
A THEORETICAL AND EXPERIMENTAL INVESTIGATION 

OF SINUSOIDAL AND RELAXATION OSCILLATIONS 

IN THERMISTOR - CAPACITOR SYSTEMS 

by 
• 

GORDON ARTHUR MORLEY 
B.A.Sc, University^of British Columbia, 1955 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF APPLIED SCIENCE 

in the Department 

of 

PHYSICS 

We accept this thesis as conforming to the standard 

required for candidates for the degree of 

MASTER OF APPLIED SCIENCE 

THE UNIVERSITY OF BRITISH. COLUMBIA 

April, 1957 



ABSTRACT 

It is known that a thermistor displays inductive- reactance 

and negative resistance at low frequencies when biased with a current greater 

than turnover current. Thus when shunted by a capacitance in this condition 

sustained oscillations are possible. These oscillations range from a 

sinusoidal small - amplitude character, when the system is just above the 

threshold for oscillation, to a strongly.relaxational type when a large shunt 

capacitance is employed. 

The investigation described in this thesis involved a study 

of the dynamic properties of these oscillations and their relation to the 

static properties of the thermistor. The relevant thermistor parameters 

which were measured included the dependence of resistance on temperature, 

the thermal conductance and the thermal time constant. For the determination 

of the latter, special very low frequency techniques were developed. Thermistors 

of high resistance and low thermal time constant were, selected in order to avoid 

the necessity for very large capacitances in the study of relaxation oscillations. 

The oscillations were studied over a wide range of capacitances 

covering the transition from sinusoidal to relaxation type. The voltage extrema 

and period were measured as functions of capacitance, voltage supply resistance 

and operating point. Also, in order to elucidate the dynamic processes involved, 

the transient phenomena produced by abrupt pertubations were investigated. 



Li parallel with the experimental program, an investigation 

was.made of the features of the differential equations describing the behaviour 

of the system, especially for the limit cycles corresponding to relaxation 

oscillations. The.asymptotic form-of the cycles were derived for the case 

where the circuital time constant greatly exceeds the thermal time constant 

of the thermistor. The complicated nature of the equations precluded a solution 

in a closed form and approximational methods were found to be necessary. 

However, in the case of sinusoidal oscillations of small amplitude, the period 

can be exactly expressed in terms of the system parameters (Burgess, Nov. 1955) 

and this result was confirmed experimentally. 
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PART 1 

INTRODUCTION 

The thermistor is a two terminal device possessing a high 

negative temperature coefficient of resistance and a large thermal inertia. 

Burgess (Oct. 1955) has shown that under certain conditions of d - c bias, 

the thermistor will exhibit an incremental admittance consisting of a negative 

conductance and negative susceptance. In a later paper, Burgess (Nov. 1955) 

also has shown that if a positive susceptance of equal magnitude, in the form 

of a capacitance, be connected in parallel to the thermistor, small-amplitude 

sinusoidal.oscillations will be sustained if the d - c source conductance is 

only slightly less in magnitude than the negative incremental conductance of 

the thermistor. 

If the magnitude of the parallel capacitance is increased, the 

oscillations become relaxational and do not appear to bear treatment in terms 

of the Van der Pol equation. This paper presents the results of a theoretical 

and experimental investigation of these relaxation oscillations. 

Preliminary to the investigation, existing theory of the thermistor 

and some general remarks on non linear vibration theory are given. In. Part 2 the 

form of the static current - voltage characteristic is deduced and the results of 

measurements of its parameters for certain thermistors are quoted. 



Part 3 concerns small - amplitude time varying phenomena in 

the thermistor. It essentially reproduces the two papers.of Burgess and relates 

how the small - amplitude a - e theory was used to measure the thermal tine 

constant of the thermistor. 

Part 4 gives some definitions and theorems of non-linear vibration 

theory which are employed in the investigation. Part 5 presents the investigation 

of relaxation - type oscillations over a wide range of the value of the parallel 

capacitance. 



F I G U R E 2-1 P H O T O G R A P H S O F B E A D - T Y P E 
T H E R M I S T O R S 

H G U R E 2,2 DEPENDENCE OF 
SPECIFIC Rfc5>\STKNCE UPON «KVSftSE 

INVERSE TEMPtRATOSE DESCENT 



3. 

PART 2 

STATIC PROPERTIES OF THERMISTORS 

1. Physical Properties 

Thermistors are thermally sensitive resistors whose variation 

in resistance is characterized by a high negative temperature coefficient. 

They are generally made by heating compressed powders of semiconducting 

materials to a temperature at which they sinter into a compact mass and then 

firing them on metal - powder contacts. Semiconductors are substances whose 

electrical resistivity at or near room temperature is much more than that of 

typical conductors and much less than that of typical insulators. In general, 

around room temperature these materials when pure, have negative temperature 

coefficients of resistivity of about 5% per degree centigrade compared to platinum 

and copper which are typical conductors and have positive temperature coefficients 

of about 0.4% per degree centigrade. 

Figure 2.2 is a graph of the logarithm of specific resistance versus 

reciprocal absolute temperature of a typical thermistor material. This graph 

indicates that the logarithm of the thermistor resistance R varies approximately 

linearly as the reciprocal of the absolute temperature of the thermistor T. 

Thus for a given thermistor one may write 

lOg R f t / - J r , 

or 
In R = J l constant, 

T 
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or finally b 

R : Roje T (2.1) 

where, 

R = thermistor resistance 

T = absolute temperature of thermistor 

b =• constant equal to the slope of In R - vs - -rp- graph 
e = naperian base 

R,o = value of R where projected curve crosses the. line 4p- = 0. 

It is apparent that b is a characteristic of a given material 

since a plot of log R versus -ip has the same slope.as.a plot of the logarithm 

of specific resistance versus ~ . The dimension of b is temperature and it 

is generally specified in degrees kelvin or degrees centigrade. It plays the role 

of activation energy in (2.1) similar to the work function in the equation for 

thermionic emission. It is apparent that R^ is dependent in general upon the 

type of material and the physical construction such as the size of the element 

and area of the contacts of a given thermistor. 

If the dependence of In R upon —^- be.carefully examined, it may 

be found ( Becker et al 1947) that the slope increases as the temperature increases, 

thus a more precise expression may be 
d 

R = A e "T^ (2.2) 
T c 

where A , c and d are empirical constants. The constant c is generally a small 

positive or negative number at zero. Equation (2.1) will be used for the model 

in this paper. 
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2. Static Voltage - Current Characteristic 

(2.a) General 

It is convenient here to introduce the variable t& which is 

defined as the excess of the temperature T of the element above the ambient  

temperature Ta, or 

& = T - Ta (2.3) 

If a current I is passed through a thermistor and Ta is held 

constant, then after sufficient time the voltage at the terminals of the thermistor 

V will reach a steady value (see Figure 2.3). If the current is increased with 

Ta held constant then the applied electric power will increase causing an inaease 

in the excess temperature of the thermistor. Thus a series of points (V, I) 

may be obtained which define a curve called the static characteristic. 

