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ABSTRACT 

Simple algebraic re lat ionsh ips and y i e l d equations that require 

the minimum of data are developed so as to enable quick and r e l i a b l e 

assessments of r e l a t i v e rate of harvesting t rop ica l freshwater f i s h 

populations. 

The age of a f i s h at the i n f l e x i on point i s inversely re lated 

to the growth rate (K) and d i r e c t l y re lated to the natural logarithm 

of the weight length exponent (b). 

Algebraic re lat ionsh ips between the exponent of anabolism 

(m) and the weight length exponent are developed. 

Equations for estimating to ta l morta l i ty from age and length 

d i s t r i bu t i on s in catch samples are given. Total morta l i ty fo r both 

continuous and d i sc rete recruitment are considered. The p robab i l i t y 

density funct ion and the d i sc rete p robab i l i t y function for a negative 

exponential are given. 

The e f fec t of a number of var iables on trawl catches i s studied 

and some mul t ip le regression equations which might be used to assess the 

r e l a t i v e degree of exp lo i ta t i on are presented. 

The parameters which have been recognized as v i t a l to y i e l d 

predict ion are: the growth rate (K), the weight length exponent (b), 

the maximum length to which a f i s h grows (L<») and the natural and to ta l 

mor ta l i t y rates. 

i i 



i i i 

I t i s shown that one can replace age with a length expression 

in y i e l d models and s t i l l have r e l i a b l e y i e l d predict ions. I t i s also 

shown that a model with a few very relevant parameters, has almost the 

same pred ic t i ve power as a model requir ing more parameters. 
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INTRODUCTION 

The current trend in the study of f i s h population dynamics 

i s towards a deta i led analys is of var iables a f fec t i ng y i e l d and the 

construct ion of theoret ica l models which describe the i n te r re l a t i on s 

of these var iab les . Unfortunately, attempts to a t t a i n r e a l i s t i c models 

introduce complexities that require more and more basic data. The 

c o l l e c t i o n and analyses of these data take much time. Moreover, i t i s 

necessary to have many long sampling periods to reduce the e f fec t of 

annual v a r i a b i l i t y on est imation. In the circumstances of rapid develop­

ment of some Afr ican freshwater f i s h e r i e s , i t may obviously be d i f f i c u l t 

to meet the data requirement of modern management models. 

Add i t i ona l l y , management of natural populations of f i s h i n 

t r op i ca l freshwater i s made d i f f i c u l t by: 

(a) lack of read i l y detectable growth rings on ske leta l 
s t ructures, 

(b) v a r i a b i l i t y in growth rates , 

(c) absence of d e f i n i t e spawning periods, 

(d) l imi ted catch s t a t i s t i c s . 

I t i s therefore des i rable to consider the functional r e l a t i o n ­

ships among the population var iables that inf luence y i e l d . This might 

enable development of some simple and useful approximations that give 

r e l i a b l e ind icat ions of the r e l a t i v e degree of exp l o i t a t i on . 

1 
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The purpose of th i s study i s to focus on the most relevant 

population parameters and to develop simple ana l y t i ca l methods and 

theoret ica l models that require the minimum of data so as to enable 

quick and r e l i a b l e assessments of r e l a t i v e rates of exp lo i ta t i on of 

t r op i ca l freshwater f i s h populations. 

In th i s thes i s , consideration i s f i r s t given to the separate 

processes of growth, fecundity, morta l i ty and some simple a lgebraic 

re la t i ons ip s are developed which could be used in management. 

Throughout, Tilapia has been used as an example to te s t the 

v a l i d i t y and usefulness of the f ind ings. Add i t i ona l l y , a few references 

are made to Bagrus doamao and Haploohromis spp. 

A separate section i s devoted to the recent data on catches of 

Tilapia in Lake V i c t o r i a . The analys is of the catches by mul t ip le r e ­

gression methods provide useful information on the abundance and d i s ­

t r i bu t i on of Tilapia species and indicates the var iables re lated to high 

catches. This type of analys is could be used in managing other f i s h 

species in t r op i ca l freshwater. 

La s t l y , consideration is given to y i e l d equations and some 

s imp l i f i c a t i on s which might lead to quick, easy and yet r e l i a b l e e s t i ­

mation of f i s h y i e l d s . 



ESTIMATION OF GROWTH CHARACTERISTICS 

WITH PARTICULAR REFERENCE TO 

TILAPIA IN EAST AFRICA 

V a r i a b i l i t y of Growth Rate 

The estimation of growth rates of t r op i ca l f i s h poses several 

problems. The absence of seasonal environmental f luctuat ions means that 

growth at each age and the age of maturity cannot eas i l y be determined 

by reading annual rings on scales or other ske leta l s t ructures. This 

d i f f i c u l t y has to now l imi ted the use of y i e l d models which are based 

on age, in the management of t rop ica l freshwater f i s he r i e s . In some 

cases rings have been observed on bony parts of some t rop i ca l f i s h , some­

times the rings are apparently a re su l t of spawning and other times 

as a re su l t of drought and starvat ion (Garrod 1959 and Lowe 1956). 

Species of Tilapia show considerable v a r i a b i l i t y in growth 

(Lowe 1956). In order to understand the growth processes, extensive 

and intens ive studies must be car r ied out to determine the growth ra te , 

the maximum length and weight attained by these f i s h in various waters 

and the length, weight and age of maturity. Even with in a s ing le lake, 

one observes differences in growth rate and s i ze of maturity and th i s 

i s exemplified by Tilapia esculenta in Lake V i c t o r i a . Garrod (1959) 

used the scale method to determine the age of Tilapia esculenta^ mouth 

brooder with two spawning seasons. 

3 
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Related to the spawning behavior of mouth brooding, there i s 

a cessation of growth re su l t i ng in r ing formation. On the basis of 

th i s observation, Garrod (1959) determined 12"ring years" for Tilapia 

esoulenta. In terms of actual years Tilapia esoulenta l i v e s for 6 years. 

Other methods may be employed in growth studies. Rings on 

ske leta l structures are made more read i l y detectable by heating but 

th i s has not been done for Tilapia. Lowe-McConnell (1956) obtained 

some ind icat ions of growth rate by analysing length frequency d i s t r i bu t i on s . 

The main l im i t a t i o n of th i s method i s that a number of f i s h species 

spawn a l l the year round so that there i s considerable overlap of s i ze 

ranges of d i f f e ren t ages. The adult and young Tilapia l i v e in d i f f e r en t 

habitats and therefore sampling in one l o c a l i t y w i l l give length frequen­

c ies that are truncated. 

Growth rates can also be determined by conducting mark and 

recapture experiments but th i s has not yet been done for Tilapia. 

Management of Tilapia and other t r op i ca l f i s h species, i s 

poss ible even without d i r e c t determination of age, provided we can estimate 

the von Berta lanffy growth equation parameters. The maximum length 

(Loo), maximum weight (W<=°), the rate at which a f i s h approaches i t s asymp­

t o t i c s i ze (K) and the weight length exponent (b), have to be determined 

i f we are to understand the growth of f i s h species. With the above 

parameters plus a few s imp l i f y ing assumptions a number of useful r e l a t i o n ­

ships can be establ i shed. 

Ursin (1967) reports that Putter in 1920 f i r s t r ea l i zed the 

truism that food absorbed i s the d i f ference between food ingested and 
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that ejected and advanced a metabolic growth model. The rate of intake 

of food i s surface dependent whereas the rate of breakdown i s weight 

dependent because i t occurs in a l l parts of the body, v i z : 

dw = HW 2 / 3 - kw (1.1) 
dt 

where w i s the weight, t i s the time, H i s the coe f f i c i en t of anabolism 

and k i s the coe f f i c i en t of catabolism. 

Put ter ' s work was continued by von Berta lanffy (1934, 1938) 

who regarded an organism as a reacting chemical system. The processes 

of anabolism and catabolism control the weight of an organism. The rate 

of change of weight of an organism dw/dt i s expressed in terms of exponents 

m and n of the body weight. 

dw = HWm - kw n (1.2) 
dt 

where m i s the exponent r e l a t i ng anabolism to weight and n i s the exponent 

re l a t i ng catabolism to weight. 

The equation given by von Berta lanffy (1934) describes the 

rate of change of length with time and i s the equivalent of equation 

(1.1) when expressed in terms of length and asymptotic length: -

d l = K(L» - 1) (1.3) 
dt 

where 1 i s the length of a f i s h at time t and L» i s the asymptotic length 

and K i s the rate at which a f i s h approaches i t s maximum length. 

When integrated (1.3) gives the von Berta lanffy growth equation: 

l t = L» (1 - e " K ( t " V) (1.4) 
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where t i s the time at which the length of a f i sh is t heo re t i c a l l y zero. 

Other workers have investigated the von Berta lanffy growth 

equation and have made several developments (Beverton and Holt 1957, 

Taylor 1959 and 1962, Paloheimo and Dickie 1965 and 1966.) Ursin (1967) 

looked at the processes of anabolism and catabolism and also examined 

the exponents m and n in equation (1.2). He out l ined ways in which m 

and n could be measured. 

The Point of Inf lex ion on the Growth Curve 

Rational exp lo i ta t ion of a f i shery requires knowledge of the 

weight and age of a f i s h at the i n f l ex i on point. At the point of i n f l ex i on 

a f i s h has maximum change in weight dw/dt. In some species of f i sh the 

maximum growth increment i s attained before sexual maturity. Exp lo i tat ion 

of such a f i s h species requires catching the f i s h at a s i ze or age beyond 

the point of i n f l e x i on so that there w i l l be s u f f i c i e n t ind iv iduals 

of s u f f i c i e n t age to reproduce. For those f i s h populations with a high 

natural morta l i ty r a te , th i s could mean loss of biomass. The stunted 

population of Tilapia nilotica i n Lake Albert exemplifies th i s case. 

This Tilapia population has a natural morta l i ty of 3.37 and sexual 

maturation i s attained at 10 to 12 cm. ( l i e s , MS.). The maximum biomass 

occurs at about 8 to 9 cm. In contrast, the population of Tilapia nilotica 

in Lake Albert (open water) and Tilapia esculenta in Lake V i c t o r i a a t ta i n 

maturity pr io r to the s i ze and age corresponding to the point of i n f l e x i on . 

Therefore maximum y i e l d can be obtained by catching the f i s h at the 



s i ze corresponding to the point of i n f l e x i on . 

I f we take equation (1.2) and take a second der i va t i ve 

der i va t i ve equals zero at the point of i n f l e x i on . 

dw = Hwm - kw11 

dt 

d 2w = mHw"1"1 - nkw 1 1 - 1 = 0 

so that 

5 ? 

InHwn,-, = nkw""1 

which with rearrangement gives the equation 

w ( n - m ) = mH 
nk 

Let the weight at the i n f l ex i on be Wj. Then 

W T

( n " m ) = mH 
1 nk 

1 

When a f i s h atta ins the maximum weight (W°°)> dw/dt = 0 

Therefore 

dw = Hwm - kwn = 0 
dt 

Hwm = kwn 

and 

H = v/n-m> 



» = w 

where w i s the maximum weight (W°°). Therefore the weight of a f i s h at 

the point of i n f l ex i on i s given by 

1 

Wj = / m \ ( n " m ) . W=o (1.8) 

The parameters m and n are d i f f i c u l t to measure and therefore we cannot 

read i l y estimate the weight at the point of i n f l e x i on (1.8). 

A generalized growth equation in terms of weight i s 

Wt = W» (1 - e " K
 ( t " V) (1.9) 

where b i s the weight length exponent. I f we take W^ to be the weight 

of a f i s h at the i n f l ex i on point, the s i gn i f i cance of b in (1.9) i s 

very evident. The weight of a f i s h i s re lated to length by the equation 

W = ql_ b (1.10) 

where q i s the constant of p ropor t i ona l i t y . Many f i s h have b = 3.0 and 

therefore show isometric growth. However there are other f i s h for which 

b i s not 3.0 and which change in shape with increase in length. 

Paulik and Gales (1964) have discussed the consequences of 

assuming isometric growth, on the shape of y i e l d curves. We are aware 

that the value of b for known f i s h species ranges from 2.5 to 3.5. 

The f i r s t der i vat i ve of equation (1.9) i s 

dW t = b Woo 

dT~ 
(1 - e-«* " V)b " 1 . Ke-«* " V 



and the second der ivat ive i s 

d"W t = bWco 

dt ' 

(1 - e^ " V)b " 1 . (-K 2 e"** " V) 

+ (b - 1) . (1 - e " ^ " V ) B " 2 . ( K V 2 ^ " V 

Factoring leads to 

bW" e v o ( l-e-«* " V) 

K 2 . (b - 1) . ( e " K ( t " V) 

b - 2 

= 0 

K 2 ( l - e"^* " V) + 

(1.11) 

The above equation has 3 square bracketed terms mul t ip ly ing 

each other and any of them being zero could make the whole equation zero. 

Taking the f i r s t square bracketed expression, the parameters b and W°° 

could not be zero at the point of i n f l e x i o n . For the f i r s t square bracketed 

term to be zero, i t w i l l be necessary that 

e-K<t " V - 0 

which i s true when t = °°. However, the age of a f i s h at the point of 

i n f l e x i on cannot be i n f i n i t y . 

I f the second bracketed expression i s equal to zero, we have 

1 - e " ^ " V - 0 

which i s true when t = t . The value of t = t i s imaginary because a 
o o 3 J 

f i s h cannot reach a point of maximum dw/dt at time t . 
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Taking the t h i r d square bracketed expression, the p o s s i b i l i t i e s 
p 

are for K to be zero or for b to equal 1 and hence (b - 1) = 0 or 

i - - V . 0 

2 

If K i s zero, there would be no deceleration of growth. A value of 

b = 1 implies growth in weight i s d i r e c t l y proportional to growth in 

length which could only occur,with a f i s h which grew in one dimension. 

It follows then that some rearrangement of ( 1 . 1 1 ) must produce an ex­

pression equal l ing zero. 

A f te r factor ing and s imp l i f y ing the t h i r d bracketed expression . 

we have 

- (1 - e - K ^ " V) + (b - 1) . e " ^ " V = 0 

which gives 

- 1 + e"^* * t o )

 + b e " ^ " V - e " ^ " V = 0 

which may be further s imp l i f i ed to 

- 1 + b e " ^ " V = 0 

Therefore 

be-«* " V - 1 . 

and e ~ K ( t " t o ) = 1 ( 1 . 

b 

I f we take natural logarithms 

- K ( t - t ) = - In b 
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K ( t - t Q ) = In b 

and 

t = 1 In b + t (1.13) 
K 0 

where t i s the age of a f i s h at the point of i n f l e x i on . 

