f i r s t step i s to deny that \" c l a s s i f i c a t i o n i s a fundamental pre-r e q u i s i t e of a l l conceptual thought\" (Gilmour, 1951), yet r e c e n t l y prominent s c i e n t i s t s continued to maintain that c l a s s i f i c a t i o n of v e g e t a t i o n i n recognizable u n i t s i s not necessary (Bray and C u r t i s , 1957) nor r e a l i s t i c (Gleason, 1926). However u n a t t r a c t i v e c l a s s i f i c a t i o n may appear, or however 3. s u p e r f i c i a l l y unnecessary to meet a p a r t i c u l a r need, i n i t i a l c l a s s i f i c a t i o n of media i n any new d i s c i p l i n e i s v i t a l . Land use planning i s no exception. I n c r e a s i n g pressures f o r m u l t i p l e land use r e s u l t i n g from i n c r e a s i n g p o p u l a t i o n and r a p i d u r b a n i z a t i o n of l a r g e areas near i n d u s t r i a l centers make d e s c r i p t i o n and c l a s s i f i c a t i o n of remaining n a t u r a l areas of paramount importance. A sound base could be provided f o r land use planning i n a c l a s s i f i c a t i o n embodying as many n a t u r a l c h a r a c t e r i s t i c s of the landscape as p o s s i b l e . In North America l i t t l e has been done i n t h i s regard. To meet the need concerted e f f o r t s should soon be made to d e s c r i b e , catalogue, and map the n a t u r a l ecosystems before many more are destroyed by unwise use w i t h a l l i t s attendant and sometimes i n c u r a b l e i l l s . S u i t a b l e means f o r a c h i e v i n g t h i s goal may l i e i n the e v o l v i n g \" n a t u r a l \" e c o l o g i c a l c l a s s i f i c a t i o n systems based on combined concepts of t o t a l environment and t o t a l b i o t a (ecosystem, Tansley, 1936; biogeocoenosis, Sukachev, 1944; holocoen, F r i e d -e r i c h s , 1930; s y n t h e s i s of these views, K r a j i n a , 1960). Although methods may d i f f e r , these concepts are fundamentally s i m i l a r , and, i n terms of c l a s s i f i c a t i o n , the ends are the same, i . e . d e s c r i p t i o n and c l a s s i f i c a t i o n of ecosystems i n schemes that c l a r i f y r e l a t i o n s h i p s and e x p l a i n v a r i a t i o n . Ecosystem c l a s s i f i c a t i o n i n B r i t i s h Columbia In B r i t i s h Columbia much has been accomplished i n c l a s s i f i c a t i o n of t e r r e s t r i a l ecosystems w i t h i n B i o g e o c l i m a t i c Zones, which i n turn belong to l a r g e r B i o g e o c l i m a t i c Regions ( K r a j i n a 1964). Environmental and c l i m a t i c data f o r the Zones has been summarized by K r a j i n a (1959, 1964). D e s c r i p t i o n and c l a s s i f i c a t i o n of the v e g e t a t i o n / h a b i t a t complexes (biogeocoenoses = ecosystem types = f o r e s t types, as used i n t h i s t h e s i s ) w i t h i n a number of these Zones has been e f f e c t e d by K r a j i n a (1952, 1953, 1954), K r a j i n a and S p i l s b u r y (1953), Brayshaw (1955), A r l i d g e (1956), Mueller-dombois (1959), Lesko (1961), O r l o c i (1961, 1964), Smith (1963), Peterson (1964), Brooke (1964). A s s o c i a t e d s t u d i e s have been those of O g i l v i e (1953, 1955) and McMinn (I960) on s o i l s , and of E i s (1961) on r e l a t i o n s h i p s of a number of environmental v a r i a b l e s to c e r t a i n features of the v e g e t a t i o n . The b a s i s f o r most of these c l a s s i f i c a t i o n s has been the p l a n t a s s o c i a t i o n as defined by K r a j i n a (1960): A p l a n t ( f o r e s t ) a s s o c i a t i o n i s a d e f i n i t e uniform (homogeneous) phytocoenosis that i s i n dynamic e q u i l i b r i u m w i t h a c e r t a i n complex of environmental f a c t o r s (ecotope); i t s f l o r i s t i c s t r u c t u r e \u00E2\u0080\u0094 i . e . , s t r a t i f i c a t i o n ( l a y e r i n g ) , species s i g n i f i c a n c e ( A r t m S c h t i g k e i t , or abundance and dominance), s o c i a b i l i t y , constancy, f i d e l i t y , and v i g o r of the component species l i e s w i t h i n l i m i t s governed not only by the ecotope ( c l i m a t e , s o i l , substratum, topography, and b i o t i c environmental f a c t o r s ) , but a l s o by the h i s t o r i c a l f a c t o r s of the v e g e t a t i o n a l development((the f o u r t h dimension or space-time f a c t o r ) . The conceptual b a s i s of ecosystem c l a s s i f i c a t i o n l i e s w i t h i n the d e f i n -i t i o n . I t i s on t h i s general biogeocoenotic foundation that the c l a s s i f i c -a t i o n i n t h i s t h e s i s i s based. Other recent s t u d i e s concerning e c o l o g i c a l c l a s s i f i c a t i o n i n B r i t i s h Columbia i n c l u d e the comments on Canadian p l a n t communities of I l v e s s a l o (1929) and K u j a l a (1945), and the more d e t a i l e d works of T i s d a l e (1947, 1957) on the grasslands and Douglas-Fir Zone of B.C., S p i l s b u r y and Smith (1947) on c o a s t a l Douglas-Fir f o r e s t s , Moss (1952) on the Peace R i v e r grass-lands, Szczawinski (1953) on c o r t i c o l o u s communities i n the Douglas-Fir Zone of C o a s t a l B.C., I l l i n g w o r t h and A r l i d g e (1960) on lodgepole pine and spruce-a l p i n e f i r stands of c e n t r a l B.C. Studies of v e g e t a t i o n i n the Kootenay d i s t r i c t i n c l u d e the survey of H o l l i c k (1927) on f l o r a of the Eugene s i l t s i n the Kootenay V a l l e y , and the d e s c r i p t i o n s of major v e g e t a t i o n u n i t s of the Rocky Mountain Trench by 5. Maclean and Holland (1958). Using l e s s e r v e g e t a t i o n , Johnson (1954) assessed s i t e q u a l i t y f o r trees on a l i m i t e d range of s i t e s i n the Arrow Lakes f o r e s t . K r a j i n a (1953-55) described s i x f o r e s t a s s o c i a t i o n s i n the Wet Subzone of the I n t e r i o r Western Hemlock Zone, and provided u s e f u l i n f o r m a t i o n on s o i l m i c r o f l o r a and s i l v i c u l t u r a l recommendations f o r commercial t r e e s . Ker (1957) developed volume and y i e l d t a b l e s f o r major timber species i n the Arrow Lakes area. H i s s i t e index curves, based on height growth of dominant c o n i f e r pioneers at 50 years, are p a r t i c u l a r l y u s e f u l f o r comparative s i t e q u a l i t y s t u d i e s . In developing the management plan f o r the Celgar tr e e farm l i c e n c e , Waldie (1954) o u t l i n e s the r e q u i r e -ments f o r sustained y i e l d management i n much of the Subzone. For e c o l o g i c a l l y r e l a t e d areas of northern Idaho, Daubenmire (1952) des c r i b e d a number of climax a s s o c i a t i o n s i n c l u d i n g Tsuga h e t e r o p h y l l a and Thula p l i c a t a . On mesic s i t e s , b e t t e r growth of L a r i x o c c i d e n t a l i s and Pinus monticola and poorer growth of Tsuga h e t e r o p h y l l a . an abundance of Abies g r a n d i s . and the prominence on mesic s i t e s i n some areas of Xero-phyllum tenax suggest that the c l i m a t e of Daubenmire's Western Hemlock -Western Red Cedar Zone i s more c o n t i n e n t a l than that of the Hemlock Zone north of the border. Communities of t h i s Subzone most c l o s e l y r e l a t e d to Daubenmire's a s s o c i a t i o n s are undoubtedly those described h e r e i n as \"southern v a r i a n t s \" of the average Subzonal f o r e s t types, and found p a r t i c -u l a r l y i n the E r i e Creek V a l l e y near Salmo. 6. DESCRIPTION OF THE STUDY AREA A d e t a i l e d d e s c r i p t i o n of l o c a t i o n , physiography, macroclimate, ecology and dominant tre e species f o r the study area has been given by Smith (1963), and i s not repeated here. A b r i e f d e s c r i p t i o n of the Subzone f o l l o w s . The Dry Subzone of the I n t e r i o r Western Hemlock Zone l i e s between longitude 117\u00C2\u00B0 5* and 119\u00C2\u00B0, and l a t i t u d e 49\u00C2\u00B0 10' and 51' i n the S e l k i r k and Monashee ranges of the Columbia Mountains of southeast B r i t i s h Columbia ( F i g . 1). I t i n c l u d e s much of the Shuswap R i v e r v a l l e y system (Sugar Lake, Mabel Lake, and p a r t s of Mara and Shuswap Lakes) which d r a i n s west to the F r a s e r R i v e r , and most of the v a l l e y systems of the Arrow Lakes, Slocan Lake ( F i g . 2 ) , Trout Lake ( F i g . 3) and p a r t s of Kootenay Lake a l l of which c o n t r i b u t e to the Columbia R i v e r drainage. A l t i t u d i n a l l y the Subzone l i e s between 1200 to 4000 f t . e l e v a t i o n , i . e . between the I n t e r i o r Douglas-Fir Zone a t lower e l e v a t i o n s and the Subalpine Engelmann spruce - A l p i n e f i r Zone higher up. Due to the vag a r i e s of mountain c l i m a t e these a l t i t u d i n a l boundaries v a r y c o n s i d e r a b l y . The h i s t o r y of resource development i n the area i s r e l a t i v e l y s h o r t , p o s s i b l y one of the most i n t e n s i v e periods being during the 1890s when mining f o r s i l v e r , l e a d and z i n c , p a r t i c u l a r l y i n the Slocan area, was at i t s peak (Johnson, 1952). During t h i s p e r i o d much of the f o r e s t was burned, probably by prospectors seeking b e t t e r views of f o r e s t e d rock outcrops. At present the major a c t i v i t y i s l o g g i n g , mainly f o r sawlogs and pulpwood. I n t e n s i f i c -a t i o n of f o r e s t management and c l o s e r u t i l i z a t i o n of standing crops p a r a l l e l s the present manufacturing boom. Although narrow f r i n g e s along major r i v e r s , and low areas near l a k e s i d e towns a l l o w moderate success i n vegetable and f r u i t farming ( F i g . 4 ) , n e i t h e r the c l i m a t e nor the a v a i l a b l e a g r i c u l t u r a l to f o l l o w Fig. 1. Map of study area showing glaciers and 4000ft! contour. { (Vow 10 o L 149 SPC. i m nz i Pl fOD 0T6\) 6-A C^Edx ie sU T H U J A PLltfttft P O L V U I CHUC-t TdlJ I P EA IMOM P g L T I ( r \u00C2\u00A3 f t f l ftPWUQSft 3) 5 4 0 ^ 3 0 zo 5 O L PM P\u00C2\u00AB C H O M L I F E F-oitM i \u00E2\u0080\u0094r 1 0 20 30 F i g . 8. Lichen a s s o c i a t i o n : a) Average cover of constant dominant species; b) Vegetation l i f e form spectrum based on cover of constant species. 21. climax stands, Pseudotsuga m e n z i e s i i i s common i n the shrub l a y e r t e s t i f y i n g to the edaphic climax nature of D o u g l a s - f i r i n t h i s community. S a l i x s c o u l e r i a n a . S. bebbiana and vigorous Rosa gymnocarpa. though r a r e l y abundant, are r e s t r i c t e d to e a r l y stages of succession. Herbs provide 20 - 90% cover i n the stands s t u d i e d w i t h vigorous and h i g h l y s o c i a b l e A r c t o s t a p h y l o s u v a - u r s i ^ and Chimaphila umbellata dominating a l l stands. L i s t e r a cordata i s e x c e p t i o n a l l y vigorous and q u i t e s o c i a b l e i n the climax stand. C o r y d a l i s sempervirens. Cryptogramma c r i s p a . Asplenium trichomanes. Carex r o s s i i . Heuchera c y l i n d r i c a , and Polypodium vulgare are among those vigorous species r e s t r i c t e d to the Lichen a s s o c i a t i o n but only s c a t t e r e d throughout the stand. Bryophytes and l i c h e n s cover most of the humus and bedrock a v a i l a b l e , from 50 - 85% of the ground surface. C a l l i e r g o n e l l a s c h r e b e r i i s conspicuously dominant, w i t h Polytrichum juniperinum. P e l t i g e r a aphthosa, Hylocomium splen-dens, and Dicranum scoparium (the l a s t two not always present) almost as common. Cladonia m i t i s , C. r a n g i f e r i a n and C. g r a c i l i s . the l a s t always present, may have e x c e l l e n t v i g o u r , p a r t i c u l a r l y i n o l d e r stands where the ground has been long undisturbed by f i r e . Numerous bryophytes and l i c h e n s , when growing on the humus or rock, are c h a r a c t e r i s t i c only of the Lichen a s s o c i a t i o n , among them Bartramia pomiformis, Rhacomitrium canescens w i t h good v i g o u r , T r i t o m a r i a s c i t u l a , C e t r a r i a i s l a n d i c a , Dermatocarpon miniatum. U m b i l i c a r i a phaea. Cladonia b e l l i d i f l o r a . C. arbuscula and C. u n c i a l i s , None of these are abundant but they are u s u a l l y vigorous when present. Many other Cladonia spp. , Stereocaulon tomentosum. Rhacomitrium heterostrichum and other x e r o p h y t i c cryptogams, w h i l e present i n other communities u s u a l l y i n e a r l y stages of succ e s s i o n , achieve t h e i r best development i n the Lichen a s s o c i a t i o n . 1 Because of i t s low s t a t u r e the creeping chamaephytic shrub A. u v a - u r s i i s i n c l u d e d i n the herb l a y e r . to follow page 21. F i g . 9. Open stand of Lichen association on rock outcrop. Trees are mainly Pseudotsuga menziesii of a l l ages, with some small Thuja p l i c a t a . Shrubby ground cover i s Arctostaphylos uva-ursi. July 1960. F i g . 10. Closer view of Lichen as s o c i a t i o n showing poor growth of Pseudotsuga menziesii, scrubby Thuja p l i c a t a understory, Arctostaphylos uva-ursi, Cladonia m i t i s , Dicranum scoparium and C a l l i e r g o n e l l a schreberi on rock outcrop. On the small amount of decaying wood (10% cover a t the most) i n these stands a s i m i l a r s i t u a t i o n o b t a i n s ; Dicranum strieturn i s always dominant and vigorous w i t h P t i l i d i u m pulcherrimum constant but not very aggressive. A v a r i e t y of Cladonia species are present and vigorous along w i t h one or two poorly-developed l i v e r w o r t s on moist undersides of l o g s , such as Lophocolea h e t e r o p h y l l a and Lophozia i n c i s a . Hypnum c i r c i n a l e . Dicranum fuscescens. and Cephalozia spp., are c h a r a c t e r i s t i c a l l y present. The c h a r a c t e r i s t i c combination of species i s given i n Table 1. Tree data i s summarized i n Table 2. TABLE 1. CHARACTERISTIC COMBINATION OF SPECIES LICHEN ASSOCIATION (CLADONIETUM) + Constant dominant only i n t h i s a s s o c i a t i o n * Constant only i n t h i s a s s o c i a t i o n !' Most s u o c e s s f u l i n t h i s a s s o c i a t i o n but may be present i n adjacent communities 1 I n c l u d i n g a l l species Layer Trees Shrubs Herbs Constant dominants Pseudotsuga m e n z i e s i i Pachistima m y r s i n i t e s +Pseudotsuga m e n z i e s i i Thuga p l i c a t a +Vaccinium membranaceum +Arctostaphyllos uva-ursi Chimaphila umbellata Bryophytes & Lichens a) on humus C a l l i e r g o n e l l a schreberi +D. scoparium +Polytrichum juniperinum + P e l t i g e r a aphthosa +Cladonia spp.* Constants only Pinus monticola Thuga p l i c a t a Amelanchier a l n i f o l i a Lonicera utahensis Tsuga h e t e r o p h y l l a *Festuca o c c i d e n t a l i s * L i l i u m columbianum Linnaea b o r e a l i s *Aulacomnium androgynum *Rhacomitrium heterostichum +Cladonia g r a c i l i s P e l t i g e r a canina Important Non-constants Pinus a l b i c a u l i s Juniperus communis !Lonicera c i l i o s a Asplenium trichomanes !Calamagrostis rubescens !Campanula r o t u n d i f o l i a C o r y d a l i s sempervirens Cryptogramma c r i s p a Heuchera c y l i n d r i c a Polypodium vulgare Woodsia scopulina Bartramia pomiformis Claopodium c r i s p i f o l i u m .'Dicranum rugosum Plagiothecium p i l i f e r u m !Rhacomitrium canescens T r i t o m a r i a s c i t u l a C e t r a r i a i s l a n d i c a C. f a h l u n e n s i s Dermatocarpon miniatum (on rock) CONT'D LICHEN ASSOCIATION (cont'd) Layer Constant dominants Constants only Important Non-constants a) on humus U m b i l i c a r i a phaea (on rock) (cont'd) !Stereocaulon tomentosum .'Peltigera membranacea P. canina var. s p u r i a .'P. malacea !numerous Cladonia spp. (i n c l u d e d i n constant dominants; see syn t h e s i s t a b l e f o r component species) b) on decaying wood +Dicranum s t r i c t u m Dicranum fuscescens ^Cladonia spp.^ Lophozia spp.'\" P t i l i d i u m pulcherrimum c) on rock + C a l l i e r g o n e l l a s c hreberi *Aulacomnium androgynum +D. scoparium *Rhacomitrium heterostichum +Polytrichum juniperinum *Cladonia g r a c i l i s + C l a d o n i a spp. >vPeltigera canina + P e l t i g e r a aphthosa 25. TABLE 2. Tree data summary. Lichen a s s o c i a t i o n S i t e index of t r e e s : 1) Height at 50 years ( f t . ) 2) Height at 100 years ( f t . ) Pinus monticola Pseudotsuga m e n z i e s i i L a r i x o c c i d e n t a l i s Average maximum height ( f t . ) ; diameter of tree of average maximum height ( i n . ) : Pinus monticola (83; 12.8) Pseudotsuga m e n z i e s i i (73; 16.4) L a r i x o c c i d e n t a l i s (102; 16.1) (Thuja p l i c a t a and Tsuga h e t e r o p h y l l a grow so p o o r l y i n the Lichen a s s o c i a t i o n that height growth was d i f f i c u l t to estimate.) Stage 1 Stage 2 Basal area per acre (sq. f t . ) (126) 85 - 107 - 129 Number stems per acre (365) 490 - 797 - 1120 Average diameter of stand ( i n . ) (8.0) 4.3 - 5.1 - 6.1 Average age of dominants (yrs.) (220+) 72 - 94 - 120 Average height of dominants & codominants ( f t . ) (89) 57 - 65 - 75 Moss a s s o c i a t i o n (Pachistimeto - C a l l i e r g o n e l l e t u m s c h r e b e r i ) Of the f i v e p l a n t a s s o c i a t i o n s i n c l u d e d i n t h i s study, the Moss asso-c i a t i o n i s the most mesic and, p r e d i c t a b l y , the most common i n the Subzone. Representative stands of t h i s p l a n t a s s o c i a t i o n may cover very large areas and are encountered more f r e q u e n t l y than any other a s s o c i a t i o n . The Moss a s s o c i a t i o n i n c l u d e s a number of f o r e s t types ranging from the shallow-s o i l e d Slope Dry Moss f o r e s t type through the c l i m a t i c climax Slope Normal Moss f o r e s t type, to the more moist Slope Bunchberry Moss f o r e s t type and i t s southern v a r i a n t . A l l u v i a l f o r e s t types included i n t h i s p l a n t asso-c i a t i o n are the A l l u v i a l Dry Moss f o r e s t type and the A l l u v i a l Normal Moss f o r e s t type. The c h a r a c t e r i s t i c combination of species f o r the Moss a s s o c i a t i o n i s given i n Table 3. 25 - 35 - 45 50 - 75 - 100 50 - 65 - 80 50 - 65 - 80 TABLE 3. CHARACTERISTIC COMBINATION OF SPECIES MOSS ASSOCIATION (PACHISTIMETO - CALLIERGONELLETUM SCHREBERI) + Constant dominant only i n t h i s a s s o c i a t i o n * Constant only i n t h i s a s s o c i a t i o n ! Most s u c c e s s f u l i n t h i s a s s o c i a t i o n but may be present i n adjacent communities 1 I n c l u d i n g a l l species Layer Trees Shrubs Herbs Constant dominants +Pinus monticola Pseudotsuga m e n z i e s i i Tsuga he t e r o p h y l l a Pachistima m y r s i n i t e s Thuja p l i c a t a Tsuga h e t e r o p h y l l a Chimaphila umbellata +Linnaea b o r e a l i s Constants only Thuja p l i c a t a Amelanchier a l n i f o l i a Vaccinium membranaceum C l i n t o n i a u n i f l o r a Goodyera o b l o n g i f o l i a Pteridium aquilinum P y r o l a secunda Important Non-constants .'Pinus c o n t o r t a Ceanothus sanguineus Prunus emarginata IShepherdia canadensis JVaccinium m y r t i l l o i d e s JApocynum androsaemifolium F r a g a r i a glauca JG a u l t h e r i a o v a t i f o l i a G. s h a l l o n L i s t e r a c a urina !Lycopodium complanatum Melampyrum l i n e a r e Monotropa hypopitys P y r o l a chlorantha !P. p i c t a Spiranthes romanzoffiana c o n t 1 d ro MOSS ASSOCIATION (cont'd) Layer Constant dominants Constants only Important Non-constants Bryophytes & Lichens a) on humus C a l l i e r g o n e l l a s c hreberi b) on decaying wood Dicranum fuscescens * R h y t i d i o p s i s robusta P e l t i g e r a aphthosa Dicranum strieturn Hypnum c i r c i n a l e P t i l i d i u m pulcherrimum Cladonia spp.* !Dicranum fuscescens to 28. D i s t r i b u t i o n of species i n constancy c l a s s e s i n t h i s a s s o c i a t i o n i s shown i n F i g . 11. A t o t a l of 306 species were considered i n d e s c r i b i n g the Moss a s s o c i a t i o n , the bulk occuring i n l e s s than 20% of the sample stands (constancy c l a s s I ) . A second maximum i n c l a s s 5 suggests t h a t , based on constancy, the Moss a s s o c i a t i o n i s homogeneous. F i g . 12 a) shows the average cover of constant dominant species. F i g . 12 b) i n d i c a t e s that t h i s mesic community, apart from the obvious dominance of phanerophytes, i s p r i m a r i l y chamaephytic w i t h a l e s s e r abundance of bryophytes. Slope Normal Moss f o r e s t type (SNM) This i s probably the c l i m a t i c climax community of the Subzone and as such i s the community to which a l l others tend to develop i n primary succession. I t may be found on upland s i t e s of a l l exposures and moderate to considerable slopes. The stands studied cover from one-half t o s e v e r a l acres and range i n e l e v a t i o n from 1770 to 3310 f e e t . Topography i n c l u d e s a s l i g h t l y convex to n e u t r a l p r o f i l e and contour, w i t h the ground surface i n most cases being r e l a t i v e l y smooth, although hummocky i r r e g u l a r surfaces are not uncommon. S o i l s are g e n e r a l l y derived from coarse-textured g l a c i a l t i l l s , although some stands grow on banks of sandy a l l u v i a l t e r r a c e fragments. S o i l depth i s g e n e r a l l y unknown, i . e . , the depth to a l a y e r impervious to roots was not reached i n the s o i l p i t , but p a r t i a l l y compacted l a y e r s were o c c a s i o n a l l y found at depths ranging from 32 - 87 cm. i n some s o i l s . The thickness of the Ae h o r i z o n ranges from a t r a c e to 6 cm., averaging 2 cm., the t h i c k e s t l a y e r s being found beneath long e s t a b l i s h e d climax stands. A l s o i n climax stands of t h i s f o r e s t type, the pH of the organic horizons immediately above mineral s o i l l i e s at the a c i d end of the 3.4 - 5.8 pH range, the l a t t e r f i g u r e being more c h a r a c t e r i s t i c of e a r l y stages of secondary succession. pH of to f o l l o w page 28. F i g . 11. Constancy diagram f o r Moss a s s o c i a t i o n . JW JO vj 40 Mi re4 T r l U T f l r V u f l T f t LtNMOCf l &0 - 6.6 2.8 - ^ _3 - 8.0 Average age of dominants (yrs.) 123 - 291 - 460 78 - 86 - 101 48 - 65 - 85 Average height of dominants & codominants ( f t . ) 96 - 112 - 129 86 - 99 - 111 52 - 65 - 85 Secondary succession index (%) 100 69 55 34, Slope Dry Moss f o r e s t type (SDM) The Slope Dry Moss f o r e s t type i s e d a p h i c a l l y d r i e r than the c l i m a t i c c limax SNM f o r e s t type and i s e c o l o g i c a l l y s i t u a t e d between i t and the Lich e n a s s o c i a t i o n on an i d e a l i z e d slope. C*.. \".-\u00E2\u0080\u00A2[\u00E2\u0080\u00A2 i ,>\u00E2\u0080\u00A2, \u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A21'2: < V > The four p l o t s studied range i n e l e v a t i o n from 2300 to 2735 f e e t , and i n extent from one to s e v e r a l acres. A l l are s i t u a t e d on moderate to steep southto west exposures, w i t h topography showing n e u t r a l contour and p r o f i l e and hummocky surface c o n d i t i o n s , the l a s t o f t e n r e l a t e d to bedrock beneath t h i n s o i l . S o i l s d i f f e r from the SNM f o r e s t type i n that they are a l l shallow w i t h bedrock a t 20 - 70 cm. i n the s o i l p i t s . Parent m a t e r i a l i s e i t h e r residuum or a mixture of g l a c i a l t i l l and residuum w i t h the texture of the main root-in g h o r i z o n u s u a l l y a g r a v e l l y sandy loam. Thickness of the Ae h o r i z o n v a r i e s from a trac e i n the youngest stand to 2 cm. i n the o l d e s t high eleva-t i o n p l o t . pH of the main r o o t i n g h o r i z o n v a r i e s from 5,4 - 6.1, and of the organic l a y e r immediately above mineral s o i l from 3.9 - 5.9. The s o i l type i s mainly Dry Minimal Podzol although one stand has a Dry O r t h i c A c i d Brown Wooded. Pa t t e r n of v e g e t a t i o n i s s i m i l a r to the SNM f o r e s t type w i t h some pa t c h i n e s s , i n t h i s case g e n e r a l l y c o n ditioned by v a r i a t i o n i n s o i l depth, as i n the Lichen a s s o c i a t i o n . Stands are g e n e r a l l y c l o s e d and t r e e growth i s poorer than i n the SNM. Vegetation of the SDM f o r e s t type d i f f e r s from the SNM mainly by absence of c e r t a i n species and reduced v i g o u r of others which normally achieve t h e i r optimum i n the c l i m a t i c climax SNM or adjacent moister Slope Bunchberry Moss type. Populus tremuloides and Shepherdia canadensis are absent. Good-yera o b l o n g i f o l i a , although constant f o r the Moss a s s o c i a t i o n , i s c o n s i s t e n t l y to f o l l o w page 34 F i g . 15. Mature Slope Dry Moss stand of mixed L a r i x o c c i d e n t a l i s (now dead), Tsuga h e t e r o p h y l l a and Thuja p l i c a t a . Ground cover of C a l l i e r g o n e l l a s c hreberi and s c a t t e r e d Chimaphila umbellata. August 2, 1960. 35. abundant and vigorous here. V i o l a o r b i c u l a t a o f t e n achieves i t s best development i n stands of the SDM type. The r e l a t i v e l y dry microclimate favours abundant moss cover on the ground. C a l l i e r g o n e l l a s c h r e b e r i , Hylocomium splendens and Rhytidiadelphus t r i q u e t r u s f l o u r i s h here and P e l t i g e r a aphthosa and R h y t i d i o p s i s robusta may show e x c e p t i o n a l vigour. Generally speaking, bryophytes on decaying wood and rock are the same kinds as those i n the SNM type but are more abundant. C a l l i e r g o n e l l a s c h r e b e r i . Mnium spinulosum and Dicranuum fuscescens may be frequent and vigorous on rocks w i t h i n any one stand. Reduced v i g o u r of tre e s i s r e f l e c t e d i n the f o l l o w i n g t r e e measurement data: TABLE 5. Tree data summary. Slope Dry Moss f o r e s t type. S i t e index: 1) Height a t 50 y r s . ( f t . ) 2) Height a t 100 y r s . ( f t . ) Pinus monticola Pseudotsuga m e n z i e s i i L a r i x o c c i d e n t a l i s Tsuga h e t e r o p h y l l a Average maximum height of trees ( f t . ) maximum height ( i n . ) , Pinus monticola Pseudotsuga m e n z i e s i i L a r i x o c c i d e n t a l i s Tsuga h e t e r o p h y l l a 50 - 55 60 70 - .80 - 90 7 0 - 7 5 - 8 0 (90) 60 - 65 - 70 diameter of tree of average 94 - J07 - 120; 13.4 - 16.1 - 18.8 91 - 13 - 94; 14.8 - 17.1 - 19.4 (105) 93: 16.5 - 16,7 - 16.8 (Thuja p l i c a t a growth i s poor. I t does not belong to the main crown canopy t h e r e f o r e i s not in c l u d e d here), Stage 1 Stage 2 Basal area per acre (sq. f t . ) 187 - 237 - 330 (267) Number stems per acre 450 - 767 - 1195 (2070) Average diameter of stand ( i n . ) 6.0 - 7.3 - 8.9 (4.9) Average age of dominants (yrs.) 17 Of -\u00E2\u0080\u00A2 192+ - 230+ (89) Average height of dominants & codominants ( f t . ) 93 - 97 - 104 (86) 36. Slope Bunchberry Moss f o r e s t type (SBM) Stands i n c l u d e d i n t h i s community occupy a p o s i t i o n e c o l o g i c a l l y be-tween the mesic c l i m a t i c climax SNM type and the moist Slope A r a l i a Oakfern f o r e s t type (SAO), Tree growth i s g e n e r a l l y b e t t e r than i n the SNM and, w i t h one or two exceptions, the v e g e t a t i o n i s intermediate to the SNM and SAO f o r e s t types p a r t i c u l a r l y i n younger stands. SBM stands occupy one to s e v e r a l acres. The twenty-four stands s t u d i e d ranged i n e l e v a t i o n from 1600 - 3320 f e e t on moderate to steep slopes (up to 37\u00C2\u00B0), exposed i n a l l d i r e c t i o n s but mainly t o the south. Topography v a r i e s but the most common p r o f i l e and contour i s n e u t r a l , w i t h n e u t r a l to hummocky ground surface, the l a t t e r o f t e n from root upturn and very o l d decaying wood. S o i l s i n many instances are under the i n f l u e n c e of s l i g h t deep-lying temporary seepage and are predominantly Moist Minimal Podsols or Moist O r t h i c Podzols. Less common s o i l types are Normal Minimal Podzols, I I Normal Minimal Podzols, Normal O r t h i c Podzols and one stand each of Normal O r t h i c Brown Wooded, Dry O r t h i c Brown Wooded and Normal O r t h i c A c i d Brown Wooded, the Brown Woodeds a l l i n e a r l y stages of succession. Three stands have Dry Minimal Eodzols r e f l e c t i n g the presence of bedrock r e l a t i v e l y near the ground surface. However, u n l i k e the dry SDM type f u r t h e r up slope, these three SBM s o i l s are probably s l i g h t l y i n f l u e n c e d by s o i l moisture d e r i v e d from temporary seepage, which moves along the bedrock surfaces during p a r t of the growing season. Parent m a t e r i a l s are p r i m a r i l y g l a c i a l t i l l s , although stands may be found on steep a l l u v i a l banks under the i n f l u e n c e of s l i g h t temporary seep-age. In some cases s o i l p r o f i l e s are shallow, bedrock l y i n g between 34 and 80 cms. i n the three Dry Minimal Podzols studied. In most s o i l s , however, a l a y e r impervious to roots was not found, although p a r t i a l l y compacted 37. l a y e r s were of t e n encountered at depths ranging from 26 - 66 cms. The th i c k n e s s of the Ae l a y e r v a r i e s from 0 to 7 cms., the t h i n n e s t l a y e r s being found i n s o i l s of young stands on south t o southwest exposures. S o i l t e x t u r e s are s i m i l a r to the SNM stands w i t h g r a v e l l y sandy loams predomin-a t i n g , although loamy sands are not uncommon. The pH of the main r o o t i n g h o r i z o n (almost always a B l a y e r enriched w i t h hydrated i r o n and organic matter) v a r i e s from 5.0 - 6.8, only the very l e a s t a c i d being beneath the youngest stands. Temporary seepage i n the SBM, although s l i g h t , may part-i a l l y compensate f o r l e a c h i n g of n u t r i e n t s from upper s o i l h o r i z o n s , a process p a r t i c u l a r l y marked beneath the t h i c k humus of climax stands. Thus the trend, c h a r a c t e r i s t i c of the SNM, l o w r a c i d i t y i n young stands e a r l y i n secondary succession i n c r e a s i n g to high a c i d i t y i n climax stands, may be l e s s obvious i n the SBM due to the compensating nature of n u t r i e n t - r i c h temporary seepage. pH of the organic l a y e r immediately above the mineral horizons shows no such l e v e l l i n g - o f f , the range being 3.5 i n climax stands to 6.0 i n the youngest communities. The s l i g h t temporary seepage of the SBM i s probably i n s u f f i c i e n t to compensate f o r the a c i d i f y i n g i n f l u e n c e a t i t s source, the humus, as i s the permanent seepage of some D e v i l ' s Club types described l a t e r . The v e g e t a t i o n composition of the SBM type d i f f e r s from the SNM mainly i n the abundance of Cornus canadensis i n most stands, and the common occurr-ence of such moist s i t e species ( r a r e l y vigorous but by t h e i r presence i n -d i c a t i n g moister c o n d i t i o n s ) as T i a r e l l a u n i f o l i a t a . Adenocaulon b i c o l o r . t r i f l o r u m and Osmorhiza c h i l e n s i s . C l i n t o n i a u n i f l o r a i s more abundant and vigorous i n the SBM than i n any other Moss a s s o c i a t i o n community. Of the shrubs, l i t t l e d i f f e r e n c e e x i s t s except f o r the high v i g o u r and abundance of Rubus p a r v i f l o r u s i n young stands and s l i g h t l y more Vaccinium o v a l i f o l i u m than i s common i n the SNM. Corylus c a l i f o r n i c a and some Cornus s t o l o n i f e r a to f o l l o w page 37. F i g . 16. Climax Slope Bunchberry Moss stand of Tsuga h e t e r o p h y l l a . Compare l a r g e r trees w i t h SNM climax F i g . 5. Note understory of T. h e t e r o p h y l l a . Thuja p l i c a t a and Taxus b r e v i f o l i a . August 14, 1961. F i g . 17. Ground v e g e t a t i o n i n climax SBM stand: Cornus canadensis. Linnaea b o r e a l i s . Chimaphila umbellata, C o r a l l o r h i z a maculata. J u l y , 1960. 38. may a l s o be present but of low v i g o u r i n younger stands. As might be expected w i t h moister c o n d i t i o n s , there i s a s l i g h t l y h i g h e r cedar to hemlock r a t i o than i n the SNM, and growth i s b e t t e r f o r most species. Bryophytes and l i c h e n s on the ground are much the same as i n the SNM except that R h y t i d i o p s i s robusta i s r a r e l y as abundant or vigorous i n climax stands, and the number of l i c h e n s , apart from P e l t i g e r a aphthosa and P. canina. are almost n i l . Although never abundant, both Lophocolea hetero-p h y l l a and Plagiothecium denticulatum on mineral s o i l are almost e n t i r e l y r e s t r i c t e d t o the SBM type, w i t h i n the Moss a s s o c i a t i o n . Decaying wood, being somewhat moister than i n the SNM, supports a few more Lophozia s p e c i e s , some i n extremely vigorous c o n d i t i o n . Lophozia barbata i s e n t i r e l y absent and Jamesoniella autumnalis. r a r e i n the SNM, may be s c a t t e r e d but vigorous i n some stands. Mnium spinulosum. R h y t i d i o p s i s robusta and C a l l i e r g o n e l l a s c h r e b e r i a l l show b e t t e r development on rocks i n the SBM than the SNM, Lichens are much the same as i n the SNM. Tree data i s summarized by the f o l l o w i n g : TABLE 6. Tree data summary. Slope Bunchberry Moss f o r e s t type. S i t e index: 1) Height a t 50 years ( f t . ) 2) Height a t 100 years ( f t . ) Pinus monticola Pseudotsugs m e n z i e s i i L a r i x o c c i d e n t a l i s Tsuga h e t e r o p h y l l a Pinus c o n t o r t a Populus tremuloides Thuja p l i c a t a Average maximum height ( f t . ) ; diameter of tree of average maximum height ( i n . ) ; p i m i s m o n t i c o l a (131. 22.3) Pseudotsuga m e n z i e s i i (111; 20.8) Tsuga h e t e r o p h y l l a (110 - JL12 - 116; 20.4 - 25.0 - 30.6) cont'd. 60 - 80 - 100 IJ J \u00E2\u0080\u00A2-100 - L30 - 160 90 - 110 - 120 100 - JL10 - 130 70 - 100 - 150 (100) (120) (120) TABLE 6. (cont'd.) Stage 1 Stage 2 Stage 3 Stage 4 Basal area per acre (sq, f t . ) 220 - 277 - 317 247 - 324 - 451 125 - 211 - 305 -Number stems per acre 340 - 638 - 795 900 - 1598 -3195 235 - 1196 -4365 42,500 Average diameter of stand ( i n . ) 7.3 - 9.4 - 13.0 4.1 - 6.6 - 9.2 2.3- 7.0 -11.3 -Average age of dominants (yrs.) 190 - 223+ 250+ 81 - 89 - 108 25 - 66 - 98 -Average height of dominants & codominants ( f t . ) 97 - 109 - 119 101 - 109 - 121 39 - 98 - 120 _ Secondary succession index 100% 76% 54% -V O 40 Slope Bunchberry Moss, southern v a r i a n t , f o r e s t type (SBMs) In the southern and southeastern p a r t of the Zone near Nelson and Salmo, the presence of Abies grandis as a dominant i n the tree l a y e r , and the nearby presence of vigorous Pinus ponderosa on lowland and outcrop s i t e s i n a number of s t a n d s , r e f l e c t s l i g h t changes i n macroclimate. In these stands, hemlock may be l o c a l i z e d and of low v i g o u r w h i l e D o u g l a s - f i r may assume a stronger r o l e i n climax stands than i t does f u r t h e r north i n comparable communities. Two very dense stands were studied i n t h i s area, one on a steep south-e a s t - f a c i n g bank of an a l l u v i a l t e r r a c e and the other on a steep southwest slope of mixed g l a c i a l t i l l and colluvium. S o i l s were studied only i n the stand on g l a c i a l t i l l - c o l l u v i u m . The s o i l type here was a Normal O r t h i c Brown Wooded with no Ae l a y e r and the r a t h e r high pH of 6.6 f o r the main r o o t i n g h o r i z o n , and 5.6 f o r the organic l a y e r immediately above mineral s o i l . V egetation d i f f e r s from the SBM mainly i n the presence of Abies grandis i n both t r e e and shrub l a y e r s . Because of the extremely dense tree cover, shrubs, herbs, and bryophytes are few; the stands are \"subnudum\". Only the o c c a s i o n a l presence of c e r t a i n species such as Chimaphila umbellata, P y r o l a chlorantha i n good v i g o u r , and V i o l a o r b i c u l a t a combined with the s l i g h t l y r i c h e r (than SNM) s o i l s and the improved t r e e growth suggest that these stands belong t o the SBM type. Study of more stands should lead to c l e a r e r d e f i n i t i o n of t h i s community. Tree data i s summarized as f o l l o w s : 41. TABLE 7. Tree data summary. Slope Bunchberry Moss, southern v a r i a n t , f o r e s t type. S i t e index: 1) Height at 50 years ( f t . ) 2) Height at 100 years ( f t . ) 60 - 70 - 80 Pinus monticola Pseudotsuga m e n z i e s i i Betula p a p y r i f e r a 120 - 130 - 140 90 - 95 - 100 (80) Stage 2 Stage 3 B a s a l area per acre (sq. f t . ) Number stems per acre Average diameter of stand ( i n . ) Average age of dominants (yrs.) Average height of dominants & codominants (324) (1100) (7.4) (83) (287) (3295) (4.0) (54) ( f t . ) (76) (113) A l l u v i a l Normal Moss f o r e s t type (ANM) In t h i s Subzone, species showing a marked preference f o r a l l u v i a l s o i l s , p a r t i c u l a r l y on dry to mesic s i t e s , are Picea engelmanii. Vaccinium m y r t i l l -o i d e s , Lycopodium complanatum. Melapyrum l i n e a r e . Comandra l i v i d a . F r a g a r i a glauca, Spiranthes romanzoffiana. Apocynum androsaemifolium, and Dicranum rugosum. The o c c a s i o n a l presence of these species i n slope f o r e s t types i s o f t e n a c c i d e n t a l and development i s u s u a l l y poor. The ANM f o r e s t type i s comparable to the SNM type i n that i t i s the most mesic community of those on a l l u v i a l s i t e s . Growth c h a r a c t e r i s t i c s are more uniform, i f not s l i g h t l y b e t t e r than on slope types. The 11 stands s t u d i e d are a l l on wide t e r r a c e s of major v a l l e y s ( F i g . 6). They cover from one to s e v e r a l acres and range i n e l e v a t i o n from 1425 to 2300 f t . Topography i s g e n e r a l l y f l a t w i t h the c h a r a c t e r i s t i c , i r r e g u l a r l y un-d u l a t i n g surface of broad a l l u v i a l f l a t s . S o i l s are mainly Normal Minimal Podsols and Normal Orthie Podzols. I I Normal Minimal Podzols and Normal O r t h i c A c i d Brown Wooded s o i l s may be present beneath younger stands. Thickness of the Ae h o r i z o n v a r i e s from a t r a c e i n 42. the Brown Wooded s o i l s to 6 cm. i n one of the O r t h i c Podzols. Texture of the main r o o t i n g h o r i z o n v a r i e s from sandy to sandy loam. pH of t h i s h o r i z o n i s s i m i l a r to the SNM type, ranging from 5.2 beneath the o l d e r stands to 6.2 i n one of the younger ones. pH of the organic l a y e r immediately above mineral s o i l v a r i e s from 3.8 to 5.2, Pa t t e r n of v e g e t a t i o n i s g e n e r a l l y uniform, although some stands occur where heterogeneity i s marked, u s u a l l y as a r e s u l t of v a r i a t i o n i n a v a i l -a b i l i t y of s o i l moisture. Depressions i n the ground surface and patches of f i n e r - t e x t u r e d s o i l s o ften favour establishment of m o i s t u r e - l o v i n g species, i n a d d i t i o n to a l l o w i n g b e t t e r growth of mesophytes. The only other major f a c t o r apparently causing d i s c o n t i n u i t i e s i n the ve g e t a t i o n p a t t e r n i s v a r i -a t i o n i n l i g h t a v a i l a b l e to the herbs and shrubs. Dense clumps or openings favour decreased or excessive cover, r e s p e c t i v e l y , of shade i n t o l e r a n t species, thus c r e a t i n g a patchy and apparently heterogeneous v e g e t a t i o n p a t t e r n . As i n the SNM f o r e s t type, t r e e cover averages about 70% w i t h a range from a p a r k - l i k e 50% to a t h i c k e t 95%. The reason some stands of equal age on s i m i l a r a l l u v i a l s i t e s and w i t h apparently s i m i l a r f i r e h i s t o r i e s are dense t h i c k e t s and others are almost p a r k - l i k e may be the r e s u l t of v a r i a t i o n i n t r e e seed a v a i l a b l i t y . immediately f o l l o w i n g the f i r e s which removedr>the preceding stands. Where abundant seed was a v a i l a b l e , some of the densest stands of regeneration encountered anywhere i n the Subzone developed. Where seed was scarce, open stands w i t h extensive shrub and herb u n d e r s t o r i e s soon e s t a b l i s h e d . Apart from the presence i n almost a l l p l o t s of one or two tre e s of Picea engelmannii. t r e e cover i s very s i m i l a r to the SNM f o r e s t type. Shrub compos-i t i o n i s much the same although p o s s i b l y s l i g h t l y more abundant and vigorous. Amelanchier a l n i f o l i a i s i n every stand studied and the a l l u v i a l Vaccinium ?.; to follow page 42. Fig . 18. Dense young stand of Tsuga heterophylla on nudum ANM s i t e , Note hemlock regeneration. Large hemlock veteran i n background survived l i g h t f i r e which l e f t much unburned humus, and provided seed to es t a b l i s h present stand, July 10. 1960. Fi g . 19. Climax A l l u v i a l Normal Moss stand of Tsuga heterophylla, Echinodontium tinctorium conk on hemlock at l e f t . August 18, 1961. 43. m y r t - i l l o i d e s i s common. Rubus p a r v i f l o r a s , u n l i k e i n the slope f o r e s t \" types, i s never prominent or vigorous. The Moss a s s o c i a t i o n dominant Pachistima m y r s i n i t e s may be e x c e p t i o n a l l y vigorous i n the ANM. Herb l a y e r cover i s g e n e r a l l y greater than i n the SNM, averaging 45%, although herbs beneath dense t r e e cover may occupy only 5% of the a v a i l a l b e space. F a i r l y common Comandra l i v i d a and F r a g a r i a glauca are c h a r a c t e r i s t i c of t h i s community, p a r t i c u l a r l y i n young stages. Apocynum androsaemifolium may be abundant here, while Lycopodium complanatum and Melampyrum l i n e a r e may be well-developed. Spiranthes romanzoffiana (though not abundant) was found only i n ANM stands. L i k e the herb and shrub l a y e r s , cover of bryophytes and l i c h e n s on ground averages higher than the SNM (35%), w i t h a range of 0% i n the densest stands to 60% i n p a r k - l i k e stands where clumping of trees i s prominent. Mnium spinulosum, Plagiothecium denticulatum, and Dicranum fuscescens are absent. Polytrichum juniperinum while comon i n young stages of almost any Moss a s s o c i a t i o n may be p a r t i c u l a r l y abundant and vigorous i n the ANM. On the ground Cladonia squamosa may be almost e x c l u s i v e l y r e s t r i c t e d to t h i s community. Bryophytes and l i c h e n s on decaying wood d i f f e r l i t t l e from those of the SNM. Rocks on the ground surface are rare. The river-smoothed stones that may be present are r a r e l y c o l o n i z e d by more than crustose l i c h e n s . Tree measurements are summarized as f o l l o w s : TABLE 8. Tree data summary. A l l u v i a l Normal Moss f o r e s t type. S i t e index: 1) Height at 50 years ( f t . ) 40 - 75 - 90 2) Height at 100 years ( f t . ) Pinus monticola 70 - 120 - 140 Pseudotsuga m e n z i e s i i 90 - 100 - 110 L a r i x o c c i d e n t a l i s 80 - 95 - 110 Tsuga h e t e r o p h y l l a 70 - 95 - 110 Thuia p l i c a t a 60 - 75 - 90 Pinus c o n t o r t a 90 - 95 - 100 cont'd. TABLE 8. (cont'd) 2) cont'd. Populus tremuloides 90 Betula p a p y r i f e r a (80) Average maximum height ( f t . ) ; diameter of tree of average maximum height ( i n . ) : Pseudotsuga m e n z i e s i i (133; 25.2) L a r i x o c c i d e n t a l i s (130; 20.7) Tsuga h e t e r o p h y l l a 92 - 94 - 95; 16.2 - 17.0 - 17.7 Thuia p l i c a t a (80; 19.6) Picea engelmannii (98; 13.0) Stage 1 Stage 2 Stage 3 Basal area per acre (sq. f t . ) (194) (281) 107 - 165 - 221 Number stems per acre (868) (1658) 390 - 1832 - 7570 Average diameter of stand ( i n . ) (6.4) (4.9) 1.9 - 5.7 - 9.3 Average age of dominants (yrs.) (250+) (79) 42 - 59 - 74 Average height of dominants & codominants ( f t . ) (100) (94) 31 - 78 - 116 -p--P-45. A l l u v i a l Dry Moss f o r e s t type (ADM) Apart from c o n s i s t e n t d i f f e r e n c e s i n h a b i t a t and t o some extent i n v e g e t a t i o n , the ADM type i s comparable i n tree growth c h a r a c t e r i s t i c s to the upland Lichen f o r e s t type. Vegetation i s c l o s e s t to the ANM, however, which i n t urn d i f f e r s from the SNM f l o r i s t i c a l l y , mainly by the common presence of the a l l u v i a l s i t e i n d i c a t o r s mentioned e a r l i e r under the ANM, Stands of the ADM f o r e s t type may cover s e v e r a l acres on g r a v e l l y to sandy t e r r a c e s w e l l above r i v e r l e v e l . Coarse-textured a l l u v i u m precludes adequate upward c a p i l l a r y movement of water and allows r a p i d drainage of p r e c i p i t a t i o n , thus the v e g e t a t i o n i s c h a r a c t e r i s t i c a l l y xweophytic. In the 3 stands s t u d i e d , e l e v a t i o n s range from 1440 f t . , almost the lower a l t i t u d -i n a l l i m i t of the Subzone near Nakusp, to 2500 f t . on a g l a c i o - f l u v i a l t e r r a c e east of Whatshan Lake. Topography i s g e n e r a l l y f l a t w i t h the i r r e g u -l a r hummocky surface c h a r a c t e r i s t i c of broad a l l u v i a l deposits. In o l d e r stands, w i t h t h i c k leached l a y e r s (9 - 27 cm.), s o i l s are Normal O r t h i c Podzols. One young stand has a Dry Minimal Podzol w i t h an Ae l a y e r 2 cm. t h i c k . The main r o o t i n g h o r i z o n i n the one climax stand i s a 27 cm. t h i c k Ae w i t h a pH of 3.5. In younger stands, the main r o o t i n g l a y e r i s a developing B h o r i z o n enriched w i t h i r o n ; pH i s 6.3. pH of the organic l a y e r immediately above the mineral s o i l i s 3.6 i n the climax stand, to 4.4 beneath the young second growth stand at Whatshan Lake. Vegetation i s g e n e r a l l y uniform, any e x i s t i n g patchiness being due to v a r i a b l e l i g h t reaching the f o r e s t f l o o r r e s u l t i n g from i r r e g u l a r t r e e crown cover. With some exceptions, v e g e t a t i o n composition i s s i m i l a r to the ANM and v i g o u r i s reduced. Although v i g o u r of a l l t r e e s i s low, Pinus contorta i s of t e n w e l l -developed i n the ADM type. In o l d e r stands, Tsuga h e t e r o p h y l l a dominates the tree l a y e r but growth i s poor. Thuja p l i c a t a i s u s u a l l y absent from the 46. t r e e l a y e r yet may be f a i r l y common i n shrub form. Shrub cover may be up to 95%, the major p o r t i o n of t h i s being hemlock, f i r and cedar regeneration. However, Vaccinium m y r t i l l o i d e s and Amelanchier a l n i f o l i a may be abundant though not as vigorous as i t i s i n the ANM, The presence of abundant, though not vi g o r o u s , G a u l t h e r i a s h a l l o n and sometimes Campanula r o t u n d i f o l i a and the absence of V i o l a o r b i c u l a t a and P y r o l a a s s a r i -f o l i a may a i d i n diagnosing t h i s f o r e s t type. Dense moss cover dominated by extremely vigorous and abundant C a l l i e r g o n e l l a s c h r e b e r i . Dicranum rugosum and P e l t i g e r a aphthosa u s u a l l y a s s o c i a t e d w i t h abundant Lophozia barbata. and a number of Cladonia species such as C. chloro-phaea, C. g r a c i l i s . C. r a n g i f e r i n a . C. s y l v a t i c a as w e l l as Stereocaulon tomentosum. may a l s o serve to c h a r a c t e r i z e t h i s community. As i n the SDM, Hylocomium splendens may a l s o be abundant and vigorous here. Decaying wood, and rocks when present, support a good f l o r a , the former dominated by Dicranum rugosum. Lophozia barbata and P e l t i g e r a aphthosa. and the l a t t e r by C a l l i e r g o n e l l a s c h r e b e r i and Polytrichum juniperinum. Mnium spinulosum and R h y t i d i o p s i s robusta. c h a r a c t e r i s t i c on rocks i n slope types, are absent i n the ADM. TABLE 9. Tree data summary. A l l u v i a l Dry Moss f o r e s t type. S i t e index: 1) Height at 50 y r s . ( f t . ) 20 - 35 - 50 2) Height a t 100 y r s . ( f t . ) Pinus monticola 50 - 75 - 100 Pseudotsuga m e n z i e s i i 60 - 55 - 70 L a r i x o c c i d e n t a l i s 80 Tsuga h e t e r o p h y l l a (50) Pinus c o n t o r t a (50) P i c e a engelmannii (60) cont'd. 47. TABLE 9. (cont'd.) Stage 1 Stage 2 Basal area per acre (sq. f t , ) Number stems per acre Average diameter of stand ( i n . ) Average age of dominants ( y r s , ) Average height of dominants & codominants (131) (1235) (4.4) (190) (172) (5606) (2,6) (86) ( f t . ) (89) (60) A r a l i a Oakfern a s s o c i a t i o n ( A r a l i e t o - Gymnocarpietum) The A r a l i a Oakfern a s s o c i a t i o n l i e s adjacent to and below the Moss a s s o c i a t i o n on an i d e a l i z e d slope f o r the Subzone (ooo d o p e diagram Appendix F->. The environment g e n e r a l l y i s c o o l e r and moister than the Moss a s s o c i a -t i o n ; most s o i l s i n the 48 stands stu d i e d are u s u a l l y i n f l u e n c e d by permanent seepage or the watertable during the growing season. Stands are g e n e r a l l y not as extensive as those of the Moss a s s o c i a t i o n except p o s s i b l y on a l l u v i a l f l a t s where c o n d i t i o n s are sometimes uniform over hundreds of acres. Vegeta-t i o n i s g e n e r a l l y denser than the Moss a s s o c i a t i o n however, probably due to the greater a v a i l a b i l i t y of moisture. As w i t h the Moss a s s o c i a t i o n , the h i s t o r y preceding establishment of AO stands g e n e r a l l y i n c l u d e s f i r e . S e v e r e f i r e s which removed ground cover and humus from extensive areas were probably i n d i r e c t l y r e s p o n s i b l e f o r the r e l a t i v e abundance of c e r t a i n hardwood species and herbaceous r u d e r a l s i n young stands. Heavier seed and infr e q u e n t \"good seed years\" of c o n i f e r s might have extended the p e r i o d of c o n i f e r r e - c o l o n i z a t i o n over one or two decades i n s t e a d of the year or so necessary f o r l i g h t e r - s e e d e d species. Brown Woodeds, Minimal Podzols, O r t h i c Podzols, sometimes Regosols or G l e y s o l s , a l l of a deci d e d l y moist nature, make up the soil';.type i n the AO a s s o c i a t i o n . The n u t r i e n t - r i c h temporary seepage i n slope community s o i l s o f t e n compensates f o r the l e a c h i n g e f f e c t of p r e c i p i t a t i o n - c a r r i e d humic a c i d s 48. thereby m a i n t a i n i n g a pH i n the s o i l r o o t i n g l a y e r s which may be l e s s a c i d than i n comparable Moss a s s o c i a t i o n types. On the other hand, a c i d i t y of the upper horizons may be the highest of any found i n the Subzone i n those stands on c o o l , moist north exposures such stands might be considered r e p r e s e n t a t i v e of the c o o l e r , moister wet Subzone to the north. Tree growth i s g e n e r a l l y b e t t e r than i n the Moss a s s o c i a t i o n , at l e a s t f o r the pioneer c o n i f e r s , and the r a t i o of cedar to hemlock i s approximately 1 to 1, somewhat higher than i n the Moss a s s o c i a t i o n . The seven f o r e s t types described w i t h i n the A r a l i a Oakfern a s s o c i a t i o n are the Slope A r a l i a Oakfern (SAO), i t s pioneer hardwood v a r i a n t (SA0p)*, and i t s southern v a r i a n t (SAOs), Degraded A r a l i a Oakfern (DAO), and i t s northern v a r i a n t (DAOn), A l l u v i a l A r a l i a Oakfern (AAO), and the A l l u v i a l Bunchberry A r a l i a Oakfern (ABAO). The c h a r a c t e r i s t i c combination of species f o r the A r a l i a Oakfern a s s o c i a t i o n i s given i n Table 10. The d i s t r i b u t i o n of species i n constancy c l a s s e s i s i l l u s t r a t e d i n F i g . 20. 313 species i n 48 sample stands are i n c l u d e d i n the synthesis t a b l e f o r t h i s a s s o c i a t i o n . F i g . 21 a) and b) show cover of constant dominants, and the v e g e t a t i o n l i f e - f o r m spectrum r e s p e c t i v e l y , f o r the A r a l i a Oakfern a s s o c i a t i o n - In t h i s community, u n l i k e the Moss a s s o c i a t i o n , geophytes and hemicryptophytes are almost as prominent as chamaephytes. 1 The \"pioneer hardwood v a r i a n t \" , as the name i m p l i e s , i s stage 3 i n succession developing toward the climax SAO community, U n l i k e s u c c e s s i o n a l stages i n other f o r e s t types t h i s phytocoenose i s s u f f i c i e n t l y d i s t i n c t to warrant separate c o n s i d e r a t i o n . TABLE 10. CHARACTERISTIC COMBINATION OF SPECIES ARALIA-OAKFERN ASSOCIATION (ARALIETO-GYMNOCARPIETUM) + Constant dominant only i n t h i s a s s o c i a t i o n * Constant only i n t h i s a s s o c i a t i o n ! Most s u c c e s s f u l i n t h i s a s s o c i a t i o n but may be present i n adjacent communities 1 I n c l u d i n g a l l species Layer Trees Shrubs Herbs Constant dominants Thuja p l i c a t a Tsuga h e t e r o p h y l l a Pachistima m y r s i n i t e s Taxus b r e v i f o l i a Thuja p l i c a t a Tsuga h e t e r o p h y l l a 2 A r a l i a n u d i c a u l i s + C l i n t o n i a u n i f l o r a , Gymnocarpium d r y o p t e r i s T i a r e l l a u n i f o l i a t a Bryophytes & Lichens a) on humus Constants only Lonicera utahensis Rosa gymnocarpa Vaccinium membranaceum Goodyera o b l o n g i f o l i a Linnaea b o r e a l i s P y r o l a secunda Smilacina racemosa Important Non-constants .'Salix s c o u l e r i a n a .'Bromus v u l g a r i s .'Corallorhiza maculata C. mertensiana Rubus n i v a l i s R. pedatus .'Smilacina s t e l l a t a IStreptopus streptopoides .'Rhytidiadelphus loreus .'Peltigera p o l y d a c t y l a cont'd. ARALIA-OAKFERN ASSOCIATION (cont'd) Layer Constant dominants Constants only Important Non-constants b) on decaying wood Dicranum fuscescens C a l l i e r g o n e l l a s c h r e b e r i Dicranum s t r i c t u m Hypnum c i r c i n a l e Mnium spinulosum P t i l i d i u m pulcherrimum ^ R h y t i d i o p s i s robusta , \u00E2\u0080\u00A2 1 Cladonia spp. \u00E2\u0080\u009E , . 1 P e l t i g e r a spp. A r a l i a n u d i c a u l i s and Gymnocarpium d r y o p t e r i s both have constancy = 4 to f o l l o w page SO. F i g . 20. Constancy diagram f o r A r a l i a Oakfern a s s o c i a t i o n . U J O r. r70 \u00E2\u0080\u00A2iO \u00E2\u0080\u00A210 \u00E2\u0080\u00A2HO \u00E2\u0080\u00A2io -to -15 0 313 S PP\" I I 1 I 1 COMSf ft NO* PftCV\l$TtrlR MYdinJltES TAUOS anevifouifl T H O T P \ cucflrft T s o f r l V H \u00C2\u00A3 T E A u P H W L i f t CunTOMA uNlfLO Aft CoA.M05 CflWflbEU^iS TcAftcU-A. UKUFOUrVffl a) \u00E2\u0080\u00A22 e o \u00C2\u00A3 o o r-60 -50 -40 -JO - 1 0 .10 - 0 P* Pu \u00C2\u00A3 H 6- M L LIFE FOftM _ l_ ID ao 3o 4o so 60 F i g . 21. A r a l i a Oakfern a s s o c i a t i o n : a) average cover of constant dominant species; b) veg e t a t i o n l i f e form spectrum based on cover of constant species. Pm megaphanerophytes; Pn nanophanerophytes; C chamaephytes; H hemlcryptophytes; G geophytes; M mosses; L l i c h e n s . 51, Slope A r a l i a Oakfern f o r e s t type (SAO) Fourteen stands r e p r e s e n t a t i v e of t h i s community were studied, ranging from l e s s than one to s e v e r a l acres. E l e v a t i o n s vary from 2025 feet i n a south-facing stand near Mabel Lake to 3300 f e e t at Stevens Pass near Arrow Park. Slopes are moderate to very steep (to 36\u00C2\u00B0 on a n o r t h - f a c i n g slope at Keen Creek near Kaslo) and exposures cover a l l p o i n t s of the compass. Topography i s more v a r i a b l e than i n the upslope Moss a s s o c i a t i o n g e n e r a l l y i n c l u d i n g a n e u t r a l p r o f i l e , though complex p r o f i l e s are not uncommon, the l a t t e r to some extent f a v o u r i n g convergence of moisture i n pockets. Contour i s o f t e n complex, sometimes convex, and o c c a s i o n a l l y concave, w h i l e surface c o n d i t i o n s w i t h i n each stand are o f t e n hummocky or i r r e g u l a r . S o i l s are c h a r a c t e r i s t i c a l l y moister than Moss communities w i t h Moist Minimal Podzols or Moist O r t h i c Podzols p r e v a l e n t i n climax stands, add Brown Woodeds (Grey Brown, and Gleyed A c i d Brown) prominent i n yourn stands p a r t i c u l a r l y on south exposures. Two stands i n the Caribou Creek area near Burton have Normal Minimal Podzols p o s s i b l y due to coarse-textured s o i l s founded on parent m a t e r i a l dominated by a c i d i c igneous rocks. Apart from p a r t i a l l y - c o m p a c t e d l a y e r s at 25 to 65 cms., no l a y e r s impervious to roots were encountered i n the s o i l p i t s . Thickness of the Ae h o r i z o n ranges from 0 i n young stands, to 4 cms. beneath t h i c k humus of a high e l e v a t i o n , north-e a s t - f a c i n g stand i n Stevens Pass. The leached l a y e r i s g e n e r a l l y t h i c k e s t i n climax stands on Moist O r t h i c Podzols. Texture of the main r o o t i n g h o r i z o n (often a B h o r i z o n leached of water s o l u b l e m a t e r i a l yet enriched w i t h hydrated i r o n and accumulated organic matter; and sometimes even a C horizon) v a r i e s from loam to g r a v e l l y loamy sand, more of the l a t t e r than the former. In e a r l y J u l y , 1960, a check f o r seepage water i n s o i l p i t s dug the previous season showed seepage l e v e l s from 45 to 76 cms. from the ground surface, w e l l 52. w i t h i n reach of tree r o o t s . pH of the main r o o t i n g h o r i z o n i s l e s s a c i d than that of the Moss a s s o c i a t i o n because of the upward c a p i l l a r y movement of n u t r i e n t - r i c h moist-ure from the seepage l a y e r c o u n t e r a c t i n g downward moving a c i d moisture which leaches the upper horizons. pH v a r i e s from an a c i d 5.0 i n the highest e l e v a t i o n (3300 f t . ) stand on g r a n i t i c parent m a t e r i a l at Stevens Pass to a s t r o n g l y b a s i s 7.8 i n the l i m e s t o n e - r i c h Trout Lake area. The two s o i l s i n the Trout Lake area w i t h t h i s h i g h pH support the h e a l t h i e s t , most vigorous white pine and D o u g l a s - f i r of a l l the stands s t u d i e d throughout the Subzone. pH of the organic l a y e r immediately above mineral s o i l may even reachas high as 7.5 i n Trout Lake stands near creeks which overflow i n f r e s h e t , although such b a s i c c o n d i t i o n s are unusual. pHs of the organic l a y e r are g e n e r a l l y higher than i n the Moss a s s o c i a t i o n p a r t i c u l a r l y i n younger stands. Apart from the extremely b a s i c value given above, pHs range from 3.5 i n a high e l e v a t i o n stand w i t h t h i c k Ae to 5.8 beneath a south-facing Trout Lake stand. Vegetation p a t t e r n i s f a i r l y uniform, w i t h heterogeneity u s u a l l y the re-s u l t of v a r i a t i o n i n a v a i l a b l e s o i l moisture, t h i s being i n f l u e n c e d by the nature of the microtopography or the p r o x i m i t y of small surface streams. As w i t h the Moss a s s o c i a t i o n , v a r i a t i o n i n l i g h t reaching the f o r e s t f l o o r has a marked i n f l u e n c e on d i s t r i b u t i o n of c e r t a i n herbs and shrubs. Stands are g e n e r a l l y denser than Moss a s s o c i a t i o n communities, w i t h the t r e e cover ranging from 65 - 95% and averaging 80. Tsuga h e t e r o p h y l l a and Thuja p l i c a t a dominate the t r e e cover, the former o f t e n i n e x c e l l e n t vigour, Pinus monticola and Pseudotsuga m e n z i e s i i may be prominent p a r t i c u l a r l y i n younger stands, and, l i k e hemlock, may be very vigorous i n some stands. B e t u l a p a p y r i f e r a and Populus tremuloides may be present and vigorous i n young stands yet are most abundant i n stands of the SAOp; even s c a t t e r e d Populus t r i c h o c a r p a may be found i n young stands though i t i s not very vigorous. to f o l l o w page 52. F i g . 22. 85 year o l d SAO stand dominated by vigorous Pinus monticola. Understory mainly Thuja p l i c a t a w i t h some Tsuga h e t e r o p h y l l a . August 14, 1961. F i g . 23. Ground v e g e t a t i o n i n young SAO stand: Asarum caudatum. T i a r e l l a u n i f o l i a t a . C l i n t o n i a u n i f l o r a . Note abundant white pine needles i n l i t t e r . August 14, 1961. 53. L a r i x o c c i d e n t a l i s . when present, i s s c a t t e r e d and u s u a l l y of low v i g o u r . Near i t s northern l i m i t s i n t h i s Subzone l a r c h grows w e l l o nly i n the mesic Moss a s s o c i a t i o n communities, p a r t i c u l a r l y the SBM. Shrub cover averages 35%, w i t h i n d i v i d u a l stands ranging from 3% beneath dense t r e e crowns i n young t h i c k e t s of pioneer c o n i f e r s to 70% i n more open stands. As i n the SNM, Pachistima m y r s i n i t e s dominates the shrub l a y e r , and i s q u i t e v i g o r o u s , but does not flower and set seed as w e l l as i n the warmer and d r i e r Moss communities, and i s almost e n t i r e l y r e s t r i c t e d to o l d decaying logs or t o r a i s e d humps of ground. Taxus b r e v i f o l i a codominates w i t h P a c h i s t i m a. being p a r t i c u l a r l y well-developed i n climax stands. Thuja p l i c a t a and Tsuga h e t e r o p h y l l a are a l s o constant dominants, both w i t h p o t e n t i a l l y good v i g o u r but the l a t t e r species o f t e n r e s t r i c t e d to decaying wood. Other species common and h e a l t h y i n many stands are Rosa gymnocarpa and Vaccinium o v a l i f o l i u m and Corylus c a l i f o r n i c a . Vaccinium membranaceum and Lo n i c e r a utahensis though constant i n the SAO are r a r e l y v i g o r o u s , the former i n most cases growing, l i k e P achistima. on decaying wood. Other wet s i t e shrubs o c c a s i o n a l l y i n t r u d i n g i n the A r a l i a Oakfern a s s o c i a t i o n are Viburnum edule. Ribes l a c u s t r e . Rhamnus purshiana. Oplopanax h o r r i d u s . and Alnus c r i s p a . Cover of the herb l a y e r v a r i e s from 1% beneath dense t r e e cover of some young stands t o 80% beneath some climax f o r e s t s . Average cover (40%) f o r the SAO i s much greater than e i t h e r the SNM or SBM, mainly r e f l e c t i n g the improved s o i l moisture i n t h i s f o r e s t type. A r a l i a n u d i c a u l i s . C l i n t o n i a u n i f l o r a . Cornus canadensis. Gymnocarpium d r y o p t e r i s . and T i a r e l l a u n i f o l i a t a . a l l s o c i a b l e and v i g o r o u s , dominate the herb l a y e r i n the SAO. In many stands, s c a t t e r e d yet o f t e n vigorous Adenocaulon b i c o l o r . Asarum caudatum. Disporum oreganum. Galium t r i f l o r u m . Osmorhiza c h i -l e n s i s . and T i a r e l l a t r i f o l i a t a may be found. Other u s u a l l y wet s i t e herbs 54. sometimes present i n depressions but r a r e l y vigorous are Actaea arguta. Athyrium f i l i x - f e m i n a . Botrychium v i r g i n i a n u m . C i r c a e a a l p i n a ( r a r e ) , D r y o p t e r i s a u s t r i c a ( u s u a l l y on decaying wood), Equisetum arvense ( i n young stands o n l y ) , L i s t e r a c o n v a l l a r i o i d e s . Lycopodium selago (mainly i n o l d e r s t a n d s ) , Streptopus a m p l e x i f o l i u s . S. roseus. and V i o l a g l a b e l l a . Although Chimaphila umbellata i s a constant species i t i s s c a t t e r e d and weak when growing i n the more a c i d s o i l s of climax stands. Goodyera oblong-i f o l i a . Linnaea b o r e a l i s . P y r o l a secunda and Smilacina racemosa are SAO constant s p e c i e s , the f i r s t being the only one averaging good vig o u r . Bryophytes on humus i n the SAO cover from l e s s than 1% i n some young stands to over 60% of the ground surface i n cli m a x stands. Hylocomium splendens f R h y t i d i o p s i s robusta (both o f t e n i n e x c e l l e n t v i g o u r ) and C a l l i e r -g o n e l l a s c h r e b e r i ane dominant. Lophozia lycopodioides i s u s u a l l y p r esent, sometimes abundant i n o l d e r stands c h a r a c t e r i s t i c a l l y i n t e r m a t t e d w i t h C a l l i e r g o n e l l a s c h r e b e r i . P o h l i a cruda may be found on mi n e r a l s o i l bared by r o o t upturn of windthrown t r e e s . P t i l i u m c r i s t a - c a s t r e n s i s may be common and vigorous as may be Rhytidiadelphus JLoreus, the l a t t e r c h a r a c t e r i s t i c a l l y r e s t r i c t e d t o o l d e r stands. Species c h a r a c t e r i s t i c of h a b i t a t s wetter than the SAO yet o f t e n present here u s u a l l y on moist patches are Bryum s a n d b e r g i i . Mnium i n s i g n e . M. punctatum. and P l a g i o c h i l a a s p l e n i o i d e s . In these moist h a b i t a t s l i c h e n s are v i r t u a l l y absent, those present being predominantly P e l t i g e r a species (mainly P. aphthosa), u s u a l l y of poor v i g o u r and o f t e n r e s t r i c t e d to mineral s o i l patches. Decaying wood supports a r i c h bryophyte f l o r a i n c l u d i n g dominant C a l l i e r g o n e l l a s c h r e b e r i , Cephalozia spp., Dicranum fuscescens, Mnium s p i n u l -osum and sometimes R h y t i d i o p s i s robusta and Hylocomium splendens. a l l u s u a l l y v i g o r o u s , sometimes e x c e p t i o n a l l y so. Dicranum s t r i c t u m . P t i l i d i u m to f o l l o w page 54. F i g . 24. Ground v e g e t a t i o n i n climax SAO stand; Gymnocarpium d r y o p t e r i s . S m i l a c i n a racemosa. Streptopus roseus. C l i n t o n i a u n i f l o r a , T i a r e l l a u n i f o l i a t a . R h y t i d i o p s i s robusta. August 9, 1960. 55. pulcherrimum and Mnium spinulosum are c h a r a c t e r i s t i c a l l y constant, the l a s t o f t e n e x c e p t i o n a l l y v i g o r o u s . The v a r i e t y of bryophytes i n SAO communities on decaying wood i s much great e r than i n the Moss a s s o c i a t i o n . Some of the more i n t e r e s t i n g species s u c c e s s f u l l y e s t a b l i s h e d here are Amblystegium juratzkanum and A. serpens. Anastrophyllum minutum. Buxbaumia i n d u s i a t a . Climacium dendroides. Lescuraea i n c u r v a t a . Lophozia a t t e n u a t a . L. longidens. Oncophorus w a h l e n b e r g i i . Tet r a p h i s g e n i c u l a t a . Thuidium recognitum and T r i t o m a r i a e x s e c t i f o r m i s . Others are l i s t e d i n the s y n t h e s i s t a b l e , Appendix F. Only two l i c h e n s are common here, P e l t i g e r a aphthosa and P. p o l v d a c t y l a . both i n v a r i a b l y present and vigorous on very o l d moss-covered decaying wood of climax stands. C l a d o n i a f i m b r i a t a and Nephroma spp. (mainly N. laevigatum) may be present on o l d logs f r e e of moss, along w i t h a v a r i e t y of other low vi g o u r Cladonia s p e c i e s , c h a r a c t e r i s t i c of decaying wood i n many f o r e s t types, such as C. b e l l i d i f l o r a . C. c a r n e o l a . C. chlorophaea. C. coniocraea. C. nemoxyna and C. p o l y d a c t y l a . Apart from those mentioned as dominants, the few r a r e l i c h e n s which may be vigorous when present are Icmadophila ericetorum. Pannaria p e z i z o i d e s . P e l t i g e r a h o r i z o n t a l i s and P. membranacea. and some-times L o b a r i a pulmonaria. The only bryophytes common on rock are Mnium spinulosum and Lophozia l y c o p o d i o i d e s . the former being present i n f a i r vigour i n almost every stand. Nephroma spp. are the only l i c h e n s commonly found w i t h good v i g o u r . Many other bryophytes and l i c h e n s present i n only one or two stands, and of l i t t l e d i a g n o s t i c v a l u e , are l i s t e d i n the synt h e s i s t a b l e s . Data on tree growth and importance i s summarized as f o l l o w s : 56. TABLE 11. Tree data summary. Slope A r a l i a Oakfern f o r e s t type. S i t e index: a) b) Height a t 50 years ( f t . ) Height at 100 years ( f t . ) 70 - 90 - 100 Pinus monticola 110 - 140 - 160 Pseudotsuga m e n z i e s i i 110 - 115 - 130 Tsuga h e t e r o p h y l l a 80 - 100 - 120 Thuia p l i c a t a 90 - 100 - 110 P i c e a engelmannii 100 - 120 - 140 L a r i x o c c i d e n t a l i s 110 - 115 - 120 Populus tremuloides (130) Average maximum height ( f t . ) ; diameter of t r e e of average maximum height ( i n . ) : 144 - 153 - 171; 27.1-31.2- 37.3 Pseudotsuga m e n z i e s i i 132 - 144 - 161; 23.0-33.2- 40.9 Tsuga h e t e r o p h y l l a 108 - 123 - 136; 22.3-27.4- 38.0 123 - 131 - 137; 29.7-35.3- 43.0 (139; 28.0) Basal area per acre (sq. f t . ) Number tre e s per acre Average diameter of stand ( i n . ) Average age of dominants (yrs.) Average h e i g h t of dominants & codominants ( f t . ) Secondary succession index Stage 1 278-398-655 230-453-780 8.1-13.8-19.6 200+-225+-250+ 107-129-143 100% Stage 2 229-332-544 676-1356-2955 4.2-7.0-9.0 62-73-90 96-116-144 72% (Stage 3 49%) Slope A r a l i a Oakfern. pioneer hardwood v a r i a n t , f o r e s t type (SAOp) Th i s community i s Stage 3 (the e a r l i e s t f o r e s t e d stage i n secondary succession) of the SAO type. I t s v e g e t a t i o n i s s u f f i c i e n t l y d i s t i n c t from the other stages however, to a l l o w separation i n t o a separate f o r e s t type. A l t o g e t h e r , f i v e stands of t h i s f o r e s t type were s t u d i e d , a l l young and f a i r l y open, and g e n e r a l l y on southern exposures w i t h slopes ranging from 2 - 32\u00C2\u00B0. Stands vary i n s i z e from 1 to s e v e r a l acres and topography i s q u i t e v a r i a b l e . Contour i s u s u a l l y convex, p r o f i l e may be complex, concave, * Stage 3 i n t h i s type i s f l o r i s t i c a l l y so d i s t i n c t that i t i s described s e p a r a t e l y as the Slope A r a l i a Oakfern \"pioneer hardwood v a r i a n t \" f o r e s t type (SAOp). to follow page 56. F i g . 25. Young SAOp stand showing vigorous Populus tremuloides ( l e f t ) , Pinus monticola and Pseudotsuga menziesii (both r i g h t ) with Thuja p l i c a t a f i l l i n g i n below. Note Smilacina racemosa at base of aspen. Stand 100 years o l d . August 2, 1960. 57. convex or n e u t r a l , and ground surface may be n e u t r a l to hummocky. S o i l s are g e n e r a l l y Brown Wooded (Normal O r t h i s A c i d , Gleyed A c i d , Gleyed) i n c o n t r a s t to the a c i d Podzols u s u a l l y found i n the t y p i c a l SAO. Thi s may be due to a considerable extent to the h i s t o r y of severe f i r e which c l e a r e d wide areas before these stands became e s t a b l i s h e d , thus re-moving the humus and upper mineral l a y e r s (the l a t t e r by e r o s i o n f o l l o w i n g f i r e ) and t h e r e f y r e v e r t i n g s o i l succession from climax Podzol to Brown h Wooded s o i l . Apart from t h i n n e r Ae hor i z o n s (0-2 cm.), and l e s s a c i d main r o o t i n g h o r i z o n (pH 6.0 - 7.8) and organic h o r i z o n immediately above mineral s o i l (pH 5.0 - 5.6), the s o i l s are s i m i l a r to the t y p i c a l SAO. In a d d i t i o n to the greater number of pioneer hardwoods (Betula p a p y r i f e r a . Populas tremuloides and sometimes even S a l i x s c o u l e r i a n a ) i h s t h e SAOp than i n the SAO, a number of shrubs, herbs and bryophytes c h a r a c t e r i z e the SAOp. Some species are s i g n i f i c a n t by t h e i r absence. Rubus p a r v i f l o r a s may be e x c e p t i o n a l l y abundant w h i l e Taxus b r e v i f o l i a , u s u a l l y common and vigorous i n climax stands of the SAO, i s r a r e l y present. B e t u l a p a p y r i f e r a and Populus tremuloides regeneration may be found i n SAOp stands, and Lo n i c e r a i n v o l u c r a t a . though not always present, may be common. D i s t i n g u i s h i n g c h a r a c t e r i s t i c s of the herb l a y e r are the usual absence of Gvmnocarpium d r v o p t e r i a and T i a r e l l a u n i f o l i a t a . T i a r e l l a t r i f o l i a t a . Lycopodium selago. and S m i l a c i n a s t e l l a t a are not present i n any of the SAOp stands s t u d i e d . F r a g a r i a b r a c t e a t a . A s t e r spp. and sometimes Epilobium a n g u s t i f o l i u m are o c c a s i o n a l l y abundant i n t h i s pioneer stage, r a r e l y being found i n the t y p i c a l SAO. Linnaea b o r e a l l s and P t e r i d i u m aquilinum. while present i n most stands of the SAO, are o f t e n most abundant and v i g o r o u r i n the SAOp. Probably because of the f i r e and er o s i o n h i s t o r y of these stands and t h e i r r e l a t i v e growth, cover of bryophytes and l i c h e n s i s sparse i n a l l 58. stands, never exceeding 10%. I n s u f f i c i e n t humus has accumulated t o a l l o w the eventual moss dominants ( C a l l i e r g o n e l l a s c h r e b e r i , Hylocomium splendens and R h y t i d i o p s i s robusta) to become w e l l e s t a b l i s h e d . Most bryophytes and l i c h e n s are found on moist patches or on bare mineral s o i l , never i n more than small amounts. Decaying wood and rocks support a f l o r a s i m i l a r to t h a t of the t y p i c a l SAO but much reduced i n abundance f o r the reasons given above. Tree data i s summarized as f o l l o w s : TABLE 12. Tree data summary. Slope A r a l i a Oakfern, pioneer hardwood v a r i a n t , f o r e s t type. S i t e index: a) Height at 50 years ( f t . ) 80 - 95 - 110 b) Height at 100 years ( f t . ) Pinus monticola 160 P. c o n t o r t a (110) Pseudotsuga m e n z i e s i i 110 - 115 - 120 Thuja p l i c a t a (120) L a r i x o c c i d e n t a l i s \" I ; - li'O - .120 - 130 Be t u l a p a p y r i f e r a (70) Populus tremuloides 70 - J35 - 100 Basal area per acre (sq. f t . ) 69 - 221 - 349 Number tre e s per acre 270 - 810 - 2105 Average diameter of stand ( i n . ) 2.4 - 8.5 - 10.9 Average age of dominants ( y r s . ) 28 - 72 - 101 Average height of dominants & codominants ( f t . ) 57 - 110 - 145 Secondary succession index 49% Slope A r a l i a Oakfern. southern v a r i a n t , f o r e s t type (SAOs) As i n the Moss a s s o c i a t i o n c e r t a i n communities i n the southern p a r t of the Subzone may be set apart as c l i m a t i c v a r i a n t s under the i n f l u e n c e of a d r i e r and warmer macroclimate. Stands are c h a r a c t e r i z e d by the presence of Abies grandis i n the t r e e l a y e r and by reduced v i g o u r and abundance of Tsuga h e t e r o p h y l l a . The l e s s - a c i d s e i l s (than SAO), as i n f l u e n c e d by a m i l d e r c l i m a t e , undoubtedly c o n t r i b u t e to t h i s s i t u a t i o n . 