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- “ABSTRACT

:}t variatienal principle is appliedvto‘theiSchroedinger“equation for
the‘XY2 linear leecule. _Triallsolutions are synthesized from the nuclear
eigenstates, which are assumed to be simple harmenic oscillator eigenstates,
and from thé unpertufbed-elecﬁronic states, whose azimuthal dependence is
known because of-the cylindrical symmetry of the field of the nuclei. The
-secular equation ‘is discussed, and an expressien for the-Renne;:splitting-

of the [T state is obtained.
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INTRODUCTION

In :linear molecules, to the zeroeth approximation, the electrons move
in the cylindrically symmetric field provided by the fixed nuclei. Hence
the projection of the orbital angular momentum-aleng the nuclear axis is |
conserved, and the electronic states are classifiedvby the absolute value

of this projection, usually denoted by /\ . For

N =0,1, 2,
the states are called
2, A, |
respectively; states higher than A are not usually encountered. " The :i
or ground state is not degenerate but the -other states are two-fold
degenerate; that is, the projectien of the total angular momentumjalong the
‘axis can be + A T .

When certain vibrations of.the.nuclei_are considered, the so¥called
degenerate vibrations, the cylindrical-symmetry,of the field seen by the
‘electrons is broken, and hence the degenerate levels -of the electronic
spectra of linear molecules are split; this is called the Renner splitting

i

or Renner'effect;l

| The method customarily used to obtain expressions for the Renner
splitting has been the Born.—Oppenheimer-approximation.2 ‘However, this
method leads to -a pair of second o_rder'coupled-equations;3’L+ for non-
degenerate states the coupling terms can be neglected -and the equations
can be -simplified, but-this is not the case for degenerate states.
"Mereover, this method is not very practical because it firstlaﬁproximates
the  electronic states, and this approximation .is then used to obtain the

nuclear states. But it can be assumed to a very good approximation that the



nuclei undergo‘harmonic vibrations only, so -that the'nuclear;states'are
completely known and so 1s the angular dependence:of the unperturbed
electronic states Eecause of the cylindrical symmetry of the nuclear Tield.

In this thesis, these two facts are used to construct trial sclutions
which are subsequently used to solve the Schroedinger equation by -a
variational procedure.

The Renner effect is a result of the coﬁpling between the electronic
and vibrational moetioms of theAlinearvmolecule.~'Spin effects‘are
neglected (see reference 3) as are the'rotational and translatibnal
motions of the molecule. Thus if N ‘is the total number.of electrons and'
N’ the tbtal number of nuclei, the number of co-ordinates needed .to
describe the problem is 3N+(3N'-6) for-.a nen-linear molecule or

3N+(3N(—5) for a linear molecule. "The (3NQ-6).or (3N‘-5) co-ordinates‘
are known as the normal co-ordinates of the nuclear vibrations. The
classical expression for the kinetic energy of the nuclei contéins.purely
quadratic terms in the time derivative of these normal co-ordinates;B
that is, if\sd is the &« th»normalﬂco-ordinate of - a molecule, then the
kinetic. energy is

2
T = -&: %; M « E;q 5

where My 1s a reduced mass associated with jL<‘(see'Chapter'I); similarly,
the potential energy contains the sum-of quadratié terms in :ix'.' d
if harmenic oscillations are considered.v

The set of-displacements,’or modes of vibration fix ) containsvfor
linear molecules displacements both.parallel-and perpendicular to the
molecular -axis. fThe first do not remove the symmetry -of the nuclear field,

-and hence their effect is merely to shift the energy levels; the second

do remove the degeneracy and cause the Renner splitting. . The latter are



called .degenerate vibrations and through them the nuclei have. angular
momentum directed .along the molecular-axis. Thus it is anticipated that
‘the projection of the total angular momentum along the axis will still
be conserved. 'That is, letting 2&' be the -nucleap angular momentum, with

4& =0, 41, #2, ... then
K= IA+21 =0, 1, 2,

characterizes states comprising the nuclear vibrations and electronic

motion, that is, the vibronic states..  Likewise, vibronic states are called

5,4,

states.

‘The theory devéloped is applicable to any linear molecule buf the
normal co-ordinates depend on the molecule in consideratign. -The :linear
'XYE molecule has been chosen as the subject of this thesis.: A similar
treatment can be given to any ether linear molecule if its normal
co-ordinates are used. ' The number -of nuclei does‘not matter. "In diatomic
molecules the cylindrical symmetry cannot be removed becausewvibrations
perpendicular to the axis are really rotations.  For triatomic molecules
there is only one degenerate mode of~vibration, while for molecules with
more than 3 atoms the;e are more than one degeneratelmode. *For example,
the acetyline molecule'CzHgfhas two“degenerate'modes;'however,‘each-mode
can be put in the calqulations and the Renner splitting of each can be
- studied.  In short, each molecule has a characteristic-set of normal

vibrations but the method remains the same for-all of them.



CHAPTER T

Normal Co-ordinates of the XYo Linear Molecule

ThewXYL linear molecule has four .nuclear degrees of‘freedom'so that four
co-ordinates are needed to describe its nuclear vibrations. Theselare
denoted by Sl,isea, Soy 83; they are illustrated in Figure 1. Sog and
Sop describe the degenerate mode and they cause the Renner splitting, whereas
57 and 83 do not remove the cylindrical symmetry.of the nuclear field.

- In Figure -1, the-Z axis is chesen-as the axis of the molecule; M; is

the mass of the Y atom, M2 that of the X atom. The atoms are labelled 1, 2, 3

from:left to right. The origin of the co-ordinate frame coincides with
the center of the X atom, that is, the center of mass of the nuclei which. is

approximately coincident with that of the -whole molecule.

“"Mode 1:
Since M; = M3, conservatien of linear momentum.requires the .displacement
of one Y atom to the right to be equdl to the displacement of the other'YAétom_

‘to the - left. ‘These displacements are denoted by +S; respectively.

