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Abstract 

In epidemiological studies, how best to assess and interpret interaction of risk factors 

of interest has been the subject of a lively debate. In statistical regression models, the 

interaction between two putative risk factors is described by the regression coefficient 

of the product of the risk factors. What happens if a linear regression model without 

pairwise interaction terms is used to fit the data actually generated from a linear regres

sion model with all possible pairwise interactions? We apply the idea of average effect 

to evaluate the consequence of misspecified models and find out that the average effect 

estimates are still consistent if the joint distribution of risk factors satisfy some certain 

conditions. It is known that pairwise interaction models encounter intractable problems 

especially when the number of risk factor under consideration is quite large. The number 

of pairwise interaction terms is p(p — l ) /2 , if the number of risk factors is p. As an 

alternative strategy, we introduce diffuse interaction model with only one parameter to 

reflect the interactions among all the risk factors, without specifying which of the risk 

factors do indeed interact. We compare the two kinds of interaction models in terms 

of ability to detect interactions. Another issue investigated in the thesis is to devise 

MCMC algorithms to estimate diffuse interaction models. This is done not only for the 

diffuse interaction model assuming all risk factors interact in the same direction, either 

synergistically or antagonistically, but also for extended diffuse interaction models which 

relaxing this strong assumption. 
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Chapter 1 

Introduction 

1.1 Motivation 

The term interaction is used in epidemiology to describe a situation in which two or more 

risk factors modify the effect of each other with regard to the occurrence or value of a 

given health outcome, denoted by Y. 

For dichotomous variables, interaction means that the effect of one risk factor, say 

A, on the outcome differs depending on whether another variable B (effect modifier) is 

present. Moreover, if the presence of B, the effect modifier, potentiates/accentuates the 

effect of risk factor A,, this variable and risk factor are said to be synergistic (positive 

interaction); if the presence of B diminishes or eliminates the effect of risk factor A, 

the two variables are antagonistic (negative interaction). For continuous variables, the 

phenomenon of interaction means that the effect of one risk factor on outcome differs 

depending on the value of another variable (effect modifier). A mathematical definition 

comes in Section 1.2. Later in Section 3.2.1, we will use a more general definition of syn-

ergism/antagonism when diffuse interaction models are introduced. In epidemiological 

studies, synergistic/antagonistic interaction among risk factors is common. For exam

ple, if people suffering from obesity have high blood cholesterol, then they have higher 

chances to get heart diseases. Another example (for antagonism) is the interaction be

tween smoking and intake of Vitamin A for the risk of lung cancer. People who smoke a 

lot but take Vitamin A in daily dietary have lower risk of lung cancer than people who 

1 



Chapter 1. Introduction 

seldom smoke but lack of Vitamin A. 

Interaction can be described in two different but compatible ways. Each definition 

leads to a specific strategy for the assessment of interaction. 

The first, definition is based on homogeneity/heterogeneity of effects. Interaction 

occurs when the effect of a risk factor A on outcome Y is not homogeneous across strata 

formed by a third variable B. When this definition is used, variable B is often referred to 

as an effect modifier. 

The second, definition is based on the comparison between observed and expected 

joint effects of risk factor A and third variable B. Interaction occurs when the observed 

joint effect of A and B differs from that expected on the basis of the independent effects 

of A and B. 

How does one assess interactions? In the thesis, we only focus on the situation 

where the relationship between outcome Y (continuous) and risk factors is of interest. 

Commonly the product of the two variables A and B is used to describe interaction 

effects. That is, 

E (Y\A, B) = p0 + PiA + B2B + B12AB, 

where Bi2 reflects magnitude of interaction effect between A and B. If Pi2 > 0, the 

interaction between risk factors A and B is synergistic (positive) interaction; otherwise it 

is an antagonistic (negative) interaction. For simplicity, the pure quadratic terms A2 and 

B2 are omitted in the above model (These terms are also omitted in the linear regression 

models which are mentioned later and an analysis with quadratic terms is mentioned 

briefly in Section 2.5). Note that if the outcome of interest is discrete, we could replace 

E(Y\A,B) by g(E(Y\A, B)) in the above model, i.e., a generalized linear model. For 

instance, if Y is binary, logistic regression can be used in terms of g(E(Y\A, B)) — 

log (P(y = i ) / p ( y = o)). ' 

2 



Chapter 1. Introduction 

More and more attention has been focused on model misspecifications since statisti

cians realize that unfortunately misspecified models are not uncommon in practice. Box 

(1979) and also McCullagh and Nelder (1983) mentioned "all models are wrong", though 

some fit data better than the others. Since we never know what the true model is in real

ity, by "true" model we assuming that is the true structure or closer to the truth than the 

others. It is natural to ask whether the properties of the estimator derived from misspec

ified models are affected. Does the estimator still converge to some limit asymptotically, 

and does this limit have any meaning? If the estimator is approximately consistent, is 

it also asymptotically normal? White (1982) provides answers to these questions by us

ing maximum likelihood techniques for estimation and inference,of regression coefficients. 

Also in White (1981), the consequences and detection of misspecified nonlinear regression 

models are explored. 

Under the general topic of interactions, the goal of our work is to explore the conse

quences of a particular scenario of misspecified models . To be specific, what happens 

if we apply an additive model ignoring pairwise interactions to data which are actually 

generated from a pairwise interaction model? In this context, to make clear how those 

ignored interaction effects affect the results, we apply the average effect idea (definition 

given later in Chapter 2), while not applying the results from White (1982) directly to 

the regression coefficients. As is known, the interpretability of regression coefficients of 

risk factors is rather limited when models include interaction terms. 

The idea of average effect is proposed by Gelman and Pardoe (2007) and Gustafson 

et al. (2005) as well. Basically, it is the average of predictive effect, which is the expected 

change in outcome associated with a unit change in one of the risk factors. In a linear 

regression model without interactions, the average effect of any putative risk factor is 

simply the regression coefficient. However, in a model with interaction terms, the predic

tive effect in general depends on the value of risk factors. There are various definitions 
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based on different distributions to average over. Three versions are denned in Chapter 2. 

The main advantage of the average effect idea is to make comparisons possible between 

different parametric models with sets of parameters that have incomparable interpreta

tions. The average effect idea could also be used in other contexts. For example, Xu and 

O'Quigley (2000), also Gustafson (2007), gives a definition of average effect in survival 

analysis. In the future, we could also apply the idea of average effect to explore the 

consequences of model misspecifications under the framework of survival analysis. 

Nowadays another common issue arising in epidemiological studies is that a large 

(sometimes larger than sample size) number of potential risk factors should be consid

ered in modelling. We could imagine the challenge to model the interaction effects when 

p, the number of risk factors, is relatively large. In particular, if the model under con

sideration is a pairwise interaction model, the number of all possible pairwise interaction 

terms is p(p — l)/2. For instance, if 12 risk factors are involved in the study, 66 pairs 

of possible interactions would be investigated besides the possibility of higher order in

teractions among three or more risk factors. Stepwise procedures are the most widely 

used approaches to select the important pairwise interaction terms in applied medical 

statistics. The basic idea of stepwise procedure is to find a "best" subset of potential risk 

factors by subsequently adding or dropping one risk factor at a time. Take forward step

wise regression procedure for instance, it starts off by choosing a model containing the 

single best risk factor variable and then attempts to build up with subsequent additions 

of other risk factors one at a time, as long as these additions are worthwhile. 

There are, however, a number of limitations with stepwise procedure. In particular, if 

possible models under consideration are nested pairwise interaction models, the stepwise 

procedure does not scale up to the number of potential risk factors (suppose all the risk 

factors involved at this stage are all important). As the number p of risk factors increases, 

the number of submodels, 2( p( p -0/ 2) ) increases dramatically, making the computational 

4 



Chapter 1. Introduction 

burden enormous. Also, the fitting of full model sometimes may not be suitable, because 

only a few of the p risk factors are typically included in the final model. And the fitting 

of the full model increases the numerical complexity of the methods unnecessarily. 

Another problem is that the model selected by a stepwise procedures includes only 

those variables entered in that final model, and ignores the variables not selected and 

the uncertainty due to the model selection procedure. In the worst possible scenario, 

such procedures may underestimate uncertainty about the variables, overestimate confi

dence in a particular model being selected, and may lead to sub-optimal decisions and 

limited predictability (Raftery (1996); Draper (1995)). There are also other drawbacks 

of stepwise selection. For example, a small change in the data can result in very different 

models being selected and this can reduce prediction accuracy, as discussed in Breiman 

(1996). 

To overcome the difficulties caused by large number of risk factors, we use diffuse 

interaction models as an alternative way to model interactions. These kind of models are 

proposed by Gustafson et al. (2005) in context of binary response. In this context, by syn

ergism/ antagonism, we mean that the effect of a putative risk factor increases/decreases 

in magnitude as all the other risk factors move from absent to present. (Or as all the other 

risk factors increases if they are continuous.) Under this particular probability model, 

only one parameter is used to describe interaction among all risk factors. That is, the 

parameter can tell the overall interaction direction but without indicating which of the 

risk factors actually interact in that direction and which of them not. Hence the model 

is a bit simplistic, but we postulate it has more power, compared to pairwise interaction 

model, to detect interactions. 

5 



Chapter 1. Introduction 

1.2 Classes of regression models 

When we are concerned with the dependence of a response variable Y on observed risk 
factors Xi,..., Xp, an equation that relates Y to X\,..., Xp is usually called as regression 

equation. Denote the regression equation by 

E{Y\Xi = Xi,X2 = x2,...,Xp = xp) = g(xi,x2,.. • ,xp) = g(x). 

First of all, we give a more precise definition of synergism/antagonism in terms of math
ematical languages. For any pair j < k and all e, 6 > 0, if 

g(x + elj + 6lk) - 5(x + <Jlfc) - [g(x + el,-) - g'x)] > (<) 0, 

the interaction among X is synergistic (antagonistic). Note lj means a p x 1 vector of 
zero except that the jth. element is 1. 

Equivalently, if g is twice differentiate, the above inequality can be rewritten as 

Note that there are other names for the above definition, such as supermodular, di-
rectionally convex and lattice-superadditive for nonnegative derivatives and submodular, 
directionally concave, lattice-subadditive for nonpositive derivatives. They are used to 
compare the dependence structure of random vectors having the same marginal distri
butions. More details and discussions are in Muller and Stoyan (2002). 

In the following we list all the regression equations considered in the thesis. 

6 



Chapter 1. Introduction 

1. Linear regression models. 

v 
g(xu ... ijXj. 

Due to the simplicity and interpretability, linear regression models are the most widely 

used for either experimental data or observational data. The regression coefficient Bj 

implies how much change in the response variable is associated with a unit change in Xj 

when keeping all the other risk factors unchanged. 

It is acknowledged that this model is a linear approximation of the relationship be

tween Y and X. By first-order Taylor expansion, it is easy to derive the model expression. 

Therefore, it may work well only for a local region, where the surface does not have cur

vature. That's the reason why prediction of X values outside of the range where we fit 

the model is usually dangerous and not reliable. 

By second-order Taylor expansion, we have 

Also this is good for a local region, where the surface has some curvature. Note that 

for a binary variable Xj, the term Bjjxj is not necessary. One thing worth mentioning 

is that the explanation of coefficients Pj's are different from that under the additive 

model. The expected change in response variable Y after one unit change in Xj (while 

keeping all the others unchanged) now breaks down into several pieces, i.e., BjXj and 

BijXiXjii = 1,... ,p). For this model, for any pair i < j, we have synergistic interaction 

if Pij > 0 and antagonistic interaction if Bij < 0. 

p 

7 



Chapter 1. Introduction 

2. Spline regression models. 

p 

g(xu...,xp) = Y^mj(xj)> (L1) 

where nij is a smoothing function applied to Xj. Note this model is additive and does 

not include interaction terms. 

Taylor expansion allows to write rrij as 

D+l 
mj(x) =

 cijkXk~l + Rerrij(x), a < x <b, j = 1,... ,p 
fc=i 

Remjix) = (DI)'1 [bmf+1)(x)(x-0^, 
Ja 

where (x — tk)+ = x — tk, if x > tk and zero otherwise. 

Note that for fixed j , if Rerrij(x) are uniformly small for all observed Xji in magnitude, 

polynomial regression of Xj may provide a reasonable analysis. Otherwise, we need some 

other methods to take account of the item Renij. One method of estimation which 

attempts to guard against departures from polynomial models is smoothing splines. The 

basic premise is the integral in Rerrij can be approximated using the quadrature formula 

Rerrij(x) « ^ ajk(x - tjk)+ 
fc=i 

for coefficients O j i , . . . ,a,jLj and tji < tj2 < • • • < tjLj (i^'s are knots in the definition 

of spline, which is given in Section 2.4.1). Combining this with the original polynomial 

approximation leads to an overall approximation of the regression function by 

rrij(x) = otjix H h ajDxD + ̂ ajk(x - ijfc)+, 

k=i 

8 
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which is the spline function under consideration in Chapter 2. 

To introduce the interactions between X\,... ,Xj, we use the following regression func

tion, similar to pairwise interaction models, 

Note that there are other possibilities to determine the interactions between any pair 

of risk factors. Here for simplicity we only use the summation of the products of one 

risk factor and smoothing function of the other risk factor, which is different from that 

discussed in Gu (2002). In Gu (2002), the multivariate function is given by an ANOVA 

decomposition, that is, it is expressed as a constant plus the sum of functions of one vari

able (main effects), plus the sum of functions of two variables (two-factor interactions)and 

so on. Note the interactions are assumed to be in tensor product spaces. 

Note that if we have numerous number of risk factors, the additive model (1.1) may be 

too generous allowing a few degrees of freedom per Xj and it does not take into account 

the interactions between X, 's yet. Classes of function are not "dense" or a universal 

approximation to class of smooth function in a rectangular region of rFj=i[xj£> xju]> where 

Xjij^Xju are the lower and upper bounds of jth risk factor respectively. In the interaction 

model (1.2), the number of interaction terms increases dramatically when the number of 

risk factor increases. In such a case, we may use projection pursuit regression (Friedman 

and Stuezle, 1981) or multivariate adaptive regression splines (Friedman, 1991). These 

two methods consist of universal approximation to smooth functions by a sum of nonlinear 

functions of linear combinations of â -'s, i.e., 

p 

(1.2) 

M 

9 



Chapter 1. Introduction 

More discussion is in Venables. and Ripley (1999) and Diaconis and Shahshahani (1984). 
Note that projection pursuit regression models and multivariate adaptive regression 
splines are not considered in the thesis, but it is possible and worthwhile to be stud
ied in the future. 

3. Diffuse interaction models. 
As discussed in the previous section, some problems arise when fitting a pairwise 

interaction model especially with a large number of risk factors. For instance, high blood 
pressure is a warning signal for health problems. There are many risk factors which may 
cause high blood pressure. 

Age: The risk of high blood pressure increases as you get older. 
Gender: Women are more likely to develop high blood pressure after menopause. 
Family history: High blood pressure tends to run in families. 
Body weight: The greater your body mass, more risk of high blood pressure. 
Tobacco use: The chemicals in tobacco can increase the risk of high blood pressure. 
Sodium intake: Too much sodium can lead to increased blood pressure. 
Excessive alcohol: Heavy drinking can damage your heart. 
Stress: High levels of stress can lead to a (temporary) increase in blood pressure. 
Therefore, for all the risk factors listed except gender, larger value means more risk 

of high blood pressure. There might be synergistic interactions among those risk factors. 
How to depict the magnitude of the synergism? As proposed in Gustafson et al. (2005), 
the diffuse interaction model is defined as 

(1.3) 

10 
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with Pj > 0, Xj > 0, A > 0. It is easy to verify that A < (>)1 leads to 

dg(x) 
dxidxj 

> ( < ) 0 . 

That is, A < (>)1 means synergistic(antagonistic) interaction. Clearly the magnitude of 

A is a measurement of degree of synergism/antagonism and curvature of the surface as 

well. 

Note that when A = 1, the above regression equation just reduces to an additive linear 

regression model. Note that 

g(xj,*x.(j) = 0) = p0 + PjXj, 

where X(j) = (x\,..., Xj-i,Xj+i,..., xp) and Xj = 0 means the absence of j t h risk factor. 

That is, no matter what A is, Pj is the increase in response variable associated wi th a unit 

change in Xj, in the absence of al l the other risk factors. Now the interpretation of Pj 

is different from that under linear regression model. The models are increasing function 

hence in absence of al l risk factors, that is, Xj = 0, j — 1,... ,p, Po stands for the smallest 

expected response (usually risk of some diseases). Therefore, we may rewrite the diffuse 

interaction models in a more general sense as 

5(x) = A)+.N|, • (1.4) 

where || • || is a norm in E p . Even more generally, to get a regression function that is not 

monotone increasing, we may consider 

5(x) = /?o + ||x-a||, 

11 



Chapter 1. Introduction 

where a is the vector of location parameters, standing for the values of risk factors that 

leads to the smallest expected response. 

The diffuse interaction models (3.5) are a special class of (1.4) wi th the choice of norm 

being 

' (1.5) INI/? = | ] [ > r ^ ) A j .. Pj > 0- *i > 0, A > 0. 

Here Pj's are inverse scale parameters. Naturally, can be interpreted as the distance 

between x and 0. 

More general classes of norms can be used, 

(a) If the variables Xj's interact in different directions, one may want to part i t ion those 

variables depending on the direction of interactions among them, that is 

l / A i 1/A2 

5(x) = A , + E (&xi)+{ E O 0 ^ ) * 1 

j e A D D U e S Y N 

+ { E 

with Pj > 0, Xj > 0, for al l j and 0 < Aj < 1 < A 2 . It is easy to verify that for any pair 

j < k G S Y N ( A N T ) , 

> ( < ) 0 . 
dxjdxk 

(b) Assuming there is a nesting of groups of variables, one might use the 2-level nested 

model 

Â2 
.9(x) = 

ieSi 
+ 

ies2 

A/A 2 ' 1/A 

(1.6) 

where A i < 1 and A 2 > 1 for a synergistic set S i and an antagonistic set S 2 wi th some 

interaction between the two sets. Also this function can be extended to multiple levels 

of nesting. Now the second derivative of g(x) in (1.6) is more complicated. For A^> 1, 

any pair (j, k) wi th j G Si, k € S 2 , the second derivative is negative. For A < 1, any pair 

(j, A;) wi th j e Si, k G S 2 , the second derivative is positive. If 1 < A < A 2 , for any pair 

12 
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(j, k) € the second derivative is negative. If A i < A < 1, for any pair (j, k) € Si, the 

second derivative is positive. 

The following example illustrate one scenario where we might consider to use (1.6). 

Suppose X\,X2,Z are the predictors relating to response variable Y. However, Z can 

not be measured and is replaced by two surrogate variables X3 and X4. In this case, one 

might use 

g'x1,x2,x3,x4) = {(Pixi)x + (fox2)x + (fox3 + / 3 4 x 4 ) A } 1 / A • 

1.3 Ou t l i ne of thesis 

The following chapters are organized as follows. 

In Chapter 2, we study the consequences of fitting an additive regression model to 

data generated from a pairwise interaction model. We find out that under some particular 

situations, the average effect estimates based on misspecified model can still be consistent 

with true values. Further, under the framework of spline regression, we investigate the 

consequences of model misspecifications by failing to include interaction terms into model, 

when such terms exist. 

In Chapter 3, we introduce diffuse interaction models as an alternative to pairwise 

interaction models when the number of risk factors of interest is rather large. And we 

compare its ability to detect interactions with a pairwise interaction model. 

