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ABSTRACT 

Some e q u i l i b r i u m and non-equilibrium properties of a gas of hard 

spheres with a long range a t t r a c t i v e p o t e n t i a l are inves t i g a t e d by 

cons i d e r i n g the properties of an equation, proposed by deSobrino (1967), 

f o r a o n e - p a r t i c l e d i s t r i b u t i o n f u n c t i o n f o r the gas model considered. 

The s o l u t i o n s of t h i s equation obey an H-theorem i n d i c a t i n g that our gas 

model approaches l o c a l e q u i l i b r i u m . E q u i l i b r i u m s o l u t i o n s of the k i n e t i c 

equation are studied; they s a t i s f y an equation f o r the density n(r) f o r 

which space dependent s o l u t i o n s e x i s t and correspond to a mixture of gas 

and l i q u i d phases. .-' 

The k i n e t i c equation i s next l i n e a r i z e d and the l i n e a r i z e d equa­

t i o n i s a p p l i e d t o the study of the s t a b i l i t y of the uniform density 

s t a t i o n a r y states of a Van der Waals gas. A b r i e f asymptotic a n a l y s i s of 

sound propagation i n d i l u t e gases i s presented i n view of introducing 

an approximation of the l i n e a r i z e d Boltzmann c o l l i s i o n i n t e g r a l due t o 

Gross and Jackson (1959). To f i r s t order,the d i s p e r s i o n i n the speed of 

.sound at low frequencies i s the same as the Burnett and Wang Chang-Uh-

lenbeck values while the absorption of sound i s s l i g h t l y l e s s than the 

Burnett value and s l i g h t l y greater than the Wang Chang-Uhlenbeck value; 

a l l three are i n good agreement with experiment. F i n a l l y , using the me- . 

thod developed i n the previous s e c t i o n , an approximation f o r the l i n e a ­

r i z e d Enskog c o l l i s i o n i n t e g r a l i s obtained; a d i s p e r s i o n r e l a t i o n i s 

derived and used t o show that the uniform density states which co r r e s ­

pond t o l o c a l minima of the f r e e energy and t r a d i t i o n a l l y c a l l e d meta-

s t a b l e , are i n f a c t stable against s u f f i c i e n t l y small perturbations. 

- i i -
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CHAPTER 1. INTRODUCTION 

1. INTRODUCTION 

Properties of dense gases can be studied by means of fluid 

mechanics. The validity of this method is restricted; the fluid 

equations which describe the evolution in time of the local density, 

velocity and internal energy density are subject to the requirement 

that these macroscopic quantities be slowly varying functions of space 

and time i.e. that the ratio of the change in a macroscopic variable 

to., that variable, over a distance of the order of the mean free path 

and time of the order of the collision time is negligible. 

A more fundamental approach is that of kinetic theory which 

provides a molecular description of the gas and whose validity is not 

restricted by the above conditions. A kinetic theory of dense gases 

was f i r s t introduced by Enskog (1922); this is a direct extension of 

the kinetic theory of dilute gases based on the Boltzmann equation. 

In the derivation of this equation i t was assumed that only binary 

collisions occur and that the molecules have no extension in space. 

For a dense gas these assumptions no longer hold; Enskog made a f i r s t 

step in the right direction by considering a gas of rigid spheres of 

diameter <r . For such a gas, collisions are instantaneous so that 

the probability of multiple encounters remains negligible. However a 

change in the collision frequency X results from the finite volume 

of - the molecules; this change is made up of an increase in K due to 

the decrease in the phase space of the gas and a decrease in A. due 



to molecules screening one another from the other oncoming molecules;thus 

the collision integral on the RHS of the Boltzmann equation is increased 

by a factor of yĵ  ; furthermore the one-particle distribution functions 

in that integral are evaluated at the center of the colliding molecules. 
i 

Although closer to reality, Enskog's theory does not allow for the 

occurance of ternary and higher order collisions nor is the spherical 

model a faithful description of the real intermolecular potential. 

A rigorous kinetic theory of dense gases based on the Liouville 

equation was introduced independently by Born and Green, Kirkwood, 

Bogoliubov, Yvon in 1946. The only assumption in this theory is that 

the interaction potential is an additive two-particle potential.. A 

set of coupled equations, the so-called B-B-G-K-Y hierarchy, is ob­

tained by integrating the Liouville equation over the phases of N-s 

molecules,(N is the total nuumber of molecules of a gas and s= 1,2,... 

N-l). A method of solving this hierarchy due to Bogoliubov is clear­

ly presented in a review article by E.G.D.Cohen (1968). This approach 

to the study of dense gases takes into account ternary and higher order 

collisions; however, although more satisfying than the method of Ens­

kog from a mathematical point of view, Bogoliubov's method has met 

with some difficulty ( due to the divergence of the expansion of the 

two-particle distribution function in terms of the one-particle dis­

tribution function) which prevents its use, at the present time, for 

the study of the problem of condensation. 

DeSobrino (1967) proposed an equation for the one-particle dis t r i ­

bution function of a Van der Waals gas obtained from the f i r s t 



equation of the B-B-G-K-Y hierarchy by rewriting the two-particle dis­

tribution function ^ in terms of the one-particle distribution func­

tion £ and the pair correlation function at contact . When is 

assumed to be velocity independent, this equation reduces to the Ens­

kog equation with an attractive potential taken into account; deSobri-

no further assumed that K| is equal,to (i-«b)' which is equivalent to 

stating that the model under consideration is the traditional Van der 

Waals gas. The problem of determining the stability of uniform density 

stationary states was investigated using a simple relaxation time appro­

ximation for the collision integral. 

In this thesis the problem of approach to local equilibrium and 

of stability of uniform density stationary states are studied in a 

more accurate manner. We do not use any specific form of ̂  which we 

simply restrict to be a monotonically increasing,, continuous function 

of the density; we also obtain a dispersion relation needed in the 

study of stability using a more accurate approximation of the kinetic 

equation along the lines of a method developed by Gross and Jackson 

(1959) and Sirovich (1965a). 

This thesis is divided into two parts; the f i r s t part to be 

found in chapter 2, deals with the approach to local equilibrium and 

the equilibrium solutions of the kinetic equation (2.10). An H 

function is defined which, in the equilibrium limit, yields the correct 

thermodynamic functions of a Van der Waals gas; the corresponding H 

theorem is proved for a distribution function |. which satisfies our 

kinetic equation; this implies that the gas described by this equation 



approaches local equilibrium. Stationary solutions of (2.10) are then 

found to obey an equation for the density -n-Cc) which is identical 

with the equation obtained by Van Kampen (1964) from equilibrium sta­

t i s t i c a l mechanics; the existence of space dependent solutions of this 

equation has been discussed by Van Kampen (1964) and Strickfaden (1970). 

This equation also gives excellent agreement with experiment in calcu­

lations of surface tension not too close to the cri t i c a l point (Strick­

faden and deSobrino, 1970). 

Because of the complicated expression for'the Enskog collision 

integral, a calculation of non equilibrium solutions of the kinetic 

equation (2.10) is difficult. However, for a gas in a near equili­

brium state, this equation can be linearized and the result expanded 

to f i r s t order in gradients Vr about r . : The linearized Enskog 

collision integral Sf€(&) is equal to .'Y^t(fJ) +• K{&) • where 2/ is 

the linearized Boltzmann operator and is the linearized non-local 

term. Even in this form the linearized kinetic equation does not lend 

itself readily 'to practical computations and an approximation must now 

be introduced. In section 5 a method of approximating 2?(L) due to 

Gross and Jackson is introduced in connection with a brief review of 

the problem of sound propagation in a dilute gas at low frequencies. 

In section 6 this method is applied to the linearized kinetic equation 

of a Van der Waals gas in order to investigate the stability of the 

uniform density stationary states. We verified the conclusion arrived 

at by deSobrino in his less accurate calculations that states of a 

Van der Waals gas, traditionally regarded as metastable, are indeed 

stable against small dynamical perturbations. 



CHAPTER 2. APPROACH TO LOCAL EQUILIBRIUM AND EQUILIBRIUM PROPERTIES 

2. THE KINETIC EQUATION 

In this section we briefly describe the gas model under consi­

deration and derive a kinetic equation for this model. 

We consider, inside a cube of side L, a Van der Waals gas.of 

N molecules whose interaction potential is of the form 

( t*6 -for r 4 <r 

\_ v(r) W r > r 

where r is the distance from the center of a given molecule and V(r) 

is a weakly attractive potential with a range A satisfying the 

inequality 

•^3 « « L 

L is assumed so large that wall effects are negligible. No external 

force is present. -

For this gas model, the following equation for the one particle 

distribution function -f(.r,|,fc.) was obtained by Grad (1958) from 

integration of the Liouville equation over a l l coordinates except those 

of a given molecule. r 

For convenience, we have adopted deSobrino's notation where JL 

denotes a-unit vector; the svmbol fl indicates integration 



over a l l values of J L such that H.(r>0; is equal to 

and f i n a l l y | and ^' are related to |_ and ||' as follows 

To rewrite eq.(2.1) in terms of the one-particle distribution 

function we introduce the pair correlation function defined 

by 

In (2.3) we have assumed that <fr is not a function of velocity, 

i.e. that there is no correlation between the velocities of 

neighbouring particles. Substituting the RHS of (2.3) into the 

integral on the LHS of (2.1) and integrating over we obtain 

^ - fc l ta '^**' > £ * ( w W > * l % * ..... 

where ' 

(?.S) M A ) ^ j jf C r ^ t ) ^ 

"The value of ^ in Fig. 1 is a reasonable approximation to the 

£j, of our model. The region where the pair correlation function 

differs appreciably from unity is very small (. <r < l r - i - ' i ^ 1.3 cr) » 

Therefore the contribution to the integral on the RHS of (2.4) 

from this region is small; so that i t makes little;differen'ce 



whether, in that region, we write | or I . Furthermore, for \r-V|> 

1.3 (T , cj,~ \ . Finally since lr-r\<S" is very small compared to 

the range of the attractive potential, the integration is extended 

over the sphere \ Y - V \ <s- Thus the RHS of (2.4) can be approxi­

mated by 

For a gas in equilibrium, i t has been shown that, to f i r s t order 

in density gradient, (Lebowitz and Percus, 1963) 

It is reasonable to expect that the non equilibrium behaviour of 

w i l l be similar and we shall assume that 

Returning to eq.(2.1), we note that the two particle d i s t r i ­

bution function in this equation, is evaluated at contact 

therefore • 

^aU . r -^U' . tJ* ^ l«(r-irA,t))f ( r . i ^ ^ C r - ^ - a j ; ^ ) 

Where is the pair correlation function o, evaluated at contact 
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Substituting the RHS of eqs. (2.6) , (2.9a) and (2.9b) into 

eq. (2.1) and expanding to f i r s t derivatives in r about £ 

we obtain the kinetic equation ̂  

where we have used the abbreviations 

Eq. (2.10) i s just the Enskog equation with a long range attrac­

tive potential taken into account by a self consistent f i e l d 

approximation. The derivation of (2.10) from Grad's equation 

(2.1) was due to deSobrino (1967). Throughout this thesis, 

the pair correlation function at contact, YJ^ , w i l l be l e f t as 

an undefined increasing function of the density H ( r , . 

