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ABSTRACT

It is known that a thermistor displays inducive.reactance
and negative resistance.at low frequencies when biased with a current greater
than turnover current. Thus when shunted by a capacitance in this condition
sustained oscillations ‘are possible. These oscillations range from a
sinusoidal .small - amplitude character, when the system is just above the
threshold for oscillation, to a strongly relaxational type when.a large shunt
‘capacitance is employed.

. The investigation described in this thesis involved a study

of the dynamic properties of these oscillations and their relation to the
static properties. of the thermistor. The relevant thermistor parameters
which were measured included the dependence .of resistance on temperature,
the t.hermai conductance and the thermal time constant. For the determination
of the latter, special very low frequency techniques were developed. Thermistors
.of high resistance and low thermal time constant were. selected. in order to avoid
the necessity for very large capacitances in the study of relaxation oscillations.

The oscillations were studied over a wide range of capacitances
covering the transition from sinusoidal to relaxation type. The voltage extrema
and period were measured as functions of capacitance, voltage supply resistance
and .operating point. . Aiso, .in order to elucidate the dynamic processes involved,

the transient phenomena produced by abrupt pertubations were investigated.
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In parallel with the experimental program, an investigation
was made.of the features,of the differential equations describing the behaviour
of the system, especially for the limit cycles corresponding to relaxation
oscillations. The.asymptotic form of the cycles were derived for the case
wher.e the circuital time constant greatly exceeds the t.hermal time constant
of the thermistor. The complicated nature of the equations precluded. a solution
in a closed form and approximational methods were found to be necessary.
However,. in the case.of sinusoidal oscillations of small amplitude, the period
can be exactly expressed in terms of the system parameters (Burgess, Nov. 1955)

. and this result was confirmed experimentally.
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PART 1

INTRODUCTION

The thermistor is a two terminal device possessing a high
negativé temperature coefficient of resistance and a large thermal inertia.
Burgess (Oct. 1955) has shown that under certain conditions of d - c bias,
the thermistor will exhibit an incremental admittance consisting of a negative
conductanc¢ and negative susceptance. In a later paper, Burgess (Nov. 1955)
also has shown that if a positive susceptance of equal magnitude, in the fornm
of a capacitance, be connected in parallel to the thermistor, small-amplitude
sinusoidal oscillations will be sustained if the d - ¢ source conductance is
only slightly less in magnitude than the negative incremental conductance of
.the thermistor.

If the magnitude of the parallel capacitance is increased, the
oscillations become relaxational and do not appear to bear treatment in terms ‘
‘of the Van der Pol equation. This paper presents the results of a theoretical
and experimental investigation of ﬂleée,relaxation oscillations.

Preliminary to the investigaﬁon,_ existing theory of the thermistor
and some general remarks on non linear vibration theory are given. .In Part 2 the
form of the static current - voltage characteristic is deduced and the results .of

measurements of its parameters for certain thermistors are quoted.



Part 3 concerns small- - amplitude time varying phenomena in
the thermistor. It essentially reproduces the two papers.of Burgess and relates
how the small - amplitude a - ¢ theory was used to measure the thermal tine
constant of the thermistor.

Part 4 gives some definitions .and theorems of non-linear ‘vibration
theory which are employed in the investigation. Part 5 presents the.investigation
of relaxation - type oscillations .over a wide range of the value of the parallel

capacitance,
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PART 2

STATIC PROPERTIES OF THERMISTORS

1. Physical Properties

Thermistors are thermally sensitive resistors whose variation
in resistance . is characterized by a high negative temperature coefficient.
They are generally made by heating,compresséd powders of semiconducting
materials to a temperature. at which they sinter into a compact mass and then
firing them on metal - powder contacts. Semiconductors are substances whose
electrical resistivity at or near room temperature is much more than that of
typical conductors.and much less than that of typical insulators. In general,
around room temperature these materials when pure, have negativé temperature
. coefficients of resistivity of about 5% per degree centigrade compared to platinum‘
and copper which are typical conductors and have posiﬁve temperature coefficients
of about 0.4% per degree centigrade.
Figure 2.2 is a graph of the logarithm of specific resistance versus
reciprocal absolute temperature. of a typical thermistor material. This graph

indicates that the logarithm of the thermistor resistance R varies approximately

linearly as the reciprocal of the absolute temperature of the thermistor T.

Thus for a given thermistor one may write

].Og Rd—T—,

or

In R = _,?_ 4 constant,



or finally b
R - Rege L (2.1)

where,

R = themmistor resistance

T = absolute tempera ture. of thermistor
b = constant equal to the slope of In R - vs - ~%- graph
e = naperian base

R = value of R where projected curve crosses the line —%T’ = 0.

It is apparent that b is a characteristic of a given material
since.a plot of log R versus l—T has the same slope.as.a plot of the logarithm
of specific resistance versus -—% . ’I‘he dimension of b is temperature and it
is geherally specified in degrees kelvin or degrees centigrade. It plays the role
of activation energy in (2.1) similar to the work function in the equation for
thermionic emission. It is apparent that Rgp is depegdent in general upon the
type of material and the physical construction such as the size of the element
and area of the contacts of a given thermistor.

If the dependence of In R upon —-.lI.- be carefully examined, it may
be found ( Becker et al 1947) that the slopeincréases as the temperature increases,
thus a more precise expression may be

R=_A e T, (2.2)

where A, c'and d are empirical constants. The constant c is generally a small
positive or negative number at zero. Equation (2.1) will be used for the model

in this paper.
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2. Static Voltage - Current Characteristic

(2.a) General

It is convenient here to introduce the variable ¥4 which is
defined as the expess of the temperature T of the element above the ambient
temperature Ta, or

- T-Ta . (2.3)

If a current I'is passed through a thermistor and Ta is held

constant, then after sufficient time the voltage at the terminals of the thermistor

V will reach a steady value (see Figure 2.3). If the current is increased with
Ta held constant then the applied electric power will increase causing an inaease
in the excess temperature 4 of the thermistor. Thus.a series of points (V, I)

may be obtained which define a curve called the static characteristic.

If a current I.is passed through the thermistor and the electric
power is prevented from increasing the temperature. above the ambient Ta,

then since T = Ta+$M and ¥ = 0, the relation

b
V =R e-T3"

is valid for all the values of V and I. The pbints (V, I) again define a

characteristic curve, This curve is called the isothermal characteristic or

simply isothermal . It is.apparent that in the V - I plane an isothermal is

.a straight line the slope.of which depends.dipon Ta. Thus, the thermistor may
‘be considered a linear circuit element device if its temperature is held constant.
In practice the isothermal condition may be observed by increasing the cooling

apparatus or by applying the power in pulses.