If a current I is passed through the thermistor and the electric 

power is prevented from increasing the temperature above the ambient Ta, 

then since T = Ta+10* and fO* = 0, the relation 

X = R e -Ta— 
I 

is valid for all the values of V and.I. The points (V, I) again define a 

characteristic curve. This curve is called the isothermal characteristic or 

simply isothermal . It is apparent that in the V - I plane an isothermal is 

a straight line the slope.of which depends.upon Ta. Thus, the thermistor may 

be considered a linear circuit element device if its temperature is held constant. 

In practice the isothermal condition may be observed by increasing the cooling 

apparatus or by applying the power in pulses . 
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(2 .b) Definition of Thermal Conductivity 

It will now be assumed that the dissipated power in the steady 

state is a function of the excess temperature •©* The. balance of the heat 

supplied and the rate of cooling gives 

VI = f (T - Ta) . f (td» ) . (2.4) 

The term on the right f (1©I ) is the rate at which heat is lost from the thermistor. 

The form of f (|£l) has been given (Bollman and Kreer, 1950) as the sum of 

a thermal conductance term and a radiation - loss term, resulting in, 

f (m ) = W 4- k R £.(Ta + »©• ) 4 - T a 4 j , (2.5) 

where k is the thermal conductance of the thermistor and k R is the radiation 

coefficient of the thermistor. The. dimensions of k are power per unit temperature 

and the units are generally watts per degree centigrade. Over most measurable 

temperature ranges either the second term of (2.5) is generally negligible with 

respect to the first term or at least the dominant factor of the second term is 
3 

k Ta iQt . In the model in this paper the relation 

VI = Jcie», (2.6) 

expressing Newton's law of cooling will be assumed. Combining equations 

(2.1) and (2.6), one obtains the following static characteristic 

-f •= R - e s > • <2-7> 
k 

(2 .c) Properties of the Static Characteristic 

There are several interesting properties which can be obtained 

from (2.7). To facilitate this, several new functions-.will be.defined. 
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The temperature coefficient of resistance jx, will be defined by the relation 

^ R ( d * ) _ ' (2.8) 

which upon calculation from (2.7) gives 

T 2 ( T a W p (2.9) 

The thermal function <̂  will be defined by 

t£ = bt& (2.1Q) 
(Tatie<)2 

and is a dimensionless quantity which can never exceed b . It is noted 
4 T a 

that since VI = kid* both ̂  and <|> may be written as functions of 

or as functions of VI. 

The slope r of the static characteristic is 

r = dV = = T 2 - b(T - Ta) R (2.11) 
dl 1 +4> T - 2 b(T - Ta) 

and is the ac resistance at zero frequency for any operating point. The first 

part of (2.11) may be rearranged so that 

<(> = R j j t (2.12) 
R+r 

At the origin of the V - I plane, V = I = >̂ ••= 0 and 
b 

r = R^© e Ta =Ra 

the zero-current resistance of the thermistor at the ambient temperature T a . 

Thus the static characteristic at the origin is tangent to the isothermal 

corresponding to T = Ta. .As. Lis. increased ^ becomes larger until finally 

it may equal unity. At the point where <j> = 1, . r = 0 and T = T t , the 
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phenomena of turnover is observed since this corresponds to the voltage 

maximum in the static characteristic (see Figure 2.4). The value T = T t 

is the thermistor temperature at turnover 

T t = b - (b2 - 4b-Ta)V (2.13) 

It is noted that turnover will only occur if b >4 Ta. If the ambient 

temperature is 300 °K and b has a typical value for thermistor materials of 

4000°K, turnover will always occur. If b » 4Ta, then 

T t = Ta( l+Ta_) 
b 

is valid. The.voltage minimum at Tat b is of mathematical interest only 

since this temperature is well beyond the melting.point of materials used in 

Ta 2 

thermistor production. The turnover condition T t - Ta = —— -2T 20°C is 

physically realizeable and is of great interest in many properties.and applications 

of thermistors. 

T a 2 

b 
The following relations are valid for T t = Ta + 

VI = (VI)tGTi T a 2 

b 

R = R t 2f R a e " 1 , 

The point of inflexion of the static characteristic where the slopê  r reaches its 

maximum negative value is at the point where 

d / d V V ^ 0 (2.14) 
/ d V ] * 0 

dT V dl / 

Putting x = T - Ta and c = _b_ and T = Ti at the point dr_ = 0, it is found 
Ta Ta dT 
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that 
( X i+ l ) 3 (xi - 3 ) + c 2 x i 2 = 0 , 

If X i « A then 
8 

and 

resulting in 

or 

and also 

c ~ TJ , 4 „ — J — T _ _ •) 
X i 43 

J6»i = 3Ta: 
J3b - 4 Ta 

J3*- 1 

R t ST R i e^ = 2.16 R i 

RiCT Rae * = .18Ra 
Ii Cl It ( e ^ " " ' 1 ^ = 1-93 I t <. 

These relations occuring for an ideal thermistor following 

— - = R «0 exp b 

k 

under the condition Ta >^ b may be summarized in the following table 

and in Figure 2.5. 

Summary of the Properties of Ideal Thermistor Characteristics 

R r 4* Comment 

« T a Ra(l+£) Ra i l ? 1 Origin 
T a 2 

T a 2 Rae _ 1 0 1 Turnover 

.2 
^— Rae"''3 - Ra SL, J T Inflexion 
b (2+^3) 

b b b 
Ta Rae 3~Ta - Rae 4 T f l — — Maximum 

* A c l 4Ta 
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3. Experimental 

Data were obtained for the temperature variation of resistance 

of several different thermistors. The thermistor under measurement was placed 

in a bath of hot transformer oil in a vacuum flask. Simultaneous readings of 

resistance R from a Wheatstone bridge connected to the thermistor and of the 

temperature T from a thermistor immersed in the oil were taken while the oil 

cooled to room temperature. The Wheatstone bridge was operated so as to pass 

negligible power into the thermistor and the thermometer was immersed so that 

its bulb was at the same depth in the oil as the thermistor bead. Figure 2.6 

shows the graph of log R vs T "1 from a set of readings. Over the temperature 

range measured no variation from a straight line was observed. Thus, the 

equation b 

R = R ^ e T (2.1) 

is adequate. 

