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ABSTRACT

. Some equilibrium and non—equilibriﬁm properties of a gas of hard
spheres with a long range attractive potential are investigated By
considering the properties of aniequétion, proposed by deSobrino (1967),
for a'one-particle distribution fuﬁction for the gas model considered.
The solutions of this equation oﬁgy an H—theprem'indicating that our gas
‘model approaches local equilibrium. Equilibrium solﬁtions of the kinetic
equation afe studied; they satisfy aﬁ equation for the aensity n(r) for
‘which sbace dependent solutions existﬁand cofrespond to a mixtufe of gas
and liquid phases. - .
| Thé_kipetic equation is next lineérizéd and the linearized equa-
 'fion is‘appliea to the study of the stability“of the uniform density
'jstatiénary states of a Van der Waals gas. A bfief asymptotic énalysis of
: sound’propagation in dilute gases is presentéd in view of introducing
'én approximation of the linearized Boitzmann collision integral due to
- Gross and Jacksén (1959). To first order,tﬁe dispersion in the speed.of
. .sound at low frequencies is the same‘as.the.Burnett and Wang Chang-Uh-
;lenbeck values whileAthé absorptién of sound is slightly less than the .

iBurnett vaiue and slightly greater thah the Wang Chang-Uhlenbeck value;
all three are in good agreement with exﬁeriment. Finally, using:the me-" .
.thod developed in the previous séétiou, an approximation for the linea;
rized Enskog collision integral is obtained; a dispersion relation is
E deriQed'and used to show that the uniform density states which corres-
pond to local minima of the free energy and traditionally called meta-

stable, are in fact stable against sufficiently small perturbations.
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CHAPTER 1. INTRODUCTION

1. INTRODUCTION

Properties of dense gases can be studied hy means of fluid
“mechanics; The validity of thisvmethod is restricted; the fluid
equations which describe the evolution'invtime of the local density,
velocity and internal energy density are subject to the requirement
that these macroscopic quantities be slowly varying functionsvof space
and time i.e. that the ratio of the change in a macroscopic variable
to.  that variable, over a distance of the order of the mean free path
‘and time of the ordef of the collision time is negligible.

A more fundamental'approach is that of kinetic theory which
provides a molecular description of the'éas and whose validity is not
restricted by the.above conditions. A kinetic theory of dense gases
was first introduced by Enskog (1922); this is a direct extension of
fhe kinetic theory of dilute gases hased on4the Boltzmann equation;~
In the derivation of this equatlon 1t was assumed that only b1nary
collisions occur and that the molecules have no extens1on in space.
For a dense gas these assumptions no 1onger hold; Enskog made a first
step in the right direction by considering a gas of rigid spheres of
diameter & . For such a gas, collisions are instanfaneous»so that
bthe probability of multiple encounters remains negligible However-a
change in the collision frequency A~ ’results from the finite Volume

of- the molecules; this change is made up of an increase in A due to -

the decrease in the phase space of the gas and a decrease in. A, due




" to molecules screeningvone énééher:from the otﬁervbncohing moieculgs;thus
the collision integral‘oﬁ the RHS of the Bolfzmann eqﬁation is increased
by a factor of fL ; furthermore the.oﬁe—particle distribution functions
in that integral are evaluated af the center of thevcolliding molecules.
Althoﬁgh closer to reality, EnSkégfs‘theory does not alloﬁ for ‘the
occurance of ternary and higher g;der’collisions nor is the spherical
model a faithful description of the reai intermolecular potential. °

A rigorous kinetic theory of dense gases based on tﬁe Liouville
equation was introduced independentiy by'Bornvaﬁd Green, Kirkwood, .
_BOgdliubov,'Yvon in 1946. The only assumpfion in this theory is that
~ the interaction potenfial is an additive_two—particle potential..A Q .~
sét of coupled equatibns? the-sd-called BfB—G—K—Y‘hierarchy, is ob-
tained by integrating the Liouville équation over -the phases of N-s
molecules,(N is the total nuumber of’méleculés of a gas and s= 1,2,...
. N-1). A method of solving this hierarchy due to Bogoliubovlis clear-
ly presented in a review article by E.G.D.Cohen (1968). This approach
to the study of dense gases takeS'ith'aécount ternary and higher order
collisions; however,-although ﬁofe sétisfying than the method of Ené— -
kog frbm a ﬁafhematical_point.of viéw; Bogoliubov;s method has met
with some difficulty ( due to fhé divergence of the expansion of the -
two-particle distriﬁution function in terms of the one;particle dis-
tribution function) which prevents its ﬁse, at the present time, for
the study of the problem of condénsatidn. ' |

DeSobrino (1967) proposed an equation for the one-particle distri-

bution function of a Van der Waals gas obtained from the first




- equation of the B-B-G-K-Y nierarchy By rewtiting the two-particle dis—‘
tribution function ﬁi in:terms of the one;particle distribution func-
tion ﬁ' and the pair correlation function at contact'qJ . When vais
assumed to be velocity independent, this eQUation reduces to the Ens-
kog equation with an attractive~potential taken intoxaccount- deSobri~ .
no further assumed that Q is equal.to (hww which is equivalent to
stating that the model under conS1derat10n is the traditional Van der
Waals gas. The problem of determining the stability of uniform density |
stationary states was investigated using a simple relaxation time appro-
ximation for the collision integral. |

In this thesis the problem of apprdach to locai equiiibrium and
of stability of uniform density stationary states are studied in a |
more accurate manner. We do not use any specific'form of n which we
simply restriet to be a-monotonically inereasingz_centinuous function
of the density; we also obtain a dispetsien relation needed in the
study of stability using a'mere.accurate approximation of the kinetic
equation along the lines of a method'deyeloped by Gross and Jackson
'(1959)vand Sirovich (1965a).- | |

This thesis is d1v1ded into two parts, the first part to be
found in chapter 2, deals with the approach to 1ocal equilibrium and
the equilibrium solutions of the kinetié¢ equation (2.10). An H
“function is defined which, in the eqnilibriumllimit, yields the cotrect
thermodynamic funetions of a Van der Waals'gas; the correspondingvH.

theorem is proved for a distribution funetion ;, which satisfies our

_ kinetic equation; this implies that thelgas described by this equation .




'appfoaches local equilibrium, 'Sf%tionéty solutions 0f'(2.lO)Aare then
- found to obey an equation for.the density fn(é) which is identical
with the equation‘obtained by Van Kaﬁpeﬁ (1964)'fr0m equilibrium sta-
tistical mechanics; the existence of space dependent solutions of this
equation has been discussed.by Van Kampen (1964)'and Strickfaden (1970).
This equation also gives excellént agreement with experiment iﬁ calcu-
lations of surféce tension not too close to the critical point (Strick-
faden and deSobrino, 1970); | |

Because of the cbmpli;ated éxpréssionvfoi’the Enskog collision
integral, a calculation of noniequiiibriumvsolutions of tﬁe kinetic
equation (2.10) is difficult. However, for a gas in a near equili-
briﬁm state, this equation can be linéarizea and the result expanded
. to fi&st order in gradients V¥. about :g ;.‘ The linearized Enskog
. collision integral e(h) is éqgal to L (k) + K(h)- where L is
. ‘the linearized Boltzmann operator and K(@J is the linearized non-local
term. Even in this form the linearized kinetic equation does not lend
’ itself readily to practical cémputétidhs and an approximation must now
be introduced. In section 5 a method of appfbximating L(h) due to -

" Gross and Jackson is introduced in Conhectidn wifh a brief review of

~ the problem of sound propagation. in a.&iluté.gas at low frequencies.
In section 6_tﬁis method is applied to’the linearized kinetic equation
' Qf a Van der Waals gas in order to investigate the stability of'the
unifbrm density stationary states. We verified the conclusion arrived
.at by deSobrino in his less accurate'caicﬁlafions that states of a

Van der Waals gas, traditionally regarded as metastable, are indeed

stable against small dynamical perturbations.




CHAPTER 2. APPROACH TO LOCAL EQUILIBRIUM AND EQUILIBRIUM PROPERTIES

2. THE KINETIC EQUATION

In this section we briefly describe the gas model under consi-
deration and derive a kinetic equation for this model.
We consider, inside a cube of side L, a Van der Waals gas.of'
N molecules whose interaction potentiai is of the form
) Cfor rgo
U(r) = S f ,
Vir) for r >
where r is the distance from fhe:center of a given molecule and V(r)
is a weakly attractive potential with a range 4 satisfying the
inequality

| %ﬁh « & o« L

‘L is assumed so iarge that wall effects are negligible. No external
force is present.

For this gas ﬁodel, the'fbllowing eduatidn fof the one parficle
distribution fynction fgng,b)- was obtained by Grad (1958) ffom

integration of the Liouville equation over all coordinates except those

of a given molecule. . o c .
2.) 2f 28 _ L {ae'( ar dvOr-rn % inre vy
( . ot v E °r m ﬁdg |v-r‘\!;¢r‘ e . 2 FHEEY) ~

For convenience, we have adopted deSobrino's notation where (o

denotes a.unit vector; the‘symbol N indicates integration




over all values of . such that Q.6)0; ¢ is equal to E-

and finally § and ‘—g are related to & and g' as follows

(20 E- T+ lg.n)a ; . 8- (60)2
To rewrite eq.(2.1) in terms of thé-one-particle distribution
function we introduce the pair correlation function g, defined

by

@3 fi(rri 850 - irenfrgfir g

In (2.3) we have assuﬁed that'%z is not a function of-velocity;
i.e. that there is no correlation between the velocities of
neighbouring particles. Substituting the RHS of (2.3) into the

integral on the LHS of (2.1) and. integrating over &' we obtain

-~

.(‘M) — _l"-”—‘ “!r-\r'l &

.-\— | ’ 3 .‘ — - )
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where
e wtho o [ gondndy

* The value of 9 in Fig. 1 is a.réasonable‘épproximation to the
 %: of our model. The region wheré the pair,correlétion functiog_f'
_diffefs appreciablyAfrbm unity ié very~émall ((¢<:\r-r\‘g L3<§)i
" Therefore the contributioq to thé integral on the RHS of (2.4)

from this region-is-small;~so:that ‘it makes ‘little difference %<\




whether, in that region, we write %,or:\ . Furthermore, for \r-r'i)
1.3¢ , %ﬂv‘ . Finally since _uyf\gcvis very small compared to
the range of the attractive potentiél, the integration is extended

over the sphere \v-y'\ (& Thus the RHS of (2.4) can be approxi—

mated by

' | ' . o
2 gingt B Vierv}glendninfdes

(20) -

f(r._‘é,*‘)& $ 2 v (\roe®) Fon(r'® dr!

For a 'gas in equilibrium, it has been shown that, to first order
in dénsity gradient, (Lebowitz and Percus, 1963),

(2) gltnn) = glmloiny )
. (X :

It is reasonable to expect that the non equilibrium behaviour of

% _will be similar.and we shall assume that
{z.8) L, . trh < '
( ) I } J)‘ nt) =7 g/( WL—‘; ,’0);‘\'\1)‘
Returning to eq.(2.1), we note that the two particle distri;

bution function in'this equation, {L,*is évaluated at contact

therefore
(24 fetmraea,E5t) = 1 (n (e ) (D BOS (raog,Et)
23Y)  falep-te, 50 e qUnleriee,0)) £ iDL reg, 8y

LS

Where q‘is the pair correlation function 9 evaluated at contact




;

(2.46) A v]-( h.(\:.-\.-v\,Lc‘,LL) t)v)‘ = »%(m(r+{¢n)~t))@)

Substituting the RHS of egs. (2.6), (2.9a) and (2.9b) into
eq-.. '(2>.l) and expanding to firsglt derivatives in r about ¢

we obtain the kinetic equation '

or |
2

'°[°’

o Y T T
(2 \§) °r + X e -

L fvireomnars
ot £ Y

e
1

i

,Q‘(hcw)’j{n (35-28') G2 c»a_ga_g 4 f§,\w““‘”> ({? i
$a8) +y (8D 2 *l‘(‘."(b“)}-{’- <f:~5.l) ¢345_zd§’ |

where we have used the abbreviatiohs

1

(2 F- e 5 fe g

fsst
f“
N
KO
"
A%
g
=3
«e
e
-y
et

Eq.‘ '(-.2_.]_0)  is just the ‘Enskog‘. equation ‘w>i.t'h' a long'range éttr‘ac-b |
_ tive potential ‘taken info accoﬁnt by a'self consistent field |
appr_oximatioﬁ. The derivation o.f‘ (é.le from Grad's equation
(2.1) was due to deSébririo' (1967) ,v_‘T‘hroughout this thesis,

the pair correlavtio‘n function at contact, ‘rL » will be left as

an undefined increasing function of the density nr k) .
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‘Figure 1. Radial distribution function ve 8 = rfe

' for hard discs at Y= pVe/NKT: 5, V= N&¥vg
from an average of four independent ealculations
of g for a system of 192 discs( W.W.Wood,1968).
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3. THE H-THEOREM

We‘wish to show that»the kinétié eqﬁation (2.10)'05eys an
H-theorem. First we define an H function for a gas of hérd'
sbheres. One way of doing thig is to find the entropy per unit
volume'of such a gas in a uniféym, equilibrium state‘and guessing
the H-funcfion from this entroég. For-an infinife system of hard
spﬁeres the pressure is related to the free energy per unit volume

¢(Féﬂh).by (Ruelle, 1953)1' |

A . - 1/ ) U
(3">. f= (L (%)/F |
. A = M (pn) — $(8r)

On the other hand we have the well known equafion

(3.2 pe mer (i n(n)] . (e have set Zwetal ).

.Equating the RHS of (3.1) and (3.2) and integrating the result
with respect to n we obtain an. expression for the free energy

in terms of YL

(3-3) | <P((3.n) ='_'<7'(’n3nn " nf)](n)dn ) +m6—({5)

where G(:@) is some, as yet undefined, function of the temperé—

ture. The entropy‘per unit volume follows immediately

o) Alfin)- -:,—'(éf_)n'

2T

= =K fbon + n [ ntndn ) - o' ("G'sa"')
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"The RHS of (3.4) is an exact exbression for the entropy per unit
volume. of an infinite system of hard spheres in terms of the
density and pair correlation function at contact. (3.4) sug-

gests an H function of the form
1

(3.5) W j({%¥':f+ 417(n)dn.)/¢/:

In fact in the case of equilibrium when { is the absolute Maxwell-

ian

’é

3z (§- E)L

(1() - 40:; m Qﬂ__) 6 2k

—{

2TKT

we find, after replacing in (3.5) by the RHS of (3.6) and

integrating,

(3-'7)‘ _ , _H.—.’ m'&nn—n +n5yl(h)dn +.3_n (,(}nm_ _1),
o o KT

"From which the entropy per unit volume is

S

(33)  A(pn) = - KH.
e =K (h)mn—n +n5q(n)dn> - ___kn (,?M

ER
eMKT

Comparison with (3.4) yields

(1) P e k(A :m;a) K
whence _ |
(3.49) ¢lgy = Krl}n ':;“rn - ‘K1—‘ .

