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ABSTRACT 

I t i s assumed that charged, spin-^, matter d i s t r i b u t i o n s can be 

described i n terms of a Dirac spinor f i e l d i n t e r a c t i n g with the ele c t r o 

magnetic f i e l d and a scalar g r a v i t a t i o n a l f i e l d . The f i e l d equations 

and the energy-momentum tensor are found from an action p r i n c i p l e . The 

f i e l d s are not quantized. The f i e l d equations are examined and various 

l i m i t i n g forms discussed. This thesis deals p a r t i c u l a r l y with the time-

independent spherically-symmetric case. Solutions are found for the 

exterior region of a charged g r a v i t a t i n g sphere. The behaviour of 

these solutions depend on the value of the charge-mass r a t i o . When this 

r a t i o has the value (4-TT Q ) z, where Q i s the g r a v i t a t i o n a l constant, 

the e n t i r e system can be solved a n a l y t i c a l l y . The ensuing solution, 

c a l l e d the Weyl-Majumdar solut i o n , i s obtained and discussed. When the 

charge-mass r a t i o i s smaller than (im Q ) 2 , normalised solutions are 

found which y i e l d e l e c t r o s t a t i c and g r a v i t a t i o n a l potentials singular at 

the o r i g i n . The matter density i s well-behaved everywhere. Normalised 

solutions were not found for l a r g e r charge-mass r a t i o s . The s i g n i f i 

cance of the solutions, and the accuracy of the numerical technique are 

discussed. A l t e r n a t i v e Lagrangian densities are considered which may 

y i e l d non-singular solutions. 

i i 



ACKNOWLEDGEMENTS 

The author would l i k e to express hi s deep appreciation to his 

teacher and research supervisor, Dr. P. R a s t a l l , f o r h i s patience and 

many kindnesses i n seeing this work through to i t s conclusion. 

The author would also l i k e to thank Dr. H. Dempster of the 

Computer Centre for h i s h e l p f u l discussions regarding the numerical 

technique. 

Thanks are also due to the National Research Council of Canada 

for providing f i n a n c i a l assistance i n the form of N. R. C. Scholarships. 

i i i 



TABLE OF CONTENTS 

Page 

ABSTRACT i i 

ACKNOWLEDGEMENTS i i i 

CHAPTER I INTRODUCTION 1 

CHAPTER I I THE FIELD EQUATIONS 7 

CHAPTER III TIME-INDEPENDENT SYSTEM 22 

CHAPTER IV EXTERIOR FIELD OF A CHARGED SPHERE 31 

CHAPTER V THE WEYL-MAJUMDAR METHOD FOR OBTAINING 38 
STATIC SOLUTIONS OF THE FIELD 
EQUATIONS 

CHAPTER VI ASYMPTOTIC SOLUTION FOR THE DIRAC 51 

WAVE-FUNCTION 

CHAPTER VII NUMERICAL RESULTS AND DISCUSSION 58 

CHAPTER VIII ALTERNATIVE LAGRANGIAN DENSITIES 72 

BIBLIOGRAPHY 8.1 

i v 



LIST OF FIGURES 

Figure Page 

1 Observed mass 61 

2 Mass density 63 

3A Metric function S = (- )^ 64-

3B Metric function 65 

4 Normalisation constant . . . . , 66 

5 Radius of core 67 

V 



CHAPTER I 

INTRODUCTION 

Our purpose i n this thesis i s to f i n d s t a t i c , s p h e r i c a l l y symmetric 

solutions of the combined g r a v i t a t i o n a l , electromagnetic and Dirac f i e l d 

equations. In other words we are trying to construct a c l a s s i c a l model 

of an elementary charged p a r t i c l e . We consider only unquantized f i e l d s , 

which means that the solutions cannot be expected to correspond to r e a l 

physical objects. However, i t seems sensible to investigate the c l a s s i c a l 

problem ( ' C l a s s i c a l 1 i n the sense that we do not consider pair creation) 

before attempting the much more d i f f i c u l t quantum one. If the c l a s s i c a l 

problem has solutions, they may help us i n the other case. There i s also 

the hope, as suggested by Dirac (1951), that the c l a s s i c a l solutions, i f 

they e x i s t , may give the correct value for e/m, where e i s the charge and 

m the mass of the electron. (Of course, we would not expect to obtain 

the values of e and m separately. Dirac believed the value of the e l e c t r o n i c 

charge e to be a purely quantum phenomenon and not derivable i n a c l a s s i c a l 

theory.) 

The concept of a body i n c l a s s i c a l f i e l d theory i s generally 

treated i n one of the following two ways. Either the body, or " p a r t i c l e " , i s 

considered as a s i n g u l a r i t y i n the otherwise s i n g u l a r i t y - f r e e f i e l d , or else 

i t i s assumed to be a mass of f l u i d obeying some more or less a r b i t r a r y 

equation of state. Both treatments are obviously unsatisfactory. In the 

f i r s t case we forego the p o s s i b i l i t y of saying much about the i n t e r n a l 

structure of the p a r t i c l e . _In the second case, we are permitted to have 

g r a v i t a t i o n a l and other f i e l d s which are regular everywhere, which i s a 

great advantage, but, unfortunately, other problems now a r i s e . The 
equation of state i s a r b i t r a r y , and the very concept of f l u i d , which i s 
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borrowed from macroscopic physics, probably has no place i n the micro

scopic domain. 

There e x i s t s , however, a t h i r d p o s s i b i l i t y . We can t r y to construct 

solutions of the f i e l d equations themselves which are l o c a l i z e d i n space, 

are regular everywhere, and which represent concentrations of mass, and 

possibly, charge. Such solutions were f i r s t studied i n d e t a i l by Wheeler 

and h i s co-workers (Wheeler 1955, 1962; Power and Wheeler 1957; B r i l l and 

Wheeler 1957). His i n t e n t i o n was to draw attention to, and to explore, 

the e x t r a o r d i n a r i l y r i c h physics of curved empty space. In this con

nection he used f i e l d s of zero r e s t mass, since only these had been geo-

metrised. The solutions which he found, and to which he gave the name 

"geons", were smooth over the whole of 3-space, and represented objects 

which were extremely large. A c l a s s i c a l analysis was v a l i d only when the 

e l e c t r i c f i e l d strength £ was less than the c r i t i c a l f i e l d strength, £CI?IT 

= -m* / , of pair theory. This y i e l d s a mass of the order of C^/C 

Q ^2 £CRIT} ' V . ID ^ g and a radius ~ l o " cm. No such objects have 

yet been observed. The physics of smaller geons has not been investigated 

because quantum e f f e c t s would have to be considered, and as yet no s a t i s 

factory quantum theory of g r a v i t a t i o n e x i s t s . In addition to being 

excessively large, geons are unstable, although their l i f e t i m e s can be very 

long. The geon, then, as envisaged by Wheeler, constitutes a geometrical 

model for mass, or, i n h i s own words " mass without mass". 

In order to create geons which are smaller i n both l i n e a r dimen

sions and mass than the above, i t i s necessary to re-introduce matter 

f i e l d s . This means that we now have to take into account a new parameter, 

m , the bare mass of the matter f i e l d . The analysis, however, remains B 
c l a s s i c a l i n the sense that the f i e l d s are not quantised (although Planck's 



3. 
constant does appear i n the f i e l d equations). 

The neutral Klein-Gordon geon has been studied by Feinblum and 

McKinley (1968) and by Kaup (1968) . These authors examined the time-

in v a r i a n t spherically-symmetric solutions of the coupled Klein-Gordon-

E i n s t e i n equations. There are c e r t a i n differences i n th e i r approaches 

so we w i l l consider them separately. 

Feinblum and McKinley (1968) sought solutions that would correspond 

to a spectrum of bound states from a si n g l e unobservable "bare" mass, 

thus i n d i c a t i n g a set of observable " p h y s i c a l " masses. Since the problem 

i s too d i f f i c u l t to solve a n a l y t i c a l l y , they used a numerical technique. 

As boundary conditions they assumed that f or large values of the r a d i a l 

co-ordinate the metric should asymptotically approach the Schwarzschild 

metric, and the wave-function for the Klein-Gordon f i e l d should approach 

the one given by solving f or the zeroth-order approximation i n the 

g r a v i t a t i o n a l f i e l d . A large value f o r ^ , the r a d i a l co-ordinate, was 

chosen and a step-by-step i n t e g r a t i o n toward the o r i g i n performed. A 
-12 

value of 1.28 x 10 g for the bare mass was taken. I t was found that 

for normalized functions the parameters involved i n the equations, v i z . 

the eigen-energy E and the normalization constant A for the wave-function, 

became so small that the equations became ill-behaved and solutions were 

not obtained. However, an unnormalized s o l u t i o n was found f o r the ground 

state. The metric proved to be well-behaved everywhere except at the 

o r i g i n . At this point the curvature tensor diverged. The authors a t t r i 

bute this to the i m p o s s i b i l i t y of solving the eigen-value problem exactly 

by numerical methods. Kaup (1968), i n h i s discussion of t h i s paper, 

pointed out that the correct explanation for the occurrence of the diver

gence might be that they had used an i n c o r r e c t value for the bare mass. 



He based this a s s e rtion on a study of th e i r normalisation procedure. 

However, since this p a r t i c u l a r s o l u t i o n was unnormalised to begin with, 

the point seems academic. F i n a l l y , we note that the " p h y s i c a l " or 

observable mass of t h e i r s o l u t i o n was equal to 0.07 times the bare mass, 

or 0.9 x 10 ^ g , and i t s diameter was approximately 4 x 10 cm. 

In h i s own work Kaup (1968) obtained solutions which were better 

behaved. His normalisation was s l i g h t l y d i f f e r e n t from that used by 

the aforementioned authors. For boundary conditions he assumed that the 

metric approached that of Schwarzschild, and he obtained the asymptotic 

form of the wave-function by solving the Klein-Gordon equation i n the 

"Coulomb" p o t e n t i a l of the g r a v i t a t i o n a l f i e l d , i . e . the f i r s t - o r d e r 

approximation. Again only the ground state was considered. I t was 

found that there was an upper l i m i t on the value of the bare mass, 

which was m = 1.75 x 10 ~* g. This i s roughly of the order of ( -&C/Q-) 
D 

The solutions were then examined for s t a b i l i t y , and i t was shown that 

for Klein-Gordon geons adiabatic r a d i a l perturbations are forbidden. 

This means that they are therefore r e s i s t a n t to s p h e r i c a l l y symmetric 

g r a v i t a t i o n a l collapse. 

Although these structures are much smaller than the o r i g i n a l 

geons of wheeler, they are s t i l l too massive to be considered as models 

for any know p a r t i c l e s . Nevertheless they are of considerable i n t e r e s t . 

In this s p i r i t we w i l l study geons obtained by solving the Dirac-

Maxwell-gravitational f i e l d equations. I t i s necessary to introduce the 

electromagnetic f i e l d because the Dirac equations describe a charged 

p a r t i c l e . This also means that we w i l l have to consider another para-
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meter, e, the electron,charge. I t w i l l be shown that we do not encounter 

the same d i f f i c u l t i e s with the normalisation as the aforementioned authors 

since, i n our case, the Maxwell equation ensures that a l l solutions w i l l 

be automatically normalised. Like Kaup ,(1968) we f i n d that there i s an 

upper l i m i t of 4-. 4 x 10 ^g on the value of the bare mass. One further 

difference between our approach and that of Kaup (1968) and Feinblum and 

McKinley (1968) i s that we do not use the E i n s t e i n theory to describe the 
scalar 

e f f e c t s of the g r a v i t a t i o n a l f i e l d . We use instead the^theory of gravita

tion ( R a s t a l l 1968a, b) which i s simpler and more tractable i n many respects. 

A l l of these points w i l l be discussed i n more d e t a i l i n the body of the text. 

One of the reasons why this problem i s p h y s i c a l l y i n t e r e s t i n g i s 

that there may be solutions for only c e r t a i n values of e/m. To get a d i s 

crete set of values one imposes d i f f e r e n t i a b i l i t y conditions on the f i e l d s 

(consider the example of the hydrogen atom). For a p a r t i c u l a r s o l u t i o n to 

be p h y s i c a l l y meaningful we demand that i t be c o r r e c t l y normalised and that 

the energy density be everywhere f i n i t e . We also require that the e l e c t r o 

s t a t i c and g r a v i t a t i o n a l f i e l d s be well-behaved i n the region outside the 

l o c a l i s e d matter d i s t r i b u t i o n ( p a r t i c l e ) . Since there i s no way to measure 

these f i e l d s inside the p a r t i c l e , there i s no physical reason for demanding 

r e g u l a r i t y i n this region. Imposing this extra condition may lead, as 

indicated above, to a set of dis crete values for the r a t i o e/m. 