In Chapter 4, we propose a M C M C algorithm to estimate the parameters in diffuse 

interaction model, introduced in chapter 3. Further, we propose other M C M C algorithms 

for more general versions of diffuse interaction model by relaxing the assumption that all 

the risk factors interact in the same way, either synergistically or antagonistically. 

In chapter 5, we summarize the results of the above three chapters and also discuss 

some possible problems to consider in future. 

13 



Chapter 2 

Average effects for regression 

models with misspeciflcations 

How bad is the estimation when the real relationship between response variable and 

predictors (i.e.risk factors in epidemiological studies) does involve interactions, but a 

model without interaction is fitted? More specifically, if the actual data generating 

mechanism is 

Y = J2hj(Xj)+ M * . ^ ) + C (2-1) 
j=i i<j<i<p 

what w i l l the result be if we fit an additive model 

3 = 1 

where both e and 77 denote random errors, postulated to follow normal distributions. 

2.1 Average effect 

To evaluate the performance of the estimation under misspecified models, we apply the 

idea of average effect, which is proposed in Gelman and Pardoe (2007) and also in 

Gustafson et al . (2005). The reasons to introduce the average effect are listed as the 

following. 

(a) For comparing models wi th different parametric forms, different sets of parameters 

14 



Chapter 2. Average effects for regression models with misspecihcations 

have different interpretations, so it is hard to explain the difference between the parame

ters from different models. For example, postulate the parametric forms of models (2.1) 

and (2.2) as below. 

In model (2.1): 

hj{Xj) = BjXj, 

hij(Xi, Xj) = Bij Xi Xj. 

In model (2.2): 

hj(Xj) = ctjXj. 

Then B^s in model (2.1) are the parameters describing the pairwise interactions between 

the predictors, while no such parameters appear in model (2 .2) . It is hard to interpret 

the meaning of the difference between Pj and ctj. More precisely, the expected change in 

response variable caused by one unit change of Xj keeping other predictors unchanged 

in model (2.1) is Pj + Yli^tj PijXi, while in model (2.2) it is aj. 

(b) More generally, if the two models of interest are quite different, no common 

parameters could be compared. For example, say one model is a linear regression model 

while the other is a nonparametric regression model. Now it is impossible to compare 

the estimates of coefficients from the former model and the estimate of a function/curve 

from the latter model. 

To handle the difficulty mentioned above, we need a quantity which is associated with 

something in common among different models. The average effect is such a quantity. The 

definition of average effect is as follows. 

If the predictor Xj takes value in a continuous space, then the predictive effect of Xj 

15 
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is denned as 

dE(y\Xj=xj,XU)=xuy,e) 
A i(x ; f l ) = 

dxj 

where X y ) = (Xi,..., X j - i , Xj+i,..., Xp), i.e., a random vector comprising al l the ex

planatory variables except the j - t h one, and 8 denotes the parameter vector in the model. 

If the predictor Xj can only take finitely many values, then the definition of its predictive 

effect is 

( 1 / (2) { E m * ; = xf\xU) = x O );0) - E(Y\Xj = xf\xU) = x ( j );0)} , 
X- Xj 

where x^\x^ are a pair of different possible values of Xj. The quantity of predictive 

effect reflects the change in E ( V | X ) associated wi th asmall change in the j - t h predictor 

Xj conditioned on a specific value of X y j = x^). 

The reason to use the notation Aj(x; 6) and not Aj(x(j); 0) is that i n general predic

tive effect is a function of Xj as well. For example, in the quadratic model wi th continuous 

predictors, that is • 

E(Y\X) = 0Q + f^PiXj + J2BjjX*+ &iXiX>> 

the predictive effect of Xj is 2BjjXj + Yli^j PijXi- However, in some special situations 

such as model (2.10) and model (2.11), appearing in the next section, Aj(x ;0) does not 

depend on Xj. 

Based on the definition of predictive effect, we can define different versions of average 

effect as the expected value of A^(x; 9) wi th respect to different distributions. 
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Definition 1: If averaging the predictive effect over the joint distr ibution of X ^ ) , al l 

the predictors except Xj, then the average effect of the j-th. predictor is defined as 

5J(XJ; d) = ExU){Aj(Xj = Xj, X 0 ) ; 0)}. (2.3) 

Definition 2: If averaging the predictive effect over the joint distribution of a l l pre

dictors X\,..., Xp, then the. average effect of the j ' - th predictor is defined as 

5J(0) = E X { A , ( X ; 0 ) } . (2.4) 

Definition 3: If averaging the predictive effect over the conditional distr ibution of 

X ( j ) | X j , then the average effect of the j - t h predictor is defined as 

6j[XJ;d) — E X o , | x , {Aj(Xj = Xj, X y ) ; 6)}. (2.5) 

In general the three definitions are not identical to each other. B u t i n the special 

cases when the predictive effect of Xj does not depend on the value of Xj, as in model 

(2.10) and model (2.11), the first two definitions are the same because both are obtained 

by averaging over the joint distribution of X ^ j . In the following sections, we stick to use 

Definition 2 unless specified particularly. 

Note that the predictive effect of Xj is based on the conditional distr ibution of Y\X, 

while the average effect of Xj is defined wi th respect to the joint distr ibution of (Y, X y ) ) 

or (Y, X). We should also keep in mind that the idea of average effect is not just 

confined wi th in regression context. For example, X u and O'Quigley (2000) and Gustafson 

(2007) apply this concept i n survival analysis by averaging hazard function over the joint 

distribution of (T, X ) , where T is failure time. 
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2 .2 General results 

Suppose we have p predictors, Xi,...,Xp, and response variable Y, whose relationship 

wi th X , ' s is of interest. For the general framework, let 

T = (Ti (Xi,..., Xp),..., Tt(Xi,..., Xp)) , 

whose components are the functions of predictors involved in the "true" relationship 

between response variable and predictors, and let 

S = (Si(Xi,..., Xp),..., Ss(Xi,..., Xp)) , 

denote the functions of the predictors in the fitted model. 

B y allowing general forms of functions, even nonparametric forms, involved in the 

components of S and T, we do have a rather broad possibilities of hj and hij in (2.2) 

and (2.1). In the forthcoming sections, we wi l l see how this general setting applies in 

different regression models. 

Hence, models (2.2) and (2.1) can be rewritten as follows, respectively. 

Y = S'cx + e, 

Y = T'P + e, 

where e follows N(0,o2) and are independent of X . Denote by 5j(/3), 5*(/3) the average 

effects of the j - t h predictor under the "true" model and fitted one respectively. 
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Assuming X/s are continuous and T, S are differentiable, let 

Tj = {j^Ti(Xi,-• • ,Xp),... ,-^Tt(Xi,... ,Xp^ , 

= (^QY-SI(XI,...,XP),...,-^-SS(XI,...,XP) 

So that the true average effect of Xj, denoted by Sj(f3), is [E(Tj)]'/3. Now let n be 

a sample size with (xix,..., xip, yt) being the observations of predictors and response 

variable for the ith subject, (xa,..., xip),i = 1,. . . ,n are assumed to be iid replications 

of (Xi,..., Xp) and e i , . . . , e„ are iid A^(0, cr2). Let T be the n x t design matrix with 

(i, k) element equal to Tk(Xn,..., Xip). Let Tj benxt design matrix with (i, k) element 

equal to j^-T^Xn,... ,Xip). Assuming T is of full column rank, we have 

3 = ( T ' T ) _ 1 T ' Y , 

E(Tj)=n-1fjlnxi. 

where Y = (yuy2, • • • ,yn)'-

Hence the estimate of the average effect of Xj is obtained by 

^03) = n _ 1 l / f i ( T ' T ) - 1 T ' Y . 

W i t h • 

Y = T /3-+e, 

where e = ( e i , . . . , en)', we get 

<5~(/3) = n-ll'Tj(3 + rf1\%tT'T)-1re. 
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Therefore, we have 

v ^ ( W ) - W ) ) = v ^ ^ ^ ' T j - E ^ O ' ^ + n-^'f^T'T/n)- 1^ 1/ 2^. 

The first term in the right side of the above equation can be rewritten as 

where (¥,);. denotes the ith row of Tj. Since (Tj)j. are i.i.d., the above term converges 
in distribution to -/V(0, /3'Var (Tj)(3) by the multivariate central limit theorem. 

With the conditional variance identity and the assumption that e is independent of 
X, we have 

Var(T,'€i) = E(Vai(Ti.,£i|*i))-+Vai(E(Ti.'ci|Xi)) 
= E ( T T > 2 . 

Thus, by the multivariate central limit theorem, 

n 

n-1'2 ]T Ti.'a ^N(0,E (T'T)<J2) . 

Since the (Tj)j. are i.i.d., by the strong law of large numbers, we have 
n-^-^ECT,-)}'. 

If E(TT) is invertible, then 

( n - W f 1 (E(TT')}" 1 . 
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W i t h the above results, a straightforward conclusion can be summarized as the following. 

R e s u l t 1: Assuming the existence of { E ( T T ' ) } " 1 and e is independent of X , 

v^(W)-W)) °N(0,Vj(p)), 

where 

Vj(3) = <x2[E (Tj)}'[E ( T T ' r ' E ( T , ) + /3 'Var (Tj)3. (2.6) 

Similarly, in the fitted model, let § be the n x s design matr ix wi th (i, k) element 

equal to Sk(Xn,..., S i p ) . Let be n x s design matr ix wi th (i,k) element equal to 

jfiqSk{Xn,..., XiP). Assuming that S is of full column rank, the estimate of the average 

effect of Xj wi th the "misspecified" model is 

6*(J3) = • n - 1 l / S j ( S ' S ) - 1 S ' Y . 

Assuming E(SS') is invertible, 

( S ' S J ^ S ' Y 

{ E ( S S ' ) } _ 1 E ( S Y ) 

{ E ( S S ' ) } - 1 { E ( S T ' ) } / 9 

a*. 

Thus, in the l imit as n ^ oo, 5*{3) = lim<5}(/3) = E ( S ^ ' a * . Hence, wi th Y = TB + e, 

we have 

n 

v ^ ( § 0 9 ) - 5*(f3)) = n"V2 £ _ E (§,•) ') ( S ' S ^ S ' Y + 
i=l 

( E (S^HS'S /n ) -V 1 / 2 S ' (T /3 - - S a , + e), (2.7) 

21 
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where (§ j ) i - is the i t h row of 'Sj . B y the strong law of large numbers, 

n _ 1 S ' Y —> E (SY)(= {E (ST')}/3), 

(S'S/n)- 1 ^ {E(SS')}" 1. 

W i t h the multivariate central l imit theorem and the above facts, the first term in (2.7) 

asymptotically follows a multivariate normal distribution wi th mean vector of 0 and 

covariance matr ix of a'„Var (Sj)a*. Also by multivariate central l imit theorem, we have 

n 

n'1'2 J2 % {Ti./3 - S,a* + et) Z N{0, V*), 
i=i 

where Sj. is the i t h row of S, Tj. is the i t h row of T and •, 

V* = E {(HY/3 — Sj.a* + ei)2Sj.Si.} 

.= ff2E(SS') + E ((T'̂ 9 - S'a«) 2SS') . (2.8) 

Note that the first part is due to random error and the second part is due to model 

misspecification. Therefore, the asymptotic distribution of the second term in (2.7) is a 

multivariate normal wi th mean vector of 0 and covariance matr ix of 

{E (Si)}'{E (SS')}"f V*{E (SS')}"1^ (§,)}. 

Immediately the combination of the above results leads to the following result. 

Result 2 : Assuming the existence of {E (SS')} _ 1 and e is independent of X , 

V^{5f{P)-5;(3))^N(0,v;(3)), 
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where 

«;(/3) = { E ( S j ) } ' { E ( S S ' ) } - . 1 V - { E ( S S ' ) } - 1 { E ( S , ) } + 

2a ' ,Cov (Sjf S(T ' /3 - S ' a . ) ) { E ( S S ' ) } _ 1 E (S,) + a ' ,Var ( S , > . . (2.9) 

Remark. In some instances Tj and/or Sj might be constant, in which case the second 

term in (2.6) and the last two terms in (2.9) vanishes. Particularly, if the "true" regressors 

include pairwise products from X , but the fitted model includes only linear terms from 

X , then the second term in (2.6) does not vanish, but the last two terms in (2.9) do 

vanish. 

Result 1 and Result 2 give the asymptotic distributions of the average effect estimates 

based on "true" model and "misspecified" model, respectively. Combining the two results, 

we can get a consistent average effect estimator from the misspecified model as long as 

Sj(P) = Sj((3). Some easily-studied cases where the above equality establishes are shown 

in Result 3 later. Also Result 1 and 2 make it possible to compare the efficiencies of the 

two estimators from "true" model and "misspecified" model. More discussion is given in 

Section 2.3.2. 

One thing worth investigating here is to find the consistent estimator, under the 

"misspecified" model fitting, of the mean squared error a 2 ( a ) — E ( V — S 'c t) 2 . 

A least squares estimator a is a parameter vector that solves the problem 

min s 2 ( a ) = (n - p - 1 ) _ 1 | | Y - S a 
a 

Now s 2 ( a ) may be rewritten in terms of matrices, 

n — p — 1 
n 
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B y the strong law of large numbers, 

( n - 1 Y ' Y ) a 4 ' E ( y 2 ) , 

( r a ^ S ' Y j ^ E t S y ) . 

Therefore, 

s2

n(a) aA E ( y 2 ) - E(S 'y){E(SS ' )} _ 1 E(Sy) . 

Note that the a » is the unique minimizer of mean squared error a2(a). Now 

cr 2(ct.) = E ( y ) 2 - 2 E ( y S ' a , ) + E ( S ' a , ) 2 

= E ( Y 2 ) - E ( S ' a » ) 2 (E(y|S) = S'a.) •• 

= E ( y 2 ) -a ' ,E(SS ')a. 

= E ( y 2 ) -E(s 'y){E(ss ' )} _ 1 E(sy) . 

That is, s 2 ( S ) is a consistent estimator of a2(cxf). However, 

(S 'S/n ) l l

S

2 (a ) a -4-{E(SS ' ) } -V 2 (a , ) , 

which is not equal to {E(SS')} _ 1 V*{E (SS')} _ 1 in general. Note the fact that, by the 

previous analyses and (2.8), we have 

l im V a r ( v

/ n S ) = v(cxt) 

= {E(SS')} _ 1V*{E(SS')}" 1 

= {E ( S S ' ) } - V ( a . ) + {E (SS')} _ 1 E ((T'/3 - S'a,) 2SS') {E (SS')} _ 1. 

Therefore, the true variances of the coefficients estimates from the fitted model are big-
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ger than the reported standard errors of those estimates, which is caused by the model 

misspecification, the second piece in the last equality of the above equation. If no mis-

specification occurred, then V* = E(SS'), then (S'S)s 2

1(a) is the consistent estimator of 

var (a). Let 
n 

V>a = n _ 1 2 ( ^ - S i . a ) 2 S ; . S i - . 
i=l 

then it is not hard to derive that Va is a consistent estimator of V* by a similar derivation 

as before. Therefore a large difference between Va and S ' S s ^ f i ) can be an evidence for 

model misspecification (see Whi t e (1980) for a formal test for misspecification). Hence 

v(at) can be consistently estimated by 

n ( S ' S ) " 1 jjj (Yi - Si.aj'sj.Si.j ( S ' S ) " 1 . 

There are other ways to get consistent estimator of v(a+) as well. One way is so-called 

"sandwich" method, which is based on the derivatives of log-likelihood function. Ac tua l ly 

it is exactly the same as the estimator used in Whi t e (1982), where Whi t e studied the 

asymptotic distribution of the maximum likelihood estimate in case of model misspeci

fication. A s known, the least squares estimate is the same as the maximum likelihood 

estimate in the linear regression. Under a simple setting wi th only two predictors in

volved, we can also apply the methodology in Whi t e (1982) and get the same result as 

Result 2. Details are shown in Appendix II. 

2.3 Linear regression 

In this section, we assume that the response variable Y depends linearly on the predictors 

Xi's and that Y given X = (X\,..., Xp) is normally distributed wi th a constant variance. 
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Suppose the true relationship between Y and XiS is 

Y | X ~ TV (A, + BXXX + ••• + BpXp + BX2XXX2 + ••• + +(3P-1,PXP-1XP, a 2 ) , (2.10) 

while the fitted model is 

Y | X . ~ A T ( a 0 + + • • • + a p X p , r 2 ) . (2.11) 

Here 3 = (P0, Bu . . . , Bp, Bn,..., PP-\,P), a = ( a 0 , a u . . . , a.p). B y Definition 2 of 

average effect, it is direct to derive the following average effects based respectively on 

(2.10) and (2.11): 

Si{P) = Bi + Y^BiiE(Xi), (2.12) 

5*(3) = a j , , (2.13) 

Naturally, as an informative summary we study the estimates of the average effect 

defined as 

n 

Sj(3) = n-15^Aj(xi{,-),3) = 4- + SA^i, 
i - l i^j 
n 

i=l 

where X;y) is the z-th observation of X y ) and is the sample mean of the observations of 

Xi. The estimates of parameters 3 and a are a l l least squares estimates. Note that in the 

normal linear regression context, the maximum likelihood estimates of the parameters 

are the same as the least squares estimates. 

In the following three sections, we w i l l compare the estimators of two average effects. 
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2.3.1 Difference in large sample limits of the two average 

effect estimators 

Without loss of generality, we can think about centering predictors in the fitted model, 

that is, 

E (Y | X ) = a0 + a i X i + • • • + apXp, 

where Xi = Xi — E ( X j ) , i.e., E ( X ) = 0. Note that the estimates of a \ , . . . , a p are 

unchanged by centering. 

The large-sample limit of S , denoted by a*, satisfies 

/ 1 \ ( 1 \ 

E < 
xx 

> a , = E < Y 
Xi 

> 

V Xp ) > < \ Xp ) 
Since the equation is symmetric in the p predictors, it suffices to determine the rela

tionship between ot\* and 

B y Cramer's Rule, we can solve the equation above and get 

where S — (<7ij)pXp is the covariance matrix of (Xi, • • • , Xp) and is the cofactor of E . 

Details of the proof of (2.14) are in Appendix I. Moreover, based on (2.3), expressions of 

average effect, the above results can be summarized as below. 

R e s u l t 3. Assume that the variables are centred, i.e., E ( X ) = 0. Let T = ( 1 , X ' , W ' ) ' 

where W = (XiX2,XiX3,... ,Xp-iXp), i.e., the true relationship involves pairwise in

teractions. Also let S = ( 1 , X ' ) ' , i.e., the interactions are undetected or ignored in the 
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modelling process. 

Then (i) 

*;(/9) = W ) + ̂ ^ ^ E W , ( 2. 1 5) 

where E is the covariance matr ix of X , and E ^ is the cofactor of the determinant corre

sponding to element akj-

Consequently 

(ii) if X has a multivariate normal distr ibution, or if the components of X are indepen

dent, then 

SW-Sj'p) = 0. 

