"Applied Science, Faculty of"@en . "Chemical and Biological Engineering, Department of"@en . "DSpace"@en . "UBCV"@en . "Richardson, Brian"@en . "2008-07-29T20:28:52Z"@en . "1993"@en . "Master of Applied Science - MASc"@en . "University of British Columbia"@en . "For many kraft pulp mills the chemical recovery boiler, in which concentrated black liquor is burned, represents the principal obstacle to increased production. However, studies have shown that the removal of even a small portion of the lignin from the black liquor would permit an incremental increase in furnace capacity. Fortuitously, precipitation of lignin from black liquor followed by filtration, washing and drying yields a solid fuel which could be burned in the lime kiln. In order to test the suitability of the precipitated lignin as an alternate fuel, a 0.4 m ID by 5.5 m pilot rotary kiln was modified with a computer controlled screw feed system and a water-cooled lance in order to burn dry powdered lignin, with or without natural gas. In a series of trials, crushed limestone was calcined in experiments using three different kraft lignins at various levels of replacement for natural gas. Lignins precipitated from black liquor by both the mineral acid and the carbon dioxide process were burned successfully as the sole fuel, or in conjunction with natural gas, to yield a stable orange luminous flame. On a basis of constant total energy input to the kiln, comparisons are made of axial profiles of gas temperature, solid bed temperature and percent calcination as a function of the percentage of natural gas replaced by lignin. Gas and solids bed temperatures and percent calcination were found to be slightly higher at a given axial position in the kiln when burning lignin as compared to natural gas. All three lignins tested were found to produce similar results. Impurities such as sodium and sulphur, which were present in the powdered lignin, did not significantly affect the quality of the lime. All three lignins were able to produce fully calcined limestone with no detrimental effect on the slaking properties of the lime. No significant difference in reactivity and slaking times could be observed between the lime produced with natural gas and with 100% lignin firing. The lignin fuel was found to be more efficient at supplying heat to the solids bed when compared to natural gas and this was reflected in the axial calcination profiles. It was concluded that dry lignin could be an acceptable fuel in either partial or complete replacement of natural gas, without penalty in lime quality or kiln productivity. However, full scale trials will be necessary to confirm these results and to identify any potential long-term effects on white liquor or lime quality."@en . "https://circle.library.ubc.ca/rest/handle/2429/1181?expand=metadata"@en . "24584287 bytes"@en . "application/pdf"@en . "Kraft Lignin as a Fuel for the Rotary Lime KilnbyBrian RichardsonBASc. The University of Ottawa, 1988A THESIS SUBMITTED IN PARTIAL FULFILLMENT OFTHE REQUIREMENTS FOR THE DEGREE OFMASTER OF APPLIED SCIENCEinTHE FACULTY OF GRADUATE STUDIES{Department of Chemical Engineering )We accept this thesis as conformingto the required standardTHE UNIVERSITY OF BRITISH COLUMBIA\u00C2\u00A9 Brian Richardson, August 1991In presenting this thesis in partial fulfillment of therequirements for an advanced degree at the University of BritishColumbia, I agree that the Library shall make it freely availablefor reference and study. I further agree that permission forextensive copying of this thesis for scholarly purposes may begranted by the head of my department or by his or herrepresentatives. It is understood that copying or publication ofthis thesis for financial gain shall not be allowed without mywritten permission.Brian RichardsonDepartment of Chemical EngineeringUniversity of British Columbia2216 Main MallVancouver, B.C., CanadaV6T 1Z4Date: August, 1991.DE-6 (2/88)AbstractFor many kraft pulp mills the chemical recovery boiler, in which concentrated black liquor is burned,represents the principal obstacle to increased production. However, studies have shown that the removal of even asmall portion of the lignin from the black liquor would permit an incremental increase in furnace capacity.Fortuitously, precipitation of lignin from black liquor followed by filtration, washing and drying yields a solidfuel which could be burned in the lime kiln. In order to test the suitability of the precipitated lignin as an alternatefuel, a 0.4 m ID by 5.5 m pilot rotary kiln was modified with a computer controlled screw feed system and awater\u00E2\u0080\u0094cooled lance in order to burn dry powdered lignin, with or without natural gas. In a series of trials, crushedlimestone was calcined in experiments using three different kraft lignins at various levels of replacement fornatural gas. Lignins precipitated from black liquor by both the mineral acid and the carbon dioxide process wereburned successfully as the sole fuel, or in conjunction with natural gas, to yield a stable orange luminous flame.On a basis of constant total energy input to the kiln, comparisons are made of axial profiles of gas temperature,solid bed temperature and percent calcination as a function of the percentage of natural gas replaced by lignin. Gasand solids bed temperatures and percent calcination were found to be slightly higher at a given axial position in thekiln when burning lignin as compared to natural gas. All three ligmins tested were found to produce similarresults.Impurities such as sodium and sulphur, which were present in the powdered lignin, did not significantly affectthe quality of the lime. All three lignins were able to produce fully calcined limestone with no detrimental effecton the slaking properties of the lime. No significant difference in reactivity and slaking times could be observedbetween the lime produced with natural gas and with 100% lignin firing. The lignin fuel was found to be moreefficient at supplying heat to the solids bed when compared to natural gas and this was reflected in the axialcalcination profiles. It was concluded that dry lignin could be an acceptable fuel in either partial or completereplacement of natural gas, without penalty in lime quality or kiln productivity. However, full scale trials will benecessary to confirm these results and to identify any potential long\u00E2\u0080\u0094term effects on white liquor or lime quality.Table of ContentsPageAbstract^List of Tables viList of Figures^ viiNomenclature ixAcknowledgements^Introduction 1Chapter 1A Description of Wood and its Components^ 4The Kraft Cycle^ 4Removal of Lignin from the Kraft Cycle^ 6The Role of Lime and the Lime Kiln 9Lignin as a Lime Kiln Fuel^ 13Chapter 2Effects of Inerts on the Recovery Cycle^ 18Effects of Inerts on the Alkali Cycle 18Effects of Inerts on the Lime Cycle and Lime Quality^ 19Dregs and their Effect on the Lime Cycle 21The Inert Compounds in Lignin^ 22Chapter 3Scope of the Work^ 23ivChapter 4The Experimental Program^ 24Description of Pilot Plant Kiln^ 24Limestone and Lignin Feed Systems^ 28Temperature Sensors 30Sampling of Flue Gas and Analysis 34Preparation of the Lignins^ 35Determination of Particle Size of Lignins^ 39Chemical Analysis and Particle Size of Limestone 42Determination of Percent Calcination 43Determination of Slaking Behaviour and Surface Area of the Lime Products^43Experimental Procedure^ 44Chapter 5Experimental Problems^ 46Chapter 6Results and Discussion^ 51Quality of the Lignins 51Replacement of Natural Gas by Lignin^ 53Freeboard Gas Velocity^ 68Slaking and Surface Area Results^ 68Elemental Balances 78Energy Balances^ 85Conclusions^ 89Recommendations for Future Work^ 91Literature Cited^ 92Appendix ARefractory Composition and Thermal Conductivity^ 99Appendix BCalibration Charts^ 100Appendix CCalcination Results of Limestone Feed^ 103Appendix DComputer Data for Experimental Runs^ 107Appendix EOther Graphs, Temperature, Calcination & Slaking Profiles^ 249Appendix FElemental Balances for Experimental Runs^ 267Appendix GSimple Energy Balances for Experimental Runs^ 292viList of TablesPageTable 1. Fuels used in rotary kilns^ 14Table 2. Accumulation of undesirable compounds in the alkali cycle^ 19Table 3. Accumulation of undesirable compounds in the lime cycle 20Table 4. Washing conditions for lignin IR^ 36Table 5. Washing conditions for lignin PG 38Table 6. Screening results of limestone^ 42Table 7. Chemical analysis of the limestone^ 43Table 8. Results of chemical analysis on sand 47Table 9. Chemical analysis of the lignins^ 52Table 10. Summary of kiln experiments 54Table 11. Slaking results of final lime products^ 69Table 12. Chemical analysis of the lime products 79Table 13. Chemical analysis of the dust samples collected from the cyclone^ 80Table 14. Dust composition collected and calculated for runs LG15A & LG14 83Table 15. Summary of simple energy balance for all runs^ 88ViiList of FiguresPageFigure 1. A simplified diagram of a kraft recovery cycle^ 5Figure 2. A simplified diagram of the modified kraft recovery cycle with lignin recovery^ 8Figure 3. Impact of impurities on fuel consumption in the lime kiln^ 21Figure 4. Overall view of the pilot plant kiln^ 24Figure 5. A simplified diagram of the pilot plant kiln^ .25Figure 6. Details of inlet air and burner arrangement 27Figure 7. Picture of equipment at feed end of kiln^ .29Figure 8. Diagram of dams at hot and cold end of the kiln 29Figure 9. Picture of equipment at burner end of kiln^ 30Figure 10. Axial thermocouple layout of the pilot plant kiln 31Figure 11. Cross\u00E2\u0080\u0094section of kiln for thermocouple layout^ 33Figure 12. Detail of thermocouples in wall probe^ 34Figure 13. Particle size distribution of the three types of lignin^ 40Figure 14. Picture of lignin IR at 20th^ 41Figure 15. Picture of lignin WV at 200x 41Figure 16. Picture of lignin PG at 200x^ 42Figure 17. Diagram of first screw in lignin feed hopper^ 48Figure 18. Diagram of second screw in lignin feed hopper 48Figure 19. Diagram of second burner design^ 49Figure 20. Diagram of the water\u00E2\u0080\u0094cooled lance 49Figure 21. Picture of a typical gas flame^ 55Figure 22. Picture of a typical lignin flame 56Figure 23. Axial gas temperature profiles for tests with lignin WV for various replacement levelsof natural gas^ 57Figure 24. Axial bed temperature profiles for tests with lignin WV for various replacement levelsof natural gas^ 59Figure 25. Axial calcination temperature profiles for tests with lignin WV for various replacement levelsof natural gas^ 60Figure 26. Axial Calcination profiles for tests with lignin lR for various replacement levels of natural gas ^62Figure 27. Axial Calcination profiles for tests with lignin PG for various replacement levels of natural gas ^63Figure 28. Axial calcination profiles for tests with natural gas firing^ 64Figure 29 Axial bed temperature profiles for tests with natural gas firing versus 100% lignin burning^66vuFigure 30. Axial calcination profiles for tests with natural gas firing versus 100% lignin burning^67Figure 31. Slaking temperature rise curves for tests with natural gas firing^ 71Figure 32. Slaking temperature rise curves for tests with lignin WV^ 72Figure 33. Slaking temperature rise curves for tests with natural gas firing versus 75% lignin burning^73Figure 34. Pictures of a lime particle from run LG15A^ 75Figure 35. Pictures of a lime particle from run LG10A 76Figure 36. Pictures of a lime particle from run LG12B^ 77Figure 37. Elemental balance for natural gas firing (LG15A) 81Figure 38. Elemental balance for 100% lignin PG burning (LG14)^ 82Figure 39. Sulphur found on the lime versus input from lignin 84Figure 40. Sodium found on the lime versus input from lignin^ 84Figure 41. Net heat transfer rates for natural gas (LG15A) 86Figure 42. Net heat transfer rates for 100% lignin WV (LG14)^ 86Nomenclaturea:^constant for refractory, W/m0:^constant for refractory, W/m KCp:^heat capacity, Icl/lunol KF:^fractional calcinationH:^enthalpy, kT/kmolk:^thermal conductivity, W/mM:^molar flowrateR:^radius, mT:^temperature, KZ:^length of kiln section, mSubscriptsg:^gask:^axial positionLMS: limestonew:^walls:^solidsss:^steady\u00E2\u0080\u0094stateixxAcknowledgementsThis work was supported by an N.S.E.R.C. Co-operative Research and Development Grant, with the Pulpand Paper Research Institute of Canada (Paprican) as an industrial partner. The original idea was conceived by J.T.Wearing and V. Uloth at Paprican, who influenced me to undertake the work. Their help was much appreciatedthroughout the project. Special thanks to Dr. A.P. Watldnson and Dr. P. Barr for their guidance and supervisionduring the course of the work.The rotary kiln experiments could have not been completed without the physical assistance of both R.Cardeno and P. Wenman. Chemical analysis was provided by J. Ing, reactivity analysis by G. Dorris and N. Pageof Paprican and size distributions by I. Hwang of UBC. Thanks are expressed to Dr. K.C. Teo for the manyinteresting and enlightening conversations on the chemistry of lignin. Photographs of experimental equipmentwere taken by P. Eng of Paprican.\"Experience is what you get when you don't get what you want.\"Wanda Webb, Ringgold, Ga.1IntroductionThe fossil fuel requirement of the lime kiln remains the last barrier to energy self\u00E2\u0080\u0094sufficiency in modern kraftpulping technology. Many alternative and supplementary fuels have been proposed for kilns, such as pulverizedcoal and hog fuel, turpentine, stripper overheads, black liquor, gasified hog fuels, crude tall oil, and lignin [1-18,20,24-28,34,36,42,451. However, all these possible fuels have certain drawbacks. For example, systemsusing pulverized coal and hog fuel have storage and handling problems. It is not possible to store or stockpilethese fuels in the pulverized state because of the potential for spontaneous combustion. In addition, most coalscontain sulphur and a moderate ash content which cause problems for kiln utilization [21-23,24]. With hog fuelsone must contend with the addition of aluminum and silica to the liquor cycle [3,5]. Mills with turpentinecollection facilities often use its fuel value in determining a base sale price and fire turpentine in the kiln whensale prices are low. Therefore the cost saving from using turpentine as a supplementary fuel is offset by thepotential revenue from its' sale. Turpentine prices vary widely [45] but have risen sharply in recent years. Theuse of condensate stripper overheads is not economically attractive because of the cost of installation of arectification column to upgrade these gases for use as a fuel [45]. The gasification of hog fuel involves a complexdrying, pulverizing and gasifying system and as in the case of pulverized hog fuels, but not to the same extent,adds aluminum and silica to the liquor cycle [1-9]. The gasifier temperature is controlled by the flow of inlet airand this flow subsequently becomes the fuel stream for the kiln. The gas flow to the kiln can be increased fromtime to time by controlling the gasifier temperature, leading to increased entrainment and an altered temperatureprofile in the kiln [5].Full scale mill trials have shown that kiln fuel oil requirements can be reduced by up to 50% when wethardwood chips or screened wet hog fuel are fed with the lime mud into the cold end of a kiln [15-17]. Nodeleterious effects on mill operation or pulp quality were noticed during or after 44 days of continuous biomassfeeding. Although dust losses were high at low kiln loading, when the kiln was operated at 90% of the design2throughput dusting was only marginally higher than for the baseline conditions. Complete fossil fuel replacementwas not, however, feasible.Lignin combustion in the lime kiln could reduce or eliminate the requirement for purchased fossil fuel whilepermitting increases in recovery furnace throughput [34,36,39-41]. While energy recovery from black liquor isrequired for the economic operation of the kraft mill, many mills currently operate the recovery furnace at or aboveits design thermal capacity. Earlier studies have shown that removing a small portion of the lignin present in theblack liquor will not adversely affect black liquor combustibility [34,37,38,41] and that reducing the heat load tothe furnace could permit increased pulp production [34-42]. A proposed process has been described in whichlignin is precipitated by carbon dioxide to produce a 30 wt% lignin suspension. This lignin is partially dewateredon a hot drum separator to produce a wet lignin fuel of undisclosed moisture content [36,39]. The role of moisturecontent on heating value and fossil fuel replacement potential has been discussed and the adiabatic flametemperature of lignin fuels and conventional fossil fuels have been compared. If lignin moisture content ismaintained below 30%, the calculated adiabatic flame temperature is greater than the 1750\u00C2\u00B0C required for propercalcination when replacing a fossil fuel [42]. Drying of the precipitated lignin is undoubtedly expensive, althoughdesirable from the point of view on the heating value of the fuel as fed to the kiln. Should use of recovered ligninas a lime kiln fuel be feasible, the amount of drying done prior to firing will be dictated by the combustibility ofwet lignin, handling problems and economic considerations.Computer simulation has shown that, for the production of modified lignin products, lignin removal byultrafiltration is both feasible and economical [35]. Payback times of less than one year have been estimated foran acid precipitation plant if the recovered lignin is burnt in a wood-fired boiler or lime kiln [41]. A ligninrecovery plant using carbon dioxide for precipitation has been estimated to have a 4-5 year payback time, when21% of the recovered lignin is sold as a specialty chemical and the balance used as fuel in the lime kiln at 91%replacement of the fossil fuel [43,44].3In the present work dried lignin powders from carbon dioxide and sulphuric acid precipitation were assessed asfuels in a pilot scale lime kiln. The objective of the work was to examine the combustion of the recoveredlignins, co\u00E2\u0080\u0094firing at high levels of natural gas replacement and as the sole fuel, in order to determine the impact onkiln operation of changing fuels from natural gas to lignin. The effect of impurities, which are left in the ligninpowder after washing, on lime quality and the effects of lignin firing on dust composition were also determined.4Chapter 1A Description of Wood and its ComponentsWood is composed of cellulose (-45%), hemicellulose (25-35%), lignin (20-25%) and extractives (2-8%)[73]. The precise amounts of these components vary depending on the wood species. The extractive substances inwood are compounds such as terpenes, resin and fatty acids, phenols, unsaponifiables and neutral compounds suchas beta-sitosterol, juviabione. Lignin is an amorphous, highly polymerized substance consisting primarily ofphenyl propane units linked together in three dimensions [73]. It is the 'glue' which binds the fibers together inthe tree. Lignin and the extractives are removed from the wood to free cellulose and hemicellulose, which are usedto make paper. The Kraft process uses a solution of sodium hydroxide and sodium sulphide to break the ligninmolecule into smaller fractions whose sodium salts are soluble in the cooking liquor.The Kraft CycleThe lcraft recovery process operates according to the cycle shown in Figure 1. The process begins at thedigester, where wood chips are cooked with white liquor (Na2S & NaOH) at high temperature and moderatepressure to penetrate and dissolve the lignin. Weak black liquor is separated from the pulp on a series of brownstock washers. Using a countercurrent washing scheme, wash water is minimized. The weak black liquor (-15%solids) is concentrated in multiple-effect evaporators to produce strong black liquor (--.50% solids). During theevaporation process the tall oil soaps become insoluble. Midway through the multiple-effect evaporators, wherethe black liquor contains about 24% to 28% solids, insoluble tall oil soaps are skimmed from the liquor. Theskimmed liquor is then returned to the next evaporator effect. Black liquor is further concentrated into heavy blackliquor (---60% solids) using a direct-contact evaporator or a concentrator. Oxidation is required in conjunction withdirect-contact evaporators to minimize the emission of odorous sulphur gases. Heavy black liquor is burnt in the5Figure 1. A simplified diagram of a kraft recovery cyclerecovery furnace to produce steam for the mill and a molten inorganic smelt (Na2S & Na2CO3), which is removedfrom the bottom of the furnace and dissolved in weak wash to form green liquor. The recovery furnace is operatedunder reducing conditions such that sodium sulphate is converted to sodium sulphide. Insoluble materialsconsisting of fluffy unburned carbon particles called dregs [65] and inorganic impurities (silca, iron, alumina,calcium, magnesium, chromium and sulphides, [65,66]) are removed from the green liquor in a clarifier. Dregs areintroduced from the following sources; 1) incomplete furnace combustion, 2) makeup saltcake and lime, 3) woodchips, 4) furnace and kiln linings, and 5) corrosion and scaling of digesters, evaporators and piping [66]. The dregsare washed with fresh water to remove entrained liquor and produce weak wash, and are then sent to landfill.6Calcium oxide from the lime kiln is slaked in green liquor to produce calcium hydroxide with the evolution of heat= -67 ki/mol @ 100\u00C2\u00B0C), which is further converted to calcium carbonate (and sodium carbonate to sodiumhydroxide) by the green liquor in the causticizers (a series of agitated tanks). The reactions by which this occursare shown below. Both reactions are reversible and heterogeneous, since CaO, Ca(OH)2 and CaCO3 are present assolid phases during the course of the reactions [56]. Calcium carbonate produced during causticizing has a verylow solubility and precipitates from the solution. Slaking and causticizing are consecutive but are also concurrentreactions most of the time (i.e. causticizing starts as soon as some slaking has occurred). However, the rate ofslaking is much faster than the rate of causticizing [56].CaO + H20 <\u00E2\u0080\u0094> Ca(OH)2 + Heat { slaking }Na2CO3 + Ca(OH)2 <\u00E2\u0080\u0094> 2 NaOH + CaCO3,I, causticizing }The product solution, called white liquor, consists primarily of sodium hydroxide and sodium sulphide. Limemud (calcium carbonate) is removed from the white liquor in a clarifier. The white liquor is returned to thedigester for cooking to complete the cycle. The lime mud is thoroughly washed on a drum filter to remove anywhite liquor, then calcined in the rotary lime kiln to regenerate lime via the reaction:CaCO3 + Heat <\u00E2\u0080\u0094> CaO + CO21' {calcination}The reburned lime is returned to the causticizers to convert the green liquor to white liquor.Removal of Lignin from the Kraft CycleProduction in many kraft mills is limited by the thermal capacity of the recovery boiler. Removal of afraction of lignin from the black liquor would reduce the heat load on the recovery furnace and permit anincremental increase in furnace capacity. Since the gross heating value of the black liquor is reduced by lignin7removal, the flow of black liquor to the furnace can be increased which results in a corresponding increase in pulpproduction. Approximately half of the organic material in black liquor is dissolved lignin, with the remainderconsisting mainly of carboxylic acids [32]. During the cooking process lignin is dissolved by the hydroxyl andhydrosulphide ions present in the pulping liquor to form phenolate or carboxylate ions. When black liquor isslowly acidified the dissolved lignin becomes insoluble and precipitates leaving the spent cooking chemicals in amore viscous solution. Black liquor can be removed easily from the liquor cycle, either just after the soapskimming tank or before the black liquor is burnt. The amount of black liquor diverted for lignin removal willdepend on the amount of fuel to be replaced in the kiln by lignin, but no more than 15% of the total lignin needbe removed for 95% fossil fuel replacement in the lime kiln by lignin [42]. Removal of 15% of the total ligninwill reduce the liquor's calorific value by 12%, but does not affect the combustibility of the liquor [37,38,41].Proposed methods for lignin recovery made use of either pure carbon dioxide or sulphuric acid [29-39,43,44]. Theacid used must not interfere with any of the following recovery operations. Figure 2 shows the process flow chartmodified to include the streams required for a lignin recovery process and that carbon dioxide or sulphuric acid areadded in the same place regardless of the precipitation method. Generator waste acid (GWA) from the C102generator might also be used for lignin precipitation, but if more than 15% of the total lignin is to be recoveredcarbon dioxide may be required [41]. Where GWA is not available, carbon dioxide is preferred because it wouldminimize the disruption of the mill chemical balance. Flue gases with a high carbon dioxide content can be used,but purchased carbon dioxide may be necessary [29-33,36], if a final pH of <9.3 cannot be obtained using fluegases. A pH of <9.3 is required to produce a coagulatable lignin [29-31,33,43,44]. Residual oxygen in the fluegas is also believed to have unfavorable effects on the properties of precipitated lignin [29].Removal and acidulation of oxidized strong black liquor minimizes the release of odorous reduced sulphurgases to the atmosphere [41]. Acidification by sulphuric acid is quicker and easier to control, but carbon dioxidefrom flue gas is cheaper [29]. Careful temperature control is required during precipitation of lignin to avoid finedispersions or a colloidal solution [30,41]. An optimum temperature of 80\u00C2\u00B0C has been found to produce an easilyfiltered lignin product [30,31,34]. This temperature will depend on the nature of black liquor and if exceeded, thelignin will melt into an unfiltrable tar [29]. After degassing the acidulated black liquor, the precipitated lignin52Figure 2. A simplified diagram of the modified kraft recovery cycle withlignin recoverymust be separated from it and the filtrate returned to the chemical recovery cycle for economical operation of thepulp mill [29]. Gases released during the acidulation step contain hydrogen sulphide. By scrubbing these gaseswith white liquor [41] some of the lost sulphur can be recovered and returned to the liquor cycle. The addition ofpH adjusted filtrates to black liquor was found to significantly increase the rate of Burkeite scaling in laboratorytests [41]. Removal of precipitated lignin from the acidified black liquor is desirable to avoid subsequent foulingin the multiple\u00E2\u0080\u0094effect evaporators [29]. Cooling of the lignin after precipitation increases its particle size [40] andwill aid the filtration step by preventing the formation of gummy lignin [43,44]. Sodium is bound to the9carboxylic and phenolic groups when lignin is precipitated, therefore it should be thoroughly washed withsulphuric acid (at a pH .....4) and water to reduce the amount of sodium and sulphur in the lignin [30,41,43].Sodium compounds are believed to cause ring and ball formation problems in the lime kiln [60,67,68]. Waterwashing of the lignin reduces the low\u00E2\u0080\u0094molecular\u00E2\u0080\u0094weight fraction in the final lignin product [32]. It has beenfound that washing lignin precipitated by CO2 consumes more mineral acid than washing lignin precipitated bysulphuric acid [76]. Purchased sulphuric acid or GWA from the chlorine dioxide plant can be used for ligninwashing [34,41]. In bleached haft mills with modified Mathieson chlorine dioxide generators, 10 to 15% of thetotal lignin may be precipitated and washed using GWA with no net effect on the mill's sulphur balance [41]. Thecurrent trend in kraft mills, however, is to replace the C102 generator with a methanol\u00E2\u0080\u0094based process [43] and thuseliminate the waste acid stream. If the acid washings (H2SO4) were returned to the chemical recovery cycle [43],the required quantity of pure sulphuric acid needed to wash a CO2 precipitated lignin would drastically upset thesulphur balance in the liquor cycle of a modern haft mill. Sewering precipitator dust from the recovery furnacemight be necessary to maintain the mill's sulphur balance [44].Further processing of the lignin may be necessary to improve the combustibility and handling characteristicsof this fuel. Although drying the washed lignin will increase the heating value of the fuel, this is an expensiveprocess. The extent to which drying is necessary will be determined partly by the combustibility required of thelignin [42], and partly by handling problems and economic considerations. Wet lignin should contain less than25-30% moisture to ensure that enough heat is supplied to the kiln to satisfy the overall heat balance of the unitand ensure complete calcination of the lime mud [42]. Until the current work no studies have been reported in theliterature on the development of either a lignin feed system or a lignin burner.The Role of Lime and the Lime KilnThe slaking of calcium oxide to calcium hydroxide is an exothermic reaction. Since the rate of slaking ismuch faster than the rate of causticizing, the overall reaction rate is controlled by the causticizing reaction10[56,69,70]. Completeness of the causticizing reaction determines the amount of carbonate deadload in the liquorcycle [69,70]. Slaking rate is an easy and quick test to determine the reactivity of lime. In general reactivity willdepend upon porosity and surface area, the impurities present in the lime and whether the lime has been sintered.The test for reactivity involves the measurement of temperature rise as a function of time during hydration of thelime [55,56,69,701. This value can be related to the limes' surface area [55,56,69] and the degree of causticizing[70]. A highly reactive lime produces a slower settling mud (calcium carbonate) at the causticizing step and thecontrary holds true [69,70].The role of the rotary lime kiln in the lime cycle is to calcine the calcium carbonate (lime mud) to regeneratecalcium oxide (lime) for reuse in the causticizing process. Rotary kilns are long cylindrical heat exchangers thatare lined with refractory bricks. They are slightly inclined from the horizontal and are slowly rotated. Lime isintroduced into the kiln at the uphill or cold end. A burner is installed at the downhill or discharge end to provideheat for transfer to the countercurrent moving bed of solids. Heat transfer from the freeboard gas to the bedmaterial and refractory walls is generally dominated by radiation with convection playing a relatively minor role[48]. Radiation from the freeboard gas occurs from emitting gases such as CO2, H20, etc. and from particulatedust present in the gas. Nitrogen and oxygen in the combustion gas are radiantly transparent and do not contributeto the heat transfer process. Through the formation of radiantly emitting gaseous products of combustion,especially CO2 and H20, all hydrocarbon flames produce significant levels of radiative heat\u00E2\u0080\u0094transfer. However thepresence of particulates in the flame can enhance radiative heat\u00E2\u0080\u0094transfer on account of emission from theseparticles. Flame luminosity is primarily associated with particulate emission. Flames which do not containparticulates (or do not generate significant levels of carbon by pyrolysis), for example natural gas flames, arenearly invisible while flames which contain high levels of particulate loading, for example oil or candle flames,are clearly visible. Since the presence of particulates can significantly increase radiative heat\u00E2\u0080\u0094transfer, the thermalbehaviour of the rotary kiln can be expected to change when converting the fuel from natural gas to powderedlignin. Flame shape, colour, emissivity, temperature and a rolling or cascading bed action all determine theefficiency of heat transfer from the flame to the kiln bed [47,48]. The flame shape to some extent determines theproduction capacity, thermal efficiency, product quality and service life of the refractory. Short intense flames11which are too hot can cause refractory damage and dead-burned lime. Dead-burning is to be avoided because it hasa negative impact on reactivity of the lime [49]. The factors which influence flame configuration can becategorized into those which are fixed by the type of burner selected and those which can be changed by the kilnoperator [55]. Some of the flame control factors that are fixed by the burner design are:1)kiln diameter2) type of fuel3) fuel delivery tube sizeThe factors which can be controlled by the kiln operator might include:1) fineness or atomization of the fuel2) feedrate of fuel3) temperature of fuel4) velocity of transport air for fuel5) flowrate & ratio of primary & secondary air6) temperature of inlet combustion air7) burning zone wall temperature8) burner position9) kiln loadingIn general for liquid and gaseous fuels the flame shape and length depends primarily on the quantity andmomentum of the fuel and air streams rather than on the nature of the fuel [49]. Certain fuels are innately moreconducive to producing porous, soft-burned, reactive limes; others tend to yield hard-burned, slow-reactive limes;while others are intermediates. Consequently, selection of the proper type of fuel is vital for optimum efficiency[55]. Quality lime is dependent upon a long, lazy flame, stretched out over a reasonable length of the kiln [47](constant heat transfer at a reasonable temperature). The retention time of kiln material is a function of kiln speed,slope, length, diameter, angle of repose of the bed material and whether dams are installed. The size distribution ofthe feed has a strong influence on the exposure of single particles to flame and gas radiation [48,54]. Dead-burnedor sintered lime is induced by calcination at elevated temperatures (1540-1650\u00C2\u00B0C) and causes pore shrinkage, whichresults in reduced porosity, surface area and a loss in chemical reactivity [55].12Because of the high energy (AH = 1.70 MI/kg @ 1173 K) requirements for calcination, low fuel costs and anenergy efficient kiln are a must for economic operation. The overall mass and energy balance for a rotary limekiln depends on its length and diameter, refractory layout, quantity of chain and if satellite coolers are installed[49,50]. In the rotary kiln the material undergoes a thermal sequence consisting of drying, followed by heating tocalcination temperature (,-.800\u00C2\u00B0C) and fmally the calcination reaction itself. The chain section in the rotary kilnaids the drying of the lime mud and decreases the dust lost from the kiln. Dry lime mud is a fine powder that mustbe agglomerated in the kiln into nodules so that the product can be handled easily [49]. Size and porosity of thesenodules can be related to the flame shape and inerts in the lime mud, especially the sodium [49].As shown in Appendix G, net rates of heat transfer can be calculated from measured temperatures and flows.The complex interactions of firing conditions can be studied by calculating the heat flows within the kiln. The netrate of heat transfer through the shell, from the freeboard gas and to the solids bed require axial temperature andcalcination profiles [50-52,54]. The net rate of heat transferred by the gas at the kth axial position over a lengthof the kiln in the non-flame region, dZ is calculated as follows [54]:* dTg dMcO2 QFBGk = Mg * CiA^* CpCO2 * (Tg - Ts)Ci4 dik(1)Net rate of heat transfer to the bed per unit length of the kiln is found by [54]:di.^ dFk fQS014 = Ms * (\u00E2\u0080\u0094I * (1 - F(C)) * CpLMS + F(k) * CpCa0 + dZk\u00E2\u0080\u0094 * Oka() + HCO2 - HLmS))^(2)Z Heat transfer from the kiln shell occurs by both radiation and by convection which are functions of theambient air temperature and wind velocity [48]. This loss can be found by using a one dimensional heatconduction equation applied to a cylindrical body, knowing temperatures at two radii within the refractory wall andthe thermal conductivity of the refractory [54]. When the thermal conductivity of the wall varies linearly withtemperature according to:13k=a*(1.0+13*1)^ (3)then loss can be shown to be:QSSk = 2 * * a * (1 + f * (Twsavk + T2k) / 2) * (Twsavk - T2k) / 102 / Rss)^(4)A detailed energy balance over a unit length of the kiln is described in the literature [50-54].Lignin as a Lime Kiln FuelIn Canada and the USA the majority of lime kilns are fired with natural gas or Bunker C oil. However, sincethese kilns (including those in kraft mills) are consumers of relatively large amounts of energy, numerousattempts have been made to use alternate cheaper fuels, either in combination with oil or gas, or as a substitutefuel. Table 1 list fuels that have been used in rotary cement or lime kilns. The coal/oil mixture has been firedonly in a power boiler, however the similarity of this fuel to the coal/oil/water combination should make itsuitable for the lime kiln. Although lignin has not been reported in the literature as being burned in the lime kilnas a fuel, the fact that it has a composition of approximately 59-63% carbon, 5-6% hydrogen, 25-26% oxygen,<2% nitrogen, a higher heating value in the range of 24-27 MJ/kg (all on a dry weight basis) and an air to fuelratio of 7.8 kg/kg make it an excellent potential fuel. Comparing the elemental analysis of the fuels in Table 1with that of lignin, it is evident that lignin is a highly oxygenated fuel, with a respectable heating value. Theheating value of dry lignin is comparable to coal (29 MJ/kg), 21% lower than natural gas and 33% lower thancrude oil.Carbon dioxide precipitation produces a lignin low in sodium but high in sulphur, whereas mineral acidprecipitated lignin is high in sodium and only slightly lower in sulphur [30,34]. Both of these lignins wouldrequire washing to lower the concentration of the two components so that it may be used as a fuel in the limeTable 1. Fuels used in rotary kilnsType of FuelAmountUsed %CalorifictValueAir/Fuelkg/kg C H 0wt Percent (typical)N^S Na H20 AshCrude oil 100 40.61 13.6 87.3 10.5 0.6 0.0 0.8 0 0.0 2Turpentine 5-25 41.87 13.1 81.2 11.2 2.5 0.0 0.0 0 5.1 0Tall oil 5-75 36.40 12.3 77.8 11.0 8.8 0.0 0.05 0 1.9 1Methanol 100 22.68 20.9 37.5 50.0 12.5 0.0 0.0 0 0 -Ethanol 100 29.67 17.8 53.3 35.6 11.1 0.0 0.0 0 0 -Natural gas 100 33.50* 16.7 74.3 23.9 0.4 1.4 0.0 0 0 0Odorous gases 5 23.35* 5.8 22.8 5.6 2.0 0.0 49.8 0 19.8 -Stripper o/heads 10-20 15.26* 3.9 23.1 6.1 19.9 0.0 0.9 0 50.0 5Hydrogen 15-75 141.80 34.2 100 - -Producer gas 100 5.25t 9.8 14.4 26.3 19.3 40.0 - -Coal gas 100 6.70* -Wood gas 100 6.10* -Bark gas 100 5.85* -Coal dust 50 29.30 70-90 4-6 4-6 1 1-5 1-15 4-12Coal/Oil 100 36.75 0.5-1 2-4Coal/Water 100 24.40 2 1Coal/Oil/Water 100 36.75 0.5-1 2-4Charcoal 100 27.20 2 -Bark 100 16.75 1.5 -Saw dust 100 17.60 0.5 -Petroleum coke 50-80 29.30 81 1.5 2 1 1 2 13t Mykg^t MJ/m3^References [45,46,55] 4'7:15kiln. Some of the sulphur present is organic sulphur which is chemically bonded to the lignin and can not beremoved by the acid washings. Organic sulphur would produce SO2 which would react with calcium oxide toform calcium sulphate, an inert compound in the lime cycle. Since sodium is believed to cause ring and ballformation in rotary kilns its level should be controlled. In contrast to the Kraft process, the alcohol pulpingprocess (which has no lime kiln) dissolves the lignin in the wood to produce a lignin free of sodium and sulphur.Although this high purity lignin has the potential to be one of the best lignin fuels, the retail value as a substituteor precursor in the plastics industry is also high which may act as a deterrent for use as a fuel.Powdered lignin is a nontoxic stable product which should be stored in a cool dry warehouse, but away fromstrong oxidizing agents, heat and ignition sources. However, like all dry powders, lignin in its dry state doeshave some disadvantages. For example, accumulation of lignin dust with an ignition source may result in anexplosion.Other fuels listed in Table 1, some of which are used to calcine lime mud, may be found as a supplementaryfuel for the kiln in kraft mills. However these fuels are not in wide use, nor do they completely replace the fossilfuel normally used. When these fuels are used in the !craft mill, the process has generally been developed as ameans of disposal for the mill, rather than a quality alternate fuel for the lime kiln. A summary of the problemsassociated with those of the fuels used in the kraft mill follows.Some kraft mills in Austria, Finland, Portugal and Sweden replace some or all the fossil fuel in their limekilns by gas produced from gasified woodwaste [1-5]. The gasification temperature is controlled by air flow; theoffgas becomes the fuel stream to the lime kiln [1-3]. The use of gasified biomass in the lime kiln has thefollowing effects: 1) Flue gas flowrate in the lime kiln can be increased by as much as 13%. The increasedepends on the quality of gas from the gasifier [3]. 2) The biomass for gasification must be dried to obtain aquality gas that has a heating value sufficient for calcination. Because of the poor quality of the fuel the flametemperature is lower, but high enough to calcine the lime mud [3]. 3) The axial gas temperature profile is shiftedwhen a gasifier is used [3]. This is due to the increased gas flowrate through the kiln. Temperatures are lower at16the burner (front) end and higher at the gas exit (back) end. This slight shift in gas temperature profile has noeffect on the calcination of the lime mud [3]. 