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ABSTRACT

Simple algebraic relationships and yield equations that require
the minimum of data are developed so as to enable quick and reliable
assessments of relative rate of harvesting tropical freshwater fish
populations,

The age of a fish at the {nf1exion point is inversely related
to the growth rate (K) and directly related to the natural logarithm
of the weight length exponent (b).

Algebraic relationships between the exponent of anabolism
(m) and the weight length exponent are developed.

Equations for estimating total mortality from age and length
~ distributions in catch samples are given. Total mortality for both
continuous and discrete recruitment are considered. The probability.
density function and the discrete probability function for a negative
exponential are given.

The effect of a number of variables on trawl catches is studied
and some multiple regression equations which might be used to assess the
relative degree of exploitation are presented.

The parameters which have been recognized as vital to yield
prediction are: the growth rate (K), the weight length exponent (b),
the maximum length to which a fish grows (L=) and the natural and total

mortality rates.
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It is shown that'one can replace age with a length expression
in yield models and still have reliable yield predictions. It is also
shown that a model with a few very relevant parameters, has almost the

same predictive power as a model requiring more parameters.
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INTRODUCTION

The current trend in the study of fish population dynamics
is towards a detailed analysis of variables affecting yield and the
construction of theoretical models which describe the interrelations
of these variables. Unfortunately, attempts to attain realistic models
introduce complexities that require more and more basic data. The
collection and analyses of these data take much time. Moreover, it is
necessary to have many long sampling periods to reduce the effect of
annual variability on.estimation. In the circumstances of rapid develop-
ment of some African freshwater fisheries, it may obviously be difficult
to meet the data requirement of modern management models.

Additionally, management of natural populations of fish in
tropical freshwater is made difficult by:

(a) Tlack of readily detectable growth rings on skeletal
structures,

(b) variability in growth rates,
(c) absence of definite spawning periods,

(d) T1imited catch statistics.

It is therefore desirable to consider the functional relation-
ships among the population variables that influence yield. This might
enable development of some simple and useful approximations that give
reliable indications of the relative degree of exploitation.
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The purpose of this study is to focus on the most relevant
population parameters and to develop simple analytical methods and
theoretical models that require the minimum of data so as to enable
quick and reliable assessments of relative rates of exploitation of
tropical freshwater fish populations.

In this thesis, consideration is first given to the separate
processes of growth, fecundity, morta]ity and some simple algebraic
relationsips are developed which could be used in management.

Throughout, Tilapia has been used as an example to ﬁest the
validity ahd usefulness of the findings. Additionally, a few references
are made to Bagrus docmac and Haplochromis Spp.

A separate section is devoted to the recent data on tatches of
Tilapia in Lake Victoria. The analysis of the catches by multiple re-
gression methods provide useful information on the abundance and dis-
tribution of Tilapia species and indicates the variab]és related to high
catches. This type of analysis could be used in managing other fish
species in tropical freshwater.

Lastly, consideration is given to yield equations and some
simplifications which might lead to quick, easy and yet reliable esti-

mation of fish yields.



ESTIMATION OF GROWTH CHARACTERISTICS
WITH PARTICULAR REFERENCE TO
TILAPIA IN EAST AFRICA

Variability of Growth Rate

The estimation of growth rates of tropical fish poses several
problems. The absence of seasonal environmental fluctuations means that
growth at each age and the age of maturity cannot easily be determined
by reading annual rings on scales or other skeletal structures. This
difficulty has to now limited the use of yield models which are based
on age, in the.management of tropical freshwater fisheries. In some
cases rings have been observed on bony parts of some tropical ffsh, some-
times the rings are apparently a result of spawning and other times
as a result of drought and starvation (Garrod 1959 and Lowe 1956).

Species of Tilapia show considerable variability in growth
(Lowe 1956). In order to understand the growth processes, extensive
and intensive studies must be carried out to determine the growth rate,
the maximum length and weight attained by these fish in various waters
and the length, weight and age of maturity. Even within a éing]e lake,
one observes differences in growth rate and size of maturity and this
is exemplified by Tilapia esculenta in Lake Victoria. Garrod (1959)
used the scale method to determine the age of Tilapia esculenta,a mouth

brooder with two spawning seasons.
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Related to the spawning behavior of mouth brooding, there is
a cessation of growth resulting in ring formation. On the basis of
this observation, Garrod (1959) determined 12"ring years" for Tilapia
esculenta. In terms of actual years Tilapia esculenta lives for 6 years.
Other methods may be employed in growth studies. Rings on
skeletal structures are made more readily detectable by heating but
this has not been done for Tilapia. Lowe-McConnell (1956) obtained
some indications of growth rate by analysing length frequency distributions.
The main limitation of this method is that a number of fish species
spawn all the year round so that there is considerable overlap of size
ranges of different ages. The adult and young Tilapia live in different
habitats and therefore sampling in one locality will give length frequen-
cies that are truncated.
Growth rates can also be determined by conducting mark and
recapture experiments but this has not yet been done for Tilapia.
Management of Tilapia and other tropical fish species, is
possible even without direct determination of age, provided we can estimate
the von Bertalanffy growth equation parameters. The maximum length
(Lw), maximum weight (W=), the rate at which a fish approaches its asymp-
totic size (K) and the weight Tength exponent (b), have to be determined
if we are to understand the growth of fish species. With the above
parameters plus a few simplifying assumptions a number of useful relation-
ships can be established.
Ursin (1967) reports that Putter in 1920 first realized the

truism that food absorbed is the difference between food ingested and
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that ejected and advanced a metabolic growth model. The rate of intake
of food is surface dependent whereas the rate of breakdown is weight
dependent because it occurs in all parts of the body, viz:

= Hu/3 - w (1.1)

ajla.
&

where w is the weight, t is the time, H is the coefficient of anabolism
and k is the coefficient of catabolism.
Putter's work was continued by von Bertalanffy (1934, 1938)

who regarded an organism as a reacting chemical system. The processes
of anabolism and catabolism control the weight of an organism. The rate
of change of weight of an organism dw/dt is expressed in terms of exponents
m and n of the body weight.

dw = HW" - kw" (1.2)

dt
where m is the exponent relating anabolism to weight and n is the exponent
relating catabolism to weight.
The equation given by von Bekta]anffy (1934) describes the
rate of change of length with time and is the equivalent of equation
(1.1) when expressed in terms of length and asymptotic length:-

dl = K(Le - 1) (1.3)
dt

where 1 is the length of a fish at time t and L~ is the asymptotic length
and K is the rate at which a fish approaches its maximum length.

When integrated (1.3) gives the von Bertalanffy growth equation:

1, = L= (1 - oKt - o)y (1.4)
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where t_ is the time at which the length of a fish is theoretically zero.
Other workers have investigated the von Bertalanffy growth
equation and have made several developments (Beverton and Holt 1957,
Tayjor 1959 and 1962, Paloheimo and Dickie 1965 and 1966.) Ursin (1967)
looked at the processes of anabolism and catabolism and also examined
the exponents m and n in equation (1.2). He outlined ways in which m

and n could be measured.

The Point of Inflexion on the Growth Curve

Rational exploitation of a fishery requires knowledge of the
weight and age of‘a fish at the inflexion point. At the point of inflexion
a fish has maximum change in weight dw/dt. 1In séme species of fish the
maximum growth increment is attained before sexual maturity. Exploitation
of such a fish species requires catching the fish at a size or age beyond
the point of inflexion so that there will be sufficient individuals
of sufficient age to reproduce. For those fish»populations with a high
natural mortality rate, this could mean loss of biomass. The stunted
population of Tilapia nilotica in Lake Albert exemplifies this case.

This Tilapia population has a natural mortality of 3.37 and sexual
maturation is attained at 10 to 12 cm. (i]es, MS.). The maximum biomass
occurs at about 8 to 9 cm. In contrast, the population of Tilapia nilotica
in Lake Albert (open water) and Tilapia esculenta in Lake Victoria attain
maturity prior to the size and age corresponding to the point of inflexion.

Therefore maximum yield can be obtained by catching the fish at the



size corresponding to the point of inflexion.
If we take equation (1.2) and take a second derivative, the

derivative equals zero at the point of inflexion.

so that _
mw™ 1 = nkwnf] | (1.5)

which with rearrangement gives the equation

W) oy (1.6)
nk

Let the weight at the inflexion be WI. Then
wl("'"‘) = mH

nk
1

Wy =(r:_£1>“ - (1.7)

When a fish attains the maximum weight (W), dw/dt = 0.

Therefore
dw = H™ - kw" = 0
o HW" = kw"

and
H = w("'m)



(™ -

where w is the maximum weight (W=). Therefore the weight of a fish at

the point of inflexion is given by
1

Wy = (m) N e (1.8)

n

The parameters m and n are difficult to measure and therefore we cannot
readily estimate the weight at the point of inflexion (1.8).

A generalized growth equation in terms of weight is

. b
My = We (1 - e K (t -t (1.9)

where b is the weight length exponent. If we take W_ to be the weight

t
of a fish at the inflexion point, the significance of b in (1.9) is

very evident. The weight of a fish is related to length by the equation

b

W= gL (1.10)

where q is the constant‘of pfoportiona]ity. Many fish have b = 3.0 and
therefore show isometric growth. However there are other fish for which
b is not 3.0 and which change in shape with increase in length.

Paulik and Gales (1964) have discussed the consequences of
assuming isometric growth, on the shape of yield curves. We are aware
that the value of b for known fish species ranges from 2.5 to 3.5.

The first derivative of equation (1.9) is

di, =bu= | (1 - e Kt -t )b =1 -K(t - to{]
dat -



and the second derivative is

¢, = bile [:(1 Skt -t b -1 2 oK(E - b))y

dt?

#(b-1) . (1-eKE-thb-2 22K - t)

Factoring leads to

bWe e'K(t - to) . [j(]-e'K(t - toig] b -2 .[:} K2(1 - e"K(t - to)) +

K. b-1) . (Kt-th -y (1.11)

The above equation has 3 square bracketed terms multiplying
each other and any of them beiﬁg zero could make the whole equation zero.
Taking the first square bracketed expression, the parameters b and We
cou]d‘not be zero at the point of inflexion. For the first square bracketed

term to be zero, it will be necessary that

e Kt - t) - g

which is true when t = . However, the age of a fish at the point of
inflexion cannot be infinity.

If the second bracketed expression is equal to zero, we have

1 - e Kt -t) g

which is true when t = to. The value of t = to is imaginary because a

fish cannot reach a point of maximum dw/dt at time to.
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Taking the third square bracketed expression, the possibilities

are for K2 to be zero or for b to equal 1 and hence (b - 1) = 0 or

1 - e Kt t) g

If K2

is zero, there would be no deceleration of growth. A value of
b =1 implies growth in weight is directly proportional to growth in
length which could only occur with alfish which grew in one dimension.
It follows then that some rearrangement of (1.11) must produce an ex-
pression equalling zero.

After factoring and simplifying the third bracketed expression,

we have

(1 -e K-ty pp oy KBS E) g

which gives

K(t - t)) 4 e K(t = t)) _ ~K(t -t ) _

-1+e 0

which may be further simplified to

1 +pe Kt -t) g

Therefore
peK(t = t5) . 1

and ekt - t) oy (1.12)
: b

If we take natural logarithms

=K (t - to) ==-Inb



11
K‘(t - to) =1nb
and

t-= %_1n b + to (1.13)

where t is the age of a fish at the point of inflexion.

Equation (1.13) thus describes the necessary interrelation
between the age at the point of inflexion, the growth rate (K) and the
weight length exponent (b) if equation (1.1) is to be satisfied.

It has been reported that for most tropical fish, particularly
the family cichlidae, the parameter t0 is almost zero (Iles MS.).

This would mean that the age of a fish at the'inf1exion point is determined
by K and b. The parameters K and b can be estimated for the important
commercial fish species in the tropics. If we know the age of a fish

at the inflexion we can use equation (1.9) to'determiné the weight of
maximum dw/dt. Equation (1.13) indicétes that the age of a fish at the
inflexion point increases as the wefght length exponent increases.

