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Abstract

We propose a definition of equivariant Chow groups for schemes with a torus action and develop

the intersection theory related to it. The equivariant intersection theories that have been

considered in the past have been the Chow groups and the K-theory of the quotient scheme,

as well as the equivariant K-groups of the original scheme. The equivariant Chow groups are

related to all of these. At first glance, we would expect a strong relationship with the equivariant

K-groups. As it turns out, the equivariant Chow groups are more closely related to the Chow

groups of the quotient scheme.

We chose to restrict to tori since for them the equivariant cycles are of a particularly nice

form. For general groups the equivariant cycles are harder to describe, and so the intersection

theory is far messier, if it even exists. By restricting to tori, we are able to define an equivariant

multiplicity that behaves similarly to the degree in the projective case. In particular, we are

able to show that for certain schemes, the equivariant multiplicity of an equivariant cycle in

the equivariant Chow group is defined and is an invariant of that cycle.

While much of this work involves generalizing the work of others, in particular the work of

Fulton, Rossmann and Borho, Brylinski and Macpherson, our approach is new. The equivariant

Chow groups have not been considered in the past and relating the equivariant multiplicities

to the equivariant Chow groups is new as well.
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Chapter 1

Int rod uct ion

In this work, we propose a definition of equivariant Chow groups and work out the intersection

theory associated to it. For varieties with a group action, the equivariant intersection theories

considered in the past have involved the Chow and K-groups of the quotient varieties as well

as equivariant K-theory on the original variety. The Chow group we propose is related to all of

these. With respect to KT (X), the equivariant Chow groups provide a geometric interpretation

similar to that existing between the usual Chow and K-groups. Unfortunately, the analogue is

not quite as strong as we would like. As it turns out, the equivariant Chow groups are more

closely related to the Chow groups of the quotient variety. For these, the main advantage is

that the equivariant Chow groups are defined on the original variety rather than the quotient,

and so are easier to calculate. In defining the equivariant Chow groups, we have followed Fulton

[6] very closely. By and large, the only difference between his work and ours is that we need to

check for equivariance.

The groups we consider almost exclusively are tori. The reason for this is that cycles stable

under a torus action are of a particularly nice form, and the intersection theory is fairly clean.

In the last chapter we do consider briefly the case of reductive groups. The problem with a

group G with maximal torus T is that the G stable are not particularly nice, so that any type

of rational equivalence that respects the group action is quite messy. We also find that these

groups are subgroups of the equivariant Chow groups with respect to the torus.

By restricting to tori, we are also able to avail ourselves of an equivariant multiplicity similar

to the degree in the projective case. In particular, for varieties of a certain form we are able to

show that the equivariant multiplicity of a cycle at a fixed point is an invariant of that cycle.
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Chapter 1. Introduction^ 2

So, along with the Chow groups, we also develop equivariant multiplicities. Given a projective

variety X stable under a torus action and an equivariant vector bundle E defined on X, we are

able to obtain in a purely combinatorial manner a characteristic number formula relating the

weights of E over the fixed points to the geometric multiplicity.

Since we are proposing a new definition, very little has been done on equivariant Chow

groups. The individual pieces have been covered extensively, though. Quotient varieties have

been considered in the past by many authors. In particular, for intersection theory, we have

Kraft [11] and Knopf who have considered vector bundles on the quotient varieties, Danilov [4]

and Ellingsrud and Stromme [5] who have found the Chow groups of various quotient varieties.

Equivariant multiplicities have been considered by Rossmann [17] who has calculated them on

subvarieties of smooth varieties with torus action, and by Joseph and Borho, Brylinski and

Macpherson [1] who consider the quotient variety X = G/B, where G is a Lie group. In

fact, Borho, Brylinski and Macpherson relate the equivariant multiplicity to KT(X). All these

references work on the tangent space of the variety though. We, however, define the equivariant

multiplicity on the variety itself. Finally, intersection theory as developed by Fulton [6] plays

an important role in our work. In fact, except for the equivariant multiplicity results, we have

essentially translated his results from the non-equivariant setting to the equivariant one. With

respect to KT(X), we have Nielsen [16] and Iversen and Nielsen [9]. The former has shown the

localization theorem for non-singular projective varieties, and the latter has arrived at a formula

valid for 1-dimensional tori involving the Chern classes of a vector bundle and the equivariant

multiplicity of a zero cycle. A similar result has been shown by Brion [3].

In the second chapter, we introduce the notation, definitions, results, and constructions we

shall be using throughout. These are the same as those of usual intersection theory, but they

are done in the equivariant setting.

We define the notion of equivariant Chow group in the third chapter. We show that the

properties Fulton considers in [6] Chapter 1 hold in the equivariant case. We also consider how

the equivariant Chow groups change as we change tori. This allows us to relate the equivariant
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Chow groups for different tori.

In the fourth chapter, we consider formal characters and equivariant multiplicities of mod-

ules. Since we need equivariant multiplicity in fairly great generality, we consider a definition of

the formal characters that is valid only under certain conditions, but which is valid independent

of the sign (or zero-ness) of the weights. This allows us to define the equivariant multiplicity

under certain conditions independent of what the weights may be.

In the fifth chapter, we consider equivariant multiplicities on varieties. We show that for

projective varieties this is defined for T-stable cycles and is an invariant of the cycle in the

equivariant Chow groups. We also see how multiplicities behave with respect to various maps,

and we derive a few equations concerning multiplicities on vector bundles. For non-projective

varieties of a particular form, this allows us to show that the equivariant multiplicity is also an

invariant of the cycle in the equivariant Chow group.

We define equivariant intersection with an equivariant line bundle in the sixth chapter. In

the third chapter, the generalization of Fulton [6] was fairly straightforward. In this chapter,

the differences between equivariant and usual intersection theory begin to show. We define the

intersection as in Fulton [6]: to a line bundle we associate a section, a Cartier divisor, and a

Weil divisor. We have several possibilities of definitions of equivariant intersection, depending

on what conditions we place on the section. We chose to demand that it be equivariant. The

advantage of this choice is that equivariant intersections then have equivariant properties. In

particular, we are able to find the equivariant multiplicity of the intersection in terms of the

weights of the line bundle and the equivariant multiplicity of the cycle. The problem we have

is that an equivariant section need not exist. This means that the properties that Fulton shows

in [6] need not hold in all generality. We show they do hold, subject to the existence of sections

on the appropriate varieties.

In the seventh chapter, we consider intersections with equivariant vector bundles. As in the

previous chapter, we have problems with the existence of sections. This forces us to restrict

the vector bundles we can intersect with. Because of the conditions we must place on these
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bundles, it does not seem worthwhile to define an equivariant intersection of cycles on a variety

with T-action. We also consider equivariant multiplicities with respect to these intersections.

We derive some characteristic number formulae for these.

In the eighth chapter, we consider previous work that relates to our work. We show that if

the action is free, the Chow group of the quotient is the equivariant Chow group, after tensoring

wih Q.We also consider how the equivariant Chow group is related to the equivariant K-groups.

This shows that equivariant multiplicity is also an invariant of the quotient variety.



Chapter 2

Basic Constructions

We collect the basic definitions, results and constructions we shall be using throughout this

work. These are the usual ones of algebraic geometry, but we do them in the equivariant

setting. The constructions are cones, blowing-up and vector bundles. These have all been done

in Fulton [6] appendices A and B.

2.1 Notation

Notation:

k is an algebraically closed field

T is an r-dimensional torus with Lie algebra T

X : T Gm is a character of T

X(T) is the set of characters

R(T) = Z[X(T)] is the representation ring

A =dx:r-4kis the differential of x, called the weight of x

If T= EK 19,72 , we will occasionally write A as (Ai, A2,^, A r )•

A(T) is the lattice of weights

In general, if f is a weight vector of a module M with T-action, we will

write its weight as Af, and character as xf.

The main schemes we will be considering are subschemes of Pn and A.

Let Pn be the projectivization of An+ 1 = Spec(k[xo, , xd), where xi is a weight vector of

weight —Ai. Let Pi = (0 : : 0 : 1 : : 0) be the point in Pn with a 1 in the i-th position.

Let Ui = Uzi . We also assume that x E (pn)T is Po.

5



Chapter 2. Basic Constructions^ 6

If P 1 has the T-action defined by the weight A, we will write it as P. Unless otherwise

stated, we will be assuming that PI = Proj (k[xo, xl]), where xo has weight 0 and x1 has weight

A. Unless otherwise stated, P 1 will be P6.

If An has weights Ai = (Ali, ... , A ni), we will occasionally write these as

/ An Al2 Aln 

A21 A22 A2n
(2.1)•

•
•

\ Arl Ar2 Arn •

While the form of the matrix may seem odd, it turns out that the kernel of the linear transfor-

mation defined by this matrix is the cycles T-rationally equivalent to 0 in An .

2.2 Elementary Definitions and Results

Definition: X is a T-scheme if X has a T-action defined on it. We write the T-action as

a:TxX—>X^ (2.2)

(t, x)i— t • x.

In general, we assume that all varieties are defined over the field k and are irreducible and

reduced. We will also be assuming that there is a cover of X by open affine T-subsets U such

that U is a T-subscheme of Am for some m. We make this assumption so that Ou has a

T-grading. Note that if X is normal, then Sumihiro's Theorem shows that X is of this form.

Remark: The T-action on P 1 is defined by a character. So, the set of T-actions on P 1 is in

1-1 correspondence with X(T).

Definition: f : X —0' is a T-morphism if f(t • x).---t•f(x) in Y. We occasionally call such

morphisms equivariant morphisms.

Remark: Note that the set of weight vectors f E R(X)* of weight A is in 1-1 correspondence
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with the maps f : X -+ Pi. In fact, if f* : Opi^Ox is the morphism on structure sheaves,

then f E R(X) * is defined by f * (xi/x0)•

Proposition 2.2.1 If X is a T-scheme, then its normalization is a T-scheme.

Proof: This is a local assertion. Suppose that X is an affine T-scheme and A = Ox. Let K

be the quotient field of A and let A' be the integral closure of A in K. Since A has a T-action,

K does as well. We want to show that A' is invariant under the T-action. Suppose that r E A'

solves the equation

xn + an_ixn -1 + • • + ao = 0.^ (2.3)

Since

(t • r)n + t • an_1(t • r)n -1 -1- • • t • ao = t • (rn + an-irn-1 + • • + ao) = 0,^(2.4)

t-r E K solves the equation

xn t • an_ ixn- 1 +...  + t • ao = O.^ (2.5)

So, t • r E A', and A' is T invariant.^ 0

Lemma 2.2.2 Let f E R(X)* be a weight vector of T. If U is an open affine T-subset of X,

there are weight vectors a, b E Ox (U) such that f = alb.

Proof: We proceed by induction. Note that for the trivial torus, the result is obvious. Suppose

the result is true for dim T'^n - 1, and T =^x Gm. Then, locally f = alb where

a, b E Ox(U) are weight vectors of T'. Gm induces a grading on Ox(U), so a = E iEz

b = E iEz bi, and all but a finite number of the ai and bi are zero. Let io and jo be the smallest

integers such that ai o 0 0 and bio 0 0. Then,

a^aio + E i>jo ai
(2.6)

b^4-Ei>jobj.
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So, if f has weight m with respect to Gm ,

t • -1; = en =  . °^=^°^a^a ticiai + E tiai^ai + E
b tlobjo + E Obi^bio + E ti—job;

^(2.7)

So,

tin (abjo + a E^= tio—jo (baio^ai).^(2.8)

Since Ox(U)[t] has the usual Z-grading, we have tm =^and abjo = baio , or alb = aio lbjo •

The reason we demand that X be locally a subscheme of affine space is so that this lemma

holds. If we could ensure that f was always locally a ratio of weight vectors of Ou, we would

not need the assumption.

We have the following basic lemma on T-schemes:

Lemma 2.2.3 If X is a T -scheme with components Xi, then the Xi are T invariant.

Proof: This is just the statement that the minimal associated primes of a module with T-action

are T stable. For a more geometric proof, we consider the map,

^a : T x X1— X^ (2.9)

(t,x)1-4t • x.

Since T x Xi is a variety, a(T x Xi) is as well. Since Xi is a maximal subvariety of X and

C a(T x Xi), we have a(T x Xi) = Xi.^ ^

2.3 Cones and Blowing -Up

The constructions of this section are found in Fulton [6] appendix B.5 and B.6. Let S =

be a graded Ox-module with a T-action such that

1. So is T-isomorphic to Ox,

2. Si is locally generated by a finite set of elements^• • • , ft.} such that t • fi E Si,
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3. Si generates S as an Ox-algebra.

We associate to S its cone and its projective cone,

C(S) = Spec(S,7_0S7,),^ (2.10)

P(C(S)) = Pro.i(e,7—oSn).^ (2.11)

Since S has a T-action, these schemes are T-schemes.

The cones we are particularly interested in are those defined by T-subvarieties and blow-ups.

Let X be a T-subscheme of a T-scheme Y. Ox is defined by a sheaf of T invariant ideals I

of Oy. The cone to X in Y is defined as

Cx (Y) = SpeC(Ccto/n/p+1 ).^ (2.12)

Cx (Y) is a T-scheme. Since the map Ox 10/I is a T-isomorphism, the induced morphism

on schemes p : Cx (Y) X is a T-morphism.

If Y is a T-subscheme of An for some n, then the generators of I can be chosen to be weight

vectors. These weight vectors determine the action on Cx(Y). When Y is locally a subspace

of An , this construction glues together to define the cone.

Note that if Y is nonsingular, x E YT and mx = (h, ..., fn.) is the maximal ideal defining

x where the h are weight vectors, then

Cx (Y) = Tx (Y) = Spec(Symm(mx /mD v )
^

(2.13)

and

OTT(y) = SYmm(mxim!) = 0 Nt (Y)•
^ (2.14)

With the same notation, the projective cone is

P(Cx(Y)) = Pro.i(e,70In fin+1).^ (2.15)
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Again, this is a T-scheme and the morphism p : P(Cx(Y)) -4 X induced by Ox c I° II is a

T-morphism.

If Y is a T-subscheme of An for some n E Z, we can construct P(Cx(Y)) more explicitly.

Let I = (fi,...,fr ) where the fi are weight vectors of weight -Ai. P(Cx(Y)) is a T-subscheme

of X x pr-1 where pr-i Proj(k[fi, • • • , id) = Proj(k[xl,..• , x,.]). Glueing this local con-

struction together, we get P(Cx(Y)) for the non-affine case.

Note that if we set the weight of xi to be -Ai - A for all i and for some A E X(T), then the

action induced on P(Cx(Y)) is the same as the original one.

P(Cx(Y)) has a canonical line bundle defined on it. Locally, we can define this as the pull

back of 0(1) from Pr-1 to P(Cx(Y)).

We can also close a cone off in a projective space. Let S[z] be the graded algebra with

graded pieces

skin = Sn ® (sn_1 ® z) ® (sn_2 ® z 2) e ® zn.^(2.16)

We set

P(S 1) = Proj(S[z]).^ (2.17)

If we set A = 0, then the open set defined by inverting z is T-isomorphic to the cone C(S).

If X y Y is a T-subscheme of Y, the blow-up of Y along X is defined by

Blx(Y) = Proj(C°_0In ).^ (2.18)

The map it : B1 (Y) Y induced by Oy I° is a T-morphism, and it is proper, birational,

and surjective.

As before, if Y is a T-subscheme of An , I =^, fr ) where the fi are weight vec-

tors of weight -Ai. Blx(Y) is a subspace of Y x Pr -1 where Pr -1 =^fr]) =

Proj(k[xi,... ,x,•]). If we set the weight of xi to be -Ai - A, then the action on Blx(Y) is

unchanged. As before, this glues together to give B1 (Y) in the non affine case.
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Let E be the pullback of X to Blx(Y). This is an effective Cartier divisor and is defined

locally by pairs ((la , fa), where fa E Otra is a weight vector. In fact, E is the Cartier divisor

associated to the canonical line bundle on Blx(Y) obtained by pulling back 0(1) from Pr -1 .

2.4 Equivariant Bundles

The contents of this section are to be found mostly in Fulton [6] apppendix B 3.

A T-vector bundle p : E^X of rank e on a T-scheme X is defined by the following

conditions:

1. There is a collection of open T-subsets {Ui of X such that coi : E 1u4^U, x Fi, Wi

is a T-morphism and Fi is a representation space for T of dimension e,

2.

So1 ocoi 1 :^Ui F^Ui 11 Ui F'^ (2.19)

is the identity when restricted to Ou,nu, x 0 and is linear on the F's. By this we mean

that on the structure sheaves, the 99i 0 6 1 are defined by e x e invertible matrices with

coefficients in Ou, nu.7 . We denote these maps by gii 0 Lulu, x OF -4 OUinU, X OF'•

E can be determined by either the (pi, or the

Note that the actions on F and F' need not be the same. So, while the yoi o 6 1 are

equivariant, the gii need not be given by T invariant matrices.

Definition: We define a weight section s of E of weight A = dx to be a morphism s : X -4 E

such that p o s = id, and t -1 • s(t • x) = X(t)s(x). s is a T-section if A = 0.

A weight section is defined by a collection of weight vectors fi E R(Ui) * such that fi = gii fi.

Since we will be especially concerned with T-line bundles L, we consider this case explicitly.



Chapter 2. Basic Constructions^ 12

If the Fi are spanned by the weight vectors Xi, then F1 = Spec(k[xi]) are 1-dimensional

representation spaces, so the action defined on the Fi is defined by a single character Xi with

associated weight Ai. The gi•  are invertible functions in Ouinui . Since the 99i o 6 1 are equivari-

ant, the gib are weight vectors of weight Ai - Ai. A weight section s of L of weight A determines

weight vectors fi E R(Ui) * of weight -Ai - A. To see this, let s : OL Ox be the morphism

on structure sheaves. Locally, we require that on the scheme, t - s(t-1 • xi) = x(t- i)s(xi). This

translates as t • xi(t- i)s(xi) = x(t -1 )s(xi) on the structure sheaves. So, s(xi) E R(Ui)* is a

weight vector of weight -Ai - A.

Definition: We say a T-line bundle has weight A at x E XT if the weight of the representation

space in Lx is A.

To projectivize T-vector bundles, we consider them as equivariant Ox-modules and take

P(E) = Proj(SymmEv ).^ (2.20)

P(E) is a T-scheme. If E = U x F locally where F has a basis of weight vectors X1, • • • , Xe,

with related functions xl, , x e , then on the open subset U x Uk of P(U x F) defined by

inverting xk, the xi/xk have weight -A + Ak, and the associated vectors Xi/Xk have weight

A3 - Ak. If we set the weight of Xi to be Ai + A for all i and some A, then the action on P(E)

is unchanged.

P(E) has a canonical T-line bundle 0(1). On U x Uk it is defined by the free Ou x uk -module

generated by 1/xk. So, over U, 0(1) has weight Ak.



