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ABSTRACT

The 'migrating thermal bar' phenomenon, known to occur in certain
large, dimictic, freshwater lakes, has been studied in laboratory and
mathematical models. The temperature fields observed in the laboratory
agreed with those obéerved in Lake Ontari§ and a linear physical model
for the speed of the 'thérmal bar', based on negligible horizontal ad-
vection and diffusion of heat, gave reasonable values for both the
laboratory model and Lake Oﬁtario. Observations were also made of the
associated velocity field. On the basis of this laboratory model, which
suggests that horizontal aavection and diffusion of heat were not of
primafy importance, mathematical models were developed. First the
temperature field was calculated from the one—dimenéional heat.diffusion
equation. Then the velocity field was calculated assuming that the flow
was driven by buoyancy forces and balanced by viscous forces. On the
basis of the similitu&e between the temperature fields found in my models
and those observed in tﬁe lakes, it seems possible that the velocity
field of the models also provides a good approximaﬁion to the circulation
associated with the bar in lakes. There are no direct measurements of
tﬁe velocities associated with the bar in lakes and they will be difficult
to obtain as‘sucﬁ velocities are expected, in Lake Ontario, to be only of

the order of 1 cm sec_l.'
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1. INTRODUCTION

The term 'thermal bar' (or rather 'barré tﬁermique') was first coined
90 years ago when a Swiss scientist (Forel, 1880) tried to explain a curious
winter temperature pattern in Lake Geneva. The deeper part of the lake
remained above 4°C, the temperature'of maximum denéity of fresh water, while
during severe winters there was ice at the shore. The 4°C‘isotherm at the
surface was situated just on the shallow side of a drop off to’deep water .
and‘was quite stationary.i'The watér was not obsérved to mix across this:

isotherm, which thus seemed to mark some sort of limmological barrier.

However most of'the literature on the thermal bar is from the last.
decade. in 1963 Tikhomirov publishéd a paper desqribing a‘migrating thermal
bar observed on Lake Ladoga dqring both the spf@ng heating-up period and
the fall coolingQOff period. The baf was oﬁserved to move from near shore
to the centre of tﬁe lake where it disappeared. The most d;tailed obsérva—
tional studies have been done by C;K. Rodgers of the Great Lakes Institute,
University of Tbronto, who for many years has been studying éhe migrating
thermal bar in Lake Ont'aﬁo (Rodgers, 1963, 1965a, 1966a, 1966b, 1967,
1968). | |

A migrating thermal bar thus occuré in some large freshwater lakes
in the spring and laﬁe_fall (e.g., Lake Michigan: Church, 1942; Great Lakes:
Richafds et dZ, 1969; Lake Ontarid: Rodgers, 1966a; Laké Ladoga; Tikhomirov,
1963). It is a thermal strucﬁure in which a surface 4°C iéotherm appears
first near thé shores and then progresses towards.the centre of the lake,
where it eventually disappeafs. Strong surface temperature gradients, a

marked‘change in turbidity, and indications of a convergence are usually

associated with the 'bar'; defined by the 4° surface isotherm, which



separates stable, stratified, shoreward water from almost homogeneous
deeper watér (Rodgers, 1966a). The thermal bar exists because fresh
water attains its maximum density above its freezing point (Figure 1).
During heating or cooling through the temperature of maximum density

in certain large lakes, in which the 'bar' exists, the vertical mixing
does-not occur uniformly over the whole lake, Instead the mixing is
first completed near the shores which then become stable., The migrating
. thermal bar exists at the transition between the stable and unstable

regions. |

The situtation is weli illustrated by what happens in Lake Ontario.

In early spring Lake Ontario is everywhere colder than 4°C, typically
below 2°C. As the lake heats up, the mean water temperature‘at the shore
increases more rapidly than in the deeper parts of the lake. The surface
4°C isotherm appears first near the shore around the lake and gradually
moves in towards the centre of the lake, remaining roughly parallel to
the depth contours. It takes one and a half to two months from its
appearance at the shore until it disappears below the surface at the
centre of the lake. By the beginning of June a temperature section
across Lake Ontario is similar to those showﬁ in Figure 2 (Rodgers,

1966a and Rodgers, unpublished, 1965). Flotsam along the surface 4°C
isotherm suggests some associated convergence. The higher turbidity on
‘the shoreward side of theA4°C isotherm indicates that this water does

not mix quickly with the remainder of the lake. This is the reason for
the name 'thermal bar' meaning 'barrier'. In the warmer water on the
shoreward side of the 4°C isotherm a thermocline and a strong surface
temperature gradient exist (Figure 2) (see.Rodgers, 1966a, 1966b).

This phenomenon can also occur in the fall as the temperature
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near the shoré decreases more rapidly than near the middle of the lake
resulting in a 4°C isotherm that then progresses towards the centre of
the lake in a manner similar £;>t£e‘situatioﬁ in the spring (Church,
1942; Richards et al, 1969; Rodgers, 1966a). This is not as pfominent
a condition since the stable shoreward side cannot become as strongly
stratified, the maximum temperature difference being 4C°.

The only previous mathematical consideration of the thermal bar
phenomenon was the recent work pertaining to Lake Michigan by Huang
(1969). His approach assumed that the pressure gradients induced by
thermal effects were balanced by Coriolis forces (that is, he used the
thermal wind equation) except in thin viscous boundéry layers. The
equations ﬁere linearized by ordering in terﬁé of the Rossby number;
the zeroth and first order'solutions wefe considered. These solutions
are not at all fime dependent, as the migrating thermal bar obviously
is. The confining of viséous effects to thin boundéry layers confines
the horizontal flow prependicular to the bar to these boundary layers,
which does not seem reasonable.in the light of ouf model studies. Also
his calculated flow is in the form of cells, one on either side of the
bar, with mixing and sinking at the bar. This was not what I found in
mylexperimental observations.

A.simple prediction scheme for the time of disappearance of the
thermal bar in Lake Ontarikoas developed by Sato (1969) using observa-
tional data. "He found the time to depend primarily on the heat content
in the central portions of ‘the lake in the early spring (arbitrarily
using April 1); that is, the time interval was that necessary to heat
the central waters to the point where the surface temperature was

4°C.



In my opinion a theoretical approach to the problem of the thermal
bar was hampered by the lack of knowledge of the velocity field involved
in the phenomenon; for example, no measured currents have been directly
related to this phenomenon. For this reason I have studied the thermal
bar in a laboratory model (Elliott and Elliott, 1969, 1970) (see section
2). This study compared favourably with lake observatioms.

From these laboratory studies and the observations taken by others
of the the;mal bér in lakes, a linear.physical model for the speed of the
migrating bar was developed. A‘temperature field was developed mathemati-
cally which compared reasonably well with the laboratory model studies.
Using an analytical approximation of the observed temperature field, a
velocity field was then found, using an approximated vorticity equation,
which again agreed reasonably well with the observations from the work
in the laboratory (see section 3). These results were then scaled, on
the basis of the laboratory studies and compared to the conditions in
Lake Ontario during the presence of the thermal bar.

The 1aboratory and theoretical studies produce reasonable approx-
imations to‘the temperaturé fields observed in Lake Ontario and the
associated velocity field is not unreasonable, but has not been directly

measured in the lakes.