(2.b) Definition of Thermal Conductivity

It will now be assumed that the dissipated power in the steady
state is a function of the exceés,_temperature - T The_balance of the heat
supplied and the rate of cooling_' gives

VI=f(T-Ta)=£(00). - (2.4)
The term on the right £ (V04 ) is the rate at which hest is lost from the thermistor.
The form of £ () has been given (Bollman and Kreer, 1950) as the sum of
.a thermal conductance term and .a radiation - loss term, resulting in,
£0er) - ko + kg [(Tati@r)t- Tat], (.5)

where k is the thermal conductance of the thermistor and k p is the radiation

coefficient of the thermistor. The dimensions of k are power per unit temperature
and the units are generally watts per degree centigrade. Over most measurable
temperature.ranges either the second term of (2.5) is generally negligible with
respect to the first term or at least the dominant factér of the second term is
kg Ta 390 . In the model in this paper the relation

vVl = k&, (2.6)
expressing Newton's law of cooling will be assumed. Combining equations
(2.1) and (2.6), one .obtains the following static characteristic

vV . n D
X - Roo & )97 (2.7)
i3

(2.c) Properties of the Static Characteristic

There are several interesting properties which can be obtained

from (2.7). To facilitate this, several new functions:will be defined.



The temperature coefficient of resistance e will be defined by the relation

= oL (_dR_) : -
/‘ R de Ta (2.8)

which upon calculation from (2.7) gives
/‘, = _b_ = b .
T2  (Tahet)2 2.9)

The thermal function ¢ will be defined by

- bl (2.10)
(Tatibi)2

and is a dimensionless quantity which can never exceed b . It is noted
4Ta

that since VI - k¥  both 4 and ¢ may be written as functions of
.or as functions of VI.
The slope.r of the static characteristic is

r=-dv = 1-@'R: - T2-p(T-Ta) R (2.11)

dl 1+¢ T2 b(T - Ta)

and is the ac resistance at zero frequency for any operating point. The first

part of (2.11) may be rearranged so that

$- R-1, (2.12)
R4
At the origin of the V - I plane, V = I = 4) = 0 and
b

r = Roe Ta = Ra
the zero-current resistance of the thermistor at the ambient température Ta.
Thus the static characteristic @t the origin is tangent to the isothermal
comesponding to T - Ta. As I is increased 4> becomes larger until finally

_it may equal unity. At the point where Cb =1, r=0and T= T, the
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phenomena .of turnover is.observed since this corresponds to the voltage
maximum in the static characteristic (see Figure 2.4). The value T = T;

is the thermistor temperature at turnover

1

Ty = b~ (% - 4b Ta)*, (2.13)
2

It is noted that turnover will.only occur if b >4 Ta. If the ambient
temperature is 300°K and b has a typical value for thermistor materials of
4000°K, turnover will always.occur. Ifb »> 4Ta, then

- Ta(l4 12
T - Tag+ T2

is valid. The voltage minimum at Tat b is.of mathematical interest only
since this temperature is well beyond the melting point of materials used in

thermistor production. The turnover condition Ty - Ta = —'Ea— £ 20°C is

physically realizeable and is of great interest in many properties.and applications
of thermistors.

2
The following relations are valid for T = Ta+.'.I_‘bi_

VI = (Ve k Ta2
b

R = Rg ™ Rae 1,
The point of inflexion of the static characteristic where the slope r reaches its
maximum negative value is it the poinf where

d (’gy 2 0 (2.14)
ar \dI

Puttingx = T-Ta andc=-=b andT=Tj atthepointdr = O, itis found

Ta Ta } dT
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that | .
it 13 xi-3)4c2xi2 = 0,

I xj ((81 -then

cx E+_41
Xi

T
and

‘e’i = 3Ta2

ﬁb—lea

resulting in ‘

R, & RieV ! . 2.16R;
.or -

Ri= . Rae {'3': .18Ra
and also

[
I; &~ It(eﬁ’-"‘l)‘*- = 1.93 It o
These relations occuring for an ideal thermistor following

Y .= Ree exp b

k

(2.7)

under the condftion Ta ®® b may be summarized in the following table

and in Figure 2.5.

Summary of the Properties of Ideal Thermistor Characteristics

*e} R r ¢ Comment

<<Ta Ra(1+$) Ra biew Origin
‘ Ta2
Ta 2 Rae ! 0 1 Tumover
b :
2 _ -{3
3 Ta Rae \ -Ra —S_ J3 Inflexion
b (2 +43)
b b b .
Ta Rae ZTa - Rae Z Ta — Maximum
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3. Experimental

Data were obtained for the temperature variation of fe sistance
-of several different thermistors. The thermistor under,measurement was placed
in é. bath of hot transformer oil in a vacuum flask. Simultaneous readings of
resiétance R from a Wheatstone bfidge connected to the thermistor and of the
temperature T from a thermistor immersed in the oil were taken while the oil
cooled to room temperature. -‘The Wheatstone bridge was operated so as to pass
negligible power into the thermistor and the thermometer was immersed so that
its bulb was.at the same depth in the oil as the thermistgr. bead. .Figure 2.6
shows the graph of log R vs T -1 from a set of readings. .Over the temperature
range measured no variation from a éuaight line was observed. Thus, the

equation b
R = R” e T (2.1)

is adequate.
Measurements of the static characteristic were made‘using
_the circuit shown in Figure 2.7, In the V - I plane the equation
E=-IR;%V

gives the load line. Its intersection with the static characteristic is the operating

point (Vo,lo). R was composed.of a variable resistance. and a fixed safety »
resistance. E was a variable - voltage power supply. Figure 2.8 shows.a graph

of the static characteristic for a Victory Engineering Corporation (VECO) type

65A1 thermistor inrair. Values of R were calculated at various points on the

curve and corresponding values of ¥ were calculated from the log R - versus

-7l graph.  Values.of 4) were calculated from the values of ¥ by the relation



=

1 FIGURE 2.8
" STATIC CURRENT-VOLTAGE
CHARAGTERISTIC FOK
VECO 6SAl THERMISTOR
: Tas 2\-5°C

iso1 .
<
<

dhel
H i€ -
-
pd .
]
& INFLECTION
D
Q

S$64

TURNOVER
(o] ‘:// poecen
° 20 40 €0 g0

VOLTAGE V

200 4

FIGURE 2.9

DEPENDENCE OF THERMAL
FUNCTION ppoN I ALON
5TATIC CHARATTERISTIC

INFLECTION

TURNOVER

1SO 4
<<
-
4 10O+
b~
2
w
[o'4
2 4
D
O
S6 4
)
o

L
\ 5%
THERMAL FUNCTION ¢

w4



3
e

POWER MILLIWATTY

FIGURE210 oepsuogﬁce OF

EXCESS TEMPERATURE UPON

APPLIED POWER

VECO 65AL
T, =215°C

"

ow
i

»
'Y

50 100
EYCESS TEMPERATURE 0EG CENT



= b
(Ta4i0A )2 (2.10)

Figure 2.9 shows the dependence of ¢ upon the thermistor current I.