Chapter 3

Formal Characters and Equivariant Multiplicity

We define the formal character and equivariant multiplicity associated to a finitely generated

module over a polynomial ring, both with T-action, and develop some of its properties. While

most of the material in this chapter can be found elsewhere, it seems that none of it can

be found in a single reference. In particular, the results concerning changes of torus seem

to have only been used implicitly. In the first section, we define the formal character of a

finitely generated module with T-action for non-zero weights and then extend this definition

under certain circumstances to the arbitrary weight case. In the second section, we use formal

characters to define the notion of equivariant multiplicity. References for the material in this

chapter are Borho, Brylinski, and Macpherson [1] and Rossmann [17] . We follow mainly the

presentation of Rossmann.

3.1 Characters

In the past, formal characters have been defined mainly for the "un-mixed" weight case. Since

we need characters for arbitrary weights, we follow the presentation of Rossmann [17] and define

them indirectly for the non-zero weight case. We then show how the formal characters behave

as we change tori. Finally, we consider bi-graded modules and extend the definition of formal

characters to this case. Using the change of torus property, we can then define the formal

character for the "mixed" and zero weight cases.

Let R = k[xi,x2,...,x n ] be a polynomial ring on which T acts diagonally. So, t•xi = xi(t)xi

for some Xi E X(T), for all i.

Definition: M is a R, T module if M is a finitely generated R-module with T-action such

13
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that it has a finite set of generators^fm that are also weight vectors. Recall that if

M has a T-action, then t • (rm) = (t • r)(t • m) for t E T, r E R and m E M.

If M is a R, T module, let x E X(T) and dx = A.

Mx = MA ={f E M:t•f=x(t)f for all t}.^ (3.1)

We have

M = eAEA(T)MA•^ (3.2)

If all the MA are finite dimensional, the usual character as defined by Borho, Brylinski and

Macpherson [1], say, is

chT(M)^E (dim MA)e A^(3.3)
.EA(T)

chT(M) E S-1R(X(T)), where S is the multiplicative set generated by the 1 - eA for all

A E A(T).

We wish to consider the more general case where dim MA may be infinite To do this, we

have to define the character indirectly. Rossmann [17] has shown

Theorem 3.1.1 If M is a finitely generated R, T module such that Ai 0 0 for any i, then

chT(M) E S-1R(X(T)) is defined uniquely by:

I. If M is finite dimensional as a k-module, then

^chT(M) = E (dim MA )e A^(3.4)
AEA(T)

2. If

0 -4 M' M M" -> 0^ (3.5)

is an exact sequence of R, T modules, then

^

chT(M) = chT(0)chT(M").^ (3.6)
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3. If F is a finite dimensional T-module, then

chT(M F) = chT(M)chT(F).^ (3.7)

Furthermore, chT(M) is of the form,

chT(M) = AT(R) -1 E aAe A^(3.8)
AEA(T)

where AT(R) =^eA0, as E Z, all but a finite number of the a), are zero, and if as 0 0,

then A is a sum of the Ai and the Afi .

Proof: The proof is contained in Rossmann [17]. The method of proof is to resolve M into

free R, T modules and then take the characters of these. AT (R) comes from setting Ri

k[xi,^, xn] and considering the exact sequence

0^xiRi --+^Ri+i --÷ 0.^ (3.9)

We have chT(Ri+i) = (1 — eAs)chT(Ri), and using induction then yields

ChT(R) = 11(1 —^)-1.^ (3.10)
i=1

Remark: If dim MA < oo , for all A, Borho, Brylinski and Macpherson show that the usual

character r EA (T) (dimMA)eA satisfies all three properties. So chT(M) is really an extension of

the usual character.

Note that if T = Gm and all xi have weight 1, then we get the usual Poincare series

EZ)=0 dim Mn t" for M.

The theorem has the following corollary:

Corollary 3.1.2 If = k[yi,... ,yk] with the yi as weight vectors, then M R' is a R 0 ,

T-module, and

chT(M 0 R') = chT(M)chT(R').^ (3.11)
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Proof: If M has resolution

0 MN--+ ••Mo M -4 0,

then M R' has resolution

0 -4 MN 0 /7' -4 • • • -4 MO Rt M RI —> O.

The result then comes from chT(R R') = AT(R) -1 AT (RI ) - 1

(3.12)

(3.13)

0

As with R-modules, R, T modules have composition series of R, T submodules. To show

this, we start with the following lemma:

Lemma 3.1.3 If v is a weight vector of M, then its annihilator Ann(v) is a T invariant ideal.

Proof: Note that

av = 0 •:=> xv(t)(av) = 0 <#. a(t • v) = O.^ (3.14)

So, Ann(v) = Ann(t • v). Also,

av = 0 e#, (t • a)(t • v) = t • (av) = O.^ (3.15)

So, Ann(t • v) = t • Ann(v).^ ^

Theorem 3.1.4 I. If M is a R, T module, then M has a composition series of R, T modules:

0 = Mo C M1 C • • • C Mk = M^ (3.16)

where Mil M;_1 is T -isomorphic to the 1-dimensional R, T module RIPi • vi, where Pi is a T

invariant prime ideal of R and vi E M is a weight vector of weight pi .

2.

chT(m) = EeP'chT(RIPi).^ (3.17)
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Proof: For 1, the proof is exactly as in Lang [12]. All that needs to be remarked is that in

choosing a vector in M, we can choose it to be a weight vector, so that its annihilator is a T

invariant ideal. Note that if all the weights are of one sign, this is just be the decomposition

into highest weight modules.

2. This follows from the exactness property of chT( — )•^ ^

We will also need to know how chT(M) behaves as T changes. As far as we know, these

results have only been used implicitly, but have never been proved explicitly.

Suppose co :^T is a (homo)-morphism of tori. Let t' E T' . If T eli' iGm , we can

decompose w into the characters cc :^—+ Gm . So, w = (w1, , w r ). We set

dyo = (dwidt' ,^dco,.dt').^ (3.18)

Suppose x : T -4 Gm is a character. Considering x o yo : —4 Gm as a function, we see that

d(x o cc)^(dr) o (4).^ (3.19)

Theorem 3.1.5 Let co :^T be a morphism of tori, and define the T'-action on R by

t' • x = w(e) • x for all x E R. Let M be a R, T and a R, T' module such that

so01r M^T 0 M

\
M

(3.20)

commutes. Then chT,(M) = chT(M) o dw.

Proof: We prove the results by considering the properties of chT(M)odw. Suppose M is finite

dimensional as a k-module. If A' is a weight of T', then MA, is generated by T' weight vectors

vi, , vi. Let dx' = A'. Since each vi has a decomposition into T weight vectors, we get,

MA' C 84=1/1/4^ (3.21)
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for some set of weights Ak E A(T). We assume this set is minimal. Now, if

vi = wi + • • • + Wk,

t' • vi = X (e)vi = X1 ° C5'(e)wl + " • + Xk ° 60 (e)wk,

and Xi 0 co = x' for all j. So, MA, C MA, for all j, and

k
vu'j=1 Mai = MA'.

So, if M is finite dimensional as a k-module,

k

chr (M) = E (E dim MA, )ear = E (dim mA )dodw = chT(M) o dcp.
VEA(r) j=1^AEA(T)

(3.22)

(3.23)

(3.24)

(3.25)

The other two properties, exactness and multiplicativity, follow from the exactness and multi-

plicativity properties of chT(M). 0

This restriction property allow us to define chT(M) under certain conditions when some of

the Ai are zero. Suppose R has its usual grading by degree and M is a graded R,T module.

We will call such modules bi-graded R,T modules. The usual grading determines a G m-action

on R and on M, which we label by T1. So, if M is bi-graded, then it is a R, T x T1 module. If

A2 0 0 for any i, let

coc, : T -+ T x^ (3.26)

t^(t, 1 ).

Then,

chT(M) = chTxTi(M) o dcp

and since ATxTi (R) o dcp = AT(R),

AT (R)chT (M) — (AT xi\ (R)chT xTi (M)) dcp.

Since dcp = 1 ® 0, we write this as

AT(R)chT(M) = (tTxT1(R)chTxT1(M)) IT

(3.27)

(3.28)

(3.29)



Chapter 3. Formal Characters and Equivariant Multiplicity^ 19

Definition: Suppose M is a bi-graded R, T module. Then

^AT(R)ChT(M) ATxTi (R)ChTxTi (M) IT •^(3.30)

Remark: We could have extended the formal character in several ways: for the multiplicity,

we really only need the numerator of the formal character, so we could have ignored the de-

nominator even when some of the Ai were 0. Alternatively, we could have taken a residue. The

former has the problem that its formal properties are not easy to prove, while the latter has

the problem that the restriction property of tori becomes hard to state. Since all modules we

consider are bi-graded R, T modules, we decided to use the restriction property even though

greater generality could have been obtained using residues.

In future, if M is a bi-graded R, T module, and we do not specify Ai 0 0 for all i, we shall

be using this definition. For completeness, we list its properties.

Proposition 3.1.6 Suppose that M is a bi-graded R, T module.

1. If Ai 0 0 for all i then the two definitions of L.T(R)chT(M) agree.

2. If

0 -4 M' M M" 0^ (3.31)

is an exact sequence of bi-graded R, T modules, then

AT (R)chT(M) = AT (R)chT (0) + T (R)chT (M).^(3.32)

3. If F is finite dimensional as a k-module, and is a bi-graded R, T module, then

^

AT(R)chT(M F) = AT(R)chT(M)chT(F).^(3.33)

where chT(F) is the usual character of F.
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4.
AT(R)chT(M) = > ^ (3.34)

AEA(T)
where a), E Z, and all but a finite number of them are zero. Also, as 0 0 implies A is a sum of

the Ai and the AA.

5. If M is a bi-graded R, T module, R' =^,y,.n] has a T-action, then

AT (R ® R')chT(M ® R') = AT (R)ChT (M)•
^ (3.35)

6. Let co :^-4 T be a morphism of tori, and define the action of T' on R by t' • x yo(e)•x.

If M is a bi-graded R, T module, and

‘oxi
T'xM --+ TxM

\^(3.36)

M

commutes, then

(AT(R) o cl(P)AP(R)chT'(M) = (ATI (R))(6•T(R)chT(M)) o dw.^(3.37)

7. If f E R is a weight vector and is homogeneous in the usual sense and f acts as a

non-zero divisor on M, then

AT(R)chT(M f M) = (1 — eAf )AT(R)chT(M).^(3.38)

8. If M is a bi-graded R, T module, then M has a composition series

0=M0-4Mi-4•••—>Mk=M^ (3.39)

of bi-graded R, T modules such that

RI Pi • vi^ (3.40)
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for Pi a T x T1 invariant prime ideal of R and vi a T x T1 weight vector of M. Under these

conditions,
k

(R)ChT (Al) =^eAvi AT (R)chT(R/ Pi).
i=1

Proof: Only 6 is not a direct consequence of previous results. For 5, recall that

chTxz (M 0^= chTxT, (M)ATxTi (RI ) - 1 •

and AT x Ti (R 0 R') = AT x71(R) AT xTi(-RI) . So,

ATxTi (R -Fe)chTxTi (M 0 R') LTXTi (R)ChTxTi (M)

Restriction to T now yields the result.

For 6,

(3.41)

(3.42)

(3.43)

(AT^(R) o (dyo x id))AT' x T1 (R') h^(M) A^(pp\ (A^(pm^114.\ ^id))k C..71 X T1^/^—T' xTi k-^XT1 k.. 1./CrbTXTikl."1 ) kwp x 'tun

(3.44)

and on restricting,

AT (R) 0 d(6°)(AT, (R)ChT'( 1)) AT' (R)(AT(R)chT(M) o
^

(3.45)

For 7, while we have not stated it explicitly for non bi-graded modules before, we have used

it in Theoren 3.1.1 to show chT(R) = (R)-1 0

Remark: Note that 6 does not yield much if Ai = 0 for some i. In this case, all it yields is

= 0. Also note that if M and R have trivial T-action, but are Z graded, then chT xTi (M) is
the usual Poincare series, E(dim MOO.

Definition: If M is a bi-graded R,T module, or R has no Ai = 0 and M is a R,T module, we

will say that M is quasi bi-graded.
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3.2 Equivariant Multiplicity

Using the formal character defined for quasi bi-graded modules, we define the equivariant mul-

tiplicity of a quasi bi-graded module. While equivariant multiplicities have been considered for

the non-zero weight case, the zero weight case has not to have been treated in the past.

Definition: Suppose M is quasi bi-graded. If we consider AT(R)chT(M) as a function in

A(T), where ea = 1 + A + a2 +•• • , then we define the equivariant multiplicity multT(M, R) of

M as the first non-identically zero term in LT(R)chT(M).

From the properties of AT (R)ChT(M) we get:

Proposition 3.2.1 Suppose M is a quasi bi-graded module.

1.

multT(M, R) = 
N
— E aAAN

1

^

! AEA(T)
^ (3.46)

for some N E Z, as E Z, all but a finite number of the as are zero, and as 0 0 implies that A

is a sum of the Ai and the Afi .

2. If R' is a polynomial ring with T-action, then

multT(M 0 R' , R R') = multT(M, R).^ (3.47)

3. Let cp^T be a morphism of tori, and define the^action on R by t' • x yo(e) • x

for all E R. If

^T i X M^
sox ]^

7' X^M

^\1^
(3.48)

M

commutes, then

([J(—A 1 ) o dOmuitr (M,^Y)(multT(M , R) o d(p)^(3.49)
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.1. Suppose f E R is a weight vector which is homogeneous in the usual sense if R has some

Ai = 0. If f acts as a non-zero divisor on M, then

multT(M/fM R) = —A fmultT(M , R).^ (3.50)

Furthermore, if d(M) is the Krull dimension of M, then

d(M/ f M) = d(M) — 1.^ (3.51)

5. M has a filtration by quasi bi-graded modules with quotients isomorphic to RI Pi • vi where

the Pi are equivariant prime ideals of R and the vi are weight vectors of M. With this notation,

if J is the set of i where AT(R)chT(RI Pi) has its leading term of minimal degree, then

multT(M, = E multT (R I Pi, R)^ (3.52)
iE,7

Proof: Except for 5, these are all consequences of Proposition 3.1.6. The second part of 4 is a

property of Krull dimension. For 5, M has a composition series with factor modules R/Pi. So

k
(R)ChT (M) = E ell' AT (R)chT (R Pi, R)

i=i
(3.53)

for some weights pi. Let J be the set of i where the leading term of AT(R)ehT(R/Pi) is of

minimal degree. Since ePi does not affect the multiplicity, we have

multT(M, R) = E malty. (RI Pi, R).^ (3.54)

0

Note that 2 and 4 have the following corollary:

Corollary 3.2.2 Suppose that R' = k[y] ..yd, where the yi are weight vectors of weight pi

and M is a quasi bi-graded module. We can consider M as a quasi bi-graded R® R', T module,

where (1®y)m = 0 for all y E R' and m E M. Then M MORV( 1 0Y1,• • • , 1 0N-1)(MOR'),

and identifying M with this module,

multT(M, R 0 R') = II( — ili)multT(M , R).^ (3.55)
i= 1
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Proof: 1 0 yi acts as a non-zero divisor of M R7(1 0 yl, • • • ,1 0 yi-i)(Al R')^^

We also have

Lemma 3.2.3 If M is a zero-dimensional quasi bi-graded R, T module, then

^

multT(M, R) =^Ai ) dim M.

Proof: M is a finite dimensional k-vector space, so,

ChTxTi (M)^
E^dim M(A x Ai)`'

(AxA0EA(TxTi))

and

(3.56)

(3.57)

)eAxAi.dim M(A x Ai

n11( ,_ eAixi,ATxTi(R)chTxTi(m).^E^(3.58)
i=1^(AxAoen(TxTi)

On restricting to T, the first term of (1 — eA, x 1) IT1 is --Ai. On restricting, since the e' in the

sum do not affect the first term, we get the result.^ ^

By Proposition 3.2.1 part 1, we can consider multT(M, R) as a polynomial in A(T) of degree

N. If M is a quasi bi-graded R, T factor module of R, then multT(M, R) is a polynomial in n

variables of degree N.

we can determine N precisely:

Theorem 3.2.4 In Proposition 3.2.1 part 1, N = n — d(M).

Proof: The proof is a slight variation of that in Borho, Brylinski and Macpherson [1]. We

prove this by induction on d(M). Our hypothesis is that for d(M') < d(M), multT(M, R) is a

polynomial of degree N' = n — d(M'), and (-1)N'InuitT(M i, R) as a polynomial is positive on

positive weights.

If d(M) = 0, then the previous lemma shows that (-1) Nmu/tT(M, R) is positive on positive

weights. Suppose d(M) > 0. Let f E R — Pi be a non-constant weight vector. If L = RI Pi,

multT (L f L, = (— f)multT(L, R)^ (3.59)
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and

d(L/ f L) = d(L) —1.^ (3.60)

Since (-1)N+ 1 MUitT (L I f L, R) is positive on positive weights, (-1)NMUitT(L,R) is as well.

Since multT(M, R) is a sum of the mu/tT(L,R) with positive coefficients, (-1)NmuitT(M,R)

is also positive on positive weights, and is a polynomial in A(T) of degree N. ^

Note that the theorem implies that while muitT(M,R) may be zero, considering it as a

polynomial on A(T), it is non-zero.

If T = Gm, and all the xi have weight 1, then multT(M, R) is the usual multiplicity of a

module over a polynomial ring.

We also have the following Bezout theorem:

Proposition 3.2.5 If f E R is a weight vector acting as a non-zero divisor on a quasi bi-graded

module M, then Mlf M has a composition series with factor modules RIPi. Let J be the set

of i with d(RIPi) maximal, and mi the number of times each RI Pi occurs as a factor module.

Then

multT(M f^= (—A f)multT (M , R) = E mimultT(R I Pi, R).^(3.61)
iEJ

Proof: This is a direct consequence of Proposition 3.2.1 parts 4 and 5 and Theorem 3.2.4. ^



Chapter 4

Equivariant Chow Groups

If X is defined over an algebraically closed field k, has a torus action defined on it and is

locally isomorphic to a representation space, we define the equivariant Chow groups AT(X),

and prove some of the basic results of AT(X). The results we are particularly interested in are

those considered in Fulton [6] and the change of torus properties. Most of this chapter concerns

determining the former. In doing this, we have followed Fulton very closely. In fact, the results

we present are really rephrasings of those of Fulton in the equivariant setting. For the change

of torus properties, we need to develop the theory of Chow schemes. We do this in section 4.7.

The results of that section are mainly extensions of results of Brion [3].

Throughout the rest of this work, we will be assuming that all T-schemes X can be covered

by open affine T-subsets that are T-isomorphic to T-subschemes of T-representation spaces.

4.1 Equivariant Chow Groups

We define the equivariant Chow groups. The definitions are the same as in Fulton [6], with

the exception that we demand that the subvarieties be T invariant and that the functions be

weight vectors of weight 0.

Definition: We denote the free group on the set of k-dimensional T-subvarieties by Zr(X).

Definition: Suppose X is an n-dimensional affine T-scheme and f E Ox is a weight vector.

We define

divf = E ordw(f)[W],^ (4.1)
w

26
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where the sum is over all codimension 1 subvarieties of X and ordw (f ) = iow,x (0w,x/f Ow,x)•

When X is not affine this local definition glues together to give a global definition of divf .

Note that if a E Ox (U) is a weight vector, the closure of the scheme defined by a has

T-varieties as components. So, the set for which ordvf 0 0 consists of T-subvarieties and

divf E Z4:_1(X).

