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ABSTRACT

This thesis is concerned with tolerances for magnetic field imper-
fections in the TRIUMF cyclotron set by the betatron oscillation resonances
v = 1.0, vy = v, = 1.0 and v = 1.5. These resonances, encountered during
acceleration, can lead to undesirable growth in the amplitudesof the
betatron oscillations. |

We first derive equations of motion that take into account non-linear
terms and field imperfections, and show how resonance conditions may occur.
These conditions were simulated in our orbit codes and numerical calculations
were made to determine the tolerances they impose on the magnetic field.

We have made a detailed investigation of the effect on the behaviour
of the beam of first harmonic bumps at radii less than 150 in. The first
harmonic tolerance of 0.1 G to produce an increase in the radial amplitude
of 0.1 in. is in agreement with analytical calculations. We have also shown
that this tolerance, too small to be seen in the magnetic field survey, may
be achieved by suitable adjustments in the harmonic coil settings.

Tolerances on the second harmonic imperfection are also presented.

To determine the tolerances set by the coupled resonance v, - v, = 1.0,
we have simulated a first harmonic twist in the median plane. The results
show - that, for high current poor resolution experiments, the magnitude of
the twist on entering the resonance is of no importance, provided the ampli-
tudesof the radial and vertical betatron osc}llations aré not much larger
than the estimate of 0.2 in. For high resolution experiments, the tolerances
on the slope of the twist are of the order of a few mrad. Analytical esti-
mates of these tolerances are also presented.

Finally, we have determined that the v, = 1.5 resonance sets an upper
limit to the gradient of the third harmonic of about 0.2 G/in., which
produces a 20% increase in the radial betatron amplitude.
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INTRODUCT ION

The TRIUMF cyclotron! is designed to accelerate negative hydrogen
ions up to an energy of approximately 500 MeV. The H™ ions are produced
in an external ion source and guided, through the injection system, down
the axis of the cyclotron into their first orbit. Then a two-dee system
with a dee-to-dee peak voltage of 200 kV, giving an energy gain per turn
of 400 keV, is used to reach the desired energy.

During its acceleration, the particle oscillates about an equilib-
rium position, in both the radial and the vertical direction. This
equilibrium orbit is defined as an orbit, in the median plane of the
cyclotron, with the same 6-fold symmetry as the magnetic field; that is,
an orbit that closes on itself after each sector. The motion about the
equilibrium orbit is analogous, in first approximation, to the motion of
a two-dimensional harmonic oscillator. The Hamiltonian for this system

may be written

H = ;—{\)ixz + p)z(] + -;—[\)izz + pi] (1.1)

where (x,px) and (z,pz) are the displacements in position and momentum,
in the radial and vertical direction respectively, from the equilibrium
orbit. The v, and v, are, respectively, the number of radial and vertical

oscillations per turn. The corresponding equations of motion are

(1.2)

1]
o

X"+ v2x
X

(1.3)

]
o

z'" + v2z
z

where the primes represent the derivation with respect to 6, the azimuth
around the machine. Then, to this approximation, the ion describes two

independent sinusoidal betatron oscillations about the equilibrium orbit.



In order to achieve good energy resolution at extraction, the
amplitudes of these betatron oscillations must remain small. Table 1.1
illustrates the relation between the total energy spread at two energies

and the amplitude of the radial oscillation Ax.

Ay at 30 MeV
(in.) 0.14 0.25 0.40
200 MeV 1.0 1.2 1.6
500 MeV 1.2 1.8 2.4
Table 1.1 Total energy spread (MeV)

Stability is achieved if the beam is properly focused both radially and
vertically. |In the radial direction, focusing is always achieved since,
for any isochronous cyclotron with three or more sectors, such as TRIUMF,
the value of Vo is approximately given by Vo =Y where vy = 1 + t/mc2, 1
being the kinetic energy of the ion of rest mass m. Therefore, v starts
at unity and increases afterwards; the beam is then contained in that
direction. In the vertical direction, the field flutter, which is a
measure of the change in field strength between the hills and the valleys,
provides an axial force known as the Thomas force,? which is always
focusing. Two additional forces, discovered by Kerst and Laslett,3 also
contribute to the axial focusing. Both forces depend on the spiral shape
of the magnet sector. Their effect is alternately focusing and defocusing.
However, because of the alternating gradient principle and because of
different path tengths in the focusing and defocusing fields, their net
effect is focusing.

Once we achieve the conditions for axial and vertical focusing, the

next problem is to avoid resonances. We call ''resonance' a situation in
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which the amp]itude'of the radial or the vertical oscillation grows with
8, the azimuth around the machine. Some of the resonances are intrinsic
and are due to non-linearities in the equations of motion, neglected in
Eqs. 1.2 and 1.3. Others come from mechanical imperfections such as
misalignment or mégnetic non-uniformity of the magnet sectors. In the
next chapters, we will first derive more accurate expressions for the
equations of motion and show how resonance conditions may occur. We will
then look at some particular cases of resonances encountered in the
operation of the TRIUMF cyclotron and determine the tolerances they impose

on the magnetic field.
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1

MATHEMAT I CAL DESCRIPTfON

Equations of Motion

2.1.1 Introduction

A system of cylindrical co-ordinates (r,8,z) is used to describe
the radial and vertical motion of a particle with relativistic mass m and

charge q in a magnetic field B. The force applied to the particle is

F=q

<+

x B (2.1)

where
>
Y

= (r,rb,z) (2.2)

is the velocity of the particle and where the dots represent the deriva-

tive with respect to time. From Lagrange's equations, we obtain

L (mF) - mré? = q(réB, - 38,) (2.3)
Lm2) = q(iB, - réB). (2.4)

Using these two equations, Walkinshaw and King“ derived linear expressions
for the radial and vertical motion. We summarize most of their calcula-
tions in the following section, and then extend them to consider

qualitatively some non-linear effects.

2.1.2 Linear Dynamics

Since the particle velocity along the orbit is constant we may
transform the independent variable from time tlto 9, the azimuth around
the machine. Walkinshaw and King assume that (r'/r)2, (z'/r)? and
(r'z'/r2) are all much less than unity and that the term in iBe is un-
likely to be important. Then, the equation for the radial motion in the

median plane may be written



Fo- r = —lr2g, (2.5)

where the primes denote differentiation with respect to the new variable

8. Similarly, the equation for the vertical motion takes the form
(25 - =
2"+ mV(r : rr'Be) = 0. (2.6)

We assume a perfectly flat median plane and, since curl® = 0 in a static

magnetic field, we may write to a linear approximation in z

B, = B =l[BZ]z=o (2.7)
Br =z %%
B = 2 T 5
Eq. 2.6 becomes
s %[rzg - gg] - o. (2.8)

We then define a reference circle of radius oo the equilibrium radius in

the homogeneous magnetic field, by the condition Fo = é%L3 where B is
)

the azimuthally averaged value of B at r . Writing R = r/ro, Egs. 2.5
and 2.8 become

d2R 5 B

- R = R (2'9)

de? Bo

d?z d 3R

— + {R2=(B/B,) + — + —(B/B = 0. 2.10

de? aR o/ Bo) + g 5 (B/Bo) |z (2.10)

The next step is to derive the equations for the radial and
vertical oscillations of the particle around the equilibrium orbit. For

the vertical motion we assume, in first approximation, that the radial
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motion is confined to the equilibrium orbit, i.e. R = Reo(e), where

Reo(e) =1 4+ p(8) is the radius of the closed orbit. We write

2
3—92— + (Réo EBR—(B/BO) +
Reo

dReo

a —
Yol SE(B/BO)]Z = 0. (2.11)

For the radial motion we expand R about the equilibrium orbit, i.e.
R = Reo + x. We also write the field (B/BO) as a Taylor's series about
its value on the equilibrium orbit. To a linear approximation in x,
Eq. 2.9 becomes
2x 1, +"_[.___3(RZB)} x = 0. (2.12)
oL R

de? ' B oR
' eo

Then, a Fourier analysis of B(6) makes Eq. 2.11 and Eq. 2.12 of Mathieu
Hill form. When the harmonic terms are small, the resulting equations
can be reduced to the form of Eq. 1.2 and Eq. 1.3, provided we are
interested only in the motion per turn (i.e. n = 6/27 becomes the new
independent variable) and not in the detailed motion in each sector.

In the following, we will assume for simplicity that the radiaf
and vertical oscillations have been smoothed out into a sinusoidal motion
of constant angular frequency, Vo and v, respectively. In this case,
the particle precesses along an ellipse in the (x,px) or (z,pz) phase
space. In practice, however, the non-sinusoidal character of the oscil-
lation makes the particle move along a slightly different curve. We have
shown that, in TRIUMF, the discrepancy from the ideal case in the radial
motion is always less than 25% of the betatron amplitude, in the region
of maximum flutter. This is acceptable for our present purpose.

Egs. 2.11 and 2.12 would then describe these two independent sinusoidal

oscillations.



2.1.3 Non-Linear Dynamics

More generally, the radial and vertical betatron oscillations, as
well as magnet imperfections, will cause higher order terms and coupling
terms between the two motions to be introduced in the equations of motion.
These higher order terms, added to the right-hand side of Egqs. 2.11 and
2.12, will transform our free oscillations into forced oscillations. The
main feature of these forced oscillations is that instability may arise
because of a resonance condition between the frequency of the free oscil-
lation and the frequency of the perturbing force. This happens when the
perturbation term oscillates with the frequency of the free oscillation
or with any of its integral multiples.

