"Science, Faculty of"@en . "Earth, Ocean and Atmospheric Sciences, Department of"@en . "DSpace"@en . "UBCV"@en . "Cochlan, William Patrick"@en . "2011-01-13T20:58:04Z"@en . "1989"@en . "Doctor of Philosophy - PhD"@en . "University of British Columbia"@en . "Diel patterns of nitrogen (NO\u00E2\u0082\u0083\u00E2\u0081\u00BB, NH\u00E2\u0082\u0084\u00E2\u0081\u00BA, urea) uptake were\r\ninvestigated in natural assemblages of phytoplankton from\r\nneritic and oceanic environments off the coast of British\r\nColumbia. This is the first study to report nitrogen uptake\r\nrates and extensive measurements of ambient NH\u00E2\u0082\u0084\u00E2\u0081\u00BA and urea\r\nconcentrations in these waters. Calculated rates of N uptake, 15\r\nbased on \u00C2\u00B9\u00E2\u0081\u00B5N incorporation into particulate matter during time course experiments, were maximal during the day and minimal at night. Besides the obvious effects of irradiance, the amplitude of the periodicity in uptake rate was influenced by phytoplankton community composition, ambient nitrogen concentration, forms of nitrogen available, and depth of sampling. Uptake of nitrogen during the night and in artificial darkness were measurable proportions of daytime and light uptake rates, with the importance of dark uptake generally increasing with increasing N limitation. This is the first study of diel urea uptake by marine phytoplankton in the field. The ratios of dark to light urea uptake over a diel cycle were more similar to those of NO\u00E2\u0082\u0083\u00E2\u0081\u00BBthan those of the other reduced N form, NH\u00E2\u0082\u0084\u00E2\u0081\u00BA.\r\nRates of NO\u00E2\u0082\u0086\u00E2\u0081\u00BB and urea uptake by phytoplankton in the shallow and deep chlorophyll layers of the Strait of Georgia were measured over a gradient of irradiances and results of these experiments could be fitted with a hyperbolic function similar to the Michaelis-Menten equation. Half-saturation constants (KLT) for light-dependent uptake of urea and NO\u00E2\u0082\u0083\u00E2\u0081\u00BB\r\nranged from 0 to 14% of the surface irradiance and dark uptake was a variable, but often substantial (> 50%) portion of the total (light + dark) uptake.\r\nThe uptake response of nitrate-replete and -starved populations of the picoflagellate, Micromonas pusilla (Butch.) Manton et Parke, to urea, NH\u00E2\u0082\u0084\u00E2\u0081\u00BA and NO\u00E2\u0082\u0083\u00E2\u0081\u00BB perturbations was determined by both \u00C2\u00B9\u00E2\u0081\u00B5N accumulation and nutrient disappearance\r\nfrom the culture medium. Maximum specific uptake rates (Vmax) of NH\u00E2\u0082\u0084\u00E2\u0081\u00BA were 0.13 h\u00E2\u0081\u00BB\u00C2\u00B9, more than 2 times the Vmax of NO\u00E2\u0082\u0083\u00E2\u0081\u00BB or urea (ca. 0.05 h\u00E2\u0081\u00BB\u00C2\u00B9). The half-saturation constants (Ks) for urea, NH\u00E2\u0082\u0084\u00E2\u0081\u00BA and NO\u00E2\u0082\u0083\u00E2\u0081\u00BB were within \u00C2\u00B1 0.1 \u00C2\u00B5g-at N\u00E2\u0080\u00A2L\u00E2\u0081\u00BB\u00C2\u00B9 of each other; the average value of 0.41 \u00C2\u00B5g-at. N\u00E2\u0080\u00A2L\u00E2\u0081\u00BB\u00C2\u00B9 is within the range reported for small, oceanic diatoms. NO\u00E2\u0082\u0083\u00E2\u0081\u00BB uptake was completely inhibited following NH\u00E2\u0082\u0084\u00E2\u0081\u00BA addition (1-10 \u00C2\u00B5g-at. N\u00E2\u0080\u00A2L\u00E2\u0081\u00BB\u00C2\u00B9), whereas urea addition resulted in only a 28% reduction in NO3- uptake. Starved cultures of M. pusilla exhibited variable uptake of NH\u00E2\u0082\u0084\u00E2\u0081\u00BA and urea as a function of time, with an initial \"surge\" uptake response. This is the first laboratory study of N uptake by an eucaroyotic picoplankter and demonstrates that many of the transient uptake responses reported for diatoms, with which it competes in the field, are common to this picoplankter.\r\nDiel periodicity of nitrogen uptake and assimilation were measured in N-replete batch cultures of M. pusilla and also in N-limited cyclostat cultures (14L:10D) at three growth rates corresponding to ca. 75, 50 and 25% of it's maximal growth rate. Nitrate uptake was continuous and independent of the\r\nL:D cycle in the cyclostat cultures at the lowest dilution rate, but NO\u00E2\u0082\u0083\u00E2\u0081\u00BB uptake rates exhibited pronounced periodicity in the batch and higher dilution rate cultures, a response similar to that seen in previous studies of cyclostat cultures of some diatoms. Diel patterns in cell division, mean cell volume, potential uptake rates and internal pools of NO\u00E2\u0082\u0083\u00E2\u0081\u00BB were also observed and are discussed with respect to the nutritional status of the cells. The effect of irradiance on the uptake of NH\u00E2\u0082\u0084\u00E2\u0081\u00BA and NO\u00E2\u0082\u0083\u00E2\u0081\u00BB by M. pusilla was also described by Michaelis-Menten kinetics; with increasing N limitation the importance of light for nitrogen uptake decreased and dark uptake increased from 5-20% to 21-39% of NO\u00E2\u0082\u0083\u00E2\u0081\u00BB and NH\u00E2\u0082\u0084\u00E2\u0081\u00BA uptake rates, respectively, at saturating irradiance."@en . "https://circle.library.ubc.ca/rest/handle/2429/30628?expand=metadata"@en . "NITROGEN UPTAKE BY MARINE PHYTOPLANKTON: THE EFFECTS OF IRRADIANCE, NITROGEN SUPPLY AND DIEL PERIODICITY by WILLIAM PATRICK COCHLAN B.Sc. (Hons.)/ University of B r i t i s h Columbia, 1978 M.Sc, Dalhousie University, 1982 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Oceanography) We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 198 9 \u00C2\u00A9 William Patrick Cochlan, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Oc<& 50%) p o r t i o n o f t h e t o t a l ( l i g h t + d a r k ) u p t a k e . The u p t a k e r e s p o n s e o f n i t r a t e - r e p l e t e a n d - s t a r v e d p o p u l a t i o n s o f t h e p i c o f l a g e l l a t e , Micromonas p u s i l l a ( B u t c h . ) M a n t o n e t P a r k e , t o u r e a , NH^\"1\" a n d N O 3 - p e r t u r b a t i o n s was d e t e r m i n e d b y b o t h a c c u m u l a t i o n a n d n u t r i e n t d i s a p p e a r a n c e f r o m t h e c u l t u r e medium. Maximum s p e c i f i c u p t a k e r a t e s ( V m a x ) o f NH^\"1\" w e r e 0.13 h ~ ^ , more t h a n 2 t i m e s t h e V m a x o f N O 3 - o r u r e a ( c a . 0.05 h - ^ ) . The h a l f - s a t u r a t i o n c o n s t a n t s ( K s ) f o r u r e a , NH^ + a n d N O 3 - w e r e w i t h i n \u00C2\u00B1 0.1 uq-at N-L--'- o f e a c h o t h e r ; t h e a v e r a g e v a l u e o f 0.41 uq-at. N-L-\"*\" i s w i t h i n t h e r a n g e r e p o r t e d f o r s m a l l , o c e a n i c d i a t o m s . N O 3 - u p t a k e was c o m p l e t e l y i n h i b i t e d f o l l o w i n g NH^ \"*\" a d d i t i o n (1-10 uq-at. N-L -\"'\"), w h e r e a s u r e a a d d i t i o n r e s u l t e d i n o n l y a 2 8 % r e d u c t i o n i n N O 3 - u p t a k e . S t a r v e d c u l t u r e s o f M. p u s i l l a e x h i b i t e d v a r i a b l e u p t a k e o f NH^ + a n d u r e a a s a f u n c t i o n o f t i m e , w i t h a n i n i t i a l \" s u r g e \" u p t a k e r e s p o n s e . T h i s i s t h e f i r s t l a b o r a t o r y s t u d y o f N u p t a k e by a n e u c a r o y o t i c p i c o p l a n k t e r a n d d e m o n s t r a t e s t h a t many o f t h e t r a n s i e n t u p t a k e r e s p o n s e s r e p o r t e d f o r d i a t o m s , w i t h w h i c h i t c o m p e t e s i n t h e f i e l d , a r e common t o t h i s p i c o p l a n k t e r . D i e l p e r i o d i c i t y o f n i t r o g e n u p t a k e a n d a s s i m i l a t i o n w e r e m e a s u r e d i n N - r e p l e t e b a t c h c u l t u r e s o f M. p u s i l l a a n d a l s o i n N - l i m i t e d c y c l o s t a t c u l t u r e s (14L:10D) a t t h r e e g r o w t h r a t e s c o r r e s p o n d i n g t o c a . 7 5 , 50 a n d 2 5 % o f i t ' s m a x i m a l g r o w t h r a t e . N i t r a t e u p t a k e was c o n t i n u o u s a n d i n d e p e n d e n t o f t h e i v L:D c y c l e i n the c y c l o s t a t c u l t u r e s at the lowest d i l u t i o n r a t e , but N O 3 - uptake r a t e s e x h i b i t e d pronounced p e r i o d i c i t y i n the batch and high e r d i l u t i o n r a t e c u l t u r e s , a response s i m i l a r t o t h a t seen i n p r e v i o u s s t u d i e s of c y c l o s t a t c u l t u r e s of some diatoms. D i e l p a t t e r n s i n c e l l d i v i s i o n , mean c e l l volume, p o t e n t i a l uptake r a t e s and i n t e r n a l p o o l s of NC>3~ were a l s o observed and are d i s c u s s e d w i t h r e s p e c t t o the n u t r i t i o n a l s t a t u s of the c e l l s . The e f f e c t of i r r a d i a n c e on the uptake of NH^ \"1\" and N O 3 - by M. p u s i l l a was a l s o d e s c r i b e d by Michaelis-Menten k i n e t i c s ; with i n c r e a s i n g N l i m i t a t i o n the importance of l i g h t f o r n i t r o g e n uptake decreased and dark uptake i n c r e a s e d from 5-20% t o 21-39% of N O 3 - and N H 4 4 \" uptake r a t e s , r e s p e c t i v e l y , at s a t u r a t i n g i r r a d i a n c e . V TABLE OF CONTENTS ABSTRACT i i L I S T OF TABLES i x L I S T OF FIGURES x i i ACKNOWLEDGEMENTS x i x INTRODUCTION O v e r v i e w 1 T h e s i s o b j e c t i v e s 7 T h e s i s o u t l i n e 8 E x p e r i m e n t a l o r g a n i s m 9 CHAPTER 1. EFFECTS OF D I E L P E R I O D I C I T Y ON NITROGEN UPTAKE BY NATURAL ASSEMBLAGES OF PHYTOPLANKTON I n t r o d u c t i o n 12 M a t e r i a l s a n d M e t h o d s * G e n e r a l 15 S a m p l e c o l l e c t i o n 15 A n a l y t i c a l m e t h o d s 18 T r a c e r e x p e r i m e n t s 2 0 E x p e r i m e n t a l p r o c e d u r e s 21 R e s u l t s P h y s i c a l o b s e r v a t i o n s 24 B i o l o g i c a l o b s e r v a t i o n s 31 N i t r o g e n u p t a k e r a t e s 36 S u b a r c t i c P a c i f i c O cean 36 S t r a i t o f G e o r g i a 36 O f f s h o r e w a t e r s 43 v i D i s c u s s i o n E x p e r i m e n t a l c o n s i d e r a t i o n s 55 S i m u l t a n e o u s u p t a k e o f n i t r o g e n compounds 58 E f f e c t s o f l i g h t / d a r k r e g i m e on n i t r o g e n u p t a k e ...60 CHAPTER 2. EFFECTS OF IRRADIANCE ON NITROGEN UPTAKE BY PHYTOPLANKTON: COMPARISON OF FRONTAL AND S T R A T I F I E D COMMUNITIES I n t r o d u c t i o n 67 M a t e r i a l s a n d M e t h o d s G e n e r a l 71 E x p e r i m e n t a l 73 K i n e t i c p a r a m e t e r s o f n i t r o g e n u p t a k e 76 R e s u l t s a n d D i s c u s s i o n G e n e r a l d e s c r i p t i o n o f s t a t i o n s 7 7 E f f e c t o f l i g h t on n i t r o g e n u p t a k e r a t e s 81 K i n e t i c p a r a m e t e r s o f n i t r o g e n u p t a k e 85 D a r k n i t r o g e n u p t a k e 92 Summary 100 CHAPTER 3. NITROGEN UPTAKE BY THE EUCARYOTIC PICOPLANKTER, MICROMONAS PUSILLA AND THE EFFECTS OF N DEPRIVATION ON UPTAKE RESPONSE I n t r o d u c t i o n 102 M a t e r i a l s a n d M e t h o d s C u l t u r i n g 106 A n a l y t i c a l m e t h o d s 107 E x p e r i m e n t a l p r o c e d u r e s K i n e t i c p a r a m e t e r s f o r N u p t a k e 108 v i i S u b s t r a t e i n t e r a c t i o n 110 E f f e c t o f NH^ + c o n c e n t r a t i o n on N O 3 - u p t a k e r a t e I l l U p t a k e o f n i t r o g e n b y N 0 3 ~ - s t a r v e d c e l l s ....112 E s t i m a t i o n o f k i n e t i c p a r a m e t e r s 113 R e s u l t s U p t a k e k i n e t i c s 115 S u b s t r a t e i n t e r a c t i o n 118 N i t r o g e n - s t a r v e d c e l l s 121 D i s c u s s i o n U p t a k e k i n e t i c s 131 C e l l u l a r p h y s i o l o g i c a l s t a t e 133 S u b s t r a t e i n t e r a c t i o n 138 E c o l o g i c a l s i g n i f i c a n c e 141 CHAPTER 4. EFFECTS OF IRRADIANCE AND D I E L P E R I O D I C I T Y ON NITROGEN U T I L I Z A T I O N I N MICROMONAS PUSILLA I n t r o d u c t i o n 143 M a t e r i a l s a n d M e t h o d s C u l t u r i n g 146 A n a l y t i c a l p r o c e d u r e s 148 E x p e r i m e n t a l p r o c e d u r e s D i e l c y c l e s o f u p t a k e a n d g r o w t h 14 9 D i e l v a r i a t i o n i n maximum N u p t a k e r a t e s ....151 E f f e c t o f PPFD on N 0 3 ~ a n d N H 4 + u p t a k e 152 R e s u l t s N i t r a t e - r e p l e t e c u l t u r e s . 155 N i t r a t e - l i m i t e d c u l t u r e s 157 v i i i P o t e n t i a l N u p t a k e r a t e s 170 I n f l u e n c e o f l i g h t on N u p t a k e r a t e s 175 D i s c u s s i o n 180 GENERAL CONCLUSIONS 190 REFERENCES 193 APPENDIX 1. E q u a t i o n s u s e d t o c a l c u l a t e -^N u p t a k e r a t e s ..222 APPENDIX 2. G r o w t h - i r r a d i a n c e c u r v e o f Micromonas pusilla .226 APPENDIX 3. C o m p a r i s o n o f t h e i n c r e a s e s i n in vivo f l u o r e s c e n c e a n d c e l l c o n c e n t r a t i o n d u r i n g e x p o n e n t i a l g r o w t h o f Micromonas pusilla 22 9 APPENDIX 4. C o m p a r i s o n s o f t h e r a t e s o f p a r t i c u l a t e n i t r o g e n p r o d u c t i o n a n d i n o r g a n i c n i t r o g e n d i s a p p e a r a n c e 232 APPENDIX 5. D i s s o l v e d i n o r g a n i c n i t r o g e n d i s a p p e a r a n c e c u r v e d u r i n g g r o w t h o f M.pusilla 235 APPENDIX 6. P r e c i s i o n o f a n a l y t i c a l t e c h n i q u e s 238 i x L I S T OF TABLES T a b l e 1.1 I n i t i a l e n v i r o n m e n t a l c o n d i t i o n s o f s e a w a t e r c o l l e c t e d f o r t i m e c o u r s e e x p e r i m e n t s o f n i t r o g e n u p t a k e b y n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s . S t a t i o n s a r e F: N o r t h e a s t P a c i f i c O c e a n ; A 5 : S t r a i t o f G e o r g i a - f r o n t a l ; T4: S t r a i t o f G e o r g i a -s t r a t i f i e d ; 24: u p w e l l i n g p l u m e o f f s o u t h w e s t c o a s t o f V a n c o u v e r I s l a n d ; o f f s h o r e o f w e s t e r n C a n a d i a n c o n t i n e n t a l s h e l f 17 T a b l e 1.2 P l a n k t o n c o m m u n i t y c o m p o s i t i o n i n f r o n t a l a n d s t r a t i f i e d w a t e r o f S t r a i t o f G e o r g i a , B.C., ( s e e F i g . 1.1 B) 33 T a b l e 1.3 R a t i o o f d a r k t o l i g h t u p t a k e r a t e s ( V D : V ) o f NH 4 +, NO \" a n d u r e a f o r f r o n t a l a n d s t r a t i f i e d w a t e r o f t h e S t r a i t o f G e o r g i a , B.C., ( s e e F i g , 1.1 B) 44 T a b l e 1.4 C h l o r o p h y l l a s p e c i f i c u p t a k e r a t e s o f NH 4 +, N0 3\" an d u r e a i n f r o n t a l (A5) a n d s t r a t i f i e d (T4) w a t e r o f t h e S t r a i t o f G e o r g i a . , ( s e e F i g . 1.1 B ) . The d a r k p e r i o d o c c u r s d u r i n g t h e 12 t o 18 h t i m e i n t e r v a l 45 T a b l e 1.5 I n i t i a l e n v i r o n m e n t a l c o n d i t i o n s o f s e a w a t e r c o l l e c t e d f o r n i t r o g e n u p t a k e e x p e r i m e n t s d u r i n g t i m e c o u r s e 4 47 T a b l e 1.6 I n i t i a l e n v i r o n m e n t a l c o n d i t i o n s d u r i n g t i m e c o u r s e 5 c o n d u c t e d o f f t h e w e s t c o a s t o f V a n c o u v e r I s l a n d on A u g u s t 2 5 - 2 6 , 1986 52 T a b l e 2.1 I n i t i a l e n v i r o n m e n t a l c o n d i t i o n s o f s e a w a t e r c o l l e c t e d i n t h e S t r a i t o f G e o r g i a f o r N u p t a k e v e r s u s i r r a d i a n c e e x p e r i m e n t s 79 T a b l e 2.2 P h y t o p l a n k t o n c o m m u n i t y c o m p o s i t i o n i n f r o n t a l a n d s t r a t i f i e d w a t e r o f S t r a i t o f G e o r g i a , B.C.. 80 T a b l e 2.3 P a r a m e t e r s d e s c r i b i n g t h e c h a r a c t e r i s t i c s o f n i t r o g e n u p t a k e , a s a f u n c t i o n o f PPFD, f o r p h y t o p l a n k t o n a s s e m b l a g e s i n t h e S t r a i t o f G e o r g i a , B.C. D e f i n i t i o n s a r e g i v e n i n t h e t e x t , s t a n d a r d e r r o r s o f p a r a m e t e r s i n p a r e n t h e s e s . . . . . 86 X Table 2.4 Indices of N uptake dependency on PPFD for phytoplankton i n the S t r a i t of Georgia: the r a t i o of dark to light-saturated uptake rate (V *V ) , the PPFD at which half of t o t a l N uptake occurs (K L T', K LT \" ) * , r a t i o of uptake under 1% I q to 55% I Q (V :V 5 5 %). The K L T values are expressed as PPFD values and as a percentage of surface PPFD ( I Q ) which i s shown i n parentheses 88 Table 2.5 Table 2.6 Table 3.1 Table 3.2 Comparison of half-saturation constants (K L T) for inorganic n i t r a t e transport i n various aquatic ecosystems 89 Summary of l i t e r a t u r e values of dark:light nitrogen s p e c i f i c ( V D/V L) or absolute(P D/p L) uptake rates, determined during daytime, i n natural phytoplankton communities 94 Kinetic parameters for n i t r a t e , urea and ammonium uptake of N-replete Micromonas p u s i l l a . Michaelis-Menten parameters, Kg (half-saturation constant) and V m a x (maximum uptake ve l o c i t y ) were estimated from a d i r e c t nonlinear curve f i t t i n g model 1 and Hanes-Woolf l i n e a r transformation 2 of the data obtained from r e p l i c a t e cultures (1 or 2) and the cultures treated together (1 + 2) 117 Average n i t r a t e uptake rates (h - 1) for N03~-starved Micromonas p u s i l l a . Rates determined from least-squares l i n e a r regression of p a r t i c u l a t e 15N enrichment or the decrease i n the external concentration of N03~ + NO \" versus time and reported as \u00C2\u00B1 1 standard deviation (in parentheses) of the mean of duplicate cultures. 123 Table 3.3 Average N uptake rates V (h - 1) for NO \"-starved Micromonas p u s i l l a . Rates determined from l e a s t -squares l i n e a r regression of p a r t i c u l a t e 15 N enrichment or the decrease i n the external concentration of dissolved nitrogen versus time and reported as \u00C2\u00B1 1 standard deviation (in parentheses) of the mean of duplicate cultures. 123 Table 3.4 Summary of culture conditions at the beginning of each experiment 130 x i T a b l e 4.1 T a b l e 4.2 T a b l e 4.3 Mean l i g h t a n d d a r k s p e c i f i c n i t r a t e u p t a k e r a t e s ( h _ 1 ) a n d t h e i r r a t i o s ( d a r k : l i g h t ) f o r Micromonas pusilla grown on a 14:10 l i g h t - d a r k c y c l e i n b a t c h (*) a n d c y c l o s t a t c u l t u r e s . The s t a n d a r d d e v i a t i o n s o f s e p a r a t e ( 5 - 7 ) r a t e m e a s u r e m e n t s d u r i n g t h e l i g h t o r d a r k p e r i o d a r e g i v e n i n p a r e n t h e s e s 168 Summary o f c y c l o s t a t c u l t u r e c o n d i t i o n s a t t h e b e g i n n i n g o f e a c h e x p e r i m e n t 171 N i t r o g e n s p e c i f i c u p t a k e r a t e s ( h _ 1 ) , d e t e r m i n e d o v e r 2 h i n l i g h t a n d d a r k n e s s , a n d t h e i r r a t i o s (D/L) f o r Micromonas pusilla p r e v i o u s l y g r o w n a t 0.24, 0.49, 0.74 d\" 1 i n NO \" - l i m i t e d c y c l o s t a t c u l t u r e s on a 14 h l i g h t : 1 0 h d a r k i l l u m i n a t i o n c y c l e ( l i g h t s o n : 0800 h, l i g h t s o f f : 2200 h ) . 174 T a b l e 4.4 P a r a m e t e r s d e s c r i b i n g t h e c h a r a c t e r i s t i c s o f N s p e c i f i c u p t a k e ( h \" 1 ) , a s a f u n c t i o n o f PPFD f o r c y c l o s t a t c u l t u r e s o f Micromonas pusilla ( F i g . 4 . 1 1 ) . D a r k u p t a k e (V ) , maximum s p e c i f i c l i g h t u p t a k e ( V ) , t h e h a l f - s a t u r a t i o n c o n s t a n t ( K T m ) i _ max . _ v L T ' a n d t h e s l o p e o f i n i t i a l p o r t i o n o f N u p t a k e v s PPFD c u r v e ( a = V /K T m) . E s t i m a t e d s t a n d a r d max L T ' e r r o r s o f p a r a m e t e r s a r e g i v e n i n p a r e n t h e s e s 177 T a b l e 4.5 I n d i c e s o f N u p t a k e d e p e n d e n c y on PPFD f o r c y c l o s t a t c u l t u r e s o f Micromonas pusilla: t h e r a t i o , o f d a r k t o l i g h t - s a t u r a t e d u p t a k e r a t e ( V D : V L ) , t h e PPFD a t w h i c h h a l f t h e t o t a l N u p t a k e o c c u r s ( K L T ' , K \" ) * a n d t h e r a t i o o f N u p t a k e a t 1% I t o N u p t a k e a t 100% I ( V 1 % : V ). S a t u r a t e d PPFD a n d I a r e t h e g r o w t h PPFD (120 uE m ^ s - 1 ) . . . 178 x i i LIST OF FIGURES F i g u r e 1.1 F i g u r e 1.2 F i g u r e 1.3, F i g u r e 1.4 F i g u r e 1.5, F i g u r e 1.6 F i g u r e 1.7 F i g u r e 1.8. S t a t i o n l o c a t i o n s f o r time c o u r s e experiments of n i t r o g e n uptake. (A) T C . l a t s t n F; TC.4 at s t n 24; TC.5 a t s t n 85. (B) TC.2 a t s t n A5; TC.3 a t s t n T4. Panel B i s an enlargement of the area d e l i m i t e d by dashed l i n e s i n pane l A. 16 Depth p r o f i l e s of temperature ( T ) , s a l i n i t y ( S ) , i n v i v o f l u o r e s c e n c e ( F ) , and n i t r a t e p l u s n i t r i t e c o n c e n t r a t i o n (N) f o r t h r e e s t a t i o n s sampled f o r containment time c o u r s e experiments. (A) Oceanic s t a t i o n F, T C . l . (B) F r o n t a l s t a t i o n A5, TC.2. (C) S t r a t i f i e d s t a t i o n T4, TC.3. The shallow t h e r m o c l i n e step i s i n d i c a t e d by the arrow l a b e l l e d 'sT' i n pan e l A 25 Depth p r o f i l e s of temperature (T) and s a l i n i t y (S) f o r the two s t a t i o n s r e p e a t e d l y sampled d u r i n g drogue-type time course experiments. A: s t n 24 (beginning of TC.4). B: s t n 49 (end of TC.4). C: s t n 84 (beginning of TC.5). D: s t n 98 (end of TC.5) 27 Depth p r o f i l e s of N03~ and NH 4 + a t 6 h i n t e r v a l s d u r i n g time course 4 28 Depth p r o f i l e s of S i 0 4 - 4 and P0 4\" 3 a t 6 h i n t e r v a l s d u r i n g time course 4 29 A: Depth p r o f i l e s of N0 3 _ (\u00E2\u0080\u00A2) and NH 4 + (C) a t 2 h i n t e r v a l s d u r i n g time c o u r s e 5. B: Depth p r o f i l e s of S i 0 4 \" 4 (\u00E2\u0080\u00A2) and P0 4\" 3 (\u00E2\u0080\u00A2) a t 2 h i n t e r v a l s d u r i n g time course 5. 30 Composition of the phyto p l a n k t o n community, A: a t the b e g i n n i n g ( s t n 24) and end ( s t n 49) of time course 4 B: b e g i n n i n g ( s t n 84) and end ( s t n 98) of time course 5 35 Time course measurements a t o c e a n i c s t a t i o n F., Time Course 1. (A) D a i l y i n c i d e n t s u r f a c e i r r a d i a n c e d u r i n g experiment. (B) 1 5N atom % excess i n p a r t i c u l a t e matter f o r l i g h t b o t t l e i n c u b a t i o n s ( e r r o r bars r e p r e s e n t \u00C2\u00B1 1 S.D. of t r i p l i c a t e s ) p l o t t e d a g a i n s t e l a p s e d time measured a f t e r the a d d i t i o n of 1.0 pg-at N-N0 3*L - 1. (C) N i t r o g e n s p e c i f i c uptake r a t e s of 1 5N0 3\" c a l c u l a t e d f o r 3 h i n t e r v a l s ; each p o i n t i n d i c a t e s a r a t e c a l c u l a t e d over the time x i i i F i g u r e 1.9. F i g u r e 1.10 F i g u r e 1.11 i n t e r v a l b e t w e e n i t a nd t h e p r e v i o u s p o i n t on t h e c u r v e a n d p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n t i m e b e t w e e n s a m p l i n g 37 T i m e c o u r s e m e a s u r e m e n t s a t f r o n t a l s t a t i o n ( A 5 ) , T i m e C o u r s e 2. (A) D a i l y i n c i d e n t i r r a d i a n c e d u r i n g e x p e r i m e n t ( B , D, F) 1 5N at o m % e x c e s s i n p a r t i c u l a t e m a t t e r f o r l i g h t a n d d a r k b o t t l e i n c u b a t i o n s f o l l o w i n g a d d i t i o n o f 6 / j g - a t N - L - 1 o f (B) NH 4 +, (D) N 0 3 _ a n d ( F ) u r e a ( e r r o r b a r s r e p r e s e n t t h e r a n g e o f d u p l i c a t e s ) . ( C , E, G) C o r r e s p o n d i n g m e a s u r e m e n t s o f d i s s o l v e d NH 4 + ( \u00E2\u0080\u00A2 ) , N0 3\" ( o ) a n d u r e a ( A ) i n (C) NH 4 +, (E) N0 3~, a n d (G) u r e a - s p i k e d s a m p l e s . D a s h e d l i n e i n d i c a t e s no m e a s u r e m e n t s o f d i s s o l v e d u r e a a t 3 a n d 6 h ; . ( l e f t s i d e o f p a g e ) 40 A s F i g u r e 1.9 e x c e p t a t s t r a t i f i e d s t a t i o n ( T 4 ) , T ime C o u r s e 3; ( r i g h t s i d e o f p a g e ) . 40 N i t r o g e n - s p e c i f i c u p t a k e r a t e s c f NH + ( \u00E2\u0080\u00A2 ) , N0 3\" ( o ) a n d u r e a ( A ) i n (A) f r o n t a l a n d (B) s t r a t i f i e d water.. R a t e s d e t e r m i n e d f o r 3 o r 6 h i n t e r v a l s ; e a c h p o i n t i n d i c a t e s a r a t e c a l c u l a t e d o v e r t h e t i m e i n t e r v a l b e t w e e n i t a n d t h e p r e v i o u s p o i n t on t h e c u r v e . S h a d e d a r e a o n t h e a b s c i s s a d e l i m i t s t h e d a r k p e r i o d . 42 F i g u r e 1.12 F i g u r e 1.13 F i g u r e 1.14 Time course measurements a t upw e l l e d plume s t a t i o n s 24-49, time course 4. (A) D a i l y i n c i d e n t s u r f a c e i r r a d i a n c e d u r i n g experiment. (B) N i t r a t e and (C) ammonium s p e c i f i c uptake r a t e s a t 100% I O ( O ) , 30% l \" o (\u00E2\u0080\u00A2) and 1% I O (A) c a l c u l a t e d over 4 h i n c u b a t i o n p e r i o d s and p l o t t e d a g a i n s t average i n c u b a t i o n p e r i o d . . . 49 Time course measurements a t upw e l l e d plume s t a t i o n s 24-49, time course 4. (A) D a i l y i n c i d e n t s u r f a c e i r r a d i a n c e d u r i n g experiment. (B) N i t r a t e and (C) ammonium a b s o l u t e uptake r a t e s a t 100% I Q ( O ) , 30% I q ( \u00E2\u0080\u00A2 ) and 1% I q (A) c a l c u l a t e d over 4 h i n c u b a t i o n p e r i o d s and p l o t t e d a g a i n s t average i n c u b a t i o n p e r i o d . . . 50 Time course measurements a t s t a t i o n s 85-98, time course 5. (A) D a i l y i n c i d e n t s u r f a c e i r r a d i a n c e d u r i n g experiment. (B) N i t r o g e n s p e c i f i c uptake r a t e s of n i t r a t e a t 100% I Q ( O ) and 1% ( \u00E2\u0080\u00A2 ) c a l c u l a t e d over 4 h i n c u b a t i o n p e r i o d s and p l o t t e d a g a i n s t average i n c u b a t i o n p e r i o d 54 x i v F i g u r e 2.1. S t a t i o n l o c a t i o n s f o r n i t r o g e n uptake experiments. F r o n t a l (T14), s h a l l o w s t r a t i f i e d (A5) and deeply s t r a t i f i e d (T8) s t a t i o n s i n the S t r a i t of Georgia, B.C 72 F i g u r e 2.2. Depth p r o f i l e s of temperature ( T ) , s a l i n i t y ( S ) , i n v i v o f l u o r e s c e n c e (F) and n i t r a t e p l u s n i t r i t e c o n c e n t r a t i o n (N) f o r the t h r e e s t a t i o n s sampled (T14: f r o n t a l ; A5: s h a l l o w s t r a t i f i e d ; and T8: d e e p l y s t r a t i f i e d ) 78 F i g u r e 2.3. N i t r a t e uptake of the s u r f a c e ( o ) and DCM ( \u00E2\u0080\u00A2 ) phytoplankton communities of the S t r a i t of G e o r g i a . The curved p l o t s are f i t t e d d i r e c t l y t o the Michaelis-Menten e q u a t i o n ; the l i n e a r - (dashed l i n e ) P P F D - i n h i b i t e d p o r t i o n s were not i n c l u d e d i n the c a l c u l a t i o n s . S t a t i o n s are T14 ( f r o n t a l ) , A5 ( s h a l l o w s t r a t i f i e d ) and T8 (deeply s t r a t i f i e d ) 83 F i g u r e 2.4. Urea uptake of the s u r f a c e ( O) and DCM ( \u00E2\u0080\u00A2 ) phytoplankton communities of the S t r a i t of G e o r g i a . The curved p l o t s are f i t t e d d i r e c t l y t o the Michaelis-Menten e q u a t i o n ; the l i n e a r (dashed l i n e ) P P F D - i n h i b i t e d p o r t i o n s were not i n c l u d e d i n the c a l c u l a t i o n s . S t a t i o n s are A5 ( s h a l l o w s t r a t i f i e d ) and T8 (deeply s t r a t i f i e d ) 84 F i g u r e 3.1. N i t r o g e n s p e c i f i c uptake r a t e s (V) determined over 10 min a f t e r the a d d i t i o n of 0.2, 0.4, 0.8, 1.6, 2.4, 4.2 and 10 uq-at N-L\"1 of N0 3 _ (A), NH 4 + (B) or urea (C) t o d u p l i c a t e n i t r a t e -r e p l e t e c u l t u r e s (0,\u00C2\u00AB) of Micromonas pusilla. Rates (h _ 1) are p l o t t e d v e r s u s the average s u b s t r a t e c o n c e n t r a t i o n d u r i n g the 10 min i n t e r v a l . Curve c a l c u l a t e d by computer programme (see t e x t f o r d e t a i l s ) 116 F i g u r e 3.2. Comparison of n i t r o g e n s p e c i f i c uptake r a t e s f o r n i t r a t e - r e p l e t e c u l t u r e s of Micromonas pusilla determined over 10 and 60 min i n c u b a t i o n p e r i o d s . C u l t u r e s are numbered and v a l u e s are the mean (n = 2) of d u p l i c a t e i n c u b a t i o n s , * d e s i g n a t e s no r e p l i c a t e . Bar r e p r e s e n t s \u00C2\u00B1 1 S.D 119 F i g u r e 3.3. N i t r o g e n uptake by r e p l i c a t e c u l t u r e s of n i t r a t e - r e p l e t e Micromonas pusilla over a 4 h i n c u b a t i o n p e r i o d . A. D i s s o l v e d N03\" + N02\" c o n c e n t r a t i o n (\u00E2\u0080\u00A2) and 1 5N-atom % excess (O) a f t e r 10 uq-at N-urea-L\" 1 a d d i t i o n . B. D i s s o l v e d N03~ + N02\" c o n c e n t r a t i o n (0,A) a f t e r no and 10 uq-at N- N0 3\"\u00C2\u00ABL _ 1 a d d i t i o n , X V F i g u r e 3.4 r e s p e c t i v e l y . D i s s o l v e d NO ~ + N0 2\" c o n c e n t r a t i o n (\u00E2\u0080\u00A2,\u00E2\u0080\u00A2) a f t e r 10 L/g-at N*L\" a d d i t i o n o f NH 4 + a n d u r e a , r e s p e c t i v e l y . D i s s o l v e d N H + c o n c e n t r a t i o n (\u00E2\u0080\u00A2) a f t e r a d d i t i o n o f 10 / j g - a t N-NH + \u00E2\u0080\u00A2 L\" 1. 120 D i s s o l v e d NO \" + N0 2\" c o n c e n t r a t i o n w i t h o u t ( O ) , a n d w i t h (\u00E2\u0080\u00A2) , 5 ( A ) , 2 ( B ) , a n d 1 ( C ) L-g-at N - L - 1 [ 1 5N] - NH 4 + e n r i c h m e n t ; 1 5NH 4 + a t o m % e x c e s s i n p a r t i c u l a t e s (\u00E2\u0080\u00A2) p l o t t e d v e r s u s t i m e ( m i n ) . A r r o w s d e s i g n a t e t i m e o f NH 4 + a d d i t i o n 122 F i g u r e 3.5 N i t r a t e u p t a k e b y n i t r a t e - ^ s t a r v e d Micromonas pusilla a f t e r t h e a d d i t i o n o f 15 j j g - a t N-NOq NO -l t o d u p l i c a t e c u l t u r e s . A. D i s s o l v e d + NO \" (\u00E2\u0080\u00A2,\u00E2\u0080\u00A2) i n t h e c u l t u r e medium; 15 NO, 3 2 v ~ , - , \u00E2\u0080\u0094 ' \" - 3 a t o m % e x c e s s i n p a r t i c u l a t e m a t t e r ( 0 , 9 ) . B. N i t r a t e u p t a k e r a t e d e t e r m i n e d f r o m N0 3\" + N0 2\" d i s a p p e a r a n c e t e c h n i q u e . C. [ 1 5N] n i t r a t e u p t a k e r a t e . V a l u e s i n A a r e p l o t t e d a g a i n s t e l a p s e d t i m e m e a s u r e d a f t e r e n r i c h m e n t a n d u p t a k e r a t e s (B,C) a r e p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n t i m e 125 F i g u r e 3.6 F i g u r e 3.7 F i g u r e 4.1 U r e a u p t a k e b y n i t r a t e - s t a r v e d Micromonas pusilla a f t e r t h e a d d i t i o n o f 10 / j g - a t N - u r e a - L \" 1 t o d u p l i c a t e c u l t u r e s ( O , * ) . A. 1 5 N - u r e a a t o m % e x c e s s i n p a r t i c u l a t e m a t t e r i s p l o t t e d a g a i n s t e l a p s e d t i m e m e a s u r e d a f t e r a d d i t i o n o f u r e a . B. [ 1 5N] u r e a u p t a k e r a t e p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n t i m e . ... 126 Ammonium u p t a k e b y n i t r a t e - s t a r v e d Micromonas pusilla a f t e r t h e a d d i t i o n o f 15 uq-at N-NH 4 +*L _ 1 t o d u p l i c a t e c u l t u r e s . A. D i s s o l v e d N H 4 + c o n c e n t r a t i o n i n t h e c u l t u r e medium ( ( ) , \u00E2\u0080\u00A2 ) ; 1 5N-NH 4 atom % e x c e s s i n p a r t i c u l a t e m a t t e r (\u00E2\u0080\u00A2,\u00E2\u0080\u00A2) p l o t t e d a g a i n s t e l a p s e d t i m e a f t e r e n r i c h m e n t . B. Ammonium u p t a k e r a t e , d e t e r m i n e d b y NH 4 + d i s a p p e a r a n c e t e c h n i q u e . C. [ N] NH 4 u p t a k e r a t e . V a l u e s i n B a n d C p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n t i m e . 128 C e l l c o n c e n t r a t i o n a s a f u n c t i o n o f t i m e f o r n i t r a t e - l i m i t e d c y c l o s t a t c u l t u r e s o f Micromonas pusilla g r o w n i n a 14 h : 1 0 h L:D c y c l e a t (O) 0.74, (\u00C2\u00A9) 0.49 a n d (A) 0.24 d _ 1 d i l u t i o n r a t e s . E x p e r i m e n t s w e r e c o n d u c t e d o n d a y s 2,7,8,11,13 a n d 16 154 F i g u r e 4.2 C e l l c o n c e n t r a t i o n ( A ) , g r o w t h r a t e (B) a n d mean c e l l v o l u m e (C) v e r s u s e l a p s e d t i m e s i n c e l i g h t s on i n d u p l i c a t e ( 20 uq-at N ' L - ^ ) a n d , f o l l o w i n g s t r a t i f i c a t i o n d u r i n g t h e s p r i n g a n d s u b s e q u e n t u t i l i z a t i o n by p h y t o p l a n k t o n , a r e g r a d u a l l y d e c r e a s e d t o d e t e c t i o n l i m i t s . A t t h i s p o i n t p h y t o p l a n k t o n g r o w t h i s s u p p o r t e d p r i m a r i l y b y r e g e n e r a t e d N, a s i n o l i g o t r o p h i c , o c e a n i c g y r e s , ( e . g . , M c C a r t h y e t a l . , 1977; G l i b e r t e t a l . , 1982b; C o c h l a n , 1 9 8 6 ) . N i t r o g e n u p t a k e a n d r e g e n e r a t i o n a r e e n v i s a g e d t o be t i g h t l y c o u p l e d ( G o l d m a n , 1984) and t h e o x i d i z e d N f o r m s a r e o f l i t t l e o r no i m p o r t a n c e . Forms, o f r e g e n e r a t e d N i n c o a s t a l r e g i o n s v a r y i n c o n c e n t r a t i o n b u t g e n e r a l l y do n o t e x c e e d 5 / j g - a t N * L - ^ a n d a r e f r e q u e n t l y b e l o w 0.5 uq-at N-L-\"*\" ( M c C a r t h y , 1980; S h a r p , 1983; A n t i a e t a l . , i n p r e s s ) . The u t i l i z a t i o n o f n i t r o g e n by p h y t o p l a n k t o n c a n be d i v i d e d i n t o two s t e p s ; t h e f i r s t s t e p , t e r m e d \" u p t a k e \" , d e s c r i b e s t h e a c t u a l t r a n s p o r t o f t h e p a r t i c u l a r f o r m o f N a c r o s s t h e c e l l ' s p l a s m a l e m m a , a n d t h e s e c o n d s t e p , t e r m e d \" a s s i m i l a t i o n \" , r e f e r s t o t h e s e q u e n c e o f m e t a b o l i c e v e n t s w i t h i n t h e c e l l i n w h i c h t h e i n o r g a n i c N i o n s a r e r e d u c e d t o N H 4 + ( i n t h e c a s e o f N O 3 - and NC^ -) and i n c o r p o r a t e d p r i m a r i l y i n t o a m i n o a c i d s a n d p r o t e i n s ( W h e e l e r , 1983; L o b b a n e t a l . , 1 9 8 5 ) . The u t i l i z a t i o n o f n i t r o g e n o u s n u t r i e n t s b y m a r i n e p h y t o p l a n k t o n i s i n f l u e n c e d by a number o f f a c t o r s , i n c l u d i n g t h e a m b i e n t N c o n c e n t r a t i o n , t h e r e l a t i v e a b u n d a n c e o f d i f f e r e n t N f o r m s , t h e p h y s i o l o g i c a l s t a t u s o f t h e p h y t o p l a n k t o n , t h e a v a i l a b i l i t y o f l i g h t a n d t e m p e r a t u r e . 4 U p t a k e i n t e r a c t i o n s b e t w e e n i n o r g a n i c N f o r m s h a v e b e e n t h e s u b j e c t o f many c u l t u r e a nd f i e l d s t u d i e s ( r e v i e w s by M c C a r t h y , 1981; S y r e t t , 1 9 81; U l l r i c h , 1987) w h i c h r e v e a l a r a n g e o f r e s p o n s e s w h i c h v a r y w i t h t h e p h y t o p l a n k t o n s p e c i e s a n d i t s n u t r i t i o n a l s t a t e . N i t r a t e u p t a k e h a s b e e n r e p o r t e d t o be i n h i b i t e d t o d i f f e r e n t d e g r e e s by NH 4 + r a n g i n g f r o m t o t a l s u p p r e s s i o n ( e . g . , S y r e t t a n d M o r r i s , 1963; M c C a r t h y a n d E p p l e y , 1972) t o s i m u l t a n e o u s a n d c o m p a r a b l e r a t e s o f N O 3 - a n d N H 4 + u p t a k e ( e . g . , Conway, 1977; M a e s t r i n i e t a l . , 1982, 1 9 8 6 ) . I n t e r a c t i o n s b e t w e e n u r e a and o t h e r N f o r m s h a v e a t t r a c t e d l e s s a t t e n t i o n p a r t l y b e c a u s e o n l y r e c e n t l y h a s t h e s i g n i f i c a n c e o f u r e a a s a s o u r c e o f N f o r t h e g r o w t h o f n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s b e e n g e n e r a l l y a c k n o w l e d g e d ( e . g . , M c C a r t h y , 1972,; Kaufman e t a l . , 1 983; K r i s t i a n s e n , 1983; H a r r i s o n e t a l . , 1985; T u r l e y , 1985, 1 9 8 6 ) . G e n e r a l l y , u r e a s u p p r e s s e s t h e u p t a k e o f N O 3 - , b u t a t a l o w e r l e v e l t h a n N H 4 + ( e . g . , G r a n t e t a l . , 1967; M o l l o y a n d S y r e t t , 1 9 8 8 b ) . The e f f e c t o f c e l l u l a r p h y s i o l o g i c a l s t a t e on N u p t a k e by p h y t o p l a n k t o n was f i r s t d e m o n s t r a t e d by S y r e t t ( 1 9 5 3) a n d H a r v e y (1953) who showed t h a t N H 4 + a n d N O 3 - u p t a k e by b a t c h c u l t u r e s o f \" N - s t a r v e d \" c e l l s was much more r a p i d t h a n by \" n o r m a l \" c e l l s t h a t w e r e N - r e p l e t e . More r e c e n t s t u d i e s h a v e a l s o shown t h a t N - s t a r v e d o r N - d e f i c i e n t p h y t o p l a n k t o n h a v e t h e a b i l i t y t o r a p i d l y t a k e up N H 4 + upon e x p o s u r e t o an e l e v a t e d c o n c e n t r a t i o n ( e . g . , Conway e t a l . , 197 6; Conway a n d H a r r i s o n , 1977; G l i b e r t a nd Goldman, 1 9 8 2 ) . I n c o n t r a s t , a f t e r a N O 3 - o r u r e a a d d i t i o n t o N - d e p l e t e c e l l s e n h a n c e d 5 u p t a k e may o r may n o t o c c u r ( e . g . , r e v i e w by C o l l o s , 1983; P r i c e a n d H a r r i s o n , 1 9 8 8 b ) . The i d e a t h a t t h e r a t e o f s t e a d y - s t a t e N u p t a k e by m a r i n e p h y t o p l a n k t o n c a n be d e s c r i b e d a s a h y p e r b o l i c f u n c t i o n o f t h e c o n c e n t r a t i o n o f t h e l i m i t i n g n u t r i e n t , s i m i l a r i n f o r m t o t h e M i c h a e l i s - M e n t e n e q u a t i o n f o r enzyme k i n e t i c s ( D u g d a l e 1967, E p p l e y a n d C o a t s w o r t h , 1968) h a s l e d t o numerous s t u d i e s w h i c h h a v e d e t e r m i n e d k i n e t i c p a r a m e t e r s f o r b o t h l a b o r a t o r y a n d n a t u r a l a s s e m b l a g e s o f p h y t o p l a n k t o n ( e . g . , r e v i e w s by M c C a r t h y , 1981; Goldman and G l i b e r t , 1 9 8 3 ) . I t a p p e a r s t h a t t h e h a l f - s a t u r a t i o n c o n c e n t r a t i o n s f o r u p t a k e a r e i n t h e r a n g e fi 7 o f 1 0 ~ D t o 1 0 - / M f o r m a r i n e p h y t o p l a n k t o n a n d t h a t s p e c i e s ( E p p l e y e t a l . , 1969; M a c l s a a c a n d D u g d a l e , 1969) a n d c l o n e s ( C a r p e n t e r a n d G u i l l a r d , 1971) w h i c h a r e commonly f o u n d i n e u t r o p h i c r e g i o n s show c o n s i s t e n t l y h i g h e r h a l f - s a t u r a t i o n c o n s t a n t s t h a n s p e c i e s o r c l o n e s i s o l a t e d f r o m o l i g o t r o p h i c w a t e r s . U n d e r N - l i m i t i n g c o n d i t i o n s , s p e c i e s w i t h l o w u p t a k e ( h a l f - s a t u r a t i o n ) c o n s t a n t s h o l d a c o m p e t i t i v e a d v a n t a g e o v e r s p e c i e s h a v i n g h i g h e r c o n s t a n t s . T h i s h a s b e e n u s e d t o e x p l a i n s p e c i e s d i s t r i b u t i o n i n r e l a t i o n t o N a v a i l a b i l i t y ( E p p l e y e t a l . , 1969; M a c l s a a c a n d D u g d a l e , 1 9 6 9 ) . L i g h t i n t e n s i t y a n d q u a l i t y e x h i b i t a w i d e r a n g e o f t e m p o r a l a n d s p a t i a l v a r i a t i o n . S e a s o n a l , l a t i t u d i n a l a n d p a r t i c u l a r l y d i e l ( d a y - n i g h t ) v a r i a t i o n s i n o v e r a l l i n t e n s i t y a r e v e r y p r o n o u n c e d . L i g h t a t t e n u a t e s e x p o n e n t i a l l y w i t h d e p t h , l i m i t i n g p h y t o p l a n k t o n g r o w t h t o t h e s u r f a c e w a t e r s ( e u p h o t i c z o n e ) o f t h e o c e a n . Many s t u d i e s h a v e shown t h a t N 6 u p t a k e i s r e l a t e d t o l i g h t i n t e n s i t y i n a h y p e r b o l i c f a s h i o n , s a t u r a t i o n o c c u r r i n g a t h i g h l i g h t i n t e n s i t i e s ( e . g . , H a t t o r i , 1962; G r a n t , 1967; E p p l e y a nd R o g e r s , 1 9 7 0 ) . I n n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s t h e d e p e n d e n c e o f N u p t a k e u p o n l i g h t i n t e n s i t y h a s b e e n d e s c r i b e d b y a r e c t a n g u l a r h y p e r b o l a o f t h e M i c h a e l i s - M e n t e n f o r m u l a t i o n ( e . g . , M a c l s a a c a n d D u g d a l e , 1972; F i s h e r e t a l . , 1 9 8 2 ) . S i n c e n e i t h e r membrane t r a n s p o r t n o r r e d u c t i o n o f o x i d i z e d N f o r m s r e q u i r e s l i g h t p e r s e , t h e d e p e n d e n c e o f N u p t a k e on l i g h t i s l i k e l y a n i n d i r e c t one ( S y r e t t , 1 9 8 1 ) . P r o d u c t i o n o f c o f a c t o r s f o r N O 3 - a n d NO2\"\" r e d u c t i o n a n d ATP f o r membrane t r a n s p o r t ( F a l k o w s k i , 1975a) a n d t h e a s s i m i l a t i o n o f N H 4 + and u r e a d e p e n d on p h o t o s y n t h e s i s ( S y r e t t , 1981) w h i c h may a c c o u n t f o r t h e o b s e r v a t i o n s o f l i g h t d e p e n d e n c e o f N u p t a k e . I n m ost e n v i r o n m e n t s , l i g h t i n t e n s i t y e x h i b i t s e x t r e m e v a r i a t i o n , i n a p e r i o d i c f a s h i o n e v e r y d a y . D i e l p h y s i o l o g i c a l r h y t h m s , c o u p l e d t o f l u c t u a t i o n s i n l i g h t i n t e n s i t y , h a v e b e e n d e t e c t e d i n c u l t u r e s a n d n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s a nd i n c l u d e numerous p r o c e s s e s ( r e v i e w by S o u r n i a , 1 9 7 4 ) , most n o t a b l y p h o t o s y n t h e s i s ( e . g . , D o t y a n d O g u r i , 1957; M a c C a u l l a nd P i a t t , 1 9 7 7 ) . The t e r m \" d i e l \" , u s e d a l m o s t e x c l u s i v e l y by o c e a n o g r a p h e r s , w i l l be u s e d t h r o u g h o u t t h i s d i s s e r t a t i o n t o d e s c r i b e any r h y t h m , whose p e r i o d i s a b o u t 24 h, o b s e r v e d i n n a t u r a l c o n d i t i o n s . C i r c a d i a n h a s t h e same m e a n i n g a s d i e l , b u t i s u s e d t o d e s c r i b e s u c h r h y t h m s w h i c h p e r s i s t u n d e r c o n s t a n t e n v i r o n m e n t a l c o n d i t i o n s ( i . e . e n d o g e n o u s c o n t r o l ) . The t e r m 7 \" d i u r n a l \" , b e i n g t h e o p p o s i t e o f \" n o c t u r n a l \" c a n n o t a p p l y t o a 24 h c y c l e , b u t o n l y t o an e v e n t w h i c h o c c u r s b e t w e e n s u n r i s e a n d s u n s e t ( S o u r n i a , 1974) a n d w i l l be u s e d t o d e s c r i b e r h y t h m s d u r i n g t h e d a y l i g h t h o u r s . E v i d e n c e o f t h e p e r i o d i c i t y o f N u p t a k e h a s b e e n r e p o r t e d i n c y c l o s t a t c u l t u r e s ( e . g . , E p p l e y e t a l . , 1971b; M a l o n e e t a l . , 1975) a n d n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s ( e . g . , E p p l e y e t a l . , 1970 , 19 7 1 a , M a c l s a a c , 1978; F i s h e r e t a l . , 1 9 8 2 ) . Maximum u p t a k e o c c u r s d u r i n g t h e d a y a n d minimum u p t a k e a t n i g h t . I n a n e a r l y s t u d y , G o e r i n g e t a l . , ( 1964) o b s e r v e d u p t a k e p e r i o d i c i t y o f NC^ - and N H 4 + by S a r g a s s o S e a p h y t o p l a n k t o n i n c u b a t e d u n d e r c o n s t a n t i l l u m i n a t i o n w h i c h s u g g e s t s t h a t t h e r h y t h m was c i r c a d i a n . A dampened a m p l i t u d e i n t h e d i e l p e r i o d i c i t y o f n i t r a t e u p t a k e h a s b e e n o b s e r v e d i n c u l t u r e a n d f i e l d s t u d i e s w i t h i n c r e a s e d N l i m i t a t i o n ( e . g . , M a l o n e e t a l . , 1975) o r N s t a r v a t i o n ( e . g . , H a r r i s o n , 1976; D o r t c h a n d M a s k e , 1 9 8 2 ) . Objectives The m a i n o b j e c t i v e s o f t h i s t h e s i s w e r e a s f o l l o w s : (1) To d e t e r m i n e t h e n i t r o g e n d y n a m i c s ( N O 3 - , N H 4 + , a n d u r e a ) o f n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s f r o m c o a s t a l a n d o c e a n i c w a t e r s o f f t h e c o a s t o f B r i t i s h C o l u m b i a . (2) To d e t e r m i n e i n l a b o r a t o r y s t u d i e s t h e n i t r o g e n ( N O 3 - , N H 4 + , a n d u r e a ) u p t a k e k i n e t i c s o f an e c o l o g i c a l l y i m p o r t a n t e u c a r y o t i c p i c o p l a n k t e r Micromonas pusilla, i s o l a t e d f r o m B r i t i s h C o l u m b i a n c o a s t a l w a t e r s . (3) To d e t e r m i n e i n t e r a c t i o n s b e t w e e n n i t r o g e n u p t a k e a n d 8 l i g h t t h r o u g h d i e l p e r i o d i c i t y a nd i r r a d i a n c e e x p e r i m e n t s i n t h e f i e l d a n d t h e l a b o r a t o r y . Thesis o u t l i n e The u n d e r l y i n g p r e m i s e o f t h i s s t u d y i s t h a t n i t r o g e n u p t a k e a n d a s s i m i l a t i o n a r e a f u n c t i o n o f b o t h t h e e x t e r n a l e n v i r o n m e n t a n d t h e p h y s i o l o g i c a l s t a t e o f t h e p h y t o p l a n k t e r a s a r e s u l t o f p r e v i o u s i n t e r a c t i o n w i t h t h e e n v i r o n m e n t . The f i r s t h a l f o f t h i s d i s s e r t a t i o n e x a m i n e s n i t r o g e n u p t a k e by n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s a s a f u n c t i o n o f l i g h t i n n e r i t i c a n d o c e a n i c e n v i r o n m e n t s . I n C h a p t e r 1, t i m e c o u r s e e x p e r i m e n t s o f n i t r o g e n u p t a k e a r e d e s c r i b e d f o r a v a r i e t y o f p h y t o p l a n k t o n c o m m u n i t i e s . T h e s e e x p e r i m e n t s w e r e d e s i g n e d t o d i s c e r n t h e e f f e c t ( s ) o f a m b i e n t n i t r o g e n c o n c e n t r a t i o n s on n i t r o g e n u p t a k e o v e r d a y / n i g h t c y c l e s . T h e s e e x p e r i m e n t s w e r e c o n d u c t e d i n a s s o c i a t i o n w i t h p h y t o p l a n k t o n n i t r o g e n o u s n u t r i t i o n s t u d i e s a n d c o n f i r m t h e e x i s t e n c e o f d i e l r h y t h m s a n d t h e n e c e s s i t y o f t i m e c o u r s e e x p e r i m e n t s t o a c c u r a t e l y e s t i m a t e d a i l y r a t e s o f u p t a k e f r o m h o u r l y i n c u b a t i o n s o r v i c e v e r s a . I n C h a p t e r 2 t h e e f f e c t s o f i r r a d i a n c e , d u r i n g t h e d a y t i m e , on t h e u p t a k e o f n i t r o g e n by p h y t o p l a n k t o n f r o m n i t r a t e - r e p l e t e f r o n t a l a nd n i t r a t e - d e p l e t e s t r a t i f i e d , c o a s t a l w a t e r s a r e d e s c r i b e d . T h e s e r e s u l t s p r o v i d e u n i q u e i n f o r m a t i o n r e g a r d i n g u p t a k e o f o x i d i z e d a n d r e d u c e d N f o r m s a s a f u n c t i o n o f i r r a d i a n c e i n two h i g h l y c o n t r a s t i n g e n v i r o n m e n t s . R e c e n t w o r k s h o w i n g t h e u b i q u i t y o f p i c o p l a n k t o n (0.2 - < 2.0 um, S i e b u r t h e t a l . , 1978) ( e . g . , G i e s k e s e t a l . , 9 1979; W a t e r b u r y e t a l . , 1979; J o h n s o n a n d S i e b u r t h , 1982; L i e t a l . , 1983; P i a t t e t a l . , 1983) and t h e i r i m p o r t a n c e a s p h o t o a u t o t r o p h s , p a r t i c u l a r l y i n o l i g o t r o p h i c , o c e a n i c r e g i o n s ( e . g . , L i e t a l . , 1983; T a k a h a s h i a n d B i e n f a n g , 1983; r e v i e w s by J o i n t , 1986; S t o c k n e r a n d A n t i a , 1986) p r o m p t e d my c h o i c e o f a p i c o p l a n k t e r t o e x a m i n e t h e e f f e c t s o f l i g h t on n i t r o g e n u t i l i z a t i o n u n d e r c o n t r o l l e d l a b o r a t o r y c o n d i t i o n s . I n C h a p t e r 3, e x p e r i m e n t s w e r e c o n d u c t e d w i t h b a t c h c u l t u r e s o f t h e e u c a r y o t i c , p i c o p l a n k t e r Micromonas p u s i l l a , a n d d e s i g n e d t o e x a m i n e n i t r o g e n u p t a k e k i n e t i c s , t h e e f f e c t s o f u r e a a n d NH^ + on N O 3 - u p t a k e , a n d t h e t r a n s i e n t u p t a k e r e s p o n s e ( s ) t o N O 3 - s t a r v a t i o n . R e q u i s i t e i n f o r m a t i o n was o b t a i n e d f o r s u b s e q u e n t d i e l s t u d i e s . T h i s i s t h e f i r s t s t u d y o f p i c o p l a n k t o n n i t r o g e n o u s n u t r i t i o n b e s i d e s t h o s e e m p l o y i n g 1 c N t r a c e r s d u r x n g s i z e - f r a c t i o n a t i o n o f n a t u r a l c o m m u n i t i e s ( e . g . , P r o b y n , 1985; H a r r i s o n a n d Wood, 1988) C o n t i n u o u s c u l t u r e s o f M. p u s i l l a grown on a 14:10 l i g h t : d a r k c y c l e ( i . e . c y c l o s t a t ) w e r e u s e d i n t h e e x p e r i m e n t s d e s c r i b e d i n C h a p t e r 4. T h e s e e x p e r i m e n t s w e r e d e s i g n e d t o e x a m i n e t h e e f f e c t o f NC^ - l i m i t a t i o n on d i e l p e r i o d i c i t y o f N u t i l i z a t i o n . I n s i t u N O 3 - u p t a k e r a t e s , p o t e n t i a l r a t e s o f o x i d i z e d a n d r e d u c e d N f o r m s d u r i n g t h e d a y / n i g h t c y c l e , a n d N u p t a k e a s a f u n c t i o n o f i r r a d i a n c e w e r e d e t e r m i n e d . Experimental organism Micromonas p u s i l l a ( B u t c h e r ) M a n t o n e t P a r k e (1960) ( b a s i o n y m : Chromulina p u s i l l a , B u t c h e r , 1952) i s a m i n u t e ( l e n g t h 1 t o 2 um, w i d t h 0.75 t o 1 urn) n a k e d , u n i c e l l u l a r , 10 p h o t o s y n t h e t i c f l a g e l l a t e . Micromonas pusilla i s u s u a l l y c o n s i d e r e d t o be a n a n o m a l o u s member o f t h e P r a s i n o p h y c e a e ( M a n t o n , 1959; M a n t o n and P a r k e , 1960) a n d l a c k s a c e l l w a l l . Micromonas pusilla i s u b i q u i t o u s , o c c u r r i n g i n c o a s t a l a n d o c e a n i c s a m p l e s o f t r o p i c a l , t e m p e r a t e a n d a r c t i c w a t e r s a n d o f t e n a c h i e v i n g n u m e r i c a l d o m i n a n c e ( e . g . , T h r o n d s e n , 1976; J o h n s o n a n d S i e b u r t h , 1982; T a y l o r a n d W a t e r s , 1982; H a l l e g r a e f f , 1983; E s t e p e t a l . , 1984; H a l l e g r a e f f a n d J e f f r e y , 1 9 8 4 ) . I t h a s b e e n r e p o r t e d d e e p e r i n t h e w a t e r c o l u m n t h a n f l a g e l l a t e s i n g e n e r a l , o f t e n w e l l b e l o w t h e e u p h o t i c z o n e ( e . g . , M a n t o n a n d P a r k e , 1960; T h r o n d s e n , 1 9 7 6 ) . Micromonas pusilla i s f r e q u e n t l y e n c o u n t e r e d i n B r i t i s h 7 \u00E2\u0080\u0094 1 C o l u m b i a n c o a s t a l w a t e r s ( e . g . > 2.5*10 c e l l s * L i n J e r v i s I n l e t , J u l y 1977 T a y l o r a nd W a t e r s , 1982; 0.1 - 2 . 2 - 1 0 7 c e l l s \u00C2\u00AB L - 1 i n F r a s e r R i v e r p l u m e , J u l y 1987, C l i f f o r d e t a l . , 1 9 8 9 ) ; s i m i l a r c o n c e n t r a t i o n s a r e o f t e n r e p o r t e d i n N o r w e g i a n w a t e r s ( e . g . , T h r o n d s o n , 1976 a n d r e f e r e n c e s t h e r e i n ) . I t s t o l e r a n c e o f a w i d e r a n g e o f t e m p e r a t u r e a n d s a l i n i t y ( T h r o n d s e n , 1976) o r t h e a b i l i t y t o f o r m s t r a i n s a d a p t e d t o d i f f e r e n t e n v i r o n m e n t a l r e g i m e s , may c o n t r i b u t e t o t h e s u c c e s s o f t h i s p i c o p l a n k t e r i n t h e w o r l d ' s o c e a n s . The u b i q u i t o u s n a t u r e a n d n u m e r i c a l i m p o r t a n c e o f M. pusilla e n h a n c e s t h e p o t e n t i a l f o r e c o l o g i c a l l y r e l e v a n t e x t r a p o l a t i o n o f my l a b o r a t o r y d a t a t o n a t u r a l f i e l d p o p u l a t i o n s . The c u l t u r e u s e d h e r e i n (NEPCC 2 9 - 1 , N o r t h e a s t P a c i f i c C u l t u r e C o l l e c t i o n , D e p t . o f O c e a n o g r a p h y , U n i v e r s i t y o f B r i t i s h C o l u m b i a ) was i s o l a t e d f r o m E n g l i s h B a y , B.C. by R. W a t e r s i n J a n u a r y , 1971 a n d s u b s e q u e n t l y m a i n t a i n e d i n e n r i c h e d , n a t u r a l s e a w a t e r a t 16\u00C2\u00B0C on a 14:10 L:D c y c l e 12 CHAPTER ONE EFFECTS OF D I E L P E R I O D I C I T Y ON NITROGEN UPTAKE BY NATURAL ASSEMBLAGES OF PHYTOPLANKTON INTRODUCTION D a y - n i g h t ( d i e l ) c y c l e s o f b i o l o g i c a l a n d r e l a t e d p a r a m e t e r s i n t h e o c e a n a r e o f t e n t h e m a n i f e s t a t i o n o f t h e e f f e c t s o f s u n l i g h t on b i o l o g i c a l p r o c e s s e s . P e r i o d i c i t y i n b o t h p h o t o s y n t h e t i c c a p a c i t y a n d i n s i t u p h o t o s y n t h e s i s i s t h e most o b v i o u s d i e l c y c l e ( e . g . , S o u r n i a , 1974) a n d b o t h d i e l ( a n d d i u r n a l ) r h y t h m s h a v e b e e n r e p o r t e d f o r many y e a r s ( e . g . , D o t y a n d O g u r i , 1957; V e r d u i n , 1 9 5 7 ) . D i e l f l u c t u a t i o n s i n d i s s o l v e d i n o r g a n i c n u t r i e n t c o n c e n t r a t i o n h a v e b e e n r e p o r t e d i n n a t u r a l p o p u l a t i o n s ( e . g . , L o r e n z e n , 1963; B e e r s a n d K e l l y , 1965) w i t h a c o n c e n t r a t i o n d e c l i n e g e n e r a l l y a s c r i b e d t o t h e a s s i m i l a t o r y a c t i v i t i e s o f p h y t o p l a n k t o n ( a n d b a c t e r i a ) a n d r e g e n e r a t i v e i n c r e a s e s f r o m z o o p l a n k t o n a n d h e t e r o t r o p h i c r e m i n e r a l i z a t i o n . G o e r i n g e t a l . (1964) f i r s t d e m o n s t r a t e d m a r k e d d i e l c y c l e s i n t h e p o t e n t i a l u p t a k e o f N O 3 - a n d N H 4 + by p h y t o p l a n k t o n i n t h e N - d e p l e t e d w a t e r s o f t h e S a r g a s s o S e a . S i n c e t h e n , numerous a c c o u n t s o f n i t r o g e n u p t a k e p e r i o d i c i t y i n i n s i t u ( e . g . , M a c l s a a c , 1 9 7 8 ) , s h i p b o a r d ( e . g . , E p p l e y e t a l . , 1 9 7 1 a ; C o l l o s a n d S l a w y k , 1976) and N - l i m i t e d c y c l o s t a t c u l t u r e s ( e . g . , E p p l e y e t a l . , 1971b; M a l o n e e t a l . , 1975) o f m a r i n e p h y t o p l a n k t o n h a v e shown m a x i m a l u p t a k e d u r i n g t h e d a y l i g h t h o u r s a nd m i n i m a l u p t a k e d u r i n g t h e n i g h t . D a r k u p t a k e o f n i t r o g e n h a s g e n e r a l l y b e e n t h o u g h t t o be a r e s p o n s e t o N l i m i t a t i o n ( e . g . , S y r e t t , 1 9 8 1 ) , d a m p e n i n g d i e l p e r i o d i c i t y by a r e l a t i v e e n h a n c e m e n t o f d a r k u p t a k e c a p a c i t y . 13 C u l t u r e s t u d i e s h a v e d e m o n s t r a t e d t h a t t h e p r e c o n d i t i o n i n g N s u b s t r a t e a f f e c t s t h e u p t a k e r e s p o n s e o f p h y t o p l a n k t o n t o e n r i c h m e n t s o f d i f f e r e n t N s u b s t r a t e s ( e . g . , H o r r i g a n a n d M c C a r t h y , 1 9 8 1 , 1982 ; D o r t c h a n d Conway, 1 9 8 4 ) . A d d i t i o n a l l y , i n N - s t a r v e d p h y t o p l a n k t o n t h e a b i l i t y t o t a k e up N O 3 - may be l o s t a n d must o f t e n be i n d u c e d ( D o r t c h e t a l . , 1982; r e v i e w by C o l l o s , 1983; P a r s l o w e t a l . , 1 9 8 4 b ) . I n i t i a l N H 4 + u p t a k e r a t e s a r e , h o w e v e r , o f t e n e n h a n c e d u p o n e x p o s u r e t o a n e l e v a t e d N H 4 + c o n c e n t r a t i o n i n c u l t u r e ( e . g . , Conway e t a l . , 1976; Conway a n d H a r r i s o n , 1977; Goldman a n d G l i b e r t , 1982; P a r s l o w e t a l . , 1984a,b) a n d n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s ( e . g . , G l i b e r t a n d Goldman, 1 9 81; W h e e l e r e t a l . , 1982; P r i s c u a n d P r i s c u , 1 9 8 4 ) . I n n i t r o g e n - d e p l e t e w a t e r s , m o s t o f t h e n i t r o g e n demands o f p h y t o p l a n k t o n a r e s u p p l i e d by ammonium a n d u r e a .from i n s i t u r e g e n e r a t i v e p r o c e s s e s , w h e r e a s i n N - r e p l e t e a r e a s , N compounds a p p e a r t o be u t i l i z e d a t r a t e s p r o p o r t i o n a l t o t h e i r a v a i l a b i l i t y ( e . g . , D u g d a l e a n d G o e r i n g , 1967; M c C a r t h y e t a l . , 1 9 7 7 ) . T h e s e o b s e r v a t i o n s s u g g e s t t h a t p h y t o p l a n k t o n c o m m u n i t i e s f r o m N - r e p l e t e a n d N - d e p l e t e w a t e r s may d i f f e r i n t h e i r r e s p o n s e t o p e r t u r b a t i o n s o f n i t r o g e n by t h e i r p r e f e r e n c e f o r , a n d u p t a k e r a t e s o f , d i f f e r e n t n i t r o g e n s u b s t r a t e s a n d t h a t t h e s e d i f f e r e n c e s may be r e f l e c t e d i n d i e l p a t t e r n s o f N u p t a k e . E x p e r i m e n t s i n t h e p r e s e n t s t u d y w e r e d e s i g n e d t o e x a m i n e p e r i o d i c i t y o f n i t r o g e n u p t a k e i n t h r e e c o n t r a s t i n g e n v i r o n m e n t s o f r e l a t i v e b i o m a s s a n d n i t r o g e n c o n c e n t r a t i o n s : t h e o c e a n i c s u b a r c t i c P a c i f i c w i t h l o w b i o m a s s a n d h i g h NC^ -14 c o n c e n t r a t i o n s ; a c o a s t a l u p w e l l i n g plume o f m o d e r a t e b i o m a s s a n d v a r y i n g N O 3 - c o n c e n t r a t i o n s ; a n d c o a s t a l i n s h o r e f r o n t a l a n d s t r a t i f i e d w a t e r s w i t h e l e v a t e d a n d d i m i n i s h e d N O 3 - a n d p h y t o p l a n k t o n c o n c e n t r a t i o n s , r e s p e c t i v e l y . Time c o u r s e e x p e r i m e n t s o f 24 h o r g r e a t e r i n d u r a t i o n , u t i l i z i n g e i t h e r c o n t a i n e d s a m p l e s o r r e p e a t e d s a m p l i n g o f a d r o g u e - t r a c k e d w a t e r p a r c e l , w e r e c o n d u c t e d w i t h N - l a b e l l e d s u b s t r a t e s t o r e l a t e p a t t e r n s o f u p t a k e t o c o n c o m i t a n t c h a n g e s i n i r r a d i a n c e a n d n u t r i e n t c o n c e n t r a t i o n . P r i o r t o t h i s s t u d y o u r k n o w l e d g e o f n i t r o g e n u p t a k e b y p h y t o p l a n k t o n on t h e w e s t c o a s t o f C a n a d a was l i m i t e d t o N O 3 -u p t a k e r a t e s d e t e r m i n e d i n t h r e e f j o r d s on t h e m a i n l a n d c o a s t o f B r i t i s h C o l u m b i a ( C o c h l a n e t a l . , 1 9 8 6 ) . The r a t e s o f NO3\"\", N H 4 + , a n d u r e a d e s c r i b e d i n t h i s c h a p t e r a r e t h e f i r s t e s t i m a t e s o f t h e u p t a k e c a p a b i l i t y o f n a t u r a l c o m m u n i t i e s o f p h y t o p l a n k t o n on t h e w e s t c o a s t o f C a n a d a . The p r e s e n t s t u d y was t h e f i r s t t o e m p l o y N m e t h o d o l o g y ( D u g d a l e a n d G o e r i n g , 1967) a n d t o r e p o r t a m b i e n t c o n c e n t r a t i o n s o f u r e a a n d f r e s h l y d e t e r m i n e d N H 4 + c o n c e n t r a t i o n s on t h e w e s t c o a s t o f C a n a d a a n d a d j a c e n t o f f s h o r e w a t e r s . 