"Applied Science, Faculty of"@en . "Civil Engineering, Department of"@en . "DSpace"@en . "UBCV"@en . "Clegg, Bruce Campbell"@en . "2010-04-16T18:13:58Z"@en . "1982"@en . "Master of Applied Science - MASc"@en . "University of British Columbia"@en . "Long-term management of nuclear wastes demands absolute physical isolation of noxious radionuclides from the biosphere until decay to safe levels has occurred. Due to the extremely long half-life of some isotopes, the required isolation may be on the order of millennia.\r\nPast research on radioactive wastes has centered on the physicochemical mechanisms that may effect a premature return of radionuclides to the environment. However, biological action in a radwaste disposal site may have two major effects: 1) physical destruction of the solidifying matrix through solubilization or oxidation; and/or 2) enhanced movement of radionuclides through (adsorbent) geologic media by production of various chelating agents. The work presented here is focused on both these microbiological processes.\r\n\u00E2\u0081\u00B6\u00E2\u0081\u00B0Co and \u00C2\u00B9\u00C2\u00B3\u00E2\u0081\u00B7Cs encapsulated in bitumen was allowed to undergo microbial attack by a selected hydrocarbonoclastic culture under idealized environmental conditions. The radionuclides released by this process were then evaluated for their ability to bind with selected geologic media. In order to compare the effect of reduced adsorption due to microbial action, synthetic chelating agents were used as a standard. The same hydrocarbonoclastic culture used for these experiments was also tested for its sensitivity to y-irradiation.\r\n\r\nSubsequent analysis showed microbial attack of bitumen did not enhance the release of the ions. However, a decreased adsorption to the geologic media was observed but the effect was much less than that observed for the synthetic chelating agents. The level of r-radiation expected in the final waste repository will not effect the viability of the organisms tested."@en . "https://circle.library.ubc.ca/rest/handle/2429/23745?expand=metadata"@en . "EFFECT OF MICROBIAL ACTION ON NUCLEAR WASTE MANAGEMENT: THERE ENHANCED LEACHING FROM BITUMEN AND INCREASED RADIONUCLIDE MOVEMENT THROUGH GEOLOGIC MEDIA? by BRUCE CLELLAND CLEGG B . S c , The U n i v e r s i t y Of A l b e r t a , 1979 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n THE FACULTY OF GRADUATE STUDIES Department Of C i v i l Engineering We accept t h i s t h e s i s as conforming to the re q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA October 1982 \u00C2\u00A9 Bruce C l e l l a n d Clegg, 1982 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my Department or by h i s o r h e r r e p r e s e n t a t i v e s . 'It i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f C i v i l E n g i n e e r i n g The U n i v e r s i t y of B r i t i s h C o l u m b i a 2 0 7 5 Wesbrook P l a c e V a n c o u v e r , Canada V 6 T 1W5 D a t e : 15 O c t o b e r 1 9 7 9 A b s t r a c t Long-term management of n u c l e a r wastes demands a b s o l u t e p h y s i c a l i s o l a t i o n of n o x i o u s r a d i o n u c l i d e s from the b i o s p h e r e u n t i l decay t o s a f e l e v e l s has o c c u r r e d . Due t o the e x t r e m e l y l o n g h a l f - l i f e of some i s o t o p e s , the r e q u i r e d i s o l a t i o n may be on t h e o r d e r of m i l l e n n i a . P a s t r e s e a r c h on r a d i o a c t i v e wastes has c e n t e r e d on the p h y s i c o c h e m i c a l mechanisms t h a t may e f f e c t a premature r e t u r n of r a d i o n u c l i d e s t o the environment. However, b i o l o g i c a l a c t i o n i n a radwaste d i s p o s a l s i t e may have two major e f f e c t s : 1) p h y s i c a l d e s t r u c t i o n of the s o l i d i f y i n g m a t r i x t h r o u g h s o l u b i l i z a t i o n or o x i d a t i o n ; and/or 2) enhanced movement of r a d i o n u c l i d e s t h rough ( a d s o r b e n t ) g e o l o g i c media by p r o d u c t i o n of v a r i o u s c h e l a t i n g a g e n t s . The work p r e s e n t e d here i s f o c u s e d on both t h e s e m i c r o b i o l o g i c a l p r o c e s s e s . 6 0 C o and 1 3 7 C s e n c a p s u l a t e d i n bitumen was a l l o w e d t o undergo m i c r o b i a l a t t a c k by a s e l e c t e d h y d r o c a r b o n o c l a s t i c c u l t u r e under i d e a l i z e d e n v i r o n m e n t a l c o n d i t i o n s . The r a d i o n u c l i d e s r e l e a s e d by t h i s p r o c e s s were then e v a l u a t e d f o r t h e i r a b i l i t y t o b i n d w i t h s e l e c t e d g e o l o g i c media. In o r d e r t o compare the e f f e c t of reduced a d s o r p t i o n due t o m i c r o b i a l a c t i o n , s y n t h e t i c c h e l a t i n g a gents were used as a s t a n d a r d . The same h y d r o c a r b o n o c l a s t i c c u l t u r e used f o r the s e e x p e r i m e n t s was a l s o t e s t e d f o r i t s s e n s i t i v i t y t o y -i r r a d i a t i o n . i i i Subsequent a n a l y s i s showed m i c r o b i a l a t t a c k of bitumen d i d not enhance the release of the ions. However, a decreased adsorption to the geologic media was observed but the e f f e c t was much l e s s than that observed f o r the s y n t h e t i c c h e l a t i n g agents. The l e v e l of r - r a d i a t i o n expected i n the f i n a l waste r e p o s i t o r y w i l l not e f f e c t the v i a b i l i t y of the organisms t e s t e d . T a b l e o f C o n t e n t s A b s t r a c t i i L i s t o f T a b l e s ... v i L i s t o f F i g u r e s v i i Acknowledgement v i i i I . INTRODUCTION 1 1 . ' BACKGROUND 1 2. THE CHALK RIVER NUCLEAR LABORATORIES' LOW AND INTERMEDIATE LEVEL WASTE PROGRAM 2 A. TREATMENT AND DISPOSAL OF LOW AND INTERMEDIATE LEVEL WASTES 4 i . Volume R e d u c t i o n 4 i i . I m m o b i l i z a t i o n 4 i i i . U l t i m a t e D i s p o s a l 6 i v . N a t u r a l B a r r i e r s 6 3. MICROBIAL ANTAGONISATION OF RADWASTE ISOLATION ...7 A. MICROBIAL ACTIVITY AND LEACHING 7 B. MICROBIAL ACTIVITY AND SUBSURFACE NUCLIDE MOVEMENT 8 4. SCOPE OF THIS WORK 9 I I . MICROBIAL DEGRADATION OF BITUMEN 10 1 . BACKGROUND 10 A. ALIPHATICS 11 B. AROMATICS 12 C. POLYCYCLIC AROMATIC HYDROCARBONS 13 2. REPRESENTATIVE HYDROCARBONOCLASTIC BACTERIA 14 3. CONDITIONS FOR GROWTH AND PRELIMINARY IDENTIFICATION 15 A. GROWTH CONDITIONS 15 B. IDENTIFICATION 16 C. GROWTH CURVES 16 4. SELECTION OF A SUITABLE CULTURE AND GROUNDWATER .17 A. SELECTION OF A SUITABLE CULTURE 17 B. SELECTION OF A SUITABLE GROUNDWATER SOLUTION .22 REMARKS 23 I I I . MICROBIAL RADIOSENSITIVITY 24 1 . BACKGROUND 2 4 2. METHODS 2 5 A. GROWTH MEDIA PREPARATION 25 B. CELL PREPARATION 25 C. IRRADIATION AND ENUMERATION 26 3. RESULTS 27 IV. EVALUATION OF MICROBIALLY ENHANCED LEACHING 31 1. ENHANCED LEACHING 32 2. METHODS 44 A. ANALYSIS 46 3. RESULTS AND DISCUSSION 47 A. STATISTICAL EVALUATION 47 V B. CONCLUSION 49 V. EFFECT OF CHELATING AGENTS ON RADIONUCLIDE MIGRATION 50 1 . BACKGROUND 50 2. METHODS 53 3. ANALYSIS 54 4. RESULTS AND DISCUSSION 56 5. REMARKS 61 V I . CONCLUSION 62 BIBLIOGRAPHY 65 APPENDIX A - ONTARIO MINISTRY OF THE ENVIRONMENT ANALYSIS 71 APPENDIX B - SYNTHETIC GROUNDWATER SOLUTIONS 73 APPENDIX C - LEACH TEST DATA 77 APPENDIX D - LEACHANT CONDUCTIVITY AND PH 89 APPENDIX E - ANALYSIS OF VARIANCE OF 6 0 C o AND 1 3 7 C s ~ SAMPLE MEANS AT T>14DAYS 90 L i s t o f T a b l e s I . MICROBIAL MINERAL SALTS SOLUTION 15 I I . y -IRRADIATION TIMES USED FOR CULTURES A,B,C AND D ..27 I I I . 6 0 C o ADSORPTION DATA 56 IV. 1 3 7 C s ADSORPTION DATA 57 V. 8 5 S r ADSORPTION DATA 57 V I . COMPETING ION ADSORPTION DATA 58 V I I . ADSORPTION DATA FOR COMPETING IONS IN SELECTED GROUNDWATERS 58 V I I I . LEACHANT A ADSORPTION DATA 59 IX. ADSORPTION DATA FOR NUTRIENT MEDIA CONTROL 59 X. LEACHANT D ADSORPTION DATA 60 X I . LEACH TEST DATA - TEST SET A1 - 6 0 C o 77 X I I . LEACH TEST DATA - TEST SET A2 - 6 0 C o 77 X I I I . LEACH TEST DATA - TEST SET A3 - 6 0 C o 78 XIV. LEACH TEST DATA - TEST SET B1 - 6 0 C o -...78 XV. LEACH TEST DATA - TEST SET B2 - 6 0 C o 79 XVI. LEACH TEST DATA - TEST SET B3 - 6 0 C o 79 X V I I . LEACH TEST DATA - TEST SET C l - 6 0 C o 80 X V I I I . LEACH TEST DATA - TEST SET C2 - 6 0 C o 80 XIX. LEACH TEST DATA - TEST SET C3 - 6 0 C o 81 XX. LEACH TEST DATA - TEST SET D1 - 6 0 C o 81 XXI. LEACH TEST DATA - TEST SET D2 - 6 0 C o 82 X X I I . LEACH TEST DATA - TEST SET D3 - 6 0 C o 82 X X I I I . LEACH TEST DATA - TEST SET A1 - 1 3 7 C s 83 XXIV. LEACH TEST DATA - TEST SET A2 - 1 3 7 C s 83 XXV. LEACH TEST DATA - TEST SET A3 - 1 3 7 C s 84 XXVI. LEACH TEST DATA - TEST SET B1 - 1 3 7 C s 84 XXV I I . LEACH TEST DATA - TEST SET B2 - 1 3 7 C s 85 XXVI11. LEACH TEST DATA - TEST SET B3 - 1 3 7 C s 85 XXIX. LEACH TEST DATA - TEST SET C1 - 1 3 7 C s 86 XXX. : LEACH TEST DATA - TEST SET C2 - 1 3 7 C s 86 XXXI. LEACH TEST DATA - TEST SET C3 - 1 3 7 C s 87 X X X I I . LEACH TEST DATA - TEST SET D1 - 1 3 7 C s 87 X X X I I I . LEACH TEST DATA - TEST SET D2 - 1 3 7 C s 88 XXXIV. LEACH TEST DATA - TEST SET D3 - 1 3 7 C s 88 v i i L i s t o f F i g u r e s 1. C u l t u r e A - 11 Hour Growth C u r v e 18 2. C u l t u r e A - S t a n d a r d C u r v e 18 3. C u l t u r e B - 12 Hour Growth C u r v e 19 4. C u l t u r e B - S t a n d a r d C u r v e 19 5. C u l t u r e C - 12 Hour Growth C u r v e 20 6. C u l t u r e C - S t a n d a r d C u r v e 20 7. C u l t u r e D - 12 Hour Growth C u r v e 21 8. C u l t u r e D - S t a n d a r d C u r v e 21 9. D o s e - R e s p o n s e of C u l t u r e A 29 10. D o s e - R e s p o n s e of C u l t u r e B 29 11. D o s e - R e s p o n s e of C u l t u r e C 30 12. D o s e - R e s p o n s e of C u l t u r e D 30 13. L e a c h i n g p r o f i l e s f o r s e t s A1,B1,C1 and D1 - 6 0 C o ....35 14. L e a c h i n g p r o f i l e s f o r s e t s A1,B1,C1 and D1 - 1 3 7 C s ...35 15. L e a c h i n g p r o f i l e s f o r s e t s A2,B2,C2 and D2 - 6 0 C o ....36 16. L e a c h i n g p r o f i l e s f o r s e t s A2 fB2,C2 and D2 - 1 3 7 C s ...36 17. L e a c h i n g p r o f i l e s f o r s e t s A3,B3,C3 and D3 - 6 0 C o ....37 18. L e a c h i n g p r o f i l e s f o r s e t s A3,B3,C3 and D3 - 1 3 7 C s ...37 19. L e a c h i n g p r o f i l e s f o r s e t s A1,A2 and A3 - 6 0 C o 38 20. L e a c h i n g p r o f i l e s f o r s e t s A1,A2 and.A3 \u00E2\u0080\u00A2- 1 3 7 C s 38 21. L e a c h i n g p r o f i l e s f o r s e t s B1,B2 and B3 - 6 0 C o '.39 22. L e a c h i n g p r o f i l e s f o r s e t s B1,B2 and B3 - 1 3 7 C s 39 23. L e a c h i n g p r o f i l e s f o r s e t s C1,C2 and C3 - 6 0 C o 40 24. L e a c h i n g p r o f i l e s f o r s e t s C1,C2 and C3 .- 1 3 7 C s 40 25. L e a c h i n g p r o f i l e s f o r s e t s D1,D2 and D3 - 6 0 C o 41 26. L e a c h i n g p r o f i l e s f o r s e t s D1,D2 and D3 - 1 3 7 C s 41 I v i i i Ac knowledgement I t i s w i t h s i n c e r e g r a t i t u d e t h a t I would l i k e t o t h a n k t h e e n g i n e e r s , s c i e n t i s t s and t e c h n i c i a n s o f t h e C h a l k R i v e r N u c l e a r L a b o r a t o r i e s . T h e i r k i n d s u g g e s t i o n s , h e l p f u l c r i t i c i s m s and g e n e r a l s u p p o r t has c u l m i n a t e d i n t h i s t h e s i s . I would l i k e t o thank i n p a r t i c u l a r D r . ' s Norman G e n t n e r and D o u g l a s Champ f o r t h e g e n e r o u s use o f t h e i r t i m e and l a b s p a c e . However, I w o u l d l i k e t o thank e s p e c i a l l y , Mr.Leo B u c k l e y who's e x p e r t s u g g e s t i o n s and weekends i n t h e l a b were an i n s p i r a t i o n . 1 I. INTRODUCTION 1. BACKGROUND F u l l s c a l e atomic energy rese a r c h i n Canada has culminated i n a p r e s s u r i z e d heavy water r e a c t o r known as CANDU* T h i s r e a c t o r , one of Canada's great t e c h n i c a l achievements, i s one of three r e a c t o r designs on world commercial markets. The uniqueness of the r e a c t o r design i s c h a r a c t e r i z e d by the use of 1) n a t u r a l uranium; 2 ) deuterium oxide (heavy water) as moderator and c o o l a n t ; 3 ) a m u l t i p l e pressure tube c o n f i g u r a t i o n i n s t e a d of a s i n g l e l a r g e pressure v e s s e l of other r e a c t o r s ; and 4 ) on power f u e l i n g ( f u e l bundle replacement d u r i n g r e a c t o r o p e r a t i o n ) . The commercial power r e a c t o r uses uranium with g r e a t e r e f f i c i e n c y than the LWR** types. Because of i t s neutron economy the CANDU r e a c t o r a l s o has the advantage of being adaptable to more e f f i c i e n t f u e l c y c l e s , such as the thorium f u e l c y c l e without major * CANada Dueterium Uranium. * * L i g h t Water Reactor 2 m o d i f i c a t i o n of t h e e x i s t i n g d e s i g n . T h i s means i t i s p o s s i b l e t o o p e r a t e a t or n e a r b r e e d i n g , making t h e CANDU r e a c t o r c o m p a r a b l e t o t h e f a s t b r e e d e r r e a c t o r . T h o r i u m . i s a t l e a s t t h r e e t i m e s as a b u n d a n t i n t h e e a r t h ' s c r u s t as u r a n i u m t h u s t h e a v a i l a b l e n u c l e a r f u e l r e s o u r c e would be c o n s i d e r a b l y i n c r e a s e d . I f t h i s c y c l e i s embraced, Canada w i l l r e q u i r e a r e p r o c e s s i n g f a c i l i t y i n o r d e r t o r e c o v e r f i s s i l e m a t e r i a l s c o n t a i n e d i n t h e s p e n t f u e l s . 1 The s e p a r a t e d f i s s i o n p r o d u c t s w i l l r e q u i r e s a f e permanent d i s p o s a l . The C a n a d i a n waste management program was i n i t i a t e d t o e v a l u a t e d i s p o s a l o p t i o n s . P r i o r t o 1971 a l l i r r a d i a t e d f u e l was e i t h e r p r o c e s s e d a b r o a d o r s o l d . 2 S i n c e t h e n , t h e s p e n t f u e l has been s t o r e d i n water f i l l e d b a y s a t t h e n u c l e a r power s t a t i o n s . The f a t e o f t h e s p e n t f u e l s has not y e t been d e c i d e d , but e i t h e r i t w i l l be r e p r o c e s s e d and t h e r e s i d u e s i m m o b i l i z e d and d i s p o s e d , o r i t w i l l be d i s p o s e d i n t a c t , most l i k e l y i n mined c a v i t i e s w i t h i n g r a n i t i c m i n e r a l f r e e s t r u c t u r e s a b u n d a n t l y l o c a t e d i n t h e C a n a d i a n S h i e l d . 2. THE CHALK RIVER NUCLEAR LABORATORIES' LOW AND INTERMEDIATE LEVEL WASTE PROGRAM A l o n g w i t h t h e h i g h l e v e l w a s t e s a r e l e s s a c t i v e w a s t e s g e n e r a t e d f r o m d a i l y o p e r a t i o n o f t h e n u c l e a r power r e a c t o r s . The b r o a d c a t e g o r i e s i n c l u d i n g a l l low and i n t e r m e d i a t e l e v e l 3 r a d w a s t e s encompass o n l y 0 . 1 % o f t h e t o t a l \"waste\" r a d i o a c t i v i t y . 3 U n f o r t u n a t e l y , t h e s e w a s t e s a r e s u b s t a n t i a l i n volume and a r e c h e m i c a l l y and r a d i o l o g i c a l l y h e t e r o g e n o u s . Some o f t h e v a r i o u s d i f f e r e n c e s w i t h Canada's low and i n t e r m e d i a t e l e v e l w a s t e s a r e : 1) t h e p r o d u c t i o n o f 1 4 C i s much g r e a t e r t h a n i n a LWR due t o t h e much s m a l l e r LWR c o r e s i z e ; 2 ) a h i g h d e g r e e of s y s t e m i n t e g r i t y m i n i m i z e s l o s s e s c o n t a i n i n g f i s s i o n and n e u t r o n a c t i v a t i o n p r o d u c t s ; and 3 ) t r i t i u m a p p e a r s t o be more abundant t h a n i n LWR's. 4 F u r t h e r m o r e , t h e major s o u r c e s o f CANDU low and i n t e r m e d i a t e l e v e l w a s t e s a r e a s s o c i a t e d w i t h : 1) R o u t i n e o p e r a t i o n and m a i n t e n a n c e . 2 ) P u r i f i c a t i o n i n heavy and l i g h t water c i r c u i t s ( t h e m a j o r i t y of t h e r a d i o i s o t o p e s a r e c o n t a i n e d on s p e n t i o n - e x c h a n g e r e s i n s and f i l t e r s c o n t a i n i n g 6 0 C o , 1 3 7 C s and 1\"C ( p r e s e n t a s a c a r b o n a t e on i o n -excha n g e r e s i n s ) . 3 ) E q u i p m e n t d e c o n t a m i n a t i o n . 5 The u l t i m a t e d i s p o s a l of r a d w a s t e s w i l l i n c o r p o r a t e a m u l t i p l e b a r r i e r s y s t e m i n w h i c h a waste n u c l i d e would have t o b r e a c h a s e r i e s o f o b s t a c l e s 6 p r i o r t o r e c o n t a c t w i t h t h e b i o s p h e r e . T h e s e o b s t a c l e s i n c l u d e a number o f p r e t r e a t m e n t and t r e a t m e n t s t e p s d i s c u s s e d below. 4 A. TREATMENT AND DISPOSAL OF LOW AND INTERMEDIATE LEVEL WASTES i . Volume R e d u c t i o n A l l w a s t e s t h a t o c c u r as i n c i n e r a b l e s o l i d s w i l l be i n c i n e r a t e d t o a s t a b l e a s h . B o t h O n t a r i o H ydro ( B r u c e N u c l e a r Power D e v e l o p m e n t ) and A t o m i c E n e r g y o f Canada L i m i t e d (AECL) a t t h e C h a l k R i v e r N u c l e a r L a b o r a t o r y (CRNL) have i n c i n e r a t o r s o p e r a t i n g f o r t h i s p u r p o s e . L i q u i d wates may u n d e r g o a t w o - s t e p p r o c e d u r e f o r volume r e d u c t i o n : 1) R e v e r s e o s m o s i s ; and 2) E v a p o r a t i o n . R e v e r s e o s m o s i s c o n c e n t r a t e s s o l i d s by e x c l u d i n g w ater t h r o u g h a s e m i p e r m e a b l e membrane. A s e c o n d s t e p i n volume r e d u c t i o n may u t i l i z e a v e r t i c a l t h i n - f i l m e v a p o r a t o r 6 t o f u r t h e r i n c r e a s e t h e p e r c e n t a g e of t o t a l s o l i d s (up t o 50% has been a c h i e v e d w i t h some w a s t e s ) . 7 i i . I m m o b i l i z a t i o n The u l t i m a t e aim o f i m m o b i l i z a t i o n of r a d w a s t e s i s t h e p r o d u c t i o n o f a d u r a b l e l e a c h - r e s i s t a n t s o l i d . Compounds t h a t have been u s e d as a s o l i d i f y i n g m a t r i x i n c l u d e cement, u r e a -f o r m a l d e h y d e , p o l y e s t e r and b i t u m e n . 8 The s e l e c t i o n of b i t u m e n by CRNL's low and i n t e r m e d i a t e l e v e l waste program was due t o i t s v e r s a t i l i t y , volume s a v i n g s and l e a c h r e s i s t a n c e ( h i g h e s t 5 of t h o s e m a t e r i a l s m e n t i o n e d ) . 9 . B i t u m e n i s c h e m i c a l l y v e r y h e t e r o g e n o u s but i t s components may be g r o u p e d i n t o f o u r b r o a d c a t e g o r i e s : s a t u r a t e d h y d r o c a r b o n s , r e s i n s , c y c l i c h y d r o c a r b o n s and a s p h a l t e n e s . 1 0 O t h e r e l e m e n t s t h a t may be p r e s e n t a r e oxygen(1 - 1 7 % ) , s u l f u r ( 1 - 9 % ) a n d / o r n i t r o g e n ( 1 % ) . 1 1 At room t e m p e r a t u r e ( 2 0 - 2 5 \u00C2\u00B0 ) b i t u m e n ' s p h y s i c a l s t a t e may be d e s c r i b e d as a complex c o l l o i d a l s y s t e m . 1 2 B i t u m e n has been u s e d t o cement b u i l d i n g m a t e r i a l s ( B a b y l o n ) , c a u l k b o a t s or as a water s t o p between b r i c k w a l l s i n t h e t h e t h i r d m i l l e n i u m B . C . 