59. The three stands s t u d i e d d i f f e r from the t y p i c a l SAO i n that they are a l l southern communities on steep southwest exposures. S o i l s are Brown Woodeds w i t h no Ae h o r i z o n ; the Normal O r t h i c Brown Woodeds c h a r a c t e r i s t i c of younger stands are found only i n the SAOs. pH of the main r o o t i n g h o r i z o n s (6.0 - 7.0) and organic l a y e r s (5.2 - 6.3) are s i m i l a r t o those of the SAOp i n that they are l e s s a c i d than i n the t y p i c a l SAO stands. The tr e e l a y e r d i f f e r s from the SAO i n that Abies grandis i s present; i t i s common and vigorous i n young stands and tends to drop out of climax stands. In the stands s t u d i e d , Populus tremuloides i s absent and Tsuga h e t e r o p h y l l a . i s g e n e r a l l y reduced i n importance and v i g o u r . As i n most SAO stands Pachistima m y r s i n i t e s dominates the shrubs. Taxus b r e v i f o l i a , a species a l s o prominent i n other stands, may be e x c e p t i o n a l l y abundant and vigorous p a r t i c u l a r l y i n climax stands of the SAOs. Symphori-carpos albus i s common i n young stands w h i l e hemlock regeneration and Vaccinium membranaceum i s c o n s i d e r a b l y reduced, o f t e n being confined to de-caying wood. A good d i f f e r e n t i a t i n g herb f o r t h i s community i s 3 - r i l l i u m ovatum. A l -though never abundant or v i g o r o u s , i t s presence i n slope communities appears d i a g n o s t i c f o r the SAOs, and p o s s i b l y f o r southern v a r i a t i o n s of D e v i l ' s Club communities. C h a r a c t e r i s t i c s of the herb l a y e r which c o n t r a s t with the SAO are: the r e l a t i v e abundance and good v i g o u r of S m i l a c i n a s t e l l a t a . p a r t i c u l a r l y i n younger stands; the presence i n a l l stands of Asarum caudatum. u s u a l l y on moist spots; the complete absence of Cornus conadensis. P y r o l a c h l o r a n t h a . Lycopodium selago and Streptopus roseus (present i n a wide range of communities f a r t h e r n o r t h ) ; and the reduced constancy, abundance and v i g o u r of Gymnocarpium d r y o p t e r i s (found i n only one stand), T i a r e l l a u n i -f o l i a t a and C l i n t o n i a u n i f l o r a . Bryophytes and l i c h e n s i n a l l stands are c h a r a c t e r i s t i c a l l y sparse on 60. humus, p o s s i b l y because of abundant l e a f f a l l ( c o n i f e r and hardwoods), which maintains a loose, dry, w e l l - a e r a t e d l i t t e r c o v e r i n g the s o i l . The maximum bryophyte and l i c h e n cover i s i n climax stands yet even there most p l a n t s are on decaying wood. Although much reduced, the f l o r a on humus i s s i m i l a r to the t y p i c a l SAO but C a l l i e r g o n e l l a s c h r e b e r i and Hylocomium splendens are absent. R h y t i d i o p s i s robusta i s present i n a l l stands but u s u a l l y of low v i g o u r . M i n e r a l s o i l and wet pockets are c o l o n i z e d by s c a t t e r e d Brachythecium. Eurhynchium and some Mnium species (M. punctatum and M. i n s i g n e . the l a t t e r being the only one w i t h f a i r v i g o u r ) . A v a r i e t y of l i c h e n s i s a l s o present and i s d i s t i n g u i s h e d from the SAO by the complete absence of P e l t i g e r a aphthosa and r e l a t i v e l y good vi g o u r and constancy of P. canina p a r t i c u l a r l y on decaying wood. Tree data i s summarized as f o l l o w s : TABLE 13. Tree data summary. Slope A r a l i a Oakfern, southern v a r i a n t , f o r e s t type. S i t e index: a) Height at 50 years ( f t . ) 7 0 - 8 0 - 9 0 b) Height at 100 years ( f t . ) Pinus monticola 100 - 115 - 120 Pseudotsuga m e n z i e s i i 100 - 105 - 110 Tsuga h e t e r o p h y l l a (100) Thuja p l i c a t a (90) Pi c e a engelmannii (100) L a r i x o c c i d e n t a l i s (110) Abies grandis (110) Average maximum height ( f t . ) ; diameter of tree of average maximum height ( i n . ) Pinus monticola (169; 37.4) Tsuga h e t e r o p h y l l a (131; 29.1) Thuja p l i c a t a (129; 42.5) Stage 1 Stage 2 Basal area per acre (sq. f t . ) (420) 207 - 315 - 424 Number stems per acre (457) 676 - 903 - 1130 Average diameter of stand ( i n . ) (13.0) 5.8 - 8.3 - 10.7 Average age of dominants (yrs.) (108) 73 - . 21 - 110 Average height of dominants & codominants ( f t . ) (158) 101 - 116 - 130 61. Degraded A r a l i a Oakfern f o r e s t type (DAP) Some very o l d stands, o b v i o u s l y undisturbed f o r many c e n t u r i e s , occupy c o o l moist h a b i t a t s comparable to some of the SAO. Such stands are apparent-l y a f u r t h e r s u c c e s s i o n a l development of the SAO, developing only i n c o o l moist s i t u a t i o n s on no r t h slopes and/or at high e l e v a t i o n s p o s s i b l y comparable to h a b i t a t s supporting the Cornus canadensis - D r y o p t e r i s linnaeana a s s o c i -a t i o n described by K r a j i n a (1953) f o r the north Subzone. They are c a l l e d \"degraded\" because, over hundreds of year s , without d i s t u r b a n c e , the s o i l s have become markedly a c i d , and t h i c k accumulations of organic matter have developed. The complete absence of many neutrophilous s p e c i e s , common i n SAO stands, r e f l e c t s the reduced p r o d u c t i v i t y . Tree growth i s a l s o somewhat depressed when compared with the SAO. The s i x stands s t u d i e d of the DAO g e n e r a l l y occur at higher e l e v a t i o n s and on more moderate slopes than the SAO. S o i l s d i f f e r from the SAO i n t h a t s o i l types are u s u a l l y e i t h e r Normal O r t h i c Podzols, or O r t s t e i n Podzols. One stand on a l l u v i a l parent m a t e r i a l has a Moist O r t h i c Podzol. S o i l depth i s of t e n determined by the presence of an o r s t e i n l a y e r from 7 to 106 cms. bensath the surface. Ae l a y e r s i n a l l stands are c h a r a c t e r i s t i c a l l y t h i c k , 2 - 1 6 cms. i n the stands s t u d i e d . pH i s low, 4.2 - 5.6 being the range i n main r o o t i n g h o r i z o n s , and 3.4 - 4.0 being c h a r a c t e r i s t i c of the organic l a y e r immediately above mineral s o i l . In- the herb l a y e r at l e a s t , v e g e t a t i o n p a t t e r n may be marked, w i t h con-tagious d i s t r i b u t i o n s more prominent than i n the l e s s s t a b l e v e g e t a t i o n of young s e r a i stands. This may be due mainly to v a r i a t i o n s i n the a v a i l a b i l i t y of s o i l moisture at d i f f e r e n t p o i n t s on the ground s u r f a c e , and s e c o n d a r i l y to v a r i a t i o n s i n the amount of l i g h t reaching the f o r e s t f l o o r . In moist depressions or where an o l d hemlock has f a l l e n w i t h i n the l a s t century, producing an opening i n the canopy, herb cover i s g e n e r a l l y more abundant. to follow page 61. F i g . 26. Ground vegetation i n DAO stand: abundant, vigorous Streptopus streptopoides and Rubus pedatus indicate thick a c i d humus; other species are Gymnocarpium dr y o p t e r i s . T i a r e l l a u n i f o l i a t a . C l i n t o n i a u n i f l o r a and Rhytidiopsis robusta. August 9, 1960. 62. Fewer species are found i n these stands than i n the SAO. The t r e e l a y e r of climax DAO stands i s composed almost e n t i r e l y of Tsuga h e t e r o p h y l l a . A l l other t r e e s p e c i e s , w i t h the exception of one or two low v i g o u r Thuja p l i c a t a and an o c c a s i o n a l Pseudotsuga m e n z i e s i i or Pinus monticola have already dropped out of the stands, and cannot reappear unless the present stand, as w e l l as the t h i c k mor humus l a y e r , i s removed. As i n the SAO, Pachistima m y r s i n i t e s dominates the shrub l a y e r but grows mainly on decaying wood or on r a i s e d ground. Taxus b r e v i f o l i a and hemlock reg e n e r a t i o n are abundant, o f t e n on decaying wood, w h i l e Vaccinium membran-aceum may be more abundant here than i n any other A r a l i a Oakfern f o r e s t type, but never i n good v i g o u r unless on decaying wood. Shrubs common i n other A r a l i a Oakfern f o r e s t types, but u s u a l l y absent i n the DAO, are Acer glabrum. Rosa gymnocarpa. Rubus p a r v i f l o r u s and Viburnum edule. Herbs i n c l u d e Galium t r i f l o r u m . Actaea arguta. Adenocaulon b i c o l o r . Asarum caudatum. Botrychium v i r g i n i a n u m . Eguiseturn arvense. P t e r i d i u m aqui-linum and S m i l a c i n a racemosa. More c h a r a c t e r i s t i c of the DAO herb l a y e r i s the abundance and good v i g o u r of Streptopus streptopoides and Rubus pedatus. Both are e x c e p t i o n a l l y good d i f f e r e n t i a t i n g species f o r t h i s community, A r a l i a n u d i c a u l i s i s found here i n yodung stands o n l y , yet Gymnocarpium d r y o p t e r i s and T i a r e l l a u n i f o l i a t a are both dominant and vigorous i n most stands. Chimaphila umbellata, although present i n many stands, i s r a r e l y common or vigorous. The b r y o f l o r a on the t h i c k raw humus i s much the same as i n the o l d e r stands of the SAO, yet the dominant C a l l i e r g o n e l l a s c h r e b e r i . Hylocomium splendens. P t i l i u m c r i s t a - c a s t r e n s i s and R h y t i d i o p s i s robusta are even b e t t e r e s t a b l i s h e d , w i t h concomitant r e d u c t i o n of other bryophytes common to the slope AO communities. Lophozia lycopodoides and Mnium spinulosum are c h a r a c t e r i s t i c a l l y absent. 63. Decaying wood a l s o supports a s i m i l a r yet more abundant f l o r a than the SAO, undoubtedly because more decaying wood has accumulated through cen-t u r i e s without disturbance. Many taxonomically d i f f i c u l t Cephalozia spp. are common on the sides of well-decayed logs i n the DAO. Dicranum fuscescens I s notable f o r i t s e x c e l l e n t v i g o u r here. Tree data i s summarized as f o l l o w s : TABLE 14. Tree data summary. Degraded A r a l i a Oakfern f o r e s t type. S i t e index: a) Height a t 50 years ( f t . ) 60 - 8 0 - 9 0 b) Height at 100 years ( f t . ) Pinus monticola 110 -\u00E2\u0080\u00A2 120 - 140 Pseudotsuga m e n z i e s i i 100 -\u00E2\u0080\u00A2 115 - 130 Tsuga h e t e r o p h y l l a 80 - 90 - 100 Average maximum height ( f t . ) ; diameter of t r e e of average maximum height Pinus monticola 140 - 144 - 147; 26.7-31.7-36.6 Tsuga h e t e r o p h y l l a 110 - 120 - 130; (29.4) Stage 1 Stage 2 Basal area per acre (sq. f t . ) 237 - 340 - 529 297 - 308 - 318 Number stems per acre 365 - 641 - 800 585 - 725 - 865 Average diameter of stand ( i n . ) 7.8 -10.0 -12.8 8.2 - 8.9 - 9.6 Average age of dominants (yrs.) 132 - 25OI-300+- 80 . Average height of dominants & codominants ( f t . ) 111 - 122 - 140 (127) Degraded A r a l i a Oakfern. northern v a r i a n t , f o r e s t type (DAOn) This community i s s i m i l a r to the t y p i c a l DAO but i s found i n v a r i a b l y i n the c o o l e s t l o c a l e s , u s u a l l y northern exposures at high e l e v a t i o n s . From n o r t h to south, i t i s found at p r o g r e s s i v e l y higher e l e v a t i o n s . Vegetation does not d i f f e r very much from the DAO except that Thuja p l i c a t a i s o c c a s i o n a l l y prominent i n the t r e e l a y e r , that Hylocomium splendens i s r a r e on humus, and th a t Lophozia l y c o p o d i o i d e s . Mnium spinulosum and Plagiothecium denticulatum are f a i r l y common i n most stands, u s u a l l y on mineral s o i l . R h y t i d i o p s i s robusta i s c l e a r l y the moss dominant, o f t e n more vigorous than anywhere e l s e i n the Subzone. This r e f l e c t s the c o o l subalpine 64. i n f l u e n c e i n these stands. The g r e a t e r p r o p o r t i o n of neutrophilous species and p o s s i b l y the l e s s a c i d nature of the s o i l types (Moist Minimal Podzols, Normal Minimal Podzols, and Normal O r t h i c A c i d Brown Woodeds) may be due i n p a r t to the c o n s i s t e n t l y steep slopes of the stands s t u d i e d (19\u00C2\u00B0 - 33\u00C2\u00B0). Steep slopes a l l o w r a p i d s o i l creep thus keeping the upper s o i l l a y e r s more mixed than i n s o i l s on shallower slopes. As a r e s u l t of t h i s surface s o i l i n s t a b i l i t y , mineral s o i l f r e q u e n t l y may be exposed at the s u r f a c e , thus f a v o r i n g the e s t a b l i s h -ment of species more neutrophilous than one might expect i n such stands. Such species i n c l u d e Lophocolea h e t e r o p h y l l a . Blepharostoma t r i c h o p h y l l u m . Mnium punctatum. Lophozia porphyroleuca and Rhodobrvum roseum as w e l l as the bryophytes mentioned e a r l i e r . Other species never common but when present i n d i c a t i n g the e c o l o g i c a l p r o x i m i t y of some of these stands to sub-a l p i n e f o r e s t community are: Menziesia f e r r u g i n e a . Lycopodium clavaturn. Polystichum l o n c h i t i s . and Timmia a u s t r i a c a . P r e d i c t a b l y , on steep s l o p e s , the amount of r o t t i n g wood a v a i l a b l e f o r c o l o n i z a t i o n i s l e s s than i n stands on moderate slopes to f l a t ground. Bryo-phyte cover on decaying wood i s u s u a l l y sparse, yet composition i s much the same as the DAO. Tree data i s summarised as f o l l o w s : TABLE 15. Tree data summary. Degraded A r a l i a Oakfern, northern v a r i a n t , f o r e s t type. S i t e index: a) Height a t 50 years ( f t . ) 7 0 - 7 5 - 8 0 b) Height at 100 years ( f t . ) Pinus monticola 110 Pseudotsuga m e n z i e s i i (110) Tsuga h e t e r o p h y l l a 80 - 100 - 110 Thuja p l i c a t a 100 - 105 - 110 L a r i x o c c i d e n t a l i s 100 - 110 - 120 cont'd. 65. TABLE 15. (cont'd) Average maximum height ( f t . ) ; diameter of t r e e of average maximum height ( i n . ) : Pinus monticola 140-144-147: 26.7 - 31.7-36.6 Tsuga h e t e r o p h y l l a B a s a l area per acre (sq. f t . ) Number stems per acre Average diameter of stand ( i n . ) Average age of dominants ( y r s i ) Average height of dominants & codominants ( f t . ) 110-120-130: , (29.4) Stage 1 Stage 2 242 - 209 - 307 (266) 85 - 422 - 875 (1150) 7.7 -15.3 -28.0 (6.5) 200+- 270+- 300+ (105) 114 - 134 - 141 (119) A l l u v i a l A r a l i a Oakfern. f o r e s t type (AAO) Two f o r e s t types on a l l u v i a l f l a t s are recognized, the AAO and the ABAO, the l a t t e r p o s s i b l y r e p r e s e n t i n g an e c o l o g i c a l t r a n s i t i o n between the AAO and the ANM. In the Moss a s s o c i a t i o n s o i l moisture may be at a premium during the growing season t h e r e f o r e t e x t u r a l d i f f e r e n c e s , as between g l a c i a l t i l l and a l l u v i u m , may be c r i t i c a l i n determining what species c o l o n i z e . Where ade-quate moisture i s a v a i l a b l e , as i n AO communities, the i n f l u e n c e of t e x t u r e i s minimized. This may be why there are few species d i s t i n g u i s h i n g a l l u v i a l from slope A r a l i a Oakfern communities, w h i l e i n the Moss a s s o c i a t i o n , where moisture may be c r i t i c a l f o r a number of species, the d i s t i n c t i o n i s q u i t e marked. The AAO d i f f e r s from the SAO i n t h a t a l l stands occur on a l l u v i a l f l a t s near r i v e r s or l a r g e streams which may be subject to p e r i o d i c f l o o d s . S o i l s are g e n e r a l l y f i n e - t e x t u r e d loams to sandy loams and are t h e r e f o r e r e l a t i v e -l y m o i st, supporting some e x c e p t i o n a l l y vigorous v e g e t a t i o n . In c o n t r a s t to the O r t h i c Podzols, Minimal Podzols and Brown Wooded s o i l s of the SAO, many \"younger\" s o i l types are found i n the AAO i n c l u d i n g Mor Regosols, Duff M u l l Regosols, O r t h i c Regosols and Gleyed A c i d Brown Woodeds. The one Gleyed to f o l l o w page 65. F i g . 27. Mature AAO stand on a l l u v i a l outwash. Pinus monticola ( l e f t ) and Pseudotsuga m e n z i e s i i ( r i g h t and center) w i t h Thuja p l i c a t a of a l l ages f i l l i n g i n below. August 18, 1961. 66. Brown Fo r e s t s o i l type occurs i n a stand l y i n g against the base of a mountain slope near Burton''. The leached l a y e r i s never more than a t r a c e and i s o f t e n absent. pH range of the main r o o t i n g h o r i z o n i s s i m i l a r to the SAO (5.0 - 6.4), as i s the pH range of the organic l a y e r immediately above m i n e r a l s o i l (4.2 - 5.6). Although Populus t r i c h o c a r p a may be e x c e p t i o n a l l y vigorous and common, and Alnus t e n u i f o l i a may be found o c c a s i o n a l l y , the v e g e t a t i o n composition of the t r e e l a y e r d i f f e r s l i t t l e from the SAO. The tre e canopy may be some-what denser, and i n young stands B e t u l a p a p y r i f e r a may be abundant and vigorous beneath t a l l Populus t r i c h o c a r p a . P. tremuloides i s r a r e l y present and when found i s of low v i g o u r . P i c e a engelmannii i s present i n most stands and i s sometimes e x c e p t i o n a l l y v i g o r o u s . Pachistima m y r s i n i t e s i s o f t e n absent from the AAO. Shrubs which may be s i g n i f i c a n t d i a g n o s t i c a l l y , at l e a s t f o r wet a l l u v i a l s i t e s g e n e r a l l y , are Rubus pubescens. Symphoricarpos a l b u s . Physocarpus c a p i t a t u s and Alnus t e n u i f o l i a , the f i r s t two being the only ones that are o c c a s i o n a l l y common and vigorous. Few fe a t u r e s of the herb l a y e r c h a r a c t e r i z e the AAO. The dominants A r a l i a n u d i c a u l i s . C l i n t o n i a u n i f l o r a and Gymnocarpium d r y o p t e r i s . as w e l l as the l e s s prominent C o r a l l o r h i z a maculata. Asarum caudatum and Adenocaulon b i c o l o r , have e x c e l l e n t v i g o u r . Two p o s s i b l y d i a g n o s t i c herbs which are o f t e n common and vigorous are Equisetum pratense and Bromus v u l g a r i s , the former i n young and the l a t t e r i n o l d stands. Although present i n only one stand s t u d i e d , Rubus n i v a l i s was abundant and vigo r o u s . Other s p e c i e s , some of which undoubtedly achieve t h e i r optimum i n D e v i l ' s Club communities are Adianturn pedatum. Aruncus v u l g a r i s . Equisetum hiemale. E. s y l v a t i c u m , P e t a s i t e s f r i g i d u s and T i a r e l l a l a c i n i a t a . Some stands may occur where a l l u v i a l f l a t s abut against bases of mountain slopes. Provided a l l u v i u m i s s u f f i c i e n t l y f i n e to h o l d moisture, such AAO fragments are u s u a l l y maintained by downslope seepage. 0 i - c - - - \u00C2\u00BB *i\ .*... .'.\u00C2\u00A3:: 1., to follow page 66. F i g . 28. Ground vegetation beneath young AAO stand: A r a l i a nudicaulis and Equisetum pratense. Abundant annual f a l l of cottonwood and bir c h leaves forms nutrient r i c h l i t t e r yet impedes bryophyte estab-lishment. July 14, 1960. F i g . 29. Dense Epilobium angustifolium and Rubus p a r v i f l o r u s on AAO s i t e s a f t e r logging and burning hinders c o n i f e r establishment. August 3, 1960. 67. Bryophyte cover on humus i s s i m i l a r to the SAO both i n amount and composition, except that Mnium punctatum. M. a f f i n e , other Mnium spp., as w e l l as Plagiothecium sylvaticum may be abundant i n the wetter stands and R h y t i d i a l e l p h u s t r i q u e t r u s may be frequent and vigorous i n those of normal moisture. C a l l i e r g o n e l l a s c h r e b e r i . Hylocomium splendens. P t i l i u m c r i s t a -c a s t r e n s i s and R h y t i d i o p s i s robusta are the constant dominants i n a l l o l d stands w i t h extensive bryophyte cover. In none of the young stands s t u d i e d , however, does bryophyte cover on humus exceed 2%. Most bryophyte and l i c h e n (very few) cover i n young stands i s r e s t r i c t e d to decaying wood where moisture and n u t r i e n t s are r e a d i l y a v a i l a b l e . In a d d i t i o n , heavy annual l e a f f a l l g e n e r a l l y does not accumulate on decaying l o g s , t h e r e f o r e bryophytes are not annually \" s u f f o c a t e d \" as they may be on the ground where hardwood l e a f cover o f t e n forms an almost impenetrable wet-paper-like blanket c o v e r i n g l a r g e areas. Jamesoniella autumnalis. Lophocolea h e t e r o p h y l l a and many Lophozia spp. are a l l more common and vigorous i n the AAO than the SAO. Tree data i s summarized as f o l l o w s : TABLE 16. Tree data summary. A l l u v i a l A r a l i a Oakfern f o r e s t type. S i t e index: a) Height at 50 years ( f t . ) b) Height at 100 years ( f t . ) Pinus m o n t i c o l a Pseudotsuga m e n z i e s i i Tsuga h e t e r o p h y l l a Thuja p l i c a t a P i c e a engelmannii L a r i x o c c i d e n t a l i s B e t u l a p a p y r i f e r a Populus t r i c h o c a r p a Average maximum height ( f t . ) ; diameter of tree of average maximum height (in.jB; Pinus m onticola 137-139-141: 28.0 - 28.7 - 29.4 Tsuga h e t e r o p h y l l a 114-119-122: 20.2 - 35.1 - 26.0 Thuja p l i c a t a 122-129-136: 34.7 - 38.5 - 42.2 P i c e a engelmannii 134-136-138: 18.6 - 19.6 - 20.5 70 - 95 - 110 110 - 145 - 170 120 - 125 - 130 90 - 55 - 100 90 - 110 - 130 100 - 115 - 140 (110) (90) 120 - 135 - 140 TABLE 16. (cont'd) Stage 1 Stage 2 Stage 3 B a s a l area per acre (sq. f t . ) 337 - 440 - 506 198 - 257 - 310 238 - 244 - 249 Number stems per acre 290 - 357 - 430 1040 -1652 -2635 1090 -1193 -1295 Average diameter of stand ( i n . ) 13.3-15.2 -17.9 3.7 - 5J3 - 6.9 5.9 - J*A - 6.3 Average age of dominants (yrs.) 17Of-210+-25Of 46 - _59 - 76 56 - _60 - 63 Average height of dominants & codominants ( f t . ) 118 - 128 - 137 89 - 106 - 121 105 - 114 - 122 A l l u v i a l Bunchberry A r a l i a Oakfern. f o r e s t type (ABAO) 69. The ABAO appears t r a n s i t i o n a l between the AAO and the ANM. F o r i s t i c -a l l y , however, i t i s property i n c l u d e d i n the AO a s s o c i a t i o n even though e d a p h i c a l l y , apart from land form and parent m a t e r i a l , i t approximates the SBM q u i t e c l o s e l y . U n l i k e the AAO, the ABAO stands are u s u a l l y f u r t h e r from r i v e r s , occu r on f l a t s r a i s e d s l i g h t l y higher above the water t a b l e and are u n d e r l a i n by coarser textured parent m a t e r i a l s ( g r a v e l l y loamy sands t o sandy loams). Consequently they are e d a p h i c a l l y d r i e r and more a c i d than the AAO, the s o i l being more under the i n f l u e n c e of p r e c i p i t a t i o n . In s o i l types the only s i m i l a r i t y w i t h the SAO i s found i n one stand which has a Normal Minimal Podzol. Most s o i l s are Normal O r t h i c Podzols, a c h a r a c t e r i s t i c of the very a c i d DAO community. Thickness of the Ae h o r i z o n ranges from 2 - 6 cms. and pH of the organic l a y e r immediately above mineral s o i l i s co r r e s -pondingly a c i d ( 3.3 - 4.8). Vegetation r e f l e c t s t h i s d r i e r , more a c i d edaphotope p r i m a r i l y i n re-duced v i g o u r of m o i s t u r e - l o v i n g n eutrophilous species and a concurrent i n -crease i n abundance of mesophilous forms. Tsuga h e t e r o p h y l l a i n the t r e e l a y e r may have e x c e l l e n t v i g o u r , and, w i t h Thuja p l i c a t a . comprises the bulk of the tree cover i n most stands. The s i n g l e young stand studied had considerable v i g r o u s P i c e a engelmannii i n the crown canopy. Populus t r i c h o c a r p a i s r a r e l y present ( i n the AAO i t may be abundant). Pachistima m v r s i n i t e s i s more abundant and vigorous here than i n the AAO and i s not always r e s t r i c t e d t o decaying wood. Tsuga h e t e r o p h y l l a re-generation i s abundant i n the shrub l a y e r . Neutrophilous herbs o c c a s i o n a l l y present i n the SAO and AAO but u s u a l l y absent here i n c l u d e Asarum caudatum. to f o l l o w page 69. F i g . 30. Mature ABAO stand on coarse outwash p l a i n . Pseudotsuga m e n z i e s i i ( l e f t ) , Pinus monticola ( r i g h t c e n t e r ) , Tsuga h e t e r o p h y l l a ( r i g h t ) and Thujia p l i c a t a . Shrubs are mainly T. p l i c a t a and Taxus b e e v i f o l i a . August 18, 1961. F i g . 31. Ground v e g e t a t i o n i n climax ABAO: Cornus canadensis. T i a r e l l a u n i f o l i a t a . Chimaphila umbellata. Streptopus roseus. Monotropa hypopitys. J u l y , 1960. 70. Athyrium f i l i x - f e m i n a . Equisetum arvense. E. s y l v a t i c u m . E. pratense. L i s t e r a c o n v a l l a r i o i d e s . and Adenocaulon b i c o l o r . Cornus canadensis (bunch-berry) i s abundant and vi g o r o u s . Gymnocarpium d r y o p t e r i s i s weak. Bryophyte and l i c h e n cover on humus and decaying wood i s s i m i l a r to the SAO except that Lophozia lycopodioides may be prominent and exception-a l l y vigorous on humus, and C a l l i e r g o n e l l a s c h r e b e r i and Hylocomium splendens may o c c a s i o n a l l y have e x c e l l e n t v i g o u r i n o l d e r stands. Tree data i s summarized as f o l l o w s : TABLE 17. Tree data summary. A l l u v i a l Bunchberry A r a l i a Oakfern f o r e s t type. S i t e index: a) Height at 50 years ( f t . ) 70 - 25 - 90 b) Height at 100 years ( f t . ) Pinus monticola 100 - 130 - 160 Pseudotsuga m e n z i e s i i 100 Tsuga h e t e r o p h y l l a 80 - 95 - 100 Thuia p l i c a t a 80 - 90 - 100 P i c e a engelmannii 90 - 100 - 110 Average maximum height ( f t . ) ; diameter of tr e e of average maximum heij Pinus monticola (126; 17.4) Pseudotsuga m e n z i e s i i 129-132-134; 34.3 - 36.2 -Tsuga h e t e r o p h y l l a 111-127-142; 20.0 - 27.8 -Thuia p l i c a t a 102-121-139; 20.1 - 28.8 -P i c e a engelmannii (120; 17.8) Stage 1 Stage 2 Bas a l area per acre (sq. f t . ) 283 - 348 - 381 (240) Number t r e e s per acre 275 - 321 - 380 (1977) Average diameter of stand ( i n . ) 13.7-14.1 -15.7 (4.7) Average age of dominants ( y r s . ) 200 - 240 - 275 (50) Average height of dominants & codominants ( f t . ) 113 - 118 - 129 (89) D e v i l ' s Club a s s o c i a t i o n (Oplopanacetum) Th i s p l a n t a s s o c i a t i o n occupies steep lower slopes where seepage i s u s u a l l y abundant at or near the s u r f a c e , banks of fast-moving small streams, and a l l u v i a l f l a t s near l a r g e r i v e r s (but not f l o o d p l a i n s , which support A l l u v i a l Complexes). Except on a l l u v i a l f l a t s and at h i g h e l e v a t i o n s , stands seldom exceed one or two acres. Moving p r o g r e s s i v e l y south through the Subzone, D e v i l ' s Club a s s o c i a t i o n s become fewer, developing p r o p e r l y only i n the c o o l e s t m o i s t e s t s i t u a t i o n s such as on narrow east-west v a l l e y bottoms and north-f a c i n g s l o p e s , or slopes at h i g h e l e v a t i o n s . No stands were encountered below 2000 f t . e l e v a t i o n . Regosols, Brown Woodeds, Minimal Podzols and o c c a s i o n a l l y Muck s o i l s , a l l d e c i d e d l y moist or s a t u r a t e d , u s u a l l y u n d e r l i e the D e v i l ' s Club phytoco-enose. S o i l s are the l e a s t a c i d of a l l the ecosystems s t u d i e d , probably because of abundant n u t r i e n t - r i c h moisture moving through the s o i l d u r i ng the growing season. Stands of t h i s p l a n t a s s o c i a t i o n may be f a i r l y open i n young stages p a r t i c u l a r l y along small streams where the stream bed and immediate banks are kept f r e e of t r e e growth by stream movement. In wet h a b i t a t s such as these ( a l s o very dry ones such as Lichen a s s o c i a t i o n s ) , t r e e composition i n e a r l y stages of succession does not d i f f e r very much from that of the c l i m a x , p o s s i b l y because the t r e e species capable of vigorous pioneer growth i n stands (e.g., Thuja p l i c a t a and some-times Populus trictaocarpa) are c o n s i d e r a b l y fewer than i n stands on mesic s i t e s (Pseudotsuga m e n z i e s i i . Pinus m o n t i c o l a . L a r i x o c c i d e n t a l i s . Tsuga h e t e r o p h y l l a . B e t u l a p a p r y i f e r a . Populus tremuloides. S a l i x bebbiana). F o l l o w i n g l o g g i n g or f i r e , D e v i l ' s c l u b a s s o c i a t i o n s may r e t u r n d i r e c t l y to the c l i m a x , mainly because s o i l s , u n l i k e s o i l s of upland s i t e s , may be l i t t l e changed, except i n the case of severe disturbances as by f l o o d i n g and heavy a l l u v i u m d e p o s i t i o n , or e r o s i o n . O c c a s i o n a l l y i n young stands one or two cottonwood tr e e s can be found as w e l l as a few D o u g l a s - f i r or white p i n e , the l a s t two sometimes the t a l l e s t and most vigorous w i t h i n the Zone. These pioneer c o n i f e r s however 72. are always on r a i s e d ground where s o i l a e r a t i o n i s good. They r a r e l y occur i n pure stands as i s common i n the Moss a s s o c i a t i o n . F o r e s t types defined w i t h i n t h i s a s s o c i a t i o n i n c l u d e the Slope D e v i l ' s c l u b , Slope D e v i l ' s c l u b northern v a r i a n t , Tufa D e v i l ' s c l u b and A l l u v i a l D e v i l ' s c l u b . Only i n the Tufa D e v i l ' s c l u b i s the phytocoenose markedly d i s t i n c t . Abnndant moisture seems to minimize v e g e t a t i o n d i f f e r e n c e s be-tween f o r e s t types w i t h i n t h i s p l a n t a s s o c i a t i o n . The c h a r a c t e r i s t i c combination of species f o r the D e v i l ' s Club a s s o c i -a t i o n i s given i n Table 18. TABLE 18. CHARACTERISTIC COMBINATION OF SPECIES DEVIL'S CLUB ASSOCIATION (OPLOPANACETUM) + Constant dominant only i n t h i s a s s o c i a t i o n * Constant only i n t h i s a s s o c i a t i o n ! Most s u c c e s s f u l i n t h i s a s s o c i a t i o n but may be present i n adjacent communities 1 I n c l u d i n g a l l species Layer Trees Shrubs Herbs Constant dominants Thuja p l i c a t a Tsuga h e t e r o p h y l l a Oplopanax h o r r i d u s Taxus b r e v i f o l i a Thuja p l i c a t a Tsuga h e t e r o p h y l l a T i a r e l l a u n i f o l i a t a Constants only Bryophytes & l i c h e n s a) on humus Mnium spp.' *Acer glabrum *Ribes l a c u s t r e Rubus p a r v i f l o r u s Athyrium f i l i x - f e m i n a C l i n t o n i a u n i f l o r a Cornus canadensis *D r y o p t e r i s a u s t r i a c a Galium t r i f l o r u m Goodyera o b l o n g i f o l i a Linnaea b o r e a l i s Smilacina racemosa Streptopus a m p l e x i f o l i u s V i o l a g l a b e l l a *Mnium i n s i g n e M. punctatum Important non-constants ISambucus pubens Adiantum pedatum C y s t o p t e r i s f r a g i l i s !Equisetum s c i r p o i d e s Geum macrophyllum M i t e l l a breweri Polystichum a n d e r s o n i i P. l o n c h i t i s Senecio pauperculus I T i a r e l l a l a c i n i a t a IT. t r i f o l i a t a iBryum sandbergii C a l l i e r g o n e l l a cuspidata Cratoneuron f i l i c i n u m IMnium orthorynchum DEVIL'S CLUB ASSOCIATION (cont'd) Layer Constant dominants b) on Mnium spp.* decaying wood Constants only Important non-constants *Brachythecium spp. x C a l l i e r g o n e l l a s c hreberi *Cephalozia spp.* Dicranum fuscescens Hypnum c i r c i n a l e Lophozie spp.* Mnium spinulosum *Plagiothecium denticuatum Cladonia spp.* P e l t i g e r a spp. 75. D i s t r i b u t i o n of species by constancy c l a s s e s i n t h i s a s s o c i a t i o n i s shown i n F i g . 32. The second maximum i n C l a s s 5 denotes that the a s s o c i -a t i o n i s homogeneous. A t o t a l of 272 species i n 18 sample stands are i n -cluded i n the s y n t h e s i s t a b l e f o r t h i s a s s o c i a t i o n . The e x c e p t i o n a l cover of edaphic climax Thuja p l i c a t a i s evident i n F i g . 33 a ) . F i g . 33 b) shows the prominence of nanophanerophytes and hemicryptophytes i n the v e g e t a t i o n l i f e form spectrum. Chamaephytes, im-portant i n d i r e r a s s o c i a t i o n s , are l e s s evident here. Slope D e v i l ' s Club f o r e s t type (SD) Stands of t h i s f o r e s t type occur on steep lower slopes possessing c o o l m i c r o c l i m a t e s and an abundant supply of permanent seepage a t or near the s u r f a c e . Topography g e n e r a l l y has a n e u t r a l p r o f i l e and contour, but complex r o l l i n g contour i s not uncommon. In the l a s t , most t r e e s grow on the r i d g e s . The stands s t u d i e d ranged i n e l e v a t i o n from 2500 to 3110 f e e t . S o i l s i n the stands s t u d i e d were Normal O r t h i c A c i d Brown Wooded and Shallow Muck w i t h no Ae h o r i z o n and r e l a t i v e l y high pH f o r the main r o o t i n g h o r i z o n (5.9 - 6.6). Reaction of the organic l a y e r immediately above mineral s o i l was 4.5 - 6.0. Because of the marked r a i s e d ground - wet depression nature of the ground surface and the open crown canopy through which much l i g h t may reach the f o r e s t f l o o r , ground v e g e t a t i o n o f t e n appears heterogeneous. This mosaid where hygrophilous species (e.g., C i r c a e a a l p i n a ) are r e s t r i c t e d to wet g u l l i e s and mesophilous species (e.g., Cornus canadensis) to d r i e r r i d g e s i s c h a r a c t e r i s t i c of the D e v i l ' s Club and the Skunk Cabbage a s s o c i a -t i o n s . Thuja p l i c a t a dominates the t r e e l a y e r , o f t e n w i t h e x c e l l e n t v i g o u r and i s the unchallenged edaphic c l i m a x t r e e . Tsuga h e t e r o p h y l l a may be common, Co f o l l o w page 7 5 . F i g . 32. Constancy diagram f o r D e v i l ' s Club a s s o c i a t i o n . .\u00E2\u0080\u0094. -fo \u00E2\u0080\u0094* UJ \u00E2\u0080\u00A240 o u l o. U . -30 O 10 M A M E \u00C2\u00AB . l t A O c J n &ftfMH>f\"fHECIu\u00C2\u00BBf/) SfP. MMMtf 6PP. r-40 -IP -10 -10 _ $ a) k) Pa C H tV M L LIFE FO&M i o x o 30 4 0 AVERfltVE LOMEU DtCrltt (%) SO 60 F i g . 41. Skunk Cabbage a s s o c i a t i o n : a) average cover of constant dominant s p e c i e s ; b) ve g e t a t i o n l i f e form spectrum based on cover of constant species. Pm megaphanerophytes; Pn nanophanerophytes; C chamaephytes; H hemicryplrophytes; G geophytes; M mosses; L l i c h e n s . 91. c h a r a c t e r i s t i c of mesic s i t e s . The mosaic thus created by t h i s mixture of of t e n s t r i k i n g l y d i f f e r e n t contiguous micro-communities i s c h a r a c t e r i s t i c of Skunk Cabbage types. Thuja p l i c a t a i s the edaphic climax dominant of the u s u a l l y open tree l a y e r (cover 45 - 55 - 75%). Tsuga h e t e r o p h y l l a i s a l s o prominent but u s u a l l y of low v i g o u r . Pinus m o n t i c o l a . P i c e a engelmannii. r a r e l y Pseudo-tsuga m e n z i e s i i and Bet u l a p a p y r i f e r a , the l a s t sometimes i n e x c e l l e n t con-d i t i o n , are o c c a s i o n a l l y s c a t t e r e d throughout the stand. Shrubs are u s u a l l y dominated by he a l t h y Oplopanax h o r r i d u s and, sur-p r i s i n g l y , by the oxylophyte Tsuga h e t e r o p h y l l a . the l a t t e r almost i n v a r i a b l y growing on decaying wood or humps of d r i e r ground. Taxus b r e v i f o l i a i s f r e q u e n t l y an a s s o c i a t e d dominant, a l s o r e s t r i c t e d to dry ground and decay-i n g wood. Thuja p l i c a t a regeneration i s abundant. Other 'shrubs which may o c c a s i o n a l l y be vigorous but r a r e l y exceed 5% cover are Alnus c r i s p a . Cornus s t o l o n i f e r a . Ribes l a c y u s t r e . Rosa gymnocarpa. Vaccinium membranaceum (vigour always low and u s u a l l y on dry ground or decaying wood) and Viburnum edule. Vaccinium o v a l i f o l i u m achieves i t s best development ( s t i l l q u i t e poor) i n the CSC but i s g e n e r a l l y r e s t r i c t e d to decaying wood and humps. Lush herb growth dominated by vigorous L y s i c h i t u m americanum. Athyrium f i l i x - f e m i n a . V i o l a g l a b e l l a , and f r e q u e n t l y C i r c a e a a l p i n a c h a r a c t e r i z e s the ground v e g e t a t i o n of the CSC f o r e s t type. A s s o c i a t e d dominants on d r i e r ground are o f t e n Gymnocarpium d r y o p t e r i s . T i a r e l l a u n i f o l i a t a . and Cornus canadensis. Hydrophilous species o c c a s i o n a l l y abundant and o f t e n vigorous i n some stands are A n g e l i c a arguta. Carex disperma. Equisetum pratense. E. s y l v a t i c u m . Galium t r i f l o r u m . Habernaria saccata. L i s t e r a c o n v a l l a r i o i d e s . M i t e l l a pentandra. S c i r p u s microcarpus. Veratrum v i r i d e and V i o l a p a l u s t r i s . Other herbs g e n e r a l l y r e s t r i c t e d to the CSC but r a r e l y abundant are Aruncus v u l g a r i s . Carex s t i p a t a . Equisetum p a l u s t r e . G l y c e r i a to follow page 91. F i g . 42. Tsuga heterophylla. Pinus monticola. and Pseudotsuga menziesii growing on ra i s e d ground i n CSC type with Thuja p l i c a t a understory. Note Oplopanax horridus andLysichitum americanum. August 18, 1961. F i g . 43. Ground vegetation i n CSC stand: Lysichitum americanum. Athyrium f i l i x - f e m i n a . Streptopus amplexi-f o l i u s , Cornus canadensis. Asarum Caudaturn. Hylocomium splendens. August 18, 1961. 92. e l a t a , Habenaria d i l a t a t a ( e x c e l l e n t v i g o u r ) , P r u n e l l a v u l g a r i s . S t e l l a r i a c r i s p a . T h e l v p t e r i s phogopteris (on r a i s e d ground), Veronica americana. Cardamine b r e w e r i . C. pennsylvannica. Mimulus g u t t a t u s . M. l e w i s i i . and M. moschatus. Bryophyte cover i s g e n e r a l l y extensive w i t h the wet-ground f l o r a i n -v a r i a b l y dominated by the neutrophilous Mnium punctatum. A number of Brachythecium spp.* ( i n c l u d i n g B. hylotapetum). some i n e x c e l l e n t v i g o u r , may codominate on wet patches. Conococephalum conicum may o c c a s i o n a l l y be abundant and vigorous while P e l l i a e n d i v i a e f o l i a . P. neesiana, Mnium a f f i n e . M. i n s i g n e . M. medium and Plagiothecium s y l v a t i c u m may a l l abound, sometimes v i g o r o u s l y , i n p a r t i c u l a r stands. Other hygrophilous bryophytes, r a r e l y abundant yet i n d i c a t i n g n e u t r a l s o i l c o n d i t i o n s , are Calypogeia neesiana. C. trichomanis. Lophocolea h e t e r o p h y l l a . P l a g i o c h i l a a s p l e n i o i d e s . R i c c i a f l u i t a n s and Scapania undulata. On r a i s e d ground C a l l i e r g o n e l l a s c h r e b e r i . Hylocomium splendens. P t i l i u m c r i s t a - c a s t r e n s i s . and Lophozia l y c o p o d i o i d e s may sometimes by abundant. The bryophyte and l i c h e n f l o r a on decaying wood resembles that of many other f o r e s t types w i t h vigorous Hypnum c i r c i n a l e . C a l l i e r g o n e l l a s c h r e b e r i . Dicranum fuscescens. and P t i l i d i u m pulcherrinum. but i t d i f f e r s i n support-i n g a number of w e t - s i t e s p e c i e s , commonly found on humus, i n the same s i t e . Although t h i s s i t u a t i o n i s uncommon on moist s i t e s such as the SAO, i t i s understandable here where abundant o f t e n n u t r i e n t - r i c h moistrue permeates a l l humus and decaying wood thereby o f f s e t t i n g the a c i d i f y i n g e f f e c t of organic matter and a l l o w i n g many sub-eutrophic species to e s t a b l i s h . Thus Mnium punctatum, M. i n s i g n e and Conocephalum conicum f o r example may grow v i g o r o u s l y on much of the decaying wood i n these wet h a b i t a t s along w i t h the wet-wood p r e f e r r i n g bryophytes C h i l o s c y p h u s . p a l l e s c e n s . Jungermannia * Because of the dou b t f u l nature of many Brachythecium i d e n t i f i c a t i o n s , a l l except the su r e s t determinations are r e f e r r e d to by genus only. 93. l a n c e o l a t a . many Lophozia spp. and Tetraphis p e l l u c i d a . Other i n t e r e s t i n g s p e c i e s , r a r e but apparently r e s t r i c t e d to decaying wood i n the stands s t u d i e d are: Brachythecium velutinum. Hookeria lucens. Leptodictyum r i p a r i u m . Lophozia attenuata. Dicranum s t r i c t u m i s c o n s i d e r a b l y reduced i n v i g o u r i n t h i s s i t e . Lichens on decaying wood are g e n e r a l l y dominated by P e l t i g e r a spp., mainly vigorous P. p o l y d a c t y l a . P. aphthosa may a l s o be common along w i t h P. h o r i z o n t a l i s . P. canina and P. membranacea. Apart from s c a t t e r e d patches of primary t h a l l i and some weak Cladonia f i m b r i a t a . Cladonia species are understandably sparse on decaying wood. In none of the stands s t u d i e d were rocks present on the surface. This i s to be expected where the o r i g i n a l g l a c i a l t i l l o r allumium substrate has been covered by accumulations of organic matter, the l a t t e r e v e n t u a l l y be-coming the main s o i l body. Tree growth i s described by the f o l l o w i n g : TABLE 24. Tree data summary. Creek Skunk Cabbage f o r e s t type. S i t e Index: a) Height at 50 years ( f t . ) b) Height a t 100 years ( f t . ) Thuja p l i c a t a Tsuga h e t e r o p h y l l a P i c e a engelmannii Pinus monticola Pseudotsuga m e n z i e s i i Average maximum height ( f t ) ; diameter of tr e e of average maximum height ( i n ) : Thuja p l i c a t a 105-126-156: 26.7 - 39.3 - 56.5 Tsuga h e t e r o p h y l l a 100-117-134: 22.6 - 26.5 - 30.3 P i c e a engelmannii (157; 30.3) Pinus monticola 142-153-164; 30.4 - 30.7 - 31.0 7 0 - 8 0 - 9 0 70 - 95 - 120 70 - 90 - 110 100 - 110 - 120 100 - .125 - 150 (120) cont'd 94. TABLE 24. (cont'd) Stage 1 Stage 2 Basal area per acre (sq. f t . ) 230 - 312 - 391 196 - 258 - 310 Number stems per acre 170 - 310 - 485 685 - 935 - 1255 Average diameter of stand ( i n . ) 11.4-14.1- 17.2 6.3 - 7.3 - 9.1 Average age of dominants ( y r s . ) 200+-245+-300+ 59 - 82 - 108 Average height of dominants & codominants ( f t . ) 106 - 126 - 151 98 - 111 - 124 Depression Skunk Cabbage f o r e s t type (DSC) Where water accumulates i n broad, shallow variously-shaped depressions w i t h i n the f o r e s t , almost to the p o i n t where no water movement takes p l a c e , the DSC f o r e s t type may develop. In t h i s Subzone DSC stands are r a r e , the only ones observed during t h i s study being i n the K i n g f i s h e r Creek V a l l e y near Mabel Lake. DSC communities are probably more common i n the north Subzone where c o o l e r moister c l i m a t e s favour greater moisture accumulation. Only one stand was s t u d i e d . I t d i f f e r s i n a number of respects from the t y p i c a l CSC. The s o i l type beneath t h i s stand i s an O r t h i c Meadow i n d i c a t i n g more a c i d c o n d i t i o n than i n the Mucks of the CSC. Lack of proper drainage was g r a p h i c a l l y demonstrated by a water l e v e l which, i n e a r l y J u l y , 1960, was 15 cm. above the ground surface. Because of the l a r g e expanse of standing water where t r e e s could not p o s s i b l y become e s t a b l i s h e d , the crown canopy i s r e l a t i v e l y open (40% cover) U n l i k e the CSC, Tsuga h e t e r o p h y l l a on the surrounding banks dominates the tre e l a y e r i n f a i r v i g o u r , thus r e f l e c t i n g the somewhat a c i d edaphotope, whi a few l a r g e Thuia p l i c a t a make up the remaining t r e e cover. Oplopanax h o r r i d u s . the dominant shrub of the CSC, i s reduced to a few s c a t t e r e d weak i n d i v i d u a l s i n t h i s type, w h i l e Ribes l a c u s t r e and Rubus p a r v i f l o r u s , constant but never abundant i n the CSC, are e n t i r e l y absent. to f o l l o w page 94. F i g . 44. Edaphic climax Depression Skunk Cabbage stand showing Lysichitum americanum andAthyrium f i l i x - f e m i n a surrounding F o n t i n a l i s - c o v e r e d muck i n depression. Corylus c a l i f o r n i c a and Thuja p l i c a t a i n background. Note a s s i s t a n t ( w i f e , mother, housekeeper, cook, baby-s i t t e r , t y p i s t , and d a i l y i n s p i r a t i o n ) at base of cedar. August 15, 1960. 95. Shrubs are dominated i n s t e a d by the oxylophyte, Spiraea d o u g l a s i i v a r . m e n z i e s i i . and by abundant Tsuga h e t e r o p h y l l a r e g e n e r a t i o n , mainly on de-caying wood and r a i s e d banks. Thuja p l i c a t a regeneration i s a l s o prominent. Herb cover (70%) d i f f e r s from the CSC mainly i n the reduced v i g o u r and abundance of the subeutrophic species such as Athyrium f i l i x - f e m i n a . Gymnocarpium d r y o p t e r i s and V i o l a g l a b e l l a , as w e l l as the absence of o t h e r s , eg. Actaea arguta, Adenocaulon b i c o l o r . Asarum caudatum. Botrychium v i r g i n i a n u m . C i r c a e a a l p i n a . Equisetum pratense. E. s y l v a t i c u m . Habenaria saccata. L i s t e r a c o n v a l l a r i o i d e s and Sm i l a c i n a racemosa. A r e l i a b l e d i f f e r -e n t i a t i n g herb f o r the DSC i s Lycopus u n i f l o r u s which i s v i g o r o u s , common and s o c i a b l e i n t h i s community only. Other d i a g n o s t i c species r e s t r i c t e d to the DSC are Carex a r c t a and Calamagrostis canadensis. both vigorous but s c a t t e r e d . Bryophytes on ground l i k e w i s e are c h a r a c t e r i z e d by the absence, or much-reduced cover and v i g o u r of neutrophilous species such as Brachythecium spp., Calypogeia neesiana. Conocephalum conicum and a l l Mnium and P e l l i a spp. Vigorous somewhat o x y l o p h y t i c species are C a l l i e r g o n e l l a s c h r e b e r i . Hylocomium splendens and Lophozia lycopodioides on r a i s e d ground; on satur-ated areas Chiloscyphus p a l l e s c e n s . F o n t i n a l i s spp. (sometimes immersed), Hookeria lucens and C a l l i e r g o n c o r d i f o l i u m may a l l grow w e l l . The same general comments on species composition of the decaying wood / f l o r a apply as f o r theCSC. The improved growth of hemlock r e l a t i v e to cedar i n t h i s stand i s described by the f o l l o w i n g : TABLE 25. Tree data summary. Depression Skunk Cabbage f o r e s t type. S i t e index: Height at 100 years ( f t . ) Thuja p l i c a t a 80 Tsuga h e t e r o p h y l l a 90 cont'd. 96. TABLE 25. (cont'd.) Average maximum height ( f t ) ; diameter of tree of average maximum height ( i n ) : Thuia p l i c a t a 120; 26.9 Tsuga h e t e r o p h y l l a 126; 28.6 Basal area per acre (sq. f t . ) Number stems per acre Average diameter of stand ( i n . ) Average age of dominants (yrs.) Average height of dominants & codominants ( f t . ) A l l u v i a l Complex Along banks of l a r g e r streams and r i v e r s , on r i v e r i s l a n d s and sand-bars, on f l o o d p l a i n s , banks of dammed lakes and on any area which i s f r e -quently f l o o d e d , extremely v a r i a b l e v e g e t a t i o n complexes may develop, g e n e r a l l y dominated by Populus t r i c h o c a r p a . Although a v a r i e t y of phytocoenoses could be described w i t h i n the A l l u v i a l Complex numerous v e g e t a t i o n analyses would be necessary to c l a s s i -f y them. In t h i s study there was time f o r only a cursory study of A l l u v i a l Complex communities. Four stands were analysed, three i n a Wet A l l u v i a l Complex and one i n a Dry A l l u v i a l Complex. The great v e g e t a t i o n v a r i a b i l i t y i n these Complexes i s r e f l e c t e d by the r e l a t i v e l y few constant species i n the c h a r a c t e r i s t i c combination of species given i n Table 26. 218 410 9.9 250+ 119 TABLE 26. CHARACTERISTIC COMBINATION OF SPECIES ALLUVIAL COMPLEX + Constant dominant only i n t h i s community * Constant only i n t h i s community 1 Most s u c c e s s f u l i n t h i s community but may be present i n adjacent communities 1 I n c l u d i n g a l l species Layer Trees Shrubs Constant dominant +Populus t r i c h o c a r p a +Cornus s t o l o n i f e r a Thuja p l i c a t a Constants only Thuja p l i c a t a Amelanchier a l n i f o l i a * B e t u l a p a p y r i f e r a *Lonicera i n v o l u c r a t a Important non-constants IAcer glabrum !Picea engelmannii Crataegus d o u g l a s i i S a l i x melanopsis JSymphoricarpos albus Vaccinium caespitosum IPicea engelmannii Herbs +Elymus glaucus +Pyrola a s a r i f o l i a Bryophytes & l i c h e n s a) on humus Galium t r i f l o r u m Brachythecium spp.\" Calamagrostis canadensis Festuca idahoensis Galium boreale ! P r u n e l l a v u l g a r i s T h a l i c t r u m o c c i d e n t a l e V i c i a americana V i o l a adunca b) on decaying wood Dicranum s t r i c t u m Drepanoclaous uncinatus Cladonia spp.* 98. In s p i t e of the few s t u d i e d stands of the A l l u v i a l Complex, they i n c l u d e d a t o t a l of 212 species. The expected heterogeneity of thiss* v e g e t a t i o n complex i s i n d i c a t e d by the d i s t r i b u t i o n of species i n con-stancy c l a s s e s ( F i g . 45), where the number of constant species ( c l a s s 5) i s l e a s t of a l l c l a s s e s . Average cover of constant dominant s i s shown i n F i g . 46 a ) . F i g . 46 b) shows the v e g e t a t i o n l i f e form spectrum of the A l l u v i a l Complex. Hemi-cryptophytes are more prominent here than i n any other community described so f a r . Nanophanerophytes are a l s o abundant. Wet A l l u v i a l Complex (WAC) This community i s found on any s i t e where f l o o d i n g , f r e q u e n t l y f r e s h d e p o s i t i o n of sediment, and o f t e n e r o s i o n of o l d d e p o s i t s takes place at l e a s t once annually during s p r i n g f r e s h e t . R i v e r banks and i s l a n d s , f l o o d -p l a i n s and low lakeshores are s i t e s on which the WAC u s u a l l y develops. Of the stands s t u d i e d e l e v a t i o n s ranged from 1975 to 2485 f t . , and topography was f l a t , sometimes w i t h e r o s i o n g u l l i e s cut through the stand by p a r t i c u l a r l y heavy f l o o d s . S o i l s are i n v a r i a b l y Regosols o f t e n w i t h horizons b u r i e d by f r e s h annual d e p o s i t s . S o i l t e x t u r e s may be extremely v a r i a b l e . F i n e r - t e x t u r e d s i l t s and sands are c h a r a c t e r i s t i c of flooded lake banks, oxbow l a k e s , and f l o o d p l a i n s of l a r g e r i v e r s where water movement during flo 0 \u00E2\u0080\u00A2to J * \u00E2\u0080\u00A2lO .0 Prl Pm C H 6- M L LIFE FO\u00C2\u00AB.M 10 ZO 3 P O P U L U S T R I C H O C A R P A C O R N U S S T O L O N I F E R A L O N I C E R A I N V O L U C R A T A P Y R O L A A S A R I F O L I A 120. p o s s i b l e to c h a r a c t e r i z e and d i s t i n g u i s h between communities on the b a s i s of constants and constant dominants, i . e . , u s i n g species f o r which there i s a very high p r o b a b i l i t y of occurrence i n the f i e l d . To e f f e c t i v e l y c o n t r a s t p l a n t a s s o c i a t i o n s u s i n g dominant s p e c i e s , species constant dominant i n one a s s o c i a t i o n only are shown i n F i g . 53. This i l l u s t r a t i o n s u b s t a n t i a t e s that the L i c h e n , Skunk Cabbage and A l l u v i a l Complex communities are f l o r i s t i c a l l y the most sharply defined of a l l communities. Undoubtedly t h i s i s due to h a b i t a t extremes, p a r t i c u l a r l y m oisture, which a l l o w only an e c o l o g i c a l l y l i m i t e d f l o r a to become estab-l i s h e d . Other p l a n t a s s o c i a t i o n s , w h i l e not so c l e a r l y marked by constant dominants, can of course be r e a d i l y d i s t i n g u i s h e d by c o n s i d e r a t i o n of t h e i r r e s p e c t i v e c h a r a c t e r i s t i c species combinations. Dynamics of f o r e s t types Primary succession Hanson and C h u r c h i l l (1961) r e f e r t o the k i n d of change i n v e g e t a t i o n where new species succeed o l d ones as \" d i r e c t i o n a l \" i . e . , developing i n a p a r t i c u l a r d i r e c t i o n towards a climax over a p e r i o d of time. Iarashenko (1946), as described by Major (1951) c l a s s i f i e d time changes i n n a t u r a l v e g e t a t i o n i n f i v e d e f i n e a b l e l e v e l s : 1) seasonal, i . e . , a s p e c t i o n ; 2) annual or c y c l i c , with c l i m a t i c v a r i a t i o n from year to year; 3) s u c c e s s i c n a l ; 4) h i s t o r i c a l , m i g r a t i o n or e x t i n c t i o n i n r e l a t i o n to c l i m a t i c change; 5) g e n e t i c , e v o l u t i o n of new f l o r a s . In t h i s study, the d i r e c t i o n a l approach i s best expressed at Iarashenko*s s u c c e s s i o n a l l e v e l , where communities may be r e l a t e d to one another i n terms of primary and secondary succession. Numerous workers have given d e t a i l e d d i s c s u s s i o n s of succession and c l i m a x , not the l e a s t of which are those of Kerner (1863), Clements (1916, 1936), Cowles (1911), and more r e c e n t l y Whittaker (1953), and C h u r c h i l l and Hanson (1958). to f o l l o w page 120. L I C H E N M O S S A R A L I A O A K F E R N P S E U D O T S U G A M E N Z I E S I I ( I n s I I V A C C I N I U M M E M B R A N A C E U M A R C T O S A P H Y L L O S D I C R A N U M S C O P A R U V A - U R S I I U M P O L Y T R I C H U M J U N I P E R I N U M I C L A D O N I A S P P . I P E L T I G E R A A P H T H O S A P I N U S M O N T I C O L A , \u00E2\u0080\u0094 \u00E2\u0080\u0094 I L I N N A E A B O R E A L I S D E V I L' S C L U B h r u b l a y e r ) S K U N K C A B B A G E i C L I N TO N I A U N IF L O R A A L L U V I A L C O M P L E X A T H Y R I U M F I L I X - F E M I N A I 1 I L Y S I C H I T U M A M E R I C A N U M I 1 V I O L A G L A B E L L A I I B R A C H Y T H E C I U M S P R I 1 M N I U N P U N C T A T U M I P O P U L U S T R I C H O C A R P A I I C O R N U S S T O L O N I F E R A I I E L Y M U S G L A U C U S P Y R O L A A S A RI FOLI A F i g . 53. Diagnostic c h a r t of s e l e c t e d constant dominant species. Based on species which are constant dominant i n one p l a n t a s s o c i a t i o n only. S o l i d l i n e , i n d i c a t e s constant dominance; dashed l i n e - constant only. 121. The tendency f o r v e g e t a t i o n to develop i n primary succession from e a r l y stages of c o l o n i z a t i o n of barren land through p r o g r e s s i v e l y more s t a b l e s e r a i stages towards a s t a b l e climax i s the c e n t r a l theme of a l l . The so-c a l l e d \" c l i m a t i c climax communities\" of b i o g e o c l i m a t i c zones are the t e r m i n a l s t a b l e communities towards which a l l other communities w i t h i n the r e s p e c t i v e zones tend to develop. However no community or ecosystem i s ever completely s t a b l e , not even c l i m a t i c climax ones. Change s t i l l o ccurs, mainly w i t h changing c l i m a t e s ( yet sometimes f o r edaphic reasons) but at a much slower r a t e than i n s e r a i stages. In t h i s study an attempt was made to arrange f o r e s t communities i n a p a t t e r n which would best d e p i c t t h e i r r e l a t i o n to the c l i m a t i c climax Slope Normal Moss f o r e s t typej a.t the same time showing the \" e c o l o g i c a l d i s -tance\" communities were from one another i n any one sere. This was done usin g \"primary succession i n d i c e s (\"forest type succession i n d i c e s \" i n the i l l u s t r a t i o n s ) as summarized i n Appendix C. The h i g h e s t v a l u e , 100, was assigned to the c l i m a t i c climax Slope Normal Moss f o r e s t type and, on the b a s i s of the r e l a t i v e importance of s e l e c t e d tree s p e c i e s , primary succession i n d i c e s were c a l c u l a t e d f o r the other f o r e s t types. F i g . 54 shows the r e l a t i o n s of f o r e s t types to one another on primary s u c c e s s i o n a l g r a d i e n t s . Communities above the a b s c i s s a are a l l f o r e s t e d , and most have been de-s c r i b e d i n t h i s t h e s i s . In order to make the s u c c e s s i o n a l p i c t u r e as complete as p o s s i b l e , communities which normally precede f o r e s t community development, are shown i n b r a c k e t s , mainly below the a b s c i s s a . In a mountainous area such as t h i s , the primary succession of communi-t i e s from barren land to mesic f o r e s t over m i l l i o n s of y e a r s , l i e s very c l o s e to succession along a moisture gradient as w e l l as on time. Hence, i n the i l l u s t r a t i o n s , community succession i s shown developing on the l e f t from barren upland rock outcrops or a l l u v i a l t e r r a c e s where no groundwater to f o l l o w page 121 2? \u00C2\u00ABi k 5 too \u00E2\u0080\u00A2 Bo to ALLVV/AL DRY MOSS (COARSE ORAVSL* ON TSRRACES)\u00C2\u00B1 SLOPC NORMAL MOSS + {CLIMATIC CLIMAX) ALLUVIAL ARALIA-OAKFERN ft. TREE* NO TREES CLICHEN/MOSM/NERB SHRUB COMMUNIT/ItJ CLICHEN/MOS*/NER\u00C2\u00BB COMMUNITIES] [LICHEN/ MOSS COMMUNITIES! I \S10PE BUNCHBERRY MOSS ~ \u00E2\u0080\u00A2.\u00E2\u0080\u0094 > + DEGRADED ARALIA-OAKFERN +SLOPE ARALIA-OAKFERN jj. TUFA DEVIL'S CLUB S10P\u00C2\u00A3 DEVIL'S CLVBj .CEARLY DRY FORESTJJ 4DRY ALLUVIAL f COMPLEX CLICMEN _+ coMNUNima 7 J/S^RASS/FORB/SHRUB COMMUNITIES! +BARREN FRESM ALLVVIAL SANDS AND GRAVELS,RARELY FLOODED AND THEN ONLY FOR SNORT PERIODS; DRY rSKUNK CABBAGE +CEARLY UET FOREST] ClVSH HERB/SHRUB J. COMMUNITIES! > BARREN FRESH ALLUVIAL J. DEPOSITS, FREQ VENTL Y FLOODED FOR MUCH OF CROUIND SEASON; UET \./LUSH HERB/SHRUB COMMUNITIES] 4. BARREN LOUER SLOPES, GLACIAL TILL. + BARREN ROCK DRY OUTCROP* MESIC (JET \u00C2\u00BB\u00E2\u0080\u00A2+ *\u00E2\u0080\u00A2+ COMMUNITY SUCCESSION ON SLOPES DuRIND BASELEYELING \u00E2\u0080\u00A2\u00C2\u00BB\u00E2\u0080\u00A2+ *+ COMMUNITY SUCCESSION ON ALLUVIAL TERRACES AND FLooDPLAINS DURING DOUNCUTTING OF RIVERS AND/OR RIVERBED SHIFT. SUDDEN, NISTOR/CALLY-IHFLUENCKD MATER TABLE FLUCTUATIONS MAY ACCELERATE OR REVERSE SUCCESSION. C J ARBITRARILY PLACED COMMUNITIES. No INDICES CALCULABLE F i g . 54. Diagram showing dynamic r e l a t i o n s h i p s of f o r e s t types: primary succession to c l i m a t i c climax Slope Normal Moss community. 122. i s a v a i l a b l e and c o n d i t i o n s are extremely dry, and on the r i g h t from low-land moraines or f l o o d p l a i n s where moisture i s abundant. The dynamic r e l a t i o n s h i p of f o r e s t types may be i n f e r r e d from i d e a l -i z e d toposequences i n F i g . 55 and 56. Secondary succession W i t h i n each f o r e s t type a number of secondary succession stages were recognized i n v e g e t a t i o n s y n t h e s i s . Summarized b r i e f l y they are: Stage 1. Climax f o r e s t : shade t o l e r a n t c o n i f e r s dominant Stage 2. C o n i f e r - p i o n e e r f o r e s t : shade i n t o l e r a n t c o n i f e r s dominant Stage 3. Hardwood-pioneer f o r e s t : hardwoods prominent i n crown canopy Stage 4. Deforested land to young regeneration: shrubs and herbs g e n e r a l l y dominant. Each f o r e s t type has a c l i m a x , and each type at some time or o t h e r , dur to l o g g i n g , f i r e or other cause, unavoidably has a deforested stage, when the secondary succession to the climax s t a r t s over again. However, depending on f o r e s t type, s e v e r i t y of d e f o r e s t a t i o n and p r o x i m i t y of trees seed source, the hardwood-pioneer and c o n i f e r - p i o n e e r stages may or may not c o n t r i b u t e to the sere on a given s i t e . Thus, because of the edaphic extremes o f , eg. the x e r i c Lichen and h y d r i c Skunk Cabbage s i t e s where many species w i t h l i m i t e d e c o l o g i c a l amplitudes may e s t a b l i s h , some types may r e t u r n d i r e c t l y to the climax f o l l o w i n g logging. Even mesic f o r e s t types, f o l l o w i n g denudation, may r e t u r n d i r e c t l y to the climax c o n d i t i o n i f , i n the process of f o r e s t removal, disturbance of the edaphotope has been minimal and s u f f i c i e n t seed of climax species i s a v a i l a b l e f o r immed-i a t e r e c o l o n i z a t i o n . More commonly the edaphotope i s c o n s i d e r a b l y upset, u s u a l l y by f i r e . Depending on the extent of the deforested area (as i t to f o l l o w page 122. I d e a l i z e d toposequences showing tre e composition of f o r e s t types at d i f f e r e n t stages of secondary succession. F i g . 55. communities on slopes. F i g . 56. communities on a l l u v i a l f l a t s . The r e l a t i v e p r o p o r t i o n of t r e e species i n each community i s based on DFD i n d i c e s (Appendix C). Height growth of pioneer c o n i f e r s at 50 years i s a l s o given. Basal area diagrams show averages of the a c t u a l basal areas of s i l v i c u l t u r a l l y s u i t a b l e commercial tr e e s (black areas) compared w i t h the p o t e n t i a l b a s a l areas (area of c i r c l e ) that might be a t t a i n e d i n p l a n t a t i o n s . SLOPE COMMUNITIES LICHEN S l 5 0 = 35 FT. SLOPE DRY MOSS: S l 5 0 = 55 FT. S L O P E NORMAL M O S S S l 5 0 - 70 FT. CLIMATIC CLIMAX SLOPE BUNCHBERRY MOSS '50 80 FT. S L O P E ARAL IA OAKFERN S l 5 0 = 90 FT. DEGRADED ARALIA OAKFERN S l 5 0 = 75 FT. *Hf t i ( STAGE 3 ABSENT \ SLOPE DEVIL'S CLUB S I 5 Q = ?100 FT. Skn= ? 100 FT. SKUNK C A B B A G E (slow-moving creeks & depressions ) S l 5 0 - 80 FT. DEVIL'S C L U B ( f a s t - m o v i n g creeks ) STAGE 3 _ HARDWOOD PIONEER Ql i l l STAGE A - SHRUB/HERB/TREE REGENERATION; INSUFFICIENT DATA LEGEND 0 1 X % ( STAGE 3 ABSENT ) BASAL A R E A OF SILVICULTURALLY SUITABLE COMMERCIAL TREES POTENTIAL BASAL AREA PER ACRE 100 SQ.FT. 270 SQ.FT. 270 SQ.FT. 300 SQ.FT. 560 SQ.FT. 390 SQ. FT. 690 SQ.FT. AREA OF CIRCLE . POTENTIAL BASAL AREA OF MANAGED PLANTATION \u00E2\u0080\u00A2 E 3 _ ACTUAL BASAL AREA IN NATURAL STANDS F . P w . C _ TREE SPECIES MOST SUITABLE R _ REMAINING TREES ALLUVIAL FLAT COMMUNITIES DRY ALLUVIAL COMPLEX s i 5 0 -. 70 FT. S H R U B / H E R B /TREE REGENERATION; INSUFFICIENT DATA LEGEND 510 SO. FT. 123. a f f e c t s tree seed source f o r r e c o l o n i z a t i o n ) , e i t h e r the c o n i f e r - p i o n e e r stage or the hardwood stage may comprise the f o r e s t which f i r s t becomes e s t a b l i s h e d . On any one s i t e , depending on the degree of s o i l d i s t u r b a n c e , and the extent of f o r e s t removal, stage 4 may go d i r e c t l y to any one of stages 3, 2 or 1. The d i r e c t i o n of succession of course i s always the same, towards the climax stage 1. The i d e a l i z e d community diagrams i n F i g . 55 and 56 show the secondary successions from bare land to climax. The r e l a t i v e p r o p o r t i o n of tree species (based on DFD i n d i c e s , Appendix C ) , s o i l moisture s t a t u s , and tree p r o d u c t i v i t y of each f o r e s t type are a l s o given. Change i n tree composition during secondary succession The l a y e r coverage diagram ( F i g . 57) shows the average cover c o n d i t i o n s at each stage of secondary succession w i t h i n each p l a n t a s s o c i a t i o n . Gen-e r a l l y speaking crown cover i s at a maximum during the pioneer c o n i f e r stage and drops o f f s l i g h t l y i n the climax. Such an opening up of the crown canopy i n climax stages i s undoubtedly due to the gradual t r a n s i t i o n from the even-aged, uniform crown c o n d i t i o n of p i o n e e r - c o n i f e r stands to the a l l - a g e d , i r r e g u l a r - c a n o p i e s of the climax. The D e v i l ' s Club a s s o c i -a t i o n i s the only p l a n t a s s o c i a t i o n which shows a steady increase to a climax maximum p o s s i b l y because there i s l i t t l e change i n tree composition be-tween pioneer to climax stages. F i g . 58 shows the v a r i a t i o n i n importance of tree species at d i f f e r -ent stages of succession w i t h i n the Moss a s s o c i a t i o n . Although .hemlock i s not obvious i n s e r a i f o r e s t s , the curves i n d i c a t e that i t s importance i n the t r e e l a y e r i s greater than any other s p e c i e s . This i s mainly due to i t s abundance i n the understory. On the other hand Populus tremuloides and Pinus c o n t o r t a drop out e a r l y , both being r e l a t i v e -l y s h o r t - l i v e d species and markedly shade i n t o l e r a n t . to f o l l o w page 123. F i g . 57. Summary Layer coverage diagrams of stages i n a l l p l a n t a s s o c i a t i o n s . A - t r e e s ; B - shrubs; C - herbs; D - bryophytes and l i c h e n s . I 124. In t h i s Subzone, the most l o n g - l i v e d pioneer c o n i f e r appears to be Pseudotsuga m e n z i e s i i w i t h Pinus m o n t i c o l a . s l i g h t l y l e s s , p o s s i b l y as a r e s u l t of the de v a s t a t i n g m o r t a l i t y caused by Cronartium r i b i c o l a (white pine b l i s t e r r u s t ) and pole b l i g h t . Both these species achieve maximum importance i n stage 2. L a r i x o c c i d e n t a l i s u s u a l l y drops out of stands e a r l i e r than white pine. Betula p a p y r i f e r a i s the most l o n g - l i v e d hardwood, sometimes remain-in g u n t i l the cl i m a x , yet there, never as a dominant ( f o r e s t r y crown c l a s s ) i n the crown canopy. Populus t r i c h o c a r p a . a hydrophytic s p e c i e s , e x e m p l i f i e s the common phenomenon of wet s i t e species e s t a b l i s h i n g on mesic (and even dry) s i t e s t h a t have mineral s o i l exposed by f i r e . Such low v i g o u r species r a r e l y survive longer than the e a r l i e s t f o r e s t stages. The toposequences ( F i g . 55 and 56) denote the d i f f e r e n t tree species combinations which dominate climax stages of each p l a n t a s s o c i a t i o n (and t h e i r component f o r e s t t y p e s ) . Thus the Lichen a s s o c i a t i o n has a pioneer-c o n i f e r dominated climax (mainly Pseudotsuga m e n z i e s i i ) : the Moss and A r a l i a Oakfern a s s o c i a t i o n s have Tsuga h e t e r o p h y l l a dominated climaxes; the Skunk Cabbage and D e v i l ' s Club a s s o c i a t i o n s have climax stages dom-i n a t e d by Thuja p l i c a t a ; and the A l l u v i a l Complex, although not a clim a x i n the sense of d i s c u s s i o n here, i s dominated by Populus t r i c h o c a r p a . Table 34 summariaes the DFD values of these species i n climax stages of each p l a n t a s s o c i a t i o n . Highest values f o r each community are underlin e d . TABLE 34. DFD values f o r s e l e c t e d trees i n stage 1 (climax) of a l l p l a n t a s s o c i a t i o n s . Species: Pseudotsuga m e n z i e s i i Tsuga h e t e r o p h y l l a Thuja p l i c a t a Populus t r i c h o c a r p a A s s o c i a t i o n : L M AO D SC AC 152 67 25 17 - 78 150 245 234 133 185 79 124 131 150 234 198 138 - - 17 - 139 Lichen; Moss; A r a l i a Oakfern; D e v i l ' s Club; .Skunk Cabbage; A l l u v i a l Complex. to f o l l o w page 124. F i g . 58. V a r i a t i o n i n tree composition i n the Moss a s s o c i a t i o n during secondary succession from bare land to climax. 125. Change i n l e s s e r v e g e t a t i o n during secondary succession. C e r t a i n c h a r a c t e r i s t i c s of l e s s v e g e t a t i o n a l s o change markedly from bare land to climax w i t h i n a given community. F i g . 59 shows the average cover degree of a number of shrubs, herbs and bryophytes a t each stage of succession i n the Moss a s s o c i a t i o n . Here the climax i s c h a r a c t e r i z e d not only by an abundance of hemlock i n the tr e e l a y e r ( F i g . 58) but a l s o by i n c r e a s i n g abundance of Taxus b r e v i f o l i a . C o r a l l o r h i z a maculata. Lophozia lycopodiodes. R h y t i d i o p s i s robusta. Goodyera o b l o n g i f o l i a and Hylocomium splendens as ground surfaces s t a b i l i z e . E a r l y i n succession the shrubs Shepherdia canadensis and Rubus p a r v i f l o r u s are prominent, along w i t h F r a g a r i a b r a c t e a t a . and almost a l l Cladonia species that occur i n t h i s community. Epilobium a n g u s t i f o l i u m dominates, and i s almost e x c l u s i v e l y l i m i t e d to the e a r l i e s t succession stage 4, immediately f o l l o w i n g d e f o r e s t a t i o n . Polytrichum Auniperinum i s a l s o abundant here. P r e d i c t a b l y the e a r l y stages of secondary succession are very un-s t a b l e compared with l a t e r ones. Vegetation on a given s i t e may be d i v e r s e dur to the abundance of \"weed apecies\" (Mueller-Dombois, 1958), few of which have any d i a g n o s t i c value f o r r e c o g n i z i n g f o r e s t types. However, they may be most u s e f u l i n determining the stage of succession of a p a r t -i c u l a r stand. Hence, i n t h i s study, Ceanothus sanguineus. L o n i c e r a i n -v o l u c r a t a . and Prunus emarginata. along w i t h Habenaria u n a l a s c e n s i s ( a l l of which are s c a t t e r e d , and of low v i g o u r ) may be r e s t r i c t e d to pioneer-hardwood stands, and sometimes to stage 4. Other e a r l y f o r e s t s p e c i e s , always s c a t t e r e d and r a r e l y vigorous are S a l i x spp., Rhacomitrium canescens. Cladoni a g r a c i l i a and C. v e r t i c i l l a t a . the l a s t three being character species f o r the Lichen a s s o c i a t i o n ; t h e i r presence here undoubtedly re-s u l t s from s c a t t e r e d mineral s o i l patches, u s u a l l y only a few centimeters to f o l l o w page 125. ( cuHfr<) F i g . 59. V a r i a t i o n In cover of some l e s s e r v e g e t a t i o n i n the Moss a s s o c i a t i o n during secondary succession from bare land to climax. Scale: 1\" v e r t i c a l l y - 20% cover. 126. square, whose hot, dry microclimates approximate Lichen a s s o c i a t i o n s i t e c o n d i t i o n s , f o r short periods a t l e a s t . Epilobium adenocaulon and Gnaphalium viscosum may be found only i n stage 4 on s i t e s r e c e n t l y bared by f i r e . Change i n bryophytes on decaying wood during secondary succession The amount of wood l y i n g on the ground which i s a v a i l a b l e f o r c o l o n i z -a t i o n by bryophytes and l i c h e n s increases s t e a d i l y from deforested stage 4 to the p i o n e e r - c o n i f e r stage, then f a l l s o f f i n the climax stage 1 ( F i g . 60 a ) . This dropoff i s probably due to l e s s d e a d f a l l as the f o r e s t becomes more s t a b l e and normal s t o c k i n g i s approached i n the climax con-d i t i o n . V a r i a t i o n i n the r a t e of dead wood a d d i t i o n from stage to stage not-w i t h s t a n d i n g , the decaying wood b r y o f l o r a s t e a d i l y i n c r e a s e s to a maximum i n the climax f o r e s t . Some of the major bryophyte species c o n t r i b u t i n g to t h i s trend are diagrammed i n F i g . 60 b. Numerous others are i n c l u d e d i n the sy n t h e s i s t a b l e , Appendix F. The r e l a t i o n s h i p of l e s s e r v e g e t a t i o n coverage, and t r e e d e n s i t y D i s c u s s i o n of v e g e t a t i o n change during secondary succession so f a r has d e a l t w i t h c o n s i s t e n t i n c r e a s e s or decreases of s e l e c t e d species i n secondary succession. I f the species c h a r a c t e r i s t i c of any succession stage the stage was e i t h e r the climax or the pioneer-hardwood stage. The p i o n e e r - c o n i f e r stage g e n e r a l l y occupied an intermediate p o s i t i o n . Another group of species shows a decrease i n dominance from stage 3 to 2 an d an i n c r e a s e from 2 to 1. On mesic to moist s i t e s (Moss and A r a l i a Oakfern a s s o c i a t i o n s ) the densest crown canopies are u s u a l l y those of pioneer c o n i f e r stands (Fig.570). 4o 3\u00C2\u00BB \"5 uJ o o C ALL i c A. & o N ELL A 4 trtAeae Ai Ce PW fiuo2 IA spp. I MNIUM 4<>INULO4UM RHHTI ovoMii B.OSO$TA l OECftf\u00C2\u00BBisl& WOOD t , , fta./r.ou\u00C2\u00BBif<:t 4 LICHEN* to f o l l o w page 126. ( NO PdftcST) JTAfc-E 3 6 retire z *>Tfl \u00E2\u0080\u00A21 LZL Pi BA 3 \u00C2\u00BB Wi V * / J '< j* 7W\u00C2\u00BB DEVIL'S CLUB Pi \BA \BC I 5 Si 4* /\u00C2\u00ABi FOREST TYPES SUMMARY c. -Joo 1^0 ALLUVIAL BRY MOSS /oo _ Pu Pi ISA S\u00C2\u00BB 1 S!\ai M \u00C2\u00BB Cmt\ N SOO r- 7 TO ALLUVIAL ARALIA-OAKFERN Zoo _ lOti /oo o Joo 7v m 3 a J o r i*o 13 ALLUVIAL DEVIL'S CLUB ' - /0<5 P*> fl BA Be- Bi Ai Cot N ALLUVIAL NORMAL MOSS BA Be- Bi As. c*t\N ALLUVIAL BUNCHBERRY ARALIA-OAXFERN Est Pl BA B o Bi \As If.