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ABSTRACT

Massive bosons are constructed from‘generalized
biparticle states of massless scalar particles (m"zerons")
and of massless vector particles (photons). The self~
:coupling of the gzeron field o, is described by the
Lagrangian density goaﬁ. The self-coupling of the
photon field is described by the duality invariant
Misner-Wheeler Lagrangian density. Doublet mass spectra
are generated if the coupling constants take the approp-
riate signs. BEach such spectrum is fitted to that of
an experimentally observed meson doublet having the
correct spin and parity. The coupling constants and
the cut-offs that are introduced are thereby determined
uniquely. The coupling constant and the cut-off A in
the zeron model assume the values gy = -9.50 and X = 515
n.u. In the photon model, both scalar and pseudoscalar
particles are constructed. The respective cut-offs and
coupling constants are AH$==729 Dele, Gy~ ZL.6’7)<‘10"5 Nl

and A= 57h n.u., g= 3.34X1077 n.u.
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INTRODUCTION

The procedure of using the self—qoupling of mass-
"less fields to construct massive bosons has been shown
possible in the case of fermions for the V-A inter-
‘action (Kaempffer 1970) and for the renormalizable
Nambu interaction (Esch 1971). Similar calculations
are reporﬁed in this thesis for the case of massless
bosons.

It is shown in sectioﬁ 1 that there are no kine-
matical objections to models of this sort. An outline
of the necessary formalism employed in the.quantization
of the free zeron field and of the free electromagnetic
field, using ﬁhe radiation gauge, is presented in sec-
tionyQ. Interaction Lagrangians that are chosen for
the main calculation are introduced and motivated in
section 3. After introducing the notion of generalized
biparticle states for zerons and photons in the center-
of-momentum and determining their spin-parity assign-
ments in section 4, the calculations of the mass spectra
of the composite particles are presented in section 5
for the reron model and in section 6 for the more

involved photon model.



1. KINEMATICAL CONSIDERATIONS

Since the total proper mass of a system of free,
zero mass particles is, in general, nonzero (Terletskii
i968), there is no basic kinematical objection to a
model of massive particles that are considered to be
composites of massless ones. Conslder N free particles
having proper masses My, My « o «; My, with respective

energies Ej and momenta p;

(1.13  Ej= 74my5 py= ymy¥;= EiYs, i=l, 2, « . ., N,

1
where qi=(l—v§) < and y; is the velocity of the s

particle. The sum of the proper masses of such indivi-

dual particles,-

% -
[102] Z; mj_: Z_ (Ejz"pjz_)z = Z 711El’
o1 1 i i

is a scalar under Lorentz transformations. It 1s, in

general, different from the scalar

[1.3] m_=(E“-p

formed with the total energy E= Z:iEi and the total
momentum p= Z:iEi of an isolated system S consisting

of N such particles. The scalar g may be regarded és
the total proper mass of the system because in the center

of momentum frame p=0 it reduces to

[1.4]1 m~ ZiiEi =E,



Substituting Ei= 7imi from [1.1] into 1l.4] reveals
" the non-additivity property of the proper masses, since

now

[1.5] m = Z; ?imizzgg m .
i i
The proper masses are additive only in the speclal case

of identical velocities, Eizl;’yi=’7, enabling one to write

1 L
[1.6] ms=§]£.‘i(l—v2)2 = Zi:mi')fi(jt_—vz)2 = %ml

For the special case of systems of massless particles,
{1.3) can be written in a convenient form. For systems

of one, two and three massless particles respectively,

- N

2
s T
2
s

i

2E1E2(l—ll. 22)

and

[1.7¢) m2 = 2ByE,(1-¥y. ¥ ) +28 By (1oy) - 3 )+2B B4 (1-,- ¥3)
where each 1111 = 1, It is apparent that only in the

case when all particles are moving in the same direction
is the total proper mass of the system additive, that is,
equal to zero. An ordinary light beam, for example, that _
exhibits any divergence at all has a nonzero proper mass.
Only an infinite plane wave, unattainable in practice,

would have zero proper massS.



2. SUMMARY OF FORMALISE

Free massless particles of spin O, called M"zerons',

are described by the scalar field operator (Lurié 1968)
o J57Z;;J2k
and its hermitean aajoint

¥, 1 Z:j/l + ikx —ikx
. © VeV 2k ]

where kx= -k-x +lkit andviglzzk. The creation and
annihilation operators a%, bT, a and b satisfy the

commutation relations

r»
2

e
[ |

Fall) T (1t = Thil) hi(et) =8
[N N i,‘j/ L S I, Y — F S e 4y &;,

all other T 1= 0.
The field operators satisfy the wave equation
2.4 0o lx,t) =D (x,t) = 0.

_‘.

Unless the field is hermitean, @ = O,

which amounts
to having a(k)=b(k), this description can accommodate the
presence of some dichotomic attribute of the zerons;

such as electric charge or hypercharge, if required. Thé
freedom to put a(k)=b(k) at any stage will be retained.

The free-field Lagrangian density LO that leads to

[2.4] via the action principle,



[2.5] SSLOdqx =0, a is an arbitrary 4-volume,
A k

is given by (Roman 1969)
. [2.6] L, = éxdg Bﬁyo, summation over ~ = 0,1,2,3.

Variation with respect to oy gives the field equations
for og'and conversely.
The canonical momentum is constructed from LO by

the standard prescription

= BLQ_‘
(271 T, = 522 =4

and the free Hamiltonian density HO is formed by

[2.8] H_ =T &L, = n.

+ 20,0‘2061 *
HO is positive-definite as required. The equal-time
commutation relations are

(2.9 [og(x),o (xt)] = [ (x),T

ol A (x')] = O,

) .