Measurements of the static characteristic were made using 

the circuit shown in Figure 2.7. In the V - I plane the equation 

E = I R i f V 

gives the load line. Its intersection with the static characteristic is the operating 

point ( V 0 Jo )• • R l w a s composed of a variable resistance.and a fixed safety 

resistance. E was a variable - voltage power supply. Figure 2.8 shows a graph 

of the static characteristic for a Victory Engineering Corporation (VECO) type 

65A1 thermistor insair. Values of R were calculated at various points on the 

curve and corresponding values of were calculated from the log R - versus 

. - T * graph. Values of <b were calculated from the values of Id* by the relation 
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4 • b 

(Ta+ie*)2 (2.10) 

Figure 2.9 shows the dependence of <j> upon the thermistor current I. 

From the values of (V , I) at various points along the static 

curve, values of the power VI were, calculated and a A graph was made of the 

power - excess temperature relation along the static curve (see Figure 2.10). 

For the equation 

VI = kie« (2.6) 
to be valid, this curve must be straight line. Deviations from a straight line 

might be due to: 

1. Uneven heating of the thermistor bead resulting in the non-applicability 

of the log R vs T _ 1 relation measured with T = Ta for T ^ Ta. 

2. Heat losses due to radiation at high temperatures of the bead necessitating 

consideration of second or higher order terms in of the relation 

VI. = k»6i+ k R £ (Ta«M9l) 4 - T a 4 J (2.5) 

3. Heating of the surroundings of the bead to such an extent that changes 

in the effective ambient temperature.are not proportional to the excess temperature. 

4. Heating of the surroundings of the bead resulting in a change of the thermal 

conductivity k. 

It was noted that VI - vs - curve had an increasing slope with increasingf^l . 

Items 2 and 4 could have caused this. 

Values of b, and average slopes of the VI vs Id* curves 

for several thermistors were: 
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milliwatts 
Thermistor R ohms b uK k oK Surroundings 

Servotherm 1317 3.15 4160 1.1 Still air 

VECO 65A3 3.11 4320 0.13 Still air 

VECO 65A1 2.45 4310 \ .0094 Vacuum - as supplied 
by, manufacturer ( 

( 
( 0.12 Still air - with bulb 

opened to admit 
atmosphere 

It was noted that the manufacturer's specifications give a value of 0.1 milliwatts 

per degree centigrade for k for both VECO type 65A3 and 65Al. This agrees with 

the measured value for the type 65A3 in still air. However, in the case of the 

type 65Al which is in a sealed evacuated glass bulb there is a discrepancy 

unless the glass bulb is opened and the bead comes in contact with still air. 



PART 3 

SMALL AMPLITUDE TIME. VARYING 
PHENOMENA IN THERMISTORS 

1. Definition of Thermal Time Constant 

If the non-steady-state.condition is, considered, it is evident 

that the balance of power can no longer be represented by the equation 

VI = k»©» 

but rather the input electrical power must equal the sum of the dissipated 

power plus the rate at which thermal energy is being supplied to the thermistor. 

If the_rate at which heat is lost is determined only by the instantaneous excess 

temperature ^ , the balance condition may be written 

VI = k e i + H 4̂ ? (3-1) 
dt 

where H is the heat capacity of the thermistor at temperature Ta+l©* „ .Several 

cases where the rate of heat loss is not dependent only upon l& are considered 

by Burgess (Oct 1955). However, in the development here, the validity of (3.1) 

and the independence of H upon t& will be assumed. 

If a power V G I 0 = k *©* 0
 n a s been.applied to the thermistor 

for such a time that all transients have died out and then the thermistor is open 

circuited, the excess temperature will be given by 

\Oi = t&0 exp ( - k t ) 
H (3.2) 

The quantity H_ is called the thermal time constant of the thermistor and will 
k 



be denoted by*G . Equation (3.1) may be rewritten as 

VI = k (te« +^dH&«) . 

dt 

2 . Small Signal Differential Equation 

The quantities v, i and 6 will be defined by 
.v = V - V 0 ) 

) 
i = I - I o ) 

) 
9 = i8»-»e»o ) 

(3.3) 

(3.4) 

where Vo. I 0 o are the values of V, I and at some operating point. 

The quantities fa o, JUo and R-o are the respective values of <fc , and R 

at the operating point so that 

(3.5) 

Vo = Ro •= RoO exp Tafl©J 
Io 

Vo Io = kfdfe 

fa = lAoW> -- b r&Q 
(Ta+ieb) 2 

If the first equation of (3.5) is expanded in a Taylor's series in 0 , it is seen 

that 

It the condition 

I o + i 

vi«C V 0 I 0 

R 0 + e M + g £ £ : 

holds, only the first order terms.of the expansion need be considered. Solving 

thus for © , it is found that 

6 1 , v _ i 
( To 17 ) (3.6) 
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and 

d t M » ( T„ * h % u (3'7) 

Substituting (3.6) and (3.7) in (3.3) and expanding VI in terms of v and i 

arid keeping only first order terms it is found that 

A* Vo dt ^ dt • 

or since V 0Io = kt**©.and. <^0= / i <» V ° ^ 
k 

(3.8) _y_ (l + <^o)+ X_ dv =J^ (l-4b)+^ di_ # 
Vo Vo dt IQ Io dt 

This is the general differential equation governing small changes in V and.I. 

3. Response to Sinusoidal Input 

If v = Vi.e and i = Ii e Jw* where and Ii may be complex 

and where w » 2 7t x frequency f and if Z » — , it is found from (3,8) that 
l l 

Z = R 0 f i r ± o ± ^ * l (3.9) 

is the relation for the small - signal driving - point impedance of the thermistor 

at any operating defined by R 0 and 4>o* 

If 
Z = R (w)+ jX (w) 

it is found that 

R(w) = 1 - 4>o 2 * w 2 X 2 

Ro (1+<^«) 2 + W 2 T * 2 (3.10) 

and 
X(w) = 2 ^ w t 
Ro ) 2 t w ^ 2 " .(3.11) 
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If w >> 1 it is clear that R (w) = R 0 and X (w) = 0. This is the condition 

that the applied power is varying so rapidly that the thermal inertia of the thermistor 

causes the excess temperature to remain essentially constant over a whole cycle 

at the value 

if 

vi << Vo Io • 

The impedance then corresponds to Ro, the reciprocal of the slope of the isothermal 

passing through the operating point. If w t « l it is clear that 

R(w) = Ro (I -<fro) = r 
(i+<fc>) 

and X (w) = 0. This is the condition that the applied power VI is varying so 

slowly that the temperature essentially reaches its equilibrium value at each 

point of the cycle, thus the current - voltage locus follows the static characteristic 

and the impedance is equal to the slope of the static characteristic at the operating 

point. At medium frequencies where w is neither much larger nor much smaller 

than , the current will lag the .applied voltage and the current - voltage locus 

becomes an ellipse. Photographs of current - voltage loci at different operating 

points.and frequencies are shown in Figure 3.1. 

