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THE DISTRIBUTION FUNCTIONS FOR 
IMPURITY STATES IN SEMICONDUCTORS 

ABSTRACT 

For a monovalent donor impurity in a semiconductor, 
the number of electrons that can be bound to an impurity 
site is either zero or one. The one bound electron can 
have either direction of spin. For the discussion of 
the occupancy of such bound states, one does not apply 
the usual Fermi-Dirac st a t i s t i c s . A new derivation of 
the electron distribution function is presented in terms 
of creation and annihilation operators and the 
appropriate projection operators for the case of no 
interaction with the phonons. With the use of double-
time temperature-dependent Green's Functions, the 
electron and phonon distribution functions are derived 
when there is interaction between the bound electron 
and phonons. 

Under certain circumstances, one can speak of a 
quasi-particle spectrum and the distribution functions 
have the same form as the interaction-free case but with 
renormalized energies, which are temperature dependent. 
The temperature dependence of the distribution functions 
is then two-fold; one, the usual, statistical, dependence, 
the other due to the temperature dependence of the 
energies themselves. The latter quantity requires 
detailed knowledge of the wave-function, the interaction 
potential, and energy spectrum of the donor impurity. 
An application i s made to phosphorus donors in silicon. 
The shifts in the energy levels are found to be small. 
The agreement with experiment is not completely 
satisfactory. 
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ABSTRACT 
CHEUK YIN CHEUNG. THE DISTRIBUTION FUNCTION FOR IMPURITY STATES IN 

SEMICONDUCTORS. 

For a monovalent donor impurity i n a semiconductor, 

the number of electrons that can be bound to an impurity s i t e 

i s e i t h e r zero or one. The one bound electron can have eithe r 

d i r e c t i o n of spin. For the discussion of the occupancy of 

such bound states, one does not apply the usual Fermi-Dirac 

s t a t i s t i c s . A new derivation of the electron d i s t r i b u t i o n 

function i s presented i n terms of creation and a n n i h i l a t i o n 

operators and the appropiate projection operators for the case 

of no i n t e r a c t i o n with the phonons. With the use of double-

time temperature-dependent Green's Functions, the electron and 

phonon d i s t r i b u t i o n functions are derived when there i s 

i n t e r a c t i o n between the bound electron and phonons. 

Under c e r t a i n circumstances, one can speak of a 

qu a s i - p a r t i c l e spectrum and the d i s t r i b u t i o n functions have 

the same form as the in t e r a c t i o n - f r e e case but with renormal-

ized energies, which are temperature dependent. The 

temperature dependence of the d i s t r i b u t i o n functions i s then 

two-fold; one, the usual s t a t i s t i c a l dependence, the other due 

to the temperature dependence of the energies themselves. The 

l a t t e r quantity requires d e t a i l e d knowledge of the wave-

function, the i n t e r a c t i o n p o t e n t i a l , and energy spectrum of 

the donor impurity. An a p p l i c a t i o n i s made to phosphorus 

donors i n s i l i c o n . The s h i f t s i n the energy l e v e l s are found 

to be small. The agreement with experiment i s not completely 

s a t i s f a c t o r y . R o b e r t B a r r i e 
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1 
CHAPTER I : INTRODUCTION 

In a valence semiconductor, such as s i l i c o n or germanium, 

the e l e c t r o n i c structure i s such that at absolute zero temperature, 

the ent i r e valence band i s f i l l e d while the conduction band, which 

i s separated from the valence band by a forbidden energy gap of 

about 1 ev, i s completely empty. No e l e c t r i c a l conduction can be 

observed when the c r y s t a l i s subjected to an applied e l e c t r i c 

f i e l d . At high enough temperature, however, an electron can be 

thermally excited into the conduction band from the valence band 

where a hole i s consequently l e f t behind. When t h i s happens, an 

e l e c t r i c current would be produced with the a p p l i c a t i o n of an 

e l e c t r i c f i e l d . 

If a s u b s t i t u t i o n a l atom of a group V element i s introduced 

into the c r y s t a l , four of the f i v e outer electrons are engaged i n 

bonding the impurity atom to the c r y s t a l l a t t i c e . The excess 

electron i s , at low temperature, bound to the impurity atom v i a 

a Coulomb-like p o t e n t i a l . The eigenstates of t h i s electron i n the 

r i g i d l a t t i c e can be obtained by solving a hydrogen-like Schroedinger 

equation with two modifications (Kohn and Luttinger 1955). The 

s c a l a r mass of the electron i s replaced by an e f f e c t i v e mass tensor 

whose p a r t i c u l a r form depends on the d e t a i l s of the band structure. 

Also the p o t e n t i a l - % i s replaced by a weaker f i e l d ~/£>i where 

£, i s the d»Electric constant of the host l a t t i c e . One expects 

therefore a whole spectrum of excited states as well as the ground 

state, corresponding to the spectrum of the hydrogen atom. That 

such excited states e x i s t i s well confirmed by o p t i c a l absorption 

experiments (Burstein, B e l l , Davisson and Lax 1953, Hrostowski 

and Kaiser 1957, Bichard and G i l e s 1962). These donor states, as 
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they are c a l l e d , are l o c a l i z e d at the impurity s i t e and they 

l i e i n the forbidden energy gap j u s t below the conduction 

band. An electron occupying one of these states can be 

excited into the conduction band with a small expenditure of 

energy (~ 1/10 of the width of the energy gap). Hence, at 

a l l but the highest temperature, i t i s these electrons 

donated by impurities that dominate the e l e c t r i c a l properties 

of semiconductors. 

If the s u b s t i t u t i o n a l atom had been a Group III 

element, then " acceptor " l e v e l s would have been produced 

j u s t above the valence band. An electron near the top of the 

valence band can be excited thermally into these l e v e l s (hence, 

acceptor l e v e l s ) # A hole would have been l e f t behind i n the 

valence band and i s responsible for e l e c t r i c a l conduction. 

These shallow impurity states (donor and acceptor) 

have been discussed extensively i n a review a r t i c l e by Kohn 

(1957). 

In discussing physical properties of impure semi

conductors, i t i s of i n t e r e s t to know the occupation prob

a b i l i t i e s of these impure l e v e l s at any given temperature T. 

The usual Fermi-Dirac d i s t r i b u t i o n which describes the 

electron d i s t r i b u t i o n i n the conduction band i s not applicable 

to the impurity states. This i s due to the fa c t that only 

one electron can be bound to any one impurity s i t e even though 

other electrons may be avail a b l e for binding. The correct 

expression f o r the electron d i s t r i b u t i o n function for these 



3 

impurity states has been obtained by many authors i n many ways. 

It i s the purpose of t h i s thesis to present a new 

-approach, based on the use of creation and a n n i h i l a t i o n operators, 

projection operators, and double-time temperature-dependent 

Green's Functions which are the appropiate generalization of 

the concept of c o r r e l a t i o n functions (Zubarov 1960). This 

approach enables one to take account of the e f f e c t of electron-

phonon i n t e r a c t i o n i n a natural manner. 

In Chapter II, the system of in t e r e s t w i l l be d i s 

cussed i n more d e t a i l and the required projection operators 

w i l l be introduced. The general procedure for obtaining the 

electron d i s t r i b u t i o n function v i a the Green's Function method 

w i l l be outlined. The case of no i n t e r a c t i o n between electron 

and phonons w i l l be treated as a t r i v i a l example to obtain the 

already well-known r e s u l t . F i n a l l y , the e f f e c t of elect r o n -

phonon i n t e r a c t i o n i s discussed i n d e t a i l . The phonon d i s 

t r i b u t i o n function i s only b r i e f l y discussed since the t r e a t 

ment p a r a l l e l s that for the electron d i s t r i b u t i o n function. 

In Chapter II I , we discuss the correction to the 

Elementary combinatorial analysis, Wilson (1953); Minimizing 

the free energy, Mott and Gurney (1948) and Landsberg (1952); 

Absolute a c t i v i t y , Guggenheim (1952); Mass action law, Rose 

(1957). See also Shifrin(1944) and Weinreich (1965) for the 

i n c l u s i o n of excited states. 
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effective-mass approximation due to electron-phonon in t e r a c t i o n , 

and the temperature dependence i n the s h i f t s of the energy l e v e l s . 

The theory i s applied to phosphorus donors i n s i l i c o n for which 

experimental r e s u l t s are a v a i l b l e (Aggarwal and Ramdas 1965, 

White and Bichard 1966). 

The f i n a l chapter w i l l be a summary of r e s u l t s and 

conclusions. 
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CHAPTER II : DISTRIBUTION FUNCTIONS 

1. Model System and the Hamiltonian 

The donor impurity i s considered as a system capable 

of l o s i n g i t s bound electron to the surrounding medium i n which 

case the electron i s ejected into the conduction band, i . e . the 

impurity i s ionized. Conversely, an electron can be captured 

by the ionized impurity into some bound state to form a neutral 

atom. In other words, we have a system co n s i s t i n g of impurity 

s i t e s i n thermal equilibrium at temperature T with a p a r t i c l e 

r e s e r v o i r . We s h a l l consider the concentration of impurities 

to be s u f f i c i e n t l y small that one can consider j u s t a single 

impurity embedded i n the host c r y s t a l l a t t i c e . 

For such a system, we write the following Hamiltonian 

(Nishikawa and Barrie 1963): 

H = H e + H p h + He-ph' 

H e ~ L ^ EA. aA.s a\s' 

H p n= I. C J ~ bqbq, 
Cj 

The f i r s t term H e i s the Hamiltonian of the bound 

electron i n the r i g i d l a t t i c e fixed at the equilibrium position 

that the l a t t i c e would have i n the absence of the electron. a ^ s 

and a ^ s are the creation and a n n i h i l a t i o n operators f o r an e l e c 

tron i n the impurity state s p e c i f i e d by the energy E, and 

(2.1) 

(2.2a) 

(2.2b) 

(2.2c) 
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and spin s. The second term H p n i s the Hamiltonian for the 

l a t t i c e v i b r a t i o n a l modes centred about the above-mentioned 

equilibrium position, b i and b̂ > are the corresponding 

creation and a n n i h i l a t i o n operators for a phonon of energy 

and wave-number vector ~q. 

