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ABSTRACT
A series of ab initio calculations has been

performed in the Born-Oppenheimer approximation for some
electronic states of OH. Wavefunctions and energies are
calculated variationally. The form chosen for the wave-
function is a finite linear superposition of configurations.
Molecular orbitals are formed by Schmidt-orthogonalizing
the atomic orbitals, each of which is represented by a
single Slater-type orbital. The variational parameters
are the coefficients in the linear expansion of the wave-
function, and the non-linear‘parameters ghof the Slater-
type orbitals.

’ Wavefunctions and potential energy curves are
given for some of the lower-lying 2257f and 2rTstates.
One result of note is that the lowest %ZE;- state is bound.
This disagrees with an earlier calculation (Harris and
Michels, 1969), but it is in accord with a recent inter-

pretation of the spectrum (Pryce, 1971).
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CHAPTER I
INTRODUCTION

l. Motivation

The OH molecule is one of the simpler diatomic:
hydrides, and has been studied experimentally for many years.
Its spectrum has been detected in the upper atmosphere, in
comets (Herzberg, 1971), and in the interstellar medium
(Terzian and Scharlemann,vl970). Its presence in the last
medium is most puzzling. It appears that the OH is forming
a natural maser. Various pumping mechanisms have been pro-
posed, none of which can satisfactorily explain all the
observed features. A knowledge of the electronically excited
states of OH might be helpful in selecting some possible
pumping mechanisms.,

Only a few electroniecally excited states of OH
have been detected, however. The difficulty is not in the
obtaining of laboratory spectra, but in their interpretation.
This interpretation would be aided greatly if it were even
only roughly known which bound excited states exist, how
deeplf bound they are, and what their equilibrium separations
are.

There is a need, therefore, for a calculation
from first principles of the properties of the electronically

excited states of OH.
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2. The Nature of Potential Energy Curves

The total non-relativistic: Hamiltonian for the OH

molecule is, neglecting spin,

:
Hyoy (P RpoByoTy) = Z P2/am + 2 p2/2m + 8e2/ Ry,

i=1
2 2 2 -
v3 S /R -2 2 IR aa
i¥%=l I=1 i=1

In (1.1), upper-case letters refer to the nuclei,

and lower-case letters to the electrons, Thus P z

I’ I’ I
are the momentum operator, mass, and charge in units of e
of the Ith nucleus, and ;& and m are the momentum operator

;th electron.

and mass of the i
The first term in (1.1) represents the kinetic
energy of the O and H nuclei. The second term is the
kinetic energy of the nine electrons. The third is the
repulsion between the oxygen nucleus, with charge +8e,
and the hydrogen nucleus, with charge +e. The fourth is
the electron=-electron repulsion, and the last describes the
electron-nuclei attractions.
It is desired to find some of the eigenvalues
By ot 2nd eigenfunctions ‘i?tot of H to a reasonable

tot?
approximation:

= 1.
Ht;ot: kP tot Et;ot Ttot (1.2)
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To a good approximation, k;? can be written

tot
as the product of a part (izel referring only to the electrons
and to the relative positions of the nuclei, and a part
‘{2 nuc:referring only to the nuclei (Born and Oppenheimer,
1927). Thislapprdximation can be made plausible by the
following classical argument:

The nuclei are so much more massive than the
electrons that the electrons move relatively quickly. As
the electrons travel around the nuclei, the nuclei hardly
move at all. Thus to a good approximation, the electrons
move in the field of two fixed nuclei a distance R =‘§&4§é\
apart. Let V(R) be the total energy of this system. Then
the effect of the electrons can be simulated by the effective
nucleus-nucleus potential V(R).

The problem of finding the solution of (1.2) has
now been reduced in this approximation to finding the

solutions of

> =
H, (B TpR) Ty =vi) P, (1.3)
and

> >
Hnuc(PI’RI;R) k'i)nuc: = Etot nuc? (1.4)
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H l(?. ,'?. sR) = Z p'.2/2m + 1 Z ez/\?.-?
e 1°71 j=1 L i,j=1 i°]
i#j
-3
+ 8e2/R - = z %/ |R; -7, | (1.5)
I=1 i=l
and
-» > 2
r o 2
Hnuc‘(,PI,RI,R) -IZ=; PI/ZMI + V(R). (1.6)

Hel is the Hamiltonian for the motion of the
electrons in the field of two nuclei fixed a distance R
apart. Since Hel is invariant under translations, it depends
on the positions of the nuclei only through R, considered
as a fixed parameter, despite the explicit appearance of
By in (1.5).

Hnuc is the Hamiltonian for the two nuclei in a
potential V(R). A graph of V versus R is called a potential
energy curve. There will in general be a large number of
them, one for each solution of (1.3), corresponding to
different electronic states.

As R =»0Q, potential energy curves flatten out,
because the molecule separates into two non-interacting

atoms or ions. As R-»0, potential energy curves rise

rapidly, because the term oC 1/R becomes dominant.
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At intermediate values of R, potential energy
curves can have any shape. One possibility is a curve which
decreases monotonically as R—>&. This corresponds to a
repulsive state. Another possibility is a single minimum
in the curve, which, if deep enough, corresponds to a bound
state. This is quite common in the lowest electronic state.

Not all curves have such a simple shape. The
curve for a state of a given symmetry type*does not cross
a curve of a state of the same type. Avoided curve crossing

can give rise to curves of quite complicated shapes.

* The symmetry types are given in Chapter III.



CHAPTER II
METHOD OF CALCULATION

It is necessary to solve equation (1.3) for the
energies V(i)(R) and the associated wavefunctions kﬁ? éi
for i =1,...,N, where N is the number of potential energy
curves which are to be computed. The states will be labeled
so that V(l)(R) is the lowest energy at a given R, v(?)
is the second lowest, etc.

One of the most straightforward ways of solving
(1.3) is the Variational Method. Suppose a trial wave-
function FE"i’ is chosen* that depends on a finite number
of parameters 0(51)(R) Then the values of Cx(l) which
make Sfl(l)( OL(l)) as good a solution of (1.3) as possible
are those which minimize the energy.

1r v (g; 0(3.1)) is defined by

S @ug
ﬁfm* @ Wy

where‘j(:..dv means integration over all space, then the

, (2.1)

V(i)(R; O<§l)) -

condition for a minimum is

‘ (1) (i)2
0 o< Socj

0. (2.2)

i
o

* Henceforth, the subscript on both H and will
-be omltted. el el ti?el
6
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(1)) is always.an upper bound to the true energy

vii)(g),

It is convenient to divide the parameters C(gi)
into two classes: those upon which the wavefunctions depend
linearly, and those upon which they depend non-linearly.

Let {@(1)} ,{j l((i )} be these two classes,resbectively.

J
Then the wavefunctions can be written

?(1) - ZJ_ ﬂgl) (71/31)( 'b/l({l)) (2.3)

For convenience, the 9U§l) are taken to be orthonormal:

f ngi)* (7Vl({i)dV _ ij ' (2.1)

For the next few paragraphs the internuclear
distance is considered fixed at a particular value R.

If, at this R, the 3}((1) are also fixed, it is
relatively easy to calculate the F?gi) using matrix algebra.
Equation (2.2) is equivalent to the problem of finding the
lowest eigenvalue V(i)(R;cxgi)) and the corresponding eigen-
value of the matrix of the electron Hamiltonian H between
the basis states 9”51).

The results still depend upon the 2/£i). The

aléi) should be varied in a systematic way so that the

lowest energy eigenvalue becomes a minimum.

In practice, this procedure is tedious and time-

consuming, even on a high-speed computer. This is because
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it must be repeated for each wavefunction kig(i) and for
many values of vl({i) until the correct \d}({i) are found.

One possible resolution presents itself immed-
iately: use no non-linear parameters. If enough linear
parameters are used, the set Sbgi) becomes almost complete,
and no non-linear parameters are needed., A difficulty with
this method is that a very large number of linear para-
meters are often needed to simulate the effect of a single
well-chosen non-linear parameter. The approach taken in
this work is to use non-linear parameters, but only as few
as necessary.

Another way to speed up the calculation, although
at the expense of accuracy, is to choose the 9/§i) and

Z’éi) to be independent of (i). Then the lowest eigen-

value of the H-matrix is an upper bound to V(l)(R), the
second lowest eigenvalue is an upper bound to V(z)(R), etc.
In this way, if the basis states Q%jfs 9V§i) are well
chosen, good approximations to all the desired V(i)(R) can
be calculated with a single diagonalization of the H-matrix.

The /Béi) are still calculated in accordance with
(2.2). There is now, however, no single prescription for
calculating the in ¥ 1(<i) since there is no longer just

one eigenvalue corresponding to the set {?k}, but N of them.

One prescription often used is to choose the Xk

s0 that VI(’l)(R; O(k) is a minimum. The lowest energy state
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is then well described. It is hoped that these 2(k will
also provide a reasonable description of the higher states.

