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Abstract

In epidemiological studies, how best to assess and interpret interaction of risk factors
of interest has been the subject of a lively debate. In statistical re’gressior\i modelé, the
interaction between two putative risk factors is described by the regression coefficient
of the product of the risk factors. What happens if a linear regression model without
pairwise interaction terms is used to fit the data actually generated from a linear regres-
sion model with all possible pairwise interactions? We apply the idea of average effect
to evaluate the consequence of misspecified models and find out that the average effect
estimates are still consistent if the joint distribution of risk factors satisfy some certain
conditions. It is known that pairwise interaction models encounter intractable problems
especially when the number of risk factor under consideration is quite large. The number
of pairwise interaction terms is p(p — 1)/2, if the number of risk factors is p. As an
alternative strategy, we introduce diffuse interaction model with only one parameter to
reflect the inperactions among all the risk factors, without specifying which of the risk
factors do indeed interact. We compare the two kinds of interaction models in terms
of ability to detect interactions. Another issue investigated in the thesis is to devise
MCMC algorithms to estimate diffuse interaction models. This is done not only for the
diffuse interaction model assuming all risk factors interact in the same direction, either
synergistically or antagonistically, but also for extended diffuse interaction models which

relaxing this strong assumption.
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Chapter 1

Introduction

1.1 Motivation

The term interaction is used in epidemiology to describe a situation in which two or more
risk factors modify the effect of each other with regard to the occurrence or value of a
given health outcome, denoted by Y.

For dichotomous variables, interaction means that the effect of one risk factor, say
A, on the outcome differs depending on whether another variable B (effect modifier) is
present. Moreover, if the presence of B, the effect modifier, potentiates/accentuates the
effect of risk factor A, this variable and risk factor are said to be synergistic (positive
interaction); if the presence of B diminishes or eliminates the effect of risk factor A,
the two variables are aﬁtagonistz’c (negative interaction). For continuous variabies, the
phenomenon of interaction means that the effect of one risk factor on outcome differs
depending on the value of another variable (effect modifier). A mathematical definition
comes in Section 1.2. Later in Section 3.2.1, we will use a more general definition of syn-
ergism/antagornism wﬁen diffuse interaction models are introduced. In epidemiological
' studiés, synergistic/antagonistic interaction among risk factors is common. For exam-
ple, if people suffering from obesity have high bl_ood cholesterol, then they have higher
chances to get heart diseases. Another éxample (for antagonism) is the interaction be-

tween smoking and intake of Vitamin A for the risk of lung cancer. People who smoke a

lot but take Vitamin A in daily dietary have lower risk of lung cancer than people who




Chapter 1. Introduction

seldom smoke but lack of Vitamin A.

Interaction can be described in two different but compatible ways. Each definition
leads to a specific strategy for the assessment of interaétion.

The first, definition is based on homogeneity/heterogeneity of effects. Interaction
occurs when the effect of a risk factor A on outcome Y is not homogeneous across strata
formed by a third variable B. When this definition is used, variable B is often referred to
as an effect modifier.

The second, definition is based on the comparison between observed and expected
joint effects of risk factor A and third variable‘B. Interaction occurs when the observed
joint effect of A and B differs from that expected on the basis Qf the independent effects
of A and B.

How does one assess interactions? In the thesis, we only focus on the situation
where the relationship between outcome Y (continuous) and risk factors is of interest.
Commonly the product of the two variables A and B is used to describe interaction
effects. That is,

E (Y|A,B) = o+ 1A + 2B + B12AB,

where (1 reflects magnitude of interaction effect between A and B. If 12 > 0, the
interaction between risk factors A and B is synergistic (positive) interaction; otherwise it
is an antagonistic (negative) interaction. For simplicity, the pure quadratic terms A2 and
B? are omitted in the above model (These terms afe also omitted in the linear regression
models which are mentioned later and an analysis with quadratic terms is mentioned
briefly in Section 2.5). Note that if the outcome of interest is discrete, we could replace

E(Y|A, B) by g(E(Y|A, B)) in the above model, i.e., a generalized linear model. For

instance, if Y is binary, logistic regression can be used in terms of ¢g(E (Y|A, B)) =

log (P(Y = 1)/P(Y =0)).
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More and more attention has been focu;ed on model misspecifications since statisti-
cians realize that unfortunately misspecified models are not uncommon in practice. Box
(1979) and also McCullagh and Nelder (1983) mentioned “all models are wrong”, though
some fit data better than the others. Since we never know what the true model is in real-
ity, by “true” model we assuming that is the true structure or closer to the truth than the
others. It is natural to ask whether the properties of the estimator derived from misspec- |
ified models are affected. Does the estimator still converge to some limit asymptotically,
and does this limit have any meaning? If the estimator is alpproximately consistent, is
it also asymptotically normal? White (1982) provides answers_ to these questions by us-
ing maximum likelihood techniques for estimation and inference of regression coefficients.
Also in White (1981), the conséquences and detection of misspecified nonlinear regression
models are explored. |

Under the general topic of interactions, the goal of our work is to explore the conse-
quences of a particular scenario of misspecified models . To be specific, what happens
if we apply an additive model ignoring pairwise interactions to dat;cx which are actually
generated from a pairwise interaction model? In this context, to make clear how those
ignored interaction effects affect the results, we apply the average effect idea (definition
given later in Chapter 2), while not applying the results from White (1982) directly to
the regression coefficients. . As is known, the interpretability of regression coefficients of
risk factors is rather limited when models include interaction terms.

The idea of average effect is proposed by Gelman and Pardoe (2007) and Gustafson
et al. (2005) as well. Basically, it is the dverage of predictive effect, which is the expected
change in outcome éssociated with a uhit change in one of the risk factors. In a linear
regression model without interactions, the average effect of any putative risk factor is

simply the regression coeflicient. However, in a model with interaction terms, the predic-

tive effect in general depends on the value of risk factors. There are various definitions



Chapter 1. Introduction

Based on different distributions to average over. Three versions are defined in Chapter 2.
The main advantage of the average effect idea is to make comp.arisons possible between
different parametric models with sets of parameters that have incomparable interpreta-
tions. The average effect idea could also be used in other contexts. For example, Xu and
O’Quigley (2000), also Gustafson (2007), gives a definition of average effect in survival
analysis. In the future, we could also apply the idea of average effect to explore the
consequences of model misspecifications under the framework of survival analysis.

Nowadays another common issue arising in epidemiological studies is that a large
(sometimes larger than sample size) number of potential risk factors should be consid-
ered in modelliﬁg. We could imagine the challenge to model the interaction effects when
p, the number of risk factors, is relatively large. In particular, if the model under cbn—
sideration is a pairwise interaction model, the number of all possible pairwise interaction
terms is p(p — 1)/2. For instance, if 12 risk factors are invol.ved in the study, 66 pairs
of possible interactions would be investigated besides the possibility of higher order in-
teractions among three or more risk factors. Stepwise procedures are the most widely
used approaches to select the important pairwise interaction terms in applied medicél
statistics. The basic idea of stepwise procedure is to find a “best” subset of potential risk
factors by subsequently adding or dropping one risk factor at a time. Take forward step-
wise regression procedure for instance, it starts off by choosing a model éontaining the
single best risk factor variable and then attempts to build u}S with subsequent additions
of other risk factors one at a time, as long as these additions are worthwhile.

There are, however,I a number of limitations with stepwise procedure. In particular, if
- possible models under consideration are nested pairwise interaction models, the stepwise
procedure does not scale up to the numbér of potential risk factors (suppose all the risk
factors involved at this stage are all important). As the nﬁmber p of risk factors increases,

the number of submodels, 2(P®—1/2) increases dramatically, making the computational
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burden enormous. Also, the ﬁtting of full model sometimes may not be suitable, because
only a few of the p'risk factors are typically included in the final model. And the fitting
of the full model increases the numerical complexity of the methods unnecessarily.

Another problem is that the model selected by a stepwise procedures includes only
those variables entered in that final model, and ignores‘ the variables not selected and
the uncertainty due to the model selection prdcedure. In the worst possible scenario,
such procedures may underestimate uncertainty about the variables, overestimate confi-
dence in a particular model being selected, and may lead to sub-optimal decisions and
limited predictability (Raftery (1996); Draper (1995)). There are also other drawbacks
of stepwise selection. For example, a small change in the da-ta can result in very different
models being selected and this.can reduce prediction accuracy, as discussed in Breiman
(1996).

To overcome the difficulties caused by large number of risk factors, we use diffuse
interaction models as an alternative way to model interactions. These kind of models are
proposed by Gustafson et al. (2005) in context of binary response. In this context, by syn-
ergism/ antagonism, we mean fhat the effect of a putative risk factor increases/decreases
in magnitude as all the other risk factors move from absent to present. (Or as all the other

‘risk factors increases if they are contiriuous.) Under this particular probability model,
| only one'pafameter is used to describe intefaction among all risk factors. That is, the
parameter can tell the overall interaction direction but withqut indicating which of the
risk factors actually interact in that direction and which of them not. Hence the model
is a bit simplistic, but we pos’culé’ce it has more power, compared to pairwise interactioh

model, to detect interactions.
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1.2 Classesof regression models

When we are concerned with the dependence of a response variable Y on observed risk
factors X1, ..., Xp, an equation that relates Y to X3, . .. , X, is usually called as regression

equation. Denote the regression equation by
E(Y|X1 =21, Xo = 2g,..., Xp = p) = g(31, 72, ..., Tp) = g(x).

First of all, we give a more precise definition of synergism/antagonism in terms of math-

ematical languages. For any pair j < k and all ¢, > 0, if
g+ €1+ 514 - g(x + 1, — [glx+ €L,) — g(x)] 2 ()0,

the interaction among X is synergistic (antagonistic). Note 1; means a p x 1 vector of
zero except that the jth element is 1.
Equivalently, if g is twice differentiable, the above inequality can be rewritten as

62
Brj 8.(13k

g(z1,...,2p) 2 (L)0, V5 # k.,

-’Note that there are other names for the above definition, such as supermodular, di-
rectionally convex and lattice-superadditive for nonnegative derivatives and submodular,
directionally concave, lattice-subadditive for nonpositive derivatives. They are used to
compare the dependence structure of random vectors having the same marginal distri-

butions. More details and discussions are in Miiller and Stoyan (2002).

In the following we list all the regression equations considered in the thesis.
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1. Linear regression models.

P
g(@1,. -, 3p) = Po+ Y Bz
j=1

Due to the simplicity and interpretabﬂity, linear regression modeis are the most ~v_xvfidely
used for either experimental data or observational data. The regression coefficient ,ij
implies how much change in the response variable is associated with a unit change in X
when keeping all the other risk factors unchanged.

It is acknowledged that this model is a linear approximation of the relationship be-
tween Y and X. By first-order Taylor expansion, it is easy to derive the model expression.
Therefore, it may work well only for a local region, where the surface does not have cur-
vature. That’s the reason why prediction of X values outside of the range where we fit
the model is usually dangerous and not reliable.

By second-order Taylor expansion, we have

p
g(z1,...,zp) =Bo+ Zﬂji?j + Z BijTiT;.
j=t

I<i<j<p

Also this is good for a local region, where the surface has some curvature. Note that
for a binary variable z;, the term ﬂjjxf is not. necessary. One thing worth mentioning
is that the explanation of coefficients §;'s are different from that under the additive
model. The expected change in response variable Y after one unit change in X; (while
keeping all the others unchanged) now breaks down into several pieces, i.e., B;z; and

Bijziz;(i = 1,...,p). For this model, for any pair ¢ < j, we have synergistic interaction

if 8;; > 0 and antagonistic interaction if Bi <0
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2. Spline regression models.

9(@1, .. 1) = ij(xj), (1.1)

where m; is a smoothing function applied to ;. Note this model is additive and does
not include interaction terms.

Taylor expansion allows to write m; as

D+1
mj(z) = Zajk:ck"l + Rem;i(z), a<z<b, j=1,...,p

k=1
Rem;(x) = (DY)~ / b m” V(@) (@ ~ §)2de,

where (z — tg)y = & — ty, if £ > t; and zero otherwise.

Note that for fixed j, if Rem;(z) are uniformly small for all observed zj; in magnitude,
polynomial regression of X ; may provide a reasonable analysis. Otherwise, we need some
other methods to take account of the item Rem;. One method of estimation which
attempts to guard against departures from polynomial models is smoothing splines. The

basic premise is the integral in Rem; can be approximated using the quadrature formula

L;
Rem;(z) = ) aji( — t)7
k=1

for coefficients a;,...,a;r; and tj; < ;0 < -+ < ¢, (t]-i’s.are knots in the definition
of spline, which is given in Section 2.4.1). Combining this with the original polynomial
approximation leads to an overall approximation' of the regression function by

.o _ L
m](a:) =ajnxr+ -+ OéjD£ED + Zajk(a: — tjk)f,

k=1
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which is the spline function under consideration in Chapter 2.
To introduce the interactions between z, . .., z;, we use the following regression func- '

tion, similar to pairwise interaction models,

1<i,j<p

9@ m) = D omyla) + D [mmy () + mulw)a). (12)

Note that there are other possibilities ‘to determine the interactions between any pair
of risk factors. Here for simplicity we only u‘se'the summation of the products of one
risk factor and smoothing function of the other risk factor, which is different from that -
discussed in Gu (2002). In Gu (2002), the multivariate function is given by an ANOVA
decomposition, that is, it is expressed as a constant plus the sum of functions of one vari-
able (main effects), plus the sum of functions of two variables (two-factor interactions)and
so on. Note the interactions are assumed to be in tensor product spaces.

Note that if we have numerous number of risk factors, the additive model (1.1) may be
too generous allowing a few degrees of freedom per X; and it does not take into accoqnﬁ
the interactions between X;’s yet. Classes of function are not “dense” or a universal
approxim;tion to class of smooth function in a rectangular region of ngl [z;L, z;u], where
z;1, z;u are the lower and upper bounds of jth risk factor respectively. In the interaction
model (1.2), the number of interaction terms increases dramatically when the number of
risk factor increases. In sﬁch a case, we may use projection pursuit regression (Friedman -
and Stuezle, 1981) or ﬁlultivariate adaptive regression splines (Friedman, 1991). These
two methods consist of universal approximaﬁion to srnooth functions by a sum of nonlinear

functions of linear combinations of z;’s, i.e.,

M .
g(.’L‘l, e axp) ~ Zgi(ailxl + .-+ G,ipr‘p).
i=1
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More discussion is in Venables and Ripley (1999) and Diaconis and Shahshahani (1984).
Note that projection pursuit regression models and multivariate adaptive regression
splines are not considered in the thesis, but it is possible and worthwhile to be stud-
ied in the future.

3., Diffuse interaction models.

As discussed in the previous section, some problems arise when fitting a pairwise
interaction model especially with a large nufnber of risk factors. For instance, high blood -
pressure is a warning signal for health problems. There are many risk factors which may
cause high blood pressure.

Age: The risk of high blood pressure increases as you get older.

Gender: Women are more likely to develop high blood pressure after menopause.

Family history: High blood pressure tends to run in families.

Bbdy weight: The greater your body mass, more risk of high blood pressure.

Tobacco use: The chemicals in tobacco can increase the risk of high blood pressure.

Sodium intake: Too much sodium can lead to increased blood pressure.

Excessive alcohol: Heavy drinking can damage your heart.

Stress: High levels of stress can lead to a (temporary) increase in blood pressure.

Therefore, for all the risk factors listed except gender, larger value means more risk
of high blood pressure. There might be synergistic interactions among those risk factors.
How to depict the magnitude of the synergism? As proposed in Gustafson et al. (2005),

the diffuse interaction model is defined as

» p 1/
g(xl,... :80+ {Z ;61373 } ) i (13)

10
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with 8; > 0,z; > 0, > 0. It is easy to verify that A < (>)1 leads to

9g(x)
3xi8xj

> (<) 0.

That is, A < (>)1 means synergistic(antagonistic) interaction. Clearly the magnitude of
A is a measurement of degree of synergism/antagonism and curvature of the surface as
well.

Note that when A = 1, the above regression equation just reduces to an additive linear

regression model. Note that
9(z;,x() = 0) = fo + B;;,

where x(jy = (21,...,%j-1,Zj41,...,2p) and z; = 0 means the absence of jth risk factor.
That is, no matter what A is, §; is the increase in response variable associated with a unit
change in X, in the absence of all the other risk factors. Now the interpretation of g,
is different from that under lineaf regression model. The models are increasing function
hence in absence of all risk factors, that is, z; = 0,j = 1,...,p, Bo stands for the smallest
: expect‘ed response (usually risk of some disease_s). Therefore, we may rewrite the diffuse

interaction models in a more general sense as
9(x) = Bo+|Ix|l, - (1.4)

* where || - || is a norm in R?. Even more generally, to get a regression function that is not

monotone increasing, we may consider

9(x) = Bo + ||x — all,
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where a is the vector of location parameters, standing for the values of risk factors that
leads to the smallest expected response.
The diffuse interaction models (3.5) are a special class of (1.4) with the choice of norm

being
S 1/ -
lIxls = {Z(ﬁj%’)k} ,B;=20,z; 20, A>0. (1.5)

j=1
Here ;s are inverse scale parameters. Naturally, ||z|| can be interpreted as the distance
between x and 0. . -
More general classes of norms can be used.
(a) If the variables z;’s interact in different directions, one may want to partition those

variables depending on the direction of interactions among them, that is

/M 1/22

gx) =6+ > B+ D (Bz)™ +9 > (Bim)™ :
jeADD » jeSYN jeANT

with 3; > 0,z; > 0, for all j and 0 < A} < 1 < Ag. It is easy to verify that for any pair

j < k €SYN(ANT),
dg(x)

Ba,0m, > (<)O0.

(b) Assuming there is a nesting of groups of variables, one might use the 2-level nested

model

/\Az 1/2
] ; (1.6)

ML
g(x) = [Z(ﬁm)'\l} + {Z(ﬁﬂi)'\?
i€8S1 1€852
where Ay < 1 and Ay > 1 for a synergistic set S; and an antagonistic set Sy with some
interaction between the two sets. Also this function can be extended to multiple levels
of nesting. Now the second derivative of g(x) in (1.6) is more complicated. For A,> 1,

any pair (4, k) with j € S1,k € S5, the second derivative is negative. For A < 1, any pair

(7, k) with j € S1,k € Sé, the second derivative is positive. If 1 < X < Ag, for any pair

12
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| (4,k) € Sy, the second derivative is negative. If A; < A < 1, for any pair (5, k) € S}, the
second derivative is positive.

The following example illustrate one scenario where we might consider to use (1.6).
Suppose X1, Xy, Z are the predictors relating to response variable Y. However, Z can
not be measured and is replaced By two surrogate variables X3 and X,. In this case, one
might use

g(x1, T2, T3, 1) = {(B121)* + (Box2)* + (Baws + 54354)/\}1//\ :

1.3 Outline of thesis

The following chapters are organized as follows.