Equation (1.13) thus describes the necessary i n t e r r e l a t i o n 

between the age at the point of i n f l e x i o n , the growth rate (K) and the 

weight length exponent (b) i f equation (1.1) i s to be s a t i s f i e d . 

It has been reported that for most t rop ica l f i s h , p a r t i c u l a r l y 

the family c i c h l i d ae , the parameter t Q i s almost zero ( l i e s MS.). 

This would mean that the age of a f i s h at the i n f l ex i on point i s determined 

by K and b. The parameters K and b can be estimated for the important 

commercial f i s h species in the t r op i c s . I f we know the age of a f i s h 

at the i n f l e x i on we can use equation (1.9) to determine the weight of 

maximum dw/dt. Equation (1.13) indicates that the age of a f i s h at the 

i n f l e x i on point increases as the weight length exponent increases. 

Thus f i s h which are r e l a t i v e l y heavy for t he i r length reach the i n f l ex i on 

point at a r e l a t i v e l y o lder age, than those f i s h with low values of b. 

Fish which have a high K a t ta in maximum growth increments at a very 

low age. For example the stunted Tilapia nilotica i n Lake A lbert Uganda, 

with K = 2.77 and b = 3.33, has the age at the i n f l ex i on of 0.43 years. 

But Tilapia nilotica (with normal growth) in the same Lake, has a growth 

rate (K) of 0.5 and b of 3.34 and the age at the i n f l ex i on point of 

about 2.4 years. The estimated ages when replaced into the growth 

equation lead to estimates of weight at i n f l e x i on . 
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The age at i n f l ex i on on the growth curve has been calculated 

for values of b where (2.5 ji b _< 3.5)and for K values between 0.1 and 

0.6 (Table 1). Figure 1 gives i sopleths of age at the i n f l e x i on point 

against b and k. 

The importance of a simple determin i s t ic expression (1.13) 

for age in terms of b and K r e l i e s on two factor s : (1) b and K can be 

estimated ea s i l y for many f i s h species, (2) the age at the i n f l ex i on 

point and the age of maturity are very close to each other for many f i s h 

species. Beverton (1963) investigated the age of maturity of c lupeid and 

engraulid f i s h . Fish with high K mature at an e a r l i e r age than f i s h with 

low K. Therefore the parameters K and b are important in determining the 

s i ze and age at which a f i s h i s best caught to obtain maximum y i e l d . 

TABLE 1 - Estimated age at the point of i n f l ex i on for various 
values of K and b assuming t i s zero. 

b 
K 

b .1 .2 .3 .4 .5 .6 

2.5 9.16 4.58 3.05 2.29 1.83 1.53 
2.6 9.56 4.78 3.19 2.38 1.91 1.59 
2.7 9.93 4.97 3.31 2.48 1.99 1.65 
2.8 10.29 5.15 3.43 2.57 2.06 1.72 
2.9 10.65 5.32 3.55 2.66 2.13 1.78 
3.0 10.99 5.49 3.66 2.74 2.20 1.83 
3.1 11.31 5.66 3.77 2.83 2.26 1.89 
3.2 11.63 5.82 3.87 2.91 2.33 1.94 
3.3 11.94 5.97 3.98 2.99 2.39 1.99 
3.4 12.23 6.11 4.07 3.05 2.44 2.03 
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Figure 1 - Contours of age at the i n f l ex i on point for various values 
of K and b. Age i s given in years. 



14 

The Weight Length Exponent and the Exponents of Metabolism. 

The weight of a f i s h at the point of i n f l ex i on i s given by 

two equations (1.8) and (1.10). 

1 
w! =(mV " m • w°° (1-8) 

and 

Wt = W» . (1 - e " K ( t " V)b (1.10) 

where Wt i s the weight at the point of i n f l ex i on and therefore equals 

Wj. I f equations (1.8) and (1.10) are t rue, a re la t ionsh ip must e x i s t 

between the weight length exponent and the exponents of anabolism and 

catabolism. 

We equate the r i gh t hand expressions (1.8) and (1.10) 

1 

(?) 
Divide by W°° 

n " m . Woo = Woo (1 - e " K ( t " V)b (1.14) 

1 
m \ n - m a ( 1 . e - K ( t - t 0 ) } b ( l i l 5 ) 

Notice that t in (1.15) i s the age of a f i s h at the i n f l ex i on point. 

We can rearrange the equation (1.15):-

1 
1 _ e " K ( t " t « ) =/»N M n - m) 

which gives 
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K(t - t Q ) = In 

1 

K(t - t 0 ) = - In ( l b <n " m > ) 

t = _ l n (| b <n " m >j . £ + t Q (1.16) 

But both equations (1.13) and (1.16) define the age of a f i s h at i n ­

f l e x i o n . We can equate the r ight hand expressions of these equations 

1 

1 ln b + t = - 1 
K 0 

„ A . v b (n - m) \ . 1 + t n (J ) t 

Subtract ( t Q ) from each s ide and mult ip ly by K 

1 
In b = - In ( l - m b ( n " m ) ) ( 1 ' 1 7 ^ 

Rearranging equation (1.17) gives 

1 

- ln b . ln (l - m b
 ( n " m ) j 

1 

1 = i - / m \ b ( n " m ) (1.18) 
b ( * ) 

von Berta lanffy (1957) dealt with a l l omet r i c re lat ionsh ips 

between an animal 's metabolic rate and i t s weight. He claimed that 

the slope m of the a l lometr i c l i n e is e i ther 2/3 for species obeying 

the surface ru le of metabolism, unity for cases where oxygen consumption 
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i s proportional to weight instead of surface area, and that for other 

f i s h species in ranges between .66 to 1.0. Parker and Larkin (1959) 

and Ricker (1960) c r i t i c i z e the der ivat ion of the von Berta lanf fy growth 

equation because of the assumption of the surface law of metabolism. 

Taylor (1962) discusses the parameters of the von Berta lanf fy equation 

and points out factors l i m i t i n g metabolism, von Berta lanffy argues that 

the rate of metabolism i s proportional to the m power of the weight 

where m i s the exponent of metabolism. But the rate of catabolism i s 

proportional to weight i t s e l f , thus n = 1. Ursin (1967) has pointed out 

that the assumption of n being one does not hold for a l l animals. 

I f we assume that n = 1, we can establ i sh a re la t ionsh ip between 

m and b in equation (1.18), i . e . , 

1 

i = 1 . m

b 11 " m ) (1.19) 
b 

It fol lows from equation (1.19) that 

1 
1 _ i = m M n - m) ( 1 < 2 0 ) 

b 

Raising both sides of the above equation to the power b y ie ld s 

(—]—) 
b=m]~m (1.21) 

Lett ing 1 - 1_ = x 
b 

we have 

b = 1 
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We can replace b in equation (1.21) by the appropriate expression, to 

obtain 

1 1 

x ] " x = m 1 " " 1 (1.22) 

Equation (1.22) holds i f x = m for a l l real numbers. 

But 

x = 1 - 1_ and also x = m 
b 

Therefore from equation (1.21) and 1.22) we can establ i sh the re lat ionsh ip 

1 - 1 = m (1.23) 
b 

or 1 =1+ m 
b 

or b = _ J (1.24) 
1 - m 

From the re la t ionsh ip above i t i s evident that f i s h with isometric growth 

(b = 3), have m = 0.67 as proposed by von Berta lanffy (1957). 

I f the exponent of catabolism (n) i s one, then i t can be deduced 

from equation (1.23) that f i sh with b greater than 3 w i l l have m greater 

than 0.67 and a f i s h with b less than 3 w i l l have m less than 0.67. 

Thus a f i s h with b = 2.5 has m = 0.60 and a f i s h with b = 3.5 has m = 

0.72. 

The processes of anabolism change several times during the 

l i f e span of a f i s h . But a f i s h does not change i t s body shape during 
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i t s l i f e span (except for ear ly l i f e h i s tory stages and with maturity 

which are beyond the range of the growth period here considered). 

Therefore a re la t ionsh ip must ex i s t between b and m. This re la t ionsh ip 

i s expressed by equations (1.23) and (1.24). Changes in the weight 

length exponent r e f l e c t changes in the processes of anabolism. 

Hecht (1916) reports that f i s h and frogs have uniform but 

indeterminate growth. The body form of a f i s h i s l a i d down very ear ly 

in l i f e and th i s body form i s maintained with in narrow l im i t s throughout 

the period of growth. This i s in contrast to growth of higher ve r te ­

brates in which body form cont inua l ly changes during the period of growth. 

However, i t must be added that th i s conclusion applies only to external 

surfaces for K e l l i c o t t (1908) has shown that in a dogfish, the brain 

and v i scera d i f f e r in t he i r rates of growth in much the same way as in the 

higher vertebrates. 

When the exponent of catabolism (n) i s less than one, the 

weight length exponent b cannot be expressed e x p l i c i t l y in terms of 

m and n. 

Equation (1.18) i s a transcendental equation, i . e . 

1 

1 
1 - 1. = b ( n " m ) 

1 
1 . ! _ / m \ b ~ m ) = o (1.25) 



19 

For given values of m and n, we can by i t e r a t i on processes f i nd values 

of b which make equation (1.25) zero. ' I f we use Newton's method of 

so lv ing transcendental equations, the i t e r a t i on process converges rap id l y . 

However, i t i s necessary to set the lower and upper l im i t s of b. I f b 

s a t i s f i e s the inequa l i t ie s 2.5 < b < 3.5, then the values of m range 

from 0.60 to 0.90 and n ranges from 0.8 to 1.0. 

For many f i s h species, so fa r studied the weight-length exponent 

l i e s wi th in the l im i t s 2.5 to 3.5. Carlander (1969) reports 3 populations 

of Coregonus artedi with b ranging from 3.62 to 3.69. But the values of 

b are based on samples in which length ranges from 200-230 mm. There 

are also f i v e populations of Coregonus artedi with values of b less than 

2.5. But these values of b are based on samples with maximum length 

of 164-179 mm. Biased sampling may lead to estimates of b outside the 

range 2.5 to 3.5. The weight .length exponent outside the range 2.5 to 

3.5 cannot apply over a wide range of length without causing profound 

changes in body form. There may be a few exceptional f i s h species with 

b greater than 3.5 but i t i s doubtful whether such f i s h species obey 

the law of uniform and indeterminate growth. 

The exponent of anabolism m cannot be 1 as th i s would make 

the value of b tend to i n f i n i t y (see equation (1.24)). The value of m 

most probably does not exceed 0.90 for 0.8 s n <; 1. However some evidence 

is needed to ve r i f y th i s propos i t ion. 



Figure 2 - The effects of exponents of anabolism and catabolism on the weight 
length re lat ionsh ip of f i s h . 



V a r i a b i l i t y of Weight Length Exponent b for Tilapia nilotica 
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Analysis of data co l lec ted by Lowe (1958) shows that the weight 

length exponent for Tilapia nilotica in various l o c a l i t i e s in East A f r i ca 

is va r iab le . Table 2 gives the parameters a and b for the r e l a t i o n : 

W = aL b 

Since the age of a f i s h at the i n f l ex i on point i s a function 

of the rec iprocal of K and b, i t follows that i f natural mor ta l i t i e s 

are the same, the age of maximum biomass in the d i f f e ren t l o c a l i t i e s 

i s d i f f e r en t . The v a r i a b i l i t y of b shown in Table 2 for Tilapia nilotica 

i s most probably true for other species of Tilapia in various waters in 

East A f r i c a . There i s need to determine the weight length exponent 

for other species of Tilapia . Piennar and Thomson (1969) have pointed 

out the importance of a l lometr ic weight length re lat ionsh ip and the 

s t a t i s t i c a l problems of such re la t ionsh ips . 

Under the assumptions of isometric growth, the von Berta lanffy 

growth equation has proved extremely a t t r a c t i v e to y i e l d model bu i ld ing , 

for example the Beverton and Holt (1957) y i e l d model. The importance 

of v a r i a b i l i t y of the weight length exponent has been given l i t t l e 

cons iderat ion. Because the parameters K and b control the i n f l ex i on 

point and because b is re lated to the processes of anabolism and catabolism, 

the f i r s t step in studying the dynamics of a f i s h population might be 

the estimation of K and b. 



TABLE 2 - Parameters a and b of the model W = aL for 
Tilapia nilotica in various l o c a l i t i e s in 
East A f r i ca 

LOCALITY a b pH CONDUCTIVITY 

LAKE ALBERT 
OPEN WATER 0.017 3.34 9.0 710 

LAKE ALBERT 
BUHUKU LAGOON 0.028 3.33 9.2 7200 

LAKE EDWARD 0.479 2.99 9.1 900 

LAKE GEORGE 0.010 3.29 9.1 900 

MALAGARASI 
SWAMPS 0.39 2.96 7.6 300 

LAKE RUDOLF 0.927 3.19 9.7 2800 



SPAWNING, SEXUAL MATURATION 

AND FECUNDITY 

Spawning 

The species of the genus Tilapia do not seem to have a c lear 

spawning season. In favourable and uniform environmental conditions 

Tilapia may spawn at frequent interva l s (Lowe 1955). In waters with 

marked seasonal changes Tilapia may have one or more well defined breeding 

seasons. The frequency of spawning and the mechanism under which i t 

works i s not understood. 

Lowe-McConnell (1955) reports some of the approaches that have 

been used to determine the frequency of spawning. A Tilapia esculenta 

marked on the 13th Ap r i l 1953 in Lake V i c t o r i a , had f r y in the mouth 

and when captured 9 1/2 weeks l a t e r on the 20th June 1953, was found 

to have eggs in her mouth. Another Tilapia esculenta ( in Lake V i c t o r i a ) , 

having f r y in her mouth, was marked on the 4th March 1953 and when captured 

7 weeks l a t e r , the ovary was found to be in a r ipening stage. Examination 

of the ovary of Tilapia species reveals dark yel lowish or brown specks 

which are signs of recent spawning. Many times, an ovary in a r ipening 

stage w i l l have small ova s ta r t ing to develop and these ova form the 

next batch of eggs to develop (Lowe 1955). On the evidence of ovary 

observations several species of Tilapia may have three or more batches 

of young in succession. I f we can determine the time taken by each 

23 
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batch to develop, th i s would give some measure of the length of the 

breeding season. The absence of a wel l marked breeding season creates 

several problems in the management of Tilapia populations. 

With no d e f i n i t e breeding season i t i s d i f f i c u l t to determine 

annual recruitment and to re la te recru i t s to the many batches of young 

that occur in a year. Repeated spawning with in a year creates what may 

be termed "sub-year c lasses " in a year c lass . Because of d i f ferences 

in growth rates the length frequency d i s t r ibut ions show considerable 

overlap and i t becomes extremely hard to d issect them into age groups. 

