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ABSTRACT

It is assumed that charged, spin-%, matter distributions can be
described in terms of a Dirac spinor field interacting with the electro-
magnetic field énd a scalar gravitational field. The field equations
and the energy-momentum tensor are found from an action principle. The
fields are not quantized. The field equations are examined and various
limiting forms discussed. This thesis deals particularly with the time-
independent spherically-symmetric case. Solutions are found for the
exterior region of a charged gravitating sphere. The behaviour of
these solutions depend on the value of the charge-mass ratio. When this
ratio has the value (44[G )%, where (} is the gravitatipnal constant,
the entire system can be solved analytically.r The ensuing solution,
called the Weyl-Majumdar solution, is obtained and discussed. WhenAthe
charge-mass ratio is smaller than (yn'G;')%, normalised solutions are
found which yield electrostatic and gravitational potentials singular at
the origin. The matter density is well-behaved everywhere., Normalised
solutions were not found for -larger charge-mass ratios. The signifi-
cance of the solutions, and the accuracy of the numerical technique are
discussed. Alternative Lagrangian densities are considered which may

yield non-singular solutions.
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CHAPTER I

INTRODUCTION

Qur purpose in this thesis is to find static, spheriéally symmetric
solutions of the combined gravitational, electromagnetic and Dirac field
equations. In other words we are trying to construct a classical model
of an elementary charged particle. We consider only unquantized fields,
which means that the solutions cannot be expected to correspond to real
physical objects. However, it seems sensible to investigate the classical
problem ('Classical' in the sense that we do not consider pair creation)
before attempting the much more difficult quantum one. TIf the classical
problem has solutions, they may help us in the other case. There is also
the hope, ‘as suggested by Dirac (1951), that the classical solutions, if
they exist, may give the correct value for e/m, where e is the charge and
m the mass of the electron. (0Of course, we would not expect to obtain
the values of e and m separately. Dirac believed the value of the electronic
charge e to be a purely quantum phenomenon and not derivable in a classical
theory.)

The concept of a body in classical field theory is generally

treated in one of the following two ways. Either the body, or "particle", is

considered as a singularity in the otherwise singularity-free field, or else
it is assumed to be a mass of fiuid obeying some more or less arbitrary
equation of state. Both treatments are obviously unsatisfactory. 1In the
first case we forego the possibility of saying much about the internal
structure of the particle. _In the second case, we are permitted to have
gravitational and other fields which are regular everywhere, which is a

great advantage, but, unfortunately, other problems now arise. The

equation of state is arbitrary, and the very concept of fluid, which is

-1-



2.

borrowed from macroscopic physics, probably has no place in the micro-

scopic domain.

There exists, however, a third possibility., We can try to construct
solutions of the field equations themselves which are localized in space,
are regular everywhere, and which represent concentrations of mass, and
possibly, charge. Such solutions were first studied in detail by Wheeler
and his co-workers (Wheeler 1955, 1962; Power and Wheeler 1957; Brill and
Wheeler 1957). His intention was to draw attention to, and to explore,
the extraordinarily rich physics of curved empty space. In this con-
nection he used fields of zero rest mass, since only these had been geo-
metrised. The solutions which he fouhd, and to which he gave the name
"geons'", were smooth over the Qhole of 3-space, and represented objects
which were extremely large. A classical analysis was valid only when the
electric field strength £ was less than the critical field strength, Ecar
= ﬁﬁzcg / eik ', of pair theory. This yields a mass of the order of C"/(
GQ& EcmT) ~ “)3q 9 and a radius ~ lO” cm, No such objects have
yet been observed. The physics of smaller geons has not been investigated
because quantum effects would have to be considered, and as yet no satis-
factory quantum theory of gravitation exists. 1In addition to being
excessively large, geons are unstable, although their lifetimes can be very
long. The geon, then, as envisaged by Wheeler, constitutes a geometrical

1"t

model for mass, or, in his own words mass without mass".

In order to create geons which are smaller in both linear dimen-
sions and mass than the above, it is necessary to re-introduce matter

fields. This means that we now have to take into account a new parameter,

'

My» the bare mass of the matter field. The analysis, however, remains

classical in the sense that the fields are not quantised (although Planck's



constant does appear in the field equations).

The neutral Klein-Gordon geon has been studied by Feinblum and
McKinley (1968) and by Kaup (1968). These authors examined the time-
invariant spherically-symmetric solutions of the coupléd Klein~Gordon-
Einstein equations. There are certain differences in their approaches

so we will consider them separately.

Feinblum and McKinley (1968) sought solutions that would correspond
to a spectrum of bound states from a single unobservable "bare" mass,
thus indicating a set of observable "physical" masses. Since the problem
is too difficult to solve analytically, they used a numerical technique.
As boundary conditions they assumed that for large values of the radial
co-ordinate the metric should asymptotically approach the Schwarzschild
metric, and the wave-function for the Klein-Gordon field should approach
the one given by solving for the zeroth-order approximation in the
gravitational field. A large value forf>, the radial co-ordinate, was
chosen and a step-by-step integration toward the origin performed. A
value of 1.28 x 10_12 g for the bare mass was taken. It was found that
for normalized functions the parameters involved in the equations, viz.
the eigen-energy E and the normalization constant A for the wave-function,
" became so small that the equations became ill-behaved and solutions were
not obtained. However, an unnormalized solution was found for the ground
state. The metric proved to be well-behaved everywhere except at the
origin. At this point the curvature tensor diverged. The authors attri-
butg this to the impossibility of solving the eigen-value problem exactly
by numerical methods. Kaup (1968), in his discussion of this paper,
pointed out that the correct explanation for the occurrence of the dive;-

gence might be that they had used an incorrect value for the bare mass.



He based this assertion on a study of their normalisation procedure.
However, since this particuiar solution was unnormalised to begin with,
the point seems academic. Finally, we note that the ﬁphysical" or
observable mass of their solution was equal to 0.07 times the bare mass,

or 0.9 x 10-14g, and its diameter was approximately &4 x 10”3'0 cm.

In his own work Kaup (1968) obtained solutions which were better
behaved. His normalisation was slightly different from that used by
the aforementioned authors. For boundary conditions he assumed that the
metric approached that of Schwarzschild, and he obtained the asymptotic
form of the wave-function by solving the Klein-Gordon equation in the
"Coulomb'" potential of the gravitational field, i.e. the first-order
approximation. Again only the ground state was considered. It was
found that there was an upper limit on the value of the bare mass,
which was m, = 1.75 x 10-5 g. This is roughly of the order of ( *ZC/G-)%.
The solutions were then examined for stability, and it was shown that
for Klein-Gordon geons adiabatic radial perturbations are forbidden.

This means that they are therefore resistant to spherically symmetric

gravitational collapse.

Although these structures are much smaller than the original
geons of Wheeler, they are still too massive to be considered as models

for any know particles. Nevertheless they are of considerable interest.

In this spirit we will study geons obtained by solving the Dirac-
Maxwell-gravitational field equations. It is necessary to introduce the
electromagnetic field because the Dirac equations describe. a charged

particle. This also means that we will have to consider another para-



5.
meter, e, the electron.charge. It will be shown that we do not encounter
the same difficulties with the normalisation as the aforementioned authors
since, in our case, the Maxwell equation ensures that all solutions will
be automatically normalised. Like Kaup .(1968) we find that there is an
upper limit of 4.4 x 10-5g on the value of the bare mass. One fﬁrther
difference between our approach and that of Kaup (1968) and Feinblum and
McKinley (1968) is that we do not use the Einstein theory to describe the

scalar:
effects of the gravitational field. We use instead theAtheory of gravita-

tion (Rastall 1968a, b) which is simpler and more tractable in many respects.

All of these points will be discussed in more detail in the body of the text.
One of the reasons why this problem is physically interesting is

that there may be solutions for only certain values of e/m. To get a dis-
crete set of values one imposes differentiability conditions on the fields
(consider\the example of the hydrogen atom). For a particular solution to
be physically meaningful we demand that it be correctly normalised and that
the energy density be everywhere finite. We also require that the electro-
static and gravitational fields be well-behaved in the region outside the
localised matter distribution (particle). Since there is no way to measure
these fields inside the particle, there is no physical reason for demanding
regularity in this region. Imposing this extra condition may lead, as

indicated above, to a set of dis arete values for the ratio e/m.

There is one case in which the above equations can be solved analy-
tically. That is when we assume that the component g,, of the metric
tensor is a function only of the electrostatic potential Ao. This method

of solving the equations of electro-gravitational theory was introduced by

Weyl (1917) and further investigated by Majumdar (1947). The method is
valid only for the case of static fields. Majumdar showed that, in matter-

free space, the functional relationship must be of the form

oo = A + BA, + L”TGC‘L’AZ (1.1)
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where A and B are constants, G is the gravitational constant, and c¢ the
speed of light in wvacuo. When the constant B is so chosen that the right-
hand side becomes a perfect square, then (1.1) is called the Weyl-Ma jumdar
relation (WMR). The WMR can be used to simplify considerably systems of
equationsof the type described above (see, for example, Das 1962, 1963;

De 1965, 1969§.Mukherjee, 1963) .- Solutions of the Klein-Gordon-Maxwell-Einstein
field equations have been found'by Das and Coffman (1967) for the case when the

WMR is assumed. They showed that, starting from any given static, purely
gravitational universe, one can construct universes corresponding to solu-
tions of the above equations, provided only that a single differential

equation is satisfied; The WMR was found to imply an eqﬁality between the
charge and mass parameters of the theory. Starting from the well-known
Schwarzschild universe, they obtained solutions corresponding to particles

of mass v 3 x 10_5g and radius ~ 2 x 10-33cm. The energy E of the matter

field was found to be equal to the bare mass m_, or E = mBCZ, thus giving

B’
a binding energy zero to the Klein-Gordon particle. The metric obtained has a co-
ordinate singularity at spatial infinity which made its physical interpretation

difficult. Other solutions were found which also had singularities at
finite values of the radial co-ordinate.

In this thesis we will also, for the sake of completion, consider
the Weyl-Majumdar problem for‘the scalar gravitational field. We will
find results similar, in many respects, to those of Das and his co-workers.
The method itself, its drawbacks and advantages, will be discussed.

To sum up: 1in the following we examine the possible states of a
Dirac particle at rest in its own electrostatic and gravitational fields.

In the first part the field equations are derived and examined; in the

second part we investigate the solutions.



CHAPTER II

THE FIELD EQUATIONS

We assume that space-time is a four~dimensional pseudo-Riemannian
manifold of signature +2, which obeys the Lichnerowicz differentiability
conditions, and that there exist co-ordinate systems, called Newtonian

charts, in which the metric tensor has components of the form

dij ench S—ZCEZ( 4*‘4’.,)},)

3

Jop = = Sop ach {267 (04D

(2.1)

where Latin indices range from 1 to 3, Greek indices from 0 to 3. The
function 4)(&3&1131?) is called the gravitational potential, ¢o is a

constant, and Cg¢ is the natural speed of light.

In the above, and in what follows, we use the proceduré and
notation of Rastall (1968a, b). The geometry of our space is determined
by the single real function # , which is arbitrary up to the addition of
a constant. The meaning of ¢° is roughly the following: Special
Newtonian charts always exist whose tangent vectors are ortho-normal with
respect to the metric g/v at any point where the potential has the value

¢° . Charts of this kind are called ¢% ~-charts and are in general
determined up to a shift of origin and a constant orthogonal transforma-
tion of the spatial co-ordinates (Rastall 1968a). It is clear from
(2.1) that if a q>°-chart exists, then a cbo'-chart also exists, for any
constant ¢; . The physical predictions of the theory, however, should
depend neither on the choice of the constant ¢b , nor on the particular

-7-



¢o ~-chart once this constant is chosen.

(bo - Quantities

It is possible to define a new metric tensor field r) in the
following way. Let P by any point in space-time, then, by our first
assumption, there exists a 4)0 -chart on some neighbourhood of J .