Mode 2a (2b):
If +S,, (+#S5,) is the displacement of the X atom in the y(x) direction,

then again by conservation of linear momentum, each Y -atom must move

- M ‘
2w, Sea (S2v)-

‘Mode 3:

.If,+S3.is the displacement of atem X in the Z direction, then each Y atom

must move.-S3'¥g in the.Z direction.
2Ml
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Figure 1
The four normal modes of the Linear XYJ’ molecule.



- Let

then the total displacement of the XYo linear molecule .can be summarized as

in Chart T.

The nuclear kinetic energy is given by

Ta =\T'[-.M|(i'&‘\' v+ Z.‘u%) + Ma,(’i:'* Yz"“‘i';)'f' Ms (iaz+931+ i";' )J
= L S+ S+ Sy + ST,
+ My [Sap” + Saat + S3%)
£ M, LS + (@S (S, - S5
R+

. . : 3,
L (Sia +Sa?) + 4 ™3 S,

(T -1)

3

2 M,

3

m; = r/\; (|'+‘LL)

Similarly the potential energy is bilinear in'the.Cartesian»co-ordinates;

but by definition of the normal ce-ordinates,” it becomes
1, L 3 ) 2 -
\/ = —l£>\| S‘ +‘E>L(SI®+S‘lb) "|~‘fi>‘3 53 (I '2)

‘It is hereby assumed that the melecule executes simple harmonic oscillations
only.



X, = - %Slb Y = -(AS:ML Z|:‘51‘M53“€
Xy= SLL Yp= T "\Szo. 21—‘ '\'53
X3 = - WSQL Y3 . ,{,('Saa 233""5: ‘“53’1"@

Chart 1
The displacementTs of the Linear XYa molecule

tn bterms of Cts normal co-ordinateg

Note - QL s the eguCLCervm dL'sTan;e

between the y nuclec ( see chapter JI)
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CHAPTER 1II

Treatment of the Hamiltonian

The Hamiltonian of a system of N electrons and N' nuclei can be written
as :

H=Tet Ugg + T+ U+ U (11-1)
where

T is the electronic kinetic energy,

T~ is the nuclear kinetic energy,

is the Coulomb interaction between the nuclei,

U is the Coulomb interaction between the electrons,

=

is the Coulomb interaction between the electrons and nuclei.
The static approximation® will be used to separate the Hamiltonian (I1I-1),
i.e. it is assumed that the electrons are aensitive_Pnly to some equilibrium
configuration of the nuclei. In genéral, the equilibrium position varies
for each electronic state but for the molecule of interest, the linear XY,
molecule such as COp, CSg, this can be neglected. In other words, each electronic
state, except the ground state, is twosfold degenerate because the electrons see
a cylindrically symmetric field of the nuclei, and the equilibrium configuration
of the nuclei remains approximately the same for the first few electronic states.
The eigenstates of the unpetturbed Hamiltonian of the static approximation
are known; becaﬁse the electrong move in the cylindrically symmetric field
provided by the nuclei the azimuthal dependence of their eigenstates aré
known, and the eigeﬁstatesvof the nuclear motion are those of theisimple
harmonic oscillator. In the adiabatic approximation, the electrons follow

the motfon of the nuclei very closely rather than being sensitive to oﬁe



equilibrium configuration of the nuclei. (See reference & for a full
discussion.) In this latter approximatior the unperturbed eigenstates are
not known at all. Only Uhn‘and Une in (II-l) depend on the internuclear
separation Q. (Vector quantities will be denoted by a bar under the

quantity.) let

V(Q) = Umm ( @)+ Une (Q)

In the static approximation, one solves for

HQ(@__O)’O(C(Q_O)> = CTe + Vee + V(Qo)] ‘dé(@°)>

(I -2)
Eet (@) | (@0))

£

where {Qo , the equilibrium position of the nuclei is determined by solvin
= Yy g

He (@) |4 (@) )= Eer (Q) [0 (@D

and putting

Ee: () = 2Ea _ 4
a@- Ci:(_i_o - 9‘33 ’
The |oli( Qo)) are the degenerate electronic states arnd the Qo

dependence will be omitted henceforth. Since the { Qlo? are assumed to
be independent of the electronic states, which is a very good approximation
for the COp, CSp molecules, the |°‘L> form a complete set.

The nuclear Hamiltonian is

_ 2E .0 |
Hy = T + 3 ‘3@_:5@;“’%53- - (Ir-3)

Q =Q+ 92

Hu | 85> = Emj | 837
(Differential operators are written in their dyadic notation.) Agsin, Enj

depends on the electronic state in general but not for the COp, CS, linear

moelecules.



The interaction Hamiltonian is

2
Heo = V(Q)-V(Q) -4 SEEe. d3dg

Since the nuclear displacements JEL are much smaller than the equilibrium
nuclear separations and the distance from any electron to any nucleus, V’(@%)

can be expanded about CQo and

10

o= Y dg 4+l R Jgdg +oo - L 28a dgag . (T-9)

o Qo

3
Explicit expressions for :ﬁﬁ% and 155%;%: will now be .obtained

for linear molecules such as COp, CSp.

a) Expansion of Uy,

‘The explicit expression for Une is

t
ume = — & ‘Z_ = Y]
] vt ,LLL
where
3L'is the charge number on the i'th nucleus,
My is the distance between the i'th nucleus and the ith electron.
Since the vibration of each nucleus is smdll, T can be expanded about

the equilibrium position of each nucleus. - That is, retaining the co-ordinate
system chosen in Chapter I, and referring to Figure 1, let the equilibrium

position of the nuclei be

R A
nyo=-Ck, 3= 9, 2y = LK.
A
AR
¢ ith electron
jth,O)Q) b




/
Let RLL' be the position vector of the ith electron from the. equilibrium

position of the L'th nucleus. -Put

Q.R:L' =Ry = (Zi +,LL')|A< + f{,e

where
a = 2T My Yy |2 has dimension‘L_l
"‘-;F"" P/
(CL.has been introduced to have-all co-ordinates
dimensionles§>

‘fQLe.is the radial vector from the Z axis to the ith

electron.