If only the lowest state is to be calculated, this
prescription is the best. On the other hand, if one is inter-
ested in the M lowest-lying states, where 1€¢MS&N, there is no
reason to suppose that this method will adequately describe
states 2,3,...,M unless N is very large.

A different prescription is therefore used in this
work. The Xk are chosen so that the average energy of the

lowest M states is a minimum. If

V= 1M %l y(i) (2.5)
= |

is the average energy, then it is required that V satisfy
97V | A
. 2

2 ¥k LR

It is reasonable to expect that (2.6) will provide

i
o]

>0 . (2.6)

quite good >{k’ because each one of the M states of interest
is thereby treated on an equal footing, in contrast with the
usual prescription, which distinguishes the lowest energy
state.

To produce good potential energy curves, calculat-
ions must be done at many values of R. If the above pro-
cedure had to be repeated at each R, it would be very time-
consuming. It is not the calculation of the (1) which is

J
so difficult, but the determination of the 2( « The reason
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is that the only way in general to find the 3 k'which
minimize '\Tis to vary Xk systematically. For each set
of trial wvalues b/k, the H-matrix must be calculated and
diagonalized.

The solutiéon to this difficulty adopted in this
work is to calculate the X;(R) at only a few selected
values of R, and to estimate Xk(R) for other values of R
by polynomial extrapolation or interpolation. The /3§i)(n)
are still calculated at all R because the calculation does not
take very much time. This approach is reasonably successful
because it is found that in practice the Efk(R) are rather

smooth functions of R.



CHAPTER III
CLASSIFICATION OF THE ELECTRONIC STATES

The electronic Hamilténian H =H,, defined by
equation (l1.5), contains no spin terms. It commutes with
a number of operators. These include Sz,SZ,LZ,Jz, and 02 .
82 is the square of the total spin operator, S, is the
component of spin angular momentum along the internuclear

axis (z axis), L_, is the z-component of the electronic

Z
orbital angular momentum, JZ = LZ* SZ is the total electronic
angular momentum along the z-axis, and JE is the operator
of reflection through a plane passing through the z-axis.
A number of these operators conmute with each other; others
do not.

For example, &? and LZ do not commute. To see

this, consider the case of one electron, rather than nine.

In this case, LZ is given in co-ordinate space by

L = 3 9 : (3.
z 9P

where ?9 is the azimuthal angle in cylindrical polar co-

ordinates, with the internuclear axis as the axis of symmetry.

The reflection 4? in co-ordinate space causes
R PP - (3.2)

and therefore

11
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Z? 2 L= ;a L, 9{ - L,

(3.3)

SO 08 and LZ do not commute. In fact, 52 takes an eigen-

state of LZ with eigenvalue m into an eigenstate of LZ

with eigenvalue -m, as can be seen from (3.3).

SZ and J

2

are, like L., z-components of angular-momentum operators,

and similar conclusions follow for them.

ﬂz can then be written as the product of two

operators, Z?L and &?S’ which commute with one another:

9? = ﬂ?L ZQ:3:= aES ZeL ‘
ZQL is the operator which causes
%L: L,— %LLZ %I:l =L,
and Z?S causes
-1
Rs: s, R, R =-s, -

a?L and 5PS each commute with H. By (3.5},

(3.4)

(3.5)

(3.6)

aEL commutes

with ‘LZ\, and by (3.6), Z?S commutes with 'Szl' '

The operators H,Sz,sz,\LZ\,‘Jz‘and

'5€L then all

commute with one another, and it is possible to classify

the stationary states ;}?(1) of H into different classes

labeled by the eigenvalues of SZ,SZ,\LZ\,\JZ\and 9?L. The

matrix elements of H between states belonging to two different

classes vanish. As a result, it is only necessary to

consider states of the same class when doing a calculation.
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The eigenvalues of ,Lzl can take on the values
t\ A, where /\ = 0,1,2, etc. Eigenstates of 'LZ! with these
eigenvalues are called ;E:,'Twl Z&” etc. states, respectively.
The multiplicity of a state ‘P‘1) is defined to be 2s+1,

where
5% \?(i) = h%(s41) \—E(i) . (3.7)

The multiplicity is indicated by a superscript, e.g. 2]_Y is
a W_T state with s = 3.,
Since ﬂ?% =1, ZQL can have eigenvalues 21.
The appropriate eigenvalue is indicated by a superscript,
e.g. l,;E;-,
The eigenvalue of 'JZI,-hjl, is indicated by writing
L asa subécript, €.ge zlxwf
Two states of different types can be degenerate.
For example, the energy is independent of SZ and Jz. Also,
states with /\ # O have energies which are independent of
whether they have +1 or -1 as the eigenvalue of Z{L'
However, if from a given ;E:state which is not an eigenstate
of ZEL, both a 2. and a ZZ;' state can be formed, then
these two will not be degenerate. The explanation for this
will be given in Chapter IV, Section 7, where the method of
construction of :E;i states is given.
Because of this, it does not matter if the states
with /\ # 0 are eigenvectors of 0?1_ . Such states can then

be classified into groups labeled by the eigenvalues of
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SZ,SZ,LZ, and Jz‘ In these groups, states which differ only
in the sign of Sz’Lz’ or JZ are degenerate.

Since one is interested in calculating only non-
degenerate states, it will be understood in what follows
that the maximum possible values of SZ and LZ are to be
taken. For example, by a 2]_r state will be meant a state
withLz=+‘H , s, =+% .

In the next chapter, the construction of trial
wavefunctions possessing symmetries such as those mentioned

above will be described.



CHAPTER IV

CONSTRUCTION OF TRIAL WAVEFUNCTIONS
OF A GIVEN SYMMETRY TYPE

1. Atomic Orbitals

It is well known that, to a large degree, the
motions of electrons in atoms or molecules are uncorrel-
ated, so that the electron wavefunction approximately
factors into a product of one-electron wavefunctions, or
orbitals.

The OH molecule has cylindrical symmetry about the
internuclear axis. It is reasonable to choose orbitals which
are adapted to this symmetry.

However, another approach is possible. Because
the charge on the oxygen nucleus is éight times that on the
hydrogen nucleus, there is, at small R, a point of rotational
symmetry--the O nucleus. At large R, there is little inter=-
action between the two nuclei, so that there are two points
of spherical symmetry--the nuclei.

This suggests an alternative approach, the one
taken here, namely, that the orbitals should be constructed
from things which are centred on the nuclei. These atomic

orbitals are of the form

¢(r, 9,?) = R(r) Y, (9,50). (4,1)

15
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(r, 6,?) form a spherical polar co-ordinate system, which
may have its origin at either the O or H nucleus. Ylm is
a spherical function. This is convenient because the Ylm

are eigenfunctions of L,:

LZYlm = mYlm . (11-02)

Equation (4.2) is true independently of which nucleus ¢ is
centred upon.
The radial part R(r) of the atomic orbital has

been chosen in this work to be of the Slater form
R(r) = N(n,§ )r""le‘§ r., (4.3)

N is a normalization constant. n plays a role analogous to
that of the principal gquantum number in the hydrogen atom
wavefunction. _j; is a parameter which determines how quickly
R(r) drops off with increasing r. The g'cﬁ‘the different
atomic orbitals are the non-linear parameters mentioned in
Chapter IT. n could also have been chosen as a non-linear
parameter, but this was not done for two reasons. First, one
non-linear parameter per atomic orbital is probably enough.
Second, if n is fixed at an integer valuely the integrals
which have to be evaluated are easier to calculate.

In order to provide a reasonable description of the
low-lying electronic: states of OH, it was decided to select
atomic orbitals of two types. The first type consisted of

those atomic orbitals which are occupied in the ground
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states of oxygen and hydrogen. These are the ls, 2s, and 2p
orbitals on oxygen and ls on hydrogen.

The second type consisted of those atomic orbitals
not included in the first type which are occupied in the
lower-lying excited states of oxygen and hydrogen. These are
the 3s, 3p, and 3d atomic orbitals on oxygen and the 2s and
2p atomic orbitals on hydrogen.

The number of ¢ (m=0) orbitals is then nine: 1s,
2s,2pd ,3s,3pd ,3dd on oxygen, and (1s)y,(2s)y,(2pg)y on
hydrogen. There are four T (m=+1) orbitals: 2pm,3pnr,
3d™ on oxygen, and (ZpK)H on hydrogen. There are four
corresponding T (m=-1) orbitals. There is one S (m=2)
orbital: 3d5 on oxygen, and a 3d§von oxygen. This is a

total of nineteen atomic orbitals.

2. Molecular Orbitals

The atomic orbitals are not all orthogonal. For
example, the overlap integral between the 2p atomic orbital
and the (1s)H does not vanish, unless R=0 or R=00,

The expressions for the matrix elements of H*
are simpler if the electron orbitals are orthonormal.
Orthonormal orbitals can be formed by taking appropriate
linear combinations of atomic orbitals. Since these linear

combinations can involve atomic orbitals centred on both

¥ See Chapter V, Section 1 for these expre351ons. Also
see Appendix 1.
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nuclei, the linear combinations mayvbe appropriately called
molecular orbitals.

