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A B S T R A C T 

This thesis is a collection of three case studies, investigating various sources of 

indeterminism and undecidability as they bear upon in principle unpredictability of the 

behaviour of mechanistic systems in both classical and quantum physics. 

I begin by examining the sources of indeterminism and acausality in classical 

physics. Here I discuss the physical significance of an often overlooked and yet 

important Lipschitz condition, the violation of which underlies the existence of 

anomalous non-trivial solutions in the Norton-type indeterministic systems. I argue that 

the singularity arising from the violation of the Lipschitz condition in the systems 

considered appears to be so fragile as to.be easily destroyed by slightly relaxing certain 

(infinite) idealizations required by these models. In particular, I show that the 

idealization of an absolutely nondeformable, or infinitely rigid, dome appears to be an 

essential assumption for anomalous motion to begin; any slightest elastic deformations 

of the dome due to finite rigidity of the dome destroy the shape of the dome required for 

indeterminism to obtain. I also consider several modifications of the original Norton's 

example and show that indeterminism in these cases, too, critically depends on the 

nature of certain idealizations pertaining to elastic properties of the bodies in these 

models. As a result, I argue that indeterminism of the Norton-type Lipschitz-

indeterministic systems should rather be viewed as an artefact of certain (infinite) 

idealizations essential for the models, depriving the examples of much of their intended 

metaphysical import, as, for example, in Norton's antifundamentalist programme. 

Second, I examine the predictive computational limitations of a classical Laplace's 

demon. I demonstrate that in situations of self-fulfilling prognoses the class of 
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undecidable propositions about certain future events, in general, is not empty; any 

Laplace's demon having all the information about the world now will be unable to 

predict all the future. In order to answer certain questions about the future it needs to 

resort occasionally to, or to consult with, a demon of a higher order in the computational 

hierarchy whose computational powers are beyond that of any Turing machine. In 

computer science such power is attributed to a theoretical device called an Oracle - a 

device capable of looking through an infinite domain in a finite time. I also discuss the 

distinction between ontological and epistemological views of determinism, and how 

adopting Wheeler-Landauer view of physical laws can entangle these aspects on a more 

fundamental level. 

Thirdly, I examine a recent proposal from the area of quantum computation 

purporting to utilize peculiarities of quantum reality to perform hypercomputation. 

While the current view is that quantum algorithms (such as Shor's) lead to re-description 

of the complexity space for computational problems, recently it has been argued (by 

Kieu) that certain novel quantum adiabatic algorithms may even require reconsideration 

of the whole notion of computability, by being able to break the Turing limit and 

"compute the non-computable". If implemented, such algorithms could serve as a 

physical realization of an Oracle needed for a Laplacian demon to accomplish its job. I 

critically review this latter proposal by exposing the weaknesses of Kieu's quantum 

adiabatic demon, pointing out its failure to deliver the purported hypercomputation. 

Regardless of whether the class of hypercomputers is non-empty, Kieu's proposed 

algorithm is not a member of this distinguished club, and a quantum computer powered 

Laplace's demon can do no more than its ordinary classical counterpart. 
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It's hard to predict, especially the future. 

Attributed to Niels Bohr1 

1. Introduction 

People yearn to know what the future holds. The decisions people make are often based 

on their present beliefs or expectations about the future, thus the importance of 

prediction. However, the ability to predict the future is hampered by various obstacles, 

both of practical and principle nature. Rather than having to deal with the contingencies 

of human existence, it has been a long tradition in philosophy to introduce special mental 

constructions called demons. Demons as conceptual computational devices often 

appearing in thought experiments are endowed with specific computational powers that 

are supposed to enable them to solve specific computational tasks. In this thesis I intend 

to investigate in principle constraints on predictability for a particular version of 

Laplacian determinism, as it appears, for example, in Stone (1989) and Svozil (1993). It 

is argued that, in the view of these constraints - both of ontological (as in Part I) and 

epistemological (as in Part II) nature - even if classical physics were true, the detailed 

determination of the future would still be out of human reach. 

Historically, the notions of determinism, causality and predictability have been 

often seen as closely related, if not outright identical. Laplace's famous definition of 

determinism involves all the three notions inseparably entangled - it starts with a causal 

characterization and ends with identification of determinism with predictability: 

' Some believe it to be an old Danish proverb popularized by Niels Bohr (e.g., Kae 1975). 
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We ought to regard the present state of the universe as the effect of its 

antecedent state and as the cause of the state that is to follow. An intelligence 

knowing all the forces acting in nature at a given instant, as well as the 

momentary positions of all things in the universe, would be able to comprehend 

in one single formula the motions of the largest bodies as well as the lightest 

atoms in the world, provided that its intellect were sufficiently powerful to 

subject all data to analysis; to it nothing would be uncertain, the future as well 

as the past would be present to its eyes. 