The metric tensor V)(p) is defined at P by requiring

N (X2, X, (#)) = My |
where
Niy = 21y,
v)o/,\ = - go/*,
and X/u(P), X\)(P) are the tangent vectors of the ¢o -chart at JO0.
Since the 4)0 -charts cover space-time, it follows that ) is defined

globally. It can also be shown that V) depends only on the choice of

d)o and not on the choice of (h;chart (Rastall 1968a).

The metric V) can be used to define (l)o—- lengths and times in
analogy with natural lengths and times in special relativity. Consider
two neighbouring points, xL , and I.L +dxi, in three-space, which have
the same time co-ordinate t = XO/CE . The distance between them is

given by

dle - \/—(_3/Av dardxv) |
exp {_CE—2<(’>—¢O)’§ \/d?’i"dx". (2.3)

This is the "natural" length. The meaning of the subscript E will be

explained shortly. The q>° ~-length, on the other hand, is defined as



dQ = \/ r)/“) dI}A o\'x" ,
=/ dxtdx . (2.4)

Similarly for times. The interval between the two timest , t +dt , at

the one space-time point X' is given b
: P P y

d'CE = Ce._‘ \/(— g/uv d’I"dI")

- exp {2 (d-)8 AL (2.5)

This is the '"matural" time. The 4)0 -time, however, is defined by

de e m) ,

= dt. (2.6)

A word is now in order concerning our notation. Wherever the
subscript E appears, it means that the quantity subscripted is measured
in natural or '"experimental" units. If it does not appear, then the
quantity is measured in q)o -units (to be defined below) and is, there-
fore, a d)o-quantity. The one exception to this rule is the gravitational

potential ¢ . 4) is always measured in natural units.

The natural and (fPo— units of length and time are related accord-

ing to the following expressions
-1
die S™ de, (2.7)
d'ce = S olt > (2.8)

which are derived from (2.3) - (2.6), and where

S - exp {2 (¢-)

Rastall (1968a) has shown that if we add to the above a change also in
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the unit of mass of the form
3
m, = S'm, (2.9)

then the equation of motion for a particle, written in ¢o-units,
becomes formally identical to the corresponding equation in special
relativity. We summarise as follows. Let CQE be any quantity measured
in natural units and let its dimensions be [CQE] = [th18T1J; then its

value in ¢; -units is @ , where
R = Qe S(“—p—%) , (2.10)

Quantities measured in natural units in general do not depend on the choice
of ¢$ . However, if the quantity Q is a tensor, then its components
obviously will depend on the particular co~ordinate system used, regard-
less of the dimensions of Q. 1In this work our convention will be that
(2.10) holds only for invariant quantities. Thus, if QU is a tensor at

. - .
the point 0, and (€, ,6 , € ,€ ) is a basis of the tangent space at P ,

then
Q - Q4 eee... 0P oeT. (2.11)

and (2:10) applies to the tensor itself, and not to its components
individually. The meaning of ¢% -quantities will become evident in the

next section, where we discuss the action principle.

The Action

The Dirac theory of the electron in flat spacetime has been
studied in great detail by many authors (see, for example, Rose 1961;
Corinaldesi and Strocchi 1963). The field equations may be deduced from

a variational principle with an action integral of the form

A - f e (W, A d*x | (2.12)
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where

izD + izm + i:pNT

&
-
1]

and

In = -+ Fav FrY (2.14)

OKINT’ =

(2.15)

1
of-
\L_
x>
X

iD , In’ and inﬂ are, respectively, the Lagrangian densities for the
Dirac field, the Maxwell field, and the interaction. The notation is

the usual one: \y is the Dirac wave function, f»u is the electromagnetic
vector potential, the Dirac matrices ?7*- are related to the Minkowski

metric tensor Y)”v by
YE¥T L Y - 2nk (2.16)
and IP = 1\PT Xo , where \PT is the spinor conjugate to\P .

We can introduce the interaction with the graVitational field

in two ways:

(i) We can write out the Lagrangian density iF in a generally co-
variant form, derive the field equations, and then take into account the
particular form of the metric (2.1). This method has the advantage of
being unambiguous, and shows off the geometrical character of the gravi-

tational interaction.

(ii) We can use the procedure, or '"prescription', sketched out by
Rastall (1968b). This method is applicable only to those fields whose

Lagrangian densities are known in the special relativistic limit, which
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is the case with (2.12). We take the flat-space Lagrangian density,
(the meaning of the subscript f will be explained later), which is a

function of the field components 4m and their derivatives %mbﬂ"

£F = £F(q,m 5 %M)/A

and we make the following re-interpretations. All quantities are now to

) (2.17)

be considered as ¢5 -quantities. We must first however, replace gm,o
by (¢~ )‘bim The co-ordinates (X' ,t ) are re-interpreted as 4) -

y St - s re r prete s
co-ordinates, the components of the fields and the parameters of the
theory (such ase ,m, ¢ ,% ) are assumed to be measured in ¢3-units. Once

this re-interpretation has been made, we can derive the field equations

in the usual way.

So far we have not mentioned the gravitational field itself.
This is included in our theory by the addition of a term ‘iG to the
Lagrangian density of the other fields £¢ . We make the assumption that
it is possible to write the total Lagrangian density for the coupled

Dirac-electromagnetic~gravitational fields in the form
ot, = I(.;.'+ ip ) (2.18)

where <fp is the Lagrangian density of - all the fields other than the
gravitational field, and :fe is the "purely" gravitational part, being

a function only of-4> and its derivatives.

For the time being, we are mainly concerned with oﬁ; . We have
outlined above two methods of deriving it. 1In our case, both methods

give the same result.

The general relativistic formulation of the Dirac equation has

been investigated by many authors (see, for example, the review articles
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of Brill and Wheeler 1957, and of Bade and Jehle 1953). We will not go
into any details here but we will simply state the results. The general

relativistic action is given by

A; = fIFE V=g d*x | (2.19)

where ime is the Lagrangian density for the coupled Dirac-Maxwell
fields interacting with the gravitational field. 1In (2.19), and in the
next few expressions, we have added the subscript E for later convenience.

i;g can be split up into its component parts,
Le - -5 {0vRY D0
- (v,«lpe X/A —/:@J% g s ‘ (2.20)

Lue = - m E/w B (2.21)
and
_ M
Imrg = CE‘ /‘\E/“ JE . (2.22)

iDE is the (generally covariant) Lagrangian density for the Dirac field.

The matrices ¥/ satisfy
< os ¥y = 292, (2.23)

which is the generally covariant generalisation of (2.16); the covariant

derivatives of the wave function are given by
Vo= ol - Tale (2.24)
where the r;\ are the Fock-Ivanenko coefficients (Brill and Wheeler 1957);

Fé»v = ( AEVvM - /\E/u,v) where the Agp are the electromagnetic

potentials; and the current density J?/‘ is given by

J‘:/“l ) -t CeCe —\pr:x/u WE . (2.25)
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The equations of motion derivable from the action (2.19) are the

following,
X%(v/u "':Lf%i ’L\/)LPE + /“E u)e =0, (2.26)
A
Vg Ov (\rﬁ Few> = ot ) ) (2.27)

M
and it can be shown from (2.26) and its adjoint that the current JE

obeys the equation of continuity,
2, (VXYY Y,) = 0. ' (2.28)

At this stage the metric form (2.1) is substituted for the (as
yet) unspecified S/W . The Fock-Ivanenko co-efficients are calculated in
the usual way (see the above references). However, we do not need
individual expressions for the Cu , since they appear in the equations

only in the form X"C« , and it can easily be shown that

Wl = 7 ¢ ( Xk3k¢ +3X°3°¢) , (2.29)

where 8‘),/“ D¢ /BTX’“ , and that

3 dot () = -S7% . (2.30)

The matrices X/,. = 3/,va are related to the flat space Dirac matrices

ol
=~
Il

g-! ?k ,

S Yp ; (2.31)

o
v
1

Using (2.29), (2.30), and (2.31) we can rewrite the field equa-

tions (2.26) and (2.27) as
i € Loz (yR 0
V(3 & Ay )Y, - 360 (310 +31°0Y)

+/"Eq)g :O)

(2.32)
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B\,(S”FE“")= S e (2.33)

For the sake of later convenience we list the connections between
the quantities encountered above and the corresponding ¢% -quantities.

These expressions are derived by using the formula (2.10).

S

¢ - ¢ S*,

pes,

- &S |

N

Ae |

- RS,

. pS,

. £S5, (2.34)

P~ m » & m %
it

We can apply the "prescription'" outlined above to obtain the

Lagrangian density from the special relat;vistic iT . We.obtain
Lo = "E30E 0 (2dTE-0)Y
+PLES2Y) - S0 ¥y }) (2.35)

Ly - -Il.f‘:wF” - 1 (E2-g?) | (2.36)
Lor - Ju A* (2.37)

where we have written

Bk
E

)

G- Foko (2.38)

In the application of the prescription to im we have considered the
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electric and magnetic field components Eh and Bh to be the basic fields,
rather than the potentials PV,. It is quite easy to see that the 4% -.fF
written above is the same as the generally covariant tyg

(equations (2.20) through (2.22)) except for a factor, i.e.
-2
e - LSt (2.39)
Ihis means that the action integral

A, = fi; d*x (2.40)

is the same, and therefore we have the same field equations, (2.32) and

(2.33).

The total Lagrangian density is given by (2.18) and the action

integral for the coupled Dirac-electromagnetic-gravitational system is

A - j(f,Gw\ L) d'x . (2.41)

It is now necessary for us to specify iﬁ , the purely gravita-
.tional part of the Lagrangian density. Rastall (1968b) has shown that a

particularly simple form for ﬁq is given by
ie = k G§2gM a/u(}aavcb , (2.42)

-
where K = —(SWGE) , and Ge is the Newtonian gravitational constant.
This choice for iq ensures that the Rastall theory will give the same
astronomical predictions as the Einstein theory. Other choices for iq

are possible, of the form
Lo = k82 I8 00 oxp{ac(p-4) ] |

where q\ is a constant independent of the choice of Newtonian chart.
If o # 0 , then, as Rastall (1968a) has shown, the perihelion advance

of test particles will not be the same as in the Einstein theory.
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The gravitational equation is derived from the action principle

in the usual way. Variation of (fP yields the Euler equation

$L 28 a(b;ﬁ):D

37 w6~ ol , (2.43)
wvhere §, = £, +{¢ , and, explicitly
%‘% = —2K { OnOn - 57" (2.9 - 262 (30)) ,  (2.40)
S &

|

- (S Reoi Reoi + 7 7Ry Feiy)
= —(E+B?)  (2.49)

on
-

It is easy to show, using (2.35) and its adjoint, that. ‘ﬁD + chNY
is equal to zero whenever the field equations are satisfied. We make use

of this fact to obtain

%(£D+IINT> = 267 ( Ly imr)
TN CO IR AN DI o

) _%CE{IP& Xk Dkwg - D:@e qujﬁ

— U Yy© +T) yo -2
B DY, + DG YW, §S (2.46)
where D/« = v/u + ‘Leg(f\(})—l A/‘. There is no particular significance
in the fact that we have used the natural wave-function LPE . Exactly

the same results are obtained using a Lagrangian density ‘ﬁb + imT
written entirely in terms of (t)o -quantities. We can use the vanishing

of ‘fD + iINT to simplify (2.46);
%—4’ (£D+£'NT) = '?‘CE-' SQ {L‘—)E XO D° q)e - Do* q)e YDWE
+ M q‘)e \Pe } | (2.47)

The gravitational field equation becomes -
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‘bmbmq) - S‘“ (Bobo(t) - 2C€1(30¢)2) = -(QKC;)_'(E2+ B?)

+ 4 CIKCE)_,S (@XDDO\P - D:{P qul + ple tpql) ' (2.48)

We shall see later that there a simple connection between the right-hand
side of this equation and the energy-momentum tensor of the coupled
system, the field equations for which are now given by (2.32), (2.33)

and (2.48).