Particularly, when p = 2, the connection equation (2.15) can be simplified as below 

"Var (X2)E {X*X2) - Cov{XuX2)E (X^y 
5{{(3) = 5^(3) + f3l2 

Var ( X i ) V a r (X2) - C o v 2 ^ , X2) 
(2.16) 

Remarks: The two conditions, both independence and multivariate normality, are suf

ficient but not necessary to get the consistency of "wrong-model" estimate 61-((3). The 

condition that X follows a multivariate normal distribution can be replaced by an ellip

t ical distribution. The latter actually is an extension of the former. The equation (2.15) 

shows that the bias is controlled by.E(XiXiXk). Suppose the joint distribution of X is 

an elliptical distribution EC(0,Y,,cp) and its characteristic function is exp(it'/i)0(t'St), 

where 0 is a scalar function and called characteristic generator. 

If i,j,k are different to one another, the joint distribution of (Xi,X[,Xk) is also 

an elliptical distribution EC(0, E ^ , 4>) where Y,uk is the corresponding sub-matrix of E 
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associated with (XitXi,Xk)- By the definition we have 

(Xi, Xi, Xk)' = A'(Zi, Zi, Zk)', 

where (Zi,Zi,Zk) follows a spherical distribution (which is a special case of elliptical 
distribution by setting 2 = 1). A is the lower triangular matrix in the Cholesky decom
position of Tjiik- Hence we can rewrite the above as 

Xi — aZi, 

Xi = bZi + cZh 

Xk = dZi + eZi + fZk. 

It is straightforward to get E(XiXiXk) = 0 because that E (Zf) = 0,E(X?Zt) = 0 and 
E (ZiZiZk) = 0. If k = i or k = I, we can also show the expectation to be zero by 
replacing the third equation by either the first one (k = i) or the second one (k = I). 

The second part of Result 3 says that for certain distributions on X, a model ignor
ing interactions will yield consistent estimates of average effects, even though the true 
regression relationship involve interactions. In addition to being of conceptual interest, 
this suggests some practical modelling strategies. For instance, in applications where one 
wishes to avoid modelling interactions explicitly, one might attempt to pre-transform 
the predictors to approximate normality before fitting a linear model. If one is willing 
to think of average effects as targets of inference, then such transformations should re
duce bias in estimating these effects via a model without interaction terms. Of course 
transformations applied to predictor and response variables are an important part of 
regression modelling in practice, and the desirability of transforming a response variable 
to approximate normality is clear. Transformations on predictors, however, are typically 
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argued for on the basis of compatibil i ty wi th linearity and homoscedasticity assumptions, 

without regard for the resulting shape of the predictor distribution. Result 3 suggests 

that the shape of the distribution could also be a consideration in assessing possible 

transformations of the predictors. 

However, we also find that the consistency does not hold generally, wi th the following 

two examples. 

Firs t , assume Xi follows standard normal and X2\Xi follows Poisson(c\\Xi\). Since 

when p = 2, transformation of (2.16) gives the quantity Pu (d~l(3) — 6i(3)), nothing 

to do wi th true values of 3 and only depending on the distr ibution of X . Moreover, it 

can also somehow indicate the discrepancy of the two large sample limits. Note that if 

Pn = Pi = P2, under the setting of Result 3, this quantity is just the relative bias, i.e., 

j^i"1 [$i(3) — 5i(3)]\. Based on the property of the mean and variance of Poisson 

distribution, by some algebra we can derive that 

Solve Ci by setting the above to be 1. Note the fact that p — E (XiX2) - E (X\)E (X2) = 

C i E ( X 1 | X 1 | ) = 0.. This is caused by the fact that is an odd function and the 

integral interval is symmetric about zero. Hence, based on (2.16), we have 

sm-Si(d) 
P12 

= E{X2X2} 

0.718. 
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The last equality follows from 

1 poo 

E(\Xf\) = 2^= \ x3e~x2/2dx 

V=x2 1 J^ye-yl2dy = 2sfl. 2ir 

Second, suppose equi-correlated predictors, each following log-normal distribution, 

defined as 

A J VV2(T) ' 3 i'---'P> 

where 

z = ( z u z p y ~ N (0,(1 - P)ip + P J P ) , 

M ( r ) = E ( e ^ ) = e r 2 / 2

! 

V(T) = V a r ( e T ^ ) = e 2 r 2 - e r 2 . 

Here Ip is p-dimensional identity matr ix and J P is p-dimensional square matr ix wi th a l l 

p2 elements equal to 1. Note that as a —> 0, Xj converges to a standard normal. So that 

larger r corresponds to more non-normality and larger p corresponds to more depen

dence among predictors. Par t i t ion the (true) regression coefficients as (3 — (0o, (3'MJ P'I)' 

according to intercept, main, and interaction effects respectively. Using Result 3 we can 

compare the vector of true average effects 5(0) = (3M (since E ( X ) = 0) to the large-

sample l imit of estimated effects from a model without interactions, i.e., 5*(pi). F rom 

Result 3 we know the relative bias is zero if p = 0 or r = 0, so the question of interest 

is how fast the bias grows as the components of X becomes both correlated and skewed. 

For p = 10 and selected values of (/3M,/37), Figure 2.1 depicts the relative bias as p and 
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T vary, where 

This i l lustration is based on fixing the direction of 3M and the relative length of 3j 

compared to 8M, i.e., 3M oc l p and \\3j\\ — \\3M\\. For convenience, we index the 

components of 3{ by (u, v) pair, where u < v. In Figure 2.1, four choices for the direction 

of 8j are considered: 

(a) BitUV oc 1, which involves a l l predictor pairs interacting positively. 

(b) Pi,Uv oc (—l)v~u+1, which means about half the pairs interact positively and the 

other half negatively. 

(c) Pi,uv oc I{\v (modp) — u\ — 1}, which means only a few of positive interactions. 

(d) Pi,uv ^ (—lY^v ( m o d p ) - ' " l = 1 } ) which means a majority (minority) of positive (neg

ative) interactions. 

In each case RB\, the relative bias in estimating the average effect of Xi, is calculated. 

Note that each of these choices except (b) involves sufficient symmetry so that the relative 

bias is the same for estimating all p average effects, i.e., RBi = ... = RBp. We can see 

that the bias increase when o grows, which means that more non-normality would cause 

larger bias. Moreover, the size of bias also changes in an increasing trend as p increases. 

Therefore, more non-normality of and more dependence among X give larger bias. The 

general impression from Figure 1 is that very large biases are possible when estimating 

average effects, if predictors are substantially skewed and dependent. Note also that 

slight skewness and strong correlation tends to induce a bigger bias than strong skewness 

and slight correlation. 

Another thing worth notice is that the relative biases are considerably smaller in 

panel (b) compared to the other three cases. It may represent a 'cancellation effect' 
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between positive and negative interaction terms. Moreover, we have similar magnitudes 

of relative biases under the other three cases. The common property of the three cases 

is the "overwhelming" strength of interaction in one direction over the other. 

Figure 2 .1: Magnitude of relative bias as a function of (p, T) for multivariate log-normal 
distr ibution of p = 10 predictors. The cases (a) through (d) are as described in the text. 

(a) (b) 

2.3.2 Relative efficiency of the two average effect estimators 

A natural question of interest is which one is more efficient between the two estimators 

5j(/3) and 5j(/3), which means to compare Vj((3) in Result 1 and Vj((3) in Result 2. We 

take the ratio of the latter to the former as the relative efficiency, wi th values larger than 

one representing the inefficiency occurring as a result of model misspecifications. 

We apply Result 1 and 2 directly to linear regression context, where an additive model 

is fitted to the data generated by pairwise interaction model. Due to the symmetry in 
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the p predictors under both models, we can only take the average effect estimator of Xx 

for example. Now we have 

T = (1, Xi,..., Xp, XiX2,..., Xp-iXp) , 

T i = (0,1,0,. ..,0,X2,...,Xp,0,...,0)' 

S = (l,Xi,X2,... ,XP) 

S\ = ( 0 , 1 , 0 , . . . , 0 ) ' . 

W i t h Result 1 and 2, we have 

^ { E t S O j ' E i 1 {£(§!)} + 

{E (SOVEs'E {(T'/3 - S'a,) 2SS'} E ^ E (S^)}, (2.17) 

a 2 {E(T 1)}'ET 1 {E(T 1 )} + 

{P12, A P )Var ( X 2 , X p ) ( P i 2 , p \ p ) ' , (2.18) 

where 

Es = E{(l,Xi,...,Xp) (l,Xi,...;Xp)}, 

S T = E {(1, Xi,..., Xp, XiX2,..., XiXp) 

(1,X\,... ,Xp,XiX2,... ,XXXP)}. 

Based on the expressions it is clear that the difference of the two unconditional variances 

depends on the true value of parameters (3. Therefore generally speaking, the comparison 

of the two variances could depend on the true values of coefficients of those interaction 

terms involving Xx. y 

In particular, we are interested in situations where the additive model can yield con-
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sistent estimator under the true relationship involving al l pairs of interactions. More 

precisely, if X has independence of components or multivariate normal distr ibution (dis

cussed in Result 3), what is the relative efficiency? 

We take the former case first. Assuming E(Xj) = 0, Var (Xj) = l,j = 1 , . . . ,p, and 

the independence of Xi,..., Xp , therefore we have 

— Ip+l 

7 

V 

S s 0 
0 £ 22 

where S 2 2 is the covariance matr ix of (X\X<t, • • •, X\XP)'. 

Thus the asymptotic variance of the estimates from the right model is 

a 2 ( 0 , 1 , 0 , . . . , 0 ) 2 ^ ( 0 , l , 0 , . . . , 0 ) ' + | > i 
j=2 

The first term is right the first term in (2.17). Note the fact that 

T'/3 - S'a» = ^2 PijXiXj, 
l<i<j<p 

where 

a . = Ss 1 E(ST') 

- (lP+i,0)d. 
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Therefore, the second term in (2.17) is 

where 7 = a~10I and (7i.,7_i.) is a part i t ion of 7 into those interaction terms which do 

and don't involve X\ respectively. Therefore, the asymptotic variance of the estimator 

based on "misspecified" model is larger. This is consistent wi th our intui t ion that more 

Now the question of interest is how large/small the relative efficiency would be if there 

is some dependence among the components of X? Assuming that X has a multivariate 

normal distribution wi th mean 0 and equi-correlated covariance matrix, that is, X ~ 

Np(0, (1 - p)Ip + pip). From (2.18) and (2.17) for given p, it is easy to justify that the 

relative efficiency depends only on p and 7 = a~13I, wi th the latter one describing the 

interaction 'signal ' relative to noise. 

For p =10, Figure 2.2 shows the relative efficiency as a function of p and ||7||, where 

two certain directions for 3j, i.e., case (a) and (c) defined in Section 2.3.1, are considered. 

We can see that if the true interactions among X are rather "sparse", like the choice of 

0j in case (c), the efficiency loss is much smaller compared to that wi th a "dense" 

interaction structure in panel (a). Also note that the misspecified-model estimator can 

Hence, the ratio of the two asymptotic variances is 

a2+E{{1zl<JPiixixjfxi 

l + 3ll7i.||2 + i i7-i . | | 2 

1 + Il7i.|!2 

} 

uncertainty in Sj(3) is caused by model misspecification. 
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be very inefficient wi th strongly correlated predictors, but the efficiency loss tends to be 

slight wi th independent predictors. A s a related point, the rate at which the efficiency loss 

grows wi th the strength of the underlying interaction signal is governed by the strength 

of correlation. 

Figure 2.2: Relative efficiency of the "misspecified"-model average-effect estimator as a 

in the text. 

(c) 

\ \ \ •S 
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2.4 Nonparametric regression and smoothing 

T h e above analyses i n Section 2.3 are based on a simple scenario, where a parametric 

model in terms of a linearity of response variable Y in continuous predictors Xi's is 

postulated. W h a t if the linear regression model is not appropriate? F i t t i ng a linear model 

to the data actually containing a nonlinear structure can given very misleading results, 

even worse than useless. A more general alternative to linear regression is nonparametric 

regression model. The distinguishing property of nonparametric regression is that there is 

no (or very little) a priori knowledge about the form of the true structure of the regression 
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function. It allows the class of functions which the model can represent to be very broad. 

W h e n shall we use nonparametric regression model? In many real problems, there is 

no information from the data nor scientific knowledge to suggest a parametric form, so 

that a parametric model is often specified from a casual graphical summary of the data or 

chosen for convenience (for example linear regression models). A predetermined paramet

ric model might be too restricted or too low-dimensional to fully model a "rich" data set 

containing many unexpected features. In such a case, we would like the nonparametric 

(smoothing) approach, which offers a flexible tool in analyzing unknown regression rela

tionships between response variable and predictors. Also parametric vs non-parametric 

depends a lot on sample size, especially when there are many predictors. 

Smoothing methods, widely used in nonparametric modelling, deserve a respectable 

place in statistics. There are many papers and a number of books study on this topic 

(Silverman 1986; Eubank, 1988; Hastie and Tibshirani , 1990; Wahba, 1990; Green 

and Silverman, 1994; G u , 2002). A s a matter of fact, smoothing methods provide a 

bridge/compromise between making no assumptions on the underlying process that gen

erated the data (a purely nonparametric approach) and making very strong assumptions 

(a parametric approach). 

In the following subsections, we mainly focus on consequences of model misspecifica-

tion omit t ing interactions under the context of least squares regression in smoothing. 

2.4.1 Spline regression models 

o 

Spline functions are very flexible and thus are often used in smoothing regression. A 

spline function is a piecewise or segmented polynomial . More precisely, it is defined as 

below. 
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Definition: The function 0 is a spline on [a, b] of degree D w i th knots * i , . . . , *£, (a < 

t i < • • • < tr, < b) if <f> is a polynomial of degree D on the subintervals [a, ti], [t\,t2], • •., [tc b] 

and 0 has D — 1 continuous derivatives on [a, 6]. Denote the collection of these splines 

by Sp(ti,... ,tL]D). Take D = 1 for example. A spline of degree 1 is continuous and 

piecewise linear, wi th breaks in slope occurring at t\, • • • ,t^. 

Based on the definition of spline, it is not hard to show that the collection of the 

splines of degree is a linear space of functions. Then we can talk about its dimension 

and construct bases for the space. The dimension is the number of parameters needed to 

describe a member of the space, which i s . D + L + l ( o r . D + L i f forcing the spline space 

to not include a constant term). The number of functions in a basis w i l l simply be equal 

to the dimension. 

For simplicity and ease-of-understanding, we introduce the power basis. Note that for 

other forms of bases, the analysis discussed later is also applicable but wi th more difficult 

computational problems. 

Power Basis: Denote the power basis by 4>\,..., (J>L+D+I-

1 

4>2{x) = X, 

4>D+\{x) = X ,D 

(pD+2(x) = 

4>D+L+l(x) = [x ~ tL) D + ' 
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where 

(x - t)D for x > t, 

I 0 f o r x < t . ' • . 

It is easy to show that each <f>j above is a spline and all the ^ ' s are linearly independent. 

Therefore for any function h in the spline space wi th degree D, it can be writ ten as 

M*) = £ ; = i D + 1 

Thus what happens if the fitted model is misspecified? Note that the main concern 

now is about the impact of model misspecifications. Therefore, how to choose the degree 

of spline (D), number of knots (L) and locations of these knots (t\,... ,ti) is left aside 

for the time being, although this is always concerned in smoothing. Tha t is, we assume 

they are already appropriately chosen in the following studies. 

We start wi th a regression model having only two predictors. Say the fitted model is 

(Y\Xi =xi,X2 = x2) ~ 7 V ( m ^ x i ) + m 2 ( x 2 ) , o - 2 ) , 

while the "true" model is 

( Y | X i = xuX2 = x2) ~ N(g1(x1) + g2(x2) + 9U{XI,X2),T2) , 

where mi ,m 2 , g \ , g 2 are splines. Here gl2 accounts for the interactions between the two 

predictors. In general, there are many plausible possibilities for the form of _gi2. For 

simplicity and interpretability, we use the form of gi2(Xi,X2) = X2t\(X\) +X1t2(X2) in 

the following, where t\,t2 are splines. 
\ 

Note that generally the basis functions for different predictors could be different. For 

concise notations without loss of clarity, we suppress the subscript of $ since each of its 
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components is expressed function of Xi. Suppose 

rrii = &(Xi)oti, 

9 l = &(Xi)0i, 

tt = &(Xi)f%a,i = l,2. 

Similar to the linear regression case, without loss of generality we assume that for i = 

l , . . . , p , E ( X i ) = ' 0 , E [ * ( X i ) ] = 0, where *pQ = {M^i),..., <^PQ)' (Ki denotes 

the number of basis functions for Xi). Otherwise, we can replace Xi (or<&pQ)) by 

Xi — E(Xi) (ov$(Xi) — E[$(Xi)]), and those centering constants would be included 

into the intercept, keeping the coefficients of basis functions unchanged. Thus the mean 

function of the fitted model can be rewritten as 

E (Y\XU X2) = a0+ (V(*i), * ' ( X 2 ) ) 

v t t 2 / 

where a0 denotes the intercept. 

Let a = (a0,ai,a2). Based on Whi te (1982), we have a * , the large-sample l imit of 

the a , as the solution to 

E ^d\ogf(Y\X1,X2)^ = Q ) 

where ot — (OLQ,OL1,OL2)' . 

Note that the / function in above equality denotes the density function of the fitted 

model and the expectation operation is wi th respect to the true joint distribution of Y 

and X . 
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Therefore, we derive that 

E I 

[ ( 1 \ 

Note the fact that 

a i E Y * ( * i 

/ A ^ 

E(Y\X) = (X1),*\X2),X2*\Xl),X1&{X2j) 
Dint 

P\ 

V PT j 

Therefore we can l ink the above two equalities to derive that 

Pi + c r / c -11 1̂2 

int \ 

where 

C N = E | ( I ) * ' ( X 1 ) ) * , ( X 2 ) ) ' ( I ) $ ' ( ^ 1 ) ) $ ' ( X 2 ) ) | , 

Cia = E | ^ 1 , $'(^2)^ ( * 2 $ ' ( X i ) , X i $ ' ( X 2 ) ) } 

C 2 2 = E {(x&'iX^X&'iX^ (x&'iXi^X&'iXd 

( 2 . 1 9 ) 

( 2 . 2 0 ) . 

We also use the idea of average effect as that in the linear scenario to evaluate the 

impact of model misspecifications. That is, we are interested in the average effect by 

averaging over the joint distribution of a l l predictors X . Note that the predictive effect 
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of Xj here is function of all predictors while just a function of X y ) i n linear regression 

settings. 

Wi thout loss of generality, we only take the average effect of Xi for example. Here 

the large sample l imit of average effect of Xi estimated from the fitted model is 

E a 
dX, 

(2.21) 

while that in the "true" model is 

dX1 dXi 
+ PT *(x2) (2.22) 

Similar to the situations considered in linear regression, we also focus on some special 

cases here. Say, if Xx and X2 axe independent of each other, then we get E (Cn) = 0. 

Hence, the equality (2.20) now becomes 

y a=2* J 

1 ^ 

That is, if Xi and X2 are independent, we get the consistency of the coefficient estimates 

ci. Subsequently we also get the agreement between the two average effects defined by 

(2.21) and (2.22). 

In the following we study the uncertainties of the two average effect estimates. Let 

<&(Xj) be an n by Ki matr ix wi th <E>y = 4>j(xn) a n d xj be an n by 1 vector wi th components 

xu, I = 1,2,i = l,...,n,j — l,...,Ki. Define the sample version of E T ( = E(TT') as 
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follows. 