These operators s a t i s f y the usual anti-commutation 

and commutation r e l a t i o n s : 

L aXs» a ^ s ] + = [ a l s> ° ' 

tx8» ^ x ' i s ' , 

(2.3) [ b ^ , t ^ ] _ - [ ^ , b ^ _ = 0 , 

[ > ' b ^ l = [ ^ S ' b { ] _ = [ a X s ' b 1 q ] / [ a i s ' k } ' 0 ' 

where | \ A , B ] + = A B + I B A . 

The l a s t term H e_p n i s the electron-phonon i n t e r a c t i o n 

a r i s i n g as a r e s u l t of the deviations of the l a t t i c e ions from 

t h e i r equilibrium positions. The coupling constant ^ charac

t e r i z i n g the strength of the i n t e r a c t i o n i s here assumed to be 

small. In the absence of any external perturbation, the electron-

phonon i n t e r a c t i o n provides the only mechanism i n inducing 

e l e c t r o n i c t r a n s i t i o n s . Due to t h i s f i n i t e l i f e - t i m e of the 

electron i n any one state against decaying into other states, 

each of the energy l e v e l s i s broadened i n accordance with the 

uncertainty r e l a t i o n . 
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The matrix elements of the i n t e r a c t i o n potential, 

^X^tfs ' k e assumed non-vanishing over a wide range of 

and that any summation involving them i s convergent. In the 

form of (2.2c), the i n t e r a c t i o n potential i s taken to be spin-

independent . 

In order to calculate thermodynamic properties of a 

system s p e c i f i e d by the Hamiltonian (2.1), we need to specify 

the s t a t i s t i c a l ensemble. In the absence of the r e s t r i c t i o n 

that only zero or one electron can be bound to the impurity s i t e , 

we would use the grand canonical ensemble with the density operator 

given by 
-pCH-̂ î) 

P ^ _ 
(2.4) ) - c - a m - u t o l > p = 1/kT. 

where \i i s the chemical potential and N i s the number operator 

of the electrons. To use (2.4) for the system we are interested 

i n , we must confine ourselves to the 0- and 1-electron subspace 

when computing the trace. This r e s t r i c t i o n presents no d i f f i c u l t y 

i n the absence of electron-phonon i n t e r a c t i o n . When electron-

phonon i n t e r a c t i o n i s present, one must take account of t h i s 

r e s t r i c t i o n e x p l i c i t l y . This we w i l l do i n the next section by 

the introduction of the appropiate projection operators. 
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2. Projection Operators, Density Matrix and Thermal Averages 

Projection operators P and P, are defined as 
o i * 

follows : 

PQ^Uy> =||u^> i f I 1 1/* i s a state with no bound electron, 

0 otherwise, 

(2.5) 
P J U/> =f\u^> i f |u) i s a state with one bound electron, 

l o otherwise. 

It follows that 

(2.6) a X S P O = P o a ^ = 0, 

( 2 ' 7 ) P o \ s " \ s P l > a l s P o - Vxs' 

(2.8) P P . = P,Po = 0. 
O 1 -L O 

* 
In the absence of the electron-phonon i n t e r a c t i o n , the pro

j e c t i o n operators can be defined e x p l i c i t l y i n terms of the 

creation and a n n i h i l a t i o n operators as i n the following: 

P ° = H ( 1 " A^A*S }> 

» S TT ( 1 - a?//a // ' + P = ^ ( 1 - a,//a,// ) a^ a,_. 
Xs 

(r* Xs) 
1 Xs Xs * s * s * s * s 
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The l a s t property shows that P Q and p^ are 

orthogonal. Hence the sum 

(2.9) p = p + p 
o 1 

i s also a projection operator. From (2.6) and (2.7), we 

obtain 

( 2 ' 1 0 ) [als\'s' • P _ = 0, 

(2.11) a^ a , , P = P a+ a+, , = 0? 
Xs Xs Xs Xs 

It now remains to define the density matrix 

appropriate for our present system with the use of the 

projection operators. 

We note f i r s t of a l l that i n the absence of the 

r e s t r i c t i o n of only one or zero bound electron, the 

* 
In the papers by Zubarev (1960) and Nishikawa and Barrie 

(1963), the r e s t r i c t i o n to a one-electron system i s incor

r e c t l y stated. Their statements are not consistent with 

the anticommutation r e l a t i o n s . Compare footnote i n paper 

by Barrie and Rystephanick (1966). Their r e s t r i c t i o n leads 

to the following contradiction: (X^X'), <C axaX/>= 

< ( W ai^] V x > = < a W a * . ° ~ B \ * e B H > = ° -
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thermodynamical average of an operator A over the grand 

canonical ensemble i s given by 

v 2 < j \ A U > e - B ( W 
(2.12) <A> • -J «. Tr A 

^ e - B C E j - n N j ) ^ 

He r e , \ represents a state of the system with energy E. 
3 

and number of electrons N^. The summation i s over a l l 

states of the system with a l l possible values of N. 

If we impose the r e s t r i c t i o n that only zero or one 

electron can be bound to the impurity s i t e , the summation 

must be confined to those states i n which N.= 0 or 1. With 
3 

(2.5) and (2.9), we can then write the thermal average of A as 

(2,13) / v X O I P A P I J ) ^ 6 ^ 1 

3 

where the subscript p denotes that the summation i s over 

the r e s t r i c t e d set of states. We can rewrite (2.13) as 

^ < j | e - B ( H - | l S i P A p | j > _ Tr [ P . - - < H - - » > P A \ 

, " P " 2?< J|.- B<H-"»>p|j> T r \ . " < " - > " > p } 

(2.14) J 
= Tr 

The f i n a l step i s obtained by defining 

^ -B(H-uN) 
<*ss P e p P p p 

(2.15) I = - J 
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which i s the appropriate density matrix for the description 

of our physical system. Furthermore, since p commutes with J 

because of (2.10), we can write 

(2.16) r _ ? p 

and 

(2.17) <A> p= 

Our p a r t i c u l a r interest here i s i n the c a l c u l a t i o n 

of the occupation p r o b a b i l i t i e s for impurity states and 

phonon modes, namely 

(2.18) tfxa = < a £ s a x s > p - < A ^ a ^ , 

(2.19) ) ^ = < 4 b c t X = 

where we have defined 
+ 

(2.20) A + . P a X s 

PbJ> 

A.s < p > ' 

(2.21) BX = 

The quantities n and V w i l l be calculated by the 
Xs q 

Green's Function method. An outline of the technique w i l l 

be presented i n the following section. 
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3. Green's Function Method 

For any two operators A and B, the Green's Function 

E <^A \ B^> i s defined as 

« . A | B » B - f ^ j « e i E t < [ A ( t ) , B j r > I m E < 0 

(2.21) 

-<0 

-',-1 

where ^A , B~j^ = A B - j ^ B A , ^ = +1, 

i t o ^ . -itdvi M> _ * A(t) = e A e , o\ = H - p. N. 

Im E ) 0 

The Green's Function s a t i s f i e s the following equation: 

(2.22) E<A \ B̂ >£ =i<|A , B ] > + < ^ [ A , B%, 

As defined i n (2.21), <̂ A 1 B̂ >E i s a two-branch ana l y t i c function 

with a branch cut along the r e a l axis. The d i s c o n t i n u i t y across 

the r e a l axis i s related to the thermal average of the product 

BA by the following i d e n t i t y (Zubarev 1960): 

*0 

(2.23) < 5 f \ > = 
-j 

« f t l B ^ - « f l l B V t , 
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To calculate n,^, we choose A = a,_ B = A and y = -1. To 
AS' A.s> AS 

c a l c u l a t e , we choose A = b^f B = B_̂  and y = +1. The 

problem now i s to solve equation (2.22). 

As a t r i v i a l example, we f i r s t treat the case where 

-X. = 0, and discuss i n d e t a i l only the electron d i s t r i b u t i o n 

function , obtaining r e s u l t s that are already i n the l i t e r a t u r e . 

The equation f o r the Green's Function i s 

(2.24) E «a,s\ft
t
>.s>e= ±<Laxwflls-]\, + <£a^;*j_l ^% 

where t t „ = a ^ a ^ + | ^ ^ , E^- „ and <....>e 

means that i s used i n the thermal average. Now 

and 

so that the solut i o n to (2.24) that i s compatible with the 

required a n a l y t i c l t y of the Green's Function i s 

(2.25) < ^ a » s H « > E
 = ^ — ^ r L -

Using the i d e n t i t y 

(2-26) lim 1 = ( K - i O T ^ ^ C x \ 

where (P denotes the Cauchy p r i n c i p a l value, the d i s c o n t i n u i t y 
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across the r e a l axis i s 

(2.27) lim 

Because of the £-function, the integration i n (2.23) i s t r i v i a l . 

The r e s u l t i s 

(2.28) ~ ^ — — , 

e - r 1 

which can be rewritten as 

(2.29) = C<? /̂<P>o) 

Now <Pd̂ /<P^> = ( 1 + 21 e 8 T ^ ) 1 , where the sum i s over states. 

The f i n a l r e s u l t i s then 

(2.30) = . 

which agrees with that of S h i f r i n (1944). 

In the l i m i t that there i s only one value of E^ and 

that the only degeneracy i s due to spin of 1/2, then 

1 
(2.31) = ^ , v*s 

z 0- -t -I 

a r e s u l t that can be obtained by an elementary combinatorial 

treatment (Wilson 1953). 
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For the phonons, the procedure follows as before. The 

r e s u l t i s 

(2.32) ? 

i . e . the phonon d i s t r i b u t i o n function i s unaffected by the 

presence of the projection operators , which i s indeed not 

s u r p r i s i n g . 
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4. E f f e c t of Electron-phonon Interaction 

( i ) Electron D i s t r i b u t i o n Function 

In section 3, we have seen that sol u t i o n to the equa

t i o n of motion i s exact i n the absence of electron-phonon inter

action. We s h a l l now include the e f f e c t of the electron-phonon 

i n t e r a c t i o n and w i l l see presently that we no longer obtain an 

exact sol u t i o n . 