Thus fish which are relatively heavy for their length reéch the inflexion
point at a relatively older age, than those fish with low values of b.

. Fish which have a high K attain maximum growth increments at a very

low age. Fof example the stunted Tilapia nilotica in Lake Albert Uganda,
with K = 2.77 and b = 3.33, has the age at the inflexion of 0.43 years.
But Tilapia nilotica (with horma] growth) in the same Lake, has a growth
rate (K) of 0.5 and b of 3.34 and the age at the inflexion point of
about 2.4 years. The estimated ages when replaced into the<growth

equation lead to estimates of weight at inflexion.
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The age at inflexion on the growth curve has been calculated
for values of b where 2.5 < b < 3.5)and for K values between 0.1 and
0.6 (Table 1). Figure 1 gives isopleths of age at the inflexion point
against b and k.

The importance of a simple deterministic expression (1.13)
for age in terms of b and K relies on two factors: (1) b and K can be
estimated easily for many fish species, (2) the age at the inflexion
point and the age of maturity are very close to each other for many fish
species. Beverton (1963) investigated the age of maturity of clupeid and
engraulid fish. Fish with high K mature at an earlier age than fish with
lTow K. Therefore the parameters K and b are important in determining the

size and age at which a fish is best caught to obtain maximum yield.

TABLE 1 - Estimated age at the point of inflexion for various
values of K and b assuming t0 is zero.

K

b 1 2 .3 4 5 6
2.5 9.16 4.58 3.05 2.29 1.83 1.53
2.6 9.56 4.78 3.19 2.38 1.91 1.59
2.7 9.93 4.97 3.31 2.48 1.99 1.65
2.8 10.29 5.15 3.43 2.57 2.06 1.72
2.9 10.65 5.32 3.55 2.66 2.13 1.78
3.0 10.99 5.49 3.66 2.74 2.20 1.83
3.1 11.31 5.66 3.77 2.83 2.26 1.89
3.2 11.63 5.82 3.87 2.91 2.33 1.94
3.3 11.94 5.97 3.98 2.99 2.39 1.99
3.4 12.23 6.11 4.07 3.05 2.44 2.03
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Figure 1 - Contours of age at the inflexion point for various values
of K and b.
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The Weight Length Exponent and the Exponents of Metabolism.

The weight of a fish at the point of inflexion is given by
two equations (1.8) and (1.10).

1
wl=<%)“"“ v W (1.8)
and
My = We L (1 - e K(t - t)yb (1.10)

where wt is the weight at the point of inflexion and therefore equals
wI. If equations (1.8) and (1.10) are true, a relationship must exist
between the weight length exponent and the exponents of anabolism and
catabolism.

We equate the right hand expressions (1.8) and (1.10)
Y

(m)" "M e = e (1 - e K(E - t)yb (1.14)
n .
Divide by We
1
(m)" "Moo (q - Kt -t b (1.15)
. |

Notice that t in (1.15) is the age of a fish at the inflexion point.

We can rearrange the equation (1.15):-

n

1 - o K(t - tos =<m) E_T%_:_h)

which gives
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n

oKt - t) _<m> b—(r]T-—m)

'- K(t -t)) = In (1 -(m)b (']‘ - m))
n

K(t - t = - 1n <} - m) E‘T%TTTTn))

t--1n<1- "‘"‘).%Hzo ~ (1.16)

But both equations (1.13) and (1.16) define the age of a fish at in-

flexion. We can equate the right hand expressions of these equations

" .
1 Inb+t =-1n(1 -/m b(""“))'l*to
K ° (%) X

Subtract (to) from each side and multiply by K

1
1nb=—1n<1 b ("‘"‘)> (1.17)
n o
Rearranging equation (1.17) gives
' 1
-1nb=1n<1- m b(“'"‘))
n
1
%?1 -(m)b("'"ﬁ (1.18)
n

von Bertalanffy (1957) dealt with allometric relationships
between an animal's metabolic rate and its weight. He claimed that
the slope m of the allometric line is either 2/3 for species obeying

the surface rule of metabolism, unity for cases where oxygen consumption
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is proportional to weight instead of surface area, and that for other
fish species in ranges between .66 to f.O. Parker and Larkin (1959)
and Ricker (1960) criticize the.derivation of the von Bertalanffy growth
equation because of the assumption of the surface law of metabolism.
Taylor (1962) discusses the parameters of the von Bertalanffy equation
and points out faétors limiting metabolism. von Bertalanffy argues that
the}rate of metabolism is proportibné] to the mth power of the weight
where m is the exponent of metabolism. But the rate of catabolism is
probortiona] to weight itself, thus n = 1. Ursin (1967) has pointed out
that the assumption of n being one does not hold for all animals.

If we assume that n = 1, we can establish a relationship between

m and b in equation (1.18), i.e.,

1
b (T -m) | (1.19)

1=1-m
b

It follows from equation (1.19) that

1
1 -1=pb (m-m (1.20)

Raising both sides of the above equation to the power b yields

1) |
(1-1_>b=m"’" (1.21)
b .
Letting 1 - 1 = x
_ b
we have
b=_1
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We can replace b in equation (1.21) by the appropriate expression, to

obtain

x] - X _ m] -m (1.22)

Equation (1.22) holds if x = m for all real numbers.

But

x=1-1and also x =m
b

Therefore from equation (1.21) and 1.22) we can establish the relationship

1-1=m ' (1.23)
b
orl=1+m
b
orb= 1 . (1.24)
1T -m

From the relationship above it is evident that fish with isometric growth
(b = 3), have m = 0.67 as proposed by von Bertalanffy (1957).

If the exponent of catabolism (n) is one, then it can be deduced
from equation (1.23) that fish with b greater than 3 will have m greater
than 0.67 and a fish with b Tess than 3 will have m less than 0.67.

Thus a fish with b = 2.5 has m = 0.60 and a fish with b = 3.5 has m =
0.72.
The processes of anabolism change several times during the

1ife span of a fish. But a fish does not change its body shape during
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its life span (except for early life history stages and with maturity
which are beyond the range of the growth period here considered).
Therefore a relationship must exist between b and m. This relationship
is expressed by equations (1.23) and (1.24). Changes in the weight
length exponent reflect changes in the processes of anabolism.

Hecht (1916) reports that fish and frogs have uniform but
indeterminate growth. The body form of a fish is laid down very early
in 1ife’and this body form is maintained within narrow limits throughout
the period of growth. This is in contrast to growth of higher verte-
brates in which body form continually changes during the périod of growth.
However, it must be added that this conclusion applies only to external
surfaces for Kellicott (1908) has shown that ih a dogfish, the bfain
and viscera differ in their rates of growth in much the same way as in the
higher vertebrates.

When the exponent of catabolism (n) is less than one, the
weight 1ength'exponent b cannot be expressed explicitly in terms of
m and n.

Equation (1.18) is a transcendental equation, i.e.

1
l=]‘(m)b ‘n*m)
b n :
]

V-1=(m)P (" -m

b (?f)

]
‘1-1_—_@) n-m = 9 | (1.25)
b n
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For given values of m and n, wé can by iteration processes find values
of b which make equation (1.25) zero. If we use Newton's method of
solving transcendental equations, the iteration process converges rapidly.
However, it is necessary to set the lower and upper limits of b. If b
satisfies the inequalities 2.5 < b < 3.5, then the values of m range
from 0.60 to 0.90 and n ranges from 0.8 to 1.0.

For many fish species, so far studied the weight-length exponent
Ties within the 1imits 2.5 to 3.5. Carlander (1969) reports 3 populations
of Coregonus artedi with b ranging from 3.62 to 3.69. But the values of
b -are based on samples in which length ranges from 200-230 mm. There
are also five popu]ations of Coregonus artedi with values of b less than
2.5. But these values of b are based on samples with maximum length
of 164-179 mm. Biased sampling may lead to estimates of b outside the
range 2.5 to 3.5.'lThe weight length exponent outside the range 2.5 to
3.5 cannot apply over a wide range of length without causing profound
changes in body formﬂ_ There may be a few exceptional fish species with
b greater than 3.5 but it is doubtful whether such fish speéies obey
the law of uniform and indeterminate growth.

The exponent of anabolism m cannot be 1 as this would make
the value of b tend to infinity (see equation (1.24)). The value of m
most probably does not exceed 0.90 for 0.8=s n < 1. However some evidence

is needed to verify this proposition.
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Variability of Weight Length Exponent b for Tilapia nilotica

Analysis of data collected by Lowe (1958) shows that the weight
length exponent for Tilapia nilotica in various localities in East Africa

is variable. Table 2 gives the parameters a and b for the relation:
W= aLb

Since the age of a fish at the inflexion point is a function
of the reciprocal of K and b, it follows that if natural mortalities
are the same, the age of maximum biomass in the different Tocalities
is different. The variability of b shown in Table 2 for Tilapia nilotica
is most probably true for other species of Tilapia in various waters in
East Africa. There is need to determine the weight ]ength exponent
for other specfes of TZlapia . Piennar and Thomson (1969) have pointed
out the importance of allometric weight length relationship and the
statistical problems of such relationships. |

Under the assumptions of isometric growth, the von Bertalanffy
growth equation has proved extremely attractive to yield model building,
for example the Beverton and Holt (1957) yield model. The importance
of variability of the weight length exponent has been given little
consideration. Because the parameters K and b control the inflexion
point and because b is related to the processes of anabolism and catabolism,
the first step in studying the dynamics of a fish population might be

the estimation of K and b.



TABLE 2 - Parameters a and b of the model W = aLb for

Tilapia nilotica in various localities in

East Africa

LOCALITY a b pH CONDUCTIVITY
LAKE ALBERT

OPEN WATER 0.017 3.34 9.0 710
LAKE ALBERT

BUHUKU LAGOON 0.028 3.33 9.2 7200

LAKE EDWARD 0.479 2.99 9.1 900

LAKE GEORGE 0.010 3.29 9.1 900
MALAGARASI

SWAMPS 0.39 2.96 7.6 300

LAKE RUDOLF 0.927 3.19 9.7 2800




SPAWNING, SEXUAL MATURATION
AND FECUNDITY

Spawning

The species of the genus Tilapia do not seem to have a clear
spawning season; In favourable and uniform environmental conditions
Tilapia may spawn at frequent intervals (Lowe 1955). In waters with
marked seasonal changes Tilapia may have one or more well defined breeding
seasons. The frequency of spawning and the mechanism undgr which it
works 1s‘not understood.
Lowe-McConnell (1955) reports some of the approaches that have
been used to detefmine the frequency of spawning. A Tilapia esculenta
‘marked on the 13th'Apr11 1953 in Lake Victoria, had fry in the mouth

and when captured 9 1/2 weeks later on the 20th June 1953, was found

to have eggs in her mouth. Another Tilapia esculenta (in Lake Viﬁtoria),
having fry in her mouth, was marked'on the 4th March 1953 and when captured
7 weeks later, the ovary was found to be in a ripening stage. Examination
of the ovary of Tilapia species revea]s‘dark yellowish or brown specks
which are signs of recent spawning. Many times, an ovary in a ripening
stage will have small ova starting to develop and these ova form the

next batch of eggs to develop (Lowe 1955). On the evidence of ovary
observatjons several sbecies of Tilapia may have three or more batches

of young in succession. If we can determine the time taken by each

23
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batch to develop, this would give some measure of the length of the
breeding season. The absence of a well marked breeding éeason creates
several problems in the management of Tilapia populations.

With no definite breeding season it is difficult to determine
annual recruitment and to relate recruits to the many batches of young
that occur in a year. Repeated spawning within a year creates what méy
be termed "sub-year classes" in a year class. Because of differences
in growth rates the length frequency distributions show considerable

overlap and it becomes extremely hard to dissect them into age groups.