1 3 The e s t a b l i s h m e n t of b i t u m e n as a s o l i d i f y i n g m a t r i x f o r n u c l e a r w a s t e s may be a t t r i b u t e d t o t h e R e s e a r c h C e n t r e f o r N u c l e a r E n e r g y a t M o l , B e l g i u m and t h e P l u t o n i u m R e s e a r c h C e n t r e o f M a r c o u l e , F r a n c e . The B e l g i u m e s t a b l i s h m e n t was c o n s t r u c t e d and o p e r a t e d (on a s m a l l s c a l e ) f r o m 1960-1964 w h i l e t h e M a r c o u l e i n s t a l l a t i o n s t a r t e d o p e r a t i o n i n 1965. C a n a d i a n e x p e r i e n c e w i t h b i t u m e n has been l i m i t e d t o l a b o r a t o r y and p i l o t s c a l e p r o j e c t s . The c o m p l e t i o n o f CRNL's Waste T r e a t m e n t C e n t r e (WTC) has been s l a t e d f o r 1982. T h i s complex w i l l u t i l i z e volume r e d u c t i o n by i n c i n e r a t i o n o r r e v e r s e o s m o s i s and e v a p o r a t i o n , f o l l o w e d by b i t u m e n i z a t i o n . 6 i i i . U l t i m a t e D i s p o s a l In order to ensure p h y s i c a l i s o l a t i o n of the radwaste from c o n t a c t with the biosphere ( u n t i l the waste r a d i o n u c l i d e s have decayed to a c c e p t a b l e l i m i t s ) t e r m i n a l d i s p o s a l w i l l be subterranean. The f i n a l waste r e p o s i t o r y w i l l probably be l o c a t e d on the Canadian S h i e l d i n a g e o l o g i c a l l y s t a b l e hard rock formation known as a p l u t o n . Some of the obvious advantages f o r the s e l e c t i o n of a p l u t o n are that they are: \" r e l a t i v e l y homogeneous s t r u c t u r e s of high i n t e g r i t y and long s t a b i l i t y \" and \"have remained undisturbed s i n c e e a r l y g e o l o g i c times i e , f o r 2 0 0 to 2 0 0 0 m i l l i o n y e a r s \" . 1 \" i v . N a t u r a l B a r r i e r s Although the utmost c o n s i d e r a t i o n w i l l be given to s i t i n g the r e p o s i t o r y in a h y d r o g e o l o g i c a l l y i n a c t i v e zone, groundwater i n t r u s i o n may occur. If i n t r u s i o n does occur the d e l e t e r i o u s e f f e c t of the groundwater flow may be t w o f o l d : l e a c h i n g of the s o l i d i f i e d waste with concomitant movement through the r e p o s i t o r y and the subsurface environment. In order to minimize the passage of leached r a d i o n u c l i d e s out of the r e p o s i t o r y , n a t u r a l l y o c c u r r i n g adsorbents may be used to b a c k f i l l the r e p o s i t o r y environment. T h i s method i s i n accordance with the m u l t i p l e - b a r r i e r approach to nuclear waste management. If a strong adsorbent i e , b e n t o n i t e i s used, leached n u c l i d e a t t e n u a t i o n w i l l be g r e a t l y enhanced. 7 3 . MICROBIAL ANTAGONISATION OF RADWASTE ISOLATION M i c r o b i a l a c t i v i t y may enhance t h e movement of r a d i o n u c l i d e s f r o m a r e p o s i t o r y by e f f e c t i n g p h y s i c a l d e s t r u c t i o n o f t h e s o l i d i f i e d m a t r i x o r p r o d u c t i o n o f c o m p l e x i n g a g e n t s t h a t may d e c r e a s e . t h e e f f e c t i v e n e s s o f s o r p t i o n r e a c t i o n s by b a c k f i l l m a t e r i a l . A. MICROBIAL ACTIVITY AND LEACHING The r e l e a s e of waste r a d i o n u c l i d e s e n c a p s u l a t e d i n b i t u m e n may be e n v i s i o n e d as a p r o c e s s i n v o l v i n g two mechanisms: 1) M a t r i x d e c a y c a u s e d by d i r e c t m i c r o b i a l a t t a c k o f t h e b i t u m e n ; and 2 ) M a t r i x s o l u b i l i z a t i o n e f f e c t e d t h r o u g h t h e p r o d u c t i o n o f a l c o h o l s , e s t e r s , k e t o n e s and o t h e r m e t a b o l i c e n d - p r o d u c t s . 1 5 A l t h o u g h t h e r e s u l t of e a c h mechanism i s assumed t o be n e g l i g i b l e o v e r a few y e a r s , t h e e f f e c t may have s i g n i f i c a n t c o n s e q u e n c e s f o r a waste t h a t must r e m a i n i s o l a t e d f o r c e n t u r i e s . 1 6 The e f f e c t o f d i r e c t m i c r o b i a l a t t a c k on b i t u m e n has been documented by p r e v i o u s i n v e s t i g a t o r s . 1 7 \" 2 3 However, i n v e s t i g a t i o n s on m i c r o b i a l a t t a c k o f n u c l e a r w a s t e s e n c a p s u l a t e d i n b i t u m e n i s v i r t u a l l y n o n - e x i s t e n t . 2 \" The r e s e a r c h t h a t has been done was p e r f o r m e d under t h e a u s p i c e s o f t h e L o s Alamos S c i e n t i f i c L a b o r a t o r y . 2 5 U n f o r t u n a t e l y , many of t h e i r f i n d i n g s do n o t have g e n e r a l a p p l i c a b i l i t y . The 8 e x p e r i m e n t a l d e s i g n and r a t i o n a l e f o c u s e d on e x p e r i m e n t s t h a t would y i e l d i n f o r m a t i o n t h a t p e r t a i n e d d i r e c t l y t o t h e U.S. Waste I s o l a t i o n P i l o t P l a n t (WIPP). These s t u d i e s i n c l u d e d C 0 2 gas e v o l u t i o n f r o m ( i n a c t i v e ) a s p h a l t , m i c r o b i a l m e t h y l a t i o n o f Pu, e n u m e r a t i o n o f WIPP m i c r o f l o r a and g e n e r a l r a d i o b i o l o g i c a l s t u d i e s . The g e o l o g i c a l e n v i r o n m e n t of p l u t o n s and t h a t e x p e c t e d f o r t h e WIPP ( h a r d r o c k - s a l t ) i s d i s s i m i l a r a nd t h e r e f o r e c r o s s c o m p a r i s o n s s h o u l d o n l y be made w i t h c a u t i o n . B. MICROBIAL ACTIVITY AND SUBSURFACE NUCLIDE MOVEMENT The a b i l i t y of s t r o n g s y n t h e t i c c h e l a t i n g a g e n t s t o m i t i g a t e a g a i n s t r a d i o n u c l i d e s o r p t i o n t o b a c k f i l l m a t e r i a l has been e s t a b l i s h e d e l s e w h e r e . 2 6 E m e r y 2 7 , has shown t h a t h y d r o x a m a t e and p o l y h y d r o x a m a t e c h e l a t i n g a g e n t s may be p r o d u c e d t h r o u g h m i c r o b i a l m e t a b o l i s m of o r g a n i c m a t e r i a l s . I t f o l l o w s l o g i c a l l y , t h e r e f o r e , t h a t m i c r o b i a l l y p r o d u c e d c h e l a t i n g a g e n t s may s e r v e t o enhance t h e movement of r a d i o n u c l i d e s t h r o u g h b a c k f i l l m a t e r i a l and t h e s u r r o u n d i n g s u b s u r f a c e e n v i r o n m e n t . The f a t e and m i g r a t o r y p r o p e r t i e s o f n u c l e a r waste e l e m e n t s i n a n a t u r a l g e o l o g i c a l e n v i r o n m e n t has been e v a l u a t e d by numerous m e t h o d o l o g i e s . However, e v a l u a t i o n o f th e p a r t i t i o n i n g of t h e waste e l e m e n t between t h e s o l i d media and l i q u i d phase ( g r o u n d w a t e r ) i s t h e f o c a l p o i n t o f most s t u d i e s . V a r i o u s r e s e a r c h e r s have t r i e d t o i l l u s t r a t e t h e 9 d e s t i n y o f e s c a p e d r a d i o n u c l i d e s under a m y r i a d o f c o n d i t i o n s . 2 8 - 3 0 4 . SCOPE OF THIS WORK As m e n t i o n e d e a r l i e r , m i c r o b i a l p o p u l a t i o n s may have an a d v e r s e e f f e c t on n u c l e a r waste management by d i r e c t a t t a c k o f a b i t u m i n i z e d waste p a c k a g e a n d / o r p r o d u c t i o n o f c h e l a t i n g a g e n t s . The s c o p e o f t h i s t h e s i s w i l l span t h e s e two i s s u e s . U n l i k e t h e L o s Alamos work, t h i s r e s e a r c h s h o u l d f i n d g e n e r a l a p p l i c a b i l i t y t h r o u g h o u t t h e n u c l e a r i n d u s t r y . However, s u n d r y d e t a i l s ( c h o i c e of r a d i o n u c l i d e s , o r g a n i s m s and t e c h n i q u e s ) were c h o s e n f o r t h e i r r e l e v a n c e t o t h e C a n a d i a n n u c l e a r p r o g r a m . 10 I I . MICROBIAL DEGRADATION OF BITUMEN 1 . BACKGROUND Compared w i t h g l u c o s e d e g r a d a t i o n , m i c r o b i a l o x i d a t i o n o f h y d r o c a r b o n s p o s e s a u n i q u e s e t of p r o b l e m s : t h e y a r e i n s o l u b l e i n w ater and p r e s e n t p r o b l e m s o f how t h e y a r e s o l u b i l i z e d o r e m u l s i f i e d ; t h e y a r e c h e m i c a l l y u n r e a c t i v e so r e q u i r e s p e c i a l i z e d enzymes f o r t h e i r i n i t i a l o x i d a t i o n , and, f i n a l l y t h e y r e v e r s e t h e m e t a b o l i s m of m i c r o o r g a n i s m s from b e i n g g l y c o l y t i c and l i p o g e n i c t o b e i n g l y p o l y t i c and g l u c o n e o g e n i c . 3 1 . S i n c e m e t a b o l i s m o f h y d r o c a r b o n s i s n o t a s \" e n e r g y -e f f i c i e n t \" as d e g r a d a t i o n o f common s u g a r s , use o f h y d r o c a r b o n s as a s u b s t r a t e w i l l o n l y o c c u r a s a s e c o n d a r y mechanism.* As a r e s u l t , a d a p t a t i o n and n a t u r a l s e l e c t i o n have e v o l v e d m i c r o o r g a n i s m s w i t h t h e a b i l i t y t o overcome o r c i r c u m v e n t some of t h e c o n s t r a i n t s l i s t e d a b o v e . T h e s e a d a p t a t i o n s have endowed o r g a n i s m s w i t h t h e a b i l i t y t o : * H y d r o c a r b o n s w i l l o n l y be d e g r a d e d i n t h o s e c a s e s where o t h e r more s u i t a b l e s u b s t r a t e s a r e l a c k i n g o r a b s e n t . 11 p r o d u c e s u r f a c e - a c t i v e a g e n t s f o r t h e e m u l s i f i c a t i o n o f t h e i r h y d r o c a r b o n s u b s t r a t e ; o x i d i z e t h e i r r e a c t a n t ( u s u a l l y t o an a l c o h o l o r d i o l ) t h e r e b y making them more p r o n e t o an e n z y m a t i c c a t a b o l i s m s i m i l a r t o f a t t y a c i d m e t a b o l i s m ; p r o d u c e s i m p l e s u g a r s f r om f a t t y a c i d s o r o t h e r l i p o i d a l p r e c u r s o r s . A l t h o u g h t h e h i g h s u b s t r a t e s p e c i f i c i t y of most m i c r o b i a l s p e c i e s l i m i t s t h e o v e r a l l d e g r a d a t i o n o f a h e t e r o g e n o u s m i x t u r e o f h y d r o c a r b o n s , i n d i v i d u a l components may be a t t a c k e d p r e f e r e n t i a l l y by a mixed c u l t u r e of h y d r o c a r b o n o c l a s t i c b a c t e r i a . W i t h r e s p e c t t o t h e major o r g a n i c g r o u p s t h a t compose b i t u m e n , m i c r o b i a l d e g r a d a t i o n may o c c u r i n t h e f o l l o w i n g ways: A. ALIPHATICS A c c o r d i n g t o R a t l e d g e , 3 2 t h e f o l l o w i n g c h a r a c t e r i s t i c s a p p l y t o t h e d e g r a d a t i o n o f a l i p h a t i c h y d r o c a r b o n s : 1. A l i p h a t i c h y d r o c a r b o n s a r e a s s i m i l a t e d by a wide v a r i e t y o f m i c r o o r g a n i s m s . O t h e r c l a s s e s of compound, i n c l u d i n g a r o m a t i c s , may be o x i d i s e d but a r e a s s i m i l a t e d by o n l y a few b a c t e r i a . 2 . n - A l k a n e s o f c h a i n l e n g t h s h o r t e r t h a n n-nonane a r e n o t u s u a l l y a s s i m i l a t e d but may be o x i d i s e d . O n l y some b a c t e r i a have t h e a b i l i t y t o grow on a l k a n e s s h o r t e r t h a n n - o c t a n e . As t h e c h a i n l e n g t h o f t h e a l k a n e i n c r e a s e s beyond C 9 t h e y i e l d f a c t o r i n c r e a s e s but t h e r a t e of o x i d a t i o n d e c r e a s e s . 3... S a t u r a t e d compounds a r e d e g r a d e d more r e a d i l y t h a n u n s a t u r a t e d o n e s . 4. B r a n c h e d - c h a i n compounds a r e d e g r a d e d l e s s r e a d i l y t h a n s t r a i g h t c h a i n compounds. A l t h o u g h h y d r o c a r b o n s o f c h a i n l e n g t h 20 m i n u t e s a t 1 2 5 \u00C2\u00B0 C ) , F e C l 3 and C a C l 2 were a u t o c l a v e d s e p a r a t e l y and added a f t e r t h e main s o l u t i o n had c o o l e d . In a d d i t i o n t o t h e s a l t s l i s t e d a b ove, n o n - s e l e c t i v e n u t r i e n t s i n c l u d i n g 0.3 wt.% m a l t e x t r a c t , 0.3 wt.% y e a s t e x t r a c t a nd 0.5 wt.% p e p t o n e were added t o t h e m i n e r a l s a l t s 1 6 s o l u t i o n on t h e recommendation of F o r r e s t e r . \" 0 T e m p e r a t u r e was m a i n t a i n e d a t c l o s e t o a m b i e n t (20-25\u00C2\u00B0C) and a e r a t i o n was m a x i m i z e d t h r o u g h c o n t i n o u s a g i t a t i o n o f a l l c u l t u r e s . B. IDENTIFICATION C u l t u r e s A,C and D c o n t a i n e d gram n e g a t i v e r o d - s h a p e d c e l l s t h a t showed some m o t i l i t y a t 30\u00C2\u00B0 C . An O n t a r i o M i n i s t r y o f The E n v i r o n m e n t a n a l y s i s \" 1 ( s e e A p p e n d i x A) r e p o r t showed th e 4 c u l t u r e s may c o n t a i n t h e f o l l o w i n g g e n e r a : C u l t u r e A - Pseudomonas C u l t u r e B - B a c i l l u s C u l t u r e C - VE g r o u p * C u l t u r e D - C i t r o b a c t e r , Pseudomonas C. GROWTH CURVES In c o n j u c t i o n w i t h t h e O n t a r i o M i n i s t r y o f The E n v i r o n m e n t a n a l y s i s ( A p p e n d i x A ) , m i c r o b i a l g r o w t h p r o f i l e s ( F i g u r e s 1,3,5 and 7) were e s t a b l i s h e d by t h e f o l l o w i n g methods: 0.30 ml of f r e s h i n n o c u l u m was added t o 20 mis of t h e n u t r i e n t media s a l t s o l u t i o n ( d e s c r i b e d e a r l i e r ) and a l l o w e d t o r o t a t e ( 5 - l 0 RPM) a t 25\u00C2\u00B0C. Samples were t a k e n from t h e r e a c t i o n v e s s e l e v e r y h o u r f o r a t l e a s t 11 h o u r s . S e r i a l * B a c t e r i a i n t h e VE g r o u p s h a r e c h a r a c t e r i s t i c s w i t h t h e g e n e r a Pseudomonas, Xanthomenas and C h r o m o b a c t e r i u m and a s y e t a r e not w e l l d e f i n e d t a x o n o m i c a l l y . \" 2 17 d i l u t i o n s f o l l o w e d by media p l a t i n g was u s e d t o d e t e r m i n e t h e number o f v i a b l e c e l l s p e r s a m p l e . \" 3 S t a n d a r d c u r v e s ( F i g u r e s 2,4,6 and 8) o f a b s o r b a n c e v s c e l l c o n c e n t r a t i o n , were a l s o o b t a i n e d f o r e a c h c u l t u r e by t a k i n g a b s o r b a n c e r e a d i n g s o f 0.5 t o 1.0 ml a l i q u o t s o f e a c h h o u r l y sample on a G i l f o r d 240 s p e c t r o p h o t o m e t e r (wavelength=600nm). \"These p l o t s ( F i g u r e s 1-8) i l l u s t r a t e t h a t C u l t u r e D showed t h e most r a p i d i n i t i a l g r o w t h . A s e c o n d i n t e r e s t i n g o b s e r v a t i o n o f t h e c u l t u r e D p r o f i l e i s i t s b i p h a s i c n a t u r e . T h i s i n f o r m a t i o n c o u p l e d w i t h t h a t i n A p p e n d i x A, c o n f i r m s t h e m u l t i - o r g a n i s m c o n t e n t of C u l t u r e D. 4. SELECTION OF A SUITABLE CULTURE AND GROUNDWATER A. SELECTION OF A SUITABLE CULTURE In o r d e r t o i s o l a t e t h e mixed c u l t u r e w i t h t h e g r e a t e s t b i t u m e n d e g r a d i n g p o t e n t i a l , t h e f o l l o w i n g p r o c e d u r e was f o l l o w e d : 1.0 g of b i t u m e n ( 3 0 - 4 0 mesh of S p - 1 7 0 ) * was p l a c e d i n 20.0 mis o f d e i o n i z e d w ater (DIW) c o n t a i n i n g 0.1340 g Y e a s t N i t r o g e n Base (YNB)** and 0.1 wt.% p e p t o n e . T h i s s o l u t i o n was t h e n s t e r i l i z e d by r _ i r r a d i a t i o n (500 K r a d s ) . Two i d e n t i c a l * \"Sp-170\" i s t h e d e s i g n a t i o n u s e d by Husky O i l ( t h e b i t u m e n s u p p l i e r ) f o r t h i s c l a s s of o x i d i z e d b i t u m e n . **YNB i s a n o n - s e l e c t i v e s o u r c e of n o n - c a r b o n n u t r i e n t s f o r m i c r o b i a l g r o w t h , i n c l u d i n g t h e f o l l o w i n g : (NH a ) 2 SOi , ( 75 w t . % ) , K H 2 P 0 , ( 1 5 w t . % ) , MgSO a(7 w t . % ) , N a C l O w t . % ) , C a C l 2 ( l wt.%) and s e l e c t e d v i t a m i n s and n u t r i e n t s ( < 1 wt.%) 18 CULTURE A 11 HOUR GROWTH CURVE F i g u r e 1 - C u l t u r e A - 11 H o u r G r o w t h C u r v e CULTURE A STANDARD CURVE-(ABS. VS CELL CONC.) F i g u r e 2 - C u l t u r e A - S t a n d a r d C u r v e 19 2 0 CULTURE C 12 HOUR GROWTH CURVE T 1 1 I 1 1 1 1 1 1 1 T ~ ~ 1$ $jt HA ItM 14A t*M TIMM(EOURS) F i g u r e 5 - C u l t u r e C - 12 H o u r G r o w t h C u r v e CULTURE C STANDARD CURVE-(ABS. VS CELL CONC.) CELL CONCENTRATION (CELLS/ML) (X10* ) F i g u r e 6 - C u l t u r e C - S t a n d a r d C u r v e 21 CULTURE D STANDARD CURVE-(ABS. VS CELL CONC.) i t t t * t H M 144** I M A * CELL CONCENTRATION (CEILS/ML) (X10* ) F i g u r e 8 - Cu l t u r e D - Standard Curve 2 2 s o l u t i o n s were p r e p a r e d f o l l o w i n g t h i s p r o c e d u r e . To c o n f i r m t h a t b i t u m e n was t h e s o l e c a r b o n s o u r c e p r e s e n t i n t h e t e s t v e s s e l s , a p p r o p r i a t e c o n t r o l s ( s e t s a and b) were r u n . A l s o , t o d i r e c t l y compare r a t e o f g r o w t h on b i t u m e n t o r a t e o f g r o w t h on a common c a r b o n s o u r c e a s e c o n d s e t o f c o n t r o l s were r u n (e and f ) c o n s i s t i n g o f s u c r o s e s u b s t i t u t e d f o r b i t u m e n . T h u s , s i x i n d i v i d u a l s e t s were r u n c o n s i s t i n g o f : a) YNB + C u l t u r e A b) YNB + C u l t u r e D c) YNB + Bitumen(1 g) + C u l t u r e A d) YNB + B i t u m e n U g) + C u l t u r e D e) YNB + S u c r o s e O g) + C u l t u r e A f ) YNB + S u c r o s e O g) + C u l t u r e D At T=46 h o u r s , g r o w t h was f o u n d o n l y f o r t h o s e s e t s c o n t a i n i n g C u l t u r e D and s i m i l a r i l y , .the l a r g e s t p o p u l a t i o n L s i z e s were o n l y f o u n d f o r s e t s d and f . B. SELECTION OF A SUITABLE GROUNDWATER SOLUTION C u r r e n t work by t h e A p p l i e d G e o s c i e n c e B r a n c h o f t h e W h i t e s h e l l N u c l e a r R e s e a r c h E s t a b l i s h m e n t has e s t a b l i s h e d f o u r s y n t h e t i c g r o u n d w a t e r s as a p p r o p r i a t e f o r r a d i o n u c l i d e a d s o r p t i o n s t u d i e s . I n o r d e r t o s i m u l a t e \" r e a l \" r e p o s i t o r y c o n d i t i o n s f o r s u b s e q u e n t e x p e r i m e n t s ( S e c t i o n s IV and V ) , s e l e c t i o n o f a s y n t h e t i c g r o u n d w a t e r t h a t would n o t s u p r e s s m i c r o b i a l g r o w t h was n e c e s s a r y . The f o u r s y n t h e t i c g r o u n d w a t e r s o l u t i o n s were p r e p a r e d a c c o r d i n g t o t h e methods o u t l i n e d i n A p p e n d i x B. Growth o f C u l t u r e D was t e s t e d t h r o u g h s i m p l e i n n o c u l a t i o n o f e a c h 23 g r o u n d w a t e r s o l u t i o n c o n t a i n i n g 0.3 wt.% m a l t e x t r a c t , 0.3 wt.% y e a s t e x t r a c t and 0.5 wt.% p e p t o n e but no a d d i t i o n a l m i n e r a l s a l t s o t h e r t h a n t h o s e c o n t a i n e d by t h e g r o u n d w a t e r . A f t e r i n c u b a t i o n a t 25\u00C2\u00B0C t h e s o l u t i o n c o n t a i n i n g WN-1 S a l i n e S o l u t i o n s u p p o r t e d th e b e s t g r o w t h of C u l t u r e D. REMARKS S i n c e t h e d e g r a d a t i o n o f b i t u m e n i s e x t r e m e l y slow, a l l f o r e s e e a b l e i n h i b i t o r s o f m i c r o b i a l a c t i v i t y were e l i m i n a t e d ( S e c t i o n I V ) . On t h e b a s i s o f t h e r u d i m e n t a r y e v a l u a t i o n s o f g r o w t h m e n t i o n e d above, C u l t u r e D and WN-1 S a l i n e S o l u t i o n were s e l e c t e d as the most a p p r o p r i a t e c u l t u r e and g r o u n d w a t e r s o l u t i o n r e s p e c t i v e l y , t o p r o v i d e a \" w o r s t c a s e \" a p p r o a c h . 