To illustrate the various types of rescnances, we first expand our
previous expressions for the magnetic field to include quadratic terms in

z. In the case of a flat median plane, Eq. 2.7 becomes

L 22
B, =B - 57 VB (2.13)
o]
z 3B z 1 3B
BR = —— <% Bg = ==
R™ v, 0 " r R 28

where B is again written for the z-component of the magnetic field in the

median plane and

+ - — (2.14)

is the Laplacian in polar co-ordinates R,6. We also consider a small

deviation from the ideal 6-fold symmetric isochronous field; we write
B =B; + AB (2.15)

where Bi includes the sixth harmonic of the magnetic field and its
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multiples and where AB may also be expressed as a Fourier series and con-
tains the "imperfection' harmonics. Similarly, because of magnet
imperfections, we no longer assume a symmetric median plane, so that our
z-co-ordinate is changed according to z = z + z,. We assume that z is

small compared to the dimensions of the magnet, and we write

z, = ) ) € b X" cos(po + ¢p). (2.16)
n=0 p=0

In the following, we set the phases ¢p equal to zero degree. In all the
cases we consider the perturbations in the guiding field are periodic
functions of 6 with a period of 2a/p. Then, the field imperfections can
be analysed in a Fourier series. We consider only the pth Fourier
component, such that p is an integer.

Because of the median plane asymmetry, new terms must be added to
the expressions of the magnetic field components; for small values of z,,

Eq. 2.13 becomes (see Appendix A)

2
=R - .2 g2 -z g2
B, =8 ) Y (zOB) 52 V4B (2.17)
(0] [o]
-1 {38, 3(zB)
Br = 7. [Za BT }
Be=_]__ éﬂ.}]_#a(z B) .
ro (R3 ~ R 26

Also, the term in 286 of Eq. 2.3 is no longer neglected. Then, with the

use of Eq. 2.17, Eq. 2.3 and Eq. 2.4 may be rewritten as

2 2 '
RIC - R = R_(B - Ze2(zp) - 2o sz] ; __z_'_z(zﬁ . MB_)] (2.18)
Bo rs 2rg Borsl 3o a6
2 o 1
Z.._,_L(Rzﬁ_B__ R-EE]Z=_LM+R_M. (2.19)
B,L 3R 26 B, B8R B, 06
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The assumption that the harmonic terms are small is maintained in
the following calculations. For the radial motion we expand R about the
equilibrium orbit and express Bi and AB as Taylor's series in x. From

Eq. 2.18 we obtain

2 2
x"" + v2x = R? AB + 2x R éE.+ X EQQ.E&AEL.— z Réo Vz(zoBi)

X eo B. eo 2
BO BO Bo 9R rOBO
+ x2[BL 4 2Req 3Bj . REo 3%B;) 2 Raa 25,
1
Bo B, OR 2B, aRZ) 2r3B,
- 1 B(ZoBi) \ 1 3Bi
- -2z —m— —
r28, 36 r2B, 36 - (2.20)

where we kept only up to second order terms in x, z, z, and AB. We then
use Eq. 2.16 to include contributions due to deviation from a flat median

plane. To a second order expansion in x, z, AB and €h b’ we obtain

AB AB RZ. 3(AB) RZ
" 2, = p2 22 - —€0 - —e0 g2,
X"+ vix ReoBo + 2x Rgq Ba + X B, oR z F%Bo VEBi €4,p cospd
pz_Bi_e 6 + 6 + ZRgO c 8
- —5—€y.p COSP 55 BiEp p COSP —5oB.€ osp
réB °»P réB, P réB, ' 2P
. 2 2g. 2
+ xz[_B_i_ + 2Rep 3Bj EQQ?_E_L] - ;2 Ré .23,
2 2 !
B, B, OR 2B, R 2r28,
z'[pBi€ inoe 1 oB; 6} \ 1 3 B;
- si - —€ cos - 2z —
r3B, ©°P i riB, 238 ©»P P réB, 9 -
(2.21)

where the p refersto the harmonics of the twist in the median plane.

In the case of the vertical motion, we assumed previously that the
radial motion was confined to the equilibrium orbit. Since the particle
executes radial betatron oscillations, we must expand R about the equilib-

rium orbit in Eq. 2.19. We also includethe deviation 2.15 from the ideal
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field, and we obtain

. 2 )
S+ v2g = _R3o 3(z,Bi)  RZ, 3(z,4B) , BReg 1 3(z,Bj)
Z Bo  9R Bo  8R 36 B, 90

+ 9Reo 1 3(z AB) Z{gga 3 (aB) Req 1 3(aB)

30 B, 08 B, R 30 B,
2% Reo a(ZOBi) + X ]_ B(ZOBi)
BO oR BQ 99
R 3B 1 23B:
+ —£0 L 4 ox! — L (2.22)
22x TSR 2 5%

Then, with Eq. 2.16 our final expression becomes

RZo 9Bj R2 R2, 3(AB
2" + viz = - 8@ e, cospo - —S98;¢, p cosps - —£2 (48) o,p COSP8
z Bo AR ’ Bo ’ B, OoR °?
R% 1 3Reo 9Bj
+ —=2B €,  COSpPO + — —E0 ———'—eo cospé
Bo »P Bo 096 938 ©»P
P 3Reo . 1 9Reo  3(AB)
- — B sinpg + — . € cospb
Bo 26 1°0»P P Bo 96 39 0P P
P 3Reo . R&o 3(AB) 1 3Reo  9(aB))
- - ABe sinpd - z|— - = .
Bo 96 0,P B, oR By 90 3 )
RZ, 9B; 2R3
eo %P eo
- X|—== —= cospo + B:e cospb
B, R LPCOPY T Tp — Tif2,p CO°P
2R oB: 2R
—€0 1 + €0 g,
+ B, OR €0,p cospé B, Blel,p cospd
1 3R 9B R
- ——=2. ——-'—el cospd + — €9 B.eg cospe]
BO 39 98 ’ o 36 | )
. ] aBi pBi 0 ] aReo o
e - — —8; os
+ x B, —Bg—eopcospe —B—;—eopsmp +BO 56 i€1,p COSP
1 3B;
- 2zx Reo 3By zx' — —- (2.23)
BO Bo 39
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where we neglected terms of the third and higher orders in z, x, AB and
€ . Eq. 2.21 and Eq. 2.23 describe the forced oscillations of the
’
particle in the radial and vertical direction. We can now investigate the

various intrinsic resonances due to non-linearities as well as resonances

due to magnet imperfections.

Resonances

The simplest case of resonance arises when an exterior interference
force due to a perturbation in the field amplitude is added to our free
oscillation. Considering only the first term on the right-hand side of
Egq. 2.21, we expand AB in a Fourier series and we select the pth component.

Then Eq. 2.21 is written

2
x'" + \))z(x = %Bp cospb (2.2)

where Bp is the amplitude of the perturbation in the magnetic field. The

solution of the homogeneous-~part of Eq. 2.21 is given by
x = A cos(vxe + ¢) ) (2.25)

where Ax is the amplitude of the radial oscillation. Then, the right-hand

side of Eq. 2.24 will oscillate with the same frequency v whenever
vV, = p (2.26)

i.e. when Vo is an integer. Similarly, by adding only the third term on

the right-hand side of Eq. 2.21 to our free oscillation, we may write

X"+ y2x = xEéQ-EEQ cosp# (2.27)
g X Bo 9R )

We then use first order perturbation theory to replace x in the right-

hand side of Eq. 2.27 by the solution 2.25, and we transform the product



of harmonics into a sum. We find that resonances occur when
v, = p/2. (2.28)

While the integral resonances are sensitive to a flat harmonic error, the
halflintegrdl resonanceé are primarily driven by gradient errors in the
guiding field. From Eq. 2.23 we see that resonances due to gradient imper-
fections also appear in the vertical motion; similarly, the integral
resonances appear when a twist in the median plane is present.

The misalignment of the median plane may, on the other hand, intro-
duce linear coupling terms in both the radial and the vertical motion.
Keeping only the first term in x on the right-hand side of Eq. 2.23, we

write

cospf. (2.29)

We then replace x on the right-hand side of Eq. 2.29 by the solution of
the radial free oscillation, and we find that linear coupled resonances

occur when
v+ v_ = p. (2.30)

This type of resonance may arise from the term proportional to szBi in

Eq. 2.21; the driving harmonic is the pth

harmonic of the slope of the
twist in the median plane. A corresponding coupling term is found in the
equation for the radial motion.

We consider finally the non-linear resonances. Some of those
resonances arise from magnet errors, others are intrinsic resonances due

to non-linear terms in the equations of motion. The general case of a

non-linear term may be written as
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coupling term = ¢ UL cospo (2.31)

where we chose (n-1) rather than n for greater simplicity in the final

expression. The equation for the radial motion becomes

X"+ vix = e xn_] 2" cosp® (2.32)
" 2 n-1 m
x"" + \)Xx = ¢ cOS vy cos v,6 cospb. - (2.33)

Transforming the product of harmonic functions into a sum, we find that

the condition for resonance is fulfilled if
vt mv = p (2.34)

where n, m, p=0, *1, £2, ... The odd values of m correspond to median
plane errors since they arise only, in the radial motion, from the expres-
sion 2.16. Eq. 2.34 contains all the previous types of resonances, namely
resonances 2.26, 2.28 and 2.30. We can show that Eq. 2.34 may be obtained
from a driving term like ¢ x" zm-] cospd in the vertical motion.