2. LABORATORY MODEL

2,1 Apparatus

The experiments were conducted in a rectangular>tank 1.5 meters long
and 30 centimeters wide that was insulated on the sides and bottom (Figure
3). The end walls and bottom were plywood with 4 centimeter styrofoam
insulation. ° The long walls were a double thickness of 0.6 centimeter
plexiglas separated by a 1.2 centimeter air space. A desiccating agent
was inserted in the air space to prevent condensation. To provide a
sloping bottom, wedges of styrofoam covered with sheets of plastic were
sealed into the tank with masking tape and a silicone sealant. This tank
was used to simulate both the spring and fall conditions.

The spring condition or heating period was simulated by first cooling
water in the tank down to about 0°C and then heating the surface from above
with heat lamps (Westinghouse, 250 watt, reflector, infrared heat). The
fall or cooling period was simulated by cooiing cold (6° to 8°C) tap water
in a cold chamber (facilities of the Frozen Sea Research Group, DEMR,
Victoria). Since the spring conditions have been more frequently reported
for the Great Lakes and the heated system is easier to simulate in the

laboratory this system was studied in more detail. =~ -

2.2 Experimental Techniques

For the heating experiments the tank was first filled with fresh tap
water. About 1 c.c. of liquid detergent was added; this was necessary to
decrease surface tension effects during the addition of dye. 1If the deter-.
gent was not present when the flecks of dye came in contact with the water,

surface velocities resulted which distorted any 'thermal bar effects'
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present. Crushed ice was stirred into the water to lower the temperature

of the water to near 0°C; then excess ice was removed, the mean temperature
measured, and the heat lamps fﬁéﬁ;dAéﬁ.. In épproximately one half hour

the shallow end had reached a temperature slightly above 4°C. A temperature
and current pattern developed (see subsection 2.3) which maintained itself
throughout the experiment, progressing from the shallow end to the deep end
in a further half hour.

The current structure was followed by dropping flecks of Rhodamine B
dye on the surface; these sank to the bottom leaving vertical red traces
which were subsequently distorted by the currents. The dye trace was
positioned with respect to a centimeter grid on the back wall of the tank.
The motion was timed with a stop-watch. Relative motions were obtained
from time series photographs and from 16 mm movies of the dye streaks.

To obtain temperature profiles a thermistof bead (VECO 32A5),
attached to the end of a 40 cm, thin glass rod wiéh centimeter markings,
was lowered vertically through the water. The resistance of the thermistor
was measured directly with a Fairchild Multimeter (Model 7050). This
instrument uses sufficiently small current (1 pa) that self heating of the
thermistor is negligible. To prevent thermal contamination from water
dragged by the glass rod, measurements were made ohly while lowering the
thermistor. Resistances were usually read at depths of 0.5 em, 1 cm, 2 cm,
3 cm, etc., to the bottom. The thermistor was calibrated against a mercury
and glass thermometer before, during, and after the experiments. Its
calibration did not change. A calibrated, battery-operated thermistor
thermometer was situated at the deep end of the tank at all times in order
to measured the temperature here periodically during the experiments.

The heat flux was obtained from the difference in heat content of the
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water in the tank just before the heat lamps were turned on and just after
the heat lamps were tummed offi“.No;mglly the tank was heated with three
heat lamps equally spaced with respect to the tank and at a height of 1.5
meters above the water surface (Figure 3). The water was also heated by
long wave radiation and heat conduction through the walls. The effects
of this radiation and conduction were evaluated as follows. With the heat
lamps off, a‘tank of 0°C water was allowed to sit for about an hour. This
gave a heat flux which included both long wave radiation balance and heat
gained by conduction through the walls. Then a tank of water at 0°C, with
an insulated top, was allowed to sit for approximately an hour. This gave
an estimate of the heat flux through the walls. Using three lamps the
heating rate was about 9 x 10"3 cal c:m‘_2 sec_l (Figure 4). Of this
2 x 10_3 cal cm‘—2 sec:_.1 was from the long wave radiation and 2 x 10-3
cal cm_2 sec—1 from heat conduction through the walls. A higher heating
rate of 12 x 10—? cal cnrz sec—1 could be obtained using five heat lamps.
Thus "a maximum of about one fifth of the heating of the water in the tank
is through the walls and not through the surface of the water.

In the first series of experiments a bottom slope of 5° and a heating
rate of 9 x lO_3 cal cm-2 sec = were used. This‘slope is five to twenty
times those found in Lake Ontario, the prototype for this model, however
it gave a reasonable change in water depth over the length of the tank
(about 1 cm of water at shallow end, 14 cm‘at deep end). The heating rate
is only slightly higher than the 7 x 10—3 cal cm_2 sec—1 typically
experienced in the spring on Lake Ontario. Figure 5 shows the penetration
of the surface heating from the heat lamps, calculated from the spectral

energy distribution of the lamps and known absorption coefficients

(Sverdrup et al, 1942; Dorsey, 1940). Also shown is the penetration of
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12
solar radiation into pure water'(Svérdrup et al, 1942). 1In the tank most
of the heat was absorbed in the upper centimeter of the watér; this simulates
solar heat absorption in the upper few meters in the lake. Thus Figure 5
suggests a vertical scaling of approximately 1/1000. The 5° bottom slope,
compared to the north shore of»Lake Ontario, in furn suggests a horizontal
scaling of approximately 1/20,000. In making a comparison_with the lakes,
the.tank could then be viewed as representing a section from the shore to
the centre of the lake, however these tank experimenté are not meant to be
an example of strict dynahic modelling.

The experimental work was done in two stages. The first series of
experiments were done primarily to investigate the possibility of studying
the thermal bar in a 1abor§tory model and to investigate its behaviour
during heating and cooling. The velocity field was also stuaied at this
time. Later, a further series of experiments were done to study my 'thermal

bar' in a more quantitative manner,

2.3 Description of the 'Bar' in the Tank

Initially the surface heating produces vertical convection everywhere
in the tank. The temperature in the shallow end rises faster than that in
the deep end makingbthe water in the shallow end denser. However downslope
flow due to this horizontal density gradient is inhibited by the convection.
Eventually the temperature in the shallow end reaches 4°C while in the deep
end it is still less than 2°C. By this time some flow of dense water along
the bottom slopg can be observed in spite of the vertical conveétion. This
weak mean circulation is supérimposed on the convection; towards the deep

end at the bottom and towards the shallow end at the top. Further heating

produces, at the shallow end, a stable thermocline of water warmer than 4°C.
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This thermocline progresses towards the deep end and its forward édge marks
a boundary between the now stabie shallow region of the tank and the deeper
convecting region (Figure 6). A mean flow towards the deep end is observed
in the theﬁocline with a counter-flow underneath. In the deep end of the
tank a flow ﬁear the surface travels towards the stable thermocline. This
current sinks at the front edge of the thefmocline and divides, a part .
providing the upslope current in the shallow end and the other part a down-
slope current in the deep end. The sinking zone (Figure 6) in front of
the stable thermocline is made up of water between 3.5 and 4.5°C (maximum
density region). Thié dense water is the result of heating colder, lighter
water from the deep end of the tank and does not include water from the
stable thermocline on the shallow side. In these experiments, this sinking
‘zone will be referred to as the 'thermal bar’ or simply the 'bar'. The 4°C
isotﬁermtdoes not alﬁays extend to the surface since eventually a shallow
thermocline also develops on tﬁe deep side due to the intense heating ét
the surface. This thermocline is slightly unstable and more active convec-
tive mixing Q@uld dissipate it. The surface velocities go to zero because.
of surface tension éffecés, often referred to as 'surface pressure' (see
Davies and Rideal, 1961, p.218); this is due to the presence of nearly
unavoidable surface contamination. The temperature. and current pattern
maintaiﬁs itself until the bar has‘reacﬁed the deeb end of the tank. The

results for the coolihg system are similar (see Appendix A).

