"Science, Faculty of"@en . "Earth, Ocean and Atmospheric Sciences, Department of"@en . "DSpace"@en . "UBCV"@en . "De Mora, Stephen John"@en . "2010-03-26T23:11:24Z"@en . "1981"@en . "Doctor of Philosophy - PhD"@en . "University of British Columbia"@en . "The Fraser Estuary was investigated five times under varying flow regimes. The surface distribution of dissolved manganese consistently exhibited a maximum value at a salinity ranging from 4 to 12 ppt. Experimental results and field data suggest this peak does not result from the desorption nor dissolution of riverborne suspended particulate manganese. The excess metal is derived from the estuarine bottom sediments.\r\nDesorption or dissolution of manganese from the estuarine bottom sediments resuspended due to the advancing salt wedge enhances the dissolved manganese concentration in the bottom waters, especially in the toe of the salt wedge. This manganese enrichment may also be influenced to a lesser extent by the concurrent release of some interstitial water with enriched dissolved manganese concentrations due to the in situ reduction of amorphous manganese oxides. The subsequent entrainment and mixing of water from the toe of the salt wedge into the outflowing river water causes a downstream increase in the dissolved manganese content, and eventually determines the peak manganese concentration and salinity. Further downstream mixing with saline waters having relatively low manganese levels causes surface concentrations to decrease. Thus, the dissolved manganese distribution can be explained in terms of two conservative dilution curves which intersect at the manganese peak.\r\nThe dissolved oxygen generally behaves conservatively in both the surface and bottom waters of the Fraser Estuary. The removal of alkalinity may occur at low salinity, however,\r\n\r\nalkalinity exhibits conservative behaviour through most of the salinity range. The surface distribution of pH can be replicated theoretically only when mixing in the surface is considered as a two step process.\r\nThe alkalinity behaves conservatively in the surface waters of the Strait of Georgia. The pH and dissolved oxygen display seasonal variations related to primary productivity and mixing processes.\r\nThe distribution of dissolved manganese in surface waters of the Strait of Georgia is determined mainly by the dilution of Fraser River water. Bottom waters have enhanced dissolved manganese concentrations due to reductive remobi1ization of manganese from the sediments. Concentrations of dissolved manganese at mid-depths are determined by seasonal variations in the stability of the water column. Depth profiles of suspended particulate manganese indicate increasing concentrations with depth. This may result from the oxidative precipitation of manganese and/or the resuspension of bottom sediments."@en . "https://circle.library.ubc.ca/rest/handle/2429/22730?expand=metadata"@en . "MANGANESE CHEMISTRY IN THE FRASER ESTUARY by STEPHEN JOHN^DE MORA B.Sc, The University of Wales, 1976 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Departments of Chemistry and Oceanography) We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1981 \u00C2\u00A9 Stephen John de Mora, 1981 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r a n a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l m a k e i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s m a y b e g r a n t e d b y t h e h e a d o f my d e p a r t m e n t o r b y h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t b e a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f c/Cck Sample / e i g h t ) MRG-1 SY-2 Mn MnO R. V . ( 1 > 0.136+0.003 0.175 0.17 0.256+0.009 0.330 0. 32 A l A l a O / R. V.< 1 ' 3.98+0.51 7.52 8.50 6.86+0.40 13.0 12.12 Fe Fe^O? R. V . ' 1 ' 4.40+0.30 6.29 6.28 (1) Recommended V a l u e (Abbey, 1980) 1 ml of a s t a n d a r d s o l u t i o n w i t h 5 ppm Mn and 250 ppm A l was t r e a t e d i n t h e p r e s c r i b e d manner. F o r 15 r e p l i c a t e a n a l y s e s , mean r e c o v e r y r a t e s and s t a n d a r d d e v i a t i o n s were 99.5 + 3.8% and 97.0 + 7.1% f o r Mn and A l r e s p e c t i v e l y . Reagent b l a n k s were 0.3 _ug and 1.1 _ug r e s p e c t i v e l y . To d e t e r m i n e b o t h t h e p r e c i s i o n and a c c u r a c y of t h e t e c h n i q u e , c e r t i f i e d r e f e r e n c e m a t e r i a l s were a n a l y z e d . About 50 mg sam p l e s of C a n a d i a n Rock S t a n d a r d s SY-2 and MRG-1 were d i g e s t e d . The r e s u l t s , p r e s e n t e d i n T a b l e I I I , i n d i c a t e r e l a t i v e s t a n d a r d d e v i a t i o n s of 2.2% (MRG-1) and 3.5% (SY-2) f o r manganese, 6.8% (MRG-1) f o r i r o n , and 13% (MRG-1) and 5.8% 25 (SY-2) f o r a l u m i n i u m . The c o n c e n t r a t i o n s of manganese and i r o n g i v e good agreement w i t h t h e v a l u e s recommended by Abbey ( 1 9 8 0 ) . The n o n - s y s t e m a t i c d i s c r e p a n c i e s i n t h e a l u m i n i u m d e t e r m i n a t i o n s may r e s u l t f r o m m a t r i x e f f e c t s . C o n c e r n i n g u n i t s , c o n c e n t r a t i o n s of manganese, i r o n and a l u m i n i u m were measured on a volume b a s i s but have been r e f e r r e d t o as ,ug/kg i n s t e a d of jjq/1, a g a i n i g n o r i n g t h e c o n v e r s i o n f a c t o r . T h u s , t h r o u g h o u t t h e \u00E2\u0080\u00A2 t e x t p a r t i c u l a t e , m e t a l c o n c e n t r a t i o n s i n ppb o r ppm r e f e r not t o m e t a l c o n c e n t r a t i o n s i n p a r t i c u l a t e m a t e r i a l on a d r y w e i g h t b a s i s but r a t h e r a c t u a l c o n c e n t r a t i o n s of p a r t i c u l a t e m e t a l i n sea w a t e r . 2.2 Sediment Samples 2.2.1 C o l l e c t i o n and S t o r a g e A l l i n f o r m a t i o n r e g a r d i n g c o l l e c t i o n d a t e s , s a m p l i n g d e v i c e s and sample s i t e s of s e d i m e n t s i s summarized i n A p p e n d i x A. 4 . S h i p e k g r a b samples were o b t a i n e d from s e l e c t e d s t a t i o n s i n t h e F r a s e r E s t u a r y . R e p r e s e n t a t i v e samples from t h e c e n t r e of t h e b u c k e t were p l a c e d i n w h i r l - p a k p o l y e t h y l e n e bags and s t o r e d i n a r e f r i g e r a t o r near 4\u00C2\u00B0C. G r a v i t y c o r e s were t a k e n a t S t a t i o n 15 on C r u i s e s 78-01 and 79-02. T h e s e were s t o r e d a t a m b i e n t ( w i n t e r ) t e m p e r a t u r e s f o r s h ipment t o t h e l a b o r a t o r y . R e p e a t e d a t t e m p t s a t g r a v i t y c o r i n g i n t h e F r a s e r R i v e r and E s t u a r y f a i l e d due t o t h e c o a r s e sandy n a t u r e of t h e s e d i m e n t . However, c o r e s were c o l l e c t e d by d i v e r s i n F e b r u a r y 1979 and 26 J a n u a r y 1980. A p l a s t i c c o r e - l i n e r was p u s h e d i n t o t h e s e d i m e n t , c a p p e d t o p and bottom i n s i t u and t r a n s p o r t e d t o t h e s u r f a c e . T h e s e c o r e s were f r o z e n a s soon as p o s s i b l e t o p r e v e n t l o s s of i n t e r s t i t i a l water by d r a i n a g e from t h e sandy s e d i m e n t . Samples of b o t t o m water f o r s a l i n i t y d e t e r m i n a t i o n were c o l l e c t e d a t t h e same t i m e as c o r e s i n J a n u a r y 1980 by o p e n i n g s t a n d a r d g l a s s s t o r a g e b o t t l e s a t d e p t h . At t h e l a b o r a t o r y , and as soon as p o s s i b l e a f t e r c o l l e c t i o n , t h e c o r e s were d i v i d e d i n t o 3 cm l o n g s e c t i o n s . A f t e r t h a w i n g where n e c e s s a r y , c o r e segments and some g r a b samples were s q u e e z e d as d e s c r i b e d i n t h e f o l l o w i n g s e c t i o n . F i n a l l y , the s e d i m e n t s were s t o r e d i n p o l y e t h y l e n e w h i r l - p a k bags and f r o z e n u n t i l s u b s e q u e n t l y a n a l y s e d . 2.2.2 I n t e r s t i t i a l Water A n a l y s e s I n t e r s t i t i a l water was e x t r a c t e d from t h e samples u s i n g a p l a s t i c s e d i m e n t s q u e e z e r of t h e t y p e d e s c r i b e d by Reeburgh ( 1 9 6 7 ) . The samples were s q u e e z e d under n i t r o g e n gas t h r o u g h Gelman A c r o p o r AN-450 f i l t e r s ( n o m i n a l p o r e s i z e 450 nm, p r e t r e a t e d as d e s c r i b e d f o r f i l t e r s i n S e c t i o n 2.1.5) d i r e c t l y i n t o 30 ml N a l g e n e p o l y p r o p y l e n e b o t t l e s w h i c h had p r e v i o u s l y been a c i d - c l e a n e d and d r i e d . C a r e was t a k e n t o m i n i m i z e t h e l e n g t h o f t i m e t h e s e d i m e n t s were e x p o s e d t o t h e a t m o s p h e r e . A l t h o u g h o x i d a t i v e l o s s of s o l u b l e Mn 2 + from i n t e r s t i t i a l w a t e r has been s u g g e s t e d by L y o n s and G a u d e t t e ( 1 9 7 8 ) , t h e work of S a n d e r s (1978b) i n d i c a t e s t h a t t h e p e r i o d s o f a i r e x p o s u r e a r e t o o b r i e f t o c a u s e a p p r e c i a b l e d e c r e a s e s i n Mn 2 + c o n c e n t r a t i o n s . 27 Upon s q u e e z i n g , a few d r o p s of t h e i n t e r s t i t i a l water were removed v i a a P a s t e u r p i p e t t e and p l a c e d i n an Endeco Type 102 RefTactometer t o e s t i m a t e t h e s a l i n i t y . A l t h o u g h measurement of known s a l i n i t y samples i n d i c a t e d an a c c u r a c y of o n l y +0.5 p p t , t h i s was s u f f i c i e n t f o r c o m p a r a t i v e p u r p o s e s . The pH of t h e r e m a i n i n g i n t e r s t i t i a l w a ter sample was a d j u s t e d t o a p p r o x i m a t e l y 1.5 w i t h a few d r o p s o f c o n c e n t r a t e d HC1 and s t o r e d f o r s u b s e q u e n t a n a l y s i s of d i s s o l v e d manganese. Manganese c o n c e n t r a t i o n s were d e t e r m i n e d by AAS by a s p i r a t i n g t h e a c i d i f i e d i n t e r s t i t i a l water d i r e c t l y i n t o an a i r - a c e t y l e n e f l a m e and m e a s u r i n g t h e a b s o r b a n c e a t 279.6 nm. B a c k g r o u n d a b s o r b a n c e s were c o r r e c t e d w i t h a d e u t e r i u m b a c k g r o u n d c o r r e c t o r ( V a r i a n \"BC-6) and t h e c o n c e n t r a t i o n s e v a l u a t e d from c a l i b r a t i o n c u r v e s d e r i v e d from measurements on manganese s t a n d a r d s p r e p a r e d i n a c i d i f i e d s ea w a t e r . 2.2.3 Ammonium O x a l a t e E x t r a c t i o n of S e d i m e n t s To e x t r a c t amorphous manganese and i r o n o x i d e s from t h e s e d i m e n t , s a m p l e s were t r e a t e d i n t h e d a r k w i t h t h e 0.2M ammonium o x a l a t e / 0.2M o x a l i c a c i d (pH 3.0) r e a g e n t f o l l o w i n g Schwertmann ( 1 9 6 4 ) . A f t e r s e d i m e n t s were oven d r i e d a t 110\u00C2\u00B0C f o r t h r e e h o u r s , t h e y were g r o u n d w i t h an a g a t e p e s t l e and m o r t a r t o p a s s t h r o u g h a No. 140 n y l o n mesh (105 ^ um o p e n i n g ) . About 100 mg o f s e d i m e n t was p l a c e d i n an a c i d - c l e a n e d 100 ml brown p o l y p r o p y l e n e N a l g e n e b o t t l e . A 50 ml a l i q u o t of t h e o x a l a t e s o l u t i o n was added, t h e s u s p e n s i o n shaken v i g o r o u s l y f o r two h o u r s and t h e n s u c t i o n f i l t e r e d t h r o u g h N u c l e p o r e f i l t e r s 28 ( w i t h a n o m i n a l p o r e s i z e of 400 nm) i n t o an a c i d - c l e a n e d t e f l o n b e a k e r . The b o t t l e and f i l t r a t i o n u n i t were r i n s e d a few t i m e s w i t h d i s t i l l e d d e i o n i z e d water t o e n s u r e a l l r e s i s t a n t s e d i m e n t was q u a n t i t a t i v e l y t r a n s f e r r e d t o t h e f i l t e r . The l e a c h a t e was made up t o a volume of 100 ml i n an a c i d - c l e a n e d 100 ml N a l g e n e p o l y p r o p y l e n e v o l u m e t r i c f l a s k and t h e n s t o r e d i n an a c i d - c l e a n e d 100 ml N a l g e n e p o l y p r o p y l e n e b o t t l e . The f i l t e r was s t o r e d i n an a c i d - c l e a n e d p l a s t i c p e t r i d i s h . The o x a l a t e - l e a c h a b l e manganese was a n a l y s e d by f l a m e AAS f o l l o w i n g t h e NaDDC/MIBK e x t r a c t i o n p r o c e d u r e , p r e v i o u s l y d e s c r i b e d i n S e c t i o n 2.1.5 f o r s e a water c o n c e n t r a t e s , u s i n g a 15 ml a l i q u o t of t h e o x a l a t e d i g e s t s o l u t i o n . The c o n c e n t r a t i o n was e v a l u a t e d f r o m c a l i b r a t i o n c u r v e s p r e p a r e d by s i m i l a r e x t r a c t i o n of manganese s t a n d a r d s from 0.1M ammonium o x a l a t e / 0 . 1 M o x a l i c a c i d . Reagent b l a n k s were d e t e r m i n e d by s u b j e c t i n g a 50 ml a l i q u o t of t h e w o r k i n g o x a l a t e s o l u t i o n t o t h e c o m p l e t e p r o c e d u r e d e s c r i b e d . The p r e c i s i o n of t h e t e c h n i q u e was e s t i m a t e d from f i v e r e p l i c a t e a n a l y s e s of a s e d i m e n t sample from t h e F r a s e r E s t u a r y . The r e s u l t s , p r e s e n t e d i n T a b l e IV, i n d i c a t e t h a t t h e mean o x a l a t e - l e a c h a b l e manganese c o n t e n t on a d r y w e i g h t b a s i s was 111 ppm w i t h a s t a n d a r d d e v i a t i o n o f 5 ppm ( 4 . 4 % ) . The r e a g e n t b l a n k had a manganese c o n c e n t r a t i o n of 2 ppm b a s e d on a 100 mg sample. 29 TABLE IV R e p l i c a t e Manganese and A l u m i n i u m A n a l y s e s of an E s t u a r i n e Sediment Sample M e t a l C o n c e n t r a t i o n 80-56.2 (on a d r y we s i g h t b a s i s ) Ammonium Ammon ium Ammon i urn 3-6 cm O x a l a t e O x a l a t e T o t a l O x a l a t e L e a c h a b l e Res i s t a n t Mn Res i s t a n t Mn (ppm) Mn (ppm) (ppm) A l (%) 1 112 375 487 4.58 2 105 397 502 4.81 3 118 478 596 5.34 4 108 466 574 5.27 5 111 454 564 5.40 Mean 111 434 545 5.08 S t d Dev 4.8 45.3 47.5 0.36 RSD 4 . 4% 10.4% 8.7% 7.2% 2.2.4 T o t a l M e t a l C o n t e n t of S e d i m e n t s The o x a l a t e - r e s i s t a n t f r a c t i o n of the s e d i m e n t r e t a i n e d by t h e f i l t e r was a n a l y s e d f o r manganese and a l u m i n i u m a f t e r d i g e s t i o n w i t h n i t r i c / p e r c h l o r i c / h y d r o f l u o r i c a c i d as d e s c r i b e d f o r p a r t i c u l a t e s amples i n S e c t i o n 2.1.6. On some o c c a s i o n a b l a c k r e s i d u e , presumed t o be r e s i s t a n t o r g a n i c m a t e r i a l , r e m a i n e d a f t e r t h e d i g e s t i o n p r o c e d u r e and, where t h e amount of t h i s r e f r a c t o r y o r g a n i c m a t e r i a l seemed e x c e s s i v e , t h e d i g e s t s were f i l t e r e d t h r o u g h N u c l e p o r e f i l t e r s ( w i t h a n o m i n a l p o r e s i z e of 400 nm) p r i o r t o a n a l y s i s by AAS. D i l u t i o n up t o a 30 TABLE V C o m p a r i s o n of T o t a l Mn and A l C o n t e n t i n S u r f i c i a l E s t u a r i n e S e d i m e n t s C o l l e c t e d d u r i n g C r u i s e 79-12 S t a t i o n Mn ( p p m ) ( 1 ' A l ( %) ' 1 ' 79-12- A B A C 3 1840 10.4 7.30 15 330 346 7.22 4.74 53 514 524 8.72 5.44 54 498 551 6.99 5.48 55 542 591 5.55 5.03 56 425 468 5.41 5.29 59 447 480 6.07 5.48 65 477 509 5.86 5.21 Column A T o t a l HNO^/HClOy/HF d i g e s t i o n o n l y Column B Mn c o n c e n t r a t i o n : Sum o f o x a l a t e e x t r a c t a b l e and r e s i s t a n t m e t a l Column C A l c o n c e n t r a t i o n : O x a l a t e - r e s i s t a n t m e t a l o n l y (1) C o n c e n t r a t i o n s measured on a d r y w e i g h t b a s i s f a c t o r of 10 was n e c e s s a r y i n some c a s e s t o e n s u r e f i n a l m e t a l c o n c e n t r a t i o n s were w i t h i n t h e l i n e a r r ange d e f i n e d by t h e w o r k i n g s t a n d a r d s . F o r c o m p a r a t i v e p u r p o s e s 100 mg sam p l e s o f d r i e d , g r o u n d s e d i m e n t from C r u i s e 79-12 were a l s o d i g e s t e d i n t h e n i t r i c / p e r c h l o r i c / h y d r o f l u o r i c a c i d m i x t u r e w i t h o u t p r i o r o x a l a t e e x t r a c t i o n . A c o m p a r i s o n of t o t a l manganese c o n t e n t by th e two p r o c e d u r e s i s g i v e n i n T a b l e V t o g e t h e r w i t h a l u m i n i u m c o n c e n t r a t i o n s . Column A g i v e s m e t a l c o n c e n t r a t i o n s , on a d r y w e i g h t b a s i s , d e t e r m i n e d by an a c i d d i g e s t w i t h o u t p r i o r o x a l a t e e x t r a c t i o n . Manganese c o n c e n t r a t i o n s , r e c o r d e d i n column B, a r e th e sum of o x a l a t e - l e a c h a b l e and o x a l a t e - r e s i s t a n t components 31 and a g r e e w i t h i n t h e p r e c i s i o n of t h e t e c h n i q u e (one s t a n d a r d d e v i a t i o n ) w i t h v a l u e s i n column A. A l u m i n i u m c o n c e n t r a t i o n s i n column C a r e d e t e r m i n e d from o n l y t h e o x a l a t e - r e s i s t a n t components of t h e s e d i m e n t s ; any a l u m i n i u m e x t r a c t e d by t h e o x a l a t e was not a n a l y s e d and t h i s may a c c o u n t f o r t h e lo w e r v a l u e s . W h i l e a l u m i n i u m may be e x t r a c t e d from some amorphous o x i d e s ( s u c h as g i b b s i t e ) , some a l u m i n o s i 1 i c a t e s may be s u s c e p t i b l e t o d i s s o l u t i o n . C o n s q u e n t l y , o x a l a t e - e x t r a c t a b l e manganese c o n c e n t r a t i o n s may a l s o i n c l u d e c o n t r i b u t i o n s from t h e s e s e d i m e n t a r y components. The p r e c i s i o n of t h e s i n g l e - s t e p d i g e s t i o n t e c h n i q u e was e v a l u a t e d w i t h c e r t i f i e d C a n a d i a n r e f e r e n c e m a t e r i a l s as i n d i c a t e d i n t h e a n a l y s i s of p a r t i c u l a t e samples i n S e c t i o n 2.1.6, w h i l e t h e p r e c i s i o n of t h e a c i d d i g e s t i o n f o l l o w i n g o x a l a t e e x t r a c t i o n was d e t e r m i n e d by a n a l y s i n g f i v e r e p l i c a t e s of an e s t u a r i n e s e d i m e n t ( T a b l e I V ) . Mean c o n c e n t r a t i o n s and s t a n d a r d d e v i a t i o n s of r e s i d u a l manganese and a l u m i n i u m were 434 ppm + 45.3 ppm and 5.08% + 0.36%, r e s p e c t i v e l y . T h i s i n d i c a t e s a r e l a t i v e s t a n d a r d d e v i a t i o n o f 10.4% f o r Mn and 7.2% f o r A l . However , i t can be shown t h a t t h e r e l a t i v e s t a n d a r d d e v i a t i o n f o r t h e t o t a l manganese, t h a t i s t h e sum of o x a l a t e - l e a c h a b l e and r e s i s t a n t f r a c t i o n s , i s o n l y 8.7%. 2.2.5 G r a i n S i z e A n a l y s i s G r a i n s i z e a n a l y s e s were c a r r i e d o ut u s i n g t h e d r y s i e v i n g method d e s c r i b e d by C a r v e r ( 1 9 7 1 ) . S e d i m e n t s were washed t o remove sea s a l t , c e n t r i f u g e d and o v e n - d r i e d a t 40 \u00C2\u00B0 C . T h i s may c a u s e some c e m e n t a t i o n of t h e f i n e - g r a i n f r a c t i o n o f t h e c l a y 32 m i n e r a l s . A f t e r a l l o w i n g t h e samples t o e q u i l i b r a t e o v e r n i g h t w i t h a mbient t e m p e r a t u r e and h u m i d i t y , t h e y were weighed and d r y s i e v e d by s h a k i n g f o r 15 m i n u t e s t h r o u g h a g r a d e d s e r i e s of b r a s s s i e v e s . E a c h s e d i m e n t s i z e f r a c t i o n was s u b s e q u e n t l y w e i g h e d . 33 2L ALKALINITY AND PH DISTRIBUTION IN THE FRASER ESTUARY 3.1 I n t r o d u c t i o n A l k a l i n i t y and pH a r e i m p o r t a n t p a r a m e t e r s i n s o l u t i o n c h e m i s t r y and a f f e c t s e v e r a l p r o c e s s e s . The pH i s a measurement of h y d r o g e n i o n c o n c e n t r a t i o n w h i l e t h e a l k a l i n i t y r e f l e c t s t h e p r o t o n d e f i c i e n c y of t h e weak a c i d a n i o n s p r e s e n t i n t h e s o l u t i o n (Stumm and Morgan, 1 9 7 0 ) . The a l k a l i n i t y i s o p e r a t i o n a l l y d e f i n e d as t h e amount o f h y d r o g e n i o n s r e q u i r e d t o t i t r a t e s e a water t o t h e b i c a r b o n a t e end p o i n t . T h i s t i t r a t i o n n e c e s s a r i l y i n c l u d e s a l l weak a c i d s w i t h d i s s o c i a t i o n c o n s t a n t s l e s s t h a n t h e f i r s t d i s s o c i a t i o n c o n s t a n t of c a r b o n i c a c i d . S i n c e t h e c o n t r i b u t i o n of most weak a c i d s i s s m a l l , o n l y b o r i c and c a r b o n i c a c i d s need t o be c o n s i d e r e d i n o x y g e n a t e d w a t e r s . A l k a l i n i t y and pH a r e d e f i n e d by : pH = - l o g (aHi) A l k a l i n i t y = [HCO^j + 2[COy] + [B(OH)\u00C2\u00A3] + [OH\"] - [ H + ] where a^= h y d r o g e n i o n a c t i v i t y The pH and a l k a l i n i t y a r e i n t e r r e l a t e d b e c a u s e of t h e i r m u t u a l d e p e n d e n c e on t h e c a r b o n a t e and b o r a t e s y s t e m s , as d e f i n e d by t h e r e a c t i o n s : CO^(g) = C O a ( a q ) C 0 2 ( a q ) + H 20 = H^COj H^CO^ = H + + HCOi HCOj = H + + CO^\" H^O = H + + OH-B(OH) 3 + H.,0 = B(OH),; + H + 34 As a c o n s e q u e n c e of t h e above e q u i l i b r i a , p r o c e s s e s i n f l u e n c i n g t h e c o n c e n t r a t i o n of d i s s o l v e d c a r b o n d i o x i d e p e r t u r b t h e pH of sea w a t e r . Thus, c a r b o n d i o x i d e g e n e r a t i o n v i a r e s p i r a t i o n or t h e o x i d a t i v e d e c a y of o r g a n i c m a t t e r r e s u l t s i n a d e c r e a s e i n pH. A l t e r n a t i v e l y , c a r b o n d i o x i d e l o s s by p h o t o s y n t h e t i c u p t a k e or e v a s i o n t o t h e a t m o s p h e r e c a u s e s t h e pH t o r i s e . A number of s t u d i e s o f t h e a l k a l i n i t y of e s t u a r i n e w a t e r s have been c o n d u c t e d . A l k a l i n i t y was f o u n d t o be c o n s e r v a t i v e i n t h e C o l u m b i a (Park e t a l . , 1972) and S t . Lawrence E s t u a r i e s ( P e l l e t i e r and L e b e l , 1979; L e b e l and P e l l e t i e r , 1 9 8 0 ) . However, Wong (1979) o b s e r v e d a p p a r e n t n o n - c o n s e r v a t i v e b e h a v i o u r i n t h e i n i t i a l m i x i n g zone of t h e James R i v e r i n C h e s a p e a k e Bay. S e v e r a l i n v e s t i g a t i o n s of t h e pH of e s t u a r i n e w a t e r s i n d i c a t e t h a t t h e h y d r o g e n i o n c o n c e n t r a t i o n v a r i e s w i t h s a l i n i t y i n s u c h a way as t o d e v e l o p a pH minimum a t low s a l i n i t y . T h i s o c c u r s when sea w ater mixes wih r i v e r w a ter h a v i n g a lower pH and has been o b s e r v e d i n t h e S c h e l d t , R h i n e and Tamar E s t u a r i e s (Mook and Koene, 1975; W o l l a s t e t a l . , 1979; M o r r i s e t a l . 