Sexual Maturation 

Sexual maturation may be governed by attainment of a cer ta in 

s i ze rather than age. There are differences in growth rates and these 

differences mean that a year class or a batch of young hatching at 

the same time w i l l reach maturity at d i f f e r en t ages. This point i s 

emphasized by N i ko l s k i i (1969). There are very few species of f i s h 

in which maturity for a year class occurs at the same age, an exception 

being the viviparous Poec i l i i d ae . Even in th i s family var iat ions in food 

supply cause va r ia t ion in age of maturation. Size of maturation i s a 

v i t a l parameter in management of f i s h populations. Russell (1931) and 

Graham (1935) stress the importance of "a l lowing f i sh to grow" before 

catching them. 

Beverton (1963) has establ ished a re lat ionsh ip between length 

at maturation (lm) and the maximum length (L°°). The bigger the s i ze 
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to which a f i s h grows, the bigger i t i s on f i r s t reaching matur ity. 

This means that the r a t i o lm/L°° i s r e l a t i v e l y constant for a family 

of f i s h . Though th i s i s general ly true, exceptions do occur. Table 

3 shows va r i a t i on in the r a t i o lm/L« in the genus Tilapia i n East A f r i c a . 

Holt (1962) found corre lat ions between the r a t i o lm/L°° and 

K. Fish with high K have low lm/L°° and mature at a smaller s i ze whi le 

f i s h with a low K mature at a bigger s i ze . From the r a t i o lm/L°°, the 

r a t i o Wm/W«> can be establ ished i f we know the weight length exponent b. 

The r a t i o of weight at maturity to maximum weight (Wm/W°°) i s about 0.3 

for many f i s h species (Holt 1962). I t i s also known that the weight 

of a f i s h at the i n f l e x i on point i s 0.3 of maximum weight for f i s h species 

with b = 3.0 (see equation 1.12). For a l l the f i s h species which mature 

before a t ta in ing the s i ze of maximum dw/dt, catching the f i s h at the s i ze 

corresponding to the point of i n f l ex i on would be the best way of gett ing 

maximum y i e l d . 

The ra t io s lm/L°° and Wm/W°° in Table 3 below are based on data 

in Lowe (1958), Garrod (1959, 1963) and l i e s (MS.). 



26 

TABLE 3 - The rat io s Lm/L°° and Wm/W» for some Tilapia 
species in East A f r i c a . The numbers enclosed 
in brackets re fer to maximum length based on 
the largest f i s h in samples taken. 

LOCALITY 
Fish 
Species 1m Loo lm/L°° Wm/W°° 

LAKE ALBERT 
OPEN WATER 

Tilapia 
nilotioa 36 49 .73 0.35 

LAKE ALBERT 
BUHUKU LAGOON 

Tilapia 
nilotioa 10 17 .58 0.16 

LAKE EDWARD 
Tilapia 
nilotioa 25 (36) .69 0.33 

LAKE GEORGE 
Tilapia 
nilotioa 28 (40) .70 0.31 

LAKE RUDOLF 
Tilapia 
nilotioa 39 (63) .61 0.21 

MAGALASI 
SWAMPS 

Tilapia 
nilotica 22 (30) 0.73 0.39 

LAKE VICTORIA 
Tilapia 
esoulenta 22.8 34 0.67 0.30 

LAKE VICTORIA 
JINJA REGION 

Tilapia 
variabilis 22 (30) 0.73 

From the resu l t s of Table 3 above i t i s evident that mesh s i ze 

of g i l l n e t s or codend mesh s i ze w i l l be d i f f e ren t in the various l o c a l i t i e s . 

The s i ze of maturation and the weight at maturation must be considered 

ser ious ly when set t ing the mesh s i ze of the f i sh ing gear. 



27 

Fecundity 

One of the factors con t ro l l i ng the s i ze of a year c lass i s 

the number of eggs l a i d . The number of eggs l a i d i s governed by the 

fecundity of a species and the number of mature females. There i s no 

simple re la t ionsh ip ex i s t ing between number of eggs and the number of 

o f f spr ing that survive to sexual maturity; the main reason being var iable 

mor ta l i t y in the several stages of development between egg lay ing and 

sexual mor ta l i t y . Svardson (1949) gave several general izations about 

fecundity and egg production a l l of which are noted in various ways with in 

Tilapia populations of East A f r i c a . The general izat ions are: 

(1) There i s a negative co r re la t i on between number of eggs 
and ind iv idua l s i ze of the eggs. 

(2) The number of eggs produced i s po s i t i ve l y correlated 
with female s i z e . 

(3) The growth of a f i s h i s great ly dependent upon the 
amount of food ava i l ab le . Since growth and consequently 
s i ze i s modified by environment, egg number might be 
strongly influenced by environment. 

(4) Fish species with some parental care produce r e l a t i v e l y 
fewer eggs than f i s h with no parental care. 

(5) Closely re lated species may have egg number showing 
geographical c l i ne s . 

(6) Egg numbers may show i n t r a s pec i f i c va r ia t ion and th i s 
might correspond to geographical c l i n e s . 

(7) The largest larvae hatch from the largest eggs. 

Tilapia species are subdivided according to mode of reproduction 

into guarders and mouth brooders. Tilapia zilli i s a guarder and the 

eggs are guarded by both male and female parents. Character i s t ics of 
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the guarders i s a large number of eggs (see Figure 3). Tilapia nilotioa^ 

Tilapia esoulenta and Tilapia variabilis belong to the mouth brooders. 

For these species, development of f r y takes place in the mouth. In the 

case of Tilapia leuoostiota, also a mouth brooder, f r y are f i r s t r e ­

leased when about 8 mm. or with in 11 to 15 days of egg f e r t i l i z a t i o n 

(Welcomme 1966). 

The fecundity of Tilapia species increases with length fo l lowing 

an exponential curve. The model descr ibing the re la t ionsh ip of fecundity 

and length i s : -

F = aL B (2.1) 

where F i s the fecundity at the length L and B i s the exponent r e l a t i ng 

fecundity to length. A logarithmic transformation of the above model 

leads to 

Log F = log a + B log L (2.2) 

In cases where the parameter B i s equal to the weight length 

exponent b, fecundity i s said to vary d i r e c t l y with weight. 

Note that , 

F = aL b 

and 

W = qL B 

Therefore 

W = s i * 
F a T 

If b = B, then 
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or F = a_ W 
q . 

Sett ing C = a_ 
q 

F = CW (2.3) 

where W i s the weight of a f i s h and C i s the c oe f f i c i en t of regression 

of F on weight. 

The estimated parameters of equations (2.1) and (2.2) for 

Tilapia leuoostiota and Tilapia nilotica are given below: 

Tilapia leucosticta 

F = 0 .131L 2 - 3 0 

or 

log^F = -0.118 + 2.30 log L 

Tilapia nilotica 

F g ) 2 . 6 5 L 2 ' 9 6 

or 

l o g j 7 = 0.423 + 2.96 log L 

Therefore the fecundity of Tilapia leucosticta increases with 

about the square of length while the fecundity of Tilapia nilotica 

increases with about the cube of length. This means that the fecundity 

of Tilapia nilotica increases l i n e a r l y with weight as shown in equation 

(2.3). 

Several factors including seasonal changes in weight of a f i s h 

and improper sampling ser ious ly a f fec t the values of the parameters in 
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equation (2.1). I f some length groups are not sampled, there w i l l be 

bias in the estimated parameters. 

In f i s he r i e s management, i t i s important to know how fecundity 

varies with age so as to assess the e f fec t of f i sh ing on to ta l egg produc­

t i on and i t s consequences on recruitment. Though i t i s not easy to 

determine age of t r op i ca l f i s h and fecundity with age d i r e c t l y , we can 

determine i n d i r e c t l y the age of a f i s h of a given fecundity. 

The age of a f i s h of a given fecundity is determined using 

the von Berta lanf fy growth equation 

l t = L- (1 - e " K ( t " V) 

and the fecundity length model 

F - aL B 

Let be the fecundity of a f i s h of length L and age t . Then the fecun­

d i t y at age t i s given by the re la t ionsh ip 

F t = a(b» (1 - e " K ( t " V))B (2.4) 

I t must be noted that th i s equation i s only true for ages that produce 

eggs. Equation (2.4) gives fecundity of a f i s h as a function of time. 

Thus fecundity increases with age to an asymptotic value. This i s to 

be expected since length of a f i s h reaches an asymptote with time. 

Knowing the parameters K and L°° and knowing the fecundity 

weight re l a t i on sh ip , the age of a f i s h can a l gebra i ca l l y be expressed. 

F t = (L« (1 - e " K ( t " V))6 

a 
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NUMBER OF RIPE OVA 

Figure 3 - Number of eggs produced by Tilapia at d i f f e ren t s i zes . 
(1) Tilapia karome, (2) Tilapia esoulenta, Tilapia nilotica, 
and Tilapia variabilis, (3) Tilapia galilaea, (4) Tilapia 
zilli. A f te r Lowe McConnell (1955). 
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F , j B = bo (1 - e - * * - V) 

F A * - L- - L- e " K ^ " V 

so that . ]_ 

e - K ( t - t Q ) =(?t\ B - Lc 

-K ( t - t Q )= l n / / F 4 

t - t Q = - In 

(2.5) 

The accuracy of the estimated age t in (2.5) depends on whether our 

estimates of K, L«>, B and t are r e l i a b l e . A l l the above parameters 

can be determined with reasonable accuracy provided sampling i s conducted 

in such a way that many length groups are covered. For many species of 

Tilapia the parameter t i s about zero so that equation (2.5) reduces to 

1 
(2.6) t = - In //F. \ B - L» \ 
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Again i t must be underlined that th i s expression i s only v a l i d 

for estimating age of f i s h which are in mature age groups. Determinist ic 

expressions for age such as that in (2.5) and (2.6) could enable b io log i s t s 

working in the t rop ics to make approximations of r e l a t i v e indices of y i e l d 

from fecundity, growth rate and the weight length exponent. 



ESTIMATION OF MORTALITY RATES FOR 

TROPICAL FISH 

The theoret ica l foundation for so lv ing the problem of natural 

mor ta l i t y was given by Baranov (1918) when he said that the age l i m i t 

determines the c o e f f i c i e n t of natural mor ta l i t y . Beverton and Holt 

(1954, 1959), Taylor (1960), Beverton (1963) and several other f i shery 

b i o l og i s t s have pointed out that l i f e span i s dimensionally the same 

as the c o e f f i c i e n t of to ta l mor ta l i t y . 

The equations formulated here for estimating morta l i ty rates 

from the mean age of f i s h in the catch, are based on the usual assump­

tions of negative exponential models of mor ta l i t y . 

Below are the symbols used in the equations: 

E = expected value 

K = the growth rate (von Berta lanffy growth parameter) 

1 = length 

T = mean length 

l c = length of recruitment 

L~ = maximum length (a von Berta lanf fy growth equation parameter) 

M = instantaneous rate of natural morta l i ty 

n = sample s i ze 

t = time or age 

t = mean age 

34 
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t = age of f i r s t capture 

t^ = age of oldest f i s h in the catch 

t^ = age of e x i t from a f i shery 

t = time at which the s i ze of a f i s h i s t heo re t i ca l l y zero 

Z = the instantaneous rate of to ta l morta l i ty 

In developing the fo l lowing models, i t i s assumed that r e c r u i t ­

ment i s constant and the instantaneous rate of to ta l morta l i ty Z i s 

constant. The recruitment can e i ther be of a d i screte or continuous 

form. The model based on continuous recruitment should be appl icable to 

the Tilapia species which breed several times in a year. The model 

based on d i sc rete recruitment i s very useful in temperate lat i tudes 

where f i s h spawn once a year. 

Continuous Recruitment Model 

In an unexploited f i s h population the number of f i s h at any 

age t i s given by 

where i s the number of f i s h at the age or time t and NQ i s the i n i t i a l 

number at time t . 

N ! t = N n e^ " V t o (3.1) 

o 
We can express N. as a proportion of N 

(3.2) 
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In the case of exploited f i s h populations, the number of f i s h at any 

of the expoited ages i s given by 

N t = R e " Z ( t " t c ) (3.3) 

where R i s the number of f i s h recru i ted at age t c < 

The number of f i s h N̂ . can be expressed as a proportion of R 

N t = e " Z ( t " t c ) (3.4) 

IT 

In an unexploited f i s h population the to ta l area under the 

negative exponential curve i s unity. S im i l a r l y for exploited f i s h 

populations, the to ta l area under the negative exponential between age 

t and i n f i n i t y i s unity. This property can be used to f i nd the prob­

a b i l i t y of a f i s h a t ta in ing age t . 

The p robab i l i t y density function i s defined as 

F(x) = ( f (x ) dx = 1 

This means that the sum of the p robab i l i t i e s of a l l ages in a population 

w i l l be equal to one. 

For the der ivat ion of a p robab i l i t y density function for the 

negative exponential, see Appendix 1. 

In an unexploited f i s h population, the p robab i l i t y of a f i s h 

a t ta in ing age t i s 

P(t) = P ( T = t ) = M e " M ( t " V 

P( t) = M e " M ( t " t o ) f o r * > *o ( 3 - 5 ) 
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In the case of an exploited f i s h population the r e l a t i v e prob­

a b i l i t y of catching a f i s h of age t i s 

P(t) = Z e " Z ( t " t c ) f o r t > lc (3-6> 

An observation t has an expected value 1 + t and the variance 
7 

2 i s 1/Z . The expected mean age i s given as 

E ( T ) = l + t (3.7) 
Z c 

The variance of the mean age t of the catch i s 

Var ( t ) = T o (3.8) 

The to ta l instantaneous morta l i t y i s a parameter but in pract ice i t i s 

estimated as a s t a t i s t i c . Let us suppose that the mean age t i s 

t = E(t) + e (3.9) 

where e i s a random error and the expected error i s zero 

E(e) = 0 

Then the variance of the error i s 

Var (e) = U (3.10) 

From equations (3.7) and (3.9) the re la t ionsh ip i s establ ished:-

t - t = 1 + e (3.11) 
c Z 
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Notice that the error term e can e i ther be negative or po s i t i ve . From 

equation (3.11) we can derive an expression for estimating to ta l morta l i ty 

from a catch sample drawn from a population. 