From the values of (V4 I) at various points along the static
curve, values of the powér VI were. calculated and a : graph was made of the
power - excess temperature relation along the static curve (see Figure 2.10).

For the equation
VI- kiA (2.6)

to be valid, this curve must be straight 1_ineL Deviations from a straight line
might be due to:
1. Uneven heating of the thermistor bead resulting in the non-applicability
of the log R vs T -1 relation measured with T = Ta for T'% Ta.
2. Heat losses due to radiation at high temperatures of the bead necessitating
consideration of second or higher order terms in ¥ of the relation
VI = kv kg [(Ta+ae|)4 - Tat] (2.5)
3. Heating of the surroundings of the bead to such-an extent that changes
in the effective ambient temperature.are not proportional to the excess temperature. ,
4. Heating of the surroundings of the bead resulting in a change of the thermal
conductivity k. |
It was noted that VI.- vs - ¥ curve had an increasing slope with ‘increa‘s'mgl-ei .
Items 2 and 4 could have caused this.
Values of b, Rge and average slopes of the VI vs ¥ curves

for several thermistors were:
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milliwatts
Thermistor R ohms b°%K  k oK ‘Surroundings
Servotherm 1317 3.15 4160 1.1 Still air
. VECO 65A3 3.11 4320 0.13 Still air
"VECO 65A1 2.45 4310 (0094 ‘Vacuum - as supplied
g by manufacturer
( 0.12 Still air - with bulb
opened to admit
atmosphere

It was noted that the manufacturer's specifications give a value of 0.1 milliwatts
per degree centigrade for k for both VECO type 65A3 and 65A1. This agrees with
the measured value for the type 65A3 in still air, However, in the case of the
_type 65Al1 which is in a sealed evacuated glass bulb there is a discrepancy

unless the glass bulb is opened and the bead comes in contact with still air.
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PART 3

SMALL AMPLITUDE TIME VARYING
PHENOMENA. IN THERMISTORS.

1. Definition of Thermal Time Constant

If the non-steady-state.condition is. considered, it is evident
that the balance of power can no longer be represented by the equation
VI = kiSH
but rather the input electrical power must equal the sum of the dissipated
power plus the rate at which thermal energy is being supplied to the thermistor.
If the_rate at which heat is lost is determined only by the instantaneous excess
temperature ¥t , the balance condition may be written
d ot

VI - kid + H T (3.1)

where H is the heat capacity of the thermistor at temperature Ta @4 . Several
cases where the rate. of heat loss:is not dependent only upon lei are considered
by Burgess (Oct 1955). However, in the development here, the validity of (3.1)
and the independence of H upon K will be assumed.

K a power Vol = k¥ o has been.applied to the thermistor
for such a time that all tfansients have died out and then the thermistor is open
circuited, the excess temperature will be given by

‘e‘,='e.o exp(- ‘_1_<_ t)
H (3.2) )

The quantity H is called the thermal time constant of the thermistor and will
k '




be denoted by ® . Equation (3.1) may be rewritten as:

VI = k(101 +2 died) (3.3)
dt

2. Small Signal Differential Equation

The quantities v, i.and @ will be defined by

‘V = V-VO )
)

i = I-:_[O ) ,(3-4)
' )
© - -Gl )

where Vo, I, and ¥4 o are the values of V, I and K* at some operating point.
The quantities ¢ 0, /ao and R are the respective values of 45 , J-and R

at the operatitrg point so that

b
Vo = Ro = Rgo exp Taq,g
Io , '
)
Vo lo = ki®% @-5)

)

)

= & ’eb = b Mo )
¢° }Jo .(Ta+iao)2)

If the first equation of (3.5) is expanded in a Taylor's series in @ , it is seen

that

Vo* v = Roy+ e:g-g + “?;.g-"'
Io# i © %
I€ the condition
vik Vg1,
holds, ohly, tﬁe first order terms. of the expansion need be considered. Solving

thus for © , it is found that

= 1 ¥y -1 .6
° (Vo %) .
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and
ﬁ. = ._l_ 1 dV -1 dl
dt JTIS Tow (3.7)

Substituting (3.6) and (3.7) in (3.3) and expanding VI in-terms of v and i
. add keeping only first order terms it is found that

Volo $ VIg+iVo#eee = k[le‘o *ﬁLo(—%o- i )

1
_}lo Vo dt I,

ale &

or since Vol = kMg and g = Mo Vo Ip .
) k

v (+do)¢ T v -1 (-4 T di , (3.8)
Vo Vo dt I o dt

This is. the generai.differential equation governing small changes in V and I.

3. Response to Sinusoidal Input

Ifv="Ve Wt andi - I; eIWt where Vi and I} may be complex

and where w = 2 x frequency £ and if Z = YL , it is found from (3.8) that

I

I—=$o+ Wt
Z = R 3.9
o[l+4>e+3-wt )

is the relation for the small - signal driving - point impedance of the thermistor
~ at any operating defined by Rg and 4},-

If
Z = RWw)+ jX W)

it is found that
1 -$o? +wie?
Ro (L+doy +wime 2 (3.10)

=
g
"

and
Xw) = 2 dbgw i .
Ro (14 2+ wie 2 (3.11)
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Ifw 9 >> 1 itisclear that R (W) = Ro -and X (w) = 0. This is the condition
that the applied power is varying so rapidly that the thermal inertia .of the thermistor
causes the excess. temperature to.remain essentially constant ove.'r‘a whole cycle

at the value

l'go"ﬁ Vo IO
k

if
Vi & Vo loe

The impedance then corresponds to Ro, the reciprocal of the slope of the isothermal

passing through the operating point. If w®% <<1 it is clear that

RW) = R (L-@o) =1
1+¢o)

and X (w) = ‘0. This is the condition that the applied power VI isvarying so
slowly that the temperature essentially reaches its equilibrium value at each
point of the cycle, thus the current - voltage.locus follows the static characteristic
and the impedance is equal to the slope. of the static characteristic.at the operating

point. At medium frequencies where w is neither much larger nor much smaller
A
T

becomes an ellipse. . Photographs of current - voltage loci at different operating

‘than , the current will lag the .applied voltage and the current - voltage locus
points. and frequencies are shown in Figure 3.1.