1978 ) . M o r r i s e t a l . (1978) a t t r i b u t e d t h i s b e h a v i o u r t o b i o l o g i c a l p r o c e s s e s . They f o u n d t h e pH minimum a s s o c i a t e d w i t h a d e c r e a s e i n d i s s o l v e d oxygen c o n t e n t , an i n c r e a s e i n d i s s o l v e d o r g a n i c c a r b o n (DOC) c o n c e n t r a t i o n s and, a peak i n c h l o r o p h y l l l e v e l s . They s u g g e s t e d t h a t h a l o p h o b i c p l a n k t o n e n c o u n t e r i n g a sudden i n c r e a s e i n i o n i c s t r e n g t h d i s i n t e g r a t e d , r e l e a s i n g h i g h c o n c e n t r a t i o n s of DOC t h e r e b y s u p p o r t i n g a l a r g e p o p u l a t i o n of 35 o x y g e n - u t i l i s i n g b a c t e r i a . A l t e r n a t i v e l y , Mook and Koene(1975) p r o p o s e d t h a t t h e pH minimum r e s u l t e d from t h e r a p i d i n c r e a s e w i t h s a l i n i t y of t h e f i r s t and s e c o n d d i s s o c i a t i o n c o n s t a n t s of c a r b o n i c a c i d . They v e r i f i e d t h i s s u p p o s i t i o n w i t h l a b o r a t o r y e x p e r i m e n t s , t i t r a t i n g r i v e r water w i t h sea w a t e r , and d e v e l o p e d a m a t h e m a t i c a l model t h a t a l l o w e d them t o c a l c u l a t e pH as a f u n c t i o n of s a l i n i t y . S i n c e t h e i r model was u s e d t o examine d a t a f o r t h e F r a s e r R i v e r , i t i s w o r t h d i s c u s s i n g i n some d e t a i l . S e v e r a l p a r a m e t e r s a r e r e q u i r e d t o c a l c u l a t e t h e pH of a water s a m p l e . The s a l i n i t y and t e m p e r a t u r e d e t e r m i n e t h e a p p a r e n t d i s s o c i a t i o n c o n s t a n t s of c a r b o n i c a c i d v i a t h e e x p r e s s i o n s o f Edmond and G i e s k e s ( 1 9 7 0 ) : pK; = 3404.71/T + 0.032786T -14.7122 - 0 . 1 9 1 7 8 C 1 1 / 3 pK^ = 2902.39/T + 0.02379T - 6.4710 - 0 . 4 6 9 3 C 1 1 / 3 ' where CI = c h l o r i n i t y of t h e water T = a b s o l u t e t e m p e r a t u r e Mook and Koene (1975) d e f i n e d t h e f o l l o w i n g e x p r e s s i o n s a p p l i c a b l e a t low s a l i n i t i e s : pK'y = 3404.71/T + 0.032786T - 14.8435 -0 . 08921C1 1 / 2 f o r 0 < CI < 9.0 p p t pK^ = 2902.39/T + 0.02379T - 6.4980 - 0 . 7 5 3 1 C 1 1 / 2 f o r 0 < CI < 0.005 p p t U s i n g t h e above r e l a t i o n s t o e v a l u a t e pK) and pK^, t h e c o n c e n t r a t i o n s of c a r b o n d i o x i d e , b i c a r b o n a t e i o n and c a r b o n a t e i o n can be c a l c u l a t e d f r o m t h e c a r b o n a t e a l k a l i n i t y (CA) by means of t h e f o l l o w i n g e x p r e s s i o n s ( S k i r r o w , 1 9 7 5 ) : [CO,] = a 2/D 36 [HCOj] = a^K) D [coy] = K K \ D where D = CA / C a ^ K ^ + 2K K'* ) CA = [HCOj ] + 2 [ C 0 2 / ] The t o t a l i n o r g a n i c c a r b o n c o n t e n t (TC) i s d e f i n e d by: T C = [co 3 ]-+ [ H C O J ] + [coy] I f Q = TC/CA, t h e n : Q = ( a ^ y + a AR; + K' )/(a\u00E2\u0080\u009EK; + 2R', K> ) Hence, t h e pH c a n be c a l c u l a t e d from t h e q u a d r a t i c e x p r e s s i o n : a^,+ a^K], (1 - Q) + K', K'^ (1 - 2Q) = 0 In c a l c u l a t i n g t h e e s t u a r i n e pH d i s t r i b u t i o n , Mook and Koene (1975) assumed t h a t t h e t i t r a t i o n a l k a l i n i t y and t o t a l i n o r g a n i c c a r b o n c o n t e n t were c o n s e r v a t i v e . T i t r a t i o n a l k a l i n i t i e s were t h e n c o r r e c t e d f o r b o r a t e c o n t r i b u t i o n g i v i n g t h e c a r b o n a t e a l k a l i n i t y . U s i n g b t o r e p r e s e n t t h e e x t e n t of b r a c k i s h n e s s , t h e CA and TC a t any c h l o r i n i t y ( s a l i n i t y ) i n t h e e s t u a r y a r e t h u s g i v e n by t h e e x p r e s s i o n s : C l = ( l - b ) C 3 y + b C l * , CA = ( l - b ) C A / + b C A ^ TC = ( l - b ) T C , + bTC,,, where s u b s c r i p t s f and m d e n o t e t h e v a l u e s o f f r e s h and m a r i n e end members r e s p e c t i v e l y . S i n c e TC^.= Q^CA^ and TC\u00C2\u00AB= QmCA^; and d e f i n i n g X = CA^/CA^, t h e y c o u l d d e t e r m i n e Q f o r any p o i n t i n t h e e s t u a r y by: Cj = { ( l - b ) Q , X + b Q M } / { ( l - b ) X + b} To implement the model, Mook and Koene (1975) c o n s i d e r e d t h e m i x i n g two water masses a t c o n s t a n t t e m p e r a t u r e . The 37 p r o p e r t i e s o f t h e end members e x p l i c i t l y d e f i n e d were: s a l i n i t y , a l k a l i n i t y and pH ( w h i c h a l s o e s t a b l i s h e s t h e t o t a l i n o r g a n i c c a r b o n c o n t e n t ) . The t h e o r e t i c a l pH a t any s a l i n i t y c o u l d t h e n be e v a l u a t e d and t h e d e v e l o p m e n t of t h e pH minimum a t i n t e r m e d i a t e s a l i n i t i e s c l e a r l y shown. U n f o r t u n a t e l y , t h e a s s u m p t i o n of c o n s e r v a t i v e b e h a v i o u r of a l k a l i n i t y and t o t a l i n o r g a n i c c a r b o n may not be v a l i d f o r e s t u a r i n e w a t e r s . As p r e v i o u s l y m e n t i o n e d , Wong (1979) p o s t u l a t e d t h a t a l k a l i n i t y b e h a v e d n o n - c o n s e r v a t i v e l y i n t h e James R i v e r E s t u a r y . More i m p o r t a n t , however, may be b i o l o g i c a l i n f l u e n c e s . P r o l i f i c p r o d u c t i v i t y i n e s t u a r i e s i s w e l l documented (Head, 1976) and may c a u s e c a r b o n d i o x i d e d e p l e t i o n i n s u r f a c e w a t e r s . A l t e r n a t i v e l y , o r g a n i c m a t t e r s u p p l i e d t o b o t t o m w a t e r s and s e d i m e n t s may be o x i d i z e d . C a rbon d i o x i d e g e n e r a t i o n by o r g a n i s m s and i t s h y d r a t i o n r e a c t i o n s o c c u r s u f f i c i e n t l y r a p i d l y , compared t o t h e r e s i d e n c e t i m e s of e s t u a r i n e w a t e r , t o be of c o n s i d e r a b l e c o n s e q u e n c e . The model a l s o assumes t h a t t h e two end members have t h e same t e m p e r a t u r e , and hence, m i x i n g t h r o u g h o u t t h e e s t u a r y i s i s o t h e r m a l . However, when t h i s i s not t h e c a s e , t h e a p p a r e n t d i s s o c i a t i o n c o n s t a n t s of c a r b o n i c a c i d may v a r y w i t h b o t h t e m p e r a t u r e and s a l i n i t y i n t h e l o w e r r e a c h e s o f an e s t u a r y . The d i s t r i b u t i o n of a l k a l i n i t y and pH i n t h e F r a s e r E s t u a r y w i l l be d i s c u s s e d i n t h i s c h a p t e r . The model of Mook and Koene (1975) w i l l be u s e d t o examine t h e pH d a t a . D i s s o l v e d oxygen d a t a , t o g e t h e r w i t h a b r i e f d i s c u s s i o n , have been i n c l u d e d due t o t h e i m p o r t a n c e of b i o l o g i c a l p r o c e s s e s i n m o d i f y i n g t h e pH of sea w a t e r . 38 3.2 R e s u l t s 3.2.1 A l k a l i n i t y D a t a The a l k a l i n i t y of t h e e s t u a r i n e w a t e r s was measured on f o u r c r u i s e s . The r e s u l t s , p l o t t e d v e r s u s s a l i n i t y , a r e p r e s e n t e d i n F i g u r e s 6a t h r o u g h 6d f o r C r u i s e s 78-04, 78-11, 78-16, and 79-01, r e s p e c t i v e l y . C u r s o r y i n s p e c t i o n of t h e d a t a r e v e a l s a number of g e n e r a l f e a t u r e s . At any t i m e of t h e y e a r t h e a l k a l i n i t y a p p e a r s t o behave c o n s e r v a t i v e l y o v e r a wide s a l i n i t y r a n g e . T h a t i s t o s a y , t h e a l k a l i n i t y p e r s i s t s i n b e i n g a l i n e a r f u n c t i o n of s a l i n i t y even t h o u g h t h e r e a r e v a r i a t i o n s i n t h e s l o p e w h i c h may r e f l e c t t e m p o r a l i n f l u e n c e s . F u r t h e r m o r e , s a m p l i n g d e p t h a p p e a r s t o have l i t t l e e f f e c t on t h i s f e a t u r e o t h e r t h a n t o i n t r o d u c e some s c a t t e r t o t h e d a t a . T h i s i s most e v i d e n t i n O c t o b e r 1978 ( C r u i s e 78-16, F i g u r e 6 c ) . I t s h o u l d be n o t e d , however, t h a t t h e a l k a l i n i t y i s not l i n e a r l y d e p e n d e n t on t h e s a l i n i t y o v e r t h e c o m p l e t e range of s a l i n i t i e s s a m p l e d . E x t r a p o l a t i o n of a l i n e a r r e l a t i o n s h i p t h a t b e s t f i t s t h e h i g h e r s a l i n i t y d a t a would c o n s i s t e n t l y r e s u l t i n p r e d i c t i n g f r e s h water a l k a l i n i t y v a l u e s below t h o s e a c t u a l l y o b s e r v e d . F u r t h e r m o r e , d e v i a t i o n s f r o m s u c h a r e l a t i o n s h i p a r e e v i d e n t below s a l i n i t i e s i n t h e range 2 t o 8 p p t . W h i l e t h e s a l i n i t y a t w h i c h t h e l i n e a r r e l a t i o n s h i p i s i n i t i a t e d v a r i e s f r o m one c r u i s e t o a n o t h e r , i n most c a s e s t h e p a u c i t y of d a t a r e n d e r s i t i m p o s s i b l e t o e s t a b l i s h a s p e c i f i c v a l u e . V a r i a t i o n s i n t h e r i v e r water a l k a l i n i t y a r e a p p a r e n t from one c r u i s e t o t h e n e x t . The a l k a l i n i t y r a n g e d from a minimum of 39 0 5 10 15 2 0 2 5 3 0 3 5 SRLINITY (PPT) Figure 6a Cruise 78-04 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 6b Cruise 78-11 0 5 10 15 2 0 2 5 3 0 3 5 'SRLINITY (PPT) Figure 6c Cruise 78-16 0 5 10 15 2 0 2 5 3 0 3 5 SRLINITY (PPT) Figure 6d Cruise 79-01 FIGURE 6 A l k a l i n i t y data plotted versus s a l i n i t y for Cruises 78-04, 78-11, 78-16, and 79-01. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths for other stations in the S t r a i t of Georgia; A surface samples in the Fraser Estuary; O bottom samples in the Fraser Estuary. 40 0.81 meq/1 ( C r u i s e 78-04) t o a maximum of 1.31 meq/1 ( C r u i s e 7 8 - 0 7 ) . However, s h o r t t e r m f l u c t u a t i o n s of t h e same m a g n i t u d e were o b s e r v e d d u r i n g C r u i s e 78-16. On t h e f i n a l day of a t h r e e day s a m p l i n g programme i n O c t o b e r t h e a l k a l i n i t y d r o p p e d from v a l u e s a l w a y s g r e a t e r t h a n 1.0 meq/1 (maximum v a l u e 1.17) t o a l k a l i n i t i e s l e s s t h a n 1.0 meq/1 (minimum v a l u e 0.85). T h i s d e c r e a s e i s e v i d e n t i n F i g u r e 6c. Maximum a l k a l i n i t i e s of sea w a t e r i n t h e S t r a i t of G e o r g i a t e n d s t o f a l l i n t o t h e range 2.0 t o 2.2 meq/1, d e p e n d i n g on t h e s a l i n i t y . 3.2.2 D i s s o l v e d Oxygen Dat a . \u00E2\u0080\u009E The d i s s o l v e d oxygen d a t a f r o m t h e F r a s e r E s t u a r y , p l o t t e d v e r s u s s a l i n i t y , a r e shown i n F i g u r e s 7a t h r o u g h 7d f o r C r u i s e s 78-04, 78-16, 79-01, and 79-12, r e s p e c t i v e l y . F i g u r e s 7c and 7d i n c l u d e d a t a from s t a t i o n s t h r o u g h o u t t h e S t r a i t of G e o r g i a . As b e s t i l l u s t r a t e d i n F i g u r e s 7a and 7c, t h e d i s s o l v e d oxygen g e n e r a l l y e x h i b i t e d c o n s e r v a t i v e b e h a v i o u r i n t h e s u r f a c e w a t e r s of t h e F r a s e r E s t u a r y . N o n - c o n s e r v a t i v e b e h a v i o u r was o b s e r v e d i n t h e s u r f a c e w a t e r s o f t h e lo w e r r e a c h e s of t h e e s t u a r y d u r i n g C r u i s e 78-16 ( F i g u r e 7b) and t h r o u g h o u t t h e e s t u a r y d u r i n g C r u i s e 79-12 ( F i g u r e 7 d ) . However, e x t e n s i v e d a t a from s a l t wedge w a t e r s c o l l e c t e d d u r i n g C r u i s e 78-16 ( F i g u r e 7b) i n d i c a t e d t h a t t h e d i s s o l v e d oxygen b e h a v e d c o n s e r v a t i v e l y i n b o t t o m w a t e r s w i t h s a l i n i t i e s l e s s t h a n 27 p p t . Samples from t h e S t r a i t o f G e o r g i a , i n c l u d i n g S t a t i o n 15, e x h i b i t s c a t t e r t h r o u g h o u t t h e y e a r . N o n - c o n s e r v a t i v e b e h a v i o u r 41 0 5 10 15 20 25 30 35 SALINITY (PPT) Figure 7a Cruise 78-04 0 5 10 15 20 25 30 35 SALINITY (PPT) Figure 7c Cruise 79-01 0 5 10 15 20 25 30 35 SALINITY (PPT) Figure 7b Cruise 78-16 0 5 10 15 20 25 30 35 SALINITY (PPT) Figure 7d Cruise 79-12 FIGURE 7 Dissolved oxygen data plotted versus s a l i n i t y for Cruises 78-04, 78-16, 79-01, and 79-12. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t of Georgia; A surface samples in the Fraser Estuary; O bottom samples in the Fraser Estuary. 42 o c c u r s b e c a u s e d i s s o l v e d oxygen c o n c e n t r a t i o n s a r e i n f l u e n c e d by b i o l o g i c a l p r o c e s s e s . 3.2.3 pH D a t a E s t u a r i n e pH measurements from C r u i s e s 78-04, 78-16, 79-01, and 79-12 a r e p l o t t e d v e r s u s s a l i n i t y i n F i g u r e s 8a t h r o u g h 8d. In March 1978 ( C r u i s e 78-04, F i g u r e 8a) the pH v a r i e d l i t t l e , s t a y i n g i n t h e range 7.56 t o 7.77. The pH v a l u e s i n t h e F r a s e r R i v e r were v e r y s i m i l a r t o t h o s e of s u r f a c e w a t e r s i n t h e S t r a i t of G e o r g i a as c h a r a c t e r i z e d by S t a t i o n 15. However, l o w e r pH v a l u e s were o b s e r v e d a t m i d - s a l i n i t i e s i n t h e e s t u a r y . The s c a t t e r e v i d e n t a t h i g h e r s a l i n i t i e s r e f l e c t s t h e w i d e r pH range c h a r a c t e r i s t i c o f t h e d e e p e r water column a t S t a t i o n 15. C o n s i d e r a b l y more pH d a t a were c o l l e c t e d i n O c t o b e r 1978 ( C r u i s e 78-16, F i g u r e 8b) and t h r e e d i s t i n c t f e a t u r e s c a n be d i s t i n g u i s h e d . C o n s i d e r i n g t h e pH of s u r f a c e w a t e r s o n l y , v a l u e s were l o w e r i n t h e F r a s e r R i v e r t h a n ' o b s e r v e d i n t h e S t r a i t of G e o r g i a . The m i x i n g c u r v e f o r t h e s e two end members e x h i b i t s a p r o n o u n c e d pH minimum n e a r a s a l i n i t y of 2 p p t . The pH d e c r e a s e s w i t h d e p t h a t S t a t i o n 15. Bottom samples i n t h e e s t u a r y a p p e a r t o have a u n i f o r m pH n e a r 7.8 a t s a l i n i t i e s l e s s t h a n 23 p p t . At h i g h e r s a l i n i t i e s t h e pH d e c r e a s e s t o v a l u e s s i m i l a r t o t h o s e i n t h e deep w a t e r s o f t h e S t r a i t of G e o r g i a . In J a n u a r y 1979 ( C r u i s e 79-01, F i g u r e 8c) t h e same g e n e r a l t r e n d f o r s u r f a c e w a t e r s can be seen a l t h o u g h i n s u f f i c i e n t d a t a a r e a v a i l a b l e t o s p e c i f y t h e s a l i n i t y of t h e pH minimum. Wat e r s t h r o u g h o u t t h e S t r a i t of G e o r g i a , b o t h a t t h e s u r f a c e and a t d e p t h , e x h i b i t pH v a l u e s l o w e r t h a n t h o s e o b s e r v e d i n t h e 43 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 8a Cruise 78-04 i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 I r 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 8b Cruise 78-16 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 8c Cruise 79-01 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 8d Cruise 79-12 FIGURE 8 pH data plotted versus s a l i n i t y for Cruises 78-04, 78-16, 79-01, and 79-12. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t of Georgia; A surface samples in the Fraser Estuary; O bottom samples in the Fraser Estuary. 44 immediate v i c i n i t y of Sand Heads even t h o u g h s a l i n i t i e s a r e c o m p a r a b l e . U n f o r t u n a t e l y no pH d a t a f o r s a l t wedge w a t e r s a r e a v a i l a b l e f o r t h i s month. The d a t a f o r May 1979 ( C r u i s e 79-12, F i g u r e 8 d ) , when samples were c o l l e c t e d t h r o u g h o u t the S t r a i t of G e o r g i a , a r e c o n s i d e r a b l y more s c a t t e r e d . The pH minimum i s a g a i n a p p a r e n t f o r s u r f a c e e s t u a r i n e w a t e r s a t a s a l i n i t y n e a r 5 p p t . R i v e r water seems t o be homogeneous t o p t o bottom w i t h r e s p e c t t o pH. V e r y few d a t a a r e a v a i l a b l e f o r e s t u a r i n e bottom w a t e r s ; however, t h e pH i s low e r f o r s a l t wedge water t h a n f o r s u r f a c e w a ter of a c o r r e s p o n d i n g s a l i n i t y . As a g e n e r a l o b s e r v a t i o n , pH v a l u e s were h i g h e r , b o t h i n t h e F r a s e r R i v e r and S t r a i t of G e o r g i a , t h a n a t any o t h e r t i m e of t h e y e a r . Measurement t h r o u g h t h e water column i n d i c a t e d a d e c r e a s e of pH w i t h d e p t h . 3.3 D i s c u s s i o n 3.3.1 D i s t r i b u t i o n o f A l k a l i n i t y W h i l e c o n s e r v a t i v e b e h a v i o u r of a l k a l i n i t y has been o b s e r v e d i n t h e C o l u m b i a ( P a r k e t a l . , 1972) and S t . Lawrence E s t u a r i e s ( P e l l e t i e r and L e b e l , 1979; L e b e l and P e l l e t i e r , 1 9 8 0 ) , Wong (1979) f o u n d a more complex r e l a t i o n s h i p between a l k a l i n i t y and s a l i n i t y i n t h e James R i v e r . H e re, t h e a l k a l i n i t y was n e a r l y c o n s t a n t below a s a l i n i t y of 5 ppt but t h e n i n c r e a s e d l i n e a r l y w i t h s a l i n i t y . The a l k a l i n i t y / s a l i n i t y r e l a t i o n s h i p i n the F r a s e r R i v e r i s s i m i l a r l y c o m p l i c a t e d . Wong (1979) a t t r i b u t e d t h e a p p a r e n t n o n - c o n s e r v a t i v e b e h a v i o u r o b s e r v e d a t low s a l i n i t i e s t o e i t h e r r e m o v a l of 45 a l k a l i n i t y or t h e m i x i n g of f r e s h w ater from v a r i o u s s o u r c e s . In e x a m i n i n g t h e F r a s e r E s t u a r y , a number of p o s s i b i l i t i e s e x i s t t o e x p l a i n t h e anomalous b e h a v i o u r of a l k a l i n i t y . P o i n t s t o c o n s i d e r i n c l u d e : (1) e r r o r of t h e method a t - l o w s a l i n i t i e s (2) r e m o v a l of a l k a l i n i t y a t low s a l i n i t i e s (3) m i x i n g of water from v a r i o u s s o u r c e s E r r o r s i n a l k a l i n i t y d e t e r m i n a t i o n s a t low s a l i n i t i e s must be c o n s i d e r e d s i n c e t h e s e measurements were made o u t s i d e t h e r a n g e f o r w h i c h t h e t e c h n i q u e of A n d e r s o n and R o b i n s o n (1946) has been s t a n d a r d i s e d . The c o m p u t a t i o n of a l k a l i n i t y r e q u i r e s knowledge of t h e h y d r o g e n i o n a c t i v i t y c o e f f i c i e n t , fH*, w h i c h v a r i e s w i t h s a l i n i t y . V a l u e s f o r f^+ were t a k e n from A n d e r s o n and R o b i n s o n ( 1 9 4 6 ) ; however, a t v e r y low s a l i n i t i e s f^-h was assumed t o a p p r o a c h 1.0 as t h e s a l i n i t y a p p r o a c h e d 0.0 ppt and f H t m a y be o v e r e s t i m a t e d i n t h i s manner. C o n s i d e r i n g C r u i s e s 78-04 and 78-16, f\u00E2\u0080\u009E* would have t o be 0.913 and 0.885, r e s p e c t i v e l y , i n o r d e r t o a l t e r f r e s h w ater a l k a l i n i t i e s s u c h t h a t r e c a l c u l a t e d v a l u e s c o r r e s p o n d e d t o t h e 0.0 p p t i n t e r c e p t of t h e a l k a l i n i t y / s a l i n i t y r e l a t i o n s h i p . F o r c o m p a r a t i v e p u r p o s e s , t h e a l k a l i n i t y of a F r a s e r R i v e r water sample was d e t e r m i n e d by t h e method of A n d e r s o n and R o b i n s o n (1946) and u s i n g a Gran t i t r a t i o n p r o c e d u r e ( G i e s k e s and R o g e r s , 1 9 7 3 ) . Mean v a l u e s f o r d u p l i c a t e a n a l y s e s by e a c h method were 0.88 and 0.78 meq/1 r e s p e c t i v e l y s u g g e s t i n g t h a t t h e f o r m e r p r o c e d u r e may o v e r e s t i m a t e t h e a l k a l i n i t y by a p p r o x i m a t e l y 0.1 meq/1. However, measured a l k a l i n i t i e s may be more t h a n 0.1 meq/1 g r e a t e r t h a n t h e 0.0 p p t i n t e r c e p t ( F i g u r e s 46 6b and 6 d ) . A l s o , t h e v a l u e f o r iH-r r e q u i r e d t o g i v e agreement between t h e two t e c h n i q u e s i s 0.946. N e v e r t h e l e s s , t h i s e x c e e d s t h e c a l c u l a t e d f ^ * v a l u e s r e q u i r e d f o r a l k a l i n i t i e s a t low s a l i n i t i e s t o c o n f o r m t o a l i n e a r r e l a t i o n s h i p . The a p p a r e n t n o n - c o n s e r v a t i v e b e h a v i o u r o f a l k a l i n i t y a t low s a l i n i t y i s i n t e r p r e t e d t o be r e a l r a t h e r t h a n an a r t i f a c t of t h e m e t h o d o l o g y . However, b e a r i n g i n mind t h e l i m i t a t i o n s o f t h e d a t a , a l k a l i n i t y l o s s e s i n t h e F r a s e r E s t u a r y ( F i g u r e 6) may be e x a g g e r a t e d s i n c e f r e s h water a l k a l i n i t i e s may be o v e r e s t i m a t e d . Wong (1979) c o n s i d e r e d r e m o v a l of c a r b o n a t e a l k a l i n i t y a t low s a l i n i t i e s by c a l c i t e p r e c i p i t a t i o n as an e x p l a n a t i o n f o r n o n - c o n s e r v a t i v e b e h a v i o u r . C a l c u l a t i o n s by Mook and Koene (1975) and L e b e l and P e l l e t i e r (1980) i n d i c a t e t h a t s u p e r s a t u r a t i o n of e s t u a r i n e w a t e r s w i t h r e s p e c t t o c a l c i t e s h o u l d n o t o c c u r u n t i l r e l a t i v e l y h i g h s a l i n i t i e s a r e a t t a i n e d . M o r e o v e r , G a r r i s o n e t a l . (1969) e s t i m a t e d t h a t t h e F r a s e r R i v e r was u n d e r s a t u r a t e d w i t h r e s p e c t t o c a l c i t e by a t l e a s t an o r d e r of m a g n i t u d e . T a k i n g t h e s e o b s e r v a t i o n s i n t o a c c o u n t , c a r b o n a t e p r e c i p i t a t i o n seems an u n l i k e l y e x p l a n a t i o n f o r anomalous a l k a l i n i t i e s i n t h e i n i t i a l m i x i n g z o n e . T h e r e a r e s e v e r a l n o n - c a r b o n a t e components of t h e t i t r a t i o n a l k a l i n i t y , some of w h i c h may be removed r a p i d l y as t h e i o n i c s t r e n g t h s t a r t s t o i n c r e a s e . Hoos and Packman (1974) l i s t s e v e r a l p o l l u t a n t s w h i c h a r e i n t r o d u c e d i n t o t h e F r a s e r R i v e r and E s t u a r y and w h i c h may be r e s p o n s i b l e . f o r t h e n o n - c o n s e r v a t i v e b e h a v i o u r of t h e a l k a l i n i t y . L a u n d r y e s t a b l i s h m e n t s d i s c h a r g e b o r o n w a s t e s w h i l e o r g a n i c compounds 47 w i t h t i t r a t a b l e f u n c t i o n a l g r o u p s may be f o u n d i n t h e e f f l u e n t s from s e v e r a l i n d u s t r i e s , e s p e c i a l l y t h e wood p r o d u c t s i n d u s t r y . W h i l e b o r o n has been shown t o behave n o n - c o n s e r v a t i v e l y i n e s t u a r i e s ( L i s s and P o i n t o n , 1 9 7 2 ) , t h e f a t e of t h e o r g a n i c m a t e r i a l d u r i n g e s t u a r i n e m i x i n g i s l e s s c e r t a i n . In a l l c a s e s , however, t h e c o n c e n t r a t i o n s of t h e s e m a t e r i a l s n e c e s s a r y t o a f f e c t t h e a l k a l i n i t y would have t o be e x c e s s i v e l