2 4 I I I . MICROBIAL RADIOSENSITIVITY S i n c e t h e f i n a l waste r e p o s i t o r y w i l l be a c o n t i n o u s s o u r c e o f l o w - l e v e l r a d i a t i o n (<10 R / h r ) , t h e e f f e c t o f r a d i a t i o n on C u l t u r e s A,B,C and D has been e v a l u a t e d . 1. BACKGROUND The m a j o r i t y o f l o w - l e v e l waste r a d i o n u c l i d e s t h a t may be e n c a p s u l a t e d i n b i t u m e n e m i t r _ r a d i a t i o n ( i e 1 3 7 C s , 6 0 C o e t c . ) . The a b s o r b e d dose from t h e s e r a d i o n u c l i d e s has been c i t e d a s a p o t e n t i a l a r e a of c o n c e r n w i t h r e s p e c t t o r a d i o l y t i c d e g r a d a t i o n o f a s p h a l t w i t h c o n c o m i t a n t gas g e n e r a t i o n . \" 5 However, t h e s e same f i e l d s c o u l d be b a c t e r i o c i d a l ; t h e r e l a t i v e r e s i s t i v i t y of C u l t u r e A,B,C and D t o low LET* r a d i a t i o n was e v a l u a t e d t h r o u g h i r r a d i a t i o n o f e a c h c u l t u r e w i t h a h i g h e n e r g y (1330.0 KeV) r _ s o u r c e . In o r d e r t o g r a p h i c a l l y i l l u s t r a t e t h e l e t h a l e f f e c t s on * LET o r L i n e a r E n e r g y T r a n s f e r encompasses t h a t f r a c t i o n o f t h e i n h e r e n t e n e r g y a s s o c i a t e d w i t h t h e r a d i a t i o n t h a t i s t r a n s f e r r e d t o t h e t a r g e t atoms - e n e r g y t r a n s m i t t e d t o t h e a b s o r b e r p e r u n i t p a t h l e n g t h . 25 a p o p u l a t i o n of e a c h c u l t u r e , p e r c e n t a g e s u r v i v a l was d e t e r m i n e d o v e r t h e ran g e o f 0-300 K r a d s . The r e s u l t s o f t h i s e x p e r i m e n t w i l l y i e l d i n f o r m a t i o n t h a t i s i m p o r t a n t i n t h e c o n s i d e r a t i o n of whether o r n o t i r r a d i a t i o n w i l l e f f e c t i v e l y d e c r e a s e o r e l i m i n a t e t h e r a t e o f b i t u m e n b i o d e g r a d a t i o n . 2. METHODS A. GROWTH MEDIA PREPARATION S i x l i t r e s of m i n e r a l s a l t s s o l u t i o n were p r e p a r e d as d e s c r i b e d e a r l i e r ( S e c t i o n I I ) , w i t h t h e e x c e p t i o n o f C a C l 2 . To p r e v e n t t h e p r e c i p i t a t i o n o f i n o r g a n i c s a l t s ( d u r i n g s t e r i l i z a t i o n ) a C a C l 2 s o l u t i o n of 0.02 g/ml was p r e p a r e d s e p a r a t e l y . P e p t o n e , y e a s t and m a l t e x t r a c t were added a c c o r d i n g t o F o r r e s t e r , a c c o m p a n i e d by 2 wt.% a g a r . T h e s e two s o l u t i o n s (medium and C a C l 2 ) were t h e n s t e r i l i z e d s e p a r a t e l y and m i x e d upon t e r m i n a t i o n o f s t e r i l i z a t i o n . A p p r o x i m a t e l y 300 p l a t e s were p r e p a r e d from t h i s m i x t u r e and a l l o w e d t o c o o l under i n t e n s e UV i r r a d i a t i o n . B. CELL PREPARATION A f r e s h s o l u t i o n o f c e l l s was p r e p a r e d from e a c h c u l t u r e and a l l o w e d t o i n c u b a t e f o r a p p r o x i m a t e l y 72 h o u r s . Due t o t h i s l o n g i n c u b a t i o n p e r i o d a l l c e l l s o l u t i o n s were assumed t o be i n a s t a t i o n a r y g r o w t h p h a s e . 26 C e l l w a s h i n g was done t h r e e t i m e s by a d d i n g 1 ml of e a c h f r e s h c u l t u r e t o N a l g e n e c e n t r i f u g e t u b e s f o l l o w e d by 9-10 mis of PBS.* E a c h c u l t u r e was t h e n c e n t r i f u g e d a t 9000 RPM f o r 5-10 m i n u t e s a t 2\u00C2\u00B0C. The s u p e r n a t a n t was d i s c a r d e d and t h e p e l l e t r e s u s p e n d e d i n 9-10 mis o f PBS. C. IRRADIATION AND ENUMERATION F o l l o w i n g w a s h i n g , t h e p e l l e t s were v i g o r o u s l y a g i t a t e d i n PBS t o y i e l d a homogeneous c e l l s o l u t i o n . I m m e d i a t e l y p r i o r t o and f o l l o w i n g e a c h i r r a d i a t i o n i n t e r v a l e a c h c u l t u r e was p l a c e d i n i c e t o d e c r e a s e t h e e f f e c t o f e n z y m a t i c a l l y c a t y l z e d r e p a i r . I r r a d i a t i o n was p e r f o r m e d w i t h an AECL Gammacell-220 w i t h a dead t i m e * * and dose r a t e o f 2.4024 K r a d and 0.4640 K r a d / s e c * * * r e s p e c t i v e l y . 4 6 On t h e b a s i s of t h i s d e a d t i m e and dose r a t e t h e c u l t u r e s were i r r a d i a t e d d i r e c t l y i n t h e c e n t r i f u g e t u b e s a c c o r d i n g t o T a b l e I I . * PBS- P h o s p h a t e B u f f e r S o l u t i o n i s a m i x t u r e of K 2HPO a and K H 2 P O \u00E2\u0080\u009E p r e s e n t i n an a p p r o p r i a t e m o l a r r a t i o t o y i e l d a b u f f e r e d pH of 7.50. ** Dead t i m e i s t h e r e s i d u a l r a d i a t i o n r e c e i v e d by t h e sample p r i o r t o and upon t e r m i n a t i o n o f t h e d o s i n g p e r i o d . ***Dose r a t e and dead t i m e a r e d e t e r m i n e d from t h e m easured s o u r c e ( 6 0 C o ) a c t i v i t y a t some r e f e r e n c e t i m e , t=0. Thus, d o s e s and dead t i m e a t t i m e t c a n be c a l c u l a t e d from t h e o r i g i n a l a c t i v i t y , r e f e r e n c e t i m e and s o u r c e h a l f - l i f e . 27 D o s e ( K r a d ) Sequent i a l T i m e ( s e c ) C u m u l a t i v e T i m e ( s e c ) 0 5 10 15 25 50 75 100 200 300 210.3 210.3 0.0 5.6 5.6 5.6 16.4 48.7 48.7 48.7 0.0 5.6 11.2 16.8 33.2 81 .9 130.6 179.3 389.6 600.2 T a b l e I I - y-IRRADIATION TIMES USED FOR CULTURES A,B,C AND D Upon r e c e i p t of t h e a p p r o p r i a t e dose,. 0.5 mis of t h e c u l t u r e was removed and s e r i a l d i l u t i o n s of 10\" 1 , 1 0 \" 2 , 1 0 \" 3 , 10\" 4 and t h e f i r s t f o u r d i l u t i o n s and a t e a c h dose l i s t e d i n T a b l e I I . A f i f t h s e t of r e p l i c a t e p l a t e s was p r e p a r e d f o r t h e 0 dose c o n t r o l . S i n c e i r r a d i a t i o n of t h e c u l t u r e s was p e r f o r m e d s e q u e n t i a l l y , 0.5 ml a l i q u o t s o f t h e sample were d i l u t e d and p l a t e d a f t e r r e c e i p t of t h e a p p r o p r i a t e d o s e . A l l p l a t e s were t h e n a l l o w e d t o i n c u b a t e f o r 48 h o u r s a t 20\u00C2\u00B0C p r i o r t o c o l o n y enumerat i o n . 3. RESULTS D o s e - r e s p o n s e c u r v e s ( F i g u r e s 9-12) were g e n e r a t e d f o r c u l t u r e s A,B,C and D. T h e s e c u r v e s i l l u s t r a t e t h a t none o f th e c u l t u r e s a r e c a p a b l e of growth a t a dose >75 K r a d s . At l e a s t h a l f t h e p o p u l a t i o n w i l l d i e ( L D 5 0 ) a f t e r e x p o s u r e t o a dose e x c e e d i n g 6 K r a d . T h e s e r e s u l t s i n d i c a t e t h a t none of IO\" 5 were made. R e p l i c a t e p l a t e s were p r e p a r e d f o r e a c h of 2 8 t h e c u l t u r e s t e s t e d a r e r a d i o s e n s i t i v e ( s u b s t a n t i a l c e l l d e a t h i s o n l y r e a l i z e d a t >1000 r a d s ) however, C u l t u r e A,C and D a l l showed s u r v i v a l c u r v e s c h a r a c t e r i s t i c o f a M u l t i t a r g e t * mechanism f o r c e l l u l a r i n a c t i v a t i o n . * 7 T h i s r e s u l t may be e x p e c t e d s i n c e many b a c t e r i a l s p e c i e s show t h i s r e s p o n s e t o y -i r r a d i a t i o n . In o r d e r t o m i n i m i z e t h e e x p o s u r e t o p e r s o n n e l and p r e v e n t s e v e r e r a d i o l y t i c damage t o t h e b i t u m e n , t h e i n i t i a l s u r f a c e d ose r a t e w i l l be k e p t below 10 R / h r . a 8 E x c e p t f o r 1\"C, 1 3 7 C s and 6 0 C o w i l l be t h e most p r e d o m i n a n t r a d i o n u c l i d e s c o n t a i n e d i n t h e low l e v e l waste r e p o s i t o r y . \" 9 T h e s e waste n u c l i d e s have a h a l f - l i f e o f 5730, 30 and 5.3 y e a r s r e s p e c t i v e l y . Thus, w i t h an e x p o n e n t i a l d e c a y , a c t i v i t y c o n t r i b u t e d by 1 3 7 C s and 6 0 C o w i l l have d e c r e a s e d t o n e g l i g i b l e l e v e l s w i t h i n 300 y e a r s . S i n c e e a c h c u l t u r e t e s t e d i s r e l a t i v e l y r a d i o - i n s e n s i t i v e and t h e b i t u m e n waste b l o c k w i l l c o n t a i n p r e d o m i n a t e l y s h o r t -l i v e d r a d i o n u c l i d e s w i t h a low i n i t i a l a c t i v i t y - t h e r a d i o l o g i c a l e f f e c t of t h e waste on t h e s e m i c r o b i a l s p e c i e s w o u l d be n e g l i g i b l e . However, l o n g - t e r m e x p o s u r e may i n c r e a s e t h e r a t e of m u t a t i o n a n d / o r i n c r e a s e t h e r e l a t i v e r a d i o s e n s i t i v i t y of e x p o s e d o r g a n i s m s . 5 0 * M u l t i t a r g e t t h e o r y assumes an o r g a n i s m d e a t h w i l l r e s u l t o n l y a f t e r v a r i o u s i n t r a c e l l u l a r \" t a r g e t s \" a r e i n a c t i v a t e d by t h e r a d i a t i o n s o u r c e . 29 RADIATION DOSE RESPONSE PROFILE OF CULTURE A DOSE(KRAD) F i g u r e 9 - Dose-Response o f C u l t u r e A RADIATION DOSE RESPONSE PROFILE OF CULTURE B T 1 1 1 1 1 1 1 1 1 1 1 1 r 1t.O S4.0 MM 40.9 4IM MM $4M 71.0 tOJ> DOSE(KRAD) F i g u r e 10 - Dose-Response o f C u l t u r e B 30 RADIATION DOSE RESPONSE PROFILE OF CULTURE C 00.0 04J0 10J0 0OJ> DOSE(KRAD) F i g u r e 11 - Dose-Response o f C u l t u r e C RADIATION DOSE RESPONSE PROFILE OF CULTURE D i 1 i 1 1 1 1 1 1 1 1 r - i 1 i 1 1 1 1 1 1 1\u00E2\u0080\u0094 0J0 4.0 0J0 10.0 I0J0 00.0 04.0 00.0 00J0 00.0 40J0 DOSE (KRAD) F i g u r e 12 - Dose-Response o f C u l t u r e D 31 IV. EVALUATION OF MICROBIALLY ENHANCED LEACHING L e a c h i n g , t h e p r o c e s s by w h i c h a r e l a t i v e l y i n s o l u b l e s p e c i e s s u c h as an i n o r g a n i c s a l t i s s o l u b i l i z e d , i s t h e p r i m a r y mechanism f o r r e l e a s e . of e n c a p s u l a t e d waste r a d i o n u c l i d e s . The p r o c e s s o f l e a c h i n g i m m o b i l i z e d w a s t e s has been s h o w n 5 1 \" ' 5 2 t o be a p p r o x i m a t e d by F i c k ' s d i f f u s i o n e q u a t i o n s , 5 3 ' ' 5 \" and a p l o t o f : I g j y. vs ( t n ) \u00C2\u00B0 - 5 E q t . I V . 1 A 0 F w i l l show l i n e a r i t y i f t h e p r o c e s s i s g o v e r n e d by d i f f u s i o n . * I f t h e c u m u l a t i v e f r a c t i o n o f a c t i v i t y l e a c h e d i s p l o t t e d a g a i n s t t i m e t h e r e s u l t a n t c u r v e ( f o r a d i f f u s i o n - m e d i a t e d r e s p o n s e ) may be d e s c r i b e d as p a r a b o l i c i n i t i a l l y t h e n t a p e r i n g o f f t o a s t r a i g h t l i n e w i t h s l o p e \"~0. T h i s t y p e of p l o t was u s e d t o i l l u s t r a t e t h e d a t a p r e s e n t e d i n t h i s S e c t i o n . However, d i f f u s i o n (and t h e r e f o r e l e a c h i n g ) w i l l not * Where a n = r a d i o a c t i v i _ t y l e a c h e d d u r i n g t h e l e a c h a n t r e n e w a l p e r i o d , n ; A 0 = r a d i o a c t i v i t y i n i t a l l y p r e s e n t i n specimen;F=ex-p o s e d s u r f a c e a r e a of s p e c i m e n ( c m 2 ) ; V = s p e c i m e n v o l u m e ( c m 3 ) and t n = d u r a t i o n ( d a y s ) of l e a c h a n t r e n e w a l p e r i o d . 5 \" 3 2 o c c u r u n l e s s t h e s o l i d i f i e d w a s t e s a r e i n c o n t a c t w i t h t h e l e a c h a n t . An i n c r e a s e i n any o f t h e mechanisms t h a t w i l l a l l o w g r e a t e r a v a i l a b i l i t y o f t h e e n c a p s u l a t e d s p e c i e s w i t h t h e l e a c h a n t w i l l t h e r e f o r e r e s u l t i n an i n c r e a s e i n l e a c h i n g . 1. ENHANCED LEACHING The p e r t i n e n t f a c t o r s w i t h r e s p e c t t o b i t u m e n t h a t may r e s u l t i n e n h a n c e d l e a c h i n g a r e : a) M e c h a n i c a l a b r a s i o n , b) T e m p e r a t u r e , c ) D i f f u s i o n , d) B i o d e g r a d a t i o n . S i n c e t h e f i n a l waste r e p o s i t o r y w i l l be l o c a t e d i n a g e o l o g i c a l l y s t a b l e l o c a t i o n , t h e e f f e c t o f m e c h a n i c a l a b r a s i o n w i l l e l i c i t a n e g l i g i b l e i n c r e a s e i n c o n t a c t o f t h e i m m o b i l i z e d waste r a d i o n u c l i d e s w i t h n a t i v e g r o u n d w a t e r s . U n f o r t u n a t e l y , t h e t e m p e r a t u r e c h a r a c t e r i s t i c s of t h e r e p o s i t o r y a r e unknown. I n i t i a l l y t h e r e p o s i t o r y t e m p e r a t u r e i s e x p e c t e d t o be a p p r o x i m a t e l y 1 0\u00C2\u00B0C however, waste h e a t from h i g h - l e v e l r a d i o a c t i v e d e c a y may i n c r e a s e t h e o v e r a l l r e p o s i t o r y t e m p e r a t u r e . I f t h e i n c r e a s e i s l a r g e enough, l e a c h i n g may be e n h a n c e d as a r e s u l t of t h e i n c r e a s e d s u r f a c e c o n t a c t . 5 5 The r e m a i n i n g two f a c t o r s may r e s u l t i n t h e g r e a t e s t i n c r e a s e i n l e a c h i n g under \" r e p o s i t o r y c o n d i t i o n s \" and t h e r e f o r e d e s e r v e g r e a t e r e l a b o r a t i o n . 3 3 D i f f u s i o n The e n h a n c e d movement o f i o n s f r o m b i t u m e n as t h e c o n c e n t r a t i o n g r a d i e n t i s d e c r e a s e d between t h e b i t u m e n and s o l v e n t c a n be r a t i o n a l i z e d by a d i f f u s i o n m e d i a t e d p h e n o m e n o n . 5 1 The r a d i o n u c l i d e - b i t u m e n m i x t u r e w i l l be e s s e n t i a l l y homogeneous t h u s , t h e waste s o l i d may be c o n s i d e r e d an i s o t r o p i c medium. In t h i s c a s e , a random u n i f o r m movement of i o n s between t h e b i t u m e n s u r f a c e and t h e s u r r o u n d i n g media w i l l o c c u r . I f t h e s u r r o u n d i n g media has a low i n i t i a l i o n i c c o n c e n t r a t i o n ( i e DIW), a n e t i n c r e a s e i n t h e i o n c o n t e n t w i l l be o b s e r v e d a f t e r c o n t a c t w i t h t h e b i t u m e n b l o c k . The d r i v i n g f o r c e f o r t h i s s t e a d y - s t a t e movement i s the d i f f e r e n c e i n c o n c e n t r a t i o n between t h e b i t u m e n and w a t e r , AC. As AC a p p r o a c h e s 0, t h e n e t exchange between t h e i s o t r o p i c s o l i d and l e a c h a n t w i l l a l s o become 0. M a t h e m a t i c a l l y , d i f f u s i o n may be d e s c r i b e d a s : t h e r a t e of t r a n s f e r of d i f f u s i n g s u b s t a n c e t h r o u g h u n i t a r e a o f a s e c t i o n i s p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n g r a d i e n t measured n o r m a l t o t h e s e c t i o n , i e F = -D\T. E q t . I V . 2 \X where F i s t h e r a t e of t r a n s f e r p e r u n i t a r e a of s e c t i o n , C t h e c o n c e n t r a t i o n of d i f f u s i n g s u b s t a n c e , x t h e s p a c e c o o r d i n a t e measured n o r m a l t o t h e s e c t i o n , and D i s c a l l e d t h e d i f f u s i o n c o e f f i c i e n t . 5 6 The r e s u l t a n t e f f e c t of t h i s p r o c e s s w i l l be an e q u i l i b r i u m s t a t e i n w h i c h t h e c o n c e n t r a t i o n o f i o n s i n t h e 34 l e a c h a n t a p p r o x i m a t e s t h e c o n c e n t r a t i o n o f i o n s i n t h e b i t u m e n . U n f o r t u n a t e l y , e q u i l i b r i u m w i l l o n l y be a t t a i n e d i n t h o s e c a s e s i n w h i c h t h e l e a c h a n t i s s t a t i c . G r o u n d w a t e r f l o w i n a \" r e a l \" r e p o s i t o r y would r e p r e s e n t a dynamic s t a t e t h a t may a f f o r d i n f i n i t e d i l u t i o n p r o v i d e d a c o n c e n t r a t i o n g r a d i e n t e x i s t s between the s o l i d m a t r i x and g r o u n d w a t e r . T h i s b e h a v i o u r i s c l e a r l y i l l u s t r a t e d by F i g u r e s 13 t o 26 i n w h i c h t h e c u m u l a t i v e f r a c t i o n l e a c h e d (as a f u n c t i o n o f t i m e ) i s s t i l l i n c r e a s i n g f o r a l l c a s e s i n w h i c h an i o n i c c o u n t e r b a l a n c e was n o t p r e s e n t ( S e t - A ) . S e t s B,C, and D* however, a l l i l l u s t r a t e t h e c a s e i n w h i c h an e q u i l i b r i u m i s b e i n g a p p r o a c h e d and s l o p e \u00E2\u0080\u0094 - K ) , due t o t h e m i t i g a t i n g e f f e c t s o f i o n s p r e s e n t i n s o l u t i o n p r i o r t o t h e i n i t i a t i o n o f t h e t e s t . B i o d e g r a d a t i o n As p r e v i o u s l y m e n t i o n e d b o t h l a b o r a t o r y 1 7 \" 1 9 and i n s i t u 2 1 - 2 3 , 5 7 - 6 0 a t t a c k has been a d e q u a t e l y d e m o n s t r a t e d . The e f f e c t o f m i c r o b i a l a t t a c k o f a b i t u m i n i z e d waste may enhance l e a c h i n g v i a : p h y s i c a l r e m o v a l of t h e e x p o s e d l a y e r of t h e b i t u m e n as i t i s u s e d as a m i c r o b i a l s u b s t r a t e ; s o l u b i l i z a t i o n by m e t a b o l i c i n t e r m e d i a t e s , e n d - p r o d u c t s 1 5 o r c o - o x i d a t i v e p r o d u c t s 6 1 ; o r e m u l s i f i c a t i o n o f t h e b i t u m e n by m i c r o b i a l l y * S e t A c o n t a i n e d DIW o n l y . However, B,C and D were composed p r i m a r i l y o f t h e n u t r i e n t s o l u t i o n d i s c u s s e d i n S e c t i o n I I . 0 3 5 SETS A1#1,C1J)1 - \"Co LEACHED VS TIME \u00E2\u0080\u0094 i \u00E2\u0080\u0094 /ML0 TIME(DAYS) F i g u r e 13 - L e a c h i n g p r o f i l e s f o r s e t s A l , B 1 , C 1 a n d D1 _ 6 0 Co' SETS A1,B1,C1J)1 - m C s LEACHED VS TIME a 1 e\u00E2\u0080\u0094\u00C2\u00A9 SET A-1 * \u00E2\u0080\u00A2 SET B-1 \u00E2\u0080\u00A2\u00E2\u0080\u0094\u00C2\u00BB SET C-t SET D-1 TIME (DAYS) F i g u r e 14\" - L e a c h i n g p r o f i l e s f o r s e t s A1,B1,C1 a n d D1 - 1 3 7 C s 36 SETS A2tB2,C2tD2 - \"Co LEACHED VS TIME ^ SETS A2tB2,C2tD2 - \"Cs LEACHED VS TIME TIME(DAYS) F i g u r e 16 - L e a c h i n g p r o f i l e s f o r s e t s A2,B2,C2 a n d D2 - 1 3 7 C s 3 7 SETS A3\u00C2\u00A33,C3J)3 - ' Cs LEACHED VS TIME a\u00E2\u0080\u0094o SET A-3 < \u00E2\u0080\u00A2 SET B-3 \u00E2\u0080\u00A2 SET C-3 x\u00E2\u0080\u0094 K SET D-3 f\u00E2\u0080\u0094 ~ T \" ? i * \u00E2\u0080\u0094 ( 4 _ + \u00E2\u0080\u00A2 ^ ) t , ^ fi * x * *~~ \u00E2\u0080\u0094 X M \u00E2\u0080\u0094 K tJO tOM MM M . 0 70.0 MM MM IMM 49M MM MM TIME(DAYS) Figure 18 - Leaching p r o f i l e s for sets A3,B3,C3 and D3 - 1 3 7 C s 3 8 SETS A1A2A3 - mCs LEACHED VS TIME 3 9 i SETS B122.B3 - \"Co LEACHED VS TIME o\u00E2\u0080\u0094e> SET B-1 < \u00E2\u0080\u00A2 SET B-2 *\u00E2\u0080\u0094\u00E2\u0080\u00A2 SET B-3 -i 1 1 r I I M TIME(DAYS) F i g u r e 21 - L e a c h i n g p r o f i l e s f o r s e t s B1,B2 and B3 - 6 0 C o SETS B1,B2\u00C2\u00A33 - Cs LEACHED VS TIME 40 r SETS C1,C2,C3 - \"Co LEACHED VS TIME SET C-1 SET C-2 SET C-3 T 1 1 50.0 00.0 i r 70.0 I r~ 00.0 \u00E2\u0080\u0094i 1 1 r 30.0 4CJO 1QQJ0 F i g u r e TIME(DAYS) 23 - L e a c h i n g p r o f i l e s f o r s e t s C1,C2 and C3 - 6 0 C o SETS C1,C2,C3 - mCs LEACHED VS TIME o\u00E2\u0080\u0094o SIT C-1 * \u00E2\u0080\u00A2 SET C-2 *\u00E2\u0080\u0094\u00C2\u00BB SET C-3 \u00E2\u0080\u0094i 1 1 1 1 r 40J) 80.0 80.0 TIME(DAYS) F i g u r e 24 - L e a c h i n g p r o f i l e s f o r s e t s C1,C2 and C3 IOOJO 1 3 7 C s 41 TIME(DAYS) F i g u r e 25 - L e a c h i n g p r o f i l e s f o r s e t s D1,D2 and D3 - 6 0 C o SETS D 1J)2J)3 - mCs LEACHED VS TIME T 1 I0QJO TIME(DAYS) F i g u r e 26 - \"Le a c h i n g \" p r o f i l e s f o r s e t s D1,D2 and D3 - 1 3 7 C s 4 2 p r o d u c e d s u r f a c e - a c t i v e a g e n t s s u c h as l i p i d s , g l y c o l i p i d s and l i p o p r o t e i n s . 