There are infinitely many ways of forming ortho-
normal molecular orbitals from a given set of atomic orbitals,
if there is one way. This can be seen as follows: One set
of orthonormal molecular orbitals forms an orthonormal
basis of the vector space of electron orbitals spanned by
the atomic orbitals. Such a basis can be rotated at will
to form another orthonormal basis, that is, another set of
orthonormal molecular orbitals.

Since there is a high degree of arbitrariness in
the molecular orbitals, there is freedom to choose them so
that they are good approximations to the orbitals in OH.

One of the convenient properties of OH is that the charge

on the H nucleus is eight times smaller than that on the O
nucleus. This implies that, unless OH is in a highly excited
state, the inner electron orbitals are oxygen atomic orbitals.
At large R, another group of molecular orbitals looks like
atomic orbitals on hydrogen. The molecular orbitals formed
should then be chosen so that they look as much as possible
like atomic orbitals.

A way of ensuring this, which is also computat-
ionally convenient, is Schmidt orthogonalization. This
procedure will be demonstrated using the ¢ molecular

orbitals.
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The innermost orbital looks much like a 1ls atomic
orbital on oxygen, so the first O molecular orbital, 16 ’

is chosen to be this atomic: orbital:
18 = 1s (4ody)

The next innermost orbital looks like a 2s orbital centred
on oxygen. The second ¢§ molecular orbital, 2& , which
is chosen to represent this, consists of a 2s oxygen orbital
minus enough of a ls oxygen orbital to make 24 and 18
orthogonal:

2s-1<$/16 *2sdV
26 = (LI'OS)

1//( 2s-1d/ 106 *ZSdV)*(Zs-lCS[ 16 *2st) av

The factor g/v”‘ ensures that 2¢ is properly normalized.

The next & molecular orbital, 3¢ , consists
solely of a 2pd atomic orbital on oxygen, because the p
orbital is already orthogonal to the 1¢ and 28 molecular
orbitals, which are s orbitals. |

The first © molecular orbital to deserve the
adjective 'molecular' because it is a linear combination of
an atomic orbital on hydrogen and atomic orbitals on oxygen
is the 7@ molecular orbital.

A list of the molecular orbitals and their con-

stituents is contained in Table 4.1 on page 20.
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Table 4.1
Molecular Orbitals

¢ Molecular Orbitals

Main Other
Constituent Constituents
16 1s
20 2s 1s
3¢ 2pG
L 3s 1ls,2s
50 3pC 2pg
6C 3ds
70 (1s)y 1s,2s,2pd,3s,3ps,3ds.
8C (2s)H 'ls,2$,2p5,33,3p1,3dd,(ls)H
96 (2ps) 1s,2s,2pG,3s,3pd,3dd,

N Molecular Orbitals

Main Other
Constituent Constituents
it 2PT
27 3pT 2pTy
3w 34t
LT (2pm)y 2pTr,3pw, 3dT.

$ Molecular Orbital
1§ = 34§ .
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3. Spin Eigenfunctions

By the Pauli Prineiple, a molecular orbital can
be occupied by at most two electrons, and, if the orbital
is doubly occupied, the spins of the two electrons must be
antiparallel and coupled in such a way as to form a system
of total spin zero. In a discussion of the spin properties
of OH, then, any doubly-occupied molecular orbital can be
neglected.

Since OH has nine electrons, there can be either
1, 3, 5, 7, or 9 singly-occupied molecular orbitals in the
wavefunction*. The spins of the electrons in these orbitals
must be such that the total wavefunction is an eigenstate

of 82

and Sz‘ The task at hand is then to construct spin
eigenfunctions of 32 and Sz for a given odd number of
electrons.

Attention will be restricted to spin doublets
(s = 32). The reasons for this choice are explained in
Chapters VII and VIII.

With one electron, there is only one way to form
a state with s = 4, s, = +%1i, namely, spin ‘up', denoted

X or 1\.

With three electrons, there are two ways to form

a spin doublet. The reason is seen most easily using

* Remember that it is assumed that the wavefunction
factors into a product of molecular orbitals.
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the Branching Diagrams in Figure 4.1. This type of diagram
shows. graphically how the spins of a group of electrons can
be coupled, one at a time.

Two of the three electrons can be coupled to form
either a singlet or a triplet. The singlet is shown in
ITI-1, the triplet in III-Z.

To develop explicit expressions for these states,
Clebsch-Gordon coefficients are used. Let |s,sz;ﬁ> denote
an N-electron state which is an eigenstate of 82 and SZ
with eigenvalues 'hzs(s+l) and'ﬁsz, respectively. Then
« =_13,3;) ana p= |3,-:) .

The singlet is
V711608, -5 -V?I%:,—%;Dl 3,41
VE(ap-pat). (4.6)

The triplet with s, = 1lis

11,5:2) = |3, 3,50

X . (4.7)

i 0’0;27

I

]

The triplet with s, = 0 is

12,052 = 3 |1.50 ] 5,-5D 7 1,50 3,50
@dpwa). (4.8)

il

i
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Figure 4.1l. Branching Diagrams for Spin Doublets
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To form a doublet with three electrons, the third
electron can be coupled with either the singlet or the
triplet.

If the electron is coupled with the singlet, then

l0,0;2] 3,3;
BET - Bt )
ﬁ(apa - ok ). (4.9)

If the electron is coupled with the triplet, then
13,39 = V311,152 |4,-3;1) 151,038,450
F (aoip -5 W (ap +pot )

(2 otetpp - Bt - poich y/Ye . (4.10)

\ %;%;3>

i

it

The spin states defined in (4.9) and (4.10) form
an orthonormal basis of the space of eigenfunctions of 82
and S corresponding to eigenvalues -%132 and +Fh , for
three electrons. Similiar basis states can be formed for
five electrons.

The basis states for one, three, and five electrons

coupled to form doublets are listed in Table 4.2.
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Table 4.2

Spin Eigenfunctions

One electron
I-1 :: «
Three electrons

1111 : N3 (opo - poc)
III-2 @ (200p-opol - pock) /6’

Five electrons
V-1l \[;o(oto(f;{)-\fg( o(a&(sotp +o(poux(5 + pow(ap
+ d\d(ﬁPO\ + o‘PdPO\-q- PO(O(PO\
- dPPdo( - Pd(bdot - Fpo\o&o()
v-2 : 3 ““pd(a -goc(uup- —3‘-(;«««‘5
~§ el p St +—“-d{5dpo( + § oo pak
-tdF‘de--"-PelPde(+ 3 pp xea
V-3 : VE(Kpaap - oiddp )
- \FE(epapet - pedpd +appold - papda )
V-4 =E;(4“PP4*'PPddd)
- W—g(d(jd{}d + pdelpd + dP(ﬁdd +{3d(3dd )
V-5 : 3(dpdpd - pola(pa - dpBdd +pafdd )
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L+ Spatial Parts of the Configurations

Since the electrons are to a large degree un-
N "
correlated, the spatial part, 93, of each configuration
y% was chosen to be a product of nine of the molecular
orbitals 3(, constructed in Section 2 of this chapter.
L d

An example of a (/JJ. is
(1d )% (2d )12 (1T ) (30 )% (11T )? (4.11)

In (4.11), the superscript 2 indicates that the correspond=-
ing molecular orbital is doubly occupied.

The symmetry properties of‘EEe Vé place certain
restrictions on the possible forms YG can have. Because
the Vé are antisymmetric, ththguli Principle restricts
the molecular orbitals :xzin qé to be no more than doubly=-
occupied. The example in (4.11l) obeys this restriction.

The 93 are eigenfunctions of 82. Since there
is only one singly-occupied molecular orbital in (4.11),
(4.11) could be used only in a calculation for spin doublets.

The‘ggojection mtogﬁ of the total angular
momentum of 9§ upon the internuclear axis is the sum of
the projection m of the angulér momentum of each molecular
orbital. Thus m for (4.11) is 1, so (4.11) can give

tot
rise only to a T—rstate. (4.11) is, in fact, the spatial

* The basis states VJ w1ll henceforth be called con-
figurations.
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part of that configuration which is the main contributor
to the ZT_T ground state of OH at its equilibrium separation.

Even wiEE{these restrictions there are still a
large number of SPS which can be formed from the nine-
teen molecular orbitals. From this large number, a small
subset must be chosen in order to make the calculation
tractable.

With a single exception, all configurations* chosen
in this work have a 'frozen core'; that is, they all contain
(lcﬁ)z(ch)z. The reasoning behind this restriction is
that these innermost four electrons are well shielded by
the other five from the influence of the hydrogen nucleus.
This approximation will break down .only in highly excited
states, which are not considered here.

The orbitals 10,208 ,30,70,1T , and 1T are very
important in the construction of configurations because
they are low in energy, and are the most important orbitals
in the ground state of OH (see (4.11), for example). It
is reasonable, then, to include all configurations formed
from these orbitals in the calculation.