There i s one case i n which the above equations can be solved analy

t i c a l l y . That i s when we assume that the component § o o of the metric 

"Censor i s a function only of the e l e c t r o s t a t i c p o t e n t i a l Ao. This method 

of solving the equations of e l e c t r o - g r a v i t a t i o n a l theory was introduced by 

Weyl (1917) and further investigated by Majumdar (1947). The method i s 

v a l i d only for the case of s t a t i c f i e l d s . Majumdar showed that, i n matter-

free space, the f u n c t i o n a l r e l a t i o n s h i p must be of the form 

coo = A + BA 0 4 H T T Q C - ^ A " , (1.1) 



where A and B are constants, G i s the g r a v i t a t i o n a l constant, and c the 

speed of l i g h t i n vacuo. When the constant B i s so chosen that the r i g h t -

hand side becomes a perfect square, then (1.1) i s ca l l e d the Weyl-Majumdar 

r e l a t i o n (WMR). The WMR can be used to sim p l i f y considerably systems of 

equations of the type described above (see, for example, Das 1962, 1963; 

De 1965, 1969; Mukherjee, 1963).- Solutions of the Klein-Gordon-Maxwell-Einstein 

field equations have been found; by Das and Coffman (1967) f o r the case when the 

WMR i s assumed. They showed that, s t a r t i n g from any given s t a t i c , purely 

g r a v i t a t i o n a l universe, one can construct universes corresponding to solu

tions of the above equations, provided only that a single d i f f e r e n t i a l 

equation i s s a t i s f i e d . The WMR was found to imply an equality between the 

charge and mass parameters of the theory. Starting from the well-known 

Schwarzschild universe, they obtained solutions corresponding to p a r t i c l e s 
-5 -33 of mass ™ 3 x 10 g and radius ~ 2 x 10 cm. The energy E of the matter 

2 
f i e l d was found to be equal to the bare mass m̂ , or E = m^C , thus giving 

a binding energy zero to the Klein-Gordon p a r t i c l e . The metric obtained has a co 

ordinate singularity at s p a t i a l i n f i n i t y which made i t s physical i n t e r p r e t a t i o n 

d i f f i c u l t . Other solutions were found which also had s i n g u l a r i t i e s at 

f i n i t e values of the r a d i a l co-ordinate. 

In this thesis we w i l l also, f o r the sake of completion, consider 

the Weyl-Majumdar problem for the scalar g r a v i t a t i o n a l f i e l d . We w i l l 

f i n d r e s u l t s s i m i l a r , i n many respects, to those of Das and h i s co-workers. 

The method i t s e l f , i t s drawbacks and advantages, w i l l be discussed. 

To sum up: i n the following we examine the possible states of a 

Dirac p a r t i c l e at r e s t i n i t s own e l e c t r o s t a t i c and g r a v i t a t i o n a l f i e l d s . 

In the f i r s t part the f i e l d equations are derived and examined; i n the 

second part we investigate the solutions. 



CHAPTER I I 

THE FIELD EQUATIONS 

We assume that space-time i s a four-dimensional pseudo-Riemannian 

manifold of s i g n a t u r e + 2, which obeys the Lichnerowicz d i f f e r e n t i a b i l i t y 

c o n d i t i o n s , and that there e x i s t co-ordinate systems, c a l l e d Newtonian 

char t s , i n which the m e t r i c tensor has components of the form 

(2.1) 

where L a t i n i n d i c e s range from 1 to 3, Greek i n d i c e s from 0 to 3. The 

f u n c t i o n (J> (OC'.OL'X*2°) i s c a l l e d the g r a v i t a t i o n a l p o t e n t i a l , fyo i s a 

constant, and C E i s the n a t u r a l speed of l i g h t . 

I n the above, and i n what f o l l o w s , we use the procedure and 

n o t a t i o n of R a s t a l l (1968a, b) . The geometry of our space i s determined 

by the s i n g l e r e a l f u n c t i o n tj> , which i s a r b i t r a r y up to the a d d i t i o n of 

a constant. The meaning of (j>0 i s roughly the f o l l o w i n g : S p e c i a l 

Newtonian charts always e x i s t whose tangent v e c t o r s are ortho-normal w i t h 

respect to the m e t r i c c^ v at any p o i n t where the p o t e n t i a l has the value 

<j>0 . Charts of t h i s k i n d are c a l l e d (J>0 -charts and are i n general 

determined up to a s h i f t of o r i g i n and a constant orthogonal transforma

t i o n of the s p a t i a l co-ordinates ( R a s t a l l 1968a). I t i s c l e a r from 

(2.1) that i f a (j> 0-chart e x i s t s , then a (j)^-chart a l s o e x i s t s , f o r any 

constant (J)̂  . The p h y s i c a l p r e d i c t i o n s of the theory, however, should 

depend n e i t h e r on the choice of the constant fyQ , nor on the p a r t i c u l a r 

-7-



C^>0 -chart once t h i s constant i s chosen. 

cj>p - Quantities 

I t i s possible to define a new metric tensor f i e l d r; i n the 

following way. Let jo by any point i n space-time, then, by our f i r s t 

assumption, there e x i s t s a cj>p -chart on some neighbourhood of p . 

The metric tensor (̂p) i s defined at p by r e q u i r i n g 

where 

*9eyi = - So/*, 

and are the tangent vectors of the (j>0 -chart at p . 

Since the (j>o -charts cover space-time, i t follows that /) i s defined 

g l o b a l l y . I t can also be shown that V) depends only on the choice of 

(j>0 and not on the choice of (j>o-chart ( R a s t a l l 1968a). 

The metric VJ can be used to define cJpo- lengths and times i n 

analogy with natural lengths and times i n s p e c i a l r e l a t i v i t y . Consider 

two neighbouring points, X L > a n d "X- + i n three-space, which have 

the same time co-ordinate t = X° /CE • The distance between them i s 

given by 

d £ E = \l( V dx" dx*) , 

**dp {-C e- 2(<j>-<Ul V d^dq : 1
 ( 2.3) 

This i s the "natural" length. The meaning of the subscript E w i l l be 

explained shortly. The (|>o -length, on the other hand, i s defined as 
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d k = \l r)ji„ A x ^ J ^ ) 

\J dx^dx" (2.4) 
S i m i l a r l y f o r times. The i n t e r v a l between the two time s t s t + cit , at 

the one space-time point X1 i s given by 

dcE = Q-1 \IC- V d W x O t 

= sue)? { Cf2 C<|>-<)Ol . (2.5) 

This i s the "natural" time. The <JJo -time, however, i s defined by 

= cr1 \j (- dz* ) } 

dt. (2.6) 

A word i s now i n order concerning our notation. Wherever the 

subscript £ appears, i t means that the quantity subscripted i s measured 

i n natural or "experimental" u n i t s . I f i t does not appear, then the 

quantity i s measured i n cJ)Q -units (to be defined below) and i s , there

fore, a QSo - quantity. The one exception to this r u l e i s the g r a v i t a t i o n a l 

p o t e n t i a l (j) . (j) i s always measured i n natural u n i t s . 

The natural and (|> - units of length and time are rel a t e d accord

ing to the following expressions 

dJ2e = S~L dJe, (2.7) 
dte = S dt , (2.8) 

which are derived from (2.3) - (2.6), and where 

R a s t a l l (1968a) has shown that i f we add to the above a change also i n 
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the u n i t of mass of the form 

c 3 
Tn£ = b m , ( 2 . 9 ) 

then the equation of motion for a p a r t i c l e , written i n <)p0 -units, 

becomes formally i d e n t i c a l to the corresponding equation i n s p e c i a l 

r e l a t i v i t y . We summarise as follows. Let Q.E be any quantity measured 

i n natural units and l e t i t s dimensions be TQel = [ LI'M^T^J; then i t s 

value i n dp -units i s Q , where 

Q . QtS1*-*-^ . ( 2 . 1 0 ) 

Quantities measured i n natural units i n general do not depend on the choice 

of dp0 . However, i f the quantity Q i s a tensor, then i t s components 

obviously w i l l depend on the p a r t i c u l a r co-ordinate system used, regard

less of the dimensions of Q. . In this work our convention w i l l be that 

(2.10) holds only for i n v a r i a n t quantities. Thus, i f Q. i s a tensor at 

the point p , and ( e„ , C, , P2 , ) i s a basis of the tangent space at p , 

then 

Q = e ^ ® e v ® ® e P ® e * : , (2.11) 

and (2;10) applies to the tensor i t s e l f , and not to i t s components 

i n d i v i d u a l l y . The meaning of <|>0 -quantities w i l l become evident i n the 

next section, where we discuss the action p r i n c i p l e . 

The Action 

The Dirac theory of the e l e c t r o n i n f l a t spacetime has been 

studied i n great d e t a i l by many authors (see, for example, Rose 1961; 

Corinaldesi and Strocchi 1963). The f i e l d equations may be deduced from 

a v a r i a t i o n a l p r i n c i p l e with an a c t i o n i n t e g r a l of the form 

A = I l F (Y>Ao) d * X , (2.12) 



where 

and 

Xp - %{nfos + rty-^^vM, (2.i3) 

i n = " 4 l>v> ^ (2.14) 

ilNT = C . (2.15) 

«£p ' Xn' a n (* ^*'NT a r e> respectively, the Lagrangian densities for the 

Dirac f i e l d , the Maxwell f i e l d , and the interaction. The notation i s 

the usual one: ^ i s the Dirac wave function, Ayu i s the electromagnetic 

tor p o t ential, the Dirac matrices are related to the Minkowski vec 
metric tensor V)'** by 

and ^ = i L|> V° 5 where Vp i s the spinor conjugate to ^ 

We can introduce the interaction with the gravitational f i e l d 

i n two ways: 

( i ) We can write out the Lagrangian density i n a generally co-

variant form, derive the f i e l d equations, and then take into account the 

parti c u l a r form of the metric (2.1). This method has the advantage of 

being unambiguous, and shows off the geometrical character of the gravi

t a t i o n a l interaction. 

( i i ) We can use the procedure, or "prescription", sketched out by 

Rastall (1968b). This method i s applicable only to those f i e l d s whose 

Lagrangian densities are known i n the special r e l a t i v i s t i c l i m i t , which 



i s the case with (2.12). We take the flat-space Lagrangian density, 

(the meaning of the subscript f w i l l be explained l a t e r ) , which i s a 

function of the f i e l d components ^tn and th e i r derivatives 'Irnyu. > 

and we make the following r e - i n t e r p r e t a t i o n s . A l l quantities are now to 

be considered as <j>0 - q u a n t i t i e s . We must f i r s t however, replace ^mjO 

by ( C _ > ) ̂ £ . The co-ordinates ( X 1 , t ) are re-interpreted as (po -

co-ordinates, the components of the f i e l d s and the parameters of the 

theory (such as & , TO , C ,$L ) are assumed to be measured i n d> 0-units. Once 

this r e - i n t e r p r e t a t i o n has been made, we can derive the f i e l d equations 

i n the usual way. 

So f a r we have not mentioned the g r a v i t a t i o n a l f i e l d i t s e l f . 

This i s included i n our theory by the addition of a term C£Q to the 

Lagrangian density of the other f i e l d s «£f . We make the assumption that 

i t i s possible to write the t o t a l Lagrangian density for the coupled 

Dirac-electromagnetic-gravitational f i e l d s i n the form 

where <fp i s the Lagrangian density of a l l the f i e l d s other than the 

g r a v i t a t i o n a l f i e l d , and £.£ i s the "purely" g r a v i t a t i o n a l part, being 

a function only of tj> and i t s d e r i v a t i v e s . 

For the time being, we are mainly concerned with £>f . We have 

outlined above two methods of deriving i t . In our case, both methods 

give the same r e s u l t . 

The general r e l a t i v i s t i c formulation of the Dirac equation has 

been investigated by many authors (see, for example, the review a r t i c l e s 
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of B r i l l and Wheeler 1957, and of Bade and Jehle 1953). We w i l l not go 

into any d e t a i l s here but we w i l l simply state the r e s u l t s . The general 

r e l a t i v i s t i c a ction i s given by 

A F = J <£ F E f ? <PX , (2.19) 

where <£ F £ i s the Lagrangian density for the coupled Dirac-Maxwell 

f i e l d s i n t e r a c t i n g with the g r a v i t a t i o n a l f i e l d . In (2.19), and i n the 

next few expressions, we have added the subscript E for l a t e r convenience, 

can be s p l i t up into i t s component parts, 

and 

f - r-> A \ / t 

<**\nrt - E J £ (2.22) 

t>x>t i s the (generally covariant) Lagrangian density for the Dirac f i e l d . 