Some of the resonances described by Eq. 2.3L4 are schematically
shown in Fig. 2.1. The horizontal and vertical lines correspond to
integral and half-integral resonances, while the other straight lines
correspond to coupled resonances. We call |n| + |m| = N the order of the
resonance. It is easily seen, from the expressions 2.32 and 2.34, that a
resonance of order N is driven, in first order, by a term of order (N-1)
in the equations of motion. The driving harmonic is the pth Fourier
component of the field or magnet imperfection. It has been shown by
Sturrock® that, in most cases, dangerous instabilities arise only if n and

m are of the same sign, i.e. when we have a 'sum resonance'. Furthermore,®

if [nl + Im[ > 4, the motion is usually stable. Finally, although we have
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Vy~Vy=1|

500 MeV

108 MeV < 00
~

T~ —— ____ _300/MeV
200 MeV - —

. o

Fig. 2.1. Plot of vy versus v,, for field 01/30/10/70
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drawn lines on Fig. 2.1, Sturrock has pointed out that the resonances can
cause increases in the betatron oscillation amplitudes over regions extend-
ing some distance on either side of these lines.

The dashed line on Fig. 2.1 represents the expected values, for
TRIUMF, of v, versus v after shimming, while the dotted line .shows the
working path for field 01/30/10/70 before shimming. We observe that, at
low energies, the value of the frequency for the radial betatron oscilla-
tion is close to one. Similarly, we cross the coupled resonance
v TV, = 1 around 150 MeV and, at higher energies, we cross the resonance
v, = 1.5. These three regions are sensitive to field or to magnet imper-

X

fections and will be discussed in more detail in the following chapters.

A
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THE CENTRAL REGION

Introduction

In the central portion of the cyclotron the resonance v, = 1.0 is
driven, in first order, by a first harmonic imperfection. The first
harmonic is superimposed on the dominant terms in the Fourier expansion of
the magnetic field, namely the sixth harmonic and its multiples. In
general, the effect of the imperfection is to increase the amplitude of
the radial oscillation. We set our tolerances according to the maximum
acceptable value of this betatron oscillation. The limit is introduced
from considerations on beam quality, such as the energy resolution. The
second harmonic can also drive the resonance v = 1.0 but its effect is

less important. We will, however, consider both imperfections.

Sensitivity to a First Harmonic

3.2.1 Introduction

A general analysis of the effects of first harmonic field errors on
the radial oscillations has been made by Lawson.’ However, an approximate
treatment can be obtained using the following simple procedure. The

equation for the radial motion in the presence of a first harmonic forcing

term may be written
x" + vix = b, cos(8 + ¢,) (3.1)

where x is the radial displacement from the equilibrium orbit in units of
the orbit radius, bl is the amplitude of the forcing term, i.e. the ratio
of the amplitude of the first harmonic B, to the average field B, and ¢y

is the azimuth of the peak of the driving harmonic. The general solution

of Eq. 3.1 is
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by

TNz

cos (8 + ¢1) + A cos (v 8 + V), (3.2)

The particle precesses in a circular path about an equilibrium orbit

centre disp]aced by a distance dl’ in inches, given by

R.B1
d = ::-e—o— .
LT 5 (3.3)

where Reo is the radius of the equilibrium orbit we consider and Vo is the
frequency of the radial oscillation at that radius. When (vx-]) is small,
the ion bunch will precess slowly about this displaced orbit centre and,

after N turns, the bunch will be displaced by a distance d* where

d* = 2d1 sin[w(vx-l)N] = 27 N dl(vx-]). (3.4)
If the first harmonic bump is suddenly turned off after the Nth turn, d*
will be the coherent betatron amplitude which we call Ax’ In other words,
a step first harmonic bump of B, gauss between radii RA and RB will
produce a betatron oscillation amplitude of

7N (Ry+Rg) B
" = ;“A_fﬁ__L (3.5)
Bvytt)

This assumes that Vo is constant between RA and RB; N is the number of
turns made between RA and RB' In fact, a step-shaped first harmonic is

not realistic for TRIUMF; the steepest rise or fall that we would expect is
from 10% to 90% of maximum values in about 10 in., or half the magnet gap
width. However, Eq. 3.5 is still a useful approximation if only a small
portion of the precession cycle is made while the first harmonic amplitude
is changing. This is true when (vx—l) is small.

For a continuous field error, where the amplitude of the imperfec-

tion harmonic is constant with radius, Lawson’ has derived a formula for
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the corresponding amplitude of the betatron oscillation. He obtained

br)# B
a, = 0.65 qu Mo

—

(3.6)

wll

where r_ = ﬁ-is the cyclotron unit of length and € is the ratio of the

energy gain per turn to the ion rest energy.

3.2.2 Calculations

These were performed using the code GOBLIN and the field 1/07/04/70.
All calculations assumed that only the fundamental RF frequency was
present, no third harmonic. When the third harmonic is present, ions of
different phases get more nearly the same energy gain per turn and hence
acquire similar betatron amplitudes.

We first determined the 'ideal path' for ions in (x, p,) phase space
by running GOBLIN backwards from 50 MeV to low energy to get approximate
starting conditions. We then ran forwards, adjusting the starting condi-
tions so that ions of 0 deg RF phase had no large cusps or loops in their
phase space path and ended up on centre in a 6-fold field at 50 MeV. This
gave us our standard starting co-ordinates for forward runs. We regarded
residual wiggles of about 0.05 in. amplitude as acceptable.

We then superimposed our field imperfections and observed the path
in (x, px) space of an ion starting at the standard co-ordinates with
0 deg RF phase. At some energy, beyond the influence of the imperfection,
the ions would be precessing in phase space in circles of roughly constant
diameter. The displacement from the ideal path, at a particular energy,
was considered to be the betatron amplitude gained from resonance. It was
found to be almost linearly proportional to the first harmonic amplitude

and almost independent of its phase. This can be seen on Fig. 3.6 where a
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bump of 0.2 G builds up an oscillation of 0.09 in. amplitude while a bump
of 0.4 G produces an oscillation of 0.19 in.

Fig. 3.1 illustrates some results obtained in the two cases we
studied. The first was for a first harmonic whose amplitude was uniform
with radius; an amplitude of 0.2 G produced a radial amplitude of 0.20 in.
compared with the 0.18 in. predicted by Eq. 3.6. The other case was for
a bell-shaped bump with a half-width of 20 in. Fig. 3.1 shows the results
when the bumps were centred at 30 in. The field bump of 0.5 G builds up
an oscillation of 0.15 in. while our previous Eq. 3.5 predicted an ampli-
tude of 0.13 in. Similarly, the 2.0 G bump produces an oscillation of
0.65 in.

We have made a detailed investigation of the effect of first
harmonic bumps at radii less than 150 in. on the behaviour of the beam. We
used the fact of linearity to get more accurate results with larger bumps
so that the 0.05 in. residual oscillation of the "ideal case'' was
negligible. Fig. 3.2 shows the results of these calculations in the form
of the amplitude of a bell-shaped first harmonic bump 20 in. wide placed
at different radii and necessary to produce a betatron amplitude of
0.2 in.; this was considered to be the worst that could be accepted. The
results ;how that the most sensitive region is that around 60 in. where a
bump of 0.2 G produces an oscillation of 0.2 in. of amplitude. This last
result is approximately equal to the amplitude gained from a continuous field
error.

The behaviour of the field strength can be understood by considering
the motion of the centre points. We have seen that when (vx-l) is small
the ion bunch precesses slowly about the displaced equilibrium orbits. The

amplitude acquired is given by Eq. 3.5. At very low energies, the lack of
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sensitivity to a first harmonic bump is explained by the fact that the
ions only make 4 or 5 turns over the first 30 in. When Vo increases, the
oscillatory behaviour of Fig. 3.2 can be explained by the ions making an
integral number m or (m + 1/2) complete precession cycles in the bump. A
pessimistic assumption would be for the ions to make (m + 1/2) cycles in

a ''square'' bump; in this case, the amplitude acquired would be twice the
displacement given in Eq. 3.3. The tolerance on the first harmonic bump
is, in that case, tightest, and we obtain a minimum point on the figure.
This assumption is, however, pessimistic because, for real bumps with
""rounded corners'', the particles tend to ''follow' the displaced equilibfium
orbit when v is large. The prediction of this pessimistic assumption and
of Eq. 3.5 are shown by the dashed lines in Fig. 3.2.

In practice, the cyclotron field will be shimmed to give a first
harmonic of less than 1 G. Then, several sets of six harmonic coils, each
extending over 60 deg in azimuth, will be used to compensate for the effect
of the remaining amplitude. The effect of these harmonic coils is

considered in the next section.

Harmonic Coils

3.3.1 Oscillatory First Harmonic

A change in the current of any harmonic coil affects the configura-
tion of the magnetic field in the region where the coil is present. The
field contribution from any set of harmonic coils will be used chiefly to
cancel the first harmonic error field in their vicinity. Fig. 3.3 shows,
however, that the harmonic coils may not be able to cancel this intrinsic
first harmoniclat every point. The amplitude of the residual first
harmonic as a function of radius will tend to oscillate between positive

and negative values, i.e. its azimuth shifts by 180 deg. We assume a



-23_

ABI (6).
a) :
6.0+ —{10 in. |~
404
2.04
—-
R
ABeoiLs (@)
b) . —
6.0 1 \ /N / —{10 in.}o—
/ \ /
\ \
4,04 \/ /
" / \
/ \
2.0 4
/ \ / \
L 4 N [ . N 7 L N ! -
(N-1)tP coil Nth coid (N+1)th i R
AB17Beojs (6 |
—{10 in.fo—
c)
2.0 T /\
-
\/ R
-2.0

Fig. 3.3.

a) First harmonic error field
b) Net coil field corrections
¢) Residual first harmonic



- 24 -

purely sinusoidal azimuthal dependence for the coil fields.