If X is an affine T-scheme and if f = a/b E R(X)*, we set

divf = diva — divb.^ (4.2)

When X is not affine, this local definition glues together to give a global definition. Since there

are weight vectors a' and b' in Ox such that f = lb', diva' and divb are T-cycles, divf is a

T-cycle as well.

Definition: a E ZT(X) is T-rationally equivalent to 0 if there exists a collection of k 1-

dimensional T-subvarieties , Vn of X and weight vectors fi E R(Vi)* of weight 0 such

that

a = Edivfi.^ (4.3)
:=1

We define AT (X) as 4(X) modulo this relation.

4.2 Proper Pushforward

Let p : X -+ Y be a proper T-morphism of T-schemes. We define p. : ZIT (X) —* 4(Y). If V

is a k-dimensional T-subvariety of X, let d = [R(V) : R(p(V))]. We set

0^if dimp(V) < dim V
p.(V) =

1 d[p(V)] if dimp(V) = dim V.
(4.4)

We extend this definition by linearity to p. : 4(X) —> ZIT (Y).
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Definition: Let L be a finite field extension of the field K. We consider L as a finite vector

space over K. For f E L, we define the norm Nk(f) of f to be the determinant of the K-linear

morphism defined by multiplication by f in L.

This definition agrees with the definition of the norm as a product of conjugates, as found

in, say, Lang [12]. This is shown in Godement [7] chapter 26, exercises 4 and 5.

Theorem 4.2.1 Let p : X^Y be a proper T-morphism of T-schemes. If a E 4 (X) is

T-rationally equivalent to 0, then p * (a) is T-rationally equivalent to 0 in 4 (Y).

Proof: We can restrict to the case where X is a k + 1-dimensional T-variety, Y = p(X),

f E R(X) * is a weight vector of weight 0 and a = divf. The result is then a consequence of

the following proposition.

Proposition 4.2.2 Let p : X —> Y be a proper surjective T-morphism of T-varieties, and

f E R(X)* be a weight vector. Then

p* (divf ) = {0
^if dim X > dim Y

^

[divNk(f)] if dim X = dim Y
^ (4.5)

where K = R(Y) and L = R(X).

Proof: The proof is as in Fulton, Proposition 1.4. The only thing we have to check is that

if X is a T-variety, then its normalization is also a T-variety. This, however, was shown in

Proposition 2.2.1. ^

To complete the proof of Theorem 4.2.1, note that if f is a weight vector in R(X)*, then

Nk(t • f) = Nk(xi(t)f) = xf(t) dNk(f),^(4.6)

where d = [R(Y) : R(X)]. So, if Af = 0, Nk(f) is a weight vector in R(p(V))* of weight 0. ^
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4.3 Cycle Associated to a Scheme

If X is a T-scheme with components Xi, let mi = /0x. ,x (Oxi ,x) and set

^[X]. Emi [Xi] E Z,T(X).^ (4.7)

If X is a T-subscheme of a T-scheme Y, then [X] E ZT(X) C Z,T(Y), and we write [X] for the

asociated cycle in ZT(Y) as well.

Note that the subscheme defined by a single function f E Oy has [divf] as its associated

cycle. This is a local result. If Y is an affine T-scheme, let A = Oy and let the prime ideal

defining Xi be P. If we identify the image of f in AP with f and if we identify the image of P

in A/ fA with P, then Ox iy = Ap, Ox,,x (Al f A)p and AP/ f AP (A/ f A)p. This yields,

^ordx 4 f = lAp(AP f AP) = 1 (Al fA)p((A1^f A)P) = mi.^(4.8)

Example: This is Example 1.5.1 of Fulton [6]. Suppose f : X Pi is a dominant T-morphism

where X is a k + 1-dimensional T-variety. f defines a weight vector in R(X)* of weight A. We

denote this weight vector by f as well. We have,

^[1 -1 (0 )]— If -1 (c0)] = [divf].
^ (4.9)

If 131 has the trivial action, then the weight vector f has weight 0.

4.4 Alternate Definition of T-Rational Equivalence

Suppose X is a T-scheme. Let V be a T-subvariety of X x PI such that the T-morphism

induced by the projection onto PlA is dominant Label this map f : V P1. f defines a weight

vector f E R(V) * of weight A. Let p : X x Pi —> X be the projection onto X. If P E P lAT ,

then f -1 (P) is mapped isomorphically by p onto a T-subscheme of X which we call V(P). So,

[V(P)] P*V -1 (P)1,

[f_1(0)]— [f -l (00)]= [divf]
^

(4.10)
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in 4(X) and,

[V(0)] — [V(oo)] = p* [divf]^ (4.11)

in 4(X).
If P 1 has trivial T-action, then f E R(V)* has weight 0. So, [V(0)] — [V(oo)] is T-rationally

equivalent to 0.

We claim that all cycles T-rationally equivalent to 0 arise in this way.

Proposition 4.4.1 Let a E^(X). a is T-rationally equivalent to 0 if and only if there exists

a collection of k+l-dimensionalT -subvarieties, V1, ...^of X x P 1 such that the T-morphisms

f :^P1 induced by the projection onto P 1 are dominant and

nDV=(0 )] — [ 3/4 (00 )] = a.
^ (4.12)

i=1

Proof: The proof is as in Fulton. We have shown the backward implication. For the other

direction, we need only consider one T-subvariety W of X and a single weight zero vector

g E R(W)* with a = divg. g defines a T-morphism which we label g : W --+ P 1 . Let V be the

closure of the image of the graph morphism,

gr:W--+XxP l
^

(4.13)

w H (w,g(w)).

Let f : V —> P 1 be the dominant T-morphism induced by the projection X x Pl P 1 . f

defines a weight vector f E R(V) * of weight 0. From the example of the previous section, we

have

[f - 1^- [f -1 (00)] =^ (4.14)

The T-morphism p : V -4 W induced by the projection X x P 1 X is birational, so,

[V(0)] — [V(oo)] = p* [divf] = [divNRR(w") (f)] = [divg].^(4.15)

0
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This proposition allows us to move a subvariety with respect to a different torus action. The

following has been proved in the case of a connected solvable group and T' = 1 in a different

manner by Brion [3] in part 1 of the Theorem of section 1.3.

Proposition 4.4.2 Suppose that w : T' --4 T is a morphism of tori. Let X be a T and a

T'-scheme such that

sox1
T'xX -4 TxX

\1
X

(4.16)

commutes. If a E 4' (X), then a is r -rationally equivalent to a cycle 0 E ZIT (X). In

particular, a E Zk(X) is rationally equivalent to a cycle /3 E ZT(X).

Proof: We prove this by induction. First, we can restrict to the case where a = [V] E Zr (X).

If w(r) = T, there is nothing to prove. Suppose that T = w(r) x Gm . We move V with

respect to the Gm-action. Consider the graph morphism,

a: Gm x V -4 (Gm x V) x X (4.17)

(t, v)i-+ (t, v, t • v).

Let T' act on Gm x V by t' • (t, v) = (t, t' • v), and on Gm x V x X by t' • (t, v, x) = (t, t' • v , t' • x).

If Gm acts on Gm x V by t' • (t, v) = (et, v), and on Gm x V x X by t' • (t, v, x) = (et,v,(et).x),
then a is a T-morphism. Consider the projection p13 onto the first and third factors. Let A = 1

and let r act trivially on P. We inject p13(0- (Grn x V)) into P1 x X and close it to get a

T-subvariety W of P1 x X. The projection f : W -4 Pi is a dominant T-morphism. Now,

the cycle [W(oo)] is T'-rationally equivalent to [V] and is Gm invariant. Since T = T' x Gm ,

[W (co)] is T invariant as well. ^

Note that the method of this proposition moves an effective cycle in zr (X ) to an effective
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cycle in ZiT (X).

4.5 Flat Pullback

Suppose that f : X -+ Y is a flat T-morphism of relative dimension n. For V a k-dimensional

T-subvariety of Y, let

fly] = [f -1 (v)]
^

(4.18)

in g_n (X).

This extends by linearity to give a morphism,

^f* : 4(Y) -4 4+7,(X).^ (4.19)

The proofs of the next three results are contained in Fulton [6].

Lemma 4.5.1 If f : X —0 1.  is a flat T-morphism, then for any T-subscheme Z of Y,

rili = [f -i (Z)].^ (4.20)

^Proof: The proof is exactly as in Fulton [6] Lemma 1.7.1.^ ^

Lemma 4.5.2 If

X' --9-^ x

II
j f (4.21)

Y' ---> Y
9

is a fibre square with f a proper T-morphism and g a flat T-morphism, then f' is a proper T -

morphism, and g' is a flat T-morphism. If a E ZIT (X), then g* Ma) = f,,' gi* (a) in ZT+n (Y').

Proof: Again, the lemma is as in Fulton [6], Proposition 1.7.^ ^
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Theorem 4.5.3 If f : X -4 I' is a flat T-morphism of relative dimension n and a E ZT (Y)

is T-rationally equivalent to 0, then f*(a) is T-rationally equivalent to 0 in Zr+n (X).

Proof: The proof is in Fulton [6], Theorem 1.7. The proof depends on the alternate definition

of T-rational equivalence and uses the two lemmas above, as well as the results of section 4.3.^

4.6 An Exact Sequence

Theorem 4.6.1 Let X be a closed T-subscheme of a T -scheme Y. Let U = Y — X . Then

AT (x)^-4 4(u) -> 0^(4.22)

is an exact sequence, where i and j are the inclusion morphisms.

Proof: The proof is exactly as in Fulton [6]. First, note that

Zr(X) 4 Z (Y ) I t+ Z (U) 0^ (4.23)

is exact. Let a E 4(Y). Suppose j* a is T-rationally equivalent to 0 in 4(U). Then, there

in a set of k + 1-dimensional T-subvarieties V1, , Vn of U and weight vectors It E R(Vi)*

of weight 0 such that a = a_ i [div(fi)]. Let Vi be the closure of j(V) in Y. j induces an

isomorphism R([ t) R(R). Let fz be the function in R(Vi) associated to fi. Then, f, is a

weight vector of weight 0, and j* (a — E[div:6)] = 0 in 4(U). So,

a — E[divn =^ (4.24)

for some E 4(X). On passing to T-rational equivalence, we get

a =^ (4.25)

in gk'(Y).^ ^
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4.7 Chow Schemes and Changing Tori

We want to know how 4(X) changes as T changes. For this, we need to develop the theory of

Chow schemes. The theory is contained entirely in Samuel [18]. Our main result relating the

Chow groups for different tori is a re-writing of a result of Brion [3]. We only give an outline of

the construction of the Chow scheme. In this section, we do not assume that k is algebraically

closed.

Let V C Pn be an r-dimensional subvariety (not necessarily a T-subvariety) with field

of definition k. We consider the generic projections f : Pn --+ Pr+ 1 . These are defined by

equations

^ cijXj =Y
^

(4.26)
i=o

where (Xo, . , Xn ) is a point in P" and (Yo, , Yr+1) is a point in Pr+ 1 , and the cii are

algebraically independent over k. Kerf is then an (n — r — 2)-dimensional linear subspace of

Pn . Since the cii are algebraically independent over k, ker f and V do not intersect. So, f (V)

is an r-dimensional subvariety of Pr+ 1 . f (V) is defined by a single equation Gv(Yi, cij) E

k[Y0, • • • , Y•-I-1] depending only on the cii. We call this the Chow form of V. The coefficients of

Gv(Yi,cii) form the Chow coordinate.

If a = E nv [V] E Zk(X) is effective, we define its Chow form to be

= H^cii)nv^ (4.27)

The coefficients of the Chow form of a form the Chow coordinate of a.

The set of all Chow coordinates of effective cycles in Zk(X) form the Chow scheme Chowk (X)

of X . If a E Zk(X), we will label its Chow coordinate by a E Chowk(X).

The Chow scheme has an addition defined on it. If a,^Zk(X), a + /3 E Chowk(X) is

the Chow coordinate of a + E Zk(X).
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The T-action on Pri induces a T-action on the Chow scheme. Suppose T acts on Pn by

t • Xi = X3(t)XT. We define (t • f) by

xocijx, Yi. (4.28)

Since t • - :V->t•Vis an isomorphism, the field of definition of t • V is k. So, the Xi (t)cii are

algebraically independent over k, Gt•v(Yi, Xj(t)cij) = Gv(Yi, cif) and the Chow form of t -V is

Gt.v (Yi cii) = Gv (Yi, Xj(t-i )cii). This induces the T-action on Chowk (X).

Rational equivalence of cycles can also be defined in the Chow scheme. The statement of

the following is in Fulton [6], Example 1.6.3.

Theorem 4.7.1 Let X E Pn. If a, a' E Zk(X) are two rationally equivalent effective cycles

in X, then there exists an effective cycle E Zk(X) and a map g : P 1 -> Chowk(X) such that

g(0) = a + /3 and g(oo) = a' + /3.

Proof: As usual, we need only consider the case of a single k + 1-dimensional variety V and

a single function f E R(V) * such that divf = a - a'. If the zero cycle of divf is 7, let

= -y - a. The pole cycle of divf is then a' + f defines a function f : V P 1 , with

a - a' = [divf] = [f -1 (0)] - [f (oo)]. We consider 1 -1 (P) for P E P 1 . We associate the Chow

point of [f -1 (P)] to P. This defines the morphism g : P 1 Chowk(X) with g(0) = a +p and

g(oo) = +

For the opposite direction, let g : P 1 Chowk(X) with g(0) = a + /3, and g(oo) = a' + /3.

If P E P 1 , we associate the scheme in Pn given by the cycle associated to the Chow point f (P).

We take the diagonal morphism 1 x g : Pl -* P 1 x X. Let W = (1 x g)(P 1 ). The projection

P 1 x X -4 P 1 induces a morphism f :W PI which is a dominant, and 1 -1 (0) = g(0) = a+/3,

f (oo) = g(oo) = a' +

We now consider what happens if we demand that the cycles be T invariant. If V is T

invariant, then its Chow point is as well. In the above, if the k + 1-dimensional subvariety V

is T invariant and f E R(V) * is a weight vector of weight 0, then the morphism f : V -+ P1
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defined by f is equivariant where P 1 has the trivial action. So, each f -1 (P) is T invariant and

the map g : Pl -4 Chowk(X) is a T-map.

Note that the curve g (P 1 ) is pointwise T invariant. So, g(P 1 ) C Chowk (X)T .

Proposition 4.7.2 Two effective cycles a, a' E ZiT(X) are T -rationally equivalent if there is

a T -map g : P 1 -+ Chow k(X) , g(0) = a + /3 and g(oo) = a' + /3.

Proof: This is a result of the Theorem and discussion above.^ ^

The following has been proved by Brion [3] in part 2 of the Theorem of section 1.3 in the

case of solvable connected groups, where T' = 1. The proof we use is a re-writing of his proof.

Theorem 4.7.3 Suppose w : T' T is a morphism of tori, Pn has a T and a T' -action defined

on it and

sox1
r x Pn ---4 T X P n

\1
Pn

(4.29)

commutes. Suppose that X C P T' is a normal T -scheme and hence a normal r -scheme. Then

the set of effective cycles in Zr (X) that are r -rationally equivalent to 0 is generated by the

cycles [div(f)] where V is a T invariant k + 1-dimensional subvariety of X and f E R(V)* is

a T weight vector of weight 0 with respect to r .

Proof: By Proposition 4.4.2, we can assume that a, a' E 4(X) and are T' rationally equiva-

lent. So, there is a /3' E zr (X) such that in Chowk(X) there is a T'-map g : P 1 --) Chowk(X)

with g'(0) = a+/3' and g' (oo) = a' + /3' . Using Proposition 4.4.2, we can connect /3' to a T invari-

ant point 0 by a T' invariant curve. So, there is a /3 E 4(X) and a T-map g : P 1 -4 Chowk (X)
such that g(0) = a +/3 and g(oo) = a' +0. We can move this with respect to T to a T invariant
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curve. Since g(P 1 ) E Chowk(X)T' and since the actions of T and T' commute, we move the

curve within Chowk(X) Ti and the new curve is also pointwise T' invariant. Each component

of the curve has a T-action, and has at least two fixed points. We normalize each component

to get a collection of curves isomorphic to P 1 . The action on each component extends to one

on its normalization, and the action on Pl is by a character X(t) with x o yo(e) = 1. So from

the proposition above, the two cycles are T'-rationally equivalent and the T'-rational functions

involved are weight vectors of T of weight zero with respect to r . ^

Corollary 4.7.4 If X is a normal quasi-projective variety and iC C Pn , with notation as above,

the obvious map AT (X) AT (X) is surjective with kernel generated by the cycles described

above. In particular, if T' = 1, lik(X) is generated by T invariant cycles, and those rationally

equivalent to 0 can be obtained as described above.

Proof: If X is quasi-projective, we can close it in Pn to get X. The result is true for effective

cycles on X, and from the exact sequence of section 4.6, the result is true for effective cycles

on X . Since the effective cycles generate AT(X), the result is true in general. ^

Example: We find 4(F) where F is an n-dimensional representation space for T.

We assume the T-action is diagonal. Let F = Spec(k[x , x n]), and let the vector in

F related to xi be Xi. Let be the subspace of F spanned by Xi„ , Xyk . Let

= and let (ti, .. • , tn) • Xi = tiXi for all i. The T'-subvarieties of F are the

and the weight vectors of R(F)* are of the form fi^for ni E Z. The weight zero vectors are

just the constants. So,

TA 'k (F) EB2Z (4.30)

is the free group generated by the

Suppose T^. Then T C T' . Consider the cycles generated by restricting the f =

that are weight vectors of weight 0 with respect to T to the F( 11 ,..., ik+1 ). Let B be the submodule

of AT (F) generated by all these divf. Then,

AT (F)^(F) I B^ (4.31)
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We can also describe this using linear equations. Recall that if dimT = r and the T-action

on F was defined by weights A1, , A n where Ai = (Ali, , Ari) we can represent the action

by
An Al2(

Ar1 Ar2

• • •^Al

• • •^Arn •

(4.32)

To get a T' weight vector of R(F( ii ,..., ik+i ))* that is of weight 0 with respect to T, we replace

all but the , ik+ i columns by columns of 0's to get a matrix M. Let Y be a solution of

MY = 0 where Y E Zn and Yii = 0 for 1 < j < k. Since MY = 0 if and only if n is a weight

zero vector with respect to T these Y correspond to the T' weight vectors in R(F(ii ,..., ik ))* that
()

are of weight zero with respect to T. Let B be the subgroup of Cli Z generated by the ker M

for all choices of^,

(=)4 (F) = Epi1 Z/B. (4.33)

Remark: If X = Pn has a T-action, the same method of this example shows that

AT (Pn ) = EDPI . Z/B,^ (4.34)

where we define B as above and we also require that Y be such that E^0.

Example: Let F" be the semi-simple points of F. Then F88 is F less a few linear subspaces

each of which is spanned by a subset of the Xi. Let B' be the B of the previous example

union the free group on the set of k-dimensional T'-subspaces contained in the deleted linear

subspaces. Then,

Ar(X) = Z(:)93'.^ (4.35)

ik+ 1 as above. Then,

Note that this is the group Ellingsrud and Stromme [5] have calculated for Ak_ r (F"fiT) when

this is non-singular.
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Example: We work out a concrete example of the above. This example also shows that the

equivariant Chow group and the usual Chow group are not necessarily the same.