Several equivalent circuits are immediately apparent from the form
of the impedance function and are shown in Figure 3.2 .

.Regarding the impedance equation

£ _ l=ds+wier | . 2doWT
Ro  I1+Pd twrt? * J(+EF 4w

16.
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it is seen that its representation in the Z plane is a series of semicircles
Ro

with ¢° as a parameter (see Figure 3.3). The infinite frequency value of

Z_ isreal and has the magnitude unity. The zero frequency value is Io
Ro RO

.and is.also real. If ¢o>l -and hence 1y € .0; i.e. the thermistor is
biased beyond turnover, it is noted that R (w) becomes negative for all frequencies

below some critical frequency

fo= Wo = ( 2-1) . (3.12)
2% 2T

At this frequency £, the real part of the impedance is zero and the thermistor

behaves like a pure, positive reactance given by

L L

Z (o) = iR (tb- )" i (- 1oRo ), (3.13)
&ﬁl

4. Response to Step Input

‘The response. of the thermistor to a small step function.of voltage
will now be considered. .Since.linear theory will be used, the value of the change
.of voltage eg applied to the thermistor and load resistor R in series must be

small enough that
eg << Vg,

holds. The circuit will be.of the form shown in Figure 3.4. The relation
eg .- iRj$ v ' (3.14)
will hold for this cirguit. Combining this with the general equation

& 4 v +) - R, [gai4iq- %)} (3-8)
dt dt
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-a first order. differential equation in i is obtained which may be easily integrated

to give for. the pertubation of the current

i = eg(l+de)
Ro (l‘-%)"'R»l (l"%)

constant exp - [R_o (1 - bo)-l- R} (l‘l'éo ) ]%
Rot Ry

| ]
i U is defined by

R, (L~ e )+ K] (109

and the initial condition

i = eg
R]_*RO

at 't = o is applied, the equation for the current i becomes

i s s A+do -2deR, Tm),
Ro (l_' ¢°)+Rl (1 ‘.’ég) R0+Rl © (3.15)

It is interesting to note that if

Ri< -Ro (L-®e) = -1,
(1+40)

then

and the exponent in (3.15) becomes positive so that the circuit becomes unstable.

If the thermistor is biased at a point.on the static characteristic where Rj< -t
the load line will cross the static characteristic in at least one other place

(see Figure 3.5) and any pertubation eg will cause. the system to jump to one

of the. other intersections of the load line and the static characteristicz. For certain

values of E and R, the upper intersection exists only theoretically since the

hypothetical value of the corresponding temperature is .above the melting point

Q ?

18.



" FIGURE36

CIRCUIT FOR OSCILLATIONS
R |

E ‘1’85 %—‘C ;;.YT %R.éz:li:c

ACTUAL CIRCUIT

AC EQUIVALENT



19.

.of the thermistor material. If the thermistor tends to jump to such a point
it of course bums out. IfR; = -1o, the denominator .of (3.15) vanishes
indicating that under this condition the linear terms. are insufficient and that
higher order terms must be considered in the expansion of V, L and MM .
A similar equation to (3.15) involving the change of voltage

v may be developed and is

vV o= es Ro {1 - 4)04- 2 (boR] 6-%')
Ry (1+Pe) + R, (1 - &) Rot Ry *
(3.16)

5. .Small Amplitude Sinusoidal Oscillations:

The circuit to be considered is shown in Figure 3.6. The
development will follow thatvo1f Burgess (Nov 1955). The thermistor will be
assume d to be biased beyond turnover and the amplitude of oscillation will be
.assumre d to be small so that the linear equations will be valid. The admittance

‘of the circuit is of the form

¥r = L+ mo+l (1+ dot .jw't")
1

Ro \'1 -Ppot jwe (3.17)
or if
Y = Gr(w)+jBr W),
then 2 2
oron - gyt [ 1dde s w'c_zJ
! L - de)' + w2
BT (W) =wC -1 nzwtie
Ro | 1 -bo)+wie?]
The conditions for oscillations to occur are
Gprw) £ 0 )
) (3.18)



For this development to be valid the oscillations must be small so that

non-linearities are small. Thus the first relation of (3.18) should approach

the equality as closely as possible. Applying equations (3.18) to the admittance

in (3.17) it is seen that

€2 Cyin = T _1_+i) (3.19)
®o- 1\R;  Ro

| L
and , . 2
w = 1 2 ’uig - (l _ ¢° )2] . (3 .20)

© { CRo

An upper limit of oscillation frequency corresponding te wmax occurs when the

d - ¢ supply is.a perfect constant - current source; i.e., 1 = 0, and Cppin

Ro

has its lowest possible value

Cmin = ’t 1
(&1 R
and
Wmax: ° ( 2 - 1)7'
~

It is noted that wygx corresponds to the wgy defined in (3.12).

6. Experimental

Early in the programme.of research, attempts Were made to
verify the semi-circular locus of the impedance function and to measure the
thermal time. constant of the thermistor flakes in several Servotherm type 1317
bolometer units. Several different types of bridges were set up but found to
be unsuccessful because of the difficulties associated with the high impedance

levels and high voltages involved in these thermistors. Finally,. a bridged - T

20.
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filter of the type shown in Figure 3.7 was chosen. In this bridge. the resistors

Ry, Ry and the supply voltage E determine the operating point-(Vq, L,).

B’
None of E, Rg and Rj, need be varied during a - ¢ measurements.

Measurements of the impedance were made over a range. of
frequency from 5 to 100 cps. At: several dif:fereﬁt operating points the measured
impedance was essentially the value of the reciprocal of the slope of the isothermal
_through the operating point; i..e. » Z (W)= Rg, X = 0. This led to the conclusion
that manufacturer's value of 0.01 sec for U was.much smaller than the .é,ctual
which must have been at least 0.1 sec.