In Chapter 2, we study the consequences of fitting an additive regression model to
data generated from a pairwise interaction model. We find out that under some particular
situations, the average effeét estimates based on misspecified model can still be consistent
with true values. Further, under the framework of spline regfession, we investigate the
consequences of model misspecifications by failing to include interaction terms into model,
when such terms exist.

In Chapter 3, we introduce diffuse interac‘gion models as an alternative to pairwise
interaction models when the number of risk factors of interest is rather large. And we
compare its ability to detect interactions with a pairwise interaction model.

In Chapter 4, we propose a MCMC algorithm to estimate the parameters in diffuse
interaction model, introduced in chapter 3. Further, we propose other MCMC algorithms
for more general versions of diffuse interaction model by relaxing the assumption that all
the risk factors interact in the same way, either synergistically or antagonistically.

In chapter 5, we summarize the results of the above three chapters and also discuss

some possible problems to consider in future.




Chapter 2

Average effects for regression

models with misspecifications

How bad is the estimation when the real relationship between response variable and
predictors (i.e.risk factors in epidemiological studies) does involve interactions, but a
model without interaction is fitted? More specifically, if the actual data generating

mechanism is

Y= "hi(X)+ > hz’j(Xian)Jrf,/ (1)

=1 I<i<j<p

what will the result be if we fit an additive model

Y =) hi(X;)+m, (2.2)

j=1

where both € and 7 denote random errors, postulated to follow normal distributions.

2.1 Average effect

To evaluate the performance of the estimation under misspecified models, we apply the
idea of average effect, which is proposed in Gelman and Pardoe (2007) and also in
Gustafson et al. (2005). The reasons to introduce the average( effect are listed as the
following.

(a) For comparing models with different parametric forms, different sets of parameters

14
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have different interpretations, so it is hard to explaiﬁ the difference between the parame-
ters from different models. For example, postulate the parametric forms of models (2.1)
and (2.2) as below.

In model (2.1):

hj(Xj) = ﬂij,

hij(Xi, X;) = B XX

In model (2.2):
hi(X;) = o, X;.

Then §;; ’\S in model (2.1) are the parameters describing the pairwise interactions between
the predictors, while no such parameters appear in model (2.2). It is hard to interpret
the meaning of the difference between 3; and «;. More precisely, the expected change in
response variable caused by on(; unit change of X; keeping other predictors unchanged
in model (2.1) is B + 3_,; Bi5 X, while in model (2.2) it is ;.

(b) More generally, if the two models of interest are quite differentv, no common
parameters c.ould be compared. For example, say one model is a linear regressidn model
while the other is a nonparametric regression model. Now it is impossible to compare
the estimates of coefficients from the former model and the estimate of a function/curve
from the latter model.

To handle the difficulty mentioned above, we need a quantity which is associated with
something in common among different models. The average effect is such a quantity. The
definition of average effect is as follows.

If the predictor X; takes value in a continuous space, then the predictive effect of X J

15
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. is'defined as

Ajx;0) = OE (Y|X; = z;, X () = X(;; 6)
J ! . B.IL'J \ ’
where Xy = (Xy,... » Xj-1, Xj41,. .., Xp), i.e., a random vector comprising all the ex-

planatory variables except the j-th one,.a’nd 6 denotes the parameter vector imr the model.
If the predictor X; can only take finitely many values, then the definition of its predictive

effect is

1) (2
D(xg), 2l 28 0) =

1 2
o —m { (YX, = 20, X = %) 0) ~ E(Y1X; = 2, X = xg); 9)} ,
Qe !

1 @
R

where x are a pair of different possible values of X ;- The quantity of predictive
effect reflects the change in E (Y|X) associated with asmall change in the j-th predicfor
Xj conditioned on a specific value obe(j) = X(j)-

The reason to use the notation A;(x;6) and not A;(x(;); @) is that in general predic-
tive effect is a function of z; as well. For example, in the quadratic model with continuéus

predictors, that is

E(Y|X)= o+ZﬂyX +Zﬁﬂx2+ > ByXi

1<i<i<p

the predictive effect of X is 28;;X; + >, £ Bi; X;. However, in some special situations
such as model (2.10) and model (2.11), appearing in the next section, A;(x; ) does not
depend on zj.

Based on the definition of predictive effect, we can define different versions of average

effect as the expected value of Aj(x;80) with respect to different distributions.
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4

Definition 1: If averaging the predictive effect over the joint distribution of X;), all ‘

the predictors except X, then the average effect of the j-th predictor is defined as
0;(25;0) = Ex;, {Ai(X; = 25, X 0)}. (2.3)

Definition 2: If averaging the predictive effect over the joint distribution of all pre-

dictors X1,..., X,, then the average effect of the j-th predictor is defined as

5;(8) = Ex{4,(X;0)}. ' (2.4)

Definition 3: If averaging the predictive effect over the conditional distribution of

X(|X;, then the average effect of the j-th predictor is defined as
0j(x;;0) = Ex(j)|Xj {A;(X; = =, X(j); 6)}. (2.5)

In general the three definitions are not identical to each other. But in the special
cases when the predictive effect of X; does not depend on the value of X;, as in model
(2.10) and model (2.11), the first two definitions are the same because both are obtained
by averaging over the joint distribution of X(;). In the following sections, we stick to use
Definition 2 unless specified particularly.

Note that the predictive effect of X; is based on the conditional distribution of Y| X,
while the average effect of X is defined with respect to the joint distribution of (Y, X)) |
or (Y,X). We should also keep in mind that the idea of average effect is not just
confined within regression context. For example, Xu and O’Quigley (2000) énd Gustafson
(2007) apply this concept in survival énalysis by averaging hazard function over the joint

distribution of (7', X), where T is failure timé.

17
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2.2 General results

Suppose we have p predictors, Xj,...,X,, and response variable Y, whose relationship

with X;’s is of interest. For the general framework, let .

T=(Ty( X1, Xp) o, Te( Xy, X))y

1

whose components are the functions of predictors involved in the “true” relationship

between response variable and predictors, and let
S=(S1(X1,.. ., Xp)y -, Ss( X1y, X)) s

denote the functions of the predictors in the fitted model.

By allowing general forms of functions, even nonparametric forms, involved in the
components of S and T, we do have a rather broad possibilities of h; and ﬁij in (2.2)
and (2.1). In the forthcoming sections, we will see how this general setting applies in
different regression models.

Hence, models (2.2) and (2.1) can be rewritten as follows, respectively.

Y = Sa+g,

Y = TB+e¢

where € follows N (0, 0?) and are independent of X. Denote by 6;(B), 65(B) the average

effects of the j-th predictor under the “true” model and fitted one respectively.

18
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Assuming X’s are continuous and T, S are differentiable, let

~ G, 0 /
T] = (a—)(jTl(Xla---aXP)>"‘7a—‘X*jﬂ(X17""")(p)) !

~ ) ) ' '
Sj = <a—)(jsl(xl,...,Xp),...,8—)(].53()(1,...,)(17)> .

So that the true. average effect of X;, denoted by 6;(8), is [E (i‘j)]’ﬂ. Now let n be
a sample size with (2;,..., %y, ¥;) being the observations of predictors and res'ponse
variable for the ith subject. (z4,...,24),i =1,...,n are assumed to be iid replications
of (X1,...,X,) and €1,...,¢, are iid N(0,0?%). Let T be the n x ¢ design matrix with
(4, k) element equal to Ti(X;1, ..., X;p). Let ﬁ'j be n x t design matrix with (7, k) element

L

equal to ainTk(Xﬂ, .o Xip). Assuming T is of full column rank, we have

B = (T'T)'TY,

E (’TJ) = n_l’ﬁ‘glnxl.

where Y = (y1,92,..-,Yn)".

Hence the estimate of the average effect of X is obtained by

——

5;(8) = n VT, (T'T) ' T'Y.
With
Y =TB + e,
where € = (e1,...,€,), we get

—

5;(8) = n™ 1T, 8 + n~ VT, (T'T) ' Te.

19
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Therefore, we have

Jn (57(5) - (%(ﬂ)) = Vn (n-lﬁfj ) (Tj)') B+ n LT, (T'T/n) " tn~ V2 Te.
The first term in the right side of the above equation can be rewritten as

n2y ((Tj)i. ~E(T,))8,

i=1

where (T;);. denotes the ith row of T;. Since (T;)s. are i.i.d., the above term converges
in distribution to N(0, 8'Var (’TJ)B) by the multivariate central limit theorem.
With the conditional variance identity and the assumption that € is independent of

X, we have

Var (Ti'e;) = E (Var (Ti'e;|X;))+ Var (E (T:'e;] X))

= E(TT)s%
Thus, by the multivariate central limit theorem,

n"Y23 " Ti'e; 5 N (0,E(T'T)o?) .
i=1
Since the ('II/'J)l are i.i.d., by the strong law of large numbers, we have
n"'1'T; — {E(T;)}.

If E(TT’) is invertible, then

(n~'T'T) " %3 {E(TT)}".

20
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With the above results, a straightforward conclusion can be summarized as the following.

Result 1: Assuming the existence of {E(TT")}! and € is independent of X,

Vi (5508) = 5,(8) 2 N(O,u3(8)),

where

v;(B) = ¢*[E(T,)/'[E (TT))'E(T;) + 8'Var (T,)8.. (2.6) -

Similarly, in the fitted model, let S be the n x s design matrix with (i, k) element
equal to Sp(Xi1,...,Sip). Let gj be n x s design matrix with (7, k) element equal to
%Sk(Xil, ..., Xip). Assuming that S is of full column rank, the estimate of the average

effect of X; with the “misspecified” model is

—

51(8) = n7'IS;(S’S)7ISY.
Assuming F(SS’) is invertible,

& = (S9)7'SY
“$ (E(SS)}'E(SY)
= {E(SS)}"{E(ST)}B

Q.

>

Thus, in the limit as n — oo, §5(8) = liméjf(\,B) =E (§j)’a*. Hence, with Y = T3 + ¢,

we have

V(5B -58) = w2 (G —BE)) €98V +

{E(S)Y(S'S/n)™'n" S/ (TB - Sa. + €), (2.7)
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where (ASJ])Z is the ith row of gj. By the strong law of large numbers,

n"'S'Y — E (SY)(= {E(ST")}8),

(S'S/n)™1 %5 {E(SS)} L.

With the multivariate central limit theorem and the above facts, the first term in (2.7) -
asymptotically follows a multivariate normal distribution with mean vector of 0 and

covariance matrix of o, Var (§j)a*. Also by multivariate central limit theorem, we have

n 2N S (TiB — Suan + &) 2 N(O, V"),

i=1

where S;. is the ith row of S, T;. is the ith row of T and N

v = B{ (ﬁ‘iﬂ ~Sic + )88 }

= o*E(SS)+E ((T'8 - S'a.)?SS') . (2.8)

Note that the first part is due to random error and the second part is due to model
misspecification. Therefore, the asymptotic distribution of the second term in (2.7) is a

multivariate normal with mean vector of 0 and covariance matrix of
{E(S))Y{E(S8)}1V*{E(SS)}{E(S;)}.

Immediately the combination of the above results leads to the following result.

Result 2: Assuming the existence of {E (SS')}~! and € is independent of X,

Va8 (8) - 5:(8)) 2 N(0,u(8)),
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where

vi(B) = {E(S)I{E(SS)}V{ESS)} HES)} +
20, Cov (§;,S(T'8 - S'a.)) (B (S8)} B ) + ol Var (§))aw.. (2:9)
Remark. In some instances 'i‘j and/or §j might be constant, in which case the second
term in (2.6) and the last two terms in (2.9) vanishes. Particularly, if the “true” regressors
include pairwise products from X, but the fitted model includes only linear terms from
X, then the second term in (26) does not vanish, but the last two terms in (2.9) do
vanish.

Result 1 and Result 2 give the asymptotic distributions of the average effect estimates
based on “true” model and “misspecified” model, respectively. Combining the two results,
we can get a consistent average effect estimator from the misspecified model as long as
6;(B) = 03(B). Some easily-studied cases where the above equality establishes are shown
in Result 8 later. Also Result 1 and 2 make it possible to compare the efficiencies of the
two estimators from “true” model and “misspeciﬁéd” model. More discussion is given in
Section 2.3.2.

One thing worth investigating here is to find the consistent estimator, under the
“misspecified” model fitting, of the mean squared error ¢%(a) = E(Y — S'a)?

A least squares estimator & is a parameter vector that solves the problem

min 5% (a) = (n —p — 1)7}|Y — Sa .

n

2

Z(&x) may be rewritten in terms of matrices,

Now s

$2(&) = %p_l{mly'y-(n—ly’S)(n*ssrl(n—ls'y)}.
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By the strong law of large numbers,

(n"Y'Y) &3 E(Y?),

(n"1S'Y) %5 E (SY).

Therefore,

s2(&) 5 E(Y?) - E(S'Y){E(SS)}'E(SY).

Note that the o, is the unique minimizer of mean squared error o%(a). Now

() = E(Y)?-2E(YSo) +E(S'eu)®
= E(Y?)-E(S'a.)? (E(Y|S) = S'a,)
= E(Y?) - a.E(SS)a. '

= E(Y?) - E(S'Y){E(SS)}~'E(SY).
That is, s2(@) is a consistent estimator of o%(a,). However,

(S'S/n) "2 (@) 3 {E(SS)} 0¥ (au),

n

which is not equal to {E (SS)}*V*{E (SS')} ! in general. Note the fact that, by the

previous analyses and (2.8), we have

lim Var(vna) 2 v(ow)

= {E(SS)}'V{E(SS)}!

= {E(SS)}'o?(a.) +4{E(SS’)}‘1E ((T'B - S'e,)?SS") {E(SS")} 1.

Therefore, the true variances of the coefficients estimates from the fitted model are big-
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ger than the reported standérd errors of those estimates, which is caused by the model
misspecification, the second piece in the last equality of the above equation. If no mis-
specification occurred, then V* = E (SS'), then (S'S)s%(&) is the consistent estimatof of
var(a). Let
Vo=n" i (Y; - S:.a)’s,S:,
i=1

then it is not hard to derive that 17,, is a consistent estimator of V* by a similar derivation
as before. Therefore a large difference between V, and §' Ss2(@) can be an evidence for

model misspecification (see White (1980) for a formal test for misspecification). Hence

v(a,) can be consistently estimated by

n(S'S)™! {i (Y; — S,.a)ngsi} (S's)2.

i=1

There are other ways to get consistent estimator of v(a,) as well. One way ié so-called

“sandwich” method, which is based on the derivatives of log-likelihood function. Actually

it is exactly the same as the estimator used in White (1982), where White studied the

asymptotic distribution of the mazimum likelihood estimate in case of model misspeci-

fication. As known, the least squares estimate is the same as the maximum likelihbod'
. ,

estimate in the linear regression. Under a simple setting with only two predictors in-

volved, we can also apply the methodology in White (1982) and get the same result as

Result 2. Details are shown in Appendix II.

2.3 Linear regression

In this section, we assume that the response variable Y depends linearly on the predictors

X;'s and that Y given X = (X},...,X,) is normally distributed with a constant variance.
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Suppose the true relationship between Y and X;'s is
YIX ~ N(Bo+ BiXs+ -+ BpXy + LroXa Xo+ -+ +Bp1pXp1 Xp, 02),  (2.10)
while the fitted model is
YIX ~ N(og+ o1 X1+ + apXp, 72). (2.11)

Here 8 = (6o, f1,-.-,Bp Prz, -, Bp-1p), @ = (a0, 1,...,0,). By Definition 2 of

average effect, it is direct to derive the following average effects based respectively on -

(2.10) and (2.11):

B)=6;+ Y ByE(Xy), (2.12)
i#j
5(B) = a5 , (2.13)

Naturally, as an informative summary we study the estimates of the average effect

defined as

65(B) = n7t Z Aj(xi(j)»a) =B+ Zﬁijf?i,
=1 i#j

IZA Xi(j), &) = O‘Ja

O
*
~—~
)
~—
i

where x;(;) is the i-th observation of X(;y and Z; is the sample mean of the observations of
X;. The estimates of parameters ,B and a are all least squares estimates. Note that in the
normal linear regression context, the maximum likelihood estimates of the parameters
are the same as the least squares estimates.

In the following three sections, we will compare the estimators of two average effects.
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2.3.1 Difference in large sample limits of the two average
effect estimators

Without loss of generality, we can think about centering predictors in the fitted model,
that is,

E (YlX) = qq + al)?l + - +.Oépo,

where X; = X; — E (X)), ie, E(}z) = 0. Note that the estimates of ay,...,a, are
unchanged by centering.

The large-sample limit of &, denoted by d*, satisfies

4 A 4 )
1 ‘ 1
X} ~ ~ le
E { (1,X,...,X,) ta, =E{Y
\ Xp J \ Xp

Since the equation is symmetric in the p predictors, it suffices to determine the rela-
tionship between «,, and .

By Cramer’s Rule, we can solve the equation above and get

N Yoici Bii[They THE (XX, X))

aaq =0+ Z B E (X;) ) (2.14)
j>1 l2|
where ¥ = (0;5)pxp is the covariance matrix of (X1, ,X,) and ¥ is the cofactor of X.

‘Details of the proof of (2.14) aré in Appendix I. Moreover, based on (2.3), expressions of
average effect, thg above results can be summarized as below.

Result 3. Assume that the variables are centred, i.e., E(X) = 0. Let T = (1, X', W'Y
where W = (X1 X5, X, X3,..., X,-1X)), ie., the true relationship involves .pairwise in-

teractions. Also let S = (1,X'), i.e,, the interactions are undetected or ignored in the

27



Chapter 2. Average effects for regression models with misspecifications

modelling process.

Then (i)
2 Buld k) ZVE (X X1 X))

5(8) = 6(8) + S ,

(2.15)

where ¥ is the covariance matrix of X, and X7 is the cofactor of the determinant corre-
sponding to element oy;.

Consequently

(i) if X has a multivariate normal distribution, or if the components of X are indepen;

dent, then

5(8) - 6,(8) = 0.

Particularly, when p = 2, the connection equation (2.15) can be simplified as below

Var (X2)E (X2Xs) — Cov(Xy, X2)E (X1 X2)] -

01(8) = 61(B) + P2 Var () Var (K3) — Gov? (X, X0) (2.16)

Remarks: The two conditions, both independence and multivariate norrﬁality, are suf-
ficient but not necessary to get the consistency of “wrong-model” estimate <5]T(\ﬁ) The
condition that X follows a multivariate normal distribution can be replaced by an ellip-
tical distribution. The latter actually is an extension of the former. The equation (2.15)
shows that the bias is controlled by E (X;X;Xx). Suppose the joint distribution of X is
an elliptical distribution EC (0,Z,¢) and its characteristic function is exp(it'p)@(t'Tt),
where ¢ is a scalar function and called chéracteristic generator.

