THE DIRECT CAPTURE REACTIONS $T(\pi, \gamma)Li^7$ AND $o^{16}(p, \gamma)F^{17}$

by

PETER JULIAN RILEY

B.A.Sc., University of British Columbia, 1956

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE

in the Department

of

PHYSICS

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
September 1958
ABSTRACT

The differential cross section for the capture of tritium by alpha particles to form Li7 has been measured using a tritium-zirconium target and 1.64 mev. alpha particles. The differential cross section for the gamma-ray transition to the ground state of Li7 was found to be $2.54 \pm 0.46 \times 10^{-31}$ cm.2 per steradian at 90° to the incident alpha beam direction. At the same energy, the ratio of the differential cross section at 90° for transitions to the first excited state to that for transitions to the ground state of Li7 was found to be approximately 0.40.

The $T(\alpha,\gamma)\text{Li}^7$ 90° differential cross section has been measured relative to the differential cross section at 1.64 mev. using alpha particles of energies 0.515, 0.72, 0.98, 1.23, and 1.94 mev. From the smooth change of the reaction cross section with energy it can be concluded that the reaction proceeds by direct radiative capture. At all energies, the ratio of the differential cross section at 90° for transitions to the first excited state to that for transition to the ground state was approximately 0.4.

Preliminary angular distribution measurements at 0° and at 90° to the incident alpha beam direction indicate that the angular distribution is not isotropic. The ratio of the yield at 0° to the yield at 90° was found to be 1.40 ± 0.37 at an alpha particle energy of 1.64 mev.

Differential cross section measurements for direct radiative capture of protons by ^0H have been made relative to the cross section at 800 kev., using a solid tungsten-dioxide target and protons of energies 0.618, 0.823, 1.13, 1.536, and 2.04 mev. Absolute 90° differential cross section values were based on the measurement of the 90° differential cross section for transitions to the first excited state in F1_7 at 800 kev. of $10.4 \pm 1.3 \times 10^{-32}$ cm.2 per steradian made by Robertson. The differential cross section for the
gamma ray transitions to the first excited state of 17F, at 90° to the incident proton beam direction, was found to vary smoothly from 0.41×10^{-31} cm.2 per steradian at 0.618 mev. to 11.9×10^{-31} cm.2 per steradian at 2.04 mev. At all energies the ratio of the differential cross section at 90° for transitions to the ground state to that for transitions to the first excited state was approximately 0.20.
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representative. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of ____________

The University of British Columbia,
Vancouver 8, Canada.

Date ________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>II</td>
<td>THE $T(\alpha,\gamma)\text{Li}^7$ REACTION</td>
</tr>
<tr>
<td></td>
<td>1. Apparatus:</td>
</tr>
<tr>
<td></td>
<td>(a) Target arrangement</td>
</tr>
<tr>
<td></td>
<td>(b) Gamma ray detector</td>
</tr>
<tr>
<td></td>
<td>(c) Electronics</td>
</tr>
<tr>
<td></td>
<td>2. Target:</td>
</tr>
<tr>
<td></td>
<td>(a) Target tritium content</td>
</tr>
<tr>
<td></td>
<td>(b) Target thickness</td>
</tr>
<tr>
<td></td>
<td>3. Experimental:</td>
</tr>
<tr>
<td></td>
<td>(a) Background</td>
</tr>
<tr>
<td></td>
<td>(b) Procedure</td>
</tr>
<tr>
<td></td>
<td>4. Variation in gamma ray energy with alpha particle energy</td>
</tr>
<tr>
<td></td>
<td>5. Cross section determination:</td>
</tr>
<tr>
<td></td>
<td>(a) Background</td>
</tr>
<tr>
<td></td>
<td>(b) Determination of the absolute cross section</td>
</tr>
<tr>
<td></td>
<td>(c) Errors</td>
</tr>
<tr>
<td></td>
<td>(d) Determination of the excitation function</td>
</tr>
<tr>
<td></td>
<td>6. Angular distribution measurements</td>
</tr>
<tr>
<td></td>
<td>7. Summary of experimental results</td>
</tr>
<tr>
<td>III</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td></td>
<td>1. Comparison of $T(\alpha,\gamma)\text{Li}^7$ with the mirror reaction $\text{He}^3(\alpha,\gamma)\text{Be}^7$</td>
</tr>
<tr>
<td></td>
<td>2. Comparison of $T(\alpha,\gamma)\text{Li}^7$ with the inverse reaction $\text{Li}^7(\gamma,\alpha)T$</td>
</tr>
<tr>
<td>IV</td>
<td>THE $\text{O}^{16}(p,\gamma)\text{F}^{17}$ REACTION</td>
</tr>
<tr>
<td></td>
<td>1. Previous measurements</td>
</tr>
<tr>
<td></td>
<td>2. Apparatus:</td>
</tr>
<tr>
<td></td>
<td>(a) Target and target arrangement</td>
</tr>
<tr>
<td></td>
<td>(b) Gamma ray detector</td>
</tr>
<tr>
<td></td>
<td>(c) Electronics</td>
</tr>
<tr>
<td></td>
<td>3. Experimental:</td>
</tr>
<tr>
<td></td>
<td>(a) Background</td>
</tr>
<tr>
<td></td>
<td>(b) Procedure</td>
</tr>
<tr>
<td></td>
<td>4. Target thickness</td>
</tr>
<tr>
<td></td>
<td>5. Determination of the excitation function</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Gamma ray efficiencies for the 1.75 x 2.00 inch crystal</td>
</tr>
<tr>
<td>II</td>
<td>The Biased Distorter</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

FIGURES:

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>SUBJECT</th>
<th>FACING PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low energy levels of Li7</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Low energy levels of F17</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Target arrangement and beam tube</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>RdTh spectrum, showing calculation of full-energy peak efficiency for T(α,γ)Li7 radiation</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>20 mev. gamma ray spectrum from T(p,γ)He4</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Stopping cross section for alpha particles in zirconium and in tritium</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>on T spectra, showing rise in target dependent background at low energy</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Gamma ray spectrum from tritium target</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>Variation in gamma ray energy with alpha energy</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>3.09 mev. calibration gamma ray spectrum from C12(d,p,$^\gamma$)C13</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Variation in T(α,γ)Li7 90° differential cross section with Van de Graaff energy</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>Penetrability vs.α-particle energy for reactions T(α,γ)Li7 and for He3(α,γ)Be7</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Gamma ray spectrum from a tungsten oxide target</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>Variation in O16(p,γ)F17 90° differential cross section with energy</td>
<td>47</td>
</tr>
<tr>
<td>15</td>
<td>Gamma ray efficiencies for the medium counter</td>
<td>53</td>
</tr>
<tr>
<td>16</td>
<td>Percent fall in distorter output pulse height with input pulse repetition rate</td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>Block diagram of biased distorter circuit</td>
<td>57</td>
</tr>
<tr>
<td>18</td>
<td>Biased distorter circuit diagram</td>
<td>64</td>
</tr>
</tbody>
</table>

PLATES:

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>SUBJECT</th>
<th>FACING PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>The Biased Distorter</td>
<td>54</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The author wishes to thank Dr. J. B. Warren, who suggested and supervised this research, and Dr. G. M. Griffiths, for his many suggestions and discussions of the thesis topic.

The author is grateful to Mr. P. Singh, whose assistance was most helpful, and to Mr. G. Jones, for the design of the biased distorter and for suggestions concerning all electronic problems.

Thanks are due also to Mr. D. Lindquist for help in operating the Van de Graaff generator.

The author would like to thank Mrs. W.C. Olsen for assistance in the preparation of this thesis.

The author gratefully acknowledges receipt of a Bursary and of a Studentship granted by the National Research Council.
FIGURE 1 LOW ENERGY LEVELS OF 7Li

$E_{\text{eq}} = 2.465 + \frac{3}{7} E_{\text{eq}}$

$\frac{2.465}{\text{He}^4 + \text{H}^3}$

$\gamma_2 \gamma_1$

$J = \frac{1}{2}^-$

$J = \frac{3}{2}^-$

Li^7
CHAPTER I

INTRODUCTION:

This thesis concerns the study of two reactions, both of the direct capture type but otherwise unrelated.

(a) THE REACTION $T(\alpha, \gamma)\text{Li}^7$

Nuclear shell model theory considers the Li nucleus as comprising three nucleons (one proton and two neutrons) in the lp shell outside a closed 1s shell. To first order, the ground state properties of Li7 should be determined by the odd proton in the lp shell, the angular moments of the two neutrons being coupled to zero. With the added concept of spin-orbit coupling, the ground state of Li7 should be a $P_{3/2}^-$ level, with the proton spin aligned parallel to its orbital angular momentum, and the first excited level should be a $P_{1/2}^-$ level. There also should be a one-to-one correspondence between the energy levels, spins, and parity values of Li7 and those of its mirror nucleus, Be7, after correction for neutron and proton mass differences and coulomb binding effects.

The spin and parity of Li7 in the ground state have been measured and found to be $3/2^-$, of negative parity (J.E. Mack, 1950), in agreement with the above predictions. The first excited level of Li7 is now believed to be a $J = 1/2^-$ level. Evidence such as the superallowed nature of the beta-decays Be$^7(\epsilon)\text{Li}^7$, and Be$^7(\epsilon)\text{Li}^7^*$, indicate that the ground state and first excited states of Be7 are $3/2^-$ and $1/2^-$ states, confirming the one-to-one correspondence between low-lying states of Li7 and Be7. Li7 is more stable than Be7 by 0.863 meV., in reasonable agreement with the calculated charge effect between the two nuclei.

However, the one-particle, or "Schmidt" description of the Li7 nucleus above predicts a magnetic moment of 3.79 nuclear magnetons, compared with the experimental value of 3.26 nuclear magnetons (J.E. Mack). To predict a magnetic moment closer to the experimental value, it is necessary to consider the vec-
torial addition of the angular moments of the three p-nucleons. In the three-particle description $J = 3/2$ can be obtained either with the angular moments of the neutrons coupled to zero, as in the one-particle description, or with the orbital part of the angular momentum of the two neutrons aligned parallel. This second state gives a magnetic moment of -0.77 nuclear magnetons (Mayer and Jensen, 1955); a suitable mixture of the two states could give the experimentally observed magnetic moment.

Both the one-particle and the three-particle nuclear shell-model descriptions of the Li7 nucleus predict a negative nuclear quadrupole moment. There has been considerable disagreement concerning the sign of the nuclear quadrupole moment of Li7, which now appears to be positive (see Chapter II) in direct disagreement with simple shell model predictions.

Thus, the single particle shell model predicts the angular momentum, parity, and approximate magnetic moment of the ground state of Li7 while a more accurate description of the ground state may be obtained in terms of three particles. Further refinements are required in order to explain the apparently positive sign of the nuclear quadrupole moment.

The present work is a study of the $T(\alpha, \gamma)\text{Li}^7$ reaction, which has not been previously reported. If an alpha-particle of energy less than $(7/3 \times 4.78)$ or approximately 11 mev. is used to bombard a tritium target, the $T(\alpha, \gamma)\text{Li}$ reaction is the only reaction energetically possible apart from scattering. Above 11 mev. the particle reaction $T(\alpha, \text{Li}^6)n$ becomes possible. The $T(\alpha, \gamma)\text{Li}^7$ radiative transitions might occur either through direct radiative capture, similar to the $D(p, \gamma)\text{He}^3$ and the $^{16}(p, \gamma)^{17}$ reactions, or through compound nucleus formation through the tails of resonances at Li7 excited levels at 0.477 mev. and above 4.6 mev. The energy dependence and cross section should thus be sensitive to the type of capture process. Since the levels at 0.477 mev. and at 4.61 mev. are not broad levels, the probability of radiative
capture with compound nucleus formation at an energy midway between these two levels is low.

If we consider the direct radiative capture process, a triton with spin 1/2, and an alpha-particle with spin 0 can form initial 2S, 2P, etc. states, depending on the orbital angular momentum of the alpha particle. S wave capture, with electric dipole emission to the $J = 3/2$ - ground state of Li7, would be expected to be the most probable capture process; the angular distribution, due to the S-wave capture, would be isotropic. Hence, the study of the $T(\alpha,\gamma)Li^7$ reaction should yield information concerning the type of capture process, and in particular it should show whether the above direct radiative S-wave capture, with subsequent electric dipole emission, occurs. A detailed study of the reaction may also yield information concerning the structure of the ground state of Li7, about which there has been much interest and considerable disagreement.

The reaction $T(\alpha,\gamma)Li^7$ is also of interest for comparison with the inverse reaction $Li^7(\gamma,\alpha)T$ on the basis of reciprocity. (See Chapter II.) An accurate comparison of the cross sections $\sigma_{\alpha \gamma}$ to $\sigma_{\gamma \alpha}$ cannot be made, however, since values of $\sigma_{\gamma \alpha}$ have not been reported below 4.7 mev., and because of disagreement between the reported cross section values $\sigma_{\gamma \alpha}$ for higher energies. From a very approximate comparison, the cross section for $T(\alpha,\gamma)Li^7$ should lie in the region from 3 microbarns to 0.1 microbarns at an alpha particle energy of 1.5 mev. With the relatively thin tritium target available and the limitation on beam current due to target heating, the counter used in the present investigation was sensitive enough to detect radiation with cross sections as small as 0.1 microbarns. This sensitivity proved to be adequate for an investigation of the $T(\alpha,\gamma)Li^7$ reaction.
FIGURE 2 LOW ENERGY LEVELS * OF F^{17}
(b) **THE REACTION $^{16}(p, \gamma)^{17}$**

Shell model theory treats the 17 nucleus as a single proton moving in the potential of the closed 16 core. The ground states of both 17 and its mirror nucleus 17 are predicted to be $D_{5/2}$ levels with the odd nucleon aligned with its spin parallel to its orbital angular momentum. Experimental measurements are consistent with $D_{5/2}$ for the ground states of both nuclei. The first excited levels of 17 and of 17 appear to be $S_{1/2}$ levels, again consistent with present shell model predictions.

Theoretical calculations for the cross section and angular distribution of the reaction $^{16}(p, \gamma)^{17}$ are being made by a California Institute of Technology group (private communication from N. Tanner). Similar calculations based on shell model predictions and on a direct radiative capture process, are being performed by Dr. G.M. Griffiths of this laboratory. Comparisons between theoretical predictions and experimental measurements should provide a check on the assumed theoretical models.

The $^{16}(p, \gamma)^{17}$ cross section at stellar energies is of interest in astrophysics. The conversion of protons into alpha particles via the carbon-nitrogen cycle occurs as follows:

\[
\begin{align*}
^{12}(p, \gamma)N^{13} & \rightarrow ^{13} + \beta^+ \\
^{13}(p, \gamma)N^{14} & \\
N^{14}(p, \gamma)O^{15} & \rightarrow N^{15} + \beta^+ \\
N^{15}(p, \alpha)C^{12} &
\end{align*}
\]

N^{15}, lost from the cycle by the competing reaction $N^{15}(p, \gamma)O^{16}$, is replaced by the reactions $^{16}(p, \gamma)^{17} \rightarrow 0^{17} + \beta^+$, and $^{17}(p, \alpha)N^{14}$.

For stars whose main source of energy is the carbon-nitrogen cycle, the $^{16}(p, \gamma)^{17}$ cross section ultimately determines the carbon-oxygen ratio in the
star as a function of the stellar temperature (Cameron, 57). It is not possible to measure the $^0\alpha(p, \gamma)^{17}F$ cross section at stellar energies; however, information obtained at the energies available is essential for theoretical extrapolations of the reaction cross section to the stellar energies.