Nowadays, the philosophical literature discussing the interrelations between 

determinism, causality and predictability is enormous and extremely diverse (e.g., 

Popper 1950, Russell 1953, Feigl 1953, Bunge 1967, Boyd 1972, Earman 1986 and 

2004, Hunt 1987, Stone 1989, Van Kampen 1991, Batterman 1993, Kellert 1993, 

Bricmont 1995, Batterman and White 1996, Schurz 1996, Schmidt 1998, Hoefer 2004, 

Bishop 2002, 2003, 2004). Some have maintained that determinism implies 

predictability while others have maintained that predictability implies determinism. 

Many have maintained that there are no implication relations between determinism and 

predictability whatsoever. Some have assumed that in a world of deterministic laws, 

causality must reign supreme, and some have assumed that in any world where causality 

is strong enough, determinism must hold. Others have argued, instead, that these two 

notions are incompatible, and, in any deterministic world complex enough to resemble 

ours, there is no room for genuine causality. 

2 Laplace (1820), Preface; translation from Nagel (1961), pp. 281-282. 
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A great deal of the controversy persists due to lack of a unified consensus of what 

is understood by the key ingredients that enter the notions of determinism and causality, 

and there has been a long-standing disagreement of how these concepts should be 

properly defined. Sobel (1998), to take an example, identifies at least ninety (!) varieties 

of what the term "determinism" could mean in different contexts. In this thesis I will 

focus on a particular version of Laplacian determinism, as it appears, for example, in 

Stone (1989) and Svozil (1993). 

Determinism as a metaphysical doctrine about the world should be separated from 

scientific determinism - the determinism studied in physical theories (Bishop 2004). As 

the study of what properties a scientific theory or model must possess in order to be 

deterministic/indeterministic, scientific determinism is usually much easier to approach 

in case of concrete theories than investigating the features of scientific or metaphysical 

determinism in general. Laplacian original characterization as cited above is a paradigm 

example of an attempt to define scientific determinism. Mark Stone gave a particularly 

clear characterization of Laplacian determinism specified in the form of jointly 

necessary and sufficient conditions for determinism in classical particle mechanics, as 

follows (Stone 1989, see also Bishop 2002, 2003, 2004). 

We assume that the physical state of a system is characterized by the values of the 

positions and momenta of all particles constituting the system at some fixed time t. 

Furthermore, we assume that a physical state of the system corresponds to a point in 

state space in an appropriate model (invoking certain idealizations or model 

assumptions) that allows the description of the system through these values. We then can 

develop deterministic mathematical models for the evolution of these points in state 
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space. The following three features have been proposed by Stone as expressing Laplace's 

vision of determinism (Stone 1989, Kellert 1993, Bishop 2002, 2003, 2004): 

(DD) Differential Dynamics: there exists an algorithm relating a state of a system 

at a given time to a state at any other time and the algorithm is not 

probabilistic. 

(UE) Unique Evolution: A given state is always followed (preceded) by the same 

history of state transitions.4 

(VD) Value Determinateness: Any state of a system can be described with 

arbitrary small (no-zero) error.5 

Differential dynamics is motivated by actually existing physical theories that are 

typically expressed in terms of mathematical equations. These equations, as well as all 

the initial and boundary conditions, are required to contain no intrinsically probabilistic 

(as present, for example, in some versions of quantum mechanics) elements in them. 

Such equations describe the individual trajectories of the points in state space 

representing states of the system. 

The unique evolution requirement is closely associated with DD and expresses the 

Laplacian belief that systems in classical particle mechanics will repeat their behaviour 

exactly if the initial and boundary conditions.are uniquely fixed and specified. 

3 Apart from differential equations, "differential dynamics" can be expressed in the form of difference, 
integral and integro-differential equations among other possibilities arising in descriptions of physical 
theories. 
4 As formulated, U E expresses the uniqueness of state transitions in both temporal directions. It can be 
easily reformulated to allow for the uniqueness of unidirectional state transitions, resulting, 
correspondingly, in futuristic determinism, and retrospective determinism (Earman 1986). 
5 These descriptions can reflect ontological as well as epistemological constraints of the theory. 
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Value determinateness is motivated by the Laplacian belief that there is nothing 

that in principle prevents mathematical descriptions of real physical systems with 

arbitrary accuracy (at least in classical particle mechanics). For example, the ordinary 

models of classical particle mechanics presuppose precise, definite values for the 

constants and variables that enter the equations of motions.6 It is only with the advent of 

quantum mechanics the applicability of definiteness to all of physics was questioned. 

An alternative characterization of Stone's conditions, due to Svozil (1993), 

specifies the conditions for determinism in exact recursive-theoretic terms. It assumes 

that a recursive evolution function is "at the heart" of the classical notion of 

"determinism". Then strong determinism or mechanistic determinism or simply 

mechanism is taken to be a synonym for recursive-theoretic total computability, or 

computability in all aspects. This should not be confused with the above requirement of 

a recursive evolution function. It is a non-trivial substitution as it requires all theoretical 

entities of the theory to be effectively computable. 