We s h a l l study the Green's Function < ^ a
A S \ ^\'J/^E 

f o r which the equation i s 

(2.33) E<<*»E • r;<fe*s. AH>+ <Uwfl_l4̂ E 

where <̂ f_ = c K „ + EL , . This becomes ^- o e-ph 

(2.34) Z " 

Therefore, the presence of electron-phonon i n t e r a c t i o n has 

introduced into the equation f o r ^ ^ ^ s \ some higher order 

Green's Functions, namely ^ b ^ a ^ J A x ' s % a n d ^ ^ V s l ^ x's^E* T h e 

equations s a t i s f i e d by these higher order Green's Functions can 

be obtained s i m i l a r l y from (2.22) with the appropiate s u b s t i t u 

tions of A and B! 
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(2.35) 

(2.36) 

Using (2.3) and (2.11), i t can be shown that 

(2.37) ( ( a ^ v J ^ E = ^ ^ s < r < ^ a ^ A 4 ^ E . 

The thermal averages appearing on the rig h t hand sides of (2.34), 

(2.35) and (2.36) can be written as 

<2'38> <[AAS> 4sP=<AVx^ + ^ ^ s s ' « P o > / < P > ^ 

(2.39) < [ b ^ , A ^ ] > = < b ^ a ^ + i ^ s s , ( <bqP0V<P>), 

(2.40) < \ipua, Jj > = <^A^i/> + S frSaJ < <4t*o*> /<*» , 
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where use has been made of the properties of P (eqs. (2.6)to 

(2.9)). Furthermore, i t can be shown by expanding e~ B i n 

powers of that 

(2.41) < b ^ P Q> . <b^ P Q> = 0. 

So f a r the equations are exact. We can see, however, 

that s t i l l higher order Green's Functions are appearing on the 

ri g h t hand sides of (2.35) and (2.36), and the i r equations of 

motions can s i m i l a r l y be found. In t h i s fashion, one obtains 

an i n f i n i t e hierachy of coupled equations. Instead of doing t h i s , 

we s h a l l decouple the chain a f t e r equations (2.35) and (2.36). 

The decoupling i s s i m i l a r to that used by Nishikawa and Barrie 

(1963) for the two-particle Green's Function and can be j u s t i f i e d 

i n the same manner(Appendix I I ) . We merely quote the r e s u l t s 

here: 

(2.42) N ^ f r . l 4))E

=^)<<aJ^i 
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where JV~ i s the number of phonon states for which ^y.^^ 0> 

and = ( e 8 " ^ - 1 )'} When (2,37)-(2.42) are substituted 

into (2.35) and (2.36), we have a closed set of equations. We 

are interested i n the case X,s = X',s' i n which case the equa

tions are 

(2/45) 

These can now be solved f o r ̂ x̂sj A \ S ^ E » y*-eldiNS 

with 

4 ^ ^ 

(2.47) » f 1 [ E - T u - i ^ 
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(2.48) > s Z+<ty»? l E-T^-^sr E - T „ t ^ 

We now write (cf. Nishikawa and Barrie 1963) 

(2.49) //n n t ^> = . \ . :  

where 

(2.50) M X s ( E ) = L X s ( E ^ + ( E - T ) N^ g(E). 

Our aim has been to determine the poles of the Green's Function 
2 

correct to order -7C and t h i s has now been done. Therefore i n 

evaluating 

< k ^ f U s C U s > a n d < P z f fW 

i n (2,48), we need only to r e t a i n terms up to 00*0(Appendix I I I ) . 

Using the r e l a t i o n (2.26) and 

u> - x ± i 

^ c 7 w - ^ i ^ 

we can write 

(2.52) lim M X s(CJ + i * ) = ^ X s ( w ) + i r X s ( « ) , 
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where 

(2.53) 

and 

(2.54) 

+ 

1 

=if ? M ] ̂ r c ^ 4 ^ ̂  "Uif) 

In the above expressions, the r e s u l t s of Appendix III have been 

substituted. 

The d i s c o n t i n u i t y of the Green's Function can be shown 

to be 

(2.55) 
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which i s no longer a well-defined ^-function as was the case 

when electron-phonon i n t e r a c t i o n i s absent. It has i n fact a 

quasi-Lorentzian form with frequency-dependent s h i f t ^\ (u) 
A S 

and width y \ s ( y ) - T n e factor ( <PQ>/<P> ) i s a 

renormalization factor for the Green's Function due to the 

presence of prj e c t i o n operators. 

The required c o r r e l a t i o n function can now be obtained 

by using (2.23): 

(2.56) <A +
X sa X s> ^ s = (Zxs + <J>J/<V»J7xSf 

where 

(2.57) A s T 

J 

The f i n a l r e s u l t i s , by rearranging (2.56) 

(2.58) ^ = «Pcv>/<P» t ^ • 

If (CJ ) i s small compared with T, , then the quasi-
A S A 

Lorentzian function has a steep maximum at some value T^ s, 

which i s given by the zero of w - T^- A ^ s ( < J ) , i . e . 

(2.59) Y X B = TX + x M X s ( T X s ) . 

I f , i n addition, we have * ^ X s ( w ) and KV X s( ('') being slowly-
<*SS 

varying functions i n the v i c i n i t y of T X s , then we can replace 
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them by x M ^ ) and ^ r ^ C T ^ J . Since ^ ^ ( T ^ ) i s 

small, the Lorentzian function 

i s replaced by a ^ - f u n c t i o n , , £ ( w - T. ). 
A S 

Thus 

(2.60) J x s 

e BT Xs + 

Since «P 0>/<P^J can be interpreted as the p r o b a b i l i t y that 

the impurity electron i s not i n any of the bound states, then 

we must have the r e l a t i o n that 

(2.61) J^rxa + = i . 
xs 

It then follows from (2.58) and,(2.60) that 

(2-62) ^ e - B T x s 
n X s = 

The above r e s u l t has the same form as D\s> except that T^ i s 

now replaced by the q u a s i - p a r t i c l e energy T\s> which i s 

temperature-dependent through the term ^ ^ ^ g C T ^ g ) . This 

temperature-dependence w i l l be the subject matter of Chapter 

II I , where we make an a p p l i c a t i o n to the case of phosphorus 
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donors i n s i l i c o n . 

Actually, the i n t e g r a l ij ̂ g i n (2.60) should have 

been 

(2.63) 5 X s = —i ( 1 
e B T A S + i 

where the contribution T^tf* comes from the wings of the 

integrand, from the next term i n the expansion of -*?TXs(<«') 

and x ^ A S ( w ) about the peak and from the fact that near the 

peak, we have a Lorentzian l i n e shape rather than a -function, 

This w i l l be dealt with i n the following subsection. 
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( i i ) C a l c u l a t i o n of X^Xs 

With the d e f i n i t i o n 

(2.64) 
2 

we write (2.57) as 
=0 

(2.65) 5 Xs du A A S(<j) ( eSu + i ) - l 

and look at the behavior of A. (a,) more c a r e f u l l y . 
Xs 

For values of C J near T,_ as given by (2.59), we 
A S 

can expand [w - - % A ^s (w )J and £ r ^ (w) about T' , 

obtaining 

(2.66) Axs(u) y Axs(u) 
peak ZXs - K ^ \ s

( T X s ̂ zXs 

where 

(2.67) Z. Xs • 1 1 - * W 
1 ^ qj oJ 

I k 

Hence, near the peak, A, (w) has a Lorentzian shape with Z,_ 
AS AS 

a. 

as an amplitude factor. Up to order % , one can replace 

* ^ s ( ^ ) Z * 8 b y * > X s < V and (2,59) by \ s = T x + r M ^ ) . 
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It i s then obvious that ^^^s^X^ i s a s n i f t i n t n e 

impurity state (X,s) from the unperturbed value T^ s, while 

2< 2y A S(T^) i s the width at half maximum of the resonance peak. 

The l a t t e r quantity i s simply re l a t e d to the l i f e - t i m e of an 

electron i n the impurity state (X,s) by 

(2.68) 
Xs 

where T denotes the l i f e - t i m e . 

Away from the peak, however, the function A^ g(w) i s 

simply approximated by 

(2.68) AXs< u> — » \ s i u i ) 
wing_ 

1 * a r l a ( « > 
IT ( <J - T x r 

While we cannot perform an exact integration of (2.69), 

we can proceed as i n the following : 

J peak 

(2.70) 

A A S(w) ( e 8 " + l ) " 1 

wing 

d u A A S ( W ) p e a k ( e ^ + l f \ 

du A A s ( y ) w i n g ( e B w
+ I f 1 . 

The approximation of s p l i t t i n g the i n t e g r a l into an integration 

over the peak region and another over the wings gives the 

correct r e s u l t for the normalization of A A g ( u ) . The normaliza

t i o n i s derived i n Appendix IV. 
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The integration over the wings can be done readily-

using (2.54). The r e s u l t i s 

(2.71) J f 

Hence, the contribution to x 2 y \ s
 d u e to the wing regions i s 

(2.72) * ^ - ? t t - ^ + 1 

We now consider the integration over the peak region, 

v i z . 

d u A A S ( w ) P e a k ( e S u + l ) ; 1 

I f < r , e
 i s s u f f i c i e n t l y small and ( e 8 ^ 1 ) _ 1 i s slowly-

AS 

varying over the peak region, and i f one makes the replacement 

A A S ( w ) p e a k ^ Z^ g€\w -'T a s)> the i n t e g r a l i s c l e a r l y equal to 

(2.73) Z i s ( e B ^ + = ( ! *| ) ( e ^ + l ) ~ * 

It i s evident from (2.73) that the c o e f f i c i e n t , X i s 

one of the terms included i n ^ Y ^ s ' d u e t o t h e S r a d i e n t o f 

at the peak. Its magnitude can be very small i r r e s 

pective of the smallness of X. . The extreme case i s when 
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X s(w) i s independent of <j, then the gradient i s zero. In 

general, the e x p l i c i t expression can be obtained from (2.53): 

(2 .74) 
^ 1 ~ - ^ l l W f - i ^ ^ x S ^ 

which can be seen to be always le s s than zero. 

Instead of making the £ -function approximation, l e t 

us now consider the correcti o n due to the f i n i t e width near 

the peak. F i r s t of a l l , we note that the f r a c t i o n a l change of 

the function f(u) = ( e ^ + l ) - * over the width of the l i n e i s 

given by 

_£L K V * fr) 

<2.75) " " frtta^k >~5 

so that 

(a) f o r kT>|T; s\ * V X s / k T « *V X s / \^ A sI << 1 

(b) for k T - | T X s \ ^ | _ K V X s / k T ~*V A S/|T X s\ < 1 

(c) for k T « | T X s ) « (^Xg/IT^I )(kT/)T X s\ ) « 

Therefore, as long as ^ y <^ |T \, the slowly-varying 
A S Xs 

assumption of f(u) over the peak region should be a good 
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approximation for a l l temperatures. 

