"Science, Faculty of"@en . "Earth, Ocean and Atmospheric Sciences, Department of"@en . "DSpace"@en . "UBCV"@en . "Stanley, Clifford R."@en . "2010-05-16T17:11:13Z"@en . "1984"@en . "Master of Science - MSc"@en . "University of British Columbia"@en . "Stratabound copper, lead, and silver minerals at the Daisy Creek prospect are hosted by crossbedded feldspathic quartzites and orthoquartzites of the Bonner Formation, Missoula Group, Belt Supergroup. Detailed float rock-chip mapping of a 60,000 m\u00C2\u00B2 soil grid indicates that mineralization occurs in reduced, coarse grained quartzites, over- and under\u00E2\u0080\u0094lain by fine grained, hematitic quartzites and siltites. Sixty km\u00C2\u00B2 regional mapping shows that the prospect lies on the eastern limb of a major broad, open syncline, and that two phases of deformation have folded the strata.\r\nParagenetic relationships in float rock\u00E2\u0080\u0094chips indicate that early diagenetic pyrite was replaced successively by galena, chalcopyrite, and argentiferous bornite and chalcocite. Later, middle diagenetic oxidation resulted in the formation of cupriferous goethite, barite, and acanthite. Holocene supergene oxidation formed abundant malachite, cerrusite, and pyromorphite from these sulfides and earlier oxidation products.\r\nSoil grid geochemical anomalies of Cu, Pb, Zn, Ag, Ba, and Hg occur as overlapping zones over the prospect. These geochemical zones overlie and correlate well with areas containing different gossan types. The types of different gossan morphologies and anomalous geochemical concentrations suggest that the zones are mineralogically related and that they are characterized by the presence of galena, chalcopyrite, bornite, and chalcocite.\r\nThe paragenetic relationships, geochemical soil zoning geometries, gossan morphologies, and geochemical and mineralogical constraints on the mineralization suggest that sulfide deposition occurred before the onset of silica cementation. Furthermore, it involved the introduction of metal-chloride complexed, oxidized ground waters along an aquifer into locally reduced sediments. Diffusion of copper, and later oxygen, from the oxidizing ground waters into the reduced zone resulted in the formation of Cu-sulfides and their subsequent oxidation.\r\nA new method of statistical analysis involving the regression of stream sediment data from around the Daisy Creek prospect reveals that the prospect can be precisely located using this technique, and that numerous other 'false anomalies' are recognized. Traditional methods for anomaly recognition fall short of providing the information derived from this technique."@en . "https://circle.library.ubc.ca/rest/handle/2429/24777?expand=metadata"@en . "THE GEOLOGY AND GEOCHEMISTRY OF THE DAISY CREEK PROSPECT, A STRATABOUND COPPER-SILVER OCCURRENCE IN WESTERN MONTANA by C l i f f o r d R. S t a n l e y A.B., Dartmouth C o l l e g e , 1980. t h e s i s submitted i n p a r t i a l f u l f i l l m e n t of t he requirements of the degree of Master of Sc i e n c e i n The F a c u l t y of Graduate S t u d i e s Department of G e o l o g i c a l S c i e n c e s We accept t h i s t h e s i s as conforming t o t he r e q u i r e d standard: U n i v e r s i t y of B r i t i s h Columbia November, 1984 (6) C l i f f o r d R. S t a n l e y , 1984 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. I t i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of C2?gofoc?rc_^\ ^Og>\.oa_S The University of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date F r o n t i s p i e c e - View of the South Daisy Creek drainage b a s i n . The occurrence l i e s on the l e f t hand f o r k near the head of the stream. S t r a t i g r a p h y d i p s o b l i q u e l y t o the l e f t and toward the foreground at approximately 45\u00C2\u00B0. - i i -ABSTRACT Stratabound copper, l e a d , and s i l v e r m i n e r a l s a t the Daisy Creek prospect are hosted by crossbedded f e l d s p a t h i c q u a r t z i t e s and o r t h o q u a r t z i t e s of the Bonner Formation, M i s s o u l a Group, B e l t Supergroup. D e t a i l e d f l o a t r o c k - c h i p mapping of a 60,000 m 2 s o i l g r i d i n d i c a t e s t h a t m i n e r a l i z a t i o n o c c u r s i n reduced, c o a r s e gra i n e d q u a r t z i t e s , over- and u n d e r \u00E2\u0080\u0094 l a i n by f i n e g r a i n e d , h e m a t i t i c q u a r t z i t e s and s i l t i t e s . S i x t y km 2 r e g i o n a l mapping shows t h a t the prospect l i e s on the e a s t e r n limb of a major broad, open s y n c l i n e , and t h a t two phases of deformation have f o l d e d the s t r a t a . P a r a g e n e t i c r e l a t i o n s h i p s i n f l o a t r o c k \u00E2\u0080\u0094 c h i p s i n d i c a t e t h a t e a r l y d i a g e n e t i c p y r i t e was r e p l a c e d s u c c e s s i v e l y by galena, c h a l c o p y r i t e , and a r g e n t i f e r o u s b o r n i t e and c h a l c o c i t e . L a t e r , middle d i a g e n e t i c o x i d a t i o n r e s u l t e d i n the form a t i o n of c u p r i f e r o u s g o e t h i t e , b a r i t e , and a c a n t h i t e . Holocene supergene o x i d a t i o n formed abundant m a l a c h i t e , c e r r u s i t e , and pyromorphite from these s u l f i d e s and e a r l i e r o x i d a t i o n p roducts. S o i l g r i d geochemical anomalies of Cu, Pb, Zn, Ag, Ba, and Hg occur as o v e r l a p p i n g zones over the prospect. These geochemical zones o v e r l i e and c o r r e l a t e well with areas c o n t a i n i n g d i f f e r e n t gossan t y p e s . The types of d i f f e r e n t gossan morphologies and anomalous geochemical c o n c e n t r a t i o n s suggest t h a t the zones are m i n e r a l o g i c a l l y r e l a t e d and t h a t they are c h a r a c t e r i z e d by t h e presence of galena, c h a l c o p y r i t e , b o r n i t e , and c h a l c o c i t e . The p a r a g e n e t i c r e l a t i o n s h i p s , geochemical s o i l zoning - i i i -geometries, gossan morphologies, and geochemical and m i n e r a l o g i c a l c o n s t r a i n t s on the m i n e r a l i z a t i o n suggest t h a t s u l f i d e d e p o s i t i o n o c c u r r e d be-fore t h e onset of s i l i c a cementation. Furthermore, i t i n v o l v e d the i n t r o d u c t i o n of m e t a l - c h l o r i d e complexed, o x i d i z e d ground waters along an a q u i f e r i n t o l o c a l l y reduced sediments. D i f f u s i o n of copper, and l a t e r oxygen, from the o x i d i z i n g ground waters i n t o the reduced zone r e s u l t e d i n the f o r m a t i o n of C u - s u l f i d e s and t h e i r subsequent o x i d a t i o n . A new method of s t a t i s t i c a l a n a l y s i s i n v o l v i n g the r e g r e s s i o n of stream sediment data from around the Daisy Creek prospect r e v e a l s t h a t t h e prospect can be p r e c i s e l y l o c a t e d u s i n g t h i s technique, and t h a t numerous other ' f a l s e anomalies' are r e c o g n i z e d . T r a d i t i o n a l methods f o r anomaly r e c o g n i t i o n f a l l s h o r t of p r o v i d i n g the i n f o r m a t i o n d e r i v e d from t h i s technique. \u00E2\u0080\u0094 i v \u00E2\u0080\u0094 TABLE OF CONTENTS TITLE PAGE i FRONTISPIECE i i ABSTRACT i n TABLE OF CONTENTS . v LIST OF FIGURES v i i LIST OF PLATES i x LIST OF TABLES . x i i ACKNOWLEDGMENTS x i i i CHAPTER l i INTRODUCTION 1 CHAPTER 2: REGIONAL GEOLOGY 7 S t r u c t u r a l Geology B S t r a t i g r a p h y and Sedimentology 21 CHAPTER 3: DETAILED GEOLOGY 37 S o i l G r i d Geology 37 Mineralogy - 51 CHAPTER 4: EXPLORATION GEOCHEMISTRY 81 Stream Sediment Geochemistry 81 S o i l Geochemistry 105 CHAPTER 5: CONCLUSION 126 BIBLIOGRAPHY 129 APPENDICES: 1 - D e s c r i p t i o n of S t r a t i g r a p h y 144 2 - Stream Sediment Survey - Geochemical Data .. 161 3 - Stream Sediment R e l a t i v e E r r o r P l o t s ....... 170 - v -TABLE OF CONTENTS age F i g u r e 16. Thres h o l d s -for Frequency D i s t r i b u t i o n s 91 F i g u r e 17. Regression P r e d i c t e d vs. Observed Copper C o n c e n t r a t i o n s - Log Values 97 F i g u r e 18. Regression P r e d i c t e d vs. Observed Copper C o n c e n t r a t i o n s - A r i t h m e t i c Values 98 F i g u r e 19. S o i l G r i d Geochemical C o n c e n t r a t i o n s : Cu 114 F i g u r e 20. S o i l G r i d Geochemical C o n c e n t r a t i o n s : Pb 115 F i g u r e 21. S o i l G r i d Geochemical C o n c e n t r a t i o n s : Zn 116 F i g u r e 22. S o i l G r i d Geochemical C o n c e n t r a t i o n s : Ag 117 F i g u r e 23. S o i l G r i d Geochemical C o n c e n t r a t i o n s : Ba 118 F i g u r e 24. S o i l G r i d Geochemical C o n c e n t r a t i o n s : Hg 119 F i g u r e 25. S o i l G r i d Geochemical C o n c e n t r a t i o n s : As 120 F i g u r e 26. S o i l G r i d Geochemical C o n c e n t r a t i o n s : Co 121 F i g u r e 27. Zoning R e l a t i o n s h i p s -for S o i l Anomalies a t the Daisy Creek Prospect 123 \u00E2\u0080\u0094 v i i i \u00E2\u0080\u0094 LIST OF PLATES F r o n t i s p i e c e i P l a t e 1. Strong A-C J o i n t s i n Ybn3 Member of the Bonner Formation 11 tn cS^St. c^-P l a t e 2. S u r f a c e Geology of the Daisy Creek Area <-ptJC*cet> CO II \u00C2\u00A3\u00C2\u00AB7 cm t h i c k Lh h o r i z o n o v e r l y i n g a >50 cm Bm h o r i z o n which, i n t u r n , o v e r l i e s bedrock. Ae and Bt s o i l h o r i z o n s occur s p o r a d i c a l l y , d e v e l o p i n g over a r g i l l a c e o u s bedrock and a l l u v i a l d e p o s i t s , under g r a s s y parklands, and on shallow t o f l a t s l o p e s . Bedrock l i e s w i t h i n 1 t o 3 m of t h e s u r f a c e except where a l l u v i u m i s present. No evidence of past g l a c i a l a c t i v i t y or g l a c i a l d e p o s i t s occur on the prospect or the 60 km 2 r e g i o n a l map area. Due t o hig h snow accumulation d u r i n g the wi n t e r , s p r i n g r u n o f f i s n e a r l y t o r r e n t i a l and most f i n e d e t r i t u s i s f l u s h e d from the high e r order stream beds. Runoff g e n e r a l l y drops t o a t r i c k l e by the end of June, though, and s i l t s i z e m a t e r i a l accumulates, making stream sediment sampling p o s s i b l e by J u l y . S i n c e s o i l s are well d r a i n e d , low order streams are ephemeral d u r i n g most of the summer, and country r o c k s a r e l a r g e l y u n r e a c t i v e , p h y s i c a l weathering dominates over chemical weathering, and stream d e t r i t u s i s immature. T h i s i s e s p e c i a l l y t r u e i n the l s ^ and 2 n t* order streams w i t h i n 1 km of the head of the drainage, where stream sediment i s t e x t u r a l l y and c o m p o s i t i o n a l l y i d e n t i c a l t o adjacent s o i l s except f o r a small amount of s o r t i n g and winnowing. Higher order streams c o n t a i n s o r t e d but g e n e r a l l y unweathered sands and s i l t s . C l a y s and Fe-and Mn\u00E2\u0080\u0094oxides are g e n e r a l l y not abundant. - 4 -General Geology -The m i n e r a l i z e d zone l i e s on a south f a c i n g s l o p e and o c c u r s c o n t i n u o u s l y over 200 m of s t r i k e l e n g t h and 15 m of t r u e width. S t r a t a d i p 40\u00C2\u00B0 SW and s t r i k e approximately 165\u00C2\u00B0. Bedrock c o n s i s t s of moderately deformed, t e r r i g e n o u s , very f i n e t o c o a r s e g r a i n e d , f e l d s p a t h i c q u a r t z i t e s and o r t h o -q u a r t z i t e s of the Bonner Formation ( B e l t Supergroup, H e l i k i a n Era) which l i e on the e a s t e r n limb of a l a r g e north-south t r e n d i n g s y n c l i n e . These sediments were d e p o s i t e d as prograding sands on a d e l t a i c mud f l a t near the cente r of the B e l t B a s i n . The Cu-Ag-Pb showing appears t o be stratabound and occurs w i t h i n a coarse g r a i n e d , crossbedded f a c i e s of the Bonner Formation, which g e n e r a l l y i s more reduced than the surrounding s t r a t a . M i n e r a l s of economic i n t e r e s t c o n s i s t of ga l e n a , c h a l c o p y r i t e , b o r n i t e , c h a l c o c i t e , c e r u s s i t e , pyromorphite, h i n s d a l i t e , c u p r i f e r o u s g o e t h i t e , a c a n t h i t e , m a l a c h i t e , c h a l c a n t h i t e , c h r y s o c o l l a , n a t i v e s i l v e r , b a r i t e , and l i m o n i t e . Unweathered s u l f i d e m i n e r a l s occur i n the q u a r t z i t e , cementing and o f t e n r e p l a c i n g d e t r i t a l g r a i n s . Secondary oxide phases r e p l a c e these s u l f i d e s and occur as c o a t i n g s on weathered s u r f a c e s . P a r a g e n e t i c mineral r e l a t i o n s h i p s , sedimentary evidence, o f f s e t s o i l geochemical anomalies of Cu, Pb, Zn, Ag, Ba, and Hg, and gossan types which form zones a c r o s s the prospect area support the h y p o t h e s i s of the s e q u e n t i a l replacement of e a r l y d i a g e n e t i c p y r i t e by galena, C u - s u l f i d e s , and a r g e n t i f e r o u s - 5 -C u - s u l f i d e s . Geochemical evidence suggests Cu- and P b - s u l f i d e d e p o s i t i o n o c c u r r e d as a r e s u l t of the i n t e r a c t i o n of o x i d i z e d , metal-bearing ground water with reduced pore water\u00E2\u0080\u0094bearing and/or p y r i t e \u00E2\u0080\u0094 b e a r i n g , u n c o n s o l i d a t e d sediments, some time d u r i n g d i a g e n e s i s . As a r e s u l t , the mineral showing a t Daisy Creek i s i n t e r p r e t e d t o be a stratabound sedimentary copper-type o c c u r r e n c e , and t o have formed i n a manner s i m i l a r t o other Cu-Ag d e p o s i t s w i t h i n the Revett Formation i n the Western Montana Copper S u l f i d e B e l t . - 6 -CHAPTER 2 \u00E2\u0080\u00A2 - \u00E2\u0080\u00A2 --.J -\u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 -.-\" 3 \" REGIONAL GEOLOGY The Daisy Creek p r o s p e c t , l o c a t e d i n the o v e r t h r u s t b e l t of western Montana, i s hosted by H e l i k i a n age sedimentary r o c k s of the B e l t Supergroup. In the Daisy Creek a r e a , no i n t r u s i v e , v o l c a n i c , or high grade metamorphic r o c k s are present. Low grade l o a d metamorphism has reached lower g r e e n s c h i s t f a c i e s (Winston, 1978). C h l o r i t e and muscovite, which are the major metamorphic m i n e r a l s , were probably d e r i v e d from r e c r y s t a l 1 i z e d d e t r i t a l micas, c l a y s , and a l t e r e d f e l d s p a r s . Metamorphism had l i t t l e e f f e c t on the other m i n e r a l s i n the s t r a t a , which are predominantly quartz and hematite. The f o l l o w i n g s t r u c t u r e , s t r a t i g r a p h y , and sedimentology s e c t i o n s d e s c r i b e the major f e a t u r e s of the host rock i n the Daisy Creek a r e a . - 7 -S t r u c t u r a l ^ Geglggy The Daisy Creek prospect o c c u r s i n the L i b b y Thrust Zone, one of s e v e r a l e a s t v e r g i n g i m b r i c a t e t h r u s t packages which account f o r the bulk of the s t r u c t u r a l s h o r t e n i n g and displacement i n the o v e r t h r u s t r e g i o n of Western Montana ( P r i c e , 1984). Numerous minor i m b r i c a t e , and probably l i s t r i c , detachment s u r f a c e s , and s e v e r a l major open a n t i c l i n e s and s y n c l i n e s comprise most of the s t r u c t u r e i n the Libby Thrust Zone (Reynolds, 1984a, b ) . F o l d a x i s o r i e n t a t i o n s and t h r u s t d i r e c t i o n s are c o n s i s t e n t with a major s t r e s s a x i s o r i e n t e d at a 070\u00C2\u00B0 t o 080\u00C2\u00B0 azimuth. The Daisy Creek prospect l i e s on the e a s t e r n limb of one of these major open s y n c l i n e s ( F i g u r e 2; from H a r r i s o n et a l . , 1981) with an a x i s which t r e n d s 164\u00C2\u00B0 and plunges 12\u00C2\u00B0, based on ac j o i n t o r i e n t a t i o n s ( F i g u r e 3; P l a t e 1). Bedding s t r i k e s 162\u00C2\u00B0 and d i p s vary from 65\u00C2\u00B0 SW i n the northern t h i r d of the f i e l d a r e a , t o 25\u00C2\u00B0 SW i n the southern t h i r d ( F i g u r e 4; P l a t e 2 ) . Phase 1 S t r u c t u r e s Two phases of deformation are e v i d e n t i n the Daisy Creek area. Phase 1 s t r u c t u r e s are minor with r e s p e c t t o the o v e r a l l deformation, t a k i n g the form of two t i g h t l y f o l d e d a n t i c l i n e - s y n c l i n e p a i r s which are l o c a t e d a t the Snowslip/Wallace Formation c o n t a c t , and w i t h i n the Mount S h i e l d s Formation ( P l a t e 2 ) . Axes of these f o l d s t r e n d 288\u00C2\u00B0 and 281\u00C2\u00B0, and plunge 26\u00C2\u00B0 and 31\u00C2\u00B0 SE r e s p e c t i v e l y ( F i g u r e 5 ) . The steep - 8 -48\u00C2\u00B000' N Fishtrap Creek Syncline kilometres 10 15 20 Quaternary Alluvium and Gravels Undifferentiated Cambrian Missoula Group Wallace Formation Ravalli Group Pritchard Formation \" Regional Geologic Map \u00E2\u0080\u0094 * \"~~ Stream Sediment Survey TF - Thompson Falls F i g u r e 2 - 9 Poles to A-C Joints in Bonner and Libby Formations lotMajfjrje^ Trending Syncline ^ \u00E2\u0080\u00A2 Poles to A-C Joints (n=8) x mean plunge of Synclinal Axis F i g u r e 3 - 10 -P l a t e 1 Strong ac j o i n t s i n Ybn3 member of the Bonner Formation, a h e m a t i t i c , f l a t laminated, f i n e g r a i n e d q u a r t z i t e . (outcrop i s approximately 5 m wide) - 11 --Ho.-Poles to Bedding in the Bonner and Libby Formations and Cambrian Strata N (n =\u00C2\u00BB 148) F i g u r e 4 - 12 -Poles-to Bedding for Phase 1 Folds N fold pair (n = 12) x poles to bedding for the south fold pair (n = 16) A fold plunge F i g u r e 5 - 13 -plunge of t h e s e f o l d axes, which l i e s u b - p a r a l l e l t o the west-dipping bedding s u r f a c e s c o n s t i t u t i n g t h e e a s t limb of t h e major s y n c l i n e d e s c r i b e d above, suggests t h a t they have been f o l d e d . T h i s probably o c c u r r e d d u r i n g phase 2 deformation, which caused the development of the 164\u00C2\u00B0 t r e n d i n g s y n c l i n e . P r i o r t o phase 2 deformation, the axes of these phase 1 f o l d s were s u b - h o r i z o n t a l and had t r e n d s of 283\u00C2\u00B0 and 277\u00C2\u00B0, r e s p e c t i v e l y ( F i g u r e 6 ) . Minor p a r a s i t i c f o l d geometries on the limbs of phase 1 a n t i c l i n e \u00E2\u0080\u0094 s y n c l i n e p a i r s i n d i c a t e SW vergence. These minor f o l d s are observed o n l y i n carbonate cemented beds of the Wallace Formation and the Mixed C l a s t i c U n i t of the Mount S h i e l d s S i l t i t e Member. T h i s phenomenon may be r e l a t e d t o the f a c t t h a t , under s t r e s s , carbonate cement can r e c r y s t a l 1 i z e and twin more r e a d i l y than s i l i c a cement. T h i s would a l l o w carbonate cemented beds t o deform d u c t i l y , e x h i b i t i n g f o l d s , whereas s i l i c a cemented beds deform b r i t t l e y under the same s t r e s s c o n d i t i o n s . Phase 1 deformation has not been r e p o r t e d p r e v i o u s l y i n t h i s a rea of the B e l t B a s i n ; however, both the p r e - t h r u s t i n g o r i e n t a t i o n of phase 1 s t r u c t u r e s (280\u00C2\u00B0), and t h e present t r e n d of these f o l d axes (285\u00C2\u00B0), are s u b - p a r a l l e l t o the o r i e n t a t i o n of the Lewis and C l a r k L i n e , a major E-W d e x t r a l f a u l t system which c r o s s e s Western Montana and Northern Idaho, l o c a t e d 50 t o 70 km t o the SW of the f i e l d area. No time c o n s t r a i n t f o r phase 1 deformation i s suggested, except t h a t i t o c c u r r e d b e f o r e phase 2 deformation, and thus i s Mesozoic or o l d e r . - 14 -Plunge Orientations for Phase 1 Folds before and after Phase 2 Deformation N x fold pair plunge axes F i g u r e 6 - 15 -Phase 2 S t r u c t u r e s Phase 2 s t r u c t u r e s i n the Daisy Creek a r e a r e f l e c t the development of the L i bby Thrust Zone. T h i s phase of deformation i s t h e most prominent i n Western Montana and i s r e l a t e d t o o v e r t h r u s t i n g of P r o t e r o z o i c ( B e l t ) and e a r l y P a l e o z o i c sediments over Mesozoic and Cenozoic s t r a t a (Wheeler, 1983). Phase 2 deformation was a c t i v e from J u r a s s i c through e a r l y T e r t i a r y time. The s t r u c t u r a l s t y l e r e s u l t i n g from t h i s phase of deformation i s manifested l o c a l l y i n t i g h t , c l o s e l y spaced a n t i c l i n e s and s y n c l i n e s and s h a l l o w , low angle t h r u s t s i n the Daisy Creek a r e a , and r e g i o n a l l y , as open, b r o a d l y spaced a n t i c l i n e s and s y n c l i n e s and i m b r i c a t e t h r u s t s . S t r u c t u r e s i n the Daisy Creek a r e a r e l a t e d t o phase 2 deformation i n c l u d e ( P l a t e 2 ) : 1) a t i g h t , c l o s e l y spaced a n t i c l i n e - s y n c l i n e p a i r ( t r e n d i n g 338\u00C2\u00B0; h o r i z o n t a l l y plunging) at the n o r t h end of the f i e l d area l o c a t e d i n the Snowslip Formation; 2) a broad, widely spaced a n t i c l i n e - s y n c l i n e p a i r ( t r e n d i n g 327\u00C2\u00B0; doubly plunging) and a minor t h r u s t f a u l t (172\u00C2\u00B0 s t r i k e , 18\u00C2\u00B0 SW dip) l o c a t e d i n the Mount S h i e l d s Formation, a l s o a t the n o r t h end of the f i e l d a r e a , which c o n s t i t u t e s a p a r a s i t i c f o l d and t h r u s t s e t on the e a s t e r n limb of the major s y n c l i n e ; t h i s f o l d and t h r u s t s e t i n d i c a t e s vergence t o the NE; and - 16 -3) a homoclinal s u c c e s s i o n of west-dipping s t r a t a which c o n s t i t u t e s the e a s t e r n limb of the major 164\u00C2\u00B0 t r e n d i n g s y n c l i n e r e p r e s e n t e d throughout the f i e l d a rea; the s y n c l i n a l a x i s plunges 8\u00C2\u00B0 t o the south, based on ac j o i n t measurements. A l l of these s t r u c t u r e s have o r i e n t a t i o n s c o n s i s t e n t with a major s t r e s s a x i s t r e n d i n g approximately 075\u00C2\u00B0, which i s comparable t o t h a t r e s p o n s i b l e f o r the development of the L i b b y Thrust Zone. Other S t r u c t u r e s Numerous 100\u00C2\u00B0 s t r i k i n g , s t e e p l y d i p p i n g (commonly 80\u00C2\u00B0 t o the.north) quartz v e i n s are r e c o g n i z e d i n the Daisy Creek area. These v e i n s formed as s y n t a x i a l quartz i n f i l l i n g s of e i t h e r , expansion or r a d i a l j o i n t s d u r i n g a post-phase 1 r e l a x a t i o n event ( t h e i r s t r i k e i s p e r p e n d i c u l a r t o the phase 1 major s t r e s s a x i s ) , o r , more l i k e l y , conjugate shear p l a n e s developed d u r i n g phase 2 deformation ( t h e i r s t r i k e i s 25\u00C2\u00B0 from the phase 2 major s t r e s s a x i s ) . An obscure f i b r o u s t e x t u r e and minor b r e c c i a t i o n with r o t a t i o n of fragments i s common i n these v e i n s . In a d d i t i o n , the v e i n s c o n t a i n hematite, c h l o r i t e , and b a r i t e , mimicing the mineralogy of the country r o c k s they cut (Appendix 1; Banner and L i b b y Formations). The quartz v e i n s are observed c u t t i n g o n l y the Libby and Bonner Formations. T h i s may suggest t h a t these formations have the h i g h e s t t e n s i l e s t r e n g t h w i t h i n the f i e l d a rea and thus deformed b r i t t l e y when one of the above deformation events o c c u r r e d . In c o n t r a s t , c l o s e l y spaced p a r a s i t i c f o l d s and t h r u s t s formed d u r i n g phase 2 deformation and c l o s e l y spaced f o l d s comprising phase 1 deformation occur o n l y i n the Mount S h i e l d s , Snowslip, and Wallace Formations. These f o r m a t i o n s probably have a lower o v e r a l l s t r e n g t h than the o v e r l y i n g Bonner and L i b b y Formations, and thus deformed d u c t i l y under s t r e s s e s which d i d not n o t i c e a b l y deform the Bonner and Libby Formations. F i n a l l y , two major d i p - s l i p f a u l t s c u t t h e f i e l d area ( P l a t e 2) . A s t e e p l y d i p p i n g f a u l t s t r i k e s 355\u00C2\u00B0 and i s downdropped on the west approximately 210 m, based on marker h o r i z o n o f f s e t , r e g i o n a l bedding o r i e n t a t i o n s , and the assumption of 100X d i p - s l i p displacement. The f a u l t o c c u r s i n the n o r t h p a r t of the f i e l d a r ea, and i s accompanied by abundant deformation along a zone marginal t o the f a u l t . T h i s deformation takes the form of t i g h t , c l o s e l y spaced a n t i f o r m s and synforms, with a t t i t u d e changes of over 70\u00C2\u00B0 i n l e s s than 10 m, numerous normal and r e v e r s e f a u l t s , and abundant bedding plane s l i p s . A second, s t e e p l y d i p p i n g f a u l t o c c u r s a t the south end of the f i e l d a r e a . I t s t r i k e s 70\u00C2\u00B0 and i s downdropped approximately 135 m (assuming 100% d i p \u00E2\u0080\u0094 s l i p displacement) on the south s i d e . D i s t i n c t f o l d i n g adjacent t o the f a u l t i n the L i b b y and Bonner Formations i s s t r u c t u r a l l y c o n s i s t e n t with d i p \u00E2\u0080\u0094 s l i p movement along the f a u l t . Minor m a l a c h i t e - s t a i n e d r e v e r s e f a u l t s , l o c a t e d i n the Bonner Formation adjacent t o t h i s d i p - s l i p f a u l t a r e o r i e n t e d p a r a l l e l t o ac j o i n t s r e l a t e d t o the phase 2 s y n c l i n e . T h i s suggests t h a t t h i s major f a u l t i a a r e v e r s e f a u l t with a 70\u00C2\u00B0 n o r t h e r l y d i p . - IB -N e i t h e r of these f a u l t s can be r e l a t e d c o n c l u s i v e l y t o e i t h e r of t he deformation phases which a r e observed i n the Daisy Creek area; however, both appear t o have undergone s i g n i f i c a n t r e l a t i v e movement s i n c e the end of phase 2 deformation. Regional Angular Unconformity Separate a n a l y s i s of bedding o r i e n t a t i o n s f o r Cambrian and P r o t e r o z o i c r o c k s i n d i c a t e s t h a t a minor angular unconformity o c c u r s between these rock packages. R o t a t i o n of the mean Cambrian bedding o r i e n t a t i o n s i n the w e s t - c e n t r a l p o r t i o n of the f i e l d a r ea t o h o r i z o n t a l demonstrates t h a t , d u r i n g Cambrian d e p o s i t i o n , the u n d e r l y i n g P r o t e r o z o i c sediments had a s t r i k e of 162\u00C2\u00B0 with an 8\u00C2\u00B0 SW d i p ( F i g u r e 7 ) . S i m i l a r r o t a t i o n of bedding o r i e n t a t