6 2 \" 6 5 O b v i o u s l y , t h e l a t t e r two modes of m i c r o b i a l l y i n i t i a t e d r a d i o a c t i v e waste r e l e a s e a r e de p e n d e n t on t h e p r e s e n c e of t h e f i r s t i f b i t u m e n i s t h e s o l e c a r b o n s o u r c e (a l i k e l y s c e n a r i o i n a deep waste r e p o s i t o r y ) . F u r t h e r m o r e , t h e p r e s e n c e o f exogenous a g e n t s t h a t may s o l u b i l i z e o r e m u l s i f y t h e b i t u m e n i s not a r e l e v a n t p r o b l e m u n l e s s t h e r e p o s i t o r y c o n t a i n i n g t h e waste i s i n o r a d j a c e n t t o a g e o l o g i c a l f o r m a t i o n c o n t a i n i n g p e t r o l e u m . U n t i l now, no i n v e s t i g a t o r s have u n d e r t a k e n t o show i n c r e a s e d r e l e a s e o f r a d i o n u c l i d e s e n c a p s u l a t e d i n b i t u m e n due t o m i c r o b i a l a c t i o n and o n l y one s t u d y has r e v i e w e d m i c r o b i a l a t t a c k of a s p h a l t c o n t a i n i n g i n a c t i v e s a l t s . 6 6 In t h e p a s t , i n v e s t i g a t o r s have u t i l i z e d any a v a i l a b l e method t o maximize t h e c o n t a c t of t h e m i c r o b i a l b i o m a s s w i t h t h e s u b s t r a t e i n o r d e r t o i n c r e a s e t h e r a t e o f a t t a c k . U n f o r t u n a t e l y , t h e s e t e c h n i q u e s have u s u a l l y d i s r u p t e d ( o r d e s t r o y e d ) t h e s t r u c t u r a l i n t e g r i t y o f t h e b i t u m e n t o s u c h an e x t e n t as t o p r e c l u d e t h e p o s s i b i l i t y of t h e i r use i n any s a t i s f a c t o r y e x p e r i m e n t d e s i g n e d t o show e n h a n c e d l e a c h i n g . In t h e e x p e r i m e n t d e s c r i b e d i n t h e f o l l o w i n g pages a s t a n d a r d i z e d p r o c e d u r e 6 7 was f o l l o w e d t h a t s h o u l d a l l o w good i n t e r c o m p a r i s o n of r e s u l t s . The p r o c e d u r e was m o d i f i e d s l i g h t l y f o r t e s t S e t s C and D ( d e s c r i b e d i n S e c t i o n I I ) . t o a l l o w f o r maximum growth o f h y d r o c a r b o n o c l a s t i c b a c t e r i a . 4 3 O p t i m a l n u t r i e n t , oxygen and t e m p e r a t u r e c o n d i t i o n s were m a i n t a i n e d t o c r e a t e an e x p e r i m e n t a l s y s t e m t h a t c o u l d r e s o l v e any d i f f e r e n c e i n mass l e a c h i n g o f r a d i o n u c l i d e s f r o m b i t u m e n t h a t was o r was not u n d e r g o i n g m i c r o b i a l a t t a c k . A l t h o u g h m i c r o b i a l g r o w t h was not d e p e n d e n t on t h e use o f b i t u m e n as a s o l e c a r b o n s o u r c e , a f t e r a p p r o x i m a t e l y 12 h o u r s ( s e e S e c t i o n I I ) an endogenous g r o w t h p h a s e had been r e a c h e d f o r t h e m i x e d p o p u l a t i o n and f u r t h e r g r o w t h was d e p e n d e n t on t h e use o f b i t u m e n as a c a r b o n s o u r c e . The o b j e c t i v e of t h i s i n v e s t i g a t i o n was s i m p l y t o d e t e r m i n e i f a s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e e x i s t e d between i n o c u l a t e d samples and t h e i r r e s p e c t i v e c o n t r o l s , i r r e s p e c t i v e o f t h e mechanism ( s o l u b i l i z a t i o n , e m u l s i f i c a t i o n o r b i o d e g r a d a t i o n ) under c o n d i t i o n s t h a t were o p t i m i z e d f o r m i c r o b i a l g r o w t h . 44 2.\u00E2\u0080\u00A2 METHODS Tw e l v e i d e n t i c a l s amples of Sp-170 ( o x i d i z e d ) b i t u m e n c o n t a i n i n g 38 wt.% sodium n i t r a t e , 4.914 \u00C2\u00BBiCi/gm 6 0 C o and 8.229 \u00C2\u00BBiCi/gm 1 3 7 C s (New E n g l a n d N u c l e a r L t d . ) were p r e p a r e d i n a t w i n - s c r e w e x t r u d e r a t a p r o d u c t f l o w r a t e o f 2.163 kg/hr and a peak t e m p e r a t u r e o f < 1 7 0 \u00C2\u00B0 C . The f i n a l homogeneous c y l i n d r i c a l p r o d u c t had a mean mass, volume and a r e a of 21.2 g U = 1 . 0 8 ) , 15.7 cm 3( t f=7.90 X IO\"?) and 35.1 c m 2 U = 1 . 0 5 ) r e s p -e c t i v e l y . W h i l e t h e l e a c h s amples c o o l e d f o r f o u r d a y s a t a m b i e n t t e m p e r a t u r e , f o u r s e p a r a t e l e a c h a n t s o l u t i o n s were p r e p a r e d and c o n s i s t e d o f t h e f o l l o w i n g : L e a c h a n t S o l u t i o n A D i s t i l l e d , d e m i n e r a l i z e d water ( c o n d u c t i v i t y <1.00 X 10\" 6Mho/cm). L e a c h a n t S o l u t i o n B T5 D i s t i l l e d , d e m i n e r a l i z e d w ater ( c o n d u c t i v i t y - as a b o v e ) . 2) M i n e r a l s a l t s s o l u t i o n as d e s c r i b e d e a r l i e r ( S e c t i o n I I ) . 3) M i c r o b i a l n u t r i e n t media c o n s i s t i n g o f : 0.3% m a l t e x t r a c t , 0.3% y e a s t e x t r a c t and 0.5% p e p t o n e . L e a c h a n t s o l u t i o n C T ) D i s t i l l e d , d e m i n e r a l i z e d w a t e r ( c o n d u c t i v i t y - a s a b o v e ) . 2) M i n e r a l s a l t s s o l u t i o n a s d e s c r i b e d e a r l i e r ( S e c t i o n I I ) . 3) M i c r o b i a l n u t r i e n t media c o n s i s t i n g o f : 0.3% m a l t e x t r a c t , 0.3% y e a s t e x c t r a c t and 0.5% p e p t o n e . 4) H y d r o c a r b o n o c l a s t i c b a c t e r i a ( C u l t u r e - D ) . L e a c h a n t S o l u t i o n D T l D i s t i l l e d , d e m i n e r a l i z e d w ater ( c o n d u c t i v i t y - as a b o v e ) . 2) WN-1 S y n t h e t i c g r o u n d w a t e r s o l u t i o n as d e s c r i b e d 45 e a r l i e r i n S e c t i o n I I . * 3) M i c r o b i a l n u t r i e n t media c o n s i s t i n g o f : 0.3% m a l t e x t r a c t , 0.3% y e a s t e x t r a c t and 0.5% p e p t o n e . 4) H y d r o c a r b o n o c l a s t i c b a c t e r i a ( C u l t u r e - D ) . The b i t u m e n samples were p l a c e d i n 250 ml S y b r o n / N a l g e wide-mouth, s t r a i g h t s i d e p o l y m e t h y l p e n t e n e j a r s w i t h p o l y p r o p y l e n e screw c l o s u r e s . T h r e e samples f o r e a c h l e a c h a n t s o l u t i o n were t h e n immersed i n 100 mis of l e a c h a n t , i n s u c h a manner a s t o maximize t h e e x p o s u r e between t h e l e a c h a n t and sample s u r f a c e ( w i t h n o t l e s s t h a n 5.0 mis c o v e r i n g t h e s a m p l e ) . To m a i n t a i n good a e r a t i o n o f t h e m i c r o b i a l c u l t u r e s but t o m i n i m i z e r e l e a s e of r a d i o n u c l i d e s a s a r e s u l t o f m e c h a n i c a l a g i t a t i o n , a l l s a m p l e s were a g i t a t e d h o r i z o n t a l l y by a L a b - L i n e J u n i o r O r b i t S h a k e r a t 100 RPM. The l e a c h a n t s o l u t i o n s were c h a n g e d a c c o r d i n g t o t h e g u i d e l i n e s o f H e s p e 6 7 - e v e r y 24 h o u r s f o r t h e f i r s t 7 d a y s and t h e n once p e r week f o r t h e f o l l o w i n g 8 weeks. P r i o r t o t e r m i n a t i o n o f t h e e x p e r i m e n t a f i n a l sample was c o l l e c t e d 30 d a y s a f t e r t h e end o f t h e 8 week s a m p l i n g p e r i o d . F o r t h e d u r a t i o n of t h e t e s t a l l samples were m a i n t a i n e d a t an a v e r a g e t e m p e r a t u r e o f 23.6\u00C2\u00B0C (tf=1.64). In o r d e r t o e n s u r e m i c r o b i a l a c t i v i t y was a t a maximum r a t e ( e x p o n e n t i a l g r o w t h p h a s e ) , a l l s t e r i l e l e a c h a n t s o l u t i o n s (C and D) were i n n o c u l a t e d 3-4 h o u r s b e f o r e * In k e e p i n g w i t h a \" w o r s t - p o s s i b l e - c a s e \" p h i l o s o p h y , WN-1 s y n t h e t i c g r o u n d w a t e r was s e l e c t e d a s a s u i t a b l e example s i n c e t h i s g r o u n d w a t e r was shown e a r l i e r ( S e c t i o n I I ) t o be t h e most c o n d u c i v e t o growth of C u l t u r e - D . 4 6 t h e t i m e i n w h i c h t h e y were t o be c h a n g e d ( s e e S e c t i o n I I ) . A. ANALYSIS I m m e d i a t e l y p r i o r t o e a c h l e a c h a n t change, 25.0 mis o f s p e n t l e a c h a n t were wi t h d r a w n f r o m t h e sample c o n t a i n e r s and t r a n s f e r r e d t o p o l y p r o p y l e n e v i a l s . The s u b s e q u e n t a n a l y s i s e mployed a m u l t i - c h a n n e l y - s p e c t r o m e t e r e q u i p p e d w i t h a G e ( L i ) * d e t e c t o r . C o u n t i n g t o o k an a v e r a g e o f 3 h o u r s f o r e a c h sample. Most sa m p l e s a v e r a g e d between 2-3 o r d e r s o f m a g n i t u d e above b a c k g r o u n d (1 X 10\" 1 2 C i / m l ) t h e r e f o r e b a c k g r o u n d was not c o n s i d e r e d a s i g n i f i c a n t f a c t o r i n t h e r e s u l t i n g s t a t i s t i c a l a n a l y s i s . C o n d u c t i v i t y - a n d pH measurements were made w i t h t h e use of R a d i o m e t e r ( C o p e n h a g e n ) and F i s h e r I n s t r u m e n t s ( s e e A p p e n d i x D) . * G e ( L i ) - Germanium, L i t h i u m . 4 7 3. RESULTS AND DISCUSSION V i s u a l i n t e r p r e t a t i o n o f F i g u r e s 13 t o 18 show o n l y one c o n s i s t e n t t r e n d i s e v i d e n t i n t h e p r o f i l e s o f : \u00C2\u00A3 a n V v s ( t r , ) 0 - 5 E q t . I V . 1 A 0 F ( c u m u l a t i v e f r a c t i o n l e a c h e d v s t i m e ) . S e t A's s l o p e i s g r e a t e s t i n most c a s e s a t t>21 d a y s i n c o m p a r i s o n t o S e t s B,C and D. T h e s e l a t t e r t e s t s e t s a l l a p p e a r t o be a p p r o a c h i n g a s l o p e = 0 ( F i g u r e 16). As m e n t i o n e d e a r l i e r , j u s t i f i c a t i o n f o r t h e l e a c h i n g b e h a v i o u r o f s e t A can be e x p l a i n e d by a h i g h AC. In t h i s c a s e , d i f f u s i o n w i l l c a u s e a n e t movement of r a d i o n u c l i d e s between t h e b i t u m e n and DIW. A l t h o u g h a l l samples were v i r t u a l l y i d e n t i c a l i n terms of mass, volume and a r e a , s m a l l s u r f a c e i m p e r f e c t i o n s would e x p l a i n t h e i n i t i a l d i f f e r e n c e s i n l e a c h i n g b e h a v i o u r of t h e s a m p l e s . However, l o n g t e r m b e h a v i o u r w o u l d be a f u n c t i o n , u l t i m a t e l y , o f t h e l e a c h a n t r a t h e r t h a n t h e s a mple. A. S T ATISTICAL EVALUATION S i n c e o n l y q u a l i t a t i v e e v a l u a t i o n s may be made by i n s p e c t i o n of F i g u r e s 13 t o 18, an A n a l y s i s o f V a r i a n c e ( w i t h o n e - i n d e p e n d e n t v a r i a b l e ) c o u p l e d w i t h t h e Student-Newman-K e u l s p r o c e d u r e 6 8 was employed as a q u a n t i t a t i v e a p p r o a c h t o 48 d e t e r m i n e d i f f e r e n c e s i n sample means. S i n c e s l o p e ~ 0 a t t>14 d a y s ( s e e F i g u r e 18), sample means were e v a l u a t e d from t h e c u m u l a t i v e f r a c t i o n l e a c h e d f r o m t=14 t o t=93 d a y s . A l l s t a t i s t i c a l t e s t s were p e r f o r m e d i n d e p e n d e n t l y f o r t h e two i s o t o p e s u s e d , a t an c=0.05 s i g n i f i c a n c e l e v e l ( s e e A p p e n d i x E f o r s t a t i s t i c a l r e s u l t s ) . I n s p e c t i o n o f A p p e n d i x E shows t h a t f o r 6 0 C o t h e a v e r a g e means o f S e t s A and B were s i g n i f i c a n t l y d i f f e r e n t from t h e a v e r a g e means of S e t s C and D a t a=0.05, and f o r 1 3 7 C s Group A was s i g n i f i c a n t l y d i f f e r e n t f r o m B,C and D. However, t h e r e was no s i g n i f i c a n t d i f f e r e n c e between C and D and between B and D. T h u s , t h e combined s t a t i s t i c a l a n a l y s i s f o r 6 0 C o and 1 3 7 C s i l l u s t r a t e s o n l y t h a t t h e S e t A a v e r a g e was s i g n i f i c a n t l y h i g h e r t h a n s e t s C and D's a v e r a g e a t a=0.05. S e t B's mean was s t a t i s t i c a l l y homogeneous t o S e t A f o r 6 0 C o as a r e s u l t of t h e a b n o r m a l l y low l e a c h i n g b e h a v i o u r of 6 0 C o f o r sample A1 ( F i g u r e 1 3 ) . T h i s i s i l l u s t r a t e d by t h e p r o f i l e s o f a l l o t h e r s a m p l e s b ut e s p e c i a l l y F i g u r e 21 i n w h i c h A1 shows a b n o r m a l l y low l e a c h i n g w i t h r e s p e c t t o A2 and A3. T h u s , i t a p p e a r s sample A1 c o u l d r e p r e s e n t an anomaly i n w h i c h t h e i n i t i a l l e a c h i n g ( a t Day 1,2 and 3) was u n u s u a l l y s u p r e s s e d . T h i s a b n o r m a l i t y , i n t u r n , a f f e c t s t h e s t a t i s t i c a l a n a l y s i s f o r t h e e n t i r e t e s t . 4 9 B. CONCLUSION A f t e r 9 3 d a y s o f l e a c h i n g u nder o p t i m a l c o n d i t i o n s , m i c r o b i a l a t t a c k d i d not enhance t h e r e l e a s e of 1 3 7 C s and 6 0 C o from b i t m e n . E x t r a p o l a t i o n of t h e d a t a a n d / o r p l o t s p r e s e n t e d h e r e , would n o t p r o v i d e a v i a b l e c a s e f o r enh a n c e d l e a c h i n g of t h e s e r e p r e s e n t a t i v e r a d i o n u c l i d e s f o r t h e l o n g - t e r m ( t > 9 3 d a y s ) . However, t h e c u m u l a t i v e f r a c t i o n l e a c h e d i s a f u n c t i o n o f l e a c h a n t c o n d u c t i v i t y ( s e e A p p e n d i x C and D ) . T h i s i s c e r t a i n l y a c o n s i d e r a t i o n f o r r e a l r e p o s i t o r y c o n d i t i o n s i n w h i c h t h e c o n d u c t i v i t y o f n a t i v e g r o u n d w a t e r s a r e e x p e c t e d t o be h i g h . 5 0 V. EFFECT OF CHELATING AGENTS ON RADIONUCLIDE MIGRATION As a r e s u l t o f a \" d e f e n s e i n d e p t h \" * p h i l o s o p h y a d o p t e d by many of t h e o r g a n i z a t i o n s c o n t e m p l a t i n g l a n d - b u r i a l of r a d w a s t e s , n a t u r a l l y o c c u r r i n g g e o l o g i c media i s b e i n g c o n s i d e r e d as a p o t e n t i a l r a d i o n u c l i d e a d s o r b e n t . The media t h a t may c o m p r i s e t h i s b a r r i e r w i l l o c c u r n a t u r a l l y i n s i t u , o r v a r i o u s m a t e r i a l s w i t h a h i g h a d s o r p t i o n c a p a c i t y ( b e n t o n i t e ) may be u s e d t o augment t h e b u r i a l s i t e ' s n a t u r a l a b i l i t y t o a t t e n u a t e r a d i o n u c l i d e m i g r a t i o n t h r o u g h i t s s u b s u r f a c e e n v i r o n m e n t . 1. BACKGROUND A l t h o u g h numerous s t u d i e s 2 6 \" 3 0 , 6 9 \" 7 5 have been p e r f o r m e d t o d a t e on t h e a d s o r p t i o n o f r a d i o n u c l i d e s t o s o i l s , sands and g r a v e l s , few e x p e r i m e n t s have c o n s i d e r e d a d s o r p t i o n t o t h e s e m a t e r i a l s under n o n - i d e a l i z e d c o n d i t i o n s . The p r o g n o s i s f o r a * A \" d e f e n c e i n d e p t h \" p h i l o s o p h y u t i l i z e s m u l t i p l e b a r r i e r s t o a r r e s t t h e r e t u r n of e s c a p e d r a d i o n u c l i d e s t o t h e b i o s p h e r e . 51 r a d i o n u c l i d e that has completely breached i t s s o l i d i f y i n g matrix but abuts a w e l l packed adsorbent i s q u i t e good. T h i s adsorbent w i l l tend to reduce the movement of the r e l e a s e d r a d i o n u c l i d e v i a two independent mechanisms: a) a well-packed, h i g h l y dense adsorbent of small p a r t i c l e s i z e w i l l d r a s t i c a l l y reduce the groundwater flow r a t e and t h e r e f o r e decrease the a c t i v e p a r t i c l e ' s l i n e a r v e l o c i t y ; and b) the adsorbent w i l l \" t i e - u p \" the escaped n u c l i d e s through v a r i o u s physicochemical mechanisms such as ion-exchange, van der Waals a t t r a c t i o n , c o v a l e n t bonding, e t c . U n f o r t u n a t e l y , numerous m i t i g a t i n g f a c t o r s e x i s t that may reduce the a b i l i t y of the b a c k f i l l m a t e r i a l to bind r e l e a s e d r a d i o n u c l i d e s . These f a c t o r s have only r e c e i v e d c u r s o r y a t t e n t i o n . For i n s t a n c e , the a b i l i t y of some d i s s o l v e d compounds t o have str o n g i o n i c , secondary or complex i n t e r a c t i o n s with common f i s s i o n products may serve to impair or n e u t r a l i z e the g e o l o g i c media's a b i l i t y to atte n u a t e these r a d i o n u c l i d e s . Of p o t e n t i a l concern to the Nuclear Industry are m u l t i d e n t a t e c h e l a t i n g agents such as ethylenediamine-t e t r a a c e t i c a c i d (EDTA), d i e t h y l e n e t r i a m i n e p e n t a a c e t i c a c i d (DTPA) or c y c l o h e x a n e d i a m i n e t e t r a a c e t i c a c i d (CDTA). Since many of these compounds are used i n c o n j u n c t i o n with d e t e r g e n t s , t h e i r use f o r r a d i o a c t i v e decontamination i s e s s e n t i a l l y u b i q u i t o u s . A recent s t u d y 2 6 has shown a 20,000 f o l d decrease i n the 5 2 a d s o r p t i v e c a p a c i t y o f C onasauga s h a l e f o r 6 0 C o due t o t h e p r e s e n c e of e x t r e m e l y low c o n c e n t r a t i o n s o f EDTA. As a r e s u l t , many 6 0 C o c o n t a m i n a n t plumes showing a b n o r m a l l y h i g h m i g r a t i o n r a t e s may be a t t r i b u t e d t o t h e d e c r e a s e d a b i l i t y o f t h e s o i l t o b i n d c o m p l e x e d 6 0 C o . 2 6 In a d d i t i o n t o t h e s y n t h e t i c m u l t i d e n t a t e l i g a n d s m e n t i o n e d above - many n a t u r a l l y o c c u r r i n g o r g a n i c s may a c t as c o m p l e x i n g a g e n t s . T h e s e o r g a n i c s i n c l u d e humic and f u l v i c a c i d s , many d i c a r b o x y l i c a c i d s , and v a r i o u s m i c r o b i a l l y -g e n e r a t e d b i o c h e m i c a l s s u c h as hydroxamate and p o l y h y d r o x a m a t e . 2 7 Even g l y c i n e , t h e s i m p l e s t amino a c i d , may s e r v e t o complex waste r a d i o n u c l i d e s . Due t o t h i s p o t e n t i a l f o r e n h a n c e d m i g r a t i o n o f r a d i o n u c l i d e s t h r o u g h g e o l o g i c media due t o m i c r o b i a l a c t i o n , t h e f o l l o w i n g s e t of e x p e r i m e n t s was d e s i g n e d t o i l l u s t r a t e i f t h e r e was an o b s e r v a b l e e f f e c t and i f so, t o d e t e r m i n e i t s m a g n i t u d e . Accompanying t h o s e r u n s t h a t d i r e c t l y employed m i c r o b i a l p o p u l a t i o n s were o t h e r e x p e r i m e n t s t h a t would show t h e a d s o r p t i o n of 6 0 C o , 1 3 7 C s and 8 5 S r t o b e n t o n i t e , g a b b r o and g r a n i t e i n t h e p r e s e n c e o f EDTA, T u r c o (a common r a d i o a c t i v e d e c o n t a m i n a t i o n compound), SCSSS, G r a n i t e G r o u n d w a t e r * and d e i o n i z e d , d e m i n e r a l i z e d w a t e r . In o r d e r t o s i m u l a t e r e a l c o n d i t i o n s , a l l s o l u t i o n s t h a t c o n t a i n e d * The c o m p o s i t i o n of SCSSS ( S t a n d a r d C a n a d i a n S h i e l d S a l i n e S o l u t i o n ) and G r a n i t e G r o u n d w a t e r i s d i s c u s s e d i n A p p e n d i x B. 53 m i c r o b i a l p o p u l a t i o n s were t a k e n from t h e l e a c h a n t s o l u t i o n ( a f t e r 1 week's c o n t a c t ) m e n t i o n e d i n S e c t i o n IV. From t h e combined r e s u l t s o f , t h e s e e x p e r i m e n t s t h e e f f e c t o f EDTA, T u r c o , m i c r o b e s and t h e a n t a g o n i s t i c ( o r enhanced) e f f e c t o f c o m p e t i n g c a t i o n s ( 6 0 C o - 1 3 7 C s , 8 5 S r - 1 3 7 C s ) c o u l d be compared and i n t e r r e l a t e d . 