The displacement of each nucleus from its equilibrium position is given by

’

a @ = Q

- Mg “ (G +4 )k

Q CQ; = QQ:

r t+ s G

@ @z @z M +(-gs) i

where the q's'are dimensionless normal co-ordinates analogous to the S's with
- A ~ n A
2= Feb 0t 9l = a(Saelt 5. 70)

‘The interaction potential is

)

2 \
-e %Z o | R —@ul

Unme

"i

'/ Regr. Q)
- _eta ;g__ ,_3}—[!--2 ==

2 -d
2 +(Q)] 2
Ry’ Reprt Ret!

, /
e g 2L [1-2 8
=-ea ¢ 7 Rect



1o o

.
k)
But (l -2z + 2 ) % 'is the generating function of the Legendre

‘p‘olynomials Pw (2) if

|2adz-221 | and [\M%H\Z"\J < |

cee 7

w0

Ce. (1makz+z) R oo & Pu(z) 47

wz:o

Since the displacement of the nuclei is much smaller -than the distance from

the ‘equilibrium position of the nuclei to the electrons,

Q<< Ry
and - ' "
Vo 2oea 22 B 2 P (el ) (2L
Let | | - | T
s et B B R (e @ ) (8E)7

‘The first few ‘Legendre polynomials Pw (2’) are

PO(Z) = 1
: %

P (z)
Po(z) = +(32"-1).

Thus,
(¢) 2 Jcy!
U'ne = -t G ;; Ret!

U:: _ _ez@v?_s[(e-%e)%r+(e+zc)—%’—3r] '] |
s (w2 e+ A 2~ w(lr2) 5]
+ [ -l + 2 10 g oo (4=
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where LP.,\ is the ayimuthsdl angle of ?2.

et
e%q§[4(€~2¢)%§ +((+z£)_f§_;%] N
% %[w(&-zd)%:—‘;+ _g_f? 2. - (P42 3: ] SN
(2 acamdf 4 (3 aont )t} 5 = Y
. X €
o e = 15
with
a. = ez@[%- M(%f.”*"r%ﬁi?)]f)'ff
Then

Ume == [NV g0 + 2 coo(We-¥n) g, + %Y 4,7 .

Ux:-ela%é%b‘&(m Res +l'—]JD ml(w‘{ w"‘)} %"

- e (Bt ;::ﬂww ot

W]

233 P& cvo (92 = 0n) @2
&{[wl(#- —'z ) pee *[zwu rD)t sl e

R
. [Zuj 2.-¢" (zetel")f( 3
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()
Alternatively, Ume can be written.as
) @ 2 @
U= -(E W00 g3+ £ 85 ), Gucooa(dem )+
AL G o0 (979 ) 4 MY 1 2 con(,- n)+ Moy coo(de"9) 9 23]

Where
{30 (e t i a0

2;{%: 3-!&%(73'3 4 ;?f!?)-t -E?-‘;] P oo -’Uﬂce}
A = {330 (Rt )+ ] 2 e 2R}
F {2 FD (Rt ) ) 2 e 200 P

+
?‘—
=
+
—
L—o

‘ta.n Qkpe':

ond SCMLLAAY for

| i @ @@ @) (2)
tO.h (‘Pcu) 't&h "Pg 2 'to.h‘-pe P >\.3 ) >\ N /\, 5 L 0 3 .

g; represents the interaction between the electrons and the nuclei fixed
(o) (°) -
at their egquilibrium pesition; L)me -+ LL““- = V ( Qo )
Thus, the electronic eigenstates l u(g( g&o)‘> are the degenerate states

of the electrons in the cylindricdlly symmetric field of the nuclei.

w
U

(¢9)
he and U, represent the interaction between the electrons and the dipole

and quadrupole moments of the nuclei respectively. "It has not been found
necessary to consider higher moments interaction.
The displacements ?, and ¢s do not remove the gylindricdl symmetry

~and they will be omitted; similarly the terms involving ?.%x and 22‘23 in

(1)

Une

will be omitted because these represent a coupling between the ¢, ( ¢s) and
Q. vibration with the electronic motion and will be considered a second

order effect. Thus
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Une = = %) g coo(de - @)

]

"-%i[}\(:j %:’*‘ >‘a:¢ %p}' Coo 2((0/"4)&»)3 .

b) Expansion of 'Unn

'Unn can be expanded similar te Une about the equilibrium position -of

each nucleus since the equilibrium -distance 46 between the atoms is much
greater than the displacements of the nuclei. Proceeding as in the case

of U__, one finds
ne

© 2
= €a 33 N |

U (l)

;ﬁ {-(Lgi FRBERR) G 032337 33:) B ]
8 - [0 g s 2 1)

Omitting the terms in ¢, -and @y

2

©
U, = O
. 2
(JQ) - - eta (+w) 3.3 %:l
c) Explicit expression for Hep
I . ) >‘("-) I 2 @)
. .Incorporating into 5 the coefficient of il from U, and alse
2 \
d_Ee: ,

09, 292

Hen = W Coo (e~ ) - (}‘(i) 72+ u. ?z 2(0,-4 ):’

(T-5)
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" CHAPTER 'IIT

Unperturbed ‘Bigenstates

From (II-2), (II-3), (II-5), the Hamiltonian is .
(III-1) N = Het H, + Hen |

where © (o)

H,= TetUce T Une T Umm

which contains the electronic co-ordinates and the equilibrium position of

the nuclei, and

| | ;VZEECL GFJ J
Ho= To+ 3 S@ow “F°F

In the Hamiltonian (III-1) the only terms that ‘we would'iike;to;fetgin-are
those that break the cylindrica;‘symmetry of the nﬁciéar*fieid; fhét is
terms that contain g% only; since the energy of the nuclgar*states:does.not
depend on the .electronic states for linear X¥» mqleculés;éuchlés»COQ,‘CSQ,

from (I<1) and (I-2),

(111-2) Ho = 2 (Sat +50™) + & 2o Saa + Sau”)