™

[og (), T (1] o opy = 18(x-x'), x =(x,%,
[0}

o}
Free massless particles of spin 1, photons, may be

described by a 3-vector operator (Lurié 1968)

2
) 1 1 ~ikx
2.10] Alx,t) = = = e(k,N)Lalk,N)
20 flon = A7) [Eewnnan

+ éf(g{k)elkx]

3

where d¥(g;k) and a(k,\) are creation and annihilation
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operators respectively of free phoﬁons of momentum k
. N ‘ B
" having linear-polarizations labelled by I\. gf(g,t)

satisfies the wave equation
) o)
[2.111  Oa'(x,t) =0

and the transversality condition, in the radiation

gauge,

[2.12) V-£%Ax,t) = 0.

Classically, [2.121 and [2.111 are equivalent to Maxwell's
free-field equations.
The commutation relations obeyed by the operators

a(k,\) and at(k,\) are

[2.131 lalkN) etk n)] = beb e

In this gauge the electric field operator is

(2.14] rz?:/, ek Malkn)e
A=
- a+(g<_,x)e1kx1

and the magnetic field operator is

(2.15] Ux A = =/~ZZ[ € (k,3-N)

- k

[alk,n)e % o ar(icn) et



where use has been made of the relations

[2.16] kyelk,l) =k e(k,2); kxelk,2) = -k g(k,1).

Other properties of the polarigation vectors that will

be used later are
[2.171 e(-k,1) = -&lk,1)
[2.181 e(-k,2) = ¢€lk,2)
N
2.29]1 el-kn)-elk,n\') = (-1) ST\N.

Since the states of lihear polarigation are not
eigenstates of the spin, one introduces states of trans-
verse circular polarization by rotating the feference
base of the polarization vectors. The corresponding
creation operaﬁors for circularly polarized photons

take the form

[2.20] at(k) = 2 %lat(k,1)+id(k,2)]
for right-handed polarization and
[2.21] Db+(k) = 2‘%[a+(g,1)«ig(g,2)]

for left-handed polarization.

The total photon occupation number operator is

[2.22]1 N(k) = at(k)a(k)+b+(k)b(k)

= a+(_1_{_) )a(.lizl‘)+a+(l_£,2)a(l_<_:2) .



A satisfactory Lagrangian density for the free,

- Maxwell field.is (Bjorken, Drell 1965)

(2.23) Lo = R(EP-E"?) = 4L *].

From the canonical 3-momentum,

9L

— 0 = ~‘(0“‘ (O\
== BA(O) = .& - "E 3

2.26] T,

the (positive-definite) Hamiltonian density may be
constructed:

— ) - . . ' 7 . 1 (o72 (0\2
12.25] HO LN A L, F(E “4B 7).

A difficulty now appears. The usual form of the equal-
time canonical commubtation relations, namely

T A',(h,\z ¢ e ’ sove C <, - N L Y A S
12.2014 LAi\Xi,'bj\X')J = ¢Uij0\§?£‘17 \Lsd /7Ly &,0

is inconsistent with the transversality constraints
(o) / &) . .
V-A =Y E =0 in force here, as can readily be seen by

taking the divergence of 12.261. For then, at equal

times,

(2.271 [w-£(x), T (x")] = 16.5(x1) # 0.

The correct canonical commutation relations are given

instead by (Lurié 1968)

(o 1 — }lé
[2.28] [Aikx),TEj(x )] g=tt l<gij- ~—“1) 5(5#&'),



where the symbol V-Z represents the operation

1
[2.291 *v‘;;}z(ﬁ)

where

Sn(gc_-gcf )V (x)dx!,

1
LT x-x'

——

[g(tﬂzc_-wyi )= o(t-tx-x'1 )] .



10.

3, SELF-COUPLING OF MASSLESS FIELDS

The interaction Lagrangian densities LI that are
chosen for this work to describe the self-coupling of
‘massless fields exhibit as many of the symmetries of
the corresponding free-{ield equations as possible.

The wave equation [2.4] for the hermitean zeron
field is conformally invariant and so a conformslly
invariant interaction Lagrangian density is employed
to describe the zeron~gzeron coupling. LI = gfgbis
the only choice that exhibits scale invariance because
it is the_only choice that provides a dimensionless
coupling cons£ant0 Scale invariance, in this case,
implies full conformal invariance (Carruthers 1971).

The full Lagrangian density L=LO+LI is thus

4

= _1 _ .2
[3.11 L = -3(2o,¥e, = &5) + &g,

and the corresponding Hemiltonian density is given by

L _ 2 I
—B—bjo TomL = 2(wey 2o * o) = 895"

(3.2] H=
Since Ly is a nonderivative coupling, o  may be expanded’
in free creation and annihilation operators according

to [2.11 with a(k)=b(k). Normal ordering of the operator

products is denoted by the usual “double dot notation.



1.

The free part becomes, after integration over all 3-space,

[3.31 %, = Zk: kat(k)a(k).

'A truncated version of the interaction Hamiltonien is
employed by dropping all terms that do not contain an
equal number of creation and annihilation operators.
These particle nonconserving terms will constitute a
perturbation. The truncated Hemiltonian density is

[3.4] Hp= : L’j,%OZT{.L_LZ (kk tkmkmt)”

k1t k1 knt

W=

- . - ).~
{afa'-taﬂafﬂ e l(l{_+.lgn !:_{_" .]:S.”) £ -+ a‘fafaﬂfanf

n..j_ ( .lﬁ."l_{_' +:1_(_n__1_{_m).2g

<

-i( ~-k+i ! +}in-:k;m) - X

womntt ot o A
oot ot omt e

+ a’ra,a"a"ﬁel(}_C_ml_(f*l_(_”ﬂi“')'& + aatt gangntt

-1 ( __}5_-4-;2! ~£"+£'” ) X

o 1(1_{_4.&1_&17___]@?:), E‘l,

+ aatantamt e

Ao

where a"= a(k")e etc. Integrating over all 3-

space,

[3.51 ‘%I = S:HI:d§ = :-i%{g(gfgfugﬂ—g"O(éfa{Ta"a”’

+ aaxan'ranﬁ") + g(k-—k’“ﬁ‘k”-—k"’)(afa'a”fa”‘
+ aatlagnam®) + g(k_k:_k::+kn:)(aa:’r anfam

-+ aj"a'a"a!"f)} le



A 12.
In addition to being Lorentz invariant, the free
Maxwell equations still hold if the fields E“and B
called a M"duality pair", undergo the so-called "duality
. rotation' through an arbitrary angle «, (Misner, Wheeler

1957)

(3. 6] E° coso sind QM

t -sinx cosa/\B9)/.