As a ''bad'" case, we chose to consider an intrinsic first harmonic
that varied radially in such a way that it was always out of step with the
correcting field produced by the coils, i.e. the error is always zero at
a coil centre and an extremum half way between their centres. This is not
a likely situation. The residual first harmonic is shown in Fig. 3.4; the
aiimuth is constant with radius (apart from switches of #180 deg). The
betatron amplitudes resulting from various amplitudes of this oscillatory
first harmonic (for ions of 0 deg RF starting phase) are given in

Table 3.1; they are similar to those from a flat first harmonic.

Energy Oscillating Bump Amplitude (gauss)
(MeV) 0.1 0.2 0.5
35 0.12 in. 0.23 in. -0.57 in.
50 0.10 in. 0.18 in. 0.46 in.

Table 3.1. Betatron amplitudes for 0 deg RF phase ions

It is possible, as we will see, to cancel the final betatron ampli-
tudes at some energy for ions of any given RF phase, by a suitable choice
of an additional harmonic coil field. We chose to look at the set of
coils extending from 63 in. to 89 in. in radius, and we assumed that they
produced the bump profile shown in Fig. 3.5. We accelerated ions from a
low energy to 35 MeV at a radius of approximately 107 in. At that energy,
the ions are outside the region of sensitivity to a first harmonic and,
if centred there, should remain centred during further acceleration. Their

end points in (x, px) space are given in Fig. 3.6 as functions of the bump
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amplitude and azimuth. The amplitude and azimuth of the displacement are
almost linear functions of the amplitude and azimuth of the first harmonic
bump.

The end point in the ideal case, when no imperfection harmonics are
present, is shown as point A. The end point C for an oscillatory residual
field of 0.2 G is also shown; we attempted to cancel this for ions of 0 deg
RF phase by an additional bump between 63 in. and 89 in. of 0.47 G at
295 deg. Point D, obtained by drawing a line from C through A and setting
AD = AC, was used to estimate this bump amplitude to cancel C. The net
result is to bring the ions back to point E. The improvement can be seen
by comparing the results in the first column of Table 3.2 with those in

Table 3.1 for 0.2 G.

Energy : lon Phase

(MeV) 0 deg 15 deg 30 deg
35 0.02 in. 0.03 in. 0.19 in.
50 - 0.07 in. 0.08 in. 0.12 in.

Table 3.2. :Betatron amplitudes with harmonic coil field

lons that start at the same point and the same energy but different
RF phase will acquire different betatron amplitudes primarily because they
make more turns to reach a given energy. Their betatron amplitudes will
not be cancelled exactly by this bump. To investigate the first harmonic
effect alone, it was necessary to remove the ''phase-centre point spread"

phenomenon.8 This was done by running GOBLIN backward to find '"ideal"
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starting points for different phases; these starting points were displaced
from the 0 deg starting point by 0.1 in. for 15 deg and 0.46 in. for 30 deg
RF phase. lons starting at these positions were accelerated through the
0.2 G oscillatory field with the correcting-bump, and the results are given
in Table 3.2. The final amplitudes for ions at 15 deg are quite acceptable,

and those for ions at 30 deg are acceptable for many purposes.

3.3.2 lons with a Wide Range of RF Phases

In cases ‘where the harmonic coils cannot cancel the first harmonic
error field in the magnet, we would like to know if we can choose coil
settings that will reduce the betatron amplitudes acquired to a small value
at some energy for ions with a wide range of RF phases. The previous sec-
tion showed that we could do this for a narrow phase width by suitably
powering a single coil set.

On Fig. 3.7 we denote as E and B the amplitude and phase of the
betatron oscillation induced by the first harmonic error. Similarly, ?,
with amplitude vy and phase w, represents the oscillation produced by a 1 G
field in a single harmonic coil placed at a standard azimuth and is called
fhe coil coefficient. Then, for each set of coils, each RF phase and a

given energy, we have
>
E = AT (3.7)

where A is a complex number with amplitude A (gauss) equal to the coil
field required for compensation of the error, and phase d equal to the azi-
muthal rotation required for the single harmonic coil set considered. In
practice, each coil set consists of six coils at 60 deg azimuth intervals
and their relative currents can be arranged® to provide a first harmonic

- » o +
peak at the desired azimuth. When several coil sets afe used to cancel E,
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their effects can be superposed so that Eq. 3.7 becomes
S > ->
E= AT + AT, + AT, + ... (3.8)

We separate real and imaginary parts of Eq. 3.8 and obtain

E cos B (y,cosw;A cosa; - y sinw,A;sinay) + ( D, + (. )3 + ..(3.9)

E sinB.

(ylsinwlAlcosa1 + y cosw,A sinay) + ( + ( )3 +

),
(3.10)

Then, to keep the equations linear, we rewrite Eq. 3.9 and Eq. 3.10 as
E = (YXAx - YyAy)l + ( ) o+ | ) o+ ... (3.11)

£, = (AT A) + (), () (3.12)

The values of EX and Ey’ at a given energy, are found by superposing the
first harmonic error on our magnetic field and measuring the ending point

in (x, px) space of an ion accelerated to that energy. The coil coefficients
are obtained in the same way, using a field of known amplitude in each coil.
A

We then solve a set of linear equations to find A A

1x2 Pry»

amplitudes and phases of the coil correcting fields.

As a very pessimistic case, we chose to cancel the first harmonic
error shown on Fig. 3.8. The bump has a 2 G amplitude and extends from
35 in. to 90 in. This region, as we saw previously, is the most sensitive
to field imperfections. The three sets of coils at 37'" < R g 54,
54" < R < 71", 71" < R < 89", respectively, can be used to compensate for
the effect of the first harmonic imperfection. However, the variation with
radius of the first harmonic error was chosen so that the coils could not

eliminate it completely. With six coil constants, A A

1x?

to choice, it appears possible to satisfy Eq. 3.11 and Eq. 3.12
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simultaneously for ions with three different RF phases. We chose to
consider ions with 0 deg, 25 deg, and 40 deg RF phase and tried to centre
them at 35 MeV, i.e. approximately 105 in.

A1l calculations were done using the field 01/30/10/70. We first
determined ideal starting conditions for our three particles. Their paths
in phase space to 35 MeV are called ''ideal paths''. We then superposed the
first harmonic error and found the ending point of each ion at 35 MeV. Each
displacement was measured from the ''ideal' centre point at 35 MeV.
Similarly, we obtain the values for the coil coefficients, I', by adding a
2 G field in each coil and measuring the corresponding displacement, as
shown in Fig. 3.9. We verified that the amplitude of the displacement was
proportional to the field amplitude so that the T are constant over the
range of amplitudes we were using. We also checked that the displacement
due to two different coils is the vector sum of the displacements due to
each of these two coils.

Once we obtained our set of six linear equations, we found that a
small change in the known parameters was giving rise to large changes in
the solutions. This phenomenon is known as ill-conditioning. Since we
cannot measure betatron amplitudes exactly using probes, we need a less
sensitive approach. We therefore measured the displacements due to the
first harmonic error at every 5 MeV step from 15 MeV to 35 MeV, and calcu-
lated the corresponding values of Yy and Yy at those energies. We could
also have improved the situation by running additional phases to 35 MeV;
however, we chose to get the coefficients at different energies to reduce
the number of GOBLIN runs. The results at 5 MeV steps are given in the

following tables.
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L0° RF phase



RF Phase Energy _
(deg) (MeV) 15 20 25 30 35

Ey (in.) -1.99 -0.10 0.54 -0.76 -0.10

0
Ey (in.) -0.48 1.84 -1.54 1.43 -1.70
E, (in.) -2.03 -0.36 0.76 -0.38 -1.00

25
Ey (in.) -0.92 2.22 -1.82 1.99 -1.70
EX (in.) -2.30 0.45 -0.66 1.34 -1.68

4o
E, (in.) -1.08 2.46 -2.25 1.74 1.17

Table 3.3. Components of displacements due to first harmonic
of Fig. 3.8
RF Phase Energy
(deg) (MeV) 15 20 25 30 35