15 MATERIALS AND METHODS General Time c o u r s e e x p e r i m e n t s o f n i t r o g e n u p t a k e w e r e c o n d u c t e d d u r i n g t h r e e c r u i s e s a b o a r d t h e r e s e a r c h v e s s e l s C.S.S. V e c t o r a n d C.S.S. P a r i z e a u . The f i r s t c r u i s e (OE 8 4 - 0 2 ) , p a r t o f P r o j e c t SUPER ( S u b a r c t i c P a c i f i c E c o s y s t e m R e s e a r c h ) i n t h e N o r t h e a s t P a c i f i c O cean was c a r r i e d o u t f r o m 7 May t o 25 May, 1984, a n d one t i m e c o u r s e e x p e r i m e n t i s r e p o r t e d ( T C . l ) . D u r i n g t h e s e c o n d c r u i s e f r o m J u l y t o A u g u s t , 1984 i n t h e S t r a i t o f G e o r g i a , B.C. a c o a s t a l b a s i n on t h e w e s t c o a s t o f C a n a d a b e t w e e n t h e m a i n l a n d a n d V a n c o u v e r I s l a n d , t i m e c o u r s e s t u d i e s w e r e c o n d u c t e d i n f r o n t a l (TC.2) a n d s t r a t i f i e d w a t e r s ( T C . 3 ) . D i e l s t u d i e s on t h e t h i r d c r u i s e (O.E. 86-04) f r o m 18 A u g u s t t o 28 A u g u s t , 1986 w e r e c o n d u c t e d on t h e c o n t i n e n t a l s h e l f o f f t h e s o u t h w e s t c o a s t o f V a n c o u v e r I s l a n d (TC.4) a n d o f f s h o r e o f t h e s h e l f ( T C . 5 ) . S t a t i o n l o c a t i o n s f o r t h e e x p e r i m e n t s a r e p r e s e n t e d i n T a b l e 1.1 a n d shown i n F i g u r e 1.1. Sample collection D i s c r e t e s a m p l e s w e r e c o l l e c t e d f r o m d e p t h s , s e l e c t e d t o c o r r e s p o n d t o 50, 30, a n d 1% o f t h e s u r f a c e i r r a d i a n c e ( I Q ) , u s i n g e i t h e r 2 o r 5 L PVC N i s k i n b o t t l e s ( m o unted on a r o s e t t e o r w i r e ) a n d t h e n t r a n s f e r r e d i n t o d a r k e n e d 10 o r 20 L N a l g e n e c a r b o y s . V e r t i c a l p r o f i l e s o f t e m p e r a t u r e a n d s a l i n i t y w e r e o b t a i n e d f r o m c o n t i n u o u s p r o f i l e s , r u n p r i o r t o b o t t l e s a m p l i n g , u s i n g e i t h e r a I n t e r O c e a n m o d e l 514A CSTD ( c r u i s e 2) o r a G u i l d l i n e m o d e l 8701 d i g i t a l CTD ( c r u i s e s 1 & 16 F i g u r e 1.1. S t a t i o n l o c a t i o n s f o r t i m e c o u r s e e x p e r i m e n t s o f n i t r o g e n u p t a k e . (A) T C . l a t s t n F; TC.4 a t s t n 24; TC.5 a t s t n 8 5. (B) TC.2 a t s t n A5; TC.3 a t s t n T4. P a n e l B i s a n e n l a r g e m e n t o f t h e a r e a d e l i m i t e d b y d a s h e d l i n e s i n p a n e l A. 125\u00C2\u00B0 30' I25\u00C2\u00B000' I24\u00C2\u00B030' I24\u00C2\u00B000' Table 1.1 I n i t i a l environmental co n d i t i o n s of seawater c o l l e c t e d f or time course experiments of nitrogen uptake by natural phytoplankton assemblages. Stations are F: Northeast P a c i f i c Ocean; A5: S t r a i t of Georgia - f r o n t a l ; T4: S t r a i t of Georgia - s t r a t i f i e d ; 24: upwelling plume o f f southwest coast of Vancouver Island; 85: offshore of western Canadian c o n t i n e n t a l s h e l f , (see F i g . 1.1). St a t i o n Time Course Date S t a r t i n g Sample Nitrogen cone. Chi a PON POC and Number time of depth N \u00C2\u00B0 3 ~ Urea NH + Location incubation (m) (PDT) (ug- -at . N-L\" \u00E2\u0080\u00A2S (pg-L - 1) {uq-at N-L ) (ug -at C-L - 1) F 49\u00C2\u00B05?. . 5' N TC. 1 16 May 1984 0245 8 11.99 0. 32* 0. 15* 0.59 1. ,87 19 . 5 145\u00C2\u00B014. . 6 'W A5 49\u00C2\u00B053. , 0 ' N TC.2 28 J u l y 1984 1000 0 0.27 4. 55 0. 60 2.12 7. .28 47 . 3 125\u00C2\u00B005. . 8 ' W T4 49\u00C2\u00B055, , 5 ' N TC.3 29 J u l y 1984 0800 0 0.19 <. 05 0. 33 0.39 3. .57 31. 4 124\u00C2\u00B055. .5 'W 24 49\u00C2\u00B025. . 0 *N TC.4 20 Aug. 1986 1100 2 12.94 2. 38 1. 67 10.35 7, .75 46 . 8 127\u00C2\u00B032. . 1 'W 5 11.74 0. 82 1. 78 11.74 7. .35 44. 5 14 11.58 1. 02 2 . 63 7.21 6 , . 15 37 . 5 85 48\u00C2\u00B016. . 7 ' N TC.5 25 Aug. 1986 1140 1 0.09 1. 95 <. 05 1.09 2, .11 17 . 3 128\u00C2\u00B018. . 9 ' W 28 7 .14 0. 63 1. 25 2.24 2 , .84 12 . 6 \u00E2\u0080\u00A2 C o l l e c t e d from separate b o t t l e casts at s i m i l a r s t a t i o n s . 18 3 ) . S i m u l t a n e o u s m e a s u r e m e n t s o f c h l o r o p h y l l f l u o r e s c e n c e w e r e d e t e r m i n e d w i t h a V a r i o s e n s I I I i n s i t u f l u o r o m e t e r ( c r u i s e s 1 & 3) o r o b t a i n e d f r o m pumped s a m p l e s a n d m e a s u r e d w i t h a T u r n e r m o d e l 111 f l u o r o m e t e r , e q u i p p e d w i t h a f l o w -t h r o u g h c e l l . I n c i d e n t s o l a r i r r a d i a n c e (P.A.R.) was m o n i t o r e d c o n t i n u o u s l y w i t h a Lambda I n s t r u m e n t s L i C o r L I - 1 8 5 l i g h t m e t e r e q u i p p e d w i t h a L I - 1 9 0 S B S u r f a c e Quantum S e n s o r a n d r e c o r d e d w i t h a p r i n t i n g i n t e g r a t o r ( m o d e l L I - 5 5 0 D ) o r a c h a r t r e c o r d e r . S u b s u r f a c e i r r a d i a n c e s w e r e d e t e r m i n e d w i t h a L i C o r L I - 1 9 2 S U n d e r w a t e r Quantum S e n s o r (2n, c r u i s e 2) o r a L I - 1 9 3 S B S p h e r i c a l Quantum S e n s o r (4/T, c r u i s e s 1 & 3 ) . Analytical methods S u b s a m p l e s f o r n u t r i e n t a n a l y s e s w e r e f i l t e r e d t h r o u g h p r e w a s h e d , p r e c o m b u s t e d (460\u00C2\u00B0C f o r 4 h) Whatman GF/F f i l t e r s , u s i n g an a c i d - w a s h e d s y r i n g e a n d 25 mm M i l l i p o r e S w i n n e x f i l t e r h o l d e r , i n t o a c i d - w a s h e d , p o l y p r o p y l e n e b o t t l e s . Ammonium ( N H 4 + ) c o n c e n t r a t i o n s w e r e a l w a y s d e t e r m i n e d i m m e d i a t e l y on b o a r d s h i p w i t h a T e c h n i c o n A u t o a n a l y z e r I I f o l l o w i n g t h e m e t h o d o f S l a w y k a n d M a c l s a a c ( 1 9 7 2 ) . S a m p l e s f o r p h o s p h a t e ( P O ^ - ^ ) a n d s i l i c a t e ( S i O ^ - ^ ) w e r e a l s o a n a l y z e d f r e s h f o l l o w i n g t h e a u t o m a t e d p r o c e d u r e s o f H a g e r e t a l . (1968) a n d A r m s t r o n g e t a l . ( 1 9 6 7 ) , r e s p e c t i v e l y . S a m p l e s f o r n i t r a t e ( N O 3 - + NC^ -) a n d u r e a w e r e e i t h e r s t o r e d f r o z e n (-20\u00C2\u00B0C), k e p t d a r k a n d c o o l (< 12 h) o r a n a l y z e d i m m e d i a t e l y f o l l o w i n g t h e a u t o m a t e d p r o c e d u r e s o f Wood e t a l . (1967) a n d P r i c e a n d H a r r i s o n ( 1 9 8 7 ) , r e s p e c t i v e l y . 19 D u p l i c a t e s a m p l e s f o r c h l o r o p h y l l a ( C h i a) w e r e f i l t e r e d (< 125 mm Hg f i l t e r p r e s s u r e d i f f e r e n t i a l ) o n t o Whatman GF/F f i l t e r s w i t h c a . 0.5 m l 1% MgCG^ s u s p e n s i o n a d d e d p r i o r t o c o m p l e t i o n o f f i l t r a t i o n a n d e i t h e r a n a l y z e d i m m e d i a t e l y (< 1 h, c r u i s e 3) o r s t o r e d f r o z e n i n a d e s i c c a t o r ( c r u i s e s 1 & 2) u n t i l a n a l y s i s a s h o r e . C h l o r o p h y l l was e x t r a c t e d i n 90% a q u e o u s a c e t o n e a n d a n a l y z e d by i n v i t r o f l u o r o m e t r y ( P a r s o n s e t a l . , 1984) u s i n g a T u r n e r D e s i g n s m o d e l 10 f l u o r o m e t e r , c a l i b r a t e d w i t h c r y s t a l l i n e C h i a ( S i g m a C h e m i c a l C o . ) . D u p l i c a t e s a m p l e s f o r p a r t i c u l a t e o r g a n i c c a r b o n a n d n i t r o g e n (POC & PON) w e r e c o l l e c t e d on c o m b u s t e d Whatman GF/F f i l t e r s , s t o r e d s i m i l a r l y , a n d a n a l y z e d by t h e d r y c o m b u s t i o n m e t h o d o f S h a r p ( 1974) w i t h e i t h e r a P e r k i n - E l m e r m o d e l 240 o r a C a r l o E r b a m o d e l 1106 e l e m e n t a l a n a l y z e r . B o t h i n s t r u m e n t s w e r e c a l i b r a t e d w i t h a c e t a n i l i d e s t a n d a r d s . S a m p l e s f o r p h y t o p l a n k t o n s p e c i e s a n a l y s i s w e r e p r e s e r v e d i n a c i d L u g o l ' s s o l u t i o n ( P a r s o n s e t a l . , 1984) a n d s t o r e d i n t h e d a r k u n t i l a n a l y s i s . T en m l s u b s a m p l e s w e r e s e t t l e d (24 h) a n d c o u n t e d on a n i n v e r t e d m i c r o s c o p e . D u r i n g c r u i s e 1 t o t h e n o r t h e a s t P a c i f i c , p a i r e d s a m p l e s w e r e a l s o p r e s e r v e d i n a l k a l i n e L u g o l ' s s o l u t i o n ( T h r o n d s e n , 1978) f o r e n u m e r a t i o n o f c o c c o l i t h o p h o r i d s a n d t h e r e s u l t s r e p o r t e d a r e c o m b i n e d . S a m p l e s f o r N a n a l y s i s w e r e c o l l e c t e d on p r e c o m b u s t e d Whatman GF/F f i l t e r s , f o l d e d , p l a c e d i n t o a c i d - w a s h e d p e t r i -d i s h e s , a n d i m m e d i a t e l y f r o z e n f o r l a t e r i s o t o p i c a n a l y s e s . N i t r o g e n i n t h e p a r t i c u l a t e s a m p l e s was c o n v e r t e d t o d i n i t r o g e n g a s ( N 2 ) by t h e micro-Dumas d r y c o m b u s t i o n 20 t e c h n i q u e a s o u t l i n e d by C o c h l a n (1982) a n d L a R o c h e (1983) a n d 1 c s u b s e q u e n t l y a n a l y z e d f o r N e n r i c h m e n t w i t h a JASCO m o d e l N-150 e m i s s i o n s p e c t r o m e t e r ( F i e d l e r a nd P r o k s c h , 1 9 7 5 ) . G e n e r a l l y e a c h s a m p l e was s c a n n e d s i x t i m e s (minimum o f 3 t i m e s ) a n d t h e a v e r a g e ^ N / ^ N p e a k h e i g h t r a t i o was u s e d i n t h e c a l c u l a t i o n o f t h e p e r c e n t a g e ( s p e c i f i c a c t i v i t y ) i n t h e p a r t i c u l a t e m a t e r i a l . A u t o m a t i c s e l e c t i o n o f p e a k h e i g h t s d u r i n g s c a n s a n d i s o t o p i c r a t i o c a l c u l a t i o n s w e r e p e r f o r m e d u t i l i z i n g i n - h o u s e s o f t w a r e ( J o n e s , u n p u b l . d o c ) , w i t h an IBM c o m p a t i b l e PC, i n t e r f a c e d w i t h t h e s p e c t r o m e t e r . The e m i s s i o n s p e c t r o m e t e r was r o u t i n e l y c a l i b r a t e d w i t h a s e r i e s o f p u r e N 2 g a s s t a n d a r d s s u p p l i e d by JASCO o f known 1 5 N e n r i c h m e n t t o p r e p a r e c a l i b r a t i o n c u r v e s . The p r e c i s i o n o f t h e a n a l y t i c a l t e c h n i q u e s u s e d a r e p r e s e n t e d i n A p p e n d i x 6. Tracer experiments A l l n i t r o g e n u p t a k e e x p e r i m e n t s w e r e i n i t i a t e d w i t h i n 1 h o f c o l l e c t i o n ; w a t e r was t r a n s f e r r e d i n t o 500 m l Wheaton g l a s s b o t t l e s ( c l e a r : l i g h t b o t t l e s , o r d a r k e n e d w i t h b l a c k t a p e : d a r k b o t t l e s ) w i t h t e f l o n - l i n e d c a p s , and e n r i c h e d w i t h e i t h e r 1 5 N H 4 C 1 , N a 1 5 N 0 3 , o r C O ( 1 5 N H 2 ) 2 ( a l l 99 atom % 1 5 N ; K o r I s o t o p e s ) . S a m p l e s w e r e i n c u b a t e d on d e c k i n c l e a r P l e x i g l a s i n c u b a t o r s c o o l e d w i t h c o n t i n u o u s l y - f l o w i n g n e a r s u r f a c e (3 m) s e a w a t e r a n d c o v e r e d w i t h n e u t r a l d e n s i t y s c r e e n i n g t o s i m u l a t e t h e i n s i t u l i g h t r e g i m e a t e a c h s a m p l e d e p t h . A t s e l e c t e d t i m e i n t e r v a l s , r a n d o m l y s e l e c t e d b o t t l e s w e r e f i l t e r e d (< 125 mm H g ) , f o r c o l l e c t i o n o f p a r t i c u l a t e m a t t e r f o r i s o t o p i c a n a l y s i s o f \"^N atom % e x c e s s , a n d d i s s o l v e d N 21 c o n c e n t r a t i o n s . L i g h t and d a r k b o t t l e u p t a k e r a t e s o f e a c h n i t r o g e n s u b s t r a t e w e r e m e a s u r e d o v e r t h e t i m e c o u r s e a n d t h e c o n t e n t s o f t h e s a m p l e b o t t l e s m i x e d h o u r l y . N i t r o g e n u p t a k e r a t e s w e r e c a l c u l a t e d a c c o r d i n g t o t h e e q u a t i o n s o f D u g d a l e a n d W i l k e r s o n ( 1 9 8 6) w h i c h a r e p r e s e n t e d i n A p p e n d i x 1. S p e c i f i c u p t a k e r a t e s , V ( n o r m a l i z e d t o PON) w e r e e s t i m a t e d u s i n g a c o n s t a n t s p e c i f i c u p t a k e m o d e l ( V c , e q u a t i o n 6 o f D u g d a l e a n d W i l k e r s o n ) . D i f f e r e n c e s b e t w e e n 1 R 1 R i n i t i a l a n d f i n a l N a t o m % e x c e s s ( N x s ) i n s u c c e s s s i v e s a m p l e s w e r e d i v i d e d by t h e l e n g t h o f t i m e i n t e r v a l t o o b t a i n a v e r a g e u p t a k e r a t e s d u r i n g e a c h i n c u b a t i o n p e r i o d . A b s o l u t e ( t r a n s p o r t ) r a t e s (were c a l c u l a t e d a s t h e p r o d u c t o f n o n -c o n s t a n t s p e c i f i c u p t a k e r a t e s V^, V j and t h e c o n c e n t r a t i o n s o f PON^, PONf, r e s p e c t i v e l y f o r s a m p l e s c o l l e c t e d a t t h e b e g i n n i n g ( i ) a n d e n d ( f ) o f i n c u b a t i o n p e r i o d . D i s a p p e a r a n c e u p t a k e r a t e s (V ) h a v e b e e n c a l c u l a t e d f r o m t h e c h a n g e i n c o n c e n t r a t i o n o f d i s s o l v e d n i t r o g e n p e r u n i t t i m e a n d , l i k e t h e n i t r o g e n - s p e c i f i c a n d a b s o l u t e N r a t e s , a r e r e p o r t e d f o r t h e t i m e i n t e r v a l s o v e r w h i c h t h e y h a v e b e e n c a l c u l a t e d . Experimental procedures O v e r t h e c o u r s e o f t h i s s t u d y , s u b t l e a n d m a j o r c h a n g e s i n e x p e r i m e n t a l d e s i g n w e r e e m p l o y e d , due t o b o t h e n v i r o n m e n t a l a n d l o g i s t i c a l f a c t o r s , i n t h e f i v e d i e l t i m e c o u r s e e x p e r i m e n t s r e p o r t e d . I n T C . l , c o n d u c t e d i n t h e N o r t h e a s t P a c i f i c O c e a n , w a t e r was c o l l e c t e d f r o m t h e 50% I Q l i g h t p e n e t r a t i o n d e p t h ( c a . 8 m) a n d p r e f i l t e r e d t h r o u g h 102 \u00E2\u0080\u00A2p um N i t e x n y l o n n e t t i n g t o remove l a r g e r z o o p l a n k t o n b e f o r e 22 t r a c e r e x p e r i m e n t s w e r e i n i t i a t e d . S a m p l e s w e r e i n o c u l a t e d w i t h N a 1 5 N 0 3 a t a t r a c e r l e v e l ( u s u a l l y d e f i n e d a s \u00C2\u00A3 10% o f t h e a m b i e n t c o n c e n t r a t i o n ) t o b r i n g f i n a l t r a c e r c o n c e n t r a t i o n t o 1.0 uq-at N\u00E2\u0080\u00A2L~^ p r i o r t o i n c u b a t i o n . T r i p l i c a t e s a m p l e s w e r e r e m o v e d a n d p a r t i c u l a t e s f i l t e r e d a t 3 h i n t e r v a l s f o r 24 h. N i n e h o u r s a f t e r i s o t o p e e n r i c h m e n t ( T Q = 0245 h PDT) t r i p l i c a t e l i g h t b o t t l e s w e r e d a r k e n e d f o r 3 a n d 5 h d u r i n g m i d - d a y t o e s t i m a t e d a r k u p t a k e r a t e s , d a r k u p t a k e r a t e s w e r e a l s o d e t e r m i n e d f o r t r i p l i c a t e s a m p l e s c o l l e c t e d a n d i n c u b a t e d 24 h i n d a r k n e s s . D u r i n g t h e s e c o n d c r u i s e , i n t h e S t r a i t o f G e o r g i a , s a m p l e s w e r e c o l l e c t e d i n t h e m o r n i n g (07 00-0900 h) a n d 6.0 L i g - a t N - L - 1 o f 1 5 N H 4 + , 1 5 N 0 3 ~ o r C O ( 1 5 N H 2 ) 2 w e r e a d d e d i n TC.2 a n d 3. T i m e - z e r o s a m p l e s f o r d i s s o l v e d n i t r o g e n w e r e w i t h d r a w n i m m e d i a t e l y a n d a n a l y z e d f o r N H 4 + , N O 3 - , a n d u r e a c o n c e n t r a t i o n s i n a l l b o t t l e s . A t 3 h i n t e r v a l s p a r t i c u l a t e m a t t e r , f r o m d u p l i c a t e s a m p l e s , was c o l l e c t e d by f i l t r a t i o n f o r -^N a n a l y s i s . S a m p l e s f o r d i s s o l v e d n i t r o g e n c o n c e n t r a t i o n s w e r e t a k e n c o n c u r r e n t l y a n d t h o s e f o r C h i a a n d POC a n d PON e v e r y 6 h. D u r i n g t h e t h i r d c r u i s e , d r o g u e d d r i f t e r b u o y s ( L o r a n - C d r i f t e r s ; d e s c r i b e d i n M a c k a s e t a l . , 1989) w e r e u s e d t o g u i d e r e p e a t e d s a m p l i n g f r o m a g i v e n w a t e r p a r c e l f o r 48 h (TC.4) a n d 24 h ( T C . 5 ) . The d r o g u e s w e r e c e n t r e d a t 15 m d e p t h a n d t h e i r p o s i t i o n s w e r e r e p o r t e d by r a d i o e v e r y h a l f h o u r ; d r i f t e r t r a c k s a r e r e p o r t e d i n F o r b e s e t a l . ( 1 9 8 7 ) . D u r i n g TC.4, a n u p w e l l i n g p l u m e on t h e w e s t e r n c o a s t o f V a n c o u v e r 23 I s l a n d , was sampled at 3 h i n t e r v a l s f o r p h y s i c a l measurements and at 6 h i n t e r v a l s f o r N uptake experiments and the c o n c e n t r a t i o n s of POC, PON, C h i a and d i s s o l v e d n u t r i e n t s . Samples from 100, 30, and 1% I Q were c o l l e c t e d as d e s c r i b e d p r e v i o u s l y and d u p l i c a t e samples from each depth i n o c u l a t e d w i t h 10 uq-at N - L - 1 of Na 1 5N0 3~ or 1 5NH 4C1 f o r 4 h si m u l a t e d i n s i t u i n c u b a t i o n s . During TC.5, i n the waters o f f s h o r e of the c o n t i n e n t a l s h e l f , a water p a r c e l was r e p e a t e d l y sampled at 2 h i n t e r v a l s f o r b i o l o g i c a l and p h y s i c a l measurements f o r 29 h. At each sampling p e r i o d , d u p l i c a t e samples from j u s t below the s u r f a c e and the 1% I Q were e n r i c h e d w i t h \u00E2\u0080\u0094 1 IS 10 L i g - a t N*L of Na NO3 and xncubated f o r 4 h i n simulated i n s i t u c o n d i t i o n s . Samples f o r enumeration of phytoplankton s p e c i e s were c o l l e c t e d at the beginning and end of both experiments t o determine community composition over the sampling p e r i o d . 24 RESULTS Physical observations The v e r t i c a l p r o f i l e s of temperature, s a l i n i t y and n i t r a t e c o n c e n t r a t i o n f o r TC. 1 ( c r u i s e OE 84 02, s t n F) i n the n o r t h e a s t P a c i f i c Ocean are presented i n F i g u r e 1.2 A. The temperature of the upper water column was 6.5-7.0\u00C2\u00B0C and thoroughly mixed u n t i l c a . 30 m. A shallow t h e r m o c l i n e step (sT, temperature step < 0.5) at 30-40 m e f f e c t i v e l y d i v i d e d the euphotic zone (1% I Q = 70 m) i n t o two l a y e r s w i t h d i f f e r e n t t u r b u l e n c e c h a r a c t e r i s t i c s and dynamics (Denman and G a r g e t t , 1988) above the main p y c n o c l i n e / s e a s o n a l t h e r m o c l i n e at 80-100 m. Denman and Gargett (1988) demonstrated t h a t the shallow t h e r m o c l i n e step p r e s e n t s a s i g n i f i c a n t b a r r i e r t o the v e r t i c a l exchange of phytoplankton and presented two seperate i n d i c a t o r s of the p h y s i o l o g i c a l s t a t e of the phytoplankton which c o n f i r m t h a t t h i s p h y s i c a l b a r r i e r was s u f f i c i e n t t o cause d i f f e r i n g degrees of photoadaptation i n each of the two l a y e r s comprising the euphotic zone. N i t r a t e (plus n i t r i t e ) c o n c e n t r a t i o n s were high (ca. 11 uq-at N'L - 1) i n the s u r f a c e \"mixed water\" and i n c r e a s e d t o 20-35 uq-at N \u00C2\u00AB L - 1 below the p y c n o c l i n e . V e r t i c a l p r o f i l e s of temperature, r e l a t i v e i n v i v o f l u o r e s c e n c e and N O 3 - c o n c e n t r a t i o n s f o r the f r o n t a l (TC.2, s t n A5) and s t r a t i f i e d (TC.3, s t n T4) waters of the S t r a i t of Georgia are presented i n F i g u r e 1.2 B & C. The d i a g n o s t i c f e a t u r e s of the f r o n t a l water were the shallow t h e r m o c l i n e and h i g h f l u o r e s c e n c e a t the depth of the n i t r a c l i n e (3 t o 7 m). 25 Figure 1 . 2 . Depth profiles of temperature (T), s a l i n i t y ( S ) , in vivo fluorescence (F), and nitrate plus n i t r i t e concentration (N) for three stations sampled for containment time course experiments. (A) Oceanic station F, TC.1. (B) Frontal station A 5, TC . 2 . (C) Str a t i f i e d station T4, TC.3. The shallow thermocline step is indicated by the arrow labelled 'sT' in panel A. 26 Time c o u r s e 3 was c o n d u c t e d i n warm (17\u00C2\u00B0C), s t r a t i f i e d w a t e r a n d t h e d e p t h p r o f i l e d e m o n s t r a t e d a s u b s u r f a c e f l u o r e s c e n c e maximum ( c a . 10m) w h i c h was o v e r l a i n b y n i t r a t e - d e p l e t e d m i x e d w a t e r ( F i g . 1.2 C ) . Time c o u r s e 4 was c o n d u c t e d b y r e p e a t e d s a m p l i n g o f an u p w e l l e d p l u m e o f f V a n c o u v e r I s l a n d ( s t n 24-49) a n d t h e d e p t h s o f s a m p l i n g ( 2 , 6-7,and 14 m) w e r e a l l w i t h i n t h e m i x e d s u r f a c e l a y e r o f n i t r a t e - r e p l e t e ( c a . 10 ^ j g - a t N * L - 1 ) , warm (11\u00C2\u00B0C) s u r f a c e w a t e r a b o v e t h e t h e r m o c l i n e / h a l o c l i n e ( c a . 15 m). The v e r t i c a l p r o f i l e s o f s a l i n i t y a n d t e m p e r a t u r e ( F i g . 1.3 A & B) f o r t h e f i r s t ( s t n 24) a n d l a s t ( s t n 49) p e r i o d o f s a m p l i n g (51 h l a t e r ) d e m o n s t r a t e a s l i g h t d e e p e n i n g o f t h e s u r f a c e m i x e d l a y e r by a w e a k e n i n g o f t h e s h a l l o w e r , f i r s t t h e r m o c l i n e o v e r t h e s a m p l i n g p e r i o d . V e r t i c a l p r o f i l e s o f N O 3 - a n d N H 4 + a t 6 h i n t e r v a l s ( F i g . 1.4) show r e l a t i v e l y l i t t l e c h a n g e o v e r t i m e , a l t h o u g h e l e v a t e d NH^ + c o n c e n t r a t i o n s w e r e i n i t i a l l y o b s e r v e d i n t h e s u r f a c e w a t e r s a t s t n 24; t h e s e d e c r e a s e d d u r i n g t h e n e x t 6 h t o l o w (< 0.5 / j g - a t N ' L - 1 ) b u t v a r i a b l e c o n c e n t r a t i o n s i n t h e s u r f a c e w a t e r s s a m p l e d f o r t h e r e m a i n d e r o f t h e d i e l N u p t a k e e x p e r i m e n t s . V e r t i c a l p r o f i l e s o f S i O ^ - ^ a n d PO^ -^ a m b i e n t c o n c e n t r a t i o n d e m o n s t r a t e d l i t t l e c h a n g e o v e r t h e c o u r s e o f t h e t i m e c o u r s e e x p e r i m e n t ( F i g . 1.5) . Time c o u r s e 5 u t i l i z e d b o t h s u r f a c e (0-2 m) n i t r a t e -d e p l e t e d w a t e r f r o m t h e s h a l l o w ( c a . 7 m) m i x e d l a y e r a n d d e e p (28 m, 1% I Q ) n i t r a t e - r e p l e t e (> 5 / j g - a t N ' L - 1 ) w a t e r f r o m t h e t h e r m o c l i n e d e p t h . P r o f i l e s o f d i s s o l v e d i n o r g a n i c n u t r i e n t s 27 F i g u r e 1.3. D e p t h p r o f i l e s o f t e m p e r a t u r e (T) a n d s a l i n i t y (S) f o r t h e t w o s t a t i o n s r e p e a t e d l y s a m p l e d d u r i n g d r o g u e - t y p e t i m e c o u r s e e x p e r i m e n t s . A: s t n 24 ( b e g i n n i n g o f T C . 4 ) . B: s t n 49 ( e n d o f T C . 4 ) . C: s t n 84 ( b e g i n n i n g o f T C . 5 ) . D: s t n 98 ( e n d o f T C . 5 ) . TEMPERATURE (\u00C2\u00B0C) 12 6 7 8 10 II 12 200 '1 T ] 1 Stn. 49 / ! 1 32 33 34 32 33 SALINITY (%0) TEMPERATURE (\u00C2\u00B0C) 12 14 6 8 10 34 200 31 32 33 34 31 32 SALINITY (%0) 33 34 28 Figure 1.4 Depth profiles of N 0 3 \" and NH4+ at 6 h intervals during time course 4. 2 2 O O i CM O 2 + \u00E2\u0080\u0094 i ro 1 1 Q 2 NO LJM HN UJ \u00E2\u0080\u00A24\u00E2\u0080\u0094 +- o T 9 o o UJ 1 1 i i A (^ ) Hld30 (w) Hld3Q 29 F i g u r e 1.5. D e p t h p r o f i l e s o f S i 0 4 ~ 4 a n d P 0 4 ~ 3 a t 6 h i n t e r v a l s d u r i n g t i m e c o u r s e 4. Q- in a o H\u00C2\u00B1d30 Hld3Q F i g u r e 1.6 A: D e p t h p r o f i l e s o f N0 3\" (<\u00C2\u00BB) a n d NH 4 + (O) a t 2 i n t e r v a l s d u r i n g t i m e c o u r s e 5. B: D e p t h p r o f i l e s o f S i O (\u00E2\u0080\u00A2) a n d P 0 4 - 3 (\u00E2\u0080\u00A2) a t 2 h i n t e r v a l s d u r i n g t i m e c o u r s e 5. o o _ Hld30 2 Z CL CO (N0 3~, NH 4 +, S i 0 4 - 4 , P 0 4 - 3 ) are presented i n F i g u r e 1.6 and demonstrated l i t t l e v a r i a t i o n i n c o n c e n t r a t i o n over the 29 h sampling p e r i o d . Biological observations Phytoplankton s p e c i e s were i d e n t i f i e d and counted u s i n g v i s i b l e l i g h t microscopy and thus may be b i a s e d by the e x c l u s i o n of c e l l s < 2 um (picoplankton) , which are d i f f i c u l t t o d i s t i n g u i s h from i n o r g a n i c p a r t i c l e s (e.g., Booth, 1988). In the water used f o r T C . l approximately 83% of the phytoplankton enumerated were smal l haptophytes b e l o n g i n g t o the f o l l o w i n g genera, Imantonia, Phaeocystis or Chrysochromulina (4-10 um). Chrysophytes of the genus Ochromonas were 7% of the t o t a l c e l l c o n c e n t r a t i o n and pennate diatoms, p r i m a r i l y Nitzschia cylindrus and N. closterium v. s t r i a t u l a , composed an a d d i t i o n a l 8%; the Raphidophycean f l a g e l l a t e Heterosigma akashiwo was ca 1%. O c c a s i o n a l d i n o f l a g e l l a t e s , (Gymnodinium spp. and Prorocentrum baltica), c e n t r i c diatoms (Chaetoceros peruvianum and Thalassiosira spp.) and p r a s i n o p h y t e s (Nephroselmis spp.) were observed, but t o t a l l e d < 1% of the t o t a l c e l l c o n c e n t r a t i o n of 4.8 x 10^ c e l l s * L - 1 . Samples were not enumerated f o r p i c o p l a n k t o n , although Booth (1988) observed t h a t i n samples c o l l e c t e d d u r i n g the same time i n the n o r t h e a s t P a c i f i c , 16% of the p l a n t biomass was a t t r i b u t e d t o c e l l s < 2 m^ and 90% of t h i s was composed of the blue-green, c o c c o i d cyanobacterium, Synechococcus spp. The m a j o r i t y of the zooplankton was probably removed by s c r e e n i n g the water samples through N i t e x 32 n e t t i n g ( i n o r d e r t o m i n i m i z e m a c r o z o o p l a n k t o n p r e d a t i o n d u r i n g i n c u b a t i o n s ) a l t h o u g h s c r e e n e d s a m p l e s w e r e n o t e n u m e r a t e d ; u n f i l t e r e d z o o p l a n k t o n s p e c i e s a n d a b u n d a n c e d a t a a r e . r e p o r t e d i n F o r b e s e t a l . ( 1 9 8 8 ) . The s p e c i e s c o m p o s i t i o n o f t h e p h y t o p l a n k t o n c o m m u n i t y i n t h e f r o n t a l (TC.2) a n d s t r a t i f i e d (TC.3) w a t e r o f t h e S t r a i t o f G e o r g i a was v e r y d i f f e r e n t ( T a b l e 1 . 2 . ) . I n t h e f r o n t a l w a t e r l a r g e , c h a i n -f o r m i n g d i a t o m s o f t h e g e n u s Chaetoceros f o r m e d a g g r e g a t e s (\u00C2\u00A3 1 mm) w h i c h c o n t a i n e d some p e n n a t e d i a t o m s b e l o n g i n g t o Navicula a n d Nitzschia s p p . The s i z e o f t h e d i a t o m f l o e s p r e v e n t e d s c r e e n i n g p r i o r t o N e x p e r i m e n t a t i o n a n d t h e r e f o r e t o r e m a i n c o n s i s t e n t , none o f t h e f u t u r e w a t e r s a m p l e s w e r e s c r e e n e d . S m a l l f l a g e l l a t e s (< 5 um) w e r e t h e m o s t common p h y t o p l a n k t o n i n t h e s t r a t i f i e d w a t e r . Chaetoceros s p p . , Ch. socialis a n d Skeletonema costatum w e r e t h e m o s t a b u n d a n t d i a t o m s , w h e r e a s d i n o f l a g e l l a t e s w e r e a l m o s t e x c l u s i v e l y Gymnodinium s p p . W a t e r s a m p l e s w e r e n o t o r i g i n a l l y t a k e n f o r z o o p l a n k t o n s p e c i e s e n u m e r a t i o n . However t h e a b u n d a n c e o f t h e s e a n i m a l s , a s s e e n i n t h e p h y t o p l a n k t o n s a m p l e s , s u g g e s t e d t h e y c o u l d h a v e b e e n i m p o r t a n t g r a z e r s a n d N r e m i n e r a l i z e r s . A s a f i r s t a p p r o x i m a t i o n t h e c o n c e n t r a t i o n o f g e n e r a l c a t e g o r i e s o f t h e s e z o o p l a n k t e r s a r e p r e s e n t e d ( T a b l e 1 . 2 ) . The l a r g e , c e n t r i c d i a t o m s , Skeletonema costatum, Thalassiosira nordenskioldii, a n d Chaetoceros s p p . ( p a r t i c u l a r l y Ch. compressum > Ch. radicans > Ch. ceratosporum) d o m i n a t e d i n t e r m s o f r e l a t i v e numbers ( 7 0 % ) i n t h e s a m p l e s c o l l e c t e d a t a l l 3 d e p t h s u s e d i n TC.4. The T a b l e 1.2 Pl a n k t o n community c o m p o s i t i o n i n f r o n t a l and s t r a t i f i e d water of S t r a i t of Georgia, B.C., (see F i g . 1.1 B). S t a t i o n P h y t o p l a n k t o n (10 6 c e l l s - L - 1 ) Diatoms D i n o f l a g e l l a t e s F l a g e l l a t e s Zooplankton ( a n i m a l s - L - 1 ) T i n t i n n i d s C a l a n o i d c i l i a t e s e x c l . Others Copepods t i n t i n n i d s F r o n t a l A5 2.3 0.023 1.6 470 50 730 280 (TC.2) S t r a t i f i e d T4 0.43 0.049 1.6 180 60 140 300 (TC.3 ) 34 r e m a i n d e r o f t h e p h y t o p l a n k t o n c o m m u n i t y c o n s i s t e d p r i m a r i l y o f p e n n a t e d i a t o m s (Nitzschia c f . subpacifica > N. delicatissima > N. americana ^ N. longissima), h a p t o p h y t e s (Imantonia a n d Phaeocystis s p p . ) a n d u n i d e n t i f i e d c r y p t o m o n a d s . T h e r e w e r e no o b v i o u s d i f f e r e n c e s i n t h e s p e c i e s c o m p o s i t i o n a n d t o t a l c e l l c o n c e n t r a t i o n a t a n y o f t h e t h r e e d e p t h s b e t w e e n t h e b e g i n n i n g a n d e n d o f t h e d r o g u e s a m p l i n g ( F i g . 1.7 A ) ; s u r f a c e p o p u l a t i o n d e c r e a s e d f r o m 3.0 x 1 0 6 c e l l s - L - 1 t o 1.3 x 1 0 6 c e l l s - L - 1 , t h e m i d - d e p t h ( 3 0 % I Q ) f ft \u00E2\u0080\u0094 1 p o p u l a t i o n f r o m 2.8 x 10 t o 2.3 x 10 c e l l s - L , a n d an i n c r e a s e i n t h e p o p u l a t i o n a t 1% I Q f r o m 3.6 x 10^ t o 5.0 x 1 0 6 c e l l s - L - 1 . The s p e c i e s c o m p o s i t i o n i n t h e s a m p l e s c o l l e c t e d f r o m t h e s u r f a c e (2 m) a n d d e p t h (27 m) f o r TC.5 w e r e v e r y d i f f e r e n t ; a d o m i n a n c e o f d i a t o m s ( 74%) b o t h c e n t r i c ( 5 8%) a n d p e n n a t e ( 1 5 % ) i n t h e d e e p e r w a t e r s . The most common c e n t r i c d i a t o m s w e r e Skeletonema costatum, Thalassiosira conferta, Chaetoceros S P P - ( p r i m a r i l y Ch. compressum a n d Ch. debilis) a n d t h e p e n n a t e s w e r e m o s t l y Thalassionema nitzschioides a n d Nitzschia americana, N. delicatissima a n d N. longissima. I n t h e s u r f a c e s a m p l e s o n l y a b o u t o n e - t h i r d o f t h e c o m m u n i t y was composed o f c e n t r i c d i a t o m s , t h e r e m a i n d e r h a p t o p h y t e s ( 2 1 % ) ( p r i m a r i l y Imantonia a n d Phaeocystis spp.) u n i d e n t i f i e d c r y p t o m o n a d s ( 3 7 % ) a n d d i n o f l a g e l l a t e s ( 8 % ) , i n c l u d i n g g e n e r a o f Gymnodinium a n d Protogonyaulax. S p e c i e s s a m p l e s w e r e o n l y c o l l e c t e d a t m i d - d e p t h (20 m) a t t h e e n d o f t h e t i m e s e r i e s b u t t h i s s a m p l e showed no m a j o r d i f f e r e n c e s i n s p e c i e s 35 Figure 1.7 Composition of the phytoplankton community, A: at the beginning (stn 24) and end (stn 49) of time course 4 B: beginning (stn 84) and end (stn 98) of time course 5. Ld O z: o o LU o < I-o I-| 1 Centric Diatoms \u00C2\u00A7 \ Dinoflagellates Pennate Diatoms Chrysophytes Haptophytes Others Cryptophytes 100 -8 0 -6 0 -4 0 2 0 -0 2 m 5 m 14m Stn. 2 4 2 m 6 m 13m S t n . 4 9 2 m 18m 27m 2 0 m Stn. 8 4 Stn .98 36 c o m p o s i t i o n o v e r t i m e , e x c e p t f o r a n i n c r e a s i n g a b u n d a n c e o f h a p t o p h y t e s a n d a d e c r e a s e i n t h e a b u n d a n c e o f d i a t o m s ( F i g . 1.7 B) . Nitrogen uptake rates S u b a r c t i c P a c i f i c O cean D u r i n g T C . l , i n t h e n i t r a t e - r i c h s u b a r c t i c P a c i f i c , t h e 1 c i n c o r p o r a t i o n o f N - l a b e l l e d n i t r a t e i n t o p a r t i c u l a t e m a t t e r was f o l l o w e d f o r 24 h, b e g i n n i n g d u r i n g t h e m i d d l e o f t h e n i g h t ( F i g . 1.8 B ) . A r e l a t i v e l y c l e a r d i e l t r e n d was a p p a r e n t f o r s p e c i f i c NO^ - u p t a k e r a t e s c a l c u l a t e d o v e r 3 h i n t e r v a l s ( F i g . 1.8 C ) ; m a x i m a l u p t a k e r a t e d u r i n g t h e d a y l i g h t p e r i o d (mean = 0.0085, S.D. = 0.0045 h - 1 ) a n d mean r a t e a t n i g h t was l o w e r ( 0.0047 \u00C2\u00B1 0.0013 h - 1 ) . The mean n i t r a t e u p t a k e a t n i g h t was c a . 5 5 % o f t h e mean d a y t i m e v a l u e . S a m p l e s i n c u b a t e d f o r 24 h i n t h e d a r k ( 0 . 0 0 0 6 3 \u00C2\u00B1 0.00011 h - 1 ) ha d s i g n i f i c a n t l y l o w e r N O 3 - u p t a k e r a t e s ( p a i r e d t - t e s t , P *s 0.01) t h a n t h o s e i n c u b a t e d i n t h e n a t u r a l l i g h t - d a r k c y c l e ( 0 .0068 \u00C2\u00B1 0.00046 h - 1 ) . The a r t i f i c i a l d a r k e n i n g o f t r i p l i c a t e s a m p l e s f o r 3 a n d 5 h d u r i n g m i d - d a y h a d no e f f e c t d u r i n g t h e f i r s t 3 h; mean d a r k u p t a k e was 0.0072 h - 1 a n d e q u i v a l e n t t o t h e mean l i g h t u p t a k e ( 0 . 0 0 7 1 h - 1 ) d u r i n g t h i s t i m e , h o w e v e r , d u r i n g t h e s u b s e q u e n t 2 h o f d a r k n e s s , u p t a k e d e c l i n e d 9 2 % t o 0.00058 h - 1 , w h e r e a s t h e l i g h t u p t a k e r a t e o f N O 3 - a t t a i n e d i t s m a x i m a l v a l u e ( 0.0156 h - 1 ) . S t r a i t o f G e o r g i a D u r i n g t h e t i m e c o u r s e e x p e r i m e n t s c o n d u c t e d i n t h e S t r a i t o f G e o r g i a , t h e c h a n g e s i n t h e a m b i e n t c o n c e n t r a t i o n o f Figure 1.8. Time course measurements at oceanic s t a t i o n F., Time Course 1. (A) Daily incident surface i r r a d i a n c e during experiment. (B) 1 5N atom % excess i n p a r t i c u l a t e matter for l i g h t b o t t l e incubations (error bars represent \u00C2\u00B1 1 S.D. of t r i p l i c a t e s ) p l o t t e d against elapsed time measured a f t e r addition of 1.0 uq-at N-NO -IT1. (C) Nitrogen s p e c i f i c uptake rates of 15N03\" cal c u l a t e d for 3 h i n t e r v a l s ; each point i n d i c a t e s a rate ca l c u l a t e d over the time i n t e r v a l between i t and the previous point on the curve and p l o t t e d against average incubation time between sampling. ^ 1500 a1 o.ooo in 8 12. 14 TIME (h) 18 24 38 d i s s o l v e d N H 4 + , N O 3 - a n d u r e a a n d t h e i n c o r p o r a t i o n o f t h o s e 1 5 N - l a b e l l e d s u b s t r a t e s i n t o p a r t i c u l a t e m a t t e r w e r e m e a s u r e d f o r 24 h. B o t h a p p r o a c h e s y i e l d d i f f e r e n t i n f o r m a t i o n c o n c e r n i n g n i t r o g e n u t i l i z a t i o n b y t h e p h y t o p l a n k t o n . C h a n g e s i n d i s s o l v e d n i t r o g e n c o n c e n t r a t i o n r e p r e s e n t n e t c o m m u n i t y f l u x o f t h a t n u t r i e n t a n d encompass r e g e n e r a t i v e a n d u p t a k e p r o c e s s e s . By c o n t r a s t , N i s o t o p e a c c u m u l a t i o n i s an e s t i m a t e o f g r o s s u p t a k e b y t h e p h y t o p l a n k t o n p r o v i d i n g t h e r e i s no r e c y c l i n g o f -^N, a n d e n r i c h m e n t i n t h e d i s s o l v e d p h a s e r e m a i n s c o n s t a n t . R e s u l t s f r o m TC.2 ( f r o n t a l w a t e r ) a n d TC.3 ( s t r a t i f i e d w a t e r ) e x p e r i m e n t s a r e shown i n F i g . 1.9 a n d F i g . 1.10, r e s p e c t i v e l y . D a t a f r o m TC.2 d e m o n s t r a t e m u l t i p l e N s u b s t r a t e u p t a k e by p h y t o p l a n k t o n , s p e c i f i c a l l y f o r N H 4 + , N 0 3 ~ a n d u r e a ( F i g . 1.9 C, E) a n d N 0 3 ~ a n d u r e a ( F i g . 1.9 G ) . The e l e v a t e d a m b i e n t N 0 3 ~ c o n c e n t r a t i o n i n t h e f r o n t a l w a t e r s a l l o w e d t h e u p t a k e r a t e s o f N 0 3 ~ i n t h e N H 4 + - a n d u r e a -e n r i c h e d s a m p l e s t o be d e t e r m i n e d b y N d i s a p p e a r a n c e f r o m t h e s e a w a t e r s a m p l e s . U p t a k e r a t e s d e t e r m i n e d by t h e d i s a p p e a r a n c e o f n i t r a t e w e r e s i m i l a r i n t h e p r e s e n c e ( V d Q _ 6 h = 0 . 5 2 1 uq-at N - L - 1 - h _ 1 ) a n d a b s e n c e ( V d 0 _ 9 h = 0 . 5 6 7 uq-at N * L - 1 * h - 1 ) o f u r e a , b u t w e r e r e d u c e d i n t h e NH4\"4\" e n r i c h e d s a m p l e s ( V d Q _ 9 h = 0 . 2 6 7 uq-at N - L - 1 - h - 1 ) . The 1 5 N - u r e a a tom % a c c u m u l a t i o n r a t e was c o n s t a n t o v e r t h e f i r s t 15 h, b u t p r i o r t o t h e e n d o f t h e d a r k p e r i o d i t i n c r e a s e d a n d r e m a i n e d l i n e a r u n t i l t h e e n d o f t h e i n c u b a t i o n ( F i g . 1.9 F ) . The i n c r e a s e i n t h e u r e a u p t a k e r a t e c o i n c i d e d w i t h t h e d e p l e t i o n o f e x t e r n a l N 0 3 ~ , m o r e o v e r t h e c h a n g e i n u r e a c o n c e n t r a t i o n was m i n i m a l 39 F i g u r e 1.9. Time c o u r s e m e a s u r e m e n t s a t f r o n t a l s t a t i o n ( A 5 ) , T i m e C o u r s e 2. (A) D a i l y i n c i d e n t i r r a d i a n c e d u r i n g e x p e r i m e n t ( B , D, F) 1 5N atom % e x c e s s i n p a r t i c u l a t e m a t t e r f o r l i g h t a n d d a r k b o t t l e i n c u b a t i o n s f o l l o w i n g a d d i t i o n o f 6 / j g - a t N\u00E2\u0080\u00A2 L - 1 o f (B) NH 4 +, (D) N0 3\" a n d ( F ) u r e a ( e r r o r b a r s r e p r e s e n t t h e r a n g e o f d u p l i c a t e s ) . ( C , E, G) C o r r e s p o n d i n g m e a s u r e m e n t s o f d i s s o l v e d NH 4 + ( \u00E2\u0080\u00A2 ) , N0 3\" ( o ) a n d u r e a ( A ) i n (C) NH 4 +, (E) N0 3~, a n d (G) u r e a - s p i k e d s a m p l e s . D a s h e d l i n e i n d i c a t e s no m e a s u r e m e n t s o f d i s s o l v e d u r e a a t 3 a n d 6 h; ( l e f t s i d e o f p a g e ) . F i g u r e 1.10. A s F i g u r e 1.9 e x c e p t a t s t r a t i f i e d s t a t i o n ( T 4 ) , T i m e C o u r s e 3; ( r i g h t s i d e o f p a g e ) . 40 41 ( F i g . 1.9 G) o v e r t h e f i r s t 6 h, when N 0 3 ~ c o n c e n t r a t i o n s w e r e h i g h ( 4 . 5 5 t o 1.4 j v g - a t N * L - 1 ) a n d N O 3 - was b e i n g t a k e n u p. The i n c o r p o r a t i o n o f -^N-NC^ - a n d 1 5 N - N H 4 + was n o n - l i n e a r w i t h t i m e , g e n e r a l l y r e d u c e d d u r i n g t h e n i g h t t i m e a n d s u b s t r a t e e x h a u s t i o n o c c u r r e d d u r i n g t h e 21 t o 24 h t i m e i n t e r v a l . The p a t t e r n o f N u p t a k e b y t h e p h y t o p l a n k t o n i n t h e s t r a t i f i e d w a t e r was s i m i l a r i n t h e NH 4 + , N O 3 - a n d u r e a -e n r i c h e d s a m p l e s ( F i g . 1.10 B, D, F , ) . U p t a k e was c o n s t a n t o v e r t h e f i r s t 9 t o 12 h, t h e n d e c r e a s e d d u r i n g t h e n i g h t a n d i n c r e a s e d a g a i n i n t h e e a r l y m o r n i n g . S u b s t r a t e d e p l e t i o n d i d n o t o c c u r i n t h e s e e x p e r i m e n t s a n d t h e t o t a l u t i l i z a t i o n a f t e r 24 h o f n i t r o g e n i s o t o p e s was m i n i m a l i n t h e NH 4 + , N O 3 - a n d u r e a - e n r i c h e d s a m p l e s ( 2 3 , 18 a n d 10%, r e s p e c t i v e l y ) . C l e a r i n d i c a t i o n s o f u r e a r e g e n e r a t i o n , a n d t o a l e s s e r e x t e n t N H 4 + r e g e n e r a t i o n , w e r e e v i d e n t f r o m i n c r e a s e s i n s u b s t r a t e c o n c e n t r a t i o n s i n TC.2 a n d TC.3 a n d a r e d i s c u s s e d i n d e t a i l by P r i c e e t a l . ( 1 9 8 5 ) . The p a t t e r n o f 1 5 N - l a b e l l e d N H 4 + , NC>3~ a n d u r e a u p t a k e r a t e s s u g g e s t s t h e e x i s t e n c e o f d i e l p e r i o d i c i t y i n n i t r o g e n u p t a k e i n b o t h f r o n t a l a n d s t r a t i f i e d w a t e r ( F i g . 1 . 1 1 ) . The d e c r e a s e i n u p t a k e o f N H 4 + a n d N O 3 - f r o m 21 t o 24 h i n TC.2 was due t o s u b s t r a t e e x h a u s t i o n ( s e e F i g . 1.9 C , E ) . I n t h e f r o n t a l c o m m u n i t y , u p t a k e r a t e s o f N O 3 - w e r e g r e a t e s t t h r o u g h o u t t h e t i m e c o u r s e , i n c o n t r a s t t o t h e s t r a t i f i e d c o m m u n i t y w h e r e NH 4 + u p t a k e r a t e s w e r e h i g h e s t a n d N O 3 - a n d u r e a u p t a k e r a t e s s i m i l a r b u t l o w e r t h a n N H 4 + u p t a k e r a t e s . I n b o t h e x p e r i m e n t s n i t r o g e n u p t a k e r a t e s i n c r e a s e d p r i o r t o t h e o n s e t o f t h e l i g h t p e r i o d 42 Figure 1.11. Nitrogen-specific uptake rates of NH4+ ( \u00E2\u0080\u00A2 ) , N03 (O ) and urea ( A) i n (A) f r o n t a l and (B) s t r a t i f i e d water. Rates determined for 3 or 6 h i n t e r v a l s ; each point i n d i c a t e s a rate c a l c u l a t e d over the time i n t e r v a l between i t and the previous point on the curve. Shaded area on the abscissa d e l i m i t s the dark period. 0 . 0 6 0 0 . 0 0 0 1 1 1 ' \u00E2\u0080\u00A2 1 0 3 6 9 1 2 1 5 1 8 2 1 2 4 I N C U B A T I O N P E R I O D ( h ) 43 a n d t h i s was most m a r k e d i n t h e u r e a - e n r i c h e d s a m p l e s . The r a t i o o f d a r k t o l i g h t 1 5 N u p t a k e r a t e ( V D : V L ) f o r N H 4 + , N 0 3 ~ a n d u r e a i s g i v e n i n T a b l e 1.3. I n b o t h f r o n t a l a n d s t r a t i f i e d c o m m u n i t i e s , d a r k N H 4 + u p t a k e s w e r e a m a j o r p o r t i o n o f t h e l i g h t u p t a k e r a t e s t h r o u g h o u t t h e e n t i r e t i m e c o u r s e s . The V D : V L f o r N H 4 + i n t h e f r o n t a l w a t e r was c o n s t a n t ( 3 8 % ) a n d l e s s t h e n t h e r a t i o i n s t r a t i f i e d w a t e r (52 t o 1 0 2 % ) . I n i t i a l d a r k r a t e s o f u r e a u p t a k e w e r e 60 t o 66% o f t h e l i g h t r a t e s i n b o t h TCs b u t d a r k u p t a k e d e c l i n e d t o a n e g l i g i b l e p o r t i o n o f l i g h t u p t a k e d u r i n g t h e r e m a i n d e r o f t h e TC.2 a n d 6-24% o f V L i n TC.3. The l i g h t d e p e n d e n c e o f N 0 3 ~ u p t a k e was more s i m i l a r t o t h a t o f u r e a t h a n ammonium i n b o t h s t r a t i f i e d a n d f r o n t a l w a t e r . U p t a k e r a t e s n o r m a l i z e d p e r u n i t C h i a d e m o n s t r a t e d t h a t N H 4 + a n d u r e a u p t a k e r a t e s w e r e on a v e r a g e 2 a n d 2.4 t i m e s g r e a t e r i n t h e s t r a t i f i e d w a t e r t h a n i n f r o n t a l w a t e r , w h e r e a s N 0 3 ~ u p t a k e r a t e s w e r e on a v e r a g e 1.6 t i m e s h i g h e r i n t h e f r o n t a l w a t e r ( T a b l e 1 . 4 ) . C h i a s p e c i f i c u p t a k e r a t e s f o r e a c h s u b s t r a t e , when c o m p a r e d b e t w e e n s t a t i o n s , w e r e most s i m i l a r o v e r t h e d a r k p e r i o d (12 t o 18 h) and t h e g r e a t e s t d i s p a r i t y was f o u n d i n i t i a l l y (0 t o 6 h ) . O f f s h o r e w a t e r s T ime c o u r s e 4 was c o n d u c t e d f r o m s a m p l e s c o l l e c t e d a t 6 h i n t e r v a l s f r o m 3 d e p t h s i n an u p w e l l e d p l u me o f w a t e r on t h e c o n t i n e n t a l s h e l f o f f V a n c o u v e r I s l a n d . The i n i t i a l e n v i r o n m e n t a l c o n d i t i o n s o f t h e w a t e r s a m p l e d d u r i n g TC.4 a r e p r e s e n t e d i n T a b l e 1.5. The s p e c i f i c r a t e s o f N 0 3 ~ u p t a k e f o r 44 1.3. Ratio of dark to l i g h t uptake rates ( V ^ r V ^ ) of Table _ N H 4 + , N O o - and urea for f r o n t a l and s t r a t i f i e d water of the S t r a i t of Georgia, B.C., (see F i g . 1.1 B). Station Time i n t e r v a l (h) N H + ( V D = V L ) N0 3~ ( V D : V L ) Urea ( V D : V L ) Frontal A5 0 - 6 0.37 0.08 0.60 (TC.2) 6 - 12 0.39 <.01 <.01 12 - 18 0.37 <.01 <.01 18 - 24 0.39 <.01 <.01 S t r a t i f i e d T4 0 - 9 0.58 0.18 0.66 (TC.3) 9 - 18 1.02 0.60 0.24 18 - 24 0.52 <.01 0.06 45 T a b l e 1.4. C h l o r o p h y l l a s p e c i f i c u p t a k e r a t e s o f N H 4 , NO3\" a n d u r e a i n f r o n t a l (A5) a n d s t r a t i f i e d (T4) w a t e r o f t h e S t r a i t o f G e o r g i a , B.C., ( s e e F i g . 1.1 B ) . The d a r k p e r i o d o c c u r s d u r i n g t h e 12 t o 18 h t i m e i n t e r v a l . N i t r o g e n Time i n t e r v a l C h i a s p e c i f i c N - u p t a k e r a t e s u b s t r a t e (h) [ug a t N (ug C h i a ) - 1 h _ 1 ] F r o n t a l S t n S t r a t i f i e d S t n N H 4 + NO3-U r e a 0 - 6 0.091 0.261 6 - 12 0.060 0.133 12 - 18 0.025 0.030 18 - 24 0.028 0.047 0 - 6 0.162 0.098 6 - 12 0.075 0.082 12 - 18 0.042 0.019 18 - 24 0.068 0.039 0 - 6 0.040 0.127 6 - 12 0.028 0.125 12 - 18 0.026 0.019 18 - 24 0.050 0.053 46 samples c o l l e c t e d from the n e a r - s u r f a c e (1-2 m) and 30% I Q depth (6-7 m) were not s i g n i f i c a n t l y d i f f e r e n t ( p a i r e d t - t e s t , P 2 0.01) and demonstrated pronounced d i e l p e r i o d i c i t y ( F i g . 1.'12 B). Maximum r a t e s of uptake were observed d u r i n g the d a y l i g h t hours, reduced r a t e s i n the e a r l y evening (1900-2300 h) and minimal r a t e s d u r i n g the n i g h t . The mean n i g h t t i m e uptake r a t e was 15-16% of the daytime r a t e . The N O 3 - uptake r a t e s of samples c o l l e c t e d and incubated at the 1% I Q depth (simulated) were v a r i a b l e and d i d not show a c l e a r d i e l p a t t e r n , although the g r e a t e s t v a l u e s were observed d u r i n g d a y l i g h t and the mean nig h t t i m e r a t e was ca. 7 0% of average daytime v a l u e . The s p e c i f i c r a t e s of NH 4 + uptake demonstrated a s i m i l a r p a t t e r n of d i e l p e r i o d i c i t y as the N O 3 - uptake r a t e s . The p o t e n t i a l s p e c i f i c uptake r a t e s of NH 4 + f o r the 2 shallow depths were again not s i g n i f i c a n t l y d i f f e r e n t ( p a i r e d t - t e s t , P 2 0.01), were minimal d u r i n g the n i g h t , maximal d u r i n g daytime and reduced i n the e a r l y evening. The mean nig h t t i m e r a t e was 30-36% of the daytime v a l u e . No d i e l t r e n d was observed i n the uptake r a t e s of the deeper samples and average n i g h t t i m e r a t e s were 120% of daytime r a t e s . A b s o l ute ( t r a n s p o r t ) r a t e s of N0 3~ and NH 4 + r e f l e c t the p a t t e r n s d i s c u s s e d f o r s p e c i f i c r a t e s ( F i g . 1.13). Depth p r o f i l e s of the d i s s o l v e d n u t r i e n t s N O 3 \" \" , NH 4 +, S i 0 4 3 ~ and P 0 4 3 ~ are presented i n F i g u r e s 1.4 and 1.5. and show l i t t l e change i n ambient c o n c e n t r a t i o n oyer the sampling p e r i o d . Time course 5 was conducted by sampling, at 2 h i n t e r v a l s , the phytoplankton community from the N 0 3 ~ - d e p l e t e Table 1.5 I n i t i a l environmental conditions of seawater c o l l e c t e d f or nitrogen uptake experiments during time course 4. S t a t i o n Date S t a r t i n g Sample Nitrogen cone. Chi a PON POC and time of depth N 0 3 - Urea NH4 l o c a t i o n incubation (PDT) (m) (ug--at N \u00E2\u0080\u00A2 (pg - lT 1 ) (uq-at N-L - 1) (uq-at C-L - 1) 24 4 9 \u00C2\u00B0 2 5 .O'N 20 August 1986 1100 1.7 12.90 2.38 1.67 10.35 7.75 46.8 127-32 . 1 'W 5.4 11.80 0.82 1.78 11.74 7.35 44.5 14.4 11.60 1.02 2.63 7.21 6.15 37 .5 28 4 9 \u00C2\u00B0 2 1 . 2 ' N 20 August 1986 1900 2.0 7.98 0.31 0.12 10.25 11.21 72.8 1 2 7 \u00C2\u00B0 2 8 . 9 ' W 5.8 7.98 0.26 0.12 12 .89 11.50 74.5 14.4 8.96 0.85 0.14 9 . 16 8.58 60.6 31 4 9 \u00C2\u00B0 2 0 .3'N 21 August 1986 0134 2.0 8.78 _ 0.82 19 .49 8.18 51.6 1 2 7 \u00C2\u00B0 2 7 .6 'W 5.8 8.59 0.71 0.60 19 .58 8.27 51.6 14.4 9.07 0.62 0.92 18.54 8.01 52 .9 34 4 9 \u00C2\u00B0 1 8 .5'N 21 August 1986 0736 2.0 9.84 0.75 0.67 21.90 8.31 53.2 1 2 7 \u00C2\u00B0 2 7 .7'W 7.3 9 .89 2 .27 0.62 22.73 7.36 45.8 13.7 10.10 0.72 0.75 20.85 7.81 62.6 37 4 9 \u00C2\u00B0 1 7 . 1' N 21 August 1986 1327 2.0 9.35 0.30 0.20 14.70 9.34 55.3 1 2 7 \u00C2\u00B0 2 6 .9'W 7.1 9 .16 0.41 0.17 15.04 10.06 58.7 14. 1 9.42 0.36 0.19 16 .12 9.40 56 .1 40 4 9 \u00C2\u00B0 1 6 . 1' N 21 August 1986 1934 2.0 8.50 0.61 0.11 14.66 9.80 46.7 1 2 7 \u00C2\u00B0 2 6 .3'W 5.0 8.58 1.26 0.12 15.21 8.57 55.9 14.8 8.58 0.26 0.10 14.83 8.25 57 .6 43 4 9 \u00C2\u00B0 1 6 .3'N 22 August 1986 0128 2.0 9.09 0.41 0.17 13.03 7.81 46.6 1 2 7 \u00C2\u00B0 2 3 .2'W 5.0 9.07 0.29 0.17 14.33 7.39 46 . 1 13.4 9.14 0.32 0.18 14.90 6.96 48.7 Table 1.5 continued s t a t i o n Date S t a r t i n g Sample Nitrogen cone. Chi a PON POC and time of depth N \u00C2\u00B0 3 ~ urea NH4 l o c a t i o n incubation (ug--L~l) (fjg-at N-L - 1) (jjg-at C-L - 1) (PDT) 0 . 1 0 0 -O 0 . 0 0 0 -0 . 6 0 0 0 . 5 0 0 0 . 4 0 0 0 . 3 0 0 0 . 2 0 0 0 . 1 0 0 0 . 0 0 0 3 0 40 5 0 T IME ( h ) ( 0 . 0 7 - 0 . 3 5 uq-at N-L - h - i ) s u r f a c e w a t e r a n d t h e N 0 3 ~ - r i c h ( 5 . 0 8 - 8 . 8 2 j v g - a t N - L - 1 - h - 1 ) w a t e r f r o m t h e 1% I Q (28 m) d e p t h ( T a b l e 1 . 6 ) . S p e c i f i c u p t a k e r a t e s , d e t e r m i n e d f r o m t h e i n c o r p o r a t i o n o f -^N-NC^ - d u r i n g 4 h i n c u b a t i o n p e r i o d s a r e p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n i n F i g . 1.14 B. The p a t t e r n o f N O 3 - s p e c i f i c u p t a k e r a t e s s u g g e s t s t h e e x i s t e n c e o f d i e l p e r i o d i c i t y i n t h e s u r f a c e s a m p l e s , s i m i l a r t o t h a t i n TC.4, w i t h m i n i m a l v a l u e s a t n i g h t a n d m a x i m a l v a l u e s d u r i n g t h e d a y t i m e . The mean n i g h t t i m e u p t a k e was 3 7 - 4 7 % o f t h e d a y t i m e r a t e . N O 3 - s p e c i f i c u p t a k e r a t e s o f t h e s a m p l e s c o l l e c t e d a t d e p t h w e r e v a r i a b l e d u r i n g t h e d a y / n i g h t c y c l e b u t s u g g e s t i v e o f a d i e l p a t t e r n a l t h o u g h d i s p l a c e d ( c a . 5 h) l a t e r i n t i m e . The a b s o l u t e u p t a k e r a t e s o f t h e s u r f a c e a n d d e e p c o m m u n i t i e s r e f l e c t t h e p a t t e r n s o b s e r v e d f o r s p e c i f i c u p t a k e r a t e s a n d a r e p r e s e n t e d i n F i g . 1.14 C. D e p t h p r o f i l e s o f d i s s o l v e d _ 1 3 _ 3 n u t r i e n t s NO3 , NH4 , S i 0 4 ~ a n d PO4 a r e p r e s e n t e d x n F i g . 1.6 a n d show l i t t l e c h a n g e o v e r t i m e . Table 1.6. I n i t i a l environmental c o n d i t i o n s during time course 5 conducted o f f the west coast of Vancouver Island on August 25-26, 1986. Stat i o n and l o c a t i o n S t a r t i n g time of incubation (PDT) sample depth (m) Nitrogen cone, Chi a PON POC NO, Urea NH< 1 , (ug-at N-L ) (ug-L (ug-at N-L - 1) (pg-at C-L 84 48\u00C2\u00B017.5'N 128\u00C2\u00B019.3'W 0912 2.4 26.6 0.13 8.44 <0.03 0.93 1.44 0.92 85 4 8 \u00C2\u00B016.7 ' N 128\u00C2\u00B018.9 W 1140 1.3 28.4 0.09 7 . 14 1.95 <0.03 0.63 1.25 1.09 2.24 2.11 2.84 17 . 3 12.6 86 48\u00C2\u00B016 .0'N 128\u00C2\u00B018.9'W 1422 1.5 26.3 0.09 6 .36 0.77 <0.03 1.11 1.79 0.96 3.68 1.98 2. 13 18.3 13.8 87 48\u00C2\u00B015.8'N 128\u00C2\u00B018.9'W 1532 1.7 28.4 0.02 6.38 0.41 <0.03 1.59 1.00 3.74 2.00 2.03 25.2 16.7 88 48\u00C2\u00B015.3'N 128\u00C2\u00B019.2'W 1736 1.1 27.2 0.09 5.99 0.39 <0.03 0.57 1.19 0.73 3.60 1.52 1.79 14 . 8 15.8 89 48\u00C2\u00B016.3'N 128\u00C2\u00B017.0'W 1957 1.1 27.0 0.31 9.39 0.30 <0.03 0.50 0.29 1.02 3.55 1.71 1. 80 18.6 15.8 90 48\u00C2\u00B016.1*N 128\u00C2\u00B017.3'W 2128 2.0 28.0 0.11 5. 19 <0.03 0.9.5 0.94 2.88 1.90 1.81 15.4 15.7 91 4 8 \u00C2\u00B0 1 5 . 4 ' N 1 2 8 \u00C2\u00B0 1 6 . 4 ' W 2322 1.9 28.4 0.33. 7.66 <0.03 1.25 04 06 1.61 1.75 11.2 13.0 92 48\u00C2\u00B014.9'N 128\u00C2\u00B016.8'W 0205 1.9 26.8 0. 13 5.08 0.41 0.11 0.98 1.01 1.21 2.50 1.44 1.77 13.3 15.9 Table 1.6 continued S t a t i o n S t a r t i n g Sample Nitrogen cone. Chi a PON POC and time of depth NO3 Urea NH4 l o c a t i o n incubation (PDT) (m) (pg--at N-L - 1) (/jg-L - 1) (pg-at N'L - 1) (yg-at C-L - 1 93 48\u00C2\u00B0 14 5' W 0340 1.4 0.25 <0.03 0.70 1.72 13.3 128\u00C2\u00B0 16.5' W 27.4 6.48 1.50 2.85 1.69 15.7 94 48\u00C2\u00B0 14.7' ' N 0545 1.7 0.35 <0.03 0.84 1.62 13.5 128\u00C2\u00B0 17.7' 'W 25.8 5.73 1.45 3.10 2.10 16 .0 95 48\u00C2\u00B0 14.6' ' N 0747 1.3 0.33 0.37 0.05 0.83 1.67 13.1 128\u00C2\u00B0 17.0' 'W 28.9 8.50 2.93 1.19 2.70 1.36 12 .9 96 48\u00C2\u00B0 14.6 ' N 0944 2.2 0.08 <0.03 _ 1.14 9.09 128\u00C2\u00B0 16.2 'W 27.7 8.24 0.78 1.30 0.96 9.77 97 48\u00C2\u00B0 13.9 ' N 1154 0.5 0.17 <0.03 0.56 1.14 11.3 128\u00C2\u00B0 16.5 'W 30.1 7.75 1.94 1.72 1.12 11.0 98 48\u00C2\u00B0 13.5 ' N 1457 1.9 0.21 2.27 <0.03 0.74 1.75 15.3 128\u00C2\u00B0 17 .6 'W 29 .1 5.67 1.30 1.25 3.99 1.30 9 .86 * designates cast time; no N uptake experiments at stn 84. 54 F i g u r e 1.14. T i m e c o u r s e m e a s u r e m e n t s a t s t a t i o n s 8 5 - 9 8 , t i m e c o u r s e 5. (A) D a i l y i n c i d e n t s u r f a c e i r r a d i a n c e d u r i n g e x p e r i m e n t . (B) N i t r o g e n s p e c i f i c u p t a k e r a t e s o f n i t r a t e a t 100% I ( o ) a n d 1% ( \u00E2\u0080\u00A2 ) c a l c u l a t e d o v e r 4 h i n c u b a t i o n p e r i o d s a n d p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n p e r i o d . (C) A b s o l u t e u p t a k e r a t e s o f n i t r a t e . 