Conserved Quantities and Normalisation

The action integral (2.41) is invariant under gauge transformations

of the first kind,
Y -y
-‘» ]
byt

where o[ is a real function of the co-ordinates. If we make the above

Y b (i)

W' e (-id ) (2.49)

transformation, it is easy to show that
. - -2 4 _
SA = iZc Svo( 2 (B ¥*y,8?) d*x = 0, (2.50)
where we have assumed that o vanishes on the surface S enclosing the
space-~time volume \/ . Since o 1is otherwise an arbitrary function,

(2.50) gives us the continuity equation (2.28). This can be written in

the form
Ou (" I ) =0 (2.51)
where J* = _iec —LPX}‘W

The existence of the continuity equation (2.51) means that our
theory can be given a probabilistic interpretation. If we integrate

(2.51) over the three-space volume \/3 ( x° = constant), we obtain,



Ce ‘%t ng (C"JD) d’x 4+ yv:; Ok (C"Jk) d’x = D,

which yields, if we assume that Jk/c vanishes sufficiently fast at

spatial infinity,

d J‘ o 3 |
dt Jy, (e WXDLP)O\ x =0 (2.52)
The probability density D is defined as

D - ¢ly = S3QW (2.53)

and is a positive definite quantity. Equation (2.52) can be written

4 (e fDx) =0

The expression inside the brackets represents the total natural charge of

the system and is independent of the choice of ¢%-chart.

In keeping with our interpretation of D as a probability density,

we normalise the wave function q) as follows,

JDd’x = 1,

(2.54)

the integration being over all three-space. It follows that the total
natural charge of the system is equal to € , and is a constant of the

motion.

Energy-Momentum Tensor

We define an energy-momentum tensor in the following way. The
action integral (2.41) is invariant under space-time translations of the
kind XM A* + €M , where the €/ are constants. 1In the usual way,
by performing an infinitessimal translation and setting SA =0 we

can show that

o8
B/A{ > () Ovlm - %Nvig =0 (2.55)
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where I, = I(%m’}%%ﬂ\) and the 9, are the field components. We
therefore define
M
T’ (o) ) (2.56)

which is the (mixed) q% -energy-momentum tensor. By means of (2.35),
(2.36), (2.37) and (2.42), we can easily derive the explicit form for 71;:
M -2 _QH Ap

TA - kst (297 3426 — 5 3F b pd)
1 o- M 'S
-&52<LI'F/‘"KA()V - %vFF Ff’t)
— 1 m m
7he S (Py~ Wy — Y X’MLV) - (2.57)
The electromagnetic part can be symmetrized if we note that
T (4
FA%ew = FASFy, v FA%ALc
The second term on the left-hand side has the divergence
(S" Fuc Av),/ut

- {(SJF/K),: Av-éa/.d
- (A, , (2.58)

by the Maxwell equation (2.33). We obtain our symmetrized energy-

-b/u (S’z F’“cAv,c)

N\
momentum tensor J by adding to (2.57) the divergence-free term given

by (2.58), or
:\rﬂv Tﬂv + S_'z F/uc AV)'C + C—‘JMAV
kS (294 b - 6% 3242, 4)
- 8§72 (Fﬂt Foe - '& ¥y FRFF%f)

- 32 S (YUY - VPYAY) ©(2.59)

A

o
The component T of (2.59) is given by

To - =k 2ad)* + S (b)Y ¢ 3 EHED) (aen)
~12e S (YUY - LOPYYP) ,



21.

and is a positive define quantity. Using (2.59) we can rewrite the

gravitational field equation (2.48) as follows,
- ' - 2
Pamd = S Bendp - e (26007

KCE"S_TD"‘ET/,} ) (2.61)
AM

where "F,, is the trace of the energy-momentum tensor. It is to be

noticed that, unlike the case for the neutrino and the electromagnetic

~
fields, the trace of that part of ’F”V corresponding to the gravitational

field does not vanish. In fact
M
";/‘= —iiq,

and this vanishes only if §“¢ is a null vector.



CHAPTER IIX

TIME-INDEPENDENT SYSTEM

We are attempting to construct a time-invariant model for the
electron, and therefore we assume that all physically measurable quan-
tities are time-independent. The static system is characterised by the

following:

AJ
Y.

Ao, S , and 7(5 are functions only of the space co-ordinates Xt |

0
Y, exb (1Et/2) (3.1)

and E is a real constant which represents the energy of the matter field.

Using (3.1), the field equations (2.32), (2.33), and (2.48)

reduce to the following set
'mEC:XE+ LY (E+ & AO)XE + QCEXJ(BJ- '%(‘E—de(i))')(g.—_ 0, 3.2)
Y S . 2 A7
> (S bJ-'Ao). = i ST (3.3)
Dmdnd = - k@) S (dmPo)
+ (x02)"S 2 {i (1A X ¥ X + T et XeXel (3.4)
The remaining Maxwell equations merely state that
J'=p . (3.5)

These equations can be simplified still further. We choose the following

representation for the Dirac matrices

¥° L8,

-22-
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where

S o o -
S O — ©
c Lloo
!l oo

(3.6)

and the (Si are the (two-by-two) Pauli spin matrices. We also write
L
XE = Sz u
V (3.7)

where U and V are two-component spinors. Using (2.31), (3.6) and
(3.7), the Dirac equation (3.2) can be written as a pair of two-component

spinor equations,

(E *eEAo“mECezs>u_ L l/ﬁl(’e SQGJBJV =
(E+echo+mS)V + ihe S's; U

1
o

il
o

(3.8)

In terms of this new notation, the Maxwell and gravitational equations

(3.3) and (3.4) take the form

O (87 duha) = e SEOWIP+IVIY) (3.9)
—D'“B“‘cb = = (axed)"' G2 (bon\l

- (KCE‘Z)" g-7 { (E* eEAos(luli‘f\V‘i) e % mchz g (‘u‘i— |Vl?> © (3.10)

Equations (3.8), (3.9) and (3.10) represent the time-invariant system,
where as yet we have made no assumptions about any particular spatial
symmetry. We will use these equations when we discuss the Weyl-Majumdar

solutions. However, we are more concerned with the spherically symmetric
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case.

Spherical Symmetry

In this case we assume that all physically measurable quantities
are functions only of the radial co-ordinate ¥ . We write everything
in terms of a new co-ordinate-system, the isotropic radial co-ordinates,

in which the line element takes the form
2 .
ds? = - S 2(dx°) + S* (dy?4 r2dBl+ v2sin?0 d@“) X
(3.11)

where the relationships between the spherical co-ordinates Y , O , ¢
and the Cartesians ', X* Xx® are the same as in flat space. We

make use of the following identities
YV - v (r9) -rx(xxv), (3.12)

where Y is the gradient vector, and
(cx)(s-L)=- T L +ig-(xxL) , (3.13)

where g = LT X Y is the usual angular momentum operator.

Using (3.12) and (3.13) we obtain
l .
sV - &% -t&c L. (3.14)

The Dirac equations can be written (3.8) in Hamiltonian form

(V) R0 o1

where H , the Hamiltonian, is given by
H = —ef, + pmi(‘:S
. 2 ) A1
—LkCES o(,-(if’f.r TB;K) > (3.16)

and 3< is the angular momentum operator for the Dirac field:
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p(g‘.gﬂ) ) | (3.17)

(o G
& 0 ) (3.18)

In this co-ordinate system it can be seen that, except for the factors

X

and

oy

in S,'4 has the same form as the special relativistic Hamiltonian. It is
2 .
easy to show that the three operators J , 33, and.g< commute with H and

with each other and therefore determine three constants of the motion.

We choose a representation in which the operators H, K, ]1 and
Jé are diagonalised. If we follow closely the flat-space treatment of
the same problem (the modifications are obvious), then it can be shown
(Corinaldesi and Strocchi 1963) that the eigen-functions éf these operators
are given by
(mp)4
XY - [u) - Xam’:-)
Ak g X ,
G- X(:)= u® fo Y
\/07 ﬂ(ﬂ XJ(mQ+ . (3.19)

. 2 Te i
The eigenvalues of the operators H , 3(, J" and J3 with respect to the
above eigenfunctions are, respectively,E,\&,.J(\j+£ ), and My, 1In the

first case we have

ﬁK(S’% Xe') - Gty s , (3.20)

i.e k = J 4—% , and
)(;mm _ ( (2+ m;\+lz>”z' yQ("‘J“i)
282 + |
LQ—MJW%)% >/(m5+§‘)
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20+ 3
(Q +m; + ;)‘{ \/"“()*i')
22+ 3 ¢ . (3.21)
We have put = J -%. In the second case k = -(J +i‘), L = J +% s

(m;) X
and the expressions for the X;, ! are the same except that we must

replace 4 by (L-1).
To obtain the equations for the radial functions ﬁ(T) andg(T)

we expand the Hamiltonian equation (3.15),

E { t XJ(MJ) 2
g X . m)F
L J

_([(‘e‘A" rmectS) - ka8t (543 +4) ] X

34 X
(3.22)

L [(‘eer —mECEzS) g9- iR Ce Sz(

where we have replaced 9( by its eigenvalue k and we have used the

result (Corinalderi and Strocchi 1963) that

(m;) (m)) ¥
6, X, - X,MF (3.23)

From (3.22) it is easy to see that the radial equations are as follows

(3.24)

—-S—’Z (E'*'eng-mECEzS)F )

3>
>
—
g[8
N
-~
~—
o
!

(3.25)

S—?(E +€E.[\o+mecezg>g )

o

@

r—\

Sle-
{

- &
SN’
-

I
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where we have written t =7"'F and 9 = -y

It follows from our assumption of spherical symmetry that the

expressions

S K- v (P GRIXS™F]T),

- GPEER),

X BN = T (F X,

(3.26)
which appear in the gravitational and electromagnetic field equations,
must be functions only of the radial co-ordinate. This means that

a1 2 T ! _
‘ XJM")} and ]Xfm’) ’ are constants, i.e. are independent of the

angular co-ordinates O , (P . We can use this fact to determine the

allowed values of the eigenvalue R . For the first group of solutions
3 .

(s Xé” ), where k = -(J+3) = - ,Q , Lt can be shown, by considering

(m
the properties of the spherical harmonics \/Q ) , that only the first

. l
case J = 7 fulfills the above condition. We have f = | , My = fz and

\XJci):,z _ \Xit-t)z

K

= (ym)™! (3.27)

For larger values of J these expressions will in general be functions
of P and (P . Similarly, for the solutions (S'71 Xecn ), where kR =
J + 'zL = f_ + ]| , only the case J =§'_ R ,Q =0 is allowed. Equation
(3.27) is again valid in this case. To sum up, we have two solutions, of

differing parity, which obey the criteria of time-invariance and spherical

symmetry;
AW 1)+
S * X'E = t('r) X_;_' )

Q) -

9m Xi‘

(3.28)
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where k = = £ = -] , and
S_-{ X:?.) _ ‘L(T) X-'(T.)_
(N4

9t X%
L +1 = |

(3.29)

where k

I

The electromagnetic and gravitational field equations (3.9) and
(3.10) can be re-written in terms of the radial co-ordinates. Using the

above results, we have,

| d 2 -2dAo>
(875

T dy
- Ee'% §-2y-2 (F3+G?) | (3.30)
4 d_ ] dd) 2
Y dy (T 3—Y> - CzKCEZ)-) S—Z (%ﬁfc)

- ("”TKCEI)-’ G- -2 § (E+@ Ao -3 mzcezs)pi
+ (E4€ho + 3mc?S)G2Y . .31
The system of time-invariant spherically symmetric equations is
now given by (3.24), (3.25), (3.30), and (3.31). We have four equations
for four unknown functions of ¥ . 1In the following chapters we will

attempt to solve these equations using a variety of methods, including

numerical integration.