Yy (in./G) -0.35 0.49 -0.42 0.37 -0.48

0
Yy (in./G) 0.41 0.09 -0.31 0.39 -0.08
Yy (in./G) -0.46 0.38 -0.25 - 0.34 -0.48

25
Yy (in./G) 0.17 0.37 -0.50 0.42 0.00
v, (in./G) -0.61 0.50 -0.50 0.63 -0.14

Lo
Yy (in./G) -0.03 "0.46 -0.47 0.01 0.74

Table 3.4. Coefficients for set of coils at 37"< R < 5k
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RF Phase Energy
(deg) (MeV) 15 20 25 30 35
Y, (in./G) -0.73 0.12 0.17 -0.30 -0.17
0
yy (in./6) -0.32 0.88 -0.87 0.83 -0.89
Y, (in./G) -0.72 0.06 0.20 -0.01 -0.60
25
Y, (in./G) -0.42 0.96 -0.93 0.97 -0.67
Ty (in./G) -0.79 0.41 -0.43 0.70 -0.69
4o -
’yy (in./G) -0.43 0.96 -0.95 0.67 0.66
Table 3.5. Coefficients for set of coils at 54" < R g 71"
RF Phase Energy ' _
(deg) (MeV) 15 20 25 30 35
Y, (in./6) -0.06 -0.77 0.14 -0.07 0.38
o N
Yy (in./6) -0.18 -0.26 0.70 -0.69 0.5k
Y, (in./G) -0.06 -0.77 0.15 -0.29 0.56
25
yy (in./G) -0.19 -0.28 0.70 -0.60 0.17
' (in./G) -0.07 -0.83 0.35 -0.47 0.12
40
Yy (in./G) -0.21 -0.11 0.40 ~0.01 -0.55
Table 3.6. Coefficients for set of coils at 71" < R < 89"
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We thus obtained a set of 30 linear equations for our six unknowns. A

least squares fitting program was written to minimize

30

& 2
I w@ [e@ - 1 AW - y(n) G
I=1 J=1 :

where W(I) is a weighting term. With weights of 0.5, 1, 2, 3, 3 for
energies of 15 MeV to 35 MeV, the amplitudes and phases of the harmonic

coil fields to cancel the first harmonic error were found to be

Ist coil 2nd coil 3rd coil
A (G) 0.61 2.07 0.75
o (deg) 6.3 4.1 -24.0

Table 3.7. Harmonic coil correcting fields

We determined that the coil requirements were no longer sensitive to input
parameters. The solutions A(J) were then used to calculate the displace-
ments from the ideal orbit at energies where the coefficients were
calculated, since the A(J)'s obtained are the best solution but may not
result in-absolutely zero final displacement.

The initial displacements from the ideal orbit due to the first

harmonic error are given in Table 3.8.
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E
(MeV)

o RF 15 20 25 30 35
(deg)

0 2.05 in.| 1.84 in.|[ 1.63 in.{ 1.62 in.| 1.70 in
25 2.23 in.| 2.25in.| 1.97 in.| 2.03 in.| 1.97 in
Lo 2.54 in.| 2.50 in.| 2.34 in.| 2.20 in.| 2.05 in.
Table 3.8. Displacements from ideal orbit due to

first harmonic of Fig. 3.8

The final displacements, when both the first harmonic error and

ing fields are present, are given in the following table.

E

(MeV)
% RF 15 20 25 30 35
(deg)
0 0.26 in.| 0.18 in.| 0.02 in.| 0.07 in.| 0.02 in.
25 0.28 in.| 0.10 in.| 0.04 in.| 0.03 in.| O.1h4 in.
Lo 0.27 in.| O0.11 in 0.07 in.| 0.09 in.| 0.14 in.

Table 3.9. Displacements from ideal orbit when first

harmonic error and correcting fields are

present

factor 8 and in most cases by much more.

We see that the displacements have been reduced everywhere by at least a

We then ran GOBLIN to look at the

the correct-
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phase space for accelerated particles. The results for ions of 0 deg and
L0 deg RF phases are shown in Fig. 3.10 and Fig. 3.11. The final amplitudes
can be compared to the amplitudes of the residual oscillations obtained in
the '""ideal' cases. Also shown in Fig. 3.12 is the result for an ion of
30 deg RF phase. This last figure shows that our solution is also valid for
ions with intermediate RF phases. Also, since we have shown the effects of
a first harmonic to be linear in our machine, we do not expect any distor-
tion of the emittance from these effects. Our solution does not reduce to
zero the amplitude of the final oscillation at 35 MeV. This amplitude
depends on the form of the first harmonic error present and could be worse
or better for a different shape.

In this analysis we eliminated interference from the ''phase-centre
.point spread" phenomenon® by finding an ''ideal' starting point for each
phase. However, we have shown that it is possible to use the method
described above to centre at a given energy ions with different RF phases
and identical starting conditions. The required coil fields are obtained
in the same manner as in the case of an intrinsic first harmonic imperfec-
tion. In other words, we can reduce the centring error, no matter what the

cause.

Sensitivity to a Second Harmonic

In a previous study, Hagedoorn and Versterl® described the radial
motion of the ion on the basis of the Hamiltonian formalism. The influence
of small field errors introduced by first and second harmonic was also
considered. They showed that radial instability caused by a second

harmonic of amplitude B2 is present {f

—-_— 4 —— = Z Vy = 1. (3.14)
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Phase space plot for accelerated ions (1 MeV to 35 MeV) of 0 deg RF phase with

both the first harmonic error and the harmonic coil correcting fields present.
The markers (/) indicate every 5 MeV step.
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On Fig. 3.13 we have plotted the left-hand side of this last expression for
various values of vx,.using the field 01/30/06/70. The region on the right-
hand side of each line is the instability region for that particular value
of Vo The correspénding values of the amplitude and gradient of the second
harmonic will, in these regions, lead to an imaginary value of Vs i.e.
complete defocusing. Using our code CYCLOP to verify Eq. 3.14, we obtained
imaginary values of Vo with second harmonics whose amplitudes and gradients
were within 20% of the values obtained from Eq. 3.14. Thus, Fig. 3.13 can
be considered a useful guide to set our tolerances on the second harmonic.
Even if the second harmonic is not sufficient to render v imaginary, it
can still distort the static phase space ellipse; we consider a reasonable
tolerance to be about 1/4 of the critical values given in Fig. 3.13.

Finally, when we considered a mixture of both first and second
harmonic errors, we observed that the shift of the equilibrium orbit, at
low energy, was strongly dependent on the relative phase of the harmonics.
As it stands, Eq. 3.3 does not take into account the phase of the
harmonics. However, we can understand this phenomenon with the use of the
Hamiltonian derived by Hagedoorn and Verster to describe the motion of the
orbit centre.

The contribution of the first and second harmonic to the Hamiltonian
may be written

H= XBL cos (6-¢,) +

X - B2 -
ReoB 2RZ, [("x )+ o5 Cos (26-9,) (3.15)

where x is the displacement from the equilibrium orbit radius Reo’ and ¢,
and ¢, are the phases of the two harmonics. For greater simplicity,

Eq. 3.15 has been written without the terms involving the gradients of the
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Fig. 3.13. Limits of radial stability for second harmonic
error field
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of the harmonics. The new position of the orbit centre follows from

oM _ . We obtain
9X
Bl Reo B, B Reo ,
X & =0 cos(e-¢1) - —gqyil————— cos(e-¢l)cos(26-¢2) + ...(3.16)
2B (v, -1) 4B (v, -1)2

Since (vi-l) 2 2(v,~1), we verify that Eq. 3.3 and Eq. 3.16 are equivalent
when no second harmonic is present.
Table 3.10 and Table 3.11 show the displacements obtained from

numerical estimates using CYCLOP and from Eq. 3.16 for ions of 1 MeV and

3 MeV.
Phases of ;
Imperfection| ¢1= ¢o=0 deg | ¢; = O deg ¢1 = 90 deg ¢1= ¢ =90 deg
Harmonics ¢p = 90 deg ¢o = 0 deg
cycLop 1.98 in. 3.04 in. L4.02 in. 2.93 in.
Eq. 3.16 2.08 in. 3.12 in. k.16 in. 3.12 in.

Table 3.10. Displacements of the equilibrium orbit centre due to first
and second imperfection harmonics of 1 G and 2 G, respec~
tively, for ions of 0 deg RF phase at 1 MeV and v, = 1.001

Phases of

Imperfection| ¢1= ¢p = Odeg | ¢ = O deg $1 = 90 deg $1= ¢o = 90 deg
Harmonics , do 90 deg $o = 0 deg

cycLop 1.11 in. 1.22 in. 1.33 in. 1.23 in.
Eq. 3.16 1.24 in. 1.35 in. 1.46 in. 1.35 in.

Table 3.11. Displacements of the equilibrium orbit centre due to first
and second imperfection harmonics of 1.G and 2 G, respec-

fively, for ions of 0 deg RF phase at 3 MeV and vy, = 1.004
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We assumed a maximum value for the displacement, and the amplitudes of the
first and second harmonic were of 1 G and 2 G, respectively.

The displacement of the equilibrium orbit centre is a minimum when
both harmonics are in phase at 0 deg. In the cases where ¢; = 0 deg,
¢, = 90 deg or ¢; = ¢, = 90 deg, the second term on the left-hand side of
Eq. 3.16 goes to zero so that the displacement of the equilibrium orbit
centre is due'only to the first harmonic error. |In all the cases we
considered, the accuracy of Eq. 3.16 was within 10%, for small values of
(vx-l). Because this shift decreases rapidly with the increasing energy
and also because the ion spends just a few turns in the central region, the

displacements can be tolerated.
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THE RESONANCE vx-vz =1

Mathematical Description

The second order linear coupled resonance vV, = I will be
encountered at about 150 MeV, with v, = 1.2 and v, = 0.2. This resonance,
like others involving an odd multiple of Vs is driven by an asymmetry in
the median plane of the cyclotron. For example, the asymmetry may be
caused by a tilt of the magnet sectors. Only the first harmonic of such a
tilt or twist is of importance in driving this resonance.