* I N UlErZ ALLUVIAL COMPLEX p*. a* Be- SL 130. a l l u v i a l communities decreases s t e a d i l y from the A l l u v i a l Normal Moss to the A l l u v i a l A r a l i a Oakfern. Coniferous Species Bernsten (1958) erroneously i m p l i e s that Tsuga h e t e r o p h y l l a i s a minor component of the humid f o r e s t s of northern Idaho and the S e l k i r k mountains of B r i t i s h Columbia. Hemlock i s by f a r the most important species i n a l l mesic communities and only i n the extremely dry and some extremely wet f o r e s t types does i t concede dominance to other s p e c i e s . Even i n the Skunk Cabbage and Slope D e v i l ' s Club s i t e s hemlock codominates reasonably w e l l w i t h cedar. On both slope and a l l u v i a l s i t e s hemlock reaches i t s peak of im-portance i n the mesic Slope Normal Moss and A l l u v i a l Normal Moss f o r e s t types. The best height growth of hemlock i s a t t a i n e d i n the Slope Bunchberry Moss f o r e s t type (up to 150 f e e t i n 100 y e a r s ) , and the Slope A r a l i a Oakfern and Degraded A r a l i a Oakfern types. According to Boyd (1959), abundant a v a i l a b l e s o i l moisture i s one of the most important requirements f o r good Thuja p l i c a t a growth. High n u t r i e n t contents are a l s o important. I t i s t h e r e f o r e not s u r p r i s i n g t h a t cedar should a t t a i n h e i g h t s up to 130 f e e t i n 100 years i n a l l u v i a l communities, p a r t i c u l a r l y the A l l u v i a l D e v i l ' s Club and A l l u v i a l A r a l i a Oakfern f o r e s t types. Because of the high calcium content of i t s f o l i a g e (Daubenmire, 1953; T a r r a n t , et a l , 1951) cedar p l a y s a major r o l e i n main-t a i n i n g high n u t r i e n t l e v e l s i n the ecosystems of which i t i s a p a r t . Not only does i t maintain a high p r o p o r t i o n of calcium i n the biogeochemical c y c l e , but, by the abundant calcium i n i t s l i t t e r , i t maintains h i g h t r o i l pH and consequently improved n i t r i f i c a t i o n ( K r a j i n a , 1963), a process c r i t i c a l to h i g h s o i l p r o d u c t i v i t y i n c o o l temperate f o r e s t s , yet one , 131. which i s l i k e l y very low a t pH below 6 ( S t a n i e r , et a l , 1964). Cedar i s a l s o prominent i n a l l other communities i l l u s t r a t e d and even shows a secondary maximum i n the Lichen a s s o c i a t i o n . Considering i t s optimal growth i n wet a l l u v i a l s i t e s where i t i s a l s o edaphic climax dominant, t h i s i s momentarily s u r p r i s i n g . However, cedar i s o b v i o u s l y t o l e r a n t of considerable drought. In areas where s o i l s l i e t h i n over c a l c i u m - c o n t a i n i n g bedrocks (limestones, d i o r i t e s , b a s a l t s , etc.) cedar's apparent high demands f o r c a l c i u m , as suggested by i t s high f o l i a g e c alcium, might be s a t i s f i e d by d i r e c t contact exchange between weathering rock surfaces and root h a i r s . Hence the rock outcrop l i c h e n s i t e s , t h i n -s o i l e d and subject to severe c l i m a t e s which promote rock weathering, might r e a d i l y support l a r g e r numbers of cedar than deeper-soiled mesic commun-i t i e s . Growth of cedar i s extremely poor i n Lichen types and basal area i s low, yet the great number of i n d i v i d u a l , o f t e n scrubby stems (787. of a l l t a l l i e d stems i n one stand were cedar) i s the major reason f o r i t s prominence. Mesic s i t e s probably show r e s t r i c t e d n u t r i e n t a v a i l a b l i t y due to t h i c k humus l a y e r s , heavy l e a c h i n g and intense root competition. L i k e hemlock, the pioneer c o n i f e r s L a r i x o c c i d e n t a l i s and Pinus c o n t o r t a both show peaks of importance i n the SNM, yet drop o f f s t e a d i l y on a l l u v i a l s i t e s from an ADM h i g h . Best height growth of both species i s a t t a i n e d i n the SAO f o r e s t type yet pure stands are r a r e on anything but the d r i e s t a l l u v i a l t e r r a c e s and sometimes deep-soiled upland slopes. Wellner (1962) concludes that Pinus monticola grows best on deep w e l l - d r a i n e d , medium- to f i n e - t e x t u r e d s o i l s of high water-holding c a p a c i t y . T h i s i s corroborated by the e x c e p t i o n a l l y vigorous growth of white pine i n A l l u v i a l D e v i l ' s Club and A l l u v i a l A r a l i a Oakfern communities of t h i s Subzone. Pure stands of t h i s species are u s u a l l y more common on mesic s i t e s , such as the v a r i o u s f o r e s t types of the Moss a s s o c i a t i o n . White 132. pine i s a s e r a i species of much commercial importance i n t h i s r e g i o n , yet the extensive m o r t a l i t y caused by white pine b l i s t e r r u s t (Cronartium r i b i c o l a ) and pole b l i g h t , have c o n s i d e r a b l y reduced volume of present stands. The development of chemical b l i s t e r r u s t c o n t r o l s and disease r e s i s t a n t s t r a i n s i s p r o g r e s s i n g w e l l however (Bingham, et a l , 1960), and i t may not be long before white pine i s againa major species component i n management plan s . The only other major c o n i f e r i n the Subzone i s Pseudotsuga m e n z i e s i i . f t i s s i m i l a r i n almost a l l r e spects to white p i n e , a t t a i n i n g best growth i n the A l l u v i a l D e v i l ' s Club and A l l u v i a l A r a l i a Oakfern f o r e s t types. In the Lichen a s s o c i a t i o n i t i s the edaphic climax dominant. I t s occurrence i n pure stands i s most common on mesic s i t e s , although o c c a s i o n a l l y vigorous stands may be found on A r a l i a Oakfern s i t e s . The azonal P i c e a engelmannii occupies a wide range of s i t e s i n t h i s Subzone. I t reaches g r e a t e s t importance as a stand component on wetter s i t e s , p a r t i c u l a r l y r i v e r s i d e communities such as the A l l u v i a l A r a l i a Oakfern and Wet A l l u v i a l Complex. Only on these a l l u v i a l s i t e s may i t occur i n f a i r l y dense vigorous stands, and with best height growth. How-ever some f a i r l y vigorous i n d i v i d u a l s were encountered i n moist slope communities. In upland communities i n d i v i d u a l spruces are sc a t t e r e d throughout young mixed stands. In a l l cases i t i s a s e r a i s p e c i e s . In concluding these remarks on t r e e s i n r e l a t i o n to f o r e s t types a g r a p h i c a l summary of the average height growth of dominants and codominants i n each f o r e s t type i s i n c l u d e d i n F i g . 64. Such g e n e r a l i z e d height-age curves roughly i n d i c a t e h eights of crown canopies a t d i f f e r e n t ages i n each f o r e s t type. The curves conform to expectations w i t h the lowest crown canopies being those of the Lichen and A l l u v i a l Dry Moss and the t a l l e s t those of 133. the D e v i l ' s Club and A r a l i a Oakfern f o r e s t types. P r o d u c t i v i t y ^ of Forest Types For t r e e volume p r o d u c t i v i t y , y i e l d t a b l e s have been used i n America s i n c e the t u r n of the century (Spurr, 1952) but u n f o r t u n a t e l y they have given a p i c t u r e of net growth only. U n l i k e European y i e l d t a b l e s , volume l o s s by m o r t a l i t y i s not accounted f o r , t h e r e f o r e much in f o r m a t i o n i s l o s t on the b i o l o g i c a l nature of stand p r o d u c t i v i t y (Baker, 1950). In a d d i t i o n the i n t e r e s t s of f o r e s t e r s have been r e s t r i c t e d e n t i r e l y to production of t r e e t r u n k s , w i t h l i t t l e regard f o r branches, stumps, root systems and surrounding l e s s e r v e g e t a t i o n . With growing i n t e r e s t i n ecosystem p r o d u c t i v i t y , a number of recent 2 works have given estimates of standing crop of leaves and branches (Burger, 1953), herbaceous v e g e t a t i o n (Pase and Hurd, 1957), mosses (Tamm, 1953), to mention a few. Many weight estimates of organic matter above min e r a l s o i l have a l s o been made (Metz, 1954; Ovington, 1954). Ovington (1962) ta b u l a t e s much data on standing crop of d i f f e r e n t f o r e s t s through-out the world. In the P a c i f i c Northwest Heilmann (1961) determined that oven dry weights of t r e e trunks i n a n a t u r a l 32 year o l d stand of Douglas-Fir i n 3 Washington was 22.9 x 10 kg/ha. This amounts to annual increment of approximately 716 kg/ha/year. Odum (1959) claims that standing crop may provide good estimates of net primary p r o d u c t i v i t y i n ecosystems where organisms are large and * P r o d u c t i v i t y = r a t e of organic matter production; the amount produced per year. Net primary p r o d u c t i v i t y = net photosynthate remaining f o l l o w -i n g r e s p i r a t i o n i n primary producers (photosynthetic p l a n t s ) , e.g. the amount of wood added to tree boles each year ( = i n d i v i d u a l tree volume i n -crement i n the f o r e s t r y sense, but NOT stand increment because i t gen-e r a l l y excludes m o r t a l i t y ) . Standing crop = amount of organic matter at a p a r t i c u l a r time. 134. l i v i n g m a t e r i a l s accumulate over long periods of time. This may be true f o r a g r i c u l t u r a l crops where there i s l i t t l e a c t u a l turnover of m a t e r i a l s ( l e a f and flower f a l l , decomposition, etc.) w i t h i n the commercial growing p e r i o d , but f o r f o r e s t s developing over many year s , annual turnover may be h i g h , and the amount of organic m a t e r i a l produced w i l l undoubtedly ex-ceed the standing crop at any one time. Organic m a t e r i a l of trees which cannot be accounted f o r by standing crop-based estimates of p r o d u c t i v i t y are annual l e a f , f l o w e r - , and s e e d - f a l l , annual root m o r t a l i t y , and poss-i b l y more s i g n i f i c a n t than any other as stands mature, m o r t a l i t y of tree b o l e s . I t f o l l o w s then that estimates of net primary p r o d u c t i v i t y of tree boles based on standing crop at a given time may g r o s s l y underestimate a c t u a l p r o d u c t i v i t y (Ovington, 1962) unless estimates of t o t a l m o r t a l i t y l o s s are a l s o i n c l u d e d . Standing crop-based estimates of r e l a t i v e pro-d u c t i v i t y i n n a t u r a l f o r e s t s are discussed l a t e r . E s t i m a t i n g m o r t a l i t y of tree boles may be d i f f i c u l t to do unless a p e r i o d i s chosen which i s short enough so that most stems that have d i e d w i t h i n that p e r i o d may s t i l l be countable. In a d d i t i o n maximum p r o d u c t i v i t y would best be estimated over a p e r i o d corresponding to the \"grand p e r i o d of growth\" c h a r a c t e r i s t i c of most p l a n t s . Although organic matter s t i l l accumulates f o l l o w i n g t h i s p e r i o d ( a f t e r the c u l m i n a t i o n of mean annual increment) i t does so at a progress-i v e l y slower r a t e . Culmination of mean annual volume increment of most s p e c i e s , on the m a j o r i t y of s i t e s i n the Hemlock Zone, occurs around 80 years ( F l i g g , 1960). Stands whose average age i s c l o s e s t to 80 years belong to the pioneer c o n i f e r stage 2; they are ther e f o r e used i n determining maximum net primary p r o d u c t i v i t y of f o r e s t types. See \"Methods\" i n Appendix F f o r fomulae .XfO 1100. .200 1000 -> ^ 8oo . v2> .150 o o vj .100 5 4 0 0 -o .50 100 SDM ^NM \u00C2\u00A36tf SftO 3D ftDtf ftNM ABAO ftlVO WAC OflC rt o O O s! era F O R E S T TYPES F i g . 65. Net primary p r o d u c t i v i t y of tree stems i n f o r e s t types; CO 4>* 135. used i n c a l c u l a t i n g p r o d u c t i v i t y and standing crop. F i g . 65 summarizes annual net primary p r o d u c t i v i t y by volume and weight f o r each f o r e s t type. Thus i t may be seen that an average of 126 kilograms per hectare of oven-dry wood has been added annually to t r e e trunks i n Lichen a s s o c i a t i o n stands. This i s of the same r e l a t i v e mag-nit u d e as the s i t e index values (Lichen S I^q = 35 f t . ) which denote that the Lichen a s s o c i a t i o n i s the l e a s t productive f o r e s t type f o r tree trunks i n the Subzone. There i s a c l o s e c o r r e l a t i o n between height growth of pioneer c o n i f e r s at 50 years (Table 36) and annual net primary p r o d u c t i v i t y . There are one or two exceptions, probably due to edaphic extremes f a v o u r i n g under-s t o c k i n g . G e n e r a l l y speaking however the c l o s e c o r r e l a t i o n suggests t h a t , i f the r e l a t i o n s h i p could be q u a n t i f i e d , combined estimates of s i t e index based on a number of s p e c i e s , such as the S I ^ ^ of Ker (1957), might be used to approximate volume and weight p r o d u c t i v i t y of f o r e s t communities. This would obviate tedious volume c a l c u l a t i o n s , as p r o d u c t i v i t y estimates c o u l d then be made from simple height-age data. A maximum of 1251 kg/ha/yr i s produced by the Slope D e v i l ' s Club f o r e s t type, w h i l e i n comparable a l l u v i a l communities where s i t e i n d i c e s are higher mean annual increment amounts to around 780 kg/ha/yr. These lower production r a t e s f o r young stands on wet a l l u v i a l communities are probably due to poorer s t o c k i n g , hence lower basal areas than i n comparable slope communities. In a d d i t i o n , increment i n c r e a s e s more s l o w l y , yet continues a t a steady r a t e w e l l past the 80 year c u l m i n a t i o n of mean annual increment common to other f o r e s t types. I f a longer p e r i o d of growth was chosen then r e l a t i v e annual wood production by A l l u v i a l D e v i l ' s Club and A l l u v i a l A r a l i a Oakfern communities would probably be higher. Standing crop volumes i n F i g . 66 support t h i s c o n t e n t i o n . to f o l l o w page 135. 180 _ r tbO -_T>0 I AO _ \u00E2\u0080\u00A2x. 120 -O si ^ 100 o '< _ 2 0 \"v. t o - 8 o . y a > O feo _ 1 0 4 0 . 2 0 -\ % X % V \ * F O R E S T T X P E 5 F i g . 66. Average standing crop of l i v i n g tree stems i n climax stands of each f o r e s t type. 136. TABLE 36. Height growth i n f e e t of pioneer c o n i f e r s at 50 years (Ker,1957) F o r e s t type S I 5 0 Forest type S I 5 0 Lichen 35 A l l u v i a l Dry Moss 35 Slope Dry Moss 55 A l l u v i a l Normal Moss 75 Slope Normal Moss 70 A l l u v i a l Bunchberry A r a l i a Oakfern 75 Slope Bunchberry Moss 80 A l l u v i a l A r a l i a Oakfern 95 Slope A r a l i a Oakfern 90 A l l u v i a l D e v i l ' s Club 95 Slope D e v i l ' s Club 90 Wet A l l u v i a l Complex 75 Creek Skunk Cabbage 80 Dry A l l u v i a l Complex 70 The reduced p r o d u c t i v i t y of the Creek Skunk Cabbage f o r e s t type and both A l l u v i a l Complexes i s to be expected even though s t i e i n d i c e s are f a i r l y h i g h . A l l three communities, by the nature of t h e i r edaphotopes, have open crown canopies, the SC because of standing water over much of the ground and the AC due to p e r i o d i c disturbance by f l o o d s . Hence basal areas are s m a l l , even though height growth may be very good. Volume i n -crement i s t h e r e f o r e lower than i n other stands. Ovington's c l a i m (1962) that standing crop i s an u n s a t i s f a c t o r y measure of a c t u a l net primary p r o d u c t i v i t y i s probably time f o r most ecosystems. However, standing crop might be used to i n d i c a t e r e l a t i v e p r o d u c t i v i t y i n f o r e s t s at the age where annual increment begins to be balanced by annual l o s s e s , i . e . , the steady s t a t e or climax f o r e s t . The d i f f i c u l t y here of course l i e s i n determining the age at which the steady s t a t e i s reached. Determination of a c t u a l p r o d u c t i v i t y would then hinge on q u a n t i f i c a t i o n of the r e l a t i o n s h i p between standing crop of the climax and, e^ g. maximum net primary . p r o d u c t i v i t y of p i o n e e r - c o n i f e r stands. Standing crops of f o r e s t types are shown i n F i g . 66iV- The general s i m i l a r i t y of F i g . 65 and F i g . 66 i n d i c a t e s , w i t h one e x c e p t i o n , that the c o r r e l a t i o n between climax standing crop and p i o n e e r - c o n i f e r net primary p r o d u c t i v i t y i s f a i r l y c l o s e . The r e l a t i o n of standing crop of one f o r e s t type to the next i s much the same as p r o d u c t i v i t y , w i t h the 137. exception of the A l l u v i a l D e v i l ' s Club community where maximum standing 3 crop of 180 x 10 kg/ha i s the l a r g e s t of a l l . The lowest, d i s r e g a r d i n g 3 the unstable DAC, i s the Lichen a s s o c i a t i o n climax w i t h 15 x 10 kg/ha. Thus i t may be seen that r e l a t i v e p r o d u c t i v i t y of f o r e s t types may be approximated from a knowledge of climax standing crop, and that a c t u a l p r o d u c t i v i t y may be estimated from standing crop provided the r e l a t i o n s h i p i s q u a n t i f i e d f o r at l e a s t one f o r e s t type beforehand. 1 3 8 . SUMMARY AND CONCLUSIONS The main co n c l u s i o n s are summarized as f o l l o w s : 1 . Twenty two f o r e s t types belonging to t h i s Subzone are grouped i n f i v e p l a n t a s s o c i a t i o n s and one A l l u v i a l Complex. The f i r e t f o r e s t type given i n each a s s o c i a t i o n i s the \"type\" community. F o r e s t types f o l l o w i n g are contras t e d w i t h the \"type\". a) Lichen a s s o c i a t i o n - open stands on t h i n - s o i l e d outcrops; Pseudotsuga m e n z i e s i i i s the edaphic climax dominant, A r c t o s t a p h y l o s uva-u r s i and numerous Cladonia spp. are c h a r a c t e r i s t i c ; mean S I ^ ^ ^ 3 5 f t . ; NPP 2 1 2 6 kg/ha/yr.; S 3 1 5 . 0 x 1 0 3 kg/ha. b) Moss a s s o c i a t i o n - 6 f o r e s t types. Slope Normal Moss f o r e s t type - c l o s e d stands on mesic s i t e s ; deep w e l l - d r a i n e d s o i l s , no seepage; c l i m a t i c climax of Tsuga h e t e r o p h y l l a w i t h Pachistima m y r s i n i t e s . Chimaphila umbellata and C a l l i e r g o n e l l a s c h r e b e r i u s u a l l y dominating understory. S I ^ Q 7 0 f t . ; NPP 5 4 0 kg/ha/yr.; S 4 7 . 5 x 1 0 3 kg/ha. Slope Dry Moss - e d a p h i c a l l y d r i e r than SNM, shallow s o i l s , 3 poorer growth; S I 5 Q 5 5 f t . ; NPP 4 3 3 kg/ha/yr.; S 3 3 . 8 x 1 0 kg/ha. Slope Bunchberry Moss f o r e s t type - e d a p h i c a l l y moister than SNM; temporary seepage sometimes presant at depth; improved tree growth; 3 abundant Cornus canadensis; S I 5 Q 8 0 f t . ; NPP 6 7 5 kg/ha/yr.; S 4 7 . 9 x 1 0 kg/ha. Slope Bunchberry Moss, southern v a r i a n t , f o r e s t type - i n south of Subzone; Abies grandis i s c h a r a c t e r i s t i c ; *>I,.Q 7 0 f t . ; NPP 5 0 4 kg/ha/yr. A l l u v i a l Normal Moss f o r e s t type - on sandy t e r r a c e s ; edaphotope * S I ^ Q - height growth i n f e e t at 5 0 years. 2 NPP - net primary p r o d u c t i v i t y of t r e e trunks i n pioneer c o n i f e r stands. 3 S - standing crop of l i v i n g t r e e trunks i n climax stands. 1 3 9 . mesic; Vaccinium m v r t i l l o i d e s . F r a g a r i a glauca. Dicranum rugosum are c h a r a c t e r i s t i c ; S I 5 Q 7 5 f t . ; NPP 6 4 5 kg/ha/yr.; S 3 1 . 0 x 1 0 3 kg/ha. A l l u v i a l Dry Moss f o r e s t type - on coarse-textured t e r r a c e s ; edaphotope dry; s i m i l a r species composition, but lower v i g o u r than ANM; S l 5 ( ) 3 5 f t . ; NPP 2 1 5 kg/ha/yr.; S 1 9 . 4 x 1 0 3 kg/ha. c) A r a l i a Oakfern a s s o c i a t i o n - 7 f o r e s t types. Slope A r a l i a Oakfern f o r e s t type - on moist s i t e s ; climax of mixed Tsuga h e t e r o p h y l l a and Thuja p l i c a t a w i t h abundant A r a l i a n u d i c a u l i s and/or Gymnocarpum d r y o p t e r i s . and T i a r e l l a u n i f o l i a t a i n understory; S I 5 Q 9 0 f t . ; NPP 8 9 6 kg/ha/yr.; S 8 1 . 2 x 1 0 3 kg/ha. Slope A r a l i a Oakfern, pioneer hardwood v a r i a n t , f o r e s t type -e a r l y secondary succession stage to SAO; B e t u l a p a p y r i f e r a . Populus tremu-l o i d e s . Rubus p a r v i f l o r u s . F r a g a r i o b r a c t e a t a common; Gymnocarpium d r y o p t e r i s and T i a r e l l a u n i f o l i a t a r a r e ; *>I^Q 9 5 f t . Slope A r a l i a Oakfern, southern v a r i a n t , f o r e s t type - i n south of Subzone; Abies grandis and T r i l l i u m ovaturn c h a r a c t e r i s t i c ; Gymnocarpium 3 d r y o p t e r i s reduced; S I 5 Q 8 0 f t . ; NPP 6 8 2 kg/ha/yr.; S 1 0 7 . 0 x 1 0 kg/ha. Degraded A r a l i a Oakfern f o r e s t type - stands w i t h t h i c k humus, a c i d s o i l s , o r t s t e i n ; pure Tsuga h e t e r o p h y l l a climax; Streptopus s t r e p t o -poides and Rubus pedatus c h a r a c t e r i s t i c ; S I ^ Q 8 0 f t . ; NPP 7 1 2 kg/ha/yr.; S 6 2 . 5 x 1 0 3 kg/ha. Degraded A a a l i a Oakfern, northern v a r i a n t , f o r e s t type - on north slopes at high e l e v a t i o n s ; R h y t i d i o p s i s robusta dominates bryophytes; subalpine species sometimes present; S l ^ ^ 7 5 f t . ; NPP 5 1 2 kg/ha/yr.; S 6 9 . 6 x 1 0 3 kg/ha. A l l u v i a l A r a l i a Oakfern f o r e s t type - on f i n e - t e x t u r e d regosols near r i v e r s ; e x c e l l e n t v i g o u r of most dominants; S l . . ^ 9 5 f t ; NPP 7 8 6 kg/ha/yr.; S 9 1 . 7 x 1 0 3 kg/ha. 140. A l l u v i a l Bunchberry A r a l i a Oakfern f o r e s t type - on coarse-textured t e r r a c e s ; d r i e r than AAO; Cornus canadensis and Lophozia 3 lycopodioides abundant; S I 5 Q 75 f t . ; NPP 723 kg/ha/yr.; S 60.2 x 10 kg/ha. d) D e v i l ' s Club a s s o c i a t i o n - 4 f o r e s t types. Slope D e v i l ' s Club f o r e s t type - on steep seepage-wet lower s l o p e s ; Thuja p l i c a t a edaphic climax dominant; Oplopanax h o r r i d u s abundant; S I 5 Q 90 f t . ; NPP 1251 kg/ha/yr.; S 164.8 x 1 0 3 kg/ha. Slope D e v i l ' s C lub, northern v a r i a n t , f o r e s t type - high eleva-3 t i o n s ; s o i l s more a c i d than SD; growth poorer; S 155.5 x 10 kg/ha. Tufa D e v i l ' s Club f o r e s t type - by calcium bicarbonate-charged streams where t u f a deposited; stands open; Equisetum s c i r p o i d e s . Brachythecium r i v u l a r e . Cratoneuron f i l i c i n u m c h a r a c t e r i s t i c ; S I ^ ^ 80 f t . ; NPP 636 kg/ha/yr.; S 55.5 x 1 0 3 kg/ha. A l l u v i a l D e v i l ' s Club f o r e s t type - on sandy regosols near r i v e r s ; 3 e x c e l l e n t cedar growth; S I 5 Q 95 f t ; NPP 780 kg/ha/yr.; S 180.0 x, 10 kg/ha. e) Skunk Cabbage a s s o c i a t i o n - 2 f o r e s t types. Creek Skunk Cabbage f o r e s t type - open stands on saturated ground; muck s o i l s ; s l i g h t l a t e r a l water movement; Thuja p l i c a t a edaphic climax dominant; L y s i c h i t u m americanum. V i o l a g l a b e l l a . Mnium punctatum character-3 i s t i c dominants; S I 5 Q 80 f t . ; NPP 594 kg/ha/yr.; S 65.8 x 10 kg/ha. vcg Depression Skunk Cabbage f o r e s t type - standing water; seepage accumulates; a c i d muck; Spiraea d o u g l a s i i var. m e n z i e s i i . Lycopus u n i f l o r u s . 3 Hookeria lucens. F o n t i n a l i s spp. c h a r a c t e r i s t i c ; S 43.7 x 10 kg/ha. f ) A l l u v i a l Complex - 2 f o r e s t types. Wet A l l u v i a l Complex - on stream banks, i s l a n d s , f l o o d p l a i n s ; v a r i a b l e , unstable v e g e t a t i o n dominated by Populus t r i c h o c a r p a . Cornus s t o l o n i f e r a . Corylus c a l i f o r n i c a . P y r o l a a s a r i f o l i a ; S I ^ Q 75 f t . ; NPP 422 kg/ha/yr.; S 34.0 x 1 0 3 kg/ha. 141. Dry A l l u v i a l Complex - on sandbars, r a i s e d banks, coarse sands; d r i e r than WAC; d i s t i n g u i s h e d from WAC by some or a l l of Pinus c o n t o r t a . Mahonia a q u i f o l i u m . Rosa nutkana. Festuca i d a h o e n s i s . Galium b o r e a l e . 3 V i c i a americana. V i o l a adunca: NPP 262 kg/ha/yr.; S 9.2 x 10 kg/ha. 2. I n t r a z o n a l communities i n c l u d e d i n t h i s study are a) Pinus ponderosa - Agropvron spicatum a s s o c i a t i o n b) Pseudotsuga m e n z i e s i i - Arc t o s t a p h y l o s u v a - u r s i -Calamagrostis rubescens a s s o c i a t i o n c) Pseudotsuga m e n z i e s i i - Calamagrostis rubescens a s s o c i a t i o n . 3. Ecotone ( i n t e r z o n a l ) communities stu d i e d i n c l u d e : Douglas F i r Zone/Hemlock Zone ecotone a) Pseudotsuga m e n z i e s i i - Arc t o s t a p h y l o s u v a - u r s i -Calamagrostis rubescens/Moss ecotone b) Pseudotsuga m e n z i e s i i - Tsuga h e t e r o p h y l l a -Smi l a c i n a s t e l l a t a / A l l u v i a l A r a l i a Oakfern ecotone. 4. The most mesic biogeocoenose of the Dry Subzone of the I n t e r i o r Western Hemlock Zone, towards which a l l f o r e s t types h y p o t h e t i c a l l y develop i n primary succession i s the Slope Normal Moss f o r e s t type of the Moss assoc-i a t i o n . T his i s the zonal ( c l i m a t i c climax) community. I t i s the most widespread and c h a r a c t e r i s t i c community of the Subzone. 5. This Subzone i s unique i n that the pioneer stage of the Slope Normal Moss f o r e s t type may d i f f e r s u b s t a n t i a l l y from i t s c l i m a t i c climax stage, i f the humus horizons were o r i g i n a l l y removed a-s by f i r e . In some cases the pioneer stage might be considered as a separate p l a n t a s s o c i a t i o n . 6. Study of species composition suggested t h a t ; a) the soundest comparative s t u d i e s of phytocoenoses are those based on the o b j e c t i v e , r e a d i l y measurable c r i t e r i a of constancy and dominance; b) x e r i c and h y d r i c communities may be r e a d i l y recognized on the 142. b a s i s of a few e c o l o g i c a l l y r e s t r i c t e d , d i a g n o s t i c dominants; the c h a r a c t e r i s t i c species composition i s not an important d i a g n o s t i c t o o l i n such s i t e s ; the L i c h e n , Skunk Cabbage and A l l u v i a l Complex are f l o r i s -t i c a l l y the most s h a r p l y - d e f i n e d of a l l p l a n t a s s o c i a t i o n s ; c) r e c o g n i t i o n of mesic communities leans h e a v i l y on the c h a r a c t e r i s t i c combination of species and growth c h a r a c t e r i s t i c s of teees; most species on mesic s i t e s have wide e c o l o g i c a l amplitudes. 7. With regard to v a r i a t i o n i n v e g e t a t i o n during secondary succession, a) depending on degree of s o i l disturbance and the p r o x i m i t y of tree seed f o r r e c o l o n i z a t i o n f o l l o w i n g f o r e s t removal, succession may go d i r e c t l y from deforested land to pioneer-hardwood, p i o n e e r - c o n i f e r or climax f o r e s t ; normally a pioneer stage intervenes before the climax; b) except on edaphic extremes, crown cover i s g e n e r a l l y a t a maximum during the p i o n e e r - c o n i f e r stage, and drops o f f i n the climax; t h i s i s as s o c i a t e d w i t h a concomitant minimum, then an i n c r e a s e , i n l e s s e r v e g e t a t i o n cover; c) on mesic s i t e s Tsuga h e t e r o p h y l l a becomes p r o g r e s s i v e l y more important as the climax i s approached, w h i l e a l l other trees tend to dec-r e a s e , Thuia p l i c a t a being the l a s t to drop out; d) on mesic s i t e s Taxus b r e v i f o l i a , C o r a l l o r h i z a maculata. Goodyera o b l o n g i f o l i a . Lophozia l y c o p o d i o i d e s . Hylocomium splendens and R h y t i d i o p s i s robusta increase to a maximum i n the climax; Shepherdia canadensis. Rubus p a r v i f l o r u s , F r a g a r i a b r a c t e a t a , Cladonia spp. , Epilobium a n g u s t i f o l i u m , P o l y t r i c h u m junipeiinum show concurrent decrease; on decaying wood C a l l i e r -g o n e l l a s c h r e b e r i , Dicranum fuscescens, Cephalozia spp. . Mnium spinulosum, and R h y t i d i o p s i s robusta i n c r e a s e to a climax maximum. 8. With regard to the r e l a t i o n s h i p of l e s s e r v e g e t a t i o n cover and t r e e d e n s i t y , 143. a) w i t h i n the normal range of l i g h t p e n e t r a t i n g crown canopies, cover of l e s s e r v e g e t a t i o n on mesic to'moist s i t e s i s i n v e r s e l y propor-t i o n a l to i ) t r e e crown cover and i i ) stand d e n s i t y as measured by basal area; b) on wet s i t e s no such r e l a t i o n s h i p e x i s t s ; t h i s i s because of d i f f e r e n c e s i n species composition, and abundant a v a i l a b l e s o i l moisture at a l l times during secondary succession; 9. With regard to the r e l a t i v e importance of t r e e s i n the Subzone } a) Tsuga h e t e r o p h y l l a i s the dominant t r e e , and i s the c l i m a t i c climax species on mesic s i t e s ; b) Thuja p l i c a t a codominates w i t h hemlock, being e x c l u s i v e edaphic climax dominant on wet s i t e s ; c) Pseudotsuga m e n z i e s i i i s the most widespread pioneer c o n i f e r and i s the edaphic climax dominant, i n a s s o c i a t i o n w i t h Pinus m o n t i c o l a . on very dry d i t e s ; d) Trees arranged i n decreasing order of importance i n the Subzone are Tsuga h e t e r o p h y l l a . Thuja p l i c a t a . Pinus m o n t i c o l a . Pseudotsuga m e n z i e s i i . B e t u l a p a p y r i f e r a . P i c e a engelmannii. L a r i x o c c i d e n t a l i s . Populus tremuloides. Pinus c o n t o r t a . Populus t r i c h o c a r p a . Abies l a s i o c a r p a and A. g r a n d i s ; 10. With regard to t r e e performance i n d i f f e r e n t f o r e s t types ; a) c o l l e c t i v e l y , deciduous species are of l e s s importance than c o n i f e r s i n a given f o r e s t type; b) Populus t r i c h o c a r p a grows best i n stands i n the A l l u v i a l Complex; i n d i v i d u a l t r e e s grow w e l l i n the Tufa D e v i l ' s Club f o r e s t type; best volume per acre i n Wet A l l u v i a l Complex; c) B e t u l a p a p y r i f e r a stands grow best i n the A r a l i a Oakfern a s s o c i -a t i o n ; i t i s a s e r a i species found i n a l l but the most a c i d f o r e s t types; 144. d) Populus tremuloides. another s e r a i a p e c i e s , occurs only on mesic to moist s i t e s with best growth i n the Slope A r a l i a Oakfern and Tufa D e v i l Club f o r e s t types; e) Tsuga h e t e r o p h y l l a i s c l i m a t i c climax dominant on mesic s i t e s ; i t i s a major component of a l l f o r e s t types; best volume per acre i n Moss and A r a l i a Oakfern a s s o c i a t i o n ; f ) Thuia p l i c a t a i s a major component of a l l f o r e s t types being edaphic climax tre e on wet s i t e s ; i t s h i g h f o l i a g e - c a l c i u m i s important i n m a i n t a i n i n g adequate s o i l n u t r i e n t l e v e l s ; best volume growth i n D e v i l ' s Club and Skunk Cabbage a s s o c i a t i o n s ; g) Pinus monticola and Pseudotsuga m e n z i e s i i grow t a l l e s t on wet s i t e s , but best volume per acre i s i n Moss and A r a l i a Oakfern a s s o c i a t i o n s both are s e r a i species i n a l l but the Lichen a s s o c i a t i o n where they codominate i n climax stands; h) L a r i x o c c i d e n t a l i s and Pinus c o n t o r t a grww best i n the Slope A r a l i a Oakfern f o r e s t type yet pure stands are rare and u s u a l l y l i m i t e d to dry s i t e s ; n e i t h e r i s prominent i n the Subzone; i) P i c e a engelmannii occupies a wide range of s i t e s as a s e r a i specie but grows best i n r i v e r s i d e stands; best volume per acre i n A l l u v i a l A r a l i a Oakfern and Wet A l l u v i a l Complex. 11. Concerning net primary p r o d u c t i v i t y of f o r e s t types i t was concluded t h a t , a) comparisons of f o r e s t type p r o d u c t i v i t y should be based on a p e r i o d ending where mean annual volume increment culminates, b) the most productive f o r e s t type f o r tree stems was the Slope D e v i l ' s Club community, and the l e a s t productive the Lichen a s s o c i a t i o n . 12. Concerning standing crop of f o r e s t types i t was concluded t h a t } a) r e l a t i v e p r o d u c t i v i t y of f o r e s t types may be estimated from stand-i n g crop of climax stands. b) the greatest standing crop i n l i v i n g tree stems was i n climax stands of the D e v i l ' s Club a s s o c i a t i o n and the l e a s t i n the Lichen a s s o c i a t i o n and Dry A l l u v i a l Complex. 13. This study l e d t o the general conclusions^ a) that the most \" n a t u r a l \" c l a s s i f i c a t i o n of land i s one based on study of biogeocoenoses, and t h a t ? b) biogeocoenotic c l a s s i f i c a t i o n provides a sound b a s i s f o r land use planning i n t h i s r e g i o n and should be a p p l i c a b l e t o other areas. 146. LITERATURE CITED Anonymous. 1964. I n t e r n a t i o n a l B i o l o g i c a l Programme: Report of the planning committee, November 15, 1963. B i o s c i e n c e , A p r i l , p. 43-49. A r l i d g e , J . W. C. 1955. A p r e l i m i n a r y c l a s s i f i c a t i o n and e v a l u a t i o n of Engelmann Spruce - A l p i n e F i r F o r e s t at Bolean Lake, B.C. M. F . t h e s i s , Univ. B r i t i s h Columbia. Baker, F. S. 1950. P r i n c i p l e s of s i l v i c u l t u r e . McGraw H i l l , New York. 414 p. Bates, C. G. and R. Zon. 1922. Research methods i n the study of f o r e s t environment. U.S. Dept. A g r i c . B u l l . 1059. 208 p. Becking, R. W. 1954. S i t e i n d i c a t o r s and f o r e s t type c l a s s i f i c a t i o n of the Douglas f i r r e g i o n i n western Washington and Oregon. Univ. Washington, Ph.D. t h e s i s , 133 p. Becking, R. W. 1957. The Z u r i c h - M o n t p e l l i e r school of phytosociology. Bot. Rev. 23:411-488. Bernsten, C. M. 1958. S i l v i c a l c h a r a c t e r i s t i c s of western hemlock. P a c i f i c Northwest For. and Range Exp. Sta. S i l v i c a l s e r i e s 3, 16p. Bingham, R. T., A. E. S q u i l l a c e and J . W. Wright. 1960. Breeding b l i s t e r r u s t r e s i s t a n t western white pine. I I . F i r s t r e s u l t s of progeny t e s t s i n c l u d i n g p r e l i m i n a r y estimates of h e r i t a b i l i t y and r a t e of improvement. S i l v . Gen. 9:33-41. Boyd, R. J . , J r . 1959. S i l v i c s of western red cedar. Intermt. For. and Range Exp. Sta. Misc. Publ. 20, 14p. Braun-Blanquet, J . 1932. P l a n t s o c i o l o g y : the study of p l a n t communities. ( T r a n s l . , r e v i s . and ed. by G. D. F u l l e r and M. S. Conrad) McGraw H i l l , New York, 439 p. Bray, J . R. and J . T. C u r t i s . 1957. An o r d i n a t i o n of the upland f o r e s t communities of southern Wisconsin. E c o l . Monogr. 27(4):325-349. Brayshaw, T. C. 1955. An e c o l o g i c a l c l a s s i f i c a t i o n of the Ponderosa Pine stands i n the southwestern i n t e r i o r of B r i t i s h Columbia. Univ. B r i t i s h Columbia, Ph.D. t h e s i s , 240 p. Brooke,fi.l964. Vegetation-environmental r e l a t i o n s h i p s of Subalpine Mountain Hemlock Zone ecosystems. Univ. B r i t i s h Columbia, Ph.D. t h e s i s . Brown, W. G. E. 1963. Land c l a s s i f i c a t i o n and zoning. For. Chron. 39(1):40. B u e l l , M. E. and J . E. Cantlon. 1951. A study of two f o r e s t stands i n Minnesota w i t h an i n t e r p r e t a t i o n of the p r a i r i e - f o r e s t margin. E c o l . 32:294-316. B u e l l , M. F. and R. L. Wilbur. 1948. L i f e - f o r m spectra of the hardwood f o r e s t s of the I t a s c a Park r e g i o n , Minnesota. E c o l . 29:352-359. 147. Burger, H. 1953. H o l z , Blattmenge und Zuwechs. 13. F i c h t e n im g l e i c h -a l t e r i g e n Hochwald. M i t t , schweiz Zent Anst. f o r s t l . Versuchsw. 29;38-128. C a i n , S. A. and G. M. de O l i v e i r a Castro. 1959. Manual of ve g e t a t i o n a n a l y s i s . Harper, New York. 325 p. Carpenter, J . R. 1956. An e c o l o g i c a l g l a s s a r y . Hafner, New York. 306 p. C h u r c h i l l , E. D. and H. C. Hanson. 1958. The concept of climax i n a r c t i c and a l p i n e v e g e t a t i o n . Bot. Rev. 24:127-191. Clements, R. E. 1916. P l a n t succession. Carneg. I n s t , of Wash. Publ. 242. Clements, R. E. 1920. P l a n t i n d i c a t o r s . Carnegie I n s t . Wash. Publ. 290. Clements, F. E. 1936. Nature and s t r u c t u r e of the climax. Jour. E c o l . 24(l):253-284. Cowles, H. C. 1911. The causes of v e g e t a t i v e c y c l e s . Bot. Gaz. 51:161-183. C u r t i s , J . T. 1947. The palo verde f o r e s t type near Gonivares, H a i t i , and i t s r e l a t i o n to the surrounding v e g e t a t i o n . Caribbaean F o r e s t e r 8:1-26 ( c i t e d i n Cain and C a s t r o , 1959). C u r t i s , J . T. and R. P. Mcintosh. 1951. An upland f o r e s t continuum i n the p r a i r i e - f o r e s t border region of Wisconsin. E c o l . 32:476-496. Dansereau, P. 1943. L ' e r a b l i e r e l a u r e n t i e n n e . I Valeur d ' i n d i c e des especes. Can. Jour. Res. 21\"66-93. Daubenmire, R. F. 1952. For e s t v e g e t a t i o n of northern Idaho and adjacent Washington, and i t s bearing on concepts of v e g e t a t i o n c l a s s i f i c a t i o n . E c o l . Mon. 22:301-330. Daubenmire, R. F. 1953. N u t r i e n t content of l e a f l i t t e r of t r e e s i n the northern Rocky Mountains. E c o l . 34: 786-793. Deevey, E. S. and R. F. F l i n t . 1957. P o s t g l a c i a l hypsithermal i n t e r v a l . Science 125:182-184. Douglas, David. 1914. Jo u r n a l kept by David Douglas during h i s t r a v e l s i n North America 1823-1827. W i l l i a m Wesley & Son. London. 364 p. Drees, M e i j e r . 1953. A Tentative Design f o r Rules of P h y t o s o c i o l o g i c a l Nomenclature. Vegetatio Acta Geobotanica 4(4):205-214. Du R i e t z , G. E. 1931. L i f e forms of t e r r e s t r i a l f l o w e r i n g p l a n t s . Acta Phytogeogr. Suecica 3:1-95. E i s , S. 1962. S t a t i s t i c a l a n a l y s i s of s e v e r a l methods f o r e s t i m a t i o n of f o r e s t h a b i t a t s and tree growth near Vancouver, B.C. Univ. B r i t i s h Columbia, F a c u l t y of F o r e s t r y , B u l l . 4, 76 p. F l i g g , D. M. 1960. E m p i r i c a l Y i e l d Tables. B. C. Forest S e r v i c e , Survey Note 6. 148. F o r e s t Club. 1959. U n i v e r s i t y of B r i t i s h Columbia. F o r e s t r y Handbook f o r B r i t i s h Columbia. 2nd ed. Vancouver. 800 p. Fosberg, F. R. 1961. The study of v e g e t a t i o n i n Europe. Am. I n s t . B i o l . S c i . B u l l e t i n . June. F r i e d e r i c h s , K a r l . 1930. Die Grundfragen und Gesetzmasugheiten der Land-und F o r s t w i r t s c h a f t l i c h e n Zoologie. I Band: Okologischer T e i l . B e r l i n . Gilmour, J . S. L. 1951. The development of taxonomic theory since 1851. Nature 168:400-402. Gleason, H. A. 1926. The i n d i v i d u a l i s t i c concept of the p l a n t a s s o c i a t i o n . B u l l . T orr. Bot. Club 53V7-26. G o o d a l l , D. W. 1953. Objective methods f o r the c l a s s i f i c a t i o n of v e g e t a t i o n , I . The use of p o s i t i v e i n t e r s p e c i f i c c o r r e l a t i o n . Aust. J . Bot. 1:39-63 G o o d a l l , D. W. 1954. Vegetation c l a s s i f i c a t i o n and v e g e t a t i o n a l continua. Angew. Pflanzensoz. Festsch. A i c h i n g e r 1:168-182. Greig-Smith, P. Q u a n t i t a t i v e p l a n t ecology. 1957 Butterworths S c i e n t i f i c P u b l i c a t i o n s , London. 190 p. Hanson, H. C. 1958. P r i n c i p l e s concerned i n the formation and c l a s s i -f i c a t i o n of communities. Bot. Rev. 24:66-125. Hanson, H. C , and E. D. C h u r c h i l l . 1961. The p l a n t community. Reinhold, New York. 218 p. Hartmann, F. 1952. F o r s t o k o l o g i e . Fromme and Co. Vienna. 461 p. Heilmann, P. E. 1961. E f f e c t s of n i t r o g e n f e r t i l i z a t i o n on the growth and n i t r o g e n n u t r i t i o n of l o w - s i t e Douglas f i r stands. Univ. Washington, Ph.D. t h e s i s . H i l e y , W. E. 1950. The western hemlock. Quart. Jour, of For. J u l y . p.128-136. H o l d r i d g e , L. R. 1959. Simple method f o r determining p o t e n t i a l e v a p o t r a n s p i r a t i o n from temperature data. Science 130:527. H o l l i c k , A. 1927. The f l o r a of the Eugene s i l t s , Kootenay V a l l e y , B r i t i s h Columbia. Mem. New York Bot. Garden, V o l . 7. Hughes, R. E. and L i n d l e y , D. V. 1955. A p p l i c a t i o n of b i o m e t r i c methods to problems of c l a s s i f i c a t i o n i n ecology. Nature 175:806-807. Iarashenko, P. D. 1946. On changes i n p l a n t cover. Bot. Zhurnal. SSSR 31:29-40 (In Major, 1951). I l l i n g w o r t h , K. and J . W. C. A r l i d g e . 1960. I n t e r i m r e p o r t on some f o r e s t s i t e types i n lodgepole pine and spruce-alpine f i r stands. Research note 35. B. C. F o r e s t S e r v i c e . I l v e s s a l o , Y. 1929. Notes on some f o r e s t s i t e types i n North America. Acta F o r e s t a l i a Fennica 34(39):1-111. 149. Johnson, Kate. 1951. Pioneer days of Nakusp and the Arrow Lakes. Nakusp, B. C. 146 p. Johnston, George R. 1954. A p r e l i m i n a r y study of p l a n t i n d i c a t o r s at three experimental area i n the Upper Arrow F o r e s t . Assoc. of B r i t i s h Columbia F o r e s t e r s t h e s i s , Vancouver. 71 p. Ker, J . W. 1957. Volume growth and y i e l d of the important timber species i n the Arrow Lakes d i s t r i c t of B r i t i s h Columbia. Yale School of F o r e s t r y , D.F. t h e s i s . Kerner, A. 1863. The p l a n t l i f e of the Danube b a s i n . ( T r a n s l . from German by H. S. Conard, 1951.) Iowa State College Press, Ames, Iowa. K r a j i n a , V. 1933. Die P f l a n z e n g e s e l l s c h a f t e n der Mlynica-Tales i n den Vysoke Tatry (Hohe t a t r a ) . M i t besondere Berucksichtigung der okologischen V e r h a l t n i s s e . Bot. C e n t r a l b l . , Beih. , Abt. 2, 50:774-957; 51:1-224. K r a j i n a , V. J . 1953, 1954, 1955. E c o l o g i c a l c l a s s i f i c a t i o n of hemlock f o r e s t s , Columbia R i v e r b a s i n . Unpublished Reports, Dept. B i o l , and Bot., Univ. B r i t i s h Columbia. K r a j i n a , V. J . 1959. B i o c l i m a t i c Zones i n B r i t i s h Columbia. Univ. B r i t i s h Columbia, Bot. Ser. 1, Vancouver, 47 p. K r a j i n a , V. J . 1960. Can we f i n d a common p l a t f o r m f o r the d i f f e r e n t schools of f o r e s t type c l a s s i f i c a t i o n ? p. 50-55. J j i Symposium on f o r e s t types and f o r e s t ecosystems h e l d during the IX I n t e r n a t i o n a l B o t o n i c a l Congress, Montreal, 1959. S i l v a Fennica 105, 142p. K r a j i n a , V. J . 1963. The e f f e c t of v e g e t a t i o n on s o i l formation. Paper presented at the Second S o i l Science Workshop, Vancouver, Nov. 1963. K r a j i n a , V. J . 1964. B i o g e o c l i m a t i c Zones and c l a s s i f i c a t i o n of B r i t i s h Columbia. (Paper presented a t Western Sect i o n meetings of Ecotb. Soc. of Amer., Vancouver, B.C.) K r a j i n a , V. J . 1964. R e v i s i o n of B i o g e o c l i m a t i c Regions and Zones i n B r i t i s h Columbia. In Report on ecology of the f o r e s t s of the P a c i f i c Northwest. Unpublished r e p o r t , Dept. B i o l , and Bot., U n i v e r s i t y of B r i t i s h Columbia. K r a j i n a , V. J . and R. H. S p i l s b u r y . 1953. Forest a s s o c i a t i o n s on the east coast of Vancouver I s l a n d . _In F o r e s t Club, F o r e s t r y Handbook f o r B. C , p. 142-145. Univ. of B r i t i s h Columbia. K u c h l e r , A. W. 1964. P o t e n t i a l n a t u r a l v e g e t a t i o n of the conterminous United S t a t e s . Am. Geogr. S o c , New York. K u j a l a , V. 1945. Waldvegetationsuntersuchungen i n Kanada. Am. Acad. S c i e n t . Fenn. S e r i e s A. IV V i o l o g i c a , 1. Lesko, G. L. 1961. E c o l o g i c a l study of s o i l s i n the Coastal Western Hemlock Zone. Univ. B r i t i s h Columbia, M.Sc. t h e s i s , 141p/ L u t z , H. J . 1930. The v e g e t a t i o n of Hearts' Content, a v i r g i n f o r e s t i n northwestern Pennsylvania. Ecology 11:1-29. 150. McMinn, R. G. 1960. Water r e l a t i o n s and f o r e s t d i s t r i b u t i o n i n the Douglas f i r r e g i o n on Vancouver I s l a n d . Forest B i o l . D i v . , Canad. Dept. Agr. Publ. 1091. 7 < a tc c Coniferous Species Douglas- Vhlte Hemlock Cedar F i r Larch Pine Deciduous Species Lodgepole Alpine Grand Engelmann Cotton- Nanophan-Pine Fir F i r Spruce Birch Aspen wood erophyCes Succession Tndlce\u00E2\u0080\u00A2 Stages within types Actual X I 85 220+ 35 . U 87' 89 8.0 315 50 99 27 32:18 13:11 25:27 3:6 16:36 2 121 120 25 u 93 63 4.3 1070 50 . 106 8 12:11 56:37 11:27 7:8 2 204 98 30 u 70 57 5.2 535 50 80 5 48:30 31:38 17:22 1:3 1:7 2 122 87 \u00E2\u0080\u00A240 B 100 64 4.8 899 91 114 15 2:5 26:25 18:34 7:10 2 117 72 45 E 84 75 . 6.1 470 20 96 3 2:1 78:63 4:1 +10:34 TOTAL L2 377 140 347 259 20.4 2974 211 396 31 16:17 208:155 64:100 17:22 25:55 1:7 MEAN L2 94 35 87 65 5.1 744 53 99 8 * 4:4-* 52:39 16:25 4:6 6:14 0:2 F - Frequency (no. plots) L2 3 4 4 1 4 V 1 / - FX- Frequency Percent LZ 75 \u00E2\u0080\u00A2 100 100 25 100 25 IVI- Importance Value Index L2 - 83 191 141 35 120 27 5:15 1:0 14:21 8:2 9.2 2:1 33:6 6:1 20:36 5:9 3 75 \u00E2\u0080\u00A2 50:10 13:2 4 100 115 TOTAL L 175 434 350 28.4 3289 261 495 58 48:35 221:166 89:127 20:28 41:91 1:7 3:0 20:36 58:12 MEAN L 35 87 70 5.9 658 .52 99 12 10:7 44:33 18:25 4:6 8:18 0:1 1:0 4:7 12:2 F - L 4 5 5 2 5 1 1 3 . 5 n - L- 80 100 100 40 100 20 20 60 100 IVI- L 97 177 143 50 126 21 21 71 114 SDH 1 56 170+ 50 E 100 93 7.1 925 270 272 59 49:53 36:15 11:26 2:4 1:1 1:0 1 1 175+ 60 U 59 104 8.9 425 25 161 34 79:59 20:35 1:5 1 86 230+ - 0 67 .95 6.0 890 65 183 4 \u00E2\u0080\u00A2 64:49 19:8 4I23 \u00E2\u0080\u00A2 5:19 8:1 TOTAL SDMI 575 110 226 292 22.0 2240 360 616 97 192:171 75:58 15:49 8:28 - 1:1 1:0 8:1 MEAN SDMI 172 55 75 97 7.3 747 120 205 32 64:57 25:19 5:16 3:9 0:0 0:0 3:0 F-SDM1 3 3 2 ' 3 1 1 1 n -SDH1 100 100 66 100 33 33 33 IVI -SDMI 221 144 87 112 33 33 36 SDK. 2 84 89 60 E 86? 86 4.9 1925 145 235 32 11:4 67:21 17:57 1:3 4:15 0:0 TOTAL SDM 170 312 378 26.9 4165 505 851 129 . 203:175 142:79 32:106 1:3 12:43 1:1 1:0 8:1 MEAN SDM 55 78 95 6.7 1041 126 213 32 51:44 36:20 . 8:26 0:1 3:11 0 : 0 . 0:0 2:0 F-SDM 4 4 3 1 4- 1 2 1 Fl-SDM 100 100 75 25 too 25 50 25 IVI-SDM 195 156 no 26 114 25 50 27 35 in Vi 5 3 <7\u00C2\u00BB \u00C2\u00AB0 K) O S3, a 5 \u00C2\u00AB S i -..-S3-M ISl (S> 335 M O ff\u00C2\u00BB o \u00C2\u00BB* \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o oa \u00C2\u00AB\u00E2\u0080\u00A2 CO >o CO C< W O C- OJ OJ Q0 09 \u00E2\u0080\u00A2*Ui00HM> ^ rr rr rr* ff rr ^ \u00C2\u00A7 u\u00C2\u00AB C \" J J O - J W O O U * \u00E2\u0080\u00A2 O te\u00C2\u00BB U l> U Ul CO U -J OJ O o o o* u> Co o> rs> >\u00E2\u0080\u0094\u00E2\u0080\u00A2 x> C7\u00C2\u00BB Ui Ui \u00C2\u00AB QD Ul o o o o \u00E2\u0080\u00A2 - O O O o ' o 1 o n m n n n o* w< ** v> w o> u* w c \u00C2\u00BB OJ w J> - 0< ro H j> w w O S3-III to IT w ro \u00C2\u00A3\u00E2\u0080\u00A2 sO l/i U U O ~ J ^ 0 '* r- oV \" \" 0 0 w *\u00E2\u0080\u00A2 i ~ OJ OJ ........ kwf VI N o -o o o o o HJ OJ U> \u00C2\u00BB- ** W ' CD U \u00C2\u00BB\u00E2\u0080\u0094 >-Forest Type Stand Number Avge. Age of Dominants S i t e Index 50 years ( f t ) Even or Uneven Aged St o c k i n g Percent Avge. Height D & Co ( f t ) 6 Avge. DBH ( i n ) * L i v i n g n \"0 c \u00E2\u0080\u00A2\u00C2\u00BB 0 O 3 \u00E2\u0080\u00A2O O 3\" -O XT f> c rr> BASIC DATA I - FOREST INVENTORY SUMMARY AND IMPORTANCE VALUES (CONTINUED) So.Stems/Ac Basal Area/Ac X Composition of Species-* Megaphancrophyteg Number Stems/Acre: Basal Area/Acre O H 'I > CO *-* 41 to < a oO C > Coniferous Species Douglas- White Lodgepole Alpine Hemlock Cedar Fir Larch Pine Plna ' Fir Succession Indices Decldooua Species Grand Engel ma nn Cotton- Nsnophan-Flr Spruce Birch Aspen vood erophytca Stages within types Actual t Forest Types within ionos Actual X SBM 1 164 250+ - D 79 (107) 7.6 750 45 236 17 59:88 38:11 1:0 3:0 1 10 190 60 E 100 119 13.0 310 30 298 17 61:58 31:21 5:13 3:9 1 107 250+ 80 U 98 114 9.5 595 55 293 24 77:84 17:2 5:14 1:0 1 90 200+ 70 E 68 97 7.3 685 80 203 17 89:86 8:8 3:7 TOTAL SEMI 890 210 345 437 37.4 2340 210 1030 75 286:316 94:42 5:13 12:30 6:0 MEAN SBM1 223 70 86 109 9.4 585 53 258 19 72:79 23:11 1:3 3:7 1:0 r -SBM1 4 4 1 4 2 n - SBM1 100 100 25 100 50 IVI -SBM1 251 134 29 no 51 SBM 2 111 85 80 E 92 118 4.9 1800 440 287 8 29:20 62:26 4:41 0:3 2:8 0:0 1:1 0:1 1:0 2 81 84 80 E NO DATA 2 110 81 70 E 75 101 6.0 1095 150 232 16 . 59:36 21:10 5:28 0:1 12:20 1:3 1:1 2 38 83 70 E 53 102 4.1 1850 1345 165 132 90:66 6:8 1:5 1:9 2:9 1:3 2 92 96 70 E 99 106 7.3 1060 5 308 1 65:51 19:11 4:11 10:27 2:0 2 6 66 80 E 100 121 8.2 650 290 311 30 64:46 22:17 2:5 12:32 2 58 108 80 E 98 109 9.2 600 300 304 147 8:1 54:27 20:38 5:12 11:19 2:2 TOTAL SES2 623 530 517 657 39.7 7055 2530 1607 334 315:220 184:99 36:128 6:25 49:115 1:3 0:0 5:7 0:1 3:0 HEAN SBM2 89 75 86 109 6.6 1176 422 268 56 53:37 31:17 6:21 0:2 8:19 0:0 0:0 0:1 0:0 0:0 r -SEM2 6 6 6 4 6 1 1 4 1 2 FX -SBM2 100 100 100 67 100 17 17 67 17 33 IVI -SBM2 190 148 127 69 127 17 17 68 17 33 SBM 3 160 83 80 E 76 111 10.0 380 45 194 37 36:24 33:16 14:42 7:8 3:1 8:8 3 206 98 80 E 75 120 5.7 1070 645 192 113 3:5 88:45 3:12 4:37 0:0 1:1 3 158 82 80 E 95 112 9.2 465 78 243 7 29:17 31:17 27:48 6:14 . 3:1 3:3 3 157 86 70 E 82 103 7.2 695 105 209 16 1:0 9:4 45:89 22:6 23:0 3 89 25 90 E 49 39 2.3 4365 _ 125 - 80:57 4:3 4:3 11:33 1:2 1:1 3 67 59 100 E 76 106 6.2 925 145 195 29 21:11 61:29 6:24 1:3 7:26 2:6 1:1 1:1 3 87 52 90 E 80 96 6.0 1020 165 205 31 31:6 35:16 21:58 0:1 8:13 1:0 3:4 0:1 '. 0:0 3 168 68 90 E 47 _ 11.3 215 20 120 44 5:2 21:13 30:38 42:44 . 2:2 3 88 52 80 E 49 79 5.9 685 75 125 19 22:8 26:14 38:62 10:15 4:0 3 53 59 90 E 58 98 6.4 420 275 149 8 18:8 14:9 10:27 10:25 30:19 1:0 1:2 1:1 15:9 '. 3 60 63 80 E 82 101 8.1 515 120 210 20 8:4 9:3 24:34 31:41 8:9 8:3 5:4 s!o 3 17 61 100 E 100 111 5.1 1705 225 255 \" 15 27:15 55:18 1:3 6:28 3:12 1:2 7:22 TOTAL SBM3 788 1030 869 1076 83.4 12460 1898 2222 339 281:157 382:184 220:428 45:88 116:236 33:27 2:1 10:7 45:40 31:25 35:0 MEAN SEM3 66 85 72 98 7.0 1038 158 185 26 23:13 32:15 18:36 4:7 10:20 3:2 0:0 1:1 4:3 3:2 3:0 F -SEM3 12 11 11 6 11 3 7 7 6 4 n -SEM3 100 92 92 50 92 23 17 58 58 50 33 IVI -SBM3 136 139 146 61 122 30 17 60 65 55 36 SBM 4 47\u00C2\u00AB - . 42500 _ 69: - 27: . 1: - 4:- *Young Regeneration Only. Not Included ln calculations SBHs 2 189 83 80 E 100 76 7.4 910 190 295 29 26:13 25:10 32:47 . 6:21 1:1 9:6 1:2 SBMs 3 186 54 60 E 84 . 113 4.0 2575 720 215 72 41:13 10:24 9:30 1:3 24:17 1:1 13:11 TOTAL SBM 1910 1915 2240 171.9 25340 5548 5369 849 949:719 695:359 302:646 51:113 174:383 35:31 2:1 33:23 11:8 63:58 32:28 42:0 MEAN SBM 80 80 97 7.2 1056 231 224 35 40:30 29:15 12:27 2:5 7:16 3:3 0:0 1:1 0:0 3:2 3:2 2:0 EASIC DATA I - FOREST INVENTORY SUMMARY AMD IMPORTANCE VALUES1 (CONTINUED) > c** \u00E2\u0080\u00A2 c . . . \u00C2\u00B0 K v J x C u No.Stems/Ac Easel Area/Ac X Composition of Species' - Number Stems/Ac re: Basal Area/Acre \u00E2\u0080\u00A2a \u00C2\u00AB c u co c *. \u00C2\u00AB ' to McRaphanerophytes Succession Indices u ^ s a \u00E2\u0080\u00A2 c \u00C2\u00AB o c JC V o \u00E2\u0080\u00A2 W GO c eo c Coniferous Specie s jcclduous Species Stages within Forest types u V\ a c -2 cj B a -< CO B c -o a o O k. V ce iO Ml C > -a \u00E2\u0082\u00AC1 > \u00E2\u0080\u00A2o 0 Douglas- White Lodgepole Alpine Grand Engelmann Cotton- Nanophan- types v l t h l n tone OH \u00C2\u00AB fc. Vi \u00E2\u0080\u00A2 \u00C2\u00AB o i& -< o tn t/% > M w <.a > -* < ^ .J a, Hemlock Cedar F i r Larch Pine Pine F i r F i r Spruce Birch Aspen vood arophytes Actual X Actual X r - SBM 24 23 20 10 23 6 2 3 9 12 8 8 FX - SBM 100 96 83 42 96 25 8 12 37 50 33 33 IVI - SBM 170 140 122 49 119 31 8 14 37 55 38 35 250 71 ADM 1 123 190 40 u 597 89 4.4 1170 65 128 3 51:68 12:6 4:1 0:8 3:12 4:2 26:3 ADM 2 124 113 20 U .45 55 * 2.8 2355 . 98 - 0:1 4:1 77:66 . 6:14 11:17 1:1 2 55 60 50 E 100 . 64 2.4 8630 230 216 29 75:51 9:2 3:4 2:21 8:13 0:2 3:6 TOTAL ADM 110 204 208 9.6 12155 295 442 32 126:120 25:9 84:71 2:29 17:39 11:19 3:6 5:3 26:3 MEAN ADM 35 68 69 3.2 4052 98 147 . 11 42:40 8:3 28:24 1:10 6:13 4:6 1:2 2:1 9:1 F - ADM 3 3 3 2 3 2 1 2 1 FX - ADM 100 100 100 67 100 67 33 67 33 IVI - ADM 182 111 152 78 119 77 36 70 337 95 urn t 43 250+ 40 U 100 101 6.2 825 65 188 6 88:68 7:24 4:7 1:1 1 44 250+ - U 94 99 6.5 605 240 176 18 82:75 17:18 1:6 1:1 AUK 2 80 82 E 100 96 4.8 1735 910 276 60 73:44 8:4 13:29 1:5 5:18 0:1 2 207 76 70 E 76 91 . 5.0 1370 295 209 17 65:52 10:1 20:31 2:11 0:0 ' 2:3 1:1 ANM . 3 77 42 70 E 64 54 1.9 7370 200 160 3 68:62 25:4 5:32 0:1 1:1 3 42, 74 90 E 94 116 9.3 375 90 179 42 43:28 20:15 17:21 17:32 3:4 3 40 67 70- E 52 76 7.1 345 45 100 7 . 6:5 6:6 6:10 64:59 1:5 4:2 14:14 3 29 58 80 E 56 80 5.3 725 5 108 3 69:32 8:6 4:9 5:10 12:38 3:5 3 - 37 63 80 U 72 91 4.6 1425 375 138 69 75:25 7:19 2:9 1:12 11:32 1:5 0:1 2:7 0:0 1:0 3 . 41 68 80 E 100 99 6.6 705 210 191 24 33:24 25:24 2:5 . 26:36 1:1 1:1 1:3 6:8 5:0 3 208 42 80 E 55 31 5.0 535 420 105 27 81:70 7:15 2:6 10:8 TOTAL AKM3 414 550 513 547 39.8 11480 1345 981 175 294:176 91:64 112:124 11:54 137:212 3:11 10:16 14:18 23:26 6:0 MEAN AKM3 59 60 75 78 5.7 1640 192 140 25 42:25 13:9 16:18 3:8 20:30 0:2 1:2 2:3 3:4 1:0 F - ANM3 6 6 6 3 6 3 6 4 4 2 FX - ANM3 86 '86 86 43 86 43 86 57 57 29 IVI - ANM3 153 .108 120 54 - 136 45 89 62 64 30 TOTAL ANM 660 1087 934 62.3 16015 2855 1830 276 602:415 133:111 145:184 13:65 148:248 3:12 12:16 16:21 24:27 6:0 MEAN ANM 75 78 85 5.7 1456 260 166 25 55:38 12:10 13:17 1:6 13:23 0:1 1:2 1:2 2:2 1:0 F - ANH 10 10 8 5 9 4 9 5 5 2 F l - ANM 91 91 73 45 82 36 82 45 45 18 IVI - ANM 184 113 103 52 118 37 85 48 49 19 273 77 MOSS ASSOCIATION - STACE SUMMARY TOTAL Ml 3898 460 1371 1690 120.7 11715 2415 ' 3630 '349 1180:1129 299:200 36:143 5:36 30:91 0:0 3:3 5:2 43:3 MEAN Ml 244 60 87 106 7.5 732 151 227 ' 22 74:71 19:12 2:9 0:2 2:6 0:0 0:0 0:0 3:0 F - Ml 16 16 9 4 11 1 3 2 7 FX - Ml 100 100 56 25 69 6 19 13 44 IVI - HI 245 131 67 27 78 6 19 13 47 245 100 TOTAL M2 - 1471 1010 1458 1622 94.5 31454 3693 4219 594 806:512 439:219 270:512 16:71 120:318 13:25 9:6 3:6 16:23 2:4 3:0 MEAN M2 82 65 86 96 5.6 1850 217 248 35 47:30 26:13 16:30 1:4 7:19 1:1 1:0 0:0 1:1 13 0:0 0:0 F - H2 17 17 17 10 17 6 1 4 - 5 3 F l - M2 100 100 100 59 100 35 6 24 76 29 18 i v i - M2 177 139 146 64 126 37; 7 24 78 29 18 177 72 BASIC DATA I - FOREST INVENTORY SUMMARY AND IMPORTANCE VALUES1 (CONTINUED) Wo.Sterna/Ac Basal Area/Ac I Composition of Species Megaphanerophytes Number Stems/Acre: Basal Area/Ac re so c 5 a me \u00E2\u0080\u00A2 (J Coniferous Species Deciduous Species Douglas- White Lodgepole Alpine Crand Engetmann Cotton- Haoophan-Of- \" (A z i s u < w 3. > < o > \u00E2\u0080\u0094 < v i -J S Hemlock Cedar F i r Larch Pine Pine F i r F i r Spruce Birch Aspen wood erophyces Actual X Actual X TOTAL M3 1837 2290 2123 2534 175.2 37680 5983 4685 715 815:451 674:352 471:798 102:260 358:681 74:120 12:3 24:17 43:32 99:89 79:78 2:2 109:10 MEAN K3 63 80 73 90 6.0 1299 206 162 25 28:16 23:12 16:27 4:9 12:23 3:4 0:0 1:1 . 1:1 3:3 3:3 0:0 4:0 P - M3 28 27 27 16 26 14 5 1 21 18 14 1 10 FX - H3 97 93 93 55 90 48 17 3 72 62 48 3 34 IVI - M3 141 128 136 68 125 55 17 5 74 68 54 3 38 141 58 SA-0 1 133 250+ 0 77 129 10.8 530 150 429 5 53:56 31:43 16:1 48 200+ 70 U 42 107 8.1 560 220 235 43 57:62 37:24 1:2 4:12 s \u00E2\u0080\u00A2 I 16 200+ 80 U 60 139 14.6 290 35 333 44 78:36 17:42 3:13 2:9 \u00E2\u0080\u00A2 1 A 250+ 100 u 100 143 19.6 225 85 556 99 78:41 20:51 2:7 1 15 200+ 80 u 52 134 15.7 195 35 288 23 72:71 23:17 3:5 3:7 1 166 250+ - u 68 133 14.0 340 50 381 35 72:31 24:46 1:11 3:11 TOTAL SA-01 1350+ 330 399 775 82.8 2140 575 2222 249 410:297 152:223 8:31 11:35 3:11 16:1 MEAN SA-01 225+ 80 67 129 13.8 357 96 370 28 68:50 25:37 1:5 2:6 1:2 3:0 P - SA-01 6 6 4 4 . 1 1 FX - SA-01 100 100 67 67 17 17 IVI - SA-OI 218 162 73 75 20 20 218 100 SA-0 2 66 62 100 E 62 112 5.5 1210 395 223 44 16:42 78:24 2:10 4:24 2 119 64 90 E 60 108 7.5 675 60 215 14 59:42 28:16 1:3 6:21 3J6 . 2:12 2 159 82 90 E 78 118 9.0 577 97 278 22 13:8 50:22 15:34 , 3:6 1:3 10:12 8:15 2 ' 52 90+ 90 U 100 123 7.7 635 595 358 44 22:3 41:24 13:37 2:4 13:20 , 7 : 7 2:5 2 39 67 90 E 66 116 5.9 740 880 235 309 40:19 45:40 3:10 1:3 5:17 k . 4:6 1:2 2 . 50 70 80 E 77 96 4.2 1940 1055 275 18 67:22 16:24 3:11 0:1 10:34 2:6 2:1 0:1 0:0 2 145 85 100 E 85 144 9.0 490 220 303 13 28:18 55:32 5:18 5:22 2:3 5:6 2 61 64 90 E 70 113 7.0 950 330 251 55 22:26 72:33 1:5 1:1 5:35 TOTAL SA-02 584 730 598 930 55.8 7217 3632 2138 519 267:180 385:215 43:128 4:11 51:179 12:19 26:36 9:18 2:12 0:0 MEAN SA-02 73 90 75 116 7.0 902 454 267 65 33:23 48:27 5:16 1:1 6:22 2:2 3:5 1:2 0:2 0:0 F - SA-02 8 8 8 4 8 4 6 3 1 1 FX - SA-02 100 100 100 50 100 50 75 38 13 13 IVI - SA-02 156 175 121 52 128 54 83 41 15 13 156 7 2 SA-0 3 133 28 110 E 19 57 2.4 1820 285 62 3 2:1 6:3 1:5 5:4 7:2 26:54 15:18 37:14 3 57 ,101 _ E 100 145 10.9 455 85 328 21 5:0 42:32 20:33 3:6 7:14 4:2 5:9 13:2 3 162 80 80 L 54 114 8.7 475 80 178 51 2:2 19:19 8:47 1:3 2:2 32:23 1:2 35:3 3. 63 60 . 100 E 48 110 10.8 240 30 159 13 4:1 35:12 17:24 2:2 33:58 2:0 6:2 3 30 .69 100 E 72 122 9.5 500 90 235 57 12:5 38:17 20:28 3:2 21:44 1:1 ! 1:0 2:2 2:1 TOTAL SA-03 358 390 293 548 42.3 3490 560 962 145 25:9 140:83 66:139 8:10 67:123 1:1 12:4 64:81 29:32 85:19 MEAN SA-03 72 100 59 110 8.5 698 112 192 29 5:2 28:17 13:28 2:2 13:25 0:0 2:1 13:16 6:6 17:4 F - SA-03 5 5 5 3 5 1 4 4 5 3 FX - SA-03 100 100 100 60 100 20 80 80 100 60 IVI - SA-03 107 143 141 64 138 20 83 - 109 112 \u00E2\u0080\u00A2 81 107 49 SA-Ot 1 175 108+ 90 U 72 158 13.0 427 30 398 22 53:33 8:36 \u00E2\u0080\u00A2 6:30 33:1 SA-Os 2 183 110 \u00E2\u0080\u00A20 E 100 130 10.7 605 71 414 10 40:18 37:43 3:11 11:16 2:3 5:7 1:1 2:1 2 184 73 70 E 49 101 5.8 1040 90 203 4 39:12 14:36 1:5 4:6 19:14 2:0 19:27 2:0 TOTAL SA-0 1690 1511 2642 210.4 14919 4958 6337 949 795:537 761:612 134:345 13:26 150:389 1:1 21:17 34:41 110:143 38:50 2:12 105:21 MEAN SA-0 90 69 120 9.6 678 225 288 43 36:24 35:28 6:16 1:1 7:18 0:0 1:1 2:2 3:7 2:2 0:1 3:1 F - SA-0 21 22 19 8 20 1 2 11 12 8 1 S FX - SA-0 95 100 86 36 91 5 9 SO 55 36 3 36 IVI - SA-0 155 163 108 38 116 3 11 54 67 40 6 42 198 56 Succession Indices Stages within types Forest Types v lchln aonts 00 BASIC DATA I - FOREST INVENTORY SUMMARY AMD IMPORTANCE VALUIS1 (CONTINUED) o > \u00E2\u0080\u00A2 *\u00C2\u00BB\u00E2\u0080\u00A2* \u00E2\u0080\u00A2O *\u00C2\u00BB No.Steaa/Ac Basal A r c / A c \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A3 \u00C2\u00AB 00 C w \u00C2\u00AB X A O. \u00E2\u0080\u00A2 m ' ! m B 01 z ii m SK V4 O \u00C2\u00AB * J< * O tw *J \u00C2\u00AB v) a. \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 do .0 < a \u00E2\u0080\u00A2 fx OC c > - J < * > \u00E2\u0080\u00A2 & > & 1 108 300+ _ u 62 113 12.8 330 35 299 28 1 96 300+ 80 u 44 (123) 8.5 555 45 211 26 1 112 300+ 80 0 100 140 ll'.O 760 35 478 51 1 132 132 60 E 45 111 7.8 365 435 214 52 X Composition of Spect.s ' . gumbor stems/Acre: MaRaphanerophytea Basal Area/Acre Contftrous Spcclea Douglaa-Remlock Cedar F i r Deciduous Species White Lodgepole Alpine Grand Eng.lmann Cotton. Nanophan-Pine Plna F i r F i r Spruce Birch Aspen vood erophytei Succession Indices Stages within types Actual t 67:97 33:3 80:99 6:0 95:75 3:9 93:97 5:1 4:0 1:16 1:2 TOTAL OA-01 1032* 220 MEAN DA-01 258 . 75 251 63 487 122 40.1 2010 10.0 503 550 1202 157 138 301 39 . F - DA-01 FX - DA-01 IVI - DA-01 DA-0 2 34 ca 80 E 83 - \u00E2\u0080\u00A2 8.2 620 245 234 2 5 90 90 E 100 127 9.6 390 195 282 DA-On 1 170 300+ _ U 76 140 7.7 810 65 281 1 196 200+ - u 100 141 28.0 85 - 370 1 31 ca300 80 u 88 141 15.7 240 10 327 1 36 ca270 . u \u00E2\u0080\u00A265 114 9.7 420 55 240 TOTAL DA-Onl 1070 80 329 536 61.1 1555 130 1218 MEAN DA-On1 268 80 82 134 15.3 389 33 305 335:368 84:92 4 100 276 34:29 72:60 53:73 65:61 67:47 82:73 47.13 12:3 4 100 113 46:13 18:14 12:23 29:39 21:46 7:27 3:14 1:3 6:18 2:5 3 75 82 8:30 9:24 DA-On 2 32 105 119 6.5 475 675 F - DA-Onl FX - DA-Onl DA-Onl 64 IVI 202 267:254 67:64 4 100 231 72:79 69:135 17:34 4 100 151 13:5 5:10 2:7 1:2 1 25 28 1:5 10:1 2:0 1 25 27 35:4 6:0 10:0 11:0 1:1 62:4 15:1 4 100 116 8:0 TOTAL OA-O MEAN DA-0 460 75 835 1269 125.5 5050 1795 3138 335 76 127 11.4 459 163 285 30 F - DA-0 FX - DA-0 IVI - DA-0 40 18 0 AA-0 1 93 250+ _ U 59 118 13.3 325 25 297 1 22 200+ 70 U 91 129 14.3 410 20 459 1 23 170+ 80 u 100 137 17.9 275 15 506 TOTAL AA-01 620+ 150 250 384 43.3 1010 60 1262 MEAN AA-01 207+ 75 83 128 15.2 337 20 421 780:790 71:72 11 100 243 82:47 74:48 49:12 193:180 11:27 18:16 1:2 11 3 100 27 134 11:50 16:38 45:88 30 26:84 2:8 7 64 74 -0 2 139 76 U 75 113 6.3 885 155 \u00E2\u0080\u00A2 2 127 53 100 E too 101 3.6 1730 105 2 105 62 100 I 91 121 6.9 1000 100 2 76 46 100 t 65 89 3.7 2430 205 TOTAL AA-02 237 300 331 424 22.7 6045 565 HEAR AA-02 59 100 83 106 5.8 1511 141 F -FX -IVI -223 299 272 195 58 19 AA-01 AA-01 AA-01 14 11 10 3 205:107 68:36 3 100 204 1:0 7:6 46:16 72:176 24:59 3 100 183 32:33 76:62 23:15 62:23 2:3 15:34 16:19 1:3 0:2 1 33 33 2:0 12:26 0:2 AA-0 3 3 140 126 63 56 100 97 122 105 J.9 6.3 1080 1030 215 60 ,33:~. 8:15 1:1 2 18 20. 2:4 4:9 2:0 80:5 7:0 6 55 62 6:0 5:0 4:0 8:13 3:4 3 100 107 16:5 3:7 1:2 21:10 6:16 3:8 11:15 15:0 5:0 3 100 105 19:1 5:25 1:3 989' 38 54:22 193:113 33:56 6:36 14:28 20:14 43:49 1:1 10:50 26:29 247 10 14:6 48:28 8:14 1:9 4:7 3:3 11:12 0:0 2:13 7:7 F - AA-02 3 4 3 1 3 3 4 1' 1 3 FX - AA-02 73 100 75 25 75 73 100 23 25 75 IVI - AA-02 95 176 57 35 86 \u00C2\u00BB3 123 23 40 89 233 16 63:30 . 0:1 25:12 10:58 2:0 227 11 3:1 36) 17 s':17 5:5 ! . 4:3 14:21 6:32 27:2 *;Toung Regeneration Only. Hoc Included l a Calculationa BASIC DATA I - FOREST INVENTORY SUMMARY AND IMPORTANCE VALUES1 (CONTINUED) CO \u00E2\u0080\u00A2 w e w s No.Stems/Ac Basal Area/Ac I Composition of Species J Megaphanerophytea Number Stems/Acre: Basal Area/Acre Coniferous Speclea Deciduous Species bo 6 a u U 0 CO &. 0 J} 9S Douglas-Cedar F i r Larch White Pine Lodgepole Alpine Pine F i r Grand F i r Engelmann Spruce Cotton-Aspen wood Nanophan-erophytea Succession Indices Stages within types Actual Toreat types within zones Actual 1 TOTAL AA-0 560 778 1035 80.4 9165 900 2711 123 325:160 301:306 38:73 6:36 20:38 32:31 82:82 1:1 26:140 70:31 MEAN AA-0 95 86 115 8.9 1018 100 301 P -14 AA-0 36:18 8 33:34 8 4:8 4 1:4 1 2:4 5 4:3 8 9:9 6 0:0 1 3:16 3 8:3 8 FX - AA-0 89 89 44 11 56 89 67 11 33 89 IVI - AA-0 143 156 56 16 62 96 85 11 52 100 ABA-0 1 20 1 21 1 8 1 7 250+ 275+ 200+ 250+ 70 t 70 70 73 81 100 115 113 115 129 13.7 245 15.7 250 13.0 330 4.7 325 30 35 50 15 260 272 299 370 23 108 50 11 84:83 86:75 79:57 92:60 14:17 14:25 18:29 8:40 TOTAL ABA-01 975+ 140 ' 324 472 47.1 1150 130 1201 192 341:275 54:111 1:11 1:3 2:0 MEAN A&A-01 244+ 70 81 118 11.8 288 33 300 48 85:69 14:28 0:3 0:1 1:0 F - ABA-01 4 4 1 1 1 FX - ABA-01 100 100 25 25 25 IVI - ABA-01 254 142 28 26 26 ABA-0 2 143 ' 50 90 E 60 89 4^7 1540 437 221 19 19:10 26:4 5:14 0:0 19:44 27:23 3:3 1:2 TOTAL ABA-0 230 384 561 41.8 2690 567 1422 211 360:285 80:115 6:25 0:0 19:44 27:24. 3:3 1:2 2:0 MEAN ABA-0 75 77 112 8.4 598 113 284 42 72:57 16:23 1:5 0:0 4:9 5:5 1:1 0:0 0:0 F - ABA-0 5 5 2 1 1 2 1 1 1 FX - ABA-0 100 100 40 20 20 40 20 20 20 IVI - ABA-0 229 139 46 20 33 50 22 20 20 ARALIA-OAKFERN ASSOCIATION - STAGE SUMMARY TOTAL A-01 5155+ 1010 1625 2812 289.6 8292 1475 7503 635 1611:1334 402:694 9:42 26:95 12:27 138:7 MEAN A-01 234+ 80 74 128 13.1 375 67 342 73:61 v 18:32 0:2 1:4 1:1 - 6:0 F - A-Ol 22 22 5 10 5 11 FX - A-01 100 100. 23 43 23 50 IVI - A-Ol 234 150 25 SO 25 56 TOTAL A-02 1329 1430 1393 1920 124.0 17932 5910 4227 753 558:398 757:419 109:262 11:52 109:347 74:78 92:116 11:21 . 12:62 38:30 MEAN A-02 74 90 77 113 6.9 997 328 235 42 31:22 42:23 6:13 1:3 6:19 4:4 5:6 1:1 1:3 2:2 P - A-02 16 18 17 9 17 12 ' 13 5 2 7 FX - A-02 89 100 94 50 94 . 67 72 28 11 39 IVI - A-02 142 165 115 54 119 75 83 30 15 43 TOTAL A-03 477 500 490 775 54.5 5600 835 1422 172 91:40 176:100 71:158 8:10 72:128 1:1 16:8 103:114 29:32 16:90 114:21 MEAN A-03 68 100 70 111 7.S 800 119 203 25 13:6 25:14 10:23 1:1 10:18 0:0 2:1 15:16 4:5 2:13 16:3 F - A-03 7 6 6 3 6 1 6 6 5 2 5 FX - A-03 100 86 86 43 86 14. 86 86 . 71 29 71 IVI - A-03 119 123 119 45 114 14 89 117. 80 44 90 sb l 33 7250+ 90? U 100 128 24.6 200 15 687 25 35:7 58:71 8:22 l 129 209 - \u00E2\u0080\u00A2 u 25 135 8.2 490 180 169 75 59:57 41:44 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 SD 2 35 80* - E 28 - 11.9 360 300 195 318 33:4 43:52 8:13 8:26 1:3 6:0 SDn 1 193 7250+ U 56 129 14.0 215 5 335 0 33:50 56:50 2:7 12:0 1 171 7200+ _ u 100 157 18.7 270 45 601 2 48:17 35:75 2:0 13:0 TOTAL SD 90 309 549 77.4 1535 545 1987 420 208:135 233:292 8:15 18:55 2:0 1:3' 31:0 MEAN SD 90 62 137 15.5 307 109 397 84 42:27 47:58 2:3 4:11 T):0 o,v 6:0 F - SD 5 3 1 3 1 1 3 FX - SD 100 100 20 60 20 20 60 IVI - SD 169 205 25 75 20 21 66 r-> CO o BASIC DATA I \u00E2\u0080\u00A2 FOREST IHVENTORT SUMMARY AND IMPORTANCE VALUES1 (CONTINUED) !~ S No.Stems/Ac Basal Area/Ac X Composition of Species itegaphanerophyces Number Stems/Acre: Basal Area/Acre J l :and \u00C2\u00ABi W> z TO 1 1 151 128 TO 2 138 TD J 101 J 161 -* o .3 m oO .0 < a Coniferous Species \" Deciduous Species) 3 & Douglas-Cadar F i r Larch White Pine Lodgapole Pine Alpine F i r Crand F i r Engelmann Spruce Birch.. Aspen Osteon-\u00E2\u0080\u00A2food Hanophan arophytes Succession Indices Stages within types Actual X Forest types within sonss Actual I 88 100 142 110 10.2 6.9 415 1215 15 105 243 275 1 . 65 43:25 78:50 28:55 14:49 98 80 75 0 - 126 8.5 865 200 359 59 24:4 62:54 6:29 1:1 2:8 90 I 100 127 9.3 340 10 189 0 19:6 50:40 1:0 4:15 80 E 100\" 116 10.1 365 90 189 65 18:9 32:41 4:23 3:3 245 388 621 45.0 3200 420 1255 190 182:94 186:239 11:52 1:1 11:44 80 97 124 9.0 640 84 251 38 36:19 37:48 2:10 0:0 2:9 P - TD 5 5 3 1 4 FX - TD 100 100 60 20 80 IVI - TD 155 183 72 20 91 4:4 15:18 10:20 14:10 4:9 1:1 3:1 33:32 14:29 .1:1 1:0 7:6 3:6 '0:0 1 3 2 I 20 60 40 20 21 73 49 20 27:3 7:1 22:4 TOTAL TD MEAN TD 0:0 0:0 1 20 20 144 ?300+ 203 7 30O+ ISO 250+ 152 300+ 24 300+ 100 82 38 76 66 143 162 146 161 153/ 25.0 20.6 15.3 22.5 28.0 285 365 300 290 145 20 1051 10 863 10 0 25 10 0 4 395 1 804 0 698 8 448 1 11:4 1:0 55:23 41:7 17:3 32:2 37:95 66:100 25:64 33:92 76:93 37:87 7:4 3:2 56:8 11:2 3 60 73 33:1 33:0 12:1 26:0 22:0 TOTAL AD1 1700 170 405 894 124.7 1840 75 4259 14 157:39 274:531 2:1 3:13 15:12 1:1 146:2 MEAN AD1 283 85 67 149 20.8 307 13 710 2 26:7 46:88 0:0 1:2 3:2 0:0 24:0 F - AD1 6 6 1 2 3 1 5 FX - AD1 100 100 17 33 50 17 83 IVI - AD1 133 234 17 36 77 17 107 AS 2 146 93 103 0 132 9.9 450 150 311 12 22:11 66:76 1:3 2:5 1:2 8:1 AD 3 63 60 95 D . 91 8.9 650 95 291 33 1:0 83:64 1:2 1:1 B:32 3:1 TOTAL AD 370 405 1117 143.5 2940 320 4861 47 180:50 425:671 3:3 6:18 17:17 2:3 9:33 159:4 MEAN AD 95 67 140 17.9 368 40 608 8 23:6 53:84 0:0 1:2 * 2:2 0:0 . B::4 20:1 F - AO S 8 2 3 * 2 2 7 FX - AD 100 100 23 38 50 23 28 88 IVT - AD 129 247 25 41 54 23 370 109 CSC 1 114 300+ V 100 106 12.1 475 10 390 1 41:14 39:77 3:6 5:3 12:0 1 113 250+ u 59 119 11.4 325 0 230 0 58:42 20:58 22:1 1 11 230 80 u 68 126 17;2 155 15 267 7 58:20 35:69 3:10 ! 3?1 1 3 200+ 0 88 151 15.8 250 10 342 12 72:34 28:66 TOTAL CSCI 980 MEAN CSC1 245 80 80 315 79 502 126 56.5 14.1 1205 301 35 9 1229 . 20 307 5 F - CSC1 FX - CSC1 IVT - CSC1 229:110 57:28 -100 185 122:270 31:67 . 4 100 198 6:16 1:4 .2 50 33 8:4 2:1 2 50 53 34:3 \u00C2\u00BB:l 2 . 50 60 \u00E2\u0080\u00A2:,00 *38T 0) n I O O CO 1? .. K8\u00C2\u00A3 w> g c a o S3. ss, S 8 \u00C2\u00BB\u00E2\u0080\u00A2 \u00C2\u00BB \" MM O O \" *\"* O O :8 8 *> w< *. .. .. 18 \u00E2\u0080\u00A2 r .? 1\u00E2\u0080\u0094 e-u o CO wi O O Wi O KJW KJ ' OU 5 3 -\u00C2\u00BBj to oo 4> fO c c c >\u00E2\u0080\u00A2 > > n n o \u00E2\u0080\u00A2 8u \u00E2\u0080\u00A2' WW o o o o O Q W\u00C2\u00AB 3 3 \u00C2\u00A3J o I >o \u00E2\u0080\u00A2-\u00E2\u0080\u00A2 CO c M t> nt - w> Swt >?> a o 4> -\u00E2\u0080\u00A2 >\u00E2\u0080\u0094 ac <4> Co O K 53-o n o w in Wi o n n i g ^ .*\u00E2\u0080\u00A2 r Wl Wl o - J> o o t~ 53-\u00E2\u0080\u00A2JO Ui o> W O w \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 N> CO ' 8 w I t> W> Oi I - J N \u00E2\u0080\u00A2\u00E2\u0080\u00A2 o o 0\u00C2\u00BB t7> <\u00C2\u00AB9 uiw cr> o w> o o Forest-Type St\u00C2\u00ABg\u00C2\u00AB Stand Number Avge. Age of Dominants Site Index 50 years (ft) Even or Uneven Aged Stocking Percent Avge. Height D & Co (ft)4 Avge DBH . (In)2 Living Dead Living Dead ? a > i f \" 30 O 3 \u00C2\u00AB a s\u00E2\u0080\u0094 O I\u00E2\u0080\u0094 \u00E2\u0080\u00A2o o 3- a \u00C2\u00AB\u00E2\u0080\u00A2: r> O ,5 3 it r -0 00 \u00E2\u0080\u00A2* 9 % i > \" (fl I 1 >>1 n [\u00E2\u0080\u00A2-\u00C2\u00BB M \u00E2\u0080\u00A2 r c a o * f> (* c -C 3\" i 183. APPENDIX D 1. Ba s i c Data I I - Tree growth . . . 184 g i v i n g f o r each stand the S I , . Q , f o r each measurable t r e e species i n each stand the average height and age of dominants and codominants, ^ l O O ' a v e r a S e m a x i m u m h e i g h t , diameter of tree of average maximum h e i g h t , and f o r each f o r e s t type and p l a n t a s s o c i a t i o n , means and ranges of the above. 2. Height growth summary of f o r e s t t r e e s 192 3. Maximum net primary p r o d u c t i v i t y of tree stems i n f o r e s t types 194 4. Standing crop of l i v i n g t r e e stems i n climax stands of f o r e s t types . 195 3A3I0 DAIA I I - 1BJLZ 380*TH LICE3K ASLOCIATIQK (L) W H I T E P I N E (P W) D O U G L A S - F I R (F) L A R C H (L) Forest Stage Type Stand No. Site Index1 50 yrs. No.trees HE. D&Co (ft) * P D&Co Site Index2 100 yrs. j^max (ft) (In) No.trees It.D&Co (ft.) Age D&Co Site Index2 100 yrs. (ft) D B M X osy Ht.D&Co No.trees (ft.) Age D&Co Site Index2 100 yrs. (ft) ~Hmax (1ST L 1 as 35 2 83 152 70 83 12.8 2 70 222 60 73 16.4 1 110 310+ 80 102 16.1 L 2 m 25 3 57 93 50 - - 2 64 110 60 - - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 L 2 204 30 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 49 96 50 - - 3 53 UO 50 - -L 2 122 40 2 62 83 70 - - 4 61 85 65 - -I 2 117 45 4 75 73 100 - - 2 68 65 80 - -Total 175 290 (83) (12.8) 315 (73) (16.4) 130 (102) (16.1) Mean* 35 75 (83) (12.8) 65 (73) (16.4) 65 (102) (16.1) Range 25-45 50-100 30-80 50-80 determined from SI curves of Ker (1957) 50 determined from S I l Q 0 curves of B.C. Forest Service (U.B.C. Forestry Handbook, 1959) mean site index rounded to nearest 5 feet. BASIC DATA II MOSS ASSOCIATION3 (M) Tree Growth 1 - determined from S I ^ Q curves of Ker (1957) 2 - determined from S I 1 0 0 curves of B. C. Forest Service JK.B.C.. Forestry Handbook, 1051). 3 - see end of table for P^, C, S, Asp., B l . * - mean s i t e Index rounded, to nearest 5 f t . Forest Stage Stand Site Type Ho.* Index WHITE PlNl! (Pv) No. Rt.D Age D trees and and Co Co(ft) Site R\" HIT Index ( f t ) 100 yrs DH max (In.) KOUGLAS FIR (K) lo. Rt.D Age D trees and and Co Co(ft) 5 9 1 1 7 5 ^ 1?? 200 2 11 28? 5 7\" 83 S i t e lnde+ Ion yrs IT max ( f t ) DH max (In.) 10.lt LARCH (L) No. RT.D Age D trees and and Co . Cofft) Site index 100 \u00E2\u0080\u00A2 H max (ft) DH max (In.) WESTERN HEMLOCK (H) No. RT.D Age D S i t e trees and and Co' index Co(ft) 100 vrs fl\" max (f t ) DH max (1n.) 1 . 56 1 1 1 86 ? 8U SDM SDH SDM T o 60 88 lfeT 2 106 173 W 03 132 1 73 80 80 00 120 70 TTBTT (03) 116 131 111 112 T 5 K 2 (17.1 T05 86 175 ^3 90 00 105 165 \u00C2\u00AB3 175 7W 136 ^ o 70 60 93 16. 16.. (IBo) (90) (105) (105) 127 ( 1 5 . 9 ) (15.9) 23.0 (IK?) (93) 92-93 105 111 102. Total - SDM Mean SDK Hange - SDH 1 12 SNM 1 165 SNM 1 177 SNM 1 63 SNM 91 SNM 1 '11 SNM 2 SUM 2 SNM 2 1W8 SNM 2 97 SNM 2 25 SNM .3 9 SNH 3 137 SNH 3 201 SNM 3 106 SNH 3 18 SNM 3 6? SNM 3 f* SNH 3 1W7 SNH . 3 09 170 55 50-60 60 70 70 70 70 70 l\u00C2\u00B00 80 90 50 70 320 80 70-90 fnwl(32 (107) (16 (9W-120) 13.I1. 6 83 76 110 3 8\". 87 100 8 loW 96 l i o 7 67 \".6 lWo _ 79 62 <; 91 56 w 100 62 3 82 51 3 85 85 - 76 6 120 150 150 150 100 ' 110 \"T5Wo : TiTrT! (2W.7) 25 (116) (2W.7) 100-150 116 131 i i i 112 10W 88 80 90 80 JL 530 1.60 33,5 12W 78' 87 low 59 56 % 61 220 70-80 80 100 90 80 90 100 100. 110' l ' O 80 100 \"T050 80-120 .18.5 31*. 1 30.1 20.0 3 127 310 90 1 123 120 110 3 86 79 9 6 78 63 00 ii 90 70 100 - 89 6\". 110 2 10W 67 120 92 53 120 1 95 8W 100 190 65 60-70 101 200 70 100 23\". 70 96 250+ 70 98 225 70 98 28W 91. 127 80 8>i \u00E2\u0080\u00A2 79 10 86 106 90 133.3) (16.7) 16.5-16.i 58 Mean \u00E2\u0080\u00A2 3ange . SBK SBM SBH SBM SBM . SBM SBM SBM SBM SBM . SBM . SBM SBH SBH SBH SBH SBM SBM SBH SBM SBM SBH SBM Total Mean \u00E2\u0080\u00A2 Range SBM S B H | Total Mean \u00E2\u0080\u00A2 Range SNM SNH SNM 1 1 1 T 2 2 2. 2 2 2 2 910 70 50-90 !\u00C2\u00BB70 102.7 118 25.7 111-131 18.5-T..1 930(127) 105 (127) 90-120 (23.0) C3.0) SBM SBM SBM 16W 10 107 90 111 81 110 38 92 06 58 160 206 153 lU 67 16? ' 88 53 60 17 60 80 80 70 70 \u00C2\u00A3 80 so 80 80 70 90 100 90 90 80 90 80 ' 100 l7l\u00C2\u00B0o 60-100 80 60 T i W (70) 60-80 131 121. 103 109 96 9W 96 103 113 \u00E2\u0080\u00A2 Si 112 35. 100 80 98 95 - 9,5 8W 86 81. \u00E2\u0080\u00A2 U 06 81 02 85 98 81 25 63 51 \u00E2\u0080\u00A2 A 52 55 63 J3 100 131 22.3 3 i n 108 90 111 20.8 120 - r 120 - _ l i w ' 83 120 - - 6 1?0 1 110 - 6 102 89 110 _ 120 - - - 108 88 n o _ 20 - - 98 110 - - 06 100 _ 130 - - - - 108 90 1 _ _ 0 - - \u00E2\u0080\u00A2 5 125 107 120 _ _ 130 - - 09 80 120 _ 20 - - , . 130 - 109 83 l i o _ _ . 102 \u00E2\u0080\u00A211 ' 90 _ \u00E2\u0080\u00A2 150 - - 30 100 _ _ 150 - - 3 106 63 120 _ 6 - R8 55 1 130 - - 10W 63 120 _ 5 - - 73 52 10 _ _ 160 - - 95 52 120 _ _ 1W0 - - 3 100 66 110 _ _ I S O - - 1 101 \u00C2\u00AB i-v* - -2750 (131) (13D-- (22.3) 1980 ( I l l ) (20.B) 130 (22.3) 110 (111) (20.8) 113 100 110 89 68 100 1* 82 110 131 165 3W V 87 102 116 110 low 120 100 25 110 67 110 52 110 62 _63_ 120 130 3 107 3 105 91 238 206 250* 162 7'0 80 70-100 80 30 70 8o 519 121.0 IOW 2W.2 98-111 18.3-32.6 113 110 116 110 25.8 23.2 30.6 20.W 3? low 65 88 30 52 W5 100 150 110 890 l o o 70-150 2 3 SBM SBM! SBH 189 186 10W 71 81 100-160 120 lWo (260) 1120 110 100-130 85 _ZL_ JL W9 i o a 110 25. 110-116 20.W 30.6 90 100 (190) (95) \u00E2\u0080\u00A2 120-1W0 00 / BASIC DATA II MOSS ASSOCIATIOR TrM Growth 3 1 - UUIUM rrca SI50 curves of Kor (1957) 2 - data rained fron SI100 curv*a of B. C. For\u00C2\u00BB\u00C2\u00BBt Service (O.B.C. Forestry Handbook, 1999). (M) (continued) WHITB PIK8 l0 87 TBTT (87) flo.U (10.1) DBWUS FIR m Ho. ST.D troaa and Co(ft) Ago D and Co Slta lndax J2DJT%_ 3 amx DB* Max (ft) (ln.) 76 JL 209 118 _22_ 60 50 u 82 8>f 81 62 7 103 72 - 01 69 - 60 3 82 \u00E2\u0080\u00A2\"3 1 101 67 5. 61 55 60-70 00 100 no 100 90 110 110 -Mr 133 25.2 (L) Ro. BT.D Age D trooa and and Co 101 65 200? S1U lndax 10\u00C2\u00B0 IT ( f t ) Dl MUX (In.) 80 (80) i 2 I8 *7 90 100 90 7 52 C3 80 . 68 106 53 70 90 110 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 wr Ro. fft.D Ago D treoo and and Co Co(ft) 72 1>\u00C2\u00BB9 Site lndox 100 rra (ft) (lh.) 50 w (50) 130 20)7 7 88 89 I>f6 180 70 70 92 95 16.2 17.7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 16 75 69 100 '. -I \u00E2\u0080\u00A2 2 V 60 t 100 100 \u00E2\u0080\u00A2 -i 80. 