If 4,7,k are different to one another, the joint distribution of (X;, X;, Xj) is also

an elliptical distribution EC(0, £;, ¢) where ¥ is the corresponding sub-matrix of &
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associated with (X;, X;, Xi). By the definition we have
(Xi, X0, Xi)' = A(Z;, 2, Zy),

where (Z;, Z;, Z),) follows a spherical distribution (which is a special case of elliptical
distribution by setting ¥ = I). A is the lower triangular matrix in the Cholesky decom-

position of ;. Hence we can rewrite the above as

Xi = CLZi
Xl = bZi'f‘CZl,

Xk = dZi+6Z[+ka.

It is straightforward to get E (X;X;Xi) = 0 because that E(Z2) = 0,E(X?2Z;) = 0 and
E(Z:Z)Zy) = 0. If k = ¢ or k = [, we can also show the expectation to be zero by
replacing the third equation by either the first one (k = i) or the second one (k = 1).
The second part of Result 3 says that for certain distributions on X, a model ignor-
ing interactions will yield consistent estimates of avefage effects, even though the true
regression relationship involve interactions. In addition to being of conceptual interest,
this suggests some practical modelling strategies. For instance, in applications where one
wishes to avoid modelling interactions explicitly, one might attempt to pre-transform
the predictors to approximate normality before fitting a linear model. If oﬁe is willing
to think of average effects as targets of inference, then such transformations should re-
duce bias in estimating these effects via a model without interaction terms. Of course
transformations applied to predictor and response variables are an importanf part of |
regression modelling in practice, and the desirability of transforming a response variable

to approximate normality is clear. Transformations on predictors, however, are typically
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argued for on the basis of compatibility with linearity and homoscedasticity assumptions,
Withqut regard for the resulting shape of the predictor distribution. Result 3 suggests
that the shapé of the distribution could also be a consideration in assessing possible
transformations of the predictors.

However, we also find that the consistency does not hold generally, with the following
two examples. |

First, assume X; follows standard normal and X2|X1 follows Poisson(c;|X1|). Since
when p = 2, transformation of. (2.16) gives the quantity B3 (6}1(8) — 8,(8)), nothing
to do with true values of 3 and only depending on the distribution of X. Moreover, it
can also somehow indicate the discrepancy of the two large sample limits. Note that if
B2 = B1 = B, under the setting of Result 3, this quantity is just the relative bias, i.e.,
161”1(,8) [03(8) — & (B)H Based on the property of the mean and variance of Poisson

distribution, by some algebra we can derive that

2
Var (X5) = c3 <1 - 2) + cl\/j.
m m

Solve c¢; by setting the above to be 1. Note the fact that p = E (X1 X3) — E (X1)E (X3) =
ciE (X:1)X1|) = 0. This is caused by the fact that X;|X;| is an odd function and the

integral interval is symmetric about zero. Hence, based on (2.16), we have

31(8) — 4:(B)

_ v2 v
P SR

2
= B |Xf’| - cl\/;

Q
o
9
—
T
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The last equality follows from

1 o
E(X7) = 2\/—?/0 e~ 2dx

y:av2 1 / oo -y/2 \/5
= ———] € d = 2 —-.
ar o ) Y -

Second, suppose equi-correlated predictors, each following log-normal distribution,

defined as

el —p(r) .
Xj:W)]_la"'7p)

where

Here I, is p-dimensional identity matrix and J, is p-dimensional square matrix with all
p? elements equal to 1. Note that as ¢ — 0, X converges to a standard normal. So that
larger 7 corresponds to more non-normality and larger p corresponds to more depen-
dence among predictors. Partition the (true) regression coefficients as 8 = (ﬁo, B B
according to intercept, main, aﬁd interaction effects respectively. Using Result 3 we can
compare the vector of true average effects 6(8) = B, (since E(X) = 0) to the large-
sample limit of estimated effects from a model without interactions, i.e., §*(3). From
Result 3 we know the relative bias is zero if p. = (0 or 7 = 0, so the question of interest
is how fast the bias grows as the components of X becomes both correlated and skewed.

For p = 10 and selected values of (3,,, 3;), Figure 2.1 depicts the relative bias as p and
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T vary, where

RB; = |{68))"15:(6) — 5,(8))).

This illustration is based on fixing the direction of 3,, and the relative length of 3,
compared to By, ie., By x 1, and ||3;|| = ||Ball- For convenience, we index the
components of B, by (u, v) pair, where © < v. In Figure 2.1, four choices for the direction
of B; are considered:

(a) Br,u o 1, which involves all predictor pairs interacting positivély.

(b) Br,uww o< (—1)*"“*1 which means about half the pairs interact positively and the
other half negatively.

(¢) Br,ww x I{|v (mod p) — u| = 1}, which means only a few of positive interactions.

(d) B1, o o (—1)7{lwmod p)-ul=1} which means a majority (minority) of positive (neg-
ative) interactions. |

In each case RB;, the relative bias in estimating the average effect of X3, is calculated.
Note that each of these choices except (b) involves sufficient symmetry so that the relative
bias is the same for estimating all p average effects, i.e., RB; = ... = RB,,. We can see
that the bias increase when o grows, which means that more non-normality would cause
larger bias. Moreover, the size of biaé also changes in an increasing trend as p increases.
Therefore, more non-normality of and more dependence among X give larger bias. The
general impression from Figure 1 is that very large biases are possible when estimating
average effects, if predictors are substantially skewed and dependent. Note also that
slight skewness andi strong correlation tends to induce a bigger bias than strohg skewness
and slight correlation.

Another thing worth notice is that the relative biases are considerably smaller in

panel (b) compared to the other three cases. It may represent a ‘cancellation effect’
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between positive and negative interaction terms. Moreover, we have similar magnitudes
of relative biases under the other three cases. The common property of the three cases

is the “overwhelming” strength of interaction in one direction over the other.

Figure 2.1: Magnitude of relative bias as a function of (p, 7) for multivariate log-normal
distribution of p = 10 predictors. The cases (a) through (d) are as described in the text.
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2.3.2 . Relative efficiency of the two average effect estimators

A natural question of interest is which one is more efficient between the two estimators
@ and 5]7(\,8), which meéns to compare v;(3) in Result 1 and v;(8) in Result 2. We
take the ratio of the latter to the former as the relative efficiency, with values larger than
one representing the inefliciency occurring as a result of model misspecifications.

We apply Result 1 and 2 directly to linear regression context, where an additive model

is fitted to the data generated by pairwise interaction model. Due to the symmetry in
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the p predictors under both models, we can only take the average effect estimator of X

for example. Now we have

T = (L,X1,..., Xp, X1 Xo, .., Xpo1 Xp)

!

T, = (0,1,0,...,0,Xs,...,X,,0,...,0)

!

S = (l,Xl,Xg,‘..,Xp)

i~ ’

S: = (0,1,0,...,0).
With Result 1 and 2, we have

nVar {8;} — oH{EGS)YS3HEG)} +
| {E(S)YSS'E {(T'8 - S'a.)?SS'} SSHE(S))}, (217)
nVar {8,} — o*{E(T\)}SsH{E(T))} +

(612, e ,ﬁlp)Var (XQ, e _,Xp)(,@m, . ,ﬁlp)l, (218)

where

Ss = E{(L,Xy,...,Xp) (1, X1,..., Xp)},
Sr = E{(1,X1,..., X0, X1 Xs, ..., X1 X,)

(1L, X1, ., X, X1 X, ., X0 X,) -

Based on the expressions it is clear that the difference of the two unconditional variances
depends on the true value of parameters 3. Therefore generally speaking, the comparison
of the two variances could depend on the true values of coefficients of those iﬁteraction :
terms involving X;.

7/

In particular, we are interested in situations where the additive model can yield con-
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sistent estimator under the true relationship involving all pairs of interactions. More
precisely, if X has independence of components or multivariate normal distribution (dis-
cussed in Result 3), what is the relative efficiency?

We take the former case first. Assuming E (X;) =0,Var(X;)=1,7=1,...,p, and

the independence of Xy, ..., X, , therefore we have
Yg = Ip+'1’
' [ X5 O
ET = )
0 3o
where Y9y is the covariance matrix of (X3 Xo,..., X1X,)".

Thus the asymptotic variance of the estimates from the right model is

P
a%(0,1,0,...,0)£5%(0,1,0,...,0) + > _ p%.
=2
The first term is right the first term in (2.17). Note the fact that

T8 -Sa, = Z Bi; Xi X,

1<i<i<p

where

a, = IJ'E(ST)

= (IP+1a 0),3
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Therefore, the second term in (2.17) is

{E(S1)}S3'E <Z/Binin> sS' b ' {E (S1)}

i<j

) {(Zﬁijxixjfxf}

1<j

Hence, the ratio of the two asymptotic variances is

w P HE{(Di 8iXiX)?X3 )

U1 . 0%+ 350 B

L4+ 3lyl® + lly- |l \
L+ [l ]? ’

where v = 0713, and (7y1.,7-1.) is a partition of v into those interaction terms which do
and don’t involve X, respectively. Therefore, the asymptotic variance of the estimator
based on “misspecified” model is larger. This is consistent with our intuition that more
v unéertainty in 537(\,3) is caused by model misspecification.

Now the question of interest is how large/small the relativé efficiency would be if there
is some dependence among the components of X? Assuming that X has a multivariate
normal distribution with mean 0 and equi-correlated covariance matrix, that is, X ~
N, (0, (1 — p)L, + pJ,). From (2.18) and (2.17) for given p, it is easy to justify that the
relative efficiency dei)ends only on p and v = ¢~ 13, with the-lattef one describing the
interaction ‘signal’ relative to noise. | |

For p =10, Figure 2.2 shows the relative efficiency as a function of p and Il7]l, where
two certain directions for 3;, i.e., case (a) and (c) defined in Section 2.3.1, are considered.
We can see that if the true interactions among X are rather “sparse”, like the choice of
B; in case (c), the efﬁcien_cy loss is much‘smaller compared to that with a “dense”

interaction structure in panel (a). Also note that the misspecified-model estimator can
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be very inefficient with strongly correlated predictors, but the efficiency loss tends to be
slight with independent predictors. As a related point, the rate at which the efficiency loss
grows with the strength of the underlying interaction signal is governed by the strength

of correlation.

Figure 2.2: Relative efficiency of the “misspecified”-model average-effect estimator as a
function of p and ||v||, for an equi-correlated multivariate normal distribution of p = 10
predictors. The cases (a) and (c) are as described in the text.
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2.4 Nonparametric regression and smoothing

The above analyses in Section 2.3 are based on a simple scenario, where a pérametric
model in terms of a linearity of response variable Y in continuous predictors X;’s is
postulated. What if the linear regression model is not appropriate? Fittling a linear model
to the data actually containing a nonlinear structure can given very misleading results,
even worse than useless. A more generdl alternative to linear regression is nonparametric
regression model. The distinguishing property of nonparametric regression is that there is

no (or very little) a priori knowledge about the form of the true structure of the regression
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function. It allows the class of functions which the model can represent to be very broad.

When shall we use nonparametric regression model? In many reallproblems, there is
no information from the data nor scientific 'knowledge to suggest a parametric form, so
that a parametric model is often specified from a casual graphical summary of the data or
chosen for convenience (for example linear regression models). A predetermined paramet-
ric model might be too restricted or too low-dimensional to fully model a “rich” data set
containing many unexpected features. In such a case, we would like the nonparametric
(smoothing) approach, which offers a flexible tool in aﬁalyzing unknown regression rela-
tionships between response variable and predictors. Also parametric vs non-parametric
depends a lot on sample size, especially when there are many predictors.

Smoothing methods, widely used in nonparametric modelling, deserve a respectable
place in statistics. There are many papers and a number of books study on this topic
(Silverman 1986; Eubank, 1988; Hastie and Tibshirani, 1990; Wahba, 1990; Green
and Silverman, 1994; Gu, 2002). As a matter of fact, smoothing methods provide a
bridge/compromise between making no assumptions on the underlying process that gen-
erated the data (a purely nonparametric approach) and making very.strong assumptions
(a-parametric approach).

In the following subsections, we mainly focus on consequences of model misspecifica-

tion omitting interactions under the context of least squares regression in smoothing.

2.4.1 Spline regression models

£
Spline functions are very flexible and thus are often used in smoothing regression. A

spline function is a piecewise or segmented polynomial. More precisely, it is defined as

below.
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Definition: The function ¢ is a spline on [a, b] of degree D with knots t,...,t, (a <
t; < -+ <ty < b)if ¢ is a polynomial of degree D on the subintervals [a, t1], [t1, 2], . . ., [tr, }]
and ¢ has D — 1 continuous derivatives on [a,b]. Denote the collection of these splines
by Sp(ti,...,tr; D). Take D = 1 for example. A spline of degree 1 is continuous and
piecewise linear, with breaks in slope occurring at t&,p N

Based on the definition of spline, it is not hard to show that the collection of the
splines of degree D is a linear space of functions. Then we can talk about its dimension
and construct bases for the space. The dimension is the number of parameters needed to
describe a member of the space, which is D+ L+ 1( or D + L if forcing the spline space
to not include a constant term). The number of functions in a basis will simply be equal
to the dimension.

For simplicity and ease-of-understanding, we introduce the ‘power basis. Note that for
other forms of bases, the analysis discussed later is also applicable but with more difficult

computational problems.

Power Basis: Denote the power basis by ¢1,...,¢r1py1:
¢1(33) = .1v
¢2(:L‘) = I,
¢D+1 (‘T) = $D>
¢pya(z) = (z—t1)?,
¢p+r+i(z) = (2 - tL)f,
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where

(z —\t)D for x > t,
@=0? = |
0 forx <t~ .

It is easy to show that each ¢; above is a spline and all the ¢,’s are linearly independent.
Therefore for any function A in the spline space with degree D, it can be written as
h(w) = 150 Bi05(2).

Thus what happens if the fitted model is misspecified? Note that the main concern
now is about the impact of model misspecifications. Therefore, how to choose the degree
of spline (D), number of knotbs (L) and locations of these knots (ti,...,t.) is left aside
for the time being, although this is always concerned in smoothing. That is, we assume
they are already appropriately chosen in the following studies.

We start with a regression modgl having only two predictors. Say the fitted model is
(Y1X1 = @1, Xy = 23) ~ N (my(z) + mz(xg), %),
while the “true” model is
(Y|Xy =21, Xo=23) ~ N (91(371) + g2(z2) + §12($1,$2), %), |

where my, ms, g1, g2 are splines. Here g5 accounts for the interactions between the two
predictors. In general, there are many plausible possibilities for the form of gy,. For
simplicity and interpretability, we use the form of glg(X 1, X2) = Xot1(X1) + X1t2(X5) in
the following, where t,, ty are splines.

Note that generally the basis functions for different predictors could be different. For

concise notations without loss of clarity, we suppress the subscript of ® since each of its
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components is expressed as as a function of X;. Suppose

m; = @’(Xi)ai,

9 = ®'(X,)B,,

Similar to the linear regression case, without loss of generality we assume that for.i =
1,...,p, E(X;) =0,E[®(X;)] = 0, where ®(X;) = (¢1(X1), ..., 9k, (X;))" (K; denotes
the number of basis functions for X;). Otherwise, we can} replace X; (or ®(X;)) by
X; — E(X;) (or ®(X;) — E[®(X;)]), and those centering constants would be included
into the intercept, keeping the coeflicients of basis functions unchanged. Thus the mean
function of the fitted model can be rewritten as
E(Y1X:, X2) = a0+ (0%, @' (X)) | 7' |,
: &%)

Where o denotes the intercept.

Let a = (o, a1, ap). Based on White (1982), we have a,, the large-sample limit of

the &, as the solution to

E (810g f(Yle,X2)> _ 0,
Oa :
where o = (o, aj, o).

Note that the f function in above equality denotes the density function of the fitted

model and the expectation operation is with respect to the true joint distribution of Y

and X.
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Therefore, we derive that

1 - (e 7] 1

EQ| @) |L200)2 ) 1| e |=E{Y | ®(x)
B(X,) o | B(Xz)

Note the fact that

B
» 1 ! -/ ’ 182
E(Y|X) = G + (@ (X1), @ (Xs), Xp® (Xl),xlq;(xz)) “ (2.19)
. ' BT
int
72
Therefore we can link the above two equalities to derive that
0x | /80 ﬂint
. | =| B, | +CRCe| aE (2.20).
2
(5™ :32

where

!

on = E{(1L#00).9(x0) (1800, % 0w) ),

Cr = E{(L«b’(xl),@’(xz))'(X2<I>’(X1),X1<I>’(Xz>)},

Cop = E{(X2<I>'(X1),X1<I>'(X2)) (X@’(XQ,X@’(XQ))}.

We also use the idea of average effect as that in the linear scenario to evaluate the
~ impact of model misspecifications. That is, we are interested in the average effect by

averaging over the joint distribution of all predictors X. Note that the predictive effect
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of X; here is function of all predictors while juét a function of Xy; in linear regression
settings.

Without loss of generality, we only take the average effect of X, for example. Here
the large sample limit of average effect of‘ X estimated from the fitted model is

E (a;* d‘fgfl)) , | (2.21)

* while that in the “true” model is

» d®(X7) i’ A®(X7) it
E M Xy —nt T B(Xs) ). 2.22
(5255 . 22 s ) (2.22)
Similar to the situations considered in linear regression, we also focus on some special
cases here. Say, if X; and X, are independent of each other, then we get E (C)3) = 0.

Hence, the equality (2.20) now becomes

Qpx /80
(23 = :31
Aoy B

That is, if X; and X, are independent, we get the conéistency of the coefficient estimates
. Subsequently we also get the agreement between the two average effects defined by
(2.21) and (2.22).

In the following we study the uncertainties of the two average effect estimates. Let
@(Xi) be an n by K; matrix with ®;; = ¢;(x;;) and x; be an n by 1 vector with components

Ty, 1 =1,2,4=1,...,n,j =1,..., K;. Define the sample versiori_ of Zr(= E(TT') as
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follows.

Dy, = (X)) | (Xe®(Xy),X,9(Xy)),

Dy = | ) (Xa®(X1), X1 B(X,)).

X8 (X,) .