4) Inert material (aluminum and magnesium) carryover in the gasfrom the gasifier is negligible and is lower than that from makeup limestone. Dust which does escape the cycloneis mostly carbon (.....80%) and burns in the flame [3].Lime kilns can be fired directly with a suspension of dried pulverized woodwaste and/or bark [10-13]. Flamestability is ensured by maintaining a particle size of less than 15 mm with a moisture content of 15% or less[11]. The flame length was found to be twice as long and the temperature cooler (1480\u00C2\u00B0C or 18% lower) whencompared to oil firing [10]. The advantages to this type of system have been: 1) 100% replacement of fossil fuel;2) improved quality of lime mud and lime; 3) no detrimental effects to the lime and liquor cycle by inerts andunburned carbon [10]. Handling of dry pulverized wood waste is not without operating problems, however.The burning of crude tall oil (CTO) as a fuel in the lime kiln does provide the haft mills with a simple andeconomical solution to a potentially serious problem of soap disposal. Pump failures and burner nozzle erosionhave been experienced while burning CTO, due to its non\u00E2\u0080\u0094lubricating, corrosive nature and the high pressuresrequired for atomization. The tall oil flame was found to be hotter and more luminous than that of natural gas,however no change in the kiln's energy efficiency was observed [18]. It has been estimated that soap removal isworth 50 t/d of additional pulp production [45]. The use of CTO as a supplementary fuel for the kiln leads tosavings of less than 10% [18].Most la-aft mills collect malodorous non\u00E2\u0080\u0094condensible gases from multiple\u00E2\u0080\u0094effect evaporators and digesters inorder to comply with atmospheric emission regulations of reduced sulphur gases [25,26,45]. These gases areusually disposed of in lime kilns, power boilers or dedicated incinerators [71]. The lime kiln satisfies the requiredtemperature of 750\u00C2\u00B0C at 0.54 sec retention time for thermal oxidation of these sulphur gases to produce carbondioxide and sulphur dioxide [28]. If these gases are burnt in the lime kiln, sulphur dioxide reacts with the lime,hence burning the non\u00E2\u0080\u0094condensible gases in the lime kiln does not increase the amount of sulphur gases beingemitted from lime kiln by any measurable amount [28]. The sulphate and sulphite ions formed are carried into the17white liquor cycle in the causticizing plant and reduced to active sulphide in the recovery boiler [28]. Reducedsulphur compounds (TRS) present in the non-condensible gas streams will oxidize in a lime kiln to form sulphurdioxide, which can then react with the dust (calcium oxide from reburned lime) to form calcium sulphate [66].Calcium sulphate melts and becomes sticky at a temperature of 1450\u00C2\u00B0C [66]. Rings starting just downstream ofthe flame tip were found in lime kilns where NCG were burnt with no scrubbing to remove TRS & hydrogensulphide [66,67]. Ring formation in the kiln was not a problem after scrubbing was initiated to remove TRS[66].The recoverable quantities of turpentine from digester condensates in softwood mills vary from 0.5 to 10 kgper tonne of pulp [45]. Variation in yield is due to wood species, season, wood storage and the procedures andequipment used for the relief and condensation of the volatile vapors [28]. Crude sulphate turpentine is an ambercolored liquid with a flash point of about 35\u00C2\u00B0C and has toxic vapors [28]. Cost savings from using turpentine as asupplementary fuel are offset by the potential revenue from its sale as a solvent or as an intermediate and precursorto the chemical and rubber industries. Mills with turpentine collection facilities often use its fuel value indetermining a base sale price and fire turpentine in the kiln when sale prices are low [45].The overheads from a steam stripper consist mostly of methanol and TRS compounds, mixed 50:50 withwater vapor. The use of stripper overheads is not economically attractive because of the cost of installation of arectification column to upgrade the fuel for use. This would reduce the amount of water vapor fed to the kiln, butthe reduction in fossil fuel requirements is negligible [45].Pulverized coal is mixed with fuel oil and water in a patented process to form a homogeneous mixture, whichis stable for months at temperatures below 55\u00C2\u00B0C. For burning and proper atomization, this fuel must be heated to99\u00C2\u00B0C. The slurry produced an easily controlled flame in the lime kiln. The flame pattern was found not to beaffected by the air flow but by the type of burner used. During an eleven day trial, no changes were noticed in thecooking, evaporation, or recovery areas as a result of burning this mixture [24]. There was no mention of ashproblems or the loss of available lime due to sulphur dioxide.18Chapter 2Effects of Inerts on the Recovery CycleBecause the Kraft process recycles the cooking chemicals (Fig. 1), the efficiency and operation of a unitprocess inherently affects that of the next and so on. Thus the introduction of a fuel taken out of one part of thecycle, and carrying with it certain inherent impurities, into another part of the cycle could have an impact on thewhole process. The recovery process of most kraft mills is becoming increasingly closed which means that thetendency for inerts to build up in the process has also increased. Reasons for the closure are tighter pollution laws(due to public pressure) and rising chemical costs. The effects of inert material and non\u00E2\u0080\u0094process elements in theliquor cycle include reduced production in capacity limited process units e.g. the recovery furnace and the formationof scales and deposits in the evaporators [58]. The use of lignin as a fuel in the lime kiln represents the closing ofa kraft mill for required external energy, however this could lead to problems in other processes.Effects of Inerts on the Alkali CycleThe tendency of the various elements to accumulate in an alkali cycle decrease in the following order: K, Cl,Al, Fe, Si, Mn, Mg, and Ca [60]. This trend is also reflected in the accumulation factors given in Table 2. Mg,Ca, Mn, and Fe do not build\u00E2\u0080\u0094up, with increasing closure, since they form insoluble compounds in the green andwhite liquor cycle [59]. These compounds are removed from the cycle by the green liquor clarifier or the slakers.19Table 2. Accumulation of undesirable compounds in the alkali cycle[601ElementAccutnulationtFactorPotassium 11.6Chloride 3.7Aluminum 1.2Iron 0.6Silicon 0.5Manganese 0.3Magnesium 0.1Calcium 0.02t Accumulation factor = conc. in white liquor (kg/ADt of pulp)divided by the total amount introduced to the chemical recoverysystem (kg/ADt of pulp).Effects of Inerts on the Lime Cycle and Lime QualityThe accumulation of non\u00E2\u0080\u0094process elements in the lime cycle decreases in the following order: Mg, Al, Fe,Mn, P, S, Cl [60]. Accumulation factors for the lime cycle are given in Table 3. From this list the mostundesirable elements are silicon, magnesium, iron and aluminum. Increasing the silicon concentration in the limemud may reduce the reactivity of the lime because the silicon compounds melt on the surface of the lime pellets,decreasing porosity [60]. The maximum acceptable concentration of silica in lime is considered to be 4% [60].Separation of white liquor from lime mud is hampered by the presence of magnesium and iron. Magnesiumhydroxide is gelatinuous and plugs the wire mesh on the drum filter. The maximum acceptable content of MgO inlime is 2% [60].20Table 3. Accumulation of undesirable compounds in the lime cyclemElementAccumulationtFactorMagnesium 7.5Aluminum 6.0Iron 5.4Manganese 2.3Silicon 0.6Sodium 0.4Potassium 0.2Sulphur 0.1Chloride 0.04t Accumulation factor = conc. in the lime mud fed to calciner(lcg/ADt of pulp) divided by the total amount introduced to thechemical recovery system (kg/ADt of pulp).High concentrations of sodium and potassium cause slabbing and ring formation in the lime kiln due to theiradhesive effect [60,67,68]. Low alkali content in the lime mud causes poor pelletizing and increases dusting in thelime kiln. The concentrations of water soluble alkali compounds in the lime mud should be between 0.2 to 0.7%(as Na2O) [60].K, Cl, Al, and Si form soluble species in the liquor system [59], that have no distinct discharge point fromthe recovery system and tend to accumulate in the alkali cycle [60]. Ca, Mg, P. and Mn are transferred from thealkali cycle to the lime cycle and accumulate there [60]. In well designed and operated green and white liquorclarification operations, Ca, Mg, and heavy metals will be substantially reduced by removing the dregs and grits orby lime losses [58,60]. Magnesium enters the lime cycle with makeup lime and smelt from the alkali cycle.The major drawback with a high impurity level is the required increase of fuel needed for the lime kiln toproduce a given amount of calcium oxide [57], as shown in Figure 3 (energy losses shown are typical of olderkilns). Impurities in the lime cycle are capable of negating the saving resulting from high purity lime makeup by161210^20^30^40% Inerts in Reburned Lime5021wasting heat in the kiln, and impair equipment capacity [571. The reason for this is that at kiln temperaturesabove 1200\u00C2\u00B0C, uncombined acid oxides (from the fuel or in the lime mud) are absorbed by CaO to form variouscomplex calcium compounds, such as monocalcium and dicalcium silicates, calcium aluminates, dicalcium ferrite.This produces a slagging effect that tends to cover the pores in the lime and suppress its reactivity [55].Figure 3. Impact of impurities on fuel consumption in the lime kiln[571Dregs and their Effect on the Lime CycleIt is generally believed in the pulp and paper industry that dregs have a detrimental effect on liquor, lime mudand calcined lime quality. The concentration of dregs in green liquor does not effect the chemical quality of thewhite liquor (causticizing efficiency, sulphidity and activity) [62]. However, the rate of settling in the green liquorclarifier is increased with dregs concentration which is favourable, but calcium losses are increased at the greenliquor clarifier with the dregs [62,63] since the presence of dregs increases the surface tension and water holdingability of the lime mud [62]. High dregs carryover causes highly insoluble sodium in the mud which results in22non\u00E2\u0080\u0094uniform nodule formation and decreased reactivity of the lime [49]. An excess of dregs in the lime cycle candouble the sodium loading to the kiln [62].The Inert Compounds in LigninThe primary components of concern left in lignin after washing are sodium and sulphur. If the total sodiumconcentration is above 0.7% (as Na20) in the lime mud, then ring and ball formation is possible [60]. Anotherpossibility is for the sodium to react with the sulphur present in the fuel to form sodium sulphate. If reducedsulphur compounds are burnt in the presence of excess oxygen, sulphur dioxide will be formed and will react withthe reburned lime to form sulphate. Sulphur that is found in lime and lime mud is present as sulphates ofcalcium, magnesium and sodium [64]. During the causticizing process most of the calcium sulphate is convertedto soluble sodium sulphate, only to leave the lime cycle with the white liquor [64]. If either component sodiumor sulphur in any form leave in the dust it will be captured in the chain section by the wet lime mud or by the fluegas scrubber only to be returned to the kiln with the lime mud.In separate bench\u00E2\u0080\u0094scale simulations of the lime cycle, coal and hog fuel ashes of 3.2 wt% and 1.5 wt%respectively were added to the lime cycle and were compared against an ash\u00E2\u0080\u0094free control series [61]. After sixsimulated cycles, the following effects were found: 1) buildup of inert material in the lime cycle (greater than theamount of ash added); 2) this inert material increased the settled bulk of the lime mud; 3) reduced the efficiency ofseparating lime mud solids from white liquor; 4) increased the sodium content of the recycled lime mud; 5) silicaand alumina from ash combined with CaO to form calcium aluminosilicates and calcium silicate (at temperaturesover 1050\u00C2\u00B0C); 6) iron from the ash remained in the lime cycle. Somewhat similar results should be expected at alarger scale if quantities of ash from a lignin fuel are sufficiently high. It is noteworthy that these findings aresomewhat at odds with (or contradict) those of [24].23Chapter 3Scope of the WorkThe objective of the present work was to examine the combustion of dried lignin powder, as obtained fromcarbon dioxide and sulphuric acid precipitation, as a potential fossil fuel replacement for the rotary lime kiln. Toaccomplish this, the two types of recovered lignin were co\u00E2\u0080\u0094fired with natural gas at high levels of gas replacement,specifically 60%, 75% and 100%, in order to determine the impact on kiln operation of changing from a naturalgas fuel to lignin. The experiments were performed in a well\u00E2\u0080\u0094instrumented, pilot\u00E2\u0080\u0094scale kiln which allowed axialtemperature, calcination and heat transfer profiles to be determined. A burner and feed system for dry powderedlignin was developed specifically for this application. The quality of the lime products were determined, withparticular attention being paid to the impurities added by the lignin fuel. Temperature data obtained from the kilnmade it possible to determine changes in the axial heat transfer profiles of the gas, bed and shell between the twodifferent types of fuels, natural gas and dry powdered lignin.24Chapter 4The Experimental ProgramDescription of Pilot Plant KilnThe experimental work was carried out using the pilot kiln shown in Figure 4, which is located in theDepartment of Metals and Materials Engineering at UBC. A simplified equipment layout of the pilot plant kiln isshown in Figure 5. The kiln has an inside diameter of 0.4 metres and an overall length of 5.5 metres. The kiln islined with castable refractory and equipped with 70 thermocouples for temperature measurement. Copper slip ringsnear the cold end of the kiln provide power for a vacuum pump and data acquisition unit on the kiln, as well as aFigure 4. Overall view of the pilot plant kiln\u00E2\u0080\u00A2 Suction Pyrometer^0 Sample Port u Wall Probe \u00E2\u0080\u00A2 Bed Probe + ShellNot to ScaleFigure 5. A simplified diagram of the pilot plant kiln26communication link for a remote computer. The facility has been used for industrial trials, the development ofburners systems as well as for the verification of mathematical models and for the development of heat transfercorrelations [51-54]. The wide distribution of thermocouples and sample ports allows investigations into theeffects of changing fuels, on axial heat transfer, temperature and solids sample profiles. Before the experimentalwork on this project began, the kiln was upgraded with a new refractory lining and all new thermocouple wires.The thermocouples are connected to a data acquisition unit, which is linked to an on\u00E2\u0080\u0094line computer to facilitate themonitoring and data storage of the temperature readings. The data acquisition unit is permanently fixed to thekiln's shell and is protected from radiative heat\u00E2\u0080\u0094transfer. Since the data acquisition unit had a maximum of 61connections, the first wall probe (described later and by [54]) at the hot end and five randomly selected shellthermocouples were not connected. The program for the data acquisition unit was written by Mr. A. Shook, agraduate student in the Department of Metals and Materials Engineering. Wall probes provide temperatures at theinside wall surface and radially through the refractory lining. Access ports permit sampling of the solids bed alongthe kiln length while the unit is in operation. The kiln is rotated by an electrical motor connected to a variablespeed gearbox and chain drive.The pilot kiln is normally fired with natural gas through a modified North American Model NA 223G-3burner mounted at the solids exit end. The rotary unit is sealed and has an air distribution system to provide aneven air flow across the kiln's cross\u00E2\u0080\u0094section. For the present work, the burner was further modified by installationof a central lance through which the powdered lignin was conveyed by air. Lignin was fed from a hopper bymeans of a screw feeder. With this arrangement, lignin could be burned by itself, or in combination with naturalgas.Details of the inlet combustion air and burner arrangement are shown in Figure 6. A water\u00E2\u0080\u0094cooled lance, tofeed the lignin, is installed in the center of the natural gas burner. Natural gas is fed through an annulussurrounding the lance while primary air is supplied by eight symmetrically placed nozzles concentric with thenatural gas inlet and lignin burner. Secondary air is supplied by eight equally spaced nozzles around a 300 mmdiameter circle concentric with the natural gas inlet and lignin burner but outside the burner tile. The secondary airFigure 6. Details of inlet air and burner arrangement28nozzles were originally installed to prevent recirculation within the kiln, but since the seals and discharge chutehave been improved, this was never found to be a problem. Therefore, the total air flow required through thesecondary air nozzles was never greater than 142 L/min (5 CFM) for all runs. Combustion air flow (primary &secondary), at room temperature, is monitored by a calibrated ASTM standard orifice plate. Primary combustionair bled from the combustion air line is monitored by a rotameter (model #BR-1.5-35G10 with flow tube #R-12M-25-5S). The lignin feed system has a separate air supply delivered by a blower and monitored by a rotameter(model #ED-9-100-1 with flow tube #FP-1-35-G-10/35). The flow of natural gas is monitored by a rotameter(model #BR-1/2-35G10 with flow tube #R-8M-25-4).Limestone and Lignin Feed SystemsRoom temperature limestone (described later) stored in an overhead hopper is fed to the cold end of the kiln bya variable speed belt conveyor and dropped into a discharge chute (Fig. 7). A dam at the back end of the kiln isemployed to prevent spill-back of the limestone, while a dam at the solids discharge point is installed to promotea uniform bed depth over the length of the kiln (Fig. 8).The dry powdered lignin feed system consists of a pressurized hopper with a screw discharge system mountedon a electronic scale, as shown in Figure 9. When in operation, the rate of weight loss is continuously monitoredby a load cell and compared to the set point value entered by the operator. If these two values do not match,adjustments are made by the control box to the motor or shaft of the screw. The approximate time for thisadjustment is 90 seconds (weight loss calculation to necessary speed adjustment). As noted previously, the ligninfeed system has its own air supply and control system separate from that of the kiln. At the discharge point fromthe screw, lignin falls by gravity into a fitting on the carrier air line. From this point the powdered lignin isconveyed through tubing to the lance located in the center of the natural gas burner on the kiln.Figure 7. Picture of equipment at feed end of kiln-e41/4W-NALHot End^0.318 m 0.609 mSolids Dam0.216 m--NI \u00E2\u0080\u0094awl 0.14 rn1-4\u00E2\u0080\u00940.14Cold EndSolids Dam0.406 m29Figure 8. Diagram of dams at hot and cold end of the kiln30Figure 9. Picture of equipment at burner end of kilnTemperature SensorsGas temperatures were obtained by shielded suction thermocouples located at ten fixed axial positions alongthe kiln, as shown in Figure 10. The first four thermocouples located at the hot end of the kiln, are type S (10%Pt, Pt-Rh) and six thermocouples are type K (chromel-alumel). These thermocouples are designed to slideradially, thus allowing temperature measurements at various radial as well as axial positions. Each thermocoupleis connected by stainless steel tubing with a shut off valve to a single cold trap (crushed ice) before the vacuumpump. Vacuum is provided by a small diaphragm vacuum pump fixed to the kiln's shell and power is suppliedvia a system of slip rings. The thermocouples are radiatively shielded from the kiln bed and wall surfaces byceramic inserts, except those located at 2.2 m and 4.0 m from the hot end, which were shielded by stainless steeltubing to eliminate gas infiltration. These two special thermocouples were used for obtaining gas samples fromAll Distance are in meters\u00E2\u0080\u00A2 Suction Pyrometer^0 Wall Probe^\u00E2\u0080\u00A2 Bed Probe^+ Shell^o Sample PortsFigure 10. Axial thermocouple layout of the pilot plant kiln32the kiln for gas analysis. In the experimental runs, the gas temperature readings were generally measured 10 cmoff the kiln centerline, except at 2.2 and 4.0 m from the hot end, which were on the kiln centerline. Thisinconsistency was necessary due to interference of the radial path by other objects associated with the kiln. Eachgas temperature was recorded for two kiln revolutions, a total of ten data points being obtained during eachrevolution. The arithmetic average of the twenty temperatures obtained at each axial location was used ingenerating the plots of axial gas temperature.Bed temperatures were obtained using ten bare tipped thermocouples located at several axial positions alongthe kiln, as shown in Figure 10, again with allowance for radial movement. The thermocouples were adjustedsuch that the tips were just under the top of the solids bed (Fig. 11). The four thermocouples nearest to the hotend of the kiln are type S formed from 31 gauge wire (0.33 mm) and the next six are type K formed from 22 gaugewire (0.7 mm). For each thermocouple, double bore alumina sheathing was used to encase the bare wire portionand support the junction. Swagelok finings on the kiln shell held these thermocouples in place through predrilledholes in the refractory (Fig. 11). As in the case of the gas measurements twenty measurements were logged foreach thermocouple, which again represented two revolutions. From these data, the lowest value was assumed tobe the bulk bed temperature at each axial location. Although these do not represent the true bed temperatures, tenmeasurements per revolution were too few to accurately describe the complicated curve. It was therefore notpossible to find the true bed temperature by the lumped capacity response equation as suggested by previousresearch [54]. However, the axial gradient of the bed temperature which is of primary importance in calculatingheat transfer to the bed, will be only slightly affected by the inaccuracy.Refractory temperatures of the inside wall surface (transient) as well as at various radial distances (steady\u00E2\u0080\u0094state)were obtained from ten wall probes (Figures 11 & 12) located at fixed axial positions along the kiln, as shown inFigure 10. The wall probes were cast in wedge shapes from the same refractory material as that used in the kiln,using a silicon rubber mold. The kiln wall had matched opens which held the probes in place. They were coveredwith a steel plate cap which had screw tabs to hold them firmly in position. With the aid of a jig, bare\u00E2\u0080\u0094tippedthermocouples are set accurately at depths of 0, 1.0, 2.88 and 4.76 cm in the wall probes, to provideRefractoryShell ThermocoupleSteel ShellWall Probe with ThermocouplesSolids ThermocoupleAll Thermocouplesare Type S or K33thermocouples at radius of 0.2030, 0.2130, 0.2318 and 0.2506 m in the kiln (Fig. 12). Starting at the hot end ofthe kiln, the first three wall probes have type S thermocouples formed from 31 gauge wire (0.33 mm) and the nextseven have type K formed from 22 gauge wire (0.7 mm).Gas Suction ThermocoupleFigure 11. Cross\u00E2\u0080\u0094section of kiln for thermocouple layout34The shell temperatures of the kiln were measured by ten bare\u00E2\u0080\u0094tipped type K thermocouples formed from 22gauge wire (0.7 mm) set in short pieces of brass tubing located at fixed axial positions, as shown in Figure 10.One end of the tubing was flattened which was attached to the surface of the shell with a bolt.Figure 12. Detail of thermocouples in wall probeSampling of Flue Gas and AnalysisThe composition of the flue gas was measured using an on\u00E2\u0080\u0094line, Perkin\u00E2\u0080\u0094Elmer 8400 series gaschromatograph equipped with a thermal conductivity detector for nitrogen, oxygen and carbon dioxide. Flue gases35were separated on a 2.4 m x 31.7 mm column packed with 80/100 mesh molecular sieves and a 1.5 m x 31.7 mmParapack Q column at an oven temperature of 105\u00C2\u00B0C. The instrument was calibrated for oxygen and nitrogenusing air. The concentration of carbon dioxide in the flue gas was found by difference. Flue gas samples weretaken from the two suction thermocouples described previously (at 2.2 and 4.0 metres) and pumped to the gaschromatograph from the discharge port of the vacuum pump on the kiln. The oxygen content of the gas was usedto calculate the percentage excess air. This procedure permitted correction for the small amount of leakage airwhich entered the kiln through seals, solids discharge and burner. The infiltration of air was promoted by the fanwhich drew the flue gas from the end of the kiln through a cyclone (dust collection), and a bag house before thegas was discharged. The fan on the bag house was used to drive gas through the cyclone. Dust which was notcollected in the cyclone was discharged along with the gas to the atmosphere.Preparation of the Lignins\u00C2\u00A7Three lcraft lignins used for the experimental trials were supplied by: the Irving Pulp and Paper Company inNew Brunswick, Canada; the Westvaco Company in South Carolina, USA; and Canfor's Intercontinental PulpMill in Prince George, British Columbia, Canada. For convenience the lignins have been renamed as 'IR', 'WV'and 'PG' respectively. Paprican has some staff at a small research station near the Intercontinental Pulp Mill, whoproduced the PG lignin and further washed the IR lignin.The Irving Pulp and Paper Company furnish is mostly spruce. Their kraft lignin was produced at the millfrom strong black liquor using pure carbon dioxide for acidulation at 690 kPag and 75\u00C2\u00B0C in a 'side\u00E2\u0080\u0094stream reactor'using both a pipeline reactor for sidestream acidulation and a pressurized main reactor for retention time. Thelignin was recovered on a 200 mesh belt filter with some water washing to reduce the sodium and ash content priorDetails of lignin preparation for both IR and PG were obtained from personal communication with V. Uloth onSept. 26, 1989.36to acid washing. Further washing with a dilute sulphuric acid solution was required to lower the sodium and ashcontent.The lignin IR was shipped to Prince George for acid washing with the following (approximate) composition:46% moisture, 14-15% sodium, 2% sulphur and 34-36% ash, all on dry weight. A summary of the washingconditions for this lignin is listed in Table 4. For the first wash, each barrel (170 L) of lignin was added slowly to---600 L of 2.0 to 2.5 Normal sulphuric acid for a period of 0.5 to 1 hour. The pH was then checked and thesuspension was diluted to 900 L with hot water. The final pH was between 1.1 and 1.7. After mixing andheating for about 1 hour, the mixer was shut off and the lignin allowed to settle overnight (i.e. for 16-22 hours).After overnight settling, wash liquor was pumped off the top leaving 225 to 250 L of sludge in the reactor. Forthe second wash each batch was diluted about 3 to 1 with hot wash water and with 7 to 11 L of concentratedsulphuric acid. The final pH was between 0.8 and 1.5. After about 1 hour of mixing, the mixer was shut off andthe lignin again was allowed to settle overnight (i.e. for 16-22 hours). After overnight settling, wash liquor waspumped off the top leaving 255 to 295 L of settled sludge in the reactor. The sludge was mixed and pumped intobarrels for shipping, and during the next 2-4 weeks the clear top layer was decanted from the barrels.Table 4. Washing conditions for lignin IRBatchFinal pH1st wash^2nd washTemperature, \u00C2\u00B0C1st wash^2nd wash1 1.2 0.8 41 432 1.2 1.5 37 223 1.3 1.2 43 434 1.1 1.2 43 465 1.7 1.1 41 3737The Westvaco Company is a commercial supplier of lignins. The purchased lignin used was Indulin AT,which is a carbon dioxide precipitated and acid washed lignin. This lignin required no treatment prior tocombustion.The Prince George lcraft lignin was precipitated in 10 batches using 3 samples of oxidized black liquor (50%solids) from Canfor's Intercontinental Pulp Mill. The mill's furnish is approximately 45% Lodgepole pine, 50%spruce and 5% Douglas fr. In each batch, a 530 to 570 L sample of oxidized black liquor was acidulated with puresulphuric acid at a concentration between 9.2 and 10.0 Normal to precipitate the kraft lignin. Liquor temperaturewas controlled between 75 and 80\u00C2\u00B0C during the acidulation. Mixing was accomplished with a double blade turbineimpeller operating at 120 rpm. Acidulation to a final pH between 7.5 and 8.5 was completed in 90-105 minutes.In 5 of the 10 batches, after mixing for 30 minutes the stirrer was shut off and the precipitated lignin was allowedto settle overnight (i.e. for 17-21 hours). The next day the clear supernatant was pumped from the reactor. Infour batches, the precipitated lignin was recovered by passing the acidulated liquor through a coarse screen box(=-15 mesh). When screened, the recovered lignin volume was about 340-400 L versus 455 L by settling. In threeof the batches the first wash was performed the same day as the acidulation, with the next two washes on thefollowing day. A summary of the washing condition for this lignin is listed in Table 5. The supernatant liquidfrom the first wash was pumped off leaving 410 to 540 L of lignin sludge in the reactor. For the first washapproximately 95 L of 1.0 Normal sulphuric acid solution used for acidulation was then added slowly to the reactorwith mixing. Hot water was added to the reactor to give a fmal total volume of 950 L with the mixture having apH <3. After mixing for 45 to 60 minutes, the stirrer was turned off and the lignin was allowed to settle. After 5to 6 hours settling time, the supernatant liquid was pumped off, leaving 450 to 550 L of settled lignin sludge.Hot water and 7-11 L of 9.5 N sulphuric acid solution used for the second wash was added to the reactor to give afinal total volume of 950 L with the mixture having a pH <3. After mixing for one hour, the stirrer was turnedoff and the lignin was allowed to settle overnight (i.e. for 15-17 hours). The supernatant liquid was pumped off,leaving 430 to 510 L of settled lignin sludge. Hot water and 7-11 L of 9.5 N sulphuric acid solution were addedto the reactor to give a final total volume of 950 L with the mixture having a pH <3 for the third wash. Aftermixing for one hour, the stirrer was turned off and the lignin was allowed to settle overnight (i.e. for 22-2338hours). The following day, wash liquor was pumped off the settled lignin, leaving 450 to 500 L of sludge. Themixed sludge was transferred to barrels for shipping. Dilution water was used to remove the remaining amounts oflignin sludge in each barrel and after one day of settling this liquor was decanted off.Table 5. Washing conditions for lignin PGBatchAcidulationFinal pH 1st washFinal pH2nd wash 3rd washTemperature, \u00C2\u00B0C1st wash^2nd wash 3rd wash1 8.4 3.4 2.4 2.6 57 54 502 8.5 This Batch was not washed.3 8.2 4.5 1.5 1.8 54 45 504 8.2 3.5 3.2 3.4 47 23 485 7.6 3.6 2.5 1.8 53 48 206 8.1 3.2 1.8 2.2 63 49 537 8.2 3.4 2.1 2.5 54 50 528 8.2 3.6 2.6 2.9 63 54 549 8.2 2.7 2.4 2.5 60 49 5010 7.5 2.7 3.1 3.2 65 58 46Further processing of the lignins IR and PG was required, since their moisture content was too high to behandled by the present feed system. Both the lcraft lignins IR and PG were dried by Modern Control Services Ltd.of Surrey, B.C. using a pulse combustor. This pulse combustion dryer involves the use of a valveless pulse jetburner for water removal by applying temperature, pressure and vibration to the wet material in a conveyed airstream through a time controlled processing zone. Materials in this zone are subjected to rapidly alternating highand low pressure conditions, high temperature and high intensity acoustical vibration. Under these conditions, arapid separation of water from the processing material is claimed. Dried material is separated from the gas by aidof a cyclone [75]. Lignin IR was dried to 6-9% moisture and lignin PG was dried to less than 1%.39Determination of Particle Size of LigninsParticle size distributions of lignin suspensions were analyzed on an Elzone 80XY Particle Analyzer. This isa Coulter\u00E2\u0080\u0094Counter type of instrument. The electrolyte solution to disperse the lignin was made up using filtered(0.45 gin pore size) distilled water, 0.5% tetrasodium pyrophosphate, 0.75% sodium chloride and a few drops offormaldehyde. This solution was filtered (0.45 gm), and the pH adjusted to 5 using dilute hydrochloric acid. Theparticle size count distribution for each lignin is shown in Figure 13. The mean particle size of the lignins PG.IR and WV are 8.63, 11.96 and 26.05 gm respectively. Of the three lignins, WV has the broadest range of sizesand PG the narrowest. Figures 14-16 are three electron microscope pictures of lignin particles IR. WV and PGrespectively, taken at a magnification of 200 times. The procedure for preparation of the samples has slightlyskewed the size distribution towards the smaller particles. However the particle size shown in these picturesfollows those found by the Elzone Particle Analyzer.2010080o..^... \u00E2\u0080\u00A2 .6 \"^.\u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 t\u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2^\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2 a '4%. m: \u00E2\u0080\u00A2\u00E2\u0080\u00A2. a\u00E2\u0080\u00A2 .ir^&\u00E2\u0080\u00A2 di^\u00E2\u0080\u00A2\u00E2\u0080\u00A2a\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2egi\u00E2\u0080\u00A2\u00E2\u0080\u00A2^ si \u00E2\u0080\u00A2 a\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a\u00E2\u0080\u00A2II \u00E2\u0080\u00A2 \u00E2\u0080\u00A2^ \u00E2\u0080\u00A2\u00E2\u0080\u00A2aga\u00E2\u0080\u00A2\u00E2\u0080\u00A2^\u00E2\u0080\u00A2 4,4^\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ilk^ \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a .\u00E2\u0080\u00A2 I ,^C \u00E2\u0080\u00A2^\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A24):^o^* \u00E2\u0080\u00A2\u00E2\u0080\u00A2II \u00E2\u0080\u00A2^\u00E2\u0080\u00A2of^go.^M il. . a^\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 .\u00E2\u0080\u00A2\u00E2\u0096\u00A0 \u00E2\u0080\u00A2^\u00E2\u0080\u00A2\u00E2\u0080\u00A2 a\u00E2\u0080\u00A24 0 : \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2.\u00E2\u0080\u00A2 on1^44Of \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 a.,U: \u00E2\u0080\u00A2 \u00E2\u0080\u009E4,^ \u00E2\u0080\u00A2 ,\u00E2\u0080\u00A2 44.4\u00E2\u0080\u00A2444,\u00E2\u0080\u00A2it11.4..++4,0444\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2+.4I^ I^-. \u00E2\u0080\u00A2 Lignin IR\u00E2\u0080\u00A2 Lignin WV+ Lignin PG.4141,* *a....\u00E2\u0080\u00A2...\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2U1.^.. \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 mmmmm m \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2.-o 25 50 75Particle Size, gm100^1 ^eI ..0\u00E2\u0080\u00A2._ Ils\u00E2\u0080\u00A2r\u00E2\u0080\u00A2 \u00E2\u0080\u00A2% ,^e\u00E2\u0080\u00A2.^\u00E2\u0080\u00A2 \u00E2\u0080\u00A2$ u 4 a %^\u00E2\u0080\u00A2 \u00E2\u0080\u00A2. I 11 #t ' Jr^....- \u00E2\u0080\u00A2 \u00E2\u0080\u00A2fr.-- \u00E2\u0080\u00A2 %.\u00E2\u0080\u00A2125Figure 13. Particle size distribution of the three types of ligninFigure 14. Picture of lignin IR at 200x41Figure 15. Picture of lignin WV at 200x42Figure 16. Picture of lignin PG at 200xChemical Analysis and Particle Size of LimestoneThe limestone used for the trails was obtained from Texada Lime of Langley, B.C.. The particle size rangedfrom 1.4 to 4.8 mm, with an average mass mean diameter of 2.56 mm (Table 6). Analysis of the limestone,which is reported in Table 7, shows it to be about 98% calcium carbonate.Table 6. Screening results of limestoneSize, mmSample 1Mass, g^PercentSample 2Mass, g^PercentSample 3Mass, g^Percent-6.30 +5.60 2.05 0.57 1.5 0.88 0.5 0.13-5.60 +2.83 76.7 21.22 34.9 20.52 43.1 11.08-2.83 +2.00 165.3 45.73 80.6 47.38 218.3 56.10-2.00^+1.41 96.8 26.78 45.1 26.51 115.0 29.56Pan 20.6 5.70 8.0 4.70 12.2 3.13ap, mm = 2.56 2.56 2.3743Table 7. Chemical analysis of the limestoneLimestone (wt %)Sample^CaCaCO3 (by LOI) = 97.95 %wt%Si^Inerts^Na Femg/kgAl Mg Mn1 38.0 1.35 3.65 347 970 1070 3500 80.52 38.3 1.10 3.15 355 560 890 2890 44.83 38.8 0.59 1.95 145 400 530 1800 45.9Average 38.4 1.01 2.92 282 643 830 2730 57.1Determination of Percent CalcinationDuring each kiln trial approximately 0.3 kg of bed material was withdrawn from each sample port (whichshowed evidence of calcination) along the kiln. In addition samples of the feed limestone and product lime werealso collected. After collection, the samples were allowed to cool and then placed in sealed containers. In order todetermine the extent of calcination approximately 15-20 g of each sample was weighed out into a crucible andplaced in a muffle furnace at 1000\u00C2\u00B0C for a 24 hour period. The next day, the samples were removed, allowed tocool and were reweighed. Analyses of feed limestone was performed in the same manner and the percentcalcination was determined by the loss on ignition (LOT) of the samples [50]. The percent calcination was thendetermined according to the formula:% Calcination = 100* (1\u00E2\u0080\u0094 LOT product / LOT feed)Determination of Slaking Behaviour and Surface Area of the Lime ProductsThe reactivity of lime is an important parameter and one which depends upon processing conditions.Overheating of the lime (dead\u00E2\u0080\u0094burning) closes the pore structure and results in low reactivity. Contamination withfusible ash or other products from the kiln freeboard also reduces pore area and reactivity. Slaking behavior of44product lime samples were determined at the Pointe Claire Laboratories of Paprican as described in [69]. Samplesweighing 44 g were slaked in 750 ml of simulated green liquor at a starting temperature of 90\u00C2\u00B0C. The temperaturerise of the suspension was recorded with time.The surface area of the product lime was determined on a Micromeritics FlowSorb 11 2300. The instrumentwas calibrated assuming room conditions of 22\u00C2\u00B0C and 760 mmHg. Samples were dried overnight in an oven at130\u00C2\u00B0C and, after weighing into sample tubes, were further dried under nitrogen at 120\u00C2\u00B0C. Approximately 1 to 2 gwere used for the analysis. All dark coloured particles were assumed to be inert material and were excluded.Nitrogen from a gas stream of 30% nitrogen in helium flowing through the sample tube was adsorbed in the poresof the sample and this change in gas composition was measured by a thermal conductivity cell. Liquid nitrogenwas used as an external coolant. The average of absorption and desorption of nitrogen gas was used for thecalculation of surface area.Experimental ProcedureThe procedure employed for the kiln trials was standardized to ensure consistency. Each test consisted of twocomplete parts, one using natural gas which was used first to provide a reference, which was following by a secondtrial using all or a portion of lignin as a fuel. To begin each test the kiln was preheated overnight. Early thefollowing morning the natural gas, air and limestone flowrates, as well as the rotational speed, were set to theirrespective operating points. Typically about three hours was then required for the kiln to reach steady\u00E2\u0080\u0094state, whichwas defined by the condition where successive bed temperatures measured 15 to 20 minutes apart differed by lessthan five degrees Celsius and the discharge rate of lime was constant. The lime discharge weight was measuredover a period of time, which was typically 15 to 30 minutes. Once steady\u00E2\u0080\u0094state operation was verified all kilntemperatures were then logged and solid samples were collected along the kiln. The axial bed samples starting atthe hot end were collected in large ceramic crucibles from the sample ports after completion of the temperature45logging. The lime product samples were collected from the discharge tray, usually after the measurement of thedischarge. Once cool, samples were placed in sealed containers.After collection of the data for natural gas firing, the lignin flow was started and the natural gas flow wasreduced or stopped entirely. The total energy input to the kiln was held at the same level as for the natural gastrial just completed. Once the change in firing conditions was accomplished the kiln was again allowed to obtaina steady\u00E2\u0080\u0094state. The kiln was not stopped during any of the experiments, unless it was absolutely necessary (e.g.due to vacuum pump failure). After the kiln was shut down, a sample of lignin was removed from the feed hopperand all the dust was collected from bottom of the cyclone. The following day when the kiln was cooler, bed depthmeasurements were taken for some of the kiln trials. The average bed depth was found to be 6.0, 6.3, 5.4, 5.1,4.8, 4.8 cm at 0.30 m intervals from the discharge end of the kiln.The belt feeder used for the limestone was calibrated (Appendix B) at the start of the project and was generallychecked again before each test. In addition, the belt feeder set point was also checked periodically during each kilntest.46Chapter 5Experimental ProblemsConsiderable difficulty was encountered in obtaining a reliable feed system for delivering a powdered ligninfuel to the kiln. Although all the systems designed utilized a pressurized screw feed hopper (Western Scale Co.) inconjunction with a lance type injection using compressed air as a carrier medium.The first lance designed, employed a straight 1.9 cm stainless steel tube, worked well during the initial trial inthe kiln with no bed and at low operating temperatures. Several trials were conducted under these conditionsadjusting the air flows (transport, primary and secondary) to develop the feed system. At low kiln temperaturesthis simple lance preformed adequately for short periods of time. However, at higher kiln temperatures problemswith flame deflection were experienced due to lignin accretions inside the tube. This usually led to a total flameout within a short period. Lignin at temperatures between 80-150\u00C2\u00B0C softens and becomes very sticky [33,34].Upon further heating it chars to a rigid black mass of carbon. Therefore transport air and exit point temperature arecritical factors in determining if a particular lignin will have accretion problems during feeding. Although thelance could be positioned within the burner tile, whether placement was within the burner tile or 2-8 cm beyond,the final result was still accretion growth and clogging.Plugging of the lance by char resulted in problems upstream in the feed hopper, where a packed cake of ligninusually formed at the end of the screw (due to back pressure). Even small levels of pressure exerted on ligninproduced a cake sufficient to clog the feed system, which then had to be dismantled for cleaning. The relativelylow bulk density of dry lignin powder (about 0.5 g/m1) also presented problems for the screw feeder. Because theelectronic scale could not detect the small weight loss over a short period of time the controller would make onlyminor adjustments to the feedrate. These minor increases in lignin feeclrate would have required considerableamounts of time to reach operating feed conditions. This problem in acquiring the correct fe,edrate was overcome47by entering a higher set point than that required, monitoring the feedrate and resetting the feedrate to the requiredrate when it was within a reasonable value.One objective of the work was to determine the influence of lignin firing on heat transfer to an inert bedrelative to natural gas firing. Early efforts to investigate this aspect used coarse Ottawa sand (-2.38 +1.41 mm).No problems occurred during the experiment when natural gas was being fired, however when 60% of the fuel(based on heating value) was replaced with dry powdered lignin, the coarse sand began to agglomerate into largeballs at the hot end of the kiln. By observation from the cold end of the kiln, the sand formed balls only in thelast metre before discharge or almost directly under the lignin flame. The sand was possibly affected by some inertcompound in the lignin or by the change in the amount of heat it was receiving. Sand that was discharged fromthe hot end of the kiln had changed color from an opaque pink to being almost translucent. The change in colourwas probably due to a loss of a chemical element from the surface. Agglomeration of the coarse sand into largeballs could have been cause by the formation of low melting point eutectics involving sodium, silica and calcium.However, analyses of the sand using X\u00E2\u0080\u0094ray diffraction showed no sodium on the surface of the samples. Samplesof the sand before and after lignin burning were sent for analysis to Acme Analytical Laboratories Ltd. which usedthe method of Induction Coupled Plasma to find changes in trace elements on the sands' surface. Those elementswhich had a difference between the two samples or have an effect on the surface properties are reported in Table 8.It can be seen that although sodium increased slightly (by 0.01 wt%) most of the other elements were found to belower in concentration on the surface after the lignin firing. The decrease in the element Cu is probably why thesand changed colour.Table 8. Results of chemical analysis on sandSandSample Na Cawt%Fe Al Mg Cu Pbmg/kgZnwithoutwith0.010.020.060.020.010.010.030.010.010.01377831412248Other difficulties with the lignin feeder included the screw feed system. The first screw employed on thelignin feeder was found to have a pitch and diameter too large for the lightest of lignin and was therefore unable toproduce the low feedrates that were required (Fig. 17). This also caused an unsteady flow of lignin from the feedhopper to the burner and may have contributed to the plugging in the lance. A new screw, with a smaller pitchand diameter, and a modified hopper bottom were obtained and were found to produce a more even feedrate of lignin(compare Figures 18 & 19). However some pulsing of the lignin flame was still evident. With this new screwthe required feedrates could be obtained.-1 140- 0.64 cm --11 1.91 cmi ITA viY/YA riY viT ri^Y _L 11-1--5 1.91 cm 5.08 cmFigure 17. Diagram of first screw in lignin feed hopper\u00E2\u0080\u00941 [0\u00E2\u0080\u0094 0.48 cm \u00E2\u0080\u009411 3 cmr-ir,/*/*/*/*/1117/AFI^ y II4 --1-^1S 1.27 cm 3.00 cmFigure 18. Diagram of second screw in lignin feed hopperIn an attempt to alleviate the clogging problem, a 5 cm ceramic tube filled with insulating material was addedto the tip of the lance (Fig. 19). Although the intention of this modification was to reduce radiative heat\u00E2\u0080\u0094transfer49from the flame to the lance, the reduction achieved was not sufficient to eliminate softening of the lignin andsubsequent clogging of the lance. After one unsuccessful trial with this configuration design was commenced on awater cooled lance.Insulating MaterialFigure 19. Diagram of second burner designThe final configuration for the lignin lance, which was described in Chapter 4, is shown in Figure 20. Thelignin tube is surrounded by two coaxial coolant tubes. Flow of coolant is through the inner annulus from rightto left in the figure, and then reverses through the outer annulus, flowing left to right. The diameter of the lignintube is 1.6 cm, while the coolant tubes are 2.2 cm and 3.2 cm respectively. This water\u00E2\u0080\u0094cooled burner lance whichwas adopted is a source of heat removal, and the water flowrate was not always the same from one run to the next.A water flow controller was ordered but it did not arrive until after all the experiments were completed. The burnerwas found to operate successfully at the following conditions; transport air velocity of 27 m/s @ 20\u00C2\u00B0C, a ligninfeedrate of 240 g/min or less and a burner tip temperature of less than 85\u00C2\u00B0C.Figure 20. Diagram of the water\u00E2\u0080\u0094cooled lance50During the initial lignin burning trials, lignin of high sodium content (3 wt%) was used. At about thissame time some very high temperature runs were carried out for an unrelated project. After completion of thelatter work and the lignin trials the lining of the kiln was found to be badly degraded over the first 1.5 metres fromthe hot end. It was not clear whether the sodium from the lignin, or an overheating of the original refractory(Plicast LWI28) was the primary cause of the failure of the lining. The lining was physically removed andreplaced with a denser and higher temperature castable refractory (Claycast 60ES). There was no further failure ofthe refractory lining. Physical specifications of these castable refractories are given in Appendix A.One final problem encountered was with the burner tile. The initial lignin firing and those experimentsconducted with lignin IR used a burner tile of nine inches in length. All others experiments were performed with asix inch long burner tile. The long burner tile had to be replaced due to general deterioration (formation of largecracks, resulting in breakage) but this was most likely routine wear and not related to the lignin firing.51Chapter 6Results and DiscussionQuality of the LigninsAnalyses on a dry basis are given in Table 9 for each experimental run and type of lignin. As pointed outearlier, lignin is a highly oxygenated fuel which contains about 28% oxygen on a weight basis. For the testlignin, sulphur content was from 1.3 to 3.4 wt% which is mostly organically bound (>55%) can be expected toproduce SO2 and react with the lime. The organically bound sulphur in the lignin was assumed to be thedifference between total sulphur and sulphate. Sodium content of the lignin varied from 0.25 to 2.0 wt%. Asodium limit of 0.9 to 1.4 wt% has been shown to be the maximum allowed for a lignin based fuel, at 100%replacement of the original fossil fuel [34], in order to maintain the sodium content (Na20) in the lime mud below0.7% [60]. Ash levels of the lignins are between 1.1 and 4.8 wt%. Some adsorption of lignin ash onto theproduct may be expected. Although the ash level remaining in the lignin is a function of the precipitating agentused, the final pH and efficiency of the washing, in the present case the levels were not sufficiently high to createany problems in the operation of the kiln or have any detrimental effect to the final product. If necessary, thesulphur and sodium content in the lignin can be reduced by repeated water or dilute sulphuric acid washings [34].However, there is a practical minimum value to which they can be reduced which is reported to be =1.5% sulphurand =0.6% sodium [76].The final concentration of sodium and sulphur remaining in lignin PG as first received was considered toohigh for use as fuel in the pilot plant kiln. Early in the program it was observed that the kiln lining haddeteriorated badly in the region of the flame. The lining was replaced, and although the real cause for thedeterioration of the old lining was never established, possible further damage from high sodium and sulphurTable 9. Chemical analysis of ligninsRun Lignin HHVt C H 0 Nwt %S^SO4 Sorg Na Fe Asht Almg/kgMg MnLG9 IR 26.06 59.72 5.35 26.10 0.11 3.20 1.21 1.99 0.51 0.13 3.90 130 132 182LG10A 24.42 59.69 5.29 26.17 0.09 3.23 1.31 1.92 0.50 0.15 3.99 130 121 172LG10B 24.42 59.69 5.29 26.17 0.09 3.23 1.31 1.92 0.50 0.15 3.99 130 121 172Average 24.97 59.70 5.31 26.15 0.10 3.22 1.28 1.94 0.50 0.14 3.96 130 125 175LG12A WV 25.08 61.11 5.58 26.56 1.69 1.60 0.66 0.94 1.08 0.01 3.94 320 106 61.0LG12B 25.08 61.11 5.58 26.56 1.69 1.60 0.66 0.94 1.08 0.01 3.94 320 106 61.0LG11 25.28 61.10 5.48 26.21 1.69 1.34 0.59 0.75 1.08 0.01 3.91 340 105 60.3Average 25.15 61.11 5.55 26.44 1.69 1.51 0.64 0.88 1.08 0.01 3.93 327 106 60.8LG17 PG 25.43 61.45 5.39 25.83 0.11 2.34 0.21 2.13 0.71 0.20 3.02 190 42.7 26.3LG16 25.78 62.46 5.39 25.95 0.10 2.32 0.17 2.15 0.42 0.19 1.82 160 35.3 20.6LG14 26.11 63.15 5.42 25.15 1.24 2.29 0.05 2.24 0.14 0.10 0.84 150 29.7 16.4Average 25.77 62.35 5.40 25.64 0.48 2.32 0.14 2.18 0.42 0.16 1.89 167 35.9 21.1t measured Higher Heating Value, MJ/kg^t contains Na, Fe, SO453containing lignin was assumed to be too risky. Lignin PG was therefore further washed at room temperatureusing tap water, once in very dilute sulphuric acid (pH <4) and then in water. A small laboratory drum filterworked well for dewatering the lignin after its first washing and not so well after the water wash. After washingthe lignin slurry was allowed to settle (two days) in barrels and the remaining liquid was decanted off. The wetlignin was removed from the barrels and air dried for three days on a sheet of plastic. The sodium and sulphurlevels for this lignin are given in Table 9. After this procedure the moisture remaining was less than 1%.Replacement of Natural Gas by LigninThe run conditions used for the experiments are listed in Table 10. Target conditions for the experimentswere; limestone feedrate 40 kg/h, rotational speed 1.5 rpm, and free oxygen 2% by volume in the flue gas (drybasis). The kiln slope was maintained at 10 (0.0174 m/m) for all the experiments. As pointed out earlier the planfor the trials was to compare firing with natural gas, lignin and gas\u00E2\u0080\u0094lignin combinations at a constant totalenergy input i.e. MJ(HHV)/kg CaCO3 fed. Because of the nature of the solids feed systems, it was not alwayspossible to obtain the desired lignin feedrates, and hence the specific energy varied among the trials. The outlet 02content in the flue gas varied from about 2% to 5% and was used to calculate the percent excess air. Better controlof dry powdered lignin burning was gained as the experiments proceeded, which is also shown in Table 10, sincethe measured residual excess oxygen in the flue gas decreased to a more acceptable level as the experimental trialsproceeded. The theoretical percent excess 02 (dry basis) was calculated from the known quantities of inletcombustion air (lance, primary & secondary), natural gas, lignin and the composition of these fuels. This valuewas corrected for the additional carbon dioxide generated by the limestone, by taking into account the limestonefeedrate and final calcination. The theoretical percent excess 02 is also listed in Table 10.During periods of lignin firing some pulsing of the flame occurred which was, at least in part, attributable tothe conveying of lignin through an increase in elevation (Fig. 8). Solids which tended to adhere to the sides of theplastic conveying line, at the entrance to the burner lance, were periodically swept clear and this was a majorTable 10. Summary of kiln experimentsRun Lignin% NaturalGasReplacedFuelt^LigninRate^RateLimin^kg/minEnergy^HeatInput^MJ/kgMJ/min^CaCO3CaCO3Ratettkg/hFlue*Gas02 %Excess*Air%Theor.