Let F = A3 have the T = G,n 0 Gm-action defined by

C 0

1 —1 1)

—2 3) •
The T-vectors of weight zero correspond to the solutions of

Y1
( —1 1 —1)

Y2 = MY = 0.
0 2 —3)

Y3

ker M = (1, 3,2)Z, and

(F) = Z31(1,3,2)Z

A2 (F,33) = Z3/((1, 3, 2), (0, 1, 0)) = Z (DZ.

(4.36)

(4.37)

(4.38)

4.8 Affine T-Bundles

Theorem 4.8.1 Suppose X is a normal quasi-projective scheme. If E X x F where F is a

T-representation space, then there is a surjective map

e5=0 (4._i (X) e A T (F)) —> A if (E).^ (4.39)

In particular, if X has the trivial T-action, then the map is an isomorphism.

Proof: We assume that T acts diagonally on F = Spec(k[x , , x e]). Let T' = ED7=1Gm . Let

T' act trivially on X, and let (t1, te )• xi = tr lxi for all i. We consider E with T xr action

where T acts trivially on F. The k-dimensional T x r invariant subvarieties of E are of the

form W = V x where V is a k — j-dimensional T-subvariety of X. So,

4_i (x) ®^(F) = Z17:_''iTs (X) e Z.TxTi^zt'xT' (E).^(4.40)

We need to show that the map is defined with respect to T-rational equivalence and is

surjective. Since any T-cycle in 4(F) and ZT(E) is T-rationally equivalent to a V-cycle, we
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need only consider r-cycles. If W = V x the T x T' weight vectors of R(W)* are of

the form f ru=l x7s, where f E R(V)* and ni E Z. If the weight of xi with respect to T is —Ai,

we need Af = E niAi. Since the weight vectors with Af = 0 and E niAi = 0 are in this set, the

map passes to T-rational equivalence and it is a surjection.

To get the isomorphism in the case of a trivial T-action on X, let W = V x and

let f m i x=' E R(W) * be a weight zero vector. Since Af = 0 for all f E R(V) * , we have

E niAi = 0, and the cycle diva -U=1 x7i) in ZT(F) must have been T-rationally equivalent to

zero. So, we have an injection and hence an isomorphism. ^

Remark: In the theorem, if T is the 1-dimensional torus, X has trivial T-action and the

weights of F are all 1, then we get

ED.;=0 Ar_i (X) •.-• AT (E).^ (4.41)

So, in this case, AT (E) is the same as Ak(P(E)).

Proposition 4.8.2 Supppose p : X -+ Y is a T-morphism of T-schemes, Y has trivial T-

action, and there is a covering of Y by open sets U such that X = U x T. If dimT = r,

then

p* : Ak(Y) Ar+r(X) (4.42)

exists, and is an isomorphism.

Proof: Since p is a flat T-morphism, we have existence.

The T-subvarieties of X are of the form W = p-1 (V) where V is a subvariety of X. To

see this, note that the result is certainly true locally, and glueing together gives the global

result. This shows that p* : Zk(Y) -4 Zr+r (X) is a surjection. So, on passing to T-rational

equivalence, p* : Ak(Y) --+ 4+,(X) is a surjection as well.

For injectivity, T weight vectors g E R(W) * of weight 0 are locally of the form f 0 1 E

R(U x T)* for f E R(U)*. However, [div(f 0 1)] = pldivf]. So, kerp* = 0 in Ak(X) and p* is

injective. ^
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4.9 Notes

We could consider different types of equivariant Chow groups. For example, we could demand

that the fi be weight vectors, but not necessarily of weight 0. For this form of equivariant

Chow group, all the properties we have considered in this section hold. In particular, proper

pushforward, flat pullback, the alternate definition of rational equivalence where Pl is replaced

by Pi for some unspecified A and the exact sequence result hold. However, as we have seen

in the change of torus section, for normal projective varieties, this form of equivariant Chow

group is just the usual Chow group. We could also define A r (X) as g(X) modulo rational

equivalence. The problem with this group is that its properties are too hard to determine.

In particular, pushforward and pullback become hard to show. Also, for normal projective

varieties this is only the usual Chow group.



Chapter 5

Multiplicities on Varieties

We consider the results of the last two chapters applied to varieties. We start by considering

projective varieties. On a projective variety X, it is possible to define equivariant degrees and

multiplicities that are invariants of AT (X). As such, the equivariant degree is related to the

usual degree. The relationship between the equivariant multiplicity and the usual multiplicity

is not quite as strong. We consider these two equivariant objects in the first section. In the

second section, we consider the usual equivariant multiplicity as defined by Rossmann [17], or

Borho, Brylinski and Macpherson [1] in a particular case.

Since there seems to be some confusion in the literature concerning signs of characters, we

state the following convention explicitly:

Convention:

If An is the vector space with basis X1,^X, then its structure sheaf

is OAk = Spec(k[xi, , x n]). We assume the Xi are weight vectors of

weight Ai. This means that the related functions xi have weight —Ai.

The net effect of this is that the equivariant multiplicity is no longer

alternating in sign.

5.1 Multiplicity on Projective Varieties

In this section we develop the basic properties of equivariant multiplicities of projective T-

varieties. We define an equivariant degree as well as an equivariant multiplicity. Unfortunately,

this multiplicity is not defined in the generality we would like. A lot of this section consists of

showing that we can extend the equivariant multiplicity to all cases. We accomplish this by

42
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using the equivariant version of a result of Mumford. We also show that these are invariants of

4(X). We end this section with a useful result involving the equivariant multiplicities of all

the fixed points of P. The definitions and results of this section are new.

Unless otherwise stated we are assuming that x = Po.

Definition: If X is a T-scheme in P", it is defined by a homogeneous T invariant ideal

I C k[so,... , xn]. Let degT(X, P") be the equivariant multiplicity of the origin in the affine

cone defined by I in An+ 1 .

Proposition 5.1.1 I. degT(X, P") is a polynomial over Q in A0, ... , An of degree

codim(X, Pn ).

Proof: this results from Proposition 3.2.1 and Theorem 3.2.4.^ ^

Definition: Let x be a fixed point of P", Uo be the open affine T-subset of Pn defined

by inverting xo and let X be a T-subscheme of P. X 1u0 is defined by a T invariant ideal

J C k[xi/x0,...x n /x0]. If x is an isolated fixed point, let

multi p,. (x, X) = multT(k[x1/x0, ••• , xn / x01/ J, k[x1/x0, ••• , xn / x0]) •^(5.1)

If x is not isolated, we consider degT(X, Pn ) as a polynomial and define

multTR.(x, X) := degT(0, Ai — Ao, • • • , An — A0)•
^ (5.2)

Remark: Note that J need not be homogeneous in the usual sense. This is the reason we

have a different definition for non-isolated fixed points. We show later that the definition is

consistent.

Also, note that the definition makes sense even if x 0 X. We show later that in this case

the equivariant multiplicity is 0.

As for the equivariant degree,
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Corollary 5.1.2 multTxn(x, X) is a polynomial over Q in Al — A0,..., An — Ao of degree

codim(X, Ps ).

Remark: If T = Gm and we consider the Gm-action on An+ 1 where xi has weight 1 for all i,

then degT(X, Pn ) is just the usual degree of a projective scheme. With this action, the weight

of the xi/x0 in Uo are all 0. So, mu/tT,pn (x, X) = 0. Needless to say, this differs from the

usual multiplicity for a point in a projective scheme. We can obtain the usual one by using the

Gm-action where xo has weight 0 and xi has weight 1 if i 0 0. If the tangent cone Cx (X) is

considered as a subscheme of Pn , the usual multiplicity of x in X is then muitT ,Fin (x, C x (X)).

From our results on equivariant multiplicities of modules, we easily get:

Proposition 5.1.3 1. For 0 < m < n, let Pm. = Proj(k[xo, , x id), and An—m

Spec(k[xm+1,...,xd), let X C Pm and let x E (Pni)T . Let f : Pm x An—m -4 Pm be the

projection, and let i be the inclusion Pm y Pn . We have the diagram:

  

f -1 (X)^Pm x An—m C Pn

f
X^Pm.

(5.3)

Let Y = I-1 (X) C Pn . Then

degT(Y, Pn ) = degT(X,Pm).

If i(x) is an isolated fixed point of Pn,

muitTR. (i(x), Y) = multi pm (x, X).

2. With notation as in 1,

(5.4)

(5.5)

  

degT(i(X),Pn) = ft AodegT(x, Pm)
i=m+1

(5.6)
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and
n

multTR.(i(x),i(X)) = II (Ai - AomuitT,p. (x, X).^(5.7)
i=m+1

3. Let w :^T be a morphism of tori, Pn be T and T' invariant, and let the action of

T' on Pn be defined by the weights AP, ,^If X is a T and a T' -subvariety of Pn and

cox].
T' X Pn^T X Pn

\
commutes, then

o dw)degT,(X, Pn) = f A(degT(X, Pn ) o dw).^(5.9)

If x is an isolated fixed point of Pn, then,

H (Ai — Ao) o dcpmuitTp.(x, X) = 11(A — A'0 (muitT,pn (x, X) 0 d(P)•^(5.10)

4. Let H be the T hypersurface of Pn defined by the function f of weight —AH. If H

intersects X in codimension one, then

degT(X n H, Pn) = AHdegT(X, Pn).^ (5.11)

Suppose x is an isolated fixed point of Pn. If Hlu. is defined by a function of weight —Am u.

and H intersects X in codimension one, then

muuTpn (x, x n H) Amu. muitTp. (x, x).^(5.12)

5. Let X be a T-subscheme of Pn with components^. If the geometric multiplicity

of Vi in X is mi , then

degT(X,Pn) = EmidegT (Vi,Pn)).
i=1

6. With notation as in 4 and 5,

AHdegT(X n H, Pn) = E midegT(X, Pn ).
i=1

(5.13)

(5.14)

(5.8)

Pn
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Proof: These are all direct consequences of the results in section 3.2.^ ^

Note that we have not stated 6 and 7 for mu/tTyn (x, X). These are true, but we need to

know that the definition of muitTp. (x, X) is consistent.

We can extend degT(x, Pn) linearly to cycles a E g(Pn ).

Corollary 5.1.4 1. If X is a subscheme of Pn, then

degT(X, Pn) = degT([X], Pn )•

2. If a E 4:(Pn) is T-rationally equivalent to 0, then

degT(a, Pn) = 0.

In particular, degT(cf, Pn) is an invariant of the cycle a E 4(X).

(5.15)

(5.16)

Proof: The first statement is a rephrasing of 6 above. For the second, a is T-rationally

equivalent to 0 if there is a collection of k + 1-dimensional T-subvarieties V and weight vectors

E R(Vi)* of weight 0 such that a = E divfi. Since the f2 are quotients of weight vectors of

ox, 4 yields the result.^ ^

We now relate degT(X, Pn) to mUitT ,pn (x, X).

Proposition 5.1.5 If x E (Pn ) T is isolated, then

degT(X, Pn )(0, Al — Ao, • . • , An — A0) = muitTpn (x, X).^(5.17)

Proof: Suppose X luo is defined by the ideal J. We can homogenize the generators of J to get

an ideal J' C k[xo,...,xn]. J' defines a scheme X' E Pn , each component of X extends to one

of X' with the same geometric multiplicity, and all other components of X' are contained in

Pn — U0. Resolving k[xo....,x,j1 J i and k[xilx0,...,x,,Ixo]il yield the same sequences, but
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with weights Ao, . . . An and Al — A0, ... , An — Ao respectively. So viewing degT as a polynomial

in A(T), we get,

degT(X' , Pn )(0, Al — Ao,..., A n — A0) = multTRn(x , X).^(5.18)

Now, if V C Pn — U0 = Pn -1 we inject V into Pn, and Proposition 5.1.3 part 2 gives us,

degT (V, Pn ) = AodegT(V9 pn-1).^ (5.19)

So,

degT(V, Pn )(0, Ai — Ao, ... A n — Ao) = 0,^ (5.20)

and

degT (X, Pn ) (0, Al — Ao, ... , An — A0) = mzdtTpn (x, X).^(5.21)

0

This show that defining muitTpn(x, X) = degT(X,Pn)(0, Ai — Ao, . . . , An — A0) for non-

isolated fixed points is consistent.

We can extend the definition of muitTpn (x, X) linearly to cycles a E ZIT (Pn ).

Corollary 5.1.6 All the statements of Proposition 5.1.3 hold for multTR.(x, X) even when x

is not an isolated fixed point of Pn . In particular, if X is a T-subscheme of Pn , then

muitTpn (x, X) = multi ,p n (x, [X]) .^ (5.22)

If a E ZZ' (Pn) is T-rationally equivalent to 0, then

multTR. (x, X) = 0.^ (5.23)

Note that this implies that unlike the usual multiplicity, muit T,pn (a, X) is an invariant of

a E AT (X).
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Consider the Gm-action on Pn where in An+ 1 , xo has weight 0 and xi has weight 1 for

i 0. If X is a Gm-scheme, i.e. X = Cx (X), then

degGm (X, Pn)(0, 1,^, 1) multTxn(x,Cx(X))-^(5.24)

If T acts on Pn where xi has weight 1 for all i, then since the ideal defining Cx (X) in k[xo,. • • ,xn]

has its generators in k[xi, .. • , xn], degT(Cr (X), Pn) degG,n (Cx (X), Pn). So, the usual degree

of Cx (X) in Pn and the usual multiplicity of x in X in Pn agree. We have a similar result for

the equivariant degree and multiplicity. This is the equivariant version of a result of Mumford.

Let X be a k-dimensional subscheme of Pn . We consider moving X around with respect to

a 1-dimensional torus acting on Pn . Let the graph morphism be

o- : X X Gm ,4 pn x pl

(x, t) H (t • x, t)
^ (5.25)

and let P2 : Pn x P 1 -+ P 1 be the projection. If Y = o- (X x Gm ) in Pn x P 1 , let f : Y -4 P 1

be the map induced by p2. With notation as in section 4.4, we define^t • X as:

X' = lim t • X = Y(oo).^ (5.26)t—>oo

Since [X'] = [X] E^(Pn) degT(X, Pn) = degT(X', Pn) and mu/ tT,pn (X, X) =

MU/413n (x, X').

Suppose we moved X with respect to the torus defined by the weights {0, 1, , 1} in An+ 1 .

Theorem 5.1.7 Let muleTR„(x, X) = degT(Cx (X), Pn) and let

Px : X — x C^(X) C^(Pn) C Pn x Pn-124Pn-1
^

(5.27)

where Pn-1 = Proj(k[xi,... , xn ]). Then, if k = C,

Ao degpxdegT(Px(X — {x}), P n) if X Cx (X)
degT(X,Pn) — MU/4 ,13,, (X, X) =^ (5.28)

0^ if X = Cx (X) .



Chapter 5. Multiplicities on Varieties^ 49

If k 0 C,

degT(X, Pr') — muieTx. (x, X) = 1 AodegT(P211imt_,„0 t • (X — {x})], np —1) if X 0 CC(X)

0 if X = Cx (X).
(5.29)

Proof: We can describe the map px using the action above. We end up moving X to the cycle

with components Cx (X) and a subvariety of Pn that is T-isomorphic to px (X — {x}). Consider

X —{x} C Pn— {x}. px(X-{x}) is the variety defined by limt_+. t. (X —{x}). We can see this by

noting that Pn — {x} = A x Pn-1 . The weights of the action are {0, 1, ... , 1}, so that on points

limt_.÷00 t • (v, y) = p2 (v, y) = y. Note that restricting to Uo gives limt—roo t • (X Ivo) = Cx(X)Itio•

So,

[X] = [tli!'i t • X] = [Cx (X)] + [X'],^ (5.30)

where X' = limt—,,,t • (X — {x}) in Pr'. If k 0 C, degT([X'], Pn ) = AodeyT(P2*([Xl, Pn-1 ))
and we have the result. Since px is proper, if k = C,

[X'] = degPx[Px(X — {x})]^ (5.31)

and taking equivariant degrees gives

1 Ao degPxdegT(p,(X — {x}), Pn-1)
degT(X, Pn ) — MUieTpa (x, X) =

Corollary 5.1.8 I.

degT (X, Pn )(0, Al — Ao, ... , An — A0) = mu/413n (x, X)(0, Al — Ao, ... , An — Ao)^(5.33)

= multTxn (x, X).

2. If x 0 X , then multTxn(x, X) = 0.

3. If the fixed point component of X containing x does not contain the fixed point component

of Pn containing x, then multTyn(x, X) = 0.

0

if X 0 Cx(X)

if X = Cx(X).
(5.32)

0
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Proof: For 1, the first equality results from the theorem, the second has already been shown.

2 results from the theorem. If x fl X, Cr (X) does not exist and moving X as in the theorem,

we get [X] = [X'] [limt-÷00 t • X]. degT(X', Pn)(0, Al — Ao, • • • , An — AO) = 0 then yields the

result.

For 3, if X does not contain the fixed point component of Pn containing x, then there is a

point y in the same fixed point component of Pn as x, but which is not in X. With no loss of

generality, we can assume that x is P1 and y is Po. Moving X as in the theorem, we get

degT (X, Pn) = AodegT(P2*( tliat . X), Pn-1 ).^(5.34)

Since Al = A0,

degT(X, Pn )(0, 0,^An —^= MUitTR. (X, X) = 0.^(5.35)

0

Let Gm act on An+1 with weights (0, 1,^, 1). In this case, since the usual multiplicity is

given by mu/tGm ,pn (x,Cx (X)), the theorem states that if deg(X) and mult(x, X) are the usual

degree and multiplicity then,

fdegpxdeg(px (X — {x})) if X Cx (X)
deg(X) — mult(x, X) =

0^ if X = Cs (X).

This is precisely the result that Mumford [14] Theorem 5.11 gets.

(5.36)

By the example after Corollary 4.7.4 any T-cycle in ZT(Pn) is T-rationally equivalent to a

cycle whose components are defined by ideals of the form (xi l, xin _ k ). We can also show this

more explicitly. In the theorem, we moved X with respect to the action defined by the weights

(0, 1, , 1) in An+1 . We can move the resulting cycle with respect to the action defined by

the weights (1, 0, 1, ,1) in An+1 . Repeating this for each new cycle, we get a cycle that is

invariant under the maximal torus of GL(An+1 ) acting on Pn. This means that the components

of the cycle are defined by ideals of the form (xi,, xin _ k ). This gives an easy way to find

degT(X, Pn) and mu/tTy. (x, X), and,
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Proposition 5.1.9 degT(X, Pn ) is a polynomial over Z in the Ao, • • • , An

MUitT ,pn (X, X) is a polynomial over Z in Al — Ao,....An — Ao•

Proof: if V is defined by the ideal (x;-1,• • •xin-k), then degT(V,Pn)^1-1.7 Ai, and

mu/tT,pn (x, V) =^— A0). Since X is T-rationally equivalent to a cycle whose compo-

nents are of this form, we have the result.^ ^

We now consider how the equivariant multiplicities at the fixed points of Pn are related.