Again similar to the linear regression case, we have

ao bo + ~int

R -~ -1 1 ‘ :
G |=| By | TDPuDf ., |- a
) ~ 2

a2 ,32

Hence the estimate of the fitted average effect can be rewritten as

—

5(8) = [@%)B,+ (%/D;,) B + ([08] D3 By
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where

d T ’:l}=$1i7

D* = (Di'Dw)[-1,] -

(T-(i _ n_lqu’(w)
Dy, Dp,
D3 D3,

Notationally, #[—1, | denotes a sub-matrix of # after deleting the first row. The estimate

of the average effect of X; based on the “true” model is

IR wR ST R Y

With Result 1 and 2, it is possible to compare the asymptotic variances of the two esti-
mates. However, the calculation of (2.9) now is rather complicated due to E ((T'B - S'a,)?SS)
and the last two non-vanishing terms in (2.9).

. Thus we compare the asymptotic conditional variances in the following. Recall that
T is the vvector'of_ the predictor functions.in the true relationship and S is the vector
the predictor functions in the fitted model. Recall that "I‘l, §1 denote the derivative with
respect to Xy of T and S, respectively. Using essentially the same derivation as that in

the previous subsection of linear regression scenario, we get that as n — oo,

" nVar (bi(a))X) — 2ES){ESS)TE®S)

n Var (,(8)X) — o*[E(T)I{E(TT)} 'E(T)),
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where

T = (1L, (X), 8 (Xa), ¥ (X), Xe® (X)),

T = {o[ @390 o (@0, [ D] ]

|

S = (1,®(X)), ®(X2)),
-~ o ,
Sl = (0, 5‘)-(:‘1) (Xl)aolsz)'

As we discussed before, in the linear regression scenario, the joint normality of the prédic—
tors can also yield the consistent estimates of average effects. Will this good property still
hold now? To explore the effect of the correlation between predictors on the difference
of the two average effects, we set up predictors and basis functions as follows.

'‘Al. Suppose X; and X, are bivariate normal with mean vector 0 and covariance

matrix

Y=
p 1

A2. For simplicity, a common set of quadratic power basis functions for two predictors

is used:

d(z) = z—ky,
po(z) = @* =k,
¢3(z) = (z—t1)T{z >t} — ks,

¢4(.'17) = (5[3 — t2)21{$ > t2} - k4,

where ¢, t, are the knots, which are set to be the 25% and 75% percentile of standard
normal, respectively. The k;’s are the centering constants to make E (¢;(X;)) = 0,7 =

1,...,4. Although the choice of basis functions is simple, it mimics the generality of
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splines expressed bas linear combinations of the power basis functions. As for the number
of knots, we can also easily incorporate more knots into the basis functions. Here for
computational convenience, We just use two knots for demonstration.

A3. Set the true values of parameters as fy = 0,8, = B, = B = g =
(0.5,0.5,0.5,0.5)".

Under the above settings, we can get the values of the elements of matrices Cyq, Cia
by a numerical approach. The details of the numerical approach for the required integrals
are in Appendix III.

One fact worth noticing is that when p = 1, tha,t is X1 = X5, Cyy 1s not.invértible.
Therefore we can think of the difference between the two average effects as a function
of p, the correlation coefficient, confined within [0,1). As the correlation increases., the
discrepancy between thé two average effects is quite small compared to the range of
average effects. The graphical summarization is shown in Figure 2.3, which implies that

the bias of the average effect is close to zero even if the correlation of the two predictors

is high.
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Figure 2.3: Comparison of two average effect estimators §;(8) and &}(3) for spline re-
gression models with two predictors involved. The x-coordinate of each circle is 6;(8)
and the y-coordinate is §;(3). Different circles are produced by different values of p, the
correlation coefficient between X; and Xj.
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As shown in Figure 2.4, we can see that the difference of the two conditional variances
is rather small compared to magnitude of the conditional variances. This means that
even though the model is misspecified, the precision of the estimates for given values of

predictors does not seem to be affected that much by the misspecification.
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Figure 2.4: Comparison of asymptotic conditional variances of two average effect estima-
tors for spline regression models with two predictors involved. The x-coordinate of each
circle is the conditional variance of misspecified-model estimator and the y-coordinate is
that of right-model estimator. Different circles are produced by different values of p, the
correlation coeflicient between X; and Xs.
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2.4.2 Penalized regression models

'.Penalized spline regression (often referred to as P-splines) has received attention as a
powerful smoothing method. Originally suggested by O’Sullivan (1986), the method
provides a range of practical modelling tools in applied statistics, with the books by
Green and Silverman (1994) and moré recently by Ruppert, Wand, aﬁd Carroll (2003).

The main principle of penalized spline regression is to estimate the unknown regression |
function by a compromise between sum of squ‘ares of residuals (représent the fidelity to
the data) and smoothness of the estimate. _ .

We start with a univariate case. Suppose that we have data (z;,y;) (for now z; is a
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scalar not a vector),

)/i = m(.'L"“ a) + €y

where m is a smooth function denoting the conditional mean of Y; given z;, and {¢;},
are independent, mean zero random errors with a constant variance. To estimate m we

use a spline regression model

L
" m(zya) = o+ oz + -+ apr? + Zak(x —te)?,
"k=1
where d > 1 is an integer, a = (ao,al,..'.,ap,al,v...,aL)' is a vector of regression
coefficients, t; < --- <t are fixed knots and (z — t)2 = (z — t;,)PI{z > t;}. Actually,
m is expressed by a set of power spline basis functions. Recall that S denotes the “design

matrix” for the model so that the i-th row of S is

Si. = (1,.’Ei,...,$iD,(SC1'—tl)e,...,(.’Ei—tL)f)

- (1,@’@)) .

However, simple parametric fitting of a would lead to unsatisfactory results due to the
high dimensionality of basis functions. Instead, « is estimated in a penalized manner by
imposing a penalty on the coefficients in m. A roughness penalty is placed on {ak}£=1
which is the set of jﬁmps at the knots in the p-th defivative of m(z;, ). This leads to

the penalized least-squares estimator

a(d) = min {Z {y: = m(z; @)} + /\Zai}
i=1 k=1

= min{(Y - Sa)(Y - Sa) + A\a'Pa},

with A as penalty parameter controlling the trade-off between fidelity to the data and
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smoothness of the fitted spline and P as the corresponding penalty matrix. To put the
roughness penalty mentioned above, we choose P to be a diagonal matrix whose first
(1+ D) diagonal elements are 0 and whose remaining diagonal elements are 1. By simple

algebra, the penalized least squares estimate of a is given by

a()) = (SS+AP)'SY,

= (n7'S'S+n"tAP) HnIS'Y}.

Since n"1AP goes to a zero matrix, the asymptotic behavior of (?(T) is the same as that
in the standard spline regression without penalty.

To work out the least squares estimates J(T), we need to determine an appropri-
ate value of ) first. Generalized cross-validation (GCV) (Craven and Wahba, 1979) is

one method of smoothing parameter selection that has proven effective and has good

theoreticalvproperties. Here we follow Ruppert (2002) closely. Let
n . —— 2
ASRO) =Y {y - mlas (V) }

i=1

be the average squared residuals using A. Let
S(\) =S(S'S+ AP)"'S

be the “smoother” or “hat” matrix. Then

ASR()\)

GOV = T Tn s )

(2.23)

is the generalized cross validation statistic. Here tr{S(A)} is the “effective degrees of

freedom” of the fit. One chooses A\ minimizing GCV statistic over a grid of values of
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A. Computation can be sped up aﬁd stabilized numerically with the following diago-
nalization method that is variation on the Demmler-Reinsch algorithm used to compute
smoothing splinés.' |

Let B be a square matrix satisfying B~!(B™')' = §'S, for example, B! is a Cholesky
factor of §'S: Let U be orthogonal and let C' be diagonal such that UCU’' = BPB’. For
example, we can use the eigen-decomposition of BPB’ to find U ﬁnd C. Then by some
algebra, we get

SN} =Y _(1+AC)™, (2.24)

_ where C; is the ith diagonal element of C. Details of proof is given in Appendix IV.

The elegance of this method is that the work of calculating B and (U, C) needs to be
done pnly once and then these quéntities can be used for all values of A. Therefore, we
have an efficient way to evaluate GCV defined by (2.23).

. This method is easy to be extended to the additive model with more than one pre-

dictor, i.e., p >1. Suppose we have data (y;,x;) (% = (Z14,- .., Tp)')s
Yi=a9+ m1(331i) + -+ mp(a:pi) + €.

We will use a spline model for each my:

L
my(z;0q) = apnz+ - + a;pz? + Zam(x - tl)£> l=1,...,p
. k=1
‘where o = (a1, .. up,an,...,ar,) . Hence the vector of whole parameters is o =
(ag, &y, . .. ,a;)', and the penalty matrix P is set to be the sum of p diagonal matrices

P, (i =1,...,p). Each P, is a (pK + 1) (K is the dimension of basis functions) by
pK + 1 square matrix whose (p xi+2)th to (p X i+ L+ 1)th diagonal elements are 1

and whose remaining diagonal elements are 0. Therefore the least squares estimate of
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is the minimizer of

n p L
Z,{yi —m(x; e)} + Z Al Z aj,
i=1 1

=1 k=

i=1

P
Le. (Y - Sa) (Y - Sex) + &' (Z /\iPi> a.
Note S is the corresponding “design matrix” with i-th row as
Si. = (1, @I(.’Eli), ey @/(.'L'pl)) .

Consequently the least squares estimate of a can be solved by

i=1

p -1
a()) = (S’S +> ,\iP,-> S'Y.

If the components function {my;}}_, require roughly the same amounts of smoothing,
we may assume a common value of Al =1,...,p, which makes a quick access of the
estimation of smoothing parameters by using the methodology introduced in the univari-
ate P-spline case. More réalistically, different component function m,;’s require different
amounts of smoothing and this can be accomplished by allowing \; values to vary rather
than a common value. In the algorithm of Ruppert and Carroll (2000), A,..., A, are
chosen by GCV in two steps. Note that GCV is a function of Aj,...,A,. In the first
step, GCV 1is minimized by assuming that A; = = Ap = A. In the second step, set.
the common smoothing parameter as the starting value of each \;, Ay, ..., Ap are selected
one—at—a—fime by minimizing the GCV criterion.

In the following simulation study, we see how the two average effect estimates based
on penalized least squares would be affected by the smoothing parameter. Suppose we

have two predictors involved in the model and both of them follows a uniform distribution
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on [0,1] independently. Here a common set of centered cubic basis func‘tions are used and
hence a common smoothing parameter A is assumed.

In the basis function, five knots are used, which are equi-spaced within [0,1]. Generate
a data set of n = 200 realizations of (Y, X1, Xs), where Y is generated from normal
distribution with variance of 1 and mean is based on the model with interactions (2.19).

The true values of all the coefficients are set to be 0.5. Repeat generating 200 data sets,

. and calculating the average effect estimate for each data set. We can vary the sample

size n to see what happens as n gets larger. The top panel in Figure 2.5 shows the
average effect estimates from the data sets of size n = 200 and the bottom panel shows
fhat of size n = 1000. The solid horizontal line in béth panel is the true value of the
average effect. Therefore we can see that the estimates lie around the tfue value with a
larger variability, which is caused by the larger variability of the smoothing parameter
estimates. As sample size increases, the variability goes down,l f.e., the estimates in the
bottom panel are more concentrated on the true value than-the top one. One problem
from Figure 2.5 is that the range of the estimates is quite broad compared to the scale of
the true value 2.0208, which could visually blur the concentfation around the true value.
To make the concentration around the true value more visual, we use only a subset of
those estimates, those within —10 and 10, to plot the histograms, illustrated by Figure

2.6. Note that the number of estimates outside of this range is 32 for n = 200 and 8 for

n = 1000, which are both small compared to 200, the number of estimates in all.
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Figure 2.5: Scatter plots of average effect estimates in penalized spline regression with
only two predictors: the top panel with sample size n = 200 and bottom with n» = 1000.
The solid horizontal line in each panel identifies the true value of average effect, and each
circle represents a different simulated data set. ‘
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Figure 2.6: Histograms of the average effect estimates in penalized spline regression with
only two predictors: the top panel with sample size n = 200 and bottom with n = 1000,
and the symbol ‘x’ in each panel marks the true value of average effect.
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2.5 A middle scenario

Although we do not get exactly consistent estimates in the spline regression scenario
as discussed above, we still wonder whether there is an intermediate situation between
straight-line fitting and curve fitting. In this section, we consider models involving the

quadratic terms of the predictors. To explain, we assume the true model to be

E (Y|X1,X2) = Bo + 51Xy + BaXo + B XE + BuXZ + BroX1 Xo,

)

while the.fitted model is
E (Yle,Xz) = ag + o1 X1 + Xy + OC3X12 + a4X22.

Assume that the joint distribution of X; and X3 is a bivariate normal distribution with
mean vector 0, Cov(X1, Xp) = p and Var(X;) =1,i =1, 2.
- Based on the previous result (2.14), we have

S SHE (X1X0) Xk
1z . ’

Qe = P14 PE (X2) + P2

o3 = P3+ b2 Dt ZUE (X1X0) X,

=

where ¥ is the covariance matrix of (X1, X, X7, X3).

Using moments of the bivariate normal distribution, it is easy to derive that

Al = /617

p
oz = fs+——0n.
3w = Ps 1 _+_p2ﬂ12

With Definition 2 of average effect, that is, averaging over the joint distribution of
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(X1, X3), we have 6,(8) = d7(8). That is, we still have (exactly) consistent estimator
under this setting.
However, interestingly, based on Definition 1, i.e., averaging over the marginal distri-

bution of X, we get

5@ B8) = on+ 2081

| p
fr+2 (ﬁs + mﬂw),xl,

and

o1(z1;8) = b1+ 20571

Hence, we get the difference between the fitted and true average effects

61 (z1; 8) — oi(z1;8) =

1 _pr Pi2z1.
It is easy to verify that the bias increases when p increases for giyen X, = z1. One
special case is that when p equals 0, the difference disappears. It is also clea£ that the
independence of X;’s make consistent average effect estimates no matter whether the
joint distribution of X;’s is normal or not.

Furthermore, if Definition 3 is used, averaging over the conditional distribution X,|X; =

z1, we have

01(x1;8) = B +205z1 + Propzs.

Note that 6{(z1;8) does not subject to the change of definition because it does not
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depend on X;. Thus, the bias becomes correspondingly

, 01 (z1; B) — 61(z1;8) = <1 _i/_)pz - P) B2z

p—r

mﬁlle-

It is easy to verify that for any given z;, the bias increases if |o| < Vv/5 —2 and
decreases otherwise.
Therefore, conditional on different definitions of average effect, we may have different

conclusions about the consistency of estimators based on a simpler model.

2.6 Summary

In section 2.2, Reselt 1 & 2 show the asymptotic distribution of average effect estimators
under “true” model and “misspecified” model, respectively. Note we don’t have to assume
that the two models are nested, that is, our results can be applied to more general
model misspecification situations. In the linear regression context, discussed in section
2.5, Result 3 gives the conditions to yield consistent estimator when fitting an additive
model without interactions to the data generated from a pairwise interaction model
without pure quadratic terms. Although the conditions, independence or joint normality
(elliptical-contoured) of the components of X (centered), may not be satisfied in practice,
we could try appropriate transformations to make the distributions of X close to either
of the conditions. In section 2.4, spline regression context, we can still have consistent
estimator when the predictors are independent and spline basis are centered. We also
explore the bias under the condition of joint normality, and find out the magnitude of
bias is quite small even when there is strong dependence between the predictors. That is,

the estimator based on additive model without interaction is approximately consistent.
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In éection 2.5, we consider models with quadratic terms of predictors, where consistent
estimator comes into being under the conditions in Result 3. We should be aware of the
fact that the consistency of average effect estimator depends on the deﬁniﬁon of average
effect, as implicated by the example in section 2.5. All the results/conclusions we have
in Chapter 2 is based on Definition 2, that is, averaging over the joint distribution of all
components of X. However, this definition may not always be appropriate to use. For
example, if one is interested in comparison the risk of lung cancer between two groups of
people having different smoking habit. Say one group never smoke and the other smoke
everyday. There are also bunch of other risk factoré, such as gender, age, resident and so
on. Since we want to know how smoking makes difference in thé risk of lung cancer, we
should consider Definition 3, averaging over the distribution of all the other risk factors
conditional on smoking factor. Thus, for different scenarios, we need to investigate the

consistency of estimator equipped with different definitions. As for which definitions

should be applied, it depends on the goal of study.




Chapter 3

Comparison of interaction
detectability under different

interaction models

This chapter will focus on comparison of power to detect interactions under different
regression models, in particular, a pairwise interaction model and a diffuse interaction
model. Section 3.1 has the background on asymptotic power under local alternatives for
Wald (or quadratic form score) statistics. Section 3.2 gives a concrete example to show
hovx; powerful the diffuse interactién model is to detect interaptions no matter what the

true structure of interaction is diffuse or not.

3.1 General framework

In this seéfion, we give a general result about the asymptotic power function of score
(quadrati;: form) test for presence of interactions are derived based on two models.

Let F = {f(y| x,08) : 8 € ©} and § = {g(y| x,w),w € Q} denote two\ different
parametric families of densities under consideration when modelling the relationship be-
tween response variable Y and pfedictor variables X, ..., X,. We assume an agreement

between the two families at some certain values of their parameters. That is, one member
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from G satisfies that
9(y| x, wo) = f(y| x, ), for all y and x,

so as w moves away from wg, g(y| X, w) moves away from F in some specified way. Under
model F (G), 6 = 6y(w = wy) stands for the null model of no interactions.
Let f,g denote densities and F , G denote the corresponding distributions. Let p; =

dim(@), p» = dim(w) be the dimensions of F and G, with
sr(60,Y,X) = dllog{f(Y| X, 6)}]/06

and

SG(w7 Y, X) = 8[10g{g(Y| X, w)}]/aw

being the respective score vectors, and
Ir(0) = Eg{sr(0,Y,X)sk(0,Y,X)}

and

I6(w) = Eu{se(w, Y, X)sh(w, Y, X)}

being the corresponding Fisher information matrices. Note the two above expectation
operations are with respect to joint distribution of Y and X. Let fx(x) be density of X
with respect to measure v(x) (either Lebesgue or counting measure).

To compare the capability to detect interactions under the two families 7 and G, we
set up two sets of hypothesis tests with F as the fitted model and G as the true model.
The reverse case with F being the true distribution while G being fitted model, is just

an analog. Hence in the following, we just take the former case for demonstration.
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To make the comparison tractable and also to produce some nontrivial asymptotic
powers that are not all equal to 1, we use a Pitman-.type.local analysis (developed by
Le Cam (1960)), focusing on n~'/2 — neighborhoods of the true parameter values.

Say F is the fitted model while G is the true model with w, = wo+n"/2A7, where A
is a scalar and 7 is a vector of length ps. The hypotheses- we used here are Hy : CO = (,
versus H, : €0 # ¢, where C is a matrix r x dim(@) of full row rank and ¢, is a
certain vector (for example, zero vectors denotes an additive model if C@ is the vector of
interaction parameters). Note that the above hypotheses are more general than‘testing
Hy : 6 = 0, where C jﬁst reduces to an identity matrix as a special case. The above
hypotheses consider any linear combination of the whole parameter @ under the fitted
model.