As a demonstration of the type of expression that 

appears i n
 /x'ifjiS a s a r e s u l t of the f i n i t e width, we carry out 

the following c a l c u l a t i o n using a Boltzmann fa c t o r . That i s , 

we assume that BT S>1, a condition that w i l l r e s t r i c t us to 
AS 

state (A,S) l y i n g above the chemical p o t e n t i a l . Then, the 

the i n t e g r a l we need to do i s 

( 2.76) 

J 

du e " ^ •» . A X ^ 

where the upper l i m i t i s taken to i n f i n i t y , since the exponan-

t i a l f actor w i l l assure the rapid f a l l i n g o f f of the integrand 

f o r values of <j away from the peak. 

Changing the variable of integration to x = B(u - T A S 

and s p l i t t i n g the i n t e g r a l 

* dx 

s«0 

dx 

we obtain from ( 2.76) 

dx 

1 + [ - i . ± ( c ^ ^ A ^ 4 f ) 

0 
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where C i y and S i y are the cosine and sine i n t e g r a l s , 

and the formula 

(2.78) Idx 2^~T" =1T [ci(a|i)sin(a|i) ~ S i ( a ^ ) c o s ( a | i 7 [ 
\ X "4" £L 
\ (|i>0) 

has been used. 

The quantity within the £ ̂ -bracket i n (2.77) i s 

therefore the correction due to the f i n i t e l i n e width. As 

( / k T ) — > 0, we have I3~>0, which should be the case. 

* 
See for example Gradshteyn and Ryzhik (1965) 
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( i i i ) Phonon D i s t r i b u t i o n Function 

The phonon d i s t r i b u t i o n function can be obtained 

following the same procedure as for the electron d i s t r i b u t i o n 

function. 
t The relevant Green's Function i s <^b^ | B ^ ^ , with 

y= +1. The equation of motion for | BJJ,^^ I S 

(2 . 7 9 ) ( E - «fr)<&fr|-^| - 2 T 7 + V^fcqs < ^ V s \ ^ B . 

where the higher order Green's Function ^ ^ j j ^ ^ s 4-̂ E 

s a t i s f y the equation, 

( 2 - 8 0 ) = % I f V ^ , < < ^ ^ ^ + ^ « I L 4 Q P \ £ % 

The decoupling i s now c a r r i e d out at t h i s equation with the 

following order estimation: 

(2.81) 

a y s a h S | t i ' / j . 
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This leads to 

where 
O / 0 A / 0 

( 2 . 8 3 ) IVITM«L) - ^ ' = T 

Writing M q(u + ivj) = A - § ( u ) + ir-^C") ,where 

(2.84) A ^ ) = g \v?t (X. £L-T! t T y ; 

1 Vu'i 

we f i n a l l y a r r i v e a t 

(2.86) 

I '« j 
. - 0 

1 T J [ W - C ^ ^ A ( ^ % ^ ^ « ) 

1 - 1 
with <Jq> = td^ + ^ ^ ( u ^ ) . 
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CHAPTER III : ENERGY-LEVEL SHIFTS 

1. General Remarks 

From the treatment of the one-particle Green's Func

tions i n the previous chapter, we have shown that the electron-

phonon i n t e r a c t i o n introduces a complex s h i f t i n the unperturbed 

energy spectrum. In the l i m i t that the imaginary part of the 

s h i f t i s small, one obtains a q u a s i - p a r t i c l e energy spectrum. 
§ 

Take for instance an e l e c t r o n i c state X . The energy l e v e l 
of t h i s state i s s h i f t e d and broadened by amounts (T ) and 

A X 
2 £ r (T ) respectively ( see remarks a f t e r eq.(2.67)). These 

x x 
quantities can be obtained r e a d i l y from (2.53) and (2.54): 

(3.D A ^ - ^ W M^-3» i - J i ^ r - * — ^ ^ 

0 . 2 ) ^V;(Tx) = |o+^ * L T x - T r - f c ^ + 

In these expressions, we have displayed the p o l a r i z a t i o n of the 

phonon mode by <r. In (3.2), we have also used the r e l a t i o n 

that 

1* 
which follows from the fact that the density of phonon states 

From here on, we include the spin index s i n X. 
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vanishes at C J ^ = O. Thus, the only contribution to the width 

comes from non-diagonal matrix elements. 

By comparision with the s h i f t and width of the o p t i c a l 

absorption l i n e between two states a and B as obtained by 

Nishikawa and Barrie (1963), we make the following i d e n t i f i c a -

tions : 

<3-4> ^ ™ < V V - 4 B < V - A ( T a ) . 

<3"5) r > S " V " r ,<»,) • r K\. 

We have used NB to la b e l the corresponding quantities of 

Nshikawa and Barrie. 

At t h i s stage, l e t us summarize what w i l l be done i n 

this chapter. The problem i s to calculate the e f f e c t of the 

electron-phonon i n t e r a c t i o n on the energy spectrum of an 

impurity"^. The basic formula i s 

(3.6a) = Tx + ^A^iT ). 

We write t h i s as 

(3.6b) T , - T , + Z S „ , + ^ 
x' 

X X A> j/ XX > 
* 
One could have made the Nishikawa-Barrie expressions as s t a r t 

ing point and then defined the s i n g l e - l e v e l s h i f t and width by 

(3.4)and(3.5). Howevor, the r e s t r i c t i o n to one-eleotron system 

was not taken oaro of proporly i n th o i r papor;—soc footnoto on p. 9. 
t 

The widths have been discussed by Barrie and Nishikawa (1963). 
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where 

(3.7) 

(3.8) 

^ / i s a temperature-independent contribution to the s h i f t 
A A 

a r i s i n g from the zero-point vibrations of the l a t t i c e . This 

represents a correction to the standard c a l c u l a t i o n of the 

spectrum which assumes a r i g i d l a t t i c e . This standard c a l c u l a 

t i o n i s b a s i c a l l y a purely quantum mechanical c a l c u l a t i o n ; our 

treatment has included s t a t i s t i c a l aspects and S ̂  i s the 

correction at zero temperature. A ' contains the temperature-
AA 

dependence of the energy l e v e l . The two subscripts (XX) then 

ref e r to the s h i f t of the Xth l e v e l due to mixing with the 

Xth. 

As can be seen above, the basic steps are to calculate 

matrix elements V\\qir a n < * * n e n *° carry out the appropiate 

summations over l i , s ~ . §2 of t h i s chapter deals with the c a l 

c u l a t i o n of the matrix elements on the assumption that the electron-

phonon i n t e r a c t i o n i s the deformation potential i n t e r a c t i o n with 

long wave-length acoustic phononsj the ele c t r o n i c wave functions 

are those appropiate to a many-valley semiconductor. 

§3 of t h i s chapter deals with the summations over cf, cr. 

F i n a l l y , §4 contains the numerical estimations and 

comparision with experiment for phosphorus donors i n s i l i c o n . 
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2. Calcu l a t i o n of Matrix Elements 

( i ) General Expression 

Before we can calculate the various matrix elements 

V^qv, w e need to know the wave-function of the impurity 

electron and the form of the i n t e r a c t i o n p o t e n t i a l . 

According to Kohn and Luttinger (1955), the wave-

function for the impurity electron can be written as 

0.9) ^ - | 

where the summation over j , i n the case of s i l i c o n , i s summing 

over the six equivalent minima (valleys) i n the conduction band. 

The function ^-p^^Cr*) i s a superposition of Bloch states at 

and about the j t h minimum, i . e . 

where A ^ ^ O t ) s a t i s f i e s the r e l a t i o n 
X 

(3.11) A ^ O c ) = 0 for [I - ~k.\ ^> 1/a* 
X • J • 

with a* being the e f f e c t i v e Bohr radius. Since 1/a* i s 

small compared with the length of a r e c i p r o c a l l a t t i c e vector 

( "k7k B Z ^ 0.04, T F = 1/a*), ^ (r) can be approximated by 

the product of }£»(r), the Bloch function at the j t h minimum, 

and an envelope function 
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r 

(3.12) ,(j) 
(?) = 

J 
_d¥_ 
(2ir) : 

i ( k -

This l a t t e r function i s a solut i o n to an effective-mass 

equation with the z ^ - a x i s defined i n the d i r e c t i o n of the j t h 

minimum from the o r i g i n . The l a b e l \ designates the d i f f e r e n t 

^ eigenstates of t h i s equation; for example 

F„ l s„(r) = 2 1 / 2 
(ira b) 

-5\ 

(3.13) ,(j) 
"2s" 

1 
( 3 2 ^ a 2 b ) 1 / 2 

(2 - f. ) 
- i j / 2 

e 

F U ) (?) -
* " 2 p ; . v r ; 

- ft/2 

( 3 2 i r a 2 b ) 1 / 2 b 
, etc., 

where 

(3.14) °^ b 

and a, b are res p e c t i v e l y the transverse and lo n g i t u d i n a l 

Bohr r a d i i . 

The aQ\ i n (3.9) are numerical c o e f f i c i e n t s that 

can be determined by elementary group theory so that the t o t a l 

wave-function j ( r ) has the required tetrahedral 
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symmetry about the impurity s i t e . For s i m p l i c i t y i n notation, 

we have used a single l a b e l ji to denote the ir r e d u c i b l e rep

resentation and the row within the representation according to 

which the wave-function 9 d x ( ( i ) transforms. The p a r t i c u l a r 

set of 

paper*: 

(3.15) 

aX<|i) 
for the " l s " - s t a t e i s given i n Kohn and Luttinger's 

a 
( j ) 
A.(ji) 

i r r e d . 
repri*. 