For the sake of future convenience we make a transition to
dimensionless notation. All lengths will be written in terms of the
(bare) Compton wavelength of the Dirac particle, X (meCe )" , and all
energies in terms of the (bare) rest energy mecgu Furthermore, we

define and will use later the following dimensionless constants

T = GE"“EQ/(kCe) )



e [Curker)

E /("“ecez)
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(3.32)

T 1is, essentially, the square of the bare mass written in relativistic

units, o is the fine-structure constant, and £ 1is the dimensionless

energy eigenvalue.

To achieve a dimensionless notation, the following substitutions

are made,

o = Qo = ee Ao /(mecez) )
[eﬁz/cq“mecez)]+%‘: >
[ed | Gamee) V4G |

m, R

H Mmoo o>
1l ]

Y v
&M m

1] 1]

n

Y =S f)

The field equations become

(£+39)G . -s2(era.-9)F,

F 62 (g40,+5)G

d 2 -2 o 2 7 T

et ) . (R,

d [
(¢ 48
v+ 2t §2 (e +q,-3S)F’
+ 2t G2 (£+q°+é‘3)§2 .

il

2
T ST P (%%"

The normalisation condition (2.54) can be expanded to yield

em 6-2(F46") a0 dB d@ dr = |

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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which, in the previous notation, becomes

‘fooos-’l({ﬁ?’+ ’C“z)dF = o(

(3.38)
We can use the Maxwell equation (3.36) to integrate this expression and
to obtain the normalisation condition in the form of conditions on the

boundary values of the gravitational and electromagnetic potentials:

= & (3.39)



CHAPTER IV

EXTERIOR FIELD OF A CHARGED SPHERE

In this section we obtain solutions for the gravitational and
electrostatic field equations in the region outside‘a static spherically
symmetric distribution of charged matter. Essentially, we are solving the
problem of a charged point particle. The corresponding Riessner-Nordstrom
solution in general relativity is well known. It will be shown that for
points very_distant from the centre of the sphere, the two theories
yield metrics which agree up to first order in ¥~ , where ¥ is the
radial co-ordinate. Only in one case, when the gravitational and electro-
magnetic fields are related in a specific way, do the two theories pre-

dict the same space-time structure.

The solution obtained is examined for various values of the ratio
2 2 ~| . . .

G (4w G Me ) , where eg is the charge and M¢ the gravitational
mass of the sphere as seen by a distant observer. It is found that, when
this ratio is greater than one, the metric is well-behaved only outside
a certain radius, the "Schwarzschild radius" of the electric charge. On
the other hand, when the ratio is less than one, this singularity does
not occur and the metric is well-behaved everywhere except at the origin.

In this latter case the electrostatic potential is everywhere finite.

The region of space in which the asymptotic solutions are valid
is called the "exterior region”.‘ The solutions of the Dirac equation in
which we are most interested are localised in the "strong' sense, i.e.
the matter density contains a factor of the form eXP(-Q?I“ ), where

2

a“ 1is a constant which depends on the binding energy of the field.

-31-
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Therefore the exterior region is that part of space for which Y>> a? .
In this region the matter density is so small that it has a negligible
effect on the electrostatic and gravitational fields. The situation can
be compared to that of a very thin atmosphere surrounding a very dense
body. Because the gravitational and electfostatic fields are long-range,
the effect of the dense concentration of matter, which may be at a distance,
completely overshadows that of the small amount of matter in the neighbour-
hood. However, the inverse problem is quite different. The "athmosphere'

is very much influenced by the electro-gravitational fields. This problem

will be examined in the next chapter.

In the exterior region, the equations for the system are

-1dS G dA\2
S’ > _ 4T ETZ(____Q)_
d‘r( cEq, d.T ) (4-1)
4 (2 -2dl-‘\>
(S ar/) = 0. | (4.2)
(4.2) is integrated immediately to yield
%é; = /U‘SQT"l , (4.3)
where M is a constant of integration. Inserting (4.3) into (4.1), we
obtain
d 2 - dg> LﬂyG
il LR E T
dr dy = /u ) (4.4)
Writing Z = s s, W= (uw GE/(,LQCE’” yr-! , (4.4) becomes
ol dz\?2
25 - (W) +1 =0 (4.5)

The general solution of (4.5) has been given by Kamke (1943) and is

z - a'snm(au+b) | (4.6)
where a, Ir are constants to be determined from the boundary conditions.

In terms of W , and using (4.6), (4.3) becomes
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(&)
du ('*"Ge sin2(aut ) .7)

which is integrated to yield
¢t \+
2
Av= G + a(,,—,,—‘q.—s) cot (aut b) (4.8)

where €, is a constant also to be determined from our boundary conditions,
which we obtain by assuming that for very large values of ¥ , the gravi-

tational and electrostatic potentials have the form

Ao o~ L v o(x?)
o - _&fmj + 0 (x2) . (4.9)

We recall that, for large ¥ (small ¢ ), we have

z = S - 1-qo24 . (4.10)
Expanding (4.6), we obtain
s o g L
2 . b (a0 v
sun b G MC L
oond s (ayf mEA L)
= swmb 3 cosl imGest L
. 3
- aswb(‘ﬂf_cﬂ‘é )%2 + 0(r3), (4.11)
c¥

where we have retained the Y-2 dependence for future comparison with

the Riessner-Nordstrom metric. In the same way we can show

’ u o\ L ;
A, - ¢ + acotllr(rff-c—t_)2 - /—‘lf- +O(‘¥1> , (4.12)

It is clear from (4.9), (4.10), (4.11) and (4.12) that

[}
m-
S
&=

a

G

]
|
&
ao
T~
o
~—
N -
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Moo= e (ym)™
) et \% LT GeM2\2
osk - e (Kﬁe‘pe Co- () (413

where we must take, in all cases, the positive square root. Inserting

these values for the various constants into the solution (4.6) and (4.8)

gives
. 2\ 2
7 - ws] WL(WC(;E#) '1‘3}
+ sT;\-{, (weq;Mg>{ cin {sml: (lmCE,U. rg , (4.14)
Ao = - M:C:

+ Sind (Q:E;J% ot { &n&(”c"“z) rlj | (4.15)

CASE ONE: 0 < Cosd < |

In this cased, I are real, and 4T GeMe < €% . The
metric is well-behaved and regular outside a certain radius ¥, , given
by

. 2\ 4

. sun b ( Ge € z ‘

[+ = N - “)‘ - CEI' (4.16)

where we have assumed, without loss of generality, that o< k< M/ .
2

The metric function 2 = (~ Q°® )* has zeros at Tp and at a count-

able infinity of points in ¥ <X, . For Y >»Y, , the expansions

(4.11) and (4.12) are very accurate. Using (4.13), these become

- GeMe 1L 2 o A
Z N b :?_e i (I—Cos ’?’) -:.:u r2

+ 0(r3) | (4.17)
A - - _ff[. = o+ o(r2) . (4.18)

In general relativity the corresponding Riessner=Nordstrom

solution is given by
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I .
A m r o
2
- = ~ 2GeMe L4 Ge® I
doo | cd ¥ u:ce" T2 (4.19)

For large ¥ , we can see that the solutions are equivalent up to first
order in ¥-' . For smaller ¥ , and for a nonzero cos b, the theories

predict different gravitational fields.

CASE TWO: | < cos ks

. . . 2
In this case the constantsa ,l are pure imaginary, and € < lmGng.
4

The solutions for Z and A, are then

2 3 osink (Qu+ k), (4.20)

A, = - M ?
€

+ a‘( e )3 ceth (a‘u+!r‘) , (4.21)

H‘ll’qE

where &' = -1d (cwosh - I)-i , & =-ib, and cosl is given by (4.13).

The metric function % has no singularities except at the origin, and
is regular everywhere. For large ¥ the expansions (4.17) and (4.18)

)
again are applicable provided the factor ( I— Gs*L )Z is replaced by

(cos*ds - l)% .
An important special case of this group of solutions is when we
put € =0 . (4.20) reduced to
Z = _xp ( Ge M. Cg‘2 x- , (4.22)

and is the exterior metric function for a point particle with no charge.

(4.21) becomes simply Ao =0.

CASE THREE: wsk = |

. 2 . . . .
In this case 957' = yn GeM" . This situation occurs in most of
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the Weyl-Majumdar models. A simple calculation shows that (4.14), (4.15)

reduce to

2 = | + GeMe L (4.23)
et xr >
. - cme)-’
Ao = e (r + o ) (4.24)
i
where GeWMe G2 = (Ge & coY/um ) z is the Schwarzschild radius

of the sphere. The line element is given by

2 _ GeMe -2 2
dS (‘ + ce r (d-xo)
+ (l + CEME) (dr + T o\_n_z) (4.25)
where df1* = sn?0 d?2+ dB? . It is interesting to note that

general relativity predicts the same results as the above. The solution

(4.23) has been studied by Bonnor (1960, 1964), and by Papapetrou (1947).

CASE FOUR: Cos ks =

In this case Mg =D . Bénnor (1960) has pointed out a very
peculiar feature of the Riessner-Nordstrom solution in general relativity.
If we put Mg = 0 and at the same time retain €, £+ 0 , we obtain a
solution for a charged point particle which has no gravitational mass.
The gravitational potential is of order ¥-% and it appears as if the

electrostatic energy does not contribute to the gravitational mass.

A similar situation occurs in the present theory, for, if we

take Mg =0 , the solutions (4.14) and (4.15) become

kA s (Tr,/r) , (4.26)

Ao - wqe> tan (T./T) , (4.27)

where

N A
Y, = (Geee"/wc;‘)’ . (4.28)
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For X > 7Y, , the expansion in # yields no k-' dependence and there-

fore the system exerts no long-range gravitational attraction.

37



CHAPTER V

THE WEYL-MAJUMDAR METHOD FOR OBTAINING
STATIC SOLUTIONS OF THE FIELD EQUATIONS

Before proceeding with our investigation of the system of equa-
tions (3.34)-(3.37) in the general case, it is instructive to examine

the one case in which the system can be solved analytically.

Consider a distribution of charged matter in equilibrium. Pro-
vided no other forces are present Qe can say that the equilibrium is
maintained by a balance of electrostatic and gravitational forces. Such
a balance implies, for time-invariant systems, a relation between the
electrostatic and gravitational potentials. Weyl (1917) postulated that
this relation could be in the form of a functional relationship between
the component ¢g,, of the metric tensor and the electrostatic potential

Ao. Assuming this, he showed that

2
300 = A t BAO + "L__“Ge AO ) (5.1)
C‘-O

3

where A and B are constants. He obtained this result by studying

axially symmetric electrovac universes in general relativity. Majumdar
(1947) extended this work to the case where there is no spatial symmetry,
and showed that (5.1) remains valid. If the constant B is chosen so

that (5.1) reduces to a perfect séuare, then the whole system of the com-
bined Einstein-Maxwell field equations reduces to a single Laplace equation.
These ideas were carriedlover to the case of non-empty space by Das (1962)
who showed that, in certain cases, the imposition of the Weyl-Majumdar

relation,

-38-
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9.= ] AT : "“GE>%A°E2 ) (5.2)

[T
Ce

implies, and is implied by, the equality of the dimensionless charge and

mass parameters of the system in question.

In this chapter the Weyl relation (5.1) is examined in the frame-
work of the scalar theory of gravitation. All of the results and all the
examples shown here have counterparts in general relativity. First of
all, the relation analogous to (5.1) valid for the scalar theory is obtained.
An attempt is then made to understand the physical meaning of the constant
B . This is first donme for the spherically symmetric case, for which
the solution in the exterior region is given in Chapter IV. It is shown
that, irrespective of the charge-mass ratio, every (exterior) solution
obeys the relation (5.1), and that B = €WGe Mg 52 ee" , where Me
is the total gravitational mass, and ég the total charge of the sphere.
This result is then extended to the general case where it is shown that,
even without sphericaly symmetry, B represents the mass-charge ratio of

the system.

