"Applied Science, Faculty of"@en . "Civil Engineering, Department of"@en . "DSpace"@en . "UBCV"@en . "Whalen, Thomas F."@en . "2009-01-28T21:21:01Z"@en . "1995"@en . "Master of Applied Science - MASc"@en . "University of British Columbia"@en . "Investigations were performed on the aerobic biological \r\ndegradation potential of a high-strength, industrial sludge from \r\nthe Chatterton Petrochemical site in Delta, BC. The sludge was \r\nlocated at the bottom of one of the wastewater treatment \r\nequalization lagoons. The lagoon was used to store process water \r\nand on site drainage from the Phenol processing plant operations. \r\nThe plant had been in operation from 1961 to 1991. The sludge \r\ncontained high concentrations of: Phenol, Diphenyl, Diphenyl \r\nEther, Diphenyl Methane and Xylene and had a Total COD of over \r\n250 000 mg/L. It also contained over 1000 mg/L of copper and \r\ncobalt. \r\nTreatment was initially attempted using a Modified Batch Process \r\n(MBP). Nine batches were run, to determine the best initial \r\nsludge loading level in the treatment system and to assess the \r\ndegree of treatability of the waste mixture. In each set of \r\nexperiments, a control was run to determine the degree of \r\nvolatilization of the organic compounds from the waste. Twenty \r\nlitre batches, having been diluted up to ten times, were run for \r\nmore than forty days. In later batches, due to microorganism \r\ngrowth problems, both ammonia and phosphorus were added to the \r\nsystem; phosphorus was needed both for the growth of \r\nmicroorganisms and the precipitation of dissolved copper. The \r\nperformance of the systems was monitored using Total COD, Total \r\nBOD and the concentration of selected target organics present in \r\nthe mixture. \r\nThe most notable batch data resulted from a reactor loaded with \r\nan initial Total COD of approximately 30 000 mg/L. All the \r\norganic compounds of the sludge were removed from the mixture to \r\nbelow the detection limit of the Gas Chromatograph and the Total \r\nB0D was reduced to a negligible concentration. The success of \r\nthe run was attributed, in part, to the high concentration of \r\nphosphorus present in the system. The concentration was 100 mg/L \r\nhigher than the nutrient requirements of the culture and the \r\nelevated nutrient loading apparently resulted in the \r\nprecipitation of much of the dissolved copper present in the \r\nreactor. \r\nThe control showed that when the system was run under ideal \r\nconditions, the loss due to volatilization could be limited to \r\nless than 5%, based on Total COD. \r\nThe system was then modified to operate as a True Batch Process \r\n(TBP). Treatment was attempted by keeping 75% of the previous \r\nrun's final product in the reactor, while inputting a new load of \r\nsludge and dilution water to make up the volume difference. \r\nResults from the run indicated that treatment kinetics of the new \r\nsystem were three time faster than the best batch run based on \r\nTotal BOD degradation. All of the organic compounds had been \r\nremoved to below the detection limit of the Gas Chromatograph in \r\nthe end product sludge. However, questions remained about the \r\naccumulation of copper in a true batch treatment system. \r\nPretreatment of the sludge to remove copper may be necessary to \r\nachieve the high Total BOD removal rates seen in the true batch \r\nsystem."@en . "https://circle.library.ubc.ca/rest/handle/2429/3979?expand=metadata"@en . "10697054 bytes"@en . "application/pdf"@en . "The Aerobic B i o l o g i c a l T r e a t a b i l i t y Of A High Strength Mixed Petrochemical I n d u s t r i a l Sludge By Thomas F. W h a l e n B . A . S c , M c G i l l U n i v e r s i t y , 1993 A T h e s i s S u b m i t t e d In P a r t i a l F u l f i l m e n t Of The Requirements F o r The Degree Of M a s t e r s Of A p p l i e d S c i e n c e i n The F a c u l t y Of Graduate S c i e n c e (Department Of C i v i l E n g i n e e r i n g ) We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d The U n i v e r s i t y Of B r i t i s h Columbia O c t o b e r , 1995 Thomas F. Whalen, 1995 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h C olumbia, I agree t h a t t h e l i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by t h e head of my department o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department Of C i v i l E n g i n e e r i n g The U n i v e r s i t y o f B r i t i s h Columbia Vancouver, Canada October 05, 1995 A b s t r a c t : I n v e s t i g a t i o n s were performed on t h e a e r o b i c b i o l o g i c a l d e g r a d a t i o n p o t e n t i a l o f a h i g h - s t r e n g t h , i n d u s t r i a l s l u d g e from th e C h a t t e r t o n P e t r o c h e m i c a l s i t e i n D e l t a , BC. The s l u d g e was l o c a t e d a t t h e bottom o f one o f t h e wastewater t r e a t m e n t e q u a l i z a t i o n l a g o o n s . The l a g o o n was used t o s t o r e p r o c e s s water and on s i t e d r a i n a g e from t h e Phenol p r o c e s s i n g p l a n t o p e r a t i o n s . The p l a n t had been i n o p e r a t i o n from 1961 t o 1991. The s l u d g e c o n t a i n e d h i g h c o n c e n t r a t i o n s o f : P h e n o l , D i p h e n y l , D i p h e n y l E t h e r , D i p h e n y l Methane and X y l e n e and had a T o t a l COD o f o v e r 250 000 mg/L. I t a l s o c o n t a i n e d o v e r 1000 mg/L o f copper and c o b a l t . Treatment was i n i t i a l l y a t t e m p t e d u s i n g a M o d i f i e d B a t c h P r o c e s s (MBP). Nine b a t c h e s were r u n , t o d e t e r m i n e t h e b e s t i n i t i a l s l u d g e l o a d i n g l e v e l i n t h e t r e a t m e n t system and t o a s s e s s t h e degree o f t r e a t a b i l i t y o f t h e waste m i x t u r e . I n each s e t o f e x p e r i m e n t s , a c o n t r o l was run t o d e t e r m i n e t h e degree o f v o l a t i l i z a t i o n o f t h e o r g a n i c compounds from t h e waste. Twenty l i t r e b a t c h e s , h a v i n g been d i l u t e d up t o t e n t i m e s , were run f o r more t h a n f o r t y days. I n l a t e r b a t c h e s , due t o m i c r o o r g a n i s m growth problems, b o t h ammonia and phosphorus were added t o t h e system; phosphorus was needed b o t h f o r t h e growth o f m i c r o o r g a n i s m s and t h e p r e c i p i t a t i o n o f d i s s o l v e d copper. The performance o f t h e systems was m o n i t o r e d u s i n g T o t a l COD, T o t a l BOD5 and t h e c o n c e n t r a t i o n o f s e l e c t e d t a r g e t o r g a n i c s p r e s e n t i n the m i x t u r e . The most n o t a b l e b a t c h d a t a r e s u l t e d from a r e a c t o r l o a d e d w i t h an i n i t i a l T o t a l COD o f a p p r o x i m a t e l y 30 000 mg/L. A l l t h e o r g a n i c compounds o f t h e s l u d g e were removed from t h e m i x t u r e t o below t h e d e t e c t i o n l i m i t o f t h e Gas Chromatograph and t h e T o t a l B0D s was reduced t o a n e g l i g i b l e c o n c e n t r a t i o n . The s u c c e s s o f the r u n was a t t r i b u t e d , i n p a r t , t o t h e h i g h c o n c e n t r a t i o n o f phosphorus p r e s e n t i n t h e system. The c o n c e n t r a t i o n was 100 mg/L h i g h e r t h a n t h e n u t r i e n t r e q u i r e m e n t s o f t h e c u l t u r e and t h e e l e v a t e d n u t r i e n t l o a d i n g a p p a r e n t l y r e s u l t e d i n t h e p r e c i p i t a t i o n o f much o f t h e d i s s o l v e d copper p r e s e n t i n t h e r e a c t o r . The c o n t r o l showed t h a t when t h e system was run under i d e a l c o n d i t i o n s , t h e l o s s due t o v o l a t i l i z a t i o n c o u l d be l i m i t e d t o l e s s t h a n 5%, based on T o t a l COD. The system was t h e n m o d i f i e d t o o p e r a t e as a True B a t c h P r o c e s s (TBP). Treatment was attemp t e d by k e e p i n g 75% o f t h e p r e v i o u s run's f i n a l p r o d u c t i n t h e r e a c t o r , w h i l e i n p u t t i n g a new l o a d o f s l u d g e and d i l u t i o n w ater t o make up t h e volume d i f f e r e n c e . R e s u l t s from t h e r u n i n d i c a t e d t h a t t r e a t m e n t k i n e t i c s o f t h e new system were t h r e e t i m e f a s t e r t h a n t h e b e s t b a t c h run based on T o t a l BOD5 d e g r a d a t i o n . A l l o f t h e o r g a n i c compounds had been removed t o below t h e d e t e c t i o n l i m i t o f t h e Gas Chromatograph i n t h e end p r o d u c t s l u d g e . However, q u e s t i o n s remained about t h e a c c u m u l a t i o n o f copper i n a t r u e b a t c h t r e a t m e n t system. P r e t r e a t m e n t o f t h e s l u d g e t o remove copper may be n e c e s s a r y t o a c h i e v e t h e h i g h T o t a l BOD5 removal r a t e s seen i n t h e t r u e b a t c h system. i v TABLE OF CONTENTS: Page: A b s t r a c t i i T a b l e Of Content v L i s t Of T a b l e s v i L i s t Of F i g u r e s x i Acknowledgements xv 1. I n t r o d u c t i o n 1 2 L i t e r a t u r e Review 7 2.1 - O b j e c t i v e s 20 3. M a t e r i a l s and Methods: 3.1 - R e a c t o r D e s i g n 21 3.2 - Sampling 25 3.3 - A n a l y t i c a l P r o c e d u r e s 28 3.4 - E x p e r i m e n t a l P r o c e d u r e s 31 4. R e s u l t s and D i s c u s s i o n s 34 4.1 - I n i t i a l B a t c h Treatments 36 4.2 - B a t c h e s W i t h M e t a l T o x i c i t y Problems 62 4.3 - Overcoming The Problem Of H i g h D i s s o l v e d M e t a l s 106 4.4 - Sequencing B a t c h E x p e r i m e n t s 149 5. Summary Of R e s u l t s 183 6. C o n c l u s i o n s 188 7. Recommendations F or F u t u r e Treatment 191 8. R e f e r e n c e s 193 9. Appendices A - Data 196 B - GC Tra c e F o r Run 5 260 v L I S T OF TABLES TABLE: Page C h a p t e r 1: 1.1 C o m p a r i s o n Of S l u d g e C h a r a c t e r i s t i c s 3 1.2 R e s u l t s o f I n i t i a l I n v e s t i g a t i o n o f C h a t t e r t o n S l u d g e 6 C h a p t e r 3: 3.1.1 Type a n d F r e q u e n c y Of A n a l y t i c a l T e s t s P e r f o r m e d On S l u d g e 27 C h a p t e r 4: 4.1 I n i t i a l C h a r a c t e r i s t i c s Of The C h a t t e r t o n P e t r o c h e m i c a l S l u d g e A s A n a l y z e d a t U.B.C. 34 4.2 I n i t i a l O r g a n i c C o n s t i t u e n t s Of The S l u d g e 35 C h a p t e r 4.1: 4.1.1 C o n t e n t s Of The Two R u n n i n g R e a c t o r s F o r The F i r s t B a t c h T r i a l 37 4.1.2 I n i t i a l A n a l y t i c a l A n a l y s i s Of The S l u d g e I n The R u n n i n g R e a c t o r s F o r Run 1 37 4.1.3 T o t a l a n d S u p e r n a t a n t C o n c e n t r a t i o n D u r i n g Run 1 40 4.1.4 I n i t i a l C o n t e n t Of t h e R e a c t o r s F o r t h e S e c o n d B a t c h Run 44 4.1.5 I n i t i a l COD o f The R e a c t o r s F o r Run 2 45 4.1.6 I n i t i a l C o n d i t i o n s I n The R e a c t o r A t The S t a r t Of Run 4 50 4.1.7 O x y g e n U p t a k e R a t e On Day 47 Of Run 4 56 4.1.8 R e d u c t i o n Of The COD D u r i n g Run 4 58 4.1.9 R e d u c t i o n Of The T a r g e t O r g a n i c s D u r i n g Run 4 59 v i L i s t Of Tables (Continued) Page Table: Chapter 4.2: 4.2.1 I n i t i a l C o n d i t i o n s I n The R e a c t o r At The S t a r t Of Run 5 62 4.2.2 COD R e d u c t i o n D u r i n g Run 5 69 4.2.3 P e r c e n t R e d u c t i o n I n The T a r g e t O r g a n i c s D u r i n g Run 5 69 4.2.4 N u t r i e n t U t i l i z a t i o n And The COD R e d u c t i o n F o r Run 5 72 4.2.5 R a t i o Of N i t r o g e n To Phosphorus U t i l i z a t i o n D u r i n g Run 5 73 4.2.6 I n i t i a l C o n d i t i o n s I n The R e a c t o r A t The S t a r t Of Run 6 75 4.2.7 Comparison Between The S t a r t i n g And The End C o n d i t i o n s I n Term Of T o t a l COD For Run 6 84 4.2.8 P e r c e n t Removal Of Ta r g e t O r g a n i c Compounds F or Run 6 84 4.2.9 N u t r i e n t U t i l i z a t i o n F o r Run 6 86 4.2.10 T o t a l COD:N:P R a t i o F o r Run 6 86 4.2.11 I n i t i a l L o a d i n g Of The R e a c t o r s F o r Run 7 88 4.2.12 I n i t i a l C o n c e n t r a t i o n Of T a r g e t O r g a n i c s I n Run 7 89 4.2.13 C o n d i t i o n s I n The R e a c t o r s A t t h e End Of Run 7 99 4.2.14 Change I n t h e C o n c e n t r a t i o n Of The Ta r g e t O r g a n i c s D u r i n g Run 7 100 4.2.15 S t r a i g h t L i n e D e g r a d a t i o n Rates Of S p e c i f i c O r g a n i c Compounds D u r i n g Run 7 101 4.2.16 BOD/COD R a t i o Time F or Run 7 103 v i i L i s t Of Tables (Continued) Table: C h a p t e r 4.3: Page 4.3.1 I n i t i a l C o n d i t i o n s Of The R e a c t o r At The S t a r t Of Run 8 107 4.3.2 I n i t i a l T o t a l And S u p e r n a t a n t C o n c e n t r a t i o n Of T a r g e t O r g a n i c Compounds Of Run 8 107 4.3.3 C o n c e n t r a t i o n Of The T a r g e t O r g a n i c C o n c e n t r a t i o n And The S u p e r n a t a n t COD C o n c e n t r a t i o n On Two S a m p l i n g Days In R e a c t o r 4 Of Run 8 119 4.3.4 F i n a l C o n d i t i o n s I n t h e R e a c t o r s At The End Of Run 8 119 4.3.5 D i f f e r e n c e In t h e T a r g e t O r g a n i c s C o n c e n t r a t i o n At t h e End Of Run 8 121 4.3.6 N i t r o g e n / P h o s p h o r o u s R a t i o D u r i n g Run 8 122 4.3.7 Comparing The P r e d i c t e d BOD5 V a l u e s By The F i r s t Order Models F o r Run 8 124 4.3.8 R e s u l t s Of The Alum J a r T e s t s To Remove Copper 129 4.3.9 I n i t i a l C o n d i t i o n s I n The R e a c t o r At The S t a r t Of Run 9 131 4.3.10 I n i t i a l C o n c e n t r a t i o n Of The T a r g e t O r g a n i c At The S t a r t Of Run 9 131 4.3.11 C o n d i t i o n s I n The R e a c t o r s At The End Of Run 9 138 4.3.12 C o n c e n t r a t i o n Of The T a r g e t O r g a n i c s In The R e a c t o r s At The End Of Run 9 140 4.3.13 K i n e t i c C o n s t a n t s k Determined For The D e g r a d a t i o n I n Run 9 142 4.3.14 Comparison Between The S t r a i g h t L i n e D e g r a d a t i o n Rates And The R e a c t i o n Rate C o n s t a n t s k For Runs 7, 8 and 9 145 v i i i L i s t Of Tables (Continued) Page Table: 4.3.15 C o m p a r i s o n Of The S t r a i g h t L i n e D e g r a d a t i o n R a t e s And R e a c t i o n R a t e s C o n s t a n t s k F o r S e l e c t e d T a r g e t O r g a n i c Compounds F o r Runs 7, 8 a n d 9 146 C h a p t e r 4.4: 4.4.1 I n i t i a l C o n d i t i o n s I n The R e a c t o r s A t The S t a r t Of Run 10 152 4.4.2 I n i t i a l C o n c e n t r a t i o n Of The T a r g e t O r g a n i c Compounds A t t h e S t a r t Of Run 10 152 4.4.3 F i n a l C o n d i t i o n s I n The R e a c t o r s A t The End Of Run 10 158 4.4.4 D e g r a d a t i o n Of The T a r g e t O r g a n i c s D u r i n g Run 10 159 4.4.5 R e a c t i o n R a t e s C o n s t a n t s k a n d t h e D e g r a d a t i o n P e r Day F o r The T a r g e t O r g a n i c Compounds D u r i n g Run 10 161 4.4.6 C o m p a r i s o n Of The R e a c t i o n R a t e C o n s t a n t k F o r B a t c h And S e q u e n c i n g B a t c h Runs 162 4.4.7 BOD/COD R a t i o D u r i n g Run 10 164 4.4.8 Use Of N u t r i e n t s And The N i t r o g e n / P h o s p h o r u s R a t i o F o r Run 10 165 4.4.9 I n i t i a l C o n d i t i o n s P r e s e n t I n t h e R e a c t o r A t t h e S t a r t Of Run 11 168 4.4.10 I n i t i a l C o n c e n t r a t i o n Of The T a r g e t O r g a n i c Compounds A t t h e S t a r t Of Run 11 168 4.4.11 D e g r a d a t i o n I n Terms Of T o t a l BOD 5 And COD D u r i n g Run 11 176 4.4.12 D e g r a d a t i o n Of t h e T a r g e t O r g a n i c s D u r i n g Run 11 178 4.4.13 R e a c t i o n R a t e C o n s t a n t s k And The S t r a i g h t L i n e D e c a y V a l u e s F o r T a r g e t O r g a n i c s F o r Run 11 179 i x L i s t Of Tables (Continued) Table: Page: 4.4.14 BOD/COD R a t i o D u r i n g Run 11 180 4.4.15 N u t r i e n t s U s e d And The N i t r o g e n / P h o s p h o r o u s R a t i o E x h i b i t e d D u r i n g Run 11 181 C h a p t e r 5: 5.1.1 Summary o f t h e Range o f I n i t i a l a n d F i n a l P a r a m e t e r s f o r a l l T r e a t m e n t Runs A t t e m p t e d 183 5.2.1 Summary o f t h e M o s t S u c c e s s f u l Runs i n Terms Of T o t a l COD a n d BOD R e d u c t i o n a n d R e a c t i o n R a t e C o n s t a n t 184 5.3.1 Range o f t h e R e a c t i o n R a t e C o n s t a n t k f o r P h e n o l D e g r a d a t i o n a s a S i n g l e C a r b o n S o u r c e 185 5.4.1 P r o b a b l e E f f l u e n t Q u a l i t y o f S l u d g e W h i c h h a s U n d e r g o n e t h e I d e a l T r e a t m e n t P r o c e s s a s P r o p o s e d b y t h e E x p e r i m e n t a l Runs 185 5.5.1 Summary o f t h e N i t r o g e n / P h o s p h o r u s R a t i o f o r t h e E x p e r i m e n t a l Runs 186 5.5.2 A c t u a l a n d C o r r e c t e d C0D:N:P R a t i o s 187 x L I S T OF FIGURES F i g u r e : Page: C h a p t e r 3.1: 3.1.1 R e a c t o r P r o f i l e 22 3.1.2 P i c t u r e o f t h e R e a c t o r s a s - S e t u p i n t h e L a b o r a t o r y 23 3.1.3 P i c t u r e Of t h e R e a c t o r s w i t h P r o t e c t i v e P l a s t i c C o v e r 23 3.1.4 A e r a t i o n S y s t e m P r o f i l e 26 C h a p t e r 4.1: 4.1.1 T o t a l COD C o n c e n t r a t i o n v s Time F o r Run 1 41 4.1.2 S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time F o r Run 1 41 4.1.3 T o t a l COD C o n c e n t r a t i o n v s Time F o r Run 2 47 4.1.4 T o t a l COD C o n c e n t r a t i o n v s Time F o r Run 4 52 4.1.5 S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time F o r Run 4 52 4.1.6 PH v s Time F o r Run 4 55 C h a p t e r 4.2: 4.2.1 T o t a l COD C o n c e n t r a t i o n v s Time F o r Run 5 64 4.2.2 S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time F o r Run 5 64 4.2.3 PH v s Time F o r Run 5 65 4.2.4 VSS/TSS R a t i o v s Time F o r Run 5 65 4.2.5 Ammonia C o n c e n t r a t i o n v s Time F o r Run 5 67 4.2.6 P h o s p h o r u s C o n c e n t r a t i o n v s Time F o r Run 5 67 4.2.7 T o t a l COD C o n c e n t r a t i o n v s Time F o r Run 6 77 x i LIST OF FIGURES ( C o n t i n u e d ) : Page F i g u r e : 4.2.8 S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time F o r Run 6. 77 4.2.9 P h o s p h o r u s C o n c e n t r a t i o n v s Time F o r Run 6 78 4.2.10 Ammonia C o n c e n t r a t i o n v s Time F o r Run 6 78 4.2.11 VSS C o n c e n t r a t i o n v s Time F o r Run 6 79 4.2.12 PH v s Time F o r Run 6 79 4.2.13 T o t a l a n d D i s s o l v e d C o p p e r C o n c e n t r a t i o n v s Time F o r Run 6 81 4.2.14 T o t a l 5 Day BOD v s Time F o r Run 7 91 4.2.15 T o t a l COD C o n c e n t r a t i o n v s Time F o r Run 7 92 4.2.16 S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time F o r Run 7 92 4.2.17 VSS C o n c e n t r a t i o n v s Time F o r Run 7 93 4.2.18 VSS/TSS R a t i o v s Time F o r Run 7 93 4.2.19 PH v s Time F o r Run 7 95 4.2.20 T o t a l a n d D i s s o l v e d C o p p e r C o n c e n t r a t i o n v s Time F o r Run 7 97 4.2.21 Ammonia C o n c e n t r a t i o n v s Time F o r Run 7 98 4.2.22 P h o s p h o r u s C o n c e n t r a t i o n v s Time F o r Run 7 98 C h a p t e r 4.3: 4.3.1 T o t a l COD C o n c e n t r a t i o n v s Time F o r Run 8 109 4.3.2 S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time F o r Run 8 109 4.3.3 PH v s Time F o r Run 8 112 4.3.4 Ammonia C o n c e n t r a t i o n v s Time F o r Run 8 113 x i i LIST OF FIGURES ( C o n t i n u e d ) : F i g u r e : Page: 4.3.5 Phosphorus C o n c e n t r a t i o n v s Time For Run 8 113 4.3.6 VSS/TSS R a t i o vs Time F o r Run 8 115 4.3.7 VSS C o n c e n t r a t i o n v s Time For Run 8 115 4.3.8 T o t a l and D i s s o l v e d Copper C o n c e n t r a t i o n vs Time For Run 8 116 4.3.9 T o t a l 5 Day BOD vs Time For Run 8 123 4.3.10 A c t u a l and Model P r e d i c t e d T o t a l BOD vs Time For Run 8 125 4.3.11 A c t u a l and Model P r e d i c t e d D i p h e n y l C o n c e n t r a t i o n Vs Time F o r Run 8 127 4.3.12 A c t u a l and Model P r e d i c t e d D i p h e n y l E t h e r C o n c e n t r a t i o n Vs Time For Run 8 127 4.3.13 T o t a l COD Vs Time For Run 9 133 4.3.14 S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time For Run 9 133 4.3.15 T o t a l and D i s s o l v e d Copper C o n c e n t r a t i o n vs Time For Run 9 136 4.3.16 Phosphorus C o n c e n t r a t i o n vs Time For Run 9 136 4.3.17 Ammonia C o n c e n t r a t i o n v s Time For Run 9 137 4.3.18 T o t a l 5 Day BOD vs Time F o r Run 9 139 4.3.19 Comparing F i r s t Order P r e d i c t e d Model And A c t u a l V a l u e Of D i p h e n y l D e g r a d a t i o n Vs Time F o r R e a c t o r 2 Of Run 9 143 4.3.20 Comparing F i r s t Order P r e d i c t e d Model And A c t u a l V a l u e Of D i p h e n y l E t h e r D e g r a d a t i o n Vs Time F o r R e a c t o r 2 Of Run 9 143 4.3.21 Comparing F i r s t Order P r e d i c t e d Model And A c t u a l V a l u e Of D i p h e n y l Methane D e g r a d a t i o n Vs Time For R e a c t o r 2 Of Run 9 144 x i i i LIST OF FIGURES ( C o n t i n u e d ) : F i g u r e : Page 4.3.22 C o m p a r i n g F i r s t O r d e r P r e d i c t e d M o d e l And A c t u a l V a l u e Of D i p h e n y l E t h e r D e g r a d a t i o n Vs Time F o r R e a c t o r 3 Of Run 9 144 C h a p t e r 4.1: 4.4.1 T o t a l a n d S u p e r n a t a n t COD C o n c e n t r a t i o n v s T ime F o r Run 10 151 4.4.2 PH v s Time F o r Run 10 154 4.4.3 VSS C o n c e n t r a t i o n v s Time F o r Run 10 154 4.4.4 P h o s p h o r u s C o n c e n t r a t i o n v s Time F o r Run 10 156 4.4.5 Ammonia C o n c e n t r a t i o n v s Time F o r Run 10 156 4.4.6 T o t a l a n d D i s s o l v e d C o p p e r C o n c e n t r a t i o n v s Time F o r Run 10 157 4.4.7 T o t a l 5 Day BOD v s Time F o r Run 10 160 4.4.8 T o t a l COD C o n c e n t r a t i o n v s Time F o r Run 11 170 4.4.9 S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time F o r Run 11 170 4.4.10 P h o s p h o r u s C o n c e n t r a t i o n v s Time F o r Run 11 172 4.4.11 Ammonia C o n c e n t r a t i o n v s Time F o r Run 11 172 4.4.12 T o t a l a n d D i s s o l v e d C o p p e r C o n c e n t r a t i o n v s Time F o r Run 11 174 4.4.13 PH v s Time F o r Run 11 175 4.4.14 T o t a l 5 Day BOD v s Time F o r Run 11 175 x i v A c k n o w l e d g m e n t s : The a u t h o r would l i k e t o thank t h o s e p e o p l e who w i t h o u t t h e i r a s s i s t a n c e t h i s t h e s i s would not be p o s s i b l e . F i r s t l y , P r o f e s s o r s A t w a t e r and M a v i n i c who p r o v i d e d a d v i c e , g u i d a n c e , t e c h n i c a l r e v i e w and most of a l l encouragement. To Corky, who always s u p p o r t e d me and u n d e r s t o o d why I always had t o be a t t h e computer on sunny Sunday a f t e r n o o n s . To Susan, P a u l a and J u f u n g who always p r o v i d e d a d v i c e and h e l p e d a n a l y z e s l u d g e samples no m a t t e r how r e v o l t i n g t h e y l o o k e d . To Dean, who always p r o v i d e d t e c h n i c a l a d v i c e and s o l u t i o n s t h a t would t u r n a problem i n t o easy s o l u t i o n s and a l s o f o r making t h o s e l o n g days i n t h e e n v i r o n m e n t a l l a b a l o t more e x c i t i n g t h e n t h e y s h o u l d have been. F i n a l l y and most of a l l , t h a n k s t o Mom, Dad, B i g , Bam and t h e w o n d e r f u l r e c e n t a d d i t i o n s t o the f a m i l y N i c k , C r a i g , Corky, Mr. Max, Mr. R i l e y and miss m u f e t t e ; who always b e l i e v e d I c o u l d succeed. xv 1 . I n t r o d u c t i o n : The C h a t t e r t o n P e t r o c h e m i c a l s i t e i s l o c a t e d a l o n g R i v e r r o a d i n D e l t a , B r i t i s h C o l u m b i a . I t s i t s o n t h e b a n k s o f t h e F r a s e r R i v e r . A p h e n o l p r o c e s s i n g p l a n t o r i g i n a l l y owned by Dow C h e m i c a l was i n p r o d u c t i o n o n t h e s i t e f r o m 1961 t o 1991. I n 1981, t h e p l a n t was s o l d t o a c o n g l o m e r a t e o f c o m p a n i e s i n c l u d i n g B.C. S u g a r . Two L a g o o n s w e r e c o n s t r u c t e d on t h e s i t e i n o r d e r t o t r e a t a n d s t o r e c o n t a m i n a t e d w a t e r , g r o u n d w a t e r a n d s l u d g e s g e n e r a t e d d u r i n g t h e p r o c e s s p l a n t ' s o p e r a t i o n s . The l a g o o n s w e r e p a r t o f t h e o n s i t e w a s t e w a t e r t r e a t m e n t p l a n t s y s t e m . The f i r s t l a g o o n was u s e d t o s t o r e and d e w a t e r w a s t e b i o m a s s f r o m t h e b i o l o g i c a l o x i d a t i o n t r e a t m e n t p l a n t . The s e c o n d was a w a s t e w a t e r e q u a l i z a t i o n l a g o o n . I t i n s u r e d a c o n s t a n t f l o w i n t o t h e t r e a t m e n t p l a n t . T h i s l a g o o n i s l o c a t e d i n t h e n o r t h w e s t c o r n e r o f t h e C h a t t e r t o n P e t r o c h e m i c a l s i t e . I t was d e s i g n e d w i t h a 0.45 m e t r e c o m p a c t e d s i l t l i n e r e x t e n d i n g a c r o s s t h e b a s e a n d up t h e i m p o u ndments. I t c o u l d h o l d up t o two m i l l i o n US G a l l o n s (7570 M 3) o f p r o c e s s w a t e r . The l a g o o n h a s a r e c t a n g u l a r s h a p e o f 55 M b y 70 M. The t o t a l d e p t h o f t h e l a g o o n i s a p p r o x i m a t e l y 3 M and t h e s l u d g e a r e a i s i n t h e o r d e r o f 3 500 M2. The l a g o o n o r i g i n a l l y r e c e i v e d p r o c e s s w a t e r a n d on 1 s i t e d r a i n a g e . On some o c c a s i o n s i t h a s b e e n r e p o r t e d t h a t i t r e c e i v e d some s l u d g e s f r o m t h e sumps a n d c a t c h b a s i n s . I n 1991, t h e C h a t t e r t o n P e t r o c h e m i c a l C o r p o r a t i o n s h u t down t h e p h e n o l p r o c e s s i n g p l a n t . Many o f t h e b u i l d i n g a n d h o l d i n g t a n k s a r e p r e s e n t l y b e i n g d i s m a n t l e d a n d d i s p o s e d o f . The s i t e i s b e i n g r e m e d i a t e d i n o r d e r t o be s o l d . The t r e a t m e n t p l a n t i s s t i l l i n o p e r a t i o n , t r e a t i n g g r o u n d w a t e r . The s e c o n d l a g o o n i s p r e s e n t l y u s e d t o s t o r e g r o u n d w a t e r when t h e p l a n t i s n o t i n o p e r a t i o n o r n o t d i s c h a r g i n g e f f l u e n t . D u r i n g t h e t h i r t y y e a r s o f o p e r a t i o n o f t h e t r e a t m e n t s y s t e m , t h e r e h a s b e e n a n a c c u m u l a t i o n o f s l u d g e a t t h e b o t t o m o f t h e s e c o n d l a g o o n . I t h a s b e e n f o u n d t o c o n t a i n l a r g e c o n c e n t r a t i o n s o f o r g a n i c c h e m i c a l s a n d h e a v y m e t a l s . I n 1994, G o l d e r A s s o c i a t e s I n c . i n v e s t i g a t e d t h e l a g o o n a n d d e t e r m i n e d t h e v o l u m e o f s l u d g e a t t h e b o t t o m o f t h e l a g o o n t o be a p p r o x i m a t e l y 1 750 M3, b a s e d on a n a v e r a g e s l u d g e d e p t h o f 0.5 M a n d s u r f a c e a r e a o f a p p r o x i m a t e l y 3 500 M2. A n a l y t i c a l t e s t i n g o f t h e s l u d g e was p e r f o r m e d b y G o l d e r a n d h a d p r e v i o u s l y b e e n t e s t e d b y t h e C h a t t e r t o n P e t r o c h e m i c a l C o r p o r a t i o n . T a b l e 1.1 shows t h e e x t r e m e c o n c e n t r a t i o n a n d d i v e r s i t y o f o r g a n i c c h e m i c a l s a n d h e a v y m e t a l s c o n t a i n e d i n t h e s l u d g e . The C h a t t e r t o n r e p o r t i n 1992 a t t r i b u t e d t h e h i g h BTX ( B e n z e n e , T o l u e n e a nd X y l e n e ) c o n c e n t r a t i o n s i n t h e s l u d g e t o t h e h e a v i e r 2 t h a n water o r g a n i c s such as p h e n o l , d i p h e n y l , methyl d i p h e n y l and d i p h e n y l o x i d e , f o r m i n g h e a v i e r t h a n water o i l y P arameter: G o l d e r Study (1994)*: C h a t t e r t o n ( 1 9 9 2 ) * * : M o i s t u r e C o n t e n t ( % ) : Range Mean S t a n d a r d D e v i a t i o n 73.3 - 88.4 84 6 89.9 Copper (mg/Kg): Range Mean S t a n d a r d D e v i a t i o n 4 500 - 58 400 19 700 19 900 9300 C o b a l t (mg/Kg): Range Mean S t a n d a r d D e v i a t i o n 3 700 - 12 100 6 610 2 980 6900 Phenol (mg/Kg): Mean S t a n d a r d D e v i a t i o n 4 630 2 060 3700 BTX Mean (mg/Kg): Benzene Toluene X y l e n e 13 000 92 000 18 500 Table 1.1 : Comparison Sludge C h a r a c t e r i s t i c s . * Golder Associates Inc. (1994) ** Chatterton Petrochemical Corporation (1992). g l o b u l e s w h i c h would t r a p t h e BTX. I t was o b s e r v e d t h a t an i r i d e s c e n t s l i c k f l o a t e d t o t h e s u r f a c e when t h e bottom o f t h e lago o n was s t i r r e d . T h e r e f o r e , t h e r e was l i t t l e chance f o r t h e o r g a n i c s t o escape t h r o u g h v o l a t i l i z a t i o n . G o l d e r o b t a i n e d f i v e c o r e samples o f t h e lag o o n u s i n g a boat dragged a c r o s s t h e w a t e r / s l u d g e s u r f a c e . The samples were o b t a i n e d u s i n g a hand c o r i n g d e v i c e . 3 The v a r i a b i l i t y o f t h e r e s u l t s o f t h e s l u d g e show the non u n i f o r m i t y o f t h e m i x t u r e . There e x i s t s many d i s t i n c t p o c k e t s i n t h e s l u d g e w i t h d i f f e r e n t c o n c e n t r a t i o n s o f o r g a n i c s and m e t a l s . Each sample i s independent and t h e s t a n d a r d d e v i a t i o n s h o u l d not be l o o k e d on i n terms of a c c u r a c y , but i n terms o f showing t h e d i v e r s i t y o f t h e s l u d g e . The s l u d g e i s c o n s i d e r e d a S p e c i a l Waste under B r i t i s h Columbia e n v i r o n m e n t a l r e g u l a t i o n s due t o t h e h i g h o r g a n i c s and m e t a l c o n t e n t . I t cannot be l e g a l l y d i s p o s e d i n B r i t i s h C olumbia. T h e r e f o r e , a f i n a l d i s p o s a l s i t e would have t o be found i n t h e U n i t e d S t a t e s . T h i s would i n c u r h i g h t r a n s p o r t a t i o n and t i p p i n g f e e s i n t h e neighbourhood of 1000 d o l l a r s a tonne. In March of 1994, a p r o j e c t p r o p o s a l was p r e s e n t e d t o P r o f e s s o r A t w a t e r o f t h e C i v i l E n g i n e e r i n g Department of t h e U n i v e r s i t y o f B r i t i s h Columbia. I t proposed l o o k i n g a t t h e p o s s i b l e a e r o b i c b i o l o g i c a l t r e a t m e n t o f t h e s l u d g e . The hope was t o degrade the o r g a n i c c o n t e n t o f t h e s l u d g e and e n a b l e t h e f i n a l p r o d u c t t o be d i s p o s e d o f i n an i n d u s t r i a l l a n d f i l l and t h e e f f l u e n t r e l e a s e d t o t h e r i v e r . The f i r s t s t e p was t o p e r f o r m p r e l i m i n a r y a n a l y s i s of t h e s l u d g e i n o r d e r t o c o n f i r m t h e f i n d i n g s o f t h e G o l d e r r e p o r t . F i v e grab samples were t a k e n , each c o n s i s t i n g o f 100 ml. The samples were t a k e n from t h e n o r t h w e s t end o f t h e l a g o o n . The water l e v e l was 4 low so i t was p o s s i b l e t o go 1 meter i n t o t h e la g o o n . The samples were t a k e n a t v a r i o u s p l a c e s a l o n g t h e n o r t h west edge o f t h e lag o o n . The f o l l o w i n g t a b l e shows t h e p r e l i m i n a r y r e s u l t s o f t h e a n a l y t i c a l i n v e s t i g a t i o n o f t h e s l u d g e . Parameter: U.B.C. I n i t i a l Sludge A n a l y s i s M o i s t u r e Content (%): 96.9 COD (mg/L): 239 959 Copper C o n c e n t r a t i o n (mg/Kg): 536 C o b a l t C o n c e n t r a t i o n (mg/Kg): 276 Table 1.2: I n i t i a l inves t iga t ion of the Chatterton Petrochemical sludge T a b l e 1.2 shows t h a t t h e a n a l y t i c a l r e s u l t s o b t a i n e d d i f f e r e d c o n s i d e r a b l y from t h o s e o f b o t h G o l d e r and t h e i n i t i a l C h a t t e r t o n P e t r o c h e m i c a l s t u d y . T h i s can p a r t i a l l y be e x p l a i n e d due t o t h e sa m p l i n g d i f f e r e n c e s . The e a r l i e r s t u d i e s used a boat and a c o r e auger t o r e t r i e v e samples from t h e m i d d l e o f t h e lag o o n . However, t h e U.B.C. s t u d y used a s h o v e l and samples were t a k e n v e r y near t h e s i d e s o f t h e lag o o n . I t a l s o f u r t h e r reemphasises t h a t t h e c o m p o s i t i o n o f t h e s l u d g e i s q u i t e v a r i a b l e . The a n a l y s i s gave a p r e l i m i n a r y i n d i c a t i o n s o f t h e Chemical Oxygen Demand o f t h e m i x t u r e . I t ranged from 180 000 t o 260 000 mg/L. The waste was a h i g h s t r e n g t h mixed waste and i t ' s p o t e n t i a l d e g r a d a t i o n would be hampered by t h e h i g h c o n c e n t r a t i o n o f b o t h 5 c o p p e r a n d c o b a l t . N o t h i n g p r e s e n t i n t h e l i t e r a t u r e s e a r c h i n d i c a t e d t h a t s u c h a t r e a t m e n t was p o s s i b l e . 6 2 . L i t e r a t u r e R e v i e w : The l i t e r a t u r e r e v i e w i s g e n e r a l l y u s e d t o p r e s e n t a n a c c o u n t o f b a c k g r o u n d r e s e a r c h w h i c h h a s b e e n p e r f o r m e d r e l a t i n g t o t h e s t u d y i n q u e s t i o n . The p r o j e c t t h e n g o e s on t o a d d t o t h e b o d y o f k n o w l e d g e i n t h a t p a r t i c u l a r a r e a . I n t h e c a s e o f t h i s r e s e a r c h , i t was n o t p o s s i b l e t o l o c a t e d a n y i n v e s t i g a t i o n w h i c h h a d d e a l t w i t h a r e m o t e l y s i m i l a r w a s t e . The r a n g e o f t h e T o t a l COD, m e t a l s and s p e c i f i c t a r g e t o r g a n i c compounds a r e s i g n i f i c a n t l y h i g h e r t h a n a n y s t u d y p r e s e n t e d i n t h e l i t e r a t u r e . S i n c e no d i r e c t l y r e l a t e d p r e v i o u s r e s e a r c h c a n be p r e s e n t e d , t h e l i t e r a t u r e r e v i e w i s c omposed o f a b l u e p r i n t o f t h e o p t i o n s a v a i l a b l e when t r e a t i n g a h a z a r d o u s w a s t e a n d some o f t h e h i s t o r y a n d t h e o r y b e h i n d t h e p r o c e s s e s d e m o n s t r a t e d i n t h i s s t u d y . When f a c e d w i t h t h e c l e a n up o f a c o n t a m i n a t e d i n d u s t r i a l s i t e many r e m e d i a t i o n o p t i o n s a r e a v a i l a b l e . T h e y a r e most commonly c o n s i d e r e d a s : p h y s i c a l , c h e m i c a l , t h e r m a l a n d b i o l o g i c a l a p p r o a c h e s ( P r i n c e 1 9 9 3 ) . P h y s i c a l s o l u t i o n s s i m p l y t r a n s f e r t h e c o n t a m i n a t e d m a t e r i a l f r o m one medium t o a n o t h e r w i t h o u t p r o v i d i n g a p e r m a n e n t s o l u t i o n . C h e m i c a l t r e a t m e n t u s u a l l y e x p l o i t s a c h e m i c a l p r o p e r t y o f t h e w a s t e s u c h a s a c i d i t y a n d p r e c i p i t a t i o n p o t e n t i a l . O f t e n t h i s p r o c e d u r e r e s u l t s i n t o x i c b y p r o d u c t s a n d i t u s u a l l y i n c r e a s e s t h e t o t a l v o l u m e o f t h e w a s t e by d i l u t i o n . The c o n t a m i n a n t s a r e 7 n o t e l i m i n a t e d b u t a r e s i m p l y e n t r a p p e d w i t h i n a m a t r i x . T h e r m a l t e c h n i q u e s s u c h a s i n c i n e r a t i o n a r e e f f e c t i v e b u t a r e o f t e n q u i t e e x p e n s i v e when d e a l i n g w i t h l a r g e amount o f w a s t e m a t e r i a l ( P r i n c e 1 9 9 3 ) . B i o d e g r a d a t i o n i s d e f i n e d a s t h e b r e a k down o f o r g a n i c compounds by m i c r o o r g a n i s m s . The d e g r e e o f a l t e r a t i o n v a r i e s a n d i s e i t h e r t y p i c a l l y d e f i n e d a s m i n e r a l i z a t i o n o r b i o t r a n s f o r m a t i o n ( P r i n c e 1 9 9 3 ) . M i n e r a l i z a t i o n i s t h e c o m p l e t e b r e a k d o w n o f t h e o r i g i n a l o r g a n i c m a t t e r t o c a r b o n d i o x i d e a n d b i o m a s s ( A u t r y 1 9 9 2 ) . W h i l e b i o t r a n s f o r m a t i o n i s t h e p a r t i a l d e g r a d a t i o n o f a p a r e n t compound t o one o r more d a u g h t e r compounds w h i c h may o r may n o t be l e s s t o x i c t h a n t h e o r i g i n a l compound ( P r i n c e 1 9 9 3 ) . B i o r e m e d i a t i o n h a s b e e n g a i n i n g p o p u l a r i t y r e c e n t l y due t o i t ' s h i g h p u b l i c a c c e p t a n c e , r e l a t i v e t o o t h e r a l t e r n a t i v e s s u c h a s i n c i n e r a t i o n . The t e c h n i q u e a l s o p r o v i d e s p o t e n t i a l s a v i n g s o f t i m e a n d money. B i o r e m e d i a t i o n p r o v i d e s t h e o p p o r t u n i t y t o t r e a t on s i t e , t h u s s a v i n g t r a n s p o r t a t i o n c o s t s a n d l i a b i l i t i e s ( J e s p e r s e n 1 9 9 3 ) . I t a l s o p r o v i d e s a p e r m a n e n t e l i m i n a t i o n o f t h e w a s t e , r e d u c i n g l o n g t e r m l i a b i l i t y r i s k s ( P r i n c e 1 9 9 3 ) . T h e r e a r e many b i o r e m e d i a t i o n t r e a t m e n t t e c h n o l o g i e s w h i c h i n c l u d e : l a n d t r e a t m e n t , b i o v e n t i n g a n d b i o r e a c t o r t r e a t m e n t . B i o r e a c t o r t r e a t m e n t i s t h e p h y s i c a l movement o f t h e w a s t e i n t o a r e a c t o r . T h i s t r e a t m e n t p r o c e s s i n c r e a s e s t h e s e p a r a t i o n o f many 8 c o n t a m i n a n t s f r o m s o i l a n d r e s u l t s i n a f a s t , e f f e c t i v e d e s t r u c t i o n o f t h e c o n t a m i n a n t s . The d r a w b a c k s a r e t h a t t h e w a s t e must be p h y s i c a l l y moved a n d t h a t t r e a t e d s o l i d s must be d e w a t e r e d . T h u s , h i g h m o b i l i z a t i o n a n d d e m o b i l i z a t i o n c o s t s c a n be i n c u r r e d f o r s m a l l p r o j e c t s ( J e s p e r s e n 1 9 9 3 ) . M o s t w a s t e s w i l l e v e n t u a l l y b i o d e g r a d e n a t u r a l l y u n l e s s t h e y a r e e x p o s e d t o e x t r e m e pH o r t o x i c i t y . T h i s n a t u r a l d e g r a d a t i o n may be t o o s l o w t o be o f v a l u e . I n c o n t r o l l e d b i o d e g r a d a t i o n , t h e g r o w t h c o n d i t i o n s a r e p r o v i d e d t o o p t i m i z e t h e p r o c e s s ( B r a d f o r d 1 9 9 1 ) . The p r o c e s s u t i l i z e s n a t u r a l l y o c c u r r i n g b a c t e r i a t o d e g r a d e t h e w a s t e . I n a r e c e n t s t u d y , a c c l i m a t i s e d b a c t e r i a w e r e a d d e d t o t h e s i t e o f a p e t r o l e u m c o n t a m i n a t e d s o i l ( A u t r y 1 9 9 1 ) . The b i o a u g m e n t a t i o n d i d n o t s i g n i f i c a n t l y a l t e r t h e b i o d e g r a d a t i o n r a t e s f o r t h e compounds. T h i s i m p l i e s t h a t b a c t e r i a c a p a b l e o f h y d r o c a r b o n d e g r a d a t i o n a r e i n t h e s o i l f r o m t h i s s i t e a n d i n s u f f i c i e n t numbers t o c a r r y o u t e f f e c t i v e d e g r a d a t i o n o f t h e w a s t e . O t h e r a u t h o r s h a v e i n d i c a t e d t h a t t h e u s e o f n a t u r a l l y o c c u r r i n g b a c t e r i a a r e p r e f e r r e d due t o t h e r e g u l a t o r y d i f f i c u l t i e s i n r e l e a s i n g g e n e t i c a l l y e n g i n e e r e d o r g a n i s m s i n t h e e n v i r o n m e n t . None o f t h e o v e r 100 EPA s i t e i n v o l v e d i n b i o r e m e d i a t i o n c u r r e n t l y u s e s g e n e t i c a l l y e n g i n e e r e d m i c r o o r g a n i s m s ( P r i n c e 1 9 9 3 ) . 9 The s u c c e s s o f b i o r e m e d i a t i o n r e l i e s o n t h e c o n t r o l l i n g o f t h e f o l l o w i n g r a t e l i m i t i n g f a c t o r s : 1) The t o x i c i t y o f t h e w a s t e i t s e l f : The p r e s e n c e o f a compound i n l a r g e c o n c e n t r a t i o n c a n l e a d t o t h e p o i s o n i n g o f t h e s y s t e m a n d t h e c o m p l e t e i n h i b i t i o n o f b i o a c t i v i t y ( R e b h u n 1 9 8 8 ) . 2) The t y p e a n d c o m p l e x i t y o f w a s t e i t s e l f , b e c a u s e b a c t e r i a b r e a k down d i f f e r e n t w a s t e s a t d i f f e r e n t r a t e s ( P i t t e r 1 9 7 5 ) : The e a s e o f b i o d e g r a d a t i o n o f compounds d e c r e a s e s f o r h i g h l y b r a n c h e d compounds ( P r i n c e 1 9 9 3 ) . As a g e n e r a l r u l e , t h e more c o m p l e x t h e compound, t h e more d i f f i c u l t i t i s t o d e g r a d e ( A u t r y 1 9 9 1 ) . 3) The c o n c e n t r a t i o n o f t h e w a s t e c o m p o n e n t s : P h e n o l c o n c e n t r a t i o n s o v e r 1500 mg/L and a s l o w a s 200 mg/L h a v e b e e n r e p o r t e d t o i n t e r f e r e w i t h t h e t r e a t m e n t p r o c e s s ( V i p u l a n a n d a n 1993; Rebhun 1988; R o z i c h 1984; P a r k e r 1 9 9 4 ) . H i g h c o n c e n t r a t i o n s o f h e a v y m e t a l s , t o x i c o r g a n i c compounds a n d o r i n o r g a n i c s a l t s c a n i n h i b i t m i c r o b i a l g r o w t h ( P r i n c e 1 9 9 3 ) . Many compounds a r e i n h i b i t o r y t o t h e i r own d e g r a d a t i o n a t h i g h c o n c e n t r a t i o n s ( G r a d y 1990) . 4) The t e m p e r a t u r e , s i n c e r e a c t i o n r a t e s t e n d t o be s l o w b e l o w 18 d e g r e e s C e l s i u s ( B r a d f o r d 1 9 9 1 ) : most s t u d i e s o n m i x e d h a z a r d o u s w a s t e d e g r a d a t i o n w e r e c o n d u c t e d a r o u n d room t e m p e r a t u r e . T w e n t y t o t w e n t y s i x d e g r e e s C e l s i u s i s t h e p r e f e r r e d t e m p e r a t u r e r a n g e 10 f o r optimum d e g r a d a t i o n ( B e l t r a m e 1979; B e l t r a m e 1980). Temperature a f f e c t s t h e b i o d e g r a d a t i o n a p p l i c a t i o n i n two ways. Bo t h t h e s p e c i f i c growth r a t e o f t h e d e g r a d i n g organisms and t h e a c t i v i t y o f t h e enzymes r e s p o n s i b l e f o r contaminant o x i d a t i o n a r e l a r g e l y t e m p e r a t u r e dependent ( A u t r y 1992). 5) The degree o f a g i t a t i o n : Chemical Oxygen Demand k i n e t i c s i n a b a t c h r e a c t o r have been showed t o be a f f e c t e d by t h e degree o f a g i t a t i o n and i m p e l l e r submergence. I n c r e a s e d a g i t a t i o n i n c r e a s e s t h e s u r f a c e a r e a f o r mass t r a n s f e r between t h e b u l k l i q u i d and t h e b i o l o g i c a l c e l l s and from t h e gas phase t o t h e b u l k l i q u i d . A g i t a t i o n a l s o improves t h e performance o f t h e r e a c t o r by d i s s i p a t i n g e x c e s s heat and gaseous i n h i b i t o r s . However, e x c e s s a g i t a t i o n has been shown t o p h y s i c a l l y damage c e l l s and reduce e f f i c i e n c y (Deepak 1994). 6) A c c l i m a t i o n o f m i c r o o r g a n i s m s t o a contaminant can enhance t h e e x t e n t and t h e r a t e o f d e g r a d a t i o n : Many s t u d i e s have shown t h a t t h e d e g r a d a t i o n r a t e o f compounds s i g n i f i c a n t l y i n c r e a s e t h r o u g h exposure o f t h e b a c t e r i a t o t h e s u b s t a n c e . An o r i g i n a l m i c r o b i a l c u l t u r e was o n l y a b l e t o reduce t h e T o t a l BOD o f a benzene waste by 49%. However, th e t h i r d s u b c u l t u r e degraded t h e compound t o below t h e d e t e c t i o n l i m i t o f Gas Chromatography and t o a n e g l i g i b l e T o t a l BOD c o n c e n t r a t i o n . ( P a t t e r s o n 1981; Kinannon 1983; Tabak 1981). A c c l i m a t i o n n o r m a l l y o c c u r s when b a c t e r i a a r e exposed t o t h e waste. B a c t e r i a t h a t c o n t a i n enzymes c a p a b l e o f 11 b r e a k i n g down t h e s p e c i f i c w a s t e r e p r o d u c e f a s t e r t h a n t h e o t h e r b a c t e r i a a n d t h e p r e s e n c e o f t h e enzyme c o n t a i n i n g b a c t e r i a s p e e d s up d e g r a d a t i o n ( B r a n d f o r d 1 9 9 1 ) . Two t o f i v e f o l d i n c r e a s e s i n t h e a v e r a g e d e g r a d a t i o n r a t e s h a v e b e e n r e p o r t e d a f t e r o n l y t h e s e c o n d e x p o s u r e i n a b a t c h r e a c t o r f o r some w a s t e s ( L e w a n d o w s k i 1 9 9 0 ) . On t h e o t h e r h a n d , some compounds l i k e b e n z o a t e s , show no b e n e f i t s o f a c c l i m a t i o n when m o n i t o r e d . However, t h e a d d i t i o n o f a n o t h e r c a r b o n s o u r c e s u c h a s g l u c o s e i n c r e a s e d t h e r a t e a n d t h e t o t a l amount d e g r a d e d . ( H a l l e r 1978) 7) The r a t e o f d e s o r p t i o n f r o m t h e c o n t a m i n a t e d m e d i a ( B r a d f o r d 1 9 9 1 ) : I n many c a s e s t h e c o n t a m i n a n t s may n o t be a v a i l a b l e due t o c o n t a m i n a n t h y d r o p h o b i c ! t y , s o r p t i o n o n t o t h e s o i l c o l l o i d , v o l a t i l i z a t i o n p o t e n t i a l o r d i s s o l u t i o n i n t o s o i l o r g a n i c m a t t e r ( A u t r y 1 9 9 2 ) . The r a t e i s s l o w e d b y t h e s o l u b i l i t y o f t h e c o n t a m i n a n t i n w a t e r ( S m i t h 1 9 7 9 ) . 8) The p r e s e n c e o f n u t r i e n t s a n d m i c r o n u t r i e n t s : I t i s e s s e n t i a l t h a t b o t h n i t r o g e n a n d p h o s p h o r u s be p r e s e n t i n o r d e r f o r d e g r a d a t i o n t o t a k e p l a c e . The c a r b o n : n i t r o g e n : p h o s p h o r u s r a t i o i s w a s t e s p e c i f i c . The g e n e r a l a c c e p t e d C:N:P r a t i o f o r m i c r o o r g a n i s m g r o w t h d e g r a d i n g sewage i s 100:5:1 ( M e t c a l f 1 9 9 3 ) . However, a s t h e c o m p o s i t i o n o f t h e w a s t e c h a n g e s , s o do t h e n u t r i e n t s r e q u i r e d f o r i t ' s c o m p l e t e b r e a k d o w n . I n s t u d i e s p e r f o r m e d w i t h l o w c o n c e n t r a t i o n p h e n o l i c w a s t e s , t h e p r o p o s e d r a t i o i s 1 0 0 : 1 0 : 1 . ( B e l t r a m e 1979, 1 9 8 0 ) . S u l f u r a n d t r a c e 12 n u t r i e n t s (K, Mg, F e , Na, Co, Zn, Mo, Cu a n d Mn) a r e a l s o r e q u i r e d ( P r i n c e 1 9 9 3 ) . 