In order to check the theoretical calculations of cross section for the $^0\alpha(p, \gamma)$ reaction, and because of the interest of this reaction in astrophysics, it was felt that more accurate cross section and angular distribution data would be of value. The 90° differential cross section has been recently measured at 800 kev. by Robertson (57) of this laboratory. The present work was undertaken to provide a measurement of the 90° relative differential cross section in the energy range from 0.6 to 2.0 mev.
FIGURE 3 TARGET ARRANGEMENT AND BEAM Tube
CHAPTER II

THE T(α,γ)Li⁷ REACTION:

1. Apparatus -

(a) Target arrangement

A schematic diagram of the target arrangement is shown in Figure 3. A tritium-zirconium target, with tungsten backing material, was used. The target chamber, similar to one described by Alexander (1955), was that used by Robertson (1957) with tungsten oxide targets. Water cooling was applied to the target assembly in order to reduce target deterioration due to overheating. The target and support were insulated with a lucite ring to enable beam current measurements to be made; a positive potential of 90 volts was applied to the target system to reduce secondary electron error in the beam measurement. The beam current was measured with a current integrator, (Edwards, 1950). One integrator count corresponded to a charge of 107 microcoulombs to an accuracy of 1%. Since it was found that charge leaked from the target on the water cooling hoses at a rate of from 14% to 20% of the observed rate of charging, the true number of integrator counts was 1.17 - .04 the observed number of counts.

(b) Gamma ray detector

The detector used for this experiment was a 2.5 inch diameter by 3.5 inch long cylindrical sodium iodide, thallium activated, (Harshaw) crystal mounted as described by Robertson (1957) on a Dumont 6363 photomultiplier. The efficiency of the counter for gamma rays, ε(E, E/2) is defined as the ratio of the number of counts of a gamma ray of energy, E, above a bias energy of E/2, to the number of gamma rays incident on the crystal. An efficiency of 0.612 .009 has been measured by Larson (57) for 6.14 mev. radiation, using
FIGURE 4 Radium-226 SPECTRUM (2.5 in. DIAM X 3.0 in. LONG XTAL), SHOWING CALCULATION OF FULL-ENERGY PEAK EFFICIENCY FOR $T(\alpha,\gamma)$ RADIATION

FULL-ENERGY PEAK EFFICIENCY FOR $T(\alpha,\gamma)$ RADIATION

$$\epsilon(E, E/2) \times \frac{N_1}{N_1 + N_2} = (0.56) \times (0.25) = (14)\%$$

COUNTS

8000

6000

4000

2000

CHANNEL NUMBER

5

10

15

20

25

N_2 = 74,750 COUNTS

N_1 = 25,100

1.31 MEV (E/2)

E_b = 2.47 MEV

2.62 MEV
gamma rays from the reaction $^{19}_F(p,\gamma)^{20}$O. The efficiency, $\epsilon(E, E/2)$ at 1.17 and 1.33 mev. has been measured by P. Singh and H. Dosso (1957) of this laboratory, using a Co60 source calibrated by the National Research Council of Canada. In order to extrapolate crystal efficiencies to other energies, the theoretical crystal efficiency has been calculated by P. Singh. Because the agreement between theoretical and experimental efficiencies at both 1.25 mev. and 6.14 mev. is within 5%, theoretical estimates of crystal efficiency are considered accurate to within 10% in the energy range 3 mev. to 6 mev.

Since the detailed shapes of the separate gamma rays were not observed in this experiment due to overlapping of the spectra from two gamma rays and the presence of a high "target dependent" background, the efficiency was defined only for the number of counts under the full energy peak of the $T(\alpha,\gamma)^7Li$ gamma ray spectrum. Comparison spectra from 6Li and from $^{12}C(d,p)^{13}C$ were used to compute full energy peak efficiencies for the crystal at 2.62 and 3.09 mev. The efficiency calculation for 2.62 mev. radiation is indicated by Figure 4. The full energy peaks of the $T(\alpha,\gamma)^7Li$ spectra were broader than those from the mono-energetic calibration gamma ray spectra because of the spread in $T(\alpha,\gamma)^7Li$ reaction gamma ray energy from the finite target thickness. The crystal efficiencies $\epsilon(E, E_b)$ were consequently defined to a bias energy E_b slightly below the base of the full energy peak for the calibration spectra. At 2.62 mev., $\epsilon(E, E/2) = (56 \pm 5)\%$ and at 3.09 mev., $\epsilon(E, E/2) = (56.4 \pm 5)\%$ where the efficiencies are theoretical estimates of efficiency. At 2.62 and 3.09 mev., the full energy peak efficiencies for $T(\alpha,\gamma)^7Li$ spectra were $(14.1 \pm 2.1)\%$ and $(13 \pm 2)\%$ respectively.

All runs were made at a counter distance of 1.91 inches from the front of the crystal face to the centre of the target, the counter being pushed
as close to the target pot as the shielding would allow in order to obtain a large solid angle. The solid angle was determined using the experimental measurement of the effective centre of Robertson (1957). The distances from the crystal face to the effective centre for 0.51, 1.28, and 6.14 mev. radiation are respectively 1.43 ± .08 in., 1.47 ± .10 in., and 1.60 ± .10 in. All measurements are in agreement to within the experimental error. The effective centre distance used for all runs in the present experiment, extrapolated from the above data, was 1.52 in., again with a probable error of approximately 0.10 inches. The counter therefore subtended a solid angle of 0.418 steradians at the target, to a probable error of approximately 3%.

Slight photomultiplier gain shifts were observed, the maximum gain shift being approximately 1%. The photomultiplier gain shifts, a function of the photomultiplier counting rate, appeared less serious in the present work than in work where protons were used to bombard tungsten oxide targets (Robertson, 1957). A possible explanation is that high intensity radiation from the zirconium is much lower in energy (K X-ray from zirconium of 18 kev.) than radiation from tungsten (K X-ray of 66 kev.; 112 kev. Coulomb excitation line) and therefore causes less photomultiplier gain shift. However, the photomultiplier gain shift produced by alpha-particles on a tungsten target has not been investigated with the present counter.

(c) Electronics

The high voltage supply for the photomultiplier dynode chain was 1100 volts, supplied by an Isotopes Development Limited Stabilized power supply. The preamplifier after the photomultiplier was a 6J6 (parallel) cathode follower. The negative output pulses drove a Northern Electric wide band amplifier type 1444, which fed a "biased distorter" amplifier (see Appendix III). The "biased distorter" output was fed into a 30 channel Marconi kicksorter. The kicksorter
channel edges were set up by feeding pulses from an accurately linear mercury pulse generator (Robertson, 1957) onto the grid of the 6J6 cathode follower. The mercury pulse generator pulses were also used to check the stability of the electronics except for the photomultiplier, which was then checked by means of sources.

2. Target -

(a) Target Tritium Content

The tritium-zirconium target kindly supplied by Oak Ridge National Laboratories consisted of 429 mcs. of tritium taken up in a very thin film of zirconium (1.33 mgms., 1 - 1 atomic ratio of tritium to zirconium) evaporated onto tungsten backing material. The target was circular, of diameter \((1 \pm 1/128)\) inches, and of uniform thickness of \((.0239 \pm .0001)\) inches. The target tritium content has been measured on June 20, 1956, 1.58 years before this experiment was carried out. The tritium content at the time of this experiment, therefore, was estimated from

\[
N = N_0 e^{-t/T}
\]

where \(T\) = mean life

where \(T_1^2 = \frac{1}{2} \text{ life} = 12.26 \text{ years}, \) so that \(T\) mean = 17.69 years

\(t = 1.58\) years,

and \(N_0 = 429\) millicuries

Therefore \(N = 429 (0.914) = 392\) millicuries

Then from \(dN/dt = N/T\) mean, where \(dN/dt = 392 \times 37 \times 10^6 \text{ dis./sec.}\)

\(N = 8.09 \times 10^{18}\) atoms of tritium

The target area was 5.07 cm.\(^2\); therefore, on the assumption that the tritium was distributed uniformly over the target, the target tritium content was
1.60×10^{18} atoms of tritium per cm.2

After the $T(\alpha, \gamma)Li^7$ work had been completed, the tritium content of the tritium target used was checked approximately, assuming the 90° differential cross section for $T(p, \gamma)He^4$ reaction as measured by Perry and Bame (1955). The target was bombarded with 830 kev. protons, and the gamma ray flux was measured. n_t, the number of tritium atoms per square centimeter of target, was then computed from

$$n_t = \frac{1}{\left(\frac{d\sigma}{d\omega}\right)} \cdot \frac{1}{\kappa_r} \cdot \frac{N_r}{\epsilon} \cdot \frac{r^2}{A} \cdot \frac{1}{\mathcal{N}_p}$$

where ϵ is the efficiency of the counter

r is the target to effective centre distance

A is the area of the face of the counter

κ_r is the transmission coefficient for 20 mev. radiation through the 1/16 in. brass walls, $= 0.958$

\mathcal{N}_p is the number of protons incident on the target

$\frac{d\sigma}{d\omega}$ is the 90° differential cross section for $T(p, \gamma)He^4$

The target arrangement and gamma ray detector for the $T(p, \gamma)He^4$ runs were the same as those used in the $T(\alpha, \gamma)Li^7$ work. However, no target water cooling was used in the $T(p, \gamma)He^4$ work. The following changes in the electronics were made; first, the voltage for the photomultiplier dynode chain was 880 volts, as this voltage gave a convenient gain with no apparent loss in resolution; second, a 100 channel Computing Devices of Canada kicksorter was used instead of the 30 channel Marconi kicksorter. It was therefore possible to count the whole 20 mev. wide spectrum at one time with reasonable dispersion.

The crystal efficiency for 20 mev. radiation was computed from absorption coefficients given in Siegbahn (1955) for Na and Iodine. μ was calculated to be 0.1613 per centimeter for 20 mev. radiation for sodium iodide. Then

$$\epsilon = (1 - e^{-\mu \cdot l}) = 0.74.$$

$d\omega \times$ efficiency was then obtained from $\mu \times \frac{A}{r^2}$
where $A =$ area of the face of the crystal, and

$$r = \text{distance from the target to the effective centre of the crystal}.$$

The distance from the crystal face to the effective centre, x, has been measured by Robertson (1957), and has been found to disagree with the theoretical value predicted from

$$x = \ln \left[0.5 \left(1 + e^{-\mu r} \right) \right]$$

However, theoretically, $\frac{x_{20 \, \text{mev.}}}{x_{6.14 \, \text{mev.}}} = 0.88$

And if we use the experimental value of 1.60 in. for $x_{0.14 \, \text{mev.}}$, the $x_{20 \, \text{mev.}} = 1.41 \, \text{in.} \pm 0.10 \, \text{in.}$

However, since x for a particular crystal varies only with μ, then for the crystal used $x_{20 \, \text{mev.}}$ should $= x$ for 1.7 mev. radiation. From Robertson's measurements, $x_{1.7 \, \text{mev.}} = 1.48 \pm 0.1$ inches. Within the probable error, the two values for x are the same; the value of $x = 1.48 \pm 0.1$ inch was used for this experiment.

The above estimation of $d\omega \epsilon$ efficiency is an approximation of the calculation of $d\omega \epsilon$ eff. as performed by Perry and Bame, and is justified because the inverse square relationship between the counting rate and distance does hold for distances measured to the effective centre.

Currents of 5 microamperes were used at a bombarding energy of 830 kev. Time dependent background was negligible over most of the energy range studied. The count rate between 10 and 20 mev. being 20 counts per minute, the bombarding energy was chosen below 1 mev. to avoid neutron pulses from the $T(p,n)He^3$ reaction.
FIGURE 5: 20 MEV GAMMA RAY SPECTRUM FROM $^7T(p,\gamma)He^4$
Since the efficiency calculation was based on the total absorption coefficient, it was necessary to count the total number of pulses produced by the gamma rays in the crystal. Fluorine was found to be present in the target; consequently, the low energy pulse spectrum from T(\(\gamma\)He\(^4\)) was obscured by the 6.14 mev. fluorine gamma rays. However, the pulse distribution from T(\(\gamma\)He\(^4\)) was extrapolated smoothly to zero pulse height from above 6 mev.

The pulse spectra, Figure 5, is similar to that observed by Perry and Bame.

\(n_t\), the number of tritium atoms per cm\(^2\), was calculated from the following data:

\[r = 3.48 \text{ in.}\]
\[A = 4.91 \text{ in}^2\]
\[N = 35,300 \text{ counts.}\]
\[n_p = \frac{50 \text{ integrator counts} \times 10^7 \text{ microcoulombs}}{1.602 \times 10^{-13}}\]
\[\epsilon = 0.74\]
\[\sigma = 0.958 \text{ for 20 mev. radiation through 1/16 in. brass}\]
\[\frac{d\sigma}{d\omega} = 2.96 \times 10^{-30} \text{ cm}^2/\text{steradian for } \bar{E}_p = 812 \text{ kev.}\]

The target thickness, \(A\), has been computed from Whaling (1954) to be 36 kev., computed so that \(\bar{E}_p = 830 - A/2 = 812 \text{ kev.}\)

\(n_t\) is therefore computed to be \(1.25 \times 10^{18}\) atoms/cm\(^2\) which compares with the value of \(2.03 \times 10^{18}\) atoms/cm\(^2\) calculated on the basis of a 429 millicurie target tritium content.

Errors are as follows:

\[r^2 = 8\%\]
\[\frac{d\sigma}{d\omega} = 7\%\]
\[N = 5\%\]
\[\epsilon = 10\%\]

The standard error is therefore 15\%.
For the $T(\alpha,\gamma)\text{Li}^7$ cross section calculations, a target tritium content of 2.03×10^{18} atoms/cm.2 rather than 1.60×10^{18} atoms/cm.2, was assumed, since the $T(p,\gamma)\text{He}^4$ check was run on only one portion of the target. Further, the $T(p,\gamma)\text{He}^4$ check was done after the $T(\alpha,\gamma)\text{Li}^7$ work and there may have been some target deterioration during the $T(\alpha,\gamma)\text{Li}^7$ runs.

(b) Target Thickness

The theoretical target thickness was computed from tables collected by Whaling (1957), which define the stopping cross section $\varepsilon_\alpha(\varepsilon_\alpha)$ in terms of ev-cm.2/atom. From the mass of 0.00133 grams of zirconium in the target, the number, n_{Zr}, = $1.734(10^{18})$ atoms per cm.2 of target; a uniform layer of zirconium metal over the target surface was assumed. Then the Zr target thickness, Δ, in kev. at an α-particle energy E_α, is given by

$$\Delta = \varepsilon_\alpha(\varepsilon_\alpha) \times n_{\text{Zr}} \times (10^{-3}) \text{ kev.}$$

Values of $\varepsilon_\alpha(\varepsilon_\alpha)$ for alpha particles in zirconium (Z of 40) were extrapolated from values given for Ge (Z of 32) and for Ag (Z of 47). $\varepsilon_\alpha(\varepsilon_\alpha)$ was assumed to vary linearly with Z, i.e.

$$(\varepsilon_\alpha)_{\text{Zr}} = (\varepsilon_\alpha)_{\text{Ge}} + 0.53 \left[(\varepsilon_\alpha)_{\text{Ag}} - (\varepsilon_\alpha)_{\text{Ge}} \right]$$

The probable errors quoted for $(\varepsilon_\alpha)_{\text{Ag}}$ and $(\varepsilon_\alpha)_{\text{Ge}}$ were 10%, the error therefore expected for $(\varepsilon_\alpha)_{\text{Zr}}$ is expected to be approximately 15%. $(\varepsilon_\alpha)_{\text{Zr}}$ could not be estimated for energies below 1 mev. by this method owing to lack of data.