Proposition 5.1.10 Suppose Pn has only isolated fixed points. If dim X > 0, then

n
i 0 ri (Ai  ^muitT,pn (pi , x) = 0.

If dim X = 0 and X has only one component Po, then

multT,pn (Po, X) = fl(A3 — Ao)m,

where m is the geometric multiplicity of Po in X .

(5.37)

(5.38)

Proof: We first consider Pn itself. The equivariant multiplicity of Pn at each fixed point is 1,

and after taking common denominators in the sum, we find that the numerator is:

/1 Ao A8 • • .^1 \

1 Al Ai • • • Ar l- 1

\1 An AF, • • • A;r4 1/

If m < n, we inject Pm y Pn , where Pm = Proj(k[xo,... , xm]). Since multi Rn(Pi, X) = 0

if Pi 0 Pm, by Corollary 5.1.6 and Proposition 5.1.3, we get,

u,^Rio A — A^m)
i-0^

Ai) muitT,Pn (Pi , Pm) iE<In flj>mi((Ajj — A1) m^(Pi, p

in

det = 0.^ (5.39)

=E j<nt^Ai)  multi pm (pi, pm)

°
= 0.

(5.40)
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If dim X = 0, then the proposition results from Corolary 5.1.6, Proposition 5.1.3 part 6 and

Lemma 3 2.3.^ ^

5.2 Equivariant Multiplicities on Varieties

We define the equivariant multiplicity of a fixed point x of a T-subscheme X of a smooth T-

variety Y. The definition we use is the the one used by Rossmann [17]. We show that in the

case we are concerned with, namely where there is an affine neighbourhood in Y containing x

that is T-isomorphic to a T-representation space, the equivariant multiplicity considered in the

last section can be extended to one for Y and it is the same as that considered by Rossmann.

In particular, the equivariant multiplicity is an invariant of AT(X), and is defined even when

x X.

Let X be an equidimensional T-subscheme of an ambient smooth T-variety Y. If x E X is

a fixed point of T in X, we define the equivariant multiplicity muitT(x, X, Y) of x in X relative

to Y:

Definition: Let NxY = Spec(ei>omix /n4+ 1 )^Spec(R), where mx is the maximal ideal

defining x in Y. Since Y is nonsingular, mx is generated by weight vectors xl,^, xn . So,

Nx (Y) Spec(k[xi,... ,x,]). Let Cx (X) be the cone to x in X. Oci (x) is a ring with T-action

and is a quotient ring of R. So, Ocz (x) is a R, T module. Let

^multT(x, X, Y) = muitT(Oc(x),R) 
if x E X^

(5.41)
0^if x fl X.

Note that Oc.(x) is homogeneous in the usual sense, so muitT(x, X, Y) is defined even when

Ai = 0 for some i.

Let U be an open affine T-subset of Y such that U is T-isomorphic to a representation space

F. We consider

X ju C U C P(F ED 1),^(5.42)
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where 1 has weight 0. For notational purposes, we assume the element in k[xo, x1 , . , xn ]

corresponding to 1 is xo.

Proposition 5.2.1 If x E Y is a T fixed point and there is an open affine T-subset of Y

containing x that is T-isomorphic to a T-representation space, then

multTx (F0i)(x , X) = multT(x, X ,Y).^ (5.43)

Proof: Let x E X. Since U F Nx (Y)cte F and we can close Nz (Y) and Cx (X) in P(FED 1).

muUT (x, X, Y) = muUT (Ocx (x) (U), ON. (Y)(U))^(5.44)

= muitT,P(Fed)(x, Cx(X))^ (5.45)

= muitT,P(Fen(x, X).^ (5.46)

0

Since the right-hand sides have been defined when x^X and are 0, defining

muitT(x, X, Y) = 0 in this case is consistent.

For completeness we list all the properties of muUT (x, X, Y).

Proposition 5.2.2 Suppose Y is a smooth T-variety, x E YT and there is an affine open T-

subset U of Y with x E U such that U is T -isomorphic to a T representation space with weights

Ai .

1. If X is an equidimensional T-scheme with components V of geometric multiplicity mi,

then

multT(x, X,Y) = multT(x,[X],Y) = E mimuuT(x, Vi,Y).^(5.47)

2. If I lu is a T-subvariety defined by a single function of weight —Am u and H intersects

X in codimension 1, then

multT (x, X fl H, Y) = AH i u multT(x,X,Y).^ (5.48)
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In particular, if a is T -rationally equivalent to zero, then multT(x, a, Y) = 0 and multT(x, a, Y)

is an invariant of a E^(X).

3. With notation as in .1 and 2, we have the following Bezout theorem:

A HmultT(x , X ,Y) = multT(x , X n H,Y).^(5.49)

muuT(x,x,y). -N1 1 E aA AN ,^ (5.50)
AEA(T)

where N = codim(X, Y), as E Z, all but a finite number of the as are zero, aA 0 implies that

A is a sum of the Ai, and multT(x, X, Y) is a polynomial with coefficients in Z in the Ai.

5. Let co :r -4 T be a morphism of tori, Y be a T and a T' invariant variety. Suppose

Tt X Y^
cox 1

T X Y

\1
^

(5.51)

commutes. If X is a T-subvariety of Y and the weights of T' in the open set containing x are

then

(fl Ai (3 dco) muitr(x, X, Y) = (11^multT(x, X, Y) o dso.^(5.52)

6. Let E be a T -vector bundle over Y, x E YT , let E be trivial over U, and let E have

weights pi, , ilk. If p : E^Y is the projection, and i is the zero section embedding of Y in

E then

multr (i(x), p* (X), E) = multT(x, X ,Y).^ (5.53)

7. With notation as in 6,

multT (i(x), i(X), E) = (II Pi)mult(x , X ,Y).^(5.54)
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8. If X is 0-dimensional with x as its only component, then

multT(x, X ,Y) = (11 As)m
,

^ (5.55)

where m is the geometric multiplicity of x in X .

Proof: These are all consequences of the results of the last section.^ ^



Chapter 6

Intersections of T-line bundles

In order to do intersection theory, we want to be able to define the Chem classes of a T-line

bundle. We do this by associating a T-Cartier divisor to the pair consisting of a T-line bundle L

and an equivariant meromorphic section of L. To this T-Cartier divisor, we associate a T-Weil

divisor. This allows us to define the intersection of a T-line bundle with a T-subvariety V of

X provided an equivariant section exists on V. As in chapter 3, our results are by and large

the equivariant versions of Fulton's [6]. The main problem in generalizing Fulton's work to

the equivariant case is, in fact, that equivariant sections need not necessarily exist. We also

consider how equivariant multiplicities behave with respect to intersections.

6.1 T-Cartier Divisors

Definition: A T-Cartier divisor D on a T-variety X is a collection of pairs (Ua , fa) where

Ua is an open T-subset of X and fa E R(Ua ) * is a weight vector of weight —A a such that on

Ua fl us, --1 . ifafp is invertible in Ouanuo. The support of a T-Cartier divisor is the set of points

in X where the local equations are not invertible. We label this by [DI. We will also label the

collection of components of PI by IDS. We say a T-Cartier divisor is effective if fa E Ou. for

all a.

As with usual Cartier divisors, we have a group structure:

1. If D and D' are two T-Cartier divisors represented locally by (Ua , fa) and

(Ua , f.'„), then D + D' is represented by (Ua , fa fc,' ), and has support IA U WI.

2. The identity element is represented by (Ua , 1) for all a.

3. If D is represented locally by (Ua , fa ), then —D is represented locally by (Ua , f ; 1 ).

56
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Definition: If f E R(X)* is a weight vector we label the associated T-Cartier divisor by divf .

We say two T-Cartier divisors D and D' are T-linearly equivalent if there is a weight vector

f E R(X)* of weight 0 such that

D = D' + divf .^ (6.1)

So, locally, if D and D' are represented by (Ua , fa ) and (Ua , ft), then fa = Af . .

A T-Cartier divisor defines a T-line bundle OD. Let Fa be the 1-dimensional representation

space generated by 1/ fa . Let L be the 1-dimensional Ou-sheaf defined over U, by OUP, 0 Fa .

We set

OD = Spec(Symm(Lv )).^ (6.2)

For notational purposes, we write OD = Spec(Oua 0 k[xj. Note that if fa has weight -A,

then OD has weight A„, and x, has weight -A0 .

The transition functions go : Ou.nus xF -p Our,nus xF , are defined by the function go =

falb E (9ta nus .

There is a section SD defined locally over the U„ by the f„ E R(Ua ) * . Since x, has the

same weight as fa , this is an equivariant section.

Note that if D and D' are T-linearly equivalent, then OD and OD' are T-isomorphic.

Some of the group properties of T-Cartier divisors pass to the associated T-line bundles:

1. If D and V are two T-Cartier divisors, then 0D+D , = OD 0 OD', 8D-FD' =

SD 0 8D', and supp(sDi-D , ) = IDI U ID'I•

2. If D is a T-Cartier divisor, then 0—D is generated locally by the fa , s-D = sir i ,

and supp(s_D) = suPP(sD)•

Of course, if f E R(X)* is a weight vector of weight 0, then the T-line bundle associated

to divf is the trivial one with trivial T-action, and the associated equivariant section is defined

by f.
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We associate a T-Weil divisor to D in the usual fashion. Over U, we set

[D] = E ordvf,„[V]^ (6.3)
v

in Zn 1 (Ua ) where the sum is over all codimension one subvarieties of Ua . Since fa is a weight

vector, the V for which ordfa is non-zero are T-subvarieties.

Since ordvf is well defined up to units, this extends to a global definition.

With respect to equivariant multiplicity, the results of the previous chapters give:

Proposition 6.1.1 Suppose that X is a T-subvariety of a smooth T -variety Y, D is a T -

Cartier divisor on X, x E YT, and there is an open affine T-subset U C Y containing x that is

T-isomorphic to a T representation space. If x E [J, and f, has weight —A, then,

multT(x , [D],Y) = AamultT(x , X , Y). (6.4)

Proof: The result is a local result. Let (U„, fa ) represent D, where x E U. To be able to

use Proposition 5.2.2 part 2 we need the T-Cartier divisor defined on an open T-subset that is

T-isomorphic to a T-representation space. Since Ua is not necessarily of this form, we consider

a T-Cartier divisor D' that is defined on U and that restricts to D on Ua .

Let U' = U n Ua . The closure of U' in U n x is u n x, so R(U')* ,.-, R(U n X)* . Let f,

be the weight vector in R(U fl X)* associated to fa . Since the ideal defining X in U is prime,

there is a weight vector i E R(U) * that restricts to fa in R(U fl X)*. The numerator and the

denominator of I can be chosen to be weight vectors, and they act as a non-zero divisors on

Ox (U n x). So,

mu/ty, (x, divI, Y) = AamuitT (x, X,Y).^ (6.5)

On U fl X, [divf] — [divfa] lies in U fl X — U', which does not contain x. So, the equivariant

multiplicity of x in the two cycles is the same. So,

muUT (x, [D],Y) = A,multT(x, X, Y).^ (6.6)

0
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Remark: If D is T-linearly equivalent to D', then

multT(x, [D], Y) = multT (x, [D'], Y).^ (6.7)

So, the equivariant multiplicity of the T-Weil divisor associated to a T-Cartier divisor is an

invariant with respect to T-linear equivalence. If D = D' + [divf] where f has weight -A, then

multT (x , [D] , Y ) = A multT ( x, [DI , I' ) •^ (6.8)

6.2 T-pseudo Divisors

Definition: A T-pseudo divisor D is a triple (L, Z, s) where Z is a closed T-subset of X, L is

a T-line bundle and s is an equivariant section of L invertible over X - Z. We will sometimes

write Z as IDI. A T-pseudo divisor (L', Z', s') is T-equivalent to (L, Z, s) if Z = Z', and there

is a T-isomorphism of T-line bundles yo : L L' such that w(s) = s .

We have some of the group properties we'd expect:

If D = (L, Z, s), and D' = (L', Z', s') are two T-pseudo divisors on X, then

I. D-I-TY=(LOV,ZUV,s0.9')

2. -D = (L-1 , Z, s -1 ).

A T-Cartier divisor D determines a T-pseudo divisor (OD, ID( , s D). We say D T-represents

(L, Z, s) if IDI C Z and there is a T-isomorphism of T-line bundles yo : OD ---+ L such that

co(sD) = s on X - Z. Note that if Z = X, two T-Cartier divisors T-represent the same

T-pseudo divisor if and only if they are T-linearly equivalent.

Note that if (L, Z, s) and (L', Z', s') are T-represented by D and D', then

1. (L ® L', Z U Z', s 0 s') is T-represented by D + D'

2. (L-1 , Z, 8 -1 ) is T-represented by -D.

Theorem 6.2.1 Every T -pseudo divisor is T -represented by a T -Cartier divisor that is
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1. unique if Z 0 X

2. unique up to T-linear equivalence if Z = X .

Proof: The proof is essentially contained in Fulton [6] Lemma 2.2. For an open cover {Ua } such

that Lluc, is trivial, choose an ao and set fa = gaa0 for all a. gam) E R(Ua rlUa0 )* = R(Ua )* is

a weight vector, so fa is a weight vector in R(Ua )*. Also, faL3-1 = gas is invertible on Ua fl U.

This shows the existence of a representing (but not T-representing) T-Cartier divisor D for

Z = X.

To get T-representation, we assume for the moment that Z = supp(s). Since sa = goso,

sa l fa = 8,31 fp, and there is a r E R(X)* such that r = sa l fa E Ox(U,) * for all a. We set

D' = D + divr. We then have sly = s. Since sly is an equivariant section, D' T-represents

(L, Z, s).

For uniqueness, if D and D' both T-represent (L, Z, s) and have local equations fa and LC,

then fa/ fa = f E R(Ua ) * . Also, fax = fol& So, f E R(X)*, and f is a weight vector of

weight 0. If Z = X, D and D' are T-linearly equivalent. If Z 0 X, then SD = SD, off Z, and

we have fa = fa on Ua - znuQ . so, D = D'. ^

Definition: If D is a T-pseudo divisor on an n-dimensional T-variety X, we define its T-Weil

class [D] E AT_ 1 (IDD as the Weil class of a T-representing T-Cartier divisor of D.

If f : X' --, X is a morphism, f (X') rt supps, and D is a T-pseudo divisor on X, then the

pullback f*(D) = (f *(L), f -1 (Z), f*(s)) is a T-pseudo divisor on X'.

The pullback property illustrates the main problem with T bundles. We can only guarantee

the existence of an equivariant section on X' if f (X') 0 supps.

Definition: Let D = (L, Z, s) be a T-pseudo divisor on X and let V C X be a T-subvariety

of X. We say D is V-admissible if L has an equivariant section over V. If a E 4:(X), we say

that D is a-admissible if for every component V of a L is V-admissible. If L has an equivariant

section over every T-subvariety of dimension k of X, we will say that D is k-admissible.
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Proposition 6.2.2 Suppose that X C Y is a T-subscheme of a smooth T-variety Y, D =

(L, Z, s) is a T -pseudo divisor on X, x E YT, and there is a open affine T-subset U C Y

containing x which is T-isomorphic to a representation space. Then, if L has weight Ax over x,

multT(x, [D], Y) = AzmultT(x, X, Y).

Proof: This is a consequence of Proposition 6.1.1.

Remark: If D and D' are T-equivalent T-pseudo divisors, then

multT(x, [D],Y) = multT(x,[g], Y).

If D = D' + divf for f of weight —A, then

muUT (x, [D], Y) = multT(x, [DIY) + )tmultT(x, X ,Y).

(6.9)

0

(6.10)

(6.11)

Example: We show that the pullback of a T-pseudo divisor is not necessarily defined.

Let X = A3 and let T = Gm x Gm , be the action with weights

1 0 1 ))

0 1 2)

Let D = (L, X, s) be the T-pseudo divisor where L is the trivial line bundle with weight (1,3)

and s is the section defined by the function x2x3 E R(X) * . The equivariant sections of L are

defined by the functions axi4 — bx2x3 for a, b E k. So, on the subvariety W defined by the

ideal (x2), L has no equivariant section and if i : W X is the injection, then i*(L, X, s) does

not exist. Note, however, that since

(1 1) (ni ) (1 )
(6.13)

0 2) n2) = 3 )

has solution (-1/2, 3/2), L® 2 does have an equivariant section, and i*(.02 , X, 802 ) does exist.

(6.12)
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6.3 Intersecting T-pseudo Divisors

Definition: Let D be a T-pseudo divisor on X and V a k-dimensional T-subvariety of X such

that D is V-admissible. If j : V -4 X is the inclusion of V in X, we define

D • [V] = [j* D]^ (6.14)

in Ail i (IDI n V).

Note that if f : X' -4 X is a T-morphism of T-schemes, V is a T-subvariety of X' and

D is f (V)-admissible, then OD has an equivariant section defined on f(V) and so f*D is

V-admissible.

We extend the definition linearly to cycles:

Definition: If a = E nv [v] E 4(X) and D is an a-admissible T-pseudo divisor on X, then

D • a = E nvD • [V]^ (6.15)

in AT__ 1 (IDI n (al).

Proposition 6.3.1 I. Let a, a' E Zr (X). If D is an a and an a' -admissible T -pseudo divisor,

then

D•(a+a')=D•a-I-D•a'^ (6.16)

in 4_ 1 (1DI 11 (la( U Ica).

2. If a E 4 (X) and D, D' are two a-admissible T -pseudo divisors, then

(D-1-D')•a=D•a+D'•a^ (6.17)

in 4_ 1 ((ig U WI) fl lap.

3. Let f: X' -- X be a proper T-morphism, a E ZIT (r), D a f,.(a)-admissible T-pseudo

divisor on X and g : f -1 (IDI) n ial -- ID) n f Ial the induced morphism. Then

g.((f*D) • a) = D • f,,,a^ (6.18)



Chapter 6. Intersections of T-line bundles^ 63

in 4_ 1 (D n nal)).

4. Let f : X' -4 X be a flat T-morphism of relative dimension n, a E Zr (X), D an

a-admissible T-pseudo divisor on X and g : If*DinIf*(a)1 -4 IDI n la! the induced morphism.

Then

(f* D) • f* (a) = g* (D • a)^ (6.19)

in A4,,,_ 1 (f-1 (1D1) n lal)•

Proof: The proof is contained in Fulton [6]. For 3, note that since D is f.a-admissible, OD

has an equivariant section over every component of f.a, and f*D is a-admissible.

For 4, recall that locally over U, any T-rational function is a ratio of elements of Ou. So,

any T-Cartier divisor is locally a difference of effective T-Cartier divisors.

[1 -1 (Z)] = f*[Z]
^

(6.20)

then gives the result.^ ^

Proposition 6.3.2 Suppose that X C Y is a T-subscheme of a smooth T-variety Y, a E

Zr (X), D = (L, Z, s) is an a-admissible T-pseudo divisor on X, x E YT and there is an open

affine T-subset U of Y containing x that is T-isomorphic to a representation space. Suppose

that L has weight A over x. Then

multT(x, D • a, Y) = Arnulty , (x, a, Y).^ (6.21)

Proof: This is a consequence of Proposition 6.2.2.^ ^

Example: For flat pullback the admissibility conditions on X are necessary.