9) The o p t i m a l pH f o r g r o w t h l i e s b e t w e e n 6.5 a n d 7.5 ( J e s p e r s e n 1 9 9 3 ) . However, i t s h o u l d g e n e r a l l y be m a i n t a i n e d b e t w e e n 5 a n d 9 ( B r a d f o r d 1 9 9 1 ) . The a e r o b i c d e g r a d a t i o n o f a w a s t e i s a f o u r t h o r d e r r e a c t i o n w h i c h c a n be d e s c r i b e d a s f o l l o w s : WDR=KCwCoCnCp ( B r a d f o r d 1990) Where: WDR i s t h e r a t e o f w a s t e d e s t r u c t i o n Cw i s t h e c o n c e n t r a t i o n o f w a s t e Co i s t h e c o n c e n t r a t i o n o f o x y g e n Cp, Cn a r e t h e c o n c e n t r a t i o n o f n u t r i e n t s ( n i t r o g e n a n d p h o s p h o r u s ) I n most c a s e s , t h e p r o c e s s c a n r e d u c e d t o a p s e u d o f i r s t o r d e r r e a c t i o n . T h i s i s a c c o m p l i s h e d b y i n s u r i n g t h a t t h e c o n c e n t r a t i o n s o f o x y g e n a n d n u t r i e n t s i n t h e r e a c t o r a r e s u p p l i e d t o meet t h e n e e d s o f t h e b a c t e r i a a n d i n s u r i n g t h a t a g i t a t i o n i s h i g h e n o u g h t h a t t h e r e a r e no m i c r o n u t r i e n t d e f i c i e n c i e s p r e s e n t i n t h e s y s t e m . The e q u a t i o n c a n t h e n m o d i f i e d a s f o l l o w s ( B r a d f o r d 1 9 9 1 ) : WDR=KCw T h e r e f o r e , t h e w a s t e r e d u c t i o n r a t e i s s i m p l y a f u n c t i o n o f t h e 13 c o n c e n t r a t i o n o f t h e waste. The system s h o u l d be d e s i g n e d t o maximize t h e k i n e t i c r e a c t i o n r a t e ( B r a d f o r d 1991). The f i r s t approach when d e a l i n g w i t h a waste i s t o p e r f o r m b a t c h l a b s c a l e s t u d i e s , t o d e t e r m i n e t h e p o s s i b l e e f f e c t i v e n e s s of b i o r e a c t o r t r e a t m e n t . There a r e s e v e r a l t y p e s of b i o r e a c t o r s t h a t can be used from t h e s i m p l e beaker t o t h e complex Truex r e a c t o r . The Truex r e a c t o r has been s p e c i f i c a l l y d e s i g n e d f o r m o n i t o r i n g p r o c e s s dynamics d u r i n g t h e b i o d e g r a d a t i o n o f v o l a t i l e o r g a n i c s (Truex 1994). T r e a t a b i l i t y s t u d i e s a r e r e l a t i v e l y i n e x p e n s i v e , a l l o w o p t i m i z a t i o n o f o p e r a t i n g c o n d i t i o n s and p r o v i d e t h e d e s i g n c r i t e r i a f o r s c a l e up ( B r a d f o r d 1991). However, Grady warns t h a t l a b - s c a l e r e a c t o r s t e n d t o o v e r p r e d i c t t h e removal t h a t w i l l o c c u r a t t h e p i l o t and f u l l s c a l e o f t h e same t y p e of r u n w i t h s i m i l a r l o a d i n g s . The r e a s o n f o r t h i s t h a t a i r s t r i p p i n g i s more p r e v a l e n t as a removal mechanism i n a l a b - s c a l e a e r a t e d r e a c t o r (Grady 1990). A l s o , i t i s r e p o r t e d t h a t e x c e s s i v e a e r a t i o n r a t e s i n c r e a s e c o s t and heat l o s s and t e n d s t o d e s t r o y m i c r o o r g a n i s m s and hence lower MLVSS. H i g h c o n c e n t r a t i o n s o f d i s s o l v e d oxygen t e n d t o change t h e p o p u l a t i o n dynamics w h i c h w i l l not be optimum under heavy contaminant l o a d i n g (Capps 1995). Many s t u d i e s have f o c u s e d on t h e removal r a t e s o f o r g a n i c p r i o r i t y p o l l u t a n t compounds i n t h e l a b s c a l e environment. Each s t u d y n o t e d t h a t many compounds r e s i s t a n t t o d e g r a d a t i o n were e a s i l y degraded u s i n g an a c c l i m a t i s e d c u l t u r e o f m i c r o o r g a n i s m s 14 ( P a t e r s s o n 1981; Tabak 1981; Kincannon 1983). These s t u d i e s f o c u s s e d on t h e d e g r a d a t i o n o f s i n g l e pure compounds i n c o n c e n t r a t i o n g e n e r a l l y l e s s t h a n 10 mg/L. A mixed waste w i t h many d i f f e r e n t c h e m i c a l c o n s t i t u e n t s can behave q u i t e d i f f e r e n t l y . I n i t i a l t e s t i n g must be done on t h e waste t o d e t e r m i n e i t ' s degree of d e g r a d a b i l i t y . The f i r s t s t e p i n d e t e r m i n i n g t h e p o t e n t i a l s u c c e s s o f t r e a t m e n t i s t h e e x a m i n a t i o n o f t h e COD/BOD r a t i o . Below a r a t i o o f 2.5 t h e waste s h o u l d be r e a d i l y b i o d e g r a d a b l e i n an a c t i v a t e d s l u d g e p r o c e s s . A r a t i o above 2.5 i n d i c a t e s t h a t t h e r e a r e m o l e c u l e s w h i c h a r e r e f r a c t o r y t o d e g r a d a t i o n ; but w h i c h might be degraded under a l o n g e r r e s i d e n c e t i m e (Capps 1995). The i n i t i a l c o n c e n t r a t i o n o f t h e waste i s c r i t i c a l i n t h e s u c c e s s o f t h e r e m e d i a t i o n . H i g h c o n c e n t r a t i o n o f such c h e m i c a l s as phenol have been shown t o i n d u c e a l a g phase i n t h e growth of t h e m i c r o o r g a n i s m s . Some c o n c e n t r a t i o n s o f phenol have c r e a t e d an i n h i b i t o r y s u b s t r a t e f o r growth. The r a t e o f b i o d e g r a d a t i o n i s dependent on t h e i n i t i a l c o n c e n t r a t i o n o f t h e waste ( V i p u l a n a n d a n 1993). As t h e c o n c e n t r a t i o n i n c r e a s e s , t h e number and s p e c i e s o f m i c r o o r g a n i s m s changes. Too h i g h a c o n c e n t r a t i o n l e a d s t o a l e s s optimum mix of organisms (Tokuz 1991). I t i s u n l i k e l y t h a t b a c t e r i a w i l l have t o be added t o t h e waste s i n c e an a c t i v e c u l t u r e s h o u l d a l r e a d y be p r e s e n t ( A u t r y 1991). Many r e s e a r c h e r s , i n t h e p a s t , have assumed t h a t s e q u e n t i a l 15 s u b s t r a t e r e m o v a l w i l l o c c u r i n a m u l t i c o m p o n e n t m e d i a , w i t h t h e e a s i l y d e g r a d a b l e compounds b e i n g u s e d f i r s t , f o l l o w e d b y s u b s t r a t e p r o g r e s s i v e l y more d i f f i c u l t t o u s e . I n a m i x e d w a s t e s y s t e m , s u b s t r a t e t e n d s t o be u s e d s i m u l t a n e o u s l y , a l t h o u g h a t d i f f e r e n t r a t e s . S i m u l t a n e o u s s u b s t r a t e r e m o v a l p r e v a i l s a s t h e SRT o f t h e s y s t e m i s i n c r e a s e d , g i v i n g s l o w e r s p e c i f i c g r o w t h r a t e s . However, t h e r e a r e e x c e p t i o n s a s some compounds i n t e r f e r e w i t h e a c h o t h e r ' s r e m o v a l due t o t h e p a t h w a y s r e q u i r e d t o a t t a c k them ( G r a d y 1 9 8 9 ) . G r a d y f u r t h e r p r o p o s e s t h a t s i n g l e s u b s t r a t e r e m o v a l k i n e t i c p a r a m e t e r m o d e l s c a n be u s e d t o d e s c r i b e t h e r e m o v a l o f a s i n g l e compound i n a m i x t u r e . Many m o d e l s h a v e b e e n p r o p o s e d f o r t h e d e g r a d a t i o n r a t e s o f s p e c i f i c o r g a n i c compounds ( K i m 1979; R o z i c h 1 9 8 4 ) . T h e s e m o d e l s w i l l t e n d t o be more c o n s e r v a t i v e a n d o v e r p r e d i c t t h e e f f l u e n t c o n c e n t r a t i o n p r e s e n t i n a m i x e d w a s t e ( G r a d y 1 9 8 9 ) . S t u d i e s h a v e b e e n done w i t h PCP, s h o w i n g t h a t t h e d e g r a d a t i o n r a t e i n c r e a s e s i n t h e p r e s e n c e o f o t h e r c o n t a m i n a n t s . A m i x e d w a s t e s y s t e m w i l l h a v e a more d i v e r s e m i c r o b i a l p o p u l a t i o n . One i m p o r t a n t component o f t h e l a b s c a l e r e s e a r c h s h o u l d be t h e e s t a b l i s h m e n t o f a c o n t r o l t o d e t e r m i n e t h e f r a c t i o n o f o r g a n i c s w h i c h a r e b e i n g a i r s t r i p p e d ( P a r k e r 1 9 9 4 ) . C o p p e r s u l f a t e c a n be u s e d i n t h i s r e a c t o r a s a b i o c i d e t o p r e v e n t t h e g r o w t h o f m i c r o o r g a n i s m s ( L e w a n d o w s k i 1 9 9 0 ) . I f c o p p e r s u l f a t e i s u s e d a s a b i o c i d e , t h e s y s t e m must be c l o s e l y m o n i t o r e d b e c a u s e m i c r o b i a l g r o w t h h a s b e e n d o c u m e n t e d i n s y s t e m s w i t h c o p p e r s u l f a t e l e v e l s 16 up t o 20 mg/L. As t h e d e g r a d a t i o n o f t h e waste p r o c e e d s , c a r b o n d i o x i d e w i l l be produced and lower t h e pH t h r o u g h t h e f o r m a t i o n o f c a r b o n i c a c i d . The d i m i n i s h i n g pH d u r i n g e x p e r i m e n t s seems t o i n f l u e n c e t h e p a t t e r n o f t h e growth c u r v e s . M i c r o b i a l growth i n p h e n o l i c waste d e g r a d a t i o n runs was slowed due t o t h e i n h i b i t i o n o f t h e biomass caused by t h e v e r y low pH reached i n t h e r e a c t o r . The d e c r e a s i n g pH was s t a b i l i s e d when t h e compounds were e x h a u s t e d ( L a l l a i 1989) . T h i s i s not u s u a l l y e x p e r i e n c e d a t t h e f u l l s c a l e , s i n c e t h e a c c u m u l a t i o n o f a c i d i n t e r m e d i a t e s i s n e g l i g i b l e . (Chuboda 1990) Another problem w i t h a h i g h o r g a n i c l o a d i n g r a t e , e s p e c i a l l y h y d r o c a r b o n , i s t h a t b i o f l o c s e t t l e a b i 1 i t y i s i m p a i r e d . Some have h y p o t h e s i s e d t h a t t h e b i o f l o c becomes c o a t e d by a h y d r o p h o b i c l a y e r , w h i c h a f f e c t s i t ' s p h y s i c a l p r o p e r t y and b i o c h e m i c a l performance (Rebhun 1988). In t h e c o u r s e o f t r e a t m e n t , a b s o r p t i o n by t h e m i c r o b i a l biomass i s an i m p o r t a n t p r o c e s s i n t h e removal o f hazardous o r g a n i c p o l l u t a n t s i n b i o l o g i c a l t r e a t m e n t systems. The danger i s t h a t t h e p r o c e s s i s f u l l y r e v e r s i b l e and d e s o r p t i o n o f t h e p o l l u t a n t s may o c c u r f u r t h e r down t h e road ( B e l l 1987). A l s o , i t has been shown t h a t t h i s p r o c e s s g r e a t l y a f f e c t s t h e s e t t l e a b i l i t y o f t h e b i o f l o c ( S t e n s t r o m 1989). I n t h e d e g r a d a t i o n o f a mixed waste, i t i s p o s s i b l e t h a t one compound may need a n o t h e r compound t o be p r e s e n t i n o r d e r t o be degraded. T h i s i s p r o b l e m a t i c because b o t h compounds must be p r e s e n t i n t h e r i g h t r e l a t i v e c o n c e n t r a t i o n s t o each o t h e r i n t h e waste mix. Many compounds can o n l y be degraded when t h e o t h e r compounds in d u c e enzymes t h a t a c t g r a t u i t o u s l y on t h e p o l l u t a n t ( N e u f e l d 1979). To o p t i m i z e t h e d e g r a d a t i o n p r o c e s s , a s e q u e n c i n g b a t c h p r o c e s s i s o f t e n used. Not o n l y a r e t h e b a c t e r i a a b l e t o degrade t h e waste a t a f a s t e r r a t e ( s i n c e t h e y have b e i n g a c c l i m a t i s e d t o t h e waste m i x t u r e ) but biomass w i t h an i n c r e a s e d s l u d g e age has been shown t o b i o d e g r a d e r e f r a c t o r y o r g a n i c s f a s t e r t h a n a low s l u d g e age biomass (Capps 1995). The i n i t i a l l a g phase i s reduced as t h e b a c t e r i a a r e r e s i s t a n t t o t h e shock l o a d i n g e f f e c t s o f t h e waste a d d i t i o n . Thus, a h i g h e r i n i t i a l waste l o a d i n g r a t e can be used (Hsu 1986). A s t u d y , u s i n g an SBR, s u c c e s s f u l l y t r e a t e d a h i g h s t r e n g t h mixed p h e n o l i c waste w i t h i n i t i a l phenol c o n c e n t r a t i o n s h i g h e r t h a n 2000 ppm. The t o t a l COD o f t h e m i x t u r e was 7 500 mg/L. T h i s was seen as a major s t e p s i n c e a u t h o r s had l o n g proposed t h a t a phenol c o n c e n t r a t i o n h i g h e r t h a n 100 mg/L was i n h i b i t o r y ( B r e n n e r 1991). The a u t h o r i n t r o d u c e d a n o x i c p e r i o d s t o a v o i d b u l k i n g s l u d g e , w h i c h was p r e s e n t i n h i s e a r l i e r work. The p r e s e n c e o f f i l a m e n t o u s organisms and t h e b u l k i n g s l u d g e were r e s p o n s i b l e f o r poor s e t t l e a b i 1 i t y o f t h e s l u d g e . 18 Many s t u d i e s have been done on t h e t r e a t a b i l i t y o f mixed waste hazardous s l u d g e s i n Canada and t h e U n i t e d S t a t e s . However, as t h e waste s l u d g e from a l l t h e s e s i t e s d i f f e r , so do t h e r e s u l t s and s u c c e s s o f t r e a t m e n t ( S l o a n 1987; J e s p e r s e n 1993; Capps 1995). None o f t h e s t u d i e s d e a l t w i t h a s l u d g e t h a t had o r g a n i c c o n s t i t u e n t s as c o n c e n t r a t e d as t h e C h a t t e r t o n P e t r o c h e m i c a l s i t e . Moreover, none have t h e added c o m p l e x i t y o f h a v i n g c o b a l t and copper p r e s e n t i n h i g h c o n c e n t r a t i o n . B o t h compounds have been shown t o be i n h i b i t o r y t o t h e growth of m i c r o o r g a n i s m s i n low c o n c e n t r a t i o n s . D i s s o l v e d copper c o n c e n t r a t i o n as low as 1.0 mg/L has been shown t o reduce t h e r a t e o f d e g r a d a t i o n p r e s e n t i n a wastewater by 40 p e r c e n t (Mowat 1976). However, as wastes v a r y , so does t h e a b i l i t y o f t h e m i c r o o r g a n i s m s t o p e r f o r m under h i g h heavy m e t a l c o n c e n t r a t i o n s . 2 .1 O b j e c t i v e s : 1) To d e t e r m i n e t h e b i o d e g r a d a b i 1 i t y o f t h e C h a t t e r t o n P e t r o c h e m i c a l s l u d g e . 2) To d e t e r m i n e t h e optimum i n i t i a l s l u d g e l o a d i n g r a t e f o r an e f f i c i e n t and e f f e c t i v e t r e a t m e n t u s i n g a M o d i f i e d B a t c h P r o c e s s . 3) To e s t a b l i s h t h e q u a l i t y o f t h e e f f l u e n t and t r e a t e d s l u d g e w h i c h c o u l d be e x p e c t e d from t h e a e r o b i c b i o l o g i c a l t r e a t m e n t p r o c e s s . 4) To m o d i f y th e b a t c h r e a c t o r s t o o p e r a t e as t r u e b a t c h r e a c t o r s and m o n i t o r and o b s e r v e d i f f e r e n c e s . 19 5) To d e t e r m i n e t h e d i f f e r e n t r a t e s o f r e a c t i o n f o r t h e T r u e B a t c h P r o c e s s v s t h e M o d i f i e d B a t c h P r o c e s s . 20 3. M a t e r i a l s a n d M e t h o d s : 3.1 R e a c t o r D e s i g n : F o u r PVC r e a c t o r s w e r e m o d i f i e d t o be u s e d a s b a t c h r e a c t o r s . T h e y h a d p r e v i o u s l y u s e d a s l y s i m e t e r s . The u n i t s w e r e c u t t o 75 cm i n h e i g h t a n d h a d an i n t e r n a l d i a m e t e r o f 30 cm. The b o t t o m s h a d p r e v i o u s l y b e e n s e a l e d a n d t h e t o p was o p e n . S a m p l i n g p o r t s w e r e d r i l l e d a n d t h r e a d e d e v e r y 15 cm, s t a r t i n g a t 2 cm f r o m t h e b o t t o m . The b o t t o m p o r t was 3/4\" i n d i a m e t e r i n o r d e r t o p r e v e n t c l o g g i n g d u r i n g s a m p l i n g due t o t h e h i g h s o l i d s c o n t e n t o f t h e m i x t u r e . The o t h e r p o r t s w e r e 1/2\" i n d i a m e t e r a s c a n be s e e n i n F i g u r e 3.1.1. A s t e e l f r a m e was f a b r i c a t e d t o e n c o m p a s s t h e f o u r r e a c t o r s . D a y t o n v a r i a b l e s p e e d m i x e r s w e r e m o u n t e d o n t o t h e f r a m e a n d m i x i n g r o d s w e r e e x t e n d e d i n t o t h e m i d d l e o f t h e t a n k s . The s t e e l f r a m e was c o v e r e d b y a wooden box w h i c h c o u l d e a s i l y be s l i p p e d on a n d o f f t h e s t e e l f r a m e . The box was f a b r i c a t e d f r o m 2 cm t h i c k p l y w o o d a n d e x t e n d e d 30 cm down t h e s i d e o f t h e f r a m e a s c a n be s e e n i n F i g u r e 3.1.2. The p u r p o s e o f t h e box was t o c r e a t e a c l o s e d s y s t e m . S i n c e t h e w a s t e t h a t was b e i n g d e g r a d e d was h a z a r d o u s i n n a t u r e , i t was n e c e s s a r y t o t a k e p r e c a u t i o n s t o i n s u r e t h a t v a p o u r s w e r e n o t v e n t e d i n t o t h e g e n e r a l l a b a r e a d u r i n g t h e a e r a t i o n o f t h e w a s t e . To f u r t h e r p r e v e n t t h e l o s s o f v a p o u r s , a s h e e t o f p l a s t i c was v e l c r o e d t o t h e e n d o f t h e s i d e s 21 Figure 3.1.1 Reactor Profile Air nlet 15 cm Sampling ports 75 cm 30 cm 22 F i g u r e 3.1.2 P i c t u r e o f the r e a c t o r s as s e t up i n the l a b o r a t o r y F i g u r e 3.1.3 P i c t u r e of the l a b o r a t o r y r e a c t o r setup w i t h p r o t e c t i v e p l a s t i c sheet i n p l a c e 23 o f t h e box a n d e x t e n d e d t o t h e t a b l e l e v e l o n w h i c h t h e r e a c t o r s s a t , t h e r e b y c r e a t i n g a t e n t l i k e b a r r i e r . T h i s c a n be s e e n i n F i g u r e 3.1.3. The p l a s t i c w r a p c o u l d e a s i l y be removed a n d s t o r e d d u r i n g s a m p l i n g . I n t h e m i d d l e o f t h e t o p o f t h e b o x , a 15 cm S y s t e m P a s t c o n s t a n t s p e e d f a n was p l a c e d t o remove a l l t h e v a p o u r s c o m i n g o u t o f t h e r e a c t o r s . The fumes w e r e t h e n p i p e d t h r o u g h 5 cm ( 2 \" ) p l a s t i c p i p e i n t o a fumehood w h i c h v e n t e d o u t s i d e . The f l o w o f a i r i n t o t h e r e a c t o r s was i n i t i a l l y t h r o u g h a p r e s s u r e r e g u l a t o r t o g u a r d a g a i n s t s u d d e n p r e s s u r e f l u c t u a t i o n s . The a i r l i n e was t h e n s p l i t i n t o two a n d c a r r i e d t h r o u g h 1/4\" C o l e P a l m e r s t i f f p l a s t i c t u b i n g . A t t h i s p o i n t , a W h i t e y n e e d l e p o i n t v a l v e was u s e d f o r p i n p o i n t a i r c o n t r o l . F o l l o w e d b y Swage L o c k q u i c k f i t c o n n e c t o r s , w h i c h a l l o w e d a C o l e P a l m e r v a r i a b l e o u t p u t f l o w m e t e r t o be p l a c e d i n t h e c i r c u i t , t o s e t a n d m e a s u r e t h e a i r f l o w r a t e u s i n g t h e b a l l v a l v e . P r i o r t o e n t r y i n t o t h e t o p o f t h e r e a c t o r , t h e a i r l i n e was o n c e a g a i n s p l i t i n t o two s e p a r a t e l i n e s . The t u b e s w e r e f i x e d o n t o f a c i n g s i d e s o f t h e v e s s e l . The l i n e s w e r e a d h e r e d t o t h e s i d e s o f t h e r e a c t o r w i t h s t e e l w i r e w h i c h w o u l d n o t c o r r o d e a n d t a p e d h i g h e n o u g h t h a t i t w o u l d n o t be i n c o n t a c t w i t h t h e c o n t e n t s o f t h e r e a c t o r . The f i x i n g o f t h e a i r l i n e was n e c e s s a r y , s i n c e d u r i n g o p e r a t i o n , t h e y t e n d e d t o f l o a t a n d c o u l d p o t e n t i a l l y w r a p a r o u n d t h e m i x e r s . A t f i r s t , t h e a i r l i n e s w e r e w e i g h e d down w i t h s t a i n l e s s s t e e l r i n g s b u t d u r i n g a e r a t i o n t e s t s , i t was n o t i c e d t h a t t h e 24 l i n e s s t i l l f l o a t e d c o n s i d e r a b l y . On t h e f l o o r o f t h e r e a c t o r , e a c h l i n e was o n c e a g a i n s p l i t i n t o two. A q u a r i u m p o r e s t o n e d i f f u s e r s w e r e p l a c e d on t h e t u b b i n g o u t l e t s . The d i f f u s e r s w e r e o b t a i n e d f r o m a p e t s t o r e a n d w e r e i n t e n d e d t o be u s e d i n f i s h a q u a r i u m s . F o u r d i f f u s e r s w e r e u s e d p e r r e a c t o r s a n d t h u s 16 f o r t h e e n t i r e e x p e r i m e n t . A s c h e m a t i c o f t h e a e r a t i o n s y s t e m c a n be s e e n i n F i g u r e 3.1.4. A f t e r t h e e x p e r i m e n t ' s f i r s t r u n , t h e a e r a t i o n s t o n e s d e g r a d e d i n t h e c h e m i c a l s l u d g e m i x t u r e . The g l u e w h i c h b o u n d t h e s t o n e s t o g e t h e r was n o t c o m p a t i b l e w i t h t h e c h e m i c a l s f o u n d i n t h e s l u d g e . T h u s , t h e e n t i r e s e t o f s t o n e s w e r e r e p l a c e d w i t h C o l e P a l m e r l a b o r a t o r y g r a d e d i f f u s e r s . 3 . 2 S a m p l i n g : S a m p l i n g was done t w i c e p e r week d u r i n g t h e b a t c h r u n s . U s u a l l y , s a m p l e s w e r e t a k e n o n Mondays a n d T h u r s d a y s . A t f i r s t , s a m p l e s w e r e t a k e n f r o m t h e l o w e s t s a m p l i n g p o r t . An i n i t i a l 500 ml s a m p l e was r e t r i e v e d t o f l u s h o u t t h e v a l v e a n d t o i n s u r e a f u l l y m i x e d s a m p l e was o b t a i n e d . A 100 ml s a m p l e f o r a n a l y s i s w o u l d t h e n be t a k e n . D u r i n g t h e s e c o n d b a t c h r u n , a c o n s i d e r a b l e amount o f g r a v e l was i n c o r p o r a t e d i n t h e s l u d g e a d d e d t o t h e r e a c t o r s . The g r a v e l o b s t r u c t e d a n d p l u g g e d t h e o u t l e t v a l v e s . C l e a n i n g a n d f l u s h i n g o f t h e v a l v e s was n o t s u c c e s s f u l a n d a l l f u t u r e s a m p l e s w e r e t a k e n by r e m o v i n g t h e wood c o v e r a n d i m m e r s i n g a b e a k e r 25 Figure 3.1.4 Aeration system profile Mixer Quick release Connector Ball Valve Mixing Rod Pore stone diffusers < Reactor d i r e c t l y i n t o t h e t a n k s . T h i s y i e l d e d a s a m p l e w h i c h was u n m i s t a k a b l y f u l l y m i x e d . The new s a m p l i n g t e c h n i q u e a l s o c r e a t e d a d d i t i o n a l p r o b l e m s . When t h e wooden c o v e r was removed, t h e e x p e r i m e n t v e n t e d d i r e c t l y i n t o t h e l a b . T h e r e f o r e , p r i o r t o s a m p l i n g , t h e a i r was s h u t o f f . A l s o , a c o n s i d e r a b l e amount o f p e r s o n a l p r o t e c t i v e e q u i p m e n t h a d t o be w o r n . B e s i d e s t h e o b v i o u s l a b c o a t a n d g l a s s e s , s h o u l d e r l e n g t h v i t o n g l o v e s a n d a r e s p i r a t o r w i t h o r g a n i c v a p o u r c a r t r i d g e s w e r e w o r n . P r i o r t o t a k i n g t h e s a m p l e , a 500 ml b e a k e r was i m m e r s e d s e v e r a l t i m e s i n t h e s l u d g e m i x t u r e . A 50 ml p o r t i o n was t h e n t r a n s f e r r e d t o a p l a s t i c s a m p l i n g b o t t l e a n d t h e r e m a i n d e r was r e t u r n e d t o t h e r e a c t o r . The f o l l o w i n g t e s t s w e r e r o u t i n e l y p e r f o r m e d o n t h e s a m p l e s : T e s t : F r e q u e n c y : C h e m i c a l O x y g en Demand (COD): 2 p e r week 5 Day B i o c h e m i c a l Oxygen Demand (B0D 5) : 1 p e r week S o l i d s ; T o t a l S u s p e n d e d S o l i d s ( T S S ) : V o l a t i l e S u s p e n d e d S o l i d s ( V S S ) : 2 p e r week 2 p e r week N u t r i e n t s ; P h o s p h o r u s ( P 0 4 ) : Ammoni a (NH4 +): 2 p e r week 2 p e r week pH: 2 p e r week M e t a l s ( t o t a l a n d d i s s o l v e d ) ; C o p p e r ( C u ) : C o b a l t ( C o ) : 2 p e r week 2 p e r week Gas C h r o m a t o g r a p h y ( G C ) : 1 p e r week T a b l e 3.2.1: The type and frequency of a n a l y t i c a l t e s t s performed on the sludge. 27 3 . 3 A n a l y t i c a l P r o c e d u r e s : The f o l l o w i n g c r i t e r i a w e r e f o l l o w e d i n t h e p r e p a r a t i o n a n d t h e p e r f o r m a n c e o f a n a l y t i c a l t e s t s . 1) C h e m i c a l O x y g en Demand (COD): t h e t e s t was p e r f o r m e d a c c o r d i n g t o t h e Hack method a s o u t l i n e d i n S t a n d a r d M e t h o d s . P r i o r t o a n a l y s i s , t h e o r i g i n a l s a m p l e s w e r e d i l u t e d b e t w e e n 10 a n d 100 t i m e s s i n c e t h e r a n g e o f t h e t e s t i s 50 - 1000 mg/L. The t o t a l COD o f t h e r u n n i n g r e a c t o r s was b e t w e e n 2000 - 100 000 mg/L d e p e n d i n g on t h e r u n i n p r o g r e s s . Two s a m p l e s w e r e a n a l y z e d ; a t o t a l s a m p l e a n d a l s o a s u p e r n a t a n t s a m p l e w h i c h was c e n t r i f u g e d f o r 10 m i n u t e s a t 3000 RPM. The s u p e r n a t a n t was t h e n r e m o v e d u s i n g a g l a s s p i p e t t e a n d d i l u t e d . Two r e p l i c a t e s w e r e done i n o r d e r t o p r o v i d e more a c c u r a t e r e s u l t s . 2) 5 Day B i o c h e m i c a l O x y g en Demand ( B 0 D 5 ) : The t e s t was p e r f o r m e d a c c o r d i n g t o t h e s p e c i f i c a t i o n s i n S t a n d a r d M e t h o d s . B o t h t o t a l a n d s u p e r n a t a n t s a m p l e s w e r e t e s t e d i n d u p l i c a t e . M o s t t i m e s , s a m p l e s w e r e d i l u t e d p r i o r t o a d d i t i o n i n t o BOD b o t t l e s . However, when t h e a n t i c i p a t e d BOD was l o w , s t r a i g h t s l u d g e a d d i t i o n was done. 3) S o l i d s : P r e c a u t i o n s h a d t o be t a k e n when p e r f o r m i n g t h e TSS a n d VSS t e s t s o n t h e s l u d g e s i n c e t h e s a m p l e s c o n t a i n e d h i g h c o n c e n t r a t i o n o f v o l a t i l e a n d c a r c i n o g e n i c compounds. The d r y i n g o v e n i n t h e e n v i r o n m e n t a l l a b v e n t e d d i r e c t l y i n t o t h e g e n e r a l 28 l a b e n v i r o n m e n t . T h u s , i t was n o t f e a s i b l e t o u s e i t f o r t h e s e s a m p l e s . An o v e n was i n s t a l l e d i n a fumehood i n t h e m a t e r i a l ' s l a b w h i c h was u s e d t o i n i t i a l l y f i r e t h e s a m p l e s . A l s o , due t o t h e h i g h s o l i d s n a t u r e o f t h e s l u d g e i t was n o t p o s s i b l e t o d e t e r m i n e t h e s o l i d s c o n t e n t u s i n g g l a s s f i b r e f i l t e r s a n d a vacuum a p p a r a t u s a s recommended b y S t a n d a r d M e t h o d s . T h i s p r o c e d u r e was i n i t i a l l y a t t e m p t e d . However, e v e n when t h e s a m p l e s w e r e d i l u t e d up t o t e n t i m e s , t h e s l u d g e c l o g g e d t h e f i l t e r . T h u s , a n o t h e r s o l i d s d e t e r m i n a t i o n p r o c e d u r e was d e s i g n e d . P o r c e l a i n d i s h e s w e r e u s e d a n d f i r e d o v e r n i g h t p r i o r t o s a m p l i n g . The d i s h e s w e r e t h e n l e f t t o c o o l i n a d e c a n t e r f o r one h o u r . The d i s h e s w e r e t h e n i n i t i a l l y w e i g h e d , s l u d g e was a d d e d t o t h e d i s h e s a n d t h e f i n a l w e i g h t was r e c o r d e d . The s a m p l e s w e r e t h e n f i r e d o v e r n i g h t a t 103 d e g r e e s C e l s i u s . The n e x t d a y t h e d i s h e s w e r e removed f r o m t h e o v e n , p l a c e d o n c e a g a i n i n t h e d e c a n t e r a n d l e t c o o l f o r one h o u r . Once t h e y h a d b e e n w e i g h e d , t h e s a m p l e s w e re f i r e d i n t h e f u r n a c e a t 550 d e g r e e s C e l s i u s f o r 30 m i n u t e s . The s a m p l e s w e r e t h e n a g a i n l e f t t o c o o l a n d t h e f i n a l w e i g h t was r e c o r d e d . 4) N u t r i e n t s : The r u n n i n g r e a c t o r s and t h e c o n t r o l w e r e t e s t e d f o r b o t h O r t h o - P h o s p h a t e ( P 0 4 ) a n d Ammonia (NH 4+) u s i n g t h e Q u i c k c h e m AE m o d e l L a c h a t e A n a l y z e r . The s a m p l e s w e r e f i r s t d i l u t e d , f i l t e r e d t h r o u g h Whatman #4 f i l t e r s a n d a c i d i f i e d t o a pH o f 3 w i t h a t e n p e r c e n t H 2S0 4 s o l u t i o n i n o r d e r t o p r e s e r v e them p r i o r t o a n a l y s i s . 29 5) pH: The pH o f t h e mixed l i q u o r was d e t e r m i n e d u s i n g a C o l e -Palmer Chemcadet Model 5986- 60 pH meter. The meter was r o u t i n e l y c a l i b r a t e d w i t h 4, 7 and 10 pH s t a n d a r d s . 6) M e t a l s : The samples were a n a l y z e d f o r b o t h t o t a l and d i s s o l v e d copper and c o b a l t . The t o t a l samples were d i l u t e d and t h e n d i g e s t e d w i t h n i t r i c a c i d a c c o r d i n g t o S t a n d a r d Methods. The samples were th e n f i l t e r e d w i t h Whatman #4 f i l t e r s . To o b t a i n a d i s s o l v e d sample t h e s l u d g e was f i r s t d i l u t e d and t h e n was f i l t e r e d t h r o u g h c e l l u l o s e n i t r a t e S a r t o r i u s 0.45 m i c r o n f i l t e r s u s i n g a vacuum a p p a r a t u s . B o t h s e t s o f samples were th e n a n a l y z e d a c c o r d i n g t o S t a n d a r d Methods u s i n g t h e V i d e o 22 model, Thermo J a r r e l l Ash Atomic S p e c t r o p h o t o m e t e r . 7) Gas Chromatography: To m o n i t o r t h e o r g a n i c c o n s t i t u e n t s o f t h e waste m i x t u r e t h e GC was used. 5 mis o f raw sample was mixed w i t h 5 mis Methylene C h l o r i d e and shaken f o r 5 m i n u t e s . The t e s t t u b e s were t h e n c e n t r i f u g e d f o r 10 minutes a t 3000 RPM. The s o l v e n t was t h e n removed u s i n g a P a s t e u r p i p e t t e and s t o r e d . A n o t h e r 5 ml o f Methylene C h l o r i d e was added t o t h e sample and i t was shaken, c e n t r i f u g e d and t h e s o l v e n t was once a g a i n removed. Sodium h y d r o x i d e was added t o t h e t o t a l s o l v e n t sample t o remove any water. U s i n g a P a s t e u r p i p e t t e , p a r t o f t h e s o l v e n t was removed and p l a c e d i n a GC v i a l . The sample was t h e n a n a l y z e d f o r t h e p r e s e n c e o r g a n i c compounds w i t h t h e H e w l e t t P a c k a r d 5890 S e r i e s I I GC. 30 A J & W S c i e n t i f i c DB-1 c o l u m n was u s e d . I t was 30 m e t e r s i n l e n g t h , h a d a n i n t e r n a l d i a m e t e r o f 0.32 mm and a f i l m t h i c k n e s s o f 0.25 m i c r o n . H e l i u m was u s e d a s t h e c a r r i e r g a s a t a f l o w r a t e o f 20 cm/s a n d n i t r o g e n was t h e makeup g a s a t 60 m l / m i n . The i n i t i a l o v e n t e m p e r a t u r e was 45 d e g r e e s C e l s i u s f o r 2 m i n u t e s . The t e m p e r a t u r e was t h e n i n c r e a s e d 10 d e g r e e s C e l s i u s / m i n u t e , u n t i l i t r e a c h e d 290 d e g r e e s C e l s i u s . The o v e n was t h e n m a i n t a i n e d a t t h a t t e m p e r a t u r e f o r 16 m i n u t e s . The e n t i r e GC r u n l a s t e d a t o t a l o f 41 m i n u t e s a n d u s e d a F l a m e I o n i z a t i o n d e t e c t o r . 8) Mass S p e c t r o m e t e r : The H e w l e t t P a c k a r d 5830A GC/MS was u s e d t o i d e n t i f y t h e m a j o r o r g a n i c c o n s t i t u e n t s o f t h e w a s t e m i x t u r e . U s i n g t h e i n s t r u m e n t , t h e v a r i o u s s p e c i f i c p e a k s on t h e GC c o u l d be i d e n t i f i e d , q u a n t i f i e d a n d m o n i t o r e d d u r i n g t h e c o u r s e o f t h e e x p e r i m e n t . The GC/MS was a l s o u s e d t o a n a l y z e a h e a d s p a c e s a m p l e t a k e n f r o m t h e t o p o f t h e r e a c t o r t o d e t e r m i n e t h e v a r i o u s c o m p o n e n t s w h i c h w o u l d p o t e n t i a l l y be v e n t i n g i n t o t h e g e n e r a l l a b o r a t o r y a r e a . 3 .4 E x p e r i m e n t a l P r o c e d u r e : A s e r i e s o f M o d i f i e d B a t c h P r o c e s s (MBP) e x p e r i m e n t s , r e f e r r e d t o a s b a t c h t e s t s i n t h i s t h e s i s , w e r e i n i t i a l l y r u n t o d e t e r m i n e t h e most e f f e c t i v e i n i t i a l s l u d g e l o a d i n g r a t e r a n g e f o r t h e s y s t e m . I n t h e MBP s y s t e m , e a c h r u n c o n s i s t e d o f a s e t o f r e a c t o r s , each i n d i v i d u a l r e a c t o r was f i l l e d w i t h a c o m b i n a t i o n of v i r g i n s l u d g e , d i l u t i o n water and seed. The r e a c t o r s were t h e n a e r a t e d and mixed u n t i l t h e s l u d g e was degraded. At t h i s p o i n t , t h e s e t o f r e a c t o r s was c o m p l e t e l y emptied and t h e y were once a g a i n f i l l e d w i t h a c o m b i n a t i o n o f v i r g i n s l u d g e , seed and d i l u t i o n w a t e r . On some o c c a s i o n s , t h e same i n i t i a l s l u d g e c o n c e n t r a t i o n was r e p e a t e d i n two c o n s e c u t i v e r u n s , t o d e t e r m i n e i f t h e s u c c e s s o f a p r e v i o u s run c o u l d be r e p l i c a t e d . The p r o g r e s s o f t h e v a r i o u s runs was m o n i t o r e d u s i n g t h e HACH COD t e s t . I n l a t e r r u n s , the BOD5 and t h e c o n c e n t r a t i o n o f c e r t a i n t a r g e t o r g a n i c s were used t o f o l l o w t h e p r o g r e s s o f t h e r u n , s i n c e t h e y p r o v i d e d more i n s i g h t i n t o t h e degree o f t r e a t m e n t a c c o m p l i s h e d . S i n c e l i t t l e was known about t h e d e g r a d a t i o n o f t h e s l u d g e and t h e r e was l i t t l e i n f o r m a t i o n p r e s e n t i n t h e l i t e r a t u r e , t h e f i r s t r un's i n i t i a l s l u d g e l o a d i n g c o n c e n t r a t i o n was an educ a t e d guess. From t h a t p o i n t , d i f f e r e n t i n i t i a l s l u d g e c o n c e n t r a t i o n s were at t e m p t e d t o o p t i m i z e t h e d e g r a d a t i o n p r o c e s s . D i f f e r e n t n u t r i e n t c o n d i t i o n s and a e r a t i o n r a t e s were a t t e m p t e d t o d e t e r m i n e the e f f e c t on t h e degree and r a t e o f t r e a t m e n t o f t h e waste. A c o n t r o l was e s t a b l i s h e d t o d e t e r m i n e and m i n i m i z e t h e l o s s o f o r g a n i c c o n s t i t u e n t s due t o v o l a t i l i z a t i o n . I t c o n t a i n e d t h e same amount o f s l u d g e as t h e o t h e r r e a c t o r s , but a dose o f Javex brand b l e a c h , c o n t a i n i n g 5.25% sodium h y p o c h l o r i t e was used t o k i l l t h e 32 m i c r o o r g a n i s m s p r e s e n t . P l a t e c o u n t s w o u l d be p e r f o r m e d t o m o n i t o r i f b a c t e r i a w e r e s t i l l p r e s e n t i n t h e c o n t r o l . A f t e r t h e most e f f e c t i v e i n i t i a l s l u d g e l o a d i n g c o n c e n t r a t i o n was d e t e r m i n e d , t h e M o d i f i e d B a t c h P r o c e s s (MBP) was c o n v e r t e d t o a T r u e B a t c h P r o c e s s ( T B P ) . I n t h e TBP s y s t e m , 75 % o f t h e p r e v i o u s r u n s f i n a l p r o d u c t w e r e k e p t i n t h e r e a c t o r . D e p e n d i n g on t h e d e s i r e d i n i t i a l c o n c e n t r a t i o n f o r t h e r u n , t h e r e m a i n i n g v o l u m e was made up o f a c o m b i n a t i o n o f v i r g i n s l u d g e a n d d i l u t i o n w a t e r . The r e a c t o r was a e r a t e d a n d m i x e d u n t i l t h e o r g a n i c compounds h a d b e e n d e g r a d e d . A t t h a t p o i n t , t h e a e r a t i o n was d i s c o n t i n u e d and t h e r e a c t o r was l e t s e t t l e f o r 2 h o u r s . One q u a r t e r o f t h e v o l u m e was r e m o v e d a n d r e p l a c e d w i t h a c o m b i n a t i o n o f v i r g i n s l u d g e a n d d i l u t i o n w a t e r . A e r a t i o n a n d m i x i n g was t h e n r e s u m e d . 3 3 4 . R e s u l t s a n d D i s c u s s i o n : I n t o t a l , 11 d i f f e r e n t s l u d g e d e g r a d a t i o n r u n s w e r e a t t e m p t e d . E a c h i n d i v i d u a l r u n h a d a s p e c i f i c g o a l a n d i n t u r n l e d t o t h e f o r m a t i o n o f s p e c i f i c o b j e c t i v e s f o r t h e n e x t r u n . What f o l l o w s i s a d e t a i l e d r u n by r u n d e s c r i p t i o n o f a l l t h e e x p e r i m e n t s w h i c h w e r e a t t e m p t e d . The r a t i o n a l e b e h i n d e a c h r u n i s e x p l a i n e d a n d t h e i n f o r m a t i o n o b t a i n e d f r o m t h e e x p e r i m e n t s i s a n a l y z e d a n d p r e s e n t e d . The i n i t i a l c h a r a c t e r i s t i c s o f t h e s l u d g e o n t h e b o t t o m o f t h e e q u a l i z a t i o n l a g o o n a t t h e C h a t t e r t o n P e t r o c h e m i c a l s i t e a s a n a l y z e d a t U.B.C. i n t h e s p r i n g o f 1994 w e r e a s f o l l o w s : P a r a m e t e r : R e s u l t : T o t a l COD (mg/L) 240 000 BOD 5 (mg/L) 60 000 M e t a l s : T o t a l C o p p e r (mg/L) 550 T o t a l C o b a l t (mg/L) 110 pH 6.7 S o l i d s 3% T a b l e 4.1: I n i t i a l c h a r a c t e r i s t i c s of the C h a t t e r t o n Petrochemical sludge as a n a l y z e d a t U.B.C.. A s shown i n T a b l e s 4.1 a n d 4.2, t h e s l u d g e i s composed o f a v a r i e d amount o f c h e m i c a l c o n s t i t u e n t s . Due t o t h e h i g h c o n c e n t r a t i o n s o f c o p p e r a n d t h e v a r i o u s o r g a n i c compounds 34 p r e s e n t , t h e s l u d g e w o u l d h a v e t o be g r e a t l y d i l u t e d i n o r d e r t o be b i o l o g i c a l l y t r e a t e d , t h u s r e d u c i n g t h e T o t a l COD a n d BOD 5 t o l e v e l s w h i c h c o u l d be h a n d l e d i n a a e r o b i c b i o l o g i c a l s y s t e m . O r g a n i c C o n s t i t u e n t : Amount (ppm): P h e n o l 1 790 D i p h e n y l 95 900 D i p h e n y l E t h e r 219 000 2 - P h e n y l T o l u e n e 34 200 3 - P h e n y l T o l u e n e 11 800 4 - P h e n y l T o l u e n e 4 440 T a b l e 4.2: I n i t i a l o r g a n i c c o n s t j Ltuents o f the sludge on February 23 , 1994. The s l u d g e was e a r t h y i n c o l o u r a n d h a d a d i s t i n c t c h e m i c a l , o v e r p o w e r i n g o d o u r . An i r i d e s c e n t f i l m c o u l d be s e e n f l o a t i n g o n t h e s u r f a c e o f t h e l i q u i d . D e t e r m i n i n g t h e b e s t i n i t i a l c o n c e n t r a t i o n o f s l u d g e f o r t r e a t m e n t was d i f f i c u l t , s i n c e l i t t l e was p r e s e n t i n t h e l i t e r a t u r e a b o u t t r e a t i n g s u c h a c o n c e n t r a t e d a n d c o m p l e x w a s t e m i x t u r e . A l s o , no r e s e a r c h h a d b e e n p e r f o r m e d i n t h i s a r e a i n t h e E n v i r o n m e n t a l E n g i n e e r i n g D e p a r t m e n t a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a t o t h i s p o i n t . However, t h e t r e a t m e n t p l a n t o n t h e C h a t t e r t o n P e t r o c h e m i c a l s i t e h a d b e e n t r e a t i n g g r o u n d w a t e r and s u r f a c e r u n o f f f o r BTX. The t r e a t m e n t p l a n t t h e r e f o r e h a d a n a c t i v e c u l t u r e o f m i c r o o r g a n i s m s w h i c h w e r e c o n d i t i o n e d t o t r e a t a s i m i l a r , y e t l e s s c o n c e n t r a t e d w a s t e . The m i x e d l i q u o r f r o m t h e 35 t r e a t m e n t p l a n t was u s e d t o s e e d t h e r e a c t o r s , t o p r o v i d e a n a c t i v e a n d p a r t i a l l y a c c l i m a t i z e d m i c r o b i a l p o p u l a t i o n . I t was h o p e d t h a t t h i s w o u l d a v o i d a l a g i n t h e g r o w t h o f t h e b a c t e r i a d u r i n g t h e b e g i n n i n g o f t h e e x p e r i m e n t a l r u n . The g o a l o f t h e f i r s t e x p e r i m e n t a l r u n was t o d e t e r m i n e t h e p h y s i c a l c o n d i t i o n s o f t h e s y s t e m r e q u i r e d t o t r e a t t h e s l u d g e . A l s o , i t was d e s i r e d t o l e a r n more a b o u t t h e n e e d s o f t h e b a c t e r i a i n o r d e r t o d e g r a d e t h e w a s t e . T h r o u g h t h e r u n n i n g o f t h e f i r s t p h a s e , some b a s i c s w o u l d be l e a r n e d a b o u t t h e s l u d g e , t h e e x p e r i m e n t a l s e t up a n d t h e m o n i t o r i n g a n d t e s t i n g r e q u i r e m e n t s o f t h e s y s t e m . A l l f o u r r e c t o r s c o u l d n o t be u s e d f o r t h e f i r s t r u n s i n c e l e a k s h a d b e e n d e t e c t e d i n two o f t h e v e s s e l s . To c o m p l i c a t e m a t t e r s , t h e g l u e u s e d t o s e a l s t h e r e a c t o r s was n o t c o m p a t i b l e w i t h t h e s l u d g e a n d c r e a t e d a n e v e n l a r g e r p r o b l e m . The r e a c t o r s h a d t o be e m p t i e d , d r i e d o f f and a new b i n d i n g a g e n t was s e l e c t e d . 4.1 T h e I n i t i a l R u n s : Run #1 Two r e a c t o r s w e r e u s e d f o r t h e i n i t i a l b a t c h t e s t r u n . The b a t c h p r o c e s s was s e l e c t e d b e c a u s e i t w o u l d y i e l d c o n s i d e r a b l e i n f o r m a t i o n o n d e g r a d a t i o n o f t h e s l u d g e . The p r o b l e m w i t h p e r f o r m i n g b a t c h r u n s was t h a t i t u s u a l l y r e s u l t e d i n a n 36 a c c l i m a t i z a t i o n p e r i o d f o r b a c t e r i a a t t h e b e g i n n i n g o f t h e ex p e r i m e n t . The pre s e n c e and l e n g t h o f t h i s a c c l i m a t i z a t i o n p e r i o d would depend n ot o n l y t h e t y p e and c o n c e n t r a t i o n o f t h e waste, but a l s o t h e ty p e and c o n c e n t r a t i o n o f m i c r o o r g a n i s m s . A f t e r knowledge was g a i n e d u s i n g t h e b a t c h system, i t was hoped t o c o n v e r t t h e p r o c e s s t o a t r u e b a t c h system t o improve t h e d e g r a d a t i o n r a t e s o f t h e b a c t e r i a and produce a b e t t e r q u a l i t y endproduct i n a s h o r t e r t i m e frame. Parameter R e a c t o r 2 R e a c t o r 4 Sludge Volume (L) 3.0 3.0 A c t i v a t e d Seed V o l . (L) 1.5 1.5 D i l u t i o n Water V o l . (L) 5.5 5.5 T o t a l Volume 10 10 Table 4.1.1: Contents of the two running reactor for the f i r s t batch t r i a l . Parameter: R e a c t o r 2 R e a c t o r 4 T o t a l COD (mg/L) 75 514 80 452 BOD (mg/L) n/a* n/a* pH 6.7 6.8 S o l i d s : TSS (mg/L) VSS (mg/L) 5 900 4 000 9 000 7 000 Table 4.1.2: I n i t i a l a n a l y t i c a l analysis of the sludge i n the running reactors for run 1. * Due t o d i l u t i o n problems t h e BOD of t h e r e a c t o r s was not de t e r m i n e d . As can be seen i n T a b l e s 4.1.1 and 4.1.2, a l t h o u g h t h e same volume o f s l u d g e was used i n each r e a c t o r , t h e T o t a l COD d i f f e r e d 37 b y a b o u t 6%. T h i s was due t o t h e n o n u n i f o r m i t y o f t h e s l u d g e i n t h e l a g o o n . The s l u d g e was t a k e n f r o m t h e same a r e a i n t h e l a g o o n and was m i x e d p r i o r t o a d d i t i o n t o t h e r e a c t o r s . I t was v e r y d i f f i c u l t t o r e a c h a t a r g e t COD i n a r u n n i n g r e a c t o r , s i n c e t h e c h e m i c a l makeup ( a n d t h u s t h e T o t a l COD i n t h e l a g o o n ) v a r i e d g r e a t l y , b o t h h o r i z o n t a l l y a n d v e r t i c a l l y . The c o n c e n t r a t i o n o f b o t h c o p p e r a n d c o b a l t w e r e n o t m o n i t o r e d i n t h e f i r s t r u n s b e c a u s e i t was f e l t t h a t w i t h t h e l a r g e d e g r e e o f d i l u t i o n , t h e m e t a l c o n c e n t r a t i o n w o u l d be l o w a n d a s s u c h , i n s i g n i f i c a n t . The i n i t i a l BOD f o r t h e r u n i s u n a v a i l a b l e due t o d i l u t i o n p r o b l e m s . The s a m p l e s w e r e e i t h e r t o o d i l u t e d o r n o t d i l u t e d e n o u g h t o a c h i e v e a n a c c u r a t e r e a d i n g . As w i t h a n y new e x p e r i m e n t , e q u i p m e n t p r o b l e m s h a d t o be o v e r c o m e and m o d i f i c a t i o n s h a d t o be p e r f o r m e d r i g h t f r o m t h e s t a r t . F i r s t l y , u p o n t h e a c t i v a t i o n o f t h e m i x e r s , t h e a i r d i f f u s i n g s t o n e s i n R e a c t o r 4 \" f l o a t e d \" a n d t h e a i r l i n e w r a p p e d i t s e l f a r o u n d t h e m i x i n g r o d . The l i n e was f i x e d t o t h e s i d e o f t h e r e a c t o r o n c e a g a i n w i t h t a p e a nd w i r e . However, t h e f o l l o w i n g d a y t h e same p r o b l e m r e c u r r e d . The m i x e r was t h e n s h u t o f f f o r t h e r e m a i n d e r o f t h e r u n and t h e a i r f l o w r a t e was i n c r e a s e d . The a i r was s e t t o a r a t e w h i c h p r o d u c e d 7.5 mg/L o f d i s s o l v e d o x y g e n i n t h e t a n k . T h i s was h i g h e r t h a n l i t e r a t u r e a d v i s e d b u t p r o d u c e d a 38 t h o r o u g h l y mixed u n i t ( B renner 1992). The second problem was t h e a e r a t i o n s u p p l y . Due t o t h e demand from new e x p e r i m e n t s i n t h e e n v i r o n m e n t a l l a b , t h e main compressor had t r o u b l e m e e t i n g t h e s e new needs. Twice d u r i n g t h e f i r s t week t h e main compressor f a i l e d o v e r n i g h t and t h e emergency compressor d i d not come on l i n e . Thus, t h e e x p e r i m e n t d i d not r e c e i v e a i r f o r an extended p e r i o d o f t i m e . A f t e r t h e second f a i l u r e , an a i r l i n e was i n s t a l l e d from t h e a n a l y t i c a l room compressor and was used u n t i l t h e main system c o u l d be used w i t h c o n f i d e n c e . The l e n g t h o f t h e experiment i n each t e s t r e a c t o r was d i f f e r e n t . R e a c t o r 2 was run f o r a p e r i o d o f 30 days w h i l e R e a c t o r 4 was i n o p e r a t i o n f o r 20 days. As can be seen i n T a b l e 4.1.3, t h e b a t c h r u n was a b l e t o reduce the T o t a l COD o f t h e waste m i x t u r e by almost 90 p e r c e n t i n a s h o r t amount o f t i m e . As shown i n F i g u r e 4.1.1, most of t h e r e d u c t i o n i n terms o f T o t a l COD o c c u r r e d i n t h e f i r s t few days f o r R e a c t o r 2. T h i s seemed t o c o n t r a d i c t t h e n o t i o n t h a t a l a g phase f o r t h e b a c t e r i a t o adapt t o t h e waste m i x t u r e would be r e q u i r e d . However, a l a g phase i s c l e a r l y a pparent i n t h e T o t a l COD c o n c e n t r a t i o n graph f o r R e a c t o r 4. The d i f f e r e n c e i n the two r e a c t o r c o u l d be due t o t h e d i f f e r e n c e i n t h e i n i t i a l 39 P a r a m e t e r R e a c t o r 2 R e a c t o r 4 T o t a l COD ( I n n . ) mg/L 75 514 80 452 T o t a l COD ( F i n a l ) mg/L 7 986 8 661 % T o t a l COD r e d u c t i o n 89.4 89.2 S u p e r n a t a n t COD ( I n i t i a l ) mg/L 3 909 8 847 S u p e r n a t a n t COD ( F i n a l ) mg/L 2 431 2 083 S u p e r n a t a n t COD r e d u c t i o n % 37.8 76.5 Table 4.1.3: Total and Supernatant COD reductions during run 1. s l u d g e d o s e . A l t h o u g h s i m i l a r a mounts w e r e d o s e d i n t o e a c h r e a c t o r , t h e c h e m i c a l c o m p o n e n t s o f t h e s l u d g e m i x t u r e w e r e p o s s i b l y d i f f e r e n t . I t i s a l s o p o s s i b l e t h a t R e a c t o r 2 r e c e i v e d a more a c t i v e / a c c l i m a t i z e d p o p u l a t i o n o f m i c r o o r g a n i s m s . F o r t h e f i r s t 6 d a y s o f t h e e x p e r i m e n t , t h e T o t a l COD c o n c e n t r a t i o n r e m a i n e d t h e same a n d a c t u a l l y i n c r e a s e d s l i g h t l y i n R e a c t o r 4. The i n c r e a s e c a n be a t t r i b u t e d t o t h e e x t r a m i x i n g w h i c h r e s u l t e d f r o m t h e i n c r e a s e d a e r a t i o n r a t e ( t h e r e b y i n d i c a t i n g t h a t t h e f i r s t s a m p l e was n o t f u l l y m i x e d ) . A f t e r t h e s h o r t a d a p t i o n p h a s e , t h e d e g r a d a t i o n was r a p i d . E a r l y i n d i c a t i o n s f r o m t h e d a t a seem t o i n f e r t h a t a h i g h d e g r e e o f t r e a t m e n t was p o s s i b l e i n a s h o r t amount o f t i m e . However, many q u e s t i o n s a b o u t t h e q u a l i t y o f t r e a t m e n t r e m a i n e d t o be a n s w e r e d . More s p e c i f i c a l l y : w h i c h s p e c i f i c c h e m i c a l s r e m a i n e d a t 40 FIGURE 4.1.1 TOTAL COD CONCENTRATION VS TIME FOR RUN 1 100 i 0 1 ' ' 1 1 ' 1 1 0 5 10 15 20 25 30 35 TIME (DAYS) _ B _ Reactor 4 Total Reactor 2 Total FIGURE 4.1.2 SUPERNATANT COD CONCENTRATION VS TIME FOR RUN 1 7 1 l i i i i i i 1 0 5 10 15 20 25 30 35 TIME (DAYS) _o_ Reactor 4 Supernatant Reactor 2 Supernatant 4 1 t h e e n d o f t h e t r e a t m e n t p e r i o d , w h i c h c h e m i c a l s w e r e r e s i s t a n t t o d e g r a d a t i o n a n d t h e r a t e s o f d e g r a d a t i o n . S i n c e t h i s was t h e f i r s t r u n , many p r o b l e m s w i t h d a t a c o l l e c t i o n a n d a n a l y s i s w e r e e n c o u n t e r e d . S t a r t i n g w i t h t h e p r e v i o u s l y m e n t i o n e d BOD a n a l y s i s p r o b l e m . D i s c o u n t i n g t h e i m p o r t a n c e o f t h e p r e s e n c e o f d i s s o l v e d m e t a l s i n t h e r e a c t o r s was a l s o a s i g n i f i c a n t e r r o r . I t i s p o s s i b l e t h a t t h e l a g o b s e r v e d i n R e a c t o r 4 was due t o t h e a c c l i m a t i z a t i o n o f t h e b a c t e r i a t o t h e h i g h m e t a l c o n c e n t r a t i o n a n d n o t t h e h i g h o r g a n i c c o n t e n t . N u t r i e n t s w e r e n o t m o n i t o r e d s i n c e t h e s l u d g e was b e l i e v e d t o be n u t r i e n t r i c h . C h a t t e r t o n P e t r o c h e m i c a l b e l i e v e d t h a t t h e s l u d g e c o n t a i n e d s u f f i c i e n t n u t r i e n t s a n d t h a t a d d i t i o n s w e r e n o t n e c e s s a r y f o r c o m p l e t e d e g r a d a t i o n . However, i t was l e a r n e d t h a t s i g n i f i c a n t a d d i t i o n s o f Ammonia a n d P h o s p h o r u s w e r e b e i n g done a t t h e on s i t e t r e a t m e n t p l a n t t r e a t i n g t h e g r o u n d w a t e r . F u r t h e r i n v e s t i g a t i o n w o u l d be n e c e s s a r y t o d e t e r m i n e i f t h e s y s t e m was r u n n i n g u n d e r n u t r i e n t l i m i t e d c o n d i t i o n s . Due t h e v a r i e d c h e m i c a l make up o f t h e s l u d g e , s t a n d a r d s f o r most o f t h e c h e m i c a l s i n t h e m i x t u r e w e r e n o t y e t a v a i l a b l e . T h e r e f o r e , t h e Gas C h r o m a t o g r a p h y t r a c e c o u l d n o t be q u a n t i f i e d . T hus, i t was n o t p o s s i b l e t o d e t e r m i n e t h e e x a c t d e g r a d a t i o n i n t e r m s o f s p e c i f i c o r g a n i c compounds. The d e g r e e o f t r e a t m e n t a n d t h e r a t e o f t r e a t m e n t w e r e 42 i m p r e s s i v e . F o r t h i s r e a s o n a n d t o i n s u r e t h a t a c t u a l t r e a t m e n t was o c c u r r i n g , a c o n t r o l was e s t a b l i s h e d f o r t h e n e x t r u n . T h i s r e a c t o r w o u l d c o n t a i n t h e same s l u d g e a s t h e o t h e r t r e a t m e n t v e s s e l s b u t w o u l d n o t c o n t a i n a n y a c t i v a t e d b i o m a s s f r o m t h e o n s i t e t r e a t m e n t p l a n t . I t w o u l d a l s o c o n t a i n a d o s e o f b l e a c h t o k i l l a l l t h e m i c r o o r g a n i s m s p r e s e n t . The c o n t r o l w o u l d s e r v e a s a g u i d e t o i n d i c a t e t h e amount o f o r g a n i c s w h i c h w e r e b e i n g v o l a t i l i z e d a n d w o u l d be u s e d t o d e t e r m i n e t h e b e s t l e v e l o f a e r a t i o n w h i c h s u p p l i e d t h e n e e d s o f t h e m i c r o o r g a n i s m s b u t d i d n o t f a c i l i t a t e t h e v o l a t i l i z a t i o n o f t h e o r g a n i c c o n s t i t u e n t s o f t h e w a s t e m i x t u r e . The p o s i t i v e r e s u l t s o b s e r v e d i n t h i s f i r s t r u n i n d i c a t e d t h a t t h e a e r o b i c b i o l o g i c a l t r e a t m e n t o f t h e s l u d g e seemed p o s s i b l e . Run # 2 The f i r s t r u n was d e s i g n e d m o s t l y t o t e s t t h e r e a c t o r s a n d e q u i p m e n t a n d s e t up a s a m p l i n g s c h e d u l e a n d p r o c e d u r e . I t a l s o s e r v e d a s a g u i d e i n d e t e r m i n i n g t h e o p t i m u m l o a d i n g r a t e f o r t h e b i o l o g i c a l s y s t e m . I n t h e s e c o n d e x p e r i m e n t a l r u n , a l l f o u r r e a c t o r s w e r e u s e d . The n e e d f o r n u t r i e n t s , t h e a e r a t i o n o f t h e w a s t e a n d t h e s u c c e s s o f t h e d e g r a d a t i o n p r o c e s s w e r e a l l q u e s t i o n s w h i c h w e r e a d d r e s s e d i n t h i s s e c o n d r u n . 