V = 1 (3.12) 

t - t c - (e) 

where e i s pos i t i ve or negative. When the error i s large and negative 

the to ta l mor ta l i t y i s under estimated. But when the error i s large and 

pos i t i ve V i s over estimated. Let T - t = U. I f we assume t i s a 

constant, a formal expression for the d i s t r i bu t i on of Z i s obtained 

by a binomial expansion of the equation: 

Z = _ J (3.13) 
U + e 

V = t f 1 - e U ' 2 + e 2 U " 3 - e 3 U " 4 + . . . . (3.14) 

The expected Z' i s 

E(Z ') - I f 1 + E(e 2 ) I f 3 

Therefore E(Z ' ) = Z + Z 3 (3.15) 
nT 

E(Z ' ) = Z + Z (3.16) 
n 

Square V in equation (3.14) 

Z ' 2 = U" 2 - e 2 U " 4 + (3.17) 
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I f we t reat t o ta l morta l i ty V as a random var iable and i f we denote 

the expected to ta l morta l i ty as d, i t i s poss ible to measure the d i s ­

persion of the expected value of to ta l morta l i ty 

(Z 1 - d ) 2 

The dispers ion of the expected value i s known as the variance of Z, 

denoted as Var (Z). 

The variance of a random var iable for example to ta l morta l i ty 

Z, i s 

Var (Z) = E(Z' - d ) 2 (3.18) 

As Hodges and Lehmann (1965) put i t , th i s variance i s the expectation 

of the squares of the d i f ference between Z and i t s expectation. From 

equation (3.18) the variance of Z can be expressed as 

Var (Z) = Z 2 - 2Zd + d 2 (3.19) 

From the law of expectation, the variance becomes 

Var (Z) = E(Z 2) - 2dE(Z) + d 2 (3.20) 

But expected Z equals d. Therefore 

E(Z) = d 

Var (Z) = E(Z 2) - d 2 (3.21) 

But from equation (3.16) 

E(Z 2) = (Z + Z ) 2 (3.22) 
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and 6 = 2+1+.... 
n 

Therefore d 2 = (Z + Z + . . . . ) 2 (3.23) 

Therefore the variance of to ta l morta l i ty estimated by equation (3.12) i s 

Var (Z) = (Z + Z ) 2 - (Z + Z + . . . . ) 2 

Var (Z) = Z 2 (3.24) 
n 

From the above considerations 

E ( T ^ T C ) = ( J V 1 ) . Z (3.25) 

Therefore the t o t a l estimated morta l i t y based on a taken sample i s 

Z = 1 . n (3.26) 

t - t c 

This i s an unbiased estimator of t o ta l morta l i ty Z. The variance of 

Z i s 

a 2 (Z) =/ n \ 2 . Z 2 (3.27) 
(n + y n 

The variance of Z can be estimated from the sample as 
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Total mor ta l i t y estimates for Tilapia esculenta are made using equation 

(3.26) and given in Table 4. Note that Table 4 does not give to ta l 

morta l i ty at each age. But i f one sampled the catch and found the mean 

age t where t >_ t , to be 3 years, the to ta l morta l i ty of Tilapia esculenta 

which i s recru i ted at 2.5 years, would be 1.99 and the variance of th i s 

estimate would be 0.0079. I t i s expected that the mean age in the catches 

from various l o c a l i t i e s w i l l vary and each region w i l l be characterized 

by i t s own to ta l mor ta l i t y . 

In the case of maximum l i k e l i h o o d , the tota l morta l i ty i s estimated 

as 

Z = 1 (3.29) 

* " *c 

Equation (3.29) gives a biased estimate of Z whose variance i s 

a 2 ( Z )= 1 (3.30) 

n ( t - t c ) 2 

The variance of Z in the case of maximum 1 ikel ihood i s bigger than the 

variance determined from the expected value of Z. While estimates of 

t o ta l morta l i ty can be determined with equation (3.29), i t i s better to 

estimate to ta l morta l i ty with equation (3.26) so as to avoid bias in the 

estimate. 
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TABLE 4 - Estimates of t o ta l morta l i ty for Tilapia esculenta 
in Lake V i c t o r i a . It i s assumed that recruitment 
i s continuous, t = 2.5 years and n i s the sample 
s i ze . c 

n = 500 n = 1000 n = 1500 n = 2000 

t Z o 2 ( Z ) Z o 2 ( Z ) Z o 2 ( Z ) Z o 2 ( Z ) 

3.0 1.99 .00796 1.99 .00399 1.99 .00266 1.99 .00199 

3.5 .99 .00199 .99 .00099 .99 .00066 .99 .00049 

4.0 .66 .00088 .66 .00044 .66 .00029 .66 .00022 

4.5 .49 .00049 .49 .00024 .49 .00016 .49 .00012 

5.0 .39 .00031 .39 .00015 .39 .00010 .39 .00007 

5.5 .33 .00022 .33 .00011 .33 .00007 .33 .00005 

6.0 .28 .00016 .28 .00008 .28 .00005 .28 .00004 

6.5 .24 .00012 .24 .00006 .24 .00004 .24 .00003 

7.0 .22 .00009 .22 .00004 .22 .00003 .22 .00002 
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Estimation of Total Mor ta l i t y Rates for Fish with Discrete  
Age Groups 

I f a quantity X takes on the possible d i screte values x.-j, x,,, 

x k and i f x ] < x 2 < x k > then the p robab i l i t y that X takes a value 

x.. ( for f i n i t e ser ies) i s defined by 

px i = P(X = xn.) = f (x . ) ( i = 1,2 k) 

and the sum of f (x^) i s unity (Burington and May 1958) 

k 

I f ( x j = 1 

i = 1 

S im i l a r l y for an i n f i n i t e se r ie s , the p robab i l i t y that X takes the values 

x.j i s 

px i = P(X = x.) = f (x . ) ( i = 0, 1, 2...,») 

CO 

P(X = x.) = f (x . ) = 1 

0 

From the properties of a d i screte p robab i l i t y d i s t r i b u t i o n , 

we can derive expressions for estimating t o ta l morta l i ty for f i s h with 

d i sc rete age groups. But two assumptions have to be made: (1) constant 

recruitment and (2) constant to ta l morta l i ty for a l l ages. 

If we draw a sample of s i ze n from an exponential d i s t r i b u t i o n , 

the p robab i l i t y of gett ing age t i s 

P(t) = P(T = t ) = (1 - e ' Z ) e ' Z t for t > tQ 

P(t) = (1 - e * Z ) e " Z t fo r t > t (4.1) 
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The mean age t for a population with d i screte age groups i s 

t = e " Z (1 - e " Z ) (4.2) 

The der ivat ion of equations (4.1) and (4.2) i s given in Appendix 2. 

The surv iva l rate is given by 

S = e " Z 

Therefore the mean age i s given by 

t = S (4.3) 
1 - S 

From equation (4.2) and (4.3) i t i s obvious that i f t o ta l morta l i ty 

Z i s zero the mean age of a f i s h in a sample w i l l be i n f i n i t y . Re­

arranging equation (4.3), we have 

t = _ J - . 1 (4.4) 
1 - S 

so that 

t + 1 = 1 (4.5) 
1 - S 

Taking the inverse of equation (4.5), we have 

1 = 1 - S (4.6) 
t - 1 

Therefore the surv iva l rate S i s given by 

S = 1 - 1 (4.7) 

t - 1 
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which i s rearranged to give 

S = t (4.8) 

1 + T 

But S = e " Z 

Therefore e~ Z = t (4.9) 

1 + T 

- Z = In 

Vi + t' 

Z = In ^1 + t j (4.10) 

Equation (4.10) estimates to ta l morta l i ty Z i f the age t £ i s zero. 

The age of f i r s t capture t i s not zero and therefore i t must be sub-

tracted from the denominator and numerator of equation (4.9), i e . , 

e " Z = t - t c (4.11) 

1 + t - t c 

The to ta l morta l i ty in the case of d i sc rete recruitment i s 

Z = In / t + 1 - t \ (4.12) 

The above estimator of Z has s t a t i s t i c a l bias i f the mean age i s deter­

mined from a small sample. A more r e l i a b l e estimate of Z i s given by 
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The variance of the to ta l morta l i ty Z i s 

a2 = / n \ 2 . 1 . Z 2 (4. 
\p + 1/ n 

Total morta l i ty estimates fo r Tilapia esculenta are made using equation 

(4.13) and given in Table 5. The estimates given in Table 5 are very 

close to those in Table 4. Under d i sc rete recruitment a mean t of 5 

years in the catch would mean that the t o t a l morta l i ty i s about 0.33. 

But under continuous recruitment a mean age of 5 years gives a to ta l 

mor ta l i t y estimate of 0.39. Note that the age of f i r s t capture i s 2.5 

years. The variances of the estimates in Table 5 show that using large 

samples makes the estimated Z more r e l i a b l e . 

TABLE 5 - Estimates of t o t a l mor ta l i t y for Tilapia esculenta 
i n Lake V i c t o r i a . I t i s assumed that recruitment 
i s d i s c re te , t = 2.5 and n i s the sample s i ze . 

t 

n = 500 n = 1000 n = 1500 n = 2000 

t Z o 2 (Z ) Z a 2 (Z ) Z a 2 (Z ) Z a 2 (Z) 

3.0 1.09 .00239 1.09 .00120 1.09 .00080 1 .09 .00060 

3.5 .69 .00095 0.69 .00047 .69 .00031 .69 .00023 

4.0 .50 .00051 .50 .00025 .51 .00017 .51 .00013 

4.5 .40 .00032 .40 .00016 .40 .00010 .40 .00008 

5.0 .33 .00022 .33 .00011 .33 .00007 .33 .00005 

5.5 .28 .00016 .28 .00008 .28 .00005 .28 .00004 

6.0 .25 .00012 .25 .00006 .25 .00004 .25 .00003 

6.5 .22 .00009 .22 .00004 .22 .00003 .22 .00002 

7.0 .19 .00007 .19 .00004 .20 .00002 .20 .00002 
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Estimation of Total Morta l i ty Rates and the Ratio Z/K from Length Data 

Since i t i s d i f f i c u l t to age t rop ica l f i s h species, the use of 

age in estimating to ta l mor ta l i t y may not eas i l y apply to t rop i ca l species. 

Instead of age, one can use length to estimate the to ta l morta l i ty (Z) 

i f the parameter K i s known. Where K i s unknown, the r a t i o Z/K i s 

estimated from the negative exponential curve. The r a t i o Z/K i s important 

in determining y i e l d s , for f i s h with a l lometr ic growth, by means of the 

incomplete Beta funct ion. 

In an explo ited f i s h population, we can express the number 

of f i s h at any age t as 

I t i s assumed that the number of f i s h at age t i s constant and equal to 

un i ty. 

The von Berta lanf fy growth equation for length i s 

In the above equation, time t can be expressed as a function of length. 

Then t and t in (5.1) are given as 

= L~ (1 - e - K ( t - t 0 ) } 

t = 1 (- In (1 - 1.)) + t 
K j 1 

Loo 

(5.2) 

(5.3) 



Let X ] = - In 

L» 
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and X c = - In ( l - i j 

Then t = 1 X, + t (5.4) 
K 

*c = 1 X c + *o ( 5 ' 5 ) 

Subtracting tQ from t 

m \ ( X 1 - Xc» 

Replacing t - t in equation (5.1) 

N = e " Z / K ( X l " X c } ( 5 ' 6 ) 

The p robab i l i t y of X^ i s given by the p robab i l i t y density function below 

P(X,) = Z e " Z / K ( X l " X c ) fo r X, > Xr (5.7) 
K 1 c 

Note that equation (5.7) i s s im i l a r to equation (3.6). 

Therefore i f we know the length d i s t r i bu t i on in the catch and the length 

of f i r s t capture, the r a t i o Z/K can be estimated. 

Z = n . _ J (5.8) 
K n + 1 Y Y 

x l " *c 
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where Xj i s the mean of X-j from various samples. The variance of Z/K 

i s 

o 2 Z = / _ n \ 2 . Z 2/K 2 (5.9) 

which can be estimated by 

2 7 / „ \2 1 (5.10) a Z = ' " x 

n ( X r - X c ) 2 

Note that to determine X̂  we have to take several samples each of s i ze 

n. For each sample we determine X-j according to: 

x i - - L N ( ] - V) 

Then X-j i s given by 

m 
r, = X. (5.11) 

where m i s the number of x-| each determined from equation (5.8). 

Table 6 shows estimates of t o ta l morta l i ty based on the above 

method for Tilapia esoulenta in Lake V i c t o r i a in the North Buvuma area. 

The length of f i r s t capture 1 i s 22 cm. and corresponds to age t = 2.5 

years. In Table 6, the mean length in the catch i s given instead of X^. 

The to ta l morta l i ty rates estimated with length are very close 

to the estimates determined from age data. For example, i f the mean 

age in the catch i s 3 years a population of Tilapia esoulenta would 



have a to ta l morta l i ty rate of 1.99. A 3 year old Tilapia esculenta 

i s about 24 cm. long. I f the mean length in the catch i s 24 cm., the 

r a t i o Z/K and the to ta l morta l i ty (Z) would be 5.37 and 1.71 respect ive ly . 

Also note that a mean age of 5 years and a mean length of 29 cm give 

to ta l morta l i ty estimates of 0.39 and 0.35 respect ive ly (see Table 4 

and Table 6). 