A second, less accurate estimate of $(\varepsilon_\alpha)_{\text{Zr}}$ was used for energies below 1 mev. Tables of $\varepsilon_\alpha/\varepsilon_\rho$ (Whaling, 1957) were used to give ε_α from the relationship

$$\varepsilon_\alpha(\varepsilon_\alpha) = (\varepsilon_\alpha/\varepsilon_\rho) \times \varepsilon_\rho(E_\rho = \frac{E_\alpha}{2.97})$$

where ε_ρ is the stopping cross section for protons in zirconium at an energy.
FIGURE 6. STOPPING CROSS SECTION $\epsilon_a(E_a)$ FOR ALPHA PARTICLES IN ZIRCONIUM AND IN TRITIUM

$\epsilon_a(Zr) = \epsilon_a(Ge) + 0.53[\epsilon_a(Ag) - \epsilon_a(Ge)]$

$\epsilon_a(Zr) = (\epsilon_a/\epsilon_p) \times \epsilon_p(E_p = E_a/3.97)$

$\epsilon_a(T) = (\epsilon_a/\epsilon_p) \times \epsilon_p(E_p = E_a/3.97)$

WHERE $\epsilon_p = \epsilon_p(H_2)$
Ep, where Ep is evaluated for $\frac{E_p}{3.97}$.

To obtain $\frac{E_p}{E_p}$ (Ep) it was necessary to extrapolate from E_p for Cu (Z of 29) to E_p for Au (Z of 79). A linear dependence of $E_p(E_p)$ on Z was assumed. The probable error in $\frac{E_p}{E_p}$ was given as 20%. If the probable error in the extrapolation error is approximately 20%, then the standard error in E_p as computed by this method should be approximately 30%. The approximate stopping power of the tritium in the target was similarly computed from

$$E_p = \frac{E_p}{E_p} x \epsilon_p$$

where $\epsilon_p(E_p)$ was the stopping cross section for alpha particles in hydrogen gas. The standard error in ϵ_p/ϵ_p is again 20%; there is presumably also some error in assuming that $(\epsilon_p)_H^2 = (\epsilon_p)_t$.

The computed stopping cross sections are shown plotted in Figure 6. To within the probable error, there is no change in the total stopping cross section for the target in the energy range 0.5 to 2 mev. At 1.64 mev.,

$$A = [(\epsilon_p)_{Zr} x n_{Zr} + (\epsilon_p)_t x n_t] x 1.27 x 10^{-3} \text{ kev.}$$

where the factor 1.27 is introduced because the target is oriented at 52° to the α-beam. Then $A = [(1.734) (97) x 10^3 + (9.24) (1.60) x 10^3] x 1.27 x 10^{-3}$ = 232 kev.

3. Experimental -

(a) Background

Since a low reaction yield was expected, considerable care was taken to reduce interfering radiation. The walls of the target chamber in the vicinity of the target, and the stops in the side arm were gold plated to reduce coulomb excited gamma radiation. A liquid nitrogen trap was used in front of
the target chamber to reduce the formation of carbon deposits on the target from cracked diffusion pump oil vapors. Before the experiment was performed, the target chamber, stops, and other side arm components were thoroughly cleaned to remove carbon deposits. The magnet box of the 90° deflection magnet was also removed and thoroughly cleaned with steel wool and hot dilute nitric acid.

The target, target chamber, and gamma ray detector were surrounded on all sides by approximately four inches of lead in order to reduce background from secondary cosmic radiation, radiation from radioactive salts in the concrete, and machine X-ray background. With this shielding, the time dependent counting rate in the energy range from 2.0 to 3.5 mev. was 8 counts per minute.

Lead and paraffin blocks were placed between the magnet box and the counter to reduce background from any (d,n) and (α,n) reactions in the magnet box. To estimate the total background from sources other than from contaminants in the target itself, a sheet of zirconium metal was placed on the reverse side of the target holder to the target, and the target holder reversed to run the "beam dependent" background. The beam dependent background was approximately 12 counts per minute in the energy region 2.0 to 3.5 mev. for energies below 1.6 mev.; that is, 50% higher than the time dependent background. If it is assumed that radiation is readily detectable if it is twice as intense as background, with the above background and a beam current of 10 microamperes, it would be possible to detect a cross section of 10^{-31}cm.^2 with the target thickness used in the present work of 1.60×10^{18} atoms per cm.2.

The beam dependent background increased above 1.6 mev., and by 1.9 mev. had increased to 68 counts per minute in the energy range from 2.0 to
FIGURE 7 α ON T SPECTRA, SHOWING RISE IN TGT-DEP. BACKGROUND AT LOW ENERGY (ALL RUNS ARE OF 30 X 10⁷ μCOULOMBS)
3.5 mev. The increase in background is believed to be caused largely by \((d,n)\) reactions from the base of the Van de Graaff accelerator tube. Any molecular deuterium in the alpha beam would be a prolific source of neutrons from \(^{12}C\) \((d,n)\) and \(^{13}C\) \((d,n)\) reactions. The \(^{13}C\) \((\alpha,n)\) reaction cross section should also increase with energy. Considerable radiation from the zirconium backing is also possible for energies above 1.6 mev.

However, at all energies the beam dependent background was small compared with "background" from the target itself; that is, a large number of counts remained below the characteristic gamma ray spectrum counts attributed to \(T(\alpha,\gamma)\) reaction gamma rays after subtraction of beam dependent background. The spectrum shape of the "target dependent" background indicated that it was caused by neutrons; apart from the small irregularities the background decreased monotonically with increasing pulse energy. In the alpha particle energy range from 0.7 to 1.6 mev., this "target dependent" background yield was from 4 to 7 times the beam dependent background yield. The target dependent background increased markedly at \(E_\alpha = 1.9\) mev., and also at energies below 0.7 mev. At 0.5 mev., the background was higher by a factor of 2 than at 0.7 mev., and at 0.4 mev., was higher by another factor of 2. Figure 7 shows this increase in target dependent background at low Van de Graaff energies.

Neutrons were observed with a neutron counter at 1.9 mev., but not at 300 kev., although it is possible that the bias of the neutron counter was incorrect. The NaI crystal radiation at 300 kev. did not have significant 1/2 hour half-life of the \((I^{128}, n)\) reaction characteristic of the absorption of neutrons in a NaI(TA) crystal; counting stopped when the beam was removed. No characteristic gamma ray spectrum was observed in the background spectrum
in the energy interval from 0.7 mev. to 6.2 mev. Further, since the number of target-dependent background counts above 6.2 mev. was approximately equal to the number of time-dependent counts, the high target dependent background was not caused by gamma rays of energy greater than 6.2 mev.

Neutrons were expected through \(H^3(t,\alpha)2n \) and \(H^3(t,n)He^5 \) reactions from "knock-on" tritons in the target. The neutron yield, however, should increase monotonically (Ajzenberg and Lauritsen, 1955). The reaction \(T(d,n)He^4 \) has a maximum near \(Ed = 107 \) kev., with a cross section of 4.95 barns (Argo et al., 1952), and therefore should be a prolific source of neutrons at low energy if molecular deuterium were present in the alpha beam. Cross sections for higher deuterium energies are as follows:

<table>
<thead>
<tr>
<th>(Ed) (kev.)</th>
<th>cross section (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>4.93</td>
</tr>
<tr>
<td>109</td>
<td>4.44</td>
</tr>
<tr>
<td>190</td>
<td>2.78</td>
</tr>
<tr>
<td>243</td>
<td>1.85</td>
</tr>
<tr>
<td>270</td>
<td>1.50</td>
</tr>
<tr>
<td>384</td>
<td>0.77</td>
</tr>
<tr>
<td>653</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Since the target used in the present \(T(\alpha,\gamma)Li^7 \) work was reasonably thick (approximately 50 kev. for protons), the high target dependent background at low bombarding energies could be caused by the \(T(d,n)He^4 \) reaction. However, the present work was done with no deuterium source bottle present in the Van de Graaff accelerator; deuterium contamination of the alpha beam was therefore not expected. Further measurements are still required to determine the source of the target dependent background.

At all energies the target dependent background introduced uncertainty in the yield measurement from \(T(\alpha,\gamma)Li^7 \). Because the yield from the reaction gamma rays decreased with decreasing energy, it was not possible to estimate
the reaction cross section at alpha particle energies below 0.50 mev.

(b) **Procedure**

The target was bombarded with singly charged alpha particle beams of from 3 to 5 microamperes supplied by the University of British Columbia electrostatic generator. The target was positioned at 38° to the beam tube to avoid attenuation of the radiation by the target holder. The 38° orientation was chosen, rather than the more usual 45° position, because of a convenient mark for target alignment at 38°. To check for target uniformity, spectra were recorded on four different portions of the target. No significant differences in yield were so obtained, indicating reasonable target uniformity. It was also hoped to reduce target dependent background by changing the target position. Prolonged bombardment changed the target surface from a light mottled-grey to a dark smudged-grey colour, indicating the presence of contaminants such as carbon, probably from the break-down of pump oils and vacuum grease.

1.6 mev. was chosen as the energy for an absolute determination of yield because of a relatively high ratio of $T(\alpha,\gamma)\text{Li}^7$ reaction yield to background at this energy. Runs at other energies were preceded and followed by runs at 1.6 mev. in order to check more easily for target deterioration. Runs were kept short (30 integrator counts of 107 microcoulombs each), also in order to check more easily for target deterioration. Deterioration was observed only once, following a run at 1.2 mev. The beam current of 5 microamperes, is believed to have been too high or else the beam was not sufficiently defocussed, thereby heating a small section of the target too intensely.

Spectra were recorded of transition directly to the ground state of Li7, indicated by γ_1, and of transitions to the first excited level of Li7,
FIGURE 8 GAMMA RAY SPECTRUM FROM TRITIUM TARGET
INCIDENT α-ENERGY (GEN. VOLTMETER) = 1.64 MEV

CHANNEL NUMBER

E_γ (MEV)

COUNTS

γ_3

γ_2

γ_1

"BEAM DEP." BACKGROUND

X 1/10

0 10 20 30 40 50

CHANNEL NUMBER
indicated by γ_2. Transitions from the first excited level of Li7 to the ground state, γ_3, were observed. However, no cross section measurements were made using γ_3 transitions. Figure 8 is a pulse distribution spectrum for T(α, γ) radiation showing γ_1, γ_2 and γ_3. Measurements were made on γ_1, and γ_2 at bombarding energies of .515, .720, .980, 1.64, and 1.94 mev. The linearity and calibration of the Van de Graaff energy scale measured by the generating voltmeter were determined by measuring the positions of the .340, .8735, and 1.372 mev. resonances of $F^{19}(p, \alpha, \gamma)$. All runs were made with the same energy dispersion, and because the change of gamma ray energy is only 3/7 of the change of alpha particle energy, most of the spectra were recorded over the same energy range also. The energies of the gamma ray spectra in the 3 mev. region were measured by using R$_{d}$Th as a calibration point for the mercury pulse generator amplitude scale. The linearity of the pulse height versus gamma ray energy scale was approximately 1%. Frequent checks were made on the kicksorter channel positions.

4. Variation in gamma ray energy with alpha particle energy

In order to check that the observed radiation really originated from T(α, γ)Li7, careful measurements were made on the variation in gamma ray energy with alpha particle energy.

The gamma ray energy for the transition to the ground state from the capturing state in the reaction T(α)Li is given by

$$E_{\gamma} + \frac{(E_{\gamma_{1}})^2}{2M_{Li}c^2} = 2.465 + \frac{M_{t}}{(M_{t} + M_{\alpha})} \overline{E_{\alpha}}$$

where $E_{\gamma_{1}}$ is the gamma ray energy in mev., and $\overline{E_{\alpha}}$ is the average energy of the alpha particle in the target.

The effect of doppler shift is neglected. Since measurements were made with the counter at 90° to the incident alpha beam, doppler shift was eliminated, and the above expression is correct. Neglecting the small effect of recoil,
FIGURE 9 VARIATION IN GAMMA RAY ENERGY WITH ALPHA ENERGY

\[\text{Gamma Energy (MeV)} = 2.465 + \frac{3}{7} E_a \]

EFFECT OF TARGET THICKNESS

OBSERVED GAMMA ENERGY

\[E_a, \text{ Incident Alpha Energy (MeV)} \]
$E_{\gamma 1} = 2.465 + \frac{3}{7} E_{\alpha}$

The observed values of $E_{\gamma 1}$ are shown plotted in Figure 9. Changes in $E_{\gamma 1}$ follow closely

$\Delta E_{\gamma 1} = \frac{3}{7} \Delta E_{\alpha}$

where ΔE = change in energy of the incident alpha beam, which are the changes we expect in $E_{\gamma 1}$ since the target thickness remains approximately constant at all energies used. This seems excellent evidence that this reaction is being observed. However, $E_{\gamma 1}$ is 105 kev. less than $2.465 + \frac{3}{7} E_{\alpha}$ where E_{α} is the energy of the incident alpha beam.

The theoretical estimate of the target thickness was 232 kev. We therefore expect from $E_{\alpha} = E_{\gamma 1} - \Delta/2$, where Δ is the target thickness, that the average alpha-particle energy in the target is 116 kev. less than the incident alpha particle energy. Since

$\Delta E_{\gamma 1} = \frac{3}{7} \Delta E_{\alpha}$

$E_{\gamma 1}$ should be 50 kev. less than $2.465 + \frac{3}{7} E_{\alpha}$.

The observed value of $E_{\gamma 1}$ is therefore 55 kev. too low. However, this 55 kev. energy discrepancy could be caused either by a concentration of tritium near the back of the target, or by the presence of more zirconium in the target than is indicated.

An approximate check on the target thickness was made by measuring the width of the full-energy peak of $E_{\gamma 1}$. If the full width at 1/2 maximum height of the full-energy peak for a line source is Γ_R kev., and the target thickness is Δ kev., then the resultant width Γ of the full energy peak is given approximately by $\Gamma = \sqrt{\frac{2}{\Delta} + \Gamma_R^2}$ kev. If we approximate the full energy peak by a Gaussian, at any energy in the target the full energy peak for reaction gamma rays can be represented by a Gaussian. The observed full energy peak of the spectrum represents an infinite sum of small
Gaussians spread over the target thickness. For target thicknesses \(A \) less than or approximately equal to the resolution width \(\Gamma_R \), the observed full energy peak is approximately Gaussian in shape and of width as given above. The mean value of \(\Delta \) computed from \(\Delta = \sqrt{\Gamma^2 - \Gamma_R^2} \) is 100 kev., in agreement with the estimated target thickness of 232 kev. for alpha particles.

The above calculation is not an accurate calculation of target thickness because of fluctuations of counter resolution; the probable error is estimated to be 20 kev. A concentration of tritium near the back of the target should cause the target to appear thinner; the presence of extra zirconium would cause the target to appear thicker. The above measurement of the gamma ray peak width therefore does not explain the discrepancy in gamma ray energy.

Because the full energy peak of \(\gamma_2 \) coincided with the (full-energy - \(m_0c^2 \)) peak of \(\gamma_1 \), the energy \(E_{\gamma_2} \) was not accurately determined. \(\gamma_3 \) was also observed of energy approximately 0.5 mev.; however, precise energy and yield measurements were not attempted.

5. Cross section determination -

(a) Background

Because of the high target dependent background, the beam and time-dependent background measurements were of little use in determining the true background level. The background level was estimated from the appearance of the spectra; counts recorded below the base of the full-energy peaks were considered as background.