2.4 Similitude to Lake

A

Comparing these results from the tank to field observations, there are
several obvious similarities. A 'bar' moves from the shallow end or shore

to the deep end or centre of the lake. A thermocline develops on the
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shallow side and the front edge is marked by water near 4°C. On the
deep side a more uniform temperature.region ‘exists in both, indicating
convection, The motion observed in the thermocline in the experiment has
also been deduced from heat budget calculations for Lake Ontario (Rodgers,
1968). The sinking plume observed in the experiment in front of the
thermocline would produce the convergence that has been suggested from the
field observations. In the experiment there was no horizontal motion across
the bar from the thermocline region to the deeper region. This agrees with
the fact ;hat the bar is observed to be a limnological barrier to offshore
motion. The shallow thermocline whiéh developed on the deep side in the
experiment would not generally exist iﬁ lakes, due to wind mixing. Neverthe-
less under very stable, light wind conditions such a shallow thermocline
has been observed on Lake Ontario (Elder and Lane, 1970). Also the surface
velocities would not, of course, be expected to go to zero. Thus the tank
experimenf appears to represent a heaﬁ driven circulation similar to the

thermal bar phenomenon observed in the Great Lakes.

2.5 Linear Model for the Speed of the Bar

A simple linear model based on the above results was used to evaluate
the speed of the bar. The model assumes that horizoﬁfai advection and
diffusion of heat are not of primary importance. This means that most of
the heat entering the surface of a unit column remains within that columm.
The position of the bar is then at the transition from an unstable to a
stable water column. The time taken for the bar to travel from a point A
to a point B is the time taken to heat the column of unit area at point B

up to 4°C. The model gives the speed of the bar, S, since
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. L change in heat content
time = -— = R
S Q
® _Q L _ |
' S = AT pc_ D ‘ (2.5.1)
P

-1

where Q is heat flux througﬁ the surface in cal cm_2 sec 3
'L is the horizontal distance (in cm) between the bar and some deeper
position where the mean temperature is knownj}
AT is the temperature difference (in C°) between 4°C and the mean
temperature at the deeper position;
D is the depth of the water (in cm)vat the deeper position where the
mean temperature is known;
and pcp is the density of the water times its specific heat. To the
accuracy of the experimental data this has a value of 1 cal C°_1cm—3.
Thus if the mean temperature at some position in the convective region is
known, together with the heat input, the arfival time of the bar can be
calculated.

The above formula was compared to actual speeds observed in the
experiments and its dependence on the three variables D/L, Q, and AT was
examined. Each of these was varied in tﬁrn. The data used in the formula
were the depth at the deep end of the tank, the temperature at the deep end,
usually when the bar was about 30 cm from the shallow end, and the distance

from this position of the bar to the deep end. Figure 7 shows a comparison

of the actual and predicted speeds for a heat flux of approximately 9 x lO.-3

2
before the bar properly developed; there tended to be a lack of two-

cal cnrz sec“1 and three different slopes: 2%°, 5°, 7%6. The poorer
observational data from the 2l° slope resulted from the longer time required
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dimensionality and current structures often were not uniform across the

1,

tank. This prevented using slopes smaller than 22 Figures 8 and 9

show a similar comparison for two different surface heat fluxes at slopes

of 5° and 7%°. Figure 10 is a comparison of speeds for different AT's.

The predicted speeds compare well with the measured speeds in all cases.

The increase in the speeds as the bar approaches the end of the tank seems
to be due to an interaction with the shallow thermocline which has developed
on the deep side by this time. The main thermocline is then able to

develop faster by incorporating the partially warmed surface layer from the
deep side and the region referred to as the bar becomes more diffuse.

The dashed curve, Figure 8, shows the speed of the bar that resulted
when an insulated lid was put on the tank at the time indicated by the
arrow; this shows the strong dependence of the speed on the surface heat
input rather than on the horizontal density gradient or on other ﬁeat
tranfers.

Temperéture sections were used to calculate mean temperatures along
the tank in order to compare with the temperatures predicted by the
approximations leading to equation 2.5.1. Figure 11 is a temperature
section through the bar for a 5° bottom élope and heat input of approximately
9 x 10_3 cal cm_2 sec . The positions at which observations were made
are designated by the vertical marks along the top line in the diagram;
From this figure the mean temperature and change in heat content ffom the
time the heat lamps were turned on are calculated and in the lower diagrams
of Figure 11 are compared with values predicted By the model. As can be
seen the model gives a good first approximation to the temperature or heat

content along the tank. Differences from the predicted heat content may

be accounted for by the presence of advective effects (see subsection 2.7).
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Similar data from the other experiments are contained in Appendix B. The

results at the different slopes and heating rates are similar to the above.

2.6 Comparison of the Linear Model to Lake Ontario

The model for the speed of the bar was also compared with data taken
in Lake Ontario. The data used to make the comparison were taken from
| Rodgers (1965b, 1966a, 1968) and Rodgers and Anderson (1961). The net
surface heat transfer is approximately uniform over the surface of the
Lake, as assumed invthe calculations. Using the temperature data from
Rodgers (1966), tﬁe speed of the bar was calculated and compared to the
value predicted by the model. Calculated values were 0.95 cm sec_l
(north shore) and 0.3 cm sec-l (south shore). The predicted values were
0.7 and 0.4 respectively. The model also gave a reasonable approximation
.to the speed of the bar in Lake Michigan from the work of Chﬁrch (1942).
To make é closer check on the accuracy of the model, better data from the
iakes are needed.

Values of the change in heat content in a unit column for a cross
section through the thermal bar from Rodgers (1968) are plotted in Figure
12. Also shown, for compariéon, is a plot of similar values for a tank
experiment (from Figure 11). As seen from the figdfe'the abproximation
"of negligible advection of heat (uniform change in heat content) is not
as good for the Lake as it is for the tank. However the distribution of
heat is strikingly similar in both cases. The effect df adveétion is
illustrated in more detail in Figure 13 which shows the cross section
temperature anomalies for the tank and the Lake. The 'temperature
anomaly' is the difference between the observed temperature and the mean

temperature predicted from the heat flow through the surface, assuming no
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advection. As can be seen from the figure, the sections are similér.
Therefore advective effects similar to those observed in the tank could
occur in the Lake. Anomaly sections for the other experiments are

shown in Appendix B.