The.eigenstates of Hg rand Hj -are known -and will be diséussed presently.'

a) - Eigenstates of Hy

"Due to the culindrical symmetry of the nuclear field, the wave function
tLAY
€

of the electrons can be written as 7LA , and the states

+ : :
shall be represented simply as ,/\">’ .. Here it 1s assumed that when
+LAY

the electrons are rotated through an angle Lp , the symmetric (er

-vAY
-and antisymmetric ( )LA € ) wave functiens of the degenerate
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A LAY

electronic state transform like £ -and 2 respectively.
/\ ‘denotes the projection of the total electronic angular mementum.on the
7 axis and it will be used from now -on to characterize the energy- of the

electronic states, that is

(I11-3) Hel/\t> = Ee,\\/\t>

b) Eigenstates of Hj
The nuclear Hamiltonian is
| 2 ¢ £ 2 y
H'n =T = 77)1(5;& + 51b ) -+ Z >\a, (S:w."l’ S;b)
- 2 2
where }\2’_ 4Tr ’Y‘n& JJ:L
and U:. is the observed classical frequency of oscillation.

) 2,
S SRR
> 2

-where P.,,— is the momentum conjugate to Sq- » *In terms of the dimensionless

co—ordiné.tes 22& 5 ?zb s

Hon = f_‘_%f;_np_i."_-q- %,ml 4,2 ( Z:o,l-{» ?Lbl)
L :
E

.

By puttin 2l ana £ 2Ex
y putting  Pyz-i 5. =

becomes

(:__ (aa?; T ) + gm + 9! ] Y., Cr Y..



where \f.-,\ is the nuclear wave function. From the appendix where the

dolution te this equation is discussed,:

\Vm(%tq)?tb) = \"l‘,q( gz)-(ﬁw)-'.:— \P (f) ('p—w)

- and

(ITI-4) \F(P’@""): _[_\h,_ (_%)fqz Lj (P) e LA 2N

Vo

where JD - ?3}

c-4£ = Va;—e

E, = -ﬁﬂl(\laﬁ—l) 5 | \/Z'::O)ls L,
¥ V,

, Vi-2
. Ntm is a normalizing constant

Lg is the associated Laguerre polynomial.

Once again, the nuclear states will be denoted by l\];) ( t >
+ .
(er | T ) €15 ) and

(III-5) H,n | Va, 21) = Em.\l;, l Va, £i> »'

18

)ty 0.
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CHAPTER IV

Application of the Variational Principle

The Schroedinger-equation for a system of i electrons and i’ nuclei is

(N-1) NIY) = E 1Y)

where

7’( =He + Hn + Hem » from (III-1)

'The Hamiltonian }( operates in the Hilbert space of both the electrons
and the nuclei, and to denote this, the round ket,“l), has beken used.
The usual ket 1) denotes a state in the Hilbert space of ‘either the electrons,

or the nuclei, that is,

HC “\t> = Ee,\ {/\i>
HoalVa, €55 2 By [ Va, 2T

‘For the purpose of -applying the variational principle, the following notation

will be used:

ldc> - \/\(5) >

where the superscript (s) denotes the sign of /\. The one-to-one correspondence.

vetween X: and A’ may be made in the following menner:
Ly=toy, 5
[y = 1170 Ty = |17
|y 2 [2%) 5 L yilay

LX)

etec.
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Thus (III-3) becomes
(H"l) He\°ﬂ‘>= Eeb‘°<£> ) (‘,: O:'al)

and Eet = Ee(iu1) for each odd i.
similarly, | B;) = |V,, 255,
Again a one-to-one correspondence may be made in the following wey:
B> = 19055 |
(65 = 117> 5 1By = 117>
B:) = [ 2,275 5 164) = 12,05 o |Bs=(2,27);
ete.

- Bince .2 takes on the values Vg,”Ve-lg.rQ., 1 or O for each V,, the

2’
degeneracy for each nuclear state is easily seen to be (Vs+l) - fold, for

‘each value of’Eei.

Thus (III-S) becomes

(E"s) Hm[ﬁj) = Emjl 6)‘) ; ‘J. =0, 1, 2 K
and

Eny = Epp

'En3'=.Enh =.En5

Eng En7 = En8’='En9 3 ete.

The ‘<43>5“ |(35> -each form a complete orthonormal set in the Hilbert
space of the electrons and nuclei respectively, since for linear molecules
such as CO,, CSp the -equilibrium intermuclear distance is the same for all

electronic states and the nuclear energy 1s independent of the €lectronic state.
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Application of the variational principle to (IV-1) gives
JUYIHIY)-E(¥|¥)])=0 ; JE=O

It is now assumed that the |Y) can be synthesized from the () and

| 83 in the following manner:
|4 ) = SZ Ay [LeyX|By),
. c oy »

% aglg;)

"

| )

that is, | "Y) consists of g1l the possible linear combinations of the
electronic and vibrational states, and hence the secular determinant that
will result from . applying the variétional principle will be most genersl.

Proceeding to carry through the variational principle,

(YIHIlY)
‘ZZ—- QuJ C(VJ ("( &,leWLH +Hf“/\-‘d ﬂJ)

N

) L'
-Z 2_, a. ;A (_—_Eec, dic JJJ'+E""J OQ" ot HLLJ
wi bWy’
where = (L] Heml e 'gJ)
(Yi¥)= 22 43 “"Jw %0’

Therefoce
(YIHIY)-E(YIY)
=z 5 Al a,,[H‘“,+ (Eei+Eny - £)dip dj 0]

iy L ;J

ZZ QLJ aLJ ,:I AE¢J‘ J"’",JTJJ']

"JJ V:J

11

\Nherc AECJ: tv-Etﬁ"EmJ .