The number of counts in the full-energy peak of \(\gamma_2 \) was determined by subtracting from the full-energy peak of \(\gamma_2 \) the contribution from the (full-energy - \(m_0c^2 \)) peak of \(\gamma_1 \). This (full-energy - \(m_0c^2 \)) contribution was determined by assuming the spectrum shape for \(\gamma_1 \) to be the same as the spectrum
FIGURE 10 3.09 MEV CALIBRATION
GAMMA RAY SPECTRUM FROM
$^{12}_{C}(d,p_{y})^{13}_{C}$
shape for the $^{12}(d,p,\gamma)^{13}$ 3.09 mev. gamma ray, shown in Figure 10. Again, counts below the full-energy peak were considered to be background.

(b) **Determination of the absolute cross section**

The counts attributed to γ transitions during five runs over four different sections of the target were summed. The differential cross section for transitions at a bombarding energy of 1.64 mev. was calculated as follows:

$$\frac{(N_{\gamma})_{\text{per steradian}}}{(d\sigma)} = \frac{n_\alpha}{(d\omega)} \times n_T$$

from which,

$$\frac{(d\sigma)}{(d\omega)} = \frac{1}{\alpha_{\gamma}} \frac{N_{\gamma}}{n_\alpha} \frac{r^2}{A} \frac{1}{n_T}$$

where $\alpha = 0.13$ is the full energy peak efficiency of the counter,

$r = 3.43$ inches is the target to effective centre distance,

$A = 4.91$ inches2 is the area of the face of the counter,

$\alpha_{\gamma} = 0.956$ is the transmission coefficient for 3.06 mev. radiation through the 1/16 inch brass walls,

$n_\alpha = 140$ integrator counts $\times 10^7$ microcoulombs $\times 1.17$ is the number of ^{60}Z alpha particles incident on the target,

$n_T = 1.60 \times 10^{18} \times 1.27 = 2.03 \times 10^{18}$ atoms per cm.2, where 1.27 was introduced because the target was at 52° to the alpha beam,

$N_{\gamma} = 2956$ counts, after background subtraction.

Then

$$\frac{(d\sigma)}{(d\omega)} = \frac{2956}{0.956} \times \frac{(3.43)^2}{0.13 \times 4.91} \times \frac{1}{1.095 \times 10^{17}} \times \frac{1}{2.03 \times 10^{18}}$$

$$= 2.54 \times 10^{-31} \text{ cm. per steradian.}$$

The ratio of the differential cross section for γ_2 transitions compared with the value computed above for γ_1 transitions was calculated from
Using 0.14 as the full energy peak efficiency for 2.62 mev. radiation,

\[
\left(\frac{d\sigma}{d\omega}\right)_{90^0}^{\gamma_2} = \frac{N \gamma_2}{\varepsilon_2} \times \frac{\varepsilon_f}{N \gamma_1} \times \frac{\alpha_f}{\alpha_2}
\]

Adding the contributions from both transitions, the 90° differential cross section at a bombarding energy of 1.64 mev. is 3.54 x 10^{-31} cm.² per steradian. Assuming an isotropic angular distribution, the total reaction cross section is therefore 4.4 x 10^{-30} cm.²

If the tritium is distributed uniformly throughout the zirconium layer, the average energy of the alpha particles in the target at a bombarding energy of 1.64 mev. is (1.74 - 0.116) mev. However, if the tritium is concentrated near the back of the zirconium layer, as the observed gamma ray energies indicate, the average energy of the alpha particle beam in the target is (1.64 - 0.23) mev.

(c) Errors

Sources of error in the differential cross section measurement for transitions at a bombarding energy of 1.14 mev. are as follows:

<table>
<thead>
<tr>
<th>Source</th>
<th>Probable Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r), effective centre and beam position</td>
<td>8%</td>
</tr>
<tr>
<td>(\varepsilon), counter efficiency</td>
<td>15%</td>
</tr>
<tr>
<td>(n_x), number of incident alpha particles</td>
<td>3.4%</td>
</tr>
</tbody>
</table>
FIGURE II VARIATION IN $T(\alpha,\gamma)$ Li7 DIFFERENTIAL CROSS SECTION WITH VAN DE GRAAFF ENERGY
For γ_2 transitions, the probable error in the estimation of $N\gamma_2$ was 22%, caused by counting statistics (5%), background error (15%), and subtraction error (15%). The standard error in the estimation of $(d\sigma)/(d\omega)\gamma_2$ is therefore 23%. No attempt has been made to allow for possible error in the tritium content of the target; this could introduce a considerably larger error into the cross section measurements.

(d) Determination of the Excitation Function

Differential cross section measurements relative to the measurement at 1.64 mev. were made at bombarding energies of 1.94, 1.23, 0.98, 0.72, and 0.515 mev. For γ_1 transitions, whose energy varied from 3.13 to 2.59 mev., the counter efficiency was assumed to vary linearly between $E_{3.09}$ mev. = .13, and $E_{2.62}$ mev. = .14. For γ_2 transitions, whose energy varied from 2.1 to 2.7 mev., the efficiency was assumed to be constant at $E_{2.62}$ mev. = .14. The probable error in all cases was considered to be 15%.

The slight changes in transmission coefficient for the brass target pot walls were neglected. Relative cross sections were computed from

$$\frac{(d\sigma)}{(d\omega)} = \frac{(d\sigma)}{(d\omega)\gamma_1, 1.64 \text{ mev.}} x \frac{N\gamma'}{(N\gamma')_{1.64 \text{ mev.}}} x \frac{(E_i)}{E}$$

The resulting differential cross sections, all measured at 90° to the incident alpha particle beam, are tabulated below, and are shown plotted in Figure 11.

<table>
<thead>
<tr>
<th>E_{in} mev.</th>
<th>$N\gamma_1$ Counts/30 int.</th>
<th>$\frac{(d\sigma)}{(d\omega)\gamma_1} \times 10^{-31}$ cm2/ ster.</th>
<th>$N\gamma_2$ Counts/30 int.</th>
<th>$\frac{(d\sigma)}{(d\omega)\gamma_2} \times 10^{-31}$ cm2/ ster.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.94</td>
<td>714</td>
<td>96</td>
<td>2.86</td>
<td>.63</td>
</tr>
<tr>
<td>1.64</td>
<td>633</td>
<td>50</td>
<td>2.54</td>
<td>.41</td>
</tr>
</tbody>
</table>
The probable error in cross section values for γ_2 transitions is larger than the probable error for γ_1 transitions because of the added uncertainty in $N\gamma_2$ caused by the subtraction of the contribution of the (full energy - m_0c^2) peak of γ_1 from the full energy peak for γ_2 transitions.

6. Angular Distribution Measurements

Angular distribution measurements were made at 0° and at 90° at 1.64 mev. on γ_1 transitions. The same counter, a 2.5 x 3.0 inch sodium iodide crystal mounted on a 6363 Dumont photomultiplier, was used as in the cross section measurements. A 1.75 in. diameter by 2.0 in. long sodium iodide (thallium activated) crystal, mounted on an R.C.A. 6342 photomultiplier, was set at 90° to the incident alpha beam and used as a monitor counter. All pulses from the monitor counter greater than 2. mev. triggered a discriminator and were subsequently recorded by a scaler.

The target was oriented at 45° to the incident alpha beam so that the gamma rays were attenuated by the target equally in the 0° position and in the 90° position.

The counter was moved farther from the target than in the cross section measurements in order to reduce the solid angle subtended by the counter. The yield was reduced by a factor of approximately 5 to the yield in the cross section measurements; at this reduced yield the time dependent background was comparable with the target dependent background.

The yields at 0° and at 90° were compared by assuming a constant flux per unit solid angle. Integrating a \sin^2 yield over the counter at the effective centre for the distance used ($r = 6.66$ inches) gives a result differing
by approximately 1% from that of an isotropic distribution; integrating a \sin^2 yield over the counter at the effective centre for the distance used in the cross section measurements ($r = 3.43$ inches) gives a result differing by approximately 3% from that of an isotropic distribution. At both distances the error in assuming a constant flux per unit solid angle is small. The angular distribution could therefore be more accurately measured with the counter closer to the target, that is, with an effective centre distance of approximately 3.5 rather than 6.6 inches, because of the lower background to yield ratio at the larger solid angle.

From the above measurements,

$$\frac{(d\sigma)}{(d\omega)}_{90^\circ} = \frac{1}{1.39} (1 \pm .37)$$

The yields at 0° and at 90° differ only by a little more than the probable error of the measurement, but it would appear that the angular distribution is definitely not isotropic.

7. Summary of Experimental Results

From the smooth change of the $T(\alpha,\gamma)Li^7$ cross section with energy it can be concluded that the reaction proceeds by direct radiative capture. The 90° differential cross section for transitions directly to the ground state of Li7 is 2.54×10^{-31} cm.² per steradian at a bombarding energy of 1.64 mev. Adding the contributions from the ground state transitions, γ_1, and from transitions through the first excited level of Li7, γ_2, gives a 90° differential cross section at 1.64 mev. of 3.54×10^{-31} cm.² per steradian, which corresponds to a total reaction cross section of 4.4×10^{-30} cm.² if we assume
an isotropic angular distribution. The mean alpha-particle energy in the target is believed to be between 116 and 230 kev, less than the bombarding energy as measured by the Van de Graaff generating voltmeter.

Relative cross section measurements have been made at bombarding energies from 0.5 to 1.9 mev. At all energies the ratio

\[
\frac{\left(\frac{d\sigma_2}{d\omega}\right)}{\left(\frac{d\sigma_1}{d\omega}\right)} \text{ is approximately 0.4.}
\]

Assuming an isotropic angular distribution, the total \(T(\alpha,\gamma)\text{Li}^7 \) reaction cross section in the energy range studied can be expressed approximately by \(\sigma = 3E_\alpha \), where \(E_\alpha = (\text{bombarding energy} - 116) \) mev.

Preliminary measurements indicate that the angular distribution is not isotropic, as would be expected from a purely s-wave capture process, the yield at \(0^\circ \) to the incident alpha beam being larger than the yield at \(90^\circ \).
FIGURE 12 PENETRABILITY ($1/A_L^2$) VS. PARTICLE ENERGY (LAB. CO-ORDS) FOR REACTIONS $T(α,γ)Li^7$ AND $He^3(α,γ)Be^7$
DISCUSSION:

1. Comparison of $T(\alpha,\gamma)Li^7$ with the mirror reaction $He^3(\alpha,\gamma)Be^7$ -

After the present $T(\alpha,\gamma)Li^7$ work had been performed, it was learned that similar work had been done on the mirror reaction $He^3(\alpha,\gamma)Be^7$ at the U.S. Naval Research Laboratory. Cross section values obtained for the $He^3(\alpha,\gamma)Be^7$ reaction are given below. (Private communication from R. L. Johnson for H.D. Holmgren) The third column gives comparable cross section values for the $T(\alpha,\gamma)Li^7$ reaction, where to allow for target thickness, E is taken as ($E_{Van de Graaff} = 116$ kev.)

<table>
<thead>
<tr>
<th>Average α-particle energy in target E_α</th>
<th>$He^3(\alpha,\gamma)Be^7$ microbarns</th>
<th>$T(\alpha,\gamma)Li^7$ microbarns</th>
<th>Ratio $\sigma_{T(\alpha,\gamma)Li^7}/\sigma_{He^3(\alpha,\gamma)Be^7}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 mev.</td>
<td>1.30 ± 0.08</td>
<td>3.9</td>
<td>3.0</td>
</tr>
<tr>
<td>1.1 mev.</td>
<td>0.76 ± 0.06</td>
<td>3.4</td>
<td>4.5</td>
</tr>
<tr>
<td>0.9</td>
<td>0.40 ± 0.02</td>
<td>2.7</td>
<td>6.7</td>
</tr>
<tr>
<td>0.7</td>
<td>0.19 ± 0.02</td>
<td>2.0</td>
<td>10.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.04 ± 0.02</td>
<td>1.6</td>
<td>40</td>
</tr>
</tbody>
</table>

To compare the $He^3(\alpha,\gamma)Be^7$ cross sections with the $T(\alpha,\gamma)Li^7$ cross sections, the penetrabilities $(1/Ao)^2$, for s-wave capture, and $(1/Al)^2$, for p-wave capture, were plotted for the two reactions, as shown in Figure 12.

Values of $(1/A)^2$, where $A^2 = F^2G^2$, where $F(\rho)$ and $G(\rho)$ are the regular and irregular Coulomb fractions, were taken from "Graphs of Coulomb Functions", (Sharp, Gove, and Paul, 1953). In these graphs, $(A)^2$ is plotted versus ρ for specific values of $\log_{10}\eta$,

$$\eta = Z \frac{\mu R}{29.05}$$

and

$$\rho = Z \frac{\mu R}{0.1574 (Z')^{\frac{1}{2}}}$$

Z and Z' are the atomic numbers of the colliding particles,
\(\mu \) is the reduced mass in atomic mass units,

\(R \) is the nuclear radius, which was taken to be \(1.45(3^{1/3} + 4^{1/3}) \) Fermis.

\(\epsilon \) is the kinetic energy of the relative motion of the two particles.

From the known values of alpha particle bombarding energy, values of \(\mu \) and then values of \(\rho \) were obtained. From Figure 12, the values of the ratio of \((1/\alpha_0)^2 \) for \(\alpha \) on \(T \) to \((1/\alpha_0)^2 \) for \(\alpha \) on \(\text{He}^3 \) are respectively 2.8, 3.8, 5.8, 11, and 30 for the alpha particle energies 1.3, 1.1, 0.9, 0.7, and 0.5 mev. The ratios of the observed cross sections for the two reactions are approximately equal to the ratios of the penetrabilities for the two reactions over the whole energy range. The agreement between the two sets of cross section data is therefore considered to be good.

2. **Comparison of \(T(\alpha, \gamma)\text{Li}^7 \) with the inverse reaction \(\text{Li}^7(\gamma, \alpha)T \)**

The expected cross section for the photodisintegration reaction \(\text{Li}^7(\gamma, \alpha)T \) can be calculated from the measured cross section for \(T(\alpha, \gamma)\text{Li}^7 \) using the principle of reciprocity. From reciprocity,

\[
(2I_A + 1)(2I_a + 1)\mu_A^2 \sigma_{ab} = (2I_B + 1)(2I_b + 1)\rho_b^2 \sigma_{ba}
\]

where

\[
(2I_A + 1) = (2I_T + 1) = 2
\]

\[
(2I_a + 1) = (2I_{\alpha} + 1) = 1
\]

\[
(2I_B + 1) = (2I_{\text{Li}} + 1) = 4
\]

\[
(2I_b + 1) = (2I_\gamma + 1) = 2
\]

\[
\mu = \mu_\alpha = \sqrt{2m_\alpha \epsilon_\alpha}
\]

\[
E_\alpha = \text{centre of mass } \alpha - \text{particle energy} = \frac{9}{49} E_\alpha \cdot \epsilon_{ab}
\]

\[
\rho_b = \rho_\gamma = \frac{h \nu}{e}
\]

Then

\[
\sigma_{\gamma \alpha} = 4 (P_\gamma)^2 (P_\alpha)^2
\]
For $E_\gamma = 1.6$ mev.,\[\frac{\sigma_{\gamma\alpha}}{\sigma_{\gamma\gamma}} = 56 \]
The cross section $\sigma_{\gamma\alpha}$ measured in the present work is approximately 4 micro-
barns at 1.6 mev. Thus, $\sigma_{\gamma\alpha} = 240$ microbarns for $E_\gamma = 3.2$ mev.