2.6 Discussion

As has béen shown a reasonable first approximation to the heat
content of a water column and the speed of the bar for both the tank
and Lake Ontario can be obtained from the assumption of negligible
horizontal advection and diffusion. In both cases, in the deeper
regions, most of the heat is carried by convective processes. These
strong vertical convections inhibit horizontal advection and produce
the Basic features of the thermal bar.

A further refingment to the first approximation would require
including the effects of horizontal advection. The importance of
these effects is illustrated by the differehces between the actual
and predicted values seen in the Lake and in the tank. Three impor-
tant advective regions exist (Figure 6, p.l1l5). One is the advection
of warm water towards the bar in the shallow end. This is a flow of
the light, upper thermocline water replacing part of the sinking water
at the bar. This results in advection of heat towards the bar for
both the tank and the Lake. This flow is aided by the horizontal
density gradient toward the bar, but for the tank this density gradient
is not sufficient for the flow to cross the bar. There is a counter;
flow beneath the above advection. This brings cold water to the

shallow end from the vicinity of the bar; that is, heat flux of the



same sign. The other advective region is the downslope flow of 4°
water from the vicinity of the bar toward the deep end. This advects
heat to the deep regions. For the tank this flow was found to be
weaker for smaller bottom slopes. Its effect was also reduced by
turbulent mixing. TFigure 12 (p.25) suggests that there was soﬁe
heat advected towards the centre of Lake Ontario. However the impor-
tance of this flow in lakes is difficult to judge because of the smaller
slope, the unknown nature of the convective mixing, and irregularities
in the bottom. In spring, the net effect of advection is that the heat
content is higher than would otherwise be expected in the central portions
of the Lake and in the regions next to the bar, while regions near the
shore have been depleted of heat. The advective velocities observed in
the tank are all of the same order of magnitude as the speed of the bar,

The influence of bottom irregularities was tested in two experiments.
In both a slope of 5° was used for half the tank, followed by a flat
section in one and by a vertical drop of 12 cm to a flat section in the
other. The main influence of bottom irregularity was on the speed of
the bar; advection produced an averaging effect over the irregularities.
The speed observed was roughly that which, from equation 2.5.1, would
have been associated with a bottom slope that was the weighted average
of the actual slopes. Otherwise the temperature and current structure
were similar to the others., The results are given in Appendix C.
Thus bottom irregularities do not seem to be of primary importance in
the development of the thermal bar in lakes,.

An important effect not studied in this experiment is wind mixing.

In smaller lakes the resulting wind driven horizontal advections would

28
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likely keep the temperature uniform and not permit albar to develop.
A trip was made to the Merritt region of British Columbia to see if
the bar could be found in smaller lakes, however they were found to
be too thoroughly wind mixed. 1In the larger lakes where the thermal
bar develops, this wind induced advection might result in mixing
across the bar. If this brings water below 4°C adjacent to water
above 4°C, more active convection would be expected which would include
water from the warmer side. An experiment that brought together 8°C
water and 2°C water, by removing a barrier separating the two, pro-
duced convection at a stationary mixing zone (see Appendix D). This
indicated that mixing across the bar would immediately produce convec-

tion but would not dissipate the bar.

Further experimental studies on the thermal bar should await more
detailed observations of this phenomenon in lakes. Information on the

current structure is particularly necessary.

2.8 Summary

In this laboratory study, a temperature structure has been pro-
duced which is similar to that associated with the phermal bar in lakes.
The existence of my 'bar' in the tank depends entirely on the temperature
dependence of the density and on the presence of heat flux and a sloping
bottom. A simple model for the speed of the bar, which also applies to
the bar in the lakes, is based on horizontal heat advection and diffusion
not being of primary importance. The success of this model indicates
that effects of wind mixing, Coriolis force, etc,, which exist for lakes
but not in the model, are not important factors in the formation of the

'thermal bar'.
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3. MATHEMATICAL MODELS

These theoretical studies are an attempt to explain more
quéntitatively ﬁhe details of the temperature and velocity fields
observed in the laboratory studies and to understand the dynamic
balance of the flow. The results may then be tentatively extended

to describe the situation in lakes.

3.1 The Temperature Field

From the two-dimensional laboratory model reasonable first appro-
ximations to the heat content and to the speed of the bar were obtained
by assumiﬁg‘that horizontal advection and diffusion of heat were not of
primary importance. This suggests that the température distribution may

be derived from the one-dimensional heat diffusion equation:

L - ke (3.1.1)

where z is taken vertically upwards,
t is the time, R
T is the temperature in °C,

and K is the thermal diffusivity

with boundary conditions

0 (top) (3.1.2)
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where q is the heat flux through the surface in C° cm sec_1 (= Q/pcp,
equation 2.5.1, p.17). D = ox where o is the slope of the bottom and
X is tﬁe distance along the tank from the shallow end. (This assumes
that 'D = 0 at the shallow end, equivalent to a shore). Finally,

T = 4°C at z = 0 at the 'bar'.

Since when one is discussing the thermal bar all temperatures are
relative to the temperature of maximum density of fresh water, the

equation and boundary conditions can be rewritten:

32

-g—i - K—g | (3.1.4)
dz
20 '
at z =0 K'é—z- = q ) (3.1.5)
- - 36 _
at z = -D 32 = 0 (3.1.6)
at z = 0, at the 'bar', 6 = 0 (3.1.7)

where 6 = T - 4°C.

From the laboratory work the temperature field may be considered
in two regions, on either side of the bar: a deeper, highly convective
region and a shallower, stable region. For the purposes of the theore-
tical work, the bar will be defined by the 4° surface isotherm as is

done in lake studies.

i) The deep, convective side

t

The aim here is to provide a rough, but reasonable, approximation

to the temperature field on the unstable side of the bar. No attempt
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will be made to consider convective effects in detail, nor to model the
shallow thermocline that develops over this end in the latter stages of
the bar in the tank and occasionally forms on Lake Ontario. Instead my
reasoning will be based on the observation that the temperature in the
deeper region of both tank and lake tends to be nearly uniform vertically,
implying a thorough mixing process and hence a high vertical eddy (or

convective) diffusivity. Integrating equation 3.1.4 vertically from

z = -D to z = 0 one obtains
O .
0 . .30
Dat ® K > (3.1.8)

and using the z boundary conditions:

|2
|
ola

or 6 = -0 +4F

where —60 is the temperature in C° at t = 0. Using the simple model

for the speed of the bar (equation 2.5.1, p.17)

32

s = 4X | (2.5.1)

where 60 = AT, the temperature difference, in this case between the
shallow end and a position x along the tank, at time t = 0 and choosing

the origin of time to be when the 'bar' is 'at' x = 0, the temperature



for the deeper region can be written:

= st _
6 = 8 (>--1) (3.1.9)

This could have been written empirically from the observational
data.

If t = 0 is defined, as above, as the time when the 'bar' is 'at'
x = 0, then 60 is clearly a function of x, the distance down the tank.
The assumption is made that at some time -t15 before heating begins,
the entire fluid is at a uniform temperature; this is obviously true
for the tank experiments, and roughly §alid for the 1akes._ If heating
is uniform over Fhe surface of the water, if the bottom has a constant
slope, and if the assumption is made that horizontal advection and
diffusion of heat are not of primary importance, then the temperature
at any time until the bar appears will be a linear function of x.