y g r e a t . S u s p e n d e d s e d i m e n t s may be c o n s i d e r e d s i n c e a l k a l i n i t y measurements were p e r f o r m e d on u n f i l t e r e d w a t e r s . A l k a l i n i t y a t t r i b u t a b l e t o t h e s u s p e n d e d s e d i m e n t l o a d would e x h i b i t n o n - c o n s e r v a t i v e b e h a v i o u r b e c a u s e t h e t o t a l s u s p e n d e d p a r t i c u l a t e c o n c e n t r a t i o n d e c r e a s e s r a p i d l y w i t h i n c r e a s i n g s a l i n i t y . Two p o s s i b l e s e d i m e n t a r y c o n t r i b u t i o n s must be exam i n e d . F i r s t l y , c l a y m i n e r a l s have i o n - e x c h a n g e s i t e s ( G a r r e l s , 1965; S i e v e r , 1968) w h i c h may a c t as p r o t o n a c c e p t o r s when water samples a r e a c i d i f i e d t o d e t e r m i n e a l k a l i n i t y . T h i s w ould c a u s e an o v e r e s t i m a t i o n of a l k a l i n i t y . W h i l e c a t i o n exchange c a p a c i t i e s f o r F r a s e r R i v e r s e d i m e n t s were not measured i n t h i s s t u d y , Pharo (1972) r e p o r t e d v a l u e s r a n g i n g from 6.73 t o 8.29 meq/lOOg. .Also, Kennedy ( 1 9 6 5 ) , c i t e d by S a y l e s and M a n g e l s d o r f ( 1 9 7 7 ) , r e p o r t e d t o t a l exchange c a p a c i t i e s f o r A m e r i c a n r i v e r s r a n g i n g from 5.6 t o 47.4 meq/lOOg. C o n s i d e r i n g a s u s p e n d e d s e d i m e n t l o a d of 20 mg/1, t h e maximum f r e s h w ater c o n c e n t r a t i o n measured i n O c t o b e r 1978, and a s s u m i n g a maximum c a t i o n e xchange c a p a c i t y of 50 meq/lOOg; t h i s g i v e s a c a t i o n e x change c a p a c i t y of o n l y 1 x 1 0 \" 2 meq/1 f o r t h e F r a s e r R i v e r , i n s u f f i c i e n t t o a c c o u n t f o r t h e a l k a l i n i t y a nomaly. S e c o n d l y , any c a r b o n a t e p r e s e n t i n t h e s u s p e n d e d l o a d may c o n t r i b u t e t o 48 the t i t r a t i o n a l k a l i n i t y . However, t h e c o n c e n t r a t i o n of c a r b o n a t e m a t e r i a l i n t h e p a r t i c u l a t e m a t e r i a l i s unknown. M i x i n g of water from v a r i o u s s o u r c e s c o u l d g e n e r a t e t h e o b s e r v e d a l k a l i n i t y / s a l i n i t y r e l a t i o n s h i p and s e v e r a l models c o u l d be h y p o t h e s i z e d . F i r s t l y , t h e major f r e s h water i n p u t i s t h e F r a s e r R i v e r i t s e l f but a number of sewage o u t l e t s and s t o r m d r a i n s d i s c h a r g e i n t o t h e e s t u a r y . However, t h e n o n - c o n s e r v a t i v e b e h a v i o u r of a l k a l i n i t y a p p e a r s t o be r e l a t e d t o s a l i n i t y o n l y , w i t h no d i s c e r n a b l e g e o g r a p h i c i n f l u e n c e s . S e c o n d l y , as e v i d e n t i n O c t o b e r 1978, t h e r i v e r w a ter a l k a l i n i t y i s s u b j e c t t o s h o r t t e r m f l u c t u a t i o n s . I f t h e r e s i d e n c e t i m e of water i n t h e upper r e a c h e s of t h e e s t u a r y i s s u f f i c i e n t l y l o n g , t h e b e h a v i o u r of a l k a l i n i t y may be a m a n i f e s t a t i o n of complex m i x i n g of r i v e r w a t e r s w i t h v a r y i n g a l k a l i n i t y . T h i s would seem u n l i k e l y s i n c e measured f r e s h w a t e r a l k a l i n i t i e s were a l w a y s h i g h e r t h a n p r e d i c t e d by e x t r a p o l a t i o n of c o n s e r v a t i v e b e h a v i o u r t o t h e r i v e r w a ter end member. T h i r d l y , d a t a f o r O c t o b e r 1978 ( F i g u r e 6c) can be i n t e r p r e t e d as two i n t e r s e c t i n g l i n e a r r e l a t i o n s h i p s . V a r i a t i o n s i n f r e s h w a t e r i n p u t would a l t e r t h e s l o p e of t h e i n i t i a l m i x i n g c u r v e as w e l l as t h e p o i n t of i n t e r s e c t i o n of t h e two l i n e a r r e l a t i o n s h i p s . F o r example, i n t e r s e c t i o n p o i n t s near s a l i n i t i e s o f 7 and 14 ppt a r e o b s e r v e d f o r d i l u t i o n c u r v e s w i t h end members h a v i n g f r e s h w ater a l k a l i n i t i e s l e s s t h a n 1 meq/1 and g r e a t e r t h a n 1 meq/1 r e s p e c t i v e l y . However, t h e a l k a l i n i t y d a t a do not i n d i c a t e what p r o c e s s e s may e s t a b l i s h d i f f e r e n t c o n s e r v a t i v e m i x i n g c u r v e s f o r t h e low and h i g h s a l i n i t y r a n g e s . 49 3.3.2 D i s t r i b u t i o n of D i s s o l v e d Oxygen D a t a from t h e S t r a i t of G e o r g i a i l l u s t r a t e t h e i n f l u e n c e of b i o l o g i c a l p r o c e s s e s on t h e c o n c e n t r a t i o n of d i s s o l v e d oxygen i n n a t u r a l w a t e r s . C o n c e n t r a t i o n s t e n d t o d e c r e a s e below the s u r f a c e due t o . t h e o x i d a t i o n of o r g a n i c m a t t e r . The p e r c e n t a g e oxygen s a t u r a t i o n d u r i n g C r u i s e 78-16 was c a l c u l a t e d u s i n g e x p r e s s i o n s from W e i s s ( 1 9 7 0 ) . W h i l e f r e s h water samples from a l l d e p t h s were 100% s a t u r a t e d w i t h oxygen, l e v e l s f e l l t o 55% s a t u r a t i o n i n bottom w a t e r s of S t a t i o n 15. \u00E2\u0080\u00A2Samples from 1 and 5m d e p t h s a t S t a t i o n 15 were s u p e r s a t u r a t e d w i t h r e s p e c t t o oxygen, t h e r e b y i n d i c a t i n g p h o t o s y n t h e t i c a c t i v i t y . T h i s a c c o u n t e d f o r t h e s l i g h t d e p a r t u r e from c o n s e r v a t i v e b e h a v i o u r f o r s u r f a c e w a t e r s i n t h e l o w e r r e a c h e s of t h e e s t u a r y ( F i g u r e 7 b ) . S i m i l a r l y , t h e s c a t t e r e x h i b i t e d by d a t a d u r i n g t h e f r e s h e t ( F i g u r e 7d) r e s u l t e d f r o m i n t e n s e p r i m a r y p r o d u c t i o n . E x c e p t d u r i n g t h e f r e s h e t , t h e d i s s o l v e d oxygen behaves c o n s e r v a t i v e l y i n t h e s u r f a c e w a t e r s of t h e F r a s e r E s t u a r y ( F i g u r e 7 ) . V a r i a t i o n s i n t h e oxygen c o n t e n t of r i v e r water r e s u l t from t h e t e m p e r a t u r e d ependence of t h e s o l u b i l i t y . A l t h o u g h t h e b o t t o m w a t e r s i n t h e e s t u a r y may be u n d e r s a t u r a t e d w i t h r e s p e c t t o oxygen, d a t a f r o m C r u i s e 78-16 ( F i g u r e 7b) i n d i c a t e t h a t d i s s o l v e d oxygen a l s o b ehaves c o n s e r v a t i v e l y i n t h e s a l t wedge a t s a l i n i t i e s l e s s t h a n 27 p p t . Thus, p r i m a r y p r o d u c t i o n i n t h e F r a s e r E s t u a r y i s m i n i m a l , e x c e p t d u r i n g t h e summer, and t h e r e i s no e v i d e n c e o f b i o l o g i c a l u t i l i z a t i o n o f oxygen i n t h e s a l t wedge. 50 3.3.3 D i s t r i b u t i o n of pH The d i s t r i b u t i o n of pH i n t h e F r a s e r e s t u a r y and S t r a i t of G e o r g i a e x h i b i t s a number of g e n e r a l f e a t u r e s r e g a r d l e s s of t h e s a m p l i n g t i m e . F o u r d i s t i n c t t r e n d s w h i c h w i l l be d i s c u s s e d s e p a r a t e l y a r e : (1) d e p t h - r e l a t e d pH v a r i a t i o n s (2) pH d i s t r i b u t i o n i n t h e s u r f a c e w a t e r s of t h e S t r a i t of G e o r g i a (3) pH d i s t r i b u t i o n i n t h e s u r f a c e w a t e r s of t h e F r a s e r e s t u a r y (4) pH i n t h e s a l t wedge The pH p r o f i l e a t S t a t i o n 15 i n O c t o b e r 1978 ( F i g u r e 9) i l l u s t r a t e s t h e o b s e r v a t i o n s m e n t i o n e d i n S e c t i o n 3.2.3 t h a t t h e r e a r e low pH v a l u e s below t h e s u r f a c e . The d e c r e a s e of pH w i t h d e p t h was c o n s i s t e n t i n t h e S t r a i t of G e o r g i a a t a l l s t a t i o n s t h r o u g h o u t t h e y e a r and r e f l e c t s b i o l o g i c a l i n f l u e n c e s , t h a t i s , t h e i n s i t u g e n e r a t i o n of c a r b o n d i o x i d e w h i c h d e p r e s s e s t h e pH of t h e w a t e r . The pH of s u r f a c e w a t e r s i n t h e S t r a i t of G e o r g i a shows s e a s o n a l v a r i a t i o n s r e l a t e d b o t h t o p r i m a r y p r o d u c t i v i t y and m i x i n g p r o c e s s e s . The u n i f o r m l y low pH v a l u e s o b s e r v e d i n J a n u a r y 1979 ( F i g u r e 8c) o c c u r b e c a u s e w i n t e r m i x i n g b r i n g s h i g h s a l i n i t y , low pH water t o t h e s u r f a c e . In May 1979 ( F i g u r e 8d) the pH v a l u e s a r e h i g h e r t h a n m easured a t any o t h e r t i m e of y e a r and a g r e e w i t h t h o s e of T u l l y and Dodimead ( 1 9 5 7 ) . T h e i r o b s e r v e d maxima, pH 8.8, o c c u r r e d i n a r e a s a s s o c i a t e d w i t h h i g h oxygen and p h y t o p l a n k t o n c o n c e n t r a t i o n s . H i g h p r i m a r y p r o d u c t i v i t y a t t h i s t i m e d e p r e s s e s t h e c a r b o n d i o x i d e 51 8.2 FIGURE 9 The pH p r o f i l e at' Station 15, Cruise 78-16 concentration but elevates the pH. Patchy b i o l o g i c a l a c t i v i t y coupled with complex mixing patterns in the S t r a i t of Georgia leads to an incoherent d i s t r i b u t i o n of surface pH; hence the apparent scatter in the dissolved oxygen and pH data with resect to s a l i n i t y . A d i s t i n c t pH minimum in the surface waters of the Fraser Estuary was observed during a l l four estuarine cruises. Because there are more data a v a i l a b l e from Cruise 78-16, data from October 1978 w i l l be examined in d e t a i l in order to elucidate features common at a l l times. As i l l u s t r a t e d in Figure 8b, the mixing of surface waters from the Fraser River (with a mean pH of 7.85) and the S t r a i t of Georgia (with a pH of 8.06) resulted in a pH minimum of 7.72 at a s a l i n i t y of 1.5 ppt. Such a sit u a t i o n has been observed in the Tamar, Scheldt and Rhine estuaries (Mook and Koene, 1975; 52 M o r r i s e t a l . , 1978; W o l l a s t e t a l . , 1979) and a t t r i b u t e d e i t h e r t o v a r i a t i o n s i n t h e c a r b o n i c a c i d d i s s o c i a t i o n c o n s t a n t or \u00E2\u0080\u00A2 t o b i o l o g i c a l p r o c e s s e s . In o r d e r t o i n v e s t i g a t e t h e o r i g i n of t h e pH minimum, t h e model of Mook and Koene (1975) was u s e d t o e s t a b l i s h t h e o r e t i c a l d i l u t i o n c u r v e s f o r pH w h i c h were t h e n compared w i t h f i e l d d a t a f r o m t h e F r a s e r R i v e r . As d i s c u s s e d i n S e c t i o n 3.1, t h e model computes t h e pH a t any s a l i n i t y from c a r b o n a t e e q u i l i b r i a . A l k a l i n i t y and t o t a l i n o r g a n i c c a r b o n a r e t r e a t e d as c o n s e r v a t i v e p r o p e r t i e s . The s a l i n i t y , a l k a l i n i t y and pH of two end members a r e r e q u i r e d and t h e s y s t e m i s c o n s i d e r e d t o be i s o t h e r m a l . A l t h o u g h t h e d i s c u s s i o n of a l k a l i n i t y i n S e c t i o n 3.3.1 i n d i c a t e s t h a t t h e s e c o n d i t i o n s may not be met i n t h e F r a s e r E s t u a r y , t h e model of Mook and Koene (1975) d o e s p r o v i d e a s t a r t i n g p o i n t f o r t h e a n a l y s i s of t h e pH d a t a . C o n s i d e r i n g f i r s t of a l l t h e s u r f a c e w a t e r s , two end members f o r r i v e r water and one f o r sea water were u s e d t o g e n e r a t e t h e d i l u t i o n c u r v e s i n F i g u r e 10. These a r e meant t o r e p r e s e n t i d e a l m i x i n g p r o c e s s e s f o r s u r f a c e w a t e r s . Samples w i t h a s a l i n i t y l e s s t h an 1.0 p p t were d i v i d e d i n t o two s u b s e t s c h a r a c t e r i z e d by a l k a l i n i t y , e i t h e r l e s s t h a n or g r e a t e r t h a n 1.0 meq/1. The p r o p e r t i e s of t h e f r e s h water end members were t h e n d e f i n e d by t a k i n g t h e mean a l k a l i n i t y and pH of a l l samples i n e a c h d a t a s u b s e t . Sea water p r o p e r t i e s were d e f i n e d by samples c o l l e c t e d n e a r Sand Heads. C o m p a r i s o n w i t h f i e l d d a t a i n d i c a t e d t h a t t h e t r e n d f o r c a l c u l a t e d pH i n t h e s u r f a c e w a t e r s m i m i c s measured v a l u e s e x c e p t t h a t t h e minimum o c c u r s a t a h i g h e r pH and lower 53 0 5 1 0 1 5 2 0 2 5 3 0 3 5 S R L J N J T Y ( P P T ) FIGURE 10 The t h e o r e t i c a l d i l u t i o n curve for pH in surface waters of the Fraser Estuary generated by considering a single step mixing of one sea water and two rive r water end members. Data for the water properties of the end members are taken from Cruise 78-16. Fresh water end members: s a l 0 ppt, alk 0.87 meq/1, pH 7.82; sal 0 ppt, alk 1.07 meq/1, pH 7.84. Sea water end member: sal 24.787 ppt, alk 1.85 meq/1, pH 8.04. Temp=12.5cC. V e r t i c a l l i n e s represent measured pH values +0.03 pH units. s a l i n i t y than a c t u a l l y observed. Adjustments of the model were made in attempts to improve the approximation with measured pH values. Some success was achieved by considering the estuarine mixing as a two step process. An intermediate water mass was defined with a s a l i n i t y of 7 ppt, a l k a l i n i t y of 1.09 meq/1, and pH of 7.83. The d i l u t i o n curve in Figure 11 represents mixing of this intermediate end member with both r i v e r and sea water. Theoretical pH cal c u l a t i o n s generated in t h i s manner more cl o s e l y agree with measured values than did those res u l t i n g from 54 a s i n g l e s t a g e d i l u t i o n . However, the minimum i s s t i l l n ot d e v e l o p e d as e x t e n s i v e l y as o b s e r v e d i n t h e e s t u a r y . F u r t h e r a m p l i f i c a t i o n of t h e pH minimum due t o t h e t y p e s of b i o l o g i c a l p r o c e s s e s p r o p o s e d by M o r r i s e t a l . (1978) seems u n l i k e l y . The d i s s o l v e d oxygen d a t a p r e s e n t e d i n F i g u r e 7b i n d i c a t e d no sudden c o n c e n t r a t i o n d e c r e a s e i n t h e s u r f a c e w a t e r s a t low s a l i n i t y . On t h e c o n t r a r y , c o n s e r v a t i v e b e h a v i o u r was o b s e r v e d and t h e s u r f a c e w a t e r s t h r o u g h o u t t h e e s t u a r y e x h i b i t e d oxygen s a t u r a t i o n l e v e l s near 100%. M i n i m a l p r i m a r y p r o d u c t i v i t y , as a n t i c i p a t e d i n O c t o b e r , would be n e c e s s a r y f o r t o t a l i n o r g a n i c c a r b o n t o be c o n s e r v a t i v e , and hence t h e s u c c e s s f u l a p p l i c a t i o n of t h e model. T h i s may a c c o u n t f o r t h e r e a s o n a b l e agreement between t h e t h e o r e t i c a l and o b s e r v e d pH v a l u e s . The model was a l s o u s e d t o examine pH i n e s t u a r i n e s u r f a c e w a t e r s i n J a n u a r y 1979. The d i l u t i o n c u r v e s ( F i g u r e 12) g e n e r a t e d by m i x i n g F r a s e r R i v e r water w i t h t h r e e d i f f e r e n t m a r i n e end members d e v e l o p e d pH minima but c o u l d not r e p l i c a t e m easured v a l u e s . S i n c e b i o l o g i c a l a c t i v i t y a t t h i s t i m e would have been m i n i m a l , t h e l a c k of a c c o r d a g a i n s u g g e s t s a m i x i n g p a t t e r n more complex t h a n a s i n g l e s t e p d i l u t i o n o f s e a w a t e r . The b o t t o m w a t e r s i n t h e F r a s e r E s t u a r y e x h i b i t two f e a t u r e s w h i c h d i s t i n g u i s h them from s u r f a c e w a t e r s ( F i g u r e 8 ) . F i r s t l y , t h e pH i s l o w e r t h a n o b s e r v e d i n s u r f a c e w a t e r s o f a c o m p a r a b l e s a l i n i t y . S i n c e t h e b o t t o m w a t e r s a r e u n d e r s a t u r a t e d w i t h r e s p e c t t o oxygen by 10 t o 20%, t h i s i n d i c a t e s t h a t b i o l o g i c a l l y p r o d u c e d c a r b o n d i o x i d e must d e c r e a s e t h e pH. However, t h e oxygen d e f i c i t c o u l d have been g e n e r a t e d o u t s i d e 55 0 5 10 15 20 25 30 35 S A L I N I T Y (PPT.) FIGURE 11 The the o r e t i c a l d i l u t i o n curve for pH in surface waters of the Fraser Estuary generated by considering the mixing as a two step process. Data for the water properties of the end members and intermediate water mass are taken from Cruise 78-16. Fresh water end member: sal 0 ppt, alk 1.07 meq/1, pH 7.84; Intermediate water body: s a l 7.000 ppt, alk 1.09 meq/1, pH 7.83; Sea water end member: s a l 24.787 ppt,alk 1.85 meq/1, pH 8.04. Temp=12.5\u00C2\u00B0C. V e r t i c a l l i n e s represent measured pH values +0.03 pH units. the estuary. Secondly, the pH remains r e l a t i v e l y uniform regardless of the s a l i n i t y . This i s evident p a r t i c u l a r l y in October 1978 and to some extent in May 1979. Because these measurements are associated with the resuspension of large quantities of bottom sediments, the pH may be influenced by a l o c a l i z e d geochemical buffering system due to ion-exchange reactions with clay minerals. The model of Mook and Koene (1975) was used to determine the extent to which mixing processes alone could a f f e c t the pH. There are d i f f i c u l t i e s in defining an appropriate sea water end member and in comparing the calculated pH results with f i e l d 56 i\u00E2\u0080\u0094i\u00E2\u0080\u0094i\u00E2\u0080\u0094i r 0 5 1 0 1 5 2 0 2 5 3 0 3 5 SRLINITY (PPT) . FIGURE 12 The t h e o r e t i c a l d i l u t i o n curve for pH in surface waters of the Fraser Estuary generated by considering a single step mixing of fresh water with three sea water end members. Data for the water properties of the end members are taken from Cruise 79-01. Fresh water end member: sal 0 ppt, alk 1.15 meq/1, pH 7.84; sea water end members: sal 30.315 ppt, alk 2.11 meq/1, pH 8.15; sal 28.386 ppt, alk 2.04 meq/1, pH 8.00; sal 29.407 ppt, alk 2.07 meq/1, pH 7.94. Temp=6.0\u00C2\u00B0C. V e r t i c a l l i n e s represent measured pH values +0.03 pH units. data. The pH data were c o l l e c t e d on di f f e r e n t days at various s i t e s in the Fraser Estuary and hence may not represent a disc r e t e d i l u t i o n curve. The the o r e t i c a l pH values shown in Figure 13 represent possible ideal mixing curves in the estuarine bottom waters. Samples from Cruise 78-16 were used to define water properties of a single r i v e r end member together with four saline end members. Theoretical results generated by mixing r i v e r water with the highest s a l i n i t y end member bear no resemblance to the observed pH values. However, t h i s i s to be anticipated since the saline water properties were defined by bottom water (196m) 57 i \u00E2\u0080\u0094 r 0 5 1 0 1 5 2 0 2 5 3 0 3 5 S A L I N I T Y ( P P T ) FIGURE 13 The t h e o r e t i c a l d i l u t i o n curve for pH in the s a l t wedge of the Fraser Estuary generated by considering a single step mixing of one fresh water and four sea water end members. Data for the water properties of the end members are taken from Cruise 78-16. Fresh water end member: sal 0 ppt, alk 1.09 meq/1, pH 7.84. Sea water end members: sal 12.114 ppt, alk 1.32 meq/1, pH 7.80; sal 22.901 ppt, alk 1.72 meq/1, pH 7.79; sal 26.740 ppt, alk 1.93, pH 7.75; sal 30.968, alk 2.16, pH 7.56. Temp=12.5\u00C2\u00B0C. V e r t i c a l l i n e s represent measured pH values +0.03 pH units. from Station 15. The remaining curves better approximate the f i e l d data. In these cases, the saline end members were defined by s a l t wedge samples with varying s a l i n i t i e s representing possible stages in the d i l u t i o n curve for bottom waters. The most important feature i s the uniformity of the calculated pH over most of the s a l i n i t y range. For cases in Figure 13, b i o l o g i c a l processes in the S t r a i t of Georgia cause the low pH of the saline end member. Since the dissolved oxygen apparently behaves conservatively in. the s a l t wedge (Figure 7b), the oxygen undersaturation calculated for 58 CO LU _ 5 -r H 1 1 1 1 1 1 1 0 5 10 15 20 25 30 35 SALINITY (PPT) FIGURE 14 Theoretical pH values calculated from the a l k a l i n i t y and assuming that the carbon dioxide was 100% saturated. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; A surface samples in the Fraser Estuary; ^bottom samples in the Fraser Estuary. these waters must result from the advection of oxygen-depleted water from outside the estuary. In s i t u production of carbon dioxide i s i n s i g n i f i c a n t and the t o t a l inorganic carbon content behaves conservatively. Thus, the pH of the s a l t wedge water may be explained by conservative mixing without invoking geochemical buffering e f f e c t s . A second method of c a l c u l a t i n g the pH of the estuarine waters was examined. The t h e o r e t i c a l pH can be determined from the a l k a l i n i t y assuming that carbon dioxide i s 100% saturated at each point in the estuary. This establishes the t o t a l inorganic carbon content at each point removing the prerequisite of conservative behaviour. Carbon dioxide saturation was calculated using the expressions of Skirrow (1975) and the 59 r e s u l t i n g pH c a l c u l a t i o n s f o r C r u i s e 78-16 a r e shown i n F i g u r e 14. In a l l c a s e s , t h e o r e t i c a l pH v a l u e s were h i g h e r t h a n o b s e r v e d v a l u e s i n d i c a t i n g t h a t t h i s p r o c e d u r e u n d e r e s t i m a t e s t h e c a r b o n d i o x i d e c o n c e n t r a t i o n s . C a r b o n d i o x i d e l e v e l s c a l c u l a t e d from t h e a l k a l i n i t y and pH were s u p e r s a t u r a t e d by a f a c t o r of 1.3 t o 4.1. T h i s i n d i c a t e s t h a t c a r b o n d i o x i d e e i t h e r p r o d u c e d i n s i t u o r a d v e c t e d f r o m o u t s i d e t h e e s t u a r y does n o t evade t o t h e a t m o s p h e r e from t h e e s t u a r i n e w a t e r s a t a r a t e f a s t enough f o r t h e s e w a t e r s t o a t t a i n e q u i l i b r a t i o n w i t h t h e a t m o s p h e r i c c a r b o n d i o x i d e c o n c e n t r a t i o n . 