The H-function defined in eq.(3.5) for a hard sphere gas is
alsd the appropriate H-function. for the Van der Waals gas
described by the kinetic equation (2.10) since, as we_;hall

‘See,_the self-consistent field férm'in.this'eQuation is non

‘dissipative.. G



(313 | oM o - gf-j-g_;uag [ (Bga) (qTrr)de o (m\\»({«’-‘)g_nt_
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We shall now proceed to the proof of the H-theorem.

Differentiating eq. (8.5) with respect to t we obtain .

B.te) W [ (g
-t : 5%

%5"}93 + (hvlk(F_).)Dn

whe?e e

From equation (2.10)

24 _ _.t.9 ] '&_—-E.Q__ Vhr-v' ' ) : ‘ b
(?.\\) | _ _a,g = S’_ 31: +_T,n_ 3_3 arj (\Y’\:\) h(r)dr -\»7\’: K
~ where

g = §5 (F-gg)eocdady

B - ‘ | -..l /. A !
K s R IR 23D i () B e e)dndt

Integrating eq. (3.11) ovér %L we obtain the conservation of

mass equation ' ‘: L
N L

In equation (3.10), replacing a;kt' by its value in (38.11), we get
5.
the term involving the long range potential  v{(ir-¢') vanishes;

thUé_V(f) is non dissipative.

We have the folloWing identities B

G LS (g CFIEd - 2 (8 gngde « 2B fresae) [pedy

(315)

Calteae ot
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equation (3.13) becomes, taking into account (3.12), (3.1%) and

(3.15)

(ure) %: - j((u ;um%a‘s' N af" ﬁgas —vlng [{eae
J (%£+\)(V\T+ K)o\»

°F is a function of density wn(v,t) , therefore

(7) 3"7 Hédg RN CETII d® 9n . (rede S 2. f{8d

1
,.S
'_J.A
[VI5Y)
Ivl’ .
——
Ho
e
S
[§1)
]

-3
H\L '
.
L,
—ay
e
S
V11
\-.‘s.t

"It is well known that

Con) - o SGag e Tag o o ({845 4e (0.0 (8" 200 AR
| , , ¥
_and one can readiiy show that ,
: . . R
(3.14) § (Aad 0y g %ﬁfng;g’u CESEREL % 2

(3.17), (3.18) and (3. 19) are ‘then substltuted into eq (3 16)

which becomes, after some rearrangement

(2.10)._ %% N _a: S (qf -2 + (Fg)dE + f; .‘T%-u_']mnv'édgugcf-f)_
a(3{ 17) /&«% = .1{_ ”L\ o@dg’dsz (e n)(di i:)f{’mg H! dg‘*g"“‘ R

7222 w3 )
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‘With the definitions

- 1yg=1 - lg g—z\,\i ¥ = ..& PM_E,’
x— !f/i; ) 8"‘7.‘-"3\; _g_ } &= -?E&— o_'; f
the RHS of eq. (3.20) becomes
(3.21) Mt) = vl%lﬁg,\{(t-x)&x Y (-2 +80%) + 8('-7?+7°3w%)}ffé<:-5})o\§d’§3§’

~ The iﬁtegrand on the RHS of (3.§i) is identical to deSobrino's
eq. (3.12). To prove the H—theoreﬁ, deSobrino assumed that & and
& are independent variables. From the definition of X , to
vary % one must vary the functional form of'¥ ; but & - and $
>ére also:funétions of £ 3 thereforé inlgeﬁéral 5 and & are not.
independent variables.ii |

We have the equality

T n e ) FE (e ) dadndy’ - I 501t 3 () dndd

'so that DNt reduces to

n

() ' P(_y_,t), = 1-% jggﬂ{(néw)&m f?__S(MC. + %% %) }ff(é@)d_négd_g'

Let us set _
(@.224) alx,8) = (108N 2T (=% 4 Ak

and study the sign and magnitude of 4(#/&) as o« approaches
‘unity. We are interested in near-equilibrium states therefore we can

write

4 feliwR)

with lhl<«ct . To first order in "= Jy




.15

-~ Since AR - o ”f,
Ind = An{(1+083) = C&I
1=% $2%8p = 0(Th1%)

(\v—x)ﬂmx, - -[81°

so that " . _ ,
- (3.23) aln,8) ~ = (\-z8) LRI™

We recall that

I

He

2.8 _ daon ever Len 3£/ar~
-‘- T . f’ . g .
In this form we see that & is the ratio. of the'change in 4

_L'.
Ltﬂ

AL

over the distance of a moleculer-radlus tou{..v @ does not
vary appreciably over such a small distéhce‘so that (61<<|l )
Therefore the value of a(%,f) given in (5.23) is always less

. or equal to zero; it is equalLto»zerovwhen‘j=1 i.e.'f'= £‘“
(see (3.22a)). Retorhing to (3.22) we see that Pl[;fyg o 3
P(ﬁt}e 0 when 4:2® Equation (8.20 can be rewritten as

follows -

ot

G2v) e e g6 (e Frieg -8 o [[[oeen

(Eﬁ)-n(;{(*u’) _‘;:. o Trt)

-l'\zl

The physical meanlng of thls equation is clear. The increase in
. entropy per. unit time in a flxed unit volume located at r at time’

t ,auhc, is equal to the flux of entropy 1nto the unit volume due

to. flu1d flow (flrst 1ntegral on the RHS of (3 24))plus the flux"ty
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of entropy due to the fact molecules are not poiﬁts but oécupy a
finite volume (2nd integralj plus increase in entropy per-unitvtime
per unit volume due to binéry cﬁllisions, P(De). We note that the
long: range potential does not contributebto fhe increase in entropy.

Integrating eq. (38.24) over the volume of the container we obtain
3.2¢ 4 HU:.Hd = dio . VD(rbtidr
(325 aujv‘ I S “( ol <o

H is.bounded from belpw (Chapman & Cowiing, 1958) and for a container

of finite volume H0 is also bounded from below, therefore Ho cannot

decrease indefinitely but must tend to a 1ihit corresponding to a state
‘: of the gas in which dHo[dk»:é but if dMefdt=o , then %X =1 and

the distribution is the local Maxwellian

»

AV (o e B )

- ewkTint)




4. EQUILIBRIUM SOLUTIONS

The H-theorem of section 3 gives a strong indication that the
gas described by the kinetic equation (2.10) will approach equili-

brium. It is natural to seek the equilibrium (i.e. time independent)

Il

~solutions of (2.10) among the logal Maxwellian solutions of the form -

. c M (- o)t
(4) : -‘i“-)u,é) s min(m )P e zkT -

B - RMKTLr)
To find the functional dependence of n ,T andfg, on r we substitute
for ¢. the value of £“ given in (4.1) into (2.10) and obtain using
the summation convention

-(Ll.?.)‘ c“’a*”n’ +%&Mﬁ -.'nytauc'u'- +
. ) n - 3 S

w { (1+ znvt)a_frg 4+ nb'url + —i— a_f_}_é’, 42 P'c)’a"& + z"_,.f.c’ a“j]/n.‘.'ﬂ(,aif'};
. . , . A o R ;

WM IR 1 2pateY Lt dgnY S ot e
. X o ' ) :
L .w"wVw‘*{.»B“p —%_h.rkb“’p) = 0

where

13

2

. ) : M '
Each coefficient of the powers of w must vanish separately. The

coefficient of w'w*w? gives immediately

(4.3) . |

P = ™ _  _constant.
- LKT o

The temperature is uniform. -

e §-c ;0 et: afern 5 fVne fdrupergeg

17
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From the coefficient of w"w’ we obtain the following equation
A RIS L

For ug¢ v (4.4) reduces to
(L‘s-) . aMCv "‘b aVCM = 0 5 ( M,V = ‘aZJ;)A

For 4 =v (wv=12,3) we get &Tom (4.4), adding the results

.(q_() 1+ .;__m,l) SHe A =r;‘:,."b .
The general éolﬁtion of (4.5) and (4.6) is

'([(.'7_) - C = ‘i’,"ﬁ 4 Co

where w and < are constant. The general motion of a gas in a

stationary state is a-uniform rotation and a constant translation.

~

One example of such a ﬁotion is a“circular helix whose axis is along
the 2-direction; then g=(?wg,wz;cg fpr a motion described in
(4.7) thevshear sfress tensor is zero tq.first order in the velocity .
gradienf. | | i | B

Since P'= constant'and using eq. (4.6) we obtain for the coeffi-

cient of the zeroth order in w?* .

Ge)  cM3tn | o

h.
This means that n remains constant on the flow line.
From the coefficient of w* in eq. (4.2) we have

L,

| fVave u 3 % 4 2 o™
t.q) 2p e 4+ (|+§nrl) n +“na rL'+Wa an

h
o

—

n

when ¢ =o and using the identity

t.10) "(9!1 = %_-jv](v\)d‘n

or

" we reduce eq. (4.9) to

(Lt.u) oM ( Ao ;V\YLA-*- S)'.[d'n.‘ +. E{ggVn) O

ey
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or . , - :

(4.ug) | PN AL gr\(n)dm + E_P,W;:gvn =  conshank

This equation was derived by Van Kampen (1964); It is the‘conditioﬁ
for an extremum of a function % (wtr)) subject to the requirement
that \“\t)d: =N , ° When thi% extremum is a minimum -Z/kr can
be identified as the free energy ;% the gas and the constant on the _

RHS of (4.1la) is then the chemical potential divided by KT

constant = L - BT 4 M

‘where M is the pért of the.chémical potenfial dﬁe to the potential
'enérgy qf the gas and ‘%KT&ME%:T ié ﬁhé contribution to the chemical
- potential from the kinetic energy{f\  . _

Strickfaden (1970j;fusing-for: T " the Péde approximant of Ree
~and Hoovér (1964)Aand for V(r) thel(12,6)Lennard—Jones potential,
'-showed that for 1<v. , space dependént solutions of~(4.lla> exist
- which correspond to aAmixture.of liquid and vapor phases.

vFor an equilibrium state, eq. (4.1la) becomes

= = z 2wKT

(l«.nb) -4 - - Aan - - Sqdv\.-— ?-.f,-,,"jvn~g P M

from which one easily deduces the free energy per unit volume at y
: _ / ‘

G) = L) i i) +nle) - [y edn -
XY : |
3 m fh'; nin V(ir-r')wichdr!
nKY ~ : ‘

The thermodynamié functions of a gas of hard spheres with a long

" range attractive tail are derived from the definition of the H func-

tion given in (3.5). Substituting in (3.5) { by the local Maxwellian

Aot SC
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_fm ,‘\M\_ ')3{6‘:"{;(5—(5))7‘

Py and carrying out the integration

over & we get the ehtropy per unit volume
qo A | - IQV'Y\ - -
(42 ALpim) = -kntr) § Innt) —nr) +f‘qdm ”(’% o -1)

This is the same equation as (3.8) ex_cept that now n_ is a function
of v.

The internal energy is
o) U = ZNkT f-f.“'” (e YU (1r-x')dr dy!

v %NKT‘ + .ng nir) v V(‘T'\';‘)"\."“ﬁ’

where V is the long range part of U

The free energy is

'.(4..,, A - V- Ts

T ff ““i)““i"’ Var-r0drdr’ 4k (bwn ) d + kTjnTdr {imr%("—"’ )
L ; = 2 . “A2m kT

From (4.15) it follows that the.local free energy per unit volume is

(l;,lé)' | \P(h(r_))-.—. .%n(\;)jn(‘r;‘)V(\r—I‘ndr" + KT(m(r_)zwn(;r\_)'-n(ys))

+ KTM([‘)T(V\\\:ﬂ + 3 KT wir) m )
: R z 2w kY

‘This is the same as equation (4.12) which was obta'ined directly from
the kinetic equation (2.10). For Va_ uniform density the pressure can

| .be readily obtained '

(4.17) | . fu.=-j.r.t,1’<?_ (i))é.




CHAPTER 3. SOME LINEAR NON-EQUILIBRIUM RESULTS

We have been considering the approach to local equilibrium and
the equilibrium solutions of the kinetic.equation (2.10). We now
investigate some non-equilibrium properties of this equation. The
complicated expression on its RHS restricts us from the start to the
case of near-equilibrium states where equétion (2.10) can be simpli-
fied by‘linearization.

A problem connected with near-equilibrium states is that of
determining the stability of the uniform density stationary states
of a Van der Waals gas against small pertufbations; these uniform
density states correspond to the absoluﬁe minimum and the local minima
of the free energy (Van Kampen, 1964) and are traditionally called the
.stable and metastable states respectively;. For this problem the RHS
of the linearized kinetic equation is still unmanageable and an
approximation for- it must be found. A method due to Gross and Jackson
(1959) and later exténded by Sirovich (1965a) is used; (the modified
linearized kinetic equation will be calied fhe GJS model for convenience).
According to this method, the linearized.Boltzmann collision integral
L(h) is expanded in terms of the eigenfunctions of the linearized
‘collision operator of a Maxwell gas;:the first few terms in the expan-
sion are retained while the remaining terms are approximated by assum-
- ing that, as far as these terms are concerned, the gas is Maxwellian

and furthermore, that all eigenfunctions have the same eigenvalue.

W ‘ L 5>
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The GJS model is the oﬁly one which yieids results on sound
propagation in good agreement with experiment over a wide ffequency
range (Sirovich and Thurber, 19655);6f particular importance is the
good agreement with experiment at high freqﬁencies. This implies
that this model islvalid at high frequencies as well as at low
frequencies so that it is partigulaily suitable to the study of the
stability of the uniform density states which, from a mathematical
point of view, is closely related to tﬁe problem of éound pr0paga-A
tion and consists in deriving a diépérsion rélatibn E(w,k,V,n) =0

for a Van der Waals gas and evaluating E as a function of w as w

increases from -~ to oo




S. SOUND PROPAGATION AT TOW FREQUENCIES

Iﬁ this section, we present the GJS médel in cénnection with an
asymptotic analysis of seund propagation in rarefied monatonic.gases
in order to acquaint the reader w%th this model which will be
applied to the more éomplicated p%oblem of aeterming the stability
of the uniform density states of a Van der Waals gas. VThe results
of this section will also serve as a means of checking the calculations
in the étability problem.