1 
2 
3 
4 
5 
6 

1/J6*(1, 1, 1, 1, 1, 1 

l / f l 2 ( l , 1, 1, l , ~ 2 , - 2 

1/2 [ 1 , - 1 , 1, 1, 0 , 0 

1 / T 2 ~ | l , - 1 , o , o , o , o 

i/jr{o, 0 , 1,-1, o , 0 

i / J T ( o , o , o , o , 1,-1 

A l 

E 

E 

T-, 

In accordance with the c l a s s i f i c a t i o n of impurity 

states according to i r r e d u c i b l e representations given also 

i n Kohn and Luttinger's paper, one can show that (3.15) also 

apply to the * 2 s " - , "2po"-states. Therefore, for our purposes, 

we can write ^ instead of a5*! ̂  i • 
I * A(|i) 

The two rows belonging to the E-representation are a c t u a l l y 

d i f f e r e n t from those of Kohn and Luttinger. They are here 

chosen such that they are orthogonal (see r e l a t i o n (3.27) 

on p.44) 
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The i n t e r a c t i o n between the impurity electron and 

the acoustic modes of the l a t t i c e vibrations, which i s the 

int e r a c t i o n with which we s h a l l be concerned, was f i r s t discussed 

by Bardeen and Shockley (1950) from the deformation potential 

point of view. In order to take account of the many-valley 

nature of the conduction band, the generalized theory of Herring 

and Vogt (1956) w i l l be used i n the present treatment. Accord

ing to these authors, the s h i f t i n energy i n the j t h v a l l e y due 

to deformation brought about by e l a s t i c waves i s 

(3.16) S J L ( e
V i

 + + ~ ^ S 2 

where 6^,^,, try ̂. and a r e elements of the s t r a i n tensor j 

and are phenoroenological constants. In the present 

case, the s t r a i n i s brought about by l a t t i c e v i b r a t i o n s . Writing 

the displacement of the l a t t i c e at the point "r* i n terms of 

normal modes as usual, we have 

^ V I i r r i q < r -iq«r n 

(3.i7) - £ J ^ J L * C < * ) v e + e * ( 3 ) b ^ e J T 

where e^(q), e(S.(q) are po l a r i z a t i o n vectors s a t i s f y i n g the 

r e l a t i o n 

(3.18) "e^q) = "£*(-"q*) , <r = 1 (longitudinal) 
"~ 2, 3 (transverse). 

f and V are respectively the density and volume of the 

c r y s t a l . 

Since the in t e r a c t i o n Hamiltonian i s given by 
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(3.19) H e-ph = - t ( r ) V(r) periodic, 

then we can calculate the matrix element for the i n t e r a c t i o n 

term using (3.9)-(3.19)* and f ind W <V A^ ^ the 

following expression; 

(3.20) 
XX 

e < r(q).( j ^ d l + ^ l u U U ; ) . q 

where 1 i s the unit matrix and 

(3.21) U = 
o 

(3.22) It, 
0 

A A . I L J c e l l o 

(SL= volume of unit c e l l ) 

(3.23) 
XX 

In writing down (3.20), we have also neglected inter-

v a l l e y contributions for reasons to be discussed l a t e r . 

See for example Hesagawa (1960). 

http://Aa.IL
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The function 0 c a n b e calculated using the 

envelope functions of (3.13)^. The r e s u l t s for = Is, 2s, 

and 2p D are given i n Table I. 

Using the r e l a t i o n - •* 
e2.(q) = = p o l a r i z a t i o n of l o n g i t u d i n a l phonons; 

we write (3.20) as 

(3.24) i 

X ^ C S M £ d t + ^ u U ( J ) ) . " e \ (q^ 

Since i(<?) = S<r i , one can see that i n the absence of 

u n i a x i a l stress -^u* there can be no i n t e r a c t i o n involving 

transverse phonons. 

To proceed further, we make the following approximation: 

(3.25) a 2 ( q 2 + q 2 ) + b V * ( a*q ) 2 , 
X J y j z j 

i . e . , we replace the e l l i p s o i d a l energy surface by a spherical 

one. a i s the e f f e c t i v e Bohr radius. Making t h i s approxima

t i o n at t h i s stage does not lose any e s s e n t i a l feature, the 

Because of the anisotropy of P; , we transform to a new co-

ordinate system S*( x'=x, y'«= y, z' = (a/b)z ) and then use the 

method of c a l c u l a t i o n of Nishikawa (1962). 
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TABLE I : T a b l e of 0 ^ f o r 
A A 

A , X = I s , 2s , and 

2 p 0 . N o t a t i o n s used • 

V 
2/ 2 2 , , 2 2 ' a ( q x .+ q V j ) + b qz__ 

e. = 
j 

a n g l e between ~cf and z j - a x i s . 

I s 2s 2P e 

Is 1 2 5 / 2 ( 2 / 3 ) 6 J ^ Q 1 5 / 2 X ' * 
i 2 cos e. 

2s i 3 c o s e 

2 P o 
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important information about the non-spherical nature of the 

energy surface has already been contained i n the a ( j i In 

using Table I then, we s h a l l replace J(~- by JC = a*q. 
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( i i ) Mixing Among s-States ( \,\ = Is, 2s.) 

We write ^ x ^ ^ ^ — ^ ^ X J L ^ ^ according to the approx
imation (3.25). Then (3.24) becomes 

(3-26) X.lwWfa = 1 

u 

where we have used the orthogonality r e l a t i o n 

(3.27) 2 . " W - £ , 
J H I* HI* 

and have defined 

(3.28) D ( % Z a ^ W n ^ . 
HH j H JI 

- * ( i ) 

It follows from the fact that U i s symmetric under inter

change of ( j ) and (-j ) ( i . e . , ~U^J^ i s the same tensor for a 

pair of opposite e l l i p s o i d s ) , we obtain 

(3.29, D & > - 0 i f a™.™. 

It i s apparent from (3.26) and the a u x i l i a r y condition 

that 

(a) the -component of the deformation potential invovles d 
only l o n g i t u d i n a l phonons, which i s indeed a general 
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r e s u l t (see remarks a f t e r (3.24)) and that mixing between any 

any pair bf s - l i k e states i s possible only i f a ^ j p for both 

states come from the same row of the same i r r e d u c i b l e repre

sentation. 

(b) the ^^-component i n general involves both longitudinal and 

transverse phonons, and the r e l a t i o n (3.29) rules out mixing 

of a t r i p l e t ( \i = 4, 5, 6 ) with a doublet ( \L = 2, 3 ) or 

with a s i n g l e t ( |i = 1 ). 

The complete r e s u l t s for i s given i n Table I I . 

To f i n d ~e^(sl) .D^°J .'eji(^), we choose the following set of 

po l a r i z a t i o n vectors: 

1 s i n 6 cos 0 + 1 s i n 6 s i n 0 + 1 cos 9 

(3.30) ^ o(<l) = cos 9 cos 0 + 1 cos 6 s i n 0 - 1 s i n 6 

— > — > —> — * 
e (q) = - l x s i n 0 + 1 cos 0 

where l x , l y , and l z are unit vectors along the x-, y-, and z-axii 

respectively; the co-ordinate system i s chosen such that x = X3, 

y = y 3 , z = z 3 ( see F i g . l ) 

F i g . 1 
La b e l l i n g of the six 
energy minima of the 
conduction band. 

i 0> = -1 
2 
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In Table I I I , we l i s t the r e s u l t s for e^_(q).D 

It i s now a simple matter to obtain the expression i n bracket 

i n (2.26), v i z . 

(3.31) ( i d S ^ W 31. V S ' - ^ ' 

which i s then given i n Table IV. 
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TABLE I I : T a b l e o f D , ^ 2 > a ^ K ^ M ^ 

\ V-
l 

1 2 3 4 5 6 

1 
_ L 
3 

i 

i 

2 
J - i 

\ 

-L. 
t 

\ 
\ 

4-

3 
X--1 

1 
0 

- i 

i 
0 

_ L | \ 
2 \ 

0 

4 O o 0 0 
1 0 

5 o 0 o O 
\ o \ 

1 
ol 

6 0 0 o O 0 r - . i 



' 3 
a 
O 

TABLE III 

<2. 2 

2 - ^ 3 1 

^ Si^d 2 - f 

o 

o 

o 

o 

o 

o 

1̂ p v \ z 6 / f t ^ 2 c | j 

o 

Table of e ^ J . D ^ / e ^ t f ) . 

The three entries i n each 

block correspond to the 

three p o l a r i z a t i o n i n the 

order o- = f l ) . Ill 

o 
o 



4 9 
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( i i i ) Mixing of 2p Q-states with Is- and 2s-states 

From Table I, we f i n d that 0 ^ ) (?) i s of the form 

cos e 

a f t e r the approximation JK* n a s been performed. Hence, 

(3.24) becomes 

(3.32) <̂V = l 

+ E . u t r ( ? ) . D ^ . - i i ( q ) 

where we have defined 

(J.3JJ D M 1 1/ = ^ a a / U cos ©. 

Since cos 6.= - cos 6_., i t follows that 
3 3 

(3.34) * VX ( | i)X ( | i)<l o- u 1 1 a ji a | i ' a (i a jxv . 

In analogy to ( i i ) , we tabulate the following 

quantities ( Tables V to VII ); 

(3.35) 

(3.36) 

(3.37) 

]T a ( j ) a ( j ) c o s e . , 
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TABLE V : Table of 2 a (jj Vjj/cos 9 . . 