110 -ARM Mean *- ARM flange - ARM 730 \u00E2\u0080\u00A2 7 5 >\u00C2\u00BB0-90 100 00-110 (133) (35.2) (25.2) >\u00C2\u00BB70 80-110 (1J0) (20.7) -555-95 70-110 (1\u00C2\u00BB7) (9V) (33.9) (17.0) 1B5B\u00E2\u0080\u0094 , 7 0 1*0-100 1880\u00E2\u0080\u0094 IPO 50-160 -5TB 8575\u00E2\u0080\u0094 loh 17.9 87-131 10.1-A.7 \"\"TOS\u00E2\u0080\u0094 100 60-120 Total - M Mean* - K rlange - M \u00E2\u0080\u0094 (112) 22.9 91-133 l'f.8-3'*.! -5BS3\u00E2\u0080\u0094 102 70-130 \"553 tth-121 19.9 90-130 15.9-23.0 T * I 5 \u00E2\u0080\u0094 86 50-150 5BO 103 22.2 92-116 16.2-32.6 TREE GROWTH - Lodgepole Pin 9 (FL>. Cedar (C), Bngelmann Spruce (S) , Birch (BI), Appan ( F.orest Stage Stand Site lo. Rt.D Age D Site IT sax DH* ajax Species Type So. Index :reea and and Co Index (ft) (ln.) 50 VTS Co(ft) 100 vr\u00C2\u00AB SUM 3 137 70 If 67 60 90 - h 8HM 3 201 70 1 00 66 110 - PL SHM 3 18 So 1 75 58 too - P\u00C2\u00A3 SHM 3 51* 90 3 67 37 00 - Aj\u00C2\u00BBp SBM 2 110 TP _ 87 8o 100 _ PL SBM 3 206 80 1 nh 8? 120 _ Asp SBM 3 88 80 - 58 36 120 - C SBMj 3 186 60 - 7>\u00C2\u00BB 53 80 - BI ADM ? 12>\u00C2\u00BB 20 _ \u00E2\u0080\u00A2to 103 50 PL ADM ? 55 50 2 hh 60 60 s ARM 1 >\u00C2\u00BB3 ho _ 8h 200 6n 80 19.6 C ARM 1 \"\u00E2\u0080\u00A23 ho - - - 08 13.0 s ARM 9 80 70 - Hit 76 ino PL ARM 3 U2 90 1 87 72 00 - Asp ARM 3 ho 2\u00C2\u00B0 - 75 61 90 - PL ARM 3 20 80 - 65 60 00 - C ARM 3 1.1 80 2 82 57 90 Asp ARM 3 \"\u00C2\u00BB1 80 1 75 60 80 - BI ARB 3 308 80 1 6h 30 130 * S 00 BASIC DATA II - Tree Growth JHITE PINE (Pw) I0UGLAS F I R M (EStftRrJ UBiLock (S) vcrest Stage Stand S i t e \u00C2\u00BBo. Ht.D Age D S i t e H max DH max lo. Ht.D Age D S i t e ff max DtT max lo. H t . D Age D S i t e .Type Mo. Index t r e e s and and Cc Index (ft) ( l n . ) ;reea and and Co lndax (rt) ( l n . ) trees and and Co index 50 Y r s C o ( f t ) 100 y r s Co(ft) 100 y r s C o ( f t ) 100 y r i i / , - 0 1 \"\u00E2\u0080\u00A253 . . . . . . 2 \ii \u00C2\u00AB?\u00E2\u0080\u00A2 96 SA-0 1 HB 2\u00C2\u00B0 3 110 90 120 - - - 10V 200 80 SA-0 1 16 80 2 lHH 180? 110 1W\u00C2\u00BB 29.1 1 161 225? 120 161 35.7 3 112 200? 00 -0 1 * 10 1 171 100 lHO 171 37.3 , . . . , 3 130 200* 100 SA-0 1 15 80 1 1<*5 180? 110 1>*5 27.1 1 139 213 110 139 23.0 5 188 100 SA-0 1 166 - . 1 132 230? 100 132 Wo.9 2 12C 282 9 SA-0 2 66 100 3 U5 63 160 - - 3 105 63 120 - - 2 \u00C2\u00A7 6 66 110 SA-0 2 119 90 107 &\u00C2\u00B0 160 - 1 90 5 9 110 - - 3 83 1 110 SA-0 2 159 90 - 10 82? 130 - - - 111* 82 120 - - - 90 77 110 SA-0 2 52 00 \u00E2\u0080\u00A2* 120 90 - - 1 130 87 130 - - . . , SA-0 2 39 00 7 111 61 Jr 150 - - 2 n o 6H 120 - - 1 106 Z2 120 -0 2 50 80 6 83 lHO - - 3 86 53 110 - 3 88 82 100 SA-0 2 1\"*5 100 8 136 85 150 - - 3 125 90 120 - \u00E2\u0080\u00A2 . SA-0 2 61 6 108 62 150? - - 1 111* 67 130 - -- 3 133 110 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 1*8 25 130 - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 J/ 162 80 i 103 57 160 Q 106 79 l i o 1 1 63 100 l\u00C2\u00BB 112 60 160 - ' - 2 102 56 120 - - . 10 100 8 110 67 160 - - 8 98 68 - -l o t a l - SA-0 m s b 2130 W60 93.5 1760 1*52 -W.6\" 1100 fcean ' - 90 lHO 153 31.2 115 1\u00C2\u00A5* 33.2 100 itange - SA-0 70-110 110-160 IHH-171 27.1-37i 110-130 132-161 23JOW3 80-120 S A - O A 1 >75 90 5 158 190? 120 169 37.\u00E2\u0080\u00A2* . 1 131 200? 100 S A - 0 . 2 183 80 5 118 115 110 - 3 128 10H l i o - - . . SA-OJ 2 18W 7 2 86 73 120 _ _ 85 73 l o o -Tr>tal - SA-0 2|*0 ih f l69) (37.M (210) (100) Sean ' - S A - O . 80 115 (169) (37A) (105) - - (100) .lange - S A - o J 70-00 110-120 - 100-110 - - -, /A -O 1 103 _ 1* 118 230 _ OA-0 1 OH 80 i I H O ?200* l i o lHO 26.7 2 110 272 80 DA-0 1 112 80 H 1+2 250 110 11*7 36.6 . 3 3 3 2> 9 DA-0 1 132 6 1 111 130 100 - - 2 109 119 100 - - 6 107 13\"\u00C2\u00BB 90 D A - 0 2 31* - . . . \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 . \u00E2\u0080\u00A2 . DA-0 2 c ? 90 6 123 OH lHO _ 1 122 82 130 - - 2 125 191 100 T o t a l - DA-0 31\" 1*70 ( P \u00C2\u00AB 7 ) (*3.3> (230) _ 360 - DA-0 1?0 (1M.) (31.7) (lilt _ 90 pane* - DA-0 ftO-90 l l o - i U o 1UO-II*7 P6.7-3h.f 100-130 - - 80-100 : - ' - -\u00C2\u00B0n 1 170 _ f W ll*n 3U0? 100 DA-O\" T - . r 6 13* 20W 110 D A - o \" 1 31 So i 13\"\" P O O ? l i o 13^ 90. U 137 3 0? i o n 1 3* - 1 . e H U 9A1 _ ? U<* 999 00 AA-0 1 ?p 1 137 200? ' l i o 137 29.1* 3 190 17H 100 AA-0 i '3 Po I H O 175 l i o ?*\".o 9 19? 168 100 AA-0 ? 139 - . . . . . . AA-0 1'7 T O O 1 l o o Uq 170 - - . . AA-0 ? 1\"5 10\u00C2\u00B0 113 6? ISO - - 61 130 - - \u00E2\u0080\u00A2 AA-0 ? 76\" 0 1 92 >*3 170 - - u - n 1*1. IPO - -AA-0 3 I H O - . . . AA-0 3, 126 110 . . u lofl 5= 131 - ' - \u00E2\u0080\u00A2 H 51 f\u00C2\u00ABr\u00C2\u00AB.T~ - AA-U . 56o 720 <57.H) 3S0 - -Kean * - AA-0 0 1 L 5 (130) (28.7) 195 - - 95 -*=i\u00C2\u00ABge - AA-0 70-1 i o 110-170 137-1\"*1 28.0-29.H 190-130 - \u00E2\u0080\u00A2 90-100 d.tttvalned. from 6 1 ^ cmrwaa o f K o r (195*7). d a t a r a i n a d f r o a S I 1 0 0 curvaa o f B . C . Poreat S e r v l c a ( O . B . C . F o r a s t r y Handbook, 1959). sea and o f t a b l e f o r P^t B Q , C o t . , B i . , A s p . mean s i t e Index round\u00C2\u00ABd t o n . a r e s t 5 f t . IWESTSRK RED CEDAR (C) ~ KKGELMANM spRtfiB (s) Ro. H t . D Ago D S i t e t r e e s and and Co index <*fl(ft) 100 TTS ! ' -~ Ho. H t . D Age D S i t e ff sax Dff max t n e s and and Co index ( r t ) ( l n . ) SaSiil 100 m ^ ( f t ) DH max ( l n . ) * T 5 * T m 136 129 12H Ho. H t . D Age D S i t e t r e e s and and Co index 2 %V} ^ V ( f t ) DH max ( l n . ) 157\" III il'.6 1*3.0 2 9 . 7 32.1 ff max ( f t ) ( l n . ) 30.2 8:1 38.0 23.3 26.3 4 \" 2 200? 100 3 128 200* 100 2 115 190? 90 1 131 250? 100 \u00E2\u0080\u00A2 90 7V l i o 139 118 128 98 135 139 28.0 83 93 130 130 110 m o 60 120 720 69* 176.3 100 131 35.3 90-120 123-137 29.7J*3^> 90 129 UP.5 5T0(T3o)(?o.0) 120 (llo)(28.0) 100-lHO 103 105 59 . 00 88 63 51 56 110 120 130 120 110 l i f 131 27.1* 120 u s 115 -rrtrr (131) n o 130 T597TT (29.1) 20.1* (129) (H2I5) (129) (1*2.5) ( 1 0 9 ) ( I O O ) _12Q 73? ,310. (110) 90 90 (110) (21*0) ( i x \u00C2\u00BB 110-130 150 139 139 127 (20.1*) (29.1*) 3>*.5 36.1 30.2 25.3 KI 126.1 139 31.5 127-150 25.3-36.1 2 11*0 909 3 129 300? \u00C2\u00BB e t . 191, 900* 5* 393 709 no T O O m o 13** 191* 1.0.5 35.7 \u00E2\u0080\u00A2\u00E2\u0080\u00A23.3 310 105 300 1>3 09.5 1 v e t . T T ^ \u00E2\u0080\u0094\u00E2\u0080\u0094mr 9S1* l ' O 100 l\"io 91. 138 ?6 100-110 l?V-ll*0 93.3. 5^ T&bl (\u00C2\u00BB\u00E2\u0080\u00A2\"\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2( ?o (110) ( 1 U 1 * ) ( 9 \" . \" ) TOO-120 138-150 PHjVPf.-11'. 190 19? 20.2 96.0 91*.0 12? ?50* 90 136 900* l i o 109 69 130 12? 136 \u00C2\u00BB 9 . 2 3**'.7 110 70.2 35.1 3lB^ f?fS) (76.'o) 110 (19\u00C2\u00AB) (38.5) 90-130 129-1T6 3,\u00E2\u0080\u00A2.7-1.2^ , 1 121 iHH 100 3 129 10? 100 1 138 165 110 ? 96 50 1C0 i 131 03 130 13>* 138 20.5 18.6 8\". \"Bo (?7\u00C2\u00BBK3\u00C2\u00AB.1) 115 ( 1 3 6 X 1 0 . 6 ) lOO-lWO I 'H-138 lSjbJO.\" T t o -( l l o ) BASIC DATA II - Tree Growth ARALIA - OAKFERN ASSOCIATION 3 ( c o n t i n u e d ) determined froei SI^QQ gee end o f t a b l e f o r P. F o r e s t Type Stage Stand S i t e No. Index 5j?_vrs WHITE PINE (Pw) No. RT.D Age D S i t e R max t r e e s and and Co index ( f t ) C o ( f t ) 100 v r s DfT n ( I n . DOlNSlAS F I B W Ho. RT.D Age D s i t e A* sax trees and and Co Index ( f t ) C o ( f t ) 100 v r s IWESTEBH HBft\u00C2\u00ABK (H) DH ma: ( I n . ) . aean s i t e Index rounded to n e a r e s t 5 f t . lUggTEHM RED CEDAR (c) \ curves o f B. C . F o r e s t S e r v i c e ( U . B . C . L , EL,, C o t . , B l . , A s p . F o r e s t r y Handbook, 1959). No. RT.D t r e e s and Age D S i t * and Co Index-H sax ( f t ) C o ( f t ) 100 r r s 5 116 2'5 90 122 - \u00C2\u00BB11 100 131 3 l o e 300? 80 111 3 - i 1?7 '10 \u00E2\u0080\u00A2 100 1W2 Dif max (In.) No. RT.D Ice D S i t e H max Oft max t r * e a and and Co Index ( f t ) ( I n . ) C o ( f t ) 100 v r s ENGELMANN SPRUCE (S) ' No. RT.D Age D S i t e H* max BR max t r e e s and and Co Index ( f t ) ( I n . ) C o ( f t ) ; 100 v r s LAKCH (L) No. RT.D Age D S i t e fi\" max EI max t r e e s and and Co Index ( f t ) ( i n . ) C o ( f t ) ICQ y r s \u00E2\u0080\u00A2 \u00C2\u00ABBA-0 ABA-0 ABA-0 ABA-0 ABA-0 2 ABA-0 ABA-0 ABA-0 20 '1 08 07 1W_J_ 70 126 88 175? i o o 126 17.W 2 n 1 160 ($60) 13W 129 _Z3_ 300*? 100 ' 5 0 ? l o o 53 TOO 13>\u00C2\u00AB 129 38.1 3W.3 20.0 3J2.1 'W.8 3W.1 10' 131 Ro? '00* 80 l o o 102 139 20.1 37.5 300 T26T7 100 (132) 10O 120-13W ISO 75 191 90 lio T o t a l Kean \u00E2\u0080\u00A2 -iange 230 75 7 0 - 9 0 (126) (130) (126) 100-160 (17.W) (17-W) (72M (36.2) 3M-33.1 370 o 9 5 80-100 127 l t l . o 27.8 1U-1W2 20*> j k l ' (180) (251) (57.n) (90) (121) C8.8) 80-100 102-139 20.1-37.5 (200)(l?o)(i7.H) (100) (l'n)(17 .8) o o - l o o T o t a l A-0 V.ean* A - 0 29W0 R5 60-110 W150 1W59 298.6 135 1W6 29.9 1OO-160 156.171 17.W-36^ 2990 695 170.0 115 139 3W.W 100-130 129-161 23.0-WO.9 2710 2526 530.2 97 126 27.9 80-120 BB-150 2Qf>e8.0 1630 1681 1.52. ft 102 129 3W.8 80-130 102-1Wo 20.1-1.3.0 IU00 531 ' \" . . 9 115 133 21.2 90-lWO 1 2 0 - 1 P 17.8-2ar> 10^ 0 ' q 8 ^0.0 111. (IWWH'r.n) 100-130 1'8-150 ? W . p - * f iH3 GilOWTH - Lodgepole Pine (FL), Grand F i r (BG), Cottonwood ( C o t . ) , B i r c h ( B l ) , Aspen (Asp.) r'n-est Stage Stand S i t e No. H t . D Age D S i t e H\" max nfT TOX Species T y p e No. Index t r e e s and and Co index ( f t ) ( i n . ) 50 v r s C o ( f t ) 100 v r s \u00E2\u0080\u00A2 ; - 0 0 119 90 1 110 1.6 130 _ _ Cot SA-0 3 133 110 3 Wo 32 70 - - B i SA-0 3 133 110 2 Wo 3? 70 - - ' Asp SA-0 3 63 IOO I 79 Wl 100 - - Asp SA-0 3 30 l o o 1 7> WW l i o - - ?L s<<-os 2 183 80 1 130 116 110 - - \"o AA-0 2 130 _ 1* 11' WO 1W0 Cot AA-0 0 127 100 2 low 51 120 - - Cot AA-0 3 lWo _ 3 l i o 51 lWo - - Cot AA-0 3 126 110 2 8>* 60 90 - - Bi BASIC DATA II DEVIL'S CLUB ASSOCIATION-5 (D) Tree Growth N3 WHITE PINE (Pw) No. ijT.D Ago D trees end and Co IBSTERN RED CEDAR (C) l o . Ht.D Age n P l t e :rees and and Co index C o ( f . ) 120_ W E S T E R N H K H L I X ! ' ' ( H ) 1 - determined from S I ^ 0 curves .of Ker (1057). 2 - determined from S I 1 0 0 curves of B. C . F o r e s t S e r v i c e f a . B . C . P o r e s t r y Handbook, 19?0) 3 - see ef\"1 o f table Tor L , S, Asp, C o t . * - mean s i t e index round\u00C2\u00A9* to nearest 5 f t . bOUuLAS K I R -\"TFT Forest Stage Stand S i t e . Type No. lorlex \"SB T \" SD \u00E2\u0080\u00A2 1 Total - SD Mean \u00E2\u0080\u00A2 - SD Range - SD S i t e index 1\u00C2\u00B00 v r s 1? max (f t) DH max ( l n . ) IT 188T f t ) n!T mar ( i o . ) U 3 . 0 trees RT.D Age D and and Co c \u00C2\u00B0 ( f t ) S i t e Index 100 vrs H max ( f t ) DH max ( l n . ) No. Ht.D Age D trees and and Co C o ( r t ) S i t e index 10\" T r s ff max ( f t ) max i .) 33 i a o 35 169 ?50? I S O 87 ? 50+ 71 100 n o 130 \" 3 X T T 100 166 80 16.V (00?) (90?) T l W \" (13f) (1A0) (160) (\u00E2\u0080\u00A2\u00E2\u0080\u00A23.0) ( V 3 . 0 ) (Tint (105) l o o . i l o TIIOT\u00E2\u0080\u0094r&twr (13\u00C2\u00BB) (36.\u00C2\u00BB) -rftor (Po) (loo) (100) 136 '136) 136 ( i 6 : u i (16.V) \"\u00C2\u00BB1.8 a. 193 171 170 ?9Q0+ (130) 110 13\" - r $ r (170) 161* 1*0.6 (Co.?) (1.0.6) 30.6 12V 900+ ?9QO+ tfso) (120) 190 110 00 13? 7 % 30.7 198 ? 9 O 0 * - T W T J TBOTTT (11*7) (!*\u00C2\u00AB. I*) l i ? - 1 6 1 3 0 . 7 - 5 8 . \" MIS) (U1.8) W . 8 9 C . V Total - SD-Kean * - SD\u00E2\u0080\u009E iange - SD\u00E2\u0080\u009E T D TD TD TD TD '51 128 138 101 16V 293 75 9 0 130 19V 130 96 13* 113 2 6 c * 1 6 7 15V 128 V3.3 30.9 97 ?31 70 \"360 fli\"\"*\" (30!*) 103 00-110 - T 5 8 S T (IVI) ( 3 7 , . 128-15V V 3 . 3 - 3 0 . 0 (7V.*) . ( 3 7 . D 116 1V0 00 120 106 120 112 82 120 Total - TD 9 H e Kean \u00E2\u0080\u00A2 - TD 8? Range - TD 75-90 A D 1 1W _ AD 1 903 -AD 1 150 00 AD 1 15? -AD 1 2V AD 1 l o ?8o AD 2 1V6 105 AD 3 65 oe Total - AD 370 Mean \u00E2\u0080\u00A2 - AD 93 Range - AD 80-105 Total -D 705 \u00E2\u0080\u00A2 Mean \u00E2\u0080\u00A2 - 0 88 -\u00E2\u0080\u00A2iange - D 7 C -105 ? 130 131 9 159 78 1?0 l l o - l 30 18o (16V) (30.6) T7\u00C2\u00ABcTl TreSl (25 J*) (7\") (100) (25.V) (290) (1V5) H O - 1 8 0 515 n o i i s o 5 1V9 ? ?110 1V8 6 162 ? ?13\" 106 6 13? ?250 ? U n l<5 \u00E2\u0080\u00A2i 169 300+ ?130 175 V 156 - ?120 156 1\u00C2\u00BB3 ?250 ?00 196 6 100 88 11\"! 68.8 V 0 . e V6.8 8:5 3V.5 3 l 7 . \u00C2\u00AB <3.\" 1V0 111 93 T 5 0 110 9O-190 ll ,e 12\". 00-130 T 168 16V-1 1* U U . 9 TJtr\u00C2\u00BB\u00E2\u0080\u0094 o o l l , o 126-196 3V.\"!-76.r 1 \u00C2\u00BB . o (270) (13-)) 125-1V5 If 19o-l ' (75) 70-80 96 JO&V '6 . ' \u00E2\u0080\u00945v\"? 83T0\u00E2\u0080\u0094 115 9 7 . 0 100-136 16.V-V1.8 67io 120 OO-IV? TREE GROWTH - Aspen ( A s p . ) , L a r c h ( L ) , Cottonwood ( C o t . ) , Engelmenn Spruoa (S) Forest Stage Stand S i t e No. H t . D Age D S i t e H mar W mar Pperles Type No. index trees an*! and Co index ( r t ) ( i n . ) 50 v r s C o ( f t ) 100 v r s TD 3 101 \u00E2\u0080\u00A2 90 - 119 90 120 _ _ Asp. TD 3 101 90 - IVO i \u00C2\u00B0 S 130 _ L TD 3 161 80 - 113 88 80 110 - Asp. TD 3 161 80 - 112 110 - - . C o t . AD J 1V6 105 1 120 90 190 _ _ 8 AD 3 65 95 1 123 56 1V0 - - C o t . 00 BASIC DATA II - TREE GROWTH SKUNK. CABBAGE ASSOCIATION (SC) Forest Stags Type Be. DSC 1 u CSC 1 CSC 1 113 CSC 1 n CSC 1 3 CSC 2 26 CSC \u00C2\u00A322 2 2 49 1Q4 Stand S i t e Index 50 y r s . WESTERN RED CEDAR (C) No. Av.Ht. AT.Age Treee D*C\u00C2\u00BB(PtJ D&Co. 100 T r a . v S i t e Index 2 H max. DH Max. ( F t . ) (In.) WESTERN HEMLOCK (H) No. Av.Ht. Av.Age S i t e Index 2 H nut. DH tEx. Trees DaCe(Ft) DaCe. 100 y r s . ( F t . ) (In.) ENGELMANN SPHUCE (S) No. Av.Ht. Trees D4Co(Ft_) D&Ce. LOO y r s . ( F t . ) (In.) WESTERN WHITE PIKE (Pn) A v . H t . Av.Age S i t e Inxex 2 H sax DH Max. Trees D4C\u00C2\u00BB(FU D&Co. 100 y r s . ( F t . ) ( I n . ) 80 70 90 T e t a l - CSC Mean* - CSC Range - CSC 320 80 80-90 110 7250 80 120 26.9 105 300 70 105 34.4 128 ?250 100 128 47.0 110 250 80 119 32.1 148 ?2O0 120 156 56.5 8*8 7*9 100 122 26.*7 470 630 196.7 94 126 39.3 126 7250 90 126 28.6. 1 100 250 70 100 22.6 I 109 128 \u00E2\u0080\u00A2 * 175 * 134 i 157 210 i 13* l i o yo'.j \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 100 120 157 30.3 70-120 105-156 26.7-56.5 (180) (234) (52.9) ( 90) (117) (26.5) 70-110 100-134 22.6-30.3 (220) (110) 100-120 (157) (157) (30.3) (30.3) 1 142 165 110 U 2 31.0 1 164 7250 120 164 J0.4 u 127 108 120 -- 88 70 120 - -5 101 59 150 - -620 (306) (61.4) 124 (153) (30.7) 110-150 142-164 30.4-31.0 T e t a l - SC Mean* - SC Range - SC 320 80 80-90 TREE GROWTH - DOUGLAS FIR (P) CSC 2 104 90 550 750 223.6 92 125 37.3 70-120 105-156 26.7-56.5 120 270 90 70-110 360 81.5 120 27.2 100-134 22.6-30.3 (220) (1W) 100-120 (157) (157) (30.3) (30.3) 620 (306) (61.4) 124 (153) (30.7) 11O-150 142-164 30.4-31.0 1. Determined from Sl^ curves of Iter (1957) 2. Determined from S I ^ curves o f B . C . F . S . (U.B.C. Forestry Handbook, 1959) \u00E2\u0080\u00A2 Mean s i t e Index rounded to nearest 5 f t . O BASIC DATA I I - TREE GROWTH ALLUVIAL COMPLEX ASSOCIATION (AC) COTTONWOOD (COT) WHITE P I N E (Pw) f o r e s t S t a n d S i t e I n d e x 1 No. H t . D and Age D S i t e I n d e x 2 N o . Rt.D and Age D S i t e I n d e x 2 Type No. 50 y r s . T r e e s Co ( f t . ) and Co 100 y r s . T r e e s Co (ft.) and. Co 100 y r s . JAC 28 8o 11* 133 lho 85 140 WAC 125 70 - 120 73 120 88 66 130 WAC - l l \" t 58 120 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Potal-WAC (150) 380 (270) 1ean*-WAC ( 75) 125 (135) Hange-WAC 70-80 120-lVO 130-140 MC 68 70 1 60 ho 80 . T o t a l - A c 220 460 (270) 132 5 2 120 H WAC 125 70 - 83 130 S WAC 125 70 - 75 90 B l )AC 68 70 it 9* \" t l 90 PL DAC 68 70 1 i\u00C2\u00BB7 W2 100 C L. D e t e r m i n e d from S I j 0 c u r v e s o f K e r (1957) ?. D e t e r m i n e d f rom S I 1 Q 0 c u r v e s o f B . C . F . S . ( U . B . C . F o r e s t r y Handbook, 1959) * Mean s i t e I n d e x rounded t o n e a r e s t 5 f t . (D.B.C BASIC DATA II - TREE GROWTH DOUGLAS-FIR ZOHE AND DOUGLAS-FIR/HEMLOCK ECOTONE COMMUNITIES Ponderosa Pine (Py ) No. Ht.D and Age D Site2 R\" max Trees Co (ft) and Co Index (ft) ICO vrs 1 - determined from SI^ curves of Ker (1957). 2 - determined from SI 1 0 0 curves of B.C.F.S. Forestry Handbook, 1959). Uouglaa-flr (F) No. fit D and Age D Site2 Trees Co (ft) and Co Index \u00E2\u0080\u0094 100 vrs Forest Stand Site1 Type No. Index 50 vrs Ag 72 30 A-C 73 70 A-C 71 30? Ca 19* 2 \u00C2\u00B0 Ca 155 80 A-C/M 71* 80 A-C/M 156 -S/AA-0173 90 TREE GflOWTh - OTHER A-C 73 70 Ca 15V 90 Ca 155 80 S/AA-0 173 90 S/M-0 173 90 S/AA-0 I73 90 D IT max (lnj (ft) D H ma (In) 72 \u00C2\u00A3 83 60 76 116 66 78 61 110 117 112 138 50 268 49 40 52 74 59 8 70 69 60 110 60 120 120 110 130 90 110 iS 150 130 81 22.7 90 22.0 1 116 70 .7% 25.7 3 65 42 110 3 82 282 60 86 27.2 - 80 46 110 _ 1 52 110 _ _ 4 74 51 100 _ - 101 213 80 124 32.1 - 110 76 120 -SPECIES !> Asp Cot Pw S 1 Height Growth Summary f o r f o r e s t t r e e s (averages and maxima only) SI50 s i ioo i i H C F L Pw Lichen 35 ( 45) - - 65 ( 80) 65 ( 80) 75 (100) Moss SDM 55 ( 60) 65 ( 70) - 75 ( 80) ( 90) - 80 ( 90) SNM 70 ( 90) 80 (100) - 95 (120) 105 (120) 125 (150) SBM 80 (100) 100 (150) (120) - 110 (120) 110 (130) 130 (160) SBMs 70 ( 80) - - 95 (100) - - 130 (140) ADM 35 ( 50) (50) - - 55 ( 70) (80) - 75 (100) ANM 75 ( 90) 95 (110) 75 ( 90) 100 (110) 95 (110) 120 (140) A r a l i a Oakfern SAO 90 (110) 100 (120) 100 (120) 115 (130) 120 (130) 140 (160) SAOs 80 ( 90) (100) - ( 90) - (105;(110) (110) - 115 (120) DAO 80 (390) (100) - - 115 (130) - - 120 (140) DAOn 75 ( 80) 100 (110) 105 (110) (11)0) - 110 (120) (110) -AAO 95 (110) 95 (100) 110 (130) 125 (130) (110) f 1 \u00E2\u0080\u0094 145 (170) ABAO 75 ( 90) 95 (100) 90 (100) 100 - - - 130 (160) D e v i l s Club SD (90) - (80) - 105 (110) - - - (130) -- - (120) - - - - (130) -TD 80 ( 90) (70) - 105 (110) 110 (120) (130) - 120 (130) AD 95 (105) - 115 t I 3 0 ) 135 (145? - - 145 (180) Skunk Cabbage 125 (150) CSC 80 ( 90) 90 (110) 95 (120) - - T -DSC - ( 9 0 ) ( i - : ( 80) - - - - - -A l l u v i a l Complex WAC 75 ( 80) (120) - - (110) - - - 135 (140) DAC (70) - (100) -See B a s i c Data I I , Appendix D , f o r d e t a i l e d summary; S I 5 0 = height growth of summed pioneer c o n i f e r s a t 50 years; S I 1 0 0 = height growth a t 100 years. ( ) brackets enclose maximum values; H hemlock; C cedar; 100 F Douglas f i r ; L l a r c h ; A aspen; Cot cottonwood. Pw white p i n e ; P i lodgepole p i n e ; Bg grand f i r ; S Engelmann spruce; B i b i r c h \u00E2\u0080\u00A2 H ^ W O J H X (cont'd) siioo Lichen Moss SDM SNM SBM SBMs ADM ANM A r a l i a Oakfern SAO PI Bg B i Cot )s DAO DAOn AAO ABAO D e v i l s Club SD SDn TD AD Skunk Cabbage CSC DSC A l l u v i a l Complex WAC DAC 100 (110) (100) -( 50) -95 (100) (110) - (110) -( 60) -(130) -(120,(3:40) (100) -115 (140) 100 (110) ( 90) (120) -110 (120) (130) -(80) -( 80) -( 70) -( 90) -( 90) ( 90) -(120) -90 -85 (100) 115 (120) (130) 135 (140) (110) (140) 125 (140) ( 80) -L O Maximum net primary p r o d u c t i v i t y of tree stems i n f o r e s t types, by volume and weight. Based on averages of p i o n e e r - c o n i f e r stages, (stage 2) S I S 0 No. stems/ Age Standing crop ( l i v i n g stems) P r o d u c t i v i t y ( f t . ) ac. cu. f t . / a c . x 10~ 3 kg/ha x 10\" 3 ( i n c l u d e s m o r t a l i t y ) c u . f t / a c / y r kg/ha/yr Lichen 35 744 94 2.1 10.9 24 126 Moss SDM 55 1041 89 6.7 34.4 84 433 SNM 65 1495 86 8.4 43.3 105 540 SBM 75 1176 89 9.6 49.7 131 675 SBMs 80 910 83 7.4 38.1 98 504 ADM 35 5493 82 3.1 16.0 42 215 ANM 70 1552 79 7.5 38.7 125 645 A r a l i a Oakfern SAO 90 902 73 10.2 52.7 174 896 SAOs 90 427 91 11.8 60.8 132 682 DAO 90 735 90 11.8 60.9 138 712 DAOn 70 475 105 7.9 40.9 99 512 AAO 100 1511 59 8.6 44.6 152 786 ABAO 90 1540 50 6.5 33.5 140 723 D e v i l ' s Club SD 360 80 7.4 38.2 243 1251 TD 75 865 141 14.9 77.0 123 636 AD 105 450 93 13.5 69.9 151 780 Skunk Cabbage CSC 80 808 82 9.0 46.3 115 594 A l l u v i a l Complex WAC 75 1362 87 6.6 34.0 82 422 DAC &5 1218 41 1.8 9.2 51 262 VO Standing crop of l i v i n g tree stems i n f o r e s t types. Based on averages of climax stands. Average max. h t . of hemlock ( f t . ) Lichen Moss SDM SNM SBM ADM ANM A r a l i a Oakfern SAO SAOs DAO DAOn AAO ABAO D e v i l ' s Club SD SDn TD AD Skunk Cabbage CSC DSC A l l u v i a l complex WAC DAC 93 104 110 94 123 131 120 139 119 127 100 136 109 115 117 126 No. stems/ ac. 315 747 756 585 1170 715 357 427 503 389 337 288 345 243 815 307 301 400 1362 785 Standing crop cu. f t . / a c . x 10\" 2.9 6.6 9.2 9.3 3.8 6.0 15.7 20.7 12.1 13.5 17.8 11.7 32.0 30.1 10.8 34.9 12.8 8.5 6.6 1.8 kg/ha x 10\" 15.0 33.8 47.5 47.9 19.4 31.0 81.2 107.0 62.5 69.6 91.7 60.2 164.8 155.5 55.5 180.0 65.8 43.7 34.0 9.2 APPENDIX E 1) L i s t of f o r e s t types w i t h number of stands s t u d i e d 2) Numerical l i s t of stands w i t h p l a n t a s s o c i a t i o n , f o r e s t type, stage of secondary s u c c e s s i o n , e l e v a t i o n , and l o c a t i o n ( l a t i t u d e and longitude given^n Appendix F ) . 197. LIST OF FOREST TYPES ABBREVIATIONS FOREST TYPE NUMBER OF PLOTS Hemlock Zone L Lichen A s s o c i a t i o n 5 M Moss A s s o c i a t i o n SDM Slope Dry Moss 4 SNM Slope Normal Moss 20 SBM Slope Bunchberry Moss 24 SBMs Slope Bunchberry Moss, southern v a r i a n t 2 ADM A l l u v i a l Dry Moss 3 ANM A l l u v i a l Normal Moss 11 A-0 A r a l i a Oakfern A s s o c i a t i o n SA-0 Slope A r a l i a - O a k f e r n 19 SA-Os Slope A r a l i a - O a k f e r n , southern v a r i a n t 3 DA-0 Degraded A r a l i a - O a k f e r n 6 DA-On Degraded A r a l i a - O a k f e r n , northern v a r i a n t 5 AA-0 A l l u v i a l A r a l i a - O a k f e r n 10 ABA-6 A l l u v i a l Bunchberry A r a l i a - O a k f e r n 5 D D e v i l ' s Club A s s o c i a t i o n SD Slope D e v i l ' s Club 3 SDn Slope D e v i l ' s C lub, northern v a r i a n t 2 TD Tufa D e v i l ' s Club 5 AD A l l u v i a l D e v i l ' s Club 8 SC Skunk Cabbage A s s o c i a t i o n CSC Creek Skunk Cabbage 7 DSC Depression Skunk Cabbage 1 AC A l l u v i a l Complex WAC Wet A l l u v i a l Complex 3 DAC Dry A l l u v i a l Complex 1_ TOTAL HEMLOCK ZONE PLOTS 147 I n t r a z o n a l Douglas F i r communities Ag Agropyron spicatum A s s o c i a t i o n 1 A-C A r c t o s t a p h y l l o s u v a - u r s i - Calamagrostis rubescens A s s o c i a t i o n 2 Ca Calamagrostis rubescens A s s o c i a t i o n 2 Douglas F i r Zone / Hemlock Zone Ecotone A-C/M A r c t o s t a p h y l l o s u v a - u r s i - Calamagrostis rubescens/Moss 2 S/AA-0, Smilacina s t e l l a t a / A l l u v i a l A r a l i a - O a k f e r n 1 TOTAL INTRAZONAL & ECOTONE PLOTS 8 TOTAL PLOTS 155 PLOT LIST WITH FOREST TYPES STAGES, ELEVATIONS AND LOCALITIES\" P l o t No. P l a n t Assoc. For e s t Type Stage E l e v a t i o n 1 M SDM 1 2735 12.3 n. on K i n g f i 3 SC CSC 1 2025 14.9 t t I I I I 4 A-0 SA-0 1 2025 14.8 t i t t I I 5 A-0 DA-0 2 2040 14.8 t t i t i t 6 M SBM 2 2090 14.8 I I t c t\u00C2\u00AB 7 A-0 ABA-0 1 2025 7.0 i t f l I I 8 A-0 ABA-0 1 2075 7.4 i t I t i t 9 M SNM 3 2295 9.4 I t t t I I 10 M SBM 1 2495 10.8 i t I t t i 11 SC CSC 1 2415 11.4 i i I I i t 12 M SNM 1 2790 12.5 I I I t t t 14 SC DSC 1 2570 12.9 i t I t t t 15 A-0 SA-0 1 2575 12.9 t t t t t t 16 A-0 SA-0 1 2585 12.9 i t t o t t 17 M SBM 3 1750 1.3 i t t t t i 18 M SNM 3 1770 1.3 i t I I i t 19 D AD 1 2210 0.3 (approx.) e. 20 A-0 ABA-0 1 2210 0.1 t t n. 21 A-0 ABA-0 1 2290 0.1 t t t t 22 A-0 AA-0 1 2160 on t t i t 23 A-0 AA-0 1 2160 0.1 t t t t 24 D AD 1 2160 0.1 t t t i 25 M SNM 2 2020 4.4 n. of bridge 26 SC CSC 2 2010 4.9 IC t t i t 28 AC WAC - 1975 0.1 e. t t t i Distance to Roadside Stake (miles)' ;r Ck. Rd (835) from j c t n . i t w i t h Enderby-Mabel Lk. Rd. \u00E2\u0080\u00A2 t i t t i t i i t t t t t I I t t t t t t t t Ck. bridge t t i t i t t i I I n. of Sugar Lake i t t t See l i s t of community types (p. Measured on t r u c k milometer. ) of e x p l a n a t i o n of a b b r e v i a t i o n s . P l o t P l a n t F o r e s t E l e v a t i o n No. Assoc. Type Stage ( f t ) 29 M ANM 3 1850 30 A-0 SA-0 3 1875 31 A-0 DA-On 1 3100 32 A-0 DA-On 2 3170 33 D SD 1 3110 34 A-0 DA-0 2 3000 35 D SD 2 3025 36 A-0 DA-Oh 1 2900 37 M ANM 3 1960 38 M SBM 2 1960 39 A-0 SA-0 2 2050 40 M ANM 3 2250 41 M ANM 3 2250 42 M ANM 3 2250 43 M ANM 1 2300 44 M ANM .1 2300 45 M SNM 2 2050 46 M SNM 2 1975 47 M SBM 4 2950 48 A-0 SA-0 1 2975 49 SC CSC 2 2975 50 A-0 SA-0 2 2975 51 A-0 AA-0 4 2925 52 A-0 SA-0 2 3330 53 M SBM 3 2980 54 M SNM 3 3010 55 M ADM 2 2500 56 M SDM 1 2300 57 A-0 SA-0 3 2600 58 M SBM 2 2575 60 M SBM 3 2725 61 A-0 SA-0 2 2600 62 M SNM 3 2670 63 A-0 SA-0 3 2670 64 AC WAC - 2485 t l It t l It II II t l II II II It It It It It tt It tt tt It Distance to Roadside Stake (miles) 11.0 (approx.) n. of Arrow Park on E. Mosquito Ck. Rd. tt it tt i t t> 3.9 w. on Cusson Ck. Rd. from j c t n . w i t h W. Mosquito Ck. Rd. 3.9 4.1 4.4 4.4 3.0 3.7 n. on W. Mosquito Ck. Rd. from j c t n . 3.7 3.8 9.0 9.0 9.6 0.5 s. on W. Mosquito Ck. Rd. from Bear Ck. Logging Camp. Q g It It It i t tt t l t l at j c t n . of W. Mosquito Ck. Rd. & Steven's Pass Rd. near W.Arrow Pk. i t I I i t et it i t i t ti tt tt tt t t i t t i n tt t i w i t h Celgar Log Dump Rd.Arrow Pk. I I i t tt 1.4 w. on 1.4 I I i t 1.4 i t i t 1.4 i t tt 2.8 i t t i 3.6 it tt 4.2 tt tt 4.2 tt tt 0.2 s. on 1.2 til tt 3.8 I I i t 4.6 I I I I on n. i t i t i t t i t i tt on s. Rd. tt I I i t I I t i tt t i t t i t tt t i n tt tt tt t i n II i t t i it tt tt i t tt tt i t i t tt tt i t i t w i t h Steven's Pass Rd. tt tt t i t i i t tt side of Caribou Ck. near M i n e r a l C i t y 6 mi. tt i t t i I I t\u00C2\u00BB I I I I i t i t i t tt I I i t I I I I n.e. i t \u00C2\u00BB I I of Burton tt tt side of Caribou Ck. near M i n e r a l C i t y 6 mi. n.e. of Burton, P l o t P l a n t Forest E l e v a t i o n No. Assoc. Type Stage ( f t ) 65 D AD 3 2490 66 A-0 SA-0 2 2650 67 M SBM 3 2725 68 AC DAC - 1410 71 A-C - - 2150 72 Ag - - 2020 73 A-C - - 2100 74 A-C/M - - 2075 76 A-0 AA-0 2 1600 77 M ANM 3 1425 80 M ANM 2 2300 81 M SBM 2 2285 84 M SDM 2 2300 85 L L 1 3065 86 M SOM 1 3025 87 M SBM 3 2300 88 M SBM 3 2275 89 M SBM 3 2960 90 M SBM 1 2955 91 M SNM 1 2920 92 M SBM 2 2910 93 A-0 AA-0 1 3125 94 A-0 DA-0 1 3140 97 M SNM 2 2530 101 D TD 3 2350 104 SC CSC 2 2640 105 A-0 AA-0 2 2630 106 M SNM 3 2800 107 M SBM 1 2800 108 A-0 DA-0 1 2750 109 M SNM 3 2905 110 M SBM 2 2810 111 M SBM 2 2800 112 A-0 DA-0 1 3215 113 SC CSC 1 3260 114 SC CSC 1 3200 Distance to Roadside Stake (miles) on s. side of Caribou Ck. near M i n e r a l C i t y 6 mi. n.e. of Burton. II ti n it ii ti n n i i at f e r r y s l i p on e. bank of Columbia R., on rock b l u f f s e. of Burton. E. Arrow Park. it II it at 0.4 s. 3.0 on 3.0 \" 3.8 \" 2.5 n. 2.5 \" 0.9 \" 0.8 \" 2.5 \" 0.2 on 0.2 \u00C2\u00BB 0.2 \" 3.2 \" 3.2 \" 2.7 \" 4.4 \" 1.1 \" 1.1 \" 1.6 \" 1.7 \" 1.7 \u00C2\u00BB 1.7 \" 1.7 \" 1.7 \u00C2\u00BB 4.0 \" 3.9 \" 3.7 \" base of rock b l u f f s e. of Burton, on highway 97 from E. Arrow Park. Nakusp Hot Springs Rd. from Nakusp, on o l d Wilson Lake Road from j c t n . w i t h Highway 97, i t i t it II II ti it \u00C2\u00BB II n Horseshoe Lk. Rd. from j c t n . w i t h o l d Wilson Lake Road II tt II ii new Wilson Lk. Rd. from j c t n . w i t h Highway 97, n it tt it Wilson Lk. Rd. from Highway 97 near Rosebery. i i it it new Wilson Lk. Rd. from j c t n . w i t h Highway 97, ti tt it \u00E2\u0080\u00A2\u00C2\u00AB ti ti it II it it \u00E2\u0080\u00A2 i II it it ii it II tt tt it II II II II II ro o o P l o t P l a n t Forest E l e v a t i o n No. Assoc. Type Stage ( f t ) Distance to Roadside Stake (miles) 117 L L 2 3350 at headwaters of Hasty Ck. e. of S i l v e r t o n . 119 A-0 SA-0 2 3050 near Hasty Ck. e. of S i l v e r t o n . 121 L L 2 1500 0.5 n. on Nakusp-Beaton Rd. from Kuskanax R i v e r . 122 L L 2 1480 0.2 it ti it tt 123 M ADM 1 1440 0.2 it II tt n 124 M ADM 2 1480 0.1 w. from Kuskanax R. bridge on n. s i d e of r i v e r . 125 AC WAC - 1430 at Kuskanax R. bridge near Nakusp. 126 A-0 AA-0 3 1450 it tt it it 127 A-0 AA-0 2 1450 ii it tt II 128 D TD 1 2525 5.0 (approx.) up S l e w i s k i n Ck. from Arrow Park - Nakusp Rd. 129 D SD 1 2500 5.0 it II ti it it n 131 M SNM 1 2340 7.2 e. on Highway 97 from Nakusp. 132 A-0 DA-0 1 2330 7.2 ii tt tt II it 133 A-0 SA-0 3 2530 opposite park at Summit Lake on Nakusp-New Denver Road. 137 M SNM 3 1960 at Schroeder Ck. on Kaslo-Lardeau Rd. 138 D TD 2 2000 ii II it it ti 139 A-0 AA-0 2 1790 3.2 n. on Lardeau-Gerrard Rd. from Lardeau. 140 A-0 AA-0 3 1790 3.2 \u00E2\u0080\u00A2t it ti it 143 A-0 ABA-0 2 2100 17.0 it it it it 144 D AD 1 2220 24.4 it II it it 145 A-0 SA-0 2 2500 at American Ck. on e. side of Trout Lake. 146 D AD 2 2500 ii n II it tt n 147 M SNM 3 2490 0.8 e. on o l d Kaslo-New Denver Rd. from j c t n . w i t h South Fork Rd. 148 M SNM 2 2500 0.7 it \u00E2\u0080\u00A2 \u00C2\u00BB II tt II IV II II 150 D AD 1 2580 1.6 s. on South Fork Rd. from j c t n . w i t h o l d Kaslo-New Denver Rd. 151 D TD 1 2925 2.9 it tt ti tt II it 152 D AD 1 2845 2.9 ti II tt it II ii 153 A-0 SA-0 1 3065 3.4 tt II it II n II 154 Ca - - 2150 1.6 n. on Kaslo-Lardeau Rd. from K a s l o . 155 Ca - - 2160 1.6 it n ti II 156 A-C/M - 1905 14.8 ii II II it 157 M SBM 3 2620 2.5 n. from Gerrard on Gerrard-Beaton Rd. 158 M SBM 3 2775 3.4 ii it tt II ti 159 A-0 SA-0 2 3000 4.0 II II tt ti u P l o t P l a n t F o r e s t E l e v a t i No. Assoc. Type Stage ( f t ) 160 M SBM 3 3050 161 D TD 3 3045 162 A-0 SA-0 3 3060 163 M SNM 1 3310 164 M SBM 1 3320 165 M SNM 1 3250 166 A-0 SA-0 1 3200 168 M SBM 3 2520 170 A-0 DA-On 1 3925 171 D SDn 1 3850 173 S/AA-0 - - 2325 175 A-0 SA-Os 1 3140 177 M SNM 1 3100 183 A-0 SA-Os 2 2780 184 A-0 SA-Os 2 2800 186 M SBMs 3 3130 189 M SBMs 2 3170 193 D SDn 1 3870 196 A-0 DA-On 1 4210 201 M SNM 3 2760 203 D AD 1 3000 204 L L 2 1650 206 M SBM 3 1600 207 M ANM 2 1500 208 M ANM 3 1500 Distance to Roadside Stake (miles) 4.0 n. from Gerrard on Gerrard-Beaton Rd. 4.0 4.0 10.2 10.2 10.2 10.2 at j c t n . of South Fork Rd. w i t h o l d Kaslo-New Denver Rd. 1.2 on road to Idaho Mtn. Lookout from Sandon bridge. \ 2. \" \" \" \" \" \" of Salmo on main Highway. on E r i e Ck. Rd. from j c t n . w i t h Salmo-Trail Highway. tt ti tt tt tt \u00E2\u0080\u00A2t 2.2 s. 3.8 w. 3.8 \" 2.2 w. 2.2 \" 3.7 \" 3.7 on Duhamel Lk. Rd. from j c t n . w i t h Kaslo-Nelson Rd. 7.0 \" 8.2 \" on n. side of Caribou Ck. near M i n e r a l C i t y 6 mi. n.e. of Burton. 2.0 (approx.) e. (by water) on Wilson Lake from end of road. 6,0 (approx.) w. of Sicamous on main Highway. g Q It 11 It It It II 1.0 n, of Malakwa on main Highway. 2 5 \" \" \" \" \" tt tt t i tt t\u00C2\u00BB i t it tt i t i t O N5 203. APPENDIX F page 1. Methods - a d e t a i l e d account S o c i o l o g i c a l a n a l y s i s 204 S o c i o l o g i c a l s y n t h e s i s 209 Tree a n a l y s i s 213 2. Synthesis Tables with symbols andjabbreviations explained i n t e x t beforehand . . . 219 and with t a b l e s arranged as f o l l o w s : a) I n t r a z o n a l and Ecotone communities 231 envelope b) Hemlock Zone communities Lichen a s s o c i a t i o n . 1 Moss a s s o c i a t i o n 2 A r a l i a Oakfern a s s o c i a t i o n . . 3 D e v i l ' s Club a s s o c i a t i o n . . . 4 Skunk Cabbage a s s o c i a t i o n . . 5 A l l o v o l Com p\ *i A 6 204. METHODS - A DETAILED ACCOUNT Because of the d i f f i c u l t y I encountered i n f i n d i n g complete accounts i n the l i t e r a t u r e ^ a thorough e x p o s i t i o n of methods used i s presented below i n the hope i t w i l l be u s e f u l f o r f u t u r e workers. M o d i f i c a t i o n s of standard methods are emphasized. Work was d i v i d e d i n three stages, 1) s o c i o l o g i c a l a n a l y s i s , 2) s o c i o l o g i c a l s y n t h e s i s , and 3) tree a n a l y s i s . I . S o c i o l o g i c a l A n a l y s i s . F o l l o w i n g establishment of 1/5 acre r e c t a n g u l a r p l o t s i n stands con-sid e r e d r e p r e s e n t a t i v e of the t e n t a t i v e l y i d e n t i f i e d p l a n t a s s o c i a t i o n s i n f o r m a t i o n was recorded on h a b i t a t and v e g e t a t i o n , i n c l u d i n g d e t a i l e d t r e e mensurational data. To analyse each p l o t took approximately one day. a) H a b i t a t d e s c r i p t i o n W i t h i n each sample p l o t , d e t a i l e d s o i l d e s c r i p t i o n s were made by Smith (1963). A d i t i o n a l data recorded by B e l l were: 1. l o c a t i o n of the stand 2. date of stand a n a l y s i s 3. longitude and l a t i t u d e to nearest minute 4. a l t i t u d e to nearest 25 f e e t , measured by a l t i m e t e r 5. extent of stand i n acres 6. d e s c r i p t i o n of topography: a) p r o f i l e and b) contour were separately c l a s s i f i e d as concave, convex, complex ( r o l l i n g o r i r r e g u l a r ) , f l a t , or n e u t r a l (uniform s l o p e ) ; c) m i c r o r e l i e f of the ground surface w i t h i n the p l o t was c l a s s i f i e d as f l a t , n e u t r a l , hummocky, i r r e g u l a r , outcrop, g u l l y or un d u l a t i n g ; a for m - l i n e sketch of topography of each p l o t was a l s o made 7. slope of land i n degrees 205. 8. exposure of land surface 9. wind exposure: a r e l a t i v e measure of p o t e n t i a l a i r movement i n each of the t r e e , shrub, and herb l a y e r s ; based on a s c a l e from 0 (no movement to 9 (extreme exposure of ridges and h i l l t o p s ) 10. estimate of p e r i o d of continuous snow cover i n months 11. percentage of p l o t covered by humus, decaying wood, and rocks 12. stand h i s t o r y : a) f a c t o r s apparently causing o r i g i n a l denudation of land before the present stand became e s t a b l i s h e d ; t h i s was l i m i t e d to the three c a t e g o r i e s of f i r e , l o g g ing and \"unknown\"; b) f a c t o r s i n f l u e n c i n g the stand d u r i n g development; t h i s covered a wide range of f a c t o r s , e.g., ground f i r e , s e l e c t i o n l o g g i n g , p e r i o d i c f l o o d s , t r a p p i n g , bear damage, e t c . 13. remarks, p a r t i c u l a r l y on s u c c e s s i o n a l s t a t u s and stand homogeneity; a t y p i c a l h a b i t a t data sheet i s shown completed i n F i g . 67. b) Vegetation d e s c r i p t i o n i ) P a t t e r n of v e g e t a t i o n An attempt was made to i n d i c a t e the homogeneity of species d i s t r i b u t i o n as i t appeared a t the time of a n a l y s i s . I t was based not on any q u a n t i t a t i v e measure but on the general appearance of the stand and was, t h e r e f o r e , en-t i r e l y a r b i t r a r y . A s c a l e of 1 to 4 covered the mage of p a t t e r n , value 1 i n d i c a t i n g random or near to random species d i s t r i b u t i o n , as i n r e l a t i v e l y uniform environments where the only f a c t o r s l i m i t i n g establishment of species might be seed source and competition f o r space. Value 4 described pro-nounced p a t t e r n where l o c a l aggregations of species were most evi d e n t , i . e . , species d i s t r i b u t i o n was markedly contagious. D i s c o n t i n u i t i e s were obvious as between the r e l a t i v e l y dry Cornus canadensis covered hummocks and the water-saturated L y s i c h i t u m americanum depressions of the Skunk Cabbage s i t e s . In t h i s example, the major f a c t o r apparently causing t h i s p a t t e r n was to f o l l o w page 205. F i g . 67. Completed h a b i t a t data sheet f o r stand SB 119 LOCATION &t\" fs-a\u00C2\u00AB- ^ Cst-cr^^ 4f,~Ws~c /\"a/4-, foes* i/^/y^y J ' LQl4fc\T0D E, \" 7 \" < Z o ' LATl'tUftE f / ' j y ^ I ALTtTu0 \u00C2\u00A3 J-of-o p l o t s i z e A/ Si'H/ S i'i' IA/ e * T \u00C2\u00A3 { v . T O f T Y P E JC DESCR .rTloN a ) ToPOCrRftPHY - V P A d e U T H A T e f t v f t U o) HISTORY r~*yf /tyS/* s~~*t or? ~ c \u00C2\u00A3 /t**a /?// u,4,& y/ wimo a y 3 / C C/J SNOW COVEfl T 6 r J T . V f W \u00C2\u00A3 . N A M E / ^ f ^ / /t-stZoesr/n - A?/> f * y * - /'/*-> A \ * 6< B l 'O J C 7 < 3 0 HtlMUi -Z. 0 0\u00C2\u00A3cayi\u00C2\u00BBj\u00C2\u00BB\u00C2\u00BB wood / D HOCK -/ 1 % of p l o t c o v e f t e o Lnr40FoRM SvS J **'^f are*. o//^ a^,,\u00E2\u0080\u009Ej/4r ~>s X-/^ 's - & J>~c\"\"?/ *\u00C2\u00BB\u00C2\u00ABv r? / ^re*J 7: o /hi Af \u00C2\u00AB \"JSCS// y s: 7 s a. (-oJ 7.7* i ' 4 r t-o) 0 ........ 3.3 \u00E2\u0080\u00A2 e hut* y'G\"7'f *V> \u00C2\u00BB< Cost O C y/he rf/y // (//of*'* rojc/f A* / \u00E2\u0080\u00A2 / ' z.z. J. 2* 3.23 Z.Z' ', j row/* off F i g . 68. .PLOT NO //9 D.B.H. CLASS . \u00E2\u0080\u00A2\" > DATE -r \u00E2\u0080\u009E /' f/f// /rr: ssstrrny o \u00E2\u0080\u00A2 0 S....SS s r s t o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2i r. 7 . s-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * 8 . . s \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2> \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * /o 4 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / / rr \u00E2\u0080\u00A2\u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 rV \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /? \u00E2\u0080\u00A2> \u00C2\u00A5\u00E2\u0080\u00A2 *\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /6 t ' /8 /9 12 \u00E2\u0080\u00A2 * << \u00E2\u0080\u0094 c - f, \u00E2\u0080\u00A2 C : 7 // 7, 6 C .\u00E2\u0080\u00A2' \u00C2\u00A3 Yo \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2\u00C2\u00BB //} *>n / / a* :\u00E2\u0080\u00A2 * . - / ** ^ - e//*// \u00C2\u00BBt>enc/\u00C2\u00A3 /Y.7 /// 60 D &/f/tf / . Affct^eft/to)/ e4/**4*(C. // /0.7 S3 f 8 c // 2 9 /V J // //. 2- SY C c *-7 3: 2.0 \u00E2\u0080\u00A2z s-Y S c \u00E2\u0080\u0094 / ? /L . /4/*-os A 2 iw ^/\u00C2\u00A3r>^>-22. 3 4 /> // //. 2. SY C />\". 2- 7*' c f C , */ c / J~2 *** . \u00E2\u0080\u009E/ i f A J r >A 2 / / / s r F i g . 7 0 . 209. I I S o c i o l o g i c a l s y n t h e s i s F o l l o w i n g s o c i o l o g i c a l a n l a y s i s i n the f i e l d , p l o t data were summar-i z e d and compiled i n t a b l e s , the most s i g n i f i c a n t of which were synth e s i s t a b l e s , one t a b l e f o r each p l a n t a s s o c i a t i o n (Appendix F ) . F o r e s t types and secondary succession stages were d e l i m i t e d w i t h i n each a s s o c i a t i o n . Data i n synthesis t a b l e s were grouped under the f o l l o w i n g headings, a) H a b i t a t data, b) Tree data, c) Species l i s t and l i f e form, and d) Vegetation summaries. a) H a b i t a t data This i n c l u d e s most of the i n f o r m a t i o n l i s t e d under \"Habitat D e s c r i p t i o n \" on page 204 as w e l l as s o i l s i n f o r m a t i o n from Smith (1963): s o i l type N a t i o n a l S o i l Survey Committee, 1960, parent m a t e r i a l , most common rock type i n parent m a t e r i a l , depth of s o i l to l a y e r impermeable to r o o t s , thickness of the leached Ae s o i l h o r i z o n , pH and t e x t u r e of the main r o o t i n g h o r i a o n , and pH of organic h o r i z o n above the m i n e r a l s o i l . b) Tree data Tree data indluded the f o l l o w i n g , mostly taken from c a l c u l a t i o n s ex-p l a i n e d l a t e r i n \"Tree A n a l y s i s \" : i ) Stand development stage; stands were noted as even-aged or uneven-aged f o l l o w i n g the c l a s s i f i c a t i o n of Tourney (1937, p. 268). Age c l a s s e s (Ker, 1957, p. 100) were a l s o noted. This i n f o r m a t i o n o f t e n gave an i n d i c a t i o n , i n f o r e s t r y terms, of the h i s t o r y and the stage of succession a t t a i n e d by a stand; i i ) Age of dominant t r e e s ; i i i ) Age of the o l d e s t measured t r e e ; t h i s o f t e n i n d i c a t e d the time that the land was o r i g i n a l l y c l e a r e d before the present stand established} i v ) Basal area per acre; 210. v) Average diameter of the stand (based on the tree of average b a s a l a r e a ) ; v i ) S i t e index of three types; 1) h e i g h t of i n d i v i d u a l t r e e species at 100 years ( B r i t i s h Columbia F o r e s t S e r v i c e , i n U n i v e r s i t y of B r i t i s h Columbia F o r e s t r y Handbook, 1959); 2) height of grouped pioneer c o n i f e r species at 50 years (Ker, 1957); 3) h e i g h t of tre e of average maximum height i n mature and overmature stands, c) Species l i s t s and l i f e form The t h i r d major category of data i n the synt h e s i s t a b l e s deals w i t h v e g e t a t i o n only. The percent cover of each v e g e t a t i o n l a y e r was _summarized at the top of each synthesis t a b l e . Species were l i s t e d i n the f o l l o w i n g l a y e r s : 1) t r e e s , 2) shrubs, 3) herbs, 4) bryophytes on ground, 5) l i c h e n s on ground, 6) tree seedlings (the same season) on ground, 7) bryophytes on decaying wood, 8) l i c h e n s on decaying wood, 9) tre e seedlings on decaying wood, 10) bryophytes on rock,11) l i c h e n s on rock. Species of l i t t l e d i a g n o s t i c s i g n i f i c a n c e and l e s s than 10% Constancy were shown s e p a r a t e l y under the heading \" O c c a s i o n a l l y Present\" f o r each l a y e r . L i f e form of each species was determined a f t e r a m o d i f i e d v e r s i o n of Raunkiaer's scheme (mainly Braun-Blanquet, 1932). Pm - macrophanerophytes: trees w i t h renewal buds more than 2 metres above the ground, Ph - nanophanerophytes: shrubs or small trees w i t h renewal buds 25 cm to 2 m above ground, Ch - chamaephytes: p l a n t s w i t h renewal buds above the ground s u r f a c e , but beneath 25 cm, H - hemicryptophytes: p l a n t s w i t h renewal buds equal or sub-equal to ground s u r f a c e , 211. G - geophytes: p l a n t s w i t h renewal buds beneath the ground s u r f a c e , T - therophytes: annuals, M - mosses, He - l i v e r w o r t s , L - l i c h e n s . d) Vegetation summaries F o l l o w i n g t e n t a t i v e arrangement of stands i n a s s o c i a t i o n s , types and stages, averages of 1) constancy, and 2) dominance ( a r e a l cover) were c a l -c u l a t e d f o r each species i n each l a y e r . Poore (1956, 1962) and Go\u00C2\u00B0dall (1953) e f f e c t i v e l y argue f o r the value of constancy (Braun-Blanquet, 1932) as the most o b j e c t i v e measure f o r de-f i n i n g p l a n t a s s o c i a t i o n s . Dominance may be used w i t h constancy and a modi f i e d v e r s i o n of f i d e l i t y (Braun-Blanquet, 1932) to c h a r a c t e r i z e the phytocoenose most e f f e c t i v e l y . Constancy was c a l c u l a t e d f o r a s s o c i a t i o n s o n l y , both i n percent and by r constancy c l a s s e s (Braun-Blanquet, 1932): Constancy C l a s s 1: Species occurs i n 1 to 20 percent of the stands of an a s s o c i a t i o n . Constancy C l a s s 2: Species occurs i n 21 to 40 percent of stands. Constancy C l a s s 3: Species occurs i n 41 to 60 percent of stands. Constancy C l a s s 4: Species occurs i n 61 to 80 percent of stands. Constancy Class 5: Species occurs i n 81 to 100 percent of stands. Species belonging to the 5th c l a s s are c a l l e d \"constant\" species: those below are \"non-constant\". Dominance of i n d i v i d u a l species i s expressed as percent of ground sur-face covered by the p r o j e c t e d crowns of a l l i n d i v i d u a l s of the species. Species s i g n i f i c a n c e values were converted to percent ground cover u s i n g the f o l l o w i n g s c a l e : 212. SPECIES SIGNIFICANCE PERCENT COVER , .1 + 0 O) 1 0 (6) 2 1 (9) 3 5 (12) 4 10 5 20 6 35 7 50 8 75 9 95 10 100 W i t h i n each p l a n t a s s o c i a t i o n , the f o l l o w i n g cover values were de-termined f o r each species i n each l a y e r (from Becking, 1957): TOTAL COVER DEGREE (TCD) = sum of percent cover values i n a l l stands where species occurs. AVERAGE COVER DEGREE (ACD) = TCD ~T~ t o t a l number of stands i n the community. CHARACTERISTIC COVER DEGREE (CCD) = TCD \u00E2\u0080\u0094 r - number of stands i n which the species occurs. For example, a community based on ten stands has species A o c c u r r i n g i n f i v e of them, with cover values of 10%, 25%, 20% and 20%. Then TCD = 90 ACD = 90 - \u00E2\u0080\u0094 10 - 9% and CCD - 90 - r ~ 5 - 18% The TCDs and ACDs were c a l c u l a t e d f o r f o r e s t types, stages and the p l a n t a s s o c i a t i o n s . The CCDs were c a l c u l a t e d only f o r the p l a n t a s s o c i a t i o n s . I f a major discrepancy e x i s t e d between the a s s o c i a t i o n ACD and the A s s o c i -a t i o n CCD f o r any one s p e c i e s , as i n the example above, the reason was of t e n F i g u r e s i n brackets are f o r ti m b e r - s i z e d t r e e s ; i n t h i s study, species s i g n i f i c a n c e values f o r la r g e trees were more an i n d i c a t i o n of abundance (number of stems) than they were domincance ( c o v e r ) , thereby making e s t i -mation of percent cover d i f f i c u l t without s p e c i a l treatment, as has been done i n the synth e s i s t a b l e s . This p r a c t i c e should be avoided. 213. found i n r e l a t i v e l y high cover values f o r a p a r t i c u l a r stage or f o r e s t type w i t h i n the p l a n t a s s o c i a t i o n . In other words, comparison of p l a n t a s s o c i a t i o n ACDs and CCDs provided an o b j e c t i v e means f o r f i n d i n g the so-c a l l e d \" d i f f e r e n t i a t i n g species\" (Braun-Blanquet, 1932) between types or between stages w i t h i n any one p l a n t a s s o c i a t i o n . To i l l u s t r a t e t h i s p o i n t : i n the example given above the ACD of species A i s h a l f the CCD, a considerable differences. Assuming re-examination of the stands r e v e a l s that species A occurs only i n climax stands of t h i s p l a n t a s s o c i a t i o n , then species A would be a d i f f e r e n t i a t i n g species f o r stage 1, which might a l s o , i f f l o r i s t i c d i s t i n c t i o n i s adequate, be a s u b - a s s o c i a t i o n as w e l l . I l l Tree A n a l y s i s From the tre e measurements explained on page 208, the f o l l o w i n g were developed: a) Stand t a b l e s 1) Stand t a b l e s f o r each p l o t showing number of species by diameter c l a s s w i t h a separate t a b u l a t i o n f o r dead, but s t i l l s tanding t r e e s . 2) Basal area t a b l e s f o r each p l o t g i v i n g b a s a l area i n square f e e t f o r each species i n each diameter c l a s s . A sample stand and basal area t a b l e i s shown i n F i g . 71. 3) T o t a l b a s a l area per acre f o r each stand. 4) Average diameter of each stand, based on the t r e e of average basal area. b) Growth data 1) Average height of dominants and codominants. 2) Average age of dominants. 3) Age of o l d e s t measured t r e e . to f o l l o w page 213. F i g . 71. Stand and b a s a l area t a b l e s f o r stand SB 119. Average stand diameter i s determined from the t r e e of average b a s a l area. PLOT NO. //f D ia. F R E Q U E N C Y Total Acre Factor TREES PER ACRE Total Basal Area 1 * BASAL A R E A P E R AC RE (FT., Total o ff C W 77 /Y c fa-/ 6 Y /o Jo 20 y o \u00E2\u0080\u00A2oo6 \u00E2\u0080\u00A2A ' / 3 2. fZ // 6>0 yy fO \u00E2\u0080\u00A2axi f-9 tz. 2 . y 3 Y 3 'Y ff //? \u00E2\u0080\u00A2 OV9 27 7 3.\u00C2\u00A5 y , r 6 (/ AS- 3Q .eg? 21 2.6 9 3 (Z rr~ 7y y r \u00E2\u0080\u00A2/J6 If J.o &./ 6 t Y i y J~o 20 y \u00E2\u0080\u00A2fU I.O 9$ 3 1 ta /y.7 7 6 / 7 JO y So \u00E2\u0080\u00A2267 $.o '\u00E2\u0080\u00A23 9.3 8 Y 7 f y if 3Y9 7P i-1 g.7> 9 f y / / f y *}~ y y y *y \u00E2\u0080\u00A2W2 z-z //./ 1Z ?Z z.z. S9.9 /o J / Y '5' y zo \u00E2\u0080\u00A2*'Yf 37 /o.9 // 7 Y / 6 *-o s' 30 3.3 ii.2. 33 '9.g /Z Y / T Zo y 2f 'r-7 39 79.6 /Y 2 / / t f vT y y 24\" to.i S3 26.6 /f / / z y y /o tzz? / . / 6.7 /2Z 76 2, r 3 9' /y f-39t 7c 2 7. O 7B i 7 y y t-7*>7 8.6 g.S /9 7 7 y y t.f$\ 9.$ 9* 13. / f V foo 7?0 /o 2JO /r 67f VYY 3Y3 7.S /Z.O zsr.6 Z/Y.6 \u00C2\u00A3> ' -f / f 7 y iC y \u00E2\u0080\u00A2006 Z' 7 / y y \u00E2\u0080\u00A202Z -/ \u00E2\u0080\u00A27 3 7 / y y \u00E2\u0080\u00A2Z \u00E2\u0080\u00A22 Y / / z f f /o \u00E2\u0080\u00A2 OR? \u00E2\u0080\u00A2Y >Y \u00E2\u0080\u00A2 3 b~ / / z- f y /o /?6 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A27 I.Y 6 / z y /O \u00E2\u0080\u00A2W /\u00E2\u0080\u00A2o t.o 2.o 9 / / z s y (O YY2 z.z 2-z ' /O y y 60 $\u00E2\u0080\u00A29 . / zf 2.1 \u00E2\u0080\u00A2 2 /s.y / />t be* 73>' / 4 'A / = 229.// * 4 \u00E2\u0080\u009E _r\u00C2\u00AB7. f =7- eAet 214. 4) S i t e i n d i c e s : i ) Height i n f e e t at 100 years (SI 100) f o r a l l species where p o s s i b l e . B.C. F o r e s t S e r v i c e s i t e index curves were used (U.B.C. F o r e s t r y Handbook, 1959), i i ) Where p o s s i b l e , height i n f e e t a t 50 years (SI 50) f o r grouped pioneer c o n i f e r s (Ker, 1957), i i i ) Where c a l c u l a t i o n of s i t e index by conventional methods was not p o s s i b l e , average maximum he i g h t (Hmax) and the diameter of the tree of average maximum height (Dhmax) were c a l c u l a t e d f o r mature and overmature uneven-aged stands, c) Stand d e n s i t y R e l a t i v e stand d e n s i t y f o r each stage w i t h i n each type; d e n s i t i e s are c a l l e d \" s t o c k i n g percent\" and are given i n Basic Datal i n Appendix C. Spurr (1952) discusses a number of methods employed i n e s t i m a t i n g f o r e s t stand d e n s i t i e s and concludes t h a t while the popular \"stand d e n s i t y index\" of Reineke (1933) minimizes v a r i a t i o n due to s i t e and age, i t i s n e v e r t h e l e s s c l o s e l y c o r r e l a t e d w i t h b a s a l area, even though t h e l a t t e r may v a r y c o n s i d e r a b l y by s i t e and age. \"Since b a s a l area i s apparently f u l l y as s a t i s f a c t o r y as stand d e n s i t y index i n most cases, because i t i s more simply obtained, and s i n c e i t i s a f i n i t e value i t i s to be p r e f e r r e d as a measure of d e n s i t y . \" (Spurr, 1952) In t h i s t h e s i s , r e l a t i v e stand d e n s i t i e s are t h e r e f o r e determined from ba s a l area alone. The i n f l u e n c e of s i t e and age i s minimized by making separate determinations of r e l a t i v e d e n s i t y , w i t h i n each stage of each f o r e s t type. The stand of h i g h e s t b a s a l area w i t h i n each stage was taken as 100 percent s t o c k i n g . R e l a t i v e d e n s i t i e s c a l l e d \" s t o c k i n g percent\" are c a l c u l a t e d as a percentage of the h i g h e s t v a l u e . 215. d) Dominance Frequency Density (DFD Values The DFD index introduced by C u r t i s (1947) i n d i c a t e s very w e l l the v e g e t a t i o n a l importance of a species w i t h i n a stand. B r i e f l y , theDFD index i s a number between 1 and 300 given to each species i n a stand based on i t s frequency (percent of number of p l o t s i n which i t o c c u r s ) , r e l a t i v e d e n s i t y (percent of t o t a l number of stems per u n i t a r e a ) , and r e l a t i v e dominance (percent of t o t a l b a s a l area per u n i t a r e a ) , as measured i n a number of sample p l o t s w i t h i n the stand. DFD i n d i c e s or s i m i l a r values may be used to o b j e c t i v e l y arrange stands i n continua of d i f f e r e n t types demonstrating v e g e t a t i o n a l v a r i a t i o n u s u a l l y according to s i n g l e f a c t o r s of the environ-ment, e.g., moisture gradients (Dansereau, 1943), gradients of p l a n t success-i o n ( C u r t i s and Macintosh, 1951), gradients of s o i l type, e t c . In t h i s form of usage, DFD values concern themselves w i t h d i s c r e t e p l a n t a s s o c i a t i o n or other communities only i n s o f a r as the gradients i n question are c o r e l a t e d w i t h change i n community type. They may a l s o be used to c h a r a c t e r i z e described p l a n t communities (plant a s s o c i a t i o n s and f o r e s t types) i n terms of the r e l a t i v e importance of t r e e species i n each community. C a l c u l a t i o n of DFD values d i f f e r s i n one major respect from t h a t of C u r t i s (1947). He c a l c u l a t e d importance values f o r each species i n each stand from data taken i n a number of randomly e s t a b l i s h e d p l o t s w i t h i n the stand. I n t h i s t h e s i s , each a b s t r a c t e d community (whether i t be stage, f o r e s t type, p l a n t a s s o c i a t i o n or even subzone and zone) i s considered e q u i v a l e n t to the \"stand\" i n C u r t i s ' s e n s e . The sample p l o t s , on which the DFD values are based, w i t h i n t h i s a b s t r a c t \"stand\" are the a c t u a l stands sampled by o n e - f i f t h acre p l o t s i n the f i e l d . For example, the DFD value f o r each t r e e species i n the Moss a s s o c i a t i o n i s determined on the b a s i s of a l l p l o t s i n c l u d e d i n the Moss a s s o c i a t i o n ' s synthesis t a b l e . 216. DFD values are summarized i n Basic Data I , Appendix C. For each species i n each community they are derived from the sum of: i ) Frequency: the number of p l o t s , i n percent, i n which the species occurs; h i g h e s t p o s s i b l e value equals 100. i i ) R e l a t i v e dominance: the average b a s a l area per acre of the species expressed as a percent of the average t o t a l basal area per acre of a l l p l o t s ; h i ghest value equals 100. i i i ) R e l a t i v e d e n s i t y : the average number of trees per acre expressed as a percent of the average t o t a l number of t r e e s per acre of a l l p l o t s ; h i g h e s t value equals 100. The h i g h e s t p o s s i b l e DFD v a l u e , t h e r e f o r e , i s 300. e) Succession Index DFD values may show the e c o l o g i c p o s i t i o n of i n d i v i d u a l species i n succession g r a d i e n t s , but they do no i n d i c a t e the s e r a i r e l a t i o n s h i p s of communities. In order to demonstrate the e c o l o g i c p o s i t i o n of f o r e s t types i n a primary succession sere, values c a l l e d \"succession i n d i c e s \" were developed f o r the communities i n question as f o l l o w s : 1) choose a l l species w i t h t h e i r h i ghest DFD value i n the c l i m a t i c climax community ( i n t h i s study, the Slope Normal Moss t y p e ) ; 2) sum the DFD values of these species w i t h i n the c l i m a t i c climax community and c a l l t h i s 100%; 3) sum the DFD values of these species i n a l l other f o r e s t types and convert to percent of value i n 2 ) . A l l percent values so determined are primare succession i n d i c e s . D i f f e r e n c e s between primary succession i n d i c e s estimate the e c o l o g i c a l \" d i s t a n c e \" between f o r e s t types belonging to the same primary succession sere i n any one Zone. f ) Standing 'crop and p r o d u c t i v i t y of f o r e s t types. Rough estimates of standing crop and maximum net primary p r o d u c t i v i t y 217. of t r e e stems on each f o r e s t type were aade on the b a s i s of average of stand b a s a l a r e a , stand h e i g h t (dominants and codominants) and stand age. Standing crop of t r e e trunks was determined f o r climax stands of each f o r e s t type by conversion of volumes to oven dry weight i n kilograms per hectare. S p e c i f i c g r a v i t y (green volume, oven dry weight) f o r major species i n the Zone range from .31 to .55 w i t h an average of .45, Climax stands were chosen because, t h e o r e t i c a l l y , wood volumes at any time are r e l a t i v e l y c o n s t a n t , increment being balanced by m o r t a l i t y . Maximum annual net primary p r o d u c t i v i t y was estimated by d i v i d i n g average standing crop of both l i v i n g and dead stems of t r e e t r u n k s , i n stage 2 of each f o r e s t type, by average age. Stands of the pioneer c o n i f e r stage were chosen f o r p r o d u c t i v i t y because the average age c o i n c i d e d very c l o s e l y i n most cases w i t h the age where mean annual volume increment appears to de-cre a s e , i . e . , near the peak of the grand p e r i o d of growth. The f i n a l p r o d u c t i v i t y values are expressed i n cubic f e e t per acre per year as w e l l as i n the i n t e r n a t i o n a l standard, kilograms per hectare per year, oven dry weight. Assuming the average t r e e form approaches a p a r a b a l o i d , the f o l l o w i n g formulae were used, (1) V - .33 AH (2) S x \u00E2\u0080\u00A2 1.7 AH (3) P - S 1 + d \u00E2\u0080\u0094 r - stand age V = volume i n cubic f e e t per acre S = standing crop i n kilograms per h e c t a r e , oven dry weight A = average basal area per acre i n square f e e t P = net primary p r o d u c t i v i t y i n kilograms per hectare per year, oven dry weight H = average height of dominants and codominants i n f e e t 218. 1 = l i v i n g stems d = dead stems 1.7 = conversion f a c t o r d e r i v e d from s p e c i f i c g r a v i t y , volume, and area e q u i v a l e n t s , (S.G. 45) x (28.317 x 1 0 3 c c / c u . f t ) (2.471 ac./ha.) Results are tabulated i n Appendix D. 219 SYMBOLS AND ABBREVIATIONS USED IN SYNTHESIS TABLES I HABITAT DATA P l o t Number SB r e f e r s to S m i t h - B e l l . A l l p l o t numbers are p r e f i x e d SB. Lo c a t i o n L a t i t u d e Longitude A r r . P. Arrow Park 50\u00C2\u00B06' 118\u00C2\u00B04' Burt. Burton 49\u00C2\u00B059' 118\u00C2\u00B07' Car. C. Caribou Creek 50\u00C2\u00B01\u00C2\u00AB 118\u00C2\u00B011\u00C2\u00AB Cuss. C. Cusson Creek 50\u00C2\u00B017' 118\u00C2\u00B010' Duh. C. Duhamel Creek 49\u00C2\u00B039' 117\u00C2\u00B016' E r i e C. E r i e Creek 49\u00C2\u00B013' 117\u00C2\u00B023' F i s h . C. F i s h e r Creek 50\u00C2\u00B010' 117\u00C2\u00B058' Hast. C. Hasty Creek 49\u00C2\u00B056' 117\u00C2\u00B020' Keen C. Keen Creek 49\u00C2\u00B055' 117\u00C2\u00B01' Kusk. C. Kuskanax Creek 50\u00C2\u00B015' 117\u00C2\u00B048' K-L Rd. Kaslo-Lardeau Road 49\u00C2\u00B054' - 50\u00C2\u00B010' 116\u00C2\u00B055' L-G Rd. Lardeau-Gerrard Road 50\u00C2\u00B010' - 50\u00C2\u00B034' 116\u00C2\u00B055' - 117\u00C2\u00B017' Mab. L. Mabel Lake 50\u00C2\u00B043' 118\u00C2\u00B045' Mak. F. Makinson F l a t s 50\u00C2\u00B014' 117\u00C2\u00B059' Malak. Malakwa 50\u00C2\u00B056' 118\u00C2\u00B048' Nak. H.S. - Nakusp Hot Springs 50\u00C2\u00B015' 117\u00C2\u00B045' Sand. Sandon 49\u00C2\u00B058' 117\u00C2\u00B014' Sicam. Sicamous 50\u00C2\u00B050' 118\u00C2\u00B059' Slew. C. S l e w i s k i n Creek 50\u00C2\u00B011' 117\u00C2\u00B047' Sta r C. Star Creek 50\u00C2\u00B029' 118\u00C2\u00B027' Stev. P. Stevens Pass 50\u00C2\u00B07' 118\u00C2\u00B01' Sug. L. Sugar Lake 50\u00C2\u00B023' 118\u00C2\u00B033' Summ. L. Summit Lake 50\u00C2\u00B010' 117\u00C2\u00B039' 220 Trou. L. Trout Lake 50\u00C2\u00B037' 117\u00C2\u00B026 What. L. Whatshan Lake 118\u00C2\u00B05* W i l s . C. Wilson Creek 117\u00C2\u00B023 W i l s . L. Wilson Lake 50 O14' 117\u00C2\u00B041 Approximate extent of type Sev. - S e v e r a l . Large area greater than 3 a c r e s ; boundaries recognizable from p l o t or on short reconnaissance. Many - very l a r g e area; boundaries not v i s i b l e even on short reconnaissance from p l o t . Topography - P r o f i l e and Contour Cc - concave F - f l a t Cv - convex N - n e u t r a l (uniform slope) Cp - complex ( r o l l i n g or i r r e g u l a r ) Topography - Surface - ( r e f e r r i n g to m i c r o r e l i e f ) F - f l a t N - n e u t r a l ( r e l a t i v e l y smooth) G - eroded g u l l y 0 - outcrop H - hummocky, i r r e g u l a r U - undula t i n g Wind exposure A r e l a t i v e measure of p o t e n t i a l a i r movement; combination of topo-graphic p o s i t i o n , degree of p r o t e c t i o n afforded by crown cover and adjacent stands, and estimated p o t e n t i a l wind s e v e r i t y . 0 - a i r movement almost n i l (e.g. herb l a y e r i n D e v i l s Club a s s o c i a t i o n ) . 1 - very s l i g h t a i r movement; leaves f l u t t e r o c c a s i o n a l l y . 2 - s l i g h t and c o n s i s t e n t a i r movement; steady l e a f f l u t t e r , herb stems bend s l i g h t l y . 3 - s l i g h t to moderate a i r movement. 4 - moderate a i r movement; herb and shrub stems bend n o t i c e a b l y and c o n s i s t e n t l y . 221 5 - moderate to strong a i r movement. 6 - strong winds; tree stems bend. 7 - very strong winds. 8 - very strong to extreme winds. 9 - extreme wind exposure (e.g. dominant tree l a y e r i n Lichen a s s o c i a -t i o n on h i l l t o p s and r i d g e s ) . H i s t o r y a) o r i g i n a l l y denuded by: F i r e - F i r e Log. - Logging ? - Unknown cause b) during stand development: Bear - Bear damage (scarred tree boles) b.b. - heavy bark b e e t l e i n f e s t a t i o n c a t . - c a t t l e , c l e a r . - adjacent c l e a r i n g ( l o g g i n g , f i r e , avalanche, wide r i v e r , meadow) dec. - severe decay damage d . f a l l - d e a d f a l l abnormally abundant f i r e - ground f i r e f . f l o o - frequent or annual f l o o d s p . f l o o - p e r i o d i c f l o o d s pole c. - pole c u t t i n g road b. - road or road b u i l d i n g nearby r.dep. - frequent r u n o f f deposits present s e l . l . - s e l e c t i o n l o g ging s.t.k. - severe t r e e k i l l (unknown agent) snow - extensive snow break and throw s o i l c. - s o i l cree^t r a p i d ; surface s o i l mixing evident 222 tr a p . - tra p p i n g ( u s u a l l y a s s o c i a t e d w i t h very o l d t r a i l s and tre e s notched f o r trap sets) t r a i l - t r a i l through p l o t U - apparently undisturbed 24D - h e r b i c i d e s used nearby S o i l type (see Smith, 1963, p. 45, f o r modified systematic c l a s s i f i c a t i o n of the N a t i o n a l S o i l Survey Committee of Canada, 1960). CDMR Calcareous Duff M u l l Regosol CMk Calcareous Muck DBW Degraded Brown Wooded DMk Deep Muck DMP Dry Minimal Podzol DMR Duff M u l l Regosol DOABW Dry O r t h i c A c i d Brown Wooded DOBF Dry O r t h i c Brown Forest DOBW Dry O r t h i c Brown Wooded GABW Gleyed A c i d Brown Wooded GBF Gleyed Brown For e s t GBW Gleyed Brown Wooded MMP Moist Minimal Podzol MOP Moist O r t h i c Podzol Mor R Mor Regosol NMP Normal Minimal Podzol I I NMP - I I Normal Minimal Podzol NOABW - Normal O r t h i c A c i d Brown Wooded NOBF Normal O r t h i c Brown Forest NOBW Normal O r t h i c Brown Wooded NOP Normal O r t h i c Podzol OG Or t h i c G l e y s o l 223 OM - O r t h i c Meadow OR - O r t h i c Regosol Ort.P. - O r t s t e i n Podzol PCG - Peaty Calcareous G l e y s o l PG - Peaty G l e y s o l PM - Peaty Meadow SMk - Shallow Muck Parent M a t e r i a l (Data from Smith, 1963) Where mixed parent m a t e r i a l s are present the f i r s t l e t t e r i n the t a b l e s i n d i c a t e s commoner parent m a t e r i a l type. A - a l l u v i u m ( i n c l u d i n g g l a c i o - f l u v i a l d e posits and outwash) C - c o l l u v i a l ( i n c l u d i n g f i n e textured l a n d s l i d e s ) G - g l a c i a l t i l l M - organic muck R - r e s i d u a l ( u s u a l l y i n c l u d e s small amounts of c o l l u v i u m and t i l l ) T - t u f a Most Common Rock i n Parent M a t e r i a l (data from Smith, 1963) Up to three rock types may be shown i n the t a b l e s . The f i r s t l i s t e d i s dominant. A _ A r g i l l i t e L - Limestone Sa - Sandstone B _ Ba s a l t M - Monzonite S i - S i l t s t o n e C . C h l o r i t i z e d Lava Ma - Marble SI -- S l a t e D _ D i o r i t e P - P h y l l i t e V Vo l c a n i c s G _ Granite Q - Quartz Ga _ Gabbro Qi - Q u a r t z i t e Gn . Gneiss s - S c h i s t H - Ho r n f e l s 224 S o i l Depth (Data from Smith, 1963) Depth to l a y e r impervious to r o o t s . Ort.32 - O r t s t e i n l a y e r a t 32 cm. Q 56 *. f r a g i p a n * a t 56 cm. R 73 - Bedrock at 73 cm. T 112 - Tufa at 112 cm. Thickness Ae Horizon (Data from Smith, 1963) N *\u00E2\u0080\u0094 no Ae l a y e r T - trac e Main root h o r i z o n - texture (Data from Smith, 1963) The h o r i z o n ( s ) i n which the great e s t percentage of ro o t s are found, followed by the texture of that h o r i z o n . Nomenclature i s that of the N a t i o n a l S o i l Survey Committee of Canada (1960) supplemented by Smith (op. c i t . p.37-41). D e f i n i t i o n of Horizons Organic Horizons (more than 20 per cent organic matter) L - An organic l a y e r c h a r a c t e r i z e d by the accumulation of organic matter i n which the o r i g i n a l s t r u c t u r e s are d e f i n a b l e . F - An organic l a y e r c h a r a c t e r i z e d by the accumulation of p a r t l y decomposed organic matter. The o r i g i n a l s t r u c t u r e s are d i s -c e r n i b l e w i t h d i f f i c u l t y . Fungal mycelia are o f t e n present. H - An organic l a y e r c h a r a c t e r i z e d by an accumulation of decomposed organic matter i n which the o r i g i n a l s t r u c t u r e s are undefinable. Master M i n e r a l Horizons A - A mineral h o r i z o n or horizons formed a t or near the surface i n the zone of maximum removal of m a t e r i a l s i n s o l u t i o n and sus-pension, or maximum i n s i t u accumulation of organic matter, or fr a g i p a n - f o r d e f i n i t i o n and d i s c u s s i o n see Smith, 1963, p. 40. 225 both. I t i n c l u d e s : 1. horizons i n which organic matter has accumulated as a r e s u l t of b i o l o g i c a l a c t i v i t y (Ah); 2. hor i z o n s t h a t have been e l u v i a t e d of c l a y , i r o n , aluminum, organic matter, or more than one of these (Ae); 3. horizons dominated by the above c r i t e r i a but t r a n s i t i o n a l to un d e r l y i n g B or C. B - A mi n e r a l h o r i z o n or hor i z o n s c h a r a c t e r i z e d by one or more of the f o l l o w i n g : 1. an i l l u v i a l enrichment ( e x c l u s i v e of dolomite or s a l t s more so l u b l e i n water) of s i l i c a t e c l a y ( B t ) , i r o n ( B f ) , aluminum ( B a l ) , or organic matter (Bh), or i r o n and organic matter ( B f h ) ; 2. a c o n c e n t r a t i o n of weathering products b e l i e v e d to have been formed i n s i t u ( Bt, B f ) ; 3. the removal of dolomite and s a l t s more s o l u b l e i n water (Bm); 4. an o x i d a t i o n of sesquioxides that gives a conspicuously darker, stronger or redder c o l o r than o v e r l y i n g or u n d e r l y i n g horizons i n the same sequum (Bmf). C - A mineral h o r i z o n or horizons comparatively unaffected by the pedo-genic processes o p e r a t i v e i n A and B, excepting the processes of g l e y i n g (Cg) and accumulation of dolomite and s a l t s more s o l u b l e i n water (Ck). Lower Case S u f f i x e s e - A h o r i z o n c h a r a c t e r i z e d by the removal of c l a y , i r o n , aluminum, or organic matter. I t i s u s u a l l y l i g h t e r i n c o l o r than the l a y e r below. f - A h o r i z o n enriched w i t h hydrated i r o n . I t i s redder than the h o r i z o n above or below. g - A h o r i z o n c h a r a c t e r i z e d by r e d u c t i o n and gray c o l o r s ; o f t e n mottled. h - A h o r i z o n enriched w i t h organic matter. j - A h o r i z o n whose c h a r a c t e r i s t i c s are weakly expressed ( j u v e n i l e ) . Where the j a p p l i e s to only one of more than one lower case s u f f i x , then the j i s l i n k e d by a bar to the s u f f i x concerned (Ahej). k - A h o r i z o n enriched w i t h carbonate ( k a l k ) . W - A h o r i z o n c h a r a c t e r i z e d by the l o s s of water s o l u b l e m a t e r i a l s only. 226 t - A h o r i z o n enriched w i t h s i l i c a t e c l a y . w - A water-saturated l a y e r ; the apparent water t a b l e . Included here as w e l l are those s o i l s saturated f o r the grea t e s t p a r t of the year w i t h l a t e r a l l y moving seepage. Texture G - g r a v e l or g r a v e l l y C - c l a y or clayey L loam or loamy S i - s i l t or s i l t y S - sand or sandy Ch - channery Depth to seepage, e a r l y J u l y , 1960 - (Data from Smith, 1963) N - no f r e e water i n p i t not checked S o i l Reaction (Data from Smith, 1963) a) main root h o r i z o n - the same f o r which texture i s shown. b) organic h o r i z o n adjacent to mineral s o i l - t h i s i s u s u a l l y the H or F-H l a y e r depending on s o i l type and sampling method. Vegetation P a t t e r n and Apparent Influence This represents an attempt to describe the s p a t i a l homogeneity of ve g e t a t i o n on each p l o t . The numbers 1 to 4 i n d i c a t e the degree of p a t t e r n or tendency away from random establishment of species. The f a c t o r apparently most i n f l u e n t i a l or l i m i t i n g i n r e g u l a t i n g t h i s p a t t e r n supplements each number, except i n the case of p a t t e r n number 1 where d i s t r i b u t i o n of species appears random throughout the p l o t . 1. R e l a t i v e l y uniform species d i s t r i b u t i o n throughout stand; species d i s t r i b u t i o n appears random; seed supply appears to be the only f a c t o r l i m i t i n g s u c c e s s f u l establishment of species w i t h p o t e n t i a l niches on that s i t e . 2. P a t t e r n i s evident but species d i s t r i b u t i o n i s s t i l l f a i r l y uniform; species d i s t r i b u t i o n , a t l e a s t i n p a r t , non-random. 3. P a t t e r n more evident; d i s c o n t i n u i t i e s r e a d i l y d i s c e r n i b l e and l o c a l aggregations d i s t i n c t ; species d i s t r i b u t i o n non-random. 4. P a t t e r n very marked; d i s c o n t i n u i t i e s between groups of p l a n t s very conspicuous; species d i s t r i b u t i o n markedly non-random. Apparent Influence B - v a r i a b l e i n t e n s i t y of f i r e (burn) that o r i g i n a l l y c l e a r e d area; u s u a l l y r e f e r s more s p e c i f i c a l l y to v a r y i n g amounts of organic matter l e f t on the ground a f t e r f i r e . BS - bedrock seepage; u s u a l l y on down slope rock outcrop s i t e s where s o i l s are t h i n and dry yet where temporary seepage on the bedrock surface o f t e n occurs f o r short periods a f t e r r a i n y weather i n the summer. c - v e g e t a t i o n competition PF - p e r i o d i c f l o o d s D - marked l o c a l i z a t i o n s of decaying RD - ru n o f f deposits wood RO - root overturn DW - depth to watertable RW - r i v e r winds E - exposure ( i n the sense of SE, NW e t c . ) SC - s o i l creep HLF - heavy l i t t e r f a l l ; u s u a l l y beneath SD - s o i l depth stands c o n t a i n i n g many deciduous tr e e s SM - s o i l moisture L - l i g h t i n t e n s i t y Squ - s q u i r r e l cache LF - l i g h t f i r e T - l o c a l i z e d t u f a MPM - mixed parent m a t e r i a l s TC - top cli m a t e I I TREE DATA Stand development stage E - even-aged; f o r stands up to 100 years o l d , up to 15 years d i f f e r e n c e i n age of trees i n main canopy; f o r o l d e r stands, 30 - 40 ^\" D e f i n i t i o n of even-aged and uneven-aged stands a f t e r Tourney (1937) p. 268. Age c l a s s e s were determined a r b i t r a r i l y from i n f l e c t i o n s of s i t e index curves of Ker (1957) p. 100. 228 years d i f f e r e n c e i n age of trees i n main canopy. u - uneven-aged; greater age d i f f e r e n c e s than f o r even-aged. s - s e e d l i n g age of dominants 0 - 1 5 T \u00E2\u0080\u00A2 t h i c k e t M I I I I 16 - 40 P - pole it I I I I 41 - 70 YT - young timber I I ti I I 71 - 160 MT -\u00E2\u0080\u00A2 mature timber I I I I it 161 - 250 0 - overmature timber I I II n 251 + I I I VEGETATION ANALYSIS 70 Cover of v e g e t a t i o n l a y e r s Layer A - trees A, Layer B Layer C Layer D D, H dominants; A^ - codominants; A^ - intermediates and suppressed over 30 f t . shrubs and small trees B 1 - between 6 and 30 f t . ; B between 1 and 6 f t . herbs and creeping shrubs immediate ground cover of bryophytes, l i c h e n s and the same season's t r e e s e e d l i n g s . on humus and/or l i t t e r and/or mineral s o i l (mineral s o i l u s u a l l y shown i n t a b l e s ) D - on decaying wood; D - on rock D K Species L i s t L i f e Form m n C H megaphanerophyte nanophanerophyte, chamaephyte hemicryptophyte 229 G - geophyte T - therophyte M - moss H - l i v e r w o r t e L - l i c h e n C h a r a c t e r i s t i c combination of species \u00E2\u0080\u00A2 99 constant dominant species o o constant only \u00E2\u0080\u00A2 important non-constant A b b r e v i a t i o n s used to modify a n a l y t i c data i n synthesis t a b l e s : a - i n running water b - on a r a i s e d dry stump c - on burned substrate d - on decaying wood e - on s i l t f - on sand g - on g r a v e l h - i n deep shade j - on shrub branches c l o s e to ground 1 - f e l l e d t r e e m - on mineral s o i l o - beneath opening i n crown cover p - on snow packed humus r - on r a i s e d ground or humps ( u s u a l l y d r i e r ) s - root suckers t - on t u f a w - on wet or moist ground y - on very dry logs ) - species occurs i n same stand but outside p l o t 2 - underlined v i g o u r r a t i n g means dead i n d i v i d u a l s are present Vegetation summaries Summary values f o r the A (tre e ) and B (shrub) l a y e r s i n c l u d e a l l sublayers. C7o - constancy i n percent C - constancy i n sca l e of 1-5 (see p.13 of \"Method\") TCD - t o t a l cover degree (see p. 13-14 of \"Method\") ACD - average cover degree CCD - c h a r a c t e r i s t i c cover degree 1 E x t r a z o n a l and Ecotone Coinraunities l HABITAT Extrazonal As A-C P l o t number (SB) 872 71 73 Date Analysed Jun 27/59 Jun 27/59 Jun 29/59 Date checked Aug 11/60 Aug 11/60 Aug 11/60 Lo c a t i o n Burt. Burt. Burt. Approx. extent of type (Acres) .5 1 1+ E l e v a t i o n ( F t . ) 2020 2150 2100 Exposure S70W S50W S70W Slope (\u00C2\u00B0) 15-35-60 22 35 Topography ( p r o f i l e : c o n t o u r : surface) Cp:Cp: 0 Cv:Cv:N N:Cv:N Wind Exposure (A:B:C l a y e r s ) 7:7:5 7:5:4 7:5:3 H i s t o r y a) o r i g i n a l l y denuded by F i r e F i r e F i r e b) during stand development U U U S o i l type DOBF D0BW DOABW Parent m a t e r i a l GR G GR Most common rock i n parent m a t e r i a l G G GGn S o i l depth 35 R 143 R 40 R Thickness Ae ho r i z o n (cm) N N N Texture-main root h o r i z o n Bm-GL Bm-GLS Bm-GSL Depth to seepage e a r l y J u l y , 1960 (cm) N N N S o i l r e a c t i o n a) main root h o r i z o n 7.1 6.4 5.9 b) organic h o r i z o n adjacent to mineral s o i l 5.8 4.5 5.7 P a t t e r n and apparent i n f l u e n c e 4SD 4SD 2SM TREE DATA Stand age development stage U:0 U:0 E:P Age of dominants 250+ 270+ 52 Age of o l d e s t measured tre e 281 F 282 F 59 PI 1 . fotr k/^.