An excitation function for $\text{Li} (\gamma, \alpha) T$ was first measured by Titter-
ton and Brinkley (1953) for energies up to 24 mev. using bremsstrahlung
radiation from a synchrotron. Titterton and Brinkley (1953) also carried out
absolute cross section measurements for $\text{Li}^7(\gamma, \alpha) T$ at 6.14 mev. using fluorine
radiation, and at 14.8 and 17.6 mev. using radiation from the 440 kev. reso-
nance in $\text{Li}^7(p, \gamma) \text{Be}^8$. The observed cross section at 6.14 mev. was 15 micro-
barns was found at 6.14 mev. by Stoll and Wachter (1953), also using fluorine
radiation. Erdos, Stoll, Wachter, and Wateghin (1954) investigated the reaction $\text{Li}^7(\gamma, \alpha) T$ using radiation from a 31 mev. betatron. Excited levels in
Li^7 were found at 4.7, 5.5, 6.8, 8.3, and 9 mev. The first three levels (4.7, 5.5, and 6.8 mev.) had a relative intensity of 1 : 0.75 : 0.75. The absolute
cross section for $\text{Li}^7(\gamma, \alpha) T$ obtained from known $\text{Cl}^2(\gamma, \alpha)$ cross sections was
approximately 190 microbarns at 4.7 mev. The cross section for $\text{Li}^7(\gamma, \alpha) T$
calculated from the cross section for $T(\alpha, \gamma) \text{Li}^7$ observed in the present work
is apparently in reasonable agreement with the measurements of Erdos, Stoll,
Wachter and Wateghin, but in marked disagreement with the cross section values
observed by Titterton and Brinkley, and by Stoll and Wachter. It would be
interesting to investigate the photodisintegration of Li^7 at lower energies
than has been done, where the reaction cross section could be expected to
depend more on the ground state wave function, and less on the characteristics
of higher excited levels.

It has been shown by Peaslee and Telegdi (1953) that comparison of
the yields from Li\(^7(\gamma,\alpha)T\) and Li\(^7(\gamma,\alpha)\)Li\(^6\) provides a way of identifying the T = 3/2 levels of Li\(^7\). When Li\(^7\) is bombarded with gamma rays, excited states of T = 3/2 and T = 1/2 result from the selection rule \(\Delta T = 1, 0\). Li\(^6\) has both T = 0 and T = 1 low-lying levels; He\(^4\) has only T = 0 low-lying levels.

Neutron and triton emission is therefore allowed from T = \(3/2\) states. From T = 3/2 excited states, neutron emission is allowed to the T = 1 state, but triton emission is forbidden from the selection rules. More levels in the neutron yield curve from Li\(^7(\gamma,\alpha)\)Li\(^6\) above 9 mev. (Katz and Goldenberg, 1954) than in the triton yield curve from Li\(^7(\gamma,\alpha)T\) in the same energy region, support the above argument. However, the argument is of no concern in the present work, since the very low levels of Li\(^7\) are T = \(1/2\) states. Presumably, at high energies, the T(\(\alpha,\gamma\))Li\(^7\) reaction cross section would not show resonances at T = 3/2 levels of Li\(^7\).

3. The Ground State of Li\(^7\)

There has been much interest in, and speculation on, the Li\(^7\) nucleus. From Shell Model considerations the ground state wave function of Li\(^7\) is uniquely defined in a JJ configuration as having J = 3/2, T = \(1/2\) (Mayer and Jensen, 1955). The ground state configuration is

\[
(\nu 1s)^2 (\nu 1p 3/2)^2 (\pi 1s)^2 (\pi 1p 3/2)
\]

where \(\nu\) indicates a neutron state, and \(\pi\) indicates a proton state.

The configuration, \((\nu 1p 3/2)(\pi 1p 3/2)\) which makes up the wave function, contains levels with J = 7/2, 5/2, 3/2, and 1/2, i.e. the two neutrons and one proton combine in JJ coupling as is indicated below, where negative values of \(M_J\) are not indicated.

<table>
<thead>
<tr>
<th>(\nu 1p 3/2)</th>
<th>(\nu 1p 3/2)</th>
<th>(\nu 1p 3/2)</th>
<th>(M_J)</th>
<th>(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2</td>
<td>3/2</td>
<td>1/2</td>
<td>7/2, 5/2, 3/2, 1/2</td>
<td>7/2</td>
</tr>
<tr>
<td>1/2</td>
<td>-1/2</td>
<td>5/2, 3/2, 1/2</td>
<td>5/2</td>
<td></td>
</tr>
</tbody>
</table>
The desired wave function is therefore of the form

\[\psi_{3/2} \]

\[\begin{align*}
\begin{vmatrix}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{vmatrix}
\end{align*} \]

\[a \left[\begin{vmatrix}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{vmatrix}
\right] + b \left[\begin{vmatrix}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{vmatrix}
\right] + c \left[\begin{vmatrix}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{vmatrix}
\right] + d \left[\begin{vmatrix}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{vmatrix}
\right]
\]

where the bars indicate that the term is a totally anti-symmetrized Slater determinant. The desired eigenfunction with \(J = 3/2, T = 1/2 \), fulfills the two conditions that

\[T^+ \psi_{3/2} \left(\frac{3}{2} \right) = \sum_{i=1}^{3} t^+ \psi = 0 \]

\[J^+ \psi_{3/2} \left(\frac{3}{2} \right) = \sum_{i=1}^{3} j \psi = 0 \]

which follow from the relationships

\[J^+ \psi_{L} \left(\frac{M}{L} \right) = \sqrt{J(J+1) - M(M+1)} \]

\[T^+ \psi_{T} \left(\frac{T}{T} \right) = \sqrt{T(T+1) - T^2(T^2+1)} \psi \]

The two conditions

\[T^+ \psi_{3/2} \left(\frac{3}{2} \right) = 0 \]

\[J^+ \psi_{3/2} \left(\frac{3}{2} \right) = 0 \]

are sufficient to determine the three ratios of the coefficients. The normalized eigenfunction obtained is

\[\psi_{3/2} \left(T = \frac{1}{2} \right) = \sqrt{\frac{1}{15}} \left[\begin{vmatrix}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{vmatrix}
\right] - \frac{1}{15} \left[\begin{vmatrix}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{vmatrix}
\right] \]

Mayer and Jensen compute the magnetic moment of this eigenfunction to be 3.03
nuclear magnetons, in reasonable agreement with the observed value of 3.257. The nuclear quadrupole moment is calculated to be negative, equal to \(-11/15 \times 2/5 \langle r^2 \rangle_{\text{cm.}}^2\).

There has been much disagreement concerning the sign of the nuclear quadrupole moment of Li\(^7\), \(Q\), largely because of the difficulty in calculating the magnitude of the electric field gradient, \(q\), at the nucleus in the Li\(_2\) molecule; the product \(eqQ\) has been measured accurately for Li\(^7\) by the nuclear resonance method. After measurement of the product \(eqQ\), Kusch (1949) reported the nuclear quadrupole moment of Li\(^7\) to be positive, in direct disagreement with simple shell model predictions as discussed above. The electric field gradient, \(q\), was subsequently recalculated by Harris and Melanoff (1952) using both a Heitler London function and a 12 term variational (James) function for the molecular wave functions for Li\(_2\). The results of the two calculations of \(q\) differed in sign; however, the James function, which was considered more accurate, gave a negative \(q\), and so a negative \(Q\). Recent calculations by Ishiguro et al. (1957) lead to a positive \(Q\) for Li\(^7\), of magnitude \(9.6 \times 10^{-26} \text{ cm}^2\), neglecting Sternheimer correction, (Sternheimer, 1950) or of magnitude \(10.8 \times 10^{-26} \text{ cm}^2\) (including Sternheimer correction). It therefore appears likely that the nuclear quadrupole moment of Li\(^7\) is positive; the charge distribution for Li\(^7\) is then apparently prolate.

A negative nuclear quadrupole moment for Li\(^7\) is also predicted in the first approximation of Wigner's coupling scheme (Present, 1950). In this coupling scheme, the orbital wave function is characterized by a definite symmetry with respect to permutations of the nucleons. Instead of the 2-valued spins \(T\) and \(S\), Wigner introduces the 4-valued spin \(\gamma\); the representations of the 4-dimensional unitary group than characterize the multiplet
system (Wigner, 1937). In terms of the partition numbers \([\lambda_1 + \lambda_2 + \lambda_3]\)
the partitions for \(^{7}\text{Li}\) are \([3], [2 + 1], \) and \([1 + 1 + 1]\), in the order of decreasing symmetry of the orbital wave function. For symmetry \([3]\), the orbital part of the wave function is completely symmetric under permutations of the three nucleons; for symmetry \([1 + 1 + 1]\), completely antisymmetric. The ground state configuration is \((1s^2)^2p^3 P_{3/2}\), of symmetry \([3]\).

Present (1950) explains the positive nuclear quadrupole moment of \(^{7}\text{Li}\) by configuration interaction. The ground state configuration consists of \(2p\) functions of symmetry \([3]\) from the low odd parity excited configurations \((1s^2)^2p^2 3P\) and \((1s^2)^2p^2 4f\) mixed with the \((1s^2)^2p^3\) configuration. Present finds that all data are adequately explained without the breakdown of L-S coupling or a large departure from partition symmetry. The argument appears reasonable, since the configuration interaction need not be large to produce a positive nuclear quadrupole moment.

Avery and Blanchard (1950) have attempted to explain the positive nuclear quadrupole moment of \(^{7}\text{Li}\) on the basis of a combination of spin-orbit interaction (breakdown of L-S coupling), and the breakdown of partition symmetry. A \((s^4p^3)\) configuration is assumed. The angular momenta of the 3 p-nucleons can be combined to give 10 linearly independent eigenfunctions, 8 of which have \(J = 3/2\). L-S coupling is assumed; i.e. the two neutrons can combine to form \(^1S\), \(^3P\), and \(^1D\) states. These can combine with the p-proton in L-S coupling as is indicated by the table below:

\[
\begin{array}{cccccc}
L & 1D & 2p \\
L & 2 & 1 & 0 & -1 & -2 & 1 & 0 & -1 \\
S & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\
M_L & 3 & 2 & 1 & 2 & 1 & 0 & 1 & 0 & -1 & 0 & -1 & -2 & -2 & -1 & -3 \\
M_S & \frac{1}{2}
\end{array}
\]
The states \((D\, p)\, D, \,(D\, p)\, P, \text{ and } (D\, p)\, F\), where the notation is "(neutron state, proton state) combined state", can therefore be formed. In addition, the three p-nucleons can form the following states:

\[
\begin{align*}
(D_1\, S\, 2_p)^{2P} \\
(D_3\, P\, 2_p)^{2P} \\
(D_3\, P\, 2_p)^{4P} \\
(D_3\, P\, 2_p)^{2D} \\
(D_3\, P\, 2_p)^{4D} \\
(D_3\, P\, 2_p)^{4S} \\
(D_3\, P\, 2_p)^{2S}
\end{align*}
\]

The \((3P\, 2_p)^2S\) and the \((1D\, 2_p)^2F\) states are rejected since they do not have \(J = 3/2\). The above eight states are expressed in terms of their symmetry properties as follows:

\[
\begin{align*}
\psi_1 &= \frac{22P}{3} [3] \\
\psi_2 &= \frac{22P}{2+1} [2+1] \\
\psi_3 &= \frac{24P}{2+1} [2+1] \\
\psi_4 &= \frac{42P}{2+1} [2+1] \\
\psi_5 &= \frac{22D}{2+1} [2+1] \\
\psi_6 &= \frac{24D}{2+1} [2+1] \\
\psi_7 &= \frac{42D}{2+1} [2+1] \\
\psi_8 &= \frac{44S}{1+1+1} [1+1+1]
\end{align*}
\]

where the functions \(\psi\) are linear combinations of the first set of eight eigenfunctions, such that the symmetry properties given by \([\lambda_1 + \lambda_2 + \lambda_3]\) are satisfied. The set \(\psi\) was obtained by Avery and Blanchard by the usual rules for combining angular momenta. The notation for the \(\psi\) functions is \((2S + 1) (2T + 1) L[\lambda_1 + \lambda_2 + \lambda_3]\).

In the first approximation of Wigner's the ground state of Li^7 consists of the function \(\psi_1 = \frac{22P}{3} [3]\)

where \(\psi_1 = \frac{\sqrt{2}}{3} (1S\, 2_p)^{2} P + 2/3 (1D\, 2_p)^2 P\)
However, Avery and Blanchard, under the assumption that
$$\psi = \sum_{j=1}^{8} a_j \psi_j$$
find a positive quadrupole moment for Li7, as well as reasonable agreement with magnetic moment and Be7 K-capture data, if the ground state wave function is almost all of symmetry \([2 + l]\), with the largest contribution from the D states. L and S are therefore good quantum numbers; the data suggest that \(\gamma\) may be a good quantum number.

The above ground state configuration, since it involves large departures from shell model theory, does not seem as reasonable as the configurations deduced by Present to explain the positive quadrupole moment of Li7.

Most recent work concerns the intermediate coupling models for Li7, for which the nuclear quadrupole moment is negative, in agreement with simple shell model predictions (Inglis, 1953). In pure L-S coupling, the lowest states of Li7 are the multiplets \(^2P, ^2F, ^4P\), etc., in order of increasing energy. Inglis takes the multiplet separations from interaction energies computed from the direct and exchange integrals \(L\) and \(K\), as evaluated by Feenberg and Wigner (1937). Inglis specializes the interaction for the operator \(O_{ij}V(r_{ij})\), where

$$O_{ij} = 0.8P + 0.2Q$$

P is the Majorana operator and Q is the spin exchange operator.

The multiplet splittings, defined by \(H' = \sum a \, l \cdot s = A \, L \cdot S\), are obtained from trace invariance. In J–J coupling the ground configuration is \((P3/2)^3\). The spin-orbit energy is \(3a/2\), and the separations between states of different J have been calculated. Inglis finds the best fit between experimental energy levels and theory at \(a/K = 0.7\), where a is a measure of the L–S multiplet splittings, and K is the multiplet separations. The coupling \(a/K = 0.7\) is very close to pure L–S coupling.
Aeurbach and French (1955) have determined the intermediate coupling parameter. \(\rho = \frac{a}{K} = 1.4 \) from consideration of the reaction \(\text{Li}^7(p,d)\text{Li}^6, \text{Li}^6 \) in reasonable agreement with the predictions of Inglis. They obtain \(\rho \approx 2.5 \) from the reaction \(\text{Li}^6(d,p)\text{Li}^7, \text{Li}^7 \).

D. Kurath (1956) finds the intermediate coupling parameter \(\frac{a}{K} \) approximately = 2.

Since the \(T(\alpha,\gamma)\text{Li}^7 \) reaction, in the low energy region studied here, occurs through direct radiative transitions, and therefore is sensitive to the properties of the ground state and of the first excited state of \(\text{Li}^7 \), it is hoped that the reaction cross section and angular distribution will be of use in determining the ground state and first excited state wave functions.
CHAPTER IV

THE \(^{16}\text{O}(p,\gamma)^{17}\text{F}\) REACTION:

1. Previous Measurements -

The \(^{16}\text{O}(p,\gamma)^{17}\text{F}\) reaction was first observed by Dubridge et al (1938) by measuring the annihilation quanta from the decay of \(^{17}\text{F}\). Laubenstein et al (1951) measured the relative cross section from 1.4 to 4.1 mev. by measuring the yield of annihilation radiation. Warren et al (1954), in this laboratory, observed the gamma radiation directly and attributed the non-resonant character of the cross section for gamma emission in the region 0.8 to 2.1 mev. to a direct radiative capture process. The \(^{16}\text{O}(p,\gamma)^{17}\text{F}\) cross section was found to be \(6 \pm 3 \times 10^{-30} \text{ cm.}^2\) at 1.90 mev. The angular distribution for the \(\gamma_2\) transitions, which go via the first excited level of \(^{17}\text{F}\), was approximately \(1 + (5 \pm 1) \sin^2 \theta\) at 1.9 mev. The angular distribution for the \(\gamma_1\) transitions, which go directly to the ground state of \(^{17}\text{F}\), was believed to be isotropic. Recently, the differential cross section has been measured at 800 kev. by Robertson (1957) in this laboratory. The differential cross section at 90° to the incident proton beam for \(\gamma_2\) transitions was found to be \(10.4 \pm 1.30 \times 10^{-32} \text{ cm.}^2\) per steradian, and the ratio, at 90° of the yield for \(\gamma_1\) transitions to the yield for \(\gamma_2\) transitions was found to be \(1.4 \pm .03\). Using the angular distribution of the gamma rays found by Warren et al at 1.9 mev. for the angular distribution at 800 kev., Robertson estimated the \(^{16}\text{O}(p,\gamma)^{17}\text{F}\) cross section to be \(9.3 \times 10^{-31} \text{ cm.}^2\) at 800 kev. for transitions to the first excited state of \(^{17}\text{F}\), and \(1.8 \times 10^{-31} \text{ cm.}^2\) for transitions to the ground state.