The other molecular orbitals are higher in energy.
Those configurations with one singly-occupied orbital of
this type can be expected to be the main constituents of the
lower-lying excited states, and all such configurations

should be included in the chosen subset.

% One 2'22:' configuration chosen in this work has a singly-
occupied 2¢& orbital. See Section 1 of Chapter VIII for
a discussion of this configuration.
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The configurations with two of the higher-energy
orbitals will probably be quite high in energy, and thus
will not be major contributors to the states of interest, in
general,

In the next three sections, the combination of

;ijj with the spin eigenfu‘nctions Qk constructed in

Section 3 of this chapter to form configurations of a desired

symmetry type will be described.

5. Slater Determinants

The spin eigenfunctions éa_constructed in
Section 3 of this chapter are linear combinations of products

single electron spins.
A =Jchi@j , (4.12)

where the Cji are real numbers, and (:)j is a product of an
| 1
odd number of &X' s and p S.
L d

The problem of combining the 93 with the é;i

will be considered in the next section. In this section,
P d

the simpler problem of.combining Wj with one of @k
will be considered.

A Slater Determinant is an antisymmetrized product

of spatial and spin wavefunctions of the form

5; = A % @k) .- (4.13)
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L

In (4.13), each doubly-occupied orbital in 999
is occupied by one electron with spin up, and one with spin

L d
down. The singly-occupied orbitals of 93 have their spins
assigned according to G;&ﬂ which has as many spins as there
Lon 4

are singly-occupied orbitals in 93' Thus, for example,

the un-antisymmetrized product of (4.11l) with ™ is

st Wece e h)axhet)ysghathand) .
(4.14)

The above is a wavefunction in which electron number 1 is
in a 1@ orbital with spin up, number 2 is in a 1J orbital
with spin down, ete. It treats the electrons, therefore,
as distinguishable particles.

Because electrons are indistinguishable fermions,
their wavefunction should be totally antisymmetric. The
antisymmetrization operator }¢’used in (4.13) accomplishes
this. The application of 4 to the wavefunction (4.14)
produces a wavefunction which is a sum of 9! terms.. Each
térm is like (4.1l4), except that the electron labels are
permuted in such a way that the total wavefunction is anti-
symmetric under interchange of any two electron labels.

The Slater Determinants are eigenfunctions of
A4 » as well as eigenfunctions of L, and S_ . They are not

’

in general, eigenfunctions of Sz, ﬂeL, or H.
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6. Configurations for Non-z States

The configuration % may be written as

s
Wy - s ¥, 6o , (4.15)

L d

where 61( is a spin eigenfunction compatible with %
Using (4.12) and (4.13), % can be written as a linear
combination of Slater Determinants:
W, =§k_ ci Sk - (4.16)
% is an eigenfunction of Lz’ M”, 82, and S, .
It is not, in general, an eigenfunction of RL or H. For
non- Zstates, it is not necessary in this approximation

that they be eigenfunctions of RL’ as noted in Cha'pter I1T.

7. Configurations for ZStates

Suppose that % is a configuration which is an
eigenstate of Lz, but not an eigenstate of WL’ Define
the reflected state 9”? by

Wi - RL W . (4.17)

From % and SVS{ it is possible to construct two
+ - . .
states, SVJ. and (Fj’ which are eigenstates of QL with
eigenvalues +1 and -1, respectively:

+

(.//3 = Nt( % 1(70?) . (4.18)
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g
N are normalization constants.

N— = ’ (h'lg)

Vet
where (¥is the overlap integral

& - f‘#;* Wav . (4.20)

R
QVj and 9Uj are degenerate.

fsugf*H(]Uf;dv =f(7UjH %dv = E . (4.21)

However, 9”;

and 903 do not necessarily have the same

energy:

J W5 Y-y e e -
_f__@?[fsug‘*ﬁ %dv—EG/]. (4.22)
— |

If qé is an eigenstate of LZ with non-zero
eigenvalue, then the right-hand side of (4.22) vanishes,
and qj and qj are degenerate, as noted in Chapter III.
However, if (+I is a zzlstate, then the right-hand side of
(4.22) does not necessarily vanish, and the :E: and :E;-
state are not, in general, degenerate.

The 9’? are, like SPS, linear combinations of

Slater Determinants.
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Caution must be used in the construction of eigen-
states of 1 because a linearly dependeng seE of basis
vectors can result. For example, the two JE; states
constructed by combining (170 ) (1T ) (3G ) with couplings
ITI-1 and III-2 form a linearly dependent set of states.
More precisely, the ZZ- state formed from (17 )(1T ) (3G )

and coupling III-l vanishes identically.



CHAPTER V
THE HAMILTONIAN MATRIX
-+
Once the configurations (//J (or SUS, in the case
of:E:states) have been formed, the matrix elements of the

Hamiltonian can be calculated.

Hy g = fsuf H %dv (5.1)

By (4.16), Hij can be written as a linear c¢ombination of

matrix elements of H between Slater Determinants.

*
Hy 5 = };_- Zl ik ©j1 fsk H S,dV (5.2)

The general form of H is a sum of zero-electron, one-electron,

and two-electron operators.

H=h_ + Z h](_i) + -5-27;_ héi’j) , (5.3)
i#j

i
where
h, = 8/& (5.4)
h{i) = -3 <7§ - 8/ri = l/|;1;§| ’ (5.5
and
it d) < /)R A (5.6)

33
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In (5.4) to (5.6), atomic: units (e='h2/m=l)
have been used. The unit of length is the Bohr radius and
the unit of energy is the Hartree (1 Hartree = 27.2 e.v.).
A spherical polar co-ordinate system (r, 9, ® ) centred
on the oxygen nucleus has been used. The hydrogen nucleus
is at (R,0,0).

The expressions for the matrix elements of sums
of zero, one, and two-electron operators between Slater
Determinants formed from orthonormal molecular orbitals
are well known (Slater, 1960). These expressions are re-
produced in Appendix 1.

These expressions involve one-electron, three-

dimensional integrals of the form

<H | n 1) =f7(’i*(1)h{“)(j(1)dv(1) , (5.7)

and two-electron, six-dimensional integrals of the form

<X1’lehzlxk’xl\> -
ffxgux;(z)hgl,ﬂka X, (@avniav(2) ,  (5.8)

where the volume element is
dv(i) = r?dr sinf@ 46 d? . _ (5.9)

The molecular orbitals ;K; appearing in these
integrals are, as explained in Chapter IV, Section 2, linear

combinations of atomic orbitals ?g.
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:Xi = Zj:Aij ¢j (5.10)

The Z&ij in (5.10) are real coefficients. Thus

<Xi‘hl‘ va = ; Z;Aia AV <¢a‘h1‘ ¢1> . (5.11)
<Xi’ Xj[th X, X> = Z; Zb Zcid Aia Ajbakc Ald
X<¢é’¢b‘h2\ ¢cf @y - (512)

The integrals over Slater-type atomic orbitals
in (5.11) and (5.12) can be divided into two classes: one-
centre and two-centre.

One-centre integrals are those in which all the
atomic orbitals involved are centred on the same nucleus.
There are numerically well-behaved, analytic formulas for
such integrals (Joy and Parr, 1958). These formulas are
reproduced in Appendix 2.

The two-centre integrals are more difficult to
calculate than the one-centre integrals. Although there are
analytic formulas for the former, they are often complicated,
and are sometimes numerically ill-conditioned (Harris, 1969).

The method of calculation of the two-centre integrals
in this work is to expand the orbitals on one centre as an
infinite sum of spherical harmonics on the other centre, and

then to integrate numericd¢ally. Since this method is well=-
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described elsewhere (Switendick and Corbato, 1963), no

further description will be given here.



CHAPTER VI
IMPLEMENTATION

Three computer programs were written to perform
the work outlined in Chapters IV and V.

The first program is written in FORTRAN and in the
assembly language for the IBM 360. The input to this program
includes information about the number of electrons, the
multiplicity, the component of total orbital angular momentum
along the internuclear axis, the n, 1, and m values and
centres for the atomic orbitals, the spatial parts of the
configurations, and, if the state is a :E: state, whether it
is 2.7 or Z-.

The program»does symbolic manipulation. It deter-
mines which non-zero integrals over atomic orbitals have
to be calculated, but does not actually calculate them it-
self. Rather, it assigns each of these integrals a unique
identifying label. The labels for the overlap integrals
are used to form the symbolic expressions for the coeffi-
cients 431j in (5.10), each of which is then given its
own label. The integrals over molecular orbitals are then
expanded, as in (5.11) and (5.12), as symbolic expressions
involving the ‘313 labels and the labels for the integrals
over atomic orbitals. Equal terms in the expansion are
automatically collected together. Each integral over

molecular orbitals is then given its own label.