_— —

The interaction Lagrangian density chosen in this
work to describe a self-coupling of photons is the
simplest, non-trivial, duality invariant and Lorentz

invariant expression in operators E and B, namely

=
)

3.71 1. = e[(B2-EX)%+L(B-E)7T.

- I

The duality invariance of [3.7] follows immediately

from the fact that B-E and (E BQ) form a duality pair.
Since this choice amounts to the introduction of a

derivative coupling, a complication arises in the

canonical formalism. The canonical 3-momentum for the

total Lagrangian density L=LO+LI is
| AL, dLp . ..o

[3.81 W= o5 + 7 = Avedd +2gB (B 4)-gAB®, B=UxA.
A dA

This equation cannot be solved for A in closed form.

Therefore, A is expanded in powers of g according to


file:///-sincc

13.
[3.9] 4= % _ gné‘(n),
n:

. (o)

_ Loy . » )
where A = = BLo/aAf is the time derivative of the

=

‘“free field. To first order in g, [3.8] becomes

(®) 2
B-m )-B "L} -

The full Lagfangian density, also to first order, is

(0)2

(l) - %(E‘“\zﬂB

[3011} L “’\2 (032)2 L"( (‘A (03)21

) + dg [ (8

(o)

- gk 'ﬂm - gB- (v xa?)

and the corresponding Hamiltonian density takes the
form

LD - \(]_) ORI «AZ co)’/:\ PR co)2\ ( Q?@)Q_‘_p(o\z‘
- / e "_' ! - L A PR e i

ra AT 3 {
Ledky i o A i 'k\

-H

©@ @ @ ~( o )
4 (B7E)?] gAY + gE (ZxaT).

It is possible to express the last two terms of [3.12]
in terms of the free fields E&’and E“). In covariant
notation, the Buler-Lagrange equation for the full
Lagrangian density [3.11]} is (see Appendix A for more

‘details)

i Pz
{3 13] ’é { ,_._—é_l_“_(a———l = _“Ddf(l)ﬁ(?’ _ J") {fa\ 10) (o) «fi
I duh

P das (o)F,/J' o)
had l{'f f}l‘l) = O,

(P QCAA (rypl

where f It is important to note that A%#0

in the radiation gauge for interacting fields. [3.13]
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is of the form of Maxwell's inhomogeneous equations

with a conserved L-current given by

) BN o) C “H oyt 0‘\1)0( (o)ﬂ : 3
'[3-14] jnp _ ~%3¢{fllf» f()P_qf f"ﬂf:

wnl @

By inspection of [3.13],

' A CuYed T (e Rtk o‘*(} PR (o 'o 4
[3.15]) f(df = -4 [i;;f” e f)ﬁﬂfgw + hﬁ],

where Bdhdp =0, h*" to be determined. Hence, Y_ZX:{\:'\

) » :
, which follow from £"°F, are expressible in

« (1
and A
terms of free fields. The last two terms of 13.12]
becone

o

[3.16] -gE A+ gB(zxs”) = g (BB + ya%'L”)
o ouat
13171 30 = o Piax = o { [B(E+")
+de [ (B°2-59%) (3E"%4™?) + 4 (B°E7) Y] axs,

where E%Q(D E* has vanished upon integration.

At this stage it is legitimate to expand the
Hamiltonian in terms of the free-field operators given
"in t2;143 and [2.15]. Retaining only particle conserving
terms, the field products that occur in the interaction -

part are given by

[3.18) N = :-;é?:::7~#— ?—“— 7—_- /Eki:"kﬁf

V .IS_’“‘ ,l—{—;?\t k{_?’{-[\ﬂ .}_{_"Y’F’\T"

ek, ) ek, n)elk,\")- €[k, ™)



; et le oo i) ,
[aatan*am"' el(»}_{:"}f_ k=l m)x + aTa"a"a‘1‘r

ei(—,lg_"r_lf:_"%_lg“—l_i_"‘)’x

=+ aa'fanfanrei(gfgf-KN+&nq,&

I { k=1 i 117 ). -
-+ af a“‘ha”aﬂf el( }i l.g. +.]:—{- +-1/—;- ) ﬁ -+ aa’Taﬂa\"nT

i(.li‘_li"'@i' km) + i(_}_{—+£{-f_}£71+£f!1),§] .
°3

e L 4 Jtgrgntgme

. ROV _]____ "“ Z — Ik Tk ik e
pasy =) ) ) L [T
. .li"{L }il N }_{nn N }S‘m,“‘

I WY N 00 NG £ 90 NG £
) NN (L3

(-1 A)eelk',3-1')

€ (km,3-1m)- elkm3-n L.

where [...] is the same set of operators as in 13.18],

[3.201 :E"2E%: = i L } K TR TR
. V' N - ,

TN Ko k" T km Y

I W

(-1) e(k,n)-elk',n")

C(k" 3 \n) e(k"' 3_—‘\111)[ .“];

(3 21] ‘EMzBmz’ . _j_L_ ZZ ? fkk’k"k‘”

"‘r\ kt"\ kn " ki?! 1

A -7
T\K__e_(

(-1) »3-N)-elk',3-1")