To describe the effect of this resonance, we reproduce a portion of
the analysis due to Joho.l! He assumes a Hamiltonign of the form

H= HO + H1 where

H, = %{vixz + pi] + %{v%zz + p%] = harmonic oscillator term  (4.1)
Hy=axz cos(e-eo) = coupling term (4.2)

He then constructs a sequence of canonical transformations which eliminate
the 6-dependent parts of the Hamiltonian. The first transformation intro-

duces the so-called action-angle variables. |In terms of these variables

(¢x, Jor b, JZ), the old variables are given by
=/ Bx cos (bymvye0) (1.3)
= Vx Cos (P ~Vyq .
Px = V' 2vydy sin(y-vy,0)
2J
z =/ —;f— cos (¢,-v,8)
P, = /2v,J, sin(¢,-v,0)
where v is a reference frequency such that Av = v_=v_=~-1=v_-v_ =0
X0 X z X X0
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when we are exactly on the resonance. The final Hamiltonian is written

J Yz (J,)4
H* = ~Avdy - a[—*ﬁi P—ZJ cos(¢x-¢z'60)- (4.4)

2vx 2vz

This Hamiltonian is independent of 0 and is therefore a constant of the
motion. If the curves H* = constant in phase space are closed, the motion
must be stable; otherwise, instability may occur. Joho has shown that, in
the case of the difference resonance v, - v, = 1 the curves in (xo,zo)

space are given by
-1 2 2| = L
Jo —,z(vxxo + vzzo] = constant (4.5)

where J, is the total ''energy'' of the system and XysZ, are the instantaneous
amplitudes of the oscillationsin units of the average radius, and are
determined by the initial conditions. Eq. 4.5 represents an ellipse in
(x,,2,) space; the motion is periodic and therefore stable, if one amplitude
increases, the other decreases. There is effective transfer of energy
between the two motions. The total amplitude increase depends, of course,

on J the total available energy.

o’
The next step is to obtain the expressions for the maximum amplitude
increasesper turn. We first write the Hamiltonian in terms of the

normalized action variable Py and the auxiliary variable P, where

_ Ix _vx 2
Py = |Jo| zlJol x5 (k.6)
- Jdz vy 2 27 - 4.7)
"2 T A e T T (.7

The Hamiltonian becomes

K(py,2) = -Avp, - Kpi p% cosd (4.8)
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where ¢ = ¢x - ¢z - 8, is the relative phase of the two oscillations. The

quantity k is called the ''critical frequency' and is given by

a1 (v - v3)  ag v + vy,)

<= 2L - (4.9)
2(v,v,)? 2/,
where o, is the first harmonic of the tilt a(6) and is obtained from
1 2T
oy =1 [T ale) costo-oy) s, (4.10)
O .
This critical frequency gives roughly the range of Av for which the
resonance will be excited. The equations of motion follow from p; =-3K/8¢
and &' = aK/apx, where the prime denotes differentiation with respect to
6. We obtain
U S S
Py = ~KPZ p2 sind (4.11)
L L
o' = -Av - %—[(pz/px)2 - (py/p5) 2| cosd. (k.12)
Now, Eq. 4.6 and Eq. 4.7 give
Pyl = 2 xL/xg (4.13)
and
Vg, z%
Vi X5
so that Eq. L4.11 becomes
1
L A4 ;
x} 3 (Vx] z, sing. (&k.15)

The increase in x per turn is given by ané and the maximum occurs when

sind =1, i.e.

9X
on

L v, + Vv
= -TK {2;}220 = -E%l-£~5————;l Zg. (4.16)
max Vx -
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Similarly, the maximum rate of growth for the vertical oscillation is

given by

N _
- ™ [Yé]zxo - -T (va+ va (4.17)
max z

The above results are only valid in a static situation, i.e. for
ions rotating in the resonance region with a fixed energy. Since it is
associated with @ = 5/2, the maximum amplitude increase will be achieved,
for a twist phase of 6, = 0 deg, only by those particles with a relative
phase of 90 deg. In practice, however, this condition is unlikely to be
satisfied by a great number of ions. Moreover, when the particles are
accelerated, the frequency shift phenomenon destroys the resonance condi-
tion, so that Eq. 4.16 and Eq. 4.17 are really approximate expressions

for the maximum rate of growth of the oscillations.

Calculations

All calculations were done using the field 01/30/10/70 where the
resonance occurs at 153 MeV. We simulate a twist in the median plane by
assuming, in our GOBLIN code, that two of the magnet sectors, 180 deg
apart, are tilted by an angle a. A schematic representation of such a
tilted median plane is shown in Fig. 4.1, where R, is the radius at which
the tilted plane intersects the median plane. In this case, where two
= z-d. The tilt is simulated in the orbit

13

code by rotating the co-ordinate system of the particle each time it

sectors are tilted, we have a

enters the region of a tilted sector. The transformation to the new

system (R%*,z*) is written as

(R*-RO) = (R-Ro) cosa + z sina (4.18)

z* = z cosa - (R-R,) sina + b (4.19)
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where the constant b is added to simulate the case where the sector is
simply lifted by a constant amount. |f we assume that o is small,

Eq. 4.18 and Eq. 4.19 may be written

v
St
b2
li

R + oz (4.20)

N
[

#* =2z - a(R-R)) + b. (4.21)

Similarly, the particle momenta are changed according to

o

PRt op, (4.22)

/

Pz = P, = OPp- (4.23)
The field components, in the region of a tilted sector, are then calculated
using the new (R*,z*) co-ordinates. When the particle leaves that sector,
the reverse transformation.is performed.

As an illustration, we chose to consider the case of an ion with an
initial phase ¢, = 0 deg for the radial oscillation. From Eq. L.3 , we
find that this condition is satisfied, provided the ion is displaced in
the positive x-direction. The corresponding condition for the vertical
oscillation leading to a maximum rate of growth would be ¢, = -n/2 - 64,

i.e. a negative p, displacement if 6, = 0O deg. These conditions are, how-

0
ever, only true for upright ellipses in phase space. Since, in practice,
the ellipses are slanted because of the modulation of the betatron oscilla-
tions by the magnet sector structure, we fixed the radial displacement at
0.25 in. and, from the corresponding static (z,pz) phase space ellipse at
153 MeV, on resonance, we chose eight particles with different starting
conditions. The ellipse, obtained with no twisted median plane present,

is shown on Fig. 4.2. We then introduced a first harmonic twist, with a

slope of a = 0.02 rad, about the average radius of the equilibrium orbit
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TILTED MEDIAN PLANE \
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Fig. b.1. Section view of the cyclotron median plane with tilted
median plane parameters
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Fig. 4.2. Static phase space ellipse at 153 MeV corresponding to a
radial betatron amplitude of 0.25 in. The dots indicate
the initial conditions for our eight particles.
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at 153 MeV and made static GOBLIN runs at that energy to measure in each
case the rate of growth of the oscillations. The particle with initial
displacement of z = 0.145 in. and p, = 0.09 in. had the maximum rate of
growth. As illustrated in Fig. 4.3, the maximum rate of growth is

0.016 in. per turn for the radial oscillation  and 0.05 in. per turn in
the vertical direction, with a beat period of approximately 40 turns. The
minimum amplitude of the radial o;ci]lation is close to zero and the
corresponding amplitude in the z-motion is 0.7 in. There is almost
complete transfer of energy from the radial to the vertical motion.

Eq. 4.5, with initial values of x, = 0.25 in. and z, = 0.145 in., gives
Jo = 0.04 = const.; if the amplitude of the radial oscillation decreases
to zero, then Eq. 4.5 predicts an amplitude of 0.63 in. for the vertical
oscillation. Similarly, we can compare the results obtained for the rate
of growth with those predicted by Eq. 4.16 and Eq. 4.17.. As seen in
at the positions of maximum growth are,
2

= 0.25 in. and z, = 0.6 in. so that, with a, * 3

Eq. 4.16° gives lax/anlmax = 0.014 in./turn and Eq. 4.17 gives

Fig. 4.3, the values of x, and z,

respectively, X,
|82/8n|max'g 0.04 in./turn. This is in good agreement with the computer
model results. We verified that the rate of growth, for both oscillations,
varies linearly with the slope of the twist and with the displacement in
the x-direction.