D 11 

D12 

D'12 

1 \ 

D12 = 

I 

\ 
( 

* ' ( X i ) 

V *'(x2) I 
f 1 ^ 

* ' ( X ! ) 

V *'(Xa) J 

1 

J 

( 1 J $ ( X 1 ) , * ( X 2 ) ) , 

( X 2 $ ( X 1 ) , X 1 * ( X 2 ) ) ! 

£22 = 
X 2 * ' ( X i ) 

V X ^ ( X 2 ) 

Again similar to the linear regression case, we have 

( X 2 * ( X 1 ) , X 1 $ ( X 2 ) ) . 

+ DT?D 11 ^ 1 2 

Hence the estimate of the fitted average effect can be rewritten as 

w ) = [d*r31+([d#]'i>u)3r+([d*]'i>i*2)3r, 

44 



Chapter 2. Average effects for regression models with misspecifications 

where 

D* 

n f r> J ™ I T—^T-i ; ' da; l x = X l i 

(un1^) [ -1 , ] 

U 2 \ U22 

Notationally, #[-1, ] denotes a sub-matrix of # after deleting the first row. The estimate 
of the average effect of Xx based on the "true" model is 

stf) = [d*]'31 + n X2; 
d$(x), 
da: \x=xu 

0 + n %2i P2 

With Result 1 and 2, it is possible to compare the asymptotic variances of the two esti
mates. However, the calculation of (2.9) now is rather complicated due to E ((T'/3 — S'a»)2SS') 
and the last two non-vanishing terms in (2.9). 

Thus we compare the asymptotic conditional variances in the following. Recall that 
T is the vector of the predictor functions in the true relationship and S is the vector 
the predictor functions in the fitted model. Recall that Tj, Si denote the derivative with 
respect to X\ of T and S, respectively. Using essentially the same derivation as that in 
the previous subsection of linear regression scenario, we get that as n —> oo, 

nVar(tfi(a)|X) - a2[E(Si)]'{E(SS')} E(Si) 
nVar(Si(/3)|X) -> a2[E(Ti)]'{E(TT')}_1E(Tx) 
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where 

T 

T i 

S 

S i 

= (1,^(X1),^'(X2),X1^(X2),X^'(X1))', 

= o, 
• d $ ( X i ) . 

d X i 

= ( l , * ' ^ ) , * ' ^ ) ) ' , 

= ( 0 , ^ | - $ ' ( X i ) , O i x ^ ) . 

0 l x K 2 , [ ( * ( ^ 2 ) ) ] ' ; 
d $ 

E ( X 2 d ^ } 

A s we discussed before, in the linear regression scenario, the joint normality of the predic

tors can also yield the consistent estimates of average effects. W i l l this good property s t i l l 

hold now? To explore the effect of the correlation between predictors on the difference 

of the two average effects, we'set up predictors and basis functions as follows. 

A l . Suppose Xi and X2 are bivariate normal wi th mean vector 0 and covariance 

matr ix 
7 

1 P 

P IJ 

A 2 . For simplicity, a common set of quadratic power basis functions for two predictors 

is used: 

\ 
£ = 

<pi(x) = x - k u 

<j)2(x) = x2 - k2, 

<hi(x) = (x-ti)2I{x>ti}-k3, 

<t>4(x) = (x- t2)2I{x > t2} - ki, 

where ti,t2 are the knots, which are set to be the 25% and 75% percentile of standard 

normal, respectively. The ki's are the centering constants to make E(4>i(Xi)) — 0, i = 

1, . . . ,4. Al though the choice of basis functions is simple, it mimics the generality of 
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splines expressed as linear combinations of the power basis functions. A s for the number 

of knots, we can also easily incorporate more knots into the basis functions. Here for 

computational convenience, we just use two knots for demonstration. 

A 3 . Set the true values of parameters as BQ = 0,0 l = 02 = 0™* = 02

nt = 

(0.5,0.5,0.5,0.5)' . 

Under the above settings, we can get the values of the elements of matrices C n , Cu 

by a numerical approach. The details of the numerical approach for the required integrals 

are in Appendix I I I . 

One fact worth noticing is that when p = 1, that is X\ = X2, Cn is not invertible. 

Therefore we can think of the difference between the two average effects as a function 

of p, the correlation coefficient, confined wi th in [0 ,1 ) . A s the correlation increases, the 

discrepancy between the two average effects is quite small compared to the range of 

average effects. The graphical summarization is shown in Figure 2.3, which implies that 

the bias of the average effect is close to zero even if the correlation of the two predictors 

is high. 
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Figure 2.3: Comparison of two average effect estimators 5i(0) and 5{(8) for spline re
gression models wi th two predictors involved. The x-coordinate of each circle is 6{(0) 
and the y-coordinate is 8\({5). Different circles are produced by different values of p, the 
correlation coefficient between X\ and X2. 

1 1 1 1 
1.5 2.0 2.5 3.0 3.5 

A s shown in Figure 2.4, we can see that the difference of the two conditional variances 

is rather small compared to magnitude of the conditional variances. This means that 

even though the model is misspecified, the precision of the estimates for given values of 

predictors does not seem to be affected that much by the misspecification. ; 
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Figure 2.4: Comparison of asymptotic conditional variances of two average effect estima
tors for spline regression models wi th two predictors involved. The x-coordinate of each 
circle is the conditional variance of misspecified-model estimator and the y-coordinate is 
that of right-model estimator. Different circles are produced by different values of p, the 
correlation coefficient between X\ and X2. 

i'.W) 

2.4.2 Penalized regression models 

Penalized spline regression (often referred to as P-splines) has received attention as a 

powerful smoothing method. Original ly suggested by O'Sul l ivan (1986), the method 

provides a range of practical modelling tools in applied statistics, wi th the books by 

Green and Silverman (1994) and more recently by Ruppert , Wand , and Carro l l (2003). 

The main principle of penalized spline regression is to estimate the unknown regression 

function by a compromise between sum of squares of residuals (represent the fidelity to 

the data) and smoothness of the estimate. 

We start wi th a univariate case. Suppose that we have data (xi,yi) (for now Xi is a 
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scalar not a vector), 

Yi = m(xi\oc) + €j, 

where m is a smooth function denoting the conditional mean of Yt given xit and {ej}" = 1 

are independent, mean zero random errors wi th a constant variance. To estimate m we 

use a spline regression model 

L 

m(x\ a) — a 0 + aix + • • • + a^ar 0 + £ ak(x — tk)+, 
'fc=i 

where d > 1 is an integer, a = (ao, a i , . . a i , . . . , a^)' is a vector of regression 

coefficients, ti < • • • < tL are fixed knots and (a; — tk)+ = (x — tk)DI{x > tk}. Actual ly , 

m is expressed by a set of power spline basis functions. Recal l that S denotes the "design 

matrix" for the model so that the i - th row of S is 

S f = (l,xi,...,xP,(xi-t1)°,...,(xi-tL)I>) 

= ( l , * ' (?<))• 

However, simple parametric fitting of a would lead to unsatisfactory results due to the 

high dimensionality of basis functions. Instead, a is estimated in a penalized manner by 

imposing a penalty on the coefficients in m. A roughness penalty is placed on {ak}k=1 

which is the set of jumps at the knots in the p-th derivative of m(x;, a ) . This leads to 

the penalized least-squares estimator 

{ 71 L Y {Vi ~ m(x; a ) } 2 + A £ a\ 
i = i fe=i 

= m i n { ( Y - S a ) ' ( Y - S a ) + A a ' P a } , 
a 

with A as penalty parameter controlling the trade-off between fidelity to the data and 
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smoothness of the fitted spline and P as the corresponding penalty matrix. To put the 

roughness penalty mentioned above, we choose P to be a diagonal matr ix whose first 

(1 + D) diagonal elements are 0 and whose remaining diagonal elements are 1. B y simple 

algebra, the penalized least squares estimate of a is given by 

o ( A ) = (S'S + A P ^ S ' Y , 

= (n^S'S + n^XPy^n-^'Y}. 

Since n~1XP goes to a zero matrix, the asymptotic behavior of a (A) is the same as that 

in the standard spline regression without penalty. 

To work out the least squares estimates a (A), we need to determine an appropri

ate value of A first. Generalized cross-validation ( G C V ) (Craven and Wahba, 1979) is 

one method of smoothing parameter selection that has proven effective and has good 

theoretical properties. Here we follow Ruppert (2002) closely. Let 

ASR(X) = n - 1 J2 {Vi ~ mixi; a7(A))}2 

i=i 

be the average squared residuals using A. Let 

S(A) =§(S'S + A P ) _ 1 S ' 

be the "smoother" or "hat" matrix. Then 

GCV(X)=
 A f ^ m , 2 (2-23) 

(1 - n 1 t r {S (A)} ) 

is the generalized cross validation statistic. Here t r{S(A)} is the "effective degrees of 

freedom" of the fit. One chooses A minimizing G C V statistic over a grid of values of 
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A. Computat ion can be sped up and stabilized numerically wi th the following diago

nalization method that is variation on the Demmler-Reinsch algorithm used to compute 

smoothing splines. 

Let B be a square matr ix satisfying B~1(B~1)' = § ' § , for example, B~l is a Cholesky 

factor of S'S: Let U be orthogonal and let C be. diagonal such that UCU' = BPB'. For 

example, we can use the eigen-decomposition of BPB' to find U and C. Then by some 

algebra, we get 

t r{S(A)} = £ ( l + A C l ) - 1 , (2.24) 
i 

where is the i t h diagonal element of C. Details of proof is given in Appendix I V . 

The elegance of this method is that the work of calculating B and (U, C) needs to be 

done only once and then these quantities can be used for a l l values of A. Therefore, we 

have an efficient way to evaluate G C V defined by (2.23). 

. This method is easy to be extended to the additive model wi th more than one pre

dictor, i.e., p >1. Suppose we have data (y; ,Xj) (XJ = (xu,...,xPi)'), 

Yi = a 0 + mi(xu) + • • • + mp(xpi) + e,. 

We wi l l use a spline model for each mk: 

Li 

mi(x\ ai) = anx -I h aiDxD + £ aik(x - ti)+, l = l,...,p', 
fc=i 

where on — ( a n , . . . , a;o, o n , . . . , a/xj''• Hence the vector of whole parameters is a = 

( a 0 , a'1:..., CKp)', and the penalty matr ix P is set to be the sum of p diagonal matrices 

Pi (i = 1,... ,p). Each Pi is a (pK + 1) [K is the dimension of basis functions) by 

pK + 1 square matrix whose (p x i + 2)th to (p x i + L + l ) t h diagonal elements are 1 

and whose remaining diagonal elements are 0. Therefore the least squares estimate of a 
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is the minimizer of 

P U 
/\2{yi ~ m(x»; a)}2 + ]T A; ̂  < 
i = i ; = i fe=i 

i.e. (Y - Sa)'(Y - Set) + a' ̂  XiP^j ex. 

Note S is the corresponding "design matrix" with z'-th row as 

Si. = {l,&{xli),...,&(xpi)). 

Consequently the least squares estimate of a can be solved by 

a(A) = ̂ S'S + AjPi j S'Y. 

If the components function (mj }f= 1 require roughly the same amounts of smoothing, 
we may assume a common value of A;, I = 1,... ,p, which makes a quick access of the 
estimation of smoothing parameters by using the methodology introduced in the univari
ate P-spline case. More realistically, different component function mj's require different 
amounts of smoothing and this can be accomplished by allowing A; values to vary rather 
than a common value. In the algorithm of Ruppert and Carroll (2000), A1;..., Ap are 
chosen by GCV in two steps. Note that GCV is a function of Ai,..., Ap. In the first 
step, GCV is minimized by assuming that Ai = • • • = Ap = A. In the second step, set 
the common smoothing parameter as the starting value of each Aj, Ai,..., Ap are selected 
one-at-a-time by minimizing the GCV criterion. 

In the following simulation study, we see how the two average effect estimates based 
on penalized least squares would be affected by the smoothing parameter. Suppose we 
have two predictors involved in the model and both of them follows a uniform distribution 
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on [0,1] independently. Here a common set of centered cubic basis functions are used and 

hence a common smoothing parameter A is assumed. 

In the basis function, five knots are used, which are equi-spaced wi th in [0,1]. Generate 

a data set of n = 200 realizations of (Y,Xi, X2), where Y is generated from normal 

distribution wi th variance of 1 and mean is based on the model wi th interactions (2.19). 

The true values of al l the coefficients are set to be 0.5. Repeat generating 200 data sets, 

and calculating the average effect estimate for each data set. We can vary the sample 

size n to see what happens as n gets larger. The top panel in Figure 2.5 shows the 

average effect estimates from the data sets of size n = 200 and the bot tom panel shows 

that of size n = 1000. The solid horizontal line in both panel is the true value of the 

average effect. Therefore we can see that the estimates lie around the true value wi th a 

larger variability, which is caused by the larger variability of the smoothing parameter 

estimates. A s sample size increases, the variabili ty goes down, i.e., the estimates in the 

bot tom panel are more concentrated on the true value than the top one. One problem 

from Figure 2.5 is that the range of the estimates is quite broad compared to the scale of 

the true value 2.0208, which could visually blur the concentration around the true value. 

To make the concentration around the true value more visual, we use only a subset of 

those estimates, those wi th in —10 and 10, to plot the histograms, illustrated by Figure 

2.6. Note that the number of estimates outside of this range is 32 for n — 200 and 8 for 

n = 1000, which are both small compared to 200, the number of estimates in al l . 
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Figure 2.5: Scatter plots of average effect estimates in penalized spline regression wi th 
only two predictors: the top panel wi th sample size n = 200 and bot tom wi th n = 1000. 
The solid horizontal line in each panel identifies the true value of average effect, and each 
circle represents a different simulated data set. 

Figure 2.6: Histograms of the average effect estimates in penalized spline regression wi th 
only two predictors: the top panel wi th sample size n — 200 and bot tom wi th n = 1000, 
and the symbol ' x ' in each panel marks the true value of average effect. 
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2.5 A middle scenario 

Although we do not get exactly consistent estimates in the spline regression scenario 

as discussed above, we st i l l wonder whether there is an intermediate situation between 

straight-line fitting and curve fitting. In this section, we consider models involving the 

quadratic terms of the predictors. To explain, we assume the true model to be 

E (Y\XUX2) = 30 + B1X1 + P2X2 + B3X? + BAX\ + Bl2XlX2, 

while the.fitted model is 

E (Y\XUX2) = aQ + aiXi + a2X2 + a3X2 + aAX\. 

Assume that the joint distribution of X\ and X2 is a bivariate normal distr ibution wi th 

mean vector 0, C o v ( X i , X 2 ) = p and V a r p Q = l,i = 1,2. 

Based on the previous result (2.14), we have 

n — R i n - p ( Y \ , R St=l ̂ f c l E {XiX2)Xk Cil* — Pi + Pi2E (A 2) + P12 

"3. = Pz + P. 12" 

where E is the covariance matrix of (X\,X2,Xf,X2). 

Using moments of the bivariate normal distribution, it is easy to derive that 

« i * = P i , 

«3* = Pi + -1 P nPl2-
1 + p2 

W i t h Definition 2 of average effect, that is, averaging over the joint distribution of 
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(Xi,X2), we have 5\(0) — Tha t is, we s t i l l have (exactly) consistent estimator 

under this setting. 

However, interestingly, based on Definition 1, i.e., averaging over the marginal distr i

bution of X2, we get 

5{(xi;(3) = a i + 2a 3»x 1 

= ft+ 2 (ft+ ^ £ 1 2 ) . * i , 

and 

<Ji(z i ; /3) = p\ + 2p\Xl. 

Hence, we get the difference between the fitted and true average effects 

5*1{x1;P)-51{x1;P) = -£—p\2Xl. 
1 + p 

It is easy to verify that the bias increases when p increases for given X\ = X\. One 

special case is that when p equals 0, the difference disappears. It is also clear that the 

independence of XiS make consistent average effect estimates no matter whether the 

joint distribution of X^s is normal or not. 

Furthermore, if Definition 3 is used, averaging over the conditional distr ibution X2\Xi = 

xi, we have 

8i{xi-p) = Pi + 2p3xi + pupxi. 

Note that 6l(xi\(3) does not subject to the change of definition because it does not 
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depend on X2. Thus, the bias becomes correspondingly 

Sl(x1;P)-51(x1;/3) = - p^J p\2Xl 

P-P3

 a 

It is easy to verify that for any given x\, the bias increases if \p\ < \J\/5 — 2 and 

decreases otherwise. 

Therefore, conditional on different definitions of average effect, we may have different 

conclusions about the consistency of estimators based on a simpler model. 

2.6 S u m m a r y 

In section 2.2, Result 1 & 2 show the asymptotic distribution of average effect estimators 

under "true" model and "misspecified" model, respectively. Note we don't have to assume 

that the two models are nested, that is, our results can be applied to more general 

model misspecification situations. In the linear regression context, discussed in section 

2.5, Result 3 gives the conditions to yield consistent estimator when fitting an additive 

model without interactions to the data generated from a pairwise interaction model 

without pure quadratic terms. Al though the conditions, independence or joint normality 

(elliptical-contoured) of the components of X (centered), may not be satisfied in practice, 

we could try appropriate transformations to make the distributions of X close to either 

of the conditions. In section 2.4, spline regression context, we can st i l l have consistent 

estimator when the predictors are independent and spline basis are centered. We also 

explore the bias under the condition of joint normality, and find out the magnitude of 

bias is quite small even when there is strong dependence between the predictors. Tha t is, 

the estimator based on additive model without interaction is approximately consistent. 
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In section 2.5, we consider models wi th quadratic terms of predictors, where consistent 

estimator comes into being under the conditions in Result 3. We should be aware of the 

fact that the consistency of average effect estimator depends on the definition of average 

effect, as implicated by the example in section 2.5. A l l the results/conclusions we have 

in Chapter 2 is based on Definition 2, that is, averaging over the joint distr ibution of a l l 

components of X . However, this definition may not always be appropriate to use. For 

example, if one is interested in comparison the risk of lung cancer between two groups of 

people having different smoking habit. Say one group never smoke and the other smoke 

everyday. There are also bunch of other risk factors, such as gender, age, resident and so 

on. Since we want to know how smoking makes difference in the risk of lung cancer, we 

should consider Definition 3, averaging over the distribution of al l the other risk factors 

conditional on smoking factor. Thus, for different scenarios, we need to investigate the 

consistency of estimator equipped wi th different definitions. A s for which definitions 

should be applied, it depends on the goal of study. 
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Chapter 3 

Comparison of interaction 

detectability under different 

interaction models 

This chapter wi l l focus on comparison of power to detect interactions under different 

regression models, in particular, a pairwise interaction model and.a diffuse interaction 

model. Section 3.1 has the background on asymptotic power under local alternatives for 

W a l d (or quadratic form score) statistics. Section 3.2 gives a concrete example to show 

how powerful the diffuse interaction model is to detect interactions no matter what the 

true structure of interaction is diffuse or not. 

3.1 General framework 

In this section, we give a general result about the asymptotic power function of score 

(quadratic form) test for presence of interactions are derived based on two models. 

Let T = {f(y\ x,6) : 6 G 6 } and Q = {g(y\ ~K,U>),U> G 0,} denote two different 

parametric families of densities under consideration when modelling the relationship be

tween response variable Y and predictor variables Xx,... ,Xp. We assume an agreement 

between the two families at some certain values of their parameters. Tha t is, one member 
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from G satisfies that 

g(y\ x, u>0) = f(y \ x, 0O), for a l l y and x, 

so as OJ moves away from w0, g(y\ x, u>) moves away from F in some specified way. Under 

model T (Q), 6 = OO(OJ = U>Q) stands for the null model of no interactions. 