*Excess02%Calcin'nLimeLG90 IR 60 62.3^0.145 5.84^8.92 39.3 5.1 30.6 4.7 98.6LG10At 75 39.6^0.180 5.64^8.63 39.3 4.2 26.6 3.6 98.3LG1OBt 100 0.0^0.241 5.56^9.27 36.0 4.0 24.5 3.2 97.7LG12A WV 60 62.3^0.131 5.61^9.53 35.3 1.9 9.9 1.6 99.2LG12B 75 39.6^0.163 5.57^9.44 35.4 2.0 10.4 1.7 99.6LG11 100 0.0^0.218 5.51^9.02 36.6 2.7 16.2 1.5 98.7LG17 PG 60 62.3^0.132 5.68^8.12 42.0 2.2 12.6 -1.1 97.0LG16 75 39.6^0.165 5.73^8.24 41.7 2.3 12.8 -0.2 95.6LG14 100 0.0^0.220 5.74^9.23 37.3 2.8 15.6 -0.8 98.8GasLG13 GI 0 152.9^0.000 5.70^10.3 33.2 2.0 10.2 -1.1 98.2LG14G G2 0 152.9^0.000 5.70^9.28 36.8 2.0 9.6 -0.5 97.8LG15A G3 0 152.9^0.000 5.70^8.47 40.4 2.1 10.8 -1.1 84.8LG15B G4 0 164.3^0.000 6.12^9.29 39.5 2.5 13.0 -0.6 98.1HHV of gas = 37.3 MJ/m3, average values IR = 25.0 MJ/kg,^WV = 25.2 MJ/kg, PG = 25.8 MJ/kg6.83% moisture^t 5.19% moisture *t at 20\u00C2\u00B0C^fit calculated based on output of lime^see text55source of the flame instability. Although the pulsing of the lignin flame presented a problem in acquiring anaccurate gas sample, comparison of the measured and theoretical excess oxygen in Table 10 suggests the presenceof leakage air. There were unknown amounts of leakage air which entered the kiln through the seals, solidsdischarge and around the burner. Attempts to lower the excess air to approach stoichiometry resulted in anunstable flame due to incomplete combustion between pulses of flame. Under these conditions, residual ash wasobserved coming from the flame. The higher requirement of excess air was thought also to be a function of burnerdesign.Figures 21 and 22 provide a qualitative indication of the radiative emissivity for the nearly invisible naturalgas flame and for the luminous lignin flame. These pictures were taken at very low firing rates and with the firingbox separated from the pilot plant kiln.Figure 21. Picture of a typical gas flame56Figure 22. Picture of a typical lignin flameFigure 23 shows the average gas temperature along the kiln length for natural gas firing, and for differentpercent replacement of natural gas by lignin WV (60, 75 and 100%). Results for two natural gas fired runs areshown in the figure, one at a solids feedrate of 37 kg/hr and a second at 40 kg/hr. For natural gas firing the flameis shorter, resulting in a distinct maximum in temperature about 0.5 metres from the lime exit point. For thelignin, the flame projects further into the kiln, and the gas temperatures remain slightly above those in the gasfiring runs all along the kiln. There is little difference between the temperatures for the 60 to 100% natural gasreplacement curves, although the temperatures at any point increase with the percent gas replaced. Observation ofthe flame from the cold end indicated the natural gas flame was short and blue, while the lignin flame was alonger, brighter, orange flame like that of oil. Some pulsing was evident in the lignin flame, which was thoughtto be due to unsteady transport of the lignin powder to the burner.Gas G2Gas G360% Lignin75% Lignin100% Lignin130012001100S\")1000CL.,Z 900clL.cl)c6E^800a)E-47006005000.0 0.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, m4.0^4.5^5.0Figure 23. Axial gas temperature profiles for tests with lignin WV for various replacement levels ofnatural gas58The axial bed temperature profiles for the same runs are shown in Figure 24. The bed temperatures are lowestfor the gas\u00E2\u0080\u0094firing tests, and for the lignin fueled runs lie within about 20\u00C2\u00B0C of each other up to the calcinationregion. The length of the lignin flame is again reflected in the solids temperature profiles, which show asubstantial drop as the solids exit is reached. The curves show the characteristic flattening effect of the calcinationzone where the endothermic heat of calcination is absorbed. From the temperature profiles, the length of this zoneis expected to be shorter for the natural gas firing runs. For the natural gas firing runs the expected drop in solidstemperature with the rise in limestone feedrate is evident. The benefit of higher bed temperatures with lignin asfuel may be even more marked in calcining of lime mud rather than crushed limestone, as the drying zone, whichis not present in the kiln used, may also be affected. The decomposition temperature for pure limestone is about900\u00C2\u00B0C. This temperature is reached at distances of about 2 metres from the kiln exit.Figure 25 shows the percentage calcination plotted versus axial position over the final 3 metres of kiln beforethe discharge. The profiles rise rapidly in the last 0.75 metres (just under the flame) before the solids dischargepoint. The comparison of the effects of burning conditions by the exit calcination alone is difficult. As the gas isreplaced by lignin the calcination profile is shifted, such that the limestone is calcined further down the kiln fromthe hot end and over a greater distance. This effect can be explained by the longer flame length and higheremissivity of the lignin flame compared to that of a gas flame. The profiles over the last few metres of the kilngive a better indication of the influence of changing fuels types on the bed. At any axial position in the kiln thepercent calcination is highest for the 100% lignin fuel, and decreases accordingly with increasing percentages ofnatural gas. Calcination reaches 10% at 1.3 metres from the burner for natural gas firing, and at 1.8 metres fromthe burner for 100% lignin firing. For the lignin firing with its' longer flame, the maximum calcination isreached before the kiln exit, whereas with gas firing, it occurs as the solids pass over the dam into the productreceiver.120011001000V0(ID'^9006=*C GI6(a)^800a,5E4700600Gas G2Gas G360% Lignin75% Lignin100% Lignin500 .^1^.^i^1^1^1^i^i^1^.^I0.0^0.5^1.0^1.5^2.0^2.5^3.0^3.5 4.0 4.5^5.0Distance from Outlet, mFigure 24. Axial bed temperature profiles for tests with lignin WV for various replacement levels ofnatural gas10080 -Gas G2Gas G360% Lignin75% Lignin100% Lignin.\u00E2\u0080\u00A220:. -00.0^0.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, mFigure 25. Axial calcination profiles for tests with lignin WV for various replacement levels of natural gasS61Experiments for lignins IR and PG which were carried out at slightly higher limestone feedrates (Table 10),gave qualitatively similar results to those of lignin WV. For these experiments, the gas and bed temperatures areshown in Appendix E. However Figures 26 and 27 show the axial calcination profiles in the hot end of the kiln.As is also evident from Table 10, the exit calcination is generally only slightly lower with gas firing, althoughthe percent calcination within the kiln is markedly lower.In an attempt to match the calcination profiles observed with lignin, additional experiments were carried outusing natural gas firing at different specific energy inputs (MJ/kg CaCO3). Figure 28 shows the influence offiring rate on the calcination profile. It is noted that the percentage calcination at any location except at the exitpoint, increases with the firing rate. As well, the calcination zone gets pushed further into the kiln, but in no casedo the profiles match those of lignin where complete calcination occurs before the solids exit the kiln. Againthese differences can be attributed to the differences between the gas and lignin flames. As might be expected,decreasing the limestone feedrate to the kiln increased the conversion of the final product.60% Lignin75% Lignin100% Lignine0.0^0.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, mFigure 26. Axial calcination profiles for tests with lignin IR for various replacement levels of natural gas0 - _Figure 27. Axial calcination profiles for tests with lignin PG for various replacement levels of natural gas100Gas G2Gas G360% Lignin75% Lignin100% Lignin80 -0 - _20 -00.0^0.5^1.0^1.5^2.0^2.5Distance from Outlet, m3.53.0 \u00E2\u0080\u00A2 Gas G1\u00E2\u0080\u00A2 Gas G2\u00E2\u0080\u00A2 Gas G3O Gas G4_0.0^0.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, mFigure 28. Axial calcination profiles for tests with natural gas firing65Examination of the data in Table 10, and Figure 29 suggests that approximately 0.8 MJ/kg CaCO3 ofadditional energy must be supplied to the kiln in order to produce fully calcined limestone (relative to ligninfiring). The extra fuel requirements are thought to be due to the difference in radiative emissivity of the respectiveflames produced by each fuel. In the case of the pilot kiln natural gas gives a short nearly invisible flame of lowemissivity, whereas the lignin flame is highly emissive due to the burning particles, (similar to a Bunker oilflame). The rate of burning or flame length will depend on the particle size of the lignin. This relationshipbetween particle size and flame length can be seen by comparing results shown in Figure 30 with with those inFigure 15. The larger particle size of lignin WV as compared to the other two lignins, appears to burn further intothe kiln, resulting in a bulge on the upward slope of the calcination profile (Fig. 30). The mean particle size oflignin WV is 2.5 to 3 times larger than lignins IR and PG.During the trials it was found that all three lignins were readily burned as the sole fuel. Figures 29 and 30compare the bed temperature profiles and the calcination profiles respectively for two runs with natural gas atenergy inputs of 8.5 and 9.3 MJ/kg CaCO3, and the 100% lignin runs at about 9.2 MJ/kg CaCO3. The firstfigure illustrates again the cooler bed temperatures typical of the gas flame, as well as the similarity of the bedtemperature profiles for the different lignins. Differences among the calcination profiles for the three lignins aresmall, except for one axial position where for lignin WV, the calcination is higher than for lignins IR and PG.The indication from Figure 30 is that perhaps some small increment of fuel savings or throughput increase ispossible on converting from natural gas to dry lignin as fuel, but the magnitude of the saving is difficult toquantify, especially in this small kiln where shell heat losses are high.120011001000900800700600500 ,^10.0 0.5^1.0^1.5^2.0^2.5^3.0^3.514.0 5.04.5Distance from Outlet, mFigure 29. Axial bed temperature profiles for tests with natural gas firing versus 100% lignin burning*00.0^0.5^1.0^1.5^2.0^2.5 3.53.0Distance from Outlet, mFigure 30. Axial calcination profiles for tests with natural gas firing versus 100% lignin burning68Freeboard Gas VelocityFor the pilot kiln trials the calculated mean freeboard gas velocity through the kiln ranged from 1.06 to 1.28m/s. The average gas velocity in the kiln was found from the ideal gas equation, using the average of themaximum and exit flue gas temperatures, molar flowrates of the combustion products (including CO2 from thebed), assuming a total pressure of one atmosphere and using the measured solids bed depth or a fill of 7.9%.Freeboard gas velocity is known to affect the axial temperature profiles within the kiln [1-3]. The averagevelocity of 1.14 m/s for runs involving lignin as a fuel was slightly higher than that of the natural gas fired runs(1.07 m/s). This slightly difference in freeboard gas velocities in the kiln could be a one reason for the shift in therecorded temperature profiles of runs with lignin over those of natural gas. However, there is probably nosignificant difference between the two velocities, if the errors in measurement are considered. Mean flue gasvelocities, maximum gas and bed temperatures are tabulated in Appendix G.Slaking and Surface Area ResultsTable 11 summarizes the slaking results and surface areas for lime produced from the three lignins, natural gasand the combination of the two fuels. Although there are small differences in both slaking time (time required toreach maximum temperature) and the ultimate value of maximum temperature, within the accuracy of themeasurements the slaking behaviour is seen not to be adversely affected by the use of dry powdered lignin as fuel.Some limes were found to have two rates of slaking, an initial dTi/dt and a final dT2Jdt. These slopes wereobtained from the best fit tangent line drawn (by eye) through a linear series of points. For example the slakingrate curve for lignin WV at the 75% replacement level of natural gas has two distinct rates, as shown in Figure 32.The slopes of the slaking rate curves have also been tabulated in Table 11. Attempts to correlate surface areaswith the parameters in Table 11, with the inert elements in the lignin or with variables other than the fuel resultedin scattered plots. Surface area of the lime did however increase noticeably when the natural gas was replaced byincreasing amounts of powdered lignin fuel for conditions where the product was not dead burned. The decrease inTable 11. Slaking results of final lime productsRun Lignin% GasReplacedCaCO3kg/htPercentCalcinationSlakingmin.Temperature \u00C2\u00B0CRise^Max.Initial RatestdTi/dt^dT2/dtSurfaceArea, m2/gLG9 IR 60 39.3 98.6 1.01 13.4 103.4 25.6 6.45LG10A 75 39.3 98.3 1.20 13.5 103.5 29.8 9.62LG10B 100 36.0 97.7 1.12 13.2 103.2 31.3 6.12LG12A WV 60 35.3 99.2 1.46 13.3 103.3 11.3 18.4 3.22LG12B 75 35.4 99.6 1.56 13.5 103.5 14.4 24.6 2.15LG11 100 36.6 98.7 1.53 12.9 102.9 15.6 23.3 8.88LG17 PG 60 42.0 97.0 1.65 13.6 103.6 19.7 2.96LG16 75 41.7 95.6 1.12 13.6 103.6 23.1 3.50LG14 100 37.3 98.8 1.32 13.7 103.7 14.7 24.6 6.68GasLG13 G1 0 33.2 98.2 1.02 13.5 103.5 18.0 25.8 3.95LG14G G2 0 36.8 97.8 0.99 13.9 103.9 31.2 4.46LG15A G3 0 40.4 84.8 1.27 11.3 101.3 18.0 31.3 3.96LG15B G4 0 39.5 98.1 1.03 14.1 104.1 31.3 46.5 5.68t calculated based on output of lime 1 \u00C2\u00B0C/min70surface area for a given set of runs is thought to be due to the sintering of the surface of the lime particles whichoccurs during over\u00E2\u0080\u0094burning. Lignin IR produced the fastest slaking limes and also had the highest surface areas forall three runs, which could have been due to its moisture content, which was higher than the other lignins.The temperature rise curves for limestone fired by natural gas at various specific energy inputs are shown inFigure 31. Data in Table 11 and Figure 31 suggest that the maximum temperature rise obtained by slaking thelime is proportional to the extent of calcination, the higher the calcination level the greater the maximumtemperature.Figure 32 shows the slaking rate for the replacement levels of natural gas by lignin WV at 60, 75 and 100%.The slightly lower limestone feedrate for experiments conducted with lignin WV produced slower slaking limes(Fig. 32). Sintering of the lime is suggested from the magnitude of the surface areas, however the small change inlimestone feedrate (1.2 kg/hr) for 100% lignin burning seem to be enough to produce a non\u00E2\u0080\u0094sintered lime asindicated in Table 11.Figure 33 compares the slaking rates for two runs with natural gas at specific energy inputs of 8.5 and 9.3MJ/kg CaCO3, and the 75% fuel replacement by lignin runs at 8.2 to 9.5 MJ/kg CaCO3. The experimentperformed with lignin WV had the highest fuel rate and one of the lowest limestone feedrates, and hence yielded anover burned lime. This over\u00E2\u0080\u0094burning caused some delay for the sample to reach its maximum temperature in theslaking test, but there was little difference in maximum temperature achieved by all lime samples. A sinteredparticle of lime is shown in Figure 36.The results of the slaking rate curves for lignins IR and PG are very similar to their corresponding natural gascurves. Slaking curves for limes produced from these two lignins at various levels of fossil fuel replacement canbe found in Appendix E.10510399al'6=4E4 976a)a.E 95C.)939189^.^1 I^\u00E2\u0080\u00A2^I^\u00E2\u0080\u00A2^I^I^\u00E2\u0080\u00A2^1^i0 30^60 90^120Time, sec150 180 210 240Figure 31. Slaking temperature rise curves for tests with natural gas firingFigure 32. Slaking temperature rise curves for tests with lignin WV0^30^60^90^120 ^150^180 ^210^240Time, sec91891051039993____^illo....\u00E2\u0096\u00A0\u00E2\u0096\u00A0................r.......\u00E2\u0080\u009E\u00E2\u0096\u00A0..............\u00E2\u0096\u00A0Ip\u00E2\u0096\u00A0\u00E2\u0080\u00A2\u00E2\u0096\u00A0\u00E2\u0096\u00A0\u00E2\u0096\u00A0\u00E2\u0080\u00A2\u00E2\u0096\u00A0\u00E2\u0080\u00A2....\u00E2\u0096\u00A0...\u00E2\u0096\u00A0Ip\u00E2\u0080\u00A2 Gas G2\u00E2\u0080\u00A2 Gas G3A 60% LigninU 75% Lignino 100% Lignin_,iL.)01051031019997959391Gas G2Gas G3Lignin IRLignin WVLignin PG89^.^1 1^1^1^1^I^.^i0 30^60 90 120Time, sec150 180 210 240Figure 33. Slaking temperature rise curves for tests with natural gas firing versus 75% lignin burning74Electron microscope pictures of lime particles from runs LG15A, LGIOA and LG12B respectively, taken atmagnifications of 1000 and 4000 times are shown in Figures 34 to 36. Limestone calcined by natural gas isshown in Figure 34. The sintered grains observed on the surface, at the higher magnification, can be found to berounded which is evidence of previous melting. Figure 35 shows the fine grain structure of calcium oxidedeveloped when heated with 75% lignin and 25% natural gas. The small lumps on the surface of the particle inthe photo indicate the beginning of sintering, which can be seen clearly in the photo at the higher magnification.The grains in this figure are still well defined when compared to those of Figures 34 and 36. Figure 36 is a photoof a lime particle which is highly sintered, and where most of the fine grain structure has melted to form a coarsestructure. The formation of this type of structure is due to the intense heat during the period under the longerluminous lignin flame. In contrast, for the same specific energy input the shorter natural gas flame provided ashort period during which the limestone was calcined.Figure 34. Pictures of a lime particle from run LG15A--IC:7\u00E2\u0096\u00A0Figure 36. Pictures of a lime particle from run LG12B78Elemental BalancesDuring the trials it was not possible to collect all dust leaving in the exiting flue gas and therefore a totalaccount for the output of all elements was not practical. However the fate of the inert elements added by the ligninfuel can be determined, in terms of whether they leave with the lime, or are removed from the kiln by the freeboardgas. The limestone used came in 20 kg bags and it was probable that each one was different with respect to theamount of dust it contained. From the conveyer belt of the limestone feed system to the feed funnel on the coldend of the kiln was an open space of 15 cm where some of the fmer material was carried out of the feed. When thelimestone feed fell down the chute, it was possible for the exiting hot flue gases to remove some fine material justas it entered the lime kiln. Dust samples from the exiting flue gas could only be collected from the cyclone trap.Smaller particles were discharged from the system. Therefore a rate of dust loss from the kiln could not beobtained due to the variation and loss of material. Dust samples collected from the cyclone and product lime wereanalysed for inert elements, the results of which are shown in Tables 12 and 13. A comparison of the experimentswith lignin used as a fuel with those using natural gas indicates that the sodium, sulphur and iron levels in thedust have increased. The iron levels appear to be the result of contamination. Lignin IR was rinsed on a belt filterwith water then packed in unlined barrels for shipment to Prince George for further washing. Both lignins PG andIR were washed in Prince George with dilute sulphuric acid and the lignin slurry was packed in unlined barrels forshipping to Modern Control Services Ltd. for drying. The lignin remained in a dilute acid suspension for two tothree months before being dried. The lignin settled out leaving a supernatant acid solution, which corroded theinside of the barrels and leached out some of the iron. The lignin was resuspended in the acid and sent to thedrying equipment. The iron levels present in these lignins (PG & IR) therefore should not be expected to be thenorm during production of lignin. The increased levels of iron in the lime and dust is considered to be due solelyto the original contamination of the lignins. The high levels of iron found in those dusts samples collected fromruns fired by lignin IR are thought to be due to contamination, since the lignin IR did not have iron concentrationshigh enough to account for the levels found in the dust. There was however an increase in the elements sodiumand sulphur in the lime and collected dust. The other elements showed no meaningful change between the gas firedexperiments and those which had some or all the fuel replaced by powdered lignin.Table 12. Chemical analysis of limeRun Lignin% GasReplaced%Calcination Cawt %Si SII^Na Femg/kgAl Mg MnLG9 IR 60 98.6 57.4 0.82 0.20 316 950 770 2980 74.6LG10A 75 98.3 54.7 0.78 0.20 641 1390 2120 2850 82.0LG10B 100 97.7 58.3 0.91 0.23 319 1360 1030 2740 83.8LG12A WV 60 99.2 59.2 0.98 0.17 483 740 780 2740 76.7LG12B 75 99.6 59.0 1.24 0.14 942 1000 1250 2650 81.6LG11 100 92.7 56.5 1.12 0.15 365 1760 840 2770 76.8LG17 PG 60 97.0 64.6 0.80 0.18 338 750 640 2880 82.8LG16 75 95.6 63.6 1.23 0.22 220 1030 500 2850 79.3LG14 100 98.8 54.1 1.17 0.15 404 1200 1040 2650 75.8GasLG13 G1 0 98.2 58.3 1.29 0.04 331 960 1200 2920 80.3LG14G G2 0 97.8 N/D N/D N/D N/D N/D N/D N/D N/DLG15A G3 0 84.8 59.8 0.94 0.06 181 750 860 2900 82.0LG15B G4 0 98.1 63.3 2.05 0.04 329 950 1270 3300 87.6Table 13. Chemical analysis of dust collected from the cycloneRun Lignin% GasReplaced Ca Nawt %Si S FeII^Almg/kgMg MnLG9 IR 60 23.3 2.88 1.70 2.2 20.99 3125 3225 2431LG10A 75 20.4 3.43 1.47 1.9 22.22 2449 2993 2622LG10B 100 20.4 3.43 1.47 1.9 22.22 2449 2993 2622LG12A WV 60 39.7 2.30 3.45 1.4 0.38 10570 6602 1814LG12B 75 39.7 2.30 3.45 1.4 0.38 10570 6602 1814LG11 100 28.4 0.47 3.53 1.5 0.60 7616 3441 204LG17 PG 60 38.3 1.79 2.89 0.74 3.83 3350 2725 334LG16 75 44.6 0.62 1.91 0.37 1.16 2950 2807 216LG14 100 37.5 1.27 3.29 2.1 1.70 5105 3431 464GasLG13 G1 0 N/D N/D N/D N/D N/D N/D N/13 N/DLG14G 02 0 N/D N/D N/D N/D N/D N/D N/D N/DLG15A G3 0 42.5 0.35 1.57 0.44 0.27 2882 2662 181LG15B G4 0 42.5 0.35 1.57 0.44 0.27 2882 2662 18181The rates at which the major elements of concern entered and left the kiln are shown in Figures 37 and 38.The total flowrates given in these figures are for limestone, lime, CO2 from calcination and the dust stream is thesummation of the elemental rates. Since the cyclone on the flue gas exit was not able to capture all the materialleaving the kiln, the dust stream was calculated by difference in order that the elements would balance. Figure 37is a balance for a natural gas experiment. Sulphur was not determined in the original limestone, however thesulphur present in the lime was considered to originate in the limestone. Figures 37 and 38 show that with 100%lignin firing the amount of sulphur increased in the lime and dust streams. Since the product lime stream 241.2 ghninLimestoneg/minCa= 258.6S = N/DSi = 6.8mg/minNa = 189.9Fe= 433.0Limeg/minCa = 243.2S = 0.2Si = 3.8mg/minNa = 73.6Fe= 305Dust*g/minCa= 15.4S = N/ASi = 2.98mg/minNa = 126.3Fe= 128* By differenceFigure 37. Elemental balance for natural gas firing (LG15A)259.4 g/miDust*g/minCa= 47.6S = 4.51Si = 2.14mg/minNa = 340.6Fe= 195.755.7 g/min220 g/minLigning/minCa= 0.0S= 5.04Si = N/Dmg/minNa = 308Fe= 22082contained less sodium than the feed limestone stream, it suggests that the majority of sodium added by the ligninfuel will be in the dust stream. Complete elemental balances for all runs can be found in Appendix F.Limestoneg/minCa = 238.7S = N/DSi = 6.3mg/minNa = 175.3Fe= 400.0Limeg/minCa= 191.2S = 0.53Si = 4.1mg/minNa = 142.7Fe= 424.0* By differenceFigure 38. Elemental balance for 100% lignin PG burning (LG14)Table 14 shows a comparison of the calculated dust composition of the major elements verses the chemicalanalysis for the natural gas run (LG15A) and the 100% lignin fired run (LG14). The calcium in the dust wasassumed to be in the form of calcium carbonate. The calculated value for the percent silica in the dust is very high83when compared to that which was found by analysis for the natural gas run. The reported values by chemicalanalysis for silica, sodium and iron in the 100% lignin fired run were found to be higher than those calculated.The other elements for both trials seem to be in good agreement for the calculated values verses the chemicalanalysis. Similar tabulated values of dust composition for all other runs can be found in Appendix F.Table 14. Dust composition collected and calculated for runs LG15A & LG14Trial CaCO3 Swt%Si Na FeLG15AFound 38.0 0.4 1.6 0.35 0.27Calculated 36.2 N/A 7.0 0.27 0.30LG14Found 37.5 2.1 3.3 1.27 1.70Calculated 37.4 3.6 1.7 0.27 0.15Figures 39 and 40 were generated from all experimental trials involving lignin as a fuel. The original sulphurcontent in the limestone feed was found from the natural gas runs. Figure 39 shows that as the amount of organicsulphur in the lignin increased the amount of total sulphur found on the lime increased. There are however twopoints which seem to be questionable and do not follow this trend. Sulphur addition to the lime from sulphate inthe lignin fuel was found to remain constant (-0.15 wt%) at all levels of firing. Figure 40 shows that increasingamounts of sodium in the lignin fuel had no correlation with the resulting sodium on the lime, but seem toremain constant (at 0.008 wt%) at input levels above 1000 mg/min from the lignin fuel. Since the limestonefeedrates were essentially constant in the experiments, increases in sulphur and sodium inputs arose from thelignin. These two elements may have left the kiln as sodium sulphate and/or calcium sulphate as dust in the fluegas. The cyclone was the only equipment used to remove dust from the flue gas, hence those particles with smalldiameters would not have been collected and were discharged from the system. The pilot\u00E2\u0080\u0094plant kiln has a short0.20 I\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2^ \u00E2\u0080\u00A2. \u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2^\u00E2\u0080\u00A2^\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2a.\u00E2\u0080\u00A2 Organic\u00E2\u0080\u00A2 Sulphate\u00E2\u0080\u00A20.04\u00E2\u0080\u00A2\u00E2\u0080\u00A2 0.03<14^ \u00E2\u0080\u00A20.020.01^\u00E2\u0080\u00A2^\u00E2\u0080\u00A2^\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2500 ^10 00^15000.00 o 2000^25000.050^1^2^3^4^5Sulphur Species in Lignin Feed, giminFigure 39. Sulphur found on the lime versus input from ligninSodium in Lignin Feed, mg/min84Figure 40. Sodium found on the lime versus input from lignin8 5LID ratio (13.5:1), no chain section and used dry limestone as feed material. Wet lime mud and a chain section ina kiln would capture more dust from the flue gas and this dust would exit the kiln with the lime. A chain sectionwould also increase the residence time of the sodium and sulphur and perhaps provide more time for these elementsto react with the limestone or lime. A kiln with a wet scrubber or an electrostatic precipitator on the exit flue gaswould return all the captured material back to the kiln with the wet lime mud. In any event, all the sodium andsulphur entering the kiln with the lignin as a fuel will end up in the lime. At a firing rate of 218 g/min ofpowdered lignin having 1.08 wt% Na, the highest level at which sodium entered the kiln with the lignin fuelwould produce levels of 0.52% (as Na20) if it all left in the lime. This is within the recommended limit of 0.2%to 0.7% [60]. The formation of rings and balls should not be expected from any of the lignin used in theexperiments, provided that the other alkali soluble materials in the lime mud are low. The limit of sulphur is notreally known, but the presence of sulphur will decreace the availability of CaO.Energy BalancesThe collected temperature data, along with other operating parameters from the kiln was used in a program tocalculate the local heat transfer rates. A description of the program written in Fortran code can be found elsewhere[54]. The local heat transfer rates within the kiln for two runs are shown in Figures 41 and 42. For each graphQSS, QSOL and QFBG represent the rate of energy lost by the shell, gained by the solids bed and lost by thefreeboard gas, respectively. Figure 41 shows results for a gas fired run (LG15A) which corresponds to a ligninfired run (LG14) shown in Figure 42, having an energy input of 8.5 and 9.2 MJ/Icg of CaCO3, respectively. Bycomparing the two Figures 41 and 42 shell energy losses are about the same whether the kiln was fired with 100%lignin or 100% natural gas. The sharp dip in the net heat transferred for the natural gas fired run by the flue gasoccurs at the onset of calcination and may be an anomaly due to the differentiation of the temperature data. Thisdip bottomed out when the kiln was fired by a lignin fuel, as shown in Figure 42. The rate of energy gained bythe solids bed is about the same at distances m, but is dramatically different between the two runs in the1201 . 0^1 . 5^2 . 0^2 . 5^3 . 0^3 . 5Distance from Discharge, m4.0 4 . 501 . 0^1 . 5^2 . 0^2 . 5^3 . 0^3 . 5Distance from Discharge, m4 . 0 4 . 5Figure 41. Net heat transfer rates for natural gas (LG15A)86Figure 42. Net heat transfer rates for 100% lignin WV (LG14)87flame region. Substantially more energy appears to be gained by solids bed near the discharge end when the kilnwas fueled by lignin, which was also seen in the axial calcination profiles (Fig. 25). However, the points at 2.2and 2.6 m in Figure 42 are in some doubt, since the shell lost more energy than that apparently lost by thefreeboard gas and gained by solids. For those runs which had complete sets of temperature data similar resultswere found.The results obtained for global energy balances for all runs are summarized in Table 15. The energy loss dueto the discharged of lime, flue gas, heat of calcination and shell as a percentage the total input are also reported.Two energy balances are reported in the table, since the molar flow of the flue gas, using the fuel composition,can be calculated from the supplied air or it may found from the flue gas composition. The second methodincludes infiltration air that leaked in through the seals and lime discharge chute. The net input of energy by thefuels was found to have a range of 5.14 to 5.48 MJ/min. Approximately 5% of the input energy exited with thelime discharge and about 19% was required for the calcination of the limestone for all runs. For the two differentmethods of calculation (supplied air and flue gas composition) energy loss by the flue gas and overall net loss areabout the same. As expected those runs (LG9,10A,10B) with a slightly moist lignin fuel and the highestfreeboard gas velocity had the highest energy loss in the exiting flue gas and lowest overall net losses. Heat lossthrough the shell was found from the following:Energy Lost = Energy Input - Energy Output - Energy consumed by CalcinationEnergy Input = Energy supplied by Fuels + Energy in with Limestone FedEnergy Output = Energy out with Lime and Flue GasThe shell energy loss is about the same whether the kiln was fired by natural gas, dry powdered lignin or acombination of the two fuels. Energy balances for the all runs can be found in Appendix G, with an examplecalculation provided.Table 15. Summary of simple energy balances for all runsExperiment LG9* LG10A LG10B LG12A LG12B LG11 LG17* LG16* LG14 L013 LG14G LG15A - LG15BLimestone, MJ/min 0.514 0.508 0.476 0.422 0.437 0.450 0.465 0.491 0.470 0.390 0.423 0.423 0.450Fuel, MJ/min 5.433 5.279 5263 5.220 5.221 5.250 5296 5.391 5.484 5.141 5.141 5.141 5.524Total IN, MJ/min 5.948 5.787 5.739 5.643 5.658 5.701 5.761 5.881 5.954 5.531 5.563 5.564 5.974Lime, MJ/min 0.268 0.305 0254 0.274 0.299 0.253 0.317 0.315 0.294 0.287 0.313 0.404 0.3454.51% 5.28% 4.42% 4.86% 5.29% 4.43% 5.50% 5.36% 4.94% 5.19% 5.63% 7.26% 5.77%Calcination, MJ/min 1.143 1.141 1.056 1.034 1.042 1.070 1.207 1.180 1.094 0.954 1.093 1.014 1.14719.22% 19.72% 18.41% 18.32% 18.41% 18.76% 20.95% 20.07%_ 18.37% 17.26% 19.65% 18.23% 19.20%by Supplied AirFlue Gas, MJ/min 2.130 2.007 2.071 1.603 1.658 1.697 1.541 1.662 1.440 1.416 1.406 1.303 1.54335.81% 34.68% 36.09% 28.40% 29.30% 29.77% 26.75% 28.27% 24.19% 25.61% 25.26% 23.41% 25.84%Total OUT, MJ/min 3.541 3.454 3.381 2.911 2.999 3.020 3.065 3.158 2.828 2.658 2.812 2.721 3.035Loss, MJ/min 2.407 2.333 2358 2.732 2.659 2.681 2.697 2.724 3.126 2.873 2.751 2.843 2.93940.47% 40.32% 41.08% 48.42% 47.00% 47.03% 46.80% 46.31% 52.50% 51.94% 49.45% 51.10% 49.19%by GC AnalysesFlue Gas, MJ/min 2.163 2.054 2.134 1.617 1.673 1.780 1.729 1.821 1.648 1.574 1.542 1.453 1.72436.37% 35.49% 37.17% 28.65% 29.57% 3122% 30.01% 30.97% 27.68% 28.46% 27.72% 26.12% 28.86%Total OUT, MI/min 3.574 3.500 3.444 2.925 3.014 3.102 3.253 3.317 3.036 2.815 2.949 2.872 3.216Loss, MJ/min 2.374 2.287 2.295 2.718 2.644 2.598 2.509 2.565 2.918 2.715 2.614 2.692 2.75839.91% 39.51% 39.99% 48.17% 46.73% _ 45.58% 43.54% 43.61% 49.01% 49.09% 46.99% 48.39% 46.17%* estimated values used, see Appendix G89ConclusionsIn order to access the suitability of figmin as a potential fuel for the lime kiln, a series of trials were carriedout using a 0.41 m ID by 5.5 m pilot rotary kiln. Lignin from three industrial sources, Irving, Prince George andWestvaco were used during the work. The source lignins were obtained both by carbon dioxide (Irving, Westvaco)and sulphuric acid precipitation (Prince George). The lignins were fired as solid powders in conjunction withnatural gas at various levels of gas replacement up to 100%. Baseline conditions were in each case establishedusing natural gas as the sole fuel.Once an appropriate feed system and burner configuration were developed, all the ligmins were found to burnsuccessfully in the pilot kiln. The lignin flames were longer and brighter than that of natural gas, whichconsiderably alter the axial temperature profiles within the kiln, both for the bed and freeboard gas. The flamelength produced by the powdered lignin was found to depend primarily upon the lignin particle size.At equal specific energy inputs per unit mass of limestone (MJ/kg CaCO3), lignin was found to result in ahigher level of calcination than for natural gas. Gas and solids temperatures were also higher at a given location inthe kiln, which was due to the higher emissivity of the lignin flame compared to that of natural gas. In the flameregion, the lignin fuel significantly improved heat transfer to the bed relative to natural gas. This was reflected inthe axial calcination profiles, in which calcination commenced somewhat earlier with lignin firing. No discernibledifferences were found between the carbon dioxide and the acid precipitated lignins. These results suggest that thethroughput of a natural gas fired rotary kiln could be increased if lignin was used in conjunction with natural gas athigh levels of replacement or as the sole fuel, the nature of the pilot kiln tests did not allow the benefits for acommercial scale kiln to be quantified.The limes produced with lignin as fuel were found to be as reactive in slaking as those produced by gas firing.Lignin IR produced the fastest slaking limes and also had the highest surface area of the limes firing with lignin,90which could have been due to slight moisture content. The surface area of the product limes was increased 2 to 3times when the kiln was fired using lignin as the sole fuel. The levels of sodium, sulphur and other inertelements found in the lignins did not effect kiln operation or the quality of lime (reactivity and maximumtemperature achieved). The sodium and sulphur added by the lignin fuel was presumed to leave the kiln in the duststream. With dust recycling all sodium and sulphur entering the kiln with the lignin as a fuel will be dischargedin the lime.The pilot kiln work suggests that lignin would be a suitable fuel for the lime kiln, and that lime kilnproductivity might be increased relative to natural gas firing. Although some fraction of the trace elements in thelignin ash will inevitably appear in the product lime, they do not appear to inhibit the reactivity of the product. Insummary, full scale trials will be necessary to confirm the results and to identify any potential long\u00E2\u0080\u0094term effects,on white liquor quality, the lime cycle and the life of the kiln refractory.91Recommendations for Future WorkIt is evident that impurities in the lignin fuel will contaminate the lime in a kiln with dust recycle. Researchis therefore needed on the comparison of sulphuric acid versus carbon dioxide precipitation of lignin and its'subsequent washing to yield lignins with low concentrations of sodium and sulphur. A study of the effect ofcarbon dioxide from flue gas on precipitation of lignin would also be useful.The powdered lignin feed system for the pilot kiln produced a pulsing flame. The screw feeder needs to beredesigned (made smaller) or a different feed system developed, such that this problem may be eliminated. Aproper type of burner should be investigated to maximize the full heating potential of powdered lignin. A burnerthat would perform improved mixing of both combustion air and powdered lignin might give a better flame thanthe one accomplished in the pilot kiln [11]. The length of the present kiln should be extended to incorporate achain section, and a dust collection and recycle system to study long term effects of lignin burning on lime mud.An extension of this research project should be carried out to develop methods for firing a lignin\u00E2\u0080\u0094water\u00E2\u0080\u0094fuel oilslurry to eliminate the need and cost of drying lignin.Computer simulation of the lime cycle might help to determine the fate of the inert compounds formed in thelime kiln.92Literature Cited1. Siro, M., \"First Finnish Kraft Pulp and Paper Mill Independent of Oil as an Energy Source\", Proceedings ofthe 1984 TAPPI Pulping Conference, p.591-5, Oct. 1984.2. Karjaluoto, J., \"Pyroflow\u00E2\u0080\u0094Gasifying for a Lime Kiln in Operation\", Proceedings of the 1985 InternationalChemical Recovery Conference, p.391-7, 1989.3. Lienhard, H. and Bierbach, H., \"Gasification of Biomass and its Application in the Pulp and Paper Industry\",Tappi J., 69:3, p.88-91, 1986.4. Nieminen, J. and Lyytinen, H., \"Gasification Yields Viable, Lost\u00E2\u0080\u0094Cost Alternative Fuel for Lime Kilns\",Pulp & Paper, 60:9, p.151-6, 1986.5. Lyytinen, H., \"Biomass Gasification as a Fuel Supply for Lime Kilns: Description of Recent Installations\",Tappi J., 70:7, p.77-80, 1987.6. Lamb, F.H., \"Lamb Wet\u00E2\u0080\u0094Cell Burner Firing a Lime Kiln\", Pi^ -eedings of the 1981 TAPPI EngineeringConference, p.307-10, 1981.7. Rowe, I.G., \"Substitution of Oil by Hogged Fuel in a Kraft Process Lime Sludge Kiln\", Tappi J., 67:2,p.86-90, 1984.8. Helm, R.W., \"Wastewood Gasification Economical\", Pulp & Paper, 57:5, p.122-5, 1983.9. Westerberg, B., Seip, D. and Robinson, L, \"Firing of Lime Sludge Kilns with Bark and Wood Waste\",Proceedings of the 1982 TAPPI Engineering Conference, p.481-7, 1982.10. Hedenhag, J.G., \"Firing of Bark and Wood Waste in Boilers and Lime Sludge Kilns\", Proceedings of the1981 TAPPI Engineering Conference, p.283-294, 1981.11. Risberg, B., \"Suspension Firing of Wood Waste in Lime Kilns\", Fiala Canada Ltd., Ottawa, Ontario, June1984.9312. Campbell, A.J., Lightfoot, H.D., Lowe, R.W. and O'Malley, B.F., \"Wood Firing of Bleached Kraft MillLime Kilns\", Pulp & Paper Canada, 87:8, p.64-7, 1986.13. Hedenhag, J.G., \"Report on Bio-Fuel Drying System as an Alternative to Oil/Natural Gas\", Paper TradeJournal, 165:17, p.32-5, 1981.14. Blackwell, B. and MacCallum, C., \"Hog Fuel Drying Concepts\", Pulp & Paper Canada, 84:1, p.49-55,1983.15. Azarniouch, M.K. and Philp, R.J., \"Wood Residues - A Fuel Source for Lime Kilns: Phase I - Pilot KilnTrials\", Pulp and Paper Canada, 84:1, p.T1-6, 1983.16. Philp, R.J. and Azarniouch, M.K., \"Wood Residues - A Fuel Source for Lime Kilns: Phase II - Pilot KilnTrials\", Pulp and Paper Canada, 85:12, p.T300-2, 1984.17. Azarniouch, M.K., \"Wood Residues - A Fuel Source for Lime Kilns: Phase III - Mill Trials\", Pulp &Paper Canada, 87:6, p.T223-7, 1986.18. Young, R., \"Crude Tall Oil Burning at Northwood Pulp & Timber Ltd.\", Pulp & Paper Canada, 90:3, p.80-4, 1989.19. Mappin, F.H., \"Construction Materials and Corrosion in Tall Oil Production\", Tappi J., 70:1, p.59-63,1987.20. Henry, J.M., and Hopper, W.D., \"Coal Combustion in Commercial Lime Kilns\", Coal ProcessingTechnology, AlChE Chemical Engineering Progress Technology Manual, New York, N.Y., Vol.4, p.194-7, 1978.21. Jeffries, A.T., Whalen, P.J., Davies, F.W. and Lee, L.K., \"Experiences with Coal/Oil Mixture Firing of aUtility Boiler\", Pulp & Paper Canada, 80:10, p.T334-340, 1979.22. Miller, B.G., \"Coal-Water Slurry Fuel Utilization in Utility and Industrial Boilers\", Chem. Eng. Progress,p.29-38, March 1989.23. White, A., \"Coal-Water Fuel: A New Future for Coal\", Pulp & Paper Canada, 90:9, p.T337-9, 1989.9424. Rhyne, J.B. and Kerkhof, Mi., \"Coal-Oil-Water Combination Shows Potential for use as Lime KilnFuel\", Pulp & Paper, 54:8, p.137-9, 1980.25. Burgess, TI., \"The Basics of Foul Condensate Stripping\", TAPPI Kraft Recovery Operations SeminarNotes, p.129-133, 1988.26. Coleman, A.A., 'The Combustion of Non-Condensable Blow and Relief Gases in the Lime Kiln\", Tappi J.,41:10, p.166-8, 1958.27. Burgess, TI., Carter, D.N. and McEachern, D.E., \"Incineration of Malodorous Gases in Kraft Pulp Mills\",Pulp & Paper Canada, 75:5, p.T194-8, 1974.28. Bayda, J.G., \"Crude Sulphate Turpentine Recovery at Hannac\", Pulp & Paper Canada, 70:7, p.T203-7,1969.29. Merewether, J.W.T., \"The Precipitation of Lignin from Eucalyptus Kraft Black Liquors\", Tappi J., 45:2,p.159-163, 1962.30. Al6n, R., Patja, P. and Sjostrom, E., \"Carbon Dioxide Precipitation of Lignin from Pine Kraft BlackLiquor\", Tappi J., 62:11, p.108-110, 1979.31. Al6n, R., Sjostrom, E. and Vaskikari, P., \"Carbon Dioxide Precipitation of Lignin from Alkaline PulpingLiquors\", Cellulose Chemistry and Technology, 19:5, p.537-541, 1985.32. Kim, H., Hill, M.K. and Frike, A.L., \"Preparation of Kraft Lignin from Black Liquor\", Tappi J., 70:12,p.112-6, 1987.33. Loutfi, H., \"Lignin Recovery from Kraft Black Liquor: Carbon Dioxide Precipitation\", Pacific Paper ExpoConference, Vancouver, B.C., p.1.4.0-12, Nov. 6-9, 1990.34. Uloth, V.C. and Wearing, J.T., \"Kraft Lignin Recovery: Acid Precipitation vs Ultrafiltration: Part ILaboratory Test Results\", Pulp & Paper Canada, 90:9, p.67-71, 1989.35. Kirkman, A.G., Gratzl, J.S. and Edwards, L.L., \"Kraft Lignin Recovery by Ultrafiltration: EconomicFeasibility and Impact on the Kraft Recovery System\", Tappi J., 69:5, p.110-4, 1986.9536. Chaudhuri, P.B., \"Use of Lignin as Kiln Fuel\", Proceedings of the 1986 TAPPI Engineering Conference,p393-6, Sept. 1986.37. Tomlinson, G.H. and Tomlinson, G.H.Jr., \"Method of Treating Lignocellulosic Material\", Canadian Patent448,476, assigned to Howard Smith Paper Mills Ltd., May 1948.38. Beaupit, M.F. and Cambron, E.A., \"Kraft Overload Recovery Process\", Canadian Patent 1,172,808,assigned to Domtar Inc., Aug. 1984.39. Chaudhuri, P.B., \"Sulfate Cellulose Process for the Manufacture of Low-Sulfur Lignin Suspensions fromBlack Liquor without Sulfur Release into the Atmosphere\", Swedish Patent 453,408, assigned to P.B.Chaudhuri, 1988.40. Santisteban, E.M., \"Development of By-Products from Kraft Unbleached Black Liquor\", Proceedings of the1979 TAPPI Pulping Conference, p.85-8, Nov. 1979.41. Uloth, V.C. and Wearing, J.T., \"Kraft Lignin Recovery: Acid Precipitation vs Ulirafiltration: Part IITechnology and Economics\", Pulp & Paper Canada, 90:10, p.34-7, 1989.42. Richardson, B. and Uloth, V., \"Kraft Lignin: A Potential Fuel for Lime Kilns\", Tappi J., 73:10, p.191-4,1990.43. Boyd, T., Dang, D., Douglas, A., Hon, R., Lee, J., Ng, J., Selby, J. and Wehrhahn, E., \"Kraft LigninPrecipitation\", Final Design Report submitted to the Department of Chemical Engineering of the Universityof British Columbia, April 5, 1990.44. Loutfi, H., Blackwell, B. and Uloth, V., \"Lignin Recovery from Kraft Black Liquor. Preliminary ProcessDesign\", Tappi J., 74:1, p.203-210, 1991.45. McCubbin, N., \"Alternatives to Fossil Fuel for the Lime Kiln\", Pulp & Paper Canada, 86:9, p.T271-4,1985.46. Madsen, J.S., \"Fuels and Firing Systems\", TAPPI Kraft Recovery Operations Seminar Notes, p.75-93,1988.9647. Kramm, DJ., \"Updata on Lime Sludge Kilns in the Pulp Mill Environment\", Paper Trade J., Part 1 May 15p.23-7, Part 2 May 30 p.53-8,1979.48. Schwarzkopf, F., \"Lime Burning Technology\", Kennedy Van Saun Corp., Danville, PA, 1977.49. Adams, TN., \"Lime Reburning\", TAPPI Kraft Recovery Operations Seminar Notes, p.73-86,1988.50. Watkinson, A.P. and Brimacombe, J.K., \"Limestone Calcination in a Rotary Kiln\", MetallurgicalTransactions B, Vol. 13, p.369-78, Sept. 1982.51. Barr, P.V., Brimacombe, J.K., and Watkinson, A.P., \"A Heat-Transfer Model for the Rotary Kiln: Part 1 -Pilot Kiln Trials\", Metallurgical Transactions B, Vol. 20B, p.391-402, June 1989.52. Barr, P.V., Brimacombe, J.K., and Watkinson, A.P., \"A Heat-Transfer Model for the Rotary Kiln: Part 1 -Development of the Cross-Section Model\", Metallurgical Transactions B, Vol. 20B, p.403-419, June 1989.53. Gorog, J.P., Radiative Heat Transfer in Rotary Kilns, Ph.D. Thesis, University of British Columbia, 1981.54. Barr, P.V., Heat Transfer Processes in Rotary Kilns, Ph.D. Thesis, University of British Columbia, 1986.55. Boynton, R.S., Chemistry and Technology of Lime and Limestone, 2nd ed., John Wiley and Son Inc., NewYork, NY, p.159-191,275-359,1980.56. Dorris, G.M. and Allen, L.H., \"Physicochemical Aspects of Recausticizing\", TAPPI Kraft RecoveryOperations Seminar Notes, p.31-43,1988.57. Bristow, OJ. and Kunz, C.C., \"The Problems of Impurities Build-Up in Causticizing Systems at LowLime Make-Up\", Southern Pulp & Paper Manufacturer, 24:2, p.62-6,1961.58. Magnusson, H., Mirk, K. and Warnqvist, B., \"Non-Process Chemical Elements in the Kraft RecoverySystem\", Proceedings of the 1979 TAPPI Pulping Conference, p.77-83,1979.59. Uhngren, P., \"Consequences of Build-up of Non-Process Chemical Elements in Closed Kraft RecoveryCycles - Aluminosilicate Scaling, A Chemical Model\", Proceedings of the 1981 TAPPI InternationalConference on Recovery of Pulping Chemicals, p.39-44,1981.9760. Keitaanniemi, 0. and Virkola, N., \"Undesirable Elements in Causticizing Systems\", Tappi J., 65:7, p.89-92, July 1982.61. Abson, D. and Holman, K.L., \"Alternate Fuels for Lime Kilns - Effect of Fuel Ash on Lime and LiquorQuality\", Proceedings of the 1985 International Chemical Recovery Conference, p.407-17, 1985.62. Crouse, N.E. and Stapley, CE., \"Dregs - their Cause and Effect\", Pulp & Paper Canada, 80:C, p.T93-8,1979.63. Campbell, A.J., \"Factors Affecting White Liquor Quality: Green Liquor Concentration, Dregs Concentrationand Lime Dosage\", Pulp & Paper Canada, 82:4, p.T121-6, 1981.64. Thakore, A.H., \"What Happens to Reduced Sulfur Compounds Burned in Lime Kilns r, Pulp & Paper,53:5, p.75-81, 1979.65. Burgess, TI., \"Burning Non-Condensible Gases\", TAPPI Kraft Recovery Operations Seminar Notes,p.145-6, 1989.66. Ellis, K., \"Ring Formation in a NCG Burning Lime Kiln\", Proceedings of the 1989 TAPPI EnvironmentalConference, p.115-8, 1989.67. Tran, H., Griffiths, J. and Budge, M., \"Experience of Lime Kiln Ringing Problems at E.B. Eddy ForestProducts\", Pulp & Paper Canada, 92:1, p.78-82, 1991.68. Tran, H.and Barham, B.,\"An Overview of Ring Formation in Lime Kilns\", Tappi J., 74:1, p.131-6, 1991.69. Dorris, G.M. and Allen, L.H., \"The Effect of Reburned Lime Structure on the Rates of Slaking,Causticizing and Lime Mud Settling\", Journal of Pulp and Paper Science, 11:4, p.J89-98, July 1985.70. 