Several equivalent circuits are immediately apparent from the form 

of the impedance function and are shown in Figure 3.2 . 

Regarding the impedance equation 
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it is seen that its representation in the Z plane is a series of semicircles 
Ro 

with <|>0 as a parameter (see Figure 3.3). The infinite frequency value of 

Z is real and has the magnitude unity. The zero frequency value is rp_ 
Ro Ro 

and is also real. If ^>©>l and hence ro < 0; i.e. the thermistor is 

biased beyond turnover, it is noted that R (w) becomes negative for all frequencies 

below some critical frequency 

f G = JVo_ .= (4>o - 1) » (3 ..12) 
2 Tt "^Kt 

At this frequencyJEQ the real part of the impedance is zero and the thermistor 

behaves like a pure, positive reactance given by 
J- J. 

Z(w Q) : j R Q /4>ft- lV"= j ( - r 0 R 0 ) x . (3.13) 

4. Response to Step Input 

The response of the thermistor to a small step function.of voltage 

will now be considered. Since linear theory will be used, the value of the change 

of voltage e s applied to the thermistor and load resistor Rj in series must be 

small enough that 
e s v o 

holds. The circuit will be.of the form shown in Figure 3.4. The relation 

e s .-. i R 2 + v (3.14) 

will hold for this circuit. Combining this with the general equation 

dv + v ( l + & ) = R 0 f»CdL4 i ( l " <fro)"l (3-8) 
dt L dt J 
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a first order differential equation in i is obtained which may be easily integrated 

to give for the pertubation of the current 

i •= es,(l44>o)  
Ro (l-$o)+R* (If 4b.) 

constant exp - PR0 ( 1 - )+ R l (If (fro ) 1 t. 
L R 0+ R l J 

If X is defined by 

t ' = X (RQ-» R i ) 
R 0 ( i - 4W-)+ R i (i+4tf 

and the initial condition 

i = e s 

Ri+Ro 

at i = o is applied, the equation for the current i becomes 

e c / i x i , o A_ n —A. 
l « (l+<fc> -2<t>oR0 « * % ) , 

Ro ( 1 - ^ o H R l ( i H o ) R 0 + R l (3.15) 

It is interesting to note that if 

R i < - R o a -••) •= - r 0 

(i+4.) 

then 

and the exponent in (3.15) becomes positive so that the circuit becomes unstable. 

If the thermistor is biased at a point on the static characteristic where R^< - r Q , 

the load line will cross the static characteristic in at least one other place 

(see Figure 3.5) and any pertubation e s will cause the system to jump to one 

of the other intersections of the load line and the static characteristics For certain 

values of E and Rj, the upper intersection exists only theoretically since the 

hypothetical value of the corresponding temperature is above the melting point 



FIGURE 3.6 
C I R C U I T FOR O S C I L L A T I O N S 

—r~i — i — 
12 ^ = C 

A C T U A L CIRCUIT A C EQUIVALENT 



of the thermistor material. If the thermistor tends to jump to such a point 

it of course burns out. If = - r 0 , the denominator of (3.15) vanishes 

indicating that under this condition the linear terms.are insufficient and that 

higher order terms must be considered in the expansion of V, I and l©< . 

A similar equation to (3.15) involving the change of voltage 

V may be developed and is 

v = Ro (1 - 4>0 + 2 <boRi \ 
R! (l+ 4> 8)+R 0 (l . -f lb) R o T R 2 

(3.16) 

5. Small Amplitude Sinusoidal Oscillations 

The circuit to be considered is shown in Figure 3.6. The 

development will follow that of Burgess (Nov 1955). The thermistor will be 

assume d to be biased beyond turnover and the amplitude of oscillation will be 

assume d to be small so that the linear equations will be valid. The admittance 

of the circuit is of the form 

Y T = - i + jwC + _*_ ( 1+ $o+ jwTf \ 
^1 Ro V 1 -4>e+jwt: / (3.17) 

or if 

then 

G r(w)+ j B T(w), 

2 . 2 . 2 w t 
2*. 2 

G T ( W ) = RT+i- f 1 4 •» % ¥ 

Bp (w) = wC - -L ( 2w % <fto 
R o 1 (1 -4>o)W<t2 

The conditions for oscillations to occur are 

G j (w) £ 0 

Brp (W) X 0 
(3.18) 



For this development to be valid the oscillations must be small so that 

non-linearities are small. Thus the first relation of (3.18) should approach 

the equality as closely as possible. Applying equations (3.18) to the admittance 

in (3.17) it is seen that 

C m i n = r / 1 + 1 \ (3.19) 
4> e-lUl Ro/ 

l 
and 

w 

An upper limit of oscillation frequency corresponding to w m a x occurs when the 

d - c supply is-a perfect constant - current source; i.e., — = 0, and Cmjn 
R o 

has its lowest possible value 

C ~* mrn 
(T4V i) Ro 

and X 
™max - ( <^Q2 - 1 ) X 

It is noted that w m a x corresponds to the w Q defined in (3.12). 

6. Experimental 

Early in the programme of research, attempts were made to 

verify the semi-circular locus of the impedance function and to measure the 

thermal time constant of the thermistor flakes in several Servotherm type 1317 

bolometer units. Several different types of bridges were set up but found to 

be unsuccessful because of the difficulties associated with the high impedance 

levels and high voltages involved in these thermistors. Finally,. a bridged - T 
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filter of the type shown in Figure 3.7 was chosen. In this bridge: the resistors 

Rg, Rj^ and the supply voltage E determine the operating point ( V 0 , IQ ) . 

None of E , Rg and Rj__ need be varied during a - c measurements. 

Measurements of the impedance were made over a range, of 

frequency from ,5 to 100 cps. At: several different operating points the measured 

impedance was essentially the value of the reciprocal of the slope of the isothermal 

through the operating point; i.e., Z (w) = R 0» X = 0. This led to the conclusion 

that manufacturer's value of 0.01 sec for X was much smaller than the actual 

which must have been at least 0.1 sec. 