An expansion of the wave number k for a Maxwell and hard
sphere gas up to 3rd power in a>‘is‘derived*using the GJS model in
‘which the first five terms in the expansion of L(h) are‘kept intact.
This value of k is compared to those obtained from the NéVier;Stokes,
-.Burnett, Super-Burnett, 13-moments andArecently Wang Chang - Uhlen-

beck approximations. (qu these values of k, see Greenspan, 1965;

also Foch and Uhlenbeck, 1967).

(a) The GJS Model

From the Boltzmann equation the GJS equation for M = 5 (N is the

number of non-approximated terms in the expansion of L(h) in eigen—>

'functlons of LMéxWell)ls now derived.

* For a GJS model, the collision frequency A\ is velocity
independent and it has been shown (Sirovich and Thurber, 1969) that
in this case the expansion of k in powers of w does not converge;
However, though it is not convergent, the series is asymptotic.

23
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The Boltzmann equation for a one dimensional flow is

(s - g% o ‘33% - [ ®(0,6)(TF-24") deded ¥’

where
) ' ' '
= 1E- %l ; { = {(r.%,t) ;. etc.
Eq. (5.1) is linearized by writing
(52) f=4oC1xh)
where
. m g*
_(5‘3) ’ ,_Co < m, (M )3’4 1 Rk,
~ ' ' ‘.(Kn (zm* o

eq. (5.1) becomes, ignoring terms quadratic in 4&

2t £ 0z

-

(5'11) (i 4 g L)e\ - SSJ 4: [&]E(Q)G)AQdédE' = x(&)

‘where

L4] = % NEANE NN

Dimensionless variables are introduced

(55) Yert . - £ AT VR R RS
’ kom0 Vergim Al Vg

where A is an undefined constant frequency. In terms of these

new variables (5.4) becomes

S L

G (2 ¢ ML )b - 1] $to ¢vmm) w'le] dedeo_lzi' = U%)

-,
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where _ ' : : : N
'2 .
- v

"

(1) ' l

1 e
(am)?¥z
«%(r;g;t) is expanded in terms of the eigenfunctions ﬂﬂe of the

linearized collision operator, L, , of a Maxwell gas. The double

index in ¥,, can be reduced to a single index (Sirovich and Thurber,

1965a).

"‘\'rmzm = i

Then
°¢
(5.¢) h= Zav
~ where o :
(m)'- o = Surtvidy :

‘Substltutlng (5.8) into (5.6) and dropplng the prime superscrlpt on t

x G and 55

Mz

L'\-P\':. Z C{\)\(JN\'J

L=t

(5.10) (J + \ra)y = L) =

<4
\s

where

(c,..).' A;J; IW'\‘}'\'{\."VJ')?\E

The follOW1ng approximation of the RHS of (5 10) is due to,

./

Slrov1ch and Thurber (l965a)
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. | N o o A
(5.12)° L) 2 A+ Apynn = 4V

U= LR

N é : N " .
= X ail\ii %] - ANe,an T Al Nr o Aaegnet A

i50= ) T e S

v
e

This approximation of L(h) is substituted into the RHS of (5.10);

One obtains

: W v
2 J A M
'({-H) - (ﬂ + VS, 33 ANH; ne ) b= .a__/'q‘/\w Y- Aurpns z[:—: ait

Ay

This model differs from the one of Wang Chang and Uhlenbeck in

that the streamihg term which becomes important at high frequencies
- is not truncated; this may account for the better agreement of this

- model with experiment at those frequencies (Figures 2 and 3 ).

* Furthermore the expansion of L(h) is not truncated; an approximation

for those terms which, in the Wang Chang ~ Uhlenbeck ﬁodei, have been
neglected is now proVided and takén into account. (Fbr a more
detailed discussion of the properties‘of the Wang Chang - Uhlenbeck
and GJS models at high frequencies,; See Siiovich and Thurber (1967),
(1969)).. . ' |

For U= 5 and for a plane wave perturbation a dispersion relation

.is derived from eq. (5.13). The wave number k is solved in terms

: of w

The foliowing quantities which“are heeded in the derivation of

the dispersion relation are now written down. The eigenfunctions of -
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of the linearized collision operator of a Maxwell gas,

G e -SSR
l V (ae+'h(r+2+3/z)‘)>l§_

e rl(2841)

i
i

r _ .
where Sy, and P are the Laguerre and Legendre polynomials
T . .

. respectively. The first five eigenfunctions are

M Yoo =

'\"’z = "?O\ = '\5_3 _
(5.15-) A "{’3 = Yo = E ( 1 %‘U’")
| Yy =

kN a S
Yoz = {\fs‘(vs-%v)

"h’ '\Pn =‘ \/;I;(l_ -'5—"\)'1)"/_-3_'

n

- Substituting these vaiues of ~y ({=1...5)  into (5.9) one obtains

the éorresponding coefficients g

(5’.@ S Ae G - Sw_&'dg = v

(_s-;m e s a1 Swrhndy = uy
NigDy 'q?-f' Ao ‘”’Vg{%gw'z"”w—’f ‘fW&;L!} s -\ET
-(5.\‘1) Ay Gz = 'i‘/;{:;‘”'e‘v;"\‘—r;%gwe‘vld‘:}f 1V3fuss
(5'203 . =  "3 E{J“’Ml%wf ;55 whude] s -4k S,

- Yand T are the dimensionless deviations in density and temperature;
U; , 4y and S, are the dimegsionless velocity, stress tensor and

heat vector respectively. =% i ¥ i
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Using the following correspondencé between the two ways of indexing

L k{7 (1) » '
] g [} :0’

a2 o | ,

¥ o 2 ;

LY { \ ¢

we rewrite the matrix Xi; in the form )\§g}g§

A Az Mz iy Ais h )\oéjoo Aoejon Aegjto Nog;o2  Asoynt
| oAu A Azy Aav Ay Noy; o0 Aovar Nyve Aeyye Aot

Ap Aav A Msuw Ayg

1l

.}\\o-oo Mojor Aiojlo )\\o;o't, A\o;H
A Az Agz Ay AeT ) B )\oz;em }\bz)-o\ )\oz;\o ?\oz;oz. >\oa‘.n

Asi Ast Asz Asy Ass, _ )\\\»;oo AMyor Auje X“}-gz Aus

The normalized values of the matrix elemenfs Ava;Qa' for a gas of
'hardAspheres are given by Sirovich and Thurber (l965a);it ié found
that the above matrix for a hard sphere gas is diagonal, thus forl = 5,
eq; (5.18) is iaentiqal for both Maxwell and hard sphere gases.

The matrix elements of Y (h) defined in (5.4) are written down
explicifly; to first order in perturbation'théy are the same for both

Maxwell and hard .sphere gases (see Grad, 1949)

,\00300': /\0\,‘0\ = ,\lo)‘|0 = o
(‘f.ll) N Oi;OL = - 6n, PJH;)
/\\\-)\\ = ~lbwne BL'T)

/\ 0'5;0‘5 = "qhn B(T)
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Where for a Maxwell gas

- (2) . 8 (o '_Z;XD‘_“Z['\J_
O At

—

(5.23) Tl) = T " smPecoste bab

[}

V. is the strength of the potential

5.24) NN = W/ r©

b is related to & by o o ' .
. ﬁnb d . ;
() = ¢ -
. (5'2 5) . 6 ) ‘fo (’_ @z_i(%)k )llz, ; ’

hY

(51«) V- Q)}.-Lz(ﬁs)‘* - o

~ and for a hard sphere gas

{5‘.7_'1) - B® - 26 ‘)TT“Tf/"‘” |

gl

For the definition of the dimensionless g&' ~in (5.5) we take

(5:29) )\:_' ~ Aoses = 9n¢,5(:)'

Consequently the eigenvalues of the dimensionless operator L -are

)\OO;M =_)\m;ol :,')\loilo-'—‘ o

(5’-24) Nox,02 = .

2

3

= b
>\ll)n = _‘1'
Nezje3 = =1

© It is now assumed that h is a plane wave perturbation

s

\‘(hl'sl-i— Wlt')

(5’.'3'0) — &(5';1-,5') = - &(r[)'e
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where x and t' are the dimensionless length and time defined in

(5.5) and kR and w' the dimensionless wave number and frequency

(s ke _kVemm
(#32) o' =

From now on all prime superscripts will be dropped.

(b) The Dispersion Relation |

‘4 In eq. (5.13) the value of  q; :,. }\\_\ > ¥y | andlb"%\, given
in egs. (5.16) - (5.20), (5.29), (5_.];5)‘5 (5.30) are substituted; the
result, multipliéd by \, 1s | »

- 5"33)_ (w +i-kv)b = “" {4 o (- '%1) v 253 (”5;—\)

’ kS
- { Voo wavy *l{\"’-'."ﬂ‘ + %; haz (v - 1,:)

x| li..8§v3(‘£§z-_\) ] }

In eq. (5.33), v,\.\.ﬁt—)‘\“ and S5 will be successively eliminated
leaving a relation between w and R .. First has and -6, are
reexpressed in terms of v s Wgo and ‘c . Multiplying eq.(5.33)

by' aren) v, |, integrating the result over «~ and making use of

egs. (5.19), (5.18) and (5.16) one obtains
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(34) wuy = R§w ok

f

R( ez vy Sw'?«\v"“olg)

= - k(\‘_\g'; + \;*'T)

solving for h53
(5:35) has «i_u.%,_ vV-T.
Eq. (5.83) is multiplied by wwn«v™ , the result integrated over

N yields an equation for S,

(5’.3&) 53 = ’3( v+ T) k_’;:_ - §u3 ' .

Eq. (5.33) is multiplied by ausw); the result is integrated over
A~ 3 ene gets the COnt'inuity‘ equation

(5.3’1) - wVv ku

i

3

The RHS of eq. (5.35) - (5.37) are:substituted into eq. ._(5.33);'

the result is

(5-3_‘&)‘ (Lu«r(, -hva)'@\ % ( V- ‘C (*J‘;Z'%‘) 4

{1

-y
2 (3t-2Y)

'\I‘3 "L—\) .+- V o+ V":.*é vy *__li'(,\rl_'_v:vz)-c,}; " v




33

Eq. (5.38) is multiplied by — {7 . the result is inte-
(Wi -Ry) ’

grated over 4 ; one finds

-(5‘.3‘1) V= L L___LQL{_'_ 2_’:\;-\/_,*5)(4};711)

'. ) 3 m o+ L (v )T
+_I(§9é(3r zv)(«rs_aﬂ;)4,v 4_%9'}1'34.-}2('\@ _\) }

To eliminate <t we evaluate the integral j whvtdar

5

first the integral _S wh (v ) C is evaluated; multiplying
) (R ns) - . )
eq. (5.38) py o R ) } andv integrating the result

over 4 we obtain, making use of (5.39)

, , , o W3/
. bo(oneviydr = W+ L S = {
e b < e ) ST

'é( Eu_.iv-v_‘c) | +

From eq. (5.34)

@ oyy = Wy
k 3  K+

(Cuy) jwkmwgz

 Adding (5.40) and (5.41)
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. 3 : : - - : Y B
(5:42) f'w%v‘dy = 2V oy Wy oL J W {
S S Vew /., wti-ky

W [ 3c-2v) s
_k_(f Z-)V3+-1'C}

'
]

\. X
-3(%v_.v-t)_+%

"
w
o
+
<

solving for T

et e Yp LY W

-+ 1_+. k? L“B i
(5:43) T - ke 3 1R Y,

3- 21 2l

A Rt

where o ' o : :

ot ' : . _4;72

I “Rdn g, L;jw T

(5uy) A= Vi e w+i- Ry 2 Vo Y% wrickg

Replacing in (5.39) the value of T just obtained we get the

diépérsion relation
. . ) i_ 1wt ) | (u _ ' w ) i -
(5:45) b= {G(?r@((ny.qz(o3w + A+ 2B +[%(cw)
- IEJ_'L.{..‘J‘(: —91} _EL‘L"- . )
+L6_‘:(v_33):| -t R ‘3‘(' 7 9 kB B i
k . s
-Iipn - 2 ¥p .
3 "3 3_1 % B

ol

where
: : 06‘. ' 'U’"Z/z ' ' ' . x ‘U:??/Z .
. =3 2 L - 3. 3
(5:¢) ¢z L C7eMs 0T s
o Var < w+L~|zqr3 2 ) . YZ'r—r - w1 -*R'Vé

This is the dispersion relation from which one can extract numeri-

_cally the curves labelled St{n-5)in figures 2.and 3. ..
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(c) The Propagation Constant k At Low Frequencies

From the dispersion relation, eq. (5.45), which is of the form

tluwk) = o we calculate the propagation constant k in the
lowarequency limit. To this purpose, E{w,k) is expanded in
powers of w . The first step is to obtain a series expansion

of the integrals A, B, C and D for small values of w.
We note that in the limit w—o %i.,cozxjfknlznnj therefore,
for the dimensionless values of w and R defined in (5.31) and

(5.82), limit *£ - \/&5/3 so that when w is small, kR is
P w0 b\ - .
also small and of the same order of magnitude; the integral A can be

\ :
expanded as follows:

R } du— ‘,
AL he L [ e TR
. L ” e~véQ dU' ’
- TV, g+ (@ (1- <) -
o _ - : 2.> 2 3 . ﬁ
L S [T e {1 e (§ ) () ()
where
<: B

carrying out the integration. up to the 6th power in’ w one finds

[5.48) A = ;;{l_ T+ T?U+13v_'f(J+3xU +m%i+ex}+310
o { R : :

. V ’ ' r- . 6 .
_"I‘_( Ve lort +as )+ ¥ st Hyr et s ) }




where

e w/l

In a similar manner we find

‘(SZH) B = -IC § Rz - %% 4 ,1}(3;,,.}3,&5 -' (Yo 4+ 1y o)
+?r(§x +3q13+!;xr) —fﬁ({z +Gox3¥Q§xf)}

R Y P
P15ad) - AT+ 302+ 7sx") 2 “C"(\-»um‘nux“uo:x‘f)}

) D= l,'{ 3z - entx y A3 Aw v1sx?) c¥(ivx 4 60xP)

v aslisx + 1sox® v 105x %) né1sx & 300 + €30 xF) }

‘Substituting these values of A,.B, C‘and D into (5.45) and after
tédious but straightforward simplification and rearrangement, one

finds
(552) e {(zox‘—rz) + ’1.(‘-(5"—6%2-(45"’1“)&- (=126~ 2M0xt

o

|

+2atx4) + (336 +10ugx? _y39 xhovesx®) ]
The expression in the square bracket is of the form