37
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These labels are used to form the expressions
given in Appendix 1 for the matrix elements of H between
each pair of Slater Determinants in the calculation.
Eqﬁal terms in the expressions are collected together;
Each matrix element of H between Slater Determinants is
given its own label., Finally, these labels are used to form
the expressions (5.2) for the matrix elements of H between
each pair of configurations in the calculation. The only
numerical calculation in the first program is the multi-
p}ication in (5.2) of Ci by C31 which are numbers.

The output from this program is of two kinds.
The first kind is a printout of all the symbolic express-
ions formed. This printout is very useful as a debugging
tool. The second kind of output is a series of numbers
which are written on a disc file. This series of numbers
contains essentially the same information as the printout.

There is a great advantage in having a separate
program to perform the algebra. The advantage is that the
a;gebra is done once and for all, and the results may be
used repeatedly by the second program.

The second program is written in FORTRAN alone.
Ig reads in the output on the disc file from the first
program. This output tells it what things to calculate,
and in what order to calculate them.

In order to perform this calculation, several

numbers must be supplied. Three of these, Z1, ZZ’ and R,
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are read in. The non-linear parameters E must also be
supplied. They can be read in, interpolated or extrapol-
ated, or be supplied automatically by a third program, about
which more will be said presently.

Given these numbers and the instructions from
the first program, the second program calculates all inte-
grals and forms the H-matrix. The matrix is diagonalized,
and its eigenvalues and eigenvectors are calculated.

The third program mentioned above is a general
program to find an unconstrained minimum of a function of
several variables (Powell, 1964). In this case, the var-
iables are the Ei, and the function is usually the V of

(2.5).



CHAPTER VII
2TTcaLcuLaTION

1. Outline of Calculation

The first series of calculations in this work
was . for 21—Tstates, because the ground state of OH is a
2T-Istate (Herzberg, 1971), and little is known of any
other 2T—Istates (Pryce, 1971).

Listed in Table 7.1 are the spatial parts of the
configurations chosen for this calculation, as well as the
spin couplings. An examinatiqﬂvof this table reveals that
the guidelines for selecting 93 outlined in Chapter IV,
Section 4 have not been completely followed. For example,
the configuration (16)2(26 )2(1'7?¢)(lﬂ )2(7d )2 was not
included, as it should have been.

| Furthermore, of the five possible five-electron
spin couplings of Table 4.2, only one, coupling V-1, was
used. The reason for this choice was Hund's rule, which
suggests that a state with this coupling is lower in energy
than a state with either of the other four couplings, pro-
vided the spatial parts of the states are the same.

The explanation for this failure to follow the
guidelines is inexperienece with the program. In fact, the
guidelines were altered as more calculations were performed,
and attained their present form only after the calculations

reported here had been completed.
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The orbital parameters 5;1 were constrained to be
equal for each group of 24 +1 atomic orbitals of a given
n and ¢Z-value, for example, for the group of three 2p
orbitals on oxygen. For the two separated, non-interacting
atoms, all the 24 +1 g's within such a group are equal,
by rotational symmetry. Even in the interacting case,
axial symmetry dictates that the §'s are equal for two
orbitals which differ otherwise only in the sign of their
m-values. It was expected, therefore, that forcing all
24 +1 §'s in a group to be equal would not be a bad approx-
imation, particularly at moderate and large internuclear
separations. A short discussion of the effectiveness of
this approximation is contained in Section 2 of this chapter.

At a given R, the orbital parameters si were
calculated by minimizing the trace of the Hamiltonian matrix.
This is equivalent to minimizing the average energy V of all
twenty-nine configurations. Only the diagonal elements of
H need be computed because the trace is invariant under
diagonalization. There is thus a large saving in computer
time. It was hoped that the orbital parameters calculated
in this manner would be good enough for the low-lying states
of interest. A discussion of the effectiveness of this
method is in Section 2 of this chapter.

The trace was minimized at R=1.8342, 6, 10, and

15. R=1.8342 is the equilibrium separation of the ground
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state (Herzberg, 1971). R=6 and 10 were chosen because
they are moderate and large internuclear distances, resp=-
ectively. R=15 was chosen because it was found that not all
the potential energy curves had completely flattened out
near R=10.

To calculate a parameter-value at other than these
four points, a parabola was fitted to the closest three
points, and the parameter value at the point of interest
was then interpolated or extrapolated.

Graphs of the parameter values as functions of R
are shown in Figures 7.1 to 7.9. With several exceptions,
these are smooth functions of R. BEach graph has a discon-
tinuity at R=8, because the two parabolas fitted through
(1.8342, 6, 10) and (6», 10, 15) do not give the same parameter
value at 4(6410)=8. These discontinuities are particularly
acute for the 3s, 3p, (ZS)H, and (2p)H atomic orbital
parameters.

The discontinuities could be eliminated by fitting
a single cubic rather than two parabolas. However, another
approach is possible. This alternative approach is based on
the observation that a parameter graph can be roughly divided
into two regions. The first region, R<<6, is the region
where the O and H atoms interact considerably, with a re-
sultant large change in orbital parameters with R. In the
second region, R2»6, there is less interaction between the

- two atoms, and the ;(R) curves are much smoother.
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If the best orbital parameters were calculated
at a third point in the first region, halfway between 1.8
and 6, for example, then not only would the results be better
in the first region, but the discontinuity in the second
region would be smaller.

The calculated potential energy curves for the
lower-lying 2T1-states are given in Figure 7.10. A dis-

cussion of the lowest four curves follows.

2. The Ground State

There are actually two calculated potential energy
curves for the ground state of OH shown in Figure 7.10.

The upper one, which will be discussed first, is the curve
calculated as explained in the previous section.

This first curve is qualitatively correcé¢t. It
predicts that the lowest 2T1-state is bound and separates
into oxygen in its ground (BP) state and hydrogen in its
ground (23) state. The calculated equilibrium separation,
about 2.2, is approximately 25% larger than the experi-
mentally observed separation. The calculated binding energy,
about .035 Hartrees, is considerably smaller than the exper-
imental value of about .16 Hartrees (Carlone, 1969). The

quantitative agreement with experiment is therefore poor.

The wavefunction for this state as a function of

R is given in Figure 7.11. The amplitudes of all major
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contributors to the wavefunction, the /3§l

)

of equation
(2.3), are plotted. A 'major contributor' is defined to be
a configuration whose amplitude, in absolute value, exceeds
.1 for some value of R.

For R<€2.3, the largest contributor is configur-
ation #l, in which all nine electrons are centred on the
oxygen nucleus. The next largest contributor is #19, which
is similiar to #l, except that a 38 electron on oxygen has
been changed into a 76 electron on hydrogen. In #19, the
1T and 3¢ orbitals are coupled to form a spin triplet,
which is then coupled with the 768 to form a doublet. Con=-
figuration #18, which has the same spatial part as #19,
differs in that the 1T and 3& are coupled to form a singlet.
Since the amplitude for #18 is about =3 times the amplitude
for #19, the combined effect of #18 and #19 is a configur-
ation in which the 3¢ and 7¢§ are coupled to form a singlet,
which is then coupled with the l?? to form a doublet. This
mixes very well with #1, in which the two 3¢ 's are coupled
to form a singlet.

The next most important configurations are those
in which a 1X (or 1T ) orbital centred on oxygen in #1
is replaced by a 4T (or 4T ) orbital centred on hydrogen.

These are configurations #25 and #27.
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In the region of the equilibrium separation, then,
the bond between O and H is a ¢ bond with some 7T ~type
character.

As R—»eQ, configuration #19 becomes predominant,
and all other configurations except #3, #5, and #7 become
insignificant. What is happening is that an electron which
at small R is in a 2pdg orbital on oxygen attaches itself
to the hydrogen and occupies a pure (ls)H orbital as R-»e0,
Even at R=12, though, this electron has a probability
amplitude of about .1 of being in a diffuse 46 , 5& , or
6& orbital centred on oxygen. As can be seen, the amp-
liﬁudes for configurations #3, #5, and #7 are decreasing
with increasing R at R=12, and should go to zero as R-%0 ,

The form of the wavefunction seems quite reason-
able. Why then is the potential energy curve so poor?

It could be that the orbital parameters chosen by the
method of minimizing the trace of H are poor choices for
the ground state.

To test this guess, a second calculation was
perfiormed for the ground state alone. The orbital para-
meters for the 2s, 2p, and (1ls), orbitals were chosen to
minimize the lowest eigenvalue of H. The orbital para-
meter for the 2p3 orbital was allowed to vary independ-
ently of the 2pt, 2p?€ parameter. The other orbital para-

meters were fixed at the values obtained by minimizing the
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trace of H. This was done at both R=1.8342 and 6. At R=6
there was no change in the parameters. At R=1.8342, how-
ever, there was a large change in the (ls)H orbital, and
moderately large changes in the 2pn (¥ ) and 2p& orbitals
(see Figures 7.3 and 7.7). The 2p orbitals became more
diffuse (§ decreased), and the (ls), orbital contracted
considerably. As can be seen from Figure 7.12, though,.
the amplitudes of the major configurations changed very
little.