Sexual Maturation

Sexual maturation may be governed by attainment of a certain
size rather than age. There are differences in growth rates and these
differences mean thét a year class or a batch of young hatching at |
the same time will reach maturity at different ages. This point is
emphasized by Nikolskii (1969). There are very few species of fish
in which maturity for a year class occurs at fhe same age, an exception
being the viviparous Poeciliidae. Even in this family variations in food
supply cause variation in age of maturation. 'sze of maturation is a
vital parameter in management of fish populations. Russell (1931) and
Graham (1935) stress the importance of "a]Towing fish to grow" before
catching them.

Beverton (1963) has established a relationship between length

at maturation (Im) and the maximum length (L~). The bigger the size
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to which a fish grows, the'bigger it is on first reaching maturity.
This means that the ratio Im/L~ is relatively constant for a family
of fish. Though this is generally true, exceptions do occur. Table
3 shows variation in the ratio Im/Lw in the genus Tilapia in East Africa.

Holt (1962) found correlations between the ratio 1m/Le and
K. Fish with high K have Tow Tm/L~ and mature at a smaller size while
fish with a Tow K mature at a bigger size. From the ratio Im/L», the
ratio Wm/We~ can be established if we kndw the weight length exponent b.
The ratio of weight at maturity to maximum weight (Wm/W~) is about 0.3
for many fish species (Holt 1962). It is also known that the weight
of a fish at the inflexion point is 0.3 of maximum weight for fish species
with b = 3.0 (see equation 1.12). For all the fish species which mature
before attaining the size of maximum dw/dt, catching the fish at the size
corresponding to the point of inflexion would be the.best way of getting
maximum yield. |

The ratios Tm/L~ and Wm/We in Table 3 below are based on data

in Lowe (1958), Garrod (1959, 1963) and Iles (MS.).
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TABLE 3 - The ratios Lm/L~ and Wm/We for some Tilapia
species in East Africa. The numbers enclosed
in brackets refer to maximum length based on
the largest fish in samples taken.

1)

Fish.

LOCALITY Species m (I Tm/Le Wm/Weo

LAKE ALBERT Tilapia

OPEN WATER nilotica 36 49 .73 0.35

LAKE ALBERT Tilapia

BUHUKU LAGOON nilotica 10 17 .58 0.16
Tilapia

LAKE EDWARD nilotica 25 (36) .69 0.33
Tilapia

LAKE GEORGE nilotica 28 (40) .70 0.31
Tilapia

LAKE RUDOLF nilotica 39 (63) .61 0.21

MAGALASI Tilapia

SWAMPS nilotica 22 (30) 0.73 0.39
Tilapia '

LAKE VICTORIA esculenta | 22. 34 0.67 0.30

LAKE VICTORIA Tilapia ,

JINJA REGION varitabilis| 22 (30) 0.73

From the results of Table 3 above it is evident that mesh size
of gillnets or codend mesh size will be different in the various localities.
The size of maturation and the weight at maturation must be considered

seriously when setting the mesh size of the fishing gear.
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Fecundity

One of the factors controlling the size of a year class is
the number of eggs laid. The number of eggs laid is governed by the
fecundity of a species and the number of mature females. There is no
simple relationship existing between number of eggs and the number of

- offspring that survive to sexual maturity; fhe main reason being variable

mortality in the several stages of development between egg laying and
sexual mortality. Svardson (1949) gave several generalizations about
fecundity and egg production all of which are noted in various ways within
Tilapia populations of East Africa. The generalizations are:

(1) There is a negative correlation between number of eggs
and individual size of the eggs.

(2) The number of eggs produced is positively correlated
with female size.

(3) The growth of a fish is greatly dependent upon the
amount of food available. Since growth and consequently
size is modified by environment, egg number might be
strongly influenced by environment.

(4) Fish species with some parental care produce relatively
fewer eggs than fish with no parental care.

(5) Closely related species may have egg number showing
geographical clines.

(6) Egg numbers may show intraspecific variation and this
might correspond to geographical clines.

(7) The largest larvae hatch from the largest eggs.

Tilapia species are subdivided according to mode of reproduction
into guarders and mouth brooders. Tilapia 27117 is a guarder and the

eggs are guarded by both male and female parents. Characteristics of
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the guarders is a large number of eggs (see Figure 3). Tilapia nilotieca,
Tilapia esculenta and Tilapia variabilis belong to the mouth brooders.

For these species, development of fry takes place in the mouth. In the
case of Tilapia leucosticta, also a mouth brooder, fry are first re-
leased when about 8 mm. or within 11 to 15 days of egg fertilization
(Welcomme 1966).

The fecundity of Tilapia species increases with length following
an exponential curve. The model describing the relationship of fecundity
and length is:- |

B

F=alL (2.7)

where F is the fecundity at the length L and B is the exponent relating
fecundity to length. A logarithmic transformation of the above model
leads to

Log F = loga+B logl (2.2)

In cases where the parameter B is equal to the weight length

exponent b, fecundity is said to vary directly with weight.

Note that,
F = aLb
and |
W= qb
Therefore
B
If b = B, then

-nlz
n
oo
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or F= g_w'
q
Setting C=a
q
F=CW - (2.3)

where W is the weight of a fish and C is the coefficient of regression
of F on weight.

The estimated.parameters of equations (2.1) and (2.2) for
Tilapia leucosticta and Tilapia nilotica are given below:

Tilapia leucosticta

F=o0.1312-%0
or |
Tog,F = -0.118 + 2.30 Tog L
Tilapia nilotica
F(o2.65L%"9°
or

Iogcf = 0.423 + 2.96 Tog L

Therefore the fecundity of Tilapia leucosticta increases with
about the square of length while the fecundity of Tilapia nilotica
increases with about the cube of length. This means that the fecundity
of Tilapia nilotica increases linearly with weight és shown in equation
(2.3).

Several factors including seasonal changes in weight of a fish

and improper sampling seriously affect the values of the parameters in
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equation (2.1). If some length groups are not sampled, there will be
bias in the estimated parameters.

In fisheries management, it is important to know how fecundity
varies with age so as to assess the effect of fishing on total egg produc-
tion and its consequences on‘recruitment. Though it is not easy to
determine age of tropical'fish and fecundity with age directly, we can
determine indirectly the age of a fish of a given fecundity.

The age of a fish of a given fecundity is determined using

the von Bertalanffy growth equation

1, = L= (1 - e"K(t - to))'

and the fecundity length model
F=alb

Let F, be the fecundity of a fish of length L and age‘t. Then the fecun-

t
dity at age t is given by the relationship

Fy = a(Lle (1 - e'K(t - to)))B (2.4)

It must be noted that this equation is only true for ages that produce
eggs. Equation (2.4) gives fecundity of a fish as a function of time.
Thus fecundity increases with age to an asymptotic value. This is to
be expected since length of a fish reaches an asymptote with time.
Knowing the parameters K and Le and knowing the fecundity
weight relationship, the age of a fish can algebraically be expressed.

Fo= (Lo 01 - e K(t - ty)))B

s3]
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Figure 3 - Number of eggs produced by Tilapia at different sizes.
(1) Tilapia karome, (2) Tilapia esculenta, Tilapia nilotica,
and Tilapia variabilis, (3) Tilapia galilaea, (4) Tilapia
z1ll7i. After Lowe McConnell (1955). '
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so that 1
) B
e-K(‘t—to) —<Ft) - Lo
d
L=
1
K(t-t)= InflF\B - L=
0 (_§>
a
[
1
t-t=—1n(F)B-Lw 1
(o] _f; E
a
=
1
t=-1n (FtB-Lw C1 4+t (2.5)
_t X 0
a

The accuracy of the estimated age t in (2.5) depends on whether our
estimates of K, L=, B and to are reliable. All the above parameters

can be determined with reasonable accuracy provided samp]ing is conducted
in such a way that many length groups are covered. For many species of

Tilapia the parameter to is about zero so that equation (2.5) reduces to

t=-1n (Ft>']3_ - Lo | (2.6)

L ]
a K

(=
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Again it must be underlined that thié expression is only valid
for estimating age of fish which are in mature age groups. Deterministic
expressions for age such as that in (2.5) and (2.6) could enable biologists
working in the tropics to make approximations of relative indices of yield

from fecundity, growth rate and the weight length exponent.



ESTIMATION OF MORTALITY RATES FOR
TROPICAL FISH

The theoretical foundation for solving the problem of natural

mortality was given by Baranov (1918) when he said that the age limit

determines the coefficient of natural mortality. Beverton and Holt

(1954, 1959), Taylor (1960), Beverton (1963) and several other fishery

biologists have pointed out that life span is dimensionally the same

as the coefficient of total mortality.

The equations formulated here for estimating mortality rates

from the mean age of fish in the catch, are based on the usual assump-

tions of negative exponential models of mortality.

Below are the symbols used in the equations:

E =
K =
1 =
T-=
lc

Loo

o+
n

expected value

the growth rate (von Bertalanffy growth parameter)

length |

mean length

length of recruitment

maximum length (a von Bertalanffy growth equation parameter)
instantaneous rate of natural mortality

sample size

time or age

mean age

34
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t_ = age of first capture

t, = age of oldest fish in the catch

L
tx = age of exit from a fishery
t0 = time at which the size of a fish is theoretically zero

Z = the instantaneous rate of total mortality

In developing the following mode]s; it is assumed that recruit-
ment is constant and the instantaneous rate of total mortality Z is
constant. The recruitment can either be of a discrete or continuous
form. The model based on continuous recruitment should be applicable to
the Tilapia species which breed several times in a year. The model
based on discrete recruitment is very useful in temperate latitudes

where fish spawn once a year.

Continuous Recruitment Model

In an unexploited fish population the number of fish at any

age t is given by

Ny = N, e'M(t - to) : (3.1)

where N, is the number of fish at the age or time t and N, is the initial
number at time t,-

We can express N, as a proportion of N0

t

N, = e Mt - ty) (3.2)

No



In the case of exploited fish populations, the number of fish at any

of the expoited ages is given by

N, = Re-Z(t - t.)

where R is the number of fish recruited at ége tc.

The number of fish Nt can be expressed as a proportion of R

Lt - t))
Nt = e c

=

In an unexploited fish population the total area under the

' negative exponential curve is unity. Similarly for exploited fish
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populations, the total area under the negative exponential between age

tC and infinity is unity. This property can be used to find the prob-

ability of a fish attaining age t.

The probability density function is defined as

X
F(x) = { f(x) dx =1
a

This means that the sum of the probabilities of all ages in a population

will be equal to one.

For the derivation of a probability density function for the

negative exponential, see Appendix 1.

In an unexploited fish population, the probability of a fish

attaining age t is

P(t) =P (T =t) = MeM(t - t)

P(t) = Me'M(t - to) for t > to

(3.5)
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In the case of an exploited fish population the relative prob-

ability of catching a fish of age t is o
p(t) = 7e-L(t - t.) fort > t. _ (3.6)

An observation t has an expected value %_+ t. and the variance

is 1/22. The expected mean age is given as

ER =1+t (3.7)
L

The variance of the mean age t of the catch is

.Var (t) =

1 (3.8)
nZ’ |
The total instantaneous mortality is a parameter but in practice it is
estimated as a statistic. Let us suppose that the mean age T is
t=E) +e , (3.9)
where e is a random error and the expected error is zero
E(e) = 0
Then the variance of the error is
Var (e) = _12 (3.10)
nZ
From equations (3.7) and (3.9) the relationship is established:-
t-t. =1+e (3.11)
¢ 7
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Notice that the error term e can either be negative or positive. From
equation (3.11) we can derive an expression for estimating total mortality

from a catch sample drawn from a population.