43 P a r a m e t e r R e a c t o r 1 ( C o n t r o l ) R e a c t o r 2 ( N u t r i e n t s ) R e a c t o r 3 ( N u t r i e n t s ) R e a c t o r 4 (No n u t r i e n t s ) S l u d g e Vo1ume ( L ) 3 3 3 3 S e e d W a t e r ( L ) n one 1 1 1 D i l u t i o n W a t e r ( L ) 17 16 16 16 T o t a l V o l u m e ( L ) 20 20 20 20 N u t r i e n t s n one N=850 mg/L P=170 mg/L N=850 mg/L P=170 mg/L none T a b l e 4.1.4: I n i t i a l content of the r e a c t o r s f o r the second run of the d e g r a d a t i o n experiments. A c o n t r o l ( s e e T a b l e 4.1.4) was e s t a b l i s h e d w i t h t h e same s o l i d s and o r g a n i c s l o a d a s t h e t e s t r e a c t o r s , b u t w i t h o u t t h e a d d i t i o n o f a c t i v a t e d b i o m a s s a n d w i t h 500 ml o f b l e a c h . S i n c e no m i c r o o r g a n i s m s w e r e p r e s e n t , a n y r e d u c t i o n i n t h e o r g a n i c s l o a d w o u l d be a t t r i b u t e d t o v o l a t i l i z a t i o n , a p r o c e s s w h i c h was n o t a n a c c e p t a b l e f o r m o f t r e a t m e n t . R e a c t o r s w i t h a n d w i t h o u t n u t r i e n t a d d i t i o n s w e r e u s e d t o o b s e r v e t h e d i f f e r e n c e s i n t h e g r o w t h a n d r e s p o n s e o f t h e m i c r o o r g a n i s m s t o t h e d i f f e r e n t e n v i r o n m e n t s . I t w o u l d t e s t t h e t h e o r y t h a t n u t r i e n t s a d d i t i o n s may n o t be r e q u i r e d t o t r e a t t h i s s l u d g e . The n u t r i e n t s w e r e a d d e d t o t h e two r e a c t o r s , b a s e d o n t h e t h e o r e t i c a l r e l a t i o n s h i p C:N:P o f 1 0 0 : 5 : 1 . The BOD 5 o f t h e s l u d g e was e s t i m a t e d a s b e i n g a p p r o x i m a t e l y 50 000 mg/L; i n t h e r e a c t o r , t h e c o n t e n t was d i l u t e d b y a f a c t o r o f 3. T h e r e f o r e , t h e 44 a p p r o x i m a t e BOD 5 i n t h e r e a c t o r was a s s e s s e d a t 17 000 mg/L; a s s u c h , 850 mg/L o f n i t r o g e n a s N a n d 170 mg/L o f p h o s p h o r u s a s P w e r e r e q u i r e d . The a c t u a l T o t a l COD o f t h e r e a c t o r s i n t h e s e c o n d r u n a r e shown i n T a b l e 4.1.5: R e a c t o r : I n i t i a l COD ( M g / L ) : 1 2 563 2 5 955 3 6 973 4 2 139 T a b l e 4.1.5: I n i t i a l COD of the r e a c t o r f o r the second run. T a b l e 4.1.5 i n d i c a t e s t h a t t h e T o t a l COD o f t h e r u n n i n g r e a c t o r s w e r e much l o w e r t h a n e x p e c t e d , b a s e d o n t h e s l u d g e l o a d i n g i n T a b l e 4.1.4. A l t h o u g h more d i l u t i o n w a t e r was u s e d t h a n was t h e c a s e i n t h e i n i t i a l r u n , t h e t o t a l COD i n t h e r u n n i n g r e a c t o r s s h o u l d h a v e b e e n a r o u n d 35 000 t o 40 000 mg/L. The c o n c e n t r a t i o n i n t h e r e a c t o r s w e r e o u t by a f a c t o r o f a l m o s t 10. The T o t a l COD v a l u e s a r e f u r t h e r e m p h a s i s e d i n F i g u r e 4.1.3. The \" s l u d g e s t r e n g t h \" p r o b l e m o r i g i n a t e d i n t h e s l u d g e c o l l e c t i o n m ethod f r o m t h e l a g o o n . I n t h e f i r s t r u n , t h e s l u d g e was c o l l e c t e d i n m i d J u n e when t h e r e was no w a t e r o n t h e s u r f a c e o f t h e s l u d g e . The s l u d g e c o u l d be s e e n a n d e a s i l y c o l l e c t e d . H owever, t h e s e c o n d v i s i t t o t h e C h a t t e r t o n P e t r o c h e m i c a l s i t e o c c u r r e d i n m i d A u g u s t , when t h e on s i t e t r e a t m e n t p l a n t h a d n o t b e e n o p e r a t i n g f o r s e v e r a l m o n t h s . The p l a n t t r e a t s s u r f a c e w a t e r 45 a n d g r o u n d w a t e r d u r i n g t h e s p r i n g , f a l l a n d w i n t e r . I n t h e summer, t h e w a t e r i s c o l l e c t e d a n d s t o r e d i n t h e l a g o o n . T h e r e f o r e , t h e w a t e r l e v e l r i s e s a n d c o v e r s t h e s l u d g e d u r i n g t h e summer m o n t h s . The s a m p l e h a d t o be t a k e n w i t h o u t b e i n g a b l e t o s e e t h e s l u d g e . The s a m p l e c o l l e c t e d was n o t r e p r e s e n t a t i v e o f t h e s l u d g e a n d c o n t a i n e d l a r g e amount o f g r a v e l a n d c o u r s e m a t e r i a l . The e x p e r i m e n t a l r u n l a s t e d f o u r d a y s b e f o r e t h e s o u r c e o f e r r o r was d e t e r m i n e d . The r e a c t o r s w e r e t h e n e m p t i e d i n o r d e r t o b e g i n a new r u n w i t h t h e r e p r e s e n t a t i v e s l u d g e s a m p l e t o be t r e a t e d . A f t e r e m p t y i n g o u t t h e r e a c t o r s , i t was n o t i c e d t h a t more damage was done t h a n t h e o b v i o u s w a s t e d e f f o r t a n d t i m e d e l a y b y t h e s l u d g e c o l l e c t i o n e r r o r . The s l u d g e u s e d h a d a v e r y d i f f e r e n t t e x t u r e a n d c o n s i s t e n c y . I t was v e r y g r a n u l a r a n d c o n t a i n e d some l a r g e g r a v e l . S a m p l e s o f t h e r e a c t o r s w e r e t a k e n t h r o u g h t h e s a m p l i n g p o r t s ; i n s o d o i n g , p i e c e s o f g r a v e l became l o d g e d i n t h e v a l v e s . The v a l v e s t h e n p l u g g e d . The r e a c t o r s h a d t o be e m p t i e d by b a i l i n g t h e c o n t e n t s o u t o f t h e t o p o f t h e u n i t s . The v a l v e s w e r e t h e n f l u s h e d b u t t o no a v a i l . S u b s e q u e n t l y , s a m p l i n g a n d e m p t y i n g o f t h e r e a c t o r s was done f r o m t h e t o p . The up s i d e t o t h i s d i l e m m a was t h a t s a m p l i n g f r o m t h e t o p i n s u r e d t h a t a f u l l y m i x e d s a m p l e was b e i n g o b t a i n e d . A l s o , a n e x a m i n a t i o n o f t h e c o n t e n t s o f t h e r e a c t o r s i . e . a e r a t i o n r a t e a n d foam p r o d u c t i o n w e r e made on s a m p l i n g d a y s a n d p r o b l e m s i n t h e o p e r a t i o n o f t h e u n i t s c o u l d e a s i l y be o b s e r v e d . None o f t h e 4 6 FIGURE 4.1.3 TOTAL COD VS TIME FOR R U N 2 0 1 2 3 4 5 6 Time (days) a- Reactor 1 (control) Reactor 2(seed+nut.) ^_ Reactor 3(seed+nut.) _g_ Reactor 4 (seed) q u e s t i o n s p o s e d by t h e f i r s t r u n w e r e a n s w e r e d i n t h i s v e n t u r e b u t a n i m p o r t a n t l e s s o n was l e a r n e d a b o u t t h e c a r e n e e d e d i n t h e c o l l e c t i o n o f o n s i t e s a m p l e s ! Run 3: Run 3 was a b o r t e d due t o a n a l y t i c a l p r o b l e m s . Run 4: The r e s u l t s f r o m Run 2 w e r e d i s a p p o i n t i n g . The s a m p l i n g p o r t s w e r e c l o g g e d a n d t h e d a t a d i d n o t r e v e a l a n y t h i n g a b o u t t h e p o t e n t i a l t r e a t a b i l i t y o f t h e m i x e d w a s t e . I t was h o p e d t h a t t h i s s e t o f e x p e r i m e n t s w o u l d p u t t h e r e s e a r c h b a c k on t r a c k . The m a i n p o i n t s i n v e s t i g a t e d b y t h i s p h a s e was t h e e f f e c t o f t h e a e r a t i o n r a t e o n t h e d e g r e e o f t r e a t m e n t a c h i e v e d a n d t h e e f f e c t o f a d d e d n u t r i e n t s on t h e s u c c e s s o f t r e a t m e n t by t h e m i c r o o r g a n i s m s . P r i o r t o t h e s t a r t o f t h i s p h a s e o f t h e s t u d y , 250 ml o f J a v e l b r a n d b l e a c h was a d d e d t o R e a c t o r 1; t h i s w o u l d s e r v e a s t h e c o n t r o l v e s s e l f o r t h e r e m a i n d e r o f t h e e x p e r i m e n t s . The a e r a t i o n r a t e i n a l l t h e r e a c t o r s was t e s t e d w i t h a h a i r c a l i b r a t e d s u b m e r s i b l e d i s s o l v e d o x y g e n p r o b e . The r e a c t o r s o x y g e n c o n t e n t o r i g i n a l l y r a n g e d f r o m 7 t o 10 mg/L. The v a l v e s w e r e t h e n s l i g h t l y s h u t , i n o r d e r t o o b t a i n a D.O. r e a d i n g i n t h e t a n k s o f b e t w e e n 2.5 a n d 3.0 mg/L; t h i s w o u l d be a n a d e q u a t e l e v e l o f a e r a t i o n f o r t h e g r o w t h o f t h e c u l t u r e , w h i l e a v o i d i n g 48 t h e n e e d l e s s v o l a t i l i z a t i o n o f t h e o r g a n i c c o n s t i t u e n t s o f t h e w a s t e ( G r a d y 1 9 9 0 ) . As c a n be s e e n i n T a b l e 4.1.6, t h e r e a c t o r s w e r e l o a d e d t o a much h i g h e r e x t e n t t h a n was t h e c a s e i n t h e f i r s t r u n . A f t e r t h e s u c c e s s e x h i b i t e d i n t h e f i r s t r u n , t h e q u e s t i o n o f t h e u p p e r c o n c e n t r a t i o n o f t r e a t a b i l i t y s u r f a c e d . The more c o n c e n t r a t e d t h e m i x t u r e , t h e l e s s t r e a t m e n t b a t c h e s w o u l d be r e q u i r e d o n s i t e . T h u s , f i n d i n g t h e maximum l e v e l o f t r e a t a b i l i t y o f t h e w a s t e , w i t h o u t e x p o s i n g t h e b a c t e r i a t o a t o x i c l e v e l was a p r i o r i t y . H owever, i t was q u i t e p o s s i b l e t h a t t h i s o r g a n i c l o a d was t o o c o n c e n t r a t e d f o r t h e o r g a n i s m s t o h a n d l e . M ore p a r a m e t e r s w e r e m o n i t o r e d d u r i n g t h i s b a t c h t h a n t h e p r e v i o u s o ne, i n o r d e r t o g e t a b e t t e r u n d e r s t a n d i n g o f t h e t r e a t m e n t o c c u r r i n g . COD, pH, TSS a n d VSS w e r e m o n i t o r e d t w i c e p e r week a n d m e t a l s , B0D 5 a n d GC t r a c e s w e r e s t u d i e d a t v a r i o u s i n t e r v a l s d u r i n g t h e p r o c e s s . The COD a n d B0D 5 t e s t s became a p r o b l e m d u r i n g t h i s b a t c h due t o t h e h i g h c o n c e n t r a t i o n o f s l u d g e p r e s e n t i n t h e t e s t r e a c t o r s . To p e r f o r m a COD t e s t , t h e s a m p l e s h a d t o be d i l u t e d t o b e t w e e n 200 a n d 1000 mg/L, w h i c h i s t h e r a n g e f o r t h e COD HACH p r o c e d u r e . T h i s meant d i l u t i n g t h e s a m p l e s up t o 100 t i m e s i t ' s o r i g i n a l c o n c e n t r a t i o n . T a k i n g a s a m p l e w h i c h was n o t f u l l y m i x e d w o u l d i n c u r a l a r g e e r r o r , s i n c e t h a t s m a l l e r r o r w o u l d be m a g n i f i e d 100 t i m e s . A l s o , t h e d a y t o d a y 49 Parameter: R e a c t o r 1 R e a c t o r 2 R e a c t o r 3 R e a c t o r 4 C o n t e n t s S l u d g e , water, b l e a c h . ( C o n t r o l ) S ludge, water, n u t r i e n t s , seed. S l u d g e , water, n u t r i e n t s , seed. S1udge, water, seed. Sludge V o l . (L) 5 6 6 4 D i l u t i o n water (L) 10 9 9 11 N u t r i e n t l o a d (mg/L) None N= 1 332 P= 267 N= 1 332 P= 267 None I n i t i a l T o t a l COD (mg/L) 96 350 113 849 .113 849 64 840 I n i t i a l S u p e r n a t a n t COD (mg/L) 8 543 9 856 6 138 3 513 PH 5.98 8.67 8.63 6.20 T a b l e 4.1.6: I n i t i a l c o n d i t i o n s a t the s t a r t of the f o u r t h t e s t run. v a r i a b i l i t y i n t h e COD had t o be examined c a r e f u l l y due t o t h e l a c k o f p r e c i s i o n o f t h e HACH t e s t . I t would be p o s s i b l e f o r t r e a t m e n t t o be o c c u r r i n g a t a lower r a t e t h a n t h e t e s t c o u l d m o n i t o r . L o o k i n g a t t h e T o t a l COD graph and S u p e r n a t a n t COD vs t i m e f o r the p r o c e s s . F i g u r e s 4.1.4 and 4.1.5, t h e f i r s t o b s e r v a t i o n i s the g e n e r a l v a r i a b i l i t y o f t h e day t o day samples. To t r y and overcome t h i s problem, two samples were t a k e n and t h e average o f the r e s u l t was used. I n terms o f t h e T o t a l COD graph, t h e l o w e s t o v e r a l l v a r i a b i l i t y can be seen i n R e a c t o r 4, w h i c h proceeds from i t ' s i n i t i a l T o t a l COD v a l u e o f about 60 000 mg/L t o below 20 000 mg/L a t t h e end o f t h e batch.' L o o k i n g a t t h e f i r s t two samples, 50 t h o s e on d a y 1 a n d d a y 3, a l l t h e r e a c t o r s show a g e n e r a l downward t r e n d , t h e r e b y g i v i n g t h e i m p r e s s i o n t h a t no l a g p h a s e o r b a c t e r i a l a c c l i m a t i z a t i o n p e r i o d o c c u r r e d . However, t h e b a t c h s t i l l h a d t o be r u n f o r 85 d a y s a n d t h e r e s u l t a n t t r e a t m e n t d o e s n o t a p p e a r f a v o u r a b l e i n t e r m s o f T o t a l COD r e d u c t i o n . T h i s i s e s p e c i a l l y t r u e when t a k i n g i n t o a c c o u n t t h a t t h e c o n t r o l a p p e a r s t o be one o f t h e b e s t p e r f o r m i n g u n i t s i n t e r m s o f T o t a l COD r e d u c t i o n . The r e a s o n f o r t h e e x t r e m e l y l o n g b a t c h was t h e r e seemed t o be l i t t l e o r no p r o g r e s s i n t e r m s o f T o t a l COD r e m o v a l . T h e r e was a g e n e r a l downward t r e n d i n t h e T o t a l COD o f t h e r e a c t o r s up t o d a y 40 b u t t o t a l COD o f t h e r e a c t o r s s t i l l r e m a i n e d q u i t e h i g h . A n o t h e r p r o b l e m was t h a t t h e T o t a l COD o f t h e c o n t r o l was a l s o d e c r e a s i n g . T h i s seemed t o i n d i c a t e t h a t t h e r e was c o n s i d e r a b l e v o l a t i l i z a t i o n a n d t h a t m i n i m a l t r e a t m e n t was o c c u r r i n g i n a l l t h e e x p e r i m e n t a l v e s s e l s . I n f a c t v o l a t i l i z a t i o n a p p e a r e d t o be t h e l e a d i n g t r e a t m e n t f o r t h e r u n . The v o l a t i l i z a t i o n p r o c e s s a p p e a r s t o h a v e b e e n s l o w s i n c e t h e a e r a t i o n r a t e l o w a n d b e c a u s e most o f t h e s l u d g e c o n s i s t e d o f h i g h m o l e c u l a r w e i g h t o r g a n i c s w h i c h w e r e r e s i s t a n t t o v o l a t i l i z a t i o n . To e x a m i n e t h i s c o n c e p t f u r t h e r , a t d a y 40, s t a i n e d s l i d e s w e r e p r e p a r e d o f t h e b a c t e r i a l c u l t u r e s i n r e a c t o r s 1 a n d 2. I t was q u i t e p o s s i b l e t h a t o r g a n i s m s w e r e p r e s e n t i n t h e c o n t r o l w h i c h w o u l d a c c o u n t f o r t h e r e d u c t i o n i n T o t a l COD. A l t h o u g h b l e a c h h a d 51 FIGURE 4.1.4 TOTAL COD CONCENTRATION OVER TIME FOR R U N 4 150 , , 0 1 1 1 1 1 1 1 1 1 J 0 10 20 30 40 50 60 70 80 90 TIME (DAYS) + R# 1 C O N T R O L R#2 NUTRJENTS+SEED R#3 NUTRIENTS+SEED _ ^ R#4 SEED 52 o r i g i n a l l y b e e n a d d e d t o t h e c o n t r o l , i t i s p o s s i b l e t h a t t h i s s i m p l y s l o w e d t h e h a r d i e r o r g a n i s m s a n d d i d n o t k i l l them. The s l i d e s r e v e a l e d a s m a l l number o f m i c r o o r g a n i s m s w e r e p r e s e n t i n t h e c o n t r o l . However, i t was d i f f i c u l t t o d i f f e r e n t i a t e t h e a c t i v e b a c t e r i a f r o m t h e o r g a n i c m a t t e r p r e s e n t . The r e s u l t s o f t h e s l i d e f r o m R e a c t o r 2 w e r e a l s o i n c o n c l u s i v e . S i n c e t h e T o t a l COD d e g r a d a t i o n a f t e r d a y 27 i n t h e R e a c t o r 2 seemed s t a l l e d a n d t h e p r e s e n c e o f a n a c t i v e m i c r o b i a l c u l t u r e was i n q u e s t i o n , t h e r e a c t o r was r e s e e d e d w i t h a c t i v a t e d s l u d g e f r o m t h e o n s i t e t r e a t m e n t p l a n t a n d d i l u t i o n w a t e r was a d d e d t o t h e r e a c t o r . The p u r p o s e was t o t r y a n d e n r i c h t h e c u l t u r e p r e s e n t i n t h e r e a c t o r . The m a n o e u v r e s d i d n o t a f f e c t t h e t r e a t m e n t o c c u r r i n g , s i n c e t h e d e c r e a s e o b s e r v e d i n t h e T o t a l COD c o u l d s i m p l y be a t t r i b u t e d t o t h e d i l u t i o n . On d a y 37, t h r e e d a y s a f t e r t h e s e e d a d d i t i o n , a n o x y g e n u p t a k e t e s t was p e r f o r m e d t o d e t e r m i n e t h e l e v e l o f b i o l o g i c a l a c t i v i t y i n R e a c t o r 2. The r a t e o f o x y g e n u p t a k e was 0.33 mg 0 2/L m i n , w h i c h i n d i c a t e s t h a t t h e m i c r o o r g a n i s m s w e r e m e t a b o l i c a l l y a c t i v e . However, l o o k i n g a t t h e pH p r o f i l e o f t h e r u n , i t c a n be o b s e r v e d i n F i g u r e 4.1.6 t h a t t h e pH i n t h e r u n n i n g r e a c t o r s o v e r t h e r u n was f a i r l y s t a b l e . P a s t e x p e r i e n c e and l i t e r a t u r e i n d i c a t e d t h a t a pH d r o p w o u l d i n c u r , a s t h e o r g a n i c d e g r a d a t i o n p r o c e e d s i n a n o n b u f f e r e d s y s t e m s u c h a s t h i s one ( L a l l a i 1 9 8 9 ) . A s t h e o r g a n i c compounds a r e b r o k e n down, C0 2 w i l l be r e l e a s e d 53 i n t o t h e s o l u t i o n . S i n c e t h e r e a c t o r s have l i t t l e o r no b u f f e r i n g a b i l i t y t h e pH would d e c r e a s e w i t h t h e f o r m a t i o n o f c a r b o n i c a c i d . S i n c e t h i s p r o c e s s was not o c c u r r i n g , i t was a n o t h e r i n d i c a t i o n t h a t t h e d e g r a d a t i o n p r o c e s s was o c c u r r i n g a t q u i t e a slow r a t e . On day 47, more t e s t s were run t o t r y t o q u a n t i f y t h e l e v e l o f m i c r o b i a l a c t i v i t y . Oxygen uptake t e s t s were performed on each r e a c t o r , even t h e c o n t r o l , and m i c r o b i a l p l a t e c o u n t s were performed on R e a c t o r 1 ( t h e c o n t r o l ) and R e a c t o r 3. The r e a s o n f o r c h o o s i n g R e a c t o r 3 was t h a t i t had t h e h i g h e s t oxygen uptake r a t e and t h e r e f o r e seemed t o have t h e most a c t i v e biomass. The most s t r i k i n g i n f o r m a t i o n p r o v i d e d by T a b l e 4.1.7 was t h a t t h e r e was c o n s i d e r a b l e b i o l o g i c a l a c t i v i t y i n t h e c o n t r o l . T h i s c r e a t e d a s i g n i f i c a n t problem s i n c e t h e c o n t r o l was supposed t o be used t o m o n i t o r l o s s e s due t o v o l a t i l i z a t i o n . A l l t h e l o s s e s i n terms o f T o t a l COD c o u l d no l o n g e r s i m p l y be a t t r i b u t e d t o v o l a t i l i z a t i o n . The r a t e o f oxygen uptake shows t h a t b i o l o g i c a l a c t i v i t y was o c c u r r i n g , a l t h o u g h a t a s i g n i f i c a n t l y l o wer r a t e t h a n i n t h e t e s t r e a c t o r s . The p r e s e n c e o f a c o n s i d e r a b l e c u l t u r e of m i c r o o r g a n i s m s was c o n f i r m e d i n t h e p l a t e c o u n t . B a c t e r i a were p r e s e n t on t h e 4 t h o r t h e 10000 t h d i l u t i o n ; w h i l e i n R e a c t o r 3 b a c t e r i a were p r e s e n t on t h e 6 t h o r 1 m i l l i o n t h d i l u t i o n . I t t h u s appears t h a t t h e c o n t r o l had been c o n t a m i n a t e d and t h u s , t h e r e s u l t s were riot v a l i d . 54 FIGURE 4.1.6 PH OVER TIME FOR R U N 4 10 r -0 10 20 30 40 50 60 70 80 90 T I M E ( D A Y S ) B REACTOR 1 - CONTROL REACTOR 2 - SEED+NUT. _ ^ REACTOR 3 - SEED+NUT. _\u00E2\u0080\u00A2_ REACTOR 4 - SEED 55 R e a c t o r : O x y g e n U p t a k e R a t e : (mg 0 2 /L m i n ) 1 ( C o n t r o l ) 0.15 2 0.27 3 0.43 4 0.3 T a b l e 4.1.7: Oxygen uptake Rate determined i n the r e a c t o r s on Day 47 o f the f o u r t h run. On d a y 50, t o c o r r e c t t h e p r o b l e m w i t h t h e c o n t r o l , 1 c u p o f b l e a c h was a d d e d t o t h e r e a c t o r . S i n c e R e a c t o r 2 seemed s t a l l e d i n t e r m s o f T o t a l COD r e d u c t i o n due t o t h e p o s s i b l e p r e s e n c e o f an i n h i b i t o r y compound, a n d t h e o x y g e n u p t a k e r a t e was a l m o s t h a l f t h a t o f R e a c t o r 3, i t was d i l u t e d a n d r e s e e d e d . 10 l i t r e s w e r e r e m o v e d f r o m r e a c t o r 2 a n d r e p l a c e d b y d i s t i l l e d w a t e r . One c u p o f t h e c o n t e n t s o f R e a c t o r 3 was a d d e d t o R e a c t o r 2 i n o r d e r t o i m p r o v e t h e m i c r o b i a l c u l t u r e . The d i l u t i o n a i m e d t o r e d u c e t h e c o n c e n t r a t i o n o f t h e a p p a r e n t i n h i b i t o r y compound p r e s e n t i n r e a c t o r 2 t o a l e v e l w h i c h w o u l d n o t a f f e c t t h e g r o w t h o f t h e c u l t u r e . S e e d i n g t h e r e a c t o r s o u g h t t o i m p r o v e t h e q u a l i t y a n d d i v e r s i t y o f t h e o r g a n i s m s p r e s e n t a n d t h e r a t e o f d e g r a d a t i o n i n t h e r e a c t o r . A l t h o u g h t h e c o n c e n t r a t i o n i n t h e r e a c t o r h a d b e e n r e d u c e d f r o m a T o t a l COD o f 70 000 t o 40 000 mg/L, no i m m e d i a t e e f f e c t was o b s e r v e d i n t h e r a t e o f d e g r a d a t i o n i n t h e r e a c t o r . I t was p o s s i b l e t h a t t h e c u l t u r e was n o t a b l e t o r e c o v e r f r o m t h e t o x i c e f f e c t s o f t h e i n h i b i t o r y s u b s t a n c e . On d a y 57, two p a r a m e t e r s w e r e c h e c k e d t o e x a m i n e i f t h e y w e r e 56 i n t e r f e r i n g w i t h g r o w t h . The n u t r i e n t l e v e l i n t h e r e a c t o r was m e a s u r e d . A d e f i c i e n c y o f n u t r i e n t s w o u l d i n h i b i t t h e b r e a k down o f o r g a n i c s . N i t r o g e n a n d p h o s p h o r u s w e r e p r e s e n t i n a l l t e s t r e a c t o r s i n c o n c e n t r a t i o n i n e x c e s s o f 10 mg/L, t h u s e l i m i n a t i n g n u t r i e n t d e f i c i e n c y a s a f a c t o r . S e c o n d l y , t h e c o n c e n t r a t i o n s o f c o p p e r a n d c o b a l t i n t h e r e a c t o r s w e r e m e a s u r e d . T o t a l C o p p e r was p r e s e n t i n c o n c e n t r a t i o n s r a n g i n g f r o m 40 t o 50 mg/L i n t h e r e a c t o r s . However, t h e d i s s o l v e d c o p p e r was n o t e x a m i n e d ; t h i s w o u l d h a v e g i v e n a c l e a r e r i n d i c a t i o n o f t h e d i r e c t e f f e c t o f t h e m e t a l s on t h e c u l t u r e . The r u n a s a w h o l e was n o t a s u c c e s s due t o a l l t h e p r o b l e m s e n c o u n t e r e d . The T o t a l COD r e d u c t i o n was r e a s o n a b l e ; h o w e v e r c o n c l u s i o n s a r e d i f f i c u l t s i n c e t h e c o n t r o l was c o n t a m i n a t e d . The r e d u c t i o n o f t h e o r g a n i c c o n s t i t u e n t s was i m p r e s s i v e b u t e v e n t h e c o n t a m i n a t e d c o n t r o l a l s o showed a l a r g e r e d u c t i o n . On d a y 78, a d e c i s i o n was made t o a b a n d o n p a r t o f t h e b a t c h and t o d e s i g n a new b a t c h e x p e r i m e n t . R e a c t o r 2 was e m p t i e d a n d t h e r e m a i n i n g r e a c t o r s w e r e l e f t t o c o n t i n u e t h e r u n f o r a n o t h e r week. A t t h a t p o i n t , t h e r e m a i n i n g r e a c t o r s w e r e c o n v e r t e d f o r t h e s t a r t o f a new s e t o f e x p e r i m e n t s . A l t h o u g h a l a r g e r e d u c t i o n was o b s e r v e d i n t h e T o t a l COD o f t h e t e s t r e a c t o r s , t h e q u a l i t y o f t h e s l u d g e h a d n o t m a r k e d l y 57 Parameter: R e a c t o r l R e a c t o r 2 R e a c t o r 3 R e a c t o r 4 I n i t i a l T o t a l COD: (mg/L) 96 350 113 850 113 850 64 850 F i n a l T o t a l COD: (mg/L) a f t e r 78 days 19 869 (57 483 mg/L r e d u c t i o n a t t r i b u t e d t o d i l u t i o n ) 25 982 22 926 12 227 Q. D i f f e r e n c e : 79.4 26.7* 79.9 81.1 T a b l e 4.1.8: Reduction i n T o t a l COD d u r i n g run 4 i n 78 days.* Treatment due t o d e g r a d a t i o n a l o n e , w i t h o u t e f f e c t o f d i l u t i o n . improved ( T a b l e 4.1.8). The p h y s i c a l c h a r a c t e r i s t i c s o f t h e s l u d g e had not changed g r e a t l y d u r i n g t h e c o u r s e o f ex p e r i m e n t . The s l u d g e s t i l l had an e a r t h y c o l o u r . I t had a s i g n i f i c a n t , y e t l e s s pronounced s t r o n g c h e m i c a l odour and an i r i d e s c e n t f i l m s t i l l f l o a t e d on t h e s u r f a c e o f t h e s l u d g e . T a b l e 4.1.9 i n d i c a t e s t h a t many o f t h e t a r g e t o r g a n i c compounds where s t i l l p r e s e n t i n l a r g e c o n c e n t r a t i o n s . These were a l l i n d i c a t i o n s o f an i n c o m p l e t e d e g r a d a t i o n p r o c e s s . Sludge s e t t l i n g problems were a l s o e x p e r i e n c e d . Even when l e f t f o r a p e r i o d o f twenty f o u r h o u r s , t h e s l u d g e would not s e t t l e . The l i t e r a t u r e i n d i c a t e s t h a t t h e problem w i t h a h i g h o r g a n i c m a t t e r l o a d i n g r a t e , e s p e c i a l l y h y d r o c a r b o n , i s t h a t b i o f l o c s e t t l e a b i 1 i t y i s i m p a i r e d . Some have h y p o t h e s i s e d t h a t t h e b i o f l o c becomes c o a t e d w i t h a h y d r o p h o b i c l a y e r , w h i c h a f f e c t s i t ' s p h y s i c a l and b i o c h e m i c a l performance (Rebhun 1988). Another p o s s i b l e cause f o r t h e problem, i n t h i s c a s e , i s t h e pr e s e n c e o f f l y ash i n t h e s l u d g e . The pre s e n c e o f 58 Compound: R e a c t o r l R e a c t o r 2 R e a c t o r 3 R e a c t o r 4 X y l e n e 100 100 100 100 D i p h e n y l 82.1 90.6 96.9 71.1 D i p h e n y l E t h e r 66.0 48.4 84.0 73.1 D i p h e n y l M e t h a n e 47.9 26.6 68.7 0 B e n z e n e , 1,1* M e t h y l e n e B i s (di-m e t h y l ) 25.4 22.6 66.3 0 1,2-D i m e t h y l - 4 B e n z y l B e n z e n e 100 88.1 94.2 100 T a b l e 4.1.9: Percent r e d u c t i o n i n the 6 t a r g e t o r g a n i c compounds f o r run 4 i n 78 days. t h e s e s m a l l m o l e c u l e s i m p e d e s t h e t i m e l y s e t t l i n g o f t h e s l u d g e . I t i s q u i t e p o s s i b l e , h o w e v e r , t h a t i f t h e o r g a n i c c o m p o n e n t s i n t h e s l u d g e w e r e t o t a l l y d e g r a d e d , t h e s e p r o b l e m s w o u l d n o t o c c u r . F u t u r e r u n s w o u l d be u s e d t o p r o v e t h i s h y p o t h e s i s . C o n s i d e r a b l e i n f o r m a t i o n h a d b e e n a c q u i r e d f r o m t h i s u n s u c c e s s f u l r u n . F i r s t l y , t h e r a t e o f a e r a t i o n was v e r y i m p o r t a n t . The m a i n p u r p o s e was t o s a t i s f y t h e r e q u i r e m e n t s o f t h e b a c t e r i a . However, on some o c c a s i o n , t h e a e r a t i o n s y s t e m h a d b e e n u s e d f o r m i x i n g t h e c o n t e n t s o f t h e r e a c t o r . T h i s p r o c e s s w o u l d be d i s c o n t i n u e d s i n c e a n y e x c e s s a i r s i m p l y l e a d s t o t h e u n n e c e s s a r y v o l a t i l i z a t i o n o f t h e o r g a n i c c o n s t i t u e n t s o f t h e s l u d g e . The m i x e r s w o u l d be u s e d t o p r o d u c e s a u n i f o r m l y m i x e d c u l t u r e . M i x i n g i s one o f t h e most i m p o r t a n t p a r a m e t e r s r e q u i r e d f o r 59 g r o w t h . I t a s s u r e s t h e d i s t r i b u t i o n and a v a i l a b i l i t y o f n u t r i e n t s a n d o x y g e n t o t h e g r o w i n g b a c t e r i a l c e l l s (Deepak 1 9 9 4 ) . S t u d i e s a n a l y z i n g t h e d e g r a d a t i o n r a t e o f sewage s l u d g e e m p h a s i z e t h a t t h e p r e s e n c e o f h e a v y m e t a l s g r e a t l y a f f e c t s t h e r a t e o f b i o d e g r a d a t i o n . The c o n c e n t r a t i o n o f d i s s o l v e d m e t a l s a r e s a i d t o d i r e c t l y i n t e r f e r e w i t h t h e g r o w t h o f t h e b a c t e r i a and t h u s p r e v e n t t h e d e g r a d a t i o n o f t h e s l u d g e . A d i s s o l v e d c o p p e r c o n c e n t r a t i o n o f 1 mg/L h a s b e e n shown t o d e c r e a s e t h e r a t e o f T o t a l BOD 5 d e g r a d a t i o n o f sewage s l u d g e b y 40 p e r c e n t (Mowat 1 9 7 6 ) . However, s i n c e t h e m i x t u r e o f o r g a n i s m s f o u n d i n t h e r e a c t o r s d i f f e r s g r e a t l y f r o m t h o s e f o u n d i n a s y s t e m d e g r a d i n g sewage s l u d g e , i t i s q u i t e p o s s i b l e t h a t t h e m i c r o o r g a n i s m s i n t h e r e a c t o r s a r e more h a r d y o r c a n a d a p t more r e a d i l y t o h i g h d i s s o l v e d c o p p e r c o n c e n t r a t i o n . T h e r e f o r e , i t i s q u i t e p o s s i b l e t h a t t h e i n h i b i t o r y c o p p e r l e v e l i n t h i s t y p e o f s y s t e m i s c o n s i d e r a b l y h i g h e r t h a n i n a s y s t e m d e g r a d i n g sewage s l u d g e . However, t h e r e i s no i n f o r m a t i o n i n t h e l i t e r a t u r e t o i n d i c a t e i n h i b i t o r y h e a v y m e t a l l e v e l s i n a c o n c e n t r a t e d c h e m i c a l i n d u s t r i a l w a s t e . The m o n i t o r i n g o f b o t h t o t a l a n d d i s s o l v e d f o r m s o f c o p p e r a n d c o b a l t m i g h t s h e d some l i g h t o n t h e p r o b l e m s s u r r o u n d i n g t h e T o t a l COD r e d u c t i o n . C o n s t a n t m o n i t o r i n g m i g h t a l s o i d e n t i f y when c o n c e n t r a t i o n s a p p r o a c h e d p o s s i b l e t o x i c l i m i t s a n d a c t i o n s c o u l d t h e n be t a k e n t o r e m e d i a t e t h e s i t u a t i o n t o i n s u r e t h e c o n t i n u a t i o n o f t h e b a t c h . 60 The p r e s e n c e o f n u t r i e n t s i s e s s e n t i a l f o r t h e g r o w t h o f m i c r o o r g a n i s m s . The a b s e n c e o f e i t h e r n i t r o g e n o f p h o s p h o r u s w o u l d i n h i b i t g r o w t h a n d c a u s e a s t a l l i n t h e T o t a l COD d e g r a d a t i o n . From t h i s p o i n t , t h e m o n i t o r i n g o f n u t r i e n t s w o u l d be done on a c o n t i n u o u s b a s i s . E a c h s a m p l e t a k e n w o u l d be t e s t e d f o r t h e p r e s e n c e o f n i t r o g e n a n d p h o s p h o r u s . The u t i l i z a t i o n o f t h e n u t r i e n t s w o u l d a l s o i n d i c a t e t h e d e g r e e o f a c t i v i t y o f t h e b a c t e r i a . I f n u t r i e n t s w e r e p r e s e n t , y e t w e r e n o t b e i n g u t i l i z e d t h e n t h i s w o u l d i n d i c a t e t h a t some o t h e r a g e n t was r e s p o n s i b l e f o r t h e g r o w t h i n h i b i t i o n o f t h e c u l t u r e . The e s t a b l i s h m e n t o f a r e l i a b l e c o n t r o l was e s s e n t i a l . However, i n r u n 4, a h i g h c o n c e n t r a t i o n o f b a c t e r i a was p r e s e n t i n t h e c o n t r o l r e a c t o r . T h e r e f o r e , i t i s n o t c l e a r w h e t h e r d e g r a d a t i o n o r v o l a t i l i z a t i o n was r e s p o n s i b l e f o r t h e c h a n g e i n t h e o r g a n i c c o n c e n t r a t i o n . M o n i t o r i n g a n d m a i n t e n a n c e o f a c o n t r o l was e s s e n t i a l f o r a c c u r a t e c o n c l u s i o n s t o be d r a w n a b o u t t h e p r o c e s s . 61 4B. R e s u l t s and D i s c u s s i o n ( C o n t i n u e d ) : B a t c h e s With Metal T o x i c i t y Problems. The purpose o f t h e f o l l o w i n g s e t o f runs was: 1) To e s t a b l i s h a r e p r e s e n t a t i v e c o n t r o l f r e e from c o n t a m i n a t i o n . 2) To m o n i t o r more c l o s e l y t h e n u t r i e n t and t h e metal c o n c e n t r a t i o n s i n t h e r u n n i n g r e a c t o r s . 3) To c u t t h e l e n g t h o f t h e b a t c h r u n s , w h i l e a c h i e v i n g a h i g h e r degree o f t r e a t m e n t . Run #5 A new r e a c t o r was e s t a b l i s h e d f o r t h i s r u n , s i n c e t h e p r e v i o u s r u n was not t e r m i n a t e d f o r a l l t h e r e a c t o r s . R e a c t o r 2 was stopped a t 78 days, but t h e o t h e r t h r e e r e a c t o r s c o n t i n u e d f o r a n o t h e r week. Due t o space l i m i t a t i o n s , t h e new c o n t r o l was a f i v e l i t r e b ucket w h i c h c o u l d s i t between t h e l a r g e r r e a c t o r s . The c o n t e n t s o f t h e r u n n i n g r e a c t o r s f o r run 5 a r e shown i n T a b l e 4.2.1: Parameter: R e a c t o r 2 R e a c t o r 5 ( C o n t r o l ) Sludge volume (L) 2 0.5 D i l u t i o n Water (L) 13 4.5 T o t a l Volume (L) 15 5 ( i n c l u d i n g 100ml b l e a c h ) I n i t i a l T o t a l COD (mg/L) 19 885 19 121 I n i t i a l S u p e r n a t a n t COD (mg/L) 1 438 960 PH 8.73 7.06 Table 4.2.1: I n i t i a l conditions i n the reactors at the s t a r t of run 5. 62 The f i r s t o b s e r v a t i o n t o be made when l o o k i n g a t T a b l e 4.2.1 i s t h a t o n l y two r e a c t o r s w e r e b e i n g r u n f o r t h i s b a t c h : a t e s t r e a c t o r a n d a c o n t r o l . The s e c o n d p o i n t i s t h e m a g n i t u d e o f t h e i n i t i a l T o t a l COD i n t h e r e a c t o r s . The l o w e r s t a r t i n g c o n c e n t r a t i o n was c h o s e n i n o r d e r t o d e c r e a s e t h e i n i t i a l c o n c e n t r a t i o n o f t h e m e t a l s and t h e v a r i o u s o r g a n i c compounds f o u n d i n t h e w a s t e m i x t u r e . The a e r a t i o n s y s t e m was t e s t e d a n d s e t i n o r d e r t o y i e l d no more t h a n 2.5 mg/L o f d i s s o l v e d o x y g e n i n t h e r e a c t o r s . The r u n r e s u l t e d i n t h e most s u c c e s s f u l d a t a t o d a t e , i n t e r m s o f T o t a l COD a n d o r g a n i c s d e g r a d a t i o n . L o o k i n g a t F i g u r e 4.2.1, t h e T o t a l COD o v e r t i m e g r a p h shows t h a t t h e r e was a l m o s t a 50 % d e c r e a s e i n t h e c o n c e n t r a t i o n o f t h e r u n n i n g r e a c t o r i n t h e f i r s t t h r e e d a y s . The r e d u c t i o n i n T o t a l COD c a n n o t s i m p l y be a t t r i b u t e d t o v o l a t i l i z a t i o n , s i n c e t h e r e i s l i t t l e o v e r a l l c h a n g e i n t h e T o t a l COD o f t h e c o n t r o l . F u r t h e r e v i d e n c e o f t r e a t m e n t c a n be s e e n i n t h e c h a n g e s o f t h e pH a n d t h e VSS/TSS r a t i o o v e r t i m e . The pH v s t i m e g r a p h . F i g u r e 4.2.3, shows a c o n s i d e r a b l e d e c r e a s e o v e r t h e f i r s t t w e n t y d a y s , f o l l o w e d b y a p e r i o d o f l e v e l l i n g o f f . The r a p i d d e c r e a s e i n t h e pH i n d i c a t e s t h a t c o n s i d e r a b l e o r g a n i c m a t t e r d e g r a d a t i o n was p r o b a b l y o c c u r r i n g . As e x p l a i n e d e a r l i e r , t h e d e g r a d a t i o n p r o c e s s l e a d s t o t h e a c c u m u l a t i o n o f C0 2 i n t h e r e a c t o r a n d n o r m a l l y r e s u l t s i n a r e d u c t i o n o f t h e pH. 63 FIGURE 4.2.1 T O T A L C O D C O N C E N T R A T I O N VS T I M E FOR R U N 5 25 O H H O o o Q o o \"rt \u00E2\u0080\u00A2<-> o H 20 15 10 10 REACTOR 2 20 30 DAYS 40 50 REACTOR 5 CONTROL FIGURE 4.2.2 S U P E R N A T A N T C O D C O N C E N T R A T I O N VS T I M E FOR R U N 5 O \u00E2\u0080\u00A2\u00E2\u0080\u0094< H w o o u Q O U 1=5 S3 03 C/5 T3 4 g f S 3 10 20 30 40 50 DAYS REACTOR 2 REACTOR 5 CONTROL 64 65 The VSS/TSS g r a p h . F i g u r e 4.2.4, shows a s l i g h t i n c r e a s e i n t h e r a t i o a s t h e e x p e r i m e n t p r o c e e d s . T h i s p a r a m e t e r i s u s e d t o m o n i t o r t h e c h a n g e s i n b i o m a s s c o n c e n t r a t i o n i n t h e r e a c t o r . An i n c r e a s i n g b i o m a s s i n d i c a t e s t h a t a n i n c r e a s i n g p o p u l a t i o n o f v i a b l e m i c r o o r g a n i s m s a r e u t i l i z i n g t h e o r g a n i c c o n t e n t s o f t h e r e a c t o r a s a f o o d / c a r b o n s o u r c e . The p r e s e n c e o f n u t r i e n t s d u r i n g t h e r u n c a n be o b s e r v e d i n F i g u r e s 4.2.5 a n d 4.2.6. The p h o s p h o r u s c o n c e n t r a t i o n g r a p h v s t i m e shows t h e c o n s t a n t p r e s e n c e o f a b u n d a n t r e s i d u a l p h o s p h o r u s i n t h e r e a c t o r . However, t h e ammonia v s t i m e g r a p h i n d i c a t e s a d i f f e r e n t s i t u a t i o n . On d a y 18, ammonia was a b s e n t f r o m t h e s y s t e m . T h i s i s due t o t h e f a c t t h a t ammonia i s u s e d b y t h e s y s t e m a t a h i g h e r r a t e t h a n p h o s p h o r u s was. However, b o t h w e r e a d d e d i n t h e same p r o p o r t i o n f o r t h i s r u n . W i t h c o n s t a n t m o n i t o r i n g , t h e p r o b l e m was r e c o g n i z e d a n d q u i c k l y c o r r e c t e d . I t i s d i f f i c u l t t o d e t e r m i n e t h e e f f e c t t h a t t h e d e p r i v a t i o n o f t h e e s s e n t i a l n u t r i e n t h a d o n t h e s y s t e m . The T o t a l COD v s t i m e g r a p h , F i g u r e 4.2.1 d o e s n o t show a n y e f f e c t . A l l t h e d e g r a d a t i o n i n t e r m s o f T o t a l COD o c c u r r e d i n t h e f i r s t 10 d a y s o f t h e e x p e r i m e n t a l r u n . T h e r e i s a s l i g h t c h a n g e i n t h e VSS/TSS r a t i o g r a p h o v e r t h e s t a r v a t i o n p e r i o d t h o u g h , b u t n o t h i n g c o n c l u s i v e . The l a c k o f n i t r o g e n may h a v e c a u s e d t h e m e t a b o l i s m o f t h e c e l l s t o s l o w , t h u s r e d u c i n g t h e r a t e o f c a r b o n u s a g e . The s u p e r n a t a n t COD g r a p h o v e r t i m e . F i g u r e 4.2.2 shows some i n t e r e s t i n g r e s u l t s d u r i n g t h e c o u r s e o f t h e r u n . The s u p e r n a t a n t 66 F I G U R E 4 . 2 . 5 P H O S P H O R U S C O N C E N T R A T I O N V S T I M E F O R R U N 5 1 0 R E A C T O R 2 2 0 3 0 TIME (DAYS) 4 0 5 0 R E A C T O R 5 (CONTROL) 6 7 COD c o n c e n t r a t i o n s s t a r t o f f l o w b u t c l i m b a s t h e r u n p r o c e e d e d . T h i s i n d i c a t e s t h a t c o m p o n e n t s o f t h e s l u d g e w e r e s o l u b i l i z i n g a s t h e r u n p r o g r e s s e d . A t t h e b e g i n n i n g o f t h e r u n , t h e s o l u b l e COD c o n c e n t r a t i o n was 1 438 mg/L o r 7.2% o f t h e T o t a l COD. A t t h e e n d o f t h e r u n , t h e s o l u b l e COD c o n s i s t e d o f 4 118 mg/L o r 5 4 . 6 % o f t h e T o t a l . The o r g a n i c s a p p e a r e d t o be a c c u m u l a t i n g i n t h e s u p e r n a t a n t f a s t e r t h a n t h e m i c r o o r g a n i s m s u s a g e r a t e i n t h e m i x e d l i q u o r . As n o t e d f r o m T a b l e s 4.2.2 a n d 4.2.3, t h e b i o l o g i c a l p r o c e s s was s u c c e s s f u l i n d e g r a d i n g most o f t h e t a r g e t o r g a n i c compounds i n t h e s l u d g e t o b e l o w t h e d e t e c t i o n l i m i t o f t h e GC i n 41 d a y s . D e p e n d i n g on t h e s p e c i f i c compound, t h e r e d u c t i o n c a n be p a r t i a l l y a t t r i b u t e d t o v o l a t i l i z a t i o n . Compounds, s u c h a s X y l e n e , w h i c h a r e o f l o w m o l e c u l a r w e i g h t , a r e more e a s i l y v o l a t i l i z e d t h e n h e a v i e r compounds. However, n o t a l l t h e X y l e n e r e d u c t i o n c a n be a t t r i b u t e d t o v o l a t i l i z a t i o n . From t h e GC t r a c e , X y l e n e d i s a p p e a r e d f r o m t h e t e s t r e a c t o r a f t e r 7 d a y s ; h o w e v e r , i n t h e c o n t r o l , a f t e r 42 d a y s t h e r e was s t i l l a r e s i d u a l c o n c e n t r a t i o n p r e s e n t . T h e r e f o r e , q u a n t i f y i n g t h e amount o f v o l a t i l i z a t i o n i s n o t a s s i m p l e a s t h e a r i t h m e t i c d i f f e r e n c e b e t w e e n t h e c o n c e n t r a t i o n i n t h e c o n t r o l a n d t h e t e s t r e a c t o r a f t e r 42 d a y s . I t c a n be c o n c l u d e d t h a t , i f t h e w a s t e m i x t u r e i s a e r a t e d a t a r a t e w h i c h p r o d u c e s 2.5 mg/L o f d i s s o l v e d 0 2 i n t h e r e a c t o r f o r 42 d a y s , t h e X y l e n e c o n t a i n e d i n t h e w a s t e w o u l d be v o l a t i l i z e d . However, t h i s i s n o t what o c c u r r e d . M o s t o f t h e 68 X y l e n e r e d u c t i o n i n t h e t e s t r e a c t o r h a s t o be a t t r i b u t e d t o d e g r a d a t i o n , s i n c e i t d i s a p p e a r e d f r o m t h e r e a c t o r i n one week. A t t h a t p o i n t , o n l y 2 0 % o f t h e X y l e n e i n t h e c o n t r o l h a d v o l a t i l i z e d . P a r a m e t e r : R e a c t o r 2 R e a c t o r 5 ( C o n t r o l ) T o t a l COD (mg/L) ( I n i t i a l ) 19 885 19 121 T o t a l COD (mg/L) A f t e r 41 d a y s 7 548 17 850 % d i f f e r e n c e 62 6.6 T a b l e 4.2.2: R e s u l t s of run 5 i n terms of COD r e d u c t i o n a f t e r 41 days. Compound: R e a c t o r 2 P e r c e n t r e d u c t i o n R e a c t o r 5 ( C o n t r o l ) P e r c e n t r e d u c t i o n X y l e n e 100 94 D i p h e n y l 100 48.7 D i p h e n y l E t h e r 99.3 38.6 D i p h e n y l M e t h a n e 71.2 10.2 B e n z e n e , 1 1 , 1 ' M e t h y l e n e b i s ( 4 -m e t h y l ) 100 48.7 1,2 D i m e t h y l 4 B e n z y l B e n z e n e 100 77.7 T a b l e 4.2.3: Percent r e d u c t i o n o f the t a r g e t o r g a n i c compounds present i n the sludge a f t e r 41 days. The m a j o r t a r g e t compound o f t h e w a s t e m i x t u r e i s D i p h e n y l E t h e r . I t i s p r e s e n t i n t h e l a r g e s t c o n c e n t r a t i o n a n d i s t h e most d i f f i c u l t t o d e g r a d e . G e n e r a l l y , when t h e c o n c e n t r a t i o n o f t h i s compound f a l l s b e l o w t h e d e t e c t i o n l i m i t o f t h e GC, t h e t r a c e w i l l be b l a n k . T h u s , i t s e r v e s a s a ben c h m a r k , i n d i c a t i n g t h e 69 d e g r e e o f t r e a t m e n t t h e s l u d g e h a s r e c e i v e d . I n t h e c a s e o f t h i s r u n , 9 9 . 