1Cassebi, A. and Brashear, HI. , \"The Effect of Lime Source and Dosage on the Rates of Slaking,Causticizing and Lime Mud Settling\", Proceedings of the 1989 International Chemical Recovery Conference,p.127-132, 1989.71. Theliander, H., \"A System Analysis of the Chemical Recovery Plant of the Sulfate Pulping Process: Part 6.Comments on the Lime Reburning System\", Nordic Pulp & Paper Res. J., No.2, p.60-7, 1988.9872. Boniface, A., Mattison, R.J. and Haws, R.C., \"Recausticizing Systems Should Strike Balance BetweenYour Cost and Their Performance\", Pulp & Paper, p.28-30, Oct.28, 1968.73. Smook, G.A., Handbook for Pulp & Paper Technologists, TAPPI Press, 1986.74. Perry, J.H. (Editor\u00E2\u0080\u0094in--Chief), Chemical Engineers Handbook, 5 & 6th Ed., McGraw\u00E2\u0080\u0094Hill, N.Y., p.2-53,1973.75. Promotional Brochure from Modem Control Services Ltd., 18549 \u00E2\u0080\u0094 97th Avenue, Surrey, B.C.76. Uloth, V.C., (Personal communication with), 1990.99Appendix ARefractory Composition and Thermal ConductivityRefractory Compositionwt %Refractory^Al203^Si02^Fe203^TiO2^CaO^MgO^AlkalinerPlicast LWI28t^46.68^43.93^0.97^0.98^5.52^0.26^1.08Claycast 60EStt^60^33t Manufactured by Plibrico Co.tt Manufactured by Clayburn Refractories Ltd.^The other 7% is unknown.Thermal Conductivity, (Wim \u00C2\u00B0C)`CRefractory^260^538^815^1093^1371^Max rCPlicast LWI28t^0.30^0.33^0.35^0.42 1450Claycast 60EStt^0.98^1.04^1.10^1.14^1.18^1650 t k = 0.892 * (1.000 + 2.018 * 10-4 * T (K)) R2 = 0.989tt k = 0.22 * (1.000 + 6.227 * 10-4 * T (K)) R2 = 0.926100Appendix BCalibration ChartsPageFigure B-1. Conveyor belt feeder calibration for limestone^ 101Figure B-2. Orifice plate calibration for total air flow 102100908070tz605040*;1 302010V^VI. 41111111^\u00E2\u0080\u00A211 V/^V^\u00E2\u0080\u00A2^VV.. VT.^\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0096\u00A00.-\u00E2\u0096\u00A0\u00E2\u0080\u00A2\u00E2\u0080\u00A2^1^2^3^4^5^6^7^8^9 10Feeder SettingFigure B-1. Conveyor belt feeder calibration for limestoneo 10^20^30^40^50Total Air Flow, CFM60 702.01\u00E2\u0080\u00A2\u00E2\u0096\u00A0\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A2\u00E2\u0080\u00A21.51.0^-AP,0.0Figure B-2. Orifice plate calibration for total air flow103Appendix CCalcination Results of Limestone FeedLimestone # 1 # 2 # 3 #4 # 5Date 13/Oct/89 22/Oct/89 22/Oct/89 22/Oct/89 22/Oct/89Before Firing, g 30.3096 27.3167 24.6708 24.8741 25.2667After Firing, g 22.2671 20.0647 18.3084 18.5973 18.9368Empty Crucible, g 11.5553 10.4888 9.8948 10.2082 10.4420Wt of CaCO3, g 18.7543 16.8279 14.7760 14.6659 14.8247Wt Loss by CaCO3, g 8.0425 7.2520 6.3624 6.2768 6.3299% Calcination 97.46 97.94 97.86 97.27 97.04Limestone #6 # 7 # 8 # 9 # 10Date 22/Oct/89 20/Feb/90 20/Feb/90 15/Mar/90 16/Mar/90Before Firing, g 232220 26.8457 27.4940 28.9997 28.5065After Firing, g 17.5497 19.7376 19.9276 20.9879 20.7330Empty Crucible, g 10.0075 10.4444 10.0100 10.4949 10.4958Wt of CaCO3, g 13.2145 16.4013 17.4840 18.5048 18.0107Wt Loss by CaCO3, g 5.6723 7.1081 7.5664 8.0118 7.7735% Calcination 97.56 98.50 98.35 98.40 98.09Limestone # 11 # 12 # 13 # 14 # 15Date 17/Mar/90 19/Mar/90 20/Mar/90 21/Mar/90 23/Mar/90Before Firing, g 29.4208 28.9511 27.8464 29.0938 27.9384After Firing, g 21.2471 20.9772 20.4090 21.0802 20.4581Empty Crucible, g 10.4986 10.5036 10.5040 10.5086 10.5070Wt of CaCO3, g 18.9222 18.4475 17.3424 18.5852 17.4314Wt Loss by CaCO3, g 8.1737 7.9739 7.4374 8.0136 7.4803% Calcination 98.17 98.24 97.47 98.00 97.53Limestone # 16 # 17 # 18 # 19 # 20Date 24/Mar/90 25/Mar/90 26/Mar/90 27/Mar/90 28/Mar/90Before Firing, g 29.3576 29.1990 28.2172 29.9685 29.1140After Firing, g 21.2143 21.1405 20.5941 21.5937 21.0819Empty Crucible, g 103138 10.5143 10.5150 10.5185 10.5209Wt of CaCO3, g 18.8438 18.6847 17.7022 19.4500 18.5931Wt Loss by CaCO3, g 8.1433 8.0585 7.6231 8.3748 8.0321% Calcination 98.22 98.02^_ 97.87 97.86 98.18Limestone # 21 # 22 # 23 #24 # 25Date 29/Mar/90 30/Mar/90 31/Mar/90 1/Apr/90 10/Apr/90Before Firing, g 28.4322 29.4117 30.3567 30.5787 29.1542After Firing, g 20.7483 21.2605 21.7921 21.8988 21.1270Empty Crucible, g 10.5227 10.5245 10.5265 10.5287 10.5322Wt of CaCO3, g 17.9095 18.8872 19.8302 20.0500 18.6220Wt Loss by CaCO3, g 7.6839 8.1512 8.5646 8.6799 8.0272% Calcination 97.51 98.08 98.16 98.39 97.97104Limestone # 26 # 27 # 28 # 29 # 30Date 11/Apr/90 12/Apr/90 3/Jun/90 4/Jun/90 5/Jun/90Before Firing, g 28.8249 28.6348 29.4055 29.3821 29.5828After Firing, g 20.9188 20.8138 21.2638 21.2664 213330Empty Crucible, g 10.5340 10.5370 10.5372 10.5428 10.5457Wt of CaCO3, g 18.2909 18.0978 18.8683 18.8393 19.0371Wt Loss by CaCO3, g 7.9061 7.8210 8.1417 8.1157 8.2498% Calcination 98.24 98.22 98.07^_ 97.91 98.49Limestone #31 #32 #33 #34 #35Date 6/Jun/90 7/Jun/90 8/Jun/90 16/Jun/90 17/Jun/90Before Firing, g 29.3619 28.6692 29.3665 28.2046 28.4858After Firing, g 21.3028 20.8729 21.2600 20.5521 20.6814Empty Crucible, g 10.5472 10.5522 103525 10.5529 105549WE of CaCO3, g 18.8147 18.1170 18.8140 17.6517 17.9309Wt Loss by CaCO3, g 8.0591 7.7963 8.1065 7.6525 7.8044% Calcination 97.35 97.80 97.93 98.53 98.92Average of #1 to 34 for experimental runs LG1 to LG13 = 97.95%Limestone # 36 #37 # 38 # 39 # 40Date 18/Jun/90 19/Jun/90 24/Jun/90 25/Jun/90 26/Jun/90Before Firing, g 282881 28.5696 27.8919 27.3934 27.0131After Firing, g 20.5616 20.7300 20.3687 20.0624 19.8664Empty Crucible, g 10.5564 10.5564 10.5600 10.5621 10.5642WE of CaCO3, g 17.7317 18.0132 17.3319 16.8313 16.4489Wt Loss by CaCO3, g 7.7265 7.8396 7.5232 7.3310 7.1467% Calcination 99.03 98.91 98.65^- 98.99 98.75105Limestone #41 #42 #43 #44Date 27/Jun/90 28/Jun/90 29/Jun/90 30/Jun/90Before Firing, g 29.9617 29.1080 28.2710 28.2006After Firing, g 21.5086 21.0320 20.5537 20.5163Empty Crucible, g 10.5659 10.5671 105692 10.5709Wt of CaCO3, g 19.3958 18.5409 17.7018 17.6297Wt Loss by CaCO3, g 8.4531 8.0760 7.7173 7.6843% Calcination 99.05 98.99^_ 99.08 99.06Average of #35 to #44 for experimental runs LG14 to LG18 = 98.96%106107Appendix DPageRun LG9Table of Events^ 110Cyclic Bed Temperature Readings^ 111Cyclic Hot Face Wall Probe Temperature Readings^ 113Interior Wall Probe Temperature Readings^ 115Suction Pyrometer Temperature Readings of Flue Gas^ 116Shell Temperature Readings^ 117Flue Gas Analysis 118Axial Calcination Results^ 119Run LG10Table of Events^ 121Cyclic Bed Temperature Readings^ 123Cyclic Hot Face Wall Probe Temperature Readings^ 128Interior Wall Probe Temperature Readings^ 135Suction Pyrometer Temperature Readings of Flue Gas^ 138Shell Temperature Readings^ 143Flue Gas Analysis 144Axial Calcination Results^ 145Run LG11Table of Events^ 147Cyclic Bed Temperature Readings^ 148Cyclic Hot Face Wall Probe Temperature Readings^ 150Interior Wall Probe Temperature Readings^ 154Suction Pyrometer Temperature Readings of Flue Gas^ 156Shell Temperature Readings^ 158Flue Gas Analysis 159Axial Calcination Results^ 160108PageRun LG12Table of Events^ 162Cyclic Bed Temperature Readings^ 163Cyclic Hot Face Wall Probe Temperature Readings^ 169Interior Wall Probe Temperature Readings 173Suction Pyrometer Temperature Readings of Flue Gas^ 175Shell Temperature Readings^ 177Flue Gas Analysis 178Axial Calcination Results 179Run LG13Table of Events^ 182Cyclic Bed Temperature Readings^ 183Cyclic Hot Face Wall Probe Temperature Readings^ 184Interior Wall Probe Temperature Readings^ 185Suction Pyrometer Temperature Readings of Flue Gas^ 186Shell Temperature Readings^ 187Flue Gas Analysis 188Axial Calcination Results 189Run LG14Table of Events^ 190Cyclic Bed Temperature Readings^ 191Cyclic Hot Face Wall Probe Temperature Readings^ 194Interior Wall Probe Temperature Readings^ 197Suction Pyrometer Temperature Readings of Flue Gas^ 198Shell Temperature Readings^ 200Flue Gas Analysis 201Axial Calcination Results 202109PageRun LG15Table of Events^ 204Cyclic Bed Temperature Readings^ 205Cyclic Hot Face Wall Probe Temperature Readings^ 208Interior Wall Probe Temperature Readings^ 210Suction Pyrometer Temperature Readings of Flue Gas^ 211Shell Temperature Readings^ 213Flue Gas Analysis ^ 214Axial Calcination Results^ 215Run LG16Table of Events^ 217Cyclic Bed Temperature Readings^ 218Cyclic Hot Face Wall Probe Temperature Readings^ 228Interior Wall Probe Temperature Readings^ 230Suction Pyrometer Temperature Readings of Flue Gas^ 231Shell Temperature Readings^ 233Flue Gas Analysis 234Axial Calcination Results^ 235Run LG17Table of Events^ 236Cyclic Bed Temperature Readings^ 237Cyclic Hot Face Wall Probe Temperature Readings^ 243Interior Wall Probe Temperature Readings 244Suction Pyrometer Temperature Readings of Flue Gas^ 245Shell Temperature Readings^ 246Flue Gas Analysis 247Axial Calcination Results 248Note: The tables containing temperature data within this appendix include all values recorded during theexperimental runs, only the very obvious errors have been eliminated. All recorded data is availible on ahigh density disk (1.2MB) in spreadsheet format (Lotus 123).Action Requested by Operator^I^Time3/13/90Kiln speed (rpm) : 1.511:13:15.8311:13:20.06Lignin = 145 Wmin^Gas = 2.2 CFM 10:30:00Read Bed Temperatures 11:15:44.29Read Hot Face Heat Flux Temperatures 11:17:15.30Read Colder Heat Flux Temperatures 11:18:39.67Suction TIC, Pair : 1 11:19:18.06Suction TIC, Pair : 2 11:21:22.25Suction T/C, Pair : 3 11:23:17.26Suction T/C, Pair : 4 11:25:11.62Suction T/C, Pair : 5 11:27:09.93Read Bed Temperatures 11:35:27.06Read Hot Face Heat Flux Temperatures 11:37:38.71Read Colder Heat Flux Temperatures 11:39:03.08Run LG9110Table of EventsCyclic Bed Temperature Readings11:15:44.29 1 2 3 4 5 6 7 8 9 100 996.22 1050.95 1056.12 976.91 918.05 876.33 853.58 814.74 727.57 652.3136 992.72 1046.64 1056.12 981.31 920.79 879.03 856.02 817.40 729.71 655.1472 993.60 1047.50 1056.12 983.95 922.78 881.24 857.73 819.33 731.14 657.50108 997.97 1052.68 1057.84 988.34 924.52 883.70 858.70 820.54 732.09 659.62144 1004.09 1062.14 1059.56 990.09 925.52 885.67 858.95 820.30 731.61 660.57180 1007.59 1069.87 1063.00 992.72 925.27 885.67 856.99 816.43 728.52 659.15216 1010.20 1075.86 1065.58 991.84 923.52 884.44 854.80 812.33 724.96 655.85252 1010.20 1072.44 1066.43 982.19 919.79 877.80 849.92 799.31 720.92 649.24288 1008.46 1059.56 1063.00 976.03 917.31 875.35 849.92 805.81 723.06 648.53324 999.72 1054.40 1061.28 978.67 918.30 877.31 852.36 812.08 726.14 650.42360 994.47 1051.81 1060.42 982.19 920.54 881.24 854.80 815.95 728.52 653.02396 990.97 1047.50 1059.56 984.82 923.03 884.93 856.99 818.13 730.42 655.85432 993.60 1049.23 1059.56 988.34 925.02 887.64 858.95 820.79 732.09 658.44468 997.97 1056.12 1061.28 990.97 926.51 889.61 859.68 821.03 732.80 660.33504 1004.09 1063.86 1063.86 993.60 926.26 889.61 858.46 819.09 731.85 660.80540 1008.46 1070.72 1066.43 994.47 925.02 888.13 856.02 814.74 728.52 658.68576 1013.69 1076.72 1068.15 994.47 923.52 885.91 853.82 808.95 724.96 654.67612 1012.82 1074.15 1067.29 982.19 919.30 877.80 849.19 798.83 721.87 649.01648 1013.69 1065.58 1065.58 979.55 917.31 874.86 849.92 806.54 724.24 649.24684 1012.82 1066.43 1063.86 980.43 918.05 875.84 852.11 811.60 727.10 651.60Minimum 990.97 1046.64 1056.12 9976.03 917.31 874.86 849.19 798.83 720.92 648.53Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52111:35:27.06 1 2 3 4 5 6 7 8 9 100 924.66 1032.82 1075.88 1010.20 942.61 903.56 874.26 834.50 744.15 669.4636 922.04 1032.82 1076.73 1012.81 944.36 905.29 875.48 835.47 744.86 671.5972 915.92 1031.09 1077.59 1015.43 945.36 906.28 875.48 834.50 744.15 672.53108 909.78 1026.73 1078.45 1016.30 944.86 905.29 873.28 829.89 741.76 671.12144 N/A N/A N/A N/A N/A N/A 873.28 829.89 741.76 671.12180 907.15 1021.52 1079.30 1008.46 938.61 896.39 864.95 813.20 733.67 661.20216 911.54 1017.17 1077.59 1000.59 936.11 892.45 865.19 819.48 735.34 660.02252 911.54 1018.91 1076.73 1001.47 937.11 893.68 867.40 825.53 738.19 661.91288 N/A N/A N/A N/A N/A N/A 867.40 825.53 738.19 661.91324 920.29 1028.46 1075.88 1006.71 941.11 899.85 872.30 832.56 743.19 667.57360 N/A N/A N/A N/A N/A N/A 872.30 832.56 743.19 667.57396 918.54 1030.22 1074.16 1011.07 943.61 905.54 874.99 835.47 745.58 672.53432 910.66 1025.86 1074.16 1011.94 943.11 906.28 874.01 833.53 744.62 673.01468 901.88 1018.04 1073.31 1011.07 940.86 904.55 871.56 829.40 740.81 670.65504 891.30 1010.20 1070.74 1009.33 937.61 902.07 868.62 823.83 736.53 666.63540 901.00 1006.71 1067.30 998.84 932.62 894.17 863.24 812.47 732.96 660.02576 901.00 990.96 1058.71 990.08 927.88 889.25 860.55 814.40 732.96 658.60612 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A648 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A684 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AMinimum 891.30 990.96 1058.71 990.08 927.88 889.25 860.55 812.47 732.96 665.60Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings11:17:15.30 1 2 3 4 5 6 7 8 9 100 N/A 1048.42 925.58 800.80 N/A N/A 600.28 575.55 430.24 N/A36 N/A 1051.00 926.46 800.56 N/A N/A 600.28 576.02 430.95 N/A72 N/A 1055.31 929.08 800.32 N/A N/A 600.28 576.25 431.43 N/A108 N/A 1043.24 926.46 800.56 N/A N/A 599.81 576.25 429.52 N/A144 N/A 1032.00 920.34 802.25 N/A N/A 599.34 575.55 426.18 N/A180 N/A 1032.00 917.72 803.93 N/A N/A 599.81 575.07 425.47 N/A216 N/A 1043.24 920.34 803.69 N/A N/A 600.04 574.84 426.66 N/A252 N/A 1044.97 922.09 802.73 N/A N/A 600.51 575.07 427.61 N/A288 N/A 1045.83 923.84 801.76 N/A N/A 600.51 575.07 428.81 N/A324 N/A 1046.69 924.71 801.28 N/A N/A 600.75 575.55 429.76 N/A360 N/A 1050.14 926.46 800.80 N/A N/A 600.75 576.02 430.71 N/A396 N/A 1054.45 929.08 800.56 N/A N/A 600.75 576.25 431.43 N/A432 N/A 1056.17 929.08 800.56 N/A N/A 600.51 576.49 431.90 N/A468 N/A 1041.51 924.71 800.80 N/A N/A 600.04 576.49 429.28 N/A504 N/A 1032.00 919.47 802.73 N/A N/A 599.57 575.78 426.42 N/A540 N/A 1037.19 917.72 803.93 N/A N/A 600.04 575.31 426.42 N/A576 N/A 1045.83 920.34 803.45 N/A N/A 600.51 575.31 427.38 N/A612 N/A 1047.55 922.09 802.73 N/A N/A 600.75 575.31 428.33 N/A648 N/A 1046.69 922.96 802.01 N/A N/A 600.75 575.55 429.52 N/A684 N/A 1047.55 924.71 801.28 N/A N/A 600.98 576.02 430.47 N/AAverage N/A 1045.09 923.66 801.84 N/A N/A 600.31 575.69 428.93 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.21311:37:38.71 1 2 3 4 5 6 7 8 9 100 N/A 903.74 884.33 819.34 N/A N/A 606.61 578.12 434.02 N/A36 N/A 909.88 882.56 819.10 N/A N/A 606.14 577.64 430.44 N/A72 N/A 915.14 881.68 818.13 N/A N/A 605.91 576.94 427.82 N/A108 N/A 909.88 879.90 817.16 N/A N/A 605.67 576.47 427.58 N/A144 N/A 901.10 877.24 816.92 N/A N/A 605.44 575.76 428.06 N/A180 N/A 898.46 875.47 816.68 N/A N/A 604.97 575.29 428.53 N/A216 N/A 895.81 873.69 816.19 N/A N/A 604.73 574.82 429.01 N/A252 N/A 890.52 871.02 815.71 N/A N/A 604.50 574.58 429.49 N/A288 N/A 885.22 869.25 815.23 N/A N/A 604.02 573.87 429.73 N/A324 N/A 879.90 866.58 814.99 N/A N/A 603.79 573.64 429.96 N/A360 N/A 875.47 864.79 814.75 N/A N/A 603.32 573.17 429.73 N/A396 N/A 886.10 863.90 814.26 N/A N/A 603.32 572.70 426.15 N/A432 N/A 890.52 863.90 813.05 N/A N/A 603.08 571.99 423.29 N/A468 N/A 881.68 862.12 811.85 N/A N/A 602.61 571.52 423.29 N/A504 N/A 876.36 860.33 811.61 N/A N/A 602.14 571.05 423.76 N/A540 N/A 874.58 858.55 811.12 N/A N/A 601.90 570.34 424.00 N/A576 N/A 871.02 856.76 810.64 N/A N/A 601.43 569.87 424.48 N/A612 N/A 866.58 854.97 809.92 N/A N/A 601.20 569.40 424.72 N/A648 N/A 863.01 853.18 809.43 N/A N/A 600.73 568.69 424.96 N/A684 N/A 856.76 851.39 809.19 N/A N/A 600.26 568.22 425.20 N/AAverage N/A 886.59 867.58 814.26 N/A N/A 603.59 573.20 427.21 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.Interior Wall Probe Temperature Readings11:18:39.67Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 316.51 753.74 1025.911.568 N/A 601.89 867.442.064 307.17 N/A 822.052.375 N/A 587.32 N/A2.724 292.12 528.63 N/A3.048 213.76 470.66 647.884.070 197.82 389.85 590394.585 174.48 300.62 509.265.213 15235 270.95 396.7911:39:03.08Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 319.70 758.38 891.401.568 N/A 605.79 849.602.064 31124 N/A 814.262.375 N/A 592.48 N/A2.724 29838 535.21 N/A3.048 214.93 478.46 655.874.070 204.63 399.39 593.904.585 18032 309.30 515.855.213 156.71 278.45 402.74NOTE: This set of data was used for steady state calculations.115Suction Pyrometer Temperature Readings of Flue Gas111:19.18.06211:21:22.253 411:23.17.265 6 711:25.11.62811:27:09.939 100 1114.34 1164.94 1136.45 1020.92 935.36 N/A N/A N/A N/A N/A36 1138.01 1169.97 1146.57 1020.92 940.36 N/A N/A N/A N/A N/A72 1145.59 1169.14 1154.98 1029.62 944.11 N/A N/A N/A N/A N/A108 1110.95 1154.85 1147.41 1026.99 948.12 N/A N/A N/A 783.03 N/A144 1058.84 1138.85 1157.51 1036.55 951.63 N/A N/A N/A 788.55 N/A180 1018.18 1121.11 1146.57 1033.08 956.91 N/A N/A N/A 793.12 N/A216 1014.70 1124.49 1149.93 1040.00 962.19 N/A N/A N/A 795.04 N/A252 1044.19 1125.34 1156.67 1045.19 964.97 N/A N/A N/A 795.77 N/A288 1061.42 1147.28 1164.23 1041.73 966.98 N/A N/A N/A 792.64 N/A324 1093.09 1165.78 1170.94 1044.32 968.25 N/A N/A N/A 790.72 N/A360 1121.11 1175.01 1169.27 1043.46 969.25 N/A N/A N/A 789.76 N/A396 1143.91 1177.52 1164.23 1042.60 969.76 N/A N/A N/A 789.03 N/A432 1133.79 1168.30 1155.82 1038.28 971.78 N/A N/A N/A 794.08 N/A468 1099.05 1155.69 1149.09 1043.46 973.55 N/A N/A N/A 796.97 N/A504 1042.47 1140.54 1152.46 1043.46 975.83 N/A N/A N/A 801.06 N/A540 1019.92 1129.57 1162.55 1049.50 977.34 N/A N/A N/A 804.43 N/A576 1027.73 1125.34 1171.78 1051.22 977.34 N/A N/A N/A 803.47 N/A612 1051.95 1126.18 1169.27 1048.64 976.08 N/A N/A N/A 802.99 N/A648 1070.86 1152.33 1162.55 1048.64 974.81 N/A N/A N/A 797.69 N/A684 1099.90 1169.97 1169.27 1047.77 973.30 N/A N/A N/A 796.49 N/AAverage 1080.50 1150.11 1157.88 1039.82 963.90 N/A N/A N/A 794.99 N/ADistance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Shell Temperature ReadingsTime 0.146 0.921Position, metres1.492 2.210 5.3547:57 137 103 88 72 529:10 187 152 127 106 6610:17 209 182 157 140 8310:39 216 188 166 151 90117Flue Gas AnalysisTime Port N2 02 CO28:47 2 80.8 6.2 13.08:52 2 74.1 3.3 22.68:51 2 82.2 4.4 13.4N/A 2 81.1 4.0 14.99:10 2 81.1 1.1 17.89:40 2 79.5 5.7 14.89:50 7 75.3 3.4 21.310:27 2 78.4 8.9 12.710:52 2 79.1 8.3 12.611:04 7 81.9 5.1 13.0118Axial Calcination ResultsLignin = 180 g/m Product Product Port #1 Port #1 Port #2 Port #2 Port #3 Port #3Sample Code LPA LPA L#1A L#1A L#2A L#2A L#3A L#3ADate 26/Mar/90 26/Mar/90 26/Mar/90 26/Mar/90 ' 26/Mar/90 26/Mar/90 26/Mar/90 26/Mar/90Before Firing, g 20.9786 20.0579 20.5460 20.8509 23.9568 24.1926 27.5736 25.5930After Firing, g 20.8534 19.9445 20.4877 20.7969 20.7289 20.7789 21.2049 19.6642Empty Crucible, g 9.9232 10.2387 10.4723 10.0361 10.9423 10.0557 11.0206 10.0230Wt of Sample Before, g 11.0554 9.8192 10.0737 10.8148 13.0145 14.1369 16.5530 15.5700Wt Loss by CaCO3, g 0.1252 0.1134 0.0583 0.0540 3.2279 3.4137 6.3687 5.9288% Calcination 97.37 97.32 98.66 98.84 42.45 43.97 10.73 11.65Average=^ 97.35%^98.75%^43.21%^11.19%Lignin = 180 g/m Port #4 Port #4 Port #5 Port #5Sample Code L#4A L#4A L#5A L#5ADate 26/Mar/90 26/Mar/90 27/Mar/90 27/Mar/90Before Firing, g 26.9379 28.2629 26.8597 26.7422After Firing, g 20.1154 20.8642 19.5650 19.6306Empty Crucible, g 10.7268 10.5694 9.9272 10.2429Wt of Sample Before, g 162111 17.6935 16.9325 16.4993Wt Loss by CaCO3, g 6.8225 7.3987 7.2947 7.1116% Calcination 2.35 2.98 0.04 -0.01Lignin = 145 g/m Product ProductSample Code LPB LPBDate 27/Mar/90 27/Mar/90Before Firing, g 20.9257 20.5367After Firing, g 20.8611 20.4757Empty Crucible, g 10.4753 10.0393Wt of Sample Before, g 10.4504 10.4974Wt Loss by CaCO3, g 0.0646 0.0610% Calcination 98.57 98.65Average =^ 2.66%^0.02%^98.61%Lignin = 145 g/m Port #1 Port #1 Port #2 Port #2 Port #3 Port #3 Port #4 Port #4Sample Code L#1B L#1B Llt2B L#2B L#3B L#3B L#4B L#4BDate 27/Mar/90 27/Mar/90 27/Mar/90 27/Mar/90 ' 27/Mar/90 31/Mar/90 28/Mar/90 28/Mar/90Before Firing, g 22.1239 20.4275 25.4042 25.1964 25.8878 26.4281 27.9586 26.1981After Firing, g 21.4329 19.8168 20.8530 20.3326 19.9834 20.4648 20.3161 19.4765Empty Crucible, g 10.9452 10.0595 11.0250 10.0279 10.5753 10.9609 9.9291 10.2443Wt of Sample Before, g 11.1787 10.3680 14.3792 15.1685 15.3125 15.4672 18.0295 15.9538Wt Loss by CaCO3, g 0.6910 0.6107 4.5512 4.8638 5.9044 5.9633 7.6425 6.7216% Calcination 85.66 86.33 26.56 25.60 10.53 10.54 1.65 2.24Average =^ 86.00%^26.08%^10.54%^1.94%Lignin = 145 g/m Port #5 Port #5 Port #6 Port #6Sample Code L#5B L#5B L#6B L#6BDate 28/Mar/90 28/Mar/90 28/Mar/90 28/Mar/90Before Firing, g 27.4736 26.6750 29.4479 27.8624After Firing, g 20.1628 19.5045 21.4350 20.1509Empty Crucible, g 10.4778 10.0435 10.9471 10.0624Wt of Sample Before, g 16.9958 16.6315 18.5008 17.8000Wt Loss by CaCO3, g 7.3108 7.1705 8.0129 7.7115% Calcination 0.19 -0.04 -0.49 -0.52Natural Gas = 5.4 CFM Product Product ProductSample Code GP GP GPDate 25/Mar/90 25/Mar/90 31/Mar/90Before Firing, g 24.7015 24.1938 25.3791After Firing, g 21.3024 20.5060 213735Empty Crucible, g 10.7241 10.5671 9.9385Wt of Sample Before, g 13.9774 13.6267 15.4406Wt Loss by CaCO3, g 3.3991 3.6878 4.0056% Calcination 43.57 37.21 39.81Average =^ 0.10%^0.00%^ 40.20%Run LG10Table of EventsAction Requested by Operator 1^Time3/15/90 10:18:41.66Kiln speed (rpm) : 1.5 10:18:45.67Gas = 5.4 CFM 9:30:00Read Bed Temperatures 11:42:12.79Read Hot Face Heat Flux Temperatures 11:43:43.36Read Colder Heat Flux Temperatures 11:45:07.40Suction TIC, Pair : 1 11:45:39.81Suction T/C, Pair : 1 11:47:10.27Suction TIC, Pair : 2 11:51:32.37Suction T/C, Pair : 3 11:53:02.07Suction TIC, Pair : 4 11:54:34.12Suction T/C, Pair : 5 11:56:18.09Lignin = 180 g/min^Gas = 1.4 CFM 12:10:00Read Bed Temperatures 12:43:48.07Read Hot Face Heat Flux Temperatures 12:45:25.29Read Colder Heat Flux Temperatures 12:46:49.32Suction TIC, Pair : 1 12:48:09.18Suction TIC, Pair : 2 12:49:44.48Suction T/C, Pair : 3 12:51:14.34Read Hot Face Heat Flux Temperatures 12:52:54.52Read Colder Heat Flux Temperatures 12:54:18.39Read Bed Temperatures 13:10:36.23Read Hot Face Heat Flux Temperatures 13:12:08.45Read Colder Heat Flux Temperatures 13:13:32.49Suction T/C, Pair : 1 13:48:25.48Suction T/C, Pair : 2 13:49:51.16Suction T/C, Pair : 3 13:52:56.76Suction T/C, Pair : 4 13:54:21.01121122Lignin = 240 g/min Gas = 0.0 CFM^13:56:00Read Bed Temperatures^ 14:19:09.82Read Hot Face Heat Flux Temperatures 14:21:04.18Read Colder Heat Flux Temperatures^14:22:28.32Suction TIC, Pair : 1^ 14:22:55.07Suction TIC, Pair : 2 14:24:19.22Suction T/C, Pair : 3 14:26:00.01Read Hot Face Heat Flux Temperatures^14:27:24.43Read Colder Heat Flux Temperatures 14:28:48.35Suction TIC, Pair : 4^ 14:30:41.99Suction TIC, Pair : 5 14:32:12.35Read Bed Temperatures 14:44:14.67Read Hot Face Heat Flux Temperatures^14:45:45.41Read Colder Heat Flux Temperatures 14:47:09.55Suction T/C, Pair : 1^ 14:47:54.92Suction T/C, Pair : 2 14:49:20.22Suction T/C, Pair : 3 14:51:14.25Suction TIC, Pair : 4^ 14:52:40.92Suction T/C, Pair : 5 14:54:11.05Cyclic Bed Temperature Readings11:42:12.79 1 2 3 4 5 6 7 8 9 100 964.48 1052.58 1078.33 991.76 926.30 879.05 835.58 -^767.63 665.74 582.3136 956.52 1029.26 1067.19 992.64 921.82 874.14 836.31 779.12 670.47 582.0772 957.41 1028.39 1062.90 1005.75 931.78 876.35 841.66 789.69 677.56 585.84108 958.29 1033.59 1064.62 1017.95 942.78 882.49 847.01 797.38 683.47 591.02144 968.90 1043.96 1069.76 1029.26 950.81 887.66 850.42 801.72 687.25 595.97180 974.19 1054.30 1078.33 1040.50 958.60 892.84 854.57 806.30 691.04 600.92216 985.62 1062.90 1083.46 1046.54 962.38 896.04 856.28 807.26 692.22 604.68252 996.14 1067.19 1086.02 1047.41 960.36 896.29 855.06 804.13 689.85 605.16288 1003.13 1072.33 1086.02 1041.37 955.08 894.56 852.13 796.66 682.29 600.92324 993.51 1069.76 1085.16 1033.59 947.29 891.11 848.23 790.41 675.19 595.03360 968.02 1056.88 1080.89 999.64 931.04 880.53 837.52 768.58 666.22 583.25396 955.64 1030.99 1068.91 989.13 920.57 873.90 837.52 776.49 669.76 581.84432 954.75 1026.63 1064.62 1001.39 928.54 874.63 841.66 787.52 676.38 584.90468 953.87 1028.39 1066.33 1016.21 940.03 879.30 846.04 795.22 682.05 589.61504 960.95 1040.50 1069.76 1026.63 949.55 885.45 849.69 800.03 686.78 594.79540 969.78 1050.85 1077.47 1035.32 957.59 891.11 853.35 804.61 690.33 599.74576 982.11 1062.90 1083.46 1044.82 963.38 895.80 855.79 806.54 691.98 603.98612 993.51 1068.05 1086.87 1045.68 964.39 897.77 856.03 805.33 691.27 605.86648 1002.26 1073.19 1086.87 1043.09 959.61 896.29 852.37 797.38 685.36 603.27684 997.89 1073.19 1087.72 1037.05 950.81 892.84 848.96 791.85 679.92 597.85Minimum 953.87 1026.63 1062.90 989.13 920.57 873.90 835.58 767.63 665.74 581.84Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52112:43:48.07 1 2 3 4 5 6 7 8 9 100 955.38 1047.22 1059.28 989.78 932.44 895.24 872.87 834.58 741.86 658.7036 951.83 1039.44 1060.14 997.66 938.43 899.68 876.05 838.47 744.95 662.4872 951.83 1035.98 1060.14 1004.66 942.93 903.14 878.51 841.38 747.10 665.78108 955.38 1036.85 1061.86 1008.15 946.18 905.61 880.22 843.57 748.29 668.38144 961.58 1042.90 1064.44 1011.64 947.94 906.85 880.72 843.33 748.29 670.03180 967.77 1051.53 1067.87 1014.26 947.69 906.85 879.73 840.41 745.67 669.33216 970.42 1058.42 1070.45 1013.38 945.18 905.61 877.77 837.50 742.10 665.78252 969.53 1061.00 1069.59 997.66 937.93 899.19 873.11 824.65 735.91 656.58288 968.65 1055.84 1062.72 973.94 924.96 890.80 868.70 823.92 734.72 652.57324 962.46 1051.53 1058.42 980.99 925.96 887.85 869.44 829.97 737.81 654.22360 955.38 1047.22 1057.56 988.90 931.44 889.57 871.88 833.85 741.14 657.29396 951.83 1040.31 1058.42 995.91 936.93 893.02 874.58 837.50 743.29 660.59432 948.28 1033.39 1057.56 1000.29 941.18 895.73 876.54 839.92 745.19 663.90468 950.95 1033.39 1059.28 1005.53 944.43 898.20 878.75 843.08 746.86 666.73504 957.15 1038.58 1061.86 1009.90 946.44 899.93 879.49 843.57 747.34 668.62540 N/A N/A N/A N/A N/A N/A 879.49 843.57 747.34 668.62576 966.00 1055.84 1068.73 1013.38 944.18 899.43 876.54 837.98 742.57 666.73612 967.77 1060.14 1068.73 1006.41 939.18 896.22 873.11 829.25 736.86 659.65648 967.77 1057.56 1064.44 975.71 924.96 888.34 867.72 821.98 733.53 653.51684 964.23 1052.39 1059.28 980.11 922.72 884.89 867.23 828.04 736.38 654.22Minimum 948.28 1033.39 1057.56 973.94 922.72 884.89 867.23 821.98 733.53 652.57Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52113:10:36.23 1 2 3 4 5 6 7 8 9 100 953.56 1032.50 1060.98 1008.12 942.02 893.86 870.03 833.72 742.22 666.1536 957.99 1040.29 1064.42 1010.74 943.52 895.34 870.28 832.03 741.03 666.8672 962.42 1050.65 1067.86 1011.61 941.52 894.84 868.56 828.63 738.17 664.97108 963.30 1054.96 1069.57 1008.99 938.27 893.37 866.36 822.82 734.13 660.25144 965.07 1051.51 1068.71 983.59 927.05 885.98 859.76 807.85 727.95 651.05180 962.42 1037.69 1061.84 977.43 920.33 881.56 859.52 815.81 730.09 650.34216 955.33 1035.96 1058.40 984.47 924.31 882.29 861.72 822.82 733.65 652.94252 949.12 1030.74 1058.40 989.74 929.79 886.47 864.89 827.18 736.75 656.48288 946.46 1025.53 1058.40 995.88 934.77 891.39 867.83 830.57 739.36 660.01324 948.23 1025.53 1060.12 1002.00 939.52 895.34 870.77 833.48 741.27 663.08360 950.90 1029.87 1061.84 1006.37 942.52 898.05 872.48 834.45 742.46 665.68396 955.33 1035.96 1064.42 1009.87 944.02 899.28 872.72 833.72 741.75 667.10432 957.99 1044.61 1067.86 1012.48 943.52 899.04 871.50 830.33 739.13 665.68468 958.88 1050.65 1069.57 1010.74 940.77 897.56 869.05 825.97 735.80 662.37504 960.65 1053.23 1069.57 991.49 931.78 890.16 862.69 808.82 729.14 652.70540 961.53 1040.29 1063.56 977.43 921.58 883.52 860.25 814.12 729.38 650.81576 956.22 1038.56 1059.26 983.59 923.32 882.78 861.72 821.61 732.94 652.70612 950.01 1034.23 1058.40 989.74 928.29 886.23 864.40 826.45 736.03 655.77648 946.46 1029.87 1058.40 995.00 933.03 890.66 867.58 830.33 738.89 659.54684 946.46 1027.27 1059.26 1000.25 937.27 894.60 869.79 832.27 741.03 662.61Minimum 946.46 1025.53 1058.40 '^977.43 -^920.33 881.56^' 859.52 807.85 727.95 650.34Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.14:19:09.82 1 2 3 4 5 6 7 8 9 100 873.45 1017.10 1092.96 1030.14 960.82 918.61 891.67 852.01 756.38 676.4236 874.33 1018.84 1093.82 1033.63 964.09 921.84 893.64 853.96 757.81 679.2572 868.99 1017.10 1094.67 1035.36 965.85 923.33 894.13 853.47 758.05 681.14108 864.54 1011.87 1094.67 1037.09 965.10 923.08 892.41 849.57 756.14 680.43144 860.07 1007.50 1095.52 1037.96 962.83 921.34 889.95 846.17 753.04 677.60180 854.70 1005.75 1096.38 1031.87 957.55 916.13 885.77 831.85 747.79 669.33216 852.91 1003.13 1093.82 1012.74 947.02 907.71 880.61 830.88 746.13 665.08252 851.12 1000.50 1090.40 1013.61 946.02 905.73 880.86 838.15 748.75 666.50288 856.49 1004.88 .^1092.11 1019.71 950.28 908.95 883.31 843.74 751.85 669.57324 864.54 1010.12 1092.11 1024.93 955.79 913.16 886.01 848.11 754.47 672.87360 872.56 1015.35 1092.11 1030.14 960.32 917.12 888.47 851.28 756.62 676.42396 873.45 1017.10 1092.96 1033.63 963.34 919.60 890.19 853.71 758.29 679.49432 868.99 1015.35 1092.96 1036.23 965.35 921.34 891.18 854.44 758.76 681.38468 861.86 1009.25 1093.82 1037.09 965.10 921.84 890.69 852.01 758.05 681.85504 860.07 1003.13 1093.82 1037.09 962.83 920.60 888.96 847.87 754.47 679.49540 854.70 1004.00 1096.38 1035.36 958.56 917.12 886.01 837.67 749.94 673.35576 852.91 1004.00 1094.67 1014.48 947.52 908.20 880.61 831.12 746.84 666.97612 849.32 999.63 1092.11 1013.61 945.27 905.48 881.10 839.12 748.75 667.68648 855.60 1004.88 1092.11 1019.71 949.53 907.96 883.56 844.71 751.85 670.28684 866.32 1011.87 1092.96 1026.66 955.04 912.16 886.50 848.60 754.23 673.11_Minimum 849.32 999.63 1090.40 1012.74 945.27 905.48 880.61 830.88 746.13 665.08Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 -^4.52114:44:14.67 1 2 3 4 5 6 7 8 9 100 909.25 1051.37 1107.89 1030.59 957.00 916.33 889.17 850.75 755.16 673.5636 911.01 1052.23 1107.89 1033.19 960.26 919.31 891.14 852.95 757.07 676.6372 909.25 1051.37 1108.74 1035.81 962.28 921.05 891.63 852.95 757.54 678.52108 903.10 1046.19 1109.59 1038.41 962.53 921.05 890.64 850.51 755.87 677.81144 898.69 1041.01 1110.44 1039.28 960.52 919.80 888.43 845.89 752.53 674.27180 894.28 1041.01 1112.14 1038.41 957.25 917.08 885.48 839.57 748.96 669.31216 898.69 1041.87 1111.29 1023.64 948.72 908.41 880.32 829.63 745.39 662.46252 N/A 1041.01 1107.89 1017.55 944.22 904.95 879.59 837.14 747.29 662.70288 898.69 1044.46 1107.04 1019.29 946.22 907.17 881.31 842.97 750.39 665.53324 903.10 1047.92 1107.89 1021.90 950.48 911.62 884.50 846.86 753.25 668.60360 909.25 1051.37 1108.74 1026.25 954.99 915.59 887.69 850.02 755.64 672.38396 914.52 1053.96 1108.74 1031.45 958.76 918.56 889.91 851.73 757.07 675.45432 912.77 1052.23 1109.59 1034.08 961.02 920.55 891.14 852.46 757.78 677.58468 907.50 1048.78 1110.44 1037.54 961.77 920.80 890.40 849.78 756.35 677.58504 901.34 1043.60 1111.29 1038.41 960.26 919.56 888.18 845.64 752.77 674.51540 896.05 1041.87 1112.14 1038.41 957.50 917.32 885.23 841.27 749.44 670.02576 899.57 1043.60 1112.14 1026.25 950.23 909.15 880.08 829.15 745.15 662.46612 899.57 1043.60 1109.59 1018.42 944.72 904.20 878.61 834.96 746.34 661.76648 897.81 1047.06 1107.89 1019.29 946.47 903.96 881.06 840.79 749.20 664.12684 903.10 1051.37 1109.59 1023.64 950.48 907.42 884.25 844.92 752.06 667.66,Minimum 894.28 1041.01 1107.04 1017.55 944.22 903.96 878.61 829.15 745.15 661.76Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings11:43:43.36 1 2 3 4 5 6 7 8 9 10 .0 N/A 999.72 934.40 792.65 N/A N/A 554.11 511.64 365.87 N/A36 N/A 1005.83 937.96 791.45 N/A N/A 554.35 511.64 366.84 N/A72 N/A 1011.06 940.63 790.25 N/A N/A 554.59 512.11 368.04 N/A108 N/A 1014.55 942.41 789.29 N/A N/A 554.82 512.58 369.00 N/A144 N/A 1015.42 944.19 788.81 N/A N/A 554.82 513.29 370.20 N/A180 N/A 1015.42 945.07 788.33 N/A N/A 554.82 513.76 370.92 N/A216 N/A 1013.68 945.07 788.33 N/A N/A 554.59 514.23 371.16 N/A252 N/A 996.22 941.52 788.81 N/A N/A 554.11 514.00 369.24 N/A288 N/A 982.19 934.40 790.97 N/A N/A 553.64 513.29 366.11 N/A324 N/A 979.55 929.94 793.13 N/A N/A 553.88 512.34 364.91 N/A360 N/A 997.09 933.50 793.13 N/A N/A 554.35 512.11 366.11 N/A396 N/A 1003.21 937.96 791.93 N/A N/A 554.82 512.34 367.32 N/A432 N/A 1012.81 940.63 790.97 N/A N/A 554.82 512.58 368.28 N/A468 N/A 1015.42 943.30 790.01 N/A N/A 555.06 513.05 369.48 N/A504 N/A 1017.16 944.19 789.29 N/A N/A 555.06 513.53 370.44 N/A540 N/A 1017.16 945.96 789.05 N/A N/A 555.06 514.23 371.16 N/A576 N/A 1014.55 945.07 788.81 N/A N/A 554.82 514.47 371.64 N/A612 N/A 1011.94 944.19 789.05 N/A N/A 554.35 514.47 370.20 N/A648 N/A 990.96 936.18 790.73 N/A N/A 553.88 513.76 366.60 N/A684 N/A 984.82 929.94 793.13 N/A N/A 553.88 512.82 364.67 N/AAverage N/A 1004.94 939.82 790.40 N/A N/A 554.49 513.11 368.41 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.21312:45:25.29 1 2 3 4 5 6 7 8 9 100 N/A 1038.63 944.78 808.27 N/A N/A 612.79 581.46 428.82 N/A36 N/A 1043.82 945.67 807.78 N/A N/A 612.55 581.70 429.53 N/A72 N/A 1044.68 946.56 807.54 N/A N/A 612.55 581.93 429.29 N/A108 N/A 1031.71 941.22 808.27 N/A N/A 612.08 581.70 426.19 N/A144 N/A 1025.61 934.98 810.20 N/A N/A 611.61 580.99 423.09 N/A180 N/A 1028.21 933.20 811.64 N/A N/A 612.08 580.28 423.09 N/A216 N/A 1033.44 936.77 811.16 N/A N/A 612.32 580.28 424.05 N/A252 N/A 1031.71 939.44 809.95 N/A N/A 612.55 580.28 425.24 N/A288 N/A 1031.71 940.33 808.75 N/A N/A 612.55 580.52 426.43 N/A324 N/A 1035.17 942.11 808.27 N/A N/A 612.55 580.99 427.38 N/A360 N/A 1038.63 943.00 807.54 N/A N/A 612.55 581.23 428.10 N/A396 N/A 1042.09 944.78 807.06 N/A N/A 612.55 581.46 428.82 N/A432 N/A 1042.95 945.67 806.82 N/A N/A 612.55 581.70 429.29 N/A468 N/A 1033.44 941.22 807.06 N/A N/A 612.08 581.70 426.43 N/A504 N/A 1027.35 935.87 808.75 N/A N/A 611.61 580.99 423.09 N/A540 N/A 1026.48 932.31 810.44 N/A N/A 611.85 580.28 422.38 N/A576 N/A 1032.57 934.98 810.20 N/A N/A 612.32 580.05 423.57 N/A612 N/A 1032.57 937.66 809.23 N/A N/A 612.32 580.05 424.76 N/A648 N/A 1031.71 939.44 808.27 N/A N/A 612.55 580.05 425.72 N/A684 N/A 1032.57 941.22 807.30 N/A N/A 612.55 580.52 426.67 N/AAverage N/A 1034.25 940.06 808.72 N/A N/A 612.33 580.91 426.10 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.21312:52:54.52 1 2 3 4 5 6 7 8 9 100 N/A 1038.83 939.64 801.24 N/A N/A 611.81 577.89 425.92 N/A36 N/A 1040.56 940.53 800.76 N/A N/A 611.81 578.13 426.63 N/A72 N/A 1042.29 941.42 800.52 N/A N/A 611.81 578.36 426.87 N/A108 N/A 1029.28 936.97 800.76 N/A N/A 611.10 577.89 423.77 N/A144 N/A 1023.21 930.72 802.68 N/A N/A 610.63 577.19 420.43 N/A180 N/A 1024.94 926.35 804.13 N/A N/A 611.10 576.48 420.19 N/A216 N/A 1031.04 931.61 803.89 N/A N/A 611.34 576.24 421.14 N/A252 N/A 1031.04 934.29 802.92 N/A N/A 611.57 576.24 422.34 N/A288 N/A 1029.28 936.07 801.96 N/A N/A 611.57 576.48 423.29 N/A324 N/A 1032.77 937.86 801.24 N/A N/A 611.57 576.95 424.48 N/A360 N/A 1035.37 938.75 800.52 N/A N/A 611.57 577.42 425.44 N/A396 N/A 1038.83 939.64 800.27 N/A N/A 611.57 577.66 426.15 N/A432 N/A 1042.29 940.53 800.03 N/A N/A 611.57 578.13 426.63 N/A468 N/A 1032.77 938.75 800.03 N/A N/A 611.10 577.89 424.48 N/A504 N/A 1024.07 931.61 801.72 N/A N/A 610.63 577.42 421.14 N/A540 N/A 1021.47 925.48 803.65 N/A N/A 610.87 576.48 419.95 N/A576 N/A 1030.15 928.10 803.65 N/A N/A 611.34 576.48 420.90 N/A612 N/A 1031.91 933.40 802.68 N/A N/A 611.34 576.48 422.10 N/A648 N/A 1030.15 935.18 801.72 N/A N/A 611.57 576.48 423.05 N/A684 N/A 1031.91 936.97 801.00 N/A N/A 611.57 576.95 424.01 N/AAverage N/A 1032.11 935.19 801.77 N/A N/A 611.37 577.16 423.45 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.21313:12:08.45 1 2 3 4 5 6 7 8 9 100 N/A 1041.25 941.22 795.43 N/A N/A 614.38 582.12 432.33 N/A36 N/A 1023.03 934.09 796.63 N/A N/A 613.68 581.41 428.99 N/A72 N/A 1016.94 926.17 798.80 N/A N/A 613.44 580.47 426.61 N/A108 N/A 1023.90 926.17 799.76 N/A N/A 613.91 580.00 427.08 N/A144 N/A 1028.24 928.79 799.28 N/A N/A 614.15 580.00 428.04 N/A180 N/A 1029.10 933.20 798.08 N/A N/A 614.15 580.23 429.23 N/A216 N/A 1029.97 934.98 797.35 N/A N/A 614.38 580.47 430.18 N/A252 N/A 1032.60 936.76 796.63 N/A N/A 614.38 580.94 431.37 N/A288 N/A 1035.19 937.66 795.91 N/A N/A 614.38 581.17 432.09 N/A324 N/A 1039.52 939.44 795.67 N/A N/A 614.38 581.65 432.80 N/A360 N/A 1041.25 940.33 795.43 N/A N/A 614.38 581.88 432.80 N/A396 N/A 1025.63 934.98 796.39 N/A N/A 613.91 581.65 429.71 N/A432 N/A 1018.68 927.04 798.32 N/A N/A 613.68 580.94 426.37 N/A468 N/A 1021.29 925.29 799.76 N/A N/A 613.91 580.23 426.37 N/A504 N/A 1027.37 928.79 799.28 N/A N/A 614.38 580.23 427.56 N/A540 N/A 1028.24 933.20 798.08 N/A N/A 614.38 580.23 428.51 N/A576 N/A 1029.10 934.98 797.11 N/A N/A 614.62 580.70 429.71 N/A612 N/A 1031.73 936.76 796.39 N/A N/A 614.62 581.17 430.90 N/A648 N/A 1034.33 938.55 795.91 N/A N/A 614.62 581.41 431.61 N/A684 N/A 1037.79 939.44 795.43 N/A N/A 614.62 581.88 432.57 N/AAverage N/A 1029.76 933.89 797.28 N/A N/A 614.22 580.94 429.74 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.14:21:04.18 1 2 3 4 5 6 7 8 9 100 N/A 1031.11 962.76 802.97 N/A N/A 628.88 594.96 436.96 N/A36 N/A 1031.98 964.53 801.53 N/A N/A 628.64 594.73 437.91 N/A72 N/A 1032.85 966.30 800.57 N/A N/A 628.88 595.20 439.10 N/A108 N/A 1032.85 968.07 799.61 N/A N/A 628.88 595.67 440.30 N/A144 N/A 1033.74 969.83 799.12 N/A N/A 628.88 595.90 441.25 N/A180 N/A 1031.98 970.72 798.88 N/A N/A 629.12 596.37 442.20 N/A216 N/A 1032.85 971.60 798.64 N/A N/A 628.88 596.61 442.20 N/A252 N/A 1024.17 965.41 800.09 N/A N/A 628.41 596.14 438.87 N/A288 N/A 1018.95 958.33 802.97 N/A N/A 628.17 595.20 436.24 N/A324 N/A 1024.17 957.44 804.42 N/A N/A 628.88 594.73 436.72 N/A360 N/A 1031.98 961.87 803.94 N/A N/A 629.35 594.96 437.91 N/A396 N/A 1033.74 965.41 802.49 N/A N/A 629.12 594.73 438.87 N/A432 N/A 1033.74 967.18 801.29 N/A N/A 629.35 595.20 440.06 N/A468 N/A 1033.74 968.95 800.33 N/A N/A 629.59 595.67 441.01 N/A504 N/A 1033.74 970.72 799.61 N/A N/A 629.59 596.14 441.96 N/A540 N/A 1032.85 971.60 799.36 N/A N/A 629.35 596.37 442.68 N/A576 N/A 1032.85 972.48 799.36 N/A N/A 629.35 596.61 442.91 N/A612 N/A 1025.91 968.07 800.33 N/A N/A 629.12 596.85 439.34 N/A648 N/A 1019.82 960.10 803.22 N/A N/A 628.88 595.90 436.24 N/A684 N/A 1022.43 958.33 805.38 N/A N/A 629.35 595.43 436.48 N/AAverage N/A 1029.77 965.99 801.21 N/A N/A 629.03 595.67 439.46 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 -^4.585 5.21314:27:24.43 1 2 3 4 5 6 7 8 9 100 N/A 1037.26 969.89 803.03 N/A N/A 632.24 598.32 444.40 N/A36 N/A 1036.40 970.78 802.55 N/A N/A 631.77 598.32 444.64 N/A72 N/A 1035.53 971.66 802.07 N/A N/A 631.77 598.55 445.12 N/A108 N/A 1033.80 969.89 802.55 N/A N/A 631.53 598.79 443.69 N/A144 N/A 1025.97 962.82 804.72 N/A N/A 631.06 598.08 440.12 N/A180 N/A 1021.62 957.50 807.13 N/A N/A 631.30 597.38 438.69 N/A216 N/A 1032.04 961.05 807.61 N/A N/A 631.77 597.14 439.64 N/A252 N/A 1037.26 965.47 806.65 N/A N/A 632.00 597.38 440.83 N/A288 N/A 1038.13 966.36 804.96 N/A N/A 632.00 597.14 441.55 N/A324 N/A 1037.26 969.01 803.76 N/A N/A 632.00 597.61 442.74 N/A360 N/A 1037.26 970.78 802.79 N/A N/A 632.00 598.08 443.69 N/A396 N/A 1038.13 972.54 802.31 N/A N/A 632.00 598.32 444.40 N/A432 N/A 1038.13 973.43 801.83 N/A N/A 632.00 598.79 445.12 N/A468 N/A 1037.26 973.43 801.83 N/A N/A 631.77 599.03 443.93 N/A504 N/A 1028.57 965.47 803.76 N/A N/A 631.30 598.32 440.36 N/A540 N/A 1024.23 958.39 806.65 N/A N/A 631.30 597.61 438.45 N/A576 N/A 1032.04 960.16 807.37 N/A N/A 631.77 597.14 439.16 N/A612 N/A 1036.40 964.59 806.41 N/A N/A 632.24 597.14 440.59 N/A648 N/A 1037.26 966.36 804.96 N/A N/A 632.00 597.14 441.55 N/A684 N/A 1038.99 969.01 803.76 N/A N/A 63224 597.61 442.74 N/AAverage N/A 1034.18 966.93 804.33 N/A N/A 631.80 597.89 442.07 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.21314:45:45.41 1 2 3 4 5 6 7 8 9 100 N/A 1058.32 977.28 807.46 N/A N/A 635.40 598.88 445.21 N/A36 N/A 1058.32 978.17 807.22 N/A N/A 635.16 599.12 445.69 N/A72 N/A 1058.32 979.05 807.22 N/A N/A 635.16 599.59 445.45 N/A108 N/A 1054.01 972.87 807.94 N/A N/A 634.45 599.12 442.35 N/A144 N/A 1050.56 965.80 810.83 N/A N/A 634.22 598.41 439.49 N/A180 N/A 1051.42 964.92 812.52 N/A N/A 634.69 597.71 439.73 N/A216 N/A 1057.46 969.34 811.80 N/A N/A 635.16 598.18 441.16 N/A252 N/A 1060.04 971.99 810.83 N/A N/A 635.16 597.94 441.88 N/A288 N/A 1058.32 972.87 809.39 N/A N/A 635.16 598.18 443.07 N/A324 N/A 1058.32 975.52 808.42 N/A N/A 635.40 598.65 444.02 N/A360 N/A 1057.46 976.40 807.70 N/A N/A 635.40 599.12 444.97 N/A396 N/A 1058.32 977.28 807.22 N/A N/A 635.16 599.36 445.69 N/A432 N/A 1058.32 979.05 807.22 N/A N/A 635.16 599.59 445.92 N/A468 N/A 1056.59 975.52 807.94 N/A N/A 634.93 599.36 441.88 N/A504 N/A 1052.28 967.57 810.59 N/A N/A 634.69 598.65 438.78 N/A540 N/A 1052.28 964.92 812.76 N/A N/A 634.93 597.94 439.02 N/A576 N/A 1058.32 968.46 812.28 N/A N/A 635.16 597.71 440.21 N/A612 N/A 1060.04 971.11 810.83 N/A N/A 635.16 597.71 441.16 N/A648 N/A 1060.04 972.87 809.39 N/A N/A 635.40 597.94 442.35 N/A684 N/A 1060.04 975.52 808.42 N/A N/A 635.40 598.41 443.54 N/AAverage N/A 1056.94 972.83 809.40 N/A N/A 635.07 598.58 442.58 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.Interior Wall Probe Temperature Readings11:45:07.40Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 312.17 732.26 978.671.568 296.20 598.98 877.172.064 N/A N/A 818.452.375 N/A 568.96 N/A2.724 N/A 519.20 N/A3.048 21136 457.86 620.784.070 191.49 366.84 544.924.585 165.69 278.30 456.205.213 147.98^_ 247.09 345.6512:46:49.32Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 32022 757.97 1016.051.568 308.85 623.13 889272.064 317.82 N/A 837.062.375 N/A 604.78 N/A2.724 N/A 548.47 N/A3.048 224.76 487.27 647.194.070 206.13 394.40 603.134.585 177.89 299.63 512.355.213 154.77 267.52 395.1212:54:18.39Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 320.42 755.38 1013.631.568 312.47 624.31 882.402.064 319.47 N/A 832.162.375 N/A 605.92 N/A2.724 N/A 551.03 N/A3.048 228.14 491.02 647.164.070 207.80 399.87 602.624.585 179.56 303.96 512.795.213 156.20 271.62 395.0813513:13:32.49Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 324.50 756.07 1009.091.568 315.43 621.06 879.542.064 322.82 N/A 832.132.375 N/A 605.91 N/A2.724 N/A 553.13 N/A3.048 23226 496.45 644.554.070 214.13 409.17 605204.585 185.41 312.89 517.025.213 161.08 278.40 399.60NOTE: This set of data was used for steady state calculations.14:22:28.32Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 328.78 744.09 1009.361.568 321.98 622.08 900.112.064 326.04 N/A 847.982.375 N/A 608.15 N/A2.724 N/A 558.44 N/A3.048 24723 505.79 650.574.070 227.90 425.51 619.694.585 19921 329.43 530.615.213^_ 171.20 290.14 408.5514:28:48.35Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 325.44 745.08 1015.521.568 318.64 624.12 902.822.064 325.62 N/A 849.742.375 N/A 610.09 N/A2.724 N/A 559.92 N/A3.048 245.58 507.27 652.984.070 228.45 427.01 622.584.585 199.76 330.70 533.735.213 171.51 291.66 411.7213614:47:09.55Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 324.64 754.75 1037.591.568 321.24 632.32 911.062.064 326.91 N/A 855.922.375 N/A 615.37 N/A2.724 N/A 564.96 N/A3.048 249.33 512.80 658.744.070 231.48 432.58 626.444.585 20230 335.86 537375.213 173.31 295.64 414.44NOTE: This set of data was used for steady state calculations.137Suction Pyrometer Temperature Readings by Flue Gas11:47.10.271 211:51:32.373 411:53:02.075 611:54:34.127 811:56:18.099 100 1156.49 1232.52 1154.98 1033.11 940.26 N/A N/A N/A 687.86 629.0936 1179.98 1188.35 1157.51 1037.44 944.77 N/A N/A N/A 688.81 625.0872 1182.49 1169.92 1175.13 1044.35 950.03 N/A N/A N/A 690.94 631.45108 1179.14 1159.01 1177.65 1044.35 955.56 N/A N/A N/A 695.20 636.16144 1184.17 1169.92 1188.53 1048.66 961.34 N/A N/A N/A 698.51 642.52180 1190.86 1172.44 1195.22 1053.83 967.65 N/A N/A N/A 707.04 654.55216 1210.06 1174.12^, 1210.24 1059.85 971.18 N/A N/A N/A 710.36 663.05252 1207.56 1211.72 1217.73 1065.86 971.18 N/A N/A N/A 715.58 667.77288 1188.35 1206.72 1210.24 1065.86 968.91 N/A N/A N/A 719.38 673.44324 1161.53 1215.05 1212.74 1067.58 967.65 N/A N/A N/A 715.35 667.54360 1154.80 1228.36 1206.07 1066.72 965.88 N/A N/A N/A 712.02 655.73396 1176.63 1188.35 1201.90 1068.44 965.88 N/A N/A N/A 704.44 649.60432 1177.47 1177.47 1207.74 1068.44 968.91 N/A N/A N/A 697.57 643.94468 1178.31 1161.53 1193.55 1066.72 972.70 N/A N/A N/A 695.91 645.12504 1185.00 1159.85 1188.53 1070.15 977.51 N/A N/A N/A 700.65 651.96540 1189.19 1179.98 1196.05 1072.72 979.79 N/A N/A N/A 704.44 659.51576 1213.39 1149.76 1207.74 1079.57 979.53 N/A N/A N/A 710.84 668.72612 1214.22 1203.39 1222.72 1084.70 978.27 N/A N/A N/A 717.01 675.57648 1190.86 1192.53 1226.88 1085.55 975.48 N/A N/A N/A 721.99 678.40684 1167.41 1199.21 1216.90 1080.43 973.46 N/A N/A N/A 719.62 673.20.