For example, since the evolution functions, as well as the initial values and the 

solutions, are usually defined on continua, such as R", and since "almost all" (all except 

the set of measure zero) elements of the continuum are uncomputable, the assumption of 

an exact (i.e., effectively computable) description of the initial value(s) becomes 

unrealistic. Here one may wish to resort to the notion of "arbitrarily but finite accuracy 

parameter values," or "finitely computable parameter values." Since finite numbers are 

recursively enumerable, this would restore effective computability. 

6 Clark Glymour takes the V D requirement as a necessary criterion for determinism and cites Peirce and 
Reichenbach as examples of philosophers who have included this criterion in their analyses of 
determinism (Glymour 1971, pp. 744-745). 
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Therefore, in what follows by the term a "deterministic system" we shall 

understand one having an effectively computable evolution function, whereas a system 

which is totally computable in all of its aspects shall be called "mechanistic". This would 

constitute our working translation of a talk of Laplace's demon into the language of 

recursion theory: 

A deterministic theory has an evolution function which is effectively 

computable / recursive. 

A mechanistic (strongly deterministic) theory is effectively computable / 

recursive in total, i.e., all theoretical entities of the system are effectively 

computable / recursive. In particular, all initial values, laws and solutions of 

a mechanistic theory are recursively enumerable? 

The definitions given above do not directly refer to predicates such as "well 

•defined" or "observable". Also, the question remains open as to whether it is possible to 

obtain physically meaningful (i.e., compatible with presently existing physical theories) 

non-recursive solutions of recursive initial values and recursive evolution functions. As 

has been shown by Kreizel (1974) and Pour-El and Richards (1981), such solutions do 

exist. In order to avoid them (if one wishes to do so), it is necessary to impose further 

restrictions on physical solutions. Such restrictions, if imposed, should be ultimately 

motivated by physical considerations, as I do in the Part I introducing the Lipschitz 

condition to eliminate singularities and divergences in physically meaningful parameters. 

7 The term "mechanistic" is due to Kreizel (1974). 
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Further remarks on the recursive-theoretic definition of (Laplacian) determinism 

are in order: 

(1) Physical determinism in the above defined sense does not imply the initial and/or 

the solution (i.e., the final state) can be represented by an effective computation. 

(2) Computability of the equation of motion and the initial value(s) does not 

guarantee computability of the solution, as happens when the solution is non-

unique (Kreizel 1974), or obtained by unbounded linear operators, or is a weak 

solution (Pour-El and Richards 1981). (For mechanistic theories uncomputable 

solutions from computable initial values and computable equations of motions 

are excluded by definition.) 

(3) Since, from the -point of view of coding and information theory, the distinction 

between the "evolution" and the "initial value" (i.e., some algorithm and its 

output) seems rather arbitrary, the above distinction between "determinism" and 

"mechanism" is rather arbitrary as well, and it would probably be more precise to 

talk of the distinction between non-recursive and recursive (computable and non-

computable) ("mechanistic") theories. 

This particular version of Laplacian deterministic systems provides a unified 

recursion theoretic framework in which the issues of determinism / indeterminism, 

undecidability and computational limitations of predictive conceptual devices - demons 

- can be studied. Correspondingly, this thesis can be seen as the collection of three 

independent case studies, investigating the sources of indeterminism in classical physics, 

computational limitations of classical Laplacian demon as well computational powers of 

a quantum-computer powered Laplacian demon. 

7 



I begin by examining the sources of indeterminism and acausality in classical 

physics. Here I discuss the physical significance of an often overlooked and yet 

important Lipschitz condition, the violation of which underlies the existence of 

anomalous non-trivial solutions in the Norton-type indeterministic systems. I argue that 

the singularity arising from the violation of the Lipschitz condition in the systems 

considered appears to be so fragile as to be easily destroyed by slightly relaxing certain 

(infinite) idealizations required by these models. In particular, I show that the 

idealization of an absolutely nondeformable, or infinitely rigid, dome appears to be an 

essential assumption for anomalous motion to begin; any slightest elastic deformations 

of the dome due to finite rigidity of the dome destroy the shape of the dome required for 

indeterminism to obtain. I also consider several modifications of the original Norton's 

example and show that indeterminism in these cases, too, critically depends on the 

nature of certain idealizations pertaining to elastic properties of the bodies in these 

models. As a result, I argue that indeterminism of the Norton-type Lipschitz-

indeterministic systems should rather be viewed as an artefact of certain (infinite) 

idealizations essential for the models, depriving the examples of much of their intended 

metaphysical import, as, for example, in Norton's antifundamentalist programme. 