i o n s i n the northwest and southwest p a r t s of the f i e l d a r ea y i e l d s i m i l a r r e s u l t s . - 19 -Regional Angular Unconformity between Proterozoic and Cambrian Strata N rotated Proterozoic pole to bedding L164\u00C2\u00B0,8\u00C2\u00B0SW mean Proterozoic pole to bedding ^ (n = 106) mean Cambrian pole to bedding (n = 27) F i g u r e 7 - 20 -Strati.grap.hy and Sedi.mentgl.ogy Bedrock i n the Daisy Creek a r e a i s e n t i r e l y sedimentary. Two major l i t h o l o g i c packages a r e present. H e l i k i a n f l u v i a l , d e l t a i c , and b a s i n a l sediments over 4,200 m t h i c k comprise the M i s s o u l a Group and u n d e r l y i n g Middle B e l t Carbonate of the B e l t Supergroup (Johns, 1970; Croweley, 1972). These sediments occur below a t l e a s t 550 m of a m i o g e o c l i n a l Cambrian sequence (Lochman, 1957). A s t r a t i g r a p h i c column i s presented i n P l a t e 3 and a r e f e r e n c e d d e s c r i p t i o n of t h i s s t r a t i g r a p h y i s i n c l u d e d i n Appendix 1. B e l t Supergroup In the Daisy Creek a r e a , sedimentary d e p o s i t i o n d u r i n g B e l t time appears t o have occ u r r e d i n l a r g e l y i n t e r m i t t e n t p u l s e s on a vast a l l u v i a l p l a i n or f l u v i o \u00E2\u0080\u0094 d e l t a i c complex prograding i n t o a major b a s i n (Winston e t a l . , 1977). T h i s b a s i n was probably surrounded by g r a n i t i c and g n e i s s i c t e r r a n e s of Archean and Hadrynian age. D e t r i t a l i n p u t a p p a r e n t l y o c c u r r e d d u r i n g f l a s h f l o o d s or seasonal monsoons because mud crack c a s t s , mud c h i p conglomerates, and f i n i n g upward sedimentary sequences are common (Winston, 1984a). Most beds i n the Daisy Creek area are f i n e g r a i n e d and probably were l o c a t e d d i s t a l t o f l o o d sources; thus waters d i d not have enough energy t o s i g n i f i c a n t l y scour p r e v i o u s l y d e p o s i t e d beds. - 21 -B e l t sedimentation took p l a c e i n a s e m i - a r i d environment (Winston e t a l . , 1977) and, as paleo-magnetic data i n d i c a t e , a t l a t i t u d e s l e s s than 25\u00C2\u00B0 ( E l s t o n , 1983; Obradovich e t a l . , 1984; H a r r i s o n , 1984b). Very l i t t l e t e c t o n i c a c t i v i t y o c c u r r e d d u r i n g the bulk o-f B e l t time, except a t the edges o-f the b a s i n , where boundary f a u l t s were a c t i v e i n t e r m i t t e n t l y , p e r p e t u a t i n g b a s i n a l subsidence and sedimentation. Syn-sedimentary f a u l t s a l s o presumably o c c u r r e d at the edge of the sedimentary prism. Igneous a c t i v i t y was uncommon, c o n s i s t i n g of o n l y the Moyie S i l l s , which i n t r u d e the P r i t c h a r d / A l d r i d g e Formation, and the P u r c e l l Lavas which occur i n the Shepard and Snowslip Formations ( H a r r i s o n , 1972). N e i t h e r of these igneous u n i t s occurs i n or near the f i e l d a r e a. U n i t s o l d e r than the Wallace Formation a r e not present i n the Daisy Creek area and are not d e s c r i b e d i n t h i s r e p o r t . Middle B e i t Carbonate Wallace Formation The o n l y p a r t of the Wallace Formation exposed i n the Daisy Creek area i s the upper p a r t of the Middle Member. I t i s composed of dark grey t o b l a c k , laminated, c a l c a r e o u s a r g i l l i t e and s i l t i t e , i n t e r b e d d e d , i n a very d i s t i n c t i v e wavy form, with white d o l o m i t i c q u a r t z i t e . The Upper Member, as d e s c r i b e d by H a r r i s o n (1984a), resembles the lower Green A r g i l l i t e Member of the Snowslip Formation (Ysnj; Appendix 1), but i s not d e f i n e d as - 22 -such i n t h i s r e p o r t because of the l a c k of abundant carbonate cement. The d e p o s i t i o n a l environment f o r Wallace sedimentation c o n s i s t e d of q u i e t , shallow water carbonate mud-flats and s h o a l s dominated by carbonate p r e c i p i t a t i o n . These s h o a l s c o n t a i n c o n v o l u t e bedding, water escape s t r u c t u r e s , and r i p p l e marks. S i g n i f i c a n t f i n e c l a s t i c i n p u t with a southern provenence a l s o o c c u r r e d d u r i n g t h i s time (Wallace e t a l . , 1984). The b a s i n a l s o c o ntained minor l o c a l sub-basins (Wallace e t a l . , 1976; Godlewski, 1977; H a r r i s o n , 1984a) which were s i t e s f o r s o f t sediment slumping and sedimentary b r e c c i a development along the edges of t h e s e l o c a l d e p r e s s i o n s . No slumping f e a t u r e s of t h i s s o r t a r e r e c o g n i z e d i n the Daisy Creek area. M i s s o u l a Group. The M i s s o u l a Group has been d i v i d e d i n t o t h r e e assemblages based on s e d i m e n t o l o g i c c h a r a c t e r i s t i c s , l i t h o f a c i e s , source a r e a s , and d i s p e r s a l systems (Wallace et a l . , 1984). These c o n s i s t , i n the Daisy Creek a r e a , of a lower assemblage composed of the Snowslip Formation, a middle assemblage composed of t h e Mount S h i e l d s and Bonner Formations, and an upper assemblage composed of the L i b b y Formation. - 23 -Snowslip Formation (Lower Assemblage) The Snowslip Formation c o n t a i n s dominantly t h i n bedded, r e d and green a r g i l l i t e s t o very f i n e g r a i n e d q u a r t z i t e s ( H a r r i s o n and Campbell, 1963). D e p o s i t i o n a l environments f o r the upper P u r p l e and Green A r g i l l i t e Member (Ysn2, Appendix 1; i n t e r c a l a t e d r e d and green beds) c o n s i s t e d of mud f l a t s and shallow d i s t r i b u t a r y channels on a v a s t sedimentary p l a i n . L o c a l l a c u s t r i n e environments perpetuated sub-aqueous c o n d i t i o n s and caused the f o r m a t i o n of green beds due t o t h e p r e s e r v a t i o n of f e r r o u s i r o n i n c h l o r i t e , w h i l e s u b - a e r i a l exposure r e s u l t e d i n red beds, caused by the o x i d a t i o n of i r o n and t h e development of hematite. S u b \u00E2\u0080\u0094 a e r i a l exposure of the sediment c r e a t e d d e s i c c a t i o n c r a c k s , and caused the development of mud c h i p conglomerates d u r i n g l a t e r f l o o d s . Green beds of the lower Green A r g i l l i t e Member (Ysn^; Appendix 1) were d e p o s i t e d i n shallow water with r a r e s u b - a e r i a l exposure. D e s i c c a t i o n c r a c k s d i d not develop because the sediment was always wet, and thus no mud c h i p conglomerates were formed. L i t h o f a c i e s changes a c r o s s the b a s i n suggest t h a t the provenance f o r the Snowslip Formation was from the Hudsonian age Canadian S h i e l d t o the east and no r t h e a s t (Wallace e t a l . , 1984). - 24 -Mount S h i e l d s and Bonner Formations (Middle Assemblage) The middle assemblage of the M i s s o u l a Group i s s i g n i f i c a n t l y c o a r s e r g r a i n e d than the u n d e r l y i n g lower assemblage (Winston, 1784a, b ) . In the Daisy Creek a r e a , the Bonner Formation and u n d e r l y i n g Mount S h i e l d s Formation c o n s i s t of two major packages of p r o g r a d i n g sediments, one d e p o s i t e d i n s u p r a - t i d a l , f l u v i a l and d e l t a - p l a i n mud f l a t environments (Bonner Formation), and t h e other d e p o s i t e d dominantly i n i n t e r \u00E2\u0080\u0094 t i d a l , s t r a n d l i n e and p o s s i b l y s u b - t i d a l , p r o - d e l t a environments ( Q u a r t z i t e Member, Mount S h i e l d s Formation). These packages a r e separated by a s e r i e s of t r a n s g r e s s i v e sediments comprising the S i l t i t e Member of the Mount S h i e l d s Formation. The Bonner Formation c o n s i s t s of trough and e p s i l o n crossbedded, c o a r s e g r a i n e d q u a r t z i t e s (braided channels; P l a t e 4) and f l a t t o r i p p l e laminated, f i n e g r a i n e d q u a r t z i t e s ( i n t e r \u00E2\u0080\u0094 c h a n n e l mud f l a t s ) . These i n t e r \u00E2\u0080\u0094 c h a n n e l mud f l a t s were t e m p o r a r i l y covered by shallow waters, as suggested by abundant r i p p l e marks, but normally d r i e d q u i c k l y and were exposed t o atmospheric o x i d a t i o n , because green beds a r e r a r e ( P l a t e 1). F a c i e s and f a c i e s t h i c k n e s s e s change r a p i d l y along s t r i k e ( P l a t e 5 ) , and many mappable u n i t s t h i n and t h i c k e n a p p r e c i a b l y along the e i g h t k i l o m e t e r s of s t r i k e l ength i n the f i e l d a r e a. These v a r i a t i o n s a re common i n f l u v i a l environments due t o channel m i g r a t i o n d u r i n g stream e v o l u t i o n , and due t o l o c a l v a r i a t i o n s i n topography. The two crossbedded members of the Bonner Formation (Ybn2 - 25 -P l a t e 4 Trough crbssbeds i n Ybn4 member the Bonner Formation, a v i t r e o u s c o a r s e g r a i n e d q u a r t z i t e . - 26 -and Ybn^i Appendix 1) r e p r e s e n t two minor but s e p a r a t e l y r e c o g n i z a b l e p e r i o d s of p r o g r a d a t i o n , the f i r s t extending f u r t h e r t o the north than the second ( P l a t e 6; from Winston e t a l . , 1977 f and Newton, 1982). Each i s c o r r e l a t a b l e with a probable t i m e \u00E2\u0080\u0094 e q u i v a l e n t conglomeratic f a c i e s which o c c u r s i n the southern p a r t of the B e l t B a s i n . These may r e p r e s e n t p e r i o d s of g r e a t e r u p l i f t i n the h i g h l a n d s surrounding the B e l t B a s i n and/or p e r i o d s of l a r g e r c l a s t i c i n p u t from these h i g h l a n d s i n t o the B e l t B a s i n . The Mount S h i e l d s Formation c o n s i s t s of two members (Winston e t a l . , 1977). The upper S i l t i t e Member (Ymss; Appendix 1) c o n s i s t s of p u r p l e and green t r a n s g r e s s i v e s i l t i t e s and a r g i l l i t e s and o v e r l i e s the lower Q u a r t z i t e Member (Ymsq; Appendix 1), another sequence of prograding sediments which i s s l i g h t l y f i n e r g r a i n e d than the Bonner Formation. D e p o s i t i o n of the S i l t i t e Member (Ymss; Appendix 1) o c c u r r e d i n shallow water, which o f t e n d r i e d or d r a i n e d away. O c c a s i o n a l l y , carbonate cemented the sediments. Green beds were d e p o s i t e d i n more permanent waters. Red beds may have been d e p o s i t e d i n shallow s t a n d i n g water t h a t soon d r i e d , r e s u l t i n g i n d e s i c c a t i o n c r a c k s and mud c h i p conglomerates when l a t e r f l o o d i n g o c c u r r e d . The waters were not t o t a l l y q u i e s c e n t d u r i n g s e d i m e n t a t i o n , because the e x i s t e n c e of asymmetric tuning f o r k and u n d u l a t o r y r i p p l e marks suggests t h a t some s o r t of c u r r e n t e x i s t e d . These r i p p l e marks may have been caused by c u r r e n t s r e l a t e d t o t h e waning f l o o d s which i n t r o d u c e d the sediment, but more l i k e l y , were caused by the waters d r a i n i n g from the f l o o d p l a i n well a f t e r sediment d e p o s i t i o n . - 27 -D e p o s i t i o n of the lower Q u a r t z i t e Member (Ymsq; Appendix 1) appears t o have been s u b s t a n t i a l l y d i f f e r e n t i n form than t h e Bonner Formation. These d i f f e r e n c e s are e s p e c i a l l y e v i d e n t i n the P y r i t i c Q u a r t z i t e U n i t (Ymsq3; Appendix 1). No trough or e p s i l o n c rossbeds were noted i n t h i s u n i t , s u g g e s t i n g t h a t i t was not d e p o s i t e d i n a c l a s s i c a l f l u v i a l environment. Instead, o n l y p l a n a r and t a b u l a r \u00E2\u0080\u0094 t a n g e n t i a l crossbeds occur. In a d d i t i o n , abundant a u t h i g e n i c p y r i t e o c c u r s i n t h i s u n i t . These f e a t u r e s suggest t h a t the q u a r t z i t e was de p o s i t e d as sub-aqueous sheet sands and bars and t h a t i t d i d not dry out s i g n i f i c a n t l y a f t e r s e d i m e n t a t i o n . C o n d i t i o n s of t h i s type can o n l y be found i n i n t e r - t i d a l s t r a n d l i n e or s u b - t i d a l p r o - d e l t a environments. The H e l l g a t e Q u a r t z i t e U n i t (Ymsqj; Appendix 1), which i s the f a c i e s e q u i v a l e n t of the H e l l g a t e Q u a r t z i t e Formation l o c a t e d f u r t h e r t o the south ( H a r r i s o n , 1977), a l s o e x h i b i t s crossbeds s i m i l a r t o the P y r i t i c Q u a r t z i t e U n i t . However, the pink c o l o r of i t s beds suggests t h a t i t e i t h e r d r i e d out a f t e r subaqueous d e p o s i t i o n , or went through redoxomorphic o x i d a t i o n d u r i n g d i a g e n e s i s where Fe** was o x i d i z e d t o Fe***. The u n d e r l y i n g Lower Green S i l t i t e U n i t (Ymsq2; Appendix 1) of the Q u a r t z i t e Member was a l s o d e p o s i t e d i n a l a r g e l y subaqueous environment, with l i t t l e s u b \u00E2\u0080\u0094 a e r i a l exposure a f t e r sedimentation because no d e s i c c a t i o n c r a c k s or mud c h i p conglomerates occur. Thus, a l l u n i t s of the Q u a r t z i t e Member of the Mount S h i e l d s Formation appear t o have been d e p o s i t e d i n a sub-aqueous i n t e r - t i d a l s t r a n d l i n e and/or s u b - t i d a l p r o - d e l t a environment. - 28 -The f l u v i a l systems which formed the Bonner and Mount S h i e l d s Formations had a g r a n i t i c s ource l o c a t e d t o the southwest, on 'Belt I s l a n d ' , and on the D i l l o n Block, south of the Willow Creek F a u l t Zone (Winston e t a l . , 1977). L i m i t e d p a l e o - c u r r e n t measurements from the Daisy Creek area i n d i c a t e p a l e o - t r a n s p o r t d i r e c t i o n s toward 334\u00C2\u00B0 ( F i g u r e 8) with a shore l i n e roughly p e r p e n d i c u l a r t o t h i s o r i e n t a t i o n (064\u00C2\u00B0). L i b b y Formation (Upper Assemblage) The L i b b y Formation (upper assemblage) c o n s i s t s dominantly of mint b l u e t o o l i v e green c h e r t - b e a r i n g a r g i l l i t e and s i l t i t e . T h i s u n i t was d e p o s i t e d i n s h a l l o w water but sediments r a r e l y were exposed t o the atmosphere. Mud c h i p conglomerates occur but these may have been t r a n s p o r t e d i n t o the s h a l l o w water from s u b - a e r i a l mud f l a t s nearby. Most mud c h i p s a r e not rounded, sugges t i n g a very proximal source. A v a i l a b l e evidence i n d i c a t e s t h a t the Upper Member (Ylbu; Appendix 1; P l a t e 7) was d e p o s i t e d i n s h allower water than was the Lower Member ( Y l b l j Appendix 1; P l a t e 8 ) . Both members show some evidence of p e r i o d i c d e s i c c a t i o n ; however, the more common d e s i c c a t i o n c r a c k s and red beds i n the Upper Member i n d i c a t e t h a t d r y i n g was a more f r e q u e n t phenomenon t h e r e than i n the Lower Member. During d e p o s i t i o n of t h i s upper assemblage, the sediment source was from the south (Wallace e t a l . , 1984; and based on l i t h o f a c i e s d ata s u g g e s t i n g f i n e r g r a i n e d and t h i n n e r laminated sediments toward the north - from exposures i n the Daisy Creek - 29 -Paleocurrent and Shoreline Directions Ybn 4 Member, Bonner Formation 334\u00C2\u00B0\u00C2\u00B125\u00C2\u00B0 trough crossbeds ripple mark3 \u00E2\u0080\u0094 tabular tangential croasbeda F i g u r e 8 - 30 -P l a t e 7 Outcrop of upper member of the Libby Formation (Ylbu). Note swaley bedding and brownish b l a c k Fe-oxide s t a i n s . - 31 -- 31 c- -P l a t e B Outcrop o-f lower member o-f t h e Libby Formation ( Y l b l ) . Note s t r o n g ac j o i n t s and p a l e tan weathering. - 32 -- 37. cx -area and around L i b b y , Montana). Middle Cambrian Sediments Above the Libby Formation, and separated by a low angle r e g i o n a l unconformity, l i e s a t r a n s g r e s s i v e sequence of Middle and Upper Cambrian c l a s t i c and carbonate r o c k s . These r o c k s occur on t h e west s i d e of the f i e l d a r e a. At the base of t h i s sequence i s the F l a t h e a d Sandstone, a trough and e p s i l o n crossbedded, coarse g r a i n e d , q u a r t z - and j a s p e r \u00E2\u0080\u0094 r i c h sandstone o v e r l y i n g a f l a t laminated, f i n e g r a i n e d , h e m a t i t i c sandstone ( P l a t e 9 ) , d e p o s i t e d i n b r a i d e d channel and i n t e r \u00E2\u0080\u0094 c h a n n e l mud f l a t environments, r e s p e c t i v e l y , at the edge of a marine b a s i n (Lochman, 1950). The F l a t h e a d Sandstone i s s i m i l a r t o the Bonner Formation, except t h a t no evidence e x i s t s s u g g e s t i n g t h a t the B e l t Basin was marine at the time of Bonner d e p o s i t i o n . O v e r l y i n g the F l a t h e a d Sandstone l i e s the Gordon Shale, a f i s s i l e , f o s s i 1 i f e r o u s s h a l e d e p o s i t e d i n a marine b a s i n of i n t e r m e d i a t e depth ( P l a t e 10; Lochman, 1950). F i n a l l y , the Damnation and Dearborn Dolomites o v e r l i e the Gordon s h a l e and cap the Middle Cambrian s e c t i o n i n the f i e l d a rea. Both of these sandy d o l o m i t e s c o n t a i n s h a l y i n t e r b e d s . These f o r m a t i o n s u n d e r l i e the r e s t of the Middle Cambrian, Upper Cambrian, and Devonian s e c t i o n , which i s not exposed i n the Daisy Creek a r e a , and r e p r e s e n t a major P a l e o z o i c t r a n s g r e s s i o n which onlapped onto North America from the west, commencing du r i n g Middle Cambrian time. These sediments were de p o s i t e d on - 33 -P l a t e 9 Cambrian F l a t h e a d Sandstone (Cf s ) . Note maroon ' i n t e r \u00E2\u0080\u0094 c h a n n e l mud f l a t ' f a c i e s interbedded with white, crossbedded 'channel f a c i e s * . - 34 -- 34 c, -P l a t e 10 \"Outcrop\" of Cambrian Gordon Shale (Cgs). - 35 -top o-f a p a r t i a l l y eroded s u r f a c e ( r e g i o n a l angular unconformity with an 8\u00C2\u00B0 dip) of the B e l t Supergroup, and a r e the youngest r o c k s exposed i n the area. - 36 -CHAPTER 3 DETAILED GEOLOGY SQL1 G r i d Geology The Daisy Creek prospect c o n s i s t s o-f gal e n a , c h a l c o p y r i t e , b o r n i t e , c h a l c o c i t e , c u p r i f e r o u s g o e t h i t e , m a l a c h i t e , a c a n t h i t e , c e r u s s i t e , pyromorphite, h i n s d a l i t e , c h a l c a n t h i t e , c h r y s o c o l l a , n a t i v e s i l v e r , and b a r i t e disseminated e r r a t i c a l l y as b l e b s i n medium t o very c o a r s e g r a i n e d , v i t r e o u s f e l d s p a t h i c q u a r t z i t e s and o r t h o q u a r t z i t e s of the Bonner Formation which s t r i k e 162\u00C2\u00B0 and d i p 40\u00C2\u00B0 SW. A d e t a i l e d f l o a t r o c k \u00E2\u0080\u0094 c h i p map was generated by e v a l u a t i n g the average l i t h o l o g i c c h a r a c t e r i s t i c s at s o i l sample s i t e s l o c a t e d on a square g r i d 15 m on a s i d e . The s o i l g r i d , c o v e r i n g over 60,000 m2, i s i r r e g u l a r i n shape and extends beyond the known m i n e r a l i z e d l i m i t s . A minimum of 15 r o c k \u00E2\u0080\u0094 c h i p s , g r e a t e r than 5 cm on a s i d e c o l l e c t e d from each s o i l sample h o l e , were used t o e v a l u a t e the g e o l o g i c c h a r a c t e r i s t i c s of each s i t e . F l o a t Rock-Chip Maps S o i l f l o a t r o c k - c h i p maps are presented i n P l a t e s 11 and 12. R e s u l t s demonstrate a c l o s e c o r r e l a t i o n between the mineral showing (Chapter 4) and s e v e r a l g e o l o g i c f e a t u r e s . These i n c l u d e g r a i n s i z e , sedimentary bed forms, and redox p o t e n t i a l . These g e o l o g i c c h a r a c t e r i s t i c s allow the s u b d i v i s i o n of the Bonner - 37 -Formation i n t o s e v e r a l members, as d e s c r i b e d i n Appendix 1, and d e p i c t e d i n P l a t e 3. A summary map o-f these members as they occur on the s o i l g r i d i s presented i n P l a t e 13. Copper m i n e r a l s appears t o be c o n t a i n e d e n t i r e l y w i t h i n the Ybn4 member o-f the Bonner Formation. Two other stratabound Cu-Ag\"prospects i n or immediately adjacent t o the Ybn4 member ar e known t o occur i n southwestern Montana. The Pacman p r o s p e c t , l o c a t e d i n the Southern Pioneer Mountains, and the Bluebird/Mona L i s a p r o s p e c t , l o c a t e d at the west end of the Anaconda-Pintlar Range, c o n s i s t of c h a l c o c i t e and minor b o r n i t e which cement and p a r t i a l l y r e p l a c e d e t r i t a l g r a i n s . Host l i t h o l o g i e s f o r these p r o s p e c t s are s i m i l a r t o t h a t a t Daisy Creek, although they are s i g n i f i c a n t l y c o a r s e r g r a i n e d (Newton, 1982). In a d d i t i o n t o the s e d i m e n t o l o g i c c r i t e r i a a t the Daisy Creek prospect d e s c r i b e d above, a d i s t i n c t zoning p a t t e r n of gossan types can be observed a c r o s s the d e p o s i t . Weathered disseminated a u t h i g e n i e s u l f i d e and f e r r o a n carbonate b l e b s , now converted t o Fe-oxide phases ( l i m o n i t e s ) , e x h i b i t d i s t i n c t c o l o r and form d i f f e r e n c e s which are c o r r e l a t a b l e with o r i g i n a l s u l f i d e m i n e r a l s . These are d i s t r i b u t e d i n zones a c r o s s the d e p o s i t and surrounding s t r a t a ( P l a t e 14). Disseminated l i m o n i t e b l e b s occur, as gossans, i n a l l members of the Bonner Formation (Ybn^_5; Appendix 1), as well as the P u r p l e and Green A r g i l l i t e U n i t (Ymss4; Appendix 1) and P y r i t i c Q u a r t z i t e U n i t (Ymsq 3; Appendix 1) of the Mount S h i e l d Formation. D e s c r i p t i v e terminology has been borrowed from - 38 -Blanchard (1968), Whitten (1965), Ney e t a l . (1976), and Anderson (1982). L i m o n i t e s from the f i n e r g r a i n e d red beds, which a r e f l a t t o r i p p l e laminated and t h i n bedded (Ybnj, Ybn3, Ybng, and Ymss4; Appendix I 5 type A), a r e indigenous and o n l y minor c o n s t i t u e n t s of the host rock. They a r e orange i n c o l o r , appear t o be powdery, amorphous aggregates, and completely f i l l t he up t o 5.0 mm wide c a v i t i e s i n which they are found. In c o n t r a s t , l i m o n i t e from the c o a r s e r g r a i n e d crossbedded u n i t s of the Bonner Formation (Ybn2 and Ybn4; Appendix 1; type B) are abundant and red i n c o l o r , indigenous, appear c r y s t a l l i n e i n form, and o n l y dust the i n s i d e s u r f a c e s of t h e up to 1.0 cm wide c a v i t i e s they occupy. Li m o n i t e from the P y r i t i c Q u a r t z i t e U n i t (Ymsq3; Appendix 1; type C) appears t o be be a weathering product of the 1.0 mm a u t h i g e n i c p y r i t e cubes found i n t h i s s t r a t a and i s very d i f f e r e n t from the disseminated l i m o n i t e found i n the other u n i t s and members. I t i s orange i n c o l o r , s l i g h t l y porous, r e t a i n s t h e o r i g i n a l euhedral p y r i t e c u b i c form, i s 1.0 t o 3.0 mm i n width, amorphous, indigenous, and g e n e r a l l y i s rimmed by red f r i n g i n g and e x o t i c l i m o n i t e which i s f i n e l y disseminated i n a l l d i r e c t i o n s up t o 1.0 cm away from the b l e b . The orange and red indigenous disseminated l i m o n i t e b l e b s , found i n both t h i n bedded, f l a t laminated, f i n e g r a i n e d q u a r t z i t e s and crossbedded, c o a r s e g r a i n e d q u a r t z i t e s , occur u b i q u i t o u s l y throughout the B e l t Basin and may be weathering products of a u t h i g e n i c f e r r o a n c a l c i t e or f e r r o a n dolomite which act t o cement g r a i n s i n the t e r r i g e n o u s e l a s t i c s . The c o l o r - 39 -d i f f e r e n c e may be r e l a t e d t o the p e r m e a b i l i t y of the r e s p e c t i v e u n i t s ; the c o a r s e r g r a i n e d u n i t s have higher p e r m e a b i l i t i e s and thus are exposed t o supergene o x i d a t i o n f o r a longer p e r i o d of time d u r i n g the e r o s i o n p r o c e s s than the f i n e r g r a i n e d beds because oxygen b e a r i n g waters can c i r c u l a t e t o g r e a t e r depths i n these porous u n i t s . T h i s would a l l o w time f o r l i m o n i t e s from t h e c o a r s e r g r a i n e d beds t o mature through r e c r y s t a l 1 i z a t i o n and dehydration t o more c r y s t a l l i n e forms of Fe-oxide, s p e c i f i c a l l y hematite, whereas l i m o n i t e s from the f i n e r g r a i n e d beds would be r e l a t i v e l y immature and c o n s i s t of p o o r l y c r y s t a l l i n e f e r r i c hydroxide and g o e t h i t e . In a d d i t i o n , the h i g h p e r m e a b i l i t y of t h e c o a r s e r g r a i n e d r o c k s would a l l o w the removal of most of the i r o n i n the coarse g r a i n e d beds, l e a v i n g o n l y hematite dusts t o c o a t c a v i t y s u r f a c e s . A l l of these types of l i m o n i t e b l e b s appear t o be u n r e l a t e d t o the Cu-bearing zones i n the Ybn4 member of the Bonner Formation. They occur throughout the e n t i r e s t r i k e l e n g t h of these s t r a t a , and do not appear t o be r e l a t e d s p a t i a l l y i n abundance, occurrence, c o l o r , or c r y s t a l 1 i n i t y t o the m i n e r a l i z a t i o n . L i m o n i t e which oc c u r s on the prospect i t s e l f has completely d i f f e r e n t c h a r a c t e r i s t i c s than those d e s c r i b e d above. Four d i f f e r e n t t y p e s occur 1%), and m a l a c h i t e o c c u r s i n micaceous q u a r t z i t e s , t h e m i n e r a l o g i c zone u n d e r l y i n g t h e s e l i m o n i t e s i s i n t e r p r e t e d t o have c o n s i s t e d of c h a l c o c i t e (under type D l i m o n i t e ) and b o r n i t e (under type E l i m o n i t e ) m i n e r a l s . L i m o n i t e type F i s s i m i l a r i n occurrence t o those developed over c h a l c o p y r i t e m i n e r a l i z a t i o n (orange, porous, indigenous and f r i n g i n g l i m o n i t e m y r m e k i t i c a l l y intergrown with malachite; Blanchard, 1968) i n the aforementioned country rock. I t o c c u r s over a zone with anomalous s o i l Cu c o n c e n t r a t i o n s (Chapter 4) where f l o a t hand samples c o n t a i n r e c o g n i z a b l e c h a l c o p y r i t e . For t h i s reason, type F l i m o n i t e appears t o occur over a c h a l c o p y r i t e m i n e r a l