*

Applying a variation with respect to O,w

Y
. LA = . = .
z, Ay [HJ‘J' AE i JJJ’_J =0
te)

. -
TR 1]
o O
As

In order to solve for the CILU’ s
! — . . —
@-4) | Hj—2Egpd,] =0

i=0, 1, 2,

J=0,1,72,
i=20,1, 2,
J=20,1, 2,

From the determinant (IV-4) all the infommation about the vibronic

states of the linear molecules such as COp, CSy can be obtained. ' However,
v/

. ; : L
only seme of the matrix elements H jy are non-vanishing, and before
analyzing the determinant (IV-M) the values of the non-vanishing matrix
f

L
elements H j

I will have to be found.

v

rS

t
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CHAPTER V

‘Non-vanishing Matrix Elements

From-(II-5), the interaction Hamiltonian is

He =~ )\(:x) %z <o (‘/e’kp% 'L[:)\(-u %2} -+ >‘-(ZL£ %1-2, e ‘,?, ( (‘pe,l' \ﬂ—m)

The electronic states contain the angle Lf as defined inChaptLr I1T

Part (a). Putting
— ’ /
‘(‘\0{,'{‘@

the angular matrix element of the first term in Hen becomes

- LAV N AT/ A LY.
Je ‘e o (h-0) e "N e A LD

/ .
The subscript e in (Pq'will be omitted from now en -and QQ_ will alsoe be put
equal te (p

=
Substituting ?2- = JO , equation (II-5) becomes

G Herm 2 % com0-02) -5 D p 4 0L o e 2(4-44]

v

UL .
The angular part of the matrix elements ’4 JU', can be obtained from

the following integral:
I AT

@_l) , :@lﬂ* SS e-cmve-cwm{ coo (Y- “Pﬂ)] »A~P ce (’Mo(lpo(‘ﬁ

with A, 4, A, ¢

taking on both positive and negative integral values

The radial matrix elements in the Hilbert space -of the nuclel are of the

following type:

e |
@ Ceelpfeeys [ p T g L) Liip) 2p

(o]

with @, T, L2

always taking on positive integral values.



‘In both (V-2) and (V-3) n is a positive multiple of 3. The value 2n
(w) !
corresponds to W/ -in u'ne . No matter what W is, /—/ J'J" always

contains products of (V-2) and (V-3) X C(/\ A where

e Cg,\:N
Crf\-/\"{o 4 NEA

Thus, the evaluation of (V-2), (V-3) allows one to go to any order to
@)

approximation in U’ne. -1f 1t 1s necessary.

2k
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a) Angular part of matrix elements.

It 1s quite easy to see which of the matrix'elements‘(V—E):are non-

vanishing.
2T 3 . ’
| (AN ey m
6‘:@;5{6 : € M&)Oz (‘/-Lﬂw)d&/dt/"‘
o o
But 2
. (Y= —C(P- ¥ i
ow"(CP—ti)=[‘€ )+e i )]
| 2
% C(U-¥a) 723V ~e(Y-¥n )1V
- L 2 [e J ["' -] |
4™ =0
| am L(AMm-2 )Y~ (2m=2+) Y
v=o
Therefore

2m U N=A - - ~ (-4 am ~ 2-) Yny
l ‘L('\ A 27’("’1 )‘p = )
e = (WJS Z £ £ d ¢,

- ] ‘
"4_4\ f A-A'-2n T€-L'4m * A=A'<23mi+2 J€—C’+.l-n-1

| et JA_A,_,M Se-e'o i ;

Hence, .from the -angular part, the sele@tion. rules for the non-vanishing matrix

elements are the following:

AA =dn ; A =--am simultaneously

oo AA= Am=-2 5 BE€=-2m+2 v

or ) A/\: Q‘Yt‘.qb.) Ae:‘2%+4 o



or 13 A ~ 2 2 } A £ =

At

or AN -2 } Af€-= ;Zﬁn

~As a particular case, for'n;%, that

nuclei,
(1) A A= AL = |
R A

But for the .lowest degenerate electronic state, that is

nuclear state,- that is 2 =1, in.order

hAé=t

lowest degenerate
vanishing off-diagonal elements, AA=E & -and
shown in Chapter VI, where the matrix is written in full:.) -
order, dipole displacementsbdo not contribute toe the Renner
would be natural to go on to second order_éorreétion'to the
cif it is assumed :that the difference between the electronic
much greater than that between-the vibrational levels, then
contribution is negligible.
For n=1, that is, for quadrupole displacements,

AA=z -A€ =

!

»)

(V-5)

or

or

26

simultaneously

.on

is, "dipole displacement of the

simultaneously

‘1, rand for the

toe ‘have non-

2

Thus to ‘first

(This is
splitting. It

dipole term but
energy -levels is

the second -order

‘simultaneously

~and hence these elements will contribute to the Renner 'splitting.

- In general, by whatever amount the electronic angular momentum changes,

the nuclear angular momentum -alse changes by ‘that amount, but in the opposite
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direction. This means that the projection of the angular momentum along the
axis 1s always conserved even after the -interaction is turned on. That is,
whatever angular momentum the .electrons lose; the nuclei gain, and vice-versa,

so that it is always meaningful to talk of Z_ s TT», A ... states.
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b) Radial matrix elements.

‘The non-vanishing radial matrix elements (V- 3),

(dﬂ?(ﬁ"‘[@'@'):je'ﬁjo"L(Hel)ﬁml_ (p) L /o)

can be found from the generating function .ef the Laguerre polynomials given

in the appendix; that is

| _L O-\e ,NI O_,/‘el
d-eq=e' €' 0" Nge Npg < “P ’

=?Jf%%%ﬁ%ﬂ”%wﬁm ﬂeﬁfﬂwég

The proéedure»is to ‘integrate over ‘F in the right hand side, expand the

remaining form in ( u,uf ) and compére coefficients with the left hand side.