Later in the research programme the thermal time constant 

was measured of a V E C O type 65A1 (with its glass tube opened), using two 

different methods. The first method consisted of applying a variable-frequency, 

small-amplitude, a - c signal to the thermistor biased beyond turnover and 

observing the voltage - current locus on an oscilloscope as the frequency of 

the generator was varied (see Figure 3.8). The loci were ellipses whose axe! s 1 

direction varied with frequency (see Figure. 3.9). At the frequency where the 

axes were, vertical and horizontal the thermistor behaved like, a pure reactance 

and the relation i 

fo ( W " I ) * (3-12) 

or 
t = j _ ( W - n 

2TCfo 

was known to hold. The value of *£ at different operating points were 
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Io (^Amps) TT (see) 

.90 .52 
100 .61 
125 .56 
150 .63 
200 .63 
250 .62 
300 .64 

The other method consisted of biasing the thermistor beyond 

turnover and applying a small and instantaneous pertubation e s to the supply 

voltage (see Figure 3.4). The change of voltage v across the thermistor follows 

e s R Q .(!.-»»+"2 ^a.R] e f ) T V©+ 2 j o Ri e ~ £ 
R l (!+•<» )+Ro(l -•©) R o + R l 

(3.16) 

At time t = 0, v will jump from v = 0 to 

v - e s R Q 

Rl+Ro 

As.t increases, v decreases (see Figure 3.10) to a negative value if <^©^ !• 

Then the condition v = 0 will occur at t = to given by 

2 <feoRi 
Ro + R l 

1 - 2 4>eRi e ^ = 0 , 

or 
t - f R i ( l+ * » ) 4 R„(l -•tf ) 1 t o 

t R l -r R o J In In 2 

(Ro+ R i ) ( 4 - i ) 

(3.21) 

Using (3.21) me value of t was calculated at several operating points 
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Io (y^Amps) *X (sec) 

50 .67 
100 .64 
200 .58 

Averaging the values of % measured by both these methods 

gives % - .61 sec compared;to the manufacturer's value of *t - 1 sec. 



PART 4 

THEORY OF NON LINEAR OSCILLATIONS 

1. General 

In this section, the various methods of examination of systems 

which can be described by two first - order differential equations of the form 

dx - P (x, y) 
dt 

dy. = Q (x, y) 
dt 

(4.1) 

will be discussed. This is an autonomous dynamical system since P and Q 

are not explicit functions of time. It is noted.that the general second order 

differential equation 

d2x ^ dx f (x, d x ) + g (x, dx} s © (4.2) 
dt 2" dt dt dt 

can be transformed to (4.1) thus 

dx = y 
dt 

dy = f (x, y) - g (x, y) 4 

dt 

2. Phase,Planes 

Suppose a solution of (4.1) exists of the form 

x = x(t) 
y r y(t) 



Then since this is a dynamical system with two degrees of freedom and since 

the. state of the system at time t is fixed by the values (x, y), these two 

quantities may be considered as coordinates of a phase plane . To each state 

of the system there corresponds a point M (x, y) which is known as.a 

representative point. As t varies M will describe a curve called.a trajectory 

or integral curve which is a description of the history of the system. A complete 

trajectory, of course, represents the history of system throughout all time . 

The totality of all paths of M represents all possible histories of the system, 

any one of which is determined by a single point. Thus with the possible 

exception of the intersection of the curves P = 0 and Q - 0, only one path 

may pass through any one representative point. The velocity of the point 

M along a trajectory is the phase velocity of the system. It is.a plane vector 

with P and Q its components in the y and x directions. Its direction is given by 

arc tan P(x, y) = arc tan dy 
Q(x, y) dx 

at every point where. P and Q do not vanish simultaneously. The.locus of 

points where dy is constant is called an isocline. The points where P and 
dx 

Q vanish simultaneously are called singular points. 

3. Singular Points 

3. a General 

Since singular points are at the intersection of the.curves 

P = 0 and Q = 0, all velocities of the system vanish and the system is in 

a rest or equilibrium position there. The nature of a singular point reveals much 



qualitative information regarding the solution of the differential equation, 

thus some general theorems regarding singular points will be quoted. 

Poincare (1892) has shown that the differential equation 

dy e ax+ by+ P,2 («,y) 
dx cx + ;dy + Q2 («> y) 

in which A = ad - be ^ 0 and.in which P 2 and Q 2 approach zero like 

x 2 .4. y 2 n a s ^ o n i y singularity at the origin and the behaviour at the origin 

is similar to that of the linear differential equation 

dy = ax +• by 

dx cx+dy * (4.3) 

If a differential equation is of the form 

dj/ 1 = A + ax-1+..by1 

dxl B+cxl + dyl ' (4.4) 
the only singularity is at the point (x 0 , y o) where 

I-A b I la - A I 
x° " J-B d j yo = /c - B1 

and 
A = 

If the transformations 

| c d I . 
x = x 1 - x 0 

y - y 1 - y 0 

are made (4.4) is reduced to the form of (4.3). Since Poincare (1892) has shown 

that the nature of a singularity is preserved in undergoing linear transformations, 

there is no loss in generality in considering (4.3) instead of (4.4). 

The general solution of (4.3) is 

(x -cC) y)^' (x - y ) ^ * -constant (4.5) 
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where 
b+c ± J(b - c) 2 - 4 ad (4.6) 

and 
o(%± - b - c ±4(b-c) 2+4ad 

3 .b Special Cases of - ax+by  dx cxHh dy 

(4.7) 

It can be shown (Stoker 1950 Chap. Ill) that any form of (4.3) 

can be reduced to certain special cases by linear transformations of x and y. 

These special cases and the names given to their singularities are listed in 

the following table. 

1. 

2. 

Condition 

a n d - 0 
bc>0 
m = b 

c 

a - d - 0 
bc<0 

Differential 
Equation 

= m I 
dx x 

dy r -n • Z. 
dx X 

Solution 

T - Yo 
m 

yx11 = y 0
x o n 

Type of Singularity 
at Origin 

node 

saddle 

3. b = c = 0 
ad<0 
-<ua 5p2 

d 

a d = 0 
b - c = 0 
b = qa 
q>0 

a .= b = c 
d - 0 

dy = -p2 x 
dx y 

dr = qr 
de 

If x = r cos 9 
y = r sin & 

dy_ = xfcy_ 
dn y 

y^+p^x2 •- y Q+p 2x 2 center 

r « r Q exp q(0-£|i 

y = x 

spiral 

node 



3.c Stability and Classifications of Singular Points 

A singular point is stable if there exists some neighbourhood 

around the singularity inside of which all representative points approach the 

singularity as t increases. A singular point is unstable if there exists some 

neighbourhood around the singularity inside of which all representative tend 

to leave the neighbourhood as t increases. Using these criteria for stability, 

the following classifications can be made of the types of singularities of (4.3). 