3.4 Summary T h r o u g h o u t t h e y e a r , t h e a l k a l i n i t y e x h i b i t s c o n s e r v a t i v e b e h a v i o u r t h r o u g h most of t h e s a l i n i t y r a n g e . D e v i a t i o n s from t h i s l i n e a r r e l a t i o n s h i p a r e e v i d e n t a t low s a l i n i t i e s . To a c e r t a i n e x t e n t t h e s e a l k a l i n i t y a n o m a l i e s may be a t t r i b u t e d t o an o v e r e s t i m a t i o n of t h e a l k a l i n i t y of low s a l i n i t y s a m p l e s ; however, t h e p o s s i b i l i t y of a l k a l i n i t y r e m o v a l c a n n o t be i g n o r e d . A l t e r n a t i v e l y , d a t a f r o m C r u i s e 78-16 ( F i g u r e 6c) c a n be i n t e r p r e t e d as two i n t e r s e c t i n g l i n e a r r e l a t i o n s h i p s . E x c e p t d u r i n g t h e f r e s h e t , t h e d i s s o l v e d oxygen a l s o b e h a v e s c o n s e r v a t i v e l y i n t h e F r a s e r E s t u a r y . The oxygen u n d e r s a t u r a t i o n c a l c u l a t e d f o r s a l t wedge w a t e r s r e s u l t s f r o m t h e h o r i z o n t a l a d v e c t i o n of oxygen d e p l e t e d w a t e r from o u t s i d e t h e e s t u a r y . O n l y d u r i n g t h e summer months i s t h e c o n c e n t r a t i o n o f d i s s o l v e d oxygen i n e s t u a r i n e w a t e r s m o d i f i e d by b i o l o g i c a l p r o c e s s e s . T h r o u g h o u t t h e y e a r s u r f a c e w a t e r s of t h e F r a s e r E s t u a r y 6 0 e x h i b i t e d a p r o n o u n c e d pH minimum a t low s a l i n i t y . T h i s c a n n o t be r e p l i c a t e d t h e o r e t i c a l l y by c o n s i d e r i n g a s i m p l e s i n g l e s t a g e d i l u t i o n ; h o w e v e r , a two s t e p d i l u t i o n i n v o l v i n g an i n t e r m e d i a t e w a t e r mass g i v e s r e a s o n a b l e a g r e e m e n t w i t h o b s e r v e d pH v a l u e s . B o t t o m w a t e r s t h r o u g h o u t t h e s a l t wedge h a v e a low a n d r e l a t i v e l y u n i f o r m pH. T h e s e pH v a l u e s c a n be e x p l a i n e d by t h e a d v e c t i o n a n d s u b s e q u e n t m i x i n g o f o x y g e n - d e p l e t e d w a t e r f r o m o u t s i d e t h e e s t u a r y . The pH o f s e a w a t e r i n t h e S t r a i t o f G e o r g i a , b o t h a t d e p t h a nd a t t h e s u r f a c e , i s i n f l u e n c e d by b i o l o g i c a l p r o c e s s e s . P o s t u l a t i n g t h e f o r m a t i o n o f an i n t e r m e d i a t e w a t e r mass f a c i l i t a t e s t h e e x p l a n a t i o n o f o b s e r v e d a l k a l i n i t y and pH m e a s u r e m e n t s i n t h e s u r f a c e w a t e r s o f t h e F r a s e r E s t u a r y . T h i s w a t e r mass must be f o r m e d by m i x i n g s a l t wedge and r i v e r w a t e r . D i s c r e t e w a t e r p r o p e r t i e s c a n be a t t a i n e d o n l y i f s e a w a t e r e n t e r i n g t h e e s t u a r y v i a t h e s a l t wedge becomes m o d i f i e d p r i o r t o v e r t i c a l a d v e c t i o n . The c o n s e q u e n c e s o f s u c h a p r o c e s s on manganese c h e m i s t r y w i l l be e x a m i n e d i n t h e f o l l o w i n g c h a p t e r . 61 MANGANESE DISTRIBUTION IN THE FRASER ESTUARY 4.1 Preamble The F r a s e r E s t u a r y was i n v e s t i g a t e d f i v e t i m e s under v a r y i n g f l o w r e g i m e s (see S e c t i o n 2 . 1 . 1 ) . D a t a f o r d i s s o l v e d and p a r t i c u l a t e manganese a r e t a b u l a t e d i n A p p e n d i c e s B . l and B.2, r e s p e c t i v e l y . W h i l e t h i s c h a p t e r d e a l s p r i m a r i l y w i t h t h e c h e m i s t r y of manganese i n t h e F r a s e r E s t u a r y , d a t a f o r t o t a l s u s p e n d e d p a r t i c u l a t e c o n c e n t r a t i o n s and p a r t i c u l a t e a l u m i n i u m c o n c e n t r a t i o n s a r e i n c l u d e d s i n c e t h e y a r e u s e f u l i n e x p l a i n i n g some f e a t u r e s of manganese b e h a v i o u r . 4.2 F i e l d D a t a : Aqueous Samples 4.2.1 D i s s o l v e d Manganese D i s s o l v e d manganese c o n c e n t r a t i o n s i n e s t u a r i n e w a t e r s , p l o t t e d v e r s u s s a l i n i t y , a r e shown i n F i g u r e s 15a t h r o u g h 15d f o r C r u i s e s 78-04, 78-16, 79-01, and 79-12, r e s p e c t i v e l y . F i g u r e s 15c and 15d i n c l u d e d a t a c o l l e c t e d t h r o u g h o u t t h e S t r a i t of G e o r g i a . T h e s e d a t a w i l l be d i s c u s s e d i n g r e a t e r d e t a i l i n C h a p t e r 5 w h i c h d e a l s w i t h t h e t e m p o r a l and s p a t i a l d i s t r i b u t i o n of manganese i n t h e s t r a i t . In M a r c h 1978 ( C r u i s e 78-04, F i g u r e 15a) t h e d i s s o l v e d manganese c o n c e n t r a t i o n i n t h e r i v e r w a ter was i n t h e range 9.97 t o 13.0 ppb, c o n c e n t r a t i o n s i n t h e b o t t o m w a t e r s b e i n g somewhat h i g h e r t h a n t h o s e i n t h e s u r f a c e w a t e r s . S t r a i t of G e o r g i a 62 0 5 10 15 2 0 2 5 3 0 3 5 SRLINITY (PPT) Figure 15a Cruise 78-04 0 5 10 15 2 0 2 5 3 0 3 5 SRLIN ITY- (PPT) Figure 15b Cruise 78-16 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 15c Cruise 79-01 \"1\u00E2\u0080\u0094r 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 15d Cruise 79-12 FIGURE 15 Dissolved manganese data plotted versus s a l i n i t y for Cruises 78-04, 78-16, 79-01, and 79-12. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t of Georgia; A surface samples in the Fraser Estuary; O bottom samples in the Fraser Estuary. 63 s a m p l e s , as e x e m p l i f i e d by S t a t i o n 15, e x h i b i t e d a s u r f a c e c o n c e n t r a t i o n of 4.12 ppb ( s a l i n i t y 26.837 p p t ) w h i c h d e c r e a s e d t o a m i d - d e p t h minimum of 0.37 ppb. E s t u a r i n e samples from b o t h t h e s u r f a c e and b o t t o m f o l l o w e d a s i m i l a r d i l u t i o n p a t t e r n a l t h o u g h , i n b o t h c a s e s , t h e sample s e r i e s were i n c o m p l e t e w i t h r e s p e c t t o t h e s a l i n i t y r ange i n t h e e s t u a r y . A maximum d i s s o l v e d manganese c o n c e n t r a t i o n of 17.6 ppb was e v i d e n t i n t h e s u r f a c e w a t e r s a t a s a l i n i t y of 4.028 p p t . V e r y few d a t a a r e a v a i l a b l e f o r C r u i s e 78-11. (See A p p e n d i x B f o r d a t a ) . F r a s e r r i v e r c o n c e n t r a t i o n s were i n t h e ra n g e 1.97 t o 2.93 ppb. E s t u a r i n e b o t t o m w a t e r s e x h i b i t e d d i s s o l v e d manganese l e v e l s w h i c h i n c r e a s e d w i t h s a l i n i t y . I t s h o u l d be n o t e d t h a t t h e samples were c o l l e c t e d on a f l o o d i n g t i d e . D u r i n g t h e week p r i o r t o t h e t h r e e day c r u i s e i n t h e F r a s e r E s t u a r y i n O c t o b e r 1978 ( C r u i s e 78-16), a s e r i e s of samples was c o l l e c t e d d a i l y a t F o r t L a n g l e y ( F i g u r e 2 ) . These d a t a a r e r e c o r d e d s e q u e n t i a l l y i n A p p e n d i c e s B . l and B.2 a s S t a t i o n 70, C r u i s e 78-16. D u r i n g t h i s t i m e p e r i o d d i s s o l v e d manganese c o n c e n t r a t i o n s f e l l from 18.8 ppb t o 4.45 ppb, a v a l u e more t y p i c a l o f t h o s e o b s e r v e d i n t h e F r a s e r R i v e r d u r i n g t h e c r u i s e ( F i g u r e 1 5 b ) . S u r f a c e e s t u a r i n e w a t e r s e x h i b i t e d a m i x i n g p a t t e r n s i m i l a r t o t h a t ' seen i n M a r c h . T h a t i s , d i s s o l v e d manganese c o n c e n t r a t i o n s were g r e a t e s t a t low s a l i n i t i e s . S u r f a c e w a t e r s e x h i b i t e d two d i s s o l v e d manganese maxima, a r e f l e c t i o n of s a m p l i n g on d i f f e r e n t d a y s . Bottom samples c o l l e c t e d d u r i n g a t i m e s e r i e s a t Anchor S t a t i o n 56.3 (A p p e n d i x B.3) showed t h a t t h e d i s s o l v e d manganese c o n c e n t r a t i o n s r a n g e d 64 from 2 t o 5- ppb i n h i g h s a l i n i t y s amples (26 t o 27 p p t ) but v a r i e d from 8 t o 10 ppb i n t h e low s a l i n i t y s amples (8 t o 12 p p t ) w h i c h were c o l l e c t e d from t h e t o e of t h e s a l t wedge a t low water s l a c k . D a t a from a n o t h e r s t a t i o n , 58.3, u p s t r e a m of 56.3 but s i t u a t e d i n a s m a l l b a s i n , i n d i c a t e t h a t s a l i n i t i e s r e m a i n e d as h i g h as 23 p p t d u r i n g low water s l a c k and d i s s o l v e d manganese r a n g e d from 6.03 t o 7.58 ppb. A c o m p l e t e d e p t h p r o f i l e was o b t a i n e d a t S t a t i o n 15 on b o t h t h e f i r s t and l a s t day of t h e c r u i s e . W h i l e a b s o l u t e c o n c e n t r a t i o n s v a r i e d from one day t o t h e n e x t , a p e r s i s t e n t p r o f i l e was o b s e r v e d on e a c h o c c a s i o n . C o n c e n t r a t i o n s n e a r 4 ppb i n s u r f a c e w a t e r s d r o p p e d t o a minimum nea r 0.5 ppb a t m i d - d e p t h but i n c r e a s e d n e a r t h e bo t t o m t o l e v e l s i n t h e range 3.6 t o 4.9 ppb. D a t a from S t a t i o n 15 a r e d i s c u s s e d i n d e t a i l i n C h a p t e r 5. D a t a i n J a n u a r y 1979 ( C r u i s e 79-01, F i g u r e 15c) mimic t h e t r e n d o b s e r v e d i n March 1978 w i t h t h e e x c e p t i o n t h a t t h e d i s s o l v e d manganese c o n t e n t i n t h e r i v e r water and a t t h e maximum was h i g h e r by 5 ppb i n J a n u a r y . Data from C r u i s e 79-12 ( F i g u r e 15d) f o l l o w e d t h e same t r e n d e x h i b i t e d a t o t h e r t i m e s of t h e y e a r , w i t h t h e e x c e p t i o n of f o u r s amples from S t a t i o n 53 ( A p p e n d i x B . 2 ) . T h r e e samples were r i v e r i n e w i t h d i s s o l v e d manganese c o n c e n t r a t i o n s r a n g i n g from 16.1 t o 18.0 ppb. The f o u r t h sample had a s a l i n i t y of 6.412 ppt and a d i s s o l v e d manganese c o n t e n t of 25.6 ppb. In a l l c a s e s , t h e d i s s o l v e d manganese c o n c e n t r a t i o n s were a n o m a l o u s l y h i g h , e x c e e d i n g v a l u e s e x h i b i t e d by s u r f a c e w a t e r s of c o m p a r a b l e s a l i n i t y c o l l e c t e d a t o t h e r s t a t i o n s . A l s o , t h e s e samples were a s s o c i a t e d w i t h h i g h s u s p e n d e d s e d i m e n t l o a d s r e l a t i v e t o 65 s u r f a c e w a t e r s c o l l e c t e d e l s e w h e r e . C o n s i d e r i n g t h e r e m a i n e r of th e d a t a from C r u i s e 79-12, d i s s o l v e d manganese c o n c e n t r a t i o n s i n F r a s e r R i v e r w ater m a i n l y c l u s t e r e d a r o u n d 5 ppb. The d i s s o l v e d manganese maximum i n t h e s u r f a c e e s t u a r i n e w a t e r s was o b s e r v e d a t a s a l i n i t y n e a r 12 p p t . The few bottom s a m p l e s c o l l e c t e d e x h i b i t e d c o n c e n t r a t i o n s h i g h e r t h a n d i d s u r f a c e w a t e r s of a c o m p a r a b l e s a l i n i t y . 4.2.2 P a r t i c u l a t e Manganese P a r t i c u l a t e manganese c o n c e n t r a t i o n s , p l o t t e d v e r s u s s a l i n i t y , a r e d e p i c t e d i n F i g u r e s 16a t h r o u g h 16d f o r C r u i s e s 78-04, 78-16, 79-01 and 79-12, r e s p e c t i v e l y . A l t h o u g h a b s o l u t e c o n c e n t r a t i o n s v a r y from one c r u i s e t o t h e n e x t , a r e f l e c t i o n of t h e d i f f e r i n g d i s c h a r g e r a t e s , a number of f e a t u r e s a r e e v i d e n t o n ' a l l o c c a s i o n s . The few d a t a from C r u i s e 78-11 a r e a l s o c o n s i s t e n t w i t h t h e s e o b s e r v a t i o n s w h i c h i n c l u d e : (1) t h e p a r t i c u l a t e manganese c o n c e n t r a t i o n i n t h e F r a s e r R i v e r end member v a r i e s c o n s i d e r a b l y (2) e s t u a r i n e s u r f a c e samples f o l l o w a smooth d i l u t i o n c u r v e , c o n c e n t r a t i o n s d e c r e a s i n g e i t h e r l i n e a r l y o r e x p o n e n t i a l l y w i t h s a l i n i t y d e p e n d i n g upon t h e c r u i s e . (3) b o t t o m samples e x h i b i t v e r y h i g h c o n c e n t r a t i o n s w h i c h a r e i n d e p e n d e n t of b o t h s a l i n i t y and s t a t i o n l o c a t i o n . One sample from C r u i s e 78-04, w i t h a s a l i n i t y near 25 p p t , i s presumed t o r e f l e c t a s a m p l i n g e r r o r . T h a t is> t h e b o t t o m water s a m p l e r may not have t r i p p e d u n t i l i t l a y on t h e bottom, 66 0 T 5 10 15 2 0 2 5 3 0 SALINITY (PPT) Figure 16a Cruise 78-04 LO . CQ O _ o _ J Q _ C \ I L U I \u00E2\u0080\u0094 c r CJ QlLO CE 0 o 0 5 10 15 20 25 30 SALINITY (PPT) Figure 16c Cruise 79-01 3 5 T 0 5 10 15 2 0 2 5 3 0 SALINITY (PPT) Figure 16b Cruise 78-16 o LO . T T o _1 C D co \u00E2\u0080\u00A2_ Q _ o _ | 0 5 10 1 5 2 0 2 5 3 0 SALINITY (PPT) Figure 16d Cruise 79-12 3 5 FIGURE 16 Particulate manganese data plotted versus s a l i n i t y for Cruises 78-04, 78-16, 79-01, and 79-12. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t s of Georgia; A surface samples in the Fraser Estuary; <> b o t t o i n samples in the Fraser Estuary. 67 t h e r e b y c o l l e c t i n g b e d l o a d as w e l l as s u s p e n d e d s e d i m e n t s . . 4.2.3 P a r t i c u l a t e A l u m i n i u m P a r t i c u l a t e a l u m i n i u m c o n c e n t r a t i o n s , p l o t t e d v e r s u s s a l i n i t y , a r e shown i n F i g u r e s 17a t h r o u g h 17d f o r C r u i s e s 78-04, 78-16 79-01, and 79-12, r e s p e c t i v e l y . A l t h o u g h c o n c e n t r a t i o n s a r e g e n e r a l l y two o r d e r s of m a g n i t u d e h i g h e r , t h e d i s t r i b u t i o n of p a r t i c u l a t e a l u m i n i u m d i s p l a y s f e a t u r e s s i m i l a r t o t h e d i s t r i b u t i o n of p a r t i c u l a t e manganese. T h e r e i s c o n s i d e r a b l e v a r i a t i o n i n t h e p a r t i c u l a t e a l u m i n i u m c o n c e n t r a t i o n of b o t h F r a s e r R i v e r and e s t u a r i n e b o t t o m water s a m p l e s . In c o n t r a s t , e s t u a r i n e s u r f a c e samples f o l l o w t h e l i n e a r or e x p o n e n t i a l d e c r e a s e s i n c o n c e n t r a t i o n s e v i d e n t f o r p a r t i c u l a t e manganese. 4.2.4 T o t a l S u s p e n d e d P a r t i c u l a t e s T o t a l s u s p e n d e d p a r t i c u l a t e c o n c e n t r a t i o n s were measured d u r i n g C r u i s e s 78-16 and 79-12. The r e s u l t s , p l o t t e d v e r s u s s a l i n i t y , a r e p r e s e n t e d i n F i g u r e s 18a and 18b, r e s p e c t i v e l y . A g a i n th e d a t a f o l l o w t r e n d s e v i d e n t f o r t h e p a r t i c u l a t e m e t a l s . C o n c e n t r a t i o n s i n t h e F r a s e r R i v e r r a n g e d from 11.1 t o 24.1 mg/1 i n O c t o b e r 1978 and from 186 t o 540 mg/1 i n t h e f o l l o w i n g May. On b o t h o c c a s i o n s t h e s u s p e n d e d s e d i m e n t l o a d i n e s t u a r i n e s u r f a c e w a t e r s d e c r e a s e d r a p i d l y i n t h e i n i t i a l m i x i n g zone. E s t u a r i n e bottom w a t e r s e x h i b i t e d h i g h c o n c e n t r a t i o n s o f s u s p e n d e d m a t e r i a l w h i c h were r e l a t e d t o n e i t h e r t h e s a l i n i t y nor t h e s t a t i o n l o c a t i o n . 68 ID CM 51 Q_ Q_cr> -\u00E2\u0080\u0094- _ o _) <> cr CD cn _ CE o o o 0 5 10 15 20 25 30 35 SALINITY (PPT) Figure 17a Cruise 78-04 o CD \" CO Q_ Q_co 0. 0 AA A O o \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 r 5 10 15 20 25 30 35 SALINITY (PPT) Figure 17b Cruise 78-16 0 5 10 15 20 25 30 35 SALINITY (PPT) Figure 17c Cruise 79-01 o r-CD . i n Q_ Q_ O O 5 10 15 20 25 30 35 SALINITY (PPT) Figure 17d Cruise 79-12 FIGURE 17 Particulate aluminium data plotted versus s a l i n i t y for Cruises 78-04, 78-16, 79-01, and 79-12. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t s of Georgia; A surface samples in the Fraser Estuary; O bottom samples in the Fraser Estuary. 69 0 5 10 15 20 25 30 35 SALINITY (PPT) Figure 18a Cruise 78-16 0 5 10 15 20 25 30 35 SALINITY (PPT) Figure 18b Cruise 79-12 FIGURE 18 Total suspended p a r t i c u l a t e concentrations plotted versus s a l i n i t y for Cruises 78-16 and 79-12. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t s of Georgia; A surface samples in the Fraser Estuary; O bottom samples in the Fraser Estuary. 4.3 F i e l d Data: Sediments 4.3.1 I n t e r s t i t i a l Water I n t e r s t i t i a l water was extracted from cores c o l l e c t e d at Station 15 and various s i t e s in the Fraser Estuary. The dissolved manganese concentrations and s a l i n i t i e s in the i n t e r s t i t i a l waters of the estuarine sediments are presented in Appendix C. The dissolved manganese p r o f i l e in the i n t e r s t i t i a l water was similar in two cores c o l l e c t e d at Station 15 (Appendix C l ) . A subsurface maximum of 3.85 and 4.81 ppm, for cores 78-1-15 and 70 79-2-15, r e s p e c t i v e l y , was o b s e r v e d i n the 3 t o 6 cm s e c t i o n . The c o n c e n t r a t i o n d e c r e a s e d r e g u l a r l y w i t h d e p t h and was a p p r o x i m a t e l y 1 ppm near t h e b o t t o m of the 50 cm c o r e s . In c o m p a r i s o n w i t h r i v e r and sea water s a m p l e s , i n t e r s t i t i a l w a t e r s from e s t u a r i n e s e d i m e n t s e x h i b i t e d d i s s o l v e d manganese e n r i c h m e n t . C o r e s c o l l e c t e d by d i v e r s i n F e b r u a r y 1979 from t h r e e s t a t i o n s i n t h e l o w e r r e a c h e s o f t h e F r a s e r E s t u a r y d i s p l a y e d d i f f e r e n t d i s s o l v e d manganese p r o f i l e s ( A p pendix C . 2 ) . S e d i m e n t s from S t a t i o n 56.2 d i s p l a y e d two s u b s u r f a c e maxima: 10.9 ppm a t 6 t o 9 cm and 6.30 ppm a t 19 t o 22 cm. I n t e r s t i t i a l w a t e r s of s e d i m e n t s from S t a t i o n 59.0 were e n r i c h e d i n d i s s o l v e d manganese t o an even g r e a t e r d e g r e e . In c o m p a r i s o n , t h e c o r e from S t a t i o n 57.2 was d e p l e t e d i n manganese a t a l l d e p t h s , w i t h a maximum c o n c e n t r a t i o n of o n l y 126 ppb i n t h e 6 t o 9 cm s e c t i o n . A l l but one e s t u a r i n e c o r e c o l l e c t e d by d i v e r s i n J a n u a r y 1980 e x h i b i t e d r e l a t i v e l y low d i s s o l v e d manganese c o n c e n t r a t i o n s ( A p p e n d i c e s C.4 and C . 5 ) . I n t e r s t i t i a l w a t e r s o f s e d i m e n t s from b o t h S t a t i o n 57.2 and S t a t i o n 59 were d e p l e t e d i n manganese a t t h i s t i m e . The e x c e p t i o n , S t a t i o n 56.2, a g a i n d i s p l a y e d two s u b s u r f a c e maxima: 4.4 ppm a t 9 t o 12 cm and 5.7 ppm a t 24 t o 27 cm. The i n t e r s t i t i a l water s a l i n i t y was measured f o r c o r e s c o l l e c t e d i n 1980, p r i m a r i l y t o d e t e r m i n e whether t h e i n t e g r i t y of t h e c o r e was p r e s e r v e d i n t h e s a m p l i n g p r o c e s s . The s a l i n i t y p r o f i l e i n s e d i m e n t s from S t a t i o n 67 i n d i c a t e s f r e s h w ater t h r o u g h o u t t h e l e n g t h of t h e c o r e . In g e n e r a l , t h e s a l t c o n t e n t of i n t e r s t i t i a l w a t e r s i n c r e a s e s downstream. However, t h e 71 s a l i n i t y p r o f i l e a t some s t a t i o n s f o l l o w s no r e g u l a r t r e n d and may d i s p l a y a s u b s u r f a c e minimum ( S t a t i o n 57.2, A p p e n d i x C.4; S t a t i o n 56.2, A p p e n d i x C . 5 ) . 4.3.2 Ammonium O x a l a t e D i g e s t S e d i m e n t s c o l l e c t e d w i t h a S h i p e k Grab d u r i n g C r u i s e 79-12 and s e l e c t e d samples from c o r e s o b t a i n e d i n J a n u a r y 1980 were s u b j e c t e d t o an ammonium o x a l a t e e x t r a c t i o n . R e s u l t s a r e p r e s e n t e d i n A p p e n d i c e s C.3 and C.5 r e s p e c t i v e l y . In May 1979, t h e c o n c e n t r a t i o n of ammonium o x a l a t e e x t r a c t a b l e manganese g e n e r a l l y d e c r e a s e d from 125 t o 130 ppm i n r i v e r i n e s u r f a c e s e d i m e n t s t o v a l u e s i n t h e range of 70.8 t o 74.0 ppm f o r m a r i n e s u r f a c e s e d i m e n t s . S e d i m e n t s a t S t a t i o n 53, w i t h a c o n c e n t r a t i o n of 153 ppm, d i d not c o n f o r m t o t h i s t r e n d . S u r f a c e s e d i m e n t s c o l l e c t e d i n J a n u a r y 1980 c o n t a i n e d more e x t r a c t a b l e manganese t h a n s e d i m e n t s c o l l e c t e d i n t h e p r e v i o u s May. The c o n c e n t r a t i o n i n r i v e r i n e s e d i m e n t s was 168 ppm a t t h e s u r f a c e and 150 t o 156 ppm i n s u b s u r f a c e l a y e r s . S e d i m e n t s c o l l e c t e d from S t a t i o n 60.5, ne a r t h e s i t e of t h e f u r t h e s t u p s t r e a m a d v a n c e of t h e s a l t wedge a t t h i s t i m e , e x h i b i t e d s i m i l a r c o n c e n t r a t i o n s : 161 ppm a t t h e s u r f a c e and 133 ppm a t d e p t h . The p r o f i l e of e x t r a c t a b l e manganese i n s e d i m e n t s n e a r S t e v e s t o n ( S t a t i o n 56.2) showed a m i d - d e p t h maximum of 243 ppm w i t h c o n c e n t r a t i o n s a t t h e s u r f a c e and b o t t o m of t h e c o r e (27 t o 30 cm) of 80.2 and 81.9 ppm, r e s p e c t i v e l y . 72 4.3.3 T o t a l A c i d D i g e s t Manganese and a l u m i n i u m c o n c e n t r a t i o n s were d e t e r m i n e d i n t h e ammonium o x a l a t e r e s i s t a n t f r a c t i o n of t h e s e d i m e n t s . T h e s e d a t a a r e a l s o c o m p i l e d i n A p p e n d i c e s C.3 and C.5. The r e s i s t a n t manganese c o n c e n t r a t i o n i n e s t u a r i n e s e d i m e n t s c o l l e c t e d i n May 1979 v a r i e d f r o m 350 t o 519 ppm g i v i n g t o t a l manganese c o n t e n t s i n t h e range of 468 t o 591 ppm. No t r e n d was e v i d e n t but t h e l o w e s t t o t a l manganese c o n c e n t r a t i o n was o b s e r v e d n e a r S t e v e s t o n . The r e s i d u a l a l u m i n i u m c o n t e n t r a n g e d from 5.03 t o 5.48% a t t h i s t i m e . ' In J a n u a r y 1980, t h e r e s i d u a l manganese c o n c e n t r a t i o n s i n s u r f a c e s e d i m e n t s were f a i r l y u n i f o r m a t t h r e e s i t e s ( S t a t i o n s 56.2, 60.5, and 67.0) i n t h e e s t u a r y , r a n g i n g from 291 t o 316 ppm. The r e s i s t a n t a l u m i n i u m v a r i e d from 4.46 t o 5.21%. A t S t a t i o n 56.2 t h e c o n c e n t r a t i o n s of b o t h manganese and a l u m i n i u m p a r a l l e l e d t h e o x a l a t e e x t r a c t a b l e manganese p r o f i l e . As m e n t i o n e d i n S e c t i o n 2.2.4, samples c o l l e c t e d d u r i n g C r u i s e 79-12 were a l s o s u b j e c t e d t o t h e t o t a l a c i d d i g e s t i o n w i t h o u t p r i o r o x a l a t e e x t r a c t i o n . Manganese c o n c e n t r a t i o n s a g r e e d w i t h t h e sum of t h e o x a l a t e l e a c h a b l e and r e s i s t a n t f r a c t i o n s ; however, t h e a l u m i n i u m c o n c e n t r a t i o n s were c o n s i s t e n t l y h i g h e r t h a n o b s e r v e d i n o n l y t h e o x a l a t e r e s i s t a n t f r a c t i o n . T h i s i n d i c a t e s t h a t t h e ammonium o x a l a t e d i g e s t i o n e x t r a c t s a s i g n i f i c a n t p r o p o r t i o n of t h e t o t a l a l u m i n i u m . A c c o r d i n g l y , Mn:Al r a t i o s o b t a i n e d f o r samples s u b j e c t e d t o o x a l a t e e x t r a c t i o n a r e o v e r e s t i m a t e s and s h o u l d be c o n s i d e r e d u n l i k e l y maximum v a l u e s . 