It is interesting to note that, with this value for B, (5.1)

reduces to (5.2) only if
4
& - t (anG) M (53)

This is probably why, in previous work on this problem, the assumption

(5.2) always led to the result (5.3)." "

Difficulties arise when we attempt to extrapolate (5.1) into the
interior region. It turns out that, both for the Klein-Gordon and Dirac
fields, imposing (5.1) in this region leads to an over-determined system

of equations, unless (5.3) is wvalid.
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The Weyl-Majumdar relation for our theory is obtained by consider-

ing the free-space electrostatic-gravitational equations. These are,

from (3.9), (3.10),

dm (S T3A,) = 0, (5.4)

Omm P = WC‘ S (3mAe) (5.5)
We assume that 4) is a function only of AD , which means that

Omm P = q>” (3m Ao)Q + ‘b'amm Ao (5.6)
where the prime denotes differentiation with respect to Ao . Inserting

(5.6) into (5.4), (5.5) yields

2
“Omm Ao = 14)|CE—2 (Bm Ao) 5 (5.7)

Do Ao $7 (4m WCE S2-d") (2mho)’, (5.8)

and hence

"y a2 (¢) pl Ct S (5.9)

The solution of (5.9) is given by

G* = A+ BA, + '”éf‘ AZ (5.10)

E

which corresponds to the relation (5.1) in‘general relativity. The
constant A has no physical significance, and, without loss of generality,
ﬁay be taken to be equal to 1. The constant B is at present undetermined.
If, however, it is so chosen that (5.10) becomes a perfect square, then

the field equations (5.7), (5.8) reduce to a single Laplace equation.

D67 =

In Chapter IV we obtained solutions for A, and S; in the exterior
region of a spherically symmetric charged matter distribution. If € 1is

the charge, and Mg the gravitational mass of the sphere, then these
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solutions are given by (4.14), (4.15) in the case where 3 = s b+ 0 s
by (4.23), (4.24) in the case where & =0, and by (4.26), (4.27) in the
case where cosd =0 . 1t is easy to show that all these sets of

solutions obey the relation (5.10). 1In the first case

‘52= |+ s_————‘?-“'CEM A, +lﬂc_;§A2

e o Ao (5.11)
where o2 # 4w Ge M2 , in the second case
s* - (| +\/"-——-“GE/-\>Q 5.12
= + o ° , (5.12)
where e = uu Qe ME2 , and in the last case
2
G* = | 4+ uwrle p2 (5.13)
Cet
where Me = 0. We see that, in all cases
B . BmeMe (5.14)
Ce' Q¢ '

If we assume that (5.11) is valid even in the presence of charged
matter, then this implies a simple relationship between the charge and

mass densities. 1In such a case the field equations can be written

Om (522 hs) = o, (5.15)

B § — “ZEEE S (Bmho) = l‘“qs P (5.16)

)

where ¢, ID are respectively the charge and gravitational mass densities.
For the moment we have left these quite general. Using (5.10), we easily

obtain

v}

'2¢"(wqt > , (5.17)

which yields,

poo- (CEHB +A°)6‘. (5.18)

8T Gg
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Previously we have obtained the expression (5.14) for B in the case of
spherical symmetry. Using (5.18) we can extend this result to the more
general case. From (5.15), (5.16), by considering the fields far from
the source, it can be shown that the charge and gravitational mass para-

meters are given by

_fé‘dgx R
J{ S2 (omAs)” + Fg dlx (5.19)

Using (5.15), (5.18), we obtain

Ce

Me C:

ce'B 3
MEC: = 81:(;5 SG‘& X
* JBM (5-2Audm Ao ) & . (5.20)

Provided that S‘2A°75MA° falls off sufficiently rapidly at spatial
infinity (and this is always true for a localised distribution), it
follows from (5.19) that (5.20) yields B = ¢mwGe¢Mecees! which is

again (5.14).

As a first example we consider a scalar (Klein-Gordon) matter

field. For such a system the time-independent field equations are
-2
'bmmlx = 'f%ez { 'mezcsli - 5_2(E+ ?eA(,)QSX ,
2 e, Q- 2
Do (57BN 2, (¢ s ecA)X*
—bmm¢ = '%jj[ S—2 (Bon)z
| +_.__.,S—1_l % QS-QCE’*eEAo}z— m:ésu}’xz. (5.21)

MmeCe

The Klein-Gordon wave-function is given by

LP = XQ’LP(LE{:/‘&CE> >

where 3( is real and E represents the energy of the matter field. For

such a system
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P é—‘—z { 23’2(E4eer)2‘m£CE"}X2;

MECE‘L

o)

1

L g, eeho) X2 . (5.22)

Me G
Inserting (5.22) into (5.18), and cancelling out the common factor 7(2,

we obtain

2 2
S' = i (Evecho)
= 'ﬁtceq (_Me(’ez-r Ce AO)CE'* € Ao) (5.23)

Comparing (5.23) with (5.11), and equating the coefficients of the various
powers of Ro , we find that the only Weyl-type solution for the Klein-

Gordon field is the Weyl-Majumdar solution with

E = Moe2 =m.C2 = e'Ce' \1 (5.24)
= VleCe = Mele = ({37 .

The binding energy, defined by Eg = ( 'mec; - E ) is equal to zero, and

the system of equations (5.21) can be reduced to two equations,

75méx== 0,
Dam () - _e. S (5.25)

Similar results hold for thg Dirac field, but the derivation is
more laborious. The time-independent field equations (for the Dirac-
electrostatic-gravitational fields) are given by (3.8), (3.9) and (3.10).

In our present notation

& = e STl VP
P = as2(E+ech,)(lul*+ V)
- mece ST Crul?-vit) . (5.26)

The relation (5.18) becomes



44,

-2 1 2 - 2 2
ST (E-Meed 1ee Ao) (1wt IVI?) = mec” ST (ul-vI?) | (5.27)
and this expression holds for all . For points very distant from the
centre of the matter distribution As% O , S x® 1 , and the Dirac field

is essentially free. It can be shown that, as we approach spatial
infinity
2 2 E 2 2
iuwl” — vl = el (llll +W|) , (5.28)
and hence, in this region (5.27) yields

26 -MeG' - E (5.29)

which means that E = Mecez . (For a demonstration of (5.28) see, for
example, Corinalderi and Strocchi 1963 p. 156, and our own results in

Chapter 6). Inserting (5.29) in (5.27) we obtain

S2(E+ecA,) Crus+ \Vl2>

= mec ST (uT-1vi?) . (5.30)

Comparing (5.30) with the corresponding expression for the Klein-Gordon
field, we find that the wave-function does not cancel out. This is due
to the interaction between the gravitational field and the spin of the
Dirac particle. Since S is a function of A, only, (5.30) gives us an
expression relating Ao, \U.‘2 , and IV\2 . There is no reason why the
Dirac equations (3.8) should be consistent with this relétion and there-
fore, in general, we have an over-determined system. To show this we
will examine in detail the above equations for the case of spherical
symmetry. If we write .

(1) S-28"c (Eveeh,)
S “&_'Ce—‘ (mecet) )

Q)
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6 = (F*2G?), (5.31)

the field equations (3.24), (3.25), (3.30) and (3.31) become

-p)F = _(£+§)Q ) (5.32)
(448)G = (2 - LON (5.33)
4 (T"S" ou\_o) . L 5-? 6 5.34
dy ax 4o LA (5.34)
% (71 da_ﬁb ) - lmq: S—Q (dn )
Y
+ 4_\_2_:% (2405 -BS-) | (5.35)

The Weyl condition (5.30) can be written
°(6+ = ﬁo- . (5-36)

Multiplying (5.32) by (X +B)G, (5.33) by («-B )F, and subtracting

we get

o k
Tar 232 ~ 3 (d6.-poy) =D . - (5.3D)
If instead we add, we get

id_ﬁ_l__f C_ii—k $<d6+‘BG->

2 dy 2 dy
= 2>~ FG | (5.38)
where 4LFG = 6,-G.%. A combination of (5.36), (5.37) yields
4 { gj(%ﬂ ~ %‘(l—%i)g = 0 . (5.39)
The solutions B =0 ,6: = 0 are trivial. We recall that 6, 2 O_°
and therefore B'2 o . Assuming B£D , 63 # 0 , from (5.39) we
obtain
<k Mri— ] >
B At | ) (5.40)

where//L is a constant of integration. Using (5.11), (5.31), (5.40), and
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2
recalling that k = l for spherically symmetric solutions, we obtain
the following expression which is wvalid for all v ,

5E+QEA°(Y)}QS(T)-1= "“eC: ( ’f_jﬂ_—_‘_' >q_

Ty ©(5.41)
There are two ways of looking at this equation. If M # 0 then we must
assume it is an ordinary equation and solve accordingly for Ao . (Recall
that S is a function only of Ao .) On the other hand, if /u =0 , then
the expression on the right-hand-side is a constant, which means that if
we are to obtain a non-trivial solution for A, we must assume that

(5.41) is an identity in Ao and equate the coefficients of the various

powers of AD . In the first case,/«io , we find

_E — [ P (1= 8€Y)
Ao - e (l TVE oo ) (5.42)
where p = akp", & = E (mecd)' and § = 4w Ce'mezee"z . S must

always be positive and therefore the solutions for S , A, are as follows

g - (\-ng £l

) — Slo" >
Ao - —E(i- £3) |
o = e (- §S) (5.43)
These expressions are regular for all ¥ . However, when we use (5.43)
to solve for & ,G_ individually, we obtain expressions which are not

compatible with the second of the Dirac equations (5.38). The proof of
this is long and tedious so we will not reproduce it here. It is enocugh

to state that M #+ O does not lead to a consistent set of solutions.

However, if M = O , then we can look upon (5.37) as an identity
2
in Ao . Expanding S by means of (5.11) and equating coefficients of

the various powers of Ao , we obtain
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E = IMECEI )

2

€

4 Ge E g™ (5.44)

Ao itself remains undetermined and we now have the correct number of
equations and unknowns. The results (5.44) are the same as were obtained
for the Klein-Gordon field, and correspond to a solution of Weyl-Majumdar

type.

Returning briefly to the case of no spatial symmetry we find that

the conditions (5.44) imply, from (5.11), (5.26)

g* . (\+\/—f§€l\o\)2)

EQu®+®) o E =) . (5.45)
Obviously IV1>° =0 , and the equations for the system become

LG = 0, (5.46)

Dm(E") = - un G E o §2 U, (5.47)

There is a close relationship between (5.46), (5.47) and the correspond-
ing equations for the Klein-Gotrdon field (5.25). We have a different
power of S on the right hand side of (5.47) but this is due to the inter-

action of the spin with the gravitational field.
The equation (5.46) can be solved. We can write
: 2 ,1_K
69 - 6,(2+1-%) (5.48)

where K = §:£ +1 is the angular momentum operator. We have only to

consider the following equation

( %\r +?‘r_ é)u -0 > (5.49)
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for the two-spinor W . The solutions can be expressed in terms of the

eigenfunctions of K (Corinalderi and Strocchi 1963)

uJ(n;,H L+({) C|+ y 0':;,-{)

91

4\ (M +d)
Y
J-J

'u:‘mj - ,L"(Y) Cl_ \/CMJ —{)

)44
v d
- (m +1_)
¢y
J.'—L' ) (5.50)

-+

where the C-~ are normalisation constants. The eigenvalues for & are

. -(3+3)

It
i
o

(5.51)

and the functions L obey the radial equations

(£~ 0

((;174(;!(4,%){)—:0' (5.52)

Inserting the value for l’u.|2 into the second equation of (5.46), we
obtain a countable infinity of possible equations for G- , each one
corresponding to a different angular momentum state. This is in contrast
to the single equation described by Das (1962), who assumed that W was

constant.