Later in the research programme. the thermal time constant
- was measured of a VECO type 65A1 (with its glass tube opened), using two
different methods. The first method consisted of applying a variable -frequency,
small-amplitude, a - ¢ signal to the thermistor biased‘beyond turnover.and
observing the voltage - current locus on an oscilloscope as the frequency of
the generator was varied (see Figure 3.8). The loci were eilipses whose axe's’
direction varied with frequency (see Figure. 3 9) .At the frequency where the
axes were. vertical and horizontal the thermistor behaved like. a pure reactance

and the relation

( bo? - 1)_’k (3.12)

fo = _.l__
2%¢
or

't =4 _l__ ( ¢°2." 1)
2x 1o

was known to hold, The value of %€ at different operating points were
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lo ( pAmps) T (sec)
.90 .52
100 .61
. 125 .56
150 .63
200 .63
250 .62
300 .64

The other method consisted of biasing the thermistor beyond
turnover and applying-a small and instantaneous pertubation eg to the supply

voltage (see Figure 3.4). The change of woltage v across. the thermistor follows

V=% Ro '(l"¢o+‘2 QQ.R] e-—i‘_)
R) (1+do)+Ro (1 -§o) Rgt Rj 0
(3.16)

At time t = 0, v will jump from v = 0 to

v.= es Rp
Ri+Ro

As t increases, v decreases (see Figure 3.10) to a negative value if 4)0) 1.

‘Then the condition v .= O will occur at t =tg ' given by

-¥ 0,

1 - o+ 2 doR; ¢

‘Ro“‘ Ry
or ,
. =[R1 (1+4) + R, -¢o-)]ti
. Ri+ R, In 2 @l_.“

(Ro+ Ry)( ¢y -1)
(3.21)

Using (3.21) the value of “C was calculated at several operating points



Lo ( pAmps) T (sec)
50 .67
100 .64
200 .58

Averaging the values of T measured by both these methods

gives. X - .61 sec comparéd: to the manufacturer's value of ¥ - 1 sec.

23.
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PART 4

THEORY OF NON LINEAR OSCILLATIONS

1. General

In this section, the various methods of examijnation of systems

which .can be described by two first - :érder differential equations .of the form

_d_X = P, y) ) v
de ) o
) (4.1)
__d__g = Q (X’ Y) )
dt )

will be discussed. This is an autonomous dynamical system since P and Q

are not explicit functions of time. . It is noted that the general second order

differential equation

d2x L dx f(x, dx) 48 (x, &x) =0 (4.2)
w v a dt dt

can be transformed to (4.1) thus

_“ 9{_ = y
dt

dy = fx,y)-g&,y) ,
dt

2. Phase_Planes

Suppose a solution of (4.1) exists.of the form

x(t)
y(t)

<
[T
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Then since this is a dynamical system with two degrees of freedom and since
the. state of the system at time t is fixed by the values (x, y), these two
quantities may be considered as coordinates .of: a phase plane . To each state
of the system there corresponds a point M (x, y) which is known as.a

representative point.  As t varies M will describe a curve called.a trajectory

or integral curve which is a description of the history -of the system. A.complete

trajectqry,, of course, represents the history of system throughout all time .
The totality of all paths of M represents all possible histo,r'ies .of the system,
any one. of which is determined by a .single point. Thus.with the possible
exception of the intersection of the curves.P = 0 and Q = 0, only one path
may pass _thrpugh any one representative point. The velocity of the point

M along a trajectory is the phase velocity of the system. It is.a plane vector

with P.and. Q its components in the y and x directions. Its.direction is given by

arc tan P(x,y) .= arctan dy
Qx, y) dx

.at every point where P and Q do not vanish simultaneously. The locus of

points where dy is constant. is called an isocline. The points where P and
dx
-Q vanish simultaneously are called singular points.

3. Singular Points

3.a General
Since singular points are at the intersection of the curves
P =0 and Q = 0, all velocities of the system vanish and the system is.in

a rest or equilibrium position there. The nature of a singular point reveals much
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qualitative information regarding the solution of the differential equation,
_thus some general theorems regarding singular points will be quoted.

Poincaré (1892) has shown. that the differential equation

dy = ax+by+P3 (X,y)
dx cx+dy+ Q2 (%, y)

in which A = ad - bc $0 and.in which P2 and Q2 approach zero like
x2 4 y2 has its only singularity at the origin and the behaviour at the origin

is similar to that of the linear differential equation

dx cx4dy *¢ (4.3)

If a differential equation is.of the form

dy! = Asaxlée byl
dx L B4cxladyl (4.4)

the only singularity is at the point (x_a, y.0) Where

-A b a - A
X0 * -B d Vo = )c - B

a a

and ‘a b
A = c d L4

x = x1 - x4
y =YY" - VYo
are made (4.4) ié reduced to the forrh of (4.3). .Since Poincare (1892) has shown
that the nature of a singularity is preserved in undergoing linear transformations,
there is no loss in generality in considering (4.3) instead of (4.4).
The general solution of (4.3) is

x -y -y)x' x - g(“y)"?‘ .= constant \ (4.5)



where —
My = bte *Jb-c)?-4ad (4.6)
2
and
oGa- b-c X[ -c)4sad (4.7)
; dy | ax+b
3.b Special Cases of ax =T i

It can be shown (Stoker 1950 Chap.. III) that any form of (4.3)
can be reduced to certain special. cases by linear transformations.of x and y.
These special cases and the names given to their singularities.are listed in

the following table.

27.

. Condition

a=de=0

bcy»0
m= Db

Differential Solution
Equation
x\m

4y =m Y -Y=yo(——)

dx X %o ]

dy = -n-}Z(. X" = YoXo

dx

dy = -p2 X y24p2x2 = y st p2x2

dx y ‘

_g}’— = qr

de - r = Ipexp q(60~&3
I X=r1rcos®

y=1sin@®

dy =y ¥ =% +1n|2£‘)

dn y X0 X0

Type of Singularity
_at Origin

node

saddle

center

spiral

node
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3.c Stability and Classifications of Singular Points

‘A singular point is stable if there exists some neighbourhood
around the singularity inside of which-all representative points approach the
singularity as.t _increases_. A singular point is unstable if there exists some
neighbourhood mround the singularity inside of which all representative tend
to leave the neighbourhood as t increases. Using these criteria for stability,

the following classifications can be made.of the types.of singularities. of (4.3).