2. METHODS E i g h t i n d e p e n d e n t e x p e r i m e n t a l r u n s were p e r f o r m e d and a r e l i s t e d i n T a b l e s I I I - X f o l l o w i n g . F o r e a c h d e t e r m i n a t i o n , 1.0 g o f a d s o r b e n t ( F i s h e r - b e n t o n i t e , 40-50 mesh g a b b r o o r g r a n i t e ) was p l a c e d i n an a c i d - w a s h e d (10 m i n u t e s i n 6N HN0 3) p o l y p r o p y l e n e t e s t t u b e and mixed w i t h 14.8 mis o f a d s o r b a t e c o n s i s t i n g of \" s u p e r Q\"* w a t e r , SCSSS, G r a n i t e G r o u n d w a t e r , 1 0 \" 5 M EDTA, T u r c o * * or t h e l e a c h a n t m a t e r i a l (1 week's c o n t a c t ) of s e t A o r D d e s c r i b e d e a r l i e r ( s e e S e c t i o n I V ) . S t a n d a r d s o l u t i o n s o f 6 \u00C2\u00B0 C o , 1 3 7 C s , 8 5 S r o r a c o m b i n a t i o n of 6 0 C o and 1 3 7 C s o r 8 5 S r and 1 3 7 C s were t h e n added (0.2 m i s ) t o a l l s a m p l e s n ot c o n t a i n i n g l e a c h a n t m a t e r i a l t o y i e l d an i n i t i a l t o t a l a c t i v i t y n o t e x c e e d i n g 1.05 X 10\" 1 uCi. E a c h t u b e was t h e n s e a l e d w i t h p a r a f i l m and a l l o w e d t o r o t a t e on a * \"Super Q\" wa t e r i s water t h a t has been d i s t i l l e d , d e i o n i z e d , m i l l i p o r e f i l t e r e d and p a s s e d t h r o u g h a c t i v a t e d c a r b o n . * T u r c o i s a common d e c o n t a m i n a t i o n s o l u t i o n c o n t a i n i n g 6.0 wt.% diammonium h y d r o g e n c i t r a t e , 2.5 wt.% o x a l i c a c i d and 1.0 wt.% p h e n y l t h i o u r e a . T h i s s o l u t i o n was d i l u t e d t o a diammonium h y d r o g e n c i t r a t e c o n c e n t r a t i o n o f 10\" 5M. 54 S c i e n t i f i c I n d u s t r i e s I n c o r p o r a t e d M odel 151 r o t a t e r . A g i t a t i o n was c o n t i n u e d f o r 48 h o u r s a t 5 RPM t o m i n i m i z e g r a i n a b r a s i o n . 3 0 T e m p e r a t u r e r a n g e d from 2 0 - 2 5 \u00C2\u00B0 C . Upon t e r m i n a t i o n o f e a c h run a d s p r b a t e and a d s o r b e n t were s e p a r a t e d v i a c e n t r i f u g a t i o n a t 15,000 RPM f o r 60 m i n u t e s . A p p r o p r i a t e c o n t r o l s ( t e s t r a d i o n u c l i d e + l i q u i d p hase o n l y ) were r u n w i t h e a c h e x p e r i m e n t a l g r o u p . To e v a l u a t e t h e e f f e c t n u t r i e n t media ( c o m p o s i t i o n r e p o r t e d i n S e c t i o n I I ) had on a d s o r p t i v i t y , an e n t i r e e x p e r i m e n t a l r u n was s e t - u p c o n s i s t i n g of n u t r i e n t media s p i k e d w i t h 6 0 C o and 1 3 7 C s . The r e s u l t s of t h i s c o n t r o l g r o u p a r e shown i n T a b l e IX. 3. ANALYSIS Upon t e r m i n a t i o n of c e n t r i f u g a t i o n 6.0 mis of s u p e r n a t a n t were c o l l e c t e d , p l a c e d i n p o l y p r o p y l e n e v i a l s and c o u n t e d on a m u l t i - c h a n n e l y - s p e c t r o m e t e r as p e r S e c t i o n IV. The y -a c t i v i t y b a c k g r o u n d and c o u n t t i m e r e m a i n e d unchanged ( f r o m t h a t d e s c r i b e d i n S e c t i o n IV) f o r a l l a n a l y s e s . A c c o r d i n g t o c o n v e n t i o n , 3 0 1 7 6 t h e d i s t r i b u t i o n c o e f f i c i e n t , K^, was e v a l u a t e d a c c o r d i n g t o t h e f o l l o w i n g f o r m u l a : KD (ml/g) = ( C n - Ce ) ( V ) Eqt.V.1 (Ce )(M) Where C 0 i s t h e r a d i o n u c l i d e c o n c e n t r a t i o n i n i t i a l l y , Ce i s t h e r a d i o n u c l i d e c o n c e n t r a t i o n a t e q u i l i b r i u m , V i s t h e volume of l i q u i d and M i s t h e mass o f a d s o r b e n t m a t e r i a l . 5 5 E v a l u a t i o n of t h i s e q u a t i o n f o r e v e r y r u n y i e l d s a n u m e r i c a l e x p r e s s i o n f o r t h e d i s t r i b u t i o n o f e a c h r a d i o n u c l i d e between t h e l i q u i d and s o l i d p h a s e . T h i s method a l l o w s f o r good i n t e r c o m p a r i s o n o f r e s u l t s as a d s o r b e n t o r o t h e r e x p e r i m e n t a l c o n d i t i o n s c h a n g e . The i n i t i a l c o n c e n t r a t i o n o f e a c h r a d i o n u c l i d e was e v a l u a t e d t h r o u g h c o n t r o l s t h a t c o n t a i n e d components i d e n t i c a l t o t h e e x p e r i m e n t a l s e t s e x c e p t f o r an a d s o r b e n t . U n f o r t u n a t e l y , i t became e v i d e n t from t h e s e r u n s t h a t some r a d i o n u c l i d e a d s o r p t i o n t o t h e r e a c t i o n v e s s e l w a l l s o c c u r r e d . To m i n i m i z e t h i s e f f e c t , 10\"\"5M EDTA was added t o 6 0 C o and 1 3 7 C s c o n t r o l s . The p r e s e n c e of EDTA i n t h e c o n t r o l t u b e s d e c r e a s e d t h e a d s o r p t i o n o f c o b a l t t o t h e v e s s e l w a l l s . S i n c e t h e n e t a d s o r p t i o n (as e x p r e s s e d by K 6 ) of 6 0 C o i s g r e a t l y e f f e c t e d by C 0 a l l K B ' s f o r 6 0 C o were c a l c u l a t e d f r o m a C 0 t h a t c o n t a i n e d EDTA. S i n c e a m i c r o b i a l b i o m a s s may a d s o r b v a r i o u s s p e c i e s , a l l K D ' s o f s o l u t i o n s c o n t a i n i n g a c t i v e c u l t u r e s were e v a l u a t e d f r o m a C 0 o f n e t a v a i l a b l e ( u n a d s o r b e d ) a c t i v i t y . T hus, t h e a v a i l a b l e a c t i v i t y of an a c t i v e s o l u t i o n of l e a c h a n t ( f r o m S e c t i o n IV) was e v a l u a t e d as t h a t a c t i v i t y r e m a i n i n g f r e e i n s o l u t i o n . a f t e r t h e t r e a t m e n t d e s c r i b e d e a r l i e r i n Methods but w i t h no a d s o r b e n t . T h i s a l t e r a t i o n w i l l r e s o l v e t h e d i f f e r e n c e between r a d i o n u c l i d e s a d s o r b e d t o t h e m i c r o b i a l p o p u l a t i o n and t h e s p e c i f i c a d s o r b e n t . 56 4. RESULTS AND DISCUSSION T a b l e s I I I - V i n d i c a t e t h a t a d s o r p t i o n o f 6 0 C o was h i g h e r t h a n t h a t o f any o t h e r n u c l i d e . However, t h e e f f e c t o f EDTA was much more p r o n o u n c e d w i t h c o b a l t and w i t h a g r a n i t e a d s o r b e n t , i t e l i c i t s a 1900 f o l d d e c r e a s e i n K 0. T h i s r e s u l t , a l t h o u g h not as d r a m a t i c , i s i n a c c o r d a n c e w i t h t h a t r e p o r t e d by Means and C r e r a r . 2 6 As e x p e c t e d , EDTA had o n l y a n e g l i g i b l e e f f e c t on 1 3 7 C s a d s o r p t i o n b u t 8 5 S r had s l i g h t l y d e c r e a s e d K D ' s due t o EDTA. However, s i n c e EDTA does not form s t r o n g c o m p l e x e s w i t h a n y t h i n g o t h e r t h a n r a r e e a r t h s , t r a n s i t i o n m e t a l s or t r a n s u r a n i c s , t h i s e f f e c t may be e x p e c t e d . The r e l a t i v e e f f e c t of T u r c o on d e c r e a s i n g K D was g r e a t e s t f o r 8 5 S r i n w h i c h an 11 f o l d d e c r e a s e i n a d s o r p t i o n t o b e n t o n i t e was o b s e r v e d . Sample 6 0 C o U C i / m l ) K D B e n t o n i t e 2.051 X IO\" 4 7.41 X Gabbro 4.508 X 10\" 3 3.23 X G r a n i t e 1.493 X 10' 3 1.01 X B e n t o n i t e + E D T A 3.068 X 10\" 3 4.82 X Gabbro+EDTA 1.050 X 10- 1 0.00 G r a n i t e + E D T A 9.813 X 10\" 2 5.25 X B e n t o n i t e + T u r c o 2.908 X l 0 - a 5.22 X C o n t r o l 1.016 X 10\" 1 T a b l e I I I - 6 0 C o ADSORPTION DATA 57 Sample 1 3 7 C s ( \u00E2\u0080\u009E C i / m l ) K D B e n t o n i t e 1.643 X 10- 3 7.54 X 10 Gabbro 7.325 X 10\" 3 1 .57 X 10 G r a n i t e 4.615 X 10' 3 2.59 X 10 B e n t o n i t e + E D T A 1.695 X 10\" 3 7.30 X 10 Gabbro+EDTA 7.513 X 10' 3 1 .53 X 10 G r a n i t e + E D T A 3.154 X 10- 3 3.85 X 1 0 B e n t o n i t e + T u r c o 1.899 X 10\" 3 6.50 X 10 C o n t r o l 8.41.9 X 10\" 2 T a b l e IV - 1 3 7 C s ADSORPTION DATA Sample 8 5 S r ( \u00E2\u0080\u009E C i / m l ) 6.975 X 10\"\" K 0 B e n t o n i t e 2.23 X Gabbro 3.164 X 10\" 2 3.44 X G r a n i t e 4.619 X 10\" 2 1 .88 X B e n t o n i t e + E D T A 7.931 X 10\"\" 1 .96 X Gabbro+EDTA 1.028 X 10\" 1 2.02 X G r a n i t e + E D T A 1.036 X 10\" 1 8.51 X B e n t o n i t e + T u r c o 7.625 X 10' 3 1 .90 X C o n t r o l 1.042 X 10\" 1 T a b l e V - 8 5 S r ADSORPTION DATA Sample e o C o U C i / m l ) C o , C s + B e n t o n i t e 1 . 757 X 10\"\" S r , C s + B e n t o n i t e Co,Cs+Gabbro 1 . 766 X 10\" 3 Sr,Cs+Gabbro C o , C s + G r a n i t e 7. 181 X 10-\" S r , C s + G r a n i t e C o , C s ( C o n t r o l ) 1 . 224 X I 0 \" a S r , C s ( C o n t r o l ) Sample 6 0 Co K 0 C o , C s + B e n t o n i t e 3. 50 X 1 O 3 S r , C s + B e n t o n i t e Co,Cs+Gabbro 3. 35 X 10 2 Sr,Cs+Gabbro C o , C s + G r a n i t e 8. 46 X 1 O 2 S r , C s + G r a n i t e 1 3 7 C s U C i / m l ) 8 5 S r U C i / m l ) 8 .650 X I 0 \" a 8 .906 X 10-\" 4 .199 X 10\"\" 2 .066 X 10\" 3 2 .481 X 10\" 3 1 .403 X 10' 2 1 .824 X 10~ 3 2 .024 X 10\" 3 2 .141 X 10\" 2 2 .508 X 10\" 3 3 .658 X 10\" 2 1 .743 X 10\" 3 1 3 7 C s K 0 8 5 S r K 0 8 .71 X 10 2 8 .45 X 10 2 1 .83 X 10 3 3 .56 X J 0 2 2 .94 X 10 2 4 .03 X 10 1 4 .05 X 10 2 3 .64 X 10 2 2 .13 X 10 1 T a b l e VI - COMPETING ION ADSORPTION DATA 58 Sample C o , C s + B e n t o n i t e + G r a n i t e G/W S r , C s + B e n t o n i t e + G r a n i t e G/W C o , C s + G r a n i t e + G r a n i t e G/W S r , C s + G r a n i t e + G r a n i t e G/W C o , C s + B e n t o n i t e + SCSSS G/W S r , C s + B e n t o n i t e + SCSSS G/W C o , C s + G r a n i t e + SCSSS G/W S r , C s + G r a n i t e + G r a n i t e G/W Sample C o , C s + B e n t o n i t e + G r a n i t e G/W S r , C s + B e n t o n i t e + G r a n i t e C o , C s + G r a n i t e + G r a n i t e G/W S r , C s + G r a n i t e + G r a n i t e C o , C s + B e n t o n i t e + SCSSS G/W S r , C s + B e n t o n i t e + SCSSS G/W C o , C s + G r a n i t e + SCSSS G/W S r , C s + G r a n i t e + G r a n i t e G/W 6 0 C o ( \u00E2\u0080\u009E C i / m l ) 1.774 X 10\"\" 7.550 X 10-\" 8.181 X 10\" 4 2.236 X 10\" 2 6 0 C o K 0 3.47 X 10 3 8.04 X 10 2 7.40 X 10 2 1.26 X 10 2 3 7 C s U C i / m l ) 1 .086 X 10\" 3 1 .033 X 10\" 3 3 .408 X 10\" 3 3 .859 X 10\" 3 1 .084 X 10\" 2 1 .091 X 10\" 2 2 .084 X 10\" 2 1 .969 X 10\" 2 i 3 7 C s Ko 6. 91 X 10 2 7. 27 X 1 o 2 2. 10 X 10 2 1 . 84 X 10 2 5. 57 X 10 1 5. 52 X 10 1 2. 18 X 10 1 2. 39 X 10 1 8 5 S r ( \u00E2\u0080\u009E C i / m l ) 4.911 X 10\"\" 3.870 X 10\" 2 5.022 X 10\" 2 5.279 X 10\" 2 B 5 S r K D 1.57 X 10 3 5.06 X 10\u00C2\u00B0 4.55 X 10\" 1 0.00 T a b l e V I I - ADSORPTION DATA FOR COMPETING IONS IN SELECTED GROUNDWATERS 59 Sample 6 0 C o U C i / m l ) 1 3 7 C s ( \u00E2\u0080\u009E C i / m l ) Set A + B e n t o n i t e 3.955 X 10\" a 7.763 X 10\"\" Se t A+Gabbro 1.490 X 10\" 3 1 .902 X 1.0'3 S e t A + G r a n i t e 4.411 X 10\"\" 9.788 X 10\"\" Se t A ( C o n t r o l ) 8.838 X 10\" 3 2.359 X 10~ 2 Sample 6 0 C o K o 1 3 7 C s K 0 S e t A + B e n t o n i t e 3.20 X 10 2 4.41 X 10 2 S e t A+Gabbro 7.40 X 10 1 1.71 X 10 2 S e t A + G r a n i t e 2.86 X 10 2 3.47 X 10 2 T a b l e V I I I - LEACHANT A ADSORPTION DATA Sample 6 \u00C2\u00B0 C o J J i C j V m l ) 1 3 7 C s ( n C i / m l ) S e t C + B e n t o n i t e 2.001 X 10\" 3 1.867 X 10\" 3 S e t C+Gabbro 5.815 X 10' 3 1.278 X 10' 2 S e t C + G r a n i t e 6.030 X 10\" 3 1.249 X 10\" 2 S e t C ( C o n t r o l ) 5.631 X 10~ 3 1.299 X 10\" 2 Sample 6 0 C o K D 1 3 7 C s K 0 S e t C + B e n t o n i t e 2.72 X 10 1 8.93 X 10 1 S e t C+Gabbro 0.00 2.44 X 10\" 1 S e t C + G r a n i t e 0.00 5.97 X 10~ 1 T a b l e IX - ADSORPTION DATA' FOR NUTRIENT MEDIA CONTROL Sample 6 \u00C2\u00B0 C o ( p C i / m l ) 1 3 7 C s ( \u00E2\u0080\u009E C i / m l ) S e t D + B e n t o n i t e 1.949 X 10' 3 6.519 X 10\" J S e t D+Gabbro 7.781 X 10\" 3 1.795 X 10~ 2 S e t D + G r a n i t e 7.819 X 10\" 3 1.836 X 10~ 2 S e t D ( C o n t r o l ) 1.135 X 10\" f t 3.062 X 10\" U Sample 6 \u00C2\u00B0 C o K D 1 3 7 C s K 0 S e t D + B e n t o n i t e 3.96 X 10 1 2.90 X 10 1 S e t D+Gabbro 0.00 9.94 X 10\" 1 S e t D + G r a n i t e 0.00 6.35 X 10\" 1 T a b l e X - LEACHANT D ADSORPTION DATA 60 The competing e f f e c t s of 6 0 C o on 1 3 7 C s and 8 5 S r on 1 3 7 C s are r e p o r t e d i n Table VI. In a l l cases b e n t o n i t e showed the h i g h e s t a d s o r p t i v e c a p a c i t y followed by g r a n i t e ( f o r 6 0 C o and 1 3 7 C s ) and gabbro. The r e l a t i v e d i f f e r e n c e i n K D's f o r the three adsorbents decreased f o r each group of r a d i o n u c l i d e s from t h e i r non-competitive c o u n t e r p a r t . As evidenced by the data i n Table VI, the a d s o r p t i v e c a p a c i t y of b e n t o n i t e was decreased by the competing ions while that f o r gabbro and g r a n i t e was i n c r e a s e d (perhaps due to a non-competitive mechanism f o r a d s o r p t i o n ) . Table VIII presents data r e l a t i n g to the e f f e c t of s y n t h e t i c groundwaters on K B. In every case and f o r both adsorbents t e s t e d (bentonite and g r a n i t e ) the groundwater with the h i g h e s t c o n d u c t i v i t y (SCSSS) has the g r e a t e s t e f f e c t on d e c r e a s i n g K\u00E2\u0080\u009E. T h i s higher f i g u r e i s e a s i l y e x p l a i n e d by the s a t u r a t i o n of a v a i l a b l e a c t i v e s i t e s on the adsorbent by non-active ions present i n the h i g h l y c o n c e n t r a t e d b r i n e . Bentonite showed a g r e a t l y reduced a d s o r p t i v i t y f o r the leached r a d i o n u c l i d e s c o n t a i n e d i n leachant A and D. However, i t appears that leachant A (JJIW) only s l i g h t l y perturbed the a d s o r p t i v e c a p a c i t y of g r a n i t e and gabbro. In the case of leachant A c o n t a c t e d with gabbro or g r a n i t e , a < 2 f o l d r e d u c t i o n was found f o r K D's between t h i s leachant and d e i o n i z e d , d e m i n e r a l i z e d water c o n t a i n i n g 6 0 C o and 1 3 7 C s . The e f f e c t of l e a c h a n t s C and D on the a d s o r p t i o n of these 61 r a d i o n u c l i d e s t o g r a n i t e o r g a b b r o i s s i g n i f i c a n t . The a d s o r p t i v i t y o f b o t h g a b b r o a n d g r a n i t e f o r t h e r a d i o n u c l i d e s c o n t a i n e d i n l e a c h a n t C o r D was d e c r e a s e d more t h a n 100 t i m e s by t h e c o m p l e x i n g a g e n t s p r e s e n t i n t h e two s o l u t i o n s ( as e v i d e n c e d by t h e R 0 v a l u e s r e p o r t e d i n T a b l e s V I , I X and X ) . XXXIII and XXXIV. 5. REMARKS The e f f e c t of c o m p l e x i n g a g e n t s (whether s y n t h e t i c o r o t h e r w i s e ) may c a u s e a r e d u c e d a t t e n u a t i o n of waste r a d i o n u c l i d e s l e a c h i n g from a n u c l e a r waste r e p o s i t o r y . As e v i d e n c e d f r o m t h e r e s u l t s , s t r o n g c h e l a t i n g a g e n t s p r e s e n t a t 10\" 5M c a n d e c r e a s e a R D by up t o 3 o r d e r s o f m a g n i t u d e . T u r c o d i d n ot d e c r e a s e K 0 ' s as much as EDTA, p r o b a b l y b e c a u s e i t s major c o n s t i t u e n t (diammonium h y d r o g e n c i t r a t e ) i s n o t as s t r o n g a c o m p l e x i n g a g e n t as EDTA. 62 V I . CONCLUSION T h r o u g h o u t t h e c o u r s e o f t h e s e e x p e r i m e n t s , c o n d i t i o n s f o r m i c r o b i a l g r o w t h were m a i n t a i n e d a t a l e v e l o n l y p o s s i b l e under t h e i d e a l i z e d e n v i r o n m e n t o f a l a b o r a t o r y . The c o n d i t i o n s e x p e c t e d i n a f u l l - s c a l e l o w - l e v e l r e p o s i t o r y a r e as f o l l o w s : a) a m o d e r a t e l y low t e m p e r a t u r e ( < 2 0 \u00C2\u00B0 C ) ; b) a low oxygen a t m o s p h e r e ( a p p r o a c h i n g O.Oppm 0 2 ) ; and c) d e v o i d o f any m i c r o b i a l g r o w t h . S i n c e i t i s assumed t h a t w ater w i l l f i l l t h e r e p o s i t o r y , t h e p r e s e n c e o f an u n u s u a l l y h i g h s a l t c o n t e n t may be e x p e c t e d t h a t would be b a c t e r i o c i d a l o r b a c t e r i o s t a t i c f o r a l l but a few h a l o p h i l e s . In a d d i t i o n t o t h e c o n d i t i o n s l i s t e d above, a f o u r t h c o n s t r a i n t t h a t may i n h i b i t t h e m i c r o b i a l g r o w t h under r e p o s i t o r y c o n d i t i o n s i s t h e l a c k of an i n i t i a l c o n t a m i n a t i n g c u l t u r e t h a t i s c a p a b l e o f u t i l i z i n g v a r i o u s h y d r o c a r b o n s as a 63 s u b s t r a t e . A l s o , t h e low t e m p e r a t u r e ( < 2 0 \u00C2\u00B0 C ) , h i g h p r e s s u r e and l a c k o f oxygen w i l l s e r v e t o c r e a t e a m i c r o b i a l l y h o s t i l e e n v i r o n m e n t . Even i f v a r i o u s o r g a n i s m s c o u l d s u r v i v e under t h e s e c o n d i t i o n s and u t i l i z e b i t u m e n as t h e i r s o l e c a r b o n s o u r c e , t h e r a t e o f t h e i r m e t a b o l i s m (an d t h e r e f o r e r a t e o f o x i d a t i o n o f b i t umen) would be e x t r e m e l y s l o w . In a d d i t i o n t o t h e c o n d i t i o n s l i s t e d above, a f o u r t h c o n s t r a i n t t h a t may i n h i b i t t h e m i c r o b i a l g r o w t h under r e p o s i t o r y c o n d i t i o n s i s t h e l a c k of an i n i t i a l c o n t a m i n a t i n g c u l t u r e t h a t may u t i l i z e v a r i o u s h y d r o c a r b o n s as a s u b s t r a t e . The s o l i d i f i c a t i o n o f waste r a d i o n u c l i d e s w i t h b i t u m e n r e q u i r e s a b i t u m e n t e m p e r a t u r e of a p p r o x i m a t e l y 175\u00C2\u00B0C. The m o l t e n b i t u m e n - w a s t e m i x t u r e w i l l t h e n be p l a c e d i n a s t a i n l e s s s t e e l c o n t a i n e r . The e f f e c t o f b o t h t h e m o l t e n b i t u m e n and t h e impermeable c o n t a i n e r w i l l : 1) k i l l any c o n t a m i n a t i n g m i c r o b e s on o r n e a r t h e b i t u m e n ; 2) v o l a t i l i z e t h e most e a s i l y m e t a b o l i z e d components of t h e b i t u m e n ( l i g h t a l k a n e f r a c t i o n ) ; 3) c r e a t e an a n h y d r o u s e n v i r o n m e n t ; and 4) p r e v e n t m i c r o b i a l c o n t a m i n a t i o n d u r i n g s t o r a g e o r f i n a l d i s p o s a l . As i l l u s t r a t e d by t h e r e s u l t s p r e s e n t e d i n S e c t i o n I I I , t h e a n t i c i p a t e d b a c k g r o u n d r a d i o a c t i v i t y w i l l not a f f e c t t h e n e t g r o w t h of a m i c r o b i a l p o p u l a t i o n . Changes may o c c u r t o t h e o v e r a l l g e n o t y p e o f t h e p o p u l a t i o n as a r e s u l t o f an 6 4 i n c r e a s e d r a t e o f m u t a t i o n . However, t h e number of v i a b l e o r g a n i s m s w i l l not change due t o t h e r a d i a t i o n e x p e c t e d under r e p o s i t o r y c o n d i t i o n s . A l t h o u g h m i c r o b i a l l y e n h a n c e d l e a c h i n g f r o m b i t u m e n was n o t f o u n d , a s i g n i f i c a n t d e c r e a s e i n K 0 was o b s e r v e d a s a r e s u l t of m i c r o b i a l a c t i o n but i t s i m p o r t a n c e i s s e c o n d a r y t o c o m p l e x a t i o n a n d / o r c h e l a t i o n due t o s y n t h e t i c a g e n t s . A l s o , s i n c e m i c r o b i a l p r o l i f e r a t i o n w i l l be h i g h l y l i m i t e d , any or a l l e n h a n c e d m i g r a t i o n o f a waste r a d i o n u c l i d e due t o m i c r o b i a l a c t i o n would p r o b a b l y be \"swamped\" by m i g r a t i o n of n u c l i d e s c h e l a t e d p r i o r t o c o n d i t i o n i n g ( p r o v i d e d t h e complex i s n o t t h e r m a l l y l a b i l e ) . A s e c o n d a r y i n f l u e n c e o f a m i c r o b i a l p o p u l a t i o n p r e s e n t i n s i t u may be t o u t i l i z e o r g a n i c c o m p l e x e s as a m e t a b o l i t e . T h i s i n t u r n would s e r v e t o d e c r e a s e e n h a n c e d r a d i o n u c l i d e m i g r a t i o n due t o any p r e v i o u s c h e l a t i o n r e a c t i o n s . On t h e b a s i s of t h e s e s h o r t - t e r m e x p e r i m e n t s , t h e e f f e c t o f m i c r o b i a l a c t i o n on l o n g - t e r m r a d i o a c t i v e waste d i s p o s a l s h o u l d be s m a l l . I f m i c r o b i a l a t t a c k does o c c u r , o t h e r f a c t o r s s u c h as d i f f u s i o n o r c h e l a t i o n ( t o s y n t h e t i c c h e l a t i n g a g e n t s ) would \"swamp\" t h i s e f f e c t . 