. 'The right hand side

s m L(2+€)
=i2”ww w.fw% AP VT NP

Using the definition of the r_ -function,
m -1 ~X .
?X < = o,
o

the right hand side

T / ' /
RV Y 2%)
T2 (1-u) o) € w w’ &4 L4
(=) (-«) (:l-u( t ,..u""’J *
€+€' ot I
| £4+8
-1 r(n+l+a+/)

()”‘“<M£emwtmp“w”



Using the expansion

V8 S r(k4g) ¢
(=K %=0 F(‘z)r(émx

which is valid for-all g, the right hand side

N o ! l |
22 22 O utw® aega g T EeEeke) ()
fzo »=0 y'=0 X r('nf%-*f;'-fl)l_(k*’)
/
(TUEEmne) op(fe )
F(E- &)l C (&=L -m)r(v'+)
v o+~ 4

=2 L2 f(kae) wtt '

_(—|)e'fi r(—nf.l(.'.%’ﬁ—(eﬂ) r(% L-n+v) r( .._—-.7, +u')
* k1) T(R-L-n)r(vt) T(g-%-m) T12'+0)

Putting L+ k+P = 0 0lapr+r’ = '

the roght hand side

~r

ob ob o0 0‘-6
But Z_ Z_ - Z
k=0 Tro+b r=é k=0

Thus the right hand side

o G- o '

55 ket e ) uw

§x¢ ko g:e'+ b
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. . . : !
A similar relation holds for ( 0= £ )and ( 0 - ¢! ) interchanged, depending

on which is smaller. - Therefore. the right hand side
WAL
M(W"(')

S ETET e0-tt ct-)u

re €3¢ feo

i

-Comparing polynomials with the left hé.nd side,
(Y-¢) <oelprlate'y
{361)

= Nr{ Ncblu (Q‘-H) r "f" Z_ ’6(“&7 e-£- & Tl-e'- k)

£+¢! )
= Nre N@vltov” F(f+ﬂ r(
* F(%-,‘{*'-“)F(%-% ")
Pt Lt ahr))T(o-fon-2-g ) [(¢-R-n-£-2)
k=0 Flk+t) F(o-€-f+)) CLO-€-FR+1)

In order to see which matrix elements wvanish, only those r functions

X

.y

" whose argument may be negative have to be considered, that is

. (¢-e

T r(ekem- g4 M0k £ - 2)
RO r(%-4¢-m) T(E-F-m)

m(¢ ¢) r(¢—€~k-%+%-%) r(m'_eg{%”_m—é.p%/)

h*"" | r(-m+4%£-£) r(-n-£+%4)

‘Since -0~ k 7 0 and ' -e'- R 70 , then
for —n + & > @) ~and
-m-&+& >0
there are no non-vanishing elements. However, if either of the last two
mentioned terms are zero or negative, the -argumenfcs of the r function
appearing in the denominator are zero or negative, and the arguments of the

r function appearing in the numerator are greater than zero, then there
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are vanishing elements. That is, in order-te have no non-vanishing elements,

if ¢‘64r'"{l s then fl‘f"r‘{-ﬂ‘%‘% £0

/
o C-C-%5+% (m |

/
it ¢-€'¢-4€ Lten C-C'-%+4& <M
or —(0’""'*%'1'%)&71‘
Th 3 ( - 1___(; /
at 1s m oy | -0 -5+ 5|

(V-7) ¢! 2
and = 1N+ % )" n-x+t 7 are zero or negative integers.

Since ‘the selection rules for A€  are known from the treatment of the
™
~angular ‘dependence, the selection -rules for A T can be found from (V-7).

- For -example, for n:%- 5 AL = =+ |

For L'-€ = r€=+1,

32 |-+ |

Therefore d=¢ : or T = T+ '

In terms of the 'V2-.'s,

AC =0 gives AOVa = —|
AT =+]  es  AVaz +|
For L' - = Al -],
Ty o' -2l
Therefore C'= € ocr €' €=\

or A\)Q:+‘ D A\llé"\
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"For n=1, the selection rules on 2 --are

ALz 0, T2,

For ¢'=¢, I 2 lf'f'l

Therefore (@ '= - which gives ANa = =2
or _ 0" = O -which gives ANa = O
.or f, =+ which gives 4 \Il =t
For 4't €43 , | ) |C-C'+I]|
Therefore T's ¢ ~which gives DNy =2 -2
or €' =0+l  which gives ANy =0
or ¢' Tt which gi:v.es A \jl, =t 4
fe 45452, 5 | Ceoi])

Again C'=C which gives ANa =+
or C':=c-1 -which gives ANy = O
or T': -2 which gives ANy = =2

In summary, the selection rules for the non-vanishing matrix elements of
the dipele and quadrupole displacement of the nuclei are given in Table I.
The non-vanishing matrix elements of- (V=3) have been given in the lxiterature8;
although the selection rules given in Table 'ljwere not stated, the matrix

elements that were calculated do conform with the selection rules given -in

Table 1.



selection

yj AL = + | ) AN = —|
roles for
n:.-'x, or AN, = -| b A€ - +| ) A A= -1
Lor dCPD,Lﬁ AV-L:. + 1 J) A,Q_—_——-, 5 A/\:+I
displacements
of the nucleg AN, =~ ) /_\Z:—| 5 AA =+
selLectinn AN, = 0 A €= O) AN O
rules ‘Cor A N = l,) AQIO) DA =0
n=| AVL:‘),) Al = O AN =0
Orf) 'Pn\' A\J'z"o ) D e :+Q) A/\ :‘_z
w2, Ae=
%uadrv‘:oLe ANy ? ¢ + <) A A L
d(:SPLOhCemQ‘nts AVL‘-Q) Ae. :+l) A/\“l
of the AVy=0, Ac2:-2 AAz 2
nvelel ANL=2 ), AL=- AA=42
ANy=-2, AL=-2 AA=t2
Table I

33
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¢) Evaluation of radial matrix elements.

The actual values of the non-vaﬁishing matrix elements (V-6) can be
worked out by direct substitution. A few cases, to show how this calculation
goes, will be worked .out shortly, and all other cases pertaining to nz%, 1
will be tabulated in Tables II, III. These matrix elements were calculated
by Schaffer‘g,'however, he did not state at all the general selection rule
(V-7), nor did he give the general formula'(V—6) for any radial matrix
element. |

From (V-6),

(a@[ pMeer = Nog Newg- ()47 (o) P LE+1)
T F(&E-) (&)
FlotL4Lve+) C(C-€-b-n - LE)M(T'--k-n+ &F)
® F(T-B~R+1) (- =% +1)
- Example 1.