3 % o f t h e o r i g i n a l D i p h e n y l E t h e r was r e m o v e d . T h e r e f o r e , t h e t r e a t m e n t p r o c e s s was n o t q u i t e c o m p l e t e , b u t was a n i m p r o v e m e n t o v e r p a s t r u n s . The w a s t e was v e r y d i f f i c u l t t o a n a l y z e u s i n g Gas C h r o m a t o g r a p h y due t o i t ' s v a r i e d c h e m i c a l makeup. From week t o week, t h e numbers o b t a i n e d v a r i e d g r e a t l y . Due t o t h i s p r o b l e m , f o r t h e r e m a i n d e r o f t h e s t u d y , t h r e e s l u d g e s a m p l e s w e r e a n a l y z e d on t h e GC a n d t h e a v e r a g e r e s u l t was u s e d . L o o k i n g a t t h e numbers a s a w h o l e , t h e r e s i d u a l T o t a l COD must g e n e r a l l y be composed o f compounds w h i c h do n o t v o l a t i l i z e o r e x t r a c t u n d e r t h e a n a l y t i c a l c o n d i t i o n s , s i n c e no u n i d e n t i f i e d compound shows up o n t h e f i n a l GC t r a c e . T h e s e compounds a r e p r o b a b l y o f l o w m o b i l i t y a n d h i g h m o l e c u l a r w e i g h t . The GC t r a c e o f t h e e n d p r o d u c t i s s i g n i f i c a n t l y d i f f e r e n t f r o m t h e i n i t i a l t r a c e , b o t h i n t e r m s o f t h e number a n d a r e a o f t h e p e a k s . On t h e i n i t i a l t r a c e , o v e r 40 compounds c o u l d be s e e n i n v a r y i n g c o n c e n t r a t i o n s . However, on t h e f i n a l t r a c e f o r t h e r u n n i n g r e a c t o r , o n l y two p e a k s o f s i g n i f i c a n t l y s m a l l e r a r e a w e r e p r e s e n t . The t r a c e s c a n be s e e n i n A p p e n d i x B. The e n d p r o d u c t s l u d g e c o n t a i n e d a l o w c o n c e n t r a t i o n o f D i p h e n y l E t h e r a n d D i p h e n y l M e t h a n e . The GC t r a c e f o r t h e c o n t r o l i s a l s o s l i g h t l y d i f f e r e n t w i t h t h e d i s a p p e a r a n c e o f some l o w e r m o l e c u l a r w e i g h t o r g a n i c s a n d t h e r e d u c t i o n i n a r e a o f o t h e r s . A k e y t o t h e n e x t 70 r u n w o u l d be t o c o n t r o l t h e a e r a t i o n r a t e i n o r d e r t o f u r t h e r r e d u c e t h e v o l a t i l i z a t i o n . The T o t a l COD l o s s i n t h e c o n t r o l was 6.8% o f t h e i n i t i a l c o n c e n t r a t i o n , a s c o m p a r e d t o 66% i n t h e t e s t r e a c t o r . Q u a l i t a t i v e l y , t h e e n d p r o d u c t s l u d g e showed m a r k e d i m p r o v e m e n t . The s l u d g e h a d a f a i n t c h e m i c a l s m e l l a n d t h e i r i d e s c e n t hue o n t h e s u r f a c e o f t h e s l u d g e was l e s s a p p a r e n t . A l s o , t h e s l u d g e s e t t l e d a l i t t l e b e t t e r t h a n i n t h e p a s t , b u t much o f t h e s o l i d s r e m a i n e d i n s u s p e n s i o n . A l t h o u g h c o n s i d e r a b l e p r o g r e s s h a d b e e n made, t h e q u a l i t y o f t h e e f f l u e n t s t i l l n e e d e d t o i m p r o v e . Due t o t h e p r o g r e s s a n d t h e a p p a r e n t s u c c e s s f u l n e s s o f t h e r u n i n t e r m s o f T o t a l COD r e m o v a l , t h e h e a v y m e t a l c o n c e n t r a t i o n i n t h e r e a c t o r s was n o t m o n i t o r e d c l o s e l y . The h e a v y m e t a l s s h o u l d n o t h a v e b e e n a f a c t o r due t o t h e l a r g e i n i t i a l d i l u t i o n o f t h e s l u d g e . The t o t a l c o p p e r c o n c e n t r a t i o n i n R e a c t o r 2 was 52 mg/L. The i n i t i a l d i s s o l v e d c o n c e n t r a t i o n was b e l o w 1 mg/L, b u t b y d a y 18, t h e d i s s o l v e d c o n c e n t r a t i o n h a d r e a c h e d 5 mg/L. S t u d i e s done on sewage s l u d g e s t a t e t h a t d i s s o l v e d c o n c e n t r a t i o n s o f c o p p e r a s l o w a s 0.5 mg/L h a v e b e e n f o u n d t o i n h i b i t g r o w t h . A p p a r e n t l y , t h e o r g a n i s m s i n t h e r e a c t o r a d a p t e d t o h i g h c o p p e r l e v e l s , t h r o u g h e x p o s u r e t o t h e s l u d g e o r b e c a u s e t h e t y p e o f o r g a n i s m s p r e s e n t w e r e more r e s i s t a n t t o h i g h c o p p e r c o n c e n t r a t i o n s . I n i t i a l l y , t h e d i s s o l v e d m e t a l c o n c e n t r a t i o n was b e l o w t h e 71 d e t e c t i o n l i m i t and 18 days l a t e r i t was q u i t e h i g h . T h i s seems t o i n d i c a t e t h a t , a t f i r s t , t h e m e t a l was bound t o compounds i n t h e s l u d g e . As t h e o r g a n i c s degraded, t h e m etal was r e l e a s e d i n t o t h e s o l u t i o n . The r a t e o f t h e r e l e a s e seemed s l o w enough t o e n a b l e t h e m i c r o o r g a n i s m s t o adapt t o t h e i n c r e a s i n g d i s s o l v e d m e tal c o n c e n t r a t i o n s i n t h e m i x t u r e . The n u t r i e n t u t i l i z a t i o n f o r R e a c t o r 2 a r e shown i n T a b l e 4.2.4: N i t r o g e n Used (mg/L) Phosphorous Used (mg/L) T o t a l COD Used (mg/L) 152.5 66.5 12 337 T a b l e 4 . 2 . 4 : N u t r i e n t u t i l i z a t i o n and the COD r e d u c t i o n f o r run 5. The C:N:P r a t i o o f t h e run was 185.5:2.29:1. As mentioned i n t h e l i t e r a t u r e r e v i e w , t h e a c c e p t a b l e r a t i o f o r m i c r o o r g a n i s m s growth i n a low c o n c e n t r a t i o n p h e n o l i c waste system i s 100:10:1, w h i l e i n sewage s l u d g e , t h e e x p e c t e d r a t i o i s 100:5:1. The r a t i o f o r t h i s run i s not s i m i l a r t o e i t h e r model proposed. T h i s i s not s u r p r i s i n g s i n c e no work has been done i n t h i s a r e a and t h e s p e c i f i c n u t r i e n t needs o f t h e m i c r o o r g a n i s m s may v a r y . P a r t o f t h e r e a s o n s f o r t h e v a r i a n c e i s due t o t h e usage o f T o t a l COD as t h e amount o f c a r b o n used, r a t h e r t h a n t h e t r a d i t i o n a l B0D 5. However, due t o t h e n a t u r e o f t h e s l u d g e , some BOD t e s t s i n t h e run were i n c o n c l u s i v e and c o u l d n o t be used. As can be seen i n T a b l e 4.2.5, t h e n i t r o g e n t o phosphorous r a t i o f o r most of t h e run was between 2 and 2.5. T h i s i s more t h a n h a l f 72 o f t h e r a t i o n e c e s s a r y f o r bug growth, as p r e d i c t e d i n t h e l i t e r a t u r e f o r sewage s l u d g e ( M e t c a l f 1991). T h i s may be P e r i o d o f e l a p s e d t i m e : N used: (mg/L) P used: (mg/L) N/P r a t i o : 7 days 15.9 6.6 2.4 7 days 54.9 26.5 2.07 7 days 30.3 6.7 4.52 7 days 27.1 11.1 2.44 10 days 24.3 15.6 1.56 Table 4.2.5: Ratio of nitrogen to phosphorous u t i l i z a t i o n during run 5. a t t r i b u t e d t o phosphorous not o n l y b e i n g used as a n u t r i e n t but as a r e a c t a n t i n t h e p r e c i p i t a t i o n o f d i s s o l v e d copper. More i n f o r m a t i o n on t h e p r o c e s s would be r e q u i r e d b e f o r e c o n c l u s i o n s c o u l d be made. However, i t appeared t h a t t h e d i s s o l v e d copper, under t h e r i g h t c o n d i t i o n s , c o u l d be removed from t h e s o l u t i o n by p r e c i p i t a t i o n as copper phosphate. T h i s run p r o v i d e d a s t a r t i n g p o i n t f o r f u r t h e r a n a l y s i s . I t showed t h a t t h e d e g r a d a t i o n o f waste was p o s s i b l e and t h a t t h e v o l a t i l i z a t i o n o f o r g a n i c compounds c o u l d be reduced and p o s s i b l y e l i m i n a t e d . The c o n t r o l i n d i c a t e d t h a t r e d u c t i o n i n terms of T o t a l COD was m o s t l y due t o t h e d e g r a d a t i o n by m i c r o o r g a n i s m s , c o n t r a r y t o what had o c c u r r e d i n p r e v i o u s r u n s . However, the degree o f t r e a t m e n t s t i l l had t o be m o d i f i e d t o produce a b e t t e r q u a l i t y end p r o d u c t . A l s o , t h e amount of o r g a n i c m a t t e r b e i n g v o l a t i l i z e d had t o be f u r t h e r reduced. Many q u e s t i o n s remained 73 unanswered, m a i n l y f o c u s i n g on t h e optimum i n i t i a l s l u d g e l o a d i n g r a t e o f t h e r e a c t o r s and t h e e f f e c t o f d i s s o l v e d m e t a l s i n t h e growth of t h e c u l t u r e . RUN#6: T h i s r u n sought t o b u i l d on t h e p r o g r e s s o f t h e p r e v i o u s r u n . A g a i n , more c a r e f u l a n a l y s i s and m o n i t o r i n g would be n e c e s s a r y i n o r d e r t o d e t e r m i n e t h e degree and q u a l i t y o f t r e a t m e n t o b t a i n e d . For t h i s r u n , t h r e e r e a c t o r s were used, two t e s t v e s s e l s and a c o n t r o l . The purpose of t h e run was t o r e p l i c a t e t h e s u c c e s s o b t a i n e d i n run 5. The p r e v i o u s r u n had an i n i t i a l T o t a l COD o f 20 000 mg/L, r e s u l t i n g i n q u i t e a s u c c e s s f u l r u n ; a T o t a l COD r e d u c t i o n o f 66% and a removal o f most o f t h e o r g a n i c compounds. The l o a d i n g o f t h e r e a c t o r s f o r t h i s r u n was as f o l l o w s : one o f t h e r e a c t o r would have t h e i d e n t i c a l i n i t i a l s l u d g e l o a d i n g as t h e r u n n i n g r e a c t o r i n t h e p r e v i o u s run, t o o b s e r v e i f t h e q u a l i t y o f t h e end p r o d u c t s l u d g e c o u l d be improved, i f t h e c u l t u r e does not undergo a n i t r o g e n d e f i c i e n c y . The o t h e r t e s t r e a c t o r would have a c o n c e n t r a t i o n o f 10 000 mg/L, t o o b s e r v e t h e d i f f e r e n c e s i n terms o f t h e d e g r a d a t i o n k i n e t i c s . T a b l e 4.2.6 shows t h e v a r i a b i l i t y o f t h e s l u d g e from t h e lagoon and t h e d i f f i c u l t i e s i n t r y i n g t o r e a c h a d e s i g n e d l o a d i n g r a t e . A l t h o u g h R e a c t o r 1 and 3 were seeded w i t h t h e same amount o f s l u d g e , t h e c o m p o s i t i o n d i f f e r e d g r e a t l y . The pH and i n i t i a l T o t a l COD i n d i c a t e t h a t t h e c o n t e n t s o f t h e r e a c t o r s were not i d e n t i c a l . 74 P a r a m e t e r : R e a c t o r 1 ( C o n t r o l ) R e a c t o r 3 R e a c t o r 4 S l u d g e Volume ( L ) 2.5 2.5 3.0 D i l u t i o n w a t e r V o l u m e ( L ) 15.5 16 16 T o t a l V olume 18 ( i n c l u d i n g 500 ml o f b l e a c h ) 18 ( i n c l u d i n g 4 L i t r e s o f a c t i v a t e d s l u d g e ) 19 ( i n c l u d i n g 4 L i t r e s o f a c t i v a t e d s l u d g e ) I n i t i a l T o t a l COD (mg/L) 16 909 14 878 31 802 PH 8.52 7.39 5.83 T a b l e 4.2.6: I n i t i a l c o n d i t i o n s i n the r e a c t o r s p r i o r t o the s t a r t of run 6. The two t e s t r e a c t o r s , 3 a n d 4 w e r e e a c h s e e d e d w i t h a c t i v a t e d s l u d g e . R e a c t o r 3 was s e e d e d w i t h t h e a c t i v a t e d s l u d g e f r o m t h e on s i t e t r e a t m e n t p l a n t , w h i l e R e a c t o r 4 was s e e d e d w i t h t h e s u p e r n a t a n t f r o m a r e a c t o r i n t h e p r e v i o u s r u n . The p u r p o s e was t o s e e t h e e f f e c t t h a t a c c l i m a t i s e d o r g a n i s m s w o u l d h a v e on t h e r a t e o f d e g r a d a t i o n , c o m p a r e d t o t h e o r g a n i s m s w h i c h h a d n o t b e i n g e x p o s e d t o t h e w a s t e . H y p o t h e t i c a l l y , t h e l a g o r a c c l i m a t i z a t i o n p h a s e s h o u l d be d e c r e a s e d o r e l i m i n a t e d i n u s i n g t h e r e c y c l e d s e e d a n d w o u l d r e s u l t i n a h i g h e r d e g r a d a t i o n r a t e . The o t h e r p u r p o s e was t o c o n s e r v e t h e c u l t u r e , w h i c h was p a r t i a l l y s u c c e s s f u l i n d e g r a d i n g t h e s l u d g e i n r u n 4. T h i s s h o u l d e x p l a i n t h e d i f f e r e n c e i n t h e pH o f t h e two t e s t r e a c t o r s , g i v e n t h e s u p e r n a t a n t s e e d h a d a l o w pH a n d no b u f f e r i n g c a p a c i t y . F i g u r e s 4.2.7 a n d 4.2.8 a r e t h e T o t a l COD a n d S u p e r n a t a n t COD v s 75 t i m e graphs f o r t h e r u n . The T o t a l COD graph i s s i m i l a r t o t h e shape o f t h e one i n run 5. I n i t i a l l y , t h e r e was a q u i c k d e c r e a s e i n t h e T o t a l COD c o n c e n t r a t i o n o f t h e t e s t r e a c t o r s , a p r o c e s s w h i c h has been e x h i b i t e d i n most s u c c e s s f u l runs t o d a t e . F o l l o w i n g t h i s i n i t i a l d e g r a d a t i o n p e r i o d , t h e r e was a c e r t a i n degree o f l e v e l l i n g o f f and a s l i g h t i n c r e a s e i n t h e t o t a l COD. The l e n g t h o f t h e e xperiment was c o n s i d e r a b l y l o n g e r t h a n i n run 5. The run was extended i n o r d e r t o t r y and reduce th e T o t a l COD f u r t h e r . However, as was t h e case i n run 4 and 5, once t h e system s t a l l e d i n terms o f T o t a l COD r e d u c t i o n i t was d i f f i c u l t t o r e s t a r t . The h a l t i n f u r t h e r T o t a l COD r e d u c t i o n o c c u r r e d e a r l i e r and more s u b s t a n t i a l l y t h a n i n p r e v i o u s r u n s . T h i s c o u l d have been caused by l a c k o f n u t r i e n t s . However, F i g u r e s 4.2.9 and 4.2.10 i n d i c a t e t h e p r e s e n c e o f n i t r o g e n and phosphorus d u r i n g t h e e n t i r e r u n . As seen i n F i g u r e 4.2.10, on day 10 t h e r e was a lmost a n i t r o g e n d e f i c i e n c y , but a q u i c k a d d i t i o n remedied the s i t u a t i o n . The VSS c o n c e n t r a t i o n vs t i m e graph, F i g u r e 4.2.11, shows a s l i g h t d i p i n t h e amount o f biomass i n t h e r e a c t o r a t t h a t t i m e . However, the graph shows a g e n e r a l i n c r e a s i n g t r e n d f o r most of t h e remainder of t h e run, i n d i c a t i n g t h a t growth resumed a f t e r t h e n u t r i e n t a d d i t i o n . Around day 30, t h e biomass c o n c e n t r a t i o n was reduced d r a s t i c a l l y o v e r 2 s e p a r a t e s a m p l i n g p e r i o d s (between day 30 and 4 0 ) . D u r i n g t h i s p e r i o d o f t i m e , n u t r i e n t s were p r e s e n t i n s i g n i f i c a n t c o n c e n t r a t i o n s and t h e BOD was g r e a t e r t h a n 2000 mg/L 76 F I G U R E 4 . 2 . 7 T O T A L C O D C O N C E N T R A T I O N V S T I M E F O R R U N 6 35 g I i i i i \ I 0 1 0 2 0 3 0 4 0 5 0 6 0 TIME (DAYS) ^ R E A C T O R 1 (CONTROL) ^ R E A C T O R 3 ^ R E A C T O R 4 ^ F I G U R E 4 . 2 . 8 S U P E R N A T A N T C O N C E N T R A T I O N C O D V S T I M E F O R R U N 6 0 1 0 2 0 3 0 4 0 5 0 6 0 TIME (DAYS) _\u00C2\u00AB_ REACTOR 1 (CONTROL) REACTOR 3 ^ R E A C T O R 4 77 FIGURE 4B.10 A M M O N I A CONCENTRATION VS TIME FOR RUN 6 0 10 20 30 40 50 60 TIME (DAYS) REACTOR 1 (CONTROL) REACTOR 3 ^ REACTOR 4 78 FIGURE 4.2.11 MLVSS CONCENTRATION VS TIME FOR RUN 6 16 , = 0 10 20 30 40 50 60 TIME (DAYS) ^ R E A C T O R 1 (CONTROL) R E A C T O R 3 ^ R E A C T O R 4 FIGURE 4.2.12 PH VS TIME FOR RUN 6 10 i , 4 I i i i i i I 0 10 20 30 40 50 60 TIME (DAYS) R E A C T O R 1 (CONTROL) ^ R E A C T O R 3 ^ R E A C T O R 4 79 i n t h e r e a c t o r . Thus, t h e b a s i c e s s e n t i a l r e q u i r e m e n t s f o r growth were p r e s e n t . A t f i r s t , i t was though t h a t t h i s was t h e r e s u l t o f low pH. Examining t h e pH o v e r t i m e . F i g u r e 4.2.12, i t shows t h a t t h e pH dropped q u i c k l y a t f i r s t and t h e n l e v e l l e d o f f t o an average v a l u e o f 5. For c e l l growth, t h e g e n e r a l l y a c c e p t e d pH range i s between 6.5 and 8.5 ( B e l t r a m e 1979). The pH was a d j u s t e d w i t h soda ash. A f t e r t h e a d d i t i o n , t h e pH was i n t h e range o f 9; t h i s was s l i g h t l y h i g h e r t h a n d e s i r e d and c o u l d have shocked t h e b a c t e r i a , due t o t h e d r a m a t i c pH f l u c t u a t i o n . However, t h e growth i n terms o f VSS i n c r e a s e d a f t e r t h e a d d i t i o n and t h e problem seemed t o have been s o l v e d . However, upon c l o s e r i n s p e c t i o n , t h e system improved f o r o n l y 2 s a m p l i n g p e r i o d s (1 week) i n terms o f VSS i n c r e a s e and t h e n c o n t i n u e d a downward t r e n d . The pH a t t h i s t i me was w i t h i n the a c c e p t e d range f o r growth. N u t r i e n t s were p l e n t i f u l and t h e BOD was s t i l l above 2000 mg/L. Ex a m i n i n g t h e d a t a more c l o s e l y , i t appears t h a t t h e pH was not d i r e c t l y t h e cause o f t h e growth problem but c o n t r i b u t e d t o t h e problem. L o o k i n g a t F i g u r e 4.2.13, t h e t o t a l and d i s s o l v e d copper c o n c e n t r a t i o n o v e r time can be o b s e r v e d . The t o t a l copper c o n c e n t r a t i o n i n R e a c t o r 4 was above 80 mg/L. From t h e b e g i n n i n g o f t h e run, t h e d i s s o l v e d copper c o n c e n t r a t i o n was f a i r l y c o n s t a n t , under 8 mg/L u n t i l day 35. At t h e same t i m e , a r e d u c t i o n was seen i n t h e VSS c o n c e n t r a t i o n . The d i s s o l v e d copper c o n c e n t r a t i o n t h e n r o s e t o 14 mg/L. 80 FIGURE 4.2.13 COPPER CONCENTRATION (TOTAL AND DISSOLVED) VS TIME FOR RUN 6 i o o , 1 0 10 20 30 40 50 60 TIME (DAYS) . R# 1 TOTAL + R#4 TOTAL _^R#1 DISSOLVED _B_ R#4 DISSOLVED 81 T h i s r i s e was a t t r i b u t e d t o t h e low pH i n t h e mixed l i q u o r , r e s u l t i n g i n g r e a t e r m e tal s o l u b i l i z a t i o n . I n c r e a s i n g t h e pH t o 9 p r e c i p i t a t e d much of t h e d i s s o l v e d copper, r e d u c i n g i t t o a c o n c e n t r a t i o n o f a p p r o x i m a t e l y 5 mg/L. The p r e c i p i t a t i o n o f t h e copper was a l s o a i d e d by t h e a d d i t i o n o f sodium phosphate. Once the d i s s o l v e d copper c o n c e n t r a t i o n i n t h e r e a c t o r approaches t o x i c l e v e l s , r e c o v e r y does not always appear t o be p o s s i b l e ; i n t h i s c a s e t h e d i s s o l v e d copper c o n c e n t r a t i o n c o n t i n u e d t o i n c r e a s e as t h e e x p e r i m e n t a l run proceeded. R e a c t o r 3 was run f o r a s h o r t e r p e r i o d o f t i m e t h a n R e a c t o r 4 but was more s u c c e s s f u l i n terms o f t h e d e g r a d a t i o n o f t h e waste. The r e d u c t i o n i n T o t a l COD vs time f o r t h e r e a c t o r was not s t a r t l i n g but r e s u l t e d i n t h e d e s t r u c t i o n o f most o f t h e o r g a n i c c o n s t i t u e n t s o f t h e waste. The pH o f t h e r e a c t o r was i n c o n s i s t e n t as shown i n F i g u r e 4.2.12. A l t h o u g h t h e r e was a l e v e l l i n g o f f i n T o t a l COD d e g r a d a t i o n , t h e GC t r a c e i n d i c a t e s t h a t c o n s i d e r a b l e t r e a t m e n t s t i l l o c c u r r e d d u r i n g t h i s p e r i o d ; t h a t i s , t h a t t h e r e was a r e d u c t i o n i n t h e c o n c e n t r a t i o n o f t a r g e t o r g a n i c compounds, even though t h e r e was no apparent change i n T o t a l COD. T h i s i n d i c a t e s t h a t e x a m i n i n g t h e T o t a l COD a l o n e might not be t h e b e s t way t o m o n i t o r t h e p r o g r e s s o f t h i s t y p e o f system. A c o m b i n a t i o n o f d a t a must be o b s e r v e d t o u n d e r s t a n d t h e o p e r a t i o n s of t h e b i o p r o c e s s . The m e t a l c o n c e n t r a t i o n was not o f c o n c e r n i n t h i s r e a c t o r , s i n c e 82 t h e i n i t i a l c o n c e n t r a t i o n o f t h e s l u d g e was much lower t h a n i n R e a c t o r 4. The run ended e a r l i e r t h a n t h e was t h e case f o r R e a c t o r 4, s i n c e t h e GC t r a c e i n d i c a t e d t h a t t r e a t m e n t was almost complete. Through m a n i p u l a t i o n o f t h e a e r a t i o n r a t e i t was p o s s i b l e t o f u r t h e r l i m i t t h e r e d u c t i o n o f T o t a l COD o f t h e c o n t r o l due t o v o l a t i l i z a t i o n . The T o t a l COD l e v e l i n t h e r e a c t o r f o r t h e l e n g t h o f t h e run was f a i r l y s t a b l e . F i g u r e 4.2.8, i s t h e gr a p h o f t h e COD o f t h e S u p e r n a t a n t o v e r t i m e . I t i s s i m i l a r t o t h e one from t h e p r e v i o u s r u n . As t h e run proceeded, o r g a n i c compounds were d i s s o l v e d i n t o s o l u t i o n . I t i s i n t e r e s t i n g t o n o t e t h a t t h e r e a c t o r w i t h t h e h i g h e r i n i t i a l s l u d g e c o n c e n t r a t i o n r e s u l t e d i n t h e a c c u m u l a t i o n o f a h i g h e r s u p e r n a t a n t COD c o n c e n t r a t i o n . T h i s i n d i c a t e s t h a t compounds were s o l u b i l i z i n g i n t o s o l u t i o n a t a f a s t e r r a t e t h a n can be used by th e m i c r o o r g a n i s m s . I t i s p o s s i b l e t h a t t h i s phenomenon was r e s p o n s i b l e f o r t h e c e s s a t i o n i n t h e c a r b o n d e g r a d a t i o n . The d i s s o l v e d c o n c e n t r a t i o n o f one o f t h e compounds may have reached a t o x i c l e v e l i n t h e s u p e r n a t a n t and i n h i b i t e d t h e growth o f t h e m i c r o o r g a n i s m s . As T a b l e s 4.2.7 and 4.2.8 i n d i c a t e , R e a c t o r 3 was more s u c c e s s f u l a t t r e a t i n g t h e waste based on t h e removal o f o r g a n i c s . T h i s appears t o be due, i n p a r t , t o t h e f a c t t h a t t h e i n i t i a l 83 P a r a m e t e r : R e a c t o r 1 ( c o n t r o l ) R e a c t o r 3 R e a c t o r 4 L e n g t h o f r u n ( d a y s ) 55 34 55 I n i t i a l T o t a l COD (mg/L) 16 909 14 878 31 802 F i n a l T o t a l COD (mg/L) 16 564 9 608 21 529 % d i f f e r e n c e 2 35.4 32.3 Table 4.2.7: Comparison between the i n i t i a l conditions and the end r e s u l t of run 6 i n terms of Total COD. Compound: R e a c t o r 1 ( c o n t r o l ) P e r c e n t r e m o v a l R e a c t o r 3 P e r c e n t r e m o v a l R e a c t o r 4 P e r c e n t r e m o v a l X y l e n e 100 100 100 D i p h e n y l 59.4 97.5 95.3 D i p h e n y l E t h e r 30.8 96.5 84.8 D i p h e n y l M e t h a n e 11.3 88.3 0* B e n z e n e , 1,1' M e t h y l e n e b i s (4 m e t h y l ) 7.8 78.9 22.7 1 , 2 - D i m e t h y l -4 - B e n z y l B e n z e n e 77 100 86.2 Table 4.2.8: Percent removal of the target organic compounds during run 6.* No D i p h e n y l methane was remove d f r o m r e a c t o r 4. c o n c e n t r a t i o n o f o r g a n i c s was l o w e r . The c o n t r o l i n d i c a t e s t h a t l e s s v o l a t i l i z a t i o n o c c u r r e d i n t h i s r u n t h a n i n t h e p r e v i o u s o n e s . However, t h e l o w e r w e i g h t o r g a n i c compounds w e r e s t i l l e a s i l y v o l a t i l i z e d , a s i n d i c a t e d b y t h e 100% r e m o v a l o f X y l e n e f r o m a l l o f t h e r e a c t o r s . However, one must remember t h a t t h i s 84 does not i n d i c a t e t h a t t h e removal o f X y l e n e from t h e t e s t r e a c t o r s was t h r o u g h v o l a t i l i z a t i o n , s i n c e t h e removal o c c u r r e d much f a s t e r i n t h e t e s t v e s s e l s t h a n i n t h e c o n t r o l . The GC d a t a i n d i c a t e d t h a t t h e i n i t i a l T o t a l COD l o a d i n g o f 32 000 mg/L i n R e a c t o r 4 might have been t o o h i g h . The T o t a l COD was reduced by almost t h e same p e r c e n t a g e as i n R e a c t o r 3, but t h e p e r c e n t removal o f t h e o r g a n i c compounds was q u i t e d i f f e r e n t . A much lower degree o f t r e a t m e n t , i n terms o f many o f t h e t a r g e t o r g a n i c compounds, was a c h i e v e d . T h i s can be p a r t i a l l y e x p l a i n e d by t h e i n i t i a l h i g h o r g a n i c l o a d i n g r a t e , as w e l l as t h e amount of d i s s o l v e d copper p r e s e n t . The copper was not o n l y p r e s e n t from t h e s l u d g e , but a l s o i n t h e seed s l u d g e from t h e p r e v i o u s r u n. The h i g h d i s s o l v e d metal c o n c e n t r a t i o n appears t o have i n h i b i t e d t h e growth o f t h e b a c t e r i a and reduced t h e d e g r a d a t i o n o f t h e waste. T h i s i n i t i a l s l u d g e l o a d i n g would t h u s s e r v e as a benchmark f o r f u t u r e r u n s . I t was s p e c u l a t e d t h a t , i f t h e pH were m o d i f i e d and b u f f e r e d p r i o r t o t h e s t a r t o f t h e run and t h a t a d d i t i o n a l phosphorus were added t o t h e system t o p r e c i p i t a t e d i s s o l v e d copper, t h e r e s u l t s may have been q u i t e d i f f e r e n t . More i n v e s t i g a t i o n i n t o t h i s a r e a would be n e c e s s a r y . The n u t r i e n t c o n c e n t r a t i o n o v e r t i m e f o r t h e run i s summarized i n T a b l e s 4.2.9 and 4.2.10. The s t r i k i n g p o i n t about t h e r a t i o s i n Ta b l e 4.2.10 i s t h a t t h e r e seemed t o be a h i g h c a r b o n c o n t e n t used f o r t h e m i c r o o r g a n i s m growth. A g a i n , i t s h o u l d be n o t e d t h a t 85 R e a c t o r 3 R#3 R#3 N/P r a t i o R e a c t o r 4 R#4 R#4 N/P r a t i o Number o f Days P used (mg/L) N used (mg/L) P used (mg/L) N used (mg/L) 3 10.4 17.1 1.64 9.5 18.4 1.94 7 24.8 61.5 2.48 39.4 53.1 1.35 7 7.5 38.5 5.1 11.1 40 3.6 7 9.07 38.5 4.24 36.4 41.2 1.13 10 8.03 37.6 4.68 2.7 33.2 12.3 3 7.6 30.1 3.96 18 20.3 60.4 2.98 T o t a l 59.8 193.24 3.23 137.1 280.2 2.04 Table 4.2.9: Nutrient u t i l i z a t i o n f o r the two test reactors for run 6. Parameter: R e a c t o r 3 R e a c t o r 4 COD:N:P 161: 3.23: 1 157: 2.02 :1 Table 4.2.10: Total COD:N:P r a t i o for run 6. T o t a l COD i s not u s u a l l y used i n d e t e r m i n i n g t h e r a t i o . R a t h e r , T o t a l BOD5 s h o u l d be used. The N:P r a t i o was s t i l l low, compared t o t h e e x p e c t e d l i t e r a t u r e v a l u e o f 5:1 and 10:1. T h i s can p a r t i a l l y be e x p l a i n e d a g a i n by t h e c o m p l e x i n g o f phosphorus w i t h copper and p r e c i p i t a t i n g from t h e s o l u t i o n . Not a l l t h e phosphorus w h i c h d i s a p p e a r s from s o l u t i o n was used f o r m i c r o o r g a n i s m growth. The h i g h l i g h t o f t h i s r un was t h e s t a b i l i z a t i o n o f t h e c o n t r o l . A l s o apparent was t h e need f o r c o n s t a n t m o n i t o r i n g o f t h e copper 86 c o n c e n t r a t i o n p r e s e n t i n t h e r e a c t o r s . D u r i n g p e r i o d s o f l o w pH, d i s s o l v e d m e t a l s a r e more p r e v a l e n t . T h e r e f o r e , t h e r e i s a more p r o n o u n c e d e f f e c t o n t h e g r o w i n g c u l t u r e . T h e s e p e r i o d s c a n be i d e n t i f i e d b y a \" s t a l l i n g \" i n t h e r a t e o f d e g r a d a t i o n i n t e r m s o f T o t a l COD. The b e s t a c t i o n i s p r e v e n t i o n . A b u f f e r i n g o f t h e s y s t e m a n d h i g h n u t r i e n t c o n c e n t r a t i o n i s recommended t o a v o i d s i m i l a r p r o b l e m s . I n t h i s way, a h i g h e r i n i t i a l c o n c e n t r a t i o n o f w a s t e c a n be e f f e c t i v e l y t r e a t e d i n t h e r e a c t o r . Run#7 The p u r p o s e o f t h e r u n was t o h a v e an i n i t i a l h i g h s l u d g e COD l o a d i n g l e v e l w h i l e a v o i d i n g t h e p r o b l e m s o f t h e p r e v i o u s r u n s w i t h d i s s o l v e d m e t a l s . I t was d e t e r m i n e d t h a t t h e t h r e s h o l d o f a c c e p t a b l e i n i t i a l l o a d i n g l a y b e t w e e n 20 000 a n d 30 000 mg/L, u n l e s s t h e c o p p e r was r e d u c e d i n some f o r m o f p r e t r e a t m e n t . The p r e v i o u s r u n showed t h a t i t was n o t p r a c t i c a l t o o v e r l o a d t h e s y s t e m , s i n c e i n i t i a l r a p i d g r o w t h o f m i c r o o r g a n i s m s w i l l be q u i c k l y s l o w e d by t h e e x p o s u r e o f t h e b a c t e r i a t o i n c r e a s i n g c o p p e r d i s s o l v i n g i n t o s o l u t i o n . The p u r p o s e was t o r e p l i c a t e t h e r e l a t i v e s u c c e s s o f r u n 5 w h i l e i n c r e a s i n g t h e l o a d i n g s l i g h t l y ; t h e t a r g e t was 25 000 mg/L COD. The i n i t i a l c o n d i t i o n s o f t h e r e a c t o r s a t t h e s t a r t o f r u n 7 c a n be o b s e r v e d i n T a b l e s 4.2.11 and 4.2.12. A l t h o u g h R e a c t o r s 2 a n d 3 c o n t a i n e d t h e same i n i t i a l s l u d g e l o a d i n g , t h e o r g a n i c c o n t e n t s and t h u s , t h e i n i t i a l BOD 5 d i f f e r e d s l i g h t l y . The T o t a l COD l o a d 87 Parameter: R e a c t o r 2 R e a c t o r 3 R e a c t o r 5 ( C o n t r o l ) S ludge L o a d i n g (L) 3 3 0.75 Seed V o l . (L) 4 4 0 T o t a l (L) 21.4 21.4 5 ( i n c l u d i n g 100 ml b l e a c h ) I n i t i a l T o t a l COD (mg/L) 30 169 29 484 28 799 I n i t i a l S u p e r n a t a n t COD (mg/L) 1 378 1 207 1 035 I n i t i a l T o t a l BOD (mg/L) 8 322 6 154 N/A I n i t i a l T o t a l copper (mg/L) 80 84 48 I n i t i a l D i s s o l v e d copper (mg/L) 0 0 0 pH 6.05 6.35 6.22 T a b l e 4.2.11: I n i t i a l l o a d i n g o f the t e s t r e a c t o r s and the c o n t r o l p r i o r t o the s t a r t o f run 7. was s l i g h t l y h i g h e r t h a n t h e t a r g e t but c o n s i d e r e d a c c e p t a b l e . The i n i t i a l l o a d i n g and c o n c e n t r a t i o n o f o r g a n i c s once a g a i n r e i n f o r c e d t h e r e a l i t y o f t h e v a r i e d n a t u r e o f t h e s l u d g e . The i n i t i a l t o t a l copper l o a d i n g was q u i t e h i g h and t h u s t h e r e was a c o n c e r n t h a t i t c o u l d a f f e c t t h e d e g r a d a t i o n p r o c e s s , as d i s s o l v e d i n t o s o l u t i o n . An e f f o r t was made t o i n c r e a s e t h e phosphorus l o a d i n g and keep i t e l e v a t e d t o encourage t h e copper t o p r e c i p i t a t e o u t . C o m p l i c a t i n g m a t t e r s was t h e low i n i t i a l pH of t h e r e a c t o r s . The pH ranged between 6 and 6.4 f o r t h e t e s t 88 Compound: R e a c t o r 2: ppm R e a c t o r 3: ppm R e a c t o r 5: C o n t r o l ppm X y l e n e 243.4 245.7 205.6 D i p h e n y l 1 157.1 1 257.4 1 139.5 D i p h e n y l E t h e r 5 290 5 690 5 071 D i p h e n y l M e t h a n e 57.4 67.3 64.2 B e n z e n e , 1,1' M e t h y l e n e b i s ( 4 - m e t h y l ) 19 21.7 20.5 1 , 2 - D i m e t h y l -4 - B e n z y l B e n z e n e 138.4 167.2 139.5 T a b l e 4.2.12: I n i t i a l c o n c e n t r a t i o n o f the t a r g e t o r g a n i c compounds a t the s t a r t o f run 7. r e a c t o r s . The l o w e r t h e pH, t h e more c o p p e r t h a t w o u l d be a v a i l a b l e i n d i s s o l v e d f o r m . The s y s t e m was n o t i n i t i a l l y b u f f e r e d , s i n c e p r i o r a t t e m p t s a t m o d i f y i n g t h e pH h a d n e g a t i v e l y a f f e c t e d t h e r u n . C l o s e m o n i t o r i n g was s e l e c t e d a n d pH m o d i f i c a t i o n a c t i o n s w o u l d be t a k e n o n c e o t h e r a v e n u e s h a d b e e n e x h a u s t e d . F i g u r e 4.2.14, t h e T o t a l BOD 5 v s t i m e c u r v e , shows a n i n i t i a l h i g h d e g r a d a t i o n r a t e f o r b o t h r e a c t o r s , f o r t h e f i r s t h a l f o f t h e e x p e r i m e n t . A t t h a t p o i n t , d a y 19, t h e d e g r a d a t i o n r a t e s h i f t e d t o a s l o w d e c l i n e , u n t i l t h e e n d o f t h e r u n , when t h e B0D 5 was b e l o w 100 mg/L. The d r a s t i c c h a n g e i n t h e d e g r a d a t i o n r a t e c a n be a t t r i b u t e t o t h e e l i m i n a t i o n o f e a s i l y d e g r a d e d o r g a n i c s , i n i t i a l l y , f o l l o w e d b y t h e d e g r a d a t i o n o f more c o m p l e x 89 a n d r e s i s t a n t compounds; h e n c e , t h e s e w e r e d e g r a d e d a t a s l o w e r r a t e . F i g u r e 4.2.15, t h e T o t a l COD v s t i m e g r a p h , h a s much t h e same s h a p e a s t h e BOD g r a p h . T h e r e was, a t f i r s t , r a p i d d e g r a d a t i o n i n R e a c t o r 2; i n R e a c t o r 3, a l a g p h a s e c a n be o b s e r v e d f o r t h e f i r s t t h r e e d a y s , t h e n r a p i d d e g r a d a t i o n o c c u r r e d . The l a g p h a s e i s d i f f i c u l t t o e x p l a i n s i n c e b o t h r e a c t o r s c o n t a i n e d e q u a l amount o f t h e same s l u d g e a n d s e e d . However, i t i s q u i t e p o s s i b l e t h a t t h e b a c t e r i a l c u l t u r e s d i f f e r e d a n d t h a t R e a c t o r 3 n e e d e d a l a g p h a s e f o r a c c l i m a t i z a t i o n . T h i s i s s u p p o r t e d b y t h e VSS C o n c e n t r a t i o n v s Time g r a p h , F i g u r e 4.2.17, w h i c h i n d i c a t e s t h a t R e a c t o r 3 went t h r o u g h a p e r i o d o f i n c r e a s e i n v o l a t i l e s o l i d s l e v e l s . I n t e r m s o f T o t a l COD, t h e d e g r a d a t i o n i n R e a c t o r 2 l e v e l l e d o f f a f t e r 11 d a y s , w h i l e d e g r a d a t i o n i n t h e o t h e r r e a c t o r l e v e l l e d o f f a f t e r 21 d a y s . The t a i l e n d o f t h e g r a p h e x h i b i t e d t h e same p a t t e r n a s s e e n i n p r e v i o u s r u n s b u t was l e s s p r o n o u n c e d . Y e t , t h e r e was s t i l l a c e r t a i n amount o f r i s i n g a n d f a l l i n g i n t h e t a i l e n d o f t h e g r a p h . The c o n t r o l was q u i t e s t a b l e i n t e r m s o f T o t a l COD f o r t h e r u n , w i t h o n l y a s l i g h t r e d u c t i o n o v e r t h e l e n g t h o f t h e r u n . The S u p e r n a t a n t COD v s t i m e g r a p h . F i g u r e 4B.16, was more p r o n o u n c e d t h a n i n t h e p a s t f o r R e a c t o r 3. T h e r e was r a p i d s o l u b i l i z a t i o n o f o r g a n i c s a t f i r s t ; t h e n , s t a r t i n g on d a y 16, 90 FIGURE 4.2.14 T O T A L 5 D A Y B O D C O N C E N T R A T I O N V S T I M E F O R R U N 7 9 1 5 9 1 9 2 3 3 0 4 0 TIME (DAYS) BOD5 (REACTOR 2) ^ BOD5 (REACTOR 3) 91 FIGURE 4.2.15 TOTAL COD CONCENTRATION VS TIME FOR RUN 7 H 0 1 1 1 1 1 1 0 10 20 30 40 50 TIME (DAYS) REACTOR 2 REACTOR 3 REACTOR 5 (CONTROL) TIME (DAYS) REACTOR 2 REACTOR 3 + REACTOR 5 (CONTROL) 92 FIGURE 4.2.17 MLVSS CONCENTRATION VS TIME FOR RUN 7 0 10 20 30 40 50 TIME (DAYS) REACTOR 2 _ ^ REACTOR 3 ^ R E A C T O R 5 (CONTROL) FIGURE 4.2.18 VSS/TSS RATIO VS TIME FOR RUN 7 90 i 80 \-20 1 ' ' 1 1 1 0 10 20 30 40 50 TIME (DAYS) REACTOR 2 + REACTOR 3 - ^ R E A C T O R 5 (CONTROL) 93 t h e compounds w e r e q u i c k l y r emoved f r o m s o l u t i o n a n d r e a c h e d t h e l e v e l f o u n d i n R e a c t o r 2. F o r R e a c t o r 2, o v e r t h e t i m e o f t h e e x p e r i m e n t , t h e r e was a s l i g h t i n c r e a s e i n t h e s o l u b l e COD c o n c e n t r a t i o n . The d a t a i n d i c a t e s t h a t , s i n c e t h e r e was l i t t l e a c c u m u l a t i o n o f compounds i n t h e s u p e r n a t a n t o f R e a c t o r 2, t h e compounds w e r e s o l u b i l i z i n g a t a r a t e t h a t t h e m i c r o o r g a n i s m s c o u l d u t i l i z e them. The pH was o f c o n c e r n d u r i n g t h i s r u n , a s s e e n i n F i g u r e 4.2.19. F i r s t l y , t h e i n i t i a l pH was q u i t e l o w f o r t h e two r e a c t o r s . I n t h e c a s e o f R e a c t o r 2, i t was b e l o w t h e f a v o u r a b l e pH r a n g e f o r c e l l g r o w t h ( M e t c a l f 1991; P r i n c e 1 9 9 3 ) . On d a y 11, due t o c o n t i n u e d s l u d g e d e g r a d a t i o n and t h u s C0 2 p r o d u c t i o n , t h e pH h a d f a l l e n t o 5.15. S o d a a s h was a d d e d t o r a i s e t h e pH s l i g h t l y . pH a d j u s t m e n t s i n t h e p a s t h a d b e e n t r o u b l e s o m e a n d r e s u l t e d i n t h e \" s t a l l i n g \" o r e n d o f t h e t r e a t m e n t p r o c e s s . The e f f e c t o f t h e l o w pH was d i f f i c u l t t o d e t e r m i n e . The BOD 5 and t h e COD d a t a i n d i c a t e d r a p i d d e g r a d a t i o n ; h o w e v e r , t h e VSS v s t i m e g r a p h . F i g u r e 4.2.17 was s c a t t e r e d b u t g e n e r a l l y d e c l i n e d . The VSS/TSS r a t i o i n c r e a s e s l i g h t l y d u r i n g t h e r u n , i n d i c a t i n g t h a t t h e r e was an i n c r e a s i n g p o p u l a t i o n o f v i a b l e o r g a n i s m s p r e s e n t i n t h e r e a c t o r ( F i g u r e 4 . 2 . 1 8 ) . T h e r e f o r e , t h e l o w pH d i d n o t a p p e a r t o be d e t r i m e n t a l t o t h e d e g r a d a t i o n p r o c e s s . The pH o f r e a c t o r 3 was n o t m o d i f i e d t o e x a m i n e i f a n e q u i l i b r i u m p o i n t w o u l d be r e a c h e d w h e r e t h e pH w o u l d l e v e l o f f . The d a t a i n d i c a t e s t h a t t h e pH w i l l d e c r e a s e a s l o n g a s o r g a n i c m a t t e r i s b e i n g d e g r a d e d . 94 FIGURE 4.2.19 PH VS TIME FOR RUN 7 7.5 , 0 10 20 30 40 50 T I M E (DAYS) _B_ R E A C T O R 2 R E A C T O R 3 R E A C T O R 5 (CONTROL ) 95 The t o t a l copper l e v e l s i n t h e r e a c t o r s were q u i t e h i g h , as demonstrated i n F i g u r e 4.2.20, but t h e d i s s o l v e d l e v e l s d i d not i n c r e a s e c o n s i d e r a b l y d u r i n g t h e r u n . I n t h e t e s t r e a c t o r s , t h e y d i d n o t go h i g h e r t h a n 5 mg/L. T h i s can p o s s i b l y be a t t r i b u t e d t o t h e f a c t t h a t t h e n u t r i e n t c o n c e n t r a t i o n i n t h e r e a c t o r s were kep t a t e x t r e m e l y h i g h l e v e l s as seen i n F i g u r e s 4.2.21 and 4.2.22. The h i g h phosphorus c o n c e n t r a t i o n ( c l o s e t o 200 mg/L), due t o an e r r o n e o u s c a l c u l a t i o n , may have kept t h e d i s s o l v e d copper below t h e t o x i c l e v e l s seen i n p r e v i o u s e x p e r i m e n t s . The c o n c e n t r a t i o n o f d i s s o l v e d copper i n t h e c o n t r o l d i d not i n c r e a s e because t h e pH was s t a b l e a t around 6.5 f o r t h e c o u r s e o f t h e ru n . S t u d i e s have shown t h a t a low pH i n c r e a s e t h e amount o f metal found i n d i s s o l v e d form. The f i r s t a p p a rent c o n c l u s i o n from t h e d a t a shown i n T a b l e 4.2.13 i s t h e h i g h degree o f t r e a t m e n t w h i c h o c c u r r e d i n R e a c t o r 2. There was a d r a s t i c r e d u c t i o n i n terms o f t h e T o t a l BOD5 and t h e T o t a l COD, 99.1 % and 81.1% r e s p e c t i v e l y . T h i s r e s u l t e d i n t h e e l i m i n a t i o n o f a l l but one o f t h e t a r g e t o r g a n i c compounds t o below t h e d e t e c t i o n l i m i t o f t h e GC. Fur t h e r m o r e , t h e o n l y o r g a n i c p r e s e n t i n t h e r e a c t o r was a s m a l l c o n c e n t r a t i o n o f X y l e n e . The change i n terms o f t h e c o n c e n t r a t i o n o f s p e c i f i c o r g a n i c s can be seen i n T a b l e 4.2.14. Even t h e D i p h e n y l E t h e r , t h e most d i f f i c u l t o r g a n i c i n t h e m i x t u r e t o degrade, was reduced t o below t h e d e t e c t i o n l i m i t . Most o f t h e compounds were degraded i n the 96 FIGURE 4.2.20 COPPER CONCENTRATION (TOTAL AND DISSOLVED) VS TIME FOR RUN 7 90 , 0 10 20 30 40 50 TIME (DAYS) R#2 TOTAL + R#3 TOTAL R#5 TOTAL R#2 DISSOLVED - R#3 DISSOLVED * R#5 DISSOLVED 97 FIGURE 4.2.21 AMMONIA CONCENTRATION VS TIME FOR RUN 7 900 I TIME (DAYS) \u00E2\u0080\u0094 REACTOR 2 ^ _ REACTOR 3 REACTOR 5 (CONTROL) 98 P a r a m e t e r : R e a c t o r 2 R e a c t o r 3 R e a c t o r 5 ( C o n t r o l ) I n i t i a l T o t a l COD (mg/L) 30 169 29 484 28 799 F i n a l T o t a l COD (mg/L) 5 710 9 592 25 350 % d i f f e r e n c e 81.1 67.5 12.0 I n i t i a l S u p e r n a t a n t COD (mg/L) 1 378 1 207 1 035 F i n a l S u p e r n a t a n t COD (mg/L) 2 998 2 912 3 511 I n i t i a l BOD 5 (mg/L) 8 322 6 154 NA F i n a l BOD 5 (mg/L) 74 191 NA % d i f f e r e n c e 99.1 96.9 NA T a b l e 4.2.13: F i n a l c o n d i t i o n o f the r e a c t o r s a t the end of run 7. f i r s t 12 d a y s , i n c o n c e r t w i t h t h e d r a m a t i c r e d u c t i o n i n t h e BOD 5. However, a t t h a t p o i n t t h e r a t e s l o w e d a n d a f u r t h e r 30 d a y s w e r e r e q u i r e d t o a c h i e v e t h e f i n a l r e s u l t . T h i s r e m e d i a t i o n c a n n o t s i m p l y be a t t r i b u t e d t o v o l a t i l i z a t i o n e i t h e r . The c h a n g e i n t h e c o n c e n t r a t i o n o f t a r g e t o r g a n i c compounds i n t h e c o n t r o l was l i m i t e d t o l e s s t h a n 20 % f o r most compounds. Q u a l i t a t i v e l y , t h e s l u d g e a l s o h a d m a r k e d l y i m p r o v e d . The s t r o n g c h e m i c a l o d o u r , t h e i r i d e s c e n t hue a n d t h e s e t t l i n g p r o b l e m s h a d a l l d i s a p p e a r e d . The e n d p r o d u c t s l u d g e , when p l a c e d i n a g r a d u a t e d c y l i n d e r , s e t t l e d w i t h i n one h o u r a n d t h e e f f l u e n t h a d 99 t h e same q u a l i t y a n d a p p e a r a n c e a s one c e n t r i f u g e d f o r 5 m i n u t e s a t 3 000 RPM. Compounds: P a r a m e t e r : R e a c t o r 2 (ppm) R e a c t o r 3 (ppm) R e a c t o r 5 ( c o n t r o l ) (ppm) X y l e n e I n n . Cone. 243.4 245.7 205.6 F i n a l Cone. 10.4 9.7 63.4 % Degrad. 95.7 96.1 69.2 D i p h e n y l I n n . Cone. 1 157 1 257 1 139 F i n a l Cone. 0 4.2 875 % Degrad. 100 99.7 23.2 D i p h e n y l E t h e r I n n . Cone. 5 290 5 690 5 071 F i n a l Cone. 0 24.9 4 067 % Degrad. 100 99.6 19.8 D i p h e n y l M e t h a n e I n n . Cone. 57.4 67.3 64.2 F i n a l Cone. 0 4.8 58 % Degrad. 100 92.3 9.57 B e n z e n e , 1 , 1 ' M e t h y l e n e b i s ( 4 -m e t h y l ) I n n . Cone. 19.0 21.7 20.5 F i n a l Cone. 0 3.8 106 % Degrad. 100 82.5 0 1,2-D i m e t h y l - 4 B e n z y l B e n z e n e I n n . Cone. 138.4 167 139.5 F i n a l Cone. 0 0 67.1 % Degrad. 100 100 51.9 Table 4.2.14: Change i n the concentration of the target organics at the end of run 7. 