R To compare the capability to detect interactions, the parameters of interest are just
those related to interactions.

In particular, if the pairwise interaction model (defined later by (3.6)) is fitted, the

whole parameter vector

6 = (6o, B, - .-, Bp, B2, - -, Bp-1)p) -

Only the last ¢ = p(p — 1)/2 components relate to interactions. Hence let C; =
(Ogx(p+1), Iqxq) so that C10 = (P12, - - -, Bp-1)p)’, which is what the parameter vector
of interest for testing. If the fitted model is the diffuse interaction model (3.5), the whole
parameter vector is w = (8o, f1,...,0p, A)’ and only A relates to interaction. Thus let
Cy = (O1x(p+1), 1) so that Cow = . »

Let 6,, be the maximum likelihood estimator based on f(y| x,0) from n observations
from g(y| x, wy).

Then n(C(8, — 00)) {CI71(80)C"} " (C(8, — 85)) is the Wald test statistic used

62



Chapter 3. - Comparison of interaction detectability under different interaction models

here, whose asymptotic distribution is x? with degrees of freedom of rank(C) if f(-| 6o)

is the true model. Because F is not the true model,
n2C(8, - 0) = n'/?C (En - e,(wn)) + Y20 (0.(wn) — 60), (3.1)

where 6,(w) is the parameter vector which minimizes the Kullback-Leibler information

criterion, that is

. 9(yl x, ) |
0.(w) = argmlne/ {log m} 9(y| x, w)fx(x)dydu(x)..

Note that the fact g(-| wo) = f(-| 8o) yields that 8,(wg) = 6.

By White (1982) we know that the first item on the right side of (3.1) is asymptotically
normal with mean 0 and covariance matrix CI5'(60)C'". So we only need to work on the
second item on the right side in (3.1);’

By the definition of 6,(w), we know that 8.(w) is the value of @ solving
] 50, X09(01x) ()b ) = . (32
Base(i on Gustafson (2001), implicit differentiation of (3.2) gives
" Eu[sk(8.(w), Y, X)]0,(w) + Eu[sk(6.(w), Y, X)se(w: Y, X)] = 0.

Evaluated at w = wy, the above equality yields

00.

aw wW=wg

= I'(80)E 6,{s%(00; Y, X)s(wo; ¥, X)}, (3.3)
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which is derived by the fact that 6,(wo) = 6. Therefore, we have

nY2C {8.(w,) — 6} = n?C {%Q—*—

w
00,
Ow

Ann"l/2 + O(n_l)}

w=wg

— AC

n,

w=wyg

where o
i) = T
oy T o,

Recall the equality (3.1). Based on O’Brien et al. (2006), assuming G being the true

model, the asymptotic distribution of

n(C(8, — 6o))’ {(1111;1(60)0'}‘1 (C(6, - 6y))

is a noncentral x* with degrees of freedom of rank(C) and noncentrality parameter § is

calculated by

' - 00,
, n} {CIFY(80)C"} 1{A08w

W=ty

00,
Ow

u:won}‘ | (3.4)

Suppose the equivalent null hypothesis for G is Cow = {y; where Cg is a rg X dim(w)

6={AO

matrix. The Wald statistic based on fhe fitted model G is
n(Co(@n — wo))' {Calg (wo)Ce} ™ (C(@n — wo))-
Its asymptotic distribution is honcentral X2 .(d6c), where

b6 = {ACem} {Calz (wo)Cs} ™ {ACen}.
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3.2 Comparison between pairwise interaction

models and diffuse interaction models

3.2.1 Introduction of diffuse interaction mbdel

Greenland (1983) pointed out that the powers of statistical tests to detect interactions
are very low in some commonly encountered epidemiological studies. We could imagine
even lower power in the situations where the number of risk factors is rather large and
only a very small fraction of all possible (pairwise) interaction terms really play a role.
Gustafson et al. (2005) proposed another kind of interaction model, the diffuse interaction
model, to deal with difficulties caused by a large number of risk factor under pairwise
interaction models. By diffuse interaction, we mean that the effect of a particular risk
factor either increases (synergism) or decreases (antagonism) as all the other risk factors
increase, without regard to which of the other risk factors get involved with the effect
modification. The diffuse interaction model introduced in Gustafson et al. (2005) is

defined as
EY|X:y,....X,) = po

=1

v 1/
= Lo+ {Z(ﬂiXi))\} ) Xi >0, 6;>0. (3.5)

The parameter A reflects the magnitude of the synergism/antagonism. Take a binary X
for example, if A > 1 then it is easily verified that the interaction is antagonistic, in the
sense that the value of E (Y| X; = 1,X(;) = x(j)) —E (Y| X, = 0, X(;) = X(;)) decreases in
each component of x;). If X; is continuous, it is eﬂso easy to show that A > 1 gives

OE (Y]X = x)

e AL
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which means synergism based on the definition in Section 1.2. Conversely, A < 1 corre-
sponds to synergism. That is, the effect modification caused by any putétive risk factor
increases as other risk factors increase. The magnitude of the difference between A and 1
implies how much synergism/antagonism is present. However, we should be aware that
A does not provide the information about which of those risk factors contribute in the

effect modification for any putative risk factor.

3.2.2 Power comparison ,

Say the response variable Y is normally distributed and X1, ..., X, are the corresponding
explanatory variables. We study an example under the following two interaction models.

Pairwise interaction model:

E(Yle,...,Xp) = up

P . ) '
= fo+ ZﬁiXi + Z Bi; XX, (3.6)
/ i=1 o

1<i<j<p -

Recall diffuse interaction model:

E(Y|X,,...,X,) = up

P . 1/x
= fo+ { (ﬂz‘Xi)'\} L, Xi >0, 6, >0.
Li=1

Let By = (B1,...,0p) and B; = (Bij)qx1 (¢ = p(p — 1)/2), the coefficients of pairwise
interaction terms. Let @ = (8o, b5 .. ., Bp, 87, 02)', which is the whole parameter vector
in the pairwise interaction model and let Q = (By, B1, - - ., Bp, A, 02)’, which is the whole
parameter vector in the diffuse interaction model.

If B; = B;, = 0 in the pairwise interaction model, the model reduces to be an

additive model without interaction terms. Correspondingly, if A = Ag = 1 in the diffuse
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interaction model, the model reduces to an additive model as well. Therefore, the two
interaction models are the same if evaluating at 3;, and Ay respectively. Denote by fp
the density function of Y|X;,..., X, under.the pairwise interaction model, and by fp -
the density function under the diffuse interaction model. Denote byA Ip the information
matrix under the pairwise interaction model and I under the diffuse interaction model.
Denote by sp(-,Y,X) the score function of fp under pairwise interaction model and so

sp(+, Y, X) the score function of fp under diffuse interaction model. That is,

Xy

SP('y_KX) =U_2(Y_/'LP) Xp -

X1 X

X, 1X,
1

X1
SD('aY) X)'/\=1 = 0-~2(Y - /LD)

Xp

Y|, )

aﬂD ~ p P o
where el Pl (; ﬁin) log <22=1: BiXs | + ;@Xi log (8, X;).

It is obvious that interaction can be measured by only one parameter A in (3.5) while
p(p — 1)/2 parameters are used in (3.6). Hence in the diffuse interaction model (3.5),
we assume that all the predictors interact in the same direction, either synergistically

or antagonistically, which corresponds to A < 1 or A < 1 respectively. It is reasonable
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to imagine that model (3.5) is more powerful to detect interaction since detecting the
interaction effect in oné direction could be easier than that in many possible directions.
The comparison between two models will be éxplored by the following cases.

Case I: Assume that the diffuse interaction (3.5) is the true model with A =1+
An~12 where A is a scalar.

(i) The fitted model is the pairwise interaction model shown as (3.6). To test whether
there are interaction effects, set up the following hypotheses.

Hy: C160 =0 versus H, : C10 # 0, i.e.; |

Hy: B;=0versus H, : B; #0.

Recall that Cy = (Ogxp, Igxq)- Let én denote the MLE of 6. Therefore, we have

Power = P(n{Cl(an ~ 90)}’ {01[;1(00)01}‘1 {Cl(an —60)} > x;, a) )

where « is the test level and ng ., 18 the upper a quantile of xg. With the partition of

0 = ((Bo, By, B)', we get the corresponding partition of I5'(00).

IE(80) IF(60)

I(60) IE(60)

Ip'(60) =

Hence,

CLIp (80)C1 = IF(60)-

According to the results we discussed in the previous section, we know that

n(C1(0n — 60)) {IE(80)} ™ (C1 (B — 80)) 2 x3(8),
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where the noncentrality parameter is

00.
0= {Clé—/\—

! o0
22 -1 *

a}.
A=1 _

o= 17 (80) {E g, {sp(60,Y, X)sp(h, Y, X)}}.

where
00,
;Y

Note that sp(Ag, Y, X) is the derivative of log fp(w, Y, X) with respect to A evaluated at
Ag, i.e., the last component of the score vector sp(w,Y, X).

Therefore the asymptotic power is P (Xg(é) > Xi ), Where Xg, o is the upper « quantile
of x?— distribution with degrees of freedom gq.

(ii) Fitted model is diffuse interactibn model. Now the hypotheses to be tested are

Hy : C'QQ =1 versus H, : Chw # 1, i.e,,

Hy:A=1vs. H: \#1.

Recall that Cp = (O1xp, 1). Therefore the asymptotic power is -
P (0@ > o)

where

§ = AW3'(\)
Vb(Ao) Cal ' (wo)Cs,

Ip(68y) = Euo {(5132]%) (algifD) },
Wy = (/30)/61)"'316111)‘0),-

il

Remark: As a matter of fact, the 5\n should be positive to make the operation (-);\"

meaningful. That is, the above analyses work well when sample size n big enough since
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~

An converges to 1, which is away from the boundary value 0.

Case II: Assume the true model is a pairwise interaction model with

/612,71
IBIn = :
/B(p—l)p,n
= n%An,

gx1

where 7 is a ¢ x 1 vector. For this time being, we set each element of 7 to be 1, which
means every pair of interactions is positive. Later we discuss the consequences of different
choices of 7.

(i) Fitted model is diffuse interactioﬁ model (3.5). vThe hypotheses to be tested here
are Hy : Cow = 1 vs. H, :\ng # 1. All the following is an analog of i) of Case I. Now
0 = (6o, Br,...; 0, N).

The asymptotic power is

P30 >x3 &),

where

A,
s={ (o35,
O | (15 (w0) By (50w, Y, X)sp(6, Y, X))
6,@1 8,=0 D 0 wo \°D\W0, 1, p\Y0, 4,

) an} ezt encny { (a2

.31=0

An o,
ﬁ1=0) "7}

}(P+2)' ’

where M,. denotes for thé rth row vector of matrix M.
(ii) Fitted model is pairwise interaction model (3.6). The hypotheses to be tested
| here are Hy : C160 = 0 versus Hy : C16 £ 0. |
We have
n{C1(8r — 80)} {1¥'(80)} ' C1(0n — 60) = X2(9),
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with & = A?n'{IF*(6)} 'n. Hence the asymptotic power is P (x2(8) > x2 ,)-

As discussed above, we have derived four asymptotic power functioﬁs for the four
subcases, corresponding to all possible patterns of either pairwise interaction or diffuse
interaction model being fitted while the underlying data generation process is the other
one. However, it is not easy to tell which power is bigger based on the expressions of
asymptotic powers. To be more specific, we take an example as below. Suppose we have
p = 9 predictors at hand, the true values of all components of 3,, are all equal to 0.5
and By = 0. The variance of random error is set to be 02 = 1. Also the predictors are
identically independently distributed as Bernoulli with parameter &, the probability of
success. Then we plot the power functions against the value of A, with & =10.5.

As shown before, the key things té compute the power are Ip = E {sp(-, Y, X)sp(-, Y, X)},
Ip =E{sp(;,Y,X)sp(-, Y, X)},E {sp(-, Y, X)sp(-, Y,X)} and E {sp (", Y, X)sp(-, Y, X)}.

Under the above settings, Figure 3.1 shows the result of the powers in the four sub-
cases discussed above. The solid lines denote the power curves for diffuse interaction
model fitting and the dashed lines denote those of pairwise interaction model fitting. We
find that the diffuse interaction model is more powerful to detect interactions than pair-
wise interaction model, regardless of whether the true model we postulate is the diffuse

interaction model or not.
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Figure 3.1: Power Curves with Xi’si"i\?d' Bernoulli(O.S): the top panel with the true

structure to be diffuse interaction model and bottom panel with the true structure to be
pairwise interaction model. Solid lines denote power curves based on diffuse interaction
model fitting and dashed lines denote power curves based on pairwise interaction model
fitting. In the bottom panel i = 144;.
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In case II, consider replacing n = (1,...,1)" with a vector of n having entries +1,
- that is, the pairwise interaction terms have different “directions”. For thpse terms with
pos‘iti’ve coefficient, it implies that the impact of the interaction is to increase the value
of response variable when the corresponding predictors increase while other. predictors
keeping unchanged. While for the terms with negative coefficient, the interaction ef-
fect causes decreased response if the involved predictors increase with other predictors
unchanged.

As ‘opposed to a pairwise interaction model, the role of A in the diffuse interaction
model is to measure the magnitude of the overall interaction among the predictors. Note
that diffuse interaction models do not specify which of the predictors do or do not con-

tribute to the interaction. Hence, we could expect the power of diffuse interaction model
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would get worse when the true model under consideration involves mbre mixed directions
of interaction effect.

- Since the “overall” interaction is getting weaker and weaker as more other direction of
interaction terms appear in 1, we would expect the performance of the diffuse interaction
models to get worse and worse. That is what Figure 3.2 implies. In the first panel, with
the choice of 1 stating that all interaction terms have the same direction, the diffuse
interaction model performs better than the pairwise interaction model in terms of power.
However, when 7 is changed to have only part of the interaction terms playing the role
in the same direction, there is crossing of t;le two power curves as shown in the middle
panel. That is, for some values of A, the diffuse interaction model works better while
for some other values of A, the pairwise interaction model does bet'ter. Moreover, when
7 is set to have more mixed directions of interaction effect, the performance of diffuse
interaction model is worse as implied in the last panel. In Figure 3.2, the top panel is
the power curves obtained by setting n of a vector of 1’s, the middle panel with i of a
vector made up of 10 1’s Iand 26 0’s, and the bottom panel with n of a vector made up of
10 1’s, 10 O’é and 16 —1’s. Note here to make the plots across different 1’s comparable,

we normalize each 7 to have length equal to 1.
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Figure 3.2: Differver}t choices of 1 in Case II with binary predictors: the top panel involves
all predictor pairs interacting positively, the middle panel has only a few of predictor pairs
interacting positively, and the bottom panel has more mixed directions of interactions.
The lengths of n’s in different panels are normalized to be 1. Solid lines denote power
curves based on diffuse interaction model fitting and dashed lines denote power curves
based on pairwise interaction model fitting.

True model is pairwise

powe:
00 02 04 06 08 10
PR

True model is pairwise

power
00 02 04 06 08 10
It

power
00 02 04 08 08 10

Subsequently what happens if other settings, like &, 8,,, 0%(= Var(¢)) vary? Figure
3j3 shows the outcome of different ¢’s with 3, = 0.51, and 02 = 1. In the leftmost panel,
£ =0.2, While..{ =0.5 in the middle panel and ¢ =0.8 in the rightmost one. The three
plots in the top panel are power curves in case of the true model being diffuse interaction,
and the other three in the bottom under the true model being pairwise interaction. As
€ varies, the performance of both models get worse. However, the difference among the

other three plots in the bottom panel where the true model is pairwise interaction model

is not great. In other words, the distribution of predictors has greater effect in the case
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of diffuse interaction model being true model than it does in case of pairwise interaction

model being true model.

Figure 3.3: Different choices of £ in X;’s distribution: the top panel with the true structure
to be diffuse interaction model and bottom panel with the true structure to be pairwise
interaction model. Solid lines denote power curves based on diffuse interaction model
fitting and dashed lines denote power curves based on pairwise interaction model fitting.
From left to right across the three columns, £=0.2,0.5 and 0.8 respectively. -
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Figure 3.4 shows the result of different choices of 3,,. For simplicity, we set all the
components of 3,, equal to each other, that is 3, o b1,. In the leftmost panel, b is
set to be 0.1, while 0.5 in the middle panel and 1 in the rightmost one. From the three
plots in the top panel, we can see that the performance of both models get better as the
magnitude of b increases. However, the three plots in the bottom panel are almost the
éame. Therefore, we get the similar conclusion as above, where £ varies. Change of b has

more effect in the case that the diffuse interaction model is true.
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Figure 3.4: Different choices of b in 3;; = bl,: the top panel with the true structure
to be diffuse interaction model and bottom panel with the true structure to be pairwise
interaction model. Solid lines denote power curves based on diffuse interaction model
fitting and dashed lines denote power curves based on pairwise interaction model fitting.
From left to right across the three columns, b=0.1,0.5 and 1 respectively.
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Figure 3.5 shows what happens if 02 varies. In the leftmost panel, o2 set to be 0.5,
while 1 in the middle panel and 5 in the rightmost one. Now the three plots in the top
panel are quite similar to those in the bottom respectively. In fact; based on the formula
(3.4), we know that the noncentrality parameter ¢ is just proportional to ¢~2. Therefore
if we change the scale of A according to the value of o2, the shapes of the power curves

are the same across different o2. That is what Figure 3.6 implies. y
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Figure 3.5: Different choices of Var(e):the top panel with the true structure to be diffuse
interaction model and bottom panel with the true structure to be pairwise interaction
model. Solid lines denote power curves based on diffuse interaction model fitting and
dashed lines denote power curves based on pairwise interaction model fitting. From left
to right across the three columns, Var(e)=0.5,1 and 5 respectively.
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Figure 3.6: Different choices of Var(e) with scaled A: the top panel with the true structure
to be diffuse interaction model and bottom panel with the true structure to be pairwise
interaction model. Solid lines denote power curves based on diffuse interaction model
fitting and dashed lines denote power curves based on pairwise interaction model fitting.

True model s diffuse True modal is diffuse True modsl is diffuse

o4 08 08 10
" L L .
’

02
N

00
s

T T T T v T T T T T T Tt T T T T
o s 10 15 0 ° 5 15 2 B 6 10 W 20 4 0 &

datn dot dotn

True madal is pairwise Yrus model is pairwise . True modsl is pairwise

T T T T
o 1 2 33 4 N &

delta. datta deita

All the above plots are based on the distribution of X having independent components.
In the situation that those predictors are dependent, what happens if the dependency

changes? To construct a dependent structure between those predictors, we let

Xi,..., X2 A Bernoulli(Z),

Z ~ Beta(a,b).