7' = 1 | (3.12)

where e is positive or negative. When the error is large and negative
the total mortality is under estimated. But when the erfor is large and
positive Z' is over estfmated. Let t - tc = U, If we assume t is a
constant, a formal expression for the distribution of Z is obtained

by a binomial expansion of the equation:

Z= 1 (3.13)
U+e .
AR TRl SR Yot S s S (3.14)
The expected Z' is
E(Zz') - U+ E(e?) U3
o 3
Therefore E(Z2') =7 + AP (3.15)
nZ
E(2')=7+1 (3.16)
n

Square Z' in equation (3.14)

72 -y Lty L (3.17)
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If we treat total mortality Z' as a random variable and if we denote
the expected total mortality as d, it is possible to measure the dis-

persion of the expected value of total mortality

(2 - d)°

The dispersion of the expected vé]ue is known as the variance of Z,
denoted as Var (Z).

The variance of a random variable for example total mortality

Z, is
Var (Z) = E(Z' - d)? (3.18)
As Hodges and Lehmann (1965) put it, this variance is the expectation
of the squares of the difference between Z and its expectation. From
equation (3.18) the variance of Z can be expressed as
_ 42 2
Var (Z) = Z - 2ld + d (3.19)
From the l1aw of expectation, the variance becomes
- 2 2
Var (Z) = E(Z°) - 2dE(Z) + d (3.20)
But expected Z equals d. Therefore
E(Z) = d
Var (2) = E(Z%) - d° (3.21)

But from equation (3.16)

E(z%) = (2 + 1) (3.22)
n
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and d=2+171+....
n

Therefore d”- = (3.23)

Therefore the variance of total mortality estimated by equation (3.12) is

)2

Var (2) = (Z2+2)% - (Z+Z+ ....
n

n

Z2
n

Var (Z) (3.24)

From the above considerations

1 n+1 |
E (t - tc> =< n ) yA (3.25)

Therefore the total estimated mortality based on a taken sample is

Z= 1 . n | (3.26)

t - tc

This is an unbiased estimator of total mortality Z. The variance of
Z is

n+1

o2 (2) =< n )2 . (3.27)
The variance of Z can be estimated from the sample as

n+ 1

2 ;5 2 |
o (Z) = n . ] (3.28)
( ) n(t - tc)2
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Total mortality estimates for Tilapia esculenta are made using equation
(3.26) and given in Table 4. Note that Table 4 does not give total
mortality at each age. But if one sampled the catch and found the mean
age t where E'z_tc, to be 3 years, the total mortality of Tilapia esculenta
which is recruited at 2.5 years, would be 1.99 and the variance of this
estimate would be 0.0079. It is expected that the mean age in the catches
from various localities will vary and each region will be characterized
by its own total mortality. |

In the case of maximum likelihood, the total mortality is estimated

as

Z=_1_ , (3.29)

oX7 )= 1 (3.30)

The variance of Z in the case of maximum 1ikelihood is bigger than the
variance determined from the expected value of Z. While estimates of
total mortality can be determined with equation (3.29), it is better to
estimate total mortality with equation (3.26) so as to avoid bias in the

estimate.



TABLE 4 - Estimates of total mortality for Tilapia esculenta
in Lake Victoria. It is assumed that recruitment
is continuous. t_ = 2.5 years and n is the sample

size. ¢
n_= 500 n = 1000 n = 1500 n = 2000
tlz | Az | Az | Aoyl z | &z
3.0 { 1.99 | .00796 | 1.99 | .00399 { 1.99 00266 | 1.99 | .00199
3.5 .99 | .00199 .99 | .00099 .99 | .00066 .99 | .00049
4.0 .66 | .00088 .66 | .00044 .66 00029 .66 | .00022
4.5 .49 | .00049 .49 | .00024 .49 00016 .49 | .00012
5.0 .39 | .00031 .39 | .00015 .39 00010 .39 | .00007
5.5 .33 | .00022 .33 | .00011 .33 00007 .33 | .00005
6.0 .28 | .00016 .28 | .00008 .28 00005 .28 | .00004
6.5 .24 | .00012 .24 | .00006 .24 00004 | .24 | .00003
7.0 .22 | .00009 .22 | .00004 .22 00003 .22 | .00002
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Estimation of Total Mortality Rates for Fish with Discrete
Age Groups

If a quantity X takes on the possible discrete values X1 Xos
covs X and if X] < Xy < X, then the probability that X takes a value

X5 (for finite series) is defined by

PX; = P(X = x;) = f(x;) (i = 1,2, . . ., K)

and the sum of f (Xi) is unity (Burington and May 1958)

k
§ f(xi) =]
i=1

Similarly for an infinite series, the probability that X takes the values

X_i 1S

px; = P(X = x.)

1 f.(xi) (i=0,1, 2...®)

0

P(X = xi) E f(x;) =1

0

From the proberties of a discrete probabi]ity distribution,
we can derive expressions for estimating tofaT mortality for fish with
discrete age groups. But two assumptions have to be made: (1) constant
recruitment and (2) constant total mortality for all ages.

If we draw a sample of size n from an exbonentia] distribution,

the probability of getting'age t is
P(t) = P(T=1) = (1 -e%) e2F for t >t

P(t) = (1 - e’2) e'zlc for t > t, (4.7)



The mean age t for a population with discrete age groups is
T=et (1 - e'z)

The derivation of equations (4.1) and (4.2) is given in Appendix 2.

The survival rate is given by

From equation (4.2) and (4.3) it is obvious that if total mortality
Z is zero the mean age of a fish in a sample will be infinity.

arranging equation (4.3), we have

so that

Re-

a4

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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which is rearranged to give

s= % (4.8)
1+¢F
But S = e'Z
Therefore el- — (4.9)
1+t

]
N
n
—
=
P
-
+ et
|
~——

Z=1n (1_+_§> | | (4.10)

Equation (4.10) estimates total mortality Z if the age t is zero.
The age of first capture'tc is not zero and therefore it must be sub-

tracted from the denominator and numerator of equation (4.9), je.,

el = T-t (4.11)

The total mortality in the 'case of discreté recruitment is

Z = 1n <'f +1 - tc) (4.12)

t - tc

The above estimator of Z has statistical bias if the mean age is deter-

mined from a small sample. A more reliable estimate of Z is given by

Z = 1In <t +1 - tc) . n (4.13)

—— n+1
t - tc
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The variance of the total mortality Z is

n+1

02=<__n__>2.r1]_.22 (4.14)

Total mortality estimates for Tilapia esculenta are made using equation
(4.13) and given in Table 5. ‘The estimates given in Table 5 are very
close to those in Table 4. Under discrete recruitment a mean T of 5
years in the catch would mean that the total mortality is about 0.33.
But under continuous recruitment a mean age of 5 years gives a total
mortality estimate of 0.39. Note that the age of first capture is 2.5
years. The variances of the estimates in Table 5 show that using large

samples makes the estimated Z more reliable.

TABLE 5 - Estimates of total mortality for Tilapia esculenta
in Lake Victoria. It is assumed that recruitment
is discrete. t. = 2.5 and n is the sample size.

n = 500 n_= 1000 n_= 1500 n = 2000

ot

Z o(7)| 1 (23| z (7)) z % (2)

3.0 {1.09 | .00239 | 1.09 .00120 { 1.09 | .00080 | 1.09 | .00060
3.5 .69 | .00095 | 0.69 | .00047 | -.69 | .00031 .69 | .00023
4.0 .50 | .00051 .50 | .00025 .51 | .00017 .51 | .00013
4.5 .40 | .00032 .40 | .00016 .40 | .00010 .40 | .00008
5.0 .33 | .00022 .33 | .00011 .33 | .00007 .33 | .00005
5.5 .28 | .00016 .28 | .00008 .28 | .00005 .28 | .00004
6.0 .25 | .00012 .25 | .00006 .25 | .00004 .25 | .00003
6.5 .22 | .00009 .22 | .00004 .22 | .00003 .22 | .00002
7.0 .19 | .00007 .19 | .00004 .20 | .00002 .20 | .00002
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Estimation of Total Mortality Rates and the Ratio Z/K from Length Data

Since it is difficult to age tropita] fish species, the use of
age in estimating total mortality may not easily apply to tropical species.
Instead of age, one can use length to estimate the total mortality (Z)
if the parameter K is known. Where K is unknown, the ratio Z/K is
estimated from the negative exponential curve, The ratio Z/K is important
in determining yie]ds; for fish with allometric growth, by means of the
incomplete Beta function.

In an exploited fish population, we can express the number

of fish at any age t as

N, = o~L(t - t) - (5.1)
It is assumed that the number of fish at age tc is constant and equal to
unity. |

The von Bertalanffy growth equation for length is

K(t - t ))

1, = Lo (1 -¢ 0

t

In the above equation, time t can be expressed as a function of length.

Then t and t. in (5.1) are given as

t=1(-n(1-1))+t (5.2)
K =
t, = ]K (- 1n (1 - 12)) +t : (5.3)

Lo
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Let Xy = -n (\ - 3i;>

and XC = - 1In <j - Jii)
L
Then t = 1 X1 +t (5.4)
_ 4 0 ‘
tC = _|1Z xC + to (5.5)

Subtracting t_ from t

t - tc = %_X] + to - (ll_(__XC + to)

=1 (X - X))
K 1 c
Replacing t - t_ in equation (5.1)
N o= e Z/K(Xy - X)) | (5.6)

The probability of X] is given by the probabi]ity density function below
P(X;) = Z e L/K(Xy = X gor X > X (5.7)
K- ¢ _
Note that equation (5.7) is similar to eqhation (3.6).

Therefore if we know the length distribution in the catch and the length

of first capture, the ratio Z/K can be estimated.
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where 7} is the mean of X] from various samples. The variance of Z/K

is
27 = (_n ) N | (5.9)
K n+1 n
which can be estimated by
c2 7 = ( n >2 . 1 (5.10)
K . tn+1 - 2
/ n(X]‘- Xc)

Note that to determine 7} we have to take several samples each of size

n. For each sample we determine X] according to:

X, = -m(]-]t))

[

Then X, is given by

m :
X.I = E X; (5.11)
; :

m4

where m is the number of Xy each determined from equation (5.8).

Table 6 shows estimates of total mortality based on the above
method for Tilapia esculenta in Lake Victoria in the North Buvuma area.
The length of first capture ]c is 22 cm. and corresponds to age tC = 2.5
years. In Table 6, the mean length in the catch is given instead of X].

The total mortality rates estimatedlwith length are very close
to the estimates determined from_age'data. For exampie, if the mean

age in the catch is 3 years a population of Tilapia esculenta would
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have a total mortality rate of 1.99. A 3 year old TZlapia esculenta
is about 24 cm. Tong. If the mean length in the catch is 24 cm., the
ratio Z/K and the total mortality (Z) would be 5.37 and 1.71 respectively.
Also note that a mean age of 5 years and a mean length of 29 cm give
total mortality estimates of 0.39 and 0.35 respectively (see Table 4
and Table 6).

TABLE 6 - Estimates of total mortality rates for Tilapia esculenta
in Lake Victoria. Length of first capture L_ = 22 cm.,
K=0.32, Lo = 33.8 and n is the sample sizeS

n = 500 n = 1000 n = 1500 n = 2000
7 ) | 1z )| 1z 2(2) | z 2(2)

23 3.60 ; .02590 | 3.60 | .01300 { 3.61 | .00868 | 3.61 | .00651
24 1.7t | .00589 | 1.72 | .00295 | 1.72 { .00197 { 1.72 } .00148
25 1.08 | .00236 | 1.08 | .00118 | 1.09 | .00079 | 1.09 | .00058

26 0.77 | .00118 | 0.77 | .00059 | 0.77 | .00039 | 0.77 | .00029
27 0.57 | .00066 | 0.57 | .00033 | 0.58 .00022 0.58 | .00016
28 | 0.44 | .00040 | 0.45 | .00020 | 0.45 [ .00013 | 0.45 | .00010
29 0.35 | .00025 | 0.35 ;00012 0.35 | .00008 | 0.35 | .00006
30 0.28 | .00015 | 0.28 | .00007 | 0.28 | .00005 | 0.28 | .00003
31 0.22 | .00009 | 0.22 | .00004 | 0.22 | .00003 { 0.22 | .00002
32 0.16 { .00005 { 0.17 | .00002 | 0.17 | .00001 { 0.17 } .00001




TABLE 7 - Estimates of total morta]it& rates for Tilapia

nilotica (normal population) of Lake Albert

Uganda.