100 Compound: Time R e a c t o r 2 R e a c t i o n r a t e R e a c t o r 3 R e a c t i o n r a t e BOD 5 (mg/L Day) Day 1-19 430.4 300.7 Day 20-40 23.9 26.1 T o t a l 211.5 152.9 X y l e n e (ppm/day) Day 1-12 22.1 22.3 Day 13-42 -0.35 -0.32 T o t a l 5.68 5.76 D i p h e n y l (ppm/day) Day 1-12 104.9 113.8 Day 13-42 0.1 0.05 T o t a l 28.2 30.5 D i p h e n y l E t h e r (ppm/day) Day 1-12 468.5 382.1 Day 13-42 4.57 48.7 T o t a l 129 138.2 D i p h e n y l M e t h a n e (ppm/day) Day 1-12 4.31 3.33 Day 13-42 0.33 0.86 T o t a l 1.40 1.52 B e n z e n e , 1 , 1 ' M e t h y l e n e b i s ( 4 -M e t h y l ) (ppm/day) Day 1-12 1.1 1.11 Day 13-42 0.23 0.19 T o t a l 0.46 0.44 1,2 D i m e t h y l s -B e n z y l B e n z e n e (ppm/day) Day 1-12 12.6 15.2 Day 13-42 0 0 T o t a l 3.38 4.08 Table 4.2.15: Straight l i n e degradation rates of s p e c i f i c organic compounds during run 7 i n the two test reactors. The s t r a i g h t l i n e d e g r a d a t i o n r a t e s shown i n T a b l e 4.2.15 f u r t h e r e m p h a s i z e t h e i n f o r m a t i o n p r o v i d e d b y t h e T o t a l COD a n d B0D 5 v s 101 time graphs. The s t r a i g h t l i n e d e g r a d a t i o n r a t e i s t h e s l o p e o f t h e l i n e c o n n e c t i n g t h e c o n c e n t r a t i o n o f a compound o v e r two s p e c i f i c s a m p l i n g days. By t h e f i r s t 12 days, t h e m a j o r i t y o f t h e o r g a n i c compounds had been degraded. The r e a c t i o n r a t e s were q u i t e h i g h , as compared t the n e x t 30. Comparing b o t h systems, i t becomes apparent t h e e f f e c t t h a t t h e s h o r t l a g phase had on t h e c o n t e n t s o f R e a c t o r 3 The breakdown p r o c e s s s t a r t e d i m m e d i a t e l y i n R e a c t o r 2; however. R e a c t o r 3 w i t h t h e same i n i t i a l T o t a l COD, l a g g e d f o r 3 days as t h e m i c r o o r g a n i s m s adapted t o t h e system. For t h i s r e a s o n , t h e r e a c t i o n r a t e s f o r t h e removal o f o r g a n i c compounds were not as h i g h as t h o s e found i n R e a c t o r 2. C o n v e r s e l y , t h e r e a c t i o n r a t e s f o r t h e ne x t 30 days were s l i g h t l y h i g h e r i n R e a c t o r 3, s i n c e t h e r e was a h i g h e r o r g a n i c r e s i d u a l l e f t i n t h e system. The removal r a t e s were a l s o q u i t e h i g h i n terms o f T o t a l B0D 5. I n R e a c t o r 2, t h e T o t a l BOD removal was 400 mg/L Day f o r t h e f i r s t 11 days, w h i l e i n R e a c t o r 3 , i t was 300 mg/L Day f o r t h e same p e r i o d . In g e n e r a l , b o t h systems were e f f e c t i v e a t r e m e d i a t i n g t h e s l u d g e . The t o t a l d e g r a d a t i o n r a t e s f o r t h e systems were almost i d e n t i c a l . However, R e a c t o r 2 was more s u c c e s s f u l a t r e m e d i a t i n g t h e s l u d g e as a whole. R e a c t o r 3 c o u l d have p o s s i b l y removed a l l t h e o r g a n i c c o n s t i t u e n t s (as R e a c t o r 2) i f i t were run f o r an e x t r a week. 102 As p r e v i o u s l y m e n t i o n e d , t h e n u t r i e n t s w e r e e r r o n e o u s l y a d d e d i n l a r g e c o n c e n t r a t i o n t o t h e r e a c t o r s . A l t h o u g h , t h e r e s u l t s w e r e f a v o u r a b l e , t h e e x a c t q u a n t i t i e s u s e d a r e d i f f i c u l t t o d e t e r m i n e . The d a t a was q u i t e s c a t t e r e d due t o t h e h i g h c o n c e n t r a t i o n a n d f u r t h e r h a m p ered b y t h e l a r g e d i l u t i o n e f f e c t . As n o t e d i n F i g u r e s 4.2.21 a n d 4.2.22, t h e p h o s p h o r u s c o n c e n t r a t i o n was k e p t a b o v e 200 mg/L i n e a c h t e s t r e a c t o r . The ammonia c o n c e n t r a t i o n was k e p t a b o v e a t l e a s t 500 mg/L. T h e s e h i g h c o n c e n t r a t i o n s , d i d n o t a p p e a r t o hamper t r e a t m e n t o c c u r r i n g i n t h e r e a c t o r s , i r o n i c a l l y , i t may h a v e c o n t r i b u t e d t o t h e most s u c c e s s f u l r u n i n t e r m s o f c a r b o n r e m o v a l a n d l o w d i s s o l v e d c o p p e r c o n c e n t r a t i o n s t h r o u g h c o - p r e c i p i t a t i o n . Time R e a c t o r 2 R e a c t o r 3 BOD/COD R a t i o BOD/COD R a t i o 1 0.28 0.21 5 0.29 0.19 9 0.17 0.14 19 0.07 0.06 23 0.07 0.047 30 0.049 0.028 40 0.013 0.02 T a b l e 4.2.16: The BOD/COD r a t i o over time f o r run 7. T a b l e 4.2.16 shows t h e BOD/COD r a t i o w h i c h was e x h i b i t e d i n t h e two t e s t r e a c t o r s d u r i n g r u n 7. The t a b l e c l e a r l y shows t h e d i f f e r e n c e s i n t h e d u p l i c a t e t e s t r e a c t o r s . R e a c t o r 3 o r i g i n a l l y h a d a l o w e r p r o p o r t i o n o f BOD t h a n d i d R e a c t o r 2; t h i s c o u l d h a v e b e e n a f a c t o r i n t h e s l o w s t a r t o f t h e d e g r a d a t i o n p r o c e s s . The 103 i n t e r e s t i n g r e s u l t i n R e a c t o r 2 was t h a t , a l t h o u g h t h e r e was a n i n i t i a l l a r g e r e d u c t i o n i n BOD, t h e r a t i o a c t u a l l y i n c r e a s e d s l i g h t l y . T h i s i n d i c a t e s t h a t , o r i g i n a l l y , compounds rem o v e d f r o m t h e s y s t e m e x h i b i t e d a COD demand b u t n o t a BOD demand. I t c o u l d a l s o be t h a t some o f t h e m a t e r i a l was b i o l o g i c a l d e g r a d a b l e , b u t w o u l d n o t d e g r a d e d u r i n g t h e s t a n d a r d BOD 5 s t a n d a r d t e s t . The l a r g e s t r e d u c t i o n i n t h e r a t i o o c c u r r e d f r o m d a y 5 t o 19 i n b o t h r e a c t o r s ; a f t e r t h i s p o i n t i t d e c r e a s e d . T h i s i s due t o t h e s l o w e r k i n e t i c s r e s u l t i n g f r o m t h e p r e s e n c e o f h a r d e r t o d e g r a d e o r g a n i c m a t e r i a l . M o s t s i m p l e o r g a n i c s w e r e r e m o v e d i n t h e f i r s t p a r t o f t h e r u n , i . e . up t o d a y 19. However, a s G r a d y ( 1 9 9 0 ) i n d i c a t e d w i t h h i s work on l o w c o n c e n t r a t i o n m i x e d o r g a n i c compound w a s t e w a t e r s , some o f t h e l a r g e r more c o m p l e x compounds a r e a l s o r emoved d u r i n g t h i s p e r i o d , b u t a t a s l o w e r r a t e . T h i s d e c r e a s e i n t h e r a t i o e c h o e s t h e s l o w d o w n i n t h e BOD r e m o v a l g r a p h , F i g u r e 4.2.14. T h i s was t h e most s u c c e s s f u l r u n t o d a t e , p a r t i a l l y due t o t h e e r r o r i n t h e s u p p l y i n g o f t h e n u t r i e n t s . The d i s s o l v e d c o p p e r c o n c e n t r a t i o n was k e p t u n d e r c o n t r o l a n d a l l t h e o r g a n i c s w e r e re m o v e d f r o m R e a c t o r 2, e x c e p t f o r 10 ppm o f X y l e n e . The r e m a i n d e r c o u l d h a v e b e e n e a s i l y d e g r a d e d u n d e r r i g h t o p e r a t i n g c o n d i t i o n s . R e a c t o r 3 d i s p l a y e d s l o w e r k i n e t i c s , b u t a l s o r e s u l t e d i n a h i g h d e g r e e o f t r e a t m e n t . L e n g t h e n i n g t h e r u n by one week w o u l d h a v e p r o b a b l y r e s u l t e d i n t h e same l e v e l o f 104 t r e a t m e n t as R e a c t o r 2. Most o r g a n i c compounds were removed by more t h a n 99.5% i n R e a c t o r 3. The s u c c e s s o f t r e a t m e n t i s b e s t e x h i b i t e d by a p h y s i c a l e x a m i n a t i o n o f t h e s l u d g e i t s e l f . The p r o c e s s c o n v e r t e d a s t r o n g l y o d o r i f e r o u s c h e m i c a l waste, w i t h a d i s t i n c t i r i d e s c e n t hue, t o a p r o d u c t w i t h a s l i g h t e a r t h y s m e l l and c o l o u r and one w h i c h e a s i l y s e t t l e d . The n e x t o b j e c t i v e would be t o r e p l i c a t e t h e s u c c e s s o f t h e run and i d e n t i f y i f a h i g h e r i n i t i a l o r g a n i c l o a d c o u l d be t o l e r a t e d . 105 4.3 R e s u l t s a n d D i s c u s s i o n ( C o n t i n u e d ) : O v e r c o m i n g The P r o b l e m Of H i g h D i s s o l v e d M e t a l C o n c e n t r a t i o n s . Run#8: A l t h o u g h t h e p r e v i o u s runs had been s u c c e s s f u l i n d e g r a d i n g t h e o r g a n i c c o n t e n t o f t h e s l u d g e , many q u e s t i o n s remained about t h e p r o c e s s i t s e l f . I t was p u z z l i n g t h a t t h e T o t a l COD o f t h e run de c r e a s e d , w h i l e t h e s u p e r n a t a n t COD i n c r e a s e d a l m o s t c o n s t a n t l y f o r t h e l e n g t h o f t h e e x p e r i m e n t a l r u n . An e f f o r t was made t o u n d e r s t a n d t h i s phenomenon t h r o u g h t h e a n a l y s i s o f t h e s u p e r n a t a n t on a t w i c e weekly b a s i s , u s i n g Gas Chromatography. I t was i m p o r t a n t t o u n d e r s t a n d which compounds were d i s s o l v i n g i n t o s o l u t i o n and p o s s i b l y r e a c h i n g t o x i c c o n c e n t r a t i o n s i n t h e r e a c t o r . The s u c c e s s o f t h e p r e v i o u s run was not known a t t h e b e g i n n i n g o f t h i s r u n . The i n i t i a l o r g a n i c l o a d i n g o f r u n 8 was low t o a v o i d problems w i t h d i s s o l v e d copper. T h i s run was s t a r t e d two weeks a f t e r t h e s t a r t o f t h e p r e v i o u s r u n . They were r u n n i n g s i m u l t a n e o u s l y f o r a p e r i o d o f t i m e . The t a r g e t e d i n i t i a l l o a d i n g f o r t h i s r u n was a T o t a l COD c o n c e n t r a t i o n o f 15 000 mg/L. T h i s e x p e r i m e n t a l phase c o n s i s t e d o f two r e a c t o r s : a t e s t r e a c t o r . R e a c t o r 4 and a c o n t r o l , R e a c t o r 1. The i n i t i a l s t a r t i n g p o i n t i n terms o f T o t a l COD was lower t h a n d e s i r e d , as can be seen i n T a b l e 4.3.1. However, i t would s e r v e 106 as a b a s e l i n e l e v e l , t o f o l l o w t h e c h a n g i n g c o m p o s i t i o n o f t h e s u p e r n a t a n t w i t h o u t h a v i n g t o d e a l w i t h e x t r e m e l y l a r g e c o n c e n t r a t i o n s . Parameter: R e a c t o r l ( C o n t r o l ) R e a c t o r 4 S l u d g e Volume (L) 1.5 T o t a l Volume (L) 21 ( I n c l u d i n g 1 cup of b l e a c h ) 21 I n i t i a l T o t a l COD (mg/L) 11 178 12 419 I n i t i a l S u p e r n a t a n t COD (mg/L) 1 245 831 I n i t i a l T o t a l BOD5 (mg/L) NA 3 353 pH 6.35 6.54 Table 4.3.1: I n i t i a l conditions of the reactors at the beginning of run 8. Compound: R e a c t o r 1 T o t a l ( C o n t r o l ) ppm R e a c t o r 1 Sup e r n a t a n t ( C o n t r o l ) ppm R e a c t o r 4 T o t a l ppm R e a c t o r 4 Sup e r n a t a n t ppm X y l e n e 127 14.6 150 18.4 D i p h e n y l 463 6.9 520 7.63 D i p h e n y l E t h e r 2281 36 2552 46.5 D i p h e n y l Methane 22 0 26.4 0 Benzene,1, 1'Methylene b i s ( 4 - M e t h y l ) 14.8 0 17.3 0 1,2-Dimethyl-4-Benzyl Benzene 55.5 0 81 0 Table 4.3.2: I n i t i a l t o t a l and supernatant concentration of target organic compounds i n the reactors of run8. 107 T a b l e 4.3.2 shows t h e c o n c e n t r a t i o n o f t h e t a r g e t o r g a n i c s i n terms o f t o t a l and s u p e r n a t a n t c o n c e n t r a t i o n w h i c h were p r e s e n t i n t h e r e a c t o r s p r i o r t o t h e s t a r t o f run 8. O n l y t h e s m a l l e r , l e s s complex o r g a n i c s were p r e s e n t i n t h e s u p e r n a t a n t . The c o n c e n t r a t i o n s i n t h e s u p e r n a t a n t were q u i t e s m a l l , when a t a l l p r e s e n t . A r e c o r d was kept over t h e l e n g t h o f t h e run, e n a b l i n g t h e compounds w h i c h were s o l u b i l i z i n g and a f f e c t i n g t h e s u p e r n a t a n t COD, t o be i d e n t i f i e d . A c o n c e r n a t t h e b e g i n n i n g o f t h e run a g a i n f o c u s e d on t h e low i n i t i a l pH. A d e c i s i o n was made t o l e t t h e system r e a c h i t ' s own e q u i l i b r i u m i n terms o f pH. I f t h e system was s u c c e s s f u l i n t r e a t i n g t h e s l u d g e , t h e r e was no r e a s o n t o m o d i f y t h e pH. I t would a l s o s e r v e as an i n d i c a t i o n o f t h e pH range which s t i l l e n a b l e d a c u l t u r e o f m i c r o o r g a n i s m s t o f u n c t i o n i n t h i s e nvironment. E x a m i n i n g t h e run i n terms o f T o t a l COD, F i g u r e 4.3.1, t h e t r e n d w h i c h was p r e s e n t i n o t h e r runs i s e v i d e n t a g a i n . I n i t i a l l y , t h e r e was a q u i c k T o t a l COD r e d u c t i o n i n t h e t e s t v e s s e l ; t h e m a j o r i t y o f t h i s r e d u c t i o n , o c c u r r e d by t h e t w e n t i e t h day. A f t e r t h a t p o i n t , t h e COD c o n c e n t r a t i o n r o s e t o a l e v e l o f 8 000 mg/L, h a v i n g been as low as 6 000 mg/L. There was s i g n i f i c a n t v a r i a b i l i t y i n t h e T o t a l COD c o n c e n t r a t i o n o f t h e c o n t r o l , as w e l l , but t h e end r e s u l t was t h a t t h e i n i t i a l and t h e f i n a l c o n c e n t r a t i o n s d i d not d i f f e r g r e a t l y . 108 FIGURE 4.3.1 TOTAL COD CONCENTRATION VS TIME FOR RUN 8 15 i 6 0 10 20 30 40 50 60 TIME (DAYS) _ ^ REACTOR 1 (CONTROL) REACTOR 4 0 10 20 30 40 50 TIME (DAYS) ^ R E A C T O R 1 (CONTROL) ^ R E A C T O R 4 109 Between t h e s e r e a d i n g s , t h e r e was c o n s i d e r a b l e up and down f l u c t u a t i o n s . The c o n c e n t r a t i o n was as h i g h as 13 800 and was low as 9 100 mg/L. G e n e r a l l y , t h e GC r e s u l t s from t h e s e samples show th e same v a r i a b i l i t y . A l t h o u g h t h r e e s e p a r a t e samples on any day were t a k e n and a n a l y z e d , t h e r e s u l t s d i f f e r e d g r e a t l y from one s a m p l i n g p e r i o d t o t h e n e x t . The s u p e r n a t a n t COD graph. F i g u r e 4.3.2, shows a p a t t e r n w h i c h has become q u i t e f a m i l i a r . The i n i t i a l s u p e r n a t a n t c o n c e n t r a t i o n was low; however, t h i s c o n c e n t r a t i o n i n c r e a s e d g r a d u a l l y , w i t h t i m e , f o r most o f t h e run i n t h e t e s t r e a c t o r . The c o n c e n t r a t i o n r eaches a maximum a t day 20. As can be o b s e r v e d on t h e graph, t h e c o n c e n t r a t i o n t h e n d e c r e a s e d f o r 3 subsequent s a m p l i n g p e r i o d s , o n l y t o i n c r e a s e a g a i n and t h e n d e c r e a s e back t o t h e i n i t i a l c o n c e n t r a t i o n a t t h e b e g i n n i n g o f t h e r u n . T h i s was a new p a t t e r n . The c o n c e n t r a t i o n u s u a l l y i n c r e a s e d f o r t h e r u n o r i n c r e a s e d t h e n d e c r e a s e d but does not g e n e r a l l y f l u c t u a t e t o such an e x t e n t . The o v e r a l l t o t a l i n c r e a s e i n t h e COD o f t h e s u p e r n a t a n t was n e g l i g i b l e , a t t r i b u t a b l e i n p a r t , t o t h e low i n i t i a l s l u d g e l o a d i n g r a t e . R e a c t o r 4 had an i n i t i a l c o n c e n t r a t i o n o f l e s s t h a n h a l f o f t h e t e s t r e a c t o r i n t h e p r e v i o u s r u n . The r e a c t o r i n t h e l a s t run e x h i b i t e d an i n c r e a s i n g s u p e r n a t a n t p a t t e r n i n terms of T o t a l COD. I t was p r e v i o u s l y thought t h a t when a h i g h i n i t i a l c o n c e n t r a t i o n was used, some o r g a n i c compounds accumulated i n s o l u t i o n a t a f a s t e r r a t e than th e b a c t e r i a c o u l d u t i l i z e them. I n t h i s c a s e , however, a l t h o u g h 110 t h e i n i t i a l s l u d g e COD c o n c e n t r a t i o n was l o w , t h e b a c t e r i a l p o p u l a t i o n must n o t h a v e b e e n h e a l t h y e n o u g h t o e f f e c t i v e l y t r e a t t h i s w a s t e . T h e r e f o r e , t h e y w e r e n o t c a p a b l e o f u s i n g t h e compounds a s f a s t a s t h e y w e r e s o l u b i l i z i n g , r e s u l t i n g i n a c o n s i d e r a b l e i n c r e a s e i n t h e c o n c e n t r a t i o n i n t h e s u p e r n a t a n t . E x a m i n i n g t h e r u n a s a w h o l e , many i n t e r e s t i n g d e t a i l s come t o l i g h t . The pH v s t i m e g r a p h . F i g u r e 4.3.3, c a n be u s e d t o i d e n t i f y t h e p e r i o d s when most o f t h e d e g r a d a t i o n o c c u r r e d . G e n e r a l l y , t h e l a r g e r t h e pH d r o p i n a n o n b u f f e r e d s y s t e m , t h e more d e g r a d a t i o n t h a t h a s t a k e n p l a c e . The most \" a c t i v e \" p e r i o d was f r o m d a y 10 t o 17; h o w e v e r , t h i s d o e s n o t m a t c h a n y l a r g e c h a n g e i n T o t a l COD. D u r i n g t h i s p e r i o d , t h e T o t a l COD d e c r e a s e d s l i g h t l y a n d t h e n i n c r e a s e d a l i t t l e . On d a y 17, t h e pH seemed t o l e v e l o f f , w i t h no c h a n g e i n t h e v a l u e o f t h e s a m p l e ' s pH f r o m d a y 17 t o d a y 20. T h e r e was t h e n a s l i g h t i n c r e a s e i n t h e n e x t two s a m p l e s . T h i s i n d i c a t e d t h a t t h e d e g r a d a t i o n p r o c e s s h a s s l o w e d f o r some r e a s o n . A s i m i l a r s h i f t was s e e n i n t h e v a l u e s o f t h e c o n t r o l , o v e r t h e same p e r i o d . I n t e r e s t i n g l y e n o u g h , t h e ammonia c o n c e n t r a t i o n v s T ime g r a p h . F i g u r e 4.3.4, i n d i c a t e s t h a t , f o r t h e p e r i o d o f pH s t a b i l i t y , t h e r e a c t o r was r u n n i n g \" n u t r i e n t l i m i t e d \" . F i g u r e s 4.3.4 a n d 4.3.5 show t h e c o n c e n t r a t i o n o f n u t r i e n t s p r e s e n t i n t h e s y s t e m . L i t t l e n i t r o g e n was p r e s e n t i n t h e s y s t e m f r o m d a y 17 t o 27 ( F i g u r e 4 . 3 . 4 ) . T h i s r e s u l t seemed t o s t a l l t h e 111 FIGURE 4.3.3 P H VS TIME FOR R U N 8 7 r-0 10 20 30 40 TIME (DAYS) REACTOR 1 (CONTROL) REACTOR 4 50 60 112 FIGURE 4.3.4 AMMONIA CONCENTRATION VS TIME FOR RUN 8 100 r 3 6 10 13 17 20 24 27 31 34 38 41 45 48 TIME (DAYS) REACTOR 1 (CONTROL) R E A C T O R 4 FIGURE 4.3.5 PHOSPHORUS CONCENTRATION VS TIME FOR RUN 8 3 6 10 13 17 20 24 27 31 34 38 41 45 48 TIME (DAYS) REACTOR 1 (CONTROL) ^ R E A C T O R 4 113 system i n terms o f T o t a l COD r e d u c t i o n . When a d d i t i o n a l n i t r o g e n was added t o t h e system, t h e pH c o n t i n u e d a downward c l i m b i n d i c a t i n g i n c r e a s e d b i o a c t i v i t y . A l s o , d u r i n g t h i s \" s t a r v a t i o n \" p e r i o d , t h e V S S / T S S r a t i o d e c r e a s e d as can no t e d i n F i g u r e 4.3.6. On day 20, t h e r a t i o was a t i t ' s h i g h e s t p o i n t : 0.9. The r a t i o t h e n c o n t i n u e d t o d e c l i n e u n t i l a d d i t i o n a l n i t r o g e n was p r e s e n t i n t h e r e a c t o r . T h i s was y e t a n o t h e r i n d i c a t i o n o f t h e n e c e s s i t y o f on l i n e m o n i t o r i n g , i n t h i s t y p e o f r e s e a r c h . F o r t h i s e x p e r i m e n t , n u t r i e n t samples were t a k e n t w i c e weekly but were o n l y a n a l y z e d on t h e Lac h a t e A n a l y z e r e v e r y two weeks. O f t e n d e c i s i o n s had t o be made w i t h o u t a c c e s s t o t h e most r e c e n t d a t a . The d e c r e a s e a t t h e end o f t h e V S S / T S S r a t i o was p r o b a b l y due t o a n u t r i e n t l i m i t a t i o n . The MLVSS c o n c e n t r a t i o n d u r i n g t h e run can be seen i n F i g u r e 4.3.7. I t s h o u l d be n o t e d t h a t on day 27, a s i g n i f i c a n t d e c r e a s e can be o b s e r v e d i n t h e MLVSS c o n c e n t r a t i o n o f t h e R e a c t o r 4. T h i s was e x a c t l y t h e same time t h a t t h e c o n c e n t r a t i o n o f d i s s o l v e d copper i n t h e r e a c t o r was a p p r o x i m a t e l y 10 mg/L. When t h e copper l e v e l was reduced by phosphorus a d d i t i o n , t h e MLVSS c o n c e n t r a t i o n i n c r e a s e d s l i g h t l y . The d i s s o l v e d copper c o n c e n t r a t i o n d u r i n g t h e r u n was k e p t under c o n t r o l l a r g e l y due t o t h e low i n i t i a l s l u d g e COD l o a d i n g l e v e l , as shown i n F i g u r e 4.3.8. The t o t a l copper c o n c e n t r a t i o n i n t h e r e a c t o r s was a p p r o x i m a t e l y 40 mg/L f o r t h e t e s t r e a c t o r and 114 FIGURE 4.3.7 ML VSS CONCENTRATION VS TIME FOR RUN 8 0 10 20 30 40 50 TIME (DAYS) REACTOR 1 (CONTROL) ^ R E A C T O R 4 115 FIGURE 4.3.8 COPPER C O N C E N T R A T I O N VS TIME FOR R U N 8 BOTH DISSOLVED AND TOTAL 60 10 13 17 20 24 27 31 34 38 41 45 48 TIME (DAYS) R#l TOTAL R#4 TOTAL R#l DISSOLVED ^R#4 DISSOLVED 50 mg/L f o r t h e c o n t r o l . F or most of t h e r u n , t h e d i s s o l v e d copper c o n c e n t r a t i o n remained below t h e 4-5 mg/L t h r e s h o l d . However, on day 27, t h e c o n c e n t r a t i o n q u i c k l y r o s e t o almost 10 mg/L. T h i s was t h e apparent r e s u l t o f a r e l a t i v e l y low c o n c e n t r a t i o n o f phosphorus p r e s e n t i n t h e r e a c t o r . Once t h i s s i t u a t i o n was r e c o g n i z e d , a d d i t i o n phosphorus added t o t h e system (see F i g u r e 4.3.5). The s i t u a t i o n was worsened by t h e low pH range under wh i c h t h e system was o p e r a t i n g . A f t e r t h e phosphorus a d d i t i o n , t h e d i s s o l v e d copper l e v e l i n t h e r e a c t o r f e l l t o below 5 mg/L. The d a t a from Run 7 i n d i c a t e s t h a t t h i s l e v e l appears t o be t h e upper l i m i t f o r b a c t e r i a l growth i n t h i s t y p e o f system. The c l o s e m o n i t o r i n g o f t h e s u p e r n a t a n t , u s i n g t h e GC t r a c e , y i e l d e d some i n t e r e s t i n g d a t a . The f i r s t g e n e r a l o b s e r v a t i o n was t h a t t h e m i x t u r e o f o r g a n i c s was l e s s complex and c o n c e n t r a t e d t h a n t h o s e o b s e r v e d i n t h e T o t a l samples. Two t a r g e t compounds were p r e s e n t i n t h e T o t a l samples but never p r e s e n t i n t h e s u p e r n a t a n t , t h e two benzene d e r i v a t i v e compounds. D i p h e n y l Methane was n e v e r p r e s e n t i n t h e s u p e r n a t a n t o f t h e c o n t r o l but was p r e s e n t i n s m a l l amounts i n t h e t e s t r e a c t o r . I t i s i n t e r e s t i n g t o n o t e t h a t t r a c e s o f some compounds were never found by t h e GC i n t h e s u p e r n a t a n t , a l t h o u g h t h e y were s t i l l d egraded. T h i s i n f e r s t h a t , as soon as t h e compounds d i s s o l v e d , t h e y were u t i l i z e d by t h e b a c t e r i a o r t h a t t h e y were p r e s e n t i n such s m a l l c o n c e n t r a t i o n s i n t h e s u p e r n a t a n t , as not t o be d e t e c t a b l e t h r o u g h t h e use o f Gas Chromatography. 117 The purpose of t h e m o n i t o r i n g o f t h e s u p e r n a t a n t was t o i d e n t i f y t h e compounds p r e s e n t i n t h e s u p e r n a t a n t and c o n t r i b u t i n g t o t h e COD, as seen i n F i g u r e 4.3.2 (and i n p r e v i o u s r u n s ) . I t was thought t h a t s e v e r a l compounds were s o l u b i l i z i n g i n t h e r e a c t o r and c a u s i n g a r a p i d i n c r e a s e i n t h e c o n c e n t r a t i o n o f t h e COD. A l s o , t h e s e compounds c o u l d be p r e s e n t i n t o x i c c o n c e n t r a t i o n s t h u s e x p l a i n i n g t h e \" s t a l l i n g \" i n t h e d e g r a d a t i o n e x p e r i e n c e d i n some r u n s . There i s l i t t l e t o e x p l a i n t h e phenomenon p r e s e n t i n t h e t a r g e t o r g a n i c d a t a o r t h e GC t r a c e . D u r i n g t h e r u n , t h e r e was a s l i g h t i n c r e a s e i n t h e c o n c e n t r a t i o n o f D i p h e n y l E t h e r but i n no way d r a s t i c enough t o e x p l a i n t h e s u p e r n a t a n t COD i n c r e a s e . One i s l e f t t o c o n s i d e r t h e p o s s i b i l i t y t h a t t h e i n c r e a s e was due t o t h e s o l u b i l i z a t i o n o f some r e f r a c t o r y o r g a n i c compounds, wh i c h a r e d e t e c t a b l e by t h e COD t e s t , but not by t h e GC. The a n a l y s i s o f t h e components of t h e s u p e r n a t a n t can be n o t e d i n T a b l e 4.3.3. The T a b l e c l e a r l y i n d i c a t e s t h a t t h e change i n t h e S u p e r n a t a n t COD was not as a r e s u l t o f t h e t a r g e t o r g a n i c compounds coming i n t o s o l u t i o n i n R e a c t o r 4. F u r t h e r m o r e , t h e GC t r a c e s o f b o t h samples a r e q u i t e d i f f e r e n t . The t r a c e on day 20 showed o n l y 3 peaks o f s m a l l a r e a . The GC t r a c e from t h e day 6 sample was c l u t t e r e d w i t h s m a l l peaks. I n t o t a l , t h e r e were 7 peaks o f v a r y i n g a r e a . B o t h samples c o n t a i n e d t h e D i p h e n y l E t h e r peak w i t h t h e e a r l y sample h a v i n g t h e l a r g e r peak. From t h e GC t r a c e s , i t i s c l e a r t h a t t h e S u p e r n a t a n t COD was i n c r e a s i n g due t o t h e p r e s e n c e o f compounds not d e t e c t a b l e by GC and l i k e l y 118 r e f r a c t o r y . Compound: Day 6 Day 20 Sup e r n a t a n t COD (mg/L) 1 141 3 083 X y l e n e (ppm) 0 0 D i p h e n y l (ppm) 0 0 D i p h e n y l E t h e r (ppm) 89.3 79.6 D i p h e n y l Methane (ppm) 0 3.4 Benzene,1,1' Methylene b i s (di-methyl ) 0 0 1,2-Dimethyl-4-B e n z y l Benzene 0 0 Table 4.3.3: Comparison of the trace organic concentration and the Supernatant COD concentration on two sampling days i n run 8 i n Reactor 4. Parameter: R e a c t o r 1 ( C o n t r o l ) R e a c t o r 4 I n i t i a l T o t a l COD (mg/L) 11 178 12 419 F i n a l T o t a l COD (mg/L) 10 984 8 149 % d i f f e r e n c e 1.7 34.3 I n i t i a l T o t a l BOD (mg/L) NA 3 353 I n i t i a l F i n a l BOD (mg/L) NA 623 % D i f f e r e n c e NA 81.4 Table 4.3.4: F i n a l conditions of the reactors a f t e r 48 days i n run 8. The i n t e r e s t i n g r e s u l t s o f t h i s r u n was t h e i n a b i l i t y o f t h e system t o reduce t h e BOD down t o a n e g l i g i b l e c o n c e n t r a t i o n ( T a b l e 4.3.4). The r e d u c t i o n i n T o t a l COD was a l s o much l e s s t h a n 119 a n t i c i p a t e d a c c o r d i n g t o p r e v i o u s s u c c e s s f u l r u n s . The p r o c e s s , l a s t i n g 48 d a y s , was l o n g e r t h a n i n r u n 7, a l t h o u g h t h e i n i t i a l s l u d g e l o a d i n g was l o w e r . The p r o b l e m s o b s e r v e d i n t h e r u n w e r e m o n i t o r i n g a n d c o n t r o l p r o b l e m s . The d e l a y i n i d e n t i f y i n g b o t h t h e n i t r o g e n d e f i c i e n c y a n d t h e h i g h d i s s o l v e d c o p p e r c o n c e n t r a t i o n s u l t i m a t e l y i n h i b i t e d t h e p r o c e s s a n d r e s u l t e d i n a l e s s e f f e c t i v e t r e a t m e n t . A l t h o u g h t h e T o t a l COD r e s u l t s a r e s u s p e c t , due t o t h e p o s s i b l e p r e s e n c e o f r e f r a c t o r y o r g a n i c compounds, b o t h t h e BOD a n d t h e t a r g e t o r g a n i c compounds d a t a show a n i n c o m p l e t e d e g r a d a t i o n p r o c e s s . T a b l e 4.3.5 c l e a r l y shows t h a t t h e r e was n e g l i g i b l e t r e a t m e n t i n t e r m s o f t a r g e t o r g a n i c compounds i n t h e c o n t r o l ; a s s u c h , t h e r e was l i t t l e v o l a t i l i z a t i o n o f o r g a n i c compounds i n t h i s r u n . T h i s was t h e most s t a b l e c o n t r o l u n i t o b s e r v e d t o d a t e d u r i n g t h e s t u d y , p a r t i a l l y a r e s u l t o f a c a r e f u l a e r a t i o n p r o c e d u r e . Due t o t h e h i g h v a r i a b i l i t y o f t h e GC d a t a , t h e c o n f i d e n c e i n t h e s u c c e s s o f t h i s r u n was l o w . T h e r e i s a l a r g e r e s i d u a l c o n c e n t r a t i o n o f t a r g e t o r g a n i c s r e m a i n i n g a t t h e e n d o f t h e e x p e r i m e n t , i n d i c a t i n g a n i n c o m p l e t e t r e a t m e n t p r o c e s s . Compounds s u c h a s D i p h e n y l E t h e r w e r e r e d u c e d b y more t h a n 98% o f t h e i r o r i g i n a l c o n c e n t r a t i o n ; h o w e v e r , t h e r e s i d u a l c o n c e n t r a t i o n was q u i t e h i g h . I t a p p e a r s t h a t t h e h i g h m e t a l c o n c e n t r a t i o n a t t h e e n d o f t h e r u n may h a v e i n t e r f e r e d w i t h t h e t r e a t m e n t p r o c e s s . 120 Compound: S a m p l e : R e a c t o r 1 ( c o n t r o l ) : R e a c t o r 4: X y l e n e (ppm) Day 1 127.4 150.1 Day 48 59.4 0 % degradation 53.4 100 D i p h e n y l (ppm) Day 1 463.3 520.9 Day 48 463 3.64 % degradation 0 99.3 D i p h e n y l E t h e r (ppm) Day 1 2281 2552 Day 48 2280 40.5 % degradation 0 98.4 D i p h e n y l M e t h a n e (ppm) Day 1 22 26.4 Day 48 22 9.8 % degradation 0 62.8 B e n z e n e , 1 , 1 ' M e t h y 1 e n e b i s ( 4 - m e t h y l ) (ppm) Day 1 14.8 17.3 Day 48 14 8.1 % degradation 0 33.8 1,2 D i m e t h y l - 4 - B e n z y l B e n z e n e ( p p m ) Day 1 55.5 81.1 Day 48 53 0 % degradation 4.6 100 Table 4.3.5: The difference i n the target organic concentration at the beginning and the end of run 8. The o v e r a l l B0D 5:N:P r a t i o i n t h i s r u n was 35.8:1.51:1 ( t h e N/P R a t i o s a r e shown i n T a b l e 4 . 3 . 6 ) . C o n t r a r y t o t h e p r e v i o u s r u n , t h e c a r b o n c o n s u m p t i o n was q u i t e l o w c o m p a r e d t o t h e amount o f p h o s p h o r o u s u s e d . The o v e r a l l C0D:N:P r a t i o was 5 0 . 7 : 1 . 5 1 : 1 . I n p r e v i o u s r u n s , t h e COD consumed h a d a l w a y s l a r g e r t h a n t h e 121 Days Time (days) N used (mg/L) P used (mg/L) N/P r a t i o 0-3 3 4.2 5.28 0.79 4-6 3 13.6 10.4 1.31 7-10 4 8.1 8.4 0.97 11-13 3 11.4 5.6 2.04 14-17 4 8.95 4.8 1.85 18-21 3 0 0.33 0 22-24 4 2.43 1.2 1.95 25-27 3 0.2 6.15 0.03 28-31 4 4.68 9 0.52 32-34 3 5.21 2.7 1.96 35-38 4 0 0 39-41 3 19.2 7 2.75 42-45 4 10.3 10.8 0.95 46-48 3 38.6 12.7 3.04 T o t a l 48 84.3 127 1.51 Table 4 .3 .6: Nitrogen/phosphorous r a t i o s exhib i ted during run 8 i n Reactor 4. t h e o r e t i c a l l y s p e c i f i e d 100. ( M e t c a l f 1991; B e l t r a m e 1979) As i n the p r e v i o u s r u n s , t h e h i g h P u t i l i z a t i o n was p r o b a b l y t h e r e s u l t o f t h e b i n d i n g o f phosphorus w i t h d i s s o l v e d copper, t o form Copper Phosphate. Examining t h e B0D 5 graph v s t i m e , F i g u r e 4.3.9, t h e f i r s t p a r t o f the graph seems t o f i t t h e p a t t e r n o f a f i r s t o r d e r decay r e a c t i o n q u i t e w e l l . The d e g r a d a t i o n p a t t e r n appeared t o be a two s t e p p r o c e s s . I n i t i a l l y , t h e r e was r a p i d d e g r a d a t i o n , f o l l o w e d by 122 FIGURE 4.3.9 TOTAL 5 D A Y B O D CONCENTRATION VS TIME F O R R U N 8 10 20 24 31 41 TIME (DAYS) REACTOR 4 123 a l e v e l l i n g o f f . Based on f i r s t o r d e r decay e q u a t i o n o f C/Co= E X P - ( k t ) , t h e c o n s t a n t k f o r t h e e n t i r e r e a c t i o n was d e t e r m i n e d t o be 0.036 Days-1. The q u a l i t y o f f i t o f t h i s d a t a i s summarized i n T a b l e 4.3.7. Days A c t u a l BOD 5 C o n c e n t r a t i o n (mg/L) BOD5 P r e d i c t e d u s i n g f i r s t o r d e r r e a c t i o n f o r e n t i r e r u n (mg/L) B0D5 P r e d i c t e d u s i n g f i r s t o r d e r r e a c t i o n up t o day 24 1 3305 3305 3305 10 1100 2367 1618 20 561 1634 732 24 533 1409 533 31 685 1087 41 566 749 46 623 623 Table 4 . 3 . 7 : Comparing the p r e d i c t e d BOD5 v a l u e s f o r the models proposed. Examining T a b l e 4.3.7 and t h e accompanying F i g u r e 4.3.10, i t i s c l e a r t h a t t h e r e a c t i o n f i t s t h e p a t t e r n o f a f i r s t o r d e r decay f o r t h e f i r s t 24 days. At t h i s p o i n t , t h e d e g r a d a t i o n p r o c e s s l e v e l l e d o f f w i t h l i t t l e o r no f u r t h e r r e d u c t i o n i n BOD5. Two f i r s t o r d e r models a r e p r e s e n t e d t o model th e B0D 5 d e g r a d a t i o n . The f i r s t model i s based on t h e BOD5 c o n c e n t r a t i o n on t h e l a s t day o f t h e r u n . The r e a c t i o n r a t e c o n s t a n t f o r t h i s model i s 0.036 Days-1. I t i s c l e a r from e x a m i n i n g F i g u r e 4.3.10 t h a t t h e a c t u a l d a t a does not f i t t h i s model. The BOD5 d e g r a d a t i o n i s more r a p i d t h a n p r e d i c t e d and l e v e l s o f f near t h e end o f t h e r u n . A second model i s proposed, based on t h e BOD5 c o n c e n t r a t i o n on day 124 FIGURE 4.3.10 ACTUAL AND FIRST ORDER MODEL PREDICTED TOTAL BOD VS TIME FOR RUN 8 3500 i 1 0 10 20 30 40 50 TIME (DAYS) ~\u00C2\u00BB ACTUAL DATA MODEL BASED ON (k=0.0371) MODEL BASED ON (k=0.793) 125 24. T h i s i s t h e p o i n t w e r e t h e d e g r a d a t i o n i n t h e r u n l e v e l l e d o f f . T h i s m o d e l , w i t h a r e a c t i o n r a t e c o n s t a n t k, o f 0.793 Days -1 f i t s t h e d a t a more c l o s e l y . The d a t a c l e a r l y i n d i c a t e s a p r o b l e m i n t h e b i o t r e a t m e n t o f t h i s w a s t e . The r a p i d , i n i t i a l d e g r a d a t i o n was s l o w e d a f t e r 20 d a y s . A s h i f t i n t h e d e g r a d a t i o n r a t e was u s u a l l y o b s e r v e d a t t h e m i d p o i n t o f t h e r u n , w h e r e b y t h e i n i t i a l r a p i d d e g r a d a t i o n g a v e way t o a s l o w e r p r o c e s s , due t o t h e c h a n g i n g c o m p o s i t i o n i n t h e r e a c t o r . A t f i r s t , s i m p l e o r g a n i c s w e r e b r o k e n down; a t t h e same t i m e , some c o m p l e x o r g a n i c s w e r e s l o w l y r emoved. The s l o w d e g r a d a t i o n o f t h e t a i l e n d o f t h e r u n e n a b l e d e v e n t h e most c o m p l e x compounds o f t h e m i x t u r e t o be b r o k e n down. The k i n e t i c s o f t h e s y s t e m c h a n g e d , a s n o t e d p r e v i o u s l y . However, i n t h e c a s e o f t h i s r u n t h e r a p i d d e g r a d a t i o n g a v e way t o a \" s t a l l e d \" s y s t e m . T h e r e i s no s u b s t a n t i a l d e g r a d a t i o n b a s e d on t h e T o t a l B0D 5 o f t h e r e a c t o r , a f t e r Day 20. The T o t a l B0D 5 v s t i m e g r a p h ( F i g u r e 4.3.9) c l e a r l y i n d i c a t e s t h e p r o b l e m w i t h t h e r u n . T h u s , i t a p p e a r s t h a t t h e a b s e n c e o f n i t r o g e n i n t h e s y s t e m h a d a g r e a t e r e f f e c t o n t h e t r e a t m e n t p r o c e s s t h a n was o r i g i n a l l y t h o u g h t . M o d e l l i n g t h e D i p h e n y l a n d t h e D i p h e n y l E t h e r b r e a k d o w n c a n be s e e n i n F i g u r e s 4.3.11 a n d 4.3.12, r e s p e c t i v e l y . The F i g u r e s show how c l o s e l y t h e f i r s t o r d e r m o d e l s p r e d i c t t h e d e g r a d a t i o n o f t h e compound f r o m t h e w a s t e m i x t u r e . The r e a c t i o n r a t e c o n s t a n t s k, f o r t h e r e m o v a l o f D i p h e n y l a n d D i p h e n y l E t h e r a r e 0.40 a n d 0.11 126 600 FIGURE 4.3.11 Modeling the degradation of Diphenyl in run 8 First order decay model 0 5 10 15 Time (days) Actual Diphenyl concentration Model predicted concentration 3000 FIGURE 4.3.12 Modeling the degradation of Diphenyl Ether in ran I First order decay model 10 20 30 Time (days) . Actual Diphenyl Ether concentration . 40 day predicted model of Diphenyl Ether cone. . Full model predicted concentration 127 D a y s - 1 , r e s p e c t i v e l y . O v e r a l l , t h i s r u n was n o t a s u c c e s s , b a s e d on t h e a n a l y s i s o f t h e f i n a l p r o d u c t . T h e r e r e m a i n e d a c o n s i d e r a b l e BOD 5 a n d t r a c e o r g a n i c s r e s i d u a l i n t h e e n d p r o d u c t . L e n g t h e n i n g t h e r u n w o u l d n o t h a v e p r o v i d e d a n y a d d i t i o n a l t r e a t m e n t , s i n c e t h e a n a l y t i c a l r e s u l t s o f t h e r e a c t o r h a d n o t c h a n g e d g r e a t l y i n t h e l a s t 7 d a y s o f t h e r u n . I t i s p r o b a b l e t h a t t h e f a i l u r e was a c o m b i n e d r e s u l t o f t h e l a c k o f n i t r o g e n f o r a 7 d a y p e r i o d a n d t h e h i g h m e t a l c o n c e n t r a t i o n . The p h o s p h o r u s c o n c e n t r a t i o n was a l s o n o t a s h i g h a s i n t h e p r e v i o u s r u n . Run#9: To c o n t i n u e t h e p r o g r e s s a c h i e v e d i n r u n 7 a n d t o e x a m i n e i f a h i g h e r q u a l i t y e n d p r o d u c t s l u d g e a n d e f f l u e n t c o u l d be o b t a i n e d , t h e r e a c t o r c o n t e n t s a t t h e e n d o f r u n 7 w e r e d o s e d w i t h a l u m . The p u r p o s e o f t h e a l u m was t o r e d u c e b o t h t h e d i s s o l v e d a n d t h e t o t a l c o p p e r l e v e l s t o a l l o w t h e m i c r o o r g a n i s m s a b e t t e r o p p o r t u n i t y t o t r e a t t h e r e m a i n d e r o f t h e o r g a n i c c o n s t i t u e n t s i n t h e r e a c t o r . J a r t e s t s w i t h a l u m c o n c e n t r a t i o n s r a n g i n g f r o m 200 t o 1000 mg/L w e r e p e r f o r m e d on t h e t r e a t e d s l u d g e , t o d e t e r m i n e t h e d o s a g e w h i c h w o u l d r e s u l t i n t h e b e s t r e m o v a l o f c o p p e r . T a b l e 4.3.8 shows t h a t t h e 1000 mg/L d o s a g e r e m o v e d t h e l a r g e s t p r o p o r t i o n o f t h e o r i g i n a l c o p p e r p r e s e n t . However, t h e d o s a g e 128 A l u m D o s a g e : (mg/L) R e s u l t a n t T o t a l C o p p e r C o n c e n t r a t i o n (mg/L) 0 27.6 200 17.4 400 13.8 500 13.2 600 9.1 800 5.52 1000 4.53 T a b l e 4 . 3 . 8 : R e s u l t s o f the j a r t e s t t o de te rmine copper r e m o v a l . w o u l d n o t be p r a c t i c a l o n a l a r g e s c a l e b a s i s , due t o t h e c o s t s i n v o l v e d . T h u s , i f c o p p e r r e m o v a l was d e s i r e d a t t h e f u l l s c a l e a n o t h e r m ethod w o u l d h a v e t o be s e l e c t e d . The p u r p o s e h e r e was t o s e e i f t h e b a c t e r i a w o u l d remove more o f t h e T o t a l COD i f i n s i t u c o p p e r l e v e l s w e r e l o w e r t h a n i n p r e v i o u s r u n s . The c o n t e n t s o f t h e R e a c t o r 3, f r o m r u n 7, w e r e d o s e d w i t h 1000 mg/L o f a l u m i n a s e p a r a t e c l a r i f i e r . A 25 l i t r e j u g w i t h an o u t l e t o n t h e b o t t o m was u s e d . 16 l i t r e s o f t h e t r e a t e d s l u d g e ( f r o m r u n 7) w e r e a d d e d t o t h e c l a r i f i e r a n d d o s e d w i t h t h e a l u m . The pH was m o d i f i e d w i t h s o d i u m b i c a r b o n a t e a n d s o d i u m h y d r o x i d e , i n o r d e r t o f a l l w i t h i n t h e r a n g e o f 7.5 - 8.5. T h i s m o d i f i c a t i o n was n e c e s s a r y , s i n c e t h e e f f e c t i v e n e s s o f t h e a l u m d e p e n d s on t h e pH a n d a l k a l i n i t y o f t h e s o l u t i o n . The c o n t e n t s w e r e s h a k e n f o r 10 m i n u t e s a n d a l l o w e d t o s e t t l e . 12 L i t r e s t a k e n f r o m t h e t o p o f t h e v e s s e l w e r e c o l l e c t e d a n d w e r e u s e d f o r t h e n e x t r u n . T h i s r e a c t o r w o u l d be known a s R e a c t o r 3. 129 R e a c t o r 2 was l o a d e d w i t h a s m a l l c o n c e n t r a t i o n o f s l u d g e , t o i n v e s t i g a t e t h e r e s p o n s e o f t h e s y s t e m t o a v e r y l o w i n i t i a l s l u d g e l o a d i n g . I t was h o p e d t h a t i f t h e o r g a n i c c o n s t i t u e n t s a n d t h e m e t a l c o n c e n t r a t i o n o f t h e w a s t e m i x t u r e w e r e q u i t e l o w t h e b i o - k i n e t i c s o f t h e s y s t e m w o u l d i m p r o v e . The o b j e c t i v e was t o o b s e r v e t h e r a t e s o f r e a c t i o n o f a n \" u n d e r - l o a d e d \" s y s t e m , c o m p a r e d t o t h o s e o f p r e v i o u s r u n s . A s c a n be n o t e d i n T a b l e s 4.3.9 a n d 4.3.10, t h e t a r g e t o r g a n i c compounds w e r e i n q u i t e l o w c o n c e n t r a t i o n i n a l l t h e r e a c t o r s . The w a s t e m i x t u r e i n R e a c t o r 3 c o n t a i n e d a l e s s - d i v e r s e c h e m i c a l makeup, when c o m p a r e d t o t h e o t h e r r e a c t o r s . T h i s was e x p e c t e d , s i n c e t h e s l u d g e was p r e v i o u s l y t r e a t e d i n r u n 7. A t t h e e n d p o i n t o f t h a t r u n , t h e GC t r a c e i n d i c a t e d t h a t a l l t h e o r g a n i c c o m p o n e n t s h a d b e e n r e d u c e d t o b e l o w t h e d e t e c t i o n l i m i t . The o r i g i n o f t h e o r g a n i c compounds now p r e s e n t i n t h i s r e a c t o r w o u l d be f r o m t h e w a s t e w a t e r s e e d u t i l i s e d i n t h i s r u n . A s e e d was a d d e d t o t h e s y s t e m b e c a u s e i t was f e a r e d t h a t most o f t h e o r i g i n a l o r g a n i s m s h a d b e e n r e m o v e d f r o m t h e s y s t e m w i t h t h e c o p p e r . R e a c t o r 2 was l o a d e d w i t h t h e l o w e s t i n i t i a l s l u d g e l o a d i n g r a t e t o d a t e . T h i s was c o n f i r m e d b y b o t h t h e T o t a l COD a n d t h e c o n c e n t r a t i o n o f t a r g e t o r g a n i c s . T h i s r e s u l t e d i n t h e l o w e s t t o t a l c o p p e r l e v e l f o u n d i n a n y r u n . The e f f e c t o f t h i s l o w l e v e l 130 Parameter: R e a c t o r 2: R e a c t o r 3: Alum A d d i t i o n R e a c t o r 5: C o n t r o l S l u d g e l o a d i n g v o l . (L) 0.7 12 l i t r e s o f alum t r e a t e d s l u d g e from f i n a l p r o d u c t o f run 7 i n R e a c t o r 3 0.5 Seed water v o l . (L) 3 3 0 T o t a l v o l . (L) 21 20 5 I n i t i a l T o t a l COD (mg/L) 4 227 4 058 17 588 I n i t i a l s u p e r n a t a n t COD (mg/L) 1 O i l 1 044 3 724 I n i t i a l T o t a l BOD5 (mg/L) 627 202 NA pH 5.89 8.54 7.57 Table 4.3.9: I n i t i a l condition i n the reactors at the beginning of run 9. Compound: R e a c t o r 2 (ppm) R e a c t o r 3 Alum sweep (ppm) R e a c t o r 5 C o n t r o l (ppm) X y l e n e 108 18.4 68.4 D i p h e n y l 463.3 7.0 945.5 D i p h e n y l E t h e r 2 240 77.7 4 395 D i p h e n y l Methane 17.1 0 62.7 Benzene,1,1* Methylene b i s (4-methyl) 10.8 0 115.1 1,2-Dimethyl-4-Benzyl Benzene 49.6 0 72.5 Table 4.3.10: Concentration of target organics i n the reactors p r i o r to run 9. 131 w o u l d be c l o s e l y m o n i t o r e d a n d c o m p a r e d t o p r e v i o u s r u n s . O v e r t h e c o u r s e o f t h e r u n , a v e r y s m a l l r e d u c t i o n i n T o t a l COD o c c u r r e d i n t h e two t e s t r e a c t o r s . The T o t a l COD v s t i m e g r a p h , F i g u r e 4.3.13, was n o t t h e t y p i c a l s h a p e w h i c h h a d come t o be e x p e c t e d . T h e r e was an i n i t i a l g e n e r a l , downward t r e n d i n t h e c o n c e n t r a t i o n o f t h e T o t a l COD; h o w e v e r , t h e t a i l e n d o f t h e c u r v e d i d n o t r i s e a s i t h a s i n p r e v i o u s r u n s . The t i m e f r a m e f o r t h e r u n was q u i t e d i f f e r e n t , s i n c e t h e r e a c t o r s r a n f o r l e s s t h a n 25 d a y s ( o t h e r r u n s l a s t e d f o r a s l o n g a s 48 d a y s ) . The c o n t r o l d i d n o t e x h i b i t t h e e x p e c t e d p a t t e r n e i t h e r . However i n t h i s c a s e , t h e c o n t r o l e x h i b i t e d a g e n e r a l , s l o w r i s i n g t r e n d b u t t h e o v e r a l l t r e n d was one o f s t a b i l i t y . L i t t l e o v e r a l l c h a n g e was e x h i b i t e d . The s u p e r n a t a n t COD v s t i m e g r a p h was a l s o r a t h e r u n e v e n t f u l , a s shown i n F i g u r e 4.3.14. R e a c t o r 2 d i s p l a y e d a s l o w d e c r e a s e i n c o n c e n t r a t i o n u n t i l t h e f i n a l d a y s o f t h e r u n . A t t h i s p o i n t , t h e d e g r a d a t i o n was more r a p i d . I n t h e c a s e o f R e a c t o r 3, t h e r e was a s l i g h t d e c r e a s e i n t h e c o n c e n t r a t i o n o v e r t i m e u n t i l t h e h a l f way p o i n t o f t h e r u n ; t h i s was f o l l o w e d b y a s l i g h t i n c r e a s e , a n d t h e n d e c r e a s e d u n t i l t h e e n d o f t h e r u n . The e n d r e s u l t was l i t t l e c h a n g e i n t h e o v e r a l l c o n c e n t r a t i o n . I t a p p e a r s t h a t t h e i n i t i a l T o t a l COD c o n c e n t r a t i o n was t h e d e t e r m i n i n g f a c t o r f o r t h e p a t t e r n f o u n d i n t h e s u p e r n a t a n t COD. 132 FIGURE 4.3.13 T O T A L COD CONCENTRATION VS TIME FOR RUN 9 10 15 20 TIME (DAYS) REACTOR 2 REACTOR 5 (CONTROL) . REACTOR 3 (DRAWDOWN WITH ALUM) FIGURE 4.3.14 SUPERNATANT C O D C O N C E N T R A T I O N VS TIME FOR RUN 9 5 I 4 O r\u00E2\u0080\u0094I ^ \u00C2\u00AB 3 g 3 g ^ 2 O Q O U 1 h 10 15 TIME (DAYS) 20 25 30 . REACTOR 2 . REACTOR 5 (CONTROL) . REACTOR 3 (DRAWDOWN WITH ALUM) 133 As d i s c u s s e d p r e v i o u s l y , t h e r e a r e two c a u s e s f o r t h e r i s e i n t h e COD o f t h e s u p e r n a t a n t . E i t h e r t h e i n i t i a l l o a d i n g was t o o c o n c e n t r a t e d o r t h e m i c r o o r g a n i s m s w e r e b e i n g i n h i b i t e d f r o m b r e a k i n g down t h e m a t e r i a l . When t h e i n i t i a l l o a d i n g i s t o o h i g h , compounds s o l u b i l i z e i n t h e s u p e r n a t a n t a t a f a s t e r r a t e t h a n t h e m i c r o o r g a n i s m s c a n d e g r a d e d them. T h u s , t h e r e i s c o n s i d e r a b l e a c c u m u l a t i o n o f compounds i n t h e s u p e r n a t a n t ( e v i d e n t f r o m t h e r i s i n g v a l u e o f t h e s u p e r n a t a n t COD). The o t h e r p o s s i b i l i t y , a s d e m o n s t r a t e d i n t h e l a s t r u n , i s t h a t e v e n t h o u g h t h e i n i t i a l l o a d i n g was n o t h i g h t h e r e c a n s t i l l be a n a c c u m u l a t i o n i n t h e s u p e r n a t a n t i f t h e b a c t e r i a a r e b e i n g i n h i b i t e d t h r o u g h m e t a l t o x i c i t y o r n u t r i e n t d e f i c i e n c y . The r e s u l t i s t h e same; compounds w i l l a c c u m u l a t e i n t h e s u p e r n a t a n t b e c a u s e t h e m i c r o o r g a n i s m s a r e n o t a b l e t o a c t i v e l y d e g r a d e t h e w a s t e . T h e r e was no n o t i c e a b l e r i s e i n t h e c o n c e n t r a t i o n o f t h e s u p e r n a t a n t COD s i n c e none o f t h e s e s i t u a t i o n s m a t e r i a l i z e d . I n t h i s c a s e , t h e l a c k o f a s i g n i f i c a n t i n c r e a s e i n t h e s u p e r n a t a n t COD was p r o b a b l y t h e r e s u l t o f t h e l o w i n i t i a l c o n c e n t r a t i o n o f t h e w a s t e m i x t u r e a d d e d t o t h e r e a c t o r . The t o t a l c o p p e r c o n c e n t r a t i o n i n R e a c t o r 2 was o n l y 10 mg/L, a s c a n be s e e n i n F i g u r e 4.3.15. The d i s s o l v e d c o n c e n t r a t i o n i n t h i s r e a c t o r r o s e a b o v e 5 mg/L d u r i n g t h e c o u r s e o f t h e e x p e r i m e n t . T h i s i n d i c a t e s t h a t o v e r h a l f o f t h e c o p p e r p r e s e n t was f o u n d i n d i s s o l v e d f o r m . I t a l s o s u g g e s t s t h a t e v e n u s i n g a l o w s l u d g e l o a d i n g r a t e d o e s n o t n e c e s s a r i l y g u a r a n t e e t h a t t h e r u n w i l l 134 a v o i d p o s s i b l e copper t o x i c i t y problems. The t o t a l copper l e v e l s i n R e a c t o r 3 were s l i g h t l y l o w e r . However, t h e d i s s o l v e d copper c o n c e n t r a t i o n i n t h e r e a c t o r was c o n s i d e r a b l y l o w e r . T h i s appears t o be due t o t h e f a c t t h a t t h e phosphorus c o n c e n t r a t i o n i n R e a c t o r 3 was n e a r l y 4 t i m e s th e one found i n R e a c t o r 2 f o r most of t h e r u n , as seen i n F i g u r e 4.3.16. ( R e a c t o r 3 c o n t a i n e d a s i g n i f i c a n t l y h i g h c o n c e n t r a t i o n o f phosphorus s i n c e a l a r g e amount had been added t o t h i s v e s s e l i n r u n 7 and i t had not been u t i l i s e d ) . T h i s a g a i n i n d i c a t e s t h a t phosphorus l e v e l s a r e i n s t r u m e n t a l i n r e d u c i n g t h e c o n c e n t r a t i o n o f d i s s o l v e d copper found i n t h e r e a c t o r s ( a l s o , p r e v i o u s l y demonstrated i n run 7 w h i c h had c o n s i d e r a b l e t o t a l copper l e v e l but l i t t l e found i n d i s s o l v e d f o r m ) . There was l i t t l e v a r i a t i o n i n t h e pH o r MLVSS c o n c e n t r a t i o n o v e r t i m e . T h i s was t o be e x p e c t e d s i n c e t h e s l u d g e COD l o a d i n g was low and t h u s l i t t l e d e g r a d a t i o n o c c u r r e d . As n o t e d i n T a b l e 4.3.11, t h e alum a d d i t i o n was s u c c e s s f u l i n p r o d u c i n g a s l u d g e i n w h i c h f u r t h e r r e d u c t i o n i n T o t a l COD was p o s s i b l e . As seen i n F i g u r e 4.3.18, the BOD5 was reduced t o a s m a l l c o n c e n t r a t i o n and t h e GC t r a c e was b l a n k . T h i s i n d i c a t e s t h a t none o f t h e o r g a n i c compounds i n i t i a l l y p r e s e n t were s t i l l t h e r e . The t h r e e s t e p p r o c e s s was s u c c e s s f u l , but t h e method was not e f f i c i e n t s i n c e t h e s l u d g e was a l r e a d y o f \"good q u a l i t y \" a t 135 FIGURE 4.3.15 COPPER CONCENTRATION VS TIME FOR RUN 9 BOTH TOTAL AND DISSOLVED 60 r -I 3 6 10 13 17 20 24 TIME (DAYS) REACTOR 2 (TOTAL) REAC 2 (DISSOLVED) REACTOR 3 (TOTAL) _Q_ REAC 3 (DISSOLVED) REACTOR 5 (TOTAL) REAC 5 (DISSOLVED) 136 FIGURE 4.3.16 PHOSPHORUS CONCENTRATION VS TIME FOR RUN 9 3 90 | S o 1 1 ^ 1 1 1 0 5 10 15 20 TIME (DAYS) REACTOR 2 REACTOR 3 (ALUM DRAGDOWN) -\u00C2\u00B1 REACTOR 5 (CONTROL) FIGURE 4.3.17 AMMONIA CONCENTRATION VS TIME FOR RUN 9 300 0 5 10 15 20 25 TIME (DAYS) _a_ REACTOR 2 REACTOR 3 (ALUM DRAGDOWN) REACTOR 5 (CONTROL) 137 Parameter: R e a c t o r 2 R e a c t o r 3 alum sweep R e a c t o r 5 c o n t r o l I n i t i a l T o t a l COD (mg/L) 4 227 4 058 17 588 F i n a l T o t a l COD (mg/L) 1 950 2 606 17 588 % d i f f e r e n c e 53.8 35.8 0 I n i t i a l T o t a l BOD5 (mg/L) 627 202 NA F i n a l T o t a l BOD5 (mg/L) 211 67 NA % d i f f e r e n c e 66.4 70.0 NA T a b l e 4.3.11: F i n a l c o n d i t i o n s i n the r e a c t o r s a t the end o f run 9. t h e end o f t h e i n i t i a l d e g r a d a t i o n p r o c e s s . I t i s q u e s t i o n a b l e i f th e q u a l i t y o f t h e f i n a l s l u d g e was i n c r e a s e d w i t h t h i s s l i g h t r e d u c t i o n i n T o t a l COD. The o n l y r a t i o n a l e f o r u s i n g t h i s p r o c e d u r e would be t o reduce t h e copper l e v e l s below t h e d i s c h a r g e l i m i t o r a r e d u c t i o n i n r e f r a c t o r y o r g a n i c s was n e c e s s a r y . R e a c t o r 2 was not a b l e t o e l i m i n a t e a l l t h e t a r g e t o r g a n i c s (see T a b l e 4.3.12) from t h e i n i t i a l s l u d g e m i x t u r e . T h i s was p a r t l y a r e s u l t o f t h e e l e v a t e d copper l e v e l s as w e l l as t h e s h o r t time frame o f t h e ex p e r i m e n t . The d a t a from t h e p r e v i o u s runs i n d i c a t e d t h a t D i p h e n y l E t h e r i s always t h e l a s t compound t o be removed. Had t h e r u n been l e n g t h e n e d , i t i s q u i t e p r o b a b l e t h a t a l l compounds would have been removed t o below t h e d e t e c t i o n l i m i t . The run was more s u c c e s s f u l t h a n R e a c t o r 4 i n run 8, i n terms o f p e r c e n t r e d u c t i o n o f t a r g e t o r g a n i c s , s i n c e i t removed 138 FIGURE 4.3.18 TOTAL 5 DAY BOD CONCENTRATION VS TIME FOR RUN 9 700 i Q [_J I I I L_ 1 3 10 20 24 TIME (DAYS) REACTOR 2 REACTOR 3 139 Compound: P a r a m e t e r R e a c t o r 2 (ppm) R e a c t o r 3 a l u m sweep (ppm) R e a c t o r 5 c o n t r o l (ppm) X y l e n e I n n . Cone. 107.9 18.4 68.5 F i n a l Cone. 0 0 43 % Reduction 100 100 37.2 D i p h e n y l I n n . Cone. 463.3 7 945.5 F i n a l Cone. 11.2 0 730.7 % Reduction 97.6 100 22.7 D i p h e n y l E t h e r I n n . Cone. 2 240 77.7 4 394 F i n a l Cone. 78.3 0 3 298 % Reduction 96.5 100 24.9 D i p h e n y l M e t h a n e I n n . Cone. 17.1 0 62.7 F i n a l Cone. 0 0 47.3 % Reduction 100 NA 24.7 B e n z e n e , 1 , 1 ' M e t h y l e n e b i s (di-m e t h y l ) I n n . Cone. 10.8 0 115.1 F i n a l Cone. 0 0 115 % Reduction 100 NA 0 1,2-D i m e t h y l - 4 -B e n z y l B e n z e n e I n n . Cone. 49.6 0 72.5 F i n a l Cone. 0 0 72.5 % Reduction 100 NA 0 Table 4.3.12: Concentration of the target organics i n the reactors at the end of run 9. a l l o f t h e t a r g e t o r g a n i c compounds, e x c e p t f o r D i p h e n y l a n d D i p h e n y l E t h e r . A h i g h e r p h o s p h o r u s l o a d i n g c o u l d p r o b a b l y h a v e p r o d u c e d a l a r g e r g r a d i e n t f o r t h e f o r m a t i o n o f c o p p e r p h o s p h a t e , 140 t h e r e b y f u r t h e r r e d u c i n g t h e c o n c e n t r a t i o n o f d i s s o l v e d copper. The low o r g a n i c l o a d i n g d i d not improve t h e b i o l o g i c a l t r e a t m e n t r a t e , compared t o t h e p r e v i o u s much h i g h e r l o a d e d systems. R e a c t o r 5, t h e c o n t r o l , performed r e l a t i v e l y w e l l , showing l i t t l e l o s s due t o v o l a t i l i z a t i o n . The t a r g e t o r g a n i c compounds f o r t h e most p a r t were reduced by l e s s t h a n 25% o f t h e i r o r i g i n a l v a l u e . A g a i n , X y l e n e was t h e compound w h i c h e x h i b i t e d t h e l a r g e s t change i n c o n c e n t r a t i o n . However, t h e r e was s t i l l c o n s i d e r a b l e q u a n t i t i e s l e f t i n t h e r e a c t o r a t t h e end o f t h e r u n . T h i s compound was o n l y reduced by 37.2%; however, i t was a marked improvement o v e r p r e v i o u s r u n s . Comparing t h e two system i n t h e ru n , i t becomes c l e a r t h a t , i n terms o f BOD5 r e d u c t i o n . R e a c t o r 3 performed s l i g h t l y b e t t e r . Even though t h e r e a c t o r was l o a d e d w i t h a much lower o r g a n i c l o a d , t h e d e g r a d a t i o n c o n s t a n t k was l a r g e r f o r t h e p r o c e s s as can be n o t e d i n T a b l e 4.3.13. T h i s can be a t t r i b u t e d t o t h e f a c t t h a t t h e phosphorus l o a d was l a r g e r and r e s u l t e d i n a lo w e r d i s s o l v e d copper c o n c e n t r a t i o n . The o t h e r p o i n t t o remember i s t h a t t h e organisms i n t h e r e a c t o r were p r e v i o u s a c c l i m a t i z e d t o the m i x t u r e . The r a t e o f b i o - d e g r a d a t i o n was a l s o l a r g e r t h a n t h e l a s t r u n , b o t h i n terms o f t h e d e g r a d a t i o n c o n s t a n t k, but a l s o i n terms o f a s t r a i g h t l i n e d e c l i n e . 