0.000 0.020 0.000 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ' \u00E2\u0080\u00A2 1 -0 10 20 30 TIME (h) 55 DISCUSSION Experimental considerations P r e v i o u s d i e l s t u d i e s o f N u p t a k e b y n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s h a v e t a k e n t h r e e b a s i c a p p r o a c h e s : (1) s a m p l e s a r e c o l l e c t e d a t one l o c a t i o n , t r a n s f e r r e d t o i n c u b a t i o n c o n t a i n e r s , a n d t h e n s u b s a m p l e d o v e r t i m e ( e . g . , E p p l e y e t a l . , 1971b; C o l l o s a n d S l a w y k , 1976; K r i s t i a n s e n a n d L u n d , 1 9 8 9 ) ; (2) s a m p l i n g o c c u r s a t one g e o g r a p h i c l o c a t i o n o v e r t i m e ( e . g . , M a c l s a a c , 1978; T o b i e s e n , 1987; F i s h e r e t a l . , 1 9 8 8 ) ; o r (3) an a t t e m p t i s made t o f o l l o w a w a t e r p a r c e l w h i c h i s s a m p l e d o v e r t i m e ( e . g . , M a c l s a a c , 1 9 7 8 ) . E a c h a p p r o a c h h a s i t s a d v a n t a g e s a n d d i s a d v a n t a g e s . C o n t a i n m e n t h a s t h e a d v a n t a g e o f k n o w i n g t h a t t h e same w a t e r i s b e i n g s u b s a m p l e d o v e r t i m e a n d e l i m i n a t e s p o t e n t i a l c o m p l i c a t i n g f a c t o r s s u c h a s a d v e c t i o n , d i e l m i g r a t i o n o f p h y t o p l a n k t o n ( e . g . , B l a s c o , 1978; C u l l e n a n d H o r r i g a n , 1981) a n d d i e l v a r i a b i l i t y i n a m b i e n t N c o n c e n t r a t i o n ( e . g . , L o r e n z e n , 1965; B e e r s a n d K e l l y , 1 9 6 5 ) . The m a j o r d i s a d v a n t a g e i s t h e p r o b l e m a s s o c i a t e d w i t h b o t t l e i n c u b a t i o n t e c h n i q u e s i n g e n e r a l ; t h e s e i n c l u d e c h a n g e s i n p l a n k t o n s p e c i e s c o m p o s i t i o n ( V e n r i c k e t a l . , 1 9 7 7 ) , b o t t l e s i z e e f f e c t s ( G i e s k e s e t a l . , 1 9 7 9 ) , a n d t o x i c i t y due t o t r a c e m e t a l s p r e s e n t a s b o t t l e c o n t a m i n a n t s ( C a r p e n t e r a n d L i v e l y , 1 9 8 0 ) . T h e s e \" b o t t l e - e f f e c t s \" may s u b s t a n t i a l l y a l t e r t h e c o n t a i n e d w a t e r ; l a r g e , \" c l e a n \" c o n t a i n e r s w i l l m i n i m i z e t h e s e e f f e c t s . S a m p l i n g a t one g e o g r a p h i c l o c a t i o n h a s t h e a d v a n t a g e o f d e a l i n g w i t h n a t u r a l s a m p l e s , b u t d o e s n o t t a k e i n t o a c c o u n t 56 t h e p r o b l e m o f a d v e c t i o n w h i c h may r e s u l t i n d i f f e r e n t c o m m u n i t i e s b e i n g s a m p l e d a t d i f f e r e n t t i m e s . A d v e c t i o n i s p o t e n t i a l l y a more p r o n o u n c e d p r o b l e m i n t i d a l l y i n f l u e n c e d r e g i o n s s u c h a s t h e S t r a i t o f G e o r g i a w h e r e a p a t t e r n c a u s e d by t i d e s c o u l d be m i s t a k e n f o r a d i e l r h y t h m i n p h y t o p l a n k t o n . S a m p l i n g a p a r t i c u l a r p a r c e l o f w a t e r o v e r t i m e h a s t h e d i s t i n c t a d v a n t a g e t h a t t h e same p l a n k t o n i c c o m m u n i t y i s l i k e l y s a m p l e d e a c h t i m e . However s u c h a n a p p r o a c h r e q u i r e s k n o w l e d g e o f t h e p h y s i c s o f t h e w a t e r p a r c e l a n d a means o f f o l l o w i n g i t , a l o g i s t i c a l l y more d i f f i c u l t a n d e x p e n s i v e e x p e r i m e n t a l a p p r o a c h . B o t h o f t h e l a t t e r m e t h o d s assume t h a t b i o l o g i c a l a c t i v i t y s u c h a s d i e l m i g r a t o r y b e h a v i o u r ( e . g . , C u l l e n a n d H o r r i g a n , 1981; F r e m p o n g , 1984) a n d p h y t o p l a n k t o n s i n k i n g ( e . g . , B i e n f a n g e t a l . , 1982) a r e m i n i m a l i n o r d e r t o a c h i e v e c o n s t a n c y i n p h y t o p l a n k t o n c o m m u n i t y c o m p o s i t i o n . I n t h e c u r r e n t s t u d y b o t h t h e c o n t a i n m e n t a p p r o a c h a n d f o l l o w i n g o f a w a t e r p a r c e l o v e r t i m e w e r e u t i l i z e d . A t t e m p t s w e r e made t o m i n i m i z e z o o p l a n k t o n p r e d a t i o n i n t h e c o n t a i n e d s a m p l e s d u r i n g t h e i n c u b a t i o n p e r i o d b y s c r e e n i n g o u t 1 c m a c r o z o o p l a n k t o n w x t h n e t t i n g p r i o r t o N i n o c u l a t i o n . I n 1 R a l l t i m e c o u r s e e x p e r i m e n t s s a t u r a t i n g a d d i t i o n s o f re-l a b e l l e d s u b s t r a t e s w e r e u s e d s o t h a t t h e e f f e c t s a s s o c i a t e d w i t h i s o t o p e d i l u t i o n o f t h e i s o t o p e e n r i c h m e n t f a c t o r by u n l a b e l e d r e g e n e r a t e d N w o u l d be m i n i m a l ( e . g . G l i b e r t e t a l . , 1 9 8 2 c ; P r i c e e t a l . , 1985) a n d s u b s t r a t e e x h a u s t i o n w o u l d n o t o c c u r d u r i n g t h e i n c u b a t i o n p e r i o d ( e . g . , Goldman e t a l . , 1 9 8 1 ; F i s h e r e t a l . , 1 9 8 1 ) . U p t a k e r a t e s r e p o r t e d a r e 57 t h e r e f o r e n o t n e c e s s a r i l y i n s i t u v a l u e s b u t i n d i c a t i v e o f p o t e n t i a l r a t e s o f N u p t a k e t h a t c a n be r e a l i z e d b y t h e p h y t o p l a n k t o n c o m m u n i t y when p r o v i d e d w i t h s a t u r a t i n g c o n c e n t r a t i o n s o f N, a c o n d i t i o n o f t e n a c h i e v e d f o r N O 3 -u p t a k e i n t h e s u r f a c e , a n d e s p e c i a l l y d e e p e r c o m m u n i t i e s , b u t s e l d o m o b s e r v e d f o r t h e u p t a k e o f r e g e n e r a t e d N i n n a t u r a l s i t u a t i o n s . The i n c u b a t i o n ( s a m p l i n g ) i n t e r v a l s i n t h e t i m e c o u r s e e x p e r i m e n t s w e r e l o n g (3-6 h) r e l a t i v e t o t h e r a p i d u p t a k e r e s p o n s e o f p h y t o p l a n k t o n s e e n i n t h e l a b o r a t o r y ( e . g . , Conway e t a l . , 1976; P a r s l o w e t a l . , 1 9 8 4 a , b) a n d t h e f i e l d ( e . g . , G l i b e r t a n d G o l d m a n , 1981; P r i s c u a n d P r i s c u , 1984) and t h u s I was u n a b l e t o d e t e c t s h o r t t e r m v a r i a t i o n s i n u p t a k e r a t e . E n h a n c e d u p t a k e o f N H 4 + a n d u r e a by N 0 3 ~ - s u f f i c i e n t p h y t o p l a n k t o n h a v e b e e n p r e v i o u s l y r e p o r t e d ( H o r r i g a n a n d M c C a r t h y , 1 9 8 1 , 1982; P a r s l o w e t a l . , 1 9 8 4 b ) . I n l i g h t o f t h e s l o w e r , l o n g t e r m r a t e s o f r e g e n e r a t e d N u p t a k e r e l a t i v e t o N O 3 - u p t a k e i n t h e f r o n t a l s t a t i o n o f S t r a i t o f G e o r g i a (TC.2) a n d t h e u p w e l l e d p l u me (TC.4) o f f V a n c o u v e r I s l a n d i t i s u n l i k e l y t h a t s u c h e n h a n c e d u p t a k e p r o c e s s e s o c c u r r e d on t i m e s c a l e s s h o r t e r t h a n t h e s a m p l i n g i n t e r v a l s e m p l o y e d i n t h e p r e s e n t s t u d y . B o t t l e c o n t a i n m e n t e f f e c t s h a v e b e e n shown t o l e a d t o s e r i o u s u n d e r e s t i m a t e s o f r a t e p r o c e s s e s ( V e n r i c k e t a l . , 1 9 7 7 ) . One w o u l d e x p e c t t h e c o n s e q u e n c e s o f c o n t a i n m e n t t o be most s e v e r e i n h i g h e r b i o m a s s c o m m u n i t i e s b u t t h e c o n s t a n t r a t e s o f C h i a a n d POC a n d PON s y n t h e s i s i n TC.2 a n d TC.3 i n d i c a t e no s u c h a r t i f a c t s i n t h e s e e x p e r i m e n t s . 5 Simultaneous uptake of nitrogen compounds S i m u l t a n e o u s u t i l i z a t i o n o f NH^\"1\" a n d N O 3 - i s w e l l d o c u m e n t e d i n l a b o r a t o r y ( e . g . , E p p l e y a n d R e n g e r , 1974; B i e n f a n g , 1975; C a p e r o n a n d Z i e m a n n , 1976; DeManche e t a l . , 1979; D o r t c h a n d Conway, 1984) a n d n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s ( e . g . , C o l l o s a n d L e w i n , 1974; C o n o v e r , 1975; Conway, 1977; M c C a r t h y e t a l . , 1977; M a e s t r i n i e t a l . , 1982, 1986, Q u e g u i n e r e t a l . , 1986; C o l l o s e t a l . , 1 9 8 9 ) . The r e s u l t s o f TC.2 a n d TC.3, c o n d u c t e d i n t h e f r o n t a l a n d s t r a t i f i e d a r e a s o f t h e S t r a i t o f G e o r g i a , r e s p e c t i v e l y n o t o n l y d e m o n s t r a t e d u a l n i t r o g e n s u b s t r a t e u t i l i z a t i o n b u t t h a t N H 4 + , N O 3 - , a n d u r e a may be t a k e n up c o n c u r r e n t l y . As f i r s t p o i n t e d o u t by C o l l o s ( 1 9 8 7 ) , m u l t i p l e n i t r o g e n s u b s t r a t e u t i l i z a t i o n w i l l r e s u l t i n a r e d u c t i o n o f t h e n i t r o g e n -1 c s p e c i f i c u p t a k e r a t e o f t h e N - l a b e l l e d compound c o m p a r e d t o t h e N - s p e c i f i c u p t a k e r a t e d e t e r m i n e d when o n l y t h e 1 ^ N -l a b e l l e d compound i s b e i n g t a k e n u p. I n a l l t h e e x p e r i m e n t s 1 5 s a t u r a t i n g a d d i t i o n o f t h e N - l a b e l l e d compound o f i n t e r e s t was u s e d a n d t h e e f f e c t s o f i s o t o p i c d i l u t i o n , due t o u n l a b e l l e d n i t r o g e n b e i n g t a k e n up, a r e p o t e n t i a l l y o n l y a p r o b l e m i n a r e a s o f h i g h a m b i e n t n i t r o g e n l e v e l s ( i . e . N H 4 + u p t a k e i n T C . 4 ) , I n TC.2 a n d TC.3 t h e a b s o l u t e u p t a k e r a t e s w e r e c a l c u l a t e d u s i n g t h e f i n a l PON d e t e r m i n e d a t t h e e n d o f an i n c u b a t i o n ; w h i c h g i v e s an a c c u r a t e m e a s u r e o f u p t a k e r a t e 15 o f t h e N - l a b e l l e d n u t r i e n t i n t o t h e p h y t o p l a n k t o n a n d a v o i d p o t e n t i a l a r t i f a c t s c a u s e d by i n c o r p o r a t i o n o f n o n - ^ N -l a b e l l e d n i t r o g e n f o r m s . 59 M a e s t r i n i e t a l . (1982) d e m o n s t r a t e d t h a t m i c r o a l g a e o f o y s t e r p o n d s t o o k up N H 4 + a n d N O 3 - a t t h e same r a t e o n c e t h e N H 4 + c o n c e n t r a t i o n h a d d e c r e a s e d t o c a . 7 ug-at N \u00C2\u00BB L - 1 . The r e s u l t s f r o m t h e f r o n t a l c o m m u n i t y (TC.2) d e m o n s t r a t e d t h e s i m i l a r i t y o f N H 4 + a n d N O 3 - u p t a k e r a t e s i n t h e N H 4 + e n r i c h e d s a m p l e s . However, t h e N O 3 - u p t a k e r a t e was r e d u c e d b y 5 0 % i n t h e N H 4 + s p i k e d s a m p l e s a s c o m p a r e d t o t h e NC^ - s p i k e d s a m p l e s . S i m i l a r N H 4 + s u p p r e s s i o n o f NC>3~ u p t a k e h a s b e e n r e p o r t e d f o r b o t h l a b o r a t o r y ( e . g . , G r a n t e t a l . , 1967; Conway, 1977; C r e s s w e l l a n d S y r e t t , 1979) a n d n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s ( e . g . , M c C a r t h y e t a l . , 1977, B l a s c o a n d Conway, 1 9 8 2 ) . The e f f e c t s o f NH 4 + a d d i t i o n on u r e a u p t a k e h a s b e e n l e s s s t u d i e d t h a n i n t e r a c t i o n s b e t w e e n N O 3 -a n d N H 4 + . N e v e r t h e l e s s i t a p p e a r s f r o m t h e f e w a v a i l a b l e s t u d i e s t h a t N H 4 + s u p p r e s s e s u r e a u p t a k e a n d t h e i n h i b i t o r y r e s p o n s e i s e i t h e r i n s t a n t a n e o u s ( W i l l i a m s a n d H o d s o n , 1977; L u n d , 1987) o r m a n i f e s t e d l a t e r ( H o r r i g a n a n d M c C a r t h y , 1982; M o l l o y a n d S y r e t t , 1988a;) I n TC.2 a n d TC.3 t h e e f f e c t o f N H 4 + on u r e a d i s a p p e a r a n c e u p t a k e r a t e i s d i f f i c u l t t o d i s c e r n due t o t h e l o w a m b i e n t c o n c e n t r a t i o n s o f u r e a a n d e v i d e n c e o f u r e a r e g e n e r a t i o n d u r i n g t h e i n c u b a t i o n p e r i o d . I n TC.2 t h e N O 3 - d i s a p p e a r a n c e u p t a k e r a t e was u n a f f e c t e d o r s l i g h t l y e n h a n c e d i n t h e p r e s e n c e o f u r e a i n a g r e e m e n t w i t h t h e l a b o r a t o r y s t u d y o f L u n d (1987) who f o u n d no s u p p r e s s i o n o f N O 3 - u p t a k e i n t h e m a r i n e d i a t o m , Skeletonema costatum. M o l l o y a n d S y r e t t (1988b) f o u n d s i m u l t a n e o u s u p t a k e o f NC\"3~ a n d u r e a , b u t u r e a i n h i b i t i o n ( 2 4 - 2 6 % ) o f N O 3 - u p t a k e i n 60 c u l t u r e s o f C h l o r e l l a emersonii a n d Phaeodactylum tricornutum a f t e r p r o l o n g e d (1-2 d) N d e p r i v a t i o n . P a r t i a l i n h i b i t i o n o f u r e a u p t a k e by N O 3 - h a s b e e n r e p o r t e d i n n a t u r a l s e a w a t e r s a m p l e s ( M c C a r t h y a n d E p p l e y , 1972) a n d l a b o r a t o r y c u l t u r e s o f Skeletonema costatum ( L u n d , 1987) a n d P. tricornutum a n d C. emersonii ( M o l l o y a n d S y r e t t , 1988b) . /Ambient c o n c e n t r a t i o n s o f u r e a i n t h e f r o n t a l a n d s t r a t i f i e d s t a t i o n s ( T C . 2 , TC.3) w e r e l o w . The l o w c o n c e n t r a t i o n s o b s e r v e d a n d t h e p o s s i b i l i t y o f u r e a r e g e n e r a t i o n d u r i n g t h e i n c u b a t i o n p e r i o d makes i t d i f f i c u l t t o d i s c e r n any i n h i b i t o r y e f f e c t o f NC^ - on u r e a u p t a k e . I n TC . 4 , a n d TC.5 r e l a t i v e l y h i g h a m b i e n t c o n c e n t r a t i o n s o f u r e a ( 0.75 - 2.38 uq-at N ' L - 1 ) w e r e o c c a s i o n a l l y o b s e r v e d i n t h e u p p e r w a t e r s s a m p l e d (2-7 m) w h i c h may h a v e , e i t h e r b i o l o g i c a l l y o r t h r o u g h i s o t o p i c 1 5 d i l u t i o n o f N i n p a r t i c u l a t e m a t e r i a l , r e d u c e d t h e p o t e n t i a l r a t e s o f s p e c i f i c N O 3 - u p t a k e s a s r e p o r t e d . Effects of light/dark regime on nitrogen uptake D i e l p e r i o d i c i t y i n t h e u p t a k e r a t e s o f NO3 -, NH^ + a n d u r e a w e r e e v i d e n t i n t h e t i m e c o u r s e e x p e r i m e n t s o f t h e v a r i o u s n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s . I n T C . l , c o n d u c t e d i n t h e N C > 3 - - r e p l e t e w a t e r s o f t h e n o r t h e a s t P a c i f i c O c e a n , n i g h t t i m e N O 3 - u p t a k e r a t e s w e r e a b o u t h a l f t h o s e r e p o r t e d d u r i n g t h e d a y t i m e , w i t h a p a t t e r n o f m a x i m a l r a t e s d u r i n g m i d - d a y a n d l o w e r r a t e s i n t h e m o r n i n g a n d a f t e r n o o n . S i m i l a r s t r o n g , d i e l p a t t e r n s i n N03~ u p t a k e h a v e b e e n o b s e r v e d i n t h e N 0 3 ~ - r i c h A n t a r c t i c w a t e r s by K o i k e e t a l . (1986) w h e r e t h e u p t a k e o f NO3 - a n d N H 4 + d u r i n g t h e n i g h t t i m e a m o u n t e d t o c a . 6 1 10-30 and 50%, respectively of the daytime values. Olson (1980) found i n 2 time course experiments that N O 3 - uptake ceased during the nighttime and NH 4 + uptake was either 25 or 85% of the daytime rate, whereas G l i b e r t et a l . (1982a) found anomalous r e s u l t s ; they found no difference i n N O 3 - uptake between samples incubated i n the dark and those incubated over a normal light-dark regime for samples c o l l e c t e d from the N O 3 -- r i c h Scotia Sea. During TC.l when samples which had normally been exposed to a natural L:D cycle were suddenly darkened during mid-day, a lag of > 3 h occurred before dark uptake rates declined to the rate observed during 24 h of darkness. The i n i t i a l \"dark\" N O 3 - uptake rate may have been the re s u l t of previous l i g h t stimulation and only a f t e r some elapsed time were the reductants, cofactors and enzymes that are necessary for N O 3 - assimilation, and produced (or activated) during the l i g h t period, used up (or deactivated) during the a r t i f i c i a l l y imposed darkness. In the coastal waters of the S t r a i t of Georgia si m i l a r patterns of d i e l uptake of a l l 3 N substrates were observed for the NO-^-replete and NO-^-deplete s t r a t i f i e d waters. Nitrate and NH 4 + nighttime uptake rates were about one-third of the average daytime rates i n the f r o n t a l waters and declined to about half t h i s value i n the s t r a t i f i e d waters. Nighttime uptake rates of urea were ca. 75 and 15% of the daytime rates for f r o n t a l and s t r a t i f i e d waters, respectively. Fisher et a l . (1982) measured sim i l a r d i e l v a r i a t i o n s i n NH 4 + uptake i n an estuarine phytoplankton community while d i e l 62 v a r i a t i o n i n N O 3 - u p t a k e r a t e s h a v e b e e n r e c o r d e d f o r f r e s h w a t e r r e s e r v o i r p l a n k t o n ( T o e t z , 1976) a n d Ceratophyllum-p e r i p h y t o n c o m m u n i t i e s ( T o e t z , 1 9 7 1 ) . P r i c e a n d H a r r i s o n ( 1 9 8 8 a ) o b s e r v e d d i e l p e r i o d i c i t y f o r s a t u r a t e d u r e a u p t a k e r a t e s o f s a m p l e s c o l l e c t e d f r o m N 0 3 ~ - d e p l e t e a r e a s o f t h e S a r g a s s o S e a , b u t no d e f i n i t i v e l i g h t / d a r k t r e n d s i n N O 3 - -r e p l e t e a r e a s . The c o n s t a n c y o f V D : V L ( d a r k i n c u b a t i o n b o t t l e : c l e a r i n c u b a t i o n b o t t l e ) f o r NH 4 + i n t h e f r o n t a l w a t e r , when N H 4 + u p t a k e r a t e s o f p h y t o p l a n k t o n e x p o s e d t o t h e n a t u r a l l i g h t / d a r k c y c l e w e r e p e r i o d i c , s u g g e s t s t h a t N H 4 + u p t a k e i s c i r c a d i a n ; i n a b s e n c e o f t h e l i g h t / d a r k c y c l e t h e r h y t h m i s f r e e r u n n i n g ( s e e C h i s h o l m , 1 9 8 1 ) . T h i s c o n c l u s i o n i s s u p p o r t e d b y G o e r i n g e t a l . (1964) who f o u n d r h y t h m i c v a r i a t i o n i n b o t h p o t e n t i a l N H 4 + a n d NC>3~ u p t a k e by s u r f a c e p h y t o p l a n k t o n c o m m u n i t i e s o f t h e S a r g a s s o S e a u n d e r c o n t i n u o u s i l l u m i n a t i o n . However, K r i s t i a n s e n a n d L u n d (1989) f o u n d no d i e l v a r i a b i l i t y i n p o t e n t i a l u p t a k e r a t e s o f N O 3 - , N H 4 + o r u r e a i n s a m p l e s c o l l e c t e d f r o m t h e N - d e p l e t e d B a r e n t s S e a a n d i n c u b a t e d u n d e r c o n s t a n t l i g h t , r e s u l t s w h i c h do n o t s u p p o r t t h e e n d o g e n o u s t h e o r y o f u p t a k e c o n t r o l . I n t h e S t r a i t o f G e o r g i a t h e r e s u l t s o f V D : V L f o r u r e a a n d NC^ - w e r e s i m i l a r t o e a c h o t h e r a n d d e m o n s t r a t e t h a t t h e i r d e p e n d e n c y on l i g h t was c o m p a r a b l e . The l i g h t d e p e n d e n c e o f u p t a k e o f t h e s e n u t r i e n t s i s d i s c u s s e d i n d e t a i l i n C h a p t e r 2. L a b o r a t o r y s t u d i e s h a v e shown t h a t N - d e p r i v e d p h y t o p l a n k t o n h a v e h i g h e r d a r k u p t a k e r a t e s o f n i t r o g e n t h a n 63 N - r e p l e t e p h y t o p l a n k t o n ( e . g . , S y r e t t , 1962; E p p l e y a n d C o a t s w o r t h , 1968; H a r r i s o n , 1976; Rees a n d S y r e t t , 1 9 7 9 ) . I n t h e S t r a i t o f G e o r g i a d a r k N u p t a k e r a t e s n o r m a l i z e d t o C h i a w e r e h i g h e s t i n t h e N - d e p l e t e d s t r a t i f i e d w a t e r i n a g r e e m e n t w i t h t h e s e o b s e r v a t i o n s ; a l s o r e l a t i v e t o t h e f r o n t a l c o m m u n i t y , d a r k u p t a k e r a t e s w e r e a g r e a t e r p r o p o r t i o n o f t h e l i g h t r a t e s f o r N H 4 + , N O 3 - a n d u r e a i n s t r a t i f i e d w a t e r . The h i g h e r C h i a s p e c i f i c u p t a k e r a t e s o f N H 4 + a n d u r e a i n s t r a t i f i e d w a t e r a n d o f N O 3 - i n f r o n t a l w a t e r a r e c o n s i s t e n t w i t h t h e way n i t r o g e n i s e n v i s a g e d t o s u p p o r t t h e s e a r e a s . S p e c i f i c a l l y , r e g e n e r a t e d N ( N H 4 + a n d u r e a ) h a s b e e n shown t o s u p p l y most o f t h e p h y t o p l a n k t o n n i t r o g e n demand i n N - d e p l e t e d w a t e r s a n d a s t h e c o n c e n t r a t i o n o f a m b i e n t N O 3 - i n c r e a s e s s o d o e s t h e r e l a t i v e i m p o r t a n c e ( n o t p r e f e r e n c e ) o f N O 3 - f o r p h y t o p l a n k t o n n i t r o g e n r a t i o n ( e . g . , M c C a r t h y e t a l . , 197 7; H a r r i s o n , 1980; G l i b e r t e t a l . , 1982b; C o c h l a n 1 9 8 6 ) . I t i s i m p o r t a n t t o remember t h a t t h e s p e c i e s c o m p o s i t i o n o f t h e two p h y t o p l a n k t o n c o m m u n i t i e s c o n t r a s t e d m a r k e d l y a n d l i k e l y c o n t r i b u t e d t o t h e o b s e r v e d v a r i a b i l i t y i n t h e l i g h t r e s p o n s e a n d p r e c l u d e s an e x p l a n a t i o n o f d i e l p e r i o d i c i t y o f N u p t a k e b a s e d m e r e l y on t h e p h y t o p l a n k t o n c o m m u n i t i e s ' n i t r o g e n s t a t u s . The r h y t h m i c p a t t e r n o f N O 3 - u p t a k e r a t e s o b s e r v e d i n t h e u p p e r w a t e r s (1-7 m) o f t h e u p w e l l e d N 0 3 ~ - r i c h p l u m e a r e i n d i c a t i v e o f i n s i t u u p t a k e d i e l p e r i o d i c i t y w h e r e n i g h t t i m e v a l u e s w e r e 15-16% o f d a y t i m e r a t e s ; t h e p a t t e r n o f p o t e n t i a l r a t e s o f N H 4 + u p t a k e was s i m i l a r b u t n i g h t t i m e r a t e s w e r e a 64 greater proportion (ca. 30-36% of the daytime values). Similar d i e l p e r i o d i c i t y of N O 3 - and NH 4 + uptake rates of natural phytoplankton communities i n upwelled regions have been observed by others. Eppley et a l . (1970) found that Peru Current phytoplankton had nighttime rates ca. 25 and 62% of daytime values for N O 3 - and NH 4 +, respectively. Collos and Slawyk (1976) also observed d i e l v a r i a t i o n of NC^- uptake i n shipboard cultures of surface communities c o l l e c t e d i n the upwelling area off Northwest A f r i c a ; nighttime values were ca. 20% of daytime rates of uptake. In eutrophic Lake Biwa, Japan, Mitamura and Saijo (1986) found nighttime uptake rates of N O 3 - to be only 10% of daytime rates and although the phase for urea and NH^4\" uptake p e r i o d i c i t y corresponded to that of N O 3 - the amplitude was lower with nighttime values 80 and 95% of daytime rates. The absence of an apparent d i e l rhythm i n NC>3~ and NH 4 + uptake of the deeper (1% I Q) community of the upwelled plume was also observed by Maclsaac (1978) i n the NC>3--replete 1% I Q samples of a phytoplankton community dominated by the d i n o f l a g e l l a t e Gonyaulax polyedra off Baja, Mexico. D i e l p e r i o d i c i t y i n both pote n t i a l NH 4 + and NC^-uptake rates was, however, observed down to the 10% I Q depth. The amplitude of d i e l p e r i o d i c i t y of poten t i a l N O 3 - uptake rates observed i n the NC^-deplete surface waters used i n TC.5 was greater than that observed for i n s i t u NC>3~ uptake of the N03~-replete surface waters of TC.4; nighttime rates were ca. 40% of daytime values compared to 15-16% i n TC.4. These rates, however, are potential rates of uptake which represent 65 r a t e s t h a t may be r e a l i z e d u n d e r c o n d i t i o n s o f c o n c e n t r a t i o n s s a t u r a t i n g t o u p t a k e . S a l h s t e n (1987) c o u l d d i s c e r n no d i e l p a t t e r n f o r i n s i t u u p t a k e r a t e s o f N H 4 + o r N O 3 - i n t h e o l i g o t r o p h i c , c e n t r a l N o r t h P a c i f i c G y r e . S i m i l a r l y a b s e n c e o f d i e l p e r i o d i c i t y i n i n s i t u u p t a k e r a t e s o f NC^ - a n d N H 4 + h a v e b e e n o b s e r v e d f o r n a t u r a l a s s e m b l a g e s c o l l e c t e d f r o m N-d e p l e t e s u r f a c e w a t e r s o f t h e e a s t e r n C a n a d i a n A r c t i c ( H a r r i s o n , 1 9 8 3 a ) , t h e c o n t i n e n t a l s h e l f o f f Nova S c o t i a ( C o c h l a n , 1982, 1986) a n d t h e u l t r a o l i g o t r o p h i c T o o l i k L a k e , A l a s k a ( W h a l e n a n d A l e x a n d e r , 1 9 8 4 a ) . A l t h o u g h p o t e n t i a l r a t e s o f N H 4 + d i d n o t show d i e l p e r i o d i c i t y ( C o c h l a n , 1982; W h a l e n a n d A l e x a n d e r , 1984a) d i e l p e r i o d i c i t y o f p o t e n t i a l N O 3 - u p t a k e r a t e s o f t h e f r e s h w a t e r c o m m u n i t y was o b s e r v e d . The d e e p e r p h y t o p l a n k t o n c o m m u n i t y i n TC.5 was n o t N O 3 - -d e p l e t e a n d more s i m i l a r i n s p e c i e s c o m p o s i t i o n t o t h e u p w e l l e d c o m m u n i t i e s o f TC.4. A l t h o u g h i t d i d n o t d e m o n s t r a t e a d e f i n i t i v e d i e l p a t t e r n o f u p t a k e , l o w e r r a t e s o f NO^ -u p t a k e w e r e g e n e r a l l y o b s e r v e d a t n i g h t w i t h i n c r e a s e d u p t a k e r a t e s i n t h e d a y p e a k i n g l a t e r t h a n t h o s e o f t h e s u r f a c e c o m m u n i t y . M i y a z a k i e t a l . (1987) o b s e r v e d a s i m i l a r t i m e d e l a y o f u p t a k e maxima f o r N O 3 - a n d N H 4 + d u r i n g d a r k b o t t l e i n c u b a t i o n s o f t h e p h y t o p l a n k t o n o f L a k e Nakanuma, J a p a n . T hey a t t r i b u t e d t h i s d e l a y t o t h e c u m u l a t i v e i n c r e a s e i n s t o r e d e n e r g y a n d i n t e r m e d i a t e c a r b o n compounds p r o d u c e d d u r i n g p h o t o s y n t h e s i s a n d n e c e s s a r y f o r t h e u p t a k e a n d a s s i m i l a t i o n o f n i t r o g e n . I n summary i t a p p e a r s t h a t d i e l p e r i o d i c i t y o f n i t r o g e n u p t a k e i s i n f l u e n c e d by s e v e r a l c o n f o u n d i n g f a c t o r s i n c l u d i n g : (1) t h e amount o f p h y t o p l a n k t o n b i o m a s s a n d i t s s p e c i e s c o m p o s i t i o n ; (2) v a r i a t i o n i n c o n c e n t r a t i o n o f a m b i e n t n i t r o g e n o u s compounds a s t h e s u b s t r a t e f o r N u p t a k e ; (3) v a r i a t i o n i n l i g h t i n t e n s i t y ( i r r a d i a n c e ) : a n d (4) t h e d e p t h f r o m w h i c h p l a n k t o n i s c o l l e c t e d , h e n c e p r e c o n d i t i o n e d l i g h t h i s t o r y o f p h y t o p l a n k t o n . I n a d d i t i o n , t h e i n h i b i t o r y e f f e c t s o f o t h e r N f o r m s ( e . g . , N H 4 + , T o b i e s e n , 1 9 8 7 ) , t h e e f f e c t o f i r r a d i a n c e a n d a m b i e n t w a t e r t e m p e r a t u r e on p e r i o d i c i t y o f enzyme a c t i v i t i e s ( e . g . , NC>3~ a n d NC^ - r e d u c t a s e , E p p l e y e t a l . , 1970, 1971b) may a l s o be r e f l e c t e d i n t h e o b s e r v e d p e r i o d i c i t y o f n i t r o g e n u p t a k e by n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s . E p p l e y e t a l . ( 1 9 7 1 a ) s u g g e s t e d t h a t t h e s t r u c t u r e a n d d i v e r s i t y o f t h e p h y t o p l a n k t o n c o m m u n i t y m i g h t be a f f e c t e d b y d i e l p e r i o d i c i t y o f c e l l d i v i s i o n o c c u r r i n g a t d i f f e r e n t t i m e s o f t h e d a y . By t h e same l i n e o f r e a s o n i n g d i e l r h y t h m s i n N u p t a k e may a l s o p l a y a s i g n i f i c a n t r o l e i n t h e r e g u l a t i o n o f s p a t i a l a n d t e m p o r a l d i s t r i b u t i o n o f p h y t o p l a n k t o n . The r e s u l t s o f t h e p r e s e n t s t u d y d e m o n s t r a t e t h e n e e d f o r c o n t r o l l e d l a b o r a t o r y e x p e r i m e n t s u t i l i z i n g u n i a l g a l p o p u l a t i o n s i n o r d e r t o i s o l a t e a n d d e t e r m i n e t h e e f f e c t s o f N l i m i t a t i o n on t h e p e r i o d i c i t y o f N u p t a k e by p h y t o p l a n k t o n . 67 CHAPTER TWO EFFECTS OF IRRADIANCE ON NITROGEN UPTAKE BY PHYTOPLANKTON: COMPARISON OF FRONTAL AND S T R A T I F I E D COMMUNITIES INTRODUCTION I n m o s t m a r i n e a n d f r e s h w a t e r s y s t e m s , t h e u p t a k e o f n i t r o g e n o u s n u t r i e n t s by p h y t o p l a n k t o n i s r e l a t e d t o t h e a v a i l a b i l i t y o f t h e n u t r i e n t s ( e . g . M a c l s a a c a n d D u g d a l e , 1969; P r o b y n , 1985) a n d p h o t o s y n t h e t i c p h o t o n f l u x d e n s i t y (PPFD) ( e . g . , M a c l s a a c a n d D u g d a l e , 1972; P r i s c u , 1 9 8 4 ) . The d e p e n d e n c e o f n i t r o g e n u p t a k e u p o n PPFD h a s b e e n d e s c r i b e d b y a r e c t a n g u l a r h y p e r b o l a s i m i l a r t o t h e M i c h a e l i s - M e n t e n f o r m u l a t i o n i n many m a r i n e ( e . g . , M a c l s a a c a n d D u g d a l e , 1972; F i s h e r e t a l . , 1982) a n d f r e s h w a t e r ( e . g . , P r i s c u , 1984; W h a l e n a n d A l e x a n d e r , 1984b) c o m m u n i t i e s . A l t h o u g h n i t r o g e n u p t a k e a n d a s s i m i l a t i o n by p h y t o p l a n k t o n a r e d e p e n d e n t u p o n PPFD a s a n e n e r g y s o u r c e , e i t h e r d i r e c t l y o r i n d i r e c t l y t h r o u g h p h o t o s y n t h e s i s , t h e e x a c t b i o c h e m i c a l m e c h a n i s m ( s ) by w h i c h l i g h t r e g u l a t e s n i t r o g e n m e t a b o l i s m r e m a i n s u n r e s o l v e d ( e . g . s e e r e v i e w by S y r e t t , 1 9 8 1 ) . The p r e s e n c e o f N O 3 - -a c t i v a t e d A T P a s e , a p p a r e n t l y l o c a t e d w i t h i n t h e c e l l membranes o f a number o f m a r i n e p h y t o p l a n k t e r s ( F a l k o w s k i 1 9 7 5 a , b ) , p r o v i d e s a p h y s i o l o g i c a l b a s i s f o r t h e c o u p l i n g b e t w e e n l i g h t a n d N O 3 - u p t a k e a n d p r o b a b l y s p e c i f i c A T P a s e s e x i s t f o r t h e u p t a k e o f N H 4 + a n d u r e a a s w e l l . The e n e r g y (ATP) g e n e r a t e d by p h o t o p h o s p h o r y l a t i o n i s r e q u i r e d f o r t h e f u n c t i o n i n g o f t h e s e u p t a k e enzymes ( p e r m e a s e s ) a n d may a l s o d r i v e t h e r e a c t i o n s o f N H 4 + (GS/GOGAT) a n d u r e a ( U A L - a s e ) a s s i m i l a t i o n . 68 In addition, the photogeneration of reductants NAD(P)H and reduced ferredoxin w i l l drive the reduction of NG^-, NG^- and the GOGAT reaction of NH 4 + a s s i m i l a t i o n . Other possible interactions of l i g h t with inorganic nitrogen metabolism of phytoplankton are discussed i n d e t a i l by Syrett (1981). Numerous culture studies have demonstrated that nitrogen-deprived phytoplankton have greater dark uptake rates of N than N-replete phytoplankton (e.g., Syrett, 1962; Eppley and Coatsworth, 1968; Thacker and Syrett, 1972b; Rees and Syrett, 1979) suggesting a lesser l i g h t dependence on N uptake, during N stress. This together with f i e l d studies which show that deep-living phytoplankton sustain substantial N uptake v e l o c i t i e s with l i t t l e or no l i g h t (e.g., Conway and Whitledge, 1979; Nelson and Conway, 1979; Priscu, 1984) suggests that both l i g h t exposure and n u t r i t i o n a l history of phytoplankton may be important i n determining t h e i r a b i l i t y to sequester nitrogen, and that these c o n t r o l l i n g factors may d i f f e r for the various forms of nitrogen. Shallow sea fronts, located at the boundary between s t r a t i f i e d and v e r t i c a l l y mixed regimes (see reviews by Denman and Powell, 1984; LeFevre, 1986) are generally areas of high primary productivity (e.g., Pingree et a l . , 1975; Parsons et a l . , 1981, 1983; Holligan et a l . , 1984). These regions are characterized by having high phytoplankton biomass i n the surface water with measurable concentrations of n i t r a t e , and a shallow pycnocline which extends to the surface at the f r o n t a l boundary (e.g., Simpson and Pingree 1978). 69 A s u r f a c e t r a n s e c t n o r m a l t o a f r o n t a l b o u n d a r y p r o g r e s s e s f r o m h i g h c o n c e n t r a t i o n s o f d i s s o l v e d NC^ - on t h e w e l l - m i x e d s i d e t o N - d e p l e t e s t r a t i f i e d w a t e r s a n d t h u s r e p r e s e n t s a g r a d i e n t o f b o t h n i t r o g e n a n d l i g h t a v a i l a b i l i t y a n d c o n s e q u e n t l y p h y t o p l a n k t o n p h y s i o l o g i c a l s t a t e s . M o r e o v e r , t h e n i t r o g e n o u s n u t r i t i o n o f t h e p h y t o p l a n k t o n w o u l d l i k e l y d i f f e r a l o n g s u c h a t r a n s e c t . I n t h e N - i m p o v e r i s h e d w a t e r s , t h e N demands o f p h y t o p l a n k t o n a r e s u p p l i e d by r e d u c e d N f o r m s s u c h a s N H 4 + a n d u r e a f r o m r e g e n e r a t i v e p r o c e s s e s w h e r e a s , i n N - r i c h a r e a s , n i t r o g e n compounds a r e g e n e r a l l y u t i l i z e d a t r a t e s p r o p o r t i o n a l t o t h e i r a v a i l a b i l i t y ( e . g . , D u g d a l e a n d G o e r i n g 1967; M c C a r t h y e t a l . , 1 9 7 7 ) . The e x p e r i m e n t s p r e s e n t e d i n t h i s s t u d y w e r e c o n d u c t e d i n t h e S t r a i t o f G e o r g i a , a p a r t i a l l y e n c l o s e d c o a s t a l b a s i n on t h e w e s t c o a s t o f C a n a d a ( s e e r e v i e w s by L e B l o n d , 1983; H a r r i s o n e t a l . , 1 9 8 3 ) , w h e r e s e v e r a l t i d a l l y - i n d u c e d f r o n t a l r e g i o n s h a v e b e e n p r e v i o u s l y d e s c r i b e d ( P a r s o n s e t a l . , 1 9 8 1 ; P r i c e e t a l . , 1 9 8 5 ) . The i n f l u e n c e o f PPFD on t h e u p t a k e o f NC>3~ a n d u r e a by p h y t o p l a n k t o n f r o m n i t r a t e - r e p l e t e f r o n t a l w a t e r a n d n i t r a t e - d e p l e t e s t r a t i f i e d w a t e r was e x a m i n e d a n d t h e d e p e n d e n c e o f N u p t a k e on PPFD by t h e p h y t o p l a n k t o n f r o m t h e s u b s u r f a c e c h l o r o p h y l l maximum o f t h e s e t w o d i s t i n c t a r e a s c o m p a r e d . T h i s s t u d y i s t h e f i r s t t o m e a s u r e b o t h u r e a a n d N O 3 - u p t a k e b y n a t u r a l a s s e m b l a g e s o f p h y t o p l a n k t o n a s a f u n c t i o n o f PPFD. S i m u l a t e d i n s i t u e x p e r i m e n t a l c o n d i t i o n s w e r e a t t e m p t e d i n o r d e r t o o b t a i n a b e t t e r u n d e r s t a n d i n g o f t h e t r u e N O 3 - u p t a k e r e s p o n s e t o PPFD i n t h e s e p h y s i c a l l y a n d 70 c h e m i c a l l y d i s t i n c t environments. P r e v i o u s s t u d i e s of the e f f e c t ( s ) of PPFD on N uptake by phytoplankton have employed s a t u r a t i n g enrichments of i s o t o p i c a l l y l a b e l l e d N forms (e.g., Maclsaac and Dugdale, 1972; P r i s c u 1984; Mitamura 1986) and r e p o r t e d uptake r a t e s may r e f l e c t the e f f e c t s of both PPFD and N c o n c e n t r a t i o n . 71 MATERIALS AND METHODS General N i t r o g e n u p t a k e e x p e r i m e n t s w e r e c o n d u c t e d i n t h e S t r a i t o f G e o r g i a , B.C., C a n a d a a b o a r d t h e C.S.S. V e c t o r d u r i n g J u l y -A u g u s t , 1984; s t a t i o n l o c a t i o n s a r e shown i n F i g . 2.1. B e t w e e n 1400 a n d 1500 h PDT w a t e r s a m p l e s w e r e c o l l e c t e d , u s i n g 5 L PVC N i s k i n b o t t l e s , f r o m j u s t b e l o w t h e s e a s u r f a c e ( 0 - 1 m) a n d f r o m d e p t h s c o r r e s p o n d i n g t o t h e d e e p c h l o r o p h y l l maximum (DCM). S a m p l e s w e r e s h i e l d e d f r o m d i r e c t s u n l i g h t d u r i n g t r a n s f e r t o 10 L N a l g e n e c a r b o y s a n d t a k e n i n t o t h e s h i p ' s l a b o r a t o r y . S u b s a m p l e s f o r n u t r i e n t a n a l y s e s w e r e r e m o v e d w i t h a n a c i d - w a s h e d s y r i n g e a n d g e n t l y f i l t e r e d t h r o u g h c o m b u s t e d (460\u00C2\u00B0C f o r 4 h) Whatman GF/F f i l t e r s ( m o u n t e d i n 25 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 R mm M i l l i p o r e S w i n e x f i l t e r h o l d e r s ) i n t o a c i d - w a s h e d p o l y e t h y l e n e b o t t l e s . . N i t r a t e p l u s n i t r i t e ( N 0 3 ~ + N 0 2 ~ ) a n d ammonium ( N H 4 + ) w e r e m e a s u r e d i m m e d i a t e l y w i t h a T e c h n i c o n \u00E2\u0080\u00A2p A u t o A n a l y z e r I I , f o l l o w i n g t h e p r o c e d u r e s o u t l i n e d i n Wood e t a l . ( 1 9 6 7 ) a n d S l a w y k a n d M a c l s a a c ( 1 9 7 2 ) , r e s p e c t i v e l y . U r e a was d e t e r m i n e d b y t h e d i a c e t y l monoxime t h i o s e m i c a r b i z i d e t e c h n i q u e d e s c r i b e d by P r i c e a n d H a r r i s o n ( 1 9 8 7 ) . S a m p l e s f o r c h l o r o p h y l l a ( C h i a) w e r e c o l l e c t e d on Whatman GF/F f i l t e r s a n d s t o r e d f r o z e n i n a d e s i c c a t o r . C h i a was e x t r a c t e d i n 90% a c e t o n e o v e r n i g h t a n d a n a l y z e d by i n v i t r o f l u o r o m e t r y ( S t r i c k l a n d a n d P a r s o n s , 1972) u s i n g a T u r n e r D e s i g n s m o d e l 10 f l u o r o m e t e r . P a r t i c u l a t e o r g a n i c c a r b o n (POC) a n d n i t r o g e n (PON), c o l l e c t e d on c o m b u s t e d Whatman GF/F f i l t e r s , w e r e s t o r e d s i m i l a r l y a n d a n a l y z e d l a t e r a f t e r d r y i n g (24 h a t 72 F i g u r e 2.1. S t a t i o n l o c a t i o n s f o r n i t r o g e n u p t a k e e x p e r i m e n t s . F r o n t a l ( T 1 4 ) , s h a l l o w s t r a t i f i e d (A5) and d e e p l y s t r a t i f i e d (T8) s t a t i o n s i n t h e S t r a i t o f G e o r g i a , B.C. 125\u00C2\u00B0 1 2 3 \u00C2\u00B0 73 <60\u00C2\u00B0C) wi t h a P e r k i n Elmer model 240 elemental a n a l y z e r , u s i n g the dry combustion method d e s c r i b e d by Sharp (1974). The p r e c i s i o n of these techniques i s g i v e n i n Appendix 6. At each s t a t i o n continuous v e r t i c a l p r o f i l e s (0-20 m) of temperature, s a l i n i t y , f l u o r e s c e n c e and N O 3 - + N O 2 - were run p r i o r t o the b o t t l e c a s t s . Temperature and s a l i n i t y were determined w i t h an InterOcean 514A CSTD system and i n v i v o f l u o r e s c e n c e and N O 3 - + NO2\"\" c o n c e n t r a t i o n s were o b t a i n e d from pumped samples (mRoy FR162-144 diaphragm pump, flow r a t e ca. 1 L m i n - 1 ) and measured wi t h a Turner model 111 f l u o r o m e t e r (equipped w i t h a flow-through c e l l ) and a Technicon AutoAnalyzer I I , r e s p e c t i v e l y . These data were logged onto a p e r s o n a l computer and p l o t t e d i n r e a l - t i m e u s i n g a custom software programme which compensates f o r time l a g s i n pumping and machine analyses (Jones, p e r s . comm.). I n c i d e n t s o l a r i r r a d i a n c e (PAR, 400-700 nm) was monitored c o n t i n u o u s l y with a Lambda Instruments LI-185 l i g h t meter, equipped w i t h a L I -190SB Sur f a c e Quantum Sensor, and connected t o a c h a r t r e c o r d e r . Subsurface i r r a d i a n c e s were measured wi t h a LI-185B l i g h t meter, equipped with a LI-192S Underwater Quantum Sensor. Phytoplankton samples (250 ml) were p r e s e r v e d i n Lugol's s o l u t i o n (Parsons et a l . , 1984) and s t o r e d i n the dark u n t i l c o u n t i n g . Ten ml subsamples were s e t t l e d (24 h) and counted on a W i l d i n v e r t e d microscope f o l l o w i n g Utermohl (1958). Experimental W i t h i n 1 h of c o l l e c t i o n , water samples from each depth 74 w e r e t r a n s f e r r e d u n d e r r e d u c e d l i g h t c o n d i t i o n s t o 500 m l Wheaton g l a s s b o t t l e s w i t h t e f l o n - l i n e d c a p s . N i t r a t e a n d 1 5 u r e a u p t a k e r a t e s w e r e m e a s u r e d u s i n g t h e s t a b l e i s o t o p e N ( K o r I s o t o p e s ) , a s a t r a c e r ( D u g d a l e a n d G o e r i n g , 1 9 6 7 ) . F o r t h e u r e a e x p e r i m e n t s , C O f ^ N ^ ^ (99 atom %) was a d d e d t o 1 5 1 b r i n g t h e f i n a l N c o n c e n t r a t i o n t o 2-4 uq-at N-L . I n t h e n i t r a t e e x p e r i m e n t s , Na N O 3 (99 a t o m %) was a d d e d i n c o n c e n t r a t i o n s o f e i t h e r 0.05 uq-at N - L - 1 o r l e s s t h a n 10% o f t h e a m b i e n t N O 3 - + NO2\"\" c o n c e n t r a t i o n . T h e s e e n r i c h m e n t s w e r e n o t a l w a y s t r u e t r a c e r a d d i t i o n s ( u s u a l l y d e f i n e d a s \u00C2\u00A3 10% o f a m b i e n t ) , b u t t h e t e r m \" t r a c e r \" w i l l be u s e d h e r e t o 1 5 \u00E2\u0080\u0094 d i s t i n g u i s h t h e l o w NO3 e n r i c h m e n t s f r o m t h e s a t u r a t i n g e n r i c h m e n t s a s s o c i a t e d w i t h t h e u r e a u p t a k e e x p e r i m e n t s . F o l l o w i n g e n r i c h m e n t , b o t t l e s w e r e i m m e d i a t e l y m i x e d a n d p l a c e d w i t h i n n e u t r a l d e n s i t y s c r e e n i n g t o s i m u l a t e t h e f o l l o w i n g PPFDs ( 9 5 , 5 5 , 3 1 , 10, 3.4, 1.1 a n d 0 % I Q ) . The s c r e e n m a t e r i a l u s e d i n t h e i n c u b a t o r s was c a l i b r a t e d w i t h a B i o s p h e r i c a l I n s t r u m e n t s QSL-100 4TT s e n s o r p l a c e d w i t h i n a n a d a p t e d i n c u b a t i o n b o t t l e . The 0% PPFD was a c h i e v e d b y w r a p p i n g t h e b o t t l e w i t h b l a c k t a p e . I n c u b a t i o n s w e r e c o n d u c t e d a t i n s i t u t e m p e r a t u r e (\u00C2\u00B1 1.5\u00C2\u00B0C) u n d e r n a t u r a l l i g h t i n c l e a r P l e x i g l a s d e c k i n c u b a t o r s . S a m p l e s f r o m t h e s u r f a c e w a t e r s w e r e c o o l e d w i t h f l o w i n g s u r f a c e s e a w a t e r , w h i l e d e e p e r s a m p l e s w e r e i n c u b a t e d i n a s e p a r a t e t e m p e r a t u r e c o n t r o l l e d i n c u b a t o r . I n c u b a t i o n s w e r e t e r m i n a t e d a f t e r 2-4 h by f i l t r a t i o n ( p r e s s u r e d i f f e r e n t i a l < 125 mm Hg) o n t o c o m b u s t e d Whatman GF/F f i l t e r s , p l a c e d i n t o p l a s t i c p e t r i d i s h e s , a n d 75 s t o r e d f r o z e n i n a d e s i c c a t o r . B a s e d on t h e a m b i e n t n i t r o g e n c o n c e n t r a t i o n , t h e p a r t i c u l a t e n i t r o g e n c o n c e n t r a t i o n a n d t h e i n i t i a l N a t o m % i n t h e p a r t i c u l a t e f r a c t i o n , i t was c a l c u l a t e d t h a t a n a v e r a g e (\u00C2\u00B1 SD) o f 24.1 \u00C2\u00B1 1 5 . 3 % a n d 8.5 \u00C2\u00B1 5.2% o f t h e N O 3 - a n d u r e a , r e s p e c t i v e l y , i n s o l u t i o n was i n c o r p o r a t e d i n t o p a r t i c u l a t e m a t e r i a l d u r i n g t h e i n c u b a t i o n . A t t h e h i g h e s t u p t a k e r a t e s a c h i e v e d , n e v e r more t h a n 7 0% o f t h e N O 3 - a n d 2 0 % o f u r e a i s o t o p e , w e r e i n c o r p o r a t e d i n t o t h e PON. T h e r e f o r e s u b s t r a t e e x h a u s t i o n was n o t a p r o b l e m i n t h e e x p e r i m e n t s o f t h i s s t u d y . N i t r o g e n i n t h e p a r t i c u l a t e s a m p l e s was c o n v e r t e d t o d i n i t r o g e n g a s ( N 2 ) by t h e m i c r o - Dumas d r y c o m b u s t i o n 1 c t e c h n i q u e ( L a R o c h e ,1983) a n d t h e n a n a l y z e d f o r N e n r i c h m e n t w i t h a JASCO m o d e l N-150 e m i s s i o n s p e c t r o m e t e r ( F i e l d e r a n d P r o k s c h , 1 9 7 5 ) . N i t r o g e n u p t a k e r a t e s w e r e c a l c u l a t e d u s i n g e q u a t i o n 7 o f D u g d a l e and W i l k e r s o n (1986) ( e q u i v a l e n t t o e q u a t i o n 5 o f C o l l o s , 1987) w h i c h c o r r e c t s f o r c h a n g e s i n PON d u r i n g t h e i n c u b a t i o n p e r i o d ( s e e A p p e n d i x 1, e q u a t i o n 5 ) . C o r r e c t i o n s w e r e n o t made f o r i s o t o p i c d i l u t i o n f r o m r e m i n e r a l i z a t i o n o f ^ N - u r e a d u r i n g t h e i n c u b a t i o n ( H a n s e l l a n d G o e r i n g , 1989) a s t h i s c o r r e c t i o n w o u l d p r o b a b l y be n e g l i g i b l e g i v e n t h e l a r g e amount o f - ^ N - l a b e l l e d u r e a a d d e d t o t h e b o t t l e s . S p e c i f i c r a t e s o f n i t r o g e n t r a n s p o r t w e r e c a l c u l a t e d by d i v i s i o n o f t h e v o l u m e t r i c r a t e s b y t h e p h a e o p h y t i n - c o r r e c t e d c h l o r o p h y l l a c o n c e n t r a t i o n a t t h e b e g i n n i n g o f t h e e x p e r i m e n t s . A l t h o u g h c h l o r o p h y l l a p e r c e l l may v a r y w i t h d e p t h due t o PPFD d i f f e r e n c e s , i t was c h o s e n a s 76 t h e n o r m a l i z a t i o n p a r a m e t e r b e c a u s e i t a b s o r b s t h e l i g h t n e c e s s a r y t o f u e l c e l l u l a r t r a n s p o r t m e c h a n i s m s . C h i a s p e c i f i c u p t a k e r a t e s a l s o f a c i l i t a t e s t h e c o m p a r i s o n w i t h p r e v i o u s l y p u b l i s h e d C h i a n o r m a l i z e d n i t r o g e n a n d c a r b o n u p t a k e v e r s u s i r r a d i a n c e s t u d i e s . Kinetic parameters of uptake The k i n e t i c c o n s t a n t s f o r N O 3 - a n d u r e a u p t a k e w i t h r e s p e c t t o i r r a d i a n c e w e r e o b t a i n e d b y a d i r e c t f i t o f t h e d a t a t o a m o d i f i e d M i c h a e l i s - M e n t e n h y p e r b o l a u s i n g a c o m p u t e r i z e d , i t e r a t i v e , n o n - l i n e a r l e a s t - s q u a r e s t e c h n i q u e ( L a b t e c N o t e b o o k C u r v e f i t , L a b o r a t o r i e s T e c h n o l o g i e s C o r p . ) . The M i c h a e l i s - M e n t e n e q u a t i o n , m o d i f i e d t o a c c o u n t f o r d a r k u p t a k e , d e s c r i b e s u p t a k e o v e r t h e h y p e r b o l i c l i g h t p a r t o f t h e c u r v e ( M a c l s a a c a n d D u g d a l e , 1972) a n d i s a s f o l l o w s : V - V D + V'max K L T + I w h e r e V i s t h e t o t a l u p t a k e o f N p e r u n i t o f c h l o r o p h y l l , V D i s t h e d a r k v a l u e o f V, I i s t h e i n t e g r a t e d a v e r a g e PPFD d u r i n g t h e i n c u b a t i o n p e r i o d , v ' m a x i s t h e maximum N u p t a k e p e r u n i t c h l o r o p h y l l a t s a t u r a t i n g PPFD a n d K L T , t h e h a l f -s a t u r a t i o n c o n s t a n t f o r l i g h t , i s t h e PPFD a t 0.5 V ' m a x . The a s s u m p t i o n i s made t h a t d a r k u p t a k e i s a c o n s t a n t a t a l l l i g h t l e v e l s . O n l y d a t a s h o w i n g no p h o t o i n h i b i t i o n w e r e u s e d i n t h i s a n a l y s i s . 77 RESULTS AND DISCUSSION General description of stations The v e r t i c a l p r o f i l e s o f t e m p e r a t u r e , s a l i n i t y , r e l a t i v e i n v i v o C h i a f l u o r e s c e n c e a n d N03~ + N O 2 - c o n c e n t r a t i o n f o r t h e t h r e e s t a t i o n s a t w h i c h N u p t a k e v e r s u s PPFD e x p e r i m e n t s w e r e c o n d u c t e d a r e p r e s e n t e d i n F i g . 2.2. The d i a g n o s t i c f e a t u r e s o f t h e f r o n t a l w a t e r (T14) i n c l u d e d b o t h a weak t h e r m o c l i n e a n d h a l o c l i n e w h i c h e x t e n d e d f r o m t h e s u r f a c e t o c a . 9 m, a s u b s u r f a c e f l u o r e s c e n c e maximum l a y e r ( c a . 5-8 m), a n i t r a c l i n e w h i c h e x t e n d e d t o t h e s u r f a c e a n d r e l a t i v e l y h i g h N O 3 - + N02~ c o n c e n t r a t i o n s t h r o u g h o u t t h e w a t e r c o l u m n . I n t h e d e e p l y s t r a t i f i e d s t a t i o n ( T 8 ) , f l u o r e s c e n c e i n c r e a s e d s l i g h t l y w i t h d e p t h ; t h e n i t r a c l i n e o c c u r r e d a t c a . 1 2 m, a n d t h e u p p e r 10 m was d e v o i d o f m e a s u r a b l e N O 3 - + N O 2 - . A s t r o n g t h e r m o c l i n e a n d h a l o c l i n e a t 5-15 m s e p a r a t e d t h e d e e p N O 3 - -r e p l e t e w a t e r f r o m t h e N 0 3 ~ - d e p l e t e d m i x e d s u r f a c e w a t e r . S i m i l a r c o n d i t i o n s w e r e o b s e r v e d a t t h e s h a l l o w - s t r a t i f i e d s t a t i o n (A5) b u t t h e h a l o c l i n e , t h e r m o c l i n e , a n d n i t r a c l i n e a l l d e v e l o p e d w i t h i n t h e u p p e r 5 m o f t h e w a t e r c o l u m n . The i n i t i a l b i o m a s s d a t a a n d e n v i r o n m e n t a l c o n d i t i o n s f o r e a c h s t a t i o n a r e g i v e n i n T a b l e 2.1. The s p e c i e s c o m p o s i t i o n o f t h e p h y t o p l a n k t o n c o m m u n i t y i n t h e f r o n t a l a n d s t r a t i f i e d w a t e r s v a r i e d c o n s i d e r a b l y ( T a b l e 2 . 2 ) . I n t h e f r o n t a l w a t e r s , l a r g e , c h a i n - f o r m i n g d i a t o m s w e r e t h e most common p h y t o p l a n k t o n a t b o t h t h e s u r f a c e a n d t h e c h l o r o p h y l l maximum l a y e r (DCM). Chaetoceros s o c i a l i s was t h e d o m i n a n t s p e c i e s f o l l o w e d i n a b u n d a n c e by Skeletonema costatum 78 F i g u r e 2.2. D e p t h p r o f i l e s o f t e m p e r a t u r e ( T ) , s a l i n i t y ( S ) , i n v i v o f l u o r e s c e n c e ( F ) a n d n i t r a t e p l u s n i t r i t e c o n c e n t r a t i o n (N) f o r t h e t h r e e s t a t i o n s s a m p l e d ( T 1 4 : f r o n t a l ; A 5 : s h a l l o w s t r a t i f i e d ; a n d T8: d e e p l y s t r a t i f i e d ) . Table 2.1 I n i t i a l environmental conditions of seawater c o l l e c t e d f or N-uptake versus irr a d i a n c e experiments. s t a t i o n and l o c a t i o n D e s c r i p t i o n Date S t a r t i n g time of depth incubation (m) (PDT) Sample Nitrogen cone. N0 3 Urea NH^ (pg-at N-L - 1) Chi a PON POC (jjg-L - 1) (pg-at N-L - 1) (pg-at N-L - 1) T14 49\u00C2\u00B053'24\"N F r o n t a l 125\u00C2\u00B005'06\"W 27 J u l 1984 1530 6.02 15.05 0.23 0.21 1.29 2.28 5.28 6.96 43.1 40.6 A5 49\u00C2\u00B053'02\"N Shallow 30 J u l 1984 125\u00C2\u00B005'48\"W S t r a t i f i e d 1430 0 15 <.05 20.89 0.63 0.72 0.16 0.32 0.33 0.67 2 .57 2.01 22.9 14.5 T8 49\u00C2\u00B048'36\"N Deep 1 Aug 1984 124\u00C2\u00B050'39\"W S t r a t i f i e d 1500 0 15 <.05 7 .54 0.82 0.17 0.17 0.40 0.35 0.99 2.90 3.83 24 . 1 24.1 *NH. concentrations from separate b o t t l e casts vo 80 T a b l e 2.2 P h y t o p l a n k t o n c o m m u n i t y c o m p o s i t i o n i n f r o n t a l a n d s t r a t i f i e d w a t e r i n t h e S t r a i t o f G e o r g i a , B.C. S t a t i o n D e p t h P h y t o p l a n k t o n ('10\u00C2\u00B0 c e l l s \u00E2\u0080\u00A2 L ) (m) D i a t o m s F l a g e l l a t e s * F r o n t a l T14 0 2.3 0.96 8 2.2 0.76 S h a l l o w 0 0.23 1.9 S t r a t i f i e d A5 15 0.73 0.79 D e e p l y 0 0.026 1.5 S t r a t i f i e d T8 15 0.15 1.7 * <5% o f f l a g e l l a t e s w e r e d i n o f l a g e l l a t e s 81 a n d o t h e r d i a t o m s o f t h e g e n u s , Chaetoceros, i n c l u d i n g C. debilis. S m a l l p i g m e n t e d f l a g e l l a t e s (<5 um) w e r e t h e most a b u n d a n t p h y t o p l a n k t o n i n t h e s u r f a c e w a t e r s o f b o t h s t r a t i f i e d s t a t i o n s ; d o m i n a n t d i a t o m s w e r e s t i l l Skeletonema costatum a n d Chaetoceros s p p . , a l t h o u g h T h a l a s s i o s i r a s p p . a n d p e n n a t e d i a t o m s b e l o n g i n g t o Navicula a n d Nitzschia g e n e r a a p p e a r e d i n s m a l l n u m b e rs. D i n o f l a g e l l a t e s w e r e a l w a y s a s m a l l n u m e r i c a l f r a c t i o n (<5%) o f t h e t o t a l f l a g e l l a t e s p r e s e n t a n d w e r e a l m o s t e x c l u s i v e l y Gymnodinium o r Amphidinium s p p . The d e e p c h l o r o p h y l l maximum c o m m u n i t i e s o f t h e t w o s t r a t i f i e d s t a t i o n s d i f f e r e d i n t h e r e l a t i v e a b u n d a n c e o f f l a g e l l a t e s a n d d i a t o m s , b u t t h e s p e c i e s c o m p o s i t i o n was s i m i l a r . E f f e c t of light on nitrogen uptake rates M a c l s a a c a n d D u g d a l e (1972) f i r s t showed t h a t t h e u p t a k e o f n i t r a t e a n d ammonium by n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s c o u l d be r e l a t e d t o PPFD by a r e c t a n g u l a r h y p e r b o l a ; PPFD may be t r e a t e d a s a s u b s t r a t e , f o l l o w i n g M i c h a e l i s - M e n t e n k i n e t i c s u n d e r c o n d i t i o n s o f no n u t r i e n t s t r e s s . S u c h a m o d e l assumes t h a t t h e r e i s no N u p t a k e a t z e r o PPFD ( i . e . t h e PPFD r e s p o n s e c u r v e p a s s e s t h r o u g h t h e o r i g i n ) . T h ey s u g g e s t e d t h a t t h e c o n s e q u e n c e s o f n o t s u b t r a c t i n g d a r k u p t a k e f r o m t h e l i g h t u p t a k e , when u p t a k e i n t h e d a r k i s g r e a t e r t h a n c a . 15% o f u p t a k e a t s a t u r a t i n g PPFD, c a n be s i g n i f i c a n t ; l i n e a r t r a n s f o r m a t i o n s o f s u c h k i n e t i c d a t a a r e d i s t o r t e d b e y o n d u s e f u l n e s s a n d t h u s t h e v a l u e s o f d e r i v e d p a r a m e t e r s q u e s t i o n a b l e . F o r s i t u a t i o n s i n w h i c h d a r k u p t a k e i s a 82 s u b s t a n t i a l p o r t i o n (>10-15% o f PPFD - s a t u r a t e d u p t a k e ) , t h e y p r o p o s e d a s l i g h t l y m o d i f i e d e q u a t i o n , e m p l o y e d i n t h e p r e s e n t s t u d y , w h i c h t a k e s i n t o a c c o u n t a c o n s t a n t d a r k u p t a k e r a t e a n d d e s c r i b e s N u p t a k e o v e r t h e h y p e r b o l i c p o r t i o n o f t h e PPFD r e s p o n s e c u r v e , b u t n o t p h o t o i n h i b i t i o n . P h o t o i n h i b i t i o n p r o b l e m s c a n be o v e r c o m e by u s i n g an e q u a t i o n d e v e l o p e d by P a r k e r ( 1 974) o r a m o d i f i c a t i o n o f t h e e q u a t i o n o f P i a t t e t a l . ( 1 9 8 0 ) o r i g i n a l l y d e v e l o p e d f o r t h e l i g h t r e s p o n s e o f p h o t o s y n t h e s i s ( L e w i s a n d L e v i n e , 1984; P r i s c u , 1 9 8 9 ) . Numerous s t u d i e s i n b o t h m a r i n e ( M a c l s a a c a n d D u g d a l e , 1972; M a c l s a a c e t a l . , 1974; N e l s o n a n d Conway, 1979; S l a w y k , 1979) a n d f r e s h w a t e r n a t u r a l c o m m u n i t i e s ( P r i s c u 1984; W h a l e n a n d A l e x a n d e r 1984b; M i t a m u r a , 1986) h a v e d e m o n s t r a t e d t h a t t h e u p t a k e r e s p o n s e o f N 0 3 + a n d NH^ - c a n be s u c c e s s f u l l y d e s c r i b e d b y t h e M i c h a e l i s - M e n t e n f o r m u l a t i o n . I n t h e p r e s e n t s t u d y , n i t r a t e a n d u r e a u p t a k e w e r e d e p e n d e n t on PPFD a t b o t h d e p t h s s a m p l e d i n s t r a t i f i e d a n d f r o n t a l w a t e r s o f t h e S t r a i t o f G e o r g i a . E x p e r i m e n t s i n w h i c h t h e n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s f r o m t h e s u r f a c e a n d t h e DCM l a y e r s w e r e e x p o s e d t o a g r a d i e n t i n PPFD y i e l d e d d a t a w h i c h c o u l d be a d e q u a t e l y d e s c r i b e d by t h e M i c h a e l i s - M e n t e n f o r m u l a t i o n up t o i n h i b i t i n g PPFD l e v e l s ( F i g . 2.3 a n d 2 . 4 ) . P h o t o i n h i b i t i o n o c c u r r e d b e t w e e n 55 a n d 9 5 % o f s u r f a c e PPFD ( I Q ) a n d was o n l y o b s e r v e d f o r s a m p l e s c o l l e c t e d f r o m d e p t h . P h o t o i n h i b i t i o n o f N u p t a k e c a n n o t be a d e q u a t e l y d i s c u s s e d i n t h i s s t u d y due t o t h e p a u c i t y o f d a t a a t h i g h PPFD, b u t s u f f i c e t o s a y , i t i s n o t l i k e l y a p r o b l e m f o r t h e s u r f a c e 83 Figure 2.3. N i t r a t e uptake of the surface ( O ) and DCM ( \u00E2\u0080\u00A2 ) phytoplankton communities of the S t r a i t of Georgia. The curved p l o t s are f i t t e d d i r e c t l y to the Michaelis-Menten equation; the l i n e a r (dashed l i n e ) PPFD-inhibited portions were not included i n the c a l c u l a t i o n s . Stations are T14 ( f r o n t a l ) , A5 (shallow s t r a t i f i e d ) and T8 (deeply s t r a t i f i e d ) . 3 0 0 PPFD (jjE-m\"2-s\"2) F i g u r e 2.4. U r e a u p t a k e o f t h e s u r f a c e ( O ) a n d DCM ( \u00E2\u0080\u00A2 ) p h y t o p l a n k t o n c o m m u n i t i e s o f t h e S t r a i t o f G e o r g i a . T he c u r v e d p l o t s a r e f i t t e d d i r e c t l y t o t h e M i c h a e l i s - M e n t e n e q u a t i o n ; t h e l i n e a r ( d a s h e d l i n e ) P P F D - i n h i b i t e d p o r t i o n s w e r e n o t i n c l u d e d i n t h e c a l c u l a t i o n s . S t a t i o n s a r e A5 ( s h a l l o w s t r a t i f i e d ) a n d T8 ( d e e p l y s t r a t i f i e d ) . PPFD (pE-m-2-s\"2) 85 s a m p l e s , w h i c h a r e n a t u r a l l y e x p o s e d t o h i g h PPFD; p h y t o p l a n k t o n c o l l e c t e d n e a r t h e b o t t o m o f t h e e u p h o t i c z o n e , a r e e f f e c t i v e l y e x c l u d e d f r o m t h e h i g h PPFD i n t h e m i x e d s u r f a c e w a t e r s b y t h e p y c n o c l i n e a n d a r e n o t l i k e l y t o e n c o u n t e r s u c h h i g h PPFDs n a t u r a l l y . Kinetic parameters of nitrogen uptake D a r k u p t a k e , t h e h a l f - s a t u r a t i o n c o n s t a n t (K-^rp), a n d maximum n i t r o g e n u p t a k e v e l o c i t y ( V ' m a x ) f o r l i g h t d e p e n d e n t u r e a a n d n i t r a t e n i t r o g e n u p t a k e a r e s u m m a r i z e d i n T a b l e 2.3. The K-^ rp v a l u e s i n t h e p r e s e n t s t u d y a r e t h o s e r e p r e s e n t i n g t h e PPFD a t w h i c h 0.5 V ' m a x o c c u r s . H owever, i t i s i m p o r t a n t t o remember t h a t t h e s e M i c h a e l i s - M e n t e n p a r a m e t e r s o n l y r e p r e s e n t u p t a k e d a t a f r o m t h e h y p e r b o l i c ( o r l i g h t ) p o r t i o n o f t h e PPFD r e s p o n s e c u r v e a n d do n o t i n c l u d e t h e s u b s t a n t i a l d a r k N u p t a k e o b s e r v e d . Some i n v e s t i g a t o r s ( e . g . , P r i s c u , 1984) h a v e i g n o r e d d a r k u p t a k e i n t h e l i n e a r t r a n s f o r m a t i o n o f t h e i r k i n e t i c d a t a a n d f o r c e d t h e i r PPFD r e s p o n s e c u r v e s t o p a s s t h r o u g h t h e o r i g i n e v e n t h o u g h d a r k u p t a k e was s u b s t a n t i a l ( c a . 5 0 % o f t o t a l N - u p t a k e ) . H a l f - s a t u r a t i o n c o n s t a n t s d e r i v e d i n t h i s manner a r e n o t an a c c u r a t e m e a s u r e o f PPFD a t w h i c h V = V m a x 12 a n d s h o u l d be i n t e r p r e t e d w i t h c a u t i o n , p a r t i c u l a r l y a s a n i n d i c a t o r o f t h e p h y t o p l a n k t o n c o m m u n i t i e s ' a b i l i t i e s t o a s s i m i l a t e s p e c i f i c N s u b s t r a t e s a t l o w PPFD. A b e t t e r e s t i m a t e o f t h e PPFD a t w h i c h o n e - h a l f t h e t o t a l m a x i m a l N u p t a k e o f t h e p h y t o p l a n k t o n c o m m u n i t y i s a c h i e v e d (K-^ip') c a n be c a l c u l a t e d by a s i m p l e r e a r r a n g e m e n t o f t h e M i c h a e l i s - M e n t e n e q u a t i o n e m p l o y e d i n t h e p r e s e n t s t u d y : Table 2.3 Parameters d e s c r i b i n g the c h a r a c t e r i s t i c s of n i t r o g e n uptake, as a f u n c t i o n of PPFD, f o r phytoplankton assemblages i n the S t r a i t o f Georgia, B.C. S t a t i o n s are T14: f r o n t a l ; A5: shallow s t r a t i f i e d ; and T8: deeply s t r a t i f i e d . D e f i n i t i o n s are given i n the t e x t , estimated standard e r r o r s of parameters i n parentheses. S t a t i o n N i t r o g e n s u b s t r a t e Depth VD V max K L T (m) (ng-at N (jjg C h i a ) \" 1 h _ 1 ) (pE\u00E2\u0080\u00A2m~ (%I 0) T14 N0 3- 0 80 (16.8) 225 (22 3) 91 ( 40.1) 8.2 3.6) 8 53 ( 9.4) 174 ( 12 5) 53 ( 15.7) 4 . 8 1-4) A5 NO3- 0 48 ( 3.2) 50 ( 4 0) 74 ( 25.9) 6.7 2.3) 15 55 ( 8.8) 67 ( 15 3) 156 ( 151 ) 14 14 ) Urea 0 87 ( 4.2) 31 ( 4 3) 140 ( 103 ) 13 9.3) 15 1 . 8 ( 2.3) 11 ( 1 9) 54 ( 40.7) 4 . 9 3.7) T8 N0 3~ 0 8.5 ( 0.79) 9 . 8 ( 1 02) 45 (18.7) 4.6 1.9) 15 0 55 ( 4 2) 18 ( 6.6) 1 . 8 0.7) Urea 0 92 ( 14.1) 73 ( 17 6) 59 ( 63.4) 6.7 7.2) 15 4.0 ( 3.9) 24 ( 3 6) 72 ( 56.2) 8.2 6.4) 00 87 K L T ' = (V - V D ) \u00E2\u0080\u00A2 K L T / ( V max - V + v D ) w h e r e V = ( V max + V D ) / 2 , a n d V max i s t h e maximum u p t a k e d e s c r i b e d by t h e r e c t a n g u l a r h y p e r b o l a , K^ip i t s h a l f -s a t u r a t i o n c o n s t a n t , a n d i s t h e d a r k u p t a k e r a t e . A l t e r n a t i v e l y , a n o t h e r h a l f - s a t u r a t i o n c o n s t a n t , K-^rp\", c a n be c a l c u l a t e d by s u b s t i t u t i n g V f o r o n e - h a l f t h e v e l o c i t y o f N u p t a k e a t s a t u r a t i n g PPFD. B o t h o f t h e s e d e r i v e d h a l f -s a t u r a t i o n c o n s t a n t s w i l l g e n e r a t e v a l u e s t h a t a r e more r e a l i s t i c m e a s u r e s o f t h e PPFD a t o n e - h a l f t h e a c t u a l maximum N u p t a k e t a k i n g p l a c e i n t h e p h y t o p l a n k t o n c o m m u n i t y a s t h e y i n c l u d e d a r k u p t a k e ( T a b l e 2.4). The v a l u e s o f t h e h a l f - s a t u r a t i o n c o n s t a n t f o r N O 3 -u p t a k e i n t h e p r e s e n t s t u d y r a n g e f r o m 0-14% I Q , w h i c h i s c o n s i s t e n t w i t h p r e v i o u s l y p u b l i s h e d v a l u e s f o r m a r i n e a n d f r e s h w a t e r n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s ( T a b l e 2.5). The K L T v a l u e s f o r u r e a u p t a k e a r e s i m i l a r (0-13% I Q ) . P r e v i o u s l y p u b l i s h e d k i n e t i c s t u d i e s f o r u r e a a r e f e w . Webb a n d Haas 1 O _ I ( 1976) r e p o r t a K-^rp o f c a . 