For the case of spherical symmetry we must have k =2} , and the

only solution of (5.51) which tends to zero for large ¥ 1is given by

t = to””q , (5.53)
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where to is a constant and - L =-). From (5.53) we have (ul2=
(\m)*‘ T-H toQ , and the equation for 3~ becomes

d 2 dS”! ) 2

= T 2= -2 -

d(( av = -AY S 5 (5.54)

2

where A = G¢E CE"" go . Writing 2 = S"' , ‘y = T", (5.54) can be
simplified

2

dz 2

ng = - AZ . (5.55)

A particular solution of (5.55) is given by

2 - _ég—i_ (5.56)

This solution diverges for large ¥ and must be discarded. The general
solution (of (5.55)) can be written down in terms of elliptic integrals.

Transforming (5.55) yet again, we find

3—; - 1 (E—%%z*)é (5.57)

~

B is a constant of integration and is determined by the normalisation.

. We require

(A

X

Q—IQ—
< I

]’r-.o - 0 ) (5.58)
and hence, if we write %, = 2(\‘:0) ,

B - Zaz® . (5.59)

(5.57) can be transformed to integral form. It becomes
Jﬂ by J gt
= P |
—+3\2
(o to(‘ t?)

- =) .
where t = 220' and to = Zg . Since Z 1is always positive, so is t s

Ni—

B
(5.60)

and therefore Z<7Z, for all 3 . We use the general formula
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' \ -1+t /
_L‘i:_.J = = en”! ( E_,_- , k)
¢ (-1 VE Rorl-t
(5.61)
where H = un75° , to obtain a formal solution for our problem. We

have, then

(G+1) on $45 B2 (4my) L k'] = (&)
| 4+ on {%’B%(\Jo-j)) k' , (5.62)

T

where

e

3+l =2 (5.63)

The solution (5.62) has the correct asymptotic behaviour for large T

2 tends to | for Y00 . However, for small T , the function
becomes periodic and there are singularities in the metric. The system
has , from (554),(5.59) ,

S:;ztlridr - !

’ (5.64)

To sum up: we have shown that solutions of the Dirac-Maxwell-gravitational
field equations can be obtained by using the Weyl-Majumdar method and that
these solutions imply that the metric tensor is not regular over the whole

range.



CHAPTER VI

,ASYMPTOTIC SOLUTION FOR THE DIRAC WAVE-FUNCTION

In deriving the asymptotic forms for Ao and S (Chapter 1IV) we
assumed that in the exterior region the mafter density is negligible. 1In
the present chapter we will demonstrate the validity of that assumption
by finding the asymptotic fofm of the Dirac wave-functions. These
solutions will be used in the numerical integration in Chapter VII to

determine the boundary conditions on the wave-function.

The Dirac equations in dimensionless notation are given by (3.34)

and (3.35). We consider terms in the interaction only up to first order

in Y7'. Using (3.32), (3.33) and (4.9) we obtain
Qo = -~ % + O(€-2> )
z =S"- 1 + GeMeme Lo, 0(e?) * (6.1)

%Ce /o

Inserting these expressions for S and Qo into (3.34), (3.35), we find

(36 -eedlE, e
(&-5)F = fer1-F8G OB
where
o, = A - C‘:jmf(zs l> (6.4)
€
L = oA - G;M;mf(zw,)k (6.5)
. _

It is interesting to note that, even when we consider only the 7T-!

dependence of the gravitational field, we cannot simply replace the flat-

-5]-
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space expression (E + € A, ) by (E+ e A, - E(‘E‘zct) ), where E(‘E'zciD
is the gravitational potential energy of the particle in the field of
the source: the interaction is more complicated than a simple Coulomb
potential. 1In order to illustrate this point, to which we will return
later, we have left the mass Mg of the source in its original form and
only at the end of our calculations will we make the specification that

Me  corresponds to the self-field of the Dirac particle.

If we write

E = Fle“q’c‘o—) )

ne

G

G exp (-6) , (6.6)

where ¢ = C\—E’)‘i P the equations (6.2) and (6.3) become,
d ! & - oy !

(& -6 - (B - 2)F ©-7
4

(i ")F" (& -2)¢ (6.8)

1
Our next step is to construct power series solutions for ¥ and G'

+

9z Q|x

} !
We require a localised solution (bound state) which means that F , G

must approach zero for large ¥ . We write
z 1
F' - oPZ a.¢6"
n:o
: S
G = of2Z & oo" (6.9)
n:o )

where a, # 0 s Qoli 0 . Substituting (6.9) into (6.7) and (6.8) we
obtain, by equating coefficients of cVip-!

(I—E) \

(v + B +k) !’v- o:v-‘ i a,, - «,a, = 0,
' ) C"E) ' !
(v+p -k)ay-a,, - '—);&M +d, by, = D

(6.10)
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For V =0 we have
(g +k) b - «al - 0,
(p -k)a; + 0(2'&0' = 0, (6.11)

which implies
L
2 2
B - (k- o(,o(z) _ (6.12)

The equations (6.10) lead.ito the following recurrence relation for the 0:,}

oNi-€2 4 (1—&)<v+a—h) gql

T2 (v+g4k) - o (1-€) Y

=§ ) " {+& i VimgZ 4+ (\’E)(\H—B-k") ga\
Vi-gz Vit (vapak+41) -o2C1-¢) >

§v+;3 -k o+ A

(6.13)

1
A similar recurrence relation for the Q’u is obtained by replacing

a, _ N (v g+ k) —d (1-€) P;\; | 6. 16)

\i=gr  + (1~£)(v+B -R)

For very large V , we have from (6.13)

1 2 \
a, = -{)_ av_, , (6.15)

and this would imply that the functions F' , G' increase like exp (26 )
for large ¢ . This contradicts our hypothesis of a localised matter
distribution. Therefore the series must terminate at some finite value

of M , say m' , and this means that

ey = Yoy = 0. (6.16)

Putting V =mn'+], m in (6.10) and (6.14) respectively, and solving

for ‘3 we obtain

B - -mn' - () - & _%‘{20(- C‘rzzng (o.e’ - I)} .

(6:17)
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On the other hand, we have, from (6.12)

2

k

ni=

=+

B =.-§ o - CeMeWe(K D][q Jﬁﬁﬁﬂ;(%-fﬁﬂ'

(6.18)

From (6.17) and (6.18) we can obtain an expression for §&

However, before continuing with the present problem we shall consider, as
a corollary and an example of the above work, the "hydrogen-atom'" problem
in gravitational theory. We treat the central body as a fixed point-
particle of mass Mg and we consider only terms up to order Y~' in the
interaction. (6.17) and (6.18) apply with d =D . We must take the
positive sign for B in (6.18). Since & is contained in the expression
for B , we have a much more complicated system than the one which occurs
in the electrostatic case. The eigenvalues are given by the solutions

of the following equation, which is third order in £?
iém‘z/u?E" —{%Zn‘z : + (hz -t 2 2/;’()12-1\‘1) +/“u}£u
2 2 2 1 2
s {aownd - 2(R-N) - (- ) e

o R - - 0, (6.19)
where M = Q5M51\Ekcg" . The eigenvalues are labelled by the values
of the angular quantum number % and the radial quantum number m' , which

refers to the number of nodes of the wave-function. In contrast with

the usual (electrostatic) hydrogen atom problem, there is no natural way

to define a "principal quantum number". For n =D , we have
R* \3%

Ek,o = (—E;————:;> (6.20)
+/(A .
Brill and Wheeler (1957) have also considered this problem. They
examined the behaviour of a Dirac electron in a Schwarzschild gravita-

tional field. Up to order ¥-! , it can be shown that their radial
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equations are equivalent to ours. However, in solving their equations,
they used a different approximation, amd neglected one term of order T-!,
which we have included, and therefore their results differ from ours.
Explicityly, their radial equations were of the form (Equation (39) of

their paper)

i_i_lc;[ e-év(5+e€A°) + mscez} F

S ~
- "¢ ci_ﬁ - éc =0, (6.21)
where €° = e = | = 2GeMec?y! . Expanding, and

keeping all terms in v-'

‘EIEE(H ehs —¢ +mc’)F - d&

, We obtain

r
R = -1dG
R - oF 4. . - )
G ¢ T D, (6.23)
where ¢ = - CemﬁEc;’r" is the gravitational potential energy of

a particle of energy E . From (6.6) we have
-'dﬁ z L L C
bE =i e Ve bG , (6.24)

again to first order in ¥-' . Brill and Wheeler dropped this term since,
~

in their case, the coefficient of T~ was small compared to k. 1In

our case, on the other hand, we have included all terms of order T-' ,

in order to obtain a more general result.

For the case of a Dirac electron in its own gravitational field,
- Me = Eg-? - E
we make the assumption that e Ce , or, in other words, that
is the total energy of the Dirac field. On this point Kaup (1968) and

Feinblum and McKinley (1968) differed. Kaup defined M, as follows

L m , 6.25
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where

m

(meC:)—' J Too d’x ,
T e

m 1is the integral of the zero-zero component of the energy-momentum

N

tensor of the Klein-Gordon field, and N is a conserved quantity. (For
the case of a charged field J% is the charge density.) He found that,

in genmeral, with the definition (6.25), M.Cc #E .

Feinblum and McKinley, however, used a different normalisation,
which generated a different N , and therefore Kaup's results do not

hold in their case. They simply assumed, but did not prove, that E =

M ¢

In the present theory, if we use (6.25), then it is easy to show,

from (2.54), (2.57) that
m o= e [ 12e) (Pwap - 2B Y)Sdx

- _E
- E‘E—C'Ez J‘LP‘“'Pdsx 3
N = jqﬁq) dic | (6.27)

and therefore M502 = E . Unfortunately, due to the complications
of the field equations, there is no simple way to prove that the M; as
defined by (6.25) is in fact the total gravitational mass of the system.

We simply assume that it is.

For a spherically symmetric solution R = *] and hence n' =0 .
From (6.17) and (6.18) we obtain

ki 2

+ 24T - et = D (6.28)

)

| - - ¢

where T 1is given by (3.32). The solution of (6.28) is
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2

Y
= (ac)” %(l —4dT + 4 )z;-‘— | + 20(?};‘
(6.29)

Hence, if we know T , which is essentially the square of the bare mass
of the Dirac particle, we can calculate £ . 1t is remarkable that only

for one value of Mg , given by letting & = T do we obtain & = |

> 3>

and therefore only in that case does the binding energy of the field
vanish. (This is in fact the Weyl-Majumdar solution which has been
examined in a previous section, and in which case it is possible to obtain

an analytic solution and to prove that E = Mgc? D)

From (6.9), (6.10), the asymptotic solutions for E ,@ are

~ ) ¥ .
F o= a0 0-¢)" pPeah (= VFE p) (6.30)
o (-¢) £

S L 6.31
G oY (6.31)

where € and B are given by (6.29) and (6.17). 1In the following
chapter we will use these expressions as boundary conditions for the

numerical integration.



CHAPTER VII

NUMERICAL RESULTS AND DISCUSSION

The non-linear system of equations (3.34)-(3.37) has been solved
by numerical methods. Briefly,>our procedure was as follows. We first
chose a value fz of the radial co-ordinate so large that the asymptotic
solutions obtained previously were valid. A step-by-step numerical
integration toward the origin was then begun. In the integration process,

the four equations (3.34)-(3.37) were replaced by the six first-order

equations,
~ k"’ ~
j_@(; - - 5G -s7 (e+a.-S)F, (7.1)
jl-; = ; ’]5 + 82 (g+ 0°+S)~G N (7.2)

Qe
ls
o

it

SQP—le ) (7.3)

d_f’ B P—Q\é'z , 7.4
dy - S_Q(EQ+ c?) ’ (7.5)

dis - S{s%7y? 4 25 (s4a.-4S)F?
+ 252(g+a.+£S)G Y (7.6)

where Y, , 32 are defined by (7.3) and (7.4). These were integrated
by a numerical method, the details of which we willconsider later in the
chapter. The integrations were repeated for various values of the para-
meters a; ‘and Mg . In all cases we assumed that € was the
electronic charge, or, in other words, that & had the numerical value

that is usually accepted for the fine-structure constant.