141 Compound: Parameter: R e a c t o r 2 R e a c t o r 3 Alum sweep BOD Dx/Dt (ppm/d) 18.1 7.58 k (day-1) 0.0474 0.0583 D i p h e n y l Dx/Dt (ppm/d) 24.4 1.39 k (day-1) 0.333 NA D i p h e n y l E t h e r Dx/Dt (ppm/d) 83.1 6.47 k (day-1) 0.434 0.189 D i p h e n y l Methane Dx/Dt (ppm/d) 0.90 NA k (day-1) 0.311 NA T a b l e 4.3.13: K i n e t i c c o n s t a n t s determined f o r the d e g r a d a t i o n i n run 9. The low r e a c t i o n r a t e c o n s t a n t s i n R e a c t o r 3 f o r t a r g e t o r g a n i c s a r e a l i k e l y r e s u l t o f t h e low o r g a n i c l o a d i n g and t h e l a c k o f d i v e r s i t y o f t h e waste m i x t u r e . Curve f i t t i n g u s i n g f i r s t o r d e r k i n e t i c s can be seen i n F i g u r e s 4.3.19 t o 4.3.22. The r e a c t i o n r a t e s f o r d e g r a d a t i o n o f some compounds a r e r e p o r t e d t o be dependent on t h e pr e s e n c e o f o t h e r o r g a n i c compounds i n t h e m i x t u r e (Capps 1995) A comparison o f t h e p r e v i o u s t h r e e r u n s , t o de t e r m i n e t h e b e s t i n i t i a l s l u d g e l o a d i n g can be seen i n t h e T a b l e s 4.3.14 and 4.3.15. 142 FIGURE 4.3.19 Comparing the actual data and model predicted values of Diphenyl vs time For reactor2 in run 9 13 Time (days) Actual Diphenyl Data Model based on Cone, on Day 12 (k=0.333) FIGURE 4.3.20 Comparing First Order Models and Actual Concentration of Diphenyl Ether vs Time For reactor 2, in run 9 2500 e cu S> c o \u00E2\u0080\u00A2 \u00C2\u00BB-l a % i n t h e b r e a k d o w n o f 164 Time Days N i t r o g e n u s e d (mg/L) P h o s p h o r o u s u s e d (mg/L) N/P R a t i o 2 14.6 4.75 3.08 3 35.7 8.9 4.01 4 30.9 7.5 4.1 3 23.0 5.73 4.01 4 14.6 2.5 5.83 4 7.2 6.56 1.1 3 6.43 4.55 1.41 3 6.91 5.83 1.19 4 4.62 0 NA 3 12.7 8.24 1.54 4 0 0.8 0 3 1.66 0 NA 6 19.55 15.51 1.26 T o t a l 70.9 177.8 2.51 Table 4 . 4 . 8 : N u t r i e n t use and the Nitrogen/Phosphorus R a t i o over the l e n g t h of run 10. some r e f r a c t o r y o r g a n i c m a t e r i a l , t h e n u t r i e n t s c o m p l e x e d w i t h some o f t h e r e l e a s e d compounds. Q u a l i t a t i v e l y , t h e s l u d g e h a d i m p r o v e d m a r k e d l y . The s t r o n g o v e r p o w e r i n g c h e m i c a l s m e l l was no l o n g e r p r e s e n t . The i r i d e s c e n t f i l m f l o a t i n g o n t h e t o p o f t h e s l u d g e h a d a l s o d i s a p p e a r e d . The s l u d g e s e t t l e d i n l e s s t h a n 30 m i n u t e s w h i l e t h e e n d p r o d u c t s l u d g e i n r u n 7 t o o k a l m o s t two h o u r s t o s e t t l e . T h e r e f o r e , t h i s a p p e a r e d t o be t h e b e s t e n d p r o d u c t g e n e r a t e d f r o m a l l o f t h e t r e a t m e n t p h a s e s . 165 The r u n as a whole was s u c c e s s f u l i n showing t h a t o p e r a t i n g t h e system as a t r u e b a t c h c o u l d produce a more e f f i c i e n t and e f f e c t i v e p r o c e s s f o r t h e r e m e d i a t i o n o f t h e s l u d g e . A c l e a n e r end p r o d u c t , w i t h a lower d i s s o l v e d copper c o n c e n t r a t i o n , was o b t a i n e d i n l e s s t i m e u s i n g t h e t r u e b a t c h p r o c e d u r e . However, q u e s t i o n s s t i l l a r o s e about th e p r o c e s s , namely th e e f f e c t of h i g h e r d i s s o l v e d copper l e v e l s and h i g h e r i n i t i a l COD c o n c e n t r a t i o n s on t h e q u a l i t y o f t h e end p r o d u c t . Run #11 T h i s r u n , t h e l a s t i n a s e r i e s , was a l s o o p e r a t e d as a True B a t c h P r o c e s s and sought t o answer q u e s t i o n s and problems which came up i n t h e p r e v i o u s r u n . The s t a r t i n g COD c o n c e n t r a t i o n , would be i n c r e a s e d t o see t h e e f f e c t i t would have on t h e q u a l i t y o f t h e f i n a l p r o d u c t and t h e d e g r a d a t i o n r a t e s . A l s o , t h e r e a c t o r s ' c o n t e n t would not be p r e t r e a t e d w i t h alum t h i s t i m e . Thus, t h i s run would s i m u l a t e e x p e c t e d c o n d i t i o n s i n t h e f i e l d and f l a g p o s s i b l e problems. The run c o n s i s t e d o f t h r e e r e a c t o r s , two t e s t r e a c t o r s and a c o n t r o l . The f i r s t t e s t r e a c t o r was t o have a t a r g e t o r g a n i c l o a d of a p p r o x i m a t e l y 30 000 mg/L, i n terms of T o t a l COD. T h i s would e n a b l e d i r e c t comparisons t o be made w i t h t h e most s u c c e s s f u l m o d i f i e d b a t c h r u n . C o n c l u s i o n s c o u l d be drawn on t h e r a t e s o f r e a c t i o n and t h e q u a l i t y o f t h e end p r o d u c t . The second v e s s e l would be l o a d e d t o a c o n c e n t r a t i o n o f a p p r o x i m a t e l y 40 000 mg/L 166 COD. I n a l l l i k e l i h o o d , t h e copper and o r g a n i c c o n c e n t r a t i o n s would be t o o c o n c e n t r a t e d f o r t h e system t o h a n d l e and t h e t r e a t m e n t s h o u l d f a i l , a l t h o u g h t h e r e was a p o s s i b i l i t y t h a t t h e a c c l i m a t i z e d organisms would e n a b l e t h e system t o w i t h s t a n d t h e s e new o p e r a t i n g c o n d i t i o n s . Important i n f o r m a t i o n about t h e r u n n i n g o f an on s i t e f u l l s c a l e system would be l e a r n e d from t h i s s t e p . R e a c t o r 2 was o r i g i n a l l y used i n run 9. I t was l o a d e d w i t h a low c o n c e n t r a t i o n o f o r g a n i c s l u d g e i n t h a t p a r t i c u l a r r u n . A t t h e end o f t h e p r o c e s s , t h e s l u d g e had low l e v e l s o f o r g a n i c s and a t o t a l copper c o n c e n t r a t i o n o f 10 mg/L r e m a i n i n g . R e a c t o r 4 was o r i g i n a l l y used i n run 8. I t was o r i g i n a l l y l o a d e d w i t h a 15 000 mg/L T o t a l COD s l u d g e , and t o t a l copper c o n c e n t r a t i o n o f 40 mg/L. T h i s r e a c t o r would be l o a d e d t o a T o t a l COD o f 40 000 mg/L. The copper o r i g i n a l l y p r e s e n t i n t h e r e a c t o r combined w i t h t h e added amount from t h e v i r g i n s l u d g e , was e x p e c t e d t o e f f e c t t h e b i o t r e a t m e n t performance, s i n c e t h e a n t i c i p a t e d t o t a l copper c o n c e n t r a t i o n f o r t h i s r e a c t o r would be between 80 and 90 mg/L. The i n i t i a l l o a d i n g o f t h e r e a c t o r s i s shown i n T a b l e 4.4.9. From T a b l e 4.4.9, i t i s c l e a r t h a t t h e t a r g e t o r g a n i c l o a d s were reached as c l o s e as can be e x p e c t e d . R e a c t o r 2 was s l i g h t l y h i g h e r t h a n t h e p r o j e c t e d 30 000 mg/L o f T o t a l COD but R e a c t o r 4 reached t h e e x p e c t e d l e v e l o f 40 000 mg/L. T a b l e 4.4.10 shows t h e i n i t i a l c o n c e n t r a t i o n o f t a r g e t o r g a n i c compounds i n t h i s r u n . P a r a m e t e r R e a c t o r 1 C o n t r o l R e a c t o r 2 R e a c t o r 4 O r i g i n a l S l u d g e p r e s e n t f r o m p r e v i o u s r u n ( L ) 0 14 12 New s l u d g e a d d e d ( L ) 1.0 1.5 2.0 T o t a l V olume ( L ) 25 25 25 I n i t i a l T o t a l COD (mg/L) 25 317 32 153 40 356 I n i t i a l s u p e r n a t a n t COD (mg/L) 2 481 1 712 1 712 I n i t i a l T o t a l BOD 5 (mg/L) NA 8 117 12 256 T o t a l C o p p e r Cone. (mg/L) D i s s o l v e d C o p p e r Cone. (mg/L) 48.9 9.12 47.9 6.04 56.8 5.56 PH 7.15 4.93 4.74 T a b l e 4.4.9: I n i t i a l c o n d i t i o n s p r e s e n t i n the r e a c t o r a t the s t a r t o f run 11. Compound: R e a c t o r l C o n t r o l (ppm) R e a c t o r 2 (ppm) R e a c t o r 4 (ppm) X y l e n e 187 257 676 D i p h e n y l 738 949 2 334 D i p h e n y l E t h e r 3 494 4 425 11 016 D i p h e n y l M e t h a n e 32.7 37.4 105.6 B e n z e n e , 1 , 1 \" M e t h y l e n e b i s ( 4 - m e t h y l ) 28.8 24.3 74.7 1,2 D i m e t h y l - 4 - B e n z y l B e n z e n e 107 64.1 341 T a b l e 4.4.10: I n i t i a l c o n c e n t r a t i o n o f the t a r g e t o r g a n i c a t the s t a r t o f run 11. I n i t i a l c o n c e r n s f o c u s e d o n t h e l o w pH a n d t h e h i g h c o n c e n t r a t i o n s o f d i s s o l v e d c o p p e r . The pH i n b o t h t e s t r e a c t o r s 168 was b e l o w 5. T h i s c l e a r l y d e m o n s t r a t e s t h e r e s u l t o f n o t r e m o v i n g a l l t h e e x i s t i n g s l u d g e f r o m t h e r e a c t o r s . The b u f f e r i n g c a p a c i t y o f t h e s y s t e m was c o m p r o m i s e d due t o t h e c y c l i n g . The d i s s o l v e d c o p p e r c o n c e n t r a t i o n u s u a l l y was b e l o w t h e d e t e c t a b l e l i m i t a t f i r s t , a n d t h e n g r e w d e p e n d i n g o n t h e s l u d g e c o n c e n t r a t i o n . I n t h i s c a s e , t h e c o n c e n t r a t i o n s t a r t e d o f f a t h i g h e r t h a n 5 mg/L i n d i s s o l v e d f o r m . From p r e v i o u s r u n s , t h i s was s e e n a s t h e t o x i c i t y l i m i t f o r a n y s u b s t a n t i a l g r o w t h o f m i c r o o r g a n i s m s . I n R e a c t o r 4, t h e c o n c e n t r a t i o n o f t a r g e t o r g a n i c s was e x t r e m e l y h i g h . A l t h o u g h t h e c o n c e n t r a t i o n o f T o t a l COD was n o t d r a s t i c a l l y d i f f e r e n t t h e n t h e o t h e r t e s t r e a c t o r , t h e D i p h e n y l E t h e r c o n c e n t r a t i o n i n t h e r e a c t o r was 3 t i m e s l a r g e r t h a n i n R e a c t o r 2. T h i s a g a i n d e m o n s t r a t e s t h e v a r i a b i l i t y o f t h e s l u d g e f r o m d i f f e r e n t p o i n t s i n t h e l a g o o n . The T o t a l COD v s Time g r a p h . F i g u r e 4.4.8, shows some i n t e r e s t i n g r e s u l t s . The c o n t r o l , a s was t h e c a s e i n t h e p a s t few r u n s was q u i t e s t a b l e . R e a c t o r 4 showed a n i n i t i a l r a p i d d e c l i n e i n t h e T o t a l COD, b u t d o e s n o t e x h i b i t t h e p a t t e r n o f i n c r e a s i n g c o n c e n t r a t i o n n e a r t h e e n d o f t h e r u n . R e a c t o r 2, t h e l o w e r o r g a n i c a l l y l o a d e d v e s s e l , d i d e x h i b i t t h e c l a s s i c p a t t e r n a s e x p e c t e d f r o m p r e v i o u s r u n s . I n i t i a l l y , t h e r e was r a p i d a n d a l m o s t c o n s t a n t d e g r a d a t i o n o f T o t a l COD i n t h e r e a c t o r ; h o w e v e r , a f t e r d a y 17, t h e p a t t e r n o f f l u c t u a t i n g T o t a l COD c o n c e n t r a t i o n , p r e s e n t i n many p r e v i o u s r u n s , was d e m o n s t r a t e d . 169 FIGURE 4.4.9 S U P E R N A T A N T C O D C O N C E N T R A T I O N VS T I M E FOR R U N 11 1 3 6 10 14 17 20 24 27 TIME (DAYS) REACTOR 1 (CONTROL) REACTOR 2 REACTOR 4 31 34 40 170 The s u p e r n a t a n t COD i n R e a c t o r 4, F i g u r e 4.4.9, f l u c t u a t e d g r e a t l y d u r i n g i n i t i a l c o n s e c u t i v e s a m p l i n g p e r i o d s , b u t g e n e r a l l y i n c r e a s e d o v e r t i m e . T h i s was t h e p a t t e r n e x p e c t e d f r o m e x p e r i e n c e w i t h p r e v i o u s r u n s . When t h e s y s t e m was \" u n d e r l o a d e d \" t h e phenomenon d i d n o t o c c u r ; r e a c t o r 2 f o l l o w e d t h i s p a t t e r n , w i t h t h e s u p e r n a t a n t COD c o n c e n t r a t i o n i n c r e a s i n g l i t t l e o v e r t h e r u n . E x c e s s n u t r i e n t s w e r e p r e s e n t a t a l l t i m e s d u r i n g t h e e x p e r i m e n t a l r u n , w i t h one e x c e p t i o n a s s e e n i n F i g u r e s 4.4.10 an d 4.4.11. R e a c t o r 4 e x p e r i e n c e d a n i t r o g e n d e f i c i e n c y f o r one s a m p l i n g p e r i o d . The p r o b l e m was q u i c k l y i d e n t i f i e d a nd c o r r e c t e d . An i n t e r e s t i n g i t e m a l s o came up i n t h e a n a l y s i s . I t a p p e a r s t h a t t h e o r i g i n a l s l u d g e f r o m t h i s b a t c h c o n t a i n e d a h i g h i n i t i a l c o n c e n t r a t i o n o f p h o s p h o r u s , s i n c e t h e c o n c e n t r a t i o n i n t h e c o n t r o l h o v e r e d a r o u n d 10 mg/L f o r a l l t h e s a m p l i n g p e r i o d s . T h i s was t h e o n l y s o u r c e o f n u t r i e n t p o s s i b l e f o r t h e c o n t r o l . F o r most o f t h e r u n , t h e d i s s o l v e d c o p p e r c o n c e n t r a t i o n was b e l o w 5 mg/L. The e f f e c t o f a d d i n g p h o s p h o r u s c o u l d c l e a r l y be s e e n e a r l y i n t h e r u n . P r i o r t o d a y 3, t h e p h o s p h o r u s l e v e l i n R e a c t o r 4 was 10 mg/L, and d r o p p i n g . The r e s u l t was a d i s s o l v e d c o p p e r c o n c e n t r a t i o n o f b e t w e e n 6 a n d 7 mg/L. However, on d a y 3, p h o s p h o r u s was a d d e d t o t h e s y s t e m , i n c r e a s i n g t h e t o t a l c o n c e n t r a t i o n t o a b o v e 40 mg/L. The d i s s o l v e d c o n c e n t r a t i o n o f c o p p e r f e l l b e l o w 2 mg/L, a s s e e n i n F i g u r e 4.4.12. A g a i n , t h e 171 FIGURE 4.4.10 PHOSPHORUS CONCENTRATION VS TIME FOR RUN 11 o 1 ' ' ' ' 1 0 10 20 30 40 50 TIME (DAYS) ^ REACTOR 1 (CONTROL) REACTOR 2 ^ R E A C T O R 4 172 importance o f m o n i t o r i n g t h e c o n c e n t r a t i o n o f n u t r i e n t s i n t h e system was demonstrated. The pH was a major s t u m b l i n g b l o c k d u r i n g t h e r u n . D u r i n g t h e f i r s t s a m p l i n g p e r i o d , t h e pH i n R e a c t o r 4 had f a l l e n t o below 4, as can be seen i n F i g u r e 4.4.13. The low pH a l s o caused more copper t o d i s s o l v e i n t o s o l u t i o n . At t h a t p o i n t , a d e c i s i o n was made t o add soda ash t o r a i s e t h e pH, t o a p p r o x i m a t e l y 7. The r a i s i n g o f t h e pH was a l s o p a r t i a l l y r e s p o n s i b l e f o r t h e d e c r e a s e i n t h e copper c o n c e n t r a t i o n . The a b r u p t pH change a g a i n seemed t o \" s t a l l \" t h e d e g r a d a t i o n p r o c e s s , as had been e x p e r i e n c e d i n p r e v i o u s r u n s . As such, t h i s p o i n t s h o u l d have been a d d r e s s e d e a r l i e r d u r i n g t h e e x p e r i m e n t . M o d i f y i n g o f t h e pH o r b u f f e r i n g t h e system s h o u l d have been done p r i o r t o t h e s t a r t o f a r u n . M o d i f y i n g t h e pH d u r i n g t h e r u n u s u a l l y l e d t o a \" s t a l l i n g \" o f t h e b i o t r e a t m e n t system. The pH o f 7 was not d e t r i m e n t a l t o t h e c u l t u r e but t h e e f f e c t o f t h e r a p i d change o f pH, i n c r e a s i n g more th a n 3 u n i t s was. The T o t a l COD vs Time graphs ( F i g u r e 4.4.8) showed no r e d u c t i o n a f t e r t h e pH m o d i f i c a t i o n was made. The pH i n R e a c t o r 2, c o n t r a r y t o t h e t r e n d o b s e r v e d i n R e a c t o r 4, was i n i t i a l l y s t a b l e . A f t e r 6 days, t h e pH dropped a t a r a p i d and almost c o n s t a n t r a t e . On day 14, t h e pH was e x t r e m e l y low, a t 3.60 and was o n l y m o d i f i e d s l i g h t l y t o a v o i d t h e problems 173 FIGURE 4.4.12 COPPER CONCENTRATION VS TIME FOR RUN 11 BOTH TOTAL AND DISSOLVED 70 i , 1 3 6 10 14 17 21 24 27 31 34 40 TIME (DAYS) _ H _ REACTOR 1 (TOTAL) REAC 1 (DISSOLVED) REACTOR 2 (TOTAL) _B_ REAC 2 (DISSOLVED) REACTOR 4 (TOTAL) REAC 4 (DISSOLVED) 174 175 e x p e r i e n c e d by a l a r g e pH change seen i n R e a c t o r 4. U n f o r t u n a t e l y , t h e change o b s e r v e d was t o o s m a l l s i n c e t h e pH on day 17 was s t i l l o n l y 3.78. Anot h e r dose o f soda ash was added t o th e r e a c t o r ; r a i s i n g t h e pH t o 6.59. A g a i n , t h i s was s l i g h t l y h i g h e r t h a n p l a n n e d and seemed t o have r e s u l t e d once a g a i n i n a \" s t a l l i n g \" o f t h e BOD5 and T o t a l COD d e g r a d a t i o n ( F i g u r e s 4.4.8 and 4.4.14). The system was never a b l e t o r e c o v e r from t h e pH m o d i f i c a t i o n ; t h e h i g h r e s i d u a l T o t a l BOD5 was an i n d i c a t i o n o f a problem w i t h t h e system, as shown i n T a b l e 4.4.11. Ta b l e 4.4.12 shows t h a t t h e c o n t r o l was s t a b l e i n terms o f t h e l o s s o f t a r g e t o r g a n i c compounds due t o v o l a t i l i z a t i o n . The l o s s i n terms o f t h e major c h e m i c a l compound p r e s e n t , D i p h e n y l E t h e r was n e g l i g i b l e . T h i s f u r t h e r emphasizes t h e p r o g r e s s made i n m o d i f y i n g t h e a e r a t i o n system, t h u s l e a d i n g t o a s i g n i f i c a n t Parameter: R e a c t o r 1 C o n t r o l R e a c t o r 2 R e a c t o r 4 I n i t i a l T o t a l COD (mg/L) 25 317 32 153 40 356 F i n a l T o t a l COD (mg/L) 21 023 9 428 17 762 % D e g r a d a t i o n 17.0 70.7 56.0 I n i t i a l T o t a l BOD5 (mg/L) NA 8 117 12 256 F i n a l T o t a l BOD5 (mg/L) NA 781 2 085 % D e g r a d a t i o n NA 90.4 83.0 T a b l e 4.4.11: Change i n the T o t a l COD and BOD over the course o f run 11. 176 r e d u c t i o n o f l o s s due t o v o l a t i l i z a t i o n . A ny d e c r e a s e i n t h e c o n c e n t r a t i o n o f t h e o r g a n i c compounds i n t h e t e s t r e a c t o r s must be a t t r i b u t e d t o t h e m i c r o b i a l d e g r a d a t i o n . The r u n was n o t a s u c c e s s i n t e r m s o f t h e f i n a l q u a l i t y o f t h e s l u d g e s i n c e many o f t h e t a r g e t o r g a n i c c o m p o n e n t s r e m a i n e d a f t e r 40 d a y s ( s e e T a b l e 4 . 4 . 1 2 ) . The l e n g t h o f t h e e x p e r i m e n t s h o u l d h a v e b e e n s u f f i c i e n t t o r e m e d i a t e t h i s s l u d g e . The r u n a p p e a r s n o t t o h a v e gone t o c o m p l e t i o n b e c a u s e o f p r o b l e m s w i t h t h e pH. The pH s h o u l d h a v e b e e n m o d i f i e d p r i o r t o t h e s t a r t o f t h e r u n ; t h i s w o u l d h a v e a v o i d e d s h o c k i n g t h e c u l t u r e . The m a g n i t u d e o f t h e pH c o r r e c t i o n was u n f a v o u r a b l e t o t h e m i c r o o r g a n i s m s , s i n c e t h e d e g r a d a t i o n r a t e s a f t e r t h e pH a d j u s t m e n t w e r e much l o w e r t h a n h a d p r e v i o u s l y b e e n e x h i b i t e d ( T a b l e 4 . 4 . 1 3 ) . L i k e w i s e , a h i g h c o n c e n t r a t i o n o f p h o s p h o r u s may h a v e p r e v e n t e d t h e r i s e o f d i s s o l v e d c o p p e r c o n c e n t r a t i o n , t h u s i m p r o v i n g b i o t r e a t m e n t e f f i c i e n c y . I f p r o p e r c o n t r o l a n d m o n i t o r i n g c o n d i t i o n s h a d b e e n o b s e r v e d , i t i s p r o b a b l e t h a t t h e two s y s t e m s w o u l d h a v e f a r e d much b e t t e r . As s e e n f r o m T a b l e 4.4.13, t h e k i n e t i c m o d e l s f o r t h e d e g r a d a t i o n o f t h e T o t a l B0D 5 a n d t a r g e t o r g a n i c s f o r t h e r u n w e r e d i s a p p o i n t i n g . O n l y some o f t h e d a t a f i t s a f i r s t o r d e r d e c a y m o d e l . Much o f t h e d a t a was t o o v a r i a b l e t o a p p l y t o a m o d e l w i t h a n y d e g r e e o f c e r t a i n t y ; t h u s , i n t h a t c a s e , a n NA o r n o t 177 Compound: P a r a m e t e r : R e a c t o r 1 C o n t r o l R e a c t o r 2 R e a c t o r 4 X y l e n e I n n . Cone. (mg/L) 187 257 676 F i n a l Cone. (mg/L) 70.5 6.4 5.6 % Degradation 62.3 97.5 99.2 D i p h e n y l I n n . Cone. (mg/L) 738 949 2 334 F i n a l Cone. (mg/L) 685 37.3 28.2 % Degradation 7.24 96.1 98.8 D i p h e n y l E t h e r I n n . Cone. (mg/L) 3 494 4 425 11 016 F i n a l Cone. (mg/L) 3 494 301 863 % Degradation 0 93.2 92.2 D i p h e n y l M e t h a n e I n n . Cone. (mg/L) 32.7 37.4 106 F i n a l Cone. (mg/L) 32.7 8.1 22.0 % Degradation 0 76.2 79.2 B e n z e n e , 1 , 1 ' M e t h y l e n e b i s ( 4 - m e t h y l ) I n n . Cone. (mg/L) 28.8 24.3 74.7 F i n a l Cone. (mg/L) 12.5 8.6 25.7 % Degradation 56.6 64.8 65.5 1,2 D i m e t h y l -4 - B e n z y l B e n z e n e I n n . Cone. (mg/L) 107 64.1 341 F i n a l Cone. (mg/L) 61.2 0 5.5 % Degradation 43.0 100 98.4 Table 4.4.12: Change i n the concentration of target organic over the course of run 11. 178 Compound: P a r a m e t e r : R e a c t o r 2 R e a c t o r 4 BOD 5 Dx/Dt (mg/L d a y ) 188.1 260.8 K (Day -1) 0.08 NA X y l e n e Dx/Dt (mg/L d a y ) 6.42 17.2 K (Day -1) 0.157 NA D i p h e n y l Dx/Dt (mg/L d a y ) 23.4 59. 1 K (Day -1) 0.104 0.201 D i p h e n y l E t h e r Dx/Dt (mg/L d a y ) 105.7 260.3 K (Day -1) 0.086 0.117 D i p h e n y l M e t h a n e Dx/Dt (mg/L d a y ) 0.73 2.14 K (Day -1) 0.048 0.096 B e n z e n e , 1 , 1 ' M e t h y l e n e b i s ( 4 -m e t h y l ) Dx/Dt (mg/L d a y ) 0.4 1.26 K (Day -1) NA 0.09 1,2 D i m e t h y l - 4 -B e n z y l B e n z e n e Dx/Dt (mg/L d a y ) 2.47 8.59 K (Day -1) 0.076 0.235 T a b l e 4.4.13: R e a c t i o n r a t e c o n s t a n t s and s t r a i g h t l i n e decay v a l u e s f o r t a r g e t o r g a n i c s i n run 11. a p p l i c a b l e was c i t e d i n t h e t a b l e . O v e r a l l , t h e r a t e c o n s t a n t k was c o n s i d e r a b l y h i g h e r f o r R e a c t o r 4, t h a n f o r R e a c t o r 2; t h i s was e x p e c t e d s i n c e t h e t r e a t m e n t p r o c e s s \" s t a l l e d \" c o n s i d e r a b l y i n R e a c t o r 2 a f t e r t h e pH a d j u s t m e n t . The v a l u e s p r e s e n t e d do n o t come c l o s e t o t h o s e e x p e r i e n c e d i n r u n 10, t h e f i r s t r e m e d i a t i o n a t t e m p t u s i n g t h e T r u e B a t c h P r o c e s s . The i n i t i a l BOD/COD r a t i o ( shown i n T a b l e 4.4.14) w e r e i n t h e r a n g e o f t h o s e o b s e r v e d f o r p r e v i o u s r u n s . The e n d r e s u l t . 179 Day R e a c t o r 2 BOD/COD R a t i o R e a c t o r 4 BOD/COD R a t i o 1 0.252 0.304 6 0.305 14 0.173 20 0.129 0.347 27 0.110 0.232 34 0.099 0.130 40 0.083 0.117 T a b l e 4.4.14: BOD/COD R a t i o s f o r the running r e a c t o r s o f run 11. however, was a h i g h r e s i d u a l BOD/COD r a t i o ; t h e r e s u l t o f t h e i n c o m p l e t e breakdown o f t h e s l u d g e . The \" s t a l l i n g \" i n R e a c t o r 4 was e s p e c i a l l y p u z z l i n g . I t responded w e l l t o t h e pH m o d i f i c a t i o n , p r o b a b l y because i s was done e a r l y i n t h e r u n . However, t h e system s t i l l s t a l l e d and i t ' s demise c o u l d p o s s i b l y be a t t r i b u t e d t o a combined e f f e c t o f t h e i n i t i a l l y h i g h d i s s o l v e d copper and t h e i n i t i a l h i g h s l u d g e l o a d i n g i n t h e r e a c t o r . The k i n e t i c r a t e s were not v e r y h i g h i n t h i s p a r t i c u l a r r e a c t o r . For much o f t h e r u n t h e N i t r o g e n t o Phosphorus r a t i o , as seen i n T a b l e 4.4.13, was not d e t e r m i n a b l e , s i n c e one o f t h e n u t r i e n t s was not u t i l i s e d d u r i n g one s a m p l i n g p e r i o d t o t h e n e x t . The r a t i o s a r e q u i t e low, e s p e c i a l l y f o r R e a c t o r 2, but t h i s i s p o s s i b l y a t t r i b u t e d t o t h e use o f phosphorus f o r t h e p r e c i p i t a t i o n o f t h e d i s s o l v e d copper. The r a t i o f u r t h e r 180 emphasises t h e p o i n t where growth s t o p p e d i n t h e r e a c t o r s . L i t t l e phosphorus was used i n t h e l a s t 25 days o f t h e r u n , w h i c h i n d i c a t e d t h a t t h e b a c t e r i a were not v e r y a c t i v e . F or R e a c t o r 2, t h e B0D5:N:P r a t i o was 117:1.89:1, w h i l e i n R e a c t o r 4, t h e r a t i o was 266:3.07:1. I n b o t h c a s e s , t h e o v e r a l l r a t i o seemed low i n terms of t h e u t i l i z a t i o n o f n i t r o g e n and phosphorous f o r t h e amount o f BOD consumed compared t o p r e v i o u s r u n s . Time (Days) R e a c t o r 2 N Used (mg/L) R e a c t o r 2 P Used (mg/L) N/P R a t i o R e a c t o r 4 N Used (mg/L) R e a c t o r 4 P Used (mg/L) N/P R a t i o 2 0 2.7 0 19.2 4.42 4.35 3 15.7 10.4 1.51 12.6 5.35 2.35 4 10.7 12.5 0.86 12.33 0 NA 4 24.3 10.8 2.24 10.6 3.71 2.86 3 20.2 8.9 2.27 13.12 4.88 2.69 3 18.2 11.9 1.53 6.63 0 NA 4 4.73 0 NA 3.59 1.83 1.96 3 7.8 0 NA 5.77 5.89 0.98 4 4.62 0 NA 0 0 NA 3 3.48 0 NA 5.69 2.6 2.23 6 8.82 5.6 1.58 27.59 9.8 2.81 T o t a l 118.5 62.8 1.89 117.1 38.2 3.07 T a b l e 4.4.13: N u t r i e n t s used by the running r e a c t o r s and the nitrogen/phosphorus r a t i o s e x h i b i t e d d u r i n g run 11. O v e r a l l , t h i s r u n was not s u c c e s s f u l a t d e m o n s t r a t i n g t h e advantages o f t h e t r u e b a t c h system. I t d i d , however, demonstrate t h e p o t e n t i a l problems w i t h t h e o p e r a t i o n : a h i g h i n i t i a l d i s s o l v e d m etal c o n c e n t r a t i o n and lower pH i n t h e system. The 181 o p e r a t i n g c o n d i t i o n s c a n p o s s i b l y be o v e r c o m e w i t h p r o p e r m o n i t o r i n g a n d c o n t r o l . Run 10 showed t h a t t h e t r u e b a t c h p r o c e s s c o u l d be u s e d t o g r e a t l y i m p r o v e t h e d e g r a d a t i o n k i n e t i c s o f t h e s l u d g e r e m e d i a t i o n p r o c e s s . The r a t e s w e r e t h r e e t i m e s l a r g e r t h a n t h o s e e x p e r i e n c e d i n t h e most s u c c e s s f u l b a t c h r u n . T h u s , t h e t r u e b a t c h s y s t e m a p p e a r s t o be a more e f f i c i e n t a n d e f f e c t i v e means o f t r e a t i n g t h e C h a t t e r t o n P e t r o c h e m i c a l s l u d g e . However, t h e m e t a l t o x i c i t y p r o b l e m was n o t a d d r e s s e d i n r u n 10. T h e r e f o r e , i t i s p o s s i b l e t h a t p r e t r e a t m e n t may be r e q u i r e d t o a c h i e v e d t h e same d e g r a d a t i o n r a t e k i n e t i c s . 182 5. Summary Of R e s u l t s : 5.1 Range Of T r e a t m e n t P a r a m e t e r s T a b l e 5.1.1 i s a summary o f t h e range o f t h e i n i t i a l and f i n a l c h a r a c t e r i s t i c s and t h e k i n e t i c d e g r a d a t i o n c o n s t a n t s o b s e r v e d d u r i n g t r e a t m e n t runs o f t h e C h a t t e r t o n P e t r o c h e m i c a l S l u d g e . Parameters: M o d i f i e d B a t c h Runs: True B a t c h Runs: Number o f Runs/Reactors 9/27 2/5 Range Of Length o f Runs (Days) 15 - 81 32 - 41 Range o f I n i t i a l T o t a l COD (mg/L) 4 058 - 113 850 13 788 - 40 356 Range o f F i n a l COD (mg/L) 1 950 - 22 928 5 443 - 17 762 Range o f % T o t a l COD D e g r a d a t i o n 32.3 - 81.1 56.0 - 70.7 Range Of I n i t i a l T o t a l BOD5 (mg/L) 201.7 - 8322 4 584 - 12 256 Range Of F i n a l T o t a l BOD5 (mg/L) 66.6 - 623 83.7 - 2 085 Range Of % T o t a l BOD5 D e g r a d a t i o n 66.4 - 99.1 83.0 - 98.2 Range Of I n i t i a l D i p h e n y l (mg/L) 7 - 1 157 289.2 - 2 334 Range Of F i n a l D i p h e n y l (mg/L) 0 - 11.2 0 - 37.3 Range Of % D i p h e n y l D e g r a d a t i o n 90.6 - 100 96.1 - 100 Range Of I n i t i a l D i p h e n y l E t h e r (mg/L) 77.7 - 5 690 548 - 11 016 Range Of F i n a l D i p h e n y l E t h e r (mg/L) 0 - 78.3 0 - 863.4 Range Of % D i p h e n y l E t h e r D e g r a d a t i o n 48.4 - 99.3 92.2 - 100 T a b l e 5.1.1: Summary o f the range o f the i n i t i a l and f i n a l parameters f o r a l l the treatment runs attempted. 183 5.2 P r o f i l e o f t h e M o s t S u c c e s s f u l Runs The most s u c c e s s f u l m o d i f i e d b a t c h and t r u e b a t c h runs t h a t were e x p e r i e n c e d d u r i n g t h e s t u d y a r e shown i n T a b l e 5.2.1. Compound: Parameter: R e a c t o r 2 R e a c t o r 3 Run 7 10 Setup M o d i f i e d B a t c h True B a t c h Length 42 31 T o t a l COD I n i t i a l (mg/L) 30 169 13 788 T o t a l COD F i n a l (mg/L) 5 710 5 443 T o t a l COD % R e d u c t i o n 81.1 60.5 T o t a l BOD5 I n i t i a l (mg/L) 8 322 4 584 T o t a l BOD5 F i n a l (mg/L) 74 83.7 T o t a l BOD5 % R e d u c t i o n 99.1 98.2 D i p h e n y l E t h e r I n i t i a l (mg/L) 5 290 3 494 D i p h e n y l E t h e r F i n a l (mg/L) 0 0 D i p h e n y l E t h e r % R e d u c t i o n 100 100 BOD5 R e a c t i o n Rate C o n s t a n t k (Days -1) 0.121 0.334 D i p h e n y l R e a c t i o n Rate C o n s t a n t k (Days -1) 0.54 0.565 D i p h e n y l E t h e r R e a c t i o n Rate C o n s t a n t k (Days -1) 0.332 0.31 Table 5.2.1 Summary of the most s u c c e s s f u l sludge treatment runs i n terms o f T o t a l BOD5 and COD removal and R e a c t i o n Rate Constants. 5.3 C o m p a r i s o n Of The R a t e s Of R e a c t i o n W i t h a T h e o r e t i c a l M o d e l For comparison, t h e r a t e s o f r e a c t i o n o b t a i n e d d u r i n g t h e runs can be equated t o t h e range o b t a i n e d f o r t h e d e g r a d a t i o n o f Phenol as a s i n g l e c a r b o n s o u r c e , under l a b o r a t o r y c o n d i t i o n s , shown i n T a b l e 5.3.1 (Lewendowski 1990). I t s h o u l d be n o t e d t h a t 184 t h e d e g r a d a t i o n i n t h a t s t u d y o c c u r r e d u n d e r i d e a l c o n d i t i o n s ; P h e n o l was t h e o n l y compound p r e s e n t , no m e t a l s w e r e p r e s e n t , t h e b a c t e r i a w e r e a c c l i m a t i z e d t o t h e m i x t u r e . P h e n o l was p r e s e n t i n a c o n c e n t r a t i o n g e n e r a l l y u n d e r 100 ppm a n d a t a T o t a l COD c o n c e n t r a t i o n o f u n d e r 250 mg/L. P a r a m e t e r : V a l u e : Range Of k i n e t i c c o n s t a n t k d u r i n g l a b o r a t o r y d e g r a d a t i o n ( D a y s -1) 3.12 - 24 T a b l e 5.3.1 Range o f the r e a c t i o n r a t e constant k f o r Phenol d e g r a d a t i o n as s i n g l e carbon source under l a b o r a t o r y c o n d i t i o n s (Lewendowsk i 1 9 9 0 ) . 5.4. P r e d i c t e d E f f l u e n t C h a r a c t e r i s t i c s U n d e r I d e a l T r e a t m e n t C o n d i t i o n s U n d e r i d e a l o p e r a t i n g c o n d i t i o n s , e x p e r i m e n t s i n t h i s s t u d y h a v e shown t h a t t h e e f f l u e n t f r o m a m o d i f i e d b a t c h r e a c t o r , i n i t i a l l y l o a d e d w i t h 30 000 mg/L T o t a l COD o f s l u d g e s h o u l d h a v e a p p r o x i m a t e l y t h e p r o p e r t i e s shown i n T a b l e 5.4.1. P a r a m e t e r : F i n a l P r o d u c t p r o p e r t y L e n g t h Of P r o c e s s ( D a y s ) 40 - 45 F i n a l T o t a l COD (mg/L) 5 000 - 6 000 F i n a l T o t a l B0D 5 (mg/L) 75 - 100 T o t a l C o p p e r Cone. (mg/L) 60 - 80 F i n a l D i s s o l v e d C o p p e r Cone. (mg/L) 2 - 5 F i n a l Cone. O f : X y l e n e ; D i p h e n y l ; D i p h e n y l E t h e r ; D i p h e n y l M e t h a n e ; B e n z e n e , 1 , 1 ' M e t h y l e n e b i s ( 4 - M e t h y l ) ; 1 , 2 - D i m e t h y l - 4 B e n z y l B e n z e n e 0 I n d i c a t i o n s From GC T r a c e t h a t a n y o t h e r compounds a r e p r e s e n t i n t h e f i n a l p r o d u c t NO T a b l e 5.4.1 Probable e f f l u e n t q u a l i t y o f sludge which has undergone the i d e a l treatment process as proposed by the experimental runs. 185 I t s h o u l d be n o t e d t h a t , due t o t h e v a r i a b i l i t y o f t h e o r g a n i c c o m p o n e n t s i n t h e l a g o o n , t h e r e s u l t s may v a r y s l i g h t l y . I n d i c a t i o n s f r o m t h e l i m i t e d T r u e B a t c h P r o c e s s r e a c t o r w ork a r e t h a t t h e same h i g h q u a l i t y e f f l u e n t c a n be o b t a i n e d i n a s h o r t e r p e r i o d o f t i m e , u s i n g t h i s p r o c e s s . However, t h e q u e s t i o n o f t h e i n c r e a s e d c o p p e r l e v e l i n s u c h a s y s t e m was n o t f u l l y i n v e s t i g a t e d . T h u s , i t i s p o s s i b l e t h a t t h e h i g h d i s s o l v e d c o p p e r l e v e l c o u l d p o t e n t i a l l y s h o r t c i r c u i t a n y t r e a t m e n t a t t e m p t a n d t h e p r o c e s s m i g h t r e q u i r e t h e s l u d g e t o be p r e t r e a t e d . 5 . 5 S u m m a r y o f t h e N i t r o g e n : P h o s p h o r u s r a t i o Run N/P r a t i o 11 1.89:1 3.07:1 10 2.51:1 8 1.51:1 6 3.23:1 2.02:1 5 2.29:1 A v e r a g e 2.36:1 T a b l e 5.5.1 Summary of the nitrogen/phosphorus r a t i o f o r experimental runs. The g e n e r a l l y a c c e p t e d n i t r o g e n / p h o s p h o r u s r a t i o f o r b a c t e r i a l g r o w t h i s 5:1 a n d t h u s , t h e a v e r a g e N/P r a t i o d e m o n s t r a t e d d u r i n g t h e e x p e r i m e n t a l s t u d y i s c o n s i d e r e d l o w . I t must be n o t e d , t h a t p h o s p h o r u s was u s e d f o r t h e g r o w t h o f t h e b a c t e r i a b u t a l s o t o p r e c i p i t a t e d i s s o l v e d c o p p e r a n d t h e r e f o r e t h e e x p e r i m e n t a l r a t i o 186 p r e s e n t e d i s m i s l e a d i n g . To c o r r e c t f o r t h e p h o s p h o r u s u s e d f o r c o p p e r p r e c i p i t a t i o n . T a b l e 5.5.2 assumes a N/P r a t i o o f 5:1 a n d d e t e r m i n e s t h e COD:N:P r a t i o b a s e d o n t h i s v a l u e . Run A c t u a l C0D:N:P R a t i o C o r r e c t e d COD:N:P R a t i o 11 361:1.89:1 591:3.07:1 136:5:1 362:5:1 10 118:2.51:1 59:5:1 8 50.7:1.51:1 35.8:1.51:1 15:5:1 10:5:1 6 161:3.23:1 157:2.02:1 104:5:1 63:5:1 5 186:2.29:1 85:5:1 A v e r a g e 195:2.25:1 104:5:1 As c a n be s e e n i n T a b l e 5.5.2, when t h e p h o s p h o r u s u s e d f o r c o p p e r p r e c i p i t a t i o n i s e l i m i n a t e d f r o m t h e r a t i o , t h e a v e r a g e C0D:N:P r a t i o i s v e r y c l o s e t o t h e l i t e r a t u r e p r e d i c t e d r a t i o o f 1 0 0 : 5 : 1 . 187 6 . C o n c l u s i o n s : 1) The C h a t t e r t o n P e t r o c h e m i c a l s l u d g e h a s b e e n shown t o be r e a d i l y b i o d e g r a d a b l e u n d e r t h e p r o p e r i n i t i a l l o a d i n g , m o n i t o r i n g a n d o p e r a t i n g c o n d i t i o n s . 1.1) The p h o s p h o r u s c o n c e n t r a t i o n i n t h e t r e a t m e n t s y s t e m must k e p t i n e x c e s s o f t h e n u t r i e n t r e q u i r e m e n t s o f t h e c u l t u r e i n o r d e r t o p r e c i p i t a t e t h e d i s s o l v e d c o p p e r p r e s e n t . The c u l t u r e h a s b e e n shown t o a c t i v e l y d e g r a d e t h e s l u d g e when t h e d i s s o l v e d c o p p e r c o n c e n t r a t i o n was b e l o w 5 mg/L. 1.2) N u t r i e n t a n d pH m o d i f i c a t i o n s s h o u l d be made p r i o r t o t h e s t a r t o f t h e e x p e r i m e n t . M o d i f y i n g o p e r a t i n g c o n d i t i o n s d u r i n g t h e e x p e r i m e n t a l r u n h i n d e r s t h e g r o w t h o f t h e c u l t u r e a n d u l t i m a t e l y s l o w s a n d s t a l l s t h e d e g r a d a t i o n p r o c e s s . pH m o d i f i c a t i o n s a t t h e b e g i n n i n g o f t h e r u n s h o u l d t a k e i n t o a c c o u n t t h e l a r g e c o n c e n t r a t i o n o f C0 2 w h i c h w i l l be p r o d u c e d d u r i n g t h e d e g r a d a t i o n p r o c e s s . 1.3) The c o n t r o l h a s shown t h a t t h e o r g a n i c s l o s s due t o v o l a t i l i z a t i o n , c a n be m i n i m i z e d t o l e s s t h a n 5% o f t r e a t m e n t , i n t e r m s o f T o t a l COD. I n a f u l l s c a l e p r o c e s s , i t may be n e c e s s a r y t o c a p t u r e a l l e x h a u s t g a s e s a n d s c r u b them t h r o u g h a c a r b o n f i I t e r . 188 1.4) The most e f f e c t i v e t e c h n i q u e t o m o n i t o r t h e p r o g r e s s o f t r e a t m e n t i s t o o b s e r v e t h e d e c r e a s e i n t h e pH, c o m b i n e d w i t h t h e r e d u c t i o n i n t h e c o n c e n t r a t i o n o f D i p h e n y l E t h e r . When a l l t h e D i p h e n y l E t h e r i s removed f r o m s o l u t i o n , t h e t r e a t m e n t h a s b e e n shown t o be c o m p l e t e . 2) The o p t i m u m i n i t i a l s l u d g e l o a d i n g f o r a m o d i f i e d b a t c h s y s t e m i s a T o t a l COD c o n c e n t r a t i o n o f a p p r o x i m a t e l y 30 000 mg/L. T h i s s h o u l d r e s u l t i n a c o n c e n t r a t i o n o f o r g a n i c s a n d c o p p e r t h a t t h e b i o l o l o g i c a l s y s t e m c a n h a n d l e . 3) I f t h e s l u d g e u n d e r g o e s i d e a l t r e a t m e n t , t h e f i n a l p r o d u c t h a s b e e n shown t o be f r e e f r o m a l l o r g a n i c c o n s t i t u e n t s . I n s u c c e s s f u l r u n s , t h e r e m o v a l o f a l l o r g a n i c compounds t o b e l o w t h e d e t e c t i o n l i m i t o f t h e GC was shown t o be p o s s i b l e i n 41 d a y s . However, t h e s l u d g e may s t i l l be c o n s i d e r e d a s p e c i a l w a s t e due t o t h e p r e s e n c e o f c o p p e r . I f p h o s p h o r u s l e v e l s a r e k e p t h i g h d u r i n g t h e r u n , t h e c o n c e n t r a t i o n o f d i s s o l v e d c o p p e r w i l l be l o w . 4) The M o d i f i e d B a t c h P r o c e s s (MBP) c a n e a s i l y be c o n v e r t e d t o a T r u e B a t c h P r o c e s s ( T B P ) . The same e l e v a t e d p h o s p h o r u s c o n c e n t r a t i o n i s r e q u i r e d t o a v o i d c o p p e r t o x i c i t y p r o b l e m s . However, t h e t r u e b a t c h p r o c e s s h a s b e e n shown t o r e d u c e t h e t i m e r e q u i r e d f o r t r e a t m e n t by a t l e a s t t e n d a y s , i n l i m i t e d t e s t i n g d u r i n g t h i s s t u d y . 189 5) The T r u e B a t c h P r o c e s s h a s b e e n shown t o be a n e f f e c t i v e way t o s p e e d t h e d e g r a d a t i o n o f t h e w a s t e s l u d g e . The r e a c t i o n r a t e c o n s t a n t k was t h r e e t i m e s l a r g e r i n t h i s s y s t e m , when c o m p a r e d t o t h e b e s t m o d i f i e d b a t c h r u n , i n t e r m s o f T o t a l BOD 5 r e d u c t i o n . T h i s i n d i c a t e s t h a t t h e o r g a n i s m s w h i c h h a d b e e n a c c l i m a t i s e d t o t h e s l u d g e , w e r e a b l e t o d e g r a d e t h e w a s t e w i t h o u t h a v i n g a p e r i o d o f i n - s i t u a c c l i m a t i z a t i o n . However, q u e s t i o n s r e m a i n a b o u t t h e p o t e n t i a l a c c u m u l a t i o n o f c o p p e r i n t h e t r u e b a t c h t r e a t m e n t s y s t e m . T h u s , p r e t r e a t m e n t o f t h e s l u d g e t o remove p a r t o f t h e c o p p e r may be n e c e s s a r y t o a c h i e v e t h e h i g h T o t a l BOD 5 r a t e s o f r e m o v a l . 190 7 . R e c o m m e n d a t i o n s : I n o r d e r t o s u c c e s s f u l l y t r e a t t h e C h a t t e r t o n P e t r o c h e m i c a l s l u d g e t h e f o l l o w i n g R e c o m m e n d a t i o n s s h o u l d be a d h e r e d t o : 1) The i n i t i a l s l u d g e l o a d i n g o f a m o d i f i e d b a t c h o r t r u e b a t c h r e a c t o r s h o u l d be 30 000 mg/L b a s e d on t h e T o t a l COD. 2) To a v o i d c o p p e r t o x i c i t y p r o b l e m s , t h e p h o s p h o r u s c o n c e n t r a t i o n i n t h e r e a c t o r s h o u l d be k e p t i n e x c e s s o f t h e amount r e q u i r e d f o r t h e g r o w t h o f b a c t e r i a . I n e x p e r i m e n t a l r u n s , a c o n c e n t r a t i o n o f 100 mg/L i n e x c e s s o f t h e amount r e q u i r e d f o r g r o w t h was s u c c e s s f u l l y u s e d t o m a i n t a i n t h e d i s s o l v e d c o p p e r l e v e l s b e l o w 5 mg/L; h o w e v e r , i t i s p o s s i b l e t h a t l o w e r l e v e l s w o u l d p r o d u c e t h e same r e s u l t s . The e x p e r i m e n t a l r u n s i n d i c a t e d t h a t , f o r e v e r y 120 mg/L o f T o t a l COD b r o k e n down, 3 mg/L o f n i t r o g e n a n d 1 mg/L o f p h o s p h o r u s w e r e r e q u i r e d . 3) The pH a n d t h e n u t r i e n t s s h o u l d be a d d e d t o t h e r e a c t o r p r i o r t o t h e s t a r t o f t h e p r o c e s s . M o d i f y i n g t h e o p e r a t i n g c o n d i t i o n s d u r i n g t h e r u n h a s b e e n shown t o n e g a t i v e l y a f f e c t t h e p r o c e s s and u l t i m a t e l y l e d t o t h e s t a l l i n g o f t h e r e m e d i a t i o n . I t s h o u l d be n o t e d t h a t , d u r i n g t h e r u n , a r e d u c t i o n i n pH w i l l o c c u r ; t h u s , s o d a a s h must be a d d e d t o t h e s y s t e m t o i m p r o v e i t ' s b u f f e r i n g a b i l i t y . 4) The GC a n d t h e pH s h o u l d be u s e d t o m o n i t o r t h e p r o g r e s s o f t h e r u n . D i p h e n y l E t h e r i s t h e o r g a n i c compound w h i c h i s t h e most c o n c e n t r a t e d a n d r e s i s t a n t t o d e g r a d a t i o n i n t h e s l u d g e m i x t u r e . I t h a s b e e n o b s e r v e d t h a t when i t d i s a p p e a r s f r o m t h e s l u d g e , t h e r e m e d i a t i o n p r o c e s s i s e s s e n t i a l l y c o m p l e t e . 