^.Average 1184.40 1187.01 1198.40 1063.22 966.80 N/A N/A N/A 705.68 654.62Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521112:48:09.18212:49.44.483 4 512:51:14.3460 1005.68 1144.52 1122.61 1023.16 933.44 N/A36 1017.02 1152.10 1124.30 1027.50 936.43 N/A72 1036.14 1153.78 1136.13 1030.99 939.93 N/A108 1040.46 1142.83 1132.76 1037.05 941.68 N/A144 1037.00 1141.99 1145.41 1039.65 942.93 N/A180 993.43 1112.40 1148.78 1043.10 943.93 N/A216 957.30 1090.27 1151.30 1044.83 947.94 N/A252 940.43 1093.69 1152.15 1047.42 954.21 N/A288 956.42 1114.09 1158.04 1049.14 956.97 N/A324 968.80 1126.79 1157.19 1046.56 960.24 N/A360 991.68 1140.30 1147.94 1043.97 963.26 N/A396 1004.81 1152.10 1142.04 1039.65 966.79 N/A432 1029.18 1155.46 1144.57 1042.24 970.32 N/A468 1040.46 1147.89 1140.35 1046.56 972.85 N/A504 1029.18 1139.46 1141.19 1046.56 973.86 N/A540 996.06 1110.70 1150.46 1049.14 973.61 N/A576 959.07 1104.75 1152.99 1050.01 973.86 N/A612 940.43 1104.75 1149.62 1050.01 974.87 N/A648 944.88 1121.72 1158.88 1050.01 975.63 N/A684 958.19 1120.87 1152.15 1046.56 975.88 N/AAverage 992.33 1128.52 1145.44 1042.70 958.93 N/ADistance, m 0.146 0.464 0.921 1.492 2.210 2.55313:48125.48213:49351.164 513:52:56.76613:54:21.017 80 969.85 1079.38 1135.48 '^1035.47 948.12 N/A N/A N/A36 942.36 1067.38 1138.86 1042.39 950.38 N/A N/A N/A72 929.05 1068.24 1144.76 1046.71 952.13 N/A N/A N/A108 941.47 1093.06 1153.18 1051.89 953.89 N/A N/A N/A144 966.31 1125.34 1155.71 1053.61 955.65 N/A N/A N/A180 997.99 1148.97 1155.71 1050.16 957.66 N/A N/A N/A216 1014.59 1156.55 1155.71 1049.30 959.67 N/A N/A N/A252 1056.20 1168.32 1160.76 1050.16 960.42 N/A N/A N/A288 1063.08 1180.06 1154.03 1050.16 959.92 N/A N/A N/A324 1044.12 1151.50 1151.50 1052.75 958.66 N/A N/A N/A360 1008.49 1127.87 1150.66 1057.92 957.91 N/A N/A N/A396 966.31 1113.48 1154.87 1057.06 959.42 N/A N/A N/A432 958.35 1114.33 1152.34 1057.92 960.17 N/A N/A N/A468 967.20 1127.87 1158.23 1059.64 962.69 N/A N/A N/A504 979.55 1138.86 1155.71 1056.20 964.20 N/A N/A N/A540 1000.62 1159.92 1159.07 1055.33 964.95 N/A N/A N/A576 1029.38 1167.48 1148.13 1051.89 966.46 N/A N/A N/A612 1045.85 1168.32 1152.34 1051.02 967.22 N/A N/A N/A648 1051.89 1127.03 1138.86 1045.85 966.21 N/A N/A N/A684 1046.71 1110.93 1138.86 1044.12 962.43 N/A N/A N/AAverage 998.97 1129.74 1150.74 1050.98 959.41 N/A N/A N/ADistance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270NOTE: This set of data was used for steady state calculations.i14:22155.072 314:24:19.22414:26500.016 714:30:41.99814:32912.35100 853.98 1088.01 1167.57 1069.17 994.61 N/A N/A N/A 778.65 713.6136 840.50 1099.10 1173.45 1073.46 995.89 N/A N/A N/A 784.16 715.9872 833.29 1093.99 1175.96 1081.17 996.14 N/A N/A N/A 788.00 716.46108 837.80 1100.81 1175.96 1084.59 998.69 N/A N/A N/A 793.52 723.34144 834.19 1083.74 1179.32 1090.57 1002.51 N/A N/A N/A 800.02 732.84180 828.77 1083.74 1182.67 1093.13 1006.33 N/A N/A N/A 805.31 742.36216 821.52 1065.73 1186.86 1093.99 1010.42 N/A N/A N/A 810.37 749.98252 806.06 1063.15 1186.86 1095.69 1013.49 N/A N/A N/A 813.75 756.66288 797.83 1076.89 1187.69 1094.84 1016.30 N/A N/A N/A 814.71 757.37324 798.74 1084.59 1184.34 1093.13 1019.12 N/A N/A N/A 815.20 757.14360 799.66 1100.81 1186.86 1091.43 1019.63 N/A N/A N/A 810.85 749.27396 793.25 1105.91 1186.02 1093.99 1018.61 N/A N/A N/A 809.41 742.84432 808.79 1111.86 1189.37 1098.25 1016.81 N/A N/A N/A 807.72 743.31468 808.79 1105.91 1183.51 1099.95 1014.51 N/A N/A N/A 808.20 743.31504 821.52 1099.10 1186.02 1104.21 1015.53 N/A N/A N/A 810.61 747.84540 815.17 1082.03 1186.02 1105.91 1016.30 N/A N/A N/A 815.68 753.56576 802.40 1070.88 1191.04 1105.91 1017.84 N/A N/A N/A 822.20 758.57612 789.58 1049.37 1194.39 1108.46 1019.63 N/A N/A N/A 824.38 762.15648 799.66 1070.03 1191.04 1103.36 1021.94 N/A N/A N/A 824.62 764.06684 824.24 1058.85 1192.71 1103.36 1023.74 N/A N/A N/A 824.14 762.39Average 815.79 1084.72 1184.38 1094.23 1011.90 N/A N/A N/A 808.08 744.65Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521:4--:114:47:54.922 314:49:20.22414:51514.256 714:52:40.92814:54:11.059 100 853.47 1129.19 1179.77 1079.05 970.30 N/A N/A N/A N/A N/A36 850.78 1143.55 1184.79 1080.76 975.30 N/A N/A N/A N/A N/A72 846.29 1145.24 1189.82 1085.04 980.36 N/A N/A N/A 804.74 734.42108 846.29 1149.45 1189.82 1089.32 986.43 N/A N/A N/A 808.11 740.37144 857.95 1148.61 1186.47 1089.32 991.25 N/A N/A N/A 809.07 741.56180 856.16 1127.50 1188.98 1094.44 996.84 N/A N/A N/A 807.15 739.18216 854.37 1120.73 1192.33 1097.00 1000.66 N/A N/A N/A 804.74 733.71252 850.78 1114.80 1190.65 1097.00 1002.45 N/A N/A N/A 802.33 731.09288 836.39 1114.80 1199.02 1102.11 1003.98 N/A N/A N/A 802.57 731.33324 824.63 1099.49 1195.67 1100.40 1003.21 N/A N/A N/A 804.02 733.00360 830.06 1128.35 1198.18 1100.40 1001.68 N/A N/A N/A 807.87 737.75396 830.06 1144.39 1198.18 1097.00 1001.94 N/A N/A N/A 813.41 745.13432 833.68 1149.45 1199.85 1101.26 1002.96 N/A N/A N/A 816.79 750.13468 826.44 1147.77 1199.85 1103.81 1005.51 N/A N/A N/A 818.00 751.56504 839.09 1156.19 1197.35 1103.81 1008.06 N/A N/A N/A 819.21 751.80540 848.98 1139.33 1194.00 1105.51 1010.87 N/A N/A N/A 814.86 748.23576 848.98 1130.04 1195.67 1105.51 1013.43 N/A N/A N/A 811.49 742.99612 838.19 1113.95 1196.51 1108.06 1013.68 N/A N/A N/A 809.80 739.65648 848.98 1112.25 1199.02 1110.61 1014.19 N/A N/A N/A 810.76 737.51684 873.12 1104.60 1200.69 1107.21 1012.91 N/A N/A N/A 810.52 739.18Average 844.73 1130.98 1193.83 1097.88 999.81 N/A N/A N/A 809.75 740.48Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 _^3.994 _^4.521NOTE: This set of data was used for steady state calculations.Shell Temperature ReadingsTime 0.146 0.921Position, metres1.492 2.210 5.35411:42 226 195 174 158 9413:10 233 203 188 170 10414:35 230 203 190 173 11714:58 227 202 190 174 120143Flue Gas AnalysisTime Port N2 02 CO211:31 2 81.9 6.6 11.511:42 2 79.1 4.5 16.4N/A 7 74.6 0.4 25.0,13:14 7 81.5 5.8 12.713:20 7 75.1 4.2 20.713:33 7 72.6 4.9 22.513:48 3 76.2 3.5 20.314:17 3 77.7 5.2 17.114:21 3 76.2 4.8 19.014:29 3 73.6 4.0 22.414:32 7 76.4 3.9 19.714:43 8 77.3 4.6 18.114:46 1 75.8^_ 13.5 10.7144Axial Calcination ResultsLignin = 180 g/m Product Product Port #1 Port #1 Port #2 Port #2 Port #5 Port #5Sample Code LPA LPA L#1A L#1A L#2A L#2A L#5A L#5ADate 21/Mar/90 21/Mar/90 26/Mar/90 30/Mar/90 26/Mar/90 30/Mar/90 26/Mar/90 26/Mar/90Before Firing, g 20.3541 20.1428 22.4970 24.2226 25.3694 25.9186 28.2843 27.2989After Firing, g 20.2792 20.0722 20.1330 21.7485 20.1724 20.7400 20.8054 19.8580Empty Crucible, g 9.9145 10.2287 9.9221 10.9577 10.4707 11.0351 10.9378 10.0528Wt of Sample Before, g 10.4396 9.9141 12.5749 13.2649 14.8987 14.8835 17.3465 17.2461Wt Loss by CaCO3, g 0.0749 0.0706 2.3640 2.4741 5.1970 5.1786 7.4789 7.4409% Calcination 98.34 98.35 56.38 56.72 19.06 19.27 -0.04 -0.11Average=^98.34%^56.55%^19.17%^0.00%Lignin = 240 Wm Product Product Port #1 Port #1 Port #2 Port #2 Port #3 Port #3Sample Code LPB LPB L#1B L#1B L#2B 1.12B L#3B L#3BDate 21/Mar/90 21/Mar/90 23/Mar/90 23/Mar/90 23/Mar/90 23/Mar/90 23/Mar/90 30/Mar/90 .Before Firing, g 22.0795 21.4950 20.7177 20.5031 24.1325 25.0543 28.1608 25.1348After Firing, g 21.9650 21.3780 20.6976 20.4663 21.7589 22.3240 21.9612 19.7873Empty Crucible, g 10.4644 10.0285 9.9145 10.2294 10.4653 10.0286 10.9300 10.0478Wt of Sample Before, g 11.6151 11.4665 10.8032 10.2737 13.6672 15.0257 17.2308 15.0870Wt Loss by CaCO3, g 0.1145 0.1170 0.0201 0.0368 2.3736 2.7303 6.1996 5.3475% Calcination 97.71 97.63 99.57 99.17 59.70 57.84 16.52 17.76Average=^97.67%^99.37%^58.77%^17.14%Lignin = 240 g/m Port #4 Port #4 Port #5 Port #5 Port #6 Port #6 Port #7, Port #7Sample Code L#4B L#4B L#513 L#5B L#6B L#6B L#7B_ L,#7BDate 23/Mar/90 23/Mar/90 23/Mar/90 23/Mar/90 24/Mar/90 24/Mar/90 24/Mar/90 24/Mar/90Before Firing, g 28.2467 26.0602 28.8253 29.4430 29.8343 26.4227 28.3885 28.5531After Firing, g 21.3812 19.5978 21.1633 21.4470 212792 19.4471 20.6146 20.5337Empty Crucible, g 11.0067 10.0121 10.7155 10.5588 9.9191 10.2327 10.4685 10.0336Wt of Sample Before, g 17.2400 16.0481 18.1098 18.8842 19.9152 16.1900 17.9200 18.5195Wt Loss by CaCO3, g 6.8655 6.4624 7.6620 7.9960 8.5551 6.9756 7.7739 8.0194% Calcination 7.60 6.57 1.83 1.76 0.33 0.03 -0.66 -0.47Average =^ 7.08%^1.79%^0.18%^0.00%Run LG11Table of EventsEvent Requested by Operator I^Time5/29/90 11:58:03.33Kiln speed (rpm) : 1.5 11:58:07.51Gas = 5.4 CFM 10:30:00Read Bed Temperatures 11:58:44.25Read Hot Face Heat Flux Temperatures 12:00:21.41Read Colder Heat Flux Temperatures 12:01:46.27Read Hot Face Heat Flux Temperatures 12:02:41.04Read Colder Heat Flux Temperatures 12:04:05.90Read Shell Temperatures 12:04:41.98Suction TIC, Pair : 1 12:10:41.03Suction T/C, Pair : 2 12:12:12.86Suction T/C, Pair : 3 12:13:49.42Suction T/C, Pair : 4 12:15:17.63Suction T/C, Pair : 5 12:16:50.62Lignin = 218 g/min^Gas = 0.0 CFM 13:20:00Read Bed Temperatures 13:28:59.74Read Shell Temperatures 13:30:36.02Read Hot Face Heat Flux Temperatures 13:31:00.41Read Colder Heat Flux Temperatures 13:32:25.22Read Hot Face Heat Flux Temperatures 13:32:46.80Read Colder Heat Flux Temperatures 13:34:11.77Suction T/C, Pair : 1 14:03:54.65Suction T/C, Pair : 2 14:05:28.47Suction T/C, Pair : 3 14:07:00.19Suction T/C, Pair : 4 14:08:38.01Suction T/C, Pair : 5 14:10:13.04147Cyclic Bed Temperature Readings11:58:44.25 1 2 3 4 5 6 7 8 9 100 993.97 1103.56 1122.22 1015.81 922.53 875.62 823.73 768.64 683.08 609.9636 993.09 1104.41 1126.45 1020.16 918.06 873.66 819.86 767.20 673.62 603.6072 1006.22 1105.26 1134.90 1019.29 908.89 866.80 812.61 763.14 658.04 592.53108 995.72 1104.41 1130.68 1012.32 902.21 860.69 807.54 756.69 646.25 582.40144 959.62 1014.94 1088.23 970.23 876.84 840.22 790.70 744.76 637.29 570.15180 926.78 971.11 1058.23 948.98 871.94 831.24 788.29 734.29 638.94 570.39216 935.63 1011.45 1089.93 968.46 889.63 841.19 798.15 738.33 650.02 577.92252 956.96 1040.12 1108.66 987.83 902.45 848.25 806.34 745.48 661.11 586.40288 975.52 1057.37 1112.06 1000.10 913.60 856.29 813.33 752.87 670.79 594.65324 986.95 1073.69 1115.45 1009.71 921.79 864.84 819.13 759.32 677.64 601.71360 994.85 1089.08 1124.76 1014.94 923.53 870.22 822.28 764.57 682.13 606.66396 993.09 1095.90 1126.45 1016.68 922.29 873.41 823.49 768.16 684.26 610.19432 991.34 1101.01 1128.14 1017.55 919.30 874.39 822.76 768.88 680.95 608.78468 988.71 1101.86 1124.76 1015.81 914.34 871.69 819.38 767.20 669.14 600.30504 981.68 1100.16 1121.38 1011.45 905.42 865.09 812.37 761.47 653.79 587.82540 948.09 1083.10 1117.14 998.35 894.31 858.49 806.10 755.73 644.83 579.81576 924.16 980.80 1059.95 954.30 872.43 833.66 787.33 740.24 635.87 569.91612 908.41 983.44 1059.95 949.87 878.81 836.82 793.58 737.14 642.95 573.68648 922.42 1018.42 1085.67 973.75 894.80 846.06 803.45 742.86 654.74 582.40684 950.76 1047.89 1102.71 990.46 904.68 853.12 810.44 749.77 664.89 591.11Minimum 908.41 971.11 1058.23 948.98 871.94 831.24 787.33 734.29 635.87 569.91Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52113:28:59.74 1 2 _ 3 4 _ 5 6 7. 8 9 100 874.93 1009.81 1114.75 994.94 917.18 898.87 861.07 810.36 705.04 625.7136 890.00 1048.88 1113.06 1006.32 937.59 910.49 869.63 813.25 715.00 634.4272 923.39 1078.11 1118.99 1023.75 958.63 925.63 879.43 819.05 724.49 644.09108 948.17 1094.34 1128.30 1038.51 972.24 937.34 887.54 824.85 732.57 651.87144 957.93 1098.60 1138.44 1051.47 978.30 944.34 893.20 829.70 738.99 659.65180 950.83 1096.05 1146.03 1061.80 984.13 950.10 897.64 833.33 742.80 664.85216 933.92 1092.64 1153.61 1072.11 986.41 954.11 899.61 836.49 743.99 667.68252 911.14 1095.20 1162.02 1076.39 983.62 953.36 899.36 837.94 742.33 667.68288 904.11 1101.16 1167.06 1077.25 977.04 945.59 894.68 836.49 736.14 660.60324 903.23 1108.81 1167.06 1072.11 966.69 935.84 887.29 832.12 723.07 648.33360 890.88 1108.81 1162.86 1063.52 958.13 928.86 881.64 827.27 714.29 639.37396 885.58 1035.05 1134.22 1010.69 924.38 902.82 860.34 815.67 704.81 624.29432 885.58 1022.01 1112.21 999.32 923.89 902.08 864.00 810.60 710.73 629.00468 910.26 1061.80 1115.60 1015.92 947.09 914.70 872.07 814.94 720.46 638.19504 939.27 1084.10 1122.38 1031.56 964.92 929.11 881.15 820.98 728.77 647.15540 957.93 1096.90 1128.30 1045.43 972.99 938.84 888.52 826.06 735.66 654.94576 962.35 1099.46 1140.12 1055.78 978.56 944.34 893.69 830.67 740.42 661.54612 951.72 1096.05 1147.71 1066.10 983.62 949.85 897.39 833.82 742.80 665.56648 933.02 1094.34 1154.45 1073.82 985.14 952.11 899.12 836.49 742.57 667.68684 907.62 1092.64 1160.34 1077.25 980.83 950.10 897.39 837.21 738.76 664.61Minimum 874.93 1009.81 1112.21 994.94 917.18 898.87 860.34 810.36 704.81 624.29Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings12:00:21.41 1 2 3 4 5 6 7 8 9 100 N/A 988.76 918.10 N/A N/A N/A N/A N/A N/A N/A36 N/A 990.51 918.10 N/A N/A N/A N/A N/A N/A N/A72 N/A 986.12 916.35 N/A N/A N/A N/A N/A N/A N/A108 N/A 972.92 910.21 N/A N/A N/A N/A N/A N/A N/A144 N/A 965.86 905.82 N/A N/A N/A N/A N/A N/A N/A180 N/A 970.28 906.70 N/A N/A N/A N/A N/A N/A N/A216 N/A 977.33 910.21 N/A N/A N/A N/A N/A N/A N/A252 N/A 980.85 911.97 N/A N/A N/A N/A N/A N/A N/A288 N/A 983.49 913.72 N/A N/A N/A N/A N/A N/A N/A324 N/A 985.25 915.47 N/A N/A N/A N/A N/A N/A N/A360 N/A 987.00 917.22 N/A N/A N/A N/A N/A N/A N/A396 N/A 990.51 918.10 N/A N/A N/A N/A N/A N/A N/A432 N/A 991.39 918.10 N/A N/A N/A N/A N/A N/A N/A468 N/A 993.14 918.10 N/A N/A N/A N/A N/A N/A N/A504 N/A 980.85 914.60 N/A N/A N/A N/A N/A N/A N/A540 N/A 972.04 909.34 N/A N/A N/A N/A N/A N/A N/A576 N/A 965.86 905.82 N/A N/A N/A N/A N/A N/A N/A612 N/A 974.69 909.34 N/A N/A N/A N/A N/A N/A N/A648 N/A 980.85 911.97 N/A N/A N/A N/A N/A N/A N/A684 N/A 983.49 914.60 N/A N/A N/A N/A N/A N/A N/AAverage N/A 981.06 913.19 N/A N/A N/A N/A N/A N/A N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 _^5.21312:02:41.04 1 2 3 4 5 6 7 8 9 100 N/A 991.44 919.90 N/A N/A N/A N/A N/A N/A N/A36 N/A 994.07 920.77 N/A N/A N/A N/A N/A N/A N/A72 N/A 989.69 918.15 N/A N/A N/A N/A N/A N/A N/A108 N/A 978.26 912.02 N/A N/A N/A N/A N/A N/A N/A144 N/A 971.21 907.63 N/A N/A N/A N/A N/A N/A N/A180 N/A 975.62 908.51 N/A N/A N/A N/A N/A N/A N/A216 N/A 981.78 912.02 N/A N/A N/A N/A N/A N/A N/A252 N/A 986.17 914.65 N/A N/A N/A N/A N/A N/A N/A288 N/A 988.81 916.40 N/A N/A N/A N/A N/A N/A N/A324 N/A 990.56 918.15 N/A N/A N/A N/A N/A N/A N/A360 N/A 991.44 919.02 N/A N/A N/A N/A N/A N/A N/A396 N/A 994.07 919.90 N/A N/A N/A N/A N/A N/A N/A432 N/A 994.95 920.77 N/A N/A N/A N/A N/A N/A N/A468 N/A 995.82 920.77 N/A N/A N/A N/A N/A N/A N/A504 N/A 985.30 916.40 N/A N/A N/A N/A N/A N/A N/A540 N/A 976.50 910.26 N/A N/A N/A N/A N/A N/A N/A576 N/A 971.21 907.63 N/A N/A N/A N/A N/A N/A N/A612 N/A 980.02 910.26 N/A N/A N/A N/A N/A N/A N/A648 N/A 985.30 913.77 N/A N/A N/A N/A N/A N/A N/A684 N/A 987.05 916.40 N/A N/A N/A N/A N/A N/A N/AAverage N/A 985.46 915.17 N/A N/A N/A N/A N/A N/A N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.13:31:00.41 1 2 3 4 5 6 7 8 9 100 N/A 1035.05 964.12 N/A N/A N/A N/A 538.76 401.52 N/A36 N/A 1037.65 965.01 N/A N/A N/A N/A 539.23 402.00 N/A72 N/A 1039.38 965.01 N/A N/A N/A N/A 539.46 402.48 N/A108 N/A 1035.05 963.24 N/A N/A N/A N/A 539.46 401.04 N/A144 N/A 1025.48 954.38 N/A N/A N/A N/A 539.23 398.65 N/A180 N/A 1019.40 947.28 N/A N/A N/A N/A 538.52 396.73 N/A216 N/A 1022.01 949.05 N/A N/A N/A N/A 538.05 396.73 N/A252 N/A 1027.22 952.61 N/A N/A N/A N/A 537.81 397.45 N/A288 N/A 1030.69 956.15 N/A N/A N/A N/A 537.81 398.41 N/A324 N/A 1033.32 959.70 N/A N/A N/A N/A 538.05 399.13 N/A360 N/A 1034.18 961.47 N/A N/A N/A N/A 538.52 400.08 N/A396 N/A 1035.91 963.24 N/A N/A N/A N/A 538.76 400.80 N/A432 N/A 1037.65 965.01 N/A N/A N/A N/A 539.23 401.52 N/A468 N/A 1039.38 965.89 N/A N/A N/A N/A 539.70 402.00 N/A504 N/A 1040.24 965.89 N/A N/A N/A N/A 539.70 402.24 N/A540 N/A 1033.32 960.58 N/A N/A N/A N/A 539.70 399.13 N/A576 N/A 1025.48 952.61 N/A N/A N/A N/A 539.23 396.73 N/A612 N/A 1020.27 947.28 N/A N/A N/A N/A 538.76 396.01 N/A648 N/A 1026.35 950.83 N/A N/A N/A N/A 538.28 396.73 N/A684 N/A 1030.69 954.38 N/A N/A N/A N/A 538.05 397.45 N/AAverage N/A 1031.44 958.19 N/A N/A N/A N/A N/A N/A N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.21313:32:46.80 1 2 3 4 5 6 7 8_ 9 100 N/A 1033.37 960.63 N/A N/A N/A N/A 539.99 401.09 N/A36 N/A 1024.67 952.66 N/A N/A N/A N/A 539.51 398.94 N/A72 N/A 1019.45 947.33 N/A N/A N/A N/A 538.81 397.50 N/A108 N/A 1024.67 949.99 N/A N/A N/A N/A 538.33 397.98 N/A144 N/A 1029.01 954.43 N/A N/A N/A N/A 538.10 398.70 N/A180 N/A 1031.61 957.09 N/A N/A N/A N/A 538.33 399.41 N/A216 N/A 1033.37 960.63 N/A N/A N/A N/A 538.57 400.13 N/A252 N/A 1035.10 962.40 N/A N/A N/A N/A 538.81 400.85 N/A288 N/A 1035.96 963.29 N/A N/A N/A N/A 539.28 401.57 N/A324 N/A 1037.70 965.06 N/A N/A N/A N/A 539.51 402.29 N/A360 N/A 1040.29 965.06 N/A N/A N/A N/A 539.75 402.77 N/A396 N/A 1041.16 965.06 N/A N/A N/A N/A 539.99 402.53 N/A432 N/A 1029.87 957.09 N/A N/A N/A N/A 539.75 400.37 N/A468 N/A 1023.80 949.99 N/A N/A N/A N/A 539.28 39822 N/A504 N/A 1022.06 947.33 N/A N/A N/A N/A 538.57 397.50 N/A540 N/A 1027.27 951.77 N/A N/A N/A N/A 538.33 397.98 N/A576 N/A 1030.74 955.32 N/A N/A N/A N/A 538.10 398.70 N/A612 N/A 1033.37 957.98 N/A N/A N/A N/A 538.33 399.41 N/A648 N/A 1035.10 959.75 N/A N/A N/A N/A 538.57 400.37 N/A684 N/A 1035.96 961.52 N/A N/A N/A N/A 539.04 401.09 N/AAverage N/A 1031.22 957.22 N/A N/A N/A N/A 538.95 399.87 N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.Interior Wall Probe Temperature Readings12:01:46.27Position 0.2506Radius, m0.2318 021300.616 N/A N/A N/A1.010 339.21 627.86 N/A1.568 285.75 570.09 849.932.064 281.70 N/A N/A2.375 N/A 543.80 N/A2.724 N/A 487.55 N/A3.048 193.91 429.10 590224.070 185.07 347.83 510.034.585 162.46 269.04 431255.213 154.58 252.20 341.5612:04:05.90Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 341.50 630.85 N/A1.568 285.80 572.16 851.772.064 281.99 N/A N/A2.375 N/A 545.03 N/A2.724 N/A 488.79 N/A3.048 194.45 430.11 591.924.070 185.61 348.60 511.034.585 162.75 269.57 432255.213 154.63 252.50 342.0913:32:25.22Position 0.2506Radius, m02318 021300.616 N/A N/A N/A1.010 362.25 660.90 N/A1.568 305.90 610.90 893.532.064 304.15 N/A N/A2.375 N/A 585.43 N/A2.724 N/A 535.45 N/A3.048 213.63 474.42 640.794.070 203.81 387.86 563.044.585 177.78 298.81 483.195.213 161.55 272.30 378.5015413:34:11.77Position 0.2506Raditts, m0.2318 0.21300.616 N/A N/A N/A1.010 362.30 662.88 N/A1.568 305.95 611.94 894.472.064 304.20 N/A N/A2.375 N/A 586.18 N/A2.724 N/A 536.45 N/A3.048 216.37 475.18 641.784.070 204.35 388.39 563.094.585 178.07 299.35 483.725.213 161.85 272.59 378.55NOTE: This set of data was used for steady state calculations.155Suction Pyrometer Temperature Readings by Flue Gas112:1041.032 312:12:12.86412:13549.42612:15:17.637 8 912:16:50.62100 1043.82 1190.59 1124.15 1023.01 919.35 893.61 835.41 763.19 680.58 593.1036 1038.63 1178.03 1136.83 1029.08 923.32 900.77 843.67 769.41 686.02 592.6372 1048.13 1179.71 1144.42 1034.30 926.31 906.70 849.02 775.87 687.20 592.40108 1052.44 1186.41 1150.31 1039.49 929.05 912.40 852.44 782.10 686.02 592.87144 1060.19 1191.43 1152.84 1044.68 930.79 914.38 855.61 787.38 691.22 593.81180 1069.64 1203.12 1152.84 1046.41 931.79 915.13 857.31 791.71 694.53 594.99216 1083.34 1216.46 1160.41 1049.86 931.79 912.65 855.12 793.63 699.03 596.17252 1093.59 1215.63 1160.41 1053.30 931.54 909.92 850.49 792.67 698.09 596.87288 1101.25 1219.79 1162.09 1055.03 930.79 906.21 846.35 787.86 701.64 597.11324 1112.30 1221.46 1170.49 1053.30 930.29 904.72 841.48 783.54 695.95 596.64360 1108.05 1226.45 1168.81 1047.27 931.04 908.19 843.67 780.18 691.22 595.69396 1098.70 1225.61 1166.29 1042.09 932.79 913.89 845.37 778.99 682.71 594.52432 1079.07 1214.80 1170.49 1044.68 934.53 916.61 848.05 781.14 682.23 593.57468 1076.50 1201.45 1168.81 1048.13 936.28 920.59 852.68 784.98 691.93 593.10504 1075.64 1200.62 1166.29 1051.58 937.28 923.57 857.31 789.78 688.15 593.10540 1077.35 1203.12 1167.13 1054.17 937.78 924.07 860.98 794.59 690.51 593.81576 1075.64 1198.11 1166.29 1055.89 937.78 923.07 861.95 797.96 698.09 594.99612 1090.17 1207.29 1166.29 1056.75 937.03 921.08 861.22 800.36 697.14 596.17648 1093.59 1210.63 1167.97 1057.61 936.78 918.10 858.53 800.85 697.38 597.34684 1110.60 1219.79 1166.29 1056.75 934.53 911.90 854.14 798.68 695.48 597.81Average 1079.43 1205.53 1159.47 1047.17 932.04 912.88 851.54 786.74 691.76 594.83Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.14:03:54.651 214:05:28.473 414:07:00.195 614:08:38.017 814:10:13.049 100 915.44 1127.41 1218.92 1137.60 N/A N/A N/A 859.59 789.00 676.7336 888.15 1123.18 1233.06 1144.35 N/A N/A N/A 865.94 N/A 675.5572 865.05 1128.25 1239.72 1144.35 N/A N/A N/A 873.03 784.44 674.84108 857.01 1140.92 1236.39 1138.44 N/A N/A 941.55 881.13 790.92 674.37144 899.62 1161.14 1242.22 1135.91 N/A N/A 949.06 888.99 796.69 674.84180 909.30 1173.73 1246.37 1139.29 N/A N/A 954.82 896.62 798.37 675.55216 948.08 1175.41 1242.22 1145.19 N/A N/A 957.33 902.79 791.16 676.97252 967.58 1180.44 1246.37 1150.25 N/A N/A 959.09 906.50 807.52 678.15288 982.57 1176.25 1250.53 1155.30 N/A N/A 957.84 908.73 805.59 679.09324 986.09 1174.57 1254.68 1158.66 N/A N/A 953.57 907.74 798.37 679.33360 958.73 1158.61 1256.34 1160.35 N/A N/A 944.55 903.29 795.01 678.86396 926.81 1158.61 1260.49 1162.03 N/A N/A 941.55 899.83 791.64 677.67432 889.92 1160.30 1262.15 1162.87 N/A N/A 941.30 896.87 780.85 676.49468 876.62 1149.35 1258.83 1162.87 N/A N/A 945.30 895.88 781.33 675.31504 856.11 1145.98 1254.68 1156.14 N/A N/A 950.81 899.09 791.40 674.60540 882.83 1166.18 1251.36 1148.56 N/A N/A 955.07 903.78 794.05 674.60576 906.67 1176.25 1249.70 1147.72 N/A N/A 957.84 908.73 798.13 675.31612 937.39 1181.28 1251.36 1148.56 N/A N/A 959.59 912.69 802.95 676.26648 961.38 1182.12 1248.04 1151.93 N/A N/A 961.10 916.16 803.91 677.67684 982.57 1186.31 1252.19 1154,46 N/A N/A 960.85 918.14 805.59 678.86Average 919.90 1161.32 1247.78 1150.24 N/A N/A 952.42 897.28 795.10 676.55Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Shell Temperature ReadingsPosition, metresTine 0.146 0.921 1.492 2.210 5.35412:04:05.90 254.75 168.70 161.33 142.14 90.7313:28:59.74 267.91 179.50 175.57 161.30 102.01158Flue Gas AnalysisTime Port N2 02 CO212:56 5 82.9 2.1 15.013:50 5 77.9 6.5 15.614:00 5 74.2 5.0 20.814:05 5 75.4 3.7 20.914:11 5 72.0 1.2 26.814:18 5 72.8 3.0 24.214:25 5 72.5 2.7 24.8159Axial Calcination ResultsNatural Gas = 5.4 CFM Product Product Product Port #1 Port #1 Port #2 Port #2 Port #3 Port #3Sample Code GP GP GP G#1 _ G#1 G#2 G#2 G#3 G#3Date 3/Jun/90 3/Jun/90 7/Jun/90 3/Jun/90 6/Jun/90 3/Jun/90 3/Jun/90 3/Jun/90 3/Jun/90Before Firing, g 24.6943 23.7996 24.5387 24.8338 24.7918 27.4482 27.6574 273341 28.5393After Firing, g 23.5986 22.7832 23.4216 22.0343 22.2698 22.0987 22.0417 21.3317 21.8565Empty Crucible, g 12.5313 11.8686 11.6270 123096 12.4639 11.9972 11.6064 12.0411 11.9087Wt of Sample Before, g 12.1630 11.9310 12.9117 12.5242 12.3279 15.4510 16.0510 15.4930 16.6306Wt Loss by CaCO3, g 1.0957 1.0164 1.1171 2.7995 2.5220 5.3495 5.6157 6.2024 6.6828% Calcination 79.10 80.23 79.93 48.14 52.53 19.67 18.82 7.11 6.76Average =^ 79.75%^50.34%^19.24%^6.94%Lignin = 218 g/m Product Product Port #1 Port #1 Port #2 Port #2 Port #3 Port #3Sample Code LP LP L#1 L#1 L#2 L#2 L#3 L#3Date 3/Jun/90 3/Jun/90 3/Jun/90 3/Jun/90 4/Jun/90 4/Jun/90 4/Jun/90 7/Jun/90Before Firing, g 23.1423 23.0835 22.3594 22.1656 24.0010 22.8294 27.1641 25.9555After Firing, g 23.0861 23.0160 22.3298 22.1411 22.9614 22.3641 22.1550 21.2875Empty Crucible, g 12.4412 11.7458 11.8856 11.6698 12.5383 11.8777 12.2205 11.8948Wt of Sample Before, g 10.7011 11.3377 10.4738 10.4958 11.4627 10.9517 14.9436 14.0607Wt Loss by CaCO3, g 0.0562 0.0675 0.0296 0.0245 1.0396 0.4653 5.0091 4.6680% Calcination 98.78 98.62 99.34 99.46 78.96 90.14 22.23 22.97Average =^98.70%^99.40%^84.55%^22.60% \u00C2\u00A7Lignin = 218 g/m Port #4 Port #4 Port #5 Port #5Sample Code L#4 L#4 L#5 L#5Date 4/Jun/90 4/J un/90 4/Jun/90 4/Jun/90Before Firing, g 28.0475 27.9036 27.4930 292116After Firing, g 212744 21.3795 21.0612 21.8314Empty Crucible, g 11.6143 12.1576 12.5192 12.0465Wt of Sample Before, g 16.4332 15.7460 14.9738 17.1651Wt Loss by CaCO3, g 6.7731 6.5241 6.4318 7.3802% Calcination 4.37 3.86 0.34 0.24Average =^ 4.12%^0.29%5Run LG12Table of EventsAction Requested by Operator 1^Time5/31/90 08:33:49.56Kiln speed (rpm) : 1.5 08:33:54.34Lignin = 131 g/min^Gas = 22 CFM 8:30:00Read Bed Temperatures 09:48:45.66Read Bed Temperatures 09:50:50.06Read Hot Face Heat Flux Temperatures 09:53:31.54Read Colder Heat Flux Temperatures 09:54:56.46Read Shell Temperatures 10:02:10.53Suction T/C, Pair : 0 10:02:40.91Read Bed Temperatures 12:05:34.38Read Hot Face Heat Flux Temperatures 12:07:15.94Read Colder Heat Flux Temperatures 12:08:40.85Suction T/C, Pair : 1 12:11:08.49Suction T/C, Pair : 2 12:13:06.31Suction T/C, Pair : 3 12:14:35.40Suction T/C, Pair : 4 12:16:06.68Suction T/C, Pair : 5 12:17:50.71Read Bed Temperatures 12:19:22.33Read Bed Temperatures 12:21:30.74Read Hot Face Heat Flux Temperatures 12:30:07.70Read Colder Heat Flux Temperatures 12:31:32.51Read Shell Temperatures 12:32:35.89Lignin = 163 g/min^Gas = 1.4 CFM 12:35:00Read Bed Temperatures 13:38:21.79Read Hot Face Heat Flux Temperatures 13:39:57.75Read Colder Heat Flux Temperatures 13:41:22.72Read Shell Temperatures 13:42:02.81Suction T/C, Pair : 1 13:42:33.19Suction T/C, Pair : 2 13:44:24.91Suction T/C, Pair : 3 13:45:52.62Suction T/C, Pair : 4 13:47:18.85Suction T/C, Pair : 5 13:48:49.48162Cyclic Bed Temperature Readings09:48:45.66 1 2 3 4 5 6 7 8 9 100 992.10 1078.63 1111.83 1001.72 895.87 846.33 791.88 724.01 625.65 557.8136 1001.72 1092.28 1116.06 1008.70 902.30 852.67 796.70 729.48 631.78 564.8872 1008.70 1100.79 1119.45 1016.54 907.99 858.29 799.59 734.48 636.03 570.06108 1006.96 1099.94 1117.76 1018.28 910.22 861.22 801.27 738.05 636.26 572.42144 999.98 1099.09 1112.67 1018.28 909.73 860.24 800.07 739.72 628.95 568.18180 993.85 1099.94 1109.28 1016.54 905.76 855.11 793.81 736.14 615.29 555.45216 993.85 1098.24 1110.13 1011.32 900.32 849.50 786.11 729.24 606.57 545.79252 969.25 1013.93 1092.28 964.84 878.13 823.02 769.81 715.22 603.51 539.18288 964.84 1025.22 1095.69 970.13 878.63 830.04 777.71 712.38 610.58 543.67324 979.82 1059.77 1106.74 987.72 888.72 837.57 784.91 717.12 619.29 551.45360 993.85 1081.19 1117.76 1001.72 898.09 845.36 791.64 723.06 626.83 558.99396 1004.34 1091.43 1122.83 1012.19 904.52 851.21 796.46 728.53 632.49 565.35432 1005.22 1097.39 1121.98 1020.01 910.72 858.78 801.03 734.00 636.03 570.06468 1001.72 1096.54 1123.67 1021.75 913.45 860.98 802.72 737.81 637.44 571.95504 997.35 1097.39 1119.45 1019.15 913.45 860.00 801.51 739.95 631.31 567.94540 997.35 1100.79 1118.60 1016.54 908.49 853.89 793.33 735.67 615.76 555.69576 993.85 1098.24 1117.76 1013.06 903.04 848.04 785.39 728.77 605.87 546.73612 967.49 1026.09 1098.24 966.61 880.35 822.77 768.37 715.70 603.04 539.42648 958.65 1027.85 1099.09 968.37 878.38 830.04 776.27 711.43 608.93 542.49684 978.94 1061.49 1110.98 987.72 886.25 838.54 784.43 716.41 618.12 550.50Minimum 958.65 1013.93 1092.28 964.84 878.13 822.77 768.37 711.43 603.04 539.18Distance, m 0.146 0.464 0.921^- 1.492 2.210 2.553 2.915 3.270 3.994 4.52109:50:50.06 1 2 3 4 5 6 7 8 9 100 989.55 1085.54 1124.60 1014.88 903.37 853.24 798.46 731.46 632.57 565.9036 992.18 1094.07 1122.91 1022.70 909.81 860.08 802.32 736.22 637.28 571.0972 994.81 1095.77 1121.22 1024.43 911.79 863.50 804.25 740.27 638.70 573.21108 989.55 1094.92 1116.99 1023.57 913.03 863.99 803.76 741.94 632.57 568.73144 991.31 1094.92 1112.75 1019.23 908.07 859.10 798.94 740.03 618.67 557.18180 978.14 1089.81 1109.36 1012.27 902.87 852.51 791.96 735.27 609.24 549.17216 956.08 1014.88 1093.21 968.45 881.41 825.52 772.52 721.24 605.24 541.15252 943.66 1018.36 1093.21 969.33 879.20 831.58 779.71 714.83 611.13 544.22288 968.45 1054.69 1111.91 991.31 889.78 842.03 788.60 719.10 620.08 551.29324 986.05 1076.14 1122.06 1006.17 898.91 849.34 794.61 725.28 627.86 559.07360 998.31 1087.25 1125.44 1014.88 906.09 856.17 799.18 730.99 633.98 565.90396 1001.80 1093.21 1124.60 1024.43 912.54 862.28 803.76 736.46 638.46 571.32432 997.43 1094.07 1121.22 1024.43 914.77 866.93 806.66 740.99 640.11 574.15468 993.06 1094.07 1114.45 1024.43 915.02 865.71 804.00 742.89 634.69 569.91504 993.93 1097.47 1113.60 1019.23 911.54 861.30 797.98 740.99 622.20 559.30540 989.55 1095.77 1112.75 1014.01 906.34 855.68 791.72 735.27 610.89 549.64576 968.45 1020.96 1096.62 972.86 884.12 829.88 772.76 721.72 605.24 541.15612 956.08 1016.62 1094.92 969.33 881.66 832.79 779.47 715.07 610.89 544.22648 974.62 1052.11 1111.91 990.43 892.49 841.30 788.12 718.87 619.14 550.82684 993.06 1077.00 1122.91 1007.04 902.38 848.36 794.61 724.57 625.97 557.65Minimum 943.66 1014.88 1093.21 968.45 879.20 825.52 772.52 714.83 605.24 541.15Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521i12:05:34.38 1 2 3 4 5 6 7 8 9 100 956.56 1096.38 1150.55 1049.23 949.73 910.36 864.83 814.54 691.60 610.2036 959.21 1069.02 1127.77 1018.90 933.97 898.24 862.88 807.78 694.20 611.3872 961.87 1075.88 1124.39 1033.68 942.22 906.89 867.52 808.27 701.07 619.62108 976.00 1086.15 1129.46 1049.23 952.99 917.80 872.66 810.92 707.46 628.11144 993.57 1097.23 1133.69 1060.43 962.55 930.98 880.02 814.06 713.15 635.41180 1005.82 1104.89 1138.75 1070.74 969.61 938.72 885.43 817.68 717.43 641.30216 1013.67 1109.14 1142.13 1075.88 973.65 942.97 888.63 820.34 719.56 645.31252 1014.55 1112.54 1144.66 1078.45 975.92 945.47 891.34 822.52 719.09 645.31288 N/A N/A N/A N/A N/A N/A N/A N/A N/A 645.31324 985.68 1110.84 1149.71 1084.44 971.37 933.48 883.46 822.27 702.49 625.75360 N/A 1104.89 1151.39 1068.16 957.77 920.78 872.66 819.13 695.38 614.91396 957.44 1067.31 1132.00 1021.51 935.47 898.24 863.61 811.16 693.96 611.61432 951.24 1068.16 1122.70 1031.08 939.47 904.91 868.01 809.47 700.12 619.15468 962.75 1076.74 1124.39 1045.78 950.99 916.06 873.65 811.64 706.99 627.40504 982.16 1086.15 1129.46 1059.57 961.54 928.99 880.51 814.54 712.92 634.94540 997.95 1095.53 1136.22 1067.31 967.59 935.47 883.95 817.44 716.71 640.60576 1008.44 1104.89 1140.44 1072.45 971.37 940.22 887.15 819.86 719.32 645.08612 1010.19 1109.99 1144.66 1077.59 974.66 941.97 888.63 821.55 719.32 646.25648 1006.70 1115.93 1150.55 1082.73 975.67 940.47 886.91 822.03 714.10 640.60684 982.16 1118.47 1153.08 1087.00 973.39 934.97 882.48 820.82 701.54 628.34Minimum 951.24 1067.31 1122.70 1018.90 933.97 898.24 862.88 807.78 691.60 610.20Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52112:19:22.33 1 2 3 4 5 6 7 8 9 100 955.92 1088.10 1127.18 1025.23 938.72 902.20 869.49 813.34 700.37 617.5236 962.12 1094.93 1129.71 1042.58 948.98 914.08 875.86 815.03 707.24 625.7672 981.53 1101.74 1133.94 1054.66 956.76 925.50 881.99 817.93 713.64 634.01108 993.82 1109.39 1139.85 1065.84 965.06 937.47 888.88 821.07 718.39 641.08144 1005.20 1115.33 1143.22 1071.85 970.11 943.72 892.82 824.22 721.71 646.27180 1013.92 1118.72 1146.59 1079.56 975.16 949.48 897.26 827.12 723.85 649.33216 1008.69 1119.57 1149.96 1083.83 977.18 948.98 896.27 829.30 721.47 647.68252 989.44 1121.26 1153.33 1087.25 976.68 944.47 891.83 829.55 712.46 638.02288 963.89 1110.24 1154.17 1085.54 972.38 936.97 887.16 827.61 702.98 627.41324 945.27 1093.22 1149.12 1044.31 950.73 913.09 870.47 822.52 698.48 613.98360 947.93 1080.41 1128.02 1021.76 936.97 902.20 869.49 815.76 701.55 616.10396 952.37 1082.12 1125.49 1037.39 943.47 910.61 874.88 816.00 708.19 624.35432 968.31 1091.52 1131.41 1053.79 954.25 922.52 881.01 818.17 713.40 632.13468 990.32 1100.89 1137.32 1064.98 960.28 931.48 886.91 821.31 718.86 639.90504 1003.45 1107.69 1141.53 1074.42 968.34 940.97 892.33 824.46 722.19 645.33540 1007.82 1114.48 1146.59 1080.41 974.15 947.23 896.02 827.36 723.61 648.63576 1004.33 1117.02 1149.96 1083.83 976.42 949.23 897.01 829.30 722.66 648.16612 996.45 1114.48 1152.49 1088.10 977.69 946.47 893.80 830.03 713.64 639.43648 980.65 1111.09 1155.01 1091.52 974.65 938.72 889.12 828.33 701.55 626.94684 959.46 1105.14 1155.01 1065.84 958.27 922.02 876.10 824.94 696.58 614.69Minimum 945.27 1080.41 1125.49 1021.76 936.97 902.20 869.49 813.34 696.58 613.98Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52112:21:30.74 1 2 3 4 5 6 7 8 9 100 984.22 1091.57 1131.46 1046.08 .^949.28 915.86 .^875.66 817.98 710.13 627.9336 998.25 1100.09 1136.52 1059.87 958.82 927.30 881.31 820.64 715.59 635.7172 1010.49 1108.59 1141.58 1071.04 968.64 939.02 888.19 824.03 720.34 642.55108 1016.59 1113.68 1145.80 1077.04 972.93 945.02 891.88 826.93 722.95 647.50144 1017.46 1118.77 1150.01 1082.17 976.22 947.03 894.35 829.11 723.19 649.38180 1010.49 1119.62 1154.22 1087.30 976.22 945.27 893.61 830.32 719.86 644.67216 988.61 1122.16 1155.90 1090.71 975.71 939.77 889.42 829.84 709.90 633.59252 964.82 1120.46 1158.43 1091.57 970.16 932.53 884.25 827.66 703.26 623.69288 954.20 1096.68 1147.48 1035.71 944.52 904.72 867.82 820.88 698.29 611.91324 956.86 1084.74 1128.07 1027.89 936.52 902.00 870.27 815.81 703.26 617.57360 963.05 1094.13 1128.92 1043.49 947.28 913.88 876.15 817.01 709.42 626.05396 978.94 1103.49 1133.99 1059.01 958.57 926.55 883.03 819.91 714.88 633.83432 993.00 1111.14 1140.74 1071.04 968.39 937.52 889.17 823.06 719.62 640.66468 1007.87 1117.07 1144.96 1078.75 973.19 943.02 893.12 825.96 722.71 646.08504 1015.72 1121.31 1147.48 1084.74 976.98 947.53 896.57 828.63 724.37 649.15540 1010.49 1124.69 1153.38 1087.30 978.24 946.52 895.33 830.08 722.24 647.50576 994.75 1121.31 1156.74 1091.57 978.24 943.77 891.64 830.08 712.98 636.18612 965.71 1108.59 1156.74 1092.42 974.70 937.27 887.70 828.38 705.63 626.52648 952.42 1094.13 1154.22 1049.53 952.79 913.63 871.00 823.78 699.95 612.86684 960.40 1078.75 1132.30 1020.94 936.77 900.02 869.05 816.53 702.55 615.45Minimum 952.42 1078.75 1128.07 1020.94 936.52 900.02 867.82 815.81 69829 611.91Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.13:38:21.79 1 2 3 4_ 5 6 7 8, 9 100 1016.45 1173.46 1191.06 1064.05 955.65 919.45 881.43 844.79 717.43 627.4136 1026.01 1162.55 1164.23 1035.58 941.37 906.56 878.49 837.26 718.61 628.5972 1032.98 1166.75 1160.03 1051.13 947.87 916.72 884.38 837.26 722.17 636.13108 1039.91 1174.30 1167.59 1065.77 957.66 930.64 892.25 839.20 725.50 643.91144 1048.55 1180.17 1173.46 1076.92 966.46 942.12 898.66 841.87 728.35 650.51180 1055.44 1183.52 1178.50 1085.48 973.02 949.88 903.85 845.03 731.20 656.17216 1060.61 1186.87 1181.85 1093.17 977.57 952.64 905.08 847.71 732.15 659.71252 1064.05 1187.71 1186.04 1098.28 979.84 953.14 904.59 849.41 731.44 659.71288 1053.72 1189.38 1190.22 1103.39 981.62 950.88 902.36 850.38 728.82 654.99324 1040.77 1191.89 1196.08 1105.09 978.58 945.37 897.67 849.65 723.84 644.15360 1020.80 1194.40 1200.25 1088.05 967.47 931.64 887.82 847.46 720.51 634.01396 1035.58 1175.98 1175.98 1041.64 946.62 906.56 876.77 839.20 717.19 628.83432 1041.64 1176.82 1159.18 1045.09 946.87 912.51 880.70 837.02 718.61 634.72468 1062.33 1185.20 1158.34 1057.17 956.15 924.67 886.35 837.99 722.65 642.03504 1070.92 1186.87 1162.55 1066.63 963.44 934.88 892.01 839.69 725.50 647.92540 1070.92 1189.38 1170.11 1077.78 970.50 944.62 897.92 842.36 728.11 652.87576 1070.92 1191.89 1175.14 1084.63 977.06 952.89 903.60 845.03 730.73 657.12612 N/A N/A N/A N/A N/A N/A 903.60 845.03 730.73 657.12648 1058.03 1193.57 1184.36 1096.58 983.64 955.65 904.09 849.65 730.01 657.83684 1044.23 1192.73 1188.55 1100.84 982.12 950.13 900.14 850.14 725.26 647.68Minimum 1016.45 1162.55 1158.34 1035.58 941.37 906.56 876.77 837.02 717.19 627.41Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 _^2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings09:53:31.54 1 2 3 4 5 6 7 8 9 100 N/A 985.33 915.54 N/A N/A N/A N/A N/A N/A N/A36 N/A 986.21 918.16 N/A N/A N/A N/A N/A N/A N/A72 N/A 986.21 919.04 N/A N/A N/A N/A N/A N/A N/A108 N/A 987.08 919.91 N/A N/A N/A N/A N/A N/A N/A144 N/A 987.96 919.91 N/A N/A N/A N/A N/A N/A N/A180 N/A 983.57 918.16 N/A N/A N/A N/A N/A N/A N/A216 N/A 973.90 912.04 N/A N/A N/A N/A N/A N/A N/A252 N/A 969.49 907.66 N/A N/A N/A N/A N/A N/A N/A288 N/A 977.42 911.17 N/A N/A N/A N/A N/A N/A N/A324 N/A 982.69 913.79 N/A N/A N/A N/A N/A N/A N/A360 N/A 984.45 915.54 N/A N/A N/A N/A N/A N/A N/A396 N/A 986.21 917.29 N/A N/A N/A N/A N/A N/A N/A432 N/A 986.21 919.04 N/A N/A N/A N/A N/A N/A N/A468 N/A 987.08 919.91 N/A N/A N/A N/A N/A N/A N/A504 N/A 987.08 919.91 N/A N/A N/A N/A N/A N/A N/A540 N/A 982.69 918.16 N/A N/A N/A N/A N/A N/A N/A576 N/A 973.90 912.04 N/A N/A N/A N/A N/A N/A N/A612 N/A 968.61 907.66 N/A N/A N/A N/A N/A N/A N/A648 N/A 976.54 911.17 N/A N/A N/A N/A N/A N/A N/A684 N/A 980.94 913.79 N/A N/A N/A N/A N/A N/A N/AAverage N/A 981.68 915.50 N/A N/A N/A N/A N/A N/A N/ADistance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.21312:07:15.94 1 2 3 4 5 6 7 8 9 100 N/A 1031.08 969.82 N/A N/A N/A N/A N/A N/A N/A36 N/A 1031.95 971.59 N/A N/A N/A N/A N/A N/A N/A72 N/A 1034.54 973.35 N/A N/A N/A N/A N/A N/A N/A108 N/A 1035.41 974.23 N/A N/A N/A N/A N/A N/A N/A144 N/A 1035.41 976.00 N/A N/A N/A N/A N/A N/A N/A180 N/A 1029.32 971.59 N/A N/A N/A N/A N/A N/A N/A216 N/A 1022.38 961.87 N/A N/A N/A N/A N/A N/A N/A252 N/A 1019.77 957.44 N/A N/A N/A N/A N/A N/A N/A288 N/A 1025.85 961.87 N/A N/A N/A N/A N/A N/A N/A324 N/A 1028.45 965.41 N/A N/A N/A N/A N/A N/A N/A360 N/A 1031.08 968.06 N/A N/A N/A N/A N/A N/A N/A396 N/A 1032.81 970.71 N/A N/A N/A N/A N/A N/A N/A432 N/A 1034.54 972.47 N/A N/A N/A N/A N/A N/A N/A468 N/A 1035.41 973.35 N/A N/A N/A N/A N/A N/A N/A504 N/A 1036.28 974.23 N/A N/A N/A N/A N/A N/A N/A540 N/A 1033.68 973.35 N/A N/A N/A N/A N/A N/A N/A576 N/A 1026.72 963.64 N/A N/A N/A N/A N/A N/A N/A612 N/A 1021.51 956.56 N/A N/A N/A N/A N/A N/A N/A648 N/A 1024.98 960.10 N/A N/A N/A N/A N/A N/A N/A684 N/A 1028.45 964.52 N/A N/A N/A N/A N/A N/A N/AAverage N/A 1029.98 968.01 N/A N/A N/A N/A N/A N/A N/ADistance, m 0.616 1.010 1.568 _^2.064 2.375 2.724 3.048 4.070 4.585 5.21312:30:07.70 1 2 3 4 5 6 7 8 9 100 N/A 1057.49 975.62 N/A N/A N/A N/A N/A N/A N/A36 N/A 1058.35 975.62 N/A N/A N/A N/A N/A N/A N/A72 N/A 1049.73 966.79 N/A N/A N/A N/A N/A N/A N/A108 N/A 1045.42 958.83 N/A N/A N/A N/A N/A N/A N/A144 N/A 1048.01 959.71 N/A N/A N/A N/A N/A N/A N/A180 N/A 1052.32 964.14 N/A N/A N/A N/A N/A N/A N/A216 N/A 1054.04 966.79 N/A N/A N/A N/A N/A N/A N/A252 N/A 1054.91 969.44 N/A N/A N/A N/A N/A N/A N/A288 N/A 1055.77 971.21 N/A N/A N/A N/A N/A N/A N/A324 N/A 1055.77 972.09 N/A N/A N/A N/A N/A N/A N/A360 N/A 1057.49 973.85 N/A N/A N/A N/A N/A N/A N/A396 N/A 1058.35 973.85 N/A N/A N/A N/A N/A N/A N/A432 N/A 1052.32 966.79 N/A N/A N/A N/A N/A N/A N/A468 N/A 1048.01 958.83 N/A N/A N/A N/A N/A N/A N/A504 N/A 1047.15 957.06 N/A N/A N/A N/A N/A N/A N/A540 N/A 1052.32 961.48 N/A N/A N/A N/A N/A N/A N/A576 N/A 1054.04 964.14 N/A N/A N/A N/A N/A N/A N/A612 N/A 1055.77 966.79 N/A N/A N/A N/A N/A N/A N/A648 N/A 1056.63 968.56 N/A N/A N/A N/A N/A N/A N/A684 N/A 1057.49 970.32 N/A N/A N/A N/A N/A N/A N/AAverage N/A 1053.57 967.10 N/A N/A N/A N/A N/A N/A N/ADistance, m 0.616 1.010 1.568 2.064 2.375 _^2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.13:39:57.75 1 2 3 4 5 6^' 7 8 9 100 N/A 1100.84 973.49 N/A N/A N/A N/A N/A N/A N/A36 N/A 1102.54 976.13 N/A N/A N/A N/A N/A N/A N/A72 N/A 1103.39 978.78 N/A N/A N/A N/A N/A N/A N/A108 N/A 1102.54 980.54 N/A N/A N/A N/A N/A N/A N/A144 N/A 1101.69 982.30 N/A N/A N/A N/A N/A N/A N/A180 N/A 1099.99 984.06 N/A N/A N/A N/A N/A N/A N/A216 N/A 1100.84 985.82 N/A N/A N/A N/A N/A N/A N/A252 N/A 1095.73 977.02 N/A N/A N/A N/A N/A N/A N/A288 N/A 1092.31 968.19 N/A N/A N/A N/A N/A N/A N/A324 N/A N/A 968.19 N/A N/A N/A N/A N/A N/A N/A360 N/A 1099.13 970.84 N/A N/A N/A N/A N/A N/A N/A396 N/A 1100.84 973.49 N/A N/A N/A N/A N/A N/A N/A432 N/A 1101.69 976.13 N/A N/A N/A N/A N/A N/A N/A468 N/A 1103.39 978.78 N/A N/A N/A N/A N/A N/A N/A504 N/A 1104.24 980.54 N/A N/A N/A N/A N/A N/A N/A540 N/A 1105.94 981.42 N/A N/A N/A N/A N/A N/A N/A576 N/A 1106.79 983.18 N/A N/A N/A N/A N/A N/A N/A612 N/A 1105.09 977.90 N/A N/A N/A N/A N/A N/A N/A648 N/A 1099.99 969.07 N/A N/A N/A N/A N/A N/A N/A684 N/A 1096.58 964.65 N/A N/A N/A N/A N/A N/A N/AAverage N/A 1101.24 976.53 N/A N/A N/A N/A N/A N/A N/ADistance, m 0.616 1.010 1.568 2.064 2.375 _^2.724 3.048 4.070 4.585 _^5.213NOTE: This set of data was used for steady state calculations.Interior Wall Probe Temperature Readings09:54:56.46Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 329.03 629.34 N/A1.568 271.93 557.56 850.082.064 263.90 N/A N/A2.375 N/A 508.49 N/A2.724 N/A 450.43 N/A3.048 170.34 383.11 555.694.070 162.47 307.41 465.164.585 150.91 247.06 397.965.213 137.87 235.82 314.9212:08:40.85Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 366.43 673.06 N/A1.568 312.51 620.41 903.622.064 307.39 N/A N/A2.375 N/A 581.23 N/A2.724 N/A 538.33 N/A3.048 207.84 471.15 633.764.070 198.03 378.09 550.364.585 173.71 289.91 470.205.213 149.36^_ 253.37 356.4512:31:32.51Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 37026 682.21 N/A1.568 318.69 628.79 906.752.064 312.50 N/A N/A2.375 N/A 589.27 N/A2.724 N/A 548.74 N/A3.048 216.19 481.85 640.154.070 203.68 387.95 558.174.585 178.14 296.97 476.875.213 153.79 258.50 361.05NOTE: This set of data was used for steady state calculations.17313:41:22.72Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 38930 716.98 N/A1.568 332.53 642.93 N/A2.064 32238 N/A 575.832.375 N/A 604.33 N/A2.724 N/A 568.52 N/A3.048 231.06 504.80 504.804.070 219.30 410.18 219304.585 190.35 313.17 313.175.213 167.25 272.10 272.10NOTE: This set of data was used for steady state calculations.174Suction Pyrometer Temperature Readings of Flue Gas112:11:08.49212:13.06.313 4 512:14:35.406 712:16:06.68812:17:50.719 100 1015.52 1129.56 1180.89 1098.19 N/A N/A 932.63 864.25 748.07 633.0236 1041.56 1147.28 1190.09 1102.44 N/A N/A 934.12 868.65 741.16 632.0872 1072.55 1164.95 1193.44 1106.69 998.92 N/A 935.37 872.08 747.83 631.13108 1087.10 1166.63 1199.29 1110.94 1001.47 N/A 928.39 872.57 756.65 630.66144 1108.39 1181.72 1205.97 1115.18 1003.76 N/A 922.42 869.63 758.56 630.66180 1093.93 1180.05 1213.47 1120.26 1004.53 N/A 923.91 867.67 763.10 631.37216 1063.11 1175.02 1217.63 1122.80 1001.98 N/A 927.15 867.18 766.93 632.08252 1047.61 1149.81 1220.96 1124.49 1000.19 N/A 929.14 867.67 769.56 632.78288 1039.83 1149.81 1225.12 1128.72 1000.45 N/A 931.88 870.12 768.84 633.49324 1007.67 1154.86 1229.28 1129.56 1001.47 N/A 936.12 874.04 765.97 633.73360 1010.29 1166.63 1232.61 1127.87 1003.51 N/A 937.37 876.74 759.76 633.25396 1024.21 1167.47 1227.62 1125.34 1005.80 N/A 940.62 879.93 752.84 632.55432 1075.12 1176.70 1229.28 1125.34 1007.59 N/A 938.37 881.65 748.54 631.60468 1090.51 1186.75 1227.62 1127.87 1008.62 N/A 939.12 881.89 753.31 631.13504 1110.94 1201.79 1227.62 1129.56 1008.87 N/A 932.13 880.17 760.95 630.90540 1109.24 1190.93 1225.12 1131.26 1007.59 N/A 929.14 876.25 770.52 631.37576 1085.39 1181.72 1227.62 1133.79 1007.08 N/A 930.14 874.78 769.08 632.08612 1069.12 1178.37 1233.44 1135.48 1004.78 N/A 931.88 874.78 773.39 633.02648 1022.48 1172.50 1230.94 1135.48 1003.51 N/A 935.87 876.74 771.71 633.73684 1019.00 1172.50 1238.43 1130.41 999.43 N/A 937.62 879.44 764.78 634.20Average 1059.68 1169.75 1218.82 1123.08 1002.82 N/A 932.67 873.81 760.58 632.24Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 _^3.994 4.521NOTE: This set of data was used for steady state calculations.13:42:33.191 2,13:44324.91413:45:52.625 613:47:18.857 8 . 