Let f,g denote densities and F, G denote the corresponding distributions. Let p\ = 

dim(0),p 2 = dim(u>) be the dimensions of !F and Q, w i th 

sF(e, Y, x) = 3 [ i o g { / ( Y | x, e)}]/ae 

and 

SG(L>,Y,X) = <9[log{ 5(Y| X,u)}]/du> 

being the respective score vectors, and 

IF{0) = Ee{sF(e,Y,X)s'F(d,Y,X)} 

and 

/G(w) = EU{SG(U>,Y,X)S'G(U>,Y,X)} 

being the corresponding Fisher information matrices. Note the two above expectation 

operations are wi th respect to joint distribution of Y and X. Let /x(x) be density of X 

with respect to measure i^(x) (either Lebesgue or counting measure). 

To compare the capability to detect interactions under the two families T and Q, we 

set up two sets of hypothesis tests wi th T as the fitted model and Q as the true model. 

The reverse case wi th T being the true distribution while Q being fitted model, is just 

an analog. Hence in the following, we just take the former case for demonstration. 
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To make the comparison tractable and also to produce some nontrivial asymptotic 
powers that are not all equal to 1, we use a Pitman-type local analysis (developed by 
Le Cam (I960)), focusing on n - 1/ 2 - neighborhoods of the true parameter values. 

Say T is the fitted model while Q is the true model with un = u30 + n~l^2A'q, where A 
is a scalar and rj is a vector of length p2. The hypotheses we used here are H0 : CO = £0 

versus Ha : CO ̂  Co> where C is a matrix r x dim(0) of full row rank and £0
 l s a 

certain vector (for example, zero vectors denotes an additive model if CO is the vector of 
interaction parameters). Note that the above hypotheses are more general than testing 
H0 : 0 = 00, where C just reduces to an identity matrix as a special case. The above 
hypotheses consider any linear combination of the whole parameter 0 under the fitted 
model. 

To compare the capability to detect interactions, the parameters of interest are just 
those related to interactions. 

In particular, if the pairwise interaction model (defined later by (3.6)) is fitted, the 
whole parameter vector 

0 = (/3Q,PI, ... ,Pp,Pn, • • • ,P{p-i)p)'. 

Only the last q = p(p — l)/2 components relate to interactions. Hence let C\ = 

(0gx(p+i), Iqxq) so that C\Q = (Pn, • • •, P(p-i)P)', which is what the parameter vector 
of interest for testing. If the fitted model is the diffuse interaction model (3.5), the whole 
parameter vector is u = (Po,P\,... ,PP, A)' and only A relates to interaction. Thus let 
C2 - (0 l x( p +i), 1) so that C2u> = A. 

Let 0n be the maximum likelihood estimator based on f(y\ x, 0) from n observations 
from g(y\ x,u;„). 

Then n(C(On - 00))' {Cl^ie^C}'1 (C(0n - 0„)) is the Wald test statistic used 
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here, whose asymptotic distribution is x 2 wi th degrees of freedom of rank(C) if / ( - | 90) 

is the true model. Because T is not the true model, 

nll2C{6n - d0) = nl'2C (dn - 0 . ( w n ) ) + n^C {0.(un) - 00), (3.1) 

where 0«(u;) is the parameter vector which minimizes the Kullback-Leibler information 

criterion, that is 

0 * M = a rgmin e J | l o g ^ j g(y\x, o>)/ x(x)dydi/(x). 

Note that the fact </(-| wo) = /(-| 0o) yields that 0,(u>o) = 0o-

B y Whi te (1982) we know that the first i tem on the right side of (3.1) is asymptotically 

normal wi th mean 0 and covariance matr ix CIp1(60)C'. So we only need to work on the 

second item on the right side in (3.1). 

B y the definition of 0 * ( w ) , we know that 0*(<*>) is the value of 0 solving 

J sF(8'u),y, x)g{y\x, w)/ x (x)dydi /(x) = 0. (3.2) 

Based on Gustafson (2001), implici t differentiation of (3.2) gives 

' Ew[4(0.(a;),y )X)]0Uw) + E w [ s i . ( 0 , ( a ; ) ) y , X ) s G ( u ; ; y ) X ) ] = O. 

Evaluated at u = u0, the above equality yields 

BB 

^ = / ^ 1 ( 0 o ) E e o K ( 0 o ; y ! X ) S G ( u ; o ; y ) X ) } , (3.3) 
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which is derived by the fact that 0*(u>o) = OQ- Therefore, we have 

^ UU> u>=u>o j 

AC 
du UI=U>0 

V, 

where 
du,. .. dui 

Recall the equality (3.1). Based on O 'Br i en et al . (2006), assuming Q being the true 

model, the asymptotic distribution of 

n(c(en - e0))' {crF\d0)cyl {c(dn - e0)) 

is a noncentral x2 wi th degrees of freedom of rank(C) and noncentrality parameter 5 is 

calculated by 

5=1 AC r? j {crF\oQ)cyl I A C (3.4) 

Suppose the equivalent null hypothesis for Q is CGu = COG where CQ is a rG x dim(u;) 

matrix. The Wald statistic based on the fitted model Q is 

n{CG(On - u ; 0 ) ) ' {CGIc\u0)C'Gyl (C(Qn - w „ ) ) . 

Its asymptotic distribution is noncentral Xrc(^G), where 

6G = {ACGrj}' {CGIG\u0)C'Gyl {ACGr)} 
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3.2 Comparison between pairwise interaction 

models and diffuse interaction models 

3.2.1 Introduction of diffuse interaction model 

Greenland (1983) pointed out that the powers of statistical tests to detect interactions 

are very low in some commonly encountered epidemiological studies. We could imagine 

even lower power in the situations where the number of risk factors is rather large and 

only a very small fraction of a l l possible (pairwise) interaction terms really play a role. 

Gustafson et al. (2005) proposed another kind of interaction model, the diffuse interaction 

model, to deal wi th difficulties caused by a large number of risk factor under pairwise 

interaction models. B y diffuse interaction, we mean that the effect of a particular risk 

factor either increases (synergism) or decreases (antagonism) as al l the other risk factors 

increase, without regard to which of the other risk factors get involved wi th the effect 

modification. The diffuse interaction model introduced in Gustafson et al . (2005) is 

defined as 

The parameter A reflects the magnitude of the synergism/antagonism. Take a binary Xj 

for example, if A > 1 then it is easily verified that the interaction is antagonistic, in the 

sense that the value of E ( Y | A j = 1, X y ) = xy)) — E ( Y | A j = 0, X y ) = xy j ) decreases in 

each component of x y ) . If Xj is continuous, it is also easy to show that A > 1 gives 

E(Y\XU...,XP) = HD 

(3.5) 

dE ( Y | X = x) 

dxjdxk 
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which means synergism based on the definition in Section 1.2. Conversely, A < 1 corre

sponds to synergism. That is, the effect modification caused by any putative risk factor 

increases as other risk factors increase. The magnitude of the difference between A and 1 

implies how much synergism/antagonism is present. However, we should be aware that 

A does not provide the information about which of those risk factors contribute in the 

effect modification for any putative risk factor. 

3.2.2 Power comparison 

Say the response variable Y is normally distributed and X\,...,XP are the corresponding 

explanatory variables. We study an example under the following two interaction models. 

Pairwise interaction model: 

• E{Y\XU...,XP) 

Recall diffuse interaction model: 

E(Y\XU...,XP) = pD 

= + | j ' X i - °- A - °-

Let 3M = (6i,... , P P Y and 3j = (Aj)<jxi [q = p(p — l)/2), the coefficients of pairwise 

interaction terms. Let 6 = (/30, By,..., Bp, (3'j, a2)', which is the whole parameter vector 

in the pairwise interaction model and let fi = (/?0, B1,..., Bp, A, a 2 ) ' , which is the whole 

parameter vector in the diffuse interaction model. 

If Bj = /3 / 0 = 0 in the pairwise interaction model, the model reduces to be an 

additive model without interaction terms. Correspondingly, if A = Ao = 1 in the diffuse 
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interaction model, the model reduces to an additive model as well. Therefore, the two 

interaction models are the same if evaluating at f3I0 and A 0 respectively. Denote by fp 

the density function of Y | X i , . . . ,XP under the pairwise interaction model, and by fp> 

the density function under the diffuse interaction model. Denote by- Ip the information 

matrix under the pairwise interaction model and ID under the diffuse interaction model. 

Denote by sp( - ,Y , X) the score function of fp under pairwise interaction model and so 

SD(-,Y, X) the score function of fp, under diffuse interaction model. That is, 

where 

Sp(-,Y,X) = o--2(Y-Lip) 

( i N 

Xp 

X\Xi 

y Xp-iXp J 

( i \ 

sD(;Y,X)\x=1 = o--2(Y-fiD) 

Xn 

dctp 
dX < = = ~ [J^PiXi log [Y^PiXi + f^.PiXilogifiiXi). 

, i = l 1=1 

It is obvious that interaction can be measured by only one parameter A in (3.5) while 

p(p — l ) / 2 parameters are used in (3.6). Hence in the diffuse interaction model (3.5), 

we assume that al l the predictors interact in the same direction, either synergistically 

or antagonistically, which corresponds to A < 1 or A < 1 respectively. It is reasonable 
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to imagine that model (3.5) is more powerful to detect interaction since detecting the 

interaction effect in one direction could be easier than that in many possible directions. 

The comparison between two models wi l l be explored by the following cases. 

C a s e I: Assume that the diffuse interaction (3.5) is the true model wi th A„ = 1 + 

A n " 1 / 2 , where A is a scalar. 

(i) The fitted model is the pairwise interaction model shown as (3.6). To test whether 

there are interaction effects, set up the following hypotheses. 

H0 : Cxd = 0 versus Ha : Cx0 ^ 0, i.e., 

H0: /37 = 0 versus Ha : (3j ̂  0. 

Recal l that C\ = (0qxp, IqXq). Let dn denote the M L E of 9. Therefore, we have 

Power = P (n{d(0„ - Oo)}' {dip1 (OoM}-1 {Cx{0n - Oo)} > xl 

Hence, 

CJp1 (0O)C[ = If 

According to the results we discussed in the previous section, we know that 

n ( C i f o - eo^'iifwr'ic^ - Oo)) Z x
2
q(s) 
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where the noncentrality parameter is 

dO* 
dX 

A 
A=l 

where 
dO, 
~ax IP

l(0o) {Eeo{sP(O0,Y,X)sD(X0,Y,X)}}. 

Note that S£>(X0, Y, X) is the derivative of log /D(U>, Y, X) with respect to A evaluated at 
A0, i.e., the last component of the score vector SD(W,Y, X). 

Therefore the asymptotic power is P(x2(S) > x\, a)> where Xqt a is the upper a quantile 
of x2— distribution with degrees of freedom q. 

(ii) Fitted model is diffuse interaction model. Now the hypotheses to be tested are 
Ho : C2u = 1 versus Ha : C2u ^ 1, i.e., 
H0 :'A = 1 vs. Hi : X 1. 

Recall that C2 = (0i x p, 1). Therefore the asymptotic power is 

P{x\{5)>xla), 

where 

5 = A V ^ A o ) 

Vb(Ao) = C2rD\u>o)C2, 

ID(00) = E ' < ' a i o § M ( ^ f o \ 
du J \ du 

w 0 = (A)./3I.---.A,.A0)'. 

Remark: As a matter of fact, the An should be positive to make the operation (-)A" 
meaningful. That is, the above analyses work well when sample size n big enough since 
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Xn converges to 1, which is away from the boundary value 0. 
Case II: Assume the true model is a pairwise interaction model with 

^ 0 1 2 , n ^ 

Pin = 

\ P(P-l)P,n J ^ 

where rj is a q x 1 vector. For this time being, we set each element of rf to be 1, which 
means every pair of interactions is positive. Later we discuss the consequences of different 
choices of rj. 

(i) Fitted model is diffuse interaction model (3.5). The hypotheses to be tested here 
are Ho : C2u — 1 vs. Ha : C2UJ ̂  1. All the following is an analog of i) of Case I. Now 
e = (p0,pu...;pp,xy. 

The asymptotic power is 
P(xl(S)>xla), 

where 

dX, 

8K 
ldPr P,=o 

dPj /3/=0 
{//31(u;o)EaJo (sD(vj0, Y, X)s'P(0o, Y, X))} (P+2)- ' 

where MT. denotes for the rth row vector of matrix M. 

(ii) Fitted model is pairwise interaction model (3.6). The hypotheses to be tested 
here are HQ : C\0 = 0 versus H\ : C\0 ̂  0. 
We have 
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with 5 = A2ri'{lp2(0o)}~ir). Hence the asymptotic power is P (xq($) > Xq, a)-
As discussed above, we have derived four asymptotic power functions for the four 

subcases, corresponding to all possible patterns of either pairwise interaction or diffuse 
interaction model being fitted while the underlying data generation process is the other 
one. However, it is not easy to tell which power is bigger based on the expressions of 
asymptotic powers. To be more specific, we take an example as below. Suppose we have 
p = 9 predictors at hand, the true values of all components of (3M are all equal to 0.5 
and p0 = 0. The variance of random error is set to be a2 = 1. Also the predictors are 
identically independently distributed as Bernoulli with parameter £, the probability of 
success. Then we plot the power functions against the value of A, with £ = 0.5. 

As shown before, the key things to compute the power are Ip = E {sp(-, Y, X)s'P(-, Y, X)}, 
ID = E {sD(-, Y, X)s'D(-, Y, X)} , E {sP(-, Y, X)s'D(-, Y, X)} and E {sD(-, Y, X)sP(-, Y, X)}. 

Under the above settings, Figure 3.1 shows the result of the powers in the four sub
cases discussed above. The solid lines denote the power curves for diffuse interaction 
model fitting and the dashed lines denote those of pairwise interaction model fitting. We 
find that the diffuse interaction model is more powerful to detect interactions than pair-
wise interaction model, regardless of whether the true model we postulate is the diffuse 
interaction model or not. 
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Figure 3.1: Power Curves with AYs'~d' Bernoulli(0.5): the top panel with the true 
structure to be diffuse interaction model and bottom panel with the true structure to be 
pairwise interaction model. Solid lines denote power curves based on diffuse interaction 
model fitting and dashed lines denote power curves based on pairwise interaction model 
fitting. In the bottom panel 77 = l g x i -

True model is pairwise 

! ^ | ( ( 

0 5 10 15 20 

delta 

In case II, consider replacing rj = (1,..., 1)' with a vector of 77 having entries ±1, 
that is, the pairwise interaction terms have different "directions". For those terms with 
positive coefficient, it implies that the impact of the interaction is to increase the value 
of response variable when the corresponding predictors increase while other predictors 
keeping unchanged. While for the terms with negative coefficient, the interaction ef
fect causes decreased response if the involved predictors increase with other predictors 
unchanged. 

As opposed to a pairwise interaction model, the role of A in the diffuse interaction 
model is to measure the magnitude of the overall interaction among the predictors. Note 
that diffuse interaction models do not specify which of the predictors do or do not con
tribute to the interaction. Hence, we could expect the power of diffuse interaction model 
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would get worse when the true model under consideration involves more mixed directions 

of interaction effect. 

Since the "overall" interaction is getting weaker and weaker as more other direction of 

interaction terms appear in 77, we would expect the performance of the diffuse interaction 

models to get worse and worse. That is what Figure 3.2 implies. In the first panel, wi th 

the choice of rj stating that al l interaction terms have the same direction, the diffuse 

interaction model performs better than the pairwise interaction model in terms of power. 

However, when rj is changed to have only part of the interaction terms playing the role 

in the same direction, there is crossing of the two power curves as shown in the middle 

panel. That is, for some values of A , the diffuse interaction model works better while 

for some other values of A , the pairwise interaction model does better. Moreover, when 

77 is set to have more mixed directions of interaction effect, the performance of diffuse 

interaction model is worse as implied in the last panel. In Figure 3.2, the top panel is 

the power curves obtained by setting 77 of a vector of l ' s , the middle panel wi th 77 of a 

vector made up of 10 l ' s and 26 0's, and the bot tom panel wi th 77 of a vector made up of 

10 l ' s , 10 0's and 16 —l's. Note here to make the plots across different 77's comparable, 

we normalize each 77 to have length equal to 1. 
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Figure 3.2: Different choices of rj in Case II wi th binary predictors: the top panel involves 
all predictor pairs interacting positively, the middle panel has only a few of predictor pairs 
interacting positively, and the bot tom panel has more mixed directions of interactions. 
The lengths of rj's in different panels are normalized to be 1. Solid lines denote power 
curves based on diffuse interaction model fitting and dashed lines denote power curves 
based on pairwise interaction model fitting. 

True model Is palrwlsa 

0 5 10 15 20 

Subsequently what happens if other settings, like £, (3M, cr 2(= Var(e)) vary? Figure 

3.3 shows the outcome of different £'s wi th (3M = 0 .51 p and a2 = 1. In the leftmost panel, 

£ =0.2, while £ =0.5 in the middle panel and £ =0.8 in the rightmost one. The three 

plots in the top panel are power curves in case of the true model being diffuse interaction, 

and the other three in the bottom under the true model being pairwise interaction. A s 

£ varies, the performance of both models get worse. However, the difference among the 

other three plots in the bot tom panel where the true model is pairwise interaction model 

is not great. In other words, the distribution of predictors has greater effect in the case 
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of diffuse interaction model being true model than it does in case of pairwise interaction 

model being true model. 

Figure 3.3: Different choices of £ in A Y s distribution: the top panel with the true structure 
to be diffuse interaction model and bottom panel with the true structure to be pairwise 
interaction model. Solid lines denote power curves based on diffuse interaction model 
fitting and dashed lines denote power curves based on pairwise interaction model fitting. 
From left to right across the three columns, £=0.2,0.5 and 0.8 respectively. 

True modal Is diffusa True modal Is diffuse True model Is diffusa 

Figure 3.4 shows the result of different choices of 0M. For simplicity, we set all the 

components of QM equal to each other, that is 3M oc blp. In the leftmost panel, b is 

set to be 0.1, while 0.5 in the middle panel and 1 in the rightmost one. From the three 

plots in the top panel, we can see that the performance of both models get better as the 

magnitude of b increases. However, the three plots in the bottom panel are almost the 

same. Therefore, we get the similar conclusion as above, where £ varies. Change of b has 

more effect in the case that the diffuse interaction model is true. 
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Figure 3.4: Different choices of b in (3M = blp: the top panel with the true structure 
to be diffuse interaction model and bottom panel with the true structure to be pairwise 
interaction model. Solid lines denote power curves based on diffuse interaction model 
fitting and dashed lines denote power curves based on pairwise interaction model fitting. 
From left to right across the three columns, 6=0.1,0.5 and 1 respectively. 

Trua modal U diffusa True modal Is diffusa True model Is diffuse 
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Figure 3.5 shows what happens if cr2 varies. In the leftmost panel, cr2 set to be 0.5, 

while 1 in the middle panel and 5 in the rightmost one. Now the three plots in the top 

panel are quite similar to those in the bottom respectively. In fact, based on the formula 

(3.4), we know that the noncentrality parameter 5 is just proportional to a - 2 . Therefore 

if we change the scale of A according to the value of a2, the shapes of the power curves 

are the same across different a2. That is what Figure 3.6 implies. ; 
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Figure 3.5: Different choices of Var(e):the top panel wi th the true structure to be diffuse 
interaction model and bottom panel wi th the true structure to be pairwise interaction 
model. Solid lines denote power curves based on diffuse interaction model fitting and 
dashed lines denote power curves based on pairwise interaction model fitting. From left 
to right across the three columns, Var(e)=0.5,l and 5 respectively. 