The matrices s a t i s f y 

V f + T V = 7%^ > (2.23) 

which i s the generally covariant g e n e r a l i s a t i o n of (2.16); the covariant 

derivatives of the wave function are given by 

VA - \ % - , (2-24) 

where the J^u are the Fock-Ivanenko c o e f f i c i e n t s ( B r i l l and wheeler 1957); 

= ( ^ E V - A E ^ U J V ) where the AÊ U are the electromagnetic 

potentials; and the current density J E ^ j i s given by 

V" - ie.C ' P.^^ • < 2- 2 5 ) 
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The equations of motion derivable from the action (2.19) are the 

following, 

rCV. - i | A R H + /e We = 0 > (2-26) 

(2.27) 

and i t can be shown from (2.26) and i t s adjoint that the current Jg 

obeys the equation of continuity, 

~ b v (NF8̂rHO = 0 . (2.28) 

At this stage the metric form (2.1) is substituted for the (as 

yet) unspecified . The Fock-Ivanenko co-efficients are calculated in 

the usual way (see the above references). However, we do not need 

individual expressions for the lyu , since they appear in the equations 

only in the form ^ i ^ u , and i t can easily be shown that 

rf> = ia^C^M ^ r ^ ) , (2.29) 

where § , ^ = c>c}> jlbX^ , and that 

9 = d« t ( V ) = -S-* • (2-30) 

The matrices Yy* = ^ / U v^ V a r e related to the f l a t space Dirac matrices 

Yyu by 

Yii = S"1 %\ , 

Vo = S Yo (2.31) 

Using (2.29), (2.30), and (2.31) we can rewrite the f i e l d equa

tions (2.26) and (2.27) as 

(2.32) 



Vs-Vw)= cr's-'Jf . (2 .33) 

For the sake of l a t e r convenience we l i s t the connections between 

the quantities encountered above and the corresponding cj)̂  - q u a n t i t i e s . 

These expressions are derived by using the formula (2.10). 

* -

c 
z 1 • • hs~' > 
e - e E S , 
J = 
A . = A. , 
F = 

• 

t - (2.34) 

We can apply the " p r e s c r i p t i o n " outlined above to obtain the 

Lagrangian density from the s p e c i a l r e l a t i v i s t i c £ p . We- obtain 

= - II f > v P v = i (E 2- 8 2 ) , <2-36> 

i l H T = C-' J ^ A ^ , (2.37) 

where we have written 

= S " ' F ; k 0 . (2.38) 

In the a p p l i c a t i o n of the p r e s c r i p t i o n to ot^ we have considered the 
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e l e c t r i c and magnetic f i e l d components Efe and Bfc to be the basic f i e l d s , 

rather than the potentials . I t i s quite easy to see that the dp̂  - £f 

written above i s the same as the generally covariant «Lpg 

(equations (2.20) through (2.22)) except f o r a fac t o r , i . e . 

o£p = £FE S"2 . (2.39) 

This means that the action i n t e g r a l 

A F = J if d^X (2.40) 

i s the same, and therefore we have the same f i e l d equations, (2.32) and 

(2.33) . 

The t o t a l Lagrangian density i s given by (2.18) and the action 

i n t e g r a l for the coupled Dirac-electromagnetic-gravitational system i s 

A = J C £Q+ tf) d * X • (2.41) 

I t i s now necessary f o r us to specify £<; , the purely gravita

t i o n a l part of the Lagrangian density. R a s t a l l (1968b) has shown that a 

p a r t i c u l a r l y simple form f o r o £ § i s given by 

4 = K S-2 y V ^ M , (2-42) 

where K = — (8-irQf} , and Q£ i s the Newtonian g r a v i t a t i o n a l constant. 

This choice f o r <£Q ensures that the R a s t a l l theory w i l l give the same 

astronomical predictions as the E i n s t e i n theory. Other choices f o r «£Q 

are possible, of the form 

where (j>( i s a constant independent of the choice of Newtonian chart. 

I f oi. 0 , then, as R a s t a l l (1968a) has shown, the p e r i h e l i o n advance 

of test p a r t i c l e s w i l l not be the same as i n the E i n s t e i n theory. 
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The g r a v i t a t i o n a l equation i s derived from the action p r i n c i p l e 

i n the usual way. V a r i a t i o n of (J> y i e l d s the Euler equation 

$£ H _ 1 ( "1 - n 

= >̂d? ^ *M>V " ; ( 2 - 4 3 ) 

where £ = t>p + «CQ > and, e x p l i c i t l y 

||s = -IK { Wc)> - S-4 (*M> - atftotf) , ( 2 . 44) 

- - Or1 (S * F £ o l FE£>̂  + 2 S 5F E ijF E tj^ 

= - C E ' 7 ( E % B 2 ) (2.45) 

I t i s easy to show, using (2.35) and i t s adjoint, that O£D + <£lNT 

i s equal to zero whenever the f i e l d equations are s a t i s f i e d . We make use 

of t h i s f a c t to obtain 

- 5> D & UJe + r IVB ] S~* (2.46) 

where = + i?e(&.Cf) ' A ^ . There i s no p a r t i c u l a r s i g n i f i c a n c e 

i n the f a c t that we have used the natural wave-function Lp^ . Exactly 

the same r e s u l t s are obtained using a Lagrangian density <£ D + jdiNT 

written e n t i r e l y i n terms of -quan t i t i e s . We can use the vanishing 

of j t D + £ I N T t o s i m p l i f y (2.46); 

+ /'»P.Y, ] . ( 2- 4 7 ) 

The g r a v i t a t i o n a l f i e l d equation becomes 
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+ * o c E y s (q>nvp - D*H> riy +/« W) . <2-48> 

We s h a l l see l a t e r that there a simple connection between the right-hand 

side of this equation and the energy-momentum tensor of the coupled 

system, the f i e l d equations f or which are now given by ( 2 . 3 2 ) , ( 2 . 3 3 ) 

and ( 2 . 4 8 ) . 

Conserved Quantities and Normalisation 

The action i n t e g r a l ( 2 . 4 1 ) i s invar i a n t under gauge transformations 

of the f i r s t kind, 

H^= Y , + = , ( 2 . 4 9 ) 

where o( i s a r e a l function of the co-ordinates. I f we make the above 

transformation, i t i s easy to show that 

SA = i*CE i v ° ( ^ COU^S"*) = 0 , ( 2 . 5 0 ) 

where we have assumed that o( vanishes on the surface S enclosing the 

space-time volume V . Since <=(. i s otherwise an a r b i t r a r y function, 

( 2 . 5 0 ) gives us the continuity equation ( 2 . 2 8 ) . This can be written i n 

the form 

where J<* - _ i e C tyV • 

The existence of the continuity equation ( 2 . 5 1 ) means that our 

theory can be given a p r o b a b i l i s t i c i n t e r p r e t a t i o n . I f we integrate 

( 2 . 5 1 ) over the three-space volume V3 ( X° = constant), we obtain, 
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which y i e l d s , i f we assume that J /Q_ vanishes s u f f i c i e n t l y f a s t at 

s p a t i a l i n f i n i t y , 

The p r o b a b i l i t y density D i s defined as 

D = ip> S " 3 ^ , (2.53) 

and i s a p o s i t i v e d e f i n i t e quantity. Equation (2.52) can be written 

The expression i n s i d e the brackets represents the t o t a l natural charge of 

the system and i s independent of the choice of c})̂ - chart. 

In keeping with our i n t e r p r e t a t i o n of D as a p r o b a b i l i t y density, 

we normalise the wave function (J> as follows, 

J D d ' * = 1 > ( 2 . 3 4 , 

the i n t e g r a t i o n being over a l l three-space. I t follows that the t o t a l 

natural charge of the system i s equal to 6g , and i s a constant of the 

motion. 

Energy-Momentum Tensor 

We define an energy-momentum tensor i n the following way. The 

action i n t e g r a l (2.41) i s in v a r i a n t under space-time translations of the 

kind Of/1 + , where the are constants. In the usual way, 

by performing an i n f i n i t e s s i m a l t r a n s l a t i o n and s e t t i n g SA =0 we 

can show that 

" ^ I n O 1 ^ " ^MS>i] = D (2.55) 
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(2.57) 

where £ = o£ ( ̂ m > ̂ f , m ) a n d t h e \ 
m are the f i e l d components. We 

therefore define 

which i s the (mixed) <j>o -energy-momentum tensor. By means of (2.35), 

(2.36), (2.37) and (2.42), we can e a s i l y derive the e x p l i c i t form for 

- i S - 2 (<rF^Ac ) V - V v F ' c F , c ) 

The electromagnetic part can be symmetrized i f we note that 

The second term on the left-hand side has the divergence 

= " A v . \ r , (2-58) 

by the Maxwell equation (2.33). We obtain our symmetrized energy-

momentum tensor T by adding to (2.57) the divergence-free term given 

by (2.58), or 

- i*c E s ( ? - Vyipyy) (2.59) 

4-° 
The component I 0 of (2.59) i s given by 

f ° 0 = -K{( M O * + + (2.60) 
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and i s a p o s i t i v e define quantity. Using (2.59) we can rewrite the 

g r a v i t a t i o n a l f i e l d equation (2.48) as follows, 

^ i s the trace of the energy-momentum tensor. I t i s to be 

noticed that, unlike the case f o r the neutrino and the electromagnetic 

f i e l d s , the trace of that part of T^j, corresponding to the g r a v i t a t i o n a l 

f i e l d does not vanish. In f a c t 

and this vanishes only i f ^ - f y i s a n u l l vector. 



CHAPTER III 

TIME-INDEPENDENT SYSTEM 

We are attempting to construct a time-invariant model for the 

electron, and therefore we assume that a l l p h y s i c a l l y measurable quan

t i t i e s are time-independent. The s t a t i c system i s characterised by the 

following: 

A J = o 

Ifc = % *c|, OEt/O > (3.1) 
Ao > S > and 'Xg are functions only of the space co-ordinates 0C L , 

and E i s a r e a l constant which represents the energy of the matter f i e l d . 

Using (3.1), the f i e l d equations (2.32), (2.33), and (2.48) 

reduce to the following set 

l*ECeV '•-*•(£ * e E A O ; X E + *CE)fJ(*i- I C ^ ^ X E ^ , ( 3 2 ) 

~>j (S" a dj Ao) = - ir eS- a^ EY 07C E , (3.3) 

+ C x C e 7 ) - , S - 1 { i ( E - . e E A o ) X E Y ° X E + i r n E C £

2 . (3.4) 

The remaining Maxwell equations merely state that 

J ' = 0 • (3-5) 

These equations can be s i m p l i f i e d s t i l l further. We choose the following 

representation for the Dirac matrices 

r . i P , 
-22-
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Wc 0 

where 

p = / I 0 0 O \ 

0 \ 0 0 
o 0 -I 0 

\ 0 o o -I j t 

(3.6) 

and the G- are the (two-by-two) P a u l i spin matrices. We also write 

VV7 (3.7) 

where li. and V are two-component spinors. Using (2.31), (3.6) and 

(3.7), the Dirac equation (3.2) can be written as a pair of two-component 

spinor equations, 

( E 4 e E A 0 - m E c e
2 S ) U + i - f c c c S ' ^ j ^ j V = 0 , 

( E 4 e E A 0 + m £ c e
2 S ) V + U c t $V; 2hU =0 (3.8) 

In terms of this new notation, the Maxwell and g r a v i t a t i o n a l equations 

(3.3) and (3.4) take the form 

^fc^M = eeS-MlaP+IVl2) , ( 3.9) 

Equations (3.8), (3.9) and (3.10) represent the time-invariant system, 

where as yet we have made no assumptions about any p a r t i c u l a r s p a t i a l 

symmetry. We w i l l use these equations when we discuss the Weyl-Majumdar 

solutions. However, we are more concerned with the s p h e r i c a l l y symmetric 
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case. 

Spherical Symmetry 

In this case we assume that a l l p h y s i c a l l y measurable quantities 

are functions only of the r a d i a l co-ordinate r . We write everything 

i n terms of a new co-ordinate-system, the i s o t r o p i c r a d i a l co-ordinates, 

i n which the l i n e element takes the form 

ds2 = - S^Cdx.*? + S 2 (dT^rMB^ + Y'sU'edip1) , 

(3.11) 

where the r e l a t i o n s h i p s between the spherical co-ordinates T , 9 , <p 

and the Cartesians OC , X , X are the same as i n f l a t space. We 

make use of the following i d e n t i t i e s 

= X ( l - V * ) - T * ( r * V ) , (3.12) 

where V i s the gradient vector, and 

te-r)(€-Jn= r i + i ? ( i x l ) , (3.i3) 

where £ = -1T X V i s the usual angular momentum operator. 

Using (3.12) and (3.13) we obtain 

$•2 = ir " T *r i • (3.14) 

The Dirac equations can be written (3.8) i n Hamiltonian form 

V V ) W ) » (3.15) 

where W , the Hamiltonian, i s given by 

H = - eE Ao + p mECe

7<s 

-UctSa-(TC|r
 +
 7 "T^W > (3.16) 

and < K i s the angular momentum operator f o r the Dirac f i e l d : 
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X = p * 0 > (3.17) 

and 

(3.18) 

In t h i s co-ordinate system i t can be seen that, except for the factors 

i n S, H has the same form as the s p e c i a l r e l a t i v i s t i c Hamiltonian. I t i s 

easy to show that the three operators J , J 3 , and <X commute with H and 

with each other and therefore determine three constants of the motion. 

We choose a representation i n which the operators H, (K , J 2 and 

3j are diagonalised. I f we follow c l o s e l y the flat-space treatment of 

the same problem (the modifications are obvious), then i t can be shown 

(Corinaldesi and Strocehi 1963) that the eigen-functions of these operators 

are given by 

(3.19) 

The eigenvalues of the operators H , <Ĵ  , T and J3 with respect to the 

above eigenf unctions are, respectively, E , | , j ( j + | ), and mj. In the 

f i r s t case we have 

i . e . 