913:48:49.48100 1068.46 1218.71 1205.37 1102.65 993.70 N/A 922.89 863.28 765.01 651.1936 1092.42 1227.86 1217.05 1107.75 996.50 N/A 923.63 867.92 772.66 650.7272 1112.85 1242.01 1222.04 1108.60 995.99 N/A 928.61 873.79 777.93 650.72108 1119.63 1247.00 1229.53 1109.45 999.30 N/A 932.59 880.66 785.12 651.19144 1120.48 1249.49 1237.01 1109.45 1003.38 N/A 935.34 885.33 787.52 651.67180 1123.02 1263.60 1237.85 1111.15 1004.65 N/A 939.58 889.51 784.88 652.37216 1121.33 1266.09 1230.36 1111.15 1004.91 N/A 940.08 893.20 786.32 652.61252 1135.70 1268.58 1240.34 1118.78 1008.23 N/A 942.08 895.66 783.68 652.61288 1120.48 1251.98 1236.18 1123.02 1009.25 N/A 938.33 896.40 782.72 652.14324 1104.35 1263.60 1233.68 1125.56 1008.99 N/A 933.34 893.94 777.93 651.19360 1108.60 1255.30 1236.18 1130.63 1008.48 N/A 932.84 892.46 778.41 650.25396 1099.24 1245.33 1241.17 1133.17 1007.46 N/A 931.85 892.22 781.05 649.78432 1109.45 1247.00 1251.98 1134.01 1009.50 N/A 932.59 893.45 786.32 649.78468 1117.94 1245.33 1258.62 1134.01 1010.53 N/A 934.84 896.90 788.00 650.25504 1117.94 1242.01 1259.45 1134.01 1013.34 N/A 936.33 900.35 788.72 650.96540 1119.63 1233.68 1254.47 1133.17 1016.15 N/A 938.83 904.06 790.16 651.90576 1104.35 1239.51 1239.51 1134.86 1017.69 N/A 937.83 905.79 792.08 652.61612 1083.88 1233.68 1234.52 1134.86 1019.23 N/A 938.58 906.77 785.84 652.85648 1070.17 1221.21 1225.37 1134.01 1018.46 N/A 937.33 906.77 783.20 652.61684 1071.03 1238.68 1213.71 1134.01 1016.15 N/A 932.84 903.81 776.26 651.67Average 1106.05 1245.03 1235.22 1123.22 1008.09 N/A 934.52 892.11 782.69 651.45Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Shell Temperature Readings,Position, metresTime 0.146 0.921 1.492 2.210 5.35409:54:56.46 250.65 168.78 149.84 120.07 89.5712:31:32.51 269.77 191.95 179.42 155.56 99.2313:41:22.72 282.38 204.64 188.43 171.97 112.19177Flue Gas AnalysisTime Port N2 02 CO29:43 5 83.7 2.3 14.011:18 5 79.8 3.8 16.411:22 5 80.4 3.0 16.611:27 5 80.9 2.2 16.912:49 5 79.7 1.9 18.413:08 5 80.0 2.0 18.013:30 5 80.9 2.0 17.1178Axial Calcination ResultsLignin = 131 g/m Product Product Port #1 Port #1 Port #1 Port #1 Port #2 Port #2Sample Code LPA_ LPA L#1A L#1A L#1A L#1A L#2A L#2ADate 4/Jun/90 4/Jun/90 5/Jun/90 5/Jun/90 7/Jun/90 7/Jun/90 5/Jun/90 7/Jun/90Before Firing, g 22.9786 22.7028 23.9742 223371 23.5716 22.7901 25.0347 24.2484After Firing, g 22.9375 22.6647 23.9157 22.2919 23.5003 22.7259 22.9607 22.2342Empty Crucible, g 11.8945 11.6788 12.5445 11.8838 12.4663 11.7713 12.1463 11.6949Wt of Sample Before, g 11.0841 11.0240 11.4297 10.4533 11.1053 11.0188 12.8884 12.5535Wt Loss by CaCO3, g 0.0411 0.0381 0.0585 0.0452 0.0713 0.0642 2.0740 2.0142% Calcination 99.14 99.20 98.81 99.00 98.51 98.65 62.66 62.77Average =^99.17%^ 98.74%^ 62.72%Lignin = 131 g/m Port #3 Port #3 Port #3 Port #4 Port #4Sample Code L#3A L#3A L#3A L#4A L#4ADate 5/Jun/90 8/Jun/90 8/Jun/90 5/Jun/90 5/Jun/90Before Firing, g 28.1623 24.6959 25.5854 29.1634 29.8142After Firing, g 22.2800 20.2683 20.6348 21.9533 22.5498Empty Crucible, g 11.6182 12.5594 11.8972 12.0523 12.5255Wt of Sample Before, g 16.5441 12.1365 13.6882 17.1111 172887Wt Loss by CaCO3, g 5.8823 4.4276 4.9506 7.2101 7.2644% Calcination 17.50 15.35 16.08 2.23 2.51Average =^ 16.31%^ 2.37%Lignin = 163 g/m Product Product Port #1 Port #1 Port #2 Port #2Sample Code LPB LPB L#1B Lit1B Lit2B L#2BDate 5/Jun/90 5/Jun/90 5/Jun/90 5/Jun/90 6/Jun/90 6/Jun/90Before Firing, g 23.3786 22.6664 22.7791 22.7349 24.9443 23.3951After Firing, g 23.3618 22.6484 22.7312 22.6823 23.7670 22.0138Empty Crucible, g 12.4546 11.7584 11.9012 11.6852 12.5514 11.8903Wt of Sample Before, g 10.9240 10.9080 10.8779 11.0497 12.3929 11.5048Wt Loss by CaCO3, g 0.0168 0.0180 0.0479 0.0526 1.1773 1.3813% Calcination 99.64 99.62 98.98 98.90 77.96 _^72.14Average =^99.63%^98.94%^75.05%Lignin = 163 g/m Port #3 Port #3 Port #3 Port #3 Port #4 Port #4 Port #4 Port #5 Port #5Sample Code^... L#3B L#3B L#3B Lit3B L#4B L#4B '^LO4B '^L#5B 1.,#511Date 6/Jun/90 6/Jun/90 8/Jun/90 8/Jun/90 -, 6/Jun/90 8/Jun/90 8/Jun/90 6/Jun/90 6/Jun/90Before Firing, g 29.7975 26.2465 28.2731 26.9965 28.2364 29.0384 28.8815 27.9212 27.8051After Firing, g 23.2228 21.4515 22.2990 21.5064 21.3470 22.1629 21.8545 21.3087 21.0395Empty Crucible, g 12.1535 12.2290 12.0237 11.6333 11.6231 12.5420 12.0645 12.5336 12.0576Wt of Sample Before, g 17.6440 14.0175 16.2494 15.3632 16.6133 16.4964 16.8170 153876 15.7475Wt Loss by CaCO3, g 6.5747 4.7950 5.9741 5.4901 6.8894 6.8755 7.0270 6.6125 6.7656% Calcination 13.54 20.63 14.70 17.08 3.78 3.29 3.05 0.29 0.32Average =^ 16.49%^3.37%^0.30%Natural Gas = 5.4 CFM Product Product Product ProductSample Code GP GP GP GPDate 4/Jun/90 4/Jun/90 7/Jun/90 7/Jun/90Before Firing, g 23.8206 23.0674 23.2964 233835After Firing, g 23.0650 22.5139 22.8724 22.9694Empty Crucible, g 12.4518 11.7562 12.5377 12.0606Wt of Sample Before, g 11.3688 11.3112 10.7587 11.3229Wt Loss by CaCO3, g 0.7556 0.5535 0.4240 0.4141% Calcination 84.58 88.65 _^90.86 91.51Average=^ 88.90%Run LG13Table of EventsAction Requested by Operator^I^Time6/12/90Kiln speed (rpm) : 1307:30:24.1607:30:31.36Gas = 5.4 CFM^ 9:40:00Read Bed Temperatures^ 11:09:52.82Read Hot Face Heat Flux Temperatures^11:13:24.45Read Colder Heat Flux Temperatures 11:14:49.37Read Shell Temperatures^ 11:15:32.70Read Shell Temperatures 11:15:50.00Suction T/C, Pair : 1 11:16:17.36Suction TIC, Pair : 2^ 11:18:10.50Suction T/C, Pair : 3 11:19:36.85Suction T/C, Pair : 4 11:21:02.69Suction T/C, Pair : 5^ 11:22:51.17182Cyclic Bed Temperature Readings11:09:52.82 1 2 3 4 5 6 7 8 9 100 1084.15 1130.87 1121.57 1057.56 943.18 910.81 863.07 827.31 696.04 627.1136 1054.12 1135.09 1127.48 1058.42 939.93 904.13 858.68 821.50 686.81 616.7472 1025.56 1112.25 1113.94 1039.44 930.44 891.29 849.17 811.84 682.32 610.38108 1022.96 1066.16 1071.31 N/A N/A N/A N/A N/A N/A 610.38144 1035.98 1080.73 1082.44 1023.82 918.25 883.17 847.95 802.67 688.23 615.56180 1048.08 1096.09 1096.09 1035.98 924.96 890.31 852.09 808.70 693.67 621.93216 1054.98 1105.45 1106.30 1042.04 930.44 897.95 855.99 814.97 698.17 628.76252 1061.86 1110.55 1110.55 1049.81 935.93 905.36 860.39 821.02 701.25 633.47288 1073.02 1118.18 1112.25 1052.39 940.18 910.81 863.56 825.86 703.62 637.01324 1090.12 1124.10 1113.09 1054.98 942.93 913.29 864.79 828.52 703.38 637.48360 1094.39 1127.48 1115.64 1056.70 943.68 912.05 863.32 826.83 697.46 629.94396 1075.59 1130.02 1122.41 1058.42 942.18 907.59 859.90 821.26 689.18 618.39432 1042.90 1128.33 1126.64 1052.39 936.43 899.68 853.07 814.01 683.50 611.32468 1033.39 1071.31 1073.02 1014.26 922.23 882.44 844.06 800.75 682.79 607.56504 1039.44 1074.73 1077.30 1018.61 919.00 883.17 847.22 800.27 687.29 613.44540 1049.81 1092.68 1096.09 1031.66 923.72 890.31 851.85 806.53 692.73 620.51576 1057.56 1103.75 1109.70 1041.17 930.19 899.43 855.75 813.52 696.99 626.87612 1062.72 1108.85 1116.48 1047.22 935.93 907.10 860.14 819.57 700.54 632.29648 1070.45 1113.94 1116.48 1050.67 N/A N/A N/A N/A N/A 632.29684 1086.71 1120.72 1116.48 1051.53 941.93 914.03 865.28 827.31 703.38 637.48Minimum 1022.96 1066.16 1071.31 1014.26 918.25 882.44 844.06 800.27 682.32 607.56Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings11:13:24.45 1 2 3 4 5 6 7 8 9 100 N/A 1012.71 944.04 912.50 885.83 835.51 N/A N/A 525.49 392.1636 N/A 1005.73 936.02 908.29 883.13 832.84 N/A N/A 525.02 389.5272 N/A 999.61 931.56 904.82 881.16 832.11 N/A N/A 524.55 388.08108 N/A 1006.61 935.13 906.55 881.90 833.57 N/A N/A 524.31 388.08144 N/A 1010.97 938.70 908.53 883.13 835.03 N/A N/A 524.08 388.80180 N/A 1012.71 940.48 910.52 884.36 836.00 N/A N/A N/A 388.80216 N/A 1014.46 942.26 911.75 885.34 836.72 N/A N/A 524.55 390.00252 N/A 1015.33 944.04 912.75 886.32 837.45 N/A N/A 524.79 390.72288 N/A 1016.20 944.04 913.24 886.57 837.45 N/A N/A 525.02 391.44324 N/A 1017.94 945.82 913.49 886.82 837.21 N/A N/A 525.49 391.92360 N/A 1015.33 N/A N/A N/A N/A N/A N/A 525.49 391.92396 N/A 1008.35 939.59 909.28 884.11 833.81 N/A N/A 525.26 389.76432 N/A 1001.36 932.46 905.32 881.65 831.87 N/A N/A 524.79 388.08468 N/A 1005.73 934.24 905.81 881.41 833.33 N/A N/A 524.08 388.08504 N/A 1010.97 937.81 908.04 882.64 834.78 N/A N/A 524.31 389.04540 N/A 1013.58 940.48 909.77 883.86 835.75 N/A N/A 524.08 389.52576 N/A 1014.46 942.26 911.51 885.09 836.72 N/A N/A 524.55 390.24612 N/A 1015.33 944.04 912.50 885.83 837.21 N/A N/A 524.79 390.96648 N/A 1016.20 944.93 913.24 886.57 837.45 N/A N/A 525.26 391.44684 N/A 1017.07 945.82 913.49 886.82 837.21 N/A N/A 525.49 392.16Average N/A 1011.53 940.20 910.07 884.34 835.37 N/A N/A 524.81 390.04Distance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.Interior Wall Probe Temperature Readings11:14:4937Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 365.23 676.82 N/A1.568 311.28 609.44 880.572.064 N/A 618.59 868.412.375 N/A N/A 845.722.724 N/A 588.68 788.443.048 N/A N/A 735.164.070 213.15 39335 551.924.585 192.04 310.45 479.135.213 176.07 284.72 374.40NOTE: This set of data was used for steady state calculations.185Suction Pyrometer Temperature Readings of Flue Gas11:1617361 211:18:10.503 411:1936.855 611:2102.697 811:2251.179 100 N/A 1165.74 1189.21 1096.43 N/A N/A N/A N/A 732.83 617.9436 1135.43 1162.38 1195.06 1098.14 N/A N/A N/A N/A 730.69 618.1772 1141.33 1167.42 1198.40 1097.28 N/A N/A 892.77 846.25 727.60 617.70108 1140.49 1164.06 1190.88 1098.14 974.05 945.37 898.19 854.29 727.60 617.70144 1159.86 1172.45 1182.51 1100.69 976.32 949.88 901.16 860.63 718.10 616.05180 1185.02 1184.19 1175.81 1101.54 978.60 951.64 900.66 861.37 727.12 615.58216 1205.08 1204.25 1168.26 1103.24 978.35 952.89 896.47 858.92 735.21 615.58252 1181.67 1210.09 1166.58 1106.64 979.87 952.39 894.00 854.53 736.40 615.58288 1143.02 1242.54 1180.84 1107.49 978.85 947.63 890.55 850.15 737.35 616.05324 1135.43 1235.89 1198.40 1110.04 976.83 944.62 888.58 846.25 740.92 617.00360 1159.86 1225.07 1195.90 1111.74 976.32 942.87 893.75 848.68 734.73 617.70396 1164.06 1188.37 1200.07 1110.89 980.88 945.87 895.48 852.58 737.59 617.94432 1164.06 1185.02 1198.40 1111.74 982.15 948.38 900.42 857.95 737.59 617.70468 1168.26 1179.16 1201.74 1108.34 980.88 952.14 903.63 862.83 726.89 617.00504 1172.45 1165.74 1191.72 1110.89 981.64 955.40 905.11 866.50 719.76 616.29540 1180.84 1172.45 1178.32 1109.19 980.63 957.67 904.12 867.23 722.85 615.58576 1207.58 1188.37 1172.45 1108.34 983.16 957.92 902.15 866.25 731.64 615.35612 1190.88 1204.25 1173.29 1110.89 982.65 957.67 895.48 858.92 736.87 615.58648 1156.49 N/A 1177.48 1110.04 982.15 954.40 892.03 850.88 736.87 615.58684 1141.33 1205.08 1153.97 1100.69 980.63 951.39 892.28 849.17 739.01 616.53Average 1164.90 1190.66 1184.47 1105.62 979.64 951.07 897.05 856.30 731.88 616.63Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Shell Temperature ReadingsPosition, metresTime 0.146 0.921 1.492 2.210 5.35411:14:49.37 268.25 184.76 175.43 155.75 116.63,^11:15:32.70 268.74 184.03 175.43 151.08 114.91187Flue Gas AnalysisTime Port N2 02 CO211:12 5 81.6 2.1 16.311:38 5 81.5 2.1 16.4188Axial Calcination ResultsNatural Gas = 5.4 CFM Product Product Port #1 Port #1 Port #2 Port #2 Port #3 Port #3Sample Code GP GP G#1 G#1 G#2 G#2 G#3 G#3Date 16/Jun/90 , 16/Jun/90 24/Jun/90 24/Jun/90 16/Jun/90 16/Jun/90 16/Jun/90 16/Jun/90Before Firing, g 24.2610 23.2548 20.2842 20.5181 25.9911 26.1741 26.5307 27.8397After Firing, g 24.1660 23.1722 19.3582 19.8418 21.9450 22.5271 21.0885 21.6473Empty Crucible, g 12.5591 11.8981 9.9512 10.2624 12.0268 11.6350 12.5436 12.0667Wt of Sample Before, g 11.7019 11.3567 10.3330 10.2557 13.9643 14.5391 13.9871 15.7730Wt Loss by CaCO3, g 0.0950 0.0826 0.9260 0.6763 4.0461 3.6470 5.4422 6.1924% Calcination 98.12 98.31 79.21 84.70 32.77 41.80 9.72 8.91Average =^98.21%^81.95%^37.29%^9.32%Natural Gas = 5.4 CFM Port #4 Port #4 Port #5 Port #5Sample Code G#4 G#4 G#5 G#5Date 16/Jun/90 16/Jun/90 16/Jun/90 16/Jun/90Before Firing, g 28.8340 28.6314 29.2519 28.5556After Firing, g 21 .8096 21.4110 21.7222 212690Empty Crucible, g 12.4691 11.7743 11.9127 11.6972Wt of Sample Before, g 16.3649 16.8571 17.3392 16.8584Wt Loss by CaCO3, g 7.0244 7.2204 7.5297 7.2866% Calcination 0.41 0.62 -0.76 -0.29Average =^ 0.51%^0.00%Run LG14Table of EventsAction Requested by Operator I^Time6/14/90 10:06:54.88Kiln speed (rpm) : 1.5 10:06:59.83Gas = 5.4 CFM 9:10:00Read Bed Temperatures 10:56:19.65Read Shell Temperatures 10:57:56.54Read Hot Face Heat Flux Temperatures 10:58:05.66Read Colder Heat Flux Temperatures 10:59:30.57Suction TIC, Pair : 1 11:01:56.51Suction TIC, Pair : 2 11:03:31.59Suction TIC, Pair : 3 11:05:15.12Suction TIC, Pair : 4 11:06:41.85Suction TIC, Pair : 5 11:08:06.65Lignin = 220 g/min^Gas = 0.0 CFM 11:20:00Read Bed Temperatures 12:46:21.37Read Hot Face Heat Flux Temperatures 12:48:06.44Read Colder Heat Flux Temperatures 12:49:31.41Read Bed Temperatures 13:03:02.49Read Hot Face Heat Flux Temperatures 13:04:34.60Read Colder Heat Flux Temperatures 13:05:59.46Read Shell Temperatures 13:06:39.78Suction T/C, Pair : 1 13:07:00.81Suction T/C, Pair : 2 13:08:31.06Suction T/C, Pair : 3 13:09:59.27Suction TIC, Pair : 4 13:11:50.27Suction T/C, Pair : 5 13:13:14.80190Cyclic Bed Temperature Readings10:56:19.65 1 2 3 4 5 6 7 8 9 100 1051.71 1101.39 1109.89 1044.81 929.74 901.71 851.91 813.60 695.42 618.9636 1066.34 1109.89 1109.04 1044.81 931.73 903.44 852.89 815.77 691.87 618.2572 1070.63 1108.19 1108.19 1045.67 932.48 901.95 851.18 812.88 679.11 610.72108 1067.20 1109.89 1109.04 1043.94 930.24 896.52 847.53 804.44 666.59 598.94144 1047.40 1086.90 1105.64 1030.94 923.27 887.16 839.99 794.81 660.21 590.70180 1013.55 N/A 1036.16 988.18 910.36 869.50 830.05 779.69 658.33 588.34216 1015.30 1042.21 1059.46 999.58 908.38 871.45 834.17 781.36 667.06 593.52252 1032.70 1074.92 1088.60 1017.04 913.83 877.58 838.29 788.80 680.29 600.35288 1043.08 1092.87 1107.34 1031.83 920.78 886.43 843.15 798.18 689.98 607.42324 1049.12 1097.98 1111.59 1038.76 926.00 893.07 846.80 805.40 695.42 613.54360 1059.46 1103.09 1113.29 1043.08 929.99 898.00 849.48 810.94 696.61 617.55396 1076.63 1107.34 1111.59 1044.81 931.73 900.47 850.94 814.08 693.29 618.49432 1086.04 1110.74 1109.89 1046.53 931.73 899.24 850.21 812.63 679.11 611.66468 1075.77 1114.98 1110.74 1044.81 930.24 895.29 847.29 806.60 666.12 600.12504 1044.81 1107.34 1115.83 1041.35 925.51 889.38 841.94 798.66 660.69 593.29540 1016.17 1013.55 1046.53 993.45 911.85 870.48 830.05 781.84 652.43 587.40576 N/A 1031.83 1055.16 995.20 907.39 870.97 833.44 780.17 657.62 591.17612 1016.17 1062.04 1085.19 1014.42 912.84 878.07 837.81 787.84 670.60 598.47648 1030.07 1085.19 1107.34 1029.20 919.79 885.93 842.91 796.49 681.71 606.01684 1036.16 1092.02 1112.44 1038.76 926.25 894.55 847.53 805.16 687.85 611.89Minimum 1013.55 1013.55 1036.16 988.18 907.39 869.50 830.05 779.69 652.43 587.40Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.12:46:21.37 1 2 3 4 5 6 7 8 9 100 990.62 1099.62 1123.41 1067.09 955.93 931.69 889.63 850.50 737.81 663.2236 978.29 1095.35 1125.95 1073.96 957.93 931.19 888.40 849.04 732.10 657.3372 971.23 1101.32 1136.10 1079.96 957.68 925.97 885.45 844.67 723.79 647.19108 965.04 1125.95 1142.85 1070.53 952.17 919.26 880.79 838.11 717.86 640.35144 988.86 1060.21 1073.10 1014.26 937.17 902.19 871.97 826.97 715.01 636.58180 996.76 1092.79 1091.94 1020.36 931.94 899.97 871.97 827.46 719.52 641.53216 1000.27 1114.93 1120.87 1039.48 935.67 905.90 874.67 833.27 724.50 648.13252 1002.02 1117.48 1131.02 1049.00 940.91 913.81 877.85 838.36 731.63 653.55288 1002.02 1115.78 1131.87 1057.62 945.41 919.76 880.79 842.24 735.19 657.80324 1002.89 1113.23 1128.49 1061.07 949.41 924.23 883.49 845.64 737.33 661.10360 998.51 1108.13 1125.95 1066.23 953.42 928.70 885.95 848.07 735.90 661.81396 982.70 1101.32 1125.10 1072.25 956.18 929.94 886.44 847.58 732.81 657.80432 966.81 1097.91 1133.56 1077.39 957.43 928.45 884.96 844.91 724.74 648.13468 953.51 1114.93 1144.54 1077.39 954.92 923.23 882.26 840.06 718.57 640.59504 963.27 1072.25 1090.23 1024.71 940.16 905.90 872.95 829.63 712.17 635.64540 973.00 1084.25 1083.39 1017.74 931.94 898.99 871.24 826.49 714.54 638.94576 979.17 1107.28 1116.63 1040.35 935.17 903.43 873.20 830.12 718.81 644.12612 983.58 1108.98 1127.64 1055.04 942.16 912.33 876.87 835.20 725.93 649.07648 987.98 1108.13 1130.18 1063.65 948.16 919.02 880.06 839.81 730.91 65355684 992.37 1107.28 1129.33 1067.09 952.67 924.97 883.00 843.70 734.48 657.33Minimum 953.51 1060.21 1073.10 1014.26 931.94 898.99 871.24 826.49 712.17 635.64Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52113:03:02.49 1 2 3 4 5 6 7 8 9 100 979.67 1085.60 1111.18 1036.52 948.91 916.54 885.71 840.80 722.39 637.7936 991.12 1079.61 1084.75 1017.37 938.67 907.63 883.75 837.16 728.09 640.1472 995.51 1098.41 1111.18 1034.76 943.16 915.30 887.67 843.23 735.45 648.16108 1002.52 1115.43 1127.30 1047.77 949.91 926.22 892.84 850.76 742.35 656.18144 1012.14 1125.60 1138.29 1060.71 956.18 935.67 897.76 857.58 747.83 663.25180 1012.14 1129.83 1145.04 1069.31 961.95 942.66 901.71 862.94 750.21 668.68216 1005.14 1128.99 1149.25 1077.04 965.97 946.91 904.67 867.09 750.45 671.51252 990.24 1126.45 1153.47 1079.61 968.49 948.41 905.66 868.80 748.30 670.10288 981.44 1122.21 1156.83 1084.75 969.25 946.16 903.43 866.12 737.36 661.13324 971.73 1121.37 1158.52 1081.32 966.73 939.41 898.50 858.55 729.04 651.46360 969.08 1103.53 1135.75 1054.67 955.92 925.47 889.89 847.84 724.29 640.62396 984.08 1074.46 1080.46 1016.50 941.41 909.61 883.01 837.40 728.09 639.20432 996.38 1099.27 1106.93 1032.16 941.91 914.81 885.71 841.53 735.69 646.04468 1004.27 1115.43 1124.76 1046.90 949.41 926.71 891.12 849.06 741.87 653.82504 1017.37 1128.14 1135.75 1059.85 955.92 935.92 896.04 855.63 747.11 660.66540 N/A N/A N/A N/A N/A N/A N/A N/A N/A 660.66576 N/A 1140.82 1153.47 1077.04 965.47 946.41 902.69 864.65 750.21 670.10612 1012.14 1143.35 1161.88 1081.32 967.99 947.41 903.93 866.36 747.59 670.57648 1001.64 1149.25 1168.61 1082.18 967.99 943.41 901.21 863.92 741.16 663.02684 996.38 1149.25 1169.45 1079.61 965.47 936.67 897.27 856.85 733.08 652.87Minimum 969.08 1074.46 1080.46 1016.50 938.67 907.63 883.01 837.16 722.39 637.79Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings10:58:05.66 1 2 3 4 5 6 7 8 9 100 N/A 992.67 920.25 893.91 861.04 818.53 N/A N/A 499.72 366.2136 N/A 997.93 923.75 895.88 861.77 820.22 N/A N/A 499.49 366.4572 N/A 1000.55 926.37 897.61 862.75 821.43 N/A N/A 499.72 367.41108 N/A 1001.43 928.11 898.84 863.73 822.40 N/A N/A 499.72 367.89144 N/A 1002.30 931.61 900.08 864.46 822.88 N/A N/A 499.96 368.61180 N/A 1003.18 933.40 900.82 865.19 823.37 N/A N/A 500.43 369.33216 N/A 1004.05 933.40 901.31 865.44 823.37 N/A N/A 500.91 370.06252 N/A 1004.05 934.29 901.31 865.68 822.88 N/A N/A 501.14 370.54288 N/A 998.80 928.99 899.59 864.46 820.95 N/A N/A 501.14 369.33324 N/A 991.79 923.75 895.88 862.26 818.05 N/A N/A 500.67 367.17360 N/A 989.16 920.25 893.67 860.79 818.05 N/A N/A 499.96 366.45396 N/A 997.05 923.75 895.64 861.53 819.98 N/A N/A 499.72 366.69432 N/A 1001.43 926.37 897.36 862.75 821.43 N/A N/A 499.72 367.41468 N/A 1002.30 928.11 898.84 863.73 822.40 N/A N/A 499.96 368.13504 N/A 1003.18 932.50 900.33 864.70 823.37 N/A N/A 500.20 368.85540 N/A 1004.93 933.40 901.56 865.44 824.09 N/A N/A 500.67 369.57576 N/A 1005.80 935.18 902.05 865.93 824.09 N/A N/A 500.91 370.06612 N/A 1006.67 935.18 902.05 866.17 823.61 N/A N/A 501.38 370.78648 N/A 1003.18 933.40 901.07 865.19 822.16 N/A N/A 501.38 370.06684 N/A 994.42 925.49 897.12 863.24 819.25 N/A N/A 500.91 367.65Average N/A 1000.24 928.88 898.75 863.81 821.62 N/A N/A 500.39 368.43Distance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.12:48:06.44 1 2 - 3 4 5 6 7 8 9 100 N/A 1045.60 961.56 921.06 886.74 859.33 N/A 574.69 542.86 402.7636 N/A 1049.92 965.10 923.05 887.48 860.06 N/A 574.69 542.86 403.4772 N/A 1051.65 966.87 924.54 888.46 860.80 N/A 574.69 542.86 404.19108 N/A 1052.51 968.64 925.53 888.95 861.53 N/A 574.69 542.86 404.91144 N/A 1051.65 970.41 926.27 889.45 861.77 N/A 574.69 543.09 405.39180 N/A 1051.65 971.29 926.52 889.69 861.77 N/A 574.69 543.33 406.11216 N/A 1053.37 972.17 926.52 889.45 861.53 N/A 574.69 543.57 406.59252 N/A 1056.82 971.29 926.03 889.20 861.04 N/A 574.69 543.57 406.35288 N/A 1047.33 963.33 922.05 886.99 858.36 N/A 574.45 543.33 403.95324 N/A 1042.14 955.35 917.84 884.78 856.65 N/A 574.45 542.86 401.56360 N/A 1047.33 955.35 917.84 884.53 857.38 N/A 574.69 542.39 401.56396 N/A 1054.23 958.90 919.57 885.27 858.11 N/A 574.69 542.15 402.04432 N/A 1055.96 961.56 921.06 886.01 858.60 N/A 574.69 542.15 402.76468 N/A 1055.96 964.21 922.30 886.50 859.33 N/A 574.69 542.15 403.47504 N/A 1056.82 965.98 923.05 886.99 859.58 N/A 574.69 542.39 404.19540 N/A 1055.96 966.87 923.54 887.48 860.06 N/A 574.69 542.62 404.91576 N/A 1057.68 967.75 923.79 887.73 860.06 N/A 574.69 542.86 405.63612 N/A 1060.27 967.75 923.54 887.73 859.82 N/A 574.45 542.86 405.87648 N/A 1052.51 961.56 920.81 886.25 857.63 N/A 574.45 542.86 403.95684 N/A 1046.46 953.57 916.60 884.04 855.68 N/A 574.45 542.39 401.56Average N/A 1052.29 964.48 922.58 887.19 859.45 N/A 574.63 542.80 404.06Distance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.21313:04:34.60 1 2 3 4 5 6 7 8^_ 9 100 N/A 1071.96 967.38 925.54 892.17 866.92 N/A N/A 543.13 400.3936 N/A 1075.39 970.92 927.53 893.40 868.14 N/A N/A 543.13 401.1172 N/A 1077.96 973.57 929.02 N/A N/A N/A N/A N/A 401.11108 N/A 1080.53 976.22 930.27 895.12 869.61 N/A N/A 543.60 402.79144 N/A 1082.25 977.98 931.26 895.62 869.85 N/A N/A 543.84 403.74180 N/A 1083.10 978.86 932.01 896.11 869.85 N/A N/A 544.08 404.46216 N/A 1083.96 980.63 932.26 896.11 869.12 N/A N/A 544.31 404.94252 N/A N/A N/A N/A N/A N/A N/A N/A 544.31 404.94288 N/A 1070.24 970.03 926.29 892.66 864.97 N/A N/A 544.08 401.11324 N/A 1064.22 963.84 922.56 890.69 864.48 N/A N/A 543.60 399.91360 N/A 1071.10 966.49 924.55 891.43 866.19 N/A N/A 543.13 400.15396 N/A 1075.39 970.03 926.78 892.91 867.41 N/A N/A 543.13 400.87432 N/A 1077.96 973.57 928.77 893.89 868.39 N/A N/A 543.13 401.83468 N/A N/A N/A N/A N/A N/A N/A N/A 543.13 401.83504 N/A N/A N/A N/A N/A N/A N/A N/A 543.13 401.83540 N/A 1082.25 979.74 932.01 895.86 869.85 N/A N/A 544.08 404.46576 N/A 1083.10 980.63 932.51 896.11 869.36 N/A N/A 544.31 404.94612 N/A 1084.82 980.63 932.26 895.86 868.63 N/A N/A 544.31 404.94648 N/A 1072.82 971.80 927.53 893.40 865.70 N/A N/A 544.08 402.79684 N/A 1067.66 963.84 923.06 890.94 863.99 N/A N/A 543.84 400.87Average N/A 1076.75 973.30 928.48 893.89 867.65 N/A N/A 543.70 402.45Distance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.Interior Wall Probe Temperature Readings10:59:30.57Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 35057 652.61 N/A1.568 N/A 596.46 870.862.064 343.56 592.68 854.692.375 N/A 575.96 804.052.724 315.27 564.17 771.883.048 N/A N/A 715.434.070 208.94 380.38 533.754.585 188.07 300.24 461.085.213 16324 263.98 351.76NOTE: This set of data was used for steady state calculations.12:49:31.41Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 376.97 689.59 N/A1.568 N/A 628.37 904.222.064 367.71 624.15 882.572.375 N/A N/A 832.842.724 346.75 610.02 815.683.048 N/A N/A 762.654.070 227.06 412.09 577.284.585 198.12 317.97 501.275.213 168.13 275.93 383.3313:05:59.46Position 0.2506Radius, m02318 0.21300.616 N/A N/A N/A1.010 37859 695.85 N/A1.568 N/A 632.81 910.012.064 370.63 628.20 887.502.375 N/A N/A 834.812.724 349.19 612.88 821.023.048 N/A N/A 768.174.070 22953 418.10 583214.585 200.10 322.35 504.625.213^_ 169.87 279.12 382.64NOTE: This set of data was used for steady state calculations.197Suction Pyrometer Temperature Readings of Flue Gas11:01156.51211:03.31.593 411:05:15.125 6,. 711:06:41.85811:08:06.659 100 1170.06 1247.66 1171.84 1066.70 938.38 910.03 860.19 789.99 705.42 596.4036 1150.72 1255.96 1165.96 1070.13 941.88 913.75 865.32 795.52 694.29 595.4672 1138.92 1244.33 1158.39 1075.28 942.88 914.24 869.23 802.26 699.73 594.98108 1154.09 1233.52 1155.87 1077.85 945.13 914.24 874.87 811.41 707.31 594.51144 1152.40 1226.03 1157.55 1081.27 947.89 917.72 882.96 821.32 710.39 594.75180 1147.35 1216.05 1157.55 1082.98 951.14 921.94 887.14 829.06 713.00 594.75216 1149.88 1211.88 1171.00 1085.55 952.90 927.66 891.08 835.12 717.98 595.46252 1169.22 1223.54 1186.92 1090.67 953.65 930.15 891.08 837.06 718.22 595.93288 1177.61 1226.86 1194.45 1090.67 953.90 932.39 887.63 836.58 715.85 596.40324 1185.15 1228.53 1192.78 1091.52 953.40 932.14 883.21 831.73 706.84 596.87360 1172.57 1232.68 1199.46 1093.23 951.90 928.90 879.03 825.91 712.29 596.63396 1150.72 1243.50 1191.94 1094.94 951.39 927.16 878.05 822.77 702.57 595.93432 1143.98 1251.81 1173.51 1093.23 950.14 925.42 879.03 823.25 704.23 595.46468 1149.04 1250.15 1164.28 1094.08 951.14 926.16 882.47 825.19 704.47 594.98504 1154.09 1234.35 1160.92 1094.08 952.15 927.16 888.86 830.52 713.95 594.98540 1150.72 1222.71 1159.24 1099.20 954.15 930.15 894.53 835.85 716.32 595.22576 1154.09 1217.71 1168.48 1099.20 956.16 932.89 896.25 839.25 717.51 595.69612 1169.22 1219.38 1181.90 1100.05 956.41 934.64 896.99 841.43 721.78 596.40648 1173.41 1220.21 1190.27 1101.75 955.41 936.13 893.54 840.95 721.31 596.87684 1186.82 1232.68 1192.78 1100.90 955.41 935.88 886.16 838.03 717.27 597.34Average 1160.00 1231.98 1174.75 1089.16 950.77 925.94 883.38 825.66 711.04 595.75Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.13:07:00.811 2 313:08:31.064 513:09.59.276 713:11:50.278 9^'13:13:14.80100 1058.25 1213.10 1178.87 1084.08 998.03 948.10 903.94 849.07 770.10 650.1336 1073.73 1196.40 1176.36 1085.79 1000.83 955.36 909.62 853.45 768.66 649.6672 1060.84 1197.24 1184.74 1090.07 1001.85 960.88 915.07 858.33 766.99 648.95108 1063.42 1190.54 1189.77 1092.63 1002.36 965.16 918.78 864.18 769.14 648.71144 1070.30 1197.24 1193.11 1095.19 1006.44 967.93 922.50 870.04 771.77 648.48180 1071.16 1199.75 1198.97 1097.75 1002.61 969.94 925.48 875.43 778.71 648.95216 1084.88 1206.43 1203.15 1100.31 998.54 968.68 928.96 880.33 783.98 649.42252 1086.59 1216.44 1201.48 1102.86 998.80 967.93 929.46 883.51 781.10 650.13288 1086.59 1239.74 1206.49 1102.86 1003.89 967.42 927.72 884.01 780.86 650.84324 1108.76 1243.90 1202.31 1103.72 1005.16 967.67 926.48 882.78 776.79 651.07360 1133.34 1247.23 1201.48 1104.57 1006.44 968.93 922.75 880.57 777.27 650.84396 1126.58 1236.41 1207.32 1104.57 1009.24 970.95 921.02 879.35 769.86 650.36432 1117.26 1225.60 1211.50 1106.27 1008.22 973.97 923.75 879.10 772.73 649.42468 1107.91 1225.60 1211.50 1107.12 1008.22 976.24 926.23 880.57 773.20 648.71504 1096.84 1210.60 1214.00 1108.82 1011.28 977.00 929.46 883.27 775.60 648.48540 1098.54 1208.93 1215.67 1109.67 1008.48 977.25 931.70 885.97 783.02 648.71576 1102.80 1217.27 1216.50 1112.22 1005.42 975.99 933.94 888.43 784.22 649.19612 1098.54 1216.44 1214.00 1113.07 1005.42 974.23 934.19 889.90 784.94 649.66648 1101.10 1230.59 1209.83 1112.22 1005.16 972.71 932.95 890.64 782.30 650.36684 1117.26 1247.23 1208.99 1113.07 1006.44 972.46 926.73 887.20 783.74 650.84Average 1093.23 1218.33 1202.30 1102.34 1004.64 968.94 924.54 877.31 776.75 649.65Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Shell Temperature ReadingsPosition, metresTime 0.146 0.921 1.492 2.210 5.35410:56:19.65 251.72 186.79 171.31 148.68 116.9413:05:59.46 266.99 204.58 186.40 150.99 125.40200Flue Gas AnalysisTime Port N2 02 CO210:54 5 86.1 2.0 11.912:13 5 76.9 2.0 21.112:55 5 78.9 1.2 19.913:03 5 76.6 2.7 20.7201Axial Calcination ResultsNatural Gas = 5.4 CFM Product Product Port #1 Port #1 Port #2 Port #2 Port #3 Port #3Sample Code GP GP G#1 G#1 G#2 G#2 G#3 G#3Date 17/Jun/90 17/Jun/90 17/Jun/90 24/Jun/90, 17/Jun/90_ 24/Jun/90 17/Jun/90 17/Jun/90Before Firing, g 23.2346 23.3147 24.4693 20.9483 27.2537 25.6326 27.0581 28.1154After Firing, g 23.1308 23.2118 23.1051 19.5445 22.7242 21.3752 21.1209 21.6785Empty Crucible, g 12.5641 11.9020 12.1685 10.0846 12.0325 11.7832 12.5481 12.0709Wt of Sample Before, g 10.6705 11.4127 12.3008 10.8637 152212 13.8494 14.5100 16.0445Wt Loss by CaCO3, g 0.1038 0.1029 1.3642 1.4038 4.5295 4.2574 5.9372 6.4369% Calcination 97.77 97.93 74.53 70.32 31.66 29.40 6.03 __^7.86Average =^98.85%^72.43%^30.53%^6.95%Natural Gas = 5.4 CFM Port #4 Port #4 Port #5 Port #5Sample Code, G#4 G#4 G#5 G#5Date 17/Jun/90 17/Jun/90 17/Jun/90 17/Jun/90Before Firing, g 27.6793 27.6238 28.3785 28.6103After Firing, g 21.1469 20.8046 212296 212701Empty Crucible, g 12.4738 11.7777 11.9162 11.7008Wt of Sample Before, g 152055 15.8461 16.4623 16.9095Wt Loss by CaCO3, g 6.5324 6.8192 7.1489 7.3402% Calcination 1.34 1.17 0.27 0.31Average =^ 1.25%^0.29%Lignin = 220 g/m Product Product Port #1 Port #1,Port #2 Port #2 Port #3 Port #3 Port #3Sample Code LP LP L#1 L#1 L#2 L#2 L#3 L#3 L#3Date 18/Jun/90 18/Jun/90 18/Jun/90 18/Jun/90 24/Jun/90 24/Jun/90 18/Jun/90 24/Jun/90 24/Jun/90Before Firing, g 23.8372 23.6659 23.7255 23.6882 24.6827 24.6416 27.0640 27.1961 27.6514After Firing, g 23.7752 23.6053 23.6663 23.6290 22.5978 22.4045 21.6988 21.8855 22.0379Empty Crucible, g 12.5691 11.9194 12.1751 122482 12.0421 11.6485 12.0743 12.5574 12.0793Wt of Sample Before, g 11.2681 11.7465 11.5504 11.4400 12.6406 12.9931 14.9897 14.6387 15.5721Wt Loss by CaCO3, g 0.0620 0.0606 0.0592 0.0592 2.0849 2.2371 5.3652 5.3106 5.6135% Calcination 98.74 98.82 98.82 98.81 62.12 60.46 17.80 16.69 17.21Average =^ 98.78%^98.82%^61.29%^ 17.23%Lignin = 220 g/m Port #4 Port #4 Port #5 Port #5Sample Code L#4 L#4 L#5 L#5Date 19/Jun/90 19/Jun/90 19/Jun/90 19/Jun/90Before Firing, g 27.5815 27.7414 27.9539 27.8098After Firing, g 21.2003 21.1112 21.1273 20.8694Empty Crucible, g 12.1748 11.7805 12.0379 11.6463Wt of Sample Before, g 15.4067 15.9609 15.9160 16.1635Wt Loss by CaC0-3, g 6.3812 6.6302 6.8266 6.9404% Calcination 4.88 4.60 1.50 1.39Average =^ 4.74%^1.44%Run LG15Table of EventsAction Requested by Operator I^Time6120/90 13:41:15.63Kiln speed (rpm) : 1.5 13:41:19.92Gas = 5.4 CFM 12:09:00Read Bed Temperatures 14:02:37.15Read Hot Face Heat Flux Temperatures 14:04:28.43Read Colder Heat Flux Temperatures 14:05:52.14Read Shell Temperatures 14:06:32.07Suction TIC, Pair : 1 14:08:39.55Suction TIC, Pair : 2 14:10:07.16Suction TIC, Pair : 3 14:11:58.77Suction TIC, Pair : 4 14:13:49.66Suction TIC, Pair : 5 14:15:16.50Gas = 5.8 CFM 14:32:00Read Bed Temperatures 14:39:21.53Read Bed Temperatures 14:54:07.26Read Hot Face Heat Flux Temperatures 14:56:47.48Read Colder Heat Flux Temperatures 14:58:11.19Read Shell Temperatures 14:58:39.42Suction TIC, Pair : 1 14:59:30.99Suction TIC, Pair : 2 15:01:02.66Suction TIC, Pair : 3 15:02:30.65Suction T/C, Pair : 4 15:04:23.75Suction TIC, Pair : 5 15:05:51.68204Cyclic Bed Temperature Readings14:02:37.15 1 2 3 4 , 5 6 7 8 9 100 1075.59 1119.04 1103.76 1024.67 907.57 870.66 814.75 774.13 643.20 582.4236 1064.43 1117.35 1103.76 1020.32 905.34 865.52 810.89 765.28 629.05 567.3472 1035.10 1108.86 1100.36 1009.86 900.90 858.44 804.38 752.86 619.16 559.09108 1003.75 1011.61 1034.23 965.94 890.05 839.69 791.15 735.48 613.74 553.90144 983.58 1018.58 1032.50 969.48 886.36 841.15 793.80 735.24 621.28 561.44180 994.12 1045.48 1054.10 987.10 890.29 849.17 800.05 745.71 630.23 571.81216 1009.86 1069.58 1073.02 1002.00 896.21 857.22 806.07 757.16 641.55 581.71252 1016.84 1084.15 1091.83 1015.09 901.88 864.78 811.61 767.19 649.33 589.48288 1031.61 1098.65 1099.51 1022.93 906.58 871.15 815.72 774.85 653.81 594.43324 1061.85 1114.80 1102.06 1025.53 909.05 873.84 817.65 778.20 651.92 593.49360 1076.44 1118.19 1103.76 1027.27 909.30 872.61 816.68 776.52 639.42 582.89396 1065.29 1119.89 1104.61 1022.06 906.58 866.99 812.58 767.19 627.64 566.87432 1042.02 1110.56 1098.65 1010.74 901.39 858.68 805.11 755.49 619.16 557.91468 1001.12 1011.61 1029.01 965.94 890.05 839.93 792.84 737.38 615.63 555.32504 987.10 1029.87 1036.83 972.13 886.85 842.61 796.20 737.62 621.51 563.09540 997.62 1058.41 1058.41 987.97 891.03 850.39 801.73 747.86 633.30 574.17576 1011.61 1082.44 1079.87 1005.50 897.69 859.17 808.00 759.54 645.08 584.77612 1023.80 1095.25 1098.65 1016.84 903.37 866.01 812.82 768.39 651.21 591.37648 1042.02 1109.71 1106.31 1022.06 906.83 870.66 816.20 774.61 654.04 595.13684 1065.29 1121.58 1108.01 1024.67 908.81 872.12 817.17 777.00 651.92 594.43Minimum 983.58 1011.61 1029.01 965.94 886.36 839.93 791.15 735.24 613.74 553.90Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.14:39:21.53 1 2 3 4 5 6 7, 8 9 100 1021.03 1075.45 1072.02 1000.95 906.92 872.48 828.42 776.19 664.59 597.1936 1033.19 1099.38 1095.12 1017.55 913.11 882.53 833.99 786.25 678.52 608.0272 1050.51 1121.47 1113.84 1027.98 918.56 890.64 838.60 795.62 686.32 615.09108 1066.01 1132.46 1124.01 1038.41 923.78 897.29 842.97 803.07 689.39 619.33144 N/A N/A N/A N/A N/A N/A 842.97 803.07 689.39 619.33180 1103.64 1142.60 1123.16 1041.01 926.76 898.28 844.92 805.72 677.34 610.37216 1098.53 1144.28 1124.01 1036.68 925.02 892.86 841.76 798.02 661.28 595.77252 1084.02 1136.69 1121.47 1028.85 921.05 885.23 836.17 787.69 650.67 586.82288 1048.78 1035.81 1053.96 982.52 909.64 867.10 823.10 770.68 644.54 580.93324 1021.03 1037.54 1050.51 982.52 903.71 865.88 824.55 768.53 653.74 588.47360 1024.51 1069.45 1075.45 1001.83 906.92 873.46 829.63 777.15 667.89 599.07396 1041.01 1098.53 1095.97 1016.67 913.11 882.78 835.20 787.69 680.88 608.96432 1054.82 1119.77 1112.14 1029.72 919.31 891.63 840.30 797.06 687.50 615.79468 1066.87 1134.16 1121.47 1036.68 923.78 897.05 843.94 803.55 689.87 620.03504 1090.00 1143.44 1125.70 1041.87 927.01 900.01 846.13 806.93 686.79 618.85540 1102.79 1145.13 1122.32 1040.14 927.26 897.79 845.40 805.96 675.45 608.73576 1096.83 1145.97 1122.32 1038.41 925.27 892.37 842.00 799.22 662.46 593.18612 1087.44 1135.00 1116.38 1029.72 921.54 886.22 836.42 789.85 652.79 583.52648 1050.51 1032.32 1047.92 982.52 909.89 867.59 823.10 772.60 646.19 580.70684 1022.77 1038.41 1049.65 984.28 904.20 866.61 825.27 771.40 656.33 588.71Minimum 1021.03 1032.32 1047.92 982.52 903.71 865.88 823.10 768.53 644.54 580.70Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52114:54:07.26 1 2 3 4 5 6 7 8 9 100 1067.55 1141.59 1123.00 1041.69 926.20 900.69 850.22 809.29 693.39 628.0236 1083.84 1144.12 1128.92 1046.87 930.68 905.38 853.14 814.12 694.33 630.6172 1100.91 1150.02 1128.92 1049.46 932.92 906.61 854.60 815.81 690.31 626.37108 1111.97 1152.55 1124.69 1048.60 932.42 903.65 853.14 812.67 678.26 612.23144 1100.06 1157.60 1128.92 1044.28 929.68 897.48 849.49 804.72 666.21 599.28180 1087.26 1071.84 1104.32 1014.74 921.73 885.18 839.52 792.93 659.13 590.80216 1041.69 1041.69 1045.14 982.32 911.07 872.18 832.73 779.74 660.31 594.10252 1035.63 1095.80 1067.55 1002.51 910.32 877.08 836.85 784.29 667.87 603.99288 1040.82 1112.82 1090.68 1020.84 916.02 886.16 841.47 793.65 678.96 613.88324 1055.50 1134.84 1111.12 1033.87 921.97 894.28 846.32 802.79 687.47 622.13360 1072.70 1142.43 1124.69 1043.42 926.94 900.93 850.46 809.78 692.20 627.54396 1083.84 1149.18 1130.61 1049.46 931.42 905.38 853.38 814.36 693.15 628.96432 1103.47 1154.23 1130.61 1050.33 933.42 906.12 854.11 815.32 689.36 624.95468 1101.77 1157.60 1128.07 1046.87 932.92 902.41 852.65 811.95 678.96 610.58504 1093.24 1159.28 1129.76 1043.42 929.93 896.74 849.24 803.75 666.68 598.57540 1083.84 1067.55 1100.06 1011.25 921.73 884.19 839.04 791.73 658.19 590.56576 1041.69 1042.55 1045.14 981.44 911.31 871.94 832.98 779.50 662.67 594.10612 1035.63 1095.80 1068.41 1000.76 911.07 875.85 836.61 784.29 671.88 604.22648 1043.42 1113.67 1090.68 1016.48 915.77 883.70 841.22 793.17 680.62 614.35684 1051.19 1127.23 1111.12 1032.13 922.72 893.05 846.81 803.03 688.42 622.36Minimum 1035.63 1041.69 1045.14 981.44 910.32 871.94 832.73 779.50 658.19 590.56Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings14:04:28.43 1 2 3 4 5 6 7 8 9 100 N/A 982.76 914.75^' 874.88 835.14 784.25 N/A 491.83 448.40 341.3036 N/A 984.52 916.51 875.86 835.87 784.73 N/A 491.83 448.64 342.0272 N/A 986.28 917.38 876.11 836.11 784.73 N/A 491.83 449.11 342.50108 N/A 987.16 917.38 876.11 836.11 784.25 N/A 491.83 449.11 342.99144 N/A 979.24 913.88 874.64 835.14 782.33 N/A 491.60 448.88 341.78180 N/A 967.77 908.61 871.70 832.96 779.46 N/A 491.36 448.40 340.09216 N/A 964.23 905.98 870.23 832.23 779.22 N/A 491.36 447.92 339.61252 N/A 973.07 909.49 871.70 832.96 781.14 N/A 491.60 447.69 339.85288 N/A 978.36 912.12 873.16 833.93 782.57 N/A 491.83 447.69 340.33324 N/A 981.88 913.88 874.39 834.65 783.77 N/A 492.07 448.16 341.05360 N/A 983.64 914.75 875.37 835.62 784.49 N/A 492.07 448.40 341.78396 N/A 984.52 915.63 875.86 836.11 784.97 N/A 492.07 448.88 342.50432 N/A 986.28 915.63 876.35 836.35 784.97 N/A 492.07 449.11 342.99468 N/A 988.03 916.51 876.35 836.60 784.73 N/A 492.31 449.59 343.47504 N/A 977.48 913.00 874.64 835.38 782.57 N/A 491.60 448.88 341.30540 N/A 966.00 907.73 871.70 833.44 779.70 N/A 491.36 448.40 339.61576 N/A 965.12 905.98 870.47 832.47 779.94 N/A 491.60 447.92 339.12612 N/A 973.07 908.61 871.70 833.44 781.85 N/A 492.07 447.92 339.61648 N/A 978.36 912.12 873.41 834.41 783.29 N/A 492.31 448.16 340.09684 N/A 981.88 913.88 874.88 835.38 784.49 N/A 492.54 448.64 340.81Average N/A 978.48 912.69 873.97 834.72 782.87 N/A 491.86 448.49 341.14Distance, m 0.616 1.010 1.568 2.064 2.375 2.724 _^3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.14:56:47.48 1 2 3 4 5 6 7 8 9 100 N/A 1024.44 938.13 897.60 864.72 819.31 N/A N/A 498.41 367.2336 N/A 1026.18 939.91 898.83 865.70 820.03 N/A N/A 498.89 367.9672 N/A 1027.91 940.81 899.33 866.19 820.27 N/A N/A 499.12 368.68108 N/A 1027.91 940.81 899.57 866.19 820.03 N/A N/A 499.60 369.40144 N/A 1028.78 940.81 899.33 865.94 819.31 N/A N/A 499.83 369.16180 N/A 1013.12 934.56 895.88 863.99 816.41 N/A N/A 499.60 367.23216 N/A 1004.38 927.57 892.92 862.28 814.72 N/A N/A 499.12 365.55252 N/A 1011.37 928.44 893.17 862.28 816.17 N/A N/A 498.65 365.55288 N/A 1017.47 931.94 894.89 863.01 817.86 N/A N/A 498.41 366.03324 N/A 1021.83 936.35 896.37 864.23 818.82 N/A N/A 498.65 366.99360 N/A 1024.44 939.02 897.85 865.21 819.79 N/A N/A 498.89 367.71396 N/A 1026.18 939.91 898.83 865.94 820.27 N/A N/A 499.12 368.44432 N/A 1027.91 940.81 899.57 866.43 820.51 N/A 1WA 499.60 369.16468 N/A 1028.78 941.70 899.57 866.43 820.27 N/A N/A 500.07 369.64504 N/A 1028.78 941.70 899.33 866.19 819.55 N/A N/A 500.07 368.68540 N/A 1014.86 934.56 895.88 863.99 816.65 N/A N/A 499.83 366.75576 N/A 1007.88 927.57 892.67 862.28 814.72 N/A N/A 499.36 365.31612 N/A 1013.99 928.44 893.17 862.04 816.65 N/A N/A 498.89 365.55648 N/A 1020.96 931.94 894.89 863.01 818.10 N/A N/A 498.89 366.27684 N/A 1024.44 937.24 896.62 863.99 819.31 N/A N/A 498.89 366.27Average N/A 1021.08 936.11 896.81 864.50 818.44 N/A N/A 499.20 367.38Distance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 _^5.213NOTE: This set of data was used for steady state calculations.Interior Wall Probe Temperature Readings14:05:52.14Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 337.74 634.68 N/A1.568 N/A 573.01 850.942.064 319.05 560.09 828.842.375 N/A N/A 778.262.724 287.50 520.21 731.733.048 N/A N/A 669.684.070 186.49 337.91 487.574.585 16535 262.66 418.135.213 148.87 234.56 322.92NOTE: This set of data was used for steady state calculations.14:58:11.19Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 356.88 663.33 N/A1.568 N/A 602.40 874.702.064 339.99 588.56 853.012.375 N/A N/A 808.452.724 308.77 553.92 767.423.048 N/A N/A 709.614.070 200.60 362.90 522.774.585 175.78 280.09 447.865.213 157.58 249.84 347.24NOTE: This set of data was used for steady state calculations.210Suction Pyrometer Temperature Readings of Flue Gas14:08139.55214:10307.164 514:11:58.776 714:13:49.668 914:15.16.50100 1099.72 1196.64 1157.34 1050.97 904.72 876.91 841.82 780.31 667.03 569.7036 1099.72 1188.28 1161.55 1053.56 914.87 880.59 836.97 773.84 668.21 568.9972 1100.57 1194.97 1163.23 1057.87 922.07 884.76 841.82 771.45 665.85 568.05108 1111.62 1208.33 1164.07 1061.31 927.54 890.17 845.47 770.97 672.93 567.58144 1115.86 1181.58 1157.34 1063.89 931.78 895.34 851.31 776.95 677.89 567.58180 1125.18 1213.33 1163.23 1065.61 931.78 899.54 859.60 784.62 683.80 567.82216 1141.23 1216.67 1168.27 1066.47 933.27 902.25 865.46 792.30 684.27 568.52252 1156.39 1224.16 1167.43 1068.19 931.28 903.24 867.90 798.55 686.17 569.47288 1174.87 1220.83 1165.75 1069.90 931.53 902.50 867.42 802.16 689.24 570.17324 1173.19 1227.48 1186.71 1072.48 933.27 900.28 863.99 802.65 687.82 570.41360 1163.12 1231.64 1192.57 1073.34 933.27 900.03 857.16 795.19 685.46 570.17396 1147.97 1245.78 1197.59 1075.05 938.76 900.03 849.60 788.46 671.28 569.23432 1142.91 1232.47 1176.66 1075.05 941.76 902.50 847.17 781.51 671.99 568.52468 1151.34 1233.30 1175.82 1075.91 943.76 905.71 852.77 781.51 683.33 568.05504 1150.50 1218.33 1168.27 1075.91 943.51 908.68 856.91 785.82 684.27 568.05540 1155.55 1224.99 1161.55 1076.76 940.51 910.66 863.99 791.58 690.19 568.52576 1164.80 1229.15 1164.91 1076.76 939.51 912.15 869.62 797.83 692.55 568.99612 1179.06 1234.14 1173.30 1078.48 938.26 911.90 871.33 802.89 691.13 569.94648 1187.44 1227.48 1171.63 1081.05 937.51 909.42 870.35 805.54 690.19 570.64684 1163.96 1204.99 1165.75 1081.05 935.52 907.94 866.19 803.61 685.93 570.88Average 1145.25 1217.73 1170.15 1069.98 932.72 900.23 857.34 789.39 681.48 569.07Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.114:59:30.992 .15:01.02.663 415:02:30.655 615:04:23.757 815:05:51.689 100 1169.61 1204.78 1183.09 1068.71 955.77 907.46 867.45 798.87 714.04 608.0536 1181.35 1218.96 1193.14 1074.72 962.05 914.14 876.02 805.85 720.21 607.8272 1189.73 1228.94 1205.67 1079.00 960.29 920.34 883.87 813.32 722.58 608.05108 1187.22 1237.26 1211.51 1081.57 958.03 924.56 890.50 821.29 729.47 608.52144 1169.61 1232.27 1209.01 1082.43 962.30 927.79 894.69 828.78 729.95 609.23180 1166.25 1233.93 1205.67 1085.00 965.07 929.78 896.66 834.35 731.85 610.17216 1177.16 1252.23 1202.33 1086.71 966.07 929.78 896.91 838.23 729.47 610.64252 1183.03 1245.58 1201.50 1088.42 966.33 928.54 893.70 838.96 725.67 610.64288 1185.54 1251.40 1205.67 1090.13 968.34 927.79 887.80 836.54 718.08 610.17324 1200.60 1257.21 1204.00 1093.54 966.33 927.79 886.32 833.14 719.97 609.47360 1212.29 1261.36 1202.33 1095.25 969.10 929.03 886.32 830.48 721.87 608.76396 1224.78 1258.87 1198.99 1097.81 968.84 931.28 890.75 831.21 726.86 608.52432 1227.28 1266.34 1208.18 1098.66 966.83 934.02 894.93 834.60 734.94 608.76468 1209.79 1280.42 1231.50 1097.81 969.60 936.26 898.14 838.96 739.22 609.23504 1195.59 1262.19 1226.51 1097.81 968.09 938.75 902.08 843.09 735.89 610.17540 1187.22 1248.91 1209.01 1100.36 970.36 939.00 903.81 846.01 735.89 610.88576 1203.11 1263.85 1209.85 1100.36 964.82 937.26 903.07 847.71 729.00 611.35612 1200.60 1258.87 1213.18 1102.92 969.10 935.26 900.60 846.98 732.32 611.35648 1203.94 1262.19 1209.85 1102.92 971.11 934.02 893.95 843.58 729.23 610.64684 1217.29 1262.19 1205.67 1094.39 970.86 933.77 889.77 838.48 722.35 609.94Average 1194.60 1249.39 1206.83 1090.92 965.96 929.33 891.87 832.52 727.44 609.62Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Shell Temperature ReadingsPosition, metresTime 0.146 0.921 1.492 2.210 5.35414:05:52.14 254.95 183.40 161.02 145.77 105.1814:58:11.19 264.55 194.03 172.89 154.20 111.64213Flue Gas AnalysisTime Port N2 02 CO214:21 5 81.4 2.1 16.514:31 5 82.3 2.4 15.314:50 5 80.0 2.4 17.6214Axial Calcination ResultsNatural Gas =5.4 CFM Product Product Port #1 Port #1_ Port #2 Port #2 Port #2Sample Code GPA GPA G#1A G#1A G#2A G#2A G#2ADate 28/Jun/90 28/Jun/90 26/Jun/90 28/Jun/90 26/Jun/90 28/Jun/90 28/Jun/90Before Firing, g 24.9552 25.9124 24.7974 26.7740 25.7606 26.9211 25.3635After Firing, g 24.1051 25.0391 20.8359 22.7946 20.5636 22.0128 21.1630Empty Crucible, g 12.1914 12.6081 10.0667 11.6649 10.0921 12.5754 12.0947Wt of Sample Before, g 12.7638 13.3043 14.7307 15.1091 15.6685 14.3457 13.2688Wt Loss by CaCO3, g 0.8501 0.8733 3.9615 3.9794 5.1970 4.9083 4.2005% Calcination 84.70 84.93 3824 39.51 23.83 21.42 2730Average =^ 84.81%^38.88%^24.18%Natural Gas = 5.4 CFM Port #3 Port #3 Port #4 Port #4Sample Code G#3A G#3A G#4A G#4ADate 26/Jun/90 26/Jun/90 26/Jun/90 26/Jun/90Before Firing, g 28.5474 28.3497 28.3109 28.5262After Firing, g 21.8112 21.5873 21.2836 21.2312Empty Crucible, g 12.1860 11.7885 12.0481 11.6567Wt of Sample Before, g 16.3614 16.5612 16.2628 16.8695Wt Loss by CaCO3, g 6.7362 6.7624 7.0273 7.2950% Calcination 5.45 6.22 _^0.76 0.69Average=^ 5.84%^0.73%Natural Gas = 5.8 CFM Product Product -^Port #1 Port #1,Port #2 Port #2 Port #3 Port #3Sample Code GPB GPB G#1B G#1B G#2B G#2B G#3B G#3BDate 26/Jun/90 26/Jun/90 27/Jun/90 27/Jun/90 27/Jun/90 29/Jun/90 29/Jun/90 29/Jun/90Before Firing, g 23.5073 23.8729 24.0578 23.8286 26.8904 26.6579 26.0144 26.0932After Firing, g 23.4277 23.7635 21.9629 21.5952 22.9277 22.7431 19.9842 20.5024Empty Crucible, g 12.5667 12.0869 11.3795 10.5863 12.6033 12.0341 11.1490 123248Wt of Sample Before, g 10.9406 11.7860 12.6783 132423 142871 14.6238 14.8654 13.7684Wt Loss by CaCO3, g 0.0796 0.1094 2.0949 2.2334 3.9627 3.9148 6.0302 5.5908% Calcination 98.33 97.87 62.05 61.27 36.30 38.52 6.84 6.74Average=^98.10%^61.66%^37.41%^6.79%Natural Gas = 5.8 CFM Port #4 Port #4Sample Code G#4B G#4BDate 27/Jun/90 27/Jun/90Before Firing, g 28.5960 27.2115After Firing, g 21.6861 20.7145Empty Crucible, g 12.5721 12.0913Wt of Sample Before, g 16.0239 15.1202Wt Loss by CaCO3, g 6.9099 6.4970% Calcination 0.97 1.32Average=^ 1.14%Run LG16Table of EventsAction Requested by Operator 1^Time6/21/90 09:40:21.00Kiln speed (rpm) : 1.5 09:40:26.11Gas = 5.6 CFM 9:10:00Read Bed Temperatures 09:40:56.59Read Bed Temperatures 10:20:55.46Read Bed Temperatures 11:09:56.50Read Bed Temperatures 12:04:47.53Read Bed Temperatures 12:55:31.66Read Bed Temperatures 13:08:27.71Read Shell Temperatures 13:10:18.27Read Hot Face Heat Flux Temperatures 13:10:25.30Read Colder Heat Flux Temperatures 13:11:49.45Suction TIC, Pair : 1 13:22:16.09Suction TIC, Pair : 2 13:23:44.69Suction TIC, Pair : 3 13:25:09.88Suction TIC, Pair : 4 13:26:33.58Suction T/C, Pair : 5 13:28:25.63Lignin = 165 g/min^Gas = 1.4 CFM 13:39:00Read Bed Temperatures 13:40:15.93Read Bed Temperatures 14:02:04.97Read Bed Temperatures 14:05:39.89Read Shell Temperatures 14:24:30.59Read Hot Face Heat Flux Temperatures 14:24:36.74Read Colder Heat Flux Temperatures 14:26:00.88Suction TIC, Pair : 1 14:27:11.68Suction TIC, Pair : 2 14:31:48.62Suction TIC, Pair : 3 14:33:14.85Suction TIC, Pair : 4 14:34:43.72Suction TIC, Pair : 5 14:36:31.98Read Bed Temperatures 14:38:40.61217Cyclic Bed Temperature Readings09:40:56.59 1 2 3 4 5 6 7 8 9 100 1049.20 1116.72 1081.83 989.17 880.11 846.61 802.06 760.33 664.70 609.5436 1056.09 1141.23 1103.14 1000.55 885.51 853.68 806.64 768.22 669.42 614.2572 1068.12 1154.70 1121.80 1011.03 890.68 860.27 810.74 775.40 672.97 618.49108 1091.22 1175.70 1131.95 1014.52 894.13 864.18 813.16 779.24 673.44 620.61144 1115.87 1175.70 1131.10 1013.65 895.12 865.15 813.64 780.19 671.79 619.67180 1115.03 1173.18 1125.18 1008.42 893.89 862.22 811.71 778.04 665.17 610.24216 1109.09 1166.47 1117.57 1003.18 891.42 857.82 807.85 771.57 656.44 601.76252 1099.74 1086.95 1094.63 982.14 886.01 848.31 800.14 761.52 650.78 594.23288 N/A N/A 1042.29 952.11 876.91 835.67 793.88 750.78 652.90 596.11324 1051.78 1093.78 1058.67 972.45 876.18 840.29 797.01 753.41 659.27 601.76360 1039.70 1115.87 1080.12 990.04 880.11 846.61 801.82 760.57 665.41 608.36396 1053.51 1135.32 1107.39 1003.18 885.27 853.19 806.40 767.98 669.90 614.25432 1070.70 1157.23 1124.34 1011.90 890.19 859.53 810.26 774.68 673.44 618.72468 1097.19 1170.66 1131.95 1016.26 893.39 863.69 812.91 779.24 673.68 619.90504 1115.03 1170.66 1133.64 1013.65 894.87 864.67 813.64 780.43 671.55 618.96540 1115.03 1172.34 1126.03 1010.16 894.87 863.20 812.19 777.80 663.76 610.01576 1111.64 1158.91 1113.33 1004.92 892.41 857.82 808.57 770.13 653.37 598.00612 1096.33 1078.41 1086.95 981.26 886.50 848.31 800.62 760.57 648.89 592.11648 1069.84 1059.53 1037.97 954.77 877.65 836.40 794.84 751.02 651.96 595.17684 1049.20 1092.93 1055.23 971.57 876.91 841.50 798.45 754.36 658.80 601.06Minimum 1039.70 1059.53 1037.97 952.11 876.18 835.67 793.88 750.78 648.89 592.11Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 -^3.270 3.994 4.52110:20:55.46 1 2 3 4 5 6 7 8 9 100 1052.38 1151.97 1141.02 1031.61 911.53 879.73 829.02 790.67 675.05 610.9136 1080.73 1157.86 1144.39 1035.10 914.26 881.93 830.23 793.32 673.63 609.5072 1076.44 1151.97 1139.33 1031.61 914.50 882.43 830.72 792.60 665.61 597.49108 1060.13 1131.73 1123.28 1023.80 913.51 879.23 828.54 787.79 655.69 586.18144 1035.96 1045.48 1098.65 999.37 907.07 869.43 820.31 777.96 646.50 575.58180 1000.25 1008.99 1040.29 962.40 896.45 854.05 811.13 762.17 648.85 578.88216 986.22 1051.52 1052.38 976.54 894.24 856.73 814.03 763.84 657.58 587.60252 986.22 1076.44 1074.73 994.12 898.43 863.07 817.89 770.54 664.42 594.66288 997.62 1115.65 1102.06 1011.61 904.11 869.68 822.24 778.68 670.80 602.91324 1023.80 1144.39 1128.35 1024.67 908.81 876.05 826.11 785.39 674.34 608.56360 1057.55 1159.55 1143.55 1031.61 912.52 880.95 829.26 790.91 675.76 611.15396 1085.00 1162.07 1147.76 1033.37 914.75 882.92 830.23 793.56 673.63 610.44432 N/A N/A N/A N/A N/A N/A 830.23 793.56 673.63 610.44468 1066.15 1135.96 1124.97 1023.80 912.77 878.25 826.84 786.11 656.40 587.60504 1040.29 1053.24 1094.39 996.75 906.08 868.45 817.89 776.04 646.97 577.23540 1002.00 1019.45 1043.75 962.40 895.71 853.80 810.41 760.98 647.20 580.53576 987.97 1061.85 1055.83 980.06 893.25 856.24 814.03 763.84 653.81 589.48612 989.73 1089.27 1077.30 997.62 896.95 862.59 818.37 771.26 661.36 596.78648 1005.50 1125.81 1105.46 1013.35 901.64 868.70 822.48 778.44 667.49 603.14684 1029.01 1145.23 1130.88 1026.40 905.84 873.35 825.63 784.91 671.51 608.32Minimum 986.22 1008.99 1040.29 962.40 893.25 853.80 810.41 760.98 646.50 575.58Distance, m 0.146 0.464 0.921 1.492 2.210 2.553^- 2.915 3.270 3.994 4.52111:09:56.50 1 2 3 4 5 6 7 8 9 100 979.10 1132.60 1110.57 1021.14 915.33 884.00 841.04 801.65 691.32 619.8336 999.31 1156.22 1139.36 1038.52 920.54 890.89 845.17 808.87 696.05 625.2572 1026.36 1165.47 1155.37 1045.44 924.76 895.32 847.35 812.73 697.47 628.08108 1052.35 1167.99 1157.90 1048.04 926.75 896.80 848.08 814.17 694.87 626.67144 1054.94 1157.06 1149.48 1042.85 926.75 896.06 847.84 813.21 689.66 616.77180 1044.58 1136.83 1135.98 1035.93 924.76 893.10 845.90 808.87 681.86 605.00216 1025.49 1054.94 1102.07 1002.81 917.06 882.53 837.40 798.52 669.11 590.63252 979.10 1016.78 1041.12 969.39 906.17 868.57 830.37 783.64 669.11 596.52288 960.54 1057.52 1057.52 987.02 903.95 870.52 833.28 787.23 677.85 605.94324 964.08 1085.00 1083.29 1006.31 908.40 877.38 836.67 793.95 684.46 613.71360 976.45 1126.68 1109.72 1022.01 913.59 884.25 840.07 800.93 691.08 621.01396 996.68 1155.37 1135.14 1035.06 918.30 891.13 843.71 806.94 695.81 626.67432 1022.01 1177.22 1152.01 1041.12 921.28 894.33 845.90 810.80 697.23 629.26468 1045.44 1168.83 1153.69 1043.71 923.52 897.53 847.84 813.45 695.58 626.90504 1048.04 1156.22 1148.64 1042.85 924.51 897.29 847.84 812.25 686.35 616.30540 1040.26 1140.20 1132.60 1033.30 922.52 892.12 844.92 806.46 678.08 603.82576 1024.62 1060.97 1102.07 1001.93 915.58 882.04 836.67 796.60 668.64 590.63612 972.92 1023.75 1041.99 968.50 904.69 868.08 829.64 782.68 669.11 595.81648 953.44 1066.13 1057.52 986.14 903.46 869.55 832.79 786.03 674.78 605.23684 960.54 1091.83 1083.29 1004.56 908.15 875.66 836.67 793.47 685.17 613.71Minimum 953.44 1016.78 1041.12 968.50 903.46 868.08 829.64 782.68 668.64 590.63Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52112:04:47.53 1 2 3 4 5 6 7 8 9 100 N/A 1192.36 1163.83 1051.47 905.53 860.15 826.89 712.83 644.79 N/A36 N/A 1194.87 1169.72 1054.06 909.48 862.35 830.28 711.64 642.90 N/A72 N/A 1187.34 1165.52 1054.92 910.23 862.10 829.55 706.43 633.71 N/A108 N/A 1171.40 1157.10 1046.29 912.05 865.53 819.42 704.23 626.73 N/A144 N/A 1081.57 1126.71 1017.61 896.16 853.09 815.78 687.03 604.50 N/A180 N/A 1058.37 1050.61 979.90 879.71 843.36 797.97 682.31 605.92 N/A216 N/A 1099.52 1062.68 990.47 880.23 837.01 804.34 688.45 619.87 N/A252 N/A 1135.17 1096.96 1011.50 884.12 847.98 806.86 699.57 625.70 N/A288 N/A 1153.73 1125.02 1028.06 899.63 852.47 812.11 704.82 635.96 N/A324 N/A 1175.60 1152.05 1041.96 899.86 856.01 821.57 710.22 639.60 N/A360 N/A 1187.34 1163.83 1050.61 905.53 858.93 826.65 712.36 642.90 N/A396 N/A 1191.52 1168.04 1054.92 908.50 861.13 829.55 711.64 641.49 N/A432 N/A 1188.17 1163.83 1054.06 908.25 861.13 829.31 705.25 630.18 N/A468 N/A 1169.72 1152.89 1045.42 903.06 857.96 822.54 694.13 617.46 N/A504 N/A 1091.84 1119.93 1015.87 894.44 851.63 813.85 684.20 601.68 N/A540 N/A 1059.23 1047.15 979.02 878.97 842.64 796.52 679.94 601.68 N/A576 N/A 1098.67 1062.68 992.23 877.25 844.09 797.97 686.80 613.69 N/A612 N/A 1125.02 1089.28 1009.75 884.18 844.12 807.49 695.42 623.89 N/A648 N/A 1157.10 1124.17 1030.66 893.46 852.36 814.57 703.59 632.53 N/A684 N/A 1180.63 1147.83 1045.42 901.09 856.25 821.33 708.56 637.48 N/AMinimum N/A 1058.37 1047.15 979.02 877.25 837.01 796.52 679.94 601.68 N/ADistance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 -^3.270 3.994 4.52112:55:31.66 1 2 3 4 5_ 6 7 8 9 100 N/A 1180.11 1159.10 1050.04 911.22 867.43 821.07 719.02 650.39 N/A36 N/A 1181.79 1164.99 1056.08 914.46 870.64 822.77 721.19 648.49 N/A72 N/A 1177.60 1160.79 1051.77 914.46 869.90 822.53 710.23 641.15 N/A108 N/A 1160.79 1148.99 1044.85 905.21 860.58 825.63 698.60 625.45 N/A144 N/A 1074.16 1106.65 1011.79 896.34 854.00 817.42 688.67 607.78 N/A180 N/A 1045.72 1041.39 977.53 881.11 845.01 799.61 687.25 609.67 N/A216 N/A 1082.73 1057.81 990.75 876.21 846.47 801.77 694.81 620.27 N/A252 N/A 1106.65 1087.02 1011.79 881.60 850.35 810.43 703.33 628.75 N/A288 N/A 1146.46 1116.00 1029.22 890.68 854.73 818.87 711.86 637.23 N/A324 N/A 1172.56 N/A N/A 900.03 859.12 826.36 717.78 643.83 N/A360 N/A 1190.17 1164.15 1053.49 906.69 862.29 830.71 719.68 647.13 N/A396 N/A 1196.03 1170.04 