(i) Stable if b+c < 0 
!) Node if A<.0 (ii) Unstable if b+c >0 

I D > 0 (B) Saddle if A> 0 

II D < 0 (A) Center if bfc= 0 
(B) Spiral if b+c ^-0 (i) Stable.if b*c < 0 

(ii) Unstable if b+c>0 

IH D = 0 (A) Node (i) Stable if b+c <0 
(ii) Unstable if b+c>0 

where D = (b - c) 2+ 4 ad ; jL\ = ad - be 

3.d Examples of Singular Points 

It is instructive to note that the singularity of the equation 

for the linear harmonic oscillator exhibits all the possible types of singularities, 

except a saddle, if negative damping is allowed. The equatiunifor such a 

system are 

and 

d2x 4. 2r dx_ + s 2x = 0 
dt2" dt 

dy = - s 2x - 2ry 
dt 

dx z y 
dt 
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which are of the form of (4.3) if 

a = - s 2 b• • - 2r 

c = 0 d = 1 

It is seen that 
b+c = 2r 

D = 4r 2 8* « 

The following table illustrates the nature of the singularities for different 

values of r and s. 

. Singularity 

Stable Node 

Stable Spiral 
Point 

Center 

Unstable Spiral 
Point 

Unstable Node 

Condition 

r > s 

0>r>s 

r = 0 

0>-r>s 

- r > s 

Damping Solution 

Positive, greater of* _*vt 
or equal to critical 

Ci cos £ t + c O 

Positive less 
than critical 

None 

Negative, less 
than critical 

Negative, greater C|« T ^ i C -
or equal to critical o r 

An example of a saddle point is the singularity of the equation 

governing the behaviour of a simple, rigid pendulum near its uppermost position. 

This equation is 

d 2 x - q 2 sin x = 0 
dtZ 

or 
d 2x - - 2 

dt2 
q z x = 0 



keeping only linear terms. It is apparent 

A = - q 2 < 0 

and 
D = 4q 2 > 0 

which are the conditions for a saddle. 

4. Oscillations 

4.a General 

A closed trajectory in a phase plane corresponds to a periodic 

phenomena in the system represented by the phase plane. This statement 

follows from the fact that a representative point on the. closed curve returns 

to the same position after some time T; i.e., 

The symbol T will be used to denote period in the sequel and will not be 

confused with T the absolute temperature. The period T of an oscillatory process 

where the path of integration is to be taken around the closed trajectory in the 

direction of increasing time. 

trajectory the number of saddle points must be one less than the sum of the 

number of nodes, centers and spiral points. Thus it follows that inside a closed 

trajectory there must exist one node, center or spiral point. 

x (t * T) = x (t) 

y(t+T) = y(t) 

may in principle be calculated from the line integral 

T 

It can be shown (Stoker 1950 Chap. IE) that inside a closed 



If all the representative points in a region of a phase plane tend 

to a single closed trajectory free of singular points as t increases that trajectory 

is called a limit cycle. 

4 .b Relaxation Oscillations 

In most oscillatory systems of (4.1), P and Q involve parameters 

of the system which may be varied; e.g., the factor £ in the Van der Pol equation 
3 

dy r £ (y " I ) " x 
dt 3 

dx - y 
dt 

For certain values of the parameters; e.g., €L^^l., the oscillations are very 

nearly sinusoidal. As the parameters change; e.g., £ is increased, the 

oscillations may ultimately become characterized by, two distinct epochs;  

e-E*» 10» o n e m which energy is stored up and one in which energy is 

discharged nearly instantaneously. Oscillations.of this nature are called 

relaxation oscillations. 
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PART 5 

STUDY OF OSCILLATIONS IN THERMISTORS 

1. Experimental Techniques 

The basic circuit employed was that of Figure 5.1 which has 

been shown in 5 of Part 3 to oscillate if E and Ri-are such that the thermistor 

is biased beyond turnover and C is greater than some minimum value. 

Great difficulty was experienced in obtaining thermistors both 

sufficiently robust to withstand the extremely high temperatures during large -

amplitude oscillations and having sufficiently low value of the. ratio t 

was easily, obtainable using oil and paper condensers. Also difficulties were 

met because of the apparent errors in the manufacturer's specifications of t 

and k in several thermistors (see .3 of Part 2 and 6 of Part 3). The final choice 

of a thermistor type for experimental investigation was made by biasing a number 

of thermistors beyond turnover and increasing the parallel capacitance in each 

case until sustained oscillations were observed and then choosing the one 

requiring the least capacitance. The type chosen was a VECO type 65A3 which 

was later substituted by a VECO type 65A1 which has, as explained in 3 of Part 1, 

after opening its glass tube, similar electrical and thermal properties to the 65A3, 

but is somewhat better protected from mechanical damage. The measured values 

of its parameters were 

so that 
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k = 0.13 m W deg ' i 

t = 0.61 sec 

R r 3.45 ohms 

b = 4310°K 

Oscillations were observed on an oscilloscope.in the V - I 

plane and in the time domain, i.e., V (t) and I (t). .A current sampling resistor 

of 1 Kohm was inserted in series with the thermistor for current measurements 

and a large resistor was used in series with the oscilloscope for voltage 

measurements. The effect of the 1 Kohm resistance was found to be negligible 

except at very large instantaneous currents occuring when the thermistor experienced 

its peak of temperature rise. An arbitrary current maximum of 1.5 mA, corresponding 

to — 150°C on the static curve, was set on the current during oscillations to 

avoid risk of burn - out. The effect of loading of the shunt resistance.of the 

oscilloscope circuit for voltage measurements was calculated, and the appropriate 

adjustments to R^ and E were made to preserve a known operating point. 

2. Limited Applicability of Linear Theory of Oscillations 

In Part 3 an equation was derived relating the frequency f of 

small - amplitude sinusoidal oscillations to the parallel capacitance C, 

(3.20) 

when 
(3.19) 

If the period of oscillation T =• i 
f 

T = 2 % % 

(5.1.) 
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Data, were taken to show the dependence of T upon C. at a fixed operating point > 

for several different values of Rj and was compared to (5.1) (see Figure 5.2). 