o g i c zone i n the Daisy Creek prospect. F i n a l l y , l i m o n i t e type G i s s i m i l a r i n occurrence t o those gossans developed over galena m i n e r a l i z a t i o n (yellow t o orange, indigenous l i m o n i t e ; Blanchard, 1968). T h i s l i m o n i t e occurs over a zone of anomalous s o i l Pb c o n c e n t r a t i o n s (Chapter 4) and corresponds s p a t i a l l y with a p o r t i o n of the prospect c o n t a i n i n g numerous pr o s p e c t p i t s , presumably dug by p r o s p e c t o r s who were s u c c e s s f u l l y panning the s o i l s f o r galena and other i n s o l u b l e galena o x i d a t i o n products, such as a n g l e s i t e , c e r u s s i t e , or pyromorphite. Heavy mineral c o n c e n t r a t e s from s o i l s over t h i s gossan c o n t a i n abundant amounts of both c e r u s s i t e , the y e l l o w , - 46 -adamantine mineral i n these -float r o c k - c h i p s , and pyromorphite. For t h i s reason, the 6 type l i m o n i t e i s i n t e r p r e t e d t o occur as a gossan over a galena zone i n the Daisy Creek prospect. The e x i s t e n c e o-f these gossan types suggests t h a t these r o c k s c o n t a i n e d a s i g n i f i c a n t b u f f e r i n g c a p a c i t y . T h i s probably c o n s i s t e d of carbonate, probably f e r r o a n c a l c i t e or f e r r o a n dolomite which has now r e l e a s e d i t s carbonate t o mal a c h i t e , f e l d s p a r s , now l a r g e l y r e p l a c e d by c l a y m i n e r a l s , and d e t r i t a l muscovite. Although very l i t t l e carbonate i s observed at the s u r f a c e , except f o r m a l a c h i t e , i t may have comprised a s i g n i f i c a n t percentage of the host rock, based on the c u r r e n t p o r o s i t y of the weathered m i n e r a l i z e d q u a r t z i t e s , and the abundance of gossanous c a v i t i e s a f t e r carbonate i n s e v e r a l of the s t r a t a i n the Daisy Creek a r e a (gossan types A and B). The carbonate presumably has been d i s s o l v e d and r e m o b i l i z e d under a c i d i c c o n d i t i o n s c r e a t e d by the o x i d a t i o n of the s u l f i d e s on the prospect t o s u l f a t e and s u l f u r i c a c i d . The z o n a t i o n of gossan type r e p r e s e n t i n g c h a l c o c i t e , b o r n i t e , c h a l c o p y r i t e , and galena m i n e r a l o g i c zones i s s i m i l a r t o the m i n e r a l o g i c z o n a t i o n s observed a t many other sedimentary copper d e p o s i t s (e.g., K u p f e r s c h i e f e r (Rentzsch, 1974), Zambian Copperbelt (Annels, 1974; Bartholome, 1974^ Van Eden, 1974; Bowen and G u n a t i l a k a , 1976), White Pine (Ensign et a l . , 1968; Brown, 1971, 1974), Troy (Hamilton and B a l l a , 1983; Hayes, 1984; Hughes, 1984), Northwest T e r r i t o r i e s (Watson, et a l . , 1975; Chartrand and Brown, 1978), A f r i c a (Caia, 1976), Udokan Basin (Bakun, 1967), A d e l a i d e (Rowlands, 1974), and i n g e n e r a l : Renfro, 1974; Smith, - 47 -1976; Hoicombe, 1977; Brown, 1978; B j o r l y k k e and Sangster, 1981; Gusta-fson, 1981). C a r e f u l mapping of gossan c h a r a c t e r i s t i c s has thus given i n d i c a t i o n s of the unweathered mineralogy of the Daisy Creek Prospect and c o u l d be a h e l p f u l e x p l o r a t i o n t o o l on stratabound-type copper d e p o s i t s i n environments s i m i l a r t o those at Daisy Creek. Soi1 Map In a d d i t i o n t o the f l o a t r o c k - c h i p maps, a s o i l map was a l s o o b tained from s o i l c o l o r and g r a i n s i z r d ata ( P l a t e 18). D i s t i n c t s o i l c o l o r zones can be r e c o g n i z e d which correspond with d i f f e r e n t u n d e r l y i n g l i t h o l o g i e s . Rusty-brown (10 YR 6/3 or 'Pale Brown' on the Munsell S o i l C o l o r Chart) s o i l s occur over the Libby Formation r o c k s and tend t o be f i n e g r a i n e d . Pinkish-brown (5 YR 6/4 or 'Light Reddish Brown') s o i l s occur over t h e Bonner Formation red-bed, f i n e g r a i n e d q u a r t z i t e s and tend t o be f i n e g r a i n e d but commonly f e e l g r a n u l a r when r o l l e d between the f i n g e r s . These s o i l s occur over both members Ybn5 and Ybn3 ( P l a t e 18; Appendix 1) on the Daisy Creek s o i l g r i d . Over the Ybn4 member of the Bonner Formation ( P l a t e 18; Appendix 1), two s o i l types occur. The f i r s t , with a greyish\u00E2\u0080\u0094brown (7.5 YR 6/4 or 'Light Brown') s o i l , i s very c o a r s e g r a i n e d and g r a n u l a r . I t oc c u r s over areas i n t h i s member which do not c o n t a i n s i g n i f i c a n t amounts of economic m i n e r a l s . The second s o i l tends t o be yellowish-brown (10 YR 7/5 or 'Very - 48 -P a l e Y e l l o w i s h Brown') and i s very f i n e t o powdery i n t e x t u r e . T h i s s o i l type tends t o occur over the Ybn4 member ( P l a t e 18; Appendix 1) i n areas with s i g n i f i c a n t m i n e r a l i z a t i o n and c o r r e l a t e s w e l l with zones of anomalous Cu and, t o a l e s s e r e x t e n t , Pb s o i l c o n c e n t r a t i o n s (Chapter 4 ) . D i s t i n c t d i f f e r e n c e s i n t e x t u r a l data f o r t y p i c a l s o i l s from each group a r e apparent i n F i g u r e 9. Yellowish-brown s o i l s e x h i b i t much f i n e r g r a i n s i z e s than the greyish-brown s o i l s d e s p i t e both o c c u r r i n g over the same l i t h o l o g y . T h i s may be due t o more a c i d i c c o n d i t i o n s i n s o i l s o v e r l y i n g m i n e r a l i z a t i o n , caused by the o x i d a t i o n of s u l f i d e s and the r e s u l t i n g s u l f u r i c a c i d produced. Destruc'ti\u00C2\u00BBdni^'ofrmuchi?^^t.t^^ejamB^$.i9&fel dspars , and non-quartz d e t r i t a l g r a i n s would thus take p l a c e , r e d u c i n g t h e o v e r a l l g r a i n s i z e . The yellowish-brown c o l o r l i k e l y i s due t o the formation of immature f e r r i c hydroxides from i r o n b e a r i n g phases i n the Ybn4 member (Appendix 1). More a l k a l i n e c o n d i t i o n s a s s o c i a t e d with barren zones of the Ybn4 member would not have produced s u b s t a n t i a l decreases i n g r a i n s i z e or s i g n i f i c a n t and r a p i d d e s t r u c t i o n of i r o n b e a r i n g phases, and thus remain n e u t r a l ( i . e . ^ g r e y ) i,rL c o l o r and co a r s e g r a i n e d , l i k e the u n m i n e r a l i z e d p o r t i o n s of the Ybn4 member. R e s u l t s i n d i c a t e t h a t the l i m i t s of m i n e r a l i z e d zones can be determined without geochemical a n a l y s i s by u s i n g s o i l maps based on c a r e f u l examination of s o i l c o l o r and g r a i n s i z e . In a d d i t i o n , i n a reas without outcrop, s o i l s can be e f f e c t i v e f o r i n d i r e c t mapping of the u n d e r l y i n g l i t h o l o g i e s . - 49 -Soil Textures From The Daisy Creek Prospect P i n k i s h B r o w n S o i l G r e y i s h B r o w n S o i l o e 9 a cr >\u00C2\u00BB o c \u00E2\u0080\u00A2 3 cr 4 0 -3 0 2 0 -10 -1 2 3 4 P h i \u00C2\u00AE Y b n 5 5 0 R u s t y B r o w n S o i l I 4 0 ] 3 0 ! 2 0 ! 10 ! ] 0 ] 1 2 3 4 Phl99' t n%ile) of these two t h i c k n e s s v a r i a b l e s ( F i g u r e 14) suggests t h a t t h e s i l v e r was, i n f a c t d e r i v e d from the high Cu g o e t h i t e r i m , which probably c o n s i s t e d of b o r n i t e o r i g i n a l l y . If the o r i g i n a l s u l f i d e had been c h a l c o c i t e , i r o n would have had t o have been i n t r o d u c e d , r e s u l t i n g i n h i g h l y v a r i a b l e Cu/Fe EDS r a t i o s , which are not observed. R a d i a l c r a c k s a r e observed i n the c u p r i f e r o u s g o e t h i t e , but do not extend i n t o the c h a l c o p y r i t e ( P l a t e 26). These c r a c k s ( P l a t e s 22, 23, 25, and 26) a r e probably the r e s u l t of a r e c r y s t a l 1 i z a t i o n of the g o e t h i t e t o a more c r y s t a l l i n e form which r e s u l t e d i n a net l o s s i n volume or due t o volume l o s s i n the c h a l c o p y r i t e t o g o e t h i t e r e a c t i o n . If t h e c r a c k s were due t o the d e h y d r a t i o n of f e r r i c hydroxide t o g o e t h i t e , a w e l l known d i a g e n e t i c r e a c t i o n , a l a r g e r volume l o s s would occur, r e s u l t i n g i n much l a r g e r c r a c k s . B a r i t e commonly f i l l s t h e s e c r a c k s and a l s o o c c u r s s p o r a d i c a l l y along the rims of c u p r i f e r o u s g o e t h i t e ( P l a t e 27). These b a r i t e ' v e i n l e t s ' formed a f t e r the f o r m a t i o n of g o e t h i t e , and are probably the l a s t o x i d a t i o n product, i n t h a t they d e r i v e d t h e i r s u l f a t e from the o x i d a t i o n of c h a l c o p y r i t e and a c a n t h i t e . The f o r m a t i o n of the b a r i t e probably o c c u r r e d d u r i n g middle d i a g e n e s i s because of the low s o l u b i l i t y of barium i n the supergene environment. Supergene waters would not be a b l e t o P l a t e 25 SEM photomicrographs ( b a c k s c a t t e r e d e l e c t r o n s ) o-f c u p r i f e r o u s g o e t h i t e (60) r e p l a c i n g c h a l c o p y r i t e (CP). Note v a r i o u s t h i c k n e s s e s of high Cu c u p r i f e r o u s g o e t h i t e r i ms, and v a r i o u s t h i c k n e s s e s of a c a n t h i t e (AC) zones. - 72 -- l i f t -P l a t e 26 SEM photomicrograph ( b a c k s c a t t e r e d e l e c t r o n s ) o-F c u p r i f e r o u s g o e t h i t e (60) r e p l a c i n g c h a l c o p y r i t e (CP). Note c r a c k s i n c u p r i f e r o u s g o e t h i t e do not p e n e t r a t e c h a c o p y r i t e . - 73 -P l a t e 27 SEM photomicrographs (bac k s c a t t e r e d e l e c t r o n s ) of b a r i t e (BA) o c c u r r i n g i n c r a c k s i n c u p r i f e r o u s g o e t h i t e (GO), and rimming c u r p i f e r o u s g o e t h i t e . - 74 -\u00C2\u00AB -c a r r y barium i n s o l u t i o n t o r e a c t with the s u l f a t e d i f f u s i n g out of the c u p r i f e r o u s g o e t h i t e c r y s t a l s ; however, c h l o r i d e b r i n e s p o s s i b l y r e s p o n s i b l e f o r the s u l f i d e m i n e r a l s (Rickand, 1974; Rose, 1976; Rye e t a l . , 1984) and l a t e r o x i d a t i o n c o u l d c a r r y i t as c h l o r i d e complexes, e s p e c i a l l y i f i t were being r e l e a s e d from a l t e r i n g f e l d s p a r s , where i t i s a t r a c e t o minor c o n s t i t u e n t . In a d d i t i o n , major amounts of b a r i t e are observed as a replacement of galena. T h i s r e a c t i o n i s probably a l s o a r e s u l t of o x i d a t i o n , and, c o i n c i d e n t a l l y , i s suggested by an ov e r l a p i n both Pb and Ba s o i l anomalies (Chapter 4 ) . Thus the p r e c i p i t a t i o n of b a r i t e c o u l d o n l y occur d u r i n g middle d i a g e n e s i s and r e p r e s e n t s the l a s t middle d i a g e n e t i c o x i d a t i o n r e a c t i o n . Quartz overgrowths surround many of these b a r i t e c r y s t a l s . Suctergene Qxi.datign E x t e n s i v e Holocene supergene o x i d a t i o n has occur r e d on a l l m i n e r a l s i n t h e Daisy Creek p r o s p e c t . Galena has a l t e r e d t o c e r u s s i t e and pyromorphite. Carbonate was probably d e r i v e d from u n s t a b l e f e r r o a n carbonates which are a l s o weathering out, and phosphate was s u p p l i e d by the a p a t i t e s i n t h e Ybn4 member (Appendix 1). A r a r e m i n e r a l , h i n s d a l i t e C P b A l 3 ( S 0 4 ) ( P D 4 ) ( 0 H ) 6 ) 1 ( P l a t e s 27 and 28), oc c u r s c o a t i n g pyromorphite, and has been d e s c r i b e d a t o n l y t h r e e other l o c a l i t i e s i n t h e world ( B i r c h , 1977; W i l k i n s o n , 1980). C u p r i f e r o u s g o e t h i t e l a r g e l y i s a l t e r e d t o a myrmekitic - 75 -P l a t e 28 photomicrographs (secondary e l e c t r o n s above b a c k s c a t t e r e d e l e c t r o n s below) o-f h i n s d a l i t e (HD). Note above h i n s d a l i t e o c c u r s i n vacant c a v i t y i n q u a r t z i t e . - 76 -P l a t e 29 SEM photomicrographs (secondary e l e c t r o n s above; b a c k s c a t t e r e d e l e c t r o n s below) o-f h i n s d a l i t e (HD). - 77 -i n t e r g r o w t h of m a l a c h i t e and l i m o n i t e ( l i m o n i t e type F) o n l y where g r a i n boundaries i n t e r s e c t the c u p r i f e r o u s g o e t h i t e c r y s t a l ( P l a t e 29). Some (<10X) o-f the l i m o n i t e i s mangani-ferous and these are the o n l y l i m o n i t e s which c o n t a i n intergrown n a t i v e s i l v e r and m a l a c h i t e . Abundant ma l a c h i t e o c c u r s w i t h i n q u a r t z i t e s c o n t a i n i n g d e t r i t a l muscovite and probably -formed from the o x i d a t i o n of c h a l c o c i t e , and, where a s s o c i a t e d with l i m o n i t e , b o r n i t e . Minor c h r y s o c o l l a and c h a l c a n t h i t e have r e p l a c e d both b o r n i t e and c h a l c o c i t e . L i m o n i t e appears as a replacement of galena, c h a l c o p y r i t e , b o r n i t e , c h a l c o c i t e , c u p r i f e r o u s g o e t h i t e , a c a n t h i t e , and p o s s i b l y f e r r o a n c a r b o n a t e ) . Minor n a t i v e wire s i l v e r has been observed i n panned c o n c e n t r a t e s of s o i l s on the p r o s p ec t. Thus f o u r s e p a r a t e e p isodes of r e a c t i o n s i n v o l v i n g metals i n the Daisy Creek pr o s p e c t can be i d e n t i f i e d . Each can be separated from the other by d i s t i n c t m i n e r a l o g i c c r i t e r i a and p a r a g e n e t i c p o s i t i o n . Although the f i r s t e pisode ( e a r l y d i a g e n e s i s ) , and the l a s t episode (supergene o x i d a t i o n ) , occur s e p a r a t e l y i n time, the middle two (during middle d i a g e n e s i s ) probably r e p r e s e n t a continuum. The r e d u c i n g event probably evolved from a replacement r e a c t i o n under red u c i n g c o n d i t i o n s , t o a replacement r e a c t i o n under o x i d i z i n g c o n d i t i o n s . A p o s s i b l e r e a c t i o n mechanism f o r t h i s i n c l u d e s an o x i d i z i n g m e t a l - c h l o r i d e complexed ground water ( S h i p u l i n , 1971; Renfro, 1974; Rickand, 1974; Rose, 1976; Whipple, 1984) i n t e r a c t i n g , through the d i f f u s i o n of metals from the o x i d i z i n g t o r e d u c i n g c o n d i t i o n s , with an e a r l y d i a g e n e t i c p y r i t e - b e a r i n g permeable host rock c o n t a i n i n g reduced pore - 78 -P l a t e 30 SEM photomicrograph (ba c k s c a t t e r e d e l e c t r o n s ) of myrmekitic i n t e r g r o w t h of m a l a c h i t e (MA; l i g h t ) and l i m o n i t e (LM; d a r k ) . Note at l e f t the l i e s e g a n g d i f f u s i o n r i n g s i n the c u p r i f e r o u s g o e t h i t e (60). - 79 -waters. M i n e r a l i z a t i o n may have been a r e s u l t of the i n f i l t r a t i o n of m e t a l l i f e r o u s ground waters adjacent t o t h i s r educing environment, and i n v o l v e d the i n i t i a l replacement of p y r i t e by C u \u00E2\u0080\u0094 s u l f i d e phases, probably as a r e s u l t of copper d i f f u s i o n from the o x i d i z i n g t o r e d u c i n g environment. Subsequent d i f f u s i o n of f r e e oxygen i n t o the r e d u c i n g environment r e s u l t e d i n the replacement of the C u - s u l f i d e s by Fe-oxides. - 80 -CHAPTER 4 EXPLORATION GEOCHEMISTRY Stream Sediment Geochemistry During the summer o-f 1982, a stream sediment geochemistry survey was conducted by Anaconda M i n e r a l s Company. A data s e t comprising 416 samples surrounding the Daisy Creek Prospect -from a p o r t i o n o-f t h i s survey was made a v a i l a b l e f o r i n t e r p r e t a t i o n . T h i s data s e t c o n s i s t s of sample number, l o c a t i o n , and raw element c o n c e n t r a t i o n v a r i a b l e s . Elements determined i n c l u d e Cu, Pb, Zn, Mo, Ag, Co, Mn, Fe, Ba, and F. C o n c e n t r a t i o n s r e p o r t e d f o r a l l elements are i n ppm, except f o r Fe, which i s r e p o r t e d i n percent. D e t e c t i o n l i m i t s a r e presented i n T a b l e I. A l i s t i n g of the raw data i s i n c l u d e d i n Appendix 2. Each stream sediment sample c o n s i s t e d of a 1 kg composite of 10 subsamples c o l l e c t e d along 30 m of the stream. Every attempt was made t o c o l l e c t non-organic f i n e stream d e t r i t u s . Samples were c o l l e c t e d every 7SO m along the streams and above a l l stream c o n f l u e n c e s on each f o r k . T h i s r e s u l t e d i n a sample d e n s i t y of approximately two samples per km 2 and a t o t a l coverage of over 210 km2. Samples were a i r d r i e d , s i e v e d t o -80 mesh, and submitted f o r a n a l y s i s by t h e Anaconda M i n e r a l s Company Sample P r e p a r a t i o n Laboratory l o c a t e d i n Monte V i s t a , Colorado. A n a l y s i s of the samples was made u s i n g atomic a b s o r p t i o n spectrometry f o r a l l - 81 -T a b l e I D e t e c t i o n L i m i t s f o r Stream Sediment Data (values i n ppm) Element D e t e c t i o n L i m i t Recode Value Cu 2.0 * Pb 2.0 * Zn 5.0 * Mo 1.0 0.5 Ag 0.2 0.2 Mn 20.0 * Fe 5000.0 * F 20.0 * Ba 20.0 * Co 2.0 1.0 * denotes no samples a t or below d e t e c t i o n - 82 -elements except F, which was analyzed by the s p e c i f i c i o n e l e c t r o d e t e c hnique. D i s s o l u t i o n was accomplished u s i n g aqua r e g i a . A l l geochemical a n a l y s e s were c a r r i e d out by Bondar\u00E2\u0080\u0094CIegg L a b o r a t o r i e s , Vancouver, B.C. C o n t r o l samples, c o l l e c t e d i n c o n j u n c t i o n with the e x p l o r a t i o n samples, c o n s i s t of 16 p a i r s of f i e l d r e p l i c a t e s . These were samples which were c o l l e c t e d a t t h e same f i e l d s i t e as the e x p l o r a t i o n samples, but were analyzed independently. These samples were thus used t o determine the amount of combined sampling, p r e p a r a t i o n , and a n a l y t i c a l e r r o r f o r each a n a l y s i s . E r r o r A n a l y s i s Samples which were c o l l e c t e d as r e p l i c a t e s were eva l u a t e d t o determine t h e p r e c i s i o n of the geochemical a n a l y s e s (Meisch, 1967; P l a n t e t a l . , 1975; G a r r e l s and Goss, 1978). A l i s t i n g of the r e p l i c a t e data i s presented i n Table I I . S t a t i s t i c a l a n a l y s i s of t h i s data was made by comparing the median c o n c e n t r a t i o n of a r e p l i c a t e p a i r a g a i n s t the medial c o e f f i c i e n t of v a r i a t i o n f o r t h a t p a i r ( C V m % ) . The medial c o e f f i c i e n t of v a r i a t i o n i s the medial standard d e v i a t i o n , d e r i v e d u s i n g the median i n the standard d e v i a t i o n formula i n s t e a d of t h e mean, d i v i d e d by the median. T h i s e v a l u a t i o n technique i s analogous t o t h a t d e s c r i b e d by Thompson and Howarth (1973, 1976a, b, 1978) f o r d u p l i c a t e a n a l y t i c a l data. The median CV m% value i s the best e s t i m a t e of the r e l a t i v e e r r o r f o r a s e t of r e p l i c a t e a n a l y s e s because i t i s a non-parametric - 83 -SAMP REP NUM NUM 33783 33784 1 2 Ta b l e I I R e p l i c a t e Samples from Stream Sediment Survey Cu Pb Zn Mo Ag Mn Fe Ba F Co ppm ppm ppm ppm ppm ppm pet ppm ppm ppm 7 11 37 2.0 0.2 660 1.70 510 230 8 8 11 37 2.0 0.2 615 1.70 470 300 6 33805 1 33 22 66 2.0 0.3 1000 2.10 750 350 7 33807 2 35 22 70 1.0 0.4 1150 2.20 770 430 7 33844 33845 1 2 20 24 17 17 81 84 2.0 2.0 0.2 0.2 800 2.50 820 2.50 730 710 520 430 14 14 38061 1 40 45 77 1.0 0.2 835 2.10 510 370 7 30638 2 48 52 102 1.0 0.4 760 2.20 530 250 13 46526 47400 1 2 4 11 66 2.0 0.2 575 1.20 740 270 5 6 10 63 1.0 0.2 530 1.20 720 220 4 46537 1 37 18 61 2.0 0.4 840 2.20 730 550 8 46540 2 41 18 61 3.0 0.6 770 2.15 700 480 8 46620 1 37 37 70 2.0 0.2 1100 2.25 860 630 7 46621 2 48 44 107 3.0 0.2 1050 2.40 840 420 7 46646 1 38 22 77 3.0 0.4 1200 2.10 870 540 7 46647 2 36 22 78 2.0 0.2 1250 2.10 860 770 8 46673 1 22 16 64 2.0 0.2 865 1.55 1010 420 8 46674 2 17 18 60 1.0 0.2 665 1.50 870 570 8 46836 1 15 14 45 2.0 0.2 540 1.25 780 270 7 46837 2 14 12 47 1.0 0.2 475 1.20 770 300 6 46842 1 10 11 75 3.0 0.2 258 1.65 770 400 6 46843 2 10 10 71 2.0 0.2 232 1.70 780 480 6 46844 1 37 15 62 2.0 0.3 1200 2.40 770 460 11 46847 2 37 15 60 3.0 0.2 1200 2.50 750 550 12 47417 1 64 21 65 2.0 0.2 lOOO 2.05 730 460 7 47378 2 50 18 72 3.0 0.2 830 1.70 B80 370 8 47420 1 55 40 57 2.0 0.2 1400 1.80 750 360 10 47421 2 52 36 56 2.0 0.2 1200 1.75 740 400 10 61127 1 17 26 56 1.0 0.2 660 1.80 860 570 7 61130 2 20 23 57 0.5 0.2 750 1.75 820 600 8 68663 1 12 13 72 1.0 0.2 770 1.35 750 330 7 68664 2 15 13 64 0.5 0.2 600 1.45 720 270 5 - 84 -approximation of the e r r o r . R e s u l t s a r e presented Appendix 3. The r e p l i c a t e s demonstrate e x c e l l e n t p r e c i s i o n f o r geochemical a n a l y s e s . T h i s may be due i n p a r t t o the f a c t t h a t most of the r e p l i c a t e samples were analyzed s e q u e n t i a l l y ; thus, contamination and a n a l y t i c a l d r i f t were minimized. R e l a t i v e e r r o r s f o r most elements are below 10%. Many of the c a l c u l a t e d CV mX v a l u e s f o r Ag and Mo are extremely h i g h due t o the l a c k of a n a l y t i c a l p r e c i s i o n a t t h e n e a r \u00E2\u0080\u0094 d e t e c t i o n l i m i t c o n c e n t r a t i o n s (Table I) of the analyzed r e p l i c a t e samples. In the case of F, the o n l y element determined by a technique other than atomic a b s o r p t i o n spectrometry, the higher r e l a t i v e e r r o r of 9.7% may simply be r e l a t e d t o a lower l e v e l of p r e c i s i o n i n h e r e n t i n the s p e c i f i c i o n e l e c t r o d e technique. S t a t i s t i c a l A n a l y s i s S t a t i s t i c a l e v a l u a t i o n of the geochemical data c o n s i s t e d of an i n i t i a l p r o b a b i l i t y p l o t a n a l y s i s f o r each element t o e v a l u a t e whether m u l t i p l e p o p u l a t i o n s were rep r e s e n t e d i n the data ( c . f . , S i n c l a i r , 1976). No obvious multimodal d i s t r i b u t i o n s were d e s c r i b e d (Appendix 4); however, a l l elements were lo g n o r m a l l y d i s t r i b u t e d so f u r t h e r s t a t i s t i c a l a n a l y s i s was performed on the log a r i t h m of the element c o n c e n t r a t i o n . In order t o s i m p l i f y the i n t e r p r e t a t i o n of the geochemical data, a d d i t i o n a l s t a t i s t i c a l e v a l u a t i o n was l i m i t e d t o o p e r a t i o n s on o n l y the Cu c o n c e n t r a t i o n v a r i a b l e . T h i s v a r i a b l e was chosen - 85 -because i t i s a major p a t h f i n d e r element and o r e c o n s t i t u e n t i n stratabound copper d e p o s i t s of t h e B e l t Basin and the most probable economic t a r g e t i n the survey area. S i n c e c l a s s i f i c a t i o n of anomalous Cu c o n c e n t r a t i o n s based on multimodal d i s t r i b u t i o n d i s c r i m i n a t i o n was i m p o s s i b l e , a r b i t r a r y t h r e s h o l d s were chosen t o d e f i n e the anomalous samples. Two d i f f e r e n t , but o f t e n used, t h r e s h o l d s e l e c t i o n techniques a r e presented. The f i r s t i n v o l v e s the s e l e c t i o n of a t h r e s h o l d a t the mean p l u s two standard d e v i a t i o n s c o n c e n t r a t i o n l e v e l . For Cu, t h i s corresponds t o 97 ppm, based on log-transformed data. Samples above t h i s c o n c e n t r a t i o n are d o t t e d i n P l a t e 31. Four anomalous samples are r e c o g n i z e d . An a l t e r n a t i v e y e t s i m i l a r approach would be t o s e l e c t the t h r e s h o l d a t the 95^ n p e r c e n t i l e . T h i s t h r e s h o l d corresponds t o 63 ppm Cu and samples g r e a t e r than t h i s t h r e s h o l d a r e s t i p p l e d on P l a t e 31. Numerous s i n g l e p o i n t and s e v e r a l m u l t i \u00E2\u0080\u0094 p o i n t anomalies are r e c o g n i z e d . These two methods vary o n l y i n the number of samples which are r e c o g n i z e d as anomalous. C l a s s i f i c a t i o n i s b a s i c a l l y a boolean operations anomalous, or not anomalous. No other i n f o r m a t i o n i s p r o v i d e d . Anomalies might be ranked f o r follow\u00E2\u0080\u0094up based on the c o n c e n t r a t i o n l e v e l of the d i f f e r e n t anomalous samples, or based on the number of anomalous samples which a r e contiguous and thus c o n s t i t u t e m u l t i p l e p o i n t anomalies. U n f o r t u n a t e l y , these c r i t e r i a may be completely u n r e l a t e d t o c r i t e r i a which d e f i n e where m i n e r a l i z a t i o n might be l o c a t e d or - 86 -how i t i s expressed i n the s u r f a c e geochemical environment. T h i s may be because t h e sample d e n s i t y i s not a p p r o p r i a t e f o r t h e m i n e r a l i z a t i o n type being sought, or because d i f f e r e n t l i t h o l o g i c u n i t s i n the survey area have d i f f e r e n t background l e v e l s and t r u e anomalous samples may not have the h i g h e s t c o n c e n t r a t i o n s . One would be f o r c e d , u s i n g t h i s type of procedure, t o f o l l o w up each of t h e anomalous samples t o see i f they a r e r e l a t e d t o m i n e r a l i z a t i o n . U t i l i z a t i o n of a g e o l o g i c map might add some i n f o r m a t i o n which c o u l d be used t o e l i m i n a t e anomalous samples from c o n s i d e r a t i o n (e.g., those which occur over u n f a v o r a b l e host r o c k s ) , but no i n s i g h t i s added which a l l o w s an understanding of why the anomalies occur where they do, u n t i l they a r e a c t u a l l y f i e l d checked. No i n f o r m a t i o n i s a v a i l a b l e which might rank these anomalies i n terms of t h e i r p o t e n t i a l f o r being r e l a t e d t o m i n e r a l i z a t i o n or some other geochemical phenomenon such as contamination. As a r e s u l t , an a l t e r n a t i v e approach i s presented which a l l o w s f u r t h e r i n t e r p r e t a t i o n of. the geochemical data at t h i s l e v e l of i n v e s t i g a t i o n and u t i l i z e s the m u l t i v a r i a t e nature of the a v a i l a b l e data. A l t e r n a t i v e S t a t i s t i c a l Technique The f o l l o w i n g s t a t i s t i c a l t echnique assumes t h a t a l l samples f a l l i n t o one of two c a t e g o r i e s ; anomalous or