Trtu modal la diffuse True model Is diffuse Trua model Is diffusa 
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Figure 3.6: Different choices of Var (e) wi th scaled A : the top panel wi th the true structure 
to be diffuse interaction model and bot tom panel wi th the true structure to be pairwise 
interaction model. Solid lines denote power curves based on diffuse interaction model 
fitting and dashed lines denote power curves based on pairwise interaction model fitting. 

Trua modal la diff ma Trua modal la diffusa Trua modal la diffusa 

A l l the above plots are based on the distribution of X having independent components. 

In the situation that those predictors are dependent, what happens if the dependency 

changes? To construct a dependent structure between those predictors, we let 

Xi,..., XP\Z Bernoulli(Z), 

Z ~ Beta(a, b). 

B y a litt le algebra, we have p = (1 + a + 6 ) - 1 , as the correlation between any pair of 

Xi,... ,XP. Hence by changing the values of a and b, we may get different correlations. In 

Figure 3.7, the first column is power curves obtained from a = b — 100, so that p = 0.005; 

for the second column, a = b = 0.5, hence p = 0.5 and for the th i rd column a = b = 0.01, 

which leads to p = 0.98. The change of correlation does affect the power performance 
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more in the case that diffuse model is true than that in the case that pairwise interaction 

model is true. 

Figure 3.7: Different choices of p among A Y s : the top panel wi th the true structure to 
be diffuse interaction model and bot tom panel wi th the true structure to be pairwise 
interaction model. Solid lines denote power curves based on diffuse interaction model 
fitting and dashed lines denote power curves based on pairwise interaction model fitting. 
From left to right across the three columns, p—0.005,0.5 and 0.98 respectively. 

Trua model Is diffusa True modal Is diffusa Trua modal Is diffuse 

We also investigate what happens if the predictors are continuous. Suppose A Y s (i = 

1, . . . ,9) are i . i .d . following a log-normal distribution. Tha t is for each i, A j = exp(Zj), 

where Zj 's are i . i .d . standard normal variables. Set /30 = 0,3M = 0 .51 p and the variance 

of random error cr2 = 1. Then we plot the asymptotic power against A (defined in the 

local alternatives) for different four subcases discussed before. Figure 3.8 shows a similar 

outcome to Figure 3.1, which is for binary predictors. That is, the diffuse interaction 

model is more powerful to detect interactions than pairwise interaction model, regardless 

of what the true structure of interaction is diffuse or not. 
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Figure 3.8: Power Curves wi th Xi's"~' Log-normal(0,1): the top panel wi th the true 
structure to be diffuse interaction model and bot tom panel wi th the true structure to be 
pairwise interaction model. Solid lines denote power curves based on diffuse interaction 
model fitting and dashed lines denote power curves based on pairwise interaction model 
fitting. In the bot tom panel 77 = lqxi/y/q~-

True model is diffuse 

Similar to the previous example wi th binary predictors, we also change the direction 

of interactions when the pairwise interaction model is the true model. A s shown in Figure 

3.9, the diffuse interaction model lose the power to detect interactions as the "overall" 

strength of interaction gets weaker. 
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Figure 3.9: Different choices of r\ in Case II w i th continuous predictors: the top panel 
involves al l predictor pairs interacting positively, the middle panel has only a few of 
predictor pairs interacting positively, and the bottom panel has more mixed directions 
of interactions. The lengths of 77's in different panels are normalized to be 1. Solid lines 
denote power curves based on diffuse interaction model fitting and dashed lines denote 
power curves based on pairwise interaction model fitting. 
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3.3 Summary 

B y the two examples studied in section 3.2.2, we can see that diffuse interaction model 

is more powerful to detect the interactions no matter what the true interaction structure 

(which is postulated) is diffuse interaction or pairwise interaction. However, as the direc

tion of true interactions among predictors is more mixed, the diffuse interaction model 

gets less powerful to detect interaction. 
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Chapter 4 

M C M C algorithms for diffuse 

interaction models 

4.1 W h y M C M C ? 

We introduced a diffuse interaction model in Chapter 3, where it is proposed to be more 

powerful to detect interactions than pairwise interaction model by using only a single 

parameter to describe the interactions among numerous predictors. A s a related point, 

the diffuse interaction model would be better for inferences on interactions. In this 

chapter, we are going to apply M C M C algorithms to implement the model fitting. 

In this section, we enumerate reasons for using M C M C algorithms but not maximum 

likelihood estimation, which also may be feasible to be implemented. 

Firs t , in the diffuse interaction models, al l the parameters /3,'s (except the intercept 

(3Q) and A are designated to be positive. The statistical inference of constrained max

imum likelihood estimates usually is more complicated. Standard asymptotic theory 

asserts that statistical inference regarding inequality constrained parameters does not 

require special techniques, because for a large enough sample there wi l l always be a con

fidence interval at the selected level of confidence that avoids the constraint boundaries. 

Sufficiently large, however, can be quite large, in the cases when the true parameter val

ues are very close to these boundaries. In practice, our finite samples may not be large 

enough for confidence intervals to avoid constraint boundaries, and this has implications 
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for al l parameters in models wi th inequality constraints, even those that are not them

selves constrained. Comparatively, M C M C sampler can automatically accommodate the 

constraints and yield appropriate interval estimate without extra efforts. 

Second, sometimes the interested quantity may not be the parameters in the model 

directly and would be some complicated function of them. In particular, under diffuse 

interaction models, we apply the average effect idea to make inferences on interactions. 

Now the form of the first derivative of the regression function wi th respect to x3-, j — 

1, . . . , p is somewhat intricate so that it takes efforts to approach the interval estimates for 

average effects based on standard M L E . However, the interval estimates can be effectively 

achieved based on the posterior samples of the parameters of diffuse interaction models. 

Th i rd , considering some extensions to the diffuse interaction model, the maximum 

likelihood estimates could be heavy in hand to calculate. For example, to relax the 

assumption that al l the predictors interact in the same way, we could allow the predictors 

to be categorized into groups: wi th in each group, the predictors interact in the same 

way. Here we assume that there is no overlapping among the predictors wi th in different 

subgroups. That is, each predictor has an indicator variable denoting the group to which 

it belongs. The specific parametric form of this extended model w i l l be shown in the 

coming section 4.2. Therefore, the parameter set is a mixture of continuous parameters 

(Pj's, the coefficients of predictors, and A, the diffuse interaction parameter), and discrete 

parameters (the indicator variables associated wi th predictors). We have 2P (or 3 P if three 

groups) different patterns of group allocation, hence the optimization procedure would 

be more complicated especially when p is large. 
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4.2 Details of M C M C algorithms 

In Gustafson et al . (2005), an efficient M C M C sampler is developed for binary responses. 

Now, we apply a similar M C M C algorithm for continuous (normal) responses. We start 

wi th a simple case, that is, al l the predictors interact in the same way. 

4.2.1 One-group diffuse interaction models 

In this subsection, we consider a one-group diffuse interaction model 

where A > 0 is the parameter accounting for interactions and Pj > 0,Xj > 0 for j = 

1 P- ' ' 

We apply a hybrid M C M C ( H Y ) approach, similar as that in Gustafson et al . (2005) 

to make inference. The reason for using this algorithm is to avoid the waste caused by the 

randomness introduced by the proposal of candidate value. Basically, the idea of H Y is 

to incorporate derivative information of the target density and to suppress random walk 

behavior in the sampling simultaneously. B o t h of the strategies attempt to eliminate 

the inefficiency of random walk, which is commonly used in Metropolis-Hastings ( M H ) 

algorithms to generate candidate states. To explain, by using random walk, the direction 

of each movement about the target distribution is randomized. This can greatly increase 

the number of iterations required before achieving the equil ibrium. The situation is 

getting even worse especially when the parameters involved in the target distribution are 

highly dependent to each other. More discussions in Gustafson et al. (2004) and Neal 

(1998). The pseudocode of the hybrid M C M C algorithm is provided in Appendix V . 

In our simulation study, the priors of the parameters are log A ~ N(0 , a 2 ) wi th c r ^ l O O ; 
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00 ~ N(0,(7$O) wi th ^ = 1 0 0 ; and /% ~ N+(0,CT|.) wi th ^ = 100 for j = l,...,p, 

where N + ( / i t , a 2 ) denotes the N(/i, o - 2) distribution truncated to non-negative values. Note 

that we also check the prior sensitivity by using informative priors wi th smaller hyper-

parameters Op , G \ . The prior for cr2 is inverse-gamma (a, b) w i th the shape parameter 

a = 0.0001 and the scale parameter b = 0.0001. 

Set the number of predictors to be p = 10, the sample size to be n =2000. Gener

ate the p binary predictor variables from Bernoulli(0.2) distr ibution independently. For 

simplicity, we set the true values of / V s (j = 0 , . . . ,p) a l l equal to 0.5. The true value 

of A is set to be 2, that is, a l l the predictors interact in antagonistic direction. Then for 

1 = 1, . . . ,n,we generate the response variable Yi from normal distribution wi th mean 

of 0o + < 2~2^=i(Pjxv)X f a n d variance a 2 = 1. Note that in the model for binary re

sponses, no variance component is involved. A s a consequence, our algorithm here has 

one more step to update a 2 , compared to the M C M C algorithm used in Gustafson et al. 

(2005). 

Following Hil ls and Smith (1992), the M C M C literature has considered changes in the 

parameterization of a model as a way to speed up convergence in a Gibbs Sampler. The 

general suggestion is to try to make the components as "independent" as possible. Thus 

we implement M C M C using the new parameters ( a , A), where «o = 0o,&j — Pj/^ij — 

1, . . . ,p. F rom the scatter plot of posterior samples for A and a\ (left panel of Figure 

4.1), a smaller correlation between reparametrized components can be clearly seen. Tha t 

is, the reparametrization works well. Note that al l the samples used in Figure 4.1 are 

based on the 30,000 iterations after 20,000 burn-in iterations. 
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MCMC Algorithm I: 
At the t—th iteration, 
Step 1. For given A(t-1), update from (^t_1), a? ..., a P

t _ 1 )) to {$\ o%\ af) 

as a block by using a hybrid MCMC. 
Step 2. Update A^-1) by using a random walk Metropolis-Hastings to log(A). 
Step 3. Update a2^ ^ via Gibbs sampler. Given the prior of a2 to be inverse-gamma 

(a, b), the posterior conditional distribution given all the other parameters is inverse 
gamma with shape parameter a + n/2 and scale parameter of b + RSS/2, where 

Note that Step 2 can also be implemented by any other choices of prior for A.due to the 
generality of MH. However Step 3 needs conjugate prior setting.for a2 because Gibbs 
sampler get samples from the corresponding full conditional distribution. It is actually 
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a particular choice of the proposal in M H leading to the acceptance ratio of 1. 

The trace plots of M C M C outputs in Figure 4.2 shows that the above M C M C ap

proach works well for the simulated data set under the specific setting of priors for 

parameters. In each panel of Figure 4.3, the true value, marked by the solid vertical 

line, is covered wi th in the corresponding 95% equal-tailed credible interval. For some pa

rameters though, the true value is somehow close to the lower/upper end of the credible 

interval. 

Figure 4.2: Algor i thm I: M C M C traceplots for f3j,j = 0,l,...,p and A wi th diffuse priors 
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Figure 4.3: Algor i thm I: Marg ina l posterior densities for 3j, j = 0,1,... ,p, and A wi th 
diffuse priors cr|Q = <x|. = o~\ = 100. 

Remarks for the algorithm: 

Firs t , the step sizes used to produce candidate values in step 2 and 3 should be 

adjusted as sample size changes. Basically, we tune the step sizes to get relatively high 

acceptance rates, about 70% for step 2 and about 50% for step 3. 

Second, when the priors of the parameters 83,j = 0 , . . . ,p and A are changed to be 

more informative (smaller variance), the outcomes do not change much. Comparing the 

density plots in Figure 4.3 and Figure 4.4, there is no serious difference between the distri

butions of posterior samples from different priors. This point is different from Gustafson 

et al. (2005), where the prior of 60 does have influence on the Bayesian inference. 
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Figure 4.4: Algor i thm I: Posterior densities for Pj, j = 0 , 1 , . . . ,p and A wi th informative 
priors o\ = cr}. = a\ = 0.4. 
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T h i r d , as suggested in Gustafson et al. (2005), the algorithm above can be easily-

extended to a more general case of no positive constraint of the sign of Pj, replacing 

XjPj, in model (4.1), by g(xj,Pj), where 

g(x,P) 
\p\x- p>o, 

l - x ) ; P<0. 

To remove the positive constraint on the Pj's, we need the assumption that A ^ ' s are 

bounded wi thin [0,1]. In practice, transformation of predictors may be necessary. In the 

following, for simplicity,.we always focus on Pj's wi th positive constraints and leave the 

extension without the constraints- to the future work. 
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4.2.2 Two-group diffuse interaction models 

A s one possible extension mentioned but not pursued in Gustafson et al. (2005), we study 

a more complicated model in this subsection. Say 

Y\X = x ~ N 6 o + }2 (^) + ( E ( /^) A f ( 4-2) 
y , e A D D LeANT 

where A D D consists of indices of the predictors belonging to the additive group and A N T 

is the set of indices of the predictors interacting" in antagonistic direction. ( For sure, if 

we suspect that some of the explanatory variables interact in synergistic way, we would 

replace the antagonistic group by synergistic group by setting A < 1.) In this subsection, 

we take A to be fixed. Let I = {Ik}k=i P, where 

1; k € A D D , 
h — 

2; fceANT. 

Therefore, the parameters in this model now are ({Pj}^=0, {Ij}Pj=\-> o~2)- So that we have 

p — 1 more parameters,with A fixed, to update than that in the simple case (4.1). 

To explore the M C M C approach to model (4.2), we do a simulation study as the 

following. A s before, set the number of predictors p =12, the sample size n =2000. 

Generate each predictor variable from a Bernoulli(0.2) distribution. For simplicity, we 

set the true values of /Vs ( j= l , . . . , p ) a l l equal to 0.7 and BQ = 0. The true value 

of A is set to be 2, that is, al l the predictors involved in interaction group interact in 

antagonistic direction. The first six predictors Xi... A 6 are set to belong to A D D group 

while the others belong to A N T group. The starting values of the indicator variables are 

set to be the worst possible case, that is, each Ik is set to be the opposite value of the 

corresponding true value. Then we generate the response variable Yi, i = 1 , . . . , n from a 
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normal distribution wi th mean of 

'z ^ (Pjxij) f > 
i e A D D b e A N T J 

and variance a2 =1. For each j € {1,... ,p}, the prior of I3 is uniform distribution over 

{1,2}. The prior of B0 is JV(0, <rj0) w i th <7 ô=100. For j G 1,... ,p, the prior of Pj is 

Bj ~ N +(0,cr|.) wi th a\ = 100 for j = 1,... ,p, where N+(p, a2) denotes the N ( / i , CT2) 

distribution truncated to non-negative values. 

M C M C Algor i thm II: 

Step 1. Update the coefficients in the additive group, denoted by / S ^ D D ' together 

wi th 0Q. 

Given I and coefficients of predictors in A N T group, denoted by / 3 A . N T ' ^ * s e a s y *° 

verify that the posterior of (/30, / 3 ' A D D ) ' * s P r ° P ° r t i o n a l to 

exp {-a~2
 ( ( A ) , / 3 ' A D D ) ' ~ ( X i X i + ^ X ' ^ ) ' 

(XiXi + D) ((A,, / 3 ' A D D ) ' - W X l + ^)" l x i Y i )} > 0 } . 

It implies that (B0, / 3 ' A . D D ) ' follows a multivariate normal iV ( { X i X i + I ? } " ^ ^ ! , { X ' j X i + £>} 

truncated by / 3 A D D > >̂ w h e r e 

X i 

Y i 

Y 2 

£> 

Note that X ^ r j p j denotes the design matr ix wi th column vectors of the values of the 

= ( I , X A D D ) > 

= Y - Y 2 , 

= { X A N T A ^ A N T } 1 ' 

= (T 2 diag{cr^ 0

2 , a^ 2 , . . . , cT^ 2 } . 

91 



Chapter 4. MCMC algorithms for diffuse interaction models 

explanatory variables in the additive group. Analogously, X A j ^ r p is the design matr ix 

wi th column vectors of the observations of predictors in the antagonistic group. 

Step 2. Update the intercept together wi th the coefficients in the antagonistic group. 

Subtracting the contribution of predictors in the additive group, we can now pre

tend there is only one group and all predictors interact antagonistically. To be spe

cific, we apply Algor i thm I, devised for the one-group diffuse interaction model, to 

( Y ' , X A N T , / 3 A N T , / 3 0 ) where 

Y ' = Y - X A D D / 3 A D D . 

Step 3. Update (Pk, h) together. We generate the candidate values for (pk,Ik)/ 

denoted by (Pk,Ik), as the following:. 
| 

Tfc = 3 — ifc, 

l o g ( ^ ) ~ N(log(P°k),r2). 

That is, the candidate value of Ik is just opposite to the current value. Say Ik = 1, then 

Ik = 2. Using random walk on the log scale of Pk to fulfil the positive constraints in 

model (4.2). 

There could be more than one criteria to determine 8® and two of them are discussed 

after remarks on Algor i thm II. A t this stage, let's write Pk in a general way as 

Pk = hh,rk(Pk), 

where h is a deterministic function wi th reversibility property, that is, h is 1-1 mapping 
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on [0, oo) and h"1 = h, where h~l is the inverse function of h. Thus, we have 

hi',ik (hiklIi(Pk)) = pk-

Then, the acceptance ratio is 

n{i\p*) V M f c y y y - jp 
(4.3) 

where ir(-) is the joint posterior density of / and P for given a2 and (f> is the density 

function of standard normal distribution. According to Step 3 in A lgor i thm II P(Ik\Il) = 

P{I*k\h) = 1. Remarks: 

Firs t , the fraction of Pl/Pk in (4.3) comes out from the Jacobian of transformation 

because the proposed value is generated on the log scale of 

Second, if r 2 = 0, then the proposed value of Pk is exactly Pk. However, the acceptance 

ratio now becomes somewhat intractable because it takes effort to figure out 

(log(flfc)-log(h/»,7fc(fit)) \ 

I ' J *(-eflh'rM)/hnjM)) 
l im — — = — — (4 4) 

T ^ ^ l o g ^ - l o g (*>,,,,,.(f>kj) ^ <Ke) 

where e follows standard normal distribution. Moreover, tuning the size of r to be larger 

helps to speed up the convergence of samples for Pj's.-

In the following, we demonstrate two ways to determine P®, i.e., hikj*(P). 

Proposal 1 : Choose P® to keep the average effect of Xk unchanged. Since al l X/s 

are binary in the simulation study, based on Definition 1, think of the average effect for 
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Xk as 

E (Y\Xk = 1, X ( f c ) ) - E (Y\Xk = 0, X ( f c ) ) . 