2. Apparatus -

(a) Target and Target Arrangement

For reasons as described by Robertson (1957), solid oxidized tungsten targets, approximately 0.02 x 1 x 0.75 inches, were used for this work. The
tungsten was oxidized by suspending it in a heater coil of nickel wire inside a bell jar. Heating was continued in the presence of commercial grade oxygen for approximately 10 minutes until a dark blue grey tungsten oxide layer was formed over the surface of the tungsten.

The target chamber and target arrangement were as described in Chapter II. A sheet of clean tungsten was placed on the reverse side of the target holder for beam-dependent background measurements. No heating was applied to the target assembly; after prolonged bombardment the target changed to a deeper blue colour, presumably due to the formation of cracked oil deposits.

The first tungsten plates used were cleaned in potassium hydroxide solution, etched, and rinsed in distilled water before oxidation. Since Robertson had found traces of Na23 in tungsten oxide targets, the targets were checked for Na23. Gamma rays from Na23 are a 0.45 mev. gamma ray from Na$^{23}(p,p',\gamma)$Na23 and a 1.60 mev. gamma ray from Na$^{23}(p,\alpha\gamma)$Ne20. The checks for Na23 contamination were made by running an excitation curve over the resonance at 1287.5 kev., which decays by proton emission giving the 0.45 mev. gamma ray. A significant increase of 0.45 mev. radiation at the resonance energy confirmed the presence of Na23 in the target. Na23 was also found in significant quantities on clean, unoxidized tungsten, indicating the possibility of Na23 contamination through the cleaning in potassium hydroxide, which contains traces of sodium. The tungsten plates were therefore only heavily etched (approximately 4 amperes for 5 minutes), and then boiled in distilled water for 1/2 hour before oxidation. At no time were the plates touched by hand. This procedure reduced the sodium content such that the Na23 gamma ray yield was estimated to be 60 counts per 100 microcoulombs of
beam above a 300 kev. bias at the resonance energy of 1287.5 kev. proton energy for the counter-target arrangement used in this work. Excitation functions are given for gamma rays from the proton bombardment of Na23 by Stelson and Preston (1954) and by Burling (1941). The yield of gamma rays from the sodium contamination of the target in the energy region of the full-energy peaks of the $^0\text{C}^{16}(p,\gamma)^{17}\text{F}_1$ and γ_2 transitions was estimated to be negligibly small for all energies used in the present work.

(b) Gamma Ray Detector

Preliminary runs were made at 830 kev. and 1.64 mev. with the large 2.5 x 3.5 inch crystal described in Chapter II. A positive photomultiplier gain shift of 4% was observed at 1.64 mev. after bombardment of 70 integrator counts at a beam current of 5 microamperes. Because gain shifts distorted the full energy peaks of γ_1 and γ_2, it was decided to use a 1.75 x 2.0 inch sodium iodide (thallium activated) crystal mounted on a Dumont two-inch photomultiplier tube. With this smaller counter, a positive gain shift of 6% was observed at 1.64 mev. after bombardment of 100 integrator counts at a beam current of 6 microamperes. This gain shift was reproduced by flooding the counter with radiation from a Eu155 source (strong lines at 87 kev. and at 330 kev.) for 1/2 hour. The Dumont photomultiplier tube was therefore replaced with an R.C.A. 6342 two-inch photomultiplier tube, code number 8-4-246.

The above counter arrangement, consisting of an R.C.A. 6342 photomultiplier mounted on a 1.75 x 2.00 inch crystal, was used for all $^0\text{C}^{16}(p,\gamma)^{17}\text{F}$ measurements reported in the present work. Flooding the counter with a Eu155 source (count rate of 30,000 per second) produced no apparent gain shift when calibration runs were made before and immediately after flooding. It was necessary to remove the Eu before calibration because of interfering high
energy radiation from Eu. When Cs137 was used to flood the counter, and a calibration made simultaneously with RdTh, a negative gain shift of 6% was observed, similar to the negative gain shift observed by Robertson with the large counter. The gain shift disappeared immediately the Cs source was removed.

During the oxide runs, a positive gain shift of 4% with a decay time of a few hours was observed after bombardment at 2.0 mev. for 20 minutes with a beam current of 3 microamperes. Calibrations were made with the beam off; the negative gain shift was therefore not observed. However, the reaction spectrum from the oxide target was displaced upwards on the kicksorters, indicating a net positive gain shift. It is not understood why flooding the counter with a Eu source did not produce a similar positive gain shift. Possibly the oxide runs produced a higher intensity of very low energy radiation (112 and 66 kev.) than came from the Eu source.

For accurate energy determination, it is necessary to avoid intense low energy radiation, as from tungsten irradiated with protons of energy above 2 mev., and to calibrate with the beam on the target. The calibration radiation must then, of course, be much less intense than normal radiation to avoid extra gain shifts. When intense low energy background radiation cannot be avoided, as in the present work, a thin absorber could be placed in front of the counter. This was not done during the present $^{16}(p,y)^{17}$ runs.

The average of five determinations of resolution gave a counter resolution of $8.9 \pm 1\%$ for 0.662 radiation from a Cs137 source, where the resolution is defined as the full width at one-half maximum amplitude of the full-energy peak. Between 960 and 1200 volts, the resolution was independent of the voltage supplied to the dynode chain; 1200 volts was used for the
present work.

The energies of the $^{16}(p,\gamma)^{17}$ gamma rays, γ_2 and γ_1, are 0.66 mev. and 1.16 mev. at a proton energy of 600 kev., and 2.48 mev. and 1.98 mev. at a proton energy of 2.00 mev. The efficiency of the crystal for gamma rays, $\epsilon(E, E/2)$, where $E/2$ is a bias energy of 1/2 the incident gamma ray energy, has been obtained for the energy region 0.60 to 2.5 mev. (Appendix I.) Since the detailed shapes of the γ_1 and γ_2 spectra below the full-energy peaks were not accurately observed in this experiment, comparisons were made with the spectra from Cs, Zn, Na, and RdTh sources, and the efficiency $\epsilon(E, E - .20)$ defined to a bias of 200 kev. below the incident gamma ray energy.

(c) **Electronics**

The electronics were set up as described in Chapter II. The stability of the electronics during the runs was better than 0.1%. The kicksorter was set to cover a 1 mev. energy region in the vicinity of the full energy peaks of γ_1 and γ_2 transitions; most runs were made without altering the kicksorter dispersion.

3. **Experimental**

(a) **Background**

The target and target chamber were surrounded by approximately 4 inches of lead to reduce background radiation. The time dependent background was approximately 50 per minute in the energy region 1/2 to 3 mev. At proton energies below 1.1 mev., the beam dependent background, on clean tungsten, was approximately the same as the time dependent background. Above 1.1 mev., the beam dependent background rose steadily. At 2 mev. the beam dependent background in the energy region 1.8 to 3 mev. was 110 counts per minute, compared with the time dependent counting rate of 8 counts per minute in this
FIGURE 13 GAMMA RAY SPECTRUM FROM TUNGSTEN OXIDE TARGET
AVERAGE PROTON ENERGY $\overline{E_p} = 1.11$ MEV
energy range. Part of the rise in background with energy can be attributed to (d,n) reactions in the magnet box. 2.37 mev. gamma rays could be expected from carbon contamination of the target and beam stops; however, the background spectrum showed no significant gamma ray peak, but decreased uniformly over the energy range studied. The walls of the target chamber had been gold plated to reduce fluorine contamination; it is possible that the plating is insufficiently thick, or impure. Background radiation could also come from impurities in the tungsten backing; some radiation could come from the tungsten itself.

(b) Procedure

Protons of 0.618, 0.823, 1.13, 1.54, and 2.04 mev., supplied by the university electrostatic generator, were used to bombard a tungsten oxide. The beam energy, governed by the sniffer separation, was known to approximately 1%. The counter face was positioned as close as possible to the target chamber in order to obtain a maximum counting rate, the distance from the counter face to the target being 1.63 inches for all the runs. Since preliminary runs showed target deterioration for beams of 6 to 7 microamperes, beam currents were from 3 to 4 microamperes. The target was checked for deterioration by frequent checks of the yield at 1.54 mev. No target deterioration was observed during the experiment. Spectra were recorded of the full-energy peaks of γ_1 and γ_2. A typical spectrum, at a bombarding energy of 1.13 mev., is shown in Figure 13.

4. Target Thickness

The target thickness was necessary in order to obtain the mean proton energy in the target. The target thickness was calculated from Robertson's ice target results. For an ice target containing 1.118×10^{19} molecules
of water / cm.2, Robertson observed 92 counts per integrator in the 2 full energy peak. The number of oxygen atoms /cm.2 in the oxide target used in the present work is then given by

$$n_o = \frac{N_x \gamma \text{oxide}}{N_x \gamma \text{ice}} \times \frac{\Omega \text{ice}}{\Omega \text{oxide}} \times \frac{\epsilon \text{ice}}{\epsilon \text{oxide}} \times n_{H_2O}$$

where $N_x \gamma$ are the number of full-energy peak counts per integrator,
Ω are the solid angles, and
ϵ are the efficiencies of the two counters used.

Then $n_o = \frac{48}{92} \times \frac{0.377}{0.753} \times \frac{0.31}{0.27} \times 1.118 \times 10^4$

From Robertson's calculations, the stopping cross section, σ_{WO_2}, of tungsten dioxide for 800 kev. protons is

$$\sigma_{WO_2} = 35 \times 10^{-15} \text{ e.v. - cm. / molecule,}$$

and since $(\Delta E)_{WO_2} = \sigma_{WO_2} \times n_o \times 1/2$, where $(\Delta E)_{WO_2}$ is the target thickness, Then $(\Delta E)_{WO_2} = 59 \text{ kev. at a proton energy of 800 kev.}$

The target thickness at other energies is then given by

$$(\Delta E)_{WO_2} = (\Delta E)_{WO_2} 800 \times \frac{\sigma_{WO_2}}{(\sigma_{WO_2} 800)}$$

Where σ_{WO_2} was computed from atomic stopping power data given by Whaling (1957).

The following values of target thickness were obtained:

<table>
<thead>
<tr>
<th>E_p (mev.)</th>
<th>σ_{WO_2}</th>
<th>$(\Delta E)_{kev.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.600</td>
<td>40.5×10^{-15}</td>
<td>68</td>
</tr>
<tr>
<td>0.800</td>
<td>35</td>
<td>"</td>
</tr>
<tr>
<td>1.10</td>
<td>29</td>
<td>49</td>
</tr>
<tr>
<td>1.50</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>2.00</td>
<td>21</td>
<td>35</td>
</tr>
</tbody>
</table>

The target thickness was also computed directly from the observed
energy. Since the counter was at 90° to the incident proton beam,

\[E_y^2 = 0.10 + \frac{16}{17} \bar{E}_p, \]

and

\[E_p - \bar{E}_p = \Delta/2, \]

where \(E_p \) is the bombarding proton energy,

\(\bar{E}_p \) is the mean proton energy in the target, and

\(\Delta \) is the target thickness.

At a bombarding energy of 0.823 mev., \(E_y^2 = 0.840 \) mev., consistent with a target thickness of 62 kev., in good agreement with the above computation of 59 kev. However, at 1.53 mev., and also at 2.04 mev., \(E_y^2 \) was consistent with a target thickness of 100 kev. An explanation for the apparent discrepancy is the presence of a negative gain shift with a short decay time constant, as was observed by flooding the counter with a Cs\(^{137} \) source. Calibrations were made with the beam off; consequently, the apparent energy \(E_y^2 \) was decreased.

The approximate target thicknesses were also estimated from the observed with the full energy peaks for \(\gamma_2 \) transitions. The mean value of the target thickness, \(\Delta \), was computed from

\[\Delta = \sqrt{\Gamma^2 - \Gamma_R^2} \]

where \(\Gamma \) and \(\Gamma_R \), as defined previously, are respectively the width of the full-energy peak for \(\gamma_2 \) transitions, and the width of the full-energy peak for a mono-energetic gamma ray source. Target thicknesses were found to be 66 kev. for \(E_p = 0.84 \) mev., and 46 kev. for \(E_p = 1.13 \) mev., in reasonable agreement with above estimates. Values of target thickness computed from the widths of the full-energy peaks are not, however, considered accurate because of fluctuations in counter resolution between runs.

5. Determination of the Excitation Function -

Relative cross sections were computed from the following data:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.618</td>
<td>69</td>
<td>0.583</td>
<td>0.345</td>
<td>100</td>
<td>-</td>
<td>20.2 2</td>
</tr>
<tr>
<td>0.823</td>
<td>60</td>
<td>0.793</td>
<td>0.30</td>
<td>30</td>
<td>5.50 x 4</td>
<td>45.2 2</td>
</tr>
<tr>
<td>1.13</td>
<td>49</td>
<td>1.11</td>
<td>0.21</td>
<td>50</td>
<td>12.2 x 2</td>
<td>90.9 5.5</td>
</tr>
<tr>
<td>1.536</td>
<td>41</td>
<td>1.52</td>
<td>0.145</td>
<td>50</td>
<td>20.4 x 9</td>
<td>135.5 8</td>
</tr>
<tr>
<td>2.04</td>
<td>35</td>
<td>2.02</td>
<td>0.078</td>
<td>50</td>
<td>22.9 x 2.8</td>
<td>175 9</td>
</tr>
</tbody>
</table>

Cross sections were estimated relative to the cross section for γ_2 transitions at 800 kev., by means of

$$\frac{(d\sigma)}{(d\omega)} = \frac{N\gamma \times \varepsilon_{\gamma_2,800} \times \sigma_{\gamma_2,800}}{N\gamma_{2,800}}$$

$$\theta = 90^\circ$$

where $N\gamma_{2,800}$ is the observed number of gamma ray counts per integrator for γ_2 transitions at a proton energy of 800 kev., $\varepsilon_{\gamma_2,800}$ is the counter efficiency for γ_2 transitions at a proton energy of 800 kev., and α is the transmission coefficient through the 1/16 inch brass target pot walls.