TABLE 6 - Estimates of to ta l morta l i ty rates for Tilapia esculenta 
in Lake V i c t o r i a . Length of f i r s t capture L = 22 cm., 
K = 0.32, Lo° = 33.8 and n i s the sample s i z e : 

n = 500 n = 1000 n = 1500 n = 2000 

Z o Z (Z) Z a 2 (Z) Z a 2 (Z) Z a2(z) 

23 3.60 .02590 3.60 .01300 3.61 .00868 3.61 .00651 

24 1.71 .00589 1.72 .00295 1.72 .00197 1.72 .00148 

25 1.08 .00236 1.08 .00118 1.09 .00079 1.09 .00058 

26 0.77 .00118 0.77 .00059 0.77 .00039 0.77 .00029 

27 0.57 .00066 0.57 .00033 0.58 .00022 0.58 .00016 

28 0.44 .00040 0.45 .00020 0.45. .00013 0.45 .00010 

29 0.35 .00025 0.35 .00012 0.35 .00008 0.35 .00006 

30 0.28 .00015 0.28 .00007 0.28 .00005 0.28 .00003 

31 0.22 .00009 0.22 .00004 0.22 .00003 0.22 .00002 

32 0.16 .00005 0.17 .00002 0.17 .00001 0.17 .00001 
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TABLE 7 - Estimates of to ta l morta l i ty rates for Tilapia 
nilotica (normal population) of Lake Albert 
Uganda. Length of f i r s t capture 28 cm., K = .50, 
Loo = 4 9 . 0 and n i s the sample s i z e . 

n = 500 n - 1000 n = 1500 n = 2000 
l t cm Z 

o 2 (Z ) Z a 2 (Z ) Z a 2 ( Z ) Z a 2 (Z ) 

29 10.22 .20837 10.23 .10460 10.24 .06982 10.24 .05240 

30 4.98 .04951 4.99 .02485 4.99 .01659 4.99 .01245 

31 3.23 .02087 3.24 .01047 3.24 .00699 3.24 .00524 

32 2.36 .01110 2.36 .00557 2.36 .00372 2.36 .00279 

33 1.83 .00670 1.83 .00336 1.83 .00224 1.83 .00168 

34 1.48 .00438 1.48 .00219 1.48 .00146 1.48 .00110 

35 1.23 .00301 1.23 .00151 1.23 .00101 1.23 .00075 

36 1.04 .00215 1.04 .00108 1.04 .00072 1.04 .00054 

37 .89 .00158 .89 .00079 .89 .00053 .89 .00039 

38 .77 .00118 .77 .00059 .77 .00039 .77 .00029 

39 .67 .00090 .67 .00045 .67 .00030 .67 .00022 

40 .58 .00069 .58 .00034 .58 .00023 .58 .00017 

41 .51 .00053 .51 .00026 .51 .00017 .51 .00013 

42 .45 .00041 .45 .00020 .45 .00013 .45 .00010 

43 .39 .00031 .39 .00015 .39 .00010 .39 .00007 

44 .34 .00024 .34 .00012 .34 .00008 .34 .00006 

45 .30 .00018 .30 .00009 .30 .00006 .30 .00004 

46 .25 .00013 .25 .00006 .25 .00004 .25 .00003 

47 :21 .00008 .21 .00004 .21 .00003 .21 .00002 

48 .16 .00005 .16 .00002 .16 .00001 .16 .00001 



52 

Estimation of Total Mor ta l i t y Rates and the Ratio Z/K  
Using Extreme Values 

The oldest age in a f i s h population has s t a t i s t i c a l properties 

of extreme values. The age of a f i s h at death i s a s t a t i s t i c a l v an ate 

and the negative exponential curve gives the p robab i l i t y of dying a f te r 

a certa in age. Fish populations with high to ta l morta l i ty have r e l a t i v e l y 

fewer age groups than populations with low to ta l mor ta l i t y . By reducing 

the f i sh ing i n tens i t y one expects more f i s h reach an older age. Several 

workers have invest igated the app l i cat ion of s t a t i s t i c s of extreme values 

in estimating the to ta l morta l i ty of f i s h (Gumbell 1954, Kendall 1955, 

Beverton 1963 and Holt 1965). 

Suppose we have n independent observations x-j, X2,..., x n 

with a common d i s t r i bu t i on 

Then i f y-|, y n are the same n observed numbers rearranged in des­

cending order of magnitude, the largest value y-j and the smallest value 

y n and the range (y-j - y n ) are new random variables the j o i n t d i s t r i bu t i on 

of which depends on the d i s t r i bu t i on function F ( t ) . The negative exponential 

d i s t r i b u t i o n expressing morta l i ty with age i s 

F(X) is the p robab i l i t y that a given observation has a value equal to 

or less than x. I f y i s the largest value of x (age) in the sample of 

s i ze n, then 

F(t) = Prob 

F(X) = 1 - e " x fo r X >_ 0 
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y = v + In (n) (6.1) 

As n tends to i n f i n i t y , v = 0.5772 (Euler ' s constant). 

By taking several samples of s i ze n, the mean largest y becomes 

y = .5772 + In (n) (6.2) 

Holt (1965) derived an equation for estimating the mean age of the oldest 

f i s h in a ser ies of samples of s i ze n 

t , = 0.5772 + In (n) + t (6.: 
Z 

where t ^ i s the mean age of the oldest f i s h in a ser ies of samples of 

s i ze n. Equation (6.3) can be wr i t ten as 

T, - t = 0.5772 + In (n) (6.< 
L C ^ 

The standard deviat ion of y in (6.1) i s 

ay = n 

From equation (6.4) an expression for ' estimating to ta l morta l i ty i s 

der i ved: -

and the variance of y i s a y = n_ 
6 

The variance of t, - t in equation (6.4) i s 
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Z = 0.5772 + In (n) (6.5) 

But the expected to ta l morta l i ty E(Z) i s 

E(Z) = Z 1 4- n' 
6 (.5772 4- ln(n)) 

(6.6) 

The variance of E(Z) i s 

Var (Z) = it 
6 (.5772 4- in(n)) 

(6.7) 

I t i s important to note the differences between the negative 

exponential d i s t r i b u t i on and the extreme value d i s t r i bu t i on as estimators 

of t o ta l mor ta l i t y . 

(1) The mean age of a population estimated from a negative 
exponential i s smaller than the mean age estimated 
from the extreme values. 

(2) The variance of the mean age (of a negative exponential) 
i s bigger than the variance of the mean age determined 
from extreme values. 

(3) The coe f f i c i en t of va r ia t ion for the mean age estimated 
from a negative exponential i s unity because mean age i s 
equal to the standard dev iat ion. But the coe f f i c i en t 
of va r i a t i on of the mean age from the extreme value 
function i s less than one. 

(4) As estimators of to ta l morta l i ty Z, the negative exponential 
i s more r e l i a b l e than the extreme value funct ion. The 
variance of Z estimated from a negative exponential i s 
smaller than the variance of Z as estimated from the 
extreme value funct ion. 
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A comparison of variances from both estimators is given in 

Table 8. I t i s assumed that the to ta l morta l i ty Z = 0.5, and the v a r i ­

ances of Z from samples of various s i ze s , are ca lcu lated. 

TABLE 8 - Comparison of variance of exponential and 
extreme value functions for Z = 0.5 

Sample 
S ize (n) 

Variance 

Sample 
S ize (n) 

Exponential 

Var (Z) = Z 2/n 

Extreme Value 

Var (Z) n 2 Z 2 

6 (.5772 + In ( n ) r 

10 0.025 0.049 

100 0.0025 0.015 

1000 0.00025 0.0073 

10000 0.000025 0.0043 

The extreme value function can be used to determine the r a t i o 

Z/K from length data. I f we replace ages t and tj_ in equation (6.5), 

the longest f i s h in the catch can be used for estimating to ta l morta l i ty 

X 1 = - In (1 - l t /L«) 

where 1 t i s the longest f i s h in the catch of sample s i ze n 

X c = - In (1 - l c /L~) 

and t - t = 1 I + t - 1 X + t 
L c 1 o j£ c o 
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Therefore 
* L " * c

 = 1 (X1 " Xc> 

Then the r a t i o Z/K i s given by 

Z = .5772 + ln(n) (6.8) 

I f the r a t i o Z/K i s constant for a given f i s h population, then as we 

increase the s i ze of the sample, we would expect the parameter to 

increase. I f Zj does not increase with n then the r a t i o Z/K estimated 

with large samples, w i l l be over estimated. Instead of taking one very 

large sample from a population, one could take small samples of s i ze 

n from the several s t ra ta and reduce the variance of Z j . For each stratum 

the r a t i o Z/K would be estimated and the mean of the various ra t io s would 

be the parameter for the population. Extensive sampling i s required 

to show that the extreme age and length in a population have properties 

of the extreme value funct ion, which in t h i s case i s a double exponential. 



CATCHES AND FACTORS AFFECTING CAPTURE 

IN AFRICA 

Variables A f fect ing Catches 

The most serious problem connected with determining y ie ld s 

from t rop i ca l lakes i s the estimation of annual recruitment. Many f i s h 

species, especial l y those of the genus Tilapia,have, no de f i n i t e breeding 

season and i t i s extremely d i f f i c u l t to re la te the notions of r e c r u i t ­

ment to several batches of young that appear in a year. For Tilapia, 

which spawns in the inshore waters, f luc tuat ion of water level i s an 

important environmental factor inf luencing the success of spawning. 

Welcomme (1966) reports that Lake V i c t o r i a levels show seasonal 

o s c i l l a t i o n with a maximum in May-June and a minimum in October to 

November. Long-term f luctuat ions of water level also occur. P r io r to 

1927, Lake V i c t o r i a had a 10 or 11 year cycle of water level maxima. 

From 1927 to about 1961 the pattern of f luctuat ions changed markedly 

and the water leve l rose considerably. In 1964, the water level was 1.4 

meters above previous records. The r i s e in water level was accompanied 

by changes in catch per unit e f f o r t for Tilapia esculenta (see Figure 4). 

Mean catches of three species of Tilapia from 4 and 4.5 inch g i l l nets 

are given in Table 9. These mean catches are based on catch e f f o r t 

data from several f i s h landings in Tanzania and Uganda. 
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TABLE 9 - Mean catch per e f f o r t (catch per net per set) 
for Tilapia species from 1959 to 1965. 

Fish species MEAN CATCH PER NET PER SET Fish species 
1959 1960 1961 1962 1963 1964 1965 

Tilapia 
esoulenta 

1.09 0.84 0.92 
i 

1.11 1.59 5.85 3.80 

Tilapia 
variabilis 0.72 0.81 0.99 1.16 1.03 0.93 0.26 

Tilapia 
zilli 0.03 0.06 0.08 0.17 0.15 0.19 0.11 

The spawning grounds of Tilapia esoulenta are swampy sheltered 

margins and these areas were increased considerably by f looding in 1961 

to 1962 (Welcomme 1964). Lowe (1956) reports that breeding a c t i v i t y 

of Tilapia esoulenta increase with heavy r a i n f a l l . The heavy r a i n f a l l 

of 1961 and 1962 seem to have induced a high response in breeding a c t i v i t y 

of Tilapia esoulenta. The year classes of 1961 and 1962 resulted in high 

catches in 1964 and 1965. Note that Tilapia esoulenta takes two to three 

years to a t t a i n maturity (22 cm. to 24 cm.) and i t i s at th i s s i ze that 

a f i s h is caught in 4 and 4.5 inch g i l l nets. Tilapia zilli and Tilapia 

variabilis spawn on harder bottomed exposed beaches (Fryer 1961 and 

Welcomme 1964). The r a i n f a l l of 1961 and 1962 did not s i g n i f i c a n t l y 

a f f ec t the catches of Tilapia zilli and Tilapia variabilis (see Table 

9 and Figure 4). 
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600 

I960 1961 1962 1963 1964 1965 

YEAR 
Figure 4 - Changes in mean catch per net (expressed as number of f i s h 

per 25 yd. set) of (A) Tilapia esculenta, (B) Tilapia variabilis 
and (C) Tilapia zilli fo r sampled f i s h landings in Tanzania 
and Uganda. (D) i s Lake water leve l in meters at J i n j a . 
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Information on other var iables a f fect ing catches i s furnished 

by F.A.O. exploratory bottom trawl ing in Lake V i c t o r i a . These variables 

include depth of bottom, time of day of f i sh ing and mesh s i ze of codend. 

For some f i s h species, e.g., Tilapia esculenta and other Tilapia species, 

the catches decl ine with increasing depth of the lake. But catches of 

Haplochromis increase with increasing depth and the maximum catch occurs 

at about 44.5 metres. Beyond a depth of 44.5 metres, the catches dec l ine . 

One of the important cat - f i shes {Bagrus docmac) gives low catches at 

a mean depth of 6.5 metres. The catches increase with depth to about 

24.5 metres beyond which the catches de l ine. A comparison of the e f fec t 

of depth on catches of some f i s h species i s given in Table 10 and Figure 

5. 

TABLE 10 - Mean catches in Kilograms of f i s h caught per hour 
at various depths during exploratory bottom trawl ing 
in Lake V i c t o r i a . 

MEAN DEPTH IN METERS 
6.5 14.5 24.5 34.5 44.5 54.5 64.5 74.5 
Kg. Kg. Kg. Kg. Kg. Kg. Kg. Kg. 

Haplochromis 320.4 524.8 462.8 524.0 465.9 496.7 185.2 28.8 

Tilapia 
esculenta 52.6 31.7 3.5 0.3 0.1 0.0 0.0 0.0 

Other Tilapia 15.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 

Bagrus 
docmac 24.6 42.3 45.1 35.5 31.3 38.6 21.9 0.3 
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The time of day when f i sh ing i s conducted i s another var iab le 

inf luencing catches. Regier (1970) assumes that the d i e l v e r t i c a l move­

ment of some f i s h species affects trawl catches fo l lowing a sine curve 

with nodes at dawn 07:00 hours and at dusk 19:00 hours. The nodes are 

the periods of minimum catches and the antinodes are periods of maximum 

catches. The antinodes occur at 13:00 hours and at 01:00 hours. There 

is therefore a period of 12 hours between nodes as shown in Figure 6. 

The catch i s expressed as a function of time of day of f i s h i ng as 

y = b 3 s in n (T - 7.00) 
12 

(7.1) 

where T i s the time of day of f i sh ing and ranges from 1 to 24 hours, 

b^ i s the amplitude of the sine wave and y = bg at the antinodes. 

A ser ies of prel iminary analyses support the assumption of catches 

fol lowing a sine curve. The mult ip le regression analyses were done 

using the sine curve in the form of (7.1). However through personal 

interviews with loca l fishermen in the northern end of Lake V i c t o r i a , 

I learnt that a number of fishermen u t i l i z e the 01:00 hour antinode. 

Most fishermen set the i r g i l l n e t s between 17:00 and 19:00 hours and 

pick up the i r g i l l nets between 02:00 and 05:00 hours. This implies 

that some fishermen are aware that a f te r 02:00 hours, the catch declines. 

Local fishermen in Lake V i c t o r i a do not conduct day time f i sh ing and 

information on the catches at 13:00 hour antinode i s from trawl catches, 

Since there are two antinodes (one at 01:00 hour and another at 13:00 

hours i t might be des irable to take the absolute values of (7.1) 

y = b^ s in n (T - 7.00) 
12 
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MEAN DEPTH IN METRES 

Figure 5 - Mean catch per hour ( in kilograms) at various depths of bottom 
trawl ing in Lake V i c t o r i a , East A f r i c a . A, Haplochromis, 
B, Tilapia esoulenta, Cj Tilapia (other species) and D1 Bagrus 
doemao. 
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Figure 6 - A hypothetical curve of catches against time of day with 
nodes at 7 and 19 hours, b~ i s the amplitude of the sine 
wave (see equation 7.1). 
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I t i s necessary to estimate the e f fect of a number of var iables 

on the catch of d i f f e ren t species. Regier (1970) suggested a step-wise 

mult ip le regression analys is on the catches from bottom t rawl ing. 

This analys is gives useful information on the d i s t r i b u t i on and standing 

crop of cer ta in f i s h species. An out l ine of a step-wise mul t ip le r e ­

gression analys is i s given below. 