5) The t i m e r e q u i r e d f o r t h e b a t c h d e g r a d a t i o n o f t h e s l u d g e i s b e t w e e n 40 a n d 45 d a y s . The u s e o f a t r u e b a t c h s y s t e m w i l l c o n s i d e r a b l y r e d u c e t h e t i m e r e q u i r e d , b u t t h e q u e s t i o n o f c o p p e r b u i l d up i n t h i s s y s t e m r e m a i n s u n a n s w e r e d . T h u s , t h e s l u d g e may h a v e t o be p r e t r e a t e d . F u r t h e r r e s e a r c h o n t h i s p o i n t , a s w e l l a s o p t i m i z i n g t h e TBP, i s r e q u i r e d . 6) The a e r a t i o n o f t h e w a s t e must be c a r e f u l l y m o n i t o r e d t o p r e v e n t t h e n e e d l e s s v o l a t i l i z a t i o n o f t h e s l u d g e . E x p e r i m e n t a l r u n s h a v e shown t h a t , u n d e r t h e p r o p e r o p e r a t i o n and m o n i t o r i n g c o n d i t i o n s , t h e v o l a t i l i z a t i o n c a n be m i n i m i z e d t o l e s s t h a n 5% o f t h e T o t a l COD d e g r a d a t i o n . 192 8 . R e f e r e n c e s : 1. A u t r y , Andrew R. a n d E l l i s , G a r y M. ( 1 9 9 2 ) \" B i o r e m e d i a t i o n : An E f f e c t i v e R e m e d i a l A l t e r n a t i v e F o r P e t r o l e u m H y d r o c a r b o n C o n t a m i n a t e d S o i l . \" E n v i r o n m e n t a l P r o g r e s s , V o l . 11, 4, pp 318-323. 2. B e l l , J o h n P. a n d T s e z o s , M a r i o s ( 1 9 8 7 ) \"Removal Of H a z a r d o u s O r g a n i c P o l l u t a n t s By B i o m a s s A b s o r b t i o n . \" J o u r n a l W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 59, 4, pp 191-197. 3. B e l t r a m e , P., B e l t r a m e , P.L., C a r n i t i , P. a n d P i t e a D. ( 1 9 7 9 ) \" K i n e t i c s Of P h e n o l D e g r a d a t i o n B y A c t i v a t e d S l u d g e : V a l u e Of M e a s u r e m e n t s I n B a t c h R e a c t o r . \" W a t e r R e s e a r c h , V o l . 13, pp 1305-1309. 4. B e l t r a m e , P., B e l t r a m e , P.L., C a r n i t i , P. a n d P i t e a D. ( 1 9 8 0 ) \" K i n e t i c s Of P h e n o l D e g r a d a t i o n By A c t i v a t e d S l u d g e I n C o n t i n u o u s l y S t i r r e d R e a c t o r . \" J o u r n a l W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 52, 1, pp 1 2 6 -133. 5. B r a d f o r d , M.L. a n d K r i s h n a m o o r t h y R. ( 1 9 9 1 ) \" C o n s i d e r B i o r e m e d i a t i o n F o r S i t e C l e a n Up.\" C h e m i c a l E n g i n e e r i n g P r o g r e s s , pp 8 0 - 8 5 . 6. B r e n n e r A., C h o z i c k R. a n d I r v i n e R. ( 1 9 9 2 ) \" T r e a t m e n t Of A H i g h - S t r e n g t h , M i x e d P h e n o l i c W a s t e I n An SBR.\" W a t e r E n v i r o n m e n t R e s e a r c h , V o l . 64, 2, pp 1 2 8 -133. 7. C a p p s R., M a n t e l l i G. a n d B r a d f o r d M.L. ( 1 9 9 5 ) \" D e s i g n C o n c e p t s F o r B i o l o g i c a l T r e a t m e n t Of I n d u s t r i a l W a s t e w a t e r . \" E n v i r o n m e n t a l P r o g r e s s , V o l . 14, 1, pp 1-8. 8. C h u b o d a , J . ( 1 9 9 0 ) , \"Comment On The PH V a r i a t i o n D u r i n g P h e n o l B i o d e g r a d a t i o n I n M i x e d C u l t u r e s Of M i c r o o r g a n i s m s . \" W a t e r R e s e a r c h , V o l . 24, 12, pp 1555-1556. 9. Deepak D., G u p t a R . J . a n d B h a t t a c h a r y a S.D. ( 1 9 9 4 ) \"COD R e d u c t i o n K i n e t i c s I n A B i o l o g i c a l B a t c h R e a c t o r : E f f e c t Of I m p e l l e r S u bmergence and S p e e d . \" The C h e m i c a l E n g i n e e r i n g J o u r n a l , V o l . 56, pp B43-B48. 10. G r a d y C.P.L. J r . ( 1 9 8 9 ) \" B i o d e g r a d a t i o n Of T o x i c O r g a n i c s : S t a t u s And P o t e n t i a l . \" J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l 116, 5, pp 8 0 5 - 8 2 5 . 11. G o l d e r R e p o r t on t h e P r e l i m i n a r y S i t e I n v e s t i g a t i o n o f t h e C h a t t e r t o n P e t r o c h e m i c a l S i t e ( 1 9 9 4 ) , pp 49-52, G o l d e r A s s o c i a t e s I n c . , B u r n a b y , BC. 12. H a l l e r H.D. \" D e g r a d a t i o n Of M o n o - S u b s t i t u t e d B e n z o a t e s And 193 P h e n o l By W a s t e w a t e r . \" ( 1 9 7 8 ) J o u r n a l W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , pp 2771-2777 13. H a r t m a n , R.B., S m i t h , D.G. a n d L i n s t e d t , K.D. ( 1 9 7 9 ) \" S l u d g e S t a b i l i z a t i o n T h r o u g h A e r o b i c D e g r a d a t i o n \" J o u r n a l W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 51, 10, pp 2353-2365 14. H s u , E.H. ( 1 9 8 6 ) \" T r e a t m e n t Of A P e t r o c h e m i c a l W a s t e w a t e r I n A S e q u e n c i n g B a t c h R e a c t o r s . \" E n v i r o n m e n t a l P r o g r e s s , V o l . 5, 2, pp 71-80 15. J a s p e r s e n , C , J e r g e r , D. a n d E x n e r , J . ( 1 9 9 3 ) \" B i o r e m e d i a t i o n T a c k l e s H a z a r d o u s W a s t e . \" C h e m i c a l E n g i n e e r i n g , pp 1 16-122. 16. K i m , B . J . , Gee C.S., Bandy, J.T., Huang, C. a n d G u z e w i c h D.C. ( 1 9 9 0 ) \" H a z a r d o u s W a s t e s T r e a t m e n t T e c h n o l o g i e s . \" J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 62, 4, pp 5 1 1 - 5 1 5 . 17. K i m , W.J., Humenick M.J. a n d A r m s t r o n g N. E. ( 1 9 8 1 ) \"A C o m p r e s s i v e S t u d y On The B i o l o g i c a l T r e a t a b i l i t i e s Of P h e n o l And M e t h a n o l - I A n a l y s i s Of B a c t e r i a l G r o w t h And S u b s t r a t e R e m o v a l K i n e t i c s By A S t a t i s t i c a l M e t h o d . \" W a t e r R e s e a r c h , V o l . 15, pp 1 2 2 1 - 1 2 3 1 . 18. K i n n a n o n , D.F., S t o v e r , E.L., N i c h o l s V. a n d M e d l e y D. ( 1 9 8 3 ) \"Removal M e c h a n i s m s F o r T o x i c P r i o r i t y P o l l u t a n t s . \" J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 55, 2, pp 157-163. 19. L e w n a d o w s k i , G.A. ( 1 9 9 0 ) \" B a t c h B i o d e g r a t i o n Of I n d u s t r i a l O r g a n i c Compounds U s i n g M i x e d L i q u o r From D i f f e r e n t POTW's.\" J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 62, 6, pp 8 0 3 - 8 0 9 . 20. M e t c a l f & Eddy, I n c . , W a s t e w a t e r E n g i n e e r i n g : T r e a t m e n t , D i s p o s a l , R e u s e , 3 r d E d i t i o n , New Y o r k , McGraw H i l l , 1991 21 . Mowat, A. ( 1 9 7 6 ) \"Measurement Of M e t a l T o x i c i t y By B i o l o g i c a l O x y g e n Demand.\" J o u r n a l W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 48, 5, pp 85 3 - 8 6 5 . 22. N e u f e l d , R.D. a n d V a l i n a c , T. ( 1 9 7 9 ) \" I n h i b i t i o n Of P h e n o l B i o d e g r a d a t i o n By T h i o c y a n a t e \" J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 51, 9, pp 2 2 8 3 - 2 2 9 1 . 23. P a r k e r W.J., B e l l J . P . a n d M e l c e r H. ( 1 9 9 4 ) \" M o d e l l i n g The F a t e Of C h l o r i n a t e d P h e n o l s I n W a s t e w a t e r T r e a t m e n t P l a n t s . \" E n v i r o n m e n t a l P r o g r e s s , V o l . 13, 2, pp 98-104. 24. P a t t e r s o n , J.W. and K o d u k a l a P.S. ( 1 9 8 1 ) \" B i o d e g r a d a t i o n Of H a z a r d o u s O r g a n i c P o l l u t a n t s . \" C h e m i c a l E n g i n e e r i n g P r o g r e s s , A p r i l 1 981, pp 4 8 - 5 5 . 194 25. P i t t e r , P., ( 1 9 7 5 ) \" D e t e r m i n a t i o n Of B i o l o g i c a l D e g r a d a b i 1 i t y Of O r g a n i c S u b s t a n c e s . \" W a t e r R e s e a r c h , V o l . 10, pp 2 3 1 - 2 3 5 . 26. P r i n c e , M. a n d S a m b a s i v a m ( 1 9 9 3 ) , Y. \" B i o r e m e d i a t i o n Of P e t r o l e u m W a s t e s From The R e f i n i n g Of L u b r i c a n t O i l s . \" E n v i r o n m e n t a l P r o g r e s s , V o l . 12, 1, pp 5-11. 27. Rebhun, M. a n d G a l i l N. ( 1 9 8 8 ) \" I n h i b i t i o n B y H a z a r d o u s Compounds I n An I n t e g r a t e d O i l R e f i n e r y . \" J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 60, 11, pp 1953-1959. 28. R o z i c h , A.F., Gaudy A.F. and D'Amamo P.C. ( 1 9 8 5 ) \" S e l e c t i o n Of G r o w t h R a t e M o d e l F o r A c t i v a t e d S l u d g e s T r e a t i n g P h e n o l . \" W a t e r R e s e a r c h , V o l . 19, 4, pp 4 8 1 - 4 9 0 . 29. S k e e n , R.S., T r u e x M.J., P e r t e r s e n , J.N. and H i l l J . S . ( 1 9 9 4 ) \" A B a t c h R e a c t o r F o r M o n i t o r i n g P r o c e s s D y n a m i c s D u r i n g B i o d e g r a d a t i o n Of V o l a t i l e O r g a n i c s . \" E n v i r o n m e n t a l P r o g r e s s , V o l . 13, 3, pp 174-177. 30. S l o a n S. ( 1 9 8 7 ) \" R e m e d i a t i o n Of An O i l C o n t a m i n a t e d S i t e . \" J o u r n a l Of O i l a n d Gas, S e p t . 1987, pp 61-67. 3 1 . S t a n d a r d M e t h o d s f o r t h e E x a m i n a t i o n o f W a t e r a n d W a s t e w a t e r ( 1 9 9 3 ) . 1 7 t h e d . , A m e r i c a n P u b l i c H e a l t h A s s o c i a t i o n , W a s h i n g t o n , D.C. 32. S t e n s t r o m , M.K., C a r d i n a l L. a n d L i b r a J . ( 1 9 8 9 ) \" T r e a t m e n t Of H a z a r d o u s S u b s t a n c e s I n W a s t e w a t e r T r e a t m e n t P l a n t s . \" E n v i r o n m e n t a l P r o g r e s s , V o l . 8, 2, pp 1 0 7 - 1 1 . 33. Tabak, H.H., Quave, S.A., M a s h n i , C . I . a n d B a r t h E.F. ( 1 9 8 1 ) \" B i o d e g r a d a b i 1 i t y S t u d i e s W i t h O r g a n i c P r i o r i t y P o l l u t a n t s Compounds.\" J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 53, 10, pp 1503-1517. 34. Thomas J.A., G a n a p a t h i , G. a n d S t o v e r E.L. ( 1 9 9 1 ) \" P e t r o l e u m P r o c e s s i n g A nd S y n t h e t i c F u e l s . \" J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 63, 4, pp 4 7 5 - 4 7 9 . 35. T o k u z , Y.R. ( 1 9 9 1 ) \" The R e s p o n s e Of A c t i v a t e d S l u d g e P r o c e s s To H a z a r d o u s O r g a n i c W a s t e s . \" H a z a r d o u s W a s t e s And H a z a r d o u s M a t e r i a l s , V o l . 8, 3, 2 4 5 - 2 5 6 . 36. V i p u l a n a n d a n C. and K r i s h n a n S. ( 1 9 9 3 ) \" L e a c h a b i l i t y And B i o d e g r a d a t i o n Of H i g h C o n c e n t r a t i o n s Of P h e n o l AND o-C h l o r o p h e n o l . \" H a z a r d o u s W a s t e s And H a z a r d o u s M a t e r i a l s , V o l . 10, 1, pp 27-47. 195 9 . A p p e n d i x A A n a l y t i c a l T e s t : P e r f o r m e d i n Runs COD 1 t o 11 BOD 7 t o 11 S o l i d s 4 t o 11 N u t r i e n t A n a l y s i s 5 t o 11 M e t a l s C o n c e n t r a t i o n 4 t o 11 GC D a t a 4 t o 11 PH 4 t o 11 196 Run 1 COD Reactor2 (TOTAL) Test samples Sample num abs. Cone. Act. Cone. TIME IIT1 61 755.1364 75513.64 1 IIT2 25 310.692 31069.2 2 IIT3 20 248.9636 24896.36 3 IIT4 18 224.2722 22427.22 4 IIT5 25 310.692 31069.2 5 NTS 17 211.9265 21192.65 8 IIT11 27 442.2146 17688.58 11 IIT15 20 277.7778 6944.444 15 IIT19 16 222.2222 5555.556 19 IIT24 23 319.4444 7986.111 24 IIT30 44 611.1111 15277.78 30 Reactor2 Supernatant Sample num abs. Cone. Act. Cone. TIME IIS1 18 39.08 3908 1 IIS2 3 43.5206 4352.06 2 IIS4 3 42.0672 4206.72 4 IIS5 4 51.43272 5143.272 5 IIS8 2 26.74136 2674.136 8 IIS11 4 65.78864 3289.432 11 IIS15 10 138.8889 1736.111 15 IIS19 12 166.6667 2083.333 19 IIS24 14 194.4444 2430.556 24 IIS30 16 222.2222 2777.778 30 Reactor4 Total Sample num abs. Cone. Act. Cone. TIME IVT1 65 804.5191 80451.91 1 IVT2 65 804.5191 80451.91 2 IVT3 72 890.9389 89093.89 3 IVT4 60 742.7907 74279.07 4 IVT5 55 681.0623 68106.23 5 IVT8 30 372.4204 37242.04 8 IVT11 39 638.6107 25544.43 11 IV15 25 347.2222 8680.556 15 Reactor4 Supernatent Sample num abs. Cone. Act. Cone. TIME IVS2 7 63.5235 6352.35 2 IVS4 4 51.43272 5143.272 4 IVS5 3 39.08704 3908.704 5 IVS8 3 39.08704 3908.704 8 IVS11 5 82.15499 4107.749 11 IVS15 12 166.6667 2083.333 15 197 Run 2 COD Reactor 1 Total (control) Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IT1 6 102.5449 2563.623 1 IT3 5 85.58744 2139.686 3 IT5 11 187.3324 2341.655 5 Reactor 1 Supernatant (control) Sample. Abs. Cone. Actual Cone. Time mg/L mg/L Days IS1 12 204.2899 408.5797 1 IS3 26 441.6947 441.69 3 IS5 5 Reactor 2 Total Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IIT1 14 238.2048 5955.121 1 IIT3 13 221.2473 5531.183 3 IIT5 25 424.7372 5309.215 5 Reactor 2 Supernatant Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IIS1 60 1018.249 1018.2 1 IIS3 66 1119.994 1120 3 IIS5 Reactor 3 Total Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IIIT1 15 255.1623 6379.058 1 IIIT3 11 187.3324 4683.309 3 IIIT5 29 492.5671 6157.089 5 Reactor 3 Supernatant Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IIIS1 72 1221.739 1221.7 1 Reactor 4 Total Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IVT1 5 85.58744 2139.686 1 IVT3 5 85.58744 2139.686 3 IVT5 9 153.4174 1917.717 5 Reactor 4 Supernatant Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IVS1 12 204.2899 2042.899 1 IVS3 11 187.3324 1873.324 3 IVT5 9 153.4174 1917.717 5 Reactor 4 Supernatant Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IVS1 12 204.2899 2042.899 1 IVS3 11 187.3324 1873.324 3 Reactor 4 Supernatant Sample: Abs. Cone. Actual Cone. Time mg/L mg/L Days IVS1 12 204.2899 2042.899 1 IVS3 11 187.3324 1873.324 3 198 COD Data Vs Time For Run 4 Reactor 1 Total (control) Diluted Sample: Abs. Cone. Act. Cone. Time % mg/L mg/L Days IT1 55 963.4976 96349.76 1 IT3 31 543.4986 54349.86 3 IT6 57 998.4975 99849.75 6 IT9 31 547.0814 54708.14 9 IT13 20 336.9623 33696.23 13 IT15 26 437.571 43757.1 15 IT19 33 554.9478 55494.78 19 IT22 43 692.8408 69284.08 22 IT25 20 500 50000 25 IT29 34 607.1429 60714.29 29 IT33 31 507.0082 50700.82 33 IT37 34 602.2282 60222.82 37 IT41 30 523.9534 52395.34 41 IT44 26 434.3582 43435.82 44 IT47 19 329.0611 32906.11 47 IT50 14 242.9376 24293.76 50 IT54 14 262.9147 26291.47 54 IT57 14 277.7509 27775.09 57 IT61 27 539.7851 26989.26 61 IT64 32 580.1101 23204.41 64 IT67 35 572.4286 22897.14 67 IT74 30 512.0922 20483.69 .74 IT78 26 496.7235 19868.94 78 IT82 28 469.8546 18794.18 82 IT85 27 440.5472 17621.89 85 Reactor 2 Total Diluted Sample: Abs. Cone. Act. Cone. Time % mg/L mg/L Days IIT1 65 1138.497 113849.7 1 IIT3 63 1103.497 110349.7 3 IIT6 64 1120.997 112099.7 6 IIT9 57 1003.911 100391.1 9 IIT13 82 1376.585 137658.5 13 IIT15 77 1292.745 129274.5 15 IIT19 82 1376.585 137658.5 19 IIT22 60 966.2802 96628.02 22 IIT25 55 1375 137500 25 IIT29 62 1107.143 110714.3 29 IIT33 60 981.3061 98130.61 33 IIT37 33 584.5156 58451.56 37 IIT41 35 611.279 61127.9 41 IIT44 40 668.1357 66813.57 44 IIT47 40 693.6444 69364.44 47 IIT50 34 590.8484 59084.84 50 IIT54 22 412.8089 41280.89 54 IIT57 21 416.3263 41632.63 57 IIT61 43 859.4207 42971.04 61 IIT64 67 1214.168 48566.72 64 IIT67 60 981.3061 39252.24 67 IIT74 48 819.1075 32764.3 74 IIT78 34 649.5615 25982.46 78 199 COD Data Vs Time For Run 4 (Continued) Reactor 3 Total Diluted Sample: Abs. Cone. Act. Cone. Time % mg/L mg/L Days IIIT1 65 1138.497 113849.7 1 IIIT3 64 1120.997 112099.7 3 IIIT6 61 1068.497 106849.7 6 IIIT9 28 494.3703 49437.03 9 IIIT13 48 806.4695 80646.95 13 IIIT15 49 823.2376 82323.76 15 IIIT19 52 873.5419 87354.19 19 IIIT23 48 773.2641 77326.41 22 IIIT25 26 650 65000 25 IIIT29 50 892.8571 89285.71 29 IIIT33 52 850.4653 85046.53 33 IIIT37 39 690.7912 69079.12 37 IIIT41 39 681.1394 68113.94 41 IIIT44 45 751.6277 75162.77 44 HIT47 45 780.45 78045 47 IIIT50 45 782.1993 78219.93 50 IIIT54 36 675.1236 67512.36 54 IIIT57 27 535.1053 53510.53 57 IIIT61 52 1039.216 51960.79 61 IIIT64 68 1232.284 49291.36 64 IIIT67 51 834.1102 33364.41 67 IIIT74 32 546.205 21848.2 74 IIIT78 30 573.1425 22925.7 78 IIIT82 30 503.3156 20132.63 82 IIIT85 32 522.0189 20880.76 85 Reactor 4 Total Diluted Sample: Abs. Cone. Act. Cone. Time % mg/L mg/L Days IVT1 37 648.4984 64849.84 1 IVT3 36 630.9984 63099.84 3 IVT6 36 630.9984 63099.84 6 IVT9 34 599.7926 59979.26 9 IVT13 32 538.1796 53817.96 13 IVT15 32 538.1796 53817.96 15 IVT19 30 504.6434 50464.34 19 IVT22 18 290.7241 29072.41 22 IVT25 17 425 42500 25 IVT29 26 464.2857 46428.57 29 IVT33 31 507.0082 50700.82 33 IVT37 27 478.2401 47824.01 37 IVT41 30 523.9534 52395.34 41 IVT44 22 367.5647 36756.47 44 IVT47 20 346.4222 34642.22 47 IVT50 14 242.9376 24293.76 50 IVT54 12 225.4412 22544.12 54 IVT57 11 218.3614 21836.14 57 IVT61 21 419.9217 20996.09 61 IVT64 22 398.9507 15958.03 64 IVT67 21 343.4571 13738.29 67 IVT74 17 290.3589 11614.36 74 IVT78 16 305.676 12227.04 78 IVT82 16 269.0883 10763.53 82 IVT85 18 293.8981 11755.93 85 200 COD Data Vs Time For Run 4 (Continued) Reactor 1 Supernatant Diluted Sample: Abs. Cone. Act. Cone. Time % mg/L mg/L Days IS1 39 683.4983 8543.729 1 IS3 37 648.4984 8106.23 3 IS6 45 788.498 9856.225 6 IS9 20 353.8074 4422.592 9 IS13 9 152.513 3812.826 13 IS15 11 186.0493 4651.231 15 IS19 9 152.513 3812.826 19 IS22 13 210.3007 5257.518 22 IS25 21 525 6562.5 25 IS29 11 196.4286 4910.714 29 IS33 31 507.0082 6337.602 33 IS37 16 283.4015 3542.519 37 IS41 19 331.8372 4147.964 41 IS44 9 150.4855 3762.139 44 IS47 11 190.1722 4754.306 47 IS50 17 295.1242 7378.104 50 IS54 22 412.8089 10320.22 54 IS57 39 772.6632 9658.29 57 IS61 27 539.7851 6747.314 61 IS64 39 706.9217 8836.522 64 IS67 42 686.9143 8586.429 67 IS74 44 750.8818 9386.023 74 IS78 54 1031.657 12895.71 78 IS82 49 821.1956 10264.94 82 IS85 65 1059.732 10597.32 85 Reactor 2 Supernatant Diluted Sample: Abs. Cone. Act. Cone. Time % mg/L mg/L Days IIS1 45 788.498 9856.225 1 IIS3 44 770.9981 9637.476 3 IIS6 42 735.9982 9199.977 6 IIS9 42 740.3555 9254.444 9 IIS13 20 336.9623 8424.057 13 IIS15 20 336.9623 8424.057 15 IIS19 32 538.1796 13454.49 19 IIS22 24 387.2321 9680.802 22 IIS25 40 1000 12500 25 IIS29 41 732.1429 18303.57 29 IIS33 59 964.951 12061.89 33 IIS37 35 619.9408 7749.26 37 IIS41 50 873.2557 10915.7 41 IIS44 23 384.2631 9606.576 44 IIS47 24 415.8667 10396.67 47 IIS50 14 242.9376 6073.439 50 IIS54 14 262.9147 6572.869 54 IIS57 33 653.8842 8173.553 57 IIS61 30 599.7168 7496.46 61 IIS64 38 688.8058 8610.072 64 IIS67 44 719.6245 8995.306 67 IIS74 44 750.8818 9386.023 74 IIS78 45 859.7138 10746.42 78 201 COD Data Vs Time For run 4 (Continued) Reactor 3 Supernatant Diluted Sample: Abs. Cone. Act. Cone. Time % mg/L mg/L Days IIIS1 28 490.9988 6137.485 1 IIIS3 28 490.9988 6137.485 3 IIIS6 29 508.4987 6356.234 6 IIIS9 27 476.8 5960 9 IIIS13 15 253.1217 6328.043 13 IIIS15 16 269.8898 6747.246 15 IIIS19 23 387.2666 9681.665 19 IIIS22 18 290.7241 7268.101 22 IIIS25 40 1000 12500 25 IIIS29 24 428.5714 10714.29 29 IIIS33 60 981.3061 12266.33 33 IIIS37 40 708.5038 8856.298 37 IIIS41 52 908.1859 11352.32 41 IIIS44 25 417.6598 10441.5 44 IIIS47 30 520.0333 13000.83 47 IIIS50 18 312.5197 7812.993 50 IIIS54 20 375.3353 9383.384 54 IIIS57 35 693.4772 8668.465 57 IIIS61 34 679.6257 8495.321 61 IIIS64 35 634.458 7930.725 64 IIIS67 48 785.0449 9813.061 67 IIIS74 48 819.1075 10238.84 74 IIIS78 48 917.0281 11462.85 78 IIIS82 24 402.9325 5036.656 82 IIIS85 70 1141.204 11412.04 85 Reactor 4 Supernatant Diluted Sample: Abs. Cone. Act. Cone. Time % mg/L mg/L Days IVS1 16 280.9993 3512.491 1 IVS3 15 263.4993 3293.742 3 IVS6 19 333.4992 4168.74 6 IVS9 9 IVS13 11 186.0493 4651.231 13 IVS15 10 169.2811 4232.028 15 IVS19 11 186.0493 4651.231 19 IVS22 10 162.0467 4051.167 22 IVS25 20 500 6250 25 IVS29 19 339.2857 8482.143 29 IVS33 30 490.6531 6133.163 33 IVS37 25 442.8149 5535.186 37 IVS41 29 506.4883 6331.104 41 IVS44 12 200.5807 5014.518 44 IVS47 11 190.1722 4754.306 47 IVS50 9 155.9599 3898.996 50 IVS54 11 206.7044 5167.611 54 IVS57 22 436.1228 5451.535 57 IVS61 24 479.8534 5998.168 61 IVS64 22 398.9507 4986.884 64 IVS67 23 376.1673 4702.092 67 IVS74 23 392.6973 4908.717 74 IVS78 26 496.7235 6209.044 78 IVS82 18 302.5494 3781.867 82 IVS85 23 375.3698 3753.698 85 202 COD VS Time For Run 5 Reactor 2 Total SAMPLE ABS CONC Total CONC. TIME mg/L mg/L Days IIT1 26 497.1235 19884.94 1 IIT4 15 252.3578 10094.31 4 IIT7 S 147.2491 5889.963 7 IIT11 11 182.1475 7285.9 11 IIT14 11 185.8917 7435.668 14 IIT18 12 193.7706 7750.824 18 IIT21 11 185.6537 7426.147 21 IIT25 12 195.5321 7821.284 25 IIT27 15 258.0604 10322.42 27 IIT32 14 240.8697 9634.79 32 IIT35 14 240.526 9621.041 35 IIT42 11 188.7246 7548.983 42 Reactor 5 Total SAMPLE ABS CONC Total CONC. TIME mg/L mg/L Days VT1 25 478.0188 19120.75 1 VT4 26 436.3936 17455.74 4 VT7 24 391.6642 15666.57 7 VT11 28 463.3391 18533.56 11 VT14 26 438.2895 17531.58 14 VT18 25 403.2554 16130.22 18 VT21 26 438.5451 17541.8 21 VT25 30 488.8302 19553.21 25 VT27 24 412.7767 16511.07 27 VT32 25 429.9674 17198.7 32 VT35 26 446.0055 17840.22 35 VT42 26 446.0762 17843.05 42 Reactor 2 Supernatant SAMPLE ABS CONC Total CONC. TIME mg/L mg/L Days IIS1 6 115.0285 1437.856 1 IIS4 6 101.7831 1272.289 4 IIS7 12 196.1321 1961.321 7 IIS11 19 314.473 3144.73 11 IIS14 18 303.6773 3036.773 14 IIS18 17 274.3417 2743.417 18 IIS21 19 320.5291 3205.291 21 IIS25 24 391.0642 3910.642 25 IIS27 25 429.9674 4299.674 27 IIS32 22 377.5123 3775.123 32 IIS35 30 514.4986 5144.986 35 IIS42 24 411.7627 4117.627 42 Reactor 5 Supernatent SAMPLE ABS CONC Total CONC. TIME mg/L mg/L Days VS1 4 76.81901 960.2376 1 VS4 11 185.4357 2317.947 4 VS7 23 375.3698 3753.698 7 VS11 19 314.473 3144.73 11 VS14 14 236.3713 2363.713 14 VS18 24 387.1412 3871.412 18 VS21 22 371.1074 3711.074 21 VS25 24 391.0642 3910.642 25 VS27 28 481.5395 4815.395 27 VS32 28 480.2521 4802.521 32 VS35 31 531.6219 5316.219 35 VS42 35 600.4873 6004.873 42 203 COD vs Time For Run 6 Reactor 1 Total (Control) SAMPLE ABS CONC. TOT. CONC TIME % mg/L mg/L Days IT1 25 422.7121 16908.48 1 IT3 25 413.717 16548.68 3 IT6 25 421.4347 16857.39 6 IT10 24 387.1412 15485.65 10 IT13 28 472.2639 18890.56 13 IT17 26 424.2529 16970.11 17 IT19 23 395.586 15823.44 19 IT24 22 378.3953 15135.81 24 IT27 24 411.7589 16470.36 27 IT35 24 411.7627 16470.51 34 IT37 24 411.7589 16470.36 37 IT41 24 435.1826 17407.3 41 IT45 22 424.2065 16968.26 45 IT48 23 457.1492 18285.97 48 IT52 21 418.7685 16750.74 52 IT55 20 414.1104 16564.41 55 Reactor 3 Total SAMPLE ABS CONC. TOT. CONC TIME % mg/L mg/L Days IIIT1 22 371.9386 14877.55 1 IIIT3 21 347.5543 13902.17 3 IIIT6 15 253.1808 10127.23 6 IIIT10 16 258.2275 10329.1 10 IIIT13 15 253.0914 10123.66 13 IIIT-IT 14 228.7208 9148.831 17 IIIT19 17 292.4418 11697.67 19 IIIT24 14 240.8697 9634.79 24 IIIT27 15 257.6493 10305.97 27 IIIT35 14 240.1949 9607.796 35 Reactor4 Total SAMPLE ABS CONC. TOT. CONC TIME % mg/L mg/L Days IVT1 47 795.0507 31802.03 1 IVT3 30 496.4205 19856.82 3 IVT6 38 640.1647 25606.59 6 IVT10 28 451.5981 18063.92 10 IVT13 28 472.2639 18890.56 13 IVT17 28 456.8415 18273.66 17 IVT19 33 567.493 22699.72 19 IVT24 33 567.493 22699.72 24 IVT27 32 548.7452 21949.81 27 IVT35 33 566.1737 22646.95 34 IVT37 35 600.1151 24004.6 37 IVT41 34 616.342 24653.68 41 IVT45 34 655.4827 26219.31 45 IVT48 35 695.2444 27809.78 48 IVT52 27 538.3595 21534.38 52 IVT55 26 538.2235 21528.94 55 204 COD Vs Time For Run 6 (continued) Reactor 1 Supernatant (control) SAMPLE ABS CONC. TOT. CONC TIME % mg/L mg/L Days IS1 11 185.7693 1857.693 1 IS3 17 281.3916 2813.916 3 IS6 17 286.8316 2868.316 6 IS10 14 225.999 2259.99 10 IS13 20 337.3885 3373.885 13 IS17 24 391.6642 3916.642 17 IS19 23 395.586 3955.86 19 IS24 16 274.7726 2747.726 24 IS27 24 411.7589 4117.589 27 IS35 30 514.7034 5147.034 34 IS37 19 326.1425 3261.425 37 IS41 20 362.7188 3627.188 41 IS45 16 308.5683 3085.683 45 IS48 12 238.8952 2388.952 48 IS52 14 279.2457 2792.457 52 IS55 12 248.6262 2486.262 55 IS35 30 514.7034 5147.034 34 IS37 19 326.1425 3261.425 37 IS41 20 362.7188 3627.188 41 IS45 16 308.5683 3085.683 45 IS48 12 238.8952 2388.952 48 IS52 14 279.2457 2792.457 52 IS55 12 248.6262 2486.262 55 Reactor 3 Supernatant SAMPLE ABS CONC. TOT. CONC TIME % mg/L mg/L Days IIIS1 17 287.3162 2873.162 1 IIIS3 19 314.473 3144.73 3 HISS 19 320.4823 3204.823 6 IIIS10 23 371.027 3710.27 10 IIIS13 30 505.9828 5059.828 13 IIIS17 27 440.5472 4405.472 17 IIIS19 33 567.493 5674.93 19 IIIS24 31 531.6219 5316.219 24 IIIS27 24 411.7589 4117.589 27 IIIS35 31 531.8601 5318.601 35 Reactor4 Supernatant SAMPLE ABS CONC. TOT. CONC TIME % mg/L mg/L Days IVS1 18 304.2407 3042.407 1 IVS3 20 331.0136 3310.136 3 IVS6 16 270.0062 2700.062 6 IVS10 18 290.4559 2904.559 10 IVS13 27 455.4045 4554.045 13 IVS17 22 359.0755 3590.755 17 IVS19 21 361.2046 3612.046 19 IVS24 27 463.1288 4631.288 24 IVS27 30 514.4986 5144.986 27 IVS35 35 600.4873 6004.873 34 IVS37 37 634.3616 6343.616 37 IVS41 40 725.0377 7250.377 41 IVS45 40 771.1209 7711.209 45 IVS48 44 873.8159 8738.159 48 IVS52 46 917.0643 9170.643 52 IVS55 43 889.8773 8898.773 55 IVS48 44 873.8159 8738.159 48 IVS52 46 917.0643 9170.643 52 IVS55 43 889.8773 8898.773 55 205 COD vs Time Data for Run 7 SAMPLE ABS. CONC. TOT. CONCTIME IIT1 44 754.2247 30168.99 1 IIT5 25 453.2986 18131.94 5 IIT9 12 231.4763 9259.05 9 IIT12 8 159.5302 6381.206 12 IIT16 9 179.5865 7183.46 16 IIT19 20 414.1104 8282.207 19 IIT23 16 331.3683 6627.366 23 IIT26 13 296.422 5928.441 26 IIT30 18 325.0095 6500.189 30 IIT33 15 346.5084 6930.167 33 IIT37 21 361.2046 4816.062 37 HT40 25 428.2822 5710.429 40 SAMPLE ABS. CONC. TOT. CONCTIME IIIT1 43 737.1014 29484.05 1 IIIT5 40 725.0377 29001.51 5 IIIT9 27 520.5716 20822.86 9 IIIT12 21 417.4667 16698.67 12 IIIT16 16 319.1093 12764.37 16 IIIT19 30 620.9655 12419.31 19 IIIT23 23 476.1669 9523.338 23 IIIT26 23 524.2851 10485.7 26 IIIT30 28 504.6814 10093.63 30 IIIT33 18 415.77 8315.4 33 IIIT37 37 636.2558 8483.41 37 IIIT40 42 719.3781 9591.708 40 206 COD Data vs Time For Run 7 (Continued) SAMPLE ABS. CONC. TOT. CONC.TIME VT1 42 719.9781 28799.12 1 VT5 44 797.5014 31900.06 5 VT9 40 771.1209 30844.83 9 VT12 38 754.7683 30190.73 12 VT16 36 717.746 28709.84 16 VT19 33 683.0221 27320.88 19 VT23 34 703.7076 28148.3 23 VT26 28 638.2167 25528.67 26 VT30 35 630.4517 25218.07 30 VT33 29 669.7295 26789.18 33 VT37 37 636.2558 25450.23 37 VT40 37 633.7616 25350.47 40 SAMPLE ABS. CONC. TOT. CONC.TIME IIS1 8 137.7863 1377.863 1 IIS5 8 145.3275 1453.275 5 IIS9 8 154.3842 1543.842 9 IIS12 7 139.6889 1396.889 12 IIS16 12 239.382 2393.82 16 IIS19 13 269.3117 2693.117 19 IIS23 12 248.6262 2486.262 23 IIS26 7 159.7042 1597.042 26 IIS30 12 217.2063 2172.063 30 IIS33 9 207.985 2079.85 33 IIS37 14 240.8697 1204.349 37 IIS40 35 599.5151 2997.575 40 SAMPLE ABS. CONC. TOT. CONC.TIME IIIS1 7 120.663 1206.63 1 IIIS5 20 362.7188 3627.188 5 IIIS9 17 327.8414 3278.414 9 IIIS12 15 298.419 2984.19 12 IIIS16 40 797.4733 7974.733 16 IIIS19 21 434.7959 4347.959 19 IIIS23 18 372.7393 3727.393 23 IIIS26 10 228.0631 2280.631 26 IIIS30 11 199.2391 1992.391 30 IIIS33 9 207.985 2079.85 33 IIIS37 38 653.4465 3267.232 37 IIIS40 34 582.3918 2911.959 40 SAMPLE ABS. CONC. TOT. CONC.TIME VS1 6 103.5397 1035.397 1 VS5 7 127.2116 1272.116 5 VS9 7 135.1112 1351.112 9 VS12 9 179.3714 1793.714 12 VS16 12 239.382 2393.82 16 VS19 13 269.3117 2693.117 19 VS23 8 165.8841 1658.841 23 VS26 8 182.4905 1824.905 26 VS30 22 396.8782 3968.782 30 VS33 18 415.77 4157.7 33 VS37 53 911.3069 4556.535 37 VS40 41 702.2548 3511.274 40 207 COD vs Time Data For Run 8 Reactor 1 Total (Control) SAMPLE ABS. CONC. TOT. CONC TIME % mg/L mg/L Days IT1 27 558.909 11178.18 1 IT3 26 538.2235 10764.47 3 IT6 30 683.7893 13675.79 6 IT10 28 504.6814 10093.63 10 IT13 22 508.1189 10162.38 13 IT17 40 687.8279 9171.038 17 IT20 40 685.1315 9135.087 20 IT24 58 982.3343 9823.343 24 IT27 60 1049.997 10499.97 27 IT31 63 1096.319 10963.19 31 IT34 61 1043.321 10433.21 34 IT38 60 1069.052 10690.52 38 IT41 58 1007.144 10071.44 41 IT45 55 972.2296 9722.296 45 IT48 62 1098.381 10983.81 48 Reactor 4 Total SAMPLE ABS. CONC. TOT. CONC TIME % mg/L mg/L Days IVT1 30 620.9655 12419.31 1 IVT3 24 496.8524 9937.049 3 IVT6 21 478.7125 9574.25 6 IVT10 22 396.8782 7937.564 10 IVT13 15 346.5084 6930.167 13 IVT17 31 533.1116 7108.155 17 IVT20 28 479.6521 6395.361 20 IVT24 45 761.8869 7618.869 24 IVT27 42 734.9982 7349.982 27 IVT31 42 731.0127 7310.127 31 IVT34 43 735.1014 7351.014 34 IVT38 44 783.918 7839.18 38 IVT41 48 833.5333 8335.333 41 IVT45 48 848.4913 8484.913 45 IVT48 46 814.9794 8149.794 48 208 C O D vs Time Data For Run 8 (Continued) Reactor 1 Supernatant (Controi) S A M P L E A B S . C O N C . TOT. C O N C TIME % mg/L mg/L Days IS1 6 124.5131 1245.131 1 IS3 -7 1 145.1986 1451.986 n O IS6 5 114.1315 1141.315 6 IS 10 A 7-3 ACQ-7-7 11 A C 5 7 7 A n t I sJ.*-HJU / / 1 J 4 . U U / / 1 w IS 13 3 69.46167 694.6167 13 IS 17 i \j 1290.302 17 IS20 20 342.6658 1713.329 20 IS24 19 320.9923 1604.961 24 IS27 24 419.999 2099.995 27 IS31 18 313.5197 1567.599 31 1S34 O / D . O 1 Z 3 1877.562 ^ IS38 20 356,2173 1781,086 38 IS41 24 416.8667 2084.333 41 IS45 23 406.5687 2032,844 45 \u00E2\u0080\u00A2 i e . i o l o t o 27 478.4401 2392.2 48 Reactor 4 Supernatant w# uvii i \u00E2\u0080\u0094 i \u00E2\u0080\u0094 A R C nn*K\r-T O T nr*K\r TIME % mg/L mg/L Days IVS1 4 83.14207 ft^1 4 9 I V 7 i iVS3 7 145.1986 1451.986 3 IVS6 5 114.1315 1141.315 6 IVS10 s 163.3047 1633:047 TO IVS13 9 207.985 2079.85 13 IVS17 30 515.9209 2579.604 17 IVS20 36 616.6384 3083.192 20 IVS24 33 558.3971 2791.985 24 IVS27 28 489.9988 2449.994 27 IVS31 26 452.684 2263.42 31 IVS34 39 666.6082 3333.041 34 IVS38 35 623.5303 3117.651 38 IVS41 33 573.1167 2865.583 41 IVS45 26 459.5994 2297.997 45 IVS48 12 212.7511 1063.756 48 209 C O D Data Vs Time For Run 9 Reactor 2 Total Sample S A M P L E A B S . C O N C . TOT.CONC. TIME % mg/L mg/L Days IIT1 25 422.7372 4227.372 1 IIT3 19 320.9923 3209.923 3 IIT6 17 297.4993 2974.993 6 IIT10 10 174.3554 1743.554 10 IIT13 13 222.4027 2224.027 13 IIT17 11 195.8295 1958.295 17 IIT20 13 225.8944 2258.944 20 IIT24 10 176.769 1767.69 24 IIT27 11 195.0385 1950.385 27 Reactor 3 Total Sample S A M P L E A B S . C O N C . TOT.CONC. TIME % mg/L mg/L Days 111X1 24 405.7797 4057.797 1 IIIT3 22 371.8647 3718.647 3 IIIT6 19 332.4992 3324.992 6 IIIT10 14 243.9376 2439.376 10 IIIT13 16 273.7726 2737.726 13 IIIT17 13 231.4712 2314.712 17 IIIT20 15 260.6167 2606.167 20 Reactor 5 Total (Control) Sample S A M P L E A B S . C O N C . TOT.CONC. TIME % mg/L mg/L Days VT1 26 439.6947 17587.79 1 VT3 26 439.6947 17587.79 3 VT6 27 472.4988 18899.95 6 VT10 28 487.4751 19499 10 VT13 30 513.4986 20539.95 13 VT17 32 570.0677 22802.71 17 VT20 29 503.6722 20146.89 20 VT24 26 459.5994 18383.98 24 VT27 32 567.0031 22680.12 27 210 C O D Data Vs Time For Run 9 (Continued) Reactor 2 Supernatant Sample SAMPLE ABS. C O N C . TOT .CONC. TIME % mg/L mg/L Days IIS1 12 202.2899 1011.449 1 IIS3 10 168.3749 841.8744 3 IIS6 6 104.9997 524.9987 6 IIS10 6 104.7732 523.8662 10 IIS13 9 153.9096 769.5479 13 IIS 17 11 195.8295 979.1476 17 IIS20 15 260.6167 1303.083 20 IIS24 12 212.1228 1060.614 24 IIS27 4 71.05038 355.2519 27 Reactor 3 Supernatant Sample SAMPLE ABS. C O N C . T O T . C O N C . TIME % mg/L mg/L Days IIIS1 23 388.8222 1944.111 1 IIIS3 20 337.9498 1689.749 3 IIIS6 20 349.9991 1749.996 6 IIIS10 16 278.7286 1393.643 10 IIIS13 21 359.389 1796.945 13 IIIS17 11 195.8295 979.1476 17 IIIS20 12 208.5333 1042.667 20 Reactor 5 Supernatant (Control) Sample SAMPLE ABS. C O N C . TOT .CONC. TIME % mg/L mg/L Days VS1 44 744.9295 3724.647 1 VS3 44 744.9295 3724.647 3 VS6 46 804.998 4024.99 6 VS10 44 765.8038 3829.019 10 VS13 44 753.2247 3766.123 13 VS17 45 801.7389 4008.695 17 VS20 45 781.45 3907.25 20 VS24 43 760.1068 3800.534 24 VS27 53 938.9676 4694.838 27 211 C O D Data Vs Time For Run 10 Reactor 3 Total Sample S A M P L E A B S . C O N C . TOT. C O N C TIME % mg/L mg/L Days IIIT1 39 689.3992 13787.98 1 IIIT3 32 565.6609 11313.22 3 NITS 33 584.7156 5847.156 6 IIIT10 25 427.8482 8556.964 10 IIIT13 15 262.5039 6562.598 13 IIIT17 23 412.8454 8256.908 17 IIIT21 21 365.7127 7314.254 21 IIIT24 20 348.3168 6966.337 24 IIIT27 19 337.6202 6752.405 27 IIIT31 17 291.1288 5822.575 31 IIIT34 19 325.3086 6506.172 34 IIIT38 17 302.1234 6042.467 38 IIIT41 17 291.8959 5837.918 41 IIIT48 15 272.1391 5442.783 47 Reactor 3 Supernatant Sample S A M P L E A B S . C O N C . TOT. C O N C TIME % mg/L mg/L Days IIIS1 365.47 1827.35 1 IIIS3 23 406.5687 2032.844 3 IIIS6 14 248.1763 1240.882 6 IIIS10 13 222.7691 1113.845 10 IIIS13 18 315.0047 3150.047 13 IIIS17 18 323.0095 1615.047 17 IIIS21 10 174.3584 1743.584 21 IIIS24 9 156.9626 1569.626 24 IIIS27 18 319.8718 3198.718 27 IIIS31 10 171.4993 1714.993 31 IIIS34 10 171.4993 1714.993 34 IIIS38 10 177.8843 1778.843 38 IIIS41 12 206.2795 2062.795 41 IIIS47 6 109.0957 1090.957 47 212 COD DATA VS TIME FOR RUN 11 SBR OF RUN 8 (REACTOR4) AND RUN 9 (REACTOR2) Reactor 1 Total (Control) SAMPLE ABS. CONC. TOT. CONC TIME % mg/L mg/L Days IT1 37 632.9273 25317.09 1 IT3 36 615.8374 24633.5 3 IT6 51 892.4978 22312.44 6 IT10 62 1113.566 22271.32 10 IT14 62 1078.942 21578.84 14 IT17 60 1044.151 20883.01 17 IT20 60 1065.306 21306.12 20 IT24 61 1043.086 20861.71 24 IT27 59 1008.906 20178.11 27 IT31 57 1012.061 20241.21 31 IT34 58 993.9507 19879.01 34 IT40 58 1051.125 21022.49 40 Reactor 2 Total SAMPLE ABS. CONC. TOT. CONC TIME % mg/L mg/L Days IIT1 47 803.8266 32153.06 1 IIT3 34 581.6575 23266.3 3 IIT6 40 699.9983 17499.96 6 IIT10 33 592.5173 11850.35 10 IIT14 27 470.0877 9401.755 14 IIT17 24 417.9002 8358.004 17 IIT20 36 639.3436 12786.87 20 IIT24 40 684.1971 13683.94 24 IIT27 27 462.028 9240.561 27 IIT31 27 479.6077 9592.154 31 IIT34 34 582.9918 11659.84 34 IIT40 26 471.4145 9428.29 40 Reactor 4 Total SAMPLE ABS. CONC. TOT. CONC TIME % mg/L mg/L Days IVT1 59 1008.906 40356.23 1 IVT3 48 820.9165 32836.66 3 IVT6 53 927.4977 23187.44 6 IVT10 57 1023.73 20474.6 10 IVT14 54 939.7755 18795.51 14 IVT17 52 904.9838 18099.68 17 IVT20 53 941.067 18821.34 20 IVT24 53 906.3661 18127.32 24 IVT27 51 872.1863 17443.73 27 IVT31 48 852.3248 17046.5 31 IVT34 49 839.8411 16796.82 34 IVT40 49 888.0812 17761.62 40 213 COD Data Vs Time For run 11 (Continued) Reactor 1 Supernatant (Control) SAMPLE ABS. CONC. TOT. CONC TIME % mg/L mg/L Days IS1 29 496.2079 2481.039 1 IS3 30 513.2978 2566.489 3 IS6 19 332.4992 3324.992 6 IS10 25 448.7798 4487.798 10 IS14 19 330.921 3309.21 14 IS17 21 365.7127 3657.127 17 IS20 22 390.8655 3908.655 20 IS24 22 376.5784 3765.784 24 IS27 20 342.3985 3423.985 27 IS31 22 390.8655 3908.655 31 IS34 20 343.2658 3432.658 34 IS40 24 435.1826 4351.826 40 Reactor 2 Supernatant SAMPLE ABS. CONC. TOT. CONC TIME % mg/L mg/L Days IIS1 20 342.3985 1711.993 1 IIS3 15 256.9489 1284.745 3 IIS6 13 227.4994 2274.994 6 IIS10 13 233.1735 2331.735 10 IIS14 3 52.58753 525.8753 14 IIS17 4 69.98337 699.8337 17 IIS20 6 106.8906 1068.906 20 IIS24 10 171.4993 1714.993 24 IIS27 12 205.6791 2056.791 27 IIS31 14 248.8781 2488.781 31 IIS34 15 257.6493 2576.493 34 IIS40 18 326.487 3264.87 40 Reactor 4 Supernatant SAMPLE ABS. CONC. TOT. CONC TIME % mg/L mg/L Days IVS1 20 342.3985 1711.993 1 IVS3 15 256.9489 1284.745 3 IVS6 28 489.9988 4899.988 6 IVS10 42 754.2221 7542.221 10 IVS14 21 365.7127 3657.127 14 IVS17 23 400.5044 4005.044 17 IVS20 50 887.8217 8878.217 20 IVS24 25 427.8482 4278.482 24 IVS27 23 393.6683 3936.683 27 IVS31 27 479.6077 4796.077 31 IVS34 28 480.2521 4802.521 34 IVS40 33 598.2261 5982.261 40 214 BIOLOGICAL O X Y G E N DEMAND RUN7 Amount For Reactor 2 Sample is Disolved Disolved Disolved Disolved Amount Of Diluted 5 Day BOD 5 Day BOD Oxygen in Oxygen in Oxygen in Oxygen in Sample Prior to Of Sample Of Sample Blank Blank Sample Sample In BOD being put Bottle Waste In Originally After 5days Initially After 5days Bottle in bottle Reactors SAMPLE DObi DObf DOsi DOsf AMT. SAMP DIL. SAM. BOD TOT. BOD mg/L mg/L mg/L mg/L ml mg/L mg/L IIT1 9.2 9 9.2 5.53 5 40 208.2 8328 IIT1 9.2 9 9.2 2.07 10 40 207.9 8316 IIT5 9.01 9.5 9.01 0.83 20 40 130.05 5202 IIT5 9.01 9.5 9.01 4.99 10 40 135.3 5412 IIS5 9.01 9.5 9.01 5.27 45 10 28.2 282 IIT9 8.78 8.47 8.17 5.22 20 40 39.6 1584 IIT9 8.78 8.47 8.34 6.75 10 40 38.4 1536 IIT19 8.94 8.78 8.94 7.85 20 40 13.95 558 IIT19 8.94 8.78 8.94 6.81 40 40 14.775 591 IIT23 8.94 8.78 8.94 8.1 20 40 10.2 408 IIT23 8.94 8.78 8.94 7.07 40 40 12.825 513 IIT30 9.53 9.42 9.12 7.17 50 20 11.04 220.8 IIT30 9.53 9.42 9.28 3.65 80 20 20.7 414 IIS30 9.53 9.42 9.33 7.12 50 10 12.6 126 IIT40 8.45 8.56 8.29 7.6 50 13.33333 4.8 64 IIT40 8.45 8.56 8.06 6.08 100 13.33333 6.27 83.6 IIT40 8.45 8.56 8.45 6.1 10 1 73.8 73.8 IIS40 8.45 8.56 8.3 7.72 45 5 4.6 23 For Reactor 3 SAMPLE DObi DObf DOsi DOsf AMT. SAMP DIL. SAM. BOD TOT. BOD mg/L mg/L mg/L mg/L ml mg/L mg/L IIIT1 9.2 9 9.2 6.44 5 40 153.6 6144 llltl 9.2 9 9.2 3.86 10 40 154.2 6168 IIIT5 9.01 9.5 9.01 0.05 20 40 141.75 5670 IIIT5 9.01 9.5 9.01 4.94 10 40 136.8 5472 IIIS5 9.01 9.5 9.01 1.3 45 10 54.66667 546.6667 IIIT9 8.78 8.47 8.17 3.02 20 40 72.6 2904 IIIT9 8.78 8.47 8.34 5.5 10 40 75.9 3036 IIIT19 8.94 8.78 8.94 7.66 20 40 16.8 672 IIIT19 8.94 8.78 8.94 6.09 40 40 20.175 807 IIIT23 8.94 8.78 8.94 8.18 20 40 9 360 IIIT23 8.94 8.78 8.94 6.96 40 40 13.65 546 IIIT30 9.53 9.42 9.21 6.91 50 20 13.14 262.8 IIIT30 9.53 9.42 9.29 5.19 80 20 14.9625 299.25 IIIS30 9.53 9.42 9.37 5.98 50 10 19.68 196.8 IIIT40 8.45 8.56 8.3 6.13 50 13.33 13.68 182.3544 IIIT40 8.45 8.56 8.05 3.18 100 13.33 14.94 199.1502 IIIS40 8.45 8.56 8.3 6.28 45 5 14.2 71 215 BIOLOGICAL O X Y G E N DEMAND RUN8 Disolved 02Disolved 02Disolved 02Disolved 02Amount Of Dilution BOD5 Of Total BOD5 In Blank In Blank In Sample In Sample Sample In Prior To Sample Of Waste Initially After 5days Initially After 5days BOD Bottle BOD Bottle Bottle SAMPLE DObi DObf DOsi DOsf AMT. SAMP DIL. SAM. BOD TOT. BOD mg/L mg/L mg/L mg/L ml mg/L mg/L IVT1 9 8.9 9 2 25 40 82.8 3312 IVT1 9 8.9 9 0.65 30 40 82.5 3300 IVT10 9.53 9.42 9.28 0 50 20 55.02 1100.4 IVT10 9.53 9.42 9.37 0 80 20 33.6375 672.75 IVS10 9.53 9.42 9.31 2.59 50 10 38.28 382.8 IVT20 8.45 8.56 8.45 5.73 25 13.33 38.88 518.2704 IVT20 8.45 8.56 8.45 2.93 40 13.33 45.3 603.849 IVS20 8.45 8.56 8.3 1.74 45 5 48.2 241 IVT24 8.92 8.55 8.9 2.27 30 10 67 670 IVT24 8.92 8.55 8.64 0 60 10 44.85 448.5 IVS24 8.92 8.55 8.9 3.08 50 5 35.34 176.7 IVT31 8.87 8.45 8.78 2.12 30 10 68.5 685 IVT31 8.87 8.45 8.71 0 50 10 53.82 538.2 IVT31 8.87 8.45 8.63 0 80 10 33.6375 336.375 IVS31 8.87 8.45 8.65 1.35 50 4.166667 45.72 190.5 IVT41 8.88 8.64 8.49 7.14 1 1 549 549 IVT41 8.88 8.64 8.48 5.34 2 1 544.5 544.5 IVT41 8.88 8.64 8.45 0.9 4 1 605.25 605.25 IVT41 8.88 8.64 8.45 0 5 1 538.2 538.2 IVS41 8.88 8.64 8.47 5.06 5 1 234.6 234.6 IVT46 9.15 9.21 9.19 6.85 1 1 636 636 IVT46 9.15 9.21 9.2 2.88 3 1 609 609 IVT46 9.15 9.21 9.14 4.26 5 1 282.6 282.6 216 BIOLOGICAL O X Y G E N DEMAND RUN9 For Reactor 2 Dissolved Dissolved Amount Of Amount Of BOD5 Of BOD5 Dissolved Dissolved 0 2 In 0 2 In Sample In Dillution Sample Of 0 2 In Blank 0 2 In Blank Sample Sample BOD5 Bottle Prior Bottle Waste Initially After 5Days Initially After 5Days To Test SAMPLE DObi DObf DOsi DOsf AMT. SAMP PIL. SAM. BOD TOT. BOD mg/L mg/L mg/L mg/L ml mg/L mg/L IIT1 9.2 9.1 9.2 3.8 50 20 31.8 636 IIT1 9.2 9.1 9.2 1.4 75 20 30.8 616 IIT3 8.92 8.54 8.9 2.26 40 10 46.95 469.5 IIT3 8.92 8.54 8.75 0 100 10 26.91 269.1 IIS3 8.92 8.54 8.9 3.47 50 5 33 165 IIT10 8.87 8.45 8.8 0 10 1 269.1 269.1 IIT10 8.87 8.45 8.71 0 20 1 134.55 134.55 IIS10 8.87 8.45 8.82 7.65 3 1 132 132 IIT20 8.88 8.64 8.44 4.13 5 1 290.4 290.4 IIT20 8.88 8.64 8.35 0 10 1 269.1 269.1 IIS20 8.88 8.64 8.48 6.78 5 1 131.4 131.4 IIT24 9.15 9.21 9.1 5.57 5 1 204 204 IIT24 9.15 9.21 9.05 1.69 10 1 218.4 218.4 IIS24 9.15 9.21 9.04 2.93 10 1 181.2 181.2 For Reactor 3 SAMPLE DObi DObf DOsi DOsf AMT. SAMP DIL. SAM. BOD TOT. BOD mg/L mg/L mg/L mg/L ml mg/L mg/L IIIT1 9.2 9.1 9.2 5.7 50 10 20.4 204 IIIT1 9.2 9.1 9.2 2.3 100 10 20.01 200.1 IIIT3 8.9 8.54 8.9 7.66 25 10 10.56 105.6 IIIT3 8.9 8.54 8.9 6.56 50 10 14.46 144.6 IIIT3 8.9 8.54 8.9 4.24 100 10 14.19 141.9 IIIS3 8.9 8.54 8.9 6.32 50 5 15.9 79.5 IIIT10 8.87 8.45 8.81 6.35 10 1 78.6 78.6 IIIT10 8.87 8.45 8.81 4.72 15 1 85 85 1IIS10 8.87 8.45 8.74 6.41 50 4.166667 15.36 64 IIIT20 8.88 8.64 8.46 6.75 10 1 66.6 66.6 IIIS20 8.88 8.64 8.52 8.2 5 1 46.2 46.2 217 Run 10 BOD Data Vs time For Reactor 3 Dissolved Dissolved Amount Of Dilution Dissolved Dissolved Oxygen In Oxygen In Sample In Prior Xo BOD5 Of BOD5 Of 0 2 In Blank02 In Blank Sample Sample BOD Bottle Entry Into Sample Waste Initially After 5days Initially After 5days BOD Bottle Bottle SAMPLE DObi DObf DOsi DOsf AMX. SAMP DIL. SAM. BOD XOX. BOD mg/L mg/L mg/L mg/L ml mg/L mg/L IIIT1 9.15 9.21 9.19 0 1 1 2763 2763 IIIT1 9.15 9.21 9.2 1.57 0.5 1 4584 4584 IIIT5 9.15 9.21 9.19 6.52 1 1 807 807 111X5 . 9.15 9.21 9.2 8.04 0.5 1 702 702 IIIS5 9.15 9.21 9.13 2.93 5 1 376.8 376.8 IIIT13 9.12 8.91 9.12 7.75 1 1 348 348 111X13 9.12 8.91 9.12 8.03 0.8 1 330 330 IIIS13 9.12 8.91 9.12 5.8 5 1 186.6 186.6 111X21 9.07 8.73 9.07 5.84 2 1 433.5 433.5 111X21 9.07 8.73 9.07 3.93 3 1 480 480 IIIX27 9.07 8.73 9.07 8.02 2 1 106.5 106.5 IIIX27 9.07 8.73 9.07 7.23 3 1 150 150 HIX34 9.07 8.06 9.07 6.87 3 1 119 119 IIIX34 9.07 8.06 9.07 5.58 5 1 148.8 148.8 IIIS34 9.07 8.06 9.07 7.21 5 1 51 51 111X41 9.3 8.38 9.3 7.47 4 1 68.25 68.25 111X41 9.3 8.38 9.3 6.68 6 1 85 85 I1IS41 9.3 8.38 9.3 7.83 5 1 33 33 IHX47 9.94 8.92 9.94 7.46 5 1 87.6 87.6 IIIX47 9.94 8.92 9.94 6.26 10 1 79.8 79.8 IIIS47 9.94 8.92 9.94 8.44 5 1 28.8 28.8 s 218 BOD Data For Run 11 For Reactor 2 Dissolved Dissolved 0 2 In Blank 0 2 In Blank Initially After 5Days SAMPLE DObi DObf mg/L mg/L IIT1 9.12 8.91 IIT1 9.12 8.91 IIT6 9.12 8.91 IIT6 9.12 8.91 IIS6 9.12 8.91 IIT14 9.07 8.73 IIT14 9.07 8.73 IIT20 9.07 8.73 IIT20 9.07 8.73 IIT27 9.07 8.06 IIT27 9.07 8.06 IIS27 9.07 8.06 IIT34 9.3 8.38 IIT34 9.3 8.38 IIS34 9.3 8.38 IIT40 9.94 8.92 IIT40 9.94 8.92 IIS40 9.94 8.92 For Reactor 4 SAMPLE DObi DObf mg/L mg/L IVT1 9.12 8.91 IVT1 9.12 8.91 IVT6 9.12 8.91 IVT6 9.12 8.91 IVS6 9.12 8.91 IVT14 9.07 8.73 IVT14 9.07 8.73 IVT20 9.07 8.73 IVT20 9.07 8.73 IVT27 9.07 8.06 IVT27 9.07 8.06 IVT27 9.07 8.06 IVT27 9.07 8.06 IVS27 9.07 8.06 IVT34 9.3 8.38 IVT34 9.3 8.38 IVS34 9.3 8.38 IVT40 9.94 8.92 IVT40 9.94 8.92 IVS40 9.94 8.92 Dissolved Dissolved Amount Of 0 2 In 0 2 In Diluted Sample Sample Sample In Initially After 5Days BOD Bottle DOsi DOsf AMT. SAMP mg/L mg/L ml 9.12 3.62 10 9.12 6.22 5 9.12 0 0.5 9.12 0 1 9.12 1.19 5 9.07 4.83 1 9.07 3.17 0.8 9.07 2.06 1 9.07 0 2 9.07 4.69 1 9.07 1.29 2 9.07 2.77 5 9.3 3.48 1 9.3 0 3 9.3 3.7 5 9.94 6.28 1 9.94 3.79 2 9.94 4.14 5 DOsi DOsf AMT. SAMP mg/L mg/L ml 9.12 0.93 10 9.12 4.9 5 9.12 0 0.5 9.12 0 1 9.12 0 5 9.07 0 1 9.07 0 0.5 9.07 0 1 9.07 0 0.8 9.07 0.55 0.5 9.07 0 1 9.07 0 2 9.07 1.53 0.3 9.07 0 5 9.3 4.75 0.5 9.3 0 1 9.3 0.83 4 9.94 4.14 0.5 9.94 1.97 1 9.94 0.1 5 Dilution Of Waste Prior To BOD 5 Of In BOD Sample Total BOD5 Bottle Bottle Of Waste DIL. SAM. BOD TOT. BOD mg/L mg/L 50 158.7 7935 50 161.4 8070 1 5346 5346 1 2673 2673 1 463.2 463.2 1 1170 1170 1 2085 2085 1 2001 2001 1 1309.5 1309.5 1 1011 1011 1 1015.5 1015.5 1 317.4 317.4 1 1470 1470 1 838 838 1 280.8 280.8 1 792 792 1 769.5 769.5 1 286.8 286.8 DIL. SAM. BOD TOT. BOD mg/L mg/L 50 239.4 11970 50 240.6 12030 1 5346 5346 1 2673 2673 1 534.6 534.6 1 2619 2619 1 5238 5238 1 2619 2619 1 3273.75 3273.75 1 4506 4506 1 2418 2418 1 1209 1209 1 6530 6530 1 483.6 483.6 1 2178 2178 1 2514 2514 1 566.25 566.25 1 2868 2868 1 2085 2085 1 529.2 529.2 219 Run 4 PH VS TIME TIME R#1 R#2 R#3 R#4 Days 1 5.98 8.67 8.63 6.2 6 6.26 8.67 8.53 6.19 9 5.86 9.14 8.72 6.58 13 5.38 9 8.33 6.29 15 6.19 9.03 8.46 6.29 19 6.12 8.54 8.48 6.53 22 6.09 8.53 8.46 25 6.03 8.95 8.5 6.4 29 6.07 8.54 8.53 6.88 33 6.49 8.39 8.77 6.61 37 6.4 8.58 8.8 6.87 41 6.53 8.9 8.74 6.83 44 6.42 8.69 8.55 6.77 47 6.83 8.78 8.687 7.05 50 6.64 8.75 8.44 6.75 54 7.06 8.51 8.39 6.73 57 6.86 8.96 8.84 6.75 61 6.71 8.81 8.66 6.41 64 6.8 8.33 8.62 6.61 74 7.6 8.49 8.36 6.85 78 7.45 8.73 8.4 7.06 82 7.84 8.66 6.95 85 8.66 6.59 220 P H vs Time Data For Specific Runs FOR R U N 5 TIME pH pH Days R#2 R#5 1 7.59 7.06 4 7.59 6.77 7 7.29 6.91 11 7.47 6.93 14 6.65 6.95 18 6.67 6.74 21 6.6 7.4 25 6.99 8.34 27 6.75 7.8 32 6.65 8.28 35 6.56 8.22 42 7.25 7.91 FOR R U N 6 Days PH pH pH TIME R#1 R#3 R#4 1 8.52 7.39 5.83 3 7 7.58 6.64 6 7.43 6.75 5.09 10 7.36 6.92 5.1 13 7.01 6.91 5.34 17 7.14 6.69 5.06 19 7.69 7.89 5.13 24 7.71 9.1 4.66 27 7.6 9.2 4.88 34 7.49 9.14 4.83 37 7.46 7.1 41 8.12 8.85 45 7.55 8.61 48 7.4 8.4 52 6.82 7.43 55 7.76 8.27 221 FOR RUN 7 Days PH pH pH TIME R#2 R#3 R#5 1 6.05 6.35 6.22 5 6.37 6.67 6.22 9 5.56 6.43 6.28 12 5.15 5.87 6.68 16 5.64 5.39 5.94 19 6.43 5.86 6.42 23 5.99 5.58 6.2 26 6.34 5.52 6.36 30 6.27 4.92 6.57 33 6.46 5.28 6.7 37 6.35 4.91 7.06 40 6.29 4.86 6.74 FOR RUN 8 Days pH pH TIME R#1 R#4 1 6.35 6.54 3 6.51 6.53 6 6.51 6.36 10 7.72 6.36 13 6.94 6.07 17 6.85 5.44 20 6.77 5.45 27 7.18 5.88 31 7.12 5.73 34 7.03 5.43 38 7.18 5.35 41 7.23 4.77 45 7.07 4.56 48 7.43 4.11 222 PH vs Time (Continued) FOR RUN 9 TIME Days 6 10 13 17 20 24 27 FOR RUN 10 TIME Days 1 3 6 10 13 17 21 24 27 31 34 38 41 FOR RUN 11 TIME Days 1 3 6 10 14 17 20 24 27 31 34 pH pH pH R#2 R#3 R#5 5.89 8.54 7.57 5.56 8.35 7.55 5.97 8.21 7.4 6.21 8.18 7.75 6.11 8 7.45 6.15 7.66 6.11 7.25 PH pH R#3 R#1 7.17 7.15 6.58 7.24 5.12 7.41 3.68 7.48 5.84 7.33 5.45 7.4 5.14 7.25 5.6 7.24 5.59 7.22 5.84 7.24 5.23 7.09 5.84 5.44 pH PH pH R#1 R#2 R#4 7.15 4.93 4.74 7.24 4.83 3.98 7.41 5.08 7.17 7.48 4.38 6.9 7.33 3.6 6.58 7.4 3.78 6.72 7.25 6.59 6.58 7.24 7.03 6.65 7.22 6.96 6.58 7.24 7.03 6.65 7.09 7.14 6.56 223 SOLIDS FOR RUN5 DAY4 REACTOR 2 5 DISH W. 9 44.2582 40.4559 T. WEI. 9 64.2342 64.0804 110C. g 44.3436 40.6355 550C. 9 44.2902 40.5862 TS 9 0.0854 0.1796 %TS % 0.427513 0.760228 VS 9 0.0534 0.0493 % V S % 0.267321 0.208682 VS/TS (%) % 62.52927 27.44989 DAY11 REACTOR 2 5 DISH W. g 47.1613 45.2187 T. WEI. 9 65.078 61.694 110C. 9 47.3006 45.421 550C. g 47.2184 45.3392 TS g 0.1393 0.2023 %TS % 0.777487 1.227899 VS g 0.0822 0.0818 %VS % 0.45879 0.496501 VS/TS (%) % 59.00933 40.435 DAY 14 REACTOR 2 5 DISH W. 9 40.4674 47.5523 T. WEI. 9 66.4677 70.2158 110C. 9 40.6643 47.737 550C. g 40.5398 47.671 TS g 0.1969 0.1847 %TS % 0.757299 0.814967 VS 9 0.1245 0.066 %VS % 0.478841 0.291217 VS/TS (%) % 63.23007 35.73362 DAY 18 REACTOR 2 5 DISH W. 9 45.1855 46.4047 T. WEI. 9 61.594 69.9725 110C. 9 45.3053 46.8701 550C. g 45.2278 46.7622 TS g 0.1198 0.4654 %TS % 0.730109 1.974728 VS 9 0.0775 0.1079 %VS % 0.472316 0.457828 VS/TS (%) % 64.69115 23.18436 DAY 21 REACTOR 2 5 DISH W. g 47.5393 47.4367 T. WEI. 9 77.2117 70.3587 110C. g 47.744 47.7982 550C. g 47.6048 47.7123 TS 9 0.2047 0.3615 %TS % 0.689867 1.577088 VS 9 0.1392 0.0859 %VS % 0.469123 0.374749 VS/TS (%) % 68.00195 23.7621 DAY 25 REACTOR 2 5 DISH W. g 40.4531 40.6986 T. WEI. g 64.932 60.7767 110C. g 40.6415 41.2397 550C. 9 40.5177 41.1615 TS 9 0.1884 0.5411 %TS % 0.769642 2.694976 VS g 0.1238 0.0782 % V S % 0.505742 0.389479 VS/TS (%) % 65.71125 14.45204 DAY 27 REACTOR 2 5 DISH W. g 45.0516 48.5593 T. WEI. g 64.7798 68.3395 110C. g 45.2207 48.9979 550C. 9 45.1041 48.9129 TS g 0.1691 0.4386 %TS % 0.857149 2.217369 VS g 0.1166 0.085 %VS % 0.591032 0.429723 VS/TS (%) % 68.95328 19.37984 DAY 32 REACTOR 2 5 DISH W. g 40.7054 46.4049 T. WEI. g 67.0655 72.4985 110C. g 40.8947 46.9976 550C. g 40.7546 46.9185 TS g 0.1893 0.5927 %TS % 0.718131 2.271438 VS g 0.1401 0.0791 %VS % 0.531485 0.303139 VS/TS (%) % 74.00951 13.34571 DAY 35 REACTOR 2 5 DISH W. g 43.8413 46.4328 T. WEI. 9 66.2173 64.1652 110C. g 43.9912 46.9025 550C. g 43.8806 46.8149 TS g 0.1499 0.4697 %TS % 0.669914 2.648824 VS g 0.1106 0.0876 %VS % 0.49428 0.494011 VS/TS (%) % 73.78252 18.6502 DAY 42 REACTOR 2 5 DISH W. g 43.6826 47.4441 T. WEI. g 68.5466 60.3028 110C. g 43.8303 47.9418 550C. g 43.7092 47.8117 TS g 0.1477 0.4977 %TS % 0.594032 3.870531 VS g 0.1211 0.1301 % V S % 0.48705 1.011766 VS/TS (%) % 81.99052 26.14025 224 SOLIDS FOR RUN6 DAY3 REACTOR 1 3 4 DISHW. 