(3.20) 
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\~U7r- ] 7e 
(3.21) 

We have put S. = J - J . In the second case k = -(j +5 ), i = j +5 , 

and the expressions f o r the Aj are the same except that we must 

replace I by (I - I ). 

To obtain the equations for the r a d i a l functions £(r) and g(r) 

we expand the Hamiltonian equation (3.15), 

f I 1 

(3.22) 

where we have replaced cK by i t s eigenvalue k and we have used the 

r e s u l t ( C o r i n a l d e r i and Strocchi 1963) that 

A j (3.23) 

From (3.22) i t i s easy to see that the r a d i a l equations are as follows 

*ck(£«£)G - - S - * ( E + < e A.-«.c,»S) F , (3.24) 

(3.25) 

file:///~U7r-
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where we have written ^ = T"'F and g = -IT"' Q . 
I t follows from our assumption of s p h e r i c a l symmetry that the 

expressions 

s-'TCV T - ' C F ' I X / ^ l ' t Q ' I X i ' " ^ ) ' ) , 

(3.26) 

which appear i n the g r a v i t a t i o n a l and electromagnetic f i e l d equations, 

must be functions only of the r a d i a l co-ordinate. This means that 

1 ̂ j^) anc* I X/Ŵ  I are constants, i . e . are independent of the 

angular co-ordinates 0 , ( p . We can use t h i s f a c t to determine the 

allowed values of the eigenvalue k . For the f i r s t group of solutions 

( S"2 ^ e '^ ) , where V = " ( j + z ) = - Jl J i t c a n D e shown, by considering 

the properties of the s p h e r i c a l harmonics Ŷ "̂  , that only the f i r s t 

case j = i f u l f i l l s the above condition. We have S. = I , mj = * 2 and 

( 3 . 2 7 ) 

For larger values of J these expressions w i l l i n general be functions 

of 9 and ( p . S i m i l a r l y , f or the solutions ( S~* Xg^* ), where k = 

j + 2 = JL + | , only the case J = i , Jl = 0 i s allowed. Equation 

( 3 . 2 7 ) i s again v a l i d i n this case. To sum up, we have two solutions, of 

d i f f e r i n g p a r i t y , which obey the c r i t e r i a of time-invariance and s p h e r i c a l 

symmetry; 

I 9« 
( 3 . 2 8 ) 
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where k = - t = - I , and 

( 3 . 2 9 ) 

where k = t + I = I 

The electromagnetic and g r a v i t a t i o n a l f i e l d equations ( 3 . 9 ) and 

( 3 . 1 0 ) can be re-written i n terms of the r a d i a l co-ordinates. Using the 

above r e s u l t s , we have, 

1 d (Q-? d A o A 

r1 dr V * dr J 

= |* $>'7y-2 ( F 2 + 0 , ( 3 - 3 0 ) 

- OnrKCB
1)-' S- 7T- 7 { (E+? eAo - i ^ c E ' S ) F ? 

+ ( E H ? E AO + i m E C / S ) G 2 ] . ( 3 - 3 1 ) 

The system of time-invariant s p h e r i c a l l y symmetric equations i s 

now given by ( 3 . 2 4 ) , ( 3 . 2 5 ) , ( 3 . 3 0 ) , and ( 3 . 3 1 ) . We have four equations 

for four unknown functions of T . In the following chapters we w i l l 

attempt to solve these equations using a v a r i e t y of methods, including 

numerical i n t e g r a t i o n . 

For the sake of future convenience we make a t r a n s i t i o n to 

dimensionless notation. A l l lengths w i l l be written i n terms of the 

(bare) Compton wavelength of the Dirac p a r t i c l e , •£ (n\ eC E )-1 , and a l l 

energies i n terms of the (bare) r e s t energy ^^d^ • Furthermore, we 

define and w i l l use l a t e r the following dimensionless constants 
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ot = e6' /(mrtce') , 
£ = E / O e C e 2 ) . (3.32) 

t i s , e s s e n t i a l l y , the square of the bare mass written i n r e l a t i v i s t i c 

u n i t s , oL\ i s the fi n e - s t r u c t u r e constant, and £ i s the dimensionless 

energy eigenvalue. 

To achieve a dimensionless notation, the following substitutions 

are made, 

A 0 => Q 0 = e e A 0 / ( w e c e
2 ) , 

F = > F = [ e £ V C 4 1 r m E c ; ) ] + ^ F , 
Q = > G, = 
Y => f = (3.33) 

The f i e l d equations become 

UH)Q= -S- 2 ( ^ O . - S ) F • (3.34) 

[ f f l r - SJ(e+Q.*S)5 . (3.35) 

+ H o i ' 1 S " 7 ( f + Qo + 2 S ) Q * . (3.37) 

The normalisation condition (2.54) can be expanded to y i e l d 
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which, i n the previous notation, becomes 

We can use the Maxwell equation (3.36) to integrate this expression and 

to obtain the normalisation condition i n the form of conditions on the 

boundary values of the g r a v i t a t i o n a l and electromagnetic p o t e n t i a l s : 



CHAPTER IV 

EXTERIOR FIELD OF A CHARGED SPHERE 

In this section we obtain solutions for the g r a v i t a t i o n a l and 

e l e c t r o s t a t i c f i e l d equations i n the region outside a s t a t i c s p h e r i c a l l y 

symmetric d i s t r i b u t i o n of charged matter. E s s e n t i a l l y , we are solving the 

problem of a charged point p a r t i c l e . The corresponding Riessner-Nordstrom 

s o l u t i o n i n general r e l a t i v i t y i s well known. I t w i l l be shown that for 

points very distant from the centre of the sphere, the two theories 

y i e l d metrics which agree up to f i r s t order i n r _ l , where X i s the 

r a d i a l co-ordinate. Only i n one case, when the g r a v i t a t i o n a l and e l e c t r o 

magnetic f i e l d s are r e l a t e d i n a s p e c i f i c way, do the two theories pre

d i c t the same space-time structure. 

The s o l u t i o n obtained i s examined for various values of the r a t i o 

^ ( i f T T GjE M E

Z ) ' , where e e i s the charge and ME the g r a v i t a t i o n a l 

mass of the sphere as seen by a d i s t a n t observer. I t i s found that, when 

this r a t i o i s greater than one, the metric i s well-behaved only outside 

a c e r t a i n radius, the "Schwarzschild radius" of the e l e c t r i c charge. On 

the other hand, when the r a t i o i s less than one, this s i n g u l a r i t y does 

not occur and the metric i s well-behaved everywhere except at the o r i g i n . 

In this l a t t e r case the e l e c t r o s t a t i c p o t e n t i a l i s everywhere f i n i t e . 

The region of space i n which the asymptotic solutions are v a l i d 

i s c a l l e d the " e x t e r i o r region". The solutions of the Dirac equation i n 

which we are most interested are l o c a l i s e d i n the "strong" sense, i . e . 

the matter density contains a factor of the form e x p C - a ^ T ) , where 

a?' i s a constant which depends on the binding energy of the f i e l d . 
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2 
Therefore the exterior region i s that part of space f o r which 1 » Q. . 

In t h i s region the matter density i s so small that i t has a n e g l i g i b l e 

e f f e c t on the e l e c t r o s t a t i c and g r a v i t a t i o n a l f i e l d s . The s i t u a t i o n can 

be compared to that of a very t h i n atmosphere surrounding a very dense 

body. Because the g r a v i t a t i o n a l and e l e c t r o s t a t i c f i e l d s are long-range, 

the e f f e c t of the dense concentration of matter, which may be at a distance, 

completely overshadows that of the small amount of matter i n the neighbour

hood. However, the inverse problem i s quite d i f f e r e n t . The "athmosphere" 

i s very much influenced by the e l e c t r o - g r a v i t a t i o n a l f i e l d s . This problem 

w i l l be examined i n the next chapter. 

In the exterior region, the equations for the system are 

d r l 6r) = ( d r J , 

d r V b d F r / = 0 . (4.2) 

(4.2) i s integrated immediately to y i e l d 

where i s a constant of i n t e g r a t i o n . Inserting (4.3) into (4.1), we 

obtain 

d T V d r J = Cj1* (4.4) 

Writing Z = S - ' , U = ( 4tr Q £ /A* C E~ ) r - ' , (4.4) becomes 

" (&V +1=0 d 2 i 
dU.* ~ ^cUU + I = u • (4.5) 

The general s o l u t i o n of (4.5) has been given by Kamke (1943) and i s 

1 = a " l S m ( a U + ^ ) , (4.6) 

where a, h- are constants to be determined from the bouadary conditions. 

In terms of UL , and using (4.6), (4.3) becomes 
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M - f - ^ ^ a* f4 7<> 
d a V H n / suvHau-ttr) > ^ ' } 

which i s integrated to y i e l d 

A 0 = c, + a ( ~ - J 2 cot Cau^ I ) , ( 4 < 8 ) 

where C, i s a constant also to be determined from our boundary conditions, 

which we obtain by assuming that f o r very large values of r , the gravi

t a t i o n a l and e l e c t r o s t a t i c potentials have the form 

6 = - + o ( r - z ) . (4.9) 
T 

We r e c a l l that, f o r large Y (small <f) ), we have 

1 = S" 1 = I - CE~2 $ . (4.10) 

Expanding (4.6), we obtain 

2 = 

+ — o>s (a/ 
a 

- a s u ^ C ^ * ) ^ + 0(T-»), ( 4 . 1 D 

where we have retained the X-2- dependence for future comparison with 

the Riessner-Nordstrom metric. In the same way we can show 

A0= c, + ac*U(^)* -§ +o(t») . (4.i2) 

I t i s clear from (4.9), (4.10), (4.11) and (4.12) that 

a = svcxb- , 
C, = - Cosh 
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^ • l^T/ f ) • l - e ? " ) ( 4 - 1 3 ) 

where we must take, i n a l l cases, the p o s i t i v e square root. Inserting 

these values for the various constants into the s o l u t i o n (4.6) and (4.8) 

gives 

e , 

CASE ONE: 0 < CoS-t < I 

In this case a , I; are r e a l , and MTr£eM e
2 < C E

Z . The 

metric i s well-behaved and regular outside a c e r t a i n radius X0 , given 

by 

x 0 = ( — j (4.i6) 

where we have assumed, without loss of generality, that 0 < Ir < "H/l. . 
j . 

The metric function "H. = (~^°° )* has zeros at T 0 and at a count

able i n f i n i t y of points i n X < T0 . For X » To , the expansions 

(4.11) and (4.12) are very accurate. Using (4.13), these become 
Z 

+ 0 C T-») , (4.17) 

A o = - W r + O C r - ^ • (4.18) 

In general r e l a t i v i t y the corresponding Riessner-Nordstrom 

s o l u t i o n i s given by 



35. 
A - - ?e -L 

For large r , we can see that the solutions are equivalent up to f i r s t 

order i n Jr - 1 . For smaller T , and for a nonzero cos b, the theories 

p r e d i c t d i f f e r e n t g r a v i t a t i o n a l f i e l d s . 

CASE TWO: ) < CoS lr 

In t h i s case the constants 3. , Jr axe pure imaginary, and f£*< <ni£jtM*. 

The solutions f o r "Z and r\0 are then 

? = . a? C a ' i L 4 V ) , (4.20) 

+ ^U^X* oAJk C a ' u . V ) , (4-21) 

where a ' = - i i = (coflt - I ) z , = , and Cosir i s given by (4.13). 

The metric function U has no s i n g u l a r i t i e s except at the o r i g i n , and 

i s regular everywhere. For large TC the expansions (4.17) and (4.18) 

again are applicable provided the factor ( I — CbS*>(r ) l i s replaced by 

An important s p e c i a l case of t h i s group of solutions i s when we 

put 6E = 0 . (4.20) reduced to 

? = *%p ( Qt MeCe-7 I " 1 ) , (4.22) 

and i s the e x t e r i o r metric function f o r a point p a r t i c l e with no charge. 

(4.21) becomes simply A 0 = 0 . 

CASE THREE: COS& = I 

In t h i s case fg1 = itn QeME
2 • This s i t u a t i o n occurs i n most of 
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the Weyl-Majumdar models. A simple c a l c u l a t i o n shows that (4.14), (4.15) 

reduce to 

* = I + <ll2le ^ (4.23) 

where QeV\e Q{X = ( ̂ e C f 4 / 4TT ) * i s the Schwarzschild radius 

of the sphere. The l i n e element i s given by 

where d-fL7' = Sun29dcp* + d B 2 . I t i s i n t e r e s t i n g to note that 

general r e l a t i v i t y predicts the same r e s u l t s as the above. The s o l u t i o n 

(4.23) has been studied by Bonnor (1960, 1964), and by Papapetrou (1947). 

CASE FOUR: CoS \j = 0 

In this case M e = 0 . Bonnor (1960) has pointed out a very 

peculiar feature of the Riessner-Nordstrom s o l u t i o n i n general r e l a t i v i t y . 

If we put Y\t = 0 and at the same time r e t a i n £e £ 0 , we obtain a 

s o l u t i o n for a charged point p a r t i c l e which has no g r a v i t a t i o n a l mass. 