73 4.3.4 G r a i n S i z e G r a i n s i z e a n a l y s e s were p e r f o r m e d on e s t u a r i n e s e d i m e n t s c o l l e c t e d i n May 1979 ( C r u i s e 79-12) w i t h a S h i p e k G r a b and on s e l e c t e d c o r e s e c t i o n s from s e d i m e n t s o b t a i n e d by d i v e r s i n J a n u a r y 1980. T a b u l a t e d i n A p p e n d i x C.6 a r e t h e mean g r a i n s i z e s and s t a n d a r d d e v i a t i o n s t o g e t h e r w i t h t h e p e r c e n t a g e s of sand and mud, where mud r e f e r s t o t h e m a t e r i a l f i n e r t h a n 63 urn. B o t h i n J a n u a r y and May, t h e s u r f a c e s e d i m e n t s i n t h e F r a s e r R i v e r and E s t u a r y were r e l a t i v e l y u n i f o r m i n terms of g r a i n s i z e . T hese s e d i m e n t s c o n s i s t e d a l m o s t e n t i r e l y of sand, c o n t a i n i n g l e s s t han 1% mud. S u r f i c i a l s e d i m e n t s from d e e p e r l o c a t i o n s ( S t a t i o n s 15 and 53) had a h i g h e r p e r c e n t a g e of f i n e - g r a i n e d m a t e r i a l , e s p e c i a l l y t h e m a n g a n e s e - r i c h s e d i m e n t s from S t a t i o n 53 which c o n t a i n e d 10% mud. E x a m i n a t i o n of t h e r i v e r i n e and e s t u a r i n e c o r e s r e v e a l e d t h a t t h e s e d i m e n t s a l s o v a r i e d l i t t l e t h r o u g h t h e l e n g t h of t h e c o r e . The most seaward c o r e , S t a t i o n 56.2, was e x c e p t i o n a l . S e d i m e n t s a t t h e s u r f a c e and below 24 cm were s i m i l a r t o o t h e r e s t u a r i n e s e d i m e n t s but t h e i n t e r v e n i n g l a y e r c o n t a i n e d a h i g h p e r c e n t a g e of mud. 74 4.4 D i s c u s s i o n 4.4.1 D i s t r i b u t i o n of S u s p e n d e d P a r t i c u l a t e M a t e r i a l An u n d e r s t a n d i n g o f t h e b e h a v i o u r of s u s p e n d e d p a r t i c u l a t e m a t e r i a l i s n e c e s s a r y b e f o r e t h e d i s t r i b u t i o n o f manganese i n t h e F r a s e r E s t u a r y can be examined i n d e t a i l . T h i s b e h a v i o u r can be i n v e s t i g a t e d by c o n s i d e r i n g t o t a l s u s p e n d e d p a r t i c u l a t e c o n c e n t r a t i o n s . A l t e r n a t i v e l y , t h e c o n c e n t r a t i o n of p a r t i c u l a t e a l u m i n i u m may be a u s e f u l i n d i c a t o r of t e r r i g e n o u s m a t e r i a l , a l t h o u g h , t h e a l u m i n i u m c o n t e n t i n t h e s u s p e n d e d m a t e r i a l c an v a r y w i t h t h e m i n e r a l o g i c a l c o m p o s i t i o n and g r a i n s i z e d i s t r i b u t i o n of t h e s u s p e n d e d p a r t i c u l a t e s ( S p e n c e r and S a c h s , 1970; P r i c e and C a l v e r t , 1973; S h o l k o v i t z and P r i c e , 1 9 8 0 ) . A l t h o u g h d i s s o l v e d a l u m i n i u m p r e c i p i t a t e s f r o m low s a l i n i t y e s t u a r i n e w a t e r s (Hydes and L i s s , 1977), t h e c o n t r i b u t i o n t o t h e p a r t i c u l a t e c o n c e n t r a t i o n i s n e g l i g i b l e . P l o t s of p a r t i c u l a t e a l u m i n i u m c o n c e n t r a t i o n s v e r s u s t h e s u s p e n d e d s e d i m e n t l o a d ( F i g u r e 19) s u g g e s t s t h a t p a r t i c u l a t e a l u m i n i u m may be u s e d as an i n d i c a t o r of t e r r i g e n o u s m a t e r i a l i n t h e F r a s e r E s t u a r y d u r i n g n o n - f r e s h e t months. A c c o r d i n g t o M i l l i m a n ( 1 9 8 0 ) , t h i s c o r r e s p o n d s t o p e r i o d s when most of t h e san d f r a c t i o n of t h e s u s p e n d e d s e d i m e n t l o a d i s d e p o s i t e d i n t h e upper r e a c h e s of t h e e s t u a r y , l e a v i n g p r i m a r i l y t h e s i l t and c l a y f r a c t i o n i n s u s p e n s i o n . The c o n c e n t r a t i o n of s u s p e n d e d m a t e r i a l i n r i v e r w a ter shows a s t r o n g dependence on t h e d i s c h a r g e r a t e s . In agreement w i t h M i l l i m a n ( 1 9 8 0 ) , l o w e s t v a l u e s o c c u r d u r i n g m i n i m a l d i s c h a r g e i n J a n u a r y and March w h i l e maximum v a l u e s were 75 0 10 20 30 40 50 60 70 T S P ( M G / L ) Figure 19a Cruise 78-16 i r 0 20 40 60 80 100 120 140 T S P ( M G / L ) ( X 1 0 Y ) Figure 19b Cruise 79-12 FIGURE 19 Particulate aluminium concentrations plotted versus t o t a l suspended p a r t i c u l a t e concentrations for Cruises 78-16 and 79-12. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t s of Georgia; A surface samples in the Fraser Estuary; Obottom samples in the Fraser Estuary. measured in May. Regardless of the time of year, the concentration of r i v e r i n e suspended pa r t i c u l a t e material exhibits considerable scatter r e f l e c t i n g variations in the hydrodynamics of the r i v e r flow. Pretious (1972) reported that t i d a l e f f e c t s on the suspended load were observed as far upstream as the Port Mann Bridge (Figure 2) where ebb-tidal discharges were greater than f l o o d - t i d a l discharges. Downstream variations occur due to stronger t i d a l e f f e c t s and deposition as the r i v e r t r i f u r c a t e s and widens at New Westminster. Since fresh water p e r s i s t s at the surface as far downstream as Steveston in October and to Sand Heads in May, r i v e r i n e data 76 e x h i b i t c o n s i d e r a b l e s c a t t e r . S u s p e n d e d p a r t i c u l a t e c o n c e n t r a t i o n s i n t h e s u r f a c e w a t e r s i n O c t o b e r 1978 ( C r u i s e 78-16, F i g u r e 18a) d e c r e a s e l i n e a r l y w i t h s a l i n i t y s u g g e s t i n g t h a t t h e s u s p e n d e d m a t e r i a l behaves c o n s e r v a t i v e l y . P a r t i c u l a t e a l u m i n i u m d a t a i n d i c a t e s i m i l a r b e h a v i o u r d u r i n g C r u i s e s 78-04 and 79-01. In May 1979 ( C r u i s e 7 9 - 12), t h e c o n c e n t r a t i o n of p a r t i c u l a t e m a t e r i a l d e c r e a s e s r a p i d l y w i t h s a l i n i t y i n t h e i n i t i a l m i x i n g zone b u t , a t s a l i n i t i e s g r e a t e r t h a n 10 p p t , a p p a r e n t l y behaves c o n s e r v a t i v e l y . B ottom samples i n t h e F r a s e r E s t u a r y e x h i b i t e d h i g h c o n c e n t r a t i o n s of s u s p e n d e d m a t e r i a l t h r o u g h o u t t h e y e a r due t o r e s u s p e n s i o n o f bottom s e d i m e n t s . The h i g h e s t c o n c e n t r a t i o n s of s u s p e n d e d s e d i m e n t measured a t A n c h o r S t a t i o n 56.3 d u r i n g C r u i s e 78-16 c o i n c i d e d w i t h low w ater s l a c k and m i d - f l o o d (Appendix B . 3 ) . T h i s t i m e s e r i e s o f o b s e r v a t i o n s on w a t e r s from th e s a l t wedge i n d i c a t e d t h a t d u r i n g an e b b i n g t i d e t h e h i g h s a l i n i t y b o t t o m water (26.969 p p t ) had a t o t a l s u s p e n d e d p a r t i c u l a t e c o n c e n t r a t i o n o f o n l y 8.33 mg/1. By c o n t r a s t , a t low water s l a c k t h e s a l i n i t y r a n g e d from 8 t o 12 p p t w i t h s u s p e n d e d s e d i m e n t l o a d s of 30 t o 63 mg/1. The amount of s u s p e n d e d m a t e r i a l d e c r e a s e d somewhat as t h e t i d e s t a r t e d t o f l o o d but t h e n i n c r e a s e d t o t h e range o f 51 t o 64 mg/1 i n h i g h s a l i n i t y s amples (26.095 t o 26.922 p p t ) c o l l e c t e d a t a p p r o x i m a t e l y m i d - f l o o d . D u r i n g an e b b i n g t i d e on t h e f o l l o w i n g day, t h e s u s p e n d e d l o a d was o n l y 5.60 mg/1 a t a s a l i n i t y o f 26.530 p p t . M i l l i m a n (1980) o b s e r v e d maximum s e d i m e n t c o n c e n t r a t i o n s i n n e a r - b o t t o m w a t e r s a t S t e v e s t o n d u r i n g f l o o d t i d e a t t i m e s o f 77 the y e a r o t h e r t h a n d u r i n g t h e f r e s h e t . 4.4.2 The D i s s o l v e d Manganese Maximum a t Low S a l i n i t y The most s t r i k i n g f e a t u r e o b s e r v e d i n a l l t h e d i s s o l v e d manganese p l o t s ( F i g u r e 15) i s t h e maximum c o n c e n t r a t i o n i n t h e i n i t i a l m i x i n g zone of t h e e s t u a r y . The s a l i n i t y of t h e water a t t h i s peak v a l u e v a r i e s from 4 t o 12 ppt d e p e n d i n g upon t h e ti m e of s a m p l i n g but from t h e a v a i l a b l e d a t a a p p e a r t o be i n d e p e n d e n t of t h e d a i l y a v e r a g e d i s c h a r g e r a t e of t h e r i v e r ( T a b l e V I ) . As might be e x p e c t e d , t h e maximum manganese c o n c e n t r a t i o n v a r i e s w i t h t h e d i s s o l v e d manganese c o n c e n t r a t i o n i n t h e r i v e r w a t e r . Both t h e e s t a b l i s h m e n t of t h e maximum d i s s o l v e d manganese c o n c e n t r a t i o n and t h e s a l i n i t y a t w h i c h t h i s o c c u r s a g r e e w i t h c a s e s t u d i e s c o n d u c t e d i n s e v e r a l o t h e r e s t u a r i e s . Peak d i s s o l v e d manganese c o n c e n t r a t i o n s were e x h i b i t e d a t a s a l i n i t y of a p p r o x i m a t e l y 3 ppt i n t h e B e a u l i e u E s t u a r y ( H o l l i d a y and L i s s , 1976) and a t 5 p p t on two o c c a s i o n s i n b o t h t h e R h i n e and S c h e l d t E s t u a r i e s ( D u i n k e r e t a l . , 1979b). Evans e t a l . (1977) o b s e r v e d t h e manganese maximum a t s a l i n i t i e s r a n g i n g from 6 t o 16 ppt a t t h r e e d i f f e r e n t t i m e s i n t h e Newport E s t u a r y . Thus, t h e F r a s e r E s t u a r y i s s i m i l a r t o t h e Newport E s t u a r y i n e x h i b i t i n g t e m p o r a l v a r i a t i o n s i n t h e s a l i n i t y o f t h e manganese peak. A l s o , t h e d i s s o l v e d manganese c o n c e n t r a t i o n s a r e c o m p a r a b l e i n t h e s e two e s t u a r i e s . The maximum manganese c o n c e n t r a t i o n s o b s e r v e d i n t h e F r a s e r and Newport E s t u a r i e s a r e a p p r o x i m a t e l y 25 ppb but e x c e e d 100 ppb i n t h e o t h e r c a s e s t u d i e s m e n t i o n e d above. 78 TABLE VI S a l i n i t y and C o n c e n t r a t i o n of t h e D i s s o l v e d Manganese Max ima C r u i s e Number D i s c h a r g e Rate ( m 3 / s e c ) R i v e r Mean D i s . Mn (ppb) Max imum D i s . Mn (ppb) S a l i n i t y of Mn Maximum ( p p t ) 78-04 951 11.2 17.6 4.028 78-16 1900 6.61 7 4 - 8 79-01 816 15.1 23.9 8.804 79-12 7140 9. 24 14.4 12.280 The s o u r c e of t h i s e x c e s s d i s s o l v e d manganese r e m a i n s c o n t r o v e r s i a l . A l t h o u g h d a t a a r e u n a v a i l a b l e f o r t h e a n t h r o p o g e n i c i n p u t of manganese i n t o t h e main arm of t h e F r a s e r R i v e r , some a n a l y s e s of t h e e f f l u e n t d i s c h a r g e d from t h e Iona I s l a n d sewage t r e a t m e n t p l a n t ( F i g u r e 5) have been r e p o r t e d . S i n c e t h i s sewage p l a n t t r e a t s d o m e s t i c sewage, i n d u s t r i a l e f f l u e n t , and s t o r m water r u n o f f , t h e s e d a t a s h o u l d be r e p r e s e n t a t i v e of t h e a n t h r o p o g e n i c d i s c h a r g e i n t o t h e F r a s e r R i v e r . H i g g s (1977) r e p o r t e d d i s s o l v e d manganese c o n c e n t r a t i o n s of 0.03 t o 0.06 mg/1 and t o t a l manganese c o n t e n t r a n g i n g f r o m 0.04 t o 0.08 mg/1. These c o n c e n t r a t i o n s a r e somewhat h i g h e r t h a n r i v e r i n e l e v e l s ; however, t h e d a i l y a v e r a g e d i s c h a r g e r a t e s , v a r y i n g from 1.67 t o 12.9 m 3/s d u r i n g 1971/72 ( T a n n e r e t a l . , 1973), a r e i n s i g n i f i c a n t i n c o m p a r i s o n t o t h e f l o w r a t e of t h e F r a s e r R i v e r ( F i g u r e 3 ) . C o n s e q u e n t l y , an a n t h r o p o g e n i c o r i g i n of t h e e x c e s s manganese i s c o n s i d e r e d t o be i m p r o b a b l e . 79 But, as o u t l i n e d i n C h a p t e r 1, two n a t u r a l s o u r c e s e x i s t . F i r s t l y , t h e manganese may be r e l e a s e d from s u s p e n d e d p a r t i c u l a t e m a t e r i a l by d e s o r p t i o n , d i s s o l u t i o n or b i o l o g i c a l p r o c e s s e s . S e c o n d l y , t h e m e t a l may be r e l e a s e d from e s t u a r i n e b o t t o m s e d i m e n t s . 4.4.3 The R o l e of Suspended P a r t i c u l a t e Manganese i n E s t a b l i s h i n g t h e D i s s o l v e d Manganese Peak To d e t e r m i n e t h e i m p o r t a n c e of t h e s u s p e n d e d p a r t i c u l a t e m a t e r i a l i n d e v e l o p i n g t h e d i s s o l v e d manganese maximum, a number of p o i n t s w i l l be examined: (1) m i x i n g e x p e r i m e n t s (2) c o m p a r i s o n o f t h e mean c o n c e n t r a t i o n of r i v e r b o r n e s u s p e n d e d p a r t i c u l a t e manganese w i t h \" e x c e s s \" d i s s o l v e d manganese (3) v a r i a t i o n s i n t h e s u s p e n d e d p a r t i c u l a t e Mn:Al r a t i o s v e r s u s s a l i n i t y (4) t o t a l manganese c o n c e n t r a t i o n i n t h e e s t u a r y . E x p e r i m e n t s were p e r f o r m e d by m i x i n g a l i q u o t s of r i v e r w ater w i t h sea w a t e r s o f v a r y i n g s a l i n i t i e s . Enhancement of d i s s o l v e d manganese c o n c e n t r a t i o n s i n t h e m i x t u r e , w i t h r e s p e c t t o r i v e r and sea water c o n c e n t r a t i o n s , would i n d i c a t e a p a r t i c u l a t e / d i s s o l v e d i n t e r a c t i o n . S u r f a c e ( f r e s h ) and bot t o m ( s a l i n e ) samples were c o l l e c t e d a t t h r e e s t a t i o n s i n t h e F r a s e r R i v e r w i t h t h e d o u b l e NIO water b o t t l e s a m p l e r . The c o m p l e t e c o n t e n t s of one NIO b o t t l e from e a c h o f t h e s u r f a c e and bot t o m samples were m i x e d . The m i x t u r e s and r e m a i n i n g s u r f a c e and bottom s a m p l e s were f i l t e r e d i m m e d i a t e l y and p r o c e s s e d as 80 d e s c r i b e d i n C h a p t e r 2. R e s u l t s p r e s e n t e d i n T a b l e V I I i n d i c a t e t h a t w i t h i n t h e p r e c i s i o n of t h e t e c h n i q u e , d i s s o l v e d manganese c o n c e n t r a t i o n s i n t h e m i x t u r e a g r e e d w i t h t h o s e a n t i c i p a t e d f r o m s i m p l y m i x i n g r i v e r and sea w a t e r s . Thus, no d e s o r p t i o n nor d i s s o l u t i o n o f r i v e r b o r n e p a r t i c u l a t e manganese was o b s e r v e d . T h i s a g r e e s w i t h th e r e s u l t s of s i m i l a r e x p e r i m e n t s of S h o l k o v i t z (1979) and D u i n k e r e t a l . ( 1 9 7 9 b ) . One o f t h e m i x t u r e s was r e f i l t e r e d t h r o u g h a M i l l i p o r e VCWP f i l t e r w i t h a n o m i n a l p o r e s i z e of 100 nm. S i n c e t h e d i s s o l v e d manganese c o n c e n t r a t i o n a g r e e d w i t h i n t h e p r e c i s i o n of t h e t e c h n i q u e w i t h t h e m i x t u r e f i l t e r e d t h r o u g h a Gelman M e t r i c e l GA-6 Membrane f i l t e r ( n o m i n a l p o r e s i z e of 450 nm), t h i s i n d i c a t e s t h a t c o l l o i d s i n t h e s i z e r a n g e of 100 t o 450 nm c o n t r i b u t e no m e a s u r a b l e manganese t o t h e d i s s o l v e d c o n c e n t r a t i o n . W h i l e a s i n g l e a n a l y s i s i s not meant t o be d e f i n i t i v e , t h e r e s u l t does a g r e e w i t h K r e m l i n g and P e t e r s e n (1978) who r e p o r t e d t h a t manganese p a s s i n g t h r o u g h a N u c l e p o r e f i l t e r ( n o m i n a l p o r e s i z e of 400 nm) was p r e s e n t i n t r u e s o l u t i o n . S i m i l a r l y Moore e t a l . (1979) f o u n d t h a t 98 t o 102% and 95 t o 100 % of t h e d i s s o l v e d manganese i n R i v e r B e a u l i e u w a t e r s p a s s e d t h r o u g h f i l t e r s w i t h a n o m i n a l m o l e c u l a r w e i g h t c u t - o f f of 3 x 1 0 4 and 1 0 5 r e s p e c t i v e l y . A s e c o n d e x p e r i m e n t was p e r f o r m e d t o examine p o s s i b l e r e l e a s e of manganese from p a r t i c u l a t e m a t e r i a l . The d i s s o l v e d manganese c o n c e n t r a t i o n was m o n i t o r e d a f t e r i n t r o d u c i n g 25.7g of r i v e r i n e s e d i m e n t , c o l l e c t e d from F o r t L a n g l e y , i n t o 800ml of e s t u a r i n e w ater ( s a l i n i t y = 10 p p t , pH = 7.75, t e m p e r a t u r e = 81 TABLE V I I M i x i n g E x p e r i m e n t s Sample S a l i n i t y ( p p t ) D i s . Mn (ppb) 1 Sur f a c e 1 . 324 12.6 1 Bottom 27.427 8.43 1.. M i x t u r e 14.376 10.7 1 I d e a l 10.5 2 S u r f a c e 0.107 8.67 2 Bottom 9.458 12.7 2 M i x t u r e 4.783 10.7 2 I d e a l 10.7 3 S u r f a c e 0.0 9.25 3 Bottom 1.0 9.00 3 M i x t u r e 0.5 9.13 3 I d e a l 9.13 3 Ref i l t e r e d (100 nm) 9.29 1 0 \u00C2\u00B0 C ) . The s e d i m e n t was not d r i e d p r i o r t o t h e e x p e r i m e n t ; however, t h e w e i g h t was measured a f t e r oven d r y i n g a t 110 \u00C2\u00B0C f o r t h r e e h o u r s . The d i s s o l v e d manganese c o n c e n t r a t i o n r o s e t o 60 ppb a f t e r 4 h o u r s and t h e n f e l l t o 40 ppb a f t e r 20 h o u r s . A l t h o u g h t h e s e c o n c e n t r a t i o n s a r e c o n s i d e r a b l y h i g h e r t h a t t h o s e o b s e r v e d i n t h e e s t u a r y , t h e manganese r e l e a s e d from t h e s e d i m e n t was o n l y 1.7 ppm on a d r y w e i g h t b a s i s . A l t h o u g h i t 82 TABLE V I I I C o m p a r i s o n of t h e Mean R i v e r b o r n e Suspended P a r t i c u l a t e Manganese w i t h \" E x c e s s \" D i s s o l v e d Manganese i n t h e F r a s e r E s t u a r y C r u i s e Number Mean P a r t i c u l a t e Manganese (ppb) \" E x c e s s \" D i s s o l v e d Manganese (ppb) 78-04 9.13 8 78-16 14.3 3.5 79-01 9.24 12 79-12 222 12 may not be p o s s i b l e t o s c a l e t h e r e s u l t s t o s u s p e n d e d s e d i m e n t c o n c e n t r a t i o n s o b s e r v e d i n t h e e s t u a r y (10 t o 24 mg/1 i n O c t o b e r 1978), i t i s e v i d e n t t h a t t h e r i v e r b o r n e s u s p e n d e d p a r t i c u l a t e m a t e r i a l c o u l d not r e l e a s e s u f f i c i e n t m e t a l t o a c c o u n t f o r t h e o b s e r v e d manganese maxima. F i e l d d a t a f r o m f o u r e s t u a r i n e c r u i s e s were examined t o e v a l u a t e r i v e r b o r n e s u s p e n d e d p a r t i c u l a t e m a t e r i a l as a p o t e n t i a l s o u r c e o f d i s s o l v e d manganese. T a b l e V I I I compares t h e mean p a r t i c u l a t e manganese c o n c e n t r a t i o n i n t h e F r a s e r R i v e r w i t h \" e x c e s s \" d i s s o l v e d manganese, where \" e x c e s s \" d i s s o l v e d manganese r e f e r s t o t h e d i f f e r e n c e between t h e o b s e r v e d amount and t h a t w h i c h would o c c u r as a r e s u l t of c o n s e r v a t i v e m i x i n g of t h e two end members. T o t a l d i s s o l u t i o n of t h e r i v e r b o r n e s u s p e n d e d p a r t i c u l a t e manganese d u r i n g C r u i s e 79-01 c o u l d not a c c o u n t f o r t h e o b s e r v e d d i s s o l v e d manganese e x c e s s . D u r i n g C r u i s e 78-04 t h e mass b a l a n c e c o u l d be a c h i e v e d o n l y w i t h n e a r - c o m p l e t e d i s s o l u t i o n of 83 t h e manganese i n t h e s u s p e n d e d m a t e r i a l . T h i s w o u l d seem t o be u n l i k e l y s i n c e t h e s u s p e n d e d p a r t i c u l a t e f r a c t i o n i n c l u d e s n o t o n l y manganese bound t o o r g a n i c m a t e r i a l and amorphous o x i d e s b u t a l s o r e s i d u a l manganese. D a t a f r o m C r u i s e s 78-16 and 79-12 i n d i c a t e t h a t r i v e r b o r n e s u s p e n d e d p a r t i c u l a t e s c o u l d s u p p l y s u f f i c i e n t manganese t o d e v e l o p t h e o b s e r v e d d i s s o l v e d maxima. An a l t e r n a t i v e method of e x a m i n i n g t h e f i e l d d a t a i n v o l v e s p l o t t i n g t h e r a t i o o f t h e s u s p e n d e d p a r t i c u l a t e manganese c o n c e n t r a t i o n t o t h e s u s p e n d e d p a r t i c u l a t e a l u m i n i u m c o n c e n t r a t i o n v e r s u s s a l i n i t y , ( S h o l k o v i t z , 1 9 7 9 ) . T h i s n o r m a l i z e s t h e d a t a t o a l u m i n i u m , an u n r e a c t i v e c o n s t i t u e n t i n t h e t e r r i g e n o u s m a t e r i a l w h i c h c o n s t i t u t e s t h e b u l k of s u s p e n d e d m a t e r i a l i n t h e F r a s e r E s t u a r y . W h i l e t h i s r a t i o c a n be i n f l u e n c e d by v a r i a t i o n s i n t h e g r a i n s i z e d i s t r i b u t i o n o f t h e s u s p e n d e d p a r t i c u l a t e m a t e r i a l , t h e t o t a l s u s p e n d e d m a t e r i a l b e h a v e s c o n s e r v a t i v e l y i n t h e F r a s e r E s t u a r y d u r i n g n o n - f r e s h e t m o n t h s , and t h e r e f o r e , t h e r e l e a s e o f manganese i n t h e i n i t i a l m i x i n g z o n e w o u l d be r e f l e c t e d i n a d r a s t i c d e c r e a s e o f t h e M n : A l r a t i o . S u s p e n d e d p a r t i c u l a t e M n : A l r a t i o s , p l o t t e d v e r s u s s a l i n i t y , f o r C r u i s e s 78-04, 7 8 - 1 1 , 78-16, 7 9 - 0 1 , and 79-12 a r e shown i n F i g u r e 20a t h r o u g h F i g u r e ,20e, r e s p e c t i v e l y . S a m p l e s w i t h s u s p e n d e d p a r t i c u l a t e a l u m i n i u m c o n c e n t r a t i o n s l e s s t h a n 100 ppb were r e j e c t e d . The s u s p e n d e d p a r t i c u l a t e M n : A l r a t i o s d i s p l a y e d no d i s c e r n i b l e d e c r e a s e a t s a l i n i t i e s c o r r e s p o n d i n g t o t h e d i s s o l v e d manganese p e a k . The M n : A l r a t i o s f o r C r u i s e s 78-04, 7 8 - 1 1 , and 79-01 a r e v e r y s i m i l a r , f a l l i n g i n t h e r a n g e 10 t o 12 x 1 0 \" 3 . D a t a f r o m C r u i s e 78-16 show more s c a t t e r and 84 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) 0 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 20a Cruise 78-04 Figure 20b Cruise 78-11 0 5 10 15 2 0 2 5 30 3 5 SALINITY (PPT) 5 10 15 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 20c Cruise 78-16 Figure 20d Cruise 79-01 85 i n I\u00E2\u0080\u0094 CC C E L O C L 0 5 1 0 1 5 2 0 2 5 3 0 3 5 SALINITY (PPT) Figure 20e Cruise 79-12 FIGURE 20 Particulate Mn:Al ra t i o s plotted versus s a l i n i t y for Cruises 78-04, 78-11, 78-16, 79-01, and 79-12. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t of Georgia; A surface samples in the Fraser Estuary; O bottom samples in the Fraser Estuary. Mn:Al r a t i o s in the s a l t wedge were lower than those in surface waters of comparable s a l i n i t y . This indicates compositional differences between the riverborne suspended par t i c u l a t e material and the resuspended sediment. This w i l l be discussed further in the following section. Data for Cruise 79-12 (Figure 20e) d i f f e r somewhat from data at other times. The aluminium content of the suspended par t i c u l a t e material varies considerably at th i s time (Figure 19), and therefore, Mn:Al ratios exhibit scatter due to va r i a t i o n s in grain size e f f e c t s . This i s p a r t i c u l a r l y evident in the r i v e r i n e samples. The suspended p a r t i c u l a t e Mn:Al r a t i o tends to increase as the s a l i n i t y increases, but higher s a l i n i t y samples occur in the 86 S t r a i t of G e o r g i a . S uspended p a r t i c u l a t e Mn:Al r a t i o s i n t h e s a l t wedge a r e a l s o q u i t e h i g h . D e s p i t e t h e s e d i f f e r e n c e s , t h e r a t i o s i n s u r f a c e w a t e r s i n t h e m i x i n g zone a r e s i m i l a r t o t h o s e o b s e r v e d a t o t h e r t i m e s of the y e a r , even t h o u g h t h e a b s o l u t e c o n c e n t r a t i o n s a r e o r d e r s of m a g n i t u d e g r e a t e r t h a n measured d u r i n g p e r i o d s of l o w e r d i s c h a r g e . F i n a l l y , i f t h e d i s s o l v e d manganese maximum r e s u l t e d f r o m an i n t e r a c t i o n between t h e d i s s o l v e d and p a r t i c u l a t e components, t h e t o t a l manganese s h o u l d behave c o n s e r v a t i v e l y . As i n d i c a t e d i n p l o t s of t o t a l manganese v e r s u s s a l i n i t y ( F i g u r e 21a t h r o u g h F i g u r e 2 1 c ) , c o n s e r v a t i v e b e h a v i o u r was n o t e v i d e n t i n t h e s u r f a c e w a t e r s f o r C r u i s e s 78-04 and 79-01. At b o t h t h e s e t i m e s t h e maximum d i s s o l v e d c o n c e n t r a t i o n c o r r e s p o n d e d t o t h e maximum t o t a l c o n c e n t r a t i o n . The s i g n i f i c a n c e of t h e r e s u l t s f r o m C r u i s e 78-16 ( F i g u r e 21b) i s somewhat l e s s c e r t a i n ; however, t h e d a t a would seem t o s u g g e s t t h a t t h e t o t a l manganese c o n c e n t r a t i o n i n samples from th e i n i t i a l m i x i n g zone l i e above t h e c o n s e r v a t i v e m i x i n g c u r v e . D a t a f o r C r u i s e 79-12 was n o t p l o t t e d due t o t h e o v e r w h e l m i n g c o n t r i b u t i o n of t h e p a r t i c u l a t e f r a c t i o n t o t h e t o t a l manganese d u r i n g t h e f r e s h e t . R i v e r b o r n e s u s p e n d e d m a t e r i a l p o s s i b l y a c t s as a s o u r c e o f d i s s o l v e d manganese d u r i n g t h e f r e s h e t when s u s p e n d e d l e v e l s a r e e x c e p t i o n a l l y h i g h . The s u r f a c e s a m p l e s from S t a t i o n 53 ( C r u i s e 7 9 - 12), w i t h a n o m a l o u s l y h i g h d i s s o l v e d manganese c o n c e n t r a t i o n s , were a s s o c i a t e d w i t h h i g h s u s p e n d e d s e d i m e n t l o a d s . M i l l iman (1980) o b s e r v e d s i m i l a r l y h i g h s u s p e n d e d s e d i m e n t l e v e l s , g r e a t e r t h a n 400 mg/1, i n s u r f a c e o f f s h o r e w a t e r s d u r i n g t h e f r e s h e t w h i c h he a t t r i b u t e d t o t h e 87 LO o -i\ ^ O J CQ J\ Q_ CL \u00E2\u0080\u0094 i n \u00E2\u0080\u0094 z: \u00E2\u0080\u009412 CE 1 \ o 1\u00E2\u0080\u0094 1 in i\u00E2\u0080\u0094i\u00E2\u0080\u0094i\u00E2\u0080\u0094r 0 5 10 15 20 25 30 35 SRLINITY (PPT) Figure 21a Cruise 78-04 0 5 10 15 20 25 30 35 SRLINITY (PPT) Figure 21b Cruise 78-16 i \u00E2\u0080\u0094 r 0 5 10 15 20 25 30 35 SRLINITY (PPT) Figure 21c Cruise 79-01 FIGURE 21 Total manganese data plotted versus s a l i n i t y for Cruises 78-04, 78-16, and 79-01. Symbols: \u00E2\u0080\u00A2 data at a l l depths for Station 15; O data at a l l depths at other stations in the S t r a i t of Georgia; A surface samples in the Fraser Estuary; O bottom samples in the Fraser Estuary. 88 r e s u s p e n s i o n of bottom s e d i m e n t s . The d i s s o l u t i o n or d e s o r p t i o n of manganese from r i v e r b o r n e s u s p e n d e d p a r t i c u l a t e m a t e r i a l would not be l i k e l y t o a c c o u n t f o r t h e manganese e n r i c h m e n t o b s e r v e d a t o t h e r t i m e s of t h e y e a r . E x p e r i m e n t a l e v i d e n c e i n d i c a t e s t h a t d i s s o l v e d manganese c o n c e n t r a t i o n s i n m i x t u r e s of f r e s h and s a l i n e w a t e r s a g r e e w i t h r e s u l t s a n t i c i p a t e d from p h y s i c a l m i x i n g p r o c e s s e s a l o n e . R i v e r i n e s e d i m e n t s u s p e n d e d i n e s t u a r i n e water r e l e a s e d o n l y 1.7 ppm manganese on a d r y w e i g h t b a s i s , i n s u f f i c i e n t t o a c c o u n t f o r t h e d i s s o l v e d manganese peak i n t h e F r a s e r E s t u a r y as s u s p e n d e d s e d i m e n t l o a d s o f t e n f a l l i n t h e range of 10 t o 24 mg/1. A g e o c h e m i c a l mass b a l a n c e between r i v e r b o r n e s u s p e n d e d p a r t i c u l a t e manganese and e s t u a r i n e \" e x c e s s \" d i s s o l v e d manganese c a n n o t be a t t a i n e d a t some t i m e s of t h e y e a r , even w i t h c o m p l e t e d i s s o l u t i o n o f a l l t h e s u s p e n d e d p a r t i c u l a t e manganese. The s u s p e n d e d p a r t i c u l a t e Mn:Al r a t i o does not change s i g n i f i c a n t l y i n t h e e s t u a r y . F i n a l l y , t h e c o n c e n t r a t i o n of t o t a l manganese e x h i b i t s a maximum a t low s a l i n i t y on a t l e a s t two o c c a s i o n s . F o r t h e s e r e a s o n s , t h e e s t u a r i n e bottom s e d i m e n t s must s u p p l y o v e r l y i n g w a t e r s w i t h d i s s o l v e d manganese. E v a n s e t a l . (1977) p r o p o s e d t h a t manganese was r e m o b i l i z e d from s e d i m e n t s f o l l o w i n g t h e r e d u c t i o n of manganese o x i d e s . S h o u l d t h i s be t h e c a s e i n t h e F r a s e r E s t u a r y , one would a n t i c i p a t e e l e v a t e d d i s s o l v e d manganese c o n c e n t r a t i o n s i n b o t h t h e s a l t wedge and i n t e r s t i t i a l w a t e r s of t h e s e d i m e n t s . 89 4.4.4 The R o l e of E s t u a r i n e Bottom S e d i m e n t s i n E s t a b l i s h i n g t h e D i s s o l v e d Manganese Peak In e x a m i n i n g t h e e s t u a r i n e s e d i m e n t s as a p o t e n t i a l s o u r c e of t h e d i s s o l v e d manganese maximum i n t h e s u r f a c e w a t e r s , f i v e a s p e c t s t o be c o n s i d e r e d a r e : (1) d i s s o l v e d manganese c o n c e n t r a t i o n s i n s a l t wedge w a t e r s (2) d i s s o l v e d manganese c o n c e n t r a t i o n s i n t h e i n t e r s t i t i a l w a t e r s o f e s t u a r i n e s e d i m e n t s (3) ammonium o x a l a t e e x t r a c t a b l e manganese i n e s t u a r i n e s e d i m e n t s (4) v a r i a t i o n s i n t h e Mn:Al r a t i o s i n e s t u a r i n e s e d i m e n t s (5) mass b a l a n c e c a l c u l a t i o n s f o r manganese Most s t u d i e s of t h e manganese d i s t r i b u t i o n i n e s t u a r i n e w a t e r s have f o c u s s e d on t h e s u r f a c e w a t e r s . Graham e t a l . (1976) r e p o r t e d e n h a n c e d c o n c e n t r a t i o n s i n b o t t o m w a t e r s compared t o s u r f a c e w a t e r s i n N a r r a g a n s e t t Bay; however, t h e s e few samples were r e s t r i c t e d t o s a l i n i t i e s g r e a t e r t h a n 27 p p t . Bottom w a t e r s i n t h e F r a s e r E s t u a r y were c o l l e c t e d t o d e t e r m i n e t h e manganese d i s t r i b u t i o n t h r o u g h t h e c o m p l e t e s a l i n i t y range a t v a r i o u s t i m e s of t h e y e a r . E l e v a t e d d i s s o l v e d manganese c o n c e n t r a t i o n s were o b s e r v e d i n t h e s a l t wedge on s e v e r a l o c c a s i o n s s u g g e s t i n g t h a t t h e s e d i m e n t s do i n d e e d a c t as t h e s o u r c e of e x t r a n e o u s manganese ( F i g u r e 1 5 ) . A l t h o u g h t h e d i s s o l v e d manganese c o n c e n t r a t i o n i n F r a s e r R i v e r w ater d u r i n g C r u i s e 78-11 ( A p p e n d i x B . l ) r a n g e d from o n l y 1.97 t o 2.93 ppb, f i v e b o t t o m water samples c o l l e c t e d 90 n e a r S t e v e s t o n e x h i b i t e d c o n c e n t r a t i o n s as h i g h as 13.3 ppb a t a s a l i n i t y of 19.580 p p t . The manganese c o n t e n t i n c r e a s e d w i t h s a l i n i t y i n t h e s e b o t t o m s a m p l e s , p o s s i b l y b e c a u s e t h e samples were o b t a i n e d on a f l o o d i n g t i d e s h o r t l y a f t e r t h e t o e of t h e s a l t wedge p a s s e d t h e c o l l e c t i o n s i t e . The few s a l t wedge samples o b t a i n e d d u r i n g C r u i s e 79-12 ( F i g u r e 15d) e x h i b i t e d d i s s o l v e d manganese c o n c e n t r a t i o n s h i g h e r t h a n o b s e r v e d i n s u r f a c e w a t e r s of c o m p a r a b l e s a l i n i t y . T h i s was p a r t i c u l a r l y e v i d e n t f o r b o t t o m w a t e r s w i t h a s a l i n i t y g r e a t e r t h a n 25 p p t . S i m i l a r l y , d u r i n g C r u i s e 78-16 ( F i g u r e 15b) e s t u a r i n e b o t t o m w a t e r s e x h i b i t e d d i s s o l v e d manganese c o n c e n t r a t i o n s h i g h e r t h a n o b s e r v e d i n s u r f a c e w a t e r s of c o m p a r a b l e s a l i n i t y , e s p e c i a l l y a t s a l i n i t i e s g r e a t e r t h a n 20 p p t . W h i l e c o n c e n t r a t i o n s i n t h e s u r f a c e w a t e r s of t h e F r a s e r R i v e r were as h i g h as 18.8 ppb i n t h e p r e v i o u s week, peak manganese c o n c e n t r a t i o n s n e a r 7 ppb were o b s e r v e d d u r i n g t h e c r u i s e a t s a l i n i t i e s r a n g i n g from 2.282 t o 14.295 p p t . In c o m p a r i s o n , b o t t o m w a t e r s i n t h i s s a l i n i t y r a n g e e x h i b i t e d c o n c e n t r a t i o n s between 8 and 10 ppb. I n c l u d e d among t h e s a l t wedge d a t a from C r u i s e 78-16 i s a p a r t i a l t i m e s e r i e s a t S t a t i o n 56.3 ( A p p e n d i x B . 3 ) . The d i s s o l v e d and s u s p e n d e d p a r t i c u l a t e manganese d a t a , p l o t t e d v e r s u s s a l i n i t y , from t h i s s t a t i o n a r e p r e s e n t e d i n F i g u r e s 22a and 22b r e s p e c t i v e l y . Numbers u s e d t o i d e n t i f y w a t e r samples i n t h e f o l l o w i n g d i s c u s s i o n r e f e r t o t h e s e f i g u r e s . On an e b b i n g t i d e , t h e b o t t o m water (1) had a s a l i n i t y o f 26.969 p p t and a d i s s o l v e d manganese c o n c e n t r a t i o n of 3.62 ppb. 91 0 5 10 15 2 0 2 5 3 0 3 5 SRLINITY (PPT) Figure 22a Dissolved Mn FIGURE 22 Dissolved o C Q Q_ C L CO . o CM CC C E C L o \u00E2\u0080\u0094i ( O < $ \ 4 0 2 J 5 and 0 5 10 15 2 0 2 5 3 0 3 5 SRLINITY (PPT) Figure 22b Particulate Mn Particulate Manganese concentrations, plotted versus s a l i n i t y , for bottom waters from Station 56.3, Cruise 78-16 only. The suspended p a r t i c u l a t e manganese content was 6.30 ppb. A sample (2) with a s a l i n i t y of 22.925 ppt had an anomalously high dissolved manganese content (12.6 ppb) and a low suspended p a r t i c u l a t e manganese content (5.60 ppb). Samples co l l e c t e d from the toe of the s a l t wedge during low water slack (3) had s a l i n i t i e s ranging from 8 to 12 ppt with dissolved and suspended p a r t i c u l a t e manganese concentrations of 8 to 10 ppb and 25 to 47 ppb, respectively. As the tide flooded (4), the s a l i n i t y and dissolved manganese returned to former l e v e l s , 26 ppt and 3 ppb, respectively. Suspended p a r t i c u l a t e manganese concentrations i n i t i a l l y remained high, 38 to 49 ppb. However, during an ebbing t i d e on the following day (5), the concentration had decreased to 4.5 ppb. While one sample (2) behaves anomalously, 92 t h e s e d a t a i n d i c a t e t h a t t h e e l e v a t e d d i s s o l v e d manganese c o n c e n t r a t i o n s i n e s t u a r i n e b o t t o m w a t e r s a r e g e n e r a l l y a s s o c i a t e d w i t h s e d i m e n t s r e s u s p e n d e d due t o t i d a l s c o u r i n g u p r i v e r from S t e v e s t o n . T h i s was a l s o o b s e r v e d d u r i n g C r u i s e 78-11, as d i s c u s s e d p r e v i o u s l y . Thus, t h e f i e l d d a t a i n d i c a t e t h a t s i g n i f i c a n t d i s s o l v e d manganese e n r i c h m e n t o c c u r s i n t h e s a l t wedge t h r o u g h o u t t h e y e a r , and t h a t t h e s o u r c e of manganese must l i e i n t h e e s t u a r i n e s e d i m e n t s . The m e t a l may be r e l e a s e d i n t o o v e r l y i n g s a l t wedge w a t e r s by two mechanisms. F i r s t l y , as s u g g e s t e d by Evans e t a l . ( 1 9 7 7 ) , r e d u c t i o n of manganese o x i d e s i n t h e s e d i m e n t s c o u l d c o n c e n t r a t e d i s s o l v e d manganese i n t h e i n t e r s t i t i a l w a t e r s . S u b s e q u e n t r e l e a s e of t h i s i n t e r s t i t i a l water c o u l d t h e n o c c u r by t h e t u r b u l e n t r e s u s p e n s i o n o f t h e s e d i m e n t s . Manganese d i s s o l v e d i n i n t e r s t i t i a l w a t e r s c o u l d a l s o be i n t r o d u c e d i n t o o v e r l y i n g w a t e r s v i a m o l e c u l a r d i f f u s i o n o r b i o t u r b a t i o n . S e c o n d l y , t h e manganese may be d e s o r b e d ( o r d i s s o l v e d ) from t h e e s t u a r i n e s e d i m e n t r e s u s p e n d e d due t o t i d a l s c o u r i n g . S e d i m e n t s from s e v e r a l e s t u a r i e s have been r e p o r t e d t o e x h i b i t e l e v a t e d d i s s o l v e d manganese c o n c e n t r a t i o n s i n i n t e r s t i t i a l w a t e r s ( E v a n s e t a l . , 1977; S a n d e r s , 1978a; E a t o n , 1979; and E l d e r f i e l d e t a l . , 1 9 7 9 ) . Some c o r e s c o l l e c t e d b o t h i n F e b r u a r y 1979 and J a n u a r y 1980 from t h e l o w e r r e a c h e s of t h e F r a s e r E s t u a r y had i n t e r s t i t i a l w a t e r s c o n s i d e r a b l y e n r i c h e d i n d i s s o l v e d manganese. W h i l e some samples a n a l y s e d had d i s s o l v e d manganese c o n c e n t r a t i o n s r a n g i n g from 19 t o 126 ppb o n l y , c o n c e n t r a t i o n s i n t h e ppm range were measured i n t h e i n t e r s t i t i a l w a t e r s o f 93 s e d i m e n t s f r o m S t a t i o n s 56.2 and 59 i n F e b r u a r y 1979 ( A p p e n d i x C.2) and a g a i n f r o m S t a t i o n 56.2 i n J a n u a r y 1980 ( A p p e n d i x C . 5 ) . T h u s , some i n t e r s t i t i a l w a t e r s e x h i b i t d i s s o l v e d manganese l e v e l s e n r i c h e d a s much a s t h r e e o r d e r s o f m a g n i t u d e o v e r c o n c e n t r a t i o n s i n e s t u a r i n e w a t e r s . I n c o r p o r a t i o n o f t h e s e i n t e r s t i t i a l w a t e r s i n t o o v e r l y i n g w a t e r s w o u l d l e a d t o c o n s i d e r a b l e e n r i c h m e n t . A t t h e same t i m e , t h e d i s s o l v e d manganese i n t h e i n t e r s t i t i a l w a t e r s w o u l d be d e p l e t e d . T h u s , i n t e r s t i t i a l w a t e r s may have been removed f r o m t h o s e c o r e s e x h i b i t i n g r e l a t i v e l y low c o n c e n t r a t i o n s o f d i s s o l v e d manganese ( l e s s t h a n 150 p p b ) . The v o l u m e of i n t e r s t i t i a l w a t e r r e q u i r e d t o a c c o u n t f o r t h e d i s s o l v e d manganese e n r i c h m e n t i n t h e s u r f a c e w a t e r s c a n be e s t i m a t e d by a s s u m i n g t h e d i s s o l v e d manganese c o n c e n t r a t i o n i n t h e i n t e r s t i t i a l w a t e r s i s a p p r o x i m a t e l y 10 mg/1 and a d i l u t i o n f a c t o r o f 1 : 1 0 3 w i t h F r a s e r R i v e r w a t e r . S i n c e t h e F r a s e r R i v e r d i s c h a r g e , m e a s u r e d a t M i s s i o n ( F i g u r e 2 ) , i s a p p r o x i m a t e l y \u00E2\u0080\u00A2 9 0 . 0 x 1 0 1 2 1/yr (W a t e r S u r v e y o f C a n a d a , 1978 and 1 9 7 9 ) , 90.0 x 10' 1/yr o f i n t e r s t i t i a l w a t e r w o u l d be n e c e s s a r y . A s s u m i n g t h a t t h e a r e a o f t h e r i v e r c h a n n e l a f f e c t e d by t h e s a l t wedge i s a p p r o x i m a t e l y 15 km by 300 m ( 4 . 5 x 1 0 1 0 c m 2 ) , t h e n e t e x c h a n g e of i n t e r s t i t i a l w a t e r w o u l d be 2.0 l / c m 2 / y r o r 5.5 m l / c m 2 / d a y . T h i s w o u l d c o r r e s p o n d t o a d i s s o l v e d manganese e f f l u x o f 55 / u g / c m 2 / d a y , an o r d e r o f m a g n i t u d e g r e a t e r t h a n d i f f u s i v e f l u x e s r e p o r t e d f o r N a r r a g a n s e t t Bay (Graham e t a l . , 1 9 7 6 ) , C h e s a p e a k e Bay ( E a t o n , 1979) and t h e R h i n e / S c h e l d t E s t u a r i e s ( D u i n k e r e t a l . , 1979b)'. The d i f f u s i v e f l u x (F) o f d i s s o l v e d manganese f r o m F r a s e r 94 E s t u r y s e d i m e n t s , a l o w e r l i m i t f o r t h e r a t e of s u p p l y of manganese, c a n be e s t i m a t e d u s i n g F i c k ' s f i r s t law: F = - ( d c / d x ) D where D, t h e d i f f u s i o n c o e f f i c i e n t , i s t a k e n t o be 2 x 1 0 \" 6 c m 2 / s e c ( E a t o n , 1 9 79). The d i s s o l v e d manganese c o n c e n t r a t i o n i n t h e i n t e r s t i t i a l w a ter i n c r e a s e s t o 11 jug/ml a t a d e p t h of 7.5 cm i n s e d i m e n t s c o l l e c t e d a t S t a t i o n 56.2 i n F e b r u a r y 1979 ( A p p e n d i x C . 2 ) . T h i s g i v e s a d i s s o l v e d manganese f l u x of a p p r o x i m a t e l y 0 . 3 < 49\u00C2\u00B0 26.0' . 124\u00C2\u00B0 27.5' 2 49\u00C2\u00B0 21.8' 124\u00C2\u00B0 09.0* 3< i > 49\u00C2\u00B0 16.6' 123\u00C2\u00B0 48.4' 4 49\u00C2\u00B0 18.5' 123\u00C2\u00B0 42.0' 5 49\u00C2\u00B0 18.5' 123\u00C2\u00B0 34.0' 6 49\u00C2\u00B0 18.5' 123\u00C2\u00B0 27.5' 7 49\u00C2\u00B0 18.5' 123\u00C2\u00B0 21.5' 8 49\u00C2\u00B0 14.2' 123\u00C2\u00B0 21.5' 9 49\u00C2\u00B0 14.2' 123\u00C2\u00B0 27.5' 10 49\u00C2\u00B0 14.2' 123\u00C2\u00B0 34.0' 11 49\u00C2\u00B0 14.2' 123\u00C2\u00B0 42.0' 12 49\u00C2\u00B0 09.9' 123\u00C2\u00B0 34.0' 13 49\u00C2\u00B0 09.9' 123\u00C2\u00B0 27.5' 14 49\u00C2\u00B0 09.9' 123\u00C2\u00B0 21.5' 15 ( 1 > 49\u00C2\u00B0 05.6' 123\u00C2\u00B0 21.8' 16 49\u00C2\u00B0 05.6' 123\u00C2\u00B0 27.5' 17 49\u00C2\u00B0 05.6' 123\u00C2\u00B0 34.0' 18 49\u00C2\u00B0 01.3' 123\u00C2\u00B0 27.5' 19 49\u00C2\u00B0 01.3' 123\u00C2\u00B0 18.5' 20 48 0 57.0' 123\u00C2\u00B0 18.5' 21 48\u00C2\u00B0 54.4' 123\u00C2\u00B0 18.2' 22 48\u00C2\u00B0 57.2' 123\u00C2\u00B0 07.0' 23 48\u00C2\u00B0 54.2' 123\u00C2\u00B0 09.0' 24 48\u00C2\u00B0 54.5' 122\u00C2\u00B0 53.5' 25< 1 > 48\u00C2\u00B0 49.5' 123\u00C2\u00B0 01.0' 26 48\u00C2\u00B0 45.2' 122\u00C2\u00B0 48.0* (1) Complete s t a t i o n s d e p t h p r o f i l e t a k e n a t t h e s e APPENDIX A.2 S t a t i o n P o s i t i o n s i n t h e F r a s e r E s t u a r y S t a t i o n N o r t h West Number L a t i t u d e L o n g i t u d e 50 49\u00C2\u00B0 06.00' 123\u00C2\u00B0 20.0' 51 49\u00C2\u00B0 06.00' 123\u00C2\u00B0 19.30' 52 49\u00C2\u00B0 06.00' 123\u00C2\u00B0 18.78' \u00E2\u0080\u00A2 53 49\u00C2\u00B0 06.25' 123\u00C2\u00B0 18.00' 54 49\u00C2\u00B0 07.18' 123\u00C2\u00B0 16.00' 55 49\u00C2\u00B0 07.93' 123\u00C2\u00B0 14.0' 56 49\u00C2\u00B0 07.44' 123\u00C2\u00B0 12.0' 56.3 49\u00C2\u00B0 07.00' 123\u00C2\u00B0 11.2' 57 49\u00C2\u00B0 06.60' 123\u00C2\u00B0 09.6' 58 49\u00C2\u00B0 06.45' 123\u00C2\u00B0 07.55' 58.3 49\u00C2\u00B0 06.60' 123\u00C2\u00B0 07.45' 59 49\u00C2\u00B0 06.85' 123\u00C2\u00B0 05.5' 60 49\u00C2\u00B0 07.85' 123\u00C2\u00B0 03.85' 61 49\u00C2\u00B0 08.90' 123\u00C2\u00B0 02.0' 62 49\u00C2\u00B0 09.35' 123\u00C2\u00B0 00.1' 63 49\u00C2\u00B0 09.30' 122\u00C2\u00B0 57.1' 64 49\u00C2\u00B0 10.32' 122\u00C2\u00B0 55.35' 65 49\u00C2\u00B0 12.28' 122\u00C2\u00B0 53.88' 67 49\u00C2\u00B0 12.70' 122\u00C2\u00B0 53.20' 70 49\u00C2\u00B0 10.8' 122\u00C2\u00B0 34.0' 142 APPENDIX A.3 Water S a m p l i n g Programme C r u i s e D a t e s S h i p S t r a i t of G e o r g i a F r a s e r E s t u a r y S t n 15 1978 78-01 J a n 9-12 CFAV E n d e a v o u r X X 78-04 Mar 22 CSS V e c t o r X X 78-07 May 29-30 CFAV E n d e a v o u r X X 78-10 Jun 30 CSS V e c t o r X 78-11 J u l 19 B r i s k X 78-12 Aug 10 CSS V e c t o r X 78-13 Sep 21 CSS V e c t o r S t n 1 78-16 Oct 16-20 CSS V e c t o r X X 78-20 Dec 5 CSS V e c t o r X 1979 79-01 J a n 2-5 \u00E2\u0080\u00A2 CSS V e c t o r X X X 79-02 Feb 6 MV P a n d o r a II S t n 25 X 79-05 Mar 13 CSS V e c t o r X 79-07 Apr 4-5 CSS P a r i z e a u S t n 3 X 79-12 May 28-31 CSS V e c t o r X X X 143 APPENDIX A.4 S e d i m e n t S a m p l i n g Programme C o l l e c t i o n Date S t a t i o n D e p t h S a l i n i t y Number (m) ( p p t ) S h i p e k Jan 12/78 51 100 29.925 Grab 52 50 29.825 May 28/79 3 420 30.939 May 29/79 15 212 30.714 May 30/79 53 35 30.027 54 13 28.143 55 11 0.0 56 11 0.0 59 11 0.0 65 11 0.0 G r a v i t y Jan 12/78 15 190 30.225 C o r e r Feb 6/79 15 215 30.631 D i v e r s Feb 29/79 56.2 7 57.2 9 59.0 9 Ja n 22/80 56.2 15 27.143 57.2 13 25.439 59.0 13 23.619 Jan 25/80 60.5 18 21.288 62.2 17 11.579 62.5 16 13.101 67.0 13 0.0 APPENDIX B D a t a Summary of Aqueous Samples APPENDIX B . l D i s s o l v e d C o n s t i t u e n t s 144 C r u i s e S t n D e p t h Temp S a l i n i t y (m) ( \u00C2\u00B0C) ( p p t ) 78-01 1 .0 1 5.98 27.582 78-01 1 .0 5 6.28 27.812 78-01 1 .0 10 7.23 28.659 78-01 1 .0 25 8.04 29.242 78-01 1 .0 50 8.22 29.585 78-01 1 .0 100 8.95 30.233 78-01 1 .0 200 9.23 30.910 78-01 1 .0 300 9.02 31.098 78-01 1 .0 390 N A 1 31.098 78-01 2 .0 1 5.83 27.405 78-01 2 .0 5 5.87 27.405 78-01 3 .0 1 6.73 28.350 78-01 3 .0 5 6.78 28.303 78-01 3 .0 10 6.73 28.309 78-01 3 .0 25 7 .73 28.804 78-01 3 .0 50 8.54 29.744 78-01 3 .0 100 8 . 72 30.321 78-01 3 .0 200 9.19 30.910 78-01 3 .0 300 9.25 31.107 78-01 3 .0 392 N A N A 78-01 4 .0 1 5.73 26.597 78-01 4 .0 5 5.65 26.615 78-01 5 .0 1 5. 57 26.618 78-01 5 .0 5 5.73 26.666 78-01 6 .0 1 6.16 27.588 78-01 6 .0 5 6.40 27.766 78-01 7 .0 1 7.34 28.229 78-01 7 .0 5 7.34 28.607 78-01 8 .0 1 7.41 28.243 78-01 8 .0 5 7.61 28.528 78-01 9 .0 1 5.50 26.731 78-01 9 .0 5 5.65 26.831 78-01 10 .0 1 4.91 26.351 78-01 10 .0 5 4.93 26.344 78-01 11 .0 1 5.01 26.429 78-01 11 .0 5 \u00E2\u0080\u00A25. 05 26.339 78-01 12 .0 1 5.41 26.593 78-01 12 .0 5 5.45 26.596 78-01 13 .0 1 5. 67 26.694 78-01 13 .0 5 5.71 26.738 78-01 14 .0 i 5.72 21.857 78-01 14 .0 5 7.36 28.361 Oxygen PH A l k D i s Mn (ml/1) (meq/1) (ppb) 6.78 7.73 2.03 2.60 6.68 7.73 2.09 1.43 6.07 7.71 2.15 0.82 5. 39 7.72 2.10 0.49 4.86 7.69 2.12 0.47 3.89 7.64 2.21 0.41 3.52 7.64 2.20 1.07 3.30 7.60 2.26 1.78 3.00 7.60 2. 22 6.81 6.85 7.76 2. 04 2.53 6.85 7.77 2 . 00 N A 6.63 7.76 2.04 1.14 6.63 7.78 2.22 2.53 6.60 7.78 2.05 1.21 5.86 7.73 2.06 0.48 5. 01 7.68 2.11 0.39 4.78 7.69 2.13 0.64 3.47 7.62 2 .17 0.52 3.48 7.62 2.19 1.50 N A \" N A N A 7.91 7.01 7 . 76 1.96 4.08 7.08 7 . 77 1.96 N A 7.04 7.76 1.96 4.12 7.00 7 .77 1.96 N A 6.59 7.74 2 . 00 2.25 6.44 7.77 2.00 N A 5.99 7.75 2.03 2.02 5.96 7.74 2.05 N A 6. 06 7.69 2.03 2.65 5.88 7.67 2.04 N A 6.99 7.77 1.97 3.12 6. 93 7.78 1. 