Lo

Length of first capture 28 cm., K = .50,
49.0 and n is the sample size. ‘

51

n = 500 n - 1000 n = 1500 n_= 2000
Tyoml  Z Ziz) | z 2y | z 2y | z o2 (7)
29 | 10.22 | .20837 | 10.23 | .10460 | 10.24 | .06982 | 10.24 | .05240
30 4.98 | .0a951 | 4.99 | .02485 | 4.99 | .01659 | 4.99 | .01245
31 3.23 | .02087 | 3.24 | .01047 | 3.24 | .00699 | 3.24 | .00524
32 2.36 | 01110 | 2.36 | .00557 | 2.36 | .00372 | 2.35 | .00279
33 1.83 | .00670 | 1.83°| .00336 | 1.83 | .00224 | 1.83 | .00168
34 1.48 | 00838 | 1.48 | .00219 | 1.48 | .00146 | 1.48 | .00110
35 1.23 | .00301 | 1.23 | .00151 | 1.23 | .00101 | 1.23 | .00075
36 1.04 | .00215 | 1.04 | .00108 | 1.04 | .00072 | 1.04 | .00054
37 .89-] .00158 | .89 | .00079 | .e9 | .00053 | .89 | .00039
38 77 | .oone | .77 | .o0050 | .77 | .00039 | .77 | .00029
39 .67 | .00000 | .67 | .00045 | .67 | .00030 | .67 | .00022
40 .58 | 00069 | .58 | .00034 | .58 | .00023 | .58 | .00017
41 51 | .o0053 | .51 | .o0026 | .51 .00007 | .51 .00013
42 .45 | .00041 | .45 | .00020 | .45 | .00013 | .45| .00010
43 .39 | .00031 | .39 | .00015| .39 | .0000| .39 .00007
44 .34 | .0002a | .3a | .00012 | .34 .o0008 | .38 .00006
45 .30 | .o0018 | .30 | .o0009 | .30 | .00006 | .30 .00004
46 .25 | .00013 | .25| .00006 | .25 .00004| .25 .00003
47 .21 | .o0008 | .21 | .00004 | .21 .00003| .21| .o0002
48 16 | .00005 | .16 | .00002°| .16 .00001| .16| .00001
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Estimation of Total Mortality Rates and the Ratio Z/K
Using Extreme Values

The oldest age in a fish population has statistical properties
of extreme values. The age of a fish at death is a statistical variate
and the negative exponential curve gives the probability of dying after
a certain age. Fish populations with high tdta] mortality have relatively
fewer age groups than populations with low total mortality. By reducing
the fishing intensity one expects more fish reach an older age. Several
workers have investigated the application of statistics of extreme values
in estimating the total mortality of fish (Gumbell 1954, Kendall 1955,
Beverton 1963 and Holt 1965). |

Suppose we have n independent observations x],lxz,..., X

n
with a common distribution

F(t) = Prob {Xit}

Then if yi, Yoeeu-¥, are the‘s§me n observed numbers rearranged in des-
cending order of magnitude, the largest value ¥4 and the smallest value

Yn and the range (y] - yn) are new random variables the joiﬁt distribution
of which depends on the distribution function F(t). The negative exponential

distribution expressing mortality with age is
F(X) =1-¢% for X >0

F(X) is the probability that a given observation has a value equal to
or less than x. If y is the largest value of x (age) in the sample of

size n, then
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y = v+ 1n{(n) (6.1)

As n tends to infinity, v = 0.5772 (Euler's constant).

By taking several samples of size n, the mean largest'y becomes
y = .5772 + 1In (n) (6.2)

Holt (1965) derived an equation for estimating the mean age of the oldest
fish in a series of samples of size n

T, = 0.5772 + 1In (n) + t

1 Z (6.3)

c
where EL is the mean age of the oldest fish in a series of samples of

size n. Equation (6.3) can be written as

fL -t =0.5772 + In (n) (6.4)
~C 7 .

The standard deviation of y in (6.1) is

oy = 1l
/B

and the variance of y is 02y = g_z
6

The variance of fL -t in equation (6.4) is

02 (¢, -t)=1 . H2

From equation (6.4) an expression for estimating total mortality is

derived:-



Z = 0.5772 + 1n (n) (6.5)

-t

But the expected total mortality E(i) is

E(Z) = Z (1 s 2 2) (6.6)
) 6 (.5772 + 1n(n))

The variance of E(Z) is

Var (i) = n2 22
6 (.5772 + Tn(n))

) (6.7)

It is important to note the differences between the negative
exponential distribhtion and the extreme value distribution as estimators

of total mortality.

(1) The mean age of a population estimated from a negative
exponential is smaller than the mean age estimated -
from the extreme values.

(2) The variance of the mean age (of a negative exponential)
is bigger than the variance of the mean age determined
from extreme values.

(3) The coefficient of variation for the mean age estimated
from a negative exponential is unity because mean age is
equal to the standard deviation. But the coefficient
of variation of the mean age from the extreme value
function is less than one.

(4) As estimators of total mortality Z, the negative exponential
is more reliable than the extreme value function. The
variance of Z estimated from a negative exponential is
smaller than the variance of Z as estimated from the
extreme value function.
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A comparison of variances from both estimators is giVen in
Table 8. It is assumed that the total mortality Z = 0.5, and the vari-

ances of Z from samples of various sizes, are calculated.

TABLE 8 - Comparison of variance of exponential and
extreme value functions for Z = 0.5

Variance
Exponential Extreme Value
Sample ' 9 2 2
Size (n) Var (Z) = Z/n Var (Z) = n° z 2
6 (.5772 + In (n))

10 0.025 : 0.049 |

100 0.0025 ~0.015

1000 0.00025 0.0073

10000 . 0.000025 0.0043

The extreme value function can be used to determine the ratio
Z/K from length data. If we replace ages t_ and EL in equation (6.5),

the longest fish in the catch can be used for estimating total mortality

where ]t is the longest fish in the catch of sample size n

Xc =-1In (1 - ]C/Lw)

and t -t = 1IX At - X+t

L C 3 K
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Therefore t -t ='% (X] - Xc)
Then the ratio Z/K is given by
Z = .5772 + 1n(n) (6.8)
K —
Y- %

If the ratio Z/K is constant for a given fish population, then as we
increase the size of the sample, we would expect the parameter 7} to
increase. If 7} does not increase with n then the ratio Z/K estimated
with large samples, will be over estimated. Instead of taking one very
large sample from a population, one cod]d take small samples of size

n from the several strata and reduce the variance of 75. For each stratum
the ratio Z/K would be estimated and the mean of the various ratios would
be the parameter for the population. Extensive sampling is required

to show that the extreme age and length in a population have properties

of the extreme value function, which in this case is a double exponential.



CATCHES AND FACTORS AFFECTING CAPTURE
IN AFRICA

Variables Affecting Catches

The most serious problem connected with determining yields
from tropical lakes is the estimation of annual recruitment. Many fish
species, especially those of the genus Tilapia,have no defjnite breeding
season and it is extremely difficult to relate the notions of recruit-
ment to several batches of young that appear in a year. For Tilapia,
which spawns in the inshore waters, fluctuation of water level is an
important environmental factor influencing the success of spawning.
Welcomme (1966) reports that Lake Victoria levels show seasonal
oscillation with a méximum in May-Jdune and a minimum in October to
November. Long-term fluctuations of water level also occur. Prior to
1927, Lake Victoria had a 10 or 11 year cycle of water level maxima.
From 1927 to about 1961 the pattern of fluctuations changed markedly
and the water level rose considerably. In 1964, the water level was 1.4
meters above previous records. The rise in water level was accompanied
by changes in catch per unit effort for Tilapia esculenta (see Figure 4).
Mean catches of three species of Tilapia from 4 and 4.5 inch gill nets
are given in Table 9. These mean catches are based on catch effort

data from several fish landings in Tanzania and Uganda.

57
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TABLE 9 - Mean catch per effort (catch per net per set)
for Tilapia species from 1959 to 1965.

MEAN CATCH PER NET PER SET
1959 | 1960 1961 11962 1963 1964 1965

Fish species

Tilapia 1.09 | 0.84 0.92 1.1 1.59 5.85 3.80

esculenta

Tilapia
variabilis 0.72 | 0.81 0.99 1.16 1.03 0.93 0.26

Tilapia
z31lle 0.03 | 0.06 | 0.08 0.17 0.15 0.19 0.11

The spawning grounds of Tilapia esculenta are swampy sheltered
margins and theée areas were increased considerabTy by flooding in 1961
to 1962 (Welcomme 1964). Lowe (1956) reporfs that Sreeding activity
of TiZapia,escuZenta'increase with heavy rainfall. The heavy rainfall
of 1961 and 1§62 seem to have induced a high response in bfeeding activity
of Tilapia esculenta. The year classes of 1961 and 1962 resulted in high
catches in 1964 and 1965. Note thaf Tilapia esculenta takes two to three
years to attain maturity (22 cm. to 24 cm.) and it is at this size that
a fish is caught in 4 and 4.5 inch gill nets. Tilapia 27117 and Tilapia
vartabilis spawn on harder boftomed exposed beaches (Fryer 1961 and
Welcomme 1964). -The rainfall of 1961 and 1962 did not significantly
affect the catches of Tilapia zilli and Tilapia variabilis (see Table

9 and Figure 4).
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Figure 4 - Changes in mean catch per net (expressed as number of fish

per 25 yd. set) of (A) Tilapia esculenta,

(B) Tilapia variabilis

and (C) Tilapia zilli for sampled fish landings in Tanzania

and Uganda.

(D) is Lake water level in meters at Jinja.
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Information on other variables affecting catches is furnished
| by F.A.0. exploratory bottom trawling in Lake Victoria. These variables
include depth of bottom, fime of day of fishing and mesh size of codend.
For some fish species, e.g., Tilapia esculenta and other Tilapia species,
the catches decline with increasing depth of the lake. But catches of
Haplochromis increase with increasing depfh and the maximum catch occurs
at about 44.5 metres. Beyond a depth of 44.5 metres, the catches decline.
One of the important cat-fishes (Bagrus docmac) gives low catches at
a mean depth of 6.5 metres. The catches increase with depth to about
24.5 metres beyond which the catches deline. A comparison of the effect
of depth on catches of some fish species is given in Tab]e‘TO and Figure

5.

TABLE 10 - Mean catches in Kilograms of fish caught pef hour
' at various depths during exploratory bottom trawling
in Lake Victoria. :

MEAN DEPTH IN METERS

6.5 14.5 1 24.5 34.5 44.5 54.5 64.5 | 74.5
Kg. Kg. Kg. Kg. Kg. Kg. Kg. Kg.
Haplochromis | 320.4 | 524.8 | 462.8 |524.0 | 465.9 | 496.7 | 185.2 | 28.8
Tilapia o
esculenta 52.6 31.7 3.5 0.3 0.1 0.0 0.0 0.0
Other Tilapial 15.0 0.9 0.0' 0.0 _OfO' 0.0 0.0 0.0
Bagrus
docmac 24.6 42.3 45.1 35.5 31f3, 38.6 | 21.9 0.3
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The time of day when fishing is conducted is another variable
influencing catches. Regier (1970) assumes that the diel vertical move-
ment of some fish species affects trawl catches fo11owing'a sine curve
with nodes at dawn 07:00 hours and at dusk 19:00 hours. The nodes are
the periods of minimum catches and the antinodes are periods of maximum
cgtches. The antinodes occur at 13:00 hours and at 01:00 hours. There
is therefore a period of 12 hours between nodes as shown in Figure 6.