The g r a v i t a t i o n a l p o t e n t i a l i s of order X - ' 2 , and i t appears as i f the 

e l e c t r o s t a t i c energy does not contribute to the g r a v i t a t i o n a l mass. 

A s i m i l a r s i t u a t i o n occurs i n the present theory, f o r , i f we 

take M e =0 , the solutions (4.14) and (4.15) become 

i = cos C r, /r ) , (4.26) 

A ° = ton Cr./r) , (4-27) 

where 

r, = ( QEee* A T T C V ) * . (4.28) 
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For X » X , , the expansion i n ~£ y i e l d s no dependence and there

fore the system exerts no long-range g r a v i t a t i o n a l a t t r a c t i o n . 

31 



CHAPTER V 

THE WE YL-MAJUMDAR METHOD FOR OBTAINING 

STATIC SOLUTIONS OF THE FIELD EQUATIONS 

Before proceeding with our i n v e s t i g a t i o n of the system of equa

tions (3.34)-(3.37) i n the general case, i t i s i n s t r u c t i v e to examine 

the one case i n which the system can be solved a n a l y t i c a l l y . 

Consider a d i s t r i b u t i o n of charged matter i n equilibrium. Pro

vided no other forces are present we can say that the equilibrium i s 

maintained by a balance of e l e c t r o s t a t i c and g r a v i t a t i o n a l forces. Such 

a balance implies, f o r time-invariant systems, a r e l a t i o n between the 

e l e c t r o s t a t i c and g r a v i t a t i o n a l p o t e n t i a l s . Weyl (1917) postulated that 

this r e l a t i o n could be i n the form of a functional r e l a t i o n s h i p between 

the component c j e o of the metric tensor and the e l e c t r o s t a t i c p o t e n t i a l 

Ao• Assuming t h i s , he showed that 

9oo = A + 8 A 0 + A: , (5 . D 

where A and B are constants. He obtained this r e s u l t by studying 

a x i a l l y symmetric electrovac universes i n general r e l a t i v i t y . Majumdar 

(1947) extended this work to the case where there i s no s p a t i a l symmetry, 

and showed that (5.1) remains v a l i d . I f the constant B i s chosen so 

that (5.1) reduces to a perfect square, then the whole system of the com

bined Einstein-Maxwell f i e l d equations reduces to a si n g l e Laplace equation. 

These ideas were ca r r i e d over to the case of non-empty space by Das (1962) 

who showed that, i n c e r t a i n cases, the imposition of the Weyl-Majumdar 

r e l a t i o n , 

-38-
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8-- { A* ±(^)*A.]* , (5-2) 
implies, and i s implied by, the equality of the dimensionless charge and 

mass parameters of the system i n question. 

In this chapter the Weyl r e l a t i o n (5.1) i s examined i n the frame

work of the scalar theory of g r a v i t a t i o n . A l l of the r e s u l t s and a l l the 

examples shown here have counterparts i n general r e l a t i v i t y . F i r s t of 

a l l , the r e l a t i o n analogous to (5.1) v a l i d f o r the scalar theory i s obtained. 

An attempt i s then made to understand the physical meaning of the constant 

B . This i s f i r s t done for the s p h e r i c a l l y symmetric case, for which 

the s o l u t i o n i n the e x t e r i o r region i s given i n Chapter IV. I t i s shown 

that, i r r e s p e c t i v e of the charge-mass r a t i o , every (exterior) s o l u t i o n 

obeys the r e l a t i o n (5.1), and that 8 = ffTT QE ME Cf1 ee~' , where ME 

i s the t o t a l g r a v i t a t i o n a l mass, and ?e the t o t a l charge of the sphere. 

This r e s u l t i s then extended to the general case where i t i s shown that, 

even without s p h e r i c a l / symmetry, B represents the mass-charge r a t i o of 

the system. 

I t i s i n t e r e s t i n g to note that, with this value for B , (5.1) 

reduces to (5.2) only i f 

eE = ± ( 4 i r q E y M E . (5.3) 

This i s probably why, i n previous work on this problem, the assumption 

(5.2) always led to the r e s u l t (5.3). — .. 

D i f f i c u l t i e s a r i s e when we attempt to extrapolate (5.1) into the 

i n t e r i o r region. I t turns out that, both for the Klein-Gordon and Dirac 

f i e l d s , imposing (5.1) i n this region leads to an over-determined system 

of equations, unless (5.3) i s v a l i d . 
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The Weyl-Majumdar r e l a t i o n for our theory i s obtained by consider

ing the free-space e l e c t r o s t a t i c - g r a v i t a t i o n a l equations. These are, 

from (3.9), (3.10), 

^ m ( S - 2 ^ » A 0 ) = 0 > (5.4) 

^ 4 = ^ $~2 C^f\oT (5.5) 

We assume that (J) i s a function only of A 0 , which means that 

= ()>" (B» Ac)* + fc)wAo j (5.6) 
where the prime denotes d i f f e r e n t i a t i o n with respect to A 0 • Inserting 

(5.6) into (5.4), (5.5) y i e l d s 

~^m™A 0= l ^ ' c r 2 C^ml\^ f (5.7) 

and hence 

f + 2 c - ( 4 ' ) a
=
 , 2 i s s - » 

The s o l u t i o n of (5.9) i s given by 

9* = A 4 BAo + ^ A* > 

(5.9) 

(5.10) 
-e 

which corresponds to the r e l a t i o n (5.1) i n general r e l a t i v i t y . The 

constant A has no physical s i g n i f i c a n c e , and, without loss of generality, 

may be taken to be equal to 1. The constant B i s at present undetermined. 

I f , however, i t i s so chosen that (5.10) becomes a perfect square, then 

the f i e l d equations (5.7), (5.8) reduce to a single Laplace equation. 

In Chapter IV we obtained solutions for A0 and S i n the exterior 

region of a s p h e r i c a l l y symmetric charged matter d i s t r i b u t i o n . I f <?E i s 

the charge, and Me the g r a v i t a t i o n a l mass of the sphere, then these 
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solutions are given by (4.14), (4.15) i n the case where 3- = , 

by (4.23), (4.24) i n the case where a. = 0 , and by (4.26), (4.27) i n the 

case where Cos I t i s easy to show that a l l these sets of 

solutions obey the r e l a t i o n (5.10). In the f i r s t case 

S* - I • A . * ttS A- , ( 5 . n , 

where ^ if IT CE ME
4 > i n the second case 

S 2 = ( I ± Ao) 1 , (5.12) 

where =• itxv Qe rig* , and i n the l a s t case 

S 2 = I + A (5.13) 

where ME = 0 . We see that, i n a l l cases 

B = c (5.14) 

If we assume that (5.11) i s v a l i d even i n the presence of charged 

matter, then this implies a simple r e l a t i o n s h i p between the charge and 

mass d e n s i t i e s . In such a case the f i e l d equations can be written 

^ ( S _ 2 b m A 0 ) = c r , (5.15) 

^ " " " ^ ~ ^ ^ ( ^ O 1 ^ p , (5.16) 

where 6~, f> are r e s p e c t i v e l y the charge and g r a v i t a t i o n a l mass d e n s i t i e s . 

For the moment we have l e f t these quite general. Using (5.10), we e a s i l y 

obtain 

<T . s - f - ' ( ^ f ) ' < 5 - 1 7 ) 

which y i e l d s , 

(5.18) 



42. 

Previously we have obtained the expression (5.14) for B i n the case of 

spher i c a l symmetry. Using (5.18) we can extend this r e s u l t to the more 

general case. From (5.15), (5.16), by considering the f i e l d s f a r from 

the source, i t can be shown that the charge and g r a v i t a t i o n a l mass para

meters are given by 

e£ = JVd3x , 
MeC£* = J { S - M ^ A f t y + f } d SX . (5.19) 

Using (5.15), (5.18), we obtain 

Provided that Ao^mA& f a l l s o f f s u f f i c i e n t l y r a p i d l y at s p a t i a l 

i n f i n i t y (and this i s always true for a l o c a l i s e d d i s t r i b u t i o n ) , i t 

follows from (5.19) that (5.20) y i e l d s B = 2V (JE ME Ce 'ef ' which i s 

again (5.14). 

As ,a f i r s t example we consider a scalar (Klein-Gordon) matter 

f i e l d . For such a system the time-independent f i e l d equations are 

The Klein-Gordon wave-function i s given by 

where 06 i s r e a l and E represents the energy of the matter f i e l d . For 

such a system 
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<5" " ^7T, C E » < * O X ! . (5-22) 

Inserting (5.22) into (5.18), and can c e l l i n g out the common factor 9( 2, 

we obtain 

- ^ CM,C« ,4e.Ao)CE«*eA.) (5-23) 

Comparing (5.23) with (5.11), and equating the c o e f f i c i e n t s of the various 

powers of A 0 , we f i n d that the only Weyl-type s o l u t i o n f o r the K l e i n -

Gordon f i e l d i s the Weyl-Majumdar s o l u t i o n with 

E - M«c,* -«.c.« - (5.24) 

The binding energy, defined by E g = ( -TOgC/ - E ) i s equal to zero, and 

the system of equations (5.21) can be reduced to two equations, 

" c W X = 0 , 

^mrnCS-') = - e E S " ^ V (5.25) 

Similar r e s u l t s hold f o r the Dirac f i e l d , but the d e r i v a t i o n i s 

more laborious. The time-independent f i e l d equations (for the Dirac-

e l e c t r o s t a t i c - g r a v i t a t i o n a l f i e l d s ) are given by (3.8), (3.9) and (3.10). 

In our present notation 

" ^ e t f S-' ( l U | * - I V l 7 ) . (5-26) 

The r e l a t i o n (5.18) becomes 
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S ' ^ E - I V e 4f e A e XlUiS. WI 2 ) = ^ e C E
2 S - ' C l U - l ' - l V l 2 ) , (5.27) 

and t h i s expression holds f o r a l l X . For points very d i s t a n t from the 

centre of the matter d i s t r i b u t i o n AQ ~ 0 , S ^ 1 , and the Dirac f i e l d 

i s e s s e n t i a l l y free. I t can be shown that, as we approach s p a t i a l 

i n f i n i t y 

1 U l 2 - l V l 2 = ^ O W ' + I V I O , (5.28) 

and hence, i n this region (5.27) y i e l d s 

IE -M e C e * = E , (5.29) 

which means that E = MeCe
2 . (For a demonstration of (5.28) see, for 

example, C o r i n a l d e r i and Strocchi 1963 p. 156, and our own re s u l t s i n 

Chapter 6). Inserting (5.29) i n (5.27) we obtain 

= TYieCe* S-'( ml'-IVl*) • (5.30) 

Comparing (5.30) with the corresponding expression f o r the Klein-Gordon 

f i e l d , we f i n d that the wave-function does not cancel out. This i s due 

to the i n t e r a c t i o n between the g r a v i t a t i o n a l f i e l d and the spin of the 

Dirac p a r t i c l e . Since S i s a function of A e only, (5.30) gives us an 

expression r e l a t i n g Ao , \ul^ , and IVl* . There i s no reason why the 

Dirac equations (3.8) should be consistent with t h i s r e l a t i o n and there

fore, i n general, we have an over-determined system. To show this we 

w i l l examine i n d e t a i l the above equations f o r the case of spher i c a l 

symmetry. I f we write 
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tS± = C F ^ Q 2 ) ; (5.31) 

the f i e l d equations (3.24), (3.25), (3.30) and (3.31) become 

« - f O F - - ( i ( (5.32) 

C-UfOG, = ( f r - i ) F , (5.33) 

- HS-V, , (5.34) 

+ * £ & ( n < r--pO (5.35) 

The Weyl condition (5.30) can be written 

<*6~+ = p<5~- (5.36) 

M u l t i p l y i n g (5.32) by («C+p)Q, (5.33) by (o( - J3 ) F , and subtracting 

we get 

- I af ' -r f < • « • - - - o • . < 5"> 
If instead we add, we get 

= 2. C e l l - p * ) FQ } (5.38) 

where M F*Q2 = C5+2- 6^ . A combination of (5.36), (5.37) y i e l d s 

The solutions 8 =0 , <5V = 0 are t r i v i a l . We r e c a l l that 6>S ̂  <5"_* 

and therefore p ̂  < . Assuming p £ 0 > (T+^ 0 , from (5.39) we 

obtain 

P ~ M y y " + I / ; (5.40) 

where JUL i s a constant of int e g r a t i o n . Using (5.11), (5.31), (5.40), and 
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r e c a l l i n g that k. = | for s p h e r i c a l l y symmetric solutions, we obtain 

the following expression which i s v a l i d f o r a l l T , 

(5.41) 

There are two ways of looking at this equation. I f yW ^ 0 then we must 

assume i t i s an ordinary equation and solve accordingly f o r Ao • (Recall 

that S i s a function only of Ao .) On the other hand, i f ft = 0 , then 

the expression on the right-hand-side i s a constant, which means that i f 

we are to obtain a n o n - t r i v i a l s o l u t i o n for Ao we must assume that 

(5.41) i s an i d e n t i t y i n A 0 and equate the c o e f f i c i e n t s of the various 

powers of Ap . In the f i r s t case,y«-£0 , we f i n d 

= " eE U + v r* 0^17; ) > ( 5 - 4 2 ) 

where f> = * , £ = E CmtCe")"' and S = bit Qefi-tee~'Z . S must 

always be p o s i t i v e and therefore the solutions f o r S , A 0 are as follows 

* l i - i f ' J > 

A. . - ^ ( | - ^S) (5.43) 

These expressions are regular f o r a l l T . However, when we use (5.43) 

to solve f o r 6 + , 6 * _ i n d i v i d u a l l y , we obtain expressions which are not 

compatible with the second of the Dirac equations (5.38). The proof of 

this i s long and tedious so we w i l l not reproduce i t here. I t i s enough 

to state that ju. ^ O does not lead to a consistent set of solutions. 