R b ‘o p_
m==<; C=o-l, L'z L~

‘Therefore ¢g'-¢' = ¢-¢€

(OFHEL Y = Nog N QU2 TLOH)TLE) 5 T (fe1vg) F(0-0-k) T(0-€-R =1)
2 reIrtn g r(R+) rleC-k A1) T{C-E-& +1)
k¥ can take the value of ¢g-4£ only.

<o) pE[ee'> = Nog Nerpo ()5 ECOH) M) Mleti) F(0) (=)
2 Feo) ml=1) r(e=e+r(i)r()

- z(w-c)!r[(r‘-e)!r )2 (@) (=1

= -¢*
Example 2% ’n:—li )' r’:r }l'=—€-l '
Therefore Al=-1, GhC'F c- €+ |

€
(se|p16'e'y = Ngy Ny (-.)N-; r(c+1) I (6+) Z_ F(0-€-&)F(6-€-R)T(€+R+1)
2 M(0) M(=1) pro F(€-€-k#)T(-L-R$2) Mk +1)
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Again k can only be ¢ =€ .

<re) st ieey = l[(m—e)l] t[(r—“” !JQ X enfel) g

(1)’ ()73 2 FO)T() (¢!
- [w-mm-m).gi

(@-¢)!
= (r-€¢+1)E |

The non-vanishing radial elements for nz—é-, n=1 are given in Tables II
and ITII respectively. The values given -in the tables agree with those given

by Schaffer (reference ®).
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¢’ (me(ﬁt{o”,e') :<Vl2[ml\/2’€’> Vo | €
r |e- (-4 —H)'z = [1’3-_5—6-+IJJ£ Nt 2 -
c+1 | {41 ~(G‘+|)Ji = —[Yl'—'%{‘rl]i Vo4 L +4]
-1 | £-1 = -[Vﬂ“f E: Vo1 [ €1
L &Y (C-¢) T :[ ,_-é V-t | €1
Table TU

o | 0| eelplcey =Nl | e
c | ¢ (ar-¢+1) = Vy + 1 N, | £
T R e e L N T I
12 ~ GEOEED I L (el (72 +:)]% V2 012
o1 | exal-flesrikeeny 3] o et ny e oy v, foay
¢ |etafesiees )]k =l 7o)z gl ety
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CHAPTER VI

Discussion of the Secular Equation

Having found the selection rules for the non-vanishing matrix -elements,
-and their values, it is now possible to write out the entire matrix
corresponding to the determinant '.(IV-LL)_, and to disgonalize -it. Since only

-two terms in the expansion of Une were retained, the TT and A electronic

states will be considered; £ will be given the values of 0-and 1.

The notation used in -this chapter is the followings

Cxal = Mol Xnd = Daw

2 d
QX/\\‘ .z‘:_jv)_lll\» = G»/\/\’

2 "
C¥al - %(")*[ Xnp = am:(’
X

The X.,\ were -introduced in equation '(III'-Q),

The full matrix, showing the non-vanishing matrix elements, is given
on page 38. The label of each row or column is (A , e s ﬁhe symbol o
‘indicates a non-vanishing dipole element ant:l the % -a -quadrupole element.
The diagonal non-vanishing quadrupole element. The diagonal non-vanishing
quadrupole elemerﬁ;s have been"left out.

The same matrix is given -again on page 39., with the rows and columns
rearranged. In both matrices

E vy T Eeo + E«\j

-Some ‘obvious facts can be ‘immediately seen from the latter form of the matrix.
They are-the followings:
1) the entire matrix can be grouped ‘into submatrices, -each sub-matrix bei-ng

characterized by the value of lK\ = l Ateée l _
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ol €| |4 q
o-l E,, d 1 |2
10 d| |E, o
N E., ol |
(-t| d EJ |¢
-1 0 d EoJ | d
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39



Lo

That is, it can be broken up.-as followss

K:o

A
3]
—

""Moreover, the submatrix for K = +1 is identical te that for K = -1, and that

for K=2 is identical to that for K =.-2, etc. That this subdivision is possible

is a result of -the generdal splection rules given .in table 1

of Chapter V, and it will always occur, no matter what the approximation is.
2) If higher order terms in the Hamiltonian-were considered, then it would

be more obvious that each of the -above submatrices could be re-arranged

in the following manner:

A=0,2 N =
Quadrupole | dipole
terms | terms
K=0 - _—— = = —_— = -
dipole | quadrupole
terms | terms

i
The terms in the upper left corner matrix represent mixing due to gquadrupole
interaction between Ei and A electronic states, and these would be
very much negligible comp;red_to the dipele terms. 'But, the lower right

submatrix gives the Renner splitting of the degenerate states.



‘The other submatrices take on similar shape, and the meaning of each

term can be similarly read from it.

higher approximations are considered.

Of course, this is obvious only when

b1



a) K=0
In the approximation made, the Renner splitting for the electronic

TT state can be obtained and this is found from the submatrix in which

K = 0, which is

o
EwMuﬁQJ’f, =% Do
- LD, Fo t 24442 Q1

: wd ' -
L Dy T Q) Fei+ 245 +2q%

Performing . a unitary transformation by the matrix

the matrix for K=0 becomes

VEQQ +a'yl.+ ng O » = _?-'ofl'
0 Eoi+adut @l +1 ! o
- 12 ' wel
\]-_3:— O ECI+Q£4+Q||'IQ\|

