"Non UBC"@en . "DSpace"@en . "Nicodemi, Mario"@en . "2019-09-23T08:50:37Z"@en . "2019-03-26T10:33"@en . "

Principled approaches from polymer physics are important to make sense of\nthe complexity of experimental data on chromosome 3D architecture and to\nexplain their underlying molecular mechanisms. I discuss first the current\npicture of the spatial organisation of our DNA across genomic scales at\nthe single cell level, as emerging from technologies such as microscopy,\nHi-C, SPRITE or GAM [1]. Next, I discuss how different models of polymer\nphysics can help understanding the origin of the patterns in the data and\nthe underlying folding mechanisms [2,3,4]. Finally, I show that polymer\nphysics can be used to predict the impact of large mutations (Structural\nVariants) on chromosome structure, in particular on how the network of\ncontacts between genes and regulators is rewired, hence enabling the\nidentification of their pathogenic potential [5,6].
\n
\n[1] R.A. Beagrie, A. Scialdone, M. Schueler, D.C.A. Kraemer, M. Chotalia,\nS.Q. Xie, M. Barbieri, I. de Santiago, L.-M. Lavitas, M.R. Branco, J.\nFraser, J. Dostie, L. Game, N. Dillon, P.A.W. Edwards, M. Nicodemi*, A.\nPombo*, Complex multi-enhancer contacts captured by Genome Architecture\nMapping (GAM), a novel ligation-free approach. Nature 543, 519 (2017).
\n
\n[2] A.M. Chiariello, S. Bianco, C. Annunziatella, A. Esposito, M.\nNicodemi, Polymer physics of chromosome large-scale 3D organisation,\nScientific Reports 6, 29775 (2016).
\n
\n[3] M. Barbieri, S.Q. Xie, E. Torlai Triglia, A.M. Chiariello, S. Bianco,\nI. de Santiago, M.R. Branco, D. Rueda, M. Nicodemi*, A. Pombo*, Active and\npoised promoter states drive folding of the extended HoxB locus in mouse\nembryonic stem cells. Nature Struct. Mol. Bio, 24, 515 (2017).
\n
\n[4] C.A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M.\nNicodemi*, P. R. Cook*, and D. Marenduzzo*, Nonequilibrium Chromosome\nLooping via Molecular Slip Links, Phys. Rev. Lett. 108, 158103 (2017)
\n
\n[5] S. Bianco, D.G. Lupi\u00C3\u00A1\u00C3\u00B1ez, A.M. Chiariello, C. Annunziatella, K. Kraft,\nR. Sch\u00C3\u00B6pflin, L. Wittler, G. Andrey, M. Vingron, A. Pombo, S. Mundlos*, M.\nNicodemi*, Polymer physics predicts the effects of structural variants on\nchromatin architecture, Nature Genetics 50, 662 (2018).
\n
\n[6] B.K. Kragesteen, M. Spielmann, C. Paliou, V. Heinrich, R. Schoepflin,\nA. Esposito, C. Annunziatella, S. Bianco, A.M. Chiariello, I.\nJerković, I. Harabula, P. Guckelberger, M. Pechstein, L. Wittler,\nW.-L. Chan, M. Franke, D.G. Lupi\u00C3\u00A1\u00C3\u00B1ez, K. Kraft, B. Timmermann, M. Vingron,\nA. Visel, M. Nicodemi*, S. Mundlos* and G. Andrey*, Dynamic 3D Chromatin\nArchitecture Determines Enhancer Specificity and Morphogenetic Identity in\nLimb Development, Nature Genetics 50, 1463 (2018).

"@en . "https://circle.library.ubc.ca/rest/handle/2429/71721?expand=metadata"@en . "31.0 minutes"@en . "video/mp4"@en . ""@en . "Author affiliation: Universita' di Napoli"@en . "10.14288/1.0380938"@en . "eng"@en . "Unreviewed"@en . "Vancouver : University of British Columbia Library"@en . "Banff International Research Station for Mathematical Innovation and Discovery"@en . "Attribution-NonCommercial-NoDerivatives 4.0 International"@en . "http://creativecommons.org/licenses/by-nc-nd/4.0/"@en . "Faculty"@en . "BIRS Workshop Lecture Videos (Banff, Alta)"@en . "Mathematics"@en . "Biology and other natural sciences"@en . "Manifolds and cell complexes"@en . "Mathematical biology"@en . "Models of Polymer Physics for the 3D Structure of Chromosomes"@en . "Moving Image"@en . "http://hdl.handle.net/2429/71721"@en .