97 N A 7.22 7.77 1.93 3.57 7.23 7.78 1.94 N A 7.20 7.74 1.94 3.34 7.26 7.78 2.03 N A 7.01 7.74 1.95 3.22 7.01 7.75 1.95 N A 6.99 7.76 1.97 3.47 7.00 7.74 1.95 N A 6.80 7.70 1.84 9.29 6.15 7.74 2.02 N A (1) N A = No A n a l y s i s 145 C r u i s e 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 78-01 S t n D epth (m) 15. 0 1 15. 0 5 15. 0 10 15. 0 25 15. 0 50 15. 0 100 15. 0 150 15. 0 188 16. 0 1 16. 0 5 17. 0 1 17. 0 5 18. 0 1 18. 0 5 19. 0 1 19. 0 5 20. 0 1 20. 0 5 21. 0 1 21. 0 5 22. 0 1 22. 0 5 23 . 0 1 23. 0 5 24. 0 1 24. 0 5 25. 0 1 25. 0 5 25. 0 10 25. 0 25 25. 0 50 25. 0 100 25. 0 150 25. 0 210 26. 0 1 26. 0 5 51. 0 1 51. 0 100 52. 0 1 52. 0 50 Temp S a l i n i t y (\u00C2\u00B0 C) ( p p t ) 6. 37 26 .014 6. 77 27 .165 7. 45 28 .308 7. 62 29 .636 7. 66 29 .886 7. 51 30 .051 7. 69 30 .138 N A 30 .225 5. 49 25 .630 5. 68 26 .467 5. 44 26 .553 5. 52 26 .613 5. 96 27 .024 6. 12 26 .993 7. 00 27 .937 7. 32 28 .652 5. 83 25 .382 6. 22 26 .736 6. 18 26 .497 6. 28 26 .620 7. 39 29 .706 7. 41 29 .658 7 . 41 29 .555 7. 48 29 .619 7 . 25 29 .213 7. 37 29 .309 6. 94 28 .102 6. 97 28 .059 7 . 57 28 .923 7. 60 29 .604 7. 57 29 .793 7. 54 29 .899 7 . 63 30 .039 N A 30 .143 7. 53 29 .822 7. 57 29 .823 N A 20 .702 N A 29 .925 N A 23 .734 N A 29 .825 Oxygen pH (ml/1) 6.63 7.72 6.36 7.76 6.00 7.73 5.70 7.75 5.55 7.75 5.74 7.78 5.59 7.77 5.23 7.76 7.02 7.76 6.98 7.74 \u00E2\u0080\u00A2 7.04 7.76 7.02 7.76 6.63 7.78 6.63 7.77 6.15 7.74 5.96 7.75 7.00 7.71 6.74 7.73 6.73 7.74 6.68 7.73 5.90 7.73 5.90 7.73 5.89 7.74 5.83 7.73 6.01 7.74 5.94 7.74 6.16 7.72 6.25 7.74 5.76 7.69 5.70 7.70 5.70 7.71 5.75 7.72 5.70 7.73 5.52 7.73 5.79 7.73 5.77 7.74 N A 7.69 N A 7.72 N A 7.69 N A 7.70 A l k D i s Mn meq/1 (ppb) 1.99 8.63 2.04 7.55 2.13 1.96 2.11 1.56 2.10 1.04 2.31 1.84 2.18 1.38 2.14 2.44 1.93 5.52 1.98 N A 1.97 3.80 1.94 N A 1.97 3.26 1.97 N A 2.02 5.01 1.93 N A 1.93 6.76 2.00 4.85 1.77 5.51 1.98 4.66 2.10 2.03 2.18 4.43 2.10 1.99 2.14 1.77 2.09 2.54 2.09 2.22 2.07 2.81 2.03 2.64 2.08 1.39 2.10 2.81 2.15 1.72 2.23 1.76 2.14 1.37 2.13 1.55 2.11 N A 2.12 1.55 1.74 4.16 2.13 3.07 1.84 8.82 2.12 4.87 146 C r u i s e S t n D e p t h Temp S a l i n i t y Oxygen pH A l k D i s Mn (m) C O (ppt) (ml/1) meq/1 (ppb) 78-04 15.0 1 8.66 26.837 6.81 7 .71 N A 4.12 78-04 15.0 5 8.59 27.356 6.52 7 .77 1.99 N A 78-04 15.0 10 8.57 27.379 6.73 7 .72 2.02 1.29 78-04 15.0 20 8.01 28.424 6.90 N A N A N A 78-04 15.0 25 7.87 29.085 5.68 7 .60 2.08 1.33 78-04 15.0 30 7.84 29.551 5.74 N A N A N A 78-04 15.0 50 7.86 29.789 5.60 7 . 63 2.12 0. 37 78-04 15.0 75 7.93 29.951 5.79 N A N A N A 78-04 15.0 100 7.96 30.019 5.73 7 .71 2.13 0.87 78-04 15.0 150 8.09 30.187 5.45 7 .69 2.13 1.01 78-04 15.0 177 N A 30.296 5.55 7 .68 2.16 1.43 78-04 53.0 1 7.44 12.634 7.24 7 . 58 1.52 13.4 78-04 53.0 12 7.41 29.712 5.42 7 . 63 2.10 4.49 78-04 54.0 1 6.74 7.649 8.00 7 . 64 1. 37 14.5 78-04 54.0 16 6.80 28.469 5.72 7 .69 2.06 2.77 78-04 55.0 1 6.81 5.970 8.22 7 .60 1.37 14.8 78-04 55.0 20 6.78 28.392 5.70 7 .60 2.07 2.52 78-04 56.0 1 6.54 5. 364 8.27 7 .58 1.32 17.1 78-04 56.0 13 6.53 27.495 5.84 7 .62 2 . 01 3.28 78-04. 57.0 1 6.54 4.028 8.43 7 .59 1. 20 17.6 78-04 57.0 17 6.33 24.622 6.18 7 .64 1. 92 6.91 78-04 58.0 1 6.59 2.226 8.62 7 . 60 1. 24 16.6 78-04 58.0 17 6.50 23.425 6.18 7 .65 1.88 7.68 78-04 59.0 1 6. 36 2.055 8.60 7 . 60 1.26 16.2 78-04 59.0 6 6.33 21.378 6.43 7 .60 1.82 10.2 78-04 61.0 1 6.09 0.039 8.88 7 .65 1.22 11.4 78-04 61.0 12 6.14 14.444 7 .22 7 . 56 1.59 14.7 78-04 63.0 1 6.05 0.0 8.90 7 .70 1.31 11.1 78-04 63.0 12 6.11 0.0 8.91 7 .66 1.20 13.0 78-04 65.0 1 6.08 0.0 8.91 7 .68 1.18 9.97 78-04 65.0 16 6.11 0.0 8.92 7 .73 1.19 11.7 147 C r u i s e S t n Depth Temp S a l i n i t y Oxygen pH A l k (m) C O (ppt) (ml/1) meq/1 78-07 1. 0 1 13.26 26.165 7.96 8 .32 1.91 78-07 1. 0 5 12.21 26.912 9.16 8 .36 1.95 78-07 1. 0 10 10.80 28.590 6.70 7 .96 2.00 78-07 1. 0 25 9.50 29.445 5.32 '7 .70 2.06 78-07 1. 0 50 8.87 29.717 4. 59 7 .58 2.03 78-07 1. 0 100 8.44 29.979 4.05 7 .51 N A 78-07 1. 0 200 8.95 30.743 3.33 7 .51 2.06 78-07 1. 0 300 9.15 30.942 2 . 24 7 .48 2.08 78-07 1. 0 324 N A 30.966 2.63 7 .48 2.24 78-07 2. 0 1 13.37 26.015 7.71 8 . 30 1.90 78-07 2. 0 5 12.94 26.176 7.80 8 .28 1.87 78-07 3. 0 1 12.60 25.918 9.17 8 .39 1.85 78-07 3. 0 5 12.12 26.810 9. 38 8 .31 1.95 78-07 3. 0 10 10.47 28.627 6.98 7 .97 1.99 78-07 3. 0 25 8.85 29.450 5.06 7 .64 2.06 78-07 3. 0 50 8.33 29.743 4.55 7 . 56 2.00 78-07 3. 0 100 8.35 30.072 4.73 7 .62 2.01 78-07 3 . 0 200 8.79 30.622 4.16 7 .60 2.11 78-07 3. 0 300 9.00 30.872 3.15 7 .51 2.11 78-07 3 . 0 420 N A 30.975 3.73 7 .58 2.13 78-07 4. 0 1 12.09 26.629 9.02 8 .33 1.95 78-07 4. 0 5 11.85 26.806 9.43 8 .32 1.87 78-07 5. 0 1 12.70 24.975 8.29 8 .29 1.85 78-07 5. 0 5 12.19 25.959 8.18 8 . 25 1.90 78-07 6. 0 1 11.91 25.027 7.33 8 .15 1.70 78-07 6. 0 5 10.94 27.183 6.69 7 .99 1.92 78-07 7. 0 1 12.71 18.256 7.49 8 .27 1.35 78-07 7 . 0 5 10.86 26.855 5.89 7 .83 1.91 78-07 8. 0 1 12.61 20.440 7.55 8 .25 1.43 78-07 8. 0 5 10.15 27.992 5.78 7 .83 1.91 78-07 9. 0 1 12.35 25.379 7.45 8 .24 1.81 78-07 9. 0 5 11.61 27.330 7.84 8 .09 1.95 78-07 10. 0 1 12.41 21.641 7.49 8 .25 1.81 78-07 10. 0 5 12.24 27.315 5.96 8 . 02 2.00 78-07 11. 0 1 12.41 25.844 8.26 8 .36 1.59 78-07 11. 0 5 12.45 25.845 8.23 8 .37 1.85 78-07 12. 0 1 12.45 22.995 8.06 8 .27 1.70 78-07 12. 0 5 11.42 27.193 8.66 8 .21 1.95 78-07 13. 0 1 13.79 21.472 7.94 8 .39 1.21 78-07 13. 0 5 13.05 24.537 8.46 8 .35 1.82 78-07 14. 0 1 12.41 21.641 7.49 8 .20 1.63 78-07 14. 0 5 12.24 27.315 5.96 7 .86 1.94 78-07 15. 0 1 13.55 19.574 8.43 8 .40 1.48 78-07 15. 0 5 13.23 21.894 8.60 8 .43 1.65 78-07 15. 0 10 10.21 28.551 6.07 7 .88 1.95 78-07 15. 0 25 8.74 29.519 5.18 7 .69 1.99 78-07 15. 0 50 9.16 29.901 5.18 7 .76 2.04 78-07 15. 0 100 8.69 30.165 5.00 7 .70 2.06 78-07 15. 0 150 8.81 30.552 4.67 7 .68 2.07 78-07 15. 0 180 N A 30.643 4.22 7 .65 2.07 78-07 16. 0 1 12.96 22.082 8.70 8 .39 1.69 78-07 16. 0 5 13.03 22.170 8.66 8 .40 1.69 78-07 17. 0 1 . 12.91 20.224 8.79 8 .42 1.63 D i s Mn (ppb) 2.88 2.26 1.04 0.45 0.25 2. 1 1 6 3 4 1 4 1 4 1 3 2 4 1 4 2 6 2 7 11 4 2 6 6 65 07 0.71 5.70 40 36 84 54 54 61 02 34 30 80 02 80 .41 .54 92 4.96 69 53 66 73 15 58 89 52 83 01 96 55 65 23 45 41 96 95 7 96 14 06 20 2.48 8.57 5.35 5.35 7.03 148 C r u i s e S t n D e p t h Temp S a l i n i t y (m) (\u00C2\u00B0 C) ( p p t ) 78- 07 17. 0 5 11. 54 24.321 78- 07 18. 0 1 12. 87 21.065 78- 07 18. 0 5 12. 75 21.086 78- 07 19. 0 1 11. 33 23.394 78- 07 19. 0 5 9. 96 28.619 78- 07 20. 0 1 12. 17 21.808 78- 07 20. 0 5 12. 02 24.058 78- 07 21. 0 1 N A 21.491 78- 07 21. 0 5 N A 21.552 78- 07 22. 0 1 10. 56 26.270 78- 07 22. 0 5 9. 48 29.215 78- 07 23. 0 1 12. 00 22.639 78- 07 23. 0 5 11. 79 23.447 78- 07 23. 5 1 11. 85 23.665 78- 07 23. 5 5 11. 62 23.891 78- 07 24. 0 1 11. 21 29.219 78- 07 24. 0 5 11. 21 29.222 78- 07 25. 0 1 10. 19 28.132 78- 07 25. 0 5 10. 07 29.274 78- 07 25. 0 10 10. 02 29.473 78- 07 25. 0 25 9. 78 29.697 78- 07 25. 0 50 9. 73 29.854 78- 07 25. 0 100 9. 36 30.306 78- 07 25. 0 150 9. 40 30.428 78- 07 25. 0 218 N A 30.616 78- 07 26. 0 1 9. 49 30.243 78- 07 26. 0 5 9. 49 30.251 78- 07 53. 0 1 N A 0.364 78- 07 54. 0 1 N A 0.271 78- 07 55. 0 1 N A 0.0 78-\u00E2\u0080\u00A207 56. 0 1 N A 0.0 Oxygen pH A l k D i s Mn (ml/1) meq/1 (ppb) 8.03 8.19 1.81 5.73 8.24 8.39 1.63 6.44 8.14 8.39 1.63 6.59 6.43 8.05 1.65 6.50 5.84 7 .86 1.95 4.55 7.99 8.19 1.69 6.21 7.57 8.24 1.79 5.05 7 .94 8.35 1.69 6.50 8.04 8.33 1.69 5.97 6.86 8.00 1.85 1.77 5.76 7.83 1.99 1.24 .7.69 8.22 1.68 6.86 7.94 8.25 1.74 4.91 8.14 8.28 1.72 4.70 8.10 8.28 1.74 4.70 7 .44 8.15 2.00 2.96 7 .49 8.16 2.07 2.96 6.12 7.92 1.95 2.43 6.12 7.91 1.96 2.26 5.99 7.89 2.00 1.69 5.84 7 .88 2.00 1.55 5.77 7.86 2.02 1.41 5.31 7 .81 2.06 0.99 5.34 7.81 2.06 1.02 5.18 7.79 2.07 2.09 5.44 7.82 2.07 1.18 5.45 7.82 2.04 1.36 7.71 7.95 0.82 5.06 7 .78 7.96 0.83 2.81 7 .79 8.01 0.85 3.24 7 .80 8.01 0.81 3.39 1 4 9 C r u i s e S t n D e p t h T e m p S a l i n i t y O x y g e n p H A l k D i s Mn (m) ( \u00C2\u00B0 C ) ( p p t ) ( m l / 1 ) m e q / 1 ( p p b ) 7 8 - 1 0 1 5 . 0 1 1 6 . 1 7 1 4 . 6 2 6 6 . 8 2 N A N A 4 . 4 0 7 8 - 1 0 1 5 . 0 5 1 6 . 2 2 2 3 . 3 9 9 6 . 9 5 N A 1 . 8 5 3 . 3 6 7 8 - 1 0 1 5 . 0 1 0 1 4 . 9 4 2 6 . 7 1 1 6 . 9 7 N A 1 . 9 7 0 . 9 8 7 8 - 1 0 1 5 . 0 2 5 1 0 . 4 7 2 9 . 2 0 5 5 . 2 8 N A 2 . 0 8 0 . 9 3 7 8 - 1 0 1 5 . 0 5 0 9 . 4 5 2 9 . 8 3 7 4 . 6 5 N A 2 . 1 0 0 . 4 9 7 8 - 1 0 1 5 . 0 1 0 0 9 . 2 1 3 0 . 2 1 7 4 . 5 1 N A 2 . 1 2 0 . 5 2 7 8 - 1 0 1 5 . 0 1 5 0 9 . 0 5 3 0 . 5 1 2 4 . 2 7 N A 2 . 1 4 0 . 5 5 7 8 - 1 0 1 5 . 0 1 8 8 N A 3 0 . 6 5 2 4 . 2 2 N A 2 . 1 5 5 . 8 3 7 8 - 1 0 7 0 . 0 0 N A 0 . 0 N A N A 1 . 1 9 4 . 2 8 150 C r u i s e S t n Depth Temp S a l i n i t y Oxygen pH A l k D i s Mn (m) C O ( p p t ) (ml/1) meq/1 (ppb) 78-11 58.0 1 N A 0.0 N A N A 0.96 1.97 78-11 58.0 9 N A 0.0 N A N A 0.96 2.03 78-11 55. 5 1 N A o.o \u00E2\u0080\u00A2 N A N A 1.00 2.93 78-11 55.5 9 N A 19.580 N A N A 1.65 13.3 78-11 56.2 1 N A 0.0 N A N A 0.93 2.78 78-11 56.2 9 N A 18.463 N A N A 1.61 11.0 78-11 56.4 9 N A 4.887 N A N A 1.01 5.96 78-11 56.5 9 N A 10.016 N A N A 1.27 10.3 78-11 56.6 9 N A 2.380 N A N A 0.89 6.71 151 C r u i s e S t n D e pth Temp S a l i n i t y Oxygen PH A l k D i s Mn (m) ( \u00C2\u00B0C) ( p p t ) (ml/1) meq/1 (ppb) 78-12 15. 0 0 19.1 19.917 N A N A N A N A 78-12 15. 0 1 19.12 19.685 6.80 8.39 1.69 3.36 78-12 15. 0 5 16.76 24.026 6. 79 8.24 1.85 2.60 78-12 15. 0 10 13.67 26.749 6.06 8.05 1.99 1.91 78-12 15. 0 20 11.46 29.104 4.82 N A N A N A 78-12 15. 0 25 10.41 29.391 4.58 7.68 2.09 0.67 78-12 15. 0 30 10.09 29.509 4.34 N A N A N A 78-12 15. 0 50 9.37 29.668 4.20 7.58 2.09 0.17 78-12 15. 0 75 9.84 30.057 4.14 7.65 2.11 0.23 78-12 15. 0 100 10.16 30.364 4.10 7.68 2.14 2.81 78-12 15. 0 150 9.70 30.683 4.10 7.69 2.14 0.81 78-12 15. 0 194 N A 30.622 4.01 7.69 2.15 3.44 152 C r u i s e S t n D e p t h Temp S a l i n i t y Oxygen pH A l k D i s Mn (m) ( \u00C2\u00B0C) ( p p t ) ( m l / 1 ) meq/1 (ppb) 78-13 1.0 5 13.19 26.726 6.55 N A N A 0.39 78-13 1.0 10 11.92 28.225 5.06 N A N A 0.28 78-13 1.0 25 10.94 28.807 4.32 N A N A 0.36 78-13 1.0 50 9.91 29.450 3.70 N A N A 0.33 78-13 1.0 100 9.50 30.231 3.55 N A N A 0.0 78-13 1.0 200 9.00 N A 3 .18 N A N A 0.53 78-13 1.0 300 9.03 30.932 3.13 N A N A 0.0 78-13 1.0 351 N A 30.208 3.79 N A N A 3.78 153 C r u i s e Stn Depth Temp S a l i n i t y Oxygen pH A l k (m) (\u00C2\u00B0 C) (ppt) (ml/1) meq/1 78-16 70. 0 0 12. 3 0.0 N A N A 1.17 78-16 70. 0 0 12. 3 0.0 N A 7 .93 1.08 78-16 70. 0 0 12. 3 0.0 N A 7 .86 1.07 78-16 70. 0 0 12. 3 0.0 N A 7 .85 1.06 78-16 70; 0 0 11. 7 0.0 N A 7 .94 1.06 78-16 70. 0 0 11. 5 0.0 N A N A 1.05 78-16 15. 0 1 12. 71 24.416 6.63 8 .00 1.84 78-16 15. 0 5 12. 48 26.739 5.91 7 .87 N A 78-16 15. 0 10 11. 72 29.271 4.96 7 .75 2.00 78-16 15. 0 25 10. 40 N A 3.99 7 .60 2.05 78-16 15. 0 50 9. 88 N A 3.64 7 .52 2.09 78-16 15. 0 75 10. 16 29.937 3.82 7 .61 2.11 78-16 15. 0 100 10. 11 30.143 3.89 7 .60 2.12 78-16 15. 0 150 9. 71 30.752 3.65 7 .59 2.13 78-16 15. 0 196 N A 30.968 3.49 7 .56 2.16 78-16 15. 0 1 12. 86 22.594 6.91 N A N A 78-16 15. 0 5 12. 69 25.527 6.69 N A N A 78-16 15. 0 10 11. 16 28.408 4.49 N A N A 78-16 15. 0 25 10. 12 29.387 3.80 N A N A 78-16 15. 0 50 10. 15 29.769 3.87 N A N A 78-16 15. 0 75 10. 14 29.982 3.96 N A N A 78-16 15. 0 100 9. 93 30.232 3.95 N A N A 78-16 15. 0 150 9. 73 30.706 3.60 N A N A 78-16 15. 0 1 12. 88 24.160 6.94 8 .06 1.82 78-16 15. 0 5 12. 79 25.337 6.88 8 .05 1-.86 78-16 15. 0 10 11. 09 28.297 4.47 7 .67 1.93 78-16 15. 0 25 N A 29.390 3.78 7 .56 2.Q0 78-16 15. 0 50 N A . 29.806 3.80 7 .60 2.04 78-16 15. 0 75 N A . 30.037 3.96 7 .62 2.04 78-16 15. 0 100 N A 30.285 3.86 7 .62 2.06 78-16 15. 0 150 N A 30.747 3.60 7 .58 2.09 78-16 15. 0 187 N A 30.963 3.46 7 .57 2.11 78-16 15. 0 188 N A N A N A N A N A 78-16 50. 0 1 12. 5 21.3.48 6.71 7 .99 1.71 78-16 50. 0 1 12. 9 25.236 6.89 8 .03 1.87 78-16 50. 0 141 10. 0 30.564 3.74 7 .59 2.15 78-16 53. 0 1 11. 8 11.329 6.79 7 .88 1.25 78-16 53. 0 11 10. 2 29.591 4.00' 7 .65 2.09 78-16 53. 0 1 11. 7 7.063 7.00 7 .79 1.10 78-16 53. 0 11 10. 8 29.645 4.03 7 .62 2.06 78-16 53. 0 1 11. 6 6.171 7 . 22 7 .80 0.92 78-16 53. 3 1 11. 6 16.255 6.52 7 .91 1.47 78-16 53. 6 1 11. 8 11.677 6.81 7 .86 1.24 78-16 53. 6 9 10. 3 28.951 4.31 7 .62 2.03 78-16 54. 0 1 11. 9 9.887 6.77 7 .80 1.21 78-16 54. 3 1 11. 9 11.572 6.68 7 .80 1.18 78-16 54. 3 10 10. 3 29.236 4.19 7 .60 2.07 78-16 54. 3 1 12. 0 8.852 6.99 7 .87 1.05 78-16 54. 3 1 12. 0 7.054 7.12 7 .86 1.09 78-16 55. 0 1 11. 3 1.411 7.49 7 .74 1.08 78-16 55. 3 1 11. 7 1.535 7.46 7 .72 1.09 78-16 55. 5 1 11. 3 0.703 7.58 7 .79 1.07 78-16 56. 0 1 11. 3 0.628 7.58 7 .75 1.07 D i s Mn (ppb) 18.8 14.0 8.63 7.89 6.03 4.65 4.64 0. 67 0.70 0. 34 0.25 0.87 0.83 1.56 3.62 N A N N N N N N N 2, 1. A A A A A A A 15 06 0.44 0.33 0.61 1.44 1.03 0.69 4.94 4 3. 86 33 0.67 2.29 5, 2, 6, 2, 6, 4, 4, 2, 5, 5, 2, 5, 6, 5, 6, 5, 50 49 03 42 01 50 88 02 30 57 33 99 87 65 50 52 4.77 154 C r u i s e S t n D e p t h Temp S a l i n i t y (m) (\u00C2\u00B0 C) ( p p t ) 78-16 57 . 0 12 11. 3 24.986 78-16 57. 0 13 11. 3 24.382 78-16 57. 5 13 11. 3 20.762 78-16 56. 3 11 11. 3 26.969 78-16 56. 3 1 11. 3 0.570 78-16 56. 3 11 11. 3 22.925 78-16 56. 3 15 11. 3 20.677 78-16 56. 3 9 11. 3 11.859 78-16 56. 3 8 11. 3 8.303 78-16 56. 3 9 11. 3 11.993 78-16 56. 3 8 11. 3 11.023 78-16 56. 3 7 11. 3 12.114 78-16 56. 3 7 11. 3 12.558 78-16 56. 3 7 11. 3 10.873 78-16- 56. 3 7 11. 3 9.810 78-16 56. 3 8 11. 3 9.531 78-16 56. 3 8 11. 3 8.658 78-16 56. 3 9 . . 11. 3 26.095 78-16 56. 3 9 11. 3 26.740 78-16 56. 3 9 11. 3 26.922 78-16 56. 3 1 11. 3 0.874 78-16 56. 3 1 11. 3 0.874 78-16 56. 3 9 11. 6 26.530 78-16 58 . 3 15 11. 2 23.394 78-16 58. 3 1 12. 0 0.039 78-16 58. 3 13 11. 2 22.820 78-16 58. 3 13 11. 2 22.901 78-16 58. 3 13 11. 2 22.858 78-16 58. 3 14 11. 2 22.813 78-16 58. 3 13 11. 2 21.706 78-16 58. 5 11 11. 2 4 .171 78-16 58 . 5 1 11. 2 0.003 78-16 59. 0 16 11. 2 22.139 78-16 59. 0 1 11. 2 0.0 78-16 60. 0 16 11. 2 0.786 78-16 60. 0 1 11. 2 0.0 78-16 61. 0 12 11. 2 0.0 78-16 61. 0 1 11. 2 0.0 78-16 62. 0 17 11. 2 0.0 78-16 62. 0 1 11. 2 0.0 78-16 63. 0 13 11. 2 0.0 78-16 63. 0 1 11. 2 0.0 78-16 56. 0 1 11. 2 2.282 78-16 55. 0 1 11. 2 6.379 78-16 54. 0 1 11. 2 14.295 78-16 53. 0 1 11. 2 12.697 78-16 51. 0 1 11. 2 15.095 Oxygen pH A l k D i s Mn (ml/1) meq/1 (ppb) 5.18 7.74 1.89 4.59 5.26 7.75 1.84 N A 5.60 7.79 1.66 5.48 4.85 7.72 1.96 3.62 7.56 7.78 N A 10.6 5.23 7.77 1.77 12.6 5.40 7.78 1.63 8.62 6. 21 7.79 1.26 ' 8.55 6.48 7.80 1.24 8.80 6.08 7 .81 1.37 8.29 6.30 7.80 1.27 9.77 6.33 7.80 1.32 8.59 6.19 7.81 1.34 8.75 6.49 7.80 1.30 8.42 6. 50 7.80 1.22 8.27 6.60 7.78 1.22 9.42 6.66 7.78 1.19 9.51 4.84 7.75 1.91 4.95 4.86 7.75 1.93 4.28 4.71 7.75 1.93 4.28 N A N A N A 4.97 7.57 7.83 1.07 4.83 5.41 7.75 1.87 2.67 5.46 7.80 1.76 6.03 7.56 7.82 0.85 6.49 5. 51 7.79 1.71 6.67 5. 51 7.79 1.72 7.00 5.51 7.82 1.72 7.61 5.54 7.82 1.67 6.78 5.57 7.80 1.72 7.58 7.12 7.77 0.93 7.83 7.66 7.86 0.92 N A 5.53 7.79 1.69 N A 7.66 7.84 0.89 5.47 7.52 7.78 0.88 6.40 7.72 7.88 0.86 4.54 7.72 7.80 0.86 3.98 7.71 7.82 0.86 3.98 7.66 7.80 0.85 4.08 7.67 7.79 0.85 4.08 7.73 7.84 0.87 4.65 7.70 7.81 0.87 4.54 7.41 7.74 0.92 7.17 7.26 7.87 0.98 7.11 6.95 7.97 1'.36 6.92 6.90 7.94 1.24 7.64 6.73 7.95 1.35 5.44 155 C r u i s e S t n D e p t h Temp S a l i n i t y Oxygen PH A l k D i s Mn (m) (\u00C2\u00B0C) ( p p t ) (ml/1) meq/1 (ppb) 78-20 15. 0 1 8.64 28.885 5.67 7.71 N A 0.83 78-20 15. 0 5 8.66 28.878 5.58 7.71 N A 0.93 78-20 15. 0 10 8.62 28 .831 5.47 7.70 N A 1.07 78-20 15. 0 25 9.01 30.034 4.30 7.66 N A N A 78-20 15. 0 50 9.07 30.180 4.18 7.67 N A 0.83 78-20 15. 0 75 9.15 30.346 4.18 7.69 N A 0.69 78-20 15. 0 100 8.91 30.418 4.43 7.68 N A 0.69 78-20 15. 0 150 8.42 30.467 4.61 7.70 N A 1.16 78-20 15. 0 186 N A 30.560 4.62 7.70 N A 2.54 156 C r u i s e S t n D e p t h Temp S a l i n i t y (m) (\u00C2\u00B0 C) ( p p t ) 79- 01 1. 0 1 7. 15 29. 636 79- 01 1. 0 5 7. 14 29. 614 79- 01 1. 0 10 7. 18 29. 572 79- 01 1. 0 25 7. 28 29. 6,55 79- 01 1. 0 50 7. 49 29. 733 79- 01 1. 0 75 8. 45 29. 976 79- 01 1. 0 100 9. 32 30. 571 79- 01 1. 0 150 9. 18 30. 841 79- 01 1. 0 200 9. 16 31. 015 79- 01 1. 0 300 9. 29 31. 144 79- 01 1. 0 362 N A 31. 180 79- 01 2. 0 1 7. 28 29. 687 79- 01 3. 0 1 7. 32 29. 623 79- 01 3. 0 5 7. 32 29. 632 79- 01 3. 0 10 7. 36 29. 613 79- 01 3. 0 25 7. 33 29. 601 79- 01 3. 0 50 7. 34 29. 655 79- 01 3. 0 75 8. 73 30. 078 79- 01 3. 0 100 8. 86 30. 530 79- 01 3. 0 200 8. 16 . 30. 769 79- 01 3. 0 300 8. 95 31. 029 79- 01 3 . 0 350 9. 05 31. 084 79- 01 3. 0 422 N A 31. 110 79- 01 4. 0 1 6. 53 29. 213 79- 01 5. 0 1 6. 46 29. 303 79- 01 6. 0 1 6. 49 29. 294 79- 01 7. 0 1 6. 27 29. 003 79- 01 8. 0 1 5. 98 28. 527 79- 01 9. 0 1' 7. 17 29. 355 79- 01 10. 0 1 7. 00 29. 414 79- 01 11. 0 1 7. 31 29. 508 79- 01 12. 0 1 6. 05 28. 788 79- 01 13. 0 1 5. 75 28. 565 79- 01 14. 0 1 6. 15 29. 150 79- 01 15. 0 1 5. 60 28. 368 79- 01 15. 0 5 5. 75 28. 694 79- 01 15. 0 10 5. 95 28. 844 79- 01 15. 0 25 7. 07 30. 092 79- 01 15. 0 50 7. 33 30. 326 79- 01 15. 0 75 7. 27 30. 346 79- 01 15. 0 100 7. 23 30. 348 79- 01 15. 0 150 7. 33 30. 389 79- 01 15. 0 200 N A 30. 447 79- 01 16. 0 1 5. 93 28. 745 79- 01 17. 0 1 5. 78 28. 599 79- 01 18. 0 1 5. 2 27. 989 79- 01 19. 0 1 5. 9 28. 750 79- 01 20. 0 1 5. 7 28. 745 79- 01 21. 0 1 6. 5 29. 050 79- 01 22. 0 1 7. 1 30. 230 79- 01 23. 0 1 7. 1 29. 591 79- 01 24. 0 1 7. 0 30. 316 79- 01 25. 0 1 7. 3 29. 963 Oxygen pH A l k D i s Mn (ml/1) meq/1 (ppb) 6.21 7.69 2.05 0.67 6.19 7.68 2.05 0.64 6.14 7.68 2.05 0.56 6.11 7.69 2.05 0.45 5.98 7.63 2.05 0.49 4.71 7.63 2.07 0.45 3.72 7.60 2.10 0.26 3.53 7.63 2.12 0.60 3.37 7.60 2.13 0.0 3.13 7.58 2.13 1.01 3.27 7.60 2.15 4.79 6.19 7.69 2.05 0.64 6.13 7.70 2.05 0.45 6,07 7.69 2.05 0.67 6.06 7.48 2.06 0.45 6.06 7.70 2.05 0.45 6.08 7.68 2.06 0.45 4.30 7 .64 2.08 0.23 4.13 7 .63 2.11 0.34 4. 68 7.65 2.12 1.57 3 . 63 7.63 2.13 1.61 3.52 7.62 2.14 1.29 3 . 71 7.65 2.14 8.14 6.14 7.74 2.04 1.29 6.26 7 .72 2.04 0.82 6.21 7.73 2.03 0.71 N A 7.73 1.99 1.01 6.04 7.68 2.02 2.11 5.95 7.75 2.05 0.23 6.16 7 .75 2.05 0.0 5.96 7.75 2.02 0.67 6.66 7.72 2.02 1.79 6.72 7.70 2.01 2.11 6.45 7.68 2.03 1.43 6.53 7 .68 1.99 3.37 6. 32 7.69 2.02 3.05 6.14 7.66 2.01 3.19 5.68 7.67 2.08 2.08 5.57 7.67 2.08 1.36 5.65 7.70 N A 1.72 5. 58 7.67 2.11 1.43 5.54 7.66 2.11 1.51 5.40 7.66 2.11 1.90 6.70 7.72 2.03 1.90 6.75 7.71 2.02 2.29 6.81 7.69 2.00 3.15 6.20 7.67 2.05 4.26 6.54 7.68 2.04 3.01 6.31 7.71 . 2.04 1.68 5. 74 8.06 2.12 1.36 5.74 7.68 2.08 2'. 19 5.68 8.10 2.11 1.36 5.16 8.14 2.08 1.18 157 C r u i se 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01. 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 79-01 S t n D e p t h (m) 26.0 1 15.0 1 50.0 1 50.0 1 51.0 1 51.0 1 52.0 1 52.0 1 53.0 1 53.0 1 53.3 1 53.3 1 53.6 1 53.6 1 54.0 1 54.0 1 54.3 1 54.3 1 55.0 1 55.0 1 55. 3 1 55.3 14 55.3 1 55. 5 1 55.5 1 56.0 1 56. 0 10 56.0 1 57.0 1 57.0 9 57.5 1 58.0 1 58.3 1 58.5 1 61.0 1 63.0 0 65.0 0 Temp S a l i n i t y (\u00C2\u00B0 c) ( p p t ) 6. 9 30. 315 5. 1 26. 998 5. 5 27. 962 5. 5 27. 873 6. 1 29. 407 6. 2 28. 659 6. 3 29. 200 6. 3 28. 991 5. 9 28. 346 5. 9 28. 247 5. 8 28. 471 5. 9 28. 507 5. 8 28. 386 6. 0 28. 4 54 6. 40 29. 024 6. 22 28. 899 5. 21 28. 382 5. 30 28. 506 2. 76 16. 490 2. 73 15. 859 2. 07 14. 010 N A 28. 280 2. 30 13. 945 1. 35 12. 820 1. 90 10. 971 2. 38 14. 593 N A 25. 397 2. 40 15. 677 1. 75 10. 018 N A 21. 587 1. 50 8. 804 1 . 30 8. 111 1 . 36 8. 141 0. 92 5. 834 0. 91 1. 193 0. 2 0. 155 0. 2 0. 060 Oxygen pH (ml/1) 5.87 8.15 6.37 7.92 6.32 7.97 6.32 7.93 5.08 7.94 6.10 7.93 N A 7.96 6.10 7.95 6.19 7.94 6.20 7.94 6.13 7.95 6.13 7.98 '6.05 8.00 6.21 7.99 4.61 7.98 6.02 7.95 6.41 7.93 5.05 7.92 7.78 7.89 7.86 7.88 8.04 7.87 5.73 N A 8.07 7.89 8.17 7.87 8.43 7.82 7.93 7.87 6.50 N A 7.78 7.89 8.49 7.85 7.04 N A 8.68 7.83 8.76 7.82 8.72 7.80 9.07 7.76 9.78 7.79 N A 7.82 N A 7.84 A l k D i s Mn meq/1 (ppb) 2.11 1.36 1.99 7.53 2.04 6.70 2.02 6.45 2.07 3.23 2.05 5.27 2.07 3.60 2.06 4.38 2.03 5.23 2.02 5.15 2.04 4.99 2.04 4.38 2.04 5.43 2.05 5.19 2.06 4.22 2.05 4.74 2.03 5.52 2.03 5.19 1.59 16.9 1.57 16.9 1.51 20.6 2.02 9.57 1.49 N A 1.46 19.3 1.38 20.6 1.52 17.7 1.93 8.84 1.57 17.4 1.34 18.6 1.79 10.9 1.30 23.9 1.25 21.9 1.26 20.6 1.19 21.5 1.11 16.5 1.14 14.9 1.15 15.3 158 C r u i s e 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 79-02 S t n D e p t h (m) 15. 0 1 15. 0 5 15. 0 10 15. 0 25 15. 0 50 15. 0 75 15. 0 100 15. 0 150 15. 0 215 25. 0 1 25. 0 5 25. 0 10 25. 0 25 25. 0 50 25. 0 75 25. 0 100 25. 0 150 25. 0 188 Temp S a l i n i t y C C ) ( p p t ) 5.81 27.835 5.83 28.095 6.06 28.804 6.73 29.869 7.40 30.432 N A 30.607 6.76 30.615 6.83 30.667 N A 30.631 7.05 30.071 7.18 30.180 7.36 30.262 7.45 30.314 7.22 30.401 6.92 30.448 6.88 30.560 6.88 30.654 N A 30.834 Oxygen pH (ml/1) 6 .87 N A 6 .76 N A 6 .64 N A 5 .92 N A 5 .32 N A 5 .57 N A 5 .79 N A 5 .73 N A 5 .75 N A 5 .61 N A 5 .61 N A 5 .39 N A 5 .36 N A 5 .49 N A 5 .82 N A 5 .78 N A 5 .73 N A 5 .65 N A A l k D i s Mn meq/1 (ppb) 2.04 3.90 2.04 2.89 2.07 2.57 2.10 2.07 2.14 1.01 2.14 0.51 2.14 2.34 2.14 0.87 2.14 2.30 2.11 1.10 2.11 0.87 2.11 0.46 \u00E2\u0080\u00A22.11 0.46 2.11 0.46 2.12 0.23 2.12 0.14 2.12 0.14 2.13 0.09 159 C r u i se Stn Depth Temp S a l i n i t y Oxygen pH A l k D i s Mn . (m) C O (ppt) (ml/1) meq/1 (ppb) 79-05 15. 0 1 7.25 20.066 7.32 7.73 N A 11.0 79-05 15. 0 5 7.45 28.723 7.08 7.83 N A 2.35 79-05 15. 0 9 7.32 28.971 6.99 7.75 N A 1.84 79-05 15. 0 14 7.09 29.373 5.78 7.76 N A 2.80 79-05 15. 0 29 7.46 30.099 5.62 7.68 N A 1.74 79-05 15. 0 54 7.37 30.300 5.45 7.72 N A 3.12 79-05 15. 0 104 7.32 30.524 5.45 7.72 N A 1.94 79-05 15. 0 154 7.22 30.608 5.09 7.70 N A 2.43 79-05 15. 0 192 N A 30.705 5.01 7.67 N A 6.20 160 C r u i s e Stn Depth Temp S a l i n i t y Oxygen pH A l k D i s Mn (m) (\u00C2\u00B0C) (ppt) (ml/1) meq/1 (ppb) 79-07 3.0 1 8.65 29.314 11.33 8.31 2.06 1.21 79-07 3.0 5 8. 52 29.326 10.68 8.28 2.07 1.26 79-07 3.0 10 7.96 29.505 8.41 8.09 2. 07 1.31 79-07 3.0 25 7.54 29.927 6.02 7.65 2.07 0.50 79-07 3.0 50 7.66 30.260 5.12 7.57 2.07 0.69 79-07 3.0 100 7.40 30.549 5.27 7.60 2.08 0.78 79-07 3.0 200 7.75 30.789 4 .62 7.56 2.09 0.45 79-07 3.0 300 7.34 30.749 5.18 7.61 2.09 0.83 79-07 3.0 350 7.28 30.769 5.12 7 . 60 2.10 3.11 79-07 3.0 372 7.27 30.762 N A N A N A 4.34 79-07 3.0 382 7.29 30.745 N A N A N A 4.96 79-07 3.0 392 7.22 30.769 N A N A N A 8.43 79-07 3.0 396 7.24 30.769 N A N A N A 9.00 79-07 3.0 398 7.23 30.771 N A N A N A 8.76 79-07 3.0 400 7.26 30.770 N A N A N A 9.47 79-07 3.0 401 N A 30.769 5.11 7.59 2.10 8.95 79-07 15.0 1 7.48 10.599 8.72 7.93 1.27 10.7 79-07 15.0 5 8.20 29.161 8.89 8.23 2.06 1.19 79-07 15.0 10 8.08 29.295 8.44 8.10 2.06 0.97 79-07 15.0 25 7.59 29.906 6.13 7.71 2.07 0.31 79-07 15.0 50 7.49 30.130 5.72 7.65 2.09 0. 36 79-07' 15.0 75 7.60 30.265 5.92 7.70 2.10 0.74 79-07 15.0 100 7.58 30.281 5.93 7.69 2.10 0.78 79-07 15.0 150 7.60 30.355 5.84 7.69 2.10 1.59 79-07 15.0 156 7.55 30.374 N A N A N A 3.73 79-07 15.0 166 7.49 30.493 N A N A N A 4.06 79-07 15.0 176 7.34 30.618 N A N A N A 4.91 79-07 15.0 180 7 .34 30.648 N A N A N A 6.43 79-07 15.0 182 7.33 30.671 N A N A N A 5.72 79-07 15.0 184 7.36 30.692 N A N A N A 5.58 79-07 15.0 185 N A 30.716 4.90 7.60 2.11 6. 96 79-07 56. 3 0 5.3 2.676 8.76 7.63 1.01 10.6 161 C r u i s e S t n D e p t h Temp S a l i n i t y Oxygen pH A l k D i s Mn (m) C O ( p p t ) (ml/1) meq/1 (ppb) 79-12 1. 