Thus at t = O one can write

- _9x
-0 = - 3

where O is the temperature at position X and X is the length of the
tank or the distance from the shore to the deeper portions of a lake.

Thus equation 3.1.9 may be rewritten as

33

o = -g ( St - x) for x > St (3.1.10)
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ii) The shallow, stable side ,
The temperature field on this side of the bar is clearly more
complicated than on the deeper side. Since it is desirable to match

the two regions, the boundary condition at the 'bar' (equation 3.1.7)

will be rewritten as

8 = 0 at t =

wnix

s (3.1.11)

where the origin of x is at the shallow end and the origin of time is

defined as when the 'bar' is 'at' x = 0.

The solution to

2
228 (3.1.4)
92?2

for a semi-infinite body with boundary conditions

at z = 0 K 3% = q ' ~ (3.1.5)
and 3.1.11 is
6 = _Zﬂ__¢ t - % ierfe ( —Z = ) x < St (3.1.12)
3 2 VK(t—’é‘) :

If an error in the bottom boundary condition (3.1.6) is 'tolerated'
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up to a heat flux that is 20% of the surface heat flux, then the above
represents the temperature to within 20 cm of the shallow end of the
tank for a 5° bottom slope. This 'error' in bottom heat flux is likely

3
not more than the error involved in neglecting horizontal advection of
heat 1in the shéllowvend.

An attempt to consider the diffusion equétion for a wedge (see:
Arlinger, 1965) would ﬁot improve th¢ temperature solution as the
bottom effects tend to make the shallower portions more uniform in
temperéture vertically. This is not the case in the obsgrvations,

Neglecting thé bottom heat flux in this manner is equivalent
to removing-some of the heat input in the shallower portions and
thus appfoximates the advéctive effécts obseéved in this region.’

In order to‘calculéte actual values from thisAmgthémapical model
it is necéssary to choose a value for k. hSince gﬁé ﬁotion appears to
be laminar in the'fank,_K ougﬁt to have the value of molecular thermal
diffusivity, 1.4 x 10—3 cm2 séc_l. However, in assuming that éll the
heating océurred at the surface, the penetrative effects of the surface
heating (see Figure 5, p.l1l3) have been neglected. These are included
roughly in the above model by increasing K.

iii) Comparison with the tank

The temperature model developed above is

6 = 29 t ?-g ierfc( - % = ) x < St
VA 2 /k(t -3 )
‘ (3.1.13)
6 = © (St -x) . x > St

X



To compare this to the measured temperature field the position of

the bar had to be set. In the generalized temperature field shown
in Figure 6 (p.15), extending the 4° isotherm to the surface shows
-the 'bar' at 90 cm. This defines the value of t as 90 times S; the
speed of the bar. The value for the speed of the bar is taken to be
the average value observed in the tank; that is, 3.9 x 10_2 cm sec—l.

q is taken to be the standard heating rate of 9 x 10_3 C° cm sec
(assuming pcp = 1 cal C°-lcm_3). The value of © is obtained using

the formula for the speed of the bar (2.5.1), the average observed
value of S, the standard value for q, the length of the tank, and

the depth at the end of the tank; this gives a value of 2.6 C°.

- It remains to determine a value of K; a reasonable fit for the
temperature cross—section was found using a value for Kk of

5.8 x 10_3 cm—zlsec—l, éee Figures 14 and 6(p.15). This reasonable
fit with the tank results together with general similarity with the
vlake suggests the temperature model is good for the lake too. This
ﬁiii be discussed in more detail at the end of the theoretical section
(see subsection 3.4).

In order to further check on the degree to which the model matched
the general picture in the tank, 6 was plottted against distance down
the tank at fixed values of depth for both the tank and the mathematical
model (see Figure 15). 1In Qrder to make the plot for the tank the
4.5 and 3.5°C isotherms were extended to intersect with the surface
rather than form a shallow thermocline over the deeper region. The

" reason for the interest in the 8 versus x plot will become apparent

when the vorticity equation is considered in the next subsection. As



BAR
‘ 100 120
i T T — 1
h
/|
l.
l
l
' .
40 3.5

CALCULATED TEMPERATURE SECTION (°C)

Figure 14.  Temperature éectioﬁ (°C) calculated from equations 3.1.13.

LE



38

EXPERIMENTAL

40 60 80 100
X (cm)
(b)

Figure 15. 6 in C° against distance along the tank for fixed values of z
(in cm).

(a) generalized measured values
(b) calculated from equations 3.1.13



can be seen the curves are similar.

3.2 The Velocity Field

The velocity field is most readily investigated through the

vorticity equation:

ow 1

~

5t VX (vxuw = — (Vo x Vp) = vV x(Vxuw (3.2.1)
p

where w 1is the vorticity vector, v is the velocity vector, p is
the density, p is the pressure, and Vv is the viscosity.
Assuming two-~dimensional flow, neglecting non-linear advective

effects and making the hydfostatic approximation for pressure,

equation 3.2.1 reduces to

ow
_2 _ g9 3
NE = 5 ox + v V° w (3.2.2)

where g is the value of the acceleration due to gravity,

e =3
ax?  3z2?
du  ow .
and w, = 5,7 3% where u and w are the x and 2z velocity

components respectively.

Introducing a stream function, ¢, where

9z }



equation 3.2.2 may be rewritten

9 g2 g op
ot Ve p 9x oy

where V* = V2,V2 ,

V4 (3.2.3)

The first term in equation 3.2.3 is the time rate

of change of the vorticity and the last term represents effects of

viscous diffusion. However the

first term on the right hand side, the

buoyancy term is not so familiar and perhaps needs further discussion.

Recalling that the buoyancy term in vector notation is-%z Vp x Vp,

it is evident that pressure forces are being considered. In the presence

of gravity, a horizontal change

in density results in a horizontal

pressure gradient which tends to produce a flow down the density gradient.

Z

L.

lower o .

=

flows tend to

- . higher p
-—————— .
Vp

+ve vorticity

The effect of the buoyancy term

If an horizontal density gradient of the same sign occurs at all depths

in a fluid, the pressure gradients at the bottom will be larger than

those nearer the surface due to

the strong vertical density gradient;
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( -pg under the hydrostatic approximation, valid for the tank and
lake).
In the tank gradients in the directions shown above are set up
on the shallow side due to the effects of surface heating. Flow
towards the shallow end results in a slight surface slope downwards
towards the bar which is sufficient to produce the flow in the

positive x-direction in the upper regions of the tank.

. o vorticity

shallow end

In the deeper end the density gradients are reversed, resulting in

flows in the opposite directions (and vorticity of the opposite sign).

Because of viscosity a shear develops which opposes the flow,
producing vorticity of the opposite sign to that produced by the
buoyancy term. This occurs mainly on the boundaries of the tank
although the interior contribution, for the low Reynolds number flow

considered, is also important.
Consider the operator V* = 3; + 28;32 + 3; in equation 3.2.3.

Since the vertical shears greatly exceed horizontal shears almost
everywhere in the tank (with the main exception of side walls and
<

the region of the bar itself), I neglect the last two terms of V"

and approximate equation 3.2.3 by



\v

(3.2.4)
ot 9z p ox 3z"

Because the flow changes only slowly, it appears that the buoyancy
term and the viscous term roughly balance each other. Thus equation

3.2.4 may be approximated, at least heuristically, by

— = —_i.-—. ’ (3-2.5)

4

Given a density field, p(t,x,z) and appropriate boundary conditions,
equation 3.2.5 may be solved for the stream function and hence for the

flow pattern of this model.