2y

@_(gn,ln), g_(;c_"',n'")[ . _.} :

and

@ _(e) I (o\ 2_ = . _:_l____ kk‘kﬂynf
[3.22] @B+ B'E")": 'V?“? Z ] [

;l k'ﬂ\l. k"ﬂ{ Km -




[elir, t)- €liem 3=y (=1)7 " A"

F ek, 3\ el am(-1)77 A L]

where a'' = alk",\f)e ’llk”kt e

The free Hamiltonian is

[3.23] ﬂo = :3 S(Ew>2+Bt)2 Z; ka (k yA)a ,)\

16.
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L. BIPARTICLE STATES

Under the operation of parity P, the hermitean
zeron field transforms according %o

R
[4.1] Po (x)P7" = soy(-x,t),

where s=1 for scalar o, and s==1 for pseudoscalar Ty e

U51ng [2.171 with a(k k)=b(k), it follows that
(4.2] Pal(k)P~! = sat(-k).

Consider now the biparticle state |B(k)) = ]lP,L_k>
consisting of two zerons having equal and opposite

momenta k and -k. Thus, under P,

[4.31 Pal (k) *( K)f0y=Pl1,,1 )

| =[pat (k)P~H] (Pat (-k) P} PLOY] = Szilg’l-ﬁ

where P]0O) =10y by assumption. The two-zeron state
\B(g)> is thus an eigenstate of parity with eigen-
value +l.

Consider states of two photons having momenta k
and -k. Eigenstates of the parity operator are sought.
With circularly polarized photons it is possible to

construct the following four helicity states:
Wkl ALy godoy Ry T | &RY = aT(k)a®(-k)10),

(4.5] \lk’R}l_k’L>'= |RL) = a#(ﬁ)b+(~£)\o>,



18.

fll
i

6] |1 ooy g = VLE) bl (k)a' (k) 10},

pAN

(4.7] (1K,L‘,1_£’L> = |LLY

]

T (k)bS (k)1 0).

" Under P, the mixed states go into themselves, [RI}-{RL) ,
[LR)»|LRYand |RR)*|LL) and |LI)+|RR?. The triplet of states
4!RL}, |LR) and \RRY + \LL) are therefore eigenstates of
the parity operator with even parity and the singlet
state [RR) - |LL> is an eigenstate with odd parity.

A two-photon state {RR? + \LL) has therefore the
appropriate guantum numbers of a massive, neutral
scalar particle in the center-of-momentum; the state
(RR) - |LL) has the appropriate quantum numbers of a
massive, neutral pseudoscalar particle. Either oi tne
states |RL) or |LR) has the quantum numbers of a massive,
ﬂeutrél, spin 2, even parity particle.

A more general biparticle state may be constructed

by superposition:

[4.8] |B) = Zk: £(k) 1B(E)),

where f(k) is an arbitrary amplitude function. One
finds here a direct analog to the two-electron state,
Cooper pair, formalism used in the BCS theory of super-

conductivity (Cooper 1956).



U
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5. CALCULATION OF THE MASS SPECTRUM OF COMFPOSITE
PAHTICLES AS AN EIGENVALUE PROBLEM I: THE
ZERON MODEL

Operating the full Hemiltonian ¥ given by [3.3]
and [3.5] on the two-zercn state |B(g)) = &lo,l_g> ,

‘it is found that

(5.1 % )Blg)) = 2qiB(g

Z L
K kq
where use has been made of identities of the form
[5.2] ko) o attanamB(g))

=[§(km -g) §(k+g) + S(km+g)o(k"-a)} [B(k)) -
Thus [B(g)) is not an eigenstate of the Hamiltonian.

However, by introducing the superposition given in

[h.8]? namely

[5.31  1B) =)  f(a)|Bla)),

q

where the unknown amplitude function f(g) is to be

determined, then (5.1 becomes

[5.47 XIB) = | T2af(a)IB(q)y - 2Es ] X r()BW)]
a

V k kg

or, interchanging k and g in the second summation,

[5.5] 3IB) = Z[zqf lgfik:if(@]w(g».

kq


http://_5.ll
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It follows that |B) is an eigenstate of the Hamiltonian
with energy eigenvalue E provided that f(q) satisfies

5.6 £l(g) = »—miL- L 2 fik)

(2g-E)

or, in integral form,

5.7 flgq) = —=28e 8
[ (29-E) (2T)°

fik)
K

k.

The solution of this integral eguation is, by inspection,

(5.81 f£(k) =_f(-k) = A/(E-2k)k, A is a constant.

The spherical symmetry implies that |B) , like \B(g)) ,

is a state of even parity. Substituting [5.87 into

\;5 7] wiaolAdg the o Nan1r97110 ecoanditiaon

v

.

3
dk _ {2m)
5.9 - - 3 # Oo
' ]A SKZ(E-zk) S

Thus, in polar coordinates,
T N e

[5.101 S E[sined6d¢dk AHS[P
A E-2k

(2m) 3

’

- iné(B-2k)] dk =
(E-2k) ~3g,

where a cut-off N has been introduced in the k-integration

and P denotes the principal value. Integrating,
(5.11] #1ln(l-27\/E) + in = 2“2/3g0°

If the assumption is made that the states are quasi-
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‘stationary, then discrete, complex energy eilgenvalues
E = %+ ifp will be obtained, where  corresponds to the
width of the energy level « . Substituting E = o + ip

"in [5.111 and separating into real and imaginary parts

_gives .
- | 2 2.2 2

2% LR _2m

5.12] 1in | {1- 55225 + =
L PP (4 )7 3e,
and )
- N
(5131  #tan™t (?ﬁf__% am =0
B2l

From [ 5.13], @ = O for all n, so that [5.12) reduces to

21 ,
[5.11{} %lnll-x\ =§? , x= 2N/,
: . e
Equation [5.14] is displayed graphically in figure 1.
7ﬂ$ f(x) ;
"-_,H_E SOOI VPP PR PP Y go>(}
|
|
I
i
i
° - L > X
i
|
i £f{x) = lnll-—xl
|
//Solutions
|
- . e — g0<o
|
. |
T i

Figure 1: Graph of equation [5.14]
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The graph reveals that only one value of x will satisfy
[5.14] if g » O but that two solutions exist if g < 0.