(i) Stable if b¥c £ 0.

(&) Node if AL0 (ii)- Unstable if bc >0
I D>0 (B) Saddle ifA> 0
I D< 0 (A) Center if bbc = 0

(B) Spiral if bec 30 (i) Stable if bic<0

(ii). Unstable if byc >0

I D=0 (A) Node (i) Stable if bic <0
(ii) Unstable if bbc D0

where D = (b - c)2+ 4ad; A = ad - bc

3.d Examples of Singular Points

It is instructive to note that the singuiarity of the equation
for the linear harmonic oscillator exhibits.all the possible types of singularities,

except a saddle, if negative damping is allowed. The equation: for such a

system are 5
d%x 4o 2t dx 4 s%x = 0
atz dt
and
dy = -8’ -2y
dt

a{&
:;



which are of the form of (4.3) if

a = =82 b = -2
c =20 d =1 »
It is seen that
b¢c = Zr
A --s2
D = 42 -s2,

The following table illustrates the nature. of the singularities for different

values. ofr and s.

.Singularity Condition. Damping

Stable Node I3 s Positive, greater G

orequal to critical  (Cyt+C2) €7

Stable Spiral 0>1r>s Positive less e-\“t ¢, cos ( J&-FE 4 c.z.\ <
Point thén critical

Center r =0 None €1 Cos (St +¢C)

Un.stable Spiral 02=~1>s Negativ.'e., less er‘t ¢, coS W_., et
Point than critical :

Unstable Node -r2 s Negative, greater Gy

or equal to critical ewr

(Gt+Ca
An example of a saddle point is the singularity of the equation

governing the behaviour of a simple, rigid pendulum near its uppermost position.

This equation is

.d2x - qz.si.nx =0

dt2

or
d2X - qZX = 0
dt2

‘Solution
P IFETNE o olor i st

elr —Fs2)t

29.
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keeping only linear terms. It is apparent
A :-¢2<0

and v
D = 4920

which are the conditions for a saddle.

4. Oscillations

4.a General

A closed trajectory in a phase plane corresponds to a periodic
phenomena in the system represented by the phase plane. This statement
follows from the fact that a.representative point on the.closed curve returns.
to .the same position after some.time T} i.e.,

x(t+T)

x (t)

y t+T) = y(©)

The symbol T will be used to denote period in the sequel and will not be
confused with T the.absolute temperature. The period T of an oscillatory process

may in principle be calculated from the line fnteg‘ral

T = E z _g_}_/
P Q

where the path of integration is to be taken.mround the closed.trajectory in the
direction of increasing time.

It can be shown (Stoker 1950 Chap.. II) that inside a closed
trajectory the number of saddle points must be one less than the sum of the
number of nodes, centers and spiral points. Thus :it follows that inside a closed

trajectory there must exist one node, center or spiral point.

30.
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If all the representative points in a region of a phase plane tend

to a single closed trajectory free of singular points as t increased that trajectory

‘is called a limit cycle.

4.b Relaxation Oscillations

In most oscillatory systems of (4.1), P and Q involve parameters

of the system which may be varied; e.g., the factor e in the Van der Pol equation

&y = e -3 -x
dt 3

dx =y

dt

For certain values :of the parameters; e.g., € << 1, the oscillations.are.very
nearly sinusoidal. ».As the parame ters.change; e.g., e is increased, the
oscﬂlations may ultimatély become characterized by, two distinct epochs;
e.g., E> 10, one in which energy is stored up and one in which energy is
disch'axged nearly instantaneously. Oscillations.of this nature are called

relaxation oscillations.
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PART 5

STUDY OF OSCILLATIONS IN THERMISTORS

1. Experimental Techniques

The basic circuit employed was that of Figure 5.1 which has
been shown in 5 of Part 3 to oscillate if E and Rj.are such that the thermistor
is _biased beyond turnover and C is greater than some minimum value.

Creat difficulty was experienced in obtaining thermistors both
sufficiently robust to withstand the extremely high temperatures during large -

amplitude oscillations and having sufficiently low value of the. ratio X
Ro.

so that

Cmin = _ T 1,1
T (- 1)(R0* Rl) (3.19)

was easily obtainable using 0il and paper condensers. - Also difficulties were
met because of the apparent errors in the manufacturer's specifications o T '
and k in several thermistors (see.3 of Part 2 and 6 of Part 3). The final choice

of .a thermistor type for experimental investigation was made by biasing a number
of thermistors beyond tumover and increasing the parallel capacitance in each
‘case until sustained oscillations were observed .and then choosing the one
requiring the least capacitance. The type chosen was a VECO type 65A3 which
was later substituted by a VECO type 65A1 which hasv, as explained in 3 of Part 1,
after opening its glass tube, sim-jlar electrical and thermal properties to the 65.A3,

but is somewhat better protected from mechanical damage. The measured values

-of its parameters were

32,
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k = 0.13m Wdeg -1
T - 0.61 sec

R = 3.45 ohms

b = 4310%K

Ostillations were observed on an oscilloscope.in the V - 1
plane and in the time domain, i.e., V (t) and I (t). .A current sampling resistor
of 1 Kohm was inserted in series with the thermistor for current measurerﬁents
and a large resistor was used in series with the oscillescope for voltage
measurements. The effect of the 1 Kohm resistance was found to be negligible
except at very large. instantaneous: currents occuring when the thermistor experienoed
its peak.of temperature rise. A An arbitrary current maximum of 1.5 mA, comresponding
to | = 150°C on the static curve, was set on the current during oscillations to
avoid risk.of burn - out. The &ffect of loading of the shunt resistance.of the
oscilloscope circuit for voltage measurements was.calculated. and the appropriate
-adjustments to.R; and E were made to preser\‘re a known operating point.

2. Limited Applicability of Linear Theory of Oscillations

In Part 3 an equation was derived relating the frequency f of

small - amplitude sinusoidal oscillations to the parallel capacitance C,

IR
2xf - w = 1 2%ha - (1 - o, ')2]'- (3.20)

T LCRo

when :
CcC2 C = T 1,1 (3.19)
min (¢o‘1)(Ro+R1)‘

If the period of oscillation. T = 1 ,

T - 2R T N
[ZC%"'— - -¢o)2J‘ (5.1)
0
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Data. were taken to show the dependence of T upon C at a fixed ope;ating point.
for several different values of Ry and was compared to (5.1) (see Figure 5.2)..
The curves nearly coincided for C= Cpjn; i.é ., where the amplitude of oscillation
was small. Naturally a marked divergence was noted.as the value of C was
increased since (3.20) and. (3.19) are valid only for infitesimal oscillations;
‘i.e,, there isv only one value of C and f for a given operating point and Rj.