Let X = A2 , let T = Gm x Gm and let X have the T-action defined by the weights ( 01 7)

and let D = (L, X, s) be the T-pseudo divisor where L is the trivial T-line bundle with weight

(0,1) and s is defined by x2 E 0A2 . Let X' .--- A3 with weights ( 01 77). Let f : A3 --+ A2 be the

projection onto the first and second coordinates. L has no equivariant section on the variety
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V defined by (x2) in A2 , but f*L has an equivariant section defined on f*V. So flat pullback

does require the admissibility condition on X.

Example: Additivity of T-pseudo divisors requires the admissibility conditions.

Let X = A3 , let T = Gm x Gm and let X have the T-action defined by the weights G 13 0,

let D = (L, X, s) be the T-pseudo divisor where L is the trivial T-line bundle with weight (1,0)

and s is defined by the function x3, and let D' = (L', X, s') be the T-pseudo divisor where L'

is the trivial T-line bundle with weight (0,2) and s' is defined by the function xi/x3. Let V be

the T-subvariety of X defined by the ideal (x3). Then neither D nor D' are V-admissible, but

D + D' is V-admissible.

6.4 Commutativity

Theorem 6.4.1 Let D and D' be two T -Cartier divisors on an n-dimensional T -variety X .

Suppose D is PI-admissible, and D' is IDI-admissible. Then

D • [DI = D' • [I)]. (6.22)

Proof: We proceed by cases. If D and D' are effective and intersect properly, the theorem is

local, and is purely algebraic and is contained in Fulton [6], Theorem 2.4, case 1. The proof is

a rewriting of Fulton [6], Theorem 2.4.

For the other cases we consider the blow-up X X along certain subschemes. We pull back

D and D' to X and intersect there. Since we have problems with the existence of equivariant

sections, the only difference between what we do and what Fulton does is that we have to check

for the existence of equivariant sections on the subvarieties of X that map to the codimension

1 subvarieties of X that we are interested in. Checking for the existence of equivariant sections

and getting around their non-existence makes up the bulk of this section.

If D and D' are effective, let

e(D,D') = maxfordy (D)ordv (D') : codim(V, X) = 1}^(6.23)
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where the max is over all codimension 1 T-subvarieties of X. Note that E(D , D') = 0 precisely

when D and D' intersect properly.

Let D fl D' be the intersection scheme of D and D'. If the local equations for D and D'

are a and a', then D fl D' is defined locally over U by the ideal I = (a, as). For convenience,

we also use I = (s, t). Let 7r : X -+ X be the blow-up of X along D fl D'. Locally, X =

Proj(631 77Lo/n) = Proj(Ox e (®°° 1(s, On)).

Let E = 7r-1 (D fl D') be the exceptional divisor. Let U, and Ut be the open T-subsets of

7r-1 U obtained by inverting s and t. Then, on Ut , r*D is defined by a = fa', 7r*D' is defined

by a', and E is defined by a'. On Us , ir*D is defined by a, 7r*D' is defined by a' = !a, and E

is defined by a. So, if on Ut we define C by f and C' by 1, and on U3 we define C by 1 and C'

by 1, then r*D=E+C, 7r*D' = E+ C', and 7r*D, 7r*D', E, C and C' are effective T-Cartier

divisors on X.

Lemma 6.4.2 With notation as above,

1.ici n ic'l = 0
2. If e(D, D s) > 0, then e(C,E), e(C s ,E) are strictly less than e(D,D').

Proof: These claims are local in nature, so we assume that X = Spec(A). Our explicit

description of C and C' shows that ICI fl IC'I = 0. For part 2, consider the map

AES,71 -4 Cf_oin

S1-4 s
^ (6.24)

T i-t

where S has weight As and T has weight A t . This map is equivariant, defines an injection cc

and



Chapter 6. Intersections of T-line bundles^ 66

X -4. X X P i

N IP
^(6.25)

X

commutes.

We can also consider s and t as T-sections. Consider the pull back of 0(1) from X x P 1 to

X. Let s and t be the sections on X defined by the pullbacks of the sections associated to S

and T. We represent the associated functions by s and t as well. Then ICI is the zero-scheme

Z(s) of s, and ICI is Z(t).

Since Z(S) and Z(T) are mapped isomorphically to subschemes of X by p, Z(s) and Z(t) are

also mapped isomorphically to subschemes of X by 7r. So, if V is a codimension 1 T-subvariety

of X contained in ICI or in ICI, then V = 71 - (17) is of codimension 1 in X. Also, [D] = 7.[E+C],

so that,

ordv(D) > ordi,-(E) + ork(C).^ (6.26)

Repeating this for D' and E + C', we get

ordv (D') > ork(E) + ordi-i(C').^ (6.27)

Now, suppose 0 < e(D,D'), and V is such that ordi-j-(E)ord i-j-(C) = c(C, E). Then,

ordv (D)ordv (D') > (ordp- (E) + ordi; (C))(ordi; (E) + ordi; (C'))^(6.28)

> ordy(E) 2 + e(C,E).^ (6.29)

Since ordv—(E)2 > 0, e(C, E) < E(D, D'). 0

For the final technique we (temporarily) redefine equivariant intersection. If D is V-

admissible, then the intersection is defined as before. If D is not V-admissible, we set D -V = 0.
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Because of this redefinition, we have to show proper pushforward still works for our V and that

equivariant sections exist on the appropriate varieties.

Lemma 6.4.3 Let D and D' be T -Cartier divisors on a T -scheme X, D be PI-admissible,

it : X -+ X be a proper T-morphism, V C Ir*D'I be a T-subvariety of X' of codimension 1,

and let V = r(i-7). Then,

R-*(7r*D • [V]) = D • [V]^ (6.30)

in lqi_2(X).

Proof: If V is of codimension 1, then V C 1./Y1 and OD has an equivariant section on V. So,

7r* (7r*D • [V]) = D • [V].^ (6.31)

in .47,:_2(X).

If V is of codimension greater than 1, then

r* (7r*D • [q) = 0 = D • [V],^ (6.32)

in AnT_2 (X), independent of whether a section exists or not.^ 0

Now, we need to know whether OE, Oc, Oc' have equivariant sections over the appropriate

varieties.

Lemma 6.4.4 Suppose V. is a T -subvariety of X of codimension 1 and V is of codimension 1

in X. If V C leg, then OE and Oc, are is7 -admissible. If V C lir*VI, then OE and Oc are

17 -admissible.

Proof: We check the result using our explicit descriptions of OE, Oc and Oc,.

Suppose V C ICI — Ann. Locally 0c , has section 1 over V and OE has section a' over

V which is invertible over V. Similarly, if V C IC'I — IElnIcl, then Oc has section 1 over 1/'

and OE has section a over V which is also invertible on V .
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If V C 1C1n1E1, then V is of codimension 1 in X and is contained in 1D1n1D'1. So OD and

OD, have equivariant sections on V, Oc, has section 1 on V, and since

ir*D' = E + C', (6.33)

OE has an equivariant section over V. Similarly, since 7r*D = E + C, Oc has an equivariant

section on V. For V C ICI n 1E1, we have Oc with section 1 on V, and OE and Oc, have

equivariant sections defined on V as well.

Finally, let V 1E1 — ( 1C1U ICI) n 1E1 and let V be of codimension 1 in X. OD has an

equivariant section on V , and so Or.D has an equivariant section on V. Oc has an invertible

T-section over V and so OE has an equivariant section on V. Similarly, Oc , has an invertible

equivariant section over V. ^

case 2

Suppose that D and D' are both effective. We show that for the redefined intersection

D • [D'] = D' • [D] by induction on OD ,D'). For c(D, D') = 0 we have already shown the result.

Suppose the result is true for all effective T-Cartier divisors B and B' with c(B , B') < f(D, D').

For it : X —> X a proper bi-rational T-morphism, let r*D = E ± C, and ir*D' = E ± C' where

E, C and C' are effective T-Cartier divisors. Then,

D • [DI= ir* (7r*D • [71-* D']) (6.34)

=77-* ((E± C) • [E ± C']) (6.35)

== r* (E - [E] ± E • [C] ± C • [E] ± C • [C1) (6.36)

= 7r* (E • [E] ± C' • [E] ± E • [C] ± C • [CT (6.37)

= D' • [D] (6.38)

in A,T_ 2 (X). Note that we use bi-rationality to get ir*[7r*D] = [D].

Since D is 1/4-admissible and D' is ID1-admissible, the usual equivariant intersection and

the redefined intersection agree. So, for the usual intersection,

D • [D'] = D' • [D]^ (6.39)
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in A,7,1_ 2 (X).

case 3.

Suppose one of D or D' is effective, say D'. Let D be T-represented on U by d = alb and

D' by a' for a, b, a E Ou = A. Let J be the sheaf of denominators of D. So, on U,

J = fc E A : cd E Al.^ (6.40)

Let I be the sheaf of numerators, i.e.

I = dJ.^ (6.41)

I and J are both T-sheaves. To show that J is a T-sheaf, note that if c E J,

Xd(t)(t • c)d = t • (cd) E A.^ (6.42)

So, t • c E J. Since d is a weight vector, I = dJ is a T-sheaf as well.

Let K be the sheaf generated by both I and J. We blow-up X along the subscheme

defined by K. On U this ideal is generated by (a, b). As before we label this by (s, t). Let

U = Proj(E13,7_0Kn)) Proj(A ® (ED,',°_ 1 (s, t))). On Ut we have a = (s/t)b, and on U,,

b = (t/s)a.

We consider the map r :^X x P 1 induced by the local map on functions,

k[S,T1 — ED,',°_0 (S,

S - s^ (6.43)

T t.

As before, we can consider s and t as T-sections. We consider the pullback of 0(1) from P I

to I. Let s and t be the T-rational functions associated to the sections on X defined by the

pullbacks from X x P 1 of the sections associated to S and T. We label these T-sections by s

and t as well. Then C = Z(s), and C' = Z(t). These are mapped isomorphically by it to X, so

if V is a codimension 1 T-subvariety of X contained in ICI or in ICI, then V is of codimension
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1 in X. Now, on Ut, C is defined by i and C' is defined by 1. On Us , C is defined by 1 and C'

is defined by t . So, on Ut, ir*D is defined by (slt)b • b-1 and on U, by a((tIs)a) -1 . We have

C n c' = 0, and

ir*D = C - C'.^ (6.44)

We again check for the existence of equivariant sections.

Lemma 6.4.5 Let D' be any T-Cartier divisor on X . If D is a ID'i-admissible T-Cartier

divisor on X and V C 17r*D'I is of codimension 1, then Ott.D, Oc and Oc , arel7 -admissible.

If D' is IDI-admissible,17 C Ilr*DI and V is of codimension 1 in X, then (9,. DI is V -admissible.

Proof: Suppose V C 17r*D'I. If V C 17r*D'i - ICI U ICI, then Oc and Oc, have invertible

equivariant sections defined on V.

If V C lir*D'I n ICI, then V is of codimension 1 in X and Oir ►D has an equivariant section

on V. Oc, has section 1 on V, so Cc has an equivariant section on V.

Similarly, if V C 17r*D'1 n ICI, then V is of codimension 1 in X,^D has an equivariant

section defined on V, Oc has section 1 and Oc, has an equivariant section on V.

Suppose that V C^If V is of codimension 1 in X, then OD' has an equivariant section

over V and O►D, has an equivariant section over V.^ ^

Note that if E is the canonical divisor on X then kr*D1 contains E. However, since 7r*D =

C- C'+E - E, for the redefined equivariant intersection whether E has an equivariant section

over any V in X is immaterial.

Applying case 2, and in particular equations 6.34 to 6.38, since C,^and D are effective

and 7r : X -4 X is bi-rational, for the redefined intersection,

D • [DI = lr*(lr *D • [r * D']) = 1r* (7r*D' • [7*g) = D' • [D]^(6.45)

in A,T_ 2 (X).

Again, since D is ID'I-admissible and D' is IDI-admissible, the usual equivariant intersection

and the redefined intersection agree, so with the usual intersection,

D•[D'} D' • [IA^ (6.46)
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in AT_2 (X).

For the final case where D and D' are arbitrary, we blow-up along the T-subscheme defined

by the sheaf of denominators and numerators of D as above to get

ir*D = C — C'^ (6.47)

on X where C and C' effective and ICI fl^= 0. Applying case 3 then gives

D • [D'] = ir.((C + C') • [7*^= ir.(r*D' • [C + C1) = D' • [D]^(6.48)

for the redefined intersection. Again, as above, this implies commutativity for the usual equiv-

ariant intersection.^ ^

Corollary 6.4.6 Suppose D is a k and k + 1-admisssible T-pseudo divisor on X and suppose

that for all k and k + 1-dimensional T-subvarieties V of X there is a weight vector f E R(V)*

of weight 0. If a E 4(X) is T-rationally equivalent to 0, then D • a = 0 in Ak 1 (X).

Proof: Let V be a k + 1-dimensional T-subvariety, and let f E R(V) * be a weight vector of

weight 0. Then,

D • [divf] = divf • [D] = 0.^ (6.49)

0

Example: The condition on V is necessary.

We use a previous example. Let X = A3 , with torus Gm x^and weights

(1 0 1
(6.50)

0 1 2)

Let L be the T-line bundle with weight (1,3). The equivariant sections of L are defined by

functions ax2x3 — bxix3 for a, b E k. The T-rational functions of weight 0 are of the form

a(xix3/x3)n for a E k and n E Z. Over the subvariety defined by (x3) L has an equivariant
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section, but over the cycle defined by (xix3) which is T-rationally equivalent to it, no equivariant

section exists. So, we do need the second condition in the corollary.

Because of the problems with rationality, we define:

Definition: X is k-nice if for every k-dimensional T-subvariety V of X there is a weight vector

f E R(X)* of weight 0. Equivalently, the trivial T-line bundle of weight 0 has an equivariant

section on every k-dimensional T-subvariety of X.

Remark: Niceness is not as strong a condition as admissibilty. Any T-variety has an open

subset U over which algebraic quotient U IIT exists. If k > dim(X — U), since OullT '-=-' Ox (U)T ,

X is k-nice.

6.5 Intersection with T-line bundles

Definition: Let L be a T-line bundle on a T-scheme X. We will say L is k-admissible if L has

an equivariant section over every k-dimensional T-subvariety of X.

Definition: Let L be a T-line bundle on X. If V is a k-dimensional T-subvariety of X and L

is k-admissible, then L is T-represented by a T-pseudo divisor D and we define

ci(L)n v = D • [V]^ (6.51)

in Ak I (V). We extend this definition linearly to a E 4 (X).

Proposition 6.5.1 1. Let X be k and k + 1-nice, a E ZIT (X), and let L be a k and a k + 1-

admisssible T-line bundle on X . If a is T -rationally equivalent to 0, then

co) n a = 0
^

(6.52)

in 4 1 (X).

L. Let X be k and k + 1-nice, a E AZ' (X), and let L and L' be k and k + 1-admisssible

T -line bundles on X . Then,

co ® L') fl a = ci(L) fl a + ci(V) fl a^ (6.53)
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in Ak i (X)•

3. Let f : X' -- X be a proper T-morphism, X and X' be k and k + 1-nice, and let L be a

k and k + 1-admisssible T-line bundle on Y. If a E AT (X'), then

10(ci(f *L) n a) = c1(L) n Ma)^ (6.54)

in Ak 1 (x).
4. Let f : X' --). X be a flat T-morphism of relative dimension n, X be k and k + 1-nice,

X' be k + n and k + n + 1-nice and let L be a k and k + 1-admisssible T-line bundle on X . If

a E AZ' (X), then

f * (ci(L) n a) = c i (f* L) n f *a^ (6.55)

in AT" _ i (X I).

5. Let X be k — 1, k and k + 1-nice, and let L and L' be k — 1, k and k + 1-admisssible

T-line bundles on X . If a E AT (X), then

ci (L) n (ci (L') n a) = c1 (L') n (ci (L) 11 a),^(6.56)

in Al 2 (X).

Proof: We know the results hold if a E ZiT(X). Part 1 follows from Corollary 6.4.6. The

remainder follow from part 1, and Proposition 6.3.1.^ ^

Proposition 6.5.2 Suppose that X C Y is a k and k + 1-nice T-subscheme of a smooth T-

variety Y, a E AT (X), L is a k -admissible T -line bundle on X, x E YT and there is an open

affine T-subset of Y containing x that is T-isomorphic to a T-representation space. If L has

weight A over x, then

mu/tT(x, ci (L)11 a, Y) = Amu/ty , (x, a, Y).^ (6.57)

Proof: This results from Proposition 6.3.2, and that mu/tT(x, a, Y) is an invariant of 4(X).

a
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6.6 Notes

We could have considered different forms of equivariant intersection.

If (L, Z, s) is a T-pseudo divisor, we could demand that IDI C Z, (p : OD -4 L be a weight

isomorphism (but not necessarily a T-isomorphism), and w(sD) = s off Z. Note that since the

transition functions are equivariant, if 90 is a weight morphism of weight A on one U,„, then it is

a weight morphism of weight A on all the U,„. This would lead to a different form of equivariant

intersection for which a section always exists, but for which most of the equivariant properties

are lost. In future, we will say such a T-Cartier divisor represents (but not T-represents) the T-

pseudo divisor (L, Z, s). Note that for normal projective varieties, Theorem 4.7.3 shows that the

strongest equivalence relation we can use with this form of intersection is rational equivalence.

If Z = X, D and D' represent the same T-pseudo divisor if

D = D' + divf^ (6.58)

where f E R(X)* is a weight vector.

For this form of intersection, all the results of Proposition 6.5.1 hold without the admis-

sibility conditions, but instead of getting a cycle in AT (X), we get a cycle in Ak (X). The

equivariant multiplicity is also dependent on the choice of representing T-Cartier divisor. If

(L, Z, .9) is represented by the T-Cartier divisor D, L has weight Az in the fibre over x E XT

and D has weight A + A over x, then

multT(x, D • a, Y) = (Az + A)multT(x, a, Y).^(6.59)

There is another form of equivariant intersection, which we call * intersection:

Definition: For D a T-pseudo divisor on X, V a k-dimensional T-subvariety of X, we set

1-(nD) • V if L° 11 is V-admissible
^D * a = { n^(6.60)

^

0^if no n exists such that L®n is V-admissible
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in g_ i (X) 0 Q.

If L is a T-line bundle, we can replace our usual equivariant intersection with * intersection.

We write this form of intersection as ci (L) * a. This form of intersection is well-defined.

With respect to * intersection, the only property of Theorem 6.5.1 to hold without the

admissibility condition is proper push forward. If p : X' -+ X is a proper T-morphism, V C X'

is a k-dimensional T-subvariety and f E R(U) * is a weight vector where U is an open affine T-

subset of V, then p* ([divp*(f)]) = d[divNRR((x;) (f)], where d = [R(X1) : R(X)]. Since N 17((xx) ) (f )

has weight dAf, if (p*L)Øn has an equivariant section over V for some n, then L®d" has an

equivariant section over p(V). So, pushforward holds for * intersection without the admissibility

condition.