However, i f />• = 0 , then we can look upon (5.37) as an i d e n t i t y 

i n Ao • Expanding S by means of (5.11) and equating c o e f f i c i e n t s of 

the various powers of Ao , we obtain 
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e £ * = QtE7Ce~H

t (5.44) 

Ao i t s e l f remains undetermined and we now have the correct number of 

equations and unknowns. The r e s u l t s (5.44) are the same as were obtained 

for the Klein-Gordon f i e l d , and correspond to a s o l u t i o n of Weyl-Majumdar 

type. 

Returning b r i e f l y to the case of no s p a t i a l symmetry we f i n d that 

the conditions (5.44) imply, from (5.11), (5.26) 

s* - ( i ^ A.y, 

E(IUIMVI') = EClTil -IVl3) • ( 5 . 4 5 ) 

,2 Obviously IVl = 0 , and the equations for the system become 

I <5j~dj U = 0 , (5.46) 

~^m(S-')= - Mil Q t E Cr" S ^ I U ) ' . (5.47) 

There i s a close r e l a t i o n s h i p between (5.46), (5.47) and the correspond

ing equations f o r the Klein-Gordon f i e l d (5.25). We have a d i f f e r e n t 

power of S on the r i g h t hand side of (5.47) but this i s due to the inter

action of the spin with the g r a v i t a t i o n a l f i e l d . 

The equation (5.46) can be solved. We can write 

6Ai = <5Y + r ~ r ) (5-48) 

where K = 6"- + I i s the angular momentum operator. We have only to 

consider the following equation 

( + Y " r ) ^ = 0 > (5-49) 
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for the two-spinor U. . The solutions can be expressed i n terms of the 

eigenfunctions of K ( C o r i n a l d e r i and Strocchi 1963) 

r«j)+ 
t » f c,+ y 

J 

( 5 . 5 0 ) 

where the C~ are normalisation constants. The eigenvalues for M are 

k +
 = j + 7 = 4 + I , 

and the functions ^ obey the r a d i a l equations 

(5.51) 

( r ) r = o Y ; - U . (5.52) 

Inserting the value for l l l l "* into the second equation of (5.46), we 

obtain a countable i n f i n i t y of possible equations for S~' , each one 

corresponding to a d i f f e r e n t angular momentum state. This i s i n contrast 

to the si n g l e equation described by Das (1962), who assumed that XL was 

constant. 

For the case of sph e r i c a l symmetry we must have k = — \ , and the 

only s o l u t i o n of (5.51) which tends to zero for large T i s given by 

r ( 5 . 5 3 ) 
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where | q i s a constant and -k = - i = - ) . From (5.53) we have |U| = 

(nn^-1-J--H , and the equation for S _ l becomes 

1 d r / = - ^ T b > (5.54) 

where A = Qe E Ce"11 . Writing 2. = S~' , = T _ l , (5.54) can be 

s i m p l i f i e d 

A p a r t i c u l a r s o l u t i o n of (5.55) i s given by 

This s o l u t i o n diverges for large T and must be discarded. The general 

s o l u t i o n (of (5.55)) can be written down i n terms of e l l i p t i c i n t e g r a l s . 

Transforming (5.55) yet again, we f i n d 

B i s a constant of i n t e g r a t i o n and i s determined by the normalisation. 

We require 

T dhr T - - D = 0 > < 5 ' 5 8 > 

and hence, i f we write 1a = ~i(y-b) , 

B = | A ^ , 3 . (5.59) 

(5.57) can be transformed to i n t e g r a l form. I t becomes 

•3 dt 
J. 

(5.60) 

where t = 2"Z0
-' and t 0 = T.0~ . Since 2. i s always p o s i t i v e , so i s t , 

and therefore 2. ̂  for a l l ̂  . We use the general formula 
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dt 
^3 orr a + i - 1 

k' 

(5.61) 

where k = Son. 7 5 ° , to obtain a formal s o l u t i o n for our problem. We 

have, then 

, (5.62) 
i 

where 

<f3 6 ? H = cn' 
(5.63) 

The s o l u t i o n (5.62) has the correct asymptotic behaviour f o r large T : 

1 tends to I f o r Y•=? oo . However, for small T , the function 

becomes p e r i o d i c and there are s i n g u l a r i t i e s i n the metric. The system 

lias j from ( 5 5 « , (5 .59) , 

0 0 , 

( 5 . 6 4 ) 

To sum up: we have shown that solutions of the Dirac-Maxwell-gravitational 

f i e l d equations can be obtained by using the Weyl-Majumdar method and that 

these solutions imply that the metric tensor i s not regular over the whole 

range. 



•CHAPTER VI 

.ASYMPTOTIC SOLUTION FOR THE DIRAC WAVE-FUNCTION 

In deriving the asymptotic forms f or A 0 and S (Chapter IV) we 

assumed that i n the exterior region the matter density i s n e g l i g i b l e . In 

the present chapter we w i l l demonstrate the v a l i d i t y of that assumption 

by f i n d i n g the asymptotic form of the Dirac wave-functions. These 

solutions w i l l be used i n the numerical i n t e g r a t i o n i n Chapter VII to 

determine the boundary conditions on the wave-function. 

The Dirac equations i n dimensionless notation are given by (3.34) 

and (3.35). We consider terms i n the i n t e r a c t i o n only up to f i r s t order 

i n T-' . Using (3.32), (3.33) and (4.9) we obtain 

a „ - - i + 0 ( f - * ) , 

i , s-1- i + £ + o ( r* ) • (6.D 

Inserting these expressions f o r S and Q,0 into (3.34), (3.35), we f i n d 

where 

£c e v. ' ' 

I t i s i n t e r e s t i n g to note that, even when we consider only the T - ' 

dependence of the g r a v i t a t i o n a l f i e l d , we cannot simply replace the f l a t --51-

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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space expression ( F_ + 6E A 0 ) by ( E + CE A 0 £ CgT2 )> where Ece"2<|> 

i s the g r a v i t a t i o n a l p o t e n t i a l energy of the p a r t i c l e i n the f i e l d of 

the source: the i n t e r a c t i o n i s more complicated than a simple Coulomb 

p o t e n t i a l . In order to i l l u s t r a t e this point, to which we w i l l return 

l a t e r , we have l e f t the mass of the source i n i t s o r i g i n a l form and 

only at the end of our calc u l a t i o n s w i l l we make the s p e c i f i c a t i o n that 

corresponds to the s e l f - f i e l d of the Dirac p a r t i c l e . 

If we write 

F = F' ea+C-O » 

Q = Q ' ^ ( - c r ) , (6-6) 
where C = C\~i. ")* p , the equations (6.2) and (6.3) become, 

Our next step i s to construct power series solutions f o r F and Q' . 

We require a l o c a l i s e d s o l u t i o n (bound state) which means that F , G, 

must approach zero f o r large T . We write 

F* = < r » ? a; <y" , 

C = crpr 4n crn (6.9) r 
n.-6 

where a j ^ 0 , C £ 0 . Substituting (6.9) into (6.7) and (6.8) we 

obtain, by equating c o e f f i c i e n t s of <y v - +P~' 

(6.10) 
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For V = 0 we have 

CP + k ) l j - < a; = o , 

(P -Oa*' + «2&0' = o , <6-n) 
which implies 

p = + ( k z - (6.i2) 

The equations (6.10) lead J. to the following recurrence r e l a t i o n f o r the &'v t 

j v + I* - k + « 3 * O - O C v + p - k ) j q . 

= \ ) + 1 + £ ot.\TPiT + C i - O C v - t - g - t e - i ) 7 » 

(6.13) 

A s i m i l a r recurrence r e l a t i o n f o r the &w i s obtained by replacing 

^i/T^p" + C l - O C v + p - k ) 

For very large V , we have from (6.13) 

and t h i s would imply that the functions F' , Q' increase l i k e exp ( 16" ) 

for large o~ . This contradicts our hypothesis of a l o c a l i s e d matter 

d i s t r i b u t i o n . Therefore the series must terminate at some f i n i t e value 

of T I , say r»' , and this means that 

<V+| = = 0 . (6.16) 

Putting V = TI' + | , n' i n (6.10) and (6.14) re s p e c t i v e l y , and solving 

for p we obtain 

(6". 17) 
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On the other hand, we have, from (6.12) 

(6.18) 

From (6.17) and (6.18) we can obtain an expression f or £ . 

However, before continuing with the present problem we s h a l l consider, as 

a c o r o l l a r y and an example of the above work, the "hydrogen-atom" problem 

i n g r a v i t a t i o n a l theory. We tre a t the cen t r a l body as a f i x e d point-

p a r t i c l e of mass and we consider only terms up to order T - 1 i n the 

i n t e r a c t i o n . (6.17) and (6.18) apply with c< = 0 . We must take the 

p o s i t i v e sign f o r p i n (6.18). Since £ i s contained i n the expression 

f o r p , we have a much more complicated system than the one which occurs 

i n the e l e c t r o s t a t i c case. The eigenvalues are given by the solutions 

of the following equation, which i s t h i r d order i n Z 

i 4 v>v - { * 2 r , y + (fe» -if*)' + ytf-rfO + / k 

+ {aovy - xlf- tixy - aft'- n * ) / I e* 
+ { cV-rt*)2 - 4h*y ] = 0 , (6.19) 

where ytx = i\e ME n\e -fc Ce~] . The eigenvalues are l a b e l l e d by the values 

of the angular quantum number -k and the r a d i a l quantum number 711 , which 

refer s to the number of nodes of the wave-function. In contrast with 

the usual ( e l e c t r o s t a t i c ) hydrogen atom problem, there i s no natural way 

to define a " p r i n c i p a l quantum number". For Tl' = D , we have 

E*>° = ivryf . C6-20) 

B r i l l and Wheeler (1957) have also considered this problem. They 

examined the behaviour of a Dirac electron i n a Schwarzschild gravita

t i o n a l f i e l d . Up to order T _ l , i t can be shown that t h e i r r a d i a l 
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equations are equivalent to ours. However, i n solving t h e i r equations, 

they used a d i f f e r e n t approximation, and neglected one term of order T~' , 

which we have included, and therefore t h e i r r e s u l t s d i f f e r from ours. 

E x p l i c i t y l y , t h e i r r a d i a l equations were of the form (Equation (39) of 

th e i r paper) 

-e ~kx - * c = o , (6.2D 
d r ' 

where £ V = € * = ) — 2Qe MBCe~2T~' • Expanding, and 

keeping a l l terms i n t"' , We obtain 

j f c ( E + . . A . -<(> + «.c,') F - £ 

.±Q . <K'£--.- - 0 , (6.23) 

where <j> = - Qe M EEc e- 7r-' i s the g r a v i t a t i o n a l p o t e n t i a l energy of 

a p a r t i c l e of energy E • From (6.6) we have 

<J>E"'~ '= |r e £ ^-t1",^ C , (6.24) 

again to f i r s t order i n f 1 . B r i l l and wheeler dropped this term since, 

i n t h e i r case, the c o e f f i c i e n t of T"1 Q was small compared to k. In 

our case, on the other hand, we have included a l l terms of order T - > , 

i n order to obtain a more general r e s u l t . 

For the case of a Dirac electron i n i t s own g r a v i t a t i o n a l f i e l d , 

we make the assumption that Me = E C ~* , or, i n other words, that E 

i s the t o t a l energy of the Dirac f i e l d . On t h i s point Kaup (1968) and 

Feinblum and McKinley (1968) d i f f e r e d . Kaup defined N e as follows 
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where 

N = J f i J V x . <6-26> 
TYl i s the i n t e g r a l of the zero-zero component of the energy-momentum 

tensor of the Klein-Gordon f i e l d , and N i s a conserved quantity. (For 

the case of a charged f i e l d J ° i s the charge density.) He found that, 

i n general, with the d e f i n i t i o n (6.25), MfC^^E . 

Feinblum and McKinley, however, used a d i f f e r e n t normalisation, 

which generated a d i f f e r e n t Nl , and therefore Kaup's r e s u l t s do not 

hold i n t h e i r case. They simply assumed, but did not prove, that E = 

MEC e

2 . 

In the present theory, i f we use (6.25), then i t i s easy to show, 

from (2.54), (2.57) that 

and therefore MgCg2 = E • Unfortunately, due to the complications 

of the f i e l d equations, there i s no simple way to prove that the Mf as 

defined by (6.25) i s i n f a c t the t o t a l g r a v i t a t i o n a l mass of the system. 

We simply assume that i t i s . 