^onal rea \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 111 ++2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 311 361 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pm P. t r i c h o c a r p a 1 \u00C2\u00AB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++3 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 # \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn Prunus emarginata 1 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A3 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 212 Pm Pseudotsuga m e n z i e s i i 1 ++1 671) 562) 782) i+2 612) 412 2 ++1 ...) ...) ...) ++1 ...) 512 511 3 ++1 412 672 661 361 762 661 671 Pn S a l i x bebbiana 1 *> ... \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 L 3 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pm Thuja p l i c a t a 1 2 ... \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * a 3 ... \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00BB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+1 ++2 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 781 E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer A (cont'd) 72 71 Pm Tsuga h e t e r o p h y l l a 1 *> \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 \u00C2\u00AB * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 3 \u00C2\u00AB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 SPECIES LIST - Layer B - Shrubs 20 70 Pm Abies grandis 1 2 Pm A. l a s i o c a r p a 1 2 Pn Acer glabrum 1 2 Pn Alnus c r i s p a 1 ? Pn Amelanchier a l n i f o l i a \u00C2\u00A3 1 4+2 2 351 Pm Bet u l a p a p y r i f e r a 1 +++ 2 .. . Pn Ceanothus sanguineus 1 .. . 2 ++2 Pn Cornus s t o l o n i f e r a 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn Corylus c a l i f o r n i c a 1 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn Holodiscus d i s c o l o r 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 1+1 Pn Juniperus communis 1 \u00E2\u0080\u00A2.. 2 +42h Pn J . scopulorum 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pm L a r i x o c c i d e n t a l i s 1 .. \u00E2\u0080\u00A2 2 C L o n i c e r a c i l i o s a 1 \u00E2\u0080\u00A2 * a 2 . . . 154 155 40 411 I l l s 112o 342 2+1 I l l s 162 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2+2 562 70 462 332s 263 462 363 1+2 362 152 ++2 74 60 562 342 s ++2 312 1+1 2+1 1+2 461 ++2 1+1 ++1 156 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+ld 30 ++1 162 I l l s ++2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+2 211 361 ++ld ++2 1+2 1+1 1+1 to Co E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer B (cont'd) 72 71 Pn L. utahensis 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 1+1 2+1 Pn Mahonia a q u i f o l i u m 1 ... \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 332 552 Pn Oplopanax h o r r i d u s 1 2 ... Pn Pachystima m y r s i n i t e s 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 1+1 671 Pn Philadelphus l e w i s i i 1 1+2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 2 112 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn Physocarpus malvaceus 1 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pm P i c e a engelmannii 1 0 Pm Pinus c o n t o r t a \u00C2\u00A3, 1 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pm P. monticola 1 O Pm P. ponderosa C. 1 i+2 452 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1++ Pm Populus tremuloides 1 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn Prunus emarginata & 1 152 2 412 \u00E2\u0080\u00A2 \u00C2\u00BB \u00E2\u0080\u00A2 Pn P. v i r g i n i a n a v a r . demissa 1 1+2 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++lh Pm Pseudotsuga m e n z i e s i i 1 2+1 792 2 \u00E2\u0080\u00A2 * * 411 Pn Rhamnus purshiana 1 2 ... Pn Ribes l a c u s t r e 1 2 Pn R. sanguineum 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 154 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++1 442 155 342 74 512 156 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+1 362 211 242 311 37 3 462 362 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++1 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 1+1 331 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 ++1 ++1 ++1 1+0 1+0 1+1 511 1+1 211 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 311 2+1 1+2 1+2 252 1+2 311 211 1++ 1+1 661 3+1 571 341 1+lw E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer B (cont'd) 72 71 Pn R. viscossissimum 1 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 *> \u00E2\u0080\u00A2 Pn Rosa gymnocarpa 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 312 311h Pn Rubus p a r v i f l o r u s 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2> \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 -H-fh Pn S a l i x bebbiana 1 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn S. s c o u l e r i a n a l \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 251 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 221h Pn Shepherdia canadensis 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 1+1 Pn Sorbus s i t c h e n s i s 1 o * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn Spiraea l u c i d a l \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 2 452 662 Pn Symphoricarpos albus 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 562 231h Pn Taxus b r e v i f o l i a 1 o \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 ... Pm Thuja p l i c a t a Z 1 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * Pm Tsuga h e t e r o p h y l l a 1 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn Vaccinium membranaceum Z 1 9 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 SPECIES LIST - Layer. C - Herbs \u00C2\u00A3. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 LF Cover % \u00E2\u0080\u0094> 22 75 Pm Abies grandis \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 H A c h i l l e a m i l l e f o l i u m 332 212 G Actaea arguta \u00C2\u00AB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00AB \u00E2\u0080\u00A2 * G Adenocaulon b i c o l o r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * H Agropyron spicatum \u00E2\u0080\u00A2 \u00E2\u0080\u00A2> \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 H A. spicatum var. inerme 752 142 H Anaphalis margaritacea \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 73 562 312 3+2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++2 452 342 60 * * * 3+1 154 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 462 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 441 360 [1+13 ++1 312 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 562 1 + I 1+1 20 \u00E2\u0080\u00A2 * * l + l o 155 342 \u00E2\u0080\u00A2 * *> 262 162 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 262 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+2 142 332 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 562 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++1 60 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 331 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 341 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 112 74 552 552 352 211 352 i+i 1+1 10 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * ++1 156 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2+1 1+2 462 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 352 1+2 241 362 462 312 1+1 461 211 21 Id 1+j.d \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 111 15 173 1+2 342 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 311 1+1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 311 661 561 ++ld 75 1+1 312 442 CO OJ E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer C (cont'd) 72 71 73 154 155 74 156 173 C Antennaria n e g l e c t a 212 352 211 ++1 c++a ++1 a a a a a a G A. racemosa \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a a a a a a a a a a a a a a \u00E2\u0080\u00A2 a G Apocynum androsaemifolium \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 552 452 a a a 212 311 ++1 a a a H A r a b i s h o l b o e l l i i \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 a a a a a a a 212 a a a a a a G A r a l i a n u d i c a u l i s \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a 252 1+1 211 342 111 572 T A r e n a r i a s e r p y l l i f o l i a \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 a 262o 563 a a a a a a C A r c t o s t a p h y l l o s u v a - u r s i 142 452 142 a a a a a a a a a 242 a a a G-C Asarum caudatum \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 a a a a a a a a a a a a a 572 H Asplenium trichomanes 1+2 a \u00C2\u00AB a a a * a a a 212 a a a a a a a a a H A s t e r conspicuus \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a a a a \u00E2\u0080\u00A2 431 a a a a a a a a a H A. modestus a a a \u00E2\u0080\u00A2 a a a a a 311 a a a a a a a a a a a a H A s t e r spp. * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 141h 141 a a a \u00E2\u0080\u00A2 a a 311 a a a a a a H Athyrium f i l i x femina \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 a a a a a a a a a a a a a a a a a a 211 G Botrychium v i r g i n i a n u m a a a \u00E2\u0080\u00A2 a a a a a a a a a a a a a a a a a 211 T Bromus tectorum \u00E2\u0080\u00A2 a a a a a a a a 112 362 a a a a a a a a a H B. v u l g a r i s \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a a a a a a a a a a a a a a a 311 H Calamagrostis rubescens 442 772 661 541 571 341 a a a a a a H Campanula r o t u n d i f o l i a 342 a a a a a a a a a 112 a a a a a a a a a H Carex deweyana a a a a a a a a a a a a a a a a a a a a a 312 H C. p r e s l i i \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a a a a a a a a a a a a a a a 1+2 H C. r o s i i \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l+2h 111 a a \u00E2\u0080\u00A2 112 ++1 112 a a a G C a s t i l l e j a h i s p i d a 2+2 a \u00E2\u0080\u00A2 a a a a a a a a a a a a a a a a \u00E2\u0080\u00A2 a a C Chimaphila m e n z i e s i i \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a a a a a a a a a a a a 111 a a a C C. umbellata a a a l l l h 222 ++1 1+1 342 341 H Cinna l a t i f o l i a a \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a a a a a a a a a a a a 112 H C i r c a e a a l p i n a \u00E2\u0080\u00A2 a a a a \u00E2\u0080\u00A2 a a a a a a a \u00E2\u0080\u00A2 a a a a 341 G C l i n t o n i a u n i f l o r a \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 a a a a a \u00E2\u0080\u00A2 a a a a a a 221 351 T C o l l i n s i a p a r v i f l o r a 312 3+2 112 a a a a a a a a a a a a G C o r a l l o r r h i z a maculata \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a ++2 a a a a \u00E2\u0080\u00A2 a 223 C Cornus canadensis a \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a a a a a a 112 H C r e p i s atrabarba \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a a a a a a a 112 a a a a a a H Cryptogramma c r i s p a 2+2 a a a a a a a a a 212 a a a a a a H C y s t o p t e r i s f r a g i l i s 342 a a a 132a a a a a a a a a a 112 H Danthonia s p i c a t a 412 432 a a a a a a a a a G Disporum oreganum a a a a a \u00E2\u0080\u00A2 a a a 212 1+1 a a a 312 G D. trachycarpum a a a a a a 411 a a a a a a 332 2+1 a a a E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer C (cont'd) H D r y o p t e r i s a u s t r i a c a H Elymus glaucus G Epilobium a n g u s t i f o l i u m T E. minutum T E. paniculatum H Festuca o c c i d e n t a l i s T F. o c t o f l o r a H-C F r a g a r i a b r a c t e a t a H-C F. glauca H-C.Galium t r i f l o r u m T Gnaphalium viscosum H Goodyera o b l o n g i f o l i a G Habenaria unalascensis H Heuchera c y l i n d r i c a H Hieracium albertinum H H. a l b i f l o r u m H-C Leptarrhena p y r o l i f o l i a G L i l i u m columbianum C Linnaea b o r e a l i s G Lomatium ambiguum T M i c r o s t e r i s g r a c i l i s H M i t e l l a pentandra T Montia p e r f o l i a t a H Muhlenbergia sp. H Osmorhiza c h i l e n s i s H Oryzopsis a s p e r i f o l i a H Poa compressa T Polygonum d o u g l a s i i H Polypodium vulgare H P o t e n t i l l a glandulosa H P r u n e l l a v u l g a r i s Pm Pseudotsuga m e n z i e s i i G P t e r i d i u m aquilinum H P y r o l a chlorantha 154 122 212 422 331 1+1 342 2+1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * ++2 1+1 1+1 1+1 155 ++1 323 362 342 ++1 21 332 1+1 222 ++2 74 342 341 262 156 i+i 422 1+? 211 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 47 1+2 211 222 3+1 112 E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer C (cont'd) C P. secunda G S a n i c u l a marylandica C S a t u r e j a d o u g l a s i i H S a x i f r a g a sp. C Sedum stenopetalum C S e l a g i n e l l a w a l l a c e i T S i l e n e a n t i r r h i n a G S m i l a c i n a racemosa G S. s t e l l a t a G Streptopus a m p l e x i f o l i u s H Taraxacum o f f i c i n a l e T T i a r e l l a u n i f o l i a t a T T r i f o l i u m agrarium G T r i l l i u m ovatum H Trisetum canescens H Verbascum thapsus H V i o l a g l a b e l l a H Woodsia s c o p u l i n a G Zygadenus venenosus * species on humus and rock i n c l u d e d together SPECIES LIST - Layer D - Bryophytes and Lichens LF M Atrichum undulatum H D R M Aulacomnium androgynum H D R M Brachythecium a l b i c a n s H D R 72 1+2 552 442 1+1 212 1+2 72* L12 71 12 l++h 71 112 73 122 121 111 1+2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2+1 1+2 73* 312 154 [142] ++2 11 154 222 in i n 231 155 222 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a 242 1+1 241 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * 1+1 212 155 74 211 321 74* 112 222 156 212 32 156 111 212 212 112 111 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a 112 E x t r a z o n a l and Ecotone Communities (Cont'd) Species L i s t - Layer D (cont'd) M Brachythecium spp. H D R M Bryum spp. H D R M C a l l i e r g o n e l l a s c h r e b e r i H D R M Ceratodon purpureus H D R He Cephalozia sp. H D R L C e t r a r i a glauca H D R L C. scutata H D R L Cladonia chlorophaea H D R L C. c o c c i f e r a H D R L C. f i m b r i a t a H D R L C. g r a c i l i s H D R 154 ++1 155 352 322 112 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 112 13 212 112 313 112 74* 212 ++1 ++1 ++1 1+1 121 156 331 212 332 222 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 112 322 112 1+1 111 1+1 212 112 212 to \u00E2\u0080\u00A2P-o E x t r a z o n a l and Ecotone Communities (Cont'd) Species L i s t - Layer D (Cont'd) L. Cladonia spp. H D R M Dicranum fuscescens H D R M D. scoparium H D R M D. s t r i c t u m H D R M Drepanocladus uncinatus H D R M Encalypta c i l i a t a H D R M Eurhynchium substrigosum H D R M F i s s i d e n s bryoides H D R M Grimmia apocarpa var. s t r i c t a H D R M Hedwigia c i l i a t a H D R M Heterocladium procurrens H D R M Homalothecium nevadense H b R 154 12 i i 333 155 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 12 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 12 122 12 442 442 74* 3+1 321 112 112 342 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++1 332 112 11 156 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 211 1+1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 111 322 111 \u00E2\u0080\u00A2 * * 112 112 12 173 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 111 E x t r a z o n a l and Ecotone Communities (Cont'd) Species L i s t - Layer D (cont'd) M Hylocomium splendens H D R M Hypnum c i r c i n a l e H D R He Jamesoniella autumnalis H D R L L e t h a r i a v u l p i n a H D R He L e p i d o z i a reptans H D R L L o b a r i a pulmonaria H D R He Lophocolea b i d e n t a t a H D R He L. h e t e r o p h y l l a H D R He Lophozia barbata H D R He L. l y c o p o d i o i d e s H D R He Lophozia sp. H D R 73* 131 1+1 ++1 122 154 155 12 122 74* 1+1 332 12 156 361 221 121 1+1 11 12 212 112 112 112 E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer D (cont'd) M Mnium i n s i g n e M M. spinulosum M M. venustum L Nephroma spp. L Parmelia pertusa L P. physodes L P. s a x a t i l i s v a r . A i z o n i L P. s u l c a t a L P e l t i g e r a aphthosa L P. canina L P. canina var. rufescens H D R H D R H D R H D R H D R H D R H D R H D R H D R H D R H D R 71 7 3* 1+1 1+2 332 122 1+1 l l l w 2+2 2+2 1+1 1+1 3+2 154 155 111 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * 222 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 222 323 1+1 ++2 ++2 122 222 322 1+1 312 1+2 322 212 112 1+2 212 332 74* 112 212 156 3+2 342 2+1 1+2 1+1 1+1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 4) 312 212 2+2 1+1 462 322 1+1 342 222 2+1 E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer D (cont'd) L P. p o l y d a c t y l a H D R L P. venosa H D R L Physcia spp. H D R M Plagiothecium denticulatum H D R M Plagiothecium sp. H D R M P o h l i a t o z e r i H D R M Polytrichum juniperinum H D R M P. p i l i f e r u m H D R M Pterigynandrum f i l i f o r m e H D R He P t i l i d i u m pulcherrimum H D R M P t i l i u m c r i s t a - c a s t r e n s i s H D R 71 332 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 112 322 7 3* 322w 22 322 11 442 1+1 111 154 122 21 155 12 132 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 232 122 74* 1+2 221 542 111 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 122 332 156 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * 112 1+2 112 1+2 211 111 111 212 1+2 122 173 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+2 12 ro E x t r a z o n a l and Ecotone Communities (cont'd) Species L i s t - Layer D (cont'd) M ~ Rhacomitrium canescens H D R M R. heterostichum H D R M R. lanuginosum H D R M R. patens H D R M Rhytidiadelphus t r i q u e t r u s H D R L S t i c t a limbata H D R M Tetraphis p e l l u c i d a H D R M Timmia a u s t r i a c a H D R M T o r t u l a princeps H D R M T. r u r a l i s H D R He T r i t o m a r i a e x s e c t i f o r m i s H D R L U m b i l i c a r i a p o l y p h y l l a H D 73* 31 12 142 332 154 322 155 21 442 342 74* 31 312 32 +-+1 112 1+2 156 572 232 111 111 111 112 212 E x t r a z o n a l and Ecotone Communities (cont'd) O c c a s i o n a l l y Present C e t r a r i a j u n i p e r i n a - SB 156, R-++1; Cladonia b a c i l l a r i s - SB 156, D-211; C. cenotea - SB 155, D-132; C. deformis - SB 71 D-l+2; C. squamosa - SB 154, D - l l l ; Clappodium b o l a n d e r i - SB 154, R-221; Dicranum sp. - SB 156, R-112; Grimmia a l p i c o l a ' va r . r i v u l a r i s - SB 155, R-112; Marchantia sp. - SB 155, H - l l l w ; Mycoblastus a l p i n u s - SB 156, D-++2; Nephroma p a r i l e -SB 155, R-122; Nephromopsis c i l i a r i s - SB 71, D-l+1; Orthotrichum sp. - SB 72, H-112; Physcia muscigena - SB 155, R-l+2; P o h l i a cruda - SB 73, H - l l l ; P o r e l l a cordeana - SB 154, R-122. Species L i s t - Layer D - Seedlings Pseudotsuga m e n z i e s i i H D R 72* 2+1 71 7 3* 1+? 154 155 74* 2++ 156 1+1 173 ro SYNTHESIS TABLE 1 CLADONIETUM (LICHEN ASSOCIATION) HABITAT Plot numiet (SB) . . . . Date analysed. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 bate cAecked \u00E2\u0080\u00A2 location Apptox. extent aFtupe (ae.) Elevation (ft.) \u00E2\u0080\u00A2 7 Exposure. Slope (\u00C2\u00B0) \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 TopoytapAy (ptofite: contout: sutface) ' CJind exposute (ABC loyets)' Histoty a) ottyino.ll'y denuded Joy A) duttna standi development' So'dtype / Patent matetial Tfost common *ock cn patent matetial' Soil depth (enr.) TAtikncst Ae Aotixon (cm.) 77ain toot Aotixon -textute Depth to seepaye> eatly Jity/9to (cm) \u00E2\u0080\u00A2 Soi'l teactt'on a) Main toot notixon o) otyanic Aotixon adj. to mtnetal jotl t/eyetation pattetn and oppatent influence TREE DATA Stand development staye Aye of dominants (yts.) Aye of oldest meas uted t*ee' Basal atea. pet acte (ft*) Avetaye dtxmetet of stand (in.) Site index at /ooyts. : //max. Iff.) \u00E2\u0080\u00A2 Site index at Soyts A ft.) 'A COVER OF VEGETATION LAYERS si Caret of names and ot littet % covet of decay iny wood % covet of toek \u00E2\u0080\u00A2 SPECIES LIST -LAYER A - TREES Lifxftfm Pm Pm Pm Pm Pm \u00E2\u0080\u00A2 Pm Covet % \" ' Betute papytifeta. Latix occidental^ Pinus Monticola. \u00E2\u0080\u00A2\u00E2\u0080\u00A2' Pstudotsuya. menxictii \u00E2\u0080\u00A2 i TAuja. plicata. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Tsuyo. Aetetopkylta. \u00E2\u0080\u00A2 STAGE 1 STAGE 2 81' IZI 2o\u00C2\u00A5 l i t 1/7 rtxyj/iy 7*n.*/ii Tut. l/to Tum.\u00C2\u00A5/ii Tam.'/ia Seft-9/to Sept.B/to - Sept. 8/fc -L/ils. L. k.tk. C. Sieam. husk. C. Hxxt.C. 1 1+ 0.1' O.f-r 1 3oil' /s'oo 71 I'o /\u00C2\u00A58o 33l'o S/S-E Sfou) dueN 5*0 a) Si'su zo-xi' 0-*o\" 0-/L s~-2i' Jt'-Sl\" Cr:M'0 Cv-NO CriCr'O N:N-0H cV'tV'O 9:i\u00C2\u00A5 T-s-J 8:7-1' i-l': 3 9:?:s' Fite Fite ftte Fite Fite V set. 1. 17 tel. 1. beat DOABbJ imp DOAhU riot, n SOABU KG X n n XC SOi 0 H SOi Qi a R7J Ps'\u00C2\u00A5 P37 X3o 7l\u00C2\u00A5i r lz\u00C2\u00A5) N N r Bmf-U UkrChL Bmf-SL AhtC-CU Bm-GSL N Al ' H N A1 S~.2 S'O i.2 \u00C2\u00A5-.7 S~8 +.0 4.3 4.3 s'.l I'.U \u00C2\u00A5st> 3SD 'ISO \u00C2\u00A5SD,L \u00C2\u00A5SD, TC F L PMI A A, 1* A* a B, Bt C B D\u00E2\u0080\u009E t>x 20 31' 8o 4.3 I'.Z \u00C2\u00A5.8 u to: 73 C M G 0 /V tV c c G-N Pm iY Ptrf G-C & Pm Pm tf-C N Acet ylxbtum Antennatia. neylecta. Apocynum otnoftosaen?tfoli fttait'a. nvdicai/li's \u00E2\u0080\u00A2 A tttosta, pAy/los uva.-utsi Asplenium tticAomana.se Calypso At/lAosa. Campanula, totunoli folia. % Cat ex tossii . CAimxpAita. utrrAeltata. % Clintonia. t/n'iflota. \u00E2\u0080\u00A2 Cotydalt's sempetvitens \u00E2\u0080\u00A2 Ctyptoftamnt.a. ctispa. \u00E2\u0080\u00A2 Festuca, eccidenta.ltt \u00C2\u00BB \u00E2\u0080\u00A2 G-aititAetta. ova ti folia. Goodyeta. oiConoi/olLa. //aienatia. otoiculata. /+. vnalarcensis sVeucAeta. cy/indttca. a /Victactum? AlAiflotutrr milium colutrtbianvm \u00E2\u0080\u00A2 t linnaea. bote alls \u00C2\u00AB\u00E2\u0080\u00A2 /ittcta cot data. O+yzopsts aspe + ifotia. Ptnus monticola. Polypodium yutyatt,* Pset/dotst/ya. /Menziesii Pfetidiunr aaut linutn Pytota. picta.--tY secunda., \u00E2\u0080\u00A2 Smilacma. tacentaja. TAuja. plicata. Tsuya, Aetetop Viola, otbicula-ta. Uloodsca* ScopulisfO. \u00E2\u0080\u00A2 utrr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5s' 9o 20 20 l+l ++/\u00E2\u0080\u00A2 /+/ l+l 2\u00C2\u00A5l-23/ //2 \u00E2\u0080\u00A2 322 /+/\u00E2\u0080\u00A2 7S3 J\u00C2\u00A5l SS~Z 33/ t tl- \u00E2\u0080\u00A2 3\u00C2\u00A53 S'S'2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\u00C2\u00A5/ 332 37/ 332 \u00E2\u0080\u00A2 73/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00C2\u00A52 *VZ \u00E2\u0080\u00A2 /+/ /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 2 + 2 \u00E2\u0080\u00A2 2+2 \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'l'2 \u00C2\u00A5i2. \u00E2\u0080\u00A2 \u00C2\u00A531-2+1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/2 \u00E2\u0080\u00A2 222. ++\u00E2\u0080\u00A22-+S'2 /+/ \u00E2\u0080\u00A2 /+z-322 2\u00C2\u00A5Z + +/ \u00E2\u0080\u00A2 2/2-J+-2 221-2*1-S+l- \u00E2\u0080\u00A2 3+1-3/7 7+/ 33/- /72 \u00E2\u0080\u00A2 J// ++?al /+/ \u00E2\u0080\u00A2 ++?dL \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 221 / / / \u00E2\u0080\u00A2 3// \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3// ++ld-Z./2-/+/ \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 32 2 2/1 \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 T+2-233 223 *i' 2 0 0 0 2 0 0 0 1 0 0 0 2 / 0 o S' /// 22 22 / 0 o o 2 / o o 2 lo 2 S' / 0 0 0 S~ I0l' */ 21 2 0 o o / S~ / 2 s~ / 2 S\" 30 i 4 \u00C2\u00A5 /7 2 3 \u00C2\u00A5 2 0 \u00C2\u00A5 s\" 2 1 o o 1 O o o 2 / 0 o \u00C2\u00A5 32 i 6 S' / 0 o i' \u00C2\u00A5L 9 ? / /o 2 lo 2 I 1 3 1 / O 1 2 / o o \u00C2\u00A5 // 2 3 \u00C2\u00A5 7S' 3 \u00C2\u00A5 2 0 O 0 \u00C2\u00A5 /o 2 2 \u00C2\u00A5 72 2 3 3 / O o \u00C2\u00A5 7 O 0 3 2 o / / / 0 / OCCASIONALL Y PRESENT Achillea, millefolium -SB //7t /+/ ; Calamo-Otostct > uieseetrs - SB20\u00C2\u00A5 22 2- J>antAottia. spicata. - SB 2o\u00C2\u00A5t/32.) Litter*. cCLi/tino, - SB 8SJ\"7+2; Pytola. asati+~olia.-S3 /x/t l+l'; P. ahtot'antna.- SB 2o\u00C2\u00A5,//Z - LAYER D -lif%f%tm 71 M If 77 M If 77 n 7/e //e M M If 7/t. M 77 77 7f If 77 /.BRYOPHYTES ON NuMUS AND BEDROCK Aala 8MATA*rrria. pofirtifo*.mi.S \u00E2\u0080\u00A2 3*acAy?/*cctisArr A(6icAHs CB\UtCA-oory.Ua. scAninA-l * C(tkopoctn/ATT Chtspt folium \u00E2\u0080\u00A2 ' Pic/a/ft/prr t-vjosvrrnw Z>. sco/>**it/m \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 m ' fYjftoZOAWtt*** spl&**c\u00C2\u00A3t, HS I. SycopoUtoick(t,S 7*7A* ilirc*. + t/m \u00E2\u0080\u00A2 PoLytt-tChi/Art Jt/AripCA-tAtOAr* \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 PttitctieVr+f pvfcA&AAir+rtVSWT' Pti(i 'ttm c r- itta. - c AST* C ft sis \u00E2\u0080\u00A2 /?Aaco/rr'*&-/{/m caste,see-AS\u00E2\u0080\u00A2 PAyt<9LfLaLci*.lpAtfS \*A0 \u00C2\u00A5 \u00C2\u00A5 222h \u00E2\u0080\u00A2 333 UJ 2 i i 3 + +2- 232- \u00E2\u0080\u00A2 2 7 o o 112 a x \u00E2\u0080\u00A2 983 3TZ 232 s' 241 \u00C2\u00A58 \u00C2\u00A58 3\u00C2\u00A52 727A 222 3 6 / 2 l'\u00C2\u00A52 s'\u00C2\u00A5z 3/2- \u00E2\u0080\u00A2 S'\u00C2\u00A5 2 \u00C2\u00A5 It' 13 Ii S'S'2 \u00E2\u0080\u00A2 332 S'\u00C2\u00A52 \u00E2\u0080\u00A2 \u00C2\u00A532 \u00E2\u0080\u00A2 s's's s' 71' /I' />' ///\"7 \u00E2\u0080\u00A2 2 o o o 3 \u00C2\u00A57 G7X 21\" 2 \u00E2\u0080\u00A2 8B2' \u00C2\u00A5 121 24 JO l+ltrt- 232- \u00E2\u0080\u00A2 2 2ZA 3\u00C2\u00A52i* \u00C2\u00A5 7 1 2 322 2// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 3 /(. 3 JT /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/7A- \u00E2\u0080\u00A2 2 o O o 222 2 3Z \u00E2\u0080\u00A2 2 2 o 1 S'S'2 \u00E2\u0080\u00A2 Z32 \u00C2\u00A5s'z \u00C2\u00A533 \u00E2\u0080\u00A2 \u00C2\u00A533 \u00E2\u0080\u00A2 S~ s'l lo IO 37/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 2 1 o 1 ++/A /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 0 o o \u00C2\u00A533 +22 2 20 \u00C2\u00A5 /o 323 2// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 I//A \u00E2\u0080\u00A2 332 \u00C2\u00A533 1' 21 \u00C2\u00A5 \u00C2\u00A5 S'\u00C2\u00A52 2\u00C2\u00A52 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 3 31 6 lo /// - \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 732 3 0 o o 2\u00C2\u00A5zA 222 \u00E2\u0080\u00A2 2 2 o 1 OCCASIONALLY PRESENT Attithum vndulatum -SB 8SJ /2/m; StacAytAecium etytA + ottAixon - SB/22, 3/2 \u00E2\u0080\u00A2 3. sateitosom -SB/2/, 23/j Q. ytlutcnum -SB//7,/*/; Btyutn spp. - S3 91'l+l; SB2o*f IIIA;SBl/7t 222; Ctaopodivm. balandeti\"- SB / ZZIJ\u00C2\u00A5 Z ; D tcttnum sttictum -SB 1/7; //3; EutAytteAt'um sp.-SB /22, 2/7; Fatidens ttyoid.es - SB 1/7,7/3 ; 7opAoxia. spp. -SB IZ/JII; SB 2o\u00C2\u00A5,7/7A ; Play iotAecium Sylvaticum? - SB /2 2t l+l; Poyonatum sp. - SB//7, ++/; TtifeMratiOL scitula.*SB//7, ++/ ' l>f. fo / L L L I L L L L I I I t L I L I L L L L 2. LICHENS ON NUMUS AND BEDROCK Cettatia. ylauca* C islandiia. \u00E2\u0080\u00A2 Cladonia. Dellidiflota, C. cAlotopAaea, C. defotmis \u00E2\u0080\u00A2 C. Uiyitata. C. fimbtiata. \u00E2\u0080\u00A2 C. ytaeilis \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 C. ntitis C. lany'tfetina. Detma.to catpon nriniatum \u00E2\u0080\u00A2 loiatia. pulmonatiox. A/epAtoma. spp. Patmelia. pAysodes Peltiyeta. aphthosa. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ' P canina. # P. ma. I a ceo. P. membtanacca, P. patydactyla, Steteocavlen tementosum \u00E2\u0080\u00A2 i/mbil'tcatia. pAaea. \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 12/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 0 0 0 213- \u00E2\u0080\u00A2 / / o / / 1' / *' 333 2/2 \u00E2\u0080\u00A2 312 3 II 2 \u00C2\u00A5 112 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 o O o 2/2- \u00E2\u0080\u00A2 /II \u00E2\u0080\u00A2 2 1 O / //X \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 322 312 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 10 2 3 \u00C2\u00A533- 232- \u00E2\u0080\u00A2 21/ \u00E2\u0080\u00A2 322 211 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S~ 78 \u00C2\u00A5 \u00C2\u00A5 \u00C2\u00A5i'3 3l'Z /+/\u00E2\u0080\u00A2 3 IS' 3 s' \u00C2\u00A5t3 //X \u00E2\u0080\u00A2 332 3 71' 3 s-2+3- \u00E2\u0080\u00A2 I 1 O 1 7+1 \u00E2\u0080\u00A2 /+/ 2 O o o 332- \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/2 \u00E2\u0080\u00A2 3 /o 2 3 /+2 \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 o 0 0 332 S'\u00C2\u00A52 \u00C2\u00A5\u00C2\u00A52 s's'z \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A53 \u00E2\u0080\u00A2 1' 61' /S /3 222 332 /+2- \u00E2\u0080\u00A2 322 2 + 3- \u00E2\u0080\u00A2 r /2 2 2 332 / 1' / S' 323 \u00E2\u0080\u00A2 / 1\" 1 s' 3/2 / >' / 1' Z23 \u00E2\u0080\u00A2 /23 2 / O I //2 \u00E2\u0080\u00A2 / O O o OCCASIONALLY PRESENT >;PAy. 3. SEEDLIMDS 0/7 HUM US AND BEDROCK Acer y/abtum - SB/22, ++?; Polypodium vu/yate. -SB /XZ,++I'; Pseudotsvya. menxietii - S8xo\u00C2\u00A5t3+l \u00C2\u00A5. BRYOPHYTES ON DECAY/NO UlOOO l/ftlotm /7 77 If 77 77 Me He He 7f Aulacommum andtayynum Callietyonello. schtebeti' Dictanum fuseescens \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2>. sttictum \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Hyphum citcinale LopAoco/ea. AetetopAylla. lopAomio. Spp. % \u00E2\u0080\u00A2 Ptt/tdium pulcAettimt/m o \u00E2\u0080\u00A2 XAyttdia delpAus tti^t/etrut 2/2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2/2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2/2 \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5 3 / / /\u00C2\u00A5/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// 3\u00C2\u00A52 \u00E2\u0080\u00A2 7/7 \u00C2\u00A5 l' / / 2/7 2/X 7/7 \u00E2\u0080\u00A2 2/2 222 \u00E2\u0080\u00A2 s' \u00C2\u00A5 / 7 222 \u00C2\u00A5'zz \u00E2\u0080\u00A2 212- \u00E2\u0080\u00A2 \u00C2\u00A522 332 s~ 27 S~ 1' 22/ 22/ Z 2 0 / 2.//- \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 2 O o o 2/Z- \u00E2\u0080\u00A2 7/7 2/2- 7/Z \u00E2\u0080\u00A2 S~ 3 / / 2/7 \u00E2\u0080\u00A2 32/- \u00E2\u0080\u00A2 222 32/- 2I2OJ 1' /3 s 3 7+7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7+7 7; Mnium Spinu'/otum - SB Hr ///u; PlxytoiAecium denticulatum -SB//^//2or; 7>tlU'um ctista -catttensis-SB/2/, ///j t?Aytide (ac.) Elevation (ft.) \u00E2\u0080\u00A2 Exposure. Slope (\") Topoytaphy (profile'. Contout-'. surface)' Uind exposure (A:B'C loyets )\u00E2\u0080\u00A2_ History a) original denuelation Ay A) duttny stand development Sodtype. \u00E2\u0080\u00A2 Patent matetial /tost common rock type in parent material Soil depth (cm.) Thickness ofAeAotizon (cm.>' Plain root horizon \u00E2\u0080\u0094texture. Depth 1b se,epaye-,e.arty Tulyt196o(Cm.J Soil reaction a.) Math toot Aor'txon Doryanic horizon adj. to mineral Soil Veyetationpattern and appate-nt influence. ' TREE DATA Stand development staye Aye of dominants (yts.) Aye of oldest measured tree. \u00E2\u0080\u00A2 Basal area, per aero, (ft.z) Averaye dtdmetet of stand (in.) Site, index at /oo yrs. : //max: Site index a.t S'o yM. % COVER OF VEGETATION LAYERS To covet- of rum us and^/or litter H cover of decay my wood % covet- of rock-SPECIES LIST -LAYER A - TREES LtfeAtm Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm Pm Pm \u00E2\u0080\u00A2 Pm Pm -Pm \u00E2\u0080\u00A2 Pm Cover*/d ~~ *\u00E2\u0080\u00A2 Acer y la brum-Betula. papytifeta, \u00E2\u0080\u00A2 Picea, e.nye/mann ii Pinus monticola. Populus ttenruloioi.es P. ttichocatpa, Pseudofsoya. Menziesii Thuya, pticata. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ' Tsuyo hetetophytla. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 C Put F s L Cot H Asp A A, if 3/ t< D 2* Ba \u00C2\u00BBA *i-3 / z 3 / X 3 I 2 3 I Z 3 I Z 3 / Z 3 I Z 3 I Z 3 I Z 3 S L O P E D E V I L ' S C L U B ( 5 0 ) STAGE I 33 Tum.l/l'S A,f. 9/to Cuss. C. IT 3110 Al SOU) 36 H:Cp-N S.'3'l ? Xj.iptil*. NO ABU G-D f N BmA-GL 7 y.t s:t 3 SIT V-'O Xi'Ot 7IZ Z\u00C2\u00A56 loo ?:/3? I30>lt9 IZ? Tut. /t/sy Auy /o/to Sfeui.C. Ir 2S'00 H3l--4oE 10-11' CcCp-'H \u00C2\u00A5:z-/ 7 Sr**i ttoit SM MR A SSI 9/*-? T Ah-L N 6.8 y.t ZSM z\u00C2\u00A5 Stptit/it Auo./1/to Stat C. many 21 to SaoE 3-\u00C2\u00A5 NN'-H i'Z:/ 7 f.fl.,. D71R A &n& 7 N C-S N 6.8 i~7 3PF i/O l/:o I/O ZS~0+ 300+ 300+ 3i'o + f/ - 3yoS 396 8o\u00C2\u00A5 706 71-3 22.y 2 8.0 llo?:li-4- /jo7/7S- /Zo?:/s't /? Stftll/St Auy./t/(D Stat C. mahij 21/(7 SS0E \u00C2\u00A5 N-'N-W 7'\u00C2\u00A5'Z 7 afliw.tttxt DMR A & 7 N C-GS N i.o y.t 3SMPFL U'O' Zi'OT \u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A5? 73.3 foT'Ut iS /2-33 7 \u00C2\u00A57 9 \u00C2\u00A5\u00C2\u00A5 ? 28\u00C2\u00A5 i'7 2/4 \u00C2\u00A53 61' /O 20 j r So /y \u00C2\u00A50 as' \u00C2\u00A50 21' /o o 86\" /y o 6y 8i-/y iy 25\" fo \u00E2\u0080\u00A2 \u00C2\u00A50 is' s'o \u00E2\u0080\u00A2 \u00C2\u00A50 \u00E2\u0080\u00A2 /o 30 o yy \u00C2\u00A50 y ay 71' 8 38 \u00C2\u00A50 31-/!' Zi' so \u00C2\u00A58 21' ZO 3 60 SO /o 7i' 70 /o 31' sy 76 /y 70 60 ZO /o /o o 7o 3o /-70 80 ' Zo 60 /O Zo \u00E2\u0080\u00A2 y 20 3o ' i \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5 Z I-MO SB* Bo 7i' IZ yy zs-70 \u00E2\u0080\u00A2 34' \u00C2\u00A50 ZO y-z z 1-?z 7 I yy STACEZ STAGE3 /\u00C2\u00A56 Avyl/if Tut. 7/to Ttou. L. I Zl'oo Stfej y-a 7/:Cc-H t:3--7 Fite tUstlt. 2>/fR/0BtA A ' SSi 7 N C-GLS N (.\u00C2\u00A5 y.a \u00C2\u00A5SM It: YT 93 7Z\u00C2\u00A5C 323 ?.? //y.\u00E2\u0080\u0094 /to:-/\u00C2\u00A5&-/20:-' i\"7Z \u00C2\u00A5+2,-++Z-++z-++/\u00E2\u0080\u00A2 + +Z-++Z-+tz-/+/\u00E2\u0080\u00A2 ++3-\u00E2\u0080\u00A2++/\u00E2\u0080\u00A2 ++2- + +/\u00E2\u0080\u00A2 +T-3-\u00C2\u00A5\u00E2\u0080\u00A2+3 ' y+3 ' I+Z- \u00E2\u0080\u00A2 \u00C2\u00A5 + 3- y/3 y+3 \u00E2\u0080\u00A2 893 \u00E2\u0080\u00A2 6 82 \u00E2\u0080\u00A2 693 \u00E2\u0080\u00A2 B ?3 i-+2 ' t7Z ' S'l/- \u00E2\u0080\u00A2 3\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A5 + / l+l' l+Z-89Z' y/i \u00E2\u0080\u00A2 + +Z- ++o- y/lel' itzd-++z-is/ +tz-l+l \u00E2\u0080\u00A2 /oy 70 \u00E2\u0080\u00A2 Zo \u00C2\u00A5y \u00C2\u00A50 60 \u00E2\u0080\u00A2 3o \u00C2\u00A5y yy \u00E2\u0080\u00A2 3o \u00E2\u0080\u00A2 20 /o o Bo Zo o 70 Ay Xul.ij/rt Auy l/io Cat.C. I-2\u00C2\u00A59o due id 0-Z MAI.H y-2'/ Fite pfloo. DMR A VG 7 N C-S 97 S-\u00C2\u00A5 y.y 3SML tl:P 60 ii'C 3Z\u00C2\u00A5 8? izs: -l\u00C2\u00A5o: -++3 \u00E2\u0080\u00A2 t+3 \u00E2\u0080\u00A2 ++o-+\u00E2\u0080\u00A21-3-\u00E2\u0080\u00A2++I-++3-0+3) 513 \u00E2\u0080\u00A2 783 771 +IZ-\u00C2\u00A5 + lt ?y 84 ay \u00C2\u00A5y s'o s'o \u00E2\u0080\u00A2 Zi~ \u00C2\u00A5S 60 \u00C2\u00A51' Zo xs' o As-sy o Bi-ll in flood channel STAGE SUtjMARY 37Z-++X-(T+o> ++0-++0 \u00E2\u0080\u00A2 683 ++z-7+0 + +Z-78 Z 89Z TCP ACD tor 76. s/-\"~\u00C2\u00A5~ 30- \u00C2\u00A5 \u00E2\u0080\u00A2 II- Z \u00C2\u00A57 6 S'o\u00C2\u00A5 63 131 /6 STAGE/ TCD ACD say 7\u00C2\u00B1 29- Z \u00E2\u0080\u00A2 27- Z 3\u00C2\u00A5 3 6 \u00E2\u0080\u00A2 / 930 78 \u00C2\u00A5i'0 38 STACEZ TCD ACD 201' 68 3 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 ZZ 7 12- \u00C2\u00A5 \u00E2\u0080\u00A2 \u00C2\u00A5/\u00E2\u0080\u00A2 l\u00C2\u00A5-\u00C2\u00A58 /6-23\u00C2\u00A5 78 63 ZI STAGE 3 \u00E2\u0080\u00A2TCD Atb /9S~ (y \u00C2\u00A52 !\u00C2\u00A5\u00E2\u0080\u00A2 ty-\u00C2\u00A57 ft-So 17-ZI3 71 28 ? \u00E2\u0080\u00A2 ASSOCIATION SUMMARY C% C TCP ACD CCD iz8 y zt 33 Z \u00C2\u00A50 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 ZB Z S\u00C2\u00A5 3? Z \u00C2\u00A52 i7 \u00C2\u00A5 90 II- I \u00C2\u00A57 17 \u00E2\u0080\u00A2 I i'3 13-6 \u00E2\u0080\u00A2 18-39- Z 63 \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 ? \u00E2\u0080\u00A2 /oo S' 1377 77 77 9\u00C2\u00A5 y S'\u00C2\u00A5/- 30- 3Z OCCAS/ONALir PRESENT Aiies Utiocatpe- S8/7/tr\s++/ ;SB/6/>AJ++o-J latix occidentalis -SB/3B -LAYER 3 - SHRUBS A3+txt,Aj+++t j Sa/o/t A/++2); Salix scoutetiana. -SB/6/lA1++Z TCD ACD TCD ACD Lifxfutm Pm Pn Pm Pm Pm Pn Pn Pn Pn Pn Pm Pn Pn Pn Pn Pn Pn Pn Pn Pn Pm Pm Pn Pn C0VQ.t 'A *\u00E2\u0080\u00A2 Acer yfattvM \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 A me/ancAiet- alnifo/ta. Betula. papytifeta. \u00E2\u0080\u00A2 Cotnus stolonifera. \u00E2\u0080\u00A2 Coty/us caltfotnica. loni.ee to. 1/ta.Aensis ATaAonia. aouifo/iom Menxiesia. fe+ruyinea, Oplopanax horridus \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pachystima. mytsitt ifes Pinus nronticota. Pikes lacustre \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Posa yymnocarpa. Rubus idaeus var. sttiyosus P. teucodetmis R. parvif'lotus \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Sam6uc.es puiens \u00E2\u0080\u00A2 Sotbus sitehensis \u00E2\u0080\u00A2 Spiraea, tucida-Taxus ire vifolia. \u00C2\u00BB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Thuya, plicata. \u00E2\u0080\u00A2 Tsuya. AetetopAy/la. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Vaccinium rnemiitana.ce.vm V. ovalifo/iutrr I 2 / z. I z I 2 I z I z I z I z I z I z I z I z I z I z I z I z I z I z / z I z I z 1 z I z I z i-+/d \u00E2\u0080\u00A2 77/ 7\u00C2\u00A5Z \u00E2\u0080\u00A2 372d OCCASIONALLY PRESENT Abies latioeatpo, -SB/28,B,++/;SB/6l,B,+tot3z++l; Alnus ctispa. - S3 79, B^ /+/; loniceta. involuctata.-SBI6/tBjZII;SB20313jl+/; Ptcca. znyelmatmit. -SB/6/ Rhamnus pursAia.no. - SB lo/t &,++! \u00E2\u0080\u00A2 Satix seouleriana. \u00E2\u0080\u0094SB/t/,3, //o; Shephetdia. cona.dle.Hsis - SB/tlt Bx ++7t; Symphoticarpos alius \u00E2\u0080\u0094SBx\u00C2\u00A5, B/+T/; Vihatnum edule SB/6/ Bi+tl 2, ++/S\u00C2\u00A3/yo 3, l+ld.' Populus tiemu/oides -SB /6/^Bj/t/; PtticAo carpa. - SB/i/B^ Z lis ; Pseadotsuqa. m en * ie.se i -SBIZb-^Bj+t/; ' J ~'-SB7C'/J Bt//2J, SB/P.Jj Z/l - LAYER C - HERBS lifvform Cove+% G \u00E2\u0080\u00A2 e \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 G-C H-H \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 77 \u00E2\u0080\u00A2 H-C \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 7/ \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 G- \u00E2\u0080\u00A2 C \u00E2\u0080\u00A2 7/ & \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 G- \u00E2\u0080\u00A2 C \u00E2\u0080\u00A2 H-C C \u00E2\u0080\u00A2 // \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 &\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 C \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 G C \u00E2\u0080\u00A2 c \u00E2\u0080\u00A2 H H-C H \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 A/-H-Pm G ' N-H' //' C \u00E2\u0080\u00A2 C \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 H \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 G \u00E2\u0080\u00A2 Pm H-H-Pm N-H-C Actaea. atyfa.%% Adenocauton Aicotor \u00E2\u0080\u00A2 Adiantum pedatum \u00E2\u0080\u00A2 AnapAalis matyatitacea. Atalia nudicaulcs Asatum coudatum \u00E2\u0080\u00A2 Astet citiolatus A. modestus \u00E2\u0080\u00A2 A thytium filix-fcmina^ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 BoTrychium uityinianunr \u00E2\u0080\u00A2 Btomus vulpa+is Calypso buib osa. Catex deuteya.no. \u00E2\u0080\u00A2 C. oiispetmax. Chimaphila. umbellate*. Cinna. (atifolia. Circaea. alpinox. Ctintonia. uniflora. \u00E2\u0080\u00A2 o Co tailor A iza. ma.cula.ta. \u00E2\u0080\u00A2 Cotnus canadensis oo top tort ZySCop His i Dtsporum oteyanum Dryopteris austtiaea.ee \" Efuisetum atve-nse.. E. ptattnse. \u00E2\u0080\u00A2 E. scitpoides \u00E2\u0080\u00A2 Galium ttcfiorunr* \u00E2\u0080\u00A2 traoltAetia. ovatifotia, Ge.um maehopAyllum \u00E2\u0080\u00A2 Glycetca. data. troodyetOL obtoHy cFotia. a * Gymnocatptont dtyoptercs Haienatto. atbr'eu/ata, H. saccafa. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 linnaea. borealis \u00E2\u0080\u00A2 t Listeta. Convatlatioicles \u00E2\u0080\u00A2 I. cot data. lycopodtum annotinunx I. setayo Mitetla. bteuteti \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Tfoneses o/tiftora, OsmorAiza. cAile-nsct PotysticAuM andetsanii \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 P loncA'ttt's \u00E2\u0080\u00A2\u00E2\u0080\u00A2 Prunella vutyatis Pseudotsuya. menziesii Ptetidt utrr aouiCmum Pyrola. asarrfotia, P. cAlotantAa. P. picta. P. secunda. \u00E2\u0080\u00A2 Rubus peclatus Senecio paupeteulus \u00E2\u0080\u00A2 Smilacino, hacemoso-oe \u00E2\u0080\u00A2 Stellatia. ctispa. Streptopus amptextfolt'vs \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S. roseus S. streptopotdes TAu/'o. plicata. Tiatettm. trifotiata.m T un'tfo I lata. \u00C2\u00AB \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Tsuyo Aetetophyl/a. \u00E2\u0080\u00A2 Viola, ylabel/a. V. otttcolata, \u00E2\u0080\u00A2 ii' 71 1+2 \u00E2\u0080\u00A2 33Z-\u00C2\u00A5\u00C2\u00A52 \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 ZIZ-3yx. 3\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A521- \u00E2\u0080\u00A2 2+/- \u00E2\u0080\u00A2 ++2- \u00E2\u0080\u00A2 3\u00C2\u00A53 \u00E2\u0080\u00A2 362aC \u00C2\u00A5-S'2 \u00E2\u0080\u00A2 3\u00C2\u00A52 \u00E2\u0080\u00A2 7+Z \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A52d. ytz 3+Z-72 Z \u00C2\u00A5S'Z \u00E2\u0080\u00A2 332 \u00E2\u0080\u00A2 //Zd \u00E2\u0080\u00A2 Z/7-873 777 \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 17Z-///d l+Z-3-&Z-+ + Z- 7+-Z-Z+Z-33Zd /+-Z- \u00E2\u0080\u00A2 /++cC-/yzci J \u00C2\u00A5-2el zta-7Y-Z-32Z-/\u00C2\u00A5/\u00E2\u0080\u00A2 6~ZZ 3+Z + +Z+-*/z \u00E2\u0080\u00A2 z\u00C2\u00A5Z + JIZ \u00E2\u0080\u00A2 77Z \u00E2\u0080\u00A2 3\u00C2\u00A5/d-9o \u00C2\u00A533 \u00C2\u00A5-S'z 36Z-*//\u00E2\u0080\u00A2 ++Z-7+2-\u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A53 3\u00C2\u00A5z \u00E2\u0080\u00A2 33Z + -3/J-S'S'2 \u00C2\u00A5-S'Z \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 783-/\u00C2\u00A5zol l+Zol-\u00C2\u00A56zd. \u00C2\u00A5/3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++Z- \u00E2\u0080\u00A2 6 \u00C2\u00A53 \u00E2\u0080\u00A2 z+z \u00E2\u0080\u00A2 B7Z \u00E2\u0080\u00A2 ++Zot 33Z- \u00E2\u0080\u00A2 Z//+ \u00E2\u0080\u00A2 ay Jo z//-\u00C2\u00A5S'Z \u00E2\u0080\u00A2 \u00C2\u00A562. //2 \u00C2\u00A5-S'Z \u00E2\u0080\u00A2 /Z/- \u00E2\u0080\u00A2 \u00C2\u00A562 333 3/2-X32 ++/\u00E2\u0080\u00A2 3/2 \u00E2\u0080\u00A2 77Z- 7/7 \u00E2\u0080\u00A2 2+-/ 993 3\u00C2\u00A5z \u00C2\u00A5hz Z\u00C2\u00A5/-7\u00C2\u00A5Z 73Z-z\u00C2\u00A5/-++\u00E2\u0080\u00A2/\u00E2\u0080\u00A2 3+/ ++/\u00E2\u0080\u00A2 7+2 \u00E2\u0080\u00A2 2+Z 7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\u00C2\u00A5Z \u00E2\u0080\u00A2 3// \u00E2\u0080\u00A2 3/Z \u00E2\u0080\u00A2 3/2-32./-3+-Z /+Z-++/\u00E2\u0080\u00A2 7Y-Z- \u00E2\u0080\u00A2 8 /o Z-7AZ-i'7Z-3X2 3 22, /+Z-32 2. TCD ACD TCD ACD //\u00C2\u00BB IS /o /o O / 3 y 3 i'3 y o o o \u00C2\u00A58 3 y 341' 69 36 o O o 26 \u00C2\u00A5o o 76 7 /y ys s 70 /o o \u00E2\u0080\u00A2 o 7 241 O 7 o o o y 6 o / s zo 2/ ZO \u00C2\u00A5o 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 i i 8 o 3 o J // / 2 2 O O / \u00C2\u00A59 o 7 o o z\u00C2\u00A5o \u00C2\u00A5S S \u00E2\u0080\u00A2 /y //\u00E2\u0080\u00A2 31 7+7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z/l \u00E2\u0080\u00A2 i'73 \u00E2\u0080\u00A2 jyz \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //\u00C2\u00A5\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/Z- \u00E2\u0080\u00A2 7+2- \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //*\u00E2\u0080\u00A2 /// 33Z \u00E2\u0080\u00A2 JZ/cC-/+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z/Zd \u00C2\u00A5i'z \u00E2\u0080\u00A2 232 \u00E2\u0080\u00A2 3i'X \u00E2\u0080\u00A2 Z/Z \u00E2\u0080\u00A2 /32oL Z/Z \u00C2\u00A5-y/ ++Z 7+2 \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 777 \u00E2\u0080\u00A2 7ZZ-22/-81 2+2 \u00E2\u0080\u00A2 /J/o ZIZ ' ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /z/d 3/7-/+z-\u00C2\u00A5\u00C2\u00A5/ \u00C2\u00A532 7/2 \u00E2\u0080\u00A2 7Z/o Z3Z Z/7 \u00E2\u0080\u00A2 Z+/e> 7/Z- \u00E2\u0080\u00A2 3/Z \u00E2\u0080\u00A2 73/d-\u00C2\u00A5yz \u00E2\u0080\u00A2 i'dzd 7/Z- \u00E2\u0080\u00A2 ZTZ \u00E2\u0080\u00A2 i'i'Z \u00E2\u0080\u00A2 33 Z \u00E2\u0080\u00A2 782 \u00E2\u0080\u00A2 Z/Z \u00E2\u0080\u00A2 \u00C2\u00A5tXO /JZO Z//- \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5z \u00E2\u0080\u00A2 /+\u00E2\u0080\u00A2/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+2- \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5z \u00E2\u0080\u00A2 2// \u00E2\u0080\u00A2 \u00C2\u00A5/z \u00E2\u0080\u00A2 77-7- \u00E2\u0080\u00A2 3/Z //*\u00E2\u0080\u00A2 //3r 777 \u00E2\u0080\u00A2 Z22ol 17/ \u00C2\u00A5-+\u00E2\u0080\u00A2 Z 3/ \u00E2\u0080\u00A2X + / /+z-z+z-TCP ACD 230 \u00C2\u00A56> /zz-/tzr \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 ZO o \u00E2\u0080\u00A2 36 76 /y 7 \u00E2\u0080\u00A2 e \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /y o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 21-O \u00E2\u0080\u00A2 Z7 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 3o t-BO /Z O \u00E2\u0080\u00A2 O o 7 Z o o 7o s 7 70 o o 2/ O I / / / o I / If /\u00C2\u00BB' o o 6, / \u00C2\u00A5\u00E2\u0080\u00A2/\u00E2\u0080\u00A2 s-/i o y o y o o o 6 / /A X a o 8 4' 112 \u00E2\u0080\u00A2 X./Z \u00E2\u0080\u00A2 10 1 + 2-3o io (l+l) 30 20 Z\u00C2\u00A5l-/J/-Z+l - \u00E2\u0080\u00A2 Z+Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 312- \u00E2\u0080\u00A2 l+l- \u00E2\u0080\u00A2 3\u00C2\u00A5z +\u00E2\u0080\u00A2++\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++t \u00E2\u0080\u00A2 ++++\"\u00E2\u0080\u00A2 232 \u00E2\u0080\u00A2 i'iZ \u00E2\u0080\u00A2 \u00C2\u00A5tZ-/zz- \u00E2\u0080\u00A2 /z/ \u00C2\u00A5iZ /\u00C2\u00A5/\u00E2\u0080\u00A2 ZY-Z \u00C2\u00A5\u00E2\u0080\u00A2+ + 3\u00C2\u00A5z \u00C2\u00A5-yz ++i-z/z-Z/Z //z-/zz ///\u00E2\u0080\u00A2 /tl \u00E2\u0080\u00A2 /+2 1/2-//Zi /\u00C2\u00A5/f-112-S\u00C2\u00A5z \u00C2\u00A5i'2 /zz-Zll \u00E2\u0080\u00A2 613 Z31-3\u00C2\u00A5Z \u00E2\u0080\u00A2 1/2- \u00E2\u0080\u00A2 3/1 \u00E2\u0080\u00A2 lll/tt \u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 Z31 \u00E2\u0080\u00A2 Z2Z \u00E2\u0080\u00A2 \u00C2\u00A512 + 73X+ \u00E2\u0080\u00A2 I/7+- \u00E2\u0080\u00A2 //Ztrt-/+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5l'zd /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5Z - Z2Z \u00E2\u0080\u00A2 33Z \u00E2\u0080\u00A2 \u00C2\u00A532 \u00E2\u0080\u00A2 \u00C2\u00A5yx \u00E2\u0080\u00A2 Z3/d-72 2d. //Xf \u00E2\u0080\u00A2 XX/- \u00E2\u0080\u00A2 33Zd. 3/7- \u00E2\u0080\u00A2 3\u00C2\u00A5z \u00E2\u0080\u00A2 SSSd x//d 3/2 \u00E2\u0080\u00A2 7+7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z/X \u00C2\u00A5yzd 37 Z- \u00E2\u0080\u00A2 7+//\" \u00E2\u0080\u00A2 33Z \u00E2\u0080\u00A2 3ZZ 3ZZ //Z-33 X \u00E2\u0080\u00A2 3/2 \u00E2\u0080\u00A2 Z/7-Z/Z- \u00E2\u0080\u00A2 732-yix \u00E2\u0080\u00A2 6 fx . . . . +++ . . . . /+,. 7/7 \u00E2\u0080\u00A2 1'6X ++X-2/2- \u00E2\u0080\u00A2 Z//r 783 \u00E2\u0080\u00A2 \u00C2\u00A56x Z3/d- 2Z/-/\u00E2\u0080\u00A2AX /z/ \u00E2\u0080\u00A2 33Z /+Zd- ++/d-7/Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+zd 77 X- \u00E2\u0080\u00A2 7\u00C2\u00A5Z 77/ \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 7T-Z+\"-(//Z) /3/- \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 ///A*-7/Z-/XX/-- 7+7+ /A2- ///+\u00E2\u0080\u00A2 /\u00C2\u00A5ld- Z3Z Z/7- \u00E2\u0080\u00A2 77/d \u00E2\u0080\u00A2 23/- \u00E2\u0080\u00A2 23/-///*\u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 *>//\u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 z+x \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A52 \u00E2\u0080\u00A2 /+x-61'2 7//d 3/7 \u00E2\u0080\u00A2 7Y-X.-/+/\u00E2\u0080\u00A2 7+z.-Zrt- 3/7-//zd \u00E2\u0080\u00A2 /+xd-t\u00C2\u00A5z-Y-+Z-3/2-2\u00C2\u00A5Z-/\u00C2\u00A5Z-3/Z-Z/2-yyz zzz 722 X+X \u00E2\u0080\u00A2 S'6 2 \u00E2\u0080\u00A2 7+7d \u00E2\u0080\u00A2 332, 77X+ X+-Z \u00C2\u00A37/-\u00C2\u00A5ZZ /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 yi/- \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 /r-z-3X2 yy Z3Z /rt-\u00C2\u00A57X zz/-\u00C2\u00A5-32 \u00C2\u00A5-3x \u00E2\u0080\u00A2 73X+ \u00E2\u0080\u00A2 z+l- \u00E2\u0080\u00A2 \u00C2\u00A5/x \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\u00C2\u00A5z 7/7 3Z3 6S2 7+1-7+x 7/Z-3XX 772 \u00E2\u0080\u00A2 7X7-7//r-37/> Z/Z-33 X l+Z-y/z-izz-HZ \u00E2\u0080\u00A2 \u00C2\u00A3o 31Z-l+Z-l+z-33 X 3/Z-3//-ZZ/- \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5\u00E2\u0080\u00A2*\u00E2\u0080\u00A2 S'6*. \u00E2\u0080\u00A2 73Z-i'S'xd 33X \u00E2\u0080\u00A2 3/2- \u00E2\u0080\u00A2 i'i X \u00E2\u0080\u00A2 \u00C2\u00A5i'x-\u00C2\u00A5/x \u00E2\u0080\u00A2 \u00C2\u00A531-3//-Itz-+ +Z-S~7Z \u00C2\u00A5\u00C2\u00A5z TCP ACD 390 \u00C2\u00A59 8 i y 7 37 y o \u00C2\u00A5z 6 o o o o o \u00C2\u00A5 yz 62 o 3o o 17-7o6 70 7 yo 8 8o o o r o o o y o 10 o o o o o / 3 17-o 13-21~ o o 3 \u00E2\u0080\u00A2 i7r o o X li I o TCD ACD TCP ACP TCD ACD typ y\u00C2\u00A5 /yy yz 3 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 Zi-7 \u00E2\u0080\u00A2 \u00C2\u00A53 /Z o \u00E2\u0080\u00A2 is-/ \u00E2\u0080\u00A2 y \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 yc 8Z o \u00E2\u0080\u00A2 yz / \u00E2\u0080\u00A2 Z6 7/3 \u00C2\u00A5o 7 \u00E2\u0080\u00A2 ty. 33 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 IZ-370 3/ o \u00E2\u0080\u00A2 o o / o o / o o o 7 o o o o o o /\u00C2\u00A5\u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 /o-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 y-72-o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 /\u00C2\u00A5\u00E2\u0080\u00A2 13-o . fx z^ 7 \u00E2\u0080\u00A2 y-t \u00E2\u0080\u00A2 330 2 70- 7 y/. \u00C2\u00A5 /o- / ZD-S' \u00E2\u0080\u00A2 ZZ-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 ZZ \u00E2\u0080\u00A2 /y. o \u00E2\u0080\u00A2 /y. o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 SO o \u00E2\u0080\u00A2 Zo-71' Zo-\u00C2\u00A5 o o o o o \u00C2\u00A5 y o y a z Zo o 3 y sy zs z \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7o-/y-o \u00E2\u0080\u00A2 o \u00C2\u00A5iO 73 S'-/ \u00E2\u0080\u00A2 9y sx o- o ZiO S3 So zo-/y. z \u00E2\u0080\u00A2 y \u00E2\u0080\u00A2 y \u00E2\u0080\u00A2 zo \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 /o \u00E2\u0080\u00A2 So. o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 zo y -y \u00E2\u0080\u00A2 /y-30-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 70-O \u00E2\u0080\u00A2 y-o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 XZ-5\"-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3Z-77-o \u00E2\u0080\u00A2 /o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 y-o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 70-O \u00E2\u0080\u00A2 Z. \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 y \u00E2\u0080\u00A2 7o-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3 o 3 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 zi' S o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7-\u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 70 7-o \u00E2\u0080\u00A2 C% C TCP ACD CCD if S6 II-Z8 67 67 ZZ-ZZ S3 yc 33 Z7-39 77-33 \u00C2\u00A5l-y& /oo 22 S3 33 rz S3 yi zz 33 /DO zz 77 77 89 7S 77-33 89 33 77 39 39 77 XX 67 //\u00E2\u0080\u00A2 77-77-77-ZZ 3?-77 % 7Z-77-83 '7, 9\u00C2\u00A5 yo z% 22 7Z 9\u00C2\u00A5 28 83 \u00C2\u00A5fi 96 i' i\"\u00C2\u00A5 i 3 I Z \u00C2\u00A5 \u00C2\u00A5 I z y 3 X 7 2 / Z 3 3 s-2 y z \u00C2\u00A5 5' 3 Z X y 2 7 7 y \u00C2\u00A5 7 X 70 \u00E2\u0080\u00A2 IS- \u00E2\u0080\u00A2 2< \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S3 \u00E2\u0080\u00A2 37 \u00E2\u0080\u00A2 /y- \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 8\u00C2\u00A5- \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /y- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 s-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 77 -727-o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 73 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33 \u00E2\u0080\u00A2 763-\u00C2\u00A5S'-7Z- \u00E2\u0080\u00A2 9o \u00E2\u0080\u00A2 73 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 zz \u00E2\u0080\u00A2 \u00C2\u00A5^y o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o i~ x\u00C2\u00A5 y-/ \u00E2\u0080\u00A2 70-o \u00E2\u0080\u00A2 y. y-37-o \u00E2\u0080\u00A2 7 7 \u00E2\u0080\u00A2 7 O . / 7 7 / \u00E2\u0080\u00A2 z\u00C2\u00A5 / $\u00E2\u0080\u00A2 \u00C2\u00A59 \u00E2\u0080\u00A2 / o- \u00E2\u0080\u00A2 s' \u00C2\u00A5$ \u00E2\u0080\u00A2 3 iy \u00E2\u0080\u00A2 z 7 \u00E2\u0080\u00A2 ~ z \u00C2\u00A3 \u00C2\u00A5 /a- \u00E2\u0080\u00A2 y \u00C2\u00A5yc z 7o- \u00E2\u0080\u00A2 i- (7 3 / / \u00E2\u0080\u00A2 0 / / 0 s\" X I o y o / o o o o o \u00C2\u00A5 7 o \u00C2\u00A5 o 2 9 3 \u00C2\u00A5 o o o / zb o o / o o / o o o z o o o o o o o o o / / 3 o I o o 2 13 o 7 3 8 O 6 / 3 O a o o I s 7 a y o 3 // y 3 /s \u00E2\u0080\u00A27-o o o / 33 o o z / o 7 o z / 3 o 7 O O o o o o / z, /\u00E2\u0080\u00A2 3 o 3 ^7 o X. 7 ZC Z7 OCCASIONALLY PRESENT XA. mettenstanox -SB 1x9112: SB128 t+x: 'iix-SBi9,IHf-. stellata. -SB19, T+2' Lift fu HI \u00E2\u0080\u00A2 Tt \u00E2\u0080\u00A2 He ti-ff \u00E2\u0080\u00A2 Zi-77 \u00E2\u0080\u00A2 Z7-77-Af-tfe 77-77-Tie 77 \u00E2\u0080\u00A2 77-77-He 77-77-77-7f-77-He 7/e AZe 7*7-77-77-7f-77-77 77-77-77-Me 77-77-He -Z.AYER 7> -/.BRYOPHYTES ON Nl77f(7S AND SATURATED GROUND A mbtysteyiam jutatzkanum AttitJium unatulatum \u00E2\u0080\u00A2 BlepAatestoma. tttchopAy/lum BtaeAytAecium AylotapetuM 3. tivu/ate StacAytAecium spp. \u00E2\u0080\u00A2 Btyum sandbetyei \u00E2\u0080\u00A2 Btyum spp. Ca/ttetyone tta. cuspidata.* C. scAreberi \u00E2\u0080\u00A2 CAi/etcypAus pallesce.ns Cratoneuron fiticinvm \u00E2\u0080\u00A2 CtaToneutotr -Spp. Conoce.pAatum> conicum D+epanoc/adus uncinatus Netetoc/adium ptocuttens -7/yZocomtum splendent ZfotcAantia. patymorpAa. TZnium affine-77. insione \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 77. ottAotAyrtcAunt \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 17. punctarume \u00E2\u0080\u00A2 77. spinu/osum Pellia. endivaefolia. Pell to. spp. \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 Ptayioohila. asplenioides -Play'toTAecium sylratiount -PoAtia. ctudo. P. ojaAienbe+yil PoZytticAum ywntpetinum Ptt'Zium crista. - cast/ens is \u00E2\u0080\u00A2 XAytidiadelpAus Zoteus P. sguartosus X. tti/uettux-RAyttdiopsis to in sta. fftccca. f/uitans 7~Auidivm +ecoytiitum Timmia. austriaca, \u00E2\u0080\u00A2 TricAottylturrr pinycis TCD ACP TCP ACD JSZ r-s-yz Z3Z 2+-Z- \u00E2\u0080\u00A2 33Z \u00E2\u0080\u00A2 Z+Zh \u00E2\u0080\u00A2 /\u00C2\u00A5xn //2 M 33Z-3 \u00C2\u00A52 2+Z-y?2t-ZZZ+M ysz \u00E2\u0080\u00A2 s'\u00C2\u00A5z \u00E2\u0080\u00A2 /zz \u00E2\u0080\u00A2 7ZZ + -\u00C2\u00A5s'z \u00E2\u0080\u00A2 3/Z-Z+Z //Xtrt \u00E2\u0080\u00A2 //2 m-Z/Z 33X Z/Z-/zz-++/\u00E2\u0080\u00A2 6s-2 /3X- \u00C2\u00A5i'z 112-3ZZ- / X/-ZIZ-112-3yz HI \u00E2\u0080\u00A2 /3Z \u00E2\u0080\u00A2 732 18 y 0 o z \u00C2\u00A50 70 O 4\" X o \u00C2\u00A5C 37 Z o 7o i' o 7 3ZI \u00C2\u00A5zz 3ZZ-36Z 33Z Z2Z-3\u00C2\u00A5Z \u00C2\u00A56z-3ZX ZZZ-zzz \u00E2\u0080\u00A2 zzz Z/Z \u00E2\u0080\u00A2 3/Z-//z \u00E2\u0080\u00A2 73 Z Z\u00C2\u00A5Z 337-ysz \u00E2\u0080\u00A2 73Z-337-yyz 73 x-/zz- \u00E2\u0080\u00A2 77z \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5z 332-\u00C2\u00A53X 32 Z 77 Z Z3X 3ZX-3\u00C2\u00A5Z \u00E2\u0080\u00A2 3\u00C2\u00A5Z \u00E2\u0080\u00A2 Z32aj ZXl- \u00E2\u0080\u00A2 7/X- \u00E2\u0080\u00A2 777xn \u00E2\u0080\u00A2 7/Z-Z/Z-\u00C2\u00A5\u00C2\u00A52u 7/Z \u00E2\u0080\u00A2 7/Xtn-\u00C2\u00A5S'3 \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7ZZ \u00E2\u0080\u00A2 7/Xtrr-7/Z \u00E2\u0080\u00A2 \u00C2\u00A5-\u00C2\u00A5-Z-/3/ \u00E2\u0080\u00A2 772 \u00E2\u0080\u00A2 \u00C2\u00A532 //X-/ZZ-3Z/-3ZZ-7/7 7/Z in-77/ttf \u00E2\u0080\u00A2 /// 77/ 3ZZ /// \u00E2\u0080\u00A2 77 Z \u00E2\u0080\u00A2 TCD ACP o O 76 7o O o o o s y /y-s y 30 0 o Zi / 3: o y / o o o // y 2C o y y /a o 777Hr 33 Z \u00C2\u00A5-yx \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7ZZC \u00E2\u0080\u00A2 ///+*\u00E2\u0080\u00A2 772 f 3ZZ Z3Z /// 2//-777f-//xe. 3\u00C2\u00A5z /// 7\u00C2\u00A5Z- 3\u00C2\u00A53& //Z-77ze. //x 3\u00C2\u00A5z ///\u00E2\u0080\u00A2 ///A 77 X-6\u00C2\u00A5X 3\u00C2\u00A5X 3yz \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A532, 33Z /zz 77Z \u00E2\u0080\u00A2 33X \u00E2\u0080\u00A2 33 X 7/Zrtt- 7//C \u00E2\u0080\u00A2 33Z 7/7 \u00E2\u0080\u00A2 77/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7777- . /\u00E2\u0080\u00A2+/\u00E2\u0080\u00A2 77Z 7/Z 33Z ///A* 2 3/** ///fit 2Z/&- 777fi //2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 33Z /22-Z/Z-ZZZ /// \u00E2\u0080\u00A2 77/e. \u00E2\u0080\u00A2 77/ /zz-ztx \u00E2\u0080\u00A2 y 6 z \u00E2\u0080\u00A2 3\u00C2\u00A5Z-3\u00C2\u00A5% 73Z-XZZ 7// \u00E2\u0080\u00A2 3ZX 331-73Z-i'\u00C2\u00A57 73Z /??\u00E2\u0080\u00A2 722-TCD ACD /+/r \u00E2\u0080\u00A2 y o 6 7o fo y Xl o o o o y / / o / // / 3 o o o o / o o o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00C2\u00A5/ \u00C2\u00A5/ /o-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 y y-y-o \u00E2\u0080\u00A2 j ' i'o o \u00E2\u0080\u00A2 70 /el' 77 / \u00E2\u0080\u00A2 y \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 li-/ \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 to-y-zC o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 7 TCD ACD TCP ACD TCD ACD C% C TCP AcP CCD Z7 ZZ 6 /o / /S o a o /Z o Z o o 77-\u00C2\u00A5\u00C2\u00A5 77 i'o 6 \u00E2\u0080\u00A2 33 ZX 77 77-33 6-//\u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 ZZ 77 /7-5b zz 17 9+ 28 9\u00C2\u00A5 39 17-l> \u00E2\u0080\u00A2 ZX 39 ZZ 22 77-/ / \u00E2\u0080\u00A2 ZZ yo ZZ /7-6-28 77-7 3 / 3 7 X Z 7 / Z / / / 2 / / 3 2 / 5\" Z y 2 7 / z 7 2 Z X / 7 Z 3 Z / / z / o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 6x \u00E2\u0080\u00A2 /o- \u00E2\u0080\u00A2 \u00C2\u00A51. \u00E2\u0080\u00A2 70 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 5- \u00E2\u0080\u00A2 71'- \u00E2\u0080\u00A2 y- \u00E2\u0080\u00A2 y- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /o- \u00E2\u0080\u00A2 S'6- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /o- \u00E2\u0080\u00A2 762-6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 9Z \u00E2\u0080\u00A2 2- \u00E2\u0080\u00A2 y- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7S~ -7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 6. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 31- \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 t 4' \u00E2\u0080\u00A2 7L- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o o o 3 7 3 7 O O 7 o 7 o o o / 3 o / 9 o y o o o o / o o o / / o 2 o o o 7 o o o o 7 70 8 3 o o 2 y a y 7 o 3 6 o 3 7o / y o z o o y o o o \u00C2\u00A5\u00E2\u0080\u00A2 4 z 3 o z y 3 0 0CCAS/0NALLY PRESENT S&JSI //z j S3 ///, //z; Ptilidium-pu/cAertimum-SBZS'0,/7/jSeapo>nia. S/0.-SB/9, ///F; TatrapAtx peltucida.-S3/3St/7Zp X. LICHENS ON fft/77US life f\u00C2\u00BB L \u00E2\u0080\u00A2 L \u00E2\u0080\u00A2 Peltiyeta. aphthosa. P. canina. TCD ACD TCD AGO Z+Z t\u00C2\u00A5Z-7+Z-TCP ACD 0 a z+z to \u00E2\u0080\u00A2 izz \u00E2\u0080\u00A2 /rt-TCD ACD\rco ACD TCD ACD TCD ACD C% C TCD ACD CCD O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o o o o zz-XX o o OCCAS/O/YALIY PRESENT _ Peltiycro-polydactylo. -SB728,7+7; Pu-enosa. -SBZiZ, ZZZm 3.SEEDUNGS ON HUMUS life A>t. Pm Pm Pm Pm lift for 17-ZZe ti-ll-ri-ff-Ti-ff-He He Ti-ff \u00E2\u0080\u00A2 71-77-71-77-7/e-7/e-He He-He 77e-7/e.-7/e 17 \u00E2\u0080\u00A2 77-77-77-He-ti-ff-He-ff-ff-Ti-ff-He He ff-77-Picea. cnyelmannii Pseudotsuya. menziesii. TAu/a. plicata. Ticuya. Aete+opAylta. 4.BRY0PHYTES ON 2ECAY/NG- 0JOOD Autacontnium andtoyynum \u00E2\u0080\u00A2 QCepAatastoma. tticAopAyllum StacAytAecium Aytotapetum -3. sa/eitosum-BtacAytAecium spp. 9 9 Btyum spp. Buxiaumia. ptperi \u00E2\u0080\u00A2 Callietyonel/o. scArebetiee Catypoqeia. neesiana, CepAatozia, spp. % \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Dtctanum fuse esc ens \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7>. scapatium \u00E2\u0080\u00A2 i^Z>. sttictum \u00E2\u0080\u00A2 *Hylocomium py+enaicum \u00E2\u0080\u00A2 ZZ. sptendens-Hypnunr citcinale a Tamesoniella. autumnatit-Tunyetmannia. taneeo/ata. T- spAaetocatpa, Lepidozio, reptans \u00E2\u0080\u00A2 lopAocotea. AetetopAylla. lopAoxia. incisa. /. lycopodioides lopAoxia, spp.w ffnium Znstyne T7. ottAotAyncAum 77. punctatum-17. spinulosum * Ptayt'ocA ila. aspia.tttatde\s PZayiotAecium denticulatum \u00E2\u0080\u00A2 P. sylvaticunr Ptilidium pulcAettcmum Pti/t'um cteita,- casttensis \u00E2\u0080\u00A2 A'AytidiadelpAus Sguartosus 7f. ttiguettus \u00E2\u0080\u00A2 PAyttkiopsis Aoiusta. fte'eia, T'luitaJis Scapan'ta, umbtosa. TeTrapAit pellucid a. HDtepanocladus uMcinatus \u00C2\u00A5+2-727- \u00E2\u0080\u00A2 2.ZZ 77 Z \u00E2\u0080\u00A2 Z+Z \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 XZZ-7+2-Z+Z \u00E2\u0080\u00A2 ZtZ '\u00E2\u0080\u00A2 7+Z-3ZZ-33Z ++/\u00E2\u0080\u00A2 +XZ-l+Z-TCP ACP TCP ACP 3\u00C2\u00A5+ 3rt-ZZ/ 7/Z \u00E2\u0080\u00A2 33Z 32Z 3\u00C2\u00A5X 32/-\u00C2\u00A5\u00C2\u00A5X \u00E2\u0080\u00A2 32/-32Z-Z3X /+y \u00E2\u0080\u00A2 t/7 \u00E2\u0080\u00A2 2/7 \u00E2\u0080\u00A2 2Z7-3/7-Z/Z \u00E2\u0080\u00A2 7/Z-3ZZ-XZZ-2/1 z+z \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A232 7/2 \u00E2\u0080\u00A2 ZZZ 2Z3 2Z2 3ZZ 3ZZ tzz-ZZZ-32Z ZZZ-3ZZ 7/Z-3ZZ-333-7tZ-ZZZ \u00E2\u0080\u00A2 7Z2-Z+X-Z/Z \u00E2\u0080\u00A2 332-33X Z+-2-772 3ZZ-3 3Z Zll\u00E2\u0080\u00A2 IZ/- 33 z t/z-Z13 zzz ZZ-Z- 2/7-ZZZ- \u00E2\u0080\u00A2 ZZZ 22 Z- \u00E2\u0080\u00A2 32 Z \u00E2\u0080\u00A2 777-7/Z-Z/Z O o 7S 7 o o (, i' 77 76 s~ & O /o 7/ / y 7 o 7 6 7 6 12 / o 6 /y-70 7 o / o o o TCD ACP TCP ACD Z/Z-Z3X ztz \u00E2\u0080\u00A2 712 Z/Z-311 \u00E2\u0080\u00A2 112 \u00E2\u0080\u00A2 7\u00C2\u00A52-3/X-z// \u00E2\u0080\u00A2 33X 7/Z \u00E2\u0080\u00A2 3\u00C2\u00A5X s\u00C2\u00A5x 17/ \u00E2\u0080\u00A2 23 Z \u00C2\u00A5l'z 3/2-yyz \u00C2\u00A56x \u00E2\u0080\u00A2 3XZ-77 Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 77 X \u00E2\u0080\u00A2 77 X \u00E2\u0080\u00A2 3XX 772-ZIZ-212-3XX 3/2 272-/// ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33X Z/Z-/// \u00E2\u0080\u00A2 3\u00C2\u00A52 3XZ-23 Z 3XX 77 Z J/2 \u00E2\u0080\u00A2 77 X \u00E2\u0080\u00A2 33 Z I++ /+/ l/X-X/Z-777 \u00E2\u0080\u00A2 2/2-//X \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 /IZ \u00E2\u0080\u00A2 33Z 3 xx 7/Z 7/X 7/2-/// \u00E2\u0080\u00A2 HX \u00E2\u0080\u00A2 x/x 7/2 \u00E2\u0080\u00A2 772 7XZ-XIX-1+7- \u00E2\u0080\u00A2 7/X \u00E2\u0080\u00A2 ZZZ-ZZZ-3ZZ ++Z-ill \u00E2\u0080\u00A2 zz/ 272-2/7 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 33 X /X7-32/-333 77X 77/ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 3/X-2/Z-3Z2-z/z-7/7 \u00E2\u0080\u00A2 x// \u00E2\u0080\u00A2 3ZZ-7/X \u00E2\u0080\u00A2 7/Z-772 \u00E2\u0080\u00A2 /2 X \u00E2\u0080\u00A2 3 ZX ZZZ ZZZ-3XZ //X \u00E2\u0080\u00A2 2ZZ 7X7-7ZX /xZ-Z/Z-/// \u00E2\u0080\u00A2 7Z7-TCD ACD ZZZ Z/Z-772 \u00E2\u0080\u00A2 o 3 i 7 o 0 6 0 73 72 0 6 Z7 3/ /y s' y y o o o & / o z X/ y-x z y 6 s\" o o 7 o o o TCP ACD 7< 6 3 / I / o o o I o o o \u00C2\u00A5 / o o / 7 7 0 o /\u00C2\u00A5/ \u00E2\u0080\u00A2 Zll-217 \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 1++ /++\u00E2\u0080\u00A2 Z/Z-7ZZ-ZZZ 3/3- 3/2-/// \u00E2\u0080\u00A2 /IZ z/z-2//- XZ/-7/X \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 732-2/Z-7/7 \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 fs'z /// \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 /+2-33 Z //X \u00E2\u0080\u00A2 3/Z-22 Z 2/2-23Z 7/2 \u00E2\u0080\u00A2 /tz 22Z /// 3/Z-2ZZ //X \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 ZZZ z//-zzz 77/ \u00E2\u0080\u00A2 Z/Z \u00E2\u0080\u00A2 2ZZ xxx 7/Z- \u00E2\u0080\u00A2 ZZZ \u00E2\u0080\u00A2 \u00C2\u00A5s'x \u00E2\u0080\u00A2 \u00C2\u00A5i'3-\u00C2\u00A5\u00C2\u00A5x 3/2 \u00E2\u0080\u00A2 Z7X- \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z/Z \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z3Z Z/7-Z/2-3 XX X/X zzz \u00E2\u0080\u00A2 2 72 //X- \u00E2\u0080\u00A2 xzx-//x-//X \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 Z/Z \u00E2\u0080\u00A2 /ZX \u00E2\u0080\u00A2 Z/Z 33 Z 212 HZ ZZ/-ztz \u00E2\u0080\u00A2 32Z zzz \u00E2\u0080\u00A2 \u00C2\u00A53Z zxx Z2Z 213-23Z // Z \u00E2\u0080\u00A2 3\u00C2\u00A5z \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 XZX XZZ-3\u00C2\u00A5x 3XZ xzx- \u00E2\u0080\u00A2 3ZZ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7ZZ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7ZZ-\u00E2\u0080\u00A2 33X. /// \u00E2\u0080\u00A2 ZZZ zzz zzz 33X //x-33 X 2Z7-22 2 /// \u00E2\u0080\u00A2 Z2Z 7/7 \u00E2\u0080\u00A2 ZZZ-ZZZ \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 3\u00C2\u00A5X ZZZ - \u00E2\u0080\u00A2 23Z //*\u00E2\u0080\u00A2 7Z2-22Z 77/ 77/ /// \u00E2\u0080\u00A2 //X-//X- /x x-x/z /XX-7ZZ-//x \u00E2\u0080\u00A2 7/X \u00E2\u0080\u00A2 /ZX 213 //X 111 3IZ-xzx 7/Z \u00E2\u0080\u00A2 ztt \u00E2\u0080\u00A2 x/z-//X \u00E2\u0080\u00A2 z/x-3XZ 3X2 3\u00C2\u00A5z 3XZ ZZZ /X/-77 Z \u00E2\u0080\u00A2 /xx-l+l-/+/\u00E2\u0080\u00A2 \u00C2\u00A5-yz 7/Z - -7/X \u00E2\u0080\u00A2 3X2-7X2 /// \u00E2\u0080\u00A2 7tX-ZX/-3\u00C2\u00A5X 3XZ 3/Z-72 X \u00E2\u0080\u00A2 7A7-237-11X \u00E2\u0080\u00A2 7/X \u00E2\u0080\u00A2 X12-3IX-32/-v-yx-/ZX- \u00E2\u0080\u00A2 3ZZ 7/7 -/XX-XI/ 3X/-3ZX TCP ACP o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o o o o TCP ACP o /9-o z 7 o o 7 o 23 t9-O 7 o 73 26 7 7 y 3 o / o 72-XO y i \u00C2\u00A5G y y / \u00E2\u0080\u00A2 ? 3 o /o / 7o 6 6 TCD ACD TCP ACD TCP ACD /y-//\u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 x \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /6-\u00E2\u0080\u00A2y-39 3\u00C2\u00A5 o \u00E2\u0080\u00A2 3-\u00C2\u00A5\u00C2\u00A5 yy 77-6 \u00E2\u0080\u00A2 y-8 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 B \u00E2\u0080\u00A2 7/ o -7 \u00E2\u0080\u00A2 \u00C2\u00A59 6 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 7-/\u00C2\u00A5 /3 6 \u00E2\u0080\u00A2 76 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 C% C red ACD CCD A \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2\u00E2\u0080\u00A2 XX 77 / / X / 0 \u00E2\u0080\u00A2 o 1 \u00E2\u0080\u00A2 o /O- 3 /. \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 o / \u00E2\u0080\u00A2 r-X \u00E2\u0080\u00A2 y-' y-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 i \u00E2\u0080\u00A2 y-y-6 \u00E2\u0080\u00A2 77-o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 y \u00E2\u0080\u00A2 y-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /O o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 y \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 X -7 \u00E2\u0080\u00A2 It \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 y-y-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /O-6 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 XO 7 \u00E2\u0080\u00A2 y-X8 IT 33 39 \u00C2\u00A5\u00C2\u00A5 Z% \u00C2\u00A5\u00C2\u00A5 83 zz 9* 9\u00C2\u00A5 39 rx I/-rz 9\u00C2\u00A5 s'o 39 IT \u00C2\u00A5\u00C2\u00A5 yi, \u00C2\u00A5\u00C2\u00A5 17-67 i/ ZZ 6/ 9\u00C2\u00A5 28 83 XX I'Z U 39 67 \u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A5 77 6 \u00E2\u0080\u00A2 67 67 O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZX Z7 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 X- ...\" o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 79 \u00E2\u0080\u00A2 y- \u00E2\u0080\u00A2 <3 \u00C2\u00A5T y-/9- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5 CS \u00E2\u0080\u00A2 23 //\u00E2\u0080\u00A2 TO-9 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z -o -z\u00C2\u00A5 \u00E2\u0080\u00A2 zz y-/\u00C2\u00A5\u00E2\u0080\u00A2 79 4 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 26 78-6 \u00E2\u0080\u00A2 /\u00C2\u00A3 O \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 7o-73- \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 O O O 0 O / / o o o o / o 3 3 o / o z \u00C2\u00A5 / / 7 / o o o / / o / \u00C2\u00A5 o o o / / o 7 o o / / o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 TCD ACD TCD ACD TCP ACP CK C TCD ACD CCD O X \u00C2\u00A5 I o o o / / 3 3 / / o 3 \u00C2\u00A5 3 2 3 / o o o X 2 / / y / o 2 Z X / 7 O o 7a / 7 OCCASIONALLY PRESENT Pellia. endivaefolia. - SB /\u00C2\u00A5(, tlx - Pellia. sp Ptilidium califotntcum - SB /7/t 22.Z ; SBI1\"Xt t/Z ; Tfadulo 'bolanderi -SB/i'i, //X; SBIS'o.HJ; Rhyiidia'delphus loteus - SB 12% 332j SB ISS^IZj Sca'panio, spp 'o.lZx; ConocepAaluM conicum -SB/i'o, 222} SBZ\u00C2\u00A5i, ZZZ) nchiun* sp.-SB33,+-+2; 7/etctocladiunr ptocuttens -SB 33,JXXj SB/38,3ZZ-/4\u00C2\u00A5.XIZ\ L. ventttcosa. -SB/o/, xxx-. ZfatchanTia. polymotpAa. - SBH/,ltz j *- ' ' /Z/\ SB/s'o/ZZj PlayioTAecium puttActtvm - SB Z03,72Z;'Ptoyt-o^Aecium sp- SB3S' /IX ; 7%tonatum 'alpinum vat. btevifotium'-Sa''203,1X1; Poyonatum sp.-SB ISh,/zl: Polyttlchum junipeiinum -Sh/i'X,///; S8l\u00C2\u00A5t,///; Pteriyu nandrum fill forme. -SB 203 /Z \u00E2\u0080\u0094 - . . . _\u00E2\u0080\u009E . . . ... ... ^Tetraphis yeniculata.-SO /X9;32Z-SB/2B,/tXj TettapAts Sp.-SB/So,//2 j Timmto auiXrtaea.-SB t3S,XfZ^SB l\u00C2\u00A5i,X\u00C2\u00A5Z^Tr'ttb l/li. Atm L \u00E2\u0080\u00A2 L \u00E2\u0080\u00A2 L \u00E2\u0080\u00A2 L \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 y. L/C HENS ON DECAYING UQOD Cettatto, olavca, Cladonia. Spp. \u00E2\u0080\u00A2 loiatia. pulmonaxhiou Nephtoma. Spp. Pannatia. pezczoides Peltiyeta. aphthosa.-P. canina. TCD ACD TCP ACD -SB I S'o, //I; SO 2 4, IIX j TCD ACP %matia, exsecttfetmis ~SBIot,zt2;SBllbz/Z TCP ACP P. polydacttyla. OCCASIONALLY PRESE/VT /+/ ZZZ T+z \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 3ZX-ZZ/ \u00E2\u0080\u00A2 ZIZ \u00E2\u0080\u00A2 ZZ/ \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 7+Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2++/ \u00E2\u0080\u00A2 7+Z-O \u00E2\u0080\u00A2 O O 7 zzz- \u00E2\u0080\u00A2 772 \u00E2\u0080\u00A2 Z+Z-7+Z \u00E2\u0080\u00A2 2+2-3/Z \u00E2\u0080\u00A2 2Y-X 77-X \u00E2\u0080\u00A2 3\u00C2\u00A5X z+Z-3+2-ZZZiT- \u00E2\u0080\u00A2 ZZZJ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7rty \u00E2\u0080\u00A2 Z+Z \u00E2\u0080\u00A2 7+Z-111 Z/7 772 7+/A-TTX \u00E2\u0080\u00A2 T+X \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 3TZ-2+2 a 1 o \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / / t+fy-Z1Z--Zrty-7+Z \u00E2\u0080\u00A2 Z+Z-2+2-33X-Z+Z \u00E2\u0080\u00A2 3ZZ \u00E2\u0080\u00A2 X12-X+X X+X 7/X \u00E2\u0080\u00A2 x+z-i+ity-X17 \u00E2\u0080\u00A2 illy-//x \u00E2\u0080\u00A2 tlx \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 /AX-/// 21Z /+/ \u00E2\u0080\u00A2 32X-zxx-/+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 x+x \u00E2\u0080\u00A2 /\u00C2\u00A5X \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 /+x \u00E2\u0080\u00A2 T+2 I Tib ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+Xb /+x \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 IA7 \u00E2\u0080\u00A2 1+2 \u00E2\u0080\u00A2 33/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2220 /+/ \u00E2\u0080\u00A2 232 a x o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o 7 \u00E2\u0080\u00A2 / TCD ACP TCO ACD TCD ACP O \u00E2\u0080\u00A2 7X-/ \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 /:\u00E2\u0080\u00A2 o 7 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O ' / / \u00E2\u0080\u00A2 X o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 y-X \u00E2\u0080\u00A2 C% I TCD ACD CCD 39 ?\u00C2\u00A5 33 67-77-47-(/\u00E2\u0080\u00A2 78 2 y Z \u00C2\u00A5 7 \u00C2\u00A5 \u00C2\u00A5 \u00C2\u00A5 o \u00E2\u0080\u00A2 /9-7 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 4 \u00E2\u0080\u00A2 73-zo \u00E2\u0080\u00A2 o 7 O O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 Cettaria. pinastt i -SB TLT, t+z; C. scuta fa. -SB/ot, 7+1A ^ C.gracilis -SB61'7//Aj C souamosa.-SBis^/ZZ;\u00C2\u00A3chmao?opA'tl<*. etic Peltiyeta. canina. vat. turescens -SBttt, /+x \u00E2\u0080\u00A2 P. malacea -SS/9/22 - SphaetopAotus yiobosui-SBJs^++l Cladonia. iaciltatis -Ss/\u00C2\u00B0/ l+lbj SBtS-o,/ztb; C. catnc.ola.-Sa 193\u00E2\u0080\u00A233/; SB/o/, t/ti; SB 19 IZZj C. cAloropA etotunn -SB/o/,/xx; SB ft/,zxl-SB/f, /tx; ZZepAroma. ateCieum -SB/JB, ttx; N. '/Aeviyatum -SB/ST 2XX; H.par'ite -SBlit, iaea. -SB/S'o, tlti;SB19J //Xj C. cocci fa-ta. -Satro, ItzAj C dtfotmis -SB If, 712; SBis'tll; C. diy'ttata. -SB/S'a, //xb-)SBI9lttZ-l C.fimlti*t*. -S3J3,2+2; SSZitttl-/,///; Patmelia. pAysodes-SB Z01, t+lj SBIfo, t+ly \u00E2\u0080\u00A2 Patmelia. Spp- -SBxeS,x+t-SBt\u00C2\u00A5L, 1+1; C. SEEDLINGS ON DECAYING UO0D life At Pm Pm TAu/a. plicata. Tiuya. AetetopAyl la. 331- \u00E2\u0080\u00A2 \ 17Z /+/ \u00E2\u0080\u00A2 TCP ACD TCD ACD O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 I OCCASIONALLY PRESENT Picea. e.nytlmann'ti \u00E2\u0080\u0094 SBSi'+Tl; Psei/dotsuya, menziesii \u00E2\u0080\u0094 SB31',+?Z t+l 3 S'l HI-TCD ACD o M z+l-l+l l+l \u00E2\u0080\u00A2 311 \u00E2\u0080\u00A2 Zll Zll z+l-1+7 \u00E2\u0080\u00A2 TCP ACP 3 \u00E2\u0080\u00A2 y- o \u00E2\u0080\u00A2 TCD Ml) TCP ACD TCD ACD J C% C TCP_ ACP CCD , \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o I O \u00E2\u0080\u00A2 \ \u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A5 3 3 \u00E2\u0080\u00A2 I 33 X /C- 0 / o 3 * 6plots uitAout rock an Surface, not included in Summary . TcD ACP TCP ACD TCD ACD 112 7/z Z3X \u00E2\u0080\u00A2 XZZ . . . . 7/Z \u00E2\u0080\u00A2 zz/-/// \u00E2\u0080\u00A2 3\u00C2\u00A5z Z22-7/7 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 727-2ZZ- \u00E2\u0080\u00A2 ZZZ ZZZ-ZZZ-tzt \u00E2\u0080\u00A2 zzz-zzz-22 Z TTX \u00E2\u0080\u00A2 717 \u00E2\u0080\u00A2 213 t/7 7/7-///\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 7/2 0 //X \u00E2\u0080\u00A2 //Z -//X-/// //2 //X \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 O O //X XTT \u00E2\u0080\u00A2 0 O o 7. BRYOPHYTES ON ROCK * Lifxfotm He- BtepAarastoma. tticAopAyllum ff \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 BtacAy tAecium Ay/otapetum \u00E2\u0080\u00A2 li \u00E2\u0080\u00A2 B. saleirosum- -17 \u00E2\u0080\u00A2 BraeAytAec'tum spp. 77- Bryunt sandbetyil 77- Claopodium crtspifolium ff- Dra.panoota.des uncinatus \u00E2\u0080\u00A2 ff \u00E2\u0080\u00A2 Hitetoctadium ptocuttens-He' lopAoxia. lycopodioides AT- Mnium tnstyne 71- Zf. otfAotAyncAum 71- ff. punctatum' ff \u00E2\u0080\u00A2 ff. spinulosum He- PlayiocAita. asptenioides 77- PlaytotAeecum denticulatum 77' P syZvaticum-ZZe- Pao/ula. bolanderi He' R. complonxta ff- RAytidiadelpAus ttiqucTtus \u00E2\u0080\u00A2 77- Rhytidiopsis tobusta. 