(Ml) 



1 ! ! i > I L L 
t i l t s 

Figure 1. Radial distribution function <fr vs % - r/<r-
for hard discs at y - : ^V 0/N<T= f . Vo = H<r3/fZ 
from an average of four independent calculations 

, of a for a system of 192 discs( W.W.Wood,1968). 



3 . THE H-THEOREM 

Wie wish to show that the kinetic equation ( 2 . 1 0 ) obeys an 

H-theorem. F i r s t we define an H function for a gas of hard 

spheres. One way of doing this i s to find the entropy per unit 

volume of such a gas in a uniform, equilibrium state and guessing 

the H-function from this entropy. For an in f i n i t e system of hard 

spheres the pressure is related to the free energy per unit volume 

pB jL r,*,J by (Ruelie, 1 9 6 3) 

t 

On the other hand we have the well known equation 

(3-*) I1 = /r)KT(i 4 nrj(n)) . (We have set | ). 

Equating the RHS of ( 3 . 1 ) and ( 3 . 2 ) and integrating the result 

with respect to n. we obtain an expression for the free energy 

in terms of 

where G(j*>) is some, as yet undefined, function of the tempera­

ture. The entropy per unit volume follows immediately 



The RHS of (3.4) is an exact expression for the entropy per unit 

volume of an i n f i n i t e system of hard spheres in terms of the 

density and pair correlation function at contact. (3.4) sug­

gests an H function of the form 

In fact in the case of equilibrium when | is the absolute Maxwell 

ian ^ 

find, after replacing in (3.5) by the RHS of (3.6) and 

integrating, 

(3.7) H = Ti-&»n - n, + Y\ f v i n +- L n (A%m. ~\) . • 

From which the entropy per unit volume is 
s -

Comparison with (3.4-) yields 

(3.1) Crf(h) s 1 K . ( ^ ' JS— - i ) - K : ;. • . 
whence 

The H-function defined in eq.(3.5) for a hard sphere gas is 

also the appropriate H-function for the Van der Waals gas 

described by the kinetic equation (2.10) since, as we shall 

see, the self-consistent f i e l d term in. this equation is non 

dissipative. > ' , 



We shall now proceed to the proof of the H-theorem. 

Differentiating eq. (3.5) with respect to t we obtain 

9fc H I • 

i 
where , , 

From equation (2.10) 

where 

j _ $5^ C H'- G-.? <rUa<A|' 

" : K » S f & l l ( 4 a l ' * * a J ' ) n ( « W j § * ^ ( S - * > d * # • 
$r dr "L 

Integrating eq. (3.11) over §_ we obtain the conservation of 

mass equation , 

(3.i*v - _ * - fte-is 

In equation (3.10), replacing by its value in (3.11), we get 

the term involving the long range potential v(ir_-*^0 vanishes; 

thus V(r) is non dissipative. 

We have the following identities 



equation (3.13) becomes, taking into account (3.12), (3.14) and 

(3.15) 

Tf is a function of density Y\(r>0 > therefore 

IT A ~ $ — if-

I t i s well known that 

(3,1*) * S M*£+0T*& s ^ I ' ^ ^ ^ ( 4 i W f ' ) ^ £ l 

and one can readily show that 

(M<0 J C^£ + 0 — W <*Ufc'<* (fr-Aj ^ ' i i JL(. 

Eqs. (3.17), (3.18) and (3.19) are then substituted into eq.(3.16) 

which becomes, after some rearrangement 
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With the definitions . ' 

the RHS of eq. (3.20) becomes 

The integrand on the RHS of (3.21) is identical to deSobrino's 

eq. (3.12). To prove the H-theorem, deSobrino assumed that r and 

S" are independent variables. From the definition of % , to 

vary % one must vary the functional form of ^ ; but S~ and S 

are also functions of ̂  ; therefore in general 5" and 5" are not ̂  

independent variables. < 

We have the equality 

so that P(r,tJ reduces to 

Let us set 

and study the sign and magnitude of 4(%,S~} as % approaches 

unity. We are interested in near-equilibrium states' therefore we can 

write 

with I M«I . To f i r s t order in 



Since (M « I > / 

JU%= 4 n ( l + C U ) -

so that 
(3.13) «.U,<n . ( l - l f ) C U * ' 

We recall that 

<Tr 1 r j i . .£ ^ i<r.n. .5£/d>- i<m.3£/V 
" — •£ - - _ _ - ^ -

In this form we see that <T is the ration of the change in ̂  

over the distance of a molecular radius to. ̂. . £ does not 

vary appreciably over such a small distance so that ( S\ « | 

Therefore the value of <x(t,,S) given in (3.23) is always less 

or equal to zero; i t is equal to zero when X = ) i.e. ̂  - £ < 0 > 

(see (3.22a)). Returning to (3.22) we see that Plr.t) ̂  O ; 

P(^tJ•= 0 when Equation (3.20 can be rewritten as 

follows 

(W) ^ = - j l . f | ( ^ - j + ^ ) rff - L . 2- , J j / ^ * 

The physical meaning of this equation is clear. The increase in 

entropy per.unit time in a fixed unit volume located at 2" a^ time 

"t , drffit, is equal to the flux of entropy into the unit volume due 

to.fluid flow (first integral on the RHS of (3.24)) plus the flux 



of entropy due to the fact molecules are not points but occupy a 

finite volume (2nd integral) plus increase in entropy per unit time 

per unit volume due to binary collisions, f ( h t ) . We note that the 

long, range potential does not contribute to the increase in entropy. 

Integrating eq. (3.24) over the volume of the container we obtain 

H is bounded from below (Chapman & Cowling, 1958) and for a container 

of finite volume H is also bounded from below, therefore H cannot 
o ' o 

decrease indefinitely but must tend to a limit corresponding to a state 

of the gas in which dHoM*- zO but i f olHo/«U = o , then %. = 1 and 

the distribution is the local Maxwellian 

~ ZTTKTCr.t) ' 



4. EQUILIBRIUM SOLUTIONS 

The H-theorem of section 3 gives a strong indication that the 

gas described by the kinetic equation (2.10) will approach equili­

brium. It is natural to seek the equilibrium (i.e. time independent) 

solutions of (2.ID) among the local Maxwellian solutions of the form 

-id I - ~ ( I" < ««-0*" 

To find the functional dependence of n ,T and c on £ we substitute 

for £ the value of £ U ) given in (4.1) into (2.10) and obtain using 

the summation convention 

where ^ = |-£ ; ^""s */%r"- • J £ j d r ' ^ r - r'ij M ( r ' j . 

Each coefficient of the powers of <y must vanish separately. The 

coefficient of wV rw A gives immediately 

1 " ft' = ^— = constant . 

The temperature is uniform. 



From the coefficient of W*w we obtain the following equation 

M ( i - | n ) ( d V . 3 V ) ^ ^ V s - ^ ; 0 

For JAJ: V (4.4) reduces to 

For jj_ - v (AIJV^I .Z^) we get from (4.4), adding the results 

The general solution of (4.5) and (4.6) is 

(k.l) C = u>_x r- • +. Co 

where UJ and c0 are constant. The general motion of a gas in a 

stationary state is a uniform rotation and a constant translation 

One example of such a motion is a circular helix whose axis is along 

the i-direction; then c = (-w^w^c) For a motion described in 

(4.7) the shear stress tensor is zero to f i r s t order in the velocity 

gradient. 

Since f'= constant and using eq. (4.6) we obtain for the coeffi­

cient of the zeroth order in 

( M ; c * - a % _ o 

This means that n. remains constant on the flow line. 

From the coefficient of vv* in eq. (4.2) we have 

when c =o and using the identity 

we reduce eq. (4.9) to 



or 

This equation was derived by Van Kampen (1964). It is the condition 

for an extremum of a function 5(*(tl) subject to the requirement 

that ^YvVv^r = r-i . When this extremum is a minimum -5/VT can 

be identified as the free energy of the gas and the constant on the 

RHS of (4.11a) is then the chemical potential divided by KT 

constant = 1- ( M- - 3. KT fa 021 ) 

where ^ is the part of the chemical potential due to the potential 

energy of the gas and -IKT^"--— is the contribution to the chemical 

potential from the kinetic energy. 

Strickfaden (1970), using for the Pade approximant of Ree 

and Hoover (1964) and for V(r) the (12,6)Lennard-Jones potential, 

showed that for T<Tc , space dependent solutions of (4.11a) exist 

which correspond to a mixture of liquid and vapor phases. 

For an equilibrium state, eq. (4.11a) becomes 

- a . - - » r ^ > . ^ - P 5 ? r 
from which one easily deduces the free energy per unit volume at _r 

i 

(f».»0 - HJ!L£!1: = Mr)Wr) + «{£) -Ulr) [vHv^d* -

The thermodynamic functions of a gas of hard spheres with a long 

range attractive t a i l are derived from the definition of the H func­

tion given in (3.5). Substituting in (3.5) £ by the local Maxwellian 



20 

4̂ = W ^ ^ ~ ^ T T ) V £ **T̂ 1 and carrying out the integration 

over lg we get the entropy per unit volume 

This is the same equation as (3.8) except that now w is a function 

of jr . 