In this case,
"(5.25) 1n(l-x)) = In(x,-1), x; = 2Moy, 1=1,2,

.The only particles so far experimentally observed with
the spin-parity assignment of O+, as would be required
in this case, is the’no+(1373 n.u,)w’ﬂo+(2080) doublet
(Particle Data Group 1970). If ¢, and &, are fitted
to these particles respectively, then go and N\ can be

determined uniquely. Introducing R = QZ/“l’ [5.15]

becomes

[5.161 x, = R(2-R).

With R=3/2 and hence xl::B/h for the chosen doublet,

the cut-off N\ takes the value
[5.171 N\ = xlotl/z 2= 515 n.u.

and the coupling constant becomes

2
[5.18] go ‘“:—;lt-‘f—;z -9.5.
n
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6. CALCULATION OF THE MASS SPECTRUM- OF COMPOSLITE
PARTICLES AS AN BEIGENVALUE PROBLEM II: THE
PHOTON MODEL

If the interaction Hsmiltonian [5017], expressed
"in terms of the expansions [3.18]-[3.22], is operated
on either the even parity state |B(g)) . =IRE) + |LL)
or the 6dd parity state |B{(g))_ =|RR} - |LLY, the
result for both, after integration over all space, is

{see Appendix B]

{6.13 ‘S:HIIB(Q)‘/J: :dx = z%.t kq{s +[elk,1) &(g,1)] 2
ko |
ek, 1)-€(g,2)1 % +[&lk,2) £(a,1)]7
+e(k,2)- €(a,2)1 B k)Y, -

Using the representation,

A - A
[6.2]  €lk,1) = (1-E5)7%(k,,-k),0), k = Kk/k;

m
=
S
1
}_J
[
~
DN
1
N
EgY
e
By
=
0
)
|__r

then [6.11, together with the free part, can be

expressed wholly in terms of k and g as [see Appendix cl

3 z= _..g_ A.A 2
[6.3] ¥IB(a)y =2alBlaly + o Zkkqb + (k-a) "} IBK)Y, -

Introducing, as in [5.77, the superposition

[6.4]  1B),=)__ £(a)]Blal),
- a
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with the amplitude f(g) to be determined, then

[6.51 HIB%=) _{2af(a) + Z:f kq[5+ (k-2)Blady -

q

" This equation is of the form H|B), = E|B) provided

16.67 fla) =—8 ) kaf(k)05 + (£-&)7]

Putting (&-g)z = coszw , where ¥ is the angle between k

and g, then [6.6] becomes, in integral form,

6.7 f(q) = &9 §k3f( )s1in6(5+cos<y) dodgpdk.
2(2m)3(E-2q)

If (cosx,cosﬁ,cgsx) and (cos«i,cosﬁ',cos{') are the
direction cosines of k and g respectively, then

(6.81 cos¥ = cosdcosx'tcospcospt+cos¥cosy’.

These direction cosines are defined in terms of © and g by
[6.91 cosa = sinBcosd; cos(® = sin®sing; cos¥ = cosé

and similarly for the primed angles. Performing the

integration in [6.7] over the angular coordinates,
n 20

16.101 j 531ne (5+ cos v )dedg
o ? )

I

B'cos ¢’+31n 6'31n2¢'Tcos ')

4n)+&— (cos

lm

5
_ L 2
h 5(1-;”) B(COS

A '+cos ﬁ'+cos x') = 16(4T7/3)

the integral equation reduces to



D)
o
Ld

N
[6.10 flg) = Sk £
: E 2q)

where, as in section 5, N is a cut-off parameter to be
* determined. The solution of [6.111 is of the form
[6.121 f{(k) = £(~k) = aq/(E-2k), 4 is a constant,
which when substituted into 16.11] yields the eigen-
value condition

[ 2
16.131 ._}f_d_—k=_§_l,g¢o,

) B-2k 2g

Performing the integration as before,
L6.14] RN +2 ENE+ 25N +AEX1n (;L..Zg) +:é;iv.E)*’ = _l_zéll

Separatiﬂg 16.14] into real and imaginary parts,

(6.15] 57\{(5 2 2)+20L2[5] +<><m\ Asp,k3+ o (o WA ? n{é QT\oL

} [ 2 2 Zhoi_p][tan l_____Z__L__
(vc +rb

2
+ 2ﬂnl} +3T0 [ @ ) -hd.p ] = 0

¢+¢5«2R&

and

N INR?
+3D¢ @) hx[a]ln[(l +p ) ¢L+53 }
“'*(3("‘2‘(52)‘0&11"%——23&—*)—2&(5(@ - )agm

%t (e 20
_ W8T
Lg

-2ﬂdp( P

1 is an integer.
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Assuming that the state is stable with respect to
the interaction considered here so that (3 = 0, then

[6.15] andl6.16] become

’ . 2
[6.171 kﬁ+§ih?+%d?h?+%iﬁu+ﬁd§ln|l_é% = ,é%%%

"and
[6.18] (f(nl+n2+2) =0, n, is an integer.