9 39.9723 45.1845 40.7032 T. WEI. 9 59.1532 64.4878 59.834 110C. 9 40.1998 45.3051 40.9316 550C. 9 40.1335 45.2346 40.7946 TS 9 0.2275 0.1206 0.2284 %TS % 1.186076 0.624764 1.193886 VS 9 %VS VS/TS(%) % % 0.0663 0.345656 29.14286 0.0705 0.365223 58.45771 0.137 0.716123 59.98249 DAY6 REACTOR 1 3 4 DISH W. 9 44.2792 46.4104 47.4092 T. WEI. 9 59.6708 70.4471 67.1023 110C. 9 44.4393 46.5484 47.5761 550C. 9 44.4024 46.4566 47.4634 TS %TS VS %VS VS/TS(%) g % g % % 0 1601 1.040178 0.0369 0.239741 23.04809 0 138 0.574122 0.0918 0.381916 66.52174 0 1669 0.847505 0.1127 0.572282 67.52546 DAY10 REACTOR 1 3 4 DISH W. 9 44.2633 40.4724 40.7036 T. WEI. 9 66.7764 61.6139 64.0783 110C. 9 44.5331 40.587 40.9608 550C. 9 44.4748 40.5019 40.7914 TS 9 0.2698 0.1146 0.2572 %TS % 1.198413 0.542062 1.100335 VS 9 0.0583 0.0851 0.1694 %VS % 0.25896 0.402526 0.724715 VS/TS (%) % 21.6086 74.25829 65.86314 DAY13 REACTOR 1 3 4 DISHW. 9 47.4002 48.5569 45.0493 T. WEI. 9 71.6632 69.3717 69.7387 110C. 9 47.7436 48.705 45.319 550C. 9 47.6463 48.6026 45.1382 TS 9 0.3434 0.1481 0.2697 %TS % 1.415324 0.711513 1.092372 VS 9 0.0973 0.1024 0.1808 %VS % 0.401022 0.491958 0.732298 VS/TS (%) % 28.3343 69.14247 67.03745 DAY 17 REACTOR 1 3 4 DISH W. 9 47.5332 46.3974 44.2595 T. WEI. 9 73.7459 71.3312 74.4626 110C. 9 47.8725 46.5857 44.6783 550C. 9 47.7904 46.4645 44.4059 TS g 0.3393 0.1883 0.4188 %TS % 1.294411 0.7552 1.386613 VS g 0.0821 0.1212 0.2724 %VS % 0.313207 0.486087 0.901894 VS/TS (%) % 24.19688 64.36537 65.04298 DAY19 REACTOR 1 3 4 DISH W. g 39.971 45.1863 47.4003 T. WEI. g 59.3688 72.727 67.4907 110C. 9 40.2929 45.5101 47.7572 550C. g 40.2232 45.3332 47.5207 TS g 0.3219 0.3238 0.3569 %TS % 1.659467 1.175714 1.77647 VS g 0.0697 0.1769 0.2365 %VS % 0.359319 0.642322 1.177179 VS/TS (%) % 21.65269 54.63249 66.26506 DAY24 REACTOR 1 3 4 DISH W. g 47.5372 40.4618 44.2658 T. WEI. g 70.5593 62.272 65.2575 110C. 9 47.8631 40.6816 44.6177 550C. g 47.8031 40.5701 44.3865 TS 9 0.3259 0.2198 0.3519 %TS % 1.415596 1.007785 1.676377 VS g 0.06 0.1115 0.2312 %VS % 0.260619 0.511229 1.101388 VS/TS (%) % 18.41056 50.72793 65.70048 225 Solids Data For Run 6 Continued DAY27 REACTOR 1 3 4 DAY34 REACTOR 1 3 4 DISH W. 9 43.2525 46.8709 44.8775 DISH W. 9 41.1113 46.9378 40.6921 T. WEI. g 58.136 64.0729 61.3418 T. WEI. g 52.8941 61.2159 56.682 110C. g 43.4584 47.0192 45.1601 110C. g 41.2975 47.0774 41.0388 550C. g 43.4221 46.9336 44.9646 550C. g 41.2353 46.9906 40.8095 TS g 0.2059 0.1483 0.2826 TS g 0.1862 0.1396 0.3467 %TS % 1.383411 0.862109 1.716441 %TS % 1.58027 0.977721 2.168244 VS 9 0.0363 0.0856 0.1955 VS g 0.0622 0.0868 0.2293 % V S % 0.243894 0.497617 1.187418 %VS % 0.527888 0.607924 1.43403 VS/TS (%) % 17.62992 57.72084 69.17905 VS/TS (%) % 33.40494 62.17765 66.13787 DAY37 REACTOR 1 4 DISH W. g 44.2652 47.5373 T. WEI. g 74.0288 80.2747 110C. g 44.7074 48.1356 550C. g 44.624 47.7723 TS g 0.4422 0.5983 %TS % 1.485707 1.827573 VS %VS VS/TS (%) g % % 0.0834 0.280208 18.86024 0.3633 1.10974 60.72205 DAY41 REACTOR 1 4 DISH W. g 44.8774 40.7045 T. WEI. 9 69.2246 63.5064 110C. S 45.2648 41.0546 550C. 9 45.2016 40.8547 TS g 0.3874 0.3501 %TS % 1.591148 1.535398 VS %VS VS/TS (%) g % % 0.0632 0.259578 16.31389 0.1999 0.876681 57.09797 DAY45 REACTOR 1 4 DISHW. 9 46.4222 40.4586 T. WEI. g 65.8878 60.2604 110C. g 46.7005 40.8602 550C. 9 46.6525 40.6197 TS 9 0.2783 0.4016 %TS % 1.429702 2.028098 %VS VS/TS (%) % % 0.048 0.246589 17.24757 0.2405 1.214536 59.88546 VS 9 DAY48 REACTOR 1 4 DISH W. 9 48.1027 43.8347 T. WEI. g 67.2778 65.2372 110C. g 48.3738 44.2958 550C. g 48.3101 44.0054 TS g 0.2711 0.4611 %TS % 1.413813 2.154421 VS %VS VS / tS (%) g % % 0.0637 0.332202 23.49686 0.2904 1.356851 62.97983 DAY52 REACTOR 1 4 DISH W. g 41.1031 40.4579 T. WEI. g 59.7805 57.6381 110C. g 41.3701 40.723 550C. g 41.3184 40.5593 TS g 0.267 0.2651 %TS VS %VS VS/TS (%) % g % % 1.429535 0.0517 0.276805 19.3633 1.543055 0.1637 0.952841 61.75028 DAY55 REACTOR 1 4 DISH W. 9 46.934 43.253 T. WEI. g 64.7345 63.0143 110C. g 47.1877 43.5322 550C. 9 47.144 43.3688 TS g 0.2537 0.2792 %TS % 1.425241 1.412863 %VS VS/TS (%) % % 0.0437 0.245499 17.22507 0.1634 0.826869 58.52436 VS g 226 SOLIDS DATA FOR RUN7 Weight Of Weight Of Total Dish Total Sample AfterSample AfterSolids Of Weight Weight Drying at Drying at Sample Dish+Sample110C 550C DAY1 REACTOR 2 3 5 DISH W. 9 46.8694 43.2505 39.9691 T. WEI. g 79.3042 65.157 64.2337 110C. g 47.194 43.50058 40.1053 550C. 9 47.002 43.3557 40.0309 TS g 0.3246 0.25008 0.1362 % Total Solids Of Sample %TS % 1.000777 1.141579 0.561312 Volatile Solids In Sample VS g 0.192 0.14488 0.0744 % Volatile Solids In Sample % 0.591957 0.661356 0.30662 Ratio Volatile To Total Solids %VS VS/TS (%) % 59.14972 57.93346 54.62555 DAY5 REACTOR 2 3 5 DISH W. g 40.6847 45.0548 43.6843 T. WEI. g 65.3388 70.1234 70.4452 110C. g 40.8365 45.2997 43.8043 550C. g 40.7378 45.1495 43.7387 TS g 0.1518 0.2449 0.12 %TS % 0.615719 0.976919 0.448415 VS g 0.0987 0.1502 0.0656 %VS % 0.400339 0.599156 0.245134 VS/TS (%) % 65.01976 61.33116 54.66667 DAY9 REACTOR 2 3 5 DISH W. g 46.4036 41.1073 46.9352 T. WEI. g 64.1387 60.6154 66.3704 110C. g 46.5237 41.3231 47.0978 550C. g 46.448 41.1868 47.0065 TS 9 0.1201 0.2158 0.1626 %TS % 0.677188 1.106207 0.836626 VS g 0.0757 0.1363 0.0913 %VS % 0.426837 0.698684 0.469766 VS/TS (%) % 63.03081 63.16033 56.15006 DAY 12 REACTOR 2 3 5 DISH W. 9 47.4001 48.5595 45.1856 T. WEI. 9 65.8603 67.3763 67.1259 110C. 9 47.5106 48.7852 45.5076 550C. g 47.435 48.6336 45.3222 TS g 0.1105 0.2257 0.322 %TS % 0.598585 1.19946 1.467619 VS g 0.0756 0.1516 0.1854 %VS % 0.40953 0.805663 0.84502 VS/TS (%) % 68.41629 67.16881 57.57764 DAY16 REACTOR 2 3 5 DISH W. g 46.4003 47.4003 43.8351 T. WEI. g 66.3305 64.6242 63.8134 110C. g 46.549 47.5772 44.0889 550C. g 46.4555 47.4641 43.9721 TS g 0.1487 0.1769 0.2538 %TS % 0.746104 1.027061 1.270378 VS g 0.0935 0.1131 0.1168 %VS % 0.469137 0.656646 0.584634 VS/TS (%) % 62.87828 63.93443 46.02049 DAY19 REACTOR 2 3 5 DISH W. g 45.1848 39.9695 45.0573 T. WEI. g 69.0958 61.981 65.147 110C. g 45.3716 40.1814 45.3259 550C. g 45.2591 40.0472 45.2025 TS g 0.1868 0.2119 0.2686 %TS % 0.78123 0.962679 1.337004 VS g 0.1125 0.1342 0.1234 %VS % 0.470495 0.609681 0.614245 VS/TS (%) % 60.22484 63.33176 45.94192 DAY23 REACTOR 2 3 5 DISH W. 9 43.6824 40.709 40.6876 T. WEI. 9 61.2965 59.786 58.9077 110C. g 43.7974 40.8676 40.8589 550C. g 43.7254 40.7697 40.7802 TS g 0.115 0.1586 0.1713 %TS % 0.652886 0.831368 0.94017 VS 9 0.072 0.0979 0.0787 %VS % 0.408763 0.513183 0.431941 VS/TS (%) % 62.6087 61.72762 45.94279 227 Run 7 Solids (Continued): DAY26 REACTOR 2 3 5 DISH W. g 40.4632 47.4039 43.837 T. WEI. 9 55.202 65.4227 57.094 110C. 3 40.5604 47.5769 44.029 550C. g 40.5014 47.4556 43.9277 TS 9 0.0972 0.173 0.192 %TS % 0.659484 0.960108 1.448291 VS g 0.059 0.1213 0.1013 % V S % 0.400304 0.673186 0.764125 VS/TS (%) % 60.69959 70.11561 52.76042 DAY30 REACTOR 2 3 5 DISH W. 9 43.2549 46.9357 40.7039 T. WEI. g 58.1111 67.0196 61.2025 110C. 9 43.3515 47.0846 40.9915 550C. 9 43.2938 46.9878 40.8817 TS g 0.0966 0.1489 0.2876 %TS % 0.650234 0.74139 1.403023 VS g 0.0577 0.0968 0.1098 %VS % 0.38839 0.481978 0.535646 VS/TS (%) % 59.73085 65.01007 38.17803 DAY33 REACTOR 2 3 5 DISH W. g 46.4043 43.6892 45.1923 T. WEI. g 66.026 64.0575 64.7658 110C. g 46.5212 43.8279 45.4101 550C. g 46.4483 43.7353 45.3008 TS g 0.1169 0.1387 0.2178 %TS % 0.595769 0.68096 1.112729 VS g 0.0729 0.0926 0.1093 %VS % 0.371527 0.454628 0.558408 VS/TS (%) % 62.36099 66.7628 50.18365 DAY37 REACTOR 2 3 5 DISH W. 9 43.6885 45.1864 40.7059 T. WEI. g 62.258 64.8301 60.6906 110C. 9 43.7803 45.3382 40.9163 550C. 9 43.7154 45.2361 40.8526 \u00E2\u0080\u00A2 TS g 0.0918 0.1518 0.2104 %TS % 0.494359 0.772767 1.052805 VS 9 0.0649 0.1021 0.0637 %VS % 0.349498 0.51976 0.318744 VS/TS (%) % 70.69717 67.25955 30.27567 DAY40 REACTOR 2 3 5 DISH W. g 43.836 46.4081 46.9376 T. WEI. g 66.4546 62.1139 66.2667 110C. g 43.9348 46.5187 47.0967 550C. g 43.869 46.4334 47.0521 TS g 0.0988 0.1106 0.1591 %TS % 0.436809 0.704198 0.823111 VS g 0.0658 0.0853 0.0446 %VS % 0.290911 0.543111 0.23074 VS/TS (%) % 66.59919 77.12477 28.03268 228 SOLIDS DATA FOR RUN8 DAY1 REACTOR 1 4 Dish Weight Total Sample Sample Total Weight Of Weight AfterWeight AfterSolids In Sample+disrDrying At Drying At Sample 110C 550C DISH W. g 46.8662 44.2694 T. WEI. g 68.0069 52.94 110C. g 46.9657 44.3247 550C. g 46.9213 44.294 TS g 0.0995 0.0553 % Total Solids In Sample %TS % 0.470656 0.637787 Volatile Solids In Sample VS g 0.0444 0.0307 % Volatile Solids In Sample %VS % 0.210021 0.35407 Ratio Of Volatile To Total Solids VS/TS (%) % 44.62312 55.51537 DAY3 REACTOR 1 DISH W. g 47.5412 44.8795 T. WEI. 9 64.2477 61.1273 110C. 9 47.5805 44.9447 550C. 9 47.5644 44.9036 TS g 0.0393 0.0652 %TS % 0.235238 0.401285 VS 9 0.0161 0.0411 %VS % 0.09637 0.252957 VS/TS (%) % 40.96692 63.03681 DAY6 REACTOR 1 4 DISH W. g 46.4033 41.1078 T. WEI. g 57.7806 59.1414 110C. g 46.4894 41.214 550C. g 46.4393 41.1393 TS g 0.0861 0.1062 %TS % 0.75677 0.588901 VS g 0.0501 0.0747 %VS % 0.440351 0.414227 VS/TS (%) % 58.18815 70.33898 DAY 10 REACTOR 1 4 DISH W. g 44.8784 46.8676 T. WEI. g 58.185 63.3498 110C. g 44.9253 46.9396 550C. g 44.9118 46.893 TS g 0.0469 0.072 %TS % 0.352457 0.436835 VS g 0.0135 0.0466 %VS % 0.101453 0.282729 VS/TS (%) % 28.78465 64.72222 DAY13 REACTOR 1 4 DISH W. g 44.2665 43.8366 T. WEI. g 64.3785 64.0742 110C. g 44.4069 43.9356 550C. g 44.3467 43.8664 TS g 0.1404 0.099 %TS % 0.698091 0.489188 VS g 0.0602 0.0692 %VS % 0.299324 0.341938 VS/TS (%) % 42.87749 69.89899 DAY17 REACTOR 1 4 DISH W. g 46.8663 44.877 T. WEI. g 67.8255 67.3762 110C. g 46.9812 44.9814 550C. g 46.9314 44.9026 TS g 0.1149 0.1044 %TS % 0.548208 0.464016 VS 9 0.0498 0.0788 %VS % 0.237604 0.350235 VS/TS (%) % 43.34204 75.47893 DAY20 REACTOR 1 4 DISH W. g 43.2577 44.2662 T. WEI. g 60.3421 54.9943 110C. g 43.324 44.3134 550C. g 43.2917 44.2726 TS g 0.0663 0.0472 %TS % 0.388073 0.439966 VS g 0.0323 0.0408 %VS % 0.189061 0.38031 VS/TS (%) % 48.71795 86.44068 229 SOLIDS DATA FOR RUN 9 Weight Weight Total % Total Volatile % Volatile Ratio After After Solids Of Solids Of Solids Of Solids Of Volatile To Dish Weight Drying At Drying At Sample Sample Sample Sample Total DAY1 Weight Sample+dish 110C 550C. Solids REACTOR DISHW. T. WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) 9 g g 9 9 % g % % 2 48.1064 68.3504 48.1969 48.1449 0.0905 0.447046 0.052 0.256866 57.45856 3 5 48.5753 58.1601 48.6065 48.5875 0.0312 0.325515 0.019 0.198231 60.89744 DAY3 REACTOR DISH W. T. WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g g g g g % g % % 2 40.4659 60.4957 40.4984 40.4767 0.0325 0.162258 0.0217 0.108339 66.76923 3 40.6895 62.4966 40.7873 40.745 0.0978 0.448478 0.0423 0.193974 43.25153 5 46.4272 65.4672 46.9702 46.8499 0.543 2.851891 0.1203 0.631828 22.1547 DAY6 REACTOR DISH W. T. WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g 9 g g g % g % % 2 46.8681 68.8505 46.9189 46.8866 0.0508 0.231094 0.0323 0.146936 63.58268 3 44.2673 64.3266 44.3585 44.3196 0.0912 0.454652 0.0389 0.193925 42.65351 5 40.7024 60.3131 41.092 41.066 0.3896 1.986671 0.026 0.132581 6.673511 DAY10 REACTOR DISH W. T. WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) 9 g g g g % g % % 2 43.2541 66.9559 43.2893 43.2668 0.0352 0.148512 0.0225 0.094929 63.92045 3 44.8777 66.9075 44.9697 44.9323 0.092 0.417616 0.0374 0.16977 40.65217 5 43.696 62.2049 43.9617 43.9133 0.2657 1.435526 0.0484 0.261496 18.21603 DAY13 REACTOR DISH W. T. WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g g g g g % g % % 2 47.5424 63.8477 47.5725 47.5522 0.0301 0.184603 0.0203 0.124499 67.44186 3 40.6869 60.1743 40.7677 40.7333 0.0808 0.414627 0.0344 0.176524 42.57426 5 48.565 68.4526 48.8453 48.7895 0.2803 1.409421 0.0558 0.280577 19.90724 DAY17 REACTOR DISH W. T. WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g g g g g % g % % 2 44.881 64.6897 44.9145 44.8915 0.0335 0.169118 0.023 0.116111 68.65672 3 41.1135 57.358 41.1733 41.1455 0.0598 0.368125 0.0278 0.171135 46.48829 5 45.0594 62.206 45.306 45.2308 0.2466 1.438186 0.0752 0.438571 30.49473 DAY20 REACTOR DISH W. T. WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g 9 g 9 g % g % % 2 46.4251 63.1832 46.4536 46.4329 0.0285 0.170067 0.0207 0.123522 72.63158 3 44.2694 60.417 44.3339 44.3055 0.0645 0.39944 0.0284 0.175878 44.03101 5 43.8428 58.8989 44.0546 43.9722 0.2118 1.406739 0.0824 0.547286 38.90463 DAY24 REACTOR DISH W. T. WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g g 9 g g % g % % 2 46.8705 64.9563 46.8959 46.8767 0.0254 0.140442 0.0192 0.106161 75.59055 5 46.4123 59.6933 46.6024 46.5701 0.1901 1.431368 0.0323 0.243205 16.99106 230 SOLIDS DATA FOR RUN10 DAY1 REACTOR Total Weight AfterWeight AfterTotal Solids %Total Volatile %Volatile Ratio Dish Weight Of Weight Dish+Sample DISH W. 40.4647 T. WEI. g 54.7167 Drying At 110C 110C. g 40.5427 Drying At 550C. 550C. 9 40.5009 In Sample TS g 0.078 Solids In Sample %TS % 0.547292 Solids In Sample VS g 0.0418 Solids Volatile To In Sample Total Solids %VS VS/TS (%) % 0.293292 % 53.58974 DAY3 REACTOR DISH W. g 40.7056 T. WEI. g 56.1338 110C. g 40.7766 550C. g 40.7353 TS g 0.071 %TS % 0.460196 VS g 0.0413 %VS % 0.267692 VS/TS (%) % 58.16901 DAY6 REACTOR DISH W. g 46.8701 T. WEI. g 65.8366 110C. g 46.9558 550C. g 46.9058 TS g 0.0857 %TS % 0.451849 VS g 0.05 %VS % 0.263623 VS/TS (%) % 58.34306 DAY10 REACTOR DISH W. g 3 48.1035 T.WEI. 110C. g g 65.9582 48.2035 550C. TS g g 48.1413 0.1 %TS VS % g 0.560077 0.0622 %VS VS/TS (%) % % 0.348368 62.2 DAY13 REACTOR DISHW. T.WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g g g g g % g % % 3 40.7015 55.4219 40.7886 40.7377 0.0871 0.591696 0.0509 0.345779 58.43858 DAY17 REACTOR DISH W. g 3 46.8696 T.WEI. 110C. g g 64.258 46.973 550C. TS 9 9 46.9096 0.1034 %TS VS % g 0.594649 0.0634 %VS VS/TS (%) % % 0.364611 61.31528 231 Run 10 Solids Continued: DAY21 REACTOR DISHW. T.WEI. 9 g 3 40.4634 56.1501 110C. 550C. g g 40.5441 40.4902 TS %TS g % 0.0807 0.514449 VS 9 %VS VS/TS (%) % % 0.0539 0.343603 66.79058 DAY24 REACTOR DISHW. T.WEI. 9 9 3 48.5627 61.0188 110C. 550C. 9 9 48.6304 48.5831 TS %TS g % 0.0677 0.543509 VS %VS VS/TS (%) g % 0.0473 0.379734 % 69.86706 DAY27 REACTOR DISH W. 9 3 40.6985 T. WEI. 9 55.5358 110C. 550C. 9 9 40.7855 40.7325 TS %TS g % 0.087 0.58636 VS g %VS VS/TS (%) % % 0.053 0.357208 60.91954 DAY31 REACTOR DISHW. T.WEI . g g 3 48.1007 61.8015 110C. 550C. g g 48.1771 48.1308 TS %TS g % 0.0764 0.557632 VS %VS VS/TS (%) % % 0.0463 0.337936 60.60209 DAY34 REACTOR DISH W. g 3 41.1062 T.WEI. 110C. 550C. g g g 56.355 41.1956 41.1396 TS %TS g % 0.0894 0.586276 VS 9 %VS VS/TS (%) % % 0.056 0.367242 62.63982 DAY38 REACTOR DISHW. T.WEI. g g 3 43.8393 57.471 110C. 550C. 9 9 43.9094 43.865 TS %TS g % 0.0701 0.514243 VS 9 %VS VS/TS (%) % 0.0444 0.325711 % 63.33809 232 SOLIDS DATA FOR RUN11 DAY1 REACTOR 1 2 4 Total Dish Weight Weight Sample+Dish DISHW. 9 43.2529 40.4622 44.2672 T. WEI. 9 59.1823 58.1971 61.0468 Weight After Drying At 110C. 110C. 9 43.4696 40.6191 44.5811 Weight After Drying At 550C. 550C. 9 43.4021 40.5263 44.3939 Total Solids Of Sample TS 9 0.2167 0.1569 0.3139 % Total Solids Of Sample % T S % 1.360378 0.884696 1.870724 Volatile Solids Of Sample VS 9 0.0675 0.0928 0.1872 % Volatile Ratio Solids Of Volatile To Sample Total Solids %VS VS/TS (%) % 0.423745 0.523262 1.11564 % 31.14905 59.14595 59.63683 DAY3 REACTOR 1 2 4 DISH W. 9 46.427 40.7066 45.1906 T. WEI. 9 62.5158 52.9501 57.1923 110C. 9 46.6723 40.767 45.3417 550C. 9 46.5862 40.7269 45.2433 TS 9 0.2453 0.0604 0.1511 % T S % 1.524663 0.493323 1.258988 VS 9 0.0861 0.0401 0.0984 %VS % 0.535155 0.327521 0.819884 VS/TS (%) % 35.09988 66.39073 65.12244 DAY6 REACTOR 1 2 4 DISH W. 9 43.2523 44.2685 46.9351 T. WEI. 9 58.9021 63.7238 63.2141 110C. 9 43.469 44.4097 47.1477 550C. 9 43.3954 44.3265 47.018 TS 9 0.2167 0.1412 0.2126 % T S % 1.384682 0.725766 1.305977 VS 9 0.0736 0.0832 0.1297 %VS % 0.470294 0.427647 0.796732 VS/TS (%) % 33.96401 58.92351 61.00659 DAY10 REACTOR 1 2 4 DISH W. 9 48.1043 46.4243 45.1888 T. WEI. 9 62.7148 63.155 62.5811 110C. 9 48.319 46.5158 45.4548 550C. 9 48.2449 46.4559 45.2895 TS 9 0.2147 0.0915 0.266 % T S % 1.469491 0.546899 1.529412 VS 9 0.0741 0.0599 0.1653 %VS % 0.50717 0.358024 0.950421 VS/TS (%) % 34.51327 65.46448 62.14286 DAY 14 REACTOR 1 2 4 DISH W. 9 41.1062 43.8426 40.687 T. WEI. 9 56.0307 56.6458 55.7762 110C. 9 41.3055 43.9051 40.8511 550C. 9 41.2605 43.8583 40.7387 TS 9 0.1993 0.0625 0.1641 % T S % 1.335388 0.488159 1.087533 VS 9 0.045 0.0468 0.1124 %VS % 0.301518 0.365534 0.744904 VS/TS (%) % 22.57903 74.88 68.49482 DAY17 REACTOR 1 2 4 DISH W. 9 45.057 47.5403 44.8803 T. WEI. 9 59.9019 60.343 60.0669 110C. g 45.295 47.6231 45.0354 550C. g 45.2283 47.5681 44.9323 TS g 0.238 0.0828 0.1551 % T S % 1.603244 0.646739 1.021295 VS 9 0.0667 0.055 0.1031 %VS % 0.449313 0.429597 0.678888 VS/TS (%) % 28.02521 66.42512 66.47324 DAY20 REACTOR 1 2 4 DISH W. g 46.864 46.4187 45.1852 T. WEI. g 59.3992 59.4553 59.7332 110C. 9 47.1149 46.5359 45.3824 550C. 9 47.0333 46.4658 45.2536 TS 9 0.2509 0.1172 0.1972 % T S % 2.001564 0.899007 1.355513 VS 9 0.0816 0.0701 0.1288 %VS % 0.650967 0.537717 0.885345 VS/TS (%) % 32.52292 59.81229 65.3144 233 Solids Run 11 (Continued) DAY24 REACTOR DISH W. 9 44.2661 43.2499 46.9354 T.WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g g g g % g % % 58.7794 44.5107 44.4428 0.2446 1.685351 0.0679 0.467847 27.75961 57.2888 43.3858 43.3012 0.1359 0.968025 0.0846 0.602611 62.25166 59.058 47.0553 46.9784 0.1199 0.989062 0.0769 0.634352 64.13678 DAY27 REACTOR 1 2 4 DISHW. T.WEI. 110C. 550C. TS %TS VS %VS VS/TS (%) g g g g g % g % % 48.562 62.2466 48.8542 48.7491 0.2922 2.135247 0.1051 0.768017 35.96851 47.5394 63.2145 47.6339 47.5686 0.0945 0.602867 0.0653 0.416584 69.10053 45.0581 58.0788 45.2163 45.1143 0.1582 1.214988 0.102 0.783368 64.47535 DAY31 REACTOR 1 2 DISH W. g 40.6862 40.4629 T. WEI. g 55.1312 52.1807 44.8793 67.6041 110C. 550C. TS %TS VS %VS VS/TS (%) g g g % g % % 40.9556 40.8692 0.2694 1.865005 0.0864 0.598131 32.07127 40.5371 40.4873 0.0742 0.633225 0.0498 0.424994 67.1159 45.132 44.9679 0.2527 1.112001 0.1641 0.722119 64.93866 234 METAL CONCENTRATION FOR BOTH TOTAL AND DISOLVED COPPE FOR RUN 6 REACTOR1SAMPLE TOTAL SAMPLE DISOLVED SAMPLE CONC.(T) TOT. CONC D. CONC. TOT DIS. Days mg/L mg/L mg/L mg/L 19 0.8 32 24 0.8 32 0.1 4 27 0.7 28 0.3 12 34 0.8 32 0.2 8 37 1 40 0.2 8 41 1.1 44 0.2 8 45 0.7 28 0.56 5.6 48 0.8 32 0.17 6.8 52 0.8 32 0.67 6.7 55 0.8 32 0.23 9.2 REACTOR2 SAMPLE CONC.(T) TOT. CONC D. CONC. TOT. DIS. Days mg/L mg/L mg/L mg/L IIT26 0.95 38 IIT32 0.95 38 0.1 4 IIT35 0.7 28 0.1 4 IIT42 0.8 32 0.1 4 REACTOR3 SAMPLE CONC.(T) TOT. CONC D. CONC. TOT DIS. Days mg/L mg/L mg/L mg/L 11IT19 1 40 0.1 4 IIIT24 0.7 28 0.1 4 IIIT27 1 40 0.1 4 IIIT34 0.7 28 0.2 8 REACTOR4 SAMPLE CONC.(T) TOT. CONC D. CONC. TOT. DIS. Days mg/L mg/L mg/L. mg/L IVT19 2.1 84 0.2 8 IVT24 2.1 84 0.2 8 IVT27 2 80 0.2 8 IVT34 2.2 88 0.2 8 IVT37 2.2 88 0.3 12 IVT41 2.2 88 0.4 16 IVT45 1.9 76 0.438 4.38 IVT48 2.2 88 0.2 8 IVT52 1.9 76 0.53 5.3 IVT55 .1.8 72 0.23 9.2 235 M E T A L C O N C E N T R A T I O N F O R B O T H T O T A L A N D D ISOLVED C O P P E F F O R R U N 7 R E A C T O R 2 S A M P L E CONC. (T ) TOT. C O N C D. C O N C . TOT. DIS. D A Y S mg/L mg/L mg/L mg/L 1 2 80 0 0 5 2 80 0.1 4 9 1.8 72 0.32 3.2 12 1.9 76 0.14 5.6 16 1.8 72 0.2 2 19 1.7 68 0.2 2 22 1.8 72 0.12 2.4 26 1.8 72 0.16 3.2 30 1.7 68 0.295 5.9 33 1.75 70 0.202 4.04 37 1.7 68 0.203 2.706667 40 1.7 68 0.219 2.92 S A M P L E CONC. (T ) TOT. C O N C D. C O N C . TOT. DIS. D A Y S mg/L mg/L mg/L mg/L IIIT1 2.1 84 0 0 IIIT5 2 80 0.1 4 IIIT9 1.9 76 0.51 5.1 IIIT12 2 80 0.17 6.8 IIIT16 1.9 76 0.63 6.3 IIIT19 2 80 0.27 5.4 IIIT22 1.9 76 0.2 4 IIIT26 1.9 76 0.26 5.2 IIIT30 1.8 72 0.239 4.78 IIIT33 1.85 74 0.186 3.72 IIIT37 2 80 0.26 3.466667 IIIT40 2 80 0.222 2.96 R E A C T O R 5 (Control) S A M P L E CONC. (T ) TOT. C O N C D. C O N C . TOT. DIS. D A Y S mg/L mg/L mg/L mg/L VT1 1.2 48 0 0 VT5 1.2 48 0.1 4 V T 9 1.3 52 0.38 3.8 VT12 1.4 56 0.15 6 VT16 1.4 56 0.49 4.9 VT19 1.4 56 0.16 6.4 VT22 1.3 52 0.16 6.4 VT26 1.5 60 0.15 6 VT30 1.4 56 0.28 5.6 VT33 1.5 60 0.23 4.6 VT37 1.55 62 0.232 3.093333 VT40 1.5 60 0.247 3.293333 2 3 6 BOTH DISSOLVED AND TOTAL C O P P E R CONCENTRATE FOR RUN 8 For Reactor 1 (Control) TOTAL TOTAL DISSOLVE (DISSOLVE C Time SAMPLE mg/L SAMPLE mg/L Days C O N C . TOT. C O N C C O N C . TOT. C O N C 1 2.4 48 0.2 2 3 2.5 50 0.123 2.46 6 2.5 50 0.124 2.48 10 2.52 50.4 0.268 5.36 13 2.51 50.2 0.227 4.54 17 2.47 49.4 0.207 2.76 20 2.42 48.4 0.326 4.346667 24 2.51 50.2 0.18 1.8 27 2.53 50.6 0.285 2.85 31 5.1 51 0.39 3.9 34 5.2 52 0.209 2.09 38 5.1 51 0.347 3.47 41 4.785 47.85 0.462 4.62 45 4.716 47.16 0.461 4.61 48 5.1 51 0.449 4.49 Reactor 4 TOTAL TOTAL DISSOLVELTJISSOLVEL\" Time SAMPLE mg/L SAMPLE mg/L Days C O N C . TOT. C O N C C O N C . TOT. C O N C 1 2.1 42 0.11 1.1 3 1.9 38 0.145 2.9 6 2.1 42 0.106 2.12 10 1.9 38 0.143 2.86 13 1.9 38 0.115 2.3 17 2.1 42 0.201 2.68 20 2.07 41.4 0.143 1.907 24 2 40 0.129 1.29 27 2.1 42 0.1 1 31 4.05 40.5 0.655 6.55 34 4.11 41.1 0.328 3.28 38 4.051 40.51 0.409 4.09 41 3.952 39.52 0.288 2.88 45 3.896 38.96 0.318 3.18 48 3.961 39.61 0.343 3.43 237 Copper Concentrations Both Dissolved And Total For Run 9 For Reactor 2 Dil. Sample Dil. Sample Time Total Reactor 2 DISOLVED Reactor 2 DAY C O N C . TOT. C O N C C O N C . TOT. C O N C mg/L mg/L mg/L mg/L 1 0 0 0.07 0.7 3 0.709 7.09 0.115 1.15 6 0.617 6.17 0.105 1.05 10 0.916 9.16 0.126 1.26 13 0.97 9.7 0.142 1.42 17 0.854 8.54 0.212 2.12 20 0.73 7.3 0.269 2.69 24 0.822 8.22 0.194 1.94 27 0.732 7.32 0.156 1.56 For Reactor 3 Dil. Sample Dil. Sample Time Total Reactor 2 DISOLVED Reactor 2 DAY C O N C . TOT. C O N C C O N C . TOT. C O N C mg/L mg/L mg/L mg/L 1 0.976 9.76 0.086 0.86 3 0.883 8.83 0.222 2.22 6 1.134 11.34 0.147 1.47 10 1.079 10.79 0.393 3.93 13 1.274 12.74 0.439 4.39 17 1.163 11.63 0.199 1.99 20 1.032 10.32 0.55 5.5 For Reactor 5 (Control) Dil. Sample Dil. Sample Time Total Reactor 2 DISOLVED Reactor 2 DAY C O N C . TOT. C O N C C O N C . TOT. C O N C mg/L mg/L mg/L mg/L 1 0.958 38.32 0.243 9.72 3 0.958 38.32 0.243 9.72 6 0.947 37.88 0.519 20.76 10 1.087 43.48 0.516 20.64 13 1.196 47.84 0.448 17.92 17 1.056 42.24 0.509 20.36 20 1.145 45.8 0.481 19.24 24 0.946 37.84 0.492 19.68 27 1.254 50.16 0.437 17.48 238 BOTH TOTAL AND DISOLVED C O P P E R CONCENTRATION FOR RUN 10 DILUTED DILUTED SAMPLE SAMPLE REACTOR3 TOTAL DISSOLVECDISSOLVED DAY C O N C . TOT. C O N C C O N C . TOT. C O N C mg/L mg/L mg/L mg/L 1 1.125 22.5 0.179 3.58 3 0.869 17.38 0.211 4.22 6 1.929 19.29 0.422 4.22 10 0.955 19.1 0.289 5.78 13 0.755 18.875 0.125 3.125 17 0.946 18.92 0.15 3 21 0.989 19.78 0.155 3.1 24 1.093 21.86 0.084 1.68 27 1.052 21.04 0.157 3.14 31 1.115 22.3 0.121 2.42 34 0.928 18.56 0.194 3.88 38 0.974 19.48 0.508 10.16 41 0.922 18.44 0.228 4.56 47 0.866 17.32 0.189 3.78 239 TOTAL AND DISOLVED COPPER CONCENTRATION FOR RUN 11 For Reactor 1 (Control) Diluted Diluted Sample Sample Reactorl me TOTAL Reactorl DISOLVED Dissolved YS CONC. TOT. CONC CONC. Cone. rrig/L mg/L mg/L mg/L 1 1.223 48.92 0.228 9.12 3 1.348 53.92 0.219 8.76 6 1.771 44.275 0.102 2.55 10 2.685 53.7 0.202 4.04 14 2.52 50.4 0.626 12.52 17 2.218 44.36 0.305 6.1 21 2.566 51.32 0.524 10.48 24 2.368 47.36 0.44 8.8 27 2.693 53.86 0.546 10.92 31 2.725 54.5 0.65 13 34 2.643 52.86 0.397 7.94 40 2.413 48.26 0.661 13.22 For Reactor 2 Time DAYS 1 3 6 10 14 17 21 24 27 31 34 40 Diluted Sample TOTAL CONC. mg/L 1.197 0.997 1.866 2.164 1.996 2.175 2.013 2.313 2.221 2.202 2.295 2.2 Reactor2 TOT. CONC mg/L 47.88 39.88 46.65 43.28 39.92 43.5 40.26 46.26 44.42 44.04 45.9 44 Diluted Sample DISOLVED CONC. mg/L 0.151 0.136 0.081 0.033 0.184 0.081 0.105 0.112 0.296 0.214 0.124 0.135 Reactor2 Dissolved Cone. mg/L 6.04 5.44 2.025 0.66 3.68 1.62 2.1 2.24 5.92 4.28 2.48 2.7 For Reactor 4 Diluted Diluted Sample Sample Reactor4 me TOTAL Reactor4 DISOLVED Dissolved YS CONC. TOT. CONC CONC. Cone. mg/L mg/L mg/L mg/L 1 2.839 56.78 0.139 5.56 3 1.567 62.68 0.227 9.08 6 2.545 63.625 0.119 2.975 10 3.331 66.62 0.163 3.26 14 3.164 63.28 0.165 3.3 17 2.942 58.84 0.122 2.44 21 2.969 59.38 0.133 2.66 24 2.755 55.1 0.158 3.16 27 3.119 62.38 0.208 4.16 31 2.939 58.78 0.299 5.98 34 2.941 58.82 0.16 3.2 40 2.942 58.84 0.292 5.84 240 NUTIENT ANALYSIS FOR RUN 5 Phosphorous Concentration Vs Time Reactor2 Reactor2 ReactorS Reactor5 TIME ORTHO-P TOTAL ORTHO-P TOTAL Days Diluted mg/L Diluted mg/L 4 0.526 5.26 0.391 3.91 11 6.176 61.76 0.382 3.82 18 3.53 35.3 0.502 5.02 25 8.5 85 0.651 6.51 32 7.3932 73.932 0.435 4.35 42 8.989 89.89 0.554 5.54 Ammonia Concentration Vs Time Reactor2 Reactor2 Reactor5 Reactor5 TIME NH4+ TOTAL NH4+ TOTAL Days Diluted mg/L Diluted mg/L 4 0.109 1.09 0.429 4.29 11 5.569 55.69 0.179 1.79 18 0.078 0.78 0.369 3.69 25 5.583 55.83 0.077 0.77 32 2.877 28.77 0.631 6.31 42 8.643 86.43 0.608 6.08 Nutrient Analysis For Run 6 Phosphorous Concentration Vs Time Reactorl Reactorl Reactor3 Reactor3 Reactor4 Reactor4 TIME ORTHO-P TOTAL ORTHO-P TOTAL ORTHO-P TOTAL Days Diluted mg/L Diluted mg/L Diluted mg/L 3 0.723 7.23 6.464 64.64 5.052 50.52 10 0.732 7.32 3.98 39.8 1.11 11.1 17 0.774 7.74 9.015 90.15 5.45 54.5 24 0.62 6.2 8.113 81.13 1.808 18.08 34 0.41 4.1 10.517 105.17 1.543 15.43 37 0.431 4.31 0.781 7.81 48 0.7 7 2.736 27.36 55 0.996 9.96 3.784 37.84 Ammonia Concentration Vs Time Reactorl Reactorl Reactor3 Reactor3 Reactor4 Reactor4 Time NH4+ TOTAL NH4+ TOTAL NH4+ TOTAL Days Diluted mg/L Diluted mg/L Di luted mg/L 3 0.529 5.29 6.287 62.87 5.461 54.61 10 0.166 1.66 0.133 1.33 0.154 1.54 17 0.216 2.16 5.014 50.14 4.407 44.07 24 0.313 3.13 1.162 11.62 0.284 2.84 34 1.39 13.9 2.402 24.02 5.957 59.57 37 0.219 2.19 2.954 29.54 55 0.848 8.48 5.786 57.86 241 NUTRIENT ANALYSIS FOR RUN 7 Phosphorous Concentration vs Time For Run 7 Time Reactor2 Reactor2 Reactor3 DAYS Sample Con Tot. Cone. Sample Con mg/L mg/L mg/L 1 0.27 2.7 0.533 12 12.593 125.93 17.735 19 23.257 232.57 19.839 23 22.829 228.29 19.697 26 21.231 212.31 17.67 30 22.107 221.07 17.811 33 21.379 213.79 16.571 37 8.825 220.625 7.192 40 13.432 223.8667 9.637 Reactor3 Reactor5 Reactor5 Tot. Cone. Sample Con Tot. Cone. mg/L mg/L mg/L 5.33 0.178 1.78 177.35 0.525 5.25 198.39 0.742 7.42 196.97 0.437 4.37 176.7 0.557 5.57 178.11 1.374 13.74 165.71 1.401 14.01 179.8 1.231 6.155 160.6167 1.767 8.835 Ammonia Concentration Vs Time For Run 7 Time Reactor2 Reactor2 Reactor3 Reactor3 Reactor5 Reactor5 DAYS Sample Con Tot. Cone. Sample Con Tot. Cone. Sample Con Tot. Cone. mg/L mg/L mg/L mg/L mg/L mg/L 1 0.85 8.5 0.548 5.48 0.193 1.93 12 73.675 736.75 51.435 514.35 0.21 2.1 19 61.149 611.49 43.166 431.66 0.092 0.92 23 55.334 553.34 39.08 390.8 0.11 1.1 26 63.351 633.51 42.773 427.73 0.194 1.94 30 62.569 625.69 42.799 427.99 0.831 8.31 33 61.964 619.64 41.241 412.41 0.395 3.95 37 31.796 794.9 18.385 459.625 0.367 1.835 40 44.304 738.4 26.674 444.5667 0.185 0.925 242 NUTRIENT ANALYSIS FOR RUN 8 Phosphorous Concentration vs Time REACTOR1 REACTOR 'REACTOR4REACTOR 4 Sample Total Sample Total Time Cone. Cone. Cone. Cone. DAY mg/L mg/L mg/L mg/L 3 0.152 1.52 0.528 5.28 6 0.431 4.31 4.988 49.88 10 0.358 3.58 4.149 41.49 13 0.621 3.105 3.59 35.9 17 0.552 2.76 7.114 35.57 20 0.743 3.715 4.923 30.76875 24 0.767 3.835 5.904 29.52 27 0.833 4.165 4.674 23.37 31 0.761 3.805 8.878 44.39 34 0.914 4.57 12.345 61.725 38 0.821 4.105 10.948 54.74 41 0.944 4.72 10.958 54.79 45 0.667 3.335 8.799 43.995 48 0.948 4.74 6.258 31.29 Ammonia Concentration Vs Time REACTOR1 R E A C T O R 'REACTOR4REACTOR 4 Sample Total Sample Total Time Cone. Cone. Cone. Cone. DAY mg/L mg/L mg/L mg/L 3 0.142 1.42 0.418 4.18 6 0.089 0.89 3.058 30.58 10 0.226 2.26 2.245 22.45 13 0.287 1.435 1.103 11.03 17 0.125 0.625 0.416 2.08 20 0.078 0.39 0.563 3.51875 24 0.175 0.875 0.173 1.08125 27 0.275 1.375 0.142 0.8875 31 0.1 0.5 8.992 56.2 34 0.162 0.81 14.558 90.9875 38 0.054 0.27 14.908 93.175 41 0.089 0.445 11.832 73.95 45 0.139 0.695 10.179 63.61875 48 0.269 1.345 3.997 24.98125 243 NUTRIENT ANALYSIS FOR RUN9 Phosphorous Concentration Vs Time Dil. Sample REACTOR2DH. Sample REACTOR3DH Sample R E A C T O R 5 SAMPLE C O N C . TOT. C O N C C O N C . TOT. C O N C C O N C . TOT. C O N C Days mg/L mg/L mg/L mg/L mg/L mg/L 3 3.892 19.46 14.951 74.755 1.713 8.565 6 4.438 22.19 14.587 72.935 2.204 11.02 10 5.453 27.265 14.556 72.78 2.162 10.81 13 8.59 42.95 15.884 79.42 1.561 7.805 17 9.132 45.66 13.086 65.43 1.837 9.185 mmonia Concentration Vs Time Dil. Sample REACTOR2DH. Sample REACTOR3Dil Sample REACTOR5 SAMPLE C O N C . TOT. C O N C C O N C . TOT. C O N C C O N C . TOT. C O N C Days mg/L mg/L mg/L mg/L mg/L mg/L 3 14.947 74.735 47.975 239.875 0.37 1.85 6 14.27 71.35 45.023 225.115 1.15 5.75 10 13.612 68.06 38.091 190.455 0.585 2.925 13 18.752 93.76 38.193 190.965 2.685 13.425 20 26.789 133.945 34.011 170.055 1.188 5.94 244 NUTRIENT ANALYSIS FOR RUN10 Phosphorous Concentration Vs Time Diluted Time Sample REACTOR3 Days C O N C . TOT. C O N C mg/L mg/L 1 8.82 44.1 3 7.871 39.355 6 6.091 30.455 10 4.587 22.935 13 4.741 47.41 17 4.49 44.9 21 3.834 38.34 24 6.399 63.99 27 5.816 58.16 31 5.866 58.66 34 5.042 50.42 38 4.962 49.62 41 5.099 50.99 47 3.548 35.48 Ammonia Concentration Vs Time Diluted Time Sample R E A C T O R 3 Days C O N C . TOT. C O N C mg/L mg/L 1 18.009 90.045 3 15.09 75.45 6 7.948 39.74 10 1.777 8.885 13 3.352 33.52 17 1.889 18.89 21 1.17 11.7 24 6.067 60.67 27 5.376 53.76 31 5.914 59.14 34 4.643 46.43 38 4.643 46.43 41 4.477 44.77 47 2.522 25.22 245 NUTRIENT ANALYSIS FOR RUN11 Phosphorous Concentration Vs Time R#1 Diluted R#2 Diluted R#4 Diluted Time Sample R E A C T O R 1 Sample REACTOR2 Sample REACTOR4 Days C O N C . TOT. C O N C C O N C . TOT. C O N C C O N C . TOT. C O N C mg/L mg/L mg/L mg/L mg/L mg/L 1 0.896 4.48 3.834 19.17 1.968 9.84 3 1.01 5.05 3.29 16.45 1.085 5.425 6 0.615 6.15 4.659 46.59 2.508 25.08 10 0.906 9.06 3.408 34.08 2.968 29.68 14 1.022 10.22 2.325 23.25 2.597 25.97 17 0.972 9.72 3.985 39.85 3.659 36.59 20 0.88 8.8 2.796 27.96 3.936 39.36 24 0.925 9.25 3.363 33.63 3.753 37.53 27 0.852 8.52 3.639 36.39 3.164 31.64 31 0.87 8.7 3.844 38.44 3.922 39.22 34 0.863 8.63 3.907 39.07 3.667 36.67 40 0.991 9.91 3.348 33.48 2.687 26.87 Ammonia Concentration Vs Time R#1 Diluted R#2 Diluted R#4 Diluted Time Sample R E A C T O R 1 Sample REACTOR2 Sample REACTOR4 Days C O N C . TOT. C O N C C O N C . TOT. C O N C C O N C . TOT. C O N C mg/L mg/L mg/L mg/L mg/L mg/L 1 0.258 1.29 9.298 46.49 4.105 20.525 3 0.144 0.72 9.505 47.525 0.264 1.32 6 0.3 3 8.876 88.76 4.565 45.65 10 0.022 0.22 7.806 78.06 3.332 33.32 14 0.316 3.16 5.376 53.76 2.272 22.72 17 0.32 3.2 10.337 103.37 6.94 69.4 20 0.215 2.15 8.516 85.16 6.277 62.77 24 0.173 1.73 8.043 80.43 5.918 59.18 27 0.143 1.43 7.263 72.63 5.341 53.41 31 0.192 1.92 6.801 68.01 5.447 54.47 34 0.186 1.86 6.453 64.53 4.878 48.78 40 0.289 2.89 5.571 55.71 2.122 21.22 246 G C Area Data For Run 6 Compound :Xylene Area Day R#1 R#3 R#4 1 26085 32760 9350 6 10288 9928 14845 13 8539 0 850 34 8971 0 0 37 8466 0 48 0 0 Compound Diphenyl Area Day R#1 R#3 R#4 1 612795 1028183 1080678 6 543082 255835 499029 13 35371 501822 34 264414 25468 337915 37 229000 80360 48 249027 50733 Compound Diphenyl Ether Area Day R#1 R#3 R#4 1 3072504 6064720 1080678 6 2852054 2447160 6856301 13 3470630 371987 2195869 34 1709155 211206 2511867 37 1490319 639461 48 2125884 163770 247 G C Data Continued Run 6 Compound Diphenyl Methane Area Day R#1 R#3 R#4 1 43458 100874 99031 6 45567 71759 186183 13 125105 27193 80656 34 29651 11839 137093 37 26593 103314 48 38532 157618 Compound Benzene, 1,1' Methylene bis (4-methyl) Area Day R#1 R#3 R#4 1 40441 71386 74258 6 45669 53996 138725 13 135817 27393 60774 34 30264 15089 51288 37 28149 40832 48 37283 57366 Compound :1,24Dimethyl-4-Benzyl Benzene Area Day R#1 R#3 R#4 1 57929 133146 83000 6 61021 17629 42278 13 164066 0 18232 34 27798 0 32212 37 23568 10015 48 13308 11437 248 GC Data For Run 7 Compound Xylene Area Day REACTOR2 REACTOR3 REACTOR5 1 601124 606692 507598 12 0 0 88705 33 21620 26238 174597 42 27785 25874 169060 GC Target Organics Concentration For Run 7 Xylene ppm ppm ppm REACTOR2REACTOR3 REACTOR5 243.43 245.6848 205.5559 0 0 35.9218 8.755192 10.62529 70.70445 10.41398 9.697724 63.36466 Compound Diphenyl Area Day REACTOR2 REACTOR3 REACTOR5 1 2857254 3104883 2813771 12 7366 13985 1528158 33 12519 0 1978840 42 0 11102 2334758 Diphenyl ppm ppm ppm REACTOR2REACTOR3REACTOR5 1157.068 1257.347 1139.459 2.98292 5.663337 618.8398 5.069669 0 801.3471 0 4.161093 875.0807 Compound Diphenyl Ether Area Day REACTOR2 REACTOR3 REACTOR5 1 13063536 14050811 12522000 12 338863 3672268 7389715 33 82952 25897 9236297 42 0 66325 10851424 Compound Diphenyl Ether ppm ppm ppm REACTOR2REACTOR3REACTOR5 5290.183 5689.988 5070.884 137.2253 1487.114 2992.524 33.59207 10.4872 3740.312 0 24.85899 4067.176 Compound Diphenyl Methane Area Day REACTOR2 REACTOR3 REACTOR5 1 141741 166077 158577 12 24745 75611 101010 33 13564 14774 131798 42 0 12753 154933 Compound Diphenyl Methane ppm ppm ppm REACTOR2REACTOR3 REACTOR5 57.39915 67.25421 64.21702 10.02069 30.61928 40.90481 5.49285 5.982849 53.37265 0 4.779898 58.06978 Compound Benzene, 1,1' Methylene bis (4-methyl) Area Day REACTOR2 REACTOR3 REACTOR5 1 46849 53602 50678 12 16987 23453 49703 33 10717 14314 119230 42 0 10139 284277 Compound Benzene, 1,1' Methylene bis (4-meth ppm ppm ppm REACTOR2REACTOR3 REACTOR5 18.97188 21.70656 20.52246 6.879021 9.49748 20.12763 4.339935 5.796569 48.28314 0 3.800155 106.5487 Compound :1,2-Dimethyl-4-Benzyl Benzene Area Day REACTOR2 REACTOR3 REACTOR5 1 341776 412960 344486 12 0 0 22516 33 0 0 131109 42 0 0 179021 Compound :1,2-Dimethyl-4-Benzyl Benzene ppm ppm ppm REACTOR2REACTOR3 REACTOR5 138.4049 167.2314 139.5024 0 0 9.118034 0 0 53.09364 0 0 67.0981 249 G C Data Vs Time For Run 10 G C Conscentration Of target Organics Vs Time FOR RUN10 Compound : Xylene Area Day R#3 1 177852 6 5125 13 0 24 0 27 143290 34 0 41 0 RUN 10 Compound : Xylene ppm Day R#3 1 78.2861 6 2.2559 13 0 24 0 27 45.73525 34 0 41 0 Compound : Diphenyl Area Day R#3 1 657054 6 38916 13 12177 24 0 27 0 34 0 41 0 Compound : Diphenyl ppm Day R#3 1 289.2191 6 17.12987 13 5.275719 24 0 27 0 34 0 41 0 Compound Diphenyl Ether Compound Diphenyl Ether Area ppm Day R#3 Day R#3 1 3518673 1 1548.834 6 724409 6 318.8671 13 94426 13 40.91032 24 60904 24 20.54485 27 61670 27 19.68381 34 0 34 0 41 0 41 0 250 Run 10 G C Data and Concentration (Continued) Compound Diphenyl Methane Compound Diphenyl Methane Area ppm Day R#3 Day R#3 1 25868 1 11.38646 6 13840 6 6.09203 13 18430 13 7.984848 24 12081 24 4.075305 27 10765 27 3.435969 34 0 34 0 41 0 41 0 Compound .Benzene, 1,1\" Methylene bis (4-methBenzene, 1,1' Methylene bis (4-meth Area ppm Day R#3 Day R#3 1 17522 1 7.712756 6 9823 6 4.323845 13 14696 13 6.367082 24 0 24 0 27 0 27 0 34 0 34 0 41 0 41 0 Compound :1,2Dimethyl-4-Benzyl Area Benzene Day R#3 1 58588 6 0 13 0 24 0 27 0 34 0 41 0 1,2-Dimethyl-4-Benzyl Benzene ppm Day R#3 1 25.78901 6 0 13 0 24 0 27 0 34 0 41 0 251 GC Data Vs Time For Run 11 GC Concentration Data Vs Time For Run 11 Compound : Xylene Compound Xylene Area ppm PPm PPm Day R#1 R#2 R#4 Day R#1 R#2 R#4 1 431888 592953 1560198 1 187.1167 256.8985 675.9601 6 163959 191510 46806 6 71.03569 82.97223 20.27883 17 106078 73426 48735 17 35.78348 24.76892 16.43986 20 188469 164312 188577 20 60.15547 52.44504 60.18994 27 265748 14068 32394 27 82.76147 4.381174 10.08841 34 81400 20093 21560 34 27.56929 6.805279 7.302136 40 190545 17172 15212 40 70.50944 6.354342 5.629062 Compound : Diphenyl Compound Diphenyl Area PPm ppm PPm Day R#1 R#2 R#4 Day R#1 R#2 R#4 1 1704291 2191289 5386252 1 738.3887 949.382 2333.608 6 1501050 1218249 1911125 6 650.334 527.8097 828.0001 17 834286 361301 277663 17 281.4312 121.8783 93.66455 20 1355637 537875 418201 20 432.6917 171.6787 133.4812 27 2649999 204253 503320 27 825.2849 63.61018 156.7481 34 1938067 221450 323951 34 656.4021 75.00269 109.7187 40 1850763 100798 76277 40 684.858 37.29938 28.22561 Compound Diphenyl Ether Area Day R#1 R#2 R#4 1 8064313 10212919 25425872 6 8657503 7457528 10564312 17 4933501 2425089 5012795 20 8701526 3395222 7302680 27 16668164 1518022 5556599 34 9316714 1624876 4214936 40 11314676 813713 2333167 Compound Diphenyl Ether PPm ppm ppm Day R#1 R#2 R#4 1 3493.886 4424.775 11015.83 6 3750.887 3230.994 4577.017 17 1664.227 818.0595 1690.975 20 2777.35 1083.686 2330.867 27 5190.939 472.7551 1730.483 34 3155.469 550.3277 1427.553 40 4186.893 301.1071 863.3672 252 GC Data Vs Time For Run 11 (Continued) Compound Diphenyl Methane Area Day R#1 R#2 R#4 1 75396 86379 243841 6 79984 67049 119671 17 42265 32666 66937 20 93343 49745 127071 27 164105 25158 92091 34 152282 46376 66477 40 128865 24097 59515 GC Concentration Data Vs Time For Run 11 Compound Diphenyl Methane ppm ppm ppm Day R#1 R#2 R#4 1 32.66552 37.42394 105.6448 6 34.65329 29.04916 51.84779 17 14.25733 11.01928 22.57998 20 29.79318 15.87759 40.55847 27 51.10695 7.834915 28.67975 34 51.57625 15.70704 22.51503 40 47.68532 8.916875 22.02298 Compound Benzene, 1,1' Methylene bis (4-methyl) Area Day R#1 1 66403 6 83694 17 47938 20 85382 27 60357 34 49524 40 33745 R#2 R#4 Day 56182 172439 1 46047 87201 6 28428 52840 17 37776 85468 20 5588 27876 27 35407 23677 34 23140 69579 40 Benzene, 1,1' ppm R#1 28.76928 36.26065 16.17101 27.2522 18.79688 16.77324 12.48703 Methylene ppm R#2 24.34101 19.94999 9.589667 12.05733 I. 740262 II. 99196 8.562746 bis (4-metr ppm R#4 74.70967 37.78007 17.82461 27.27964 8.681377 8.019141 25.74708 Compound :1,2-Dimethyl-4-Benzyl Benzene Area Day R#1 R#2 R#4 \" 1 247929 147980 786422 6 161707 78824 251996 17 103352 56446 23702 20 128067 54804 24505 27 240563 0 23055 34 163454 0 18381 40 165412 0 14917 :1,2-Dimethyl-4-Benzyl BCompound : ' ppm ppm ppm Day R#1 R#2 R#4 1 107.4159 64.11274 340.7195 6 70.06 34.15071 109.178 17 34.86391 19.04103 7.995437 20 40.87638 17.49232 7.821497 27 74.91814 0 7.179981 34 55.36008 0 6.225443 40 61.2092 0 5.5199 253 FOR RUN8 GC Data Compound :Xylene Area Day R#1S R#1T R#4S R#4T 1 35824 314482 45529 370582 3 9068 5292 0 5292 6 10851 195738 0 6834 10 11056 23935 0 6089 13 53742 223943 35474 20465 17 10995 56290 0 0 20 8949 16118 0 0 24 40844 78419 26775 29149 27 18069 128196 0 18069 31 12273 150198 0 0 34 165226 0 41 18196 0 48 12154 134954 0 0 Compound :Diphenyl Area Day R#1S 1 16969 3 11541 6 14762 10 19096 13 25634 17 16549 20 10904 24 31649 27 39137 31 29445 34 41 48 49711 R#1T R#4S 1144097 18847 245177 24574 1838567 0 248291 0 1257860 0 426219 0 215658 0 769005 0 - 1018529 0 1468000 0 1623063 230163 1577825 0 R#4T 1286241 577366 135926 28939 10643 0 0 6549 90139 13500 12946 8283 Compound : Diphenyl Ether Area R#1S R#1T R#4S R#4T 1 91234 5633244 114824 6302583 3 72804 1505417 147511 3032592 6 125904 9714849 220602 3669137 10 241631 1646734 134987 1863057 13 145695 6426396 176599 1964704 17 185769 2664412 360330 1404930 20 140448 1505772 221520 739967 24 193509 4227287 110943 579730 27 221976 5323431 156731 1252524 31 254021 8035526 137000 374074 34 8876656 191506 41 1489324 90432 48 294467 8507148 0 92105 254 GC Data Continued (Run8): \u00E2\u0080\u00A2 Diphenyl Methane Area Day R#1S R#1T R#4S R#4T 1 0 54354 0 65255 3 0 13424 0 34911 6 0 100662 0 45208 10 0 15174 0 23543 13 0 67423 0 31822 17 0 29600 10096 42460 20 0 17152 9449 27285 24 0 31818 0 22740 27 0 59505 0 31214 31 0 82665 12000 21668 34 92728 24589 41 15120 25322 48 0 96002 0 22303 Compound : Benzene, 1,1' Methylene bis (4-methyl) Area Day R#1S R#1T R#4S R#4T 1 0 36548 0 42620 3 0 9142 0 23742 6 0 71481 0 30339 10 0 13714 0 20052 13 0 53372 0 24273 17 0 24994 9888 32534 20 0 12227 0 25998 24 0 77260 0 0 27 0 58339 0 29371 31 0 87836 11550 21668 34 104029 23610 41 23721 24891 48 0 122900 0 18491 Compound : 1,2-Dimethyl-4-Benzyl Benzene Area R#1S R#1T R#4S R#4T 1 0 137170 0 200277 3 0 32892 0 58894 6 0 207560 0 16536 10 0 27025 0 17951 13 0 144229 0 3517 17 0 25098 0 12904 20 0 9509 0 0 24 0 109323 0 0 27 0 103160 0 0 31 0 103160 0 0 34 145360 0 41 21810 0 48 0 120382 0 0 255 GC Concentration vs Time For Run 8 Compound :Xylene PPM R#1S R#1T R#4S R#4T 14.50721 127.352 18.43733 150.0701 3.672159 2.143038 0 2.143038 4.394199 79.26567 0 2.767483 4.477215 9.692669 0 2.465789 21.76325 90.68751 14.36548 8.287465 3.951754 20.2314 0 0 3.216394 5.793031 0 0 15.30857 29.39189 10.03542 10.92521 6.772365 48.0486 0 6.772365 4.661195 57.0441 0 0 0 62.75162 0 0 0 6.906354 0 0 5.349894 59.40345 0 0 Compound :Diphenyl PPM R#1S R#1T R#4S R#4T 6.871732 463.3112 7.632243 520.8736 4.67362 99.28638 9.951437 233.809 5.97799 744.5424 0 55.04432 7.733078 100.5474 0 11.71908 10.38069 509.3804 0 4.309968 5.947938 153.189 0 0 3.919047 77.51045 0 0 11.86223 288.2275 0 2.454603 14.66877 381.7505 0 33.78461 11.183 557.5356 0 5.127201 0 616.4274 0 4.916796 0 87.35916 0 0 21.88157 694.52 0 3.645974 Compound PPM R#1S 36.94594 29.48256 50.98583 97.8504 59.00035 66.76793 50.47894 72.52828 83.19788 96.47532 0 0 129.6172 Diphenyl Ether R#1T 2281.227 609.6306 3934.106 666.8581 2602.42 957.6263 541.1951 1584.411 1995.252 3051.834 3371.289 565.278 3744.639 RMS 46.4989 59.73576 89.33454 54.66406 71.51517 129.5076 79.61733 41.58207 58.74368 52.0316 0 0 0 R#4T 2552.281 1228.072 1485.846 754.4598 795.6226 504.9511 265.9543 217.2861 469.4532 142.0706 72.73258 34.32378 40.54237 256 GC Concentration Continued(Run8) Diphenyl Methane PPM R#1S R#1T R#4S R#4T 0 22.01109 0 26.42553 0 5.436156 0 14.13749 0 40.76388 0 18.30734 0 6.144832 0 9.533926 0 27.30348 0 12.88657 0 10.63865 3.628641 15.26071 0 6.164664 3.3961 9.806604 0 11.92557 0 8.523082 0 22.30282 0 11.69919 0 31.39556 4.557512 8.229348 0 35.21742 0 9.338722 0 5.738848 0 9.611052 0 42.25773 0 9.817236 Compound Benzene, 1,1' Methylene bis (4-methyl) PPM R#1S R#1T R#4S R#4T 0 14.8004 0 17.25931 0 3.702126 0 9.614512 0 28.9468 0 12.28602 0 5.553594 0 8.120217 0 21.61342 0 9.829545 0 8.983187 3.553883 11.69317 0 4.394552 0 9.344038 0 28.95749 0 0 0 21.86579 0 11.00842 0 33.35947 4.386605 8.229348 0 39.50945 0 8.966905 0 9.003387 0 9.447464 0 54.09758 0 8.139286 Compound :1,2-Dimethyl-4-Benzyl Benzene PPM R#1T R#4S R#4T 0 55.54809 0 81.10377 0 13.31988 0 23.8496 0 84.05308 0 6.696385 0 10.94399 0 7.269401 0 58.40668 0 1.424237 0 9.020566 0 4.637875 0 3.417665 0 0 0 39.29219 0 0 0 38.66496 0 0 0 38.66496 0 0 0 55.20666 0 0 0 8.27806 0 ' 0 0 52.98921 0 0 257 GC Data For Run 9 GC Data On Concentration Of Target Organic Compound :Xylene Compounds For Run 9 Xylene Area ppm ppm ppm Day REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 1 266633 45515 169060 107.9752 18.43166 68.4622 6 40518 0 169060 16.40809 0 68.4622 13 0 0 99381 0 0 37.74418 20 0 0 47903 0 0 18.18175 27 0 97741 0 0 43.0232 Compound Day 1 6 13 20 27 Diphenyl Diphenyl Area ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 1144032 73963 22498 0 25418 17217 0 0 0 2334758 2334758 1741993 823501 1659993 463.2849 29.95191 8.544576 0 11.18838 6.972162 0 0 0 0 945.4789 945.4789 661.5962 312.5626 730.6884 Compound Day 1 6 13 20 27 Diphenyl Ether Compound Diphenyl Ether Area ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 5531308 631377 192669 88368 177821 191791 74552 0 0 10851424 10851424 7945759 3870408 7494024 2239.947 255.6812 73.17427 33.54038 78.27246 77.6673 30.19043 0 0 0 4394.371 4394.371 3017.741 1469.027 3298.686 Compound Diphenyl Methane Compound Diphenyl Methane Area ppm ppm ppm Day REACTOR2 REACTOR3 REACTOR5REACTOR2 REACTOR3 REACTOR5 1 6 13 20 27 42197 8931 4624 0 0 0 0 0 0 154933 154933 117002 56655 107379 17.08801 3.61668 1.756161 0 0 0 0 0 0 0 62.74135 62.74135 44.4365 21.5036 47.26561 Compound Benzene, 1,1' Methylene bis (4-methCompound Benzene, 1,1' Methylene bis (4-metlr Area ppm ppm ppm Day REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 1 26564 0 284277 10.7573 0 115.1202 6 0 0 284277 0 0 115.1202 13 0 0 354193 0 0 134.5199 20 0 0 162823 0 0 61.80003 27 0 442849 0 0 194.9313 Compound :1,2-Dimethyl-4-Benzyl Benzene Compound :1,2-Dimethyl-4-Benzyl Benzene Area ppm ppm ppm Day REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 1 122482 0 179022 49.60006 0 72.49639 6 0 0 179022 0 0 72.49639 13 0 0 117363 0 0 44.57361 20 0 0 69284 0 0 26.29698 27 0 114359 0 0 50.33804 258 G C Data On Concentration Of Target Organic Compounds For Run 9 Xylene ppm ppm ppm REACTOR2 REACTORS REACTORS 107.9752 18.43166 68.4622 16.40809 0 68.4622 0 0 37.74418 0 0 18.18175 0 0 43.0232 Diphenyl ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 463.2849 6.972162 945.4789 29.95191 0 945.4789 8.544576 0 661.5962 0 0 312.5626 11.18838 0 730.6884 Compound iDiphenyl Ether ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 2239.947 77.6673 4394.371 255.6812 30.19043 4394.371 73.17427 0 3017.741 33.54038 0 1469.027 78.27246 0 3298.686 Compound Diphenyl Methane ppm ppm ppm REACTOR 2 REACTOR 3 REACTOR5 17.08801 0 62.74135 3.61668 0 62.74135 1.756161 0 44.4365 0 0 21.5036 0 0 47.26561 Compound Benzene, 1,1' Methylene bis (4-meth ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 10.7573 0 115.1202 0 0 115.1202 0 0 134.5199 0 0 61.80003 0 0 194.9313 Compound :1,2-Dimethyl-4-Benzyl Benzene ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 49.60006 0 72.49639 0 0 72.49639 0 0 44.57361 0 0 26.29698 0 0 50.33804 2 Appendix B The i n i t i a l and f i n a l Gas Chromatograph t r a c e s f o r run 260 i s . u s i I U !-\u00E2\u0080\u00A2 I n i t i a l GC t r a c e f o r r u n 5 261 't . ^ 5 1 ) 1 Z . fa t b U . o b 1 i t ) . 1 b 1 I [ c : \u00E2\u0080\u00A2 i . b f i b . b u t >j u y T h e F i n a l GC t r a c e f o r r u n 5 ( D a y 4 1 ) . 262 "@en . "Thesis/Dissertation"@en . "1995-11"@en . "10.14288/1.0050323"@en . "eng"@en . "Civil Engineering"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "The aerobic biological treatibility of a high strength mixed petrochemical industrial sludge"@en . "Text"@en . "http://hdl.handle.net/2429/3979"@en .