Using the same initial conditions for the particle and the same
slope for the twist in the median plang, but R, = E}MQ Mey® W€ repeated
our static case, away from the resonance, at 144 MeV. The behaviour of the
particle, in that case, is shown in Fig. 4.k, The radial motion is almost
unaffected. However, in the vertical motion, the maximum amplitude is

reduced to 0.45 in. The beat period is also reduced to approximately



FIELD 01/30/10/70

A x (in.)
0.4+ x| ;
5 0.016 in./turn
LN
1\\. o, PR
\ y) \ /’ ‘0\ ./'.\ l/ \ / \0
\ / ® / \ ./'.-“.\;A N pd \- / \ L. \ 4 o
Y , \ / N o 20 -’ N ’ " / \ /l':O
‘\ I,‘ \.\‘.,/ & A NgIe \\ s \\\ // # turns
\\.’ te” .\".
-0.4+
1
b z (in.) W
/l.\\ - []
‘e /®
i\ | ‘\ ! \\ I"\ LI 0.05 in./turn
o [ \\ | \ l. \ I \ an
0.4+ [ P Loy ! ro
: ! / [ .
,® I ! | 1 ‘ l \
N\ [ ! [ \ l | ! | \
R [ 1 \ ; : \ P
° > | ! N \ / \ * Y,
I ] \\ - — v Y
! / \ M ! I l ! | . Ve # turns
/ . | . \ ° | o/
‘e ! \ | \ ! { \
-0 L}"P \‘. \ ’ ‘ .‘ l \ \ ! .
. \ }l \ I \ ' \ .’ \.’I
\\./ \' ol \ I \o 1/
(g v e
\.’
Fig. 4.3. Radial and vertical betatron oscillations at_153 MeV (on resonance) when a first harmonic
twist with a slope of a = 0.02 rad and R, = Ryg3 Mey is present



~0. k-

' - FIELD 01/30/10/70
0.44
~ o~ ,.\ =
o /,.\‘ /.\\o // \o Jo /./ R g *.\
\ ¢ 2 I \ ' \ \ / \
\ z/ \ .. \ /. \, 1/ .\ 1/ \‘ [ L4 L -
\ ' M 7 \ AP L4 A} 7 \ \
. / K / A // 20 \ . \ /; \ /%0 4 turns
\ o \ » v \ /o \. / \ / \° /
\‘." e/ ‘oo \\./ \‘./ R . -
-0.4
1
3
iz (in.) 1
° .\
0.’-*"' /.\ / \\ / \ /.
I [ \ /0\ /'O\ { \ '
o | \ ) \ \ ! \ /
/N ’ [ ro / I /
P\ ! \‘ e 8 ! . 7N 7 » \ * \
\ / . : I \ /AN P . I \ /
\. + \‘ l \ o \ ‘l v - Iy / \ ’, \ [] : o
\ I \ ) I \\ /’ \ / \ !
\ / \ / \ [ \ 70 * A \ ! \ 1 ho # turns
v \ [/ . e R Voo
. Vo \ ! \.¢ < \
o L . -, \
i A N e \_e LI .
: N/
Fig. 4.4.

Radial and vertical betatron oscillations at 144 MeV (10 MeV below resonance) when a first
" harmonic twist with a slope of o = 0.02 rad and Ro

ﬁ}uu Mey S Present



- 54 -

26 turns. A very crude estimate of the beat period, in that case, may be
obtained from Eq. 4.11 and Eq. 4.12. in Eq. 4.12, the detuning term
Av = v, - v, - 1 is equal to zero when exactly on resonance. Away from

X 4

the resonance, this term dominates if we have small twist angles, so that
o' = -=Av. (4.24)

When ¢ changes by m, Eq. L4.11 tells us that the modulation amplitude goes

from a maximum to a minimum. This turn~over occurs after n turns such that
27N = @ (425)

or, using Eq. L4.24

n = -1/(24av). .  (b.26)

One complete beat cycle occurs for a change in ¢ of 2m. At 144 MeV, Av is
approximately equal to -0.03 and, using Eq. L4.26, this corresponds to a
beat period of approximately 33 turns.

Finally, we accelerated our particle backward from the resonance at
153 MeV to 125 MeV, with the conditions a = 0.02 rad and R, = Rygy yoy-
The results are shown in Fig. 4.5. In this case, also, the change in the
x-motion is relatively small. The maximum amplitude for the vertical
oscillation is 0.6 in. compared to 0.7 in. when on resonance. The rate of
growth is the same as in the statie run. As we expect, the beat period
decreases as we move away from the resonance. The particle goes through
three complete beat periods in about 70 turns. In the case where the
slope of the twisted median plane is reduced to a = 0.005 rad, the
frequency shift, and hence the beat cycle, is determined by Av as a
function of energy, since Av dominates in Eq. 4.12 after only two or

three turns. We observed, in that case, a turn-over of the oscillation

after 17 turns. The effective width of the resonance, defined as twice the
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number of turns, on each side of the resonance, it would take the particle
to reach the same maximum amplitude in the case of linear growth, is
approximately equal to 24 turns. These 24 turns define an effective width

of the resonance for use when a is small.

Tolerances

Various aspects of the resonance may be considered to set the
tolerances associated with it. First of all, if the slope of the twisted
median plane is large enough to produce a complete transfer of energy
between the two motions, then some particles will leave the resonance
region with all the energy in either the horizontal or the vertical motion.
These maximum amplitudes depend, as we said, on the total available energy

Jo, which, in turn, depends on the initial amplitudes of the oscillations.

Some of these worst cases are illustrated in the following table:

x 2 Total x 5
initial initial Energy J, final final
X N0 0.6 x2 X 2.45 x
) ) o) o
% 0 z 0.1 22 0.41 z z
o 0 ) 0
2
X X, 0.7 x2 1.08 X 2.65 X,
2
X 2xo 1.0 xS 1.29 X 3.16 X
X 10x 10.6 x2 4.2 x 10.3 x
0 0 0 0 o)

Table 4.1. Maximum Qgtatrén amplitudes (either xfinal_or zfipal)
below and above the resonance vy - v, =-1"when = - .
vx = 1.2 and v, = 0.2.

z

For example, in the case of separated turn acceleration at high energy,

where the turn separation is approximately 0.06 in., the maximum amplitude
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of the radial oscillation we can tolerate is x £ 0.03 in. Then, if we
assume that before entering the resonance the oscillation amplitude is
0.01 in. and that the transfer of energy into the radial motion builds up
an oscillation of 0.03 in., Eq. 4.5 tells us that the amplitude of the
vertical oscillation, just before the resonance, must be kept below

0.07 in. |If the initial X, is 0.02 in., then the initial vertical ampli-
tude must be smaller than 0.055 in. Similarly, if for high current poor
resolution experiments we are willing to accept a vertical amplitude of
0.5 in. after the resonance, then we can tolerate some particles with a
radial oscillation of 0.19 in. amplitude before the resonance, provided
the vertical amplitude before the resonance is also not larger than

0.19 in. |If these restrictions are acceptable, then we need not worry
about the magnitude of the first harmonic twist in the median plane.

The tolerance may, on the other hand, be set according to the maxi-
mum acceptable increase in the amplitudes of the oscillations. We found
that the rate of growth of the oscillations varies linearly with the tilt
angle and that the width of the resonance, for small values of o, is in
this case approximately equal fo 24 turns. Then, if we assume fhat the
maximum tolerance increase in z is equal to 0.10 in., or 0.004 in./turn,
we find that the corresponding maximum twist angle of the two sectors is
o = 0.003 rad, or 0.2 deg where x, = 0.2 in. Similarly, if we restrict
the increase In the radial oscillation to 0.0l in., the tolerance on the
slope of the twist in the median plane is equal to d = 0.002 rad, or

0.1 deg, for z, = 0.2 in.
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THE RESONANCE v, = 1.5

The Intrinsic Resonance vy = 6/k

The resonance v, = 6/4 will be encountered at an energy of approxi-
mately 435 MeV and a radius of 298 in. In the absence of error fields,
this intrinsic resonance of fourth order (in the Hamiltonian) may be
traversed successfully since the particle spends only a few turns in the
resonance region so that little growth takes place. To determine the

stability limit for the oscillation, we look at the radial phase space, as

illustrated in Fig. 5.1 where we show the case of an ion at 425 MeV with

vy = 1.487, using the field 01/18/02/70. Each dot represents the position
of the particle after every second turn in the machine. The arrows show
the direction of flow in phase space for particles displaced from the
equilibrium orbit. Inside the region defined by the four unstable fixed-
points, the orbits are closed and the oscillations are stable. Outside
that region, the radial motion becomes unstable and the amplitude of the
oscillation increases. The quadrilateral joining the unstable fixed-
points essentially determines the size of the stability region. The region
of linear motion, where the particle precesses around an ellipse, extends
over approximately half the size of the stable region.

At other energies, the positions of the unstable fixed-points will
be changed. Fig. 5.2 shows the motion of these fixed-points as a function
of energy for the field 01/18/02/70. The lines have been drawn to show the
chaqging size of the stability region as the energy changes. The stable
region has its minimum at approximately 434 MeV; that is where v, = 1.5.

In this case, the limit of stable radial oscillation is less than 0.2 in.
but the particle spends only three or four turns in that region. For other

fields, the size of the stability region may be larger or smaller. As



FIELD Ol/18/02/70

py (in.) /. ‘
¥:

unstable fixed-
points

SN
/o o L
. \
/
o * 7 )

.‘\\‘-. \.\ \-
S o Y '
£ v \
T L } \ .‘." :.\ \ | L Lt
VA S S P .'\4 T tin
72 R N N |
/ N O N
\ e S
\ 1 d o e— . E
i "\. ,.f“;lo /-/. .\. R
i * |/

\.- 0
/.

A
A\

I

Fig. 5.1. Phase space plot at 425 MeV and v, = 1.487 for
(resonance vy = 6/4)

ions of 0 deg RF phase



BELOW RESONANCE A py (in.) ABOVE RESONANCE

180~ 1510

LLO MeV

.0 . koo x(in.)g

Fig. 5.2. Unstable fixed-points motion for field 01/18/02/70 !



5.2

- 61 -

seen in Fig. 5.3, the limit of stable oscillation for the field 02/09/07/71
is about 2.0 in. compared to 0.2 in. for our previous field when

v, = 1.498. The differenée is thought to be due to higher derivatives of
the magnetic field that drive the resonance. Fig. 5.3 implies, as

accelerated GOBLIN runs will show in Section 5.2.3, that when no field

errors are present, the beam may easily cross the resonance region.