65 BIBLIOGRAPHY 1. T o m l i n s o n , M . , e t a l . , \"Management Of R a d i o a c t i v e Wastes From N u c l e a r F u e l s And Power P l a n t s In Canada\", A t o m i c E n e r g y of Canada L i m i t e d , Rep.AECL-5706 ( 1 9 7 7 ) , p.1-2. 2. M o r r i s o n , J . A . , \"AECL E x p e r i e n c e I n Ma n a g i n g R a d i o a c t i v e Wastes From C a n a d i a n N u c l e a r R e a c t o r s \" , A t o m i c E n e r g y o f Canada L i m i t e d , Rep.AECL-4707 (1974) p.1. 3. T o m l i n s o n , M . , e t a l . , o p . c i t . , p.2. 4. C h a r l e s w o r t h , D . H . , e t a l . , \"The C a n a d i a n Development Program F o r C o n d i t i o n i n g CANDU R e a c t o r Wastes F o r D i s p o s a l \" , A t o m i c E n e r g y of Canada L i m i t e d , Rep.AECL-6344 (1978) p.4. 5. C h a r l e s w o r t h , D . H . , \" C u r r e n t D e velopment Programs F o r t h e D i s p o s a l Of Low- and I n t e r m e d i a t e - L e v e l R a d i o a c t i v e W a s t es\", A t o m i c E n e r g y o f Canada L i m i t e d , Rep.AECL-6545 (1979) p.3. 6. I b i d . , p.4. 7 . I b i d . , p.9. 8. Bourns,W.T., e t a l . , \"Development Of T e c h n i q u e s F o r Radwaste Systems In CANDU Power S t a t i o n s \" , A t o m i c E n e r g y of Canada L i m i t e d , Rep.AECL-6534 (1979) p.2. 9. C h a r l e s w o r t h , D . H . , o p . c i t . , p . 9. 10* ZoBel1,C.E.,Molecke,M.A., \" S u r v e y Of M i c r o b i a l D e g r a d a t i o n Of A s p h a l t s W i t h N o t e s On R e l a t i o n s i p t o N u c l e a r Waste Management\", S a n d i a L a b o r a t o r i e s , Rep.SAND78-1371 (1978) p.5. 11. I b i d . , p .5. 12. E s c h r i c h , H . , \" P r o p e r t i e s And Long-Term B e h a v i o u r Of Bitu m e n And R a d i o a c t i v e W a s te-Bitumen M i x t u r e s \" , E u r o c h e m i c , Rep.SKBF/KBS 80-14 (1980) p.14. 13. I b i d . , p.16. 14. T o m l i n s o n , M . , e t a l . , o p . c i t . , p.5. 15. Z o B e l l , E . C . , M o l e c k e , M . A . , o p . c i t . , p.3. 66 16. I b i d . , p.4. 17. H a r r i s , J . O . , e t a l . , \" P r e l i m i n a r y S t u d i e s of t h e E f f e c t of M i c r o o r g a n i s m s on P h y s i c a l P r o p e r t i e s o f A s p h a l t \" , T r a n s a c t i o n s o f t h e Kan s a s Academy o f S c i e n c e , V o l . 6 1 , No.1, (1958) pp.110-113. 18. T r a x l e r , R . W . , \" M i c r o b i a l D e g r a d a t i o n o f A s p h a l t \" , B i o t e c h n o l o g y And B i o e n g i n e e r i n g , V o l . I V , (1962) pp.369-376. 19. P h i l i p s , U . A . , T r a x l e r , R . W . , \" M i c r o b i a l \u00E2\u0080\u00A2 D e g r a d a t i o n of A s p h a l t \" , A p p l i e d M i c r o b i o l o g y , V o l . 1 1 , (1963) pp.235-238. 20. T r a x l e r , R . W . , e t a l . , \" A c t i o n o f M i c r o o r g a n i s m s on B i t u m i n o u s M a t e r i a l s : 1 . E f f e c t o f B a c t e r i a on A s p h a l t V i s c o s i t y \" , A p p l i e d M i c r o b i o l o g y , V o l . 1 3 , No.6, (1965) pp.838-841. 21. T r a x l e r , R.W., \"Bitumen A t t a c k By M i c r o o r g a n i s m s \" , I n d u s t r i a l And E n g i n e e r i n g C h e m i s t r y , V o l . 5 8 , No.6, (1966) pp.59-64. 22. H a r r i s , J.O., \" A s p h a l t O x i d i z i n g B a c t e r i a Of The S o i l \" , I n d u s t r i a l And E n g i n e e r i n g C h e m i s t r y , V o l . 5 8 , No.6, (1966) pp.65-69. 23. Wyndham,R.C., C o s t e r t o n , J . W . , \" I n V i t r o M i c r o b i a l D e g r a d a t i o n of B i t u m i n o u s H y d r o c a r b o n s and In S i t u C o l o n i z a t i o n of Bit u m e n S u r f a c e s W i t h i n t h e A t h a b a s c a O i l Sands D e p o s i t \" , A p p l i e d And E n v i r o n m e n t a l M i c r o b i o l o g y , V o l . 4 1 , No.3, (1981) pp.791-800. 24. Z o B e l l , C . E . , Molecke,M.A., o p . c i t . , p.25. 25. B a r n h a r t , B . J . , e t a l . , \" P o t e n t i a l M i c r o b i a l Impact on T r a n s u r a n i c Wastes Under C o n d i t i o n s E x p e c t e d i n t h e Waste I s o l a t i o n P i l o t P l a n t (WIPP), March 15-June 15, 1979\", L o s Alamos S c i e n t i f i c L a b o r a t o r y , Rep.LA-7918-PR ( 1 9 7 9 ) . 26. M eans,J.L., e t a l . , \" M i g r a t i o n o f R a d i o a c t i v e W a s tes: R a d i o n u c l i d e M o b i l i z a t i o n by C o m p l e x i n g A g e n t s \" , S c i e n c e , V o l . 2 0 0 , No.4349, (1978) pp.1477-1481. 27. Emery,T., \"Hydroxamic A c i d s o f N a t u r a l O r i g i n \" , A d v a n c e s i n E nzymology, V o l . 3 5 , (1971) pp.135-185. 28. Means,J.L., e t a l . , o p . c i t . 67 29. S e i t z , M . G . , e t a l . , \" M i g r a t o r y P r o p e r t i e s Of Some N u c l e a r Waste E l e m e n t s In G e o l o g i c M e d i a \" , N u c l e a r T e c h n o l o g y , V o l . 4 4 , (1979) pp.284-296. 30. J a c k s o n , R . E . , e t a l . , A d s o r p t i o n Of R a d i o n u c l i d e s In A F l u v i a l - S a n d A q u i f e r , i n C o n t a m i n a n t s and S e d i m e n t s , Volume I e d . R o b e r t A. B a k e r (Ann A r b o r : A n n A r b o r S c i e n c e P u b l i s h e r s , I n c . , 1980), pp.311-329. 31. R a t l e d g e , C , \" D e g r a d a t i o n of A l i p h a t i c H y d r o c a r b o n s \" , i n D e v e l o p m e n t s In B i o d e g r a d a t i o n Of H y d r o c a r b o n s - 1 e d . R . J . W a t k i n s o n ( E s s e x : A p p l i e d S c i e n c e P u b l i s h e r s L t d . , 1 9 7 8 ) , p.2. 32. I b i d . , p.3. 33. I b i d . , p.3. 34. I b i d . , p.4. 35. A t l a s , R . M . , B a r t h a , R . , \" I n h i b i t i o n By F a t t y A c i d s Of The B i o d e g r a d a t i o n Of P e t r o l e u m \" , A n t o n i e van Leeuwenhoek J o u r n a l o f M i c r o b i o l o g y , V o l . 3 9 , (1973) pp.257-271. 36. Chapman,P.J.,\"An O u t l i n e o f R e a c t o n S e q u e n c e s Used f o r t h e B a c t e r i a l D e g r a d a t i o n o f P h e n o l i c Compounds\" i n D e g r a d a t i o n of S y n t h e t i c O r g a n i c M o l e c u l e s i n t h e B i o s p h e r e , P r i n t . a n d Pub. O f f i c e , N a t . A c a d . o f S c i e n c e s Wash., D . C , (1972) pp.17-55. 37. Hopper, D . J . , \" M i c r o b i a l D e g r a d a t i o n Of A r o m a t i c H y d r o c a r b o n s \" , i n D e v e l o p m e n t s In B i o d e g r a d a t i o n Of H y d r o c a r b o n s - 1 e d . R . J . W a t k i n s o n ( E s s e x : A p p l i e d S c i e n c e P u b l i s h e r s L t d . , 1 9 7 8 ) , p.2. 38. I b i d . , p.104. 39. B u s h n e l l , L . D . , H a a s , H . F . , \"The U t i l i z a t i o n Of C e r t a i n H y d r o c a r b o n s By M i c r o o r g a n i s m s \" , J o u r n a l of B a c t e r i o l o g y , V o l . 4 1 , (1940) p.657. 40. F o r r e s t e r , I . , P e r s o n a l C o m m u n i c a t i o n , June 29, 1981. 41. H o r s n e l l , G . E . , O n t a r i o M i n i s t r y of t h e E n v i r o n m e n t , M i c r o b i o l o g y S e c t i o n - A n a l y s i s R e p o r t , September 14, 1981. 42. I b i d . , p.2. 68 43. F r o b i s h e r , M . , e t a l . , F u n d a m e n t a l s Of M i c r o b i o l o g y , 9 t h e d . ( T o r o n t o : W . B . S a u n d e r s Company,1974), pp.136-137. 44. V a n d e r g r a a f , T . T . , P e r s o n a l C o m m u n i c a t i o n , J u l y 29, 1980. 45. Z o B e l l , C . E . , M o l e c k e , M . A . , o p . c i t . , p.3. 46. AECL Gammacell-220 \" F a c t s s h e e t \" and c a l i b r a t i o n d a t a . 47. Andrews,H.L., R a d i a t i o n B i o p h y s i c s , 2nd ed. (Englewood C l i f f s , New J e r s e y : P r e n t i c e - H a l l I n c . , 1974), pp.211-214. 48. B u c k l e y , L . P . , P e t t i p a s , W . H . , \" B i t u m i n i z a t i o n of R e a c t o r W a s t e s , D e v e l o p m e n t , D e s i g n and D e m o n s t r a t i o n \" , A t o m i c E n e r g y o f Canada L i m i t e d , Rep.AECL-7338 (1981) p.5. 49. C h a r l e s w o r t h , D . H . , o p . c i t . , p.2. 50. B a r n h a r t , B . J . e t a l . , \" P o t e n t i a l M i c r o b i a l Impact on T r a n s u r a n i c Wastes Under C o n d i t i o n s E x p e c t e d i n t h e Waste I s o l a t i o n P i l o t P l a n t (WIPP), December 15,1978-March 15,1979\", L o s Alamos S c i e n t i f i c L a b o r a t o r y , Rep.LA-7839-PR .( 1 9 7 9 ) . L 51. Godbec,H.W., e t a l . , \" D i f f u s i o n of R a d i o i s o t o p e s T h r o u g h Waste S o l i d s \" , T r a n s a c t i o n s o f t h e A m e r i c a n N u c l e a r S o c i e t y , V o l . 1 2 , (.1969) pp.450-451. 52. D e j o n g h e , P . , e t a l . , \" I n s o l u b i l i z a t i o n of R a d i o a c t i v e C o n c e n t r a t e s by A s p h a l t C o a t i n g , F i n a l R e p o r t 2, 1st p a r t , C o n c e r n i n g P r o p o s a l 167\", E u r . A t o m i c E n e r g y Commission,Rep.EURAEC-695 ( 1 9 6 3 ) . 53. C r a n k , J . , The M a t h e m a t i c s Of D i f f u s i o n , 2nd e d . ( L o n d o n : O x f o r d U n i v e r s i t y P r e s s , 1975). 54. Hespe,E.D., \" L e a c h T e s t i n g Of I m m o b i l i z e d R a d i o a c t i v e Waste S o l i d s \" , A t o m i c E n e r g y Review, V o l . 9 , No.1, (1971) pp.201. 55. B u c k l e y , L . P . , P e r s o n a l C o m m u n i c a t i o n , June 1981. 56. C r a n k , J . , o p . c i t . , p.2. 57. Kulman,F.E., \" M i c r o b i o l o g i c a l D e t e r i o r a t i o n o f B u r i e d P i p e and C a b l e C o a t i n g s \" , C o r r o s i o n , V o l . 1 4 , (1958) pp.21 3-222. 58. M a r t i n , K . G . , \" D e t e r i o r a t i o n o f B i t u m i n o u s R o o f i n g 6 9 F a b r i c s \" , D i v i s i o n of B u i l d i n g R e s e a r c h , Commonwealth S c i e n t i f i c and I n d u s t r i a l R e s e a r c h O r g a n i z a t i o n , M e l b o u r n e , Rep.11 ( 1 9 6 1 ) . 59. H a r r i s , J . O . , \" S o i l M i c r o o r g a n i s m s i n R e l a t i o n t o C a t h o d i c a l l y P r o t e c t e d P i p e \" , C o r r o s i o n , V o l . 1 6 , (1960) p p . 4 4 1 t - 4 4 8 t . 60. H a r r i s , J . O . , \" M i c r o b i o l o g i c a l S t u d i e s R e v e a l S i g n i f i c a n t F a c t o r i n O i l and Gas P i p e l i n e B a c k - F i l l e d D i t c h e s \" , K a n s a s S t a t e U n i v e r s i t y A g r i c u l t u r a l E x p e r i m e n t S t a t i o n , Rep.135 ( 1 9 6 3 ) . 61. P e r r y , J . J . , \" M i c r o b i a l C o o x i d a t i o n I n v o l v i n g H y d r o c a r b o n s \" , M i c r o b i o l o g i c a l R e v i e w s , V o l . 4 3 , No.1, (1979) pp.59-72. 62. G e r s o n , D . F . , Z a j i c , J . E . , \" S u r f a c t a n t P r o d u c t i o n From H y d r o c a r b o n s by C o r y n e b a c t e r i u m l e p u s , s p . n o v . and Pseudomonas a s p h a l t e n i c u s s p.nov.\", D e v e l o p m e n t s i n I n d u s t r i a l M i c r o b i o l o g y , V o l . 1 9 , (1978) pp.577-599. 63. L u p t o n , F . S . , M a r s h a l l , K . C . , \" E f f e c t i v e n e s s o f S u r f a c t a n t s i n t h e M i c r o b i a l D e g r a d a t i o n of O i l \" , G e o m i c r o b i o l o g y J o u r n a l , V o l.1,No.3 (1978) pp.235-247. 64. Z a j i c , J . E . , S u p p l i s s o n , B . , E m u l s i f i c a t i o n and D e g r a d a t i o n of B u n k e r - C F u e l O i l by M i c r o - o r g a n i s m s \" , B i o t e c h n o l o g y and B i o e n g i n e e r i n g , V o l . 1 4 , (1972) pp.331-343. 65. Cooper,D.G., Z a j i c , J . E . , \" S u r f a c e - A c t i v e Compounds from M i c r o o r g a n i s m s \" , A d v a n c e s In A p p l i e d M i c r o b i o l o g y , V o l . 2 6 , (1980) pp.229-253. 66. R o d i e r , J . , e t a l . , \"Bitumen C o a t i n g o f R a d i o a c t i v e S l u d g e s from t h e E f f l u e n t T r e a t m e n t P l a n t a t t h e M a r c o u l e C e n t r e , Review o f t h e P r o g r e s s R e p o r t s 1,2,3 and 4\", Rep.CEA-2331 ( 1 9 6 3 ) . 67. Hespe,E.D., o p . c i t pp.195-207. 68. Nie,N.H., e t a l . , SPSS: S t a t i s t i c a l P a ckage f o r t h e S o c i a l S c i e n c e s , 2nd e d . (New Y o r k : M c G r a w - H i l l Book Company, 1975), p.428. 69. Means,J.L., e t a l . , \" C h e m i c a l Mechanisms o f 6 0 C o T r a n s p o r t i n Ground Water from I n t e r m e d i a t e - L e v e l L i q u i d Waste T r e n c h 7: P r o g r e s s R e p o r t f o r P e r i o d E n d i n g June 30, 1975\", Oak R i d g e N a t i o n a l L a b o r a t o r y , Env. S c . 70 D i v . , Rep.940 ( 1 9 7 6 ) . 70. F r i e d , S . , e t a l . , \" R e t e n t i o n o f P l u t o n i u m and A m e r i c i u m by Rock\", S c i e n c e , V o l . 1 9 6 , (1977) pp.1087-1089. 71. de M a r s i l y , G . , e t a l . , \" N u c l e a r Waste D i s p o s a l : Can t h e G e o l o g i s t G u a r a n t e e I s o l a t i o n ? \" , S c i e n c e , V o l . 1 9 7 , No.4303, (1977) pp.519-527. 72. S e i t z , M . G . , e t a l . , \" S t u d i e s Of N u c l e a r - W a s t e M i g r a t i o n In G e o l o g i c M e d i a , A n n u a l R e p o r t , November 1976-October 1977\", Argonne N a t i o n a l L a b o r a t o r y , Rep.ANL-78-8, (1978) 73. Means,J.L., e t a l . , \" A d s o r p t i o n of Co and s e l e c t e d a c t i n i d e s by Mn and Fe o x i d e s i n s o i l s and s e d i m e n t s \" , G e o c h i m i c a and C o s m o c h i m i c a A c t a . , V o l . 4 2 , (1978) pp.1763-1773. 74. S h e p p a r d , J . C . , e t a l . , \" R e t e n t i o n of R a d i o n u c l i d e s by M o b i l e Humic Compounds and S o i l P a r t i c l e s \" , E n v i r o n m e n t a l S c i e n c e and T e c h n o l o g y , V o l . 1 4 , No.11, (1980) pp.1349-1353. 75. W a l t o n , F . B . , e t a l . , \" D e t e r m i n a t i o n of N u c l i d e -G e o l o g i c M e d i a R e a c t i o n K i n e t i c s U s i n g M i x i n g - C e l l C o n t r a c t o r s \" , S u b m i t t e d t o C h e m i c a l G e o l o g y , J u n e , 1981. 76. Wilding,M.W., e t a l . , \"Removal of C e s i u m and S t r o n t i u m f r o m F u e l S t o r a g e B a s i n W ater\" i n A d v a n c e s In C h e m i s t r y S e r i e s 153 e d . M.H. C a m p b e l l ( W a s h i n g t o n : A m e r i c a n C h e m i c a l S o c i e t y , 1976), pp.134-151. 71 APPENDIX A - ONTARIO MINISTRY OF THE ENVIRONMENT ANALYSIS* TEST/COLONY A B C D1 D2 Gram s t a i n - + - - -Shape Rod Rod Rod Rod Rod S p o r e s - + - - -M o t i l i t y 30\u00C2\u00B0C + + + + -20\u00C2\u00B0C -C a t a l a s e + + + + + O x i d a s e + \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 + G l u c o s e OF (5 Day) \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 F -Growth 20\u00C2\u00B0C + + + + TSA 30\u00C2\u00B0C + + + 35\u00C2\u00B0C + + Weak + 42\u00C2\u00B0C + + - -MacConkey Agar 30\u00C2\u00B0C Gr + No Gr No Gr Gr + Gr + LAC- LAC+ LAC-Skim Growth + + Weak + + M i l k Pigment - - - - -Agar C a s e i n a s e - - - - -F l o u r e s c . \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u0094 + N i t r a t e (5 Day) R e d u c t i o n +(Gas) \u00E2\u0080\u0094 +(N0 2) +(N0 2) \u00E2\u0080\u0094 G e l a t i n a s e - + + -A r g i n i n e (5 Day) D i h y d r o l a s e \u00E2\u0080\u0094 + U r e a s e - - + C i t r a t e + Growth 6.5% N a C l Weak + + -ONPG - + -\"+\" and \"-\" r e p r e s e n t g r o w t h o r no g r o w t h , r e s p e c t i v e l y . * I n d e p e n d e n t a n a l y s i s was p e r f o r m e d f o r e a c h of t h e two d i s t i n c t s p e c i e s f o u n d i n C u l t u r e D 72 C o l o n y M o r p h o l o g y : TSA 30\u00C2\u00B0C A - Tan, d r y , w r i n k l e d . B - Cream t o w h i t e , i r r e g u l a r , s p r e a d i n g , m a r g i n . C - T i n y , c i r u l a r , smooth, p a l e y e l l o w . D1- C i r c u l a r , cream, c o n v e x , smooth, e n t i r e , m a r g i n . D2- C i r c u l a r , cream, c o n v e x , smooth. 7 3 APPENDIX B - SYNTHETIC GROUNDWATER SOLUTIONS STANDARD SYNTHETIC GRANITE GROUNDWATER\" 1) The f o l l o w i n g s t o c k s o l u t i o n s were made up: a) 11.090 g MgSO,.7H 20 /25ml b) 7.115 g M g C l 2 . 6 H 2 0 /25ml c) 1.512 g NaHC0 3 /25ml d) 1.965 g KOH /25ml e) 0.506 g KN0 3 /25ml f ) 0.291 g KF /25ml 2) 0.10 ml o f ( a ) , ( b ) , ( c ) , ( d ) , (e) and ( f ) were p i p e t t e d t o a 2 L v o l u m e t r i c f l a s k . 1.00 ml of ( c ) was added and t h e volume made up t o 1700 mis w i t h d e i o n i z e d water (DIW). 0.048 g C a ( O H ) 2 was add e d t o a 200 ml v o l u m e t r i c f l a s k f i l l e d w i t h about 180 mis o f DIW. C 0 2 was b u b b l e d t h r o u g h t h i s m i x t u r e w h i l e s t i r r i n g u n t i l t h e s o l u t i o n became c l e a r . I t was t h e n f i l l e d t o t h e mark w i t h DIW and t h e c o n t e n t s o f t h i s 200 ml f l a s k added t o t h e 2 L v o l u m e t r i c f l a s k . The f i n a l 100 ml o f DIW was added t o t h e v o l u m e t r i c f l a s k t o make t h e volume up t o 2.00 L and t h e s o l u t i o n was s t i r r e d f o r 24 h o u r s i n c o n t a c t w i t h t h e a t m o s p h e r e t o b r i n g t h e pH t o \"6.5 + 0.5. 74 STANDARD CANADIAN SHIELD SALINE SOLUTION ( S C S S S ) \" \" To 100.0 mis of DIW t h e f o l l o w i n g d r y c h e m i c a l s were added: a) 1.906 g K C l b) 1.216 g S r C l 2 . 6 H 2 0 c ) 3.080 g N a 2 S i 0 3 . 9 H 2 0 d) 0.276 g NaHC0 3 e) 1.370 g NaN0 3 10.0 mis of t h i s s t o c k s o l u t i o n was added t o a 2 L v o l u m e t r i c f l a s k and made up t o 2.0 l i t r e s . 110.050 g C a C l 2 . 2 H 2 0 , 4.056 g M g S O \u00E2\u0080\u009E . 7 H 2 0 and 25.420 g N a C l were added and t h e e n t i r e m i x t u r e was s t i r r e d t h o r o u g h l y . 75 BASALT GROUNDWATER4 * S t o c k S o l u t i o n A The f o l l o w i n g was combined i n a 200 ml v o l u m e t r i c f l a s k : a) 100 ml DIW b) 8.000 g NaHC0 3 c) 5.485 g N a 2 S O \u00E2\u0080\u009E . 1 0 H 2 0 d) 0.994 g MgSO,.7H 20 e) 1.490 g KC1 f ) 0.232 g KF T h i s s o l u t i o n was s t i r r e d u n t i l d i s s o l v e d and t h e volume made up t o 200 m i s . The f o l l o w i n g was t h e n c o m b i n e d i n a 2 L v o l u m e t r i c f l a s k : a) 1800 ml DIW b) 0.0109 g C a S 0 \u00E2\u0080\u009E . l / 2 H 2 0 and s t i r r e d u n t i l d i s s o l v e d . S t o c k S o l u t i o n B The f o l l o w i n g was t h e n combined i n a 200 ml v o l u m e t r i c f l a s k : a) 180 ml DIW b) 1.871 g C a C l 2 . 