0.01 l a n g l e y s 'min - (35*L/E\u00C2\u00ABm *s ) f o r p h y t o p l a n k t o n f r o m t h e Y o r k R i v e r e s t u a r y i n V i r g i n i a d u r i n g t h e summer, a l t h o u g h v a l u e s i n t h e autumn r a n g e d f r o m 0.02 t o 0.12 l a n g l e y s \u00E2\u0080\u00A2 m i n - 1 (69-418 uE*m~2\u00E2\u0080\u00A2s-1). A s i m i l a r summer K L T v a l u e was r e p o r t e d by M i t a m u r a (1986) f o r u r e a u p t a k e by p h y t o p l a n k t o n f r o m o l i g o t r o p h i c L a k e B i w a i n J a p a n (2.44 K l u x = 39 LfE\u00C2\u00ABm -s ). They a l s o r e p o r t e d a s i m i l a r + \u00E2\u0080\u0094 9 \u00E2\u0080\u0094 1 v a l u e K L r p f o r N H 4 u p t a k e (28 /jE-m *s ) a n d a g r e a t e r K L T T a b l e 2.4 I n d i c e s o f N uptake dependency on PPFD f o r p h y t o p l a n k t o n i n the s t r a i t of G e o r g i a : the r a t i o o f dark t o l i g h t - s a t u r a t e d uptake r a t e ( V D : V L ) , the PPFD a t which h a l f of t o t a l N uptake o c c u r s (K. r a t i o o f uptake under 1% I t o 55% I LT K. LT (V 1% , V55% ) a p e r c e n t a g e o f s u r f a c e PPFD ( I Q ) which i s shown i n p a r e n t h e s e s . The K L T v a l u e s are e x p r e s s e d as PPFD v a l u e s and as s t a t i o n N i t r o g e n s u b s t r a t e Depth (m) V : V VD* V L L T -2 -1 (jiE-m -S ) LT V 1 % : V 5 5 % T14 NO- 0.28 0.25 36 (3.2) 24 (2.1) 43 28 (3.9) (2.5) 0.38 0.40 A5 NO- 0 15 0.51 0.49 0 3.0 (0.3) 1.6 (0.1) 15 (1.3) 0.60 0.56 Urea 0 15 0.77 0.15 33 (3.0) 0 39 (3.5) 0.80 0.33 T8 NO- 0 15 0.48 0 1.9 (0.2) 0 3.1 (0.3) 0 0.60 0.37 Urea 0 15 0.58 0.16 0 39 (4.5) 0 52 (5.8) 0.65 0.28 \u00E2\u0080\u00A2 D e f i n i t i o n s g i v e n i n t e x t . oo oo Table 2.5 Comparison of h a l f - s a t u r a t i o n constants (K L_) for inorganic n i t r a t e transport i n various aquatic ecosystems. KLT< N 03~> _ 2 , \" Region Area Depth % surf l i g h t pE-m -s Reference (% I Q ) range (mean) range (mean) Oceanic Upwelling Upwelling Upwelling Upwelling Upwelling Coastal Coastal Freshwater Freshwater Freshwater Freshwater Freshwater Freshwater E. T r o p i c a l P a c i f i c Peru N.W. A f r i c a N.W. A f r i c a Baja C a l i f . , Mexico A n t a r c t i c Peru S t r a i t of Georgia 25 14.0 100 0.9 - 12.7 ( 5.4) 10 0.9 - 13.3 ( 8.9) 14 - 108 ( 63)* 7 - 199 (122)* 50 1.5 - 7.0 ( 5.4) -50-0.1 5.5 - 6.2 ( 5.9) -50-3 3.3 - 32.4 (16.1) -50-25 7 100 10 100 i . 1 T o o l i k L., Alaska ca. 10-15 L. Kinneret, I s r a e l L. Biwa, Japan 100 Ca s t l e L., c a l i f . , U.S.A. L. Vanda, A n t a r c t i c a L. F r y x e l l , A n t a r c t i c a ca.50 ca. 1 10.2 1.0 0.4 1.1 - 2 . 3 ( 1 . 7 ) 2.3-4.4 (3.3)' 1.3 4.4 1.0 4.6 - 8.2 ( 6.5) 1.8 - 14 ( 6.9) 6 - 31 (15) 4.29 2 . 8** 45 14 45 18 - 91 - 156 7 77 70. 8*** - 29 ( 70) ( 76) ( 16) 2.6 - 2.7 (2.65) 15.1 - 16.2 (15.7)+ 0.6 - 3.7 (1.55) 4.6 - 25.5 (10.7)+ 0.5 -0.4 -0.08 2.0 5.1 2.4 - 9.5 1.7 - 24.9 0.04 (?) Maclsaac & Dugdale (1972) Maclsaac & Dugdale (1972) Maclsaac et a l . (1974) Nelson & Conway (1979) Nelson & Conway (1979) Slawyk (1979) Maclsaac & Dugdale (1972) Present study Whalen & Alexander (1984b) Berman et a l . (1984) Mitamura (19 86) Pr i s c u (1984) Pri s c u (1989) Pri s c u (1989) T a b l e 2 . 5 C o n t i n u e d 1 \u00E2\u0080\u0094 1 ? 1 * V a l u e s c a l c u l a t e d by c o n v e r t i n g f r o m l y - m i n u s i n g 1 l y - m i n = 3485 uE-m~ -S ( R i c h a r d s o n e t a l . , 1983) \u00E2\u0080\u0094 2 \u00E2\u0080\u0094 1 7 \u00E2\u0080\u0094 1 7 ? P I * * V a l u e s c a l c u l a t e d by c o n v e r t i n g f r o m q u a n t a - m -h u s i n g 1 q u a n t a - m -h = 4 .614 x 10 pE-m - s ( L i i n i n g , 1981) \u00E2\u0080\u0094 2 -1 * * * V a l u e s c a l c u l a t e d by c o n v e r t i n g f r o m k l u x u s i n g 1 k l u x = 16 .5 uE-m -s ( R i c h a r d s o n e t a l . , 1983) + V a l u e s c a l c u l a t e d f rom t o t a l PPFD d u r i n g i n c u b a t i o n p e r i o d s ( c a . 12 h) ? P r o b a b l e e r r o r , c o r r e c t v a l u e f r o m d a t a g i v e n i n P r i s c u (1989) i s 0.4 p E - m ~ 2 - s - 1 o v a l u e f o r n i t r a t e u p t a k e (67 uE*-m~ -s ). I n t e r p r e t a t i o n o f t h e s m a l l d i f f e r e n c e s i n t h e K^-p's o f t h e p r e s e n t s t u d y ( l e s s \u00E2\u0080\u0094 7 \u00E2\u0080\u0094 1 t h a n 50 uE-m \u00C2\u00ABs ) , e i t h e r b e t w e e n N s u b s t r a t e s o r t h e c o m m u n i t i e s t a k e n f r o m d i f f e r e n t d e p t h s , i s r a t h e r d i f f i c u l t . H owever t h i s k i n e t i c p a r a m e t e r h a s b e e n i n c l u d e d f o r l i t e r a t u r e c o m p a r a t i v e p u r p o s e s . A s i m p l e r a n d more s t r a i g h t -f o r w a r d i n d e x t o a s s e s s t h e e f f e c t o f PPFD on N u p t a k e c a n be d e t e r m i n e d by c o m p a r i n g N u p t a k e a t l o w ( 1 % I Q ) a n d s a t u r a t i n g ( 5 5 % I Q ) PPFD (Conway a n d W h i t l e d g e , 1 9 7 9 ) ; l o w e r p e r c e n t a g e s r e p r e s e n t g r e a t e r PPFD d e p e n d e n c y . A t t h e f r o n t a l s t a t i o n (T14) b o t h s u r f a c e a n d deep c h l o r o p h y l l maximum (DCM) c o m m u n i t i e s h a v e t h e same PPFD d e p e n d e n c y f o r N O 3 - u p t a k e ( 3 8 -4 0 % ) ; w h i c h i s l i k e l y a r e f l e c t i o n o f t h e s i m i l a r i t y i n b o t h t h e s p e c i e s c o m p o s i t i o n a n d t h e p h y s i o l o g i c a l s t a t e o f t h e s e t w o N - r e p l e t e c o m m u n i t i e s . A t t h e s h a l l o w s t r a t i f i e d s t a t i o n ( A 5 ) , t h e t w o p h y t o p l a n k t o n c o m m u n i t i e s a r e v e r y s i m i l a r w i t h r e s p e c t t o NC^ - u p t a k e r e s p o n s e ( 6 0 , 56%) b u t t h e r e i s a s u b s t a n t i a l d i f f e r e n c e b e t w e e n t h e s u r f a c e a n d DCM u r e a u p t a k e d e p e n d e n c y : 80 a n d 3 3 % , r e s p e c t i v e l y . S i m i l a r l a r g e d i f f e r e n c e s w e r e f o u n d f o r b o t h NC>3~ ( 6 0 , 37%) a n d u r e a ( 6 5 , 28%) i n t h e t w o c o m m u n i t i e s o f t h e d e e p l y s t r a t i f i e d s t a t i o n ( T 8 ) . I t a p p e a r s t h a t u p t a k e o f t h e r e g e n e r a t e d N s o u r c e , u r e a , h a s a g r e a t e r d e p e n d e n c e on PPFD i n t h e NC>3~- r e p l e t e DCM c o m m u n i t y w h i c h was e f f e c t i v e l y i s o l a t e d f r o m t h e w e l l - l i t s u r f a c e l a y e r s b y t h e s t r o n g p y c n o c l i n e p r e s e n t a n d o n l y n o r m a l l y r e c e i v e d c a . 1-3% I Q . The l e s s e r PPFD d e p e n d e n c y o f t h e s u r f a c e p h y t o p l a n k t o n may be a c o n s e q u e n c e o f t h e i r N-92 d e p l e t e d p h y s i o l o g i c a l s t a t e , which c o u l d e x p l a i n the decrease i n PPFD dependency of N O 3 - uptake i n the s u r f a c e p o p u l a t i o n s of the s t r a t i f i e d waters (60%) r e l a t i v e t o the f r o n t a l waters (38%). A l t e r n a t i v e l y i t may be a t t r i b u t e d merely t o an accumulation of s t o r e d energy and C s k e l e t o n s produced d u r i n g p h o t o s y n t h e s i s . One cannot d i r e c t l y compare the uptake responses of urea and n i t r a t e i n the s u r f a c e waters due t o 1 c d i f f e r e n c e s i n N-enrichment ( s a t u r a t i n g v ersus t r a c e ) . At the DCM, however, s a t u r a t i n g N O 3 - c o n d i t i o n s were pres e n t d u r i n g a l l the uptake experiments. I t appears t h a t the phytoplankton i n the DCMs had a s i m i l a r degree of PPFD dependency f o r N O 3 - uptake which was s i m i l a r t o t h a t f o r urea i n the s t r a t i f i e d DCM communities. Dark nitrogen uptake N i t r a t e and urea uptake o c c u r r e d i n the dark i n both f r o n t a l and s t r a t i f i e d waters (Table 2.3) In the s t r a t i f i e d s u r f a c e waters (A5, T8), the r e l a t i v e c o n t r i b u t i o n of dark N03~ uptake t o t o t a l N03~ uptake under s a t u r a t i n g PPFD was ca. 50% w h i l e i n the s u r f a c e waters of f r o n t a l s t n (T14) the dark uptake c o n t r i b u t i o n was onl y 28% (Table 2.4). At the deeply s t r a t i f i e d s t n (T8), th e r e was no dark N O 3 - uptake by the DCM p o p u l a t i o n whereas the r e l a t i v e dark N O 3 - uptake at the shallow s t r a t i f i e d (A5) and f r o n t a l (T14) DCM communities were s i m i l a r t o t h e i r r e s p e c t i v e s u r f a c e phytoplankton communities (49 and 25%). Dark uptake of urea was a l s o a s u b s t a n t i a l p o r t i o n of t o t a l urea uptake averaging 16 and 68% f o r the DCM and s u r f a c e communities, r e s p e c t i v e l y . Dark N uptake by 93 p h y t o p l a n k t o n i s n o t uncommon a n d a summary o f l i t e r a t u r e v a l u e s o f t h e r a t i o o f d a r k t o l i g h t N u p t a k e r a t e s (V^iV^) f o r n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s i s shown i n T a b l e 2.6. A r e v i e w o f t h e l i t e r a t u r e p e r m i t s t w o g e n e r a l i z a t i o n s t o be made c o n c e r n i n g d e p e n d e n c e o f l i g h t f o r N u p t a k e : 1) i n N-i m p o v e r i s h e d w a t e r s , t h e V D :V L r a t i o i s g r e a t e r ( a p p r o a c h i n g u n i t y ) t h a n i n N - r e p l e t e w a t e r s , s u g g e s t i n g t h e e n h a n c e m e n t o f d a r k u p t a k e b y n u t r i e n t s t r e s s , a n d 2) V D :V L r a t i o i s g e n e r a l l y g r e a t e r ( c l o s e r t o u n i t y ) i n s a m p l e s c o l l e c t e d f r o m a n d i n c u b a t e d u n d e r l o w e r PPFD, s u g g e s t i n g a l e s s e r d e p e n d e n c e o f l i g h t f o r N u p t a k e w i t h i n c r e a s i n g d e p t h i n t h e e u p h o t i c z o n e . The f i r s t s u g g e s t i o n i s n o t new a s many l a b o r a t o r y e x p e r i m e n t s h a v e shown t h a t N d e p r i v a t i o n e n h a n c e s t o a g r e a t e r d e g r e e t h e u p t a k e o f N i n t h e d a r k t h a n i n t h e l i g h t , ( e . g . , S y r e t t , 1962; T h a c k e r a n d S y r e t t , 1972; H a r r i s o n , 1976; R e e s a n d S y r e t t , 1 9 7 9 ) . The a b i l i t y t o t a k e up n i t r o g e n i n t h e d a r k may b e , h o w e v e r , s p e c i e s d e p e n d e n t ; f o r e x a m p l e E p p l e y e t a l . ( 1 9 7 1 b) showed t h a t a l t h o u g h a somewhat N-d e p l e t e d t r o p i c a l o c e a n i c c o c c o l i t h o p h o r i d (Emiliana huxleyi) t o o k up n i t r a t e i n t h e d a r k , a s i m i l a r l y N - d e p l e t e d c o a s t a l d i a t o m (Skeletonema costatum) d i d n o t . A l s o w h e t h e r o r n o t a s p e c i e s i s a b l e t o t a k e up a s i g n i f i c a n t amount o f n i t r o g e n a t n i g h t o r i n t h e d a r k may d e p e n d on i t s d e g r e e o f N d e p l e t i o n . T h i s i s s u g g e s t e d f o r n i t r a t e - l i m i t e d c o n t i n u o u s c u l t u r e s o f Chaetoceros s p p . ( M a l o n e e t a l . , 1 9 7 5 ) ; a t t h e t h r e e l o w e r d i l u t i o n r a t e s , n i t r a t e u p t a k e was c o n t i n u o u s a n d i n d e p e n d e n t o f t h e n a t u r a l l i g h t / d a r k c y c l e , b u t t h e r e was d i e l Table 2.6 Summary of l i t e r a t u r e values of dark:light nitrogen s p e c i f i c (V D/V L) or absolute (/p//^) uptake rates, determined during daytime, i n natural phytoplankton communities. Area Ambient NO-} cone (pg-at N-L ) or vQ/ VL range (mean) NO- NH, Urea Reference Oceanic N. A t l a n t i c Gyre (Sargasso Sea) (0.30) (0.59) Dugdale & Goering (1967) N. P a c i f i c Central Gyre - 50\u00C2\u00B0N, 155\u00C2\u00B0W >10 - 40\u00C2\u00B0N, 150\u00C2\u00B0W 1.0 0.0 -0.63 (0.30) 0.38- 2.0 (0.83) 0.92 0.78- 1.5 (1.2) Hattori & Wada ( 1972 ) N. P a c i f i c Ocean - northern (J1-J7) >2 - t r o p i c a l / s u b t r o p i c a l <0.1 (J9-J23) N . E . P a c i f i c Ocean 12 0.0 - 9.7 ( 2.4) 5.7 -27.4 (16.9) 0.0-18.5 ( 9.3) Kanda et a l . (1985) 7.5 -31.9 (22.4) 16.6 -52.9 (34.0) 12.2-49.8 (25.7) 0.08-1.01 (0.09) g Cochlan (Chap. 1) Upwelling N.w. A f r i c a >10 0.05-0.57 (0.36) 0.00-0.02 (0.07) Nelson & Conway (1979) Baja C a l i f . , Mexico >10 0.10-1.46 (0.49) 0.01-0.67 (0.16) Nelson & Conway ( 1979 ) Baja C a l i f . , Mexico* 0.34 0.02 Maclsaac (1978) Table 2.6 c o n t i n u e d Area Ambient ^D^^L o r V D ^ V L r a n 9 e (mean) Reference NOo cone (pg-at N-L ) 3 c^ NC>2 NH4 Urea P o l a r S c o t i a Sea S c o t i a Sea Barents Sea C o a s t a l O s l o f j o r d (Norway) New York B i g h t Gulf of Maine Peru* >20 >20 0-1.5 0.30-0.47 (0.38) 0.88-1.2 (1.0) 13.0-75.0 0.27-1.0 >2 <1 0.09 0.06-0.57 (0.17) 0.18-1.7 (0.47) c a . 0.1 0.2 -1.0 (0.7) 0.5 -1.3 (0.7) ca . 1-2 0.00-1.00 (0.26) 0.00-0.20 (0.10) 0.60-0.86 (0.73) 0.3-0.5 c , g G l i b e r t e t a l . (1982a) cRonner e t a l . (1983) ' K r i s t i a n s e n & Lund ( 1989) Paasche & Erga (1988) Conway & Whitledge (1979) a , b D u g d a l e & Goer i n g (1967) Dortch & Maske (1982) S t r a i t of G e o r g i a , B.C. - F r o n t a l - s t r a t i f i e d 3.0-4.6 0.00-0.08 (0.03) <0.05 0.00-0.18 (0.09) 0.37-0.39 (0.38) 0.00-0.81 (0.36) P r i c e e t a l . 0.52-0.58 (0.55) 0.06-0.66 (0.36) (1985) Table 2.6 c o n t i n u e d Area Ambient /^E/ZL O R VD^ VL r a n 9 e (mean) Reference SO-, cone -> -1 (pg-at N-L ) NO3 conc^ NO3 NH 4 Urea S t r a i t o f G e o r g i a , B.C. - F r o n t a l 6-15 - S u r f a c e s t r a t i f i e d <0.05 - Bottom s t r a t i f i e d 7-20 0.25-0.28 (0.27) 0.48-0.51 (0.50) 0.00-0.49 (0.25) 0.58-0.77 (0.68) 0.15-0.16 (0.16) P r e s e n t study Washington c o a s t Western I r i s h Sea - S u r f a c e s t r a t i f i e d - Mixed & bottom s t r a t . c a . c a . 2.5 4.5 (0.21) (0.43) 0.47-1.1 0.37-1.3 (0.38) (0.67) (0.72) Dortch & P o s t e l (1989) 1 T u r l e y (1985) E s t u a r i n e Pamlico R i v e r , N. South R i v e r , N.C. Neuse R i v e r , N.C. Newport R i v e r , N. Delaware Bay Chesapeake Bay 0.00-0.09 0.71-0.82 0.18-1.01 (0.57) 0.04-0.95 (0.61) 0.02-0.11 (0.06) 0 . 06-1.02 0.26 F i s h e r e t a_l. , (1982) Freshwater L. K i n n e r e t ( I s r a e l ) c a . 0.10 0.2-0.6 0.40-0.91 (0.56) 0.16-0.33 (0.22) 0.29-1.0 (0.60) 0.13-0.67 (0.34) 0.53 (0.53) 0.33-0.44 (0.38) McCarthy e t a l . (1982) L. K i n n e r e t ( I s r a e l ) <0.05 0.32 0.59 Berman e t a l . (1984) L. Nakanuma (Japan) 0.21-1.1 (0.57) M i y a z a k i e t a l . ( 1985) Table 2.6 c o n t i n u e d Area Ambient NOo cone J -1 (pg-at N - L ) / V / L O R V D / V L r a n 9 e (mean) NO- NH . Urea Reference L. Biwa (Japan) ** L. Kasumigaura (Japan) Shagawa L. (Minnesota, U.S.A.) T o o l i k L. (Alaska, U.S.A.) L. Vanda ( A n t a r c t i c a ) s f c pop'n dee p - c h l pop'n C z e c h o s l a v a k i a n r e s e r v o i r s L. Calado ( B r a z i l ) 0.26 =0.07 0.18-0.27 0.0-0.7 >35 0.78 0.51 0.60-0.90 0.71 0.27-2.3 (1.0) c a . 1.0 0.05-0.31 (0.15) 0.27-0.57 (0.41) 0.41 0.24 0.05-0.38 (0.11) 0.47 0.83 c a . <0.1 0.00-0.32 (0.16) 0.11-1.0 (0.49) Mitamura and S a i j o (1986) Takamura e t a l . (1987) a , e T o e t z \u00C2\u00A3. Cole ( 1980) Whalen & Alexander (1984b) \" P r i s c u ( 1989) Prochazkova e t a l . (1970) F i s h e r e t a l . (1988) Amazon R i v e r ( B r a z i l ) C a s t l e L., ( C a l i f o r n i a , U.S.A.) L. O n t a r i o ( O n t a r i o , Canada) 11.1 0.20 0-ca. 2.5 - (0.55) 0.54 (0.50) 0-15 0.02-0.30 (0.14) 0.30-0.60 (0.40) F i s h e r e t a l . ( 1988) c P r i s c u (1984) g L i a o and Lean (1978) Table 2.6. S u p e r s c r i p t s . a V a l u e s c a l c u l a t e d as 1/(V L/V D) o r l / ( / ^ / / 0 D ) from r e p o r t e d v a l u e s of V L / V D or Values e s t i m a t e d from f i g u r e s . c V a l u e s r e p o r t e d i n t e x t , no data a v a i l a b l e . ^Values c a l c u l a t e d from t u r n o v e r t i m e s . e L i g h t r a t e s determined a t ambient N c o n e , dark r a t e s determined at s a t u r a t i n g N cone. \u00E2\u0080\u00A2f K H Values are /^^/^ m , where N m i s the c h l o r o p h y l l s p e c i f i c t r a n s p o r t r a t e a t o p t i m a l PPFD l e v e l . ^Experiments u t i l i z e d 24 h i n c u b a t i o n s over n a t u r a l l i g h t / d a r k c y c l e . ^Average v a l u e s r e p o r t e d . * D i n o f l a g e l l a t e bloom. Microcystis bloom oo 99 p e r i o d i c i t y i n n i t r a t e u p t a k e a t t h e h i g h e s t d i l u t i o n r a t e . I t s h o u l d be n o t e d t h a t t h e d a r k u p t a k e r a t e s r e p o r t e d i n t h e p r e s e n t s t u d y a n d u s e d i n t h e r a t i o s o f T a b l e 2.6 w e r e d e t e r m i n e d d u r i n g d a y l i g h t a n d may n o t n e c e s s a r i l y r e f l e c t t h e .uptake r a t e s o b s e r v e d d u r i n g t h e n i g h t . D u r i n g 24 h t i m e c o u r s e e x p e r i m e n t s c o n d u c t e d i n t h e same w a t e r s a s t h e p r e s e n t s t u d y I o b s e r v e d a c o n s t a n c y i n V D : V L f o r N H 4 + u p t a k e i n f r o n t a l w a t e r s ( C h a p t e r 1) w h i c h s u g g e s t s t h a t N H^ + u p t a k e i s c i r c a d i a n . T h i s c o n c l u s i o n i s s u p p o r t e d by G o e r i n g e t a l . (1964) who f o u n d r h y t h m i c v a r i a t i o n i n b o t h N H 4 + a n d N O 3 -u p t a k e b y S a r g a s s o S e a p h y t o p l a n k t o n i n c u b a t e d u n d e r c o n t i n u o u s l i g h t . H owever, i n t h e s t r a t i f i e d w a t e r s o f t h e S t r a i t o f G e o r g i a , V p t V - ^ f o r N O 3 - a n d u r e a d e m o n s t r a t e d b o t h d i e l a n d d i u r n a l v a r i a b i l i t y . D i u r n a l ( d a y t i m e ) v a r i a b i l i t y i n t h e V D : V L o f N H 4 + u p t a k e by f r e s h w a t e r p h y t o p l a n k t o n a s s e m b l a g e s o f L a k e C a l a d o ( F i s h e r e t a l . , 1988) a n d t h e S o u t h R i v e r e s t u a r y ( F i s h e r e t a l . , 1982) h a v e a l s o b e e n o b s e r v e d . I n t h e p r e s e n t s t u d y , a l l t h e e x p e r i m e n t s w e r e c o n d u c t e d a t a p p r o x i m a t e l y t h e same t i m e o f t h e d a y t h e r e b y c o m p e n s a t i n g f o r a n y d i u r n a l v a r i a b i l i t y i n N u p t a k e , ( e i t h e r i n d e p e n d e n t o r d e p e n d e n t o f t h e d a i l y l i g h t c y c l e ) a n d t h u s p e r m i t t i n g c o m p a r i s o n s b e t w e e n s t a t i o n s . An unknown p o r t i o n o f t h e d a r k u p t a k e i n t h e p r e s e n t e x p e r i m e n t s may a l s o be a t t r i b u t e d t o m a r i n e h e t e r o t r o p h i c b a c t e r i a . W h e e l e r a n d K i r c h m a n ( 1 9 8 6 ) , u s i n g m e t a b o l i c i n h i b i t o r s , s i z e - f r a c t i o n a t i o n a n d 1 5 N m e t h o d o l o g y , e s t i m a t e d t h a t 7 8% o f t h e ammonium u p t a k e i n t h e s u r f a c e w a t e r s o f f 100 Sapelo I s l a n d , Georgia and the G u l f Stream o f f Georgia was due t o b a c t e r i a . Brown et a l . (1975) r e p o r t e d N O 3 - uptake and r e d u c t i o n and N H 4 + uptake by batch c u l t u r e s of a marine pseudomonad and Remsen e t al.(1972) have demonstrated c o m p e t i t i o n f o r urea among both b a c t e r i a and phytoplankton of the e s t u a r i e s / c o a s t a l waters of Georgia. During the experiments r e p o r t e d i n t h i s study Whatman GF/F f i l t e r s were used t o c o l l e c t the p a r t i c u l a t e m a t e r i a l a f t e r i n c u b a t i o n with 1 5 N - l a b e l l e d urea and N O 3 - ; these f i l t e r s do not d i s c r i m i n a t e completely between b a c t e r i a and phytoplankton and can capture 40-50% of the b a c t e r i a i n marine systems (R. K e i l , p e r s . comm.). In the present study, the p r o p o r t i o n of uptake of i n o r g a n i c and o r g a n i c N which may be a t t r i b u t e d t o b a c t e r i a i s unknown; p r e v i o u s s t u d i e s i n shallow sea f r o n t a l systems have r e p o r t e d both g r e a t e r b a c t e r i a l biomass and r e l a t i v e h e t e r o t r o p h i c a c t i v i t y (as determined by glucose uptake) on the s t r a t i f i e d s i d e of a f r o n t i n Saanich I n l e t (Parsons et a l . , 1983), i n L i v e r p o o l Bay (Floodgate e t a l . , 1981), and the I r i s h Sea (Egan and Floodgate, 1985; Lochte, 1985). Summary The N uptake response t o PPFD of the phytoplankton i n the f r o n t a l and s t r a t i f i e d communities of the S t r a i t of Georgia can be d e s c r i b e d by the Michaelis-Menten f o r m u l a t i o n . Dark uptake of n i t r a t e and urea i s a s u b s t a n t i a l p o r t i o n of the t o t a l uptake i n these phytoplankton communities, and should not be overlooked. In the f r o n t a l waters, the dependency on PPFD f o r NC>3~ uptake i s s i m i l a r f o r both s u r f a c e and DCM 101 communities, whereas i n the s t r a t i f i e d waters, the s u r f a c e phytoplankton e x h i b i t l e s s PPFD dependency than those from the DCM, p a r t i c u l a r l y f o r urea uptake. The dramatic change i n s p e c i e s composition of the phytoplankton communities from one dominated by l a r g e , c h a i n - f o r m i n g diatoms i n the N - r e p l e t e f r o n t a l waters t o one composed p r i m a r i l y of m i c r o f l a g e l l a t e s i n the N-depleted s t r a t i f i e d waters probably c o n t r i b u t e d t o the observed v a r i a b i l i t y i n t h e i r PPFD response and p r e c l u d e s a simple e x p l a n a t i o n of PPFD e f f e c t ( s ) on N uptake based merely on phytoplankton N s t a t u s . C l e a r l y more d e t a i l e d s t u d i e s on the response of N uptake t o PPFD i n u n i a l g a l (and axenic) phytoplankton c u l t u r e s , at v a r i o u s degrees of N d e f i c i e n c y , need t o be conducted b e f o r e the e f f e c t ( s ) of N l i m i t a t i o n on the N uptake response t o PPFD can be adequately e x p l a i n e d . 102 CHAPTER THREE NITROGEN UPTAKE BY THE EUCARYOTIC PICOPLANKTER, MICROMONAS PUSILLA AND THE EFFECTS OF N DEPRIVATION ON UPTAKE RESPONSE INTRODUCTION I t i s w e l l e s t a b l i s h e d t h a t t h e a v a i l a b i l i t y o f n i t r o g e n i s t h e d o m i n a n t n u t r i t i o n a l f a c t o r r e g u l a t i n g p h y t o p l a n k t o n g r o w t h i n c o a s t a l ( e . g . , R y t h e r a n d D u n s t a n , 1971) a n d o c e a n i c w a t e r s ( e . g . , Thomas, 1966, 1969; Goldman e t a l . , 1979). The f o c u s o f many i n v e s t i g a t i o n s h a s b e e n on t h e k i n e t i c s o f n i t r o g e n u p t a k e by m a r i n e p h y t o p l a n k t o n i n o r d e r t o u n d e r s t a n d how p h y t o p l a n k t o n r e s p o n d a n d a d a p t t o n i t r o g e n l i m i t a t i o n . D u g d a l e (1967) f i r s t p r o p o s e d r e l a t i n g n i t r o g e n u p t a k e r a t e s o f p h y t o p l a n k t o n t o t h e e x t e r n a l N c o n c e n t r a t i o n b y a h y p e r b o l i c f u n c t i o n w h i c h was s i m i l a r t o t h e M i c h a e l i s - M e n t e n e q u a t i o n f o r enzyme k i n e t i c s , V = V m a x [ S / ( K g + S ) ] , w h e r e V i s t h e u p t a k e v e l o c i t y ( h - 1 ) , V m a x t h e m a x i m a l u p t a k e v e l o c i t y , S t h e c o n c e n t r a t i o n o f l i m i t i n g s u b s t r a t e a n d K s t h e h a l f -s a t u r a t i o n c o n s t a n t r e p r e s e n t i n g t h e v a l u e o f S a t w h i c h V i s e q u a l t o h a l f t h e maximum u p t a k e r a t e ( i . e . , V = v m a x / 2 ) . M e a s u r e m e n t o f u p t a k e r a t e s b y n a t u r a l p h y t o p l a n k t o n a s s e m b l a g e s ( e . g . , M a c l s a a c a n d D u g d a l e , 1969; P r o b y n , 1985; K a n d a e t a l . , 1985; W h a l e n a n d A l e x a n d e r , 1986) a n d numerous c u l t u r e s t u d i e s ( e . g . , E p p l e y a n d C o a t s w o r t h , 1968; E p p l e y a n d Thomas, 1969; E p p l e y e t a l . , 1969) h a v e d e m o n s t r a t e d t h a t t h e u p t a k e o f n i t r o g e n o u s n u t r i e n t s c a n be d e s c r i b e d b y t h i s h y p e r b o l i c f u n c t i o n w h i c h r e l a t e s u p t a k e r a t e t o t h e l i m i t i n g n u t r i e n t c o n c e n t r a t i o n . 103 The s p e c i e s s p e c i f i c n u t r i e n t u p t a k e k i n e t i c p a r a m e t e r s , V m a x a n d K s may be u s e d t o e x p l a i n s p e c i e s c o m p e t i t i o n i n v o l v i n g t h e l i m i t i n g n u t r i e n t ( D u g d a l e , 1967; T i l m a n , 1977; B u t t o n , 1 9 8 5 ) . I t i s now r e a l i z e d t h a t V m a x i s f r e q u e n t l y v a r i a b l e o v e r t i m e , a n d f o r some n u t r i e n t s i t may be e l e v a t e d i n i t i a l l y o v e r t h e f i r s t f e w m i n u t e s f o l l o w i n g e n r i c h m e n t o f t h e l i m i t i n g n u t r i e n t w i t h u p t a k e p r o c e e d i n g a t a s l o w e r , more c o n s t a n t r a t e l a t e r . S e v e r a l s t u d i e s h a v e d e m o n s t r a t e d t h a t N - d e f i c i e n t o r N - s t a r v e d p h y t o p l a n k t o n h a v e t h e a b i l i t y t o r a p i d l y t a k e up ammonium i n i t i a l l y u p o n e x p o s u r e t o a n e l e v a t e d N H 4 + c o n c e n t r a t i o n i n t h e c u l t u r e medium (Conway e t a l . , 197 6; Conway a n d H a r r i s o n , 197 7; M c C a r t h y a n d G o l d m a n , 1979; D o r t c h e t a l . , 1982; Goldman a n d G l i b e r t , 1982; H o r r i g a n a n d M c C a r t h y , 1982; P a r s l o w e t a l . , 1984a b) a n d i n t h e f i e l d ( G l i b e r t a n d Goldm a n , 1 9 81; W h e e l e r e t a l . , 1982; H a r r i s o n , 1 9 8 3 a ; P r i s c u a n d P r i s c u , 1984, P r i s c u , 1987; S u t t l e a n d H a r r i s o n , 1 9 8 8 ) . I n c o n t r a s t , a f t e r a n i t r a t e a d d i t i o n t o a N - s t a r v e d c u l t u r e t h e r e i s o f t e n , b u t n o t a l w a y s , a l a g whose d u r a t i o n i s q u i t e v a r i a b l e , b e f o r e n i t r a t e u p t a k e i s o b s e r v e d a t e i t h e r e l e v a t e d , n o r m a l o r r e d u c e d v e l o c i t i e s ( D o r t c h e t a l . , 1982; C o l l o s , 1983; P a r s l o w e t a l . , 1984 b ) . N i t r o g e n s t a r v a t i o n may (R e e s a nd S y r e t t , 197 9; H o r r i g a n a n d M c C a r t h y , 1981; S y r e t t e t a l . , 1986; P r i c e a n d H a r r i s o n , 1 9 8 8 ) , o r may n o t ( B e k h e e t a n d S y r e t t , 1979) i n c r e a s e u r e a u p t a k e r a t e s a l t h o u g h o n l y t h r e e p h y t o p l a n k t e r s h a v e b e e n t e s t e d t o d a t e . U p t a k e i n t e r a c t i o n s b e t w e e n i n o r g a n i c n i t r o g e n s o u r c e s , a n d more p a r t i c u l a r l y ammonium a n d n i t r a t e , h a v e b e e n t h e 104 s u b j e c t o f many c u l t u r e s t u d i e s ( s e e r e v i e w s b y M o r r i s , 1974; M c C a r t h y , 1 9 8 1; S y r e t t , 1 9 8 1 , C o l l o s , 1989, D o r t c h , i n p r e s s ) . T h e s e s t u d i e s h a v e r e v e a l e d a v a r i e t y o f r e s p o n s e s d e p e n d i n g on s p e c i e s a n d t h e i r n u t r i t i o n a l s t a t e , b u t one o f t h e m a i n t e n e t s s t i l l h e l d i n p h y t o p l a n k t o n e c o l o g y i s t h a t t h e u p t a k e o f n i t r a t e s t o p s when t h e a m b i e n t N H 4 + c o n c e n t r a t i o n e x c e e d s a c e r t a i n t h r e s h o l d a n d r e s u m e s when a l g a l u p t a k e c a u s e s t h e a m b i e n t N H 4 + c o n c e n t r a t i o n t o d e c r e a s e b e l o w t h i s t h r e s h o l d v a l u e . The n e g a t i v e e f f e c t o f N H 4 + on N O 3 - u p t a k e i s o f t e n n o t t h a t s e v e r e a n d t h e r e a r e numerous e x a m p l e s o f s i m u l t a n e o u s a n d e q u a l r a t e s o f u p t a k e o f b o t h N O 3 - and N H 4 + , m o s t l y i n N - d e f i c i e n t o r N - l i m i t e d c e l l s ( e . g . , C a p e r o n a n d Z i e m a n n , 197 6; Conway, 197 7; DeManche e t a l . , 197 9) a n d i n t h e f i e l d ( e . g . , C o n o v e r , 1975; M c C a r t h y e t a l . , 1977; M a e s t r i n i e t a l . , 1982, 1986; P r i c e e t a l . , 1985; C o l l o s e t a l . , 1 9 8 9 ) . The l i t e r a t u r e i s r e p l e t e w i t h s t u d i e s on many a s p e c t s o f p h y t o p l a n k t o n n i t r o g e n u t i l i z a t i o n , i n c l u d i n g : 1) t h e e s t i m a t i o n o f k i n e t i c p a r a m e t e r s , 2) t h e i r t r a n s i e n t n a t u r e u n d e r c o n d i t i o n s o f p h y s i o l o g i c a l s t r e s s a n d 3) t h e i n t e r f e r e n c e / i n t e r a c t i o n o f m u l t i p l e n i t r o g e n s o u r c e s . H o wever, t h e r e a r e few o b s e r v a t i o n s o f n i t r o g e n u t i l i z a t i o n by p i c o p l a n k t o n (0.2 um - <2.0 um, S i e b u r t h e t a l . , 1978) a n d t h e r e d o e s n o t a p p e a r t o be any k i n e t i c s t u d i e s on N u p t a k e by m a r i n e p i c o p l a n k t e r s . The u b i q u i t o u s a n d u s u a l l y a b u n d a n t p r e s e n c e o f b o t h C y a n o b a c t e r i a a n d e u c a r y o t i c a l g a e i n t h i s s i z e c l a s s h a s b e e n r e p o r t e d i n o f f s h o r e a n d n e a r s h o r e w a t e r s ( s e e r e v i e w s b y F o g g , 1986; J o i n t , 1986; S t o c k n e r a n d A n t i a , 105 1986; M i k h e y e v a , 1 9 8 8 ) . T h e i r i m p o r t a n c e a s p h o t o a u t o t r o p h s h a s b e e n d e m o n s t r a t e d i n c e r t a i n e n v i r o n m e n t s , p a r t i c u l a r l y o l i g o t r o p h i c , o c e a n i c r e g i o n s , w h e r e p i c o p l a n k t o n a r e r e s p o n s i b l e f o r t h e m a j o r i t y o f p h o t o s y n t h e t i c p r o d u c t i o n ( e . g . , L i e t e l . , 1983; P i a t t e t a l , 1983; T a k a h a s h i a n d B i e n f a n g , 1 9 8 3 ; a n d a b o v e r e v i e w s ) . S t u d i e s w i t h s i z e -f r a c t i o n a t i o n t e c h n i q u e s a n d n i t r o g e n t r a c e r s h a v e c o n f i r m e d t h a t p i c o p l a n k t o n n i t r o g e n u p t a k e i s a l s o s u b s t a n t i a l , a v e r a g i n g 1 0 - 3 0 % a n d 3 0 - 7 0 % o f t h e t o t a l N u p t a k e o f t h e n a t u r a l c o m m u n i t i e s o f c o a s t a l a n d o c e a n i c w a t e r s , r e s p e c t i v e l y ( G l i b e r t , 1 9 8 2 ; N a l e w a j k o a n d G a r s i d e , 1983; P r o b y n , 1985; P r o b y n a nd P a i n t i n g , 1985; H a r r i s o n a n d Wood, 1988) . I n t h e p r e s e n t s t u d y t h e u t i l i z a t i o n o f n i t r a t e , ammonium a n d u r e a by t h e p r a s i n o p h y t e , p i c o f l a g e l l a t e Micromonas pusilla ( B u t c h . ) M a n t o n e t P a r k e was d e m o n s t r a t e d b y u s i n g N-r e p l e t e a n d N - s t a r v e d c e l l s a n d m e a s u r i n g t h e u p t a k e r a t e o f NO^ - i n t h e p r e s e n c e o f p o t e n t i a l c o m p e t i t o r s , ammonium a n d u r e a . T h e r e f o r e , t h e o b j e c t i v e o f t h i s r e s e a r c h was t o d e t e r m i n e t h e b a s i c a s p e c t s o f n i t r o g e n o u s n u t r i t i o n o f t h i s u b i q u i t o u s , e u k a r y o t i c p i c o f l a g e l l a t e . T h i s s t u d y i s t h e f i r s t t o r e p o r t on t h e n i t r o g e n u t i l i z a t i o n o f a c u l t u r e d p i c o p l a n k t e r . 106 MATERIALS AND METHODS Culturing S t o c k c u l t u r e s o f Micromonas pusilla ( c u l t u r e NEPCC 29-1 N o r t h e a s t P a c i f i c C u l t u r e C o l l e c t i o n , D e p a r t m e n t o f O c e a n o g r a p h y , U n i v e r s i t y o f B r i t i s h C o l u m b i a ) w e r e m a i n t a i n e d on f i l t e r - s t e r i l i z e d (0.22 um M i l l i p o r e ) n u t r i e n t - e n r i c h e d a r t i f i c i a l s e a w a t e r b a s e d on ESAW ( H a r r i s o n e t a l . , 1 9 8 0 ) . M o d i f i c a t i o n s t o ESAW i n c l u d e d r e p l a c i n g f e r r o u s ammonium s u l f a t e ( F e N H ^ ( S 0 4 ) 2 *6H2O) a n d s o d i u m g l y c e r o p h o s p h a t e w i t h e q u i m o l a r c o n c e n t r a t i o n s o f f e r r i c c h l o r i d e (FeCl3\u00C2\u00AB6H20) a n d s o d i u m p h o s p h a t e ( N a 2 H P 0 4 ) , r e s p e c t i v e l y ( P a r s l o w e t a l . , 1 9 8 4 a ) . S o d i u m m e t a s i l i c a t e (Na2Si03\u00E2\u0080\u00A29 H 2 O) was p r e p a r e d a n d a d d e d a s d e s c r i b e d by S u t t l e e t a l . ( 1 9 8 6) a n d 10 nM Se was a d d e d a s s e l e n i t e (Na2Se03) a c c o r d i n g t o H a r r i s o n e t a l . ( 1 9 8 8 ) . N i t r a t e , t h e s o l e n i t r o g e n e n r i c h m e n t , was r e d u c e d f r o m 550 t o 50 uq-at N - L - 1 . R e a g e n t g r a d e c h e m i c a l s w e r e u s e d i n p r e p a r i n g s a l t a n d n u t r i e n t e n r i c h m e n t s o l u t i o n s i n d e i o n i z e d , d i s t i l l e d w a t e r (DDW). G l a s s a n d p o l y c a r b o n a t e f l a s k s u s e d f o r c u l t u r i n g a l g a e a n d s t o r i n g ESAW w e r e s o a k e d i n f r e s h l y - m a d e 10% HC1 ( v / v ) f o r a t l e a s t 2-3 d a y s , r i n s e d t h o r o u g h l y w i t h DDW, a n d a u t o c l a v e d p r i o r t o u s e . A l l c u l t u r e s ( i . e . s t o c k a n d e x p e r i m e n t a l ) w e r e c o n t i n u o u s l y i l l u m i n a t e d f r o m two s i d e s by s i x V i t a - L i t e R UHO f l u o r e s c e n t t u b e s (3 on e i t h e r s i d e o f c u l t u r e v e s s e l s ) . The l i g h t was f i l t e r e d t h r o u g h 3 mm t h i c k b l u e P l e x i g l a s R (No. 20 6 9 , Rohm a n d Haas) a n d t h e i r r a d i a n c e , m e a s u r e d w i t h a 2n c o l l e c t o r ( L i C o r L I - 1 9 2 S B ) f r o m t h e c e n t r e p o s i t i o n o f t h e 107 2 1 c u l t u r e v e s s e l s , was c a . 120 uE'm *s ( s a t u r a t i n g f o r g r o w t h o f M. pusilla, s e e A p p e n d i x 2 ) . T e m p e r a t u r e was m a i n t a i n e d a t 17\u00C2\u00B0C (\u00C2\u00B1 0.5\u00C2\u00B0C) i n a t e m p e r a t u r e r e g u l a t e d w a t e r b a t h a n d c u l t u r e s c o n t i n u o u s l y s t i r r e d b y t e f l o n - c o a t e d m a g n e t i c s t i r b a r s a t 60 rpm. C u l t u r e s w e r e u n i a l g a l a n d s t e r i l e t e c h n i q u e was e m p l o y e d t o m i n i m i z e b a c t e r i a l c o n t a m i n a t i o n . C e l l g r o w t h was m o n i t o r e d b y i n v i v o c h l o r o p h y l l a f l u o r e s c e n c e m e a s u r e d by a T u r n e r D e s i g n s m o d e l 10 f l u o r o m e t e r . Analytical methods C e l l c o u n t s w e r e m e a s u r e d w i t h a C o u l t e r C o u n t e r m o d e l TA I I e l e c t r o n i c p a r t i c l e c o u n t e r w i t h t h e p o p u l a t i o n a c c e s s o r y ( e n a b l i n g c e l l s t o be c o u n t e d i n t o 16 c h a n n e l s b a s e d on t h e i r v o l u m e ) a n d e q u i p p e d w i t h a 30 um a p e r t u r e . The C o u l t e r C o u n t e r was c a l i b r a t e d w i t h l a t e x m i c r o s p h e r e s o f 2.02 um i n d i a m e t e r . C u l t u r e s a m p l e s w e r e d i l u t e d ( 1 : 2 0 ) w i t h f r e s h l y f i l t e r - s t e r i l i z e d , u n e n r i c h e d ESAW ( g r a v i t y f i l t r a t i o n , Whatman GF/F) a n d g e n t l y h o m o g e n i z e d ( i . e . m i x e d ) p r i o r t o c o u n t i n g . A v e r a g e c e l l v o l u m e s w e r e c o m p u t e d f r o m t h e p a r t i c l e s i z e d i s t r i b u t i o n b a s e d on e q u i v a l e n t s p h e r i c a l d i a m e t e r . C o n c e n t r a t i o n s o f d i s s o l v e d N 0 3 ~ + NO2 - a n d N H 4 + w e r e m e a s u r e d w i t h a T e c h n i c o n A u t o A n a l y z e r I I f o l l o w i n g t h e p r o c e d u r e s o u t l i n e d i n Wood e t a l . , ( 1967) a n d S l a w y k a n d M a c l s a a c ( 1 9 7 2 ) , r e s p e c t i v e l y . S a m p l e s f o r n u t r i e n t a n a l y s e s w e r e f i l t e r e d t h r o u g h p r e c o m b u s t e d (460\u00C2\u00B0C f o r 4 h) Whatman GF/F f i l t e r s i n t o p r e v i o u s l y a c i d - w a s h e d , D D W - r i n s e d p o l y p r o p y l e n e b o t t l e s . Ammonium c o n c e n t r a t i o n s w e r e a l w a y s 108 d e t e r m i n e d i m m e d i a t e l y w h i l e N O 3 - + NO2\"\" c o n c e n t r a t i o n s w e r e o c c a s i o n a l l y m e a s u r e d l a t e r a f t e r f r o z e n s t o r a g e (-20\u00C2\u00B0C). D u p l i c a t e s a m p l e s (20-30 m l ) f o r p a r t i c u l a t e o r g a n i c c a r b o n a n d n i t r o g e n (POC a n d PON) w e r e c o l l e c t e d a t t h e s t a r t a n d e n d o f e x p e r i m e n t a t i o n on p r e c o m b u s t e d Whatman GF/F f i l t e r s a n d s t o r e d f r o z e n i n d e s i c c a t o r s . A f t e r t h a w i n g / d r y i n g (<60\u00C2\u00B0C f o r 24 h) s a m p l e s w e r e a n a l y z e d by t h e d r y c o m b u s t i o n m e t h o d o f S h a r p ( 1974) w i t h e i t h e r a C o n t r o l E q u i p m e n t C o r p . m o d e l 240-XA ( r e m a n u f a c t u r e d P e r k i n - E l m e r m o d e l 240) o r a C a r l o E r b a m o d e l 1106 e l e m e n t a l a n a l y z e r . B o t h i n s t r u m e n t s w e r e c a l i b r a t e d w i t h a c e t a n i l i d e s t a n d a r d s . 15 S a m p l e s f o r N a n a l y s i s w e r e c o l l e c t e d on p r e c o m b u s t e d Whatman GF/F f i l t e r s , f o l d e d , p l a c e d i n t o a c i d - w a s h e d , p e t r i -d i s h e s , a n d i m m e d i a t e l y f r o z e n f o r l a t e r i s o t o p i c a n a l y s e s . N i t r o g e n i n t h e p a r t i c u l a t e s a m p l e s was c o n v e r t e d t o d i n i t r o g e n g a s ( N 2 ) by t h e m i c r o - Dumas d r y c o m b u s t i o n t e c h n i q u e (LaRoche,1983) an d s u b s e q u e n t l y a n a l y z e d f o r 1 5 N e n r i c h m e n t w i t h a JASCO m o d e l N-150 e m i s s i o n s p e c t r o m e t e r ( F i e d l e r a n d P r o k s c h , 1975) a s o u t l i n e d i n C h a p t e r 1. Experimental procedures K i n e t i c p a r a m e t e r s f o r N u p t a k e The k i n e t i c p a r a m e t e r s o f n i t r a t e , ammonium a n d u r e a u p t a k e w e r e d e t e r m i n e d w i t h d u p l i c a t e N 0 3 ~ - r e p l e t e c u l t u r e s o f M. pusilla grown i n 2 L P y r e x f l a t - b o t t o m b o i l i n g f l a s k s , f i t t e d w i t h s i l i c o n e s t o p p e r s . P r i o r t o e x p e r i m e n t a t i o n , a m b i e n t N O 3 - + NO2\"\" was m e a s u r e d a t 0.5 - 1 h i n t e r v a l s . The e x p e r i m e n t s w e r e i n i t i a t e d i m m e d i a t e l y a f t e r t h e n i t r a t e 109 c o n c e n t r a t i o n was <0.05 ug-at N * L - 1 i n the c u l t u r e medium. Less than 2 h e l a p s e d between the time ambient c o n c e n t r a t i o n s were c o n s i d e r e d s a t u r a t i n g t o growth (>2.5 ^g-at N-L - 1) and the time they had decreased t o d e t e c t i o n l i m i t s (0.05 ug-at N \u00C2\u00AB L - 1 ) . The t i m i n g was c r i t i c a l , because n i t r a t e i n the medium must be d e p l e t e d , but the c o n d i t i o n of the c e l l s had t o be n e a r l y N r e p l e t e t o minimize n o n - l i n e a r i t y i n uptake d u r i n g e x p e r i m e n t a t i o n . Immediately f o l l o w i n g ambient NO3 -d e p l e t i o n , 60 ml subsamples were t r a n s f e r r e d t o a s e r i e s of \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 R s t e r i l e , 85 ml polycarbonate Oak Ridge tubes (Nalgene ); a l t e r n a t i v e l y 200 ml subsamples t o 250 ml pol y c a r b o n a t e R 1 5 Erlenmeyer f l a s k s (Nalgene ), and i n o c u l a t e d w i t h N - l a b e l l e d NO3, NH4 or urea (Kor Isotopes, 99 atom %) at a range of i n i t i a l s u b s t r a t e c o n c e n t r a t i o n s (0.2, 0.4, 0.8, 1.6, 2.4, 4.2 and 10 ug-at N * L - 1 ) . Incubations were conducted under the same c o n d i t i o n s as those under which the c e l l s were grown and i n c u b a t i o n s terminated a f t e r 10 min by f i l t r a t i o n ( pressure d i f f e r e n t i a l s 80 mm Hg). The t i t r a t i o n p e r i o d was always l e s s than 30 s. The 4.2 and 10 ug-at N * L - 1 enrichment experiments were allowed t o incuba t e f o r an a d d i t i o n a l 50 min to determine i f uptake r a t e s were constant w i t h i n c u b a t i o n time. P r e v i o u s l y acid-washed po l y p r o p y l e n e b o t t l e s , were r i n s e d once wi t h f i l t r a t e and then used t o c o l l e c t the f i l t r a t e . The f i l t e r e d samples were immediately analyzed f o r ambient NH^ \"1\" and N O 3 - + N 0 2 ~ c o n c e n t r a t i o n s . The i n i t i a l s u b s t r a t e c o n c e n t r a t i o n s at time zero ( T Q ) were c a l c u l a t e d by 1 5 \u00E2\u0080\u0094 1 5 + adding known volumes of NO3 and NH4 t o c u l t u r e f i l t r a t e 110 a n d t h e n m e a s u r i n g a m b i e n t c o n c e n t r a t i o n s . S p e c i f i c u p t a k e r a t e s (N t a k e n up p e r u n i t PON) w e r e c a l c u l a t e d a c c o r d i n g t o a c o n s t a n t s p e c i f i c u p t a k e m o d e l ( D u g d a l e a n d W i l k e r s o n , 1986 ; e q u a t i o n 6 o f A p p e n d i x 1 ) . S u b s t r a t e i n t e r a c t i o n Two s e r i e s o f s u b s t r a t e i n t e r a c t i o n e x p e r i m e n t s w e r e p e r f o r m e d w i t h N 0 3 ~ - r e p l e t e c u l t u r e s . I n t h e f i r s t s e r i e s , a m b i e n t i n o r g a n i c N ( N O 3 - + N02~ a n d N H 4 + ) l e v e l s w e r e m o n i t o r e d e v e r y 30 m i n f o r 3 h b e f o r e t h e n i t r a t e c o n c e n t r a t i o n d e c r e a s e d t o 15 uq a t N - L - 1 . A s i n g l e 4-L c u l t u r e was d i v i d e d a n d p o u r e d i n t o f o u r 1 L P y r e x f l a t -b o t t o m e d b o i l i n g f l a s k s 1 h p r i o r t o N s u b s t r a t e e n r i c h m e n t . The e x p e r i m e n t s w e r e i n i t i a t e d when 10 uq-at N \u00E2\u0080\u00A2 L ~ 1 o f ^ N l a b e l l e d N 0 3 ~ ( e n r i c h e d c o n t r o l ) , N H 4 + and u r e a (99 atom %) w e r e a d d e d t o t h r e e o f t h e f l a s k s a n d t h e r e m a i n i n g f l a s k was n o t e n r i c h e d ( u n d i s t u r b e d c o n t r o l ) . F i l t e r e d s a m p l e s w e r e t h e n c o l l e c t e d a t 20-30 m i n i n t e r v a l s f o r 4 h f o r i m m e d i a t e N O 3 - + N O 2 - a n d NH 4 + a n a l y s e s f o l l o w i n g p r e v i o u s l y o u t l i n e d p r o c e d u r e s . N i t r a t e a n d ammonium u p t a k e r a t e s w e r e c a l c u l a t e d f r o m t h e s l o p e o f s e p a r a t e l i n e a r r e g r e s s i o n s o f s u b s t r a t e c o n c e n t r a t i o n i n t h e medium p l o t t e d a g a i n s t t i m e . T h e s e u p t a k e r a t e s a r e t e r m e d ( a b s o l u t e o r t r a n s p o r t r a t e s ) a n d a r e e x p r e s s e d a s uq-at N - L - 1 \u00E2\u0080\u00A2 h - 1 . S p e c i f i c u p t a k e r a t e s w e r e o b t a i n e d b y d i v i d i n g t h e a b s o l u t e r a t e s b y t h e e x p o n e n t i a l a v e r a g e c o n c e n t r a t i o n o f PON ( g e o m e t r i c mean) o v e r t h e d u r a t i o n o f t h e i n c u b a t i o n p e r i o d . The s p e c i f i c u p t a k e o f u r e a was d e t e r m i n e d f r o m a I l l c o n s t a n t s p e c i f i c u p t a k e m o d e l ( D u g d a l e a n d W i l k e r s o n , 1 9 8 6 ; e q u a t i o n 8 o f A p p e n d i x 1 ) . T h i s e q u a t i o n c o m p e n s a t e s f o r t h e e f f e c t o f s i m u l t a n e o u s u p t a k e o f u n l a b e l l e d s u b s t r a t e b y u t i l i z i n g i n d e p e n d e n t e s t i m a t e s o f t h e a b s o l u t e u p t a k e o f u n l a b e l l e d n i t r a t e p r o v i d e d f r o m N O 3 - d i s a p p e a r a n c e m e a s u r e m e n t s t h u s c o r r e c t i n g f o r t h e i s o t o p e d i l u t i o n i n t h e p a r t i c u l a t e m a t t e r o r i g i n a t i n g f r o m t h e 1 4 N i n t h e u n l a b e l l e d s o u r c e ( C o l l o s , 1987; L u n d , 1 9 8 7 ) . I t s h o u l d be n o t e d t h a t i n D u g d a l e a n d W i l k e r s o n (1986) t h e e q u a t i o n f o r c o n s t a n t s p e c i f i c u p t a k e ( V c ) , when u n l a b e l l e d s o u r c e s a r e p r e s e n t , i s i n c o r r e c t l y w r i t t e n a n d i s c o r r e c t l y r e p o r t e d i n A p p e n d i x 1. The a b s o l u t e ( t r a n s p o r t ) r a t e o f u r e a was c a l c u l a t e d u s i n g e q u a t i o n 10 o f D u g d a l e a n d W i l k e r s o n ( e q u a t i o n 7 o f A p p e n d i x 1) w h i c h c o m p e n s a t e s f o r t h e s i m u l t a n e o u s u p t a k e o f u n l a b e l l e d N O 3 - a n d t h e c h a n g e i n c o n c e n t r a t i o n o f PON d u r i n g t h e i n c u b a t i o n p e r i o d . E f f e c t o f NH^\"1\" c o n c e n t r a t i o n on N O 3 - u p t a k e r a t e I n t h e s e c o n d s e r i e s o f e x p e r i m e n t s , t h e e f f e c t o f NH^\"1\" c o n c e n t r a t i o n on t h e u p t a k e o f N03~ was e x a m i n e d . A N O 3 - -r e p l e t e c u l t u r e was m o n i t o r e d f o r t h e d e c l i n e o f N O 3 - + N O 2 -i n t h e medium a n d f o u r 250 m l s u b s a m p l e s w e r e t r a n s f e r r e d t o p o l y c a r b o n a t e ( N a l g e n e ) E r l e n m e y e r f l a s k s ( f i t t e d w i t h s i l i c o n e s t o p p e r s a n d s a m p l i n g t u b e s ) p r i o r t o t h e a m b i e n t N O 3 - c o n c e n t r a t i o n r e a c h i n g 15 jug-at N - L - 1 . ^ N H ^ C l (99 atom %) was a d d e d t o t h e f l a s k s t o b r i n g t h e i n i t i a l e n r i c h m e n t N H 4 + c o n c e n t r a t i o n t o 5, 2, a n d 1 uq-at N \u00C2\u00AB L - 1 . F i f t y m l s u b s a m p l e s w e r e r e m o v e d e v e r y 20-30 m i n f o r 2 h a n d ^ N 112 i n c u b a t i o n s t e r m i n a t e d by f i l t r a t i o n . F i l t r a t i o n , c o l l e c t i o n o f f i l t r a t e , s t o r a g e a n d a n a l y s e s w e r e c o n d u c t e d a s p r e v i o u s l y o u t l i n e d . S a m p l e s f o r PON a n a l y s i s w e r e c o l l e c t e d a t t h e b e g i n n i n g , m i d d l e a n d e n d o f t h e i n c u b a t i o n s . The d i s a p p e a r a n c e r a t e o f N O 3 - was c a l c u l a t e d f r o m t h e s l o p e o f e x t e r n a l N O 3 - + N O 2 - c o n c e n t r a t i o n a g a i n s t t i m e ; d i v i s i o n o f t h i s r a t e b y t h e e x p o n e n t i a l a v e r a g e PON c o n c e n t r a t i o n p r o v i d e d a n e s t i m a t e o f t h e s p e c i f i c N O 3 - u p t a k e r a t e . The s p e c i f i c N H 4 + u p t a k e r a t e s w e r e c a l c u l a t e d u s i n g t h e c o n s t a n t s p e c i f i c u p t a k e m o d e l ( D u g d a l e a n d W i l k e r s o n , 1986; e q u a t i o n 6 1 C 1 c o f A p p e n d i x 1 ) w i t h t h e atom % N e x c e s s ( N e x ) i n t h e p a r t i c u l a t e m a t t e r e s t i m a t e d f r o m t h e s l o p e o f t h e l e a s t -1 5 s q u a r e s l i n e a r r e g r e s s i o n o f N e x v e r s u s t i m e , p r i o r t o i s o t o p e d e p l e t i o n . U p t a k e o f n i t r o g e n by N 0 3 ~ - s t a r v e d c e l l s Two s e r i e s o f e x p e r i m e n t s w e r e c o n d u c t e d , b o t h i n d u p l i c a t e , t o a s s e s s t h e e f f e c t o f n i t r o g e n d e f i c i e n c y on t h e u p t a k e o f N H 4 + o r u r e a by N 0 3 ~ - s t a r v e d c u l t u r e s o f Micromonas pusilla. I n e a c h s e r i e s n i t r o g e n - s t a r v e d c e l l s w e r e o b t a i n e d f r o m d u p l i c a t e b a t c h c u l t u r e s , s t a r t e d w i t h 50 uq-at N - N 0 3 ' L - 1 a s t h e i n i t i a l c o n c e n t r a t i o n a n d N s o u r c e a n d a l l o w e d t o r e m a i n i n n i t r o g e n - f r e e medium f o r 2 d a f t e r t h e e x t e r n a l n i t r o g e n was d e p l e t e d . A f t e r t h e c u l t u r e s became N - s t a r v e d , t h e y w e r e s p l i t i n t o s e p a r a t e f l a s k s a n d e i t h e r 15 uq-at N \u00C2\u00AB L - 1 o f 1 5 N H 4 C 1 o r C O ( 1 5 N H 4 ) 2 ( b o t h 99 atom %) was a d d e d t o e a c h s u b c u l t u r e . The a m b i e n t N H 4 + c o n c e n t r a t i o n i n t h e medium a n d 1 c t h e N a c c u m u l a t i o n i n t h e c e l l s w e r e m e a s u r e d a t t i m e 113 i n t e r v a l s o f 5-15 m i n f o r 3 h a c c o r d i n g t o p r o c e d u r e s o u t l i n e d a b o v e . I n t h e s e c o n d s e r i e s o f e x p e r i m e n t s , d u p l i c a t e N C ^ -1 5 s t a r v e d c u l t u r e s w e r e e n r i c h e d w i t h Na NO3 (99 a t o m %) a n d s a m p l e s c o l l e c t e d f o r me a s u r e m e n t o f a m b i e n t N O 3 -1 c c o n c e n t r a t i o n a n d N a c c u m u l a t i o n a t t i m e i n t e r v a l s o f 5-30 1 5 \u00E2\u0080\u00A2 m m f o r 6 h. U p t a k e r a t e s , e s t i m a t e d f r o m N a c c u m u l a t i o n i n t h e p a r t i c u l a t e s , w e r e c a l c u l a t e d a c o r d i n g t o t h e c o n s t a n t , s p e c i f i c u p t a k e m o d e l ( V c ) o f D u g d a l e a n d W i l k e r s o n ( 1 9 8 6) ( e q u a t i o n 6 o f A p p e n d i x 1) f r o m m e a s u r e m e n t s o f a t o m % e x c e s s 1 c o f N i n s u c c e s s i v e s a m p l e s d u r i n g t h e t i m e i n t e r v a l s U p t a k e r a t e s , e s t i m a t e d f r o m d i s a p p e a r a n c e o f N O 3 - o r N H 4 + i n t h e medium, w e r e c a l c u l a t e d by d i v i d i n g t h e d i f f e r e n c e i n n u t r i e n t c o n c e n t r a t i o n i n s u c c e s s i v e s a m p l e s by t h e l e n g t h o f t h e t i m e i n t e r v a l ; s p e c i f i c r a t e s w e r e c a l c u l a t e d by d i v i d i n g t h i s v a l u e b y t h e e s t i m a t e d e x p o n e n t i a l a v e r a g e PON c o n c e n t r a t i o n d u r i n g t h a t t i m e a s s u m i n g t h a t a l l t h e n u t r i e n t r e m o v e d f r o m t h e medium was i n c o r p o r a t e d i n t o t h e p a r t i c u l a t e f r a c t i o n ( s e e A p p e n d i x 4 ) . Estimation of kinetic parameters The k i n e t i c p a r a m e t e r s , K g a n d V m a x w e r e o b t a i n e d i n t w o w a y s : a d i r e c t f i t o f t h e d a t a t o t h e M i c h a e l i s - M e n t e n h y p e r b o l a u s i n g a c o m p u t e r i z e d , i t e r a t i v e , n o n - l i n e a r , l e a s t -s q u a r e s r e g r e s s i o n t e c h n i q u e ( L a b t e c N o t e b o o k C u r v e f i t , L a b o r a t o r y T e c h n o l o g i e s C o r p . ) a n d a l e a s t - s q u a r e s l i n e a r r e g r e s s i o n a n a l y s i s o f H a n e s - W o o l f l i n e a r t r a n s f o r m a t i o n (S/V v s S) o f t h e d a t a . I n t h e l a t t e r m e t h o d , t h e s t a n d a r d e r r o r s 114 o f t h e k i n e t i c p a r a m e t e r s w e r e e s t i m a t e d u s i n g t h e D e l t a m e t h o d o f v a r i a n c e s ( B i s h o p e t a l . , 1 9 7 5 ) . The H a n e s - W o o l f t r a n s f o r m a t i o n was u s e d i n p r e f e r e n c e t o o t h e r l i n e a r t r a n s f o r m a t i o n s a s i t g a v e a b e t t e r s p r e a d o f t h e d a t a p o i n t s a n d g e n e r a l l y p r o v i d e d t h e most a c c u r a t e d e t e r m i n a t i o n s o f K g a n d V m a x (Dowd a n d R i g g s , 1 9 6 5 ) . H owever, an y l i n e a r i z a t i o n o f t h e M i c h a e l i s - M e n t e n e q u a t i o n v i o l a t e s a b a s i c a s s u m p t i o n o f l e a s t - s q u a r e s r e g r e s s i o n a n a l y s i s , l a c k o f e r r o r i n t h e i n d e p e n d e n t v a r i a b l e , S ( Z a r , 1 9 7 4 ) . A l t h o u g h i n p r a c t i c e t h i s a s s u m p t i o n i s s u f f i c i e n t l y met i f e r r o r s i n t h e i n d e p e n d e n t v a r i a b l e a r e s m a l l r e l a t i v e t o e r r o r s i n t h e d e p e n d e n t v a r i a b l e . The p r o b l e m o f u t i l i z i n g u n w e i g h t e d , t r a n s f o r m e d d a t a (Dowd a n d R i g g s , 1965) a n d t h e i n e v i t a b l e c o r r e l a t i o n b e t w e e n v a r i a b l e s ( m e a s u r e d v a r i a b l e S a p p e a r s i n b o t h d e p e n d e n t a n d i n d e p e n d e n t v a r i a b l e s ) makes a l i n e a r t r a n s f o r m a t i o n s t a t i s t i c a l l y i n f e r i o r t o d i r e c t , n o n - l i n e a r f i t t i n g o f d a t a t o t h e M i c h a e l i s - M e n t e n e q u a t i o n ( L i , 1983; R o b i n s o n a n d C h a r a c k l i s , 1 9 8 4 ) . S i n c e e a r l i e r i n v e s t i g a t o r s d i d n o t a l w a y s h a v e t h e same a c c e s s i b i l i t y t o n o n - l i n e a r f i t t i n g by c o m p u t e r s a s we e n j o y t o d a y , t h e p a r a m e t e r s , e s t i m a t e d by b o t h m e t h o d s , h a v e b e e n i n c l u d e d i n T a b l e 3.1 f o r l i t e r a t u r e c o m p a r a t i v e p u r p o s e s . The k i n e t i c p a r a m e t e r s h a v e b e e n c a l c u l a t e d s e p a r a t e l y f o r t h e i n d i v i d u a l c u l t u r e s a s w e l l a s f o r t h e d a t a t r e a t e d t o g e t h e r . 115 RESULTS Uptake kinetics N i t r o g e n s p e c i f i c u p t a k e r a t e s a r e p l o t t e d v e r s u s t h e a v e r a g e a m b i e n t n i t r o g e n c o n c e n t r a t i o n e x p e r i e n c e d b y t h e c e l l s d u r i n g t h e 10 m i n i n c u b a t i o n p e r i o d ( F i g . 3 . 1 ) . A l i s t o f t h e h a l f s a t u r a t i o n c o n s t a n t s ( K g ) a n d maximum u p t a k e v e l o c i t i e s ( V m a x ) a r e p r e s e n t e d i n T a b l e 3.1 a l o n g w i t h t h e i r e s t i m a t e d s t a n d a r d e r r o r s . G e n e r a l l y t h e v a l u e s f o r s e p a r a t e c u l t u r e s a g r e e d w e l l , b u t p o o r e r a g r e e m e n t was f o u n d b e t w e e n e s t i m a t e s o f u r e a - V m a x a n d NH^-Kg v a l u e s . The d i s c r e p a n c y b e t w e e n t h e l a t t e r e s t i m a t e c a n be a t t r i b u t e d p a r t l y t o t h e p a u c i t y o f u p t a k e v a l u e s f r o m l o w s u b s t r a t e e n r i c h m e n t s i n t h e s e c o n d c u l t u r e ( s u b s t r a t e e x h a u s t i o n o c c u r r e d d u r i n g t h e i n c u b a t i o n f o r 0.1, 0.2, a n d 0.4 uq-at N - L - 1 e n r i c h m e n t ) . The v a l u e s o f V m a x o f N O 3 - a n d u r e a a g r e e d w e l l a n d a r e a b o u t h a l f t h e V m a x f o r N H 4 + . Micromonas pusilla d e m o n s t r a t e d t h e same a f f i n i t y f o r e a c h N s u b s t r a t e a s t h e K g v a l u e s f o r N O 3 - , N H 4 + , and u r e a w e r e w i t h i n \u00C2\u00B1 0.1 uq-at N - L - 1 o f e a c h o t h e r . An u n d e r l y i n g a s s u m p t i o n i n t h e u s e o f t h e M i c h a e l i s -M e n t e n e q u a t i o n f o r t h e e s t i m a t i o n o f k i n e t i c u p t a k e p a r a m e t e r s i s t h a t u p t a k e r e m a i n s c o n s t a n t o v e r t h e d u r a t i o n o f t h e e x p e r i m e n t a l i n c u b a t i o n . I n t h e p r e s e n t k i n e t i c e x p e r i m e n t s , i t i s u n l i k e l y t h a t t h e n o n - l i n e a r i t y t h a t h a s b e e n r e p o r t e d f o r n i t r o g e n u p t a k e b y N - d e f i c i e n t c e l l s w o u l d o c c u r b e c a u s e i n t h i s s t u d y N - r e p l e t e c e l l s w e r e u t i l i z e d . N i t r o g e n - r e p l e t e c u l t u r e s (4.2 a n d 9.9 uq-at N - L - 1 ) w e r e i n c u b a t e d f o r b o t h 10 and 60 m i n t o d e t e r m i n e i f V m = v F i g u r e 3.1. N i t r o g e n s p e c i f i c uptake r a t e s (V) determined over 10 min a f t e r the a d d i t i o n of 0.2, 0.4, 0.8, 1.6, 2.4, 4 and 10 /jg-at N-L*1 of N03\" (A), urea (B) or NH 4 + (C) t o d u p l i c a t e n i t r a t e - r e p l e t e c u l t u r e s ( O , \u00E2\u0080\u00A2 ) of Micromonas pusilla. Rates (h - 1) are p l o t t e d v e r s u s the average s u b s t r a t c o n c e n t r a t i o n d u r i n g the 10 min i n t e r v a l . Curve c a l c u l a t e d computer programme (see t e x t f o r d e t a i l s ) . O Z > X z > 0.100 0.080 0.080 -0.040 0.000 0.0 2.0 4.0 6.0 8.0 10.0 S U B S T R A T E ( M g-at N-L\" 1) T a b l e 3.1 K i n e t i c parameters f o r n i t r a t e , u r e a and ammonium uptake o f N - r e p l e t e Micromonas pusilla. M i c h a e l i s -Menten p a r a m e t e r s , K ( h a l f - s a t u r a t i o n c o n s t a n t ) and V (maximum uptake v e l o c i t y ) were e s t i m a t e d from a d i r e c t n o n - l i n e a r c u r v e f i t t i n g model and Hanes-Woolf l i n e a r t r a n s f o r m a t i o n o f the dat a o b t a i n e d from r e p l i c a t e c u l t u r e s (1 o r 2) and t h e c u l t u r e s t r e a t e d t o g e t h e r (1 + 2). S u b s t r a t e C u l t u r e ^ a x * f * 1 0 \" 2 * 1 \" 1 > K s 1 ( f J 9 - a t N - L - 1 ) Vmax 2 ( x l 0 _ 2 h ~ 1 > K s 2 < ^ 9 - a t N * L 1 ) N i t r a t e 1 4. 64 (0 118) 0 .44 (0 044) 4. 70 (0 057 ) 0 49 (0 050) 2 5. 07 (0 361) 0 .50 (0 014) 5. 32 (0 176) 0 60 (0 022) li 1 + 2 4. 86 (0 183) 0 .47 (0 069) 4. 99 (0 125) 0 54 (0 108) Urea 1 4. 70 (0 176) 0 35 (0 051) 4. 42 (0 098) 0 27 (0 093) \" 2 5. 93 (0 211) 0 40 (0 059 ) 5. 64 (0 082 ) 0 30 (0 059 ) \" 1 + 2 5. 38 (0 257) 0 38 (0 073) 4. 95 (0 219) 0 26 (0 181) Ammonium 1 13 .6 (0 99) 0 .49 (0 142) 14 .8 (0 56) 0 .76 (0 165) 2 12 . 