The re la t ionsh ip between y i e l d and variables l i k e depth of a 

lake and mesh s ize of codend of a trawl may not be simply l i nea r . 

Therefore a simple l i nea r re la t ionsh ip i s commonly modified by use of a 

polynomial regress ion, v i z . 

y = b Q + b 1 X + b 2 X 2 + . . . . + b n X n (7.2) 

The e f fec t of type of bottom, time of f i s h i n g , depth of lake 

and mesh s i z e , on y i e l d i s investigated for the genus Haplochromis and 

for Tilapia esoulenta and Tilapia nilotioa. The area studied i s that 

between Bugoma-Salisbury channel and Rosebery channel fo r depth less 

than 50 metres. 

Below i s a symbolic notation of the independent var iab les . 

= type of bottom 

h = so f t mud bottom 

= mud bottom 

*h = hard bottom 

h = depth of bottom 

h = time of day of f i sh ing 

h = mesh s i ze of codend 
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The re la t ionsh ip between the y i e l d y and the independent v a r i ­

ables i s given by a mul t ip le regression model below. 

y = B 0 + B 1 X 1 + B 2 X 2 + B 3 X3 + p 4 X 4 + U (7.3) 

The parameters PQ, B 1 , B^, P3 and B^ are unknown population 

c o e f f i c i e n t s . U i s an unknown random var iable measuring the departure 

of observed y from the predicted y. The above parameters are estimated 

from samples taken from a population: 

y = b Q + b 1 X 1 + b 2 X 2 + b 3 X 3 + b 4 X 4 + e (7.4) 

where e is a random error term and the coe f f i c i en t s b^, b 2 , b 3 and b 4 

are coe f f i c i en t s giving the slope of y on the variables X-j, X 2 , X 3 and 

X 4 respect ive ly . 

Because the regression of y i e l d on each of the var iab les , except 

X 3 , i s of a polynomial form, the catches have been subjected to a logarithmic 

transformation. This transformation helps to reduce the polynomial terms, 

s t a b i l i z e s the variance of the mean and make the regression model more 

e f f i c i e n t . 

I f we wr i te a function for each of the independent var iab les , 

the model (7.4) becomes: 

y = log (Z) = U + f ^ X , ) + f 2 ( X 2 ) + f 3 ( X 3 ) + f 4 ( X 4 ) (7.5) 

where Z i s a discr iminant function and a l i nea r function of the independent 

var iab les . Each of the independent var iables contributes an e f fec t 

independent of the other var iables to the logarithm of the catch. 

In the case of a mul t ip le regression where a dependent var iab le 

(e.g. catch) i s af fected by several var iab les , i t i s necessary to d iscr iminate 
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among the independent var iab les , and leave only those variables which c o n t r i ­

bute to the regression sum of squares. In an exploratory manner various 

combinations of the var iables , X 2 > X^ and X^ are chosen in such a way 

as to minimize the unexplained res idual va r i a t i on . Any var iab le which 

does not s i g n i f i c a n t l y contr ibute to the regression sum of squares i s 

dropped. We use the co r re la t i on coe f f i c i en t s between y i e l d and the 

other var iables as a c r i t e r i o n for entering variables in equation (7.4). 

Correlat ion coe f f i c i en t s for the genus Haplochromis and for 

Tilapia esoulenta and Tilapia nilotica are given in Table 11. 
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TABLE 11 - Corre lat ion coe f f i c i en t s between catches and 
var iables a f fec t ing catches in Bugoma-Salisbury 
Channel to Rosebery Channel in Lake V i c to r i a 
Uganda . 

FISH SPECIES 
Independent 
Variables 

Haplochromis 
log y 

Tilapia esoulenta 
log y 

Tilapia nilotica 
log y 

X s 0.0160 - 0.1179 - 0.1247 

Xm 0.1796 - 0.5325 - 0.0760 

X h - 0.1866 0.5784 0.1279 

x 2 0.4424 - 0.7505 - 0.3413 

X 3 0.4634 - 0.3136 - 0.2184 

X4 - 0.7371 0.2196 0.1243 

X 2 

*2 0.4459 - 0.6581 - 0.2867 

X 2 - 0.0200 0.0833 0.1231 

X 2 - 0.7852 0.2057 0.1351 

X 3 0.4369 - 0.5606 - 0.2358 

X 3 

3 
0.3913 - 0.2546 - 0.1990 

X 3 

*4 - 0.8169 0.1886 0.1367 

= so f t mud bottom 

= mud bottom 

= hard bottom 

= depth of bottom 

= time of day 

= mesh s i ze of codend 
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Mu l t ip le Regression Equations 

By using the simple cor re la t ion coef f i c ient s in Table 11 as a 

c r i t e r i o n for entering variables in a mul t ip le regression model, the 

equations below were establ i shed. Because the regression model i s of a 

polynomial form, the mul t ip le regression equation contain some variables 

raised to cer ta in powers. 

The equation to describe catches for Haplochromis species i s 

log y = 1.9869 - 0.104 X 3 + 0.0608 X 2 + 0.2267 X 3 + 

0.0003 x\ (7.6) 

Equation (6.7) shows that the catch of Haplochromis depends on mesh s i z e , 

time of day of f i sh ing and bottom depth. I t i s also evident that the 

smaller the mesh s i ze X^, the bigger the catch. The time of day of 

f i s h i n g X^ w i l l contr ibute to the catches depending on the time function 

(7.1). From above i t i s evident that high catches of Haplochromis w i l l 

occur at a greater depth X 2 -

For Tilapia esculenta, the mul t ip le regression equation i s : 

log y = 2.0407 - 0.0996 X 2 + 0.00118 X 2 + 0.2936 X ] (7.7) 

Equation (7.7) shows that catches for Tilapia esculenta are more influenced 

by depth and type of lake bottom than any of the other var iab les . Also 

note that the co r re la t i on c o e f f i c i e n t between log y and depth is - 0.7505 

meaning that catches decl ine with depth. From the cor re la t ion coe f f i c i en t s 
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in Table 11, i t appears high catches of Tilapia esculenta occur in hard 

bottom l o c a l i t i e s . 

The equation for Tilapia nilotica i s 

log y = 0.3213 - 0.02 X £ + 0.00028 X2, (7.8) 

Equation (7.8) shows that the catch of Tilapia nilotica i s very much 

influenced by the depth of lake. 

I f a l l the important parameters are included, the mult ip le 

regression equations and the cor re la t ion coe f f i c i en t s provide a short ­

cut method of assessing the state of explo ited f i s h stocks. Under steady 

state condit ions, the catches of each year should be close to what i s 

predicted. I f there i s overf i sh ing and the stocks are dec l in ing , the 

catches w i l l be less than what the mult ip le regression equations p red ic t . 

Analyses of catch data of two or more periods w i l l give r e l i a b l e 

ind icat ions of the r e l a t i v e degree of exp lo i t a t i on . The mul t ip le re ­

gression equations could also be used in improving f i sh ing success, 

since they provide information on the d i s t r i bu t i on of f i s h , mesh s i ze of 

codend of trawl and time of day of f i s h i n g , l i k e l y to give high catch. 



YIELD EQUATIONS 

Beverton and Holt Y i e l d Model 

In explo ited f i s h populations, f i s h are recru i ted to the f i shery 

at age t (the age of recruitment), but are not caught un t i l the age of 

f i r s t capture ( t c ) . The only exception to th i s i s the case of knife 

edge recruitment where t = t r > The change in numbers with time in 

exploited f i s h populations i s given by 

dN t = - (F + M) N t (8.1) 

d t ~ 

Integrating the above der ivat ive with the lower l i m i t of the integra l 

equal to t and the upper l i m i t t x , the "age of e x i t " from a f i she ry , 

gives 

N = R e " Z ( t " V (8.2) 

where R i s the number of rec ru i t s at the age t and Z i s the to ta l mor ta l i t y . 

Equation (8.2) describes change in number of recru i t s with age, in a 

f i shery with knife edge recruitment. 

Normally between age t and age t ,natural morta l i ty reduces 

the rec ru i t s R. Therefore the recru i t s reaching age t are 

R' = R e ' M ( t c "V (8.3) 
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The number of f i s h at each age for the exploited age groups i s given by 

N t = R' e " Z ( t ' V (8.4) 

Fishing morta l i ty i s responsible for a proportion of the numbers 

dying and the catch C i s given by the integral 
tx 

C = j F R' e " Z ( t " V . dt 

which leads to an equation descr ibing catch 

C = R' F . (1 - e " Z ( t A " lch (8.5) 

For f i s h species with a large t x , the expression in brackets approaches 

one and the catch i s approximated by 

C = FR' (8.6) 
Z 

In terms of weight, the y i e l d at any time i s given by 

f t = F N t W t 
dt 

The to ta l y i e l d in weight from a year class i s given by the integra l 

tx 

Y = \ F N t Wt . dt (8.7) 
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A major problem facing f i shery b io log i s t s i s one of f ind ing an unbiased 

expression for weight in equation (8.7). The von Berta lanf fy growth 

equation for length i s 

l t = L - (1 - e " K ( t " V) 

Beverton and Holt (1957) assumed isometric growth and expressed weight 

in terms of a cubic expression of length 

W t = • W- (1 - e " K ( t " V)3 

Replacing weight i n (8.7) by a cubic expression is a convenient method 

for evaluating the integra l in (8.7). Though i t i s well accepted now 

that growth of many f i s h species i s not i sometr ic, the eas iest approach 

to evaluating the y i e l d integra l (8.7) i s the assumption of isometric 

growth. However, numerical evaluation of (8.7) for f i s h with a l lometr i c 

growth can be done using an incomplete Beta funct ion. The above cubic 

equation when expanded and rearranged can be wr i t ten as a summation. 

3 

W. = Y U e - n K ^ ~ t o ) (8.8) 
* j p r o n 

where U =1.0, - 3.0, 3.0, - 1.0, for n = 0, 1, 2, 3 respect ive ly . 

I f we replace in (8.7) by the expression in (8.8) and replace 

N t by the expression for R' in (8.3), the integral (8.7) leads to the 

Beverton and Holt y i e l d equation. 

Y = FW~ e-M<*c " V^T U n e - ^ c " V . (1 - e ^ Z + "M* " V) (8. 

0 F + M + nK 
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where Y i s the y i e l d per r e c r u i t . For f i s h species with large tx , the 

l a s t expression in brackets i n (8.9) could be eliminated without a f fec t ing 

s i g n i f i c a n t l y the value of y i e l d . But most t rop ica l f i s h species have 

a short l i f e span and therefore a small t x . Without the expression 

with in the brackets, equation (8.9) would give biased estimates of y i e l d 

for f i s h species in the t rop i c s . 

Using equation (8.9) y i e ld s have been calculated and y i e l d 

isopleths constructed for Tilapia esculenta in Lake V i c t o r i a and Tilapia 

nilotica in Lake Albert Uganda. 

The ages for Tilapia nilotica have been estimated from length 

by the equation 

t = 1 (- l n (1 - l t / L - ) ) + t Q 

expressed in the same conventional form of the von Berta lanffy equation: 

l t = f ( t ) = L- (1 - e " K ( t " V) 

where fo r Tilapia nilotica L°° = 49.0 cm., K = 0.5 and t = 0. 

Tilapia esculenta i n Lake V i c t o r i a l i ve s for 12 " r i n g " years, 

equivalent to s i x calendar years (Garrod 1963). Tilapia esculenta i n 

the J i n j a region of Lake V i c t o r i a have the fol lowing population para­

meters: L«> = 33.8 cm., K = 0.32, t = - 0.8. The natural morta l i ty 

estimated by Garrod (1963) i s 0.17 which is close to the natural morta l i ty 

rate of 0.16 estimated on the assumption that the mean natural morta l i ty 

i s a rec iprocal of l i f e span. With th i s natural mor ta l i t y , there i s 

a p robab i l i t y of 0.07 that a f i s h w i l l reach a maximum age of 6 years. 



74 

In the ca l cu la t i on of y i e l d , W°° was taken as 730 gm. It i s poss ible 

that Tilapia esoulenta now being caught in bottom trawling may exceed 

that weight. Whether the actual maximum weight i s less or greater than 730 

gm., does not a f fec t the shape of the y i e l d i sop leths. The age of r e c r u i t ­

ment t i s taken as zero but th i s does not mean that the young and adult 

Tilapia esoulenta l i v e in the same habitat. Actua l l y , Tilapia esoulenta 

i s recru i ted at a length of about 20 cm. corresponding to about 2 years 

of age. Sett ing t as zero in model (8.9) i s a matter of computational 

convenience. But th i s i s based on p r io r information that t does not 
r 

inf luence the shape of y i e l d isopleths but only reduces the value of 

y i e l d . 

Observations on y ie ld s of Tilapia esoulenta as revealed by the 

y i e l d isopleths in Figure 7, are given below. 

The greatest y i e l d can be obtained by catching Tilapia esoulenta 

at a s i ze of 28 cm. but th i s would require a f i sh ing morta l i ty of 2.55. 

The r e l a t i v e y i e l d obtained under such conditions i s 186.66 gm. per 

r e c r u i t . I f we catch Tilapia esoulenta at the same s i ze 28 cm. but with 

a f i s h i ng morta l i t y of 0.9, the y i e l d i s - 182.51 gm/recruit. This means 

that i f we increase the f i s h i ng morta l i ty by 183 per cent, the y i e l d 

increases only by 2.1 percent. I f these f i s h are caught at 26 cm., 

a f i s h i n g morta l i ty of 0.5 would be necessary to obtain maximum y i e l d . 

From the to ta l morta l i ty estimates of Garrod (1963) for the years 1958 

to 1960, the mean to ta l morta l i ty for that period was 0.3. Since natural 

mor ta l i t y fo r Tilapia esoulenta i s about 0.17, the f i sh ing morta l i ty for 

that period was about 0.13. Doubling or t reb l i ng the f i sh ing morta l i ty 
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would have no adverse ef fects on the f i shery i f the length of capture 

of 26 cm. and mesh s i ze 4.5 inches were maintained and provided there 

was no f i s h i n g in the inshore waters where the f i s h spawn. Catching 

Tilapia esculenta at any length less than 17 cm. would mean catching 

a l o t of immature f i s h , and th i s w i l l have adverse ef fects on spawning 

and recruitment. 

Tilapia nilotica in Lake Albert forms two subpopulations, 

a stunted population in the Buhuku lagoon and a normal population in 

the open lake. The normal population has the fo l lowing estimated para­

meters: L» =49 cm., K = 0.50, length of maturity Lm = 36 cm. and natural 

morta l i ty M = 0.30. The p robab i l i t y density function for the negative 

exponential i s 

P ( t ) = M e " M ( t " V 

Tilapia nilotica could l i v e up to 8 years and with a natural morta l i ty 

of 0.3 about 3 f i s h out of 100 would a t ta i n an age of eight i f there 

was no f i s h i n g . 