The Resonance vy = 3/2

5.2.1 Introduction

The resonance Vo = 3/2 is, in first order, driven by a third
harmonic imperfection with a radial gradient. Such an imperfection gives
rise, in the equations of motion, to a term similar to the third term on
the right-hand side of Eq. 2.21. A third harmonic whose amplitude is
constant with radius would also drive the resonance v = 3/2. However,
the amplitude required to render the radial motion unstable is of the order
of 10 G and should not occur in practice.

When the third harmonic gradient is introduced, the frequency of the
radial oscillation is shifted. This shift in v is conveniently measured
by simply considering the trace (TR) of the R-transfer matrix. We note

that v is derived from TR by using

=N -1
Vx = 5o €0s (Tp/2) (5.1)
where N is the number of sectors in the machine. |If the amplitude of the

gradient is large enough to shift v to an imaginary value, the amplitude
of the radial oscillation will, after a few turns, grow exponentially with
time, with an exponent proportional to cosh'l(TR/Z)- We can then measure
the approximate rate of growth by simply looking at the va]ueg of Tp at

different energies.
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5.2.2 Calculations

All calculations were done using the field 02/09/07/71. The third

harmonic gradient, with three free parameters, may be written

B

; (R,8) =0 R < Rg (5.2)

B, (R,8) = A; (R-Rg) cos(36-¢,) R > R

where A, is the amplitude of the gradient, R_ is the starting radius and

s
¢5 is the bump phase. The phase angle of the bump may be constant with
radius or may have the same spiral as the phase of the sixth harmonic. It
was found that the frequency shift was quite sensitive to the phase
parameter. This is seen on Fig. 5.4 where we have shown, as a fﬁnction of
the bump phase angle, the value of the trace at 433 MeV and 435 MeV, which
is the energy at which TR almost reaches its maximum value. The amplitude
of the third harmonic gradient was 0.4 G/in. in this case. The greatest
frequency shift, and hence the strongest radial instability, occurs when
the bump phase leads the phase of the sixth harmonic by approximately
12 deg. When the phase of the third harmonic is constant with radiug, the
maximum shift in v occurs when ¢y = 15 deg. In both cases, the magnitude
of the frequency shift is of the same order. These results are different
from those obtained by Hopp and Richardsonl2 in a similar analysis. They
found that the frequency shift was more important when the bump was
exactly in phase with the sixth harmonic.

The starting radius is also.a sensitive parameter. As shown in
Fig. 5.5, displacement of 10 in. in Rs changeé the width of the resonance,
i.e. the range of energy values for which Vo is imaginary, by approximately
25%. In the following, the starting radius was fixed at 287.5 in., about

10 in. below the 435 MeV radius. Using the pessimistic case of by = dg +

15 deg for the bump phase, we considered various gradient amplitudes and



- 64 -

A (|TR/2|1- 1) x 10-5 - FIELD 02/09/07/71

12.04 /.
8.0t ‘\ 435 Mev
4.0+ \\ .

i ‘ i —— U } ////! -

5 15 25 N4 55 65

* ¢3-¢g (deg)
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measured, in each case, their effect on the width of the resonance. The
results are shown on Fig. 5.6. A gradient of 0.4 G/in. amplitude gives
rise to an unstable region with a width of approximately 9 MeV and a peak
value for the imagfnary v of 0.008i at 435 MeV. Similarly, the
unstable region due to a 0.2 G/in. gradient extends over 5 MeV. We then
looked at the effects of such gradients on the rate of growth of the
radial oscillation and on the radial phase space configuration.

5.2.3 Static and Accelerated Phase Space with
Third Harmonic Gradient

Upon introduction of a third harmonic gradient, two of the unstable
fixed-points in a static phase space diagram move inwards while the other
two go outwards. The general configuration of the phase space is then
altered and the size of the stability region is reduced. The effect of a
0.5 G/in. gradient on an ion at 430 MeV, using the field 01/18/02/70, is
shown in Fig. 5.7. |f we compare the positions of the unstable fixed-
points in this case with their previous positions, as seen in Fig. 5.2,
when no third harmonic was present, we observe that the ﬁwé unstable fixed-
points along the p,-axis have moved inwards. The stabflity region is also
slightly stretched in the x-axis directioni With a larger gradient, two of
the unstable fixed-points will eventually coincide and no stable region
will be left. As illustrated in Gordon and Hudec,l3 the detailed shape of
the flow lines depends on the phase of the gradient.

We finally considered the influence of a third harmonic gradient on
the amplitude of the radial oscillation, and hence on the beam quality. We
accelerated eight particles with 0 deg RF phase from 425 MeV to L45 MeV,
through the resonance region. This was done with gradients of 0.2 G/in.

and 0.4 G/in. amplitude and phase of ¢35 = ¢ + 15 deg superimposed on the
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smooth magnetic field 02/09/07/71. |In each case, the initial positions of
the particles in phase space defined an ellipse whose afea'corresponded to
a beam emittance of approximately 0.057 in. mrad at 425 MeV. Below the
fesonance, we assume that the emittance precesses around a static ellipse
that it fills. |In the resonance region, the emittance stretches along the_
two opposite directions of the flow lines in phase space. Then, above the
resonance, the stretched emittance is recaptured into stable motion and
precesseé around a larger ellipse that it does not fill. Thus, the
effective phase space area occupied by the beam is increased.

When no third harmonic gradient is present, the effective emittance,
below and above the resonance, remains approximately constant. The static
ellipse at 441 MeV is shown in Fig. 5.8, together with the corresponding
accelerated el]ipse at the same energy. When a 0.2 G/in. gradient is added
to the magnetic field, the efféctive;area occupied by the beam at 4h4l MeV
is increased by a factor three. This is shown in Fig. 5.9. Also shown
are the stretched emittances at 440 MeV and 444 MeV, obtained in the
accelerated GOBLIN runs. For ions with RF phases other than 0 deg, the
ellipses in phase space are more stretched since the ions make more turns
in the resonance region. 'They also make more turns to reach a given energy
above the resonance and so precess through different angles. This
precessional mixing effect makes the effective emittance shown on Fig. 5.8
to 5.10 the real beam emittance presented to an extraction mechanism. On
Fig. 5.9, the stretcﬁing of thé beam emittance for a single phase is of
the order of 20%, and the maximum amplitude of the radial oscillation is
approximately 0.15 in. This was considered the worst that could be
accepted. When a 0.4 G/in. gradient is present, the area of the static

ellipse at 441 MeV is increased by one order of magnitude, as illustrated
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The beam emittances are obtained from the
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in Fig. 5.10. The emittance is also stretched by a factor two. These

conditions, though stable, would lead to a very poor beam quality.
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APPENDIX-A. MAGNETIC FIELD COMPONENTS IN THE PLANE OF MEASUREMENT

We start with Maxwell's equations and neglect the space charge forces

so that

rotB = 0 , (A.1)

divB = 0 (A.2)
We can then write § as

B = grad(y) ' ) (A.3)

where ¥ is the magnetic scalar potential and satisfies

92 )
—_—t =
[322 r ]d} 0. (A.L)

I'2 is the Laplacian in polar co-ordinates. Following a suggestion by M.M.

Gordon,1* we express U as
22 2 | 23 2
Y =C - ET'F C+ ... + 2B - gT'F B+ ... (A.5)

where C(r,0) represents the imperfections destroying the median plane

symmetry. The magnetic field components are written as

= 3¢, 38

Br =3¢ ¥ %y (A.6)
-3, 38

rBg = 56 + Z53

B, = B - 2I'?C - 5+ I'?B

If we have a flat median plane, C is everywhere zero and the above expres-

sions are similar to our Eq. .2.13 . In practice, C(r,0) can be obtained
from measuring 3B,/3z.

We now want to show that Eq. A.6 can be written in a form similar
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to Eq. 2.17. We consider a symmetric magnet and rotate one sector by an
angle a with respect to the plane of measurement, as shown in Fig. A.1. At

point P with co-ordinates (r,z) and (R*,Z*), we have

X =r-r, (A.7)

R* = r, + x cosa + z sina (A.8)

Z* = z cosa - X sina : (A.9)
so that

R* = r + zo (A.10)

% = z - xa (A.11)

We first consider the azimuthal component of the magnetic field in
the rotated system. At a point A, on the median plane of the rotated
system, where Z* = z - ax = 0, we have Bg = 0 = By. Then, from Eq. A.6

“we obtain

oL _ 9B _ 3B
56 = "Z3p axe, (A.12)

For the radial component of the magnetic field, we have

Brx = B, cosa + B, sina (A.13)

]

and, for Z* = z - ax = 0, we require Bgx = 0 so that, with the use of

Eq. A.6, Eg. A.13 becomes

aC oB

= 9 9B - 24720 - -
Br + aB5 oy + x> + aB - a?xr?4C . 0. (A.14)
Neglecting terms in a? and higher, we have
€ _ _op - axd®
_3_I"— aB O(.Xar . (A'IS)

A solution to Eq. A.12 and Eq. A.15 may be written in the form
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C = -axB + constant (A.16)
or

C = ZgB + constant (A.17)
where Zi = ~ax = (Z* - z). VUsing this last expression for C, we can rewrite

our Eq. A.6 in a form similar to Eq. 2.17. This shows that Eq. 2.17°
can be used to gain a qualitative understanding of the effects of median

plane misalignments. The discontinuities that occur h( these expressions
for the field components at the edges where the sectors are rotated would

not occur in practice.