The values of absolute cross section were based on the measurement of the 90° differential cross section for γ_2 transitions at 800 kev. of $10.4 \pm 1.3 \times 10^{-32}$ cm.2 per steradian by Robertson. The following values of 90° differential cross section, in units of cm.2 per steradian, were obtained:

<table>
<thead>
<tr>
<th>Ep mev.</th>
<th>$\frac{(d\sigma)}{(d\omega)}_{\gamma_1}$</th>
<th>$\frac{(d\sigma)}{(d\omega)}_{\gamma_2}$</th>
<th>$\frac{(d\sigma)}{(d\omega)}_{\gamma_1}$</th>
<th>$\frac{(d\sigma)}{(d\omega)}_{\gamma_2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.583</td>
<td>-</td>
<td>0.412 x 10^{-31}</td>
<td>-</td>
<td>0.205</td>
</tr>
<tr>
<td>0.793</td>
<td>0.214 x 10^{-31}</td>
<td>1.04 x 10^{-31}</td>
<td>0.205</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 14 VARIATION IN $^{16}(p\gamma)^{17}$ $^{90}^\circ$
DIFFERENTIAL CROSS SECTION
WITH PROTON ENERGY
<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Crystal Efficiency</th>
<th>Ratio</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.11</td>
<td>0.642 x 10^{-31}</td>
<td>2.96 x 10^{-31}</td>
<td>0.217</td>
</tr>
<tr>
<td>1.52</td>
<td>1.39 x 10^{-31}</td>
<td>6.38 x 10^{-31}</td>
<td>0.217</td>
</tr>
<tr>
<td>2.02</td>
<td>2.33 x 10^{-31}</td>
<td>11.9 x 10^{-31}</td>
<td>0.188</td>
</tr>
</tbody>
</table>

The crystal efficiencies are believed accurate to within 12%, giving a probable error of 17% in the ratio of the two efficiencies. The probable error in the number of reaction counts per integrator is approximately 5%. The probable error in the ratio of the differential cross sections is therefore approximately 18%.

Yields were estimated on the basis of a constant solid angle, since the distance from the crystal face to the effective centre has been shown not to vary significantly with energy in the energy region studied (Appendix I).

The ratio of \(\frac{d\sigma}{d\omega} \) to \(\frac{d\sigma}{d\omega} \) of 0.205 ± 0.037 at 0.793 mev. is higher than the ratio found by Robertson of 0.14 ± 0.03 at 800 kev., although to within the probable error the results are in agreement. The effect of angular distribution was not considered in estimating the yields. In the present work the counter subtended a solid angle of 0.669 steradians at the effective centre. A \(\sin^2 \theta \) distribution over this solid angle yields approximately 4% less than an isotropic distribution with the same 90° differential cross section. Since the angular distribution for \(^2 \) transitions is nearly \(\sin^2 \theta \), the ratio of \(\frac{d\sigma}{d\omega} \) to \(\frac{d\sigma}{d\omega} \) found above may therefore be consistently high by nearly 4%.

To summarize, the \(^{16}(p,\gamma)^{17} \) 90° differential cross section for \(^2 \) transitions varies smoothly from 0.41 x 10^{-31} cm.^2 per steradian at a proton energy of 0.58 mev. to 11.9 x 10^{-31} cm.^2 per steradian at a proton energy of 2.02 mev. The ratio of the 90° differential cross sections for \(^1 \) transitions to \(^2 \) transitions is approximately 0.20 in this energy region. Using the angular distribution for \(^1 \) transitions found by Warren et al (1955)
as being proportional to $1 + 5 \sin^2 \theta$, the total cross section for γ_2 transitions is given by

$$\sigma_{\gamma_2} = \frac{4 \pi (1 + 2/3 \times 5)}{6} \times \left(\frac{d\sigma}{d\omega} \right)_{90^\circ} = 8.98 \times \left(\frac{d\sigma}{d\omega} \right)_{90^\circ}$$

On this basis, $\sigma_{\gamma_2} = 0.37$ microbarns at 0.583 mev., and 10.7 microbarns at 2.02 mev. Adding the contribution from γ_1 transitions, assumed to have an isotropic angular distribution, gives an $^16(p,\gamma)^{17}$ total reaction cross section of 0.44 microbarns at 0.583 mev., and 13.5 microbarns at 2.02 mev.

If we assume the above angular distributions, the ratio of the cross sections, $\sigma_{\gamma_1}/\sigma_{\gamma_2} = 0.28$. However, in order to establish this ratio, more accurate angular distributions need to be measured.
APPENDIX I

GAMMA RAY EFFICIENCIES FOR THE 1.75 x 2.00 INCH CRYSTAL

The efficiency of the 1.75 by 2 inch crystal has been measured for the 6.14 mev. gamma rays from the 340 kev. resonance of $^{19}(p,\alpha,\gamma)^{16}$ by Larson. The efficiency for gamma rays, $\varepsilon(E, E/2)$, where the bias energy was chosen as $1/2$ the incident gamma ray energy was found to be 0.388 ± 0.019. The effective centre distance used was 2.18 ± 0.71 cm., as determined by an inverse square plot.

For the $^{16}(p,\gamma)^{17}$ measurements described in Chapter IV, it was necessary to determine the efficiency of this counter for gamma rays in the energy region from 0.6 mev. to 2.5 mev. The efficiency for radiation from 60Co has been determined with a 60Co source whose strength was measured by the National Research Council to be 0.134 millicuries to an accuracy of 5%. The present crystal efficiency measurements were made 1 year, 7 1/2 months after the source calibration, so that taking $T_{1/2}$ for 60Co to be 5.24 years, the strength at the time of the efficiency measurements was 0.1094 millicuries.

Measurements were made with the source 80 cm. from the face of the crystal, with the source holder axis perpendicular to the counter axis. From the kicksorter spectra, the number of counts were recorded to a bias of 0.625 mev.; i.e. it was assumed that the mean efficiency for the 1.17 mev. and 1.33 mev. radiation was equal to the efficiency for 1.25 mev. radiation. The efficiency to $\varepsilon -$ energy bias, was given by

$$\varepsilon(2.25, 0.625) = \frac{N\gamma}{2N_0} \frac{r^2}{A} \quad 4\pi$$

With $N\gamma$ the number of observed counts above background,

$2N_0$ the number of gamma rays emitted per second by the source, and A/r^2 is the solid angle subtended by the area of the counter face.
positioned at the effective centre of the crystal.
The value of 2.18 ± .72 cm. was used for the effective centre distance. Since a large source to counter distance (80 cm.) was used, any error in the effective centre distance is negligible.

An efficiency for the total number of counts recorded in the pulse spectra to zero energy, $\varepsilon (1.25, 0)$ was also computed. A low energy peak at approximately 220 kev., believed due to back-scattered radiation from the mu-metal shield, aluminum and brass casings, and the lead counter shielding, was neglected. From the formula for Compton scattering of photons,

$$h\nu = h\nu_o / [1 + (1 - \cos \theta)]$$

where $h\nu_o = $ energy of initial photon in units of mc2

$h\nu = 220$ kev., for $h\nu_o = 1.25$ mev., corresponds to a scattering angle θ of 155°, approximately the angle expected for back-scattered radiation. The flat Compton spectrum tail was extrapolated horizontally down to zero pulse energy to obtain the total spectrum counts.

Runs were made both with the sides of the counter shielded with a lead castle and unshielded. The flat Compton tail of the pulse spectrum was 12% higher with the lead castle than without it; the efficiency was consequently higher when using the castle.

The calculated efficiencies are as follows:

$\varepsilon (1.25, 0.662) = (40.5 \pm 2)$ % with the lead castle shielding, and

$\varepsilon (1.25, 0.662) = (37.9 \pm 2)$ % without the lead castle shielding.

The two efficiencies differ significantly because most of the probable error comes from uncertainty in the source strength. The total crystal efficiencies were

$\varepsilon (1.25, 0) = (72.0 \pm 7)$ %, with the lead castle shielding, and

$\varepsilon (1.25, 0) = (63.8 \pm 7)$ %, with the counter unshielded.
Again the two efficiencies differ significantly.

\[\xi (1.25, 0) = 61.5\% \], computed from \((1 - \exp(-\mu l))\), in reasonable agreement with the measured value when not using the shielding. Because of the smaller dependence of \(\xi (1.25, 0.662)\) than \(\xi (1.25, 0)\) on the shielding used, and the necessity of extrapolating below the back-scattered gamma ray peak in estimating \(\xi (1.25, 0)\), both theoretical and experimental efficiencies were calculated to a bias energy of one-half the incident gamma ray energy.

Theoretical efficiencies were estimated by means of a method developed by P. Singh of this laboratory. The efficiency is defined by

\[\xi (E, E/2) = \frac{A T + B \sigma + C \eta}{\mu} \left[1 - \exp(-\mu l) \right] \]

where \(\mu\) is the total absorption coefficient,

\(\gamma\), \(\sigma\), and \(\eta\) are the theoretical photo-electric, Compton, and pair-production coefficients respectively.

\(l\) is the length of the crystal, so that

\(1 - \exp(-\mu l)\) is the total fraction of the gamma rays absorbed in the crystal.

A, B, and C are the relative probabilities for the respective absorption processes to produce spectrum counts above the 1/2 energy bias; that is, for more than 1/2 of the gamma ray energy to be absorbed by the crystal. In the energy region from 0.6 to 3 mev., where the most important absorption process is Compton Scattering, most uncertainty is in the estimation of the probability of further absorption by the crystal of secondary photons whose energy is still greater than \(E/2\) following a single Compton event. If such a secondary absorption process occurs, it is assumed that the resulting spectrum pulse from both events lies above the 1/2 energy bias.

Theoretical efficiencies were calculated for 1.25 mev. and 6.14
FIGURE 15 GAMMA RAY EFFICIENCIES FOR THE MEDIUM COUNTER
(CRYSTAL SIZE = 1.75 IN. DIAM by 2.0 IN. LONG)

- THEORETICAL EFFICIENCIES
- EXPERIMENTAL EFFICIENCIES (TO A 1/2 ENERGY BIAS)

\[\epsilon (E, E/2) \]

\[\epsilon (E, E - 200 \text{ Kev}) \]

GAMMA RAY ENERGY (MEV)
mev., and compared with the experimental efficiencies. Efficiencies were also calculated energies of 0.6, 2.0, and 3.0 mev. The results are as follows:

<table>
<thead>
<tr>
<th>E</th>
<th>(\epsilon (E, E/2)) Theoretical</th>
<th>(\epsilon (E/E/2)) Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.58</td>
<td>0.392 ± 0.03</td>
</tr>
<tr>
<td>1.25</td>
<td>0.43</td>
<td>0.384</td>
</tr>
<tr>
<td>2.0</td>
<td>0.384</td>
<td>0.378</td>
</tr>
<tr>
<td>3.0</td>
<td>0.378</td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>0.42</td>
<td>0.388 ± 0.019</td>
</tr>
</tbody>
</table>

Since only the upper part of the spectra of \(\gamma_1 \) and \(\gamma_2 \) were observed in the \(^{16}O(p, \gamma)^{17}F \) work, the efficiencies were estimated to a bias of 200 kev., which fell slightly below the bottom of the full energy peak. Spectra from \(^{137}Cs \), \(^{65}Zn \), \(^{22}Na \), and \(^{9}RdTh \) were used to estimate \(\epsilon (E, E-200 \text{ kev.}) \). Efficiencies are shown plotted in Figure 15.

Effective Centre Measurement:

The distance from the crystal face to the effective centre was determined experimentally for gamma ray energies of 1.25 with a \(^{60}Co \) source, and for 0.51 mev. with a \(^{22}Na \) source. The distances, obtained from a distance vs. \(1/\sqrt{\text{counting rate}} \) plot, were 2.40 ± 0.20 and 2.50 ± 0.20 cm. for the 0.51 and 1.25 mev. radiation respectively. The distance measured by Larson at 6.14 mev. for the effective centre was 2.18 ± 0.72 cm. The effective centre distances for the three energies are equal to within the probable errors, as was observed by Robertson for the 3.0 x 2.5 inch crystal.

The simple theoretical calculation of the effective centre distance of

\[
x = -\ln \left(0.5 \left(\frac{1}{\exp(-\mu \alpha)} \right) \right)
\]

gives a distance of 2.12 cm. for 6.14 mev., 1.95 cm. for 1.25 mev., and 1.55 cm. for 0.51 mev. radiation. As in the case of the large crystal, the theore-
tically predicted distances are significantly different from the observed effective centre distances.
THE BIASED DISTORTER

The biased distorter, which replaced an older biased amplifier, accepts negative pulses from a high gain Northern Electric Linear Amplifier and provides variable gain and cut before driving the Marconi Kicksorter. A block diagram of the distorter circuit is shown in Figure 17 and a detailed circuit diagram in Figure 18. The chief advantage of the present biased distorter over the older biased amplifier is that the output pulses of the distorter are shaped to have a constant rate of rise, rate of fall, and a constant width from the beginning of the pulse to the back edge of the pulse, independent of the shape of the input pulse. Dependence of kicksorter channel edges on pulse shapes (especially rate of rise of the pulses), are therefore minimized by means of the biased distorter.

The distorter has the following characteristics:

1. Accepts negative input pulses from 0 to 50 volts. It will tolerate appreciable positive overshoot without overloading. The input pulse length should be between 0.2 microseconds and 6 microseconds, from the beginning of pulse rise to the start of the fall of the pulse. The pulse should have recovered completely in 10 microseconds, since otherwise extreme lengthening of the distorter output pulse results. (See amplifier and pulse shaper.)

2. The output pulse size is from 0 to 50 volts, and is linear from 1 to 50 volts. The rate of rise, when driving 200 pf. of cable capacity, is 14 volts per microsecond. The rate of fall is 9 volts per microsecond, and the width from the beginning of the rise of the pulse to the beginning of the fall of the pulse is 6 microseconds.

3. A fixed dead time of 15 microseconds, beginning 1 to 2 micro-
-55-

seconds after the input pulse, is available during anti-coincidence operation by means of a switch located at the back of the biased distorter chassis.

4. The distorter has possible gains of 1, 1.5, 2, 3, 4, and 5, and a continuously variable bias level from approximately 1/2 to 50 volts.

5. The distorter can be gated either by coincidence pulses, or by anti-coincidence pulses. 5 volt coincidence gate pulses of from 1 to 2 microseconds in width are supplied by a coincidence gate pulse generator, or they may be fed directly into the gate from external equipment. The gate pulses may be of either positive or negative polarity, since two coincidence inputs, connecting to the primary of a step-up pulse transformer, are provided. A shorted input connector is used to ground the unused side of the primary transformer coil. These gating pulses should not be longer than 3 microseconds, since the pulse transformer differentiates longer pulses. To drive coincidence gate pulses into the 100 ohm input impedance of the pulse transformer, the pulse source should be approximately 15 volts, into a step-down pulse transformer.

12 volt, 15 microsecond anti-coincidence gate pulses are fed directly into the gate by an anti-coincidence gate-pulse generator, which also supplies dead-time pulses. The generator is driven by 6 volt positive pulses, fed into a step-up pulse transformer. To drive the 100 ohm input impedance of the pulse transformer, the 6 volt input pulses should come from a 20 volt source, fed into a step-down transformer. A slight change in the circuit would enable anti-coincidence pulses to be fed directly into the gate from external equipment if so desired.

6. Curves A to F in Figure 16 show the dependence of the distorter output pulse height on pulse repetition rate. Two pulse generators were used
FIGURE 16 PERCENT FALL IN DISTORTER OUTPUT PULSE HEIGHT WITH INPUT PULSE REPETITION RATE

A COINCIDENCE

B GAIN 1 CUT 7

C GAIN 5 CUT 7

D GAIN 1 CUT 0

E GAIN 1 CUT 0

F GAIN 5 CUT 0

G GAIN 5 CUT 0

% FALL IN OUTPUT PULSE HEIGHT

INPUT PULSE REPETITION RATE (X 1000 pps)
simultaneously; "calibration" pulses were provided by a 60-cycle mercury relay pulse generator (Robertson), and pulses of a high repetition rate were supplied by a General Radio Co. "Unit pulser", type number 1217-A. The curves show the percentage fall in distorter output pulse heights, for constant amplitude input "calibration" pulses, with increasing pulse repetition rates from the unit pulser. For all tests, the distorter output pulse height, for input "calibration" pulses, was approximately 30 volts.