background. Samples from a background category, or p o p u l a t i o n , c o n s t i t u t e those u n r e l a t e d t o any type of i r r e g u l a r geochemical c o n c e n t r a t i o n with - 8 7 -r e s p e c t t o t h e p o p u l a t i o n as a whole, e i t h e r -from a s i n g l e or multi-element p e r s p e c t i v e . Samples which are anomalous c o n s t i t u t e those which a r e i r r e g u l a r f o r some reason. U n f o r t u n a t e l y , i n most su r v e y s , s e v e r a l d i f f e r e n t types of anomalous samples may be p r e s e n t . D i f f e r e n t t y p es of m i n e r a l i z a t i o n may e x i s t which have d i f f e r e n t geochemical and m i n e r a l o g i c a l s i g n a t u r e s . V e i n - , s k a r n - , and stratabound-type m i n e r a l i z a t i o n each c o u l d have d i f f e r e n t s u i t e s of anomalous elements and produce d i f f e r e n t t y p es of anomalous geochemical s i g n a t u r e s . L i k e w i s e , d i f f e r e n t types of weathering p r o c e s s e s may have o c c u r r e d which c r e a t e d i f f e r e n t types of geochemical anomalies. Elements which a r e anomalous i n a d i s p l a c e d seepage anomaly may be e n t i r e l y d i f f e r e n t from those i n a c l a s t i c a l l y borne d i s p e r s i o n t r a i n anomaly, yet both may d e r i v e t h e i r anomalous metal c o n c e n t r a t i o n s from the same mineral d e p o s i t . In a s i m i l a r manner, t h e r e may be more than one type of background sample, the background geochemical category (or p o p u l a t i o n ) may a c t u a l l y be composed of s e v e r a l i n d i v i d u a l p a p u l a t i o n s . These m u l t i p l e background p o p u l a t i o n s are common i n geochemical d a t a s e t s , and g e n e r a l l y are r e l a t e d t o fundamental g e o l o g i c or geochemical f a c t o r s or p r o c e s s e s , such as the l i t h o l o g y which u n d e r l i e s or p r o v i d e s the source m a t e r i a l f o r the sample, or the type of sample c o l l e c t e d such as dry streams versus wet streams or B versus C s o i l h o r i z o n s . I t i s up t o the geochemist t o s e p a r a t e the data i n t o groups which correspond t o these c r i t e r i a and t o t r e a t each group s e p a r a t e l y . The groups can be processed s t a t i s t i c a l l y and r e s u l t s from each group can then - 88 -be i n t e r p r e t e d with a minimum of ambiguity. In many cas e s , i n d i v i d u a l groups w i l l demonstrate multimodal d i s t r i b u t i o n s not obvious i n the data as a whole, w h i l e the combination of s e v e r a l multimodal d i s t r i b u t i o n s may r e s u l t i n an apparent unimodal d i s t r i b u t i o n (a c o r o l l a r y of the c e n t r a l l i m i t theorem). The f o l l o w i n g s t a t i s t i c a l t e chnique i s recommended i n cases where a s i n g l e background p o p u l a t i o n e x i s t s , e i t h e r because t h e data are homogeneous or because they have a l r e a d y been d i v i d e d i n t o i n d i v i d u a l groups. Th r e s h o l d S e l e c t i o n Two t h r e s h o l d s can be chosen t o d i v i d e the data i n t o t h r e e groups i f a bimodal d i s t r i b u t i o n i s pre s e n t . These groups c o n s t i t u t e an anomalous p o p u l a t i o n , a background p o p u l a t i o n , and an i n t e r m e d i a t e zone i n between ( F i g u r e s 15 and 16). These t h r e s h o l d s a r e s e l e c t e d u s i n g a p r o b a b i l i t y p l o t ( c . f . , S i n c l a i r , 1976), and should be chosen t o e l i m i n a t e background samples from being a s s i g n e d t o the anomalous p o p u l a t i o n and anomalous samples from being a s s i g n e d t o the background p o p u l a t i o n . In t h i s way, both high and low groups are 'pure', i n t h a t no other samples, or at l e a s t an i n s i g n i f i c a n t number, would be m i s c l a s s i f i e d . The i n t e r m e d i a t e zone c o n s i s t s of samples where c l a s s i f i c a t i o n i n t o high and low groups i s ambiguous because i t r e p r e s e n t s the range of o v e r l a p of the background and p o s s i b l e anomalous p o p u l a t i o n s . Note t h a t because we know t h a t t h e r e i s o n l y one background p o p u l a t i o n i n the data, s i n c e we would have s u b d i v i d e d i t i n t o - 89 -THRESHOLDS FOR HISTOGRAM DISTRIBUTIONS Unimodal Case f ( % ) CONCENTRATION A B anomalous population background population I I Bimodal Case f ( % ) CONCENTRATION F i g u r e 15 - 90 -Thresholds for Frequency Distribution fundamental groups i f t h e r e i s more than one, o n l y one type of background sample i s present i n the background p o p u l a t i o n . T h i s may not be the case i n the.anomalous p o p u l a t i o n , because s e v e r a l d i f f e r e n t t y p e s of anomalies may be present. An a r b i t r a r y c h o i c e of t h r e s h o l d s can be made i f a unimodal p o p u l a t i o n d i s t r i b u t i o n e x i s t s . We assume t h a t anomalous samples a r e present i n the data, but they may not be s u f f i c i e n t l y d i f f e r e n t from the background samples, at l e a s t on a s i n g l e element b a s i s , or do not c o n s t i t u t e a l a r g e enough p r o p o r t i o n of the data t o be r e c o g n i z a b l e on the p r o b a b i l i t y p l o t . Thus we choose a t h r e s h o l d which we are c e r t a i n w i l l be low enough t o prevent the anomalous samples from being c l a s s i f i e d as background samples. T h i s p r o v i d e s us with a 'pure' background d a t a s e t . In the case presented, a t h r e s h o l d was chosen a t the 93 r t* p e r c e n t i l e (mean p l u s 1.5 standard d e v i a t i o n s i n a p e r f e c t normal d i s t r i b u t i o n ) , which corresponds t o 60 ppm Cu. In a d d i t i o n , a higher t h r e s h o l d at the 98^ n p e r c e n t i l e has a l s o been chosen (the mean p l u s two standard d e v i a t i o n s i n a p e r f e c t normal d i s t r i b u t i o n ) , which corresponds t o 90 ppm. T h i s t h r e s h o l d may s e p a r a t e the zone of o v e r l a p from the anomalous p o p u l a t i o n . In t h i s case, s i n c e we do not have any evidence t o support a bimodal d i s t r i b u t i o n , and thus a second p o p u l a t i o n , t h i s t h r e s h o l d may be of l i t t l e consequence, but i t has been chosen t o demonstrate the s t a t i s t i c a l t echnique i n a manner c o n s i s t e n t with the case where two t h r e s h o l d s are e s s e n t i a l t o the procedure. Whether we now have a bimodal or unimodal p o p u l a t i o n , the - 92 -data have been d i v i d e d i n t o t h r e e di-f-ferent groups. In both cases the lower, background group i s 'pure', t h a t i s , a l l c o n t a i n e d samples have a high p r o b a b i l i t y of r e p r e s e n t i n g background. Samples from the high group, with c o n c e n t r a t i o n s g r e a t e r than the upper t h r e s h o l d , g e n e r a l l y would be c o n s i d e r e d t o be anomalous i f a bimodal d i s t r i b u t i o n e x i s t e d . Thus, no f u r t h e r e v a l u a t i o n need be performed on t h e s e samples a t t h i s stage. Such i s not n e c e s s a r i l y the case f o r a unimodal d i s t r i b u t i o n . Samples from the low group, with c o n c e n t r a t i o n s l e s s than the lower t h r e s h o l d , are c o n s i d e r e d t o have too low a c o n c e n t r a t i o n t o be of i n t e r e s t , and are a u t o m a t i c a l l y c a t e g o r i z e d as background samples. % Samples from the t h i r d group, with c o n c e n t r a t i o n s between the two t h r e s h o l d s , are those whose c l a s s i f i c a t i o n as anomalous or background i s i n d e t e r m i n a b l e based s o l e l y on the c o n c e n t r a t i o n l e v e l , g i v e n the amount of a n a l y t i c a l e r r o r i n the data and because of p o p u l a t i o n o v e r l a p . Such v a l u e s need t o be c l a s s i f i e d as e i t h e r p a r t of the anomalous p o p u l a t i o n or p a r t of the background p o p u l a t i o n . The a d d i t i o n a l s t a t i s t i c a l a n a l y s e s presented below are d i r e c t e d toward t h i s end. One approach t o r e c o g n i z i n g anomalous samples i n the zone of p o p u l a t i o n o v e r l a p i s t o determine what type of multielement geochemical s i g n a t u r e an anomalous sample might have, and t o r e c o g n i z e other samples which have a s i m i l a r s i g n a t u r e . U n f o r t u n a t e l y , i n many p r a c t i c a l cases too few anomalous samples are a v a i l a b l e t o determine the multielement c h a r a c t e r i s t i c s of a t y p i c a l anomalous sample. A d d i t i o n a l l y , s e v e r a l types of - 93 -anomalous geochemical s i g n a t u r e s may be presen t i n t h e da t a because of d i f f e r e n t m i n e r a l i z a t i o n sources or because s e v e r a l processes may be a c t i n g t o form d i f f e r e n t t y p e s of geochemical anomalies. As a r e s u l t , an a l t e r n a t i v e approach i s suggested which i s designed t o r e c o g n i z e the anomalous samples u s i n g c r i t e r i a from i n f o r m a t i o n p r o v i d e d by the background p o p u l a t i o n . T h i s i n v o l v e s doing the o p p o s i t e o p e r a t i o n , t h a t ' o f determining the multielement geochemical s i g n a t u r e f o r background samples and ' r e c o g n i z i n g those samples which are not s i m i l a r t o t h i s s i g n a t u r e . These samples are then c l a s s i f i e d as anomalous. In t h i s way, a l l p o s s i b l e anomalous samples are re c o g n i z e d and can be grouped and i n t e r p r e t e d as t o t h e i r o r i g i n and s i g n i f i c a n c e with f u r t h e r s t a t i s t i c a l t e c h niques. A c h a r a c t e r i z a t i o n of the t y p i c a l background sample can be made because these samples come from o n l y one p o p u l a t i o n . Regression A n a l y s i s The method chosen t o d i s c r i m i n a t e between anomalous and background samples i n the c o n c e n t r a t i o n range of p o p u l a t i o n o v e r l a p i s a backwards stepwise m u l t i p l e l i n e a r r e g r e s s i o n technique. A dependent v a r i a b l e , i n t h i s example, copper, i s regres s e d a g a i n s t a l l other elements, the independent v a r i a b l e s , f o r a l l of the samples which were c l a s s i f i e d as background u s i n g the p r o b a b i l i t y p l o t technique ( i . e . , Cu c o n c e n t r a t i o n s <60 ppm). The r e s u l t i n g r e g r e s s i o n f u n c t i o n was then a p p l i e d t o the samples - 94 -from the zone o-f o v e r l a p . In t h i s case we w i l l apply i t t o both anomalous and zone o-f o v e r l a p samples because we do not know i-f the upper group i s t r u l y anomalous. A s c a t t e r p l o t o-f the a c t u a l c o n c e n t r a t i o n versus the c o n c e n t r a t i o n p r e d i c t e d from the r e g r e s s i o n f u n c t i o n i s e v a l u a t e d t o determine which samples have a background multielement geochemical s i g n a t u r e and which do not. T h i s t echnique i s s i m i l a r t o t h a t d e s c r i b e d by Matysek e t a l . (1982); however, by u t i l i z i n g o n l y background samples i n the d e t e r m i n a t i o n of the r e g r e s s i o n f u n c t i o n , a high m u l t i p l e r e g r e s s i o n c o r r e l a t i o n i s p o s s i b l e because no samples from other p o p u l a t i o n s a r e i n c l u d e d . U n f o r t u n a t e l y , one must remember t h a t every v a r i a b l e i n a geochemical data s e t i s s u b j e c t t o e r r o r . As a r e s u l t , normal l e a s t - s q u a r e s r e g r e s s i o n i s not v a l i d because th e independent v a r i a b l e s are not known p r e c i s e l y . T h i s i s an assumption i n l e a s t - s q u a r e s r e g r e s s i o n . An a l t e r n a t i v e approach must be u t i l i z e d which accounts f o r e r r o r s i n each v a r i a b l e . T h i s t e chnique, known as the 'reduced major a x i s r e g r e s s i o n t e c hnique', has been d e s c r i b e d by Dent (1933), Kermack and Haldane (1950), T i l l (1973), and Mark and Church (1977); however, the d e r i v a t i o n of t h i s form of r e g r e s s i o n has o n l y been worked out f o r two v a r i a b l e s . A d e s c r i p t i o n of the d e r i v a t i o n f o r t h i s technique which determines a r e g r e s s i o n f u n c t i o n f o r more than two independent v a r i a b l e s i s i n p r e p a r a t i o n . The reduced major a x i s technique al l o w s the c o n s t r u c t i o n of a r e g r e s s i o n l i n e which corresponds t o the g e n e r a l t r e n d of the raw data where the e x p e c t a t i o n of the r e s i d u a l i s 0 a c r o s s the f u l l - 95 -range o-f the data; t h i s i s not n e c e s s a r i l y t h e case i n a normal l e a s t - s q u a r e s r e g r e s s i o n s i t u a t i o n , where the average e x p e c t a t i o n o-f the r e s i d u a l i s z e r o ( L i n d l e y , 1950; E z e k i a l , 1961; K e n d a l l and S t u a r t , 1963; Jones, 1972, 1979; Spiegelman, 1982). The advantage of t h i s e m p i r i c a l technique i s t h a t i t a l l o w s one t o e x t r a p o l a t e the r e g r e s s i o n l i n e o u t s i d e the bounds of the data used t o d e f i n e t h e l i n e from <60 ppm (the background po p u l a t i o n ) i n t o the zone of mixing of the anomalous and background p a p u l a t i o n s (60 t o 90 ppm). T h i s enables one t o e v a l u a t e the s i m i l a r i t y of t h e s e samples with r e s p e c t t o t h e general t r e n d of the background p o p u l a t i o n . In t h i s way, q u a n t i t a t i v e comparisons of r e s i d u a l s f o r t h e samples can be made whereby the r e s i d u a l s may be analyzed u s i n g p r o b a b i l i t y p l o t s t o s e p a r a t e t h e p o p u l a t i o n s and samples which have multielement geochemical c h a r a c t e r i s t i c s which are s i m i l a r t o those of the background p o p u l a t i o n can be c l a s s i f i e d as such. I n t e r p r e t a t i o n R e s u l t s of the reduced major a x i s backwards stepwise m u l t i p l e l i n e a r r e g r e s s i o n technique f o r Cu are presented i n Appendix 4. Elements with l a r g e c o n t r i b u t i o n s t o the r e g r e s s i o n equation i n c l u d e Fe, Pb, Mn, and Ag ( i n d e c r e a s i n g order; Appendix 5 ) . F i g u r e s 17 and IB a r e p l o t s of the p r e d i c t e d Cu c o n c e n t r a t i o n from the r e g r e s s i o n f u n c t i o n versus the a c t u a l Cu c o n c e n t r a t i o n . Several samples from the zone of p o p u l a t i o n o v e r l a p f a l l on or near the p r e d i c t e d r e g r e s s i o n l i n e (slope - 1) and thus are - 96 -|Q C T ID LU < > Q LU r-O Q LU or 0. 6 0 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 -5 0 z. REGRESSION PREDICTED VS. OBSERVED COPPER CONCENTRATIONS Arithmetic Values IW 1 / Cu J \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 i i i i i i i i \u00C2\u00BB \u00E2\u0080\u00A2 5 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 OBSERVED VALUE REGRESSION PREDICTED VS. OBSERVED COPPER CONCENTRATIONS Log Values 1/ \u00E2\u0080\u00A2 i i i I L 1 1 J 0.4 0 . 8 1.2 1.6 2 . 0 2.4 2 . 8 3 . 2 OBSERVED VALUE c o n s i d e r e d t o be background samples. In a d d i t i o n , t h r e e obvious t r e n d s f o r samples g r e a t e r than 60 ppm are observed. One t r e n d , which corresponds t o samples with an a c t u a l Cu c o n c e n t r a t i o n which i s g r e a t e r than t h a t p r e d i c t e d by 'the r e g r e s s i o n f u n c t i o n (shallow s l o p e ) , c o n s i s t s of t h r e e samples. Four samples, comprising a second t r e n d ( i n t e r m e d i a t e s l o p e ) , which a r e deemed anomalous because t h e i r Cu c o n c e n t r a t i o n i s g r e a t e r than 90 ppm occur along the m u l t i p l e r e g r e s s i o n l i n e w i t h i n the 9 5 ^ n p e r c e n t i l e e r r o r bounds f o r the background p o p u l a t i o n . S i n c e we are o n l y assuming t h a t t h e r e i s an upper anomalous p o p u l a t i o n , these samples may or may not be t r u l y anomalous. F i n a l l y , a t h i r d t r e n d , which has p r e d i c t e d Cu c o n c e n t r a t i o n s which are g r e a t e r than the a c t u a l c o n c e n t r a t i o n s (steep s l o p e ) , comprises the remaining samples which do not f a l l on or near t h e r e g r e s s i o n l i n e . P l a t e 32 i s a drainage b a s i n map of the area covered by t h e geochemical survey around Daisy Creek. Drainage b a s i n s which c o n t a i n samples deemed i n i t i a l l y anomalous i n Cu (>90 ppm) a r e s t i p p l e d . Those drainage b a s i n s c o n t a i n i n g samples which are p a r t of the shallow s l o p e t r e n d a r e l i n e d v e r t i c a l l y , those which a r e p a r t of the steep t r e n d are l i n e d h o r i z o n t a l l y , and those which l i e along t h e r e g r e s s i o n l i n e are l i n e d at an angle. Drainage b a s i n s c o n t a i n i n g samples deemed t o be background are blank. E v a l u a t i o n of the anomalies with the use of the g e o l o g i c map ( P l a t e 2) r e v e a l s s e v e r a l important c o n c l u s i o n s : 1) a two p o i n t anomaly oc c u r s i n the South Daisy Creek drainage b a s i n and appears t o be r e l a t e d t o the - 99 -m i n e r a l i z a t i o n a t the Daisy Creek prospect; the sample at the head of the drainage b a s i n (sample 46726; Appendix 2) may r e p r e s e n t the a c t u a l m i n e r a l i z a t i o n ; i t i s anomalous i n Cu o n l y and v i s i b l e m a l a c h i t e and C u \u00E2\u0080\u0094 s u l f i d e s have been observed i n heavy mineral c o n c e n t r a t e s from the stream; the oth e r sample (46727) may be r e l a t e d t o downslope d i s p e r s i o n , adsorbed c o n c e n t r a t i o n s of Cu on Fe- and Mn-oxides (because of i t s high Mn and Fe c o n c e n t r a t i o n s ) , or t o contamination by a p r e v i o u s anomalous Cu c o n c e n t r a t i o n (46726); 2) a two p o i n t anomaly (46736 and 47424) o c c u r s i n the n o r t h end of the survey area a t the Meadow Creek anomaly, a r e g i o n known t o c o n t a i n m a l a c h i t e as d i s c r e t e g r a i n s and c o a t i n g s on stream d e t r i t u s and which i s u n d e r l a i n by the Snowslip Formation, a u n i t which c o n t a i n s abundant copper o c c u r r e n c e s of the green bed type; samples from t h i s anomaly have extremely high Cu c o n c e n t r a t i o n s ; 3) two s i n g l e p o i n t anomalies (46699 and 68157) occur over the Bonner Formation, the same u n i t which hosts the Daisy Creek prospect; these may be r e l a t e d t o adsorbed Cu on Mn- or Fe\u00E2\u0080\u0094oxides, because of t h e i r high Mn or Fe c o n c e n t r a t i o n s , or t o other minor stratabound Cu\u00E2\u0080\u0094Ag occ u r r e n c e s i n the Bonner Formation; 4) two m u l t i p l e p o i n t anomalies occur on the east s i d e of the survey area and a r e u n d e r l a i n by the Wallace Formation (30739 and 38062; t o the north) and t h e Snowslip Formation (33886, 33887, and 33888; t o the south); both - 100 -occur adjacent t o occupied d w e l l i n g s and may r e p r e s e n t contamination from th e s e sources; t h e anomaly t o t h e n o r t h has high Pb, Fe, and Mn c o n c e n t r a t i o n s , p o s s i b l y s u g g e s t i n g t h a t Cu, as w e l l as these elements, were f i x e d by high pH's c r e a t e d by the carbonate bedrock. The anomaly t o the south has high Fe and Mn c o n c e n t r a t i o n s , which may suggest Cu a d s o r p t i o n . A l t e r n a t i v e l y , t h e s e samples a r e s e q u e n t i a l l y ordered, and thus may r e p r e s e n t contamination d u r i n g a n a l y s i s ; 5) a semi-continuous s e t of anomalous c o n c e n t r a t i o n s occur along the 355\u00C2\u00B0 s t r i k i n g high angle f a u l t a t the n o r t h end of the f i e l d area; these anomalies (46827, 46833, and 47417) occur downhill from the Meadow Creek anomaly along t h i s s t r u c t u r e and may r e p r e s e n t d i s p l a c e d anomalies c r e a t e d by ground water c i r c u l a t i o n and hydromorphic r e d i s t r i b u t i o n of metals along the f a u l t t o r e g i o n s s e p a r a t e from the m i n e r a l i z a t i o n source; anomalous samples along t h i s t r e n d have high Fe and Mn c o n c e n t r a t i o n s and thus may c o n t a i n l a r g e amounts of adsorbed Cu on accompanying Fe\u00E2\u0080\u0094 and Mn\u00E2\u0080\u0094oxides; 6) a f o u r p o i n t anomaly l o c a t e d a t the head of the Daisy Creek drainage b a s i n (46678, 46679, 47410, and 68665) i s anomalous i n Fe, and may be a seepage anomaly from the m i n e r a l i z a t i o n at the Daisy Creek p r o s p e c t ; these samples are on the o p p o s i t e s i d e of t h e v a l l e y as the Daisy Creek Prospect at about the same e l e v a t i o n ; consequently, t h i s i n t e r p r e t a t i o n i s not l i k e l y . These - 101 -samples may be r e l a t e d t o green bed-type m i n e r a l i z a t i o n o c c u r r i n g i n the u n d e r l y i n g Mount S h i e l d s Formation; The Pu r p l e and Green A r g i l l i t e U n i t of t h e S i l t i t e Member c o n t a i n s minor disseminated l i m o n i t e b l e b s which are s i m i l a r t o those a t the Daisy Creek prospect; a l t e r n a t i v e l y , these samples are those which are g r e a t e r than 90 ppm but which f a l l along the m u l t i p l e r e g r e s s i o n l i n e ( i n t e r m e d i a t e slope) and thus have a s i m i l a r multi-element geochemical s i g n a t u r e as the background p o p u l a t i o n ; they may not, i n f a c t , be t r u l y anomalous; the l a r g e a r e a covered by t h i s anomaly may not be r e l a t e d t o a p o i n t source, r e p r e s e n t i n g m i n e r a l i z a t i o n , as a t the Daisy Creek prospect and the Meadow Creek anomaly, but r a t h e r t o a l a r g e zone r e l a t e d t o high background c o n c e n t r a t i o n s i n t h a t a r e a . Both the Daisy Creek prospect and the Meadow Creek anomaly c o n t a i n anomalous samples which f a l l along t h e shallow s l o p e t r e n d on the r e g r e s s i o n s c a t t e r p l o t ( F igure 17). These anomalous samples a r e a l l a t the heads of t h e i r r e s p e c t i v e drainage b a s i n s and a re at f a i r l y h igh e l e v a t i o n s . Areas such as these g e n e r a l l y have immature stream sediments which have not undergone e x t e n s i v e chemical weathering. At both l o c a t i o n s , m a l a c h i t e has been observed c o a t i n g r o c k s i n the stream bed ( c . f . , Cazes, 1981). As a r e s u l t , t h e shallow s l o p e t r e n d i s co n s i d e r e d t o be r e l a t e d t o d e t r i t u s c o n t a i n i n g m i n e r a l o g i c a l l y borne metal c o n c e n t r a t i o n s i n malachite, c u p r i f e r o u s Fe-oxides, and C u - s u l f i d e s , which are a l l seen i n heavy mineral c o n c e n t r a t e s from t h e s e areas. - 102 -In c o n t r a s t , the samples comprising t h e steep s l o p e t r e n d o-f the r e g r e s s i o n s c a t t e r p l o t ( F i g u r e 17) are l o c a t e d i n s i t e s where hydromorphic d i s p e r s i o n and seepage anomalies seem reasonable g i v e n the g e o l o g i c environment. Some occur downstream -from known m i n e r a l i z a t i o n , adjacent t o d w e l l i n g s , and along major f a u l t s . In a d d i t i o n , they g e n e r a l l y c o n t a i n high c o n c e n t r a t i o n s of Fe and/or Mn. For t h i s reason, the steep s l o p e t r e n d of anomalous samples i s i n t e r p r e t e d as r e p r e s e n t i n g anomalous Cu c o n c e n t r a t i o n s which r e s u l t e d from hydromorphic metal t r a n s p o r t , and which are now adsorbed t o o x i d e s . F i n a l l y , samples which a r e p a r t of the anomalous group which c l u s t e r s along the r e g r e s s i o n l i n e a re i n t e r p r e t e d t o be e i t h e r not anomalous a t a l l , or a seepage anomaly r e l a t e d t o minor green bed o c c u r r e n c e s i n the Mount S h i e l d s Formation. Note t h a t samples which o r i g i n a l l y were c l a s s i f i e d as anomalous a r e not n e c e s s a r i l y r e l a t e d t o the two areas of m i n e r a l i z a t i o n and t h a t samples from the zone of p o p u l a t i o n o v e r l a p a r e , i n many cases, as important t o t h e o v e r a l l i n t e r p r e t a t i o n as those samples i n i t i a l l y c l a s s i f i e d as anomalous. Using t h i s anomaly r e c o g n i t i o n technique, a d e t e r m i n a t i o n can be made as t o whether s e v e r a l types of anomalies are present i n the data. These anomaly types can be rec o g n i z e d and d i s t i n g u i s h e d based on the multi\u00E2\u0080\u0094element geochemical t r e n d s of the anomalous samples. Ranking of the anomalies can be made based on combined in p u t from the s t a t i s t i c a l e v a l u a t i o n and g e o l o g i c c r i t e r i a . F i n a l l y , s i n c e a r i g i d t h r e s h o l d v a l u e i s not a p p l i e d , samples - 103 -which comprise t h e higher c o n c e n t r a t i o n t a i l of the background p o p u l a t i o n can be re c o g n i z e d and e l i m i n a t e d from c o n s i d e r a t i o n . C o nversely, f o r the standard anomaly r a n k i n g techniques d e s c r i b e d p r e v i o u s l y , a r i g i d a r b i t r a r y t h r e s h o l d i s as s i g n e d , and, thus, samples from the high c o n c e n t r a t i o n t a i l of the background p o p u l a t i o n cannot be e l i m i n a t e d . T h i s r e s u l t s i n an abundance of u n i n t e r p r e t a b l e s i n g l e p o i n t anomalies which s t i l l have t o be f i e l d checked. The most prominent anomaly i n the 95^\" p e r c e n t i l e t h r e s h o l d example i s l o c a t e d a t the head of the Daisy Creek drainage b a s i n , a l o c a t i o n which i s thought t o be unimportant based on the p r o b a b i l i t y p l o t / r e g r e s s i o n technique and where no m i n e r a l i z a t i o n i s known t o e x i s t . The mean p l u s two standard d e v i a t i o n technique r e c o g n i z e s o n l y f o u r samples and i n c o r r e c t p r i o r i t y might be assigned because of the very high c o n c e n t r a t i o n s at the Meadow Creek anomaly (785 ppm Cu), and because i t c o n s i s t s of two contiguous anomalous samples. Thus, the p r o b a b i l i t y p l o t / r e g r e s s i o n t echnique