1 (0 74) 0 28 (0 104) 12 .8 (0 25) 0 43 (0 098) 1 + 2 12 .9 (0 61) 0 40 (0 087) 13 .8 (0 44) 0 62 (0 145) 118 d e c r e a s e d w i t h i n c r e a s e d i n c u b a t i o n t i m e . The V m a x v a l u e s f o r v 0 - 1 0 m i n a n d v 0 - 6 0 m i n a r e p r e S e n t e d i n F i g u r e 3.2. a n d t h e r e a p p e a r s t o be no s i g n i f i c a n t d i f f e r e n c e b e t w e e n t h e t w o r a t e s , a l t h o u g h d u p l i c a t e m e a s u r e m e n t s w e r e n o t a l w a y s p o s s i b l e . An a v e r a g e o f 30, 40 a n d 60% o f t h e a v a i l a b l e i s o t o p e was u t i l i z e d d u r i n g t h e 60 m i n i n c u b a t i o n s o f t h e u r e a , N C ^ - a n d N H 4 + e n r i c h e d c u l t u r e s , r e s p e c t i v e l y . Substrate interaction The a d d i t i o n o f 10 uq-at N * L - 1 o f n i t r a t e t o a NC>3~-r e p l e t e c u l t u r e o f M. pusilla d i d n o t a l t e r t h e d i s a p p e a r a n c e r a t e o f N 0 3 ~ + N 0 2 ~ (0. 0 4 4 1 h - 1 ) f r o m t h a t o b s e r v e d f o r 3 h p r i o r t o N e n r i c h m e n t (0.0446 h - 1 , 3 d m o n i t o r i n g ) . T h e r e was, h o w e v e r a 10% d i f f e r e n c e b e t w e e n t h e u n d i s t u r b e d c o n t r o l a n d t h e N 0 3 ~ ~ - e n r i c h e d c u l t u r e ( e n r i c h e d c o n t r o l = 0.0492 h - 1 ) d u r i n g t h e 3 h e x p e r i m e n t ( F i g . 3 . 3 ) . The a d d i t i o n o f 10 l i e uq-at N-L o f [ N] u r e a r e s u l t e d i n a 2 8 % d e c r e a s e i n t h e d i s a p p e a r a n c e r a t e o f N O 3 - + NC^ - a n d a s p e c i f i c u r e a u p t a k e r a t e o f 0.0260 h - 1 . The t o t a l n i t r o g e n u p t a k e ( 0 . 0 5 7 9 h - 1 ) i n c r e a s e d by c a . 30% o v e r t h e n i t r a t e e n r i c h m e n t a l o n e . Ammonium a d d i t i o n (10 ^ j g - a t N * L - 1 ) r e s u l t e d i n t h e c o m p l e t e c e s s a t i o n o f N O 3 - + NC^ - d i s a p p e a r a n c e f r o m t h e medium a n d a N H 4 + s p e c i f i c u p t a k e r a t e o f 0.0732 h - 1 . The s e c o n d s e r i e s o f s u b s t r a t e i n t e r a c t i o n e x p e r i m e n t s , d e s i g n e d t o d e t e r m i n e t h e e f f e c t ( s ) o f N H 4 + c o n c e n t r a t i o n on N O 3 - u p t a k e , w e r e c o n d u c t e d on a N C ^ - r e p l e t e c u l t u r e ( p r e c o n d i t i o n e d g r o w t h r a t e = 0.0484 h - 1 , 4 d m o n i t o r i n g ) . W i t h no e n r i c h m e n t ( c o n t r o l ) , t h e N O 3 - + N O 2 - d e p l e t i o n r a t e 119 Figure 3.2. Comparison of nitrogen s p e c i f i c uptake rates for n i t r a t e - r e p l e t e c u l t u r e s of Micromonas pusilla determined over 10 and 60 min incubation periods. Cultures are numbered and values are the mean (n = 2) of duplicate incubations, * designates no r e p l i c a t e . Bar represents \u00C2\u00B1 1 S.D. > < cn L J < Q. ZD O o L\u00C2\u00B1J CL CO 0.1 4 0 0.1 2 0 0 . 1 0 0 0 , 0 8 0 0 . 0 6 0 0 . 0 4 0 0 . 0 2 0 0 . 0 0 0 V 0 - 1 O m i n V 0 - 6 0 m i n 1 2 N I T R A T E 3 4 U R E A 5 6. A M M O N I U M 120 Figure 3.3. Nitrogen uptake by r e p l i c a t e c u l t u r e s of n i t r a t e -r e p l e t e Micromonas pusilla over a 4 h incubation period. A. Dissolved NO ~ + N02\" ( \u00E2\u0080\u00A2 ) concentration and 1 5N-atom % excess ( O ) a f t e r 10 ^/g-at N-urea-L\"1 addition. B. Dissolved NO \" + NO \" concentration ( O , A ) a f t e r no and 10 /jg-at N- N03~*L ad d i t i o n , r e s p e c t i v e l y . Dissolved NO,\" + NO~ concentration ( \u00E2\u0080\u00A2 , \u00E2\u0080\u00A2) a f t e r 10 pg-at N-L\"1 addition of NH4^ and urea, r e s p e c t i v e l y . Dissolved NH4+ concentration ( \u00E2\u0080\u00A2 ) a f t e r addition of 10 ug-at N-NH/'L\"1. cn a. I CN O O 3 . I CN o I CO o tn V) o x E o < UJ cr cn 3 . I 120 180 TIME (min) 240 121 a v e r a g e d 0.0500 h - 1 o v e r t h e 2 h d u r a t i o n o f t h e e x p e r i m e n t . A l l t h e 1 5 N H 4 + e n r i c h m e n t s ( 5 , 2, a n d 1 uq-at N - L - 1 ) c a u s e d c e s s a t i o n o f N O 3 - + NO2\"\" d i s a p p e a r a n c e (< 0.1 uq-at N * L - 1 \u00E2\u0080\u00A2 h - 1 ) when t h e 1 ^ N H 4 + i s o t o p e was s t i l l a v a i l a b l e i n t h e medium; t h e c o n c e n t r a t i o n o f e x t e r n a l N O 3 - + NG^ - d i d n o t m e a s u r a b l y d e c r e a s e u n t i l t h e 1 5 N H 4 + was e x h a u s t e d ( F i g . 3 . 4 ) . I t s h o u l d be m e n t i o n e d t h a t t h e u p t a k e o f N O 3 - was e s t i m a t e d f r o m t h e d i s a p p e a r a n c e o f NO^ - + NO2\"\" i n t h e medium. A l t h o u g h o t h e r i n v e s t i g a t o r s ( e . g . , S e r r a e t a l . , 1 9 7 8 a ; O l s o n e t a l . , 1980; P a r s l o w e t a l . , 1984b) h a v e r e c o r d e d s u b s t a n t i a l e x c r e t i o n o f N O 2 - by m a r i n e d i a t o m s a n d n a t u r a l a s s e m b l a g e s ( H a r r i s o n a n d D a v i s , 1 9 7 7 ) , M. pusilla d e m o n s t r a t e d no e x c r e t i o n o f N O 2 - a n d o n l y t r a c e l e v e l s o f N O 2 - w e r e f o u n d i n t h e medium d u r i n g e x p o n e n t i a l g r o w t h on N O 3 - ( A p p e n d i x 5 ) . E x c r e t i o n o f N O 2 - by M. pusilla w o u l d c o n t r i b u t e t o a r e d u c t i o n i n a n y m e a s u r a b l e d e c l i n e o f N O 3 - + N O 2 - i n t h e medium a n d t h u s e n h a n c e t h e a p p a r e n t i n h i b i t o r y e f f e c t o f N H 4 + o r u r e a on N O 3 - u p t a k e . Nitrogen-starved cells The e x p o n e n t i a l g r o w t h r a t e o f M. pusilla was 1.11 d - 1 ( 0 . 0 4 6 3 h - 1 ) p r i o r t o t h e d e p l e t i o n o f n i t r a t e i n t h e medium, a v a l u e w h i c h a g r e e s w e l l w i t h t h e V m a x f o r NO3 c a l c u l a t e d p r e v i o u s l y ( 0 .0486 \u00C2\u00B1 0.0018 h _ 1 ) . The s p e c i f i c u p t a k e o f N 0 3 ~ by N 0 3 ~ - s t a r v e d c u l t u r e s , e s t i m a t e d f r o m b o t h t h e a c c u m u l a t i o n 1 5 - \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 o f NO3 x n t o t h e p a r t i c u l a t e m a t e r i a l a n d t h e d i s a p p e a r a n c e o f N O 3 - + N O 2 - f r o m t h e medium, a v e r a g e d 0.0238 h - 1 o v e r t h e 5-6 h i n c u b a t i o n p e r i o d ( T a b l e 3 . 2 ) . T h i s r a t e was r o u g h l y c o n s t a n t o v e r t h e i n c u b a t i o n ( F i g . 3.5) a l t h o u g h i t a p p e a r s F i g u r e 3.4. D i s s o l v e d NO \" + NO \" c o n c e n t r a t i o n w i t h o u t ( O ) a n d w i t h ( \u00E2\u0080\u00A2 ) , 5 ( A ) , 2 ( B ) , a n d 1 ( C ) uq-at N-L\" 1 [ 1 5 N ] - N H 4 + e n r i c h m e n t ; NH 4 + a t o m % e x c e s s i n p a r t i c u l a t e s (\u00E2\u0080\u00A2) p l o t t e d v e r s u s t i m e ( m i n ) . A r r o w s d e s i g n a t e t i m e o f NH 4 + a d d i t i o n . 10 8 6 4 2 0 10 o 1 8 cn 6 1 CN 4 O z : 2 + 1 CO o 0 z : 10 8 6 4 2 -0 to CD o X CD E o X I 0 20 40 60 80 100 120 140 TIME (min) 123 T a b l e 3.2 A v e r a g e n i t r a t e u p t a k e r a t e s ( h ) f o r N C > 3 - - s t a r v e d Micromonas pusilla. R a t e s d e t e r m i n e d f r o m l e a s t - s q u a r e s l i n e a r r e g r e s s i o n o f p a r t i c u l a t e 1 5N e n r i c h m e n t o r t h e d e c r e a s e i n t h e e x t e r n a l c o n c e n t r a t i o n o f NO^\" + NG^ - v e r s u s t i m e a n d r e p o r t e d a s \u00C2\u00B1 1 s t a n d a r d d e v i a t i o n ( i n p a r e n t h e s e s ) o f t h e mean o f d u p l i c a t e c u l t u r e s . T i me I n t e r v a l N i t r a t e U p t a k e (\u00E2\u0080\u00A210~ 2h 1 ) 1 R (h) N 0 3 N 0 3 d i s a p p e a r a n c e 0 1 2 3 4 5 1 2 3 4 5 6* 2 2 2 2 2 2 22 10 34 56 44 12 ( 0 . 0 0 7 1 ) ( 0 . 1 8 4 ) ( 0 . 0 1 4 ) ( 0 . 4 1 7 ) ( 0 . 0 9 9 ) 1. 1. 2 2 2 2 77 86 94 80 66 73 ( 0 . 5 3 7 ) ( 0 . 2 3 3 ) ( 0 . 1 7 0 ) ( 0 . 6 2 9 ) ( 0 . 4 3 8 ) (* = u p t a k e r a t e s c a l c u l a t e d f r o m one c u l t u r e ) T a b l e 3.3 A v e r a g e N u p t a k e r a t e s V ( h ) f o r N C ^ ' - s t a r v e d Micromonas pusilla. R a t e s d e t e r m i n e d f r o m l e a s t - s q u a r e s l i n e a r r e g r e s s i o n o f p a r t i c u l a t e 1 5N e n r i c h m e n t o r t h e d e c r e a s e i n t h e e x t e r n a l c o n c e n t r a t i o n o f d i s s o l v e d n i t r o g e n v e r s u s t i m e a n d r e p o r t e d a s \u00C2\u00B1 1 s t a n d a r d d e v i a t i o n ( i n p a r e n t h e s e s ) o f t h e mean o f d u p l i c a t e c u l t u r e s . N S u b s t r a t e N U p t a k e ( \u00E2\u0080\u00A2 1 0 ~ 2 h \" 1 ) v 0 - 6 0 m i n v 6 0 - 1 2 0 m i n v 1 2 0 - 1 8 0 m i n U r e a 4.80 (0. 1 2 9 ) 3.72 ( 0 . 1 4 9 ) 3.32 ( 0 . 1 5 8 ) 1 5 N H 4 + 7.05 (0 . 0 1 2 0 ) 5.59 ( 0 . 0 5 5 9 ) 4.23 ( 0 . 0 2 8 8 ) N H 4 + 6 . 7 5 * ( 0 . 7 3 9 ) 6.76 ( 0 . 4 4 9 ) 4.85 ( 0 . 6 0 0 ) (* = u p t a k e r a t e c a l c u l a t e d f r o m 2.5 - 60 m i n ) 124 t h a t t h e r e was e l e v a t e d u p t a k e (0.0386 \u00C2\u00B1 0.0012 h - 1 ) d u r i n g 1 c t h e f i r s t 5 m i n a f t e r N e n r i c h m e n t . E l e v a t e d u p t a k e r a t e s w e r e n o t o b s e r v e d i n t h e N O 3 - + NO2\"\" d i s a p p e a r a n c e m e a s u r e m e n t s , p o s s i b l y due t o t h e r e d u c e d s e n s i t i v i t y o f c o l o u r i m e t r i c a n a l y s i s a t e l e v a t e d (> 15 uq-at N - L - 1 ) n i t r a t e c o n c e n t r a t i o n s . The a v e r a g e r a t e o f 0.0238 h - 1 i s c a . 25% l e s s t h a n t h e n i t r o g e n s p e c i f i c r a t e (0.0308 h - 1 ) c a l c u l a t e d f r o m N O 3 - + NO2\"\" d i s a p p e a r a n c e (1.54 uq-at N\u00E2\u0080\u00A2 L ~ 1 \u00E2\u0080\u00A2 h ~ 1 ) a n d t h e a v e r a g e c o n c e n t r a t i o n o f PON (50.0 uq-at N ' L - 1 ) d u r i n g t h e 4 h m o n i t o r i n g p e r i o d p r i o r t o N d e p l e t i o n . T h i s r e d u c t i o n i s p r o b a b l y o n l y a minimum e s t i m a t e a s u p t a k e r a t e b e f o r e d e p l e t i o n may h a v e a l r e a d y b e g u n t o d e c r e a s e a s a c o n s e q u e n c e o f l o w N O 3 - c o n c e n t r a t i o n s i n t h e medium. The a v e r a g e u p t a k e r a t e a f t e r s t a r v a t i o n i s o n l y h a l f t h e N demand c a l c u l a t e d f r o m e i t h e r t h e p r e - c o n d i t i o n e d g r o w t h r a t e o r V m a x . However t h e r e was, no l a g p e r i o d i n N O 3 - u p t a k e b y t h e p r e v i o u s l y s t a r v e d c e l l s ( F i g . 3.5). The e x p o n e n t i a l g r o w t h r a t e o f d u p l i c a t e c u l t u r e s u s e d i n t h e s e c o n d s e r i e s o f N 0 3 ~ - s t a r v e d u p t a k e e x p e r i m e n t s ( N H ^ + and u r e a ) a v e r a g e d 1.11 d - 1 (0.0463 h - 1 ) p r i o r t o d e p l e t i o n o f n i t r a t e i n t h e medium. Maximum [ ^ N ] u r e a u p t a k e r a t e (0.105 \u00C2\u00B1 0.016 h - 1 ) o c c u r r e d d u r i n g t h e 0-5 m i n i n t e r v a l a n d s u b s e q u e n t l y d e c r e a s e d r a p i d l y i n t h e n e x t 10-20 m i n t o a r o u g h l y c o n s t a n t r a t e o f 0.0349 \u00C2\u00B1 0.0016 h - 1 ( F i g . 3.6) The a v e r a g e h o u r l y u r e a u p t a k e r a t e s , c a l c u l a t e d f r o m t h e s l o p e o f p a r t i c u l a t e APE v e r s u s t i m e , a r e p r e s e n t e d i n T a b l e 3.3. A v e r a g e u p t a k e r a t e s d u r i n g t h e s e c o n d h o u r o f i n c u b a t i o n w e r e 125 F i g u r e 3.5. N i t r a t e u p t a k e by n i t r a t e - s t a r v e d Micromonas pusilla a f t e r t h e a d d i t i o n o f 15 uq-at N-N0 3\"*L _ 1 t o d u p l i c a t e c u l t u r e s . A. D i s s o l v e d N0 3\" + N0 2\" (\u00E2\u0080\u00A2,\u00E2\u0080\u00A2) i n t h e c u l t u r e medium; 1 5N0 3~ a t o m % e x c e s s i n p a r t i c u l a t e m a t t e r ( O , * ) . B. N i t r a t e u p t a k e r a t e d e t e r m i n e d f r o m N0 3\" + N0 2\" d i s a p p e a r a n c e t e c h n i q u e . C. [ 1 5N] n i t r a t e u p t a k e r a t e . V a l u e s i n A a r e p l o t t e d a g a i n s t e l a p s e d t i m e m e a s u r e d a f t e r e n r i c h m e n t a n d u p t a k e r a t e s (B,C) a r e p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n t i m e . ~ 0.040 -0.000 1 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 ' \u00E2\u0080\u00A2 1 0 60 120 180 240 300 360 TIME (min) 1 2 6 F i g u r e 3.6. U r e a u p t a k e by n i t r a t e - s t a r v e d Micromonas pusilla a f t e r t h e a d d i t i o n o f 10 uq-at N - u r e a - L \" 1 t o d u p l i c a t e c u l t u r e s ( 0 , \u00C2\u00BB ) . A. 1 5 N - u r e a atom % e x c e s s i n p a r t i c u l a t e m a t t e r i s p l o t t e d a g a i n s t e l a p s e d t i m e m e a s u r e d a f t e r a d d i t i o n o f u r e a . B. [ 1 5N] u r e a u p t a k e r a t e p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n t i m e . 1 4 . 0 to CD OX 1 2 . 0 cu 1 0 . 0 E o 8 . 0 o \u00E2\u0080\u0094 6 . 0 < LU 4 . 0 fr Z> i 2 . 0 ~Z. in i\u00E2\u0080\u0094 0 . 0 0 . 1 2 0 T\" rz 0 . 1 0 0 l\u00C2\u00B1J 0 . 0 8 0 < 1\u00E2\u0080\u0094 Q_ 0 . 0 6 0 < UJ cr A \u00E2\u0080\u00A2>* * i i , . i 0 . 0 4 0 0 . 0 2 0 0 . 0 0 0 0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 TIME (min) 127 7 8% o f t h e i n i t i a l h o u r l y r a t e s a n d d u r i n g t h e t h i r d h o u r , u p t a k e m e r e l y d e c r e a s e d an a d d i t i o n a l 1 1 % . The u p t a k e r a t e s d u r i n g 3 0 - 6 0 , 60-120 a n d 120-180 m i n i n t e r v a l s w e r e < 4 0 % o f t h e m a x i m a l r a t e a n d 7 0 - 8 0 % o f t h e n i t r o g e n u p t a k e r a t e n e e d e d t o s u p p o r t e x p o n e n t i a l g r o w t h o b s e r v e d p r i o r t o N - d e p l e t i o n . Maximum 1 5 N H 4 u p t a k e r a t e ( 0.175 \u00C2\u00B1 0.0024 h - 1 ) o c c u r r e d d u r i n g t h e i n i t i a l 0-5 m i n i n t e r v a l , f o l l o w e d b y a r a p i d , b u t s h o r t - t e r m d e c r e a s e ( c a . 80%) i n u p t a k e b e f o r e i t r e a c h e d a r o u g h l y c o n s t a n t r a t e o f 0.0668 \u00C2\u00B1 0.0073 h ~ ^ f o r t h e r e m a i n d e r o f t h e f i r s t h o u r o f i n c u b a t i o n ( F i g . 3.7 C ) . The a v e r a g e h o u r l y r a t e d e c l i n e d by 2 0 - 2 5 % p e r h o u r o v e r t h e 3 h o f m o n i t o r i n g a n d a v e r a g e d 150, 120 a n d 90% o f t h e n i t r o g e n u p t a k e , n e e d e d t o s u p p o r t e x p o n e n t i a l g r o w t h , d u r i n g t h e 0-60, 6 0 - 1 2 0 , a n d 120-180 m i n i n c u b a t i o n p e r i o d s r e s p e c t i v e l y . The r a t e o f NH 4 + d i s a p p e a r a n c e i n t h e medium (0.0612 \u00C2\u00B1 0.0060 h~^) ( e x c l u d i n g t h e 0-2.5 m i n i n t e r v a l ) , i s i n g o o d a g r e e m e n t w i t h t h e 1 5 N H 4 u p t a k e r a t e ( 0 . 0 5 6 1 \u00C2\u00B1 0.0010 h - 1 ) , a n d a l s o d e c l i n e d o v e r t h e 3 h i n c u b a t i o n p e r i o d ( T a b l e 3.3 ). M a x i m a l N H 4 + d i s a p p e a r a n c e r a t e s ( 0 .503 \u00C2\u00B1 0.133 h--^) d u r i n g t h e 0-2.5 m i n i n t e r v a l w e r e 7-9 t i m e s g r e a t e r t h a n t h e a v e r a g e r a t e a n d n e a r l y 3 t i m e s g r e a t e r t h a n t h e e l e v a t e d NH 4 u p t a k e r a t e s r e p o r t e d f o r t h e 0-5 m i n i n t e r v a l ( F i g . 3.7 B ) . 1 c However, u n l i k e t h e N - t r a c e r t e c h n i q u e , w h e r e an a c c u r a t e m e a s u r e m e n t o f ^ N e x i n t h e u n e n r i c h e d p a r t i c u l a t e s c a n be o b t a i n e d , t h e c o n c e n t r a t i o n o f N H 4 + a t t i m e - z e r o f o r t h e N H 4 + d i s a p p e a r a n c e t e c h n i q u e c a n o n l y be e s t i m a t e d f r o m a c e l l - f r e e s a m p l e , a n d may be s u b j e c t t o meas u r e m e n t e r r o r . 128 F i g u r e 3.7. Ammonium u p t a k e by n i t r a t e - s t a r v e d Micromonas pusilla a f t e r t h e a d d i t i o n o f 15 uq-at N- NH. L t o d u p l i c a t e c u l t u r e s . A. D i s s o l v e d NH 4 + c o n c e n t r a t i o n i n t h e c u l t u r e medium (\u00E2\u0080\u00A2,<\">) ; 1 5N-NH 4 a t o m % e x c e s s i n p a r t i c u l a t e m a t t e r (\u00E2\u0080\u00A2,\u00E2\u0080\u00A2; p l o t t e d a g a i n s t e l a p s e d t i m e a f t e r e n r i c h m e n t . B. Ammonium u p t a k e r a t e , d e t e r m i n e d b y NH 4 + d i s s a p p e a r a n c e t e c h n i q u e . C. [*5N] NH 4 u p t a k e r a t e . V a l u e s i n B a n d C p l o t t e d a g a i n s t a v e r a g e i n c u b a t i o n t i m e . co co a> o x 3. X E o X LU OL-ID + * X 0.200 0.1 60 0.120 0.080 0.040 0.000 0.597 0.409 B 0.200 -W 0.160 < \u00C2\u00A3 0.120 -ZD <* 0.080 0.040 -0.000 n 0 30 60 90 120 150 180 TIME (min) 129 A summary of the culture conditions at the beginning of each series of experiments i s presented in Table 3 .4. T a b l e 3.4 Summary o f c u l t u r e c o n d i t i o n s a t t h e b e g i n n i n g of each experiment. C u l t u r e Experiment N0 3 ~ + N0 2 PON POC C e l l d e n s i t y T o t a l c e l l C e l l Quota d e s c r i p t i o n and c u l t u r e Volume* number (p g - a t N* L \" 1 ) (uq-at C-L~ 1 9 - 1 1 ) (10 -L L) ( p L - L - 1 ) ( f g - a t N ' c e l l - 1 ) NO3~ s u f f i c i e n t A - l <0.05 49.2 382.1 5.71 13.2 8.6 II A-2 <0.05 51.9 382.7 6.08 13.3 8.5 N0 3 ~ s u f f i c i e n t B-1 13.6 35.2 302.3 _ _ \u00E2\u0080\u0094 II C - l 8.3 32.5 295.3 4.72 9.64 6.9 NO3~ s t a r v e d D - l <0.05 50.8 546 .7 10.38 14.1 4.9 it D-2 <0.05 54.8 549 .6 - - -NO-j~ s t a r v e d E - l <0.05 59 .3 504.8 9.28 12.3 6.4 II E-2 <0.05 47.1 526 .7 10.00 12.8 4.7 A: N 0 3 ~ \u00C2\u00BB N H 4 + a n d u r e a uptake k i n e t i c exp. B: NH 4 + and u r e a i n h i b i t i o n exp. ( S e r i e s 1) . C: NH 4 + i n h i b i t i o n exp. ( S e r i e s 2 ) . D: NH 4 + and u r e a uptake exp. E: NO3~ uptake exp. *: L c e l l volume p e r l i t e r o f c u l t u r e . 131 DISCUSSION Uptake kinetics O v e r t h e l a s t t w o d e c a d e s numerous i n v e s t i g a t o r s h a v e d e t e r m i n e d t h e k i n e t i c s o f n i t r o g e n u p t a k e i n b o t h c u l t u r e d a n d n a t u r a l a s s e m b l a g e s o f p h y t o p l a n k t o n ( s e e r e v i e w s by M c C a r t h y , 1 9 8 1; Goldman a n d G l i b e r t , 1983; D o r t c h , i n p r e s s ) . I t i s o f t e n d i f f i c u l t t o co m p a r e a n d i n t e r p r e t t h e r e s u l t s o f t h e v a r i o u s s t u d i e s due t o t h e v a r i e t y o f t e c h n i q u e s , e x p e r i m e n t a l i n c u b a t i o n p e r i o d s a n d t h e p h y s i o l o g i c a l c o n d i t i o n o f t h e p h y t o p l a n k t o n ( e . g . , H a r r i s o n e t a l . , 1 9 8 9 ) . G e n e r a l l y t h e v a l u e s o f t h e h a l f - s a t u r a t i o n c o n s t a n t ( K s ) f o r N - u p t a k e a r e l o w e r f o r o l i g o t r o p h i c o c e a n i c n a t u r a l a s s e m b l a g e s ( e . g . , M a c l s a a c a n d D u g d a l e , 1969; K a n d a e t a l . , 1985) a n d i s o l a t e d o l i g o t r o p h i c c l o n e s ( e . g . , E p p l e y e t a l . , 1969; C a r p e n t e r a n d G u i l l a r d , 1971) t h a n h a l f - s a t u r a t i o n v a l u e s f r o m e u t r o p h i c , a n d n e r i t i c a r e a s o f t h e o c e a n . E p p l e y e t a l . ( 1 9 6 9) d e m o n s t r a t e d a d i r e c t c o r r e l a t i o n b e t w e e n c e l l s i z e a n d t h e K g v a l u e , a l t h o u g h no s u c h c o r r e l a t i o n h a s b e e n o b s e r v e d f o r f r e s h w a t e r p h y t o p l a n k t e r s ( H a l t e r m a n a n d T o e t z , 1 9 8 4 ) . I t a l s o a p p e a r s t h a t V m a x f o r n i t r a t e i s l o w e r t h a n t h e V m a x f o r r e d u c e d N f o r m s s u c h a s N H 4 + , e x c e p t d u r i n g s p r i n g b l o o m s o r i n u p w e l l i n g a r e a s w h e r e V m a x - N 0 3 ~ e q u a l s o r e x c e e d s t h a t o f ammonium ( e . g , D u g d a l e , 1976; D o r t c h , i n p r e s s ) . T h i s g e n e r a l o b s e r v a t i o n i s c o n s i s t e n t w i t h t h e h y p o t h e s i s t h a t t h e l a r g e p l a n k t o n i c f o r m s t h a t b l o o m d u r i n g s u c h c o n d i t i o n s ( i . e . , N O 3 - i s a b u n d a n t i n t h e e u p h o t i c z o n e ) d e p e n d p r i m a r i l y on n i t r a t e ( M a l o n e , 1 9 8 0 ) . However, s i n c e 132 n u t r i e n t u p t a k e a n d g r o w t h p r o c e s s e s a r e n o t n e c e s s a r i l y c o u p l e d ( i . e . , b a l a n c e d a n d e q u a l ) a n d a l g a l p h y s i o l o g y a n d c h e m i c a l c o m p o s i t i o n a r e a d a p t a b l e ( s e e r e v i e w s b y D u g d a l e , 1977; M c C a r t h y , 1981) p h y t o p l a n k t o n g e n e r a l l y h a v e t h e a b i l i t y t o g row e q u a l l y w e l l on NO^ -, NH 4 + a n d u r e a ( e g . , S y r e t t , 1981). To d a t e , o n l y a f e w s t u d i e s ( P a a s c h e , 1971; Ward a n d W e t z e l 1980; Rhee a n d L e d e r m a n , 1983; Thompson e t a l . , 1989) h a v e p r o v i d e d g o o d e v i d e n c e f o r a n i n c r e a s e i n g r o w t h r a t e o f c e l l s g r o w i n g on N H 4 + v e r s u s N O 3 - u n d e r s a t u r a t i n g g r o w t h PPFD. I n t h e p r e s e n t w o r k , t h e V m a x - N H 4 + v a l u e s a r e t w i c e t h o s e o f N O 3 - a n d u r e a , a l t h o u g h t h e i r K s v a l u e s a r e a l l s i m i l a r (0.28 - 0.50 uq-at N'L--'\") a n d f a l l w i t h i n t h e r a n g e r e p o r t e d by E p p l e y e t a l . (1969) f o r s m a l l , o c e a n i c d i a t o m s (0.1-0.7 uq-at N-L -\"*\"). The l o w e s t K s v a l u e s t o d a t e h a v e b e e n r e p o r t e d by K o i k e e t a l . (1983) f o r two m i c r o f l a g e l l a t e s i s o l a t e d f r o m t h e o l i g o t r o p h i c N o r t h P a c i f i c O c e a n ; Platymonas a n d Mantoniella s p . w i t h K g - N H 4 + v a l u e s o f 50 a n d 2.9 n g - a t N * L - ^ , r e s p e c t i v e l y , s u g g e s t i n g t h a t t h e s e two p h y t o f l a g e l l a t e s a r e w e l l a d a p t e d t o t h e i r e x t r e m e l y l o w ammonium e n v i r o n m e n t . The a f f i n i t y f o r a g i v e n n u t r i e n t a t l o w c o n c e n t r a t i o n s c a n be b e s t e s t i m a t e d f r o m t h e i n i t i a l s l o p e (a) o f t h e M i c h a e l i s -M e n t e n p l o t ( i . e . a = V m / K s , H e a l e y , 1980; P a r s l o w e t a l . , 1985). I n t h e p r e s e n t w o r k , t h e v a l u e s o f a a r e 10.3 \u00C2\u00B1 1.9, 14.2 \u00C2\u00B1 3.4 a n d 32.3 \u00C2\u00B1 8.5 f o r N 0 3 ~ , u r e a a n d N H 4 + , r e s p e c t i v e l y . T h e s e r e s u l t s s u g g e s t t h a t M. p u s i l l a c a n u t i l i z e l o w c o n c e n t r a t i o n s o f N H 4 + more e f f e c t i v e l y t h a n 133 e q u i v a l e n t c o n c e n t r a t i o n s o f u r e a a n d NO3\"\". W h i l e a c t u a l k i n e t i c s t u d i e s o f o t h e r p i c o p l a n k t e r s h a v e n o t b e e n c o n d u c t e d , r e l a t e d s t u d i e s on n a t u r a l a s s e m b l a g e s u t i l i z i n g s i z e - f r a c t i o n a t i o n t e c h n i q u e s a n d n i t r o g e n t r a c e r s o r a n a l o g u e s h a v e d e m o n s t r a t e d t h a t p i c o p l a n k t o n , i n c l u d i n g m i c r o h e t e r o t r o p h s ( W h e e l e r a n d K i r c h m a n ( 1 9 8 6 ) , g e n e r a l l y p r e f e r t h e r e d u c e d f o r m s o f n i t r o g e n a n d u s e r e l a t i v e l y h i g h e r p r o p o r t i o n s o f t h e s e r e d u c e d f o r m s f o r g r o w t h t h a n t h e l a r g e r p h y t o p l a n k t o n ( N a l e w a j k o a n d G a r s i d e , 1983; P r o b y n , 1985; P r o b y n a n d P a i n t i n g , 1985; S a h l s t e n , 1987; H a r r i s o n a n d Wood, 1 9 8 8 ) . S i m i l a r f r a c t i o n a t i o n s t u d i e s on n e t (> 20 um) a n d n a n o p l a n k t o n (< 20 um) h a v e o f t e n f o u n d t h i s d i s t i n c t i o n n o t t o be a s c l e a r c u t : t h e p a r t i t i o n i n g b e t w e e n \"new\" a n d \" r e g e n e r a t e d \" n i t r o g e n u p t a k e i s n e a r l y e q u a l l y d i s t r i b u t e d b e t w e e n t h e t w o s i z e - f r a c t i o n s i n v a r i o u s m a r i n e h a b i t a t s ( S h e r r e t a l . , 1982; F u r n a s , 1983; R o n n e r e t a l . , 1983) w h i l e t h e r e s u l t s o f K o i k e e t a l . , ( 1 9 8 6) f o r A n t a r c t i c a p h y t o p l a n k t o n c o n f i r m e d t h e f o r m e r p a t t e r n . Cellular physiological state The e f f e c t s o f c e l l u l a r p h y s i o l o g i c a l s t a t e on n i t r o g e n u p t a k e r a t e s b y p h y t o p l a n k t o n w e r e f i r s t d e m o n s t r a t e d b y S y r e t t ( 1 9 5 3) a n d H a r v e y ( 1 9 5 3 ) . T hey showed t h a t N H 4 + a n d N O 3 - u p t a k e by b a t c h c u l t u r e s o f \" n i t r o g e n - s t a r v e d \" c e l l s was much more r a p i d t h a n by \" n o r m a l \" c e l l s t h a t w e r e n i t r o g e n -r e p l e t e . F i t z g e r a l d (1968) n o t e d t h a t t h e s e r a t e s w e r e n o t s u s t a i n a b l e a n d d e c r e a s e d q u i t e r a p i d l y o n c e t h e n i t r o g e n d e f i c i t was o v e r c o m e . Conway e t a l . ( 1 9 7 6) d e s c r i b e d t h e 134 r e s p o n s e i n c o n s i d e r a b l y more d e t a i l i n m a r i n e d i a t o m s a n d d i s t i n g u i s h e d t h r e e p h a s e s o f u p t a k e o f t h e l i m i t i n g n u t r i e n t : a s h o r t - l i v e d p e r i o d o f v e r y h i g h u p t a k e , t e r m e d \" s u r g e u p t a k e \" ( V s ) , a l o n g e r , s u s t a i n a b l e p h a s e c h a r a c t e r i z e d a s \" i n t e r n a l l y \" ( c e l l u l a r l y ) c o n t r o l l e d u p t a k e ( V ^ ) , a n d \" e x t e r n a l l y \" ( a m b i e n t l i m i t i n g n u t r i e n t c o n c e n t r a t i o n ) c o n t r o l l e d u p t a k e ( V e ) . More r e c e n t s t u d i e s h a v e a l s o d e m o n s t r a t e d \" s u r g e \" o r \" e n h a n c e d \" N H 4 + u p t a k e c a p a b i l i t i e s u n d e r c o n d i t i o n s o f N d e p r i v a t i o n i n numerous c u l t u r e s t u d i e s ( e . g . , M c C a r t h y a n d Goldm a n , 1979; D o r t c h e t a l . , 1982; Goldman e t a l . , 1 9 8 1 ; Goldman a n d G l i b e r t , 1982; P a r s l o w e t a l . , 1 9 8 4 a ,b; S y r e t t a n d P e p l i n s k a , 1988) a n d n a t u r a l c o m m u n i t i e s ( G l i b e r t a n d Goldm a n , 1 9 81; W h e e l e r e t a l . , 1982; H a r r i s o n , 1 9 8 3 a ; P r i s c u a n d P r i s c u , 1 9 8 4 : , P r i s c u , 1987; S u t t l e a n d H a r r i s o n , 1 9 8 8 ) . The r e s u l t s o f t h e p r e s e n t s t u d y w i t h N C > 3 - - s t a r v e d M. pusilla a r e s i m i l a r t o t h o s e d e s c r i b e d a b o v e w i t h N - s t a r v e d c u l t u r e s ; t h e i n i t i a l s u r g e N H 4 + u p t a k e r a t e was s e v e r a l f o l d g r e a t e r ( V g \u00C2\u00B0 - 5 m i n = 2.5-4 t i m e s , v s 0 _ 2 - 5 m i n = 7-9 t i m e s u p t a k e r a t e s o b t a i n e d by a n d n u t r i e n t d i s a p p e a r a n c e , r e s p e c t i v e l y ) t h a n t h e i n t e r n a l l y c o n t r o l l e d u p t a k e r a t e a n d t h e u p t a k e r a t e n e c e s s a r y t o m a i n t a i n t h e p r e c o n d i t i o n e d g r o w t h r a t e o b s e r v e d b e f o r e N d e p l e t i o n . The m a g n i t u d e o f s u r g e u p t a k e r e s p o n s e i s b o t h s p e c i e s s p e c i f i c ( e . g . , Conway a n d H a r r i s o n , 1977) a n d a f u n c t i o n o f t h e d u r a t i o n o f N d e p r i v a t i o n ( e . g . , P a r s l o w e t a l . , 1 9 8 4 a ) . T h e s e e l e v a t e d t r a n s i e n t s h a v e b e e n h y p o t h e s i z e d t o be an e c o l o g i c a l a d a p t a t i o n t h a t a l l o w s p h y t o p l a n k t o n t o r a p i d l y 135 s e q u e s t e r e p h e m e r a l m i c r o p a t c h e s o f N ( M c C a r t h y a n d G o l d m a n , 1979; G l i b e r t a n d G o l d m a n , 1981; Goldman a n d G l i b e r t , 1982) a n d m a i n t a i n h i g h g r o w t h r a t e s i n o l i g o t r o p h i c e n v i r o n m e n t s ( G o l d m an e t a l . , 1979; Goldman a n d G l i b e r t , 1 9 8 2 ) . However t h i s c o n c e p t i s n o t w i t h o u t c o n t r o v e r s y a s b o t h J a c k s o n ( 1 9 80) a n d W i l l i a m s a n d M u i r (1981) c o n t e n d t h a t t h e m o l e c u l a r d i f f u s i o n o f t h o s e p a t c h e s w o u l d be s o r a p i d a s t o p r e v e n t t h e m f r o m e x i s t i n g l o n g e n o u g h t o be e x p l o i t e d by p h y t o p l a n k t o n . Due t o t e c h n i c a l l i m i t a t i o n s , n u t r i e n t d a t a on m i c r o p a t c h e s a r e f e w . C o l l o s (1986) s u g g e s t e d t h a t t h e v a l u e s r e p o r t e d i n m i c r o p a t c h e s by S h a n k s a n d T r e n t ( 1 9 7 9 ) (maximum v a l u e s o f c a . 5 0 0 , 300 a n d 60 uM f o r N H 4 + , N 0 2 ~ a n d P 0 4 3 ~ , r e s p e c t i v e l y ) may h a v e t o be r e v i s e d u p w a r d s a s t h e y w e r e m e a s u r e d on s a m p l e v o l u m e s w h i c h a r e t o o l a r g e t o be c o n s i d e r e d r e l e v a n t t o p h y t o p l a n k t o n s p a t i a l s c a l e s ( A l l e n , 1977; H a r r i s , 1980; M c C a r t h y ; 1 9 8 0 ) . T h i s , t o g e t h e r w i t h e m p i r i c a l d a t a s h o w i n g t h a t p h y t o p l a n k t o n c a n u t i l i z e p h o s p h o r u s p a t c h e s p r o d u c e d by z o o p l a n k t o n (Lehman a n d S c a v i a , 1982a,b) l e n d s c r e d e n c e t o t h e o r i g i n a l s u g g e s t i o n o f Conway an d H a r r i s o n (1977) t h a t e l e v a t e d u p t a k e r a t e s may be i m p o r t a n t i n d i c t a t i n g c o m p e t i t i v e a d v a n t a g e i n o l i g o t r o p h i c a r e a s o f t h e o c e a n ; h o w e v e r , t h i s t o p i c i s s t i l l a s u b j e c t o f c o n t r o v e r s y . A r a r e , b u t s i g n i f i c a n t f i n d i n g i n t h e p r e s e n t w o r k i s 15 t h e a p p e a r a n c e o f a r a p i d , b u t s h o r t - t e r m d e c r e a s e i n NH 4 u p t a k e f o l l o w i n g s u r g e u p t a k e . T h i s r e s p o n s e h a s o n l y b e e n d o c u m e n t e d f o r f r e s h w a t e r p h y t o p l a n k t o n ( S u t t l e a n d H a r r i s o n 136 1988) and has not been r e p o r t e d i n pr e v i o u s time course s t u d i e s of r a p i d N H 4 + uptake i n marine phytoplankton. S u t t l e and H a r r i s o n (1988) suggested t h i s temporary decrease i n uptake may be the r e s u l t of a sh o r t l a g b e f o r e NH 4 + can be processed i n t o amino a c i d s . A l t e r n a t i v e l y , they suggest i t c o u l d be the r e s u l t of a sudden l o s s of membrane p o t e n t i a l due to the i n f l u x of c a t i o n s , a phenomenon observed when N-starved Lemna gibba (duckweed) was p u l s e d w i t h NH 4 + ( U l l r i c h e t a l . , 1984 ) . The response of N C ^ - s t a r v e d Micromonas pusilla to urea enrichment was s i m i l a r t o the ^ N H 4 + uptake response; the e l e v a t e d surge uptake d u r i n g the f i r s t 5 min was 2-3 f o l d g r e a t e r than the i n t e r n a l l y c o n t r o l l e d r a t e and the p r e c o n d i t i o n e d growth r a t e . P r i c e and H a r r i s o n (1988b) a l s o found a s i m i l a r i n c r e a s e i n [\"^N] urea uptake i n NC>3 --starved c u l t u r e s of Thalassiosira pseudonana a f t e r a sh o r t l a g p e r i o d (5 min). They contend t h a t the subsequent e l e v a t e d [*^N] urea uptake r a t e was the combined r e s u l t of concomitant [\"^N] urea uptake and the r a p i d r e a b s o r p t i o n of p r e v i o u s l y r e l e a s e d 1 5 N H 3 / 1 5 N H 4 + . The i n t e r n a l l y c o n t r o l l e d r a t e of urea uptake i n M. pusilla was s l i g h t l y lower than the r a t e needed t o support the maximum growth observed p r i o r t o N d e p l e t i o n . Others (Rees and S y r e t t , 1979; Hor r i g a n and McCarthy, 1981; P r i c e and H a r r i s o n , 1988b) have found N d e p r i v a t i o n i n c r e a s e d urea uptake i n marine diatoms r e l a t i v e t o N - r e p l e t e c e l l s . Rees and S y r e t t (1979) suggested t h a t ammonium formed from urea i n the growth medium may p a r t i a l l y suppress f o r m a t i o n of 137 t h e u r e a u p t a k e m e c h a n i s m a n d t h a t t h i s r e p r e s s i o n i s r e m o v e d d u r i n g n i t r o g e n d e p r i v a t i o n . P r i c e a n d H a r r i s o n ( 1 9 8 8 b ) c o n t e n d t h a t t h e i n c r e a s e d n i t r o g e n - s p e c i f i c u r e a u p t a k e was c a u s e d b y a r e d u c t i o n i n t h e c e l l N q u o t a a n d r e t e n t i o n o f a l l t h e u r e a - N by t h e n i t r a t e - s t a r v e d c e l l s . The i m p o r t a n c e o f t h e \" e n h a n c e d \" o r \" s u r g e \" u p t a k e t o p h y t o p l a n k t o n g r o w t h d e p e n d s on t h e c o u p l i n g o f t h e u p t a k e o f n i t r o g e n t o t h e i n c o r p o r a t i o n i n t o new c e l l u l a r m a t e r i a l ( C o l l o s , 1 9 8 6 ) . I f u p t a k e r a t e s r e s p o n d r a p i d l y t o b r i e f p u l s e s o f a m b i e n t n i t r o g e n b u t t h e c e l l s a r e n o t a b l e t o i n c o r p o r a t e t h a t n i t r o g e n on a s i m i l a r t i m e s c a l e , t h e n g r o w t h may be l i m i t e d b y t h e r a t e a t w h i c h c e l l u l a r m e t a b o l i s m c a n i n c o r p o r a t e d i s s o l v e d n i t r o g e n i n t o m a c r o m o l e c u l e s ( W h e e l e r e t a l . , 1 9 8 2 , 1 9 8 3 ; Z a r , 1 9 8 8 ) . N i t r a t e was n o t t a k e n up a s r e a d i l y by t h e N 0 3 ~ ~ - s t a r v e d c u l t u r e o f Micromonas pusilla a s t h e r e d u c e d N f o r m s , N H 4 + and u r e a . H owever, u n l i k e many N C ^ - s t a r v e d p h y t o p l a n k t o n ( r e v i e w by C o l l o s , 1 983; D o r t c h e t a l . , 1982; P a r s l o w e t a l . , 1984b) no p r e v i o u s e x p o s u r e t o N O 3 - was r e q u i r e d b e f o r e N O 3 - u p t a k e commenced ( i . e . t h e r e was no l a g p e r i o d ) . The maximum n i t r a t e u p t a k e r a t e a t t a i n e d , w h i c h was m e a s u r e d d u r i n g t h e f i r s t 5 m i n a f t e r e n r i c h m e n t , was c o n s i d e r a b l y l o w e r t h a n t h e N O 3 - r a t e s m e a s u r e d i n N O 3 - -r e p l e t e c u l t u r e s a n d t h e e l e v a t e d r a t e s o f N H 4 + a n d u r e a o b s e r v e d i n t h e s t a r v e d c u l t u r e s . The l o w e r , s u s t a i n a b l e i n t e r n a l l y c o n t r o l l e d r a t e o v e r t h e n e x t 5-6 h was o n l y h a l f t h a t r e q u i r e d t o s u p p o r t t h e p r e - c o n d i t i o n e d g r o w t h r a t e a n d 138 comparable t o i n t e r n a l l y c o n t r o l l e d reduced N uptake r a t e s . T h i s r e d u c t i o n i n N O 3 - uptake c a p a b i l i t y a f t e r N d e p r i v a t i o n i s not uncommon (e.g., C o l l o s , 1980; Dortch et a l . , 1982), although others (e.g., M o r r i s and S y r e t t , 1965; Thacker and S y r e t t , 1972a; H a r r i s o n , 1976) have r e p o r t e d i n c r e a s e d a b i l i t y t o take up n i t r a t e . I t appears t h a t although M. pusilla s t i l l r e t a i n e d N O 3 - uptake a b i l i t y i t may r e q u i r e an \" a c c l i m a t i o n p e r i o d \" b e f o r e maximal N O 3 - uptake can be a t t a i n e d , a response observed by many others (e.g., see review by C o l l o s , 1983). I t i s p o s s i b l e t h a t the p h y s i o l o g i c a l s t r e s s e x p e r i e n c e d by the c e l l s d u r i n g the 48 h of N O 3 - s t a r v a t i o n reduced t h e i r v i a b i l i t y and hence t h e i r n i t r o g e n uptake c a p a b i l i t y . The r e l a t i v e \" h e a l t h \" of the N-starved c e l l s was assessed by m i c r o s c o p i c examination of c e l l u l a r c o l o u r and m o t i l i t y . The d e c l i n e i n N O 3 - uptake a b i l i t y d u r i n g s t a r v a t i o n c o u l d a l s o be due t o the l o s s of an a c t i v e uptake system (Falkowski, 1975a) or t o i n a c t i v a t i o n of n i t r a t e reductase (e.g., S y r e t t , 1981). However, i n a c t i v a t i o n of n i t r a t e reductase alone need not prevent enhanced i n i t i a l NC^ - uptake as t r a n s i e n t i n t e r n a l n i t r a t e p o o ls are o f t e n observed i n phytoplankton (e.g., Dortch, 1982; Dortch et a l . , 1984). Substrate interaction Uptake i n t e r a c t i o n s between i n o r g a n i c N sources, p a r t i c u l a r l y n i t r a t e and ammonium, have been the s u b j e c t of many s t u d i e s (see reviews by Guerrero e t a l . , 1981; McCarthy, 1981; S y r e t t , 1981; U l l r i c h , 1983, Dortch, i n press) which r e v e a l a v a r i e t y of responses depending on the phytoplankton 139 s p e c i e s and i t s n u t r i t i o n a l s t a t e . N i t r a t e uptake has been r e p o r t e d t o be i n h i b i t e d t o d i f f e r e n t degrees by ammonium rang i n g from t o t a l s u p p r e s s i o n (e.g., S y r e t t and M o r r i s , 1963; McCarthy and Eppley, 1972; C r e s s w e l l and S y r e t t , 1979) t o simultaneous and comparable r a t e of N H 4 + and N O 3 - uptake i n c u l t u r e s (e.g., Caperon and Ziemann, 1976; Conway, 1977; Dortch and Conway, 1984; DeManche e t a l . , 1979) and n a t u r a l communities (e.g., Conover, 1975; McCarthy, 1977; M a e s t r i n i et a l . , 1982; 1986; P r i c e et a l . , 1985; Queguiner et a l . , 1986; C o l l o s et a l . , 1989). There are even a few r e p o r t s of s t i m u l a t i o n of N O 3 - uptake at low NH^ + c o n c e n t r a t i o n s even though h i g h e r c o n c e n t r a t i o n s i n h i b i t N O 3 - uptake (Conover, 1975; Caperon and Ziemann, 1976; G l i b e r t e t a l . , 1982c; Y i n , 1988; Dortch e t a l . , submitted). The present study demonstrates t h a t N O 3 - uptake by M. pusilla cannot proceed i n the presence of N H 4 + c o n c e n t r a t i o n s as low as 1.0 uq-at N-L -^. Only a f t e r N H 4 + i s exhausted from the e x t e r n a l medium does t h i s p h y t o p l a n k t e r resume i t s uptake of n i t r a t e . The mechanism of d e p r e s s i o n of n i t r a t e u t i l i z a t i o n i s not w e l l understood. There i s evidence f o r r e g u l a t o r y a c t i o n a t both the l e v e l of n i t r a t e uptake (e.g., Eppley and Rogers, 1970; C r e s s w e l l and S y r e t t , 1979; S e r r a et a l . , 1978b; T i s c h n e r and Lorenzen, 1979) and n i t r a t e r e d u c t i o n (e.g., S y r e t t and M o r r i s , 1963; Amy and G a r r e t t , 1974; H i p k i n e t a l . , 1980) and t o a c e r t a i n extent the e f f e c t of ammonium on both mechanisms may be independent (Blasco and Conway 1982, U l l r i c h 1987). I t i s now g e n e r a l l y accepted t h a t the primary, and 140 r a p i d l y a c t i n g e f f e c t o f N H 4 + o n n i t r a t e u t i l i z a t i o n i s due t o an i n h i b i t i o n o f n i t r a t e u p t a k e w h i c h may be f o l l o w e d b y t h e e f f e c t s on n i t r a t e m e t a b o l i s m t h r o u g h i n h i b i t i o n o f n i t r a t e r e d u c t a s e a c t i v i t y , f r o m e i t h e r i r r e v e r s i b l e p r o t e o l y t i c b r e a k d o w n ( e . g . , H i p k i n e t a l . , 1 9 8 0 ) , r e v e r s i b l e i n a c t i v a t i o n ( e . g . , P i s t o r i u s e t a l . , 1978) o r s u p p r e s s i o n o f i t s s y n t h e s i s ( e . g . , M o r r i s a n d S y r e t t , 1963; Amy a n d G a r r e t t , 1 9 7 4 ) . A l t h o u g h some ( e . g . , F l o r e n c i o a n d V e g a , 1982) a r g u e t h a t N H 4 + p e r s e i n h i b i t s N O 3 - a s s i m i l a t i o n m o s t e v i d e n c e s u g g e s t s t h a t t h e r a t e o f N O 3 - u p t a k e i s m o d u l a t e d i n r e s p o n s e t o c h a n g e s i n p o o l s o f some o r g a n i c p r o d u c t o f ammonium a s s i m i l a t i o n ( e . g . , S y r e t t , 1 9 8 1 , ; G u e r r e r o e t a l . , 1 9 8 1 ) . T h e r e a r e o n l y a f e w r e p o r t s o f s i m u l t a n e o u s u p t a k e o f u r e a a n d o t h e r N s o u r c e s b y n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s ( M c C a r t h y a n d E p p l e y , 1972; P r i c e e t a l . , 1 9 8 5 ) . I t i s h o w e v e r , g e n e r a l l y b e l i e v e d t h a t u r e a s u p p r e s s e s t h e u p t a k e o f N O 3 - b u t a t a l o w e r l e v e l t h a n ammonium ( G r a n t e t a l . , 1967; M c C a r t h y a n d E p p l e y , 1972; M o l l y a n d S y r e t t , 1 9 8 8 b ) . An u n c h a n g e d r a t e o f N O 3 - u p t a k e i n t h e p r e s e n c e o f 10 uq-at N-L--*- o f u r e a h a s , h o w e v e r , b e e n r e p o r t e d i n t h e m a r i n e d i a t o m , Skeletonema costatum ( L u n d , 1 9 8 7 ) . I n t h e p r e s e n t s t u d y t h e r a t e o f N O 3 - u p t a k e was l o w e r i n t h e p r e s e n c e o f u r e a , b u t i n t e r m s o f t o t a l N t a k e n up i t was a p p r o x i m a t e l y 30% g r e a t e r t h a n t h e u n a l t e r e d r a t e o f N O 3 - u p t a k e a l o n e a n d t h e u p t a k e r a t e n e c e s s a r y t o m a i n t a i n t h e p r e - c o n d i t i o n e d g r o w t h r a t e . A l t h o u g h n o t m e a s u r e d i n t h e p r e s e n t s t u d y , i t i s p o s s i b l e t h a t NH^ was e x c r e t e d b y t h e c e l l s a n d was t h e c a u s a t i v e f a c t o r f o r r e d u c e d N O 3 - u p t a k e r a t e s a f t e r t h e a d d i t i o n o f u r e a . P r i c e a n d H a r r i s o n ( 1 9 8 8 b) r e p o r t e d t h e r e l e a s e o f N H 3 / N H 4 + i n t o t h e medium b y a x e n i c c u l t u r e s o f Thalassiosira pseudonana f o l l o w i n g a d d i t i o n o f 10 uq-at U-L~^ o f u r e a . U c h i d a (1976) o b s e r v e d t h a t t h e r e d - t i d e d i n o f l a g e l l a t e Prorocentrum minimum e x c r e t e d NH3/NH^ + when gr o w n i n u r e a - e n r i c h e d c u l t u r e medium a n d Rees ( 1 9 7 9 ) a l s o r e p o r t e d N H 3 / N H 4 + r e l e a s e b y u r e a - g r o w n Phaeodactylum tricornutum. Ecological significance A s D o r t c h e t a l . (1982) h a v e p o i n t e d o u t p r e v i o u s l y , t h e r e d u c t i o n i n N O 3 - u p t a k e c a p a b i l i t y a n d a n e n h a n c e d a b i l i t y t t a k e up N H 4 + by N - d e p r i v e d p h y t o p l a n k t o n may be a n a d a p t i v e r e s p o n s e t o t h e p a t t e r n s o f n i t r o g e n a v a i l a b i l i t y i n o l i g o t r o p h i c a r e a s o f t h e o c e a n . Ammonium a n d u r e a a r e b o t h r e c y c l e d r a p i d l y w i t h i n t h e e u p h o t i c z o n e a n d may be a d d e d s p o r a d i c a l l y by a n i m a l e x c r e t i o n ( e . g . , D u g d a l e , 1 9 6 7 ) . P h y t o p l a n k t o n w h i c h h a v e t h e a b i l i t y t o a s s i m i l a t e N H 4 + o r u r e a r a p i d l y a f t e r s t a r v a t i o n may h a v e a s e l e c t i v e a d v a n t a g e i n a r e a s w h e r e N l i m i t a t i o n i s t h e m a j o r e n v i r o n m e n t a l s t r e s s P h y t o p l a n k t o n w h i c h m a i n t a i n t h e a b i l i t y t o t a k e up n i t r a t e r a p i d l y d u r i n g N s t a r v a t i o n c o n f e r l i t t l e c o m p e t i t i v e a d v a n t a g e b e c a u s e n i t r a t e i s r e c y c l e d on a much l o n g e r t i m e s c a l e a n d u s u a l l y s u p p l i e d c o n t i n u o u s l y a t l o w r a t e s b y e d d y d i f f u s i o n f r o m d e e p e r n i t r a t e - r i c h l a y e r s ( e . g . , D u g d a l e , 1967; E p p l e y e t a l . , 1979; K i n g a n d D e v o l , 1 9 7 9 ) . P h y s i c a l 142 events such as upwelling (e.g., Walsh et a l . , 1977, 1978) frontal mixing (e.g., Pingree et a l . , 1978; Parsons et a l . , 1981) internal waves (e.g., McGowan and Hayward, 1978; Cullen et a l . , 1983) may supply N O 3 - at elevated concentrations to the euphotic zone at intervals of days, weeks or longer. However, as Parslow et a l . (1984b) pointed out these physical mechanisms of sporadic N O 3 - supply also dilute the phytoplankton concentrations in the euphotic zone, thereby decreasing the demand for the nutrient, increasing the lifetime of the pulse and consequently reducing the benefits of transient elevated uptake rates; hence the metabolic cost of maintaining high uptake capability for nitrate during starvation (between pulses) may outweigh the benefits. 143 CHAPTER FOUR EFFECTS OF IRRADIANCE AND D I E L P E R I O D I C I T Y ON NITROGEN U T I L I Z A T I O N I N MICROMONAS PUSILLA INTRODUCTION I n o r d e r t o d e s c r i b e t h e m e c h a n i s m s i n v o l v e d i n p h y t o p l a n k t o n e c o l o g y t h e r e i s a n e e d t o f i r s t u n d e r s t a n d t h e s i g n i f i c a n c e o f b i o l o g i c a l i n t e r a c t i o n s w i t h e n v i r o n m e n t a l p a r a m e t e r s . I n most m a r i n e e n v i r o n m e n t s , l i g h t a n d t h e a v a i l a b i l i t y o f n i t r o g e n h a v e b e e n shown t o be t h e f a c t o r s w h i c h p r i m a r i l y r e g u l a t e p h y t o p l a n k t o n p r o d u c t i v i t y ( e . g . , D u g d a l e a n d G o e r i n g , 1967; R y t h e r a n d D u n s t a n , 1971; M a c l s a a c a n d D u g d a l e , 1972 ) . I n 1967, D u g d a l e a n d G o e r i n g p a r t i t i o n e d o c e a n i c p r i m a r y p r o d u c t i o n a c c o r d i n g t o i t s n i t r o g e n s o u r c e : \"new\" p r o d u c t i o n i s f u e l l e d by a l l o c h t h o n o u s N s o u r c e s , p r i n c i p a l l y n i t r a t e m i x e d i n t o s u r f a c e w a t e r s f r o m d e e p o c e a n r e s e r v e s , a n d s e c o n d a r i l y , ^ - f i x a t i o n , r i v e r i n e i n p u t s a n d r a i n f a l l ; \" r e g e n e r a t e d \" p r o d u c t i o n i s f u e l l e d by a u t o c h t h o n o u s N-s o u r c e s , p r i n c i p a l l y ammonium a n d u r e a , d e r i v e d f r o m b i o l o g i c a l p r o c e s s e s ( n u t r i e n t r e c y c l i n g ) o c c u r r i n g in situ. C h a n g e s i n n i t r o g e n c o n c e n t r a t i o n s i n t h e e u p h o t i c z o n e a r e u s u a l l y t h e r e s u l t o f p h y s i c a l m e c h a n i s m s , s u c h a s u p w e l l i n g a n d v e r t i c a l m i x i n g ( e . g . , C o d i s p o t i , 1983; T a k a h a s h i e t a l . , 1986; P i a t t e t a l . , 1 9 8 9 ) , w h i c h i n c r e a s e \"new\" n i t r o g e n c o n c e n t r a t i o n s , o r a l t e r n a t i v e l y , b i o l o g i c a l p r o c e s s e s , s u c h a s a n i m a l e x c r e t i o n ( e . g . , M c C a r t h y a n d G o l d m a n , 1979;) w h i c h i n c r e a s e \" r e g e n e r a t e d \" n i t r o g e n c o n c e n t r a t i o n s . 144 The l i g h t e n v i r o n m e n t shows e x t r e m e v a r i a t i o n a n d i n a p e r i o d i c f a s h i o n d u r i n g 24 h, ( e x c e p t a t t i m e s i n h i g h l a t i t u d e a r e a s ) . D i e l p h y s i o l o g i c a l r h y t h m s , i n r e s p o n s e t o f l u c t u a t i o n s i n l i g h t i n t e n s i t y , h a v e b e e n d e t e c t e d i n c u l t u r e s a n d n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s a n d i n c l u d e p r o c e s s e s s u c h a s p h o t o s y n t h e s i s ( e . g . , M a c C a u l l a n d P i a t t , 1977; P r e z e l i n a n d L e y , 1980; H a r d i n g e t a l . , 1 9 8 1 , 1983; P u t t a n d P r e z e l i n , 1 9 8 8 ) ; c e l l u l a r p i g m e n t c o n t e n t ( e . g . , S o u r n i a , 1974; Owens e t a l . , 1980; H a r d i n g e t a l . , 1 983; K o h a t a a n d W a t a n a b e , 1 9 8 9 ) ; i n vivo c h l o r o p h y l l a f l u o r e s c e n c e ( e . g . , Owens e t a l . , 1 9 8 0 ) ; c a r b o h y d r a t e a n d p r o t e i n c o n t e n t ( e . g . , R i c k e t t s , 1977; H i t c h c o c k , 1980; T e r r y e t a l . , 1 9 8 5 ) ; c e l l d i v i s i o n ( e . g . , C h i s h o l m e t a l . , 1980; C h i s h o l m , 1 9 8 1; S o u r n i a , 1974) enzyme a c t i v i t i e s ( e . g . E p p l e y e t a l . , 1970; P a c k a r d a n d B l a s c o , 1974; M a r t i n e z e t a l . , 1987) a n d n i t r o g e n u p t a k e ( e . g . , E p p l e y e t a l . , 1970 1971a,b; M a c l s a a c , 1978; T e r r y e t a l . , 1985 ) . P r e v i o u s s t u d i e s o f c u l t u r e s a n d n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s s u g g e s t t h a t N s t a r v a t i o n ( e . g . , H a r r i s o n , 1976; B h o v i c h i t r a a n d S w i f t , 1977) o r N l i m i t a t i o n ( e . g . M a l o n e e t a l . , 1975; E p p l e y e t a l . , 1971b) may dampen d i e l p e r i o d i c i t y o f N O 3 - u p t a k e a n d a s s i m i l a t i o n by a r e l a t i v e e n h a n c e m e n t o f N O 3 - u p t a k e d u r i n g t h e n i g h t . To d a t e o u r k n o w l e d g e o f n i t r o g e n u p t a k e b y p i c o p l a n k t o n h a v e b e e n d e r i v e d f r o m t r a c e r s t u d i e s o f s i z e - f r a c t i o n e d n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s ( e . g . , P r o b y n , 1985; P r o b y n a n d P a i n t i n g , 1985; N a l e w a j k o a nd G a r s i d e , 1983) a n d t h e e f f e c t s o f n u t r i e n t l i m i t a t i o n , 145 irradiance, or l i g h t p e r i o d i c i t y on t h e i r N uptake a b i l i t i e s have not been addressed. The objective of t h i s study was to determine the ef f e c t ( s ) of N l i m i t a t i o n on the p e r i o d i c i t y of in s i t u and po t e n t i a l N uptake by the ubiquitous, p i c o f l a g e l l a t e Micromonas p u s i l l a (Butch.) Manton et Parke. Nitr a t e , the N substrate which supports the most productive areas of the world's oceans (e.g., Eppley, 1981; Eppley and Peterson, 1979; Harrison et a l . , 1987) was the p r i n c i p a l focus of the present study. However, the d i e l p e r i o d i c i t y of p o t e n t i a l uptake rates of urea and NH 4 + were also examined i n view of the importance of regenerated nitrogenous n u t r i t i o n of phytoplankton i n oligotrophic, oceanic areas (e.g., Harrison, 1 9 8 0 ) ; environments where picoplankton have been demonstrated to be responsible for the majority of the photosynthetic production (e.g., L i et a l . , 1983; P i a t t et a l . , 1983; see revievs by Fogg, 1986; Joint, 1986; Stockner and Antia, 1 9 8 6 ) . 146 MATERIALS AND METHODS Culturing C o n t i n u o u s a n d b a t c h c u l t u r e s o f Micromonas pusilla ( c u l t u r e NEPCC 2 9 - 1 , N o r t h e a s t P a c i f i c C u l t u r e C o l l e c t i o n , D e p a r t m e n t o f O c e a n o g r a p h y , U n i v e r s i t y o f B r i t i s h C o l u m b i a ) w e r e grown on f i l t e r - s t e r i l i z e d (0.22 um M i l l i p o r e ) n u t r i e n t -e n r i c h e d a r t i f i c i a l s e a w a t e r b a s e d on ESAW ( H a r r i s o n e t a l . , 1 9 8 0 ) . The m o d i f i c a t i o n s t o t h e medium a n d t h e d e t a i l s o f i t s p r e p a r a t i o n a n d s t o r a g e a r e d e s c r i b e d i n C h a p t e r 3. C u l t u r e s w e r e m a i n t a i n e d i n a n a i r - c o o l e d , w a l k - i n , g r o w t h c h a m b e r a t \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 R 17 \u00C2\u00B1 0.5\u00C2\u00B0C a n d i l l u m i n a t e d f r o m two s i d e s by e i g h t V i t a - L i t e UHO f l u o r e s c e n t t u b e s (4 on e i t h e r s i d e o f c u l t u r e v e s s e l s ) s e t on a 14 h l i g h t a n d 10 h d a r k c y c l e . The l i g h t was \u00E2\u0080\u00A2 R f i l t e r e d t h r o u g h 3 mm t h i c k b l u e P l e x i g l a s (No. 2 0 6 9 , Rohm an d Haas) a n d t h e i r r a d i a n c e a d j a c e n t t o t h e c e n t r e o f t h e ? 1 c u l t u r e v e s s e l s was c a . 120 uE m s , a s m e a s u r e d w i t h a L i -C o r L I - 1 8 5 l i g h t m e t e r e q u i p p e d w i t h a L I - 1 9 0 S q u a n t u m s e n s o r ( 2 T T ) . C o n t i n u o u s c u l t u r e s o f M. pusilla w e r e m a i n t a i n e d i n c h e m o s t a t s s i m i l a r t o t h o s e d e s c r i b e d by D a v i s e t a l . ( 1 9 7 3 ) . C o n s t a n t f l o w p i s t o n pumps ( F l u i d M e t e r i n g I n c . , New Y o r k ) w e r e u s e d t o pump t h e medium f r o m 20 L P y r e x c a r b o y s t h r o u g h b o r o s i l i c a t e g l a s s o r s i l i c o n e r u b b e r t u b i n g i n t o t h e r e a c t o r v e s s e l s . The r e a c t o r v e s s e l s c o n s i s t e d o f 3 L, b o r o s i l i c a t e , f l a t - b o t t o m , b o i l i n g f l a s k s ( P y r e x ) s e a l e d w i t h a s i l i c o n e s t o p p e r s o t h a t a c o n s t a n t v o l u m e o f 2.5 L ( a c c u r a t e l y m e a s u r e d b e f o r e e a c h e x p e r i m e n t ) was m a i n t a i n e d i n s i d e t h e 147 r e a c t o r . C u l t u r e s w e r e s t i r r e d by t e f l o n - c o a t e d m a g n e t i c s t i r b a r s a t 60 rpm. C u l t u r e s w e r e u n i a l g a l b u t n o t a x e n i c , h o w e v e r a t t e m p t s w e r e made t o m i n i m i z e b a c t e r i a l g r o w t h i n t h e medium a n d c u l t u r e s b y u s i n g a s e p t i c t e c h n i q u e s a n d s c r u p u l o u s l y c l e a n i n g a l l g l a s s w a r e , pump f i t t i n g s a n d t u b i n g w i t h 10% HC1 a c i d ( v / v ) , r i n s i n g w i t h d i s t i l l e d , d e i o n i z e d w a t e r (DDW) a n d a u t o c l a v i n g p r i o r t o u s e . D i f f i c u l t i e s i n e s t a b l i s h i n g a d e f i n e d medium a f t e r a u t o c l a v i n g a n d i n k e e p i n g a c o n t i n u o u s c u l t u r e a x e n i c f o r e x t e n d e d p e r i o d s i s a common p r o b l e m ( e . g . , G o l d m a n , 1 9 7 7 ) . However, i t was f e l t t h a t b y u s i n g t h e a b o v e p r e c a u t i o n s any b a c t e r i a l e f f e c t s w o u l d be m i n i m i z e d t o t h e p o i n t w h e r e t h e i r e f f e c t s w o u l d be n e g l i g i b l e r e l a t i v e t o t h e r e s p o n s e ( s ) o f Micromonas pusilla. C u l t u r e s w e r e a l l o w e d t o grow a s b a t c h c u l t u r e s f o r s e v e r a l d a y s ( 4 - 5 ) b e f o r e c o n t i n u o u s a d d i t i o n o f t h e i n f l o w medium c o n t a i n i n g 50.6 \u00C2\u00B1 0 . 9 uq-at N 0 3 ~ - L ~ 1 a n d 0.18 \u00C2\u00B1 0.08 j j g - a t N 0 2 ~ * L _ 1 was i n i t i a t e d . D i l u t i o n r a t e s , c a l c u l a t e d f r o m t h e v o l u m e o f e f f l u e n t c o l l e c t e d d a i l y , w e r e 0.24, 0.49 a n d 0.74 d~^ a n d v a r i e d l e s s t h a n 0.01 d-\"*\". C u l t u r e s a m p l e s w e r e w i t h d r a w n d a i l y b y s y r i n g e a t t h e m i d - p o i n t o f t h e l i g h t p e r i o d f o r m o n i t o r i n g o f i n v i v o f l u o r e s c e n c e , c e l l c o u n t s a n d p a r t i c l e s i z e d i s t r i b u t i o n . E x p e r i m e n t s w e r e n o t i n i t i a t e d u n t i l s t e a d y - s t a t e h a d b e e n a c h i e v e d w i t h i n e a c h c o n t i n u o u s c u l t u r e . S t e a d y - s t a t e was assumed when c e l l c o u n t s w e r e c o n s t a n t t o w i t h i n \u00C2\u00B110% f o r a minimum o f t h r e e c o n s e c u t i v e d a y s i n t h e h i g h e s t g r o w t h c u l t u r e a n d \u00C2\u00B15% f o r t h e t w o l o w e r g r o w t h r a t e c u l t u r e s . 148 Analytical procedures C e l l c o n c e n t r a t i o n s w e r e m e a s u r e d w i t h a C o u l t e r C o u n t e r m o d e l TA I I e l e c t r o n i c p a r t i c l e c o u n t e r a c c o r d i n g t o t h e p r o c e d u r e s o u t l i n e d i n d e t a i l i n C h a p t e r 3. A v e r a g e c e l l v o l u m e s w e r e c o m p u t e d f r o m t h e p a r t i c l e s i z e d i s t r i b u t i o n b a s e d on e q u i v a l e n t s p h e r i c a l d i a m e t e r . R e p l i c a t e ( 2 - 4 ) s a m p l e s f o r t h e m e a s u r e m e n t o f p a r t i c u l a t e o r g a n i c c a r b o n (POC) a n d p a r t i c u l a t e o r g a n i c n i t r o g e n (PON) w e r e f i l t e r e d o n t o p r e c o m b u s t e d (460\u00C2\u00B0C, 6 h) Whatman GF/F g l a s s f i b e r f i l t e r s , s t o r e d f r o z e n a t -20\u00C2\u00B0C i n d e s i c c a t o r s a n d a n a l y z e d on a CHN e l e m e n t a l a n a l y z e r ( C o n t r o l E q u i p m e n t C o r p . m o d e l 240-XA) u s i n g a c e t a n i l i d e a s t h e c a l i b r a t i o n s t a n d a r d s . E x t e r n a l ( a m b i e n t ) a n d i n t e r n a l ( c e l l u l a r p o o l s ) c o n c e n t r a t i o n s o f n i t r a t e a n d n i t r i t e w e r e m e a s u r e d w i t h a T e c h n i c o n A u t o A n a l y z e r R I I f o l l o w i n g t h e p r o c e d u r e s o u t l i n e d i n Wood e t a l . ( 1 9 6 7 ) . The p r e c i s i o n o f t h e a b o v e a n a l y t i c a l t e c h n i q u e s a r e p r e s e n t e d i n A p p e n d i x 6. S a m p l e s f o r t h e m e a s u r e m e n t o f e x t e r n a l n u t r i e n t c o n c e n t r a t i o n s w e r e f i l t e r e d t h r o u g h p r e c o m b u s t e d Whatman GF/F f i l t e r s i n t o p r e v i o u s l y a c i d - w a s h e d , D D W - r i n s e d p o l y p r o p y l e n e b o t t l e s a f t e r an i n i t i a l r i n s e w i t h f i l t r a t e . S a m p l e s w e r e s t o r e d f r o z e n (-20\u00C2\u00B0C) u n t i l a n a l y s e s . I n t e r n a l d i s s o l v e d n i t r o g e n p o o l s w e r e d e t e r m i n e d a f t e r e x t r a c t i o n w i t h b o i l i n g DDW ( m e t h o d C-2, T h o r e s e n e t a l . , 1 9 8 2 ) . P h y t o p l a n k t o n c e l l s ( 20-50 m l o f c u l t u r e ) w e r e f i l t e r e d o n t o c o m b u s t e d g l a s s f i b e r f i l t e r s (Whatman GF/F, 25 mm, p r e v i o u s l y w a s h e d w i t h 2N HC1 a n d s u b s e q u e n t l y r i n s e d w i t h 50 m l b o i l i n g a n d 50 m l c o o l DDW) 149 w i t h a l o w d i f f e r e n t i a l p r e s s u r e (< 80 nun H g ) . A f t e r f i l t r a t i o n , t h e f i l t e r was r i n s e d w i t h 5-10 m l o f c u l t u r e medium c o n t a i n i n g no d e t e c t a b l e i n o r g a n i c n i t r o g e n ( o b t a i n e d f r o m g r a v i t y f i l t r a t i o n o f N - s t a r v e d c u l t u r e s d e s c r i b e d i n C h a p t e r 3 ) . The f i l t e r a n d c e l l s w e r e e x t r a c t e d w i t h b o i l i n g DDW, c o l l e c t e d d i r e c t l y i n t o p o l y p r o p y l e n e b o t t l e s , a n d s t o r e d f r o z e n (-20\u00C2\u00B0C) u n t i l a n a l y s e s . B l a n k s w e r e f i l t e r s w i t h o u t c e l l s on them a n d t h e y w e r e t r e a t e d t h e same a s s a m p l e s . The f i l t r a t i o n a p p a r a t u s was a c i d - w a s h e d , D D W - r i n s e d a n d d r i e d p r i o r t o c o l l e c t i o n o f s a m p l e s . 