The internal energy is 

= IfiKT + 1 J | vi (v;) v«<vj) r-v'|)Mjrd f' 

where V is the long range part of U 

The free energy is 

>,r) A = V - T S • 

From (4.15) i t follows that the local free energy per unit volume is 

^ ( M t ) ) £ w ( t ) j * ( r M V ( \ r - r ,i ) d r ' +- K.r(^Ij)^w{r> -

This is the same as equation (4.12) which was obtained directly from 

the kinetic equation (2.10). For a uniform density the pressure can 

be readily obtained 
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CHAPTER 3. SOME LINEAR NON-EQUILIBRIUM RESULTS 

We have been considering the approach to l o c a l e q u i l i b r i u m and 

the e q u i l i b r i u m s o l u t i o n s of the k i n e t i c equation (2.10). We now 

i n v e s t i g a t e some non-equilibrium properties of t h i s equation. The 

complicated expression on i t s RHS r e s t r i c t s us from the s t a r t to the 

case of near-equilibrium states where equation (2.10) can be s i m p l i ­

f i e d by l i n e a r i z a t i o n . 

A problem connected with near-equilibrium states i s that of 

determining the s t a b i l i t y of the uniform density s t a t i o n a r y states 

of a Van der Waals gas against small perturbations; these uniform 

density states correspond to the absolute minimum and the l o c a l minima 

of the f r e e energy (Van Kampen, 1964) and are t r a d i t i o n a l l y c a l l e d the 

s t a b l e and metastable states r e s p e c t i v e l y . For t h i s problem the RHS 

of the l i n e a r i z e d k i n e t i c equation i s s t i l l unmanageable and an 

approximation f o r i t must be found. A method due t o Gross and Jackson 

(1959) and l a t e r extended by S i r o v i c h (1965a) i s used; (the modified 

l i n e a r i z e d k i n e t i c equation w i l l be c a l l e d the GJS model f o r convenience). 

According to t h i s method, the l i n e a r i z e d Boltzmann c o l l i s i o n i n t e g r a l 

L(h) i s expanded i n terms of the eigenfunctions o f the l i n e a r i z e d 

c o l l i s i o n operator of a Maxwell gas; the f i r s t few terms i n the expan­

sion are retained while the remaining terms are approximated by assum­

ing t h a t , as f a r as these terms are concerned, the gas i s Maxwellian 

and furthermore, that a l l eigenfunctions have the same eigenvalue. 



The GJS model is the only one which yields results on sound 

propagation in good agreement with experiment over a wide frequency 

range (Sirovich and Thurber, 1965b);of particular importance is the 

good agreement with experiment at high frequencies. This implies 

that this model is valid at high frequencies as well as at low 

frequencies so that i t is particularly suitable to the study of the 

stability of the uniform density states which, from a mathematical 

point of view, is closely related to the problem of sound propaga­

tion and consists in deriving a dispersion relation E (UD, k1>V, n.) =o 

for a Van der Waals gas and evaluating E as a function of u> as u; 

increases from - ««» to co 



5.. SOUND PROPAGATION AT LOW FREQUENCIES 

In this section, we present the GJS model in connection with an 

asymptotic analysis of sound propagation in rarefied monatonic gases 

in order to acquaint" the reader with this model which will be 

applied to the more complicated problem of determing the stability 

of the uniform density states of a Van der Waals gas. The results 

of this section will also serve as a means of checking the calculations 

in the stability problem. 

An expansion of the wave number k for a Maxwell and hard 

sphere gas up to 3rd power in <x> is derived using the GJS model in 

which the f i r s t five terms in the expansion of L(h) are kept intact. 

This value of k is compared to those obtained from the Navier-Stokes, 

.Burnett, Super-Burnett, 13-moments and recently Wang Chang - Uhlen-

beck approximations. (For these values of k, see Greenspan, 1965; 

also Foch and Uhlenbeck, 1967). 

(a) The GJS Model 

From the Boltzmann equation the GJS equation for % = 5 (Tl is the 

number of non-approximated terms in the expansion of L(h) in eigen­

functions of L; •',',) is now derived. 

For a GJS model, the collision frequency X- is velocity 
independent and i t has been shown (Sirovich and Thurber, 1969) that 
in this case the expansion of k in powers of oo does not converge; 
However, though i t is not convergent, the series is asymptotic. 



The Boltzmann equation for a one dimensional flow is 

where - . 

(rs H . j ' s • etc. 

Eq. (5.1) is linearized by writing 

where 3'i 

eq. (5.1) becomes, ignoring terms quadratic in ^ 

teii) (L + (If 4„' t i l U U . G - ^ f c U J U ' -

where 

• W ^ 

Dimensionless variables are introduced 

where A. is an undefined constant frequency. In terms of these 

new variables (5.4) becomes 



where 
- v -V 

( n ) = 1_ , e. 

'^(rj'jr, t") is expanded in terms of the eigenfunctions of the 

linearized collision operator, , of a Maxwell gas. The double 

index in \ ^ can be reduced to a single index (Sirovich and Thurber. 

1965a). - • 

Then 

where •. ' 

Substituting (5.8) into (5.6) and dropping the prime superscript on t' 
> i , x ,6- and g> 

(!T.«o) f L + V 3 ^ _ ) ^ « . L i t , ) = ? . e r , L * t » « 5 Q.'Aij^j 

where 

(C.i.) Aij * J-ur ^ [ t ^ o W 

The following approximation of the RHS of (5.10) is due to 

Sirovich and Thurber (1965a) 
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This approximation of L(h) is substituted into the RHS of (5.10); 

One obtains 

This model differs from the one of Wang Chang and Uhlenbeck in 

that the streaming term which becomes important at high frequencies 

is not truncated; this may account for the better agreement of this 

model with experiment at those frequencies (Figures 2 and 3 ). 

Furthermore the expansion of L(h ) is not truncated; an approximation 

for those terms which, in the Wang Chang - Uhlenbeck model, have been 

neglected is now provided and taken into account. (For a more 

detailed discussion of the properties of the Wang Chang - Uhlenbeck 

and GJS models at high frequencies, See Sirovich and Thurber (1967), 

(1969)). 

For Ti= 5 and for a plane wave perturbation a dispersion relation 

is derived from eq. (5.13). The wave number k is solved in terms 

of <JO 

The following quantities which are needed in the derivation of 

the dispersion relation are now written down. The eigenfunctions of 
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Figure 2. Comparison of theoretical speeds of sound of a Maxwell 
gas with experiment. 
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,Figure 3. Comparison of theoretical absorption coefficients' of 
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of the linearized collision operator of a Maxwell gas, 

where Sp,., and are the Laguerre and Legendre polynomials 

respectively. The f i r s t five eigenfunctions are 

= •+©» = ^ 3 -

(5.15-) ^ s t , o -- £ ( U l v 1 ) 

Substituting these values of <̂,- i ) into (5.9) one obtains 

the corresponding coefficients c\; 

V and r are the dimensionless deviations in density and temperature 

U S 5 fv.y», and 5 3 are the dimensionless velocity, stress tensor and 

heat vector respectively. 

({T.K) a, 2 cue ». 

(5".I7) °-z c '<9«i = 



Using the following correspondence between the two ways of indexing 
i . M<'/ <(') 

I o o 

Z o I 

I 

i 

we rewrite the matrix in the form \ Y « < V * ' 

/AM A n A i j Am A i r \ 

An Ait A i j AiV At f 

A.3) K31 An M>+ AK 

Xt(i Am Ai<5 Am* Aur 

''AooOO AO«;0> Ao»,tO AoO'Oi. A«»o.\\ 

Kovjoo AM . « » AQUVO No \^ox Aoi j iv 

\ \ O O O NlO; lo X > » ; O t . K\Oj\\ 

\ A \ \ . o c A u ; o t A i \ ; \o A i \ ; 0 * . Avxjll^ 

The normalized values of the matrix elements Art;*'*' for a gas of 

hard spheres are given by Sirovich and Thurber (1965a);it is found 

that the above matrix for a hard sphere gas is diagonal, thus for /]l = 

eq. (5.13) is identical for both Maxwell and hard sphere gases. 

The matrix elements of t£(h) defined in (5.4) are written down 

explicitly; to f i r s t order in perturbation they are the same for both 

Maxwell and hard sphere gases (see Grad, 1949) 

- o 

OVO"S » ) 

file:////OOO
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where for a Maxwell gas 

\4is the strength of the potential 

(S.2.U) V(v).= V»/rr 

b is related to 9 by 

• P. 

and for a hard sphere gas 

For the definition 'of the dimensionless in (5.5) we take 

Consequently the eigenvalues of the dimensionless operator L are 

A«>0;«o s . ^ o i . e l - A i o j l o o 

3 

It is now assumed that h is a plane wave perturbation 



where x and t' are the dimensionless length and time defined in 

(5.5) and k. and u>' the dimensionless wave number and frequency 

A 

From now on a l l prime superscripts will be dropped. 

(b) The Dispersion Relation 

In eq. (5.13) the value of a; , 5 ^ and ^ given 

in eqs. (5.16) - (5.20), (5.29), (5.15), (5.30) are substituted; the 

result, multiplied by is 

. .( 5,33) (u> +i - kv-jH 

In eq. (5.33) , ' V 4 V J ^ TC • )^ V i and S3 will be successively eliminated 

leaving a relation between t-o and t=o . First |\,yj and S 3 are 

reexpressed In terms of -v" , IK- , and x: . Multiplying eq. (5.33) 

by -un.v-}-vr̂  .,'integrating the result over f\r and making use of 

eqs. (5.19), (5.18) and (5.16) one obtains 
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8 

•*• ^ « + ^ ^ U X ^ ^ ) 
3 , -

- K ^-iz + V r r ) 

solving for 

Eq. (5.33) is multiplied by 'wt-v-iv'1' > the result integrated over 

'V* yields an equation for S 3 

Eq. (5.33) is multiplied by •VJ-W) ; the result is integrated over 

y\r ; one gets the continuity, equation 

(531) O J V = feu 3 

The RHS of eq. (5.35) - (5.37) are,substituted into eq. (5.33); 

the result is 



Eq. (5.38) is multiplied by ; the result is inte-
( U >+-0-fciTj) 

grated over AT ; one finds 

+ -L. Si ( 3 c - tv)(V|_ 3 1 ^ ) 4 - V +- i i v i r 3 +• 1 (*£-») "C j 

To eliminate r we evaluate the integral J ^ ^ v M j r ; 

f i r s t the integral J a u k v £ " ) d j r is evaluated; multiplying 

eq. (5.38) by W(v)(v,V^~) a n d integrating the result 

over v- we obtain, making use of (5.39) 

Pi -«Tz/z 

Prom eq. (5.34) 

Adding (5.40) and (5.41) 



i • 
= "5 ( r - t - v ) 4. 

solving for 77 

-1 t kS 3 \ ^ 8 

3 - i t A - i d ' ^ B 
3 3 R 

V 

where 

Replacing in (5.39) the value of T just obtained we get the 

dispersion relation 

3 - f i T B 

where 

This is the dispersion relation from which one can extract numeri­

cally the curves labelled ST ( U * S )in, .figures. 2. and 3 . ^ ^ . ^ . . ^ v , ^ , ? 
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(c) The Propagation Constant k At Low Frequencies 

From the dispersion relation, eq. (5.45), which is of the form 

tA. =. o . w e calculate the propagation constant h, in the 

low frequency limit. To this purpose, \r(vjj,k) is expanded in 

powers of uj . The fir s t step is to obtain a series expansion 

of the integrals A,B, C and D for. small values of UJ . 