d e s c r i b e d above o f f e r s s i g n i f i c a n t advantages over the standard 95^\u00C2\u00B0 p e r c e n t i l e and mean p l u s 2 standard d e v i a t i o n s techniques, and r e p r e s e n t s a b e t t e r a n a l y t i c a l t o o l i n the e v a l u a t i o n of geochemical data. Anomaly r a n k i n g , e l i m i n a t i o n of random s c a t t e r , and m u l t i p l e anomalous p o p u l a t i o n r e c o g n i t i o n p r o v i d e a d d i t i o n a l i n t e r p r e t i v e c r i t e r i a f o r the e x p l o r a t i o n geochemist and a l l o w the ready r e c o g n i t i o n of s i g n i f i c a n t geochemical anomalies. - 104 -Sgi1 Geochemistry Pedogeochemical data from the 1782 s o i l g r i d survey was a l s o e v a l u a t e d s t a t i s t i c a l l y and i n t e r p r e t e d . A geochemical data s e t of 116 samples was p r o v i d e d by Anaconda M i n e r a l s Company. Information f o r each sample i n c l u d e s sample number, l o c a t i o n c o o r d i n a t e s , and element c o n c e n t r a t i o n s f o r Cu, Pb, Zn, Mo, Ag, Co, As, Hg, and Ba. A l i s t i n g of these data i s presented i n Appendix 6. D e t e c t i o n l i m i t s f o r the geochemical c o n c e n t r a t i o n data are g i v e n i n T a b l e I I I . A l l samples c o n s i s t e d of 1 kg of m a t e r i a l from a s i n g l e s o i l p i t . Depths ranged from 10 t o 35 cm but a l l samples were c o l l e c t e d from the top 15 cm of the Bm s o i l h o r i z o n . These s o i l s were g e n e r a l l y l e s s mature than the average s o i l u n d e r l y i n g the r e g i o n a l map area and are c l a s s i f i e d as o r t h i c - d y s t r i c t o d e g r a d e d \u00E2\u0080\u0094 d y s t r i c b r u n i s o l s ( M i l l e r , 1782). No developement of any Ae or Bt s o i l h o r i z o n o c c u r s . The samples were a i r d r i e d , s i e v e d t o \u00E2\u0080\u009480 mesh and submitted f o r a n a l y s i s by the Anaconda M i n e r a l s Company Sample P r e p a r a t i o n Laboratory l o c a t e d i n Monte V i s t a , Colorado. A l l geochemical d e t e r m i n a t i o n s were done u s i n g atomic a b s o r p t i o n spectrometry, except f o r As ( c o l o r i m e t r i c ) , and Hg (gold f o i l ) . These a n a l y s e s were c a r r i e d out at S k y l i n e L a b o r a t o r i e s , Golden, Colorado. Sample s i t e s are l o c a t e d on a N-S o r i e n t e d square g r i d which i s 15 m on a s i d e . The t o t a l s o i l g r i d measures 180 m by 180 m. The survey c o n s i s t e d of 107 r o u t i n e s o i l samples and 7 s i t e r e p l i c a t e samples c o l l e c t e d a t t h r e e d i f f e r e n t g r i d l o c a t i o n s . - 105 -T a b l e I I I D e t e c t i o n L i m i t s f o r S o i l B r i d Data (values i n ppm) Element D e t e c t i o n L i m i t Recode Value Cu 5.0 * Pb 5.0 2.5 Zn 5.0 # Mo 1.0 ** Ag 0.2 0.1 Co 5.0 2.5 As 5.0 5.0 Hg 0.005 * Ba 20.0 * * denotes no samples a t or below d e t e c t i o n ** denotes no samples above lower d e t e c t i o n l i m i t - 106 -These s i t e r e p l i c a t e samples were l o c a t e d a t p o i n t s approximating the v e r t i c e s o-f an e q u i l a t e r a l t r i a n g l e t h r e e meters on a s i d e , which was c e n t e r e d around'a r o u t i n e e x p l o r a t i o n sample. A l l were c o l l e c t e d i n non-anomalous t e r r a n e . In a d d i t i o n , 26 samples \"were resubmitted f o r a second a n a l y s i s of a l l elements except Hg. Three of t h e s e sample r e p l i c a t e s c o n s i s t of known and well blended standards. These sample r e p l i c a t e s , along with the s i t e r e p l i c a t e s , were co n s i d e r e d t o g e t h e r and used t o e v a l u a t e the sampling, p r e p a r a t i o n , and a n a l y t i c a l e r r o r f o r the geochemical a n a l y s e s . E r r o r A n a l y s i s R e p l i c a t e sample data (Table IV) were processed s t a t i s t i c a l l y i n the same manner as the stream sediment r e p l i c a t e samples. P l o t t e d r e s u l t s are presented i n Appendix 7. R e l a t i v e e r r o r s are low and a c c e p t a b l e f o r most elements (approximately 5%). Copper, Pb, Zn, Ag, and As a l l e x h i b i t higher l e v e l s of r e l a t i v e e r r o r at lower c o n c e n t r a t i o n s , near t h e i r r e s p e c t i v e d e t e c t i o n l i m i t s . One r e p l i c a t e a n a l y s i s f o r Ba i s h i g h l y i m p r e c i s e , but the remainder are a c c e p t a b l e . Molybdenum, Co, and t o a l e s s e r degree, Ag and Hg a l l have most of t h e i r r e p l i c a t e v a l u e s at or near t h e i r r e s p e c t i v e d e t e c t i o n l i m i t s , so the r e l a t i v e e r r o r determined i s not s i g n i f i c a n t . More r e a l i s t i c r e l a t i v e e r r o r e s t i m a t e s , obtained by i n s p e c t i o n based on the average CV%, f o r these elements would be 10.0% f o r Mo, 3.0% f o r Ag, 6.0% f o r As, and 5.0% f o r Hg. A l l are w i t h i n a c c e p t a b l e l e v e l s f o r geochemical - 107 -Table IV R e p l i c a t e Samples From S o i l G r i d Survey SAMP REPL Ag Cu Pb Zn Co Mo As Hg Ba NUM NUM (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 8B858-V 1 0.1 25 2.5 50 2.5 1 5 30 670 88B6O-V 2 0. 1 25 2.5 45 10.0 1 5 20 850 88862-V 3 0. 1 20 2.5 45 10.0 1 5 30 650 B8864-V 4 0. 1 25 2.5 45 10.0 1 5 20 680 88886-V 1 0. 1 30 2.5 45 10.0 ! 5 50 780 88888-V 2 O. 1 75 2.5 80 2.5 1 5 60 750 88B90-V 3 0. 1 15 10.0 70 10.0 1 5 40 870 88B12-V 4 0.8 20 5.0 55 10.0 1 5 30 690 B8972-V 1 0. 1 30 15.0 45 5.0 1 5 10 570 B8974-V 2 0. 1 30 10.0 70 10.0 1 5 20 660 88976-V 3 0. 1 25 20.0 45 5.0 1 10 30 470 B8978-V 4 0. 1 50 15.0 90 5.0 1 5 20 650 10001-S 1 18.0 110 335.0 165 2.5 4 1100 300 1050 10002-S 2 17.0 H O 335.0 160 5.0 6 1050 300 1000 10003-5 3 18.0 115 330.0 170 5.0 6 1100 320 920 10004-S 4 19.0 110 375.0 160 5.0 6 960 300 1050 10011-S 1 5.9 70 75.0 170 10.0 1 390 100 1000 10012-S 2 5.4 70 70.0 140 10.0 4 430 100 lOOO 10013-S 3 5.6 75 70.0 155 10.0 4 370 90 1050 10021-S 1 0. 1 60 20.0 235 15.0 1 30 20 830 10022-S 2 0. 1 65 15.0 240 15.0 2 20 20 890 10023-S 3 0. 1 50 20.0 225 5.0 4 20 20 870 8B956 1 O. 1 35 10.0 95 10.0 1 5 **470 2 0. 1 35 10.0 45 5.0 1 5 530 88028 1 0. 1 60 20.0 235 2.5 1 5 610 2 0. 1 50 10.0 35 5.0 1 5 590 88972 1 0. 1 35 15.0 50 2.5 1 5 540 2 0. 1 30 15.0 45 5.0 1 5 570 88984 1 0. 1 125 15.0 75 10.0 1 5 720 2 O. 1 130 15.0 70 5.0 1 5 780 88928 1 0. 1 5 5.0 25 5.0 1 5 400 2 0. 1 15 2.5 20 2.5 1 5 440 88810 1 0. 1 135 2.5 70 5.0 1 5 BOO 2 0.4 125 2.5 70 10.0 1 5 850 - 108 -T a b l e IV Cont SAMP REPL Ag Cu Pb Zn Co Mo As Hg Ba NUM NUM (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 88842 1 2 0. 1 0. 1 35 30 5.0 5.0 50 50 5.0 5.0 10 5 610 240 88878 1 2 0. 1 0.8 30 30 10.0 5.0 45 50 10.0 2.5 10 5 570 620 8B002 1 2 O. 1 O. 1 40 35 20.0 20.0 35 35 5.0 5.0 10 10 470 440 88832 1 2 1.7 1.7 1050 950 15.0 20.0 65 65 5.0 2.5 10 10 790 710 88898 1 2 O. 1 O. 1 40 25 5.0 5.0 60 50 5.0 2.5 5 30 710 620 88940 1 2 0.2 0.2 90 205.0 BO 240.0 60 55 10.0 15.0 5 5 750 750 88061 1 2 0.4 0.4 90 85 5.0 10.0 BO 75 10.0 2.5 5 5 620 610 88078 1 2. 0.7 0.6 50 55 5.0 10.0 75 75 5.0 10.0 5 5 590 520 B8019 1 2 O. 1 O. 1 30 30 5.0 2.5 40 35 2.5 10.0 5 5 620 540 88064 1 2 0.4 0.4 40 35 15.0 15.O 120 120 5.0 2.5 5 5 620 580 88094 1 2 1.0 0.8 35 50 5.0 10.0 85 80 5.0 10.0 5 5 600 510 34739 1 2 O. 1 0.4 35 25 5.0 2.5 105 95 10.0 10.0 5 10 690 630 88870 1 2 O. 1 O. 1 15 15 2.5 2.5 35 35 5.0 5.0 5 5 570 570 88910 1 2 O. 1 O. 1 15 15 2.5 2.5 35 30 2.5 2.5 5 5 530 520 88998 1 2 0.7 0.6 30 35 10.0 15.0 B5 105 5.0 10.0 5 5 530 550 70001-R 1 2 O. 1 O. 1 15 15 20.0 20.0 65 65 109 -5.0 10.0 10 10 610 580 T a b l e IV Cont SAMP REPL Ag Cu Pb Zn Co Mo As Hg Ba NUM NUM (ppm) : mainly r e d , p i n k , maroon, and p u r p l e , very f i n e g r a i n e d q u a r t z i t e s and medium t o coarse g r a i n e d s i l t i t e s ; t h i n t o very t h i n p a r t i n g ; c o n t a i n s abundant muscovite on bedding p l a n e s and s i l i c e o u s mud c h i p s as l a g l a m e l l a e which are o f t e n i m b r i c a t e d ; g e n e r a l l y l a c k s heavy mineral beds; p a r t i n g l i n e a t i o n ; very common red a r g i l l a c e o u s bed tops which act as p a r t i n g s u r f a c e s ; abundant d e s i c c a t i o n crack c a s t s ; bedding i s g e n e r a l l y 0.5 t o 3.0 cm thick, and o c c u r s as f i n i n g upward c o u p l e t s ; o c c a s i o n a l orange l i m o n i t e b l e b s occur disseminated throughout u n i t ; c r o s s c u t t i n g quartz v e i n s c o n t a i n minor hematite and do not a l t e r the country rock. -2370 t o -2250 Lower Crossbedded Q u a r t z i t e Member (Ybn-?) \u00E2\u0080\u00A2 g e n e r a l l y t a n , l i g h t orange, white, and cream c o l o r e d , t h i c k bedded, t h i c k t o f l a g g y p a r t i n g , medium t o very coarse g r a i n e d , v i t r e o u s q u a r t z i t e ; beds from 10.0 t o 100.0 cm t h i c k ; common trough and t a b u l a r - t a n g e n t i a l crossbeds and minor e p s i l o n crossbeds; very abundant heavy mineral accumulations as f o r e s e t l a g d e p o s i t s ; minor red l i m o n i t e (hematite) b l e b s occur disseminated throughout; u n i t from -2370 t o -2310 m has t h r e e interbedded 5.0 t o 10.0 m t h i c k sequences of l i g h t p i n k , r e d , maroon, and p u r p l e , f l a t laminated t o r i p p l e laminated, f i n e t o very - 152 --fine g r a i n e d , micaceous q u a r t z i t e s with p a r t i n g l i n e a t i o n ; r i p p l e marks are dominantly asymmetric t u n i n g f o r k and u n d u l a t o r y types; beds a r e 0.5 t o 3.0 cm t h i c k and occur as f i n i n g upward c o u p l e t s ; most beds c o n t a i n minor heavy mineral l a g d e p o s i t s along t h e i r bases; c o a r s e g r a i n e d q u a r t z i t e beds i n t h i s s e c t i o n are o f t e n p a l e green immediately (up t o 3.0 m) below the f i n e r g r a i n e d q u a r t z i t e sequences; c r o s s c u t t i n g quartz v e i n s c o n t a i n minor hematite and do not a l t e r the country rock. -2565 t o -2370 Lower Laminated Q y a r t z i t e Member (Ybnj) s g r a d a t i o n a l with the lower p a r t of the Lower Crossbedded Q u a r t z i t e Member; c o n s i s t s of l i g h t p i n k , r e d , maroon, and p u r p l e , f i n e t o very f i n e g r a i n e d , t h i n t o f l a g g y p a r t i n g , t h i n bedded, f l a t and r i p p l e laminated, micaceous q u a r t z i t e ; beds c o n s i s t of f i n i n g upward c o u p l e t s which range from 0.8 t o 15.0 cm t h i c k ; minor l i g h t p i n k , trough crossbedded, f i n e g r a i n e d q u a r t z i t e s occur from \u00E2\u0080\u00942400 t o -2370 m; below -2400 m a r g i l l a c e o u s bed t o p s , p a r t i n g s , and d e s i c c a t i o n crack c a s t s are p r e v a l e n t ; minor heavy mineral accumulations occur as f o r e s e t l a g and bedding plane l a g d e p o s i t s throughout the u n i t ; minor s i l i c e o u s mud c h i p s occur; from -2490 t o -2565 m u n i t c o n s i s t s of p a l e green f l a t laminated micaceous q u a r t z i t e s interbedded with the red micaceous q u a r t z i t e s ; green - 153 --facies a re g e n e r a l l y 3.0 t o 10.0 m t h i c k w h i l e interbedded red micaceous q u a r t z i t e s a r e g e n e r a l l y 10.0 t o 25.0 cm t h i c k ; abundant t u n i n g f o r k and u n d u l a t o r y r i p p l e marks present o n l y i n red micaceous q u a r t z i t e s ; minor disseminated orange l i m o n i t e b l e b s occur o n l y i n the r e d beds; c r o s s c u t t i n g quartz v e i n s c o n t a i n minor hematite and do not a l t e r the country rock. -3705 t o -2565 m Mount S h i e l d s Formation - Hel.ikian : p a l e green, b u f f , t a n , and l i g h t grey, medium g r a i n e d , t h i n p a r t i n g , f l a t - 154 -laminated s i l t i t e with sedimentary s t r u c t u r e s s i m i l a r t o the Upper Red S i l t i t e U n i t ; c o n t a i n s -Fewer d e s i c c a t i o n c r a c k c a s t s and r i p p l e marks; tops of beds are a r g i l l a c e o u s but a r e o f t e n o x i d i z e d t o red and p u r p l e c o l o r s ; beds c o n s i s t of f i n i n g upward c o u p l e t s from 0.5 t o 3.5 cm t h i c k and o f t e n have micaceous p a r t i n g s u r f a c e s as well as having muscovite disseminated throughout; o c c a s i o n a l l i g h t grey t o grey c h e r t nodules occur up t o 5.0 by 10.0 cm i n c r o s s s e c t i o n . -3000 t o -2S80 m P u r p l e and Green A r g i l l . i t e U n i t (Ymss4> : f l a t l aminated, i n t e r c a l a t e d , p u r p l e and green a r g i 1 1 i t e composed of f i n i n g upward c o u p l e t s from 0.5 t o 2.0 cm t h i c k ; minor pinch and s w e l l , scour and f i l l , l e n t i c u l a r , and swaly bed forms; green beds commonly have red a r g i l l a c e o u s tops and p a r t i n g s ; very minor disseminated orange l i m o n i t e b l e b s occur along b a s a l bedding planes i n the p u r p l e c o u p l e t s . -3090 t o -3000 m P y C B l i and Green S i l t i t e U n i t (Ymss.3) s f l a t l aminated, i n t e r c a l a t e d , purple' and green, medium t o f i n e g r a i n e d , t h i n p a r t i n g s i l t i t e and a r g i l l i t e ; very micaceous; s i l t i t e s a re dominantly p u r p l e while a r g i l l i t e s are dominantly green; beds c o n s i s t of f i n i n g upward c o u p l e t s from 0.2 t o 1.2 cm t h i c k ; green beds - 155 -o f t e n have a r g i l l a c e o u s red tops and p a r t i n g s u r f a c e s ; minor c a l c i t e cement oc c u r s i n some of the c o a r s e r . s i l t i t e s from -3090 t o -3050 m (lower 40 m). -3225 t o -3090 m Mixed C l a s t i c U n i t (Ymss2> : i n t e r c a l a t e d , p u r p l e and green a r g i l l i t e , s i l t i t e , and f i n e t o very f i n e g r a i n e d q u a r t z i t e ; very micaceous; f i n i n g upward c o u p l e t s range from 5.0 t o 80.0 mm t h i c k ; common c l i m b i n g r i p p l e c r o s s s t r a t i f i c a t i o n ; minor symmetric o s c i l l a t i o n r i p p l e marks; s i l t i t e s and q u a r t z i t e u n i t s a r e dominantly green w h i l e a r g i l l i t e i s dominantly p u r p l e ; scour and f i l l , and pinch and swell bed forms occur o c c a s i o n a l l y ; green u n i t s commonly have r e d a r g i l l a c e o u s tops which e x h i b i t abundant d e s i c c a t i o n crack c a s t s ; c o a r s e r u n i t s c o n t a i n minor s i l i c e o u s mud c h i p conglomerates; minor carbonate cement oc c u r s i n c o a r s e r u n i t s from -3115 t o -3090 m (upper 25 m). -3285 t o -3225 m Lower Red \u00C2\u00A7ilti_te Uni.t (Ymssj) : dominantly p u r p l e and r e d , f l a t laminated, medium grai n e d s i l t i t e with abundant muscovite along bedding planes; c o n t a i n s c l i m b i n g r i p p l e c r o s s s t r a t i f i c a t i o n and s i l i c e o u s mud c h i p conglomerates; beds c o n s i s t of f i n i n g upward c o u p l e t s between 1.0 and 5.0 cm t h i c k ; a r g i l l a c e o u s tops and d e s i c c a t i o n crack c a s t s on bed tops a re common; from - 156 --3285 t o -3270 tn u n i t grades g r a i n e d , -Flat laminated, and r i p p l e laminated q u a r t z i t e . i n t o p i n k , very minor symmetric f i n e d o s c i 1 1 a t i o n -3705 t o -3285 m Q u a r t z i t e Member : f i n e t o very f i n e g r a i n e d , white, t a n , l i g h t grey t o l i g h t green, f l a t laminated q u a r t z i t e ; minor pla n a r and t a b u l a r - t a n g e n t i a l crossbeds with low f o r e s e t t o bedding angles; o f t e n appears bleached t o milky white; c o n t a i n s bimodal s i z e d i s t r i b u t i o n of a u t h i g e n i c p y r i t e cubes; one s e t of p y r i t e cubes averages 1.0 mm on a side-and commonly e x h i b i t s red l i m o n i t e rims; the second s e t of p y r i t e cubes averages 5.0 mm on a s i d e and appears t o be rimmed with magnetite; beds with l a r g e amounts of p y r i t e which have undergone supergene o x i d a t i o n a r e o f t e n d i s c o l o r e d t o red adjacent t o the p y r i t e ; u n i t c o n t a i n s t h i c k , o c c a s i o n a l l y red a r g i l l i t e p a r t i n g s ; s i l i c e o u s mud c h i p conglomerates and c l i m b i n g r i p p l e c r o s s s t r a t i f i c a t i o n a r e a l s o present; f i n e r g r a i n e d beds c o n s i s t of f i n i n g upward sequences from 2.0 t o 35.0 cm t h i c k . - 157 --3485 t o -3375 m Lower Green S i l t i t e U n i t s green t o p a l e grey, medium t o coarse g r a i n e d , f l a t laminated, t h i n p a r t i n g s i l t i t e ; h i g h l y micaceous; c o n t a i n s some c l i m b i n g r i p p l e c r o s s s t r a t i f i c a t i o n and s i l i c e o u s mud c h i p conglomerates; h i g h l y micaceous u n i t s weather t o medium brown; very minor p u r p l e f a c i e s occur but are u s u a l l y c o n f i n e d t o a r g i l l a c e o u s tops on green beds; beds c o n s i s t of f i n i n g upward c o u p l e t s from 0.5 t o 2.5 cm t h i c k . -3705 t o -3485 m H e l l g a t e Q u a r t z i t e U n i t \u00C2\u00AB p u r p l e and green, t h i n p a r t i n g , i n t e r c a l a t e d s i l t i t e and a r g i l l i t e ; - 158 -beds commonly O.S t o 2.0 cm t h i c k ; o f t e n green a r g i l l i t e has red a r g i l l a c e o u s tops; minor d e s i c c a t i o n crack c a s t s occur on red a r g i l l a c e o u s tops; bedding i s f l a t laminated with minor p i n c h and s w e l l , and scour and f i l l bed forms; some red a r g i l l a c e o u s mud c h i p conglomerates p r e s e n t ; c o a r s e g r a i n e d c h l o r i t e o c c u r s on major j o i n t and f r a c t u r e s u r f a c e s . -4205? t o -4055 m Green A r g i l l i t e Member (Ysnj) i grey t o green, t h i n p a r t i n g a r g i l l i t e and minor s i l t i t e and a r g i l l i t e ; f l a t l aminated with minor p i n c h and s w e l l bed forms; beds occur as f i n i n g upward c o u p l e t s from 0.5 t o 2.0 cm t h i c k ; no mud c h i p conglomerates occur; minor muscovite on p a r t i n g s u r f a c e s ; coarse g r a i n e d c h l o r i t e o ccurs on major j o i n t and f r a c t u r e s u r f a c e s ; minor carbonate cement; p o s s i b l y e q u i v a l e n t t o the Upper Member of the Wallace Formation as d e s c r i b e d by H a r r i s o n (1984). HELIKIAN SECTION - MIDDLE BELT CARBONATE ? t o -4205? m Waliace Formation \u00E2\u0080\u0094 Hel_ikian o < 5 HI 2 50 r 4 0 30 20 Relative Error For Cu (ppm) Rela t ive Error = 4 . 7 % N = 3 2 Rep l ica te Groups = 16 10 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 CONCENTRATION 6 2 > 50 4 0 30 Relative Error For Pb (ppm) Relat ive Error = 4 . 8 % N = 3 2 Repl icate Groups = 16 < O UJ 3 20 10 o 1 -7 CONCENTRATION - 171 -5 2 R e l a t i v e E r r o r F o r Z n ( p p m ) Rela t ive Error = 2 .0% N = 3 2 Repl ica te Groups = 16 % j 3 0 10 C O N C E N T R A T I O N R e l a t i v e E r r o r F o r M o ( p p m ) Relat ive Error = 2 0 . 0 % N = 3 2 Repl ica te Groups = 16 0 .6 2.7 C O N C E N T R A T I O N R e l a t i v e E r r o r F o r A g ( p p m ) Rela t ive Error = 0.0% N = 32 Repl ica te Groups = 16 ).2 0.5 C O N C E N T R A T I O N R e l a t i v e E r r o r F o r Mn (ppm) Relat ive Error = 4 . 8 % N = 32 Repl ica te Groups = 18 4 0 1 4 0 0 C O N C E N T R A T I O N - 173 -> O -J < 5 LU 2 50 r 4 0 3 0 20 Relative E r r o r F o r F e (pet) Rela t ive Error = 1.8% N = 32 Repl ica te Groups = 16 10 1.1 C O N C E N T R A T I O N 2.6 50 4 0 Relative E r r o r F o r B a (ppm) Relat ive Error = 1.4% N = 32 Repl ica te Groups = 16 > 30 < 5 ui 2 20 -10 -4 5 0 C O N C E N T R A T I O N 1000 - 174 -R e l a t i v e E r r o r F o r F ( p p m ) Rela t ive Error = 9 . 7 % N = 3 2 Rep l ica te Groups = 16 i 6 9 6 C O N C E N T R A T I O N R e l a t i v e E r r o r F o r C o ( p p m ) Relat ive Error = 5 . 1 % N = 3 2 Rep l ica te Groups = 16 C O N C E N T R A T I O N - 175 -15 APPENDIX 4 STREAM SEDIMENT PROBABILITY PLOTS - 176 -PROGRAM: PERCENTAGE HISTOGRAMS DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY RUN: TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 NAME CU N 416 X BAR 30 377 STD DEV 42 122 ELL LOWER LIMIT NMBR % ARITHMETIC VALUES 1 0 0 .0 2 - 1 7 5 . 0 0 0 0 3 -164 .4 0 0 0 4 - 1 5 3 .9 0 0 0 5 - 143 .4 0 0 0 6 - 132 .8 0 0 0 7 - 122 . 3 0 0 0 8 -111 . 8 0 0 0 9 -101 . 3 0 0 0 10 - 9 0 . 72 0 0 0 1 1 - 8 0 . 19 0 0 0 12 - 6 9 . 66 0 0 0 13 - 5 9 . 13 0 0 0 14 - 4 8 . 60 0 0 0 15 -38 . 07 0 0 0 16 -27 . 54 0 0 0 17 - 17 . O l O 0 0 18 - 6 . 4 8 0 7 1 7 * * 19 4 .051 1 1 1 26 7 *************************** 20 14 . 58 103 24 8 ************************* 2 1 25 . 1 1 72 17 3 ***************** 22 35 . 64 59 14 2 ************** 23 46 . 17 33 7 9 ******** 24 56 . 7 0 15 3 6 * * * * 25 67 . 23 5 1 2 * 26 77 . 76 1 0 2 27 88 . 3 0 5 1 2 * 28 98 . 83 0 0 0 29 109 . 4 1 0 2 30 1 19 . 9 1 0 2 31 130 .4 1 0 2 32 140 .9 0 0 0 33 151 . 5 0 0 0 34 162 .0 1 0 2 35 172 . 5 0 0 0 36 183 . 1 0 0 0 37 193 .6 0 0 0 38 204 . 1 0 0 0 39 214 .7 0 0 0 40 225 .2 0 0 0 4 1 235 . 7 1 0 2 BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV A R I T H . L I M I T T I PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME CU T L DATA: DAISY CREEK RECON STREAM SEOIMENT GEOCHEMISTRY _N 416. E R U N : X BAR 3 0 . 3 7 7 S T I M E : 2 5 / Q 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 4 2 . 1 2 2 LOWER LIMIT NMBR ARITHMETIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV AR ITH .L IM IT 133 . 1 127 .8 122 I 17 112 106 101 9 6 . 19 9 0 . 9 3 8 5 . 6 6 8 0 . 4 0 7 5 . 13 6 9 . 8 7 6 4 . 6 0 5 9 . 3 4 5 4 . 0 7 48 .81 4 3 . 5 4 3 8 . 2 8 3 3 . 0 1 27 .74 2 2 . 4 8 17.21 I I . 95 6 . 6 8 4 1.418 - 3 . 8 4 7 - 9 . 112 - 1 4 . 3 8 - 1 9 . 6 4 - 2 4 . 9 1 - 3 0 . 1 7 - 3 5 . 4 4 - 4 0 . 7 0 - 4 5 . 9 7 - 5 1 . 2 3 - 5 6 . 5 0 - 6 1 . 7 6 - 6 7 . 0 3 - 7 2 . 3 0 3 O 1 1 0 O O O 3 2 O 2 2 5 9 8 19 32 17 31 45 37 46 86 49 18 0 O O O O O 0 O O O O 0 0 O O 0 . 7 0 .7 1.0 1 1 1 1 1 1 2 2 2 3 4 6 .7 8 .7 13.2 2 0 . 9 2 5 . 0 3 2 . 5 43 52 63 83 95 100.0 100.0 100.0 100.0 100.0 100.0 :oo.o 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10 20 30 40 50 60 70 80 90 95 99 T I PROGRAM: PERCENTAGE HISTOGRAMS NAME CU T ; ' L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 4J6_ E RUN: X BAR 1 . 3589 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 , 3 1 4 1 4 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV ARITH.L IM IT 1 0 0 .0 2 - 0 . 1 7 2 5 0 0 0 0 . 6 7 2 2 3 - 0 . 9 3 9 7 E -01 0 0 0 0 . 8 0 5 4 4 - 0 . 1 5 4 3 E -01 0 0 0 0 .9651 5 0 . 6 3 1 0 E -01 0 0 0 1 . 156 6 0 . 1 4 16 0 0 0 1 .386 7 0 . 2 2 0 2 0 0 0 1 . 6 6 0 8 0 . 2 9 8 7 0 0 0 1 .989 9 0 . 3 7 7 2 0 0 0 2 .384 iO 0 . 4558 3 0 7 * 2 .856 1 1 0 . 5343 4 1 0 * 3 .422 12 0 . 6 1 2 8 0 0 0 4 . 101 13 0 . 6 9 1 4 7 1 7 * * 4 . 9 1 3 14 0 . 7 6 9 9 1 1 2 6 * * * 5 .887 15 0 . 8 4 8 5 9 2 2 * * 7 .054 16 0 . 9 2 7 0 18 4 3 * * * * 8 . 4 5 3 17 1 .006 29 7 0 ******* 10. 13 18 1 .084 37 8 9 ********* 12. 14 19 1 . 163 35 8 4 ******** 14 .54 20 1.241 32 7 7 ******** 17 .42 21 1 . 320 36 8 7 ********* 2 0 . 8B 22 1 . 398 33 7 9 ******** 25 .01 23 1 .477 39 9 4 ********* 2 9 . 9 7 24 1 . 555 36 8 7 ********* 35 .91 25 1 634 44 10 6 *********** 4 3 . 0 3 26 1.712 19 4 6 ***** 51 .56 27 1 . 791 1 1 2 6 * * * 61 .78 28 1 . 869 3 0 7 * 7 4 . 0 3 29 1 .948 5 1 2 * 8 8 . 7 0 30 2 .026 2 0 5 106 .3 31 2 105 1 0 2 127.4 32 2 . 184 1 0 2 152.6 33 2 . 262 0 0 0 182.8 34 2 . 34 1 O 0 0 219 . 1 35 2 .4 19 0 0 0 262 . 5 36 2 . 4 9 8 0 O 0 3 1 4 . 5 37 2 .576 0 0 0 3 7 6 . 9 38 2 . 6 5 5 0 0 0 451 .6 39 2 . 7 3 3 0 0 0 541 . 1 40 2 . 8 1 2 0 0 0 648 . 3 41 2 . 890 1 0 . 2 7 7 6 . 9 T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME CU L DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 1.3589 S T IME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 3 1 4 1 4 CELL LOWER L IMIT NMBR % 1 2 . 125 3 0 7 2 2 . 0 8 5 1 1 0 3 2 . 0 4 6 1 1 2 4 2 . 0 0 7 0 1 2 5 1 .968 2 1 7 6 1 . 928 3 2 4 7 1 .889 1 2 6 8 1 . 8 5 0 3 3 4 9 1 . 810 5 4 6 10 1.771 9 6 7 1 1 1 . 732 10 9 1 12 1 . 693 1 1 1 1 8 13 1 . 653 23 17 3 14 1.614 19 21 9 15 1 .575 17 26 0 16 1 . 536 20 30 8 17 1 . 496. 24 36 5 18 1 . 457 18 40 9 19 1 .418 18 45 2 20 1 . 379 21 50 2 21 1 . 339 14 53 6 22 1 . 300 26 59 9 23 1 . 261 7 61 5 24 1 22 1 18 65 9 25 1 . 182 1 1 68 5 26 1 . 143 32 76 2 27 1 104 18 80 5 28 1.064 14 83 9 29 1 .025 15 87 5 30 0 . 9 8 5 9 8 89 4 31 0 . 9 4 6 6 i o 91 8 32 0 . 9 0 7 4 0 91 B 33 0 . 8 6 8 1 9 94 0 34 0 . 8 2 8 8 7 95 7 35 0 . 7 8 9 6 0 95 7 36 0 . 7 5 0 3 4 96 6 37 0 . 7 1 10 0 96 6 38 0 . 6 7 17 7 98 3 39 0 . 6 3 2 5 0 98 3 40 0 . 5 9 3 2 4 99 3 4 1 3 100 0 LOGARITHMIC VALUES BAR INTERVAL = O.12500 STD DEV ARITH.L IM IT 133 .2 121.7 111.2 101 .6 9 2 . 8 0 8 4 . 7 8 7 7 . 4 5 7 0 . 7 5 6 4 . 6 4 5 9 . 0 5 5 3 . 9 5 4 9 . 2 8 4 5 . 0 2 4 1 . 1 3 3 7 . 5 7 3 4 . 3 3 31 .36 2 8 . 6 5 2 6 . 17 23 .91 21 .84 19 .95 I B . 2 3 16 .65 15.21 13 .90 12 .70 1 1 . 6 0 10 .60 9 . 6 8 0 8 .843 8 . 0 7 9 380 742 160 627 141 696 290 919 5 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME PB L DATA: DAISV CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 21 130 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 11 680 CELL LOWER LIMIT NMBR % ARITHME 1 0 0 0 2 - 3 5 81 O 0 0 3 - 3 2 .89 0 0 0 4 - 2 9 .97 0 0 0 5 - 2 7 .05 0 0 0 6 -24 . 13 0 0 0 7 -21 .21 0 0 0 8 - 18 . 29 O 0 0 9 - 15 . 37 0 0 0 10 -12 .45 0 0 0 1 1 - 9 . 531 O 0 o 12 - 6 . 511 0 0 0 13 - 3 . 6 9 1 0 0 0 14 - 0 . 7 7 0 8 0 0 0 15 2 . 149 6 1 4 * 16 5 .069 1 1 2 6 * * * 17 7 . 9 8 9 42 10 1 ********** 18 i o .91 55 13 2 ************* 19 13 .83 53 12 7 ************* 20 16 . 75 50 12 0 ************ 21 19 .67 54 13 0 ************* 22 22 .59 36 8 7 ********* 23 25 .51 25 6 0 ****** 24 28 .43 20 4 8 ***** 25 31 . 35 18 4 3 * * * * 26 34 .27 10 2 4 * * 27 37 . 19 7 1 7 * * 28 40 . 1 1 7 1 7 * * 29 43 .03 5 1 2 * 30 45 .95 4 1 0 * 31 48 .87 5 1 2 * 32 51 .79 1 0 2 33 54 .71 2 0 5 34 57 .63 0 0 0 35 60 .55 0 0 0 36 63 .47 2 0 5 37 66 . 39 0 0 0 38 69 .31 2 0 5 39 72 .23 0 0 0 40 75 . 15 O 0 0 4 1 78 .07 1 0 2 BAR INTERVAL 0 . 2 5 0 0 0 STD DEV A R I T H . L I M I T T I PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME PB T . : L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 416. \u00C2\u00A3 R U N : X BAR 21 . 130 S_ T IME. 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 11\u00E2\u0080\u00A2680 CELL LOWER LIMIT NMBR % 1 49 .60 12 2 9 2 48 . 14 1 3 1 3 46 .68 1 3 4 4 45 .22 3 4 1 5 43 . 76 5 5 3 6 42 . 30 3 6 0 7 40 .84 4 7 0 8 39 . 38 3 7 7 9 37 .92 4 8 7 10 36 .46 4 9 6 1 1 35 O O 4 10 6 12 33 .54 10 13 0 13 32 .08 4 13 9 14 30 .62 1 1 16 6 15 29 . 16 4 17 5 16 27 .70 17 21 6 17 26 . 