The main reason for considering * intersection is that if T = Gm , a section is always defined

for some tensor power of L. This is just an application of the Chinese Remainder Theorem.

For * intersection, if X is k and k -}- 1-nice then

AmultT(x, [V],Y) if L (8)n has an equivariant section over

V for some n
muitT (x, ci (L)*[11,Y) =^ (6.61)

0^if L®n has no equivariant section over

V for any n.



Chapter 7

Intersections with T-Vector Bundles

We define the intersection of T-vector bundles with T-cycles in a T-variety X. In doing this,

we follow Fulton [6]. First we define the T-Segre classes and then we define the T-Chern classes

in terms of the T-Segre classes. As in the previous chapter, we have admissibility and niceness

conditions. For T-vector bundles these are a lot more restrictive than they were for T-line

bundles.

7 .1 T-Segre classes

Definition: Suppose that E is a T-vector bundle over an n-dimensional T-scheme X of rank

e + 1. We say that E is a k+-admissible T-vector bundle if 0(1) is a k to (n + e)-admissible

T-line bundle on P(E). We will say that P(E) is k+-nice if P(E) is k to (n + e)-nice.

In future, we shall call the admissibilty and niceness conditions just admissibility conditions.

Definition: Let E be a (k — i + 1)+-admissible T-vector bundle, P(E) be (k — i + 1)+-nice

and let p : P(E) -- X be the projection. For a E AT (X) we define the T-Segre class as

si(E) fl a = p.(ci(0(1)) e+i n p*a)^ (7.1)

in AT (X).

We start with a basic fact:

76
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Lemma 7.1.1 Suppose f :^X is a flat T-morphism of relative dimension n and L is a

(k — i +1) 1- -admissible T-line bundle on X . Then f*L is a (k + n — i +1)+ -admissible T-line

bundle on X'.

Proof: Note that if V E Zr(X t) for 1 > (k + n — i + 1), then dim f (V) > 1 — i + 1. So L has

an equivariant section over f (V) and f *L has an equivariant section over V.^^

Corollary 7.1.2 Suppose that f : X' X is a flat T-morphism of relative dimension n, E is

a (k — i + 1)+ -admissible T -vector bundle over X and P(E) is (k — i +1)+ -nice . Then f*E is

(k + n — i +1) 4- -admissible on X' and P(f*E) is (k + n — i + 1)+-nice.

Proof: Note that Op( f*E)(1) = f * (00.)). The lemma applied to 0E(1) and the trivial T-

line bundle on P(E) with trivial T-action then show the admissibility and niceness conditions

respectively. ^

Proposition 7.1.3 1. Let E be (k — i +1) -1- -admissible, let P(E) be (k — i +1)+ -nice and let

a E Ak (X). Then,

a. si(E) n a= 0 if i< 0

b. so(E) n a = a.

2. Let F be a rank f +1 T-vector bundle on X, E and F be (k — i — j +1) 1- -admissible

T-vector bundles, P(E) and P(F) be (k — i — j + 1)+ -nice and a E^(X). Then

si(E) n [si(F) n a] = si(F) n [si(E) n^ (7.2)

in 4 i_i (x).
3. Let f :^-4 X be a proper T-morphism, E be a (k — i +1) 1- -admissible T -vector bundle

over X . Suppose that f *E is a (k — i +1) -1- -admissible T-vector bundle over X' and P(E) and

P(f*E) are both be (k — i +0+ -nice. For a E AT (X'),

f * (si(f* E) n a) = si(E) n f * (a)^ (7.3)
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in Ak i (X)•

4. Let f : X' -4 X be a flat T-morphism of relative dimension n, E be a (k — i +1)+ -

admissible T-vector bundle over X, and P(E) be (k — i +1)+ -nice. For a E AT(X'),

f*(si(E) fl a) = si(f*E) fl f*a^ (7.4)

in fiLn_ i (X).

5. If a E Ak (X'), E is a k and (k + 1)-admissible T-line bundle on X, and P(E) is k and

(k + 1)-nice, then

si(E) fl a =^(E) fl a^ (7.5)

in Ak i (X)•

Proof: The proof is contained in Fulton [6]. The only part that is different is part 1.b. For 3,

we need the admissibility conditions on X' since if V is a j-dimensional T-subvariety of X' such

that dimp(V) < k — i +1 the admissibility conditions on X do not guarantee an equivariant

section on V.

To prove 1, by 3 we can restrict to the case where a = [V] and V = X. We have,

so(E) n^= P*(C1(0E( 1 )) e n ply]) = m[v]^(7.6)

in AT (V) for some m E Z. We need to show that m = 1. Since this is a local result we can

assume that E is trivial over V.

Since the map j : AT (V) -4 Ak(V) sending a T-cycle in AT(V) to its rational equivalence

class in Ak(V) is a surjection and since A T(V) = Ak(V) = Z are both generated by [V], we

have j[V] = ±[V] in Ak(V). Since the only difference between equivariant intersection and

usual intersection is that we demand that the sections be equivariant, if a E Ai (V), we have

j(si(E) fl a) = si(E) fl a in Ai_i(V) provided the left-hand side is defined. In [6] Proposition

3.1 Fulton shows that so(E) fl [V] = [V] in Ak(X). So, so(E) fl [V] = [V] in AT (V), and m = 1.

0

The proof of 1.b has the following corollary:
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Corollary 7.1.4 If E is (k +1)+ -admissible and (k +1)+ -nice, then

p* : 4(X) -4 4+,(P(E))^ (7.7)

is a split monomorphism.

Proof: The inverse map is given by p,(ci(0(1))e n -).^ ^

Proposition 7.1.5 Suppose that X is a T-subscheme of a smooth n-dimensional T-variety Y,

x E YT and there is an affine open T-subset U' of Y containing x that is T-isomorphic to a

T-representation space. Suppose that E is a (k — i + 1)+ -admissible T-vector bundle on X such

that the weights po, , p e of E in the fibre over x are distinct and P(E) is (k — i + 1)+ -nice.

If a E 4(X), then,

e^(pj)e-1-i
MUUT(X, Si(E) n a,Y) = E ,̂muitT(x, a,Y).

j=0 ii/OW/ k/i)
(7.8)

Proof: As in Proposition 6.1.1, we need the open T-subset containing x over which E is trivial

to be isomorphic to a T-representation space. Since this is not necessarily the case, we consider

a different T-vector bundle that is of this form. Let U be a T-subset of U' containing x over

which E is trivial. We extend E to U' to get a trivial T-vector bundle E' over U' that restricts

to E on U. Let p' : P(E') = U' x P(F) U'. We need to show that

multT(x, si (E) n a, Y) multT(x, si(g) n a, Y). (7.9)

We first show that

muitT(x,p.(c1(0E(1)) n a), Y) = muitT(x,//*(c1(0E4 1 )) n cei), (7.10)

where a E Zk (P(E)) and a' E ZiT(P(E1)) is the cycle related to a. We can restrict to the

case where a is a T-subvariety of X . First, suppose that V C P(E)1u is a k-dimensional T-

subvariety. We restrict V to P(E)lu and close it in P(E') to get a k-dimensional T-subvariety

V' C P(E') that restricts to V in P(E)Iu . Note that p* [V] = p',,,[111]. A T-section s of OE(1)
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determines a weight vector in R(V)*. Since R(V*) = R(V')* , this in turn determines a T-

section of 0E1(1) over V' which restricts to s on V. Let D and D' be the associated T-pseudo

divisors on V and V'. D' • [V'] and the closure of D • [V] in P(E') agree, except possibly on

p'-1 (U - U'). However, subvarieties of p'-1 (U - U') map to subvarieties of U - U'. Since

x U - U', these subvarieties have equivariant multiplicity 0. So,

multT(x,p,(ci(OE(1)) n^= multT(x,1*(c1(0 E' (1)) n ), Y).^(7.11)

If a E 4(X), this shows that

muitT(x,p.(ci (0E(1))e+i n P*a), Y) = muUT (x, P'*(cl(C3E' ( 1 ) )e+i n P'*a), Y)
^

(7.12)

and

multT(x, si(E) n a,Y) = multT(x, si(E')n a, Y).^(7.13)

We now need to show that

muitT(x,/*(11, 37)^
1

rî \mu/4(x x^P (e)).
j=0 1.1.4j4/1

(7.14)

for [V'} E ZIT (P(E')).

Any T-subvariety of P(E') is T-rationally equivalent to a cycle whose components are of

the form W x where W is a (k - q)-dimensional T-subvariety of X and of the form

W x Pi where W is a k-dimensional T-subvariety of X. In the first case,

multT(x x Pi,W x^= multT(x, W, Y)mu/tT(Pi, Fo i ..i0P(F)).^(7.15)

Proposition 5.1.10 shows that

1
(7.16)jE=0 nwi _ to muitT (pi ,^= 0.

Since p'„(W x^= 0,

multT(x,p',,(W x^
1

= E^ multT(x Itimespi,W^= 0.
j=0

(7.17)
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In the second case, if j i, then multT(x x Pi, W x Pi, P(E')) = 0. Since (W x Pi) = W,
Proposition 5.2.2 part 7 shows that

e

jE=0^j(µi µ') multT(x X Pj, W x Pi, P(E')) muitT(x,Pfk(W x Pi), Y).

So, for any a E AT (P(E')),

e 1InUitT(X,p s,a, y) E µ̂,)  multT (x x pi , a, P(E')).
j=0 nw tpi — p)

Now,

(7.18)

(7.19)

multT(x, si(E) fl a,Y) = multT(x, si(g) fl a,Y)

=multT(x,p*(ci(OE , (1)) n p*a), )7)
iti ,MttitT(X x Pj,C1(0E1(1))"+i n a,P(E'))— E t̂hoicui — ) (7.20)

e^e+i

^pi ,
)
MUitT(X X Pi, P*a, P(E')))— EJ=c, 

e^e+i

multT (x, a, Y)=E Fr^
i=0 --/Ojutit —

Remark: Let X be a T-subscheme of a smooth T-variety Y. If we consider the quotient

group AT(X)/ ti where a 0 if multT(x, a, Y) --= 0 for all x E XT, the proposition holds

independent of niceness conditions. The reason is that if mu/tT(x, a , Y) --= 0 for all x E XT ,
then multT(x, c1(L) fl a, Y) = 0 for any a-admissible T-line bundle L.

The following is the T-Segre class analogue of a characteristic number formula that has been

proved under various conditions by Iversen and Nielsen [9] and Brion [3]. While all of these

require some use of the Riemann-Roch theorem, our result is purely combinatorial.

Proposition 7.1.6 Suppose X C Pn is a T-subscheme where P" has isolated fixed points and
weights Ao,.. , An. If x = Pi E XT , let A = Ai. Let E be a T-vector bundle on X such that
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the weights pzo,... , Axe of E in the fibre over x E XT are distinct. Let a E Ak (X). If P is an

isobaric polynonial of degree k in xo,... , x e where xi has degree i, then

1 m^E n^\ P(TO (X )7 • • • Te(X))77TUUT(X, Pn ),
xEXT nyExT (Ay — ^x/

yOx

(7.21)

where

   

e^e+i

  

Ti(x) E
j=0 moi cti./ —

and m is the geometric multiplicity of P(si(E),... ,se (E))n a.

(7.22)

Proof: The result is purely combinatorial. Let V be a k-dimensional T-subvariety of P(E).

Let the fixed points of Pe be Pi and the open T-subset of Pe defined by inverting xi be Ui. The

fixed points of P(E) over x E XT are then x x Pi. We prove the proposition by first summing

over the x x Pj where x is fixed and then summing over the fixed points of Pn .

As in the previous proposition, let E be trivial over U. We can extend E to Ui to obtain a

trivial T-vector bundle Ei over

Let [V] E (P(E)). Since 0E(1) is not necessarily k+-admissible, we can only guarantee

the existence of a weight section s of weight v, say. As in the previous proposition, we can

extend s to a weight section si of OE; (1). Let D be the representing T-Cartier divisor defined

by s and Di, that defined by si. As in the previous proposition, if we identify the variety in

P(Ei) associated to V with V,

e

TT
j=0 II/0j

1

 

multT(x x Pi, D • [V],P(E)) =

 

— Ax;)
e^1

0 nio joixi fixi) multT(x x P;, D; • [V], P(Ei)) =^(7.23)

^multT(x x Pi,[V],P(Ei)).

If dim V > 0, either p.[V] = 0 or dimp.[V] > 0. In either case,

E n
1^

, x , TriuuT(x,p4vb pn) = 0.^(7.24)
ArExT lAyEXT lAy — )

yx
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Since

we have,

83

e 1multT(x,p,,[11,Pn) = E ,̂muitT(x x Pj , [V], P(Ei)),
i=o MA/U./xi — 

i ) (7.25)

.ExT

1

yexT (Ay — Ax ) pxj)MuitT(X X Pi, [11,P (Ei)) =
y$s^

r11:( zttix / + —v

^ : Hio (pfixxii_ px j) MUitT(X X Pj, [11,P (Ei))•
ypx

1

TEXT il yexT (Ay — A ) E0 ^j 

(7.26)

Recalling that for a E AT(X),

multT(x x Pj, p* a,P (Ei)) = multT(x, a, Pn )
^

(7.27)

and using the above we find,

1
n̂ ,x, muitT (x, si(E) fl a, Pn) =

xEXT 11YEXT (Ay — A )
yx

1 e
nioi(pzi _ iaxi) muitT (x,

„e-Fi^ (7.28)
P'xj 

zEXT 11 YEXT (Ay — Az ) jo_
yOs

So,

E^/^As^ multT(x, P(so(E), , (E)) n a, X) =
xExT 11 yEX (Ay — A )

1^ (7.29)

sEXT
E 

11 YEXT (-y —

n^Ax)muitT(x,P(To(x), —,Te(x)), Pn).
y$x

Recalling that if a E 4(X),

 

1 M E^ x, multT(x, a, X),
xEX II yExT kAy — A

yx
(7.30)

we get the result.

 

0

While the sums in the proposition may look formidable, note that Fly0x (Ay — Ax ) is just the
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e^„e-Fi

H TT^
P' xj

=0 iik$j(itxk Axj)

is the determinant of the matrix

/ 1 Ax0

VDM(pxj, i) det
1 itx i

‘ 1 Axe

84

e+i
auxo

(7.31)

Px1
(7.32)

e-1

,e-1

Van Dermonde determinant and that the numerator of the fraction

/40

/4 1

14e^AX;1 AXV

7.2 T-Chern Classes

We define the T-Chern classes in terms of the T-Segre classes and we show their basic properties.

The bulk of this section involves showing that the splitting construction works in the equivariant

setting.

We imitate the construction of the T-Chern classes in Fulton. If E is (k — j+1)+-admissible

and P(E) is (k — j + 1)+-nice, we define the polynomial

st(E) E si(E)t i .^ (7.33)
i=o

We define the T-Chern series to be,
00

ct (E)^ci(E)ti,
i=0

where ct (E) = st (E) -1 . The first j T-Chern classes are the first j terms of the series.

Explicitly,

(7.34)

co (E) =1^(7.35)

cl (E) =^(E)^ (7.36)

c2(E) — s1(E)c1 (E) — s2 (E)^ (7.37)

ci(E)= —si(E)ci_i(E) — 82(E)ci_2(E) — • • • — si(E).^(7.38)
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Theorem 7.2.1 1. Suppose that E is a (k -i+1)+ -admissible T-vector bundle on a T-scheme

X such that P(E) is (k - i +1)+ -nice. If i > rankE, then

ci(E) = 0.^ (7.39)

2. Let F be a rank f +1 T-vector bundle on X, E and F be (k - i - j +1)+ -admissible

T-vector bundles, P(E) and P(F) be (k - i - j +0+ -nice and a E 4(X). Then

ci(E) n [ci (F) n a] = ci(F) n [ci(E) n^ (7.40)

in A iL i_i (X).

3. Let f : X' -4 X be a proper T-morphism, E a (k - i +1) 1- -admissible T-vector bundle

on X, f*E be a (k - i +1)+ -admissible T-vector bundle on X' and let P(E) and P(f*E) be

(k - i +1)± -nice. If a E AT (X), then

f.(ci(f* E) n a) = ci(E) n fka^ (7.41)

in 4_ i (X).

(. Let f : X' -> X be a flat T-morphism, E a (k - i +1)+ -admissible T-vector bundle on

X and P(E) and be (k - i +1)+ -nice. If a E AT (X), then

ci(f* n^= f * (ci(E) n a)^ (7.42)

in 4+n_ i (X).
5. Let a E AT (X). If E is of rank r = e +1,

0 -> E' -4 E E" -4 0^ (7.43)

is an exact sequence of (k - r)+-admissible T-vector bundles and P(E'), P(E) and P(E") are

(k - r +1)+ -nice, then

ct(E) = ct(g)ct(e).^ (7.44)

6. If E is a [X]-admissible T-line bundle on X, D a T-pseudo divisor on X with OD E,

then

cl (E) n X = [OD].^ (7.45)
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Proof: 2, 3, 4 and 6 follow from Proposition 7.1.3. We show 1 and 5 by using the splitting

construction.

Splitting Construction

Given a (k - r +1)+-admissible T-vector bundle E of rank r = e + 1 on X such that P(E) is

(k -r +1)+-nice, we construct a space f : X' X such that f is a flat T-morphism of relative

dimension n, say, f* : AT (X) -4 4+n (r) is injective, f *E is (k +n - r +1)+-admissible, and

f *E has a filtration,

0 = Mo C^C C Mr = f*E^ (7.46)

where the quotient bundles

Mi/Mi-i = Li^ (7.47)

are (k + n - r + 1)+-admissible T-line bundles.

The construction is the usual splitting construction. Consider

p5E^E

I^I
P(E)^X.

Po

(7.48)

p'6E has a T-subbundle OE(-1). Let E 1 be the quotient T-vector bundle p'd E/0(-1) on P(E).

E 1 is of rank r - 1. If we set X 1 = P(E), we can repeat the construction to get X 2 = P(E 1 ),

and E2 = 14E 1 /0Ei(-1). Continuing this, we arrive at X' = X'. Let f be the composition of

all the pi. Since each pi is flat, f is flat, and since pi : Ak (X i ) -+ 4+e_ i (P(E i )) injective by

Corollary 7.1.4, f* : AT (X') 2417:(X) injective. This gives us the diagram:
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Er

(4 E2 --• • . -+ E2

qi El ____4^______ pl'El ______* El

----+ PIA E ----*q5E _____+^ p6E ______* E

I^I^i^I
X '

^

• -4 P(E 1) ----) P (E) --, X,

(7.49)

Pr^ P1^ Po

where qt = pr 0 pr-1 0 • - • o pi.

Let Mi be the kernel of the map q5E -+ q7E i . We have Mi_.1 C Mi and

0 =-- Mo C Mi. C • • • C Mr =1*E.^ (7.50)

Finally, since the E i are T-vector bundles of rank r - i, the M2 are T-vector bundles of rank i.

We still need to show admissibility.

Lemma 7.2.2 If E is a (k - i +1)+ -admissible T -vector bundle of rank e and P (E) is j+ -nice

for any j > 0, then any rank e -1 T-subbundle E' and any quotient T -line bundle L of E are

(k - i + 1)+ -admissible and j+ -nice.
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Proof: we have the commuting diagram

OE, (1) --+ OE( 1 )

P (E')^P (E)
^

(7.51)

X i -4 X/.