The maximum weight W« for the normal Tilapia nilotica in Lake 

A lbert i s unknown. For the purpose of ca l cu la t i ng r e l a t i v e y ie ld s and 

constructing y i e l d i sop leths , W» i s taken as 1000 gm. It i s accepted 

that absolute y i e l d values are not of primary importance to f i she r ie s 

management. But what i s of prime importance i s y i e l d response to f i sh ing 

i n tens i t y and mesh s i ze . At a low f i s h i ng in tens i ty F = 0.1 the best 

s i ze to catch Tilapia nilotica i s 24 cm. However at 24 cm., the f i s h 

i s s t i l l immature and the r e l a t i v e y i e l d i s small (76.37 gm/recruit). 

I f the s i ze of capture i s increased to 34 cm., the f i sh ing morta l i ty 



77 

required to give a maximum y i e l d would be 0.4 (see eumetric f i sh ing 

curve in Figure 8). With a f i sh ing morta l i ty of 0.4 and length 

of capture of 34 cm. the r e l a t i v e y i e l d would be 159.12 gm/recruit. 

I f we ra i se the length of capture to 36 cm., the f i s h i ng morta l i ty required 

for maximum y i e l d is 0.7. The highest y i e l d for Tilapia nilotica i s 

obtained at 39 cm., but th i s length of capture requires a f i sh ing morta l i ty 

rate exceeding 2.1. Note that i f we catch these f i s h at 39 cm. and with 

a f i sh ing morta l i ty rate of 0.5, we obtain y i e l d of 159.2 gm/recruit. 

Increasing the f i s h i ng morta l i t y four times increases y i e l d by a factor 

of only 1.2. I t i s possible to obtain sustained y i e l d s , i f Tilapia 

nilotica i s caught at 35 cm. and above with a f i sh ing morta l i ty of 0.5 

to 0.6. I t i s a lso of in teres t to note that the highest y i e l d i s obtained 

a f te r the length of maturity 36 cm(see Figure 8) . 

l i e s (MS.) reports a natural mor ta l i t y rate of 3.37 for the 

stunted population of Tilapia nilotica. But th i s population has a high 

growth rate (K = 2.77) and maximum length i s 17 cm. The l i f e span i s 

for about one year and sexual maturity i s attained at 10 - 12 cm. corres­

ponding to an age of 4 months. 

With a natural mor ta l i t y rate as high as 3.37 about one f i s h 

out of a hundred would survive to an age of one year. Is i t poss ible 

to manage r a t i o n a l l y a f i shery of th i s nature? Because of a high natural 

mor ta l i t y , the maximum biomass occurs at a length before sexual maturity. 

The highest y i e l d would be obtained by catching the f i s h at 

9 cm. but a high f i s h i ng morta l i ty exceeding 1.8 would be needed (see 

Figure 9). I f we fo l low the eumetric f i s h i ng curve we should catch the 

stunted Tilapia nilotica at 8 cm. at about 2.5 months of age. But catching 
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these f i s h at 8 cm. would require a f i sh ing morta l i ty of 1.9 so as to 

obtain maximum y i e l d . The to ta l morta l i ty (F + M) in such circumstances 

would be 5.27. With a to ta l morta l i ty of th i s magnitude, one f i s h out of 

1000 reaching the age of 2.5 months, would survive to the age of maturity 

of 4 months. This deduction i s made from the p robab i l i t y density function 

P(t) = Z e ' Z ( t " V 

where t = 4 months, t^ = 2.5 months and Z = 5.27. 

In these circumstances, i t might be better to allow f i s h to 

a t t a i n maturity at 10 - 12 cm. and have at least one spawning. Then a 

high f i sh ing morta l i t y rate can be applied to the f i s h of a s i ze greater 

than 12 cm. For f i s he r i e s of th i s nature, the eumetric f i s h i ng curve 

i s not he l p f u l . Populations such as the stunted Tilapia nilotioa, have 

l i t t l e commercial value. 

Other Y ie ld Models 

Because age of t r op i ca l f i s h species cannot eas i l y be determined, 

there i s a need for use of y i e l d models that are based on the length of 

a f i s h . The y i e l d model presented by Thompson and Be l l (1934) uses 

age as well as length. Thompson and Be l l assume that weight increase 

by some constant percentage in each year of l i f e . Ricker (1944) expresses 

growth as a simple exponential funct ion. Under the assumption of exponen­

t i a l growth and i f we suppose l i f e span to be of i n f i n i t e durat ion, 

y i e l d i s given by 

Y = F W (8.10) 
F + M - g 
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where Y is the y i e l d , F the f i sh ing mor ta l i t y , M the natural morta l i ty 

and g the instantaneous rate of growth and W i s the to ta l weight of each 

year ' s brood of r e c r u i t s . I f natural morta l i ty M i s greater than the 

growth rate g, then fo r a l l values of F, there i s a pos i t i ve y i e l d which 

approaches an asymptotic value as F approaches i n f i n i t y . When M = g, the 

y i e l d is simply the i n i t i a l weight of a l l the r ec ru i t s . F i n a l l y , when 

M < g, the y i e l d i s i n f i n i t e l y large when F <. (g - M). 

A number of f i s h species show a l lometr ic growth and the y i e l d 

for these f i s h species can be determined by means of an incomplete Beta 

funct ion. Jones (1957) and Paul ik and Gales (1964) discuss the usefulness 

of the incomplete Beta function in determining y i e l d s . The function 

denoted by B (p, q) i s defined by the integra l 

B x (p , q) = j XP" 1 (1 - X ) * " 1 dx (8.11) 

where p > 0 and q > 0. 

In the above i n t e g r a l , the parameters X, P and Q are defined as: 

Y _ -K(t - t ) x = e c o 

P = Z/K 

Q = 1 + b 

where b i s the weight length exponent. 

It i s obvious from the parameters above that y i e ld s can be 

determined with j u s t a few parameters. The integral above leads to the 

equation given by Wilimovsky and Wicklund (1963). 

Y = F W~ e " Z ( t c " V ^ B (X, P, Q) - B ( X r P , Q)| (8.12) 
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where X ] = e " K ^ t x " V 

and tx i s the age of e x i t from a f i shery . The y i e l d per gram r e c r u i t 

i s then given by 

Y = F e Z ( t c " V l p (X, P, Q) - p (X,, P, Q) } (8.13) 

The point of i n f l e x i on on the growth curve, i s the point of maximum 

biomass. For many f i s h species the greatest y i e l d i s obtained by catching 

them at an age or s i ze corresponding to the point of i n f l e x i o n . At the 

point of i n f l e x i on the re lat ionsh ips below hold. 

b 

Therefore by knowing the weight length exponent b, the growth rate K 

and to ta l mor ta l i t y Z, one can predict the maximum y i e l d expected for 

various f i s h i ng morta l i ty rates. The y i e l d when t i s the age of a f i s h 

at the i n f l e x i on point i s 

Y = F e Z ( t c " V { B ( 1 , P , Q ) - p (X,, P, Q) } (8.14) 
R W~ K I ' v b 1 J 

For f i s h species with a large age of e x i t from a f i shery , t x , equation 

(8.14) reduces to 

Z ( t , " 0 { P ( £ . P > Q ) j ( 8 J 5 ) 
= F e v c o 

R W°° K 

I f we replace age in (8.13) by a length expression an incomplete 

Beta function that can be used for t r op i ca l f i s h species i s obtained. 
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From equation (5.3) the age of capture t i s 
0 

t = - In 1 - 1 1 + t 
1 0 

where 1 i s length of capture corresponding to age t and L°° = maximum C c 

length. 

Let X 1 = - In 1 - l c 

Therefore t = X, 1 + t 
C 1 T7 o 

S im i l a r l y tx =- In 

K 

/ 
1 - l x 1 + t 

" U K 0 

tx = xx . l + t 
K 0 

where l x i s the length of e x i t from a f i shery corresponding to the age 

tx and where 

XX = - In (1 - 1X/L») 

Then the parameters for the incomplete Beta function (B) are X, P, Q 
and X^. Note that 

1 xi = V " *n 
K 1 c 0 

and 1 Xx = tx - t 
K 0 

Therefore X = e 1 

P = Z/K 
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Q = 1 + b 

If we use length, the y i e l d per gram r ec ru i t i s given by 

Y = F e ( Z / K ) X l /B (X, P, Q) - B (X. , P, Q) \ (8.16) 
R W» K t / 

Tables of the incomplete Beta function for ca lcu la t ion of f i s h 

population y i e ld s are given by Wilimovsky and Wicklund (1963). According 

to equation (8.16), one can determine y ie ld s and construct y i e l d curves 

with 4 parameters namely (1) maximum length (Loo), (2) the growth rate 

(K), (3) the weight length exponent (b) and (4) the to ta l morta l i ty (Z). 

The incomplete Beta function gives unbiased y i e l d estimates for f i s h 

with a l lometr i c growth. 

TABLE 12 - Comparison of y i e ld s estimated with equations 
(8.13) and (8.16) and which are based on age and 
length respect ive ly . Both equations use the 
incomplete Beta funct ion. The parameters used 
are K = 0.5, F = 0.2, M = 0.3, Z/K = 1, b = 3, 
tx = 6.39 years, L°° = 49 cm., and l x = 47 cm. 

L o m cm. 
Age 
Yrs. 

Equation(8.13) Equation (8.16) 
L o m cm. 

Age 
Yrs. Y ie ld in gn/recruit Y ie ld in gm/recruit 

28 1.69 0.171 0.172 

32 2.11 0.189 0.191 

36 2.65 0.207 0.210 

40 3.38 0.214 0.220 

44 4.56 0.187 0.203 

46 5.58 0.104 0.142 
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There i s l i t t l e d i f ference between y ie ld s estimated with equations (8.13) 

and (8.16). Table 12 shows y ie ld s ca lculated with both equations. 

I f f i s h are caught at a length close to the maximum length (L°°), the 

y ie ld s estimated with (8.16) d i f f e r s i g n i f i c a n t l y from y ie ld s estimated 

with equation (8.13). This i s caused by logarithmic transformations 

made when replacing age by length in equation (8.13). 

Note that in equation (8.16) is given by 

X ] = - In (1 - 1 C / H 

As 1 approaches L«>, the expression (1 - 1 /L<=°) approaches zero and 

therefore X̂  tends to i n f i n i t y . 

In pract ice very few f i s h are caught at a length close to the 

maximum length (L«) and therefore the above observation does not a f fec t 

y i e l d predict ions made from normally exploited length groups. I f one 

plotted y i e l d against length of capture, the extreme lengths would r e ­

present the descending limb of the y i e l d curve as shown in Figure 11. 

Equation (8.16) requires very few parameters and provides a 

quick way of determining y ie ld s for those f i s h which are d i f f i c u l t to age. 

Another y i e l d model based on length i s given by Beverton and 

Holt (1964). The model was derived from the von Berta lanffy growth 

equation and has the inherent assumption of isometric growth. The para­

meters required are M, K, the r a t i o L /L°° and the f i sh ing morta l i ty (F). 

With these parameters, the y i e l d and the eumetric f i sh ing curve can 

be d i r e c t l y read from the tables of y i e l d functions given by Beverton 

and Holt (1964, 1966). 
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From the von Berta lanffy growth equation we obtain the r a t i o c 

c -c 

The r a t i o c represents the to ta l growth in length which is made up before 

f i s h enter the exploited phase. 

n „ _ a-K(t - t ) I - c = e o 

The exponential term within the summation in equation (8.9) can be wr i t ten 

as n 

(1 - c ) n 

where the above expression s a t i s f i e s the equal i ty 

(1 - C ) n = e " n l < ( t ' V (8.17) 

The rate of exp lo i ta t ion E i s given by 

E = F = F 
F + M Z 

The f i s h i ng morta l i t y F i s expressed a l gebra i ca l l y in terms of E and M 

F = M__E (8.18) 
1 - E 

and the rec iprocal of f i sh ing morta l i ty i s 

1 = 1 - E (8.19) 
F M E 

Af ter transforming the age variables to the length expressions and i f we 

replace F and 1/F by the appropriate expressions, the y i e l d model (8.9) 
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becomes 

iM/K 

M 

= E (1 - c ) M / K V~Un (1 - c ) n (8.20) 
R M " / 1 + nK (1 - E) 

r\=o 

Using equation (8.20), y i e ld s have been calculated for the 

normal and stunted population of Tilapia nilotica in Lake A lbert Uganda. 

For the normal Tilapia nilotica the highest y i e l d i s obtained by catching 

the f i s h at a length of 36 cm. (see Figure 10). I f we catch a f i s h at 

a small s i z e , we require a low f i sh ing morta l i ty rate to obtain maximum 

y i e l d (see Figure 11). For the stunted Tilapia nilotica with a natural 

mor ta l i t y of 3.37, y i e l d increases at a l l rates of f i s h i ng morta l i ty 

up to 1.05 (see Figure 12). The stunted Tilapia nilotica mature at 10 

to 12 cm. but maximum y i e l d i s obtained between 7 cm. and 10 cm. (see 

Figure 13). 

For t rop i ca l f i s h species whose age can be d i r e c t l y or i n ­

d i r e c t l y determined the y i e l d can be estimated with equation (8.9). 

But th i s y i e l d model assumes isometric growth which i s not true for a l l 

f i s h species. Ricker (1958) gives a y i e l d model which does not require 

age and th i s could be used in the tropics to make y i e l d predict ions. 

The incomplete Beta function (8.13) and (8.16) are unbiased estimators 

of y i e l d for f i s h species with a l lometr ic growth. Equation (8.16) requires 

four parameters namely L°°, K, Z and the weight length exponent b. 

Though equation (8.20) has the assumption of isometric growth, i t i s 

s t i l l very valuable in estimating y i e l d for f i s h that are d i f f i c u l t to 

age. I f the parameters L°°, K, M and F are known, the y i e l d for the r a t i o 

Lc/L°° i s read from the tables of y i e l d functions given by Beverton and 

Holt (1964, 1966). 
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Figure TO - Y ie ld per 100 gm. r e c r u i t plotted against f i sh ing morta l i ty 
rate ( for Tilapia nilotica in Lake A lbert , Uganda). L i s 
length of capture in cm., M = 0.3, K = 0.5, and L°° = 4§.0 cm. 
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Figure H - Y ie ld per 100 gm. r e c r u i t p lotted against length of capture 
at d i f f e ren t f i s h i ng rates (F) ( for Tilapia nilotica in Lake 
A lber t , Uganda). M = 0.3, K = 0.5 and L~ = 49.0 cm. 
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GENERAL DISCUSSION 

The alegebraic re la t ionsh ip s , ana l y t i ca l methods and the models 

here developed should provide short-cut methods that require a minimum 

of factual data to manage a f i shery . 