Therefore, we have 

{ Pk, if k e A D D ; 

EiPZ + Z}1'* -E{ZVX}, if fee A N T , 
where 

Z= £ (OjXj)*. 
jeANT-{fc} 

Let Zj = S j e A N T - { f c } ( ^ ' x u ) A - ^ 4 = 1> t n e n 4* = 2, and Pi is the solution to 

»_1 £ {&A+^}1/A - n _ 1 E ^1/A = A- (4-5) 
i = i t = i 

If 4 = 2, then 1% = 1, and /?£ is the solution to 

P ^ n ^ i P t + z ^ - n - ^ z ] " . ' (4.6) 
i=l i=l 

In above two equations, the left side is the estimated average effect of Xk after change 

of Ik to I^., while the right side is the estimated average effect before the change. Here 

estimated average effect is the sample mean of average effect evaluated at each realization 

of X(fc). The reason for this proposal is that average effect estimate tends to be more 

robust, as discussed in Gustafson et al . (2005). 

Proposal 2 : Choose P% to make ak(=pk/\Ik) unchanged. (Note that \ x = 1, A 2 = A.) 

Tha t is, 

f \pk, i f / * = 1, 
Pk — 

X-'pk, if h = 2. 
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Based on the following plots of the M C M C output, Figure 4 . 5 and Figure 4 . 6 , using 

Proposal 1, the algorithm works well. For a couple of the /3 / s , though the true value falls 

close to ta i l of the density plot. 

Figure 4 . 5 : A lgo r i thm II: Using Proposal 1, M C M C trace plots for (3jJ = 1 , . . . ,p wi th 
diffuse priors <Xgo = cr|. = 1 0 0 . 
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Figure 4.6: A lgor i thm II: Using Proposal 1, posterior densities for Bj,j = 1,... ,p wi th 
diffuse priors cr2^ = cr̂  = 100. 

Pi fc fc 

0.4 0.6 0.6 10 0.4 0.6 08 1.0 0.2 0.4 0.6 0.6 

To compare the performances of samples under different proposals in Step 3, we plot 

the number of correct group allocations, since the true group allocation is known in the 

simulation study. Figure 4.7 illustrates that Proposal 1, that is, solving for B® by keeping 

the average effect unchanged, gives the right group allocations only after a couple of 

iterations. However it takes many more iterations for the samples under Proposal 2, 

where /3° is solved by keeping ak unchanged. To make this point more clear, we also 

plot the autocorrelation coefficients up to lag 40 for MCMC samples under different 

proposals, as shown in Figures 4.8 and 4.9 respectively. In Figure 4.9, for some /Vs 

(Pe — Pn), there is st i l l some dependence even for lag 40. Wh i l e in Figure 4.8, for al l 

Pj's, the serial dependence drops close to zero after a small number of lags. It implies 

that the convergence rate under Proposal 1 is faster than that under Proposal 2. 
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Figure 4.7: A lgor i thm II: Comparison of two proposals: Number of correct group alloca
tions based on posterior samples for I. 
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Figure 4.8: Algor i thm II: W i t h Proposal 1, the autocorrelation curves for posterior sam
ples of Pj, j = 1,..., p respectively. 
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Figure 4.9: Algor i thm II: W i t h Proposal 2, the autocorrelation curves for posterior sam
ples of Pj, j = 1 , . . . ,p respectively. 
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Remarks on M C M C algorithm II: 

First , in step 3, we only allow the movement wi th in the parameter space such that at 

least two predictors fall wi th in the antagonistic/synectic interaction group. The reason 

of the constraint for now is that the terminology interaction has real meaning only when 

at least two predictors are involved. We could remove this constraint later and more 

would be discussed in the future work. 

Second, the priors of Pj's do not strongly affect the posterior distribution. Change 

the value of hyper-parameter ap to be 0.4, which is rather informative/narrow compared 

wi th the previous value 100. There is not much difference between the density plots in 

Figure 4.6, based on diffuse priors and those from the informative prior shown in Figure 

4.10. In addition, for both kinds of priors, the posterior samples for Ij, j = 1 , . . . ,p have 
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high frequency of agreement wi th the true values. 

Figure 4.10: Algor i thm II: W i t h Proposal 1, the posterior densities of samples from wi th 
informative priors \OpQ = o~p = 0.4. 
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T h i r d , the true value of Pj(j € A N T ) does have influence on the posterior information 

about group structure. Bigger Pfs (j £ A N T ) lead to more posterior concentration 

around the true value of / , which governing group allocation. Whi l e smaller Pj's seems to 

lead to less posterior concentration around the true group structure. Consider an extreme 

case that al l the Pj,j € A N T are very small, say pretty close to 0, hence the conditional 

expectation of response variable given al l explanatory variables are approximately equal 

to p0 + zZjeADD^iPi- ^ n ° t n e r words, the diffuse interaction model is reduced to an 

additive model wi th explanatory variables of Xj,j G A D D . 1 

Let 's make this point clearer by looking at a simulation study. Set the true value of 
:In fact, if /3j (j eANT) are too small, the numerical solution of (4.6) would be zero, which cause 

difficulty in random walk on log scale of Pj. 
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each /3j(i eANT) to be 0.4, while the true value of coefficients in additive group is 0.7, 

same as the previous simulation study. Checking the posterior sample of each indicator 

variable for the first 10000 iterations, we get the following table. Clearly, as shown in 

F i gure 4.11 and Table 4.1 as well, we get more posterior mass on wrong group allocations 

wi th smaller value of fij's, but less wi th larger /3^'s. 

Figure 4.11: Algor i thm II: Comparison of number of correct group allocations based on 
posterior samples for I wi th different values of (3j(j G ANT): top panel wi th smaller value 
(=0.4), and bot tom panel wi th bigger value (=0.7). 
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Table 4.1: Algor i thm II: Frequency table based on posterior samples for each component 

of I wi th different values of € A N T . 

ft =0.4 A h h u h h h /8 h /io Ai A 2 

1 1.00 1.00 1.00 .73 1.00 1.00 0.01 0.01 0.00 0.00 0.00 .11 
2 0.00 0.00 0.00 .27 0.00 0.00 0.99 0.99 1.00 1.00 1.00 .89 

ft =0.7 A h h u h h h h u ho Ai A 2 

1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 LOO 1.00 
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Fourth, there is high posterior dependence between Ik and pk for each k. The blocking 

of (Ik, Pk) in Step 3 is motivated by this fact. We tried to update Ik and Pk separately (for 

each k), and found the sampler got stuck so that we could not move efficiently around 

the whole parameter space. The reason is that in the separate update case, posterior 

distribution of Ik for given pk highly concentrates on one certain value and vice versa. In 

other word, the update of pk and the update of Ik do affect each other a lot. Therefore, 

we should block the two parameters. 

In the simulation study for M C M C Algor i thm II, changing the true values of Pj,j € 

A N T to be 0.4 while keeping Pj,j € A D D unchanged, Figure 4.12 depicts the dependence 

between Ik and Pk more clearly. The top panel is the unconditional posterior density plot 

of posterior samples for p4. The middle panel is the posterior density plot of P4\I4 = 

1, that is the posterior sample of p4 given posterior samples for I4 equal to 1. The 

bot tom panel is the posterior density plot of samples for P4\I4 = 2. Clearly the modes 

of the samples within different groups are different by the latter two plots. Due to the 

considerable distance between the two modes, we get a bi-mode posterior density curve 

estimated by al l the samples of p4, as indicated by the top panel. 
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Figure 4.12: Algor i thm II: M C M C output of BA wi th true value set to be 0.4: the top 
panel is the posterior density for entire sequence of 10000 iterations, the middle is the 
posterior density for subsequence PA\h = 1, and the bot tom is the posterior density for 
subsequence /3417/4 = 2. 
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Fif th , Ik, the estimate of indicator variable Ik may be determined by the one having 

higher frequency to be sampled. Here we should be careful about the Bayesian inference 

to Bks. For each Bk, the point estimate and 95% equal-tailed credible interval could 

be obtained based on the samples belonging to the Ik group only, while not taking into 

account the whole sample sequence of Bk. To be more explicit, 

iM "= ' ' } r 
£0.025 = 2.5% quantile of [sf : I® = Ik] 

C/o.025 = 97.5% quantile of : J<° = / * } 
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where Bk\lk^ are the i - th samples for BkjIk respectively, and means the number 

of element in the set A, and L0.025 / fo .025 is the lower/upper bound of a 95% credible 

interval. 

Or there is another possibility to make the inference based all the samples since the 

true I is unknown in practice. In such a case, we could imagine that if Ik wi th much 

higher frequency than other sampled values of Ik, the estimate of Bk based on samples 

from Ik group only should be close to that based on samples from al l possible groups. 

The credible intervals may be close to each other as well. O n the other hand, if Ik = Ik 

does not have a superior frequency, then the estimate based on all samples for Bk would 

be somewhat different that from the Ik group only. The credible interval in the former 

case would be wider. 

4.3 Discussion 

Other than the two diffuse interaction models discussed above, we could consider more 

complicated models. 

1. A s a direct extension to model (4.2), we could allow A to vary as well. However, a 

corresponding direct extension to M C M C algorithm II is not t r iv ia l to achieve. We are 

aware of the fact that (Ik, 8k, Xk) are closely associated together for each k E { 1 , . . . ,p}. 

Therefore we need to devise a good joint proposal for the triple set. To make use of the 

previous algorithm for two groups wi th A known, we propose the following algorithm. 

M C M C Algor i thm III: 

Step 1. Update / 3 A D D ' coefficients in the additive group, together wi th intercept BQ. 

Step 2. Update / 9 A N T ' coefficients in the antagonistic group, together wi th intercept 

A). 

(Note that the two steps have exactly the same structure as in that Algor i thm II.) 
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Step 3. For k = 1 , . . . ,p, update (Pk, Ik) a s a block in the same way used in Algor i thm 

II, that is, II is the opposite to the current value of Ik and PI is proposed by adding 

noise to P®, which leaves the average effect of Xk unchanged for given value A. 

Step 4. Update A, for given other parameters, by using M H update of log(A). 

Step 5. Update a2 v ia Gibbs sampler. 

From the following trace plot of A samples, Figure 4.13, we can see that the M C M C 

samples for A have not achieved the stationary distribution wi th in the first 10000 itera

tions. We increased the number of iterations and the M C M C st i l l do not mix very well 

for A. We may adjust the stepsize for the update of A or better figure out other ways to 

propose the candidates of A more efficiently. Moreover, according to the autocorrelation 

plot of samples for A, the convergence speed is really slow since the autocorrelation of lag 

40 is st i l l rather large. It is similar for the posterior samples for "some Pj's, as displayed 

in Figure 4.16. This implies that Algor i thm III st i l l need to be improved in terms of 

speeding up the convergence. B u t s t i l l the algorithm seems promising since we get eight 

out of twelve correct estimates of indicator variables in the simulated example, as shown 

in Table 4.2. 
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Figure 4.13: Algor i thm III: Trace plots for Bj,j = 1,... ,p based on two-group diffuse 
interaction model wi th A unknown, respectively. 
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Figure 4.15: Algor i thm III: Plots of posterior samples for A, the top panel is the trace 
plot, the middle is the posterior density plot, and the bot tom is the autocorrelation curve. 
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Table 4.2: Algor i thm III: Frequency table based on posterior samples for each component 

of I under two-group diffuse interaction model wi th A unknown. 

h h h h h h h h h ho hi h2 
1 0.63 0.40 0.55 0.48 0.28 0.66 0.34 0.40 0.46 0.39 0.34 0.54 
2 0.37 0.60 0.45 0.52 0.72 0.34 0.66 0.60 0.54 0.61 0.66 0.46 

true value 1 1 1 1 1 1 2 2 2 2 2 2 
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Figure 4.16: Algor i thm III: Autocorrelat ion curves for f3j,j = 1, 
group diffuse interaction model wi th A unknown, respectively. 
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2. Including more groups into the model, say additive, synergistic and antagonistic 

group, wi th the corresponding A's known, for instance,Ai = 1, A 2 = 4/5 , A 3 = 5/4 respec

tively. (The reason to choose A2/A3 close to 1 is stated later.) In this scenario, there are 

three possible values of each Ik. Hence we cannot just flip the current value of Ik when 

in the joint proposal for update of (Ik,Pk)- We need more ^complicated jumping rule for 

the update of Ik. To apply the previous algorithm for two groups to the current situation 

wi th three groups, an easy-to-extend algorithm is as below. 

M C M C Algor i thm I V : 

Step 1. Update the coefficients in the additive group together wi th intercept. 

Step 2. Update the coefficients in the synergistic group together wi th intercept. 

Step 3. Update the coefficients in the antagonistic group together wi th intercept. 
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Step 4. For k e SYN (J ADD, update (pk, Ik) by applying step 3 in Algorithm II to 

Y - { X A N T ^ N T } 1 / A 3 , 

\ 

where X̂ jvj'p is the design matrix with column vectors of the observations of predictors in 
the antagonistic group. That is, by subtracting the contribution of the antagonistic group 
from the response variable, we could pretend that we have only two groups, additive and 
synergistic group. 

Step 5. For k € ANT (J ADD, update (Pk,h) by applying step 3 in Algorithm II to 

Y - { X S Y N A 2 ^ V N } 1 / A 2 -

where XgyN is the design matrix with column vectors of the observations of predictors 
in the synergistic group. Again, by taking away the given contribution of the synergistic 
group, we may imagine having only two groups, additive and antagonistic group. 

Step 6. Update <r2 via Gibbs sampler. 
The step 4 and 5 in the above algorithm allows jumps between additive and synergistic 

groups, and jumps between additive and antagonistic groups. In other words, the big 
jumps between synergistic and antagonistic groups are broken down into two small jumps, 
which would be easier to achieve. Unfortunately, one obvious drawback is that at each 
iteration we need to update |ADD| + p (|ADD| denotes for the number of elements in 
ADD group) of (Ik, Pk) pairs, since the index k runs over the indices in ADD twice as 
stated in step 4 and 5. Thus we propose the following algorithm which need to propose 
just p of (Pk,Ik) pairs at each iteration. 

MCMC Algorithm V: 
Step 1. Update the coefficients in the additive group together with intercept. 
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Step 2. Update the coefficients in the synergistic group together wi th intercept. 

Step 3. Update the coefficients in the antagonistic group together wi th intercept. 

Step 4. For k == 1, . . . ,p, update (@k, Ik) as a block. Now the proposed value of Ik, 

different from Ik, is drawn wi th probability 

l - 7 r ( / f c | / ( _ f c ] , / 3 , a 2 ) ' 

where.7r is the joint posterior density function of / , 3, cr 2. This is referring to Metropolized 

Gibbs sampler in L i u (1996), which proves that the way used in Step 4 above is more 

efficient than the Gibbs sampling method, that is, the proposed value of Ik, possibly the 

same as the current value of Ik, is sampled from ir(-\I[-k], 3, cr 2). Then Q*k is proposed by 

leaving the average effect of Xk unchanged, which is the same idea as before. Hence, the 

acceptance probability is the same as (4.3), wi th 

P{lt\h) 
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Figure 4.17: Algor i thm V : Trace plots of M C M C samples for Bj,j = 1, . . . ,p based on 
three-group diffuse interaction models wi th A2 = 4 /5 , A 3 = 5/4. 
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Figure 4.18: Algor i thm V : Posterior densities of M C M C samples for Pj,j — l,...,p 
based on three-group diffuse interaction models wi th A 2 = 4 /5 , A 3 = 5/4. 
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Figure 4.19: Algor i thm V : Autocorrelat ion curves of M C M C samples for Bj,j = 1, . . . ,p 
based on three-group diffuse interaction models wi th A 2 = 4/5 , A 3 = 5/4. 
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Remarks on M C M C Algor i thm V : 

First , note that the magnitudes of A2 and A 3 have an effect. If A2 and A 3 getting 

closer to 1, the jump between different groups, i.e., update in Step 4, is easier to make. 

Otherwise, the change of group may cause big change in the posterior density, which 

leads to a small acceptance ratio. So the proposed values are more likely to be rejected, 

which makes the algorithm inefficient. We also check the performance of Algor i thm V 

by setting a l l A's equal to 1. Under this setting, the posterior distr ibution of h,for given 

k € { 1 ; ; . . . is almost uniform distribution over {1,2,3}. This is consistent wi th our 

intuit ion, since when A i = A2 = A 3 = 1, the three group are actually identical to each 

other. 

Second, according to the trace plots, as shown in Figure 4.17, the sampler mix well. 
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However, Figure 4.19 tells us that there is some scope to make improvement in conver

gence rate. The sample dependence does not drop close to zero after lag 40 for some 

PkS, like P5 and pn. One thing worth noticing is the triple-mode in almost al l density 

plots of PkS. The reason is that for each k, the posterior distributions of Pk conditional 

on different values of Ik may have different (up to three) modes. Ac tua l ly this is another 

evidence to show the high dependence between Pk and Ik-

Table 4.3: Algor i thm III: Frequency table based on posterior samples for each component 

of I under three-group diffuse interaction group. 

h h h h h h h h h ho hi h2 
1 0.33 0.31 0.34 0.31 0.33 0.33 0.29 0.28 0.31 0.29 0.26 0.28 
2 0.23 0.19 0.18 0.24 0.17 0.34 0.38 0.43 0.31 0.28 0.26 0.43 
3 0.44 0.51 0.49 0.46 0.50 0.33 0.32 0.29 0.38 0.43 0.48 0.29 

true value 1 1 1 1 2 2 2 2 3 3 3 3 

T h i r d , we also plot the number of correct group allocations. It seems like that most of 

the samples for I have 4-6 components correctly valued. It looks promising as implied by 

Figure 4.20, some of the samples for I do achieve 10 or 11 correct allocations. Moreover, 

Figure 4.21 shows the posterior density plots of samples for Pk conditional on the true 

group allocation of fc-th predictor, k — 1 , . . . ,p. We find that for each Pk, the samples 

highly concentrates around its true value. It is a good sign to see that Algor i thm V 

somehow works. 
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) 

Figure 4.20: Algor i thm V : Number of correct group allocations based on posterior 
samples of I under three-group diffuse interaction models. 

Figure 4.21: Algor i thm V : Posterior densities of samples for Pj conditional on Ij correctly 
allocated (j = 1, . . . ,p) under three-group diffuse interaction models. 
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4.4 Example 

To provide an illustrative example of fitting the diffuse interaction model to a real data 

set, we consider the abalone growth dataset available from the U C I Machine Learning 

Repository (Newman et. al. 1998). The response variable Y is the age of abalone. Ignor

ing the single categorical explanatory variable (sex), we take the dependent variables X 

to be the seven continuous explanatory variables (length, diameter, height, whole weight, 

shucked weight, viscera weight, shell weight). The data are observed on n = 4177 speci

mens. To find out the overall direction of interaction among those dependent variables, 

we apply Algor i thm I to make inference. One thing worth noting is the release of positive 

constraints on / V s by using the following model mentioned in Section 4.2. 

A s a consequence, al l the observations of Xj's are scaled to [0,1]. 

The chosen priors are Bj ~ iV(0, 0.5)(j = 0 , 1 , . . . , p), log A ~ JV(0,0.5), and a2 ~ 

inverse-gamma (0.0001,0.0001). We also tried rather diffuse priors by replacing the small 

variance 0.5 wi th a larger value 50 and we did not see any serious difference in the output. 

Figure 4.22 gives trace plots for posterior samples of Bj, j = 0 , 1 , . . . ,p, which shows the 

M C M C algorithm worked well. The solid curves in Figure 4.23 are posterior densities 

for average effects 6i,...,5p and the dashed lines are posterior densities for / 3 i , . . . , Bp. 