The density of fresh water in the region of its maximum density

may be expressed as
p = o (1-480%) (3.2.6)

where P is the density in gm cm..3 at 4°C and A ~ 8 x 10_6 C°—2.

Substituting 3.2.6 into equation 3.2.5 gives

99 _ 288 400 | (3.2.7)

where I have used p = Py when not differentiated.
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The boundary conditions are simply that u and w vanish at the

top and the bottom (recalling the effect of surface contamihation):

.at z =0, u=0 and w=20
(3.2.8)
and at z = =D, u=20 and w=20 :
(bottom) :

where D = ox where o is the slope of the bottom.

Specifying a suitable temperature field is not such a'simple
mattef. Obviously equation 3.2.7 cannot be used with a temperature
field given separately for the two sides of the bar a§ it would not
be possible to match the displaéements and stresses across the bar.
-The temperature field 3.1.13 suggested.previously (p.35) is thus
not only awkward, due to the presencé Qf the error function, but

unmanageable for integration of equation 3.2.7 throughout the ﬁodel.

The solution will be quite sensitive to fhe chosen temperature
field, as may be seen from the presénce of the produc; of 6 and ex
in what is essentially the forcing term (see equation 3.2.7). Thﬁs
much care and trial was necessary to find for the temperature field a
reasonable compromise which would be both readily intégiable and a
reasonable representation éf the experimental results. Looking at
the plots (Figufe 15, p.38) of 6 versus x for the tank and for the
temperature field as given:rby:iequations 3.1.13 suggests the use of
hyperboiic tangent functions. The compromise which finally produced
a reasonable fit to the velocity field for the bar at the position

shown in the generalized observations (Figure 6, p.1l5) (that is,



at 90 cm and a 5° bottom slope) is

St-x

6 = {[ 1+ tanh(0.392[ 35
in C°. This is plotted in cross-section in °C and as 6 versus x at
constant z's in Figure 16. As can be seen this produces a reasonable
approximation to both the observed (Figure 6, p.15 and Figure 15, p.38)

and the calculated (Figure 14, p.37, and Figure 15, p.38) temperature

fields.

The analytical temperature field,'équation 3.2.9, was then used
in equation 3.2.7 and the stream. function and the velocity field were
calculated(see Appendix E). The resulting velocity field is shown in
Figures 17 a and b.. As in Figure 6 (p.15) the lengths of the arrows
indicate motion expected in a minute (i.e. cm min—l) in the same scales
as used for the axes. Comparison of Figures 17a and 6 shows close
agreement between the two. Again in Figures 17 the temperature field
has.been included (dashed lines). The velocities are all in the
correct directions and the change in direction of the flows along the
tank oééurs slightly behind the surface 4°C isotherm as was suggested
by the laboratory model studies. The largest downwafd velocities occur
in the fegion of maximum density as was observed in the tank., In general

the velocities are of the same magnitude as those observed.

The differences between the calculated and observed velocity fields
can be explained first in terms of the inadequacies of the hyperbolic

tangent temperature approximation. The magnitude of the calculated
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-2 D12.9)(1 + 0.2z + 0.012%) -~ 1}  (3.2.9)



X (cm)

(b)

Figure 16. Analytical temperature approximation, equation 3.2.9, used for the velocity calculations:
(a) cross-section (T in °C) '
(b) © in C° against x in cm for fixed values of z (in cm)
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vertical velocity.
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velocities drops off at the extrema of the plot since the hyperbolic
tangent approximation attains maximum and minimum values before the

ends of the tank are reached, whefeas the observed temperatures did

not. The velocities between 50 and 70 centimeters along the tank

are up to twice as large as those shown in the generalized velocity

field (Figure 6, p.15). This can be attributed to the fact that

96/9x 1is larger than that for the hyperbolic tangent temperature

model in this region. An even closer match to the observed generalized
velocity field éould.probably be made by using a more involved temperature
field, however there is little point in such a tedious endeavour in that
the temperature fields observed in the tank do vary between runs (see
Figure 18) and the aésociated velocity fields woqld hence also vary
somewhat from the average values shbwn in Figure 6 (p.15). Also the
observed temperature sections are not an instantaneous measurement but
rather the temperatures were taken in sequence from the deep end to the
shallow end during which time the bar prbgreséed about 10 cm. Variations
in the temperature field similar to those found'in the tank have been

observed for the bar in Lake Ontario (Rodgers, 1968).

It ought to be noted that a different hyperbolic tangent approximation
will need fo be made for any other position of the bér ;hat is not within
about 10 cm of tﬁe position chosen for the calculation. This is due to
the fact that the temperature field changes with time, particularly in
magnitude. Such approximations could be based on the temperature field

predicted by the mathematical model (equations 3.1.13).

The stream function ¢ is plotted in Figure 19. There is no net

transport across any vertical section of the tank, so that ¢ can be set
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-Figure 19,

Calculated stream function ¢ in cm2 minfl,~_The analytical temperature field used is shown
by dashed lines (°C).
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equal to zero at the top and bottom.

Figure 19 must be interpreted with care. One must keep in mind
that this is the picture of ¢ at t = 90/S in the tank. As time increases
heating continues, the temperature field changes and the 'bar' defined
as the 4°C surface isotherm progresses down the tank. Thus the density
driven velocity field is also moving down the tank, changing slowly. In
terms of the stream function ¢ (Figure 19) this means that the two sets
of closed streamlines are moving along the tank at the speed of the 'bar'
and hence must be slowly expanding vertically. The assumption, used to
derive the circulation, that the 9/t term in equation 3.2.4 can be
neglected is thus only valid when changes are slow ehough. The negative
set of streamlines on the shallow side must also sléwly expand horizontally
while the positive set on the deep side must be slowly shrinking.

With this in mind one can see that this picture does not contradict
the laboratory observations which clearly showed that water from the
warmeyr, stable thermocline was notvinvolved iﬁ any mixing or downward
flow at the bar. .This stabie thermocline involves the water at temperature
above 4.5°C. Looking at ¢ (Figure 19, p.49) and fhe velocity field
(Figure 17b, p.47) from the mathematical model; and recalling that the
average bar speed used in this model is about 2.5 cm ﬁiﬁ_l, it can be
seen that the downward velocities in the region warmer than 4.5°C serve
only to thicken the thermocline region. 1In fact, by the time the bar
has travelled roughly a further 10 cm down the tank, the w velocities
'obsefved at, say, 70 cm, will probably all be positive. The flow
underneath the warmer water on the shallow side is fed by the flow towards

the bar from the deeper side. This model is not steady state, thus



streamlines are not pathlines.

The.streamlines shown in Figure 19 (p.49) close more rapidly at
the two ends of the tank in the mathematicai model than they probably
do in the laboratory experiments since the hyperbolic tangent temperature
approximation has reached its maximum and minimum values before the ends
of the tank, whereas the observed temperatures hasvnot. Such more
gradual closings of fhe streamlines would tend to decrease the magnitudes

of w away from the region of the bar.