1054.36 909.16 863.99 832.65 719.44 647.60 N/A432 N/A 1172.56 1162.47 1052.63 910.64 864.73 832.89 713.52 639.35 N/A468 N/A 1156.58 1146.46 1043.98 907.68 863.02 829.02 705.46 629.45 N/A504 N/A 1078.45 1106.65 1011.79 898.80 856.92 821.04 691.50 611.55 N/A540 N/A 1042.25 1039.66 977.53 882.58 847.44 801.29 687.48 613.67 N/A576 N/A 1078.45 1053.49 989.87 879.64 848.17 803.21 698.60 623.09 N/A612 N/A 1098.12 1079.31 1006.54 895.10 847.00 811.33 701.15 637.59 N/A648 N/A 1139.71 1107.50 1022.26 899.80 854.62 814.73 708.15 643.75 N/A684 N/A 1170.04 1136.33 1036.16 904.02 860.77 817.90 723.94 648.97 N/AMinimum N/A 1042.25 1039.66 977.53 876.21 845.01 799.61 687.25 607.78 N/ADistance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52113:08:27.71 1 2 3 4 , 5 6 7 8 9 100 N/A 1108.63 1137.45 1038.18 924.01 900.62 863.74 807.93 687.96 N/A36 N/A 1067.56 1067.56 990.15 919.83 888.26 850.15 806.38 688.00 N/A72 N/A 1077.87 1050.32 983.11 899.92 888.20 841.33 806.99 687.01 N/A108 N/A 1096.70 1075.30 1002.44 914.39 883.84 850.88 808.30 706.22 N/A144 N/A 1134.92 1107.78 1022.54 919.34 891.45 854.28 815.53 713.80 N/A180 N/A 1165.27 1138.30 1038.18 924.55 898.83 857.69 822.53 718.77 N/A216 N/A 1180.39 1162.75 1051.18 929.02 904.50 860.86 828.09 721.38 N/A252 N/A 1185.42 1171.16 1058.09 932.99 908.45 863.54 831.72 720.91 N/A288 N/A 1181.23 1167.80 1058.09 934.49 909.94 864.03 832.68 715.69 N/A324 N/A 1170.32 1159.38 1052.91 933.49 907.71 862.81 829.78 707.64 N/A360 N/A 1113.73 1140.84 1039.94 922.78 899.88 863.98 809.59 690.31 N/A396 N/A 1058.09 1063.26 987.51 907.28 889.66 847.10 798.24 678.30 N/A432 N/A 1070.14 1052.05 983.11 899.67 887.72 841.09 806.99 687.48 N/A468 N/A 1091.57 1077.01 1003.32 913.89 884.09 850.39 807.10 705.03 N/A504 N/A 1135.76 1107.78 1022.54 919.34 892.93 854.28 815.53 711.90 N/A540 N/A 1164.43 1137.45 1037.31 924.30 899.33 857.20 822.05 715.93 N/A576 N/A 1179.55 1161.91 1051.18 929.26 905.74 861.10 827.85 718.54 N/A612 N/A 1180.39 1169.48 1056.36 932.99 909.94 863.79 831.72 718.77 N/A648 N/A 1179.55 1168.64 1058.09 934.99 911.17 864.76 832.68 713.80 N/A684 N/A 1167.80 1160.23 1053.77 934.24 909.19 864.03 830.26 704.79 N/AMinimum N/A 1058.09 1050.32 983.11 899.67 883.84 841.09 79824 678.30 N/ADistance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52113:40:15.93 1 2 3 4 5 6 7 8 9 100 N/A 1032.75 1072.51 1031.02 941.12 923.46 883.76 850.80 740.79 668.3436 N/A 1032.75 1075.09 1032.75 943.86 926.93 886.21 853.96 740.56 671.1772 N/A 1037.96 1074.23 1033.62 945.36 927.93 887.44 855.42 737.47 667.40108 N/A 1039.72 1075.95 1030.15 944.61 925.94 886.70 854.45 731.76 659.61144 N/A 1027.54 1076.80 1028.41 941.37 920.73 883.27 849.10 722.74 647.35180 N/A 980.23 1023.19 982.87 929.42 902.69 871.76 829.22 709.47 627.79216 N/A 993.44 1009.22 974.93 921.48 893.82 868.10 822.70 718.24 639.57252 N/A 1027.54 1042.32 997.83 924.20 899.98 871.27 830.19 726.54 648.29288 N/A 1033.62 1060.46 1013.59 930.16 909.60 875.67 837.21 734.14 657.25324 N/A 1030.15 1069.93 1021.44 935.64 916.77 879.34 842.54 736.51 663.62360 N/A 1031.89 1073.37 1027.54 939.12 921.48 882.78 847.88 739.37 667.87396 N/A 1033.62 1073.37 1031.02 942.37 925.44 885.72 852.99 740.56 670.23432 N/A N/A N/A N/A N/A N/A N/A N/A N/A 670.23468 N/A 1042.32 1075.09 1032.75 944.86 925.44 886.70 853.23 731.29 656.31504 N/A 1034.49 1076.80 1029.28 942.37 919.99 883.02 847.88 723.46 646.17540 N/A 984.64 1024.93 983.76 930.16 902.93 871.52 829.22 708.52 624.97576 N/A 999.58 1007.47 974.93 921.72 893.33 867.12 822.70 716.58 633.92612 N/A N/A N/A N/A N/A N/A 867.12 822.70 716.58 633.92648 N/A 1032.75 1057.01 1013.59 929.67 907.13 873.96 836.72 734.38 652.77684 N/A 1029.28 1068.21 1021.44 934.14 914.29 878.12 849.37 N/A 652.77Minimum N/A 980.23 1007.47 974.93 921.48 893.33 867.12 822.70 708.52 624.97Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 _^4.52114:02:04.97 1 2 3 4 5 6 7 8 9 100 N/A 1020.37 1038.63 998.50 894.00 862.67 814.92 711.32 629.88 N/A36 N/A 1033.42 1062.85 1015.13 902.62 867.06 824.33 717.72 640.24 N/A72 N/A 1040.39 1076.62 1025.60 910.02 870.72 831.58 721.04 646.84 N/A108 N/A 1042.12 1081.76 1031.69 935.06 876.45 834.63 727.15 654.13 N/A144 N/A 1041.26 1083.48 1036.90 939.30 880.66 837.81 731.76 656.02 N/A180 N/A 1050.77 1085.19 1039.50 922.64 879.77 843.94 724.84 654.15 N/A216 N/A 1054.23 1086.90 1039.50 922.15 879.77 842.97 719.38 644.72 N/A252 N/A 1056.82 1090.33 1039.50 918.92 877.57 838.36 712.27 632.00 N/A288 N/A 997.62 1057.68 1002.88 906.81 868.77 827.23 701.38 607.73 N/A324 N/A 980.90 1015.13 980.02 892.04 861.45 811.79 702.33 616.92 N/A360 N/A 1025.60 1041.26 998.50 894.25 863.15 816.85 709.19 629.17 N/A396 N/A 1042.12 1067.16 1015.13 902.86 866.81 824.57 715.35 639.30 N/A432 N/A 1042.99 1080.91 1026.47 910.76 871.21 831.83 719.86 647.31 N/A468 N/A 1044.72 1086.05 1032.56 917.93 875.61 837.64 723.18 652.26 N/A504 N/A 1046.45 1088.62 1036.90 939.79 883.14 839.28 732.73 655.31 N/A540 N/A 1052.50 1088.62 1038.63 942.29 884.87 840.99 734.67 654.84 N/A576 N/A 1055.09 1091.18 1040.39 942.54 883.14 840.26 732.97 649.14 N/A612 N/A 1056.82 1092.04 1039.50 941.29 878.18 837.08 727.15 642.04 N/A648 N/A 1003.76 1058.54 1004.64 905.82 868.52 825.78 700.67 605.62 N/A684 N/A 985.31 1014.26 980.90 902.15 851.54 820.47 700.35 630.67 N/AMinimum N/A 980.90 1014.26 980.02 892.02 851.54 811.79 700.67 605.62 N/ADistance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52114:05:39.89 1 2 3 4 5 6 7 8 9 100 N/A 1043.93 1082.70 1031.77 914.89 878.26 835.44 729.41 652.78 N/A36 N/A 1049.13 1085.27 1036.11 917.63 880.99 837.65 731.84 653.26 N/A72 N/A 1055.17 1089.55 1039.58 921.48 878.14 841.59 718.75 642.68 N/A108 N/A 1059.49 1091.26 1041.34 918.26 875.93 836.75 711.40 629.01 N/A144 N/A 1013.47 1078.41 1021.32 911.09 870.56 829.49 702.88 611.82 N/A180 N/A 984.51 1023.94 988.03 904.46 855.07 821.04 701.15 614.84 N/A216 N/A 1017.83 1028.29 994.19 892.12 861.77 812.35 700.51 623.36 N/A252 N/A 1033.50 1050.85 1006.47 899.25 864.94 820.55 708.80 634.43 N/A288 N/A 1037.84 1067.24 1016.96 905.90 868.36 827.55 714.96 643.39 N/A324 N/A 1042.20 1075.84 1025.68 911.16 872.32 832.51 723.36 649.46 N/A360 N/A 1049.13 1083.56 1033.50 916.78 875.69 838.20 722.07 653.76 N/A396 N/A 1051.72 1087.84 1037.84 919.75 877.65 840.38 721.83 653.52 N/A432 N/A 1060.35 1092.12 1040.47 920.49 877.89 840.38 716.62 642.92 N/A468 N/A 1059.49 1094.68 1041.34 917.02 875.44 835.54 708.09 631.13 N/A504 N/A 1017.83 1081.84 1021.32 909.85 870.31 828.76 700.51 611.82 N/A540 N/A 989.79 1026.55 986.27 903.47 854.08 820.80 700.67 616.26 N/A576 N/A 1015.21 1029.16 989.79 889.66 860.31 810.91 705.01 623.60 N/A612 N/A 1032.64 1050.85 1005.59 897.28 863.97 819.83 712.35 634.67 N/A648 N/A 1039.58 1068.10 1016.96 906.40 868.85 828.28 718.75 644.80 N/A684 N/A 1043.07 1076.70 1024.81 910.42 873.56 833.73 725.05 652.07 N/AMinimum N/A 984.51 1023.94 986.27 889.66 854.08 810.97 700.51 611.82 N/ADistance, m 0.146 0.464 0.921 1.492 -^2.210 2.553 2.915 3.270 3.994 4.52114:38:40.61 1 2 3 4 5 6 7 8 9 100 N/A 1008.99 1029.06 986.16 889.20 860.35 808.79 694.43 614.00 N/A36 N/A 1036.88 1049.03 1002.86 890.92 862.05 814.33 703.18 627.43 N/A72 N/A 1047.30 1068.87 1015.98 900.02 865.96 823.01 710.28 637.79 N/A108 N/A 1053.35 1081.76 1026.45 908.40 870.35 830.02 715.73 646.28 N/A144 N/A 1056.81 1086.90 1031.67 911.68 874.58 834.26 725.34 649.76 N/A180 N/A 1059.39 1090.32 1036.88 919.28 877.19 839.21 721.18 655.00 N/A216 N/A 1063.70 1092.89 1040.35 921.51 878.66 840.67 719.76 651.46 N/A252 N/A 1068.01 1096.31 1043.84 919.77 877.19 837.76 714.07 635.91 N/A288 N/A 1070.59 1098.87 1043.84 915.07 874.01 831.71 706.25 626.49 N/A324 N/A 1035.14 1071.45 1008.99 902.24 865.47 820.11 695.84 604.58 N/A360 N/A 1012.49 1030.80 986.16 889.45 859.62 808.07 697.74 616.12 N/A396 N/A 1037.75 1048.17 1004.61 892.64 862.54 815.53 705.54 629.78 N/A432 N/A 1047.30 1067.15 1017.73 901.50 866.93 824.70 711.46 639.91 N/A468 N/A 1053.35 1080.90 1028.19 909.88 871.57 832.19 716.20 647.69 N/A504 N/A 1054.22 1088.61 1036.01 911.93 876.31 835.73 727.52 649.76 N/A540 N/A 1056.81 1092.03 1040.35 915.66 880.77 838.66 731.64 651.89 N/A576 N/A 1062.84 1093.74 1044.70 918.40 882.75 840.38 732.85 650.71 N/A612 N/A 1067.15 1095.45 1047.30 919.65 881.51 839.40 729.94 645.49 N/A648 N/A 1068.01 1098.01 1048.17 918.15 876.56 836.21 722.92 639.33 N/A684 N/A 1030.80 1070.59 1009.86 903.47 867.66 821.56 700.10 607.41 `^N/AMinimum N/A 1008.99 1029.06 986.16 889.20 859.62 808.07 694.43 604.58 N/ADistance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521^..NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings13:10:25.30 1 2 3 4 5 6 7 8 9 100 N/A 1036.44 950.34 905.98 868.67 837.53 N/A N/A 527.20 380.0836 N/A 1026.02 945.89 904.26 867.93 835.59 N/A N/A 527.20 378.8872 N/A 1017.31 939.64 900.31 865.74 833.41 N/A N/A 526.96 376.71108 N/A 1012.94 934.38 898.10 864.52 833.41 N/A N/A 526.25 375.75144 N/A 1019.05 939.64 899.82 865.25 834.62 N/A N/A 525.78 375.99180 N/A 1025.15 943.21 901.54 865.98 835.59 N/A N/A 525.78 376.71216 N/A 1031.24 945.89 903.27 866.96 836.32 N/A N/A 526.02 377.44252 N/A 1034.71 948.56 904.75 867.69 837.29 N/A N/A 526.25 378.16288 N/A 1036.44 949.45 905.74 868.42 837.77 N/A N/A 526.49 378.88324 N/A 1037.31 951.23 906.23 868.91 837.77 N/A N/A 526.96 379.60360 N/A 1036.44 951.23 906.48 868.91 837.53 N/A N/A 527.20 380.08396 N/A 1027.76 946.78 905.00 868.18 836.07 N/A N/A 527.20 379.12432 N/A 1018.18 939.64 901.05 865.98 833.65 N/A N/A 526.72 376.96468 N/A 1013.81 934.38 898.59 864.76 833.41 N/A N/A 526.02 375.99504 N/A 1019.92 939.64 900.07 865.25 834.86 N/A N/A 525.78 376.23540 N/A 1026.02 943.21 902.04 866.23 835.83 N/A N/A 525.54 376.96576 N/A 1032.10 946.78 903.76 867.20 836.56 N/A N/A 525.78 377.68612 N/A 1035.58 948.56 905.00 867.93 83729 N/A N/A 526.02 378.40648 N/A 1037.31 950.34 905.98 868.67 837.53 N/A N/A 526.25 379.12684 N/A 1037.31 950.34 906.48 868.91 837.77 N/A N/A 526.72 379.84Average N/A 1028.05 944.96 903.22 867.10 835.99 N/A N/A 526.41 377.93Distance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 _^4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.14:24:36.74 1 2 3 4 5 6 7 8 9 100 N/A 988.49 945.07 910.07 877.62 849.34 N/A N/A 535.67 385.0636 N/A 981.44 937.11 906.12 875.42 847.15 N/A N/A 535.20 382.6672 N/A 978.79 933.62 903.90 874.19 847.39 N/A N/A 534.49 381.70108 N/A 984.97 937.11 905.62 875.17 848.85 N/A N/A 534.02 382.18144 N/A 989.37 942.40 907.35 875.90 850.06 N/A N/A 534.02 383.14180 N/A 992.01 N/A N/A N/A N/A N/A N/A N/A 383.14216 N/A 993.77 945.96 910.07 877.62 851.52 N/A N/A 534.49 384.82252 N/A 994.65 947.75 910.81 878.11 851.52 N/A N/A 534.73 385.54288 N/A 995.53 948.64 911.55 878.60 851.52 N/A N/A 535.20 386.26324 N/A 997.28 949.53 911.80 878.60 851.04 N/A N/A 535.43 386.74360 N/A 990.25 945.07 909.57 877.37 849.09 N/A N/A 535.43 384.82396 N/A 983.20 937.11 905.62 875.17 846.91 N/A N/A 534.96 382.42432 N/A 980.56 933.62 903.40 874.19 847.15 N/A N/A 534.25 381.46468 N/A 986.73 937.11 905.13 874.93 848.85 N/A N/A 534.02 382.18504 N/A 990.25 942.40 906.86 875.90 850.06 N/A N/A 533.78 382.90540 N/A 992.01 N/A N/A N/A N/A N/A N/A 533.78 382.90576 N/A 992.89 946.86 909.82 877.62 851.52 N/A N/A 534.25 384.58612 N/A 993.77 947.75 910.81 878.11 851.77 N/A N/A 534.73 385.30648 N/A 994.65 948.64 911.55 878.60 851.77 N/A N/A 534.96 386.02684 N/A 996.40 950.42 911.80 878.60 851.28 N/A N/A 535.43 386.50Average N/A 989.85 943.12 908.44 876.76 849.82 N/A N/A 534.68 384.02Distance, m 0.616 1.010 1.568 2.064 _ 2.375 2.724 _^3.048 4.070 4.585 5.213NOTE: This set of data was used for steady state calculations.Interior Wall Probe Temperature Readings13:11:49.45Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 379.96 692.58 N/A1.568 N/A 625.44 887.772.064 359.62 611.36 862.572.375 N/A 589.46 812.642.724 335.00 N/A 789.563.048 N/A N/A 738.724.070 225.88 406.46 560.944.585 195.95 312.71 480335.213 168.42 270.63 361.31NOTE: This set of data was used for steady state calculations.14:26:00.88Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 378.50 680.01 N/A1.568 N/A 629.27 887.852.064 366.06 617.93 868.092.375 N/A 599.32 822.222.724 344.11 N/A 803.673.048 N/A N/A 754384.070 234.36 419.57 573.414.585 201.49 320.88 489.075.213 174.70 275.42 366.78NOTE: This set of data was used for steady state calculations.230Suction Pyrometer Temperature Readings of Flue Gas13:22116.092 313:23:44.694 513:25:09.886 713:26:33.588 913:28:25.63100 1137.67 1203.22 1136.05 1072.15 N/A 908.00 883.96 821.68 735.75 618.7936 1152.02 1204.89 1132.67 1071.29 N/A 913.19 890.58 828.93 735.51 618.5572 1152.02 1188.16 1143.66 1069.57 N/A 917.40 897.47 836.68 739.55 617.84108 1149.49 1189.83 1163.04 1074.73 N/A 922.60 901.17 843.47 735.99 617.14144 1142.75 1192.35 1180.68 1078.16 N/A 927.82 905.36 849.54 735.04 616.67180 1124.14 1189.83 1186.55 1085.87 N/A 931.79 906.59 852.94 743.60 616.67216 1129.22 1209.07 1181.52 1088.44 N/A 934.78 906.84 854.64 748.59 616.90252 1161.29 1254.03 1183.20 1091.01 N/A 937.02 902.15 853.91 752.40 617.61288 1172.22 1262.33 1174.81 1093.57 N/A 936.52 899.69 851.97 747.88 618.55324 1176.42 1253.20 1167.25 1094.43 N/A 936.27 900.43 850.51 749.78 619.02360 1184.81 1238.22 1167.25 1094.43 N/A 935.77 903.14 850.99 748.12 619.26396 1189.83 1229.91 1161.36 1089.30 N/A 935.03 907.33 853.67 746.45 619.02432 1188.16 1227.41 1152.94 1082.45 N/A 936.52 910.05 856.83 741.69 618.32468 1176.42 1236.56 1189.90 1083.30 N/A 939.01 913.01 860.24 741.93 617.61504 1164.65 1211.57 1202.46 1086.73 N/A 941.76 913.76 862.93 745.26 616.90540 1150.34 1213.24 1199.95 1091.01 N/A 944.00 914.50 864.88 747.64 616.67576 1147.81 1219.91 1193.25 1095.28 N/A 945.50 913.26 865.12 751.93 616.90612 1179.77 1266.48 1187.39 1096.13 N/A 946.00 907.58 862.68 757.88 617.61648 1189.00 1265.65 1179.84 1097.84 N/A 945.50 903.88 859.03 756.69 618.32684 1191.51 1252.36 1176.49 1096.99 N/A 943.75 903.14 855.86 755.74 618.79Average 1162.98 1225.41 1173.01 1086.63 N/A 933.91 904.19 851.82 745.87 617.86Distance, m 0.146 0.464 _^0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.14:27111.682 314:31.48.624 514:33:14.856 714:34:43.728 914:36:31.98100 1019.25 1106.31 1124.24 1058.38 948.06 911.54 895.03 828.74 745.81 622.4136 1026.22 1110.57 1122.55 1062.69 945.31 914.51 898.72 833.57 743.19 621.4772 1031.44 1113.12 1114.05 1059.24 952.56 917.48 901.92 837.45 737.25 620.29108 1016.63 1108.02 1114.90 1056.66 957.07 920.70 905.62 841.32 742.24 619.82144 1014.88 1109.72 1119.15 1059.24 954.81 924.17 905.86 844.23 746.76 619.82180 1011.38 1113.97 1127.63 1064.42 952.56 927.39 906.60 846.42 752.24 620.53216 1014.88 1120.77 1131.02 1070.44 960.83 930.37 906.36 847.39 752.95 621.70252 1013.13 1113.97 1133.56 1072.16 956.56 931.86 906.36 847.63 756.05 622.65288 1019.25 1122.47 1134.40 1076.46 953.81 932.36 906.60 847.39 756.76 623.59324 1025.35 1130.94 1133.56 1078.17 958.82 932.36 903.64 846.42 756.53 624.06360 1032.31 1131.79 1131.02 1076.46 960.83 932.61 904.14 846.90 756.29 623.82396 1038.38 1141.93 1127.63 1074.74 958.82 932.11 905.12 847.63 746.52 623.35432 1039.25 1136.01 1116.60 1067.86 963.08 932.36 906.11 849.09 748.90 622.65468 1024.48 1130.94 1119.15 1065.28 953.06 933.85 907.84 850.55 747.00 622.18504 1020.99 1130.94 1120.85 1067.00 954.56 935.59 908.83 852.01 752.00 622.18540 1017.50 1126.70 1126.78 1069.58 964.84 937.58 906.85 852.25 758.43 622.65576 1019.25 1126.70 1130.17 1071.30 957.82 939.33 903.64 851.28 758.19 623.59612 1022.73 1130.94 1131.02 1073.02 964.09 940.32 901.43 849.58 756.29 624.53648 1026.22 1133.48 1131.87 1072.16 958.07 940.57 901.43 848.12 762.49 625.47684 1033.18 1116.52 1117.45 1072.16 961.08 938.83 899.95 846.42 758.67 625.94Average 1023.33 1122.79 1125.38 1068.37 956.83 930.29 904.10 845.72 751.73 622.64Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Shell Temperature ReadingsPosition, metresTime 0.146 0.921 1.492 2.210 5.35413:08:27.71 271.61 203.56 184.15 156.36 121.4214:05:39.89 273.22 206.16 188.47 164.13 125.99233Flue Gas AnalysisTime Port N2 02 CO213:15 5 82.4 3.4 14.213:20 5 81.7 2.2 16.113:43 5 76.1 5.9 18.013:53 5 76.1 4.2 19.713:57 5 75.4 2.3 22.3234Axial Calcination ResultsNatural Gas = 5.6 CFM Product ProductSample Code GP GPDate 25/Jun/90 25/Jun/90Before Firing, g 22.2855 21.9728After Firing, g 22.2077 21.8949Empty Crucible, g 9.9545 10.2683Wt of Sample Before, g 12.3310 11.7045Wt Loss by CaCO3, g 0.0778 0.0779% Calcination 98.55 98.47Lignin = 165 g/m Product Product Port #1 Port #1Sample Code LP LP L#1 L#1Date 25/Jun/90 25/Jun/90 28/Jun/90 , 28/Jun/90Before Firing, g 20.8824 21.5706 22.4253 23.8049After Firing, g 20.6657 21.3674 20.4204 22.1204Empty Crucible, g 10.5001 10.0641 10.4130 11.7836Wt of Sample Before, g 10.3823 11.5065 12.0123 12.0213Wt Loss by CaCO3, g 0.2167 0.2032 2.0049 1.6845% Calcination 95 21 95.94 61.67 67.82Average =^98.51%^ 95.58%^64.74%Lignin = 165 g/m Port #2 Port #2 Port #3 Port #3 Port #4 Port #4Sample Code L#2 L#2 L#3 L#3 L#4 L#4Date 25/Jun/90 28/Jun/90 25/Jun/90 25/Jun/90 25/Jun/90 25/Jun/90Before Firing, g 24.7378 25.4935 27.2490 27.4466 29.7319 28.1727After Firing, g 21.1773 21.4054 21.4059 21.3925 22.5711 21.4066Empty Crucible, g 12.1847 11.1864 12.0454 11.6540 12.5625 12.0844Wt of Sample Before, g 12.5531 14.3071 15.2036 15.7926 17.1694 16.0883Wt Loss by CaCO3, g 3.5605 4.0881 5.8431 6.0541 7.1608 6.7661% Calcination 34.86 34.38 11.74 11.96 4.22 3.41Average =^ 34.62%^11.85%^3.82%Run LG17Table of EventsAction Requested by Operator I^Time6/26/90 12:01:06.18Kiln speed (rpm) : 1.5 12:01:07.83Gas = 5.4 CFM 11:20:00Read Bed Temperatures 12:13:10.48Lignin = 132 g/min^Gas = 2.2 CFM 12:17:00Read Bed Temperatures 12:36:50.91Read Bed Temperatures 13:24:03.75Read Bed Temperatures 13:53:27.35Read Bed Temperatures 13:59:01.13Read Bed Temperatures 14:09:10.64Read Shell Temperatures 14:11:04.89Read Hot Face Heat Flux Temperatures 14:11:10.60Read Colder Heat Flux Temperatures 14:12:35.57Read Bed Temperatures 14:13:26.04Read Bed Temperatures 14:35:34.36236Cyclic Bed Temperature Readings12:13:10.48 1 2 3 4 5 6 7 8 9 100 1035.00 1108.89 1097.82 1017.61 908.74 881.18 838.75 794.84 686.32 607.8036 1040.23 1112.29 1109.74 N/A N/A N/A N/A N/A N/A 607.8072 1048.88 1119.93 1113.14 1034.14 916.66 891.49 845.31 806.86 694.13 618.87108 1060.96 1127.56 1112.29 1035.00 918.64 893.70 847.49 809.99 691.53 617.22144 1066.98 1130.10 1111.44 1035.00 918.89 893.46 847.74 807.83 678.53 604.74180 1058.37 1121.63 1108.04 1029.80 916.66 889.52 845.55 803.25 668.37 592.26216 1034.14 1091.84 1105.49 1016.74 911.46 882.16 839.97 795.32 658.70 577.89252 1008.00 1040.23 1050.61 977.26 902.32 869.18 830.76 778.06 651.86 578.36288 1008.88 1073.00 1049.74 980.78 898.87 866.98 831.00 779.02 658.23 588.25324 1023.71 1099.52 1075.57 1000.12 902.32 872.85 834.63 786.92 666.25 598.62360 1035.00 1107.19 1095.26 1012.37 907.01 879.46 838.51 794.84 674.28 607.57396 1040.23 1113.99 1108.04 1023.71 N/A N/A N/A N/A N/A 607.57432 1045.42 1121.63 1114.84 1029.80 915.67 890.75 845.79 807.59 683.96 618.87468 1060.09 1129.25 1112.29 1030.66 917.90 893.21 847.74 809.99 683.72 618.40504 1068.70 1130.94 1109.74 1031.53 918.64 893.21 848.22 809.75 676.40 607.57540 1061.82 1123.32 1105.49 1027.19 916.66 889.28 846.28 803.74 666.49 592.73576 1037.63 1096.96 1101.23 1017.61 911.71 882.65 840.94 796.52 658.70 578.59612 1007.13 1035.87 1049.74 976.37 903.06 869.67 831.00 778.54 653.04 576.47648 1001.88 1059.23 1047.15 979.90 899.12 866.49 830.76 778.06 660.35 586.37684 1018.48 1094.40 1072.14 1000.12 901.83 872.60 834.15 786.21 669.32 598.38Minimum 1001.88 1035.87 1047.15 976.37 898.87 866.98 830.76 778.06 651.86 576.47Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52112:36:50.91 1 2 3 4 5 6 7 8 9 100 952.79 1063.01 1098.15 1044.02 935.37 913.03 865.85 827.46 698.95 632.3936 953.68 1065.59 1097.29 1044.02 936.87 913.28 866.82 826.74 693.04 622.2672 954.56 1066.45 1097.29 1042.29 935.87 910.80 865.85 822.39 683.11 607.42108 937.64 1043.16 1093.03 1029.26 929.40 902.41 859.99 813.46 674.84 589.76144 917.52 997.82 1045.75 987.28 916.99 886.41 849.04 793.97 670.36 589.29180 911.38 1012.70 1039.69 995.19 914.02 883.71 848.55 794.93 676.73 600.59216 920.15 1031.86 1059.56 1011.83 918.48 890.83 852.20 803.58 686.42 612.14252 930.65 1040.56 1076.76 1024.91 923.68 898.71 856.09 811.53 693.04 620.85288 940.32 1049.21 1087.04 1032.73 904.63 859.75 818.28 697.06 627.92 620.85324 945.67 1056.11 1091.32 1037.07 931.88 909.07 863.41 823.11 699.66 632.39360 950.12 1060.42 1093.88 1040.56 935.37 912.29 866.09 826.01 700.13 632.63396 954.56 1063.87 1094.73 1040.56 936.87 912.78 867.07 826.01 693.27 622.97432 956.34 1063.87 1095.59 1040.56 936.37 909.32 865.12 821.42 683.82 607.66468 1047.48 1030.99 N/A N/A N/A N/A N/A N/A 683.82 607.66504 918.40 999.58 1045.75 988.16 918.48 887.15 849.28 794.93 667.76 588.82540 914.89 1011.83 1037.96 993.43 914.27 882.98 848.31 795.17 673.43 601.07576 920.15 1030.13 1058.70 1007.46 918.48 890.10 851.96 803.34 684.05 611.90612 930.65 1041.42 1075.04 1021.43 923.68 897.72 855.85 811.05 692.09 621.32648 938.53 1050.94 1085.33 1030.99 928.65 903.89 859.75 817.56 697.06 628.39684 942.99 1056.98 1090.46 1037.07 933.13 909.32 863.65 823.11 700.61 632.39Minimum 911.38 997.82 1037.96 987.28 904.63 859.75 818.28 697.06 627.92 588.82Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52113:24:03.75 1 2 3 4 5 6 7 8 9^_ 100 943.47 1049.69 1073.81 1022.78 922.18 899.44 862.18 819.73 694.70 624.3936 951.49 1056.59 1086.67 1034.95 927.39 907.33 866.57 826.25 699.43 632.6472 961.26 1061.77 1094.36 1043.64 932.61 913.76 870.72 830.84 702.74 637.82108 964.80 1066.07 1097.77 1047.96 937.10 918.96 874.39 834.96 705.35 641.36144 969.23 1068.65 1098.63 1049.69 939.34 920.69 876.84 836.90 705.35 635.94180 972.77 1070.37 1097.77 1050.55 939.84 919.70 877.09 700.38 N/A 635.94216 972.77 1072.09 1096.92 1047.96 938.59 915.98 874.88 700.38 N/A 635.94252 953.27 1041.90 1087.52 1019.29 928.14 904.12 868.04 817.07 687.37 589.30288 941.69 1014.93 1050.55 993.04 916.73 890.09 858.77 805.27 685.48 599.66324 943.47 1038.44 1057.46 1007.94 917.47 892.30 859.01 811.05 689.50 612.62360 946.15 1048.82 1072.95 1021.91 923.17 900.67 862.18 819.24 694.70 623.69396 952.38 1057.46 1084.95 1034.95 928.39 907.58 865.84 825.04 698.96 631.46432 958.60 1062.63 1092.65 1041.04 933.61 913.76 869.50 830.60 702.51 637.35468 963.92 1066.93 1095.21 1045.37 938.34 918.71 873.41 834.96 704.88 640.18504 968.34 1069.51 1096.07 1048.82 941.09 921.44 876.11 836.90 704.64 634.76540 N/A N/A N/A N/A 919.95 N/A N/A N/A N/A 634.76576 971.00 1072.95 1097.77 1051.42 939.09 915.49 873.90 N/A N/A 634.76612 950.60 1041.04 1089.23 1021.91 928.88 903.63 867.30 817.55 686.66 589.30648 938.12 1014.93 1051.42 996.55 917.72 889.35 858.28 805.51 685.01 598.25684 943.47 1039.31 1057.46 1010.56 918.71 891.56 859.01 810.80 688.55 610.97Minimum 938.12 1014.93 1050.55 993.04 916.73 889.35 858.28 700.38 620.86 589.30Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 _^3.994 4.52113:53:27.35 1 2 3 4 5 6 7 8 9 100 934.03 1036.96 1065.49 1016.08 912.80 883.00 840.57 794.01 668.52 601.8336 941.08 1044.78 1078.38 1028.28 918.00 891.10 844.21 800.50 674.19 610.5472 N/A N/A N/A N/A N/A N/A N/A N/A N/A 610.54108 953.55 1056.87 1088.66 1042.18 928.91 904.40 852.23 810.36 681.51 620.43144 957.99 1058.60 1089.51 1043.92 932.40 908.60 856.12 813.49 682.69 618.55180 956.21 1060.32 1091.22 1043.05 933.89 909.34 859.05 813.98 678.67 607.48216 956.21 1062.05 1091.22 1043.05 932.89 906.87 859.78 810.84 672.53 607.48252 935.78 1040.45 1086.95 1021.31 925.19 896.76 856.12 803.62 665.69 571.44288 921.79 1007.34 1049.10 988.04 913.05 880.80 843.73 788.97 662.39 578.27324 924.42 1024.80 1049.10 1002.09 910.57 878.59 841.30 790.17 666.40 591.23360 933.16 1036.09 1064.63 1017.83 914.78 885.21 842.51 795.45 672.06 603.00396 943.75 1045.65 1078.38 1030.02 920.72 893.81 845.91 801.46 677.02 611.48432 949.99 1086.09 N/A N/A N/A N/A N/A N/A 677.02 611.48468 957.10 1056.87 1089.51 1043.92 928.91 905.14 853.20 810.12 683.16 619.96504 957.99 1058.60 1091.22 1048.24 931.15 907.86 856.37 812.77 684.11 618.31540 959.76 1060.32 1092.93 1047.38 932.40 908.35 858.56 813.25 680.80 607.01576 964.20 1062.05 1092.93 1049.10 931.15 906.13 858.80 810.12 680.80 607.01612 944.65 1040.45 1090.37 1027.41 923.20 896.51 855.39 803.38 668.76 573.09648 928.79 1006.47 1051.70 991.56 911.81 880.80 843.48 788.97 663.80 578.51684 927.92 1023.93 1050.83 1002.97 909.83 879.08 840.81 789.93 667.10 590.76Minimum 921.79 1006.47 1049.10 988.04 909.83 878.59 840.57 788.97 662.39 571.44Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521g13:59:01.13 1 2 3 4 5 6 7 8 9 100 963.31 1060.32 1090.37 1040.45 926.18 901.19 852.23 808.20 681.74 621.6136 965.97 1062.91 1092.08 1043.05 928.42 903.41 854.66 809.88 681.51 615.4972 N/A N/A N/A N/A N/A N/A 854.66 809.88 681.51 615.49108 967.74 1063.77 1094.64 1046.51 N/A N/A N/A N/A 681.51 615.49144 940.19 1025.67 1076.66 1007.34 916.51 886.44 849.31 794.01 665.22 574.26180 926.17 1009.97 1046.51 994.19 908.10 875.90 839.60 787.06 665.22 585.57216 934.90 1030.89 1056.01 1009.97 909.59 878.59 839.60 790.41 668.52 596.41252 946.43 1041.32 1071.51 1023.93 915.03 886.93 841.78 796.17 673.01 605.83288 953.55 1049.10 1083.52 1034.36 919.48 893.32 844.70 800.74 677.02 605.83324 958.88 1054.29 1088.66 1040.45 924.20 898.98 847.85 805.07 680.09 619.02360 966.85 1057.74 1091.22 1043.05 927.42 902.67 851.50 808.20 682.22 621.61396 968.62 1059.46 1093.79 1046.51 930.16 904.89 853.93 809.88 681.51 617.13432 967.74 1062.05 1095.49 1049.10 932.15 905.88 856.37 809.40 676.55 603.00468 967.74 1063.77 1097.20 1046.51 N/A N/A N/A 809.40 676.55 603.00504 941.08 1023.93 1078.38 1007.34 919.48 889.14 850.77 795.69 664.27 575.91540 925.29 1008.22 1048.24 994.19 910.33 877.86 840.81 787.78 664.51 587.93576 931.41 1027.41 1056.87 1012.59 913.05 881.78 841.30 792.09 669.46 599.47612 941.08 1039.59 1070.65 1026.54 91825 889.63 843.97 797.85 674.89 608.89648 947.32 1048.24 1082.66 1035.23 923.45 897.75 847.85 803.38 679.38 608.89684 952.66 1053.42 1087.80 1040.45 928.17 904.40 851.99 807.95 682.92 622.08Minimum 925.29 1008.22 1046.51 994.19 908.10 875.90 839.60 787.06 664.27 574.26Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.52114:09:10.64 1 2 3 4 5 6 7 8 9 100 964.34 1060.46 1091.36 1046.65 933.53 908.49 861.38 812.19 677.16 603.1436 960.79 1060.46 N/A N/A N/A N/A N/A 812.19 677.16 603.1472 934.17 1022.33 1071.65 1003.98 919.13 890.51 854.32 797.27 665.36 578.17108 924.56 1010.98 1048.38 996.97 911.70 880.20 844.11 791.99 666.06 588.30144 931.55 1030.16 1058.74 1015.35 914.42 883.88 844.35 795.83 671.49 600.55180 939.43 1039.73 1072.51 1026.68 918.88 891.73 846.05 800.40 676.69 610.21216 948.35 1046.65 1081.09 1035.37 924.09 899.12 849.70 N/A 676.69 610.21252 955.46 1052.70 1087.09 1041.46 928.56 905.03 853.34 808.34 684.25 623.16288 962.56 1054.43 1089.65 1044.92 932.29 908.74 856.99 810.98 686.14 624.11324 966.11 1057.88 1091.36 1049.24 935.03 911.21 859.19 812.91 684.48 617.75360 967.88 1060.46 1092.22 1050.11 935.27 910.71 862.11 812.43 676.92 604.32396 965.22 1059.60 1091.36 1046.65 935.27 910.71 862.11 812.43 676.92 604.32432 938.54 1023.20 1072.51 1003.98 920.62 891.24 856.26 798.47 666.30 579.82468 927.18 1048.38 N/A N/A N/A N/A N/A N/A 590.90 579.82504 939.43 1029.29 1057.88 1013.60 915.66 884.86 844.84 796.31 673.85 603.14540 943.00 1037.97 1070.79 1026.68 920.62 893.70 846.78 802.08 678.81 613.27576 949.24 1045.79 1080.23 1035.37 924.83 900.84 850.67 806.89 682.59 613.27612 955.46 1050.97 1086.23 1041.46 928.56 905.53 854.56 810.26 685.19 624.81648 958.13 1054.43 1087.94 1043.19 932.04 909.48 857.97 813.15 687.08 627.17684 959.02 1055.29 1088.80 1044.92 934.03 911.21 861.38 814.84 686.14 620.10Average 924.56 1010.98 1048.38 996.97 911.70 880.20 844.11 791.99 665.36 578.17Distance, m 0.146 0.464 0.921 1.492 2.210 2.553 2.915 3.270 3.994 4.521NOTE: This set of data was used for steady state calculations.Cyclic Hot Face Wall Probe Temperature Readings14:11:10.60 1 2 3- 4 5 6 7 8 9 100 N/A 1004.86 951.91 911.46 867.72 837.32 N/A N/A 508.55 N/A36 N/A 1003.98 951.91 N/A N/A N/A N/A N/A 508.55 N/A72 N/A 993.46 944.79 906.76 865.53 833.68 N/A N/A 509.02 364.96108 N/A 986.42 938.54 902.81 863.58 831.99 N/A N/A 508.31 363.27144 N/A 990.82 940.33 903.80 863.82 833.68 N/A N/A 507.84 363.27180 N/A 996.97 943.89 906.02 864.80 835.14 N/A N/A 507.84 363.75216 N/A 999.60 946.57 907.75 865.53 836.11 N/A N/A 507.60 363.75252 N/A 1001.35 948.35 909.23 866.50 836.83 N/A N/A 507.84 364.96288 N/A 1003.11 950.13 910.22 866.99 837.32 N/A N/A 508.31 365.68324 N/A 1003.98 951.91 911.21 867.72 837.56 N/A N/A 508.78 366.40360 N/A 1004.86 952.80 911.70 867.72 N/A N/A N/A N/A 366.40396 N/A 1003.98 951.91 911.46 867.72 N/A N/A N/A N/A 366.40432 N/A 992.58 944.79 907.26 865.53 833.44 N/A N/A 509.26 366.40468 N/A 986.42 938.54 903.31 863.58 831.75 N/A N/A 508.78 363.75504 N/A 990.82 939.43 903.80 863.58 833.68 N/A N/A 508.07 363.75540 N/A 996.97 943.89 906.02 864.55 835.14 N/A N/A 508.07 364.23576 N/A 999.60 946.57 907.75 86528 836.35 N/A N/A 507.84 364.23612 N/A 1000.48 948.35 909.73 866.50 837.56 N/A N/A 508.07 365.20648 N/A 1001.35 950.13 910.96 867.48 838.29 N/A N/A 508.55 365.92684 N/A 1002.23 951.91 911.70 867.97 838.53 N/A N/A 508.78 366.64Average N/A 998.19 946.83 908.05 865.90 835.55 N/A N/A 508.34 364.94Distance, m 0.616 1.010 1.568 2.064 2.375 2.724 3.048 4.070 4.585 5.213Interior Wall Probe Temperature Readings14:12:35.57Position 0.2506Radius, m0.2318 0.21300.616 N/A N/A N/A1.010 384.17 688.53 N/A1.568 N/A 630.16 890222.064 361.82 614.92 866.992.375 N/A 580.53 N/A2.724 N/A N/A 790.793.048 N/A N/A 738.984.070 N/A N/A 550.364.585 N/A 317.11 470.625.213 N/A 267.74 350.01244Suction Pyrometer Temperature Readings of Flue Gas245This data was lost to the computer.Shell Temperature Readings246This data was lost to the computer.Flue Gas AnalysisTime Port N2 02 CO212:38 5 75.1 2.7 22.212:46 5 77.6 2.6 19.812:50 5 75.2 1.7 23.112:54 5 78.3 1.5 20.212:59 5 74.9 1.7 23.413:26 5 76.1 2.4 21.513:55 5 74.0 2.2 23.8247Axial Calcination ResultsNatural Gas = 5.4 CFM Product ProductSample Code GP GPDate 27/Jun/90 27/Jun/90Before Firing, g 21.3731 22.5059After Firing, g 21.3037 22.3912Empty Crucible, g 10.4086 11.7910Wt of Sample Before, g 10.9645 10.7149Wt Loss by CaCO3, g 0.0694 0.1147% Calcination 98.55 97.54Lignin = 132 g/m Product Product Port #1 Port #1Sample Code LP LP L#1 L#1Date 27/Jun/90 27/Jun/90 30/Jun/90 30/Jun/90Before Firing, g 225754 23.4529 23.8047 21.9730After Firing, g 22.4063 23.3278 21.6156 19.9854Empty Crucible, g 11.1783 12.0220 11.3931 10.6012Wt of Sample Before, g 11.3971 11.4309 12.4116 11.3718Wt Loss by CaCO3, g 0.1691 0.1251 2.1891 1.9876% Calcination 96.59 97.49 59.49 59.86Average =^ 98.04%^ 97.04%^59.68%Lignin = 132 g/m Port #2 Port #2 Port #3 Port #3 Port #3 Port #3 Port #4 Port #4 Port #5 Port #5Sample Code L#2 L#2 L#3 L#3 L#3 L#3 L#4 L#4 L#5 L#5Date 27/Jun/90 27/Jun/90 27/Jun/90 27/Jun/90 30/Jun/90 30/Jun/90 27/Jun/90 27/Jun/90 28/Jun/90 28/Jun/90Before Firing, g 23.5239 22.5660 26.8818 25.7489 25.8480 26.2792 26.5337 25.8418 28.0523 28.9566After Firing, g 19.9058 19.3174 20.7256 19.9813 20.7661 21.1439 19.9728 19.1737 20.8625 21.0204Empty Crucible, g 9.9582 10.2720 10.5041 10.0690 12.1949 12.6168 10.9828 10.0932 11.3850 10.5921Wt of Sample Before, g 13.5657 122940 16.3777 15.6799 13.6531 13.6624 15.5509 15.7486 16.6673 183645Wt Loss by CaCO3, g 3.6181 3.2486 6.1562 5.7676 5.0819 5.1353 6.5609 6.6681 7.1898 7.9362% Calcination 38.75 39.31 13.67 15.52 14.52 13.68 3.11 2.76 0.93 0.75Average =^39.03%^ 14.35%^ 2.93%^0.84%249Appendix EOther Graphs, Temperature, Calcination & Slaking ProfilesPageFigure E-1. Axial gas temperature profiles for tests with natural gas^ 250Figure E-2. Axial gas temperature profiles for tests with lignin IR 251Figure E-3. Axial gas temperature profiles for tests with lignin PG^ 252Figure E-4. Axial gas temperature profiles for tests with natural gas firing versus 60% lignin burning^253Figure E-5. Axial gas temperature profiles for tests with natural gas firing versus 75% lignin burning^254Figure E-6. Axial gas temperature profiles for tests with natural gas firing versus 100% lignin burning ^255Figure E-7. Axial bed temperature profiles for tests with natural gas^ 256Figure E-8. Axial bed temperature profiles for tests with lignin IR 257Figure E-9. Axial bed temperature profiles for tests with lignin PG^ 258Figure E-10. Axial bed temperature profiles for tests with natural gas firing versus 60% lignin burning^259Figure E-11. Axial bed temperature profiles for tests with natural gas firing versus 75% lignin burning^260Figure E-12. Axial calcination profiles for tests with natural gas firing versus 60% lignin burning^261Figure E-13. Axial calcination profiles for tests with natural gas firing versus 75% lignin burning^262Figure E-14. Slaking temperature rise curves for tests with lignin IR^ 263Figure E-15. Slaking temperature rise curves for tests with lignin PG 264Figure E-16. Slaking temperature rise curves for tests with natural gas firing versus 60% lignin burning... ^ 265Figure E-17. Slaking temperature rise curves for tests with natural gas firing versus 100% lignin burning. 266130012001100C-)01000$..,=1;3^900I.-a.)a,E 800g700600500 .^10.0 0.5^1.0^1.5^2.0^2.5^3.0^3.514.0^4.5^5.0Distance from Outlet, mFigure E-1. Axial gas temperature profiles for tests with natural gas130012001100U01000c;$...art 900L.a)cuiE 800a)E-i700600500 \u00E2\u0080\u00A2 1 I 1 1 1 1 1 1 10.0^0.5^1.0^1.5^2.0^2.5^3.0^3.5^4.0^4.5Distance from Outlet, m5.0Gas G2Gas G360% Lignin75% Lignin100% LigninFigure E-2. Axial gas temperature profiles for tests with lignin IR130012001100010001-4^900E 800E-0700600500 \u00E2\u0080\u00A20.0 0.5^1.0^1.5^2.0^2.5^3.0^3.5 4.0^4.5^5.0Distance from Outlet, mFigure E-3. Axial gas temperature profiles for tests with lignin PG130012001100c...)01000ciSs6='cl^900u.a.)ra.E 800c4En.\u00C2\u00B0700600500 \u00E2\u0080\u00A2^i0.0 0.5^1.0^1.5^2.0^2.5^3.0^3.5 4.0^4.5^5.0Distance from Outlet, mFigure E-4. Axial gas temperature profiles for tests with natural gas firing versus 60% lignin burning130012001100C.)01000I..:*cr3 900$...a)a,E 800a)E-4700600500 \u00E2\u0080\u00A2^10.0I^I^i^I^\u00E2\u0080\u00A2^i^I^\u00E2\u0080\u00A2^I^i0.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, m4.0 4.5 5.0Figure E-5. Axial gas temperature profiles for tests with natural gas firing versus 75% lignin burningC.)oCl.;6=*CCI6Cl.)C61Ea.)E-413001200110010009008007006005000.0 0.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, m4.0^4.5^5.0Figure E-6. Axial gas temperature profiles for tests with natural gas firing versus 100% lignin burning120011001000C.)003'L..^900=CI6a)^800rm.Eg 700600500^.^1^I^'^I^'^I^\u00E2\u0080\u00A2^I^\u00E2\u0080\u00A2^I^I^I0.0^0.5^1.0^1.5 2.0 2.5^3.0^3.5 4.0 4.5Distance from Outlet, m5.0Figure E-7. Axial bed temperature profiles for tests with natural gas,120011001000(...)0C:^900L.,a4C-4:...co^800a.5c,)E--( 700600500 .^10.0Gas G2Gas G360% Lignin75% Lignin100% Lignini\u00E2\u0080\u00A2^1^i^,^1^I^1^\u00E2\u0080\u00A2^I5.00.5^1.0^1.5^2.0^2.5^3.0^3.5 4.0 4.5Distance from Outlet, mFigure E-8. Axial bed temperature profiles for tests with lignin IR120011001000900800700600500 ^0.0Gas G2Gas G360% Lignin75% Lignin100% LigninI^I^I^I^I^I^I^I5.00.5^1.0^1.5^2.0^2.5^3.0^3.5 4.54.0Distance from Outlet, mFigure E-9. Axial bed temperature profiles for tests with lignin PG120011001000L.)00.7s..^900a4c-t:s...ci.)^800a.Ea)E.-4^700600500 .^I0.0Gas G2Gas G3Lignin IRLignin WVLignin PGI^I^I^I^\u00E2\u0080\u00A2^r^\u00E2\u0080\u00A2^I^\u00E2\u0080\u00A2^I^\u00E2\u0080\u00A2^I5.00.5^1.0^1.5^2.0^2.5^3.0^3.5 4.0 4.5Distance from Outlet, mFigure E-10. Axial bed temperature profiles for tests with natural gas firing versus 60% lignin burning120011001000C.)0s.,^900=741...a)^800ca.,Ec.)E\u00E2\u0080\u0094I^700600Gas G2Gas G3Lignin IRLignin WVLignin PG500 .^10.0i^I^I4.0 4.5^5.00.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, mFigure E-11. Axial bed temperature profiles for tests with natural gas firing versus 75% lignin burningGas G2Gas G3Lignin IRLignin WVLignin PG0.0^0.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, mFigure E-12. Axial calcination profiles for tests with natural gas firing versus 60% lignin burning0.0^0.5^1.0^1.5^2.0^2.5^3.0^3.5Distance from Outlet, mFigure E-13. Axial calcination profiles for tests with natural gas firing versus 75% lignin burningGas G2Gas G360% Lignin75% Lignin100% Lignin105103101999795939189^.^i^\u00E2\u0080\u00A21^i^1^i\u00E2\u0080\u00A2I^\u00E2\u0080\u00A2^I0 30 60 90 120 150^180 210Time, sec240Figure E-14. Slaking temperature rise curves for tests with lignin IR9795Gas G2Gas G360% Lignin75% Lignin100% Lignin105103101cr\u00E2\u0080\u00A2;.)99939189^.^1\u00E2\u0080\u00A21^.^\u00E2\u0080\u00A2^1^.^1^1\u00E2\u0080\u00A2i^10 30^60 90 120 150^180 210Time, secFigure E-15. Slaking temperature rise curves for tests with lignin PG240k)Figure E-16. Slaking temperature rise curves for tests with natural gas firing versus 60% lignin burning10510399c1.5\u00E2\u0080\u0098s..,alal 976cl)4E 95Ell'Gas G2Gas G3Lignin IRLignin WVLignin PG939189^.^1^1^1^1^1^1^I^0 30 60 90 120Time, sec240180 2101501051031019997959391Gas G2Gas G3Lignin IRLignin WVLignin PG89^.^1 \u00E2\u0080\u00A2^1^\u00E2\u0080\u00A21^ \u00E2\u0080\u00A21^ i^ 1^ 1^0 30^60 90^120Time, sec150 180 210 240Figure E-17. Slaking temperature rise curves for tests with natural gas firing versus 100% lignin burning267Appendix FElemental Balances for Experimental RunsPageElemental Balance for LG9^ 268Elemental Balance for LG10A 270Elemental Balance for LG10B 272Elemental Balance for LG11^ 274Elemental Balance for LG12A 276Elemental Balance for LG12B 278Elemental Balance for LG13^ 280Elemental Balance for LG14 282Elemental Balance for LG15A 284Elemental Balance for LG15B^ 286Elemental Balance for LG16 288Elemental Balance for LG17 290Elemental Balance for LG9Limestone = 39.3kg/Hr 655.0 g/min Lignin = 145 g/min Total InputCa= 38.4^% 251.5 g/min 251.5 g/min 38.07 %S = Assumed to be ZERO S = 3.2 % 4.64 g/min S = 4.64 g/min 0.70 %SO4 = Assumed to be ZERO SO4 = 1.21 % 1.75 g/min SO4 = 1.75 g/min 0.27 %org S = Assumed to be 7FRO org S = 1.99 % 2.89 g/min org S = 2.89 g/min 0.44 %Si = 1.01^% 6.6 g/min Si = Assumed to be ZERO Si = 6.62 g/min 1.00 %Na = 282^mg/kg 184.7 mg/min Na = 0.51 % 0.74 g/min Na = 0.92 g/min 0.14 %Fe = 643^mg/kg 421.2 mg/min Fe = 0.13 % 0.19 g/min F = 0.61 g/min 0.09 %Al = 830^mg/kg 543.7 mg/min Al = 130 mg/kg 18.9 mg/min Al = 562.5 mg/min 851.5 mg/kgMg = 2730^mg/kg 1788.2 mg/min Mg = 132 mg/kg 19.1 mg/min Mg = 1807.3 mg/min 2735.7 mg/kgMn = 57.1^mg/kg 37.4 mg/min Mn = 182 mg/kg 26.4 mg/min Mn = 63.8 mg/min 96.6 mg/kgAmount Requir ed for Balance36.27 g/min 36.21 %3.89 g/min 3.88 %3.54 g/min 3.53 %0.81 g/min 0.80 %0.25 g/min 0.25 %273.8 mg/min 2733.0 mg/kg689.8 mg/min 6886.6 mg/kg35.8 mg/min 357.6 mg/kgElement / Input%Ca= 85.58S= 16.16SO4= N/Aorg S = N/ASi = 46.48Na= 12.82Fe= 58.43Al = 51.33Mg= 61.83Mn = 43.85DustCa=^23.3 %S=^2.2 %SO4= N/Aorg S = N/ASi =^1.7^%Na=^2.88 %Fe=^20.99 %A1=^3125 mg/kgMg =^3225 mg/kgMn =^2431 mg/kgLime = 22.5 kg/Hr 375.0 g/minCa= 57.4 % 215.3 g/minS= 0.2 % 0.75 g/minSO4 = N/Aorg S = N/ASi = 0.82 % 3.08 g/minNa = 316 mg/kg 118.5 mg/minFe= 950 mg/kg 356.3 mg/minA1= 770 mg/kg 288.8 mg/minMg = 2980 mg/kg 1117.5 mg/minMn = 74.6 mg/kg 28.0 mg/minElemental Balance for LG10ALimestone =^39.3^kg/Hr 655.0 g/min Lignin = 180 g/min Total InputCa= 38.4^% 251.5 g/min - 251.5 g/min 37.99 %S = Assumed to be ZERO S = 3.23 % 5.8 g/min S = 5.81 g/min 0.88 %SO4 = Assumed to be ZERO SO4 = 1.31 % 2.36 g/min SO4 = 2.36 g/min 0.36 %org S = Assumed to be ZERO org S = 1.92 % 3.46 g/min org S = 3.46 g/min 0.52 %Si = 1.01^% 6.6 g/min Si = Assumed to be ZERO Si = 6.62 g/min 1.00 %Na = 282^mg/kg 184.7 mg/min Na = 0.5 % 0.9 g/min No = 1.08 g/min 0.16 %Fe = 643^mg/kg 421.2 mg/min Fe = 0.15 % 0.3 g/min Fe = 0.69 g/min 0.10 %Al = 830^mg/kg 543.7 mg/min Al = 130 mg/kg 23.4 mg/min Al = 567.1 mg/min 856.5 mg/kgMg = 2730^mg/kg 1788.2 mg/min Mg = 121 mg/kg 21.8 mg/min Mg = 1809.9 mg/min 2733.8 mg/kgMn = 57.1^mg/kg 37.4 mg/min Mn = 172 mg/kg 31.0 mg/min Mn = 68.4 mg/min 103.3 mg/kgAmount Requir ed for Balance46.40 g/min 36.67 %5.06 g/min 4.00 %3.69 g/min 2.92 %0.84 g/min 0.67 %0.17 g/min 0.13 %-228.0 mg/min 0.0 mg/kg741.2 mg/min 5857.5 mg/kg37.6 mg/min 297.2 mg/kgElement / Input%Ca= 81.55S = 12.90SO4 = N/Aorg S = N/ASi = 44.21Na= 22.16Fe= 75.42A1= 140.20Mg= 59.05Mn = 44.98DustCa=^20.4 %S=^1.9 %SO4= N/Aorg S = N/ASi =^1.47 %Na=^3.43 %Fe=^22.22 %A1=^2449 mg/kgMg =^2993 mg/kgMn =^2622 mg/kgLime = 22.5 kg/Hr 375.0 g/minCa= 54.7 % 205.1 g/minS= 0.2 % 0.8 g/minSO4= N/Aorg S = N/ASi = 0.78 % 2.9 g/minNa= 641 mg/kg 240.4 mg/minFe= 1390 mg/kg 521.3 mg/minA1= 2120 mg/kg 795.0 mg/minMg= 2850 mg/kg 1068.8 mg/minMn = 82 mg/kg 30.8 mg/minElemental Balance for LG10BLimestone = 36.0^kg/Hr 600.0 g/min Lignin = 240 g/min Total InputCa= 38.4^% 230.4 g/min Ca= 230.4 g/min 37.81 %S = Assumed to be ZERO S = 3.23 % 7.8 g/min S = 7.75 g/min 1.27 %SO4 = Assumed to be ZERO SO4 = 1.31 % 3.14 g/min SO4 = 3.14 g/min 0.52 %org S = Assumed to be ZERO org S = 1.92 % 4.61 g/min org S = 4.61 g,/min 0.76 %Si = 1.01^% 6.1 g/min Si = Assumed to be ZERO Si = 6.06 g/min 0.99 %Na = 282^mg/kg 169.2 mg/min Na = 0.5 % 1.2 g/min Na = 1.37 g/min 0.22 %Fe = 643^mg/kg 385.8 mg/min Fe = 0.15 % 0.4 g/min Fe = 0.75 g/min 0.12 %Al = 830^mg/kg 498.0 mg/min Al = 130 mg/kg 31.2 mg/min Al = 529.2 mg/min 868.4 mg/kgMg = 2730^mg/kg 1638.0 mg/min Mg = 121 mg/kg 29.0 mg/min Mg = 1667.0 mg,/min 2735.5 mg/kgMn = 57.1^mg/kg 34.3 mg/min Mn = 172 mg/kg 41.3 mg/min Mn = 75.5 mg/min 124.0 mg/kgAmount Requir ed for Balance29.27 g/min 34.22 %6.96 g/min 8.14 %2.92 g/min 3.42 %1.26 g/min 1.47 %0.28 g/min 0.32 %173.9 mg/min 2032.9 mg/kg721.7 mg/min 8439.5 mg/kg46.6 mg/min 545.2- mg/kgElement / Input%Ca= 87.30S= 10.24SO4 = N/Aorg S = N/ASi = 51.81Na= 8.04Fe= 62.91A1= 67.15Mg= 56.71Mn = 38.27DustCa=^20.4 %S=^1.9 %SO4 = N/Aorg S = N/ASi =^1.47 %Na=^3.43 %Fe=^22.22 %A1=^2449 mg/kgMg=^2993 mg/kgMn =^2622 mg/kgLime = 20.7 kg/Hr 345.0 g/minCa= 58.3 % 201.1 g/minS= 0.23 % 0.8 g/minSO4= N/Aorg S = N/ASi = 0.91 % 3.1 g/minNa = 319 mg/kg 110.1 mg/minFe= 1360 mg/kg 469.2 mg/minA1= 1030 mg/kg 355.4 mg/minMg = 2740 mg/kg 945.3 mg/minMn = 83.8 mg/kg 28.9 mg/minElemental Balance for LG11Limestone =^36.6^kg/Hr 610.0 g/min Lignin = 218 g/min Total InputCa = 38.4^% 234.2 g/min Ca - 234.2 g/min 38.06 %S = Assumed to be ZERO S = 1.34 % 2.92 g/min S = 2.92 g/min 0.47 %SO4 = Assumed to be ZERO SO4 = 0.59 % 1.29 g/min SO4 = 1.29 g/min 0.21 %org S = Assumed to be ZERO org S = 0.75 % 1.64 g/min org S = 1.64 g/min 0.27 %Si = 1.01^% 6.2 g/min Si = Assumed to be ZERO Si = 6.16 g/min 1.00 %Na = 282^mg/kg 172.0 mg/min Na = 1.08 % 2.35 g/min Na = 2.53 g/min 0.41 %Fe = 643^mg/kg 392.2 mg/min Fe = 0.01 % 0.02 g/min Fe = 0.41 g/min 0.07 %Al = 830^mg/kg 506.3 mg/min Al = 340 mg/kg 74.1 mg/min Al = 580.4 mg/min 943.1 mg/kgMg = 2730^mg/kg 1665.3 mg/min Mg = 105 mg/kg 22.9 mg/min Mg = 1688.2 mg/min 2743.2 mg/kgMn = 57.1^mg/kg 34.8 mg/min Mn = 60.3 mg/kg 13.1 mg/min Mn = 48.0 mg,/min 78.0 mg/kgAmount Requir ed for Balance36.49 g/min 36.75 %2.40 g/min 2.41 %2.24 g/min 2.26 %2.40 g/min 2.42 %-0.20 g/min 0.00 %286.4 mg/min 2884.8 mg/kg718.7 mg/min 7238.5 mg/kg21.1 mg/min 212.5 mg/kgElement / Input%Ca; 84.42S; 17.97SO4 = N/Aorg S = N/ASi = 63.63Na = 5.06Fe= 148.78Al; 50.65Mg; 57.43Mn = 56.03DustCa=^28.40 %S=^1.50 %SO4= N/Aorg S = N/ASi =^3.53 %Na =^0.47 %Fe=^0.60 %Al=^7616 mg/kgMg;^3441 mg/kgMn =^204 mg/kgLime = 21.0 kg/Hr 350.0 g/minCa= 56.5 % 197.8 g/minS= 0.15 % 0.53 g/minSO4= N/Aorg S = N/ASi = 1.12 % 3.92 g/minNa = 365 mg/kg 127.8 mg/minFe= 1760 mg/kg 616.0 mg/minAl; 840 mg/kg 294.0 mg/minMg= 2770 mg/kg 969.5 mg/minMn = 76.8 mg/kg 26.9 mg/minElemental Balance for LG12ALimestoneCa==^35.3^kg/Hr^38.4^%588.3225.9gjmingjminLignin = 131 g/min Total Input225.9 g/min 38.17 %S = Assumed to be ZERO S = 1.6 % 2.1 g/min S = 2.10 gjmin 0.35 %SO4 = Assumed to be ZERO SO4 = 0.66 % 0.86 g/min SO4 = 0.86 gjmin 0.15 %org S = Assumed to be ZERO org S = 0.94 % 1.23 g/min org S = 1.23 gjmin 0.21 %Si = 1.01^% 5.9 g/min Si = Assumed to be ZERO Si = 5.94 g/min 1.00 %Na = 282^mg/kg 165.9 mg/min Na = 1.08 % 1.4 g/min Na = 1.58 gjmin 0.27 %Fe = 643^mg/kg 378.3 mg/min Fe = 0.01 % 0.0 gjmin Fe = 0.39 gjmin 0.07 %Al = 830^mg/kg 488.3 mg/min Al = 320 mg/kg 41.9 mg/min Al = 530.2 mg/min 895.8 mg/kgMg = 2730^mg/kg 1606.2 mg/min Mg = 106 mg/kg 13.9 mg/min Mg = 1620.0 mg/min 2736.9 mg/kgMn = 57.1^mg/kg 33.6 mg/min Mn = 61 mg/kg -^8.0 mg/min Mn = 41.6 mg/min 70.3 mg/kgAmount Requir ed for Balance26.61 g/min 36.34 %1.52 g/min 2.08 %2.64 g/min 3.61 %1.42 g/min 1.94 %0.14 g/min 0.19 %267.6 mg/min 3654.2 mg/kg697.6 mg/min 9524.3 mg/kg15.8 mg/min 215.2 mg/kgElement / Input%Ca= 88.22S= 27.31SO4= N/Aorg S = N/ASi = 55.52Na= 10.29Fe= 63.65A1= 49.53Mg= 56.94, Mn = 62.10DustCa=^39.7 %S=^1.4 %SO4= N/Aorg S = N/ASi =^3.45 %Na=^2.3 %Fe=^0.38 %A1=^10570 mg/kgMg=^6602 mg/kg, Mn =^1814 mg/kgLime = 20.2 kg/Hr 336.7 g/minCa= 59.2 % 199.3 g/minS= 0.17 % 0.6 g/minSO4= N/Aorg S = N/ASi = 0.98 % 3.3 g/minNa= 483 mg/kg 162.6 mg/minFe= 740 mg/kg 249.1 mg/minA1= 780 mg/kg 262.6 mg/minMg = 2740 mg/kg 922.5 mg/minMn = 76.7 mg/kg 25.8 mg/minElemental Balance for LG12BLimestoneCa==^35.4^kg/Hr^38.4^%590.0226.6g/ming/minLignin = 163 g/min Total Input-^226.6 g/min 38.11 %S = Assumed to be ZERO S = 1.6 % 2.6 g/min S = 2.61 g/min 0.44 %SO4 = Assumed to be ZERO SO4 = 0.66 % 1.08 g/min SO4 = 1.08 g/min 0.18 %org S = Assumed to be ZERO org S = 0.94 % 1.53 g/min org S = 1.53 g/min 0.26 %Si = 1.01^% 6.0 g/min Si = Assumed to be ZERO Si = 5.96 g/min 1.00 %No = 282^mg,/kg 166.4 mg/min Na = 1.08 % 1.8 g/min No = 1.93 g/min 0.32 %Fe = 643^mg/kg 379.4 mg/min Fe = 0.01 % 0.0 g/min Fe = 0.40 g/min 0.07 %Al = 830^mg/kg 489.7 mg/min Al = 320 mg/kg 52.2 mg/min Al = 541.9 mg/min 911.5 mg/kgMg = 2730^mg/kg 1610.7 mg/min Mg = 106 mg/kg 17.3 mg/min Mg = 1628.0 mg/min 2738.6 mg/kgMn = 57.1^mg/kg 33.7 mg/min Mn = 61 mg/kg 9.9 mg/min Mn = 43.6 mg/min 73.4 mg/kgAmount Requir ed for Balance30.28 g/min 36.41 %1.83 g/min 2.20 %2.90 g/min 3.48 %1.82 g/min 2.19 %-0.06 g/min 0.00 %195.1 mg/min 2345.6 mg/kg705.5 mg/min 8482.5 mg/kg15.4 mg/min 185.4 mg/kgElement / Input%Ca = 86.63S = 29.69SO4= N/Aorg S = N/ASi = 51.41Na= 5.57Fe= 115.72A1= 64.00Mg= 56.66Mn = 64.66' DustCa=^39.7 %S=^1.4 %SO4= N/Aorg S = N/ASi =^3.45 %Na=^2.3 %Fe=^0.38 %A1=^10570 mg/kgMg=^6602 mg/kgMn =^1814 mg/kg .Lime = 20.2 kg/Hr 336.7 g/minCa= 58.3 % 196.3 gjminS= 0.23 % 0.8 glm inSO4 = N/Aorg S = N/ASi = 0.91 % 3.1 gjminNa = 319 mg/kg 107.4 mg/minFe= 1360 mg/kg 457.9 mg/minA1= 1030 mg/kg 346.8 mg/minMg = 2740 mg/kg 922.5 mg/minMn = 83.8 mg/kg 28.2 mg/minElemental Balance for LG13Limestone =^33.2^kg/Hr 553.3 g/min Lignin = 0 g/min Total InputCa= 38.4^% 212.5 g/min - 212.5 g/min 38.40 %S = Assumed to be ZERO S = 3.2 % 0.00 g/min S = 0.00 g/min 0.00 %SO4 = Assumed to be ZERO SO4 = 0.05 % 0.00 g/min SO4 = 0.00 g/min 0.00 %org S = Assumed to be ZERO org S = 3.15 % 0.00 g/min org S = 0.00 g/min 0.00 %Si = 1.01^% 5.6 g/min Si = Assumed to be ZERO Si = 5.59 g/min 1.01 %Na = 282^mg/kg 156.0 mg/min Na = 0.51 % 0.00 g/min Na = 0.16 g/min 0.03 %Fe = 643^mg/kg 355.8 mg/min Fe = 0.13 % 0.00 g/min Fe = 0.36 g/min 0.06 %Al = 830^mg/kg 459.3 mg/min Al = 130 mg/kg 0.0 mg/min Al = 459.3 mg/min 830.0 mg/kgMg = 2730^mg/kg 1510.6 mg/min Mg = 132 mg/kg 0.0 mg/min Mg = 1510.6 mg/min 2730.0 mg/kgMn = 57.1^mg/kg 31.6 mg/min Mn = 182 mg/kg 0.0 mg/min Mn = 31.6 mg/min 57.1 mg/kgAmount Requir ed for Balance28.83 g/min 38.76 %-0.13 g/min 0.00 %1.53 g/min 2.05 %0.05 g/min 0.07 %0.05 g/min 0.07 %81.3 mg/min 1092.3 mg/kg590.8 mg/min 7941.3 mg/kg6.3 mg/min 84.7 mg/kgElement / InputCa= 86.43S= 0.00SO4 = N/Aorg S = N/ASi = 72.71Na= 66.82Fe= 84.99A1= 82.31Mg= 60.89Mn = 80.06DustCa=^N/D %S=^N/D %SO4= N/Aorg S = N/ASi =^N/D %Na =^N/D %Fe=^N/D %A1=^N/D