.Data were also taken to show the relation of the amplitude of
the voltage waveform and the value of C. The difference between the voltage
maximum Vy,5% -and the voltage minimum Vi jn indicates that for.only small
.increases of C beyond Ciip thei voltage amplitude becomes very large and the
voltage variation is very unsymmetrical relative to the value of the voltage at
tﬁe_ operating point Vo (see Figure 5.3).

. These two.results point out the very limited range .of C in which
the linear theory is applicable and also the inadequacy -of applying pertubation

methods to the linear theory.

3. Phase Planes for Thermistor Oscillations

3.a. General

The general problem of oscillation consists of the simultaneous

solution of the two thermistor equations

V = Res exp _b_ .= R() = 1 2.1)
1 Ta+¥Ol G (1),
P = VI=Kk(th + q didt) (3.3)

dt



..and the circ;uital relation

E - V4 IRj + CR; g_V_"; C(5.2)
t

It is seen that there are many pairs of variables for which phase

planes exist. Among them are those listed in the following table.

_Variables _Static Characteristic Load Line Comiments

I, Vv V = Rggexp_b E =RV Variables easily

I T%%I_ ‘measured. Load

line is. a straight

. line.

o, V V2 = kWO*R(104) E =V [;*!RIG(IOI)] Simplest form of

differential equation
4

P, &t P = k& E =]R¢&) P]" _ Static characteristic

x [1+R1G0e9] is straight line.

Differential equation
is complicated.

. 4
151, dien Il = 0 E - [k(isTdNR )] Static characteristic
dt dt dt is one of axes. .
X [1+R 1 GQO\)] Differential equation

is complicated.

3.b. The V - I Phase Plane

The first to be investigated was the V - I plane. Eliminating

all other variables the system may be reduced to. the following first order differential

equation
d =1 o GRybI[vi-werq, V)l (5.3)
v v [iTa+ ©4(1, V)] “K{E-V-IR1]}
where
I, V) - b - Ta.

In .V
IRoa

35,
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Oscillations correspond to.closed trajectories around the singular point (Vy, I;)

at. the intersection of E = IR1 4 .V and VI = k@¥(I, V) where %}L = d‘dIT: =0.

_The trajectories of (5.3) have vertical tanfents. on the locus of ((% = 0, thus

the load line E - IR} -V = 0 is the isocline for .g% =00 . The trajectories are
t’angent to the isothermal corresponding to maximum and minimum temperatures
where —Cai%f = —\II— or. VI = kiSt(I, V) which are the points where the trajectories
ccross the static characteristic. The isocline for % = 0 corresponding to
current maximum and minimum is not easily soluble. .It'is to the right of the
static ~characte;istic above the load line and to the left of the static characteristic
below the: load line (see Figure 5.4). ,‘Since %‘% > 0 below the load line and

glt’ < 0 above the load line it is appareﬁt .t’hat the motion of any. representative
point is in a counterclockwise direction around the operating point (¥,, Iy).

‘The nature of the singular point (Vo, Iy) was next examined.

The transformations

v =V = VO
i=1-1I
were made and ‘_;% and %1}. were solved with second and higher order terms

in v and i discarded to give the pair of linear equations

dv = - v - i

dt CR; C

di v(cﬁ%_L 1 )_1_+i‘0°-.'1_1_)

dt “Ro T CRo

The quantities.D, A and b+c are

.36..
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D- (b—c)2+4ad ¢° 1 -1 -1))2 -4(4),+1 _—

Q - ad-bc:___( ¢°+l)
'tc Rl Ro
b#c = @ -1 - _1_(_’,_
T of R1

A condition -of great interest is that for the operating point
tobe a center. For b+c = 0 one has the condition that the system is.just

, .Dis less than zero

C = 5 (1_-»+L) | |
¢ - 1 \R, R; ' (5.4)

‘This value of C. is identical to the value Cp,jp in (3.19). For values of greater

. oscillating with infitesimal amplitude. For b4 c = 0

and

than Cpin, the singularity ig;?an,unstable spiral point provided D « 0 and for
values of C smaller than Cpjp, the singularity is a stable spiral point also
provided that D€ 0. The conditions at a typical operating point are

.- 2.0

Ry = 0.60 Mohms

R1 .= 4.0 Mohms

T = 0.6l sec
B - -0.20 Mohms
for which the singularity is
Unstable Node @ C2>13.8 ufd

Unstable Spiral 13.82C>1.17 ufd

Center .C = 1.17 pfd
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.Stable Spiral. .104<.C £1.17 ufd

_Stable Node C €.104 ufd

Figure 5.5 shows some photographs. illustrating the nature of the singularity

_in the V - I plane for several values of C.

3.c. The V - Plane

The differential .equations. in the V -#@ plane are

g (s

(5.5)

[l

)
iV = 1 (B - V(I4R;G(ed) )
t -CR;

where

G(@l) = Ggo exp - b
‘ Ta+i&f

and their first order approximations valid near the operating point are

de = Po-1g4 2 164
dt =4 e+t Vov

dv - =@eVeGo g - (14RiGy) v
dt C 'eo R]_

which have the same values of D, & and b¥c as the equations for v and i

since to first order they are linear ttansformations from the equations in

vandi.

The equations of (5.4) may be rewritten as the single first-order

differential equation

¥ - CR; V2G(8) + - i (5.6)
div. @ E - V(+R,GleV)
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It is noted that this equation (5.6) is much simpler than(5.3).

It is apparent that the isocline for dw® = 0 is the static characteristic and
: dv

the isocline for 4 = go is the load line.

dav

Also, it.is seen that if C > 0, then g.\?‘

<» 0 everywhere in
the plane except at the load line. Thus in the limit as C becomes. zero one
would expect all representative points to jump horizontally to the load line

and then to follow the load line to the operating point. If C -<y»e© , the case
for extreme relaxation oscillations, j'__\.?."-;eb everywhere in the plane except
at the static.characteristic. Thus one would expect all r epresentative points to
jump vertically to the static characteristic and,once‘tllxere , to follow it.