The curves nearly coincided for C - CxninJ i.e., where the amplitude of oscillation 

was small. Naturally a marked divergence was noted as the value of C was 

increased since^^O) and (3.19) are valid only for infitesimal oscillations; 

i.e., there is only one value of C and f for a given operating point and R^. 

Data were also taken to show the relation of the amplitude of 

the voltage waveform and the value of C. The difference between the voltage 

maximum V m a x and the voltage minimum V m i n indicates that for only small 

increases of C beyond Cmin the voltage amplitude becomes very large and the 

voltage variation is very unsymmetrical relative to the value of the voltage at 

the operating point Vo (see Figure 5.3). 

These two results point out the very limited range of C in which 

the linear theory is applicable and also the inadequacy of applying pertubation 

methods to the linear theory. 

3. Phase Planes for Thermistor Oscillations  

3.a. General 

The general problem of oscillation consists of the simultaneous 

solution of the two thermistor equations 

V = exp b = R (t&) = J_ (2.1) 
I Ta+t6» G (te*) 

P = VI = k(te* + X, (3-3) 
dt 
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and the circuital relation 

E = V t IRx +• CRi d V 
dt 

(5.2) 

It is seen that there are many pairs of variables for which phase 

planes exist. Among them are those listed in the following table. 

Variables 

I, V 

ie», v 

dt 

Static Characteristic 

V R-^exp b 

T" Ta+VI 

V 2 = k«e»R(®«) 

P = k»d* 

diet =• 0 
d t 

Load Line 

E = IRj+V 

E =v[l4-RiG(ie»)] 

E -(R(*») P]* 
xU+RiGW] 

Comments 

Variables easily 
measured. Load 
line is a straight 
line. 

Simplest form of 
differential equation 

Static characteristic 
is straight line. 
Differential equation 
is complicated. 

E = [k(»e<+'Cdj6»)R(lW)J* Static characteristic 
dt is one of axes. 

x [l+RiG^e»)] Differential equation 
is complicated. 

3-.b. The V - I Phase Plane 

The first to be investigated was the V - I plane. Eliminating 

all other variables the system may be reduced to the following first order differential 

equation 

where 

dl_ 
dV 

CRi_bI Qvi - k>6* (I, V)3 
V ~£ffa+«ef(l, vg z k (B-y -IRlJ 

(5.3) 

•©• ( I , V) = Ta. 
In V 

IRoa 
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Oscillations correspond to closed trajectories around the singular point (V 0, I Q) 

at the intersection, of E = IRi + V and VI = k»6»(I, V) where ~ = ^ = 0 • 

The trajectories of (5.3) have vertical tan|jents on the locus of ̂  = 0, thus 

the load line E - JR\ - V = 0 is the isocline for SJL =oo>. The trajectories are 

tangent to the isothermal corresponding to maximum and minimum temperatures 

where = or VI = klGt(I, V) which are the points where the trajectories 

cross the static characteristic. The isocline for = 0 corresponding to 
dV 

current maximum and minimum is not easily soluble. It is to the right of the 

static characteristic above the load line and to the left of the static characteristic 

below the load line (see Figure 5.4). Since — > 0 below the load line and 
dt 

d ¥ < 0 above the load line it is apparent that the motion of any, representative dt 

point is in a counterclockwise direction around the operating point (1f0, Lj). 

The nature of the singular point (V G, IQ) was next examined. 

The transformations 

v = V - V 0 

i = I-Io 
were made and and — were solved with second and higher order terms 

dt dt 
in v and i discarded to give the pair of linear equations 

dv - - _y_ - i_ 

dt CR, C 

di 
dt 

v /0b+ 1 - 1 V 1 +i/4b-l-T \ 
\ « C R i / ' R 0 V T ~ CRo' 

The quantities D, A and b +care 



D = (b - c ) 2 + 4 ad sfop- 1 -jL^ / j _ - l \ ) 2 - 4/fc+l - l j _ 

V *e G A R R i y ( t CRI)CR 0 

= ad - be = _1_ f 6o- 1 - <t>0+ 1 \ 
b + c = 6ft - 1 - J _ / . J_ \ 

% C \ R 0
T R i / * 

A condition of great interest is that for the operating point 

to be a center. For b + c = 0 one has the condition that the system is just 

oscillating with infitesimal amplitude. For b+ c = 0 , D is less than zero 

and 

- I U o R l / (5-4) 

This; value of C is identical to the value Cjnjn in (3.19). For values of greater 

than Cmin, the singularity is. an unstable spiral point provided D <. 0 and for 

values of C smaller than Cmjn, the singularity is a stable spiral point also 

provided that D * 0. The conditions at a typical operating point are 

$ » = 2.0 

R Q = 0.60 Mohms 

Rl = 4.0 Mohms 

X a 0.61 sec 

*o = -0.20 Mohms 

for which the singularity is 

Unstable Node C>13.8 ufd 

Unstable Spiral 13.8> C > 1.17 ufd 

Center C = 1.17 ufd 



VERTICAL I0W--1OV 

H O K l Z O N T M 1 D*f* 2 0 ^ ^ 

FIGURE S 5 P H O T O G R A P H S O F I - V 

P L A N E S T A B L E A M D 

U N S T A B L E S P I R A L 
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Figure 5.5 shows some photographs.illustrating the nature of the singularity 

in the V - I plane for several values of C. 

3.c. The V -»9» Plane 
The differential-equations in the V -Id4 plane are 

d>at . . l f y2G(lBl) 
d t * V k ' ) 

) (5.5) dV = _1_ (E - V^+R^ie*)) ) 
d t CRi ) 

where 
G(|60 = exp - b 

Ta+lft* 

and their first order approximations valid near the operating point are 

dt « *C V 0 

dv = -(froVoGo Q - (14-RiG n ) v 

dt C »6»o R l 

which have the same values of D, A and b+c as the equations for v and i 

since to first order they are linear transformations from the equations in 

v and i . 

The equations of (5.4) may be rewritten as the single first-order 

differential equation 

diet = CRi V 2G(W) x - (5.6) 
d V t E. - V (l+RiG(i»t)) 
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It is noted that this equation (5.6) is much simpler than(5.3). 

It is apparent that the isocline for d .= 0 is the static characteristic and 
dV 

the isocline for = e& is the load line. 
d V 

dl©^ 
Also, it is seen that.if C 0, then - ^ 0 everywhere in 

d V 

the plane except at the load line. Thus in the limit as C becomes, zero one 

would expect all representative points to jump horizontally to the load line 

and then to follow the load line to the operating point. If C -^oo , the case 

for extreme relaxation oscillations, ^ST^aio everywhere in the plane except 

at the static characteristic. Thus one would expect all representative points to 

jump vertically to the static characteristic and once there, to follow it. 