2 H 2 0 T h i s was mixed u n t i l d i s s o l v e d and t h e volume made up t o 2 L. To t h e s t i r r e d 2 L v o l u m e t r i c f l a s k t h e f o l l o w i n g was added: a) 4.0 ml S t o c k S o l u t i o n A b) 4.0 ml S t o c k S o l u t i o n B and made up t o 2.0 l i t r e s , t h e n s t i r r e d o v e r n i g h t . 76 WN-1 S a l i n e - S o l u t i o n * * 1) The f o l l o w i n g s t o c k s o l u t i o n was made-up i n a 200 ml v o l u m e t r i c f l a s k ( f i l l e d t o t h e mark w i t h DIW) a) 0.537 g K C l b) 1.882 g NaHC0 3 c) 0.901 g NaN0 3 2) 20.0 mis of t h i s s t o c k s o l u t i o n was p i p e t t e d i n t o a 2 L v o l u m e t r i c f l a s k , t h e f o l l o w i n g d r y c h e m i c a l s added, t h e n made up t h e mark w i t h DIW. d) 0.056 g FeSO,.7H 20 e) 0. 150 g S r C l 2 . 6 H 2 0 f ) 13.111 g C a C l 2 . 2 H 2 0 g) 1 .232 g MgSO a.7H 20 h) 9.520 g N a C l i ) 1.282 g C a ( O H ) 2 7 7 APPENDIX C - LEACH TEST DATA TEST Al -TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT '\u00E2\u0080\u00A2 0 686E-01 0 0623 2. 0 1G4E*00 0 1495 3 . 0 200E*00 0 1822 4 . 0 226E*00 0 2056 5 . 0 244E+00 0 2220 6 0 257E*00 0 2333 7 . 0 2G6E*00 0 2420 14 . 0 295E*00 0 2677 21 . 0 355E\u00C2\u00BB00 0 3227 2B . 0 423E+00 0 3844 . 35 \u00E2\u0080\u00A2 0 476E+0O 0 4324 42 . 0 541E*0O 0 4921 49. 0 G22E*00 0 5656 56. 0 717E*00 0 6515 63. 0 796E*00 0 7240 93. 0 1O8E*01 0 9800 \" T a b l e XI - LEACH 1-60 CUMULATIVE FRACTION INCREMENTAL LEACHED LEACH RATE CM CM/DAY 0 284E-03 0 284E-03 0 682E-03 0 397E-03 0 831E-03 0 149E-03 0 937E-03 0 106E-03 0 101E-02 0 751E-04 0 106E-02 0 512E-04 0 110E-02 0 399E-04 0 122E-02 0 167E-04 0 147E-02 0 358E-04 0 175E-02 0 402E-04 0 197E-02 O 312E-04 0 224E-02 0 389E-04 0 258E-02 0 479E-04 0 297E-02 0 559E-04 0 330E-02 0 472E-04 0 447E-02 0 389E-04 TEST DATA - TEST MASS DIFFUSION LEACH RATE G/CM\"\u00C2\u00BB2*DAY COEFFICIENT CM\"2/SEC O.384E-03 0 734E- 12 0.537E-03 0 211E- 1 1 0.201E-03 0 209E- 11 0.144E-03 0 200E- 1 1 0.101E-03 0 186E- 11 0.692E-04 0 171E- 1 1 0.539E-04 0 158E- 1 1 0. 226E-04 0 967E- 12 0.484E-04 0 937E- 12 0.543E-04 0 997E- 12 0.422E-04 0 101E- 1 1 0.525E-04 0 109E- 1 1 0.647E-04 0 123E- 1 1 0.755E-04 0 143E- 11 0.638E-04 0 157E- 11 0.526E-04 0 195E- 11 SET A1 - 6 0 C o TEST A2 - CO-60 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL CUMULATIVE FRACTION RELEASED LEACHED PERCENT CM INCREMENTAL LEACH RATE CM/DAY MASS DIFFUSION LEACH RATE COEFFICIENT G/CM*-2*DAY CM**2/SEC 1 . 0. 125E+01 1.1811 0.532E-02 0 532E-02 0.719E-02 0 258E-09 2. 0. 155E + 01 1 . 4669 0.66 IE-02 0 129E-02 0.174E-02 0 199E-09 3 . 0. 159E+01 1 .4978 0.675E-02 O 139E-03 0. 188E-03 0 138E-09 4 . 0. 165E+01 1.5533 O.7OOE-02 0 250E-03 0.338E-03 0 111E-09 5. 0. 168E+01 1.5892 0.716E-02 0 162E-03 0.218E-03 0 933E- 10 6. 0 . 17 1 E+01 1.6148 0.728E-02 0 115E-03 0. 156E-03 0 802E-lO 7. 0 . 174E+01 1.6373 0.738E-02 0 101E-03 0.137E-03 0 707E-10 14 . 0. 185E+01 1.7446 0.786E-02 0 69 IE-04 0.933E-O4 0 401E-10 21 . 0. 199E+01 1.8778 0.846E-02 0 857E-04 0.116E-03 0 310E-10 28 . 0. 216E+01 2.0365 0.918E-02 0 102E-03 0. 138E-03 0 274E-10 35 . 0.232E+01 2.1920 0.988E-02 0 100E-03 0. 135E-03 0 253E-10 42. 0.253E*01 2.3856 0.108E-01 . 0 125E-03 0. 168E-03 0 250E-10 49 . 0.277E+01 2.6091 0.118E-01 0 144E-03 0. 194E-03 0 257E- 10 56 . 0.307E+01 2.893 1 0.130E-01 0 183E-03 0. 247E-03 0 276E-10 63 . 0.33 IE+01 3. 1262 0.141E-01 0 150E-03 0-203E-03 0 286E-10 93. 0.437E+01 4 . 1262 0.186E-01 0 I50E-03 0-203E-03 0 338E-10 T a b l e X I I - LEACH TEST\"DATA - TEST SET A 2 - 6 0 C c 7 8 TEST A3 - CO-60 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT CUMULATIVE FRACTION LEACHED CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM\"2*DAY DIFFUSION COEFFICIENT CM\"2/SEC 1 . 0 126E*01 1.1856 0 534E-02 0 534E-02 0 722E-02 0 260E-09 2. 0 144E+01 1.3568 0 612E-02 0 770E-03 0 104E-02 0 170E-09 3. 0 I49E*01 1.4036 0 633E-02 0 211E-03 0 285E-03 0 121E-09 4. 0 162E+01 1.5266 0 688E-02 0 554E-03 0 748E-03 0 108E-09 5. 0 169E+01 1.5927 O 718E-02 0 298E-03 0 402E-03 0 937E- 10 6. 0 I73E+01 1.6280 0 734E-02 0 159E-03 0 2I5E-03 0 816E- 10 7 . 0 174E*OI 1.6430 0 741E-02 0 675E-04 0 911E-04 0 712E- 10 14 . . 0 181E+O1 1.7075 0 770E-02 0 415E-04 0 561E-04 0 385E-10 2 1 . 0 191E+01 1.7996 0 811E-02 0 593E-04 0 8COE-04 0 285E- 10 28. 0 202E+01 1.9047 0 858E-02 0 677E-04 0 913E-04 0 239E- 10 35. 0 218E+01 2.0570 0 927E-02 0 981E-04 0 132E-03 0 223E-10 42 . 0 243E*01 2.2887. 0 103E-01 0 149E-03 0 20 IE-03 0 230E-10 49. 0 270E*01 2.5511 0 115E-01 0 169E-03 0 228E-03 0 245E- 10 56 . 0 29GE*01 2.7932 0 126E-01 0 156E-03 0 210E-03 0 257E-10 S3. 0 323E+01 3 0503 0 137E-01 0 166E-03 0 224E-03 0 273E-10 93. 0 423E+01 3.9937 0 180E-O1 O 142E-03 0 191E-03 0 317E-10 T a b l e X I I I - LEACH TEST DATA - TEST SET A3 - 6 0 C o TEST Bl - C0-60 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL CUMULATIVE FRACTION RELEASED LEACHED PERCENT CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM**2*DAY DIFFUSION COEFFICIENT CM\"2/SEC 1 . 0 492E*00 0.5415 0 229E-02 0 229E-02 0 309E -02 0 477E-10 2 . 0 608E+00 0.6689 0 283E-02 0 539E-03 0 727E-03 0 364E-10 3. 0 658E+00 0.7234 0 306E-02 0 231E-03 0 312E-03 0 284E-10 4 . 0 69SE*00 0.7674 0 324E-02 , 0 186E-03 0 25 IE-03 0 239E- 10 5. 0 729E*00 0.8022 0 339E-02 0 147E-03 0 199E-03 0 209E-10 6. 0 757E*00 0.8333 0 352E-02 0 131E-03 0 177E-03 0 188E-10 7 . 0 784E*00 0.8630 0 365E-02 0 125E-03 0 169E-03 0 173E-10 \u00E2\u0080\u00A214 . 0 960E+00 1.0565 0 447E-02 0 117E-03 0 158E-03 0 130E-10 2 1 . 0 113E+01 1.2446 0 526E-02 0 114E-03 0 153E-03 0 120E-10 28. 0 125E+01 1 . 3798 o 583E-02 0 817E-04 O 1 IOE-03 0 111E-10 35. 0 135E*01 1 .4806 o 626E-02 0 609E-04 O 822E-04 0 102E- 10 42. 0 144E+01 1.5856 0 670E-02 0 634E-04 0 857E-04 0 973E-11 49. 0 155E+01 1.7013 0 719E-02 0 699E-04 0 944E-04 0 960E-11 56. 0 165E+01 t.8130 0 767E-02 0 674E-04 0 911E-04 0 954E-1 1 63. 0 174E+01 1.9087 0 807E-02 0 578E-04 0 78 IE-04 0 940E-11 93 . 0 204E*01 2.2418 0 948E-02 0 470E-04 0 634E-04 0 678E-11 T a b l e XIV - LEACH TEST DATA - TEST SET B1 - 6 0 C o 7 9 T E S T B2 - C O - 6 0 T O T A L T I M E D A Y S T O T A L A C T I V I T Y R E L E A S E D M I C R O C U R I E S F R A C T I O N A L R E L E A S E D P E R C E N T C U M U L A T I V E F R A C T I O N L E A C H E D CM INCREMENTAL L E A C H RATE C M / D A Y MASS L E A C H RATE G / C M * * 2 * 0 A Y D I F F U S I O N C O E F F I C I E N T C M \" 2 / S E C 1 . 0 . 175E+01 1 . 6 5 0 0 0 . 7 4 4 E - 0 2 0 . 7 4 4 E - 0 2 0 . 1 0 0 E - 0 1 0 . 5 0 3 E - 0 9 2 . 0 . 1 9 2 E * 0 1 1 . 8 1 4 3 0 . 8 1 8 E - 0 2 0 . 7 4 1 E - 0 3 0 . 1 0 0 E - 0 2 0 . 3 0 4 E - 0 9 3 . 0 . I 9 9 E * 0 1 1 . 8 8 1 5 0 . 8 4 8 E - 0 2 0 . 3 0 2 E - 0 3 0 . 4 0 8 E - 0 3 0 . 2 1 8 E - 0 9 4 . 0 . 205E+01 1 .9331 0 . 8 7 1 E - 0 2 0 . 2 3 3 E - 0 3 0 . 3 1 4 E - 0 3 0 . 1 7 3 E - 0 9 5 . 0 . 2 0 7 E * 0 1 1 . 9 5 5 0 0 . 8 8 1 E - 0 2 0 . 9 8 7 E - 0 4 0 . 1 3 3 E - 0 3 0 . 1 4 1 E - 0 9 6 . 0 . 210E+01 1 . 9 7 8 9 0 . 8 9 2 E - 0 2 0 . 1 0 7 E - 0 3 0 . 1 4 5 E - 0 3 0 . 1 2 1 E - 0 9 7 . 0 . 2 1 1 E * 0 I 1 . 9 9 4 3 0 . 8 9 9 E - 0 2 0 . G 9 8 E - 0 4 0 . 9 4 2 E - 0 4 0 . 1 0 5 E - 0 9 14 . 0 . 219E+01 2 . 0 6 7 8 0 - 9 3 2 E - 0 2 0 . 4 7 3 E - 0 4 0 . 6 3 8 E - 0 4 0 5 6 4 E - I 0 2 1 . 0 . 2 2 6 E * 0 1 2 . 1 2 8 8 0 . 9 5 9 E - 0 2 0 . , 3 9 3 E - 0 4 0 . 5 3 I E - 0 4 0 . 3 9 8 E - 1 0 28 . 0 . 2 3 3 E * 0 1 2 . 1 9 7 7 0 . 9 9 I E - 0 2 0 4 4 4 E - 0 4 0 . 5 9 9 E - 0 4 0 . 3 1 9 E - 1 0 3 5 . 0 . 239E+01 2 . 2 5 2 8 0 . 1 0 2 E - 0 1 0 3 5 5 E - 0 4 0 . 4 7 9 E - 0 4 0 . 2 6 8 E - 1 0 4 2 . 0 . 2 4 4 E * 0 I 2 . 2 9 9 3 0 . 1 0 4 E - 0 1 0 . 2 9 9 E - 0 4 0 . 4 0 4 E - 0 4 0 . 2 3 2 E - 1 0 49 . 0 . 249E+01 2 . 3 4 7 9 0 . 1 0 6 E - 0 1 0 . 3 1 3 E - 0 4 0 . 4 2 3 E - 0 4 0 . 2 O 8 E - 1 0 56 . 0 . 2 5 3 E * 0 1 2 . 3 8 7 8 0 . 1 0 8 E - 0 1 0 . 2 5 7 E - 0 4 0 . 3 4 7 E - 0 4 0 . 1 8 8 E - 1 0 63 . 0 . 2 5 6 E * 0 1 2 . 4 1 1 4 0 . 1 0 9 E - 0 1 0 . 1 5 2 B - 0 4 0 . 2 0 5 E - 0 4 0 . 1 7 O E - 1 0 93 . 0 . 2 6 3 E * 0 1 2 . 4 7 7 0 0 . 1 1 2 E - 0 1 0 9 8 4 E - 0 5 0 . 1 3 3 E - 0 4 0 . 1 2 2 E - 10 T a b l e XV - LEACH TEST DATA - TEST SET B2 - 6 0 C o T O T A L T O T A L A C T I V I T Y F R A C T I O N A L C U M U L A T I V E F R A C T I O N INCREMENTAL MASS D I F F U S I O N T I M E D A Y S R E L E A S E D M I C R O C U R I E S R E L E A S E D P E R C E N T L E A C H E D CM L E A C H RATE C M / D A Y L E A C H RATE G / C M * ' 2 ' D A Y C O E F F I C I E N T C M \u00C2\u00AB * 2 / S E C 1 . 0 . 145E+01 1 . 3 0 5 4 0 . 5 9 9 E - 0 2 0 . 5 9 9 E - 0 2 0 8 1 0 E - 0 2 0 . 3 2 6 E - 0 9 2 . 0 . 165E+01 1 . 4 8 5 3 . 0 . 6 8 I E - 0 2 0 8 2 5 E - 0 3 0 1 1 2 E - 0 2 0 . 2 1 1 E - 0 9 3 . 0 . 175E+01 1 . 5 7 5 9 0 . 7 2 3 E - 0 2 0 4 1 5 E - 0 3 0 . 5 6 2 E - 0 3 0 . 1 5 8 E - 0 9 4 . 0 . 179E+01 1 . 6 1 4 8 0 . 7 4 I E - 0 2 0 . 1 7 9 E - 0 3 0 . 2 4 2 E - 0 3 0 . 1 2 5 E - 0 9 5 . O . 181E+01 \u00C2\u00BB . 6 2 9 2 0 . 7 4 7 E - 0 2 0 6 6 0 E - 0 4 0 8 9 3 E - 0 4 0 . 1 0 2 E - O 9 6 . 0 . 183E+01 1 . 6 4 5 6 0 . 7 5 5 E - 0 2 0 . 7 5 2 E - 0 4 0 . 1 0 2 E - 0 3 0 . 8 6 4 E - 1 0 7 . 0 . 1 8 4 E + 0 1 1 .6551 0 . 7 5 9 E - 0 2 0 . 4 3 6 E - 0 4 0 . 5 9 0 E - 0 4 0 . 7 4 9 E - 1 0 1 4 . 0 . 1 9 1 E + 0 1 1 . 7 2 0 4 0 . 7 8 9 E - 0 2 0 4 2 8 E - 0 4 0 . 5 8 0 E - 0 4 0 . 4 0 5 E - 1 0 2 1 . 0 . 1 9 8 E + 0 1 1 .78 13 0 . 8 1 7 E - 0 2 0 . 3 9 9 E - 0 4 0 . 5 4 0 E - 0 4 0 . 2 B 9 E - 1 0 28 . O . 2 0 3 E * 0 1 1 . 8 3 3 2 0 . 8 4 1 E - 0 2 O. 3 4 0 E - 0 4 0 . 4 6 0 E - 0 4 0 . 2 3 0 E - 1 0 3 5 . 0 . 2 0 7 E + 0 1 1 . 8 6 6 0 0 . 8 5 6 E - 0 2 0 . 2 1 5 E - 0 4 0 . 2 9 0 E - 0 4 0 . 1 9 0 E - 1 0 4 2 . 0 . 214E+01 1 . 9 2 8 4 0 . 8 8 5 E - 0 2 0 . 4 0 9 E - 0 4 0 . 5 5 3 E - 0 4 0 . 1 6 9 E - 10. 4 9 . 0 . 2 2 0 E + 0 1 1 .98 1 1 0 . 9 0 9 E - 0 2 0 . 3 4 6 E - 0 4 0 . 4 6 8 E - 0 4 0 . 1 5 3 E - 1 0 5 6 . 0 . 2 3 0 E + 0 1 2 . 0 6 9 2 0 . 9 4 9 E - 0 2 0 . 5 7 7 E - 0 4 0 . 78 1E - 0 4 0 . 1 4 6 E - 1 0 6 3 . 0 . 2 3 4 E + 0 1 2 . 1 0 8 8 0 . 9 6 7 E - 0 2 0 . 2 6 0 E - 0 4 0 . 35 I E - 0 4 0 . 1 3 5 E - 1 0 9 3 . 0 . 2 4 6 E + 0 1 2 . 2 1 6 3 0 . 1 0 2 E - 0 1 0 . 1 6 5 E - 0 4 0 . 2 2 3 E - 0 4 0 . 1 0 1 E - 1 0 T a b l e XVI - LEACH TEST DATA - TEST SET B 3 - 6 0 C o 8 0 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT CUMULATIVE FRACTION LEACHED CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM'\"2'DAY DIFFUSION COEFFICIENT CM**2/SEC 1 . 0. 135E-KJ1 1.3196 0 586E-02 0 586E-02 0 79 IE-02 0 312E-09 2 . 0. 144E+01 1.4130 0 627E-02 0 414E-03 0 560E -03 0 179E-09 3 . 0. 149E+01 1.4627 0 649E-02 0 221E-03 O 298E-03 0 128E-09 4 . 0. 151E*01 1.4833 0 658E-02 0 917E-04 0 124E-03 0 985E-10 5 . 0. 153E*01 1.4965 0 664E-02 0 585E-04 0 790E-04 0 802E- 10 6. 0. 153E*01 1.5043 0 668F.-C2 0 343E-04 0 464E-04 0 67SE-10 7 . 0. 154E+01 1.5115 0 671E- 02 0 32 IE-04 0 434E-04 0 584E- 10 14 . 0. 157E*01 1 5398 0 683E-02 0 179E-04 0 242E-04 0 303E-10 21 . 0. 162E*01 1.5910 0 706E-02 0 325E-04 0 439E-04 0 216E-10 28. 0. 166E+01 1.6240 0 72 IE-02 0 209E-04 0 283E-04 0 169E- 10 35. 0. 168E+01 1.6498 0 732E-02 0 163E-04 0 220E-04 0 139E-10 42 . 0. 172E+01 1.6820 0 746E-02 0 205E-04 0 276E-04 0 121E-10 49 . 0. 175E*01 .1.7154 0 761E-02 0 212E-04 0 286E-04 0 108E- 10 56. 0. 179E+01 1.7580 0 780E-02 0 270E-04 0 365E-04 0 988E-11 63. 0. 1R3E*01 1.7971 0 798E-02 0 248E-04 0 335E-04 0 918E-11 93. 0. 190E+01 1.8661 0 828E-02 0 102E-04 0 138E-04 p_ 670E-11 T a b l e XVII - LEACH TEST DATA - TEST SET C1 - 6 0 C o TEST C2 - CO-60 TOTAL TIME DAYS TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL RELEASED RELEASED LEACHED LEACH RATE MICROCURIES PERCENT CM CM/DAY MASS LEACH RATE G/CM\u00C2\u00AB-2*DAY DIFFUSION COEFFICIENT CM*'2/SEC 1 . 0.47OE+OO 0.4610 0.204E-02 0 204E-02 0.276E-02 0.378E-10 2 . 0.587E+0O 0.5757 0.255E-02 0 507E-03 0.686E-03 0.295E-10 3. 0.658E+00 0.6448 0.285E-02 0 305E-03 0.413E-03 O.246E-10 4 . 0.695E+00 0,68 14 0.301E-02 0 162E-03 0.219E-03 0.206E-10 5. O.724E+0O 0.7095 0.314E-02 0 124E-03 0.168E-03 0.179E-10 6 . 0.748E+00 0.7333 0.324E-02 0 105E-03 0.143E-03 0. 159E- 10 7 . 0.7G2E*O0 0.7475 0.331E-02 0 630E-04 0.852E-04 0.142E-10 14 . O.832E+00 0.8153 0.361E-02 0 4 28E;04 0.579E-04 0.844E- 1 1 21 . 0.9O3E+O0 0.8855 0. 392E-02 0 443E-04 0.600E-04 0.664E-11 28 . 0.969E+OO O.9504 0.4 20E-02 o 410E-04 0.555E-04 0.573E-11 35. 0.103E+01 1.0136 0.448E-02 0 400E-04 0.541E-04 0.522E-11 42 . 0.108E+01 1.0629 0.470E-02 0 311E-04 0.42 IE-04 0.47BE-11 49 . 0. 1 14E+01 1.1189 0.495E-02 0 354E-04 0.479E-04 0.454E-1 1 5G . 0.163E+01 1.6014 O.7O8E-02 o 305E-03 0.412E-03 0.814E-1 1 63. 0.169E+01 1.6600 O.734E-02 0 370E-04 0.501E-04 0.777E-1 1 93. 0.I87E+01 1.8366 0.812E-02 0 260E-04 0.352E-04 0.645E- 1 1 T a b l e X V I I I - LEACH TEST DATA - TEST SET C 2 - 6 81 T E S T C3 - C O - G O T O T A L T IME D A Y S T O T A L A C T I V I T Y R E L E A S E D M I C R O C U R I E S F R A C T I O N A L C U M U L A T I V E F R A C T I O N R E L E A S E D L E A C H E D P E R C E N T CM INCREMENTAL L E A C H RATE C M / D A Y MASS L E A C H RATE G / C M - \u00C2\u00BB 2 * 0 A Y D I F F U S I O N C O E F F I C I E N T C M * * 2 / S E C 1. 0 . 108E+01 0 . 9 8 9 9 0 4 5 1 E - 0 2 0 45 I E - 0 2 0 . 6 1 0 E - 0 2 0 1 8 5 E - 0 9 2 . 0 . 119E+0I 1 . 0 8 8 3 0 4 9 6 E - 0 2 0 4 4 8 E - 0 3 0 . 6 0 7 E - 0 3 0 1 1 2 E - 0 9 3 . 0 . 1 2 5 E * 0 1 1 . 1 4 3 6 0 5 2 1 E - 0 2 0 2 5 2 E - 0 3 0 . 3 4 1 E - 0 3 0 8 2 2 E - 1 0 4 . 0 . 1 2 7 E * 0 1 1 . 1 6 6 6 0 5 3 1 E - 0 2 0 1 0 5 E - 0 3 0 . 1 4 1 E - 0 3 0 6 4 2 E - 1 0 5 . 0 . 128E+01 1 . 1 7 7 2 0 5 3 6 E - 0 2 O 4 8 4 E - 0 4 0 . 6 5 5 E - 0 4 0 5 2 3 E - 1 0 6 . 0 . 1 3 0 E * 0 1 1 . 1 8 8 9 0 5 4 2 E - 0 2 0 5 3 5 E - 0 4 0 . 7 2 4 E - 0 4 0 4 4 4 E - 1 0 7 . 0 . 131E+01 1 . 2 0 0 0 0 5 4 7 E - 0 2 0 5 0 4 E - 0 4 0 . 6 8 2 E - 0 4 0 3 8 8 E - 1 0 14 . 0 . 1 3 5 E * 0 1 1 . 2 3 7 8 0 5 6 4 E - 0 2 0 2 4 6 E - 0 4 0 . 3 3 3 E - 0 4 0 2 0 6 E - 1 0 21 . 0 . 142E+01 1 . 3 0 4 3 0 5 9 4 E - 0 2 0 4 3 2 E - 0 4 0 . 5 8 5 E - 0 4 0 1 5 3 E - 1 0 2 8 . 0 . 1 4 5 E * 0 1 1 . 3 3 4 4 0 6 0 8 E - 0 2 0 1 9 6 E - 0 4 0 . 2 6 6 E - 0 4 0 1 2 0 E - 1 0 35 . 0 . 1 4 9 E * 0 I 1 . 3 6 5 2 0 6 2 2 E - 0 2 0 2 0 0 E - 0 4 0 . 2 7 I E - 0 4 0 1 0 0 E - 10 42 . 0 . 1 5 2 E * 0 1 1 . 3 9 0 0 0 6 3 3 E - 0 2 0 1 6 2 E - 0 4 0 . 2 1 9 E - 0 4 0 8 6 8 E - 1 1 4 9 . 0 . 1 5 5 E * 0 I 1 . 4 1 9 6 0 6 4 7 E - 0 2 0 1 9 3 E - 0 4 0 . 2 6 1 E - 0 4 0 7 7 6 E - 1 1 5 6 . 0 1 6 4 E * 0 1 1 . 5 0 7 7 0 6 B 7 E - 0 2 0 5 7 3 E - 0 4 0 . 7 7 6 E - 0 4 0 7 6 6 E - 1 1 6 3 . 0 167E+01 1 . 5 3 0 6 0 6 9 7 E - 0 2 0 1 4 9 E - 0 4 0 . 2 0 2 E - 0 4 0 7 0 2 E - 1 1 93 n 171E+01 .1 . 5 7 0 7 0 7 1 6 E - 0 2 0 6 0 9 E - 0 5 0 . 8 2 4 E - 0 5 . 0 5 0 0 E - 1 1 T a b l e XIX - LEACH\" TEST DATA - TEST SET C 3 - 6 0 C o T E S T D l - C O - G O T O T A L T I M E D A Y S T O T A L A C T I V I T Y R E L E A S E D M I C R O C U R I E S F R A C T I O N A L R E L E A S E D P E R C E N T C U M U L A T I V E F R A C T I O N L E A C H E D CM I N C R E M E N T A L L E A C H R A T E C M / O A Y MASS L E A C H RATE G / C M * * 2 * D A Y D I F F U S I O N C O E F F I C I E N T C M ' - 2 / S E C '\u00E2\u0080\u00A2 0. 1 15E+01 1. 1 184 0 . 4 9 8 E - 0 2 0 . 4 9 8 E - 0 2 0 . 6 7 2 E - 0 2 O . 2 2 6 E - 0 9 2 . 0. I26E+01 1 . 2 2 0 6 0 . 5 4 4 E - 0 2 0 . 4 5 5 E - 0 3 0 . 6 1 3 E - 0 3 0 . 1 3 4 E - 0 9 3 . 0. 131E +01 1 .27 1 1 0 . 5 6 6 E - 0 2 0 . 2 2 5 E - 0 3 0 . 3 0 3 E - 0 3 O . 9 7 1 E - 1 0 4 . 0 . 1 3 3 E + 0 1 1 . 2 9 0 5 0 . 5 7 5 E - 0 2 0 . 8 6 4 E - 0 4 0 . 1 1 6 E - 0 3 0 . 7 5 1 E - 1 0 5 . 0. 1 3 5 E - \u00C2\u00BB 0 1 1 . 3 1 0 9 0 . 5 8 4 E - 0 2 0 . 9 1 I E - 0 4 0 . 1 2 3 E - 0 3 0 . 6 2 0 E - 1 0 6 . 0 . 137E+01 1 . 3 3 1 3 0 . 5 9 3 E - 0 2 0 . 9 0 8 E - 0 4 0 . 1 2 2 E - 0 3 0 . 5 3 3 E - 1 O 7 . 0. 1 3 9 E * 0 t 1 . 3 4 9 1 0 . 6 0 I E - 0 2 O . 7 9 2 E - 0 4 0 . 1 0 7 E - 0 3 0 . 4 6 9 E - I O 14 . 0. 1-I5C + 01 1 . 4 0 7 8 0 . 6 2 7 E - 0 2 0 . 3 7 3 E - 0 4 0 . 5 0 3 E - 0 4 0 . 2 5 5 E - 1 0 2 1 . 0. 152E<-01 1 . 4 7 4 9 0 . 6 5 7 E - 0 2 0 . 4 2 7 E - 0 4 0 . 5 7 6 E - 0 4 0 . 1 8 7 E - 1 0 28 . 0. 15GE+01 1 . 5 172 0 . 6 7 6 E - 0 2 0 . 2 6 9 E - 0 4 0 . 3 6 3 E - 0 4 0 . 1 4 8 E - 1 0 3 5 . O . 159E+01 1 . 5 4 2 7 0 . 6 8 7 E - 0 2 0 . 1 6 2 E - 0 4 0 . 2 1 9 E - 0 4 0 . I 2 3 E - 10 42 . 0 . 1G2E+01 1 . 5 7 6 7 0 . 7 0 2 E - 0 2 0 . 2 1 6 E - 0 4 0 . 2 9 1 E - 0 4 0 . 1 0 7 E - 1 0 4 9 , 0 . I 6 5 E + 0 1 1 . 6 0 6 5 0 . 7 1 6 E - 0 2 0 . 1 9 0 E - 0 4 0 . 2 5 6 E - 0 4 0 . 9 5 0 E - ( 1 56 . 0. 172E+01 1 . 6 6 6 7 6 . 7 4 2 E - 0 2 0 . 3 8 3 E - 0 4 0 . 5 1 7 E - 0 4 0 . 8 9 5 E - 1 1 6 3 . 0 . 1 7 3 E * 0 1 1 . 6 7 9 3 O . 7 4 8 E - 0 2 0 . 8 0 2 E - 0 5 0 . 1 0 8 E - 0 4 0 . 8 0 7 E - 1 1 9 3 . 0 . 1 7 8 E + 0 1 L 7 361 0 . 7 6 9 E - 0 2 ( X G 9 5 E - 0 5 0 . 9 3 7 E - 0 5 0 . 5 7 8 E - 1 1 T a b l e XX - LEACH TEST DATA\" - TEST~ SET D1 - 6 0 C o 8 2 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS DIFFUSION TIME DAYS RELEASED MICROCURIES RELEASED PERCENT LEACHED CM LEACH RATE CM/DAY LEACH RATE G/CM*'2*DAY COEFFICIENT CM**2/SEC 1 . 0. 120E*01 1.1558 0.515E-02 0 515E-02 0 697E-02 0 241E-09 2. 0. 135E+01 1.2984 0.579E-02 0 636E-03 0 860E-03 0 152E-09 3. 0. I42E*0I 1.3684 0.610E-02 0 312E-03 0 422E-03 0 113E-09 4 . 0. 145E*01 1.3980 O.623E-02 0 132E-03 0 178E-03 0 8B2E-10 5. 0. 150E+01 1.4386 0.64 IE-02 0 181E-03 0 245E-03 0 747E-10 6 . 0. 153E+01 1.4747 0.657E-02 0 161E-03 0 218E-03 0 655E-10 7 . 0. 155E*01 1.4924 0.665E-02 0 793E-04 0 107E-03 0 575E- 10 14 . 0. 163E*01 1.5681 0.699E-02 0 482E-04 0 65 IE-04 0 317E-10 21 . 0. 17 1E+01 1.6461 0.734E-02 0 497E-04 0 672E-04 0 233E-10 28 . 0. 177E+01 1.6993 0.757E-02 0 339E-04 0 458E-04 0 186E- 10 35. 0. 182E+01 1.7533 0.78 IE-02 0 343E-04 0 465E-04 0 159E-10 42 . 0. 186E+01 1.7920 0.799E-02 0 247E-04 0 334E-04 0 138E- 10 49. 0. I92E*01 1 .8500 0.825E-02 0 369E-04 0 50OE-O4 0 126E-10 56. 0. I96E*0I 1.8852 0.840E-02 0 224E-04 0 303E-04 0 115E-10 63. 0. 198E+01 1.9053 0.849E-02 0 128E-04 0 173E-04 0 104E-10 93. 0. 204E+01 1.9639 0.875E-02 0 870E-05 0 118E-04 0 749E-1 1 T a b l e XXI - LEACH TEST DATA - TEST SET D2 - 6 0 C c TEST D3 - CO-60 TOTAL TIME OAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL CUMULATIVE FRACTION INCREMENTAL RELEASED LEACHED LEACH RATE PERCENT CM CM/DAY MASS LEACH RATE G/CM**2*0AY DIFFUSION COEFFICIENT CM\"2/SEC 1 . 0 308E*00 0.3050 0. 135E.-02 0 135E-02 0 182E-02 0 165E-10 2. 0 391E+0O 0.3875 0. 171E-02 0 365E-03 0 491E-03 0 133E- 10 3. 0 432E*00 0.4280 0.189E-02 0 179E-03 0 241E-03 0 iq9E-10 4 . 0 451E+00 0.4470 0.198E-02 0 844E-04 0 114E-03 0 888E-11 5. 0 4 7 4 E*00 0.4691 0.207E-02 0 977E-04 0 132E-03 0 782E-11 6. 0 499E+00 0.4945 0.219E-02 0 112E-03 0 151E-03 0 724E-11 7 . 0 533E+00 0.5278 0.233E-02 0 147E-03 0 198E-03 0 707E-11 14 . O 638E+00 0.6319 0.279E-02 0 658E-04 0 886E-04 0 507E-11 21 . 0 731E*00 0.7237 0.320E-02 0 580E-04 0 780E-04 0 443E-11 28. 0 807E+00 O.7994 0.353E-02 o 478E-04 0 644E-04 0 406E-11 35. 0 867E*00 0 8585 0.380E-02 0 374E-04 0 503E-04 0 374E-11 42. 0 933E+00 0.9234 0.408E-02 0 409E-04 0 551E-04 0 361E-11 49.. q 103E+01 1.0246 0.453E-02 0 640E-04 0 86 IE-04 0 381E- 11 56. 0 109E+01 1.0835 0.479E-02 0 372E-04 0 50 IE-04 0 373E-11 63. 0 1 13E*01 1.1161 0.494E-02 0 206E-04 0 277E-04 0 351E-11 0. 122E+01 1.2043 0.533E-02 0 130E-04 1 0 175E-04 q 277E-11 T a b l e XXII - LEACH TEST DATA -\u00E2\u0080\u00A2 TEST SET D3 . 