15 S a m p l e s f o r N a n a l y s i s w e r e c o l l e c t e d on p r e c o m b u s t e d Whatman GF/F f i l t e r s a n d s t o r e d f r o z e n i n d e s i c c a t o r s . The e n r i c h m e n t o f s a m p l e s was a s s a y e d by e m i s s i o n s p e c t r o m e t r y (JASCO m o d e l N-150) a f t e r c o n v e r s i o n o f t h e p a r t i c u l a t e N t o N 2 g a s by t h e m i c r o - D u m a s d r y c o m b u s t i o n t e c h n i q u e . A l l a n a l y s e s w e r e c o n d u c t e d i n d u p l i c a t e a c c o r d i n g t o t h e p r o c e d u r e s d e s c r i b e d i n d e t a i l i n C h a p t e r 1. Experimental procedures D i e l c y c l e s o f u p t a k e a n d g r o w t h The c o n c e n t r a t i o n o f c e l l s a n d i n o r g a n i c n i t r o g e n i n t h e t h r e e c o n t i n u o u s c u l t u r e s a n d b a t c h c u l t u r e s was m o n i t o r e d o v e r a 24 h p e r i o d b e g i n n i n g a t t h e s t a r t o f t h e l i g h t p e r i o d . T h e s e e x p e r i m e n t s w e r e c o n d u c t e d w i t h d u p l i c a t e c u l t u r e s w h i c h w e r e o r i g i n a l l y i n o c u l a t e d f r o m t h e same s t o c k c u l t u r e . A t t w o h o u r i n t e r v a l s , s a m p l e s w e r e d r a w n by s y r i n g e d i r e c t l y f r o m t h e r e a c t o r v e s s e l s f o r d e t e r m i n a t i o n o f c e l l c o n c e n t r a t i o n a n d v o l u m e a n d t h e a m b i e n t a n d i n t e r n a l NC^ - a n d 150 NO2\"\" c o n c e n t r a t i o n s . S m a l l v o l u m e s (25-60 m l ) w e r e w i t h d r a w n f r o m t h e c o n t i n u o u s c u l t u r e s t o m i n i m i z e t h e p e r t u r b a t i o n t o t h e i r s t e a d y - s t a t e c o n d i t i o n . The t o t a l v o l u m e w i t h d r a w n f r o m t h e c y c l o s t a t s was b e t w e e n 1 a n d 2.5% o f t h e c u l t u r e v o l u m e . D u r i n g t h e t i m e t h a t t h e c y c l o s t a t s w e r e r e f i l l i n g , t h e o u t f l o w was c l o s e d . The m a t h e m a t i c a l e q u a t i o n s g o v e r n i n g t h e r a t e o f c h a n g e o f s u b s t a n c e s i n t h e c u l t u r e v e s s e l s a r e v i r t u a l l y i d e n t i c a l t o t h o s e d e s c r i b i n g o v e r f l o w c o n d i t i o n s , b e c a u s e t h e i n c r e a s e i n c u l t u r e v o l u m e due t o t h e i n p u t o f f r e s h medium d i l u t e s t h e c u l t u r e i n a manner s i m i l a r t o t h a t r e s u l t i n g f r o m o v e r f l o w u n d e r c o n s t a n t v o l u m e c o n d i t i o n s ( L a w s , 1985; D i T u l l i o a n d L a w s , 1 9 8 6 ) . T h e r e f o r e , a s l o n g a s t h e v o l u m e o f s a m p l e w i t h d r a w n i s s m a l l c o m p a r e d t o t h e v o l u m e o f t h e g r o w t h chamber i t c a n be assumed t h a t s a m p l i n g w i l l n o t s i g n i f i c a n t l y p e r t u r b t h e s t e a d y s t a t e c o n d i t i o n . R a t e s o f n i t r a t e u p t a k e i n t h e c o n t i n u o u s c u l t u r e s w e r e c a l c u l a t e d u s i n g t h e e q u a t i o n s o f C a p e r o n a n d Z i e m a n n ( 1 9 7 6 ) . The r a t e o f c h a n g e o f n i t r a t e c o n c e n t r a t i o n was assumed t o be d e s c r i b e d by t h e e q u a t i o n : d S / d t = D - ( S i - S ) - U/V Where S i s t h e c o n c e n t r a t i o n o f N O 3 - i n t h e c h e m o s t a t , S^ i s t h e N O 3 - c o n c e n t r a t i o n o f t h e i n f l o w medium, U i s t h e t o t a l N O 3 - u p t a k e r a t e , V i s t h e v o l u m e o f t h e g r o w t h c h a m b e r a n d D i s t h e d i l u t i o n r a t e . The i n t e g r a t e d s o l u t i o n o f t h i s e q u a t i o n h a s b e e n g i v e n by C a p e r o n a n d Z i e m a n n (1976) a n d t h e n i t r a t e u p t a k e d u r i n g t h e i n t e r v a l ( t ) b e t w e e n two s a m p l i n g p e r i o d s i s : 151 nX = DSj^ + D \u00E2\u0080\u00A2 w h e r e S Q a n d a r e N O 3 - c o n c e n t r a t i o n s a t t i m e s 0 a n d t , r e s p e c t i v e l y , n i s t h e PON c o n c e n t r a t i o n o f t h e c u l t u r e ( a s s u m e d t o be c o n s t a n t a t s t e a d y s t a t e ) a n d X i s t h e s p e c i f i c u p t a k e r a t e w i t h nX = U/V. T h i s e q u a t i o n a s s u m e s t h a t u p t a k e r a t e s a r e c o n s t a n t d u r i n g t h e s a m p l i n g i n t e r v a l s , w h i c h i s n o t n e c e s s a r i l y a l w a y s t r u e , b u t t h e c a l c u l a t e d r a t e s a r e u s e f u l a s e s t i m a t e s o f a v e r a g e u p t a k e r a t e s d u r i n g t h e s e p e r i o d s . U p t a k e r a t e s i n t h e b a t c h c u l t u r e s , e s t i m a t e d f r o m t h e d i s a p p e a r a n c e o f N O 3 - i n t h e medium, w e r e c a l c u l a t e d b y d i v i d i n g t h e d i f f e r e n c e i n t h e n u t r i e n t c o n c e n t r a t i o n i n s u c c e s s i v e s a m p l e s b y t h e l e n g t h o f t h e t i m e i n t e r v a l ; s p e c i f i c r a t e s w e r e c a l c u l a t e d b y d i v i d i n g t h i s v a l u e b y t h e e s t i m a t e d e x p o n e n t i a l a v e r a g e PON c o n c e n t r a t i o n d u r i n g t h a t t i m e . I t was a s s u m e d t h a t a l l t h e N O 3 - r e m o v e d f r o m t h e medium was i n c o r p o r a t e d i n t o t h e p a r t i c u l a t e f r a c t i o n a n d t h a t n one o f t h e N03~ t a k e n up was e x c r e t e d a s d i s s o l v e d o r g a n i c n i t r o g e n (DON). T h i s s i t u a t i o n was o b s e r v e d i n o t h e r e x p e r i m e n t s f o r M. pusilla c u l t u r e s g r o w i n g u n d e r c o n t i n u o u s l i g h t ( A p p e n d i x 4 ) . D i e l v a r i a t i o n i n maximum N u p t a k e r a t e s A t 8 s e p a r a t e t i m e s o v e r a 17 d p e r i o d , e x p e r i m e n t s w e r e c o n d u c t e d t o d e t e r m i n e t h e . s a t u r a t e d u p t a k e r a t e s o f N O 3 - , N H 4 + a n d u r e a f r o m t h e c o n t i n u o u s c u l t u r e s g r o w n a t 0.74, 0.49, a n d 0.24 d -^\". T h e s e e x p e r i m e n t a l t i m e s c o r r e s p o n d e d t o 152 the b e g i n n i n g , middle and end of the 14 h l i g h t and 10 h dark p e r i o d s and are gi v e n i n Table 4.3. The experimental procedure a t each time was as f o l l o w s : d u p l i c a t e samples were f i r s t c o l l e c t e d f o r the measurement of POC, PON, ambient n i t r a t e and n i t r i t e and c e l l c o n c e n t r a t i o n s . T h i r t y ml samples were t r a n s f e r r e d t o s t e r i l e , 50 ml b o r o s i l i c a t e g l a s s t e s t tubes w i t h t e f l o n - l i n e d caps and d u p l i c a t e s i n o c u l a t e d w i t h 16.6 /jg-at N ' L - 1 of 1 5NH 4C1, N a 1 5 N 0 3 or C O ( 1 5 N H 4 ) 2 (Kor Isotopes, 99 atom % ) . Incubations were conducted i n the dark \u00E2\u0080\u0094 2 \u00E2\u0080\u0094 1 and at the same PPFD as p r e v i o u s l y grown (ca. 120 uE m s ) and then t e r m i n a t e d a f t e r 2 h by f i l t r a t i o n ( p ressure d i f f e r e n t i a l < 80 mm Hg). The N s p e c i f i c s a t u r a t e d uptake r a t e s were determined from the con s t a n t s p e c i f i c uptake model of Dugdale and Wilkerson (1986) (equation 6 of Appendix 1). Although the t o t a l sample volume withdrawn r e p r e s e n t s only 10-15% of the growth chamber volume, the c u l t u r e s were sampled at i n t e r v a l s never l e s s t h a t 1 d - ^ . C e l l c o n c e n t r a t i o n was monitored over the 16 d experimental p e r i o d by withdrawing samples a t the mid-point of the l i g h t - d a r k c y c l e ( F i g . 4.1). C e l l c o n c e n t r a t i o n s were r e l a t i v e l y s t a b l e over the course of the study and d a i l y v a r i a t i o n s averaged 8.4 (\u00C2\u00B17.3), 3.7 (\u00C2\u00B13.2) and 4.6 (\u00C2\u00B13.7)% i n the 0.73, 0.49 and 0.24 d - 1 c y c l o s t a t s , r e s p e c t i v e l y , E f f e c t of PPFD on N0 3~ and NH 4 + uptake Three continuous c u l t u r e s (0.77, 0.52 and 0.24 d -^) were har v e s t e d j u s t p r i o r t o the middle of the l i g h t p e r i o d (6 h l i g h t ) t o d e t e r m i n e t h e e f f e c t ( s ) o f PPFD on N 0 3 ~ a n d N H 4 u p t a k e r a t e . D u p l i c a t e (3 o r 4) s a m p l e s w e r e i n i t i a l l y c o l l e c t e d f o r c o n c e n t r a t i o n m e a s u r e m e n t s o f PON, POC, a m b i e n t N 0 3 ~ a n d NO2 - a n d p h y t o p l a n k t o n c e l l s . The r e m a i n d e r o f t h e c u l t u r e was s p l i t i n h a l f a n d i n o c u l a t e d w i t h 15 uq-at N ' L - ^ o f N a 1 5 N 0 3 ~ o r 1 5 N H 4 C 1 ( K o r I s o t o p e s , 99 a t o m % ) . F o r t y m l s a m p l e s w e r e i m m e d i a t e l y t r a n s f e r r e d , u n d e r r e d u c e d l i g h t c o n d i t i o n s , t o s t e r i l e 50 m l b o r o s i l i c a t e g l a s s t e s t t u b e s , w i t h t e f l o n - l i n e d c a p s , a n d p l a c e d w i t h i n n e u t r a l d e n s i t y s c r e e n i n g t o s i m u l a t e a r a n g e o f PPFDs f r o m 140 t o 3.5 \u00E2\u0080\u0094 7 \u00E2\u0080\u0094 1 uE m s a n d d a r k n e s s . I r r a d i a n c e s , a c h i e v e d b y a t t e n u a t i o n due t o d i s t a n c e a n d s c r e e n i n g , w e r e m e a s u r e d w i t h a B i o s p h e r i c a l I n s t r u m e n t s QSL-100 in s e n s o r p l a c e d w i t h i n t h e s c r e e n i n g i n t h e i n c u b a t i o n p o s i t i o n . I n c u b a t i o n s w e r e c o n d u c t e d a t t h e g r o w t h t e m p e r a t u r e a n d t e r m i n a t e d a f t e r 2 h 1 5 by l o w vacuum f i l t r a t i o n 80 mm Hg) f o r c o l l e c t i o n o f N-l a b e l l e d p a r t i c u l a t e m a t e r i a l . D u p l i c a t e c u l t u r e s e n r i c h e d w i t h N - l a b e l l e d N 0 3 ~ a n d NH 4 w e r e a l s o i n c u b a t e d f o r 4 a n d 6 h i n t h e d a r k . N i t r o g e n u p t a k e r a t e s w e r e c a l c u l a t e d a c c o r d i n g t o t h e e q u a t i o n s d e s c r i b e d p r e v i o u s l y f o r t h e s a t u r a t e d N u p t a k e e x p e r i m e n t s . K i n e t i c c o n s t a n t s f o r N 0 3 ~ a n d N H 4 + u p t a k e w i t h r e s p e c t t o PPFD w e r e o b t a i n e d by a d i r e c t f i t o f t h e d a t a t o a m o d i f i e d M i c h a e l i s - M e n t e n h y p e r b o l a u s i n g t h e n o n - l i n e a r l e a s t - s q u a r e s t e c h n i q u e a n d f o r m u l a t i o n d e s c r i b e d e a r l i e r i n C h a p t e r 2. 154 F i g u r e 4.1. C e l l c o n c e n t r a t i o n a s a f u n c t i o n o f t i m e f o r n i t r a t e - l i m i t e d c y c l o s t a t c u l t u r e s o f Micromonas pusilla g r o w n i n a 14h:10h L:D c y c l e a t (O) 0.74, (\u00E2\u0080\u00A2) 0.49 a n d (A) 0.24 d\" 1 d i l u t i o n r a t e s . E x p e r i m e n t s w e r e c o n d u c t e d on d a y s 2,7,8,11,13 a n d 16. 1 2 1 0 O 00 U J o 6 0-4 2 0 0 -A-A. A \u00E2\u0080\u0094 A .A-A A - A o. \u00E2\u0080\u00A2o- -o-\u00E2\u0080\u00A2o. -o-o. ~o-o-o' -O-o 2 4 6 10 12 4 6 T I M E ( d ) 155 RESULTS Nitrate-replete cultures The s p e c i f i c g r o w t h r a t e u o f d u p l i c a t e N C > 3 - - r e p l e t e c u l t u r e s o f Micromonas pusilla a v e r a g e d 1.08 \u00C2\u00B1 0.013 d - ^ a n d 1.13 \u00C2\u00B1 0 . 0 2 2 d ~ l b a s e d on c e l l c o n c e n t r a t i o n a n d t o t a l c e l l v o l u m e , r e s p e c t i v e l y , o v e r t h e 22 h m o n i t o r i n g p e r i o d . T h i s r a t e i s c o n s i s t e n t w i t h t h e a v e r a g e g r o w t h r a t e , c a l c u l a t e d b y t h e i n c r e a s e i n in vivo f l u o r e s c e n c e , m e a s u r e d p r i o r t o e x p e r i m e n t a t i o n ( 1 . 03 d-\"^) a n d i s n o t d i f f e r e n t f r o m t h e g r o w t h r a t e m e a s u r e d u n d e r c o n t i n u o u s l i g h t ( 1 . 1 1 d ~ ^ , C h a p t e r 3 ) . T o t a l c e l l v o l u m e (L ; L c e l l v o l u m e p e r L c u l t u r e medium) was d i v i d e d b y t h e c e l l c o n c e n t r a t i o n ( c e l l s \u00E2\u0080\u00A2L--'-; F i g . 4.2A) 3 \u00E2\u0080\u0094 1 t o e s t i m a t e mean c e l l v o l u m e (um - c e l l ; F i g . 4.2C) a t e a c h 2 h i n t e r v a l d u r i n g t h e l i g h t - d a r k i l l u m i n a t i o n c y c l e . C e l l d i v i s i o n o f M. pusilla o c c u r r e d d u r i n g t h e l a t e l i g h t p e r i o d (>10 h l i g h t ) a n d p r i m a r i l y t h r o u g h o u t t h e d a r k p e r i o d a n d r e s u l t e d i n a c a . t w o - f o l d i n c r e a s e i n c e l l c o n c e n t r a t i o n ( F i g . 4 . 2 A ) . The i n c r e a s e i n c e l l c o n c e n t r a t i o n b y c e l l d i v i s i o n was a c c o m p a n i e d b y a r e d u c t i o n i n c e l l s i z e a n d r e s u l t e d i n d e c r e a s e d mean c e l l v o l u m e d u r i n g t h e d a r k p e r i o d ( F i g . 4 . 2 C ) . The mean c e l l v o l u m e o f d u p l i c a t e N C ^ - r e p l e t e c u l t u r e s g rown on a 14:10 L:D c y c l e was 1.96 \u00C2\u00B1 0.02 um^; mean c e l l v o l u m e o f M. pusilla i n c r e a s e d 86% d u r i n g t h e l i g h t 3 3 p e r i o d f r o m 1.35 L m r t o 2.57 um a t t h e o n s e t o f t h e d a r k p e r i o d . N i t r a t e u p t a k e a nd i n t r a c e l l u l a r p o o l a c c u m u l a t i o n showed m a r k e d d i e l v a r i a t i o n s i n t h e e x p o n e n t i a l l y g r o w i n g c u l t u r e s , 156 Figure 4.2. C e l l concentration (A), growth rate (B) and mean c e l l volume (C) versus elapsed time since l i g h t s on i n duplicate ((},\u00E2\u0080\u00A2) batch cultures of Micromonas pusilla grown on a 14h:10h L:D i l l u m i n a t i o n cycle. Dashed l i n e i n d i c a t e s onset of dark period denoted by dark bar. Growth rate p l o t t e d against average time between sampling. < or UJ o o o _j UJ o 6 . 0 0 0 5 . 0 0 0 4 . 0 0 0 3 . 0 0 0 2 . 0 0 0 1 1.000 0 . 0 0 0 - \u00E2\u0080\u00A2 i \u00E2\u0080\u00A2 1 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 r \u00E2\u0080\u0094 i 1 r i \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 A \u00E2\u0080\u00A2 -^ 8 - 8 = 8 ^ \u00C2\u00AE j i i i i i i i i i i o UJ r -< or x o tr UJ 2 .50 Z5 _ l o 2 . 00 > 1 1.50 1 UJ o 1.00 < 0 . 50 UJ 0 . 00 I I / ro \u00C2\u00A3 8 10 12 14 16 18 2 0 2 2 2 4 TIME (h) 157 a l t h o u g h t h e r e was c o n s i d e r a b l e v a r i a b i l i t y i n i n t e r n a l NO3 -c o n c e n t r a t i o n b e t w e e n r e p l i c a t e c u l t u r e s . S p e c i f i c NO3 -u p t a k e r a t e s a v e r a g e d 0.0360 \u00C2\u00B1 0.0010 h - 1 d u r i n g t h e 14 h l i g h t p e r i o d a n d d e c r e a s e d t o 0.0168 \u00C2\u00B1 0.0028 h - 1 d u r i n g t h e d a r k ( F i g . 4 . 3 B ) . R a t e s o f NG^ - u p t a k e n o r m a l i z e d t o t o t a l c e l l v o l u m e showed t h e same d i e l v a r i a t i o n a s N s p e c i f i c r a t e s ; d a y t i m e v a l u e s w e r e c a . 2 - f o l d g r e a t e r t h a n n i g h t t i m e v a l u e s . The i n t e r n a l c o n c e n t r a t i o n s o f NO3 - (mg-at N\u00C2\u00ABlitre c e l l volume -\"' -; F i g . 4.3C) w e r e g r e a t e s t a t t h e b e g i n n i n g o f t h e l i g h t p e r i o d i n p a r a l l e l w i t h t h e most a c t i v e p h a s e o f u p t a k e a n d d e c r e a s e d t h r o u g h o u t t h e r e m a i n d e r o f t h e l i g h t p e r i o d . The l o w e s t i n t e r n a l n i t r a t e c o n c e n t r a t i o n s w e r e d u r i n g t h e f i r s t 4 h o f d a r k n e s s a n d s u b s e q u e n t l y i n c r e a s e d m a r k e d l y ( c a . 7 - f o l d ) i n one c u l t u r e a n d o n l y s l i g h t l y i n t h e o t h e r b e f o r e t h e commencement o f t h e l i g h t p e r i o d . N i t r a t e - l i m i t e d c u l t u r e s C e l l d i v i s i o n ( c y t o k i n e s i s ) showed a s t r o n g d i e l p e r i o d i c i t y i n t h e N C ^ - l i m i t e d c y c l o s t a t c u l t u r e s o f M. pusilla ( F i g . 4 . 4 ) . I n c o n t i n u o u s c u l t u r e t h e r a t e o f c h a n g e i n c e l l c o n c e n t r a t i o n s w i t h t i m e ( d x / d t ) i s g i v e n b y : d l n x / d t = u{t) - D wh e r e u(t) i s t h e i n s t a n t a n e o u s p o p u l a t i o n g r o w t h r a t e a n d D i s t h e d i l u t i o n r a t e o f t h e c u l t u r e , w h i c h i s e x p r e s s e d i n t h e same u n i t s o f t i m e a s u(t). An i n c r e a s e i n c e l l numbers w i t h t i m e d u r i n g t h e 14h:10h L:D p h o t o p e r i o d , i . e . a p o s i t i v e Figure 4.3. Dissolved nit r a t e concentration i n culture medium (A), s p e c i f i c n i t r a t e uptake rate (B), and i n t r a c e l l u l a r n i t r a t e concentration (C) of duplicate, batch cultures of Micromonas pusilla grown on a 14h:10h L:D illumination cycle. Dashed l i n e indicates onset of dark period denoted by dark bar. Nitrate concentrations plotted against elapsed time since l i g h t s on; nitra t e uptake plotted against average time between sampling. f -< cc I-z Ul o o o UJ < cc r\u00E2\u0080\u0094 Ul < r\u00E2\u0080\u0094 CL Ul f\u00E2\u0080\u0094 < CC Ul \u00E2\u0080\u00A2 r-< CC r-cc < Ul o < cc a. a> E O > a> u a> o i e 4 6 8 10 12 14 16 18 2 0 22 2 4 TIME (h) F i g u r e 4.4. C e l l c o n c e n t r a t i o n s o f d u p l i c a t e n i t r a t e - l i m i t e d c y c l o s t a t s o f Micromonas pusilla g r o w n i n a 1 4 h : 1 0 h L:D c y c l e a t 0.74 d\" 1 ( A ) , 0.48 d\" 1 (B) , a n d 0.24 d\" 1 (C) d i l u t i o n r a t e . C o n c e n t r a t i o n p l o t t e d a g a i n s t e l a p s e d t i m e s i n c e l i g h t s o n . D a s h e d l i n e i n d i c a t e s o n s e t o f d a r k p e r i o d d e n o t e d b y d a r k b a r . 10.0 -a . o l 6.0 -1 . 4.0 -_ l 2.0 -o \u00E2\u0080\u00A2 0.0 -, < tr h-Ld O o o U J o 10.0 8.0 6.0 4.0 2.0 0.0 10.0 8.0 6.0 4.0 2.0 0.0 B - i 1 1 r -o - -o - \u00E2\u0080\u00A2 - \u00E2\u0080\u0094 \u00E2\u0080\u00A2 0 2 4 6 8 10 12 14 16 18 2 0 2 2 2 4 TIME (h) 160 d l n x / d t , i n d i c a t e s t h a t u(t) > D. Thus t h e t i m e i n t e r v a l d u r i n g w h i c h d l n x / d t i s b o t h p o s i t i v e a n d g r e a t e s t i s t h e p e r i o d o f maximum c e l l d i v i s i o n . F o r t h e c u l t u r e s g rown a t t h e d i l u t i o n r a t e s 0.73 a n d 0.75 d - ^ ( h e r e a f t e r r e f e r r e d t o a s 0.74 d--*-) maximum c e l l d i v i s i o n o c c u r r e d d u r i n g t h e m i d - d a r k p e r i o d (4-8 h a f t e r o n s e t o f d a r k n e s s ) a l t h o u g h l o w e r p o s i t i v e v a l u e s o f d l n x / d t o c c u r r e d d u r i n g l a t e l i g h t (10-14 h a f t e r l i g h t s on) a n d 2-4 h a f t e r d a r k n e s s ( F i g . 4 . 5 ) . The p e r i o d o f maximum c e l l d i v i s i o n o c c u r r e d e a r l i e r i n t h e d a r k p e r i o d (1-6 h a f t e r o n s e t o f d a r k n e s s ) f o r t h e c o n t i n u o u s c u l t u r e s g rown a t 0.4 8 d-\"*\" d i l u t i o n r a t e , a l t h o u g h a g a i n t h e r e w e r e l o w e r p o s i t i v e v a l u e s o f d l n x / d t d u r i n g t h e l a t e l i g h t ( 10-12 h a f t e r l i g h t s o n ) . I n t h e s l o w e s t g r o w i n g c o n t i n u o u s c u l t u r e s (0.24 d - ^ ) t h e p e r i o d o f maximum c e l l d i v i s i o n o c c u r r e d 6-8 h a f t e r t h e o n s e t o f d a r k n e s s ; i n one c u l t u r e l o w e r p o s i t i v e v a l u e s o f d l n / d t w e r e o b s e r v e d t h r o u g h o u t t h e d a r k p e r i o d , i n c l u d i n g t h e f i r s t 2 h o f d a r k n e s s , w h i l e i n t h e r e p l i c a t e c u l t u r e p o s i t i v e v a l u e s w e r e n o t o b s e r v e d u n t i l a f t e r 2 h o f d a r k n e s s a n d c o n t i n u e d t h r o u g h o u t t h e n i g h t a n d t h e f i r s t h o u r s o f l i g h t . Mean c e l l v o l u m e (um -cell) showed m a r k e d d i e l v a r i a t i o n i n a l l c y c l o s t a t c u l t u r e s ( F i g . 4 . 6 ) . I n t h e c u l t u r e s g rown a t a d i l u t i o n r a t e o f 0.74 t h e c e l l v o l u m e i n c r e a s e d by an a v e r a g e o f 8 5 % d u r i n g t h e l i g h t p e r i o d (0800 h - 2200 h) f r o m 1.12-1.20 um a t t h e b e g i n n i n g o f t h e l i g h t p e r i o d t o a 3 maximum s i z e o f 2.08 um , a c h i e v e d a f t e r 6 h o f l i g h t , a n d t h e n d e c r e a s e d d u r i n g t h e n i g h t (2200 h t o 0800 h) t o t h e 161 F i g u r e 4.5. C e l l d i v i s i o n r a t e o f d u p l i c a t e n i t r a t e - l i m i t e d c y c l o s t a t s o f Micromonas pusilla g r o w n i n a 14h:10h L:D c y c l e a t 0.74 d _ 1 ( A ) , 0.48 d\" 1 ( B ) , a n d 0.24 d _ 1 (C) d i l u t i o n r a t e s . C e l l d i v i s i o n p l o t t e d a g a i n s t a v e r a g e t i m e b e t w e e n s a m p l i n g , d a s h e d h o r i z o n t a l l i n e i n d i c a t e s d i l u t i o n r a t e i n h - 1 . D a s h e d v e r t i c a l l i n e i n d i c a t e s o n s e t o f d a r k p e r i o d d e n o t e d by d a r k b a r , 2.50 2.00 .50 1.00 0.50 0.00 UJ - 0 . 5 0 i r\u00E2\u0080\u0094 1 1 1 1 1 . A : \u00E2\u0080\u00A2 A O A / \ A A / I A I \/ \ o 1 1 1 1 < cr o c o > UJ O 2.00 1.50 1.00 0.50 0.00 -0.50 \u00E2\u0080\u00941 1\u00E2\u0080\u0094 ' 1 1 1 1 . B * a A oV A. v/\//V 1 1 1 1 1 1 L 1 \\u00C2\u00BB^ o 8 10 12 14 16 18 20 22 24 T I M E ( h ) F i g u r e 4.6. Mean c e l l v o l u m e o f d u p l i c a t e n i t r a t e - l i m i t e d c y c l o s t a t s o f Micromonas pusilla g r o w n i n a 1 4 h : 1 0 h L:D c y c l a t 0.74 d _ 1 ( A ) , 0.48 d _ 1 ( B ) , a n d 0.24 d _ 1 (C) d i l u t i o n r a t e s p l o t t e d a g a i n s t e l a p s e d t i m e s i n c e l i g h t s o n . D a s h e d l i n e i n d i c a t e s o n s e t o f d a r k p e r i o d d e n o t e d b y d a r k b a r . LU 0.50 -o < U J 0.00 2.00 1.50 _i i i i i 1.00 - l 1 r 0.50 -0.00 1 ' 1 1 ' 1 ' ' 1 ' ' 1 0 2 4 6 8 10 12 14 16 18 20 22 24 TIME (h) 163 o r i g i n a l minimum s i z e by the s t a r t of the l i g h t p e r i o d . T h i s d i u r n a l enlargement and n o c t u r n a l r e d u c t i o n i n c e l l u l a r volume was a l s o observed i n the 0.48 d-\"^ and 0.24 d-\"*\" grown c u l t u r e s where mean c e l l u l a r volume i n c r e a s e d an average of 67% (1.11-1.15 um3 t o 1.83-1.92 um3) and 26% (1.08 t o 1.38 um3) , r e s p e c t i v e l y , over the course of the i l l u m i n a t i o n c y c l e ( F i g . 4.6). The mean ( d a i l y ) c e l l volume of d u p l i c a t e c u l t u r e s was 1.69 \u00C2\u00B1 0.01, 1.50 \u00C2\u00B1 0.03 and 1.23 \u00C2\u00B1 0.01 /jm3 grown at d i l u t i o n r a t e s of 0.74, 0.48 and 0.24 d~^, r e s p e c t i v e l y . C e l l u l a r n i t r o g e n , estimated from the mass balance of e x t e r n a l NC^ - + NC^ - c o n c e n t r a t i o n i n the r e a c t o r chamber and the NO^ - + NC^ -c o n c e n t r a t i o n of incoming medium, showed t h i s rhythmic d i e l v a r i a t i o n of s t e a d i l y i n c r e a s i n g v a l u e s d u r i n g the l i g h t p e r i o d and r e d u c t i o n d u r i n g the n i g h t f o r a l l the continuous c u l t u r e s . The 0.74 d-\"*\" d i l u t i o n r a t e r e s u l t e d i n d i e l v a r i a t i o n s i n e x t e r n a l N O 3 - c o n c e n t r a t i o n i n the c u l t u r e medium, begin n i n g w i t h the r a p i d r e d u c t i o n d u r i n g the f i r s t h a l f of the l i g h t p e r i o d t o minimal c o n c e n t r a t i o n s (0.2-1.0 uq-at N*L -^ N O 3 - ) f o r the second h a l f of the l i g h t p e r i o d ( F i g . 4.7A). With the onset of darkness the e x t e r n a l c o n c e n t r a t i o n immediately s t a r t e d t o s t e a d i l y i n c r e a s e t o a \" s u n r i s e \" maximum (ca. 7.0 jjg-at N'L-\"*\"). A s i m i l a r d i e l t r e n d was observed f o r N 0 2 ~ c o n c e n t r a t i o n s : a decrease d u r i n g the f i r s t h a l f of the l i g h t p e r i o d and subsequent steady i n c r e a s e d u r i n g the dark p e r i o d . The 0.48 d - ^ d i l u t i o n r a t e c u l t u r e s a l s o demonstrated d i e l v a r i a t i o n i n e x t e r n a l N O 3 - and NC^ - c o n c e n t r a t i o n b e g i n n i n g 1 w i t h r a p i d r e d u c t i o n d u r i n g t h e f i r s t 2 h o f l i g h t t o c o n c e n t r a t i o n s a t o r n e a r t h e l e v e l s o f d e t e c t i o n ( N O 3 - : 0.01 N O 2 - 0.01 ug-at N-L -''-). W i t h t h e commencement o f d a r k n e s s , e x t e r n a l N O 3 - c o n c e n t r a t i o n s i n c r e a s e d s t e a d i l y t o a \" s u n r i s e maximum ( c a . 1.7 ug-at N'L-\"'-) w h i l e N O 2 - c o n c e n t r a t i o n s r e a c h e d a m a x i m a l c o n c e n t r a t i o n (0.30 uq-at N'L-\"'\") 2 h p r i o r t o l i g h t s on ( F i g . 4 . 7 B ) . No d i e l v a r i a t i o n i n t h e e x t e r n a l c o n c e n t r a t i o n o f NC>3~ o r NC^ - was o b s e r v e d f o r e i t h e r o f t h e 0.24 d - ^ d i l u t i o n r a t e c u l t u r e s a n d a m b i e n t c o n c e n t r a t i o n s r e m a i n e d a t o r n e a r t h e l i m i t s o f a n a l y t i c a l d e t e c t i o n t h r o u g h o u t t h e l i g h t - d a r k c y c l e ( F i g . 4 . 7 C ) . R a t e s o f n i t r a t e u p t a k e w e r e c a l c u l a t e d u s i n g t h e e q u a t i o n s o f C a p e r o n a n d Z i e m a n n ( 1 9 7 6 ) ; s p e c i f i c r a t e s ( n o r m a l i z e d t o a v e r a g e PON d u r i n g t i m e i n t e r v a l ) showed t h e same d i e l t r e n d s a s r a t e s n o r m a l i z e d t o t o t a l c e l l u l a r v o l u m e o f c u l t u r e , a n d a r e p l o t t e d a g a i n s t t i m e i n F i g u r e 4.8. S p e c i f i c n i t r a t e u p t a k e r a t e s ( h ~ ^ ) o f t h e l i g h t p e r i o d w e r e g r e a t e r t h a n t h o s e o f t h e d a r k p e r i o d a n d d e m o n s t r a t e d b o t h n o c t u r n a l a n d d i u r n a l v a r i a t i o n i n u p t a k e v e l o c i t i e s f o r t h e 0.74 d - 1 a n d 0.48 d - 1 d i l u t i o n r a t e c u l t u r e s . I n t h e 0.74 d~ (0.030 9 h - 1 ) d i l u t i o n r a t e c u l t u r e s , m a x i m a l u p t a k e r a t e s o f 0.0530 \u00C2\u00B1 0.0007 h - 1 w e r e o b t a i n e d 4-6 h a f t e r t h e l i g h t s came on a n d s t e a d i l y d e c l i n e d t o h a l f t h i s v a l u e by t h e e n d o f t h e l i g h t p e r i o d . An a d d i t i o n a l 5 0 % r e d u c t i o n i n u p t a k e r a t e o c c u r r e d d u r i n g t h e f i r s t 2 h o f d a r k n e s s w i t h r a t e s s u b s e q u e n t l y i n c r e a s i n g d u r i n g t h e r e m a i n i n g d a r k p e r i o d t o m a x i m a l d a r k u p t a k e r a t e s o f 0.0183 \u00C2\u00B1 0.0003 h - ^ d u r i n g 20-22 165 Figure 4.7. Dissolved nitrate ( 0 , \u00C2\u00AB ) and n i t r i t e (A,A) concentrations i n the medium of duplicate n i t r a t e - l i m i t e d cyclostats of Micromonas pusilla grown i n a 14h:10h L:D cycle at 0.74 d\"1 (A), 0.48 d\"1 (B), and 0.24 d _ 1 (C) d i l u t i o n rates plotted against elapsed time since l i g h t s on. Dashed l i n e indicates onset of dark period denoted by dark bar. O o I cn =1. V 7 . 0 < - 6.0 - 5.0 1 _I - 4.0 \u00E2\u0080\u00A2 - 3.0 - 2.0 -at - 1.0 cn L \ J 0 . 0 < cr LJJ o o o 3.0 2.0 1.0 0.0 1 1 1 1 1 1 B -T -<>\ -\\ X 3.0 2.0 1.0 0.0 < CT LU o o o I-< cr 4)0.0 LU cr I-8 10 12 14 16 18 2 0 22 2 4 TIME (h) 166 Figure 4.8. S p e c i f i c n i t r a t e uptake rates of duplicate n i t r a t e - l i m i t e d c y c l o s t a t s of Micromonas pusilla grown i n a 14h:10h L:D cycle at A: 0.74 d _ 1 (0.031 h\" 1); B: 0.48 d\"1 (0.020h _ 1); and C: 0.24 d\"1 (O.OlOh-1) d i l u t i o n rates. Rates p l o t t e d against average time between sampling. Dashed l i n e i n d i c a t e s onset of dark period denoted by dark bar. U J I\u00E2\u0080\u0094 < cr LU < l -Q_ Z> o o LU Q_ LU (3 O cr 0 . 0 5 0 0 . 0 4 0 0 . 0 3 0 0 . 0 2 0 0 . 0 1 0 0 . 0 0 0 0 . 0 5 0 0 . 0 4 0 0 . 0 3 0 0 . 0 2 0 0 . 0 1 0 0 . 0 0 0 0 . 0 5 0 0 . 0 4 0 0 . 0 3 0 0 . 0 2 0 0 . 0 0 0 1 1 1 1 1 1 * i i i i i A 1 1 1 1 i i i i i i o 1 1 1 1 1 1 B 1 I 1 1 1 1 t 1 1 1 1 1 -. c 0 2 4 - 6 8 10 12 14 16 18 2 0 22 2 4 T I M E ( h ) 167 h i n t e r n a l . A v e r y s i m i l a r p a t t e r n o f d i u r n a l d e c l i n e a n d n o c t u r n a l i n c r e a s e o c c u r r e d i n t h e 0.48 d - 1 ( 0 . 0 2 0 0 h - 1 ) d i l u t i o n r a t e c u l t u r e s . The m a x i m a l l i g h t u p t a k e r a t e o f ( 0 . 0 3 3 1 \u00C2\u00B1 0.0040 h - 1 ) o c c u r r e d e a r l i e r ( d u r i n g t h e f i r s t 2 h o f l i g h t ) a n d d e c l i n e d o v e r t h e n e x t 2-4 h t o a r e l a t i v e l y c o n s t a n t l i g h t v a l u e o f 0.202 \u00C2\u00B1 0.0001 h-\"*\" o v e r t h e r e m a i n d e r o f t h e l i g h t p e r i o d . D u r i n g t h e f i r s t 2 h o f d a r k n e s s t h e u p t a k e r a t e d e c r e a s e d b y an a v e r a g e o f 2 2 % a n d t h e n s t e a d i l y i n c r e a s e d d u r i n g t h e r e m a i n d e r o f t h e d a r k p e r i o d r e a c h i n g a maximum d a r k u p t a k e r a t e ( 0 .0195 \u00C2\u00B1 0.0013 h~^) d u r i n g t h e 20-22 h i n t e r v a l . The u p t a k e r a t e s o f t h e 0.24 d - 1 (0.0100 h - 1 ) d i l u t i o n c u l t u r e s w e r e c o n s t a n t t h r o u g h o u t t h e l i g h t - d a r k c y c l e a n d a v e r a g e d 0.0100 \u00C2\u00B1 0.0001 h - ^ f o r d u p l i c a t e c u l t u r e s . The a v e r a g e l i g h t a n d d a r k u p t a k e r a t e s f o r t h e c y c l o s t a t c u l t u r e s a r e p r e s e n t e d i n T a b l e 4.1. The r a t i o o f d a r k : l i g h t u p t a k e r a t e i n c r e a s e d f r o m a n a v e r a g e o f 0.4 0 f o r t h e f a s t e s t g r o w i n g c u l t u r e s (D=0.74 d - 1 ) t o 0.78 f o r t h e 0.40 d - 1 d i l u t i o n r a t e c u l t u r e s t o a v a l u e o f u n i t y f o r t h e 0.24 d - ^ c u l t u r e s . I n t e r n a l p o o l s o f N O 3 - + N O 2 - i n c r e a s e d d u r i n g t h e l a s t p a r t o f t h e n i g h t ( t = 20-24 h) i n a l l t h e c y c l o s t a t c u l t u r e s a t t a i n i n g m a x i m a l s i z e a t t h e b e g i n n i n g o f t h e l i g h t p e r i o d ( t = 0-2 h; F i g . 4 . 9 ) . A l t h o u g h t h e r e was c o n s i d e r a b l e v a r i a b i l i t y i n t h e m a g n i t u d e o f p o o l s i z e s b e t w e e n r e p l i c a t e c u l t u r e s b o t h t h e 0.74 d -\"^ a n d 0.48 d -^\" d i l u t i o n r a t e c u l t u r e s , w h i c h a l s o d e m o n s t r a t e d d i e l v a r i a b i l i t y i n NO^ -u p t a k e , showed a c a . 2 - f o l d i n c r e a s e i n N O 3 - + NC>2~ p o o l s i z e T a b l e 4.1 Mean l i g h t and dark s p e c i f i c n i t r a t e uptake r a t e s (h~ ) and t h e i r r a t i o s ( d a r k : l i g h t ) f o r Micromonas pusilla grown on a 14:10 l i g h t - d a r k c y c l e i n b a t c h (*) and c y c l o s t a t c u l t u r e s . The s t a n d a r d d e v i a t i o n s o f s e p a r a t e (5-7) r a t e measurements d u r i n g the l i g h t or dark p e r i o d a r e g i v e n i n p a r e n t h e s e s . NO3- uptake r a t e ( h - 1 ) Growth r a t e ( h - 1 ) L i g h t Dark D a r k : L i g h t 0.0470 * 0.0353 (0.0071) 0.0187 (0.0046) 0.53 0.0449 * 0.0366 (0.0053) 0.0149 (0.0042) 0.41 0.0314 0.0400 (0.0092) 0.0161 (0.0020) 0.39 0.0304 0.0409 (0.0106) 0.0164 (0.0020) 0.41 0.0200 0.0226 (0.0060) 0.0171 (0.0020) 0.76 0.0200 0.0216 (0.0039) 0.0175 (0.0008) 0.81 0.0100 0.0100 (0.0002) 0.0100 (0.0001) 1.00 0.0100 0.0100 (0.0001) 0.0099 (0.0004) 0.99 J. \J -/ Figure 4.9. I n t r a c e l l u l a r n i t r a t e concentrations of duplicate n i t r a t e - l i m i t e d c y c l o s t a t s of Micromonas pusilla grown i n a 14h:10h L:D cycle at 0.74 d\"1 (A), 0.48 d\"1 (B), and 0.24 d\"1 (C) d i l u t i o n rates p l o t t e d against elapsed time since l i g h t s on. Dashed l i n e i ndicates onset of dark period denoted by dark bar. 0.0 1 ' 1 1 1 1 1 \u00E2\u0080\u00A2 1 1 1 ' 1 0 2 4 6 8 10 \u00E2\u0080\u00A2 12 1 4 ' 16 18 20 22 2 4 TIME (h) 170 a f t e r the f i r s t 2 h of darkness i n p a r a l l e l w i t h the r a p i d r e d u c t i o n i n NC>3~ uptake d u r i n g t h i s time. Potential nitrogen uptake rates At the beginning, middle, and end of the 14 h l i g h t and 10 h dark p e r i o d s s a t u r a t e d uptake r a t e s of N O 3 - , N H 4 + and urea were determined, from 2 h i n c u b a t i o n s i n the dark or l i g h t , f o r samples c o l l e c t e d from the 0.74, 0.49, and 0.24 d i l u t i o n r a t e c y c l o s t a t c u l t u r e s . The i n i t i a l c o n d i t i o n s of the c u l t u r e s used f o r these batch s t y l e i n c u b a t i o n s are presented i n Table 4.2. D i e l v a r i a b i l i t y i n the i n i t i a l c e l l c o n c e n t r a t i o n , mean c e l l volume and c e l l u l a r N quota of the th r e e c u l t u r e s were s i m i l a r t o the c y c l i c p a t t e r n s d i s c u s s e d e a r l i e r f o r the r e p l i c a t e c y c l o s t a t s sampled a t 2 h i n t e r v a l s over the 14 h l i g h t : 1 0 h dark i l l u m i n a t i o n c y c l e . In onl y the f a s t e s t grown c u l t u r e (D = 0.74 d -^) was d i e l v a r i a t i o n i n e x t e r n a l N O 3 - + NC^ - c o n c e n t r a t i o n observed. The N s p e c i f i c uptake r a t e s of NH 4 +, N O 3 - and urea are p l o t t e d v e r s u s the mid-point of t h e i r i n c u b a t i o n p e r i o d s i n F i g u r e 4.10. Rates of ammonium uptake were c o n s i s t e n t l y 2-3 f o l d g r e a t e r than N03~ and urea uptake r a t e s which were s i m i l a r t o each o t h e r . I t should be noted t h a t the urea uptake r a t e s of the 0.74 d - ^ c u l t u r e , estimated u s i n g the \"^N technique, may be s l i g h t l y underestimated due t o simultaneous uptake of u n l a b e l e d s u b s t r a t e ( C o l l o s , 1987; Lund, 1987). During 5 of the 6 sampling p e r i o d s , NG\"3~ c o n c e n t r a t i o n s s a t u r a t i n g f o r uptake by M. pusilla (Chapter 3) were present i n the e x t e r n a l medium; the p o t e n t i a l uptake of u n l a b e l e d N O 3 - w i l l d i l u t e the T a b l e 4.2 Summary o f c y c l o s t a t c u l t u r e c o n d i t i o n s a t the b e g i n n i n g o f each experiment. Day C u l t u r e D i l u t i o n N 0 3 ~ + NO 2~ PON POC C e l l d e n s i t y Average c e l l C e l l Quota d e s c r i p t i o n r a t e Volume ( d _ 1 ) (^g-at N - L - 1 ) (pg-at C - L - 1 ) ( 1 0 9-L - 1) (M~i3) ( f g - a t N - c e l l - 1 ) 16 i n i t i a l l i g h t 2 m i d - l i g h t 11 end l i g h t 13 i n i t i a l dark 7 mid-dark 8 end dark 0.76 19 . 9 . 0. 3. 9. 11. 31.6 45.5 50.6 46.2 41.2 38.1 244 321 406 425 340 273 .56 .73 .84 .04 .86 .87 1.4 1.8 2.0 2.2 1.8 1.3 6.9 9.6 8.7 9.2 8.5 6.5 16 i n i t i a l l i g h t 2 m i d - l i g h t 11 end l i g h t 13 i n i t i a l dark 7 mid-dark 8 end dark 0.49 53. 49 . 52. 48. 51. 53. 386 419 429 513 468 399 10.14 6.98 7.90 7.65 8.13 9.52 1.1 1.5 1.6 1.8 1.5 1.1 5.2 7.1 6.6 6.4 6.3 5.6 16 i n i t i a l l i g h t 2 m i d - l i g h t 11 end l i g h t 13 i n i t i a l dark 7 mid-dark 8 end dark 0 .24 51.1 50.3 51.6 47 .1 53.8 51.9 411 443 416 468 470 429 9.86 9.68 8.55 8.70 8.69 9 .56 1.1 1.2 1.3 1.3 1.3 1.1 5.2 5.2 6.0 5.4 6.2 5.4 172 F i g u r e 4.10. Maximum s p e c i f i c u p t a k e r a t e s ( h - 1 ) o f n i t r a t e (A), u r e a (o), a n d ammonium (\u00E2\u0080\u00A2) d e t e r m i n e d i n 2 h i n c u b a t i o n s o f s a m p l e s f r o m n i t r a t e - l i m i t e d c y c l o s t a t c u l t u r e s o f Micromonas pusilla (14h:10h L:D c y c l e ) grown a t 0.74 d\" 1 ( A ) , 0.49 d\" 1 ( B ) , and 0.24 d\" 1 (C) d i l u t i o n r a t e s . S p e c i f i c r a t e s a r e p l o t t e d a g a i n s t a v e r a g e t i m e o f i n c u b a t i o n p e r i o d . Dashed l i n e i n d i c a t e s o n s e t o f d a r k p e r i o d d e n o t e d by d a r k b a r . 0.0 1 1 1 1 1 1 L TIME (h) 173 i s o t o p i c r a t i o i n the p a r t i c u l a t e matter and thus decrease the uptake r a t e s . In N03~-replete c u l t u r e s of M. pusilla, grown under continuous l i g h t , a s a t u r a t i n g a d d i t i o n of urea r e s u l t e d i n a 28% decrease i n N O 3 - uptake (Chapter 3), however, the degree of urea s u p p r e s s i o n of N O 3 - uptake i n N - l i m i t e d chemostat c u l t u r e s i s unknown. I t i s u n l i k e l y t h a t N H 4 + uptake r a t e s were a f f e c t e d by the presence of u n l a b e l e d N O 3 -i n the medium. The presence of ammonium, at c o n c e n t r a t i o n s as low as 1.0 pq-at N*L -^, completely i n h i b i t e d NC>3~ uptake i n N-r e p l e t e M. pusilla (Chapter 3) thus, the p o s s i b i l i t y of simultaneous uptake of l a b e l l e d N H 4 + and u n l a b e l e d N O 3 - i s u n l i k e l y . A marked d i e l v a r i a b i l i t y i n the uptake of a l l t h r e e N s u b s t r a t e s was observed f o r the samples c o l l e c t e d from the 0.74 d~^ d i l u t i o n r a t e c u l t u r e , average (n = 3) p o t e n t i a l dark uptake r a t e s (V^) of urea, N H 4 + and N O 3 - were 65, 52, and 40%, r e s p e c t i v e l y , of the mean l i g h t uptake r a t e s (Table 4.3). In the more N - d e f i c i e n t c u l t u r e s (0.49 and 0.24 d - ^ d i l u t i o n r a t e s ) dark uptake r a t e s were g e n e r a l l y v ery s i m i l a r t o l i g h t uptake r a t e s ( V L T ) . In the 0.49 d~^ d i l u t i o n r a t e c u l t u r e s , V^j v a l u e s of urea, NH^ + and N O 3 - averaged 106, 83, and 72%, r e s p e c t i v e l y of the mean l i g h t v a l u e s and i n the 0.24 d - ^ d i l u t i o n r a t e c u l t u r e s v a l u e s were 93, 71, and 80%, r e s p e c t i v e l y of urea, N H 4 + and NC>3~ p o t e n t i a l l i g h t uptake r a t e s . Although i n both the slower growing c y c l o s t a t c u l t u r e s the mean l i g h t and dark r a t e s were of a comparable magnitude, a d i u r n a l v a r i a t i o n i n V-^ rp was apparent f o r N O 3 - and urea; T a b l e 4.3 N i t r o g e n s p e c i f i c uptake r a t e s (h~ ), determined o v e r 2 h i n l i g h t and darkness, and t h e t h e i r r a t i o s (D/L) f o r Micromonas pusilla p r e v i o u s l y grown a t 0.24, 0.49, 0.74 d - 1 i n N 0 3 ~ - l i m i t e d c y c l o s t a t c u l t u r e s on a 14 h l i g h t : 1 0 h dark i l l u m i n a t i o n c y c l e ( l i g h t s on: 0800 h, l i g h t s o f f : 2200 h) . S t a r t i n g t i m e of I n c u b a t i o n Day:time (h) 0.74 d 1 N s p e c i f i c uptake 0.49 d\" r a t e ( h - 1 ) 1 0.24 d _ 1 L D D/L L D D/L L D D/L Urea 16 0845 0.0140 0.0019 0.13 0.0239 0.0058 0.24 0 .0150 0.0076 0.51 2 : 1425 0.0099 0.0030 0.30 0.0208 0.0025 0.12 0 .0151 0.0054 0.36 11 : 2007 0.0213 0.0029 0.14 0.0191 0.0103 0.54 0 .0140 0.0057 0.41 13 : 2200 0.0155 0.0055 0.35 0.0314 0.0234 0.75 0 .0242 0.0129 0.53 7 0210 0.0137 0.0104 0.75 0.0209 0.0203 0.97 0 .0142 0.0113 0.80 8 0615 0.0160 0.0136 0.85 0.0313 0.0232 0.74 0 .0263 0.0168 0.64 Ammonium 16 0847 0.0520 0.0133 0.26 0.0584 0.0247 0.42 0 .0516 0.0277 0.54 2 1435 0.0682 0.0142 0.21 0.0554 0.0181 0.33 0 .0541 0.0234 0.43 11 2010 0.0658 0.0280 0.43 0.0566 0.0329 0.58 0 .0517 0.0298 0.58 13 2202 0.0555 0.0291 0.53 0.0718 0.0542 0.75 0 . 0550 0.0348 0.63 7 0212 0.0394 0.0291 0.74 0.0534 0.0327 0.61 0 .0369 0.0306 0.83 8 0616 0.0668 0.0390 0.58 0.0735 0.0546 0.74 0 .0616 0.0455 0.74 N i t r a t e 16 0851 0.0119 0.0037 0.31 0.0355 0.0028 0.08 0 .0190 0.0056 0.30 2 1445 0.0223 0.0036 0.16 0.0219 0.0018 0.08 0 .0183 0.0019 0.10 11 2014 0.0356 0.0068 0.19 0.0300 0.0110 0.37 0 . 0096 0.0076 0.79 13 2203 0.0214 0.0067 0.32 0.0456 0.0234 0.51 0 .0300 0.0103 0.34 7 0215 0.0160 0.0105 0.66 0.0292 0.0194 0.66 0 .0212 0.0110 0.52 8 0618 0.0270 0.0109 0.40 0.0490 0.0199 0.41 0 .0383 0.0162 0.42 175 m a x i m a l r a t e s w e r e o b s e r v e d i n t h e s a m p l e s c o l l e c t e d a t t h e b e g i n n i n g o f t h e l i g h t p e r i o d , w h i l e NH4\"** p o t e n t i a l u p t a k e r a t e s w e r e r e l a t i v e l y c o n s t a n t t h r o u g h o u t t h e l i g h t p e r i o d . D a r k u p t a k e r a t e s w e r e c o n s i s t e n t l y l o w e r f o r s a m p l e s c o l l e c t e d d u r i n g t h e n i g h t , h o w e v e r l i g h t u p t a k e r a t e s f r o m b o t h l i g h t a n d d a r k p e r i o d s w e r e g e n e r a l l y e q u i t a b l e . Influence of light on nitrate and ammonium uptake rates N i t r o g e n s p e c i f i c u p t a k e r a t e s , d e t e r m i n e d o v e r 2 h, w e r e p l o t t e d v e r s u s t h e PPFD e x p e r i e n c e d b y t h e c e l l s p r e v i o u s l y g r own i n 0.24, 0.52 a n d 0.77 d - ^ d i l u t i o n r a t e c y c l o s t a t s ( F i g . 4 . 1 1 ) . D a r k u p t a k e (V-p), t h e h a l f - s a t u r a t i o n c o n s t a n t ( K L T ' ) , a n d maximum n i t r o g e n u p t a k e v e l o c i t y V ' m a x f o r l i g h t d e p e n d e n t N H 4 + a n d N O 3 - u p t a k e a r e s u m m a r i z e d i n T a b l e 4.4. I t i s i m p o r t a n t t o n o t e t h a t t h e s e M i c h a e l i s - M e n t e n p a r a m e t e r s a r e d e r i v e d f r o m d a t a o b t a i n e d f r o m t h e h y p e r b o l i c ( o r l i g h t ) p o r t i o n o f t h e PPFD r e s p o n s e c u r v e , t h u s K L T v a l u e s r e p o r t e d a r e t h e PPFD a t w h i c h 0.5 V ' m a x o c c u r s w h e r e V ' m a x i s t h e m a x i m a l v e l o c i t y i n t h e l i g h t . The h a l f - s a t u r a t i o n c o n s t a n t (K-^rp' ) w h i c h i s t h e PPFD when o n e - h a l f t h e t o t a l maximum N-u p t a k e o f t h e c e l l s i s a c h i e v e d , ( V ' m a x + V D ) / 2 ) , c a n be c a l c u l a t e d b y s i m p l e r e a r r a n g e m e n t o f t h e M i c h a e l i s - M e n t e n e q u a t i o n ( s e e C h a p t e r 2 f o r d e t a i l s ) . A n o t h e r s i m i l a r h a l f -s a t u r a t i o n c o n s t a n t ( K - ^ T \" ) c a n be c a l c u l a t e d f o r h a l f t h e t o t a l N - u p t a k e a c h i e v e d a t t h e g r o w t h PPFD (120 juE m ~ 2 s _ 1 ) . T h e s e t w o l a t t e r h a l f - s a t u r a t i o n c o n s t a n t s i n c l u d e t h e s u b s t a n t i a l d a r k u p t a k e v e l o c i t i e s w h i c h a p p e a r t o v a r y i n v e r s e l y w i t h d i l u t i o n r a t e ( T a b l e 4 . 5 ) . The d a r k N O 3 -Figure 4.11. Nitrogen s p e c i f i c uptake rates, determined over 2 h, a f t e r saturating enrichment of 1 5NH 4 + (\u00E2\u0080\u00A2) or 1 5N0 3 _ (O) to n i t r a t e - l i m i t e d c y c l o s t a t cultures of Micromonas pusilla (14h:10h L:D cycle) previously grown at 0.77 d _ 1 (A), 0.52 d _ 1 (B), and 0.24 d - 1 (C) d i l u t i o n rates. Uptake rates (h - 1) are plo t t e d against incident PPFD, curved pl o t s are f i t t e d d i r e c t l y to the Michaelis-Menten equation by computer programme (see text for d e t a i l s ) . 80.0 r o \u00E2\u0080\u00A2 o LU < cc < h-O O LU CL (J) 0 20 40 60 80 100 120 140 P P F D (pE-m-2-s-2) T a b l e 4.4 Parameters d e s c r i b i n g t h e c h a r a c t e r i s t i c s o f N s p e c i f i c uptake (h~ ), as a f u n c t i o n o f PPFD f o r c y c l o s t a t c u l t u r e s o f Micromonas pusilla ( F i g . 4.11). Dark uptake (V\" D), maximum s p e c i f i c l i g h t uptake ( V ' m a x ) , t h e h a l f - s a t u r a t i o n c o n s t a n t ( K L T ) , and the s l o p e o f i n i t i a l p o r t i o n o f N uptake vs PPFD cu r v e (a = V ' m - , X / K T T ) \u00E2\u0080\u00A2 E s t i m a t e d s t a n d a r d e r r o r s o f parameters are g i v e n i n p a r e n t h e s e s . D i l u t i o n PON N i t r o g e n V D v'max K L T a r a t e cone. s u b s t r a t e ( d - 1 ) (AJg-at N - L - 1 ) ( h - 1 ) (uE m ~ 2 s _ 1 ) 0.77 0.52 0.24 28.0 53.5 47.8 NO-NH/ NO-NH\" NO-NH\ 0. 0017 (0 .00160) 0 .0323 (0. 00203) 13 (3 .3) 2 .6 0. 0137 (0 .00255) 0 .0656 (0. 00411) 26 (5 .8) 2 .8 0. 0048 (0 .00155) 0 .0460 (0. 00198) 15 (2 \u00E2\u0080\u00A27) 3 .2 0. 0243 (0 .00370) 0 .0693 (0. 00496) 16 (4 \u00E2\u0080\u00A25) 4 .2 0. 0076 (0 .00134) 0 .0310 (0. 00164) 13 (2 \u00E2\u0080\u00A29) 2 .5 0. 0276 (0 .00126) 0 .0499 (0. 00173) 18 (2 \u00E2\u0080\u00A24) 2 .8 Table 4.5 I n d i c e s o f N uptake dependency on PPFD f o r c y c l o s t a t c u l t u r e s o f Micromonas pusilla: the r a t i o of dark t o l i g h t - s a t u r a t e d uptake r a t e ( V D : V L ) , the PPFD a t which h a l f the t o t a l N uptake o c c u r s ( K L T ' , K L T \" ) * and the r a t i o o f N uptake a t 1% I t o N uptake at 100% I ( vi% : Vioo%** S a t u r a t e d PPFD and I are the growth PPFD (120 piE m ~ 2 s - 1 ) . D i l u t i o n r a t e N i t r o g e n VD : VL KLT' KLT\" V 1 % : V ( d - 1 ) S u b s t r a t e 0.77 N0 3 0 . 05 11.3 9.6 0 .15 0.77 NH 4 + 0.20 15.4 11.3 0.25 0.52 N0 3- 0. 10 11.9 9.8 0.18 0.52 NH 4 + 0.29 7.9 7.3 0.34 0.24 NO3- 0.21 7.6 6.4 0.29 0.24 NH 4 + 0.39 5.1 3.5 0.43 * D e f i n i t i o n s g i v e n i n t e x t 179 u p t a k e r a t e i s 5, 10, a n d 2 1 % o f t h e t o t a l u p t a k e f o r t h e 0.77, 0.52, a n d 0.24 d ~ * d i l u t i o n r a t e c u l t u r e s , r e s p e c t i v e l y . D a r k N H 4 + u p t a k e r a t e s , c o n s i s t e n t l y g r e a t e r t h a n d a r k N O 3 -u p t a k e r a t e s , a r e 20, 29 a n d 39% o f t h e t o t a l ( l i g h t + d a r k ) u p t a k e f o r t h e same c u l t u r e s . The s l o p e (a) o f t h e i n i t i a l p o r t i o n o f t h e PPFD r e s p o n s e c u r v e , c a l c u l a t e d b y d i v i s i o n o f V m a x b v K L T ( H e a l e Y ' 1980; P a r s l o w e t a l . , 1985) a r e s i m i l a r f o r N H 4 + a n d N O 3 - u p t a k e b y t h e c e l l s f r o m t h e 0.77 a n d 0.24 d - ! d i l u t i o n r a t e c u l t u r e s , b u t s u b s t a n t i a l l y g r e a t e r f o r N H 4 + u p t a k e b y t h e 0.52 d -^\" d i l u t i o n r a t e c u l t u r e . T h e s e r e s u l t s s u g g e s t s i m i l a r l i g h t u p t a k e r e s p o n s e o f b o t h N - s u b s t r a t e s t o i n c r e a s i n g s u b s a t u r a t i n g PPFDs by f a s t a n d s l o w g r o w i n g c u l t u r e s w h e r e a s t h e i n t e r m e d i a t e l y g r o w i n g c u l t u r e s a p p e a r m o s t c a p a b l e o f i n c r e a s i n g t h e i r u p t a k e a b i l i t y o f NC^ -, a n d p a r t i c u l a r l y NH^ +, i n r e s p o n s e t o i n c r e a s i n g , b u t s u b s a t u r a t i n g P P F D s . The e f f e c t s o f PPFD on t o t a l N u p t a k e ( l i g h t + d a r k ) c a n be e s t i m a t e d b y a c o m p a r i s o n o f u p t a k e a t 1 a n d 100% o f t h e g r o w t h i r r a d i a n c e ; l o w e r p e r c e n t a g e s r e p r e s e n t g r e a t e r PPFD d e p e n d e n c y ( T a b l e 4 . 5 ) . The e f f e c t o f PPFD on t o t a l N u p t a k e i n c r e a s e s w i t h i n c r e a s i n g d i l u t i o n r a t e , w h i c h s u g g e s t s t h a t i n c r e a s e d N l i m i t a t i o n l e s s e n s t h e l i g h t d e p e n d e n c y o f N O 3 -a n d N H 4 + by Micromonas pusilla. A l t h o u g h t h i s l i g h t e f f e c t was o b s e r v e d f o r b o t h N s u b s t r a t e s , N H 4 + , w h i c h was c o n s i s t e n t l y t a k e n up a t g r e a t e r r a t e s t h a n N O 3 - i n b o t h l i g h t a n d t h e d a r k , d e m o n s t r a t e d c a . 4 0 % l e s s d e p e n d e n c y on PPFD t h a n N 0 3 ~ . 180 DISCUSSION The c e l l d i v i s i o n c y c l e o f mo s t p h y t o p l a n k t o n c e l l s i s p a r t i a l l y s y n c h r o n i z e d o r p h a s e d b y t h e e n v i r o n m e n t a l l i g h t : d a r k c y c l e . E v i d e n c e o f p h a s i n g i n b o t h a l g a l c u l t u r e s a n d n a t u r a l c o m m u n i t i e s h a s shown t h a t , i n most s p e c i e s grown on l i g h t : d a r k c y c l e s , t h e i n s t a n t a n e o u s p o p u l a t i o n d i v i s i o n r a t e , u, v a r i e s w i t h a 24 h p e r i o d i c i t y a n d t h a t t h e t i m i n g o f d i v i s i o n d e p e n d s on b o t h e x p e r i m e n t a l c o n d i t i o n s a n d s p e c i e s ( s e e r e v i e w s b y S o u r n i a , 1974; C h i s h o l m e t a l . , 1 9 80; Sweeney, 1 9 8 3 ) . I n b o t h N - r e p l e t e ( b a t c h ) a n d N - l i m i t e d ( c y c l o s t a t ) c u l t u r e s o f Micromonas pusilla, grown i n a 14:10 L:D c y c l e , p a r t i a l p h a s i n g o f c e l l d i v i s i o n was e v i d e n t . Maximum d i v i s i o n r a t e s o c c u r r e d a t t h e e n d o f t h e l i g h t p e r i o d a n d t h e m i d d l e t o l a t e d a r k p e r i o d . W i t h i n c r e a s e d n i t r a t e l i m i t a t i o n ( i . e . d e c r e a s e d d i l u t i o n r a t e ) t h e i m p o r t a n c e o f t h e l i g h t d i v i s i o n a p p e a r e d t o d e c r e a s e a n d t h e t i m i n g o f t h e d a r k d i v i s i o n was s h i f t e d s l i g h t l y l a t e r i n t h e n i g h t i n t h e 0.24 d-\"*\" d i l u t i o n r a t e c u l t u r e s . N i t r o g e n a n d c a r b o n u p t a k e r a t e s a r e o f t e n p r e s e n t e d on a n o r m a l i z e d c e l l u l a r b a s i s , b u t a n y c o - o c c u r r e n c e o f s y n c h r o n o u s c e l l d i v i s i o n c a n s e r i o u s l y m o d i f y t h e a p p a r e n t p e r i o d i c i t y i n u p t a k e r a t e s . F o r t h i s r e a s o n t h e m a j o r i t y o f t h e r e s u l t s i n t h e p r e s e n t s t u d y h a v e b e e n n o r m a l i z e d t o t o t a l c e l l u l a r v o l u m e o r p a r t i c u l a t e N. The s y n c h r o n y o f c e l l d i v i s i o n was r e f l e c t e d i n t h e mean c e l l v o l u m e ( o r s i z e ) o f t h e M. pusilla c e l l s . C e l l v o l u m e s t e a d i l y i n c r e a s e d d u r i n g t h e l i g h t p e r i o d a t t a i n i n g m a x i m a l s i z e a t t h e o n s e t o f t h e d a r k p e r i o d a n d s u b s e q u e n t l y d e c l i n e d 181 s t e a d i l y throughout the n i g h t a t t a i n i n g minimal s i z e at the onset of the l i g h t p e r i o d . However, w i t h i n c r e a s i n g N O 3 -l i m i t a t i o n , the i n c r e a s e i n average c e l l volume d u r i n g the l i g h t p e r i o d was reduced; maximal c e l l volumes a t t a i n e d by the 0.24 d ~ l d i l u t i o n r a t e c u l t u r e s were onl y c a . 50% of the maximal s i z e a t t a i n e d by the N03~-replete batch c u l t u r e s . The mean ( d a i l y ) c e l l .volume of M. pusilla i n c r e a s e d s i g n i f i c a n t l y (r = 0.99, P ^ 0.01) wit h i n c r e a s i n g s t e a d y - s t a t e d i l u t i o n r a t e ( i n c r e a s i n g u and improved N O 3 - s u p p l y ) . S i m i l a r r e d u c t i o n i n c e l l volume with i n c r e a s i n g n u t r i e n t l i m i t a t i o n has been r e p o r t e d f o r P - l i m i t e d (Burmaster, 1979) and NH 4 +-l i m i t e d chemostat c u l t u r e s of Pavlova lutheri (Caperon and Meyer, 1972), and Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida ( H a r r i s o n e t a l . , 1977). However, oth e r s have documented e i t h e r no c e l l volume v a r i a b i l i t y with d i l u t i o n (or growth) r a t e i n N - l i m i t e d chemostat c u l t u r e s of D u n a l i e l l a t e r t i o l e c t a , T h a l a s s i o s i r a pseudonana and Coccochloris stagnina (Caperon and Meyer, 1972) or an i n c r e a s e i n c e l l volume wi t h i n c r e a s i n g P - l i m i t a t i o n i n chemostat c u l t u r e s of T. pseudonana (Fuhs et a l . , 1972). Using c y c l o s t a t c u l t u r e s of fou r d i f f e r e n t c l o n e s of Thalassiosira weisflogii, Chisholm and C o s t e l l o (1980) s t u d i e d the e f f e c t of average c e l l s i z e on growth r a t e and concluded t h a t growth r a t e was an i n c r e a s i n g f u n c t i o n of average c e l l volume. Munk and R i l e y (1952) s t a t e t h a t the l a r g e r the s u r f a c e area t o volume r a t i o (SA/V) the g r e a t e r the c e l l ' s c a p a c i t y t o absorb n u t r i e n t s . The r e d u c t i o n i n mean c e l l volume of M. pusilla 182 and the subsequent increase i n r e l a t i v e surface area available for N O 3 - uptake i s perhaps an adaptive response to N0-}~ l i m i t a t i o n . In the ni t r a t e - r e p l e t e batch cultures and the n i t r a t e -l i m i t e d cyclostat cultures, where growth rate i s li m i t e d by the rate of supply of N O 3 - , obvious d i e l patterns for N O 3 -uptake were observed for M. p u s i l l a i n a l l but the most N O 3 - -d e f i c i e n t cyclostat populations (D = 0.24 d -\"^). The n i t r a t e uptake rates, for the cultures grown i n batch or i n cyclostats at 0.74 and 0.42 d - ^ d i l u t i o n rates, were maximal during the l i g h t period and decreased during the dark period. In addition to the d i e l pattern, the early l i g h t n i t r a t e uptake maximum (early morning) and increased dark uptake during late night (pre-dawn) suggests diurnal and nocturnal cycles for the 0.74 and 0.42 d - ^ d i l u t i o n rate cultures. Malone et a l . (1975) found s i m i l a r c y c l i c variations i n N O 3 - uptake by an outdoor culture of Chaetoceros sp. grown at high d i l u t i o n rate (2.0 d -^) under natural sunlight, but uptake independence of the light-dark cycle for three slower d i l u t i o n rates (0.5, 1.0 and 1.5 d -^\"); absence of d i e l p e r i o d i c i t y i n N O 3 - uptake was also observed i n axenic cyclostat cultures of the same Chaetoceros sp. (STX-105) grown at 6 low d i l u t i o n rates (0.3 -1.2 d\"\"*\") by Picard ( 1976). Dark N O 3 - uptake capacity of cyclostat cultures of the marine prymnesiophyte, Pavlova l u t h e r i and chlorophyte, D u n a l i e l l a t e r t i o l e c t a was exceeded by the supply rate of N O 3 - at high d i l u t i o n rates (> ca. 0.5 d-\"'\"), but no d i e l p e r i o d i c i t y was observed at lower d i l u t i o n 183 r a t e s (Laws and Caperon, 1976; Laws and Wong, 197 8) although the diatom, Thalassiosira a l l e n i i never showed d i e l p e r i o d i c i t y i n N O 3 - uptake a t 6 d i l u t i o n r a t e s from 0.1-1.4 d - 1 (Laws and Wong, 1978). Eppley e t a l . (1971b) found a s i m i l a r l a c k of d i e l p e r i o d i c i t y i n n i t r o g e n - ( N O 3 - + NH 4 +) l i m i t e d c y c l o s t a t (0.78 d--'\") c u l t u r e s of Emiliana huxleyi, but g r e a t e r NG^ - and NH^ **\" uptake r a t e s i n the l i g h t p e r i o d and l e s s e r r a t e s i n the dark p e r i o d f o r a s i m i l a r l y grown c y c l o s t a t (0.73 d~^) c u l t u r e of Skeletonema costatum. I t appears t h a t the a b i l i t y t o take up N O 3 - d u r i n g the n i g h t may be s p e c i e s dependent and t h a t the degree of N l i m i t a t i o n a f f e c t s dark uptake c a p a c i t y and hence the presence or l a c k of d i e l p e r i o d i c i t y i n N O 3 - uptake r a t e s . A dampening e f f e c t on d i e l p e r i o d i c i t y of N O 3 - uptake by n i t r o g e n s t r e s s i s suggested by the r e s u l t s of numerous f i e l d s t u d i e s of n a t u r a l phytoplankton communities (see Chapter 1). For example, i n e x t e n s i v e d i n o f l a g e l l a t e blooms dominated by Gymnodinium splendens (= G. sanguineum) i n the n i t r a t e - d e p l e t e d (<0.1 uq-at N\u00C2\u00ABL~1) waters o f f Peru, ni g h t t i m e N O 3 - uptake r a t e s were ca . 50% of d a y l i g h t NC^ - uptake r a t e s (Dortch and Maske, 1982). In c o n t r a s t , Maclsaac (1978) r e p o r t e d t h a t uptake at n i g h t averaged o n l y 10-20% of the d a y l i g h t r a t e s f o r a Gonyaulax polyedra bloom o f f Baja C a l i f o r n i a . However, here the ambient N O 3 - c o n c e n t r a t i o n s i n the s u r f a c e waters were g e n e r a l l y c a . 1 uq-at N'L-''\" and the n i t r a c l i n e was much shallower than o f f Peru. S i m i l a r r e s u l t s were observed by H a r r i s o n (1976) f o r N - s u f f i c i e n t c u l t u r e s of Gonyaulax 184 polyedra; n i g h t t i m e N O 3 - u p t a k e was c a . 20% o f d a y t i m e u p t a k e , b u t d a r k u p t a k e i n c r e a s e d t o c a . 