If d# >0, then n = nl+n2+2 = 0 and corresponds to a
groundstatej for higher n, 3 # O and the state decays.
Introducing x = 2Me in [6.177,

8T

+X+lnll—x! = - -
gol

[(6.19] Exr+ix+ix°

this equavion is displayed grapuically iu Tiguie <o

A
St ol

<0
r g

e y X

f(x)==ﬁx4+%x3+%x2

{
t
I
{
I
i
i
!
i
1
i
|
|
{
I
|
|
!
|
I
1
5
b x+ln|l-x|
!

l

1

P g>0
N

i
MM Solutions
{
j
i

~14

Figure 2: Graph of equation [6.19]
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The graph reveals that in this case it is possible to
accommodate a doublet spectrum if g 0. Putting oy and
o{z as the two possible mass values, then from £6.171

2

l(Rzml) + %, (R2=1)

16.20]  ¥x7(R-1) + 3x N
+ E*n(1-x)/R) - 1n(x-1) = 0,

where R ='°L2/°Ll and x, = 27\,/413,

For the even parity state |B(g)), =I|RR) +{LLy , the
fit is made to the M+ doublet as in the zeron model.
Equation [6.207 becomes
[6.217 —?—xi + lejz_ + 383{1 + 81 ln(l—%xl) -16 ln(xl—l) = Q,
The solution to three significant figures is x, = 1.06.

Hence the cut;off is
[6.22] N, = xle(l/Z = 729 n.u. = 372 Mev

and the corresponding value for the coupling constant is

0

[6.231 g = 2.80 x10~19 n.u. (units of lengthh).

Putting g2 = g (4 for standard units,

16.24) By ™ 1.67 % ].O-5 n.u. = 7.8¥ ].O“LP3 erg-cmB. .

For the odd parity state |B(g)). = \RRY - ILL),

it is pbssible to make a fit to a number of particles.
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The most natural choice is the ?16_(1078 nau,)-no~(1870
n.u.) doublet. The cut-off and the coupling constant

take the values
06.250 ™ = 574 n.cu. = 293 Mev
‘and

16.26] g(‘_\s.: 3.34><10"5 NeU.
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7. DISCUSSION OF RESULTS

The inferactions used here are of the "direct"
_particle interaction type. That is, no intermediate
boson mechanism is supposed. 1t is appropriate there-
‘fore to.compare the zeron interaction with the direct,
weak, A4-fermion interaction, even though the coupling
constant in the zeron model was found to be of the
order of 10, a number usually associated with the
strong interaction. In order to compare inveractions
characterized by coupling constants of different
dimensions, a dimensionless measure M is sought for

coch inteoroction. Tt ig pnesihle to construct sneh W
here since there exist natural intrinsic lengths in

the theory, namely the reciprocals of the invariant
cut-offs. The correct combination of the coupling
constants and their assoclated cut-offs that give
dimensionless numbers are listed in table I for each
model, including the neutrino models of Kaempffer (197O)A
and Eéch (1971). The appropriate combination is of the

form-M = g)z for each model shown except for the zeron

model, which has a coupling already dimensionless.
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Table I: Comparison of Models
Model Iateraction JP of the Momentum | Coupling M
S Lagrangian Composite™ Cut-off Constant
(n.u.) x1075
(n.u.)
v + .
Zeron | g0k 0 515 9.50 | 9.50
(¢] O xlOS
Photon Misner- +
(y-4) Wheeler 0 729 1.67 8.87
0” 574 3634 10.9
- Neutrino V-4 -
(v -v) 0 598 5420 18.6
e e
¥ a +
I(qf,i El?:z“? Nambu 0 739 477 | 26.0

* Each O+ corresponds to the?%+ doublet and each 0~ corres-
ponds to the n,- doublet.

The values of M reveal that the interactions

strengths of all the models are of the same order of

magnitude.

(It should be noted that the values of M

reflect the choice of the numerical factors such as,

+ and V2 etc. in the interaction Lagrangians.)

interaction strengths may be compared with that of the

These

weak interaction provided one knows the intrinsic length

1w, associated with the weak interaction.

3% 10

"12 )\2'
\

Then M, =
weax
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The 7Yy-¥ dinteraction remains one of the funda-
mental unmeasured quantities in particle physics.
However, thé measurement of the total ¥Y~7 cross-
. section may be within the scope of current techniques
(stodolsky 1971). In the low energy region (< 1 Mev),
‘the probable upper limit to the cross-section, based
on g.e.d. calculations, is of the order o ~2.5 xlO"zgcm2
(Kunszt et. al. 1970). It is possible, in this low
energy limit, to simulate photon-photon scattering
phenomena by an effective non-linear interaction

Lagrangian density of the form
2
: - =2 2 52,2 ) 2]
[7.1]  Lp = 2E[(B%-8%)° + 7(B-E)°] ,
45m _ ;
where & is the fine structure constant e“/4T° and m is

! to the

electron rest mass. The formal similarity of LI

Misner-Wheeler Lagrangian density

il

(7.21 g = g [(8%-8%)% + 4(8-8)?]

enables one to make a crude order of magnitude estimate
of the energy domain for which the g of the photon model
is compatible with the aforementioned cross-section.
Using (adapted from Jauch and Rohrlich 1955),

7.3 o ~l063,

where G may correspond to elther -2&2/u5n¥*of [7.1] or to



7L W

R - . ~
e T Ny o o f
e AV LOan Do Ll

The photow

other models by

17.5] F=p o+ 3R and BN =58 -

For then, yritten in

duality invarile

the now imanis

with respecth

(A
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APPENDIX A: ON EQUATION [3.12]

In terms of the usual antisymmetric, second rank

tensor,

[A.l—} f,u—u =a,u. A—u - BvA}( - BE/“A:V]

b

then (Jauch and Rohrlich, 1955)

[h.2] (B*-E%) I, = 3.8,

il

LA.B] _]3—-]_4:‘ = I = '}T_E/‘,—u\c’fﬂvfi\w,

2
W] Iy = 315 + 15 = 40,070 £,

where €uwme is the totally antisymmetric tensor for which

€123 = -1, so that the interaction Lagrangian density

-

U 2
~

v

';71 Ann hAa it ton oa
3 LA R PLOo A S

[N S Sa)