We note that in the limit u> —>• o — Co = J-5"fcr0/3M . therefore. 

for the dimensionless values of U J and k defined in (5.31) and 

(5.32) limit ~ - \J r/3 . so that when w is small, k is 

also small and of the same order of magnitude; the integral A can be 

expanded as follows: 

where 

.carrying out the integration up to the 6th power in' u) one finds 



where 

^ • = aj/i 

In a similar manner we find 

1 r ( i r * , + iSo"*.3 * l o 5 \ x r ) -V: Zoovc? X r ) } 

Substituting these values of A,,B, C and D into (5.45) and after 

tedious but straightforward simplification and rearrangement, one 

finds 

(5:5-2) ^ - j ^ ( 2 0 X * - u ) +- ^ (LIT-G-^-ktr*.1*) + « - ̂ lox8- . 

+ ?<\U1') + 536 + I 0 4 g x * _i»VJ x * - ^ r
 Z 6 ) ] =» 0 

The expression in the square bracket is of the form 



3 7 

where ' : 

A solution X of must be of the form 

substituting this value of % into ( 5 . 5 3 ) and expanding in Taylor 

series 

(£5Tj £(*) = Eo (x* +1Sx3) t~- + 1 3E 2 (5̂  + - ^ ^ ; 

= K) + ... + i. + 1 * * , + **%if (Xoy + * j <rlhto) 

For £(-*.) - 0 , each coefficient of V ( n e 0 /.. 3 ) m u s t vanish 

separately, thus -
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fate) £tM = * 

. (srs) x rE* (OU) ^ i i c."(*0 + W(*0 + » 0 

Substituting in (5.56) the value of Eo given in (5.53), we solve 

for x 0 ; with x 0 known, we proceed to (5.57) and solve for 

X i and so on; in this manner we find 

VJ7r~ 

100 

(SlCo) - , 

floo 

5 140 

therefore 

v k -\ • *0 too % ' 

and in terms of the real uj and k. 

Co X •?& U - g o o V A ' g ' 



io /K is reexpressed in terms of defined by Greenspan. From 

(5.28) and (5.23) 

(r.cs) A = 9« B 1 ^ 

) 

= ^ f ^ r ( 0 ) ! ^ P ^ ) (for a Maxwell gas) 

hence 

In. 1 Z(o)(.^)i p(i) 

On the other hand (Greenspan, 1965) 3 0 

(Co = 5 " K r 6 / 3M ; P^rnn ; <fe= L ; ( / i r coefficient of 
' ' " viscosity) 

For a Maxwell gas the exact value of jx. is (Chapman and Cowling, 

1961) 

(s-.U) AX - ^ / r r ) I ( ^ T . / i / / " ' 
y " 2P(l)(ifC(o)/jr) • 

so that 
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from (5.64) and (5.67) we find 

T " 
Furthermore Greenspan's definition of the propagation constant (1965) 

is 

(5".69) kn - ( U, is the absorption coefficient and Y- UJ/C ) 
( c j 

while in terms of c/, and X" our k is 

(£7o) k & 

so that 

(i^7') ko = —-—-— ( #• denotes complex conjugation) 
d I U J . | 

^ Co-

In (6.71), replacing k by the RHS of (5.62) and uo/X, by -i/s^, we 

find, for a Maxwell gas, 

A. for a gas of hard spheres is, taking into account eq. (5.27), 

whence 
t o 

(r.7« ^ - • 
5" 



The fourth oz-der approximation of the coefficient of viscosity of a 

gas of hard spheres is (Chapman and Cowling^1961) 

fa?) yV 1.016 r V K T W 

Substituting into (5.65) we find 

5"( i.ois) w 

From (5.74) and (5.76) the following relation results 

3-

so that for a hard sphere gas the propagation constant is 

117 

• (d) Discussion 

We note that for both the hard sphere and Maxwell gases the 

coefficients of ^ , ^=0 ,^1,1 in the expansion of in 

powers of ^ are independent of temperature. For a hard sphere 

gas, the coefficients of J- , - i - • ; . are 1.6%, 3.2% and 4.8% 

smaller than the corresponding coefficients for a Maxwell gas; since 



these models are the limits of the soft and hard atoms one may deduce 

that velocity and absorption of sound are almost independent of the 

nature of the intermolecular potential, however i t was found (Siro­

vich and Thurber,1965b)that in the moderate and high frequency ranges 

the hard sphere results agree slightly better with experiment. 

The various expansions of h^. for a Maxwell gas up to 3rd 

order in ~r are 

Navier-Stokes 

_ c I'M i 5 T g 

2 . o o o 

Burnett 

+ J L 
?,0 0 0 'T-a 

Super-Burnett 

l + _ 7 _ 

io t< 
iJLL 

. 1*6 1, 3 

-7. io?5T3 
* 4 * 

13-Moments 

_T_ 
l O 

JJlL 
4 - 0 

Foch - Uhlenbeck 

H o 

10 3/ 
H - 0 0 



Sirovich - Thurber 

The f i r s t terra in the expansion is the constant speed; the second 

term is the classical attenuation; the third term is the dispersion 

in the speed. A l l K '& agree up to J - ; a l l k'i> except the 
• - a V ' 

N-S value agree up to ; a l l coefficients of i are 

different. They are 0.779, 2.101, 2.872, 1.318, 2.578 and 2.185 

respectively. 

The Navier-Stokes equations which are a result of the f i r s t 

order Chapman - Enskog method of expansion in powers of a parameter 

proportion to i I a r e therefore valid only up to f i r s t 

order in i / i ^ , so that the coefficients of a n (^ lA^s 

in the Navier-Stokes expansion of cannot be trusted. 

In figures 4. and 5 are plotted the quantities (—*<£)/.!*' 

and ( \ - c o / c ) vs . *tz for the different theoretical models 

and the corresponding experimental values of Greenspan for Neon. 

Recalling that 

t o 

and 



we see that (i-c/c) and (.-^-t'-^^/it 1 are proportional to the 

third therm of and the fourth term of K< ,̂ multiplied by rc^_ 

respectively; thus a l l values of (i-c./c) except the Navier-Stokes 

value are equal and a l l values of are different. 

The Navier-Stokes and 13-Moments values of ( l i r ' - I ^ W l i 1 

in figure 4 are certainly too small. The slope of the B line seems 

slightly smaller than the slope of the experimental curve at the 

origin since the B line lies below the 2nd and 3rd experimental 

points from the origin. 

As expected, the Burnett value of ( i — c/c) in figure 5 agrees 

well with experiment while the Navier-Stokes result is too small. 

In..conclusion, we note that in the expansion of k^, in powers 

of i /T_v the coefficient of fj^ is the same for a l l models. 

The coefficient of n.^ is sensitive to the method -of approxima­

tion and is different for each model. Comparison with experimental 

data for Neon does not reveal which coefficient of TJ"^ is the 

most reliable;-however, i t can be fairly safely deduced that the 

experimental value lies somewhere between 2.101 and 2.872 and, as 

far as agreement with experiment is concerned, any -of the four 

coefficients of iT^ of B, SB, ST and FU is within the right 

ball park. 
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.3 r-

Figure 4. Comparison between theory and experiment of the dispersion 
in the speed of sound at low frequencies. SB = Super 
Burnett; FU = Foch-Uhlenbeck; ST = Sirovich-Thurber; 
B = Burnett; 13M = 13-Moments; dots are experimental 
values for Neon. 

.07 r i - C o / c 

Figure 5. Comparison between theory and experiment of the non-
Kirchoffian frequency dependence of the absorption 
of sound at low frequencies. 



6. METASTABLE STATES 

* 

. The existence of superheated liquid and supercooled vapor states 

is well known (see for instance Landau and Lifshitz, 1965); they 

correspond to the sections on the curve with a positive slope 

below and above the parallel to the \r-axis which divides this curve 

into two parts of equal areas. Van Kampen (1964) showed that the den­

sities YL of these states are the homogeneous solutions of eq.(4.11a) 

which correspond to local minima of the free energy; a more general 

treatment of this topic was later given by Lebowitz and Penrose (1966). 

The correspondence of these states to local minima of the free energy 

implies that they are thermodynamically stable i.e. they are stable 

against small perturbations which vary so slowly that they can be 

considered as a succession of equilibrium states. 

One cannot find out from equilibrium statistical mechanics 

theories whether these states are stable against non quasi-static 

perturbations; for such an investigation a kinetic theory approach is 

more appropriate; deSobrino (1967) was able to show, using certain 

approximations for the RHS of the linearized kinetic equation (6.19), 

that superheated liquid and supercooled vapor states are stable 

against sufficiently small perturbations. In this section, the pro­

blem of determining the stability of these states is reconsidered 

making fewer and more accurate approximations. 