-58-
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As boundary data we use the following

®

dd
d_F =

ao = -

Ao R ~|2

dds
d‘o Fz ,
Fooo ApPexp(-VmeE p)

(1-§) =
g2

oD
Il
1

, | (7.7)

$/2
where A , defined by Al = a,G-£%) , can now be used instead of Q.

as a parameter of the theory.

Previously we have shown that for spherically symmetric solutions
k = : ]. . Following a procedure similar to that used by Bethe and
Salpeter (1957, p. 153), we now determine which is the correct sign to
choose for various values of the interaction parameters. For the case of
an electrostatic potential alone the rule is quite simple. If the Coulomb
potential is attractive (repulsive), we must take R =+ 1 (=1). When
we include the gravitational interaction, certain modifications are

necessary. From (6.9), (6.10), we can write down three expressions for"

the ratio ,
.0,', B+ k
s | oL -ce(aE=) (7.8)
Qé = tg(g&;)-d > (7.9)
o -
%i = - _\fl‘h:_‘f:“ . (7.10)
o .
(7.10) ig obtained from (6.9) by setting V = | +“n', where m' = 0 .

For bound states this expression is always negative. Imposing this con-
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dition on (7.8), (7.9) leads to a contradiction if we take the wrong sign
for ‘& . For t«« there are two cases;

(i)TSO((z—Sé)A, where § = | - €% 0> . In this case -] € g < 0 s
t€ Q2E+)< > and so we must take k =-).

(ii)o((s-sg)"<c<o( . Here the denominator of (7.8) and the numerator of
(7.9) are positive, while p( -1 . This means that we can take either
sign for k , or, k =],
For T>o we have three cases;

(iii) & € T < l.44. 1In this region o<F<), the denominator of (7.8) is
negative, the numberator of (7.9) positive, and therefore k =+ .

(iv) 1.44 £ T < 4.00. Here -|< F(D , the other quantities have the
same sign as in (iii), and we must take k =+1.

(v) 4.00< €< oo, 1In this last case, where B< -1, it is easy to show
there there is no choice of sign for k which makes (7.8) and (7.9) compatible.
Hence, there exists an upper limit of 4.4 x 10-5 grams for the bare mass,

In Fig. 1 we have plotted FL against Mg , where the bar indicates

we have used dimensionless notation, or

= . /G
M T‘»_E'E>

2M5
Ge
fee ) ™Me . (7.11)

The graph is also divided into four regions which exhibit the various required

3
I

5
]

values of &, as outlined above. 1In region I, k =-], in II k. = il , in
I1I k = +‘ and in IV there is no allowed value for k .

We see that no matter how large the bare mass may be, the observed
mass is always less than 2.2 x 10_5 grams. Of course, as we have seen above,
there are other reasons why we may not take an arbitrarily large value for
the bare mass. In his study of the Klein-Gordon geon, Kaup (1968) found that
no solutions existed which had a bare mass larger than 1.76 x 10—5 grams.
(This corresponds to a maximum value of 1.70 x 10“5 grams for the observed

mass.)
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In the present work, solutions were found for various values of
Mg and Al . As an example Fig. 2 shows the shape of the mass density
(see expression (2.53)) for the case T = 1_7\52 = 0.05 ( Mg = 0.2236) and

A1 = 0,002. The normalisation is defined by
o0
2
m o= LDF df ’ (7.12)

where we have included the factor 4w in our dimensionless,l) . For a
correctly normalised solution, from (3.38), we need

n =
In order to obtain normalised solutions we fixed the value of T = ﬁﬁz and
integrated the system of equations for the whole range of possible values
of AT . We repeated this process for several values of € . The results

of this study are summarised in Figs. 2 - 5.

We found that for all Mg , A] , the mass density D  has the
general shape exhibited by Fig. 2. Normalised solutions were found in the
range o ¢ T 4.00. For A1 small we found m>«, and for A7 large m <o,
For the case T = 0.005 the best solutions (from the point of view of the

normalisation) were given by Al = 1.750461 x 10—3, in which case

N~ o = o.ioh x |0"° (7.13)

and Al = 1.750465 x 1073, when

-7
n-do = — D0.763 xID ) (7.14)

or Im-~d| = 10}%, which is as good an agreement as can be expected

in numberical work. For other values of € comparable accuracy was obtained.

Contrary to what we had hoped, however, we found that in every case

the electrostatic and gravitational potentials were singular near the
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origin. Considered as classical models of charged particles, these solu-
tions corresponded to objects comprising a thin shell of matter surround-
ing a highly singular region of space. In the following detailed
description of our solutions, we shall make use of the terminology of

such a "shell" model.

Discussion of the Solutions

The system of equations (7.1)-(7.6) with the initial conditions
(7.7) was integrated numerically using, as our basic method, a Runge-Kutta
subroutine of order 4 (Fowler 1964). A second method, based on an extra-

polation procuedure using rational functions due to Bulirsch and Stoer (1966),

was used on certain selected examples to check our results and to evaluate
the errors.

The Runge-Kutta method used is that due to Gill (1951). As step-
size we used & =f>/50 where /0 is the radial co-ordinate. Carr (1958)
- has shown that for %k small enough (but not too small, to avoid excessive
round-off error) this program is very accurate. The second method, trans-
lated into Fortran IV by M. Leslie (1966) from the Algol procedure of
Bulirsch and Stoer (1966); involved the use of an automatic step-size
correction procedure. This meant that after each integration step 4& was
changed to the optimal step size for the next integration step. The pro-
gram also contained a subroutine for.controlling the accuracy of the com-~
puted values of the functions being integrated. 1If Y was one such function
then the computation of y at each integration step was repeated until two

successive computed values of Y differed at most by an amount £S where £ =
10-6 and 5§ was of the order g . Burlirsch and Stoer (1966) examined in detail

. the errors involved using this method and showed that it gave results superior

to most other commonly used methods, including the Rmge-Kutta, We did not use itall
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the time because of the high cost in computer time and storage.

Assuming that the difference in the results obtained using the
two methods was of the order of magnitl;tde of the errors involved, we com-
pared the integrated solutions for several cases., As expected we found
that in the early stages of the integration the difference was negligible.
As P70, however, the error increases somewhat until for the last
few integration steps we had iost three or four digits. This means that,
estimated in this rough fashion, our solutions were accurate to at least
four places of decimals. Hence no qualitative errors in the shg es of
the solution-curves was .indicated. TFor example, for the case Mg =
0.6325, Al = 0.001, both methods gave the same value for § at IO =
86.938180, whereas at [O = 0,11258820 the Runge-Kutta subroutine gave
§ = 3,3022970 while the Bulirsch-Stoer procedure gave i = 3,.3025360.
Normalised solutions were found for values of the bare mass range from 0.1
to 1.0 (in units of 2.2 x 10—‘5 grams). In all cases these solutions had
the same basic properties.

Figure 3A shows the form of the metric function S = (- 800 )%
for several values of A7 (with M, = 0,2236), while Figure 3B shows the
behaviour of three representative cases for smallf . We have discussed
elsewhere the form of S for 1arge/0. It is seen that all the solutions
have the same basic shape, and differ only in the position /0 =/0m~ where
S has a minimum and in the radius /2 of the inner core. (The inner
core is defined as that region of space close to the origin where the
matter density is negligibly small.,) Of course only the normalised solu-
tions are of interest. We include these graphs .merely to illustrate the
result obtained which was that, for constant 'rT\E , the solutions behaved

in a smooth way with variations in A] and exhibited no qualitative differences.
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Fig. 4 graphs M, against the value of Al which yields a correctly

Al

normalised solution. It is seen that, in the region mM¢ > 0.23 |
increases for increasing My . It is to be recalled that elsewhere we have
shown the existence of a maximum value for the bare mass. TFor O.Z3>EE>£(,

Al increases with decreasing M, and approaches infinity asymptotically

as M, >\{q . For example when M, = .0946 we found that Al= - 1.2 x 109

gave a correctly normalised solution. At the point ﬁ& = WR (which
corresponds to the Weyl-Majumdar case) our asymptotic solution is no

longer valid. We have discussed this case in Chapter 5.

Fig. 5 depicts the radius of the inner core in each case in which
a normalised solution was found. For M, >V we found that the radius
of the core increased with increasing bare mass. For M, < J{ we were
unable to find any normalised solutions. 1t may be significant that, in
this region, the electrostatic self-repulsive force, as estimated from
the asymptotic forms, is greater than the gravitational self-attraction.
The case ﬁﬁg = 0 gave solutions which could not be normalised, and which
had an oscillatory behaviour at spatial infinity. This is caused by the
fact that the binding energy EB = Wth£ — E = -E is in this case nega-
tive. The only exception is the trivial case 'mECEQ =EFE = 0.

In our search for solutions with § regular at the origin, we
constructed a power series solution for the whole system for small P and
attempted, by a least square method, to fit this solution to our numer-
ically integrated one. Of course, since our equations are non-linear, we
could only derive the coefficients for the first few powers of /0 , and
therefore we had no proof that the series were convergent. As a working
hypothesis, we assumed that they were. The results of our investigations
were that we could not make such a fit and that it was highly unlikely that
a solution for § regular at the origin existed. This conclusion is rein-

forced by the smoothness of the curve in Fig.’é which suggests that the

radius of the singular core never shrinks to zero. o s E



Of course it is impossible, in principle, to prove a negative
statement like the above by using a numerical technique., The best we can
do is to show that, within the capacities of our method, no solution
regular at the origin can be obtained, and no solution is indicated.
There is always the possibility that the problem is an eigenvalue one,
giving a regular solution only for very precise values of the parameters.
We investigated this possihility very thoroughly, going to seven places of
decimals, until we reached the limit of accuracy of the.computer. That
is, until the computer output became insensitive to changes in the input.

We found no evidence of a regular solution.

An attempt was also made to integrate outwards from © = O assum-
ing a regular solution. Unfortunately, due to the lack of any definite
intial conditions, there were too many unknown parameters and the attempt

was abandoned.

In the figures we have concentrated mainly on showing the behaviour
of the metric function S . The electrostatic potential a, was found
to have properties very similar to S . The matter density D always has

the form indicated in Fig. 2.



CHAPTER VIII

ALTERNATIVE LAGRANGIAN DENSITIES

In Chapter II we discussed how to introduce the gravitational
interaction by a simple generalisation of the flat-space theory. We
assumed that the total Lagrangian density for the system could be written
in the form £ = JfF + Iq , where IQ depended only on the gravi-
tational potential ¢ and its first partial derivatives. The "field"
part iF was known in the special relativistic limit and its generali-
sation was unambiguous. However, the one uncertainty in our theory lay
in the choice of iq . In the choice we made, we were guided by a desire
for simplicity and by a desire to have a theory whose predictions for the
perihelion advance of test particles were the same as those of the
Einstein theory. A possibility exists, however, that the study of the
oblateness of the Sun may indicate an error in the Einsteinian prediction
for the perihelion advance of Mercury, and in that case the choice of an
alternative Lagrangian density for our theory would be justified. 1In
the context of the present work, moreover, the modified equations may
lead to solutions which are regular everywhere. Consider, then, instead

of (2.42) the gravitational Lagrangian density
Lo = k8?90, 4, exp(ae(h-4)),
K S?‘_Q 3/“ Ct),y ‘bm ) (8"'1)

where A\ is a constant. If A = [ then we are back to the case which

we have studied already, and which predicts the same perihelion advance
for test-particles as the Einstein theory. If A = - ) , then, as

Rastall (1968b) has shown, the energy densities of the gravitational and

-

-72-



73
matter fields behave in the same way as sources of the gravitational field.
The perihelion advance of test-particles is 8% less than that predicted
by general relativity and is compatible with Dicke's measurements of the
solar oblateness (Dicke 1967). Finally, with A = - 2 , the energy
densities of the gravitational and electromagnetic fields behave in the
same way as sources of the gravitational field and the prediction for the
perihelion advance of test particles is 167 less than occurs in general

relativity.