40% o f d a y t i m e v a l u e s i n N-s t a r v e d c u l t u r e s a n d s i m i l a r l y N C > 3 - - d e p l e t e d r e d t i d e p o p u l a t i o n s d o m i n a t e d by G. polyedra. I t i s d i f f i c u l t t o c o m p a r e t h e r e s u l t s o f f i e l d s t u d i e s t o l a b o r a t o r y c y c l o s t a t s t u d i e s a s t h e u p t a k e r a t e s r e p o r t e d i n f i e l d i n v e s t i g a t i o n s ( e . g . , H a r r i s o n , 1976; M a c l s a a c , 1978) a r e g e n e r a l l y s u b s t r a t e s a t u r a t e d o r c o n s i d e r a b l y e n h a n c e d r e l a t i v e t o t h e a m b i e n t c o n c e n t r a t i o n due t o t h e c o n c e n t r a t x o n o f N a d d e d . D i e l f i e l d s t u d i e s o f i n s i t u N O 3 - u p t a k e i n m a r i n e ( e . g . , C o c h l a n 1982, 1986; K o i k e e t a l . , 1986) a n d f r e s h w a t e r e n v i r o n m e n t s ( e . g . W h a l e n a n d A l e x a n d e r , 1984) a r e r e l a t i v e l y f e w a n d no c l e a r e v i d e n c e o f d i e l p e r i o d i c i t y i n e i t h e r N O 3 - o r N H 4 + u p t a k e r a t e s w e r e o b s e r v e d when c o n c e n t r a t i o n s o f a m b i e n t i n o r g a n i c n i t r o g e n a r e l o w ( s e e C h a p t e r 1 D i s c u s s i o n ) . I n t r a c e l l u l a r n i t r a t e c o n c e n t r a t i o n s d e m o n s t r a t e d a m a r k e d n o c t u r n a l i n c r e a s e d u r i n g t h e l a t t e r p o r t i o n o f t h e n i g h t a n d a t t a i n e d m a x i m a l c o n c e n t r a t i o n s a t t h e b e g i n n i n g o f t h e l i g h t p e r i o d f o r N - s u f f i c i e n t a n d N - l i m i t e d c u l t u r e s o f M. pusilla. R a i m b a u l t a n d M i n g a z z i n i (1987) a l s o o b s e r v e d an e a r l y m o r n i n g maximum i n N O 3 - i n t r a c e l l u l a r p o o l s i z e f o r In-s u f f i c i e n t c u l t u r e s o f Phaeodactylum tricornutum a n d Skeletonema costatum a n d a m i n i m a l i n t e r n a l N O 3 - p o o l i n t h e i r s i n g u l a r n i g h t t i m e m e a s u r e m e n t t a k e n i n t h e f i r s t h a l f o f t h e d a r k p e r i o d . O n l y i n t h e h i g h e s t d i l u t i o n r a t e c y c l o s t a t c u l t u r e o f Chaetoceros s p . d i d M a l o n e e t a l . (1975) o b s e r v e d i e l p e r i o d i c i t y o f i n t e r n a l N O 3 - p o o l s i z e , w h i l e i n t e r n a l 185 N O 3 - c o n c e n t r a t i o n s r e m a i n e d l o w a n d c o n s t a n t i n t h e l o w e r d i l u t i o n r a t e c u l t u r e s w h i c h a l s o d e m o n s t r a t e d N O 3 - u p t a k e i n d e p e n d e n c e o f l i g h t - d a r k c y c l e . No c l e a r d i e l t r e n d s i n i n t e r n a l p o o l s w e r e o b s e r v e d by P i c a r d (1976) i n s i m i l a r c y c l o s t a t s w i t h Chaetoceros g r o w n a t l o w d i l u t i o n r a t e s . I n s h i p b o a r d c u l t u r e s o f a n a t u r a l p h y t o p l a n k t o n c o m m u n i t y f r o m an u p w e l l e d r e g i o n , C o l l o s a n d S l a w y k ( 1976) o b s e r v e d m a x i m a l i n t r a c e l l u l a r N O 3 - c o n c e n t r a t i o n s a t t h e b e g i n n i n g o f t h e l i g h t p e r i o d a n d m i n i m a l v a l u e s d u r i n g t h e n i g h t . I n Dabob B a y , W a s h i n g t o n , D o r t c h e t a l . (1985) r e p o r t e d d i e l v a r i a b i l i t y i n i n t r a c e l l u l a r n i t r a t e p o o l s f o r s u r f a c e c o m m u n i t i e s d u r i n g J u l y , s i m i l a r t o my r e s u l t s , b u t v a r i a b l e r e s u l t s w i t h no c l e a r d i e l r h y t h m a p p a r e n t f o r d e e p w a t e r c o m m u n i t i e s i n May a n d J u l y a n d t h e s u r f a c e c o m m u n i t y d u r i n g May. The i n c r e a s e i n i n t e r n a l N O 3 - o b s e r v e d i n t h e Micromonas pusilla c u l t u r e s d e m o n s t r a t e s an u n c o u p l i n g b e t w e e n N O 3 -u p t a k e a n d r e d u c t i o n d u r i n g t h i s t i m e ; i f N O 3 - i n t r a c e l l u l a r p o o l s w e r e c o n s t a n t t h e n r a t e s o f u p t a k e a n d r e d u c t i o n w o u l d be e q u a l ( o r b o t h z e r o ) , a n d i f i n t r a c e l l u l a r p o o l s d e c r e a s e d t h e r a t e o f r e d u c t i o n o f NC \" 3~would be g r e a t e r t h a n r a t e o f u p t a k e ( C o l l o s a n d S l a w y k , 1 9 7 6 ) . C l e a r l y d u r i n g t h e l a t e n i g h t a n d e a r l y l i g h t p e r i o d s , t h e p r o c e s s e s o f N O 3 - u p t a k e a n d r e d u c t i o n a r e n o t i n p h a s e , a n d a r e l i k e l y t h e r e s u l t o f d i e l c y c l e s o f n i t r a t e r e d u c t a s e (NR) a c t i v i t y . E a r l y s t u d i e s o f t h e P e r u ( E p p l e y e t a l . , 1970; P a c k a r d e t a l . , 1974) a n d n o r t h w e s t A f r i c a n ( P a c k a r d a n d B l a s c o 1974) 186 u p w e l l i n g s y s t e m h a v e s u g g e s t e d d i e l c y c l e s o f NR a c t i v i t y a n d i n a s i m i l a r , b u t more d e t a i l e d s t u d y o f t h e n o r t h w e s t A f r i c a n u p w e l l i n g s y s t e m , M a r t i n e z e t a l . (1987) o b s e r v e d d i e l c y c l e s i n NR a c t i v i t y t h a t c l e a r l y f o l l o w e d t h e d i e l v a r i a t i o n i n l i g h t i n t e n s i t y : a d a y t i m e maximum, n i g h t t i m e minimum a n d t h e o n s e t o f NR a c t i v a t i o n c o i n c i d e n t w i t h dawn. T h e y f a i l e d t o o b s e r v e a p r e - d a w n r i s e i n NR a c t i v i t y t h a t h a d b e e n p r e v i o u s l y r e p o r t e d i n u p w e l l i n g a r e a s ( E p p l e y e t a l . , 1970; P a c k a r d a n d B l a s c o , 1 9 7 4 ) , b u t s u g g e s t e d t h a t t h e s a m p l i n g f r e q u e n c y a r o u n d dawn i n t h o s e e a r l i e r s t u d i e s was i n s u f f i c i e n t t o d e t e r m i n e c o n c l u s i v e l y t h e p r e s e n c e o f s u c h a p r e - d a w n r i s e . D i e l p e r i o d i c i t y h a s a l s o b e e n o b s e r v e d i n u n i a l g a l c u l t u r e s , s u c h a s Amphidinium carterae a n d Cachonina niei ( H e r s h e y a n d S w i f t , 1 9 7 6 ) , Emiliana huxleyi ( E p p l e y e t a l . , 1971b) w i t h m i n i m a l a c t i v i t y r e p o r t e d d u r i n g l a t e n i g h t . A s i m i l a r r h y t h m i n NR a c t i v i t y i n M. pusilla c o u l d a c c o u n t f o r t h e a c c u m u l a t i o n o f i n t e r n a l NC>3~ o b s e r v e d d u r i n g l a t e n i g h t a n d e a r l y m o r n i n g . A l t e r n a t i v e l y , t h e a b s e n c e o f d i e l NR a c t i v i t y w i t h l i t t l e o r no v a r i a t i o n d u r i n g t h e l i g h t - d a r k c y c l e , s u c h a s i n N - s t a r v e d n a t u r a l p o p u l a t i o n s o f Gonyaulax polyedra ( E p p l e y a n d H a r r i s o n , 1975; H a r r i s o n , 1 9 7 6 ) , c o m b i n e d w i t h t h e i n c r e a s e d N O 3 - u p t a k e d u r i n g t h e l a t e n i g h t a n d e a r l y m o r n i n g o b s e r v e d i n t h e t w o f a s t e r g rown c y c l o s t a t c u l t u r e s (D = 0.74 a n d 0.48 d-\"*\") , c o u l d l e a d t o a c c u m u l a t i o n o f N O 3 -i n t e r n a l l y . A r e d u c t i o n i n n i t r i t e r e d u c t a s e ( N i R ) a c t i v i t y d u r i n g l a t e n i g h t ( e . g . , E p p l e y e t a l . , 1971b) a n d s u b s e q u e n t l e a k a g e o f N O 3 - + NC^ - f r o m t h e c e l l s may a c c o u n t f o r t h e 187 i n c r e a s e i n e x t e r n a l NC^ - c o n c e n t r a t i o n s d u r i n g l a t e n i g h t f o r t h e 0.74 a n d 0.48 d\"\"* d i l u t i o n r a t e c u l t u r e s . A l t e r n a t i v e l y , t h e r i s e i n e x t e r n a l NC^ - c o n c e n t r a t i o n may be e x p l a i n e d a s r e s u l t i n g f r o m c e l l u l a r l o s s d u r i n g t h i s p e r i o d o f m a x i m a l c e l l d i v i s i o n . A p r o n o u n c e d d i e l r h y t h m i n t h e p o t e n t i a l u p t a k e c a p a c i t y o f NC>3~, N H 4 + a n d u r e a was o b s e r v e d i n t h e f a s t e s t g r o w i n g c y c l o s t a t c u l t u r e s o f Micromonas pusilla (D = 0.74 d ~ ^ ) , w h e r e a s t h e more N - l i m i t e d c u l t u r e s (D = 0.48 a n d 0.24 d - ^ ) h a d s i m i l a r n i g h t a n d d a y N u p t a k e c a p a c i t y . Laws a n d Wong (1978) a l s o o b s e r v e d t h a t t h e r e l a t i v e i m p o r t a n c e o f p o t e n t i a l n i g h t t i m e u p t a k e d e c r e a s e d r e l a t i v e t o p o t e n t i a l d a y l i g h t u p t a k e w i t h i n c r e a s i n g d i l u t i o n r a t e ( 0 . 0 0 5 7 3 - 0 . 0 2 4 6 4 h-^\") i n c y c l o s t a t c u l t u r e s o f Pavlova lutheri, a l t h o u g h t h e y o b s e r v e d no s u c h t r e n d f o r Thalassiosira allenni o v e r a r a n g e o f d i l u t i o n r a t e s f r o m 0.00474 t o 0.05937 h ~ * , i n f a c t n i g h t t i m e u p t a k e a v e r a g e d 120% o f t h e r e s p e c t i v e d a y l i g h t N O 3 - u p t a k e . A l t h o u g h t h e r e a r e no o t h e r c o m p a r a b l e d i e l u p t a k e d a t a f o r c y c l o s t a t c u l t u r e s g r o w i n g a t v a r i o u s d e g r e e s o f N l i m i t a t i o n a r e v e a l i n g c o m p a r i s o n c a n be made b e t w e e n my r e s u l t s a n d p r e v i o u s w o r k w i t h N - r e p l e t e a n d N - s t a r v e d c u l t u r e s . F o r e x a m p l e , t h e d i n o f l a g e l l a t e Gyrodinium aureolum d o e s n o t t a k e up N O 3 - i n t h e d a r k when i n a s t a t e o f n i t r o g e n s u f f i c i e n c y , b u t when N - s t a r v e d f o r 24 h n i g h t t i m e u p t a k e became a b o u t h a l f o f l i g h t u p t a k e ( P a a s c h e e t a l . , 1 9 8 4 ) . They f o u n d t h a t t h e a b i l i t y t o t a k e up NC^ - a n d N H 4 + d u r i n g t h e n i g h t t i m e v a r i e d c o n s i d e r a b l y among N - s u f f i c i e n t d i n o f l a g e l l a t e s , b u t t h a t 188 r e l a t i v e d a r k u p t a k e o f N H 4 + was g e n e r a l l y g r e a t e r t h a n t h a t o f NG^ -, s i m i l a r t o t h a t o b s e r v e d h e r e f o r M. pusilla. S i m i l a r l y , B h o v i c h i t r a a n d S w i f t (1977) showed t h a t t h e N O 3 -u p t a k e c a p a c i t y o f N - s t a r v e d o c e a n i c d i n o f l a g e l l a t e s , Pyrocystis noctiluca a n d Dissodinium lunula, w e r e v i r t u a l l y i n d e p e n d e n t o f t h e l i g h t - d a r k c y c l e . I t a p p e a r s t h a t N s t a r v a t i o n o r l i m i t a t i o n e n h a n c e s p o t e n t i a l d a r k u p t a k e more t h a n l i g h t u p t a k e o f n i t r o g e n r e s u l t i n g i n a more o r l e s s c o n t i n u o u s u p t a k e o f n i t r o g e n i n N - d e p l e t e d p h y t o p l a n k t o n , i n c l u d i n g t h e p i c o p l a n k t e r Micromonas p u s i l l a . The d e c r e a s i n g l i g h t d e p e n d e n c e w i t h i n c r e a s i n g N l i m i t a t i o n i s a l s o s u g g e s t e d b y t h e r e s u l t s o f t h e N u p t a k e v e r s u s i r r a d i a n c e e x p e r i m e n t s c o n d u c t e d d u r i n g m i d - d a y . W i t h i n c r e a s e d N l i m i t a t i o n ( d e c r e a s e d d i l u t i o n r a t e ) t h e r e l a t i v e d a r k u p t a k e c a p a c i t y i n c r e a s e d f o u r - f o l d f r o m 5 t o 2 1 % o f t o t a l N 0 3 ~ u p t a k e a n d t w o - f o l d f r o m 20 t o 39% o f t o t a l N H 4 + u p t a k e . A c o m p a r i s o n o f c a l c u l a t e d t o t a l u p t a k e ( l i g h t + d a r k ) o f s a m p l e s i n c u b a t e d a t 1 a n d 100% o f t h e g r o w t h \u00E2\u0080\u0094 2 \u00E2\u0080\u0094 1 i r r a d i a n c e ( 120 L(E*m *s ) r e v e a l s a n a p p r o x i m a t e t w o - f o l d r e d u c t i o n i n l i g h t d e p e n d e n c e o f N O 3 - a n d N H 4 + u p t a k e w i t h i n c r e a s i n g N l i m i t a t i o n i n c y c l o s t a t c u l t u r e s o f M. pusilla. The d e c r e a s e d l i g h t d e p e n d e n c e o f N u p t a k e i s p e r h a p s a n a d a p t i v e r e s p o n s e t o N l i m i t a t i o n w h i c h a l l o w s t h e c e l l t o o p t i m i z e i t s u p t a k e c a p a b i l i t y a t l o w PPFDs w i t h o u t i n c u r r i n g t h e r e l a t i v e l y h i g h m e t a b o l i c c o s t s o f m i g r a t i o n f o r a p i c o f l a g e l l a t e ( R a v e n , 1986) t o a more s u i t a b l e l i g h t 189 environment s a t u r a t i n g t o N uptake. Des p i t e i t s pronounced p h o t o t a x i s (Manton and Parke, 1960; Throndsen, 1973) and i t s r e l a t i v e l y good swimming a b i l i t y (Knight-Jones and Walne, 1952; Throndsen, 1973) Micromonas pusilla has been found deeper i n the sea than f l a g e l l a t e s i n g e n e r a l , and i t i s o f t e n found w e l l below the euphotic zone (e.g., Manton and Parke, 1960; Throndsen, 1976). \u00E2\u0080\u0094 1 1 Micromonas pusilla can swim at c a . 90 jjm*s (75-100 jjm\u00C2\u00ABs , Throndson, 1973) which would enable t h i s p i c o f l a g e l l a t e t o achieve meaningful changes i n i t s i n c i d e n t photon f l u x d e n s i t y (PPFD) d u r i n g daytime v e r t i c a l m i g r a t i o n i n a s t r a t i f i e d water column. In the F r a s e r R i v e r plume, i n the southern p o r t i o n of the S t r a i t of Georgia, B r i t i s h Columbia, M. pusilla can be n u m e r i c a l l y the most abundant p h y t o p l a n k t e r i n the euphotic zone ( C l i f f o r d e t a l . , 1989), but i t only accounts f o r <7% of the phytoplankton biomass ( H a r r i s o n et a l . , s ubmitted). From Beer's law one can c a l c u l a t e t h a t the 3.9 m t h a t M. pusilla c o u l d move v e r t i c a l l y i n these N - r e p l e t e waters d u r i n g a day's (12 h) swimming ( a t t e n u a t i o n c o e f f i c i e n t of c a . 0.42 m-^) would i n c r e a s e the c e l l ' s mean i n c i d e n t PPFD by 5 times the o r i g i n a l v a l u e . T h i s c o u l d be advantageous, i n terms of i n c r e a s e d s p e c i f i c n u t r i e n t and growth r a t e , i f the i n i t i a l PPFD was l i m i t i n g . Conversely, downward swimming c o u l d take a c e l l from a r e g i o n of high, i n h i b i t o r y PPFD t o one w i t h lower PPFD but s t i l l s a t u r a t i n g f o r n i t r o g e n uptake. 190 CONCLUSIONS T h i s d i s s e r t a t i o n e x a m i n e d t h e u p t a k e o f n i t r o g e n o u s n u t r i e n t s by b o t h n a t u r a l a s s e m b l a g e s o f m a r i n e p h y t o p l a n k t o n a n d u n i a l g a l c u l t u r e s o f t h e p i c o f l a g e l l a t e , Micromonas pusilla a s a f u n c t i o n o f l i g h t a n d n u t r i t i o n a l h i s t o r y . The s p e c i f i c f i n d i n g s o f t h e r e s e a r c h a r e s u m m a r i z e d b e l o w . 1. The u p t a k e o f N O 3 - , N H 4 + a n d u r e a b y c o a s t a l a n d o c e a n i c p h y t o p l a n k t o n c o m m u n i t i e s d e m o n s t r a t e d p r o n o u n c e d d i e l p e r i o d i c r h y t h m s , w i t h m i n i m a l u p t a k e r a t e s a t n i g h t a n d m a x i m a l u p t a k e d u r i n g t h e d a y t i m e . The a m p l i t u d e o f u p t a k e p e r i o d i c i t y a p p e a r e d t o be i n f l u e n c e d by a number o f f a c t o r s b e s i d e s l i g h t i n t e n s i t y a n d t h e s e i n c l u d e d t h e p h y t o p l a n k t o n s p e c i e s c o m p o s i t i o n , t h e a m b i e n t n i t r o g e n c o n c e n t r a t i o n s , t h e a c t u a l N s u b s t r a t e u t i l i z e d , a n d t h e d e p t h i n t h e w a t e r c o l u m n . 2. I n b o t h t h e f r o n t a l a n d s t r a t i f i e d w a t e r s o f t h e S t r a i t o f G e o r g i a t h e d e p e n d e n c e o f n i t r a t e a n d u r e a u p t a k e u p o n i r r a d i a n c e c o u l d be d e s c r i b e d by a r e c t a n g u l a r h y p e r b o l a s i m i l a r t o t h e M i c h a e l i s - M e n t e n f o r m u l a t i o n . The l i g h t d e p e n d e n c y o f N O 3 - u p t a k e was t h e same f o r b o t h t h e s u r f a c e a n d DCM c o m m u n i t i e s o f t h e f r o n t a l w a t e r , w h e r e a s i n t h e s t r a t i f i e d w a t e r s s u r f a c e p h y t o p l a n k t o n showed l e s s l i g h t d e p e n d e n c e f o r N O 3 - , a n d p a r t i c u l a r l y f o r u r e a u p t a k e , t h a n t h o s e f r o m t h e DCM. 191 3. U p t a k e r a t e s o f NC>3~, N H 4 + , a n d u r e a i n t h e n i g h t a n d a r t i f i c i a l d a r k n e s s w e r e a s u b s t a n t i a l p o r t i o n o f t o t a l u p t a k e by c o a s t a l p h y t o p l a n k t o n c o m m u n i t i e s ; u n d e r c o n d i t i o n s o f n i t r o g e n l i m i t a t i o n ( l o w a m b i e n t N c o n c e n t r a t i o n s ) d a r k u p t a k e i n c r e a s e d r e l a t i v e t o l i g h t u p t a k e . 4 . /Ammonium c o m p l e t e l y s u p p r e s s e d t h e u p t a k e o f N O 3 - by N-r e p l e t e c u l t u r e s o f Micromonas pusilla w h e r e a s t h e a d d i t i o n o f u r e a o n l y r e s u l t e d i n p a r t i a l i n h i b i t i o n o f N O 3 - u p t a k e . The i n h i b i t o r y e f f e c t o f N H 4 + on N O 3 - u p t a k e was c o m p l e t e e v e n a t N H 4 + c o n c e n t r a t i o n s a s l o w a s 1 uq-at N'L-\"'\". 5. U p t a k e k i n e t i c e x p e r i m e n t s showed t h a t M. pusilla c a n t a k e up N H 4 + a t t w i c e t h e r a t e s o f N O 3 - o r u r e a u p t a k e . A l t h o u g h t h e h a l f - s a t u r a t i o n c o n s t a n t s a r e s i m i l a r f o r t h e t h r e e s u b s t r a t e s ( 0 . 3 - 0 . 5 uq-at N-L -\"' -), t h e g r e a t e r i n i t i a l s l o p e o f t h e M i c h a e l i s - M e n t e n p l o t f o r N H 4 + u p t a k e s u g g e s t s t h a t M. pusilla c a n u t i l i z e l o w c o n c e n t r a t i o n s o f N H 4 + more e f f e c t i v e l y t h a n e q u i v a l e n t c o n c e n t r a t i o n s o f u r e a a n d N O 3 -6 . T r a n s i e n t e l e v a t e d ( s u r g e ) r a t e s o f N H 4 + a n d u r e a u p t a k e w e r e o b s e r v e d a f t e r N e n r i c h m e n t o f N - s t a r v e d c u l t u r e s o f M. pusilla. N i t r a t e u p t a k e was s l o w e r ( 2 5 - 5 0 % ) i n N - s t a r v e d c e l l s t h a n N - r e p l e t e c e l l s , b u t t h e r e was no l a g i n u p t a k e a f t e r t h e i n i t i a l N O 3 - e n r i c h m e n t o f s t a r v e d c e l l s ; u p t a k e commenced i m m e d i a t e l y . 7. D i e l p a t t e r n s w e r e o b s e r v e d i n b o t h c o n t i n u o u s a n d b a t c h c u l t u r e s o f M. pusilla grown on a L:D i l l u m i n a t i o n c y c l e . D i e l p e r i o d i c i t y i n c e l l d i v i s i o n , mean c e l l v o l u m e , N u p t a k e a n d i n t e r n a l p o o l s o f N O 3 - w e r e o b s e r v e d . W i t h d e c r e a s e d 192 d i l u t i o n r a t e ( d e c r e a s e d u a n d s l o w e r N O 3 - s u p p l y ) i n s i t u NC>3~ u p t a k e p e r i o d i c i t y was a b s e n t . P o t e n t i a l r a t e s o f NH 4 + w e r e c o n s i s t e n t l y 2-3 f o l d g r e a t e r t h a n N C ^ - o r u r e a u p t a k e r a t e s r e g a r d l e s s o f t h e d e g r e e o f N l i m i t a t i o n . A m a r k e d d i e l v a r i a b i l i t y i n p o t e n t i a l u p t a k e r a t e s o f a l l t h r e e N s u b s t r a t e s was a p p a r e n t i n t h e f a s t e s t g r o w n c y c l o s t a t c u l t u r e (0.74 d --*-), b u t n o t i n t h e s l o w e r grown c y c l o s t a t s ( 0 . 4 9 a n d 0.24 d _ 1 ) 8 . The e f f e c t o f i r r a d i a n c e on t h e u p t a k e o f N H 4 + a n d N O 3 -by M. pusilla c o u l d be d e s c r i b e d b y M i c h a e l i s - M e n t e n k i n e t i c s . D a r k u p t a k e r a t e s o f N H 4 + w e r e a g r e a t e r p o r t i o n o f t o t a l u p t a k e t h a n d a r k NO^ - r a t e s , a n d t h e r e l a t i v e i m p o r t a n c e o f d a r k N u p t a k e i n c r e a s e d w i t h i n c r e a s e d N l i m i t a t i o n . W i t h i n c r e a s e d N l i m i t a t i o n t h e l i g h t d e p e n d e n c y o f N O 3 - a n d N H 4 + u p t a k e was l e s s e n e d . 193 REFERENCES A l l e n , T.F.H. 1977. S c a l e i n m i c r o s c o p i c a l g a l ecology: a n e g l e c t e d dimension. P h y c o l o g i a 16: 253-257 Amy, N.K. and R.H. G a r r e t t . 1974. P u r i f i c a t i o n and c h a r a c t e r i z a t i o n of the n i t r a t e reductase from the diatom Thalassiosira pseudonana. P l a n t P h y s i o l . 54: 629-637. A n t i a , N.J., P.J. H a r r i s o n and L. O l i v e i r a (In p r e s s ) . The r o l e of d i s s o l v e d o r g a n i c n i t r o g e n i n phytoplankton n u t r i t i o n , c e l l b i o l o g y and ecology. P h y c o l o g i a 29. Armstrong, F.A.J., C R . Stearns and J.D.H. S t r i c k l a n d . 1967. The measurement of u p w e l l i n g and subsequent b i o l o g i c a l p rocesses by means of the Technicon A u t o a n a l y z e r and a s s o c i a t e d equipment. Deep-Sea Res. 14: 381-389. Beers, J.R. and A.C. K e l l y . 1965. Short-term v a r i a t i o n of ammonia i n the Sargasso Sea o f f Bermuda. Deep-Sea Res. 12: 21-25. Bekheet, I.A. and P.J. S y r e t t . 1979. The uptake of urea by Chlorella. New P h y t o l . 82: 179-186. Berman, T., B.F. Sherr, E. Sherr, D. Wynne and J . J . McCarthy. 1984. The c h a r a c t e r i s t i c s of ammonium and n i t r a t e uptake by phytoplankton i n Lake K i n n e r e t . Limnol. Oceanogr. 29: 287-297. B h o v i c h i t r a , M. and E. S w i f t . 1977. L i g h t and dark uptake of n i t r a t e and ammonium by l a r g e oceanic d i n o f l a g e l l a t e s : Pyrocystis n o c t i l u c a , Pyrocystis f u s i f o r m i s , and Dissodinium lunula. Limnol. Oceanogr. 22: 73-83. Bienfang, P.K. 1975. St e a d y - s t a t e a n a l y s i s of n i t r a t e -ammonium a s s i m i l a t i o n by phytoplankton. Limnol. Oceanogr. 20: 402-411. Bienfang, P.K. and P.J. H a r r i s o n . 1984. S i n k i n g - r a t e response of n a t u r a l assemblages of temperate and s u b s t r o p i c a l phytoplankton t o n u t r i e n t d e p l e t i o n . Mar. B i o l . 83: 293-300. Bienfang, P.K., P.J. H a r r i s o n and L.M. Quarmby. 1982. S i n k i n g r a t e response t o d e p l e t i o n of n i t r a t e , phosphorus and s i l i c a t e i n f o u r marine diatoms. Mar. B i o l . 67: 295-302. Bishop, Y., S. Fi e n b e r g and P. H o l l a n d . 1975. D i s c r e t e m u l t i v a r i a t e a n a l y s i s . M.I.T. Pr e s s , Cambridge, Mass. 210 p. 194 B l a s c o , D. and H.L. Conway. 1982. E f f e c t of ammonium on the r e g u l a t i o n of n i t r a t e a s s i m i l a t i o n i n n a t u r a l phytoplankton p o p u l a t i o n s . J . Exp. Mar. B i o l . E c o l . 61: 157-168. Booth, B.C. 1988. S i z e c l a s s e s and major taxonomic groups of phytoplankton at two l o c a t i o n s i n the s u b a r c t i c P a c i f i c Ocean i n May and August, 1984. Mar. B i o l . 97: 275-286. Brown, CM., D.S. MacDonald-Brown and S.O. S t a n l e y . 197 5. Inorganic n i t r o g e n metabolism i n marine b a c t e r i a : n i t r a t e uptake and r e d u c t i o n i n a marine pseudomonad. Mar. B i o l . 31: 7-13. Burmaster, D.E. 197 9. The unsteady continuous c u l t u r e of p h o s p h a t e - l i m i t e d Monochrysis lutheri Droop: experimental and t h e o r e t i c a l a n a l y s i s . J . Exp. Mar. B i o l . E c o l . 39: 167-186. Butcher, R.W. 1952. C o n t r i b u t i o n s t o our knowledge of the sm a l l e r marine a l g a e . J . Mar. B i o l . Assoc. U.K. 31: 175-191. Button, D.K. 1985. K i n e t i c s of n u t r i e n t - l i m i t e d t r a n s p o r t and m i c r o b i a l growth. M i c r o b i o l . Rev. 49: 270-297. Carpenter, E . J . and S. Dunham. 1985. Nitrogenous n u t r i e n t uptake, primary p r o d u c t i o n , and s p e c i e s composition of phytoplankton i n the Carmans R i v e r e s t u a r y , Long I s l a n d , New York. Limnol. Oceanogr. 30: 513-526. Carpenter, E . J . and R. G u i l l a r d . 1971. I n t r a s p e c i f i c d i f f e r e n c e i n n i t r a t e h a l f - s a t u r a t i o n c o n s t a n t s f o r th r e e s p e c i e s of marine phytoplankton. Ecology 52: 183-185. Carpenter, E . J . and J.S. L i v e l y . 1980. Review of estimates of a l g a l growth u s i n g 1 4 C t r a c e r t e c h n i q u e s , p. 161-178. In: P. Falkowski (ed.) Primary p r o d u c t i v i t y i n the sea. Plenum Press, New York, N.Y. Caperon, J . and J . Meyer. 1972. N i t r o g e n - l i m i t e d growth of marine phytoplankton - I. Changes i n p o p u l a t i o n c h a r a c t e r i s t i c s with s t e a d y - s t a t e growth r a t e . Deep-Sea Res. 19: 601-618. Caperon, J . , and D.A. Ziemann. 1976. S y n e r g i s t i c e f f e c t s of n i t r a t e and ammonium i o n on the growth and uptake k i n e t i c s of Monochrysis lutheri i n continuous c u l t u r e . Mar. B i o l . 36: 73-84. Chisholm, S.W. 1981. Temporal p a t t e r n s of c e l l d i v i s i o n i n u n i c e l l u l a r a lgae, p. 150-181. In: T. P i a t t (ed.) P h y s i o l o g i c a l bases of phytoplankton ecology. Can. B u l l . F i s h . Aquat. S c i . 210. 195 Chisholm, S.W. and J.C. C o s t e l l o . 1980. I n f l u e n c e of environmental f a c t o r s and p o p u l a t i o n composition on the t i m i n g of c e l l d i v i s i o n i n Thalassiosira fluviatilis ( B a c i l l a r i o p h y c e a e ) grown on l i g h t / d a r k c y c l e s . J . Ph y c o l . 16: 375-383. Chisholm, S.W., F.M.M. Morel and W. S. Slocum. 1980. The phasing and d i s t r i b u t i o n of c e l l d i v i s i o n c y c l e s i n marine diatoms, p. 281-300. In: P.G. Falkowski (ed.) Primary p r o d u c t i v i t y i n the sea. Plenum P r e s s , New York, N.Y. C l i f f o r d , P.J., W.P. Cochlan, P.J. H a r r i s o n , K. Y i n , M.J. S i b b a l d , L . J . A l b r i g h t , M.A. S t . John and P.A. Thompson. 1989. Plankton p r o d u c t i o n and n u t r i e n t dynamics i n the F r a s e r R i v e r plume, 1987. Dept. Oceanography, Univ. of B r i t i s h Columbia, Vancouver, B.C. Manuscr. Rep. 51: 118 P-Cochlan, W.P. 1982. Uptake and r e g e n e r a t i o n of n i t r o g e n on the S c o t i a n S h e l f . M.Sc. T h e s i s , Dept. Oceanogr., Dalhousie U n i v e r s i t y , H a l i f a x , N.S., 111 p. Cochlan, W.P. 1986. Seasonal study of uptake and r e g e n e r a t i o n of n i t r o g e n on the S c o t i a n S h e l f . Cont. S h e l f . Res. 5: 555-577. Cochlan, W.P., P.J. H a r r i s o n , P.A. Thompson and T.R. Parsons. 1986. P r e l i m i n a r y o b s e r v a t i o n s of the summer p r o d u c t i o n of t h r e e B r i t i s h Columbian c o a s t a l i n l e t s . S a r s i a 71: 161-168. C o d i s p o t i , L.A. 1983. N i t r o g e n i n u p w e l l i n g systems, p. 513-564. In: E . J . Carpenter and D.G. Capone (eds.) N i t r o g e n i n the marine environment. Academic Press, New York, N.Y. C o l l o s , Y. 1980. T r a n s i e n t s i t u a t i o n s i n n i t r a t e a s s i m i l a t i o n by marine diatoms. 1. Changes i n uptake parameters d u r i n g n i t r o g e n s t a r v a t i o n . Limnol. Oceanogr. 25: 1075-1081. C o l l o s , Y. 1983. T r a n s i e n t s i t u a t i o n s i n n i t r a t e a s s i m i l a t i o n by marine diatoms. 4. N o n - l i n e a r phenomena and the e s t i m a t i o n of the maximum uptake r a t e . J . Plankton Res. 5: 677-691. C o l l o s , Y. 1986. Time-lag a l g a l growth dynamics: b i o l o g i c a l c o n s t r a i n t s on primary p r o d u c t i o n i n a q u a t i c environments. Mar. E c o l . Prog. Ser. 33: 193-206. 196 C o l l o s , Y. 1987. C a l c u l a t i o n of 1 D N uptake r a t e s by phytoplankton a s s i m i l a t i n g one or s e v e r a l n i t r o g e n sources. A p p l . R a d i a t . I s o t . 38: 275-282. C o l l o s , Y. 1989. A l i n e a r model of e x t e r n a l i n t e r a c t i o n s d u r i n g uptake of d i f f e r e n t forms of i n o r g a n i c n i t r o g e n by micr o a l g a e . J . Plankton Res. 11: 521-533. C o l l o s , Y. and J . Lewin. 1974. Blooms of sur f - z o n e diatoms along the c o a s t of the Olympic P e n i n s u l a , Washington. IV. N i t r a t e reductase a c t i v i t y i n n a t u r a l p o p u l a t i o n s and l a b o r a t o r y c u l t u r e s of Chaetoceros armatum and Asterionella socialis. Mar. B i o l . 25: 213-221. C o l l o s , Y. and G. Slawyk. 1976. S i g n i f i c a n c e of c e l l u l a r n i t r a t e content i n n a t u r a l p o p u l a t i o n s of marine phytoplankton growing i n shipboard c u l t u r e s . Mar. B i o l . 34: 27-32. C o l l o s , Y., S.Y. M a e s t r i n i and J.-M. Robert. 1989. High long-term n i t r a t e uptake by oyster-pond microalgae i n the presence of high ammonium c o n c e n t r a t i o n s . Limnol. Oceanogr. 34: 957-964. Conover, S.A.M. 1975. N i t r o g e n u t i l i z a t i o n d u r i n g s p r i n g blooms of marine phytoplankton i n Bedford B a s i n , Nova S c o t i a , Canada. Mar. B i o l . 32: 247-261. Conway, H.L. 1977. I n t e r a c t i o n s of i n o r g a n i c n i t r o g e n i n the uptake and a s s i m i l a t i o n by marine phytoplankton. Mar. B i o l . 39: 221-232. Conway, H.L. and P.J. H a r r i s o n . 197 7. Marine diatoms grown i n chemostats under s i l i c a t e or ammonium l i m i t a t i o n . IV. T r a n s i e n t response of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida t o a s i n g l e a d d i t i o n of the l i m i t i n g n u t r i e n t . Mar. B i o l . 43: 33-43. Conway, H.L. and T.E. Whitledge. 1979. D i s t r i b u t i o n , f l u x e s and b i o l o g i c a l u t i l i z a t i o n of i n o r g a n i c n i t r o g e n d u r i n g a s p r i n g bloom i n the New York B i g h t . J . Mar. Res. 37: 657-668. Conway, H.L., P.J. H a r r i s o n and C O . Davis. 1976. Marine diatoms grown i n chemostats under s i l i c a t e or ammonium l i m i t a t i o n . I I . T r a n s i e n t response of Skeletonema costatum t o a s i n g l e a d d i t i o n of a l i m i t i n g n u t r i e n t . Mar. B i o l . 35: 187-199. C r e s s w e l l , R.C and P.J. S y r e t t . 1979. Ammonium i n h i b i t i o n of n i t r a t e uptake by the diatom, Phaeodactylum tricornutum. P l a n t S c i . L e t t . 14: 321-325. 197 C u l l e n , J . J . and S.G. Ho r r i g a n . 1981. E f f e c t s of n i t r a t e on the d i u r n a l v e r t i c a l m i g r a t i o n , carbon t o n i t r o g e n r a t i o and the p h o t o s y n t h e t i c c a p a c i t y of the d i n o f l a g e l l a t e Gymnodinium splendens. Mar. B i o l . 62: 81-89. C u l l e n , J . J . , E. Stewart, E. Renger, R.W. Eppley and C D . Winant. 1983. V e r t i c a l motion of the t h e r m o c l i n e , n i t r a c l i n e and c h l o r o p h y l l maximum l a y e r s i n r e l a t i o n t o c u r r e n t s on the Southern C a l i f o r n i a S h e l f . J . Mar. Res. 41: 239-262. Davis, CO., P.J. H a r r i s o n and R.C. Dugdale. 197 3. Continuous c u l t u r e of marine diatoms under s i l i c a t e l i m i t a t i o n . I. Synchronized l i f e c y c l e of Skeletonema costatum. J . P h y c o l . 9: 175-180. DeManche, J.M., H.C C u r l , J r . , D.W. Lundy and P.L. Donaghay. 1979. The r a p i d response of the marine diatom Skeletonema costatum t o changes i n e x t e r n a l and i n t e r n a l n u t r i e n t c o n c e n t r a t i o n . Mar. B i o l . 53: 323-333. Denman K.L. and A.E. Gar g e t t . 1988. M u l t i p l e t h e r m o c l i n e s are b a r r i e r s t o v e r t i c a l exchange i n the s u b a r c t i c P a c i f i c d u r i n g SUPER, May 1984. J . Mar. Res. 46: 77-103. Denman K.L. and T.M. Powell. 1984. E f f e c t s of p h y s i c a l processes on p l a n k t o n i c ecosystems i n the c o a s t a l ocean. Oceanogr. Mar. B i o l . Ann. Rev. 22: 125-168. D i T u l l i o , G.R. and E.A. Laws. 1986. D i e l p e r i o d i c i t y of n i t r o g e n and carbon a s s i m i l a t i o n i n f i v e s p e c i e s of marine phytoplankton: accuracy of methodology f o r p r e d i c i t n g N - a s s i m i l a t i o n r a t e s and N/C composition r a t i o s . Mar. E c o l . Prog. Ser. 32: 123-132. Dortch, Q. 1982. E f f e c t of growth c o n d i t i o n s on accumulation of i n t e r n a l n i t r a t e , ammonium, amino a c i d s , and p r o t e i n i n t h r e e marine diatoms. J . Exp. Mar. B i o l . E c o l . 61: 243-264. Dortch, Q. (In p r e s s ) . Review of the i n t e r a c t i o n between ammonium and n i t r a t e uptake i n phytoplankton. Mar. E c o l . Prog. Ser. Dortch, Q. and H.L. Conway. 1984. I n t e r a c t i o n between n i t r a t e and ammonium uptake: v a r i a t i o n w i t h growth r a t e , n i t r o g e n source, and s p e c i e s . Mar. B i o l . 79: 151-164. Dortch, Q. and H. Maske. 1982. Dark uptake of n i t r a t e and n i t r a t e reductase a c t i v i t y of a r e d - t i d e p o p u l a t i o n o f f Peru. Mar. E c o l . Prog. Ser. 9: 299-303. 198 Dortch, Q. and J.R. P o s t e l . 1989. Ph y t o p l a n k t o n - n i t r o g e n i n t e r a c t i o n s , p. 139-173. In: M.R. Landry and B.M Hickey (eds.) C o a s t a l oceanography of Washington and Oregon. E l s e v i e r S c i ence P u b l i s h e r s , Amsterdam. Dortch, Q., P.A. Thompson and P.J. H a r r i s o n (Submitted). Short-term i n t e r a c t i o n between n i t r a t e and ammonium uptake i n Thalassiosira pseudonana: e f f e c t of p r e c o n d i t i o n i n g N source and growth r a t e . Mar. B i o l . Dortch, Q., J.R. C l a y t o n , J r . , S.S. Thoresen and S.I. Ahmed. 1984. Species d i f f e r e n c e s i n accumulation of n i t r o g e n p o o l s i n phytoplankton. Mar. B i o l . 81: 237-250. Dortch, Q., J.R. C l a y t o n , J r . , S.S. Thoresen, S.L. B r e s s l e r and S.I. Ahmed. 1982. Response of marine phytoplankton t o n i t r o g e n d e f i c i e n c y : decreased n i t r a t e uptake vs enhanced ammonium uptake. Mar. B i o l . 70: 13-19. Dortch, Q., J.R. C l a y t o n , J r . , S.S. Thoresen, J.S. C l e v e l a n d , S.L. B r e s s l e r and S.I. Ahmed. 1985. N i t r o g e n storage and use of b i o c h e m i c a l i n d i c e s t o assess n i t r o g e n d e f i c i e n c y and growth r a t e i n n a t u r a l p l a n k t o n p o p u l a t i o n s . J . Mar. Res. 43: 437-464. Doty, M.S. and M. Og u r i . 1957. Evidence f o r a p h o t o s y n t h e t i c d a i l y p e r i o d i c i t y . Limnol. Oceanogr. 2: 37-40. Dowd, J.E. and D.S. Riggs. 1965. A comparison of estimates of Michaelis-Menten k i n e t i c c o n s t a n t s from v a r i o u s l i n e a r t r a n s f o r m a t i o n s . J . B i o l . Chem. 240: 863-869. Dugdale, R.C. 1967. N u t r i e n t l i m i t a t i o n i n the sea: dynamics, i d e n t i f i c a t i o n , and s i g n i f i c a n c e . L i mnol. Oceanogr. 12: 685-695. Dugdale, R.C. 1976. N u t r i e n t c y c l e s , p. 141-172. In: D.H. Cushing and J . J . Walsh (eds.) The ecology of the seas. W.B. Saunders Co., P h i l a d e l p h i a , Pa. Dugdale, R.C. 1977. M o d e l l i n g . p. 789-806 In: E.D. Goldberg (ed.) The sea: i d e a s and o b s e r v a t i o n s on progress i n the study of the seas. Wiley, New York. Dugdale, R.C. and J . J . Goering. 1967. Uptake of new and regenerated forms of n i t r o g e n i n primary p r o d u c t i v i t y . Limnol. Oceanogr. 12: 196-206. Dugdale, R.C. and F.P. Wi l k e r s o n . 1986. The use of 1 5 N t o measure n i t r o g e n uptake i n e u t r o p h i c oceans; experimental c o n s i d e r a t i o n s . Limnol. Oceanogr. 31: 673-689. 199 Egan, B. and G.D. Floodgate. 1985. B i o l o g i c a l s t u d i e s i n the v i c i n i t y of a shallow-sea t i d a l mixing f r o n t I I . The d i s t r i b u t i o n of b a c t e r i a . P h i l . Trans. R. Soc. Lond. B. 310: 435-444. Eppley, R.W. 1981. A u t o t r o p h i c p r o d u c t i o n of p a r t i c u l a t e matter, p. 343-361. In: A.R. Longhust (ed.) A n a l y s i s of marine ecosystems. Academic P r e s s , London. Eppley R.W. and J.L. Coatsworth. 1968. Uptake of n i t r a t e and n i t r i t e by Ditylum brightwellii - k i n e t i c s and mechanisms. J . Ph y c o l . 4: 151-156. Eppley, R.W. and W.G. H a r r i s o n . 1975. P h y s i o l o g i c a l ecology of Gonyaulax polyedra a r e d water d i n o f l a g e l l a t e of southern C a l i f o r n i a , p. 11-22. In: V.R. L o C i c e r o (ed.), Proc. 1st. I n t . Conf. on T o x i c D i n o f l a g e l l a t e Blooms. Mass. Science and Tech. Found., Wak e f i e l d , Mass. Eppley, R.W. and B.J. Peterson. 1979. P a r t i c u l a t e o r g a n i c matter f l u x and p l a n k t o n i c new p r o d u c t i o n i n the deep ocean. Nature (Lond.) 282: 677-680. Eppley, R.W. and E.H. Renger. 1974. N i t r o g e n a s s i m i l a t i o n of an oceanic diatom i n n i t r o g e n - l i m i t e d continuous c u l t u r e . J . P h y c o l . 10: 15-23. Eppley, R.W. and J.N. Rogers. 1970. Inorganic n i t r o g e n a s s i m i l a t i o n of Ditylum brightwellii, a marine plankton diatom. J . P h y c o l . 6: 344-351. Eppley, R.W. and W.H. Thomas. 1969. Comparison of h a l f -s a t u r a t i o n c o n s t a n t s f o r growth and n i t r a t e uptake of marine phytoplankton. J . P h y c o l . 5: 375-379. Eppley, R.W., T.T. Packard and J . J . Maclsaac. 1970. N i t r a t e reductase i n Peru Current phytoplankton. Mar. B i o l . 6: 194-205. Eppley, R.W., E.H. Renger and W.G. H a r r i s o n . 1979. N i t r a t e and phytoplankton p r o d u c t i o n i n southern C a l i f o r n i a c o a s t a l waters. Limnol. Oceanogr. 24: 483-494. Eppley, R.W., J.H. Rogers and J . J . McCarthy. 1969. H a l f -s a t u r a t i o n c o n s t a n t s f o r uptake of n i t r a t e and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912-919. Eppley, R.W., A.F. C a r l u c c i , 0. Holm-Hansen, D. K e i f e r , J . J . McCarthy, E. V e n r i c k and P.M. W i l l i a m s . 1971a. Phytoplankton growth and composition i n shipboard c u l t u r e s s u p p l i e d with n i t r a t e , ammonium, or urea as the n i t r o g e n sources. Limnol. Oceanogr. 16: 741-751. 200 Eppley, R.W., E.H. Renger, E.L. V e n r i c k and M.M. M u l l i n . 1973. A study of plankton dynamics and n u t r i e n t c y c l i n g i n the c e n t r a l gyre of the North P a c i f i c Ocean. Limnol. Oceanogr. 18: 534-551. Eppley, R.W., J.N. Rogers, J . J . McCarthy and A. S o u r n i a . 1971b. L i g h t / d a r k p e r i o d i c i t y i n n i t r o g e n a s s i m i l a t i o n of the marine p h y t o p l a n k t e r s Skeletonema costatum and Coccolithus huxleyi i n N - l i m i t e d chemostat c u l t u r e s . J . P h y c o l . 7: 150-154. Estep, K.W., P.G. Davis, P.E. Hargraves and J . McN. S i e b u r t h . 1984. C h l o r o r p l a s t c o n t a i n i n g m i c r o f l a g e l l a t e s i n n a t u r a l p o p u l a t i o n s of North A t l a n t i c nanoplankton, t h e i r i d e n t i f i c a t i o n and d i s t r i b u t i o n ; i n c l u d i n g a d e s c r i p t i o n of f i v e new s p e c i e s of Chrysochromulina (Prymnesiophyceae). P r o t i s t o l o g i c a 20: 613-634. Falko w s k i , P.G. 1975a. N i t r a t e uptake i n marine phytoplankton: ( n i t r a t e , c h l o r i d e ) - a c t i v a t e d adenosine t r i p h o s p h a t a s e from Skeletonema costatum ( B a c i l l a r i o p h y c e a e ) . J . P h y c o l . 11: 323-326. Falkowski, P.G. 1975b. N i t r a t e uptake i n marine phytoplankton: comparison of h a l f - s a t u r a t i o n c o n s t a n t s from seven s p e c i e s . Limnol. Oceanogr. 20: 412-417. F i e l d e r , R. and G. Proksch. 1975. The d e t e r m i n a t i o n of nitrogen-15 by emission and mass spectrometry i n b i o c h e m i c a l a n a l y s i s : a review. A n a l . Chim. A c t a . 78: 1-62. F i s h e r , T.R.,. P.R. C a r l s o n and R.T. Barber. 1981. Some problems i n the i n t e r p r e t a t i o n of ammonium uptake k i n e t i c s . Mar. B i o l . L e t t . 2: 33-44. F i s h e r , T.R., P.R. C a r l s o n and R.T. Barber. 1982. Carbon and n i t r o g e n primary p r o d u c t i v i t y i n t h r e e North C a r o l i n a e s t u a r i e s . E s t . C o a s t a l S h e l f S c i . 15: 621-644. F i s h e r , T.R., K.M. M o r r i s s e y , P.R. C a r l s o n , L.F. A l v e s and J.M. Melack. 1988. N i t r a t e and ammonium uptake by p l a n k t o n i n an Amazon R i v e r f l o o d p l a i n l a k e . J . Plankton Res. 10: 7-29. F i t z g e r a l d , G.P. 1968. D e t e c t i o n of l i m i t i n g or s u r p l u s n i t r o g e n i n algae and a q u a t i c weeds. J . P h y c o l . 4: 121-126. Floodgate, G.D., G.E. Fogg, D.A. Jones, K. Lochte and CM. T u r l e y . 1981. M i c r o b i o l o g i c a l and zooplankton a c t i v i t y a t a f r o n t i n L i v e r p o o l Bay. Nature (Lond.) 209: 133-136. 201 F l o r e n c i o , F . J . and J.M. Vega. 1982. R e g u l a t i o n of the a s s i m i l a t i o n of n i t r a t e i n Chlamydomonas reinhardii. Phytochem. 21: 1195-1200. Fogg, G.E. 1986. P i c o p l a n k t o n - review l e c t u r e . Proc. R. Soc. Lond. B 228: 1-30. Forbes, J.R., S.L. Buckingham and A.T. Earmme. 1987. Phytoplankton p r o d u c t i v i t y experiments i n B r i t i s h Columbia c o a s t a l waters, 1986. Can. Data Rep. Hydrogr. Ocean. S c i . 56: 169 p. Forbes, J.R., K.L. Denman, D.L. Mackas and R.M. Brown. 1988. Ocean Ecology data r e p o r t : S u b a r c t i c P a c i f i c Ocean, May 1984 ( P r o j e c t SUPER). Can. Data Rep. Hydrogr. Ocean S c i . 64: 147 p. Frempong, E. 1974. A seasonal sequence of d i e l d i s t r i b u t i o n p a t t e r n s f o r the p l a n k t o n i c d i n o f l a g e l l a t e Ceratium hirundinella i n a e u t r o p h i c l a k e . Freshwater B i o l . 14: 401-421. Fuhrman, J.A. and T.M. B e l l . 1985. B i o l o g i c a l c o n s i d e r a t i o n s i n the measurement of d i s s o l v e d f r e e amino a c i d s i n seawater and i m p l i c a t i o n s f o r chemical and m i c r o b i o l o g i c a l s t u d i e s . Mar. E c o l . Prog. Ser. 25: 13-21. Fuhs, G.W., S.D. Demmerle, E. C a n e l l i and M. Chen. 1972. C h a r a c t e r i z a t i o n of ph o s p h o r u s - l i m i t e d p l a n k t o n algae, p. 113-133. In: G.E. L i k e n (ed.) N u t r i e n t s and e u t r o p h i c a t i o n : the l i m i t i n g n u t r i e n t c o n t r o v e r s y . S p e c i a l Symposia Amer. Soc. Limnol. Oceanogr. 1. Furnas, M.J. 1983. Ni t r o g e n dynamics i n lower Narragansett Bay, Rhode I s l a n d . 1. Uptake by s i z e - f r a c t i o n a t e d phytoplankton p o p u l a t i o n s . J . Plankton Res. 5: 657-676. Ga r s i d e , C. 1985. The v e r t i c a l d i s t r i b u t i o n of n i t r a t e i n open ocean s u r f a c e water. Deep-Sea Res. 32: 723-732. Gieskes, W.W.C., G.W. Kraay and M.A. Baars. 1979. Current 14C methods f o r measuring primary p r o d u c t i o n : gross underestimates i n oceanic waters. Neth. J . Sea Res. 13: 58-78. G l i b e r t , P.M. 1982. Regional s t u d i e s of d a i l y , seasonal and s i z e f r a c t i o n v a r i a b i l i t y i n ammonium r e m i n e r a l i z a t i o n . Mar. B i o l . 70: 209-222. G l i b e r t , P.M. and J.C. Goldman. 1981. Rapid ammonium uptake by marine phytoplankton. Mar. B i o l . L e t t . 2: 25-31. 202 G l i b e r t , P.M., D.C. Biggs and J . J . McCarthy. 1982a. U t i l i z a t i o n of ammonium and n i t r a t e d u r i n g a u s t r a l summer i n the S c o t i a Sea. Deep-Sea Res. 29: 837-850. G l i b e r t , P.M., J.C. Goldman and E . J . Carpenter. 1982b. Seasonal v a r i a t i o n s i n the u t i l i z a t i o n of ammonium and n i t r a t e by phytoplankton i n Vinegard Sound, Massachusetts, USA. Mar. B i o l . 70: 237-249. G l i b e r t , P.M., F. L i p s c h u l t z , J . J . McCarthy and M.A. A l t a b e t . 1982c. Isotope d i l u t i o n models of uptake and r e m i n e r a l i z a t i o n of ammonium by marine p l a n k t o n . Limnol. Oceanogr. 27: 639-650. Goering, J . J . , R.C. Dugdale and D.W. Menzel. 1964. C y c l i c d i u r n a l v a r i a t i o n s i n the uptake of ammonia and n i t r a t e by p h o t o s y n t h e t i c organisms i n the Sargasso Sea. Limnol. Oceanogr. 9: 448-451. Goldman, J.C. 1977. St e a d y - s t a t e growth of phytoplankton i n continuous c u l t u r e : comparison of i n t e r n a l and e x t e r n a l n u t r i e n t equations. J . Ph y c o l . 13: 251-258. Goldman, J.C. 1984. Conceptual r o l e f o r microaggregates i n p e l a g i c waters. B u l l . Mar. S c i . 35: 462-476. Goldman, J.C. and M.R. Dennett. 1985. S u s c e p t i b i l i t y of some marine phytoplankton s p e c i e s t o c e l l breakage d u r i n g f i l t r a t i o n and p o s t - f i l t r a t i o n r i n s i n g . J . Exp. Mar. B i o l . E c o l . 86: 47-58. Goldman, J.C. and P.M. G l i b e r t . 1982. Comparative r a p i d ammonium uptake by fo u r s p e c i e s of marine phytoplankton. Limnol. Oceanogr. 27: 814-827. Goldman, J.C. and P.M. G l i b e r t . 1983. K i n e t i c s of i n o r g a n i c n i t r o g e n uptake by phytoplankton, p. 233-274. In: E . J . Carpenter and D.G. Capone (eds.) N i t r o g e n i n the marine environment. Academic Press, New York, N.Y. Goldman, J . C , J . J . McCarthy and D.G. Peavey. 197 9. Growth r a t e i n f l u e n c e on the chemical composition of phytoplankton i n oceanic waters. Nature (Lond.) 279: 210-215. Goldman, J . C , C D . T a y l o r and P.M. G l i b e r t . 1981. Non-l i n e a r time-course uptake of carbon and ammonium by marine phytoplankton. Mar. E c o l . Prog. Ser. 6: 137-148. Grant, B.R. 1967. The a c t i o n of l i g h t on n i t r a t e and n i t r i t e a s s i m i l a t i o n by the marine c h l o r o p h y t e , Dunaliella tertiolecta ( B u t c h e r ) . J . Gen. M i c r o b i o l . 48: 379-389. 203 Grant, B.R. and I.M. Turner. 1969. L i g h t - s t i m u l a t e d n i t r a t e and n i t r i t e a s s i m i l a t i o n i n s e v e r a l s p e c i e s of a l g a e . Comp. Biochem. P h y s i o l . 29: 995-1004. Grant, B.R., J . Madgwick and G. DalPont. 1967. Growth of Cylindrotheca closterium v a r . californica (Mereschk) Rieman & Lewin on n i t r a t e , ammonia, and urea. Aust. J . Mar. Freshwater Res. 18: 129-135. Guerrero, M.G., J.M. Vega and M. Losada. 1981. The a s s i m i l a t o r y n i t r a t e - r e d u c i n g system and i t s r e g u l a t i o n . Ann. Rev. P l a n t P h y s i o l . 32: 169-204. Hager, S.W., L . I . Gordon and P.K. Park. 1968. A p r a c t i c a l manual f o r the use of the Technicon A u t o a n a l y z e r i n seawater n u t r i e n t a n a l y s i s . Tech. Rep. 68-33, Dept. of Oceanogr., Oregon S t a t e Univ., C o r v a l l i s . 31 p. H a l l e g r a e f f , G.M. 1983. S c a l e - b e a r i n g and l o r i c a t e nanoplankton from the East A u s t r a l i a n C u r r e n t . Bot. Marina 26: 493-515. H a l l e g r a e f f , G.M. and S.W. J e f f r e y . 1984. T r o p i c a l phytoplankton s p e c i e s and pigments of c o n t i n e n t a l s h e l f waters of North and North-west A u s t r a l i a . Mar. E c o l . Prog. Ser. 20: 59-74. Halterman, S.G. and D.W. Toetz. 1984. K i n e t i c s of n i t r a t e uptake by freshwater a l g a e . H y d r o b i o l . 114: 209-214. H a n s e l l , D.A. and J . J . Goering. 1989. A method f o r e s t i m a t i n g uptake and p r o d u c t i o n r a t e s f o r urea i n seawater u s i n g [ 1 4C] urea and [ 1 5N] urea. Can. J . F i s h . Aquat. S c i . 46: 198-202. Harding, L.W., B.W. Meeson and M.A. T y l e r . 1983. Photoadaption and d i e l p e r i o d i c i t y of p h o t o s y n t h e s i s i n the d i n o f l a g e l l a t e Prorocentrixm j n a r i a e l e b o u r i a e . Mar. E c o l . Prog. Ser. 13: 73-85. Harding, L.W., B.W. Meeson, B.B. P r e z e l i n and B.M. Sweeney. 1981. D i e l p e r i o d i c i t y of p h o t o s y n t h e s i s i n marine phytoplankton. Mar. B i o l . 61: 95-105. H a r r i s , G.P. 1980. Temporal and s p a t i a l s c a l e s i n phytoplankton ecology. Mechanisms, methods, models, and management. Can. J . F i s h . Aquat. S c i . 37: 877-900. H a r r i s o n , P.J. and C O . Davis. 1977. Use of the p e r t u r b a t i o n technique t o measure n u t r i e n t uptake r a t e s of n a t u r a l phytoplankton p o p u l a t i o n s . Deep-Sea Res. 24: 247-255 204 H a r r i s o n , P.J., J.S. Parslow and H.L. Conway. 1989. Determination of n u t r i e n t uptake k i n e t i c parameters: a comparison of methods. Mar. E c o l . Prog. Ser. 52: 301-312. H a r r i s o n , P.J., R.E. Waters and F.J.R. T a y l o r . 1980. A broad spectrum a r t i f i c i a l seawater medium f o r c o a s t a l and open ocean phytoplankton. J . P h y c o l . 16: 28-35. H a r r i s o n , P.J., H.L. Conway, R.W. Holmes and C O . Davis. 1977. Marine diatoms grown i n chemostats under s i l i c a t e or ammonium l i m i t a t i o n . I I I . C e l l u l a r chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Mar. B i o l . 43: 19-31. H a r r i s o n , P.J., J.D. F u l t o n , F.J.R. T a y l o r and T.R. Parsons. 1983. Review of the b i o l o g i c a l oceanography of the S t r a i t of Georgia: p e l a g i c environment. Can. J . F i s h . Aquat. S c i . 40: 1064-1094. H a r r i s o n , P.J., P.W. Yu, P.A. Thompson, N.M. P r i c e and D.J. P h i l l i p s . 1988. Survey of selenium requirements i n marine phytoplankton. Mar. E c o l . Prog. Ser. 47: 89-96. H a r r i s o n , P.J., P.J. C l i f f o r d , W.P. Cochlan, K. Y i n , M.A. S t . John, P.A. Thompson, M.J. S i b b a l d and L . J . A l b r i g h t . (Submitted). N u t r i e n t and plankton dynamics i n the F r a s e r R i v e r plume, S t r a i t of Georgia, B r i t i s h Columbia. Mar. E c o l . Prog. Ser. H a r r i s o n , W.G. 1976. N i t r a t e metabolism of the red t i d e d i n o f l a g e l l a t e Gonyaulax polyedra. J . Exp. Mar. B i o l . E c o l . 21: 199-209. H a r r i s o n , W.G. 1980. N u t r i e n t r e g e n e r a t i o n and primary p r o d u c t i o n i n the sea, p. 433-460. In: P.G. Falkowski (ed.) Primary p r o d u c t i v i t y i n the sea. Plenum P r e s s , New York, N.Y. H a r r i s o n , W.G. 1983a. The time-course of uptake of i n o r g a n i c and o r g a n i c n i t r o g e n compounds by phytoplankton from the e a s t e r n Canadian A r c t i c : A comparison w i t h temperate and t r o p i c a l p o p u l a t i o n s . Limnol. Oceanogr. 28: 1231-1236. H a r r i s o n , W.G. 1983b. The use of i s o t o p e s , p. 763-807. In: E . J . Carpenter and D.G. Capone (eds.) N i t r o g e n i n the marine environment. Academic Press, New York. H a r r i s o n , W.G. and J.M. Davies. 1977. N i t r o g e n c y c l i n g i n a marine p l a n k t o n i c food c h a i n : N i t r o g e n f l u x e s through the p r i n c i p a l components and the e f f e c t s of adding copper. Mar. B i o l . 43: 299-306. 205 H a r r i s o n , W.G. and L.J.E. Wood. 1988. Ino r g a n i c n i t r o g e n uptake by marine p i c o p l a n k t o n : evidence f o r s i z e p a r t i t i o n i n g . Limnol. Oceanogr. 33: 468-475. H a r r i s o n , W.G., T. P i a t t and M.R. Lewis. 1987. f - R a t i o and i t s r e l a t i o n s h i p t o ambient n i t r a t e c o n c e n t r a t i o n i n c o a s t a l waters. J . Plankton Res. 9: 235-248. H a r r i s o n , W.G., E.J.H. Head, R.J. Conover, A.R. Longhurst and D.D. Sameoto. 1985. The d i s t r i b u t i o n and metabolism of urea i n the e a s t e r n Canadian A r c t i c . Deep-Sea Res. 32: 23-42. Harvey, H.W. 1953. S y n t h e s i s of or g a n i c n i t r o g e n and c h l o r o p h y l l by Nitzschia closterium. J . Mar. B i o l . Ass. U.K. 31: 477-487. H a t t o r i , A. 1962. L i g h t - i n d u c e d r e d u c t i o n of n i t r a t e , n i t r i t e and hydroxylamine i n a blue-green a l g a , Anabaena cylindrica. P l a n t C e l l P h y s i o l . 3: 355-369. H a t t o r i , A. and E. Wada. 1972. A s s i m i l a t i o n of i n o r g a n i c n i t r o g e n i n the euphotic l a y e r of the North P a c i f i c Ocean, p. 279-287. In: A.K. Takenouth (ed.) B i o l o g i c a l oceanography of the northern North P a c i f i c Ocean. Idemitsu Shoten, Tokyo. Healey, F.P. 1980. Slope of the Monod equ a t i o n as an i n d i c a t o r of advantage i n n u t r i e n t c o m p e t i t i o n . M i c r o b i a l E c o l . 5: 281-286. Hersey, R.L. and S w i f t , E. 1976. N i t r a t e reductase a c t i v i t y of Amphidinium c a r t e r i and Cachonina niei (Dinophyceae) i n batch c u l t u r e : d i e l p e r i o d i c i t y and e f f e c t s of l i g h t i n t e n s i t y and ammonia. J . P h y c o l . 12: 36-44. H i p k i n , C.R., B.A. Al-Bassam and P.J. S y r e t t . 1980. The r o l e s of n i t r a t e and ammmonium i n the r e g u l a t i o n of the development of n i t r a t e reductase i n Chlamydomonas reinhardii. P l a n t a 150: 13-18. Hitchcock, G.L. 1980. D i e l v a r i a t i o n i n c h l o r o p h y l l a, carbohydrate and p r o t e i n content of the marine diatom Skeletonema costatum. Mar. B i o l . 57: 271-278. H o l l i g a n , P.M., P.J. l e B . W i l l i a m s , D. Purd i e and R.P. H a r r i s . 1984. P h o t o s y n t h e s i s , r e s p i r a t i o n and n i t r o g e n supply of plank t o n p o p u l a t i o n s i n s t r a t i f i e d , f r o n t a l and t i d a l l y mixed s h e l f waters. Mar. E c o l . Prog. Ser. 17: 201-213. Ho r r i g a n , S.G. and J . J . McCarthy. 1981. Urea uptake by phytoplankton at v a r i o u s stages of n u t r i e n t d e p l e t i o n . J . Plankton Res. 3: 403-414. 206 H o r r i g a n , S.G. and J . J . McCarthy. 1982. Phytoplankton uptake of ammonium and urea d u r i n g growth on o x i d i z e d forms of n i t r o g e n . J . Plankton Res. 4: 379-389. Jackson, G.A. 1980. Phytoplankton growth and zooplankton g r a z i n g i n o l i g o t r o p h i c oceans. Nature (Lond.) 284: 439-441. Johnson, P.W. and J . McN. S i e b u r t h . 1982. In-situ morphology and occurrence of e u c a r y o t i c phototrophs of b a c t e r i a l s i z e i n the p i c o p l a n k t o n of e s t u a r i n e and ocea n i c waters. J . P h y c o l . 18: 318-327. J o i n t , I.R. 1986. P h y s i o l o g i c a l ecology of p i c o p l a n k t o n i n v a r i o u s oceanographic p r o v i n c e s , p. 287-309. In: T. P i a t t and W.K.W. L i (eds.) P h o t o s y n t h e t i c p i c o p l a n k t o n . Can. B u l l . F i s h . Aquat. S c i . 214. Kanda, J . , T. Saino and A. H a t t o r i . 1985. N i t r o g e n uptake by n a t u r a l p o p u l a t i o n s of phytoplankton and primary p r o d u c t i o n i n the P a c i f i c Ocean: r e g i o n a l v a r i a b i l i t y of uptake c a p a c i t y . Limnol. Oceanogr. 30: 987-999. Kaufman, Z.G., J.S. L i v e l y and E . J . Carpenter. 1983. Uptake of nitrogenous n u t r i e n t s by phytoplankton i n a b a r r i e r i s l a n d e s t u a r y : Great South Bay, New York. E s t . Coast. S h e l f S c i . 17: 483-493. King, F.R. and A.H. Devol. 1979. Estimates of v e r t i c a l eddy d i f f u s i o n through the th e r m o c l i n e from phytoplankton n i t r a t e uptake r a t e s i n the mixed l a y e r of the t r o p i c a l P a c i f i c . Limnol. Oceanogr. 24: 645-651. Knight-Jones, E.W. and P.R. Walne. 1951. Chromulina pusilla Butcher, a dominant member of the u l t r a p l a n k t o n . Nature (Lond.) 167: 445-446. Kohata, K. and M. Watanabe. 1989. D i e l changes i n the composition of p h o t o s y n t h e t i c pigments and c e l l u l a r carbon and n i t r o g e n i n Pyramimonas parkeae (Prasinophyceae). J . P h y c o l . 25: 377-385. Koike, I., 0. Holm-Hansen and D.C. Biggs. 1986. Ino r g a n i c n i t r o g e n metabolism by A n t a r c t i c phytoplankton w i t h s p e c i a l r e f e r e n c e t o ammonium c y c l i n g . Mar. E c o l . Prog. Ser. 30: 105-116. Koike, I., D.G. R e d a l j e , J.W. Ammerman and 0. Holm-Hansen. 1983. H i g h - a f f i n i t y uptake of an ammonium analogue by two marine m i c r o f l a g e l l a t e s from the o l i g o t r o p h i c P a c i f i c . Mar. B i o l . 74: 161-168. K r i s t i a n s e n , S. 1983. Urea as a n i t r o g e n source f o r the phytoplankton i n the O s l o f j o r d . Mar. B i o l . 74: 17-24. 207 K r i s t i a n s e n , S. a n d B.A. L u n d . 1989. N i t r o g e n c y c l i n g i n t h e B a r e n t s S e a - I . U p t a k e o f n i t r o g e n i n t h e w a t e r c o l u m n . D e e p -Sea R e s . 36: 2 5 5 - 2 6 8 . L a R o c h e , J . 1983. Ammonium r e g e n e r a t i o n : i t s c o n t r i b u t i o n t o p h y t o p l a n k t o n n i t r o g e n r e q u i r e m e n t s i n a e u t r o p h i c e n v i r o n m e n t . Mar. B i o l . 7 5 : 2 3 1 - 2 4 0 . L a w s , E . A . 1985. A n a l y t i c m o d e l s o f NH. + u p t a k e a n d r e g e n e r a t i o n e x p e r i m e n t s . L i m n o l . O c e a n o g r . 30: 1340-1350. L a w s , E. a n d J . C a p e r o n . 1976. C a r b o n a n d n i t r o g e n m e t a b o l i s m b y Monochrysis lutheri: m e a s u r e m e n t o f g r o w t h - r a t e - d e p e n d e n t r e s p i r a t i o n r a t e s . M a r . B i o l . 36: 85-97 . L a w s , E.A. a n d D.C.L. Wong. 1978. S t u d i e s o f c a r b o n a n d n i t r o g e n m e t a b o l i s m b y t h r e e m a r i n e p h y t o p l a n k t o n s p e c i e s i n n i t r a t e - l i m i t e d c o n t i n u o u s c u l t u r e . J . P h y c o l . 14: 406 - 4 1 6 . L e B l o n d , P.H. 1983. The S t r a i t o f G e o r g i a : f u n c t i o n a l a n a t omy o f a c o a s t a l s e a . C a n . J . F i s h . A q u a t . S c i . 40: 103 3 - 1 0 6 3 . L e F e v r e , J . 1986. A s p e c t s o f t h e b i o l o g y o f f r o n t a l s y s t e m s . Ad v . M ar. B i o l . 2 3 : 163-299. Lehman, J.T. a n d D. S c a v i a . 1 9 8 2 a . M i c r o s c a l e p a t c h i n e s s o f n u t r i e n t s i n p l a n k t o n c o m m u n i t i e s . S c i e n c e 216: 7 2 9 -730. Lehman, J . T . a n d D. S c a v i a . 1982b. M i c r o s c a l e n u t r i e n t p a t c h e s p r o d u c e d b y z o o p l a n k t o n . P r o c . N a t l . A c a d . S c i . USA 79: 5 0 0 1 - 5 0 0 5 . L e w i s , W.M. a n d S.N. L e v i n e . 1984. The l i g h t r e s p o n s e o f n i t r o g e n f i x a t i o n i n L a k e V a l e n c i a , V e n e z u e l a . L i m n o l . O c e a n o g r . 29: 89 4 - 9 0 0 . L i , W.K.W. 1983. C o n s i d e r a t i o n o f e r r o r s i n e s t i m a t i n g k i n e t i c p a r a m e t e r s b a s e d on M i c h a e l i s - M e n t e n f o r m a l i s m i n m i c r o b i a l e c o l o g y . L i m n o l . O c e a n o g r . 28: 185-190. L i , W.K.W. 1986. E x p e r i m e n t a l a p p r o a c h e s t o f i e l d m e a s u r e m e n t s , p. 251-28 6 . I n : T. P i a t t a n d W.K.W. L i (ed . ) P h o t o s y n t h e t i c p i c o p l a n k t o n . C a n . B u l l . F i s h . A q u a t . S c i . 214. 208 L i , W.K.W., D.V. Subba Rao, W.G. H a r r i s o n , J . C . S m i t h , J . J . C u l l e n , B. I r w i n a n d T. P i a t t . 1983. A u t o t r o p h i c p i c o p l a n k t o n i n t h e t r o p i c a l o c e a n . S c i e n c e 2 1 9 : 2 9 2 -295 . L i a o , C.F.-H. a n d D.R.S. L e a n . 1978. N i t r o g e n t r a n s f o r m a t i o n s w i t h i n t h e t r o p h o g e n i c z o n e o f l a k e s . J . F i s h . R e s . B o a r d C a n . 35: 1102 - 1 1 0 8 . L o b a n , C.S., P . J . H a r r i s o n a n d M.J. Du n c a n . 1985. The p h y s i o l o g i c a l e c o l o g y o f s e a w e e d s . C a m b r i d g e U n i v e r s i t y P r e s s , C a m b r i d g e , E n g l a n d . 242 p. L o c h t e , K. 1985. B i o l o g i c a l s t u d i e s i n t h e v i c i n i t y o f a s h a l l o w - s e a t i d a l m i x i n g f r o n t I I I . S e a s o n a l a n d s p a t i a l d i s t r i b u t i o n o f h e t e r o t r o p h i c u p t a k e o f g l u c o s e . P h i l . T r a n s . R. S o c . L o n d . B 310: 4 4 5 - 4 6 9 . L o r e n z e n , C . J . 1963. D i u r n a l v a r i a t i o n i n p h o t o s y n t h e t i c a c t i v i t y o f n a t u r a l p h y t o p l a n k t o n p o p u l a t i o n s . L i m n o l . O c e a n o g r . 8: 56 - 6 2 . L u n d , B. A a . 1987. M u t u a l i n t e r f e r e n c e o f ammonium, n i t r a t e , a n d u r e a on u p t a k e o f N s o u r c e s by t h e m a r i n e d i a t o m Skeletonema costatum ( G r e v . ) C l e v e . J . E x p . Mar. B i o l . E c o l . 113: 167-180. L i i n i n g , K. 1981. L i g h t , p. 3 2 6 - 3 5 5 . I n : C S . L o b b a n a n d M.J. Wynne ( e d s . ) . The b i o l o g y o f s e a w e e d s . B o t a n i c a l M o n o g r a p h s 17. U n i v . C a l i f . P r e s s , B e r k e l e y , CA. M a c C a u l l , W.A. a n d T. P i a t t . 