mg/kgMg=^N/D mg/kgMn =^N/D mg/kgLime = 18.9 kg/Hr 315.0 g/minCa= 58.3 % 183.6 g/minS= 0.04 % 0.13 g/minSO4 = N/Aorg S = N/ASi = 1.29 % 4.06 g/minNa = 331 mg/kg 104.3 mg/minFe= 960 mg/kg 302.4 mg/minAI= 1200 mg/kg 378.0 mg/minMg= 2920 mg/kg 919.8 mg/minMn = 80.3 mg/kg 25.3 mg/minElemental Balance for LG14Limestone = 37.3^kg/Hr 621.7 g/min Lignin = 220 g/min Total InputCa= 38.4^% 238.7 g/min - 238.7 g/min 38.06 %S = Assumed to be ZERO S = 2.29 % 5.04 g/min S = 5.04 g/min 0.80 %SO4 = Assumed to be ZERO SO4 = 0.05 % 0.11 g/min 504 = 0.11 g/min 0.02 %org S = Assumed to be ZERO org S = 2.24 % 4.93 g/min org S = 4.93 g/min 0.79 %Si = 1.01^% 6.3 g/min Si = Assumed to be ZERO Si = 6.28 g/min 1.00 %Na = 282^mg/kg 175.3 mg/min Na = 0.14 % 0.31 g/min Na = 0.48 g/min 0.08 %Fe = 643^mg/kg 399.7 mg/min Fe = 0.1 % 0.22 g/min Fe = 0.62 g/min 0.10 %Al = 830^mg,/kg 516.0 mg/min Al = 150 mg/kg 33.0 mg/min Al = 549.0 mg/min 875.2 mg/kgMg = 2730^mg/kg 1697.2 mg/min Mg = 29.7 mg/kg 6.5 mg/min Mg = 1703.7 mg/min 2716.0 mg/kgMn = 57.1^mg/kg 35.5 mg/min Mn = 16.4 mg/kg 3.6 mg/min Mn = 39.1 mg/min 62.3 mg/kgAmount Requir ed for Balance47.57 g/min 37.43 %4.51 g/min 3.55 %2.14 g/min 1.69 %0.34 g/min 0.27 %0.20 g/min 0.15 %181.5 mg/min 1428.5 mg/kg767.4 mg/min 6038.9 mg,/kg12.3 mg/min 97.0 mg/kgElement / Input%Ca = 80.07S= 10.52SO4 = N/Aorg S = N/ASi = 65.84No= 29.54Fe= 68.42A1= 66.94Mg= 54.96Mn = 68.49DustCa=^37.5 %S=^2.1^%SO4= N/Aorg S = N/ASi =^3.29 %Na=^1.27 %Fe=^1.7 %AI=^5105 mg/kgMg=^3431 mg,/kgMn =^464 mg/kgLime = 21.2 kg/Hr 353.3 g/minCa= 54.1 % 191.2 g/minS= 0.15 % 0.53 g/minSO4= N/Aorg S = N/ASi = 1.17 % 4.13 g/minNa = 404 mg/kg 142.7 mg/minFe= 1200 mg/kg 424.0 mg/minA1= 1040 mg/kg 367.5 mg/minMg = 2650 mg/kg 936.3 mg/minMn = 75.8 mg/kg 26.8 mg/minElemental Balance for LG15ALimestone =Ca=^40.4^kg/Hr38.4^%673.3258.6g/ming/minLignin = 0 g/min Total Input258.6 g/min 38.40 %S = Assumed to be ZERO S = 3.23 % 0.0 g/min S = 0.00 g/min 0.00 %SO4 = Assumed to be ZERO SO4 = 0.05 % 0.00 g/min SO4 = 0.00 g/min 0.00 %org S = Assumed to be ZERO org S = 3.18 % 0.00 g/min org S = 0.00 g/min 0.00 %Si = 1.01^% 6.8 g/min Si = Assumed to be ZERO Si = 6.80 g/min 1.01 %= 282^mg/kg 189.9 mg/min Na = 0.5 % 0.0 g/min No = 0.19 g/min 0.03 %Fe = 643^mg/kg 433.0 mg/min Fe = 0.15 % 0.0 g/min Fe = 0.43 g/min 0.06 %Al = 830^mg/kg 558.9 mg/min Al = 130 mg/kg 0.0 mg/min Al = 558.9 mg/min 830.0 mg/kgMg = 2730^mg/kg 1838.2 mg/min Mg = 121 mg/kg 0.0 mg/min Mg; 1838.2 mg/min 2730.0 mg/kgMn = 57.1^mg/kg 38.4 mg/min Mn = 172 mg/kg 0.0 mg/min Mn = 38.4 mg/min 57.1 mg/kgAmount Requir ed for Balance15.37 g/min 36.15 %-0.24 g/min 0.00 %2.98 g/min 7.00 %0.12 g/min 0.27 %0.13 g/min 0.30 %209.1 mg/min 4917.5 mg/kg658.9 mg/min 15492.3 mg/kg5.1 mg/min 119.9 mg/kgElement / Input%Ca= 94.05S = 0.00SO4 = N/Aorg S = N/ASi = 56.21Na= 38.76Fe = 70.45A1= 62.58Mg= 64.16, Mn = 86.73DustCa=^42.5 %S=^0.44 %SO4= N/Aorg S = N/ASi =^1.57 %Na=^0.35 %Fe=^0.27 %A1=^2882 mg/kgMg=^2662 mg/kgMn =^181 mg/kgLime = 24.4 kg/Hr 406.7 g/minCa= 59.8 % 243.2 g/minS= 0.06 % 0.2 g/minSO4= N/Aorg S = N/ASi = 0.94 % 3.8 g/minNa = 181 mg/kg 73.6 mg/minFe= 750 mg/kg 305.0 mg/minA1= 860 mg/kg 349.7 mg/minMg= 2900 mg/kg 1179.3 mg/minMn = 82 mg/kg 33.3 mg/minElemental Balance for LG15BLimestoneCa==^39.5^kg/Hr^38.4^%658.3252.8g/ming/minLignin = 0 g/min Total InputCa=^252.8 g/min 38.40 %S = Assumed to be ZERO S = 3.23 % 0.0 g/min S = 0.00 g/min 0.00 %504 = Assumed to be ZERO SO4 = 0.05 % 0.00 g/min SO4 = 0.00 g/min 0.00 %org S = Assumed to be ZERO org S = 3.18 % 0.00 g/min org S = 0.00 g/min 0.00 %Si = 1.01^% 6.6 g/min Si = Assumed to be ZERO Si = 6.65 g/min 1.01 %Na = 282^mg/kg 185.7 mg/min Na = 0.5 % 0.0 g/min Na= 0.19 g/min 0.03 %Fe = 643^mg/kg 423.3 mg/min Fe = 0.15 % 0.0 g/min Fe = 0.42 g/min 0.06 %Al = 830^mg/kg 546.4 mg/min Al = 130 mg/kg 0.0 mg/min Al = 546.4 mg/min 830.0 mg/kgMg = 2730^mg/kg 1797.3 mg/min Mg = 121 mg/kg 0.0 mg/min Mg = 1797.3 mg/min 2730.0 mg/kgMn = 57.1^mg/kg 37.6 mg/min Mn = 172 mg/kg 0.0 mg/min Mn = 37.6 mg/min 57.1 mg/kgAmount Requir ed for Balance15.43 gjmin 39.22 %-0.15 g/min 0.00 %-1.04 g/min 0.00 %0.06 g/min 0.16 %0.07 g/min 0.17 %70.2 mg/min 1784.2 mg/kg559.8 mg/min 14233.4 mg/kg4.7 mg/min 120.6 mg/kgElement / Input%Ca= 93.90S= 0.00SO4= N/Aorg S = N/ASi = 115.62Na = 66.46Fe= 84.16A1= 87.16Mg= 68.86Mn = 87.39DustCa=^42.5 %S=^0.44 %SO4 = N/Aorg S = N/ASi =^1.57 %Na =^0.35 %Fe=^0.27 %A1=^2882 mg/kgMg=^2662 mg/kgMn =^181 mg/kgLime = 22.5 kg/Hr 375.0 g/minCa= 63.3 % 237.4 g/minS= 0.04 % 0.2 g/minSO4 = N/Aorg S = N/ASi = 2.05 % 7.7 g/minNo= 329 mg/kg 123.4 mg/minFe= 950 mg/kg 356.3 mg/minA1= 1270 mg/kg 476.3 mg/minMg= 3300 mg/kg 1237.5 mg/minMn = 87.6 mg/kg 32.9 mg/minElemental Balance for LG16Limestone = 41.7^kg/Hr 695.0 g/min Lignin = 165 g/min Total InputCa= 38.4^% 266.9 g/min - 266.9 g/min 38.13 %S = Assumed to be ZERO S = 2.32 % 3.83 g/min S = 3.83 g/min 0.55 %SO4 = Assumed to be ZERO SO4 = 0.17 % 0.28 g/min SO4 = 0.28 g/min 0.04 %org S = Assumed to be ZERO org S = 2.15 % 3.55 g/min org S = 3.55 g/min 0.51 %Si = 1.01^% 7.0 g/min Si = Assumed to be ZERO Si = 7.02 g/min 1.00 %Na = 282^mg/kg 196.0 mg/min Na = 0.42 % 0.69 g/min Na = 0.89 gJmin 0.13 %Fe= 643^mg/kg 446.9 mg/min Fe= 0.19 % 0.31 g/min Fe= 0.76 g/min 0.11 %Al = 830^mg/kg 576.9 mg/min Al = 160 mg/kg 26.4 mg/min Al = 603.3 mg/min 861.9 mg/kgMg = 2730^mg/kg 1897.4 mg/min Mg = 35.3 mg/kg 5.8 mg/min Mg = 1903.2 mg/min 2719.3 mg/kgMn = 57.1^mg/kg 39.7 mg/min Mn = 20.6 mg/kg 3.4 mg/min Mn = 43.1 mg/min 61.6 mg/kgAmount Requir ed for Balance12.48 g/min 32.35 %2.95 g/min 7.64 %2.10 g/min 5.44 %0.80 g/min 2.08 %0.35 g/min 0.90 %403.3 mg/min 10453.8 mg/kg763.2 mg/min 19784.3 mg/kg11.4 mg/min 294.6 mg/kgElement / Input%Ca= 95.32S = 22.99SO4= N/Aorg S = N/ASi = 70.09No= 9.90Fe= 54.18A1= 33.15Mg= 59.90Mn = 73.62DustCa=^44.6 %S=^0.37 %SO4= N/Aorg S = N/ASi =^1.91 %Na =^0.62 %Fe=^1.16 %A1=^2950 mg/kgMg=^2807 mg/kgMn =^216 mg/kg,Lime = 24.0 kg/Hr 400.0 g/minCa= 63.6 % 254.4 g/minS= 0.22 % 0.88 g/minSO4= N/Aorg S = N/ASi = 1.23 % 4.92 g/minNa = 220 mg/kg 88.0 mg/minFe= 1030 mg/kg 412.0 mg/minA1= 500 mg/kg 200.0 mg/minMg= 2850 mg/kg 1140.0 mg/minMn = 79.3 mg/kg 31.7 mg/minElemental Balance for LG17Limestone =Ca=^42.0^kg/Hr38.4^%700.0268.8g/ming/minLignin = 132 g/min Total Input-^268.8 g/min 38.16 %S = Assumed to be ZERO S = 2.34 % 3.09 g/min S = 3.09 g/min 0.44 %SO4 = Assumed to be ZERO SO4 = 0.21 % 0.28 gjmin 504 = 0.28 gjmin 0.04 %org S = Assumed to be ZERO org S = 2.13 % 2.81 gjmin org S = 2.81 g/min 0.40 %Si = 1.01^% 7.1 g/min Si = Assumed to be ZERO Si = 7.07 g/min 1.00 %Na = 282^mg/kg 197.4 mg/min Na = 0.71 % 0.94 g/min Na = 1.13 g/min 0.16 %Fe = 643^mg/kg 450.1 mg/min F = 0.2 % 0.26 g/min Fe = 0.71 g/min 0.10 %Al = 830^mg/kg 581.0 mg/min Al = 190 mg/kg 25.1 mg/min Al = 606.1 mg/min 860.5 mg/kgMg = 2730^mg/kg 1911.0 mg/min Mg = 42.7 mg/kg 5.6 mg/min Mg = 1916.6 mg/min 2721.2 mg/kgMn = 57.1^mg/kg 40.0 mg/min Mn = 26.3 mg/kg 3.5 mg/min Mn = 43.4 mg/min 61.7 mg/kgtgAmount Requir ed for Balance10.40 g/min 29.90 %2.37 g/min 6.81 %3.87 g/min 11.13 %1.00 g/min 2.87 %0.41 g/min 1.19 %350.1 mg/min 10066.3 mg/kg764.6 mg/min 21986.6 mg/kg10.3 mg/min 296.8 mg/kgElement / InputCa= 96.13S= 23.31SO4= N/Aorg S = N/ASi = 45.26Na= 11.92Fe= 42.01Al= 42.24Mg= 60.11Mn = 76.24DustCa=^38.3 %S=^0.74 %SO4= N/Aorg S = N/ASi =^2.89 %Na =^1.79 %Fe=^3.83 %A1=^3350 mg/kgMg =^2725 mg/kgMn =^334 mg/kgLime = 24.0 kg/Hr 400.0 g/minCa= 64.6 % 258.4 g/minS= 0.18 % 0.72 g/minSO4 = N/Aorg S = N/ASi = 0.8 % 3.20 g/minNa = 338 mg/kg 135.2 mg/minFe= 750 mg/kg 300.0 mg/minA1= 640 mg/kg 256.0 mg/minMg = 2880 mg/kg 1152.0 mg/minMn = 82.8 mg/kg 33.1 mg/min292Appendix GSimple Energy Balances for Experimental RunsPageAn Example Calculation^ 293Energy Balance for LG9 302Energy Balance for LG10A^ 305Energy Balance for LG10B 308Energy Balance for LG11^ 311Energy Balance for LG12A 314Energy Balance for LG12B^ 317Energy Balance for LG13 320Energy Balance for LG14G^ 323Energy Balance for LG14 326Energy Balance for LG15A^ 329Energy Balance for LG15B 332Energy Balance for L016^ 335Energy Balance for LG17 338Table 0-1. Listing of maximum gas, bed temperatures & flue gas velocities^ 341293An Example CalculationSimple Energy Balance about the Kiln for Run LG10AEnergy loss to surroundingsEnergy output with flue gas-ek----1 t 1 Energy input by fuels..4...._.II1i1 Kiln 1--)1, 1I1i--->-Energy output with limeEnergy input with limestoneI 4.521m 0.146m IEnergy flow diagramEnergy Lost = Energy Input - Energy Output - Energy consumed by CalcinationEnergy Input = Energy supplied by Fuels + Energy in with Limestone FedEnergy Output = Energy out with Lime and Flue GasAssumptionsReference temperature is 25\u00C2\u00B0C.The measurement devices for combustion air and natural gas are calibrated for 20\u00C2\u00B0C.The boundary at the cold end is at 4.521 m from the discharge end.The boundary at the hot end for the lime is at 0.146 m from the discharge end.The inerts are assumed to have a molecular weight of 159.7 kg/kmol.The heat of vapourization of water is 0.044 Mllmol @ 25\u00C2\u00B0C.The sulphur dioxide formed reacts with the lime and no SO2 leaves in the flue gas.Heat capacity equations were obtained from Metallurgical Thermochemistry, by 0. Kubaschewski and C.B.Alcock, 5th Ed., Oxford, New York, Pergamon Press, 1979.294LimestoneLimestone feed rate = 39.4 kg/hrPurity of limestone = 97.95%Temperature of limestone = 9233 K^at 4.521 m from discharge end.Energy entering with limestoneAH of CaCO3 = Ms jCp dT= M * (104.59 * (T -Tref) +0.0219 * cr2 -Tref2) 2.6* 106 /(T -Tref) /6*106= 394 * 0.9795 * (104.59 * (923.5 -298.2) +0.0219 * (923.52 -298.22) -2.6*106 /(923.5 -298.2) /6* 106= 0.502 MI/minAH of Inerts = Ms SCp dT= Nis * (106.68 * (T -Tref) +0.0178 * (T2 -Tref2) 2.855* 106 /(T -Tref) /159.7 /6* iO4= 394 * (1 -0.9795) * (106.68 * (923.5 -298.2) +0.0178 * (923.52 -298.22) 2.855* 1061(923.5 -298.2) /159.7 /6* 10=0.006 MJ/minTotal = 0.502 + 0.006 = 0.508 MJ/minFinal Calcination = 98.34%Inerts in 40 kg of limestone = 0.82 kgLime Output = 0.82 +(39.4 -0.82) /^-0.9795) +0.9834 / 56) = 22.5 kg/hrTemperature of Lime at Output = 1219.6 K at 0.146 m from discharge end.Heat of Calcination = 3.2215 Milkg of CaOEnergy Required for Calcination = Limestone feedrate * %Purity * %Calcination * Heat of calcination= 394 * 0.9795 * 0.9834 * 3.2215 * 56 / 6000 = 1.141 MJ/minEnergy Leaving with LimeAH of CaCO3 = M jCp dT= Nis * (104.59 * (T -Tref) +0.0219 * (T2 -Tref2) 2.6* 106 /(T -Tref) /6* 106= 22.5 * 0.9795 * (1 -0.9834) * (104.59 * (1219.6 -298.2) +0.0219 * (1219.62 -298.22) -2.6* 106 /(1219.6 -298.2) /6* 106= 0.008 MJ/min295AH of CaO = Ms jcp dT= M * (49.66 * -Tref) +0.00452 * (T2 -Tre?) 6.95* 106 /(T -Tref) /6*108= 22.5 * 0.9795 * 0.9834 * (49.66 * (1219.6 -298.2) +0.00452 * (1219.62 -298.22) -6.95* 106 /(1219.6 -298.2) /6* 108= 0288 MJ/minAH of Inerts = Ms jcp dT= Nis * (106.68 *(T'Tref) +0.0178 * (12 -Tre?) -2.855*106 /(T -Tref) /159.7 /6*104= 39.4 * (1 -0.9795) * (106.68 * (1219.6 -2982) +0.0178 * (1219.62 -298.22) -2.855*106/(1219.6 -298.2) /159.7 /6* 104= 0.010 MJ/minTotal = 0.008 + 0.288 + 0.010 = 0.305 MJ/minCombustion AirTemperature of Air = 293.2 KExcess Oxygen = 4.2%mols of air = Air flowrate * Conversion (CFM to MA3) / Gas constant / TemperatureLance = 9.8 CFM = 9.8 * 28.32 / (0.08206 *293.2) = 11.5 mols/minPrimary = 48.0 CFM = 52.0 * 28.32 /(0.08206 *293.2) = 56.5 mols/minSecondary = 5.0 CFM = 5.0 * 28.32 / (0.08206 *2932) =^5.9 mols/minTotal = 11.5 + 56.5 + 5.9 = 73.9 mols/minFuel CompositionNatural Gasvol%Ligninwt%Carbon 74.29 59.69Hydrogen 24.50 5.29Oxygen 0.00 26.17Nitrogen 1.21 0.05Sulphur 0.00 1.92296Fuel Supplied to the KilnNatural Gas = 39.6 L/minmols of Natural Gas = 39.6 / (0.08206 * 293.2) = 1.65 mols/minHigher Heating Value = 0.03728 MJ/LHeat of Vapouriz,ation = 44.013 MJ/kmolNet Energy = Gas flowrate * Heating value - Heat of vapourization= 39.6 * 0.03728 - 2 * 1.65 * 0.044 = 1.331 MT/minLignin = 0.180 kg/minMoisture = 5.19 %Calorific Heating Value =0.02442 MT/kgNet Energy = Lignin feedrate * ((100 -%Moisture) * Heating value - (%Moisture / Mw of water + (100 -%Moisture)* %Hydrogen / Mw of H2) * Heat of vapourization)= 0.180 * ((1 -0.0519) * 0.02442 -(0.0519 / 18.02 +(1 -0.0519) * 0.0529 / 2.016) * 44.013)= 3.948 MJ/minEnergy Supplied by Fuels = 1.331 + 3.948 = 5.279 MJ/minCalculation by Supplied Airmols of Flue Gas & CompositionCO2 = mols of natural gas + Dry lignin feedrate * %Carbon + Limestone feedrate * %Purity *%Calcination= 1.65 +0.180 * (1 -0.0519) * 0.5969/ 12.01 +39.4 * 0.9795 * 0.9834 * 1000 / 60 / 100= 16.453 mols/minH20 = 2 * mols of natural gas + mols of H in dry lignin + mols of water from wet lignin= 2 * 1.65 +0.180 * ((1 -0.0519) * 0.0529 / 2.016 +0.0519 / 18.02) * 1000= 8.289 mols/minN2 = mols of N2 in combustion air + mols of N2 from natural gas + mols of N2 from dry lignin= 0.79 * 73.9 +1.65 * 0.0121 +0.180 * (1 -0.0519) * 0.0005 / 28.02 * 1000= 58.429 mols/min297SO2 = mols of S from dry lignin= 0.180 * (1 -0.0519) * 0.0192 / 32.06 * 1000= 0.102 mols/min02 = mols of 02 in combustion air - 2 * mols of natural gas - Dry lignin feedrate * (mols of CO2 +1120 - 02 + SO2)= 0.21 * 73.9 -2 * 1.65 -0.180 * (1 -0.0519) * (0.5969 / 12.01 +0.0529 / 4.032 -0.2617 / 32+0.0192 / 32.06) * 1000= 2.806 mols/minTotal = 16.453 + 58.429 + 2.806 = 77.688 mols/min% CO2 = 16.453 / 77.688 * 100 = 21.18%% N2 = 58.429 /77.688 * 100 = 75.21%% 02 = 2.806 / 77.688 * 100 = 3.61%Enthalpy of Flue GasTemperature of limestone = 973.2 K^at 4.521 m from discharge end.AH of CO2 = Mg jCp dT= Mg * (19.936 * (Tg -Tref) +7.667*10-2 * (-/-g2 _Tref2-) /2 -6.91*10-5 * (Tg3 -Tie?) /3+2.9961*10-8 * (Tg4 -Tref4) /4)1106= 16.453 * (19.936 * (973.2 -298.2) +7.667*10-2 * (973.22 -298.22) /2 -6.91*10-5 * (973.23298.23) /3 +2.9961*10-8 * (97324 -298.24) /4) /106= 0.533 MJ/minAH of H20 = Mg SCp dT= Mg^-* (30 245 * (rg -Tref) +1.0604*10-2 * (Tg2 -Tref2) /2) /106= 8.289 * (30.245 * (973.2 -298.2) +1.0&i* 10-2 * (973.22 -298.22) /2) /106= 0.207 MJ/min298AH of N2 = Mg fCp dT= Mg * (27.88 * (Tg -Tref) +4.271*10-3 * (Tg2 -Tref2) /2) 1106= 58.429 * (27.88 * (973.2 -298.2) +4.271*10-3 * (973.22 -298.22) /2) /106= 1.207 MJ/minAH of 02 = Mg fcp dT= Mg * (26.615 * (Tg -Tref) +1.0878*10-2 * (Tg2 -Tref2) /2 -4.2461*10-6 * (Tg3 -Tref3)+8.5186*10-10 * (Tg4 _Tref4 ) /4) /106= 2.806 * (26.615 * (973.2 -298.2) +1.0878*10-2 * (973.22 -298.22) /2 -4.2461*10-6 * (973.23 -298.23) /3 +8.5186*10-10 * (973.24 -298.2k) /4) /106= 0.060 MJ/minTotal = 0.533 + 0.207 + 1.207 + 0.060 = 2.007 MJ/minEnergy BalanceEnergy InLimestone =^ 0.508^MJ/minCombustion Air = 0.000 MJ/minFuels =^ 5.279^MJ/minTotal = 5.787 MilminEnergy OutLime =^ 0.305 MJ/minFlue Gas = 2.007 MJ/minCalcination =^ 1.141^MJ/minTotal = 3.454 MJ/minEnergy LossImput - Output =^ 2.333 MJ/minCalculation by Excess Air, GC AnalysesCO2 = 44.01 * (1.65 +0.180 * (1 -0.0519) * 0.5969 / 12.01)= 445.73 g/min1120 = 18.02 * (2 * 1.65 +0.180 * (1 -0.0519) * 0.0529 / 2.016)= 140.02 g/min02 = 32.00 * (1.65 * 0.00 +0.180 * (1 -0.0519) * 0.2617 / 32)= 44.66 g/minN2 = 28.02 * (1.65 * 0.0121 +0.180 * (1 -0.0519) * 0.0005 / 28.02)= 0.6434 g/minAmount of 02 and N2 required for Stochiometric Combustion02 = (mols of CO2 + mols of H20) * Mw of 02 -02 supplied by fuel= (445.73 /44.01 +0.5 * 140.02 / 18.02) * 32.00 -44.66= 403.76 g/minN2 = 403.76 * 28.02 / 32 * 79 /21 + 0.6434 = 1330.63 g/minAmount of Oxygen and Nitrogen at Excess Airmols of gas other than 02= mols of CO2 + mols of CO2 from limestone + mols of N2= 445.73 / 44.01 +39.4 * 0.9795 * 0.9834 / 600 +1330.63 / 28.02= 63.94 mols/min02 = 100/4.2 -79 / 21 -1 = 19.05 mols/min02 = 63.94 * 32 / 19.05 = 107.42 g/minN2 = 1330.63 +107.42 * 28.02 / 32 * 79 / 21 = 1684.48 g/minmols of Flue Gas & CompositionCO2 = 445.73 / 44.01 +39.4 * 0.9795 * 0.9834 8 1000 / 60 / 100 = 16.453 mols/min1120 = 2 * 1.65 +0.180 * al -0.0519) * 0.0529 / 2.016 + 0.0519 / 18.02) * 1000 = 8.289 mols/min299300N2 = 1543.17 / 28.02 = 60.117 mols/minSO2 = 0.180 * (1 -0.0519) * 0.0192 / 32.06 = 0.102 mols/min02 = 100.35 / 32 = 3.357 mols/minTotal = 16.453 + 60.117 + 3.357 = 79.927 mols/min% CO2 = 16.453 / 79.927 * 100 = 20.59%% N2 = 60.117 / 79.927 * 100 = 75.21%% 0= 3.357 / 79.927 * 100 = 4.20%Enthalpy of Flue GasAH of CO2 = Mg fcp dT= Mg * (19.936 * (Tg -Tref) +7.667*10-2 * (Tg2 Tref2) /2 -6.91*10-5 * (Tg 3 Tref3) /3+2.9961*10-8 * (Tg4 _Tref4) /4)1106/106= 16.453 * (19.936 * (973.2 -298.2) +7.667*10-2 * (97322 -298.22) /2 -6.91*10-5 * (973.23 -298.23) /3 +2.9961*10-8 * (973.24 -298.24) /4) /106= 0.533 MJ/minAH of H20 = Mg jCp dT= Mg * (30.245 * (Tg -Tref) +1.0604* 10-2 * (Tg2 -Tref2) /2) /106= 8.289 * (30245 * (973.2 -298.2) +1.0604*10-2 * (973.22 -298.22) /2)1106= 0.207 MJ/minAH of N2 = Mg jcp dT= Mg * (27.88 * (Tg -Tref) +4.271*10-3 * (Tg2 -Tref2) /2) /106= 60.117 * (27.88 * (973.2 -298.2) +4.271*10-3 * (973.22 -298.22) /2) /106= 1.242 MJ/min301AH of 02= Mg fc, dT= Mg * (26.615 * (rg -Tref) +1.0878*10-2 * (Tg2 -Tref2) a 4.2461*10-6 * (Tg3 -Tref3) /3+8.5186* 10-10 * (rg4 _Tref4,) /4) /106= 3357 * (26.615 * (973.2 -298.2) +1.0878*10-2 * (973.22 -298.22) /2 -4.2461*10-6 * (973.23 -29823) /3 +8.5186*10-10 * (973.24 -29824) /4) /106= 0.072 MJ/minTotal = 0.533 + 0207 + 1.242 + 0.072 = 2.054 MJ/minEnergy BalanceEnergy InLimestone =^ 0.508 MJ/minCombustion Air . 0.000 MJ/minFuels =^ 5.279^MJ/minTotal = 5.787 MJ/minEnergy OutLime =^ 0.305 MJ/minFlue Gas = 2.054 MJ/minCalcination =^ 1.141^MJ/minTotal = 3.500 MJ/minEnergy LossImput - Output =^ 2.287 MI/mmEnergy Balance for LG9LimestoneLimestone Feed Rate =^ 39.3^kg/HrPurity of Limestone = 97.95^%Temperature of Limestone = 931.3^KEnergy Entering with LimestoneCaCO3 =^0.508^MJ/minInerts = 0.006^MJ/m inTotal = 0.514^M.1/minCalcination =^ 98.75^%Lime Output = 22.4^kg/HrTemperature of Lime =^ 1145.0^KEnergy Required for Calcination =^1.143^MJ/minEnergy Leaving with LimeCaCO3 = 0.005^MJ/m inCaO =^ 0.254^MJ/m inInerts = 0.009^MI/mmTotal = 0.268^MJ/m inCombustion AirTemperature of Air =^ 293.2^KLance =^9.8^CFM^11.5^mols/minPrimary = 52.0^CFM 61.2^mols/minSecondary =^5.0^CFM^5.9^mols/minTotal = 66.8^CFM 78.6^mols/minFlue Gas Temperature at Exit =^980.0*^KMeasured Excess Oxygen = 5.1^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 59.72Hydrogen^24.50^5.35Oxygen^0.00 26.10Nitrogen^1.21^ 0.11Sulphur^0.00 1.21Total^100.00^92.49302Fuel Supplied to the KilnNatural Gas = 62.3 L/minmols of Natural Gas = 2.59 mols/minHigher Heating Value = 37.28 kj/LNet Energy = 2.095 MJ/minLignin = 145.0 g/minMoisture = 6.83 %Calorific Heating Value = 26.06 MJ/lcgNet Energy = 3.339 MI/minEnergy Supplied by Fuels = 5.4 3 3 MJ/minCalculation by Supplied AirFlue Gas Dry Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^15.643 19.15 0.0328 0.513H20^9.314 0.0252 0.235N2^62.163 76.10 0.0209 1.297SO2^0.051 0.033402^3.876 4.74 0.0218 0.084Total^81.682 2.1 3 0ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.514^MJ/min0.000^MJ/min5.433^MJ/min5.9 4 8^MJ/min0.268^MJ/min2.130^MJ/min1.143^MJ/min3.5 4 1^MJ/min2.4 0 7^MJ/min303 Calculation by Excess Air,^GC AnalysesFlue Gas^Thy^Enthalpy^Enthalpymols/min^%^MJ/mols^MJ/minCO2^15.643^18.79^0.0328^0.513H20^9.314 0.0252^0.235N2^63.364^76.11^0.0209^1.322SO2^0.051 0.033402^4.246^5.10^0.0218^0.093Total^83.253 2.1 6 3ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.514^MJ/min0.000^MJ/min5.433^MJ/min5.948^MJ/min0.268^MJ/min2.163^MJ/min1.143^MJ/min3.574^MJ/m in2.374^MJ/minFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^mA2X-Area of Kiln Bed =^ 0.0102^mA2FreeBoard Area = 0.1194^mA2Maximum Gas Temperature =^1431.0 KFlue Gas Temperature at Exit = 980.0*^KFlue Gas Velocity at Tmax =^1.518^m/secFlue Gas Velocity at Exit = 1.039^m/secAvg Flue Gas Velocity =^ 1.279^m/sec304* an estimated valueEnergy Balance for LG10A305LimestoneLimestone Feed Rate =Purity of Limestone =Temperature of Limestone =Energy Entering with LimestoneCaCO3 =Inerts =Total =Calcination =Lime Output =Temperature of Lime =Energy Required for Calcination =Energy Leaving with LimeCaCO3 =CaO =Inerts =Total =39.4^kg/Hr97.95^%923.5^K0.502^AlYnain0.006^Willin^0.508^AiVinin98.34^%22.5^kg/Hr1219.6^K1.141^MJ/min0.008^MJ/m in0.288^MJ/m in0.010^MJ/m in^0.305^MJ/m inCombustion AirTemperature of Air =^ 293.2^KLance =^9.8^CFM^11.5^mols/minPrimary = 48.0^CFM 56.5^mols/minSecondary =^5.0^CFM^5.9^mols/minTotal = 62.8^CFM 73.9^mols/minFlue Gas Temperature at Exit = 973.2^KMeasured Excess Oxygen =^ 4.2^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 59.69Hydrogen^24.50^5.29Oxygen^0.00 26.17Nitrogen^1.21^ 0.05Sulphur^0.00 1.92Total^100.00^93.12Fuel Supplied to the KilnNatural Gas = 39.6 L/minmols of Natural Gas = 1.65 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 1.331 MJ/minLignin = 180.0 g/minMoisture = 5.19 %Calorific Heating Value = 24.42 MJ/kgNet Energy = 3.948 MJ/minEnergy Supplied by Fuels = 5.279 MJ/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^16.453 21.18 0.0324 0.533H20^8.289 0.0250 0.207N2^58.429 75.21 0.0207 1.207SO2^0.102 0.033002^2.806 3.61 0.0216 0.060Total^77.688 2.00 7ENERGY BALANCEENERGY INLimestone = 0508 MJ/minCombustion Air = 0.000 MT/minFuel = 5.279 MJ/minTotal = 5.787 MJ/minENERGY OUTLime = 0.305 MJ/minFlue Gas = 2.007 MJ/minCalcination = 1.141 MJ/minTotal = 3.454 MJ/minENERGY LOSSInput - Output = 2.333 MJ/min306Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 16.453 20.59 0.0324 0.533H20 8.289 0.0250 0.207N2 60.117 75.21 0.0207 1.242SO2 0.102 0.033002 3.357 4.20 0.0216 0.072Total 79.927 2.0 54ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.508^Mllmin0.000^MJ/min5.279^Milmin5.787^Milmin0.305^Milmin2.054^Milmin1.141^MJ/min3.5 0 0^Milmin2.2 8 7^MI/minFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^mA2X-Area of Kiln Bed =^ 0.0102^mA2FreeBoard Area = 0.1194^mA2Maximum Gas Temperature =^1423.9^KFlue Gas Temperature at Exit = 973.2^KFlue Gas Velocity at Tmax =^1.439^m/secFlue Gas Velocity at Exit = 0.984^m/secAvg Flue Gas Velocity =^ 1.211^m/sec307Energy Balance for LG10BLimestoneLimestone Feed Rate =^ 36.1^kg/HrPurity of Limestone = 97.95^%Temperature of Limestone = 934.9^KEnergy Entering with LimestoneCaCO3 =^0.470^MJ/minInerts = 0.006^MJ/minTotal = 0.476^MilminCalcination =^ 99.37^%Lime Output = 20.5^kg/HrTemperature of Lime=^ 1167.4^KEnergy Required for Calcination =^1.056^MJ/minEnergy Leaving with LimeCaCO3 = 0.002^MJ/minCaO =^ 0.243^MilminInerts = 0.009^MJ/minTotal = 0.2 54^MJ/minCombustion AirTemperature of Air =^ 293.2^KLance =^9.8^CFM^11.5^mols/minPrimary = 46.0^CFM 54.2^mols/minSecondary=^5.0^CFM^5.9^mols/minTotal = 60.8^CFM 71.6^mols/minFlue Gas Temperature at Exit = 1013.6^KMeasured Excess Oxygen =^ 4.0^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 59.69Hydrogen^24.50^5.29Oxygen^0.00 26.17Nitrogen^1.21^ 0.09Sulphur^0.00 1.92Total^100.00^93.16308Fuel Supplied to the KilnNatural Gas = 0.0 L/minmols of Natural Gas = 0.00 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 0.000 MJ/minLignin = 240.0 g/minMoisture = 5.19 %Calorific Heating Value = 24.42 MJ/kgNet Energy = 5.263 MJ/minEnergy Supplied by Fuels = 5.263 MJ/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^17.165 22.53 0.0347 0.596H20^6.662 0.0266 0.177N2^56.553 74.24 0.0220 1.241SO2^0.136 0.035302^2.461 3.23 0.0229 0.056Total^76.180 2.071ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination .Total =0.476^MJ/min0.000^MJ/min5.263^MJ/min5.739^MJ/min0254^MJ/m in2.071^MJ/min1.056^MJ/min3.381^MJ/minENERGY LOSSInput - Output =^2.358^MJ/min309Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 17.165 21.73 0.0347 0.596H20 6.662 0.0266 0.177N2 58.667 74.27 0.0220 1.288SO2 0.136 0.035302 3.160 4.00 0.0229 0.072Total 78.992 2.1 3 4ENERGY BALANCEENERGY INLimestone =^0.476^MJ/minCombustion Air = 0.000^MJ/minFuel = 5.263^MJ/minTotal =^ 5.7 3 9^MJ/minENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.254^MJ/min2.134^MJ/min1.056^MI/min3.444^MJ/min2.295^MJ/minFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^mA2X-Area of Kiln Bed =^ 0.0102^mA2FreeBoard Area = 0.1194^mA2Maximum Gas Temperature =^1467.0 KFlue Gas Temperature at Exit = 1013.6^KFlue Gas Velocity at Tmax =^1.440^m/secFlue Gas Velocity at Exit = 0.995^m/secAvg Flue Gas Velocity =^ 1.217^m/sec310Energy Balance for LG11311LimestoneLimestone Feed Rate =Purity of Limestone =Temperature of Limestone =Energy Entering with LimestoneCaCO3 =Inerts =Total =Calcination =Lime Output =Temperature of Lime =Energy Required for Calcination =Energy Leaving with LimeCaCO3 =CaO =Inerts =Total =36.8^kg/Hr97.95^%897.4^K0.445^MJ/m in0.006^MJ/min0.450^MI/mm98.70^%21.0^kg/Hr1148.1^K1.070^MJ/min0.005^MJ/min0.239^MJ/m in0.009^MJ/m in0.253^MJ/m inCombustion AirTemperature of Air=^ 293.2^KLance=^12.6^CFM^14.8^mols/minPrimary = 36.5^CFM 43.0^mols/minSecondary =^5.0^CFM^5.9^mols/minTotal = 54.1^CFM 63.7^mols/minFlue Gas Temperature at Exit = 949.7^KMeasured Excess Oxygen =^ 2.7^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 61.10Hydrogen^24.50^5.48Oxygen^0.00 26.21Nitrogen^1.21^ 1.69Sulphur^0.00 0.75Total^100.00^9523Fuel Supplied to the KilnNatural Gas = 0.0 L/minmols of Natural Gas = 0.00 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 0.000 MJ/minLignin = 218.0 g/minMoisture = 0.00 %Calorific Heating Value = 25.28 MJ/kgNet Energy = 5.250 MJ/minEnergy Supplied by Fuels = 5.250 MJ/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^17.020 24.84 0.0311 0.5291120^5.926 0.0240 0.142N2^50.446 73.62 0.0199 1.004SO2^0.051 0.031702^1.056 1.54 0.0208 0.022Total^68.522 1.697ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =0.450^MJ/min0.000^MJ/min5.250^MJ/min5.7 0 1^MJ/min0.253^MJ/min1.697^MJ/min1.070^MJ/min3.0 2 0^MJ/minENERGY LOSSInput - Output =^2.6 8 1^MI/min312 Calculation by Excess Air,^GC AnalysesFlue Gas Enthalpy^Enthalpymols/min^%^MJ/mols^MJ/minCO2^17.020^23.43^0.0311^0.529H20^5.926 0.0240^0.142N2^53.661^73.87^0.0199^1.068SO2^0.051 0.031702^1.961^2.70^0.0208^0.041Total^72.642 1.7 8 0ENERGY BALANCEENERGY INLimestone =^0.450^MJ/minCombustion Air = 0.000^MJ/minFuel = 5.250^MJ/minTotal =^ 5.701^MJ/minENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.253^Milmin1.780^Milmin1.070^MJ/min3.102^MJ/min2.5 9 8^MJ/minFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^mA2X-Area of Kiln Bed =^ 0.0102^m^2FreeBoard Area = 0.1194^inA2Maximum Gas Temperature =^1520.9^KFlue Gas Temperature at Exit = 949.7^KFlue Gas Velocity at Tmax =^1.369^misecFlue Gas Velocity at Exit = 0.855^m/secAvg Flue Gas Velocity =^ 1.112^m/sec313Energy Balance for LG12A314LimestoneLimestone Feed Rate =Purity of Limestone =Temperature of Limestone =Energy Entering with LimestoneCaCO3 =Inerts =Total =Calcination =Lime Output =Temperature of Lime =Energy Required for Calcination =Energy Leaving with LimeCaCO3 =Ca0 =Inerts =Total =35.4^kg/Hr97.95^%885.1^K0.417^MJ/m in0.005^MJ/min0.422^MJ/m in99.17^%20.1^kg/Hr1225.6^K1.034^MJ/min0.003^MJ/m in0.261^MJ/m in0.009^MJ/m in0.274 MJ/minCombustion AirTemperature of Air =^ 293.2^KLance=^14.0^CFM^16.5^mols/minPrimary = 36.5^CFM 43.0^mols/minSecondary =^5.0^CFM^5.9^mols/minTotal = 55.5^CFM 65.3^mols/minFlue Gas Temperature at Exit = 905.4^KMeasured Excess Oxygen =^ 1.9^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 61.11Hydrogen^24.50^5.58Oxygen^0.00 26.56Nitrogen^1.21^ 1.69Sulphur^0.00 0.94Total^100.00^95.88Fuel Supplied to the KilnNatural Gas = 62.3 L/minmols of Natural Gas = 2.59 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 2.095 MJ/m inLignin = 131.0 g/minMoisture = 0.00 %Calorific Heating Value = 25.08 MJ/kgNet Energy = 3.126 MJ/m inEnergy Supplied by Fuels = 5.2 2 0 MJ/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^14.987 22.10 0.0286 0.429H20^8.805 0.0222 0.196N2^51.727 76.27 0.0185 0.956SO2^0.038 0.029202^1.112 1.64 0.0193 0.021Total^67.825 1.603ENERGY BALANCEENERGY INLimestone =^0.422^MJ/minCombustion Air = 0.000^MJ/minFuel = 5.220^MJ/m inTotal =^ 5.6 4 3^MJ/m inENERGY OUTLime =Flue Gas =Calcination =Total =0.274^MJ/m in1.603^MJ/min1.034^MJ/min2.9 1 1^MJ/minENERGY LOSSInput - Output =^2.7 3 2^MJ/m in315Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 14.987 21.85 0.0286 0.429H20 8.805 0.0222 0.196N2 52.304 76.25 0.0185 0.967SO2 0.038 0.029202 1.303 1.90 0.0193 0.025Total 68.593 1.6 1 7ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =CalcinationTotal =ENERGY LOSSInput - Output =0.422^MJ/min0.000^MJ/min5.220^MJ/min5.6 4 3^MJ/min0.274^MJ/min1.617^Milmin1.034^MJ/min2.925^MJ/min2.7 1 8^MJ/minFreeboard Gas VelocityInside Radius of Kiln =^ 0.203Height of Bed = 0.054X-Area of Kiln = 0.1296^mA2X-Area of Kiln Bed =^ 0.0102^mA2FreeBoard Area = 0.1194^inA2Maximum Gas Temperature =^1492.0^KFlue Gas Temperature at Exit = 905.4^KFlue Gas Velocity at Tmax =^1.323^misecFlue Gas Velocity at Exit = 0.803^m/secAvg Flue Gas Velocity =^ 1.063^m/sec316Energy Balance for LG12B317LimestoneLimestone Feed Rate =Purity of Limestone =Temperature of Limestone =Energy Entering with LimestoneCaCO3 =Inerts =Total =Calcination =Lime Output =Temperature of Lime =Energy Required for Calcination .Energy Leaving with LimeCaCO3 =CaO =Inerts =Total =^35.5^kg/Hr97.95^%900.6^K0.432^MJ/min0.005^Milm in0.437 MJ/min99.63^%20.1^kg/Hr1289.6^K1.042^MJ/min0.002^MJ/min0.288^MJ/m in0.010^MJ/min0.299^MJ/minCombustion AirTemperature of Air =^ 293.2^KLance =^14.0^CFM^16.5^mols/minPrimary = 36.5^CFM 43.0^mols/minSecondary=^5.0^CFM^5.9^mols/minTotal = 55.5^CFM 65.3^mols/minFlue Gas Temperature at Exit = 924.6^KMeasured Excess Oxygen =^ 2.0^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 61.11Hydrogen^24.50^5.58Oxygen^0.00 26.56Nitrogen^1.21^ 1.69Sulphur^0.00 0.94Total^100.00^95.88Fuel Supplied to the KilnNatural Gas = 39.6 L/minmols of Natural Gas = 1.65 mols/minHigher Heating Value = 3728 kJ/LNet Energy = 1.331 MJ/minLignin = 163.0 g/minMoisture= 0.00 %Calorific Heating Value = 25.08 MJ/kgNet Energy = 3.889 MilminEnergy Supplied by Fuels = 5.221 MJ/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^15.714 22.90 0.0297 0.466H20^7.804 0.0230 0.180N2^51.735 75.38 0.0191 0.988SO2^0.048 0.030302^1.184 1.73 0.0199 0.024Total^68.633 1.658ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.437^MJ/min0.000^MJ/m in5.221^MJ/min5.658^MJ/min0.299^MJ/m in1.658^MJ/min1.042^Milm in2.9 9 9^MJ/min2.6 59^MJ/min318Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 15.714 22.63 0.0297 0.4661-120 7.804 0.0230 0.180N2 52.325 75.37 0.0191 0.999SO2 0.048 0.030302 1.389 2.00 0.0199 0.028Total 69.427 1.673ENERGY BALANCEENERGY INLimestone =^0.437^MJ/minCombustion Air = 0.000^MJ/minFuel = 5.221^MJ/minTotal =^ 5. 65 8^MJ/minENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.299^MJ/min1.673^MJ/min1.042^MJ/min3 .0 14^MJ/min2.644^MJ/minFreeboard Gas VelocityInside Radius of Kiln =^ 0.203Height of Bed = 0.054X-Area of Kilo^ 0.1296^mA2X-Area of Kiln Bed = 0.0102^mA2FreeBoard Area = 0.1194^mA2Maximum Gas Temperature =^1518.2^KFlue Gas Temperature at Exit = 924.6^KFlue Gas Velocity at Tmax =^1.344^m/secFlue Gas Velocity at Exit = 0.818^m/secAvg Flue Gas Velocity =^ 1.081^m/sec319Energy Balance for LG13320LimestoneLimestone Feed Rate =Purity of Limestone =Temperature of Limestone =Energy Entering with LimestoneCaCO3 =Inerts =Total =Calcination =Lime Output =Temperature of Lime =Energy Required for Calcination =Energy Leaving with LimeCaCO3 =Ca0 =Inerts =Total =^33.0^kg/Hr97.95^%880.7^K0.385^MJ/m in0.005^MJ/m in0.3 9 0^MJ/min9821^%19.0^kg/Hr1296.1^K0.954^MJ/min0.008^MJ/min0.270^MJ/m in0.009^Mi/m in^0.28 7^MJ/m inCombustion AirTemperature of Air =^ 293.2^KLance=^9.8^CFM^11.5^mols/minPrimary = 5.0^CFM 5.9^mols/minSecondary =^34.0^CFM^40.0^mols/minTotal = 48.8^CFM 57.5^mols/minFlue Gas Temperature at Exit = 889.8^KCalculated Excess Oxygen =^2.0^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 60.63Hydrogen^24.50^5.35Oxygen^0.00 26.19Nitrogen^1.21^0.11Sulphur^0.00 3.19Total^100.00^95.47Fuel Supplied to the KilnNatural Gas = 152.9 L/minmols of Natural Gas = 6.36 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 5.141 MJ/minLignin = 0.0 g/minMoisture = 0.00 %Calorific Heating Value = 22.56 MJ/kgNet Energy = 0.000 MilminEnergy Supplied by Fuels = 5.1 4 1 MJ/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^11.647 20.39 0.0278 0.3231120^12.712 0.0216 0.275N2^45.463 79.61 0.0180 0.818SO2^0.000 0.028402^-0.648 0.00 0.0187 0.000Total^57.109 1.4 1 6ENERGY BALANCEENERGY INLimestone = 0.390 MJ/minCombustion Air = 0.000 MJ/minFuel = 5.141 MJ/minTotal = 5.5 3 1 MJ/minENERGY OUTLime = 0287 MJ/minFlue Gas = 1.416 MJ/minCalcination = 0.954 MT/minTotal = 2.658 MilminENERGY LOSSInput - Output = 2.8 7 3 MJ/min321Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 11.647 17.70 0.0278 0.3231120 12.712 0.0216 0.275N2 52.850 80.30 0.0180 0.951SO2 0.000 0.028402 1.316 2.00 0.0187 0.025Total 65.813 1.574ENERGY BALANCEENERGY INLimestone = 0.390Combustion Air = 0.000Fuel = 5.141Total = 5.53 1MJ/minMJ/minMJ/minMJ/minENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.287^MJ/min1374^MJ/min0.954^MJ/min2.815^MJ/min2.715^MJ/m inFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^mA2X-Area of Kiln Bed =^ 0.0102^inP\u00E2\u0082\u00AC2FreeBoard Area = 0.1194^in^2Maximum Gas Temperature =^1463.8^KFlue Gas Temperature at Exit = 889.8^KFlue Gas Velocity at Tmax =^1.317^m/secFlue Gas Velocity at Exit = 0.801^m/secAvg Flue Gas Velocity =^ 1.059^m/sec322Energy Balance for LG14GLimestoneLimestone Feed Rate =^ 37.2^kg/HrPurity of Limestone = 98.96^%Temperature of Limestone = 860.6^KEnergy Entering with Limestone^CaCO3 =^0.420^MJ/m inInerts = 0.003^MJ/m inTotal = 0.423^MJ/minCalcination =^ 98.78^%Lime Output = 21.1^kg/HrTemperature of Lime =^ 1286.7^KEnergy Required for Calcination =^1.093^MJ/minEnergy Leaving with LimeCaCO3 = 0.006^MJ/m inCa0 =^ 0.302^MJ/m inInerts = 0.005^MJ/m inTotal = 0.313^MJ/m inCombustion AirTemperature of Air =^ 293.2^KLance=^11.2^CFM^13.2^mols/minPrimary = 34.0^CFM 40.0^mols/minSecondary =^5.0^CFM^5.9^mols/minTotal = 50.2^CFM 59.1^mols/minFlue Gas Temperature at Exit = 868.9^KMeasured Excess Oxygen =^ 2.1^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 63.15Hydrogen^24.50^5.42Oxygen^0.00 25.15Nitrogen^1.21^ 1.24Sulphur^0.00 2.29Total^100.00^97.25323Fuel Supplied to the KilnNatural Gas = 152.9 L/minmols of Natural Gas = 6.36 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 5.141 MJ/minLignin= 0.0 g/minMoisture= 0.00 %Calorific Heating Value = 26.11 MJ/kgNet Energy = 0.000 MJ/minEnergy Supplied by Fuels = 5.1 4 1 MilminCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^12.417 20.98 0.0266 0.331H20^12.712 0.0208 0.264N2^46.765 79.02 0.0173 0.811SO2^0.000 0.027202^-0.301 0.00 0.0180 0.000Total^59.181 1. 4 0 6ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.423^MJ/min0.000^MJ/min5.141^MJ/min5. 5 6 3^MJ/m in0313^MJ/m in1.406^MJ/min1.093^MJ/min2.8 12^Milmin2.7 5 1^MJ/min324Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 12.417 18.53 0.0266 0.331H20 12.712 0.0208 0.264N2 53.193 79.37 0.0173 0.922SO2 0.000 0.027202 1.407 2.10 0.0180 0.025Total 67.017 1.5 4 2ENERGY BALANCEENERGY INLimestone =^0.423^MJ/minCombustion Air = 0.000^MilminFuel = 5.141^MJ/minTotal =^ 5. 5 6 3^MJ/minENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.313^MJ/min1.542^MJ/min1.093^MJ/min2.9 4 9^MJ/min2.614^MJ/minFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^rnA2X-Area of Kiln Bed =^ 0.0102^mA2FreeBoard Area = 0.1194^m^2Maximum Gas Temperature =^1505.1^KFlue Gas Temperature at Exit = 868.9^KFlue Gas Velocity at Tmax =^1.375^m/secFlue Gas Velocity at Exit = 0.794^m/secAvg Flue Gas Velocity =^ 1.084^m/sec325Energy Balance for LG14LimestoneLimestone Feed Rate =^ 37.2^kg./FirPurity of Limestone = 98.96^%Temperature of Limestone = 910.9^KEnergy Entering with Limestone^CaCO3 =^0.467^MJ/minInerts = 0.003^MJ/minTotal = 0.47 0^MJ/m inCalcination =^ 98.82^%Lime Output = 21.1^kg/HrTemperature of Lime =^ 1242.2^KEnergy Required for Calcination =^1.094^MJ/minEnergy Leaving with LimeCaCO3 = 0.005^MilminCaO =^ 0.284^MJ/minInerts = 0.005^MJ/minTotal = 0.294^MilminCombustion AirTemperature of Air =^ 293.2^KLance=^11.2^CFM^13.2^mols/minPrimary = 34.0^CFM 40.0^mols/minSecondary=^5.0^CFM^5.9^mols/minTotal = 50.2^CFM 59.1^mols/minFlue Gas Temperature at Exit = 882.8^KMeasured Excess Oxygen =^ 2.8^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 63.15Hydrogen^24.50^5.42Oxygen^0.00 25.15Nitrogen^1.21^ 1.24Sulphur^0.00 2.24Total^100.00^97.20326Fuel Supplied to the KilnNatural Gas = 0.0 L/minmols of Natural Gas = 0.00 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 0.000 MJ/m inLignin = 220.0 g/minMoisture = 0.00 %Calorific Heating Value = 26.11 MJ/kgNet Energy = 5.484 MJ/m inEnergy Supplied by Fuels = 5.484 MJ/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^17.631 27.37 0.0274 0.483H20^5.915 0.0213 0.126N2^46.785 72.63 0.0178 0.832SO2^0.154 0.028002^-0.539 0.00 0.0185 0.000Total^64.416 1.440ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =0.470^MJ/min0.000^MJ/min5.484^MJ/min5.9 5 4^Milmin0.294^MJ/m in1.440^MJ/min1.094^MJ/min2.828^MJ/minENERGY LOSSInput - Output =^3.1 2 6^MJ/m in327Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 17.631 23.20 0.0274 0.483H20 5.915 0.0213 0.126N2 56.240 74.00 0.0178 1.000SO2 0.154 0.028002 2.128 2.80 0.0185 0.039Total 75.999 1.648ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.470^MJ/min0.000^MJ/min5.484^MJ/min5.954^MJ/min0.294^MJ/min1.648^MJ/min1.094^MJ/min3.0 3 6^MJ/min2.9 1 8^MJ/minFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^mA2X-Area of Kiln Bed=^ 0.0102^mA2ReeBoard Area= 0.1194^mA2Maximum Gas Temperature =^1491.5^KFlue Gas Temperature at Exit = 882.8^KFlue Gas Velocity at Tmax =^1.400^m/secFlue Gas Velocity at Exit = 0.829^misecAvg Flue Gas Velocity =^ 1.114^misec328Energy Balance for LG15A329LimestoneLimestone Feed Rate =Purity of Limestone =Temperature of Limestone =Energy Entering with LimestoneCaCO3 =Inerts =Total =Calcination =Lime Output =Temperature of Lime =Energy Required for Calcination =Energy Leaving with LimeCaCO3 =Ca0 =Inerts =Total =40.2^kg./Hr98.96^%827.1^K0.421^MJ/m in0.003^MJ/min0.423^MJ/m in84.81^%26.5^kg/Hr1256.7^K1.014^MJ/min0.086^MJ/min0.312^MJ/m in0.005^MJ/m in0.404^MJ/m inCombustion AirTemperature of Air =^ 293.2^KLance=^9.8^CFM^11.5^mols/minPrimary = 34.0^CFM 40.0^mols/minSecondary=^5.0^CFM^5.9^mols/minTotal = 48.8^CFM 57.5^mols/minFlue Gas Temperature at Exit = 842.2^KMeasured Excess Oxygen =^ 2.1^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 60.63Hydrogen^24.50^5.35Oxygen^0.00 26.19Nitrogen^1.21^ 0.11Sulphur^0.00 3.19Total^100.00^95.47Fuel Supplied to the KilnNatural Gas = 152.9 L/minmols of Natural Gas = 6.36 mols/minHigher Heating Value = 37.28 LT/LNet Energy = 5.141 MJ/m inLignin = 0.0 g/minMoisture = 0.00 %Calorific Heating Value = 22.56 MJ/kgNet Energy = 0.000 MilminEnergy Supplied by Fuels = 5 .1 41 KT/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MilminCO2^11.979 20.85 0.0252 0.3021120^12.712 0.0197 0.251N2^45.463 79.15 0.0165 0.750SO2^0.000 0.025802^-0.648 0.00 0.0172 0.000Total^57.442 1.303ENERGY BALANCEENERGY INLimestone = 0.423 MJ/minCombustion Air = 0.000 MJ/minFuel = 5.141 MJ/minTotal = 5.564 MJ/minENERGY OUTLime = 0.404 MilminFlue Gas = 1.303 MJ/minCalcination = 1.014 MJ/minTotal = 2. 72 1 MilminENERGY LOSSInput - Output = 2.8 43 MJ/min330Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyM.I/minCO2 11.979 18.01 0.0252 0.302H20 12.712 0.0197 0.251N2 53.154 79.89 0.0165 0.877SO2 0.000 0.025802 1397 2.10 0.0172 0.024Total 66.531 1.4 5 3ENERGY BALANCEENERGY INLimestone =^0.423^MJ/minCombustion Air = 0.000^MJ/minFuel = 5.141^MJ/minTotal =^ 5. 5 6 4^MJ/minENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.404^MJ/min1.453^MJ/min1.014^MJ/min2.872^MJ/min2.6 9 2^MilminFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^IV'SX-Area of Kiln Bed =^ 0.0102^mA2FreeBoard Area = 0.1194^mA2Maximum Gas Temperature =^1490.9^KFlue Gas Temperature at Exit = 842.2^KFlue Gas Velocity at Tmax =^1.354^m/secFlue Gas Velocity at Exit = 0.765^m/secAvg Flue Gas Velocity =^ 1.059^misec331Energy Balance for LG15B332LimestoneLimestone Feed Rate =Purity of Limestone =Temperature of Limestone =Energy Entering with LimestoneCaCO3 =Inerts =Total =Calcination =Lime Output =Temperature of Lime =Energy Required for Calcination =Energy Leaving with LimeCaCO3 =CaO =Inerts =Total =39.3^kg,/Hr98.96^%863.7^K0.447^MJ/min0.003^Milmin^0.450^MJ/m in98.10^%22.5^kg/Hr1308.8^K1.147^MJ/m in0.010^Milmin0.329^MJ/min0.006^Milmin0.345^MJ/m inCombustion AirTemperature of Air =^ 293.2^KLance =^9.8^CFM^11.5^mols/minPrimary = 39.0^CFM 45.9^mols/minSecondary =^5.0^CFM^5.9^mols/minTotal = 53.8^CFM 63.3^mols/minFlue Gas Temperature at Exit = 882.8^KMeasured Excess Oxygen =^2.5^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 60.63Hydrogen^24.50^5.35Oxygen^0.00 26.19Nitrogen^1.21^0.11Sulphur^0.00 3.19Total^100.00^95.47Fuel Supplied to the KilnNatural Gas = 164.3 L/minmols of Natural Gas = 6.83 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 5.524 MJ/minLignin = 0.0 g/minMoisture= 0.00 %Calorific Heating Value = 22.56 MJ/kgNet Energy = 0.000 MJ/minEnergy Supplied by Fuels = 5.5 2 4 MJ/m inCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MilminCO2^13.189 20.83 0.0274 0.3611120^13.660 0.0213 0.292N2^50.118 79.17 0.0178 0.891SO2^0.000 0.028002^-0.359 0.00 0.0185 0.000Total^63.307 1.543ENERGY BALANCEENERGY INLimestone =^0.450^MJ/m inCombustion Air = 0.000^MJ/minFuel= 5.524^MJ/minTotal =^ 5.9 7 4^MilminENERGY OUTLime =Flue Gas =Calcination =Total =0345^MJ/min1.543^MJ/min1.147^Milmin3.0 3 5^MilminENERGY LOSSInput - Output =^2.9 3 9^MJ/min333Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 13.189 17.97 0.0274 0.361H20 13.660 0.0213 0.292N2 58.372 79.53 0.0178 1.037SO2 0.000 0.028002 1.835 2.50 0.0185 0.034Total 73.396 1.7 2 4ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.450^Milmin0.000^MJ/min5.524^Milmin5.974^MI/min0.345^MJ/min1.724^MJ/min1.147^MJ/min3.216^MJ/min2.758^MilminFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^mA2X-Area of Kiln Bed =^ 0.0102^m^2Fieel3oard Area = 0.1194^in^2.Maximum Gas Temperature =^1522.5 KFlue Gas Temperature at Exit = 882.8^KFlue Gas Velocity at Tmax =^1.519^m/secFlue Gas Velocity at Exit = 0.881^m/secAvg Flue Gas Velocity =^ 1.200^m/sec334Energy Balance for LG16335LimestoneLimestone Feed Rate =Purity of Limestone =Temperature of Limestone =Energy Entering with LimestoneCaCO3 =Inerts =Total =Calcination =Lime Output =Temperature of Lime =Energy Required for Calcination =Energy Leaving with LimeCaCO3 =Ca0 =Inerts =Total =41.5^kg/Hr98.96^%878.7^K0.487^Milmin0.003^MJ/min0.491^MJ/min95.58^%243^kg/Hr1185.0*^K1.180^MJ/m in0.021^MJ/m in0.289^MJ/min0.005^MJ/m in0.315^MJ/m inCombustion AirTemperature of Air =^ 293.2^KLance =^12.6^CFM^14.8^mols/minPrimary = 34.0^CFM 40.0^mols/minSecondary =^5.0^CFM^5.9^mols/minTotal = 51.6^CFM 60.7^mols/minFlue Gas Temperature at Exit =^950\u00E2\u0080\u00A20*^KMeasured Excess Oxygen = 2.3^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 62.46Hydrogen^24.50^5.39Oxygen^0.00 25.95Nitrogen^1.21^ 0.10Sulphur^0.00 2.15Total^100.00^96.05Fuel Supplied to the KilnNatural Gas = 39.6 L/minmols of Natural Gas = 1.65 mols/minHigher Heating Value = 37.28 kJ/LNet Energy = 1.331 MilminLignin = 165.0 g/minMoisture = 0.00 %Calorific Heating Value = 25.78 MJ/kgNet Energy = 4.060 MJ/minEnergy Supplied by Fuels = 5.391 MJ/minCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min MJ/mols MJ/minCO2^16.769 25.88 0.0311 0.521H20^7.704 0.0240 0.185N2^48.016 74.12 0.0199 0.956SO2^0.111 0.031702^-0.095 0.00 0.0208 0.000Total^64.785 1.662ENERGY BALANCEENERGY INLimestone =Combustion Air =Fuel =Total =ENERGY OUTLime =Flue Gas =Calcination =Total =0.491^MJ/min0.000^MJ/min5.391^MJ/min5.881^MJ/min0.315^MJ/m in1.662^MJ/min1.180^Milm in3.158^MJ/minENERGY LOSSInput - Output =^2.7 2 4^MJ/min336 Calculation by Excess Air,^GC AnalysesFlue Gas Enthalpy^Enthalpymols/min^%^MJ/mols^MJ/minCO2^16.769^23.07^0.0311^0.521H20^7.704 0.0240^0.185N2^54.246^74.63^0.0199^1.080SO2^0.111 0.031702^1.672^2.30^0.0208^0.035Total^72.687 1.821ENERGY BALANCEENERGY INLimestone =^0.491^MJ/minCombustion Air = 0.000^MJ/minFuel = 5391^MJ/minTotal =^ 5.8 8 1^MI/minENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0315^MJ/min1.821^MJ/min1.180^MJ/min3.3 17^MJ/min2.565^MilminFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^rn^2X-Area of Kiln Bed =^ 0.0102^mA2FreeBoard Area = 0.1194^milMaximum Gas Temperature =^1398.5^KFlue Gas Temperature at Exit = 950.0*^KFlue Gas Velocity at Tmax =^1.288^m/secFlue Gas Velocity at Exit = 0.875^m/secAvg Flue Gas Velocity =^ 1.082^m/sec337* an estimated valueEnergy Balance for LG17LimestoneLimestone Feed Rate =^ 41.8^kg/HrPurity of Limestone = 98.96^%Temperature of Limestone = 851.3^KEnergy Entering with Limestone^CaCO3 =^0.462^MJ/m inInerts = 0.003^MJ/m inTotal = 0.465^MJ/m inCalcination =^ 97.04^%Lime Output = 24.2^kg/HrTemperature of Lime=^ 1197.7^KEnergy Required for Calcination =^1.207^MJ/m inEnergy Leaving with LimeCaCO3 = 0.014^MI/minCaO =^ 0.297^MJ/m inInerts = 0.005^MJ/minTotal = 0.3 1 7^MJ/minCombustion AirTemperature of Air=^ 293.2^KLance=^12.6^CFM^14.8^mols/minPrimary = 31.0^CFM 36.5^mols/minSecondary=^5.0^CFM^5.9^mols/minTotal = 48.6^CFM 57.2^mols/minFlue Gas Temperature at Exit =^925.0*^KMeasured Excess Oxygen = 2.2^%Fuel CompositionNatural Gas^Ligninvol% wt%Carbon^74.29 61.45Hydrogen^24.50^5.39Oxygen^0.00 25.83Nitrogen^1.21^0.11Sulphur^0.00 2.13Total^100.00^94.91338Fuel Supplied to the KilnNatural Gas = 62.3 L/minmols of Natural Gas = 2.59 mols/minHigher Heating Value = 3728 kJ/LNet Energy = 2.095 MilminLignin = 132.0 g/minMoisture = 0.00 %Calorific Heating Value = 25.43 MJ/kgNet Energy = 3.201 MJ/m inEnergy Supplied by Fuels = 5.296 MJ/m inCalculation by Supplied AirFlue Gas Enthalpy Enthalpymols/min % MJ/mols MJ/minCO2^16.034 26.17 0.0297 0.476H20^8.709 0.0230 0.201N2^45.236 73.83 0.0191 0.865SO2^0.088 0.030302^-0.705 0.00 0.0199 0.000Total^61.270 1.541ENERGY BALANCEENERGY INLimestone =^0.465^MJ/minCombustion Air = 0.000^MJ/minFuel = 5.296^MJ/minTotal =^ 5.7 6 1^MJ/m inENERGY OUTLime =Flue Gas =Calcination =Total =0.317^MJ/min1.541^MJ/m in1.207^MJ/min3.0 6 5^MJ/minENERGY LOSSInput - Output =^2.6 9 7^MJ/min339Calculation by Excess Air,Flue Gasmols/minGC AnalysesEnthalpy%^MJ/molsEnthalpyMJ/minCO2 16.034 22.57 0.0297 0.476H20 8.709 0.0230 0.201N2 53.438 75.23 0.0191 1.021S02 0.088 0.030302 1.563 2.20 0.0199 0.031Total 71.035 1.729ENERGY BALANCEENERGY INLimestone =^0.465^MilminCombustion Air = 0.000^MJ/minFuel = 5.296^MJ/minTotal =^ 5.761^MJ/minENERGY OUTLime =Flue Gas =Calcination =Total =ENERGY LOSSInput - Output =0.317^Milmin1.729^MJ/min1.207^MJ/min3.253^NU/min2.509^MilminFreeboard Gas VelocityInside Radius of Kiln =^ 0.203^mHeight of Bed = 0.054^mX-Area of Kiln = 0.1296^nr2X-Area of Kiln Bed =^ 0.0102^mA2FreeBoard Area = 0.1194^nr2Maximum Gas Temperature =^1422.0* KFlue Gas Temperature at Exit = 925.0*^KFlue Gas Velocity at Tmax =^1.299^m/secFlue Gas Velocity at Exit = 0.845^misecAvg Flue Gas Velocity =^ 1.072^misec340* an estimated valueTable G-l. Listing of maximum gas, bed temperatures & flue gas velocitiesRun Lignin% GasReplacedCaCO3kg/htPercent^Max. Temperature \u00C2\u00B0CttCalcination^Gas^BedFlue Gasm/secLG9 IR 60 39.3 98.6 1157.88 1058.71 1279LG10A 75 39.3 98.3 1150.74 1058.40 1.211LGIOB 100 36.0 97.7 1193.83 1107.04 1.217LG12A WV 60 35.3 99.2 1218.82 1128.07 1.063LG12B 75 35.4 99.6 1245.03t 1158.34 1.081LG11 100 36.6 98.7 1247.78 1112.21 1.112LG17 PG 60 42.0 97.0 N/A 1048.38 N/ALG16 75 41.7 95.6 1125.38 1029.06 1.082LG14 100 37.3 98.8 1218.33t 1080.46 1.114GasLG13 G1 0 33.2 98.2 1190.66* 1071.31 1.059LG14G G2 0 36.8 97.8 1231.98* 1036.16 1.084LG15A G3 0 40.4 84.8 1217.72* 1029.01 1.059LG15B G4 0 39.5^98.1 1249.39* 1045.14 1.200t calculated based on output of lime t 0.464 metres, tt 0.921 metres from the discharge341"@en . "Thesis/Dissertation"@en . "1993-11"@en . "10.14288/1.0058552"@en . "eng"@en . "Chemical and Biological Engineering"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Kraft lignin as a fuel for the rotary lime kiln"@en . "Text"@en . "http://hdl.handle.net/2429/1181"@en .