. By a little algebra, we have p = (14 a + b)~!, as the correlation between any pair of

Xi,...,Xp. Hence by changing the values of @ and b, we may get different correlations. In
Figure 3.7, the first column is power curves obtained from @ = b = 100, so that p = 0.005;
for the second column, a = b = 0.5, hence p = 0.5 and for the third column a = b = 0.01,

which leads to p = 0.98. The change of correlation does affect the power performance
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more in the case that diffuse model is true than that in the case that pairwise interaction

model is true.

Figure 3.7: Different choices of p among X,’s: the top panel with the true structure to
be diffuse interaction model and bottom panel with the true structure to be pairwise
interaction model. Solid lines denote power curves based on diffuse interaction model
fitting and dashed lines denote power curves based on pairwise interaction model fitting.
From left to right across the three columns, p=0.005,0.5 and 0.98 respectively.
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We also irivestigate what happens if the predictors are continuous. Suppose X;’s (i =
1,...,9) are i.i.d. following a log-normal distribution. That is for each i, X; = éxp(Z?),
where Z;’s are i.i.d. standard normal variables. Set Bo =0, By, = 0.51, and the variance
of random error o2 = 1. Then we plot the asymptotic power against A (defined in the
local alternatives) for different four subcases discussed before. Figure 3.8 shows a similar

outcome to Figure 3.1, which is for binary predictors. That is, the diffuse interaction

model is more powerful to detect interactions than pairwise interaction model, regardless

of what the true structure of interaction is diffuse or not.
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/

Figure 3.8: Power Curves with Xi’si"i\fj " Log-normal (0,1): the top panel with the true
structure to be diffuse interaction model and bottom panel with the true structure to be
pairwise interaction model. Solid lines denote power curves based on diffuse interaction
model fitting and dashed lines denote power curves based on pairwise interaction model
fitting. In the bottom panel 17 = 1,1/1/3.
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Similar to the previous example with binary predictors, we also change the direction
of interactions when the pairwise interaction model is the true model. As shown in Figure
3.9, the diffuse interaction model lose the power to detect interactions as the “overall”

strength of interaction gets weaker.
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Figure 3.9: Different choices of 7 in Case II with continuous predictors: the top panel
involves all predictor pairs interacting positively, the middle panel has only a few of
predictor pairs interacting positively, and the bottom panel has more mixed directions
of interactions. The lengths of n’s in different panels are normalized to be 1. Solid lines
denote power curves based on diffuse interaction model fitting and dashed lines denote
power curves based on pairwise interaction model fitting.
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3.3 Summary

By the two examples studied in section 3.2.2, we can see that diffuse interaction model
is more powerful to detect the interactions no matter what the true interaction structure
(which is postulated) is diffuse interactién or pairwise interaction. However, as the direc-
tion of true interactions ambng predictors is more mixed, the diffuse interaction model

gets less powerful to detect interaction.




Chapter 4

MCMC -algorithms for diffuse

interaction models

4.1 Why MCMC?

We introduced a diffuse interaction model in Chapter 3, where it is proposed to be more
powerful to detect interactions than pairwise interaction model by using only a single
parameter to describe the interactions arﬁong numerous predictors. As a related point,
the diffuse interaction model would be better for inferences on interactions. In this
chapter, we are going to apply MCMC algorithms to implement the model fitting.

In this section, we enumerate reasons for using MCMC algorithms but not maximum
likelihood estimation, which also may be feasible to be implemented.

First, in the diffuse interaction models, all the parameters £;’s (exéept the intercept
Bo) and A are designated to be positi;fe. The statistical inference of constrained max-
" imum likelihood estimates usually is mote complicated. Standard asymptotic theory
asserts that statistical inference regarding inequality constrained parameters does not
require special techniques, because for a large enough sample there will always be a con-
fidence interval at the selected level of confidence that avoids the constraint boundaries.
Sufficiently large, however, can be quite large, in the cases when the true parameter val-
ues are very close to these boundaries. In practice, our finite sarhples may not be large

enough for confidence intervals to avoid constraint boundaries, and this has implications
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for all parameters in models with inequality éonstraints, even those thaf are not them-

selves constrained. Comparatively, MCMC sampler can automatically accommodate the

constraints and yield appropriate interval estimate without extra efforts. |
Second, sometimes the interested quantity may hot be the parameters in the model

directly and would be some complicated function of them. In particular, under diffuse

interaction models, we apply the average effect idea to make inferences on interactions.

Now the form of the first derivative of the regression function with respect to z;,j =
1,...,pis somewhat intricate so that it takes efforts to approach the interval estimates for
average effects based on staﬁdard MLE. However, the interval estimates can be effectively
achieved based on the posterior samples of the parameters of diffuse interaction models.

- Third, considering' some extensions to the diffuse inferaction model, the maximum
likelihood estimates could be heavy in hand to calculate. For example, to relax the
assumption that all the predictors interact in the same way, we could allow the predictors
to be categorized into groups: within each group, the predictors inﬁeract in the same
way. Here we assume that there is no overlapping among the predictors within different |
subgroups. That is, each predictor has an indicator variable denoting the group to which -
it belongs. The specific parametric form of this extended model will be shown in the
coming section 4.2. Therefore, the paramyeter set is a mixture of continuous parameters
(B;’s, the coefficients of predictors, and A, the diffuse interaction parameter), and discrete
parameters (the indicator variables associated with predictors). We have 2° (or 3P if three
groups) different patterns of group allocation, hence the optimization procedure would

be more complicated especially when p is large.
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4.2 Details-of MCMC algorithms

Tn Gustafson et al. (2005), an efficient MCMC sampler is developed for binary responses.
Now, we apply a similar MCMC algorithm for continuous (normal) responses. We start

with a simple case, that is, all the predictors interact in the same way.

4.2.1 One-group diffuse interaction models

In this subsection, we consider a one-group diffuse interaction model

» 1/
YiX =z~N Bo + {Z(ﬁjxj))\} ’02 , (4.1)
Jj=1 .

where A > 0 is the parameter accounting.for interactions and 8; > 0,z; > 0 for j =
'1, .oy P

We apply a hybrid MCMC (HY) appro‘ach, similar as that in Gustafson et al. (2005)
to make inference. The reason for using this dlgorith‘m is to avoid the waste caused by the
randomness introduced by the proposal of candidate value. Basically, the idea of HY is
to incorporate derivative information of the target density aﬁd to suppress random walk
behavior in the sampling simultaneously. Both of the strategies attempt to eliminate
the inefficiency of random walk, which is commonly used in Metropolis-Hastings (MH)
algorithms to generate ca'ndidate states. To explain, by ﬁsing random walk, the direction
of each movement about the target distribution is randomized. This can greatly incfease
the number of iterations required before achieving the equilibrium. The situation is
getting even worse especially when the parameters involved in the target distribution are
highly dependent toveach other. More discussions in Gustafson et al. (2004) and Neal
(1998). The pseudocode of the hybrid MCMC algorithm is provided in Appendix V.

In our simulation study, the priors of the parameters are log A ~ N(0,02) with ¢3=100;

84




Chapter 4. MCMC algorithms for diffuse interaction models

Bo ~ N(0,03,) with 03 =100; and f; ~ N+(0,03) with 03 = 100 for j = 1,...,p,
where N*(u, 02) denotes the N(u, 0%) distribution truncated to non-negative values. Note
that we also check the prior sensitivity by using informative priors with smallér hyper-
parameters a%j, o2. The prior for o? is inverse-gamma (a,b) with the shape parameter
a = 0.0001 and the Vscale parameter b = 0.0001. ‘

Set the number of predictors to be p = 10, the sample size to be n =2000. Gener-
ate the p binary predictor variables from Bernoulli(0.2) distribution independently. For
simplicity, we set the true values of 8;’s (j = 0,...,p) all equal to 0.5. The true value
of )\ is set to be 2, that is, all the predictors interact in antagonistic direction. Then for
1 = 1,...,n,we generate the response variable Y; from normal distribution with mean
of By + {Z;;l(,@jxij)’\}l//\ and variance 02 = 1. Note that in the model for binary re-
sponses, no variance component is involved. As a consequence, our algorithm here has
one more stép to update o2, compared to the MCMC algorithm used in Gustafson et al.
(2005).

Following Hills and Smith (1992), the MCMC literature has consiciered changes in the
parameterization of a model as a way to speed up convergence in a Gibbs Sampler. The
general suggesti\on is to try to make the components as “independent” as possible. Thus
we implement MCMC using the new para,meters. (a, A), where og = fo, ; = B/, 7 =
1,...,p. From the scatter plot of posterior samples for A and oy (left panel of Figure
4.1), a smaller correlation between reparametrized components can be clearly seen. That
is, the reparametrization works well. Note that all the samples used in IFigure 4.1 are

based on the 30,000 iterations after 20,000 burn-in iterations.
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" Figure 4.1: Algorithm I: Posterior correlations for (A, £1) and (A, ) respectively.
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MCMC Algorithm I: .

At the t—th iteration,

Step 1. For given ("1 update from ( ét_l), agt“l), e a,(,t—l)) to (,Bét), agt), e ,a;(f))
as. a block by using a hybrid MCMC. .

Step 2. Update At~V by using a random walk Metropolis-Hastings to log())."

Step 3. Update o2V yia Gibbs sampler. Given the prior of o2 to be inverse-gamma
(a,b), the posterior conditional distribution given all the other parameters is inverse

gamma with shape parameter a + n/2 and scale parameter of b + RSS/2, where

2

n (o ) A
— — t—1
RSS = E yi — A8 - {E :{ﬂ;'t Dz, 1A }
i=1 Ag=1

Note that Step 2 can also be implemented by any other choices of prior for A due to the
generality of MH. However Step 3 needs éonjugate prior setting. for o2 because Gibbs

sampler get samples from the corresponding full conditional distribution. It is actually
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a particular choice of the proposal in MH leading to the acceptance ratio of 1.

The trace plots of MCMC outputs in Figure 4.2 shows that thé above MCMC ap-
proach works well for the simulated data set under the specific setting of priors for
parameters. In each panel of Figure 4.3, the true value, marked by the solid vertical
line, is covered within the corresponding 95% e’qual—tailed credible interval. For sbme pa-
rameters though, the true value is somehow close to the lower/upper end of the credible
interval. |
Figure 4.2: Algorithm I: MCMC traceplots for §;,5 = 0,1,...,p and X with diffuse priors
oh, = 0f, = 03 = 100.
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Figure 4.3: Algorithm I:>Marginal posterior densities for 3;,7 = 0,1,...,p, and A with
diffuse priors o3 = ogj = o3 = 100. :
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Remarks for the algorithm:

First, the step sizes used to produce candidate values in step 2 and 3 should be
adjusted as sample size changés. Basically, we tune the step sizes to get relatively High '
acceptance rates, about 70% for step 2 and about 50% for step 3. '

Second, when the priors of the parameters §;,5 = 0,?. .,p and A are changed to be
more informative (smaller variance), the outcomes do not change much. Comparing the
density plots in Figure 4.3 and Figure 4.4, there is no serious difference between the distri-

butions of posterior samples from different priors. This point is different from Gustafson

et al. (2005), where the prior of 8y does have influence on the Bayesian inference.
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Figure 4.4: Algorithm I: Posterior densities for 8;,j =0,1,...,p and A with informative

priors o3, = d%j =0l =04
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Third, as éuggested in Gustafson et al. (2005), the algorithm above can be easily
extended to a more general case of no positive constraint of the sign of §;, replacing

z;0;, in model (4.1), by g(z;, 8;), where

|Blz;  B>0,
1BI(1-z); B<O.

g9(z,8) =

To remove the positive constraint on the §;’s, we need the assumption that X,’s are
bounded within [0,1]. In practice, transformation of predictors may be necessary. In the
following, for simplicity,. we always focus on (;’s with positive constraints and leave the

extension without the constraints to the future work.
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4.2.2 Two-group diffuse interaction models

As one possible extension mentioned but not pursued in Gustafson et al. (2005), we study

a more complicated model in this subsection. Say

1/A

YIX=z~N|[B+ D Bz)+{ Y. Biz)y o, (42
jeADD jeANT

Rl

where ADD consists of indices of the predictors belonging to the additive group and ANT
-is the set of indices of the predictors interacting in antagbnistic direction. ( For sure, if
we suspect that some of the explanatory variables interact in synergistic way, we would
replace the antagonistic group be synergistic group by setting A < 1.) In this subsectibn,

we take A to be fixed. Let I — {Ix}k=1,..p, where

1; k<€ ADD,

Iy = i
2; k€ ANT.

Therefore, the parameters in this model now are ({8;}7_, {1;}7_;,¢2). So that we have

p — 1 more parameters,with A fixed, to updaté than that in the simple case (4.1).

To explore the MCMC approach to model (4.2), we do a simulation study as the
following. As before, set the number of predictors p =12, the sample size n =2000.
Generate each predictor variable from a Bernoulli(0.2) distribution. For simplicity, we
set the true values of G;’s (j=1,...,p) all equal to 0.7 and By = 0. The true value
of A is set to be 2, that is, all the predictors involved in interaction group interact in
antagonistic direction. The first six predictors X ... X¢ are set to belong to ADD group
while the others belong to ANT group. The starting values of the indicator variables are
set to be the worst possible case, that is, each I}, is set to be the opposite value of the

corresponding true value. Then we generate the response variable Y;,i = 1,...,n from a

90




Chapter 4. MCMC algorithms for diffuse interaction models

s\

normal distribution with mean of

1/A
Bo + Z (Bjzis) + Z (62:)" -
7eADD ' jeANT
and variance 0® =1. For each j € {1,...,p}, the prior of J; is uniform distribution over

{1,2}. The prior of Gy is N(0, U%o) with U§0=100. For j € 1,...,p, the prior of f; is.
Bj ~ N*(0,03,) with agj = 100 for j = 1,...,p, where N+(u,.02) denotes the N(u, 02)
distribution truncated to non-negative values.

MCMC Algorithm II:

Step 1. Update the coefficients in the additive group, denoted by 3 ADD> togetherv
with Go. '

Given I and coeflicients of predictors in ANT group, denoted by 3 ANT it is easy to

verify that the posterior of (3, 8’ 'is proportional to
ADD

exp {—0—2 ((Bo, BApp) — (XiX1 + D)'X,Y,)’

(XiX1 + D) (6o, Bpopp) — (X1X1 + D)7'XY4) } {8 > 0}.

It implies that (8o, B8y pp)’ follows a multivariate normal N ({X’lxl + D}_lx’lyl, {X1%; + D}‘102)

truncated by BApp > 0, where

Xl = (1,XADD),
Y, = Y-V, 4

1/
Y, = {XaANT'BANT)

Y 2: -2 -2 —2
D = o*diag{og 05", ...,05}

Note that X denotes the design matrix with column vectors of the values of the
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explanatory variables in the additive group. Analogously, X NT is the design matrix
with column vectors of the observations of predictors in At;he antagonistic group.
Step 2. Update the intercept together with the coefficients in the antagonistic grdﬁp.
Subtracting the contribution of predictors in the additive groub, we can now pre-
tend there is only one group and all predictors interact antagonistically. To be spe-

cific, we apply Algorithm I, devised for the one-group diffuse interaction model, to

(Y, XANT: BANT: Bo) where

Y'=Y ~XADDAADD

Step 3. Update (B, ) together. Wé generate the candidate values for (B, Ix),”
denoted by (8%, I}), as the following:

I} = 3-1I,

log(B) ~ N (log(By),7°).

That is, the candidate value of I is just opposite to vthe current value. Say Iy = 1, then
It = 2. Using random walk on the log scale of fj to fulfil the positive constraints in
model (4.2). »

There could be more than 6ne criteria t>o determine B2 and two of them are discussed

after remarks on Algorithm II. At this stage, let’s write 82 in a general way as

Be = hu1: (Be),

where h is a deterministic function with reversibility property, that is, h is 1-1 mapping.
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on [0,00) and h~! = h, where h™! is the inverse function of h. Thus, we have

hre.1, (hlk,I}; (Bk)) = B

Then, the acceptance ratio is

log(8x)—log(hyx 1, (Bx))
P I kL k )
71'([*,,8*) ( kl k)¢ < T ﬁ”:—
m(1,8) p

(4.3)

(I|L)é <log(ﬁ;)—log7(hz,c,1,; (ﬂk») B’
where 7(-) is the joint posterior density of I and‘ J5} for given o2 and ¢ is the. density
function of standard normal distribution. According to Step 3 in Algorithm II P(I;|I}) =
P(If|Ix) = 1. Remarks:

First, the fraction of 8;/0k in (4.3) comes out from the Jacobian of transformati(;n
because the proposed value is generated on the log scale Qf Br.

Second, if 7',2 = 0, then the proposed value of Gy is exactly 8. However, the acceptance

ratio now becomes somewhat intractable because it takes effort to ﬁgure out

o [ Eo0s (hre 1, 80))
l, g & (—eBh 1, (B9, (BD))
1m = ,
750 ) <1og(ﬁ;;)—1og (hs, 17 (a@)) ¢(e)

where ¢ follows standard normal distribution. Moreover, tuning the size of 7 to be larger -
helps to speed up the convergence of samples for 3;’s.-

In the following, we demonstrate two ways to determine By, ie., hy 12 (B).

Proposal 1 : Choose 32 to keep the average effect of X unéhanged. Since all X;’s

are binary in the simulation study, based on Definition 1, think of the average effect for
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‘Xkas

E(Y]Xe = 1, X)) - BE(Y] Xk = 0, X)).

Therefore, we have

Br, if k € ADD;
E{8) + Z}/* —~E{Z'}, if k € ANT,

8 =

where

jeANT - {k}

Let z; = ZjGANT~{k}(ﬁjxij))\' If I, = 1, then I} = 2, and (3 is the solution to

n : n
nty {8+ N Yo a" =B
i=1 i=1

If I = 2, then If = 1, and (3} is the solution to

n

Be=n""d {B+auyr—nd g

(4.5)

" (4.6)

In above two equations, the left side is the estimated average effect of Xy after change

of I to I}, while the right side is the estimated average effect before the change. Here

estimated average effect is the sample mean of average effect evaluated at each realization

of X(y. The reason for this proposal is that average effect estimate tends to be more

robust, as discussed in Gustafson et al. (2005).

Proposal 2 : Choose Y to make ak(=06k /A1) unchanged. (Note that Ay = 1, 5 = \.)

That is,
>\/6k7 if Ik = ]-a
A1B, i I, = 2.
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Basedion the.following plots of the MCMC output, Figure 4.5 and Figure 4.6, using
Proposal 1, the algorithm works well. For a couple of the §,’s, though the true value falls

close to tail of the density plot.