For curve A, the distorter was operated on coincidence. The coincidence gate pulse generator was synchronized with the "calibration" pulses; pulses from the unit pulser were rejected by the distorter gate. Up to a pulse repetition rate of 20,000 per second of amplitude 14 volts, the output amplitude was constant.

For curves B to F, the gate was operated on anti-coincidence. Curves B and C show the gate response to a high pulse repetition rate. Low-amplitude (10 volt) pulses from the unit pulser were removed after the gate by a high cut setting; only "calibration" pulses reached the distorter amplifier. For curves D to F, since zero cut setting was used, all input pulses reached the amplifier. For curves D and F, low amplitude pulses (10 volts for gain 1, and 2 volts for gain 5) were used from the unit pulser together with high amplitude "calibration" pulses from the mercury relay pulse generator. For curves E and G, high amplitude pulses from the unit pulser only were fed into the distorter.

The curves show that for accurate pulse-height measurements, a high pulse repetition rate should be avoided during anti-coincidence operation of the distorter. If the low-amplitude pulse rate is high, a high cut setting should be used to reduce the pulse rate into the amplifier. The amplifier itself should be used in a low gain position when accepting a high pulse rate.
FIGURE 17 BLOCK DIAGRAM OF BIASED DISTORTER CIRCUIT

COIN- INPUT

COIN- PULSE GEN.

INPUT

GATE

CUT

AMPLIFIER

DIODE STRETCHER

LINEAR RISE CCT.

OUTPUT

ANTI-COIN- PULSE GEN.

ANTI-COIN- & DEAD TIME PULSE GEN.

CAP. COMP. PULSE

KANDIAH DISC.

RESTORING CURRENT CCT.
Large input pulses produce a slightly larger fall in the distorter output at high repetition rates than do small ones; however, all pulses larger than a few volts into the amplifier produce significant decreases in the distorter output pulse height for repetition rates greater than 5000 per second. For most accurate pulse height measurements, the fall of the distorter output pulse height at high pulse repetition rates can be avoided by running the distorter on coincidence operation, and using pulses only in the required energy range to trigger the gate.

Descriptions of sections of the biased distorter as shown by the block diagram of Figure 1 are given below.

Linear Gate:

Input pulses are fed into a gate circuit (V1 and V2). A constant d.c. current is produced in V1 anode by d.c. anode following, (Farley, page 7) which holds the anode of V1 at \((390/470) \times 150\) volts = 120 volts. The 56 k. plate resistor sets the plate current at 3 milliamperes. V2 is normally held off by a 7 volt grid-cathode bias. When suitably gated, this section acts as a White cathode follower (Farley, 1955, page 105) when driven by negative input pulses. V2 is turned on hard by a positive grid signal from the plate of V1. This unclamps the 1N100 diode, D2, from ground, allowing the negative input pulses to be transmitted to the bias circuit. For positive input pulses, or for positive overshoot after negative pulses, V2 remains off, and V1 acts as a cathode follower with a "long tail", carrying 5.5 milliamperes. The 1N100 diode, D1, is biased off, and the cathode of V1 follows the grid, allowing V1 to maintain a constant current (5.5 milliamperes) during the pulse. The output signal is eliminated through strong attenuation by the diodes D1 and D2.

When the gate is closed V2 does not turn on in response to a negative
input pulse, since its grid is clamped at (-150 + 9) volts by the cathode of V3. V1 is turned off by the negative input pulse since its cathode is clamped via diode D1 to approximately ground potential. A small output pedestal (~ 1/4 volt) is produced as a result of switching current in the diodes D1 and D2. To protect the diodes D4 and D5 at the grid of V2, the anode of V1 is prevented from rising above 150 volts when V1 is turned off by the diode D3 to the 150 volt line.

Coincidence and anti-coincidence pulses are fed onto the grid of the cathode follower V3. During anti-coincidence operation the grid of V3 is held at (-150 + 17) volts, which biases off D5. The grid of V2 thus follows the plate of V1, since D4 is held in conduction by the 1.5 milliamperes supplied through the 100 k. resistor. The cathode of V2 is always held at (-150 + 16) volts by the two Zenner diodes. During coincidence operation, the cathode of V3 is held at (-150 + 9) volts; the grid of V2 is therefore clamped to (-150 + 9) volts via D5 by the low impedance (~ 100 ohms) of the cathode follower. A positive signal from V1 cannot raise the grid voltage of V2, since D4 cuts off, and therefore no output pulse is obtained. The two diodes, D4 and D5, form a simple coincidence circuit (Farley, page 131, Figure d), transmitting to V2 the minimum of the voltage pulses at the plate of V1 and at the cathode of V3.

Anti-coincidence gate pulses lower the cathode of V3 from (-150 + 17) to (-150 + 9) volts, thereby closing the gate. Coincidence pulses raise the cathode potential of V3 from (-150 + 9) to (-150 + 17) volts, opening the gate. A pulse transformer input is used for the short coincidence pulses, allowing the use of either positive or negative input pulses.

Cut Circuit:

The output of the gate is fed into a 1/2 to 50 volt cut circuit,
similar in design to a diode discriminator circuit described by Moody (1950), and used in the Marconi kicksorter. Only that part of the input signal greater than the bias voltage is transmitted. The bias level is set by a 15 turn helipot. The total 50 volt drop across the helipot coil is set by a 20 k. trimpot mounted on the top of the distorter chassis, which regulates the current in the helipot coil.

Amplifier:

The amplifier is a cathode-coupled amplifier, with a boot-strap circuit (Farley, page 107) in the plate of V6 to provide a high effective load and so a high gain. Anode following (a.c. and d.c.) via V8 tends to maintain a constant current in V6. A signal is therefore generated at the grid of V6 equal in magnitude to the input signal at the cathode of V6. This signal is an attenuated version of the signal appearing at the cathode of V8, the low impedance output point.

V7 provides a high-impedance, high-current cathode load for V5 and V6; stray capacities in this cathode load limit the rise time of the amplifier to 0.2 microseconds. The input pulse width from the beginning of the pulse to the beginning of the fall of the pulse should consequently be greater than 0.2 microseconds. 2 series 1N100 diodes limit the amplitude of the output pulse to 50 volts.

Pulse Shaper:

(a) **Diode stretcher** -

The output from the amplifier is fed into a White Cathode follower (V12 and V13), which drives a diode stretcher (Farley, page 13) consisting of V14 B and the 220 pf. capacitor. On the back edge of the input pulse to the diode stretcher, the anode of V14 B is held negative by the charge on the 220
pf. capacitor. A 9 microampere current from the 300 volt line, fed into 220 pf., restores the grid of V15 to ground potential at the rate of \(\frac{dv}{dt} = \frac{9}{220} \) = .05 volts per microsecond. This leak is required to restore the grid of V15 to ground for pulses too small to trigger the d.c. restoring section of the circuit.

(b) **Linear Rise Circuit**

The output pulse is taken from the cathode follower V15, whose cathode load is the constant current pentode V16 (Farley, page 32). Because of the capacity loading on the cathode of V15, V15 turns off during the rise of the pulse. The rate of rise of the output pulse is given approximately by
\[
\frac{dv}{dt} = \frac{i}{c} \approx \frac{7 \times 10^{-3}}{250 \times 10^{-6}} = 28 \text{ volts per microsecond.}
\]
Additional loading by approximately 200 pf. of cable feeding the pulses to the kicksorter reduces this rate of rise to the observed rate of 14 volts per microsecond.

6 microseconds after the front edge of the input pulse, a restoring current of 3 milliamperes from the plate of V19 discharges the 220 pf. capacitor in the diode stretcher. The back edge of the output pulse falls at the rate of 9 volts per microsecond, in reasonable agreement with
\[
\frac{dv}{dt} = \frac{i}{c} = \frac{3 \times 10^{-3}}{220 \times 10^{-6}} = 14 \text{ volts per microsecond.}
\]
V15 is being turned on during the back edge of the pulse, and so can provide sufficient current to cathode follow. The output pulse has a positive overshoot of approximately 1 volt since the anode of V14B rises to 1 volt above ground before V14B conducts the excess 3 milliampere discharge current away.

The input pulse should be shorter (completely restored by some 10 microseconds) than the output distorter pulse since unless the back edge of the input pulse remains smaller than the output pulse, the 3 milliampere discharge current is short-circuited through V14B. If this occurs for a slowly
falling input pulse, the output pulse then falls with the input pulse for the duration of the discharge current (a few microseconds). After the discharge current, the output pulse falls at the .05 volt per microsecond rate governed by the 9 microampere current flow from the 300 volt line; i.e. extreme lengthening of the tail of the output pulse results.

Kandiah discriminator and Restoring-current pulse circuitry:

The 6 microsecond delay of the restoring current is provided by a Kandiah discriminator (Journal of the Institute of Electrical Engineers, June 1954, page 239), V17 and V18, which is triggered by a positive pulse (approximately 1/2 volt) from the plate of V8. A positive 40 volt, 6 microsecond, square output pulse is taken from the plate of V18, and differentiated. The positive edge of the pulse charges the 150 pf. capacitor through a 1N100 diode, which shorts the signal to ground; the negative edge unclamps the 1N100 diode so that the 150 pf. capacitor is discharged in approximately 10 microseconds by the 0.5 milliampere current from the 270 k. resistor. V19 is therefore held off for some 10 microseconds; during this time its plate current is switched through the 1N96 and V14A diodes into the 220 pf. of the diode stretcher.

Kandiah Triggering Pulse: Capacity Compensating Pulse:

A positive pulse from the plate of V8 triggers the Kandiah discriminator and provides a capacity compensating pulse for the diode stretcher. Negative overshoots in the coupling circuit are short-circuited to ground through the 1N96 diode. Positive pulses from the diode stretcher are strongly attenuated by the back resistance of the 1N100 diode; pulses from the grid of V17 are similarly attenuated.

Since approximately a 1/2 volt signal is required to trigger the
Kandiah discriminator, and this corresponds to output pulses from the distorter of approximately 1.5 volts, for output signals of less than 1 1/2 volts the Kandiah discriminator does not trigger. The rate of fall for smaller output pulses is therefore .05 volts per microsecond set by the 9 microampere current into the diode stretcher.

Dead-Time and Anti-Coincidence Pulse Generator:

A diode mixing circuit is used to introduce either or both of the two trigger pulses (anti-coincidence or dead-time) to the input of the univibrator (V20 grid), enabling the generator to be used in anti-coincidence and dead-time operation simultaneously. Dead-time input pulses are integrated before reaching the grid of V20. A variation in the time of triggering of the generator is provided by a trimmer capacitor in the integrator, mounted on the back of the distorter chassis, which allows the generator to be triggered from approximately 1 to 2 microseconds after the input to the gate. Dead-time pulses, being identical to anti-coincidence pulses, can only control the gate during anti-coincidence.

The pulse generator itself (V20 and V21) is a cathode-coupled univibrator, with the first tube (V20) held off by a 15 volt grid bias in the d.c. state. As described earlier, the anti-coincidence trigger pulses are 6 volt positive pulses, fed in through a step-up pulse transformer.

Coincidence Gate Pulse Generator:

The coincidence gate pulse generator, which is mounted in a separate chassis from the rest of the biased distorter, provides approximately 5 volt negative pulses of length from 0.5 to 2 microseconds. The pulse generator (V9 and V10) is a modified Scarrott oscillator, (Farley, page 43) operating in the fashion described by Kandiah, with a cathode follower output. The
generator input pulses are approximately 1/4 volt, fed in through a step-up transformer. The input pulses should be shorter than the 1 to 2 microseconds length of the generator output pulses. As with the coincidence input to the gate, the coincidence generator input pulses may be of either polarity, since two coincidence inputs, connecting to the primary of a step-up transformer, are used. A shorted input connector is used to ground the unused side of the primary transformer coil.

Power Supplies:

The distorter 300 volt power supply is a Model 32, Lambda regulated power supply "300 MA" series, rated at 200 to 325 volts d.c. at a current of from 0 to 300 milliamperes. The -150 volt power supply is a Model C-281 Lambda, "Com-Pak Series 200" power supply, rated at 125 to 325 volts d.c. at a current of from 0 to 200 milliamperes. The 150 volt supply is taken from the plate of a voltage reference 0A2 tube, V22 connected (with a series plate resistor) across the 300 volt line.

All co-axial cables, except for the two specified below, are Telcon KIG-M (ICB) (50 ohm characteristic impedances).

The output cable and the input cable to the anti-coincidence generator are Telcon AS48 (100 ohm characteristic impedance, 12 1/2 pf. per foot capacitance) cables.
A. POWER REQUIREMENTS

185 MA AT 300 VOLTS
135 MA AT -ISO VOLTS

HEATERS:

V: 1,5,6,9,12,14,15,17,18 COMMON
6-3 V, 2*3 AMP

V: 2,3,7,13,16,19 COMMON
6-3 V, 1-7 AMP (-125 V DC)

V: 8,10,11,20,21 COMMON
6-3 V, 1-9 AMP U50VDC)

(V3,I2AT7, HASHTRS IN PARALLEL)

B. COMPONENT DESIGNATION

RESISTANCES ARE IN OHMS

IK • I0 3 OHMS
IM = 10 6 OHMS

UNSPECIFIED RESISTORS ARE 1/2 WATT

CAPACITIES ARE GIVEN IN MICRO-FARADS

I PF = 10^-6 JF

ALL TRANSFORMERS ARE VALOR PT-530D
TURNS RATIO 3-3 TO 1
SUPPRESSOR GRIDS OF ALL PENTODES CATHODE CONNECTED

COINCIDENCE GATE PULSE GENERATOR IS MOUNTED ON A SEPARATE CHASSIS

THE SYMBOL * ABOVE A RESISTANCE MEANS A WELWYN HIGH STABILITY (1 %) RESISTOR

G. JONES

DRAWING 1
PRILEY DATE: MAY 17, 1958
CONSTRUCTION: P. RILEY

VAN DE GRAAFF, PHYSICS,
UNIVERSITY OF BRITISH COLUMBIA

DESIGN: G. JONES
DRAWING: P. RILEY
DATE: MAY 17, 1958
BIBLIOGRAPHY

Ajzenberg, F., and Lauritsen, T., 1955, Rev. Mod. Phy. 27, 77
Auerback, T., and French, J.B., 1955, Phy. Rev. 98, 1276
Burling, R., 1941, Phy. Rev. 60, 340
Farley, F.J.M., 1955, "Elements of Pulse Circuits"
Feenberg, E., and Wigner, E., 1937, Phy. Rev. 51, 95
Harris, E.G., and Melkanoff, M.A., 1953, Phy. Rev. 90 (1953), 585
Inglis, D.R., 1953, Rev. Mod. Phy. 25, 390
Johnson, R.L., 1958, Private communication for H.D. Holmgren
Katz, L. and Goldemberg, J., 1954, Phy. Rev. 95, 471
Kurath, D., 1956, Phy. Rev. 101, 216
Kusch, P., 1949, Phy. Rev. 76, 138
Laubenstein, R., and Laubenstein, M., 1951, Phy. Rev. 84, 18
Mack, J.E., 1950, Rev. Mod. Phy. 22 (64)

Peaslee, D.C., and Telegdi, V.L., 1953, Phy. Rev. 92, 126

Present, R.D., 1950, Phy. Rev. 80, 43

Robertson, L.P., 1957, M.A. Thesis, University of British Columbia

Siegbahn, K., 1955, "Beta and Gamma Ray Spectroscopy"

Stelson, P., and Preston, 1954, Phy. Rev. 95, 974

Sternheimer, R. (1950), Phy. Rev. 80, 102

Whaling, W., 1957, Kellogg Radiation Laboratory Preprint

Wigner, E., 1937, Phy. Rev. 51, 106