From a mathematical standpointsthe problem of determining the 

stability of a state is closely related to the problem of sound pro­

pagation; i t requires deriving the dispersion relation 

file:///r-axis


(<f.l) E ( u > > , V ( k ) ; m . ) = O 

for the Van der Waals gas described in section 2 and studying the 

properties of the roots of this equation. The main problem is again 

to approximate the linearized collision integral, T(&) , for such a 

gas. J(&.) can be split into two parts (appendix A). 

where L(*0 is the familiar linearized collision integral of a dilute 

gas and K(&) , a non local term. In deSobrino's paper U£) is approx­

imated by the Krook model which is a special case of the GJS model 

with 11 = 3 ; KM by K(lJ-itJ . and r| by ( i-ntO"' 

The Krook model does not yield correct results for sound 

propagation (Sirovich and Thurber, 1965b)and though i t might be 

suitable for a qualitative analysis such as the study of stability, 

a certain uneasiness about the adequacy of this model persists. 

In this thesis the GJS model of the previous section (TT. = 5), 

is used to approximate LU-i) ; K(*i) is approximated by K(S-^v'vVi') : 

furthermore, except for the requirement that i t be a monotonically 

increasing function of density, which is physically plausible, no 

assumption is made on the functional form. 

(a) The GJS Model For a Gas of Hard Spheres with a Long Range  
Attractive Potential 

In this section the kinetic equation of a gas of hard spheres 

with an attractive t a i l , eq. (2.10), is linearized and a GJS model 

of this linearized equation is derived for a plane wave perturbation . 



On the LHS of the kinetic equation 

one writes 

(6.*) *x » % H U k ? l u , t ; 

(6 . 0 = V ) -

^ - j j • V = v(v-) e V ̂  

and obtains, to f i r s t order in h and V, 

(a). = l3k){> + '"0/00 » k v l 

where 

•(ci) v(k) • = J V ( 0 c. - _ 4 i r . 

The collision integral for a gas of hard spheres 

2 =-

where 

is linearized and expanded in Taylor series up to f i r s t order; the 

result is 



where 

It is shown in appendix A that Kl&) can be approximated by l < ( & « ) . 

For a plane -wave the RHS of (6.12) and (6.13) become 

(*••*•) 2°U)= ALU} r _ A| i N„ ( ^ - l 1 ; +|S 3VJ(^-I) - [v i-u,^ 
+ J. (^-3)r + X ji„ ^ v ( v*_,) -j + ft } 

(i- i vj 1- i ^ ) u3 _ JL (- 1| + | yV | ̂  ,r3 ̂  . «,4ir, -. 

where 

Vj' = < i v | / d ( h t , b ) 

the dimensionless collision frequency X is defined in (5.5); the 

dimensionless collision integral L(£) is defined in (5.6); its value, 

the RHS of (6.15), has already been derived in section 5. The eva­

luation of K(JUy is carried out in appendix A. 

In the linearized kinetic equation 
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replacing by the RHS of (6.8), til) and K(«t) by the RHS of 

(6.15) and (6.16) and expressing the result in terms of the dimen­

sionless variables 

and AT defined in (6.17), one finds, after multiplication by L 

1 iso j 

The prime superscripts on u) and fe. have been dropped. Eq. (6.22) 

is the GJS model for a gas of hard spheres with an attractive poten­

t i a l and for a plane wave perturbation. 

(b) The Dispersion Relation 

As in section 5, we proceed to eliminate successively [H3,S 3 >u 3 )r 

and V from eq. (6.22). We multiply (6.22) by VJ(V)IT3 integrate 

the result and taking into account eqs.. (5.16) - (5.20) solve for |t 3 3 

fan) > 3 3 - W ? - - S-^H-^V) -<'-b"n.) 
. I t l b n ^ L . 
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where 

( f . ?«» ) S H < T 0 

3, 
To find 5 3 , we multiply (6.22) by u r K ) V and integrate the result; 

we obtain 

j u ( ix - 2V( -*\)) S 
1+ 1 n 1 

Multiplying (6.22) by <ur(v) and integrating one finds the continuity 

equation 

tuV - ku.3 = o 

In (6.22), replacing ,S3- and u3 by their values in (6.23), (6.25) 

and (6.26) we obtain • 

(fi,-?!) ( to k<Vj)£ = LZ U b _ ! i_ f J J_ ( ^ £ ) 
' + ^ ( inn 1 4 " 3 

(6.27) is multiplied by wt^) and the result integrated over <£ 
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+. - ^ o ^ ^ (- ^ + f V j ) j:: + V ( feir3 ( 5 + 2^n^ V bVrj' + 1 ^) + L 

+ X ( i ( ^ ) 4 ^ ^ t ^ , ) } 

To eliminate T we must evaluate the integral J,Jr3\<v'W . First 

we multiply (6.27) by ^ V " ) + ) and integrate the result. 

Making use of (6.28), we find 

(^) J u r W M ^ * T « * V + ^ L-̂ 1 ™̂-- {"(4 

e i + C v J " ) ) + Jt b ^ u ; V + X (2.1 + | k b m ^ V - 3 ) j . 

.The integral f ur^^d-ir has already been evaluated when was 

reexpressed in terms of V and Z (eq. (6.23)); i t is 

Adding (6.29) and (6.30) we find 
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•And from (5.16) and (5.18) we also have 

(<S.3z) ^TJT^V^av- = 3(X + V) 

Equating the RHS of (6.31) and (6.32) and solving for x 



Substituting this value of x, into (6.28) we obtain the dispersion 

relation 

(6.*) I = - ( i t ^ ^ ^ ^ V l ' - ^ j l ( c - B ) + 

.4 | b n 

- i L ( I>_^) + feth»(-6 rt- +5-f).L- I • + feB( 5 

5" l 

- C ft -<\C + * T ) ~ T - ) • + i ( c - I A ) + B < > M ( Bb J 0 ) U 
"> = 0 - 4 1 0 J 

where 

A, B, C, D are defined in (5.44) and (5.46) 

04 - A T s / t , 

and 

In the limit as bin-* o , o and I , equations (6.33) and 

(6.34) reduce to equations (5.43) and (5.45) of section 5 which are 

respectively the equation for u and the dispersion relation for 

a dilute gas. 



(c) Stability Criterion . 

To study the stability of uniform density states we consider 

the behaviour of the perturbation - ^ v R ^ ^ in time. The 

space dependence of %\ is kept fixed. 

The dispersion relation, eq. (6.34) is of the form 

k, VlW) and w are parameters and ou is variable and complex. The 

values of ui( k^O),n) for which E = o are the frequencies of 

oscillation of the fluid. A zero of EE in the upper half plane S + 

corresponds to an exponential growth indicating that the unperturbed 

state is unstable. A zero of E on the real axis or on the lower 

half plane S_ corresponds to a stationary or damped perturbation. 

The problem is to determine whether E has zeros on the 5+ 

plane. One has the following theorem, (see for example Wylie.,1960): 

If ^(-j) is analytic within and on a closed curve C and i f 

has no zeros on C then the number of zeros of within C 

is 

The RHS of this equation is just the net number of times ^ty) encloses 

the origin counterclockwise on a complex ^-plane as moves along 

C once. 

To find the number of zeros of E on S-*. , we f i r s t show that E 

is analytic on S + , (this is done in appendix B) then take for con­

tour C the segment of the real axis between - R and R. and the 

"'semicircle on 6-*- with radius R. and centered at the origin. In the 



limit as 00 ,C encloses . Next we plot £U>) on the 

complex E-plane as the complex variable u> moves along C ; this 

plot will show the number of times E(.w) encloses the origin counter­

clockwise. It will be shown that in the limit as R->> °o > E (u>) 

remains constant on the semicircle and i t is sufficient to plot Etw) 

as u> increases from - « 6 tt «o on the real axis. In fact we 

need only find the zeros of the imaginary part of E (OJ) , the corres­

ponding values of the real part of Etuo) and the direction in which 

EUu) crosses the real axis at these points. 

As i t stands, the function B(UL>, fe, V(,̂ ,v\) defined in (6.34), 
does not readily lend itself to analysis. We now derive approxima­

tions for this function for various frequencies. 

We have mentioned, in the beginning of this subsection that the 

dimensionless wave number fe. is kept fixed; we will now estimate the 

order of magnitude of k for which *^'T^ ̂  fe V , the term in the 

linearized kinetic equation (6.22), due the attractive potential, is 

non negligible compared to the collision integral. 

The Fourier transform of V(r) 

V{k) = j v M ef L -- dr 

can be rewritten as 

and since V(r) has a finite range c L 



We assume that for o< t-< A. there exist an M and an m such that 

_ M < Y- VO) < - *r\ 

then we have the following inequality 

Mir 
( cos fcd-i) < • < v« U o s . k d - \ ) 

(i) When W « l then =̂ » 4 and cosW can be expanded 

in powers of kd ; the above inequality becomes 

for a slowly varying potential,M is not much larger than m and M and 

m are of the order of rV 0 where o<r<d and \/e is the strength 

of the potential; i t follows that " v( k> r. o f V° ti*) ; & is the 

interparticle distance. In order for the so-called metastable states 

to exist, the temperature T must satisfy the condition £~-.>"̂ jf » 
where W=-jv(r)dir and b= ; but -jv(odr~ v0 there­

fore v\.VQ) ̂  o((£")3 -̂) • The term, in the linearized kinetic equa­

tion, due to the attractive potential is- .̂V̂ ) k'v̂  y ; the dimen-

sionless wave number : k is the ratio of the mean free path to 

the perturbation wavelength JL \ k'= — ; ̂  = 

for a near equilibrium state the velocity distribution is almost 

Gaussian so that "Ô  ~ I . Therefore v, fe' v ~< 0 ( g ) 3 £ ̂ -vj 

[ A ] ^* ̂ " V / For a Van-der Waals gas WC = 3b hence 

("Zc)? ~" so that, for a dense gas, ̂ ) ~ 0(») 

The mean free path a is of the order of = (o^k 5 then 

^ ^ 0(^-) 2-^ 0 (') ; the mean free path,, for a dense gas, is 

of the order of the interparticle distance. In section 2 we have 



a s s u m e d t h a t dyy t\ ^ t h e r e f o r e OL->>OL . A l s o , s i n c e o<r<c( 

a n d , t h e n Jin v- ; t h e r e f o r e 

T h e r a t e o f c h a n g e o f A due t o c o l l i s i o n s , (<3-K/^t)c , i s , i n d i m e n ­

s i o n l e s s v a r i a b l e s , o f t h e o r d e r o f & ~ v> . ; t h e r e f o r e , f o r w a v e ­

l e n g t h s -lyydyxx , t h e t e r m i n t h e l i n e a r i z e d k i n e t i c e q u a t i o n due t o 

t h e a t t r a c t i v e p o t e n t i a l i s n e g l i g i b l e c o m p a r e d t o t h e c o l l i s i o n t e r m , 

( i i ) When k,d^\ t h e n 1 s i _ ^ d ; o u r i n e q u a l i t y becomes 

a n d 

I n t h i s c a s e t h e c o n t r i b u t i o n t o t h e l i n e a r i z e d k i n e t i c e q u a t i o n due 

t o t h e p o t e n t i a l t e r m i s much l a r g e r t h a n i n ( i ) wUre -f»<b?4 w h i l e i n 

( i i ) <A y> o_ . I f we c h o o s e T s m a l l e n o u g h t h i s t e r m w i l l 

become n o n n e g l i g i b l e c o m p a r e d t o t h e c o l l i s i o n t e r m . 