Secondly, I examine the predictive computational limitations of a classical 

Laplace's demon in situations where prognoses put forth about the future state of a 

(mechanistic) system actively provoke the very events the prognoses are about. Of 

special interest is a subclass of all such prognoses, so called self-fulfilling prognoses, 

where the very fact of formulating, or putting forth, a prognosis about the- state of the 

system at a certain time in future initiates, or triggers, a series of changes within the 
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system, in such a way that at that future moment the system assumes exactly the state 

described in the prognosis. I demonstrate that in situations of self-fulfilling prognoses 

the class of undecidable propositions about certain future events is not empty; any 

Laplace's demon having all the information about the world now will be unable to 

predict all the future. In order to answer certain questions about the future it needs to 

resort occasionally to, or to consult with, a demon of a higher order in the computational 

hierarchy whose computational powers are beyond that of any Turing machine. In 

computer science such power is attributed to a theoretical device called an Oracle - a 

device capable of looking through an infinite domain in a finite time. 

Thirdly, I examine a recent proposal from the area of quantum computation 

purporting to utilize peculiarities of quantum reality to perform supertasks. While the 

current view is that quantum algorithms (such as Shor's) lead to re-description of the 

complexity space for computational problems, recently it has been argued (by Kieu) that 

certain novel quantum adiabatic algorithms may even require reconsideration of the 

whole notion of computability itself, by being able to "compute the non-computable". If 

implemented, such algorithms could serve as a physical realization of an Oracle needed 

for a Laplacian demon to accomplish its job. I critically review this latter proposal by 

exposing the weaknesses of Kieu's quantum adiabatic demon, pointing out its failure to 

deliver the purported hypercomputation. Regardless of whether the class of 

hypercomputers is non-empty, Kieu's proposed algorithm is not a member of this 

distinguished club, and, when-it comes to computing the non-computable, a quantum 

computer powered Laplace's demon can do no more than its ordinary classical 

counterpart. 
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PART I 

Indeterminism, Asymptotic Reasoning, and Physically 

Inadmissible Idealizations in Classical Physics 

10 



2.1 Introduction 

Abstruse theories like quantum mechanics and general relativity routinely violate 

common intuitions about causality and determinism. In contrast, classical physics is 

often assumed to be a paradigm example of a fully deterministic physical theory that 

never violates these intuitions, or that violates them only in the most extreme 

circumstances which render such situations as plainly unphysical. A number of authors 

have argued that this is not so, and that classical physics is a poor choice of hunting 

ground for such beliefs. A definitive guide to the discussion is John Earman's A Primer 

on Determinism (1986) that collects and discusses various situations that threaten 

uniqueness of solutions for common differential equations governing dynamics of 

ordinary classical systems. A more recent attempt by John Norton (2003) presents 

another simple Newtonian system that seems to exhibit anomalous acausal behaviour in 

that it allows generation of spontaneous motion of a mass without any external 

intervention or any change in the physical environment. The latter system is of particular 

interest since, unlike most of Earman's examples, it does not seem to involve, at least 

directly, any singularities, wild divergences, or any other tinkering with infinities of 

physically meaningful parameters in any way that often leave the true believer of 

determinism unsatisfied. Norton uses this example to support his vision of causality as a 

notion belonging more in folk science rather than being a fundamental principle 

underlying all natural processes and unifying all the domains of science at some deeper 

level. 
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While by and large sympathetic with the general thrust of the "anti-

fundamentalist" programme of Norton, I intend to demonstrate that his mass on the 

dome example fails to provide support for such a view. I discuss the physical 

significance of an often overlooked and yet important Lipschitz condition, the violation 

of which underlies the existence of anomalous non-trivial solutions in this and similar 

cases. I argue that the singularity arising from the violation of the Lipschitz condition in 

the systems considered appears to be so fragile as to be easily destroyed by slightly 

relaxing certain (infinite) idealizations required by these models. In particular, I show 

that the idealization of an absolutely nondeformable, or infinitely rigid, dome appears to 

be an essential assumption for anomalous motion to begin; any slightest elastic 

deformations of the dome due to finite rigidity of the dome destroy the shape of the 

dome required for indeterminism to obtain. Furthermore, I demonstrate that this situation 

cannot be remedied by making the dome a little "pointier" at the apex, in the hope that 

the dome assumes just the right shape after it is "squished" down by the weight of the 

mass placed on top of the dome. 

I also consider several further modifications of the original Norton's example - the 

rope-on-the-edge example and the rope-on-the-spherical-dome example - and show that 

indeterminism in these cases, too, critically depends on the nature of certain (infinite) 

idealizations pertaining to elastic properties of the bodies in these models. Most 

specifically, the idealization of an infinitely flexible rope appears to be an essential 

assumption for indeterminism to obtain; the rope of any finite degree of stiffness appears 

to be unable to follow the specific time-reversible shape of the underlying surface, thus 

blocking the time reversibility argument. 
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Admitting that the examples considered in this part in no way exhaust all possible 

relevant situations of interest, I argue that indeterminism of the Norton-type Lipschitz-

indeterministic systems should perhaps be viewed as an artefact of certain (infinite) 

idealizations essential for the models, depriving the examples of much of their intended 

metaphysical import, as, for example, in Norton's antifundamentalist programme. 