1 2 3 4 5 6 

i o 

2 0 0 

3 0 o . 0 

4 o 
5 

0 o 
6 

^3 
- | c « 6 0 0 0 0 
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o 

i H 

OJ 

EH 

•I-J 
CD 
tfl 
O 

o 

o 

~6-
I "3 "3 

CD - J S -

-<*i 
Ml 

I 

1 

O 

O 

0 

o 

-G--e-

1 
-<5 

i l l 

i n 

a? 8 § 
-Or-

CD 

HS 

o 

o 

CD 

1 CD 

III 

I o 

CO 

co 

o o o 

CO 

•I 

-6- -£> 
3 S 
CD 

I' 

'1 il 1*1 ,1 

(3D 

8 
o 

co 
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(iv) Mixing among 2p„-states 

For t h i s case (cf. Table I and (3.25)), 

where 

(3.38) 

(3.39) h(jC) -

The matrix element i s therefore given by 

(3.40) ^ V2p^2p ec r'icr,<r = ̂  

It can be seen that 

(3.41) ^cV 2 P 0 ( , ) , 2 P y ) ^ , c r - 0 l f V " <V V * 

where 

(3.43) 

Eq.(3.40) can be rewritten as 

(3.42) ^VW y i fr^ ,<r \ 

(?) 
i s given by(3.31), and 
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(2) where D i s defined by 

(3.44) D^, » a ^ a U V J cos^Sj 
3 

In Tables VIII and IX, we tabulate 

m A*\ J ( j ) ( j ) 2« (3.45) ^, a JJ a JJ,' cos 9 J i 

(3.46) ^ J C q J . D ^ . ^ ^ ) 

from which one can r e a d i l y evaluate ) [,. i n (3.43) 
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^? ( i ) ( i 1 2 TABLE VIII : Table of Z, a a /cos 0, 

V- \ 
1 2 3 4 5 1 6 

1 I 
3 

2 
. — 

3 

4 o o o 

5 o o o O 

6 o o o O o 
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A -

j a a 
•rl 0 

o o +* 
a 

Q 

o 

3 
CQ 

0 

o 

0 

0 

o 

0 
CM 

CD 

. CD I 

S i 
-0-

4-

3 
s o 

-|co H to 

CD O, 

S 
1 v/i rs 

CM 

0 0 0 

co CO 
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1 
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1 
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6 

1 

1 

1 o 
! 
i 

O 
C A P * " © 

O 

•» / \ 
1 4 
1 

1 i 

5 6 
i 
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(3) Expressions for Sh i f t s 

As a summary of the r e s u l t s of the l a s t section, we 

l i s t here the following expressions: 

(3.47) ^ V n s O i ) , n W h H , <r - i fns,n's<>> 

< 3- 4 8' ^ V n s ( , ) , 2 p ( , i ' ) , t ^ = 1 g » W > } 

l(o) 

(3.49) <%>),2pG/)/cf,<r = i 

{}*} 
where ns = Is or 2s ' i i , a n d W are given by Tables IV and 

VII, and | j ^ i s r e a d i l y obtainable from Tables VIII and IX. 

The remaining task i s to substitute these expressions 

into (3.7) and (3.8), and rewriting these l a t t e r equations i n 

such a way that numerical values can be obtained r e a d i l y . 

To begin with, we note that the phonon spectrum 

for long wave-length acoustic phonons i s given by the dispersion 

r e l a t i o n 

(3.50) } (q - \ t \ ) 

where v ^ i s the v e l o c i t y of sound with p o l a r i z a t i o n mode given 

by V . Our reason for considering only the long wave-length 
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acoustic phonons i s as follows. 

We have assumed that the electron-phonon i n t e r a c t i o n 

i s weak and that the i n t e r a c t i o n i s e f f e c t i v e over a wide range 

of phonon energies. For any given phonon dispersion, the 

l a t t e r assumption can be j u s t i f i e d i f the electron-phonon 

i n t e r a c t i o n i s s u f f i c i e n t l y small. In the case of s i l i c o n , 

the strength of the i n t e r a c t i o n i s such that the two assump

tions are j u s t i f i e d only for the long wave-length acoustic 

phonons (Lax and Burstein, 1955). Consequently, contributions 

due to o p t i c a l phonons and i n t e r v a l l e y processes are not taken 

into account. In any case, the energy difference between 

impurity states i s small compared with the Debye energy so 

t h a t ; i n the temperature range we are interested i n , these 

l a t t e r contributions can indeed be neglected. 

It i s also to be assumed here that the density of 

phonon states i s unaffected by the presence of the impurity 

so that the replacement 

can be made. The upper l i m i t i s extended to i n f i n i t y i n 

view of the fac t that the phonon energies of importance are 

much less than the Debye energy. 

(3.51) 

With the above s p e c i f i c a t i o n s , we can then write 
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where J ' C w ^ ^ i s some function of w ^ , and A(<?) i s defined b y 

1 
( 3 . 5 3 ) A(q) = — \d^L A(cf). 

4'\ 

The quantity <t\ can be obtained from the r e s u l t s of the 

l a s t section. See Tables X and XI for the tabulations of 

[ f n s („ ), n's ((i') ( s { ) a B d 1 fna ( f l, f (- { f 0 ) ) • 

In p a r t i c u l a r , the quantity S / as defined i n ( 3 . 7 ) 

now becomes 

y < * ? ' l V x t » x ' t n , ) q V \ 
< 3 ' 5 4 ' 8*<nnV> " T c h ) - T y ( , r t V 

I JVCKIXVU') • .. _ 

which, depending on the r e l a t i v e positions of x (n) and x'di'), 
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can be c l a s s i f i e d as i n the following: 

( a ) T H n r
 T x V ) a n d x(ti) = 

<3-55' H^^H^r-^m^f AM 

( b ) Tx(iO = TxV) b u t x("> * x("> 

X((l)X((i) 

0 V 

The temperature-dependent part of the s h i f t , however, 

involves e l e c t r o n i c states that are separated by a non-zero 

energy difference. In t h i s case ^ ^\\' °* (3°8) becomes 

(3.58) 

_ - *̂ )>tovL J - * — T ^ . t 
^ — 1. 
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where the upper sign i s used when T
A ( j i ) >̂ ^ ( i i ) ' * o w e r 

sign when T ^ ^ T ^ y 

With the expressions given i n (3.55)-(3.58), we 

are therefore ready to make a numerical estimation of the 

s h i f t of the l e v e l T
X ( ( i ) d u e t o a state This w i l l be 

done i n the following section. 
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( 4 ) Numerical Results 

For numerical c a l c u l a t i o n , we adopt the following 

set of data for phosphorus donors i n s i l i c o n : 

f = 2.33 gm/cm3 

a*= 20.0 A 

vL = 9.33 * l o 5 cm/sec* = 

(3.59) 

'+= 5.37 *10 5 cm/sect = v = 2" V3 
u = 11 ev. 

^ = 10 ev. 
— d 

E l s ( A ) = " 4 5 * 3 1 m e v # 

Els(T^) 

E l s ( E ) 

= - 33.69 mev. 

= - 32.36 mev. 

S 

E2s(Af -  1 0 - 8  m e v -

E2s(T,)- " 8 - 4 ™ e v -

E 2 s ( E ) = " 8 a m e v -

St 
E 9 „ = - 11.1 mev. 

For c a l c u l a t i o n s involving expressions l i k e (3.35) 

and (3.36), the i n t e g r a l s can be evaluated exactly using 

T Hasegawa (1960). 

Wilson and Feher (1961) 

^ Bichard and G i l e s (1962) 

Aggarwal and Ramdas (1965) 

Calculations by quantum defect method (Kohn and Luttinger,1955) 



67 

tables of i n t e g r a l s * . Integrals appearing i n (3.57) and (3.58) 

are evaluated by graphical methods, a discussion of which i s 

given i n Appendix V. 

We note also that the ground state energy E ^ S ( A ^ 

i s considerably less than the effective-mass value (-0.029 ev.). 

We therefore take into account t h i s v a l l e y - o r b i t s p l i t t i n g , 

as i t i s c a l l e d i n l i t e r a t u r e , and redefine the e f f e c t i v e Bohr 

radius for the ground state i n the manner of Kohn (1957) by 

(3.60) b* = a* 
N 

E e f f . / E o b s , 

where E e f f = -0.029 ev., E Q b s = -0.045 ev.,yielding a value 

of 16 A for b . With t h i s modification, the envelope function 

for the ground state i s taken to be 

\ -r/b* 
( 3- 6 1 ) F i . ( v - ^ « • 

Some t y p i c a l contributions to the s h i f t of ls(A () 

at T=0°K i s given i n the following table: 

t 

See for example Gradshteyn and Ryzhik's "Tables of Integrals, 

Series and Products",p.292, formula 3.241.4. 
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TABLE XI1 : Typical contributions to S, t, / ls(A^),A(n 
i n units of ev. 

X(li) l o n g i t u d i n a l transverse 

ls(A () - 7.15 * 10 0 

l s ( E ) - 0.8 X 10~ 5 - 2. 8 X l o " 
5 

ls(T,) 0 0 
-5 2s (A(J - 1.4 X 10 0 
-5 5 2s (E) ~0.0 * 10 - 0.3 *10~ 

2s (T|) 0 0 

2D(AJ 
0 1 

0 0 

2po(E) 0 0 2po(E) 
-5 •5 

2pB(T,) - 0.7 X 10 *~ 0.0X 10 

Thus, the estimated s h i f t for lsCA^ at T = 0°K 

i s 0.77 mev. with ^ 90% coming from the diagonal matrix 

element involving l o n g i t u d i n a l phonons. The corresponding 

quantities for l s ( E ) and "ls(T|) are - 0.42 mev. and 

-0.48 mev. respectively. These s h i f t s are < 2% of the 

respective a c t i v a t i o n energies. 

The s h i f t for the 2p i s of even smaller magnitude. 

o 
Take for instance 2p(6), we obtain for S„ . the value 

0 2po(6) ,^pe(6) 
of - 0.01 mev., with transverse phonons contributing ^ 2 0 % . 
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The temperature-dependent part of the s h i f t , on 

the other hand, has contributions only from mixing of states 

with non-vanishing energy separation. Some t y p i c a l 

contributions to the ls(A,)-state at T = 30°K and 60°K are 

shown i n Table XIII. 

TABLE XIII: T y p i c a l contributions to ^ i s ( A j jfti/) 

at T=30°K and 60°K. 

xV) T longi t u d i n a l transverse 

30°K -0.4 X10" 5ev. -5 
-3.1 X 10 ev. l s ( E j -5 -5 60° K -1.7 )<10 ev. -8.9^10 ev. 

30°K -5 30°K -0.3 *10 ev. 0 
2s (A,) 

60° K -5 2s (A,) 
60° K -1.3 * io ev. 0 

The r e s u l t s of ^—\ , . ,/, /. for the various 

X(ji) of i n t e r e s t are now l i s t e d i n the following: 

30° K 60° K 

Is (A,) -0.038 mev. -0.119 mev. 

ls ( E ) +0.013 mev. +0.035 mev. 

ls(T,) -0.004 mev. -0.014 mev. 

2R(A » ) 
2j?(E) -0.008 mev. -0.020 mev. 

> -0.008 mev. ^>-0.020 mev. 
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which can be represented schematically as i n Fig.2. 

Comparision with experiment i s given i n Table XIV, 

F i g . 2. Schematic diagram for energy-level 
s h i f t s . 

The spacings are not drawn to scale. 
The arrow indicates the d i r e c t i o n of s h i f t as 
temperature i s increased from 0°K and the number 
i s the magnitude of s h i f t i n units of mev. 