The catch is expressed as a function of time of day of fishing as

y = b3 sin [:H (T - 7.00{:] (7.1)
12

where T is the time of day of fishing and ranges from 1 to 24 hours,

b3 is the amplitude of the sine wave and y = b3 at the antinodes.

A series of preliminary analyses support the assumption of catches
following a sine curve. The multiple regression analyses were done
using the sine curve in the form of (7.1). However through personal
interviews with Tocal fishermen in the northern end of Lake Victoria,

I learnt that a number of fishermen utilize the 01:00 hour antinode.

Most fishermen set their gillnets between 17:00 and 19:00 hours and

pick up their gill nets between 02:00 and 05:00 hours. This implies

that some fishermen are aware that after 02:00 hoUrs,\the catch dec]ines.
Local fishermen in Lake Victoria do not conduct day time fishing and
information on the catches at 13:00 hour antinode is from trawl catches.
Since there are two antinodes (one at 01:00 hour and another at 13:00

hours it might be desirable to take the absolute values of (7.1)

y = b, sin | m (T - 7.00)
12
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Figure 6 - A hypothetical curve of catches against time of day with
nodes at 7 and 19 hours. b3 is the amplitude of the sine
wave (see equation 7.1). ’
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It is necessary to estimate the effect of a number'of variables
on the catch of different species. Regier (1970) suggested a step-wise
multiple regression analysis on the catches from bottom trawling.
This analysis gives useful information on the distribution and standing
crop of certain fish species. An outline of a step-wise multiple re-
gression analysis is given below.

The relationship between yield and variables like depth of a
lake and mesh size of codend of a trawl may not be‘simp]y linear.
Therefore a simple linear relationship is commonly modified by use of a

polynomial regression, viz.

X+b, X2+ ....+b_x" ' (7.2)

y = bo * b] 2 n

The effect of type of bottom, time of fishihg, depth of lake
and mesh size, on yield is investigated for the genus Haplochromis and
for Tilapia esculenta and Tilapia nilotica. The area studied is that
between Bugoma-Salisbury channel and Rosebery channel for depth less
than 50 metres.

Below is a symbolic notation of the independent variables.

X] = type of bottom

X_ = soft mud bottom

X, = mud bottom

X;, = hard bottom

X, = depth of bottom

X3 = time of day of fishing

X4 = mesh size of codend
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The relationship between the yield y and the independent vari-

ables is given by a multiple regressién model below.
Y =Bt By Xyt By Xy v By X3+ By X v U (7.3)

The parameters Bo’ B], BZ’ B3 and B4 are unknown population
coefficients. U is an unknown random variable measuring the departure
of observed y from the predicted y. The above parameters are estimated

from samples taken from a population:

+b, X, +b, X, +b, X, +e (7.4)

Xy # by Xy + by X3 + by Xy

y = by * by

where e is a random error term and the coefficients b], b2, b3 and b4
are coefficients giving the slope of y on the variables X], XZ’ X3 and
X4 respectively. | |

Because the regression of yield on each of the variab]es; except
X3, is of a polynomial form, the catches have been subjected to a logarithmic
transformation. This transformation helps to reduce the polynomial terms,
stabilizes the variance of the mean and make the regression model more
efficient.

If we write a function for each of the independent variables,

the model (7.4) becomes:
y = Tog (2) = U+F (X)) + F(Xy) + F4(Xg) + F,(X,)  (7.5)

where Z is a discriminant function and a linear function of the independent
variables. Each of the independent variables contributes an effect |
independent of the other variables to the logarithm of the catch.

In the case of a multiple }egression where a dependent variable

(e.g. catch) is affected by several variables, it is necessary to discriminate
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among the independent variables, and leave only those vafiab]es which contri-
bute to the regression sum of squares. In an exploratory manner various
combinations of the variables X], X2, X3 and X4 are-chosen in such a way
as to minimize the unexplained residual variation. Any variable which
does not significantly contribute to the regression sum of squares is
dropped. We use the correlation coefficients between yield and the
other variables as a criterion for entering variables in equation (7.4).

Correlation coefficients for the genus Haplochromis and fbr

Tilapia esculenta and Tilapia nilotica are given in Table 11.
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TABLE 11 - Correlation coefficients between catches and

variables affecting catches in Bugoma-Salisbury
Channel to Rosebery Channel in Lake Victoria

Uganda .
~FISH SPECTES

Independent Haplochromis Tilapia esculenta Tilapia nilotica
Variables log y ‘ log y log y
Xq 0.0160 - 0.1179 - 0.1247
X 0.1796 - 0.5325 - 0.0760
Xy - 0.1866 0.5784 0.1279
Xy 0.4424 - 0.7505 - 0.3413
Xy 0.4634 - 0.3136 - 0.2184
X, 2 0.737 0.2196 0.1243
xg 0.4459 - 0.6581 - 0.2867
x§. - 0.0200 0.0833 0.1231
X3 - 0.7852 0.2057 0.1351
xg 0.4369 - 0.5606 - 0.2358
xg 0.3913 - 0.2546 - 0.1990
XZ - 0.8169 0.1886 0.1367

X_ = soft mud bottom X, = depth of bottom

Xm = mud bottom X, = time of day

X, = hard bottom X, = mesh size of codend
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Multiple Regression Equations

By using the simple correlation coefficients in Table 11 as a
criterion for entering variables in a multiple regression model, the
equations below were established.’ Because the regression model is of a
polynomial form, the multiple regression equation contain some variables
raised to cerfain powers.

The equation to describe catches for Haplochromis species is

2

log y = 1.9869 - 0.104 X; + 0.0608 X4

+ 0.2267 X, +

3
4 3

0.0003 X3 f (7.6)
Equation (6.7) shows that the catch of Haplochromis depends on mesh size,
time of day of fishing and bottom depth. It is also evident that the
smaller the mesh size X4, the bigger the catbh. The time of day of
fishing X3 will contribute to the catches depending on the time function
(7.1). From above it is evident that high catches of Hapzbchromis will
occur at a greater depth XZ' |

For Tilapia esculenta, the multiple regression equation is:

2
2

log y = 2.0407 - 0.0996 X2

+ 0.00118 X, + 0.2936 X (7.7)

1

Equation (7.7) shows that catches for Tilapia esculenta are more influenced
by depth and type of lake bottom than any of the other variables. Also
note that the correlation coefficient between log y and depth is - 0.7505

meaning that catches decline with depth. From the correlation coefficients
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in Table 11, it appears high catches of Tilapia esculenta occur in hard
bottom localities.

The equation for Tilapia nilotica is

log y = 0.3213 - 0.02 X, + 0.00028 X} (7.8)

2

Equation (7.8) shows that the catch of Tilapia nilotica is very much
influenced by the depth of lake. |
If all the important parameters are included, the multiple
regression equations and the correlation coefficients provide a short-
cut method of assessing the state of exploited fish stocks. Under steady
state conditions,»the catches of each year should be close to what is
predicted. If there is overfishing and the stocks are declining, the
catches will be less than what the multiple regression equations predict.
Analyses of catch data of two or more periods will give reliable
indications of the relative degree of exploitation. The multiple re-
gression equations could also be used in improving fishing success,
sinée they provide information on the distribution of fish, mesh size of

codend of trawl and time of day of fishing, 1ikely to give high catch.



YIELD EQUATIONS

Beverton and Holt Yield Model

In exploited fish populations, fish are recruited to the fishery
_at age tr (the age of recruitment), but are not caught until the age of
first capture (tc). The only exception to this is the case of knife

edge recruitment where tc = tr' The change in numbers with time in

exploited fish populations is given by

_t

dN, = - (F+M) Ny (8.1)
dt ' :

Integrating the above derivative with the lower 1imit of the integral
equal to tr and the upper limit tAa, the "age of exit" from a fishery,
gives |

N, = R e Z(t - t) (8.2)

where R is the number of recruits at the age tr and Z is the total mortality.
Equation (8.2) describes change in number of recruits with age, in a
fishery with knife edge recruitment.

Normally between age tr and agé tc,natural mortality reduces

the recruits R. Therefore the recruits reaching age tc are

-M(t, -t

R' = Re W | - (8.3)

70
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The number of fish at each age for the exploited age groups is given by

N, = R e Z(t-t)

t (8.4)

Fishing mortality is responsible for a proportion of the numbers

dying and the catch C is given by the integral
tx

C =S FRroHE =) g

te

which Teads to an equation describing catch

C=RF . (1-eth-t)y © (8.5)

F
L
For fish species with a large tx, the expression in brackets approaches

one and the catch is approximated by

C=FR' | (8.6)
i

In terms of weight, the yield at any time is given by

EKE = FNt Wt
dt

The total yield in weight from a year class is given by the integral

ta
Y_=5 FNgW, . dt (8.7)
t
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A major problem facing fishery biologists is one of finding an unbiased
expfession for weight in equation (8.7). The von Bertalanffy growth

equation for length is

1, = Le (1 - oK(t - to))
Beverton and Holt (1957) assumed isometric growth and expressed weight

in terms of a cubic expression of length

wt = We (1 - e'K(t - to))3

Replacing weight in (8.7) by a cubic expression is a convenient method
for evaluating the integral in (8.7). Though it is well acéepted now
that growth of many fish species is not isometric,. the easiest approach
to evaluating the yield integral (8.7) is the assumption of isometric
growth. However, numerical evaluation of (8.7) for fish with allometric
growth can be done using an incomplete Beta function. The above cubic

equation when expanded and rearranged can be written as a summation.
3

W = > u e MK(E - g) (8.8)

where U = 1.0, - 3.0, 3.0, - 1.0, for n = 0, 1, 2, 3 respectively.
If we rep]ace'wt in (8.7) by the expression in (8.8) and replace
N, by the expression for R' in (8.3), the integral (8.7) leads to the

Beverton and Holt yield equation.

Y = Fie e :S_— U, e “ty) L (1 - e Kt - )y (g g)
F + M + nK
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where Y is the yield per recruit. For fish species with large ta , fhe
last expression in brackets in (8.9) could be eliminated without affecting
significantly the value of yield. But most tropical fish species have
a short life span and therefore a small tx. Without the expression
within the brackets, equation (8.9) would give biased estimates of yield
for fish species in the tropics.

Using equation (8.9) yields have been calculated and yield
isopleths constructed for Tilapia esculenta in Lake Victoria and Tilapia
nilotica in Lake Albert Uganda.

The ages for Tilapia nilotica have been estimated from length
-‘by the equation

t = %.(- In (1 - 1t/Lw)) + to

expressed in the same conventional form of the von Berté]anffy equation:

]t = f(t) = L= (1 - e'K(t - to))~

where for Tilapia nilotica L= =49.0 cm., K = 0,5 and to'= 0.

Tilapia esculenta in Lake Victoria lives for 12 "ring" years,
equivalent to six calendar years (Garrod 1963); Tilapia escuienta in
the Jinja region of Lake Victoria have the following population para-
meters: Lo = 33.8 cm. K=0.32, ty = - 0.8. The natural mortality
estimated by Garrod (1963) is 0.17 which is close to the natural mortality
rate of 0.16 estimated on the assumption that the mean natural mortality
_ is a reciprocal of life span. With this natural mortality, there is

a probability of 0.07 that a fish will reach a maximum age of 6 years.
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In the calculation of yield, W~ was taken ds 730 gm. It is possible
that T<{lapia esculenta now being caught in bottom trawling may exceed
that weight. Whether the actual maximum weight is less or greater than 730
gm., does not affect the shape of the yield isopleths. The age of recruit-
ment tr is taken aé zero but this does not mean that the young and adult
Tilapia esculenta live in the same habitat. Actually, Tilapia esculenta
is recruited at a Tength of about 20 cm. corresponding to about 2 years
of age. Setting tr as zero in model (8.9) is a matter of computational
convenience. But this is based on prior information that tr does not
influence the shape of yield isopleths but only reduces the value of
yield.

Observations on yields of Tilapia esculenta as revealed by the
yield isopleths in Figufe 7, are given below.