For a s p h e r i c a l l y symmetric s o l u t i o n k = - | and hence 7\' = 0 . 

From (6.17) and (6.18) we obtain 

I - of - £ 7 + l c ( t £ J - = 0 , (6.28) 

where t i s given by (3.32). The s o l u t i o n of (6.28) i s 
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£ a = 0 0 - ' { ( I - + 4 c* ) * • - I + 24t]r 

(6.29) 

Hence, i f we know t , which i s e s s e n t i a l l y the square of the bare mass 

of the Dirac p a r t i c l e , we can calculate £ . I t i s remarkable that only 

for one value of Tne , given by l e t t i n g o(. = t , do we obtain <£ = I , 

and therefore only i n that case does the binding energy of the f i e l d 

vanish. (This i s i n f a c t the Weyl-Majumdar s o l u t i o n which has been 

examined i n a previous section, and i n which case i t i s possible to obtain 

an a n a l y t i c s o l u t i o n and to prove that E = \^EC^ • ) 

From (6.9), (6.10), the asymptotic solutions for P , Q. are 

F = Q„' 0-£*) ? / 2 f>* e a ^ ( - NTT^ p ) , (6.30) 

where £ and p are given by (6.29) and (6.17). In the following 

chapter we w i l l use these expressions as boundary conditions for the 

numerical i n t e g r a t i o n . 



CHAPTER VII 

NUMERICAL RESULTS AND DISCUSSION 

The non-linear system of equations ( 3 . 3 4 ) - ( 3 . 3 7 ) has been solved 

by numerical methods. B r i e f l y , our procedure was as follows. We f i r s t 

chose a value ^ of the r a d i a l co-ordinate so large that the asymptotic 

solutions obtained previously were v a l i d . A step-by-step numerical 

i n t e g r a t i o n toward the o r i g i n was then begun. In the i n t e g r a t i o n process, 

the four equations ( 3 . 3 4 ) - ( 3 . 3 7 ) were replaced by the s i x f i r s t - o r d e r 

equations, 

ff • -JQ . S - 5 ( f - - S ) F , (7.!) 

4f " f F + S- 2(£+ a 0 + sK , ( 7 . 2 ) 

c\a0 = Q a p - a M ( 7 . 3 ) 
6} I 3' > 

5 ?
 = r1** , (7-4) 

4* = S - * ( F % Q * ) , ( 7 . 5 ) 

dp 

+ a S ' H ^ Q . ^ S ) ^ ^ ( 7 . 6 ) 

where , ^ are defined by ( 7 . 3 ) and ( 7 . 4 ) . These were integrated 

by a numerical method, the d e t a i l s of which we w i l l c o n s i d e r l a t e r i n the 

chapter. The integrations were repeated for various values of the para

meters &o and TT)E . In a l l cases we assumed that 6 E was the 

e l e c t r o n i c charge, or, i n other words, that o(. had the numerical value 

that i s usually accepted for the f i n e - s t r u c t u r e constant. 

- 5 8 -
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As boundary data we use the following 

3> -

df " p* 
a 

d_Q_o ^ 

(7.7) 

P/2 

where A > define d by Al = aifi-E1) , can now be used instead of GU 

as a parameter of the theory. 

Previously we have shown that for s p h e r i c a l l y symmetric solutions 

h. = - 1 . Following a procedure s i m i l a r to that used by Bethe and 

Salpeter (1957, p. 153), we now determine which i s the correct sign to 

choose for various values of the i n t e r a c t i o n parameters. For the case of 

an e l e c t r o s t a t i c p o t e n t i a l alone the rule i s quite simple. If the Coulomb 

po t e n t i a l i s a t t r a c t i v e ( r e p u l s i v e ) , we must take k = + I (- | ). When 

we include the g r a v i t a t i o n a l i n t e r a c t i o n , c e r t a i n modifications are 

necessary. From (6.9), (6.10), we can write down three expressions for' 

the r a t i o , 

aL ? + k 
o ( -C £ C 2£-0 

h: P - * 

= _ \ f T r 7 r 

(7.8) 

(7.9) 

(7.10) 

(7.10) i s obtained from (6.9) by s e t t i n g \) = I +V , where V = 0 . 

For bound states this expression i s always negative. Imposing this con-
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d i t i o n on (7.8), (7.9) leads to a contradiction i f we take the wrong sign 

for 4< . For t<o< there are two cases; 

( i ) t < cC(2-5hY , where S = I - £ * 10~5 . In this case -I £ £ < 0 

t£C2£+i")< <̂  ' a n <^ s o w e m u s t take k = -I . 
_ i 

( i i ) o( < C < ° ( • Here the denominator of (7.8) and the numerator of 

(7.9) are p o s i t i v e , while j8< - I . This means that we can take either 

sign for k , or, k = - ) . 
For Z>°( we have three cases; 

( i i i ) o( <Z< 1-44. In this region o< p <) , the denominator of (7.8) i s 

negative, the numberator of (7.9) p o s i t i v e , and therefore ̂  = +) . 

(iv) 1.44 ^. t K 4".00. Here -|< |3 <0 , the other quantities have the 

same sign as i n ( i i i ) , and we must take k = + 1 . 

(v) 4.00 < £ < £*o . In this l a s t case, where p< - I , i t i s easy to show 

there there i s no choice of sign for k which makes (7.8) and (7.9) compatible. 

Hence, there exists an upper l i m i t of 4.4 x 10 ^ grams f o r the bare mass. 

In F i g . 1 we have plotted M e against TA e , where the bar indicates 

we have used dimensionless notation, or 

-friE = \TT = [ -me ( 7 . i i ) 

The graph i s also divided into four regions which exhibit the various required 

values of & as outlined above. In region I, k = - I , i n II k = — I , i n 

III k = + I and i n IV there i s no allowed value for k . 

We see that no matter how large the bare mass may be, the observed 

mass i s always less than 2.2 x 10 ^ grams. Of course, as we have seen above, 

there are other reasons why we may not take an a r b i t r a r i l y large value for 

the bare mass. In his study of the Klein-Gordon geon, Kaup (1968) found that 

no solutions existed which had a bare mass larger than 1.76 x 10 ^ grams. 

(This corresponds to a maximum value of 1.70 x 10 grams for the observed 

mas s.) 
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In the present work, solutions were found f o r various values of 

1AE and A l . As an example F i g . 2 shows the shape of the mass density 

(see expression (2.53)) for the case t = ir\* = 0.05 ( -fnE = 0.2236) and 

= 0.002. The normalisation i s defined by 

where we have included the factor Jfir i n our dimensionless, D . For a 

c o r r e c t l y normalised sol u t i o n , from (3.38), we need 

71 = o< . 

— 1 

In order to obtain normalised solutions we f i x e d the value of X. - T1\B and 

integrated the system of equations f o r the whole range of possible values 

of A l • We repeated t h i s process f o r several values of Z . The r e s u l t s 

of this study are summarised i n F i g s . 2 - 5 . 

We found that f o r a l l -fnE , A 7 > the mass density D has the 

general shape exhibited by F i g . 2. Normalised solutions were found i n the 

range o( < t < 4.00. For A1 small we found Tl><< , and for A l large T i <o( , 

For the case t = 0.005 the best solutions (from the point of view of the 

normalisation) were given by A l = i . 750461 x 10 , i n which case 

nr\ -o( - o.io4 x \ D - L

 } ( 7.13) 

and A l = 1.750465 x I O - 3 , when 

(7 . 1 4 ) 

or ==• 10 ĉ , which i s as good an agreement as can be expected 

i n numberical work. For other values of "C comparable accuracy was obtained. 

Contrary to what we had hoped, however, we found that i n every case 

the e l e c t r o s t a t i c and g r a v i t a t i o n a l potentials were singular near the 
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o r i g i n . Considered as c l a s s i c a l models of charged p a r t i c l e s , these solu

tions corresponded to objects comprising a t h i n s h e l l of matter surround

ing a highly singular region of space. In the following d e t a i l e d 

d e s c r i p t i o n of our solutions, we s h a l l make use of the terminology of 

such a " s h e l l " model. 

Discussion of the Solutions 

The system of equations (7.1)-(7.6) with the i n i t i a l conditions 

(7.7) was integrated numerically using, as our basic method, a Runge-Kutta 

subroutine of order 4 (Fowler 1964). A second method, based on an extra

polation procuedure using r a t i o n a l functions due to B u l i r s c h and Stoer (1966), 

was used on c e r t a i n selected examples to check our r e s u l t s and to evaluate 

the errors. 

The Runge-Kutta method used i s that due to G i l l (1951). As step-

siz e we used "R. = ^ /50 where j0 i s the r a d i a l co-ordinate. Carr (1958) 

has shown that for Tv small enough (but not too small, to avoid excessive 

round-off error) this program i s very accurate. The second method, trans

lated into Fortran IV by M. L e s l i e (1966) from the A l g o l procedure of 

B u l i r s c h and Stoer (1966); involved the use of an automatic step-size 

correction procedure. This meant that a f t e r each i n t e g r a t i o n step 4i was 

changed to the optimal step s i z e for the next i n t e g r a t i o n step. The pro

gram also contained a subroutine for c o n t r o l l i n g the accuracy of the com

puted values of the functions being integrated. If was one such function 

then the computation of ^ at each i n t e g r a t i o n step was repeated u n t i l two 

successive computed values of d i f f e r e d at most by an amount IS where £ = 
— 6 

10 and 5 was of the order ^ . B u r l i r s c h and Stoer (1966) examined i n d e t a i l 

the errors involved using this method and showed that i t gave r e s u l t s superior 

to most other commonly used methods, including the Runge-Kiitta. We did not use it all 
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the time because of the high cost i n computer time and storage. 

Assuming that the d i f f e r e n c e i n the r e s u l t s obtained using the 

two methods was of the order of magnitude of the errors involved, we com

pared the integrated solutions for several cases. As expected we found 

that i n the e a r l y stages of the i n t e g r a t i o n the d i f f e r e n c e was n e g l i g i b l e . 

As p-=7 0 ) however, the error increases somewhat u n t i l f o r the l a s t 

few i n t e g r a t i o n steps we had l o s t three or four d i g i t s . This means that, 

estimated i n t h i s rough fashion, our solutions were accurate to at l e a s t 

four places of decimals. Hence no q u a l i t a t i v e errors i n the shapes of 

the solution-curves was indicated. For example, for the case ft\t = 

0.6325, AT = 0.001, both methods gave the same value for (j> at j° = 

86.938180, whereas at f> = 0.11258820 the Runge-Kutta subroutine gave 

<§ = 3.3022970 while the Bulirsch-Stoer procedure gave (j> = 3.3025360. 

Normalised solutions were found f o r values of the bare mass range from 0.1 

to 1.0 ( i n units of 2.2 x 10 ^ grams). In a l l cases these solutions had 

the same basic properties. 

c ^ 

Figure 3A shows the form of the metric function b = (- 2ao ) 2 

for several values of Al (with TtlE = 0.2236), while Figure 3B shows the 

behaviour of three representative cases for small . We have discussed 

elsewhere the form of S f o r l a r g e . I t i s seen that a l l the solutions 

have the same basic shape, and d i f f e r only i n the p o s i t i o n p = /°M1|Nj where 

S has a minimum and i n the radius >̂ of the inner core. (The inner 

core i s defined as that region of space close to the o r i g i n where the 

matter density i s n e g l i g i b l y small.) Of course only the normalised solu

tions are of i n t e r e s t . We include these graphs merely to i l l u s t r a t e the 

r e s u l t obtained which was that, for constant /frlE , the solutions behaved 

i n a smooth way with v a r i a t i o n s i n A1 and exhibited no q u a l i t a t i v e differences. 
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F i g . 4 graphs ffi £ against the value of A1 which y i e l d s a c o r r e c t l y 

normalised s o l u t i o n . I t i s seen that, i n the region > 0.23 ^ A] 

increases f o r increasing T?jE . I t i s to be r e c a l l e d that elsewhere we have 

shown the existence of a maximum value for the bare mass. For 0.23 >tf)E>\£(" J 

AT increases with decreasing *ii\B and approaches i n f i n i t y asymptotically 

as —3» NTO? • For example when 7flE = .0946 we found that A]= - 1.2 x 10^ 

gave a c o r r e c t l y normalised s o l u t i o n . At the point 1D£ = \Jo( (which 

corresponds to the Weyl-Majumdar case) our asymptotic s o l u t i o n i s no 

longer v a l i d . We have discussed this case i n Chapter 5. 

F i g . 5 depicts the radius of the inner core i n each case i n which 

a normalised s o l u t i o n was found. For Tf\E > $o7/ we found that the radius 

of the core increased with increasing bare mass. For Tfl f < ^ we were 

unable to f i n d any normalised s o l u t i o n s . I t may be s i g n i f i c a n t that, i n 

this region, the e l e c t r o s t a t i c s e l f - r e p u l s i v e force, as estimated from 

the asymptotic forms, i s greater than the g r a v i t a t i o n a l s e l f - a t t r a c t i o n . 