(553) E(x)= Eofx) * REi(x) + R Ez(x) + 2 Ey(x)= 0

-

\
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where

CEl = 2otz ;0 B WT-€xtoysgh

LB (W)= -6 -oxXt 4 292« ; €3l = 336 +|0‘t8,x,l—\{??x"—‘1ﬁfx-é

3

P

i
ol

A" solution 7':". of E(x) must be of the form
(5:5W) Z= Ao ALy + TR + O L3

substituting this value of % into (5.53) and expanding in Taylor

series

E55)  E(x) = Bo (et $03%,) toet 23Ey (2t 2s)

i : ‘ ne
€ (%) Aot .3L, (2 + 2%, + R32y ) Eo (%) + 1§ Elxe)
Yot g ('Li.m‘x,,+'L313)3E:"(u°)} tee- '7,3§ Ty l(2e) +on}
5 !
= Ea(%) + 3% B () 4 E (%)} +ruz§ %zEc:(lo) +'Z HE (1)
¢ ’ 2 ‘ . |
B () + Eu ()} R B b i Bl () ¢ L4 8 )
N ’ Ly P ' .
L F L E () +LUE () + N () + € (%) } =0

For E(x) <o , each coefficient of =™ (,, <o,..3) must vanish

" separately, thus -
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(556)  Eolxe) =

(5:57) XA, Bdlos) + Erlxns) =0
,(’5‘-5’8? C Za Bl () O SR ) (%) + £ (%) =0

/ 3 - rh ’ " i / . _v.
(559)  agEo(w) + 1T (%) Pl El'f(m)mlt-‘.(aa)uix,’a (%) + X Exlne) + E3(26)=0

Substituting in (5.56) the value of Eo given in (5.53), we solve

for x, 3 with %, known, we proceed to (5.57) and solve for

o o and so on; in this manner we find
Yo = V3IE
Xy = - £2 V573 . : -
Ty :
@[Go)

11

T

18
13.-; ‘TLV

therefore
N 2= oo Vs (s lu'd o't lel 3.’.557_)
. k' N2 800 -

and in terms of the real w and k

(576'2.) k--: C&( { + (,% 2 _ (%_le (U,\B '5-4




“w/n» is ree ressed in terms of & defined‘by Greenspan. From
Xp 2. « p

(5.28) and (5.23)

(5.63) A= g :J.
! i .
= In ls'n“’-;(o) ( )" n(i’a—) (for a Maxwell gas)
hence
ew) Lo W ,
2Vl :
In wl{n@( )Lp@)
On the other hand (Greenspan, 1965) 20
L  Gwp
('c,f: TKTe [ 3m ; fv:. mn 5 So= —6; . (/u: coefficient of

viscosity)

For a Maxwell gas the exact value of /J_ is (Chapman and Cowling,

1961)

5‘”( Kfum/ﬁ)é(szu/y)'/L

(Fee) /“= 8(1)(uTe)/m)

so that

B @hM)IMF%WZ

LR LR L wa LB AT L oy

..'(5.'.6'1)
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from (5.64) and (5.67) we find

o

y = 2
(5.68) A 3

Furthermore Greenspan's definition of the propagation constant (1965)

is
LY |

(5:69) kg = t’(zw) ( « is the absorption coefficient and v= w/c )
[

while in terms of o and ¥ our R is

(5.70) ko ¥+ix
so that
'k,* ,
(51} . kg = _."_UjT ( % denotes complex conjugation)

-

P

In (6.71), replacing k by the RHS of (5.62) and w/n Dy 2fst, we

find, for a Maxwell gas,

o X 7 T3 59
5-7‘?' = U+ — -— - L AT
( ) kg w“c‘} Lyo“c} 27'1,}
A for a gas of hérd spheres is, taking into account eq. (5.27),
{2)
(5.13) A= 9InB ]
= {_\iv\o@g’\/ KTOW/W]_
5
whence
W
(5.7%) = =

A .2_%Y\o<r7“\/ KTl [/m



P

ST AT wen U

e

R A A T R i LR ST S A oy

The fourth order approximation of the coefficient of viscosity of a

gas of hard spheres is (Chapman and Cowling,1961)

(5.15) = L0116 5 _VKTm
M p
. 16 w'2 o

Substituting into (5.65) we find

€ nikrim T7'eT

S(1.016)w

(5;.7() '“(% =

From (5.74) and (5.76) the following relation results

2
(1.o1¢) 3’13_ .

(577) w =
X

so that for a hard sphere gas the propagation constant is

. 7 P '
(r72) ko =0 bt e - SR
( ) 10 (1.016)7q Yo (1,032) Ql(ho“g)zg

- (d) Discussion

We note that for both the hard sphere and Maxwell gases thé

coefficients of »m%“ , n=0,1233 1in the expansion of Rq.  in

powers of %é- are independent of temperature. For a hard sphere

gas, the coefficients of %§ y Yoy s . ave 1.6%, 3.2% and 4.8%
. ¢ % :

smaller than the corresponding coefficients for a Maxwell gas; since



these models are the limits of the soft and hard atoms one may deduce
that velocity and absorption of sound are almost independent of the
natufe of the intermolecular potential,.however it was found  (Siro-
.Vich and Thurber,1965b)that in the moderate and high frequency ranges
the hard sphere results agree slightly 5etter with experiment.

The various expansions of %%_ for a Maxwell gas up to 3rd

order in -  are
T .
Navier-Stokes
‘- T - z{ 1l - - 1559
= v o+ I
(5.19) kg TR 2000 2000 %
f

Burnett

» o 4263 ®
' ko = L o+ 1 M3
(5“.30) : % ‘VI"}, b '1; 2,000 ’L%
Sﬁper—Burnett »

T 9. 102563
13-~Moments
_ . 3 521

(5.82) - hﬁ S LA + 7 Theoni
) : to '1% ‘1'0’24% . 9
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Sirovich - Thurber

w0 ke Log 7 A TS & |

The‘first term in the.expénsion is'thevconstant speed; the second
.term is the classical attenuation; the third ferm is the dispersion
in the speed. All ) 5%6 agree up 1:_0. ,T-l'f%_ ; allb k%'o except the
N-S value agree up to- %% 5 all coefficients of %%‘ are

different. They are 0.779, 2.10L, 2.872, 1.318, 2.578 and 2.185
respectively.

The Navier-Stokes equations which are a resulf of the first
order Chapman - Enskog method of expansion in powers of a parameter
proportion to . 1fng are therefore valid ohl? up to fjrst
order in /7, so that the coefficiehts of t/Qié. and l/ﬂ%‘
in the Navier-Stokes expansion of ké cannot be trusted. |

In figures : 4! and 5 are plotted the'quantities L%zh-ﬁé)/sz'

" and (V= e/c) vs m't for fhe different theoretical models
and the corresponding expérimentél values of Greenspan for Neon.

Recalling that

A+ 1Y ®C 4 U Ce
(5:85) &ca = " = W + ot Z
o
and
G = L
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we see that (t;cb/g) and L%;zl-dgé)/gz‘ are br0portional to the
third therm of k% and the fourth term of. ke  multiplied by .y
respectively; thus ali values of (1-c¢.ic) except the Navier—Stbkes
value are equal and all values of (:%mﬂ_iﬁi)/%hf are different.

The Navier-Stokes and 13-Moments values of (i%q}_%é%)[%m'
in figure 4 are certainly too small. The slope of the B line seems
siightly smallér than the slope of tﬁe eiperimentalvcurve at the
“origin since the B line lies below the 2nd and 3rd experimental
points from the origiﬁ, |

" As expected, the_Burnett“valué of (l-—cdé) in figure 5 agrees

wéll_with experiment while the Navier-Stokes result is too small.

‘In.conclusion, we note that in the expgnsion of k%, in powers
of 1/ the coefficient of Q;; is the same for all models.
The coefficient of nﬁf is sensitive to the method -of approxima-
tion and is different for each model. Comparison with experimental
dafa'for Neon does not reveal which coefficieht of W;;. is the
most reliable;-however, it can be fairly safely deduced that the
experimentél value lies somewhere between 2,101 and 2.872 and, as
far as agreement withvexperiment is concerned, any .of the four

coefficients of w;: of B, SB, ST and FU is within the right

ball park.



Figure 4.

Figure 5.

Comparison between theory and experiment of the dispersion
in the speed of sound at low frequencies. SB = Super
Burnett; FU = Foch-Uhlenbeck; ST = Sirovich-Thurber;

B = Burnett' 13M = lB—Moments; dots are experimental

values for Neon,
.ol F - Colc

06

Burnett

/

Navier.stokes

Kide

Comparison between theory and experimentAof the non-
Kirchoffian frequency dependence of the absorptlon
of sound at low frequencies.
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6. METASTABLE STATES

. The existence of superheated liquidband supercooled vapér states
is well known (see for instance Landau and Lifshitz,.1965); they
correspond to the sections on the F—V‘cﬁrve with a positi&e slope
below and above the parallel to the v -axis which divides this curve
into two parts of ?qual areas. Van Kampeh (1964) showed that the deh—
sities v of these states are the homogeneéus éolutions of eq.(4.11a)
which correspond to local miniﬁé of the free energy; a more general
treatment of this topic was later given by Lebowitz and Penrose (1966i
The corréspondence of these states to local minima of the free energy
implies that they are thermodYnémicaliy stéble i.e. they are stable
against small perturbations which vary so slowly that they can be
 considered as a succession of equilibfium states.

One cannot find out from equilibrium statist;cal mechanics
'theqries whether these states are stable against non quaéi-static
perturbations; for such an investigation a kinetic theory approach is
more appropriate; deSobrino (1967) was ablé to show,'using certain
approximations for the RHS of the’lineariiéd kinetic equation (6.19),
that'sﬁperheated liquid and supercooled vapoi states are stable
agéinst sufficiently small perfurbations.‘ In this section, the pro-
blem of determining the stability of these states is reconsidered |
making fewer and more accurate approximafiohs. '
" From a mathematical standpointjthe problem of determining fhe

stability of a state is closely related to,the problem of sound pro-

pagation; it requires deriving the dispersion relation



file:///r-axis

0 E(w,k, V(k), n) =0

for the Van der Waals gas described in section 2 and studying'the
propérties of the roots of this equation. The main problem is again
to approximate the linearized cofiisibn integral, J(%) , for such a

gas, J(AJ‘ can be split into two éartsA (appendix A).
6y . T@) - L)+ ()

where L(%) is the familiar linearizéd collision integral of a dilute
gas and K() , a non local term; In deSobrino's'paper L&) is approx-
imated by the Krook model which is a speéial!case of the GJS model
vw‘ith’n_= 3; K(&) by K(_ino\i“’(()‘ _aﬁd rl by (1-nb)""
The Krook model dbes.not yield correct resulté for sound

~ propagation (Sirovich and Thurber, l965b)and though it might be
suitable for a qualltatlve analysis such as the study of stablllty,

a certain uneasiness about the adequacy of this model persists.

. In this thesis the GJS model of the previous section (L= 5),
is used to approximate L(h) ; %d%) ié approximated by K(é;qiﬁT);
furthermore, exéépt for the requiremeﬁt that it be a monotonically
-increasing function of density, which is physically plausible, no

assumption is made on the functional form)

(a) The GJS Model For a Gas of Hard §pheres with a Long Range,,
Attractive Potential

N

~In this section the kinetic equatién of a gas of hard spheres

with an attractive tail, eq. (2.10),  is linearized and a GJS model

of this linearized equation is deriVed:for-a plane wave perturbation .

47



On the LHS of the kinetic equation

6:3) - 2£5 24 E.?_{_;al'a o
( T wg'gﬂ:’v(:;-:nnmg

one writes

(ew = 4o(hvh)
) o= e Y
(c.6) T o= omeQld V)
' (6.7) 'V = V(v)e u(k%—wt)

and obtains, to first order in 4 and v,

N 1 R N R O L L v}
v , - KT
where

"(c.a) vik) = fv(r)e"f’—z“:a;.

The collision integral for a gas of hard spheres

(6,@) j‘({) = ﬁ { *‘L(E+;"a~£t) f(':)#r'(y@g) —r((r-.\i‘;{z.)i(:)'{(:—w—p}x,

gt dnd

‘where

is linearized and expanded in Taylor series up to first order; the

result is

) T = e { q¥@) F Y Uhe) }'
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where

.12) Lz § £/ T41e*g.040dy

(6.‘3) . K(&g).:’:" Hn x; o . {v,l + VLV(E\;'\'&L)}Q-L_'&‘J__?,JE’.
(ALY R 5{ ai Vi

1=t
It is shown in appendix A that ¥(&) can be approximated by K{h:).

For a plane wave the RHS of (6.12) and (6.13) become.
() LI AL = AL p (-2 v L8m (1) - [V ruam

e A vyt . ?
LT e D) s (] eh )

(6.1¢) 'k(e\.,); iknob»T\/m/m {_( ms_v;q,z)'ugv + 4 —%V’)Va'“

2 T 6.t
TSNy by -

(-gw-gvhis - £ (-3

, (chat; -

g

-+

(

w{n

S3
350

(%]

arte st reat) b

-where

617 '\j: = J S

foark (e

(6,\?) : 'b“;—' '_Zivc-B
Nz dn/dtneb)

the dimensionless collision frequency )\ is defined in (5.5); the

dimensionless collision integral LK) is defined in (5.6); its value,
| - the RHS of (6.15), has already been defivedtin section 5. The eva- ‘

luation of (ko) is carried éut i‘n appendix A. C

In the linearized kinetic equation

(é.l‘l) Jo %% = 4o { '\i(e\) + K(‘e\n) }’




50

replacing Qé by the RHS of (6.8), _o'f({‘) and k%) by the RHS of
(6.15) and (6.16) and expressing the result in terms of the dimen-

sionless variables

620 e eER
. , ;A
(€20 .- Cw'= \' w/)\i]

and 4 defined in (6.17), one finds, after multiplication by L

by (wriomh “;Z(WW’ “‘W {5 1) 2
U_&
¥ [v+u3v + 4 ('\r-a)'C +.3_‘,33( ,.)-r_Ls s _,l)} } - kmby]{

i : ' .
B S A DA AT Lt +("-;“fa A uy- £ (-3 -2V ey Jup,

- (- ‘*'L'\Fg'zw- + 347! +\>_'\/'3 ) l

“)

The 'prime. superscriptson ' and K have been dropped. Eq. (6.22)
is the GJS model for a gas of hard vsphevres with an attractive poten-

tial and for a plane wave perturbation.