0CCASZ0NALLY PRESENT Blindio. acuta. - SB/S'o, /z/; Btyum sp. -SB/S'/, //Z) CAtloscypAus pa.lle.set.ns -SQIS'o, /ZX - Claopodium iofande+i - SBlS'o,//Z ; ConoeepAa/um conicum -SB/S Dictanum fuscescens- SO/73,///,- Encatypta. proaeta. - SSx\u00C2\u00A5 111; \u00C2\u00A3uthynchium ptaa-tonqutn -SBlS'o /32 : E. stttyosum -SB/S'o 122; Fissidens ytandiftons \u00E2\u0080\u00A2 \" leptobtyum pyrefo+nte. - SB/yZ 7/2; /opAocolea. btdentata. -SL17s8,/ZX- /!. A eta. top Ay lla. - SB/38, ZZZ; /opAoxia. Aatbata. - SB x\u00C2\u00A5///7; /. (oro id ens -SB/93, /XX, pua*.*<-*.~* . \u00E2\u0080\u0094,u\u00E2\u0080\u009E P. tuaAlenba-tyzt -SB/S'o, 7/2; TttotAamttton 4tyelovei-SB/fb, 7/Z j PorotricAum A-ecAetoides -SB/s'o, 7/2; PAytidi&detpAus toreus -SB/29, /X 2 ; P. sovat+osus - SB/1'/, /22 ; Ttmmia, austriaca. -SB Z3S, ZZZ 8. LICHENS ON ROCk //Z-ZZZ-Z/7-zzz-ZtZ \u00E2\u0080\u00A2 zzz-zzz-zzz \u00E2\u0080\u00A2 ZiX Zrt \u00E2\u0080\u00A2 ztz \u00E2\u0080\u00A2 lit \u00E2\u0080\u00A2 /xZ-III \u00E2\u0080\u00A2 Z\u00C2\u00A5Z-7/Z \u00E2\u0080\u00A2 7ZZ-zz?-zzz \u00E2\u0080\u00A2 Z+Z-ttx-HI 7+Z /!/ \u00E2\u0080\u00A2 7/7 TCD ACD TCD ACD TCD ACP TCP ACD C% C TCP ACD CCD /7 33 33 /7 zy /7 \u00C2\u00A5z \u00C2\u00A52 Z7-33 \u00C2\u00A52 So 33 Z7-21' 77-/7-8 \u00E2\u0080\u00A2 77 33 / 2 Z / 2 / 3 3 / Z 3 3 Z / 2 / / / 7 Z don tecurvitosttis -SBZT.IZZ: nam citcinale -SBZ\u00C2\u00A5 l+Z; /ap'Zdext'a, tepfans -SBlS'o HZ-oyonatum alptnutrt \u00E2\u0080\u0094S3 193, 111; PoAtia. ctuda.-S333, 1+2 \u00E2\u0080\u00A2 Cladonia. chtoropAaeo. -SB/93,///; AZepAtoma. laev'tyatum -SB/P3 Z+3; Peltiyeta. aphthosa. -SB 193,l+/j Ppotydactylo. -SB/29, t+X SYNTHESIS TABLE S LYSICHITETUN j (SKUNK CAbBAGE ASSOCIATION) SC CREEK SKUNK C A B B A G E (CSC) AfAB/TAT P/ot nu/rrber (SB) \u00E2\u0080\u00A2 Bate analyse-d . . . Pate. cAe.cJce.oL \u00E2\u0080\u00A2 ZotaA'ort \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 . \u00E2\u0080\u00A2 Approx. extent \u00C2\u00B0f-tupe. (ac.) Etera.tion {ft.) \u00E2\u0080\u00A2 Exposure. . . . . Slope CI \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Topoyr-a. pAy f/>/o^'/e:co/>ft^:jwf\u00C2\u00AB.ce ) Uind e.xpoiur& (A :B:C ia.ye.i-s) History a.) originally denuded, by b) during Sltand. development Soil type . ' Parent srrateria.( \u00E2\u0080\u00A2 Mostcomirton rack type in parent materia. Soil dtt-pth (CM.) . . . 7~Atc.Aste.xs of Ae hof.iz.oh (c/rr.) f7a.ir> l-oot horizon - texture 2>t*ptr\ to s e.e.pa.ye.^ e.arly vTulyl I960 (CM.) Soil reaction a) Main root horizon \u00E2\u0080\u00A2 i)organic horizon adj. to miner Pattern and appa.re.M~t major 'influence, TREE DATA i( soiC Stand deye.lopma.Ht sta-ge-Age of dominants (yrs.) Aye. of oldest mea.sure.ai tree. Ba.ia( area, per aero- (fit.'')/ Averaye. dtam. of stand. Cert.) Site index at/ooyrs. '. H~Max. Site index at So yrs. \u00E2\u0080\u00A2 % COYER <3F VEGETATION LAYERS C Pu, r H S A Ai A, i J Bi c p \u00C2\u00B0/m cover of humus and/or litter % cover of'decayirte uiood. 'A cover of rock \u00E2\u0080\u00A2 SPECIES LIST - LAYER A - TREES STAGE X lit-Tun. 1%/iO An. If/6/ (JiIs. I. Sev. 3200 SS0U> 3 Cc:N:N 7:3:1 7 Stt.l.,Sa.r PM MA 5 7 N Ah-Slrt 7/ 3\"o 6.0 4SM Co JOO Z5~oH 39o 72/ /o:/oi-l/3 Avg./6/ll Uits.L. I 3Z60 N30E 0-2-S Cc:H:H 5\": 3:1 7 Cltar.Dfall SM* HA G-? Al H-M 9 S.S S.4 4SM I/: a 2i~Ot 230 //.4 /oo:/zs tt Avj.t/fa Auo./(/(o Mab\ L. I z4/y SZQU) Cc :N:H 4: z:/ T CUatML-SM* M 7 N H-M o (,.1 6.2 tsrr U-MT 2 30 si'oC 2 7S-17.2 so.i/9 //o:/fz 3 , Avyll/St Avo.lt/t~ Mab.L. X Zo2S~ sioco 0-4 Cf.N.H 5': 3:1 Fire Set. I. SMn AM N HrM /o 5\". 8 6.0 ISM U:MT zoor 2ZZC 3S4 /s.s /zo:/S6 /zo:/t4 I/0./3* 70.VO0 /oo:-\u00C2\u00A55-6 /$-30 Ji\" Zi~ /s 8 4\" 68 to 8 o ?o /o SO 3 I if*. Arm Pm- \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pnt \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 PM'- \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Cover % Ace.r yl&orvm Jteti/lo, papyrifcroj Pice.au c/tye.lrrra,nn'ii Pinus monticola, Psevdotsoya. /rre,nziesli. \u00E2\u0080\u00A2 TAiyiL. plicata. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 Tsoya. fieterophylla, \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 -LAYER B - SHRUBS life form Cove-r Y. > Pm \u00E2\u0080\u00A2 Acer ytahri/m PM \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Alntis cr'cspaL Pn \u00E2\u0080\u00A2 Ama-tanchie-h atnifolia. Pm Betula. pa.pyrife.ro* Pm \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Corne/s stolonifera* PM- \u00E2\u0080\u00A2 Cory/us ca.lifornica^ Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 lonicer*. involut.ra.toL Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 L. utanensis Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Afenziesia. t^ernuyinea. \u00C2\u00BB\u00E2\u0080\u00A2 Pn \u00E2\u0080\u00A2 Oplopano.X horridus \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2' Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pa.cAystima, MyrsLriitzs \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Picea. e.ny~.lMa.nnii PM \u00E2\u0080\u00A2 Pinus Monticola^ \u00E2\u0080\u00A2 P\u00C2\u00BB \u00E2\u0080\u00A2 Piies lacustra. Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Poto.yyMnoca.rpa. Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Rubus parviflorus * \u00C2\u00BB c \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 fl. puiescens Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Sorius sitchensis Pn \u00E2\u0080\u00A2 Spiraea* deuytas'ti va.r. n+tnxiesi Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Taxus orevifolia. P/T7- Tnuja. pltcatb. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 PM \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Tsuya. Aeteropkylla, % % \u00E2\u0080\u00A2 Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Va.cciniuifT fnembrana.ceuM \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 V. ovalifolium \u00E2\u0080\u00A2 \u00C2\u00BB \u00E2\u0080\u00A2 Pn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Viburnum o.dute \u00E2\u0080\u00A2 1-5 / - \u00E2\u0080\u00A2 * 3 I Z J I z 3 / z 3 / z. 3 I Z 3 / Z 3 I Z I z 1 z 1 z I z / z I z I z / z / z / z I z I z z z I z I z / z I z / z I z I JC I z I z I z 25 70 1S~ S~o Bo s~s~ 8 o 90 /o o /*0./6~7 SO So 6~ 30 Xi\" 3a 3o /J\" 9o \u00C2\u00A5i~ Jo zs\" o ss~ o SO 60 10 .30 zs-70 30 as\" 60 3i~ 26\" O 6i~ 3S~ 0 60 STAG-E3Z ZC S*f>t.9/oy Avf.IT/i~i SpL. zoto S&OE lo-(Z'r) Ce:Af:H r:3:l fire pole C. SM* OM C-7 N H-M /? S.S \u00C2\u00A3.0 \u00C2\u00A5-SM U.YT /os Z03H 3/0 9.1 /so:-+ 1 Avj. Zi/i'B Atrf. 3/iO Sfcv. P. Z9 7S\" N30E /-z. hf.N-t/ 1:3J Fire. \u00C2\u00A3e.ar PM* M 7 N H-M // S.S 4.8 c/.rr 79 3iSH,et. Zi? 6.3 /oo:?/ZZ /Zo-10 f TunJ-l/sf Avo./o/to Uils. L. It 2&4-0 S6i~\u00C2\u00A3 l-Z. N:N:N S-:3:l Fire. pole c. PM MA S 7 N Ah-SLM // S-.O 6.0 \u00C2\u00A5SM CP S9 /?(, (,.\u00E2\u0080\u00A2-/s~o:-/zo:-i-tz 1 \u00E2\u0080\u00A2n-z- (t+z) +++ t-t-2 Sri irz \u00C2\u00A5fZ >-r/r \u00E2\u0080\u00A2 S6/d-+ +Z r/ i- + Z i?Z isz St-3 \u00C2\u00A572 3$-6i/-/0 V-rV-s-8/-JO 3&f-Z tt-////\u00E2\u0080\u00A2\u00E2\u0080\u00A2 2+1-11/ \u00E2\u0080\u00A2 //-/\u00E2\u0080\u00A2 S7/-SSI-7o l-t-2 \u00E2\u0080\u00A2 itz \u00E2\u0080\u00A2 SO 7i-/3 So 25-+ 0 Zo 2S~ \u00E2\u0080\u00A2Ho 27 /S~ /z o 80 20 o 75-70 7S /5~ 20 SS 7S\" So 3S~ ii' &0 \u00C2\u00A50 20 o 70 30 o 75\" ?0 SO /s 30 30 \u00C2\u00A50 ZS 30 80 6 5' 2S~ \u00C2\u00A50 O \u00C2\u00A5S s-y o SO D E P R E S S I O N S K U N K C A B B A G E s r \" e s i ( D S C ) if kuy.lt/s~a. Avo.li/to Mai. L. .\u00C2\u00A5 2 5-70 Plat O depress ten. \u00C2\u00A5:z:l r on G-M O 7 N AU.M -/S S.& \u00C2\u00A5. 6 \u00C2\u00A5SM u:o zSo f-ZI8 9.9 Souzo fo-.izt \u00C2\u00A50 /o 10 30 43-3S \u00C2\u00A50 70 60 \u00C2\u00A50 20. O 7S 2 y o /+3r 311 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2f-tZ ++Z-4-r-l /t2 r \u00E2\u0080\u00A2 *-+or-/fZ \u00E2\u0080\u00A2 \u00C2\u00A5H-\u00C2\u00A5\u00E2\u0080\u00A2\u00E2\u0080\u00A21-2 \u00C2\u00A56Z ++/ \u00C2\u00A5//\u00E2\u0080\u00A2 \u00C2\u00A5t2-s+z 6 92 \u00C2\u00A5i-2r S7Zr 2-t-tr-+t-a.r-ItZh \u00E2\u0080\u00A2 tt//- \u00E2\u0080\u00A2 y7z/-\u00C2\u00A3 7/r \u00E2\u0080\u00A2 +-r-2 /rz //\u00E2\u0080\u00A2/ \u00E2\u0080\u00A2 2H-l\u00C2\u00A5/r /\u00E2\u0080\u00A2tz \u00C2\u00A572 2 62 //\u00E2\u0080\u00A2/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 +tzeL t-t-f \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2/cL /r-/r 1-12 \u00C2\u00A56/ \u00C2\u00A5\u00E2\u0080\u00A2*\u00E2\u0080\u00A2/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 J+2- \u00E2\u0080\u00A2 6 72 \u00E2\u0080\u00A2 S7/ /Y-2-7H2 tff 3-tl-23/-/ / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /H 3S~Z 3-r-Z-3\u00C2\u00A5l-Zf-Z-/\u00E2\u0080\u00A2/\u00E2\u0080\u00A2/ac- /\u00C2\u00A52-2//r /2/r 3/2 \u00E2\u0080\u00A2 2 i'2 tt/ \u00E2\u0080\u00A2 tt/-/// \u00E2\u0080\u00A2 /t/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 #62r- \u00E2\u0080\u00A2 3 !T/r \u00E2\u0080\u00A2 \u00C2\u00A56/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /t/- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S7/al \u00E2\u0080\u00A2 J\u00C2\u00A5/d \u00E2\u0080\u00A2 23/dr \u00E2\u0080\u00A2 + Wcth-/ / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'6Z \u00E2\u0080\u00A2 \u00C2\u00A562 \u00E2\u0080\u00A2 2/-/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Jt/d-i'S'/ct \u00C2\u00A5i~/ct \u00E2\u0080\u00A2 \u00C2\u00A561 /*\u00E2\u0080\u00A2//\u00E2\u0080\u00A2 s-7/ t-t-z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /t/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5tj \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2tzaC \u00E2\u0080\u00A2 S72 dr \u00C2\u00A5sxdL-\u00C2\u00A5//r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5t/dr \u00E2\u0080\u00A2 fit*-362 2t/ It/-2/-/-7BZt-\u00C2\u00A56 / \u00E2\u0080\u00A2 \u00C2\u00A50 Itlh mi-l l . /tz \u00E2\u0080\u00A2 //IS Itlr \u00C2\u00A50 tt-?-l/l \u00E2\u0080\u00A2 \u00C2\u00A50 ttz ttz ttz-\u00C2\u00A5 tx ft/-///s /// \u00E2\u0080\u00A2 2t/-t t o \u00E2\u0080\u00A2 ttz cL tt/-/f-2 \u00E2\u0080\u00A2 6>8Z /t/r tt/- \u00E2\u0080\u00A2 /tf- \u00E2\u0080\u00A2 tt/r \u00E2\u0080\u00A2 26/ \u00E2\u0080\u00A2 2 i'/d /\u00C2\u00A52, y G-C-a & G--C /\u00C2\u00A5 H 0-H H H H ff C 7f 7/ G-C a./us tra. E. pratense. \u00C2\u00A3. scirpoides E. syt ra.ticurrr \u00E2\u0080\u00A2 Galium tr'tftorum \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 GauttAeria, ova,tifo/i'a. Glycerin, e.to.ta.% Goodyera. o6to/tyifo(ia.%%-Gymnocarpium. a/ryopteris \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Habenaria, dila.ta.ta. \u00E2\u0080\u00A2 ft. sa.t-ca.ta, \u00E2\u0080\u00A2 tinn&ea* bohealis \u00E2\u0080\u00A2 % iistera. cohva.tlartoides Zycopodium annotinuM. \u00E2\u0080\u00A2 1. sclaya \u00E2\u0080\u00A2 Lycopus unif/oruse-lysichituM a.Mc,rica.num Mitttla, penTandra. \u00E2\u0080\u00A2 tiona-sis untftorcu \u00E2\u0080\u00A2 Optapanmx horridus Osmorhixa. ch'ilansis Pinus rnonticota. Prunella, vulyaris \u00E2\u0080\u00A2 PCeridium a.quilinuM \u00E2\u0080\u00A2 Pyrola. aseriteUa* P. secunda* \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Tfubus pedatus Scirpvs nticrocarpus \u00E2\u0080\u00A2 Senecio triangularis* Smilacina. /-O-ceMosa, \u00E2\u0080\u00A2 \u00C2\u00BB\u00E2\u0080\u00A2 S. jte Ito-to, \u00E2\u0080\u00A2 Steilaria* crispa.*-Stre.ptopus OLMplexifolios \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 5. rose.us S. stre-ptepoidec \u00E2\u0080\u00A2 TAelypteris pne-yapTeris \u00E2\u0080\u00A2 Thuja, plicaita. Tiarella. trifoliata. 77 unifoliata. \u00E2\u0080\u00A2 ft \u00E2\u0080\u00A2 TriseTum cemuum \u00E2\u0080\u00A2 Tsuya, Acterof>/tytla* Vaccinium m~.marana.ccuM V. oralifolium VcLratrum viride-e--Veronica* ctmericana. \u00E2\u0080\u00A2 Yiota. fla te. t\u00C2\u00A3a* \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 V. orbtculata*-V. patustris % SS SO ?0 /tl \u00E2\u0080\u00A2 *t/7 \u00E2\u0080\u00A2 22/ 7tZ \u00E2\u0080\u00A2 3t3 \u00E2\u0080\u00A2 SCZh It/ \u00E2\u0080\u00A2 5-5-2 \u00C2\u00A5S~2r 8S_ It2 \u00E2\u0080\u00A2 3/3-It/ \u00E2\u0080\u00A2 3?2 It3 732-64-3 3 \u00C2\u00A52 It I \u00E2\u0080\u00A2 7?J-/+/ \u00E2\u0080\u00A2 f-iz /t3 \u00E2\u0080\u00A2 3S2 & 72. 77/ \u00E2\u0080\u00A2 1/2 \u00E2\u0080\u00A2 311 \u00E2\u0080\u00A2 /tZ 3 42 722 /2/r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ////\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ty-/r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 tt//-- \u00E2\u0080\u00A2 72/ \u00E2\u0080\u00A2 331- \u00E2\u0080\u00A2\u00E2\u0080\u00A2 S73 \u00E2\u0080\u00A2 33/- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5//r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2y/r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2//r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 32/r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5i'2dr- 3i2t\u00E2\u0080\u00A2\u00E2\u0080\u00A2 4Czdh-/t2- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2/2d- 2/2- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 -tt/dr \u00E2\u0080\u00A2 /t2r- \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 333 342 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 232 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3*<-2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 372 -72/d 73/ \u00E2\u0080\u00A2 ///r \u00E2\u0080\u00A2 45-7 \u00E2\u0080\u00A2 222 4S3-\u00C2\u00A563 3 S3 3 5'2 tt/r 6S2 3/2 73/r-443 73/r 772 \u00E2\u0080\u00A2 3/2- \u00E2\u0080\u00A2 /S/r \u00E2\u0080\u00A2 43Z \u00E2\u0080\u00A2 73 zd /t3- \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 4i'/r 3t3 \u00E2\u0080\u00A2 2t3 2\u00C2\u00A5/ \u00E2\u0080\u00A2 33Z /3zr \u00E2\u0080\u00A2 4SZ \u00E2\u0080\u00A2 3t2 2 42dr \u00E2\u0080\u00A2 \u00C2\u00A542- \u00E2\u0080\u00A2 673-\u00C2\u00A53 2 /t/ \u00E2\u0080\u00A2 3t/ \u00E2\u0080\u00A2 G72 \u00E2\u0080\u00A2 tt/d-P/O 2 2/2 \u00E2\u0080\u00A2 /t/\u00E2\u0080\u00A2 \u00C2\u00A5&2 /t? /tx /t/r /t/r 2\u00C2\u00A5Z /ttd-233 //2- \u00E2\u0080\u00A2 2C/Z-672 \u00E2\u0080\u00A2 3/2. \u00E2\u0080\u00A2 Z-f-2 \u00E2\u0080\u00A2 tt/d-33Zdr 7t2-722- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 5~5~2 \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/2d \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /3zdr \u00E2\u0080\u00A2 3t3 \u00E2\u0080\u00A2 3/2- \u00E2\u0080\u00A2 /f2r \u00E2\u0080\u00A2 ///r \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 S 2d /S'Z \u00E2\u0080\u00A2 2\u00C2\u00A52 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /tz \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A542 \u00E2\u0080\u00A2 /+/ 5'5'2 \u00E2\u0080\u00A2 3 \u00C2\u00A52 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 tt/r- \u00E2\u0080\u00A2 (tt?d) /6Z \u00E2\u0080\u00A2 2/2 \u00E2\u0080\u00A2 \u00C2\u00A5S~3h 722- \u00E2\u0080\u00A2 2t2 \u00E2\u0080\u00A2 \u00C2\u00A5-/2 \u00E2\u0080\u00A2 2 t2 \u00E2\u0080\u00A2 \u00C2\u00A5i/r S/2 /// \u00E2\u0080\u00A2 222d 5-6Z \u00E2\u0080\u00A2 /t/ \u00E2\u0080\u00A2 /t/r 2 S'Z \u00E2\u0080\u00A2 2+/d /t2- \u00E2\u0080\u00A2 7 72 7/2 \u00E2\u0080\u00A2 3+zd-tt/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 442 It/ \u00E2\u0080\u00A2 7B3 2t2 6 43 tt/r /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 73 \u00E2\u0080\u00A2 tt/-362 /t/ \u00E2\u0080\u00A2 232 6S /t/ \u00E2\u0080\u00A2 It I \u00E2\u0080\u00A2 t-tl \u00E2\u0080\u00A2 3y/ y i z //t- \u00E2\u0080\u00A2 /H \u00E2\u0080\u00A2 ztz 80 443 3 e.ri* t+Z ; Eouisetum varieyatum ttl; M/mvlus guttatus /5'l SBzi \u00E2\u0080\u0094 A/ . BiepAarastama* TricAopAy II um 772 r ' Bryum sp. Itl'; Pieranun* scaparium /II ; \u00C2\u00A3urby ncAium praelongum 233't Leptodictuum rt.pa.rium //2\ \"Radula. bolanderc Z/3 \u00E2\u0080\u00A2 PoAtia* cruda* 112 7* ; PAytidiadelpAus s?ua.rrosus 222 h TAuidium ra.cognitum232 \u00E2\u0080\u00A2 EvnAyhcAiuto substriyosunn //Z \u00E2\u0080\u00A2 Zicranu/n strictuM 2/2 m ; Oliyo tricAu/rt sp. //2r\u00C2\u00BB 2. L/CHENS ON Ht/MUS Peltlft.ra* xpAtAosa* ItZ A ; P. polydactyla* /t2t Pe-tttyera* apAtAosa. /r-/r- ; P. canina* 332 m 3. SEEPLINC-S 07/ HUMUS \u00E2\u0080\u00A2 Thuja* pticata* 33/ 'Tsuya. Aeterophylla* 2t2rrrr C'/o C TCD ACD CCD 3d IZ I 1 0 1 38 Z 2l 3 7 7S 4- /oo 13 17 /2 I s 1 S 38 2 4S 6 /S ZS z /o 7 s /Z / 7 0 / /2 / 7 O 7 /Z 1 /o / /o 62 4 4/ 5\" & ZS 2 0 O 0 2 5' 2 25' 3 73 23\" z y / 3 23\" 2 /a 7 y 62 \u00C2\u00A5 i% 7 11 38 2 12 2 \u00C2\u00A5 38 2 2/ 3 7 2 5\" 2 20 3 70 So 3 46 6 /Z /Z / /o / 1 88 y /So 23 Z 6 2 57 2 / 0 / Z5' 2 / O / 38 2 76 2 S~ /2 / 70 / /o 23' 2 7 O / \u00E2\u0080\u00A2 5'o 3 i' / / 72 / 70 7 70 38 2 5' 7 Z 73' 4 9 / / 38 2 3' 7 2 38 2 // / \u00C2\u00A5 3'o 3 6 / z /2 / 5\" / y 4. BRYOPHYTES ON DECAYING UOOD Lift-TorM 1 Co re r-,77 74 77 77 77 74 He He 7/e. 74 M 77 77 77 ft 7/e He zVc 77a He Ha. He He He He He 74 74 77 M 77 He \u00E2\u0080\u00A2ff-74 He 74 ff 74 77 SracAytAeciunrt e.rytArorrA'non B. AytotapeTum B. salebrosurrt 3. velutinum BrtcAjitAecium Spp. \u00E2\u0080\u00A2 CallieryeneLla* Schreberi** CepAatexio. Spp. CAiloScypAus pa.lle,sc.e.hs Conocephalum Conicum ' Pict-anum fusce-scehsom' P. scopa.rium P. strictum * * \u00E2\u0080\u00A2 Prepanocladus uncinatus T/ytacAmium splendens 7/ypnum circinat*. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00AB Tamesohie lla- autumnalis Junyermannia. larrceola-ta* Tonoermahnia*. spp. Lepidozia, reptanr lopAocalea. AeteropAylla* lepAox IA* a.'iienua.ta. L. incisa. I. /Tunzeanus I. tycepoUieides. L. porphyraleuc&* LopAozia, spp. *\u00E2\u0080\u00A2 Mnium aft ine-rt, insiyne \u00E2\u0080\u00A2 ft. ortnorAyncAum M. punctatum M. spinulosum Ptayiockila. nsplerrioidts P/ayeo tAecionr~dent/culato-/rr ~ Pti/t'um crista. - castrensis Ptitidiurn putcAerrimu/rr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 HAytiafiade IpAut loreus \u00E2\u0080\u00A2 X. &-\u00C2\u00A3fue*t\"vs RAyttdiopsii robusta* 7e.ira.phtr pcllucido.* 8 zs~ ZS 22/ 3 22 4S7 \u00E2\u0080\u00A2 3 4ly 33Zf. 7t/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33 2 \u00E2\u0080\u00A2 342 322 332 232 323 2IZ \u00E2\u0080\u00A2 4S2y 332 \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 7//y 32 2 /// \u00E2\u0080\u00A2 z\u00C2\u00A5z /// \u00E2\u0080\u00A2 772 2 72 7/2 22 2 32/ 2 4/ 332 Z22 \u00C2\u00A5\u00C2\u00A52y 222 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 722y-//2 \u00E2\u0080\u00A2 272 /22- 272 \u00E2\u0080\u00A2 /t/ \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 //Z-3/2 /72-/I/ \u00E2\u0080\u00A2 Z32 \u00C2\u00A5S2 \u00E2\u0080\u00A2 *T/2 Z22 722 322 3/3-77Z \u00E2\u0080\u00A2 Z2/y z/z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZZ2 3 22 2ZZ \u00E2\u0080\u00A2 zz-z Z2 /\u00E2\u0080\u00A2 3Z7 27/ 772 \u00E2\u0080\u00A2 722 2 \u00C2\u00A52 /// \u00E2\u0080\u00A2 tt/-2/2 3/2 \u00E2\u0080\u00A2 Z/Z- \u00E2\u0080\u00A2 \u00C2\u00A5SZ \u00E2\u0080\u00A2 3 223 \u00E2\u0080\u00A2 7Z //Z \u00E2\u0080\u00A2 ZO 222 \u00E2\u0080\u00A2 \u00C2\u00A50 3/2-2//-322 22Z \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 3\u00C2\u00A5Zy 322 232 422 ///\u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 J/2 \u00E2\u0080\u00A2 343 \u00C2\u00A5\u00C2\u00A52 322 Z73 \u00E2\u0080\u00A2 3 22U 77/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 222 \u00E2\u0080\u00A2 /S.2 32 X y. //z \u00E2\u0080\u00A2 33 2 /// \u00E2\u0080\u00A2 772 \u00E2\u0080\u00A2 HZ-73/ i'4Z 3/Z /ZZ //Z-3'5'Z 322 3/Z-/ZZ 3/2 3/2 2/2 372 \u00E2\u0080\u00A2 712 72Z \u00E2\u0080\u00A2 33Z zzz \u00E2\u0080\u00A2 223 \u00E2\u0080\u00A2 2 33 3/3 22 2 2Z2 ZZZ ZZ2 S4Z Z/Z z z z 372 zzz \u00E2\u0080\u00A2 2/2-ZZZ \u00E2\u0080\u00A2 Z2X \u00E2\u0080\u00A2 ZZZ \u00E2\u0080\u00A2 77 Z \u00E2\u0080\u00A2 It/y \u00E2\u0080\u00A2 ZZZ-zzxy zo 3 22u IIZ-J-323 \u00E2\u0080\u00A2 342iJ ZZZ -J-Z/Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 222 /ZZ \u00E2\u0080\u00A2 77 2-433 722 223 /II \u00E2\u0080\u00A2 2/2 /Z2 \u00E2\u0080\u00A2 z z z 7Z2CZ-ZZZ-7- \u00E2\u0080\u00A2 TCi> ACP TCD ACD c% C TCP ACD CCD - - \u00E2\u0080\u00A2 \" 1 \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 _ 86 /7 2/ /48 IL \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 . \u00E2\u0080\u0094 0 0 12 / 0 0 0 1 0 6 2 38 2 7 / Z 5' / \u00E2\u0080\u0094 \u00E2\u0080\u0094 /Z / y / s \u00E2\u0080\u0094 \u00E2\u0080\u0094 / 0 /2 / / 0 7 /c 3 // \u00C2\u00A5 7S 4 27 3 y 26 5' 7 z /oo y 33 4 4 /S~ 3 /O 3 62 4 2 S 3 s /o X \u00E2\u0080\u0094 \u00E2\u0080\u0094 Zt' Z /O / s 0 0 O O 3S z 0 17 3 6 2 /oo y 23 3 3 O O 0 O 38 2 O O O 0 Q /OO s O 0 0 O O s 2 38 2 5\" / 2. /2 2 y 2 88 S / / 2 2 /2 2 33\" /2 /oo y 47 6 6 O O /o 3 38 2 /o 1 3 / O 0 0 38 2 / 0 0 \u00E2\u0080\u0094 \u00E2\u0080\u0094 20 7 /Z / 20 3 20 O O y 2 38 2 y / z // 2 y 2 So 3 /<> 2 \u00C2\u00A5 / 0 0 O 38 2 1 a 0 O 0 5' 2 38 2 y z 2 / 0 \u00E2\u0080\u0094 \u00E2\u0080\u0094 /2 / / 0 / O 0 \u00E2\u0080\u0094 \u00E2\u0080\u0094 23- 2 0 0 0 O 0 5- 2 2S z 3- z y 6 / 7 2 62 4 /3 2 3 \u00E2\u0080\u0094 \u00E2\u0080\u0094 2 2 4' 2 6 Z 3 /o 2 7 O yo 3 /I / 3 \u00E2\u0080\u0094 \u00E2\u0080\u0094 0 O /2 / 0 O 0 (, / 20 7 75\" 4 26 3 \u00C2\u00A5 7 / 7 2 88 S /d- 2 z 0 0 Z / 38 2 2 O / \u00E2\u0080\u0094 \u00E2\u0080\u0094 5' 2 *rs 2 y 7 3 // 2 \u00E2\u0080\u0094 \u00E2\u0080\u0094 5-0 3 // 7 3 0 O 0 O /oo 3' 0 O O 72 z O O 73' 4 /z 2 2 5' / / 0 S'o 3 6 / 2 6 / 0 0 62 4 6 I 7 J / 0 0 75- 4 3 O 1 OCCASlOiYAlir PAJESEA/r Bryumsp. ZZ2y ; Catypoye-ia* neesiana* ZZZy Heterocladiom procurrens //2 ; /escuraea* stenepAytta* 73/ SB 774 -SB// - , $83 \u00E2\u0080\u0094 EerAy/rcAium pr'aelonyum 22 2 ; A/ooAeria* (ucens J7tx S3 ~ * ' ' \" **1 SB SB/o S3 74 \u00E2\u0080\u0094 Scapa.nia* sp. 3Z3 222 ; TAuidium recognitum 7/2 o. cruda* 332 ; Ptilidium californicum 77Z L/A farm 3: LICHENS ON PEC AY ING MOOD Cetrnria* otat/ca* Cladonia. cAloropAaca. C. fimbriata. Cladonia, spp. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Nephroma* spp Peltigera. aphthasx. P. canina* P. horixantatis P. m emir a no ceo- \u00E2\u0080\u00A2 P. polydactyla. OCCASIONALLY PRES\u00E2\u0082\u00ACNT 7S7-23/-23 2. 747 \u00E2\u0080\u00A2 TCP ACS TCP ACD C% c TCD ACO CCD \u00E2\u0080\u0094 \u00E2\u0080\u0094 _____ \u00E2\u0080\u0094 ~~\u00E2\u0080\u0094-\u00E2\u0080\u0094 __ 0 0 0 O 25~ z 0 O 0 O 0 \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u00A2 23\" z 0 0 0 0 0 0 0 yo 3 0 0 0 0 0 / 0 i'o 3 / 0 0 / O 0 0 2i\" z / 0 / z 0 2 / 75\" 4 \u00C2\u00A5 / / 7 0 / 0 7S \u00C2\u00A5 2 0 0 3' 1 O 0 25' 2 y / 3 6 / - \u00E2\u0080\u0094 zy 2 6 / 3 7 0 /o 3 38 2 // / \u00C2\u00A5 SB/14\u00E2\u0080\u0094 Cladonia* cocci fera./J/ \u00E2\u0080\u009E ,_./, S3//3 - Cladonia. carneola. x/zb; C. diyitata./t/t^ c,. ie.tti^i7tora* /t/1 Ptttiyera. canine SB// - Cladonia. deformis tt/ SB26 \u00E2\u0080\u0094 Cladonia^ bacillaris/X/\u00E2\u0080\u00A2 loiaria. pulmonaria. zZ2y SB49 \u00E2\u0080\u0094 A/epAroma, IacvigatumZZZ 6. SEEDLINGS ON PECAYING WOOD var. rurescerts ZZ3b TAu/a. plicata* - S33,//Z; SB/o\u00C2\u00A5 33/ Tsuga. Aete,ropAytta*-SB3J //ZjJS B49J/Z; SB/4t//2. SYNTHESIS TABLE Z [ PACHISTIMETO - C A L U E R G O N E L L E T U n SCHREBERI (MOSS ASSOCIATION MB l TAT Plat /rumbet- (SB) *Pat& artatyse-d \u00E2\u0080\u00A2 Mate, checked location \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Approx. extent op type, (ac.) Elevation 1ft.) * \u00E2\u0080\u00A2 Exposure, \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Slope. (\"J \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 v -Topography {profileiconteur.'surface)\u00E2\u0080\u00A2 blind exposure (A-'B'C layers) Hcstary a) originally denuded by Aldurtny stand develepme*nt Soil type \ Parent material ffost common rock cn parent Material Soil depth (cm.) Thickness of Ae horizon (cm.) Texture op main root horizon Depth to se, cpaye^ early 7uCyt /96o (cm.) Soil reaction a) Main root hortcon h) oryamc horizon adj. to mineral soil Vegetation pattern and apparent mayor influence TREE 2>ATA V- Stand development staye ' *-\u00C2\u00BB\u00C2\u00BB. Age of dominants fyrsj Aye of oldest measured tree Basal area per acre. (.ft.*) Average diameter of stand (in.) j Site index at/ooyrs. : Nmax . Site index atsroyts. \"SoCOVER OF VEGETATION LAYERS Bi H C* \u00E2\u0080\u00A2h, F S Cot L h PI Asp A A, Ai As B B, ii C 2> DM P* Da Yo carer of humus and/or fitter % carer of decay ing luood ri cover of rocA SPECIE'S L/ST -LAYER A- TREES Life farm Pm ' Pm \u00E2\u0080\u00A2 Pm -Pnr \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 PM \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm-Pm \u00E2\u0080\u00A2 Cover % Abie& grandis A. la.ttoca.rp*. Acer ylahrum Be-tufa, papyrtfera, Larix occidentalis Picea. e-nyelmann ii Pinus contorta. \u00E2\u0080\u00A2 P, .Jvronticota. * aim Populus tremuloides P trichocarpa. Pseudotsuya, menziesii* me \"Thuja, plicata* a \u00E2\u0080\u00A2 Tsuga. heterophylla* \u00E2\u0080\u00A2 / z 3 I Z. 3 I z 3 I z 3 I 2 3 / Z 3 / Z 3 / Z 3 I z 3 / Z 3 / z 3 / Z 3 / x, 3 OCCASIONALLY PRESENT SB bo \u00E2\u0080\u0094 Pinus ponde.rosa,tA,(++?) - LAYER 3 - SHRUBS lifa&rm Pm Pm Pn Pm Pn Pm PM Pn Pn Pn, Pn PM Pm-PM \u00E2\u0080\u00A2 Pm-Pm \u00E2\u0080\u00A2 Ptt \u00E2\u0080\u00A2 Pn \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 Prr \u00E2\u0080\u00A2 P\u00C2\u00BB \u00E2\u0080\u00A2 Pn \u00E2\u0080\u00A2 Pn-Pm \u00E2\u0080\u00A2 Pm-Pn \u00E2\u0080\u00A2 PfT \u00E2\u0080\u00A2 P/> \u00E2\u0080\u00A2 CovQ.f % Abies Casieoarpa* \u00E2\u0080\u00A2 Acer y I a. brum Alnus crispa, Amelanchier a/nifoCia. a a Betula. p&py+ifera* Ceanothus Sa.nytsine.us \u00E2\u0080\u00A2 Cornus stolanifer-a. Corytus calif arnica, lonicera, inrolucrata, JL. utahe-nsis ftab onto, agui ifolio Pachustu tysTima* myrsiniieSa \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Picea. cnyc.lma.nnii Pinus monticola* \u00E2\u0080\u00A2 Populus tremuloides Prunes e.Ma.ryina.ta* a Pseuaotsuya.- menziesii ' Rosa, yymnocarpa* Pubi/s pa+v'iftorus -Salix be.bbiana. \u00E2\u0080\u00A2 S. scouleriana. Salix sp SAe.pAe.rd~a. canadensis a Sorbus sitchensis Spiraea, lucid a, \u00E2\u0080\u00A2 Taxus bra.vi folia* \u00E2\u0080\u00A2 Thuja plicata. * \u00E2\u0080\u00A2 a Tsuya. heterophylla. \u00E2\u0080\u00A2 a a Vaccinium membrana.ce.um a a-V. myt-tilloide.s\u00C2\u00BB \u00E2\u0080\u00A2 V ovaliPolium I Z, I z / z I z. 1 x I z I z I z 1 z / z i z I z. I z / z I z. / z / z I z I z / z I z I z. / z J z / z I z / z z z / 2 J z SLOPE D R V M O S S (SDM) STA&EI S\"6 Sept.//*-* Avj.z/{o UM.L. Sev. 23 oo N70C3 IS NWW b:\u00C2\u00A5-:z Fire U 2>MP n 7 Pro I Bp-GSL i.f f-.z / / A*g.t/r* At>f./6/6o NabL. Sev. Z735' S7S-\u00C2\u00A3 Z& HN-H 7:3:2 Fire Silt. DMP RS-G-7(S3 7 iKGSL N S-.7 3? zst> E:MT 170 + IStF 330 7.1 io:~ 7o:-7o:-E:m 201F S95-3.9 70:93 so:/20 Bi 7fayZt/*\"r Stpl.9/60 Uils.L. Sev. 20Zi' dueS 20 SO CviNN B:y:3 Fire 17 P7TP TIG-AS nt-b Z BfifGSL AT 4\".^ 8:4:3 Fire road o. INHP G GGn 7 I BfAGSL N S'8 3.6 U:MT 2ao+-2o\u00C2\u00A5F 229 8.7 76 S 777 A*j. i'/tr? Stft s/rt Jvl. 7/6o T.Lzx/iO Treu. L, Erie C. It Ser. 3 2 SO 3 loo S\u00C2\u00A5oi)-NsiU IVSoE 7-/o 33-37 Cv:Cv.N Cr-N--N 7: S3 6:4-2 7 7 road b. U INTfP XN77P G G Sgi HA 7 7 z Jtii-GSl N S.z 3.7 / lt:o \u00C2\u00A500 S3or 268 9.5-2 Xfh-GSL N i'.t 3.6 ZL lt:0 *?5'0t 243 H 28 \u00C2\u00A5 6.4 763 Av}.i-/sy 7*1. 7/to Trou. I. Sev. 3370 SSoU 36 N--N--N 7-\u00C2\u00A5--2 7 SoUC. XN7VP G GC 7 T *3/A-CSl N Co 4.4 2S79L l/:o 46o 470F 296 7.0 ?/ Tun. ijf, St.Pt.?/io UiU.L. 7+ 2920 2,iS-Sn\u00C2\u00A3 IS-/7 Cv-.Cv.N 1:3-1 F ire Sell. XNMP G QiG q>3z-~ 5'.8 3.\u00C2\u00A5 ZL l/:/17 3/ot-3 5'otL 2 75' 7.3 73/ A vf. /o/\u00C2\u00A30 S vTrt y-ry. Z /+ 23\u00C2\u00A50 S*tSui S-77 N-Cv-O S:2-.o Fire Sel.t. NOP G OS 7 c BfA-GIS N S\".G 3. 6 7 E r r 723 /3iF 29o y.9 STAGEZ 46 Se.fts/iM A v.. S/lo Stir A Sev. 7?7y f/3SE 72 CcN.-N 3-3:1 Fire 1/ IN/TP a QiS t-i-9-7 I BPA-L N S.9 3.8 / To:/as\" ro:/// - ://& \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 . . - ://t -:/3/ 70./03 7o: ?8 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - ; / / / 7o:/oz &o:-8a://z /oo.\u00E2\u0080\u0094 ?o:/27 7/o:-tH-\u00C2\u00BB!} tto 5'5 z \u00C2\u00A5//\u00E2\u0080\u00A2 *>IL\ \u00C2\u00A5//\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 TCH ACD 300 73-6 \u00E2\u0080\u00A2 2/-7\u00C2\u00A5 18 ISz 76 3B 79 277 5~6 30 \u00E2\u0080\u00A2 35' 6i\" \u00E2\u0080\u00A2 3'i' 3 5' Z5' 78 \u00E2\u0080\u00A2 \u00C2\u00A55' 32 7 63 33' 2 80 80 30 3y /y 25-20 7o 20 9o 70 2\u00C2\u00B0 t-73' 23' /-80 7o 3a 2D 75' 5-5' 30 zo \u00C2\u00A5y \u00C2\u00A50 y /-9/ 8 / yy so 7o 40 5-0 5\"o \u00C2\u00A50 75' /O 75\" y /o /-75-25' /-80 83' .2 5' SS 60 70 5\"o 35' /O 30 /5\" /y 1-75-25' 7-BS 60 90 \u00E2\u0080\u00A2 7 0 } \u00C2\u00A55\" 20 \u00E2\u0080\u00A2 /S~ /o 5~- \u00E2\u0080\u00A2 &S\"-\u00C2\u00A50 30 /o \u00C2\u00A5S\" 35' 20 9o 43' Avf. 2S/SM Avj. i/60 St\u00C2\u00BBr. P. Sev. Zo3'o NV5'E 73-N-N-'N 3\": 3-2 Fire 1/ XN7TP G-. SQi otv-r / Bj-GSL A7 S.9 y.z 7 E'YT 78 867/ 3o3-5-6 E'YT 78? 233 s'.y 748 Avy/f/sy Tv/./t/ia kcin C. /t Z5'0 0 S/oS-Si'U /s-/9 Cv.Cv.-H 6 :\u00C2\u00A5.Z Fire Sail. X7V7-7P & QiSa. 76o due E /o Cc WW 7[4:3 Fire road A. XN74P A GM ? I BfA-SL /V S.S 4.7 2S7f E:P 67 72 L '\u00C2\u00A56 8.0 /Ob Tat.lt/i-f Bcptf/io tJitt.L. 1 2B.OO S\u00C2\u00A5i-So\u00C2\u00A3 2S-38 CrCv:N 6 :s\"--\u00C2\u00A5 Fire fira* XNAfP A GN 7 3 Bfj-S N 6,0 4.4 4t,s/-r E-P 63 7o H 723 \u00C2\u00A5./ 18 Avj./j/Ts Alrf./7/lO Mo.b.1. Ser. /770 S7S'E 2-6 C,:CrN 6:3-2 fire, roadb. 2TNMP G GGn 9il-7 2 Mj-GSL N 6.4 4.4 / EP 63 i7L 763 7.7 6z T.l. Il/sj Car/c It Z670 S40-6SE /f-2/ Cv-tt'-N 7 5-:3 F'ire. trail JEN74P G-GGn 7 -GLS 2 f S.7 5\". 3 3SP! EP 62 6i'Pu /20 7. 9 S\u00C2\u00A5 7*1*/S? Avf.s/io Ster.P. Sev. 30/0 S30E 23-24 N-Cp-N 3': 4:3 Fire road h., NoiiV G GS 7 T 8*Gl. N i.2 S.S 2 ST? EP 3~2 S8C.t 724 4.2 /47 Av..if/sy Ji,l./t/t0 keenC. /t 2490 SBS\u00C2\u00A3dm.C 38-40 C,-Cr'N 6: \u00C2\u00A5'2 Fira. Sell. JTN74P G 7 Qs-2-? z C-GSL N y-9 3-.s 3S/-T.E /Of TM../7/i-f Sa.pt. 10//0 UUt.L. Sev. 2 9oS Nrs-aou Z6-/8 Cr-N/t y-3-3 Fire U A/OP G G 7 \u00C2\u00A5 Bfk&SL N 3'. 3 y.z 3L E'YT By 89 F /97 \u00C2\u00A5.\u00C2\u00A5 EYT 78 86 L /47 5-8 /oo.\"-/\u00C2\u00A5o:-9o:- /oo : \u00E2\u0080\u0094 7 20: -- :/o7 75\"o:- /5~o:- /5'o:- /oo; /oo:- //o:- /20:- 8o\-7/o : /oo: tt/ Itl \u00E2\u0080\u00A2 Itl \u00C2\u00A5t2y \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3tl- \u00E2\u0080\u00A2 Itl \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2+1- - 311-5-6/j ^*\u00C2\u00BB| ZtZy ; \u00E2\u0080\u00A2-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /to \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 . . C7/ Zt/ Y \u00C2\u00A5tij-/-+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ttz \u00C2\u00A5t2 }-8SZJ-tt/- \u00E2\u0080\u00A2 67Z I \u00E2\u0080\u00A2 3//\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 68/\ Ztl ttt i 7\u00C2\u00A3- \u00E2\u0080\u00A2 <+?.}: 661-78/y \u00C2\u00A5//\u00E2\u0080\u00A2 -t4W\ \u00E2\u0080\u00A2 (6/- ' 672} \u00C2\u00A3C/- \u00E2\u0080\u00A2 tt St/ \u00C2\u00A5\u00E2\u0080\u00A2//\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /t2dj-2 6/d \u00E2\u0080\u00A2 7t7 36/j \u00C2\u00A57/ 47ZJ 77/- \u00E2\u0080\u00A2 3tt-ttt-Itl-2-r/-3/Z-68/ TO ?0 \u00E2\u0080\u00A2 30 9o \u00E2\u0080\u00A2 ro 2S 7- \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / 9 / 73 ZS 2 9o 9o:-?o:-7o 6S 3-S'o zo 9o \u00E2\u0080\u00A2 S'o So 25' \u00E2\u0080\u00A2 20 \u00E2\u0080\u00A2 /y y / -80 20 /-65' 100: -//o: -7o /2o :- 720-- /oo:-70 5\"i' 2 5' 85' /O 8O 80 5~-2 2 / 83 73' Z 7o 70 4y 1 3 0 ) 2 5' 60 30 \u00C2\u00A50 60 \u00C2\u00A5/ \u00C2\u00A50 / o ?y s o \u00C2\u00A55-/oo:-80:-80 60 \u00E2\u0080\u00A2 4o \ Jo 65\"-20 s'o 83' \u00E2\u0080\u00A2 25'-20 y o By /s~ o bo 80 s'o \u00E2\u0080\u00A2 4y} /y 8S-/s~ Bo 7y-Z7 \u00E2\u0080\u00A2 20 I / 93 5' Z So 90-9o 65' 20 4-5' Zo 80 \u00E2\u0080\u00A2 30 80 60 \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 /-5-3 87 8 5' 6 5\" so 60 \u00E2\u0080\u00A2 2i'} \u00C2\u00A50 60 \u00E2\u0080\u00A2 4o 4o \u00C2\u00A50 \u00E2\u0080\u00A2 ZZ \u00E2\u0080\u00A2 *?o z I-9o 9 / \u00C2\u00A30 70 S'O \u00E2\u0080\u00A2 \"1 35-90 3d 9o so \u00E2\u0080\u00A2 i S 4-7 8 /o 75\" /O /s~ i\"0 S L O P E B U N C H B E R R Y M O S S ( S B M ) STA&EI /6\u00C2\u00A5 Avyt/Sf Tvl. 7/6 a Trav. L. /V-3220 S**--3~-*J 34 N:Cr-H 7'4'2 ? U BMP G-SQi P\u00C2\u00A53 2 Bfh-GL-N S-4 \u00C2\u00A5.3 2S/7 l/-'0 2SO+-300/7 Zi'Z 7. 6 70 An.l/s-3 Avj./6/ii> Mail. Sev. Z\u00C2\u00A593\" S5\"0\u00C2\u00A3 20 N-N-N (:z:/ Fire Clt-er. XNMP G G ? / BfA-GLS N 6.Z \u00C2\u00A5.6 2SM E-MT 190 2/2 N 3/y /J.O /07 Tun./s/S? St-pt.f/iO UiU.L. It 2 8 00 S3S-4SE 34 NCvN 6'4-/ 7 Uilc?2.. XNMP G SG 7 \u00C2\u00A5 Bfhj-GL N 5-.o 3.6 2snt U:0 2i'ot-300-T77 3/7 ?. 3' ?Q travj/ls-y Seatr/to Uds.L. Sev. 2?SS S30CJ 70 N-'N-H 6 \u00E2\u0080\u00A2'\u00C2\u00A5\u00E2\u0080\u00A2\u00E2\u0080\u00A23 FUe CttarJJl. MMP G SQi 034-7 Z MrGSIL TV 3-5-3. S~ / U:f1T 200 t Z?OC ZZO 7.3 80:113 80: I/O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - - /oo:/3/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 to:/// 7o://6 /2o:-S0.//0 720:-tt2 \u00E2\u0080\u00A2rtz 67z y Zt/- \u00E2\u0080\u00A2 /tzj itz-Z/l \u00E2\u0080\u00A2 \u00C2\u00A5-/Z 3H-Z+I-5'6Z /tz-7izy 5'6Z \u00E2\u0080\u00A2 762 \u00E2\u0080\u00A2 \u00C2\u00A5 t l \u00E2\u0080\u00A2 ttzy tti \u00E2\u0080\u00A2 5-6/ \ 3-H \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5tzy it/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ttz j-461- \u00E2\u0080\u00A2 /tz 3+1-ttt-'\u00E2\u0080\u00A2+\u00E2\u0080\u00A2'1 ttz 272 tt/- 3*/ \u00E2\u0080\u00A2 3tZ ttt- \u00E2\u0080\u00A2 (t~rZ)-tt/ j \u00E2\u0080\u00A2 tto j \u00E2\u0080\u00A2 ttt-672J- 66zy 3t2 \u00E2\u0080\u00A2 7t7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ~- \u00E2\u0080\u00A2 l/i~2) \u00E2\u0080\u00A2 ttz-tt/-ttz-t+\u00C2\u00A3-78 2 i'II /+/\u00E2\u0080\u00A2 \u00C2\u00A5tzj l-rz- \u00E2\u0080\u00A2 Z+I- \u00E2\u0080\u00A2 zt/ j-661 -ztl-ytz ztl-4ti-tti-\u00C2\u00A5//\u00E2\u0080\u00A2 77 Z \u00C2\u00A5 t l 3+1- \u00C2\u00A5+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ybzy Ztl- \u00E2\u0080\u00A2 /t\u00C2\u00A3 \u00E2\u0080\u00A2 Srz /tz-3~61 \u00E2\u0080\u00A2 ztl- \u00E2\u0080\u00A2 3/2-ZtZ 311 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 It Id-(ttt)-/t/- Ztl-\u00C2\u00A57Z 4tZ /tz ttz-z tz ttz-Sit l+Z 3 6,/ \u00C2\u00A5//\u00E2\u0080\u00A2 \u00C2\u00A5t/ TCD ACJ* 7430 7/ 7o /38 y-6/ \u00C2\u00A5// 7/ \u00C2\u00A5\u00E2\u0080\u00A2 7 3 \u00E2\u0080\u00A2 2/ 4 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 46o 2 3 2/S // \u00E2\u0080\u00A2 8 SI 4-3 75- \u00E2\u0080\u00A2 /S~ 45\" \u00C2\u00A50 yy \u00E2\u0080\u00A2 /s 20 Zo \u00E2\u0080\u00A2 yy 30 25\" 7-65\" 35\" I-74\" \"\u00E2\u0080\u00A2) \u00C2\u00A50 60 \u00E2\u0080\u00A2 2S' \u00C2\u00A50 Zo \u00E2\u0080\u00A2 y4 \u00E2\u0080\u00A2 20 30 \u00C2\u00A5 60 33' 5\" 80 sy Zo \u00C2\u00A55-yy 70 5-3-2 5' *?s \u00E2\u0080\u00A2 35-25-/0 / -8S /y /-sy 70 9o 2 5' 30 60 90 60 \u00C2\u00A50 30 60 35-25\" O 6.y 35' /-?o STAGEZ HI Tun It/i'l Sapt.lt/io /Jill. I. Sev. 28O0 N60U 73 -/I\" N-W-'ff 6 .;j.y Fire Clear. MMP G Goi 7 2 BfA-SIL 7 S.7 S.I 3SML E.YT 85' /00L 29S~ \u00C2\u00A5.9 81 Jlj>.a/sy Avj It/'t Nalc. MS. Ser. 2ZB5' N35'V 8-/S N-'Co-H 5\":3-t Fire Xeodb. MOP G GS QSo-? 4 BfA-L N 6.3 4.8 2L EYT 84 96 L 110 Jir,.///s-f Sa.pt.lt/ia tJits. L. Ser. 28/o NS013 /S-/9 N-WN y-3:/ Fire 17 MOP GC G 7 3 Bfh-Gl N 3'6 4.Z ZL E'YT 8/ 89 F Z\u00C2\u00A57 6.0 38 TJz/s--Ava.i/iO Fuh.C. / I960 S\u00C2\u00A5SE 3 NCcN y-z:i Fire stk.afP* MOP & GGn Oil-? 7 Bfhjcc-L N 5T7 3. 6 ZL \u00C2\u00A3: YT 83 9OL Z97 \u00C2\u00A5./ 92 Tun. l/Sf St.pt lo/io Ui/t. I. / 29/0 dueS /o -/Z N-N-H 6-2/ Fire Raadb. 77 OP G SGn Ql-S-7 3 BtA-GSL N 3'.6 3.8 ZL E-YT 96 743-/7 309 73 6 Av,.it/ss AvfU'/i-Mah. I. \u00E2\u0080\u00A2 3' 209O all points O-f kno(l-:H 7:4-3 Fire TUtttar NOP G G Os-*--Xi3 3 Zfi-GL-N 5-4 4.9 3E E: YT 86 97N 3\u00C2\u00A5/ 8-X. 38 Av}.zt/is Avf.i/ta AJAa.t L. I Z5'75' szyt*o NCi-N 4 :z O Fire daadf.lt MMP A GM GSL / Sn 91 6./ y.6 / E: YT /08 //6L \u00C2\u00A55'/ 9.2 /20:-72o:-77 o: - 7zo:-/'o : -//o:~ /2o:- //o: -/oo: \u00E2\u0080\u0094 /30: 7/o: /3o:-72o :-/tz I \u00C2\u00A542 \u00C2\u00A5 t l /t/ \u00E2\u0080\u00A2 + tZ It/ \u00E2\u0080\u00A2 Otz) Si/-^y+2-2-72 67/-Z8ZJ +tiy \u00E2\u0080\u00A2 S'7l- \u00E2\u0080\u00A2 792 j-i'8 2 \u00E2\u0080\u00A2 It/ \u00E2\u0080\u00A2 5-tZ 772-787-ztt-67Z-T-&2-782 80 8S 60 j 70 75' \u00E2\u0080\u00A2 65\" zy \u00C2\u00A55' 2i\" \u00E2\u0080\u00A2 5' y 75' 7o 10 20 85' 80 9y \u00E2\u0080\u00A2 \") 60 yo so /O 7o- \u00E2\u0080\u00A2 \u00C2\u00A5y-/O 3 3' O 40 60 0 ?y /oo: -/oo: -7o 80 60} \u00C2\u00A50 60 \u00E2\u0080\u00A2 \u00C2\u00A50 2 5' 4o \u00C2\u00A5? \u00E2\u0080\u00A2 3C 9 /o 70 70 20 go 70 90 \u00E2\u0080\u00A2 6o\ 60 \u00C2\u00A50 \u00E2\u0080\u00A2 \u00C2\u00A50 2 70-70 5' y 0 7S 2y o Jo 7o 95' 60J cy 70 4o 30 7 25\" 5' 20 I-69 30 7 ?y 80 85\" 35' So \u00E2\u0080\u00A2 IS \u00C2\u00A50 SO yy z r 30 / 5~0 SO 2 as BO 80 /y */o 30 8 \u00E2\u0080\u00A2 6 Z 8 2 \u00E2\u0080\u00A2 /-2 O 60 \u00C2\u00A50 O 80 STAGE 3 760 Auy/o/sy Tvl.7/ia Trav. L. Ser. 3oyo S2Si3 0-/7 Cp \u00E2\u0080\u00A2//:// 6-3 2 Fire stkotP* ZT/MP G Qi Q3i - ? / ZpGSL S'B 4.8 31 E-YT 83 88F 2 3/ /o.o 206 Jul. z/iO Sicojn. Ser. /60O N20U) /S-2/ N:/4N 7:3 7 Fire sel.t. MMP G SG 0x6-? 2 15 BfA/ H 6.2 48 I E'YT 98 /o+L 3 03' 5'. 7 /S'B fi.uo.la/?T Tvl. f/60 Tr*v.L. It 2775\" S\u00C2\u00A5Ou) 73-24 Cp-NH S-f'2 fire roadb. NOABU) G SQi QS3-7 T BMAGSL N 6.0 3T3 2J31UL EYT 82 9lF 249 ?.z /y/ Avoe/s? Tvl. 9/ia Trav. i. Ser 2620 SSi'U 31-37 NN-N 6:4'3 Fire roa.d 6. L>0BUl CG S 7 N Bm-GLS N 6.3 6.0 2SI7DU) E-YT 86 88 F 22y 7.Z 89 Nay3o/sy Sept. 9/to UiU. I. Ser. 296o Slfs-Siaal /0-ZO 77-CV-h' 8:6:2 Fire U DMP & SQi R80 2 Bfh-GSL N 3-.4 42 2SM E-YT 2S 3y/f /Z5' 2- 3 67 Ten.Zr/sj Ava. syto Car. C. Ser. 272 3' H-*o-7SuJ Z9-27 Cr:Cr://0 932-7 / Btb-.-GL N ' 6.6 5\" 8 ZL E-P S9 by F 7S7 b\u00C2\u00A5 60 7\u00C2\u00ABt.v/sj A vf. i'/iO Car. C. Sev. Z7Z5\" SIS-xSE Zo-35\" NCp'N 6:5--3 Fira. at.at.Mh. TEN MP A 2>& 7 / S^-4SL 6.8 \u00C2\u00A58 ZSMiO \u00C2\u00A3:P 63 78/7 Z29 8./ 730: -/20 .--/Zo: /oo.-/JO.- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //o.- ?o:-/oo: /3~o:-loo: -/So :\u00E2\u0080\u0094 /zo:~ /lo:-//o:-/30: /20: //o:- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /20:- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /5\"o:\u00E2\u0080\u0094 /6o--700:\u00E2\u0080\u0094 120:-80 S'o \u00E2\u0080\u00A2 30^ 3o 5'0 \u00E2\u0080\u00A2 />\" 4o \u00C2\u00A50 \u00E2\u0080\u00A2 20 \u00E2\u0080\u00A2 75' y 7-9z 8 /-yo /20:-80 7o \u00C2\u00A50 S'O \u00C2\u00A50 2 5' Zi' Zi' 65' 13' /O 7~ 73' 2S 7-70 80 I ? 1 \u00C2\u00A50 \u00C2\u00A50 73' 33' 35' /\u00C2\u00A3\u00E2\u0080\u00A2 /o 8 /-84 /*-/ 70 7o 65' \u00C2\u00A50^ 3o bo \u00E2\u0080\u00A2 20 So o'o \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\" 3 I. 8? 70 7 6 5' //o: -/\u00C2\u00A5-o'--90 /o \u00E2\u0080\u00A2 /o 9S 9o \u00C2\u00A50 20 2o /o /o /-/4o:~ l/o:-/2o:-77 A vj. It/ft A I*J. I7/60 Mab.L. Sev. 7 7 S'O NBS'E /Z NCc-'N 5':3't Fire roadb. MMP G GGn QiS-7 3 Bf,-LS N 3' 2 4.6 ZL \u00C2\u00A3:P 6) 72 H 2 7/ 5:1 9o- \u00E2\u0080\u0094 //o: -/3o :\u00E2\u0080\u0094 /60 '\u00E2\u0080\u00A2-/xo:-75' 2 5' /-/o /OO 75' 3-5-60 70 30 60 60 75' 3o /O 3 5' 45-/S~ \u00C2\u00A50 75-9o So j 7o| 4^\"| 5_r| 34-J 9o \u00C2\u00A50 2 5 80 TO , 5\" ?0 60 5 5 \u00C2\u00A50 30 2 5' 30 /\u00C2\u00A5 7 6 / 89 // / 80 /i\" 7o 7 70 So 4 \u00E2\u0080\u00A2 3 / /-97 2 / 40 30 So zo S'O 7S 26 20 5' / 92 6 2 70 35' 6S /3-60 i'S\" 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / 2 /-9i\" 4 / 60 80 70 \"\ 33\" zy 15' 65' 7y \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / / o 94 y / 70 /oo sy \u00E2\u0080\u00A2 -1 30 60 \u00E2\u0080\u00A2 3'0 20 2 5' \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 3 5\" O 8 5\" /y o 8S\" STAGE 4 \u00C2\u00A57 Airf-Xt/ft An.s/60 Stcr. P. /t IIS'O HfSE 0-5-Cp'N:N -:--'S' Loq. U Nop G-|Ot 2 Bf-GL N b.z \u00C2\u00A5.4 257/bit E:S b 7P~ bo y 60 75' 7 s Z 0 60 \u00C2\u00A50 o SOUTHERN . VARIANT (SBt%) STAGEZ STAGE3 /B9 T\u00E2\u0080\u009El.23/ia BvA. C. Sev. 3170 34-36 Cr'U-N 7:3.l Fire road-b. ho data. A no data, no data, no data. Mo data, no data. *\u00E2\u0080\u00A2 a'ata pa data. 7 E:YT 83 str 3Z\u00C2\u00A5 7.\u00C2\u00A5 /Zo:-90:-/// ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 +tz ItZ ttl- t+2 ++' + t2 I-7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++/y ttz ztz y. iti-/t2-/tl \u00E2\u0080\u00A2 tto ttt- +/ (ttz) (t+2)' A4-4-tto}- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l+Zloy} - +++\u00E2\u0080\u00A2\u00E2\u0080\u00A2 -i'7iX> Sbzy 8S2.J- 77ZJ 77ZJ- 4t2- \u00E2\u0080\u00A2 l+Z 3// ttl j-77ZJ-ttz- -ttz V 67Z-/tz-tt-S62 3 + l' tto-/ + /\u00E2\u0080\u00A2 /tt- Itl \u00E2\u0080\u00A2 4ti \u00E2\u0080\u00A2 tto-78 ZJ' 76I--t-rth loTZ y /+zy 6czy /+/y AC/-/+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 stz y \u00C2\u00A5tZ \u00E2\u0080\u00A2 2+Ko, tfzy S6 z \u00E2\u0080\u00A2 1 tz\-G6Z \u00E2\u0080\u00A2 Itl \u00C2\u00A5tt ' t + 2 I-78 2 2 tl- \u00E2\u0080\u00A2 3+2 J-881- \u00E2\u0080\u00A2 t+Z-3-7/ 3'B2 692 4+z 66 x \u00C2\u00A567 t + 2 7+2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3~72j -+ +/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z/Z \u00E2\u0080\u00A2 \u00C2\u00A572 j-/6Z \u00C2\u00A57Z 2+Z ++z y t+O \u00E2\u0080\u00A2 /++ \u00E2\u0080\u00A2 \"'I /+/\u00E2\u0080\u00A2 (t+2) ttt + +O + +z 7t\u00C2\u00A3 + +/\u00E2\u0080\u00A2 /t2.j- htzy \u00C2\u00A5/zy tto-\u00C2\u00A572\ ttl - - - - - - \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 -47/ \u00E2\u0080\u00A2 6/z.y s'/zy \u00C2\u00A5+z_y 5>zi- s\"6zy \u00C2\u00A5/-zy /+J-\u00E2\u0080\u00A2 /to , . . . z / z . 3 + / . . S/+- 3+1- \u00E2\u0080\u00A2 z+l \u00E2\u0080\u00A2 ++Q: \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 4tzy t+zj +ti y t+Ho-j -~ t+ii 36iy ttl (fbz) \u00E2\u0080\u00A2 tto S7/_ \u00E2\u0080\u00A2 Lt-ro)-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 . \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /-+r\ 67Z\- 7BZL-\u00C2\u00A511- \u00E2\u0080\u00A2 3+\u00C2\u00B1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ttz }\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 6szy /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 (ti-?) \u00E2\u0080\u00A2 47z y i t i \u00E2\u0080\u00A2 5'7/- \u00E2\u0080\u00A2 b 7/cC-\u00E2\u0080\u00A2r-ro tto ++0 77/-67Z} 78ZJ 6/ZJ- 77Zy S7ZJ- 772 j \u00E2\u0080\u00A2 S'6ZJ- S'4zy +tZ | \u00E2\u0080\u00A2 361-Itld \u00E2\u0080\u00A2 t + l- \u00E2\u0080\u00A2 b// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7tzd \u00E2\u0080\u00A2 \u00C2\u00A57 ld-611 /ti-lt/-2+2-3+1- ' ttz\ \u00E2\u0080\u00A2 78/-6Z2 \u00E2\u0080\u00A2 35.2 S/Z III \u00E2\u0080\u00A2 3+1-37/\u00E2\u0080\u00A2 /II 36/ ttzj zbz- \u00E2\u0080\u00A2 ItZ 77/ \u00E2\u0080\u00A2 S6I 361-4tl-2/Z-t-rz j Ztt- \u00E2\u0080\u00A2 3tl-3'8 z 3'7Z 20 8S--S'O I 3'5' zy \u00E2\u0080\u00A2 ZS\" z /-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7-7 7-93 7 0 ttzj-3+1- \u00E2\u0080\u00A2 /Bi, Auj.a/sy Tal.XZ/\u00C2\u00A3o Erie C. Ser. 3130 Si'oW 27-30 NN:/7& 4--30 Fire Hd.L,cit*r. NOBU CG CA 7 N 3mf-GSl N 6.6 3\". 6 / \u00C2\u00A3:P S4 /25\"F 2 87 \u00C2\u00A5.0 8o:-/\u00C2\u00A5o:-/oo'- \u00E2\u0080\u0094 (ttz)-brzy ttzy t+o bczy \u00C2\u00A5N \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3-6/ 672 60 9o \u00E2\u0080\u00A2 65-I \u00C2\u00A5y 4y \u00E2\u0080\u00A2 \u00C2\u00A5y z /- \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1-Z / 79 zo I 9Q 4izj-SI/'-ttz I \u00E2\u0080\u00A2 A L L U V I A L D R Y M O S S STAGE! STAGEZ Tvh'z/sf Scpt.8/io kvsk. C. Sev. /\u00C2\u00A5\u00C2\u00A50 -NzS-3ol* 3-3-N-W-'H 6:4-1 p Sel.t. NOT A G9i 7 Z7 Ae-GS N 3.y 3.6 ZL U-MT /90 Z/OPIU /3/ \u00C2\u00A5.\u00C2\u00A5 yo:-7o:-60:-80:-\u00C2\u00A5//} 4+1- \u00E2\u0080\u00A2 tt/ /+/ 7t/ \u00E2\u0080\u00A2}: 88Z\ S\"/7-/tz /+/} \u00E2\u0080\u00A2 3// TCD \u00C2\u00BBCD /69o 68 3 5' / \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O 116 5\" tz7 s / zz / \u00E2\u0080\u00A2 i'9& z4 35\" I \u00E2\u0080\u00A2 831 33-\u00C2\u00A54/ /S-8tz 3\u00C2\u00A5 \u00C2\u00A50 6i\" 25' Zi' So 70 CS 4o 75' 9a 80 ZO o 88 ZZ o 6s-/z\u00C2\u00A5 Tun. t/iJ Stats/to kvik.C. Sev. l\u00C2\u00A5-8o S\u00C2\u00A5-0U 1-2 N-W-H S'-4'2 7 SUC trail NOP A GMS 7 9 lit 4.8 4o 2L U-YT 1/3 /7i'F 98 2-8 i-y Sept. z/i't Avj.x/iO Unat. L. Ser. 25-00 o o Flat:-: It 6 -Z-O Fire road-b 2>MP A 7 7 z Bff-GSL IT 6.3 4.4 1 E-P 60 62L 2 v r 2.4 00.-3\"o: -/oo:-6 0 -6a:-80'-2t/-7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2/-+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 (tt/)- \u00E2\u0080\u00A2 5+1-tt/-\u00C2\u00A5+/\u00E2\u0080\u00A2 i-r-/ 67/-77/-y o -20 ti' ,.-J \u00C2\u00A50 9o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7i~ \u00C2\u00A50 3 5'-93 \u00E2\u0080\u00A2 60 2\u00C2\u00A5 ? 6 5\" 2i~ /o 8 5\" 5 0 yy /5-2 5-25~ 9 5\" 63-60 ZO 30 20 /o o 85' /5\" O 55 (ADM) A L L U V I A L N O R M A L M O S S ( A N M ) STAGE I 4-3 TUa/Sf Ava. i/io nak. F Ser. 23oo O o Flat:-:H y. 3-i 7 Stl.if.Uax TNMP A GnG 7 / 374-LS N S.6 3.9 2 SM (7-0 I Zi'ot \ 348 F /93 6.3 7o:9Z 60:86 7o :S7 \u00E2\u0080\u0094:Z33 \u00C2\u00A5\u00C2\u00A5 T*i.) 0(-\u00C2\u00A5) NM-/7 7:3:0 Fire Set/faZi. A/OP A QiG 7 z BfA-LS A/ 5'. 7 3.8 27. E'YT 76 /o9H 226 5~.0 /oo: \u00E2\u0080\u0094 /IO--/oo:-STAGE3 77 Tvl. z/3'? Ava.Z/io Arr. P. Se.v. /425\" Q-dueU) 0-5-Cc :N-N S--3-0 Fire U ZNMP A G 7 Z Sfkj N 6.0 4o 27. 9 0 -/oo :-7o ?y 60 7o 85' ) \" \" J ttz 1 (tt2)-ttl- \u00E2\u0080\u00A2 t+Z I ttz-2/Z 2+1 3+2 j-7tO- \u00E2\u0080\u00A2 + + OJ tt/ 3\"t/ 872 b72-3+Z j \u00E2\u0080\u00A2 661- \u00E2\u0080\u00A2 67/- \u00E2\u0080\u00A2 80 7o 7o 5\" y 70 O 7o o \u00C2\u00A50 60 o ?y bs\" 35' 30 /O /o 75' 7o 5' o 70 30 0 85-LS 4-JL M-zf/sv Ava. 6/io Mak.F. Ser. 22 S'O NsoE \u00C2\u00A5-7 NN-N 5\":3'-l Fit-a, road i. NOP A 2 BfA-LS M 5-9 \u00C2\u00A5.3 27. \u00C2\u00A3:P \u00C2\u00A52 S'oH /63 79 EYT 74 79F 22o 9.3 7oo:-7\u00C2\u00A5o: -1/0:-\u00C2\u00A50 T.l-SaJiJ Avf- t/to Mak.F. Sev. 225'a O-SiSE 0-3 NN-N 5':\u00C2\u00A5:2 Fira. U XVMP A 7 7 2 BfA-LS N 5\"6 46 / E-P 67 7/P** 707 7/ 7oo: -7/0:-/oo:-2? Tvt.l/iJ Aua. 6/40 Mak.F. 2 18 S'o S 30\u00C2\u00A3 Z N-N-N 7- 4-2 Fira. road 6. NOP A G Ortz*-? 6 Bf-S N SS 4.Z \u00C2\u00A5LSM E-P 5'8 G9C //o y.s 9o:-Z\u00C2\u00A50:~ 90 :-3 7 , Tvt.z/tt Av,. i/to FisA. C. It 796o S40E 3 N-N-N y:3-2 Fire u XNMP A 9i ? / BfArLS N 6.0 \u00C2\u00A57 3L l/'P 63 75'L Z04 \u00C2\u00A5.6 740:-l/o:-Tvt.xf/if Avjl/60 rtai.F Sev. 22i'0 Sti'u-Nsi Z-O-6 AtC*-N:U S-:4-z Fire sel.t JEN7TP 27A-LS N 6.0 s:z 3LSM \u00C2\u00A3-P 68 69 H 2/6 6.6 So \u00E2\u0080\u0094 //o.-/3o:-//o: -Z.X>8 ZZ. */4o Matak. Sev. 15'QO o F/at.-W y:3-'/ Fire road b. NOABU) A GGn 7 T Bmt-SL N 6.Z 5\". Z 2 ASM E-P \u00C2\u00A5Z y3F 13/ S'O /4o:-/oo '\u00E2\u0080\u00A2 -/3o: -80:- 9o:- //o .\u00E2\u0080\u0094 tt/- \u00E2\u0080\u00A2 ytzX-ztz j \u00E2\u0080\u00A2 /ti \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++i-brzy 66/- \u00E2\u0080\u00A2 /tl \u00E2\u0080\u00A2 tt/-+H \u00E2\u0080\u00A2 66zy ztzy 662. \u00E2\u0080\u00A2 t+i y /+/ /t2J-772- \u00E2\u0080\u00A2 3'7l 4 7ZJ-78/ 70 bo <;oj 9S 85' S'o 20 3o 20 70 O \u00C2\u00A5s' i'S 0 60 9o: -9o 75' \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \"1 \u00C2\u00A50 S'S' \u00E2\u0080\u00A2 70 s'o s'o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 4'0 ' \u00E2\u0080\u00A2 45\" y o 85' /5' O 75' 90 : 70 S'o 23' JO 73' /y 73' BO S'O S'o /-0 98 2 0 50 80 6 5\" 80 *y j i'OJ 5'oJ \u00C2\u00A50} ?o: go S'S' \u00C2\u00A5o\ 4o bo \u00E2\u0080\u00A2 So 2 5' 70 \u00E2\u0080\u00A2 6s\" 60 5' 7-?0 70 /-by 25 \u00C2\u00A5i~ 30 20 60 38 30 8 O 9o /o 0 by 35\" gy /S\" 4 5' 80 //\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /O 7 O 9o 7o o ys so 60 25' \u00C2\u00A50 SO /o 75' bo Zb Z3~ 7 7-97 3 7-60 /tz (ttl) /tzy /t2-S7Z j \u00C2\u00A56z.y /+zy +tzj \u00E2\u0080\u00A2 t+z \u00E2\u0080\u00A2 i/z I /bl \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /tl \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 +/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 *ztl-3// \u00E2\u0080\u00A2 \u00C2\u00A5//\u00E2\u0080\u00A2 78/-7ft Ztl-(7Z \u00E2\u0080\u00A2 3+/- -ttz - \u00E2\u0080\u00A2 68/O 2/7-7+t \u00E2\u0080\u00A2 447-\u00C2\u00A5//\u00E2\u0080\u00A2 3+1 \u00E2\u0080\u00A2 \u00C2\u00A56/-S8Z 5'5'l O TCP ACD 2 S3' 83' o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 25' 8 \u00E2\u0080\u00A2 TCD ACD TCD ACD TCD ACD TcD ACD C7>* cv. c z/ 7 2 6 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 60 /o Z6 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 20 3 \u00E2\u0080\u00A2 9 \u00E2\u0080\u00A2 46/ \u00E2\u0080\u00A2 /or 3i~ ++/\u00E2\u0080\u00A2 311 \u00E2\u0080\u00A2 \u00C2\u00A52/- \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 3t' 4t/-2t/-\u00C2\u00A5\u00C2\u00A5/ ys/ ttz- \u00E2\u0080\u00A2 \u00C2\u00A547- \u00E2\u0080\u00A2 Sbl \u00E2\u0080\u00A2 667 \u00E2\u0080\u00A2 771 //-/ \u00E2\u0080\u00A2 ++o-/+/\u00E2\u0080\u00A2 3+Z-Z2.2 87J-+ +/-i'6 2 \u00C2\u00A567 Z+/-/ / / \u00E2\u0080\u00A2 /t/ \u00E2\u0080\u00A2 Z/2 5'6Z 727-77/ \u00E2\u0080\u00A2 7/*Z \u00E2\u0080\u00A2 2yz \u00E2\u0080\u00A2 ZSZ. \u00E2\u0080\u00A2 t+l-36/ ZS/ 7+1\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/Z- \u00E2\u0080\u00A2 ybz \u00E2\u0080\u00A2 3+/- -/+z- \u00E2\u0080\u00A2 77Z \u00E2\u0080\u00A2 \u00C2\u00A5+/\u00E2\u0080\u00A2 7-7-7-4/2 \u00C2\u00A5// \u00E2\u0080\u00A2 X+f-Z/l-31/ \u00E2\u0080\u00A2 997-z+z-Z+7 ++/\u00E2\u0080\u00A2 Ztt-Z+7 /+/ \u00E2\u0080\u00A2 Z+l- \u00E2\u0080\u00A2 + +/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Ztzm 3+t-3/7\u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 t+l-/++\u00E2\u0080\u00A2 tt?-Z+I-4ti-3+1-++1- 2+/-Ztl-3\u00C2\u00A5z 7/7 \u00E2\u0080\u00A2 7+z /+/ \u00E2\u0080\u00A2 /to \u00E2\u0080\u00A2 (t+2)-/t2- Zt2 ZiZ \u00C2\u00A55'2. \u00E2\u0080\u00A2 + +/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A53Z \u00E2\u0080\u00A2 3+/-747-Z/Z- \u00C2\u00A572-7b/- \u00E2\u0080\u00A2 4S1- \u00E2\u0080\u00A2 997- \u00E2\u0080\u00A2 SS/ \u00E2\u0080\u00A2 4/7- \u00E2\u0080\u00A2 5'\u00C2\u00A5l \u00E2\u0080\u00A2 \u00C2\u00A5//\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3y/ \u00E2\u0080\u00A2 zt id-3S/d-45'/ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+z \u00E2\u0080\u00A2 tt/- \u00E2\u0080\u00A2 Z6/-Zt/ ttl \u00E2\u0080\u00A2 7\u00C2\u00A5/d \u00E2\u0080\u00A2 463 \u00E2\u0080\u00A2 ZS'Z /+Z \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 y6/d-\u00C2\u00A5//\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 67/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A246/ \u00E2\u0080\u00A2 3\u00C2\u00A5l \u00E2\u0080\u00A2 Z+/- \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 + +/\u00E2\u0080\u00A2 yy/ ztt-67/ 3/T-zt/-36Z ++/\u00E2\u0080\u00A2 \u00C2\u00A56/ \u00E2\u0080\u00A2 \u00C2\u00A567 \u00E2\u0080\u00A2 3//d \u00E2\u0080\u00A2 4Z\u00C2\u00A3d-4/Z -7\u00C2\u00A5z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z/Z \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/U-/+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\u00C2\u00A5Z-/+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 725 0 \u00E2\u0080\u00A2 4b o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 4z o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 9 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 /2 0 \u00E2\u0080\u00A2 4-O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 346 3/ O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 3'X S~-O \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 24 6 f \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 48 y \u00E2\u0080\u00A2 Z/5' yb/ 6b 4z 6 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 zo yt b \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 fi'3~ bO Z6 /Z-s'-/ o 6 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 19/ o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 72-o \u00E2\u0080\u00A2 26 o \u00E2\u0080\u00A2 o 2 o / \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 /oZ 309 /9-9/s' 3\"7 94 6 \u00E2\u0080\u00A2 4s' 3 \u00E2\u0080\u00A2 /2- I \u00E2\u0080\u00A2 9Z3 sy o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 ZI- / \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 /2-/ \u00E2\u0080\u00A2 2 S'B /o-2 3' a \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /4-o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /oy 6 23 '/ o \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 3' \u00E2\u0080\u00A2 2/-69 o -o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 380 32-S83 32 33' 2 \u00E2\u0080\u00A2 20 / \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 /940 47 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 6\u00C2\u00A5 Z \u00E2\u0080\u00A2 /2- O \u00E2\u0080\u00A2 3~3 Z \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o -z \u00E2\u0080\u00A2 o -38 / \u00E2\u0080\u00A2 9 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 /07 4 \u00E2\u0080\u00A2 s'o z \u00E2\u0080\u00A2 //sy \u00C2\u00A5/\u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 /zs' 4 \u00E2\u0080\u00A2 3'- a \u00E2\u0080\u00A2 3'- O \u00E2\u0080\u00A2 /60 6 \u00E2\u0080\u00A2 83' 3 \u00E2\u0080\u00A2 723 4 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 39 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 237 8 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 2Z3 7 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 442 22-7oo 24 239 8 \u00E2\u0080\u00A2 32 / \u00E2\u0080\u00A2 ZO f \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 f \u00E2\u0080\u00A2 zo-20 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 y 3S o -5- \u00E2\u0080\u00A2 y-*?y to-/ \u00C2\u00AB \u00E2\u0080\u00A2 \u00C2\u00A57 / / \u00E2\u0080\u00A2 SO /7-b \u00E2\u0080\u00A2 /4-28-/9-77 72 /OO 47 67-23 //\u00E2\u0080\u00A2 S'8 77 S'o 6 \u00E2\u0080\u00A2 76-6 \u00E2\u0080\u00A2 34 34 yf 67-/OO ZOO 93' 19 \u00C2\u00A57 TCD 3878 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 97- \u00E2\u0080\u00A2 72- \u00E2\u0080\u00A2 / 3 / y / / / z / 9 \u00E2\u0080\u00A2 \u00C2\u00A5 /z6 \u00E2\u0080\u00A2 ACD CCD 6t_ o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 - 3 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 8b 77 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 38- \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 Z O \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o / \u00E2\u0080\u00A2 z 0 \u00E2\u0080\u00A2 7 2 ' 3-\u00C2\u00A5 yf \u00E2\u0080\u00A2 y 76y\u00C2\u00A5 3 71- \u00E2\u0080\u00A2 \u00C2\u00A5 77/ \u00E2\u0080\u00A2 z y- \u00E2\u0080\u00A2 7 S'- \u00E2\u0080\u00A2 3 zby-4 739 \u00E2\u0080\u00A2 3 /re-/ / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1 39- \u00E2\u0080\u00A2 / o \u00E2\u0080\u00A2 2 237-2 7 \u00E2\u0080\u00A2 3 zyo-\u00C2\u00A5 783-/ \u00E2\u0080\u00A2 f ' 24 2 6 O \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 7-Z \u00E2\u0080\u00A2 3-z- S~-o \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00C2\u00A5 //\u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 3> \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 3- 7i's6 z\u00C2\u00A5 an-y ZZ23 3i' 33' S\" 368 - 6 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 t 97 \u00E2\u0080\u00A2 2- \u00C2\u00BB\u00E2\u0080\u00A2 3 39- / ' 7 \u00E2\u0080\u00A2 OCCASIONALLY PRESENT S884- Lonicera. citiosa.^1 3+Z ; SB 177- Abie* yrandistS, t+l ; SBZ5'-Svmphorica.i-posa.ibvs Bz ttl; SB9- Rubus Idaeus var-. stri SB \u00C2\u00BB - Oplopanax AorridustBz /tl; SBZQ6-Lonicera. citiosa-B^ttl; SB /S'7 \u00E2\u0080\u0094 Oplopanax AorridvsBj lit; Ribes tacustre Bi ttt; SB 89 - Plnvx c SBz9\u00E2\u0080\u0094 Larix occidentalisti/++o- /ontcera. cilios^Bj t+Z ~R%amnvspursAcanoyBx7t/;SB\u00C2\u00A57- Lonicera, ciliasa*Bx /t/jSynipAorccarpos a\" - LAYER C-/VERBS Life form Core* H var-. strigosusBjttZOm ; SB 137 \u00E2\u0080\u0094 Pinus contorta. B, 1+0 'SB 20/-Tvniperus communis,Bt Itl; Larix occidentalis^, tto j SB/06 - Junipcrus communis Bj++/ \ Larix occidental it Bi ItlBx ttt; Pinus contorta. Bt It/; Populus trichocarpa. Bz ttt; SBJZ- Pinus contorta* B2 t+t; Ribes tacustre Bj ttl; Symphori carpes atbus B, III ' SBS4 -Pinus contorta. Bj ttt; Populus trichocarpa, B, ++/ ; Pvbvs idaeus Var. strioosusS, l+t; Viburnum edule, Bj ++11 SB/47 -larix occidentalis B, ++1; SBfO - Rhododendron albiflorumBt 3+1; -Pmvs conTorta-B, +tt;SBi7-Rhododendron albiflorum 2\u00E2\u0080\u009E++2; Viburnum paueiflorus B, ++/\u00E2\u0080\u00A2 SB B8 - Symphoricarpos gibesBj ttl; SBS'3 - Penus Contorta.B, ///',SB47-Popu/v, trichocarpLa, ItlB.SH; Ribes lacustrefix ttl; Rubus idatus var.. striqosus.Bf3+2; SB 18?- Abies qrandixB/ /to; SB 186-Abies orandis B/\u00C2\u00A5(/: RAamnus purshiana. B, ttl; SB \u00C2\u00A53-Rhododendron albiftoruM JS, ttl; SB 77- larix occidentalis B, 4tl; Sumphoricarpos atbos Bj+t/t SBH2- Rubvs idaeus var. strioosus B, 73 2 1 SB4o -Juniperus communis B, 76x_; Ibus^j //Z;SBzS\u00C2\u00A3-Lonice.ro. cit , * j , < > y , x _> r , , , * , , 7 r 1- , , 3 , z , r , TCD ACD TCP ACD TCD ACD TCP ACD CD* 337 21 217 /\u00C2\u00A5 283 / O \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 /O O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 70-/OZ //\u00C2\u00A5 6 \u00E2\u0080\u00A2 38 o \u00E2\u0080\u00A2 o -z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 82 3'-o \u00E2\u0080\u00A2 S8 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 zo y-/o o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 3/ /L-S'O //\u00E2\u0080\u00A2 /S'-O \u00E2\u0080\u00A2 23-Z \u00E2\u0080\u00A2 88 7b o \u00E2\u0080\u00A2 748Z S't 31S' 77 338 70-0 \u00E2\u0080\u00A2 776 7 \u00E2\u0080\u00A2 ZZ fb' /to /a-1 \u00E2\u0080\u00A2 766 77-o \u00E2\u0080\u00A2 772 \u00C2\u00A50 bot Z \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 26 3 7-Sf 6 \u00E2\u0080\u00A2 3\u00C2\u00A5 6 \u00E2\u0080\u00A2 47 6 / zl o o / / z o / o 2 2 72 9 88- 3 /03 /3-//o o \u00E2\u0080\u00A2 S'2 O -7 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 IT-S'-Z37 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 zo so-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3'o 0 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 y -i'O-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 y -TCP 2J77 ACD CCD i \u00C2\u00A3 /9-8 \u00E2\u0080\u00A2 z\u00C2\u00A5 33 Z8 ZZ 2 \u00E2\u0080\u00A2 8 < 8 \u00E2\u0080\u00A2 9 \u00E2\u0080\u00A2 2-97-z \u00E2\u0080\u00A2 ?y 76-20 69-/ / \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 3f-27 28 6 \u00E2\u0080\u00A2 t3 69 3 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 97-ZZ-b\u00C2\u00A5 36 94 77-/<\u00E2\u0080\u00A2 79-22 9 \u00E2\u0080\u00A2 ZO /9-39-3\u00C2\u00A5 30 84 4\"? 77 \u00C2\u00A5z 97 z \u00E2\u0080\u00A2 7y 3 \u00E2\u0080\u00A2 23 34 2 -3-yz 6 \u00E2\u0080\u00A2 75' 77 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 77-99-47-\u00C2\u00A5Z o \u00E2\u0080\u00A2 70-so-o \u00E2\u0080\u00A2 /a-/Z3y o y\u00C2\u00A59 /6-29-33y-7 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 72-21-//a 70-f \u00E2\u0080\u00A2 793-20-O \u00E2\u0080\u00A2 2S~/-O /8Z-\u00C2\u00A50 797-\u00C2\u00A5\u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 2b-S'7 s' \u00E2\u0080\u00A2 6t-6 \u00E2\u0080\u00A2 37-7o-ys-S' 33y-3 727 \u00E2\u0080\u00A2 /by-\u00C2\u00A5/\u00E2\u0080\u00A2 /6s' o \u00E2\u0080\u00A2 6G o \u00E2\u0080\u00A2 \u00C2\u00A5 3 y 7 \u00C2\u00A5 / 2 2 / / 3 7 4 \u00C2\u00A50 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00C2\u00A57-y-3ft o o o z / 7 o o o o o 79 o 9 o o y o o 7 O 2 O o 3 o o 4 o 3 / /2 0 o 0 / o / o / o / y 2 3 / 3 o 7 o o / o o / o y 7 o 7 y 3 3 a 2 z 0 /o 20 a f z z r o o \u00C2\u00A5 7 6 3 o d /o o \u00C2\u00A5 o \u00C2\u00A5 2 /3 7 7 2 \u00C2\u00A5 7 y / 7 z 3 b 3 3 Z 3 o 7 o / X. O o 7 7 6 OCCASIONALLY PRESENT SB 86 \u00E2\u0080\u0094 Ptt/opte. tit austriaca. tttd} PcdiculahLx Aactftwia-j XJ3 * 3BI77- Athyrium Pitix-fe-mina. ,++1 turn ; SB /3I - JXryopteri Calamay r-osTis t-u.besce.hs,ttt} Streptopus amp(a.x ifotcus +tX I -3BS\u00C2\u00A5 ~ A tabes Aotboe-I7ii ,12.3. ; Colamajrostis tub - ' S'S \u00E2\u0080\u0094 Cys7opteris Fnayc.tti)++/d; Sfrtptipus a ntple.xifoltus.tt/ ;S~E7S7- AtAytium filiiCfemino,^l/+/J }Acti s rubs.sca.trs, /\u00C2\u00A5/} Castille/o. Ajispida, ,/zZ : SB/of- &+omtyopTg.ti . . . . . . , . _, , . , , _ , nryuto,, ///; Cystoptctis fray His ,/+7u> ; 2>ryopteris austr:-~~ \"M / . / - c Streptopus a.mpie.xi+ottus,/+Zu> } 7a.ra.xacu/rr offtcinate,l+l;SBI7- JSetula, papyri fara,,-f-+ld; Eoutsetvm a+vcnse . 1+/ ;S8 17- Athyrium fi.tix~ft.mina.t/+/: Betula papyri Carex sp..///; SB20B \u00E2\u0080\u0094 B torn us fuloatis.lt/; /ycapodiunr selaoo,+-+f ; Pj.une.lfa rulfa+is.Z/x ;Smilacina, sti.iia.ta., --\u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 \u00E2\u0080\u0094 ~- - ' \u00C2\u00BB- \u00E2\u0080\u0094 ' awk*M4t\u00C2\u00AB/,+Ty-j SSt\u00C2\u00A58 - Mone-ses unip/orL,//X \ SB 2b'\u00E2\u0080\u0094 Carex sp.,7Sz ; Monattopo. uniflora,i //3; SBXQ/ - Be-tuta. papy+iPeta, .\u00E2\u0080\u00A2_/. r,,-a, JSt us garis. 131; Dt6\u00C2\u00A5 \u00E2\u0080\u0094Zitt/opTgr s austriaca, 1+ld } G-ymno carp turn dtyoptt-tis ,Zs'Z) SB/o t'aeox. (+tl)d; Carex sp. 72/ : Gymnocarpium druooterisJZbl) \u00E2\u0080\u00A2 SB89- ttycopodium clavatum,f+Z } SB67-AtAyri ftra,l??;CitsiJnr laneeolatum,-ttl; Picea. enyeCmannicT-tZ ; SBIZjf- Danthonia. spicata.,331'; SF\u00C2\u00A5\u00C2\u00B1- Atkyti ,2\u00C2\u00A5-X; Taraxacum officinale./*/; SBl'\u00C2\u00A5- Populus Ttcmuleidex,/'++} SBZ09- Populus ttemuloides -ft/ /if*, form ff rt fie 77 ff Ti 77 77 77 77 77 77 77 77 /7 77 7/e. Aft. /Ye. 7/e 7/e /7a Ate 7/e 77 77 77 77 77 7f 77 -IAY\u00C2\u00A3RZ>-7. BPrOPT/rTES ON Z/UfftfS AtticJtum undulatum Aula camniutrt andtooynum Blephatastema. trichopAyttum ZtraeAufAeCiunr albicans \u00E2\u0080\u00A2 B. Aytotapetum \"\u00C2\u00AB.. 3. salebrosum v B. velutinvm v \u00E2\u0080\u00A2 Brachythecium spp. Bt-yvm spp. \u00E2\u0080\u00A2 Calliet.yone.lfa. scAre.b't./.c \u00E2\u0080\u00A2 Cerafodon purpurcu-s Dicranum fuse esc ens \u00E2\u0080\u00A2 B. ruyosum \u00E2\u0080\u00A2 Z>. scoparium /Yetetocladium pAoc.uppe.ns /tyloeomitr/rt Sple.nde.ns \u00E2\u0080\u00A2 Aepidoxia, pe.pta.ns lopAocolea. Aidenta\ta. 7. Cuspidafa. J.. A eta top Ay tla. lopAoxia, \u00C2\u00A3>arAa.ta. \u00E2\u0080\u00A2 I. fla*.r/eii \u00E2\u0080\u00A2 /. Tycopodioidt^s lopAoxca, spp. 77/tium spinulosum \u00E2\u0080\u00A2 Playio-%e\cium denticula.Tvtr-PolyTtccAutrtyuniperinunr' Pti.ltunf c+istarcastrertsis T/Aacomittcunrf canescens XAyti'dia.delpAtrs triyueZUus A'Ayfidiopsis ro bus fat m \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 TCD ACD 71Z/P7 \u00E2\u0080\u00A2 7/Zm \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 S&3 663 z// \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 S'6z 3\u00C2\u00A5-Z Z//-3*Z 7-6Z //Z \u00E2\u0080\u00A2 /7-z-6 $S S'S'2 \u00E2\u0080\u00A2 7/Z/rt-7A2rtf //Ztrt \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 #\u00C2\u00A5z ////rt //2/rr -7-H /// \u00E2\u0080\u00A2 ///prr 3ZZ \u00E2\u0080\u00A2 7-Cz S'6 3 3S'Z \u00E2\u0080\u00A2 *?Z \u00E2\u0080\u00A2 +rtui-Y-3Z \u00E2\u0080\u00A2 Z/2/-7 if-S'Z 77/r>r-/3? \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZZZ \u00E2\u0080\u00A2 S'S'2 m 7-i-Z-Z/7-/2/nr \u00E2\u0080\u00A2 72/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 #\u00C2\u00A5Z 332-O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 8S' z \u00E2\u0080\u00A2 /o-o \u00E2\u0080\u00A2 /o o \u00E2\u0080\u00A2 /a o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 s~ 2S' *S' o -o \u00E2\u0080\u00A2 zl 7 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 2/ O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 /\u00E2\u0080\u00A2/\u00E2\u0080\u00A2/nr 7//m Z/Zn* ///nr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Xltm 17/ \u00E2\u0080\u00A2 Si'z 7/Z-/\u00E2\u0080\u00A27/srr 2\u00C2\u00A52nr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 (,6Z \u00E2\u0080\u00A2 S\"7Z III \u00E2\u0080\u00A2 77-7-zs-7 7H \u00E2\u0080\u00A2 S'S'Z S'SZ 22Z 117 \u00E2\u0080\u00A2 77/ \u00E2\u0080\u00A2 17-42 312/rt /l/trt- 33 Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/2nr-*7&~z \u00E2\u0080\u00A2 v-s^2 \u00E2\u0080\u00A2 7/2/TT-717 \u00E2\u0080\u00A2 3Zl-77ft, /SZO/rr /X/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - /ZZnr \u00C2\u00A5*/\u00E2\u0080\u00A2 67z- \u00E2\u0080\u00A2 //Z/rr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 717 7/Z/rr-\u00C2\u00A5\u00C2\u00A5Z 7/7 \u00E2\u0080\u00A2 Z3Z 3/Z 22Zp \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/Z - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/XMT Z37/ST A//Xrf /3//rr 7/7*rr 7/2 U7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /XXO 777tn \u00E2\u0080\u00A2 7+7 \u00E2\u0080\u00A2 7S>3 78 Z \u00C2\u00A3t^Z, ' . . . . . . . s'6z 7\u00C2\u00A5Z \u00E2\u0080\u00A2 S-*X 6\u00C2\u00A3x /32m \u00E2\u0080\u00A2 Tee ACD TCb ACD Tct ACD TCD ACD TCD ACD TCD ACD TCD ACD CD* C'7. C TCD ACD CCD '7/n /3/nt 122m 3/Z \u00E2\u0080\u00A2 Z3Z \u00E2\u0080\u00A2 /3io r /ZX/rt 7/2/rr-7/7 3S'X 3SZ \u00E2\u0080\u00A2 /ZZ \u00E2\u0080\u00A2 \u00C2\u00A5izA \u00E2\u0080\u00A2\u00C2\u00A57XO Z22 \u00E2\u0080\u00A2 \u00C2\u00A5-3/ \u00E2\u0080\u00A2 22 2ni /3//-*-\u00C2\u00A56x \u00E2\u0080\u00A2 3S\"X \u00E2\u0080\u00A2 77/ \u00C2\u00A5*\u00E2\u0080\u00A2 Z///n //Z/rr \u00C2\u00A5-67 \u00E2\u0080\u00A2 662 \u00E2\u0080\u00A2 3S'2 Z27 2//-77/ \u00E2\u0080\u00A2 ///\u00C2\u00BB*\u00E2\u0080\u00A2 32/ \u00C2\u00A56Z \u00E2\u0080\u00A2 f-63 S'(,2 \u00E2\u0080\u00A2 ZJZM S'62 7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// 22Z //2/*f /22uJ-//Ziu-72/to //\u00E2\u0080\u00A2/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2(,3 \u00E2\u0080\u00A2 ////* \u00E2\u0080\u00A2 ////rt-Z/7 - \u00E2\u0080\u00A2 2//r>r ///x*T /J/nrtO S-S2 71/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3S'3 \u00E2\u0080\u00A2 Z3Z /// \u00E2\u0080\u00A2 i'\u00C2\u00A5z 2/Z-73/STT \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 222m \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/7/77 \u00E2\u0080\u00A2 7//rr7 \u00E2\u0080\u00A2 217nr ///m \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3S~Z \u00E2\u0080\u00A2 3i'X ///rrr \u00E2\u0080\u00A2 /T/rrr S-6Z /Utrr /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 32xm 3#X \u00E2\u0080\u00A2 //2/rt 2/X 33/ttr 3S'Z \u00E2\u0080\u00A2 6rz 72/ /// 23/ \u00E2\u0080\u00A2 'A'AZ-/// 23/-2Z/nr /rt \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5/oz 3\u00C2\u00A5x 7/Z- \u00C2\u00A5V-X-///trt l/7rrr-/IZnr-332 nr sr+x-//2nr-///rrr Z/Z/rr Z/Z/n /Hnr X/Z/rt Z/Z \u00E2\u0080\u00A2 33Z /2Z- /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z/Z In 3XX /// ZX/rrr Z// ///rrr \u00E2\u0080\u00A2 /ZX- \u00E2\u0080\u00A2 X/Z*rt 2/lryi-/ / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2ZX/n 331- \u00E2\u0080\u00A2 t/int 111 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// 3\u00C2\u00A5Z 3ZZ \u00E2\u0080\u00A2 3XX \u00E2\u0080\u00A2 21/ S'62 /+/\u00E2\u0080\u00A2 332 2V-Z /// XIX //Znr-2/2/T7 777/tr 212m 7/Z \u00E2\u0080\u00A2 2/2-\u00C2\u00A5??* 3\u00C2\u00A5-/ \u00E2\u0080\u00A2 /// S'CZ \u00E2\u0080\u00A2 S'S'2 \u00E2\u0080\u00A2 i i'2 //2trf //Z- \u00E2\u0080\u00A2 /Z/- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 722 trf 2/Z /// b6x 3//trf 3\u00C2\u00A5Z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //2/rt //z- \u00E2\u0080\u00A2 S'\u00C2\u00A5Z \u00E2\u0080\u00A2 3227* /// zs~z \u00E2\u0080\u00A2 72/ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 7/Z /// 7/2-31 Z S~63 \u00E2\u0080\u00A2 33/- ZZ/-33Z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZZZ \u00E2\u0080\u00A2 /3Z \u00E2\u0080\u00A2 \u00C2\u00A5-3Z \u00E2\u0080\u00A2 /rt/?f 22/ \u00E2\u0080\u00A2 /ZZ /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3ZZ zrt- //Z/rr 11/ Z3Z ZlZmp //Znf 7//p \u00E2\u0080\u00A2 //Znr 77/p //7 m-33Z T??/rT \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 &S'Z 2/2 7/7 M \u00E2\u0080\u00A2 /Z2/-7 \u00C2\u00A5-\u00C2\u00A5Z-3 \u00C2\u00A52 \u00E2\u0080\u00A2 S'63 3\u00C2\u00A5Z \u00E2\u0080\u00A2 727-337-3\u00C2\u00A52 }// \u00E2\u0080\u00A2 ///til \u00E2\u0080\u00A2 Tt/- \u00E2\u0080\u00A2 77//rr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++\u00C2\u00A5m ZZZrrr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z/2/rT 2/7- \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33/0 -\u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 rt/- \u00E2\u0080\u00A2 ZZ/ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5S~Z- 222- 222 \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 ///t~1 /3Z \u00E2\u0080\u00A2 //Z-ZZZ T+l-222 ZZZ 7/7 17Z 3327/7 112 m-///p 7rt 722m-//Inr 77/nt o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 s'-1 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 76 \u00E2\u0080\u00A2 267 I \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 /&\u00E2\u0080\u00A2 /7-6 \u00E2\u0080\u00A2 l\u00C2\u00A5t 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 s'-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 22 z \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 17-19 Z7 S' s'x Ho o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 70 I \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 ZZZ 98 3-6s'2 723 112 3\u00C2\u00A5xp 732 . . . . /// . //Ztrt \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 77Z \u00E2\u0080\u00A2 66 7 6S'Z \u00E2\u0080\u00A2 22 Z 737- \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 S's'3 732 33 X- zT?n o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /ao 60 7/- x\u00C2\u00A5 so 17 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 zs a o \u00E2\u0080\u00A2 o 6 \u00E2\u0080\u00A2 x ///<*> /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 23/m 772 \u00E2\u0080\u00A2 772 \u00E2\u0080\u00A2 SS'Z \u00E2\u0080\u00A2 S~\u00C2\u00A5-X \u00E2\u0080\u00A2 3\u00C2\u00A57- \u00E2\u0080\u00A2'\u00E2\u0080\u00A2 2/2- \u00E2\u0080\u00A2 \u00C2\u00A53Z-3X7-/rV \u00E2\u0080\u00A2 OCCASIONALLY P/iESEAlT SB S'6 - Tuny e t man nia, sp., Hint ;SB8tt- CepAalexio, nre.d io.t-t-+f trr J Cephaloxio, sp.,/-*\u00E2\u0080\u00A2/ nr-Tunye.t /rrannca. sp. T+l m \ S8B\u00C2\u00A5 - Pta 7/ypnu/rr citcinale, //7*vr:SB Xi'~Tunyetmahnia, sp\u00C2\u00B1.++l/rt \SBI37-2>tepanocladus trnctnatus^/fZ ; EutAyncAium oteyanum,/tznr ; Po SB3Z-SuxAau/rria.Jpcpetc\ 112ml Jamesonecl/a. autumnalts,Z/Jnr '.SB72- Poaonatunrcapi/lare,, 7/7/rr; SB6-\u00C2\u00A3>tepa.nocladus oncinaTus SB 6Q\u00E2\u0080\u0094A trie Aunt sp., ++/; \u00C2\u00A3 otAynehiunt sttiyosam/+/ ^funajita Ayyronre.t~+ica,,//2 nr} ieptobryum pyrt\u00C2\u00A5otme,/lZ trr} Ze.scuto.eo. sp. ' 2///ruj \u00C2\u00A53Z ///co 23/n* /IttJ-Z/Z 3X2 7+7 ssz \u00E2\u0080\u00A2 3Zl 2// IZ/-/It llZm \u00E2\u0080\u00A2 /x/-3 3X 11/ \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /IXrrr /// 712hr- lltnr \u00E2\u0080\u00A2 66Z \u00E2\u0080\u00A2 77Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7//**r-\u00C2\u00A5^22 6 i'Z 77 Z HZ/rr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZZtrrr \u00E2\u0080\u00A2 o\"6z \u00E2\u0080\u00A2 \u00C2\u00A5Ez 71Zf \u00C2\u00A5-\u00C2\u00A5z 3\u00C2\u00A5-z- 3zz /XX \u00C2\u00A5-3Z //X \u00E2\u0080\u00A2 S'\u00C2\u00A5z 321 3\u00C2\u00A5-x xzx 4-31 IX X 7/7 z\u00C2\u00A5z ++/\u00E2\u0080\u00A2 /31- 77/ /rt-/XZ 722 11Z u> i+/n* z \u00C2\u00A5 z zil-3 S'l 7\u00C2\u00A5-x /// \u00E2\u0080\u00A2 /xx \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5Z \u00E2\u0080\u00A2 3x/ /3/-/2Z /XX ++\u00E2\u0080\u00A2/\u00E2\u0080\u00A2 s'6z \u00E2\u0080\u00A2 s'\u00C2\u00A5-x /XX ///\u00E2\u0080\u00A2 7X2U> /3X- \u00E2\u0080\u00A2 3X7- \u00E2\u0080\u00A2 i'31 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 73Z /ZXO- 7Z/-/)/ o o S /o o 10 z 330 so 10/ 6 73 s o 6 /S 0 \u00E2\u0080\u00A2 0 Z \u00E2\u0080\u00A2 o 1 \u00E2\u0080\u00A2 o \u00C2\u00A561 29 9 Ti-ll o 2\u00C2\u00A5i 7 o 6 o S'8 i 2 \u00E2\u0080\u00A2 / 6 1 6 1 0 IS o 26 2 \u00E2\u0080\u00A2 266 17 7 7 IO 20/ o \u00C2\u00A53 7/ 7 //O o o \u00C2\u00A5 30 /o / 3 11 r 6 31 \u00C2\u00A5S' o o / // o 2 / / 6 o o o 2 I o o I o o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 JO-S' \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 38 7 \u00C2\u00A5/6 /\u00C2\u00A5 /o o / \u00E2\u0080\u00A2 8\u00C2\u00A5 9 \u00E2\u0080\u00A2 60 o o \u00E2\u0080\u00A2 722 Zto II-7\u00C2\u00A5 \u00C2\u00A58 16-xo /\u00C2\u00A5\u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 IZ-s \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 38 \u00C2\u00A51 8\u00C2\u00A5 9 \u00E2\u0080\u00A2 zo s-& 39 I/-re. ix-z \u00E2\u0080\u00A2 s--27 iz-3 \u00E2\u0080\u00A2 31 76-33 7Z-i\"S 38 //\u00E2\u0080\u00A2 6\u00C2\u00A5 80 1 Z I / I I 7 2 3 r / z 3 2 / \u00C2\u00A5 / 1 / z / 1 2 1 X 7 3 Z / \u00C2\u00A5 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /o- -S~. . 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 39 \u00E2\u0080\u00A2 ZO \u00E2\u0080\u00A2 7079 77- \u00E2\u0080\u00A2 7o- \u00E2\u0080\u00A2 2ZZ-3/ \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5/6-/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'- \u00E2\u0080\u00A2 $ \u00E2\u0080\u00A2 36 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 68- \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 s-- \u00E2\u0080\u00A2 77-/3s' 38 \u00E2\u0080\u00A2 I/- \u00E2\u0080\u00A2 737 \u00E2\u0080\u00A2 3S-9 O o o o o o o 7 o 77-o o 3 o o T o o o a / o 7 o o o 2 7 o 2 6 inr urn ///a*} SB 737- T/ypnum citcirrale,J/+//*r; S3 \u00C2\u00A56 - SutAyncAium sttiyes urrt ,112 m j //ypnunr ci+cinala,i///m^ SB Drepan 00 lad us uncinatvs ,XIZ } S3I\u00C2\u00A58 - SutAyn cA'tunr striyosunr, 1/lm; Fiss'tda,ns A+yotde.s, ///m : SB 97- Fisstdens AtyaidesJIZ/rr; -cinale' 3 3Xnr} PlayiocAila, asplcniaides',ZZ3 } TetrapAis peUucido,,2IZnr j Timmia, austriaca. t3 \u00C2\u00A5Z m; SB9o - PoAlta. ctuda, ,1/1; Ptitidium colifornicunr ,///m \u00E2\u0080\u00A2 SB///-Ftisidcns limbatus 1/lm; Poyanotum sp./Zlm . PoAtia. ctuda. tl 2/m, SB8I- PlaoiocAila. asplenioides,Z32j ' osunr/2z; E. s-ubslr'tyo sum///, PoAlta. ctuda.,Illm} PAytidia-dilpAtrs (oreus,33Z } SB/68 - lo-scuraeasp., Z/2; SBBS-Z>icro.nella, sp., /+!\u00E2\u0080\u00A2 Dicranum striatum,/!!; Xunyermannia. lanceotata. Ill'\u00E2\u0080\u00A2 SB s'3 -7escuta.a.a. ra.dic.oso, vat. t-adicosa, 3Zt nt; \" ; JJictanum sttictum 111 trr ; Playto-tAcciom 'sp.J/lm ; Ptilidium cattFotnicum^ 112 UJ; SB*Z- Pa Alio, sp.,It 2 tn- SB 29- SpA CLOn am cap 1' lla.ce-um,IZIuJ; SB37-CepAatoxia. sp ,//2'nr ; PfilitJc'^m pu'lcAettc mum,l+l} SB *1-Poqonatum sp.ZII; SB2Q8 - Ifniumpunc-taivm^l/l M/it I \u00C2\u00A3 7. I I t I L t I t I I I k t i I I I I I I I Z.llCA/EA/S ON Htltft/S Cladonia. alpesttis C. beltidiflata. C. ca+neo/a. C. cAlo+opAaea. C. de.farnris C. fimbtiata. C. gracilis-C. ytacilis vat-, ditatata. C. Mifis \u00E2\u0080\u00A2 C. tanyiferina, C. squamosa. C. sytvatico,-C. verticillaia. Cladonia. spp. A/epAtoma. spp. Peltiyeta. apAtAosa. a \u00E2\u0080\u00A2 P. canina, R canina. fat. tufescens P. Aotixontatis P. nratacea.