We can see that most of ,<5j's are slightly smaller than the corresponding Bj's, although 

the case for X5 is the other way around. This means the overall interaction among X is 

where 
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antagonistic, which is consistent with the inference we can make based on the posterior 
sample for A. The posterior mean of A is 1.19, and the 95% equal-tailed credible interval 
is (0.92,1.46). The posterior probability that A > 1 is 0.93. Hence, we have evidence of 
the presence of antagonism among X. The posterior density plot for A is given in Figure 
4.24. 

For a better understanding of the content of antagonism, we refer to relative antago

nistic effect as 
<?(*) - 9(0) - T.U (g(xJiJ) - g(o)) 

T.U(g(xiW-9{0)) ' . [ - } 

where \3 means a p x 1 vector of zero except that the jth element is 1. Note that 
the numerator is the difference of the joint effect of X and the sum of independent 
effect of each Xj,j = 1,... ,p, and the denominator is the sum of independent effect. 
Averaging the ratio over the joint distribution of X, we get average relative antagonistic 
effect (ARAE); By using the empirical distribution of X (the true distribution of X is 
unknown), we get ARAE based on the posterior samples of (3j,j = 0,... ,p and A and 
the graphical summary is given by the bottom panel in Figure 4.24. We can also see 
the evidence in favor of antagonism since all samples of ARAE are negative. Moreover, 
most of samples of ARAE are valued in (-0.6,-1), which indicates a considerable size of 
antagonism. The bi-mode of ARAE in the plot might be caused by the complexity of 
(4.7), because the denominator now is also a function of A other than the simple form 
^ (3jXj as before when Pj's are confined to be positive. One thing worth mention is 
that MCMC can provide an effective way to make inference on this complicated function 
ARAE, based on the posterior samples. That's one of the main reasons why we pursue 
MCMC approaches for model fitting, as mentioned in the beginning of this chapter. 

Note that both of the definitions above can be easily applied to synergistic effect case. 
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Figure 4.22: Abalone data: trace plots for 3j,j = 0 , 1 , . . . ,p, for the whole sequence of 
100,000 iterations including the burn-in period. 

1 ftvV^^ 
1 I I 1 

Oe+00 2e+04 4e+04 6e+04 8e+04 1e+05 
"T 1 1 1 -

0e+00 2e+04 4e+04 6e+04 

iteration 

Be+04 1e+05 

- \ r -

Oe+00 2e+04 4e+04 6e+Q4 

iteration 

~ i i 1 r -

Be+04 1e+05 0e+00 2e+04 4e+04 6e+04 8e+04 1e+05 

1 r -

2e+04 4e+04 6e+04 

Iteration 

|35 

T 

Be+04 1e+05 Oe+00 2e+04 
1 1 ~ - - j 

4e+04 6e*04 8e+04 

iteration 

Oe+00 2e+04 . . 
4e+04 6e+04 

~i r 
e+04 1e+05 0e*00 2e+04 4e+04 6e+04 

iteration 

! ( 

8e+04 1e+05 

119 



Chapter 4. MCMC algorithms for diffuse interaction models 

Figure 4.23: Abalone data: density plots for and 5j, j = 1,... ,p, for the sequence of 
40,000 post burn-in iterations. The solid lines stand for average effect Sj's and dashed 
lines stand for /3j's. 
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Figure 4.24: Abalone data: the top panel is the density plot of A and the bot tom panel 
is the density plot of relative antagonistic effect, for the sequence of 40,000 post burn-in 
iterations. 
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Chapter 5 

Summarization and future work 

5.1 Conclusions 

Overall , the findings are as follows. 

In chapter 2, we study the consequences of fitting an additive regression model a 

pairwise interaction model is assumed to be the true model. We obtained the asymptotic 

distribution of average effect estimates based on the "misspecified" model and "true" 

model as well, as shown in Result 1 and Result 2, respectively. W i t h the two large 

sample l imits achieved in the two results, we work out the consistency of average effect 

estimates from "misspecified" model under some easily-studied situations, which are 

given by Result 3. This result implies that the distribution of risk factors does influence 

the size of bias of estimates in cases of model misspecifications. Result 3 suggests that 

transformations of risk factors, aiming toward normality, may help to reduce bias of 

average effect estimates. More generally, under the framework of spline regression models, 

we investigate the consequences of model misspecifications by failing to incorporate the 

interaction terms, which are assumed to be included into the true model. 

In chapter 3, we introduce the diffuse interaction model, which is more powerful to 

detect interaction than the pairwise interaction model especially when the number of 

risk factors of interest is rather large. We compare the power' to detect interactions 

under the two models in situations where we assume the true model is either diffuse or 

pairwise interaction model. To make the comparison tractable, large sample and small 
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misspecification approximations are employed. To be specific, for either interaction model 

that is assumed to be true, the true values of the parameters standing for the magnitude 

of interactions (A in the diffuse interaction model, /3y's in the pairwise interaction model) 

are just wi th in a (local) n - 1 / 2 neighborhood of those values which imply no interactions 

at al l , i.e., additive models. Therefore, as sample size n goes up to infinity, the model 

misspecification vanishes to zero. Under a set of specific settings (shown in Section 3.3), 

we find out that the power of diffuse interaction model is superior to pairwise interaction 

model no matter whether the true model is itself or not. However, if the true model is 

pairwise interaction, the detectability v i a diffuse interaction model decreases when the 

"overall" strength of interaction among the risk factors gets weaker. 

In chapter 4, we develop an efficient M C M C algorithm for one-group diffuse inter

action model. Also we investigate the possibility of generalizing the model away from 

the strong assumption that a l l risk factors interact in the same direction, i.e., synergistic 

or antagonistic. In the more generalized but complex model, we have more parameters 

since each risk factor has an corresponding indicator variable denoting to which interac

t ion group it belongs. W i t h A fixed, we have an efficient algorithm for model with two 

groups of risk factors, one group for risk factors having no interactions and the other 

groups for risk factors interacting synergistically/antagonistically. A n d we also see some 

hope to develop a good M C M C sampler for a more general model wi th three groups of 

risk factors, i.e., a no-interaction/additive group, a synergistic group and an antagonistic 

group. 

5.2 Future work 

In this section we discuss some interesting problems that could be studied in the future. 

1. In terms of model misspecification ignoring interactions: 
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(a) . In Section 2.3, the linear regression context, we find that under some certain 

condition such as independence or joint normality of risk factors, the average effect es

timators based on the misspecified mode la re st i l l consistent wi th the true values. B u t 

we need to know whether there are more general (possibly weaker) conditions which can 

produce the consistency in the face of model misspecifications. 

(b) . We explored two examples in section 2.3 to see how far the bias can be away from 

zero. However, we need more general investigation of the magnitude of bias (or relative 

bias) as the joint distribution of (X\, • • • ,XP) moves away from multivariate normally or 

independence. 

(c) . We could also study the consequences of omit t ing the interaction terms in the 

context of generalized linear models. Actual ly, in many epidemiological studies, the 

health outcome Y is often binary/categorical (for example, diseased or not). 

(d) The main results in terms of average effects we have derived so far is referring 

to Definition 2,. that is, averaging predictive effects over the joint distr ibution of a l l 

predictors. W h a t could the result be if other versions of average effect are applied? 

Moreover, we are aware of the fact that idea of average effect could have more general 

applications, not just confined wi th in the context of regression or generalized regression. 

For example, we can also apply the idea of average effect in survival analysis by averaging 

over the change in hazard function, instead of outcome/response variable, associated wi th 

a unit change in the putative risk factor. 

2. In terms of M C M C algorithm development for more complex diffuse interaction mod

els: 

A s suggested in Gustafson et al. (2005), a more general model can be built by par

ti t ioning the risk factors into three sets: additive, synergistic, and antagonistic, that 
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is 

E(Y\XU---,XP) = p0 + (5J) 
ieADD 

{ \ l / A . / • \ 1/A 0 

. E (ft^')A s [ + \ E o v o ) A a [ > 
jeSYN J LeANT J 

where 0 < Xs < 1 < A a . 

Start ing wi th the simplest diffuse interaction model wi th a l l the risk factors in single 

interaction group, we have an efficient M C M C sampler which does a good job. A n d also 

M C M C performs well for a diffuse model wi th two groups, additive and synergistic or 

antagonistic wi th a fixed value of A. 

However, for a more complicated situation, model (5.1), how to implement an efficient 

M C M C approach is s t i l l in process. The challenge here is how to propose the indicator 

Ik and corresponding Pk together in an efficient way. In our algorithm, we only allow the 

transition between additive group and synergistic/antagonistic group, while the transition 

between two interaction groups are not allowed directly wi th in one single movement. The 

reason is that the direct change between two interaction groups would cause rather big 

change in posterior density function, which leads to low acceptance rate of proposed 

values of (Pk,Ik) P a i r - Al though we see some hope in the simulation studies that the 

sampler mix well, we st i l l need to find better one which mixes faster and leads to better 

estimation. 

To be more realistic, we would also add one more group, that is, no-effect group into 

the current three-group interaction model. This is more challenging because it is even 

harder to make efficient jumping schemes between the no-effect group and other three 

groups. 

3. In terms of model selections : 
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In the analyses of linear regression wi th interactions, a stepwise strategy is often 

applied to choose a subset of interaction terms. The problem wi th stepwise procedure 

is that it is a computationally intractable technique when the number of risk factors is 

quite large, as discussed in Chapter 1. In the worst situation, | (^) ((?J) + l ) possible cases 

must be evaluated before obtaining the final model. Therefore, stepwise regression is not 

always a practical technique and other selection techniques may have to be considered. 

Suppose we have a linear model wi th pairwise and maybe even triple-wise interaction 

terms. We could take this model and reparametrize from the original parameters 6 to 

((f), A), where c/> are the average effects and A are nuisance parameters. Note that when 

A = 0, the interaction model is an additive model. Take a pairwise interaction model 

(3.6) for instance, reparametrize the parameters 0 as follows: 

<f>o = A), 

= {Pij}l<i<j<p-

B y setting up a prior for A which is quite concentrated around zero, we can do the 

posterior inference to A and then pick out those important interaction terms instead of 

doing stepwise procedures. 
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Appendix I 

Proof of (2.14)in Section 2.3.1 

By Cramer's rule to solve the (p + 1) x (p + 1) system of equations, we get 

where 

ax\D\ = \DX\, 

Let 

D = 

1 0 
0 Var(Xi) 

0 
Cov(Xx,Xp) 

\ 0 Cov{Xx,Xp 

( 

Dx = 

•• Var(Xp) j 

1 EY . 0 • • • 0 ^ 
0 E(YXX) Cov(Xx,X2) ••• Cov(Xx,Xp 

\ 0 E(YXP) Cov(X2,Xp) ••• V a r p Q - J 

S — (o~ij)pxP — 

( Varpfi) Cov(A"i,X2) ••• Cov(Xx,Xp)\ 

CoviXuXi) Var(X2) ••• Cov{X2,Xp) 

\Cov(Xx,Xp) Cov(X2,Xp) ••• Var(Xp) / 



Appendix I. Proof of (2.U)in Section 2.3.1 

Since 

E U . ( l , XU .... Xp 

( E ( y ) 

with determinant expansion by the cofactors (first column), we may write |Z?i| as 

E i A E ( X ^ ) + Ei<, AjE (XiXjXi 

E, A E (XiXp) + x;^- A , E ( x^ X p ) 

i <?"2, • • • , CTj 

where cr̂  denotes i-th column vector of E . 

By the property of determinant, we can rewrite the expressions above as summation 

of two determinants and , where 

D™\ = 

\D (2) | 

E A E ( X J X 1 ) 

: . > cr2, • • • , o-p 

EiP^iXiXp) 

E8-<j AjE (XiXjXij 

, cr2, • • , o-j 

Ei<j AjE (XiXjXp) 
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Let 's consider at first. Note the fact that E (XiXj) = C o v ( A " i , X j ) . 

i i 

= J 2 ^ C o v ( X i ' X ^ n + ••• + CoviX^X^1} 

(.2) 

The last equality is derived by the fact that when i ^ 1 

Cov(Xu Xr)En + ••• + Cov(Xh X p ) S p l 

C o v ^ A ^ ) , 

: , • • • , o-p = 0 

| CoviX^Xp) 

Similarly, we get 

|£>i 2 ) I = E / ? « [ S U E (XiXjXJ + ••• + £ p l E (XiXjX,,)]. 
i<3 

Since 

E (XiXjXi) = E {XiXjX{) + E (X^CoviXi, X x ) + E (Xi)Cav{Xjt X,) 
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we can derive that 

+ (Xj)[Cov{Xi, A ^ E 1 1 + ••• + Cov(Xu Xp)Epl] • 
i<3 

+ £ A j E ( X i ) [ C o v ( X j , X ! ) E n + • • • + C o v ( A ^ X p ) S p l ] 

= E f t i ( S n E ( X * JC;A\) + • • • + E p l E{X iX jX , ) ) + E A j E ( A ^ ) | S | . (.3) 

Combining equations (.1), (.2) and (.3), we get the equation (2.15) and so (2.16) when 

P = 2. 
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Appendix II 

Another consistent estimator of 

mentioned in Section 2.2 

The following is to show that sandwich estimator is a consistent estimator of V* as well. 

We only work on the simple case with two predictors and it is easy to expand the results 

of p = 2 to general p. 

In the fitted model, the log-likelihood function of an observation is 

log foiYlXuX?) = -^log27r - l-\ogr2 - ±(Y - a 0 - axXx - a2X2)2, 

while the true log-likelihood function should be 

\ogg{Y\XuX2) = -\log27r - l- log a 2 - ^(Y - 30 - frX, - B2X2 - P12X,X2)2. 

Define the matrices as below. 

An{6) = j n - 1 £ d 2 logMYilXi = xu,X2 = x^/dO^1 , 
Bn(9) = j n " 1 Y^dlogfeiY^X, = xH,X2 = x^/dO, • d\ogf6(Yx\Xx = xu,X2 = x^/dOj 
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The expecations of them are defined as 

A(0) = E(&logfe(Y\XuX2)/dOid6j)i 

B(6) = E(dlogfe(Y\X1,X2)/d9l-dlogfo(Y\XuX2)/d6j).. 

B y Whi te (1982) we know that the M L E of parameter vector 0n = ( a 0 , &i, d 2, r 2 ) , 

which is a consistent estimator for 0*, minimizing the Kul lback-Leibler Information C r i 

terion ( K L ) . Tha t is 

and 

Vn~(0n-0*)^ N{O,C{0*)). (.2) 

Intuitively, K L measures our ignorance about the true model. 

Remarks: 

1) A l l the expectations here are calculated under the true density function unless 

specified. 

2) C(8) is defined as follows. 

C(0) = A(0)-lB{0)A{0)-1. 

A n d An(0)~1Bn(O)An(0)~l is a consistent estimator of C(0). According to its sandwich

like shape, this estimator is also called "sandwich" estimator. 

Note that when the fitted model is correct, A(0t) + B(0+) equals zero, otherwise it 

may not. So A(0*) + JB(0*) is a useful indicator of misspecifications. 
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B y some algebra, we have 

MO*) = 4 -»3xl 

Olx 3 2T? 

(.3) 

where 

where 

' E s = E(SS') = E{(1,X1,X2)'(1,X1,X2)}. 

B(e*) = ± 
V* 7 

7

R A 

7 = 

A 

1 
4T? 

E 

E(Y - aQ — a i X i - a 2 X 2 ) 3 

E ((y - a 0 - a i X x - a2X2fXx) 

^ E ((y - a 0 - a j X i - a 2 X 2 ) 3 X 2 ) ^ 

_ L ( y _ a o _ a i X l - a 2 X 2 ) 2 - i 

Note V * is defined in (2.8). 

Therefore by the definition of matr ix C , we get 

C ( 0 . ) 
E^VE^ 1 2 r 2 E ^ 7 

2 ' A - l 2r^7 A 4TV4A 

The left upper sub-matrix is just v(at). 
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Appendix III 

Numerical approach to C n and C12 

in Section 2.4.1 

We give details of the numerical approach how to get Cn and C\2 in (2.20). The joint 

distribution of (X\,X2) is bivariate normal. 

The elements of matrix Cn are easily obtained by one-dimensional integration. As 

for the elements of matrix Cu, the typical term is 

E {((Jd - Cl)a(I{Xi > ci} - h) ((X2 - c2)bI{X2 > c2} - k2)} , (.1) 

where 

{ 0, if Ci - - 0 0 , 

tt, if a — ti^ - 0 0 . 

ki = E((Xi-a)a(I{Xi>Ci}). 

To reduce the two-dimensional integration into one dimension, we just need to figure out 

E ((X2 - c2)bI{X2 >c2}-k2\X1). 
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Note the fact conditional on X\ = x\, X2 can be rewritten as 

X2 = pxi + y/l - p2 Z, 

where p is the correlation coefficient of Xx and X2 and Z stands for a standard normal 

variable. Therefore, 

• f(xx) = E((X2-c2)bI{X2>c2}\X1 = x1) 

This integral can be easily evaluated since Z is standard normal and then we can regard 

the integrand in (.1), typical term of CX2, as a function of one variable: 

g(X1) = ((X1~c1)a(I{X1>c1}-k1)x(f(X1)-k2). 

Thus, we can approximate the integral of the function by the following 

K 
E i g i X ^ ^ K - ^ g i b , ) , 

where 6j is i/(K + 1) quantile of the marginal distribution of X\. In our numerical 

approach to the elements of Cn and Cu, K is set to be 2000. 
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Proof of (2.24) in Section 2.4.2 

W i t h the facts that B~1(B~1)' = S'S and UCU' = BPB', we have 

S'S + A P = B-\B~X)' + XP 

= B~l(l + XBPB')(B~1)' 

= B^Uil + XtyUXB-1)'. 

Thus 

(S'S + A P ) " 1 = B'U(I + XC)~lU'B. 

Let V = SB'U, then V'V = I, which gives 

tr(S(a)) = t r{V(I + A C ) " V } 

= tr(I + A C ) _ 1 . 



Appendix V 

Pseudocode for the hybrid M C M C 

algorithm in Section 4.2.1 

Let 0 ~ II be the target distribution, having an unnormalized density function 7r(t9) on 

a subset of In the following, we will abuse notation with the same symbol used to 

denote different functions if the meaning is clear from the context. The algorithm works 

by extending the state from 0 to (8,z), and the unnormalized target density from 7r(0) 

to 

0. Set values for function g, constant e, constant a, number of iterations I. 

• 1. Initialize the value of 0. Could be generated from the prior of each component 

of 8 or by fitting a simpler model (for example an additive model in regression model 

context). Also initialize z by sampling from standard normal. 

2. For each iteration, i = 1,..., / : 

a) Generate a candidate state (8*,z*) as 

T T ( 0 , Z ) = 7r(0)7r(z) 

0* <- 0 + e {z + (e/2)<?(0)}, 

z * <_ - z - ( e / 2 ) { 5 ( 0 ) + 5 ( 0 * ) } , 
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and draw u from unif(0,1). Set (0, z ) <— (0*, z * ) if 

otherwise, keep the original ( 0 , z ) . 

b) Uncondit ionally negate z ; that is, 

Z i Z. 

c) Perform an autoregressive update to z ; that is, 

z ^ N{az,{l-a2)Ik). 

d) Set 0j «- 0. 
3. Output 0 X , . . . , 0 / . 

Remarks: Setting 5(0) = Vlog7r (0) and a close to 1 we obtain hybrid algorithm. 

Other choices of g and a gives different algorithms. 
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