3.3 Validity of the Velocity Model

Before extending the mathematical model to compare it with the lake
it is necessary to consider the size of the neglected terms in the

vorticity equation. Now including advection terms, 3.2.2 becomes.

ow 2 ‘02
—Z 4y W, = gd% \)(—a——+a—)w2 (3.3.1)
ot ~ p Ox x> 9z -
du ow . '
where wz =-§; - The size of these terms was evaluated at several

positions along the tank from the velocity field calculated from equation
3.2.7. This thus provides an internal consistency check on the solution

of equation 3.2.7 and therefore on the assumptions used to derive it.

1) %&-with respect to %% is always less than 1:10 and usually less than

1:100. Thus the assumption that %% is small with respect to %s
is reasonable everywhere.
2 ' 2
2)  In the viscous term-g;% was neglected with respect to %;% . The

ratio of these two terms is also 1:10 or less everywhere.
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3) The 3/3t term can be compared to the buoyancy term and is found to
be generally less than 1:10 --except, of course, where the buoyancy
term is zero; that is, right at the bar (0 = 0) and at the extrema
of the hyperbolic tangent temperature approximation where -%% =0,
The latter lies well to the extrema of the plots. It is‘possible

to calculate the size of the 9/9t term since the buoyancy term

depends on time.

4) Non-linear terms are generally less than one tenth of the buoyancy
term except, of course, where the buoyancy term is zero, as mentioned
above. In the immediate viéinity of the 4°C isotherm (6 = 0) the
vorticity balance would shift to include 93/3t, advective and viscous
terms.

Thus the assumptions made in deriving the m;thematical model appear
to be reasonable, as the comparison between the calculated and observed

velocity fields would suggest and the model provides a useful approximation

to the circulation.

3.4 Exténsion to a Lake

The laboratory studies suggested that the tank could be viewed as'
a section of a lake from shore to deeper regions using a vertical scaling
of about 1/1000 (see p.12). The 5° bottom slope, compared to the north
shore bottom slopes of Lake Ontario, then suggests a horizontal scaling
of about 1/20,000. The average speed of the bar in Lake Ontario is about
20 times that in the tank with the 5° bottom slope. Using these scales

for z, x, and t and assuming that the equations (3.1.13 and 3.2.7) used
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can be applied to the lakes simply by making the appropriate scale changes,
the value of vertical eddy diffusivity must be about 6 cm2 sec—1 and
vertical eddy viscosity about 38 cm2 sec—l. Now it is not unreasonable
that these values be different, especially in a stable situation as on
the shallow side of the 'bar'. 1In fact, experimental yalues given for
Laké Michigan (Huang, 1969) are 1-10 cm2 sec—l for vefﬁical eddy diffusivity
and 1-100 cnlzsec—l for vertical.eddy viscosity. A ratio of 1:2 (vertical
eddy diffusivity to.vertical eddy viscosity) might be more realistic. If
the vertical eddy diffusivity is arbitrarily set at 11 cm2 sec-l, which,
when applied to equation 3.1.13 does not giVe an unrealistic temperature
field, the corresponding vertical eddy viscosity, from equation 3.2.7,‘is
21 cm2 sec_l.

Sucﬁ an extensibﬁ'as this sHouid, of course, only be‘applied to large

dimictic freshwater 1ékes,'such as the Great Lakes, in which the bar could

be expected to exist.

However, when equation 3.2.7 is applied to a lake there are additional
terms that have been neglected, those associated with the Coriolis force.
In the vofticity equation 3.2.1 these are included by replacing w, the
relative vorticity, by (9 + 28) where 29 is the 'élangtary.vorticity'.

From Veronis' (1963) estimates, based on Ertel's circulétion theorem as
applied to a stratified fluid, the ratio of horizontal to vertical scales
in the thermal bar phenomenon is such that the component of plénetary
vorticity parallel to the earth's surface may be safely neglected.
Because of the presence of the vertical componentvof pianetary vorticity

(f), the density induced pressure gradients in a lake will tend to be



55

balanced by a geostrophic current. However a time of O(1l/f) is necessary

to aﬁhieve such an equilibrium, during which the position of the bar

changes appreciably. This leads me to believe that geostrophic equilibrium
may not be attained while the bar is moving and that on a short time scale
the circulation is roughly due to the same dynamic balance as in the model.

A fossil geostrophic circulation due to the density gradients associated with
the bar may continue to exist after the bar has disappeared.

The validity of equétion 3.2.7 was checked for Lake Ontario by evaluating,
from the scaled results of 3.2.7, the size of the neglected terms in the
shallow and deeper regions and in the vicinity of the 'bar'. It is possible
that the relative size of these terms may be different from those in the
tank since there are different scales used for horizontal and vertical
distances as well as time. It was found that the basic balance between
the Suoyancy and the approximated viscous effects as used in equation 3.2.7
is valid for the lake, except again right in the vicinity of the bar.

The non-linear terms are more important near fhe bar in Lake.Ontario than
they were in the tank. Nevertheless the mathematical model probably gives
a reasonable, if rough, approximation of what occurs in the lakes since the

assumptions are nearly satisfied, except for the zero surface velocities (p.16).

Considering the plot of the calculated streamliﬁes, Figure 19(p.49) in
theAlight of a possible extension to lakes it is worth remarking on the
’situation of the 'stationary thermal bar'; for example, the case of Lake
Geneva (Forel, 1880) (mentioned earlier) or the case of‘effluents warmer
than 4°C being dumped into a 1éke that is cooler than 4°C (see section 2,
p.29 and Appendix D). As observed in the laboratory, Figure 19(p.49)

suggests two cells, in this case fixed in position, with clockwise motion



on the shallow side and counter-clockwise motion on the deep side and
mixing and sinking between the two cells. It must be emphasized that
this is NOT what has been observed for the 'migrating thermal Bar' in
the laboratory model. Streamlines are pathlines only when flow is

stationary!

It would appear from the way in which the mathematical model as
well as the tank can approximate the temperature fields observed}in
Lake Ontario, that the velocity field observed in the laboratory and
calculatea from a'simple vorticity balancé which also holds for the
lake might also be that associated with the 'bar' in lakes. However
it will probably be very difficult to determine this by direct
measurements as the velocities expected, for example in Lake Ontario,

are only of the order of 1 cm sec_1 and there aré many other flows

present in lakes that are not directly associated with the thermal bar.
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4. SUMMARY

The 'migrating thermal bar' phenomenon which is known toloccut
in certain iarge dimictic freshwater lakes has been studied in a two-
dimensional laboratory model. The temperature fields agree with those
observed in the Great Lakes.

A linear model is used to describe the speed of the 'thermal bar'.
The effects of variation of the parameters of heat input, bottom slope,
and initial temperature on the speed of the bar were measured and.found
to agree with this simple modelf The linear model gives a reasonable
first approximation to the speed of the 'thermal bar' in both the
experimental model‘ and the Great Lakes.