( i i i ) When Vd >11 t h e n i = . l . F o r c\ we h a v e 

V 



The potential term is much smaller than its value in (ii) since i t 

is proportional to ^ j * " while in (ii ) i t is proportional to ^ . 

(iv) When kdL»l and , then 

I 

*V(k) \?y\j is smaller than its value in ( i i i ) . 
KT 3 

In conclusion, we see that the values of wavelength L for 

which ^Y .̂ V*3 k V is largest are those of the order of the range 

of the potential: t~A >>a- so that \i'g. -j- <r< | . For these 

values of Ji , when the temperature is sufficiently small, the con­

tribution due to the attractive potential is non negligible compared 

to the collision term. For wavelengths too large or too small 
( l*i>l a n d ^ c i ), HJ^Jil V 3 h.V i s negligible. We shall choose 

/ KT 
such that 

"'(6.3*) k'~ « ' 

In the above discussion on the magnitude of the wave number we have 

•used the original notation where k is the real wave number with 

dimension L and k is the dimensionless wave number defined in 

(6.20). 

We return now to the problem of approximating the function 

^ ( U ^ R 1 V(k,),n) and for the remaining part of this chapter, will be 

dealing only with the dimensionless wave number k ; the prime super­

script on k.' is again dropped. 

As u) increases from - <o to o on the real axis, the inequality 

( i. 11) leu | » k 



is always satisfied except for values of u> in the vicinity of the 

origin. This is a consequence of condition (6.38). When (6.39) holds, 

the integral A can be expanded as follows 

A= i - -J e ^ - J _ i J. 

Similarly 

Substituting these values of A,B,C,D and F into (6.34), expanding in 

powers of k retaining only the zeroth order in fe. we find 



where 

(CM) RtE0 = ] +6,^4- I H 6 ^ + l , 6 6 ? ] f u.6- _ i uA 

cy + CK; 4- 141 ̂  + Hit* ?' <̂  +6(£-HUfc" 

3 + m.4 4 4- 6 

3 +I4.4fr + 2ce ' i 

__: . — ui 
. ? g + t € +-lnrfc'T-4. 4 o 3 6 s ' i&16 + •nsV'f Va3fc 3 

( l + l o e + s i ^ f a o f e * ) -1 I / f . r b 1 • 
. . ' — J y / 1 de«o>vii^<tfoi-of K ^ E o V 

?6 4- \<?<Jfe + 4 Ho 3 fc3 J / L J 

and 

For a function E(m,k) of the form 

We can show, using Newton's well known method of successive approxi­

mation (this method is given in most books of Mathematical Functions; 

see, for instance, Abramowitz and Stegun, 1965), that the zeros of E 

are of the form 



The zeroth order approximation of E , EQ > contains to zeroth 

order in k , a l l the zeros of E so that retaining more terms in the 

expansion of E does not yield more zeros but only more accurate values 

of the zeros of E . Unless we want to determine these zeros accurate-

ly, i t is sufficient, in a qualitative analysis such as the study of 

stability, to keep the f i r s t term, Eo , of the expansion of E . 

Since i t was assumed that K« I . E 0 and u)p are very good approxi­

mations of E and u> . 

IvrtEo has a zero at 'UJ- oc . Furthermore 

X w v U I V Y , E 6 = i^vCC - ( U + i s l e + m r € * + 

M036*)j'{ ^( l t?e)( c l + ? 6 , 5 - ^ t-a?76 l'+n<6 3+l<a©fc l')j. 

so that as OJ increases from - °o , E-(u>,fc) crosses the real axis 

upward at R« E 6 ( M j which is 

X-vwt"o (oujt) has also a triple zero at the origin. This triple zero 

will be examined later using an approximation of E (ojjK) valid for 

values of [U)| << \ . (Recall that E given in (6.45) - (6.47) is 

valid only for | w j » k and cannot be trusted for UJ near the origin). 

The other zeros of TMEc^ujjfr) are those of the expression 
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(C.fa) ^ ( ^ f e U +• - J L _ _ 

^ +21 6 f i l e * ^ ( » +lo€ + 3o6 3) 

which is of the form 

(<^4) . ̂ (^fe)= ^ J v ^ c o i ^ - t - ^ c t ) i | . t- Affc) 

where 

and 

\ 2 W V 

\u >o j < o 6 <0 

We see that •=0} fe) = and _ ©o so that ^c^e) 

crosses the real axis at least once. The derivative of ^ ( ^ t j 

.with respect to _̂ 

has, for a l l values of & , a positive and a negative root. 

_ * > 0 
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This implies that Ĉ̂ > fe) has a local maximum at a negative value 

of ^ and a local minimum at a positive value of . Finally 

^(0^61= <o . From a l l these informations, one deduces that 

IC^J fe) must have one of the'three following forms: 

Figure 6. Plot of f(y) vs. y. 

Whether -^('^e) has two complex conjugate roots, a double root or two 

unequal real roots is irrelevant since these roots are either complex 

or negative and hence unphysical (recall that ^ - u>v ; <*> real). On 

the other hand, fc) always has one and only one real, positive 

root, (̂ fe) • This root is physically meaningful. 

At this point we introduce explicitly the assumption that the 

pair correlation function at contact ^(bvt) is a monotonically 

increasing function of the density n_ ; so that & , defined in 

(6.48), is a monotonically increasing function of KL . 

E a C u j j e . ) does not depend on the density n. explicitly but 

through £ . Because' of the above assumption, increasing e implies 

increasing n, . 



We now return to the discussion of the double root i V̂ Tu) - l^,(e) 

of T J M E O . For a dilute gas, £=o , 

has a positive real root at 

to which corresponds 

+ ULM (O) = + 0 , 5 " ^ 

We wish to show that the root .̂ .\Cfc) of \. . is a 

monotonically increasing function of £ . It can be shown (appen­

dix C) that the functions , o^ce) and A O ) defined in (6.53) 

are monotonically decreasing functions of €• : 

where 

Now 
h,' = 4 t etc-
1 - a e 

since 

we have 



From figure 6 i t is found that ihOho and [^) >o hence ^ so . 

Therefore u,(0) and cu, fo) are the lower bounds of ^vU) ar>d 

Let us take for example bn =| , a very high density. If we take 

for the Pade approximant 

I f o.OOJnb + o. o 113 n*b* 

Then to nb-=l corresponds 

and 

J ( «J, 0.IH6) - + 6 ' * r ^ - 0.16 8 0.0 35" 

has a positive real root at 

whence 

+ to , ( o.U 16 ) s ± O . 

In recapitulation, we have shown that, in addition to the roots 

at infinity and at the origin, iv^Eo (.cu, e) . has always a double root 



iuo^t.) whose absolute value is an increasing function of & hence 

n, and for densities between o and i , bounded by 

We determine the direction in which "E crosses the real axis on 

the complex E - plane at R«E(+iuXjfc} . The imaginary part of E is 

of the form 

where 

Recalling that w = o.iv and that [Hl-i) >o ;(figure 6 ) , we find 

that the derivative of T^£ 0 with respect to U J at ± UJ, is 

negative: 

A ĵ7~'±̂ r V M 
thus as to increases from -u»-£ to -oj| + t , TUA E?0 ( c u , £ ) 

decreases from a positive value to zero at -u^ to a negative 

value at - u>( v d ; £ (.u>j crosses the real axis downward at 

R*E ( - U J j., € ) • Similarly E(ujjO crosses the real axis downward 

at the same point as UJ increases from . u i | - £ to' <J-»I+ E 

Next we evaluate V.? to ( ±u>i, fcj . f?eHo C U J , € r ) , defined in 
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( 6 . 4 6 ) is of the form 

lM t fe ,M<\.l*'>),, lA^al.f^Wj a n d Hi-1**' written out explicitly in ( 6 . 4 6 ) 

are increasing functions of. € . As € and <JJ» C&) increase from 

0 to 0 . 4 1 6 and 0 . 5 4 2 to 0 . 6 3 9 respectively the expression in the 

square bracket in the numerator becomes less negative while the ex­

pression in the square bracket in the denominator is positive and 

increases. Compared to the rate of change of these quantities, the 

rate of decrease of — —L-, s irr is greater. 

Therefore £ - e £ o ( u j w k ) increases, and is bounded by . 

.(^.5"1) KzSLo (t O.Zklj o) = -6,121 N< Rf B0 (± (jj^ fe) ̂  

-0.6ttl|.7 = R e Eof + O.'OT, - o . t t l O 

We now investigate the zeros of I^E at the origin. In the case 

where both \LL>( and k. are small, the integrals A, B, C and D 

have already been evaluated (eq. ( 5 . 4 8 ) - ( 5 . 5 1 ) ) ; their expansions 

up to fourth order in k and in terms of 

v 1 * k x. 

can readily be deduced from ( 5 . 4 8 ) - ( 5 . 5 1 ) . They are 



'(.6.40 A & - t + ^ f u ^ ( -^('^^V'^h+V -I ^ ) • : 

i -

» 

(*.<u) P= .-*k-cife\ r+.ay) -H2.ckM(r-fc*--jV 

We can find F in a similar way 

The RHS of (6.61) - (6.65) are substituted into (6.34) which becomes 

after tedious but straightforward calculations 

I + i ( i + ? + i 6 t 4 l ) V y 1
1 j ( r + u L e : 

•<\ i + / . ( i + w ) ( i +?6 ) l ( i t ? e ) 1 1 1 1 7 

•• / i>7£i € + !»JMeV,ii2£«a
 + .roe e 4

+ 6 3 o e r ) +13 + € 1 15- 15" 5T • 1 3ir 

315- 31? 3 15- J 5 L 5o 

tr tro to J J 



In the dilute gas limit as bvi-? o and 5 ~> o (recalling that -j =-L 

the RHS of (6.66) reduces to the f i r s t two terms of the LHS of (5.52) 

which is the dispersion relation of a rarefied gas at low frequencies. 