Figure 4.5: Algorlthm IT: Using Proposal 1, MCMC trace plots for 8;,7 =1,...,p with
diffuse priors aﬁ = Uﬂ = 100.
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Figure 4.6: Algorithm II: Using Proposal 1, posterior densities for §;,5 = 1,...,p with
diffuse priors o’éo = O’%j = 100.
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To compare the performances of samples under different proposals in Step 3, we plot
the number of correct group allocations, Since the true group allocatipn is known in the
simulation study. Figure 4.7 illustrates that Proposal 1, that is, solving for 32 by keeping
the average effect unchanged, gives the right group allocations only after a couple of
iterations. However it takes many more iter;;tions for the samples under Proposal 2,
where (3 is solved by keeping cy unchanged. To make this point moré clear, we also
plot the autocorrelation coefficients up to lag 40 for MCMC samples under different
proposals, as shown in Figluxjes 4.8 and 4.9 respectively. In Figure 4.9, for som.e B;’s
(Bs — f12), there is still some dependence even for lag 40. While in Figure 4.8, for all
B;’s, the serial dependence (irops close to zero after a small number of lags. It implies

‘that the convergence rate under Proposal 1 is faster than that under Proposal 2.
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'Figure 4.7: Algorithm II: Comparison of two proposals: Number of correct group alloca-
tions based on posterior samples for I.
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Figure 4.8: Algorithm II: With Proposal ,1, the autocorrelation curves for posterior sam-
ples of 8;,7 = 1,...,p respectively.
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Figure 4.9: Algorithm II: With Proposal 2, the autocorrelation curves for posterior sam-
ples of §;,7 = 1,...,p respectively.
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Remarks on MCMC algorithm II:

First, in step 3, we only allow the'movement within the parameter space such that at
least two predictors fall within the antagonistic/synectic interaction group. The reason
of the constraint for now is that the terminology interaction has real meaning only when
at least two predictors are involved. We could remove this constraint later and more
would be discussed in the future work.

Second, the priors of §;’s do not strongly affect the posterior distribution. Change
the value of hyper-parameter Uf,j to be 0.4, which is rather informative/narrow compared
with the previous value 100. There is not much difference between the density plots in
Figure 4.6, based on diffuse priors and those from the informative prior shown in Figure

4.10. In addition, for both kinds of priors, the posterior samples for I;,j =1,...,p have
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high frequency of agreement with the true values.

Figure 4.10: Algorithm IT: With Proposal 1, the posterior densities of samples from with
informative priors :af,o = agj = 04.
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Third, ﬁhé true value of 5;(j € ANT) does have influence on the posterior information
about group structure. Bigger 8;’s (j € ANT) lead to more posterior concentration
around the true value of I, which governing group allocation. While smaller §;’s seems to
lead to less posterior concentration around the true group structure. Consider an extreme
case that all the g;,7 € ANT a‘re very small, say pretty close to 0, hence the conditional
expectation of response variable given all explanatory variables are approximately equal
to By + Zje ADD X;0G;. In other words, the diffuse inferaction model is reduced to an
additive model with explanatory variables of X, j € ADD. !

Let’s make this point clearer by looking at a simulation study. Set the true value of

'In fact, if 8; (j €ANT) are too small, the numerical solution of (4.6) would be zero, which cause
difficulty in random walk on log scale of 3;.

100




Chapter 4. MCMC algorithms for diffuse interaction models

each g;(i €ANT) to be 0.4, while the true value of coefficients in additive group is 0.7,

same as the previous simulation study. Checking the posterior sample of each indicator

variable for the first 10000 iterations, we get the following table. Clearly, as shown in

Figure 4.11 and Table 4.1 as well, we get more posterior mass on wrong group allocations

© with smaller value of 3;’s, but less with larger 3;’s.

Figure 4.11: Algorithm II: Comparison of number of correct group allocations based on
posterior samples for [ with different values of 8;(j € ANT): top panel with smaller value
(=0.4), and bottom panel with bigger value (=0.7).
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Table 4.1: Algorithm II: Frequency table based on posterior samples for each component

of I with different values of 3;,j € ANT.

B;=04| I L Iz I, I Iy, o Iy Iy Ly In Inp
1 1.00 100 100 .73 100 1.00 0.01 0.01 0.00 0.00 0.00 .11
2 0.00 0.00. 0.00 .27 0.00 0.00 099 0.99 100 1.00 1.00 .89
=07 L I, Iy I, Iy Is I, Iz Iy I, Ii Iy
1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 000 0.00 100 1.00 100 1.00 1.00 1.00
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: Fgurtllrl, there is high posterior dependenée between I, and 3y for each k. The blocking
of (I, ﬁ;;) in Step 3 is motivated by this fact. We tried to update I, and G, separately (for
each k), and found the sampler got stuck so that we could not move efﬁéiently around
the whole parameter space. The reason is that in the separate update case, posterior
distribution of I, for given B, highly concentrates on one certain value and vice versa. In
other word, the update of G and the update of I, do affect each other a lot. Therefore,
we should block the two parameters. | .

In the simulation study for MCMC Algorithm II, changing the true yalues of 8,7 €
ANT to be 0.4 while keeping B, 7 € ADD unchanged, Figure 4.12 depicts the dependence
between Ij, and 5y, more cleérly. The top panel is the unconditional posterior density plot
of posterior éamples for B;. The middle pahel is the posterior density plot of G,|I4 =
1, that is the posterior sample of §; given posterior samples for I equal to 1. The
bottom panel is the posterior density plot of samples for G,]14 - 2. Clearly the modes
of the samples within different groups are different by the latter two plots. Due to the
considerable distance between the two modes, we get a bi-mode posterior density curve

estimated by all the samples of (4, as indicated by the top panel.
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Figure 4.12: Algorithm II: MCMC output of B4 with true value set to be 0.4: the top
panel is the posterior density for entire sequence of 10000 iterations, the middle is the
posterior density for subsequence (4|14 = 1, and the bottom is the posterior density for
subsequence (4|14 = 2. '
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Fifth, fk, the estimate of inciicator variable [ may be determined by the one having
higher frequency to be sampled. Here we should be careful about the Bayesi%m inference
to Br’s. For each Bk, the point estimate and 95% equal-tailed credible interval could
be obtained based on the samples belonging to the I group only, while not taking into

account the whole sample sequence of 8;. To be more explicit,

(t)
B _ Zt:[,(ct)zik ‘Bk
SR T PRETR
t: 19 =1,

Looos = 2.5% quantile of{ ,(ct) : I,E‘) = fk}

3

U0_025 = 975% quantile Of{ ,Et) : Ilgt) = jk}
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where ﬁ,it), I ,(ct) are the t-th samples for By, Iy reépectively, and |{A}| means the number
of element in the set A, and Lg.g25 /Us.o2s is the lower/upper bound of a 95% credible
interval.

Or there is another possibility to make the.inference based all the samples sihce the
true [ is unknown in practice. In such a case, we could imagine that if I, with much
higher frequency than other sampled values of Iy, the estimate of 8, based on samples
from Ix group only should be close to thaﬁ based on samples from all possible groups.
The credible intervals may be close to each other as well. On the other hand, if I, = I,
does not have a superior frequency, then the estimate based on all samples for 8, would
be somewhat different that from the I group only. The credible interval in the former

case would be wider.

4.3 Discussion

Other than the two diffuse interaction models discussed ébove, we could consider more
complicated models.

1. As a direct extension to model (4.2), we could allow X to vary as well. However, a
corresponding direct extension to MCMC algorithm IT is not trivial to achieve. We are
aware of the fact that (I, B, \x) are closely associated together for each k € {1,...,p}.
Therefore we need to devise a good joint propbsal for the triple set. To make use of the
previous algorithm for two groups with A known, we propose the following algorithm. -

MCMC Algorithm III:

Step 1. Update 3 ADD" coefficients in the additive group, together wifh intercept Gp.

Step 2. Update B NT, coefficients in the éntagonistic group, together with intercept
fo. |

(Note that the two steps have exactly the same structure as in that Algorithm II.)
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Step 3. For k = 1,...,p, update (B, Ix) as a block in the same way used in Algorithm
IL, that is, I} is the opposite to the current value of I, and B} is proposed by adding
noise to B2, which leaves the average effect of X}, unchanged for given value . |

Stép 4. Update A, for given other parameters, by using MH update of log(A).

Step 5. Update o2 via Gibbs sampler.

From the following trace plot of A samples, Figure 4.13, we can see that the MCMC
samples for A have not achieved the stationary distribution within the first 10000 itera-
tions. We increased the number of iterations and the MCMC still do not mix very well
for A. We may adjust the stepsize for the update of A or better figure out other ways to
propose the candidates of A more efficiently. Moreover, according to the autocorrelation
plot of samples for A, the cbnverge;nce speed is really slow since the autocorrelation of lag
40 is still rather large. It is similar for the posterior samples for some 3;’s, as displayed
in Figure 4.16. This implies that Algorithm III still need to be improved in terms of
speeding up the convergénce. But still the algorithm seems promising since we get eight
out of twelve correct estimates of indicator variableé in the simulated example, as shown

in Table 4.2.
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Figure 4.13: Algorithm III: Trace plots for §;,5 = 1,..

interaction model with A unknown, respectively.
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Figure 4.14: Algorithm III: Marginal posterior densities for Bij,7 = 1,...,p based on
two-group diffuse interaction model with A unknown, respectively.
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Figure 4.15: Algorithm III: Plots of posterior samples for A, the top panel is the trace
plot, the middle is the posterior density plot, and the bottom is the autocorrelation curve.
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Table 4.2: Algorithm III: Frequency table based on posterior samples for each combonent

of I under two-group diffuse interaction model with A unknown.

' I I I3 Iy Is Is I, Ig Iy L In I
1 0.63 0.40 0.55- 0.48 0.28 0.66 0.34 0.40 046 039 0.34 0.54
2 0.37 0.60 045 052 072 034 066 060 054 061 066 0.46

true value | 1 1 11 1 1 2 2 2 2 2 2
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Figure 4.16: Algorithm III: Autocorrelation curves for §;,5 = 1,...,p based on two-
group diffuse interaction model with A unknown, respectively.
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2. Ihcluding more groups into the model, say additive, synergistic and antagonistic
group, with the corresponding A’s known, for instance,A\; = 1,y = 4/5, A3 = 5/4 respec-
tively. (The reason to choose Ay/A3 close to 1 is stated later.) In this scenario, there are
three possible values of each I;. Hence we cannot just flip the current value of I, when
in the joint proposal for update of (I, 8x). We need more complicated jumping rule for
the update of I,. To apply the previous algorithm for two groups to the. current situation
with three groups, an easy-to-extend algorithm is as below.
| MCMC Algorithm IV:

Step 1. Update the coefficients in the additive group together with intercept.

Step 2. Update the coefficients in the synergistic group together with ihtercept.

Step 3. Update the coefficients in the antagonistic group together with intercept.
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Step 4. For k € SYN|JADD, update (8%, Ix) by applying step 3 in Algorithm II to

A3 ,\;;' /23
V- {XantByr)
|
where X Ay 18 the design matrix with column vectors of the observations of predictors in
the antagonistic group. That is, by subtracting the contribution of the antagonistic group
from the response variable, we could pretend that we have only two groups, additive and
synergistic group. |

Step 5. For k € ANT | JADD, update (B, Ix) by applying step 3 in Algorithm II to

Y — { XSYNMLB.fchN}l/A2 .

where XSYN is the design matrix with column vectors of the observations of_predictors
in the synergistic group. Again, by taking away the given contribution of the synergisﬁic
group, we may imagine having only two groups, additive and antagonistic group'.

Step 6. Update o2 via Gibbs sampler.

The step 4 and 5 in the above algorithm allows jumps between additive and synergistic
groups, and jumps between additive and antagonistic groups. In other words, the big.
jumps between synergistic and antagonistic groups are broken down into two small jumps,
Which would be easier to achieve. Unfortunately, one obvious drawback is that at each
iteration we need to updaﬁe |ADD| + p (|ADD| denotes for the number of elements in
ADD group) of (I, Bx) pairs, since the index k runs over the indices in ADD twice as
stated in step 4 and 5. Thus we propose the following algorithm which need to propose
just p of (B, I)) pairs at each iteration. |

MCMC Algorithm V: |

Step 1. Update the coefficients in the additive group together with intercept.
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Step 2. Update the coefficients in the synergistic group together with intercept.
Step 3. Update the coefficients in the antagonistic group together with intercept.
Step 4. For k = 1,...,p, update (Bk, Ir) as a block. Now the proposed value of Iy,

different from Iy, is drawn with prdbability

7I.(‘[I):l‘[[—/C]a:B:02)
1- Tr(Ik‘I[—k]a B, 02)’

vs./herew is the joint posterior density function of I, 3, 2. T.his is referring to Metropolized
Gibbs sampler in Liu (1996), which proves that the way used in Step 4 above is more
efficient than the Gibbs sampling method, that is, the proposed \}aiue of I, possib}y the |
same as the current value of I, is sampled from 7 (-|I_g, B, o?). Then S; is proposed by
leaving the average effect of X unchanged, which is the same idea as before. Hence, the

acceptance probability is the same as (4.3), with

oo m(1|87)
PUT) = Z#I; (Il = j|,3*)"
PRI = < lD)

Zj;él,c m(Ix = j1B)
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Figure 4.17:  Algorithm V: Trace plots of MCMC samples for §;,j = 1,>. ..,p based on
three-group diffuse interaction models with Ay = 4/5, A3 = 5/4. '
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Figure 4.18: Algorithm V: Posterior densities of MCMC samples for §;,7 = 1,...

based on three-group diffuse interaction models with Ay = 4/5, A3 = 5/4.
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Figure 4.19: Algorithm V: Autocorrelation curves of MCMC samples for 8,7 =1,...,p
based on three-group diffuse interaction models with Ay = 4/5, A3 = 5/4.

Br B2 Ba
E 3 2
5 5 5 2] 5 ]
* 21 1 1l
o ] ||||IIII|||umuuuuum.m..m o ] “|||IIIIllllummumuuu .......... a1 I“llJ[Juumuuuuu...mm,...
o T T T T © T T T T < T T T T
'] 10 20 30 40 0 10 20 30 40 L] 10 20 30 40
Lag Lag ’ Lag
Ba Bs Po
2] _ E 3]
5 <] H 5 oA 5 7]
1 T | ' * = 3l
i T o] T ol 1T eerTeveoeoen
° T T T a T T T T = T T T T
o 10 20 30 40 0 10 20 3 40 ¢ 10 20 30 40
Lag Lag Lag
Br [ By
2] 2] 3]
. °] . 5 S ] g o]
® 2 ] =30l
o [T o] (LB L o] T
e T T T T e T T T T 4 T T T T
e 10 20 30 40 o 10 20 30 40 4] 10 20 0 40
Lag Lag Lag
Bro Bus Bi2
3 =R 2]
8 s H g 5] 5 5]
<230 * 23|l sl il
o 1 ““IUUI_qumuuuuu....muL.L P ”“““llllllllunn ............... " o ] [\ T ——
° T T T T o T T T T e T T T T
0 10 20 30 40 o 10 20 kg 40 0 10 20 30 40
Lag Lag

. tag

Remarks on MCMC Algorithm V:

First, note that the magnitudesvof A2 and Az have an effect. If Ay and Az getting

closer to 1, the jump between different groups, i.e., update in Step 4, is easier to make.

Otherwise, the change of group may cause big change in the posterior density, which

leads to a small acceptance ratio. So the proposed values are more likely to be rejected,

which makes the algorithm inefficient. We also check the performance of Algorithm V ,

by setting all \'s equal to 1. Under this setting, the posterior distribution of I,for given

k € {L1;...,p}, is almost uniform distribution over {1,2,3}.  This is consistent with our

intuition, since when A; = A; = A3 = 1, the three group are actually identical to each

other.

Second, according to the trace plots, as shown in Figure 4.17, the sampler mix well.
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However, Figure 4.19 tells us that there is some scope to make improvement in conver-
gence rate. The sample dependenée does not drop close to zero after lag 40 for some
Br’s, like Bs and By;. One thing worth noticing is the triple—mode in almost all density
plots of fx’s. The reason is that for each k, the posterior distributions of 8y conditional -
on different values of I; may have different (up to three) modes. Actually this is another

evidence to show the high dependence between Gy and Ii.

Table 4.3: Algorithm III: Frequency table based on pbsterior samples for each component

of I under three-group diffuse interaction group.

L L Iy L Iy Iy I Iy Iy Ly In Ip

1 0.33 0.31 034 031 033 033 029 028 0.31 029 026 0.28
. 2 023 0.19 018 024 0.17 034 038 043 031 0.28 0.26 043
3 0.44 051 049 046 050 033 032 029 038 043 048 0.29

true value 1 1 1 1 2 2 2 2 3 3 3 3

Third, we also plot the number of correct group allocatiéns. It seems like that most of
the samples for I have 4-6 components correctly valued. It looks promisihg .as implied by
Figure 4.20, some of the samples for I do achieve 10 or 11 correct allocations. Moreover,
Figure 4.21 shows the posterior density plots of samples for §; conditional on the true

- group allocation of k-th predictor, k =1,...,p. We find that for each (3, the samples
highly concentrates around its true value. It is a good sign to see that Algorithm V

somehow works.
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Figure 4.20:  Algorithm V: Number of correct group allocations based on posterior
samples of [ under three-group diffuse interaction models.
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Figure 4.21: Algorithm V: Posterior densities of samples for 8; conditional on I; correctly
allocated (j = 1,...,p) under three-group diffuse interaction models.
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4.4 Example

To provide an illustrative example of ﬁtting the diffuse interactidn model to a real data
set, we consider the abalone growth dataset available from the UCI Machine Learning
Repository (Newman et. al. 1998). The response variable Y is the age of abalone. Ignér—
ing the. single categorical explanatory variable (sex), we take the dependent variables X
to be the seven continuous explanatory variables (length, diameter, height, whole weight,
shucked weight, viscera weigh’c‘, shell weight). The data are observed on n = 4177 speci-
mens. To find out the overall direction of interaction among those dependent variables,
we apply Algorithm I to make inference. One thing worth nbting is the release of positive

constraints on (;’s by using the following model mentioned in Section 4.2.

o » 1/
E(Y|X) = 50+{Z (5, ;)] } ,
. j=1
V\}here
|Blz; B >0,
1BI(1 —=z); B<O.

g9(z,B) =

Aé a consequence, all the observations of X;’s are scaled to [0,1].