- (b) The Dispersion Relation

As in section 5, we proceed to elimi;nate successively R13,53,Ua,T
and v from eq. (6.22). We multiply (6.22) by wiv)v; integrate

the result and taking into account egs.. (5.16) - (5-.20) solve for {3

w?

(6,23) tbas = “ - g“‘lbnm—.btnlrt/) -'C( l——bnyt) .

I+ =2 ’ .
Fom o




where

(k)\q/\/KTol )

1

KT,

(6.24) | g

Lo . . N z : ' .
To find S; , we multiply (6.22) by W)V and integrate the result;
. we obtain |

w (3T -2v(i¥ bn‘n_)) |

]

_ (c%y)_ - »5‘3 ”:%“’L -
Multiplying (6.2'2) byi Uriv) 'a.lnd integx;;';ltiﬁg' one fin.ds..the continuity
‘equation | ‘ | 4
(6:-26) _ ' wY - kug =0

| In (6 22), replac:mg ‘\33 53 and u3 by thelr values in (6 23), (6 25)

and (6. 26) we obtain _ . ,".ii""

' 'C(H‘bnq) +v()+ T+ abnn 4 bn 'l - ‘;’:)

(6,27) , (wa~kfxfg)-?\= o2y, {L (%"J
7"
.;_ l’“'l“’%( 5+;v+§ﬁ)}+ w3t -2v( \HMU {“v
‘ S 3b"'l i (-“")"'
a s HZ@_ZW HWHWN}} ¥ V““fs(é +2*""1 +b‘n"z'+‘ 2

. 2 '
AL o wbhvk 'V ;—_L..Vg )} +‘C§2£ i 3) - hbnvuri(% .3_6 }

- (6.27) is multipliéd by _w(v) and the result integrated over v~
, W +{~Rv; e '
. _ 3 . ,
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- ~ *fs/z B ban) +¥(1+ S+ 2bny+ b '-“—’-:»
€0 v _L‘S Iy {_ T(irbhn) + ( Pt inm - (
. : Vo . wai - Ry :

T
L+ ?bnr\

.-(«r_,, ) +2 kb“*l( 1,-3*)91,3))_,_ g lst- ’LV(H—thO) (—‘;(4/'33-3“3)
\+3bm‘l 18

i

‘ . \ Vi o . * N
+,33;_ lzbm\ (-G-QV§+5"\/‘3 ) ) +V( kv3(§+2bnq +b1h’q'+ ‘?) L

- wbm (-3 ) F(E () B (eren)) |

-To eliminate T we must evaluate the integral jw‘e\vldf_r . First

we miultiply (6.27) by (“rg)f"fn*"r:) and integrate the result.
L- R , . ,

Making use of (6.28), we find .

 1-. Fi&\r_{_( L +$ %bny\l)

(gj\q) ' . le‘V’)Q\(’U’T*’Vf\M': W+ Var =% Wii-Rey

(“‘b“‘U +v(1+ G+ 2buy+ b W' ht) . :Lﬁ(zt-zv(wb»q')')(;_w . \abw\ 2 (

= Zomy T 35

o o
q+gv;‘)) +3‘__b»7vkwv + 'c(‘zt,+?kb,,,mv-a)}

The integral furh«rgdv has already been evaluated when YLB was

reexpressed in terms of v and T (eq. (6. 23)); it is

- v v o~} \U-L
C (63 SW%\V;@' s - t(%hiﬂv(H S 2 ¥ v ) ¥ VT

\ 2
ML

' Adding (6.29) and (6.30) we find
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¢ : } , ‘ , N , w_y\.
. L. b Vi 1+ ‘5‘\‘2\7“ + by ,'B“,,/
(6,3() : Sartwrdr - 3V ¢ T - T (1+bnn) 4V Y ' U {
C \+ 2 by
=L

< " Wo(g3r zv{i+bdny) . i
é,shb_vla'\-\}\\-n, ( W-{&.LB"'

3,
'\ + EDHYL

.“.l\.+
3

12 Rbuy (A~ 6C) L+ ibmlwv}v +
- 356 it ]J LY _ :

T2k + %mm\a)

And from (5.16) and (5.18) we also have | o
(63 (wrwrdr < 3(tav)’

.'Bquating the RHS of (6.31) and (6.32) and solving for T

‘ o : U v .
C (623 ‘T = V{— L+ B4 2bays bty - g (—.;.A-».;{ Rbny B +1)
v . | + %_bnvl “%—

.’2{(]-&5“)1/) P 12, kb : A + B_ A
T E (3L3+ 35, m‘(.frgc))' 55”'L‘”} }{

y 4 1t by (.._'L,AJr_G,hbmleH)_ '(iiB -
1+ 2bn ER] 2 bn 3
s o 57

2 kb A+ é€c —ll'hﬂ»':‘-hbn B - '
350 mi( )) 5 1 } -
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Substituting this value of ¢ into (6.28) we obtain the dispersion

. relation

,(634)' | = - (.+ §+2bnq+bn ﬂ' E) {i.a—h)+ hhq(‘63+ Qb)}
’ + —E_thL ¢ 2

C 2R {L (b-38) + kbny (-6 B- QC-ffF) } ¥ RB( Ty
1+ %bml 18

D e : 5 .
anV\ v b“LY\|+Lk1) + LA - %?ny\m (\A-—C)'.-\- {- VR (_&g_(

\-\'E;’bhv\
_ | L. |
c-8) * 3 Roun (- 1 g + w L (D-23B) + kbn
‘ FrRRAN N A sb)) Tg;“‘( (P3RBT v\(_

-¢h-9c + 5F) ;s_o ) + .ia(c'“)+ h“w] (B+ 39)}@\
a 10

. where

‘A, B, C, D are defined in (5.44) and (5.46)

o
- - A
e 3/2”3

(6.35') ' R e

) - ’ V-?.—\T’ —y w-}i—kﬂ‘.s
and ?
(¢. 3¢) | ad= 3

in the”limit as bnso , 5> 0 and W'5‘ , equations (6.33) and
- (6.34) reduce to equations (5.43) and (5.45) of section 5 which are

respectiveiy the equation for 7 and the dispersion relation for

-a dilute gas.
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(¢) Stability Criterion .

"To study the stability of uniform density states we consider

the behaviour of the perturbation &\«r)e_k(h?wt) in time. The
space dependence of 4 is kept fixed.

The dispersion relation, eq. (6.34) is of the form

- (u{) R, V() n) = O
k, VIR) and v, are parameters énd w is variable and complex.' The
values of w( k,v(k),n) for which E:Q .are the frequencies of |
oscillation of the fluid. »A zero of E in‘t_he upper half plane S,
_corrgspohds to an exponential grthh indic_éting that the ﬁnperturbed
state is unstable. A zero of & v‘on the real axis or on the lower
- half plane S_ corresponds to a stafionary‘ or damped perturbation.
Thé problem is to determiné -wh'e‘ch‘er E  has zeros on the 5.
plane, One has the following theorem. (see for exémpie Wylie,1960):
If 4("5) is analytic within and on a closed curve C and if )

$tz) has no zeros on C then the number of zeros of £(3) within C

-

.J.S
\ - ] | '('{rﬁ.
(€= = mgc %4_3)47?”

. Ihe RHS of this eqﬁation is Just the net number of times 43) encloses
the origin counterclockwise on a complex‘_‘ {— plane as 7, moves along
C once. |

To find the ﬁumber of zer}o_s"cv:f ‘£ on’ $+_ , we fii'st show that E
is analytic on S+ , (this is donme in a\ppendix B) then take for con-

tour C the segment of the real axis between -R and R and the

5 omicizele on Gy With radius B and centered at the origin.” In‘the
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limit as R—=>°? ,( encloses Si . Next we pidt Elw) on the
complex E-plane as the complex variable w moves along’ C 3 this
plot will show the number of times é(w) encloses the origin counter-
clockwise. It will be shown that in the limit as R-» « , E (w)
remains constant on the semicircle and it is sufficient to plot E (w)
as w 1increases from -~ to o0 .on the reai axis, In fact we .
need only find the_“ zeros of the iméginafy part of EA (wy » the corres-
ponding vaiues‘ of the real part of E (w) énd the direcfion in which
Etm)‘ .crosses the real axis at these points.

As it stands,‘ the function Blw,k,v(k};n) defined in (6.34), |
does not readily lend itself to analysis. 'We_ now dei'ive approXima—
tions for this funcfion for variéus frequencies.

We have mentioned in the beginning of this subsection that the
 dimensionless wave'number b is kept fixed; Qé will _noQ estimate the
order of magnitude of kl for which - v%tf—) ‘V'ghl\J 7’, the term: in the
.lin-e.arized kinetic equationl (6.22), due the attractive potential, is
noh'negligiblc:z compared to the_collision integral.

The Fourier transform of v(r)

v etErar

’_v(k)-

can be rewritten as
. og

V(k) = g%fé rvir) Smbkrdr | - g

_ and since V() has a finite range Ey

c A
V,(k_) = (i%; g'o rv(r) Smkrdr




We assume that for o<r¢d there exist an M and an m such that

- M rv(r)-m

then we have the following inequélity
[

“—E‘;_:“(_Cos Rd-1) ¢ . V(R < L_,‘é[m(coshd—\)

. (i) When Rd« then 1= ~'E>‘7d ‘and’ coskd  can be expanded

in powers of kd 3 the above inequality becomes
- 2n Md3<¢ vik) <~ 2 md’

For a slowly varying potential M is not much larger than m and M and

'm are of the order of V., where ocred and V, is the strength
: - 2

of the potentialj; it follows that Y\\\i(b‘) ~ o(‘{: % s A is the

~ interparticle distance. In order for the so-called metastable states

to exist , the temperature T must satisfy the condition -E{(—T7 1

Y >
where Ws= - fvtmde  and b= %T\'cs"‘3 ; but - IV(r)d»: ~ Vo 4®> there-
fore WV(Q) ~ o( ) ) . The term; in the linearized kinetic equa-

tion, due to the attractive potential is- ﬂégh'vg v s the dimen-

. ' ! : '
sionless wave number 'R  is the ratio of the mean free path -a. to

the perturbation Wavelength - k'- %-. | . t,

? /\)-3: v KTo/m

~for a near equilibrium state the velocity distribution is almost -

e

Gaussian so that V3 ~ | ‘. Therefore “Véh> vz k'V NO({ )BE%V)z
(%)3—2% 'E‘ v - Vi Por a Van=der Waals-gas 4= 3b  hence
({é)g ~ 0(3) so that, fox: a dense gas, (%) ~ o (1) .

The mean vfree‘ path a is of the order of - = (%)ZA 3 then

b

Z ~ o( A) ~ 0 (') ; the mean free -pa’th . for a dense gas, is

of the order of the 1nterpartlcle dlstance In section 2 we have
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-assumed that dy» a ; therefore d4dyya . Also, since o<rdd

and fyd , then Ay ; therefore

“Z(:) GRV~ 0 ((%?)3 g%v) << Y

The rate of change of A due to collisions, (94(dt), , is, in dimen-

sionless variables:, of the order of - 'g\, ~ ) . 3 therefore, fo_i* wave-

lengths 4»& »a , the term in the linearized kinetic equation due to

the attractive potential is negligible-compared to the éollision term.

- (ii) When kd~1 then QEJ'EN d. ; our inequality becomes

M -

K
and
V(k) ~ of k_:_;) . verd? ) |
w0 o () ~ (i)

Kt T

In this case the contribution to the linearized kinetic equafion due
to- the potential term is much l_arge,rv .than in (i) where f3dna while in
(ii) 4~dma. . If we choose T small enough this term will
Become non negligible compared to thé collision term.

(iii) When Rd»{ then ,0-.,1‘;l «d . For JA~gq we have

b b

KT

ey (T 5 0 - O R <

EY
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‘The potential term is much smaller than its value in (ii) since it

is proportional to (4} while in (ii) it is proportional to % .
prop : T : prop 4

(iv) When kd»! and l((a«d , then.,

' | 3 2 . .3 .
) v e of (<) (8] z‘%%v); GRS

nV(k) k'vgv is smaller than its value in (iii).
KT - '
In conclusion, we see that the values of wavelength L for

which AL Ty k’v is largest are those of the order of the range

g

of the potential: l~d vya  so that f’é’; 3’{—- < . For these
values of 2 , when the ,temperature_is; sufficiently small, the con-
~tribution ‘due to the aftractive potenfial is non negligible compared
to the collision term. For wavelengths too large or too small

(4dwd  and Lg¢a ), "_L\l/_f:hl'\/"g R'v is negligible. We shall choose

.'lz/ _suéhtha't - -

_"(s.égﬁ R'w 0( ) « 1

In the above discussion on the magnitude of the wave number we have
used the original lnotati'on where k. i; _‘I:he real wa\}é number with
dimens_ion Lq and k is the dimensioﬁless wave number defined in
(6.20).

We return now to the éroblém of apbroximating the function
é(u}}h!) v({é‘),n) and for the remaining part of this chapter, will be
dealing only with the dimensionless wave number h' ; the prime super-

- script oﬁ ‘\Rl is again dropped.
As W increa.ses from -~ to w on‘ fhe ‘J.re‘al axis, ‘the inéquality

6.39) Jwl MR
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is always satisfied except for values of w in the vicinity of the
‘origin., This is a consequence of condition (6. 38) When (6.39) holds,

the 1ntegral A can be expanded as follows

. W g
(6&0) »AS \ % Q 3/2'&,_3 : _I_-_._l____f e'\‘S/“M
' Vaw L Wi -k Wl oy -~ 1. k%
: WA
N o | '
= | | 3 kv kRVz 2 k'u—3 3 .o ldws
Wl ET_LQ {“*"wil*“(w-\-l) +(_w+t.> ¥ } 3
= g R\ R 6 '
) W*"' j\ ! *(\nﬂ (w+L) +lg(m+t) +'"}
Similarly
g -Vgl/l
= L 2 My ! k_ 3L 44|S'_____,3+.-_
(6.1) & Yﬁrf_w wel-R73 T wdt { cu_+L * (w+») (w+u) }
) N _‘v’:‘sl/ld k ) }2
. v; Uy ) 3 V5= 4+ 10€ $oe-
‘6.‘42) C= %5—,1, 3(,.:.{,-—!2’!/’3'- w4 { l { {,‘ (>l.u+l,) (_u_);t) }
w 3-Gh 2 .
. ) T e s _ 1 (3R Lk > NI L0
ku3) v ﬁj..o S e o i3k L“’“ | (o ;
¥y LY, | k ‘NS‘(IQ .
G P | WETEW L1 gs (RN +'°5"(Mj+ G R
VGr o Wwil=Ray e

Substituting these values of A,B,C,D and F into (6.34), expanding in

powers of R retaining only the zeroth order in k we find
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where

5_3§ s156e + b3kt s 3936

. _ | q
(6.146 ReEo = { ‘U“Lq +6|€+ll+6€z‘+ &l w®. w oo
) : o = ][ d+61€ 41k et JIg el

.20

Bl
' o : 3
15 4+120€ +323e2+29763wz~ g Yllerhéctrhoe ]} { (w2+,)3(\+2e)(
q+cie + Hecrinae? g 4 oete Flugeliqed T ,

i
B

. ' R et
q+865€ + 327¢"+ 516e3+uooe“)[ (m’u g EBerioc” 2 4
o ' 3 +lube + 206°

( 3+ 18.4be + 36¢

¥ )

T3 HUE+ 0€

(€.47) ImE, = __{ wia6 +igde vurset o3 ][ wé
L trese 2074 eqe?