The rest of the Part I is organized as follows. Section 2.2.1 introduces Norton's 

original mass-on-the-dome example and the time reversal argument. In sections 2.2.2 -

2.2.5 I expose some of the loopholes of this example and introduce a cleaner version free 

of these unnecessary complications. Section 2.3 discusses the Lipschitz condition as it 

appears in the theory of ordinary differential equations (ODEs) and as it enters the mass-

on-the-dome example. Section 2.4 is concerned with elastic phenomena that take place 

in the Norton-type indeterministic systems and that appear critical in the discussion of 

time-reversibility of their solutions. Here I also consider several further modifications of 

Norton's original example and show that certain idealizations required by these examples 

are so extreme as to be considered physically inadmissible. Section 2.5 applies (infinite) 

asymptotic reasoning to further elucidate the role and the domain of applicability of 

certain idealizations as they appear in philosophy of science. Finally, in Section 2.6 I 

draw several results from classical hydrodynamics to further illustrate how certain 

solutions associated with first-order differential equations with spatially non-Lipschitz 

velocity fields may lead to lack of important temporal properties of systems such as 

stability with respect to perturbations and Markovianity in time, and demonstrate how 

the behaviour of such systems may depend on the nature of the idealizations made. 
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2.2 The Mass on the Dome 

2.2.1 Setting the Stage: The Original Formulation 

A unit point mass slides frictionlessly on the surface under the action of gravity. The 

surface is shaped as a symmetric dome described by the equation: 

; V(r) = - ^ r 3 / 2 , (1) 

where r is the radial coordinate in the surface, i.e., the distance traveled by the mass from 

the highest point of the dome along the surface, | y | specifies how far the dome surface 

lies below the apex as a function of r, and g is the acceleration due to gravity (Fig. 1): 

. y 
0 X 

" N. m = 1 

/ \ T 
r \ 

/ ' y-3yr 

Fig. 1 Mass sliding on the dome. 

At any point, the magnitude of the gravitational force tangential to the surface is 

FT = -^^1 = r

l / 2 and is directed outward. Newton's second law of motion, F = ma, 
, dr 

applied to the mass on the surface gives 
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dt2 
(2) 

If the mass is initially located at rest at the apex r = 0, then one obvious solution 

to (2) for all times/is a trivial one: 

The mass simply remains at rest for all times. However, there exists another large 

class of unexpected solutions. For any radial direction, 

[0, for all / < T 

where T > 0 is an arbitrarily chosen constant. By direct computation one can readily 

confirm that (4) satisfies Newton's second law (2). 

Note that equation (4) describes a point mass sitting at rest at the apex of the 

dome, whereupon at an arbitrary time T > 0 it spontaneously moves off in some 

arbitrarily chosen radial direction. 

The solutions (4) appear to be fully in accord with Newton's second and first laws, 

if one takes the first law in its instantaneous form as follows: 

In the absence of a net external force, a body is unaccelerated. 

Indeed, for all times t <T, there is no net force applied, since the body is at 

position r = 0, the force free apex; and the mass is unaccelerated. 

For all times / > T, there is a non-zero net force applied, since the mass is at 

positions r > 0 not the apex, the only force free point on the dome; and the mass 

accelerates in accord with F = ma . 

r(t) = 0. (3) 

(4) 
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Finally, when t = T, the direct computation of the mass acceleration from the 

equation (4) gives us 

[0, for all t < T 

so that at t - T , the mass is still at the force-free apex r = 0 and the mass acceleration 

o(0) is equal to zero. Again, no force, no acceleration, exactly as the first law requires. 

What about the initiating cause that sets the mass in motion in the first place? 

Surely the instant t = T is not the first instant at which the mass moves; it is the last 

instant at which the mass does not move. In fact, one can name no first instant at which 

the mass moves. So, if there is no first instant of motion, then there is no first instant at 

which to seek the initiating cause. 

Yet another powerful argument can be given in support of acausality of the mass 

motion. This argument involves the time reversal trick. Since the Newtonian dynamical 

laws of gravitational systems are invariant under time reversal we can invert the sliding-

down-the-dome scenario to produce another legitimate solution which insults the 

principle of causality. Instead of having the mass starting at the apex of the dome, we 

will imagine it starting at the rim and that we give it some initial velocity directed 

exactly at the apex. If we give it too much initial velocity, it will pass right over the apex 

to the other side of the dome. If we give it too small initial velocity, it will rise toward 

the apex, but before it reaches the apex it halts and slides back to the rim. Now, if we 

give the mass just the right amount of initial velocity, it will rise up and momentarily 

halt exactly at the apex. 
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The proper mathematical analysis of the latter situation reveals that the time 

required for the mass to reach the apex moving along the surface of this particular shape 

is finite. That this time is finite is essential for the time reversal trick to succeed. Infinite 

time would mean that the mass never actually arrives at the apex, and the time reversal 

scenario would display a mass that has been in motion at all past times, without any 

spontaneous launches. It should be emphasized that by no means this feature is common 

to all domes. For hemispherical or parabolic domes, for instance, the time taken for the 

mass to reach the apex to its momentary halt is unbounded. In the case of the dome of 

Fig. 1 the time reversal trick does work. 