Since the observed temperature field and speed of the bar appear
to model conditions in the. lakes it seems possible thét the assoéiated
observed velocity fields may do this as well. On the shallow side of
the 'migrating thermal bar' temperature obserQations showed that a
stable thermocline developed which progressed towards the deep end, its

front end marking the boundary between the stable shallower region and

the convecting deeper region. In the laboratory model a mean flow towards
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the deep end was observed in the thermocline with a counter-flow underneath.

In the deep end .of the model ; flow near the surface travelled toward
the stable thermocline. This current sank at the front edge of the
thermocline and divided, a part feeding the upslope current in thg
shallow end, the other part providing the downslope current in the
deep end. The water in this sinking zone or 'bar zone' was from the

deep end of the model and did not include water from the thermocline
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on the shallow side.

On the basis of this laboratory model which indicated that horizontal
advection and diffusion were not of primary importance a mathematical
model was developed. First the temperatﬁre field was calculated from the
one-dimensional heat diffusion equatioﬁ. Then the velocity field was
calculated assuming that the flow was driven by buoyancy forces and
balanced by viscous forces. Since there 1s a gréat similarity between
the calculated and observed temperature and velocity fields, the assump~-
tions on which the vorticity balance is based are obviously mnearly

satisfied in the laboratory model.

Because of the similitude between the experimental aﬁd.calculated
temperature fields and those observed in lakes, the observed and calculated
velocity field may mod.el the flows éssociatéd with the thermal Bér in
the lakes. In this case the balance would be between buoyancy forces
and eddy viscésity effects e#cept possibly in' the immediate vicinity of
the 'bar' where non-linear terms would be important. The velocities

expected in Lake Ontario would be of the order of 1 cm sec-l..

From the laboratory and mathematical studies it is also possible to
describe the behaviour associated with the 'stationary thermal bar'
which would be expected in:the case of waters warmer than 4°C being -
dqmpéd into waters cooler than 4°C. 1In this case the 'bar' would be
expected not to move and the circulation would consist of two cells
with mixing and sinking at the 'bar'. This is quite different ffoﬁ

the behaviour observed for the 'migrating thermal bar' in the laboratory.
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APPENDIX A: Cooling Experiment

. Figure 20 shows a temperature section and temperature anomaly
section for surface cooling of water initially above 4°C. For the
temperature anomaly (see p.24) section it was necessary to estimate
the heat loss from the temperature section. The section is similar
to measurements made in Lake Ontario (Figure 20). The flow pattern
observed in the laboratory experiment was the samé as that encountered

in the heating experiments (see Figure 6, p.15).
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APPENDIX B: Temperature Data: constant slopes

Figures 21 to 27 are temperature data for runs simulating spring
warming. They include a temperature section, mean temperatures, changes
in heat content, and a temperature anomaly section (p.24) for different
slopes, different heating rates, and different positions of the 'thermal
bar'. Also shown are the curves for mean témperature and change in hea;
content‘predicted by the assumptions used in the linear model for the
speed of the bar. There is a possible further parailel between the tank
and fhe observations in Lake Ontario (Rodgers 1968); the advection of

-heat towards the deep end of the tank 6% centre of the lake appears to
occur mainly during the early stages when the thermal bar is near the

" shore (Figure 28 p+.77, and Figure 12, p.25). However this is purely

speculation as some of this could be due to the nonuniform distribution

of heat flux over the surface of the Lake.
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APPENDIX C: Investigation of the Effects of Bottom Irregularities

Figures 29 and 30 contain temperature data similar to that in
Appendix B for the cases of a 5° slope followed by a 0° slope and a
5° slope followed by a vertical dropoff to a 0° siope. Figure 31
shows the bar speeds from these experiments. The results are all
similar to the previous cases. However, the linear model for the
speed.of‘the bar.is'not as good an approximation for these extreme
changes in bottom topography. The speed of the bar was roughly that
which would have been expected from‘équation 2.5.1 for a bottom slope
that was the weighted average of the bottom slopes in each section. There
are no abrupt changes in bar speed, temperature field or.current structure

associated with these bottom irregularities.
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APPENDIX D

To show that the thermal bar phenomenon is driven, basically,
by the heating of water through its maximum density, as has been
proposed in the linear model for the speed of the bar, the following

two experiments were performed.

1. Sliding Door Experiment

Figure 32 shows the temperature section and mean temperatures 20
minutes after 2°C and 8°C water were brought together. There was no
heating (heat lamps were turned off). This represents the behaviour
of flow which could be expected when 'fresh' water colder than 4°C
'flows into water warmer than 4°C (for example, at the foot of a glacier)
or when water warmer than 4°C flows into water colder than 4°C (for
example, effluents). The beha&ioﬁr is not similar to the migrating
thermal bar in that the resulting current patfern does not move aﬁd
the active sinking zone between the two water masses involves water
from both sides. This circulation results from the production of
dense, 4°C water at the contact between the two water masses. The
horizontal velocity profiles are S—shaped, similar td.those shown
in Figure 6 (p.15) for the migrating thermal bar experiments. This
current structure, supérimposed on the temperature section, is a
clockwise circulation in the shallower water and a counter-clockwise
circulation in the deeper water, with most of the sinking between the
3.5 and 4.5°C isotherms (as indicated by arrows). In a manner similar

to the migrating thermal bar phenomenon, the sinking prevents flow due .
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. to the horizontal density gradients.

Actual examples of water warmer than 4°C being dumped into water
colder than 4°C were presented by Chermack (1970) at the 13th Conference
on Great Lakes Research, April, 1970. His work involved airborne
radiation thermometer studies of effluents from nuclear power plants
on southeastern Lake Ontario. In each case these effluents were confined
to an arc of radius of the order of a kilometer from the.point of discharge.

This confinement agrees with the results of this 'sliding door' experiment.

2. Heating Water Warmer than 4°C

Figure 33 shows the temperature section associated with heating
water that is all at a temperature greater than 4°C. The flow is towards
the deep end in the upper layers and towards the shallow end in the
deeper layers. The temperature structure bears no resemblance to the
thermal bar case. The velocities involved are considerably less than
the speed of the migrating thermal bar (about 1/10). This flow is
driven by the.horizontal density gradients set up by uniform surface
heating and a sloping bottom since the temperature rises faster in the

shallow end of the tank. -
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APPENDIX E: Calculation of the Stream Function

The stream function ¢ is calculated from equation 3.2.7, using the
analytical temperature function given in equation 3.2.9 and satisfying
the boundary conditions given in equations 3.2.8. The streamline along

z =0 and z = -D is set equal to zero.

6 = 282 (2.9) (0.0392) secn®(0.392[ £EE - 2 1)

.{oégoizs L0051

v g2 (L3 002, Loy,

b2 (LOOLGE 0013 12y

= 2.9 [ 1+ tanh(0.392[ 22X - 2 1]

poLogh e 3 Q000015 0.00L 4 0.01 3

-0.010% + ;D) o+ 2 (BRSO3 50
&g—olnl‘ - —?L—;-ln3 + %ZDZ)]}

where A = 8 x 10--6 c° -2



g is the acceleration due to gravity (= 103 cm.sec—z);_
V is viscosity ( = 1.5 x 10_2 cmzvsec-1 for the laboratory model),

S is the speed of the bar,

D = ox is the depth of the bottom and o 1s bottom slope.

From this ¢, u and w can be found since

u-= 29 'and
oz .
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