) 3e +101¢ Wi FrAe R+ ne”
26 +189¢ +415€TH o33 20+ 1896 + 415¢+ bo3ed

16 (l+loe +31¢v+ 306’ - - ] '
= ( +3e+ qe) ] } { denominater of PeEo}
26 + 1g9¢ tUT1Ser 03¢’

and. , :
: \
) - €= ?b"L
| ~ For a function E(w,k) of the form
ha)  E(wyk) = Euu) + REw) + KEw)+ oo

We can show, using Newton's well known method of successive approxi-
mation (this method is given in most books of Mathematical Functions;
see, for instance, Abramowitz and Stegun, 1965), that the zeros of E

are of the form

(6-5*0) w = Lpe % kw, + bmw-,__. +--'->
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The zeroth order approx1mat10n of € , Eoi s containé ‘to zero’ch
order _1n R, all the zeros of E so that retalnlng more terms in the
expansion of E doeé not yield more zeros but only more accurate values
of thé zvero-s of E . Unless we v:%ant‘to determine these zeros accurate-
ly, if is sufficient, in a qualiti;;}ttive analysis such as the study of
stability, to keep the first term; Eo , of the expansion of E |

Since it was assumed that k¢ | . E, and w, are very good approxi-

" mations of E and w

Ime, has a zero at w= w0 . Furthermore
(6.51) Awnid T Be(wye) = ,ewmx - (2€+18‘1€+H’15‘€ +
W % W~ ¢
h0363)/ l+ae)(°}+86 5e + 3R7€ “r576e +hoo£—f’)}

* so that as - w increases from - , E{w,¢) crosses the real axis

upward at Re Eo( 0, €) which is

((52)  Aiwit Reg, o ATCIe+ikeerrnge’
by (426)(94 Q6.5 + 327 €+ 51CE +hooe k)

AT—W\EO(OJ,G) has aléo a triple zero af the origin. This triple zero
will be .examined later using an approximation of € ((,k) valid for
values of |w[¢c| - (Recall that E given in (6.45) - (6.47) is
leld only for Jui» k - and cannot be trusted for w near the origin).

The other zeros of TmEs (w, ¢) are those of the expression
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o

¢ & Y53€+31ery 306>

(¢.52) {(w, )= why 3 - wh
S : 2641236 +475e +lUo3 e
29 4y 27e +91e2+9 eé Lé(\+|o;e+3\e1%§oe3)
g t | (JJL._ 21 ‘
26 +189¢c+ U5t rhoze? 26 +18d € +UT5e¥+ ho3 63
which is of the form-
5w dge s Yie pco gyt qedy + Ace)
where )
Yz w*
and
Myo 5 9¢e ;5 <o ;

We see that ,{(—<w,e)=}.w and f£(w,¢) = 0 so that 10y, ¢€)
crosses the real axis at least once. . The derivative of $(y,¢)
with respect to Y

(6.55) —%M = 3yteapy +9ce)

has, for all values of ,é. , a positive and a negative root.

- 2b 4R -1y
, 6

: - >

e SIIURMIRE o




This implies that f(%)e) has- a locallmaximum at a negative value

of Qﬂ'and a local minimum at a positive value of Yy - Finally
£(ge)=:A(e) <o | . From all these informations, one deduces that
4(3,;) must have one of theithree following forms: |

H
i
L

fly E T A Ly

/ N\ /

Figufe 6. Plot of.f(y) vs. y.

Whether {k%,e) has two coﬁpiex conjugafe roots, a double root or fwo
‘unequal real roots ié irrelevanf_since these roots are either complex
or negatiye and hence unphysical~(recall that 'E w® 3 w real). On
‘the other hand,mfgﬁ,e) alwaysvhas one and only one real, positive
root, 4y (e) - This root is phyéically meaningful.

At this point we introduce explicitly the assumption that the
pair cof;elation fungtion at contact \1(bh) is a monotonically
incfeasing function ‘ofhthe. densit;';i_ o 5 s'oktl"xat e , defined in

(6.48), is a monotonically increasing-functidn of n

Bo(w, &) »does not dependlgn-the density n explicitly but

- through ¢ . Because of the above assumption, increasing e implies .

 increasing n .

S A e

R YANA VERNE s
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We now return to the discussion of the double root

of TmEs, . For a dilute gas, ¢=0 .,

55¢) (u,0) = dp 86 yr_o20 16
(5¢) i U T T

“has a positive real root at
Yi(e) = 0.9

to which corresponds

Twi(e) = #0542

+

—_

V‘Q\(E sXw (e)

We wish to show that the root L ale) olf 4("3\"3)- is a

" monotonically increasing.function of ¢ . It can be shown (appen-

dix C) that the functions j¢ey , cic'e) and Ace) defined in (6.53)

© are monotonically decreasing functions of ¢

heerco ; qitarcs sty <o

where . _
! d .
t\, = AL; ete
,Now
’ dyr 38y, €)/ e
Ie. (3153,
sinée' . ' .
Ly, €)= 4>t pay® +qeely + 4ce)
we have

‘p'«(e)ta:' +q'(e) Yi + A'ce)
Lae (2£/34) .,
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of

From figure 6 it is found that 4 (N0 énd (5—%)%?0 hence. é"ie‘ >0’
Therefore Yy (o) and u,(¢) are the lower bounds of - Y Ce) and
w, (&) | .
“ Wi (€) ) s 0.2
W, e) 3 wile) = 0,542
£,et us take for example bw-=z| | , a 'very high density. If we take.

4

for 1 the Pade approximant

d+ 6,0635nb + 06,0173 n*HY

'\ - - o056nb +0,08n*b*
Then to nph.i corresponds
- { = . o
€ = < bnq o.kig

~and
| iy, 9-‘”6)}—’- g? + ¢.25‘%2;0,168 y - 0.635
‘has a pqsitive feal root at
Y (.ojhlé) - 6. 407
whence

+w (olie) = T 0.639

In recapitulation, we have shown that , in addition to the roots

at infinity and at the origin, ImEo(w,e) . has always a double root




¥ w,(e) whose absolute value is an increasing function of ¢ Thence

v and for densities wb betWeen o and | , bounded by

0.5h2 & wite) € o.6€39

We defermine the direction in which t crosses the real axis on

the complex E-plane at ReE(+w,, ¢) . The imaginary part of € is

of the form
4 : - \
( 6.57) TwmEe(w, €)s - NEw Ly
~ Dlyie)
where
N (&) >0
D(y,€)>0

Recalling that u = w™ and that (Nﬂ'bg)g yo ,(figure 6), we find

. ) l - - . ’
that the derivative of TwE. with respect to w at + w, is
negative: |

(a(I\MEo)) -
o tw, Dly,e¢) | »-3“6

i

CNE (2R co
%

gthus'as w increases from -w,-G& fo -wil-\»& R iME‘o (w,€)
decrea.ées from a positive value to zero iét. —-wy ‘Eo a n‘egative.
valué at - w.\ r & 3 B ‘Lku, e) ~ crosses the real axié downward. ét ‘
ReE (-w,,€) . Similarly E(w,¢) crosses the real axis downward
at the same.point as w .increases frorh w, - & to w'|+ €
( Ree (w,el o ReE (- wy, €) = QVQE_(“@\,\’Q\ Y. |

Next we evaluate ReEo(tuny,€) . ReE(w,e) , defined in




(6.46) is of the form

| (g,yg) féeEd - {w“(q +6e +1h6ed +>nqve’) Luw+ perw! +qceyw’ + A.(e)]}/
3 2 ¢ edileo e (w? 2 ']

{ (W) (2e)(1+ 86.5¢ +327¢ +576 € +Uooe )L (W - g2(€))" F 92 (&) w

TSZIRERGN )Z.(e)l,f»z(e)j and | qu 1€ .‘wri'tten» out explicitly in (6.46)
are increasing functions of ¢ . As € and w, (&) increése from
0 to 0.416 and 0.542 to 0.639 respectively the expressioﬁ in the
square brackét in the numerator becbmes less negative while the ex-
pression in the square bracket ir.1 thé denominator is positive and

increases. Compared to the rate of change of these quantities, the

+61e +1hger + 19
(2 (A+8¢,5€+ 32165762 +400€Y)

rate of decrease of is greater.

- Therefore R=zE.o(w,¢) Increases and is-bounded by .

—

(&:5%) Re¥o (£ 0,542,0) = =021 & ReEo (t wie) &

—0-04L7 = Re Eo + o0, €39, 0.4ik) o

We now investigate the zeros of TwE at the oi-igin. In the case
wh_eré both 1wy and k - are small, the integrals A, B, C and D
have already been evaluated (eq. (5.48) - (5.51)); their expansions

up to fourth order in R and in terms of

L
x

did

(¢.¢o) | 3;

can readily be deduced from (5.48) - (5.51). They are
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ety Al w Ry HUET(14yY ¥ ?é*%a)'ihq( 3+45%4 2Y)
(e.62) Bz -k- 2k o+ 3R(1+3) + uikd( gvﬁ',aa)
(6.es) Cz -l tky FiR(as 51) - h"‘(q}Jr'%a)v;;\,\“(\gﬂ%«;ﬁ_%w)

»

(6.(u) Do -k -Gk +3R( 5+ 33 +\z:h“(;%+_§3) |

We can find F iﬁ a similar way
(6.65) . Fe o3l +3ky 435430 - 2R(15 +32) - sk as es0gey ).
The RHS of (6.61) =~ (6.65) are substitute'd into (6.34) which becomes

' after tedious but straightforward calculations

S O .F. Enesdi
€66 Eky,e) s R ( ER oy n"n
( ) , ( : : ‘l%_{ T(t3e)(i+5e) 3 (+3e)(1+5¢)

g 145 + R e { ((%S-H\oe. +b‘n”“v1')( LI

_ 1

A q+se (+2€)(143¢) (14 5e)?

+ ;7426:7_ e??ooc_?» ug;‘i-‘lya qqgoe) -é [ (l+¥+\oe+b »\]

+ +
7 7
Do T62 ¢ 4 R143 2, HETE 63+' rs‘oée“...eaoe;,) 3R
( = 5 J ' e 1 35
+ 193098 2 151908 3 T My 115 65‘ M5,
315 € 315 * 315 * T J .'-5 [ 30
+ 2225 2 73367 ct, 1932 él{ axsu ¢ ]}:‘

At) 150 - Ser




In the dilute .gas limit as bn— o and 5-» 0 (recalling that - 3{)

the RHS of (6.66) reduces to the first two terms of the LHS of (5.52)
which is the dispersion relation of a rarefied gas at low frequencies.
From (6.66) we see that TwmE (h\—s)ej has a zero at -13:0).

E “‘ﬂa‘; ¢) crosses the real axis downward at

7 1

(6.6‘7) . 'RQE(I‘»;)O,‘:): h“(\"s*"oe"’bln‘»n’) (5,+ U, £7€2 o
o (|+2€)(I?Bé)"([+,;¢)7,

225_’700 ey BT v hgeo es')
T

R<E (k,0,¢) has the sign of the expreééion (1+5 +oe +b1ﬁ”y\') .

p

IwE has a double zero at

- (6-¢8) 35 = B h06 48y (1r5e)

There are three possibilities

(a) For sufficiently large negative values of 5 .

WS +ioe + b"n“*yl’ + % (1+r5¢)* <0

and the zeros £ 2o of TwmE are imaginary. It follows from (6.69)
- 'that |
KeE (k,0,¢) ¢O

(b)) For -Z( HEE)T < 1+ B tioe+ b’n*q’<9

the zeros of "Twm.E it Z2, are.real and it can readily be seen
from (6.66) that |

| Ref(k)i_-s;)e) < Reg (R,0,€) <O
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(¢) For I+5 ti0e + b‘n"v')o

the coefficients of all powers of (\S ey Evw) are negative hence
ReE( &, 23,, €) <0 < Rek( kyo,€)

From (6.66) it can be seen that

,(a DME.( bra;e) ) >5 )
9% -7,

S 0

(amgin)

k%

so that when the zeros =+ % of Twmt are real, E crosses the real
axis upward both times at ReE(R,£3.,¢)
To the three cases discussed above corresporid the following

- hodographs

- Wy
Wy

ReE

‘Figure 7.a. Plot of E(w k) for i+ §+loe+bn y)<—_2{;+s'e)z.
- Unstable situation, 3

P




.72

mﬁ . ReE

Figure 7.b. Plot of E(w k) for - % (H'5'6) (it Brioe+ ")<°
Unstable s1tuat10n. . ,

.
eI

Figure 7.c. Plot of E(w,k) for irE+we+bwy’ro.
’ Stable situation. o :

.(d) Discussion

Let us consider the quantity |+'% +|c;é+ b"h"yl' . Eor
Vi - (dLW/L“Tr> e--olr , (k) is of the foim S(g)zl‘_S(o).m (L{”)
Since k<« , one can in general perform a‘Taylor series expanéion

of % (k) about k=06 and keep ohly the first term,' S (o) ', 80 that

I+ S(R) +io et b ': 4 wV(6) 4 2bn +b‘n
- T kT (s y\/
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But the equation of state of a gas of hard spheres with an attrac-

tive tail is

= wkT ( b+ bwn ) +1ih‘”V(o).

from which one finds fhat

KT‘

1 (e ;
KT,(S%\L‘ |+2bnvL+bh ’L + J(c)

thergfore, to zeroth order in k  ,‘}+‘5(h)+[oé-+t;thJ is just
{E%, times the-compressibility of tﬁ;s_gas. If we take n = (\-bnfl,
1+ S (o) +me+€1ﬁ{ reduces tolsu)+ﬁb’which is proportional to the com~
pressibility,of the Van der Waals gas as wés~pointed out by deSobrino.
Figures(7.a) and(7.b) show that when the compressibility is nega-
tive, the gas is in an unstable state; figure(lc)vshows that the states
' traditionally regarded as metastable’aie:stable against sufficieﬂtly
sﬁall perturbations.
Qualitatively, figures(7.a),(7.b) and(7.c) are identical to the
corresponding figures of.deSobrino.' Tﬁis is as we expect since in
_the approximations of L{&) and K(4) the difference‘lies in the
accuracy but not in the method. of approx1mat10n Furthermbre this
‘agreement of our findings with deSobrlno § was already strongly
hlnted. at by the calculations of Sirovich and Thurber on sound pro-
pagation as it was found that the Krbok model, thpugh‘ﬁot quantita—:
fivelyAcorrect, has the same qualitative'prdperties as the higher—'

. moment models,




Finally, th remarks on the validity of the approximations
made in this section: | | |

-On the study_of sound propagation, the agreement with experiment
at high frequencies which Siroviéh and Thurber obtained, indicatesthat
the 6JS model seems most suitablégto fhe,study of stability of metas=
table states which requires evalu;ting the linearized kinetic equation
at frequeﬁcieé ranging from _eo  to e - .