2.2.2 The Mass on the Dome: Cartesian Perspective 

Defining the surface by y(r) = ~^^2, m terms of the distance r traveled by the mass 

along the surface, conceals important details about the actual geometry of the dome and 

directionality of motion as viewed from the "external" Cartesian perspective. Special 

care should be taken not to overlook these details since they may prove crucial in the 

general case. Indeed, as the present section shows, the original formulation of the mass-

on-the-dome example harbours several loopholes, some of which potentially fatal to the 

project. Fortunately, most of these difficulties are reparable and can be overcome by 

slightly modifying the original formulation of the problem. As the next sections show, 

the modified version inherits all the strangeness of being a source of spontaneous motion 

generation without our having to deal with the loopholes and unnecessary qualifications. 

Consider an axially symmetric dome, and x is a Cartesian radial variable. In what 

follows, we consider only non-negative x's, and then extend the results to incorporate the 
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negative values of the x-coordinate. For the curvilinear coordinate r measured along the 

surface slice cut vertically through the apex at the origin we have 

dx 

so that 

d m = _ ± r V 2 = dy.dx^ / ( * ) ; y ( x ) < 0 , 

dr g dx dr jl + [y'(x)]2 

Expressing the coordinate r we can write down 

r = / J / M ! l ( 6 ) 

Putting v = y' and differentiating both sides of (6) gives us 

, so that f cn = ——5- x + Const dv 1 (l + v 2 ) 5 / 2 , f vdv 1 
— = — , so that T — r p r = — 

dx 2g2 v J( l + v 2 ) 5 / 2 2gz 

Integrating the left-hand side of the last expression we get: 

(i + [ / (*)]¥ 2 =7rV' ( 7 ) 

O KX 

3 • ) for k = — T - and some constant C. 

The first observation to make is that the dome surface appears to be defined not 

for all x's, but only for x's out of some (final) interval [0, L). Indeed, the left-hand side of 

(7) is always greater or equal to 1, so it must be the case that 0 < C - kx < 1 for all x out 

of some interval [0, L). That provides the constraint on the possible values the constants 

C and L can take: 

0<kL<C<\, where L <\/k . 
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Finally, integrating (7) and incorporating negative values of x, we can express y(x) 

as a function of the Cartesian coordinate x: 

y(x) = -±[\-(C-k\x\f-f-+q, (8) 

where 0 < kL < C < 1, L < 1/k, and the constant C, = - ^(1 - C 2 / 3 ) 3 / 2 . 

The tangential gravitational force acting on the mass as a function of x is 

. ™ . . (9) 

The normal force exerted upon the mass by the surface at the point x is 

N = g , 1 • .(10) 

2 . 2 . 3 T h e M a s s o n t h e D o m e v s . t h e M a s s o n t h e P i n n a c l e 

Having expressed the shape of the dome in the linear Cartesian coordinates, it is easy to 

see that not all the domes described by formula (8) would fit Well for generating 

spontaneous motion within Newtonian mechanics. 

Indeed, having fixed some "rim", L<\/k, and depending on the value of the 

constant C, two distinct cases are possible. 

C a s e 1: Cf 1. Substituting x = 0 into (7) we obtain (1 + [v ' (0) ] 2 ) 3 / 2 = ^ > 1 , so 

that the first derivative of the function tends to some non-zero constant, d, as x 

approaches zero. Geometrically this, means that the tangent line to the dome surface at 

zero hits the v-axis at some non-zero angle - the mass arrives at the apex not exactly 

horizontally but at some non-zero angle. As we pass through zero into negative x's, the 

tangent line to the surface experiences a sudden step-like jump: 
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lim y'(x) - lim y\x) = 2d for some d * 0 . 
-v—>0+ x—>0-

So y'(x) is simply not defined at x = 0. I shall refer to this case as the mass-on-

the-pinnacle scenario (Fig. 2): 

F ig . 2 The mass on the pinnacle. 

Since y'(x) enters the expressions (9) and (10) for the tangential gravitational and 

normal forces acting on the mass, these forces appear not to be defined at zero either. As 

Newton's second law of motion " F = ma" cannot be written for the mass at zero, the 

mass-on-the-pinnacle scenario simply does not belong in Newton's mechanics 

jurisdiction, and should be excluded from the discussion by an appropriate stipulation. 