From (6.66) we see that rwE has a zero at 1g. = °j 

crosses the real axis downward at 

0+z«)(u-*fe )"(n-re)^ » 7 7 

7 1 ' . 

R-tE (k,6jfe) has the sign of the expression ( if "5 ttofe 4-bvnv^1) . 

XwvG has a double zero at 

(j>.(>8) | ^ = 14- -<=> + l 0 e + fcVy1£ ( H - s ^ y 1 " 1 

There are three possibilities 

(a) For sufficiently large negative values of S 

H ^ + 16 t + 4- | r i t - ? 6 ) V •< O 

and the zeros ± of XVA E are imaginary. It follows from (6.69) 

that 

(:.b',) For ~|(i+re) v< !+ 5 4 - 1 0 6 + fc>Vvj'<o 

the zeros of TnruEr '-y-'+T^t.^ are. real and i t can readily be seen 

from (6.66) that 

&*(fe;i>,*) < foe (M,eJ <o 



(c) For I-f'5 + 10 f + fcVy > o 

the coefficients of a l l powers of (\+~s +\ot+ bVv^1) are negative hence 

From (6.66) i t can be seen that 

(a> T w t € ( b^jfe) ) > o 

so that when the zeros ± ^ T _ of IWIP are real, E crosses the real 

axis upward both times at Rt£ $•».«- fe) • 

To the three cases discussed above correspond the following 

hodographs 

Figure 7.a. Plot of E(w,k) for 1 + 5+- ioe + bV/<-ifi+^/. 
Unstable situation. ' 3 



Figure 7.b. Plot of E(w,k) for - | 0 + f * ) \ (*• S + ' O f + tV̂ '<o. 
Unstable situation. 

O J X , \ — <o 
J o / 0 0 RtE 

Figure 7.c. Plot of E(w,k) for 1+- 5 + 10 € +- t>Vvj'> o . . 
Stable situation. , 

(d) Discussion 

Let us consider the quantity |+ 4 1 0 fr +• bvvi*"K|' . For 

V(r). - ( 4 lW/W) e" d r , ' " 5 ( 0 is of the form 5 { I 0 »'^CoJ+0 ( kv) • 

Since k « I , one can in general perform a Taylor series expansion 

of about h = e> and keep only the f i r s t term, *5(o) , so that 
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But the equation of state of a gas of hard spheres with an attrac­

tive t a i l is 

from which one finds that 1 

i 
5 

therefore, to zeroth order in , ' 1+ UO HO fe- + ̂ ^v^ 1 is just 

_L_ times the compressibility of this gas. If we take V| = (v- bv\) 

|+"S(o) •Hoe+bV'v| l reduces to ̂ [o'JA-r^ which is proportional to the com­

pressibility of the Van der Waals gas as was pointed out by deSobrino. 

Figures(7.a) and(7.b) show that when the compressibility is nega­

tive, the gas is in an unstable state; figure(7.c) shows that the states 

traditionally regarded as metastable are stable against sufficiently 

small perturbations. 

Qualitatively, figures(7.a),(7.b) and(7.c) are identical to the 

corresponding figures of deSobrino. This is as we expect since in 

the approximations of L(£) and k(£) the difference lies in the 

accuracy but not in the method of approximation. Furthermore this 

agreement of our findings with deSobrino's was already strongly 

hinted at by the calculations of Sirovich and Thurber on sound pro­

pagation as i t was found that the Krook model, though not quantita­

tively correct, has the same qualitative properties as the higher-

moment models. 
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Finally, two remarks on the validity of the approximations 

made in this section: 

On the study of sound propagation, the agreement with experiment 

at high frequencies which Sirovich and Thurber obtained, indicatesthat 

the GJS model seems most suitable to the study of stability of metas-

table states which requires evaluating the linearized kinetic equation 

at frequencies ranging from _ <>o to • »o . 

Some doubt was raised as to the validity of approximating 

hy K(&e>) at high frequencies. We have argued that (appendix A) the 

non zero terms in the expansion, of L(,£\) are much larger than the 

corresponding terms of k!(£\) so that the latter may be neglected. 

In conclusion, we have investigated the stability of metastable 

states using a more accurate approximation of the Enskog collision 

integral and a more general pair correlation function and con­

firmed deSobrino's results. 



CHAPTER 4. CONCLUSION 

7. CONCLUSION 

By not restricting ourselves to a specific form of the pair 

correlation function at contact , we have shown that the results 

obtained by deSobrino for the traditional Van der Waals gas are valid 

for a more general gas of hard spheres with an attractive long range 

potential. 

Using the method of Sirovich and Thurber we find that, to f i r s t 

order, the dispersion of sound at low frequencies is the same as that 

obtained by previous calculations (except for the Navier-Stokes value 

which is incorrect); the absorption of sound, up to 3rd order in to , 

is slightly less than the Burnett value and slightly greater than the 

Wang Chang - Uhlenbeck value; a l l three are in fairly good agreement 

with the experimental result of Greenspan. 

Qualitatively, the results shown in figures 7.a,7.b,7.c , con­

cerning the stability of uniform density stationary states are 

"identical to those of deSobrino; here again the conclusion is valid 

for any Van der Waals gas. This consistency with previous results 

along with careful checks indicate that calculations are free of 

errors and that the approximations used are adequate. We have shown 

that a l l uniform density states are stable against- small perturbations 

these include those states at temperatures T<Tc and for which the 

compressibility (-§fe)r- Kr( it- £(o) + Vo 6 + ̂ k l j ) is positive and 

small. On the other hand i t was shown numerically by Strickfaden and 

deSobrino (1970) that these same states are unstable against suffi-



ciently large perturbations therefore these states are metastable. 

In this thesis we have assumed the following dependence of 

on r and t 

In analogy to equilibrium.theory where ^ is a function of separation, 

density and temperature, we may assume that ^ is also a function of 

local temperature (we use here Chapman and Cowling's definition of 

local temperature). 

faO \ = \{ ^(^>bV )T(i a>t) ; <r) 

this may be more realistic and the calculations do not seem much more 

complicated. Dymond and Alder (1966) implicitly took into account 

the dependence of on temperature through <T(T); they obtained 

values for the transport coefficients for rare gases at T>TC< and 

voru^ which agree to within 10% with experiment. 

A more difficult problem is that of using a velocity dependent 

frequency X{%) model to approximate . Except for the Maxwell 

gas, the spectrum of the -operator of a gas with a finite range 

has a continuous part (Grad, 1963) so that the method of expanding 

«L(4\.) in eigenfunctions of ^"Maxwell m a y he a very faithful 
reproduction of the spectrum of the ^-operator of a Van der Waals 

-X-gas. 

For a cut off potential, o£(-k) takes the form 



where W\ has a complete discrete spectrum 

(7.3) NHi* = M£)^C-

so that 

i=i -

(f,g).is the inner product in an L space. Noting.that the f i r s t 

five eigenfunctions are just the summational invariants with eigen­

value A'L =1, i = 1, 5, Cercignani (1966) introduced the 

following model 

which, when A is velocity independent, becomes the BGK model. The 

next step would be to use the approximation on the RHS of (7.5) to 

investigate the problems studied in this thesis. 

* ! However Grad (1963) showed that for a hard potential( V= 
^ 6 ) 5>r) with an angular cut off the Gross and Jackson approxima­
tion may be used. 



APPENDIX A 

In this appendix we shall present the calculations leading to 

an approximation of the linearized Enskog collision integral. 

The Enskog collision integral 

is linearized by writing 

(M 4= ^o(»t^) 

The result i s , to f i r s t order in 

where 

(n.3a) K'- •MĴ tr+I-r̂ )-»\(t-î)}̂c>t.xî g.«l|/ 

and 

4- <TUT.) ) - iin£Z.)( 

< U H e/(r-«L} ) ^ <r,̂  d a d 

The integral K is independent of . K is expanded in terms of 

the eigenfunctions *YC of the dimensionless linearized collision 

operator of a Maxwell gas L M 

(A.4) A » <i* +A i 



where 
H 

MM) £ 0 = 2. 

and 

cx» 
(A. « * b ) AX= Z 

Substituting into (A.3) we get 

^fe(Vi= ( K'+ Zl(iD) + 

Let us consider in detail the integral 

(M) -Sf'f&Os (j ^ ( ^ 4 - 1 ^ ) (hit) + V(̂ 'BVU) ) - y}(y-i<r_a)( 

expanding in Taylor series, keeping f i r s t derivatives and f i r s t order 

in perturbation 

(A.l) i'Cli,)- t (lt) + - ^ ' / ^ j 

where 

and 

c£ is the linearized Boltzmann collision operator defined in 

. section 5. . For a plane wave perturbation 



Substituting into (A.7) we note that since the f i r s t three eigen­

functions ) and are summational invariant, 

( M ) al t w o * 4. If Hf' + ̂ . • -^• ' -^O^'^ ' f Js<*|'*o (t=i,̂ ) 

while 

However, for t>5 H'S'il̂ o and ^I4i)jf0 ; furthermore, the 

coefficient of ( r ^ , ' - ^ ; ) ^ s\la « (J- in the integral in (A.9) is 

one while the coefficient of the same quantity in the integral in 

(A.10) is of the order of a-/([(k)«\ so that unless l t " * ? ] ) ~ 0 ( x - " t i l ) 
fe. 