6 0 ( 8 3 TEST A1 - CS-137 TOTAL TIME DAYS TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL RELEASED RELEASED LEACHED LEACH RATE MICROCURIES PERCENT CM CM/DAY MASS LEACH RATE G/CM**2*DAY DIFFUSION COEFFICIENT CM\"2/SEC 1 . 0. 2B9E*01 1.5712 0.716E-02 0 .716E-02 ' 0 968E-02 0 .466E-09 2 . 0. 316E*01 1 . 7194 0. 784E-02 0 676E-03 0 913E-03 0 .279E-09 3. 0. 326E+01 1 .7718 0.808E-02 0 .239E-03 0. 323E-03 0 . 198E-09 4 . 0. 332E*01 1.8022 0.82 IE-02 0 .138E-03 0. 187E-03 0 .153E-09 5. 0. 335E+01 1.8205 O.83OE-02 0 831E-04 0. 112E-03 0 . 125E-09 6 . 0. 337E+01 1.8329 0.835E-02 0 567E-04 0. 7G7E-04 0 . 106E-09 7 . 0. 339E+01 1.8427 0.840E-02 0 .448E-04 0. 606E-04 0 916E-10 14 . 0. 347E+01 1.8858 0.860E-02 0 .281E-04 0. 379E-04 0 480E-10 21 . 0. 363E+01 i .9703 0.898E-02 0 550E-04 0. 743E-04 0 349E-10 28. 0. 3B1E*01 2.0730 0.945E-02 0 669E-04 0. 904E-04 0. 290E-10 35. 0. 397E+01 2.1559 0.983E-02 0 540E-04 0. 729E-04 0. 251E-10 42 . 0. 414E*01 2.2477 0.102E-01 0 598E-04 0. 808E-04 0 227E-10 49. 0. 437E+01 2.3738 0.108E-01 0 821E-04 0. 111E-03 0. 217E-10 5G . 0. 463E*01 2.5165 0.115E-01 0 929E-04 0. 126E-03 0. 214E-10* 63. 0. 486E*01 2.64 17 0.120E-01 0. 816E-04 0. 110E-03 0. 209E-10 93. 0. 575E*01 3.1259 0.142E-01 0. 736E-04 0. 994E-04 0. 198E;10. . T a b l e X X I I I - LEACH TEST DATA - TEST SET A1 _ 1 3 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS DIFFUSION TIME RELEASED RELEASED LEACHED LEACH RATE LEACH RATE COEFFICIENT DAYS MICROCURIES PERCENT CM CM/DAY G/CM\"2*DAV CM**2/SEC 1 . 0.681E+01 3. 8286 0. 173E-01 0. 173E-01 0. 233E-01 0. 27 IE-08 2. 0.761E+01 \u00E2\u0080\u00A24 , 2732 0. 193E-01 0. 200E-02 0. 270E-02 0. 169E-08 3 . 0.759E+01 4 4310 0. 200E-01 O. 71 IE-03 0. 960E-03 0. 121E-08 4 . 0.803E+01 4 , 5136 0. 203E-01 0. 372E-03 0. 503E-03 0. 940E-09 5. 0.812E+01 4 , 5631 0. 206E-01 0. 223E-03 0. 301E-03 0. 769E-09 6 . 0.818E+01 A .5959 0. 207E-01 0. 148E-03 0. 200E-03 0. 650E-09 7 . 0.825E+01 4 6363 0. 209E-01 0. 182E-03 0. 246E-03 0. 567E-09 14 . 0.858E+01 4 8206 0. 217E-01 0. 119E-03 0. 160E-03 0 307E-09 21 . 0.897E+01 5 .0373 0. 227E-01 0. 140E-03 0. 188E-03 0. 223E-09 28. 0.943E+01 5 . 2976 0. 239E-01 0. 168E-03 0. 226E-03 0. 185E-09 35 . o.anoE+oi 5 .5622 0. 251E-01 0. 170E-03 0. 230E-03 0. 163E-09 42 . 0.105E+02 5 .9154 0 267E-01 0. 227E-03 0. 307E-03 0. 154E-09 49. 0 . 1 13E + 02 6 . 3448 0. 286E-01 0. 276E-03 0. 373E-03 0. 152E-09 56. 0 .1P2E+02 6 . 8690 0 310E-0I 0. 337E-03 0. 456E-03 0. 156E-09 63 . O, UOE+02 7 . 3066 0. 329E-01 0. 282E-03 0. 380E-03 0. 156E-09 93. 0 . 164E+02 9 . 2055 0. 415E-01 0 285E-03 0. 385E--9?. 0. 168E-09. T a b l e XXIV - LEACH TEST DATA -- TEST SET A 2 -. 13 7 8 4 TEST - A3 CS-137 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT CUMULATIVE FRACTION LEACHED CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM*'2'DAY DIFFUSION COEFFICIENT CM\"2/SEC 1 . 0 .421E+01 2 . 3652 0 .107E-01 0 .107E-01 0 .144E-01 0. 103E-08 2 . 0 .460E+01 2 .5825 0 .116E-01 0 .980E-03 0 .132E-02 0.616E-09 3. 0 . 47SEKM 2 .6685 0 .120E-01 0 .388E-03 0 . 523E-03 0.438E-09 4 . 0 .482E+01 2 .7080 0 .122E-OI 0. 178E-03 0 . 240E -03 0.339E-09 5 . 0 486E+01 2 .7309 0 . 123E-01 0. 103E-03 0 .139E-03 0.275E-09 6. 0 .489E+01 2 . 7490 0 .124E-01 0. 817E-04 0 .110E-03 0.233E-09 7 . 0 492E*01 2 7629 0 .125E-01 0. 627E-04 0. 846E-04 0.201E-O9 14. 0 507E*01 2 .8500 0 .128E-OI 0. 56 IE-04 0. 757E-04 0.107E-09 21 . 0. 530E*01 2 9800 0 .134E-01 0. 837E-04 0. 1 13E-03 0.781E-10 28 . 0. 555E*01 3. 1 178 0. 141E-0I 0. 887E-04 0. 120E-03 0.641E-10 35. 0. 594E+01 3 . 3347 0. 150E-01 0. MOE-03 0. 189E-03 0.587E-10 42 . 0. 667E*01 3. 7482 0. 169E-01 0. 266E-03 0. 359E-03 0.61BE-10 49. 0. 739E*OI 4 . 1528 0. 187E-01 0. 260E-03 0. 352E-03 0.650E-10 56. 0. 811E*01 4. 5547 0. 205E-01 0. 259E-03 0. 349E-03 0.684E-10 63. 0. 8S7E+01 4 . 9819 0. 225E-01 0. 275E-03 0. 37 IE-03 0.727E-10 93. 0. 117E*02 6 . 5802 0. 297E-01 0. 24OE-03 0. 324E-03 0.860E-10 T a b l e XXV - L E A C H TEST DATA - TEST SET A 3 - 1 3 7 C s TEST Bt -CS-137 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTIPN INCREMENTAL MASS DIFFUSION TIME DAYS RELEASED MICROCURIES RELEASED PERCENT LEACHED CM LEACH RATE CM/DAY LEACH RATE COEFFICIENT G/CM''2'DAY CM\"2/SEC 1 . 0. 119E*01 0. 7822 0.331E-02 0. 331E-02 0. 447E-02 0.994E- 10 2 . 0. 144E+01 0.9477 0.4O1E-02 0. 700E-03 0. 945E-03 0.730E-10 3. 0. 159E+01 1.0438 0.44 1E-02 0.406E-03 0. 549E-03 0.590E-10 4 . 0. 169E+01 1.1087 O.469E-02 0. 275E-03 0. 37 IE-03 0.499E-10 5. 0. 17GE+01 1. 1555 0.489E-02 0. 198E-03 0. 267E-03 0.434E-10 6. 0. 182E+01 t.2005 0.508E-02 0.190E-03 0. 257E-03 0.390E-10 7 . 0. 189E+01 1 .2429 0.526E-02 0.180E-03 0. 242E-03 0.359E-10 14. O. 215E+01 1 .4 146 0.598E-02 0.104E-03 0. 140E-03 0.232E-10 21 . 0. 234E+01 1.5392 0.65 IE-02 0. 752E-04 0. 102E-03 0.183E-10 28 . 0- 245E+01 1.6123 0.682E-02 0.442E-04 0. 59GE-04 0.151E-10 35 . 0. 253E+01 1 .6633 0.703E-02 0.308E-04 0. 416E-04 0.128E-10 42. 0. 262E+01 1 .7222 0.728E-02 0.356E-04 0. 481E-04 0.115E-10 49. 0. 272E+01 1.7916 0.758E-02 0.4I9E-04 0. 566E-04 0.106E-10 56 . 0. 23'OE+OI 1.8452 0.780E-02 0.324E-04 0. 437E-04 0.968E-11 63. 0- 2B6E+01 1.8835 0.796E-02 0.23IE-04 0. 312E-04 0.9I5E-11 93. 0. 303E+01 1.9950 0.844E-02 0.157E-04 0. 212E-04 0.696E-11 T a b l e XXVI - LEACH TEST DATA - TEST SET B1 _ 13 7 8 5 T E S T B2 - C S - 1 3 7 T O T A L T I M E DAYS T O T A L A C T I V I T Y R E L E A S E D M I C R O C U R I E S F R A C T I O N A L R E L E A S E D P E R C E N T C U M U L A T I V E F R A C T I O N L E A C H E O CM INCREMENTAL L E A C H RATE C M / O A Y MASS L E A C H RATE G / C M \u00C2\u00BB * 2 \" 0 A Y D I F F U S I O N C O E F F I C I E N T C M \" 2 / S E C 1 . 0 . 4 7 7 E \u00C2\u00BB 0 1 2 . 6 8 1 5 0 . 1 2 1 E - 0 1 0 . 1 2 1 E - 0 1 0 . 1 6 3 E - 0 1 0 . 1 3 3 E - 0 8 2 . 0 . 521E+01 2 . 9281 0 . 1 3 2 E - 0 1 0 . 1 1 1 E - 0 2 0 . 1 5 0 E - O 2 0 . 7 9 2 6 - 0 9 3 . 0 . 540E+01 3 . 0 3 4 9 0 . 1 3 7 E - 0 1 0 . 48 I E - 0 3 0 . 6 5 0 E - 0 3 0 . 5 6 7 E - 0 9 4 . 0 . 552E+01 3 . 1039 0 . 1 4 0 E - 0 1 0 . 3 1 1 E - 0 3 0 . 4 2 0 E - O 3 0 . 4 4 5 E - 0 9 5 . 0 . 5 5 7 E * 0 1 3 . 1298 0 . 1 4 1 E - 0 1 0 . 1 1 6 E - 0 3 0 . 1 5 7 E - 0 3 0 . 3 6 2 E - 0 9 6 . 0 . 563E+01 3 . 1628 0 . 1 4 3 E - 0 1 0 . 1 4 9 E - 0 3 0 . 2 0 1 E - 0 3 0 . 3 0 8 E - 0 9 7 . 0 . 5G7E+01 3 1826 0 . 1 4 3 E - 0 1 0 . 8 9 2 E - 0 4 0 . 1 2 0 E - 0 3 0 . 2 6 7 E - 0 9 14 . 0 . 587E+01 3 . 2998 0 . 1 4 9 E - 0 1 0 . 7 5 4 E - 0 4 0 . 1 0 2 E - 0 3 0 . 1 4 4 E - 0 9 21 . 0 . 604E+01 3 . 3934 0 . 1 5 3 E - 0 1 0 . 6 0 3 E - 0 4 0 . 8 1 4 E - 0 4 0 . 1 0 1 E - 0 9 28 . 0 . 624E+01 3 . 5 0 2 9 0 . 1 5 8 E - 0 1 0 . 7 0 5 E - 0 4 O . 9 5 2 E - 0 4 0 . 8 0 9 E - 1 0 ', 3 5 \u00E2\u0080\u00A2 0 . 640E+01 3 . 5 9 4 7 0 . 1 6 2 E - 0 1 0 . 5 9 1 E - 0 4 0 . 7 9 8 E - 0 4 0 . 6 8 2 E - 1 0 42 . 0 . 652E+01 3 . 6 6 4 4 0 . 1 6 5 E - 0 1 0 . 4 4 9 E - 0 4 0 . 6 0 G E - 0 4 0 . 5 9 0 E - 1 0 4 9 . 0 6G4E+01 3 . 7 307 0 . 1 6 8 E - 0 1 0 . 4 2 6 E - 0 4 0 . 5 7 6 E - 0 4 0 5 2 4 E - 10 5 G . 0 675E+01 3 . 7903 0 . 1 7 1 E - 0 I 0 . 3 8 4 E - 0 4 0 5 1 9 E - 0 4 0 . 4 7 4 E - 1 0 6 3 . 0 6R2E+01 3 . 8 2 8 9 0 . 1 7 3 E - 0 1 0 2 4 8 E - 0 4 O 3 3 5 E - 0 4 0 . 4 3 0 E - 1 0 93 . o 7O2E+01 3 . 9 4 6 3 0 . 1 7 8 E - 0 1 0 1 7 6 E - 0 4 0 2 3 8 E - 0 4 0 . 3 0 9 E - 1 0 T a b l e XXVII - LEACH TEST DATA - TEST SET B2 1 3 7 T E S T B3 - C S - 1 3 7 T O T A L T O T A L A C T I V I T Y F R A C T I O N A L C U M U L A T I V E F R A C T I O N INCREMENTAL MASS D I F F U S I O N T IME R E L E A S E D R E L E A S E D L E A C H E D L E A C H RATE L E A C H RATE C O E F F I C I E N T D A Y S M I C R O C U R I E S P E R C E N T CM C M / D A Y G / C M \u00C2\u00AB - 2 - 0 A Y C M \u00C2\u00BB ' 2 / S E C 1. 0 . 3 8 8 E + 0 1 2 . 0 8 8 7 0 . 9 5 8 E - 0 2 0 . 9 5 8 E - 0 2 0 . 1 3 0 E - 0 1 0 . 8 3 5 E - 0 9 2 . 0 . 435E+01 2 . 3 3 9 6 O . 1 0 7 E - 0 1 0 . 1 1 5 E - 0 2 0 . 1 5 6 E - 0 2 0 . 5 2 4 E - 0 9 3 . O 460E+01 2 . 4 7 5 2 0 . 1 1 4 E - 0 1 0 - 6 2 2 E - 0 3 0 . 8 4 2 E - 0 3 0 . 3 9 I E - 0 9 4 . 0 . 469E+01 2 . 5 1 9 5 0 . 1 1 6 E - 0 1 0 . 2 0 3 E - 0 3 0 . 2 7 5 E - 0 3 0 . 3 0 4 E - 0 9 5 . O . 471E+01 2 . 5 3 3 6 0 . 1 1 6 E - 0 1 0 . 6 4 8 E - 0 4 0 . 8 7 7 E - 0 4 0 . 2 4 6 E - 0 9 6 . 0 475E+01 2 . 5 5 3 8 0 . 1 1 7 E - 0 1 0 9 2 5 E - 0 4 0 1 2 5 E - 0 3 0 . 2 0 8 E - 0 9 7 . 0 477E+01 2 . 5 6 4 9 0 . 1 1 8 E - 0 1 0 . 5 1 0 E - 0 4 0 . 6 9 1 E - 0 4 0 . 1 8 0 E - 0 9 14 . 0 493E+01 2 . 6 4 8 0 0 . 1 2 1 E - 0 1 0 . 5 4 5 E - 0 4 0 . 7 3 7 E - 0 4 0 . 9 5 8 E - 1 0 2 1 . 0 507E+01 2 . 7 2 5 2 0 . 1 2 5 E - 0 1 0 . 5 0 6 E - 0 4 O . 6 8 5 E - 0 4 0 . 6 7 7 E - 10 2 8 . 0 . 519E+01 2 . 7 8 8 6 0 . 1 2 8 E - 0 1 0 . 4 1 5 E - 0 4 0 . 5 6 2 E - 0 4 0 . 5 3 1 E - 1 0 3 5 . 0 . 526E+01 2 . 8 2 7 2 0 . I 3 0 E - 0 1 0 . 2 5 3 E - 0 4 0 . 3 4 2 E - 0 4 0 . 4 3 7 E - 10 4 2 . 0 . 541E+01 2 9 0 8 9 0 . 1 3 3 E - 0 1 0 . 5 3 5 E - 0 4 0 . 7 2 4 E - 0 4 0 . 3 8 5 E - 1 0 4 9 . 0 . 550E+01 2 . 9581 0 . 1 3 6 E - 0 1 0 . 3 2 3 E - 0 4 0 . 4 3 7 E - 0 4 0 . 3 4 2 E - 1 0 5 6 . 0 . S74E+01 3 0841 0 . 1 4 1 E - 0 1 0 . 8 2 6 E - 0 4 0 . 1 1 2 E - 0 3 0 . 3 2 5 E - 10 6 3 . 0 . 585E+01 3 1428 0 . I 4 4 E - 0 1 0 . 3 8 4 E - 0 4 0 . 5 2 0 E - 0 4 0 . 3 0 0 E - 10 9 3 . 0 . 621E+01 3 . 3 3 7 6 0 . I 5 3 E - 0 1 0 . 2 9 8 E - 0 4 _ . 0 . 4 0 3 E - 0 4 0 . 2 2 9 E - 1 0 T a b l e X X V I I I - LEACH TEST DATA - TEST SET B 3 - 1 3 7 8 6 TOTAL TOTAL A C T I V I T Y FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS D I F F U S I O N TIME DAYS RELEASED MICROCURIES RELEASED PERCENT LEACHED CM LEACH RATE CM/DAY LEACH RATE G/CM*\u00C2\u00AB2*DAY C O E F F I C I E N T C M \" 2 / S E C 1 . 0.290E>01 1.6936 0.752E-02 O 752E-02 0 I 0 2 E - 0 I 0.514E-O9 2 . 0.310E+01 1.81 12 0.804E-02 0 5 2 2 E - 0 3 0 705E-03 0 . 2 9 4 E - 0 9 3 . 0 .320E*01 1.8719 0.83 IE-02 0 2 6 9 E - 0 3 0 364E-03 0 . 2 0 9 E - 0 9 4 . 0.324E+01 1.8951 0.84 IE-02 0 103E-03 0 140E-03 0 . 1 6 1 E - 0 9 5. 0.326E*01 1.9091 0.847E-02 0 621E-04 0 838E-04 0 . 1 3 1 E - 0 9 6 . 0.328E+01 1.9167 0.B51E-02 0 336E-04 0 454E-04 0. 1 10E-09 7 . 0. 329E+-01 1.9248 O.854E-02 0 359E-04 0 485E-04 0 . 9 4 8 E - 1 0 14 . 0. 335E*01 1.9610 0.870E-02 0 230E-04 0 310E-04 0 . 4 9 2 E - 1 0 2.1 . 0. 346E+01 2.0226 0.898E-02 0 39 IE-04 0 528E-04 0 . 3 4 9 E - 1 0 28. 0.354E*01 2.0700 0.919E-02 0 300E-04 0 406E-04 0.274E- 10 35. 0.360E+01 2.1065 0.935E-02 0 231E-04 0 312E-04 O.227E-10 42 . 0.368E+01 2.1524 0.955E-02 0 29 IE-04 0 394E-04 0 . 1 9 8 E - 1 0 49. 0.376E+01 2.2013 0.977E-O2 0 310E-04 0 419E-04 0 . 1 7 7 E - 1 0 56. 0. 387E+01 2 . 2628 0.100E-01 0 390E-04 0 526E-04 0.164E- 10 63. 0.397E+01 2.3199 0.103E-01 0 362E-04 0 489E-04 0 . 1 5 3 E - 1 0 93. 0.414E+01 T a b l e XXIX 2.4199 - LEACH 0.107E-01 TEST DATA 0 148E-04 TEST 0.200E-04 SET C l 0 . 1 1 3 E - 1 0 _ 13 7 T E S T \" C 2 - C S - 1 3 7 \" \" \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 TOTAL TOTAL A C T I V I T Y FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS D I F F U S I O N T I M E R E L E A S E D R E L E A S E D L E A C H E D L E A C H RATE L E A C H RATE C O E F F I C I E N T DAYS M I C R O C U R I E S P E R C E N T CM C M / D A Y G / C M * * 2 * D A Y CM-*2/SEC 1 . 0 . 1 0 3 E + 0 1 0 . 6 0 3 5 0 . 2 6 7 E - 0 2 0 . 2 6 7 E - 0 2 0 . 3 6 I E - 0 2 0 . 6 4 7 E - 1 0 2 . 0 . 1 2 0 E * 0 1 0 . 7 0 4 7 0 . 3 1 2 E - 0 2 0 . 4 4 7 E - 0 3 0 . 6 0 5 E - 0 3 0 . 4 4 1 E - 1 0 3 . 0 . 1 3 0 E + O 1 0 . 7 6 7 4 0 . 3 3 9 E - 0 2 0 . 2 7 7 E - 0 3 0 . 3 7 5 E - 0 3 0 . 3 4 9 E - 1 0 4 . 0 . t 3 6 E + 0 1 0 . 7 9 8 6 0 . 3 5 3 E - 0 2 0 . 1 3 8 E - 0 3 0 . 1 8 7 E - 0 3 0.283E-1O 5 . 0. 1 3 9 E * 0 1 0 . 8 2 0 4 0 . 3 6 3 E - 0 2 0 . 9 6 3 E - 0 4 0 . 1 3 0 E - 0 3 0 . 2 3 9 E - 1 0 6 . 0.143E+0I 0 . 8 4 19 0 . 3 7 2 E - 0 2 0 . 9 4 8 E - 0 4 0 . 1 2 8 E - 0 3 0 . 2 1 0 E - 1 0 7 . 0.1 4 6 E+01 O . 8 5 7 7 0 . 3 7 9 E - 0 2 0 . 7 O O E - 0 4 0 . 9 4 8 E - 0 4 0 . 1 8 7 E - 1 0 14 . 0.160E+01 0 . 9 3 9 4 0 . 4 1 5 E - 0 2 0 . 5 1 6 E - 0 4 0 . 6 9 8 E - 0 4 0 . 1 1 2 E - 1 0 21 . 0 . 1 7 2 E + 0 1 1 . 0 1 2 9 0 . 4 4 8 E - 0 2 0 . 4 6 4 E - 0 4 0 . 6 2 8 E - 0 4 0.868E-11 28 . 0 .182E + 0 1 1 .0721 0 . 4 7 4 E - 0 2 0 . 3 7 4 E - 0 4 0 . 5 0 6 E - 0 4 0.730E-11 3 5 . 0 . 1 9 2 E + 0 1 1 . 1297 O . 5 O O E - 0 2 0 . 3 6 4 E - 0 4 0 . 4 9 3 E - 0 4 0.648E-11 42 . 0 .199E + 0 1 1 . 1 7 11 0 . 5 1 8 E - 0 2 0 . 2 6 2 E - 0 4 0 . 3 5 4 E - 0 4 0.580E-11 49 . 0.213E+01 1 . 2 5 0 9 0 . 5 5 3 E - O 2 O . 5 0 4 E - O 4 0 . 6 8 1 E - 0 4 0.568E-11 5 6 . 0 . 2 3 3 E * 0 1 1 . 3 7 13 0 . 6 0 6 E - 0 2 0 . 7 6 1 E - 0 4 0 . 1 0 3 E - O 3 0.597E- 1 1 63 . 0. 240E+01 1 . 4 1 1 0 0 . 6 2 4 E - 0 2 0 . 2 5 0 E - 0 4 0 . 3 3 9 E - 0 4 0.562E- 1 1 93 . 0 . 2T!8E*01 1 . 5 1 5 8 0 . 6 7 0 E - 0 2 0 . 1 5 5 E - 0 4 0 . 2 0 9 E - 0 4 0.439E-1 1 T a b l e XXX - LEACH TEST DATA -\"TEST SET C 2 _ 1 3 7 Q 8 7 TEST C3 - CS-137 TOTAL TIME OAVS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT CUMULATIVE FRACTION LEACHED CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM\"\"2'DAY DIFFUSION COEFFICIENT CM**2/SEC 1 . 0. 288E+01 1.5732 0. 717E-02 0. 717E-02 0.970E-02 0. 467E-09 2. 0. 3 I7E+01 1.7305 0. 788E-02 0. 716E-03 0.970E-03 0. 282E-09 3. 0. 331E+01 1 .8105 0. 825E-02 0. 364E-03 0.493E-03 0. 206E-09 4. 0. 336E+01 1 .8379 0. 837E-02 0. 125E-03 0.169E-03 0. 159E-09 5. 0. 339E+01 1.8500 0. 843E-02 0. 551E-04 0.746E-04 0. 129E-09 6 . 0. 34IE+01 1.8631 0. 849E-02 0. 597E-04 0.809E -04 0. 109E-09 7 . 0. 343E+01 1.8767 0. 855E-02 0. 62 IE-04 0.84IE-04 0. 949E-10 14 . 0. 353E+01 1.9314 0. 880E-02 0. 355E-04 0.48 IE-04 0. 503E-10 21 . 0. 370E+01 2.0239 0. 922E-02 0. 6O2E-04 0.8I5E-04. 0. 368E-10 28. 0. 377E+01 2.0611 0 .939E-02 O .242E-04 0.328E-04 0 .286E-10 35 . 0. 3B5E+01 2.1038 0 .958E-02 0 .278E-04 0.376E-04 0 239E-10 42 . 0. 39 IE+01 2.1374 0 .974E-02 0 .219E-04 0.296E-O4 0 .205E-10 49. 0. 399E+01 2.1803 0 .993E-02 0 .279E-04 0.377E-04 0 .1B3E-10 56. 0 420E+01 2.2976 0 .105E-01 0 .764E-04 0.103E-03 0 .178E-10 63 . 0 427E+01 2.3319 0 .106E-01 0 .223E-04 O.302E-O4 0 . 163E- 10 93. 0 .438E+01 2.394 1 0 .109E-01 O .944E-05 0.128E-04 0 .11GE-10 Table XXXI - LEACH TEST DATA - TEST SET C3 _ 1 3 7 Cs TEST 01 - CS-137 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS DIFFUSION TIME RELEASEO RELEASED LEACHED LEACH RATE LEACH RATE COEFFICIENT DAYS MICROCURIES PERCENT CM CM/DAY G/CM\"2'DAY CM\"2/SEC 1. 0.3 1 IE + 01 1 .8064 0.805E-02 0. 805E-02 0. 108E-01 0. 588E-09 2 . 0.34 IE+01 1 .9822 0.883E-02 0. 783E-03 0. 106E-02 0. 354E-09 3 . 0.356E+01 2 .07 13 0.923E-02 0. 397E-03 0. 535E-03 0. 258E-09 4 . 0.363E+01 2 . 1131 0.94 IE-02 0. 186E-03 0. 25 IE-03 0. 20 IE-09 5. 0.369E+01 2 . 1463 0.956E-O2 0. 148E-03 0. 200E-03 0. 166E-09 6 . 0.372E+01 2 . 1644 0.964E-02 0. 803E-04 0. 108E-03 0. 141E-09 7 . 0.375E+01 2 . 1822 0.972E-02 0. 793E-04 0. 107E-03 0. 123E-09 14 . 0.3B9E+01 2 .2614 0.101E-01 0. 504E-04 0. 680E-04 0. 659E- 10 21 . 0.403E+01 2 . 3456 0.104E-01 0. 536E-04 0. 722E-04 0. 472E- 10 28 . 0.413E+01 2 .4003 0.107E-01 0. 348E-04 0. 469E-04 o. 371E-10 35. 0.420E+01 2 .4398 0.109E-01 0. 251E-04 0. 339E-04 0. 307E-10 42. 0.427E+01 2 .4851 0. 1 11E-01 0. 288E-04 0. 389E-04 0 265E-10 49. 0.435E+01 2 .5276 0.113E-01 0. 271E-04 0. 365E-04 0. 235E-10 56. 0.449E+01 2 .6091 0. 1 16E-01 0. 518E-04 0. 699E-04 0. 219E-10 63. 0.452E+01 2 .6254 0.117E-01 0. 104E-04 0. 140E-04 0. 197E-10 93 . 0^ 461E+01 2 .6796 0.119E-0I 0. 805E-05 0. 109E-04 0. 139E- 10 Table XXXII - LEACH TEST DATA - TEST SET D 1 _ 1 3 y C s 8 8 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL TIME RELEASED RELEASED LEACHED LEACH RATE LEACH RATE COEFICIENT OAYS MICROCURIES PERCENT CM CM/DAY G/CM\u00C2\u00AB*2'DAY CM\"2/SEC . 1 . 0 3G8E+01 2 138 0 942E-02 0 942E-02 0 127E-01 0 807E-09 2 . 0 4 1 1E*01 2 3629 0 105E-01 0 11E-02 . 0 15E-02 0 504E-09 3. 0 434E+01 2 4947 0 11E-01 0 587E-03 0 794E-03 0 375E-09 4 . 0 4SE+01 2 57 0 14E-01 0 281E-03 0 380E-03 0 295E-09 5. 0 456E+01 2 6 ISO 0 17E-01 0 269E-03 0 363E-03 0 248E-09 6. 0 4S0E+01 2 647 0 18E-01 0 19E-03 0 161E-03 0 21 1E-09 7 . 0 464E+01' 2 665 0 19E-01 0 971E-04 0 131E-03 0 183E-09 14. 0 484E+01 2 7815 0 124E-01 0 732E-04 0 90E -04 0 98E-10 21 . 0 505E+01- 2 904 0 129E-01 0 757E-04 0 102E-O3 0 723E-10 26. 0 517E+01 2 9691 0 132E-01 0 437E-04 0 59 IE-04 0 569E- 10 35. 0 530E+01 3 0436 0 136E-01 0 474E-04 0 64 IE-04 0 478E-10 42 . 0 539E+01 3 0973 0 138E-01 0 342E-04 0 463E-04 0 412E-10 49. 0 53E+01 3 1764 0 142E-01 0 504E-04 0 682E-04 0 372E-10 56. 0 BSOE+OI 3 207 0 1 4 4 E 7 O I 0 282E-04 0 382E-04 0 35E- IO 63 . 0 5R5F.*01 3 2468 0 145E-01 0 16E-04 0 24E-04 0 302E-10 93. 0 5nOE*-01 3 314 0 I48E-01 0 126E-04 0 170E-04 0 216E-10 T a b l e X X X I I I - LEACH T ST DATA - TEST SET D2 - 1 TEST D3 - CS-137 TOTAL TIME DAYS TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL RELEASED RELEASED LEACHED LEACH RATE MICROCURIES PERCENT CM CM/DAY AS LEACH RATE G/CM\"2'0AY DIFUSION COEFICIENT CM*\u00C2\u00BB2/SEC 1 . 0 11E*01 0.6547 0.290E-02 0 290E-02 0 390E-02 0 762E-10 2. 0 136E*01 0.802 0.35E-02 0 652E-03 O 878E-03 0 572E- 10 3. 0 14BE*0I 0.8709 0.385E-02 0 304E-03 0 409E-03 0 49E-10 4. 0 154E+01 0.9087 0.402E-02 0 167E-03 0 25E-03 6 367E-10 5 . 0 160E*01 0.9405 0.416E-02 0 141E-03 0 189E-03 0 314E-10 6. 0 164E+01 0.9647 0.427E-02 0 107E-03 0 145E-03 0 276E-10 7 . 0 I70E*01 1.014 0.43E-02 0 162E-03 0 219E-03 0 25E-10 14 . 0 195E*01 t.1450 0.506E-02 0 907E-04 0 12E-03 0 16E-10 21 . 0 214E*01 1.2616 0.58E-02 0 736E-04 0 91E-04 0 135E-10 28 . 0 230E+01 1.350 0.59E-02 0 590E-04 0 795E-04 0 17E-10 35. 0 243E*01 1.4309 0.63E-02 0 479E-04 0 645E-04 0 104E-10 42 . 0 25GE*01 1.5071 0.66E-02 0 482E-04 0 648E-04 0 961E-1 49. 0 278E+01 1.6351 0. 723E-02 0 808E-04 0 109E-03 0 970E-1 56. 0 289E*01 1.6986 0.751E-02 0 40 IE-04 0 540E-04 0 916E-1 63. 0 295E*01 1.737 0.76BE-02 0 247E-04 0 33E-04 0 852E-1 0 313E+01 1.840 0.815E-02 0 157E-04 0 21E-04 0 650E-1 T a b l e XXXIV - LEACH TEST DATA - TEST SET D3 _ 1 3 7 89 APPENDIX D - LEACHANT CONDUCTIVITY AND PH I n i t i a l F i n a l 1 Week's c o n t a c t S e t A pH 4.10 5.80 C o n d u c t i v i t y 1.00 X lO- 6Mho/cm 4.90 X 10\"\"Mho/cm Se t B pH 6.39 6.25 C o n d u c t i v i t y 4.80 X l0\" 3Mho/cm 6.5 X l0- 3Mho/cm S e t C pH 6.39 5.65 C o n d u c t i v i t y 4.80 X lO\" 3Mho/cm 5.5 X 10- 3Mho/cm Se t D ph 5.62 4.99 C o n d u c t i v i t y 1.85 X lO- 2Mho/cm 1.95 X 10\" 2Mho/cm 9 0 APPENDIX E - ANALYSIS OF VARIANCE OF 6 0 C o AND 1 3 7 C s ~ S A M P L E MEANS AT T>14DAYS e o Co: S e t Mean S t D e v i a t i o n St E r r o r 95% C o n f i d e n c e I n t e r v a l f o r Mean A B C D 0.0083 0.0087 0.0064 0.0064 0, 0. 0. 0, 0050 0018 0013 0018 0.0010 0.0003 0.0003 0.0003 0.0064 0.0080 0.0059 0.0057 0.0103 0.0094 0.0070 0.0071 F R a t i o = 4 . 8 5 6 Homogenous s u b s e t s : S u b s e t 1 Group S e t D S e t C Mean 0.0064 0.0064 S u b s e t 2 G r o u p S e t A S e t B. Mean 0.0083 0.0087 1 3 7 S e t A B C D C s : Mean 0.0190 0.0124 0.0083 0.0105 St D e v i a t i o n S t E r r o r 95% C o n f i d e n c e I n t e r v a l f o r Mean 0.0087 0.0040 0.0022 0.0031 0.0017 0.0008 0.0004 0.0006 0.0156 0.0108 0.0074 0.0093 0.0225 0.0140 0.0092 0.01.1 7 F R a t i o = 2 1 . 7 5 6 Homogenous S u b s e t s : S u b s e t 1 Group Mean S e t C 0.0083 Se t D 0.0105 S u b s e t G roup Mean S e t D 0.0105 Se t B 0.0124 S u b s e t Group Mean S e t A 0.0190 "@en . "Thesis/Dissertation"@en . "10.14288/1.0062986"@en . "eng"@en . "Civil Engineering"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "The effect of microbial action on nuclear waste management: is there enhanced leaching from bitumen and increased radionuclide movement through geologic media?"@en . "Text"@en . "http://hdl.handle.net/2429/23745"@en .