The modified gravitational equation is obtained in the usual way
by varying ,f, with respect to 43 . The variation of oﬁ,; is the same

as before, but (2.44) becomes, from (8.1)

fG=_ QKSR{damm_i_ A 2

QN

S¢ ;a; m
- (4 - SRDT .2

From (8.2) the gravitational field equation (2.48) becomes®
> A2 -y (u=>) 1 ? 73
S {lhmm_‘- 2“(\52 ¢,m - S ((ﬁ)ob - icve‘l cb)o)
- A 2
-7 ZKCEI <E2+B)
P 2 s( P¥°D p o —-DIPY°y + pBY) (8.3
xcg e © :
The Maxwell and Dirac equations of course remain unchanged.

The energy-momentum tensor is altered in a similar way. Using

(8.1), we find for the symmetrized energy-momentum tensor
- _ A-2 2 M
T/uv = X g (2 3” d>:?\ ¢)V - gV ghfcb'F@,\s
- ST(FAR,e - 4 8 FYR,)

- 22¢, S (J’B'«va - vvwxﬂq)> ' (8.4)



which takes the place of (2.59), and

'/1\"’0 - -k g (Cb,zm + S’ng:) + 1 (g%+8%)

- 1265 (TYR -vhrey) (8.5
S“§4>,m+ fc &, - (e T 41
5 (TL-iT)

(8.5) and (8.6) replace equations (2.60) and (2.61). The gravitational

equation for the time-independent system is now given by
5’§¢mm+ bl = e S (om)
K(‘" { (E1eA ,,)3( ¥ X, '“FCE‘)—(EIE} ) (8.7)
instead of (3.4), while (3.10) is replaced by
S (bomm * E 1) - ks S (Aem)|

-2 .
- S { (E1ecA) Clur+ivi?) -3 mecd Qut-wi)} | (8.8)

kcgt

For the case of spherical symmetry it can easily be shown that (3.31)

becomes

1 d dS
lC 2 dAc
S T ay U dy > = = % s+ )

"'“'KQ S— § CE-\‘ Re Ao — zmsce S)F
+ (E+ech, + %mFCJS>G2§ > (8.9)

or, in dimensionless notation, in place of (3.37)
2 g 24 S T o 2 459)2
/\S dr(r ) d S F (dfo
2T o2 =2
+ 78 (€+Qo—‘7‘;S>F

R T 13)6° (8.10)
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Asymptotic Solutions

In the region of negligible matter density the equations for the
system (4.1) and (4.2) become
L)
d 1 ds/z) - 47 G,

a1
dr a7 o

N, -2 dA, 2
AgTh T1<a'7> o (8.11)

.d; a2 dAo
dr(TS ir - 0 . (8.12)

PN

From (8.12) we get

[+ 1_2
%%’ - M5, (8.13)

where /L is a constant of integration. Inserting (8.13) into (8.11) we

obtain
N, 2
d (@ dS™)  MmGe A M o2 .
drl’ 3y J= T 2 Y : (8.14)
P N2 2 -4 ¥ -\
writing Y = S , W = (2TI'GE/LL IAY e )T ¢ , (8.14)
becomes
W A I'/-\)
y - = 5(" = 0 , (8.15)
Y
where the primes denote differentiation by W . This equation is valid

for all A except A = 0, which case has been studied previously.
Multiplying across by 3' and integrating we find

iyt At Y ¥/ = C,

T KIA) B > (8.16)

where C, is a constant. Integrating once again, we obtain

y
%y
(edlyga)z = G + U (8.17)

where €2 is another constant. Mo ¢, and (2 are determined by consider-

ing the forms of the electrostatic and gravitational potentials very far

from the centre. We require, for large 7

b - - M Ly o(r2) | (8.18)
c? T

€
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Ao = - =+ olrr) (8.19)

gl

where, as before, € is the charge and Mg the mass of the central body.

As an example we consider the case A = -2, From (8.17) we

obtain

y* & { (aez+ qu)’ —\} (8.20)

in the case where C,;¥#0 , and

y* - 2w o+ Cq (8.21)

where (3 1s a constant, in the special case ¢ = 0 . To determine

C, » Co , C3 we recall that gq = 8_2 and use (8.18). We find that

c, LeMe
‘_‘"-/‘1 J

Clcl = \I—C_Eﬁls—
l’!“/‘: )

G = 1 (8.22)

For .the solution (8.21) we require further more

Lm/u" ’

and, as we will see shortly, this means that the special case (8.21)

(8.23)

corresponds to the Weyl-Majumdar solution. From (8.13) we have

L

2 [
cjio - - S (8.24)
where |
2 -1
S = ( |+ 26U+ G LLQ) 5 (8.25)

in the first case, and

¢ = (1+ )’ . (8.26)
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in the second case. Solving (8.24) we obtain

¥ —
A, = ¢, + \/f Ce - o (f.‘iiﬂ.‘i) -
[»} [ "fTT GE (C‘QC;&_C‘) [ QM«V\' m .)

" (8.27)

for G0 , and

Ao = C5 — %S¢ '
o = G — 7\ 5 ﬁug(\ +2U),  (8.28)

in the Weyl-Majumdar case. For large T (small w ) we expand these

series and use (8.19) to derive the constants. We find

' 1
C - — \_/c_ ‘CE“ - 't ‘2- ( __gl_(._z__)
4 bn GE (C,z(';—c,) Vclzczz"cl )
C- - L BV . .
5 2 unG,
_ e
M = un ‘ (8.29)

We can substitute the value of /u thus obtained into (8.22) and.(8.23)

to obtain the final wvalues for the constants ¢ and C, . To sum ub,
the solutions obtained above are valid in the region where the mass density
is negligible. We can use them in‘the same way as the solutions of

Chapter IV to determine the boundary conditions for the electrostatic and

gravitational fields.

Weyl-Ma jumdar Relation

The Weyl-Majumdar relation valid for the modified Lagrangian
density is obtained, as in Chapter V, by considering the free-space

electrostatic-gravitational equations. These are, from (3.9), (8.8)

Om (S’B...AA= o , (8.30)

A 2 o 2
(iD)mm + 2¢2 Cb,m = %ZC‘E S lh(amAJ, (8.31)
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Using (5.6) we easily obtain
2
I
Oom Ay = 26 (PmAs) (8.32)

’bmm Ao - T+I;'. 4w CE S ~2-A _ |\ (4)) }(bm o) (8.33):
and hence
| ) L 2 g-2-7\
§ e nae)e) - s
which. yields, finally

g S(N’\/z)g ) LHA) LnTCe: Q- A

(8.34)
. . . . . CQ"Nz)
We can solve this equation in the following way. Letting y = S s
(8.34) becomes
n -2
Yy = gan (8.35)
Multiplying across by 'g’ , and integrating, we obtain
Ly _ G yaA by
- N+ P Jd
23) —&‘T(E"'}A)(q )5 '—“-2/‘\)
(8.36)
where A is a constant. The solution can be written as
44
d = = B + As (8.37)
\,A*Lgfﬁ‘
where B is a constant also, and
) umGe (uan)
= —_— A - (8.38)
CH Yy
For example, if A =0 , (8.37) can be immediately integrated to yield

(5.10). On the other hand, if A = -2 , then (8.37), (8.38) become

Y dﬂ
(aiby):= B + Ao (8.39)
p- wmhe | (8.40)

G
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Integrating (8.39), and solving for Yy we obtain

5 = -e Sn“ﬂl (EBJE +'Aodi;‘) )

= F cosh (kA + G sk (VkAo) (8.41)
where F = AL™ sl (7B) , G =AM osA(EB) .
Without loss of generality we can set F = | and obtain, finally

y = @sh(ViA) + G snk (WAS) (8.42)

By methods similar to those used in Chapter V we can show that

2
4w Ge M
G = __i:__e (8.43)
. &
When G = | , the Weyl-Majumdar solution is involved and the system of
equations (8.30), (8.31) reduces to the single Laplace equation
Dem&)= 0 . (8.44)

Conclusion

In this work we have investigated and found static, spherically
symmetric solutions of the combined Dirac-electromagnetic-gravitational
field equations.. We have shown the existence of normalised solutions which
describe spherical, shell-like models for particles. Unfortunately,
these solutions involve electrostatic and gravitational fields which are
not regular at the origin. Our investigations have led us to the conclu-
sion that such solutions do not exist, at least within the framework of the
present theory. It is possible that the choice of a different Lagrangian
density for the gravitational field might lead to equations which do pro-
duce regular solutionsl Another possibility is that we might abandon the
‘assumption, E = MECE{ of Chapter VI. (In Chapter VIII, some alternative

Lagrangian densities are investigated.)

The 'solutions' found correspond to objects with mass of the
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order of 4.8 x 10.'6 grams, inner radius 7.5 x 10—36 cms, and outer radius
3.7 x 10-34 cms. They are thus much heavier and more compact than any of
the known elementary particles. Of course, since we are using an un-

quantized theory, it would be unreasonable to expect models which corres-

pond to actual physical objects.

Another possible explanation for the properties of our solutions
is that our (implicit) assumptions regarding the topology of space in
the inner region are incorrect. 1In this context it is instructive to
consider the ideas of Wheeler (1968) on the geometrodynamical description
of electric charge. 1In his view electric charges are nothing but sets
of lines of force trapped in "wormholes'. Our inner singular region
should perhaps be replaced by the mouth of such a wormhole.

Wheeler (1968) has also shown that, if one deals in distances of

33 cms, then, strictly speaking,

the order of the Planck length, 1.6 x 10~
one should use quantum geometrodynamics, if one knew how. In the present
state of our knowledge, however, we can only explore, as deeply as possible,

the classical theory in the hope that some day the results may be of use

in the study of the more complete theory.



8l.
BIBLIOGRAPHY

Bade, W, L. and Jehle, H. 1953. Rev. Mod. Phys. 25, 714.

Bethe, H. A. and Salpeter, E,. E; 1957. Encyclopaedia of Physics, 35,
Part 1 (Springer, Berlin).

Bonnor, W, B. 1960, Zeits fur Physik 160, 59.

1965. Mon. Not. R. Astr. Soc. 129, 443.
Brill, D. R. and Wheeler, J. A. 1957. Rev. Mod:. Phys. 29, 465.

Corinalderi, E. and Strocchi, F. 1963. Relativistic Wave Mechanics
(North-Holland, Amsterdam).

Das, A. 1962. Proc. Roy. Soc. A267, 1.

1963. J. Math. Phys. 4, 45.
Das, A. and Coffman, C. V. 1967. J. Math. Physc..8, 1720.
Dicke, R. H. and Goldenberg, H. M, 1967. Phys. Rev. Letters 18, 313.
Dirac. P. A, M. 1951. Proc. Roy. Soc. 209A, 291. )
Feinblum, D, A. and McKinley, W. A, 1968. Phys. Rev. 168, 1445.
Kaup, D. J. 1968. Phys. Rev. 172, 1331.

Kamke, E. 1959. Differentialgleichungan Losungsmethoden und Losungen
‘(Chelsea Publishing House, New York).

Majumdar, S. D. 1947. Phys. Rev. 72, 390.

‘Mukher jee, M. N. 1963. Nuovo Cimento 27, 1347.

Papapetrou, A. 1947. Proc. Roy. Irish Acad. A51, 191.

Power, E. A, and Wheeler, J. A, 1957. Rev. Mod. Phys. 29, 480.

Rastall, P. 1968a. Can. J. Phys. 46, 2155.
1968b. J. Phys. A. 1, 501.

Rose, M, E. 1961. Relativistic Electron Theory (John Wiley and Sons,
New York).

Weyl, H. 1917. Ann. Phys. 54, 117.

Wheeler, J. A, 1955. Phys. Rev. 97, 511.

1968. Topics in Nonlinear Physics (edited by N.J. Zabruski,
Springer-Verlag, New York).