Thus the Renner splitting of the vibronic state characterized by /\ =1,
£=13= Ny is

d
@Z‘H



Moreover the energy values of the states

/\=€=O

-and

/\:{:l

are

| d
£x L {[Botb+34u 0 -+ @] +

'n. < 4
'HEQQ‘Eel"K—y;'f'QDdD-Q'dl+JiQ||‘() + Q.‘DOI’RJQIZ
£.= Eo +aku +a% +3 an

t3 = JS'C s[Eu tEei t+ 3&#; +Q:§ -Ji Q‘nd] -

CCur ot s8-8 4470 2158

L3



b) K=1

The matrix for K = 1 is

Eoothb+2Q5% 75 Do, LR

f‘m D\o Ecu'f‘(p&'f'Q‘.t. - '42 D:u

d

_'i Q“d "";: Dia | Eea tR2FH12ARa,

20

This matrix will give the corrected energy values to the vibronic states for

which

A=0, €=/ 3§
AN=( ,€=0,
/\:2')8:'

The dipole term Dp; mixes the electronic 2 and T states and Dpojmixes

B} ol
the electronic TT and A states, whereas the quadrupole term R0

~d
the Z. and A -states; hence Q;o can be neglected compared to the

mixes

)
dipole terms, -and this is even more obvious from the expressions >\

2 and
(a) . ) . :
>\“‘ “given -in Chapter II. >‘a, occurs in the expression for D a’ and
. o | >\(°~) o nd
it contains terms of the order of ?2—::5' , Whereas 22 occurring in Q/\AI
- : (]
contains terms of the order of ! :
Riu
The matrix for K = 1 becomes
Eeo +2£}’L+:\ Qﬁo vz DOI ®)
- =
7va Doy Ee.‘f(yz‘f‘ﬁzﬁ "Ji Day
4
(o) ‘QD;,. Ee;,‘f‘l&ug,-/';l Q:(Q_

The eigenvalues of this matrix are the roets of a cubic equation which will

be called Ep, E5 and Eg.

Ly



c) K=2
The matrix for K =2 is
- |
Ee, -!-QKJ)&-{-Q,Q,# - = Dn-‘c

' - d
'3‘: D:Ll tea+*€ﬂa+(32:a,

which will give-the corrected energy values of -the vibronic states
A=l L= . A= 2 £=0

) J )
given by '

t, :é: {(Eu +Eex+2£p%+2 Q"‘( + Qi) —+
-2 [(E"‘E*z%hﬂa‘.".— ozi)lw“lb.zlj{)]
E& :E','f('Eq‘f‘Eez"",}&pa-{-QQr\l* Q:i) -

|
E(E-ey’t‘..:ez ‘f’ZJ‘z'f QQS('Q:*& )2,+ l‘D”'I IJT}

L5



4) K =3 _

For this case, the matrix element is Jjust Eez T2 {Vz + 2 @,ftt s
- which is just the energy value of the vibronic statel\ =2, 4.-= 1l with a
slight corfection‘to it. In the aéproximation made, the splitting of this

state could not be obtained.

L6
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Summarys:
"The result .of -all the calculations can best be seen-in an energy diagram.
" Diagram 1 on the following page gives the unperturbed'energy levels and'Diagrém
‘2 the corrected levels. The arrows indicate allowed transitions. Neither
diagrams-are drawn to scale because the energy velues are not known.
The measurable quantities are
'1) the Renner splitting of the —TT‘ state, that is Ep -'E3
2) the relative intensities of the five transition lines given. (These
ol o

_ : d a
can be obtained in terms of the six parameters QOO ”Qll 5 Q;l 4 Q22 s

D ,,and D since the eigenvalues of the matrices for K = 0, 1, 2 are

0l 12

given; from these eigenvalues it is possible to construct the unitary matrices
‘that will diagonalize the matrices for K = 0, 1, 2.)
Thus it has been possible to obtain for the linear"XY2 molecule such as
COp, and CS, an explicit expression of the Renner splitting of the electronic
11‘ state and the relative intensities of the spectral lines between the :i 5

TT , and A electronic states in terms of six parameters.
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APPENDIX

Associated Laguerre Polynomials

The wave equation for +% ( %-zq,) 8;5 ) is, from Chapter III,

Part (b),
(B~ (}(5%; % >1~ ?m + zzb - {] ¥, =0

In polar co-ordinates ( ?1,(ﬂ¢J defined by

equation (A-1) becomes

2,
(v& 038 5 vle-g) ] ¥ e
(The subscripts n on Lﬁﬂ and 2 on iﬂk will be omitted in this appendix. )
*J is separable into
R(g) &(v)

-and @(kp) :A_\)'_;L__? -e'l‘be(p

-with.l =0, 1, 2 .... , a positive integer. The radial function R satisfies
(¢j+:;¢+g ¢ .fi)RtO

Puttin g ? - ?7' %
¢ R(g)= < "*F(g)

F(q) satisfies
2 2 -
+(_'__;¢%)dd; + (f‘l’ﬁx)] F=O
e 1 g %
In trying to find a power series solution, it is convenient to put

Flg)=g%4(g)
[d‘ e L -297 4 +(£ 2¢- z)]{ ©

-and
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In terms of the variable jo = ?"“

4(9)= 9(»)

[Paistermp)s £ (emae-n ] g =

- A power series solution gives

é - &(\Ia_""l)
with Vak: 0, 1, 2, | |
2=\/2)\/l—3,)\/l-—4')-",lmo‘

" Thus tR_ - {pa {
&

‘or (‘Q‘Q«) EA - 'ﬁul (Vl'f")

‘The equation for 9 can be written as

[f_.«w»(@'ﬂ P)L+(<T e]]g =0

with T-¢ = Va-¢€
A

or T = Na + €
A

2
which is the equation .of the associated Laguerre polynomials L T (/D) 3

9(p)= L% (p)

Rv‘le(‘g)= Ree (P)
= Nee € P l—d{: ()

The generating function of the Laguerre polynomials is given by

U(f)“):éz Le (p) %‘,“ |
:(—u)«‘? [%(%fﬁ)] (l_i)z-ﬂ

Thus

(A-3)




The normalizing factor Nq‘e is found to be

L
Na‘.e: Va (f—e)!] *

(cr.‘)3
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