Yet, I shall return to this case again in section 2.3, where it appears in regard with the 

Lipschitz condition. 

Case 2: C = 1. Since the constant C, = —(1 - C 2 / 3 ) 3 / 2 , we have C, = 0, and the 

expression (8) for the shape of the dome takes a relatively simple form: 
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y{x) = -\[\-{\-k\x\)2l'f\, (11) 

for all x out of the interval (-L, L), L<\/k , for which the surface is defined. 

Looking at (7), we see that the first derivative, y'(x), turns to zero as x approaches 

zero. Geometrically this means that the mass arrives at the apex exactly horizontally. 

Even though the second and higher derivatives of y(x) do diverge at zero, this fact by 

itself, at least directly, seems to generate no singularity or divergence in any physically 

meaningful parameter. I shall refer to this situation as the (proper) case of the mass on 

the dome (Fig. 3). A l l discussion that follows below will have this situation in mind. 

F ig . 3 The mass on the dome (proper) . 

At this point we also note that in the vicinity of the apex, i.e., at the limit | x |-> 0, 

the graph behaves as a fractional power function: 

^ ( x ) « - V 8 V 2 7 | x | 3 / 2 = - ^ | x | 3 / 2 , (12) 

which, of course, should have been expected, since, for small x's, the x-coordinate almost 

coincides with the radial coordinate r measured along the practically horizontal surface. I 
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shall return to this point later in the next section when trying to modify the original 

formulation of the problem to avoid some of its loopholes. 

On the other side of the interval, as x approaches the "rim", | x |-> L, the graph 

descends steeper and steeper until it hits the vertical wall at | x | - L . (The graph of this 

function appears in Fig . 1.) 

2.2.4 The Mass on the Dome or the Mass in.the Air? 

Further observations about the behaviour of the mass on the so defined dome are in 

order. Consider again the three classes of trajectories produced i f we give the mass at the 

rim some initial velocity directed at the apex along the surface: those where the mass 

halts before it reaches the apex and falls back to the rim; those where the mass halts 

exactly at the apex; and those where the mass passes the apex with some non-zero 

velocity and rushes over to the other side of the dome. 

There is an easy and instructive way to see how things may go astray by 

considering the trajectories from the third class when the mass passes over the apex. A s 

the mass proceeds through the apex with a non-zero velocity into negative x's, it 

continues its motion along an artillery shell like ballistic trajectory. However, in the 

vicinity of the apex, the dome surface descends faster than any such parabolic trajectory 

so that the mass necessarily detaches itself from the surface once it enters the negative 

x's, refusing to follow the prescribed track.8 (The results of numerical simulation for 

different velocities appear below in Fig . 4.) 

The mass detachment for the third class of trajectories was also noticed by David Malament 
(manuscript). 
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Fig. 4 Passing over the dome apex. 

It is worth noting, however, that mass detachment for the third class of trajectories 

in no way affects Norton's original argument and is mentioned here for illustrative 

purposes only. More important is similar detachment that occurs in the second class of 

trajectories, for which the mass is aimed to halt exactly at the apex. To see this, recall 

that at the "rim", x = L , the tangential to the surface plane is exactly vertical. It means 

that the mass, initially positioned at the rim and given any initial velocity directed at the 

apex along the surface, will go (up (and then fall back) precisely vertically, detaching 

itself from the surface and thus, again, refusing to follow its curvature. A careful analysis 

reveals that this is true not only for the rim x = L taken as an initial position of the mass, 

but also for some vicinity of the rim. Indeed, for the so defined domes, there always 

exists a (finite) interval (Zi, L), 0 < L\ < L , such that, for all initial positions of the mass 

(the "rims") taken within this interval, the ballistic trajectory of the mass descends 

slower than the dome surface immediately under it, thus causing the mass to detach from 

r 
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the surface. (The results of numerical simulation for different initial positions are shown 

below in Fig. 5.) 

Fig. 5 Mass detachment in the vicinity of the rim. 

Clearly, such initial positions would be a poor choice for being the "rim" since, as 

mentioned in section 2.2.1, letting the mass fly along its ballistic parabolic path would 

irreparably ruin the time reversal argument. 

Any attempt to bypass this difficulty by pushing the mass back on the prescribed 

track (e.g., switching to a bead-on-the-wire example) would necessarily involve 

additional forces (viz., the elasticity forces of the wire along which the bead would slide) 

without which the mass will simply refuse to follow the track. Adding new forces 

(external or internal), as we shall soon see, brings new and undesirable complications 

into Norton's original problem.9 

9 This phenomenon of mass detachment is closely connected with a mechanical system's being ideal 
holonomic since an ideal holonomic constraint can be taken as the l imit ing case of a system with a large 
potential energy, or, equivalently, the l imiting case of an infinite force field in a neighbourhood of the 
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These complications become especially important (and more subtle) when we 

move away from the rim to the vicinity of the apex. Unlike the previous situation, for 

any initial position of the mass taken within the interval (0, Zi), the ballistic trajectory of 

the mass now descends faster than the dome surface, and no detachment of the mass 

from the surface occurs. (The results of numerical simulation are shown in Fig. 6.) 