The resulting potential energy curve is the low-
est curve of Figure 7.10. The predicted equilibrium sep-
aration is about 1.8, in very good agreement with exper-
iment. The predicted binding energy is about .l Hartrees,
in fair agreement with experiment.

Several conclusions can be made at this point.
The method of minimizing the trace of the H-matrix is
definitely not good enough for any more than a qualitat-
ively correct calculation. The reason for this is probably
as follows. There are a large number of configurations in
the calculatioh which are quite unlike the ground state
wavefunction. Minimizing the trace treats these config-
urations as if they were just as important to the ground
state as those which are its major components. This is
true not just for the ground state, but for all states.

The method, in trying to describe all states equally well,

describes each state poorly.
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The constraint that all 22+l parameters of a
group be equal should be relaxed at small internuclear
distances. Figure 7.3 shows that at R=1.8342, the diff=-
erence between the 2pTT, 2p® parameter and the 2p& para=-
meter, while not very large, is not insignificant. At
moderate and larger (R2 6) distances; as expected, the
constraint should be retained.

There are several things which could be done
to increase the calculated binding energy further. One
is to include a configuration with a doubly-occupied 7&
orbital. Another is to find the best parameter values
for the [2p1t (® )]H and (2p6)H atomic: orbitals, which are
present in some important configurations near the equilib-
rium separation. If these things were done, the overall

agreement with experiment would probably be quite good.

3. The First Excited 1] State

According to its calculated potential energy curve,
the first electronically excited 2TTstate is unbound.
Beginning about R=5, the curve rises slowly and then more
rapidly as R—> 0. At large R, the energy separation between
it and the ground state is calculated to be .10 Hartrees,
in good agreement'with the actual value of .08 Hartrees

(Edlén, 1943).
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On the basis of experience with the ground state
results, it can be reasonably expected that the potential
energy curve for the first excited 2]—rstate is qualitat-
ively correct; i.e., that it is actually an unbound state.

The wavefunction is given in Figure 7.13. For
R >3, it is very much like the wavefunction for the ground
state. The important difference is that in the first excited
Zn state, the 1 and 3¢ orbitals are coupled, at large R,
to form a singlet, whereas in the ground state they are
coupled to form a triplet. This excited state dissociates
into hydrogen in its ground (23) state and oxygen in its
first excited (lD) state.

There is an extremely abrupt change in the wave=-
function at R=2.3. For R <2.3, configurations in which

a 2Tt orbital is present predominate.

4. The Second Excited 21_T State

As can be seen from Figure 7.14, the wavefunction
for the second excited 2TT.state is considerably more comp-
licated than that of either the ground state or the first
excited 21-rstate. The reason for this complexity is the
avoidance of curve crossing.

For R < 2.3, the dominant configurations are those
in which a 3T orbital is singly=-occupied. For 2.3<R<7.6,

it is the 2T orbital which is singly-occupied. In the lower
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part of this range, 2.3€R<3.6, the major configuration,
#9, is composed of orbitals centred on oxygen. In the upper
part, 3.6€R<€7.6, the major configuration is #28, which
is similiar to #9, except that one of the electrons in a
38 orbital on oxygen has been changed to an electron in
a 7¢ orbital, concentrated near the hydrogen nucleus.

At R=7.6, there is an abrupt change in the wave-
function due to avoided curve crossing. Two configurations,
#23 and #21, predominate. They consist of oxygen in its
ground (BP) state and an electron in a 2pe and 3s orbital
on hydrogen, respectively. An enumeration of the combinations
of states of non;interacting oxygen and hydrogen atoms which
can give rise to 2Trmolecular states shows in fact that the
combination with the third lowest total energy is oxygen
in its ground state and hydrogen with its eliectron in a 2s
or 2p orbital.

It is not surprising that there is a large mixture
of #23 and #21, since, at large R, the (_2pd )H and (2s)H
orbitals are degenerate. Also, it is not surprising that #23
should be somewhat more important than #21, since the (2pd )H
orbital has, unlike the (2s)y, a lobe which lies along the
internuclear axis. |

The potential energy curve, shown in Figure 7.10,
has two minima, one at R=2.6 and one at R=9.5, with a maximum
at R=6.5. The binding energy for the minimum at R=2.6

appears to be roughly the same as for the ground state.
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The vibrational levels of this state will be overlaid by
the vibrational levels of the third excited state, making
spectroscopic identification difficult.

The broad, shallow minimum at R=9.5 should be
almost impossible to detect because there are no well-
known states of OH to which a transition could be made from
this minimum.

Of course, these features of the potential energy
curve should not be taken too seriously, because of the

poorness of this first calculation.
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Table 7.1

Configurations for Et‘Calculation

Configuration Spatial Part
Number
1 (1s)2(26)? (1R} (30) 2 (110)?
2,3 (16)% (26) % (17) (3¢) (1) * (1)
by 5 (16)% (26)% (1F) (36) (1M * (58)
6,7 (16)%(2) 2 (1F) (3¢) (1) * (66)
8,9 (1) (2) 2 (1F) (36) * (1wr) (2mr)
10,11 (16)? (26) % (%) (36) 2 (110) (31)
12 (18)?(2¢) % (1F) % (111) % (2m)
13 (16)2(2¢)2 (1F) 2 (1) ? (31)
14 (16)° (2¢) 2 (3¢) 2 (17) % (2%)
15 (16)2(20)% (3¢)* (1m) 2 (37)
16,17 (16)%(26)° (1502 (34) (1) (1§)
18,19 (10)2 (2¢) % (A7) (3&) (1) 2 (78)
20,21 (16)2(20)2 (1) (3d) (17 )* (8€)
22,23 (18)%(26)%(1F) (38) (1) %(98)
21,25 (16)%(20) 2 (17) (38)* (1) (47)
26 (16)2(26)2 (17) % (2m) 2 (410)
27 (1) (20)%(38)° (1) * (4F)
28 (16) % (2¢) % (17) (3d) (1T) (271) (78 )

29 (1) 2 (20) % (1) (3d) (1%) (3T) (76)

Spin
Coupling

I-1
III-1,2
III-1,2
III-1,2
III-1,2
III-1,2
I-1
I-1
I-1
I-1
III-1,2
III-1,2
III-1,2
III-1,2
III-1,2
I-1
I-1
V-1
V-1
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CHAPTER VIII
2 -
;E: CALCULATION

1. Outline of Calculation

The second class of states for which calculations
were performed is the class of 2:2:- states. This class
was chosen because there is some indication that the lowest
zjgrfstate is bound (Pryce, 1971).

The configurations chosen for the calculations
are listed in Table 8.1. Several things from this table
should be noted.

All configurations which should be present accord-
ing ﬁo the guidelines laid down in Chapter IV, Section 4
are present. In addition, there is one configuration,
#34, in which the 2<& orbital is singly occupied. This
configuration can be obtained from configuration #9, an
important constituent of the lowest 2:Zlf state*, by moving
one. of the two elecﬁrons in the 2<d orbital into a 7’
orbital. It was hoped that the effectiveness of the 'frozen-
core' approximation could be tested by determining the
importance of this configuration to the ground state. More
will be said about this in Section 2 of this chapter.

All permissible spin couplings were used in the

2 - 21—r
ZE; calculations, in contrast to the calculations.

* See Figure 8.11 for the wavefunction of this state.
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Not all possible spin couplings are permissible, however.
As noted in Chapter IV, Section 7, some of them lead to
identically vanishing :i: states. This is why, for example,
spin couplings V-4 and V-5 are never used om: (1T )(1TT )
(38 ) (43 ) (7S ).

The average of the lowest five eigenvalues, 37,
was minimized at R=1.8 and 6 with respect to the orbital
parameters si' A1l 28 41 parameters which belong to the
same group of atomic orbitals, as explained in the last
chapter, were constrained to be equal. At R=3.5, a set
of parameter values was determined by linear interpolation.
Keeping the parameters for the ls, 2s, and Z2p atomic: orbitals
fixed at these values, V'was minimized by varying the para-
meters for the 3s, 3p, 34, (ls)H, (ZS)H, and (2p)H atomic
orbitals. Fixing the ls, 2s, and 2p parameters at their
interpolated values was felt to be reasonable, since the
fractional changes in these parameters as R varies should
be smaller than those of the other atomic orbitals. This
is the case for the 2TTcalculation.

The resulting parameter values as functions of R
are shown in Figures 8.1 to 8.9. The five lowest 222:-
potential energy curves are shown in Figure 8.10.

More refined calculations for the lowest and
second lowest 2:E;r states were performed. The lowest

eigenvalue was minimized at R=2.1, 3.5, and 6. The second
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lowest eigenvalue was minimized at R=2 and 6.* The values
for those parameters which were varied are shown in Figures
8.3, 8.4, and 8.7. The two potential energy curves are

shown in Figure 8.10.

2 -
2. The Lowest :E: State

The two calculated potential energy curves for the
lowest energy ?:E;- state are shown in Figure 8.10. The
more refined calculation produces the lower curve, of course.