In particular, a representative point starting from the origin would.be expected
to follow the static curve to the turnover point. At this point it would tend

to jump to the hypothetical branch .of the ideal static characteristic and follow
. it until the voltage minimum was.reached.and then jump to the lower branch of
the static characteristic (see Figure 5.6). Since a trajectory such as this is.not
physically realizable. as the .upper branch of the ideal static .characteristic is at
a hypothetical temperature greéter than b&" 4000°K it was not possible to set

up extreme relaxation oscillations in the thermistor.

For values of C « @ the trajectories would be. expected to

have a value of ¥¥ somewhat lower than the value.of ¥4 corresponding to

the static characteristic for a given V.
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4. Division of the Period of Oscillations into Epochs

4.a. General

Figure 5.7 shows photographs of thermistor.Voltage- V and
current I as functions of time during oscillation. It is seen that as.the value
.of C increases, in both the current and voltage functions two distinct epochs
may be recognized. These were‘ugiven the names charging and discharging
epochs corresponding to the time regions in which g is respectively positive

and negative,

4.b., Charging Epoch

For the purposes of analysis the charging epoch. Tc' is defined -

.as that portion of the period for which the closed trajectory is below the load

line.
i CRp s sufficiently large it has been shown that gtg"
.is very small .compared with -',.%' .over the charging portion of the cycle.
Thus. the equation for the balance of power
V26(@) - e + ¢ A

ok dt
becomes approximated by the equation for the static characteristic

o = VAGeeN)

k

which may in principle be solved for#® and substituted in the equation for g‘¥
giving for T¢ Vemay .

Te = CRy dv (5.7)

E - V(I+ R;G(en) )
Vimin

40.
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where Vyax -and V.40 are the maximum and minimum values.of V over
a cycle. A lower bound on T¢ is given by the inequality

Te> CRyIn E - Vimin
E - Vmax

-or for sufficiently large values of C sirice Vimin becomes small (see Figure 5.3)

Tc » CR;  Vmax - Vmin
E

If the discharéing epoch can be assumed small enough,

Tc should be a first order approximation to the period T. The form of (5.7)
indicates that the period of oscillation should be proportional to the parallel
capacitance C. This was true over a wide range of the value of C and the slope
of the T versus C.line increases with increasing Rj. Figure 5.8 shows. the period
of oséillation T as a function of capacitance C. Figure 5.9 shows the period.of
oscillation T as. a function of load.resistance Rj.for several different values.of C.
The.relation between R) and T is linear for values.of R] such ‘thattf,the operating
point is well above turnover. The form of these functional relations. between
T, Cand T, Rj suggest the ,foﬁlbwing empirical relation

| T = ap+aj C+ap Ri+ a3z CR]
would be valid over.a range of operating points.

4.c. Discharging Epoch

It was decided that a study of the discharging of a condenser
through a thermistor would possibly yield information regarding the discharging
| epoch of the oscillation.

For the circuit-of a capacitor discharging into :a thermistor’the following
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-equations hold

I - Gepexp -b
v Ta +

P - IV -k (4 + p diSt)
dt

If Tpis is the duration. of the discharging vepoch,

max
VG (&)
Vinin ‘
and
_ C In Vmax < TDIS»<....C; In Vmax
o, Vo coR

Several phase planes were considered for regarding this problem among which

were MM - V and the ¥ - g—t@— planes.

The differential equations were

ae - -c [ v - ;DLR_] (5.9)
dv 4 k VvV
where
R =V = Ragp exp b
I - TaeSI
and _ G
dx = (BAHTx )(px -2 <) - x (5.10)
qe@ ‘ x ¢
where
X = dw
dt
/u__: b
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and
G = Gw exp -b -
Ta + &4
The ¥O4 -V plane was first considered. The origin is a stable

node for all real values. of the parameters C, T .and k. Isoclines. corresponding

det .
to: slope @ = gy~ are given by

V: -xTa+ !l [ TR + &R
el C &

In particular for @ =0

3

V = (k¥ R)
which is the static characteristic. For the locus.of points where the current

Iis maximum,
dl = ¢

t

which gives.

av. = - V. = bv
det M (Ta+101)2

A\ J’k.(re«R-t— 2 (Ta+iBy?)
C b

For sufficiently large values. of C and sufficiently small values ¥&¥ this locus
very nearly coincides with the static.characteristic. For large values of ¥ this

locus is given by

VvV x 1_<_;)‘E (Tat+i®l)
bC

Figure 5.16 is a drawing of the V -i® plane for two different values of C

with several isoclines.and the. locus for di = 0 drawn in

dt ‘
Regarding the differential equation in the M , x = 3_’9'
t

plane (5.9) it is seen that the static characteristic is given by x = 0,
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dx
which is the isocline for di = @@ . The isocline for _g_xa; 0,
-or for the maximum I is given by the equation
2 - , _
X2 + x (UGt -1 -2G®% )-200G = O
AR c T

The isoclines with slope %}9‘ = - are the locus where P is a maximum.

1
i <3
in which case .

x = 2G (Ta +HeW>
' Chb

and the locus.where P = 0 in which case

X = =T
The locus for maximum .current I where % = 0is
X 4

- G
/J.C
which is.not an isocline. The trajectories along this locus have.a slope given

by

dx = - y(eN 4 Tx) -1
do

Figure 5.11 shows drawings. of the ¥, x. = (;i_tﬂ plane for , values of C =1
and C = 10 ufd.

It is seen that trajectories starting above a certain minimum

value of x have in succession

maximum. of —g—t@ (if GaV'12>(VI)t
maximum of P if CV12 > (VI T
2

. , ' 2
maximum of I if CVi” o (VIx ¢
: 2 2



C~3008d C=4.0pfd C-5.0pfd |
VERTICAL |DIV=OpA  HORIZONTAL |DIV=D5v]

FIGURE 512  PHOTOGRAPHS oOF

CURRENT-VOLTAGE PLANE DURING |
CONDENSER DISCHARGE THROVGH THERMISTOR



45.

maximum of Ot

. Ao
dt

minimum o

where Vi is the initial voltage of the condenser.
-Attempts were made to approximate the discharge by several

different functions such as .

‘e‘___@te_‘st

and
D = .ﬁ.ﬁ.‘ .
o+ t™

These functions were found to be greatly inadequate due to their lack. of
sufficient number of adjustable parameters preventing an adequate approximation
to the solution of the differential equation for =
o die -
d}l In { & +2G(|6) = 0
dt G qa) , C .

Figure 5.12 shows photos of the V- I plane during discharging

of a condenser.
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