\u00E2\u0080\u00A2 P. potydactyla. R venosa. TCD ACD TCD ACD TCD ACD TCD ACD PeltiyeJ-a. Spp. Steteoeaulan te 'btne.ntosum 1/lm \u00E2\u0080\u00A2 3\u00C2\u00A53 HZ \u00E2\u0080\u00A2 2*3 3+2 \u00C2\u00A5\u00C2\u00A5z 7+X-ZZZ t/l \u00E2\u0080\u00A2 332 7+X 2*7-Xl-IT-S'-7 \u00E2\u0080\u00A2 272 m 777 HZ +++\u00E2\u0080\u00A2 tlZ*rr 223 l+Z-/32m- tit \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /t/m 732-t+/- /2/-7+Xm 332 t-+/m 7+z-++/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 222m /\u00E2\u0080\u00A2+/\u00E2\u0080\u00A2 722m- 232 m 2//o 3\u00C2\u00A53-/+/\u00E2\u0080\u00A2 //Zm //2 m 372-7/2-7/Z/n 32X \u00E2\u0080\u00A2 3/X- \u00E2\u0080\u00A2 7/X - -\u00C2\u00A53X \u00E2\u0080\u00A2 2X2 \u00E2\u0080\u00A2 /// 3/2-2/Z-/// 2XX -2X1- /22-l/Z-\u00C2\u00A52Z Z/Z-/+/ Z+Z //z-/+/\u00E2\u0080\u00A2 /+2 \u00C2\u00A56Z 2/2-3S\"Z 322-/+/\u00E2\u0080\u00A2 22/ \u00E2\u0080\u00A2 \u00C2\u00A5/2-/2/-2\u00C2\u00A5Z Z-+/ \u00C2\u00A5S~Z \u00E2\u0080\u00A2 \u00C2\u00ABi\u00C2\u00A5Z 3ZZ \u00E2\u0080\u00A2 332 /XI ++\u00E2\u0080\u00A2/\u00E2\u0080\u00A2 26X Z/2m 72 X /+2 7/2-6 O o */\u00E2\u0080\u00A2 7 / o // o / \u00C2\u00A5\u00C2\u00A5 29 o / /o / \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / o o o / o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2 / o o / \u00E2\u0080\u00A2 o //2 \u00E2\u0080\u00A2 77/ /// 33Z- \u00E2\u0080\u00A2 232m 2\u00C2\u00A53 /+/ \u00E2\u0080\u00A2 Art- Z3Z-/rt-/+2m //Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //Zm 77/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+7m \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 2+7-2//-/// /ZZ-/\u00C2\u00A5/ /+/ \u00E2\u0080\u00A2 //Zm //Z/rr-2/7-772 /rt 77/ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 3XX 3X3 . . . . . Z + Z \u00E2\u0080\u00A2 /XX 2 t/m ++/-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 X+-Zm 33 Z \u00E2\u0080\u00A2 33 X \u00E2\u0080\u00A2 Z+/- \u00E2\u0080\u00A2 3X2 \u00E2\u0080\u00A2 + +/\u00E2\u0080\u00A2 l+Z- ZZ/o \u00E2\u0080\u00A2 zz/m z + z 32 Z i'33 32 X //x-/+/\u00E2\u0080\u00A2 //X /rtm- Z/Z- /+x \u00E2\u0080\u00A2 222m //2m Z/Z-322- +-\u00C2\u00A5/m //Z-/+2m-/+/m-/+/\u00E2\u0080\u00A2 /// 1 6 / \u00C2\u00A5/ /9 ///\u00E2\u0080\u00A2 3/7 /3/ 63 132 312-3\u00C2\u00A5Z 3\u00C2\u00A5l-3Z2 763-132m 7Z2-/22m 7 \u00E2\u0080\u00A2 s--o \u00E2\u0080\u00A2 /o o X o 3 9o o \u00E2\u0080\u00A2 x \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 30 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o o 3\u00C2\u00A5x //Zm \u00E2\u0080\u00A2 232- \u00E2\u0080\u00A2 /XX- /// 332o 711-T+2- \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2/X-212-322-33X \u00E2\u0080\u00A2 33X \u00E2\u0080\u00A2 732-7/Z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 3// 232 0 /22 T+l-3X2 \u00E2\u0080\u00A2 217 \u00E2\u0080\u00A2 -222 23X 32X-zx/ 7/Z-/22-2Z2 /+2-332 2/2 H-+3-/ZZ- \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5-6Z \u00E2\u0080\u00A2 23? 2+/-\u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A52 2 i'Z \u00E2\u0080\u00A2 33Z 2-+Z 3X1-7-7-7-212- 122-112 1 \u00E2\u0080\u00A2 7 0 \u00E2\u0080\u00A2 s' \u00E2\u0080\u00A2 20-S~-6 1 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O o o o z o / o / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 s'x me.nxi.esic TJtuya. ActetopAytla, /++ o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / o \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I Z3Z Art-z++-l+l \u00E2\u0080\u00A2 l+l //z \u00E2\u0080\u00A2 /72 \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 Z+7 3+1-Z+l-X \u00E2\u0080\u00A2 S 1 o o o X+2 1+7- ++?m ft 7 \u00E2\u0080\u00A2 22 ? \u00E2\u0080\u00A2 +++\u00E2\u0080\u00A2 ++?\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/ i+t l+Z-o \u00E2\u0080\u00A2 ++?\u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 I + + 7 ++? TCD ACD o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I /// o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+1 TCD ACD TCD ACD TCD ACD TCD ACD CD* t-T-t-lrt-\u00C2\u00A5+/\u00E2\u0080\u00A2 zrt-/\u00C2\u00A5/\u00E2\u0080\u00A2 Z+? Z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 0'-/ \u00E2\u0080\u00A2 o o o OCCASIONALLY PRESENT SB97-Be-tula,poyoyt-'cfa.ro., ++-+; SBXS'- TAuja, plicata.^+7m; SB 18 - Picea. enyetmonnii,111; SOS'S - TAuJa. plicata..HI; SB 10^8 - TAuya.plicata.,XII} SBS'3 - TAuJa, plicata.,112 \u00C2\u00A5. BRYOPNYTES ON DECAYING bJQOD life form ff lie 77 % 77 sT Tie TT 77 .77 \" A? 77 77 77 7/e. Tfe He He. /Te. 7/e Me. ffm. He. ff 77 77 We. 77 Tfe. 77 77 77 TCP ACD TCD ACD TCD ACD TCD ACD TCD ACD TCD ACD TCD ACD TCD ACD CD* Aulacomn'tum and+oyunum BtepAatattbnr*. CtteXopAy/lvm B+ocAytAecium Aytota.pe.tvm 3. solebrosum StacAytAecium Spp. B+yum spp. Caitietyonelta. scAre.ie.t-c CepAatoxia. spp. Diet-anunt ftrscescens B. tuyosum \u00E2\u0080\u00A2 D- seepextiunt D. sttictum am \u00E2\u0080\u00A2 Dtepanrctadus uncinatus Hylocomium splendent Hypnum citctnalo. 7a.meSonit.lla. Uutumnatcs Tunyermannia. spp. Le-pidaxia, teptmns /opAocolea. AetetopAylla, iopAoxio. l*.rbato, \u00E2\u0080\u00A2 7. in-cisa.' L\. tycopodtocdos IL. porpAypotecda. \u00E2\u0080\u00A2 LopAox'ca. Spp. Tfniunr spinulosum -PlayiatAe.ciunr ctentieula.Turn PotytricAvm junipet inum \u00E2\u0080\u00A2 Ptitidium catifotnicunr Ptilium ctista.-castre.hsis Ptilidium putcntrrimum a TTAytidiadeIpAus ttlouetrus Piyticiiopsis /obusfa. TettapAis pellucida. //X \u00E2\u0080\u00A2 ZIZ \u00E2\u0080\u00A2 ZZZ //Z-ZZZ l/Z 3\u00C2\u00A5Z \u00E2\u0080\u00A2 33Z-3Z3 \u00E2\u0080\u00A2 3ZZ 33Z \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A53 \u00E2\u0080\u00A2 \u00C2\u00A5i'Z \u00E2\u0080\u00A2 7/Z t/Z ZIZ- \u00E2\u0080\u00A2 ZZZ \u00E2\u0080\u00A2 \u00C2\u00A5-32 Z 22. 33Z 33X -\u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A5\u00E2\u0080\u00A23- 32 Z 3/Z \u00E2\u0080\u00A2 3/3 \u00E2\u0080\u00A2 Z7Z Z/Z 3Z3 z/z-z/z-Z/Z-ZZ3 Z/Z \u00E2\u0080\u00A2 7/Z-3/Z 7/Z-Z/2 7/Z \u00E2\u0080\u00A2 /// 332 \u00E2\u0080\u00A2 3/X 3/Z /33 ZIZ 3\u00C2\u00A5-Z 33Z 3ZZ 3 ZZ 33/-\u00C2\u00A53Z Z/Z 7, 3ZZ Z3Z ZZZ 7/7 \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 Z// -ZZZ Z\u00C2\u00A5t 7 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 /\u00E2\u0080\u00A2\u00E2\u0080\u00A2' o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 76 /s' 3o o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 77-//\u00E2\u0080\u00A2 30 1 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 S \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 76 7 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 XII Z/l-3-\u00C2\u00A5Z 333 i'b'3 3S'Z-112- \u00E2\u0080\u00A2 Z/Z S'62 \u00E2\u0080\u00A2 3\u00C2\u00A52 71/ \u00E2\u0080\u00A2 212 33Z 4-3/ \u00E2\u0080\u00A2 z/Z \u00E2\u0080\u00A2 s'\u00C2\u00A5z \u00E2\u0080\u00A2 i't-Z-3ZZ \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5z-7/7 /zz-Z/Z z/z XZZ //z //z 2/Z-V-S'3 3Z3 322 /ZZ-3Z7 /// \u00E2\u0080\u00A2 33 Z 3Z/ \u00E2\u0080\u00A29-3Z S'\u00C2\u00A5^Z \u00E2\u0080\u00A2 332 \u00E2\u0080\u00A2 7/Z-//z-7/Z-//z-2//- 3ZZ /\u00C2\u00A5/\u00E2\u0080\u00A2 ZIZ-Z/Z 3ZZ 7\u00C2\u00A5Z 3ZZ 3ZV Z/Z 7/Z-3/Z-2//-Z/Z-33Z 3// \u00E2\u0080\u00A2 /zx-3/Z /2Z-ZIZ- z/z-7/7 \u00E2\u0080\u00A2 32Z-7+1 \u00E2\u0080\u00A2 3\u00C2\u00A5Z 7ZZ 33?-ZIZ-/// \u00E2\u0080\u00A2 11/ \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 32/-/// \u00E2\u0080\u00A2 \u00C2\u00A5-x/ /+! \u00C2\u00A532 ZZZ i/z-1+7 Z/l \u00E2\u0080\u00A2 3/Z-11/ \u00C2\u00A53Z 3ZZ \u00C2\u00A5l'Z ZIZ ZZZ \u00C2\u00A5\u00C2\u00A5z 1/2-It! \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 717 \u00E2\u0080\u00A2 /+Z-2// \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 4-\u00C2\u00A5z \u00E2\u0080\u00A2 3\u00C2\u00A5-2 \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 C\u00C2\u00A5Z 3 \u00C2\u00A52 //2 \u00E2\u0080\u00A2 2/Z-//2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5-Z-1/2 \u00E2\u0080\u00A2 32Z ///\u00E2\u0080\u00A2 Z// Z//-ZZZ /// \u00E2\u0080\u00A2 33Z-727-ZX/ 31Z-Z/Z /\u00C2\u00A5/\u00E2\u0080\u00A2 //z-z/z-/// 7/Z-//Z-//2 \u00E2\u0080\u00A2 //Z-7/Z-2/Z-Z/7-//Z 1// \u00E2\u0080\u00A2 /\u00C2\u00A5Z-/I/ \u00E2\u0080\u00A2 //2 3/2 717 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /ZZ 3 ZZ 3ZZ 2/Z-2ZZ 3XX /22 //Z-/// /// \u00E2\u0080\u00A2 Z ?7 //2 b /ZZ-/zz-/// \u00E2\u0080\u00A2 212 7/2- Z/Z-77/ /// /// /// Zll-++/\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 ZZZ 772-2/2 7/Z-/ZZ-7/Z- 72X-7/2- \u00E2\u0080\u00A2 21/- \u00E2\u0080\u00A2 33/- - /X/ 2Z2 \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 3 Z Z 7 2 7 - \u00E2\u0080\u00A2 ZX! \u00E2\u0080\u00A2 33Z . . . . /y-jg. . . /// . \u00E2\u0080\u00A2 3zz 211 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z22 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A532 717 \u00E2\u0080\u00A2 33Z . . . . / / 2 .... / / 2 . z//- ZZ/-. . . . ///. //Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/Z-2/2y \u00E2\u0080\u00A2 7/Z //Z z/z-33Z \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 z/z- \u00E2\u0080\u00A2 z// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 22 Z /zz ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2/ //z \u00E2\u0080\u00A2 7/7- \u00E2\u0080\u00A2 322 /// \u00E2\u0080\u00A2 3\u00C2\u00A5Z 1/f /// 3 2Z //Z \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 /rt \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 111 71Z-//z \u00E2\u0080\u00A2 /+/ i/z -3/Z /2Z-/// 2/Z- \u00E2\u0080\u00A2 //2- \u00E2\u0080\u00A2 32 Z \u00E2\u0080\u00A2 777 \u00E2\u0080\u00A2 7/x-t/7 /3Z-/++\u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 /Z/-/2Z \u00E2\u0080\u00A2 /I/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+t \u00E2\u0080\u00A2 2//- \u00E2\u0080\u00A2 2/3-++1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l/Z-- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 HZ-//Z irt \u00E2\u0080\u00A2 //z-izz-/// \u00E2\u0080\u00A2 21/\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /zz- /If \u00E2\u0080\u00A2 xtz 22Z \u00E2\u0080\u00A2 21/- \u00E2\u0080\u00A2 ZZZ / / / / / / \u00E2\u0080\u00A2 ztz 2 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 /z-1 \u00E2\u0080\u00A2 73 23 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00C2\u00A9 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 /2\u00C2\u00A5 /o-O \u00E2\u0080\u00A2 O z \u00E2\u0080\u00A2 Z8 O \u00E2\u0080\u00A2 6Z S'9 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /6-7 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 7o Z3 7 \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 /z o \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 7*z o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o -o \u00E2\u0080\u00A2 o -/ \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / ' o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 //2 /+/ /// /!/ 33Z 3/Z-i'\u00C2\u00A5Z 2/Z-343 //2-32Z Z/Z \u00E2\u0080\u00A2\u00C2\u00A5\u00C2\u00A52 //2- \u00E2\u0080\u00A2 34/ \u00E2\u0080\u00A2 27/\u00E2\u0080\u00A2 S'S~3 7/Z \u00E2\u0080\u00A2 21/ \u00E2\u0080\u00A2 33Z 7/Z-72 Z 7/2 \u00E2\u0080\u00A2 333-322 Z/7-3*/ 3S~Z 23/ 43 X Z/7 1+/ \u00E2\u0080\u00A2 Z/2-323 2/2- 333 \u00E2\u0080\u00A2 212 /// \u00E2\u0080\u00A2 333 3/Z 332 3/Z-2/3-/// \u00E2\u0080\u00A2 3/Z-222 32Z Z/2-Z2Z 2// \u00E2\u0080\u00A2 32Z /// \u00E2\u0080\u00A2 2/2 3/Z-2//-332 /It \u00E2\u0080\u00A2 2/Z- 2//\u00E2\u0080\u00A2 2/Z /// -\u00C2\u00A5?? z/z-s'42 ZZZ 332 4*2 2/2 Z3Z 3ZZ 3ZZ Z/Z 3 SI-S'??\" /// \u00E2\u0080\u00A2 s's-z-2/Z 4-3Z //Z-3/Z 111 3Z2, \u00E2\u0080\u00A2 33X /+/\u00E2\u0080\u00A2 34/ 3?7-4 4 z \u00E2\u0080\u00A2 6 i'2 /??\u00E2\u0080\u00A2 11/ \u00E2\u0080\u00A2 22/-//2 \u00E2\u0080\u00A2 / / / \u00E2\u0080\u00A2 ZIZ /2Z-///\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 22Z 32Z. 2ZX f-43 \u00E2\u0080\u00A2 4/Z \u00E2\u0080\u00A2 32Z 4 77 32X z/z \u00E2\u0080\u00A2 //z-323 \u00E2\u0080\u00A2 3X2. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+-Z 332 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 4\u00C2\u00A52 \u00E2\u0080\u00A2 //Z-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/3-l/Z-/+2-2/Z-2IX 332 \u00E2\u0080\u00A2 3\u00C2\u00A5z XZZ Z/2-3ZZ S'33 3/Z-/2Z-332 t!2 \u00E2\u0080\u00A2 3XZ //Z-111 \u00E2\u0080\u00A2 Zl/-z//-11/ \u00E2\u0080\u00A2 3//-3ZZ 3XZ //Z-/z/-/// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /2Z t/7 \u00E2\u0080\u00A2 24Z //2-2XZ 77/ \u00E2\u0080\u00A2 32 X 27/ XZZ \u00E2\u0080\u00A2 z/z \u00E2\u0080\u00A2 ZZZ 211-/// \u00E2\u0080\u00A2 JZZ 31Z /It HZ \u00E2\u0080\u00A2 132-21Z-/12-3/Z izz- /// \u00E2\u0080\u00A2 /// /if it/ \u00E2\u0080\u00A2 33Z Z/Z 33 X /// \u00E2\u0080\u00A2 11/ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 7/Z ' //X \u00E2\u0080\u00A2 33X ZZZ /+/\u00E2\u0080\u00A2 //2-22Z l/Z-34Z Z3Z 2// \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 3\u00C2\u00A5z 2/2-33 X //Z-/// \u00E2\u0080\u00A2 //z-///\u00E2\u0080\u00A2 2// 2/Z-//Z \u00E2\u0080\u00A2 33 X 322 3ZX \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 27/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3ZX \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// /// /// \u00E2\u0080\u00A2 z/l-77/ \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 7/2-Z/7- 4 ?7 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 3ZZ x/z-/// \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 33/ //z-S22-/ZZ 3/Z 33 2 \u00E2\u0080\u00A2 ZZZ //z- //z z/z- /// zz/-33Z //2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33X \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/Z \u00E2\u0080\u00A2 22Z 332 /// 33X /// \u00E2\u0080\u00A2 3/Z \u00E2\u0080\u00A2 3XZ \u00E2\u0080\u00A2 22/ \u00E2\u0080\u00A2 X/Z-ZIZ-212-/ r t - z/z-//z-3ZZ- ttz-rt-/-37/\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /// /// Z/7 //\u00E2\u0080\u00A2/ /// \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 2// //2 \u00E2\u0080\u00A2 7/Z-7rt \u00E2\u0080\u00A2 7/2-712 7/Z \u00E2\u0080\u00A2 /// 7/2 HZ \u00E2\u0080\u00A2 Z/Z 7/2 \u00E2\u0080\u00A2 Z/2-/// \u00E2\u0080\u00A2 7/Z //Z \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 /2Z //2-//2 \u00E2\u0080\u00A2 22 Z 34x 32Z \u00E2\u0080\u00A2 /X/-2/Z-/// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /I/ \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 /// 272-/// \u00E2\u0080\u00A2 2//-//z-++/\u00E2\u0080\u00A2 2/2 ZZZ //X \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 7/Z-/// Z22 //2 \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 222 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //Z //z-zxx x/z-7/Z \u00E2\u0080\u00A2 3/Z 7/2-7/7 \u00E2\u0080\u00A2 3XZ Z/2-27/ +++\u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 //2-//2- 2//-/// \u00E2\u0080\u00A2 X/2-/// -rt/-22Z ZZ/ \u00E2\u0080\u00A2 /// /+/ \u00E2\u0080\u00A2 77/ 21/\u00E2\u0080\u00A2 If/ \u00E2\u0080\u00A2 /XZ-/// //Z-332 72Z-22/ /// \u00E2\u0080\u00A2 /Zl-Z/7-til //Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 ZZ //z \u00E2\u0080\u00A2 /// //z-/rt /zz-/// 6 \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 \u00C2\u00A9 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 6S-\u00C2\u00A5-7 /63 o \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 67-o \u00E2\u0080\u00A2 28 r? IT-S' 32 /B 6 \u00E2\u0080\u00A2 6 z \u00E2\u0080\u00A2 42 13 37 o \u00E2\u0080\u00A2 //\u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 38 S-/S'-8 \u00E2\u0080\u00A2 b\u00C2\u00A53-3XX 3X2 33X 272 4\u00C2\u00A52 211 \u00E2\u0080\u00A2 212 33X 7/7 Z2Z 17/ XIX 6Sx /XX \u00C2\u00A532 3X /// 33 3/2 77/ 2// \u00C2\u00A5-32 2/Z 32 2 //2 ZZZ /+/ 2// /// 2/1 z/x /// /rt 311 Zll /o 2 \u00E2\u0080\u00A2 o / z; x 3 s~ 212- 212-111 \u00E2\u0080\u00A2 3\u00C2\u00A5z 3X2 331 ZZZ /+/\u00E2\u0080\u00A2 S\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A5-\u00C2\u00A5Z 33/ / / / \u00E2\u0080\u00A2 ZD-122 \u00E2\u0080\u00A2 3// 7 XX 7+1 \u00E2\u0080\u00A2 3/2 \u00E2\u0080\u00A2 2XX 3\u00C2\u00A5Z 33Z 3ZZ 33 Z III \u00E2\u0080\u00A2 32 2 X// \u00E2\u0080\u00A2 322 /2/-111 \u00E2\u0080\u00A2 32 Z /+/\u00E2\u0080\u00A2 32Z 111 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 3XZ z// /rt-/// /iz //z \u00E2\u0080\u00A2 t+l \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 XI2-Z+l- \u00E2\u0080\u00A2 342 \u00E2\u0080\u00A2 342 \u00E2\u0080\u00A2 322 33X \u00E2\u0080\u00A2 332 . . . . /// . 3/2- 111 \u00E2\u0080\u00A2 3\u00C2\u00A51 \u00E2\u0080\u00A2 4\u00C2\u00A5Z \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 Z2Z 3/X-Z/7 \u00E2\u0080\u00A2 XXZ XXX //2 /// \u00E2\u0080\u00A2 /22 222 7/Z-/// /// 34/ 7/Z /// /// \u00E2\u0080\u00A2 /zz. 7/Z-/+z-/+/ \u00E2\u0080\u00A2 //z-3/X ///\u00E2\u0080\u00A2 /+2 ++/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 44x \u00E2\u0080\u00A2 3\u00C2\u00A5z 3/Z 2/2 33Z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 32/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /I/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 34z \u00E2\u0080\u00A2 33X \u00E2\u0080\u00A2 XZZ \u00E2\u0080\u00A2 X//- \u00E2\u0080\u00A2 z//- 3Z2. \u00E2\u0080\u00A2 /2/- \u00E2\u0080\u00A2 22Z \u00E2\u0080\u00A2 22Z \u00E2\u0080\u00A2 3ZZ \u00E2\u0080\u00A2 z//- \u00E2\u0080\u00A2 ztz \u00E2\u0080\u00A2 22X \u00E2\u0080\u00A2 33 Z \u00E2\u0080\u00A2 332 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/7 7/Z Z/Z /// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 //2-/ZZ-3ZZ z/z-//z 3X1 Z/Z \u00E2\u0080\u00A2 /z/ /// \u00E2\u0080\u00A2 /3/-71/ \u00E2\u0080\u00A2 71/-til ///\u00E2\u0080\u00A2 ZIZ Z/7-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 73 z-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/X \u00E2\u0080\u00A2 . . . . /// . /// . . . . z/l-. . . . /// . . . . . x / / . 3/Z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 ZXZ \u00E2\u0080\u00A2 7/Z-/// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 ZZ/ /// \u00E2\u0080\u00A2 /zx-3x2 /// \u00E2\u0080\u00A2 2/X-/xz-zxx //z-77/ \u00E2\u0080\u00A2 ZZZ //X \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 zzz /++\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 XI/-/// \u00E2\u0080\u00A2 /// 11/ //z /// //z //z-o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 s~-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 S3 \u00C2\u00A56 30 8 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 /S-O \u00E2\u0080\u00A2 /s' z/ 6 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 77-7 \u00E2\u0080\u00A2 IZ 3 O \u00E2\u0080\u00A2 78 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o -76-X \u00E2\u0080\u00A2 S-/ \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o S- o / \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /26 i'Z /7S' // 6 \u00E2\u0080\u00A2 o / \u00E2\u0080\u00A2 zz o \u00E2\u0080\u00A2 S\u00C2\u00A5 96 s'\u00E2\u0080\u00A2 S-3/ ' /O-O \u00E2\u0080\u00A2 /2-/\u00C2\u00A5 r \u00C2\u00A57 /3 7 /// Zrt- /// \u00E2\u0080\u00A2 /// /// Z/2-//2 \u00E2\u0080\u00A2 /+2-//Z \u00E2\u0080\u00A2 321-//2 11/ //X XII \u00E2\u0080\u00A2 2 IX \u00E2\u0080\u00A2 l+l \u00E2\u0080\u00A2 21/ 7/2 2/2 232 /Zl-+-+IA \u00E2\u0080\u00A2 l\u00C2\u00A5Z-/+2- \u00E2\u0080\u00A2 2/2y /\u00E2\u0080\u00A2+! \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /+!\u00E2\u0080\u00A2 2+2-/*X 1+2-1X2-22 Z \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2++Z-2 32 /+2-/+Z 22Z 2+/ t/7 2\u00C2\u00A5Zy rt/-/+-Z rt/ \u00E2\u0080\u00A2 IS o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7S o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 9 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 4-z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7/ZM-/rt-Z/2 221- \u00E2\u0080\u00A2 32/-44/i-332 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Zl/-Zt/-222 /t-2- \u00E2\u0080\u00A2 +\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / r t -/xz-/// 22/ \u00E2\u0080\u00A2 2\u00C2\u00A5Z Z2/- 2//- \u00E2\u0080\u00A2 ZZ7- 311 Z/Z-rtZ-/\u00C2\u00A5/\u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 ZT/-///\u00E2\u0080\u00A2 3+/-Z//-\u00E2\u0080\u00A2 /rt-zzz 3/z- /zz- z/z- \u00E2\u0080\u00A2 /z/-/22A \u00E2\u0080\u00A2 +-+-/A \u00E2\u0080\u00A2 111/,- l+t 2// 11/ //2 \u00E2\u0080\u00A2 ZIZ-2//-31/ \u00E2\u0080\u00A2 /// /// 2// \u00E2\u0080\u00A2 //Z /// \u00E2\u0080\u00A2 211 331- /// Z// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2// /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - \u00C2\u00A5-32 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 32 X 23/- 2//-/xx-/// \u00E2\u0080\u00A2 zt/-rtti /+x /Y-2 /+/\u00E2\u0080\u00A2 Z/2-/+2- /+2 rtZ-/rt-ZTZ /TX //Z Z/Z /T-2-3ZZ Z\u00C2\u00A5Z /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / r t \u00E2\u0080\u00A2 //Z- \u00E2\u0080\u00A2 ATX /\u00E2\u0080\u00A2+Z- \u00E2\u0080\u00A2 //Z zt-z /+z- M2- /rt-//2-zt-/-727-l/Xy /// \u00E2\u0080\u00A2 112 l+2y TCD o \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 S-o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 lo-23 7 \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /\u00C2\u00A5 6 ACD O \u00E2\u0080\u00A2 o o o o o 7 0 O o o / o o \u00E2\u0080\u00A2 o o 22/-32/-3/2 \u00E2\u0080\u00A2 /32-2+1-3+2-3>ZX Z/2 312 xtt \u00E2\u0080\u00A2 322 32/-33 X \u00C2\u00A54x t+t zrt-3/Z-/+2-TCP / \u00E2\u0080\u00A2 ACD o \u00E2\u0080\u00A2 TCD ACD TCD ACD TCD ACD TCD ACD CD* C'A C TCO ACD CCD / \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 S s-/o-o \u00E2\u0080\u00A2 / 2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 ./6 \u00E2\u0080\u00A2 2 s o \u00E2\u0080\u00A2 S-o \u00E2\u0080\u00A2 o z /+/ til ///\u00E2\u0080\u00A2 /+/ 3+/- 21/ \u00E2\u0080\u00A2 l+l 2+2 21/ \u00E2\u0080\u00A2 XXX \u00E2\u0080\u00A2 33/-HI-Xtl /XI-//2 \u00E2\u0080\u00A2 /rt /+/\u00E2\u0080\u00A2 211 -+/\u00E2\u0080\u00A2 X2X \u00E2\u0080\u00A2 34x \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 . . . . J./Z- \u00E2\u0080\u00A2 /3Z- \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2 /IX \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z/Z-2/2-X/Z-7/Z \u00E2\u0080\u00A2 112 113 \u00E2\u0080\u00A2 2/2-/12 l+Z \u00E2\u0080\u00A2 zt/-2//- +rt- 3Z/- Z//-7+X \u00E2\u0080\u00A2 t+t 71/ ++/\u00E2\u0080\u00A2 tlx /rt- 2XX 7+1 \u00E2\u0080\u00A2 1+X \u00E2\u0080\u00A2 /+x-2/X- \u00E2\u0080\u00A2 33X-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2-+Z 72/-/// \u00E2\u0080\u00A2 2 32 OCCAS/DNAllY PRESENT SB /AS - Cladonia. macitenta. yf/\u00E2\u0080\u00A2\u00E2\u0080\u00A2 SB/48 -Ate.ctbt.ia. Sar-mentosa. /+/\u00E2\u0080\u00A2 SB2S- lobar ia. pulmonatio.. Ill; S3 llo - Cati/letia. SpAaetoides, 112} SB1S7 \u00E2\u0080\u0094 NcpAtonta. patite, l+Z; SB \u00C2\u00A53 -Cladonia. cenotaa, tit; SB \u00C2\u00A51 - CI a do nt g yraeiles vat. ditatata, tt/- C. subsayamosa., HZ 6. SEEDIINGS 0/7 J>ECAY/N& uJOOD Ltfefotm Pm \u00E2\u0080\u00A2 Pm \u00E2\u0080\u00A2 TAuJa. plicata. Tsuyo heterophylla. . . . . /f.z. /+Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3zz TCP ACP o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I S- 1 I 33 X- l+l 3+7- \u00E2\u0080\u00A2 3+t /+? /+/ TCP ACD IS-- I I X+t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 222- - Tt?-TCP ACP TCP ACD /+T-27?-/+Z-2/2- ++/\u00E2\u0080\u00A2 2+/-+ +1-/+/ 7+/ / \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 I * + ? \u00E2\u0080\u00A2 I 32/- 33/- \u00E2\u0080\u00A2 1 + + ?\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l+t /A?- \u00E2\u0080\u00A2 zt/- /+/ Z+t- 1+7-O \u00E2\u0080\u00A2 OCCASIONALLY PRESENT SSI- Pinus monticeta..+++; SB1Z - PsetfdoTsuya, men ztesi t. +++ ;SB4t- Pse trdo tsuoo. menxiesii,7++} SBSt- Pseudatsuqa. me.Hx LcsjL +++; SB 6 -Pseudotsuga. menxiesii, ++2} SBI60 - Betula. papytifeta, t+l; SB\u00C2\u00A5\u00C2\u00A5 ~ Pseudotsuya. me.nxie.sii,/+/; SB2Q7- Pinus montiwla,,/+/; SB \u00C2\u00A52- Pinus monticola. ,Z+?'; SB 37-Pinus monticola, .2+/; SB 208 - Betula. papyriFm.ro. ,3++ 7. BRYOPHYTES ON PoCkt fNote: 13plots uithoutroc* are hot considered in auetayes and svmmaty . Life form TCP ACD TCP ACD If At 7f 17 77 77 77 77 77 77 Me 7/e He If If 74 7/e 7/e 7f ff 7f AT TCD ACD TCP ACD Autaeo/rrhcum andtoyynum Brachythecium spp. Callieryonclfa. schtehe-t-i Dictanum Ftrscescens D. scopateum Z>. strictum \u00E2\u0080\u00A2\u00E2\u0080\u00A2 Dtepahacladus uncirtatus Hetetocladium ptocutrens Hylocomium sptendens Hypnunr citcinale. \u00E2\u0080\u00A2 LopAocolea. ActerepAylla,-lophozia, lycopod ioictes \u00E2\u0080\u00A2 lophozia, Spp. tfniunr spinulosum \u00E2\u0080\u00A2 PtayiotAcciom dchticuiatutrr PolytticAamyuniperihum\" Ptilidium catifotnicum P. putcAettimum \u00E2\u0080\u00A2 RAmcemitt-ium canesce.hs P. AetcrosticAum Rhytidiopsis tobusta. RAytidiadetpAus ttiyuetrus IIZ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33Z- \u00E2\u0080\u00A2 ZIZ \u00E2\u0080\u00A2 312- \u00E2\u0080\u00A2 ZIZ- \u00E2\u0080\u00A2 21Z- \u00E2\u0080\u00A2 122 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\u00C2\u00A5Z \u00E2\u0080\u00A2 212 \u00E2\u0080\u00A2 212 \u00E2\u0080\u00A2 332 33/ 2//- \u00E2\u0080\u00A2 3ZZ-7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/Z ZZZ \u00E2\u0080\u00A2 312uJ-ZZZ \u00E2\u0080\u00A2 Z/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 . . . . /// . . ZIZ-3/3 Zl/- z/z-z/z- zzz trt-332 \u00E2\u0080\u00A2 Z/Z-/X/ 22f-/ZZ-34Z /At \u00E2\u0080\u00A2 34Z IS-7 a\" / / // 7 / / / /Z 4 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O 3 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 ZZZ-XI2-HZ-/JX-12/\u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 142- 331-3X2 333 Z/l-712 \u00E2\u0080\u00A2 212-232 7/2 \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 //X /// /z/-/zz-++/\u00E2\u0080\u00A2 /z/-34Z 3XZ ++/ \u00E2\u0080\u00A2 //z-ZZZ Z/2-/// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z//\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 22/ 22Z \u00E2\u0080\u00A2 2//-///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 112 7/Z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /rt-//z 212- 11/ +\u00E2\u0080\u00A2+/\u00E2\u0080\u00A2 43Z ++/\u00E2\u0080\u00A2 ttl \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /It //z 11/ /A/-z/z-//z +tt- /XZ-/rt 112-/22-2IZ-t+t \u00E2\u0080\u00A2 33X \u00E2\u0080\u00A2 Zll-I-+I / / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 231-Z Si-ll Z \u00E2\u0080\u00A2 l/Z \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 zxx ttl /zz- XXX 7\u00C2\u00A5Z-/+/\u00E2\u0080\u00A2 t+l /+/\u00E2\u0080\u00A2 /+/ /// \u00E2\u0080\u00A2 /Z2 ZZlui ZX/ /// /xz-//z /+/ /ll \u00E2\u0080\u00A2 /zz-7/Z \u00E2\u0080\u00A2 77/ \u00E2\u0080\u00A2 //z-/// \u00E2\u0080\u00A2 ZZZ 332 73Z-O \u00E2\u0080\u00A2 8 6 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 i' \u00E2\u0080\u00A2 5 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 s'-Z-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 s' -1/ \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o -o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o -/+/ 7/1 3 \u00C2\u00A52 zxx 211 \u00E2\u0080\u00A2 7+1 l+l tlx \u00E2\u0080\u00A2 112 \u00E2\u0080\u00A2 333 IIX \u00E2\u0080\u00A2 XZ3 ttz \u00E2\u0080\u00A2 Zll It?-l/Z \u00E2\u0080\u00A2 1++ \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 HZ \u00E2\u0080\u00A2 3-7-3 1+2 \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 1/2 \u00E2\u0080\u00A2 t+l 22Z 212-ttl-111 \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 if?-2/1 \u00E2\u0080\u00A2 3\u00C2\u00A5/-17/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 IZZ \u00E2\u0080\u00A2 HI 33/ 3+2 XI/ 332-Z+l-112-1/2 \u00E2\u0080\u00A2 3ZZ t4t \u00E2\u0080\u00A2 l+t \u00E2\u0080\u00A2 l+Z \u00E2\u0080\u00A2 31X-232 23 X /// x/z 3 32 3/1 X 3X 3Z X /It \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 HZ 3-AZ XZZ /rt-/X/ XX/ xtz \u00E2\u0080\u00A2 XIX-z/x-III z+l-xzx til \u00E2\u0080\u00A2 ZIZ ///\"\u00E2\u0080\u00A2 4\u00C2\u00A5z \u00E2\u0080\u00A2 3XZ \u00E2\u0080\u00A2 *3? z// \u00E2\u0080\u00A2 /zz /zz-lit /// /// //z \u00E2\u0080\u00A2 /// //z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /// z/z-71/ \u00E2\u0080\u00A2 //Z-7/Z-ttz-722-/rt-//2-//I /iz . . . . ^ / /. \u00C2\u00A5Cz \u00E2\u0080\u00A2 t+l-721- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3XX \u00E2\u0080\u00A2 ttt-3 XX /XI-t+t-11/ rtt-rt-/-/tt-/// \u00E2\u0080\u00A2 7/X \u00E2\u0080\u00A2 ttz-4SX \u00E2\u0080\u00A2 /It /+/\u00E2\u0080\u00A2 rt/-//z- \u00E2\u0080\u00A2 3ZZ \u00E2\u0080\u00A2 Z/l-/iz-/// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 11/ \u00E2\u0080\u00A2 l/Z-ttt /iz-///\u00E2\u0080\u00A2 /rt-/// \u00E2\u0080\u00A2 43 Z 312-z//- /// //z-/!/ /IZ-tt/-i/z-/// \u00E2\u0080\u00A2 izz \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 44z- It/-437 \u00E2\u0080\u00A2 //z /// \u00E2\u0080\u00A2++/\u00E2\u0080\u00A2 //z-/\u00C2\u00A5/\u00E2\u0080\u00A2 z/z-//X \u00E2\u0080\u00A2 /It 7/2 \u00E2\u0080\u00A2 /// /// /// t/l /// /// 7/Z /IZ-o \u00E2\u0080\u00A2 7 21' 3 \u00E2\u0080\u00A2 7/ o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 77-7o \u00E2\u0080\u00A2 72 2 7Z o \u00E2\u0080\u00A2 Z9 /z o \u00E2\u0080\u00A2 / o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 3Z //\u00E2\u0080\u00A2 \u00C2\u00A532 2 /2 / / / \u00E2\u0080\u00A2 /// /// 2/1-Zll-//2 \u00E2\u0080\u00A2 XIX 11/ \u00E2\u0080\u00A2 //2-Z/l \u00E2\u0080\u00A2 lo-1 o \u00E2\u0080\u00A2 i \u00E2\u0080\u00A2 / o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o o / Ct / cranum . OCCASIONALLY PRESENT SBS6-Claopodium c+ispifotium, //2; Zepidoxia. SB +f> \u00E2\u0080\u0094 Dtepanocladus flu'ttans++X} /opAocolea. bi S3 I/O - Btephatastama. tticAopAyltum,lf2}StacAy t , \u00E2\u0080\u00A2> - -- ,--t- \u00E2\u0080\u00A2 > j . , , . , ^ . , , ^ PiptopAylturrr Taxifo/ivm /+2j EutAyncAium stt'tyosum,//2} /cscutaea. sp.j ///; /opAocolea bcda-ntdta.,//2} lophozia. ventrioosa.,/12} Mnium insione/Xl} 17.punctatum/ZI'; PlayiotAectum Sytvotteum///; Poreila. Cordea.no. t!2; Ptilium cristo.-casttchsis,32 lophoxia. barbata,322; SBS'S\"\u00E2\u0080\u0094 Claopodium c+isp'tfoliom,/22; PlayiotAeciumsp.,++t 8. LICHENS ON ROCK+ + plots without rock ate not included in averayes TCD sylvoticum ^31X ui } SB 8 4 \u00E2\u0080\u0094Brachythecium vetutinumjll; Cephelaxia. sp.,l/x; Clao podium botandeti ,122} lophocotca Cuspidata, IIX ; SB IX - PlayiotAecium sp. ,XIX; Ptilium ctista-casttensisyiX] SB/63 tttum patens.2//: SBS4~ RAocomitrjum pdtens.lt/: SB lo9\u00E2\u0080\u0094 BtacAytAecium solebrosum,//!: lophoxia, alpestris.lt//. barbata. ,11/; SBtbf--Playiochilo. as, - --\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 -uyosumttt- tVetctocladium syuatrosulum;///'; Ptilium crtsta.-castrensis.ft/; Sp s~S - Rhacomittium patens,112} SB206 -Jamesontella. autumnalis ~ '~ z / o o / / / o TCD ACD TCD ACP TCP ACD TCD ACD CD* C'A C TCD ACD CCD TCP ACP TCD ACP TCP ACD TCD ACD CD* C'A C TCD ACD CCD 0 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 t \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o -o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 C'A C TCD ACD CCD O / o / o / 0 ' o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 o o\" o \u00E2\u0080\u00A2 SYNTHESIS TABLE SLOPE 3 ARALIETO - GYMNOCARPIETUrl ARALIA-OAK F E R N ASSOCIATION. A - 0 HABITAT PM Mom At. I- (SB) Pate analysed -Date. checked. \u00E2\u0080\u00A2 location- \u00E2\u0080\u00A2 Approx. extent *f type (ac.) Elevation (ft.)-Exposure Slope C) \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 TopoytapAy (profila.:contour -.surface) LJind exposure (A-B'C layers) ///story a) originally denuded Ay \u00E2\u0080\u00A2 i) during sxand. development Soil type '. ' ' ' Parent\" ma.Te.rial \u00E2\u0080\u00A2 ' ' Host common rock in parent material Sot/ ateptA epth to seepageJaartuTuly)t?6a(cnt.) Soil reaction a.) main roUT Aon man A) organic Aorlton a at/, to mineral soil Vegetation pattern and apparenT Ma/or influence TREE DATA Stand development stage Aye of dominants lyt-s.) Aye of oldest measured, tree Basal area, per acre (ft.1)-Average diameter of stand (in) Site index at /ooyrs. ' H max . Site index at i'o yrs. Ii COVER OP VEGETATION LAYERS % Cover of humus ancl/or litter % covet- of decaying uood % cover of rock SPECIES LIST - LAY EH A - TREES L'Af.t. Pm Pm Pm Pm Pm Pm Pm Pm Pm Pm Pm Cover- % ** Abies grand is A. lasiocarpa Betula. papytifera.-larix occidentalis Picea tnye tmannti Pinus monttcota. Populus tremutocdes P trie A o carpa, Pseudotsuga. menxiesii Thuja, p/tcata t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Tsuyo. AttelopAylla. \u00E2\u0080\u00A2 Si ft C PM F S Ct L Bo Pt Asp A A, A, *s a s, Dt C D DM D, Dp ARALIA-OAKFERN (SA-0) i JL 3 I 2. 3 I 2 3 I Z 3 I 2 3 I 2 3 I 2 3 I z 3 / 2 3 I 2 3 I 2 3 STAGE I /i'3 Atytt/t? Ttl. /t/lo keen C. tnmnu 30 Li' AI/oE JO-SI, CvCp'H i:\u00C2\u00A5:/ T irail^/tlt TtOP G OS 7 3 B//-GIS 7i i'3 38 zsn (1.0 2 3'o + 3oar H \u00C2\u00A5J\u00C2\u00A5 10.8 30-7 38 a'y Jo-20 li' 30 -JO-zo lo I-80 20 7-80 + *2-/\u00C2\u00A5Z \u00E2\u0080\u00A2 2+/ /TZ-2\u00C2\u00A52-88/ \u00E2\u0080\u00A2AS AtyZl/iS AttS/to Sftv. P. 1 Z97s' HxoE \u00C2\u00A5 N-Cp'H 7:3': 3 Eire sell. flflP G Sai ? 2 BAi -I ii' 7.0 3 9 2 SAT U-TIT 200 + 220 A\" 2 78 8./ 76 Atyxe/iH Auo.ltNo flat. L, many 2i'3S-HsoE 4 CcNH i'Z I Eire tl GABU G GS ? N Dm-I 7 4'. 8 S\u00C2\u00A5 I u-tir 200T Zo9F 377 l\u00C2\u00A5.t \u00C2\u00A5 ityli/i\"* Auy./s/io Mai. L. many 202V Sloil lo N-CvN A': 3-1 Eire U If OP G tf Ox?-? 2 Sf-SL 11 S'6 \u00C2\u00A5.i ZSN U'O 24 o + If 2 ft 6S'\u00C2\u00A5 /r.i /r A uy.lt/i'a Auo. It/to llat. L. I Z 3'73' N70E o-J NHN S':Z-I U IT/IP a G Qtf- ? / Bfk-GlS 7 S'i 38 2Sf1 U'tlT 2oo + 213 f 311 IT. 7 16 6 Auo. t/ft Ttl. 1/60 Trou. L. / SZOO S/oL) 2-3 Cv.NH 6 --3--I 7 sell. HOP & S9i 7 3 BfA-SL 71 6.7 s',\u00C2\u00A5 ZSML 1/.0 Zi'oi-281// fit. MO STAGE 2 At, Tut. I7/sJ Any. s'/io Car. C. /+ ! Zii'O I Nto-lflu (s--)zs-jz CpCv-H l-J:l Fi,e CI I1I17P C-DC-7 I 3AA-N i'6 4.3 1 E-P iz 6iPu> 2i7 ?o:/zz 80:108 fa: 11? /eo:/jl loo:lz9 /00./J7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 leo:/23 /oo.-UL fo:/2T \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /zo:- llo:MV l4o:l?l Ho:!**' . . . . . . . . jxo:/t/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //o:7J9 fO-IZf loo:l3/ /oo:7SZ loo: IS 9 TO 80 li' 3o i'o i'o' Ji-30 2i-ti-\u00C2\u00A5\u00E2\u0080\u00A20 zt' /-bi' 3 A\" I-80 Bo 7S-/O t-i' 30 s's: 2A~ \u00C2\u00A50 Ti' 60-18 12 O SO ZO o loo Si' 20 3i' yo JO- \u00E2\u0080\u00A2 lo 2i~ so i'i-3$\" 20 o 6i' So\" o 86 SO 7i' li' \u00C2\u00A5\u00E2\u0080\u00A20 2i' \u00E2\u0080\u00A2Ai\" 2i' Jo So 8i'-6!T 20 o 70 30 O 7i' 7i' li' 2i~ AO 20 \u00E2\u0080\u00A2 /S~ li' i'o-TO-s-i' IS\" 1-80 20 I-7S -&L II? JW t/l0 Host.C. sev. 30 i'o flli'oU 8-/Z Cp'.Cp'.H \u00C2\u00A5\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A22:1 Fire stt.t. PIMP A \u00C2\u00A3l7ljl6BU A SQi 1 it C-G-LS n 7-8 7-i' I E-YT as' 9iC 3/G f.o 6/ Tut.Z7/ly Auy.S/io Car. C. I X600 o (-Ss-iS) O (-XO) CpCpH i'-Z \u00E2\u0080\u00A2/ Ft i-e road b. JH IMP At &D 7 1Y S'.s' \u00C2\u00A5.\u00C2\u00A5 2SI7L E-P i\u00C2\u00A5 67F 30 C 7.0 //o: -lio: /xo: lio: -Ho-llo: /30:-//o: -lio:-170 :-ISO.\u00E2\u0080\u0094 Izo.-/3o:-130: -JSO:-/30:-is'o:-110:-l\u00C2\u00A5o: lio: /lo:-li'o: \u00E2\u0080\u00A2 tzo: -IVo :\u00E2\u0080\u00A2 li'o: I Jo: 1/2 4-T2 I tAX 2+1 tt-2- /\u00E2\u0080\u00A2tz Tt2-+-12-T + l-1-TT a'+f-S'l-X is/-rs/-1.9/ \u00C2\u00A5T/-692 632-\u00C2\u00A5T2 S'82 V-T2-\u00C2\u00A5t3 4,92-682 TT/-T+2-\u00C2\u00A5T2 T?2 4 82-\u00C2\u00A5-1-2 S'-f-Z 4-7/ \u00E2\u0080\u00A2 S'72 781-loo ro-cs' TO 3i~ jo is-30 it-s' s~ \u00C2\u00A5 70 3o A~ 9o 9o is' 8 2S~ i'o 20-/S\" /o To-\u00C2\u00A5 \u00E2\u0080\u00A2 Z / 0 9S' s' o ii\" 9o 80 \u00C2\u00A50 j \u00C2\u00A50 /J\" /i' 3 iz-\u00C2\u00A5 \u00E2\u0080\u00A2 I 3 I-9o lo I-80 9o So-li' \u00C2\u00A50 3S' Jo-2 4' S\" 10 \u00E2\u0080\u00A2 s\" \u00E2\u0080\u00A2 I-s' o 87 73 O 80 70 9i-70 3 3 \u00C2\u00A5 I \u00E2\u0080\u00A2 is'-I l\u00C2\u00A5 1-3i-3i' I-9S-80 8s' li-\u00C2\u00A50 4-s' 70-Lo li' 20-12-7 S' O 6S-3S\" o 8S loo fo-Ji' to 8 \u00E2\u0080\u00A2 S' 3 20-\u00C2\u00A5 \u00E2\u0080\u00A2 I 2 I 9o lo 1-90 9o 9i~-1 \") 80 IO-S'O 2S\" Jo-b \u00E2\u0080\u00A2 Z 3 I 78 ZO 2 9S-PIONEER HARDWOOD VA/?/AiVT STAGE 3 (SAOp) 133 M.tS/i-f AuoJo/iO Sumrr. L. sev. 2S'30 H\u00C2\u00A5i'-s'sE Z\u00C2\u00A5-31 CtEv/V \u00C2\u00A3:\u00C2\u00A5:2 Fire Z*0,rd.i. MO ABU C St ? I om-GSL TV i.Z i'Z 2SH E.r 28 33Si is' 2.\u00C2\u00A5 70:-sy r.t\u00C2\u00A5/i-? Ary.z/iO (JAat.l. , i\" Zboo due U 7-18 CptvH 7-Z:l Fire rd.t.tr.Jtp. GABO GA G 7 iv Stof-SL i'Z to S:L 3SI1 E-rr Vol Ili'F 3\u00C2\u00A59 10.9 I6Z Auf.ll/sl Tul.f/iO Trou. I. 1 30 iO Szo-U 2-22 CpCvW 1 3-1 Fire II MR/B-SU G ' \u00C2\u00A573 \u00C2\u00A57/ T-+2-(TtZ) S'72 +tty /To \u00E2\u0080\u00A2 /TO \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 +H TT2 \u00C2\u00A5TI TTZ-+ + O \u00C2\u00A5 + 2 1-T2 612- \u00C2\u00A5/3-\u00E2\u0080\u00A2 -\u00E2\u0080\u00A2)\u00E2\u0080\u00A2 3T2 T+l- \u00E2\u0080\u00A2 /\u00C2\u00A5 7 ITO 212 \" / 7 TTI \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A52 \u00C2\u00A5TI \u00C2\u00A5CI 78 2TO-Z TXJ-1T1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 +T2- -IT2 a> TTO- \u00E2\u0080\u00A2 TA2- \u00E2\u0080\u00A2 T + l- \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5t-(J\u00C2\u00A52y> T+ZOJ + TX UJ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ' \u00E2\u0080\u00A2 ~+-Tl~ \u00C2\u00A5*2 \u00E2\u0080\u00A2 S'73 DC Oil-? IY Bm-GSL N t-6 6-3 ZSML E-YT 73 7i'F 207 i'8 //o: -110 : -loo: -/zo:-loo:-(112) \u00C2\u00A5I2\ TTA-s-iz 2-+-1-s'+z \u00C2\u00A37/ }\u00E2\u0080\u00A2\u00E2\u0080\u00A2 7i'- \u00E2\u0080\u00A2 \u00C2\u00A5o} \u00C2\u00A5s-/i' \u00E2\u0080\u00A2 lo to 20- \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / 3 I-88 72 I-7S~ 17X 7o 70 \u00E2\u0080\u00A2 4'a'j JO 60-2o' \u00C2\u00A5S' IS'-2 \u00E2\u0080\u00A2 1 /-I ?7 Z t TC2> ACD TCD ACD 7Q T+2 T+l- s II-78 Z\ 1 II-1+X.-\u00C2\u00A5 + 2J-S 12 7T1 3+1-\u00C2\u00A5+2 /Tl- \u00E2\u0080\u00A2 \u00C2\u00A5-T2 \u00E2\u0080\u00A2 S'tl- \u00E2\u0080\u00A2 \u00C2\u00A512 I-17/ \u00E2\u0080\u00A2 \u00C2\u00A511-S'7/ 210 70 38 /J 73 2\u00C2\u00A5 /o- 3 i'o 17 \u00E2\u0080\u00A2 61- 20-79 2b loo 33 1710 78 38 2 \u00E2\u0080\u00A2 DEGRADED ARALIA-OAKFERN (DA-0) STAGE I JOB J-.r./s/sy Stpt.9/io LI ttt. I. /+ 2 7 i'o dueS /ot-sf) AfM.-H S'-S-l 7 clear. HOP A GS 7 6 DtA-L IY i'.i 3.1 2 BUSH t/o 3ooT 3oo If 327 12-8 9\u00C2\u00A5 Tun.u/ii Sept t/fo Uilt.L. many ' 3l\u00C2\u00A5o S\u00C2\u00A5$'E Z-3 AlfrH S':\u00C2\u00A5-l 7 d\u00E2\u0082\u00AC*fi.ft.l*p. 170 P A I7G 7 B 37*-SL 71 i'Z 3 8 2i*0 fo JOO T 29\u00C2\u00A5H 237 8. S' 112 Miz/s-f Stptt/lo Uits.L. I 3214' IY/otJ 7 (Ti-> CcEcH i-\u00C2\u00A5-Z 7 road A. Ort.P G G Ort.li li Ae-GS ft \u00C2\u00A5.Z J.i\" 3S\u00C2\u00BB t/:o 3oo + 3JOH S'28 II. o 13 Z Tut.lo/s'f Atf.lo/io Sf/nm. L. I Z33Q UlSi'CJ 8 AlftW 6:3:2 7 sel.t.tt$ar. Ort.P G G Ort.7 7 Ae-S N \u00C2\u00A5.Z 3.\u00C2\u00A5 I \u00C2\u00A3:YT 13Z 163C 266 78 fo:iJS' 80:110+ 9o:l3o ?o:-//e:Mo 110,-/tvA. C. mant \u00C2\u00A52 1/30 E zs' lY-Cp'IY 7'2-1 7 tl unrip A G Xli'z r 3/Aj-GSL IY i'.3 \u00C2\u00A5.1 2SM VMT 2ooT 22\u00C2\u00A5H 370 Z8.0 31 JU.i/s-f kuj.l/io Cuss.C. 1+ J/00 N/ou) 29 CcM-lf i-f'Z Fire clear. IN PIP G &\u00C2\u00BBS 7 GSI 2 Bfh-7 s-.z \u00C2\u00A5.7 I Uo 30O + 321 ft 33\u00C2\u00A5 /s'7 36 Tot. 7/i-f ktf.t/iO Cuss. C. Many Zt'00 NlOE /9-2S-Cc:llH S~:3--l 7 U ZflrtP G SD 7 2 BfA-GLS 7 i.\u00C2\u00A5 \u00C2\u00A50 I (l-o 2 7o 29Zh> 2\u00C2\u00A5Z 9.7 /oo-.iso //0.I39 //o: l\u00C2\u00A5o 100./39 /oo:/Js\" //o: /39 8o:/27 12 0-1 S'o ii'- BO i'i' I 7i' \ 2S~ 80. TO 20 li'-ss-zs 7 1-80 zo /-/o 20->-/8 ii' i'o-\u00C2\u00A58 2 1-96 \u00C2\u00A5 I 80 So \u00C2\u00A50 2i' 2i' i'3'-3o 3i' So-8f 6S' xo 7-70 30 1-80 \u00E2\u0080\u00A2 2i' s'o 3S~ 6o- \u00E2\u0080\u00A2 3D 33' \u00C2\u00A50 \u00E2\u0080\u00A2 9r a-2i' / To 29 I STAGE 2 32. 3il.7ls-f Atj.f/tt, Cuss. C. Stv. 3170 ftli-U 27-30 lY.-Ccfl S---3--I Fire U H0ABUI G SG 7 t Bmf-GSL 7 i'.\u00C2\u00A5 3.8 2L E-YT I OS\" 110 F 266 i.i-100: --:iz\u00C2\u00A5 lio: -llo-loo:l38 70 9o-74' sro li'-73\" 3 /i\" \u00C2\u00A5i\" 20 2i' / -39 60 I 7i~ ?0 ITZ \u00E2\u0080\u00A2 TT2l 7T2 Itt \u00E2\u0080\u00A2 6 72 782 781 TfO 6T2 G8Z \u00C2\u00A382 3T1-\u00C2\u00A5+3 892 7/r-TTl I IT10 ; 8 102 j 6//0 \u00E2\u0080\u00A2 6s' 80 \u00C2\u00A5+2 \u00C2\u00A5 + /at-(72*^ 68ZJ-/Tt \u00C2\u00A5T2r] TTlj-\u00C2\u00A5Tl-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5+l\-s'61- \u00E2\u0080\u00A2 \u00C2\u00A5+/\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 69Z\-\u00C2\u00A3S2d- 68/ \u00E2\u0080\u00A2 bi' 80 80 80 9o (T + 2) \u00E2\u0080\u00A2 TTZ (\u00C2\u00A5 +0) \u00E2\u0080\u00A2 \u00C2\u00A5 + 2^ } ITI 882 482 \u00C2\u00A57ZJ-z + i -793 J-\u00C2\u00A5tz \u00E2\u0080\u00A2 i TZ l + Z-\u00C2\u00A5+1-6 72 /\u00C2\u00A5Z 67/-\u00C2\u00A5+/ \u00C2\u00A5+/\u00E2\u0080\u00A2 672-78 2 \u00C2\u00A371-TTO-l + Z \u00C2\u00A5TZ } +T0-2tZ\ S-72\ 1+1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 882 j \u00E2\u0080\u00A2 77/- \u00E2\u0080\u00A2 TCP ACQ 39S' 79 3 \u00E2\u0080\u00A2 / 9 2 /a- \u00C2\u00A5\u00E2\u0080\u00A2 /2o 2\u00C2\u00A5 \u00C2\u00A591 98 TCD ACD Bio 7S ALLUVIAL ARALIA-OAKFERN ( A A - 0 ) STAGE I 93 Jen/x/rt Scptt/io Uits.L. I 3l2i~ S\u00C2\u00A5oE 3-S' /VM/! S'-J.l Fir* A tt*p^ f.ftm GABU A & 7 T Bfi-L 7o S'9 S\".\u00C2\u00A3 2SM y.o 2i'o\u00C2\u00A5 Zi'oM 337 73. 3 22 Stptll/if Au).l9/it> SiorC. 1+ ZI60 due E 7-2 /VflG-H i-Jl 7 p.flt*. nn A GGn 7 r BC-S ft sT\u00C2\u00A5 \u00C2\u00A5.2 2Slf 311 sn los' Ttnzt/s'7 Avo.lo/io Hits. L. 1+ Zi30 ots\u00C2\u00A5s'\u00C2\u00A3) Ol-Z) K-H--H 3':Z-.t Fire stt.t.^dL. GABU1 A SIS 7 Bmf-l /ol 6.0 S'6 21 E-P <2 133 H 282 69 76 Ttn. 3o/i\"T Auf./o/io Burt, se v. /too ot-stoul) of-O f/.-N-N \u00C2\u00A5\u00E2\u0080\u00A23:/ Fiic trail ta\u00C2\u00AB. GBF A 7 9s't - ? o 3m-1 7 \u00C2\u00A3\u00E2\u0080\u00A2\u00C2\u00A5 i'7 2L E-P \u00C2\u00A56 S'l I 7f7 3.7 /TO: - 7io:-/3o:-/ro: /20: /\u00C2\u00A50: -/\u00C2\u00A5o:-/ZO: \u00C2\u00A5T2 - ZIZ - (TTZ)-(2To)- TtZ 3 72 + \u00C2\u00A52 \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'TZ \u00E2\u0080\u00A2 6+2 \u00E2\u0080\u00A2 S'7/ \u00E2\u0080\u00A2 S'/Z S'T/ TT3 -S9Z IT/-6.72 792 S'tl \u00C2\u00A5/2r-\u00C2\u00A5l/rd-8o-ZZ \u00E2\u0080\u00A2 s's-\u00C2\u00A50 JO-20 13' 33' 10 \u00E2\u0080\u00A2 /-10 O BO 20 O 80 loo 9s: 3' s'o 70 io \u00C2\u00A50 zs~ 9 \u00E2\u0080\u00A2 is' o /3~ 7-80 ZO /-9s' 83'-4o) i'o 30- \u00E2\u0080\u00A2 Jo /i' 80- \u00E2\u0080\u00A2 /z- \u00E2\u0080\u00A2 z /0 o 80 20 o 8i' /oo 84\" 40^ s's' 9o-73' 30 /o \u00E2\u0080\u00A2 II \u00E2\u0080\u00A2 Z e / 78 20 Z Si' STAGE 3 7\u00C2\u00A50 Auy.n/ii Ttt. l4/lo Ir-G. ltd. sev. 7770 o FUt:-:tf 7:3:1 Fire sit.t.,p.fU OG A GS 7 'ft a 73 7.3 6.6 2STIL E-P 63 93S 2\u00C2\u00A59 s-t 126 7ur.i\"/s\"f Sept. f/to AusA.C 1+ l\u00C2\u00A5o'o o-siou o -I Fl.+:-:// 4 :r:3 Fire pir~,J~>. ITA/OASU A GTt 7 H Bj-S 126 i:o S'.X 2L nu \u00C2\u00A3'P S'6 63 Bi 237 4.3 730: 7\u00C2\u00A5o: TTZ 6 77-\u00C2\u00A5+2 79 Z \u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A51 \u00E2\u0080\u00A2 S'6 2 T+2J- i\"7zb TT2 /// T-T3 T + 2 -T+o- \u00E2\u0080\u00A2 772 TZ^-^ j- TT2-b /\u00C2\u00A5/\u00E2\u0080\u00A2 T+O S\"T3 792 7\u00C2\u00A5/~-782 \u00E2\u0080\u00A2 S'72 \u00E2\u0080\u00A2 (7\u00C2\u00A5Z)-/T3-7/2-IS/-7 \u00C2\u00A5 / \u00E2\u0080\u00A2 S'// + +i~ \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 892 \u00E2\u0080\u00A2 46/ /\u00C2\u00A5/ 6 72J-\u00C2\u00A3/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 TXr j \u00C2\u00A5A2) S'l/-83' 7 s'o 7o Jo-Jo 7 2i'-/o-0 70 O Bi' 73\" O 8S //o 8 s' \u00E2\u0080\u00A2 Zo s'o S'O 9o- \u00E2\u0080\u00A2 7o 33\" is\". . II \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1-10 1-80 20 7-8S~ STAGE\u00C2\u00A5 s'l A\u00C2\u00BBf.27/rx At,*. 3/io Skr. P. 1 29 Z i\" AtBOaJ 2.-3' lY-fV-'G-ft -;-\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00C2\u00A5 Uo. Fire U DffP A S- c. many 2210 lYBi'E 2 -3 Al.rV.W 6-3:1 7 1/ A/oP A GGn 7 3 BfA-SL AI 6.1 S.\u00C2\u00A5 2 ST? (10 2S'o + 273'// 283 73.7 21 St.pt.lo/i~f At.lt/tO sUt c. many 2Z9o SioS 2-\u00C2\u00A5 fl-f/.// 6:\u00C2\u00A5.-2 7 sttlcttar. ZNhP A G-nG 7 2 Bf-LS * s'\u00C2\u00A5 \u00C2\u00A5. 6 ZSML 8 Avy. i/i, Aty li/io fiab. L. many 2p 73' o a Fttt:-:H 3':2 7 7 soil. 17 OP A GGn 7 \u00C2\u00A3 Bfh-GLS ff \u00C2\u00A5-8 3.9 ZSti t/:o 17: TTT 2 7S'+ 200 + 373\"F 212 F 38/ 3\u00C2\u00A58 li' 7 13. o 7 , Auyi'/s't Auy.li/it flab. I. 3 + 202S~ O o F/.t\u00E2\u0080\u00A2:-\u00E2\u0080\u00A2// S'Z:/ 7 road b. Ort.P A Ort/lf 3' Bf-GLS. IY \u00C2\u00A5.8 J J ZSTI U'O 23'oT 2\u00C2\u00A52A> 381 \u00C2\u00A5.7 90: IZZ /oa:/3/ 80:/!/ 80:102 loo: IfZ /oo:139 /oo :izi /oo:/3f loo:!Z9 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ->o-lzo 7o Bo 7 60 20 IS' 8 /o 13'-8o-7o 3 7 8 4' 7 8 73 7o 60 73' Zo-7 /i-74\" /a\" 70 S~ 1-91 9 I-7o 7i' 2o \u00C2\u00A50 3o s's' 3i' So JO-90 7i~ 7S' O 80 20 O TCP ACD 733\" 82 80 278 37-SO-39 \u00C2\u00A5\u00E2\u0080\u00A2 -~b~\u00C2\u00A5~ 7 289 3Z 111 \u00E2\u0080\u00A2 IZ \u00E2\u0080\u00A2 \u00C2\u00A526 \u00C2\u00A57 Zoo ZZ-80 73' \u00C2\u00A50 \u00C2\u00A50 S'i\" 2i' \u00C2\u00A50 io-8 0 is-73' O 80 20 o ao STAGS 2 l\u00C2\u00A53 Atj./f/s'f T,l.io/io l-G-.fid. sev. 21 oo o o Flat:-'H 6-\u00C2\u00A5-2 Fire r^.i.ttl*tt NOP A Qi G Qi\u00C2\u00A5-? \u00C2\u00A5 Bf-SL A/ 3\".e \u00C2\u00A5.8 / SP S'o ill/ 2\u00C2\u00A5o \u00C2\u00A5.7 /to: 9o 7i - \u00E2\u0080\u00A2 JO } \u00C2\u00A5s' jo- \u00E2\u0080\u00A2 ZS' 20 to- \u00E2\u0080\u00A2 6 - -\u00C2\u00A5 z I-90 /o I-T+Z -t\u00C2\u00A5*r +T Zl\u00E2\u0080\u0094 ' \u00E2\u0080\u00A2 \u00E2\u0080\u00A2-\u00E2\u0080\u0094 2 +0 \u00C2\u00A5+2 t+2 2 It \u00E2\u0080\u00A2 89~2 i II-1T1-\u00C2\u00A5+1-S'7Z 8 9 Z S'tl \u00E2\u0080\u00A2 T + l S' + Z S'S I \u00C2\u00A5TZ 69 z 68Z \u00C2\u00A58Z T + l-\u00C2\u00A593 793 78 Z T+l-+ + Z /\u00C2\u00A5/ \u00E2\u0080\u00A2 + + T -Z6Z 661 \u00E2\u0080\u00A2 i rxl-Z+l \u00E2\u0080\u00A2 til \u00E2\u0080\u00A2 \u00C2\u00A5 + 1 l + Z-Z + l Z+l- \u00E2\u0080\u00A2 76ZcL Slid-TcH ACD 3Si' 77 39 8 ~\u00C2\u00A58 \u00E2\u0080\u0094To\u00E2\u0080\u0094 17- 3 8 8 18-\u00C2\u00A506 BI-STAGE Sl/PITiARY' STAGE I TCP ACt) /7ti' 80 3 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 z\u00C2\u00A5 1 \u00E2\u0080\u00A2 .77\u00E2\u0080\u0094 \u00C2\u00A5 3i 16-i'91 Z7-1988 to STAGS Z TCb ACT) i\u00C2\u00A5ao sz 32- z \u00E2\u0080\u00A2 8 27d I s'-tl- 3 lit- 6 \u00C2\u00A591 27^ 77- 7 73'7 9 3\u00C2\u00A57 19-b\"ts 36-S'6f 31 \u00E2\u0080\u00A2 STAGS 3 TCP ACD S~2o T\u00C2\u00A5 Z%9 38 71 \u00E2\u0080\u00A2 1 /i'o - XX 6\u00C2\u00A5 9 /60 z\u00C2\u00A5 /98 Zf 2 i'i 38 2\u00C2\u00A5 \u00C2\u00A5 * 1 plot sms\u00C2\u00A5 CD * >nly ASSOCIATION SUMMARY Cr. C TCP ACD CCD 37t\u00C2\u00A3 8o_ b \u00E2\u0080\u00A2 I 3i' \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 12-\u00C2\u00A52 / It - 0 \u00E2\u0080\u00A2 II-3 s'jj- // Z7-29 2 73 \u00E2\u0080\u00A2 2- S~-\u00C2\u00A5\u00C2\u00A5 3 is'l '7S~ \u00C2\u00A5 718 \u00E2\u0080\u00A2 73\" 2 <.-Z7- Z 81 2 6 \u00E2\u0080\u00A2 Zt- Z 317- 7 \u00E2\u0080\u00A2 32 6i\" \u00C2\u00A5 S'81- 12- 19-98- S' /i'/o 3Z- 33 gs\" 4\" 238/ S\"\u00C2\u00A5 63 OCCAStQNALir PPESEIYT Acer gtabrum - S&13'9, Aj tzo; S B i'or Ajt+1; SB S'7 As Z7Z) SB18\u00C2\u00A5I Aj TTZ - SB1Z7A3 t-/-Z} Alnus ctispa. - SB/o i~ As ttZ ; A- t-homii folia. - SB 139, Aj+T3- Pinus contorta. \u00E2\u0080\u0094 SB it, At t++o), SBtl, A,\"rAt l+o \u00E2\u0080\u00A2 SB - S'7lrd 231+-331- \u00C2\u00A5\u00C2\u00A52- 332 3/2-/// \u00E2\u0080\u00A2 S'i 2 772nt /\u00C2\u00A5/\u00E2\u0080\u00A2 2\u00C2\u00A5/-/\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// /// \u00E2\u0080\u00A2 3\u00C2\u00A5l-22/ \u00C2\u00A542 \u00E2\u0080\u00A2 \u00C2\u00A5-++/o /// +\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// /\u00C2\u00A5+\u00E2\u0080\u00A2 /\u00C2\u00A5/ /\u00C2\u00A5/\u00E2\u0080\u00A2 //I 772 CC1 2 + 1- \u00E2\u0080\u00A2 2+1-1+ld /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00C2\u00A5/l-31/ \u00E2\u0080\u00A2 S'41 /\u00C2\u00A5/ \u00E2\u0080\u00A2 7 3-3 \u00C2\u00A51- \u00E2\u0080\u00A2 \u00C2\u00A5+Z 331-/IItu 89 2 \u00E2\u0080\u00A2 r?/-2 3'I /\u00C2\u00A5/tu \u00E2\u0080\u00A2 \u00C2\u00A51/ \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 li' 161 \u00E2\u0080\u00A2 1+1 \u00E2\u0080\u00A2 60 7+1 \u00E2\u0080\u00A2 1//S /\u00C2\u00A5/-+ +z-2 11-T+l \u00E2\u0080\u00A2 7/7s +\u00C2\u00A5/\u00E2\u0080\u00A2 /7Q 3 7 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 It/-7+2- \u00E2\u0080\u00A2 3+2-+ + +\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3ZZ \u00C2\u00A5\u00C2\u00A3lr- 78Z . . . . /+, . l+l-l+l \u00E2\u0080\u00A2 \u00C2\u00A5+/\u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5z /// 111 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5/z \u00E2\u0080\u00A2 <\u00C2\u00A5i/. \u00E2\u0080\u00A2 3+1- \u00E2\u0080\u00A2 3Y1- \u00E2\u0080\u00A2 \u00C2\u00A5//\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+!\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5/ /+!\u00E2\u0080\u00A2 47/-\u00C2\u00A5\u00C2\u00A5/ + + /d- /+/\u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 ii\" X/-o \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 o /i- s\" o \u00E2\u0080\u00A2 o 70- J \u00E2\u0080\u00A2 l\u00C2\u00A5i' \u00C2\u00A59-S'6 /8 \u00E2\u0080\u00A2 20- 7 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 To/ If-ACD tl / \u00E2\u0080\u00A2 li-20 li'-76-Il-ls 9 \u00E2\u0080\u00A2 16 3\u00C2\u00A5\u00C2\u00A5 3 \u00E2\u0080\u00A2 12-1 \u00E2\u0080\u00A2 IS\"-o \u00E2\u0080\u00A2 o o /// o \u00E2\u0080\u00A2 III-1 \u00E2\u0080\u00A2 o 21 I /o \u00E2\u0080\u00A2 o 223 /0 \u00E2\u0080\u00A2 358 76-360 /i \u00E2\u0080\u00A2 38 2 \u00E2\u0080\u00A2 77-O \u00E2\u0080\u00A2 \u00C2\u00A53' 7o Z^ ++/ \u00E2\u0080\u00A2 l+l- \u00E2\u0080\u00A2 +\u00C2\u00A5/ \u00C2\u00A5+1- \u00E2\u0080\u00A2 2+1 \u00E2\u0080\u00A2 /\u00C2\u00A5/ S'i Id \u00C2\u00A5S\"2d /TZr- /\u00C2\u00A5/ \u00E2\u0080\u00A2 / + o \u00E2\u0080\u00A2 /3-/0 - - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 - - \u00E2\u0080\u00A2 J\u00C2\u00A5~- \u00E2\u0080\u00A2 IT+O- + + +0-\u00C2\u00A5+1-1+1 z+l- 321-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 f 57 - /7Z- \u00E2\u0080\u00A2 + \u00C2\u00A5/\u00E2\u0080\u00A2 S'7/ \u00E2\u0080\u00A2 312 \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'i I \u00C2\u00A5//\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/ \u00C2\u00A5r~ \u00E2\u0080\u00A2 2//- 1+/- \u00E2\u0080\u00A2 7+7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 i't2 6 72 88/ S'4/d i'6/ol 77/d z4/do r//-///d S'\u00C2\u00A5zd s'tl-\u00C2\u00A5//d \u00E2\u0080\u00A2 z\u00C2\u00A5z /+/\u00E2\u0080\u00A2 30 J4\" ++t l+l 311- Z+l-2.21- 361-z 6 zd /+! /// \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 ///srr \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2i\"/ \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00C2\u00A5+/\u00E2\u0080\u00A2 211-++X\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ++Z \u00C2\u00A5izd i'i Z \u00C2\u00A5\u00C2\u00A3/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3+1-S'tl- \u00E2\u0080\u00A2 3'71 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33-1 3\u00C2\u00A5ldr 2\u00C2\u00A51 Jit- 3\u00C2\u00A5l 80 20 (++/) 1+1 S'S' Z + Z + +2 60 /+! TCD ACD TCD ACD + + /\u00E2\u0080\u00A2 ++I \u00E2\u0080\u00A2 7+1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 312 \u00E2\u0080\u00A2 /+/ l+l 3 S'l \u00C2\u00A561+ l7Zd 3\u00C2\u00A5zd + \u00C2\u00A5/\u00E2\u0080\u00A2 /// 77/ /+/0 /+/ \u00E2\u0080\u00A2 + +/\u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00C2\u00A5 7Z 3// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5S'/ ZT/ 881-S'\u00C2\u00A5/ \u00E2\u0080\u00A2 34Z- 2(2 \u00C2\u00A542 \u00E2\u0080\u00A2 3 12 z + l- \u00E2\u0080\u00A2 l+l- \u00E2\u0080\u00A2 3S'l \u00E2\u0080\u00A2 2+zd l+l \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 I 7l- \u00E2\u0080\u00A2 1+lr \u00E2\u0080\u00A2 \u00C2\u00A5ild-\u00C2\u00A5i'z 3tZ~-/+/d \u00E2\u0080\u00A2 47/- \u00E2\u0080\u00A2 C(/d-/+/ \u00E2\u0080\u00A2 2+/-/\u00C2\u00A5/ \u00E2\u0080\u00A2 S'S 2 112-\u00C2\u00A5s'l-2 31-li ///o \u00E2\u0080\u00A2 //2S-230 \u00C2\u00A56 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3' \u00E2\u0080\u00A2 7 3\u00C2\u00A5zd 72/-/\u00C2\u00A5/\u00E2\u0080\u00A2 l+lo /7/r.-3'+/ 1 + +-3 lid'\u00E2\u0080\u00A2 / / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'i'- //\u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O o \u00E2\u0080\u00A2 o O \u00E2\u0080\u00A2 O s'l /0 \u00E2\u0080\u00A2 18- \u00C2\u00A5 \u00E2\u0080\u00A2 2 Jo \u00C2\u00A56 36 7 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /2 / II- 1 81 8 O \u00E2\u0080\u00A2 O 7 \u00E2\u0080\u00A2 I o \u00E2\u0080\u00A2 o / / * // \u00E2\u0080\u00A2 7\u00C2\u00A5- 7 \u00E2\u0080\u00A2 \u00C2\u00A5-ti fi-le* 9 \u00E2\u0080\u00A2 22- 2 \u00E2\u0080\u00A2 + +1-23' 23 /Jl 7/1 \u00E2\u0080\u00A2 13/ /iz \u00E2\u0080\u00A2 777 36 Z 36/ \u00C2\u00A5-3'/ 34/-ZZZ j\u00C2\u00A57-111 \u00E2\u0080\u00A2 2 3'luj \u00C2\u00A5 4 Idr /z/d -r + l /(Zw 21/d \u00E2\u0080\u00A2 + +/\u00E2\u0080\u00A2 /+/ \u00C2\u00A512 3 i'Z 3\u00C2\u00A5l-///u- \u00E2\u0080\u00A2 z/z-+ + taj-1+ILU \u00E2\u0080\u00A2 3+1 l+l \u00E2\u0080\u00A2 l+l-13/ \u00E2\u0080\u00A2 J+l- \u00E2\u0080\u00A2 S'l/ \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/1- \u00E2\u0080\u00A2 iT/ \u00E2\u0080\u00A2 S'S'ldr \u00C2\u00A5+1- \u00E2\u0080\u00A2 3-LZ \u00E2\u0080\u00A2 \u00C2\u00A5T! \u00E2\u0080\u00A2 Z+l- \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 + 77- \u00E2\u0080\u00A2 \u00C2\u00A5t/d-33 X \u00E2\u0080\u00A2 361- \u00E2\u0080\u00A2 311 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5C /d 3i'/d-\u00C2\u00A5TZ+ Z//-i'i'2 \u00E2\u0080\u00A2 3\u00C2\u00A51-2+lhJ TTZ-l+l-\u00C2\u00A5 (,1-iO JO 90 T+l-1+2 \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 2 11-+ +/\u00E2\u0080\u00A2 Z+l + + IO \u00E2\u0080\u00A2 S'tl- \u00E2\u0080\u00A2 + + + o 23 2 2 + 1 26Z 11/ \u00E2\u0080\u00A2 1110 l+lo \u00E2\u0080\u00A2 ++10 3 6ZO zll-+++ /+/\u00E2\u0080\u00A2 1+1-\u00C2\u00A5(/ ZH~ l+l /+/ \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 2+1 3+ld+ 2 + o- \u00E2\u0080\u00A2 1+1 \u00E2\u0080\u00A2 l/o Z++-S'S'I l+l-++/\u00E2\u0080\u00A2 l+l \u00E2\u0080\u00A2 31Z ++I-++/\u00E2\u0080\u00A2 T + l \u00C2\u00A5s'z \u00E2\u0080\u00A2 ++lo Zllo \u00C2\u00A5i't 311-+TI \u00E2\u0080\u00A2 ITI - \u00E2\u0080\u00A2 Z\u00C2\u00A5ZO + + I0-1\u00C2\u00A5z-\u00C2\u00A561-/+/-\u00E2\u0080\u00A2 + /d-z\u00C2\u00A5/o / + z- \u00E2\u0080\u00A2 2 + 1- \u00E2\u0080\u00A2 78/- \u00E2\u0080\u00A2 4>--/- \u00E2\u0080\u00A2 \u00C2\u00A5// 2+/-7\u00C2\u00A5Z- /TZ-3S\"2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5Z 2/1- \u00E2\u0080\u00A2 sej-js'/- \u00E2\u0080\u00A2 i r/-(i/- \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 3+1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 + +/d \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //Id \u00E2\u0080\u00A2 TT/d \u00E2\u0080\u00A2 111 Jo /s zo Zll \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z+l--Ills \u00E2\u0080\u00A2 71ZO \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 -r + Z- \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 9o 6+Z \u00E2\u0080\u00A2 3\u00C2\u00A5Z-2 + 2 J\u00C2\u00A5l 1++ \u00E2\u0080\u00A2 l+l \u00E2\u0080\u00A2 311 \u00E2\u0080\u00A2 Zfl \u00E2\u0080\u00A2 ZS'Z-/\u00C2\u00A5_/ \u00E2\u0080\u00A2 /\u00C2\u00A5/ 3\u00C2\u00A5l-3+1-2 + + /+/ \u00E2\u0080\u00A2 l+l \u00C2\u00A5\u00C2\u00A5? + \u00C2\u00A5/\u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 1+1-s'\u00C2\u00A5z 211 \u00E2\u0080\u00A2 2 32 6 41-3 \u00C2\u00A52 i 71-l+t \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 77X-\u00C2\u00A5+Z 8 7Z \u00C2\u00A5tt-z+f-HI 3+1-211 \u00E2\u0080\u00A2 + +I-3o jy-.?-+ +F + + /\u00E2\u0080\u00A2 + +/\u00E2\u0080\u00A2 l+l \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 + Tld \u00E2\u0080\u00A2 Z i'Z 1+z- \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A52 3'7Z \u00E2\u0080\u00A2 3+1- \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 + +ld \u00E2\u0080\u00A2 TCD ACD \u00C2\u00A5(0 \u00C2\u00A5\u00C2\u00B1 \u00C2\u00A5s- 3'-8 1 -22 2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 11- I \u00E2\u0080\u00A2 3'- 1 \u00E2\u0080\u00A2 21- 2 \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 Zl- 2 \u00E2\u0080\u00A2 17- Z \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I 0 \u00E2\u0080\u00A2 20- 2 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 s'l- i'-to- I \u00E2\u0080\u00A2 68 7 \u00E2\u0080\u00A2 It- I \u00E2\u0080\u00A2 i' I \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 16- 2 121 12 \u00E2\u0080\u00A2 377 38 1*2 /\u00C2\u00A5\u00E2\u0080\u00A2 /6- 2 \u00E2\u0080\u00A2 36 \u00C2\u00A5 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 O -li' 4 4 3S T + T 111 \u00E2\u0080\u00A2 + +1-Zil- \u00E2\u0080\u00A2 37/-++1- \u00E2\u0080\u00A2 ++1-l+l \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5 + \u00E2\u0080\u00A2 3(1-Z + l-I// \u00E2\u0080\u00A2 \u00C2\u00A5il-3+1- \u00E2\u0080\u00A2 Z+l- \u00E2\u0080\u00A2 I + + \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3(2 Ui 3(ld- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5 + + + +I- \u00E2\u0080\u00A2 231 \u00E2\u0080\u00A2 72/Jrr-73-1-3+2 J+Z /\u00C2\u00A5/ \u00E2\u0080\u00A2 / / / /// + + + T+l-3\u00C2\u00A51 ++1-3 i'Z /tz 2 S'l Z\u00C2\u00A5/ \u00E2\u0080\u00A2 3 S'l \u00C2\u00A5e/-\u00C2\u00A5(/ \u00C2\u00A5\u00C2\u00A5l /\u00C2\u00A5!\u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 \u00C2\u00A5c/ 2i'l 3 72 \u00E2\u0080\u00A2 \u00C2\u00A57Z + +/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7\u00C2\u00A5zd-782 \u00E2\u0080\u00A2 S'i 2d 372 3'9Z +T7-++I-iSZ-S-9Z \u00C2\u00A5\u00C2\u00A5z 3iZ \u00C2\u00A511-\u00C2\u00A561-\u00C2\u00A5i'z zi'l 1+1 3iZ-Jo T + Z z+l-\u00C2\u00A5+1 \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 /6z z/l \u00E2\u0080\u00A2 It/ \u00E2\u0080\u00A2 ZIZ \u00E2\u0080\u00A2 1+1 \u00E2\u0080\u00A2 liZdr 3+1-211-l+t-1+1 J\u00C2\u00A5z 111 111 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A3/ \u00E2\u0080\u00A2 31/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A56/d /\u00E2\u0080\u00A2+/ z//d TCD ACD 773\" 3i' O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O I \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 4'- I \u00E2\u0080\u00A2 i'i' II \u00E2\u0080\u00A2 I O o \u00E2\u0080\u00A2 lb-o \u00E2\u0080\u00A2 10 \u00E2\u0080\u00A2 o 2 o o \u00C2\u00A51 8 \u00E2\u0080\u00A2 Zl- \u00C2\u00A5 \u00E2\u0080\u00A2 166 33 31- 6 \u00E2\u0080\u00A2 26- i'-TCD ACD 987 \u00C2\u00A5\u00C2\u00A3 i~ 0 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /i \u00E2\u0080\u00A2 \u00C2\u00A50 z 2 \u00E2\u0080\u00A2 0 //\u00E2\u0080\u00A2 I /JJ 6 77 \u00C2\u00A5 /6- 7 t \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 ZZ I 6 \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 378 77-Hi' 8 \u00E2\u0080\u00A2 ?oz \u00C2\u00A51-l\u00C2\u00A5o i \u00E2\u0080\u00A2 81- \u00C2\u00A5 0 \u00E2\u0080\u00A2 o TCP ACD \u00C2\u00A3JI J4~ / \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 3 o \u00E2\u0080\u00A2 Zl I \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 IZ- 1 \u00E2\u0080\u00A2 77- 1 \u00E2\u0080\u00A2 12 I \u00E2\u0080\u00A2 207 /2 i'Z 3 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 O-2 O \u00E2\u0080\u00A2 ZO / \u00E2\u0080\u00A2 0 - O \u00E2\u0080\u00A2 / 0 \u00E2\u0080\u00A2 \u00C2\u00A5/ Z \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 9 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 /o- I \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 o -Zl- 1 \u00E2\u0080\u00A2 S'7 3 \u00C2\u00A563 26-Zi'\u00C2\u00A5 /\u00C2\u00A5 zo- / \u00E2\u0080\u00A2 17- / \u00E2\u0080\u00A2 o - o \u00E2\u0080\u00A2 TCP ACD 3C\u00C2\u00A3 \u00C2\u00A32 s'z 7 \u00E2\u0080\u00A2 20 3 \u00E2\u0080\u00A2 2 I 3 /r- 2 /s~- 2 /\u00C2\u00A3\u00E2\u0080\u00A2 z B \u00E2\u0080\u00A2 / \u00C2\u00A5 \u00E2\u0080\u00A2 / /i'i' ZZ io- I \u00E2\u0080\u00A2 IS- 2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O 0 \u00E2\u0080\u00A2 o 4o 9 i\u00C2\u00A5i zl-1 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 is' 2 \u00E2\u0080\u00A2 s I ~ 4/ 9 179 Zi-17- Z \u00E2\u0080\u00A2 Z7- \u00C2\u00A5\u00E2\u0080\u00A2 0 o CD * 3o y \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 70 \u00E2\u0080\u00A2 20 CX 63 69 2 3' JS' \u00C2\u00A50 73' C TCD 2013 \u00C2\u00A5 68- \u00E2\u0080\u00A2 \u00C2\u00A5 JO 2 \u00C2\u00A52 2 17-3 3\u00C2\u00A5 80 s'\u00C2\u00A5 / /6-s~ 60 3 /7-\u00C2\u00A50 83 3 23 4- \u00C2\u00A59sr-2 7 S3' 13-19-13-33 SO 13' 47 lo-\u00C2\u00A56 23' Ur-sa \u00E2\u0080\u00A2 /oo 96-83 z iz-2 ZO 7 3 \u00E2\u0080\u00A2 7 20 7 0 2 2 4\" /78 \u00E2\u0080\u00A2 / 26 \u00C2\u00A5 /8/ I II-3 23 S~ S'o/ \u00E2\u0080\u00A2 s\" 80 7 4 1/73 \u00E2\u0080\u00A2 3' /87 \u00E2\u0080\u00A2 73 Z7 \u00C2\u00A5 70/ 2 O \u00E2\u0080\u00A2 ACD CCD \u00C2\u00A5z / \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 / z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 10- 12-1 \u00E2\u0080\u00A2 S'-o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 O 1 \u00E2\u0080\u00A2 O 2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 s\"\u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 6~-O \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 o- I \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 /O- 12 \u00E2\u0080\u00A2 17- /7-2\u00C2\u00A5 2i-\u00C2\u00A5\u00E2\u0080\u00A2 s'-2 \u00E2\u0080\u00A2 3 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 OCCASIONALLY PRESENT Abie' grandis - SBlZi'B, \u00C2\u00A57-1;SB/8\u00C2\u00A5J B} ++/s; SO 194 B, SB 139, O, l+o, Bi IH; SB /Vo, Sj ///s ; SB s'/M B\u00E2\u0080\u009E l/Z; Prunus \u00C2\u00A5+1 C m ; A. lasiocarpa, - SBtl, 3, l\u00C2\u00A5ot SB/CZ, Sj l+l; SBtl, BA 1+1 ; SBI7o, Bj ++I; SBlfJ, B, ++l,Bzt+/-t Alnus crispa. \u00E2\u0080\u0094 SB, 133, B/SfZ, B^I+liSBiJ, 3,lti,al 2 s'x ;SB?t,B,X+?; A. rhombi folia. -SB/39,3,/// \u00E2\u0080\u00A2 CeanoTAus sanguineus -SB/83, B.+++; Crataeyus dauytassii -SB/tSJ Bt /II: SB 139, B, l+l - /Volodiscus discolor -SB S'7, Bt,'IZ^ lonieera. ciliosa. -SBS'2, BjZZZ; SB i'7, J,, \u00C2\u00A5txa) rtehxicsia. Perruyinea. -SB/3'J BA ++/\u00E2\u0080\u00A2 'orginato. -SO 133 B, l+t, B^ /+x;SB/\u00C2\u00A50, B, l+l ; P. uirgLniant^ var. de mixta -SJ3/J9, Bx ++/ \u00E2\u0080\u00A2 SB/\u00C2\u00A5o, Bt ++/; Phododtndton atbtftorum - SB l/Z, 3t ++Z) S89J, 8x1+1; SO XI, Bjl\u00C2\u00A5l; Puits leucooiermis - SB i'l,B,J\u00C2\u00A5Z; Satix bebiiana -SB Ct, 3, /+o ; S. scovteriana -SO/33,3, ttZ, Bt \u00C2\u00A5/Z- SBIJ,B, ++Z ;SO 7i, B, l+l ; Sambucus put ens -SB 31-, SjT+t^SB i'i, B, l+l; Sbcphtrdia. canadensis -SB/ij, Bj (CZ;SB t3, B, \u00C2\u00A5f2; SB JO, Bj, !+/\u00E2\u0080\u00A2 SB/91, Bj l+l; SB 93, Bj ++Z ; Physocarpus capitatvs -SBlZ7,Bt l+lo; SB I2i, B, t+lto ; P. malvaceus -SB18\u00C2\u00A5,Bj, ++1 \u00E2\u0080\u00A2 Populus trichocarpa. -SBI33,B, l+l \u00E2\u0080\u00A2 Yaccin'tum myrtitIoides-SO IZt, Bz 231 ' ' -LAYER C- HERBS liHArm Cover \"/i G G 71 N 7/ G G G-C 7/ TV H G 7f G // // C ft H *Y G G G C ff c-/\u00C2\u00A5 7/ & & & ft N-C H-t C T ff H G /v G C G G C C ff A> Pm ft t> H ft tl C M-C C 77 G C-G G G Pm 7/ A/ G Pm 77 H-C A eta ea. aijuta. Adenocauton Atcolor-Ayrostis e-xarata, A. stolon if era. Anaphalis margaritacca. Apacynum aridrosae/ni-fo Hum AraCia. hudicaulisa \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Asaium cam-datum' Aster mode-stus Aster spp. AtAyrium ftlix-Pomina. BoTfuchium virginianune \u00E2\u0080\u00A2 3+omux vulgaris \u00E2\u0080\u00A2 Calypso bufbasa. Carex (aeviculmis C. mertensii CAimapAita. umbtllata. Cinna. latiPolia CtJ-caea. alpina. Ct'+sium lanceolatunt CttnToni'a. uniflora.* ea Comandra. livida.-Coralto'Aixa. macutata.% Cornus Canadensis*\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Dactylis glomerata. Disporum oreganum Dryopteris austriaca. Epilobium adenocaulon \u00C2\u00A3. anguttifotium Eguisetum arvense-E: pratense \u00E2\u0080\u00A2 Fettueo. occidentals praya+ia bractcata. Galium t+'tftort/m \u00E2\u0080\u00A2 GauttAerio. ovati folia. Gnaphattium vimcosum Glycerin, data. Goodyera obtonyi folia.* \u00E2\u0080\u00A2 Gym no carpium t dryopteris \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ffierac turn a lit flor uht I ilium ca/umiianum linnaea borealis* \u00E2\u0080\u00A2 listera. con vaftariotdes L. cardata. lytopodlum annottnum I. setayo \u00E2\u0080\u00A2 _ \u00E2\u0080\u00A2 Oruxopsis asperifotia Osmorhisa. oAitensis Pinus monticola. /Yabcnaria, oriiculata, Pteridium aouilinum Pyrola asarifolia. \u00E2\u0080\u00A2 PrchlorantAa. P picta P. secunda.* * Panuneutus bonyardti PuAus nival is* X. pedatus Senecio indecorus-Sm'tlacina raca.moxa. \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 S. stellata.* -Streptopus amplcxifalius S. roxeus S. streptopoides \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 TAu/a. plicata. -Tia+etla trifotiata. 7T uni folia to. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Trill turn o vet turn Tsuyo. AetcropAylla. Yeola. glabella. Y. oriiculata. SO S'o So 132 7+2-2+1-2/2-T+2-//2 \u00E2\u0080\u00A2 77/uj 2/2-3/2 \u00E2\u0080\u00A2 \u00C2\u00A53ZU /// \u00E2\u0080\u00A2 237 + +/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5/*J 3 3-/ 2 S'Z 472 3 3 2 JS'l 332 \u00E2\u0080\u00A2 7/Z uJ \u00E2\u0080\u00A2 ++/cu-T+/to 2 3'/ /\u00C2\u00A5/ \u00E2\u0080\u00A2 /\u00C2\u00A5/u 722 /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7\u00C2\u00A5Z Ul \u00E2\u0080\u00A2 7/Z Zi'l 2\u00C2\u00A5/ 3-\u00C2\u00A5/ /// + \u00E2\u0080\u00A2 /JZbJ-\u00C2\u00A5tz 2S\"Z + \u00C2\u00A5-\u00C2\u00A5z \u00E2\u0080\u00A2 \u00C2\u00A5S'Z S'tl S'4Z 4 7Z 322 342 /2Z-\u00C2\u00A5\u00C2\u00A57 2/2 172 212- \u00E2\u0080\u00A2 i'62 \u00E2\u0080\u00A2 ZIZ-C 72 Mi'l \u00E2\u0080\u00A2 /I/- \u00E2\u0080\u00A2 zzz \u00E2\u0080\u00A2 6 s'z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 2\u00C2\u00A5/ 7\u00C2\u00A5/duJ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A52 272 2\u00C2\u00A5id-z/z 332 \u00C2\u00A5\u00C2\u00A5/n7 +++\u00E2\u0080\u00A2 2/2 22/ 7Z7-2/2uu /2Z0J 7\u00C2\u00A5Zrn-i 2X1- \u00E2\u0080\u00A2 ZIZ-\u00C2\u00A53'Z 32Z 11/ \u00E2\u0080\u00A2 Z/2-\u00C2\u00A5(z T+l-312 \u00C2\u00A5s'z 3ZZ i'tl-311 \u00E2\u0080\u00A2 \u00C2\u00A5tz 3\u00C2\u00A5t- 211 \u00E2\u0080\u00A2 S\u00C2\u00A5z- 3 fx. 221- \u00E2\u0080\u00A2 2IZOJ l+t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 112 \u00E2\u0080\u00A2 7+1 \u00E2\u0080\u00A2 1+2 Zll-l+z \u00E2\u0080\u00A2 iiz \u00E2\u0080\u00A2 7+Z-2*tZ 1+2-Z/2 211 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l\u00C2\u00A5/d \u00E2\u0080\u00A2 l\u00C2\u00A5l \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5X-211 \u00E2\u0080\u00A2 2/2 3\u00C2\u00A5Z /\u00C2\u00A5! Z+l-22 Z 211-2/1 2/Z 121+ /ZZ 37Z-2/Z-\u00C2\u00A5\u00C2\u00A5/ \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 77/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 ZTId- 7\u00C2\u00A5/d-Z+l-/+z- \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7+1- \u00E2\u0080\u00A2 1\u00C2\u00A5Z- \u00E2\u0080\u00A2 S~\u00C2\u00A5Z-+ +I-ZIZ-1+z-3\u00C2\u00A52 JS'zd 3+Z \u00E2\u0080\u00A2 33Z 2 + 1- \u00E2\u0080\u00A2 3X2 \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 zzz T + Z Z + Z IT/-3ZZ //Z \u00E2\u0080\u00A2 2/Z 161-31Z -7\u00C2\u00A5Z W 3/2 0/ 7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2\u00C2\u00A5?d +\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A5S-/ \u00E2\u0080\u00A2 6S7-/T2d-7+3- \u00E2\u0080\u00A2 993 \u00E2\u0080\u00A2 7+2- \u00E2\u0080\u00A2 221 d-112- \u00E2\u0080\u00A2 1 + Z- \u00E2\u0080\u00A2 3'61 \u00E2\u0080\u00A2 i'6z \u00E2\u0080\u00A2 7+7-32Z /+rd 23/- \u00E2\u0080\u00A2 3CZ 23 Z 2T2 /2Z \u00E2\u0080\u00A2 ZZ/ \u00E2\u0080\u00A2 /+Zd 23'Z \u00E2\u0080\u00A2 3\u00C2\u00A52 3\u00C2\u00A52u> 2//- \u00E2\u0080\u00A2 30 7o IZ 10 ZO 20 l+l 3+Z \u00C2\u00A532-1+1 \u00E2\u0080\u00A2 111 z+l-3 i'Z Itlu)-ZZ1 /\u00C2\u00A5z-s'Cz \u00C2\u00A532 -Z 12-111 \u00E2\u0080\u00A2 \u00C2\u00A56Z + +I \u00C2\u00A5ll- \u00E2\u0080\u00A2 3\u00C2\u00A5z \u00E2\u0080\u00A2 J\u00C2\u00A5z \u00E2\u0080\u00A2 l+lto /// l+l \u00E2\u0080\u00A2 Ji\ 2a> /+/ - Z/Z - / + Z *> //2 + 2//- ///d \u00E2\u0080\u00A2 l+l- \u00C2\u00A5+/\u00E2\u0080\u00A2 l+l- \u00C2\u00A5+/\u00E2\u0080\u00A2 /7Z \u00C2\u00A5\u00C2\u00A52- i'6x \u00C2\u00A5(x \u00E2\u0080\u00A2 \u00C2\u00A56z Z3l- \u00C2\u00A5s'z \u00C2\u00A5\u00E2\u0080\u00A2 a Z \u00E2\u0080\u00A2 i'\u00C2\u00A5z \u00E2\u0080\u00A2 331 3ZZ \u00E2\u0080\u00A2 jzldr 331-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 JtJZ 212 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 Z\u00C2\u00A5/-3\u00C2\u00A5l-/\u00C2\u00A5/ T+l- \u00C2\u00A5\u00C2\u00A5z / + / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5JZd /\u00C2\u00A5/\u00E2\u0080\u00A2 /\u00C2\u00A5/ 2+1- 2+1 2 ZZ \u00E2\u0080\u00A2 2 II \u00E2\u0080\u00A2 /3Z /\u00C2\u00A5/ ///d \u00E2\u0080\u00A2 12Id-!\u00C2\u00A5/ !\u00C2\u00A5/\u00E2\u0080\u00A2 ++td- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 3/d ZZZ \u00E2\u0080\u00A2 /2/-3\u00C2\u00A52- S'7Z /AT + + +0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 23Z /\u00C2\u00A5/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2/2 \u00E2\u0080\u00A2 22Z 2ZZ //I- /\u00C2\u00A52-++/\u00E2\u0080\u00A2 2/2 /2/ l + l-2XZ Ji'2 /\u00C2\u00A5/\u00E2\u0080\u00A2 I// 111 \u00E2\u0080\u00A2 ++I-1ZI- \u00E2\u0080\u00A2 /// UIO 1+1- \u00E2\u0080\u00A2 / + + \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5/ \u00E2\u0080\u00A2 ++ZK) /+/ \u00E2\u0080\u00A2 + +/\u00E2\u0080\u00A2 /\u00C2\u00A5/ /// \u00E2\u0080\u00A2 23 Z 3ZZ \u00E2\u0080\u00A2 32Z \u00C2\u00A5ZZ Z-+Z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 /\u00C2\u00A5Z III -Z/Z-1/2 \u00E2\u0080\u00A2 17/ \u00E2\u0080\u00A2 3+1- ++/\u00E2\u0080\u00A2 2+1-2J// 21/-/*/\u00E2\u0080\u00A2 //2 /// \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 -?J Z AT/ //2 /// 3/Z \u00C2\u00A532 \u00E2\u0080\u00A2 /// 2Z2 33/ ZTf-3Z( 3+/-3// \u00E2\u0080\u00A2 /72 \u00E2\u0080\u00A2 3+/- 2+t t\u00C2\u00A5/ 2\u00C2\u00A52d /+/\u00E2\u0080\u00A2 ' /\u00C2\u00A5/ 3H-+ / + +/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 32Z \u00E2\u0080\u00A2 2+/-/\u00C2\u00A5/d t+2 s-s'X \u00C2\u00A5-\u00C2\u00A5-3 2/2 \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 + 6/ /\u00C2\u00A5/ \u00C2\u00A5+/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5z \u00E2\u0080\u00A2 /TZ-\u00C2\u00A562 /Tld \u00E2\u0080\u00A2 /2/-\u00C2\u00A53Z S'CZuJ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 +\u00C2\u00A5Z- \u00E2\u0080\u00A2 JZ Z. 2 2/-/// 211-7T7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7TZ-2 37- \u00E2\u0080\u00A2 \u00C2\u00A53Z 73 SO 7o /TZ- 1/2HJ \u00E2\u0080\u00A2 \u00C2\u00A5lZa) 311 \u00E2\u0080\u00A2 212- 31/ \u00C2\u00A5\u00C2\u00A5Z- S'61-712- 211 \u00E2\u0080\u00A2 \u00C2\u00A531 . . . / H . 1+7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 . . . . /,\u00C2\u00BB/ . \u00C2\u00A382- t 72-\u00C2\u00A5\u00C2\u00A5X- 172 2\u00C2\u00A5l-7 72 231 b>- 321-2\u00C2\u00A5l 1Z1-7+2 /// \u00E2\u0080\u00A2 7 \u00C2\u00A52 J21 l+l- \u00C2\u00A5\u00C2\u00A5Z- \u00C2\u00A5-\u00C2\u00A5Z-\u00C2\u00A5\u00C2\u00A5z- \u00C2\u00A5iz s\u00C2\u00A5z ST\u00C2\u00A5z- s'\u00C2\u00A5z \u00E2\u0080\u00A2 2/Z 7S'2 222 /T2-i-\u00C2\u00A5Z l\u00C2\u00A5Z-86Z 1/2-i\">2 7+2- 7+7 J/2- 7/1 \u00C2\u00A531- \u00E2\u0080\u00A2 l++d-\u00C2\u00A511 3+1-/\u00E2\u0080\u00A2hi-ll2 \u00E2\u0080\u00A2 f\u00C2\u00A52 33 Z \u00C2\u00A5+2 \u00E2\u0080\u00A2 /\u00C2\u00A5Z-1 + 2 I72U7 /ZZ- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 zizd-. . . . . iS'Z- JZZ 22 Z \u00E2\u0080\u00A2 1// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 J\u00C2\u00A5Z 372 121 37/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5! \u00E2\u0080\u00A2 JJZ 3\u00C2\u00A5Z 32 3 \u00E2\u0080\u00A2 2 3/ /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2// 7S'Z 2\u00C2\u00A5Z \u00C2\u00A5i.\"z 7/2 3\u00C2\u00A5/-/+/ S's'7 77/ JJ7 ... 3+/ 3/Z- \u00E2\u0080\u00A2 J// \u00E2\u0080\u00A2 /+/ \u00C2\u00A5//\u00E2\u0080\u00A2 777 \u00E2\u0080\u00A2 7 6 Z \u00E2\u0080\u00A2 III \u00E2\u0080\u00A2 211- \u00E2\u0080\u00A2 ' \u00E2\u0080\u00A2 ' 3ZZ 231 31Z \u00E2\u0080\u00A2 211 \u00E2\u0080\u00A2 2*1- \u00E2\u0080\u00A2 6tZ \u00E2\u0080\u00A2 \u00C2\u00A56Za 7/2- \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5x \u00C2\u00A53Z \u00E2\u0080\u00A2 /Z7- \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5Z \u00E2\u0080\u00A2 /\u00C2\u00A5/ /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5/Z \u00E2\u0080\u00A2 3/Z- \u00E2\u0080\u00A2 3//- \u00C2\u00A53/ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 3\u00C2\u00A5/ 3+1-7\u00C2\u00A5/u/ /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 311 \u00E2\u0080\u00A2 /\u00C2\u00A5!\u00E2\u0080\u00A2 J2-I /T/d- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A53Z 33 Z 7/Z-JZZ S'S z J+l-IZ l+Z \u00E2\u0080\u00A2 1Z1 \u00C2\u00A5s'l \u00E2\u0080\u00A2 2\u00C2\u00A5lu> 3\u00C2\u00A5luJ /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 ll-ilt \u00E2\u0080\u00A2 37/ \u00E2\u0080\u00A2 172 \u00E2\u0080\u00A2 J22 /\u00C2\u00A5/\u00E2\u0080\u00A2 +++\u00E2\u0080\u00A2 121-/2/-32 Z /\u00C2\u00A5 Z 111 2\u00C2\u00A5l 111 2+/-3Z/ //2-3\u00C2\u00A5/ J\u00C2\u00A5l \u00C2\u00A5\u00C2\u00A5/ 211 \u00E2\u0080\u00A2 JZZ 20 is\" ITZ-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l\u00C2\u00A5l \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZllUJ-\u00C2\u00A5\u00C2\u00A52- Izluj-111 211\u00E2\u0080\u00A2 /AI-3+1-\u00C2\u00A53-2 \u00E2\u0080\u00A2 J/3/- 331 2/1- 3/Z-/\u00C2\u00A5/\u00E2\u0080\u00A2 13 Z 2/Z 3 ZZ 11/ \u00E2\u0080\u00A2 311 \u00E2\u0080\u00A2 l+l 361 \u00C2\u00A5-3-2 ZZl I + 1UJ-Zll Zl/-2JZ \u00E2\u0080\u00A2 7\u00C2\u00A5X. *\u00C2\u00A3 t x. \u00E2\u0080\u00A2 \u00C2\u00A5s'z 7+/OJ 36/ 3+1-/+/ \u00E2\u0080\u00A2 31X rep ACP TCP ACD \u00C2\u00A57 76 Bii- 39 /i 6 o 10 \u00E2\u0080\u00A2 ir-\u00C2\u00A53 1 \u00E2\u0080\u00A2 ZbS i'8 lo-6 \u00E2\u0080\u00A2 1J-0 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 s'C 6 0 \u00E2\u0080\u00A2 12-3 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 281 1J-O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 lo o \u00E2\u0080\u00A2 J\u00C2\u00A5l 13' 36 72 i~ \u00E2\u0080\u00A2 J \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00C2\u00A50 7 \u00E2\u0080\u00A2 /2-3 J-9o-II-0 \u00E2\u0080\u00A2 1J\u00C2\u00A5 z \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 76-JJ-o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 7/2 3 7-\u00C2\u00A56 o \u00E2\u0080\u00A2 \u00C2\u00A53 2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o o 0 \u00E2\u0080\u00A2 2 o 1 \u00E2\u0080\u00A2 68 JZ 9 \u00E2\u0080\u00A2 2/-O \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 28/ /J-6 \u00E2\u0080\u00A2 o -/ - o \u00E2\u0080\u00A2 J/- / \u00E2\u0080\u00A2 97 \u00C2\u00A5\u00E2\u0080\u00A2 70 73 lo 1\u00C2\u00A51 l\u00C2\u00A5Z + + + i s 2 \u00E2\u0080\u00A2 33/ 1+1+ S 6 Z s-iz s-iz \u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 3/Z i'3'2 1 + Z-s's'z 462 1+ld- l+Z-. . . . + / Z\u00C2\u00A5l \u00E2\u0080\u00A2 l+l ZIZ \u00C2\u00A5iz ++1-3\u00C2\u00A52 IZZ \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 331 UJ \u00C2\u00A53'l S'i 1 1+2-\u00C2\u00A5i'z \u00C2\u00A5\u00C2\u00A5Z- l\u00C2\u00A52+ \u00E2\u0080\u00A2 3\u00C2\u00A5z- ZIZ ++Z \u00E2\u0080\u00A2 /JZ-+ +I +++ + +Z 1110 Z + l /\u00C2\u00A5/\u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5Z 111 \u00E2\u0080\u00A2 1+td \u00E2\u0080\u00A2 3ZX / + z 3/Z-/32r-/+/+ \u00E2\u0080\u00A2 \u00C2\u00A5*'l S'S'Z. Yiz IS'zdr 77 J 3J1 ++Z- \u00E2\u0080\u00A2 ///u 6 7Z \u00C2\u00A5i\"7 3S'z \u00C2\u00A5s'/ \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 \u00C2\u00A53'/ TT? 3// z\u00C2\u00A5z 2 3/d J\u00C2\u00A5 Z \u00E2\u0080\u00A2 Si~ + +Z-2\u00C2\u00A5Z /\u00C2\u00A5/\u00E2\u0080\u00A2 2\u00C2\u00A5/-/ + /\u00E2\u0080\u00A2 /T/ 7/Z /// S'i z s i z \u00E2\u0080\u00A2 ITZ-s'iz + TZ l + t-ISZ Zll \u00E2\u0080\u00A2 31Z- /1/UJ 3ZX \u00E2\u0080\u00A2 3ZZ \u00E2\u0080\u00A2 77Z \u00E2\u0080\u00A2 3\u00C2\u00A5Z-+ 2 llzm-z\u00C2\u00A5idr 3\u00C2\u00A5t-+ + z \u00C2\u00A5+1 . . . . yy-/ \u00E2\u0080\u00A2 . . . y.