In particular, a representative point starting from the origin would.be expected 

to follow the static curve to the turnover point. At this point it would tend 

to jump to the hypothetical branch of the ideal static characteristic and follow 

it until the voltage minimum was reached and then jump to the lower branch of 

the static characteristic (see Figure 5 .6 ) . Since a trajectory such as this is not 

physically realizable, as the upper branch of the ideal static characteristic is at 

a hypothetical temperature greater than bCT 4000°K it was not possible to set 

up extreme relaxation oscillations in the thermistor. 

For values of C •<• 0 0 the trajectories would be expected to 

have a value of 16* somewhat lower than the value of )04 corresponding to 

the static characteristic for a given V. 

http://would.be
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4. Division of the Period of Oscillations into Epochs  

4.a. General 

Figure 5.7 shows photographs of thermistor voltage V and 

current I as functions of time during oscillation. It is seen that as the value 

of C increases, in both the currentand voltage functions two distinct epochs 

may be recognized. These were given the names charging and discharging 

epochs corresponding to the time regions in which is respectively positive 
dt 

and negative. 

4 .b. Charging Epoch 

For the purposes of analysis the charging epoch T^ is defined 

as that portion of the period for which the closed trajectory is below the load 

line. 

If i s sufficiently large it has been shown that 
" X ~ dt 

is very small compared with — over the charging portion of the cycle. 
Thus the equation for the balance of power 

V 2 G O C Q = r&i + n diet 
k dt 

becomes approximated by the equation for the static characteristic 

&t = V2G(iei) 

which may in principle be solved fori©* and substituted in the equation for ^ 

giving for T c Vm<t* 

\ d.V 
J E - V(l+ Rr< 

T c = CR X \ d_V̂  (5.7) 
iG(»©i)) 
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where V m a x and V,^^ are the maximum and minimum values of V over 

a cycle. A lower bound on T c is given by the inequality 

T c > CRi In E - Vmin 
E - V m a x 

or for sufficiently large values of C since Vmin becomes small (see Figure 5.3) 

T c > CR X Vmax - Vmin 

E 

If the discharging epoch can be assumed small enough, 

T c should be a first order approximation to the period T. The form of (5.7) 

indicates that the period of oscillation should be proportional to the parallel 

capacitance. C. This was true over a wide range of the value of C and the slope 

of the T versus C line increases with increasing Rx. Figure 5.8 shows the period 

of oscillation T as a function of capacitance C. Figure 5.9 shows the period of 

oscillation T as a function of load resistance R^ for several different values of G. 

The .relation between Rj and T is linear for values of R\ such that the operating 

point is well above turnover. The form of these functional relations between 

T, C and T, R^ suggest the following empirical relation 

T - ao+ai C+a2 R].+a3 CRi 

would be valid over a range of operating points. 

4. c. Discharging Epoch 

It was decided that a study of the discharging of a condenser 

through a thermistor would possibly yield information regarding the discharging 

epoch of the oscillation. 

For the circuit; of a capacitor discharging into :a;tiiermistor:the following 
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equations hold 

i G#> exp - b  
V Ta + e « 

p = i v -k (je* + ^_dje») 
dt 

C ^ + I..= 0 dt 

If TQIS is the duration, of the discharging epoch, 

T DIS = C \ d V -(5.8) 

J V G (ieo 
and 

C In Vmax < T D I S < C In Vmax 
G ( ^U Vmin G(0) 

^min 
Several phase planes were considered for regarding this problem among which 

were & - V and the Id* - d l ^ > planes. 
dt 

The differential equations were 

dl©» = -C J V - j O * R | (5 .9) 
dV 

c (" v - ie<R 1 

*r L k v -1 
where 

and 

where 

R - V_ = exp b 
I Ta + 101 

dx = (te*+*x Xitx - 2 -q)- x (5.10) 
dim x t 

x = diet 
dt 

b 
(Ta-flftt ) 2 
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and 
G - G QO exp —b . 

Ta + ie< 

The -V plane was first considered. The origin is a stable 

node for all real values, of the parameters C, t andk. Isoclines corresponding 

di&t 

to slope ^ = d y are given by 

V = - k a : ^ + 1 ̂  k 2 + 4kie« R 

In particular for |5 = 0 

V = (k l©! R)^ 

which is the static characteristic. For the locus of points where the current 

I is maximum, 
d l = o 
dt 

which gives 

and 

dV = - »LV = b V ov = p. 
dlO« ' ( T a + e O 2 

V : /k(tei R + t (Tai-HOP2) 
V C b 

For sufficiently large values of C and sufficiently small values this locus 

very nearly,coincides with the static characteristic. For large values of 161 this 

locus is given by 
k (Ta+iei) • 

Figure 5.10 is a drawing of the V plane for two different values of C 

with several isoclines.and the. locus for — = 0 drawn in. 
dt 

Regarding the differential equation in the , x = Ĵgi 
dt 

plane (5.9) it is seen that the static characteristic is given by x = 0, 
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dx 
which is the isocline for d|0l = ©° . The isocline for gjgj - °» 

W 
rtLL + x {Um T 1 - 2 G « ) - 21d» G 

4 • r C C 

or for the maximum gp» i s given by the equation 

Y2 

dx The isoclines with slope — = - 1 are the locus where P is a maximum d*e« 7^ 

in which case 
x = 2G (Ta - H O * ) 2 

C b 

and the locus where P = 0 in which case 

x = 

The locus for maximum current I where — = 0 is 
d t 

x = _G_ 

which is not an isocline. The trajectories along mis locus have.a slope given 

by . 
dx .-. -Oi 
diet ' 

>e» * x x) - 1 

Figure 5 .11, shows drawings of the I©*, x = plane for / values of C = 1 
dt 

and C = 10 ufd. . 

It is seen that trajectories starting above a certain minimum 

value of x have in succession 

dldt 2 
maximum of —— if GaVi >"(VI)t dt L 

2 
maximum of P if , 5GVi ^ (VI)t XL 

2 
2 

maximum of I if CVj ^ (VI)t 
2 2 
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maximum of i&i 

minimum of 
dt 

where Vi is the initial voltage of the condenser. 

Attempts were made to approximate the discharge by several 

different functions such as 

and ^ 

These functions were found to be greatly inadequate due to their lack- of 

sufficient number of adjustable parameters preventing an adequate approximation 

to the solution of the differential equation for 

d t L V Goeo /J c 

Figure 5.12 shows photos of the V- I plane during discharging 

of a condenser. 
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