Bdth curves show the same qualitative behavior.
The state is predicted to be bound, with an equilibrium
separation of R®3.5. The calculated depth of the minimum,
however, is quite different in the two calculations. The
cruder calculation gives about .09 Hartrees, and the more
refined one .05 Hartrees.

The spectrum of OH (Pryce, 1971) seems to indicate
that the state is bound by 2.0l Hartrees. Only a lower
limit may be given with certainty because only one vib-
rational level has been detected, and it may not be the
lowest level. If it is in fact the lowest level, then the
spacing of the observed rotational levels indicates that
the equilibrium separation is at R=3.1l.

The present calculations can be reconciled with
observation in at least two ways. In the first way, it is

accepted that the observed vibrational level is the lowest

* See Appendix 3 for further comments on this.
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one. This implies that the more refined calculation is not
yet accurate enough. Since the amount of binding is lower
in the more refined calculation, it is conceivable that a
better calculation would predict an even lower binding
energy of <.04 Hartrees, consistent with a figure of .0l
Hartrees. It is also conceivable that this better calcul-
ation would shift the predicted equilibrium separation to-
<3.5. It should be recalled that a similiar shift occured
in the 2TTground state calculations.

In the second way, it is accepted that the cal-
culated amount of binding and the calculated equilibrium
separation are roughly correct. This implies that the
observed level is a high vibrational level. An apparent
equilibrium separation of 3.1 can be produced if, coﬁtrary
to the present calculations, the potential energy curve
rises more rapidly for R>3.5 than for R<3.5. It may be
objected that a more usual behavior for the potential
energy curves is for them to rise more rapidly for R <
equilibrium separation than for R>» equilibrium separation.
This behavior is produced by the 8/R term in H. However,
since an equilibrium separation of 3.5 is somewhat larger
than the more usual value of R&Z2, this objection is not
a strong one.

| 25 - .

The wavefunction for the lowest state is

shown in Figure 8.11. This is the result of the first, less

2
refined calculation. As is the case for the Trground state,
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the amplitudes are practically the same in both the first
and more refined calculation. That is why the amplitudes
for the more refined ZJE:- calculation are not shown here.

For R<2.l, the dominant configurations are #2
and #1. The combined effect of these two is a wavefunction
centred on the oxygen nucleus and consisting of a single
electron in an excited orbital, plus a core of unexcited
OH+. The excited orbital is mostly 3pd with some 3s character.
The pd nature of the orbital can be understood as due to the
lobe pulled out aiong the internuclear axis by the hydrogen
nucleus.

At R=2.,1, there is an abrupt change in the wave-
function. Configuration #9, which dissociates into oxygen
and hydrogen in their ground states, is the predominant
configuration for R>»2.1. This is to be expected, since the
lowest energy 2;?:-.state at large internuclear distances
is formed from oxygen in its ground (BP) state and hydrogen
in its ground (28) state.

What is highly interesting in the region 2.1 <
R <5 is configuration #11, which dissociates into oxygen
in its ground state and hydrogen with its electron in a
(2pd’)H orbital. It is the second most important config=-
uration in this region, and is completely unimportant else=-
where. It is precisely in this region where the state is

bound. Furthermore, it is in the immediate region of the
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equilibrium separation that #11 is most important. It is
reasonable; then, to attribute the boundedness of the state
to this configuration.

For R 26, the only configurations of note besides
#9 are #1, #2, and #3, which are very similar to the three
configurations in the 2Trcalculations centred on oxygen
with one very diffuse orbital.

2 - 2

The lowest EE: state and the ground TTstate
are degenerate at large R. It is not surprising, then,
that the calculated energies at infinite separation are the
same, as can be seen by comparing Figures 7.10 and 8.10.

Configuration #34 is not a major component of the
wavefunction at any value of R of interest. It could be
important only at such small R that the hydrogen nucleus
affects the 2& orbital significantly. Thus the 'frozen-
core'! approximation is a good one except possibly at very
small R.

Finally, it should be mentioned that a previous
calculation (Michels and Harris, 1969) on the lowest 222:-
state predicted thét the state is unbound. That calculation,
in the light of what has been said in this section, is most

probably incorrect.
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2 -
3. The Second Lowest :E; State

The two calculated potential energy curves for
the second lowest ?EE:- state are shown in Figure 8.10.
Both calculations predict that the state is bound at R=2.1l,
and that the potential energy curve has a maximum at R=i.

One vibrational level of a 2:5;7 state with an
equilibrium separation at RR2 has recently been observed
(Douglas, 1971). The energy difference between this level
and the observed level in the lowest 2:5:- state (Pryce,
1971) is very nearly .20 Hartrees, the energy difference
as calculated from Figure 8.10. It seems quite certain,
then, that the state observed by Douglas is the first
excited 2:2:- state.

g ST

Another excited state has been observed
(Pryce, 1971). It has an equilibrium separation of R=3.7,
and the minimum in its potential energy curve lies above
the calculated minimum of the first excited ZZE:-'state
but below the calculated maximum. The present calculations
are therefore completely unable to account for the existance
of this other excited state. A possible explanation,
however, will be offered later in this section.

The wavefunction for the first excited 222;— state
as obtained from the first calculation is shown in Figure
8.12. As noted previously, the amplitudes change little in

a more refined calculation, and therefore the more refined
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wavefunction is not shown.

For R<2.1, the wavefunction is effectively that
of an electron in an excited orbital, plus an unexcited
OH* core. The orbital is mostly 3s, with some 3p6’character*.
It had been guessed (Douglas, 1971) that at the}equilibrium
separation, this orbital is probably 3s, but that it could
possibly be 3p<f . Figure 8.12 shows that the orbital is in
fact an almost equal mixture of 3s and 3pgd at that distance.

For 2.1 <R <3.6, this orbital is almost purely
3pss . As R—>»3.6, an electron which at smaller separations
occupies a 2pd atomic orbital on oxygen begins to detach
itself and occupies a (ls)H atomic orbital. This is evid-
enced by the incfeasing importance of configuration #15.

At R=3.7, there is a change in the nature of the
wavefunction. Configuration #12, which dissociates into
oxygen in an excited (BSO) state and hydrogen in its ground
(28) state, becomes predominant. It is near this point
that the potential energy curve reaches its maximum.

As R—»#, the wavefunction becomes pure #12, and the potential
energy curve decreases monotonically.
. L Rs -

The existience of the other excited state
(Pryce, 1971) mentioned previously can be explained if the
maximum in the potential energy curve were between R=2.1

and R=3.7, and if there were a minimum near R=3.7; that is,

* Compare this w%th the description in the previous section
of the lowest <2 ~ wavefunction for R<2.l.
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if the two observed excited states were the same state,
but corresponded to two minima in the potential energy curve.

It should bg recalled that in the lowest :E:
state calculation there was a configuration, #11, which if
it had been omitted from the calculation would probably
have caused the state to appear to be unbound. Furthermore,
the minimum in the lowest ‘ZE- curve due to #1l1 is at R=3.5,
very near the proposed minimum at R=3.7 in the excited
:E- state. This suggests that a configuration similar
to #11 has been omitted from the present calculations, which,
if it were included, would produce a minimum at the desired
place in the first excited ’:E-_ curve.

Configuration #l1 can be constructed by replacing
the 7G molecular orbital in configuration #9, which is the
dominant configuration for the lowest ;§i- state in the
region of its equilibrium separatlon by a 90 molecular
orbital. A similar procedure for the flrst excited 2221-
state near R=3.7 produces (ld) (26‘) (1) (1 ) (30 ) (5&)
(96 ), with appropriate spin coupling. A calculation should
be performed using this configuration.

The calculated energy difference at infinite inter-
guclear distance between the lowest and the second lowest

Zif state is T.17 Hartrees. The actual value, which is
the energy difference between the lowest 380 ahd 3P states

of oxygen, or equivalently, the difference in ionization



75
potentials of a 2p and a 3s electron in oxygen, is closer
to .42 Hartrees (Edl1én, 1943). The agreement is poor.

A detailed analysis of the computer printout,
which is not reproduced here, has shown that the calculated
2p ionization potential is low, and the 3s is high. These
two errors add to produce the large error.

It seems that the errors arise because the program
has been designed to describe molecules, but not separated
atoms, well. Even a self-consistent calculation, however,
(Hartree et al, 1940) fails to get a good value for the

ionization potential of a 2p electron in oxygen.

2 -
4L, The Third Lowest ;E; State

The wavefunction for this state is shown in
Figure 8.13. 1t appears to be similar to the second lowest
Z:Ei- wavefunction.

At R<2.1, the wavefunction is that of an electron
in a 3dQ atomic orbital on oxygen, plus an unexcited OH+
core centred on oxygen. At the equilibrium separation
R=2.2, this orbital is a roughly equal mixture of 3dg énd 3s,
with some 3pg character. Between 2,2 <R<3.7, the orbital
is 3s. At R=3.7, the molecule begins to dissociate into
hydrogen in its ground state and oxygen in an excited }é

state.