~

(h.5) Ly = -kg[h(£., €758 607

Since
[A.6] 2 (£, 87 £, £7) = 8" ¥,
(0 h,)
and
[8.7] @ (£, £7) = 4T D3 o peyRlogp o3
3(d.A) TEPYYS w0

then the canonical momentum tensor for the total

Lagrangian density L = LO + LI is
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| «p_ L : -
[(A.81 T =—2F = ' _geler, 02700 88 2™,

3( 9, 44)
The Euler-Lagrange equation

“p_
Ta.91 T '=0
thus becomes

7 a3 . o8 :

(4,101 - 204"+ 2, (3 4%) =9,5"C,
where
[4.11] s*F = 3glf  £2 e Canr™ e 1, 1.
To zeroth order in g, [A.10] becomes

(o) &
[a.12] 2£7*F =0,

which are free Maxwell equations as required. To first

order in g,
& At o o y k3] R 0,‘,&
[AolB} B&f A(b == —%ngfi‘)—lJf) f )P —L],f‘.) flo)a/uf_(‘;)‘ﬂ].

Equation [A.13] is of the form of Maxwell's inhomogeneous

equations with a conserved 4-current given by

° At oy ZYN
ALl NONCI _%ad f( )z)f(o, fﬁ) 16 —l;,fwv f“”pﬂfm o]
J M u
The divergence condition apj@@ = (0 is satisfied due to

the antisymmetry of £9°F | Furthermore, £ °F satisfies

the remaining two (homogeneous) Maxwell equations expressed

as

) (€)Y

[4.15) L%+ u fon * 3, Tpu = 0o



By inspection of [4.13],
) - SR P e . 5
(4,167 £ = 250 597 e g g0,

'where h*? is an antisymmetric tensor to be determined
subject to the condition 2&50 = 0. Although the
‘dimensions of h*f are those of E3 or BB, substituting
[A.16]) into[A.15] reveals that h™® satisfies also the
homogeneous Maxwell equations. The only non-trivial
solution is h'" = c£9*", where ¢ is a constant having
the dimensions of 1/g. In order that the interaction
part consist only of terms quadrilinear in the free
fields, the simplifying and consistent choice of the

I

trivial soclution =0 is adopted.

Since

) (o)w

fjk

[A17] oA -9y = -(B"%- %) “

E +2f

then

(o) 2 o 2

e B + 28)8"° ~ 255 (&)

[4.181 (zx &) = -(B “2)

@2 )

£ 3

1 1 +E

s+ 55)
)

and similarly for (_V_Xgm)2 and (YXA )36 Also,

(o}

+ 2El

_ ( Bzo) Z—E(O)Z ) fu)

+ 2t £ 877

0J vo~ jH

[4.197 2 452540 =

so that

379

(ol .
vjfkﬂf i Jak = 1,2,3,
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A BAQ @2 @2\ ) NV ©Y, @2 (D2
[A.20] Ay- 5. (B"<-g"<)8] + 2El - 2B (B, B5°)

+ 2B (598 + pop"

l( 272 3 3)
NG

and similarly for 4, Yy /By and A;4Bﬁg/az,

(7S}

The terms -gE A + gB™ (v><§“) can be expressed in

terms of E° and B® as
(.21 -gE™ A+ gBUAg K &) = ~g (BB + vl B

Slnce‘VA E ' vanishes upon integration, the longitudinal
part of B, which could not be suppressed since J)gaéO
does not contribute to the Hamiltonian. The correct

Hamiltonian to first order in g is

) " (° § g )
[A.22) X= :x{%(E’2+B’2) + +gl (B 2 _peR (BB\Z <>2)

4 LEE A Y ax:

Higher order calculations are possible in principle.
If fw + gfibﬁ-ngj; is substituted for f,. in [4.101,
then E)f‘dp is expressible in terms of a current 3P
containing terms involving £ and f' "4 The diver-

(b

gence of such J always vanishes as required.
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APPENDIX B: ON EQUATION 16.1]

Expressing the operators al(k,\) in terms of a(k)
and b(k), the expansion [6.18], iategrated over all

3~space, 1is

IB.1] S:E‘%:dz_c_ = :‘% > > > Z_ kk‘k"k"f

ko ki ! pn 1" km o
TN TR ~(k+w NI

£(-1) elk,N)e elkr,n)

e () el (AL N T e onfop e+ (1)
b bulaar + (ul)}\"+'\v'a’{Ta"¢bbi + (-l)“+mj+“"+\m
artamtaat] sk -kr-km) + (-1)N" TNl b Tpmpm

b (~1)NINT T T gngm (=1 ) NN NN g e
+ (_l)\+ﬁd aTaﬁTb“b"{l5(-§r£’+£ﬁ+g"ﬂ + (_l)\'+ky
[orbafprpn + (<1)N TNpTomTaran + (-1)NN

: a"‘TaTb‘b" + (_l)}\ﬂ\t-{-mw‘r\m aTa"'Ta‘a"] § (=k+k T+ m-kNY)
(,,l)}“”\m[b thnTbbm + (‘l)}\-g-}\m BthnTaam - (,_]_)}\H'\f\"

a“ra"-"bb‘" + (_l)}\+]\r+\rr+7\m a'Ta"Taa"”] S(k=kt=kM+km)

b (L MNTT pr Tt ppn 4 (21)NM N Tpuitan
. (_l)}\r N nifpbn + (_l)]\+}\1+\\n+1\ma'TamTéa"]

S(-k+k'-kntkm) + (-1) NN pToetp o + (-1) N TN

b+b"+a'a"' " (_l)\+‘r\na~1—a"Tb’bm + (_l))\-&}\t—ﬂ\n-{-}\m

“ab ‘faa“']g k- T+ - kn}}
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where terms that lead to |RL) and |LR) states, or to zero,
when applied to |LLy or |RR) states are dfopped. Applying
the above expression on [LL) and \BR) states leads to