The greatest yield can be obtained by catchiné Tilapia esculenta
at a size of 28 cm. but this would require a fishing mortality of 2.55.
The relative yield obtained under such conditions is 186.66 gm. per
recruit. If we catch Tilapia esculenta at the same size 28 cm. but with
a fishing mortality of 0.9, the yield 1‘svz 182.51 gm/recruit. This means
that if we increase the fishing mortality by 183 per cent, the yield
~ increases only by 2.1 percent. If these fish are caught at 26 cm.,
a fishing mortality of 0.5 would be necesSary to obtain maximum yield.
From the total mortality estimates of Garrod (1963) for the years 1958
to 1960, the mean total mortality for that period was 0.3. Since natural
mortality for Tilapia esculenta is about 0.17, the fishing morta]ity'for

that period was about 0.13. Doubling or trebling the fishing mortality
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would have no adverse effects on the fishery if the length of capture
of 26 cm. and mesh size 4.5 inches were maintained and provided there
was no fishing in the inshore waters where the fish spawn. Catching
Tilapia esculenta at any length less than 17 cm. would mean catching
a lot of immature fish, and this will have adVérse effects on spawning
and recruitment.

Tilapia nilotieca in Lake Albert forms two subpopulations,
a stunted population in the Buhuku lagoon and a normal population in

the open lake. The normal pdpu]ation has the following estimated para-

meters: Le =49 cm., K = 0.50, length of maturity Lm = 36 cm. and natural

mortality M 0.30. The probability density function for the negative

exponential is

P(t) = M e'M(t B to)

Tilapia nilotica ﬁou]d live up to 8 years and with a natural mortality
of 0.3 about 3 fish out of 100 wou]d attain an age of eight if there
was no fishing. i

The maximum weight We for the normal Tilapia nilotica in Lake
Albert is unknown. For the purpose of calculating relative yields and
constructing yield isopleths, W= is taken as 1000 gm. It is accepted
that absolute yield values are not of primary importance to fisheries
management. But what is of prime importance is yield response to fishing
intensity and mesh size. At a low fishing intensity F = 0.1 the best
size to catch Tilapia nilotica is 24 cm. However at 24 cm., the fish
is still immature and the relative yield is smai] (76.37 gm/recruit).

If the size of capture is increased to 34 cm., the fishing mdrta]ity
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required to give a maximum yield would be 0.4 (see eumetric fishing
curve in Figure 8). With a fishing mortality of 0.4 and length
of capture of 34 cm. the relative yield would be 159.12 gm/recruit.
If we raise the length of capture to 36 cm., the fishing mortality required
for maximum yield is 0.7. The highest yield for Tilapia nilotica is
obtained at 39 cm., but this length of capture requires a fishing mortality
rate exceeding 2.1. Note that if we catch these fish at 39 cm. and with
a fishing mortality rate of 0.5, we obtain yield of 159.2 gm/recruit.
Increasing the fishing mortality four times increases yield by a factor
of only 1.2. It is possible to obtain sustained yields, if Tilapia
nilotica is caught at 35 cm. and above with a'fishing mortality of 0.5
to 0.6. It is also of interest to note that the highest yield is obtained
after'the length of maturity 36 cm(see Figure 8).

Iles (MS.) reports a natural mortality rate of 3.37 for the
stunted population of Tilapia nilotica. But this population has a high
growth rate (K = 2.77) and maximum length is 17 cm. The 1ife span is
for about one year and sexual maturity is éttained at 10 - 12 cm. corres-
ponding to an age of 4 months.

With a natural morta]ity'raté as high as 3.37 about one fish
out of a hundred would survive to an age of one year. Is it possible
to manage rationally a fiéhery_of this nature? Because of a high natural
mortality, the maximum biomass occurs at'a.1ength beforé sexual maturity.

The highest yield would be obtained by catching the fish at
9 cm. but a high fishing mortality exceeding 1.8 would be needed (see
Figure 9). If we follow the eumetric fishing curve we should catch the

stunted Tilapia nilotica at 8 cm. at about 2.5 months of age. But catching
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these fish at 8 cm. would require a fishing mortality of 1.9 so as to
obtain maximum yield. The total mortality (F + M) in such circumstances
would be 5.27. With a total mortality of this magnitude, one fish out of
1000 reaching the age of 2.5 months, would survive to the age of maturity

of 4 months. This deduction is made from the probability density function
p(t) = zeHt-Y)

where t = 4 months, ty = 2.5 months and Z = 5.27.

In these circumstances, it might be better to allow fish to
attain maturity at 10 - 12 cm. and have at least one spawning. Then a
high fishing mortality rate can be applied to the fish of a size greater
than 12 cm. For fisheries of this nature, the eumetric fishing curve
is not helpful. Populations such as the stunted Tilapia nilotica, have

little commercial value,

Qther Yield Models

Because age of tropical fish species cannot easily be determined,
there is a need for use of yield models that are based on the length of
a fish. The yield model presented by Thompson and Bell (1934) uses
age as well as length. Thompson and Bell assume that weight increase
by some constant percentage in each year of 1ife. Ricker (1944) expresses
~growth as a simple exponential function. Under the assumption of exponen-
tial growth and if we suppose 1ife span to be of infinite duration,
yield is given by

Y = FMW ' (8.10)
F+



80
where Y is the yield, thhe fishing mortality, M the natural mortality
and g the instantaneous rate of growth and W is the total weight of each
year's brood of recruits. If natural morta]i%y M is greater than the
growth fate g, then for all values of F, there is a positive yield which
approaches an asymptotic value as F approaches infinity. When M = g, the
yield is simb]y the initial weight of all the recruits. Finally, when |
M < g, the yield is infinitely large when F < (g - M).

A number of fish species show allometric growth and the yield
for these fish species can be determined by means of an incomplete Beta
function. Jones (1957) and Paulik and Gales (1964) discuss the usefulness
of the incomplete Beta function in determining yields. The function

denoted by B, (p, q) is defined by the integral
X

B (p, a) = gx"'l (1-0%"Tax - (8.11)
() ' :
where p > 0 and q > 0.

In the above integral, the parameters X, P and Q are defined as:

X = e'K(tc - to)
P=17/K
Q=1+0b

where b is the weight length exponent.
It is obvious from the parameters above that yields can be
determined with just a few parameters. The integral above Teads to the

equation given by Wilimovsky and Wicklund (1963).

Y=F W oLt - to){p (X, P, Q) - B (X P, Q)} (8.12)
R K
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where X] = e—K(tA - to)

and tx is the age of exit from a fishery. The yield per gram recruit

is then given by

Y
RT We

= Feflte = %) {B (X Py Q) = B (X Py o)} (8.13)
K

The point of inflexion on the growth curve, is the point of maximum
biomass. For many fish species the greatest yield is obtained by catching
them at an age or size corresponding to the point of inflexion. At the

point of inflexion the relationships below hold.

X = =

K- t) oy
b

Therefore by knowing the weight length exponent b, the growth rate K
and total mortality Z, one can predict the maximum yield expected for

various fishing mortality rates. The yield when tc is the age of a fish

at the inflexion point is

Y = Z(t't){ 1,P,.- X, P, } ‘8.14
- %e_ c o B‘('b" Q) - B (X Q)- (8.14)

For fish species with a large age of exit from a fishery, ti, equation

(8.14) reduces to

) Z(t. -t ){B(1, P, Q)} (8.15)
Y F e
v (P

If we replace age in (8.13) by a length expression an incomplete

Beta function that can be used for tropical fish species is obtained.
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From equation (5.3) the age of capture tc is

t, = -1n(1-—1c)l + ot
| T/ K

where ]c is length of capture corresponding to age tC and L= = maximum

length.
Let X.l = - 1In /1 -‘12
L
Therefore 'tc = X]‘% + to
Similarly TE-In (1 - 1a ) 1+t
Lo | K
tA = Xa 1K+t°

where 1x is the length of éxit from a fishery corresponding to the age
tr and where |

XA = = 1n (1 - 1¥Ll=)

Then the parameters for the incomplete Beta function (B) are X, P, Q

and X,. Note that

L
1 X, = t -1t
K  1 c (o)
and T Xa= tx-1t
= : 0
K
Therefore X = e'x1
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Q = 1+6b
_ =X
XL = e

If we use length, the yield per gram recruit is given by

v = £ elZ/K {53 (X, P, Q) - B (X, P, Q)} (8.16)
R We K
Tables of the incomplete Beta function for balcu1ation of fish
population yields are given by Wilimovsky and Wicklund (1963). According
to equation (8.16), one can determine yields and construct yield curves
with 4 parameters namely (1) maximum length (L=), (2) the Qrowth rate
(K), (3) the weight Tength exponent (b) and (4) the total mortality (Z).
The incomplete Beta function gives unbiased yield estimates for fish

with allometric growth.

TABLE 12 - Comparison of yields estimated with equations
(8.13) and (8.16) and which are based on age and
length respectively. Both equations use the
incomplete Beta function. The parameters used
are K=0.5, F=0.2, M=0.3, Z/K=1, b = 3,
tr = 6.39 years, L= = 49 cm., and 11 = 47 cm.

L Age.' Equation(8.13) Equation (8.16)

 em. Yrs. Yield 1n gn/recruit Yield in gm/recruit
28 1.69 '0.171i 0.172
32 2.1 0.189 0.191
36 2.65 0.207 0.210
40 3.38 0.214 0.220
44 4.56 - 0.187 0.203
46 5.58 0.104 0.142
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There is little difference between yields estimated with equations (8.13)
and (8.16). Table 12 shows yields calculated Qith both equations.
If fish are caught at a length close to the maximum length (L=), the
yields estimated with (8.16) differ significantly from yields estimated
with equation (8.13). This is caused by logarithmic transformations
made when replacing age by Tength in equation (8.13).

Note that X] in equation (8.16) is given by

Xy = - 1In (1 - 1C/Lm)

As ]c approaches L», the expression (1 - 1C/Lw) approaches zero and
therefore X] tends to infinity.

In practice very few fish are caught at a length close to the
maximum length (L) and therefore the above observation does not affect
yield predictions made from normally exploited length groups. If one
plotted yield againét 1ength of capture,'the extreme lengths would re-
present the descending 1imb of the yield curve as shown in Figure 11.

Equation (8.16) requires very few parameters and provides a
quick way of determining yields for those fish which are difficult to age.

Another yield model based on length is given by Beverton and
Holt (1964). The model was derived from the von Bertalanffy growth
equation and has the inherent assumption of isometric growth. The para-
meters required aré M, K, the ratio LC/L°° and the fishing mortality (F).
With these parameters, the yield and the eumetric fishing curve can
be directly read from the tables of yield functions given by.Beverton

and Holt (1964, 1966).
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From the von Bertalanffy growth equation we obtain the ratio ¢

c = L =1- e'K(t B to)
™

The ratio c represents the total growth in length which is made up before

fish enter the exploited phase.
1-c = oKt -t)

The exponential term within the summation in equation (8.9) can be written
as

(1 -o)"
where the above expression satisfies the equality

(1 - )" = e MK(t - t) (8.17)

The rate of exp]oitatiqn E is given by

The fishing mortality F is expressed algebraically in ferms of E and M

F = M E | (8.18)
1

- 1-¢ | (8.19)

After transforming the age variables to the length expressions and if we

replace F and 1/F by the appropriate expressions, the yield model (8.9)
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becomes 3
Y =g (1-c)VK U, (1-¢)" (8.20)
R Weo T+ k(T - E
n=o M -

Using equation (8.20), yields have been calculated for the
normal and stunted popu]ation of Tilapia nilotica in Lake Albert Uganda.
For the normal Tilapia nilotica the highest yield is obtained by catching
the fish at a length of 36 cm. (see Figure 10). If we catch a fish at
a small size, we require a Tow fishing mortality rate to obtain maximum
yield (see Figure 11). For the stunted Tilapia nilotica with a natural
mortality of 3.37, yield increases at all rates of fishing mortality
up to 1.05 (see Figure 12). The stunted Tilapia nilotica mature at 10
to 12 cm. but maximum yield is obtained between 7 cm. and 10 cm. (see
Figure 13). |

For tropical fish species whose age can be directly or in-
directly determined the yield can be estimated with equation (8.9).