T = O K T = 30°K 60° K 

J / 0 . G O 8 o z o 

0 - 0 3 5 " 

J, 0 - O W -

0 - H 9 



TABLE XIV iComparision with Experiment. 
. . . l a units of mev. 

E 
THORECTICAL EXPERIMENTAL 

l s ( ) 
S h i f t of ls()^2p 
l i n e at T r e l . ° 
to s h i f t at 0°K 

Shift of ls(>»2p 
l i n e at 60°K r e l ! 
to s h i f t at 30°K 

Transition 
energy 

l s ( ) > 2 P o 

S h i f t of ls()-»2po 

l i n e at T r e l . 
to s h i f t at 4.2°K 

S h i f t of ls()-?2p 
l i n e at T u r e l . ° 
to s h i f t at Tft 

ls(A () 
0.03 (30°K) 

0.10 (60°K) 
+ 0.07 

0.025+0.006 *" 
(32.5°K) 

0.102±0.025 * 
(60°K) 

+ 0.08 

ls(T,) 

-0.00$ (30° K) 

-0.00^) (60°K) 
- 0.00(2) 

22.44±0.04 5 
(30°K) k 

22.38±0.047 

(59°K) 
- 0.06 

l s ( E ) 
-0.02 (30°K) 

-0.05^) (60°K) 
- 0.03(5) 

s 
21.11i0.04 ' 

(30°K) 
) 

21.OliO.04 
(59°K) 

- 0.10 

4r T u= 60°K, T £=32.5°K 
Bichard and white (1966) for f i r s t entry; 

r . T u= 59°K, T^= 30°K 
5 Aggarwal and Ramdas (1965) for the other 

two e n t r i e s . 



72 

CHAPTER IV : SUMMARY AND DISCUSSIONS 

The e f f e c t of the electron-phonon i n t e r a c t i o n on the 

electron d i s t r i b u t i o n function for shallow impurity states has 

been discussed within the framework of the Green's Function 

method. The s p e c i f i c problem considered i s one i n which the 

set of l o c a l i z e d states at any one impurity s i t e cannot contain 

more than one electron. The formalism developed can be extend

ed to treat other classes of problem. As an example, another 

i n t e r e s t i n g s i t u a t i o n i n semiconductors i s one i n which there 

i s one bound state which contains possibly one or two electrons, 

but not less than one (Wilson, 1953). For no i n t e r a c t i o n , 

Wilson's r e s u l t i s obtained by using the projection operator 

P̂ + P^, where Pg projects onto the two-electron subspace, and 

then using one value of E.. 

Our formalism applies also to holes i n acceptor 

impurity states. 

The problem remains to determine the chemical potent

i a l a when one has a concentration N of impurities i n a 
d 

semiconductor. For t h i s purpose, one has to take into account 

the d e t a i l e d nature of the conduction band states and c a l c u l a t e 

also the electron d i s t r i b u t i o n function for such states. Then, 
u i s determined from the r e l a t i o n Z n u c + ^r- fnf» = N , 

A S A S k s &s d 
(compare with eq.(2.61)). 

In the l i m i t that the damping can be neglected, one 

obtains for the electron d i s t r i b u t i o n function an expression 
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s i m i l a r to that of the interaction-free case, but with r e-

normalized energies (compare eqs. (2.30) and (2.62)). These 

renormalized energies are i n general temperature-dependent. 

A numerical c a l c u l a t i o n has been made to obtain 

the r e l a t i v e s h i f t of these renormalized energies and the 

unperturbed energies for a few states i n the case of phosphorus 

donors i n s i l i c o n . The r e s u l t s can be summarized as follows. 

The s h i f t at zero temperature represents a correct

ion to the unperturbed energy spectrum due to the zero-point 

vibrations of the l a t t i c e . This correction i s small compared 

with the a c t i v a t i o n energy ( < 2%) and i s e s s e n t i a l l y a negative 

quantity. The dominant contributions come from the state 

mixing with i t s e l f , involving primarily the long i t u d i n a l mode. 

The transverse modes are important i n some mixing of d i f f e r e n t 

states, but then i t s magnitude i s -6-10% of the afore-mentioned 

contribution. 

In c o n t r a d i s t i n c t i o n to the s h i f t at T = 0, the 

temperature dependence o f the s h i f t i s due e n t i r e l y to mixing 

of states whose energy l e v e l s are separated by a d e f i n i t e 

amount. The numerical r e s u l t s show that the mixing between 

ls(Aj) and l s ( E ) states predominantly determine the tempera

ture dependence i n the s h i f t s of the same two l e v e l s . Also, 

the mixing i s most favorable for the exchange of transverse 

phonons. The ls(T ()-states, on the other hand, do not mix 

with the ls(Aj) nor with the ls(E.) through the elect r o n -

phonon i n t e r a c t i o n . Therefore, one would expect, as was borne 
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out by numerical c a l c u l a t i o n s , that the temperature-dependent 

s h i f t of ls(Tj) would have a smaller magnitude; the s h i f t comes 

mostly from mixing with the 2s and 2p states, so that a 
o 

larger energy denominator i s involved and the matrix element 

involves two d i f f e r e n t envelope functions. 

Comparision of the t h e o r e t i c a l r e s u l t s with experiment 

i s not completely s a t i s f a c t o r y . The s h i f t of the ls(A,)-^2p 

o p t i c a l absorption l i n e observed by Bichard and White (1966) 

agrees reasonably well with the r e l a t i v e s h i f t of ls(A|) and 

2p at 30°K and 60°K. The same comparision between the excited 
O 

Is states and the 2p shows poor agreement with the l s ( E ) — ^ 2p 
o o 

ls(T,)-*2p t r a n s i t i o n l i n e s of Aggarwal and Ramdas (1965). 

However, i f one only considers the r e l a t i v e displacement of 

the two excited Is l e v e l s from each other from 30°K to 60°K, 

the t h e o r e t i c a l value i s 0.03 mev. as compared with the 

experimental value of 0.04 mev.. Also, the d r i f t i n g apart of 

the two l e v e l s when the temperature i s increased from 30°K to 

60°K i s consistent with the ordering of l s ( E ) l y i n g above 

ls(Tj) i n the energy scheme of Aggarwal and Ramdas. 

In our c a l c u l a t i o n s , we have taken into account only 

the mixing among Is, 2s and 2p states. The number of a l l 
o 

higher states are numerous and c l o s e l y spaced so that t h e i r 

e f f e c t on 2p and Is states cannot be simulated. A l l that 
O 

can be said i s that these higher states would tend to depress 

the states considered. It i s reasonable to expect, however, 

that such an e f f e c t would be more strongly f e l t by 2p than 



75 

by Is, since the l a t t e r i s so much further away than 2p i s 
O 

from the higher states. If 2p were depressed by 0.06 mev. 
O 

from 30°K to 60°K by these higher states, with no depression 

of Is from them, then agreement with experiment would be 

obtained for both the ls(E)-*2p and ls(T.)~> 2p t r a n s i t i o n s . 
o I o 

As a concluding remark, we mention a few factors 

that might a f f e c t the numerical r e s u l t s . F i r s t i s the lack 

of knowledge of the exact wave function for the ground state 

whose o r b i t i s small. The e f f e c t i v e Bohr radius appears 

i n our c a l c u l a t i o n as a factor of (1/a*) , so that a c e r t a i n 

percentage change i n the value of a* would induce a t r i p l e d 

percentage change i n the ent i r e f a c t o r . Secondly, the exact 

positions of the 2s-states i n the energy spectrum i s not known. 

The values given i n (3.59) are determined from the spectrum 

of the l s - s t a t e s by the quantum defect method (Kohn and 

Luttinger 1955). One would have l i k e d to be able to extract 

t h i s information from the half-width measurements of the 

spe c t r a l lines I s —> 2p . However, such measurements are at 
O 

present not r e l i a b l e due to instrumental broadening and 

d i s l o c a t i o n (Bichard and White 1966). 
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APPENDIX I 

ORDER ESTIMATION OF EQUATION (2.34) 

For an order estimation of eq. (2.34), i t s u f f i c e s 

to consider j u s t the term 

(A.I.I) *2 V x > t > « i f , . 1 Ax's>E 
1 

since the other term i s obviously of the same order. We write 

the equation of motion for <^b^a^s| A as 

(A. 1.2) (E - T„ - u^) ^ c t ^ s l ^ s ^ E = 0(xj.const. 

+ ^ V A V s < t a X s l 4 s % <E + 

It i s only necessary to consider ^ v ^ s ^ a
A S \ A x ' s ' ^ E since 

the other terms w i l l not change the order of magnitude on the 

R.H.S. of (A.1.2) near the s i n g u l a r i t y of <J a
A Sj Aji^E* 

Let us look at the region of E where 

(A. 1.3) < a x s | i+jp - O C ^ * ) 

where g i s assumed to be zero or po s i t i v e . We now write 

In t h i s and the following appendix, the treatment follows 

c l o s e l y that of Nishikawa and Barrie (1963). 
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(A.I.4) 2 = Z Z 

*/ a —^ where denotes summation of q over those values of q IT 
such that 

(A.1 .5) ( E - - ui-±) = O ( ^ ) , 

Therefore for the values of q such that (A.1 .5) i s s a t i s f i e d , 

we have 

(A. 1.6) ^ Y ^ K ' ^ E = 0 ( ^ " G " A ) -

On the other hand, the number of phonon states for which 

(A. 1 .5) i s s a t i s f i e d i s of OC*C). Hence 

a r e s u l t that i s independent of a. Then, as long as i s 

convergent, which i s true since the number of phonon states 

i s f i n i t e , we obtain 

(A.I.8) nC£ V w 1 u « V , s K s ^ E " O ^ ' ^ s l Ax'ŝ E-
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APPENDIX II 

PROOF OF (2.42) 

This appendix i s divided into two parts. The f i r s t 

i s concerned with an estimation i n S\T whereas the second 

part i s with an estimation i n . 

( i ) Order Estimation i n J V . 