0 1 14.00 28.534 7.08 8.38 N A 0.68 79-12 1. 0 5 13.86 28.574 7.15 8.38 N A 0.72 79-12 1. 0 10 12.23 29.058 6.99 8.29 N A 0.38 79-12 1. 0 25 10.32 29.715 5.83 8.01 N A 0.55 79-12 1. 0 50 8.97 30.061 4.90 7.83 N A 0. 30 79-12 1. 0 100 7.78 30.321 4.82 7.72 N A 0.30 79-12 1. 0 200 7.54 \u00E2\u0080\u00A2 30.723 4.78 7.72 N A 0. 34 79-12 1. 0 300 7.50 30.791 4.57 7.69 N A 1.44 79-12 1. 0 351 N A 30.791 4.47 7.69 N A 3.63 79-12 2. 0 1 14.42 26.012 6.87 8. 38 N A 2.32 79-12 3. 0 1 14.00 24.789 6.89 8.36 N A 3.38 79-12 3. 0 5 13.65 24.779 6.95 8.36 N A 1.10 79-12 3. 0 10 10.89 28.506 6.69 8.31 N A 0.63 79-12 3. 0 25 8.75 29.893 5.22 7.83 N A 0.17 79-12 3. 0 50 8.03 30.138 4.83 7 . 75 N A 0.17 79-12 3. 0 100 7.60 30.409 4.90 N A N A 0. 04 79-12 3. 0 200 7.57 30.710 4.87 7.83 N A 0.25 79-12 3. 0 300 7.44 30.749 4.84 7 . 71 N A 0.76 79-12 3. 0 350 7.41 30.773 4.86 7.70 N A 1.77 79-12 3. 0 420 \u00E2\u0080\u00A2 N A 30.939 4.87 7.77 N A 18.4 79-12 4. 0 1 13.91 26.509 6.99 8.32 N A 1. 94 79-12 5. 0 1 13.90 22.220 6.98 8.29 N A 5.70 79-12 6. 0 1 14.74 16.695 7.54 8.31 N A 9.91 79-12 7. 0 1 17.83 15.177 7.29 8.28 N A 10.7 79-12 8. 0 1 13.64 18.445 7.08 8.19 N A 8.37 79-12 9. 0 1 14.10 18.613 7.68 8.36 N A 8. 62 79-12 10. 0 1 13.91 19.090 7.19 8.28 N A 10.2 79-12 11. 0 1 13.90 27.222 6.65 8.28 N A 1.18 79-12 12. 0 1 15.60 17.705 8.99 8.62 N A 11.0 79-12 13. 0 1 15. 94 15.682 9.59 8.69 N A 13.4 79-12 14. 0 1 15.82 17.500 9.29 8.64 N A 10.6 79-12 15. 0 1 12.13 13.082 6.99 8.09 N A 9.66 79-12 15. 0 5 13.17 24.234 7.09 8.25 N A 3.80 79-12 15. 0 10 11.41 29.418 6.33 8.02 N A 0.46 79-12 15. 0 25 8.60 30.048 5.03 7.73 N A 0.10 79-12 15. 0 50 8.92 30.303 5.25 7.79 N A 0.30 79-12 15. 0 75 8.99 30.382 5.28 7.80 N A 0.46 79-12 15. 0 100 8.85 30.459 5.26 7.80 N A 0.50 79-12 15. 0 150 8.83 30.749 5.06 7.79 N A 1.30 79-12 15. 0 182 7.88 N A N A N A N A 1.70 79-12 15. 0 192 7.80 N A N A N A N A 2.60 79-12 15. 0 202 7.77 N A N A N A N A 2.70 79-12 15. 0 206 7.78 N A N A N A N A 2.90 79-12 15. 0 208 7.77 N A N A N A N A 3.20 79-12 15. 0 210 7.75 N A N A N A N A 3:00 79-12 15. 0 211 N A 30.714 4.92 7. 64 N A 3.80 79-12 16. 0 1 13.46 11.933 7.53 8.35 N A 15.9 79-12 17. 0 1 14.34 20.316 8.79 8.60 N A 8.02 79-12 18. 0 1 13.79 11.959 8.13 8.52 N A 12.1 79-12 19. 0 1 11.45 18.447 6.54 8.07 N A 7.90 79-12 20. 0 1 12.98 17.901 7.12 8.23 N A 10.0 79-12 21. 0 1 13. 54 18.249 7.68 8.36 N A 8.97 79-12 22. 0 1 11.44 26.491 6.58 8.03 N A 3.13 162 C r u i s e S t n Depth (m) 79- 12 23. 0 1 79- 12 24. 0 1 79- 12 25. 0 1 79- 12 25. 0 5 79- 12 25. 0 10 79- 12 25. 0 25 79- 12 25. 0 50 79- 12 25. 0 75 79- 12 25. 0 100 79- 12 25. 0 150 79- 12 25. 0 229 79- 12 26. 0 1 79- 12 15. 0 1 79- 12 15. 0 1 79- 12 50. 0 1 79- 12 51. 0 1 79- 12 51. 0 1 79- 12 51. 0 1 79- 12 51. 0 1 79- 12 52. 0 1 79- 12 52. 0 1 79- 12 52. 0 1 79- 12 53. 0 1 79- 12 53. 0 1 79- 12 53 . 0 1 79- 12 53. 0 1 79- 12 56. 0 1 79- 12 59. 0 1 79- 12 65. 0 1 79- 12 15. 0 1 79- 12 15. 0 1 79- 12 15. 0 1 79- 12 15. 5 1 79- 12 15. 0 100 79- 12 50. 0 1 79- 12 52. 0 1 79- 12 53. 0 1 79- 12 53. 0 11 79- 12 53. 3 13 79- 12 53. 6 13 79- 12 54. 0 14 79- 12 54. 3 14 79- 12 54. 6 11 79- 12 55. 0 11 79- 12 55. 3 12 79- 12 55. 5 11 79- 12 56. 0 13 79- 12 56. 6 10 79- 12 57. 0 13 Temp S a l i n i t y Oxygen ( \u00C2\u00B0C) ( p p t ) (ml/1) 12 .23 25.472 6. 64 10 .48 29.916 6.10 12 .31 22.618 7.12 10 . 50 28.315 6.28 10 .04 29.151 5.99 9 .94 29.530 5.89 9 . 34 30.375 5.42 9 .17 30.573 5.27 9 .17 30.577 5.28 9 .11 30.635 5.24 N A 30.741 5.05 11 .11 25.377 6. 59 12 .51 9.558 8.02 12 .79 11.747 7.79 12 .65 12.842 7.53 12 .10 9.085 7.64 12 .32 12.280 8.18 15 .23 16.544 8.79 15 .44 16.061 9.04 11 .30 7.481 7.79 10 .8 8.176 7.48 10 .4 3.154 7.84 10 .7 0.053 8.06 10 .6 0.563 7.89 10 .8 6.412 7.38 11 . 0 0.054 7.99 11 .20 0.0 8.09 6 .50 0.0 8.29 10 .65 0.0 8.24 13 .75 10.416 8.74 10 .86 10.267 8.59 13 .52 8.986 N A 13 .0 6.294 8.35 9 .01 30.590 N A 12 .90 11.400 8.52 11 .1 5.890 7.76 11 .3 0.0 8.25 9 .0 30.027 5.33 N A 29.610 5.41 N A 28.604 5.59 9 .3 28.143 5. 64 N A 27.887 5.61 N A 14.013 6.83 N A 0.0 8.24 N A 17.801 6.50 N A 0.0 8.24 N A 0.0 8.25 N A 0.0 8.28 N A 0.0 8.28 pH A l k D i s Mn meq/1 (ppb) 8.08 N A 3.87 7.96 N A 2.22 8.15 N A 5.83 7.97 N A 2.62 7.93 N A 2.41 7.93 N A \u00E2\u0080\u00A2 1.94 7.84 N A 1.44 7.82 N A 1.23 7.82 N A 1.44 7.81 N A 1.36 7.73 N A 1.89 8.02 N A 4 .18 8.33 N A 10.5 8.30 N A 12.7 8.23 N A 13.9 8.19 N A 13.8 8.37 N A 14.4 8.58 N A 10.8 8.64 ' N A 10.6 8.18 N A 6. 91 8.04 N A 6.13 7.97 N A 9.30 8.11 N A 16.1 8.00 N A 18. 0 7.94 N A 25.6 8.10 N A 17.4 8.14 N A 6.63 8.06 N A 5.27 8.14 N A N A 8.48 N A 12.1 8.41 N A 12.5 N A N A N A 8.36 N A 9.55 N A N A N A 8.43 N A 14.6 8.08 N A 5.97 8.15 N A 10.1 7.79 N A 6.26 7.80 N A 6.13 7.79 N A 10.7 7.78 N A 12.4 7.79 N A 11.1 7.85 N A 16.7 8.15 N A 5.33 7.86 N A 18.7 8.16 N A 4.83 8.15 N A 4.50 8.17 N A 4.20 8.15 N A N A 163 APPENDIX B.2 P a r t i c u l a t e C o n s t i t u e n t s C r u i s e Stn Depth S a l D i s Mn (m) (ppt) (ppb) 78- 04 53. 0 1 12.634 13 .4 78- 04 53. 0 12 29.712 4 .49 78- 04 54. 0 1 7.649 14 .5 78- 04 54. 0 16 28.469 2 .77 78- 04 55. 0 1 5.970 14 .8 78- 04 55. 0 20 28.392 2 . 52 78- 04 56. 0 1 5.364 17 .1 78- 04 56. 0 13 27.495 3 . 28 78- 04 57. 0 1 4.028 17 .6 78- 04 57. 0 17 24.622 6 .91 78- 04 58. 0 1 2.226 16 .6 78- 04 58. 0 17 23.425 7 .68 78- 04 59. 0 1 2.055 16 .2 78- 04 59. 0 6 21.378 10 .2 78- 04 61. 0 1 0.039 11 .4 78- 04 61. 0 12 14 .444 14 .7 78- 04 63. 0 1 0.0 11 . 1 78- 04 63. 0 12 0.0 13 .0 78- 04 65. 0 1 0.0 9 .97 78- 04 65. 0 16 0.0 11 . 7 P a r t Mn P a r t Fe P a r t A l TSP (ppb) (ppb) (ppb) (mg/1) 3.84 274 298 3.38 199 292 4.45 347 384 3.13 158 256 4.69 371 400 3.51 202 303 4.87 378 446 5.24 318 436 4.79 370 405 14.5 979 1440 5.18 380 424 5.47 375 512 5.15 412 446 4.64 325 423 6.76 710 557 5.55 377 493 9.41 558 679 8.67 537 701 10.2 606 789 10.6 654 849 164 C r u i s e Stn Depth S a l D i s Mn P a r t Mn P a r t Fe P a r t A l TSP (m) (ppt) (ppb) (ppb) (ppb) (ppb) 78- 11 58. 0 1 0.0 1.97 53.4 2810 5050 78- 11 58. 0 9 0.0 2.03 72.2 4190 6770 78- 11 55. 5 1 0.0 2.93 47.9 2540 4430 78- 11 55. 5 9 19.580 13.3 96.6 5780 9310 78- 11 56. 2 1 0.0 2.78 45.9 2580 4490 78- 11 56. 2 9 18.463 11.0 56. 9 3160 5410 78- 11 56. 4 9 4.887 5.96 100.0 5370 9100 78- 11 56. 5 9 10.016 10.3 107.0 5640 9730 78- 11 56. 6 9 2.380 6.71 103.1 6240 10260 165 C r u i s e Stn Depth S a l D i s Mn P a r t Mn P a r t Fe P a r t A l TSP (m) (ppt) (ppb) (ppb) (ppb) (ppb) (mg/1) 78-16 70.0 0 0.0 18.8 13 . 5 932 1270 78-16 70.0 0 0.0 14.0 19 .3 1134 1610 78-16 70.0 0 0.0 8 .63 15 .5 921 1340 78-16 70.0 0 0.0 7.89 13 .6 772 1140 78-16 70.0 0 0.0 6.03 12 .4 650 961 78-16 70.0 0 0.0 4.65 12 .6 625 907 78-16 15.0 1 24.416 4.64 3 . 00 130 223 2. 29 78-16 15.0 5 26.739 0.67 1 .70 45. 4 73 78-16 15.0 10 29.271 0.70 0 .70 4. 0 4 78-16 15.0 25 N A 0.34 0 .70 1. 7 1 78-16 15.0 50 N A 0.25 1 .10 7. 4 11 78-16 15.0 75 29.937 0.87 1 .00 25. 7 42 78-16 15.0 100 30.143 0.83 1 .10 24. 9 40 78-16 15.0 150 30.752 1.56 1 .40 31. 5 57 78-16 15.0 196 30.968 3.62 5 .60 326 475 6. 17 78-16 15.0 1 24.160 2.15 1 .60 42. 2 61 78-16 15.0 5 25.337 1.06 1 .10 9. 8 20 78-16 15.0 10 28.297 0.44 0 .60 3. 3 7 78-16 15.0 25 29.390 0.33 0 .80 3. 3 3 78-16 15.0 50 29.806 0.61 1 .10 11. 3 15 78-16 15.0 75 30.037 1.44 1 . 30 37. 3 60 78-16 15.0 100 30.285 1.03 1 .10 26. 3 40 78-16 15.0 150 30.747 0.69 1 . 50 25. 0 27 78-16 15.0 187 30.963 4.94 2 . 60 129 212 3. 59 78-16 15.0 188 N A 4.86 3 . 20 160 274 78-16 50.0 1 21.348 3.33 2 .90 132 232 3. 67 78-16 50.0 1 25.236 0.67 1 .10 9. 4 13 2. 00 78-16 50.0 141 30.564 2.29 2 .80 156 275 4. 59 78-16 53.0 1 11.329 5.50 6 .50 346 512 6. 44 78-16 53.0 11 29.591 2.49 4 .40 244 442 7. 53 78-16 53.0 1 7.063 6.03 7 .20 407 558 7. 67 78-16 53.0 11 29.645 2.42 3 .70 202 384 5. 60 78-16 53.0 1 6.171 6.01 7 . 50 421 583 7. 44 78-16 53.3 1 16.255 4.50 5 .90 320 471 6. 25 78-16 53.6 1 11.677 4.88 6 .20 329 490 6. 12 78-16 53.6 9 28.951 2.02 4 .90 296 433 7. 20 78-16 54.0 1 9.887 5.30 6 .40 349 510 6. 28 78-16 54.3 1 11.572 5.57 5 .70 317 471 5. 75 78-16 54 . 3 10 29.236 2.33 5 .40 327 494 6. 40 78-16 54.3 1 8.852 5.99 7 .40 368 533 6. 41 78-16 54.3 1 7.054 6.87 7 .00 356 491 6. 92 78-16 55.0 1 1.411 5.65 10 .0 609 857 9. 92 78-16 55.3 1 1.535 6.50 11 .6 746 1050 12. 71 78-16 55.5 1 0.703 5.52 11 .8 684 996 12. 24 78-16 56.0 1 0.628 4.77 12 .1 703 914 13. 71 78-16 57.0 12 24.986 4.59 13 .1 905 1370 19. 88 78-16 57.0 13 24.382 N A 11 .7 780 1240 15. 20 78-16 57.5 13 20.762 5.48 19 .9 1320 1870 31. 28 78-16 56.3 11 26.969 3.62 6 .30 431 569 8. 33 78-16 56.3 1 0.570 10.6 21 .1 1870 2030 24. 08 78-16 56. 3 11 22.925 12.6 5 .60 501 583 8. 75 78-16 56.3 15 20.677 8 .62 28 .7 1750 2730 42. 71 166 C r u i s e S t n D e p t h S a l D i s Mn P a r t Mn P a r t Fe P a r t A l TSP (m) ( p p t ) (ppb) (ppb) (ppb) (ppb) (mg/1) 78-16 56. 3 9 11. 859 8 .55 46.6 2870 4700 56. 08 78-16 56. 3 8 8. 303 8 .80 45.6 2930 5070 78-16 56. 3 9 11. 993 8 .29 45.5 2830 4680 62. 86 78-16 56. 3 8 11. 023 9 .77 45.9 2870 4560 62. 82 78-16 56. 3 7 12. 114 8 .59 33.7 2170 3300 47. 00 78-16 56. 3 7 12. 558 8 .75 30.4 1790 3240 40. 12 78-16 56. 3 7 10. 873 8 .42 26.6 1620 2750 35. 32 78-16 56. 3 7 9. 810 8 . 27 24.1 1510 24 2.0 30. 24 78-16 56. 3 8 9. 531 9 .42 28.0 1710 2920 35. 48 78-16 56. 3 8 8. 658 9 .51 34.0 2070 3440 43. 67 78-16 56. 3 9 26. 095 4 .95 49.0 3100 5230 64. 16 78-16 56. 3 9 26. 740 4 .28 37.8 2440 4220 51. 32 78-16 56. 3 9 26. 922 4 .28 39.7 2460 4350 56. 36 78-16 56. 3 1 0. 874 5 . 61 18.3 1280 \u00E2\u0080\u00A2 1780 20. 16 78-16 56. 3 1 0. 874 4 .97 16.9 1110 1770 78-16 56. 3 1 0. 874 4 .83 8.60 1160 1680 78-16 56. 3 9 26. 530 2 .67 4.50 236 380 5. 60 78-16 58. 3 15 23. 394 6 . 03 11.8 798 1130 14. 48 78-16 58. 3 1 0. 039 6 .49 12.2 7.03 917 11. 96 78-16 58. 3 13 22. 820 6 .67 9.80 637 954 11. 24 78-16 58. 3 13 22. 901 7 .00 10.7 713 1090 14. 24 78-16 58. 3 13 22. 858 7 .61 9.40 630 1050 12. 60 78-16 58. 3 14 22. 813 6 .78 9.80 685 1120 14. 12 78-16 58. 3 13 21. 706 \u00E2\u0080\u00A27 .58 8.80 598 981 12. 64 78-16 58. 5 11 4. 171 7 .83 10.3 582 735 11. 25 78-16 58. 5 1 0. 003 N A 13.1 698 1080 12. 49 78-16 59. 0 16 22. 139 N A 6.90 399 592 7. 71 78-16 59. 0 1 0. 0 5 .47 11.5 594 828 11. 12 78-16 60. 0 16 0. 786 6 .40 14.9 842 1120 16. 20 78-16 60. 0 1 0. 0 4 .54 14.7 789 1160 14. 69 78-16 61. 0 12 0. 0 3 .98 16.6 911 1320 18. 32 78-16 61. 0 1 0. 0 3 .98 16.1 902 1290 14. 04 78-16 62. 0 17 0. 0 4 .08 14.8 798 1170 15. 84 78-16 62. 0 1 0. 0 4 .08 11.9 636 943 12. 96 78-16 63. 0 13 0. 0 ' 4 .65 14.7 812 1190 14. 75 78-16 63. 0 1 0. 0 4 .54 14.1 711 1100 13. 00 78-16 56. 0 1 2. 282 7 .17 11.4 734 1010 11. 80 78-16 55. 0 1 6. 379 7 .11 10.5 679 980 11. 43 78-16 54. 0 1 14. 295 6 .92 4.40 337 495 5. 76 78-16 53. 0 1 12. 697 N A N A N A N A 6. 68 78-16 51. 0 1 15. 095 5 .44 2.70 128 215 5. 56 167 C r u i s e Stn Depth S a l D i s Mn P a r t Mn P a r t Fe P a r t A! (m) (ppt) (ppb) (ppb) (ppb) (ppb) 79-01 15.0 1 26.998 7.53 1.60 124 182 79-01 50.0 1 27.962 6.70 1.50 111 168 79-01 50.0 1 27.873 6.45 1.60 124 192 79-01 51.0 1 29.407 3.23 0.90 60. 1 109 79-01 51.0 1 28.659 5.27 1.20 96. 5 142 79-01 52.0 1 29.200 3.60 1.00 75. 4 112 79-01 52.0 1 28.991 4.38 1.20 87. 8 141 79-01 53.0 1 28.346 5.23 1.20 93. 8 147 79-01 53.0 1 28.247 5.15 1.10 89. 6 142 79-01 53.3 1 28.471 4.99 1.30 98. 0 153 79-01 53.3 1 28.507 4.38 1.60 114 161 79-01 53.6 1 28.386 5.43 1.70 101 153 79-01 53.6 1 28.454 5.19 1. 50 97. 2 158 79-01 54.0 1 29.024 4.22 1.50 I l l 181 79-01 54.0 1 28.899 4 . 74 1.10 97. 1 153 79-01 54.3 1 28.382 5. 52 1.10 96. 3 145 79-01 54.3 1 28.506 5.19 1.10 96. 3 148 79-01 55.0 1 16.490 16.9 5.40 295 549 79-01 55.0 1 15.859 16.9 5.50 355 526 79-01 55.3 1 14.010 20.6 6.08 363 488 79-01 55. 3 14 28.280 9. 57 22.3 1400 2270 79-01 55.3 1 13.945 N A 5.38 414 577 79-01 55.5 1 12.820 19.3 5.57 389 561 79-01 55.5 1 10.971 20.6 5.55 393 507 79-01 56.0 1 14.593 17.7 6.10 417 548 79-01 56.0 10 25.397 8.84 16.9 1110 1710 79-01 56. 0 1 15.677 17.4 6. 55 447 595 79-01 57 . 0 1 10.018 18.6 9.21 653 915 79-01 57.0 9 21.587 10.9 17.3 1160 1790 79-01 57.5 1 8.804 23.9 8.28 574 824 79-01 58.0 1 8.111 21. 9 7.38 520 679 79-01 58.3 1 8.141 20.6 8.07 563 784 79-01 58.5 1 5.834 21.5 7.48 521 721 79-01 61.0 1 1.193 16.5 8.64 564 788 79-01 63.0 0 0.155 14.9 11. 3 659 877 79-01 65. 0 0 0.060 15.3 7.79 467 465 TSP (mg/1) 168 C r u i se Stn Depth S a l D i s Mn P a r t Mn P a r t Fe P a r t A! (m) (ppt) (ppb) (ppb) (ppb) (ppb) 79-07 3.0 1 29.314 1.21 0.70 13.3 22 79-07 3.0 5 29.326 1.26 0.70 14.7 26 79-07 3.0 10 29.505 1.31 0.70 9.8 18 79-07 3.0 25 29.927 0.50 0.90 4.5 4 79-07 3.0 100 30.549 0.78 1.00 9.4 13 79-07 3.0 200 30.789 0.45 2.70 10.7 4 79-07 3.0 300 30.749 0.83 3.30 11.9 14 79-07 3.0 350 30.769 3.11 4.10 15.8 23 79-07 3.0 382 30.745 4.96 4.50 21.0 28 79-07 3.0 392 30.769 8.43 8.70 25.9 27 79-07 3.0 396 30.769 9.00 8.80 33.3 34 79-07 3.0 398 30.771 8.76 9.20 31. 5 45 79-07 3.0 400 30.770 9.47 9.40 33.1 51 79-07 3.0 401 30.769 8.95 10.5 37.6 60 79-07 15.0 1 10.599 10.7 5.40 319 414 79-07 15.0 5 29.161 1.19 0.30 5.0 11 79-07 15.0 10 29.295 0.97 0.30 1. 7 4 79-07 15.0 25 29.906 0. 31 0.60 2.8 2 79-07 15.0 50 30.130 0.36 1.00 11.3 14 79-07 15.0 75 30.265 0.74 1.30 39.0 74 79-07 15.0 100 30.281 0.78 1.20 26.1 37 79-07 15.0 150 30.355 1.59 4.40 48.5 78 79-07 15.0 156 30.374 3.73 1.90 84. 3 132 79-07 15.0 166 30.493 4.06 1.60 79-2 128 79-07 15.0 176 30.618 4.91 1.90 68.5 103 79-07 15.0 180 30.648 6.43 2.30 91.2 118 79-07 15.0 182 30.671 5.72 1.90 70.8 111 79-07 15.0 184 30.692 5. 58 2.20 79-3 122 79-07 15.0 185 30.716 6.96 2.40 80.3 142 79-07 56.3 0 2.676 10.6 10.2 545 834 TSP (mg/1) 169 C r u i s e S t n D e p t h S a l D i s Mn P a r t Mn P a r t Fe P a r t A l TSP (m) ( p p t ) (ppb) (ppb) (ppb) (ppb) (mg/1) 79-12 1. 0 1 28. 534 0. 68 2. 00 20. 7 64 1. 76 79-12 2. 0 1 26. 012 2. 32 1. 70 0. 0 1 79-12 3. 0 1 24. 789 3. 38 1. 30 0. 0 11 79-12 4. 0 1 26. 509 1. 94 1. 40 0. 0 0 79-12 5. 0 1 22. 220 5. 70 1. 10 7. 1 24 79-12 6. 0 1 16. 695 9. 91 4. 50 146 283 79-12 7 . 0 1 i s : 177 10. 7 5. 60 263 457 79-12 8. 0 1 18. 445 8. 37 3. 10 117 209 79-12 9. 0 1 18. 613 8. 62 1. 90 74. 0 134 79-12 10. 0 1 19. 090 10. 2 3 . 00 127 205 79-12 11. 0 1 27. 222 1. 18 1. 20 0. 0 0 79-12 12. 0 1 17. 705 11. 0 1. 80 76. 1 159 79-12 13. 0 1 15. 682 13. 4 5. 20 260 468 79-12 14. 0 1 17 . 500 10. 6 2. 30 85. 6 197 79-12 15. 0 1 13. 082 9. 66 19. 0 69. 7 1750 79-12 16. 0 1 11. 933 15. 9 23. 7 101 2130 79-12 17. 0 1 20. 316 8. 02 2. 10 84. 6 180 79-12 18. 0 1 11. 959 12. 1 13. 50 624 1180 79-12 19. 0 1 18. 447 7. 90 13. 8 647 1170 79-12 20. 0 1 17. 901 10. 0 9. 60 381 719 79-12 21. 0 1 18. 249 8. 97 5. 60 287 491 79-12 22. 0 1 26. 491 3. 13 5. 20 231 334 79-12 23. 0 1 25. 47 2 3. 87 3. 40 181 249 79-12 24. 0 1 29. 916 2. 22 0. 90 26. 7 68 79-12 25. 0 1 22. 618 5. 83 3. 20 119 211 5. 10 79-12 26. 0 1 25. 377 4. 18 1. 40 45. 0 88 79-12 15. 0 1 9. 558 10. 5 30. 4 102 2670 27. 2 79-12 15. 0 1 11. 747 12. 7 19. 10 51. 3 1640 19. 4 79-12 50. 0 1 12. 842 13. 9 11. 60 508 989 12. 5 79-12 51. 0 1 9. 085 13. 8 25. 4 93. 2 2270 26. 9 79-12 51. 0 1 12. 280 14. 4 8. 40 364 634 9. 06 79-12 \u00E2\u0080\u00A2 51. 0 1 16. 544 10. 8 4 . 60 227 392 8. 34 79-12 51. 0 1 16. 061 10. 6 5. 00 198 359 8. 57 79-12 52. 0 1 7. 481 6. 91 63. 9 2960 5560 87. 1 79-12 52. 0 1 8. 176 6. 13 91. 3 333 8310 117. 79-12 52. 0 1 3. 154 9. 30 232 10700 20500 287. 79-12 53. 0 1 0. 053 16. 1 301 8180 13700 540. 79-12 53. 0 1 0. 563 18. 0 248 13600 22200 530. 79-12 53. 0 1 6. 412 25. 6 . 256 13700 22900 600. 79-12 53. 0 1 0. 054 17. 4 286 13500 25200 368. 79-12 56. 0 1 0. 0 6. 63 183 8150 16100 220. 79-12 59. 0 1 0. 0 5. 27 233 11000 21100 274. 79-12 65. 0 1 0. 0 N A 188 10900 11500 209. 79-12 15. 0 1 10. 416 12. 1 13. 6 576 1120 14. 7 79-12 15. 0 1 10. 267 12. 5 16. 1 673 1290 17. 5 79-12 15. 0 1 8. 986 N A 15. 2 636 1190 79-12 15. 5 1 6. 294 9. 55 54. 6 2450 2280 63. 1 79-12 15. 0 100 30. 590 N A 2. 00 72. 0 140 79-12 50. 0 1 11. 400 14. 6 11. 9 520 968 13. 3 79-12 52. 0 1 5. 890 5. 97 140 6780 9540 171. 79-12 53. 0 1 0. 0 10. 1 134 7730 6440 186. 79-12 53. 0 11 30. 027 6. 26 13. 9 566 1140 15. 6 170 C r u i s e Stn Depth S a l D i s Mn P a r t Mn P a r t Fe P a r t A l TSP (m) (ppt) (ppb) (ppb) (ppb) (ppb) (mg/1) 79- 12 53. 3 13 29. 610 6 .13 151 6870 8410 236. 79- 12 53. 6 13 28. 604 10 .7 334 21500 35900 984. 79- 12 54. 0 14 28. 143 12 .4 790 37800 34600 1530. 79- 12 54. 3 14 27. 887 11 .1 525 25600 28100 929. 79- 12 54. 6 11 14. 013 16 .7 771 53200 20100 946. 79- 12 55. 0 11 0. 0 5 . 33 207 8830 17200 285. 79- 12 55. 3 12 17. 801 18 .7 1360 63600 63700 2400. 79- 12 55. 5 11 0. 0 4 .83 17 5 7020 12000 296. 79- 12 56. 0 13 0. 0 4 . 50 225 9630 16700 246. 79- 12 56. 6 10 0. 0 N A N A N A N A 309. 171 APPENDIX B.3 Time S e r i e s of Bottom Waters C o l l e c t e d a t S t a t i o n 56.3, C r u i s e 78-16 (Oct. 1978) Date Time Depth S a l D i s Mn P a r t Mn P a r t Fe P a r t A l TSP (m) (ppt) (ppb) (ppb) (ppb) (ppb) (mg/1) 18 1115 11 26. 969 3. 62 6. 30 431 569 8 .33 18 11 22. 925 12. 6 5.60 501 583 8 .75 18 1350 15 20. 677 8. 62 28.7 1750 2730 42 . 71 18 1425 9 11. 859 8. 55 46.6 2870 4700 56 .08 18 1431 8 8. 303 8. 80 45.6 2930 5070 18 1441 9 11. 993 8. 29 45.5 2830 4680 62 .86 18 1500 8 11. 023 9. 77 45.9 2870 4560 62 .82 18 1505 7 12. 114 8. 59 33.7 2170 3300 47 .00 18 1522 7 12. 558 8. 75 30.4 1790 3240 40 .12 18 1539 7 10. 873 8. 42 26.6 1620 2750 35 . 32 18 1556 7 9. 810 8. 27 24.1 1510 2420 30 .24 18 1617 8 9. 531 9. 42 28.0 1710 2920 35 .48 18 1624 8 8. 658 9. 51 34.0 2070 3440 43 .67 18 1739 9 26. 095 4. 95 49.0 3100 5230 64 .16 18 1753 9 26. 740 4. 28 37.8 2440 4220 51 . 32 18 1804 9 26. 922 4. 28 39.7 2460 4350 56 .36 19 1151 9 26. 530 2. 67 4.50 236 380 5 .60 APPENDIX B.4 T i d a l Data f o r S t e v e s t o n and Deas I s l a n d d u r i n g C r u i s e 78-16 (Oct. 1978) Date Oct. 18, 1978 Oct. 19, 1978 H e i g h t a t Time a t Time a t A t k i n s o n S t e v e s t o n Deas I s l a n d (m) 1.1 0140 0225 4.4 0805 0810 2.7 1400 1430 4.2 1910 1920 1.1 0215 0300 4.4 0900 0905 2.8 1445 1505 4.0 1950 2000 172 APPENDIX C Summary of Sediment Data \u00E2\u0080\u00A2APPENDIX C l D i s s o l v e d Manganese P r o f i l e s i n I n t e r s t i t i a l Waters - S t a t i o n 15 Sediments C o l l e c t e d Jan 12/78 and Feb 6/79 78-] L-15 79-: 1-15 Core Di s s o l v e d Core Di s s o l v e d S e c t i o n Manganese Sect i o n Manganese (cm) (ppm) (cm) (ppm) 0-3 1.82 0-3 3.02 3-6 3.85 3-6 4.81 6-9 3.15 6-9 3.19 9-12 2.87 9-12 2.95 12-15 2.64 12-15 2.58 15-18 2.59 15-18 2.12 18-21 2.36 18-21 1.61 21-24 2.17 24-27 1.28 24-27 2.02 \u00E2\u0080\u00A231-34 1.01 27-30 1.98 38-41 1.12 30-33 1.88 45-48 0.85 33-36 1.85 52-55 1.21 36-39 1.64 39-42 1.51 42-45 1.19 45-48 0.99 48-51 0.71 173 APPENDIX C.2 D i s s o l v e d Manganese P r o f i l e s i n I n t e r s t i t i a l Waters of E s t u a r i n e Sediments C o l l e c t e d Feb 29/79 S t a t i o n 56 2 57 2 59 0 Depth D i s Mn Depth D i s Mn Depth D i s Mn (cm) (ppm) (cm) (ppm) (cm) (ppm) 0-3 4.61 0-3 0.077 0-3 35.5 3-6 7 . 50 3-6 0.048 3-6 37.0 6-9 10.9 6-9 0.126 6-9 9-12 6.58 9-11 0.087 10-13 25.0 12-15 4.82 11-14 0.019 13-16 19.0 15-19 3.28 14-17 0.019 16-19 7.7 19-22 6.30 17-20 0.048 19-22 5.6 22-26 6.27 174 APPENDIX C.3 Complete A n a l y s e s of E s t u a r i n e Sediment from C r u i s e 79-12 (May 1979) C.3.1 T o t a l A c i d D i g e s t i o n F o l l o w i n g an Ammonium O x a l a t e E x t r a c t i o n S t a t i o n Ammon iurn O x a l a t e L e a c h a b l e Mn (ppm) Ammonium O x a l a t e R e s i s t a n t Mn (ppm) T o t a l Manganese (ppm) Ammonium O x a l a t e R e s i s t a n t A l (%) 3 804 7.30 15 70.8 275 346 4.74 53 153 371 524 5.44 54 74.0 477 551 5.48 55 72.2 519 591 5.03 56 102 366 468 5.29 59 130 350 480 5.48 65 125 384 509 5. 21 C.3.2 T o t a l A c i d D i g e s t i o n Only S t a t i o n Mn A l Am. Ox. Res. (ppm) (%) A l as % of T o t a l A l 3 1840 10.4 70 15 330 7.22 66 53 514 8.72 62 54 498 6.99 78 55 542 5.55 95 56 425 5.41 98 59 447 6.07 89 65 477 5.86 89 175 APPENDIX C.4 D i s s o l v e d Manganese and S a l i n i t y P r o f i l e s i n I n t e r s t i t i a l Waters of E s t u a r i n e Sediments C o l l e c t e d i n Jan 1980 Core Sect i o n (cm) 0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 24-27 27-30 0-3 3-6 6-9 9-12 12-15 S t a t i o n Number 57.2 62.5 S a l i n i t y (ppt) 28.2 24.0 21.5 19.9 19.2 17.9 18.1 18.1 18.9 19.7 D i s . Mn (ppb) 75 75 40 25 N D N D 45 45 N D N D 59.0 19.6 13.7 14.2 14.0 15.0 175 100 N D N D 25 S a l i n i t y (ppt) 6.8 2.9 3.5 4.5 4.8 5.9 6.7 8.2 9.1 D i s . Mn (ppb) 25 N D 1 N D N D N D N D N D N D N D 62.2 12.2 10.0 8.9 8.5 N D 5N D N D N D 1. N D = not d e t e c t e d , c o n c e n t r a t i o n < 25 ppb 176 APPENDIX C.5 Complete A n a l y s e s of E s t u a r i n e Sediments C o l l e c t e d i n Jan 1980 S t a t i o n I n t e r s t i t i a l Water Ammon iurn Ammon iurn Ammon i urn O v a l a f o O v a i a f o O v a 1 a f o VyAct -Let L c U A d \u00C2\u00B1 a L c U X d l a i c Sect i o n S a l i n i t y D i s . Mn Leach a b l e R e s i s t a n t R e s i s t a n t (cm) (ppt) (ppm) Mn (ppm) Mn (ppm) A l \u00E2\u0080\u00A2 (%) 56.2 0-3 26. 6 80.2 316 4.46 3-6 23.0 0.88 111 434 5.08 6-9 24.4 3.2 106 352 4.98 9-12 24.2 4.4 142 442 6.21 12-15 25.6 4.2 178 425 5.86 15-18 25.8 3.0 243 472 6.95 18-21 26.0 2.3 218 430 6.26 21-24 26.8 4.7 212 413 5.68 24-27 22.8 5.7 93.5 395 5.62 27-30 20.5 4.6 81.9 373 5.59 60.5 0-3 28.2 N D 1 161 '291 4.45 3-6 19.4 N D 6-9 17.8 N D 133 346 4. 94 9-12 14.9 N D 67.0 0-3 0.7 N D 168 293 5.21 3-6 .0.9 N D 6-9 0.9 N D 156 347 5. 38 9-12 0.9 N D 12-15 1.0 N D 15-18 1.1 N D 150 \u00E2\u0080\u00A2 342 5.50 18-21 1.0 N D 1. N D = not d e t e c t e d , c o n c e n t r a t i o n < 25 ppb 177 APPENDIX C.6 G r a i n S i z e Data S t a t i o n Sect ion % Sand % Mud Mean G r a i n S t a n d a r d Number (cm) S i z e (mm) D e v i a t i o n 79-12-15 SS 1 98.62 1.38 0.1842 0.6693 79-12-53 SS 89.53 10.47 0.1677 0.3569 79-12-54 SS 99.92 0. 08 0.3424 0.7560 79-12-55 SS 99.69 0.31 0.2329 0.7436 79-15-56 SS 99.75 0.25 0.3045 0.6787 79-12-59 SS 99.93 0. 07 0.2836 0.6933 79-12-65 SS 99.86 0.14 0.2938 0.7299 80-56.2 0-3 99.97 0.03 0.2353 0.7406 80-56.2 3-6 89.67 10.33 0.1789 0.3292 80-56.2 6-9 56.14 43.86 0.0225 0.0763 80-56.2 9-12 41.36 58.64 0.0109 0.0709 80-56.2 12-15 44 . 50 55.50 0.0125 0.0762 80-56.2 15-18 38.47 61. 53 0.0094 0.0710 80-56.2 18-21 47.87 52.13 0.0174 0.0664 80-56.2 21-24 78.62 21.38 0.0993 0.1401 80-56.2 24-27 99.49 0.51 0.2983 0.7308 80-56.2 27-30 99.90 0.10 0.2940 0.7539 80-57.2 0-3 99.97 0. 03 0.3936 0.7363 80-57.2 6-9 100.00 0.00 0.3472 0.7436 80-57.2 15-18 100.00 0.00 0.3724 0.7400 80-59.0 0-3 99. 91 0.09 0.2774 0.7529 80-59.0 6-9 99.94 0. 06 0.2643 0.7489 80-60.5 0-3 99.92 0. 08 0.2335 0.7247 80-60.5 6-9 99.97 0.03 0.2287 0.7330 80-62.5 0-3 100.00 0.00 0.3648 0.7132 80-62.5 6-9 99.97 0.03 0.3603 0.6967 80-62.5 15-18 100.00 0.00 0.3900 0.6893 80-67.0 0-3 99.96 0. 04 0.'3589 0.7280 80-67.0 3-6 100.00 0.00 0.3545 0.7331 80-67.0 15-18 100.00 0.00 0.3551 0.7654 1. SS = Shipek Sample "@en . "Thesis/Dissertation"@en . "10.14288/1.0053296"@en . "eng"@en . "Oceanography"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Manganese chemistry in the Fraser estuary"@en . "Text"@en . "http://hdl.handle.net/2429/22730"@en .