The case /7f\e = 0 gave solutions which could not be normalised, and which 

had an o s c i l l a t o r y behaviour at s p a t i a l i n f i n i t y . This i s caused by the 
2. r 

f a c t that the binding energy Eg = m e C E — E = - E i s i n this case nega

t i v e . The only exception i s the t r i v i a l case T^ECE 2 = E = 0. 

In our search f o r solutions with S regular at the o r i g i n , we 

constructed a power series s o l u t i o n for the whole system f o r small p and 

attempted, by a l e a s t square method, to f i t t h i s s o l u t i o n to our numer

i c a l l y integrated one. Of course, since our equations are non-linear, we 

could only derive the c o e f f i c i e n t s for the f i r s t few powers of f> , and 

therefore we had no proof that the series were convergent. As a working 

hypothesis, we assumed that they were. The r e s u l t s of our investigations 

were that we could not make such a f i t and that i t was hig h l y u n l i k e l y that 

a s o l u t i o n for S regular at the o r i g i n existed. This conclusion i s r e i n 

forced by the smoothness of the curve i n F i g . £ which suggests that the 

radius of the singular core never shrinks to zero. . •': 
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Of course i t i s impossible, i n p r i n c i p l e , to prove a negative 

statement l i k e the above by using a numerical technique. The best we can 

do i s to show that, within the capacities of our method, no s o l u t i o n 

regular at the o r i g i n can be obtained, and no s o l u t i o n i s indicated. 

There i s always the p o s s i b i l i t y that the problem i s an eigenvalue one, 

giving a regular s o l u t i o n only for very precise values of the parameters. 

We investigated this possibility very thoroughly, going to seven places of 

decimals, u n t i l we reached the l i m i t of accuracy of the-computer. That 

i s , u n t i l the computer output became i n s e n s i t i v e to changes i n the input. 

We found no evidence of a regular s o l u t i o n . 

An attempt was also made to integrate outwards from y° = 0 assum

ing a regular s o l u t i o n . Unfortunately, due to the lack of any d e f i n i t e 

i n t i a l conditions, there were too many unknown parameters and the attempt 

was abandoned. 

In the figures we have concentrated mainly on showing the behaviour 

of the metric function S . The e l e c t r o s t a t i c p o t e n t i a l a 0 was found 

to have properties very s i m i l a r to 5 . The matter density D always has 

the form indicated i n F i g . 2. 



CHAPTER VIII 

ALTERNATIVE LAGRANGIAN DENSITIES 

In Chapter I I we discussed how to introduce the gravitational 

interaction by a simple generalisation of the flat-space theory. We 

assumed that the t o t a l Lagrangian density for the system could be written 

i n the form t. = « £ F + o f q . , where depended only on the gravi

tational potential <j> and i t s f i r s t p a r t i a l derivatives. The " f i e l d " 

part < £ p was known i n the special r e l a t i v i s t i c l i m i t and i t s generali

sation was unambiguous. However, the one uncertainty i n our theory lay 

i n the choice of £>q . In the choice we made, we were guided by a desire 

for s i m p l i c i t y and by a desire to have a theory whose predictions for the 

perihelion advance of test p a r t i c l e s were the same as those of the 

Einstein theory. A p o s s i b i l i t y e x i s t s , however, that the study of the 

oblateness of the Sun may indicate an error i n the Einsteinian prediction 

for the perihelion advance of Mercury, and i n that case the choice of an 

alternative Lagrangian density for our theory would be j u s t i f i e d . In 

the context of the present work, moreover, the modified equations may 

lead to solutions which are regular everywhere. Consider, then, instead 

of (2.42) the gravitational Lagrangian density 

£Q - K s-* r v <iv 4>„ (><m-40), 

where \\ i s a constant. I f A = 0 then we are back to the case which 

we have studied already, and which predicts the same perihelion advance 

for t e s t - p a r t i c l e s as the Einstein theory. I f A = - ) , then, as 

Rastall (1968b) has shown, the energy densities of the gravitational and 
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matter f i e l d s behave i n the same way as sources of the g r a v i t a t i o n a l f i e l d . 

The p e r i h e l i o n advance of t e s t - p a r t i c l e s i s 87» less than that predicted 

by general r e l a t i v i t y and i s compatible with Dicke's measurements of the 

solar oblateness (Dicke 1967). F i n a l l y , with A = - 2 , the energy 

densities of the g r a v i t a t i o n a l and electromagnetic f i e l d s behave i n the 

same way as sources of the g r a v i t a t i o n a l f i e l d and the p r e d i c t i o n for the 

p e r i h e l i o n advance of t e s t p a r t i c l e s i s 167« less than occurs i n general 

r e l a t i v i t y . 

The modified g r a v i t a t i o n a l equation i s obtained i n the usual way 

by varying £ with respect to <̂> . The v a r i a t i o n of £>p i s the same 

as before, but (2.44) becomes, from (8.1) 

$-4((j> - ^ U M l (8.2) 
(•6 ' » 

From (8.2) the g r a v i t a t i o n a l f i e l d equation (2.48) becomes' 

+ ~ t 9 ( ^ r D 0 i p _D>r^p +,M")0. ( 8 - 3 ) 

The Maxwell and Dirac equations of course remain unchanged. 

The energy-momentum tensor i s altered i n a s i m i l a r way. Using 

(8.1), we f i n d f o r the symmetrized energy-momentum tensor 

- S-'(F' lF v t - l S"v FVF,f) 
- 5*cs(tprvvic-vrfry) , <8-4) 
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which takes the place of (2.59), and 

- V . - i t ; ) . 
(8.5) and (8.6) replace equations (2.60) and (2.61). The g r a v i t a t i o n a l 

equation for the time-independent system i s now given by 

instead of (3.4), while (3.10) i s replaced by 

- ? CE-ie rA.) C W + N I ' ) - i m,c,"(lui '- lvl ')l . (8-8) 

For the case of sphe r i c a l symmetry i t can e a s i l y be shown that (3.31) 

becomes 

A ° T d y ^ d r / = - aire/ b tdy J 

+ ( E + ee A 0 + i s ) Q 2 ^ , (8.9) 

or, i n dimensionless notation, i n place of (3.37) 

+ « $ J ( f - f Q> + is) V . (8.10) 
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Asymptotic Solutions 

In the region of n e g l i g i b l e matter density the equations for the 

system (4.1) and (4.2) become 

From (8.12) we get 

• = y " b T > ( 8 . 1 3 ) 

where i s a constant of i n t e g r a t i o n . Inserting (8.13) into (8.11) we 

obtain 

d r )" 2 b • <8'14> 

w r i t i n g y = S *̂ , U. = ( XT QeyO3) M Ce"*» ") * T~* , (8.14) 

becomes 

a" - si sc*"° • 0 • 
where the primes denote d i f f e r e n t i a t i o n by IL . This equation i s v a l i d 

f or a l l A except A = 0 , which case has been studied previously. 

M u l t i p l y i n g across by ij' and integrating we f i n d 

where C| i s a constant. Integrating once again, we obtain 

( c 1 < - ' | * y y * ) v * = c * + ( 8 - 1 7 ) 

where c z i s another constant, jm. , C, and Ca. are determined by consider

ing the forms of the e l e c t r o s t a t i c and g r a v i t a t i o n a l potentials very far 

from the centre. We require, for large T 

$ = - CeMa 1 + 0 ( T - * ) f (8.18) 
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A 0 = - Jj ^ + 0 <^ r" 2) > (8-19) 

where, as before, eE i s the charge and M£ the mass of the central body. 

As an example we consider the case A = - 2. From (8.17) we 

obtain 

(8.20) 

i n the' c ase where C, £ 0 , and 

= au. + C 3 (8.21) 

where C3 i s a constant, i n the s p e c i a l case C, = 0 . To determine 

C, > C 2 , C 3 we r e c a l l that = S~* and use (8.18). We f i n d that 

V KTUl* , 

C 3 I . (8.22) 

For the s o l u t i o n (8.21) we require further more 

, " = I ) (8.23) 
t T T / t 

and, as we w i l l see shortly, this means that the s p e c i a l case (8.21) 

corresponds to the Weyl-Majumdar solution. From (8.13) we have 

where 

(8.25) 

i n the f i r s t case, and 

S 2 = f l + IV.}' (8.26) 
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i n the second case. Solving (8.24) we obtain 

(8.27) 

for C| :£ 0 , and 

i n the Weyl-Majumdar case. For large T (small IL ) we expand these 

series and use (8.19) to derive the constants. We f i n d 

r _ \—Si f 0 C , C 2 

2 " > 

^ = ^ (8.29) 

We can substitute the value of yU thus obtained into (8.22) and (8.23) 

to obtain the f i n a l values f or the constants c, and Ĉ . . To sum up, 

the solutions obtained above are v a l i d i n the region where the mass density 

i s n e g l i g i b l e . We can use them i n the same way as the solutions of 

Chapter IV to determine the boundary conditions f or the e l e c t r o s t a t i c and 

g r a v i t a t i o n a l f i e l d s . 

Weyl-Ma jumdar Relation 

The Weyl-Majumdar r e l a t i o n v a l i d f o r the modified Lagrangian 

density i s obtained, as i n Chapter V, by considering the free-space 

e l e c t r o s t a t i c - g r a v i t a t i o n a l equations. These are, from (3.9), (8.8) 

(8.30) 

<P + — O ~TT S L o m A 6 j (8.31) 
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Using (5.6) we e a s i l y obtain 

(8.32) 

A . - f, { s-*-» - f - A f t / } («-3»-

and hence 

. 2 

•e 
which y i e l d s , f i n a l l y 

Z S ) = ' ~ / " Q ^ " • < 8- 3 4> 

We can solve t h i s equation i n the following way. L e t t i n g ^ = S^ 2 *^ 

(8.34) becomes 

Mul t i p l y i n g across by , and integrating, we obtain 

(8.36) 

where A i s a constant. The s o l u t i o n can be written as 

^ — = 8 + Ao } (8.37) 

where 8 i s a constant also, and 

For example, i f A = 0 , (8.37) can be immediately integrated to y i e l d 

(5.10). On the other hand, i f A = - 2 , then (8.37), (8.38) become 

(8.38) 

4 = ^ 

* = B +' Ao . (8.39) 

(8.40) 



Integrating (8.39), and solving for y we obtain 

y = -£ (BvX + A.tft ) , 

FCOSIGHTAO 4 CJ S^rvil 6ft A 0 (8.41) 

where F = A A - 1 Su4 (jl* B ) > G = A A"' Cosfl. 6ft B ) -

Without loss of generality we can set F = I and obtain, f i n a l l y 

y = Cos^(\TtA 6) + G SA*JI (\aA0) (8.42) 

By methods s i m i l a r to those used i n Chapter V we can show that 

Q - ( 8 . 4 3 ) 

When Q = I , the Weyl-Majumdar s o l u t i o n i s involved and the system of 

equations (8.30), (8.31) reduces to the single Laplace equation 

T U ( S - * ) - 0 . (8.44) 

Conclusion 

In this work we have investigated and found s t a t i c , s p h e r i c a l l y 

symmetric solutions of the combined Dirac-electromagnetic-gravitational 

f i e l d equations.. We have shown the existence of normalised solutions which 

describe s p h e r i c a l , s h e l l - l i k e models for p a r t i c l e s . Unfortunately, 

these solutions involve e l e c t r o s t a t i c and g r a v i t a t i o n a l f i e l d s which are 

not regular at the o r i g i n . Our investigations have led us to the conclu

sion that such solutions do not e x i s t , at l e a s t within the framework of the 

present theory. I t i s possible that the choice of a d i f f e r e n t Lagrangian 

density for the g r a v i t a t i o n a l f i e l d might lead to equations which do pro

duce regular solutions. Another p o s s i b i l i t y i s that we might abandon the 
2 

assumption, E = M C , of Chapter VI. (In Chapter VIII, some a l t e r n a t i v e 
E E 

Lagrangian densities are investigated.) 

The 'solutions' found correspond to objects with mass of the 

2 
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— 6 — 36 order of 4.8 x 10 grams, inner radius 7.5 x 10 cms, and outer radius 

-34 

3.7 x 10 cms. They are thus much heavier and more compact than any of 

the known elementary p a r t i c l e s . Of course, since we are using an un-

quantized theory, i t would be unreasonable to expect models which corres

pond to actual physical objects. 

Another possible explanation for the properties of our solutions 

i s that our ( i m p l i c i t ) assumptions regarding the topology of space i n 

the inner region are i n c o r r e c t . In this context i t i s i n s t r u c t i v e to 

consider the ideas of Wheeler (1968) on the geometrodynamical d e s c r i p t i o n 

of e l e c t r i c charge. In his view e l e c t r i c charges are nothing but sets 

of l i n e s of force trapped i n "wormholes". Our inner singular region 

should perhaps be replaced by the mouth of such a wormhole. 

Wheeler (1968) has also shown that, i f one deals i n distances of 
-33 

the order of the Planck length, 1.6 x 10 cms, then, s t r i c t l y speaking, 

one should use quantum geometrodynamics, i f one knew how. In the present 

state of our knowledge, however, we can only explore, as deeply as possible, 

the c l a s s i c a l theory i n the hope that some day the r e s u l t s may be of use 

i n the study of the more complete theory. 
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