Some general izat ions can be made about the growth processes. 

The growth rate K and the weight length exponent b determine the age 

and s i ze of a f i s h at the i n f l ex i on point on the growth curve. The age 

of a f i s h at i n f l ex i on i s inversely re lated to K and d i r e c t l y re lated 

to the natural logarithm of b. The s i gn i f i cance of th i s to f i s he r i e s 

management i s evident when sett ing the mesh s i ze of g i l l n e t s and codend 

of t raw l . Since maximum biomass occurs at the i n f l ex i on point, the mesh 

s i ze should be chosen so as to catch f i s h at the i n f l e x i on . 

For Tilapia species, i t i s shown that the age and s i ze at the 

i n f l ex i on correspond to the age and s i ze of maturity. Since i t i s always 

easier to determine the s i ze at matur ity, th i s could serve as a measure 

of the s i ze of maximum biomass. The rat io s lm/L°= and Wm/W°° are useful 

constraints in safeguarding against exp lo i ta t ion of immature f i s h . 

With the parameters K and b and the ra t io s lm/L°° and Wm/W°° one w i l l 

have some rough appreciation of r e l a t i v e rate of exp lo i t a t i on ,o f a f i s h 

population. 

A f i s h species inhabit ing d i f f e ren t l o c a l i t i e s may have d i f f e ren t 

weight length exponents as exemplified by Tilapia nilotica in East A f r i c a . 
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The di f ferences in b for a f i s h species are due to the differences in 

metabolic processes of the f i s h in the various l o c a l i t i e s . Assuming 

the exponent of catabolism i s unity as proposed by von Berta lanffy (1957), 

f i s h with b = 3.0 have m = 0.67. Fish with b > 3.0, have m > 0.67 while 

f i s h species with b < 3.0, have m < 0.67. These re lat ionsh ips may par t l y 

explain why some f i s h species may not obey the von Berta lanffy growth 

equation. 

In order to appreciate some of the causes of population f l u c ­

tuations and the decl ine of catches and catch per e f f o r t , one should 

make estimates of natural and to ta l morta l i ty rates. The quickest and 

eas iest way of descr ibing morta l i ty rates i s with a negative exponential. 

One should determine the mean age or mean length in the exploited popu­

l a t i on by analysing catch samples. I f the age or length of f i r s t capture 

i s known, to ta l morta l i ty rates can be estimated with the equations 

given. These estimators are based on the assumption that the age d i s t r i ­

bution of explo ited populations conforms to the expectations of the 

p robab i l i t y density function or the d i screte p robab i l i t y function of the 

negative exponential. It i s also possible to use the extreme age or 

length to estimate to ta l morta l i ty and th i s has previously been suggested 

by Holt (1965). But i t has been noted that the extreme value estimator 

i s less r e l i a b l e than the negative exponential estimator. The to ta l morta l i ty 

rate estimated with the extreme value has a larger variance. Therefore 

extensive sampling is required to show that the extreme age and length 

in a population have the properties of the extreme value funct ion. 

Some of the d i f f i c u l t i e s met in estimating growth and morta l i ty 

rates are due to population f luctuat ions and seasonal changes in d i s t r i bu t i on 
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of f i s h species. Analyses of catch s t a t i s t i c s by mult ip le regression 

methods provide useful information on abundance and d i s t r i bu t i on of 

f i s h . A number of var iables a f f ec t catches and one should know which 

var iables are of greatest importance. Such information may be given by 

the step-wise mul t ip le regression analysis of trawl catches. Some of th i s 

information i s useful in advis ing fishermen where and when to f i s h . 

I f th i s analys is i s car r ied out at spaced periods, one can eas i l y assess 

the r e l a t i v e degree of exp lo i t a t i on . For example, the analys is of recent 

catches of Tilapia in Lake V i c t o r i a shows that depth of the bottom, 

mesh s i ze of codend and time of day of f i sh ing are the most important 

var iables determining catches. 

Assessing the state of the f i s h stocks poses special complexit ies. 

I t i s very un l i ke l y that i t w i l l be possible i n pract ice to qu ick ly solve 

the problems of taxonomy and to c o l l e c t , a l l the l imno log i ca l , b i o l og i ca l 

and s t a t i s t i c a l data i dea l l y des i rable for a deta i led evaluation of 

t r op i ca l f i s h stocks and y i e l d s . Instead we must use simple mathematical 

models that require a minimum of parameters for making predict ions. 

The parameters that are v i t a l to y i e l d predict ion are: K, b, L<=°, M and 

Z. These parameters can be used to determine y i e l d and construct y i e l d 

curves as has been shown for Tilapia species. Without age, the same 

parameters can be used to determine y i e ld s for f i sh with a l lometr i c 

growth by means of the incomplete Beta funct ion. For f i s h species with 

enough estimated parameters, the y i e l d model of Beverton and Holt (1957) 

may be used to determine y ie ld s as shown for Tilapia nilotica and Tilapia 

esoulenta. I t i s important to note that a model with a few very relevant 
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parameters, has almost the same pred ict ive power as a model requir ing 

more parameters. 

Rea l iz ing that the resources for sampling and analysis are often 

l i m i t e d , simple y i e l d models should be used to speed up assessment. 



RECOMMENDATIONS FOR FUTURE 

MANAGEMENT 

In order to assess qu ick ly the f i s h stocks in t rop i ca l fresh 

water, research should fo l low the l i nes of attack given below: 

(a) Representative samples should be co l lec ted from the population 

to estimate the weight length exponent b. In large lakes l i k e V i c t o r i a , 

s t r a t i f i e d sampling w i l l give more r e l i a b l e estimates of b than unrestr icted 

random sampling. 

(b) Large random samples should be taken in order to determine 

the largest s i ze to which cer ta in f i s h species grow. The mean maximum 

length in the d i f f e ren t samples could serve as a rough measure of L°°. 

(c) At present the eas iest way of estimating K for t r op i ca l f i s h 

i s to carry out tagging experiments and make Walford graphs. The present 

methods of estimating K needs refinement to avoid the shortcomings i n t r o ­

duced by age. The p o s s i b i l i t y of estimating K by means of maximum l i ke l i hood 

should be invest igated. 

(d) The length of f i r s t capture should be set using information 

on maturity and s i ze of maximum biomass. 

(e) The catch samples at various f i s h landings should be sampled 

to give estimates of mean length in the catch. By means of the equations 

given the r a t i o Z/K and to ta l morta l i ty Z, can eas i l y be estimated. 

( f ) I t i s r ea l i zed that several var iables a f fec t the catch. The 

abundance and d i s t r i b u t i on of f i s h species should be investigated by 
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mult ip le regression methods. I f th i s analys is i s repeated at certa in 

in terva l s one can appreciate the r e l a t i v e degree of exp lo i t a t i on . 

Information on f i s h d i s t r i b u t i on i s necessary for e f f i c i e n t f i s h i n g . 

(g) A f ter determining the parameters K, b, L°°, M and Z some y i e l d 

predict ions should be made and y i e l d curves constructed. No ca lcu lat ions 

are needed where the length y i e l d model of Beverton and Holt i s used. 

The y i e l d values can be read from the tables given by Beverton and Holt 

(1966). 

I f the incomplete Beta function is used very few simple ca l cu ­

la t ions are needed and the y i e l d values can be read from the tables of the 

incomplete Beta function given by Wilimovsky and Wicklund (1963). 
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APPENDIX 1 

DERIVATION OF PROBABILITY DENSITY 

FUNCTION FOR A NEGATIVE EXPONENTIAL 

For an unexploited f i s h population the number of f i s h at age 

t i s given by 

N t = NQ e " M ( t " V (9.1) 

The proportion of number of f i s h at 'age t to the i n i t i a l numbers at age 

N, - e " ^ " V (9.2) 

S i n c e t h e a r e a u n d e r a n e g a t i v e e x p o n e n t i a l c u r v e i s u n i t y , summing up 

t h e p r o p o r t i o n s d e s c r i b e d by e q u a t i o n (9.2) s h o u l d y i e l d 1. 

The p r o b a b i l i t y d e n s i t y f u n c t i o n i s d e f i n e d a s 

F (X = x ) = Jf(x) dx = 1 
CL 

I n t e g r a t i n g t h e r i g h t hand s i d e o f (9.2) b e t w e e n t = o a n d t = <» g i v e s 

oo 

e 4 1** - V d t = 1 (9.3) 
J M o 

The r i gh t hand side of (9.2) i s normalized to a p robab i l i t y density 

function by d iv id ing by i t s i n t e g r a l . 
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Therefore 

e-"'* - V = H e-M<' " V (9.4) 

f e - ^ - V dt 

The p robab i l i t y of age t i s given by 

P(T = t ) = M e " M ( t " t o ) for t > t Q (9.5) 

F ( T ) = ( M e ^ - V 

,«3 

and F (T) = 1 M e " n v u " V dt = 1 

where F(T) i s the integra l of the der i vat i ve below: 

M e 4 1** - V 

For a f i shed population we can think of the proportions of f i s h beyond 

age t as adding to un i ty. The numbers at each age t can be expressed 

as a proportion of the r e c r u i t s , so that 

N t = e " Z ( t " V (9.6) 

The r i g h t hand side of equation (9.6) i s normalized to a p robab i l i t y 

density function by d i v id ing by i t s i n t e g r a l , 

e - ^ - *c> = Z e - « * - * c > (9.7) 

e-Z(t - t c ) dt 

and the p robab i l i t y of obtaining age t in a sample catch i s 

P ( t ) = Z e " Z { t ' t c ) f o r t i *c (9.8) 
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Equation (9.8) integrated gives 1 and hence i t i s a p robab i l i t y density 

funct ion. 

F (T) - I Z e " 2 ^ " t c ) d t = 1 



APPENDIX 2 

DERIVATION OF DISCRETE PROBABILITY FUNCTION 

FOR A NEGATIVE EXPONENTIAL 

In an explo ited f i s h population the number of f i s h at age 

t i s given by 

N t = N o e " Z ( t " ^ ( 1 0 J ) 

and the number of f i s h age t + 1 i s given by 

N t + 1 = NQ e " Z ( t + 1 " t c ) (10.2) 

The proportion of N̂ . + 1 over N̂ . i s 

N t + , = ,-«t • 1 - t c - (t - t £ » ( 1 0 i 3 ) 

N t 

With a d i screte time model with an i n f i n i t e number of time periods, 

the to ta l explo ited population i s given by 

N = N + N r t e " Z + N e " 2 Z + . . . . + N e " 2 " (10.4) o o o o 

where N i s the to ta l number of f i s h from a l l exploited age groups N , 

here refers to the number of f i s h recru i ted at age t . Because the area 
3 c 

under the exponential curve between t and °° i s unity, we can re fer to 

t as zero time. 
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Then N = NQ (1 + e " Z + e " 2 Z + . . . . + e"Z°°) (10.5) 

for ( t = 0, 1, 2, oo) 

Under the assumption of constant recruitment NQ i s taken as 

unity and equation (10.5) reduces to 

N = 1 + e~ Z + e " 2 Z + . . . . + e"Z°° (10.6) 

Note that equation (10.6) i s an i n f i n i t e se r ie s . The sum of th i s ser ies 

i s given by 

N = 1 (1 - e"Z°°) (10.7) 

1 - e " Z 

when t = °° , the numerator of the r i gh t hand expression of (10.7) becomes 

unity. Then N i s estimated by 

N = _ J (10.8) 

1 - e " Z 

But for f i n i t e age groups N i s given by 

N = 1 - e " Z t (10.9) 

1 - e " Z 

The expressions in (10.9) can be evaluated for a given t and Z. Note 

that equation (10.9) can be used to estimate the adult exploited population 

provided we know the rec ru i t s or i f we can estimate the r e c r u i t s . The 

exploited population i s given by 

N = R (1 - e ~ Z t ) (10.10) 

(1 - e " Z ) 
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where R are the rec ru i t s and t the oldest age in a population. 

From the der ivat ion of the geometric series in (10.5) and (10.6), the 

p robab i l i t y of any age t i s given by 

e- 2 t 

By the de f i n i t i o n of a d i sc rete p robab i l i t y d i s t r i bu t i on 
CO 

0 

where px = P (X = x.) = f (x.) 
i 1 1 

Note that f (x^) above represents e ~ Z t but 
oo 

0 

The term e ~ Z t can be normalized to a d i screte p robab i l i t y function by 

d i v id ing by 

o 

Therefore the p robab i l i t y of age t in the case of d i screte recruitment is 

P (T = t) = e " Z t (10.11) 

0 

The denominator of the r i gh t hand side of (10.11) i s an i n f i n i t e ser ies 

and fo r e~ Z < 1, the expression i s equal to 
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e " Z t = 1 

1 - e " Z 

Therefore for a d i sc rete time model the p robab i l i t y of age t i s 

P (t) = (1 - e " Z ) e " Z t for t > t c (10.12) 

The mean age U of the exploited age groups i s given by the equation 

below (Burington 1958). 

U = > t . f ( X l ) 

Note that f ( x . ) = e " Z t (1 - e " Z ) 

•It -Z, Therefore U = t . e " . (1 - e~L) (10.13) 

0 

U can be estimated by mean age t" of a sample. 
CO 

t 1 • e " Z t • ( 1 - e _ Z ) (10.14) 

Evaluate expression 

X~ t . e " Z t (1 - e " Z ) 

factor ing 

1 - e " Z . > t e " Z t 
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This summation above gives the i n f i n i t e ser ies : 

S 

0 

Let 

CO 

] T t e " Z t 

S = 0 + e ' Z + 2 e " 2 Z + 3 e ' 3 Z +.... + oo e ~ Z " 

S . i z '=•• + e " 2 Z + 2 e _ 3 Z + . . . . +(» - l ) e " Z ° 

Subtracting S e " Z from S 

S - s e " Z = 0 + e ' Z + e ' 2 Z + e " 3 Z + . . . . + e ' Z a 

The above i s a geometric progression which can be wr i t ten as 

S (1 - e _ Z ) = e _ Z (1 - e~Z°°) 

1 - e " Z 

S (1 - e " Z ) =e~Z . 1 

l - e " Z 

Therefore the summation gives 

S = e " Z 

(1 - e ' Z ) (1 - e _ Z ) 

S = e " Z 

(1 - e - ¥ 

The mean age t i s therefore given by 

t = (1 - e ' Z ) e " Z 

(1 - e " Z ) 2 

t = e " Z (10.15) 

1 - e " Z 