24 9 23 8 18 24 .78 23 29 3 19 23 .32 14 32 7 20 21 .86 32 40 4 21 20 .40 14 43 8 22 18 .94 33 51 7 23 17 .48 16 55 5 24 16 .02 18 59 9 25 14 .56 30 67 1 26 13 . 10 23 72 6 27 1 1 64 27 79 1 28 10 18 28 85 8 29 8 . 7 19 28 92 5 30 7 . 259 14 95 9 31 5 . 799 11 98 6 32 4 . 339 6 100 0 33 2 . 879 0 100 0 34 1 . 419 0 100 0 35 - 0 . 4 0 8 7 E - 0 1 0 100 0 36 - 1 . 501 0 100 0 37 -2 . 961 0 100 0 3B -4 . 421 0 100 0 39 - 5 . 881 0 100 0 40 - 7 . 34 1 0 100 0 4 1 0 lOO 0 ARITHMETIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV A R I T H . L I M I T 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME PB L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 1.2655 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 2 2 8 4 9 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV AR ITH .L IM IT 1 0 0 .0 2 0 . 1516 0 0 .0 1 . 418 3 0 . 2087 0 0 .0 1 . 617 4 0 . 2658 O 0 .0 1 . 844 5 0 . 3229 0 0 .0 2 . 103 6 0 . 3800 0 0 .0 2 . 399 7 0 . 4372 0 0 0 2 . 736 8 0 . 4943 O 0 0 3 . 121 9 0 . 55 14 0 0 0 3 . 560 10 0 . 6085 0 0 0 4 . 060 1 1 0 . 6657 6 1 4 4 . 631 12 0 . 7228 3 0 7 * 5 . 282 13 0 . 7799 0 0 0 6 . 024 14 0 . 8370 8 1 9 * * 6 . 871 15 0 . 8942 14 3 4 \u00C2\u00BB * \u00E2\u0080\u00A2 7 . 837 16 0 . 9513 28 6 7 ******* 8 . 939 17 1 .008 28 6 7 ******* 10 . 2 0 18 1 .066 27 6 5 ****** 1 1 .63 19 1 . 123 41 9 9 ********** 13 .26 20 1 ISO 30 7 2 ******* 15 . 13 21 1 . 237 32 7 7 ******** 17 . 25 22 1 . 294 54 13 0 ************* 19 .68 23 1 .351 36 8 7 ********* 22 . 45 24 1 . 408 36 8 7 ********* 25 . 6 0 25 1 . 465 19 4 6 ***** 29 .20 26 1 . 523 18 4 3 * * * * 33 . 3 0 27 1 . 580 14 3 4 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 37 .99 28 1 .637 10 2 4 * * 43 . 3 3 29 1 .694 7 1 7 * * 49 .42 30 1 . 751 0 0 0 56 .36 31 1 .808 4 1 0 \u00C2\u00AB fc'4 .29 32 1 .865 O 0 0 73 .32 33 1 .922 1 0 2 83 . 6 3 34 1 .979 0 o 0 \u00C2\u00A35 .38 35 2 .037 0 o 0 108 .8 36 2 .094 O 0 0 124 . 1 37 2 . 151 0 0 0 141 .5 38 2 . 208 0 0 0 161 .4 39 2 .265 0 0 0 184. 1 40 2 . 322 0 o 0 2 1 0 . 0 41 2 379 0 0 0 2 3 9 . 5 T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME PB L DATA : OAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 1 .2655 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 2 2 8 4 9 CELL LOWER L IMIT NMBR % 1 1.822 3 0 7 2 1.794 2 1 2 3 1 .765 0 1 2 4 1 .737 2 1 7 5 1 .708 1 1 9 6 1 . 6 8 0 5 3 1 7 1 .651 7 4 8 8 1 .622 7 6 5 9 1 .594 5 7 7 10 1 .565 8 9 6 1 1 1 .537 6 1 1 1 12 1 .508 12 13 9 13 1 . 4 8 0 11 16 6 14 1 .451 15 20 2 15 1 .423 15 23 8 16 1 .394 23 29 3 17 1 .365 14 32 7 18 1 .337 32 40 4 19 1 . 308 14 43 8 20 1 . 280 17 47 8 21 1 .251 32 55 5 22 1 . 223 18 59 9 23 1 . 194 12 62 7 24 1 . 165 18 67 1 25 1 . 137 23 72 6 26 1 . 108 12 75 5 27 1 . 080 0 75 5 28 1 .051 15 79 1 29 1 .023 28 85 8 30 0 . 9 9 4 1 14 89 2 31 0 . 9 6 5 6 0 89 2 32 0 . 9 3 7 0 14 92 5 33 0 . 9 0 8 4 0 92 5 34 0 . 8 7 9 9 14 95 9 35 0 . 8 5 1 3 0 95 9 36 0 . 8 2 2 8 8 97 8 37 0 . 7 9 4 2 0 97 8 38 0 . 7 6 5 6 3 98 6 39 0 .7371 0 98 6 40 0 . 7085 0 98 6 41 6 100 0 LOGARITHMIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV AR ITH .L IM IT 6 6 . 4 3 6 2 . 2 0 5 8 . 2 4 54 .54 51 .07 47 .82 4 4 . 7 7 4 1 .92 39 . 25 3 6 . 7 6 3 4 . 4 2 3 2 . 2 3 3 0 . 18 2 8 . 2 5 2 6 . 4 6 2 4 . 7 7 2 3 . 2 0 21 .72 2 0 . 3 4 19 .04 17 .83 1 6 . 7 0 1 5 . 6 3 14.64 13.71 12 .83 12 .02 1 1 .25 10 .54 9 . 8 6 5 9 . 238 8 . 6 5 0 8 . 0 9 9 7 .584 7 . 101 6 .649 6 . 2 2 6 5 . 8 2 9 5 . 4 5 8 5 .111 5 10 20 30 40 50 60 70 80 90 95 99 T I P R O G R A M : P E R C E N T A G E H I S T O G R A M S N A M E Z N T , L D A T A : D A I S Y C R E E K R E C O N S T R E A M S E D I M E N T G E O C H E M I S T R Y ' _ N 4 1 6 E R U N : X B A R 7 5 . 3 Q 5 S T I M E : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 S T D D E V 3 5 . 6 1 1 C E L L L O W E R L I M I T N M B R % A R I T H M E T I C V A L U E S 1 0 0 0 2 - 9 8 . S O 0 0 0 3 - 8 9 . 3 9 0 0 0 4 - 8 0 . 4 9 0 0 0 5 - 7 1 . 5 9 0 o 0 6 - 6 2 . 6 9 0 0 0 7 - 5 3 . 7 8 0 0 0 8 - 4 4 . 8 8 0 0 0 9 - 3 5 . 9 8 0 0 0 i o - 2 7 OB 0 0 0 1 1 - 1 8 . 17 0 0 0 1 2 - 9 2 7 0 0 o 0 1 3 - 0 . 3 6 7 3 0 0 0 14 8 . 5 3 5 0 0 0 1 5 1 7 . 4 4 6 1 4 * 1 6 2 6 . 3 4 9 2 2 * \u00E2\u0080\u00A2 1 7 3 5 . 2 4 2 8 6 7 * * * * * * * 1 8 4 4 . 1 5 4 7 1 1 3 * * * * * * * * * * * 1 9 5 3 . 0 5 5 5 1 3 2 * * * * * * * * * * * * * 2 0 6 1 . 9 5 7 4 1 7 B * * * * * * * * * * * * * * * * * * 2 1 7 0 . 8 5 6 3 1 5 1 * * * * * * * * * * * * * * * 2 2 7 9 . 7 6 4 3 1 0 3 * * * * * * * * * * 2 3 8 8 6 6 2 5 6 0 * * * * * * 2 4 9 7 . 5 6 2 1 5 0 * * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * 2 5 1 0 6 . 5 9 2 2 * * 2 6 1 1 5 4 5 1 2 2 7 1 2 4 . 3 1 1 2 6 * \u00E2\u0080\u00A2 * 2 8 1 3 3 2 5 1 2 * 2 9 1 4 2 . 1 2 0 5 3 0 1 5 1 . 0 3 0 7 * 3 1 1 5 9 . 9 2 0 5 3 2 1 6 8 . 8 1 0 2 3 3 1 7 7 . 7 3 0 7 3 4 1 8 6 6 1 O 2 3 5 1 9 5 . 5 O 0 0 3 6 2 0 4 . 4 0 O 0 3 7 2 1 3 . 3 0 0 0 3 8 2 2 2 . 2 1 0 2 3 9 2 3 1 . 1 0 0 0 4 0 2 4 0 . 0 O O 0 4 1 2 4 8 . 9 2 0 5 B A R I N T E R V A L = 0 . 2 5 0 0 0 S T D D E V A R I T H . L I M I T T I PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME ZN T L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 416_ E RUN: X BAR 75 \u00E2\u0080\u00A2 305 S T IME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 35 .61 1 ELL LOWER L IMIT NMBR % 1 162 . 1 10 2 4 2 157 . 7 2 2 9 3 153 .2 0 2 9 4 148 .8 1 3 1 5 144 . 3 1 3 4 6 139 .8 1 3 6 7 135 .4 4 4 6 8 130 .9 3 5 3 9 126 .5 6 6 7 10 122 . 0 4 7 7 1 1 1 17 .6 3 8 4 12 1 13 . 1 2 B 9 13 108 .7 4 9 9 14 104 . 2 8 1 1 8 15 9 9 . 79 1 1 14 4 16 9 5 . 34 1 1 17 1 17 9 0 . 88 10 19 5 18 8 6 . 43 16 23 3 19 81 . 98 26 29 6 20 77 . 53 20 34 4 21 73 . 08 26 40 6 22 6 8 . 63 43 51 0 23 64 . 18 36 59 6 24 5 9 . 73 37 68 5 25 5 5 . 27 31 76 0 26 5 0 . 82 30 83 2 27 4 6 . 37 19 87 7 28 41 . 92 24 93 5 29 37 . 47 10 95 9 30 3 3 . 02 6 97 4 31 2 8 . 57 5 98 6 32 2 4 . 11 0 98 6 33 19. 66 5 99 8 34 15. 21 1 100 0 35 10. 76 O 100 0 36 6 . 3 1 0 0 100 0 37 1 .858 0 100 0 38 - 2 . 5 9 3 0 100 0 39 - 7 . 0 4 4 o 100 0 40 - 1 1 . 50 0 100 0 4 1 o 100 0 ARITHMETIC VALUES BAR INTERVAL - 0 . 1 2 5 0 0 STD DEV A R I T H . L I M I T 10 20 30 40 50 60 70 80 90 95 99 T I PROGRAM: PERCENTAGE HISTOGRAMS NAME ZN T ; : L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 416 E RUN: X BAR 1 .8422 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 16B88 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = = 0 . 2 5 0 0 0 STD DEV ARITH L IMIT 1 0 0 0 2 1 .019 0 0 0 10. 45 3 1 .061 0 0 0 1 1 . 51 4 1 103 0 0 0 12. 69 5 1 146 0 0 0 13. 98 6 1 . 188 0 o 0 15. 41 7 1 . 230 O 0 0 16. 98 8 1 272 2 0 5 1 8 . 72 9 1 314 3 0 7 * 2 0 . 63 10 1 357 1 0 2 5 2 . 73 1 1 1 399 0 0 0 2 5 . 06 12 1 44 1 2 0 5 27 . 61 13 1 483 3 0 7 * 3 0 . 43 14 1 526 5 1 2 * 3 3 . 54 15 1 568 10 2 4 * * 3 6 . 96 16 1 6 lO 17 4 1 * * * * 4 0 . 74 17 1 652 23 5 5 ****** 44 . 90 18 1 694 26 6 3 ****** 4 9 . 48 19 1 737 44 10 6 *********** 5 4 . 53 20 1 779 51 12 3 ************ 6 0 . 10 2 1 1 82 1 52 12 5 ************* 6 6 . 23 22 1 863 46 1 1 1 *********** 7 3 . 00 23 1 906 40 9 6 ********** 8 0 . 45 24 1 948 25 6 0 ****** 88 . 66 25 1 990 23 5 5 ****** 9 7 . 71 26 2 032 8 1 9 * * 107 .7 27 2 074 13 3 1 * * * ' 1 18 .7 28 2 1 17 8 1 9 * * 130 .8 29 2 159 3 0 7 * 144 .2 30 2 201 3 0 7 \u00E2\u0080\u00A2 158 .9 31 2 243 5 1 2 * 175 . 1 32 2 285 0 0 0 193 . 0 33 2 328 1 0 2 212 . 7 34 2 370 0 0 0 234 .4 35 2 4 12 o 0 0 258 . 3 36 2 454 0 0 0 284 .7 37 2 497 1 0 2 313 .7 38 2 539 0 0 O 345 .8 39 2 58 1 0 0 0 38 1 . 1 40 2 623 1 0 2 420 . 0 4 1 2 665 o O O 462 .9 PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS DATA: RUN: TIME : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 NAME N X BAR STD DEV ZN 416 1 .8422 0 . 16888 CELL LOWER LIMIT NMBR % 1 2 254 7 1 7 2 2 233 1 1 9 3 2 212 2 2 4 4 2 190 2 2 9 5 2 169 1 3 1 6 2 148 2 3 6 7 2 127 5 4 8 8 2 106 7 6 5 9 2 085 6 7 9 10 2 064 3 8 7 1 1 2 043 1 8 9 12 2 022 1 1 11 5 13 2 001 8 13 5 14 1 979 15 17 1 15 1 958 10 19 5 16 1 937 16 23 3 17 1 916 18 27 6 18 1 895 23 33 2 19 1 874 22 38 5 20 1 853 27 45 O 2 1 1 832 36 53 6 22 1 811 25 59 6 23 1 789 23 65 1 24 1 768 23 70 7 25 1 747 22 76 0 26 1 726 10 78 4 27 1 705 20 83 2 28 1 .684 11 85 8 29 1 663 8 87 7 30 1 642 15 91 3 31 1 621 9 93 5 32 1 599 3 94 2 33 1 .578 7 95 9 34 1 .557 1 96 2 35 1 .536 5 97 4 36 1 .515 0 97 4 37 1 .494 3 98 1 38 1 .473 1 98 3 39 1 . 452 1 98 6 40 1 .431 0 98 6 4 1 6 100 0 LOGARITHMIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV AR ITH .L IM IT 179.4 170 .9 162 .8 155. 1 U 7 . 7 140. 7 134 . 0 127 . 7 121 .6 115 .8 1 l O . 3 105. 1 100. 1 9 5 . 3 7 9 0 . 8 4 8 6 . 5 3 82 .43 7 8 . 5 2 74 . 79 7 1 . 24 67 .86 64 .64 61 . 58 58 .66 5 5 . 8 7 5 3 . 2 2 5 0 . 7 0 4 8 . 2 9 , 4 6 . 0 0 4 3 . 8 2 41 .74 3 9 . 7 6 3 7 . 8 7 3 6 . 0 8 3 4 . 3 6 3 2 . 7 3 31 . 18 2 9 . 7 0 2 8 . 2 9 2 6 . 9 5 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME MO L DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 1.7752 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 8 3 6 2 8 LL LOWER LIMIT NMBR % 1 0 0 .0 2 - 2 .302 0 0 .0 3 - 2 .093 0 0 .0 4 - 1 .883 0 0 .0 5 -1 .674 0 0 0 6 -1 .465 0 0 0 7 - 1 . 256 0 0 0 8 -1 .047 0 0 0 9 - 0 . 8381 O 0 0 10 - 0 . 6291 0 0 0 1 1 - 0 . 4200 0 0 0 12 - 0 . 2109 0 0 0 13 - 0 . 1847E-02 0 o 0 14 0 . 2072 0 0 0 15 0 . 4 163 29 7 0 16 0 . 6254 0 0 0 17 0 . 8344 132 31 7 18 1 .043 0 0 0 19 1 .253 0 0 0 20 1 .462 0 O 0 21 1 .671 0 0 0 22 1 . 880 184 44 2 23 2 .089 0 O 0 24 2 . 298 0 0 0 25 2 .507 0 0 0 26 2 .7 16 0 0 0 27 2 . 925 64 15 4 28 3 . 134 0 0 0 29 3 . 343 0 0 0 30 3 . 552 0 0 0 31 3 . 761 0 0 0 32 3 . 9 7 0 4 1 0 33 4 . 1B0 0 0 0 34 4 . 389 0 0 0 35 4 . 598 0 O 0 36 4 .807 2 0 5 37 5 .016 0 0 0 38 5 .225 0 0 0 39 5 .434 0 0 0 40 5 .643 0 0 0 4 1 5 B52 1 0 2 ARITHMETIC VALUES B A R I N T E R V A L = 0.25QOO STD DEV A R I T H . L I M I T ******* ******************************** ******************************************** <************** T I PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME MO T L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 416. E RUN: X BAR 1 \u00E2\u0080\u00A2 7752 S_ T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 8 3 6 2 8 CELL LOWER L IMIT NMBR % 1 3 .814 7 1 7 2 3 . 709 0 1 7 3 3 . 605 0 1 7 4 3 . 5 0 0 0 1 7 5 3 .396 0 1 7 6 3 . 291 0 1 7 7 3 . 186 0 1 7 8 3 .082 o 1 7 g 2 . 977 64 17 1 10 2 . 873 O 17 1 11 2 . 768 0 17 1 12 2 . 664 0 17 1 13 2 . 559 0 17 1 14 2 .455 0 17 1 15 2 . 350 0 17 1 16 2 .246 0 17 1 17 2 . 141 0 17 1 18 2 .037 O 17 1 19 1 .932 184 61 3 20 1 .828 0 61 3 21 1 . 723 0 61 3 22 1 .618 0 61 3 23 1 .514 0 61 3 24 1 . 409 0 61 3 25 1 . 305 O 61 3 26 1 . 200 0 61 3 27 1 .096 0 61 3 28 0 . 9912 132 93 0 29 0 . 8867 O 93 0 30 0 . 7822 0 93 0 31 0 . 6776 0 93 0 32 0 . 5731 0 93 0 33 0 . 4686 29 100 0 34 O. 3640 O 100 0 35 0 . 2595 0 100 0 36 0 . 1550 0 100 0 37 0 . 504 2 E -01 0 100 0 38 - O . 5412E -01 0 100 O 39 - 0 . 1587 0 100 0 40 - 0 . 2632 0 100 0 41 0 100 0 ARITHMETIC VALUES BAR INTERVAL = O .12500 STD DEV AR ITH .L IM IT 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME MO L DATA : DAISV CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X 8AR 0 . 1 9 6 5 8 S TIME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 2 2 4 0 2 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV AR ITH .L IM IT 1 0 0 0 2 - 0 8955 0 0 0 0 . 1272 3 - 0 8395 0 0 0 0 . 1447 4 - 0 7835 0 0 0 0 . 1646 5 - 0 . 7275 0 0 0 0 . 1873 6 - 0 67 15 0 0 0 0 . 2131 7 - 0 . 6155 0 0 0 0 . 2424 8 - 0 . 5595 0 0 0 0 . 2758 9 - o . 5035 0 0 0 0 . 3137 i o -O 4475 0 0 0 0 . 3569 1 1 - 0 . 3915 0 0 0 0 . 4060 12 - 0 3355 29 7 0 *\u00C2\u00BB\u00C2\u00BB*\u00E2\u0080\u00A2*\u00C2\u00BB 0 . 4619 13 - 0 . 2794 0 0 0 0 . 5255 14 - 0 . 2234 0 0 0 0 . 5978 15 - 0 . 1674 0 0 0 0 . 6801 16 - 0 . 1 114 0 0 0 0 . 7737 17 - 0 . 5543E -01 132 31 7 ******************************** 0 . 8802 18 0 . 5705E - 0 3 0 o 0 1 .001 19 0 . 5657E -01 0 0 0 1 . 139 20 0 . 1 126 0 0 0 1 .296 21 0 . 1686 0 0 0 \u00E2\u0080\u00A2 1 .474 22 0 . 2246 0 0 0 1 .677 23 0 . 2806 184 44 2 ******************************************** 1 .908 24 0 . 3366 0 0 0 2 . 171 25 0 . 3926 0 0 0 2 .469 26 0 . 4486 64 15 4 *****\u00E2\u0080\u00A2***\u00E2\u0080\u00A2*\u00E2\u0080\u00A2*\u00E2\u0080\u00A2+ 2 .809 27 0 . 5046 0 0 0 3 . 196 28 0 . 5606 4 1 0 * 3 .636 29 o . 6166 O 0 0 4 . 136 30 0 . 6726 2 0 5 4 .706 31 0 . 7286 1 0 2 5 .353 32 0 . 7846 0 0 0 6 . 0 9 0 33 0 . 8406 0 O 0 6 .928 34 0 . 8966 0 O 0 7 .882 35 0 . 9526 O O O 8 .967 36 1 .009 0 0 0 1 0 . 2 0 37 1 .065 0 0 0 1 1 .60 38 1 . 121 0 0 0 13 .20 39 1 . 177 0 0 0 15 .02 40 1 .233 0 0 0 17 .09 4 1 1 . 289 o o 0 19 .44 PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS DATA: RUN: TIME : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY 25/03/83 11:55:33 NAME N X BAR STD DEV M O 416 0. 19658 O.22402 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0.12500 STD DEV ARITH.LIMIT 1 0 7426 1 0 2 * 5.529 2 0 7146 0 0 2 \u00C2\u00BB 5. 183 3 O 6866 2 0 7 * 4 .860 4 0 6586 0 0 7 * 4.556 5 0 6306 O 0 7 * 4.272 6 O 6026 0 0 7 * 4.005 7 0 5746 4 1 7 * 3.755 8 0 5466 0 1 7 * 3.521 9 0 5186 0 1 7 * 3.301 10 O 4906 0 1 7 * 3 .095 1 1 0 4626 64 17 1 * 2 .901 12 0 4346 0 17 1 * 2 .720 13 0 4066 0 17 1 \u00E2\u0080\u00A2 2.550 14 0 3786 0 17 1 * 2 . 391 15 0 3506 O 17 1 * 2 . 242 16 0 3226 0 17 1 * 2. 102 17 0 2946 184 61 3 * 1 .971 18 0 2666 0 61 3 * 1 .848 19 0 2386 0 61 3 * 1 .732 20 0 2106 0 61 3 * 1 .624 21 O 1826 O 61 3 * 1 .523 22 O 1546 0 61 3 * 1 .428 23 0 1266 0 61 3 * 1 . 338 24 O 9858E-01 0 61 3 * 1 . 255 25 0 7057E-01 0 61 3 * 1 . 176 26 O 4257E-01 0 61 3 * 1 . 103 27 0 1457E-01 0 61 3 * 1 .034 28 -0 1343E-01 132 93 0 * 0.9695 29 -o 4143E-01 0 93 0 \u00C2\u00AB 0.9090 30 -o 6943E-01 0 93 0 * 0.8522 3 1 -0 9744E-01 0 93 0 * 0.7990 32 -0 1254 0 93 0 0.7491 33 -o 1534 0 93 0 * 0.7024 34 -o 1814 O 93 0 * 0.6585 35 -0 2094 0 93 0 * 0.6174 36 -0 2374 O 93 0 * 0.5788 37 -0 2654 0 93 0 * 0.5427 38 -o 2934 O 93 0 * 0.5088 39 -o 3215 29 100 0 * 0.4770 40 -0 3495 0 100 0 * 0.4472 41 0 1O0 0 * 10 20 30 40 50 60 70 80 90 95 99 T I P R O G R A M : P E R C E N T A G E H I S T O G R A M S N A M E A G T - ; L D A T A : D A I S Y C R E E K R E C O N S T R E A M S E D I M E N T G E O C H E M I S T R Y _ N 4 1 6 E R U N : X B A R 0 . 2 4 1 8 2 S T I M E : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 S T D D E V O . 9 3 0 4 0 E - O 1 L O W E R L I M I T N M B R % I 0 0 . 0 2 - 0 2 1 1 7 0 0 0 3 - 0 1 8 8 5 0 0 . 0 4 - O 1 6 5 2 0 0 0 5 - 0 1 4 2 0 0 0 0 6 - o 1 1 8 7 0 0 0 7 - O 9 5 4 5 E - 0 1 0 0 0 a - 0 7 2 1 9 E - O l 0 0 0 9 - 0 4 8 9 3 E - 0 1 0 0 0 1 0 - 0 2 5 6 7 E - 0 1 0 0 0 1 1 - 0 2 4 0 6 E - 0 2 0 0 0 12 0 2 0 8 5 E - 0 1 0 0 0 1 3 0 4 4 1 IE - 0 1 0 0 0 14 0 6 7 3 7 E - 0 1 0 0 0 1 5 0 9 0 6 3 E - 0 1 0 0 0 1 6 0 1 1 3 9 0 0 0 1 7 0 1 3 7 2 o 0 0 1 8 0 1 6 0 4 0 0 0 1 9 0 1 8 3 7 3 1 7 7 6 2 2 0 0 2 0 6 9 0 0 0 2 1 0 2 3 0 2 0 0 0 2 2 0 2 5 3 5 0 0 0 2 3 0 2 7 6 7 0 0 0 2 4 0 3 0 0 0 5 2 12 5 2 5 0 3 2 3 2 0 0 0 2 6 O 3 4 6 5 0 0 0 2 7 0 3 6 9 8 0 0 0 2 8 0 3 9 3 0 3 4 8 2 2 9 o 4 1 6 3 0 0 0 3 0 0 4 3 9 5 0 0 0 3 1 0 4 6 2 8 0 0 0 3 2 0 4 8 6 1 3 0 7 3 3 o 5 0 9 3 0 0 0 3 4 0 5 3 2 6 0 0 0 3 5 0 5 5 5 8 0 0 0 3 6 0 5 7 9 1 a 1 9 3 7 0 6 0 2 4 0 0 0 3 8 0 6 2 5 6 0 0 0 3 9 0 6 4 8 9 0 0 0 4 0 o 6 7 2 1 0 0 0 4 1 0 . 6 9 5 4 2 0 5 A R I T H M E T I C V A L U E S B A R I N T E R V A L = 0 . 2 5 0 0 0 S T D D E V A R I T H . L I M I T **************************************************************************** ************* ******** T I PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME AG T L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 416 E RUN: . X BAR 0 . 2 4 1 8 2 S. T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 9 3 0 4 0 E - 0 1 CELL LOWER LIMIT NMBR % 1 0 4686 13 3 1 2 0 4570 O 3 1 3 0 4453 0 3 1 4 0 4337 0 3 1 5 0 4221 0 3 1 6 0 4 105 0 3 1 7 0 3988 34 11 3 8 0 3872 0 11 3 9 0 3756 0 11 3 10 0 3639 0 11 3 1 1 O 3523 0 11 3 12 0 3407 0 11 3 13 O 3290 0 11 3 14 0 3174 0 11 3 15 O 3058 0 11 3 16 O 2942 52 23 8 17 O 2825 0 23 8 18 0 2709 0 23 8 19 0 2593 0 23 8 20 0 2476 0 23 8 21 O 2360 0 23 8 22 O 2244 0 23 8 23 O 2127 O 23 8 24 0 201 1 0 23 8 25 O 1895 317 100 0 26 o 1779 O 100 0 27 o 1662 0 100 0 28 0 1546 0 100 0 29 0 1430 0 100 0 30 o 1313 0 100 0 31 0 1197 0 100 0 32 o 1081 0 100 0 33 0 9645E-01 0 100 0 34 0 8482E-01 0 100 0 35 0 7319E-01 O 100 0 36 0 6156E-01 0 100 0 37 o 4993E-01 0 100 0 38 o 3830E-01 0 100 0 39 o 2667E-01 0 100 0 40 0 1504E-01 0 100 0 4 1 0 100 0 ARITHMETIC VALUES BAR INTERVAL \" 0 . 1 2 5 0 0 STD DEV AR ITH .L IM IT 10 20 30 40 50 60 70 80 90 95 99 T I PROGRAM: PERCENTAGE HISTOGRAMS NAME AG T 1 L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 4_6 E RUN: X BAR -Q .6373Q S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 12226 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV A R I T H . L I M I T 1 0 0 .0 2 - 1 . 233 0 0 .0 0 5 8 4 4 E - 0 1 3 - 1 . 203 0 0 . 0 0 6 2 7 0 E - 0 1 4 - 1 . 172 0 0 0 0 6 7 2 7 E - 0 1 5 - 1 . 142 0 0 0 0 7 2 1 8 E - 0 1 6 - 1.111 0 0 0 0 7 7 4 4 E - 0 1 7 - 1 .080 0 0 0 0 8 3 0 8 E - 0 1 8 - 1 .050 0 0 0 0 8 9 1 4 E - 0 1 9 - 1.019 0 0 0 O 9 5 6 4 E - 0 1 10 - 0 . 9888 0 0 0 0 1026 1 1 -O . 9582 0 0 0 0 1101 12 -o .9277 0 0 0 0 1181 13 -o .897 1 0 0 0 0 1267 14 - 0 .8665 0 0 0 0 1360 15 - 0 .8360 0 0 0 0 . 1459 16 -o . 8054 0 0 0 0 . 1565 17 - 0 . 7748 0 0 0 0 1679 18 - 0 . 7443 0 0 0 0 1802 19 - 0 . 7 137 317 76 2 **************************************************************************** O 1933 20 - 0 .6831 0 0 0 0 2074 2 1 - 0 .6526 0 0 0 0 2225 22 - 0 .6220 0 0 0 0 2388 23 - 0 . 59 14 0 0 0 0 2562 24 - 0 . 5609 0 0 0 0 2749 25 - 0 . 5303 52 12 5 ************* O 2949 26 - 0 . 4998 0 0 0 0 3164 27 -o . 4692 0 0 0 0 3395 28 - 0 . 4386 0 0 0 0 3642 29 -o 4081 34 8 2 ******** 0 3908 30 - 0 3775 0 0 0 0 4193 3 1 - 0 3469 0 0 0 0 4499 32 - 0 3164 3 0 7 * 0 4827 33 - 0 2858 0 0 0 o 5178 34 - 0 .2552 0 0 0 0 . 5556 35 - 0 . 2247 8 1 9 * * 0 . 5961 36 - 0 . 1941 0 0 0 0 . 6396 37 - 0 1635 1 0 2 o. 6862 38 -o 1330 0 0 0 0 . 7362 39 - 0 1024 O 0 . 0 0 . 7899 40 - 0 7185E -01 0 0 . 0 0 . 8475 4 1 - 0 4 129E - O l 1 0 . 2 0 . 9093 T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME AG L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR - 0 . 6 3 7 3 0 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 1 2 2 2 6 CELL LOWER LIMIT NMBR % 1 - 0 3393 13 3 1 2 -o 3546 0 3 1 3 - 0 3699 0 3 1 4 - 0 3851 0 3 1 5 - 0 4004 34 11 3 6 -o 4 157 O 1 1 3 7 - 0 4310 O 11 3 8 -O 4463 O 1 1 3 9 -O 4616 O 1 1 3 10 - 0 4768 0 1 1 3 1 1 - 0 4921 0 1 1 3 12 - 0 5074 0 1 1 3 13 - 0 5227 O 1 1 3 14 - 0 5380 52 23 8 15 - 0 5532 0 23 8 16 -o 5685 O 23 8 17 - 0 5838 0 23 8 18 -O 5991 O 23 8 19 -O 6144 0 23 8 20 -O 6297 0 23 8 21 - 0 6449 0 23 8 22 - 0 6602 O 23 8 23 - 0 6755 0 23 8 24 - 0 6908 0 23 8 25 - 0 7061 317 100. 0 26 - 0 7214 0 100 0 27 -o 7366 O 100 0 28 -o 7519 O 100 O 29 -o 7672 0 100 0 30 -o 7825 0 100 0 31 -o 7978 0 100 0 32 -o 8130 0 100 0 33 -o 8283 0 100 0 34 - 0 8436 0 100 0 35 - 0 8589 0 100 0 36 - 0 8742 0 100 0 37 - 0 8895 0 100 0 38 - 0 9047 O 100 0 39 -o 9200 O 100 0 40 -o 9353 0 100 0 4 1 0 100 0 LOGARITHMIC VALUES BAR INTERVAL \u00C2\u00B0 O .12500 STD DEV ARITH.L IM IT 0 4578 0 4420 0 4267 0 4120 0 3977 O 3840 0 3707 0 3579 0 3455 0 3336 0 3220 0 3109 0 3001 0 2898 0 2797 0 2701 0 2607 0 2517 0 2430 0 2346 0 2265 0 2187 0 2111 0 2038 * O 1968 * 0 1900 * 0 1834 * o 1770 * 0 1709 * 0 1650 * 0 1593 * 0 1538 * 0 1485 * 0 1433 * 0 1384 * 0 1336 * 0 1290 * 0 1245 \u00E2\u0080\u00A2 o 1202 \u00E2\u0080\u00A2 0 1161 * 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME CO L DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 7 .2188 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 2 . 8 5 1 8 ELL LOWER LIMIT NMBR % ARITHMETIC VALUES 1 0 0 .0 2 - 6 . 684 0 0 .0 3 - 5 . 971 0 0 . 0 4 - 5 . 258 0 0 .0 5 -4 . 545 0 0 0 6 - 3 . 832 0 0 .0 7 - 3 . 1 19 0 0 .0 a - 2 . 406 0 0 0 9 - 1 . 693 0 0 0 i o - 0 . 9 8 0 2 O 0 0 1 1 - O . 2 6 7 2 0 0 0 12 0 . 4 4 5 7 3 0 7 * 13 1 . 159 0 0 0 14 1 . 872 9 2 2 * * 15 2 . 585 18 4 3 * * * * 16 3 . 298 31 7 5 *\u00E2\u0080\u00A2\u00C2\u00AB**\u00E2\u0080\u00A2* 17 4 . 010 O 0 0 18 4 . 723 49 1 1 8 ************ 19 5 . 436 53 12 7 ************* 20 6 . 149 0 0 0 21 6 . 862 77 18 5 ******************* 22 7 . 575 55 13 2 ************* 23 8 288 56 13 5 ************* 24 9 . 001 0 0 0 25 9 7 14 29 7 0 ******* 26 10 .43 14 3 4 * * * 27 1 1 . 14 0 0 0 28 1 1 . 85 4 1 0 * 29 12 . 57 8 1 9 * * 30 13 . 28 0 0 0 31 13 .99 5 1 2 * 32 14 .70 3 O 7 * 33 15 .42 1 0 2 34 16 . 13 0 O. 0 35 16 .84 0 0 0 36 17 . 56 O 0 0 37 18 . 27 0 O 0 38 IB .98 0 0 0 39 19 70 O O. 0 40 20 .4 1 0 0 . 0 4 1 2 1 . 12 1 0 . 2 BAR INTERVAL \" 0 . 2 5 0 0 0 STD DEV ARITH\u00E2\u0080\u00A2L IM IT T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME CO L DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 7 . 2 188 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 2 . 8 5 1 8 CELL LOWER LIMIT NMBR % 1 14 . 17 5 1 2 2 13 .81 5 2 4 3 13 .46 0 2 4 4 13 . 10 0 2 4 5 12 .74 8 4 3 6 12 .39 0 4 3 7 12 .03 0 4 3 8 1 1 .67 4 5 3 9 1 1 . 32 0 5 3 i o 10 .96 14 8 7 1 1 10 .61 0 8 7 12 10 .25 0 8 7 13 9 892 29 15 6 14 9 . 536 0 15 6 15 9 . 179 0 15 6 16 8 . 823 56 29 1 17 8 . 466 O 29 1 18 8 . 1 10 0 29 1 19 7 . 753 55 42 3 20 7 . 397 0 42 3 21 7 . 041 0 42 3 22 6 . 684 77 60 8 23 6 . 328 0 60 8 24 5 . 971 53 73 6 25 5 . 615 O 73 6 26 5 . 258 0 73 6 27 4 . 902 49 85 3 28 4 . 545 0 85 3 29 4 . 169 0 85 3 30 3 . 832 31 92 a 31 3 . 476 0 92 8 32 3 . 1 19 0 92 8 33 2. 763 18 97 1 34 2 . 406 0 97 1 35 2. 050 0 97 1 36 1 . 693 9 99 3 37 1 . 337 0 99 3 38 O .9804 3 100 0 39 0 . 6 2 4 0 0 100 0 40 0 . 2 6 7 5 0 100 0 4 1 0 100 0 ARITHMETIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV A R I T H . L I M I T 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME CO L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN : X BAR 0 . 8 2 3 0 2 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 18623 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV A R I T H . L I M I T 1 0 0 0 2 -o. 8485E -01 0 0 0 0 . 8 2 2 5 3 - 0 . 3830E -01 3 0 7 * 0 . 9 1 5 6 4 0 . 8262E -02 0 0 0 1 . 019 5 0 . 5482E - O l 0 0 0 1 . 135 6 0 . 1014 o 0 0 1 . 263 7 0 . 1479 0 0 0 1 . 406 8 0 . 1945 0 0 0 1 . 565 9 0 . 24 1 1 0 0 0 1 . 742 10 0 . 2876 9 2 2 \u00E2\u0080\u00A2 * 1 . 939 1 1 0 . 3342 0 0 0 2 . 159 12 O. 3807 0 0 0 2 . 403 13 0 . 4273 0 0 0 2 . 675 14 0 . 4738 18 4 3 * * * * 2 . 977 15 0 . 5204 O 0 0 3 . 314 16 0 . 5670 31 7 5 * * * * * * * 3 . 689 17 O. 6135 0 o 0 4 . 107 18 0 . 6601 49 11 8 * * * * * * * * * * * * 4 . 572 19 0 . 7066 0 0 0 5 . 089 20 0 . 7532 53 12 7 * * * * * * * * * * * * * 5 . 665 21 0 . 7997 77 18 5 * * * * * * * * * * * * * * * * * * * 6 . 306 22 0 . 8463 O 0 0 7 . 019 23 0 . 8929 55 13 2 * * * * * * * * * * * * * 1. 814 24 O. 9394 56 13 5 * * * * * * * * * * * * * 8 . 698 25 0 . 9860 29 7 0 * * * * * * * o 682 26 1 .033 14 3 4 * * * 10 .78 27 1 .079 12 2 9 * * \u00E2\u0080\u00A2 12 .00 28 1 . 126 5 1 2 * 13 .36 29 1 . 172 4 1 0 * 14 .87 30 1 .219 0 0 0 16 .55 31 1 . 265 0 0 0 18 .42 32 1 .312 0 0 0 20 .51 33 1 . 358 0 0 0 22 .83 34 1 . 405 0 0 0 25 .41 35 1 .452 1 0 2 28 .28 36 1 .498 o 0 0 31 .49 37 1 .545 0 0 0 35 .05 38 1 .591 0 0 0 39 .01 39 1 .638 0 0 0 43 .43 40 1 .684 0 0 0 48 . 34 4 1 1 .731 0 0 0 53 .81 T I T PROGRAM: r ERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME CO L DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 0 . 8 2 3 0 2 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 1 8 6 2 3 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV ARITH .L IM IT 1 1 .277 1 0 2 18 .92 2 1 .254 0 0 2 * 17 .93 3 1 . 2 3 0 0 0 2 * 17 .00 4 1 .207 0 0 2 * 16. 11 5 1 . 184 1 0 5 15 .27 6 1 . 161 3 1 2 * 14.47 7 1 . 137 5 2 4 \u00C2\u00BB 13.72 8 1.114 0 2 4 * 13.OO 9 1 .091 8 4 3 * 12 . 32 10 1 .067 4 5 3 + 1 1 .68 1 1 1 .044 0 5 3 * 11 .07 12 1 .02 1 14 8 7 * 10. 49 13 0 . 9 9 7 6 29 15 6 * 9 . 9 4 5 14 0 . 9 7 4 3 0 15 6 * 9 . 4 2 6 15 0 . 9 5 1 1 56 29 1 * 3 .934 16 0 . 9 2 7 8 0 29 1 * 6 . 4 6 8 17 0 . 9 0 4 5 0 29 1 * 8 . 0 2 6 18 O .88 12 55 42 3 * 7 .607 19 0 . 8 5 7 9 0 42 3 * '/ . 210 20 0 . 8 3 4 7 77 60 8 * 6 . 834 2 1 0 . 8 1 14 0 60 8 * 6 .477 22 0 . 7 8 8 1 0 60 8 6 . 139 23 O .7648 53 73 6 * 5 . 8 1 9 24 0 . 7 4 1 5 0 73 6 * 5 . 5 1 5 25 0 . 7 183 0 73 6 * 5 .227 26 O . 6 9 5 0 49 85 3 * 4 .954 27 0 . 6 7 1 7 0 85 3 * 4 .696 28 0 . 6 4 8 4 0 85 3 * 4 .451 29 0 . 6 2 5 2 0 85 3 * 4 . 2 1 8 30 0 . 6 0 1 9 31 92 8 \u00C2\u00BB 3 .998 31 0 . 5 7 8 6 0 92 8 \u00E2\u0080\u00A2 3 . 790 32 0 . 5 5 5 3 0 92 8 * 3 .592 33 0 . 5 3 2 0 0 92 8 * 3 .404 34 0 . 5 0 8 8 O 92 8 * 3 .227 35 O . 4 8 5 5 0 92 8 * 3 .058 36 0 . 4 6 2 2 18 97 1 * 2 .899 37 0 . 4 3 8 9 0 97 1 * 2 . 7 4 7 38 0 . 4 156 0 97 1 * 2 .604 39 0 . 3 9 2 4 0 97 1 * 2 . 4 6 8 40 0 . 3 6 9 1 0 97 1 2 . 339 41 12 100 0 * 1 5 10 20 30 40 50 60 70 80 90 95 99 T I' PROGRAM: PERCENTAGE HISTOGRAMS NAME MN T L DATA: DAISY CREEK RE CON STREAM SEDIMENT GEOCHEMISTRY _N 4_6 E RUN: ; X BAR 8 1 5 . 7 8 S_ T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 5 1 9 . 16 LOWER LIMIT NMBR % ARITHMETIC 1 0 0 0 2 - 1 7 1 5 . 0 0 .0 j 3 - 1585. 0 0 0 4 - 1 4 5 6 . 0 0 0 5 - 1 3 2 6 . 0 0 0 6 - 1196. 0 0 0 7 - 1066. 0 o 0 8 - 9 3 6 . 4 0 0 0 9 - 8 0 6 . 6 0 0 0 10 - 6 7 6 . 8 0 o 0 1 1 - 5 4 7 . 0 0 0 0 12 - 4 1 7 . 2 0 0 0 13 - 2 8 7 . 4 0 0 0 14 - 157 .6 0 0 0 15 - 2 7 . 8 5 0 0 0 16 101 .9 11 2 6 \u00E2\u0080\u00A2 * * 17 231 .7 54 13 0 * * * * * * * * * * * * * 18 361 .5 56 13 5 * * * * * * * * * * * * * 19 491 . 3 42 10 1 * * * * * * * * * * 20 62 1 . 1 65 15 6 **************** 2 1 7 5 0 . 9 49 11 8 ************ 22 8 8 0 . 7 34 8 2 * * * * * * * * 23 1010. 20 4 8 * * * * * 24 1 140. 27 6 5 * * * * * * 25 1270. 9 2 2 * * 26 1400. 14 3 4 * * * 27 1530. 8 1 9 * * 28 1659. 7 1 7 * * 29 1789. 9 2 2 * * 30 1919. 2 0 5 31 2 0 4 9 . 1 0 2 32 2 1 7 9 . 3 0 7 * 33 2308 . 1 O 2 34 2438 . 0 0 0 35 2568 . 1 O 2 36 2698 . 1 0 2 37 2828 . 0 0 0 38 2 9 5 7 . 0 0 0 39 3087 . 0 0 0 40 3217 . 0 0 0 4 1 3347 . 2 0 5 BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV A R I T H . L I M I T T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME MN L DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 815 78 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 519 16 CELL LOWER LIMIT NMBR % 1 2081 . 8 1 9 2 2 0 1 6 . 1 2 2 3 1951 . 2 2 6 4 1887 . 2 3 1 5 1822. 3 3 8 6 1757 . 4 4 8 7 1692. 6 6 3 8 1627. 3 7 0 9 1562 . 2 7 5 10 1497. 7 9 1 11 1432 . 4 10 1 12 1367 . 7 1 1 8 13 1302 . 6 13 2 14 1238 . 1 1 15 9 15 1173. 17 20 0 16 1 108. 4 20 9 17 1043 . 17 25 0 18 978 . 0 13 26 1 19 9 1 3 . 1 17 32 2 20 848 . 2 15 35 8 21 783 . 3 29 42 8 22 7 1 8 . 4 26 49 0 23 6 5 3 . 5 33 57 o 24 5 8 8 . 6 29 63 9 25 523 .8 23 69 5 26 4 5 8 . 9 14 72 8 27 394 . 0 40 82 5 28 329 . 1 25 88 5 29 2 6 4 . 2 27 95 0 30 199 .3 1 1 97 6 31 134 .4 8 99 5 32 6 9 . 4 9 2 100 0 33 4 .599 0 100 0 34 - 6 0 . S O 0 100 0 35 - 1 2 5 . 2 0 100 0 36 - 1 9 0 . 1 0 100 0 37 - 2 5 5 . 