0E1(1) is the restriction of OE(1) to P(E'), so, since E is (k — i + 1)+-admissible, and any

T-subvariety of P(E') is a T-subvariety of P(E), E' is (k — i + 1)+-admissible.

Suppose that OL is locally generated over Ou by x. Since E L, there is a morphism

on the structure sheaves cio : Ou k[x] -4 OE. Let yo(1 (8) x) = y. This induces a morphism

P(E) --4 P(L), and we also get a morphism 0E(-1) OL (-1) .cs2 L. Since 0E(-1) has an

equivariant section over any T-subvariety of X of dimension greater than (k — i + 1), composing

with the morphism above gives a T-section of L. So, L is (k — i + 1)+-admissible.

To show the niceness conditions, note that if P(E) is j+-nice, then the trivial T-line bundle

with trivial T-action over any T-subvariety of P(E) of dimension greater than j has a T-section.

If E' is a T-subbundle of E, then any T-subvariety of P(E') is contained in P(E), so any T-

subvariety of P(E') of dimension greater than j has a T-section of the trivial T-line bundle

with trivial T-action. Similarly, if L is a quotient T-line bundle, then P(L) = X. Since X can

be embedded is P(E), any T-subvariety of X of dimension greater than j has a T-section of

the trivial T-line bundle with trivial T-action defined on it. ^

For future reference, we would like to know the weights of the L. We find them inductively.

Let Fuo... ji ) be the T-representation space with basisX^0 , We let Uji be the open

subset of P(Fuo ,... Ji )) obtained by inverting xi i . Locally, P(E i ) is of the form Uxqx•-•x
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and locally E' has weights {A, :1 0 jt, for all i}. Pulling this back to X', and taking kernels,

we find Mi has weights Ajc,, , Aii over Ux U,0 x • • • x . So, the quotient bundle Mi/Mi_i = Li

has weight Ai over U x x • • • x

Suppose i > r. We want to show that

ct (E) = H(1 + (4)0.^ (7.52)
j=1

Lemma 7.2.3 Suppose E is filtered as above, E is (k — i+1)+ -admissible for i > r and P(E)

is (k — i + 1)+ -nice. Let s be an equivariant section of E with support Z. Then, for a E (X),

there exists a cycle Q E 14 such that

H ci (Lj) n a =^ (7.53)
j=i

In particular, if s is trivial, i.e. Z = 0, then IT ci (4) n a = 0.

Proof: The proof is as in Fulton [6]. We proceed by induction. If r = 1, since E is a

k+-admissible T-line bundle, E is T-represented by the T-pseudo divisor (E, Z, s) where Z =

supp(s). So, ci (E) n a C Z. Suppose that we have the result for T-vector bundles of rank r —1.

Consider the exact sequence,

0 Mr_i^E Lr^O.^ (7.54)

Let g = cp(s). Then, s is a (possibly 0) T-section of Lr . Since E is (k — i + 1)+-admissible, L

is as well, and we set
{(Lr, Z ,."§) if g 0 0

Dr =
(Lr , Z, si) if g = 0,

where s' is an equivariant section of Lr over X.Ifj:Z-4Xis the inclusion,

(7.55)

ci (Li.) fl a = j.(D,. • a).^ (7.56)

Since Mr_i is a rank r — 1 T-subbundle of Mr, Mr-1 has a T-section induced by s with support

Z.
r-1H ci (4) n a = ( 1-1 cO.0) n ./.(Dr • a) = 0J=0

(7.57)
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for E 14. 0

To complete the splitting, let E be a (k - i + 1)+-admissible T-vector bundle for i > r over

X which is filtered as above. Consider p : P(E) -4 X. 0E(-1) is a T-subbundle of p*E and

0(-1) 0 0(1) is a trivial T-line subbundle of weight 0 of p*E 0 0(1). Since 0(-1) 0 0(1) is

(k-i+1)+-admissible it has an equivariant section over any T-subvariety of P (E) of dimension

greater than k - i +1. So we have a trivial T-section of p* E 0 0(1). p*E 00(1) has a filtration

by T-subbundles with T-line bundle quotients p*Lj 0 0(1). So,

ci(P*Li 0 0(1)) = 0.^ (7.58)

Let E = ci(0 ( 1 )), ak (resp. &k) be the k th symmetric function in the c1 (Li) (resp. ci(P*Li))•

Since p*Lj, and 0(1) are (k - i + 1)+-admissible,

4.lici(p*Lj 0 0(1))^7*^ 0.

Multiplying by e-1 for 1 < 1 < i +1, and recalling that r e + 1,

e Fl 5̂. 1. e+/-1^+ Err Cl-1^0 .

So,

(7.59)

(7.60)

P*(ci(0 ( 1 )) e+i np*a) +p*(5-ici(0(1))e+1-1 -n + . +p*Carci (0(1)) 1-1 p*a) = 0 (7.61)

si(E) fl a +^(E) n a + + arsi,_1(E) 11 a = 0.^(7.62)

So,

(1 + alt +^+ artr )st (E ) = 1,^ (7.63)

and

ct(E) = H(1 + ci(Li)t).^ (7.64)
i=i



Chapter 7. Intersections with T-Vector Bundles^ 91

We now show 1 a and 5.

Injectivity of f*, and

ci(f* E) fl f *a = f * (ci(E) fl a)^ (7.65)

now imply la. For 5, we find f : X' X such that f*E' and f*E" split, with (k — r + 1)+-

admissible T-line bundle quotients and L. f *E then has an induced filtration with quotients

and LZ. So,
ct(E) = ci (e)ci (E'').^ (7.66)

0

The splitting construction also yields,

Proposition 7.2.4 Suppose that X C Y is a T-subscheme of a smooth T-variety Y, x E YT

and there is an open affine T-subset U of Y containing x which is T-isomorphic to a T-

representation space. Let E be a (k — i + 1)+ -admissible T-vector bundle on X with weights

Po, • • • Pe, and let P(E) is (k — i+1)+-nice. If a E AT (X), then

mu/tT(x,ci(E) fl a, Y) = Cli (itO, • • • Pe)MUltT (X, a, X).^(7.67)

Proof: We note that in the spliting construction, X' is locally of the form U x F where U is

an open T-subset of X and F is a T-representation space. If x x 0 E U x F, then

muitT (x, q (E) n a, Y) = multT(x x 0, ci(f*(E)) n f *a, U x F).^(7.68)

Since ci(f* E) n f* a = m=i (ci (Li) fl f *a), and Li has weight Ai over x,

multT(x x 0, ci(f *E) n f* a, X') = vi(/p0, • • • , pe)multT(x x 0, f* a , X')^(7.69)

multT(x, ci(E) fl a, X).^(7.70)

0
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Corollary 7.2.5 If X, Y and E satisfy the conditions of the proposition,

^

multT (x , si(E) fl a, X) = ( p 0 ,^, fie )mu/t(x, a, X)^(7.71)

where ri(po,^, pe ) is the sum of all monomials of degree i in the pj 's.

Proof: This results from the relations between the T-Segre and T-Chern classes. These rela-

tions are precisely the ones between the elementary symmetric functions and the Ti.^^

We also get the following seemingly purely algebraic fact:

Corollary 7.2.6^= Ti (110 , • • • ite)11j0k(iij Pk) •

Oddly enough, the determinant VDM(//ii, i) does not seem to have been calculated before.

If we omit the admissibility conditions, since we can not determine the equivariant multiplic-

ity of the intersection except when the final cycle is of dimension 0, we only get the characteristic

number formula mentioned before:

Proposition 7.2.7 Let X C Pin be an n-dimensional T -variety. Suppose that P rn has iso-

lated fixed points and weights A0,..., Am . Let E be a T-vector bundle over Pm with weights

{No, • • • /lie} over Pi E Pm. Let a E (X). If P(xo, , x e ) is an isobaric polynomial of

degree n, where xi has degree i, then

P (ci (E),^
1

, ce (E) n a) = E^P(aii,• • • ,aie)mutt,(p,,a,Pn),^(7.72)

^

i=o^Ai)

where a ik are the k th symmetric functions in the tiii

Proof: This is merely a consequence of the result concerning T-Segre classes. If we replace the

ci by its expression in terms of T-Segre classes, we get an isobaric polynomial as above, but in

the T-Segre classes. Proposition 7.1.6 and the expression of the T-Segre classes in tems of the

T-Chern classes then yield the result. ^
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7.3 Notes

If we consider * intersection (i.e. we have ci(O(1))e+i *^inin the definition of intersection)

then all the properties of Proposition 7.1.3 and Proposition 7.2.1 hold, and the only ones to hold

without admissibility conditions are Proposition 7.1.3 part la and the push forward properties

for both the Segre and Chern classes. The various properties concerning multiplicities hold as

well, provided we do not omit the admissibility conditions.



Chapter 8

Applications and Relations

We consider how AT(X) is related to the other equivariant objects. The objects we are in-

terested in are A"(X//T) where X//T is the algebraic quotient, vector bundles on X//T and

KT(X). The main result we show is that if X is a complex variety with free T-action and

dim T = r, then AT (X) 0 Q = Ak+ ,(XIIT) 0 Q. In the third section we consider 4(X) for

G a reductive algebraic group.

8.1 A(X//T)

Suppose dim T = r. Let X be a complex T-variety with free T-action, and suppose that X

can be covered by open affine T-subsets. We show that A.(XIIT) 0 Q = AT(X) 0 Q. If

f : X -4 X//T is the quotient morphism, we show that if E is a bundle on X//T, then f*E is

an r-admissible T-vector bundle. We show that in some cases, multiplicity is an invariant of

A.(XIIT).

We start with a result of Vistoli [191.

Proposition 8.1.1 Let f : X -+ X//T =Y be the quotient variety, Y' be the normalization of

Y and let X' be the normalization of X . There exists a normal variety Y" such that if X" is

the normalization of Y" x y X, then

xn ---1--4 X' —2.-- X

f'l
^

i f
^

(8.1)

______> yt _______+ y
P 1^P
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commutes. Furthermore, there are finite groups F' and F acting on Y" such that Y" F' =

and r F = Y .

Proof: The proof is in Vistoli [19], Lemma 4. In fact, the result he proves is more general

since it concerns reductive algebraic groups.^ ^

Definition: Let G be a group acting on X' and let p : X'^X = X'//G be the quotient.

Let W be a subvariety of X and let ew be the order of the inertia group of a general point of

p-1 (W). We define p* : ZIT (X) -4 ZIT (X') by,

= elvielf[P-1 (W)].^ (8.2)

Lemma 8.1.2 Suppose G is finite. Then the set of cycles T -rationally equivalent to 0 in

ZIT (X') 0 Q are generated by cycles of the form

E[div(g-1 • r)]^ (8.3)
gEG

where V is a k + 1-dimensional T-subvariety of X' and r E R(V)* is a weight vector of weight

0. In particular, AT (X') Q = 4(x) Q.

Proof: Suppose that a is G stable and T-rationally equivalent to 0. There exists a collection

of k+ 1-dimensional T-subvarieties VI, , Vn of X' and T-weight vectors ft E R(Vi) * of weight

0 such that a = EriL i divfi. Averaging over G we have,

n
(E g) • a = E E [div(g -1 • fi)] = IGI a.^ (8.4)
gEG^1=1 gEG

So, after tensoring with Q, cycles of this form generate the set of G stable cycles that are

T-rationally equivalent to 0 in ZT(X') 0 Q.^ ^

Theorem 8.1.3 1. f* passes to T -rational equivalence

2. f* : Ak(X IIT) Q 4+r (X) 0 Q is an isomorphism.
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Proof: Vistoli shows [19] Lemmas 2 and 3, that rq'*, f"*p'* : Zk(110 Q -4 4 (X") Q are

defined and are equal. We know that fll* : Ak(Y")0Q A4(X") 0)Q from Proposition 4.8.2.

Since IP and q'* are also isomorphisms on the AT  0 Q, f* passes to T-rational equivalence

and is an isomorphism as well.

Vistoli [19] also shows in the proof of Theorem 1, that f*p., q.1* : Zk(r)

are defined and are equal. As we have just seen, f* passes to T-rational equivalence and is an

isomorphism after tensoring with Q. Since p* and q* are also isomorphisms after tensoring with

Q, f* : Zk(Y) 0 Q 4+, (X) Q passes to T-rational equivalence and is an isomorphism on

the Chow groups..^ ^

The theorem allows us to calculate the Chow groups for quotients of affine spaces fairly

easily.

Corollary 8.1.4 Let V be a T-representation space, and let V" be the open set of V over

which the T-action is free. Then,

f* : Ak(V"IIT)0 Q 4-1-r(V ss) Q.
^ (8.5)

Note that this is essentially the same result that Ellingsrud and Stromme [5] get. They also

show that if V"//T is non-singular then AT (V") is a free group and

f* : Ak(liss/a) 4+,(v") 0 Q.^ (8.6)

Example: The morphism f* is not necessarily surjective (even if defined) if we do not tensor

with Q.

Let X = A2 with the Gm -action with weights A x = 1 and Ay = 2. X//T L-f P l , but

Ar(X) = Z ED Z/(2, —1). f* : X//T -4 X sends the generator of Ao(X//T) to (0, 1) E AT (X).

Since (0, 1) ti (2, 0), (1, 0) has no pre-image and f* is not surjective.
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Example: The map f. : ZT(X) -- Z(X//T) induced by f.[V] = [f (V)] does not induce a map

on the equivariant Chow groups.

We use the previous example. Let P and Q be the points of X//T defined by the semi-

invariant ideals (x) and (y). Since x 2/y is T-rationally equivalent to 0, if f. : AT (X) -+

Ak_ r (XIIT) were a morphism, then f.(div(x 2/y)) = 2[P] - [Q] would be rationally equivalent

to 0. However, since X IIT 'z'..131 , this is not the case. So, f* : 4 (X) -+ Ak_r (XIIT) is not a

morphism.

We relate the vector bundles on X//T to the T-vector bundles on X. We start with a

theorem whose proof is due to F. Knop [11].

Theorem 8.1.5 If the action of T on the complex variety X is free, then every T-vector bundle

is isomorphic (not necessarily T -isomorphic) to the pull back of a vector bundle on X IIT . If

the weights of the T-vector bundle are all 0, then the isomorphism is a T-isomorphism.

Proof: The proof of the first statement is in Kraft [11]. All we have to note is that the pull

back bundles really are T-bundles. Let p: X -- X//T. If E is a vector bundle over X//T, then

locally over some open U C X//T, E is trivial. p-1U is an open T-subset of X over which p*E

is trivial. For the second statement, note that E has the trivial T-action. So, the weights of E

over U are all 0, and those of p*E over p -1(U) are also 0. ^

We consider equivariant multiplicities and quotient varieties.

Let Y be a smooth T-variety such that for x E YT there exists an open T-subset U containing

x that is T-isomorphic to a T-representation space. Let X be a T-subvariety of Y. Let A be the

free group generated by the multT(x, [V],Y) for all k-dimensional T-subvarieties V of X. Let

B be the free group generated by all the multT(x, [V], Y) for all k-dimensional T-subvarieties

of X contained in X - X". Then multT(x, a, Y) is an invariant of a E Ak, (X") in A/B

where we identify multT(x, a, Y) with its class in A/B. This follows from the exact sequence

A IT(X - X") -- AT ^-> 4(X") --4 0.^ (8.7)
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Remark: We would like to understand the relationship between A(X//T) and AT (X) better.

We would like to know if in Theorem 8.1.3 the morphism is an injection without tensoring with

Q. In many examples, we do find that it is an injection.

As far as intersections go, if E is a vector bundle on X//T, we would like to know how

si(E) fl — and ci(E) fl — behave when pulled back to X.

8.2 KT (X)

Since AT (X) involves T-cycles, we would expect some relationship between 400 and KT (X).

This is in fact the case, but the relation is not quite the one we would expect.

First of all, the obvious morphism cp : ZT(X) -4 KT (X) does exist and is an injection. If

M is a T, Ox module, then M has a composition series with quotients locally T-isomorphic to

Ox/Pi vi. Let Vi be the variety associated to R/ Pi. Then E i (-1)ZR/Pi is in the image of so,

but E i (-1)jR/Pi • vi need not be. So, yo is not an isomorphism.

Repeating S.G.A. VI, we do get a map that respects T-rational equivalence. So,

A PX) —* KT (X)^mod KT (X ) k+ 1^(8.8)

exists. On resolving, we get

.14.71:(X) Q -+ KT(X) Q.^ (8.9)

Remark: As in usual K-theory, we would expect the map to have an inverse at least on

Im(itT(X) Q). The proposed inverse would be the Chern class. However, since we have

admissibility problems, the Chern class does not necessarily exist, and the inverse need not

exist either.

We also have other problems. Since AT (X) does not necessarily have a product structure,

the localization result we would expect from Nielsen's [16] result does not hold.
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8.3 4(X)

We consider a definition of 4(X) for G a reductive algebraic group and X a G-scheme. If G

is a reductive group with maximal torus T, we can define a G/T-action on 4(X) as follows:

let g E G be a representative for g' E G/T. For [V] E Zr (X) we set g' • V = g • V. Since V is

a T-variety, this action is independent of the choice of representative. This action extends to

one on

Definition: If G is reductive with maximal torus T we say a E Zr(X )G/T = Zk(X) G is

G-rationally equivalent to 0 if there is a collection pairs {(171, f 1) , • • • , f.)} where Vi is a

T-variety, f E MVO* is a weight vector of weight 0 and the collection is G-stable. By this we

mean that the pair (g • Vi,g- 1 • fi) is in the collection for every g E G and every 1 < i < n.

Using Lemma 2 of Vistoli [19], if G/T is finite, we have

4(X) 0 Q = AT  Q = Ak,(XIIT)G/T 0 Q = Ak,(X//G) 0 Q. (8.10)

where r = dim T, and provided X//G exists.

For this definition of the equivariant Chow groups most of the properties Fulton considers

in chapter 1 hold. For the alternate definition of G-rational equivalence we require that the

collection of pairs {(Vi, fill be G-stable where V is a T-subvariety of X xPl where Pl has the

trivial G-action and f : V -+ P l is the T-morphism induced by the projection onto P 1 and

is dominant As above, by G-stable we mean that the pair (g • o g- 1 ) is in the collection

for every g E G and for every i. We also have the exact sequence of section 4.6, provided we

require that the subscheme X be G stable. We also have flat pullback. What we do not have,

though, is the moving result of section 4.4, nor the change of groups results of section 4.7, nor

the affine bundle results of section 4.8. The reason for this is that the part involving G/T is

not always satisfied.

This should give a fairly good idea of why we did not consider G-rational equivalence. The

definition is too hard to work with, and not all the properties we want necessarily exist.
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We consider another possible definition.

Example: As with AT(X), we could demand that the subvarieties generating 4(X) be G

invariant. This however, is too restrictive. Consider X = A2 with the G = Z/2Z-action given

by interchanging X1 and X2. For this definition of equivariant Chow groups, let B be the free

group on the elements of the field k. Then 4(X) = B/2B and is generated by the cycles of

the form (Xi — a, X2 - a) E A2 , where a E k.
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