-A/. Zt/O- l + l-ttz \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z/z-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /3Z Zllr ZZZ S7zdr 7z/nt-2+2-3\u00C2\u00A5Zmi 7+z- \u00E2\u0080\u00A2 t+7- \u00E2\u0080\u00A2 \u00C2\u00A5JZ \u00E2\u0080\u00A2 332 \u00E2\u0080\u00A2 2+7-87Z 67Z \u00E2\u0080\u00A2 +T2m- Z+ld-\u00C2\u00A5s\"z \u00E2\u0080\u00A2 zzz \u00E2\u0080\u00A2 6 3\" so \u00C2\u00A50 ZJZ 1+1 u \u00E2\u0080\u00A2 7+1 u \u00E2\u0080\u00A2 /\u00C2\u00A5/ /z/ /// 3\u00C2\u00A5z i~\u00C2\u00A5x> i i z \u00C2\u00A572 Z\u00C2\u00A53 \u00E2\u0080\u00A2 3\u00C2\u00A5Z-. . . . y j^f. \u00C2\u00A5s'Z 211dm \u00C2\u00A5/x \u00E2\u0080\u00A2 311 /\u00C2\u00A5/ \u00E2\u0080\u00A2 /II \u00E2\u0080\u00A2 l\u00C2\u00A5z 23X yc2 2.2 Z \u00E2\u0080\u00A2 \u00C2\u00A5J2 \u00E2\u0080\u00A2 3\u00C2\u00A5Z 78 X 872 3\u00C2\u00A5l J// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ll\u00C2\u00A5-JS-1 12/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'7Z \u00C2\u00A5+ZU) \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 72/ /+Z-/+/d- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A512-++/\u00E2\u0080\u00A2 312-/\u00C2\u00A5Z-33 Z 321- 331- 23Z 32/ js x. X// \u00E2\u0080\u00A2 \u00C2\u00A5s\"X \u00C2\u00A5\u00C2\u00A5X <\u00C2\u00A5iz 2+1-\u00C2\u00A5 + Z \u00C2\u00A5s'z /JZ-/\u00C2\u00A5/\u00E2\u0080\u00A2 222 S'iz 2\u00C2\u00A5/-///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 X+/-JS'Z 2 /X ZZZ 3 S'Z \u00E2\u0080\u00A2 JJZ \u00E2\u0080\u00A2 \u00C2\u00A5i'Z \u00E2\u0080\u00A2 \u00C2\u00A53Z-/\u00C2\u00A5/d ++2 \u00E2\u0080\u00A2 1+Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l+Z-\u00C2\u00A5\u00C2\u00A52- S'6 2- 74 Z- s\"\u00C2\u00A5l-/Tld 322 \u00E2\u0080\u00A2 J\u00C2\u00A5ld-/IZ UJ 33 Z \u00E2\u0080\u00A2 6(z 3 3Z /\u00C2\u00A5z /\u00C2\u00A5/\u00E2\u0080\u00A2 3/7 ///- -7+Z \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5z \u00E2\u0080\u00A2 73 x TCP ACD TCP ACU 2/i' \u00C2\u00A5j 3'io s-/ fo 80 6 /D zs 72 2 // 30 O a 93 3\" o S\"o 76 / 2 3 O 7S /70 j\u00C2\u00A5 o 2 4 o o I? / o /o I I \u00E2\u0080\u00A2 21-0 \u00E2\u0080\u00A2 2 a 0 o 19o /?\u00E2\u0080\u00A2 II- / \u00E2\u0080\u00A2 /Zi\" //\u00E2\u0080\u00A2 ts-2 \u00E2\u0080\u00A2 2f-23 i' 3' a/ 0 -6 \u00E2\u0080\u00A2 o 1 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 Z3 O \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o o o o \u00E2\u0080\u00A2 / a \u00E2\u0080\u00A2 13-3'-2 \u00E2\u0080\u00A2 2i /Jo / \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 23/ 2/-7 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 7/- 6> \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 /2-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7+Z \u00E2\u0080\u00A2 3120J /Tl-2+1-312 \u00C2\u00A5\u00C2\u00A5-Z \u00C2\u00A572 \u00E2\u0080\u00A2 Xtlu i i z 2Jlu) Ji'ZU \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 x\u00C2\u00A5/ 2 + Z \u00C2\u00A5s'z 2\u00C2\u00A5Z 331-+ +z 21/- Z llr \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /zz- \u00E2\u0080\u00A2 + + z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /z/u \u00C2\u00A5s'z \u00C2\u00A5\u00C2\u00A5z \u00E2\u0080\u00A2 \u00C2\u00A56 z \u00C2\u00A5\u00C2\u00A5Z 2/Z-\u00C2\u00A53z \u00C2\u00A5\u00C2\u00A5z /\u00C2\u00A5/\u00E2\u0080\u00A2 J/Z /\u00C2\u00A5/\u00E2\u0080\u00A2 31Z X+l . . . . /// . . . . . /// . 3\u00C2\u00A52UJ 211 /ltd \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 -2Z1 Z/2 74 Z \u00E2\u0080\u00A2 /2/d. 3+1- \u00E2\u0080\u00A2 3\u00C2\u00A5Ztu 312 aj Z+l- \u00E2\u0080\u00A2 2+2 \u00E2\u0080\u00A2 3\u00C2\u00A5z z// \u00E2\u0080\u00A2 /3 2 7/2 2/Z 22/ /// 2 3/-/T2 2//-221 /// \u00E2\u0080\u00A2 2/X 222 372-/I/ \u00E2\u0080\u00A2 2+1 3\u00C2\u00A52 /\u00C2\u00A52-722-2/1 /\u00C2\u00A5/+ 3/7\u00E2\u0080\u0094 ' JTZ \u00E2\u0080\u00A2 3ix l\u00C2\u00A5Z-\u00E2\u0080\u00A2U-i'/d /\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A5i'z \u00E2\u0080\u00A2 JS'Z \u00E2\u0080\u00A2 2 2X + -/\u00C2\u00A5lw \u00C2\u00A53 X \u00E2\u0080\u00A2 1 + z-77Z l\u00C2\u00A5Z \u00E2\u0080\u00A2 s's'z Z+Z s'\u00C2\u00A5l 46 Z 722 2//co 31Z- \u00E2\u0080\u00A2 3 3' 80 10 3+z \u00C2\u00A5s'j 3 72 \u00E2\u0080\u00A2 s'\u00C2\u00A5z Zll \u00E2\u0080\u00A2 3 7J S's'z 33 ZO 23/ z\u00C2\u00A5l 2 + 2 /+/\u00E2\u0080\u00A2 3/Z-+ + lo IIZ /Jl- 7JZO \u00E2\u0080\u00A2 2// /JZ \u00C2\u00A5-Cx 883 \u00C2\u00A5s'z \u00C2\u00A5\u00C2\u00A5Z \u00E2\u0080\u00A2 z\u00C2\u00A5z z\u00C2\u00A5s 3\u00C2\u00A5z z/z 77/ \u00E2\u0080\u00A2 /IZ 211 J1Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 211 \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2\u00C2\u00A52- - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7\u00C2\u00A5l \u00E2\u0080\u00A2 21/0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //X-33'ZO 472 /\u00C2\u00A5/\u00E2\u0080\u00A2 /// l+lo \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00C2\u00A5lto 3//- XT/- \u00C2\u00A3\u00C2\u00A5z- lllo 31/ /\u00C2\u00A5/ \u00E2\u0080\u00A2 + \u00C2\u00A5 1 /\u00C2\u00A5/ + \u00C2\u00A5 + \u00C2\u00A5 + 3 3//-7/2 \u00E2\u0080\u00A2 112 \u00E2\u0080\u00A2 311 TTZ 11/ \u00E2\u0080\u00A2 \u00C2\u00A5 72 /2Z \u00E2\u0080\u00A2 2/ZO t+l- \u00E2\u0080\u00A2 2+/ /+/\u00E2\u0080\u00A2 2/Z 2 It-Z+X 3/2 Z+l 1+ld-7+1-31Z 3/z-7 S'Z Z\u00C2\u00A5X\u00C2\u00B0 \u00C2\u00A5\u00C2\u00A5z \u00E2\u0080\u00A2 6i-+ \u00C2\u00A5! \u00E2\u0080\u00A2 ZIZ S'S 3 \u00E2\u0080\u00A2 7 73 \u00C2\u00A5s~x \u00C2\u00A5sz \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZZl-/XI 2iluo /\u00C2\u00A5/\u00E2\u0080\u00A2 7+7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 317 -T+l- \u00E2\u0080\u00A2 JJ/-2t2uo /IZ S'S'Z 23/ \u00E2\u0080\u00A2 Z + Z /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 \u00C2\u00A5s'2ut \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5/ 22 Z zix \u00E2\u0080\u00A2 J1X \u00E2\u0080\u00A2 I2ld-\u00C2\u00A5\u00C2\u00A5X 6 ?? xll-/// \u00C2\u00A512- \u00E2\u0080\u00A2 ++r- \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A57ZO \u00C2\u00A5-72 \u00E2\u0080\u00A2 7/Z- \u00E2\u0080\u00A2 //Z- \u00E2\u0080\u00A2 //+\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5+z /+2 ++/\u00E2\u0080\u00A2 3 \u00C2\u00A52 Hid-\u00C2\u00A5 + ? ++I 11/ \u00E2\u0080\u00A2 83 /+2 \u00E2\u0080\u00A2 7/Z -\u00C2\u00A5+Z-Ztt xll-34-1 36 X X\u00C2\u00A5z \u00E2\u0080\u00A2 112 \u00E2\u0080\u00A2 3\u00C2\u00A5Z \u00E2\u0080\u00A2 33'zoi 2T2- -X\u00C2\u00A5l \u00E2\u0080\u00A2 3\u00C2\u00A5Z \u00E2\u0080\u00A2 t + Z \u00E2\u0080\u00A2 T+Z \u00E2\u0080\u00A2 3 + 1- \u00E2\u0080\u00A2 \u00C2\u00A532 \u00E2\u0080\u00A2 9 to Z-/// \u00E2\u0080\u00A2 JS'Z //z / /2 -S'4/ + + 2 IS'/ 2+1 to /lid /\u00C2\u00A52 + +Z 2JI-l + Td-3Zl-3\u00C2\u00A5Z TCD ACP s'o4 s'o />\" 8 zo o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 166 73 1 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 IS-2 \u00E2\u0080\u00A2 2/ o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7 7 3'-/ \u00E2\u0080\u00A2 /\u00C2\u00A5( 2 \u00E2\u0080\u00A2 bi-ts \u00E2\u0080\u00A2 /J-7 \u00E2\u0080\u00A2 IO \u00E2\u0080\u00A2 93\" b \u00E2\u0080\u00A2 ZO o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 23 O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 111-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 62 3~-3\" / \u00E2\u0080\u00A2 / / \u00E2\u0080\u00A2 i'e o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 2i\" /S' o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 /o-20 0 \u00E2\u0080\u00A2 19 1 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 17-7 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 Z o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 I -/ \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 73' o \u00E2\u0080\u00A2 4 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 /o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 17-2S\" 1 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 4 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 J \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 /3'6 /6-0 \u00E2\u0080\u00A2 \u00C2\u00A5/ /s' o \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 60 2+2-7\u00C2\u00A51 \u00E2\u0080\u00A2 \u00C2\u00A5(z \u00C2\u00A5i'luj s'i I J6x-T ++U) 1+z- \u00E2\u0080\u00A2 JZZ \u00E2\u0080\u00A2 \u00C2\u00A53/ . . . . //z. 1ZI- ++/\u00E2\u0080\u00A2 /zzd \u00C2\u00A5\u00C2\u00A5l \u00E2\u0080\u00A2 \u00C2\u00A5iz \u00E2\u0080\u00A2 \u00C2\u00A5s\"l \u00C2\u00A5Cz \u00E2\u0080\u00A2 - /JZ //z \u00E2\u0080\u00A2\u00C2\u00A5\u00C2\u00A5z 6 72 Js~/ \u00E2\u0080\u00A2 6 7Z-33Z 3+1-\u00C2\u00A5\u00C2\u00A5/M7 /+/ \u00C2\u00A5\u00C2\u00A5z + +/OJ 2\u00C2\u00A5t-21Z 2JI /TZ \u00E2\u0080\u00A2 \u00C2\u00A572 Z2I-2Z2 6 7Z 232 /\u00C2\u00A5/ 3ZZ-\u00C2\u00A5LZ \u00C2\u00A5il- \u00C2\u00A56z /// 3\u00C2\u00A5t 33Z ++/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2//m ++/ \u00E2\u0080\u00A2 + /\u00E2\u0080\u00A2 ++Z \u00E2\u0080\u00A2 +++\u00E2\u0080\u00A2 Z+7-7/X /ZZ \u00C2\u00A5+/\u00E2\u0080\u00A2 2Jl-2/Z 221 //Z \u00E2\u0080\u00A2 212- ITI TT2J-./.Zd.. 1+1 \u00E2\u0080\u00A2 -3.6/-: J\u00C2\u00A5Z /+/ \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5Z //Z \u00E2\u0080\u00A2 JJZ /\u00C2\u00A5\u00C2\u00A5\u00E2\u0080\u00A2 3\u00C2\u00A5Z \u00C2\u00A5+/\u00E2\u0080\u00A2 /+lm-/+z 321- \u00C2\u00A36z +++ 2+1- \u00E2\u0080\u00A2 /\u00C2\u00A5! 1+Zd- 1+Zd-+ \u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A56z \u00E2\u0080\u00A2 J6Z \u00E2\u0080\u00A2 22Z 6 72 3zzd J\u00C2\u00A52d /\u00C2\u00A5/ iO 7\u00C2\u00A52 \u00E2\u0080\u00A2 772 121 \u00E2\u0080\u00A2 \u00C2\u00A5i-z 112 \u00E2\u0080\u00A2 i'\u00C2\u00A5z Hid 212 \u00E2\u0080\u00A2 + + Z-21Z-l\u00C2\u00A5l-3IZ l + l \u00E2\u0080\u00A2 \u00C2\u00A5s'z 33 Z III \u00E2\u0080\u00A2 l+l \u00E2\u0080\u00A2 3\u00C2\u00A51-\u00C2\u00A53Z JZZ HZ-\u00C2\u00A5\u00C2\u00A5/ 31Z TCP ACD z\u00C2\u00A5o \u00C2\u00A58 0 \u00E2\u0080\u00A2 fo-/i-0 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 S'o 0 \u00E2\u0080\u00A2 /oi'-S'-j \" ? \u00E2\u0080\u00A2 II-i \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 73' o \u00E2\u0080\u00A2 lo-o -o \u00E2\u0080\u00A2 S's' o \u00E2\u0080\u00A2 11-o \u00E2\u0080\u00A2 \u00C2\u00A5/\u00E2\u0080\u00A2 3 o o o /o o 2/ / 1 TCP ACP TCP ACja TCP ACP CD* II02 s'o i-77 Jx 373' 3'6 83\" 8 23 770 9 3Z0 o 3 0 o 73 o 2/ 3\u00C2\u00A5o /S \u00C2\u00A53 7 Si 3Z7 6 o \u00E2\u0080\u00A2 /is' 6 //\u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 7 7J o \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 /\u00C2\u00A5\u00E2\u0080\u00A2 Zi\" 6 / \u00E2\u0080\u00A2 S'Z \u00C2\u00A5^-3\u00C2\u00A5 /2 /\u00C2\u00A5\u00E2\u0080\u00A2 S'S /J/ 2 \u00E2\u0080\u00A2 o \u00C2\u00A58/ / \u00E2\u0080\u00A2 /3 \u00E2\u0080\u00A2 \u00C2\u00A57 72o 2 / / J 6 o o 22 O / 2 3' 12-26 l\u00C2\u00A5\u00C2\u00A5 8 86- 3' 261 73 26 l\u00C2\u00A53\" 3-0 \u00E2\u0080\u00A2 s'z 1 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 3~-S'S O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 x\u00C2\u00A5-s 26 o -/6-o \u00E2\u0080\u00A2 /o-~2\u00C2\u00A3.~ 3\u00C2\u00A5 Xi'-IS-23\" 0 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 0 z I 7 / o o o z\u00C2\u00A5z /J 3'- O 7 \u00E2\u0080\u00A2 ZO -S9 2Zo JI-BS /St. 27 17 0 3\" O /O o \u00C2\u00A5/ 7 7/ 72 // o 72S 0 /S\" 26 o o /o J/ z i o 2/ \u00C2\u00A50 o o o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 \u00C2\u00A5 1 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /2-Z 0 / 0 / \u00E2\u0080\u00A2 o 4 / / / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /s-o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 is\"-\u00C2\u00A5 \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / 4\" 4-s \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 5\"-/o-9S' 0 \u00E2\u0080\u00A2 XO 0 \u00E2\u0080\u00A2 C% C TCP ACD CCD zn't 4s~ so \u00C2\u00A58 2 \u00E2\u0080\u00A2 2 2 -8 \u00E2\u0080\u00A2 73 60 \u00C2\u00A5 \u00E2\u0080\u00A2 /s~ 60 7S' 27 /o-2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 77 13-7? 2 96-2 \u00E2\u0080\u00A2 \u00C2\u00A5b go 2 II-\u00C2\u00A5\u00C2\u00A5 2-/i'-27 \u00C2\u00A5 \u00E2\u0080\u00A2 /o-ZJ 67 \u00C2\u00A50 x \u00E2\u0080\u00A2 x \u00E2\u0080\u00A2 9o bf \u00C2\u00A58 13 88 73'-/7-17-Z 7-/s--63\" /s\" 29 io-s'o -s'z /9-?o b \u00E2\u0080\u00A2 2 \u00C2\u00A58 z \u00E2\u0080\u00A2 88 /s\" i9-\u00C2\u00A52 23\" 31 \u00C2\u00A5\u00C2\u00A5 83\" 6 33\" 31-77 3 3 I I 1 I \u00C2\u00A5 \u00C2\u00A5 1 I \u00C2\u00A5 1 2 1 / 1 \u00C2\u00A5 / / / 3\" / 3 4\" / \u00C2\u00A5 3 / / z / / 2 \u00C2\u00A5 j / 1 3\" \u00C2\u00A5 J I 4\" / / / z / \u00C2\u00A5 / 2 \u00C2\u00A5 3 3 1 3' / zl- \u00E2\u0080\u00A2 is' \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 6zs'-13/ \u00E2\u0080\u00A2 II- \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/- \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 zb o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /OS \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 // \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 6i7-o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 23 \u00E2\u0080\u00A2 S'9Z o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 69 \u00E2\u0080\u00A2 zs'-/o- \u00E2\u0080\u00A2 /oo \u00E2\u0080\u00A2 9 \u00E2\u0080\u00A2 zo- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A53 \u00C2\u00A56 \u00E2\u0080\u00A2 /\u00C2\u00A5\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 9\u00C2\u00A5 \u00C2\u00A592 xz \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\u00C2\u00A52-7 \u00E2\u0080\u00A2 72 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 27 97 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5 /\u00C2\u00A5\u00C2\u00A5\u00E2\u0080\u00A2 6\u00C2\u00A5 s's 7 -89-/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / /o-3 772 \u00E2\u0080\u00A2 / 3' / \u00C2\u00A5 3 2 2 3 S~ / 2 2 \u00C2\u00A5 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/S \u00E2\u0080\u00A2 37 \u00E2\u0080\u00A2 28 83 \u00E2\u0080\u00A2 73/ \u00E2\u0080\u00A2 J \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7\u00C2\u00A5S o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /9 \u00E2\u0080\u00A2 72 2Z\u00C2\u00A5 a / o o o o 73 3 0 o / o / o 0 o 2 O 0 o /y a 0 72 0 / / o z 0 0 0 / / o o o 2 /o o 0 7 0 o 0 o / 2 o o J / / o 2 O O \u00C2\u00A5 O 2 / / 2 3 O O /6 O o 2 y 1 3 o O I o /a 0\" 6 / / o 2 o / o 3 1 / / /s\" o / /\u00C2\u00A3 o z / /o /\u00C2\u00A5 / /o o \u00C2\u00A5 / / o o x /& / 0 8 I I O O \u00C2\u00A5 3 o o 4\" 3 2 O Z o 70 7 O 3 3\" / \u00C2\u00A5 77 o o 73 Z 7 4\" 6 OCCASIONALLY PRESENT SB ij, 1+ZjSBUf^ZlZ ;Eouisetum htemale - SB3o> ///-SB 139 /IZ; SB l\u00C2\u00A5o,//z j E. scirpoides -SBls'JjJZ;SB\u00C2\u00A5S' Ix/nr ; 3D s'o z/l'; dra. -Sa //P/+2toj Ttonties uniflora.-SB (t,llz;SB l/t,Z32ui:sa/7o,++Z-S3/\u00C2\u00AB\u00E2\u0080\u00A2 I3Z TTonotropa. Ayptpitys'-SB/s'3 /+2;S3/i( //Z; is - SB\u00C2\u00A5, /JZ; Tiarella. laciniata. -SB9\u00C2\u00A5,\u00C2\u00A5+Z SB Z3 T+Z aj ' ' ' Liftto, tl Me 17 li 77 M At Tl TT 11 17 li 71 71 At 7/e He H 11 71 Tt 71 7/e 7/e 71 71 77 71 71 n 71 71 tl I? -2AYEP. D -/.BRYOPHYTES ON HUM US Atrichum undulatum Bltpharastama. TrichopAyllvnt BrachytAectum hytotapefum \u00E2\u0080\u00A2 3. saicbrosum 3+achythecium Sfip.' Bryum sa/idbc+yii \u00E2\u0080\u00A2 Bryum spp. Catlieryonelta. sch+eberi. -Ceratedon puhpurevs Dicranum foscescens E urhynekium striyosum Fun aria. AyyromcTrica. hyltconrium splendent leptotryum py+iforme /opAocolea. AetcropAylla. IcpAoxLo. /ycopodtoidts ttarthantta. polymorpho, T/nium aff'tne 77. insiyne 71. punctatum IT. Spinulosum ffnium spp. Pellia. sp. -PtayiocAllo. asplenioides \u00E2\u0080\u00A2 PlayiotAecium denticulatum P sytvatici/m \u00E2\u0080\u00A2 Poyonatum spp. PoAtia ctuda. P. toaAlenie+yii Polytrichum juniperinum Ptilium crista.-castrensts Hhytidia.delphvs lorev* *> -R. tr, fue PAytidiopsis robusta. zzlnt-1+zm \u00E2\u0080\u00A2 ZZZ- 222 \u00E2\u0080\u00A2 222- 23Z-3\u00C2\u00A5Z 2\u00C2\u00A5Z-Him-J31- \u00C2\u00A512- 3\u00C2\u00A5Z- \u00C2\u00A532 S'62- \u00C2\u00A531-//I-231 /+/ -3\u00C2\u00A5z-643-++/\u00E2\u0080\u00A2 /22m 2\u00C2\u00A5Znt \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l3'Z- \u00E2\u0080\u00A2 S'S'2 \u00E2\u0080\u00A2 713 S'iZ /t/m - ttz \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //xm \u00E2\u0080\u00A2 s'\u00C2\u00A5z \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ///to- \u00E2\u0080\u00A2 221 m-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //Z //She \u00E2\u0080\u00A2 //2 222*7 /ZZus-//Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 212 Ml ++2M- IIZ 7\u00C2\u00A52to 7\u00C2\u00A52to 727+te \u00E2\u0080\u00A2 /7/nr \u00E2\u0080\u00A2 III- \u00E2\u0080\u00A2 l+/m //znt \u00E2\u0080\u00A2 ll/nt /z/m 12/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'72 /T//7T /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7+2 \u00C2\u00A53'2 \u00E2\u0080\u00A2 722M+ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 332 \u00C2\u00A5JX 2t'znt S'i'Z 22Z- \u00E2\u0080\u00A2 3/2- \u00E2\u0080\u00A2 fS-'j \u00C2\u00A532 JJ/-/22m-332 J\u00C2\u00A5X 3ZZ- \u00E2\u0080\u00A2 3i'2U ys'j - s'iz \u00E2\u0080\u00A2 l\u00C2\u00A5zm ZZ/- \u00E2\u0080\u00A2 33Z 211 I2Z - \u00E2\u0080\u00A2 /ZZm-JZZ l+l 2\u00C2\u00A5/-3\u00C2\u00A5zu 212 33'Z 12/Mt \u00E2\u0080\u00A2 131 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /Z/ 111- //Z //2 m \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ///m \u00E2\u0080\u00A2 ItlU- \u00E2\u0080\u00A2 . . . . \u00E2\u0080\u00A2 21lm \u00E2\u0080\u00A2 222m 2 ZZm z//m-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 JZl-23Zur /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Zll \u00E2\u0080\u00A2 /z/-/IZ HZrrt \u00E2\u0080\u00A2 1+1-7/zm \u00E2\u0080\u00A2 /2//7T-2ZZ-/\u00C2\u00A5/ \u00E2\u0080\u00A2 X//- /// rn //Z \u00E2\u0080\u00A2 23 Z ZX/-tttm- l\u00C2\u00A5Zm- XJZnt tzt-/Um lit- IIZ \u00E2\u0080\u00A2 t+lui 112 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 llltrt ZJZ- \u00E2\u0080\u00A2 131 \u00E2\u0080\u00A2 ill-izz-2I1M1 332UJ- /l/ui-/z/m \u00E2\u0080\u00A2 32Z \u00E2\u0080\u00A2 /\u00C2\u00A5//rt- 722m-7Z7 112 mu /ZZUJ -7/7 u- \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2ZI l\u00C2\u00A52nt-IIZ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 HZ/rt \u00E2\u0080\u00A2 XXI'm- 211 112 m I3ZU-/3lu \u00E2\u0080\u00A2 111- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /Z/UJ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\u00C2\u00A5Z /// TCP O \u00E2\u0080\u00A2 ACD o \u00E2\u0080\u00A2 TCP ACD TCP ACP TCD ACD o 2 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 li-/ \u00E2\u0080\u00A2 3- \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 3'-78 o \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00C2\u00A5\u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 til 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2i\" II \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 6 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 4\"-O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 4\" \u00E2\u0080\u00A2 26 2i /7-/o9 O / \u00E2\u0080\u00A2 / o o o o o o o / \u00E2\u0080\u00A2 4- \u00E2\u0080\u00A2 2/Z turn ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //Zm \u00E2\u0080\u00A2 //2/tt \u00E2\u0080\u00A2 i72- \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 S'4Z 74 2 717 m- \u00E2\u0080\u00A2 S'iZ 231-883 S'S'2 \u00E2\u0080\u00A2 s'\u00C2\u00A5z 892 7/Z /// \u00E2\u0080\u00A2 232- /\u00C2\u00A52to /2/m /2/m /22a>/t7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S'S'2 \u00E2\u0080\u00A2 S's'2 \u00E2\u0080\u00A2 3\u00C2\u00A5Z /2Zrrr-\u00C2\u00A53Z \u00E2\u0080\u00A2 \u00C2\u00A5JZ n z \u00E2\u0080\u00A2 442 3\u00C2\u00A5Z //2 m 2/Z \u00E2\u0080\u00A2 \u00C2\u00A5i'2 3 22-3\u00C2\u00A5z Z32JH 112 m \u00E2\u0080\u00A2 yi3 \u00E2\u0080\u00A2 in \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S-i3 2 ?? 2/2 J\u00C2\u00A5Z ///nr 7/2nt-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/2 rH-JS'3 \u00E2\u0080\u00A2 33 Z \u00E2\u0080\u00A2 33 Z / / / \u00E2\u0080\u00A2 33 Z /llnr HZrrt //Zm \u00E2\u0080\u00A2 ///n* -Z/2nt \u00E2\u0080\u00A2 \u00C2\u00A53'2, Hint 72/ \u00E2\u0080\u00A2 \u00C2\u00A5s'z ill- \u00E2\u0080\u00A2 l\u00C2\u00A5l-122m JJl 23/m-4i2- \u00E2\u0080\u00A2 1+7 III izl \u00C2\u00A54z 7/Z 2/Zrn-S\u00C2\u00A5Z- \u00E2\u0080\u00A2 2l2nr-\u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 221 77/ \u00E2\u0080\u00A2 Ultu J4V 2/2- \u00E2\u0080\u00A2 2 2Znt Z3Znt JZZ 332-//2+n \u00E2\u0080\u00A2 722m 1/2tn \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5/OJ /Jim \u00E2\u0080\u00A2 737m \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 722n-e- 7J7m \u00E2\u0080\u00A2 fit- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l\u00C2\u00A5l+rt \u00E2\u0080\u00A2 7\u00C2\u00A5/rn \u00E2\u0080\u00A2 1JZ \u00E2\u0080\u00A2 \u00C2\u00A5i~X \u00E2\u0080\u00A2 33 2 6 73- 77J 8SZ- 772 2\u00C2\u00A5zm /+z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ill- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l+lm l/lne Z\u00C2\u00A5l-1/1- \u00E2\u0080\u00A2 /Zl-2/zm-2JZ 3\u00C2\u00A5z zzzrn /JZ-S'61-I / o o ZO I \u00C2\u00A5/\u00E2\u0080\u00A2 23--2Jo \u00C2\u00A56 I \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 /O-6 \u00E2\u0080\u00A2 zo o \u00E2\u0080\u00A2 /?/ J \u00E2\u0080\u00A2 /s-o o / / z o // o \u00E2\u0080\u00A2 o /2- 1 8 \u00E2\u0080\u00A2 I 6 \u00E2\u0080\u00A2 IS\" o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 9o o \u00E2\u0080\u00A2 370 O 28 7/2 m \u00E2\u0080\u00A2 722-/It 32/-712 \u00C2\u00A5\u00C2\u00A5/ \u00E2\u0080\u00A2 \u00C2\u00A56x+-\u00C2\u00A5\u00C2\u00A5z 3Sz JS'Z JZZ s\"\u00C2\u00A5 z \u00E2\u0080\u00A2 662- /32oj izl-\u00C2\u00A5\u00C2\u00A5t-Ys'z \u00E2\u0080\u00A2 3JZ- \u00E2\u0080\u00A2 4JZ \u00E2\u0080\u00A2 //2 /2/r \u00C2\u00A5\u00C2\u00A52 \u00C2\u00A5-\u00C2\u00A52 Js'z ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 J\u00C2\u00A5Z \u00C2\u00A5\u00C2\u00A5Z \u00E2\u0080\u00A2 3/2-662- \u00E2\u0080\u00A2 3\u00C2\u00A52-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Hint \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 23 Z a) ll/rrt- ZZlm 112m 33ZM 1J1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/uj \u00E2\u0080\u00A2 JJZ-///Mt //2m //zm \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+//TT-/\u00C2\u00A5/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /J2-\u00C2\u00A5\u00C2\u00A5/nr 121 \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 ++/\u00E2\u0080\u00A2 HXnt \u00E2\u0080\u00A2 t+l-1+Z \u00E2\u0080\u00A2 2ZZnr 111-l/Z IIZ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5s'3C 3SZC /3Zu>-TCD ACD \u00C2\u00A9 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 /\u00C2\u00A5ZUJ ZZZmu Xtz- \u00E2\u0080\u00A2 70 O \u00E2\u0080\u00A2 i'-o \u00E2\u0080\u00A2 zo 10-o \u00E2\u0080\u00A2 a\"-3'-zo s'-\u00C2\u00A5s' o \u00E2\u0080\u00A2 10 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3' -10-0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 2i' 73\"-\u00C2\u00A53-: 7 o / o 2 I \u00E2\u0080\u00A2 o / / 2 I \u00E2\u0080\u00A2 s' o / o / o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 s--l+lm \u00E2\u0080\u00A2 112m-Jll Jl/ \u00C2\u00A5s'z llzm \u00E2\u0080\u00A2 662- \u00E2\u0080\u00A2 \u00C2\u00A53'/-Hint 78 J 6 7Z-762- JJ/ 443 783-7/Znt \u00C2\u00A532 32/r \u00C2\u00A5S'J Itlu- IJZkJ-/llm 773 m-/\u00C2\u00A5lnt \u00E2\u0080\u00A2 77/m 33 X i//e-2/1 \u00E2\u0080\u00A2 642 332 3ZZ-322-3\u00C2\u00A5/-\u00C2\u00A563 \u00E2\u0080\u00A2 - /JX-\u00C2\u00A5\u00C2\u00A5Z \u00E2\u0080\u00A2 33/-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 JJ/. / / / \u00E2\u0080\u00A2 33'Z-l/Z /Z/nr-/22- \u00E2\u0080\u00A2 /22-TCP 21 O 133-O 47 O 2S /O ACD o o 2 7 ZS o o 70 a S\" 2 TCP ACD TCD ACD / \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 Jo 2/ I 1 \u00E2\u0080\u00A2 O \u00C2\u00A52i' If S'Zl 23 2 \u00E2\u0080\u00A2 7o-2o-/ \u00E2\u0080\u00A2 S'Z \u00C2\u00A5 /o \u00E2\u0080\u00A2 3\"-4 \u00E2\u0080\u00A2 Zi' o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 III 26 S'6 I 7 ZZ 7 \u00C2\u00A563 20 o 11 o S' 38 TCP 1 1 ACD CD* o lo S~ \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 C% C TCP ACD CCD 29 17 29-13-3S-8 \u00E2\u0080\u00A2 Jl-i7 X \u00E2\u0080\u00A2 IJ-21 3 i'8 2 19-38 z z \u00E2\u0080\u00A2 Z9 \u00C2\u00A50 \u00C2\u00A5\u00C2\u00A5 \u00C2\u00A5 z \u00E2\u0080\u00A2 17-17-/3' /i\" 19-2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5 s\"\u00C2\u00A5 /o-\u00C2\u00A50 73 z 1 2 1 Z I X \u00C2\u00A5 I I z I 3 I 1 z I I z 3 Z I 1 I 1 1 / I / 3 3 / 3 \u00C2\u00A5 j \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 27 \u00E2\u0080\u00A2 I - \u00E2\u0080\u00A2 38 \u00E2\u0080\u00A2 Zl- \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5i\u00C2\u00A5-o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 9 o i'\u00C2\u00A5t-lo- \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 73 \u00E2\u0080\u00A2 i XO- \u00E2\u0080\u00A2 /6 \u00E2\u0080\u00A2 s'B \u00E2\u0080\u00A2 /\u00C2\u00A5\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /o- \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 i~ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 JO- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7 /8Z 26 \u00E2\u0080\u00A2 6Z-+ 7\u00C2\u00A5 o o / o I o 0 10 o o o o // o o z o o o 1 o o o a o / o o o o \u00C2\u00A5 / 7 70 o o 2 o z 4\" o 13 O O / o 19 lo o \u00C2\u00A5 s' zo I 3 I 3' O / / \u00C2\u00A5 o o / o 7 s~ 3 /\u00C2\u00A5 OCCASIONALLY PRESENT u/acomnium androyynvnt - SB ls'9, 772j SB6J, 22Znr; SO /X7, 7/xm ;SB /OS\", 2/2m; S3X7t///e ; B+ackythecium erytArarrA ixon -SB \u00C2\u00A5772; S. retuttnunt -SB S'z, ZZZrrr; Callte+yonello, cuspidata. -SB2J, JZZ; Campy Hum steftatum - S3/iZ,\u00C2\u00A5+t- CepAatozi*. spp. -SB 3\u00C2\u00A5,//Z; SS/96,//2m; SBJi, tIZmx SBZo^IZm; Conocephalum Co n't cum - SBllf,/J/tu; Ci-atoneuron sp.- SB 119, / JlUJ ; Dicranum /uyosum -SB/Z7, + ++m; D. sceparium -SfJ9\u00C2\u00A5, z\u00C2\u00A5l; Sl3 3\u00C2\u00A5,zzx; SB 196 zll- SB8,/Z2uj: SB /\u00C2\u00A5J IZl; ZJrepanoctadus uncinatus -SO\u00C2\u00A5i l+Znt \u00E2\u0080\u00A2 SB/64,232; S3 4///2m,; S37B\u00C2\u00A5, /// \u00E2\u0080\u00A2 SB s\" //lm \u00E2\u0080\u00A2 EurhuMcAium praelo Stbstriyosum -SB7i-t,/ZZ;Sai\u00C2\u00A5s',/\u00C2\u00A5Z;SBI73'/Z2tu;SB 2J,///; Fisstdens bt-yoides-S3 t'7t ///; SB 30, ZZZm; SB/83,//2m;SB/8\u00C2\u00A5,//7m; F timbatus -SBS~7;/J2; SB/Oi'222 m; Neteroctadium p+eturrens - SB *\ IIZ; SO I xs' / zx +; S Bsl /ZZjSB 32, 2Z/Jtt- SB ZJ, ///; /Yypnum circinate -SOZO, l+lm ; Tunye rmannia. tanceolata. -SB loi'/zzm; Tuny ermannio, Spp-~SBJ\u00C2\u00A5, 111; SB /ti, //7m; SB 32,///; SB/\u00C2\u00A53, ///m; lepidoxta +eptans -SBJZJ /+/; lophoxia. attenuata. - SB 9\u00C2\u00A5//X; I. barbata.-sif\u00C2\u00A5 JJZ;SB 23'7/Z; I. porphy role uca.- S33t, //Zm; I. ventrical*.'- SB //s' //Zuj'/ophosia. Spp. -SB9\u00C2\u00A5/7Z:SBIJZ llJm>;Sa' 3l//2nr SB 20 ll/mf tnium ortAorAyncAunt -SB S'e>///jPt*giotAectunr elegant--SS 23l/22su; P setige+i-SB-39, 23Z ntjPagonatum atpinum SB 3\u00C2\u00A5, 7JZnr; P u+n tye hum-SB 17ot/JZ) Pohlia. annotina.-SO /s'f, z\u00C2\u00A5z; Potytrcchum g+acife -SB \u00C2\u00A5,/JZ/rtj TfAodobryum reseum -SB 31 3S'Juu>; SB3Z/ZZ \u00E2\u0080\u00A2 RhytidiadelpAus so^u&rrosus -SB f*\ 772; SB9J, JS'Zj Scapania. undutato, S B 7/Z, /JZa ; Tetra.phis pellueida -SB /syzznj; S3 J9//ZJ Tt'mmia. a us t+iaea. - SB /jTJ,///j S/3 11 ///-si i'o, //z; SB3Z, xJZm ' ' ' ' ' ' ' A l tin nyum -SB S'^jJZot^ HAAr I I I I L 2. LICHENS ON H1771US Cladonia. spp. Peltiye+a. aphthosa.-P canina, \u00E2\u0080\u00A2 P polydactyla, \u00E2\u0080\u00A2 P. venasa. TCD ACD TCP ACD TCO ACP TCP ACM TCD ACD TCD ACD 1*1 \u00E2\u0080\u00A2 /Tl \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 1\u00C2\u00A52-ZZZ //2m \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 /\u00C2\u00A52m-/\u00C2\u00A52nt /TZ \u00E2\u0080\u00A2 2+/. \u00E2\u0080\u00A2 t+lnt-\u00C2\u00A5+/mu> //Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5Z-/\u00C2\u00A5/\u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2\u00C2\u00A5X-/\u00C2\u00A52n+ \u00E2\u0080\u00A2 l/lnr-/T/m-l\u00C2\u00A5lnr-!2Znr-\u00C2\u00A5\u00C2\u00A5l- /ZZm \u00E2\u0080\u00A2 ZTlm-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 /\u00C2\u00A5/m \u00E2\u0080\u00A2 /+2nt-///m \u00E2\u0080\u00A2 /\u00C2\u00A5/m- 7JZ /\u00C2\u00A52m //7m 77/m \u00C2\u00A5+1 1+7 \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 1+1 \u00E2\u0080\u00A2 2//-2\u00C2\u00A52 72 X \u00E2\u0080\u00A2 /ZZ \u00E2\u0080\u00A2 2\u00C2\u00A5X \u00E2\u0080\u00A2 IJlni \u00E2\u0080\u00A2 o o /\u00C2\u00A5/ /+/ \u00E2\u0080\u00A2 l\u00C2\u00A5ZMt-O O 2+1-7/Z \u00E2\u0080\u00A2 X\u00C2\u00A5l-/\u00C2\u00A5/ \u00E2\u0080\u00A2 11/ /+/ \u00E2\u0080\u00A2 /T/nr TCP ACD TCP ACD TCP ACD CP* Z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o o o \u00E2\u0080\u00A2 o o 0% C TCP ACD CCD 73-JS\" js-xi-I) 10-o o o o o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 OCCASIONALLY PAtrSEHT . . . . _ Cladonia, Ptmb+iate - SB/JJ, 7/2 j SB 63, 7\u00C2\u00A5lm j C. gracilis - S3133, JZZ; C. nemoxyno. -SO /08, III+; C. vertici I lata, -SB13J, //Z; Pan n aria, pexixoides - SB 31, 7/2; Pelttyer*. canina. var. rufescens -3320,1+1- P canina. var. spuria. \u00E2\u0080\u0094 SBzo^ /+/; P. horizontal's \u00E2\u0080\u0094 SB/4, ai'x m 3.SEEDLINGS ON HUMUS tifcAr Pm Pm Thtya plicata, Tsuyo, AetatapAylla. /?2-l?Z 7f2-/?2-2T2-ZZZ l?2-/?2- JZl- -TCP ACP TCO ACP o \u00E2\u0080\u00A2 /+? 2+?m \u00E2\u0080\u00A2 2+7m \u00E2\u0080\u00A2 ifX-2\u00C2\u00A5t \u00E2\u0080\u00A2 TCD ACD TCD ACD TCD ACD TCP ACD s+r- 311 l+l TCP ACP TCP ACP TCD ACD CD* O \u00E2\u0080\u00A2 70-C'7. C TCD ACP CCD 17-zl-3 \u00E2\u0080\u00A2 17 O X OCCAStOf/ALl Y PRESENT Abies grandis - SB/83,7+/-^ Picea. engelmannii - SB S'o,/?/; Pinus monticola. -SB9\u00C2\u00A5 +\u00C2\u00A5\u00C2\u00A5jSBJ\u00C2\u00A5; +++; SB/os; Z\u00C2\u00A5+; Populus trichoca+pa. - SB 2/, \u00C2\u00A5\u00C2\u00A5+mj Pseudotsuye menxiesii -SB 183, l+l;SBI8\u00C2\u00A5, IZl;SBlos'Z++ \u00C2\u00A5 BRYOPHYTES ON DECAYING U700D OA An 11 7/e 11 77 H n 71 He 71 n 77 71 H fl 77 He He He 7/e fVe He Me He 71 71 7/e If He He 71 7f TT 71 TCD ACD TCP ACP TCD ACD TCP ACD TCP ACP TCP ACP Autaco mnium androyynum' Slepharastbma. trichmphytlum BracAytAectum hylotapctum 3. satebrosum SracAythecium spp. Bryum Spp. Cattieryonella. scAreAe+i**) CtpAaloxia. Spp. Dicranum fuscescens \u00E2\u0080\u00A2* * 2>. scopartum \u00E2\u0080\u00A2 D. striatum* * Drcpanoeladus unctnatus EutAyneAium striyosum * Hylocomium Sptendens HypMum circinate Jameson'telta autumnalis \u00E2\u0080\u00A2 Jungermannia. Spp. ' iepidoxia +eptans-/opAoeolea. AetcropAylla-lophoxia incisa. L. lycopodtoides L. parpAyrole uca. /opAoxia spp. Ifnium insiyne TT. spinulosum * * Ptagiochille asplenioides \u00E2\u0080\u00A2 PtagioCAecium denticulatum Ptitidium catifotnicum PpulcAer+imum P+itium c+isfa - castrensis KAytidimdetpAus triaoet+us Rhytidiopsis robust!. \u00E2\u0080\u00A2 TeT+apAts pelluciata . . . . / / f Z/2- \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 22Z \u00E2\u0080\u00A2 2/2 \u00E2\u0080\u00A2 \u00C2\u00A5S'X \u00E2\u0080\u00A2 3/2- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 J\u00C2\u00A5z \u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 . . . . j;,* . ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2' \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /zz- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 JZZ- \u00E2\u0080\u00A2 J/2- \u00E2\u0080\u00A2 332 \u00E2\u0080\u00A2 //2 //Z //X 2/2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 32/- \u00E2\u0080\u00A2 XZZ //Z-7/2 \u00E2\u0080\u00A2 J\u00C2\u00A5Z XI?-Ill \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 1/2 \u00E2\u0080\u00A2 3\u00C2\u00A5x 3\u00C2\u00A5Z HZ Js'x 722 -2X2-77/ \u00E2\u0080\u00A2 Z/2-//Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Ji'Z \u00E2\u0080\u00A2 J\u00C2\u00A53 //2 \u00E2\u0080\u00A2 212-7/Z-ZJ 2 7/7 \u00E2\u0080\u00A2 JZZ-\u00C2\u00A5xz 77 X \u00E2\u0080\u00A2 /22-2ZX /// -2.33 722-3\u00C2\u00A53 //2 \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 2 ?? 333 22 Z //Z 7/Z //Z 3S Z \u00E2\u0080\u00A2 \u00C2\u00A53-2 222 ZZZ-72Z-J\u00C2\u00A5z-33Z-/\u00C2\u00A5Z \u00E2\u0080\u00A2 /7X \u00E2\u0080\u00A2 HZ \u00E2\u0080\u00A2 22 Z 772 \u00E2\u0080\u00A2 3ZZ 7/X III \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 332-3/X \u00C2\u00A5JZ //2 \u00E2\u0080\u00A2 33Z-3ZZ-7/Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/X \u00E2\u0080\u00A2 XZX 3/Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZH \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 722 ki-ll 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 32X \u00E2\u0080\u00A2 212-//2 \u00E2\u0080\u00A2 322 112 \u00E2\u0080\u00A2 212 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 73Z-J\u00C2\u00A52-322-/II \u00E2\u0080\u00A2 ZZZ 7ZX-33 Z-/ZZ \u00E2\u0080\u00A2 /xz 2/1 \u00E2\u0080\u00A2 272 722-11J til-/\u00C2\u00A5/\u00E2\u0080\u00A2 X2Z-J3Z /zx-ZZl-//z \u00E2\u0080\u00A2 213-323-/H \u00E2\u0080\u00A2 3ZZ-Hi-ll/ \u00E2\u0080\u00A2 322 322 77 X \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// HZ \u00E2\u0080\u00A2 /zz \u00E2\u0080\u00A2 /22-xzz 2/X \u00E2\u0080\u00A2 IIZ \u00E2\u0080\u00A2 IIZ \u00E2\u0080\u00A2 XZZ-11/ \u00E2\u0080\u00A2 JXZ /12 \u00E2\u0080\u00A2 XIX-2/2-IIZ \u00E2\u0080\u00A2 J1Z \u00E2\u0080\u00A2 zzz-XIX JZZ-JZ 2-J12 \u00E2\u0080\u00A2 ZlX-ZIZ //Z \u00E2\u0080\u00A2 . . . . ///. . /X/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 3Z JXZ 3ZZ \u00E2\u0080\u00A2 33 X-\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZIZ-XZZ-HZ \u00E2\u0080\u00A2 z/z \u00E2\u0080\u00A2 2 23 XX 3 //x \u00E2\u0080\u00A2 222 212-/2Z- \u00E2\u0080\u00A2 /12C \u00E2\u0080\u00A2 3JZ- \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/X \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 223 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5x \u00E2\u0080\u00A2 2 72-22 Z \u00E2\u0080\u00A2 Z/Z- \u00E2\u0080\u00A2 HZ \u00E2\u0080\u00A2 T+2-JZ z JIZ /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /zz\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 JJJ \u00E2\u0080\u00A2 33 Z 711 \u00E2\u0080\u00A2 JZZ /\u00C2\u00A5/ \u00E2\u0080\u00A2 HI \u00E2\u0080\u00A2 222-712 \u00E2\u0080\u00A2 2/2 \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 J\u00C2\u00A5J 7/Z 222 /// /// 2/2 //X \u00E2\u0080\u00A2 /72 JJZ / / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZZZ 7/2 /\u00C2\u00A5/\u00E2\u0080\u00A2 /// 23Z //I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /J2C-72/ \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 /Z2 //Z /22c-77/ \u00E2\u0080\u00A2 22 Z 7ZZ ZZZ x/z- //X //z \u00E2\u0080\u00A2 x/z-//2 \u00E2\u0080\u00A2 /Zl 2// //X \u00E2\u0080\u00A2 HI- \u00E2\u0080\u00A2 11/ \u00E2\u0080\u00A2 / / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 I3Z-X\u00C2\u00A57-Z/Z-7/2 \u00E2\u0080\u00A2 X/2-JJZ /// \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /// ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 JZZ xll-71/ \u00E2\u0080\u00A2 3\u00C2\u00A5X XX I-JJZ xzx 3\u00C2\u00A5z ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// /\u00C2\u00A5/ \u00E2\u0080\u00A2 Z\u00C2\u00A5zy- 7/1 /I/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/X 7X7 \u00E2\u0080\u00A2 2// \u00E2\u0080\u00A2 7/X \u00E2\u0080\u00A2 J\u00C2\u00A5z 7/2 ++I /JZ-HZ //2 ZZZ ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 322-72/ \u00E2\u0080\u00A2 HZ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 ZZZ x/z-/z/-22Z /// \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 //2 //Z 7/Z \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 Z/Z /// \u00E2\u0080\u00A2 2/Z-7/2 \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 zzz 22/ 7ZX-/\u00C2\u00A5/\u00E2\u0080\u00A2 /// 77Z // z //2 111-JX/-//X \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 //X 7/X \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 7/2 772 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 2/2 /Z/-/ll- HI-111- \u00E2\u0080\u00A2 ZlX-HI- \u00E2\u0080\u00A2 77/ \u00E2\u0080\u00A2 JZZ ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 III-311 /// 111- \u00E2\u0080\u00A2 XIX \u00E2\u0080\u00A2 77/ \u00E2\u0080\u00A2 /ZZ 3ZZ 7/Z 1/7 \u00E2\u0080\u00A2 77 Z m- \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 B 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 6 3~-J7 \u00C2\u00A56 66 \u00C2\u00A5 \u00E2\u0080\u00A2 36 I O Xi' 7\u00C2\u00A5 7 y 6 J I a 4 9 O \u00C2\u00A5z o J 4' 77-2 s-20 \u00C2\u00A5\u00E2\u0080\u00A2 III 272-///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 X/2 J/2-111-/II J\u00C2\u00A5z \u00E2\u0080\u00A2 JZZ \u00C2\u00A5s'z Ji\ z \u00E2\u0080\u00A2 s'iz \u00E2\u0080\u00A2 3ZZ \u00E2\u0080\u00A2 s'iz \u00E2\u0080\u00A2 \u00C2\u00A5s'z JZZ-\u00C2\u00A5\u00C2\u00A5Z \u00C2\u00A5\u00C2\u00A52 Jxz \u00C2\u00A532 /IX i 2JZ 3/X \u00C2\u00A5s'z \u00C2\u00A5i'/-33'/ \u00E2\u0080\u00A2 3\u00C2\u00A5l- \u00E2\u0080\u00A2 3/7 3Z/ s'iz S~\u00C2\u00A5z 7/1- \u00E2\u0080\u00A2 2/2 1/2 \u00E2\u0080\u00A2 x/z-3\u00C2\u00A5Z 23/-J\u00C2\u00A52-2/Z- 2Z2 ZZZ-Z/2-ZZZ /// \u00E2\u0080\u00A2 /Z2 /// \u00E2\u0080\u00A2 322 23/ 372-/// \u00E2\u0080\u00A2 2/7- 332 722-33 Z 7/Z \u00E2\u0080\u00A2 2//-222 772 \u00E2\u0080\u00A2 xtz-zzz 2/i 33X 2/3 \u00E2\u0080\u00A2 2/X \u00E2\u0080\u00A2 333 7/Z \u00E2\u0080\u00A2 \u00C2\u00A53-7 . 3\u00C2\u00A5Z \u00E2\u0080\u00A2 32 2 \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2/X- \u00E2\u0080\u00A2 2Z X \u00C2\u00A53X //X 2/2 JZZ 2/Z-+\u00C2\u00A5/\u00E2\u0080\u00A2 2/3 \u00E2\u0080\u00A2 J\u00C2\u00A53 X/2-2ZZ 2ZZ 223 22 Z 2/2-HZ 2+2-///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3/2 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5J 322-JZZ-33/-JZZ \u00C2\u00A5\u00C2\u00A5Z /// \u00E2\u0080\u00A2 z/z-/II \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5z 312 \u00E2\u0080\u00A2 s's'z /II \u00E2\u0080\u00A2 1/1 \u00E2\u0080\u00A2 zzz 111 3\u00C2\u00A5/ I/z \u00E2\u0080\u00A2 s\u00C2\u00A5z-3ZI-//X \u00E2\u0080\u00A2 2/2 2/3 \u00E2\u0080\u00A2 /JZ \u00E2\u0080\u00A2 2/2 \u00E2\u0080\u00A2 33 Z 2/2 132-l\u00C2\u00A5l \u00E2\u0080\u00A2 z/z \u00E2\u0080\u00A2 xz z 3Z2 33 X /// 231-2/2 223 /// \u00E2\u0080\u00A2 Z/2 \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 xzz 2//\u00E2\u0080\u00A2 /JZ 3 Z X //z \u00E2\u0080\u00A2 J2/-2// \u00E2\u0080\u00A2 333 /// \u00E2\u0080\u00A2 722-/ZZ-y*2 /2Z-3\u00C2\u00A5Z ///\u00E2\u0080\u00A2 /ZZ \u00E2\u0080\u00A2 3-JZ / z/ \u00E2\u0080\u00A2 \u00C2\u00A53Z 332 2/Z-22 2-3ZZ 3\u00C2\u00A5z z z z ZZ X 33/ -o /s ZH 43\" o / 3 r O \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 /a \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o -i / \u00E2\u0080\u00A2 s--IS'-\u00C2\u00A56 IZl s--8 \u00E2\u0080\u00A2 \u00C2\u00A56 ?/\u00E2\u0080\u00A2 Cs \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 IJ-T -\u00C2\u00A5 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 li-l\u00C2\u00A5-IS-li'-\u00C2\u00A5 \u00E2\u0080\u00A2 12-i' \u00E2\u0080\u00A2 \u00C2\u00A59- 4 o \u00E2\u0080\u00A2 o /\u00C2\u00A5/ \u00E2\u0080\u00A2 Xll 2/Z //I /ZZ S-i'Z z/z 3\u00C2\u00A52-\u00C2\u00A5\u00C2\u00A5Z ZZZ 322 /// /ZZ-/zl 332 XI/-//x \u00E2\u0080\u00A2 111-//X -3\u00C2\u00A57-33/-/JX-3Z/-7/2 //Z \u00E2\u0080\u00A2 ZZZ ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 /zz + \u00C2\u00A5/\u00E2\u0080\u00A2 212- //X-112 \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A52 222-XIX 222 22/ 33 X 3J2 \u00E2\u0080\u00A2 Z\u00C2\u00A5Z-212 /I/ \u00E2\u0080\u00A2 11/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 22Z //X \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2//-/// \u00E2\u0080\u00A2 2/2 //2 \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 /// 72/-77/ \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/2 //2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2/Z-//X \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2/Z \u00E2\u0080\u00A2 JXZ-2/Z-/// \u00E2\u0080\u00A2 /ZZ 332 3// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 X3X \u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 3/Z \u00E2\u0080\u00A2 312,- 33 2. /\u00C2\u00A5/ \u00E2\u0080\u00A2 31X-Zl) 111 \u00E2\u0080\u00A2 IZZ 3\u00C2\u00A5z ZZZ ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 JJJ zix \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 JZZ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 JXX /// \u00E2\u0080\u00A2 /// \u00C2\u00A5\u00C2\u00A5Z- \u00C2\u00A54z . . . . 3y.x \u00E2\u0080\u00A2 IZl-33 Z ZZZ \u00C2\u00A5\u00C2\u00A52 \u00E2\u0080\u00A2 33 Z t\u00C2\u00A5X-//2-Z/Z \u00E2\u0080\u00A2 //2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 32 Z 33 Z 2/Z 3X2-33Z /\u00C2\u00A5/ \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 /I2-3ZZ /// 3/X /// \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 X/Z 72X-X/Z /X/-72X /\u00C2\u00A5/ \u00E2\u0080\u00A2 32 X X// //2 \u00E2\u0080\u00A2 33Z ZZZ //A \u00C2\u00A5\u00C2\u00A53 \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 /it \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 322 \u00E2\u0080\u00A2 2/Z-/\u00C2\u00A5/ \u00E2\u0080\u00A2 ZIZ \u00E2\u0080\u00A2 2/Z-HX \u00E2\u0080\u00A2 3/X-IIZ \u00E2\u0080\u00A2 izl-ZZl-33Z //Z \u00E2\u0080\u00A2 \u00C2\u00A53X -/// 3ZZ 33Z \u00E2\u0080\u00A2 . . . . ++/. . ' \u00E2\u0080\u00A2 2/2- \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 2X2 211-111 \u00E2\u0080\u00A2 /Zl \u00E2\u0080\u00A2 +\u00C2\u00A5/\u00E2\u0080\u00A2 11/ \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 Ttt-/o \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 /o / \u00E2\u0080\u00A2 Jl-23 ZZ o \u00E2\u0080\u00A2 2 2 0 \u00E2\u0080\u00A2 li'-6 \u00E2\u0080\u00A2 31-20 o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 /i'-z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 36 o \u00E2\u0080\u00A2 z4 o \u00E2\u0080\u00A2 J / \u00E2\u0080\u00A2 /J-/ -6 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o J z \u00E2\u0080\u00A2 X o \u00E2\u0080\u00A2 z 0 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 3 2 \u00E2\u0080\u00A2 a \u00E2\u0080\u00A2 1 2 \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 o 2 O \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 7/Z l/Z \u00E2\u0080\u00A2 2/Z /// HZ \u00E2\u0080\u00A2 23 Z 3ZZ /// ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 23Z //z \u00E2\u0080\u00A2 ZZ/-Ji 3 /// \u00E2\u0080\u00A2 2// 2/2 2+/ 36'3 Z/Z-/// \u00E2\u0080\u00A2 //z \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 22/-2//-/// \u00E2\u0080\u00A2 HZ \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 2//-32 J 33X 33'2 ++/\u00E2\u0080\u00A2 H2 -//z /22-l/Z \u00E2\u0080\u00A2 22/-2/2 /// \u00E2\u0080\u00A2 3 ZZ /// \u00E2\u0080\u00A2 /// //Z \u00E2\u0080\u00A2 x/z-/22 //X \u00E2\u0080\u00A2 3Z Z / / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / / / \u00E2\u0080\u00A2 z z z /// \u00E2\u0080\u00A2 3ZZ /// //\u00C2\u00A5 \u00E2\u0080\u00A2 2// \u00E2\u0080\u00A2 7/Z \u00E2\u0080\u00A2 222 \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 //z //X 22/ 2JZ 2/2 2// \u00E2\u0080\u00A2 22 Z ///\u00E2\u0080\u00A2 /// 7/2 7/Z 7/2 2/2-112 \u00E2\u0080\u00A2 2/Z \u00E2\u0080\u00A2 /// /22 //X \u00E2\u0080\u00A2 O O / I 1 73 X 7 o 3 TCD ACD TCD ACD TCP ACD CD* o \u00E2\u0080\u00A2 lo \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 3'-IZZ 3'3 1\u00C2\u00A58 2 \u00E2\u0080\u00A2 22 O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 86 98 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 ? \u00E2\u0080\u00A2 2 4'-3 74 \u00C2\u00A5l o \u00E2\u0080\u00A2 78 o -/\u00C2\u00A5\u00E2\u0080\u00A2 2o xl 6 \u00E2\u0080\u00A2 6 -AS o \u00E2\u0080\u00A2 s \u00E2\u0080\u00A2 II \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 13-t ZS 33 60 7 \u00E2\u0080\u00A2 32 O \u00E2\u0080\u00A2 s' \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 77 ZZ ir-is-is z \u00E2\u0080\u00A2 x \u00E2\u0080\u00A2 /o IZ-o \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5 o \u00E2\u0080\u00A2 7 7 \u00E2\u0080\u00A2 If-\u00C2\u00A5 \u00E2\u0080\u00A2 s'-8 3 \u00E2\u0080\u00A2 6 o / / 3 / o /x 8 o \u00E2\u0080\u00A2 73-/ /o o 8 3' o o s' o o /z o /6 o / \u00C2\u00A5 o / I / / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o 2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 0 -/ \u00E2\u0080\u00A2 o < o \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o -o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 C'7. C TCP ACD CCD Xf i'8 23 23 JS. X9 Si' 7/ ?o 33\" 83 JS\" 23 S'i 9b J\u00C2\u00BB' tf-3'\u00C2\u00A5 38 2 7 Xi\" IJ-io /S'-iZ-/s'-60 \u00C2\u00A50 80 4'o Jl So \u00C2\u00A5z x 3 Z z 2 Z 3\" \u00C2\u00A5 3' z 4\" X z 3 s' z I 3 X z X / \u00C2\u00A5 I 3' / 4 3 s\" j 2 S\" 3 II- \u00E2\u0080\u00A2 XI- \u00E2\u0080\u00A2 3~-X \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 18- \u00E2\u0080\u00A2 IX- \u00E2\u0080\u00A2 li't \u00E2\u0080\u00A2 IIB Xlb 9 69 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 14' 88 783-X7- \u00E2\u0080\u00A2 S~ \u00E2\u0080\u00A2 X7 Xi\"-7 r-X6 43\"- \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 78 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZZ \u00E2\u0080\u00A2 x/- \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5 \u00E2\u0080\u00A2 /a-IZ- \u00E2\u0080\u00A2 77 4- \u00E2\u0080\u00A2 OCCASIONALLY PRESENT It A, Arm i L I I I L t 4T LICHENS ON DEC A YING UOOD Cladonia ofefe+mis C. Aim Aria to. \u00E2\u0080\u00A2 Cladonia. spp. * \u00E2\u0080\u00A2 lYcpAro/na, spp. Peltige+a aphthosou P canina. \u00E2\u0080\u00A2 P petydactyta. PAyscia caesia. TCD ACD TCD ACD TCD A to fCD ACD TCD ACD TCD ACD ///\u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 2+X-222-111 \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 X//- 32/ 2 32 JX/-zzz- \u00E2\u0080\u00A2 ZJZ JS'X \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 232- \u00E2\u0080\u00A2 jyx /\u00C2\u00A5/ \u00E2\u0080\u00A2 J\u00C2\u00A5X 7/2 -2/7-7/Z \u00E2\u0080\u00A2 JZZ /// \u00E2\u0080\u00A2 7 + 2-/// 2/7-HI-/ 32-/ ZZ-/\u00C2\u00A5/\u00E2\u0080\u00A2 /+2-22/-/JX \u00C2\u00A5\u00C2\u00A5X-/\u00C2\u00A5/\u00E2\u0080\u00A2 72/ ///\u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 /XX-2+X-/+/ \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 /JZ \u00E2\u0080\u00A2 /+2-/// \u00E2\u0080\u00A2 ZTZ 7+Z-/ / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 XX/-/\u00C2\u00A5/ XX/-/\u00C2\u00A5/ \u00E2\u0080\u00A2 /\u00C2\u00A5Z \u00E2\u0080\u00A2 /X/-/\u00C2\u00A5X \u00E2\u0080\u00A2 /JZ //X 2// \u00E2\u0080\u00A2 /\u00C2\u00A52-/// /It-2t2- /+2- -6 \u00E2\u0080\u00A2 ff 4-o \u00E2\u0080\u00A2 IB-3 \u00E2\u0080\u00A2 /J-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3\u00C2\u00A51 232 3\u00C2\u00A5Z 3\u00C2\u00A5/-7 3/-2\u00C2\u00A52-2/2 211 \u00E2\u0080\u00A2 2/2-J\u00C2\u00A5l-22 Z /\u00C2\u00A5/ \u00E2\u0080\u00A2 XIX \u00E2\u0080\u00A2 7JZ-l\u00C2\u00A5Z-ZH 21/ \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 xjz /TZ \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 XT1-111 71/ JJ/-/ / / \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 1/2 \u00E2\u0080\u00A2 ZT1-2T2 ZTZ 331-1 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 17 3 \u00E2\u0080\u00A2 x \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o z o 0 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 3\u00C2\u00A5l-ZIZ-/\u00C2\u00A5/ \u00E2\u0080\u00A2 /\u00C2\u00A5X \u00E2\u0080\u00A2 /// 21/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7/7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+X-ZZZ Z32 7 \u00C2\u00A52- \u00E2\u0080\u00A2 7+2-/\u00C2\u00A5/\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ITZ-Zll III X/Zb- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 izl- \u00E2\u0080\u00A2 3\u00C2\u00A5l 1+X /// Z\u00C2\u00A5l- \u00E2\u0080\u00A2 311- 2tl-332 3+/- \u00E2\u0080\u00A2 3+2 /\u00C2\u00A5Xb- /+/ \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 ZZ/-//z \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 /JX \u00E2\u0080\u00A2 ///X 231 /TZ ///\u00E2\u0080\u00A2 ZIZ 3ZZ i+zA 2 Hi \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5l \u00E2\u0080\u00A2 1+Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ITZ- \u00E2\u0080\u00A2 z/zA \u00E2\u0080\u00A2 ziz- \u00E2\u0080\u00A2 X\u00C2\u00A5/b \u00E2\u0080\u00A2 /\u00C2\u00A5/ ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 TCD ACD TCD ACD TCP A CD Cp* / \u00E2\u0080\u00A2 /2-30 O \u00E2\u0080\u00A2 23 / \u00E2\u0080\u00A2 2/-0 \u00E2\u0080\u00A2 O / / O / o / 0 o \u00E2\u0080\u00A2 s'-/J-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 70-7S'-O \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o / o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / / o o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 IJ-0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 3 6 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 C% C TCO \u00E2\u0080\u00A2SB34,3\u00C2\u00A53-ACO CCD 73\" \u00C2\u00A56 7/ 2sr 3\"/-6S' 60 77 / 3 \u00C2\u00A5 2 3 \u00C2\u00A5 \u00C2\u00A5 1 I \u00E2\u0080\u00A2 77 \u00C2\u00A56 o \u00E2\u0080\u00A2 Z\u00C2\u00A5 l\u00C2\u00A5 \u00C2\u00A52 1 o o 1 o \u00E2\u0080\u00A2 1 0 / o o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 OCCASIONALLY PRESENT Cetraria ylauca. - SS f/J//Xr;SB /JZ, //J4;S371, /+Z;SB/2l, /z/; S37\u00C2\u00A53, 7+/cb; C. juniperina. - S3 /\u00C2\u00A5J, /\u00C2\u00A5/\u00E2\u0080\u00A2 C. seutata -S32Z, /+/y;SB/Jf, /zxb \u00E2\u0080\u00A2 Cladonia. Aacillaris -SosT, /J/;S8 J 70',///f-SB/jf, HzbjSB 7l,/\u00C2\u00A5zj SB/2 (, ++lb; C. bctltdiftoro, -S/3 7t, ++Z; C. car neat a. - SB/J9 //Zb; C. cAtaro phaea-SB 7/9, xx/; SB/BJ /+/; SB9J l//;SB/\u00C2\u00A5o, /l/b; SBXO IIZ \u00E2\u0080\u00A2 C. coccifera, -SB Tl ++Z; C. SB ZZ, 1/2; letAari*. vulpino. -SB 733, /+/; lo bar'to. pulmonaria. - SB2Z,IJZy; SB /Jf/HZ; SB7\u00C2\u00A5e,//Z- Nephroma, laeviyatum - SB Jl, zxx; sazz,//3; SB/Z7, z/z; SOXt,/+2- SB 8, l+l; N. pari It -SB /33, J\u00C2\u00A5z ; Pan nana, pez ixoida.s - SB//s'/+zj Par me tto. pAysode.s -S8/J2, /+/S,-sa zx,/+/yj SB/Jt,/+/b/sa/\u00C2\u00A5J 7+/ci'; Peltigera. Aori*o'nta.lis -Sti/i, Z/z ; P membranae'eo, \u00E2\u0080\u0094 SB Con tocra ea -Sa/oe 39112 //x; C. diyitaTa, -So/33, x//;S/3/xt, ///A-SB 7, ///; C. gracilis - S3 i'7, f+7; SB /\u00C2\u00A5o,illb- S3/z4y \u00C2\u00A5+t; C. nemoxyno. -SB 7 /++ \u00E2\u0080\u00A2 C. potydacty/a -SB9\u00C2\u00A5,/H; C. Souamosa-sa iJ,72x,sa T, 7//;.XcmSdophita. ericetorwm-Sa il/ZZ; SBfTii/liz-L/ftftt. Pm Pm t. SEEDLINGS O/v PECAYINC- UOOD TAu/o. plicata. Tsuya AeteropAylla.' 7/Z /IZ \u00E2\u0080\u00A2 l/Z \u00E2\u0080\u00A2 Zll x// \u00E2\u0080\u00A2 l\u00C2\u00A5t \u00E2\u0080\u00A2 ZT7-TCD ACD TCP ACP 0 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 I / \u00E2\u0080\u00A2 O \u00E2\u0080\u0094 \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 I 2 \u00E2\u0080\u00A2 o 3\u00C2\u00A5? 212 \u00E2\u0080\u00A2 JJ?-Iff JXl HZ \u00E2\u0080\u00A2 l+l \u00E2\u0080\u00A2 J+l 3+1-TCD ACD TCD ACD - \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 O lO- 2 - \ ZS' X TCP ACD TCD A CD ZT? 33?-/+/ Zll-/\u00C2\u00A5/ 3 + ? 3ZI IIZ //z i /I-1*1 111 /+/ \u00E2\u0080\u00A2 izl- 32 Z 1+2-J\u00C2\u00A5Z o \u00E2\u0080\u00A2 70 \u00E2\u0080\u00A2 O X \u00E2\u0080\u00A2 TOD ACD TCO ACD TCO ACD CP* 3 \u00E2\u0080\u00A2 \u00C2\u00A53 o \u00E2\u0080\u00A2 o - \u00E2\u0080\u00A2 I o. o C% C TCP ACD CCD XT \u00C2\u00A5Z 8 \u00E2\u0080\u00A2 \u00C2\u00A59 OCCAS7077ALLY PRESENT Ptcea. engelmannii - SBXZ,7\u00C2\u00A5/jSB7J\u00C2\u00B07//,- S3/Z^T*7-SB/\u00C2\u00A5J, /\u00C2\u00A5/\u00E2\u0080\u00A2 Pinus monticola. -SBSf\u00C2\u00A5+/; S393,\u00C2\u00A5T+;Sa /os'/\u00C2\u00A5\u00C2\u00A5; Pseudo tsuyo, menxiesii SB/6, \u00C2\u00A5\u00C2\u00A5/\u00E2\u0080\u00A2 SBJ\u00C2\u00A5, +\u00C2\u00A52;SB3tJ/T\u00C2\u00A5;SB32, /\u00C2\u00A5\u00C2\u00A5 7. BRYOPHYTES ON ROCk T averages dete+mined on basis of z9plots u/ith rock on ground surface I/ft. Atm He n 71 77 He /f fl It If If M fl fl ft He He He He He H fl If He 71 He He 71 TT 71 TCD ACD TCD ACD Btepharastema. trtcAopAyllum BraeAytbccium hytotapetvm SracXytAecium Spp. ; Catlieryone tla. schreberi Cephalexin, spp. Claopodium bolanderi Dicfanum fuscescens D. scopartum \u00E2\u0080\u00A2 P. striatum Drepanocladus uncinatus Evrhynchivm strigosum Hctcroctadium procusrens \u00E2\u0080\u00A2 Hylocomium sptendens Hypnum circinate \u00E2\u0080\u00A2 Iepidoxia. rcptans \u00E2\u0080\u00A2 /opAocolea. AetertpAylla. lophoxia barbata. /. lycopodioides lophoxia. *pp. /Tnium insiyne N. punetatufty 1 77. spinulosum PtayiocAita asplenioides PlayiotAecium^ denticulatum Ptilidium catifornicum P. putcAe++itoum Ptilium critta-castrensis PAyttdiadetpAus triouetrus RAytidiopxis robust*.-//2 III /// 1\u00C2\u00A51 HZ \u00E2\u0080\u00A2 HZ //Z ///\u00E2\u0080\u00A2 HZ //2 ///\u00E2\u0080\u00A2 + +Z-Z/Z-/ZZ \u00E2\u0080\u00A2 //z //z \u00E2\u0080\u00A2 /zz-//2 //2 \u00E2\u0080\u00A2 /ZZ-/Il-l/I-ll/\u00E2\u0080\u00A2 /II-l+l 7/Z \u00E2\u0080\u00A2 111- \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 11/ \u00E2\u0080\u00A2 X/2-z/z \u00E2\u0080\u00A2 /2Z ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /ZZ \u00E2\u0080\u00A2 JZZ \u00E2\u0080\u00A2 IIZ \u00E2\u0080\u00A2 Hi-nt-/// \u00E2\u0080\u00A2 JZZ-z/z-/+/ \u00E2\u0080\u00A2 Z/2-//z /+/\u00E2\u0080\u00A2 HZ \u00E2\u0080\u00A2 2\u00C2\u00A5Z / / / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Zll-///\u00E2\u0080\u00A2 //z ///\u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 IZl-iii-in-HI- \u00E2\u0080\u00A2 JZZ-++I-/// \u00E2\u0080\u00A2 111-zxx-llz \u00E2\u0080\u00A2 2 22-11/ \u00E2\u0080\u00A2 /ZZ \u00E2\u0080\u00A2 /Tl \u00E2\u0080\u00A2 JZZ 111- \u00E2\u0080\u00A2 /+/\u00E2\u0080\u00A2 IJ/ 1JZ \u00E2\u0080\u00A2 /zx \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 322-332 222-/2Z-/+/ \u00E2\u0080\u00A2 /\u00C2\u00A5/ /Z/ l+l /\u00C2\u00A5/ \u00E2\u0080\u00A2 111 1*1-/ZZ \u00E2\u0080\u00A2 /\u00C2\u00A5! \u00E2\u0080\u00A2 211 \u00E2\u0080\u00A2 ZZl 222 IIZ 232-///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2// 1/2 111-IIZ HI //Z /Zt \u00E2\u0080\u00A2 IZl \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 /zz-OCCASIONALLY PRESEHT Autacomnium G. apoearpa. i/ar. R. patens -S3C3, /+/ \u00E2\u0080\u00A2 /\u00C2\u00A5/ /\u00C2\u00A5/ \u00E2\u0080\u00A2 111 \u00E2\u0080\u00A2 /\u00C2\u00A5/\u00E2\u0080\u00A2 111- \u00E2\u0080\u00A2 l/Z \u00E2\u0080\u00A2 122-/\u00C2\u00A52 \u00E2\u0080\u00A2 232 //Z \u00E2\u0080\u00A2 /iz \u00E2\u0080\u00A2 /zz-zzz HZ \u00E2\u0080\u00A2 HZ \u00E2\u0080\u00A2 J/Z \u00E2\u0080\u00A2 /zz \u00E2\u0080\u00A2 //x \u00E2\u0080\u00A2 2/Z-zzz-7/2 HZ l/Z l+l \u00E2\u0080\u00A2 IZZ /// \u00E2\u0080\u00A2 /zz HZ \u00E2\u0080\u00A2 /Tl /12 \u00E2\u0080\u00A2 //Z \u00E2\u0080\u00A2 121-HI- \u00E2\u0080\u00A2 111-111 232 ZZZ IZZ \u00E2\u0080\u00A2 211 X\u00C2\u00A5l-111 \u00E2\u0080\u00A2 ZZZ 1*1 \u00E2\u0080\u00A2 1*1 112 17/ ZZl-XZZ-1+1 \u00E2\u0080\u00A2 /*/ \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 Z3Z ni-l/1- \u00E2\u0080\u00A2 3X1-l+l \u00E2\u0080\u00A2 l/Z 7/2 ZZZ-///\u00E2\u0080\u00A2 2ZZ TCP ACD Z / Tea ACP //Z /// 721-///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7Z1 \u00E2\u0080\u00A2 //X \u00E2\u0080\u00A2 111- \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 /XI-///\u00E2\u0080\u00A2 H2 \u00E2\u0080\u00A2 7/X //2 /II \u00E2\u0080\u00A2 l+l ///\u00E2\u0080\u00A2 /// -//2 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /\u00C2\u00A5/ \u00E2\u0080\u00A2 ZIZ /// \u00E2\u0080\u00A2 12/\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 /*/\u00E2\u0080\u00A2 IIZ /// /// \u00E2\u0080\u00A2 /XZ TCP ACP J\u00C2\u00A5Z HZ -JSI //z \u00E2\u0080\u00A2 3\u00C2\u00A5z //z \u00E2\u0080\u00A2 /22-22Z-/\u00C2\u00A5/ \u00E2\u0080\u00A2 111-//Z \u00E2\u0080\u00A2 /72 /Z2-/// \u00E2\u0080\u00A2 / / / \u00E2\u0080\u00A2 z\u00C2\u00A5z zzz-///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 xtz-11/ /// 11/ \u00E2\u0080\u00A2 //2 \u00E2\u0080\u00A2 /IX \u00E2\u0080\u00A2 112 \u00E2\u0080\u00A2 //I 1+1 /// //z \u00E2\u0080\u00A2 ///\u00E2\u0080\u00A2 /// /\u00C2\u00A5/ + \u00C2\u00A5/\u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 TCO ACD TCP ACP TCP ACP TCP ACD CD* C\"7. 33' 21-\u00C2\u00A5/\u00E2\u0080\u00A2 38 Zl-Zt \u00C2\u00A53' Jl-/\u00C2\u00A5\u00E2\u0080\u00A2 33-24 zl-J8 28-/7-ZB 17 33-z\u00C2\u00A5 /\u00C2\u00A5\u00E2\u0080\u00A2 x\u00C2\u00A5 90-/\u00C2\u00A5\u00E2\u0080\u00A2 \u00C2\u00A51-XI-ZS 17-/\u00C2\u00A5\u00E2\u0080\u00A2 69 X 2 J z z z 3 2 1 Z z z 2 Z / z / z z / z 3' I 3 2 Z / / \u00C2\u00A5 TCP 3 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 8 o \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 4 6 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3'-Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 b \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 zl \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 '\u00E2\u0080\u00A2^tlAt'cit'eait?^^ / \" t o i C t * i 7 S 2 / * i ' / / / ; \u00C2\u00A3 U Y \u00C2\u00B0 ' / ' ) ' \" Ct-ispiA/ium SB 3-7,7X2; Claopodium sp.SB /B\u00C2\u00A5, /Z/j Dicranum ruyosum -SB ZO ,/Z/; 7>ip/apAy(/um taxi folium \u00E2\u0080\u0094SBJi/zZ; Drepanocladus fern'tcosus - SB Zo, HZ; D. fluitans \u00E2\u0080\u0094SB 7t, ZJZ \u00E2\u0080\u00A2 Encalypfa. procera \u00E2\u0080\u0094 S3 Zo 112 : EurAyncAium praetonyum \u00E2\u0080\u0094 SB S'7 ///; E. substrioosum SB/\u00C2\u00A53;x2Z S 'SBZO,//\";^^ r r n i \" m ^-sa/6t,///;p'layiothecium setiyeri -SB 3t, //Z; Pohlia cruda-SB4'7,/Z/j Polytrichum juniperinum -SB/JJ, IIZ; SB i'7,1X1; Pa'tet/a cordeana. -SB / 73, ZZZ; P. na vtc Starts \u00E2\u0080\u0094SB S'7 /ZZ; Ptert'g ynandrum fiti forme \u00E2\u0080\u0094SB7L, 73/; Padula. bolanderi \u00E2\u0080\u0094SB //3-,112j Phacomit + i> ACD CCD SBI7i\", IIZ; SBZ3,lll; Grimmia. alpicaia var. rivutarts -SBlft Ili-um caJrescens-SB/JJ,lzz; SB1\u00C2\u00A5J,H1; X ActcrosticAum -S3/70, '++1; ItAAr L L L I L 8. LICHENS ON ROCK Cladonia. Spp. Nephroma. Spp. Peltigera. aphthosa. P. canina. P. paly dactyl a. /\u00C2\u00A5! \u00E2\u0080\u00A2 132-/\u00C2\u00A5Z \u00E2\u0080\u00A2 /TZ-/\u00C2\u00A5/ \u00E2\u0080\u00A2 /Tz /+/ \u00E2\u0080\u00A2 \u00C2\u00A5\u00C2\u00A5Z /\u00C2\u00A5/ \u00E2\u0080\u00A2 1+Z- /\u00C2\u00A5Z \u00E2\u0080\u00A2 21Z ziz-l\u00C2\u00A5l \u00E2\u0080\u00A2 3ZZ 73/\u00E2\u0080\u00A2 Z3Z l\u00C2\u00A5l \u00E2\u0080\u00A2 /*/ \u00E2\u0080\u00A2 1*1- /\u00C2\u00A5Z It/-///\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 XIX -/x/-TCP ACD TCD ACD O \u00E2\u0080\u00A2 0 TCP ACP TCD ACP TCD ACD TCD ACD O \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o o o o o JZZ-Z\u00C2\u00A5l l\u00C2\u00A5l 0 \u00E2\u0080\u00A2 $'\u00E2\u0080\u00A2 HZ 772 Z33-OCCAS/ONALLY PRESENT 111 \u00E2\u0080\u00A2 112 \u00E2\u0080\u00A2 ++Z-z+z-/\u00C2\u00A5X \u00E2\u0080\u00A2 t+l \u00E2\u0080\u00A2 o o o Tea ACD TCD ACP TCP TCP CP* / \u00E2\u0080\u00A2 o 0 \u00E2\u0080\u00A2 o 1 o o \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 o o o o \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 4'-/ \u00E2\u0080\u00A2 X \u00E2\u0080\u00A2 20 \u00C2\u00A53 Z7 Jo IT 7 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o o o O ' o C'7. C TCP ACP CCD 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 Cladonia. cAlarapAaea. -SB18J,11Z; C. fimbriate -SB I7i;///; SB 183,1+1; SBZa, ill; C. gracilis -SB/JJ, //zj Nephroma laevigatum \u00E2\u0080\u0094 SB Xo, ZIZ; SBZl, IIZ; N.parile -Sai3,3zz; Peltigera. canina. var. +uFestens -S8zo,/+l-p.'canina, var. spuria. -S320,/Uj P. venosa. -SB12J, 112\u00E2\u0080\u00A2 Steraocauten pascAate-Sa 133,X+X _L I SYNTHESIS TABLE 6 ALLUVIAL C O M P L E X AC VJ Ufa fotm Pm \u00E2\u0080\u00A2 Pm-Pm \u00E2\u0080\u00A2 Pm Pm-Pm Pm-Pm \u00E2\u0080\u00A2 Pm Cover'/. * Acer ytabtum a Betula. papyt c fe ta, Picea. e hgelmannt i\u00E2\u0080\u00A2\u00E2\u0080\u00A2 Pinus contorta, P. monticola, Populus t~ti C AO C O-tpO, \u00E2\u0080\u00A2 * i Pse-udotsuya. mtni.ie.sLi TAuJa. plicata, \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 Tsuga Aeta-topAylta, HABITAT Plot number- (SB) 2>ate ana.luse.oL Date cAtt.cke.oi \u00E2\u0080\u00A2 Locoition \u00E2\u0080\u00A2 Appro*. extent of tupe f \u00C2\u00AB c ) Elevation, (.ft.) 7 Exposure. Slope. (\u00C2\u00B0> TopootapAy ( p+ofiIe: contour', s urfa.ce, ) Idinok experiute (A-.B.C layers) History a) otiginal de.nucto.Tion by 4) alufino stand, d e. va.lopme.nt Soil type - \u00E2\u0080\u00A2 Parent matetial 79ost common AocA in parent mata,pia.L Soil de.ptA (cm.') Thickness of Ae horixon (.cm.) Texture of main root horizon Depth to se.e-pa.ae-, eccrly Tulul960 (cm.) Soil reaction a) main root Aorizon \u00E2\u0080\u00A2 b) organic Aorizon adj. to mineral soil Pattern and, apparent majot influence. Stand de.ve.lopme.nt sta.fi.-Aye. of dominants (yri.) Aye. of oldest meo,sured. tret, &a.sa.L a.re.a. pe-r acre, (fi.xi Ave.ra.oe. diam. of stanct_U*r.) Site inde,x at too yts. : H max.. Cot H Puj S . Be PI c Site. index O-t S'O yrs. %COVER OF VEGETATION LAYERS A A. S B, 8, C D *>\u00C2\u00BB Do \u00C2\u00B0h % cover of Aumus and/or titter % cover of decayino wood \u00E2\u0080\u00A2 - - \u00E2\u0080\u00A2 5i cover of rock SPECIES LIST - LAYER A - TREES WET ALLUVIAL COMPLEX (WAC) / x. 3 / Z 3 i 2 3 I X 3 I Z 3 I Z 3 I z 3 I z 3 / z 3 Zt Sk.pt/s-/s-f Suy. L. st-v. 197S flat o F'.F'.N 6:3:1 ? sel.l:lf.fi,U DMA A ? o C-SIL 9\u00C2\u00A5 6.2 6.0 I E: YT 13a l+l'F ZSS \u00C2\u00A5. s t\u00C2\u00A5o :-H o:-izo :-i\u00C2\u00A5-o: -So \u00C2\u00A5o 4 Z3 18 9l~ 7o 80 yo S-O S o 9Z 8 o to 17Z-t+3 312 ttz ttz + +/\u00E2\u0080\u00A2 + + 3 ttz ++2 lt-1 \u00E2\u0080\u00A2 /Xi T*n. zo/ll Sept.?/iO Kusk. C. sev. 1-930 O-S/oC 0-1 F.F.C-7:3:1 ? stl.t.;,.ft..J OR A 0-7 O C-S 7 6.0 i'.6 \u00C2\u00A5 PF 17: YT 80 f 131 P^J 2ol 7-3 120.-6t Tut. IS-/S9 Any. i'/(0 Cat. C. .i' 2\u00C2\u00A5&S o-ss'i'ai o -3 F'.F'.U 5-:3 .7 7 f. flood. DM R A ? 6 c-c-s 6Z 6. 6 6.0 \u00C2\u00A5PF E:P i'o t s-8 r zo 2.0 izo'.-/30 .-130:-? o . -70 1 o \u00E2\u0080\u00A2 ty Zl' zy 60 3S 30 10 \u00E2\u0080\u00A2 IO \u00E2\u0080\u00A2 s s O 6 s-30 S~ 5\"0 60 n) Zi' 3 5\" J\"5_ 60 ?o \u00E2\u0080\u00A2 7 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S~ Z O ?3' 7 O 60 \u00C2\u00A5-6z 1-7-Z. \u00E2\u0080\u00A2 \u00C2\u00A562, \u00E2\u0080\u00A2 1TZ \u00E2\u0080\u00A2 Z /2 ITI- \u00E2\u0080\u00A2 It! i/z ttz- 8 8Z 3+-I- \u00E2\u0080\u00A2 TTO \u00E2\u0080\u00A2 T-hl- \u00E2\u0080\u00A2 TTZ \u00E2\u0080\u00A2 S-7Z t/r \u00E2\u0080\u00A2 1+1 \u00E2\u0080\u00A2 S~62 /TZ \u00E2\u0080\u00A2 7TZ 77-0 /t-z-TCD ACD I S'o So /6 31- lo-Z\u00C2\u00A5 8 /S' 89 3o Z 6Z 27 Zl - 7 \u00E2\u0080\u00A2 ORY ALLUVIAL COMPLEX (DAC) 68 Tul. /i/i'9 Aooz/io A(r. P. I ItlO O-S60E os- -IO CY:N:N 7: 6 :S Fire, p. flood DM R A Qi G-? 6 c-S 7 '6. 7 S-.6 I E:P \u00C2\u00A51 \u00C2\u00A5i'Pt 71S-\u00C2\u00A5. 6 80 :-70.-loo: 70 6i-9o \u00E2\u0080\u00A2 3i' 7i ?i' 60 60 I-o 99 I o 61-3/Z 8 7 2 + +1 IT2-T+Z k actual ho. of plots in which Species is present ASSOCIATION SUMMARY CS TCD ACD CCD Zli- i'\u00C2\u00A5 Z 16 \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 36 z\u00C2\u00A5 I Ti-ll 89 \u00C2\u00A5 \u00E2\u0080\u00A2 iz 3 \u00E2\u0080\u00A2 27-IZ-79- \u00E2\u0080\u00A2 7i>~ 27 27 Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 71- \u00E2\u0080\u00A2 1S'-OCCASIOtYALL Y PRESENT Alnus crispa. \u00E2\u0080\u0094 Sa 6\u00C2\u00A5t As z+Z ; larin occidentalis \u00E2\u0080\u00A2 - LAYER B - SHRt/tSS life form Cover-% > , Pm Acer J la brum Pm Alnus Ct-ispa, Pn Ame.tancAie.f- alnifolia, % \u00E2\u0080\u00A2 Pm- Ze.tula, papyrife.rO, \u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2 Pm Cornus sTolonife.rO.\u00C2\u00BB\u00C2\u00BB0 Pin- Corylus CDli-formca, Pn Cratae-ous douylas'ti. \u00E2\u0080\u00A2 c \u00E2\u0080\u00A2 Lonice.ro, ciliosa. Pn L. involuc/-ata. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn L. utaAo-nsis Pn '\u00E2\u0080\u00A2 \"\u00E2\u0080\u00A2 Mahonia, o.t^ui folturn \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Pn Oplopanax horridus Pn PacAysfcma, myrscncZSes Pm Prcea, e. ny el man nil. e \u00E2\u0080\u00A2 Pm- Pinus monticola. Pm- Populus trichocdrpH, Pm \u00E2\u0080\u00A2 Pruhus very in i an a^ var. demissa. Pm- Phamnus purshiana. Pn \u00E2\u0080\u00A2 R160-S iacustro. Pn Posa yymnocarpa, Pn \u00E2\u0080\u00A2 P. hutitana.-PA \u00E2\u0080\u00A2 Pubus idaeus van. striyosvS Pn P. par vif(orus Pm Satix metanops is \u00E2\u0080\u00A2 Pm S. sitchenscs \u00C2\u00BB \u00E2\u0080\u00A2 Pn So*l>us sitche.niis Pn Spiraea, tucidox,-Pn SympAoricar-pos alius \u00E2\u0080\u00A2 Pn \u00E2\u0080\u00A2 Taxes brevi folia. Pm \u00E2\u0080\u00A2 TAvja. plicata. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a Pm \u00E2\u0080\u00A2 Tsuyo. Aeterophylla-. C, Yaccinium cae.ipitosum % Pn V. membtana.ce.um Pl> - V. ovalifolium Ph \u00E2\u0080\u00A2 Viburnum e-duta. SSZB,A,-/-t-Z ; Taxus bt-evi folia, - SB IZ As++3 TCD ACD 7S' (,0 8 5-I z I z / z / z I z I z I z / z I z 1 z I 2 / z z / X, / z I 2 / z I z / Z / Z I z. 1 z / z 7 Z 1 z I z / z 1 2 / z I z 1 z I z I z I z I z 26Z 111 \u00E2\u0080\u00A2 S'77 \u00C2\u00A5\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00C2\u00A56Z-3/Z 682 \u00C2\u00A5\u00C2\u00A5Z TTZ 117 \u00E2\u0080\u00A2 ZH \u00E2\u0080\u00A2 ItZ 2TI-2/1 \u00E2\u0080\u00A2 t-Tl 3 1'3 3/1 \u00E2\u0080\u00A2 8 93 \u00C2\u00A5\u00C2\u00A5/ \u00E2\u0080\u00A2 /+/ i-s'z i~i~X TTZ \u00E2\u0080\u00A2 IT/ \u00E2\u0080\u00A2 ITZ /TZ 13Z-31Z 1+2-3\u00C2\u00A5-Z ZTZ ITZ 7/Z \u00E2\u0080\u00A2 ItZ 36z 771 \u00E2\u0080\u00A2 /Tl It/ \u00E2\u0080\u00A2 2+1 IT/ \u00E2\u0080\u00A2 ITO /\u00C2\u00A5/ 3TI-/+/ ttt Ml \u00E2\u0080\u00A2 ITO 7+7 t+l-77/ 3 Ti-lt/\u00E2\u0080\u00A2 882 31-2 \u00E2\u0080\u00A2 362 TTZ. \u00E2\u0080\u00A2 7 7Z /+X. \u00C2\u00A572 3TZ /3Z, 77/ \u00E2\u0080\u00A2 77/ 7+7-Z// \u00E2\u0080\u00A2 \u00C2\u00A562 31'/ \u00E2\u0080\u00A2 2+1 \u00E2\u0080\u00A2 /// \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 31/d 3//d (/6Z~> S'7 3 \u00C2\u00A5-62 3+1 \u00E2\u0080\u00A2 l+ld \u00E2\u0080\u00A2 771-2+1-z+l-7+7 \u00E2\u0080\u00A2 //Z ItZ /+/ 1 + 2 ItZ z t o 31- \u00E2\u0080\u00A2 \u00C2\u00A5S~ SO lo-/i~ S-Q 8%' 17 28 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o 1'- z \u00E2\u0080\u00A2 /O- \u00E2\u0080\u00A2 3 o o a.Qrostis canadensis \u00C2\u00BB Care.x dle.uua.yana, Ciz-cexca, axlpina,-Clinton ia. uniflora. Cornus canadensis Danthonio, spicata, I>isporum o re.oanum Dryopteris austriaca, \u00E2\u0080\u00A2 Elymus alaucuseet Eouisatum arve.nst-Festuca, Idaho ens is* F. occidental is \u00E2\u0080\u00A2 Frayaria, olauca. Galium Bo+eale,*-&. trtS-torum a \u00C2\u00AB G-oodye.ro. oblonotPolia, Gymnocarpium dtyoptcris Li nnaca, borealis Oryxopsis aspe.ri folia, Osmorhixo, chilensis Prunella, vulgaris a Pteridium aouilinum Pyrola. asarifolia, \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 P secunda. \u00E2\u0080\u00A2 Ranunculus bonyardit Smitacina. t-CXCemosa, S. stellota. \u00E2\u0080\u00A2 Stre-ptopus ample-xifol ius Tat-axacum officinale.-Thalictrum occi de.ntale.% Tiare.Uo. unifoliata, Vict a. americana^ % Viola, a duniLO^ a V. yla be-lla.-S'O to to l+l \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ItZ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZTZ- \u00E2\u0080\u00A2 3+Z- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00C2\u00A52 .... \u00E2\u0080\u00A2 tzz \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZZI \u00E2\u0080\u00A2 i'bS \u00E2\u0080\u00A2 6 72+ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 112 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 t+t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 121 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l+l- \u00E2\u0080\u00A2 33Z til - \u00E2\u0080\u00A2 3\u00C2\u00A5Z III \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z+z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1+2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 13 Z 312 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z\u00C2\u00A5z 31-1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 /+/ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 33Z 2ZI- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3\u00C2\u00A5Z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 l+l \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3JZ \u00E2\u0080\u00A2 3H/+-33Z \u00E2\u0080\u00A2 3IZ d /IZ. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ZTZ \u00E2\u0080\u00A2 ItZ / + + \u00E2\u0080\u00A2 ttt-JtZ 3 2Z \u00C2\u00A5S3 \u00E2\u0080\u00A2 izi d-2 IZ 331 12.1 \u00E2\u0080\u00A2 Z II \u00E2\u0080\u00A2 3 /Z 1+2-2 3Z ISZ \u00C2\u00A513 7+1 \u00E2\u0080\u00A2 \u00C2\u00A523 213 33 Z l + Z 3+/ 3 + Z ItZ l\u00C2\u00A52 1+2 \u00E2\u0080\u00A2 33 Z \u00C2\u00A5\u00C2\u00A5Z S\u00C2\u00A5z 32 ? ttt tzt 892 2+2 331 211 1+2- \u00E2\u0080\u00A2 1+/ \u00E2\u0080\u00A2 / +Z 1+20 \u00E2\u0080\u00A2 Ztt t+l I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 IO \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 i'S o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 S~ \u00E2\u0080\u00A2 lo 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 s\" \u00E2\u0080\u00A2 i o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 i' \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 to \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 S-s~ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 to-ll \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 Jo 0 \u00E2\u0080\u00A2 ti'-1 I'-ll \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 9o O \u00E2\u0080\u00A2 / to It 7 \u00E2\u0080\u00A2 S-o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o 3 O 18 o Z 3 2 o z Z o z z 3 o 2 2 3 \u00C2\u00A5 lo o 5\" o z \u00C2\u00A5 o o 30 O o 3 \u00C2\u00A5 o 2 \u00C2\u00A9 O ?s~ 311 \u00E2\u0080\u00A2 /+2 \u00E2\u0080\u00A2 2/Z \u00E2\u0080\u00A2 6 I'Z \u00C2\u00A532 ItZ \u00E2\u0080\u00A2 78Z \u00C2\u00A53Z 312 \u00E2\u0080\u00A2 l+Z-\u00C2\u00A5SI 3 3Z 171 36>Z 33Z z+l 3 ZZ-\u00C2\u00A5\u00C2\u00A5Z 11 / TCD ACD CCD Z7i~ iJL 3 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 .- 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 lo \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 J\" \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 sy / \u00C2\u00A5 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 28 z o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 3 i- 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 IS \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 8 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 S \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 2 o O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 2 \u00E2\u0080\u00A2 s~ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 to \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 s-2 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 i \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 3 s~ \u00E2\u0080\u00A2 7 Z \u00E2\u0080\u00A2 \u00C2\u00A5 \u00C2\u00A5b' \u00E2\u0080\u00A2 It \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 tt \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 II- \u00E2\u0080\u00A2 3 6 \u00E2\u0080\u00A2 I \u00E2\u0080\u00A2 IO \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 to \u00E2\u0080\u00A2 z S~- t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 t i'o 13- \u00E2\u0080\u00A2 i'O \u00E2\u0080\u00A2 t to \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 to \u00E2\u0080\u00A2 \u00C2\u00A5 J f \u00E2\u0080\u00A2 9 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 9 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o o \u00E2\u0080\u00A2 2 IS- \u00E2\u0080\u00A2 \u00C2\u00A5 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 8 2 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 2 IS' 1 8 3 II \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 1 3 6 \u00E2\u0080\u00A2 2 \u00E2\u0080\u00A2 Z 2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 95 21 \u00E2\u0080\u00A2 2t 2 1- \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 f \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o 7 \u00E2\u0080\u00A2 3 ti- 3 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00C2\u00A5 2 \u00E2\u0080\u00A2 ll \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 \u00E2\u0080\u00A2 6 2 I \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 O \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1 3 S- \u00E2\u0080\u00A2 / \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 Z \u00E2\u0080\u00A2 0 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 z \u00E2\u0080\u00A2 o \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o o 7 \u00E2\u0080\u00A2 to \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 3 to-t \u00E2\u0080\u00A2 to 3 \u00E2\u0080\u00A2 /o 3 z \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 t \u00E2\u0080\u00A2 OCCASIONALLY PRESENT SBZ8 \u00E2\u0080\u0094 Eouise.tum h ie. m. a\le, HZ ; Eouisctum pratense. 31'Z ; Moncscs uniflora, l+zd ; Streptopus i-oseus 323 SB I2S~\u00E2\u0080\u0094 Aorostis e,xarata. 112 ; Ayrostis scabra, 212 ; Aqi-osiis stoloniftt.ro, ItZ ; A (op o. cur us praTensis l6\u00C2\u00A5-SB 68-pidoxio, teptans I/z iopsis tobusta. III Cei-atodon purpura us t/z ; yCettaria, ylauca. l+t 3. SEEDLINC-S ON DECAYING UJ0OD SBZ8 \u00E2\u0080\u0094 Acer qlobtum t+l; Cornus stotonifeta. t+t; Picea, a.hoel ma r, rill l+l; Taxus brev'/folia, l+l ; Thuia, plicata, l + l; TsuyaJ AetetapAylla. 1+1 J J "@en . "Thesis/Dissertation"@en . "10.14288/1.0093756"@en . "eng"@en . "Botany"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Phytocoenoses in the dry subzone of the interior western hemlock zone of British Columbia"@en . "Text"@en . "http://hdl.handle.net/2429/37824"@en .