(which is not the case for ̂  and Mr defined in (5.15) and, we 

hope, in general) we can assume that for 
l°£ I is much larger than \ K"(4i»̂\ ' and therefore 

Ih.H) <t'(V) = (̂4.) ~ *\&tl>) 

Eq. (A.5) becomes 

(.R.it-) â Uo- = £ ( ,<' + + s c ' ^ , ) ) 

2 & ( K* + v^li*} + V | K " M + >\£(U) 
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Expanding , defined in (A.3), in Taylor series to f i r s t order in 

cr and substituting the result into the definition of K in (A.12) 

we obtain for Mho) 

Substituting into (A.13) the values 
, . i ( - wt) 

we get 

' " " • n 
where 

An approximation of the linearized Boltzmann collision integral <L{k) 

in eq. (A.12) has already been given in section 5 in connection with 

the study of sound propagation. We now turn to the evaluation of 

the integral k.(£e) on the RHS of (A. 14); to be consistent with 
r 

the . 5-Moments approximation of we take &0=. Z. 4i , AW-
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The integrand of (A.14) is made up of three terms, one involving <ko 
— i 

a second and the third^ v . The f i r s t integration can be 

evaluated readily. Integration over J l yields 4JT SM\> hence 

• bI*jy\0 VtCT.jvn (<̂ '̂yfey l o u r ' * > fe^J>V«^i*»( ̂3 - V T S ) 

The z-axis. has been chosen along the k vector; In a similar way 

the third integral is evaluatedj the result is 

(A.14) H ^ M ^ f t * ! ^ 
r 

T' 
The.5-Moments approximation of * is 

5" 

In the 2nd integral, replacing Ko' by the RHS of (A. 17) we find 

(A,I"U) J-bi»j vu/iaih* |(dr'd^. -a^-ft-k { v + E 3) + -y-'u 

This integral is the sum of five integrals, the f i r s t one involving 

V , the 2nd one involving "C etc.... v - ' is rewritten in terms of 

V " ' ; we have 



- ( ^ ) ? ^ - ; 

These values are substituted into the expression (A.17a); the f i r s t 

three integrals of (A. 17a) involving v,z and "tt can be evaluated 

readily; as an example the integral involving is evaluated. 

The third integral is 

Integration over SL is f i r s t carried out. We take as -direction 

the direction'of <j. then dsi- Sv*6d.6 ; j j . j = ^ t 0 s e > ̂  c a n 

easily be shown that 

(A. zc) 

(A.xi) 



After integration over xz. , (A. 22) becomes 

now we take the z-axis parallel to k ; carrying out the integration 

we get 

In a similar manner, we evaluate i , and 1̂ , the results are 

•r '^1 b vi«, VKrd^ (1 - J -vr"1") -v-j x 

Hi^ the integral in (A.17a) involving , is written out explicitly 

using eq. (A.9) 

The f i r s t integral of (A.30) can be evaluated readily; the second and 

third integrals are identical and are also easily evaluated with the 



help of eqs. (A.23) - (A.25). The results are 

ts 

The fourth integral must be evaluated with some care 

(A.*?*) I\u. ̂  | | >vj WoV^uT IIn4"'da fi-f a>k i ( - . I J W X I J ^ - 4 ? V - ' 

In the coordinate system in which the z-axis is paralled to <̂  

which we shall now call the <̂  -system, the SL unit vector is 

The 3rd rank tensor J7|\fij .fLfe n a s f e n distinct elements 

> > > 

'uz\ = ' S ^ f l s i i ^ y ; Sl\£l\= $ ^ & - t 6 i V » t i ^ Y • ^ - ^ - j ^ S t a t e s Q 

_C2?^ t-o&H . J ^ H ^ * to^G-coS^ •SZ,Sl^~ it>C4 

Of these,only three give non zero contribution after integration over 

from zero to e.tr ; they are , _fl£_fLi and H^Si-3 ; also 

jvtj is a symmetric tensor (see definition of , eq. (5.19)). 



Taking into account these informations, eq. (A.33) becomes 

Z fe, * ^3 bvx» ) * [7 fet * ^ l,<Uj- ' 

First, the integration over JT£ is carried out; the result is 

Before integration over V*' is carried out, k^yj and fecfv^ 

must be rewritten in the coordinate system in which the z-axis 

parallel to k , which we call the ^ -system. 

Thus in the ^.-system 

(A.Vi) fe3 = -

. in the -syste' m 

(A.̂ a) . i . .fe » ^ k 

in the -coordinate system 

(ft.V?) (Jt.t)Z ̂  b : U = |v «. IA 



in the k -coordinate system 

•it 
Therefore the quantity which, in the ^ -system, is fe3 is 

^ ^ ( - - l h n ^ | H ^ ) / f i n t h e - - s y s t e m -
Similarly 

(f\.^>) fv^k; =_ (v. : l * i 

in the k. -coordinate system 

(A,4t) t Kfc =' (IT, ^ 

The RHS of (A.38), (A.40) and (A.42) are substituted into eq. (A.36); 

integration over V is carried out; the result is 

•The integral of (A.7a) which contains the factor $i , 

_ I 

is the sum of two integrals: the f i r s t one, X<r\ , involving Sv<vfi 

and the second one, X$-7 , involving C; ̂ '(v' 1 ̂  . Substituting 

for W> the RHS of (A.18), making use of (A.13) and (A.14), we 

obtain for ~r y\ 



The integral Xrv i S written out;explicitly 

The f i r s t four integrals of Zrz. c a n be readily evaluated with the 

help of eqs. (A.23) - (A.25): They are 

(A.u«) I j ^ b s | ^ i v | v i s l ^ ^ ( f a % - M r i - r i ^ -a-fc AT; Vâ y1*? w 

2TT i
vr) v\ 6Virr a^' /J^ '̂̂ B- •ft,J--9"k C ' S - <$•£>• v-i^uf' 



and l£"2^ are more involved and will be evaluated in more detail 

let us f i r s t consider X^e. 

z i r « o — 

Replacing, in (ft.ri) j by the RHS of (A.34) and integrating the 

result over si. we find , • " 

k^S^ and fe.s are reexpressed in the JR -coordinate system 

in the k -coordinate system ' 

( f t . ? * ) ' . ( s . i ) ( f e - i ) = l l s , k 

Substitution of the RHS of (A.53) and (A.54) into (A.52) and integra­

tion over AT' yields 

Next, we evaluate 



The integration over -Q. is f i r s t carried out following the same 

method used in evaluating the integral Iv^ , (A.33). 

4- ,i_-V-'k, ) ULT1 

Before integrating over AT' , the quantities in parentheses are 

rewritten in the K_-coordinate system 

•k . l S . i 1 

a ksz AT'- \ 
\ 

J= - W 

Substitution into (A.57) and integration over AT1 yields 

is obtained by adding the RHS of (A.15), (A.16), (A.27), (A.28), 

(A.29), (A.32), (A.43), (A.45), (A.47) - (A.50), (A.55) and (A.59) 
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The RHS of (A.60) is the linearized value of the K -integral for a 

plane wave. The sum of the f i r s t three terms on the RHS of (A.60) is 

equal to k($y%s) where sfL^ is the local Maxwellian; X ^ l r t ) is the 

approximation of K(£) used by deSobrino. 
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APPENDIX B 

We will now show that the function E(u^ k, V({0,ri) in the dis­

persion relation E = 0, (eq.(6. 34)),is regular on the upper half plane 

6+- . E is an expression involving the integrals A,B,C,D and F 

which can be rewritten in the form 

where 

"5 -

depending on whether X stands for A,B,C,D or F. (It can be easily 

shown that B, C, D and F are simply related to A). The RHS of (B.l) 

is a Cauchy integral defined and regular on the S+ plane; (see for 

instance R. Balescu, 1963). If follows that the poles of E , i f any, 

must come from the zeros of the denominator of & defined in (6.33) 

and (6.36) and the problem of proving the analyticity of E on Si-

reduces to showing that the denominator of Q , 

(jj.s) 9 U ' * + '±!±^L.(..i f\ + £ kb»« 8 -H) - J L ! _ ( f 05 + . 

has no zeros on . Of course tS is a sum.of A's and B's and 

therefore is regular on S + so that 

— L f Hll±d^^ H 
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is the number of zeros of 5S° inside . An analysis similar to 

the one carried out in section 6 is given here; the function ̂  is 

plotted on a complex $-plane as u? increases from - *o to °o on the 

real axis of the complex tu-plane.̂  

For values of oj such that , the integrals A and B can 

be expanded in powers of k/tto+l) (eqs. (6.40) and (6.41)) and the 

results substituted into (B.2). To zeroth power in ̂  , t$ is equal to 

The imaginary part of $ ? , has a zero at io =t 0 0 and t) 

crosses the real axis upward at 

From (B.3) i t is apparent that tvn^ also has a zero at the origin. 

.For uu near the origin, the expansions (6.61) and (6.62) for A and B 

are substituted into (B.2) the result i s , to f i r s t order in oo , 

l:»nlS(o1fe)=0 and $ crosses the real axis downward at Rz$>(o, e)* *• t . 
H ^ ? 6 ) 

The hodograph of -5 , figure 2j does not enclose the origin hence 

S$ has no zero on S + which is what we .set out to prove. 



Figure 8. Plot of 5f((o,-6) showing a n a l i t i c i t y of 
E(w,k) on 
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APPENDIX C 

The expressions - JvO) j I^C^U a n d |/4CO| defined in 

(6.53) are of the form 

9> (6) = J 

aw 

where 

then 

We wish to determine the sign of S(tJ which is the sign of 

F 1 ^ ) ^ ) - fi!(t)P(tj . The coefficients of p'ft-ft'P are 

H = O (4, b 0 - d o k i ) 

n-l -i( 4*b0_ dob,.) 
n = f « i t | - eiibi) + 3 (^ 3 i> 0 _ d o b 3 ) 

w " 3 Q-ib, _ a,b,) 

A sufficient condition for sVfc) > 0 (?'(*)•<. o j is that 

d w i b r , - Ay, o (Qvwbk,-dvib^<o) for YA > h_ because then a l l the 

coefficients are positive (negative); i f flw>o and b ^ > 0 for a l l 

m's then the condition is equivalent to 

( C l ) Q±?L > - 'vn>rf 
bw> b« 



9 6 

(This is readily generalizeable to the case where P and Q are poly­

nomials of degree N). 

The coefficients a* and bw of |T.(fe) satisfy (C.2) and those 

of- a n { i IMOl satisfy (C.I); therefore 
) u « - ) < 0 , <r'ce;<o and A(*)<o. 
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