0 O 100 0 38 - 3 1 9 . 9 0 100 0 39 -384 . 8 0 100 0 40 - 4 4 9 . 7 0 100 0 41 0 100 0 ARITHMETIC VALUES BAR INTERVAL = 0.125QO STD DEV ARITH .L IM IT 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME MN L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 2 . 8 3 6 9 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 2 5 8 7 8 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = = O .25000 STD DEV ARITH. L IMIT 1 0 0 . 0 2 1 .575 0 0 . 0 27 .61 3 1 . 640 0 0 0 ' 3 . 6 5 4 1 . 705 0 0 0 5 0 . 6 6 5 1 .769 0 0 0 5 8 . 8 0 6 1 .834 0 0 0 6 8 . 2 5 7 1 . 899 0 0 0 79 .21 8 1 . 963 1 0 2 91 .93 9 2 .028 1 0 2 106. 7 10 2 .093 1 0 2 123. 8 1 1 2 158 2 0 5 143. 7 12 2 2 2 2 4 1 0 \u00E2\u0080\u00A2 166. 8 13 2 . 287 2 0 5 193. 6 14 2 352 10 2 4 * * 224 . 7 15 2 416 16 3 8 * * * * 2 6 0 . 8 16 2 481 24 5 8 3 0 2 . 7 17 2 546 22 5 3 \u00E2\u0080\u00A2 * * \u00E2\u0080\u00A2 * 351 . 3 18 2 610 36 a 7 \u00E2\u0080\u00A2 * \u00C2\u00BB * \u00C2\u00BB * * \u00E2\u0080\u00A2 * 407 . 8 19 2 675 15 3 6 * * * * 4 7 3 . 3 20 2 740 35 a 4 * * * * * * * * 5 4 9 . 3 21 2 805 53 12 7 * * * * * * * * * * * * * 637 . 5 22 2 869 48 1 1 5 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * * * * * * * * \u00E2\u0080\u00A2 740 . 0 23 2 934 31 7 5 * * * * * * * 8 5 8 . 8 24 2 9 9 9 30 7 2 * * * * * * * 9 9 6 . 8 25 3 063 33 7 9 * * * * * * * * 1157 26 3 128 20 4 8 * * * * * 1343 27 3 193 16 3 8 \u00E2\u0080\u00A2 * * * 1558 28 3 257 8 1 9 * * 1809 29 3 322 4 1 0 \u00E2\u0080\u00A2 2099 30 3 387 2 0 5 2437 31 3 451 0 0 0 2828 32 3 516 1 0 2 3282 33 3 581 0 0 . 0 3809 34 3 646 0 0 0 4421 35 3 7 10 1 0 2 5132 36 3 775 0 0 . 0 5956 37 3 840 0 0 . 0 6913 38 3 904 0 0 0 8023 39 3 969 0 0 . 0 9312 40 4 034 O 0 . 0 0 . 1081E+05 4 1 4 098 0 0 . 0 0 . 1254E+05 T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME MN L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 2 . 0 3 6 9 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 2 5 8 7 8 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV AR ITH .L IM IT 1 3 . 4 6 8 2 0 5 * 2 9 3 5 . 2 3 . 4 3 5 1 0 7 * 2 7 2 5 . 3 3 . 4 0 3 1 1 0 * 2529 . 4 3 . 371 1 1 2 * 2347 . 5 3 . 3 3 8 3 1 9 * 2 1 7 9 . 6 3 . 3 0 6 1 2 2 * 2023 . 7 3 .274 4 3 1 * 1877 . 8 3 .241 8 5 0 * 1743 . 9 3 . 2 0 9 8 7 0 \u00E2\u0080\u00A2 1618. 10 3 . 177 6 8 4 * 1501 . 1 1 3 . 144 14 1 1 8 * 1394 . 12 3 . 1 1 2 9 13 9 * 1294 . 13 3 .079 9 16 1 * 1201 . 14 3 . 0 4 7 19 20 7 * 1 1 15 . 15 3 . 0 1 5 18 25 0 * 1035. 16 2 .982 15 28 6 * 9 6 0 . 3 17 2 . 9 5 0 19 33 2 * 891 .4 18 2 . 9 1 8 21 38 2 * 8 2 7 . 4 19 2 .885 28 45 0 * 7 6 8 . 0 20 2 . 8 5 3 18 49 3 * 7 1 2 . 9 21 2 .821 22 54 6 * 661 . 7 22 2 . 7 8 8 30 61 8 * 6 1 4 . 2 23 2 . 756 13 64 9 * 5 7 0 . 2 24 2 . 7 2 4 18 69 2 * 5 2 9 . 2 25 2 .691 7 70 9 * 491 . 2 26 2 . 6 5 9 8 72 8 \u00E2\u0080\u00A2 456 . 0 27 2 . 6 2 7 22 78 1 * 4 2 3 . 3 28 2 .594 18 82 5 * 3 9 2 . 9 29 2 . 5 6 2 8 84 4 * 364 .7 30 2 . 5 3 0 14 87 7 * 3 3 8 . 5 31 2 . 4 9 7 7 89 4 * 3 1 4 . 2 32 2 .465 15 93 0 * 291 . 7 33 2 . 4 3 3 6 94 5 * 2 7 0 . 7 34 2 . 4 0 0 6 95 9 * 251 . 3 35 2 . 3 6 8 6 97 4 * 2 3 3 . 3 36 2 . 3 3 5 0 97 4 * 2 1 6 . 5 37 2 . 3 0 3 0 97 4 * 201 . 0 38 2 .271 2 97 8 * 186 .5 39 2 . 238 3 98 6 * 173 .2 40 2 . 2 0 6 2 99 0 * 160.7 4 1 4 100 0 * 1 5 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME F L OATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 415 07 S TIME : 25/03/83 11:55:33 STD DEV 157 18 LOWER LIMIT NMBR % ARITHMETIC VALUES BAR INTERVAL -\u00E2\u0080\u00A2 0.25000 STD DEV ARITH.LIMIT 0 0 0 -351 2 0 0 0 -311 9 0 0 .0 -272 6 0 o 0 -233 3 0 0 0 - 194 0 O 0 0 - 154 7 0 0 0 - 1 15 4 0 0 0 -76 . 12 0 0 0 -36.83 0 0 0 2 . 467 0 o 0 4 1 . 76 0 0 0 81 .06 4 1 0 * -120 4 2 0 5 159. 7 6 1 4 198 . 9 25 6 0 * * * * * * 238. 2 34 8 2 * * * * * * * * 277 . 5 49 1 1 8 * * * * * * * * * * * * 316. 8 48 1 1 5 * * * * * * * * * * * * 356 1 42 10 1 * * * * * * * * * * 395 . 4 17 1 1 3 * * * * * * * * * * * 434 . 7 39 9 4 * * * * * * * * * 474 . 0 30 7 2 * * * * * * * 5 13. 3 25 6 0 * * * * * * 552 6 18 4 3 * * * * 59 1 . 9 1 1 2 6 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 63 1 2 6 1 4 * 670. 5 9 2 2 * \u00E2\u0080\u00A2 709 . 8 2 0 5 749. 1 4 1 0 * 788 . 4 5 1 2 \u00E2\u0080\u00A2 827 . 7 5 1 2 \u00E2\u0080\u00A2 867 . 0 1 O 2 906 . 3 1 0 2 945. 6 1 o 2 984 . 9 1 0 2 1024 0 o 0 1063. 1 0 2 1 103. 0 o 0 1 142 0 o 0 1 181 0 0 0 T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME F L DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 415 07 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 157 18 CELL LOWER LIMIT NMBR % 1 798 2 14 3 4 2 778 .6 2 3 8 3 758 .9 3 4 6 4 739 . 3 0 4 6 5 719 6 2 5 0 6 700 0 3 5 8 7 680 3 0 5 8 8 660 7 10 8 2 9 64 1 0 2 8 7 10 62 1 4 1 8 9 1 1 601 7 7 10 6 12 582 1 1 1 13 2 13 562 4 9 15 4 14 542 8 7 17 1 15 523 1 10 19 5 16 503 5 10 21 9 17 483 8 15 25 5 18 464 2 20 30 3 19 444 5 22 35 6 20 424 .9 26 41 8 21 405 . 2 16 45 7 22 385 .6 32 53 4 23 366 . 0 22 58 7 24 346 . 3 19 63 2 25 326 . 7 16 67 1 26 307 . 0 26 73 3 27 287 .4 26 79 6 28 267 .7 29 86 5 29 248 . 1 13 89 7 30 228 .4 15 93 3 31 208 .8 15 96 9 32 189 . 1 2 97 4 33 169 .5 4 98 3 34 149 .8 1 98 6 35 130 .2 1 98 8 36 1 10 . 5 4 99 8 37 9 0 . 8 8 1 100 0 38 71 . 2 3 0 100 0 39 51 .59 O 100 0 40 31 .94 0 100 0 4 1 0 100 0 ARITHMETIC VALUES BAR INTERVAL \u00E2\u0080\u00A2 0 . 1 2 5 0 0 STD DEV ARITH.L IMIT 10 20 30 40 50 60 70 eo 90 95 99 T I PROGRAM: PERCENTAGE HISTOGRAMS NAME F T _ L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 416 E RUN: X BAR 2 . 5880 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 16456 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 .25OO0 STD DEV ARITH . L IMIT 1 0 0 .0 2 1 .786 0 0 . 0 61 .07 3 1 .827 0 0 . 0 6 7 . 14 4 1 .868 0 0 0 73 .81 5 1 .909 0 0 .0 81 . 14 6 1 . 950 O 0 0 8 9 . 2 1 7 1 992 1 0 2 9 8 . 0 7 8 2 033 O 0 0 107. 8 9 2 074 4 1 0 * 118. 5 10 2 1 15 1 0 2 130. 3 1 1 2 156 O 0 0 143. 2 12 2 197 3 0 7 * 157. 5 13 2 238 3 0 7 * 173. 1 14 2 280 1 0 2 190. 3 15 2 321 24 5 8 ****** 2 0 9 . 2 16 2 362 13 3 1 * * * 2 3 0 . 0 17 2 403 21 5 0 ***** 2 5 2 . 9 18 2 444 40 9 6 ********** 2 7 8 . 0 19 2 485 34 8 2 ******** 3 0 5 . 6 20 2 526 27 6 5 ****** 336 . 0 21 2 567 54 13 0 ************* 3 6 9 . 4 22 2 609 42 i o 1 * * * * * * * * * * 4 0 6 . 1 23 2 650 45 10 8 *********** 4 4 6 . 4 24 2 691 28 6 7 ******* 4 9 0 . 8 25 2 732 28 6 7 ******* 5 3 9 . 5 26 2 773 1 1 2 6 * * * 5 9 3 . 2 27 2 814 15 3 6 * * * * 6 5 2 . 1 28 2 855 6 1 4 * 7 1 6 . 9 29 2 897 10 2 4 * * 7 8 8 . 1 30 2 938 2 0 5 8 6 6 . 4 31 2 979 2 0 5 9 5 2 . 5 32 3 020 1 O 2 1047 33 3 061 0 O 0 1 151 34 3 102 O 0 0 1266 35 3 143 0 0 0 1391 36 3 185 0 0 0 1530 37 3 226 O 0 0 1681 38 3 267 0 0 0 1849 39 3 308 0 0 0 2032 40 3 349 0 0 0 2234 41 3 390 O 0 0 2456 PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY RUN: T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 NAME N X BAR STD DEV 416 2 .5BBO O. 16456 CELL LOWER L IMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV ARITH L IMIT 1 2 . 9 8 9 2 0 5 * 975 3 2 2 . 9 6 9 1 0 7 * 930 2 3 2 . 9 4 8 1 1 0 * 887 1 4 2 . 9 2 7 3 1 7 * 846 1 5 2 . 9 0 7 3 2 4 * 807 O 6 2 .886 8 4 3 * 769 6 7 2 .866 1 4 6 * 734 0 8 2 .845 2 5 0 * 700 1 9 2 .825 13 8 2 * 667 7 10 2 . 804 2 8 7 * 636 8 1 1 2 .783 8 10 6 * 607 4 12 2 . 763 14 13 9 * 579 3 13 2 . 742 7 15 6 * 552 5 14 2 . 7 2 2 16 19 5 * 526 9 15 2 . 701 10 21 9 * 502 5 16 2 .681 29 28 8 * 479 3 17 2 . 6 6 0 17 32 9 * 457 1 18 2 .639 22 38 2 * 436 0 19 2 . 6 1 9 23 43 8 \u00E2\u0080\u00A2 415 8 20 2 . 598 24 49 5 * 396 6 21 2 .578 31 57 0 * 378 2 22 2 . 557 7 58 7 * 360 7 23 2 . 537 19 63 2 * 344 0 24 2 . 5 1 6 16 67 1 328 1 25 2 . 495 17 71 2 # 313 O 26 2 .475 28 77 9 * 298 5 27 2 .454 7 79 6 * 284 7 28 2 . 434 14 82 9 271 5 29 2 . 4 1 3 21 88 0 258 9 30 2 .393 7 89 7 * 247 0 31 2 . 372 6 91 1 * 235 5 \u00E2\u0080\u00A2 32 2 . 351 9 93 3 * i 2 4 6 33 2 . 331 6 94 7 * 214 3 34 2 .310 9 96 9 \u00E2\u0080\u00A2 204 3 35 2 . 290 1 97 1 * 194 9 36 2 . 2 6 9 1 97 4 * 185 9 37 2 . 249 2 97 8 * 177 3 38 2 . 228 2 98 3 * 169 1 39 2 . 2 0 8 \u00E2\u0080\u00A2 0 98 3 * 161 3 40 2 . 187 1 98 6 * 153 8 41 6 100 0 * 1 5 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME BA L DATA : DAISV CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 795 70 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 158 27 CELL LOWER L IMIT NMBR % ARITHMETIC VA 1 0 0 . 0 2 24 . 15 0 0 . 0 3 6 3 . 7 2 0 0 0 4 103 .3 0 0 0 5 142 .8 0 0 0 6 182.4 0 0 0 7 2 2 2 . 0 0 0 0 a 261 . 5 2 0 5 9 301 . 1 1 0 2 10 340 . 7 1 0 2 11 380 . 2 1 0 2 12 4 1 9 . 8 1 0 2 13 4 5 9 . 4 2 0 5 14 4 9 8 . 9 5 1 2 * 15 5 3 8 . 5 10 2 4 * * 16 578 . 1 13 3 1 * \u00E2\u0080\u00A2 * 17 6 1 7 . 6 9 2 2 * * 18 6 5 7 . 2 25 6 0 * * * * * * 19 6 9 6 . 8 81 19 5 * * * * * * * * * * * * * * * * * * * 20 7 3 6 . 3 69 16 6 * * * * * * * * * * * * * * * * * 2 1 7 7 5 . 9 49 1 1 8 * * * * * * * * * * * * 22 8 1 5 . 5 34 8 2 * * * * * * * * 23 8 5 5 . 0 30 7 2 * * * * * * * 24 894 .6 13 3 1 * * \u00E2\u0080\u00A2 25 934 . 2 19 4 6 * * * * * 26 973 . 7 15 3 6 * * * * 27 1013 . 8 1 9 * * 28 1053 . 7 1 7 * * 29 1092 . 6 1 4 * 30 1 132 . 6 1 4 * 31 1 172 . 1 0 . 2 32 12 11. 3 0 . 7 * 33 1251 . 0 0 0 34 1290. 2 0 . 5 35 1330. 1 0 . 2 36 1369. 1 0 2 37 1409. 1 0 2 38 1449. 0 0 . 0 39 1488. 0 o . 0 40 1528 . 0 0 . 0 41 1567 . O 0 . O BAR INTERVAL - 0 . 2 5 0 0 0 STD DEV A R / T H . L I M I T T I PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME UA \u00E2\u0080\u00A2 T ; L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 4_6 E RUN: X BAR 79S . 7 0 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 15f .27 CELL LOWER LIMIT NMBR % 1 1 181 9 2 2 2 1 162. 1 2 4 3 1142. 4 3 4 4 1122 . 3 4 1 5 1 102. 2 4 6 6 1083. 3 5 3 7 1063 . 2 5 8 8 1043. 6 7 2 9 1023 4 a 2 10 1003. 3 8 9 1 1 983 . 6 10 1 1 3 12 9 6 3 . 9 10 13 7 13 944 . 1 10 16 1 14 924 . 3 7 17 8 15 904 . 5 7 19 5 16 884 . 7 9 21 6 17 864 . 9 15 25 2 18 8 4 5 . 2 20 30 0 19 825 . 4 12 32 9 20 8 0 5 . 6 15 36 5 2 1 785 . 8 26 42 8 22 766 . 0 29 49 8 23 746 . 2 42 59 9 24 726 . 5 32 67 5 25 706 . 7 51 79 8 26 686 . 9 22 85 1 27 667 . 1 12 88 0 28 647 . 3 8 89 9 29 6 2 7 . 5 5 91 1 30 607 . 8 4 92 1 31 588 . 0 5 93 3 32 5 6 8 . 2 8 95 2 33 5 4 8 . 4 7 96 9 34 528 . 6 2 97 4 35 5 0 8 . 8 3 98 1 36 4 8 9 . 1 0 98 1 37 4 6 9 . 3 2 98 6 38 449 . 5 0 98 6 39 4 2 9 . 7 1 98 8 40 4 0 9 . 9 0 98 8 4 1 5 100 0 ARITHMETIC VALUES BAR INTERVAL = O .12500 STD DEV ARITH.L IM IT 5 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME BA L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 2 . 8 9 1 9 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 9 1 4 4 4 E - 0 1 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 - 2 5 0 0 0 STD DEV A R I T H . L I M I T 1 2 0 5 2 2 446 0 0 0 2 7 9 . 3 3 2 469 0 0 0 2 9 4 . 4 4 2 492 0 0 0 3 1 0 . 3 5 2 515 1 o 2 327 . 1 6 2 538 1 0 2 3 4 4 . 8 7 2 560 0 0 0 3 6 3 . 4 8 2 583 1 0 2 3 8 3 . 1 9 2 606 0 0 0 4 0 3 . 8 10 2 629 1 0 2 4 2 5 . 6 1 1 2 652 1 0 2 4 4 8 . 6 12 2 675 1 0 2 4 7 2 . 9 13 2 698 3 0 7 * 4 9 8 . 4 14 2 720 5 1 2 * 5 2 5 . 4 15 2 743 12 2 9 * * * 5 5 3 . 7 16 2 766 8 1 9 * * 5 8 3 . 7 17 2 789 6 1 4 * 6 1 5 . 2 IB 2 812 20 4 8 ***** 6 4 8 . 5 19 2 835 73 17 5 ****************** 6 8 3 . 5 20 2 858 56 13 5 ************* 7 2 0 . 5 21 2 880 73 17 5 ****************** 7 5 9 . 4 22 2 903 27 6 5 ****** 8 0 0 . 4 23 2 926 35 8 4 ******** 8 4 3 . 7 24 2 949 20 4 8 ***** 8 8 9 . 3 25 2 972 23 5 5 ****** 937 .4 26 2 995 17 4 1 * * * * 9 8 8 . 0 27 3 018 9 2 2 * * 1041 . 28 3 040 9 2 2 * * 1098. 29 3 063 4 1 0 * 1 157 . 30 3 086 3 0 7 * 1220. 31 3 109 3 0 7 * 1286. 32 3 132 2 O 5 1355. 33 3 155 0 0 0 1428. 34 3 178 0 O 0 1505. 35 3 201 0 0 0 1587. 36 3 223 0 0 0 1673. 37 3 246 O O 0 1763. 38 3 269 0 0 0 1858. 39 3 292 0 O 0 1959. 40 3 315 0 0 0 2 0 6 5 . 4 1 3 338 0 O 0 2176 . T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME BA L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 2 .6919 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 9 1 4 4 4 E - 0 1 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV A R I T H . L I M I T 1 3 . 1 1 5 4 1 0 1303 . 2 3 . 103 1 1 2 * 1269. 3 3 . 0 9 2 2 1 7 * 1236. 4 3 . 0 8 0 1 1 9 * 1204. 5 3 . 0 6 9 1 2 2 * 1172. 6 3 .058 5 3 4 * 1142. 7 3 . 0 4 6 4 4 3 * 1112. 8 3 . 0 3 5 4 5 3 * 1083. 9 3 . 0 2 3 6 6 7 * 1055. 10 3 . 0 1 2 6 8 2 * 1028. 1 1 3 . 0 0 0 3 8 9 * 1001 . 12 2 .989 14 12 3 * 9 7 5 . 1 13 2 . 9 7 8 16 16 1 * 9 4 9 . 8 14 2 . 9 6 6 7 17 8 * 9 2 5 . 1 15 2 . 9 5 5 7 19 5 * 901 . 1 16 2 . 9 4 3 14 22 8 * 8 7 7 . 7 17 2 .932 18 27 2 * 8 5 4 . 9 18 2 . 9 2 0 19 31 7 * 8 3 2 . 7 19 2 . 9 0 9 15 35 3 * 8 1 1 . 0 20 2 .898 31 42 a * 7 9 0 . 0 21 2 .886 29 49 8 * 7 6 9 . 5 22 2 .875 42 59 9 * 7 4 9 . 5 23 2 . 8 6 3 16 63 7 * 7 3 0 . 0 24 2 . 8 5 2 41 73 6 \u00E2\u0080\u00A2 7 1 1 . 0 25 2 . 8 4 0 40 83 2 \u00E2\u0080\u00A2 692 .6 26 2 .829 15 86 a * 674 .6 27 2 . 8 1 8 10 89 2 * 657 . 1 28 2 .806 5 90 4 * 6 4 0 . 0 29 2 . 795 3 91 1 * 6 2 3 . 4 30 2 . 783 4 92 1 * 6 0 7 . 2 31 2 . 7 7 2 3 92 8 * 591 .4 32 2 . 7 6 0 7 94 5 * 5 7 6 . 0 33 2 . 7 4 9 3 95 2 * 561 . 1 34 2 . 7 3 8 7 96 9 * 5 4 6 . 5 35 2 . 7 2 6 0 96 9 * 532 . 3 36 2 . 7 1 5 3 97 6 * 5 1 8 . 5 37 2 . 703 2 98 1 * 5 0 5 . 0 38 2 .692 0 98 1 * 491 .9 39 2 .680 1 98 3 * 4 7 9 . 1 40 2 .669 1 98 6 * 4 6 6 . 7 4 1 6 100 0 * 1 5 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME FE L DATA : DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 1 . 7260 S TIME : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 5 0 6 5 0 ILL LOWER LIMIT NM8R % ARITHME 1 0 0 .0 2 - 0 . 7431 0 0 .0 3 - 0 . 6165 0 0 .0 4 -o. 4899 0 0 0 5 -o. 3633 0 0 0 6 - O . 2366 0 0 0 7 - O . 1 100 0 0 0 8 0 . 1660E-01 0 0 0 9 0 . 1432 0 0 0 10 0 . 2698 0 0 0 1 1 0 . 3965 0 0 0 12 0 . 523 1 2 0 5 13 0 . 6497 5 1 2 * 14 0 . 7763 a 1 9 * * 15 O. 9030 12 2 9 * * + 16 1 . 030 20 4 8 ***** 17 1 . 156 25 6 0 ****** 18 1 . 283 54 13 0 ************* 19 1 .409 22 5 3 * **** 20 1 . 536 50 12 0 ************ 21 1 .663 30 7 2 ******* 22 1 . 789 44 10 6 *********** 23 1 .916 31 7 5 ******* 24 2 .04 3 47 1 1 3 *********** 25 2 . 169 16 3 8 * * * * 26 2 . 296 25 6 0 ****** 27 2 . 422 9 2 2 * * 28 2 . 549 8 1 9 * * 29 2 .676 3 0 7 * 30 2 .802 0 0 0 31 2 .929 4 1 0 * 32 3 .056 0 0 0 33 3 . 182 0 0 0 34 3 . 309 0 0 0 35 3 .435 0 0 0 36 3 .562 0 0 0 37 3 .689 0 0 0 38 3 .815 0 0 0 39 3 .942 0 0 0 40 4 .069 O 0 0 41 4 . 195 1 0 2 BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV A R I T H . L I M I T T I T P R O G R A M : P E R C E N T A G E C U M U L A T I V E F R E Q U E N C Y P L O T S N A M E F E L D A T A : D A I S Y C R E E K R E C O N S T R E A M S E D I M E N T G E O C H E M I S T R Y N 4 1 6 E R U N : X B A R 1 . 7 2 6 0 S T I M E : 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 S T D D E V 0 . 5 0 6 5 0 C E L L L O W E R L I M I T N M B R % 1 2 . 9 6 1 4 1 0 2 2 . 8 9 7 1 1 2 3 2 . 8 3 4 0 1 2 4 2 . 7 7 1 2 1 7 5 2 . 7 0 7 1 1 9 6 2 . 6 4 4 1 2 2 7 2 . 5 8 1 3 2 9 8 2 . 5 1 7 4 3 8 9 2 . 4 5 4 8 5 8 1 0 2 . 3 9 1 1 3 8 9 1 1 2 . 3 2 7 4 9 9 1 2 2 . 2 6 4 9 12 0 1 3 2 . 2 0 1 8 1 3 9 1 4 2 . 1 3 8 1 8 1 8 3 1 5 2 . 0 7 4 1 7 2 2 4 1 6 2 . 0 1 1 2 0 2 7 2 1 7 1 . 9 4 8 3 1 3 4 6 1 8 1 . 8 8 4 1 5 3 8 2 1 9 1 . 8 2 1 1 0 4 0 6 2 0 1 . 7 5 8 1 9 4 5 2 2 1 1 . 6 9 4 3 0 5 2 4 2 2 1 . 6 3 1 9 5 4 6 2 3 1 . 5 6 8 2 9 6 1 5 2 4 1 . 5 0 4 1 2 6 4 4 2 5 1 . 4 4 1 2 2 6 9 7 2 6 1 . 3 7 8 2 1 7 4 8 2 7 1 . 3 1 4 1 1 7 7 4 2 8 1 . 2 5 1 2 2 8 2 7 2 9 1 . 1 8 8 2 5 8 8 7 3 0 1 . 1 2 5 4 8 9 7 3 1 1 . 0 6 1 1 2 9 2 5 3 2 O . 9 9 7 9 14 9 5 9 3 3 O . 9 3 4 6 2 9 6 4 3 4 O . 8 7 1 3 5 9 7 6 3 5 0 . 8 0 B O 1 9 7 8 3 6 0 . 7 4 4 7 6 9 9 3 3 7 o. 6 8 1 4 1 9 9 5 3 8 o. 6 1 8 1 0 9 9 5 3 9 0 . 5 5 4 8 2 1 0 0 0 4 0 o. 4 9 1 4 0 1 0 0 0 4 1 0 1 0 0 0 A R I T H M E T I C V A L U E S B A R I N T E R V A L = 0 . 1 2 5 0 0 S T D D E V A R I T H . L I M I T 1 0 2 0 3 0 4 0 5 0 6 0 7 0 B O 9 0 9 5 9 9 T I PROGRAM: PERCENTAGE HISTOGRAMS NAME FE T L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY _N 416. E RUN: X BAR 0 . 2 1 8 8 9 T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV O. 12766 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV A R I T H . L I M I T 1 0 0 0 2 - 0 4035 0 0 0 0 . 3 9 4 9 3 - 0 3716 0 0 0 0 .4251 4 - 0 3396 0 0 0 0 . 4 5 7 5 5 - 0 3077 0 0 0 0 . 4 9 2 4 6 - 0 2758 0 0 0 0 . 5 2 9 9 7 - 0 2439 2 0 5 0 . 5 7 0 3 8 - 0 2120 0 0 0 0 . 6 1 3 8 9 - 0 1801 1 0 2 0 . 6 6 0 6 10 - 0 1481 4 1 0 * 0 . 7 1 1 0 . 1 1 -O 1 162 2 0 5 0 . 7 6 5 2 12 - 0 8431E-01 1 0 2 0 . 8 2 3 5 13 - 0 5239E-01 7 1 7 \u00E2\u0080\u00A2 * 0 . 8 8 6 4 14 - 0 2048E-01 10 2 4 * * 0 . 9 5 3 9 15 0 1144E-01 16 3 8 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 \u00C2\u00BB 1 .027 16 0 4335E-01 4 1 0 * 1 . 105 17 0 7527E-01 25 6 0 ****** 1 . 189 18 0 1072 33 7 9 ******** 1 . 2 8 0 19 O 1391 30 7 2 ******* 1 .378 20 0 1710 25 6 0 ****** 1 .483 2 1 0 2029 56 13 5 ************* 1 .596 22 0 2349 31 7 5 ******* 1.717 23 0 2668 36 a 7 ********* 1 .848 24 0 2987 57 13 7 ************** 1 .989 25 0 3306 35 a 4 ******** 2 . 141 26 0 3625 17 4 1 * * * * 2 . 304 27 0 3944 16 3 8 * * * * 2 .480 28 0 4263 3 0 7 * 2 .669 29 0 4583 4 1 0 * 2 . 8 7 3 30 0 4902 0 0 0 3 . 0 9 2 31 0 522 1 0 0 0 3 . 3 2 7 32 0 5540 0 0 0 3 .581 33 o 5859 0 0 0 3 .854 34 0 6178 0 O 0 4 . 148 35 0 6498 0 0 O 4 .464 36 0 6817 0 0 0 4 . 8 0 5 37 0 7 136 0 O 0 5 .171 38 0 7455 0 0 0 5 . 5 6 6 39 0 . 7774 1 0 2 5 . 9 9 0 40 0 . 8093 0 O 0 6 . 4 4 7 41 0 8413 0 0 0 6 . 9 3 8 T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME FE L DATA: DAISY CREEK RECON STREAM SEDIMENT GEOCHEMISTRY N 416 E RUN: X BAR 0 . 2 1 8 8 9 S T IME: 2 5 / 0 3 / 8 3 1 1 : 5 5 : 3 3 STD DEV 0 . 1 2 7 6 6 CELL LOWER L IMIT NMBR % 1 0 5301 1 0 2 2 0 5141 0 0 2 3 0 4982 0 0 2 4 0 4822 2 0 7 5 0 4662 2 1 2 6 0 4503 O 1 2 7 0 4343 3 1 9 8 0 4 184 1 2 2 9 0 4024 7 3 8 10 0 3865 9 6 0 1 1 0 3705 16 9 9 12 0 3545 9 12 0 13 0 3386 16 15 9 14 0 3226 10 18 3 15 0 3067 37 27 2 16 0 2907 20 32 0 17 0 2747 26 38 2 18 0 2588 10 40 6 19 0 2428 31 48 1 20 0 2269 18 52 4 2 1 0 2109 9 54 6 22 0 1950 29 61 5 23 0 1790 12 64 4 24 0 1630 13 67 5 25 O 1471 9 69 7 26 0 1311 21 74 8 27 0 1 152 11 77 4 28 o 9921E-01 22 82 7 29 0 8325E-01 12 85 6 30 0 6729E-01 13 88 7 31 0 5133E-01 4 89 7 32 0 3538E-01 12 92 5 33 o 1942E-01 4 93 5 34 o 3 4 5 9 E - 0 2 0 93 5 35 - 0 1250E-01 10 95 9 36 -o 2846E-01 2 96 4 37 - 0 4442E-01 0 96 4 38 - 0 6037E-01 5 97 6 39 -o 7633E-01 1 97 8 40 -o 9229E-01 O 97 8 41 9 100 0 LOGARITHMIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV AR ITH .L IM IT .389 .267 149 .035 .926 .820 718 .620 . 526 .435 .347 2 .262 2 . 181 2 . 102 2 . 0 2 6 1.953 1 .883 1 .815 1 .749 1 .686 1 .625 1 .567 1 .510 1 .456 1 .403 1 .352 1 .304 1 .257 1.211 1 . 168 1 . 125 1 .085 1 .046 1 .008 0 9716 0 . 9 3 6 6 0 . 9 0 2 8 0 8702 0 . 8 3 8 8 0 . 3 0 8 6 10 20 30 40 50 60 70 80 90 95 99 A P P E N D I X 5 STREAM S E D I M E N T REGRESSION OUTPUT - 217 -FUNCTIONAL REGRESSION REDUCED MAJOR AXIS DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED BACKWARDS STEPWISE MULTIPLE REGRESSION ON CU ITERATION NUMBER 1 NUMBER OF SAMPLES REGRESSED (N) = 388 CORRELATION COEFFICIENT (R) = 0.7778 STANDARD ERROR (E) = 0.1878 VARIABLE NAME BETA VALUE SIGNIFICANCE LEVEL PB ZN MO AG CO MN F BA FE 0.5523 -0.1379 O.2120 O.3405 O.O302 O.3760 0.2017 O.1068 O.5808 -0.9877 0.0186 0.0000 O.0001 O.3463 O.0000 0.0007 0.1905 O.OOOO 0.0 0.0 CONSTANT F U N C T I O N A L R E G R E S S I O N R E D U C E D M A J O R A X I S D A I S Y C R E E K S T R E A M S E D I M E N T D A T A - A L L D A T A I N C L U D E D B A C K W A R D S S T E P W I S E M U L T I P L E R E G R E S S I O N O N C U I T E R A T I O N N U M B E R 2 N U M B E R O F S A M P L E S R E G R E S S E D ( N ) = 3 8 8 C O R R E L A T I O N C O E F F I C I E N T ( R ) = 0 . 7 7 8 1 S T A N D A R D E R R O R ( E ) = 0 . 1 8 7 4 V A R I A B L E N A M E B E T A V A L U E S I G N I F I C A N C E L E V E L C O N S T A N T P B Z N MO A G MN F B A F E 0 . 5 5 7 7 - O . 1 4 4 0 0 . 2 1 5 0 0 . 3 3 6 4 0 . 3 8 0 6 0 . 2 0 1 1 0 . 1 1 3 8 0 . 6 0 1 1 - 0 . 9 9 8 0 0 . 0 1 2 6 0 . 0 0 0 0 O . 0 O O 1 0 . 0 0 0 0 0 . 0 0 0 7 0 . 1 7 2 2 0 . 0 0 0 0 0 . 0 0 . 0 FUNCTIONAL REGRESSION REDUCED MAJOR AXIS DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED BACKWARDS STEPWISE MULTIPLE REGRESSION ON CU ITERATION NUMBER 3 NUMBER OF SAMPLES REGRESSED (N) = 388 CORRELATION COEFFICIENT (R) = 0.7788 STANDARD ERROR (E) = 0.1868 VARIABLE NAME BETA VALUE SIGNIFICANCE LEVEL N5 N3 O PB ZN MO AG MN F FE 0.5512 -0.1300 0.2090 0.3299 O.3891 0.1985 0.6116 -O. 7097 0.0185 0.0000 0.0001 0.0000 0.OOO8 O.OOOO 0.0 0.0 CONSTANT D A I S Y C R E E K S T R E A M S E D I M E N T D A T A - A L L D A T A I N C L U O E D T Y P E I A A N O M A L I E S S A M P L E S W H I C H A R E A B O V E T H E U P P E R L I M I T O F T H E Z O N E O F M I X I N G O F T H E TWO P O P U L A T I O N S A N D W H I C H A R E S I G N I F I C A N T L Y G R E A T E R T H A N P R E D I C T E D S A M P L E X - C O O R D - Y - C O O R D - D E P E N D E N T N U M B E R I N A T E I N A T E V A R I A B L E 46726 34272.39 115385.97 163.OOO 47424 37510.02 137559.00 780.OOO D A I S Y C R E E K S T R E A M S E D I M E N T D A T A - A L L D A T A I N C L U D E D T Y P E I B A N O M A L I E S S A M P L E S W H I C H A R E A B O V E T H E U P P E R L I M I T OF T H E Z O N E O F M I X I N G O F T H E TWO P O P U L A T I O N S A N D W H I C H A R E S I G N I F I C A N T L Y L E S S T H A N P R E D I C T E D S A M P L E X - C O O R D - Y - C O O R D - D E P E N D E N T N U M B E R I N A T E I N A T E V A R I A B L E 3 0 6 7 5 4 8 4 9 3 . 7 4 1 2 7 1 2 4 . 1 3 9 2 . O O O I ho I DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED TYPE I C ANOMALIES SAMPLES WHICH ARE ABOVE THE UPPER LIMIT OF THE ZONE OF MIXING OF THE TWO POPULATIONS AND WHICH ARE NOT SIGNIFICANTLY DIFFERANT THAN BACKGROUND SAMPLE NUMBER X-COORD-INATE Y-COORD-INATE DEPENDENT VARIABLE 4G678 4G727 G8 157 G8665 46736 34430.44 34283.22 39968.82 36443.28 37156.54 120185.41 112945 90 98464.43 118277.84 139500.20 93.OOO 96.000 119.000 123.OOO 136 . OOO I ho U> I DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED TYPE II A ANOMALIES SAMPLES WHICH ARE PART OF THE MIXED POPULATION BUT WHICH ARE SIGNIFICANTLY GREATER THAN PREDICTED SAMPLE X-COORD- Y-COORD- DEPENDENT NUMBER INATE INATE VARIABLE NO SAMPLES RECOGNIZED DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED TYPE II B ANOMALIES SAMPLES WHICH ARE PART OF THE MIXED POPULATION BUT WHICH ARE SIGNIFICANTLY LESS THAN PREDICTED SAMPLE NUMBER X-CODRD-I NATE Y-COORD-INATE DEPENDENT VARIABLE rO Ln 46827 38016 . 28 145377 .36 60 .000 30740 48443 .49 124275 .54 61 .000 46679 34 130 .51 120206 .53 62 .000 33887 5017 1 .90 104586 . 13 64 .OOO 47417 40018 97 133100 .08 64 .000 46699 29714 98 133793 .46 65 OOO 38062 49702. 18 123752 .40 65 .000 33888 52587. 74 103477 .02 65 OOO 46833 36909. 98 143501 .02 75 .000 33886 49612 95 104868 . 22 77 OOO DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED TYPE II C ANOMALIES SAMPLES WHICH ARE PART OF THE MIXED POPULATION BUT WHICH ARE NOT SIGNIFICANTLY DIFFERENT FROM BACKGROUND SAMPLE NUMBER X-COORD-INATE Y-COORD-INATE DEPENDENT VARIABLE S3 as 46681 31479 ,03 117 156 .50 60 OOO 47414 39787 . 54 130401 .02 61 .000 47410 33723 . 38 118308 .06 62 .000 47412 28419. 12 112869 .94 62 000 46680 33838. . 18 118078 .60 69 OOO 47413 40516. 1 1 127697 .90 69 .000 474 16 40078 04 132879 82 73 OOO 474 1 1 3 1060 31 117498 06 80 OOO 46731 32614. 06 110512 . 19 89 .000 46654 21176. 22 101693. 84 89 OOO DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED TYPE II I A ANOMALIES SAMPLES WHICH ARE PART OF THE BACKGROUND POPULATION BUT WHICH ARE SIGNIFICANTLY GREATER THAN PREDICTED SAMPLE X-COORD- Y-COORD- DEPENDENT NUMBER INATE INATE VARIABLE 33822 24285 . 29 109189 . 54 13 OOO 46829 35219 . 44 140366 .70 20 OOO 68131 47539 .82 101376 .00 24 .000 68202 44719 . 23 95906 .56 25 OOO 46665 41982 .49 112736 .98 25 OOO 46984 28634 .55 139151 . 16 33 OOO 68667 31 176 .48 116477 .63 40. OOO 30720 42022. ,94 107536 . 78 44 . OOO 47418 37883 40 134149. 12 44 OOO 68688 44706. 40 148374. 88 59 OOO DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED 00 TYPE III B ANOMALIES SAMPLES WHICH ARE PART OF THE BACKGROUND POPULATION BUT WHICH ARE SIGNIFICANTLY LESS THAN PREDICTED SAMPLE NUMBER X-COORD-INATE Y-COORD-INATE DEPENDENT VARIABLE 4G505 51615 .58 127550. 91 3 . OOO 4G526 24 130 . 37 99890. 82 4 .000 33743 44603 . 78 129500. 62 5 .000 33833 27725 46 106419 34 8 OOO 33835 29055 98 102999. 66 8 OOO 33843 33059 24 95930. 40 9 . OOO 46608 27 1 36 17 101647. 38 1 1 OOO 33828 3 1403 47 97056. 62 14 .000 46609 49472. 28 115328. 85 16 OOO 32805 43907. 57 125926. 78 24 OOO 30701 45764 29 124602. 19 29. OOO DAISY CREEK STREAM SEDIMENT DATA - ALL DATA INCLUDED BACKWARDS STEPWISE MULTIPLE REGRESSION ON CU ANOMALY RECOGNITION SUMMARY TOTAL H OF SAMPLES =416 TOTAL H OF COMPLETE SAMPLES =4 16 TOTAL * OF ANOMALOUS SAMPLES (> T2) = 8 TOTAL # OF MIXED SAMPLES (< T2 AND > T1) = 20 TOTAL # OF BACKGROUND SAMPLES (< T1) = 388 LOWER THRESHOLD (T1) = 60.0000 UPPER THRESHOLD (T2) = 90.0000 TOTAL # OF CLASS I A ANOMALIES = 2 TOTAL H OF CLASS I B ANOMALIES = 1 TOTAL # OF CLASS I C ANOMALIES = 5 TOTAL # OF CLASS II A ANOMALIES = 0 TOTAL H OF CLASS II B ANOMALIES = 10 TOTAL # OF CLASS II C ANOMALIES = 10 TOTAL H OF CLASS III A ANOMALIES = 10 TOTAL H OF CLASS III B ANOMALIES = 11 Listing of 70 at 15:20:15 on MAR 11. 1984 for CC1d=M2AB Page 1 1 MIXED POPULATION 2 46827 38016 . 28 145377 . 36 -0 .64 1 60 .000 3 30740 48443 .49 124275 . 54 -0 .664 61 .OOO 4 \u00E2\u0080\u00A2 46679 34130 .51 12O206 .53 -0 .763 62 .000 5 33887 50171 .90 104586 . 13 -0 .627 64 .OOO 6 47417 40018. 97 133100 .08 -o .405 64 .000 7 46699 29714 98 133793 .46 -0 .728 65 .000 8 38062 49702 18 123752 . 40 -0 .630 65 OOO 9 33888 52587 74 103477 .02 -0 .525 65 .000 10 46833 36909. 98 143501 .02 -0. .477 75 .000 1 1 33886 49612 .95 104868 .22 -0 .439 77 .000 12 46681 31479 .03 117156 .50 -0. . 1 15 60 .OOO 13 474 14 39787 .54 130401 .02 -0. . 150 61 .000 14 474 10 33723 .38 118308 .06 -0 333 62 .000 15 474 12 28419 . 12 112869 .94 0. .032 62 .000 16 46680 33838 . 18 118078 .60 -0. 102 69 OOO 17 474 13 40516 . 1 1 127697 .90 -0. 355 69 .000 18 474 16 40078 .04 132879 82 -0. 043 73 .000 19 474 1 1 31060 31 117498 .06 -0. 362 80 .000 20 46731 32614 06 110512 19 -0 257 89 OOO 21 46654 21176 22 101693 .84 -0 018 89 OOO 22 ANOMALOUS POPULATION 23 46726 34272 . 39 115385 .97 0 437 163 .000 24 47424 37510 02 137559 00 0. 900 780 000 25 30675 48493. 74 127124 13 -0. 772 92 .000 26 46678 34430. 44 120185 41 -0. 091 93 000 27 46727 34283. 22 112945. 90 -0. 078 96 OOO 28 68157 39968. 82 98464 43 -0. 066 1 19 . .000 29 68665 36443. 28 118277. 84 -o. 020 123 . OOO 30 46736 37156. 54 139500. 20 0. 