The chosen priors are §; ~ N(0,0.5)(j = 0,1,...,p), logA ~ N(0,0.5), and o2 ~
inverse-gamma (0.0001, 0.0001). We also tried rather diffuse priors by replacing thé'small
variance 0.5 with a larger value 50 and we did not see any serious differenqe in the output.
Figure 4.22 gives trace plots for posterior samples of 8;,5 = 0,1, ..., p, which shows the
MCMC algorithm worked well. The solid curves in Figure 4.23 are posterior densities
for average effects 1, ... 7'511 and the dashed lines are posterior densities for 3;,..., B,.

We can see that most of §;’s are slightly smaller than the corresponding £;’s, although

the case for X5 is the other way around. This means the overall interaction among X is
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. antagonistic, which is consistent with the inference we can make based on the posterior
sample for \. The posterior mean of A is 1.19, and the 95% equal-tailed credible interval
115 (0.92,1.46). The posterior probability that A > 1 is 0.93. Hence, we have evidence of -
| thé presence of antagonism among X. The posterior density plot for A is given in Figure
4.24.

For a better understanding of the content of antagonism, we refer to relative antago-

nistic effect as
9(x) = 9(0) = 327 _, (9(=;1;) - 9(0))
>0 (9(zi15) — 9(0)) ’

where 1; means a p x 1 vector of zero except that the jth element is 1. Note that

(4.7)

the numerator is the difference of the joint effect of X and the sum of independent
effect of each X;,7 = 1,...,p, and the dénominator is the sum of independent effect.
Averaging the ratio over the joint distribution of X, we get avémge relative antagonistic
effect (ARAE). By using the empirical distribution of X (the true distribution of X is
unknown), we get ARAE based on the posterior samples of §8;,7 = 0,...,p and A and
the graphical summary is given by the bottom panel in Figure 4.24. We can also see
the evidence in favor of antagonism since all samples of ARAE are negative. Moreover,
most of samples of ARAE are valued in (-0.6,-1), which indicates a considerable size of
antagonisrh. The bi-mode of ARAE in the plot might be caused by the complexity of
(4.7), because the denominator now is also a function of A other than the simple form |
Zj B;x; as before when [;’s are confined to be positive. One thing worth mention is
that MCMC can provide an effective way to make inference on this complicated‘ function
ARAE, based on the posterior samples. That’s one of the main reasons why we pursue
MCMC approaches for model fitting, as méntioned in the beginning of this chapter.

Note that both of the definitions above can be easily applied to synergistic effect case.
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Figure 4.22: Abalone data: trace plots for 3;,5 = 0,1, ...

100,000 iterations including the burn-in period.
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Figure 4.23: Abalone data: density plots for 3; and é;, j = 1,...,p, for the sequence of
40,000 post burn-in iterations. The solid lines stand for average effect §,’s and dashed
lines stand for §3;’s. ' 7
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Figure 4.24: Abalone data: the top panel is the density plot of A and the bottom panel
is the density plot of relative antagonistic effect, for the sequence of 40,000 post burn-in
iterations. ‘
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Chapter 5

Summarization and future work

5.1 Conclusions

Overall, the findings are as follows.

In chapter 2, we study the consequences of fitting an additive regression model a
pairwise interaction model is assumed to be the true model. We obtained the asymptotic
distribution of averdge effect estimates based on the “misspecified” model and “true”
model as well, as shown in Result 1 and ‘Result 2, respectively. With the two large
sample limits achieved in the t§vo results, we work out the consistency of average effect
estimates .from “misspecified” model under some easily-studied situations, which are
given by Result 3. This result implies that the distribution of risk factors does influence
the size of bias of estimates in cases of model misspecifications. Result 3 suggests that
‘transformations of risk factors, aiming toward normality, may help to reduce bias of
average effect estirﬁates. More generally, under the framework of spline regression models,
we investigate the consequences of model misspecifications by failing to incorporate the
interaction terms, which are assumed to be included into the true model.y

In chapter 3, we introduce the diffuse interaction model, which is more powerful to
detect interaction than the pairwise interaction model especially when the number of
risk factors of interest is rather large. -We compare the power to detect interactions
under the two models in situations where we assume the true model is either diffuse or

pairwise interaction model. To make the comparison tractable, large sample and small
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misspecification approkimations are employed. To be specific, for either interaction model
that is assumed to be true, the true values of the parameters standing for the magnitude
of interactions (X in the diffuse interaction model, 8;;’s in the pairwise interaction model)

are just within a (local) n=1/2

neighborhood' of those values which imply vno interactions
at all, i.e., additive models. Therefore, as sample size n goes up to infinity, the model
misspecification vanishes to zero. Under a set bf specific settings (shown in Section 3.3),
we find out that the power of diffuse interaction model is superior to pairwise interaction
mod¢1 no matter whether the true model is itself or not. However, if the true model is
pairwise interaction, the detectability via diffuse interaction model decreases when the
“overall” strength of interaction among the risk factors gets weaker.

In chapter 4, we develop an efficient MCMC algorithm for one-group diffuse inter-
action model. Also we investigate the possibility of generalizihg the model away from
the strong assumption that all risk factors interact in the same direction, i.e., éynergistic
or antagonistic. In the more generalized but complex model], we have more parameters
since each risk factor has an corresponding indicator variable denoting to which interac-
tion group it belongs. With X fixed, we have an efficient algorithm for model with t§vo
groups of risk factors, one group for risk factors having no interactions and the other
groups for risk factors interacting synergistically/ anta"gonistically.. And we also see some
hope to develop a good MCMC sémpler for a more general model with three groups of

risk factors, i.e., a no-interaction/additive group, a synergistic group and an antagonistic

group.

5.2 Future work

In this section we discuss some interesting problems that could be studied in the future.

1. In terms of model misspecification ignoring interactions:
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(a). In Section 2.3, the linear regression context; we find that under some certain
condition such as independence or joint normality of risk factors, the average effect es-
timators based on the rnisspéciﬁed model are still consistent with the true Values; But
we need to know whether there are more general (possibly weaker) conditions which can
produce the consistency in the face of model misspecifications.

(b). We explored two examples in section 2.3 to see how far the bias can be away from
zero. However, we need more general investigation of the magnitude of bias (or relative
bias) as the joint distribution of (X, - -, X,) moves away from multivériate normally or
independence. |

(c). We could also study the consequences of omitting the interaction terms in the
context of generalized linear models. ’Actually, in many epidemiological studies, the
health outcome Y is often binary/categorical (for example, diseased or not).

(d) The main results in terms of average effects we have derived so far is referring
to Definition 2,. that is, averaging predictive effects over the joint distribution of all
predictors. What could the result be if other versions of average effect are applied? .
Moreover, we are aware of the fact that idea of average effect could have more general
applications, not just confined within the context of regression or generalized regression.
For example, we can also apply the idea of average effect in survival analysis by averaging
over the change in hazard function, instead of outéome/ response variable, associated with
a unit change in the putative risk factor.

2. In terms of MCMC algorithm development for more complex diffuse interaction mod-
els:

As suggested in Gustafson et al. (2005), a more general model can be built by par-

titioning the risk factors into three sets: additive, synergistic, and antagonistic, that
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is

E(Y|Xy, -, Xp) = Bot+ D, BiX; . - (5.1)
jeADD o
f 1/2s ‘ 1/Ae
+4 D> (BX)™ +4 D (BXy) e ,
jeSYN jeANT

where 0 < /\; <1<,

Starting with the simplest diffuse interaction model with all the risk factors in single
interaction group, we have.an efficient MCMC sampler which does a good job. And also
MCMC performs. well for a diffuse model with two groups, additive and synergistic or
antagonistic with a fixed value of A. |

However, for a more complicated si'tuation, model (5.1), how to implement an efficient
MCMC approach is still in process. The challenge here is how to propose the indicator
I, and corresponding B together in an efficient way. In our algorithm, we only allow the
transition between additive group and syﬁergistic/ antagonistic group, while the transition
between two interaction groups are not allowed directly within one single Iﬁovement. The
reason is that the direct change between two interaction groups would cause rather big
change in posterior density function, which 1ea,ds to low acceptance rate of proposed
values of (B, ) pair. Although we see some hope in the simulation studies that the
sampler mix well, we still need to find better one which mixes faster and leads to better
estimation.

| To be more r_ealistic, we would also add one more group, that is, no-effect group into
the current three-group interaction model. This is more challenging because it is even
harder to make efficient jumping schemes between the no-effect group and other three

groups.

3. In terms of model selections :
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In the analyses of linear regression with ihteractions, a stepWise strategy is often
applied to choose a subset of interaction terms. The problem with stepwise procedure
s that it is a computationally intractable technique when the number of risk factors is
quite large, as discussed in Chapter 1. In the worst situation, %(’2’) ((’2’) + 1) possible cases
must be evaluated before obtaining the final model. Therefore, stepwise regression is not
always a practical technique and other selection techniques may have to bel considered.

Suppose we have a linear model with pairwise and maybe even triple-wise interaction
termé. We could take this mod_el and reparametrize from the original parameters 6 to
(¢, A\), where ¢ are the. average effects and X are nuisance parameters. Note that when

A = 0, the interaction model is an additive model. Take a pairwise interaction model

" (3.6) for instance, reparametrize the parameters 3 as follows:

¢0 = IBOa

; B; + Zﬁi;‘E (Xi),
i#j
A = {Bijh<ici<p

By setting up a prior for A which is quite concentrated around zero, we can do the
posterior inference to A and then pick out those important interaction terms instead of

doing stepwise procedures.
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Appendix I

Proof of (2.14)in Section 2.3.1

By Cramer’s rule to solve the (p 4+ 1) x (p + 1) system of equations, we get

. 0(1|D| = |D1|, . (].)
where
1 0 o 0
D 0 Var(X;) - Cov(X1,X,)
0 Cov(Xy,X,) ---  Var(X,)
1 - EY 0 0
5 0 E(YX,) Cov(Xy,Xs) --- Cov(Xy,X,)
1= 1
0 E(YX,) Cov(X3,X,) --- Var(X,)
Let
Var(X,) Cov(Xy,X3) -+ Cov(Xy,X,)
Cov(X1,X2) Var(Xz) -+ Cov(Xe,X,)
Y= (Oi)pxp = . . .

Cov(Xy,Xp) Cov(Xe,Xp) -+ Var(Xp)




Appendix I. Proof of (2.14)in Section 2.3.1

Since

E{Y( LR )2,,)}= -
E(Y)

Zi pE (Xz)?l) + ZK]' /BijE (Xinj\(/l)l

)

Zi BE (Xijzp) + Ei<j ﬁijE (Xin)?p)

- with determinant expansion by the cofactors (first column), we may write |D;| as
Y BE (X X0) + Y., BB (XX, X))

Y BE (X X)) + Y, BB (X X, X))

whe_re o; denotes i-th column vector of X.
By the property of determinant, we can rewrite the expressions above as summation

of two determinants D%l) and D;Q), where

> BE (X:X:)
ngl)I = 7023"'7qp7
Zz IBiE (Xijzp)
Zi‘<j IBijE (Xin)zl)
B |D§2)| = ,0'2,"',0';: -
2 i Bis B (XX Xyp) -
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Let’s consider Dil) at first. Note the fact that E (Xz-)~(j) = Cov(X;, X;).

DY) = 3 BiCov(Xi, X)SH + - + Z'ﬁicov(xi,x,,)zpl
= > Bi[Cov(X;, X)SM + -+ + Cov(X;, X,) =]
= A3l _ - (2
The last equality is derived by the fact that when 7 # 1
.COV(XZ', Xl)Ell + -+ COV(Xi, XP)Z”I
COV(Xi; X1)
COV(X.L‘? Xp)

Similarly, we get

IDP) =37 B4 [EVE (XX, K1) + -+ + EP'E (X X; X,)].

i<j
Since

E(X.X;X,) = E (X, X;X1) + E (X;)Cov(X;, X;) + E (X;)Cov(X;, X1),
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we can derive that

IDP] = 3 ,(EME (XXX + -+ TPE (XX X,)

i<j
+ > ByE (X)[Cov(Xy, X1)SHM + - - + Cov(X;, X,) =P
i< .
+ > BB (X)[Cov(Xy, X1)EM + -+ + Cov(X;, X,) 2]
i<
= > BEMEXXX) + -+ TPE (XX X)) + Y Ay (X5)[S]. (3)
i<j : i>1

Combining equations (.1), (.2) and (.3), we get the equation (2.15) and so (2.16) when

p=2.
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Appendix II

Anothei‘ consistent estimator of V*

mentioned i.n Section 2.2

The following is to show that sandwich estimator is a consistent estimator of V‘*‘as well.
We only work on the simple case with two predictors and it is easy to expand the results
of p = 2 to general p.

In the fitted model, the log-likelihood function of an observation is

-1 1 1
log fo(Y|X1, X2) = —5 log2m — Slog7? — — (Y — ap — au X1 — 02X3)?,

2 2T
while the true log-likelihood function should be
: 1 1 9 1 9
log (Y| X1, X5) = 3 log 27 — 3 logo® — 5;5(}/ = Bo = Br Xy — o Xz — B12 X1 X))

7

Define the matrices as below.

i=1

An(0) = {n_lvz 8% log fo(Vi| X1 = @15, Xy = -772i)/8‘9189j} ;

B.(6) = {n*l > 0log fo(Yil Xy = z1i, X = 32;)/06; - log fo(Yi| Xy = 21, X; = 5621')/39]} :

=1




Appendix II. Another consistent estimator of V* mentioned in Section 2.2

The expecations of them are defined as

AB) = E(8log fo(Y| Xy, X2)/06:06,),

B(6) = E(9log fo(Y|X1, X3)/00; - Olog fo(Y|X1, X2)/86;). .

By White (1982) we know that the MLE of parameter vector ,, = (&g, &1, &g, 72),
which is a consistent estimator for 8,, minimizing the Kullback-Leibler Information Cri-

terion (KL). That is

9(Y| X1, X5) > 7

6, =argminE { log ——F—%
“HET (gfo<Y|X1,Xz)

and

Intﬁitively, KL measures our ign;)rance about the true model.
- Remarks:
1) All the‘expectations here are calculated under the true density function unless
specified.
2) C(0) is defined as follows.

C(8) = A)'B()A(6)".

And A,(0)"!B,(0)A,(0)7! is a consistent estimator of C'(8). According to its sandwich-
like shape, this estimator is also called “sandwich” estimator.
Note that when the fitted model is correct, A(6.) + B(6.) equals zero, otherwise it

may not. So A(6.) + B(8.) is a useful indicator of misspecifications.
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By some algebra, we have

-1 ES 03><1
A6.) = — E (:3)
* 01><3 W
where
" Bs =E(SS) =E{(1,X1,X2) (1, X1, Xo) }.
1|V oy
B(B*) = —4 ‘ 5
7'* 7T A
where
— o — o Xy — OézXz)
Y o= — Qg — 061X1 — O’2X2)3X1) )
— Qg — O[le - O[2X2 3X2)
1 17?
N = 27_2 - ao - a1X1 — CYQXQ) - =

5| -
Note V* is defined in (2.8).

Therefore by the definition of matrix C, we get

[ s5tvesgt 2n2ss!
cey=| " °° s
272y A7Y VUATAN

The left upper sub-matrix is just v(a).
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Appendix III

Numerical approach to C1; and C

in Se»ction 2.4.1

We give details of the numerical approach how to get Ci; and Cip in (2.20). The joint
~ distribution of (X, X3) is bivariate normal.
The elements of matrix C}; are easily obtained by one-dimensional integration. As

for the elements of matrix Ci,, the typical term is
E {((Xl - Cl)a(I{Xl > Cl} - kl) ((X2 - CQ)bI{Xg > Cz} — kz)} s (1) ‘

* where

0, if ¢; = —o0,
¢ =

ti, if c =1 75 —00.
k)i = E (()(1 — Ci)a(I{Xi > Q})

To reduce the two-dimensional integration into one dimension, we just need to figure out

E (X, — cg)lur{X2 > e} — ko] X1).
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Appendix III. Numerical approach to Cy; and C in Section 2.4.1

Note the fact conditional on X; = z;, X, can be rewritten as

X2=Px1+ V]i—pZZa

where p is the correlation coefficient of X; and X, and Z stands for a standard normal

variable. Therefore,

fl@) = E ((X2 — &)’ I{X,y > e} | X, = xl)
b b—1
; pPry — Co Co — P
= 1-""E ctz: (—> -I{Z> -———}
_ Z:; CA\V1I=p V1-p*

This integral can be easily evaluated since Z is standard normal and then we can régard

the integrand in (.1), typical term of Ci2, as a function of one variable:
Q(Xl) = ((Xl - Cl)a(I{X1 > Cl} — k‘l) X (f(Xl) — kg)

Thus, we can approximate the integral of the function by the following

K

E{g(X1)} = K1) g(by),

j=1

where b; is i/(K + 1) quantile of the marginal distribution of X;. In our numerical

approach to the elements of C; and Cy, K is set to be 2000.
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Appendix IV

Proof of (2.24) in Section 2.4.2

With the facts that B~}(B~') = §'S and UCU’ = BPB', we have

S'S+ AP

B7YB7Y) + AP
= B7Y(I+\BPB')(B™Y)

= B (I +C)U'(B7YY.

Thus
(S's + )\P)_1 =BU(I+ /\C)_lU'B.

Let V = SB'U, then V'V =1, which gives

tr(S(a)) = tr{V(I+AC)V'}

= tr(I+C)7L
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Appendix V

Pseudocode for the hybrid MCMC

algorithm in Section 4.2.1

Let 6 ~ II be the target distribution, having an unnormalized density function 7 () on
a subse;c of R*. In the following, we will abuse nbtation with the same symbol used to
denote different functions if the meaning is clear from the context. The algorithm works
by extending the state from @ to (0, z), and the unnormalized target density from 7 (0)

to

(0,z) = w(0)n(z)

= 7(0)exp (—% Z zf) .

0. Set values for function g, constant ¢, constant «, number of iterations 1.

1. Initialize the value of 8. Could be generated from the prior of each component
of @ or by fitting a simpler model (for example an additive model in régrgssion model
context). Also initialize z by sampling from standard normal.

2. For each iteration,i=1,...,I:

a) Generate a candidate state (8%, z*) as

0 — 0+c{z+(c/2)g(0)},

z' — —z—(¢/2){g(0) +g(6")},
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Appendix V. Pseudocode for the hybrid MCMC algorithm in Section 4.2.1

and draw u from unif(0,1). Set (8,2z) « (6%, 2z*) if

7(0*,z*)

v n(0,z) ’

otherwise, keep the original (8, z).

b) Unconditionally negate z; that is,
Z «— —2Z.
c¢) Perform an autoregressive update to z; that is,
z — N(az, (1 — a®)Lk).

3. Output 6y4,...,6y. _
Remarks: Setting g(8) = Vlogn(8) and « close to 1 we obtain hybrid algorithm.

Other choices of g and « gives different algorithms.
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