1977. D i e l v a r i a t i o n s i n t h e p h o t o s y n t h e t i c p a r a m e t e r s o f c o a s t a l m a r i n e p h y t o p l a n k t o n . L i m n o l . O c e a n o g r . 22: 7 2 3 - 7 3 1 . M a c l s a a c , J . J . 1978. D i e l c y c l e s o f i n o r g a n i c n i t r o g e n u p t a k e i n a n a t u r a l p h y t o p l a n k t o n p o p u l a t i o n d o m i n a t e d by Gonyaulax polyedra. L i m n o l . O c e a n o g r . 2 3 : 1-9. M a c l s a a c , J . J . a n d R.C. D u g d a l e . 1969. The k i n e t i c s o f n i t r a t e a n d ammonia u p t a k e b y n a t u r a l p o p u l a t i o n s o f m a r i n e p h y t o p l a n k t o n . Deep-Sea R e s . 16: 4 5 - 5 7 . M a c l s a a c , J . J . a n d R.C. D u g d a l e . 1972. I n t e r a c t i o n s o f l i g h t a n d i n o r g a n i c n i t r o g e n i n c o n t r o l l i n g n i t r o g e n u p t a k e i n t h e s e a . Deep-Sea R e s . 19: 2 0 9 - 2 3 2 . M a c l s a a c J . J . , R . C D u g d a l e a n d G. S l a w y k . 1974. N i t r o g e n u p t a k e i n t h e n o r t h w e s t A f r i c a u p w e l l i n g a r e a : r e s u l t s f r o m t h e C i n e c a - C h a r c o t I I c r u i s e . T e t h y s 6: 69 - 7 6 . M a c k a s , D.L., W.R. C r a w f o r d a n d P.P. N i i l e r . 1989. A p e r f o r m a n c e c o m p a r i s o n f o r t w o L a g r a n g i a n d r i f t e r d e s i g n s . A t m o s . - O c e a n 27: 4 4 3 - 4 5 6 . 209 M a e s t r i n i , S.Y., J.-M. Robert and I. Truquet. 1982. Simultaneous uptake of ammonium and n i t r a t e by o y s t e r -pond a l g a e . Mar. B i o l . L e t t . 3: 143-153. M a e s t r i n i , S.Y., J.-M. Robert, J.W. L e f t l e y and Y. C o l l o s . 1986. Ammonium t h r e s h o l d s f o r simultaneous uptake of ammonium and n i t r a t e by oyster-pond a l g a e . J . Exp. Mar. B i o l . E c o l . 102: 75-98. Malone, T.C. 1980. A l g a l S i z e . p. 433-463. In: I. M o r r i s (ed.) The p h y s i o l o g i c a l ecology of phytoplankton. U n i v e r s i t y of C a l i f o r n i a P r e s s , B e r k e l e y and Los Angeles, CA. Malone, T . C , C. Ga r s i d e , K.C Haines and O.A. Roe l s . 1975. N i t r a t e uptake and growth of Chaetoceros sp. i n l a r g e outdoor c u l t u r e s . Limnol. Oceanogr. 20: 9-19. Manton, I. 1959. E l e c t r o n m i c r o s c o p i c a l o b s e r v a t i o n s on a very s m a l l f l a g e l l a t e : the problem of Chromulina pusilla Butcher. J . Mar. B i o l . Ass. U.K. 38: 319-333. Manton, I. and M. Parke. 1960. F u r t h e r o b s e r v a t i o n s on smal l green f l a g e l l a t e s w i t h s p e c i a l r e f e r e n c e t o p o s s i b l e r e l a t i v e s of Chromulina pusilla Butcher. J . Mar. B i o l . Ass. U.K. 39: 275-298. Ma r t i n e z , R., T.T. Packard and D. B l a s c o . 1987. L i g h t e f f e c t s and d i e l v a r i a t i o n s of n i t r a t e reductase a c t i v i t y i n phytoplankton from the northwest A f r i c a u p w e l l i n g r e g i o n . Deep-Sea Res. 34: 741-753. McCarthy, J . J . 1972. The uptake of urea by n a t u r a l p o p u l a t i o n s of marine phytoplankton. Limnol. Oceanogr. 17: 738-748. McCarthy, J . J . 1980. N i t r o g e n , p. 191-233. In: I. M o r r i s (ed.) The p h y s i o l o g i c a l ecology of phytoplankton. B l a c k w e l l S c i . Publ., Oxford, England. McCarthy, J . J . 1981. The k i n e t i c s of n u t r i e n t u t i l i z a t i o n , p. 211-233. In: T. P i a t t (ed.) P h y s i o l o g i c a l bases of phytoplankton ecology. Can. B u l l . F i s h . Aquat. S c i . 210. McCarthy, J . J . and R.W. Eppley. 1972. A comparison of chemi c a l , i s o t o p i c , and enzymatic methods f o r measuring n i t r o g e n a s s i m i l a t i o n of marine phytoplankton. Limnol. Oceanogr. 17: 371-382. McCarthy, J . J . and J.C. Goldman. 1979. Nitrogenous n u t r i t i o n of marine phytoplankton i n n u t r i e n t - d e p l e t e d waters. Science 208: 670-672. 210 McCarthy, J . J . , W.R. T a y l o r and J.L. T a f t . 1977. Nitrogenous n u t r i t i o n of the plankton i n the Chesapeake Bay. 1. N u t r i e n t a v a i l a b i l i t y and phytoplankton p r e f e r e n c e s . Limnol. Oceanogr. 22: 996-1011. McCarthy, J . J . , D. Wynne and T. Berman. 1982. The uptake of d i s s o l v e d nitrogenous n u t r i e n t s by Lake K i n n e r e t ( I s r a e l ) m i c r o p l a n k t o n . Limnol. Oceanogr. 27: 67 3-680. McGowan, J.A. and T.L. Hayward. 1978. Mixing and oceanic p r o d u c t i v i t y . Deep-Sea Res. 25: 771-793. Mikheyeva, T.M. 1988. Problems i n the study of phytoplankton: nannophytoplankton ( d e f i n i t i o n , f r a c t i o n a t i o n , and s i g n i f i c a n c e i n primary p r o d u c t i o n ) . A review. H y d r o b i o l . J . 24: 1-20. Mitamura, 0. 1986. Urea metabolism and i t s s i g n i f i c a n c e i n the n i t r o g e n c y c l e i n the euphotic l a y e r of Lake Biwa. I I I . I n f l u e n c e of the environmental parameters on the response of n i t r o g e n a s s i m i l a t i o n . Arch. H y d r o b i o l . 107: 281-299. Mitamura, 0. and Y. S a i j o . 1986. Urea metabolism and i t s s i g n i f i c a n c e i n the n i t r o g e n c y c l e i n the e u p h o t i c l a y e r of Lake Biwa. I. In s i t u measurements of n i t r o g e n a s s i m i l a t i o n and urea decomposition. A r c h . H y d r o b i o l . 107: 23-51. M i y a z a k i , T., H. Suyama and H. U o t a n i . 1987. D i e l changes of uptake of i n o r g a n i c carbon and n i t r o g e n by phytoplankton, and the r e l a t i o n s h i p between i n o r g a n i c carbon and n i t r o g e n uptake i n Lake Nakanuma, Japan. J . Plankton Res. 9: 513-524. M i y a z a k i , T., Y. Honjo and S. Ichimura. 1985. Uptake of carbon and i n o r g a n i c n i t r o g e n i n a e u t r o p h i c l a k e , Lake Nakanuma, Japan, from s p r i n g through summer. Arch. H y d r o b i o l . 102: 473-485. Molloy, C.J. and P.J. S y r e t t . 1988a. I n t e r r e l a t i o n s h i p s between uptake of urea and uptake of ammonium by m i c r o a l g a e . J . Exp. Mar. B i o l . E c o l . 118: 85-95. Molloy, C.J. and P.J. S y r e t t . 1988b. E f f e c t of l i g h t and N d e p r e v a t i o n on i n h i b i t i o n of n i t r a t e uptake by urea i n m i c r o a l g a e . J . Exp. Mar. B i o l . E c o l . 118: 97-101. M o r r i s , I. 1974. N i t r o g e n a s s i m i l a t i o n and p r o t e i n s y n t h e s i s , p. 583-609. In: W.D.P. Stewart (ed.) A l g a l p h y s i o l o g y and b i o c h e m i s t r y . Univ. of C a l i f o r n i a P ress, B e r k e l e y and Los Angeles, CA. 211 M o r r i s , I. and P.J. S y r e t t . 1963. The development of n i t r a t e r eductase i n Chlorella and i t s r e p r e s s i o n by ammonium. Arch. M i k r o b i o l . 47: 32-41. M o r r i s , I. and P.J. S y r e t t . 1965. The e f f e c t of n i t r o g e n s t a r v a t i o n on the a c t i v i t y of n i t r a t e r e ductase and other enzymes i n Chlorella. J . Gen. M i c r o b i o l . 38: 21-28. Munk, W.H. and G.A. R i l e y . 1952. A b s o r p t i o n of n u t r i e n t s by a q u a t i c p l a n t s . J . Mar. Res. 11: 215-240. Nalewajko, C. and C. G a r s i d e . 1983. M e t h o d o l o g i c a l problems i n the simultaneous assessment of p h o t o s y n t h e s i s and n u t r i e n t uptake i n phytoplankton as f u n c t i o n s of l i g h t i n t e n s i t y and s i z e . Limnol. Oceanogr. 28: 591-597. Nelson, D.M. and J . J . Goering. 1977. Ne a r - s u r f a c e s i l i c a d i s s o l u t i o n i n the u p w e l l i n g r e g i o n o f f northwest A f r i c a . Deep-Sea Res. 24: 65-73. Nelson, D.M. and H.L. Conway. 1979. E f f e c t s of the l i g h t regime on n u t r i e n t a s s i m i l a t i o n by phytoplankton i n the Baja C a l i f o r n i a and northwest A f r i c a u p w e l l i n g systems. J . Mar. Res. 37: 301-318. Olson, R.J. 1980. N i t r a t e and ammonium uptake i n A n t a r c t i c waters. Limnol. Oceanogr. 25: 1064-1074. Olson, R.J., J.B. SooHoo and D.A. K i e f e r . 1980. S t e a d y - s t a t e growth of the marine diatom Thalassiosira pseudonana. P l a n t P h y s i o l . 66: 383-389. Owens, T.G., P.G. Falkowski and T.E. Whitledge. 1980. D i e l p e r i o d i c i t y i n c e l l u l a r c h l o r o p h y l l content i n marine diatoms. Mar. B i o l . 59: 71-77. Paasche, E. 1971. E f f e c t of ammonia and n i t r a t e on growth, p h o t o s y n t h e s i s , and r i b u l o s e d i p h o s p h a t e c a r b o x y l a s e content of Dunaliella tertiolecta. P h y s i o l . P l a n t . 24: 294-299. Paasche, E. and S.R. Erga. 1988. Phosphorus and n i t r o g e n l i m i t a t i o n of phytoplankton i n the i n n e r O s l o f j o r d (Norway). S a r s i a 73: 229-243. Paasche, E., I. Bryceson and K. Tangen. 1984. I n t e r s p e c i f i c v a r i a t i o n i n dark n i t r o g e n uptake by d i n o f l a g e l l a t e s . J . P h y c o l . 20: 394-401. Packard, T.T. and D. B l a s c o . 1974. N i t r a t e reductase a c t i v i t y i n u p w e l l i n g r e g i o n s 2. Ammonia and l i g h t dependence. Tethys 6: 269-280. 212 P a c k a r d , T.T., D. B l a s c o , J . J . M a c l s a a c a n d R.C. D u g d a l e . 1 9 7 1 . V a r i a t i o n s i n n i t r a t e r e d u c t a s e i n m a r i n e p h y t o p l a n k t o n . I n v e s t . P e s q . 3 5: 2 0 9 - 2 1 9 . P a r k e r , R.A. 1974. E m p i r i c a l f u n c t i o n s r e l a t i n g m e t a b o l i c p r o c e s s e s i n a q u a t i c s y s t e m s t o e n v i r o n m e n t a l v a r i a b l e s . J . F i s h . R e s . B o a r d C a n . 3 1 : 15 5 0 - 1 5 5 2 . P a r s l o w , J . S . , P . J . H a r r i s o n a n d P.A. Thompson. 1 9 8 4 a . D e v e l o p m e n t o f r a p i d ammonium u p t a k e d u r i n g s t a r v a t i o n o f b a t c h a n d c h e m o s t a t c u l t u r e s o f t h e m a r i n e d i a t o m Thalassiosira pseudonana Mar. B i o l . 8 3 : 4 3 - 5 0 . P a r s l o w , J . S . , P . J . H a r r i s o n a n d P.A. Thompson. 1984b. S a t u r a t e d u p t a k e k i n e t i c s : t r a n s i e n t r e s p o n s e o f t h e m a r i n e d i a t o m Thalassiosira pseudonana t o ammonium, n i t r a t e , s i l i c a t e o r p h o s p h a t e s t a r v a t i o n . M ar. B i o l . 8 3 : 5 1 - 5 9 . P a r s l o w , J . S . , P . J . H a r r i s o n a n d P.A. Thompson. 1985. I n t e r p r e t i n g r a p i d c h a n g e s i n u p t a k e k i n e t i c s i n t h e m a r i n e d i a t o m Thalassiosira pseudonana ( H u s t e d t ) . J . E x p . M a r . B i o l . E c o l . 9 1 : 53-64. P a r s o n s , T.R., Y. M a i t a a n d C M . L a l l i . 1984. A m a n u a l o f c h e m i c a l a n d b i o l o g i c a l m e t h o d s f o r s e a w a t e r a n a l y s i s . P e r g a m o n P r e s s , O x f o r d , E n g l a n d . 173 p. P a r s o n s , T.R., M. T a k a h a s h i a n d B. H a r g r a v e . 1984. B i o l o g i c a l o c e a n o g r a p h i c p r o c e s s e s , 3 r d e d . Pergamon P r e s s , O x f o r d , E n g l a n d . 330 p. P a r s o n s , T.R., J . S t r o n a c h , G.A. B o r s t a d , G. L o u t t i t a n d R . I . P e r r y . 1 9 8 1. B i o l o g i c a l f r o n t s i n t h e S t r a i t o f G e o g i a , B r i t i s h C o l u m b i a a n d t h e i r r e l a t i o n t o r e c e n t m e a s u r e m e n t s o f p r i m a r y p r o d u c t i v i t y . M a r . E c o l . P r o g . S e r . 6: 2 3 7 - 2 4 2 . P a r s o n s , T.R., R . I . P e r r y , E.D. N u t b r o w n , W. H s i e h a n d C M . L a l l i . 1 983. F r o n t a l z o n e a n a l y s i s a t t h e mouth o f S a a n i c h I n l e t , B r i t i s h C o l u m b i a , C a n a d a . Mar. B i o l . 7 3 : 1-5. P e r r y , M.J. a n d R.W. E p p l e y . 1 9 8 1. P h o s p h a t e u p t a k e b y p h y t o p l a n k t o n i n t h e c e n t r a l N o r t h P a c i f i c O c e a n . Deep-S e a R e s . 28: 39- 4 9 . P i c a r d , G.A. 1976. E f f e c t s o f l i g h t a n d d a r k c y c l e s on t h e r e l a t i o n s h i p b e t w e e n n i t r a t e u p t a k e a n d c e l l g r o w t h r a t e s o f Chaetoceros s p . (STX-105) i n c o n t i n u o u s c u l t u r e . Ph.D. T h e s i s , D e p t . B i o l o g y , C i t y U n i v . o f New Y o r k , N.Y. 220 p. 213 Pingr e e , R.A., P.M. H o l l i g a n and G.T. M a r d e l l . 1978. The e f f e c t s of v e r t i c a l s t a b i l i t y on phytoplankton d i s t r i b u t i o n s i n the summer on the northwest European S h e l f . Deep-Sea Res. 25: 1011-1028. Pi n g r e e , R.D., P.R. Pugh, P.M. H o l l i g a n and G.R. F o r s t e r . 1975. Summer phytoplankton blooms and r e d t i d e s along t i d a l f r o n t s i n the approach t o the E n g l i s h Channel. Nature (Lond.) 258: 672-677. P i s t o r i u s , E.K., E.A. Funkhauser and H. Voss. 1978. E f f e c t of ammonium and f e r r i c y a n i d e on n i t r a t e u t i l i z a t i o n by Chlorella vulgaris: in vivo. P l a n t a 141: 279-282. P i a t t , T., C L . G a l l e g o s and W.G. H a r r i s o n . 1980. P h o t o i n h i b i t i o n of p h o t o s y n t h e s i s i n n a t u r a l assemblages of marine phytoplankton. J . Mar. Res. 38: 687-701. P i a t t , T., D.V. Subba Rao and B. Irwin. 1983. Pho t o s y n t h e s i s of p i c o p l a n k t o n i n the o l i g o t r o p h i c ocean. Nature (Lond.) 301: 702-704. P i a t t , T., W.G. H a r r i s o n , M.R. Lewis, W.K.W. L i , S. Sathyendranath, R.E. Smith and A.F. V e z i n a . 1989. B i o l o g i c a l p r o d u c t i o n of the oceans: the case f o r a consensus. Mar. E c o l . Prog. Ser. 52: 77-88. P r e z l i n , B.B. and A . C Ley. 1980. Ph o t o s y n t h e s i s and c h l o r o p h y l l a f l u o r e s c e n c e rhythms of marine phytoplankton. Mar. B i o l . 55: 295-307. P r i c e , N.M. and P.J. H a r r i s o n . 1987. A comparison of methods f o r the measurement of d i s s o l v e d urea c o n c e n t r a t i o n s i n seawater. Mar. B i o l . 92: 307-319. P r i c e , N.M. and P.J. H a r r i s o n . 1988a . Urea uptake by Sargasso Sea phytoplankton: s a t u r a t e d and in situ uptake r a t e s . Deep-Sea Res. 35: 1579-1593. P r i c e , N.M. and P.J. H a r r i s o n . 1988b. Uptake of urea C and urea N by the c o a s t a l marine diatom Thalassiosira pseudonana. Limnol Oceanogr. 33: 528-537. P r i c e , N.M., W.P. Cochlan and P.J. H a r r i s o n . 1985. Time course of uptake of i n o r g a n i c and o r g a n i c n i t r o g e n by phytoplankton i n the S t r a i t of Georgia: comparison of f r o n t a l and s t r a t i f i e d communities. Mar. E c o l . Prog. Ser. 27: 39-53. P r i s c u , J . C 1984. A comparison of n i t r o g e n and carbon metabolism i n the shallow and deep-water phytoplankton p o p u l a t i o n s of a sub a l p i n e l a k e : response t o p h o t o s y n t h e t i c photon f l u x d e n s i t y . J . Plankton Res. 6: 733-749. 214 P r i s c u , J . C . 1987. T i m e - c o u r s e o f i n o r g a n i c n i t r o g e n u p t a k e a n d i n c o r p o r a t i o n b y n a t u r a l p o p u l a t i o n s o f f r e s h w a t e r p h y t o p l a n k t o n . F r e s h w a t e r B i o l . 17: 3 3 1 - 3 3 9 . P r i s c u , J . C . 1989. P h o t o n d e p e n d e n c e o f i n o r g a n i c n i t r o g e n t r a n s p o r t b y p h y t o p l a n k t o n i n p e r e n n i a l l y i c e - c o v e r e d A n t a r c t i c l a k e s , p. 173-182. I n : W.F. V i n c e n t a n d J.C. E l l i s - E v a n s ( e d s . ) H i g h L a t i t u d e L i m n o l o g y , H y d r o b i o l o g i a 172. P r i s c u , J . C . a n d L.R. P r i s c u . 1984. I n o r g a n i c n i t r o g e n u p t a k e i n o l i g o t r o p h i c L a k e T a u p o , New Z e a l a n d . C a n . J . F i s h . A q u a t . S c i . 4 1 : 1 4 3 6 - 1 4 4 5 . P r o b y n , T.A. 1985. N i t r o g e n u p t a k e b y s i z e - f r a c t i o n a t e d p h y t o p l a n k t o n p o p u l a t i o n s i n t h e s o u t h e r n B e n g u e l a u p w e l l i n g s y s t e m . Mar. E c o l . P r o g . S e r . 2 2 : 2 4 9 - 2 5 8 . P r o b y n , T.A. a n d S . J . P a i n t i n g . 1985. N i t r o g e n u p t a k e b y s i z e - f r a c t i o n a t e d p h y t o p l a n k t o n p o p u l a t i o n s i n A n t a r c t i c s u r f a c e w a t e r s . L i m n o l . O c e a n o g r . 30: 1 3 2 7 - 1 3 3 2 . P r o c h a z k o v a , L., B. B l a z k a a n d M. K r a l o v a . 197 0. C h e m i c a l c h a n g e s i n v o l v i n g n i t r o g e n m e t a b o l i s m i n w a t e r a n d p a r t i c u l a t e m a t t e r d u r i n g p r i m a r y p r o d u c t i o n e x p e r i m e n t s . L i m n o l . O c e a n o g r . 15: 79 7 - 8 0 7 . P u t t , M. a n d B.B. P r e z l i n . 1988. D i e l p e r i o d i c i t y o f p h o t o s y n t h e s i s a n d c e l l d i v i s i o n c o m p a r e d i n Thalassiosira weissflogii ( B a c i l l a r i o p h y c e a e ) . J . P h y c o l . 24: 31 5 - 3 2 4 . Q u e g u i n e r , B., M. H a f s a o u i a n d P. T r e g u e r . 1986. S i m u l t a n e o u s u p t a k e o f ammonium a n d n i t r a t e b y p h y t o p l a n k t o n i n c o a s t a l e c o s y s t e m s . E s t . C o a s t . S h e l f S c i . 2 3 : 7 5 1 - 7 5 7 . R a i m b a u l t , P. a n d M. M i n g a z z i n i . 1987. D i u r n a l v a r i a t i o n s o f i n t r a c e l l u l a r n i t r a t e s t o r a g e b y m a r i n e d i a t o m s : e f f e c t s o f n u t r i t i o n a l s t a t e . J . E x p . Mar. B i o l . E c o l . 112: 2 1 7 - 2 3 2 . R a v e n , J.A. 1986. P h y s i o l o g i c a l c o n s e q u e n c e s o f e x t r e m e l y s m a l l s i z e f o r a u t o t r o p h i c o r g a n i s m s i n t h e s e a , p. 1-70. I n : T. P i a t t a n d W.K.W. L i ( e d s . ) P h o t o s y n t h e t i c p i c o p l a n k t o n . C a n . B u l l . F i s h . A q u a t . S c i . 214. Raymont, J.E.G. 1980. P l a n k t o n p r o d u c t i v i t y i n t h e o c e a n s . V o l . 1. Pergamon P r e s s , L o n d o n . 4 89 p. R e e s , T.A.V. a n d P . J . S y r e t t . 1979. The u p t a k e o f u r e a by t h e d i a t o m Phaeodactylum. New P h y t o l . 82: 169-178. 215 Remsen, C.C., E . J . Carpenter and B.W. Schroeder. 1972. Competition f o r urea among e s t u a r i n e microorganisms. Ecology 53: 921-926. Rhee G-Y. and T.C. Lederman. 1983. E f f e c t s of n i t r o g e n sources on P - l i m i t e d growth of Anabaena flos-aquae. J . P h y c o l . 19: 179-185. Richardson, K., J . B e a r d a l l and J.A. Raven. 1983. A d a p t a t i o n of u n i c e l l u l a r algae t o i r r a d i a n c e : an a n a l y s i s of s t r a t e g i e s . New P h y t o l . 93: 157-191. R i c k e t t s , T.R. 1977. Changes i n average c e l l c o n c e n t r a t i o n s of v a r i o u s c o n s t i t u e n t s d u r i n g synchronous d i v i s i o n of Platymonas striata Butcher (Prasinophyceae). J . Exp. Bot. 28: 1278-1288. Robinson, J.A. and W.G. C h a r a c k l i s . 1984. Simultaneous e s t i m a t i o n of V m a x , K m, and the r a t e of endogenous s u b s t r a t e p r o d u c t i o n (R) from s u b s t r a t e d e p l e t i o n data. Microb. E c o l . 10: 165-178. Runner, U., F. Sorensson and 0. Holm-Hansen. 1983. N i t r o g e n a s s i m i l a t i o n by phytoplankton i n the S c o t i a Sea. P o l a r B i o l . 2: 137-147. Ryther, J.H. and W.M. Dunstan. 1971. N i t r o g e n , phosphorus and e u t r o p h i c a t i o n i n the c o a s t a l marine environment. Sc i e n c e 171: 1008-1013. S a h l s t e n , E. 1987. Nitrogenous n u t r i t i o n i n the euphotic zone of the C e n t r a l North P a c i f i c Gyre. Mar. B i o l . 96: 433-439. S e r r a , J.L., M.J. Llama and E. Cadenas. 1978a. N i t r a t e u t i l i z a t i o n by the diatom Skeletonema costatum. P l a n t P h y s i o l . 62: 987-990. S e r r a , J.L., M.J. Llama and E. Cadenas. 1978b. N i t r a t e u t i l i z a t i o n by the diatom Skeletonema costatum. I I . R e g u l a t i o n of n i t r a t e uptake. P l a n t P h y s i o l . 62: 991-994. Shanks, A.L. and J.D. T r e n t . 1979. Marine snow: m i c r o s c a l e n u t r i e n t patches. Limnol. Oceanogr. 24: 850-854. Sharp, J.H. 1974. Improved a n a l y s i s f o r \" p a r t i c u l a t e o r g a n i c carbon and n i t r o g e n \" from seawater. Limnol. Oceanogr. 19: 984-989. Sharp, J.H. 197 7. E x c r e t i o n of o r g a n i c matter by marine phytoplankton: do h e a l t h y c e l l s do i t ? Limnol. Oceanogr. 22: 381-399. 216 Sharp, J.H. 1983. The d i s t r i b u t i o n s of i n o r g a n i c n i t r o g e n and d i s s o l v e d and p a r t i c u l a t e o r g a n i c n i t r o g e n i n the sea, p. 1-35. In: E . J . Carpenter and D.G. Capone (eds.) N i t r o g e n i n the marine environment. Academic Pr e s s , New York, N.Y. Sherr, E.B., B.F. Sherr, T. Berman and J . J . McCarthy. 1982. D i f f e r e n c e s i n n i t r a t e and ammonia uptake among components of a phytoplankton p o p u l a t i o n . J . Plankton Res. 4: 961-965. S i e b u r t h , J . McN., V. Smetacek and J . Lenz. 1978. P e l a g i c ecosystem s t r u c t u r e : h e t e r o t r o p h i c compartments of the p l a n k t o n and t h e i r r e l a t i o n s h i p t o p l a n k t o n s i z e f r a c t i o n s . Limnol. Oceanogr. 23: 1256-1263. Simpson, J.H. and R.D. P i n g r e e . 1978. Shallow sea f r o n t s produced by t i d a l s t i r r i n g , p. 29-42. In: M.J. Bowman and W.E. E s a i a s (eds.) Oceanic f r o n t s i n c o a s t a l p r o c e s s e s . S p r i n g e r - V e r l a g , B e r l i n , H e i d e l b e r g . Slawyk, G. 1979. 1 3 C and 1 5 N uptake by phytoplankton i n the A n t a r c t i c u p w e l l i n g area: r e s u l t s from the A n t i p r o d I c r u i s e i n the Indian Ocean s e c t o r . Aust. J . Mar. Freshwater Res. 30: 431-438. Slawyk, G. and J . J . Maclsaac. 1972. Comparison of two automated ammonium methods i n a r e g i o n of c o a s t a l u p w e l l i n g . Deep-Sea Res. 19: 521-524. Slawyk, G., J . J . Maclsaac and R.C. Dugdale. 1976. Inorganic n i t r o g e n uptake by marine phytoplankton under i n situ and s i m u l a t e d in situ i n c u b a t i o n c o n d i t i o n s : r e s u l t s from the northwest A f r i c a n u p w e l l i n g r e g i o n . Limnol. Oceanogr. 21: 149-152. Smith, S.V. 1984. Phosphorus versus n i t r o g e n l i m i t a t i o n i n the marine environment. Limnol. Oceanogr. 29: 1149-1160. S o u r n i a , A. 1974. C i r c a d i a n p e r i o d i c i t i e s i n n a t u r a l p o p u l a t i o n s of marine phytoplankton. Adv. Mar. B i o l . 12: 325-389. Stockner, J.G. and N.J. A n t i a . 1986. A l g a l p i c o p l a n k t o n from marine and freshwater ecosystems: a m u l t i d i s c i p l i n a r y p e r s p e c t i v e . Can. J . F i s h . Aquat. S c i . 43: 2472-2503. Stockner, J.G., M.E. K l u t and W.P. Cochlan. (In p r e s s ) . Leaky f i l t e r s : A warning t o a q u a t i c e c o l o g i s t s . Can. J . F i s h . A q u a t i c S c i . 46. 217 S t r i c k l a n d , J.D.H. and T.R. Parsons. 1972. A p r a c t i c a l handbook of seawater a n a l y s i s (2nd edn.) B u l l . F i s h . Res. Board Can. 167: 310 p. S u t t l e , C A . and P.J. H a r r i s o n . 1988. Rapid ammonium uptake by freshwater phytoplankton. J . P h y c o l . 24: 13-16. S u t t l e , C A . , N.M. P r i c e , P.J. H a r r i s o n and P.A. Thompson. 1986. P o l y m e r i z a t i o n of s i l i c a i n a c i d i c s o l u t i o n s : a note of c a u t i o n t o p h y c o l o g i s t s . J . P h y c o l . 22: 234-237 . Sweeney, B.M. 1983. C i r c a d i a n time-keeping i n e u k a r y o t i c c e l l s , models and hypotheses. Prog. P h y c o l . Res. 2: 189-225. S y r e t t , P.J. 1953. The a s s i m i l a t i o n of ammonia by n i t r o g e n -s t a r v e d c e l l s of Chlorella vulgaris. I. The c o r r e l a t i o n of a s s i m i l a t i o n w i t h r e s p i r a t i o n . Ann. Botany 17: 1-19. S y r e t t , P.J. 1962. N i t r o g e n a s s i m i l a t i o n , p. 171-188. In: R.A. Lewin (ed.) P h y s i o l o g y and b i o c h e m i s t r y of a l g a e . Academic P r e s s , New York, N.Y. S y r e t t , P.J. 1981. N i t r o g e n metabolism of mic r o a l g a e , p. 182-210. In: T. P i a t t (ed.). P h y s i o l o g i c a l bases of phytoplankton ecology. Can. B u l l . F i s h . Aquat. S c i . 210 S y r e t t , P.J. and I. M o r r i s . 1963. The i n h i b i t i o n of NO3 -a s s i m i l a t i o n by ammonium i n Chlorella. Biochim. Biophys. A c t a . 67: 566-575. S y r e t t , P.J. and A.M. P e p l i n s k a . 1988. E f f e c t s of n i t r o g e n -d e p r i v a t i o n , and recove r y from i t , on the metabolism of mi c r o a l g a e . New P h y t o l . 109: 289-296. S y r e t t , P.J., K.J. F l y n n , C J . Molloy, G.K. Dixon, A.M. P e p l i n s k a and R.C C r e s s w e l l . 1986. E f f e c t s of n i t r o g e n d e p r i v a t i o n on r a t e s of uptake of nitrogenous compounds by the diatom, Phaeodactylum tricornutum B o h l i n . New P h y t o l . 102: 39-44. Takahashi, M. and P.K. Bienfang. 1983. S i z e s t r u c t u r e of phytoplankton biomass and p h o t o s y n t h e s i s i n s u b t r o p i c a l Hawaiian waters. Mar. B i o l . 76: 203-211. Takahashi, M., J . I s h i z a k a , T. Ishimaru, L.P. A t k i n s o n , T.N. Lee, T. Yamaguchi and S. Ichimura. 1986. Temporal changes i n n u t r i e n t c o n c e n t r a t i o n s and phytoplankton biomass i n s h o r t time s c a l e l o c a l u p w e l l i n g around the Izu P e n i n s u l a , Japan. J . Plankton Res. 8: 1039-1049. 218 Takamura, N., T. Iwakuma and M. Yasuno. 1987. Uptake of 1 3C and 1 5N (ammonium, n i t r a t e and urea) by Microcystis i n Lake Kasumigaura. J . Plankton Res. 9: 151-165. T a y l o r , F.J.R. and R.E. Waters. 1982. S p r i n g phytoplankton i n the S u b a r c t i c North P a c i f i c Ocean. Mar. B i o l : 323-335. T e r r y , K.L., J . H i r a t a and E.A. Laws. 1985. L i g h t - , n i t r o g e n - , and p h o s p h o r u s - l i m i t e d growth of Phaeodactylum tricornutum B o h l i n S t r a i n TFX-1: chemical composition, carbon p a r t i t i o n i n g , and the d i e l p e r i o d i c i t y of p h y s i o l o g i c a l p r o c e s s e s . J . Exp. Mar. B i o l . E c o l . 86: 85-100. Thacker, A. and P.J. S y r e t t . 1972a. Disappearance of n i t r a t e r eductase a c t i v i t y from Chlamydomonas reinhardi. New P h y t o l . 71: 435-441. Thacker, A. and P.J. S y r e t t . 1972b. The a s s i m i l a t i o n of n i t r a t e and ammonium by Chlamydomonas reinhardi. New P h y t o l . 71: 423-433. Thomas, W.H. 1966. Surface nitrogenous n u t r i e n t s and phytoplankton i n the n o r t h e a s t e r n t r o p i c a l P a c i f i c Ocean. Limnol. Oceanogr. 11: 393-400. Thomas, W.H. 1969. Phytoplankton n u t r i e n t enrichment experiments o f f Baja C a l i f o r n i a and i n the e a s t e r n E q u a t o r i a l P a c i f i c Ocean. J . F i s h . Res. Board Can. 26: 1133-1145. Thompson, P.A., M.E. Levasseur and P.J. H a r r i s o n . 1989. L i g h t - l i m i t e d growth on ammonium vs n i t r a t e : What i s the advantage f o r marine phytoplankton? Limnol. Oceanogr. 34: 1014-1024. Thoresen, S.S., Q. Dortch and S.I. Ahmed. 1982. Comparison of methods f o r e x t r a c t i n g i n t r a c e l l u l a r p o o ls of i n o r g a n i c n i t r o g e n from marine phytoplankton. J . Plankton Res. 4: 695-704. Throndsen, J . 1973. M o t i l i t y i n some marine nanoplankton f l a g e l l a t e s . Norw. J . Z o o l . 21: 193-200. Throndsen, J . 197 6. Occurrence and p r o d u c t i v i t y of smal l marine f l a g e l l a t e s . Norw. J . Bot. 23: 269-293. Throndsen, J . 1978. P r e s e r v a t i o n and storage, p. 69-74. In: A. S o u r n i a (ed.) Phytoplankton manual. UNESCO, P a r i s . Tilman, D. 1977. Resource c o m p e t i t i o n between p l a n k t o n i c a l g a e : an experimental and t h e o r e t i c a l approach. Ecology 58: 338-348. 219 T i s c h n e r , R. and H. Lorenzen. 1979. N i t r a t e uptake and n i t r a t e r e d u c t i o n i n synchronous Chlorella. P l a n t a 146: 287-292. Tobiesen, A. 1987. N i t r o g e n uptake i n the phytoplankton of O s l o f j o r d e n , Norway: E f f e c t s of environmental and b i o l o g i c a l c o v a r i a t e s . S a r s i a 72: 299-311. Toetz, D. W. 1971 D i u r n a l uptake of N0 3~ and N H 4 + by a Cera tophyllum-peri-phy ton community. Limnnol. Oceanogr. 16: 819-822. Toetz, D. W. 1976. D i e l p e r i o d i c i t y i n uptake of n i t r a t e and n i t r i t e by r e s e r v o i r phytoplankton. H y d r o b i o l o g i a 49: 49-52. Toetz, D. and B. C o l e . 1980. Ammonia m i n e r a l i z a t i o n and c y c l i n g i n Shagawa Lake, Minnesota. Arch. H y d r o b i o l . 88: 9-23. T u r l e y , C M . 1985. B i o l o g i c a l s t u d i e s i n the v i c i n i t y of a shallow-sea t i d a l mixing f r o n t IV. Seasonal and s p a t i a l d i s t r i b u t i o n of urea and i t s uptake by phytoplankton. P h i l . Trans. R. Soc. Lond. B 310: 471-500. T u r l e y , C M . 1986. Urea uptake by phytoplankton a t d i f f e r e n t f r o n t s and a s s o c i a t e d s t r a t i f i e d and mixed waters on the European S h e l f . Br. P h y c o l . J . 21: 225-238. Uchida, T. 1976. E x c r e t i o n of ammonia by Prorocentrum micans Ehrenberg i n urea-grown c u l t u r e . Jap. J . E c o l . 26: 43-44. U l l r i c h , W.R. 1983. Uptake and r e d u c t i o n of n i t r a t e : Algae and Fungi, p. 376-397. In: A L a u c h l i and R.L. B i e l e s k i (eds.) I n o r g a n i c p l a n t n u t r i t i o n . E n c y c l o p e d i a of p l a n t p h y s i o l o g y . NS, v o l . 15A. S p r i n g e r - V e r l a g , H e i d e l b e r g . U l l r i c h , W.R. 1987. N i t r a t e and ammonium uptake i n green algae and h i g h e r p l a n t s : mechanism and r e l a t i o n s h i p w i t h n i t r a t e metabolism, p. 32-38. In: W.R. U l l r i c h , P.J. A p a r i c i o , P.J. S y r e t t and F. C a s t i l l o (eds.) Inorganic n i t r o g e n metabolism. S p r i n g e r - V e r l a g , B e r l i n , H e i d e l b e r g , New York. U l l r i c h , W.R., M. Larsson, C-M. Larsson, S. Lesch and A. Novacky. 1984. Ammonium uptake i n Lemna gibba G l , r e l a t e d membrane p o t e n t i a l changes, and i n h i b i t i o n of anion uptake. P h y s i o l . P l a n t . 61: 369-376. Utermohl, H. 1958. Zur vervollkommung der q u a n t i t a t i v e n phytoplankton methodik. M i t t . I n t . Ver. Limnol. 9: 38 p. 220 V e n r i c k , E.L., J.R. Beers and J.F. Heinbokel. 1977. P o s s i b l e consequences of c o n t a i n i n g microplankton f o r p h y s i o l o g i c a l r a t e measurements. J . Exp. Mar. B i o l . E c o l . 26: 55-76. Ver d u i n , J . 1957. Daytime v a r i a t i o n s i n phytoplankton p h o t o s y n t h e s i s . Limnol. Oceanogr. 2: 333-336. Walsh, J . J . 1981. S h e l f - s e a ecosystems, p. 159-196. In: A.R. Longhurst (ed.) A n a l y s i s of marine ecosystems. Academic P r e s s , London. Walsh, J . J . , T.E. Whitledge, F.W. Barvenik, C D . W i r i c k and S.O. Howe. 197 8. Wind events and food c h a i n dynamics w i t h i n the New York B i g h t . Limnol. Oceanogr. 23: 659-683. Walsh, J . J . , T.E. Whitledge, J . C K e l l y , S.A. Huntsman and R.D. P i l l s b u r y . 1977. F u r t h e r t r a n s i t i o n s t a t e s of the Baja C a l i f o r n i a u p w e l l i n g ecosystem. Limnol. Oceanogr. 22: 264-280. Ward, A.K. and R.G. Wetzel. 1980. I n t e r a c t i o n s of l i g h t and n i t r o g e n source among p l a n k t o n i c blue-green a l g a e . Arch. H y d r o b i o l . 90: 1-25. Waterbury, J.B., S.W. Watson, R.R.L. G u i l l a r d and L.E. Brand. 1979. Wide-spread occurrence of a u n i c e l l u l a r , marine, p l a n k t o n i c , cyanobacterium. Nature (Lond.) 277: 293-294 . Webb, K.L. and L.W. Haas. 1976. The s i g n i f i c a n c e of urea f o r phytoplankton n u t r i t i o n i n the York R i v e r , V i r g i n i a , p. 90-102 In: M. Wiley (ed.) E s t u a r i n e p r o c e s s e s , V o l . 1. Academic P r e s s , New York, N.Y. Whalen, S.C. and V. Alexander. 1984a. D i e l v a r i a t i o n s i n i n o r g a n i c carbon and n i t r o g e n uptake by phytoplankton i n an a r c t i c l a k e . J . Plankton Res. 6: 571-590. Whalen, S.C and V. Alexander. 1984b. I n f l u e n c e of temperature and l i g h t on r a t e s of i n o r g a n i c n i t r o g e n t r a n s p o r t by algae i n an a r c t i c l a k e . Can. J . F i s h . Aquat. S c i . 41: 1310-1318. Whalen, S.C and V. Alexander. 1986. Seasonal i n o r g a n i c carbon and n i t r o g e n t r a n s p o r t by phytoplankton i n an a r c t i c l a k e . Can. J . F i s h . Aquat. S c i . 43: 1177-1186. Wheeler, P.A. 1983. Phytoplankton n i t r o g e n metabolism, p.309-346. In: E . J . Carpenter and D.G. Capone (eds.) N i t r o g e n i n the marine environment. Academic Press, New York, N.Y. 221 Wheeler, P.A. and D.L. Kirchman. 1986. U t i l i z a t i o n of i n o r g a n i c and or g a n i c n i t r o g e n by b a c t e r i a i n marine systems. Limnol. Oceanogr. 31: 998-1009. Wheeler, P.A., P.M. G l i b e r t and J . J . McCarthy. 1982. Ammonium uptake and i n c o r p o r a t i o n by Chesapeake Bay phytoplankton: Short-term uptake k i n e t i c s . Limnol. Oceanogr. 27: 1113-1128. Wheeler, P.A., R.J. Olson and S.W. Chisholm. 1983. E f f e c t s of p h o t o c y c l e s and p e r i o d i c ammonium supply on t h r e e marine phytoplankton s p e c i e s . I I . Ammonium uptake and a s s i m i l a t i o n . J . P h y c o l . 19: 528-533. W i l l i a m s , P.J.L. and L.R. Muir. 1981. D i f f u s i o n as a c o n s t r a i n t on the b i o l o g i c a l importance of microzones i n the sea, p. 209-218. In: J.C.J. N i h o u l (ed.) Ecohydrodynamics. E l s e v i e r Oceanography S e r i e s 32. E l s e v i e r / N o r t h - H o l l a n d , New York. W i l l i a m s , S.K. and R.C. Hodson. 1977. T r a n s p o r t of urea a t low c o n c e n t r a t i o n s i n Chlamydomonas reinhardii. J . B a c t e r i o l . 130: 266-273. Wood, E.D., F.A.J. Armstrong and F.A. R i c h a r d s . 1967. Determination of n i t r a t e i n seawater by cadmium-copper r e d u c t i o n t o n i t r i t e . J . Mar. B i o l . Ass. U.K. 47: 23-31. Y i n , K. 1988. Short-term i n t e r a c t i o n between n i t r a t e and ammonium uptake f o r c e l l s of a marine diatom grown under d i f f e r e n t degrees of l i g h t l i m i t a t i o n . M.Sc. T h e s i s , Dept. Oceanogr., U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C., 106 p. Zar, J.H. 1974. B i o s t a t i s t i c a l a n a l y s i s . P r e n t i c e - H a l l Inc., Englewood C l i f f s , N.J., 620 p. Zar, J.P., P.G. Falkowski, J . Fowler and D.G. Capone. 1988. Co u p l i n g between ammonium uptake and i n c o r p o r a t i o n i n a marine diatom: Experiments w i t h the s h o r t - l i v e d r a d i o i s o t o p e 1 3N. Limnol. Oceanogr. 33: 518-527. 222 APPENDIX 1 Equations used to calculate 1 5 N uptake rates, Once the percentage of 1 5 N ( s p e c i f i c a c t i v i t y ) i n the p a r t i c u l a t e material ( Ns) has been experimentally determined by emission spectrometry (procedures reviewed by F i e d l e r and Proksch, 1975; Harrison, 1983a) the appropriate equation to ca l c u l a t e nitrogen uptake must be chosen to correspond with the experimental protocol employed. The atom % 1 5 N excess ( 1 5N X S) of the p a r t i c u l a t e material i s calculated by subtracting the natural abundance of 1 5 N (F) which i s generally taken as ca. 0.365% (natural atmospheric enrichment of 1 5N) for f i e l d samples and can be measured d i r e c t l y i n culture samples: 1 5 N X S = 1 5 N S \" F (!) The s p e c i f i c uptake rate (N taken up per unit p a r t i c u l a t e N) i s calculated as V^ . and arises from a constant transport model based on the i s o t o p i c r a t i o of the p a r t i c u l a t e sample taken at the end of the incubation: v t = 15 N (R - F ) \u00E2\u0080\u00A2 T (2) where T i s the incubation time and R i s the i n i t i a l atom % enrichment of the N substrate calculated as 223 100-[(S^-A + S a F ) / ( S ^ + S a ) ] where i s the concentration of added substrate, A the s p e c i f i c a c t i v i t y of the isotope (always 99 atom % i n present study), and S a the ambient concentration of unenriched N substrate. Careful chemistry and accurate determination of ambient N concentration are es s e n t i a l f o r an accurate determination of R. The absolute (or transport) rate ( ) i - s c a l c u l a t e d by m u l t i p l i c a t i o n of V^ . and the PON c o l l e c t e d at the end of the incubation period (PONj.).: p t = V t \u00E2\u0080\u00A2 PONt (3) Another equation for the c a l c u l a t i o n of s p e c i f i c uptake rate (Vj.) a r i s e s from the constant transport model based on PON concentration c o l l e c t e d at the beginning of the incubation period ( P 0 N Q ) : 15N V o - TJ\u00E2\u0080\u0094 (4) (R - ibHs) \u00E2\u0080\u00A2 T A l t e r n a t i v e l y an equivalent expression replaces the denominator with [(R - F) - ~ 5N x g] \u00E2\u0080\u00A2 T. The absolute uptake rate p Q i s c a l c u l a t e d by m u l t i p l i c a t i o n of V Q by PONQ: Po \" V o * P 0 N o (5) Since both equations 2 and 4 are derived from a constant transport model they do not allow f o r changes i n PON 2 2 4 c o n c e n t r a t i o n d u r i n g the course of the i n c u b a t i o n , thus y i e l d i n g an u n d erestimate (V t) and an o v e r e s t i m a t e (V^) of the mean s p e c i f i c uptake r a t e d u r i n g the i n c u b a t i o n p e r i o d . Dugdale and W i l k e r s o n (1986) suggest the most obvious way t o a c h i e v e a b e t t e r e s t i m a t e i s t o use the mean of the two v a l u e s : Vm = ( vo + V t > 1 2 (5') The c o n s t a n t s p e c i f i c uptake model assumes t h a t each new c e l l added d u r i n g i n c u b a t i o n c o n t r i b u t e s as e q u a l l y t o the sum of uptake as each p r e - e x i s t i n g c e l l i s c o n t r i b u t i n g and V c can be c a l c u l a t e d as: V c = - \u00E2\u0080\u00A2 In T (R - F) ( R - 1 5 n x s : (6) A l t e r n a t i v e l y the denominator can be s u b s t i t u t e d w i t h the e q u i v a l e n t e x p r e s s i o n [(R - F) - ^ 5 N X S ] . E q u a t i o n 6 i s e q u i v a l e n t t o the uptake r a t e c a l c u l a t e d as In(PON t/PON Q)/T i n C o l l o s (1987) and shown i n h i s F i g . 3 (Eq. 8'). The uptake of u n l a b e l l e d N forms d u r i n g the c o u r s e of an i n c u b a t i o n can r e s u l t i n a r e d u c t i o n of the n i t r o g e n s p e c i f i c uptake r a t e of the ^ N - l a b e l l e d compound determined when o n l y the * 5 N - l a b e l l e d compound i s being taken up ( C o l l o s , 1987; Lund, 1987). E q u a t i o n 3 y i e l d s an a c c u r a t e e s t i m a t e of t r a n s p o r t r a t e (P^) o r t n e l a b e l l e d compound s i n c e V t and PON t are e s t i m a t e d from the same sample (Dugdale and W i l k e r s o n , 2 2 5 1986; C o l l o s , 1987). The d i l u t i o n e f f e c t o f t h e u p t a k e o f u n l a b e l l e d s u b s t r a t e c a n be c o m p e n s a t e d f o r V Q , p r o v i d e d i n d e p e n d e n t e s t i m a t e s o f t h e t r a n s p o r t r a t e f o r u n l a b e l l e d s o u r c e s ( p j j a r e a v a i l a b l e ( i . e . a m b i e n t n u t r i e n t d i s a p p e a r a n c e o v e r t i m e ) : 15 N V o = x s (R 15 r P i i + sum \u00E2\u0080\u00A2 T L P O N Q J -r 15 N x s R - 1 5 N ( V ) The e q u a t i o n f o r t h e c o n s t a n t s p e c i f i c u p t a k e m o d e l c o m p e n s a t e d f o r u p t a k e o f u n l a b e l l e d N i s : 1 T I n R - F R - 1 5 N s J sum \u00E2\u0080\u00A2 T PON, (8 I t s h o u l d be n o t e d t h a t i n D u g d a l e a n d W i l k e r s o n (1986) t h i s e q u a t i o n i s i n c o r r e c t l y w r i t t e n ; t h e p l a c e m e n t o f t h e l e f t c u r l y p a r e n t h e s i s s h o u l d n o t be p l a c e d b e f o r e t h e I n t e r m b u t a s shown a b o v e . B o t h e q u a t i o n s 7 a n d 8 ( e q u i v a l e n t t o E q . 10 a n d 11 o f D u g d a l e a n d W i l k e r s o n , 1986) y i e l d i n c r e a s e d e s t i m a t e s o f V a c c o r d i n g t o t h e p r o p o r t i o n o f i n i t i a l PON c o n c e n t r a t i o n a d d e d f r o m u n l a b e l l e d s o u r c e s d u r i n g t h e i n c u b a t i o n . 226 APPENDIX 2 G r o w t h - i r r a d i a n c e c u r v e o f Micromonas pusilla. Objective: The e x p e r i m e n t was c o n d u c t e d t o o b t a i n a g r o w t h -i r r a d i a n c e c u r v e f o r M. pusilla f o r d e t e r m i n a t i o n o f t h e PPFD n e c e s s a r y t o s u s t a i n m a x i m a l g r o w t h i n s u b s e q u e n t n i t r o g e n u t i l i z a t i o n s t u d i e s . Methods: C u l t u r e s o f M. pusilla were grown i n 40 m l o f medium i n 50 m l b o r o s i l i c a t e g l a s s t e s t t u b e s w i t h t e f l o n - l i n e d c a p s . The medium a n d i t s p r e p a r a t i o n a r e d e s c r i b e d i n t h e Culturing s e c t i o n o f C h a p t e r 3. S t e r i l e t e c h n i q u e s w e r e u s e d f o r a l l c u l t u r i n g w o r k ; t h e a b s e n c e o f b a c t e r i a was o n l y c o n f i r m e d by m i c r o s c o p i c e x a m i n a t i o n . A l l c u l t u r e s w e r e g r o w n a t 17\u00C2\u00B0C (\u00C2\u00B1 0.5\u00C2\u00B0C) a t t h e f o l l o w i n g P P F D s : 145, 120, 89, 7 1 , 5 5 , 44, 34, 27, 19 a n d 15 L - E - m - 2 - s - 1 (2 - 13 c u l t u r e s p e r P P F D ) . \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 R C o n t i n u o u s l i g h t was p r o v i d e d b y V i t a - L i t e UHO f l u o r e s c e n t \u00E2\u0080\u00A2 R t u b e s f i l t e r e d t h r o u g h b l u e P l e x i g l a s (No. 2 0 6 9 , Rohm & Haas) a n d a t t e n u a t e d b y d i s t a n c e a n d n e u t r a l d e n s i t y s c r e e n i n g . I n c i d e n t i r r a d i a t i o n was m e a s u r e d w i t h a L i C o r m o d e l L I 185 q u a n t u m m e t e r (Lambda I n s t r u m e n t s ) w i t h a 2n c o l l e c t o r a n d t h e s c r e e n i n g c a l i b r a t e d w i t h a B i o s p h e r i c a l I n s t r u m e n t s QSL-100 4rc s e n s o r p l a c e d i n t h e same p o s i t i o n a s t h e c u l t u r e t u b e s . D e t e r m i n a t i o n s o f b i o m a s s ( i n v i v o f l u o r e s c e n c e ) w e r e made a t c a . 12 o r 24 h i n t e r v a l s by i n s e r t i n g t h e w h o l e t u b e i n t o a T u r n e r D e s i g n s m o d e l 10 f l u o r o m e t e r , a f t e r m i x i n g b y m u l t i p l e i n v e r s i o n s . 227 C u l t u r e s w e r e t r a n s f e r r e d p r i o r t o N d e p l e t i o n s o t h a t t h e y w e r e n e v e r n u t r i e n t - l i m i t e d . One e s t i m a t e o f t h e g r o w t h r a t e was o b t a i n e d p e r t r a n s f e r b y c a l c u l a t i n g t h e g r o w t h r a t e b e t w e e n e a c h s u c c e s s i v e m e a s u r e o f f l u o r e s c e n c e a n d a v e r a g i n g o v e r t h e 4-6 d a y p e r i o d . G r o w t h r a t e s (u) w e r e c a l c u l a t e d a s : u = I n ( F 2 / F 1 ) / ( t 2 - t 1 ) w h e r e F-^ a n d F 2 a r e f l u o r e s c e n c e a t t i m e 1 ( t j _ ) a n d t i m e 2 ( t 2 ) , r e s p e c t i v e l y . Results and Conclusions: S p e c i f i c g r o w t h r a t e s (d-\"*\") w e r e c a l c u l a t e d f r o m i n c r e a s e s i n i n v i v o f l u o r e s c e n c e a n d a r e p l o t t e d a g a i n s t PPFD i n F i g u r e A . l . T h e s e r e s u l t s i n d i c a t e 2 1 t h a t g r o w t h o f M. pusilla s a t u r a t e d a t <100 uE'm~ *s , w i t h no p h o t o i n h i b i t i o n a p p a r e n t a t t h e g r e a t e s t PPFD e x a m i n e d (145 ^ E*m~ 2 \u00E2\u0080\u00A2 s _ 1 ) . I t was c o n c l u d e d t h a t a PPFD o f 120 JJE-m*\"2 \u00E2\u0080\u00A2 s - 1 w o u l d be e m p l o y e d e x c l u s i v e l y t h r o u g h o u t t h e c u r r e n t r e s e a r c h a s i t was s a t u r a t i n g f o r g r o w t h a n d c o u l d be a c h i e v e d w i t h o u t d i f f i c u l t y i n b o t h t h e c o n t i n u o u s l i g h t ( C h a p t e r 3) a n d t h e 14:10 l i g h t - d a r k ( C h a p t e r 4) e x p e r i m e n t a l c h a m b e r s . 228 Figure A . l . Specific growth rate (u) in d - i as a function of PPFD for M. p u s i l l a grown on NOo\". Bars represent \u00C2\u00B1 1 S.D. (n = 2-13). Error bars are smaller than symbols where not v i s i b l e . \"O =1 t\u00E2\u0080\u0094 < o cr: O 1 .00 h 0.80 -0.60 0.40 h 0.20 0 30 60 90 120 150 PPFD ( /j,E \u00E2\u0080\u00A2 m 2 \u00E2\u0080\u00A2 s 1) APPENDIX 3 C o m p a r i s o n o f t h e i n c r e a s e s i n in vivo f l u o r e s c e n c e a n d c e l l c o n c e n t r a t i o n d u r i n g e x p o n e n t i a l g r o w t h o f Micromonas pusilla. Objective: T h i s e x p e r i m e n t was c o n d u c t e d t o d e t e r m i n e i f i n v i v o f l u o r e s c e n c e c o u l d be u s e d r o u t i n e l y t o m o n i t o r t h e g r o w t h o f b a t c h c u l t u r e s o f M. pusilla. Methods: C u l t u r e s o f M. pusilla w e r e grown i n d u p l i c a t e a c c o r d i n g t o t h e c o n d i t i o n s a n d p r o c e d u r e s o u t l i n e d i n t h e Culturing s e c t i o n o f C h a p t e r 3. A t 12 h i n t e r v a l s s a m p l e s w e r e c o l l e c t e d f o r d e t e r m i n a t i o n o f b o t h c e l l c o n c e n t r a t i o n , p w i t h a C o u l t e r C o u n t e r m o d e l TA I I e q u i p p e d w i t h t h e p o p u l a t i o n a c c e s s o r y , a n d i n v i v o f l u o r e s c e n c e , w i t h a T u r n e r D e s i g n s m o d e l 10 f l u o r o m e t e r ( s e e C h a p t e r 3, M a t e r i a l s a n d M e t h o d s f o r a d d i t i o n a l d e t a i l s ) . S p e c i f i c g r o w t h r a t e s (d -\"^) w e r e c a l c u l a t e d b e t w e e n e a c h s u c c e s s i v e m e a s u r e o f f l u o r e s c e n c e a n d c e l l c o n c e n t r a t i o n a s : u = I n ( F 2 / F 1 ) / ( t 2 - tx) w h e r e F 2 a n d F-^ a r e t h e f l u o r e s c e n c e o r c e l l c o n c e n t r a t i o n a t t i m e 2 ( t 2 ) a n d t i m e 1 ( t - j j , r e s p e c t i v e l y a n d a r e r e p o r t e d a s t h e mean (n = 2) \u00C2\u00B1 1 S.D. o f d u p l i c a t e c u l t u r e s . Results & Conclusions: The i n c r e a s e s i n i n v i v o f l u o r e s c e n c e 230 a n d c e l l c o n c e n t r a t i o n o f M. pusilla a s a f u n c t i o n o f t i m e a r e p l o t t e d i n F i g u r e A.2. A t t i m e z e r o ( t = 0) t h e N 0 3 ~ + NC^ -c o n c e n t r a t i o n i n t h e c u l t u r e s a v e r a g e d 50.1 \u00C2\u00B1 0.5 / j g - a t N-L-\"'\" a n d d e c r e a s e d t o < 1.0 L!g-at N * L - ^ a f t e r 90 a n d 95 h o f e x p o n e n t i a l g r o w t h i n c u l t u r e s 1 a n d 2, r e s p e c t i v e l y . D u r i n g N - r e p l e t e c o n d i t i o n s t h e g r o w t h r a t e , a v e r a g e d 0.835 \u00C2\u00B1 0.011 a n d 0.832 \u00C2\u00B1 0.001 (n = 2) f r o m i n v i v o f l u o r e s c e n c e a n d c e l l c o u n t m e a s u r e m e n t s , r e s p e c t i v e l y . T h i s r e s u l t i n d i c a t e s t h a t b o t h m e t h o d s m e a s u r e t h e i n c r e a s e i n b i o m a s s o f M. pusilla t o a s i m i l a r d e g r e e o f a c c u r a c y . I t was d e c i d e d t h a t i n v i v o f l u o r e s c e n c e c a n be u s e d t o a c c u r a t e l y m e a s u r e c e l l g r o w t h o f M. pusilla a n d w o u l d be e m p l o y e d t o r o u t i n e l y m o n i t o r t h e g r o w t h o f b a t c h c u l t u r e s p r i o r t o e x p e r i m e n t a t i o n . 231 F i g u r e A . 2 . G r o w t h c u r v e s o f d u p l i c a t e b a t c h c u l t u r e s o f M. pusilla g r o w n o n N C ^ - u n d e r s a t u r a t i n g PPFD. S e m i - l o g p l o t s o f r e l a t i v e i n v i v o f l u o r e s c e n c e ( 0 , t ) a n d c e l l c o n c e n t r a t i o n (\u00E2\u0080\u00A2,\u00E2\u0080\u00A2) v e r s u s t i m e . 232 APPENDIX 4 C o m p a r i s o n o f t h e r a t e s o f p a r t i c u l a t e n i t r o g e n p r o d u c t i o n and i n o r g a n i c n i t r o g e n d i s a p p e a r a n c e . Objectivei Two m e a s u r e s o f n i t r a t e u p t a k e , t h e p r o d u c t i o n o f p a r t i c u l a t e o r g a n i c n i t r o g e n (PON) a n d t h e d i s a p p e a r a n c e o f NO3 - + N02~ o v e r t i m e , w e r e c o m p a r e d t o d e t e r m i n e t h e e f f i c i e n c y o f c o n v e r s i o n o f i n o r g a n i c N t o p a r t i c u l a t e o r g a n i c N a n d t h u s e s t i m a t e t h e e x t e n t o f d i s s o l v e d o r g a n i c N (DON) l o s s d u r i n g e x p o n e n t i a l g r o w t h o f M. pusilla. Methods: D u p l i c a t e b a t c h c u l t u r e s o f M. pusilla w e r e grown a c c o r d i n g t o t h e c o n d i t i o n s a n d p r o c e d u r e s o u t l i n e d i n t h e Culturing s e c t i o n o f C h a p t e r 3. A t 12 h i n t e r v a l s , 50 m l s a m p l e s w e r e c o l l e c t e d b y l o w vacuum f i l t r a t i o n (2 80 mm Hg) o n t o p r e c o m b u s t e d (460\u00C2\u00B0C f o r 4 h) Whatman GF/F f i l t e r s f o r m e a s u r e m e n t o f PON c o n c e n t r a t i o n w i t h a C o n t r o l E q u i p m e n t C o r p . m o d e l 240-XA e l e m e n t a l a n a l y z e r . The f i l t r a t e was \u00E2\u0080\u0094 \u00E2\u0080\u0094 \u00E2\u0080\u00A2 R a n a l y z e d f o r NO3 + NO3 w i t h a T e c h n i c o n A u t o A n a l y z e r I I . D e t a i l s o f t h e f i l t r a t i o n p r o c e d u r e a n d a n a l y t i c a l t e c h n i q u e s a r e d e s c r i b e d i n t h e M a t e r i a l s a n d M e t h o d s o f C h a p t e r 3. Results & Conclusions: The d i s a p p e a r a n c e o f NO3 - + N02~ f r o m t h e medium, t h e i n c r e a s e i n PON c o n c e n t r a t i o n a n d t h e r a t i o o f t h e s e t w o m e a s u r e s o f NO3 - u p t a k e o v e r s u c c e s s i v e s a m p l i n g i n t e r v a l s a r e p r e s e n t e d i n F i g u r e A . 3 . T h e s e r e s u l t s i n d i c a t e 233 t h a t d u r i n g t h e p e r i o d o f N - r e p l e t e g r o w t h ( 0 - c a . 90 h) n e i t h e r m e a s u r e o f NO3- u p t a k e was c o n s i s t e n t l y g r e a t e r o r l e s s t h a n t h e o t h e r ; t h e r a t i o o f t h e c h a n g e i n c o n c e n t r a t i o n o f PON t o N03~ + N02~ a v e r a g e d 0.96 (\u00C2\u00B1 0.08) a n d 0.97 (\u00C2\u00B1 0.13) f o r c u l t u r e 1 a n d 2, r e s p e c t i v e l y . I n b o t h N - r e p l e t e c u l t u r e s t h e r e was no s i g n i f i c a n t d i f f e r e n c e i n r a t e s o f N0 3\" + NO2\"\" d i s a p p e a r a n c e a n d PON a c c u m u l a t i o n ( p a i r e d t - t e s t , P \u00C2\u00A3 0.05, n = 7 p a i r s i n c u l t u r e 1, n = 8 p a i r s i n c u l t u r e 2) b u t when t h e c e l l s became N - l i m i t e d (< 1 uq-at N-L--'- o f N03~ + NO2-) a n a v e r a g e o f 54% o f t h e n i t r a t e r e m o v e d f r o m t h e medium was a c c o u n t e d f o r i n t h e PON. T h e s e r e s u l t s s u g g e s t t h a t o n l y d u r i n g c o n d i t i o n s o f N - l i m i t a t i o n w e r e t h e d e c r e a s e s i n N03\" + NO2\"\" f r o m t h e medium n o t r e f l e c t e d i n s i m i l a r i n c r e a s e s i n PON c o n c e n t r a t i o n , s u g g e s t i n g e x c r e t i o n o f DON t o t h e medium. P a s t e s t i m a t e s o f DON e x c r e t i o n t y p i c a l l y r a n g e d f r o m 2 0 - 4 0 % o f t h e a s s i m i l a t e d n i t r o g e n i n N - l i m i t e d c e l l s a n d 5-10% i n h e a l t h y p h y t o p l a n k t o n c e l l s ( e . g . , S h a r p , 1 9 7 7 ) . However, i t i s p o s s i b l e t h a t much o f t h e DON e x c r e t i o n m e a s u r e d i n t h e s e e a r l y e x p e r i m e n t s may h a v e r e s u l t e d f r o m c e l l b r e a k a g e ( e . g . , F u hrman a n d B e l l , 1985; Goldman a n d D e n n e t t , 1985) o r c e l l p a s s a g e ( e . g . , L i , 1986; S t o c k n e r e t a l . , i n p r e s s ) d u r i n g f i l t r a t i o n . 234 F i g u r e A.3. N i t r a t e u p t a k e by d u p l i c a t e b a t c h c u l t u r e s o f Micromonas pusilla. A. D e c r e a s e i n d i s s o l v e d NO3- + NO9-c o n c e n t r a t i o n i n t h e c u l t u r e medium. B. A c c u m u l a t i o n o f p a r t i c u l a t e o r g a n i c n i t r o g e n . C. R a t i o o f NO3\" u p t a k e r a t e _ c a l c u l a t e d f r o m PON a c c u m u l a t i o n t o r a t e c a l c u l a t e d f r o m NO3-+ N02~ d i s a p p e a r a n c e f r o m t h e medium. N i t r o g e n c o n c e n t r a t i o n s a r e p l o t t e d a g a i n s t e l a p s e d t i m e m e a s u r e d a f t e r c u l t u r e i n i t i a t i o n ; u p t a k e r a t e r a t i o s a r e p l o t t e d a g a i n s t a v e r a g e e l a p s e d t i m e b e t w e e n s u c c e s s i v e s a m p l i n g p e r i o d s . 0 . 4 1 \u00E2\u0080\u00A2 ' \u00E2\u0080\u00A2 ' \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 ' . 1 0 20 40 60 80 100 TIME (h) 235 APPENDIX 5 D i s s o l v e d i n o r g a n i c n i t r o g e n disappearance curve d u r i n g growth of M. p u s i l l a . O b j e c t i v e : To determine i f n i t r i t e i s r e l e a s e d i n t o the c u l t u r e medium by M. pusilla, d u r i n g growth on n i t r a t e , as the ambient c o n c e n t r a t i o n of n i t r a t e approaches zero . Methods: A batch c u l t u r e of M. pusilla was grown, under constant blue l i g h t at a s a t u r a t i n g PPFD, a c c o r d i n g t o the c o n d i t i o n s and procedures o u t l i n e d i n the Culturing s e c t i o n of Chapter 3. At 30 min i n t e r v a l s , f i l t e r e d samples were ana l y z e d f o r n i t r a t e (NO3-) and n i t r i t e (NO2-) w i t h a Technicon AutoAnalyzer II f o l l o w i n g the techniques o u t l i n e d i n Wood e t a l . (1967) and Chapter 3. Sampling c o n t i n u e d u n t i l the ambient c o n c e n t r a t i o n s of NO3- and NC^ - reached t h e i r r e s p e c t i v e a n a l y t i c a l l i m i t s of d e t e c t i o n (NO3-: 0.03 uq-at N-L - 1; N0 2\": 0.02 uq-at N - L - 1 ) . Results & Discussion: The ambient c o n c e n t r a t i o n s of NO3- and N02~ are p l o t t e d as a f u n c t i o n of time i n F i g u r e A.4. Over a p e r i o d of 4.5 h the t o t a l c o n c e n t r a t i o n of N03\" + NO2\"\" d e c l i n e d from 5.76 pq-at N - L - 1 t o <0.05 jjg-at N - L - 1 w i t h concomittant decreases i n the ambient c o n c e n t r a t i o n of both NO3- and NO2\". No evidence of NO2- e x c r e t i o n by M. pusilla was observed w i t h i n c r e a s i n g NO3- l i m i t a t i o n . The ambient 236 c o n c e n t r a t i o n o f N 0 2 ~ i n f i v e s e p a r a t e 20 L r e s e r v o i r s o f 50 ug-at N 0 3 - ' L - ^ e n r i c h e d ESAW a v e r a g e d < 0.05% o f t h e t o t a l N 0 3 ~ + N 0 2 ~ c o n c e n t r a t i o n (0.20 \u00C2\u00B1 0.07 L i g - a t N 0 2 ~ - L _ 1 , n = 5) w h i c h i s c o n s i s t e n t w i t h t h e i n i t i a l v a l u e s r e p o r t e d h e r e d u r i n g t h e f i r s t h o u r o f s a m p l i n g . I t i s c o n c l u d e d t h a t M. pusilla, u n l i k e o t h e r p h y t o p l a n k t o n s p e c i e s s u c h a s Thalassiosira pseudonana ( e . g . , O l s o n e t a l . , 1980; P a r s l o w e t a l . , 1 9 8 4 b ) , d o e s n o t r e l e a s e N 0 2 ~ d u r i n g g r o w t h on N03~ u n d e r s a t u r a t i n g PPFD. 237 Figure A.4. Dissolved NO3- and NO?\" concentration i n the c u l t u r e medium, during batch growth of M. p u s i l l a , plotted against time of sampling. 120 180 TIME ( min ) 240 300 238 APPENDIX 6 P r e c i s i o n of a n a l y t i c a l t e c h n i q u e s . The p r e c i s i o n of the a n a l y t i c a l techniques employed throughout t h i s study are r e p o r t e d as the mean c o e f f i c i e n t of v a r i a t i o n ( C V . = S.D./x \u00E2\u0080\u00A2 100) of r e p l i c a t e samples (n) c o l l e c t e d and processed a c c o r d i n g t o the procedures o u t l i n e d i n Chapters 1-4. The estimated e r r o r i n c l u d e s both c o l l e c t i o n ( i . e . f i l t r a t i o n ) and a n a l y t i c a l e r r o r s , except i n the atom % \"1 c 1 c excess ( N e x ) measurements of N i n p a r t i c u l a t e s . Here d u p l i c a t e measurements were determined from the same o r i g i n a l sample ( c o l l e c t e d by f i l t r a t i o n ) , but evacuated, combusted and analyzed by emission spectrometry s e p a r a t e l y (n = 150 p a i r s ) . Measure Number of R e p l i c a t e s C o e f f i c i e n t of (n) V a r i a t i o n (%) N0 3~ + N0 2~ 2-3 1.2 N H 4 + 2-3 1.5 Urea 2 0.3 Chi a 2 4.4 POC 2-3 5.2 PON 2-3 3.8 c e l l concen. 2 3.5 1 5 N e x 2 1.5 Refereed Publications Parsons, T.R., H.M. Dovey, W.P. Cochlan, R.I. Perry and P.B. Crean. 1984. Frontal zone analysis at the mouth of a f jord-Jervis Inlet, B r i t i s h Columbia. Sarsia 69.: 133-137. Price, N.M., W.P. Cochlan and P.J. Harrison. 1985. Time course of uptake of inorganic and organic nitrogen by phytoplankton i n the S t r a i t of Georgia: comparison of f r o n t a l and s t r a t i f i e d communities. Mar. Ecol. Prog. Ser. 27.: 39-53. Cochlan, W.P. 1986. Seasonal study of uptake and regeneration of nitrogen on the Scotian Shelf. Cont. Shelf Res. 5: 555-577. Cochlan, W.P., P.J. Harrison, P.A. Thompson and T.R. Parsons. 1986. Preliminary observations of the summer production of three B r i t i s h Columbian coastal i n l e t s . Sarsia 71 :\u00E2\u0080\u00A2 161-168. Harrison, P.J., W.P. Cochlan, J.C. Acreman, T.R. Parsons, P.A. Thompson, H.M. Dovey and Chen X i a o l i n . 1986. The ef f e c t s of crude o i l and Corexit 9527 on marine phytoplankton i n an experimental enclosure. Mar. Envir. Res. 18: 93-109. M i t c h e l l , J.G., A. Okubo, J.A. Fuhrman and W.P. Cochlan. 1989. The contribution of phytoplankton to ocean density gradients. Deep-Sea Res. 3_6: 1277-1282. Stockner, J.G., M.E. Klut and W.P. Cochlan. (In press) Leaky f i l t e r s : a warning to aquatic ecologists'. Can. J. F i s h . Aquat. S c i . 47. "@en . "Thesis/Dissertation"@en . "10.14288/1.0053310"@en . "eng"@en . "Oceanography"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Nitrogen uptake by marine phytoplankton : the effects of irradiance, nitrogen supply and diel periodicity"@en . "Text"@en . "http://hdl.handle.net/2429/30628"@en .