289 136. OOO A P P E N D I X 6 S O I L SURVEY -GEOCHEMICAL DATA - 231 -tsttng of SOILGD at 17:33:18 on SEP 24, 1984 for CCid=MZAB Page 1 1 SAMP EAST NRTH AG CU PB ZN CO MO AS HG BA 2 3 4 NUM (M) ( M ) (PPM) (PPM) (PPM) (PPM) (PPM) (PPM) (PPM) (PPB) (PPM) 88000 495 420 0 1 35 0 2 5 45 0 15 0 1 .0 10 0 30 670 5 88002 390 420 0 1 35 0 20 0 35 0 5 0 1 .0 5 0 10 440 6 88004 420 420 0 1 50 0 15 0 60 0 2 5 1 .0 5 0 30 610 7 88006 435 420 0 1 65 0 145 0 70 0 2 5 1 .0 5 0 30 620 8 88008 450 420 0 1 70 0 60 0 75 0 10 0 1 .0 5 0 30 630 9 88010 465 420 0 4 150 0 115 0 70 0 2 5 1 .0 5 0 50 690 10 88012 435 405 0 1 65 0 45 0 70 0 10 0 1 .0 5 0 40 590 11 88014 495 405 0 1 30 0 5 0 45 0 10 0 1 .0 5 0 40 650 12 8B016 510 405 0 1 20 0 2 5 50 0 10 0 1.0 5 0 20 600 13 88018 525 405 O 1 15 0 2 5 40 0 10 0 1 .0 5 0 50 570 14 88019 540 405 0 1 30 0 2 5 35 0 10 0 1 .0 5 0 40 540 15 88022 465 405 0 1 35 0 40 0 60 0 10 0 1 .0 5 0 30 730 16 88024 450 405 0 1 55 0 60 0 95 0 15 0 1 .0 5 o 20 940 17 88026 420 510 0 1 10 0 2 5 25 0 10 0 1 .0 5 0 10 420 18 88028 435 510 0 1 50 0 10 0 35 0 2 5 1 .0 5 0 10 590 19 88030 390 510 0 1 65 0 10 0 45 0 2 5 1 .0 20 o 20 590 20 88032 420 525 0 1 15 0 2 5 35 0 2 5 1 .0 5 o 20 480 21 88034 435 525 0 1 45 0 2 5 40 0 2 5 1 .0 5 0 10 490 22 88036 450 525 0 8 520 0 5 0 70 0 5 0 1 .0 5 0 40 650 23 88038 465 525 0 1 275 O 2 5 45 0 2 5 1.0 5 0 50 550 24 88040 480 525 0 1 135 0 10 0 90 0 10 0 1 .0 5 0 40 700 25 8S042 495 525 0 1 35 0 5 0 55 0 10 0 1 .0 5 0 30 710 26 88802 480 480 0 4 245 0 5 0 55 0 10 0 1 .0 5 0 30 920 27 88804 480 465 0 4 280 0 2 5 70 0 10 0 1 .0 5 o 40 740 28 88806 480 450 0 7 365 0 10 0 95 0 2 5 1 .0 5 0 40 830 29 88808 480 435 0 7 180 0 2 5 75 0 10 0 1 .0 5 0 40 700 30 88810 480 420 0 4 125 0 2 5 70 0 10 0 1.0 5 0 50 850 31 88812 480 405 0 8 50 0 5 0 55 0 10 0 1.0 5 0 30 690 32 88814 480 390 0 1 30 0 10 0 55 0 2 5 1 .0 10 0 30 650 33 88816 480 375 0 1 20 0 5 0 45 0 15 0 1.0- 5 0 30 630 34 88818 480 360 0 1 40 0 5 0 55 0 10 0 1 .0 10 0 30 640 35 88820 480 345 0 1 25 0 2 5 50 0 15 0 1 .0 5 0 40 610 36 88822 495 480 0 1 35 0 15 0 75 0 10 0 1 .0 5 0 40 750 37 88824 510 480 0 1 40 0 2 5 65 0 10 0 1 .0 5 o 50 650 38 88826 525 480 0 1 15 0 2 5 45 0 10 0 1 .0 5 0 10 610 39 88828 540 480 0 1 20 0 2 5 45 0 10 0 1 .0 5 0 20 650 40 88830 570 480 0 1 35 0 5 0 55 0 5 0 1 .0 5 0 30 690 4 1 88832 465 480 1 7 950 0 20 0 65 0 2 5 1 .0 10 0 50 710 42 88834 450 480 0 1 370 0 210 0 40 0 10 0 1 .0 5 o 20 560 43 88836 435 480 0 1 1 10 o 1150 0 60 0 10 0 1 .0 10 0 20 630 44 88838 420 480 0 1 10 0 10 0 50 0 5 0 1 .0 5 o 20 670 45 88840 390 480 0 1 20 0 10 O 40 0 2 5 1 .0 5 0 20 700 46 88842 495 465 0 1 30 0 5 0 50 0 5 0 1 .0 5 o 40 240 47 88844 510 465 0 1 25 0 2 5 50 0 10 0 1 .0 10 0 50 7 10 48 88846 525 465 0 1 15 0 5 0 50 0 5 0 1 .0 5 0 40 630 49 88848 540 465 0 1 15 0 5 0 55 0 10 0 1 .0 5 0 20 570 50 88850 420 465 0 1 15 0 10 0 45 0 2 5 1.0 5 0 10 570 51 88852 495 360 0 1 20 0 2 5 40 0 10 0 1 .0 5 0 30 630 52 88854 510 360 0 1 20 0 2 5 35 0 5 0 1 .0 5 0 10 630 53 88856 525 360 0 1 10 0 2 5 30 0 10 0 1 .0 5 0 20 580 54 88858 540 360 0 1 25 0 2 5 50 0 2 5 1 .0 5 0 30 670 55 88860 540 363 0 1 25 0 2 5 45 0 10 0 1 .0 5 0 20 850 56 88862 537 357 0 1 20 0 2 5 45 0 10 0 1 .0 5 0 30 650 57 88864 543 357 0 1 25 0 2 5 45 0 10 0 1 .0 5 0 20 680 58 88866 570 360 0 1 25 0 2 5 50 0 10 0 1 .0 5 0 20 670 Listing of SOILGD at 17:33:18 on SEP 24, 1984 for CCid=MZAB Page 2 59 SAMP EAST NRTH AG CU PB ZN CO MO AS HG BA GO 61 62 NUM (M) (M) (PPM) (PPM) (PPM) (PPM) (PPM) (PPM) (PPM) (PPB ) (PPM) 88868 540 390 0. 1 20 0 2 5 30 0 10 0 1 .0 5 0 20 540 63 88870 570 390 0. 1 15 0 2 5 35 0 10 0 1 .0 5 0 20 570 64 88872 525 390 0. 1 20 0 2 5 35 0 10 0 1 .0 5 0 20 480 65 88874 510 390 0. 1 10 0 5 0 35 0 10 0 1 .0 5 0 20 600 66 88876 495 390 0. 1 40 0 10 0 65 0 15 0 1 .0 5 0 40 690 67 88878 495 375 0.8 30 0 2 5 50 0 2 5 1 .0 5 0 30 620 68 88880 510 375 0.4 25 0 5 0 40 0 10 0 1 .0 5 0 30 710 69 8B882 525 375 0. 1 20 0 2 5 45 0 15 0 1 .0 5 0 20 850 70 88884 540 375 0. 1 15 0 2 5 30 0 2 5 1.0 5 0 40 550 71 88886 483 402 0. 1 30 0 2 5 45 0 10 0 1 .0 5 0 50 780 72 88888 480 408 0. 1 75 0 2 5 80 0 2 5 1 .0 5 0 60 750 73 88890 477 402 0. 1 315 0 10 0 70 0 10 0 1 0 5 0 40 870 74 88892 480 510 0. 1 145 0 10 0 65 0 10 0 1 0 5 0 50 760 75 88894 510 5 10 0. 1 25 0 2 5 60 0 10 0 1 .0 5 0 30 7 30 76 88896 540 5 10 0. 1 30 0 2 5 50 0 2 5 1 .0 5 0 40 540 77 8B89B 570 510 0. 1 25 0 2 5 50 0 10 0 1 .0 30 0 40 620 78 88899 450 5 10 0.4 560 0 10 0 60 0 10 0 1 .0 5 0 40 570 79 88900 465 510 1 . 1 620 0 2 5 45 0 2 5 1 .0 5 0 30 480 80 88902 435 465 0. 1 50 0 670 0 40 0 2 5 1 .0 5 0 10 500 81 88904 450 465 0. 1 180 0 360 0 45 0 10 0 1.0 5 0 20 560 82 88906 465 465 0. 1 370 0 25 0 50 0 2 5 1 .0 5 0 50 640 83 88908 495 450 0. 1 30 0 2 5 50 0 2 5 1 .0 5 0 60 530 84 88910 510 450 0. 1 15 0 2 5 30 0 2 5 1 .0 5 o i o 520 85 88912 525 450 0. 1 65 0 2 5 55 o 10 0 1 .0 5 0 20 670 86 88914 540 450 0. 1 20 0 2 5 30 0 2 5 1 .0 5 0 10 500 87 88916 570 450 0. 1 20 0 2 5 45 0 2 5 1 .0 5 0 20 570 88 88918 390 450 0.1 45 0 20 0 45 0 2 5 1.0 5 0 20 530 89 88920 420 450 0. 1 20 0 10 0 50 0 10 0 1 .0 ' 5 0 30 550 90 88922 435 450 0. 1 35 0 50 0 70 o 10 0 1 .0 5 0 50 750 91 88924 450 450 0. 1 315 0 940 0 85 0 15 0 1 .0 5 0 30 760 92 88926 465 450 0.4 455 0 40 0 80 0 10 0 1.0 5 0 40 760 93 8B928 540 435 0. 1 2 5 2 5 20 0 2 5 1 0 5 0 30 440 94 88930 525 435 0. 1 20 0 2 5 40 0 2 5 1 .0 5 0 50 710 95 88932 5 10 435 0. 1 30 0 2 5 45 0 2 5 1 .0 5 0 50 640 96 88934 495 435 0. 1 20 0 5 0 50 0 10 0 1 .0 5 0 40 710 97 88936 420 435 0. 1 35 0 10 0 50 o 2 5 1 .0 5 0 20 540 98 88938 435 435 0. 1 105 0 55 0 60 o 10 0 1 .0 5 0 20 610 99 88940 450 435 0. 1 80 0 240 0 55 0 15 0 1 0 5 0 30 750 100 88942 465 435 0.1 285 0 70 0 65 0 10 0 1 .0 5 0 30 740 101 88944 570 420 0.1 20 0 5 0 35 0 10 0 1.0 5 0 20 570 102 88946 540 420 0. 1 10 0 5 0 35 0 10 0 1 .0 5 o 10 570 103 88948 525 420 0. 1 20 0 5 0 30 0 10 0 1 .0 5 0 10 510 104 88950 510 420 0. 1 10 0 5 0 30 0 5 0 1.0 5 0 20 420 105 88952 420 405 0. 1 25 0 35 0 60 0 10 0 1.0 10 0 10 590 106 88954 390 390 0. 1 30 0 20 0 60 0 2 5 1 .0 10 0 10 680 107 88956 420 390 0. 1 35 0 10 0 45 o 10 0 1 .0 5 0 20 470 108 88958 435 390 0. 1 85 0 30 0 55 0 10 0 1.0 5 0 20 670 109 88960 450 390 0. 1 140 0 40 0 85 0 10 0 1.0. 5 0 30 820 1 10 88962 465 390 0. 1 55 0 25 0 75 0 2 5 1 .0 5 0 40 750 1 1 1 88964 465 375 0. 1 65 0 20 0 105 0 10 0 1.0 5 0 30 950 1 12 88966 450 375 0. 1 140 0 30 0 80 0 10 0 1 .0 5 0 30 830 113 88968 435 375 0. 1 95 0 25 0 65 0 10 0 1 .0 5 0 20 640 1 14 88970 420 375 0. 1 30 0 20 0 65 0 10 0 1 .0 5 0 30 640 115 8B972 390 360 0. 1 30 0 15 O 45 0 5 O 1 .0 5 0 10 570 1 16 88974 387 357 0. 1 30 0 10 0 70 0 10 0 1 .0 5 0 20 660 nz -1-Ul ro ro ro ro ro ro -* -fc ^ O l 4* U rO \u00E2\u0080\u0094 o U> CO \u00C2\u00ABJ i\u00E2\u0080\u0094 i 00 03 03 03 - J - J I Z 2 I -0> IO O 03 (!) 1 -0 o a Dl i m J*. _ co i \u00E2\u0080\u0094 > fli oi U ro to u 0) 0) 0) 0) O l 0> i X - t O O O O -J U 1 w i CO i 0 i 3I -o > o o o o o o i -o n CI i X m 1 w \u00E2\u0080\u00A2o 1 \u00E2\u0080\u00A2 J oi (j co oi oi ro i -o n Ol O Ol Ol O O l l t> c i X . o o o o o o ID CO i U ro _ ro ro ro 1 T> -o - n O oi o oi oi O I -0 CD 0 I X -3 O O O O O O O O \u00E2\u0080\u0094 \u00C2\u00BBJ Ol Ol CO .fe a u i O O O O t n I \"D Z II o o o o o o ' \u00E2\u0080\u0094 X rsi > I 0 1 T) O \u00E2\u0080\u00A2o U l OI O O OI U l i -o o 01 o o o o o o I X ID I IB ! _^ 1 T3 X 1 -o O u i X o o o o o o I 1 TJ > U l U l 01 (J! U l O i \"D c/l i X o o o o o o \"0 I T) o u U l u ro ro u CO O o O O O O , CO ID m Cf) \u00C2\u00A3. \u00E2\u0080\u00A2o > u CO o u U l X O o 6 O o o e _ _ _ _ _ i x z S O I L SURVEY -R E L A T I V E ERROR P L O T S - 2 3 5 -Relative Error For Ag (ppm) Relative Error = 0.0% N = 56 Replicate Groups = 26 20 CONCENTRATION __ Relative Error For Cu (ppm) Relative Error = 5.4% N = 56 Replicate Groups = 26 1100 CONCENTRATION - 236 -Relative Error For Pb (ppm) Relative Error = 6.8% N = 56 Replicate Groups = 26 370 CONCENTRATION Relative Error For Zn (ppm) Relative Error = 3.3% N = 56 Replicate Groups = 26 255 CONCENTRATION - 237 -Relative Error For Co (ppm) Relative Error - 33.3% N = 56 Replicate Groups = 2 6 t 18 CONCENTRATION Relative Error For Mo (ppm) Relative Error = 0.0% N*= 56 Replicate Groups = 26 l . f 5.4 CONCENTRATION - 238 -50 r 40 Relative Error For As (ppm) Relative Error = 0.0% N = 56 Replicate Groups = 26 30 h-20 10 CONCENTRATION 1182 50 40 Relative Error For Ba (ppm) Relative Error = 3.7% \u00E2\u0080\u00A2 N = 56 Replicate Groups = 26 30 H 20h 10 180 \u00E2\u0080\u00A2 m \u00E2\u0080\u00A2 1100 CONCENTRATION - 239 -Relative Error For Hg (ppb) Relative Error = 12.9% N = 22 Replicate Groups = 8 330 CONCENTRATION - 240 -A P P E N D I X 8 S O I L SURVEY P R O B A B I L I T Y P L O T S - 241 -PROGRAM: PERCENTAGE HISTOGRAMS DATA : DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY RUN: TIME : 25/03/83 14:08:04 NAME AG-SC N 1 16 X BAR 0.16896 STD DEV 0. 22512 CELL LOWER LIMIT NMBR % ARITHMETIC VALUES BAR INTERVAL = 0.25000 STD DEV ARITH.LIMIT 1 0 0 0 2 -o 9285 0 o 0 3 -0 8722 0 0 0 4 -0. 8160 0 0 0 5 -0. 7597 0 0 0 6 -0. 7034 0 0 0 7 -0. 647 1 0 o 0 8 -0. 5908 0 0 0 9 -0. 5345 0 0 0 \u00E2\u0080\u00A2 10 -0. 4783 0 o 0 1 1 -O. 4220 0 0 0 12 -0. 3657 0 0 0 13 -0. 3094 0 0 0 14 -0. 2531 0 0 0 15 -0. 1969 0 0 0 16 -0. 1406 0 0 0 17 -0. 8430E -01 0 0 0 18 -0. 2802E -01 0 0 0 19 O. 2826E -01 0 o 0 20 0. 8454E -01 102 87 9 ******************************************************************************** 2 1 0. 1408 O 0 0 22 0. 197 1 0 0 0 23 0. 2534 0 0 0 24 0. 3097 0 0 0 25 0. 3659 7 6 0 ****** 26 0. 4222 0 0 0 27 0. 4785 0 0 0 28 0. 5348 0 0 0 29 0. 591 1 0 0 0 30 0. 6474 2 1 7 * * 31 0. 7036 0 0 0 32 0. 7599 3 2 6 * * * 33 0. 8162 O 0 0 34 0. 8725 0 0 0 35 0. 9288 0 0 0 36 0. 9850 0 0 0 37 1 .041 0 0 0 38 1 .098 1 0 9 * 39 1 . 154 0 0 0 40 1 .210 0 0 0 41 1 .266 1 0. 9 * PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS DATA : DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY RUN: TIME : 2 5 / 0 3 / 8 3 14 08 04 NAME N X BAR STD DEV AG-SC 116 O.16896 0 . 2 2 5 1 2 CELL LOWER LIMIT NMBR % 1 0 7177 5 4 3 2 0 6896 2 6 0 3 0 6614 0 6 0 4 0 6333 0 6 0 5 0 6051 0 6 0 6 0 5770 0 6 0 7 0 5489 O 6 0 8 0 5207 0 6 0 9 0 4926 0 6 0 10 0 4644 0 6 0 1 1 0 4363 0 6 0 12 0 4082 0 6 0 13 0 3800 7 12 1 14 0 3519 0 12 1 15 0 3237 0 12 1 16 0 2956 0 12 1 17 0 2675 0 12 1 18 0 2393 0 12 1 19 0 2 112 0 12 1 20 o 1830 0 12 1 21 o 1549 0 12 1 22 0 1268 0 12 1 23 0 9861E-01 102 100 0 24 0 7047E-01 0 100 0 25 0 4233E-01 0 100 0 26 0 1419E-01 0 100 0 27 - 0 1395E-01 0 ioo 0 28 - 0 4209E-01 0 100 0 29 -o 7023E-01 0 100 0 30 - 0 9837E-01 0 100 0 31 -o 1265 0 100 0 32 - 0 1547 0 IOO 0 33 - 0 1828 0 100 0 34 - 0 2 109 0 100 0 35 - 0 2391 0 100 0 36 - 0 2672 0 100 0 37 - 0 2954 0 100 0 38 - 0 3235 0 100 0 39 - 0 3516 0 100 0 40 -o 3798 o 100 0 41 o IOO 0 ARITHMETIC VALUES BAR INTERVAL = O.125Q0 STD DEV A R I T H . L I M I T 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME AG-SC L DATA: DAISV CREEK SC HORIZON SOIL GEOCHEMISTRY N 116 E RUN: X BAR -0.90616 S TIME: 25/03/83 14:08:04 STD DEV 0.26358 CELL LOWER LIMIT mm % LOGARITHMIC VALUES BAR INTERVAL = 0.25000 STD DEV ARITH.LIMIT 1 0 0 0 2 -2.191 0 0 0 0. 6440E-02 3 -2. 125 0 0 0 0. 7495E-02 4 -2.059 0 0 0 0. 8723E-02 5 -1.993 0 0 0 0 1015E-01 6 - 1.928 0 0 0 0. 1182E-01 7 -1.862 0 o o 0. 1375E-01 8 -1.796 0 0 0 0. 1601E-01 9 - 1.730 0 0 0 0. 1863E-01 10 -1.664 0 0 0 0. 2168E-01 1 1 - 1.598 0 0 0 0. 2523E-01 12 - 1 .532 0 0 0 0. 2937E-01 13 - 1.466 0 0 0 0. 3418E-01 14 -1.400 0 0 0 O 3978E-01 15 - 1 .334 o 0 0 0 4629E-01 16 - 1.269 0 0 0 0 5388E-01 17 -1.203 0 0 0 0 6271E-01 18 - 1 . 137 0 0 0 0. 7298E-01 19 - 1.071 0 0 0 0. 8494E-01 20 -1.005 102 87 9 |(l><)t>MM>\u00C2\u00ABtHtMt)\u00C2\u00ABttl>tl>t>t>MII>llttll>>\u00C2\u00ABl\u00C2\u00AB>l>)MMIMt*\u00C2\u00ABltl>tt* M t t > > < \u00C2\u00AB l l t t \u00C2\u00AB l t \u00C2\u00AB t t M l f t > M t < l t \u00C2\u00AB t t > * t H t l > ( t M M t \u00C2\u00AB M t t M t t t t < l M t t M M I I I I \u00C2\u00AB l \u00C2\u00AB \u00C2\u00AB > 2 1 5 . 362 0 0 0 22 6 . 104 0 0 0 23 6 . 846 0 0 0 24 7 . 587 0 0 0 25 8 . 329 0 0 0 26 9 .071 0 0 0 27 9 . 8 1 3 9 7 8 ******** 28 1 0 . 5 5 0 0 0 29 1 1 . 30 0 0 0 30 12 .04 0 0 0 31 12 .78 0 0 0 32 13 .52 0 0 0 33 14 . 26 0 0 0 34 15.01 0 0 0 35 15 . 75 0 0 0 36 16 .49 0 0 0 37 17 . 23 0 0 0 38 17 .97 0 0 0 39 18 . 72 0 0 0 40 19 .46 1 0 9 * 4 1 2 0 . 20 1 0 9 * T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME AS-SC L DATA : DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY N 116 E RUN- X BAR 5.7328 S TIME : 25 /03 /83 14:08:04 STD DEV 2.9675 CELL LOWER LIMIT NMBR % ARITHMETIC VALUES 1 12.97 2 1 7 * 2 12.60 0 1 7 * 3 12.22 0 1 7 * 4 11.85 0 1 7 * 5 1 1 .48 0 1 7 \u00C2\u00BB 6 11.11 0 1 7 * 7 10.74 0 1 7 * 8 10.37 0 1 7 * 9 9.999 9 9 5 * 10 9.628 0 9 5 * 1 1 9.257 0 9 5 * 12 8.886 0 9 5 * 13 8.515 0 9 5 * 14 8 . 144 0 9 5 * 15 7 .773 O 9 5 * 16 7.402 0 9 5 * 17 7 .031 0 9 5 * 18 6 .660 0 9 5 * 19 6.289 0 9 5 * 20 5.918 0 9 5 * 21 5 . 547 0 9 5 * 22 5. 176 O 9 5 \u00E2\u0080\u00A2 23 4 . 805 105 100 0 24 4 .434 0 lOO O 25 4 .064 0 100 0 26 3.693 0 100 O 27 3.322 O 100 0 28 2.951 0 lOO 0 29 2 . 580 0 100 0 30 2.209 0 100 0 31 1 .838 0 100 0 32 1 .467 0 100 0 33 1 096 0 100 0 34 O.7251 0 100 O 35 O. 3541 0 1CO O 36 -0 .16B3E -01 0 lOO O 37 - 0 .3878 0 100 0 38 - 0 . 7 5 8 7 0 100 0 39 - 1.130 0 100 0 40 -1 .501 0 100 0 41 0 100 0 BAR INTERVAL = 0 .12500 STD DEV ARITH.LIMIT 10 20 30 40 50 60 70 80 90 95 99 v5 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME A S - S C L DATA: DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY N 116 E RUN: X BAR 0 . 7 3 4 2 2 S TIME : 2 5 / 0 3 / 8 3 14 :08 :04 STD DEV 0 . 1 1 9 4 4 CELL I I . H d - \u00E2\u0080\u00A2 l ' . . . I . V ' 1:1 % LOGARITHMIC VALUES BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV ARITH.L IMIT 1 \u00E2\u0080\u00A2__ 0 0 2 0 . 1519 0 0 0 1 . 419 3 0 . 1818 0 0 0 1 . 520 4 0 . 2 1 1 7 0 0 0 1 . 628 5 0 . 2 4 1 5 o 0 0 1 . 744 6 0 . 2 7 1 4 0 0 0 1 . 868 7 0 . 3 0 1 2 0 0 0 2 . 001 8 0 .3311 0 0 0 2 . 143 9 0 . 3 6 1 0 0 0 0 2 . 296 10 0 . 3 9 0 8 0 0 0 2 . 459 1 1 0 . 4 2 0 7 0 0 0 2 . 634 12 0 . 4 5 0 5 0 0 0 2 . 822 13 0 . 4 8 0 4 0 0 0 3 . 023 14 0 . 5 1 0 3 0 0 0 3 . 238 15 0 . 5401 0 0 0 3 . 468 16 0 . 5 7 0 0 0 0 0 3 . 715 17 0 . 5 9 9 8 0 0 0 3 . 980 18 0 . 6 2 9 7 0 0 0 4 . 263 19 0 . 6 5 9 6 0 0 0 4 . 566 20 0 . 6 8 9 4 105 90 5 * * * \u00C2\u00BB * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4 . 891 21 0 . 7 1 9 3 0 0 0 5 . 239 22 0 .7491 0 0 0 5 . 612 23 0 . 7 7 9 0 0 0 0 6 . 012 24 0 . 8 0 8 9 0 0 0 6 . 440 25 0 . 8 3 8 7 0 0 0 6 . 898 26 0 . 8 6 8 6 o 0 0 7. 389 27 0 . 8 9 8 4 0 0 0 7 . 915 28 0 . 9 2 8 3 0 0 0 8 . 478 29 0 . 9 5 8 2 0 0 0 9 . 082 30 0 . 9 8 8 0 9 7 8 * * * * * * * * 9 . 728 31 1 .018 0 0 0 10 .42 32 1 .048 0 0 0 1 1 . 16 33 1 .078 0 0 0 1 1 .96 34 1 . 107 o 0 0 12 .81 35 1 . 137 0 0 0 13 .72 36 1 . 167 0 0 0 14 . 7 0 37 1 . 197 0 0 0 15 .74 38 1 .227 0 0 0 16 .86 39 1 . 257 o 0 0 18 .06 40 1 . 287 1 0 9 * 19 .35 4 1 1 . 316 1 0 9 * 20 .72 PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME AS-SC DATA: DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY N 1 16 RUN: X BAR 0 .73422 T IME: 2 5 / 0 3 / 8 3 1 4 : 0 8 : 0 4 STD DEV O.11944 CELL LOWER LIMIT NMBR % 1 1 .025 2 1 7 2 1 . 0 1 0 0 1 7 3 0 9955 9 9 5 4 0 9806 0 9 5 5 0 9656 O 9 5 6 0 9507 0 9 5 7 0 9358 0 9 5 8 0 9208 0 9 5 9 0 9059 0 9 5 . 10 0 8910 0 9 5 1 1 0 8760 0 9 5 12 0 861 1 0 9 5 13 0 8462 0 9 5 14 0 8313 0 9 5 15 0 8 163 0 9 5 16 0 8014 0 9 5 17 0 7865 0 9 5 18 0 7715 0 9 5 19 O 7566 0 9 5 20 0 7417 0 9 5 2 1 0 7267 0 9 5 22 O 7 1 18 0 9 5 23 0 6969 105 100 0 24 O 6820 O 100 0 25 0 6670 0 IOO 0 26 0 652 1 0 IOO O 27 0 6372 0 100 0 28 0 6222 0 100 0 29 0 6073 0 100 0 30 0 5924 0 100 0 31 o 5775 0 100 0 32 0 5625 0 IOO 0 33 0 5476 0 IOO 0 34 0 5327 0 100 0 35 0 5177 0 100 0 36 0 5028 0 IOO 0 37 0 4879 0 100 0 38 o 4729 o IOO 0 39 0 4580 0 100 0 40 0 4431 0 100 0 41 0 100 0 LOGARITHMIC VALUES BAR INTERVAL - O .12500 STO DEV A R I T H . L I M I T 1 0 . 6 0 10 .24 9 . 8 9 7 9 . 5 6 2 9 . 2 3 9 8 . 9 2 7 8 . 6 2 5 8 .334 8 . 0 5 2 7 . 780 7 . 5 1 7 7 . 263 7 .018 6 . 7 8 0 551 330 1 16 909 710 517 330 150 976 808 645 488 337 4 . 190 4 .049 3 .912 3 . 7 8 0 3 .652 3 . 5 2 9 409 294 183 075 971 871 774 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME HG-\u00E2\u0080\u00A2SC L OATA : DA'ISY CREEK SC HORIZON SOIL GEOCHEMISTRY N 116 E RUN: X BAR 29 310 S TIME : 2 5 / 0 3 / 8 3 14 :08 :04 STD DEV 12 767 LL LOWER LIMIT NMBR % 1 0 o 0 2 - 3 2 .93 0 0 0 3 - 2 9 .74 0 0 0 4 - 2 6 .55 0 0 0 5 - 2 3 . 35 0 0 0 6 - 2 0 . 16 0 0 0 7 - 16 .97 0 o 0 8 - 1 3 .78 0 0 0 9 - 10 . 59 0 0 0 10 - 7 . 395 0 0 0 1 1 -4 . 203 0 0 0 12 - 1 . 0 1 1 0 0 0 13 2 . 180 0 0 0 14 5 . 3 7 2 0 0 0 15 8 . 5 6 4 15 12 9 16 1 1 .76 0 0 0 17 14 .95 0 0 0 18 18 . 14 33 28 4 19 21 .33 0 0 0 20 24 .52 0 0 0 2 1 27 .71 31 26 7 22 30 .91 0 0 0 23 34 . 10 0 0 0 24 37 .29 21 18 1 25 40 . 4 8 0 0 0 26 43 .67 0 0 0 27 46 .87 14 12 1 28 50 .06 0 0 0 29 53 . 25 0 0 0 30 56 .44 0 0 0 31 59 .63 2 1 7 32 62 .82 0 0 0 33 66 .02 O O 0 34 69 .21 0 0 0 35 72 . 4 0 0 0 0 36 75 . 59 0 0 0 37 78 . 78 0 0 0 38 81 .97 O 0 0 39 85 . 17 0 0 0 40 88 . 36 0 0 0 4 1 91 .55 0 0 0 ARITHMETIC VALUES BAR INTERVAL 0 . 2 5 0 0 0 STD DEV A R I T H . L I M I T ************* **************************** *************************** ****************** ************ T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME HG-SC L DATA: DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY N 116 E RUN: X BAR 29 310 S TIME : 25/03/83 14:08:04 STD DEV 12 767 CELL i i . n . . _ r \u00E2\u0080\u0094 \u00E2\u0080\u0094 % 1 60 43 0 0 0 2 58 .83 2 1 7 3 57 .24 0 1 7 4 55 .64 0 1 7 5 54 .05 0 1 7 6 52 .45 0 1 7 7 50 .85 0 1 7 8 49 .26 14 13 8 9 47 66 0 13 8 10 46 .07 0 13 8 1 1 44 .47 O 13 8 12 42 88 O 13 8 13 4 1 . 28 0 13 a 14 39 .68 2 1 31 9 15 38 .09 0 31 9 16 36 .49 0 31 9 17 34 .90 0 31 9 18 33 .30 0 31 9 19 31 .70 0 31 9 20 30 . 1 1 0 31 9 21 28 .51 31 58 6 22 26 .92 0 58 6 23 25 . 32 0 58 6 24 23 .72 0 58 6 25 22 . 13 0 58 6 26 20 53 0 58 6 27 18 94 33 87 1 28 17 . 34 0 87 1 29 15 .75 0 87 1 30 14 . 15 0 87 1 31 12 .55 0 87 1 32 10 .96 0 87 1 33 9 . 362 15 IOO 0 34 7 . 766 0 IOO 0 35 6 . 170 0 IOO O 36 4 . 574 O 100 0 37 2 . 978 0 IOO 0 38 1 . 382 0 100 0 39 -0.2136 0 100 0 40 -1 . B09 O IOO O 41 0 100 O ARITHMETIC VALUES BAR INTERVAL = 0.125QO STD DEV ARITH.LIMIT 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME HG-SC L DATA: DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY N 1 16 E RUN: X BAR 1 .4199 S T IME: 2 5 / 0 3 / 8 3 14 :08 :04 STD DEV 0 . 21383 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 2 5 0 0 0 STD DEV AR ITH .L IM IT 1 0 0 . 0 2 0 . 3775 0 0 .0 2 . 385 3 0 . 4309 0 0 . 0 2 . 697 4 0 . 4844 0 0 .0 3 . 051 5 0 . 5379 0 0 .0 3 . 450 6 0 . 5913 O 0 0 3 902 7 0 . 6448 0 0 0 4 . 4 13 8 0 . 6982 0 0 0 4 . 992 9 0 . 7517 0 0 0 5 . 645 10 0 . 8051 0 0 0 6 . 385 1 1 0 . 8586 0 0 0 7 . 221 12 0 . 9121 0 0 0 8 . 167 13 0 . 9655 15 12 9 * * * * * * * * * * * * * 9 . 237 14 1 .019 0 0 0 10 .45 15 1 .072 0 0 0 1 1 .81 16 1 . 126 0 0 0 13 .36 17 1 . 179 0 0 0 15 . 1 1 18 1 . 233 0 0 0 17 .09 19 1 . 286 33 28 4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * 19 . 33 20 1 . 340 0 0 0 21 .86 21 1 . 393 0 0 0 24 . 73 22 1 . 447 31 26 7 * * * * * * * * * * * * * * * * * * * * * * * * * * * 27 .97 23 1 . 500 0 0 0 31 .63 24 1 .554 21 18 1 * * * * * * * * * * * * * * * * * * 35 .77 25 1 .607 0 0 0 43 .46 26 1 . 6 6 0 14 12 1 * \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 * \u00E2\u0080\u00A2 * * * 45 .76 27 1 .714 0 0 0 51 . 75 28 1 .767 2 1 7 \u00E2\u0080\u00A2 * 58 .53 29 1 .821 0 0 0 66 . 2 0 30 1 .874 0 0 0 74 .87 31 1 .928 0 0 0 84 .67 32 1 .981 O 0 0 95 .76 33 2 .035 0 0 0 108 .3 34 2 .088 0 0 0 122 .5 35 2 . 142 O 0 0 138 .5 36 2 . 195 0 0 0 156.7 37 2 . 248 O 0 0 177 . 2 38 2 .302 0 0 0 2 0 0 . 4 39 2 . 355 0 0 0 2 2 6 . 7 40 2 .409 0 0 0 2 5 6 . 4 4 1 2 .462 0 0 0 2 8 9 . 9 T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS L DATA : DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY E RUN : S T IME: 2 5 / 0 3 / 8 3 1 4 : 0 8 : 0 4 NAME N X BAR STD DEV HG-SC 116 1 .4199 0 . 2 1 3 8 3 CELL LOWER LIMIT NMBR % LOGARITHMIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD [ )EV AR ITH .L IM IT 1 1 .941 0 0 0 * 87 .32 2 1 .914 0 0 0 * 8 2 . 11 3 1 .888 0 0 0 * 7 7 . 2 1 4 1.861 0 0 0 * 7 2 . 6 0 5 1 .834 0 0 0 * 6 8 . 2 7 6 1 .807 O 0 O * 64 . 19 7 1 .781 0 0 0 * 6 0 . 3 6 8 1 .754 2 1 7 * 5 6 . 7 6 9 1 . 727 0 1 7 * 5 3 . 3 7 10 1 . 701 0 1 7 * 5 0 . 18 1 1 1 .674 14 13 a * 47 . 19 12 1 .647 0 13 8 * 4 4 . 3 7 13 1 . 620 0 13 8 * 41 .72 14 1 . *S94 21 31 9 * 3 9 . 2 3 15 1 .567 0 31 9 * 3 6 . 8 9 16 1 . 540 0 31 9 \u00E2\u0080\u00A2 34 .69 17 1 . 513 0 31 9 * 3 2 . 6 2 18 1 . 487 O 31 9 * 0 0 . 6 7 19 1 . 4 6 0 31 58 6 \u00C2\u00BB 2 8 . 8 4 20 1 . 433 0 58 6 * 27 . 12 21 1 .407 0 58 6 * : 5 . 5 0 22 1 .380 0 58 6 * 2 3 . 9 8 23 1 . 353 0 58 6 * 2 2 . 5 5 24 1 . 326 0 58 6 * 21 . 2 0 25 1 . 300 3 3 e7 1 * 19.94 26 1 . 273 0 87 1 * 1 8 . 7 5 27 1 . 246 0 87 1 * 17 .63 28 1 . 2 1 9 0 87 1 * 16 .57 29 1 . 193 O 87 1 * 15 .59 30 1 . 166 0 87 1 * 14 .65 31 1 . 139 0 87 1 * 13 .78 32 1 . 1 1 3 0 87 1 * 12 .96 33 1 .086 0 87 1 * 12 . 18 34 1 .059 0 87 1 * 1 1 .46 35 1 .032 0 87 1 * 10 .77 36 1 .006 0 87 1 * 10. 13 37 0 . 9 7 8 9 15 lOO 0 \u00E2\u0080\u00A2 9 . 5 2 5 38 0 . 9 5 2 2 0 100 0 * 8 . 9 5 7 39 0 . 9 2 5 4 0 100 0 * 8 . 4 2 2 40 0 . 8 9 8 7 0 100 0 * 7 . 9 1 9 4 1 0 100 0 * 1 5 10 20 30 40 50 60 70 80 90 95 99 PROGRAM: PERCENTAGE. HISTOGRAMS OATA : DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY RUN: TIME : 25/03/83 14:08:04 NAME BA-SC N 1 16 X BAR STD DEV 642.33 1 18.33 CELL LOWER LIMIT NMBR % A 1 0 0 0 2 65.45 0 0 .0 3 95.04 0 0 0 4 124. 6 0 0 0 5 154 . 2 0 0 .0 6 183. 8 0 0 0 7 213. 4 1 0 9 * 8 243 . 0 0 0 0 9 272 . 5 0 0 0 10 302 . 1 0 0 0 1 1 33 1 . 7 0 0 0 12 361 . 3 0 0 0 13 390. 9 2 1 7 * * 14 420. 5 2 1 7 * * 15 450. 0 2 1 7 \u00E2\u0080\u00A2 * 16 479. 6 6 5 2 * * * * * 17 509. 2 4 3 4 * * * 18 538 . 8 9 7 8 * * * * * * * 19 568. 4 14 12 1 * * * * * * * 20 598. 0 10 8 6 * * * * * * * 2 1 627 . 5 19 16 4 * * * * * * * 22 657 . 1 9 7 8 * * * * * * * 23 686 . 7 13 1 1 2 * * * * * * * 24 7 16. 3 4 3 4 * * * 25 745 . 9 8 6 9 * * * * * * * 26 775. 5 2 1 7 * * 27 805 . 0 3 2 6 * * * 28 834 . 6 3 2 6 * * * 29 864 . 2 1 0 9 * 30 893. 8 1 0 9 * 31 923. 4 3 2 6 * * * 32 953. 0 0 0 0 33 982 . 5 0 0 0 34 1012 0 0 0 35 1042 0 0 0 36 107 1 0 0 0 37 1 101 0 O 0 38 1 130. 0 O 0 39 1 160. 0 0 0 40 1 190. 0 0 0 4 1 1219. O 0 0 RITHMETIC VALUES BAR INTERVAL = 0.25000 STD DEV ARITH.LIMIT T I T PROGRAM: PERCENTAGE CUMULATIVE FREQUENCY PLOTS NAME BA-SC L DATA: DAISY CREEK SC HORIZON SOIL GEOCHEMISTRY N 116 E RUN: X BAR 6 4 2 . 3 3 S T IME: 2 5 / 0 3 / 8 3 1 4 : 0 8 : 0 4 STD DEV 118 .33 CELL LOWER LIMIT NMBR % 1 930 B 2 1 7 2 916 0 2 3 4 3 901 2 0 3 4 4 886 4 0 3 4 5 871 6 0 3 4 6 856 8 1 4 3 7 842 0 3 6 9 8 827 2 2 a 6 9 812 4 1 9 5 10 797 6 0 9 5 1 1 782 8 0 9 5 12 768 1 2 1 1 2 13 753 3 3 13 a 14 738 5 7 19 8 15 723 7 2 21 6 16 708 9 6 26 7 17 694 1 3 29 3 18 679 3 6 34 5 19 664 5 6 39 7 20 649 7 8 46 6 21 634 9 5 BO 9 22 620 1 7 56 9 23 605 3 7 62 9 24 590 6 3 65 5 25 575 8 5 69 8 26 56 1 0 9 77 6 27 546 2 5 81 9 28 531 4 4 85 3 29 516 6 3 87 9 30 501 8 1 88 8 31 487 0 3 91 4 32 472 2 3 94 O 33 457 4 2 95 7 34 442 6 0 95 7 35 427 8 2 97 4 36 4 13 1 2 99 1 37 398 3 0 99 1 38 383 5 O 99 1 39 368 7 0 99 1 40 353 9 0 99 1 41 1 100 0 ARITHMETIC VALUES BAR INTERVAL = 0 . 1 2 5 0 0 STD DEV A R I T H . L I M I T 10 20 30 40 50 60 70 80 90 95 99 T I T PROGRAM: PERCENTAGE HISTOGRAMS NAME BA-SC L DATA: OAISY CREEK SC HORIZON SOIL GEOCHEMISTRY N 1 16 E RUN: X BAR 2.7999 S TIME: 25 /03 /83 14:08:04 STD DEV 0 .85470E-01 CELL LOWER LIMIT NMBR \u00E2\u0080\u00A2/. LOGARITHMIC VALUES BAR INTERVAL = = O.25000 STD DEV /R ITH. LIMIT 1 1 0 9 * 2 2 . 383 0 0 .0 J41 . 7 3 2 405 0 0 0 253 . 9 4 2 426 0 0 0 266. 7 fa 2 447 0 0 0 ; a o . 1 6 2 469 0 0 0 294 . 3 7 2 490 0 0 0 309 . 1 8 2 51 1 0 0 0 324 . 7 9 2 533 0 0 0 34 1 1 i o 2 554 0 0 0 358. 3 1 1 2 576 0 0 0 376. 3 12 2 597 0 0 0 395 . 3 13 2 6 18 2 1 7 * * 4 15. 3 14 2 640 2 1 7 * * 436. 2 15 2 661 5 4 3 * * \u00E2\u0080\u00A2 * 458 . 2 16 2 682 3 2 6 * * # 481 . 3 17 2 704 4 3 4 * \u00E2\u0080\u00A2 * 505. 6 18 2 725 7 6 0 ****** 531 . 1 19 2 747 12 10 3 ********** 557 8 20 2 768 1 1 9 5 ********* 586 . 0 2 1 2 789 15 12 9 ************* 615. 5 22 2 8 1 1 14 12 1 ************ 646. 6 23 2 832 15 12 9 ************* 679. 2 24 2 853 4 3 4 * \u00E2\u0080\u00A2 * 713. 4 25 2 875 10 8 6 ********* 749. 4 26 2 896 1 0 9 * 787 . 2 27 2 917 5 4 3 *** * 826 . 9 28 2 939 1 0 9 * 868 . 6 29 2 960 4 3 4 * * * 912 . 4 30 2 982 0 0 0 958. 4 3 1 3 003 0 O 0 IOO 7 32 3 024 0 0 0 1058 33 3 046 0 O 0 1111 34 3 067 0 0 0 1 167 35 3 088 0 0 0 1226 36 3 1 10 0 0 0 1288 37 3 131 0 0 0 1352 38 3 152 0 0 0 1421 39 3 174 0 0 0 1492 40 3 195 0 0 0 1568 4 1 3 217 0 0 0 1647 T I T L E S P R O G R A M : P E R C E N T A G E C U M U L A T I V E F R E Q U E N C Y P L O T S N A M E B A - S C D A T A : D A I S Y C R E E K S C H O R I Z O N S O I L G E O C H E M I S T R Y N 1 1 6 R U N : X B A R 2 . 7 9 9 9 T I M E : 2 5 / 0 3 / 8 3 1 4 : 0 8 : 0 4 S T D D E V 0 . 8 J . 4 7 0 E - 0 1 C E L L L O W E R L I M I T N M B R % L O G A R I T H M I C V A L U E S B A R I N T E R V A L = O . 1 2 5 C S T D t ) E V A R I T H L I M I T 1 3 0 0 8 0 0 0 \u00E2\u0080\u00A2 1 0 1 9 . 2 2 9 9 8 0 0 O * 9 9 4 4 3 2 9 8 7 0 0 0 * 9 7 0 2 4 2 9 7 6 1 0 9 * 9 4 6 7 5 2 9 6 6 2 2 6 * 9 2 3 7 6 2 9 5 5 1 3 4 * 9 0 1 2 7 2 9 4 4 0 3 4 * 8 7 9 3 8 2 9 3 3 1 4 3 * 8 5 8 0 9 2 9 2 3 3 6 9 * 8 3 7 1 1 0 2 9 1 2 3 9 5 * 8 1 6 8 1 1 2 9 0 1 O 9 5 * 7 9 6 9 1 2 2 8 9 1 2 1 1 2 * 7 7 7 6 1 3 2 8 8 0 3 1 3 8 * 7 5 8 7 1 4 2 8 6 9 5 1 8 1 * 7 4 0 2 1 5 2 8 5 9 4 2 1 6 * 7 2 2 2 1 6 2 8 4 8 6 2 6 7 * 7 0 4 7 1 7 2 8 3 7 7 3 2 8 * 6 8 7 6 1 8 2 8 2 7 2 3 4 5 * 6 7 0 9 1 9 2 8 1 6 7 4 0 5 * 6 5 4 6 2 0 2 8 0 5 1 2 5 0 9 * 6 3 8 7 2 1 2 7 9 5 7 5 6 9 * 6 2 3 1 2 2 2 7 8 4 7 6 2 9 * 6 0 8 O 2 3 2 773 3 6 5 5 * 5 9 3 2 2 4 2 7 6 3 5 6 9 8 * 5 7 8 8 2 5 2 7 5 2 9 7 7 6 * 5 6 4 7 2 6 2 7 4 1 2 7 9 3 * 5 5 1 0 2 7 2 7 3 0 7 8 5 3 * 5 3 7 6 2 8 2 7 2 0 2 8 7 1 * 5 2 4 6 2 9 2 7 0 9 1 8 7 9 * 5 1 1 8 3 0 2 6 9 8 3 9 0 5 4 9 9 4 3 1 2 6 8 8 1 9 1 4 * 4 8 7 3 3 2 2 6 7 7 3 9 4 0 * 4 7 5 4 3 3 2 6 6 6 2 9 5 7 * 4 6 3 9 3 4 2 6 5 6 0 9 5 7 * 4 5 2 6 3 5 2 6 4 5 0 9 5 7 * 4 4 1 6 3 6 2 6 3 4 2 9 7 4 * 4 3 0 9 3 7 2 6 2 4 0 9 7 4 * 4 2 0 4 3 8 2 6 1 3 2 9 9 1 * 4 1 0 2 3 9 2 6 0 2 O 9 9 1 * 4 0 0 2 4 0 2 5 9 2 0 9 9 1 * 3 9 0 5 4 1 1 1 0 0 0 * 1 5 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 9 5 9 9 "@en . "Thesis/Dissertation"@en . "10.14288/1.0052673"@en . "eng"@en . "Geological Sciences"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "The geology and geochemistry of the Daisy Creek Prospect, a stratabound copper-silver occurrence in Western Montana"@en . "Text"@en . "http://hdl.handle.net/2429/24777"@en .