We are required to prove 

( A . i i . D * & H \ B \ Ah% - S ^ g ' 1 4 ^ E + 

(A.II.2) 4 Y * % s 1 A & ^ E * 0(-& 

(A.ii.3) € h i b i \ s \ A i d p E = 

* 
Using the r e l a t i o n 

(A. II.4) <&|l& = _ J _ Idu e S ( J 1 dt <BA(t)>e i E t, 

4ir 2 E - u + i | J X ' 

the problem i s reduced to an order estimation i n JY^ of the 

co r r e l a t i o n functions j namely 

(A.II.5) <e A+ye ^ % . > - * ̂  ^ * <? A X s e 

* 
See Zubarov (1960) 
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(A. I I . 6 ) <^e. fjy s/e. ^ ^ / 0 y 5 > " ° 

The procedure i s here demonstrated by considering 

only (A.II.5 ) , The others can be proved i n the same manner. 

Let us then write 

(A.II. 8 ) 

L.H.S. of (A.II.5) 

- I 

- ^ 7 E [ Q . O T / L L ^ FA 

where Q = Tr j e T , Q o= Tr \ e \ and 

(A.II.9) 

If we use the formula 

J * M * = § ^ y ,U|) H ^ 
" i 0 - > | » i y > - > „ > 0 

u^o vp 
with H e p ( u ) = e H e p e " u ^ , t h e n p can be written as a 
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sum of products of creation and a n n i h i l a t i o n operators. This 

enables us to use the contraction theorem of Bloch and 

Dominicis (1958) on the expression i n -bracket i n (A.II.8). 
We now d i s t i n g u i s h two groups of terms i n the summation of 

a l l possible contractions taken among the creation and annihila

tion operators. We have on the one hand terms that contain a 

contraction of appearing e x p l i c i t l y i n F. The sum of 

these terms i s 

(A.n.ii) tyy&oWfc ^ e- <W*- e, V ) ; 

where b^b^' i s defined as the contraction of b^ with b_^ 

given by 

tt.ii.i2j t l f = Q0 T ^ ^ t V v ^ ^ -

On the other hand, we have terms i n which each of 

the phonon operators appearing e x p l i c i t l y i n F i s contracted 

with one phonon operator i n the expansion of the exponantials. 

This w i l l introduce a factor of the form »,*V /V which 
aaq BBq 

i s of order . Combining t h i s r e s u l t and (A.11.11), we 

have 

http://tt.ii.i2j
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and so from (A.II.8), 

(A.II.14) L.H.S. of (A.II.5) = &3fi>^ 0. T/t\y e. ft^i e C y j 

= R.H.S. of (A.II.5) 

( i i ) Order Estimation i n . 

From the discussion of ( i ) , i t follows that 

(A.11.15) < e ^ 4 < i ^ ^ f v > = o ^ for -4 *r 

since each o r V ^ c f i S a c c o m P a n : ' - e d ^y a f a c t o r ~^• 
Therefore, for values of E that are not near the s i n g u l a r i t i e s 

of the Green ' s Function < ^ b
c t b c l a | j i s \ A ^ s ^ E ' w e n a v e 

(A. II. 16) < % = O ̂  (t . 

Near the s i n g u l a r i t i e s , the s i t u a t i o n i s d i f f e r e n t . 

We proceed by writing down the equation of motion for the 

Green's Function, v i z . 

(A.11.17) ^ 

t 
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The possible s i n g u l a r i t i e s of ^ k c ^ a ^ A ; ^ E occur at 
E = T,,- + and at the s i n g u l a r i t i e s of the Green's 

V- q q 
Functions on the R.H.S. of (A.II.\7). The f i r s t s i n g u l a r i t y 

i s obviously "<t- and "q-dependent so that i t can be ignored 

as i t becomes unimportant a f t e r summing over q and q. To 

fi n d the s i n g u l a r i t i e s of the Green's Functions on the R.H.S, 

of (A.II.|7), we have to write down th e i r equations of motion. 

For ^ b q ^ g l Axs^E a n d ^ k q ^ s l A3^S^E' t n e e { l u a t i o n s a r e 

given by (2.35) and (2,36). We note that the s i n g u l a r i t i e s 

of these Green's Functions that are q- and q-independent 

occur at the same values of E as those of ̂ A^' S \Aj^^i. 

Out of these s i n g u l a r i t i e s , the one that contributes to the 

lowest order i n %. i s that of < ^ a
A s I A X ' S ^ " Therefore, 

^ J ^ ' s ^ E A D D « b K s l A l ^ ^ ° f ° r d t > r ^S'sK's'^E 
so that the f i r s t term on the R.H.S. of (A.II.17) i s of order 

"*.Z<̂ a
A's' |Ax's^s» T n e s a r a e i s true for terms with = q or "q' 

i n the second sum. The other terms can be shown to be of 

order ^ ^ ^ g | A^'^ E by an order estimation s i m i l a r to that 
used i n Appendix I. 

Thus, we have shown that <^h^b^a^ s|A^^ E i s of 

order ' X^^ A
A
/
S
/ | A ^ ^ E n e a r t n e s i n g u l a r i ' t y °f <^ ax /sl Ai*s^E 

and i s of higher order near other s i n g u l a r i t i e s . 

:Since « A ^ - ^ a ^ | A^>>£ 
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APPENDIX I I I 

EXPLICIT EXPRESSIONS FOR 

^ j ^ s > AND <fttfc3fl*> 

Let us j u s t look a t the f i r s t thermal average i n 

d e t a i l ; the treatment f o r the oth e r f o l l o w s i n e x a c t l y the 

same manner. 

From (2.44) and (2.49), we o b t a i n 

( A . I I I . l ) , 0 , A + v ^ [<Wfis<W> < f t W > ^ 

A l s o , from (2.23) by choosing A = b^a , B = A + and y = -1, 
q vs Xs 

we have 

a . i i i . 2 , « & t ^ - W — ^ 1 1 

J e -v 1 

S i n c e we are i n t e r e s t e d i n the s i n g u l a r i t y o f < ^ l ^ a ^ s | ^ 

we can i g n o r e M (E) i n ( A . I I I . l ) . Then, the d i s c o n t 
Xs 

of <^b^a^ s J A ^ g ^ > a c r o s s the r e a l a x i s i s g i v e n by 

^ 4 ^ ^ ^ " ^ ^ ^ ^ 
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Substituting (A.III.3) into (A.III.2), we get 

After rearranging, (A.III.4) becomes 

(A. I I I . 5) v . ( J ^ V x ^ S fcl^t^Q, fox-Trlfl 

so that 

a.m..) ^ f ^ T = — ^ A 

(A.III.7) 

By the same procedure, i t can be shown that 

One also a r r i v e s at the same r e s u l t s by using 

the expansion i n (A.II.10). 
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APPENDIX IV 

SUM RULE 

It i s the purpose of t h i s appendix to prove the 

following sum r u l e : 

(A.IV.l) ^ J I wti»j u - i « i J ' 
-«0 

It i s i n fact j u s t as easy to work i n the general 

case for any two operators A and B, and then deduce (A.IV.l) 

as a s p e c i a l case. 

We s t a r t with the r e l a t i o n * 

(A.IV.2) | 

with y - - 1, i f A and B are electron operators; 

y = + 1, i f A and B are phonon operators. 

Since the trace i s invariant under c y c l i c permutation of operat

ors, i t follows that 

J ^ 

^ See Zubarov (196o); eq.(2.23) i s obtained from (A.IV.2) 

by s e t t i n g t = 0. 
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Combining (A.IV.2) and (A.IV.3), we see that 

(A.IV.4) 

— A , \ XtO €L T > o t 1 w 1 
Putting t = 0 and rearranging, the sum rule i s then given by 

In p a r t i c u l a r , i f we choose A = a ^ g , B = A^ s, y = +1, we 

a r r i v e at (A.IV.l). 

As a f i n a l remark, we mention that i n the absence 

of the projection operator, the R.H.S. of (A.IV.l) would 

have been unity. 
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APPENDIX V 

DISCUSSION ON THE METHOD OF CALCULATION 

We present in this appendix a brief discussion on 
the method of numerical integration used. 

the form 
(A.V.I) 

with 

(A.V.2) 

where 

(A.V.3) 

The integrals that we were concerned with are of 

I - !< + )
+ 

(A.V . 4 ) 

(±) m j y 

T" O 

The typical plot of ¥{'jL) is given in Fig.3. The 
functions are plotted in Fig.4 for an arbitrary 
value of 5-

Fig. 3. 

Typical plot of F(^C) 

->JL 
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F i g . 4 . 

Plot of \ 

Since \ i s a well-behaved function, there 

As for 

1 j<-

i r r y i n i 

, on the other hand, the function behaves 

i s no problem i n carrying out the numerical integration of I^t^ 
1 

c r i t i c a l l y on either side of % . If ^ i s large enough 

( i . e . , far from where F(^C) i s appreciable), we again encounter 

no d i f f i c u l t y i n evaluating 1^ \ Otherwise, the asymtotic 
1 behaviour of may become important. 

1 

Let us consider i n p a r t i c u l a r the case A,->2s(T,), 

X - * 2 p o » The plots of the corresponding F(^C) and 

F(jC)/( ) are given i n F i g . 5. We see from these plots 

that the pronounced nature of 
5 - X -

appears only i n a 

narrow region of jL and that the area under these portions 

of the curve i s indeed small compared with the r e s t . It i s 

expected also that whatever error i s introduced into the 

area for should be p a r t i a l l y cancelled by that for 

For the impurity states considered i n the main 

text, the v a r i a t i o n of F(/,) and the placement of energy 

l e v e l s are such that the above i s already and extreme s i t u a -
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t i o n i n that the value of ^ i s closest to the dominant 

regions of F ( j L ) . Therefore, other numerical integrated 

r e s u l t s are at least as good as the above example. 

However, since there i s no experimental evidence 

as to the positions of the 2s-states, i t i s worthwhile to 

consider the s i t u a t i o n i n which ^ i s even closer or perhaps 

within the dominant regions of F ( ^ L ) . The integrand may 

therefore look l i k e the following: 

When t h i s happens, the straight-forward numerical integration 

may give very poor accuracy, since we have here the difference 

of two large areas. To improve on the accuracy, one can 

proceed as follows: 

( i ) Write the Cauchy p r i n c i p a l value i n the representation 

so that 
_ » 
1 

1 
for some ( i i ) Carry out the numerical integration of 

small values of *). 

( i i i ) Plot the values of I n as a function of ^ . Then, the 

value of J. i s obtained by extrapolating 1 VJ to v| = o 
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Plot of F(jC) 

Plot of 

F i g . 5. 
Plots of F(JL) and F (/•)/(\-JL) . 
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