" Some doubt was raised as to thé validity of épproximating R (&)
by R(&;) at high frequéncies. We have argued that (appendix A) the
non zero terms in the expansion.ofj Lk&) are much larger than the
.corresponding terms of R{k) so thatvthe latter may-be.neglected.

In conclusion, wé have iﬁvestigated fhe stability of metastable
states using a more accﬁrafe approximation of the Enskog collision
integral and a more general pair correlatidn fuﬁction " and cbn—

firmed deSobrino's results.

74



CHAPTER 4. CONCLUSION
7. CONCLUSION

By not restricting ouiselveé'to a specific form of the pair
.correlation funcfion at contact iﬂ, » we have shown that the results
obtained by deSobrino for the traéitional Van der Waals gas are yalid
for a more geﬁeral gas of hard spheres with an attractive long range
potential. |

Usihg the method of Sirovich‘énd Thurber we find that, to firsf
order, the dispersion of sound at low freqUencies is thé same as that
:6btained by previous calculations (éxcept for the Navier—Stokes value
‘which is incorrect); the absorption of sound, up to 3rd order in w ,
is slightly less than the Burnett value and slightly greater than the
" Wang Chang - Uhlenbeck value; ali three are in fairly good agreement
with the expérimental result of Greénspén.

Qualitatively, the fesults shown in figures 7.a,7.b,7.c , con-
cerning the stability‘of uniform density stationary states are
‘identical to those of deSobrinos here again the conclusion is valid
for any Van der_Waals gas, This consistency with previous results
aloné with careful éhecks indicate'that_célculations are free of
errors and that the approximations‘used'are adequate. We have shown
that all uniform density statesvare stable against-small perturbations;
' these include those states at temperatures fr<'T; and for which the
compressibilify G%%)r; KT( 1+ §®)+\oé-+gﬁﬂt) is positivé and
small. On the other hand it_wés“shbwn numefically b} Strickfaden and

deSobrino (1970) that these same states are unstable against suffi-
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ciently large perturbations therefore these states are metastable.
In this thesis we have assumed the following dependence of v '

on r and t

VL = 4( wint) -)‘S‘_)

In analogy to equilibrium. theory where n, is a function of separation,
density and temperature, we may assume that n is also a function of
local temperature (we use-here Chapman and Cowling's definition of

local temperature).

o M= a4l niee), Tle) )

- this may be more realistic and the'calculafions do not seem much more
:‘CBmplicated. Dymond and Alder (1966) iﬁp1icitly fook into account
 'thevdependence qf v - on témpeiafﬁre through G(T); fhey obtained
values for the transportfcoefficiénts‘for rare gases at T»T, and
wy .. which agree to within 10% with exﬁeriment. R
A more difficult problem is that of using a ?eloéity dépendent
frequency | )(Ef'model>to épproximatev:iY%) . E&cept for thé Maxwell
gas, the spectrum of the - :ﬁ -operator of a gas with a finite range
has a'continuous part (Grad, 1963) so that.the'method of expanding

L(%) in eigenfunctions of &£ may not be a very faithful

Maxwell
- reproduction of the spectrum of the Iﬁ-operatorbof a Van der Waals
>
_gas.

For a cut off potential, «{(4) takes the form

(22)




where M has a complete discrete spectrum

(.3) - MY = A(E) A Y

'S0 that- | |

(7.4) oM. MEYS Ak (M)A
L=t - .

’ ” - '2 .
(f,g).is the inmer product in an L space. Noting that the first
five eigenfunctions are just the summational invariants with eigen-
value Ay =1, i=1,....5, Cercignani (1966) introduced the

following model

ae) L AR {F (AR -4}

_wﬁich, when A is velocity independent, becomes the BGK model. The

"next step would be to use the approximation.on the RHS of (7.5) to

investigate the problems studied in this thesis.

¥ However Grad (1963) showed that for a hard potential( V=

e )

Ve $>5) with an angular cut off. the Gross and Jackson approxima-
_tion may be used. R
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APPENDIX A

In this appendix we shall present the calculations leading to
an approximation of the linearized Enskog collision integral.
.- The Enskog collision integrail

1

Ay Je(pr= N {‘(f#%@{&)z\s)z'ﬂ:} i:‘ér_z) -\](_r_-%w_:_m];(z)_g'(r-w_g)} < randadk

is linearized by writing

(A.2) 1= 2.+ 4d)

The result is, to first order in .
(h3) 3fe(M= AR AN

where

i

R3a) x'= fH'}(U{“‘&)—’\(t-;sé)'} 4 Gupindg

and

(3% LW = { {qeriee) (R +2ireen) ) - qle- Loa)
L)+ &'(\:—-w-_r_z.ﬁ)io" O‘i(_r..g.d_gc!g,'

The integral K is independent of foo s expanded in terms of
the eigenfunctions V. of the dimensionless linearized collision

operator of a Maxwell gas Ly '

(A.h) o /&: /&b_*&‘
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where
(hba) ho= T At
| and
| o
{A.ub) b Z avi

Substituting into (A.3) we get
(%) Letr= g0 (k'+ Lan + £'0a)

Let us consider in detail the integral .

“(n.¢) &Ly- | {nireiog) (Bitr) + -_é\'(g-'u‘.g-) ) - Y}(:-%’G‘.}})( |

. ! . ) ' T » !
{\'\\\:) + 4 (r_" G‘{L)) ’f" AJ_G‘_"{L dﬁa g
eXpanding in Taylor series, keeping first derivatives and first order

in perturbation

T(A.’l) IR v,»f(&.)f,]k:)(”m,v

vhere | . |

(ER I TS 3PP PSP

and | o o .
f“'m ETCR 5‘1_?-‘er(E;'*f«.')@o'c‘st-édngI

£ is the lirearized Boltzmann collision operator defined in

‘v.section 5, For.a plane wave perturbation. . . ...
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“« (ke -wt)
(A9) Aitee - I aie Ni(g)

(=NH

Substituting into (A.7) we note that since the first three eigen-

functions - ¥, )'\Y; and ¥, are summational invariant,

W) aidwn. alf (H +Fowi )4 e bdgdE Lo (1)
while
(h10) ey 6 Lea kb (R -~ 4 %0 edady' 4 o

Howe§er, for t>3 L] .-};b a'nd. \Z(',‘H).-#o 3 furthermore, the
coéfficient of A(:lf_ﬂx';)*,: TR e in the integréi in (A.9) is
one wh‘il'e the coefficient of tﬁe same quantity in the integral in
(A.10) is of the ordex of &/(l/{u) << \ 50 Atﬁat'unléss \Y.*\'.‘J)'?O(—_%:-\:’(f-"*fl)
' (which is not the casé for aﬁd e defined in (5.15) z;m;, we
‘hope, in-general) we can assume that for 4= z:ii“ﬂi (N7 3) |
£ L &,)] is much larger than | K" (»&\3.\ 'L;nd therefore

B L B0e R F R ~ L)
‘Eq. (A.5) becomes '

e Tethr= g+ 2R+ R

Q

Lo ( IK'-\-V\.i(‘Q\;\ tq K (he) q}f(&.))

~ "o( K' + v\k”(e\u) +Y\&(2\) )

3 Ky + Y )




81

Expanding k' , defined in (A.3), in Taylor series to first order in

o -and substituting the result into the definition of K in (A.12)
we obtain for K({( l«é)

(h3) “(*Qﬁwo'{w'fw+'1<w_l«z (Gbl)shn. g da dg’

Substituting into (A 13) the values _ o
he = hotw) e‘( -ut) o , ’

v\lﬁ»): .M (briry)

w(ry = el \+ V(M)

Vine Ve '(&roeh

% = .G.:/ N KTalm

we get

e e Teign i [draata gla g (2l s ney V) e
where
. b: ‘ %“’?3

W= (3n /2bne))

N = | B/ Y KTo)m

; - w(v); L -2 )

An approximation of the linearized Boltzmann collision integral o(4)
in eq. (A.12) has already been given in .section 5 in connection with
- the study of sound propagation, We now turn to the evaluation' of

the integral  klke) on the RHS of (A. 14), to be cons:Lstent with

the . 5-Moments approximation of .I(A we take 4oz Z aiyy -

C L=




: o - ’ ' '
The integrand of (A.14) is made up of three terms, one involving 4o
-1 o . . .
a second Ao and the third, v. . The first integration can be
evaluated readily. Intégration over  yields ‘-g' &,Q hence

(A 15) .35% iv\m\}kfolm “ndlr'd-‘.} S.I/u%)",ﬂ.yhv B wia) =

] bn]m Vl(*r.}m SM %vky Low = ‘kY\“b\/KfoIM( by - V)
)

The z-axis has been chosen along the k vector: In a similar way

the third integral is evaluated; the result is

. b . : . ! -‘
(a.1e) =" Yo (KT ““o\_v_" aa K9 {bﬁ? h_a_n, w'yz -tk n, b‘n?Vkm»\ vy
Thé:. 5-Moments approximation of L is

)

.y , "y ot
(A7) _M=V+§(&{3}+T&+%Mﬂn%

3'1 (\—._)

In the 2nd integral, replacing W, by the RHS of (A.l7) we find

-(A.\'M) o bl']V\e km fdvu-ld.n,_Q ‘3‘9’5 {v + 'C («r -3) ¢ {r.’g
\ . == - -ty
Y PTG - - ) f

This integral is the sum of five integj:als; the first one involving

-
&~ ;3 we have

V , the 2nd one involving T etc.... 7' is rewritten in terms of
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(A1%) T v - '(‘,@._@)n_; |

| {B.4) J‘i"\?;'s | 41‘:’«}‘} i (2:9) - 4 0 (&_;o'é) + Qi (9.9)°
hzo) = " elaa)rialgs)

(A2 GESEIIR R A I (wta) (g0 - (2 :g)v 2
. B ¥ SPOLIX

These values are substituted into the expression (A.17a); the first
three integrals of (A>.i7a) involving v,T and w can be evaluated
readily; as an example the integral involving WK  is evaluated.

~ The third integral is
b ’ ’ C
(hva Tys & e ([ drids oqunik fors nggpa uenr

Integration over .Q is first carried out. We take as 3 —direction

the direction’ of g  then da- swededy ;5 Q-q =qess 3 it can

'easily be shown that"

{R.23) .yds_ln&_szy_ = W Cuv
.(H..Zl*)‘ ‘ Jdﬂ- -(_lp.%,u ij\l-ﬂfﬂ r:‘ '7',——';_0‘)**‘3# Srr'*\i‘l’s.'_%fgm

C{wmezE) | yd& (S'_l_:%)?ﬂ.‘:_ - q?;'{
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After integration over 2 , (A.22) becomes
(4.2¢) 3}’ Lrlm\/ld’o! Jo\;\_f'{ E%T'Jhy qu RY ’V'“'-M- - "‘TT—; 4" Sye kv e -

Y

's.fév%s-bvucr} 'W"

- now we take the z-axis parallel to li\ 3y carrying out the integration

 we get

(r.27) Ty=- Rnbwe Walm Uy [ty )L
. . ' 5

In a similar manner., we evaluate 1, and T. the results are

(A.28) Iz 3_{2 \\qV\o VKT i “‘\O\Af da 2q .k w'y o __L}zq’pmvm‘olm NV

ir

(R.24) Iz %r'w\m\/ Khaim [ dirldg 0.4 @k T 1723w

- - - -

= .ihqu‘\l Kialm

1
LT

' .I , the 1nteg‘ral in (A.17a) 1nvolv1ng pij > is wrltl:en ‘out exp11c1tly

‘using eq. (A.9)

Cab . | ',r—— | /
| ,(A-'“) - Tu- 735{; e Ko 1, durtdg 229 Lk L Wy - i g (£2:)
- WiQ; (2:3) + R (@-a) L w!