" conditions on the k's, permitting a separation of the

§-functions. For example, in the first term, k=1z=gq,
1

k! = F g so that k" = -k"'. The term (kk*kn"k"')® becomes

k2q2 in each case. Performing this operation,

[B.2] S:E“’[*: |RR) dx = j:E‘“‘*: |LLy dx =%ZZ: 1{%

K AN AT
fleetan ) el=gm) eli ) l-k,nn) (1)

(1LLy + \RR))] +[2elkn) el-kn)elgn)-el-g,\")
DML+ 1RRY)] 4T ek ) (=g, )
clgn)-el-k, N1t + elkn)-elg,n)el-a,\)-el-kn" )]
(-1)7L+N” i (NN AN [(—l)“m\]'lLL} +

(e NN ENENT ey 4 e (man ) el ) (=)

e(a,n\") + (g, ) elk,N\' Jel-k,\")-e(-a,\")]

(-1 )w\ ' +\ni~ (NN -H\"-ﬂ\"’)[( "l-)H-\m\LlJ +
(-1) \RR)] +1 e(~a,N\ ) ell, N )ela )
e (-k,nm) + €(a,N) ell, N )el-g,n)- el-k,\)]
(_l)x'+T@&_(x+1J+\n+Rﬂ0[(_lyh+R"lLL>+

. (-l)\ +1\'+\n+}\m\ RRﬂ o[ (;?_(_lg’_,}\)' €lg\" )g_-(c-l__{_,)\")»

1 SR SRR N

€_( ~Q )\"') + C_:”_(.l_c.)?\)‘ é("g_; \[\1 )é("&; }\")' _6_5_(9_,\[\"‘)]
(-1)\”‘"1‘“\“"*“”*N")[(-l)\'“\"'\LL>+

(-1 )\ FE NN ,RR>] }
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Ly 5k
-_—J,\r]-?; kq( ILLY + JRR)) + 5 Z;_ %J_ﬂ I%{é(.lﬁ_,\)o

€ (-a,0)elg,) el-k iy + (<)M k)

+ 1NN ek N el-a,2)e(g,2) €=k, [ILL)

MM R ﬁlz kq | (-1 TN

k allk

Lel-g,2) elin)ela,2) ek - el-g,1) e lkN')
€(q,1) el-k, "] 1LYy + (-J_)T\'“**N"\R@I + év 7y

k allh
kg { (~1MMIM M) gla, 2)el-kN el-a,2)

- ek ela, ) el-lnm) - el=g, INTILy + (-1)N N IRRY]

-1 Z; kq(1LL) + IRR)) + & Z;; kqf -6 110>

+ RRY) + 1(1LLY = IRR))€,t1 (1Ll = | RR? ) €3
+ (lLLy + \RR )ew},

where

[B'B] G(D = é(g? )'
[B.hl 6(2) = ..6;(_‘_

[B.5] e@)ag(_k., )



ln

[B.61 €= €lk,2)- gl-g,2]
(:1.;{_:2)'_6_(“9.9 3S (9_3 )- (“%.{‘22)"

c(g,2)-&el-k,?)

. Therefore,
(.71 [:59%: [Ruyax = S:E“”“:\Lmd}_c

~~ikq |LLY + \ RR)) Z:kq[

+ 1€, + i€y +€) )LL) + (-€ i€y~ ie(3)+ezh‘))\RR)]o

A similar calculation for g gives
[B.81 X:B‘“"*: |RR)dx = X:‘B’“‘“: |LLYdx

z%i}i kq(\LLy + |RRY) +—:-21_V gkq[(—-

-1€ i€ 3 TSy ) Ly + (-&q +iE, t1€3 &

o€ T )| RRY ]

In the calculation for EMZBMQ, different results are

obtained when the operation is on \RR} from those obtained

when the operation is on |LLY. For this case, the results

are:

B.91  |:EOCE: Ay = -%,Z; kq(\LLy + \RE))

o L : s
+ 5% zk kq| (€ €yt 16 - &gy 1L

+ (= €g t 1€y T 1€ €0 )\RR7]

and
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[B.10] &:E‘“z Y%, | L1y dx = -%,-Z kq( 1LLY -+ |RE))
- ]
1
‘”VZ: kq[ (eq + 1€y, + i =€, ) ILLD
k
+ (=€ tiC, T iEg -Ey ) lRR}].
" For the last product, (B“’Qm)27 it is found that
(B.11] j:(g‘"‘ E°)%: [RRYdx = - S (E% E)?\LL) ax
=1 _1__2: .
V.E; kq( IRRY - \LL>) o7 - qﬁem'+1ég)

Gy " Sy 1B+ (= &y T LEG T 1EG - &y, ) )

It follows that if ¥ operates on the even parity

state |LL} + \|RR), then no contribution is obtained

from the pseudoscalar part (B~ h“»z of the interaction.

On the other hand, if ¥ operates on the odd parity state

lLL) - |RR), no contribution is obtained from the ol

and g% terms. The cross-term EI2gOR gives contribution
in both cases. Gathering the results together, one

obtains:

[B.12] (:HI:( RR) = \LLy Jdx = Hy|Blaly

= 2% Z‘:E: kq|Blal)y *+ 57 L kal€qy - o VB(ady,

where e - €y =Leltl) elg,1]? + (el 2) ela,1]]
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It is the duality dinvariance of the interaction
Lagrangian that accounts for the fact that ?(IIB(Q_)>+

= %IIB(QD_ . Equation [6.1] follows immediately from

[B.12]1.



APPENDIX C: ON EQUATION [6.3]

In equation [6.17], consider the terms

[c.1] Plea) = [ell)-ela,1]? +[ elk,1)

+ [elk,2)- €(g,1)]% + ] &lk,2)-
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where ZX—'kzqz( k3-k “)( § q°). Since
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