But this yield model assumes isometric growth which is not true for alil
fish species. Ricker (1958) gives a yield model which does not require

age and this could be used in the tropics to make yield predictions.

The incomplete Beta function (8.13) and (8.16) are unbiased estimators

of yield for fish species with allometric growth. Equation (8.16) requires
four parameters namely L=, K, Z and the weight length exponent b.

Though equation (8.20) has the assumption of isometric growth, it is

still very valuable in estimating yield for fish that are difficult to

age. If the parameters L, K, M.and F are known, the'yjeld for the ratio
LC/Lw is read from the tables of yfe]d functions given by Beverton and

Holt (1964, 1966).
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GENERAL DISCUSSION

The alegebraic relationships, analytical methods and the models
here developed should provide short-cut methods that require a minimum
of factual data to manage a fishery.

Some generalizations can be made about the growth processes.
The growth rate K and the weight length exponent b determine the age
and size of a fish at the inflexion point on the‘growth curve. The age
of a fish at inflexion is inversely related to K and directly related
to the natural logarithm of b. The significance of this to fisheries
management is eyident when setting the mesh size of gillnets and codend
of trawl. Since maximum biomass occurs at fhe inflexion point, the mesh
size should be chosen so as to catch fish af the inflexion.

For Tilapia species, it is shown that the age and size at the
inflexion correspond to the age and size of maturity. Since it is always
easier to determine the si;e at maturity, this cou]d serve as a measure
of the size of maximum biomass. The ratios 1m/L» and Wm/We are useful
constraints in safeguarding against exp]oitationlof immature fish.

With the parameters K and b and the ratios 1m/Le and Wm/We one will
have some rough appreciation of relative rate of exploitation of a fish
population.

A fish species inhabiting different localities may have different

weight length exponents as exemplified by Tilapia nilotica in East Africa.

91
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The differences in b for a fish species are due to the differences in
metabolic processes of the fish in the various localities. Assuming
the exponent of catabolism is unity as proposed by von Bertalanffy (1957),
fish with b = 3.0 have m = 0.67. Fish with b > 3.0, have m > 0.67 while
fish species with b < 3.0, have m < 0.67. These relationships may partly
explain why some fish species may not obey the von Bertalanffy growth
equation.

In order to appreciate some of the causes of population fluc-
tuations and the decline of catches and catch per effort, one should
make estimates of natural and total morta1ity_rates. The quickest and
easiest way of describing mortality rates is with a negative exponential.
One should determine the mean age or mean length in the exploited popu-
Tation by analysing catch samples. If the age or length of first capture
is known, total mortality rates can be estimated with the equations
given. These estimators are based on the assumption that the age distri-
bution of exploited populations conforms to the expectations of the
probability density function or the discrete probability function of the
negative exponential. It is also possible to use the extreme age or
length to estimate total mortality and this has previously been suggested
by Holt (1965). But it has been noted that the extreme value estimator
is less reliable than the negative exponential estimator. The total mortality
rate estimated with the extreme value has a larger variance. Therefore
extensive sampling is required to show that the extreme age and length
in a population have the properties of the extreme value function.

Some of the difficulties met in estimating growth and mortality

rates are due to population fluctuations and seasonal changes in distribution
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of fish species. Analyses of catch statistics by multiple regression
methods provide useful information on abundance and distribution of
fish. A number of variables affect catches and one should know which
variables are of greatest importance. Such information may be given by
the step-wise multiple regression analysis of trawl catches. Some of this
information is useful in advising fishermen where and when to fish.

If this analysis is carried out at spaced periods, one can easily assess
the relative degree of exploitation. For example, the analysis of recent
catches of Tilapia in Lake Vicforia shows that depth of the bottom,
mesh size of codend and time of day of fishing are the most important
variables determining catches. |

Assessing the state of the fish stocks poses special complexities.
It is very unlikely that it wi]]ibe possible in practice to quickly solve
the problems of taxonomy and'to collect all the 1imno1ogica1; biological
and statistical data ideally desirable for a detailed evaluation of
tropical fish stocks and yields. Instead we must use simple mathematical
models that require a minimum of parameters for-making predictions.
The parameters that are vital to yield prediction are: K, b, L=, M and
Z. These parameters can be uséd to determine yield and construct yield
curves as has been shown for Tilapia species. Without age, the same
parameters can be used to determine yields for fish w%th allometric
growth by means of the incomplete Beta function. For fish species with
enough estimated parameters, the yield model of Beverton and Holt (1957)
may be used to determine yields as shown for Tilapia nilotica and Tilapia

esculenta. It is important to note that a model with a few very relevant
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parameters, has almost the same predictive power as a quel requiring
more parameters. |

Rea]izing'that the resources for samb]ing and analysis arevoften

limited, simple yield mode]§ should be used:to speed up assessment.



RECOMMENDATIONS FOR FUTURE
MANAGEMENT

In order_to assess quickly the fish stocks in tropical fresh
water, research should follow the lines of attack given below:

(a) Representative samples should be collected from the population
to estimate the weight length exponent b. In large lakes 1ike Victoria,
stratified sampling will give more reliable estimates of b than unrestricted
random sampling. | |

(b) Large random samples should be taken in order to determine
the largest size to which certain fish species grow. The mean maximum
length in the different samples could serve as a rough measure of L=,

(c) At present the easiest way of estimating K for tropical fish
is to carry out tagging experiments and make Walford grdphs. The present
methods of estimating K needs refinement to avoid the shortcomings intro-
duced by age. The possibility of estimating K by means of maximum Tikelihood
should be investigated.

(d) The length of first capture should be set using information
on maturity and size of maximum biomass.

(e) The catch samples at various fish landings should be sampled
to give estimates of mean 1ength in the catch. By means of the equations
~given the ratio Z/K and total mortality Z, can easily be estimated.

(f) It is realized that several variables affect the catch. The
abundance and distribution of fish species should be investigated by
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multiple regression methods. If this analysis is repeated at certain
intervals one can appreciate the relative degree of exploitation.
Infofmation on fish distribution is necessary for efficient fishing.

(g) After determining the parameters K, b, L=, M and Z some yield
predictions should be made and yield curves constructed. No calculations
are needed where the length yield model of Beverton and Holt is used.

The yield values can be read from the tables given by Beverton and Holt
(1966) .

If the incomplete Beta function i; used very few simple calcu-
lations are needed and the yield values can be read from the tables of the

incomplete Beta function given by Wilimovsky and Wicklund (1963).
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APPENDIX 1

DERIVATION OF PROBABILITY DENSITY
FUNCTION FOR A NEGATIVE EXPONENTIAL

For an unexploited fish population the number of fish at age
t is given by
- -M(t - t))
N, = Nje 0 (9.1)

The proportion of number of fish at'age t to the initial numbers at age
to is
N, = ,e'M(t - to) (9.2)
N
o

Since the area under a negative exponential curve is unity, summing up

the proportions described by equation (9.2) should yield 1.

The probability density function is defined as
X

F(X=x)= J’f(x) dx =1
[+ 8
Integrating the right hand side of (9.2) between t = o and t = = gives
o ' .
je'M(t “t) gt = 1 (9.3)
M

(o}

The right hand side of (9.2) is normalized to a probability density

function by dividing by its integral.
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Therefore
e Mt - t) = u Mt - t) (9.4)
}’e-M(t "t gt
(o}
The probability of age t is given by
PT= 1) = e™E =) for ¢ ¢ (9.5)
| _ |
and F(T) = JM Mt -t 4 o g
-

where F(T) is the integral of the derivative below:

M e-M(t -t)

o

For a fished population we can think of the proportions of fish beyond
age tc as adding to unity. The numbers at each age t can be expressed

as a proportion of the recruits, so that

N, eZ(t - t) ' (9.6)
R~

The right hand side of equation (9.6) is normalized to a probability
density function by dividing by its integral,

e'z(t " tc) = 7 e'z(t - tc) (9.7)

S e-Z(t - tc) dt
0

and the probability of obtaining age t in a sample catch is

p(t) = zellt-t) for t >t | (9.8)
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Equation (9.8) integrated gives 1 and hence it is a probability density

function. o0 .
F(T)=[Ze'z(t'tc) dt = 1
()



APPENDIX 2

DERIVATION OF DISCRETE PROBABILITY FUNCTION
FOR A NEGATIVE EXPONENTIAL

In an exploited fish popuiation the number of fish at age

t is given by

N, o= N e Zt-t) | (10.1)

t 0
and the number of fish age t + 1 is given by

_ “Z(t+1-1t)
N + 1 = N, € c (10.2)

The proportion of Nt + 1 over Nt is

N, +1 = e_Z(t *l-t - (t - tc)) (10.3)
Ny

= e-Z .

With a discrete time model with an infinite number of time periods,

the total exploited population is given by

-2Z ' -7
+ N e + ...+ N0 e (10.4)

- -7
N-N0+N0e

where N is the total number of fish from all exploited age groups No’
here refers to the number of fish recruited at age tc. Because the area

under the exponential curve between tc and = is unity, we can refer to

tc as zero time.
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Then No= N, (e la ey et (10.5)
for (t = 0, 1,2, ...., =)
Under the assumption of‘constant recruitment N0 is taken as
unity and equation (10.5) reduces to
N=Tl+else?s . +el (10.6)

Note that equation (10.6) is an infinite series. The sum of this series
is given by | |

N o= 1(-e™) | (10.7)
=,

when t = « , the numerator of the right hand expressipn of (10.7) becomes

unity. Then N fs estimated by -

N = 1 (10.8)

But for finite age groups N is given by

N = 1-eZlt | (10.9)

1 - et

The expressions in (10.9) can be evaluated for a given t and Z. Note
that equation (10.9) can be used to estimate the adult exploited population
provided we know the recruits or if we can estimate the recruits. The

exploited population is given by

N = R(1-e’h (10.10)
(1 -e7h
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where R are the recruits and t the oldest age in a population.
From the derivation of the geometric series in (10.5) and (10.6), the

probability of any age t is given by

e-Zt

By the definition of a discrete probability distribution

[

:g{:: ‘f (xi) = ]

0
where px_ = P (X = xi) = f (xi)
i
Note that f (xi) above represents e Lt put

00

E e-Zt;"I

0

it

The term e " can be normalized to a discrete probabi]ify function by

§ e-Zt

0

dividing by

Therefore the probability of age t in the case of discrete recruitment is

P(T=1t) = _e?ft (10.11)

jém e—Zt

0

The denominator of the right hand side of (10.11) is an infinite series

JA

and for e © < 1, the expression is equal to
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Therefore for a discrete time model the probability of age t is

P(t)=(1-e?) et fort >t " (10.12)

The mean age U of the exploited age groups is given by the equation

below (Burington 1958).

©0

U = E t . f(xi)
' 0
Note that ,f(xi) = ¢ Lt (1 - e'z)
Therefore Uu = § t.eft | 1 - e'Z) (10.13)
0

U can be estimated by mean age t of .a sample.

-]

T =-Z t.elt | (1-¢0 (10.14)
IR

Evaluate expression

factoring
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This summation above gives the infinite series:

(2]

S = E t et
0
Let
s=0+el42e?l 433, +we L
s .60 =+ ey 73, (o - 1)e 2"
Subtracting S e 2 from S
s-selz=0+else2lio3y 4ol

The above is a geometric progression which can be written as

s (1 - e'Z) = oL (1 - e'sz

1 -e
s (1 - e'Z) oL ; 1
| 1-et
Therefore the.summation gives
S = et

(1-e4(-e?

L

(-

w
1}

The mean age t is therefore given by

(1-e%) e’
(1 - e7%)?

T = ! (10.15)

t