The first integral of (A.30) can be -evaluated readily; the second and

third integrals are identical and are also easily evaluated with the




help of egqs. (A.23) - (A.25). The results are |

Ay Tw- EARIN(SA Ssody'dg{vg.g-i_zizhag«r;v-'w’sb

n N

’ (A.?Z) Il{?.,: Iyz = - sb ;W]MOWSS ‘ky'o\&-(};ﬁ-.ﬂ"i __‘1 b;j«rdf.m‘(

. _(la—‘})w‘;. %;bq bvo V X bm ,(\'3'5"‘[_.3

The fourth integral must be evaluated with some care

(833)  Tuy= Z2iqwdicim || de'de 0.0 04 3 i) (0.4 %

rAL n - -~

In the coordinate system in which the z-axis is paralled to ¢

which we shall now call the a -system, the £ unit vector is
Chl) T = TSWBGSY + Ytmelimy & kst

The 3rd rank tensor _fZ,;QJ‘ﬂ.h ‘has ten distinct elements

. 3 . . . T . - ~ -
-Q?:: 5m39 (733 Y ; _{Z,_{Z_L‘(Z__3 - SW’LGCOSQ Co;(egwhp }c .-(zl-in, sw\?eCOL "FCMALP
‘2= Swld sw>Yp ;2] s swl @ cosy L p ; OFS2y= SWT0C0sH osTP
3 3 v . v TR
L24 = LosTE ; D05 = Swbros sy | ; 2,57 Smbesiosmiy

ATy SmBcosBiWty

Of these,only three give non zero contribution after integration over
¢ from zero to =T ; they are ..(Z.f , ogty and Q. Vé‘llSO

hij  is a symmetric tensor ('seé definitidn of hij , eq. (5.19)). |
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"~ Taking into account these informations, eq. (A.33) becomes

(h39)  Twe- 22 Ty 1o VECrolm U.M'@(Q;‘!f{ 3925 Ry par + 2t (
o N .
2 En*\\’s ¥ Ry b\\) 1 Q::-Q} {2 kzk\m} ¥ Ry X\.-n) S’W"‘

First, the integration over Q is carried out; the result is

—

(ﬂ-”) ’ Tyy= b i‘\ﬁe \<fo|M fo\v’ $ ﬂﬁ”ﬁ baz 4 2Ta?(
2n T LR

2kipis - Thapay) } 'W'I

Before integration over #' is carried out, k'gr';'} and h:p,:;'
must be rewritten in the coordinate system in which the z-axis is

arallel to k , which we call the R -system,
p R R =8y

Thus in the ¢ -system

—

iy

(n.37) Ry = A&k = %.g,
.in the & -system

(Are)

~—

93
th - —
%h

as(mo

in the %» —coordinate sysfem

-

1ad
149

"
-
d

(h37)  bas (peR)d o= Al




"in the R -coordinate system

.- B iq_ i —L 5 o . " , -
) A R

ae

A\

\ 4 1T, - T
-;ﬁ( :}}L v;% +.-_3L \\13%3>

i

:)

Therefore the quantity which, in the 9 —system, is Ra %3 is

-_—

%42k (- 1 \“»’5%1*% MSQ:{)/%; in the { -system.

Similarly :

(R.‘“) (\hhf < (j}ﬂix)‘t_z = _ t\‘:i\.\}_
~in the k —coordinate system
(A.w) pt bR o {'vr; %\?

- The RHS of (A.38), (A.40) and (A.42) are substituted into eq. (A.36);

integration over '\_l_" is carried out; the result is

(LWS) Tuy= - 2_%’ tRnne VKT Im 11,33-4/'3 (%_Sg 1_%_1)' +~§—./VI,'L)
.The integral of (A; 7a) which contains the factor §; ,

) Tee Biyprwim [Artde 94 eh L @ (Z)

is the sum of two integrals: the first one, Ie¢, , involving Siay
and the second one, Y5, , involving . . Ciﬁ'\“—L'l) . Substituting
for A the RHS of (A.18), making use of (A.13) and (A.14), we

obtain for T¢,
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(k-lir) : Ig\

"W

- %f“MoVKToIM“ &E’JS}_Q:.% Q-_’?.}ZS'\ 'G:c o

"

J\B ‘Rvneh V¥Tom $a( ’\Fz&—"mr-;)

i
¢

The integral Iy, is written out explicitly
.(ﬂ.lté_) ) IS?, = %{ i"]“é\/K“lM‘ SS:\O{y}d\S}S}Z%:@'.‘? { Vc'VI-L-& V".",({l'_ﬁ)‘-

2l ellea)n s (2w (@) v 22l a0 sy

The first four integrals of Iso can be readily evaluated with the

"help of egs. (A.23) - (A.25): They are

(auT) Tsgq = A iqmelkii ﬂf‘fug LAk gl L Ty nPVrtm S
~‘(A.W) Teob = Ei;Tn\mv*”xmm ([ drde 2:9 28 07 (0:9)"5] W’

f_';“kv“bm KTolm Sz 5& fu*"f vy )

}T
5

{®.ya) Tspe = - g—?\_ l\qV\QVKTa{W\ U“déf ’3,{’-}-@ s

; X lkv, ‘b;}\u KTolwa QB (IST g ¢ 'L'U'-;L)
4N )

- (A SY) " Tsed = "._‘ %lqm\/knlw\f J}-@ ‘}{}t‘ q &' ST W

:‘;__'_qubp{oVKT,/M Se (ZS+BV‘+M:;’)
50 - S : -

o




Igzg and 5,4 are more invplved and will be evaluated in more detail;

let us first consider Tsqe

(h.s1). . Tsze = - _—wtm\/«n i cbrfm (2-9) 200 ki sJ

| ‘Replacing, in (p,51) , £ by the RHS of (A.34) and integrating the

result over . we find

_ (A.ri) Trye= - %_[\]hovknlm[’{df ‘T;t? (5 Ry Sy + RiSyt RS2 ) !
. 2 ‘

{2333 and k.S are reexpressed in the E ~coordinate system

Sy = E."?"’ = - =
? )
A ’ g
-
R = =
in the R ~coordinate system
. % . R . -
Rs3s) . (5. dy(k-2 Bk
(s3) ?>( =) - s
(R.5Y) k. = KSq

fSub.stitution of the RHS of (A.53) and (A.54) into (A.52) and integra;

- tion over A~ yields

- oo . . "- oo
(A.55) Tsze= - S tknubvigm Ssliosa tav™ e 3vtieum +I'L'V'3’U')
: 350 °

Next, we evaluate T, 2

S o - I y ]
[N.s¢) Tsagz %w\m\/g{rm Ijé\dg'o\s; 2(94) n;,:zdgfs.wJ ky W’
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The integration over £2 is first carried out following the same

method used in evaluating the integral T,, , (A.383).
: - b ' v ) o
(A,57)  Igpe Sivw l<‘i‘»lw\jo{£—l (ks 0355 + Rirds + ks as
-+ "5—‘1‘,._"23 ) ’W"'

Before integrating over o', the quantities in parentheses are

rewritten in the E_—cdordinate system

% % / '\.
Rl Byt s kb
| . T %
(A.58) | VX
. E_-é (V';"-: %.‘§ ’V:.. 3‘. = h.S-; v =
| - 3 : 3
kg = Sy'R.E o Swk T
> 2 Y

A

Substitution into (A.57) and integration over @f yields
(hs) Teag = #s‘ik‘\b“”m’“ Ssfles +waag yav™)

¥ is obtained by adding the RHS of (A.15), (A.16), (A.27), (A.28),

(A.29), (A.82), (A.48), (A.45), (A.47) - (A.50), (A.55) and (A.59)

Y] o
1
fw

Z
v
d
+

(hke)  Re iRy webVEE {= ( bren'anmy s
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The RHS of (A.60) is the linearized value of the K —integ‘ral for a
'_plane'wav,e. The sum of the first three terms on the RHS of (A.60) is

equal to K(2'") where &%) is the local Maxwellian; K(&'®) is the

approximation of ¥()) used by déSobrino.
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APPENDIX B
We will now show that the function E(w k,V(k),n) in the dis-
persmn relation E=o0, (eq (6.34)),is regular on the upper half plane

S+ . E is an express:Lon 1nvolv1ng the 1nte0‘rals A B ,C,D and F

- which can be rewritten in the form

L WER (T g
(&.1) = B 2mi '(—"0 x-Yy

where

. % - -

" depending on whether I stands ffor A,B,C,D or F. l(It can be easily
"~ shown that B, C, D and F are}simply related to A). | The RHS of (B.l)

is a Cauchy 1ntegral defined ‘and regular on the S plane, (see for.
 instance R. Balescu, 1963). If follows that the poles of E , if any,'

must come from the zeros of the denominator of Q defined in (6.33)

‘and (6.36) and the problem of proving the analyticity of E on S
- .reduces to showing that the denominator of Q ,
| w

{28 +

. --. Hb"L - € kbn '
(8.2) = 2+ (-in+ hbrLB+) |+§5w! :

+% bml

: ¢
%ohbnvl(!}-!- 6c,)) - 2Lh — ?hbh’zs

has no zeros on S, . Of course ¥ is a sum:of A's and B's and
therefore is regular on S, so that

_ j 3’ (“") dw_~ N
N 2‘“’ @ .ﬁ(w)




is the number of zeros of ¥ i.nsid‘e ‘@ . An analysis similar to
the orie carried out in section 6 is givén here; the function % is
plotted on a complex ﬁ’-plane as w increases from - to eo onlthe
real axis of the. complex u)-planev;; o

For values of uw such that Eg»\» R , the integrals A and B can
be expanded in powers of k/(w-»’fi) (egs. (6.40) and (6.41)) and the

results substituted into (B.2). To zeroth power in k , % is equal to

Y S ‘ (5% 2he+33e})wio2 (1 +getiset
(8.3) ' ":8 = (ean(Fre 16¢Y) {( 5'( | ) > O | \_Aé.)(

Weo1) o+ 205 +9z¢+ 1M w- W)( (3t+326 + M yut +(£4 et
> 3 S 3%
4 e2)) |
Let))
The imaginary part of § , Im® , has a zero at w=t<0 and J(tw,¢)
. crosses the real axis upward at

3 ( 1Y)
35+ abe +33¢7)

>a

Regb (i L, ‘é') =

' 1+ 5¢+66"

From (B.3) it is apparent that Im¥ also has a zero at the origin.

‘7 For w mnear the origin, the expansions (6.61) and (6.62) for A and B
are substituted into (B.2) the result is, to first order in w ,

, (2¢)(2 + L}fe)
(1+5¢)(1 + 3¢)

oy ) i5e .
(B.%) g = 3'5‘ {-\- uu(sz-

"I_:m%(ole):o and 3 crosses the real axis downward at Re$(s, &)= 2((\4-5'6) .
3(1+2¢)

The hodograph of D, figﬁre 2, does rvlotA enclose the origin hence

o % has no zero on S, which is what we set out to prove.




Imﬁ(w,é)

Re‘,ﬁ(o,qm Resh (t<0,€)

' €
ReB(w,ée) : U

Figure 8. Plot of. f(u;,é) showing analitici‘éy of
E(w,k) on S4.
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APPENDIX C

The expressions - h(e¢) lq(¢)| and |ACe)| defined in

(6.53) are of the form

, €
S (€) = P (€)
- : T Qe
where
Pe)= Astare +aze’+a e’ ; Q€)= botbe+bhe trbe®
then

- . ' B L.
P'(6)= Cl. 4'-2_426 + 30367— 3 Q(é): ‘bl+’2'b2..e + 3b36 )

, : \
We wish to determine the sign of §(¢) which is the sign of
._ P'QE) 95(6) - Qe) Ple) . The coefficients of PiQ- &P are

—

oo (abeoah)
=l 2 azbo'_vaab,,-) |
n=2 (azb, - aiby) + 3 (dzb,. aoba) )
n= 3 2{aab, - Arby)
= b (a3ba - arbsy)

A sufficient condition for §'(e)> o (é'(e)-( o) is that

Qwibn = Gnbwmd o(Ombs.—aubm@) for' w » n.  because then all the
coéfficients are positive (negative)‘; if am>o and bnyo for all
m's then the condition is equivalent to A

ey am oy A Lo
e G gL e o
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(c)  (dm ¢ @) -
b bn #M’ pm>n

3 . . . -

('I‘Ilis is readily generalizéable to the cQse where P and Q are poly-
nomials of degree N). .

The coefficients 4w and bn . of p(e) satisfy (C.2) and those
of q(er] and | 6(e)] satisfy (C.1); therefore | |

/o ! !
htey<o , 9 <0 and A(e) <o.




97

 BIBLIOGRAPHY

Abramowitz, M. and Stegun, I.A. 1965. Handbook of mathematical functions
( Dover Publications, New York ).

' 3
Balescu, R. 1963, Statistical mechanics of charged particles ( John
Wiley & Sons Ltd., London).

i
by

Bogoliubov,N.N. 1946. J. Phys. U.S.S.R. 10,265.
Born, M. and Green, H.S. 1946. Proc. Royal Soc. Al88, 10.
" Cercignani, C. 1966. Annals of Phys. 40, 454,

-Chapman, S. and Cowling, T.G. 1961. The mathematical theory of non-
uniform gases (Cambridge University Press, Cambridge).

Cohen, E.G.D, 1968, Fundamental problems in etatlstlcal mechanics >IT
(North—Holland Publishing Co., Amsterdam).

DeSobrino, L. 1967. Can. J. Phys. 45, 363.

Dymond, J.H. and Alder, B.J. 1966. J}VChem. Phys. 45, 2061,

: Enskog, D. 1922. Kungl. Svenska Vetenskap Akademiers Hendl. 4, 63.
Foch, J. and Uhlenbeck, G.E. 1967, Phys,eRev. Lenfers 12, 1025.

| Grad, H. 1949. Comm. Pure and Applied Math. 2, 331.

1958, Principles of the kinetic theory of gases, Handbuch
~der Physik, Vol. XIT (Sprlnger Verlag, Berlin).

v 1963, In Rarefied gas dynamics, edited by J. Laurmann (
Academic Press, New York).

Greenspan, M. 1965. In Phy31cal acoustics, edited by W.P. Mason (
Academic Press, New York). :

. Gross, E.P. and Jackson, E.A. 1959. Phys. Fluids 2, 432.
Kirkwood, 3.6. 1946. 3. Chen. Phys. 14, 180.

LebOW1tz J.L. and Penrose, 0. 1966. J Math Phys. 7, 98.
Lebow1tz dJd. L and Percus, J K. 1963 J Math Phys. 4, 116.
Ree, F.H. and Hoover, W.G. 1964, J. Chem. Phys.-él; 1635.

~ Ruelle, D. 1963. Helv. Phys. Acta 36, 183.




Sirovich, L. and Thurber, J.K. 1965a. In rarefied gas dynamics,
edited by J.H. de Leeuw (Academic Press, New York).

1965b. J. Acoust. Soc. Am. 37, 329.
1967. J. Math. Phys. 8, 888.
1969. J. Math. Phys. 10, 239.

Strickfaden, W.B. 1970. Ph.D. The31s, University of British Columbla
Vancouver, B C. .

. Strickfaden, W.B. and deSobrino,.L. 1970. Can. J. Phys. 48,in press.
Van Kampen, N.G. 1964. Phys Rev. 135A, 362.

Wood, W.W. 1968. In Physics of 31mple liquids, edlted by Temperley,
Rowllnson and Rushbrooke (North-Holland Publishing Co., Amsterdam)

- Wylie Jr., C.R. 1960. Advanced englneerlng mathematics (McGraw—Hlll
Co., New York).

Yvon, J. 1935. La theorie statistique des fluides et 1'equation d'etat

- (Hermann & Cie., Paris).

98