Configuration Spatial Part Spin
Number ‘Coupling
1 (16) % (26) 2 (1T) (36) ? (1) (43) 11I-2
2 (10)%(26) 2 (1F) (3¢) * (170) (56) II1-2
3 (1) ? (29) 2 (1F) (36) ? (1n1) (68) ITI-2
b5 (16)2 (2e)2(1T) % (36) (17) (2m) I1I-1,2
6,7 (1) 2 (20) % (1¥) % (36) (1r) (37) III-1,2
8 (1¢)2 (26)2(1%)2 (35) 2 (18) I-1
9 (1¢)? (20) % (1) (36) * (1) (76) III-2
10 (1)%(20)% (1) (36) 2 (1r ) (89) TII-2
11 (1) 2 (20) % (1T) (39) 2 (1) (9G) I11-2
12,13,14 (10)2(26) 2 (1F) (1) (38) (43) (76)  V-1,2,3
15,16,17 (10)% (2) % (1) (1) (30) (50) (76)  V-1,2,3
18,19,20 (10) 2 (20) 2 (1) (1) (36) (60) (76)  V-1,2,3
21,22 (18) 2 (202 (1T) (36) * (271) (75) III-1,2
23,24 (10)?(28) 2 (1) (36)° (31) (73) III-1,2
25,26 (10)2 (26) % (1T) 2 (1T) (27) (7S) III-1,2
27,28 (1912 (2¢)* (1F)? (170) (3r0) (79) IT1-1,2
29,30 (1)%(20)? (112 (30) (18) (7<) I11I-1,2
31,32 (19)?(26)%(1T)? (36) (am) (L) I1I-1,2
33 (1) % (28) % (1) (1) (3¢) (73)° IT1I-2
34 (1) 2 (1T (36) % (1) (76) 2 (28) III-2
Table 8.1. Configurations for 22- Calculation
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CHAPTER IX
CONCLUDING REMARKS
The computer programs developed here have been
useful in the interpretation of the spectrum of OH, even
though they have not yet been used as wisely as they could
AZ- L
have been. In the future, calculations of the ’ TT:
2 2
and Astates are planned. The -[Tstates will also be
2 -
recalculated, and possibly the second lowest :E: cal-

culation will be redone.
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APPENDIX 1

MATRIX ELEMENTS OF H
BETWEEN SLATER DETERMINANTS

The diagonal matrix elements are

sk

fk(Zh‘”)skdv Z<3(lh|7(‘) a2

ﬁﬁ(é > nltdsav = 3 S, X, X, X0
i#3 i#j J . J
'o(i,’ X; [n.| ')(j', X/ > (a1.3).

, .
is the molecular orbital x, but including a spin

X
factor o« or {! The Slater Determlnant Sk is an antie-

symmetrized product of nine X 'se <)( ’h ‘ 'X > means

<J(l |, | x> - f X ?)h{l )Xj<ohv.»(1) : (Al.4)

The integration in (Al.4) includes an integral over spin

as well as space. <'X1" ’X;‘hz‘ X;,Xi} is defined by
/ ' ' ! ] _ '* '* (1’2) / 7
X5 Xhnl X6, A -ffxiu)xj(z) S A (1 X (2)
x dv(l)dv(2). (Al.5)

The integration in (Al.5) is over spins as well as space.
The volume element dv(i) in (Al.4) and (Al.5) is

2 .

ridr; sin eid 91 dri.
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If 5 # S,, permute the molecular orbitals with
spin, ;, in Sk and Sl so that there is the maximum possible
“coincidence between the two. If, after this permutation,
the two Slater Determinants dlffer only in that Sk has ~3{/

in the position where Sl has J( then

fs; hg S1dV = 0, (A1.6)
fsz(gh(l))s av = *(xa(hl]:x S, (41.7)

(5,915 av = + & [x/%! In| XX,

f hz T8, dV = = 2; QG X [l X X7
/ong! tnpt
'@%xi'hz‘xiyci" (41.8)
The + (=) sign in (Al.7) and (Al1.8) is to be taken if an
even (odd) number of permutations are required to bring
Sk and Sl into maximum . c¢oincidence.
If, after the permutation, S5, and S, differ in two

' ’ /4 /
positions, ‘Ia and yb for S,, and correspondingly Ic and
, ,
X4 for S, then

fs;':= hg §,dV = 0, (A1.9)

* (1) =
[sk( g hy*')s,dv = 0, (A1.10)

and



9L
-3 X, [n,l 133{0’)]. (Al.11)

The interpretation of the + sign in (Al.1l1l) is the same as
in (Al1.7) and (Al.8).
/
If Sk and Sl differ by more than two C!;, then
the matrix elements of H between them vanish.
The integrations over spin in (Al.l) to (Al.1l1)

are easily done. For example, in an obvious notation,

U Xl X0 = & o & o 6 Al X0 XY -

(Al.12)



APPENDIX 2
INTEGRALS OVER SLATER-TYPE ORBITALS

The simplest case is an overlap integral

(¢1|¢2> = &1’42 8ml’m

IRCHE RICHE AVCCRIF

(A2.1)

In (A2.1), the Slater-type orbital ¢%_is specified by ng,
£, n and §.. (See (L.1) and (4.3)). &, T, and A(n, §)

are defined by

3 - 1 +%,),

T = %(nl + n2),

(2 )2n+l
) - T

(2n)t

(A2.2)

(A2.3)

(A2.4)

The three one-electron integrals are the kinetic

energy integral,

<@, 8>

<@ lavrle) --

Ln(2n - 1)

[ 2n; (ny-1)-2§,3,n,n, +§§n2(n2-1)-.€l(£l+1)(2§)2] ,  (A2,5)

the oxygen attraction integral,

B l-erlgy - o8 4 8

A(nl,gl)A(nz,gz)
’m2 AZ(—rT - %’g)

’

(A2.6)
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and the hydrogen attraction integral,

Pl - - iy Sy g 5o

ml,m2 (21)21'1

o0
x 2 Ck(ll,ml;lz,mz)[ (p) " ¥R, B)

K=0,2, 000 _ A
+('€’)k ™ (23 - k,P) +(42.7)

k

The C™ in (A2.7) are Condon-Shortley coefficients (Condon

and Shortley, 1951). E;,Z'and r7are defined by

?=§R , (42.8)
X

Yla,x) = fo et (2 1lge | (42.9)

énd
o0

Yv(a,x) = /' et ¢2-1gp (A2.10)
% ,

The one-centre two-electron integral is given by

<¢l’ ¢2|h2‘ ¢3 ’¢I> = gml‘m3’m1+‘m2 b d
A(np?l)‘\(nz’?zm%»?3)A<nui)

;EZ.C ( 191y 3 ,m3)C (J%,m 1%

k=0
{[A(i‘l-%k—%,slm(ﬁ +-;~k,§2)]'211_,1( 2n,+k+1,2n, -K)

+1:A(?1'2-%k——;~,§2).&(n +ik f )]"2 (2n +k+1 2n k)},
(A2 11)
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where
%1 = %(gl"'?}):
g, = %(gz‘*}z,)’

N =%/ &8,
'Ei = %(nl+n3),
n, = %(n2+nh),

and I_(p,q) is the Incomplete Beta function

X
f P (1-1)914¢
I (p,q) = —27 .
f Pl (1-£)%14¢
0

(A2.12)

(A2.13)

(42.14)

(A2.15)

(A2.16)

(A2.17)



APPENDIX 3
COMMENTS ON A PROCEDURE USED IN THE
P
CALCULATION

The potential energy curve and corresponding
wavefunction for the second lowest 222:- state were cal-
culated by minimizing the second lowest eigenvalue of the
Hamiltonian matrix. This procedure can produce erroneous
results. The true wavefunction for this state is ortho-
gonal to the true wavefunction for the lowest 2:2:- state.
The trial wavefunction for the upper state should therefore
be constrained to be orthogonal to the true wavefunction
for the lowest state. Since the latter is not known, this
constraint cannot be exactly realized.

However, the calculated upper state wavefunction
is orthogonal to an approximate wavefunction for the lowest
state, since they are non-degenerate eigenvectors of the
same -Hamiltonian matrix. If the latter wavefunction is
a good approximation to the true wavefunction, the pro-
cedure can be expected to produce reasonable results.

The accuracy of this approximate wavefunction
has not been checked. There is, however, reason to expect
it to be fair. The lowest state wavefunction depends to
a large degree on the parameters for only the 1ls, 2s, 2p,

(ls)H, and (2p)H atomic orbitals (see Figure 8.11). Of

these parameters, only those for the 2p and (1s)H orbitals
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ZZ-
were varied in the second lowest calculation. The
differences between the parameters calculated in this
manner and those calculated by minimizing the lowest eigen-
value, while not insignificant, are not great (see Figures
8.3 and 8.7). It is quite probable, then, that the results

obtained by minimizing the second lowest eigenvalue are

not wildly inaccurate.