Fig. 6 No mass detachment in the vicinity of the apex. 

Though we need not resort to elastic wires going through the mass to keep it from 

detaching itself from the surface of the dome, this is the elasticity of the dome that 

acquires special importance here. 

At this point we can discern a general pattern that begins to emerge. We don't 

want to let the mass move along its free-flight parabolic trajectory; parabolic trajectories 

give infinite past times for the time reversal scenarios, thus stripping the whole argument 

of its force. In the vicinity of the rim this can be done the invoking the elasticity forces-

curve, directed toward the curve to ensure the moving point remains exactly on the curve (see Arnold 

1978). I intend to expand on this point elsewhere. 
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of the wire through which the bead-mass now slides (or applying some other external 

force). In the vicinity of the apex these are the elasticity forces of the dome that would 

"straighten up" the mass path sufficiently to yield the required curvature; were it not for 

the elasticity forces of the dome, the mass would choose to follow its free-flight ballistic 

path. In any case, there is a (very strong) force field in the neighbourhood of, and 

directed toward the surface, that ensures that the mass moves along the required path. 

Yet, as the following sections show, no finite, however large, elasticity coefficient of the 

dome can allow for the time reversibility of the mass motion; only absolutely rigid dome 

can make the time reversal trick possible; thus the singularity in a physically meaningful 

parameter of the situation. 

2.2.5 The Mass on the Dome, Modified 

Many of the difficulties mentioned above can be.overcome and will disappear if we 

make the following minor change in the original formulation of the problem. Namely, 

instead of defining the surface by y(r) = ~ ^ r ^ 2 > m curvilinear terms of the distance r 

traveled by the mass along the surface, we define it, just as (12) suggests, in the usual 

linear Cartesian coordinates by 

y(x)-~-^\x\3/2. (13) 

This way, first, the situation no longer harbours the mass-on-the-pinnacle case in 

which the slope of the surface experiences a sudden step-like jump at the apex. The mass 

moving along the surface will now always arrive at zero exactly horizontally and no 

qualifications to the contrary are necessary. 
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Second, the surface is now defined for all x's, not just for all x out of some interval 

(-Z, L), L < \/k; no more "preferred" "rims" or vertical walls. 

Third, with any arbitrary (x-positive) point on the dome taken as the motion 

starting point (the "rim"), no detachment of the mass from the surface when it starts at its 

"rim" ever occurs; no need to resort to elastic wires to keep the mass on the prescribed 

track. 

On the other hand, since at the infinitesimal vicinity of the apex (the spontaneous 

motion generation region) the curvilinear coordinates and linear coordinates coincide, 

the simplicity of the expression (2) for the second law of Newton remains in place. 

This does not, however, prevent the mass from detaching from the surface for the 

third class of trajectories once the mass passes the apex with non-zero velocity as in Fig. 

4. Fortunately, these trajectories play no role in Norton's time reversal argument, so we 

will simply let the mass disappear from our attention once it vanishes behind the apex 

into the other side. 

As the following sections show, the so modified mass on the dome example 

inherits all the strangeness of being a source of spontaneous motion generation with no 

need to deal with the above discussed loopholes and unnecessary qualifications. 

2.3 The Lipschitz Condition 

We recall that the function x(t) satisfying the initial condition (t0,xQ) is a solution of 

the differential equation determined by a vector field v 

^ = v(x) (13) 
dt 
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if the following identity holds for all / in the interval / on which x(t) is defined: 

dx 
— = v(x(7)),and x(/0) = x 0 . (14) 
dt 

Every differential equation (13) defines a direction field of this equation in the 

plane: the line attached at the point (t,x) has slope v(x). If x0 is a singular point of the 

vector field, i.e., v(x 0) = 0 , then x{t) = xQ is a solution of the equation (13) satisfying the 

initial condition x(/0) = x 0 . Such a solution is called an equilibrium position or 

stationary solution. 

Let v(x) = sgn(x) | x | 3^ 4. For such a field, (13) has more than one solution, e.g., the 

solutions x,(/) = 0 and x 2(0=|'/4| 4 satisfy the same initial condition (0,0). In fact, 

(13) has a whole 1-parameter family of solutions obtained by gluing together the 

corresponding halves of the two solutions, x](t) = 0 and x,(/) = [( / - Z ) /4 ] 4 , at some 

arbitrary time T > 0. (This situation is typical in that if (13) has more than one solution, 

then it has a "continuum" (i.e., a closed connected set) of solutions.) In the general 

theory of ordinary differential equations it is hardly a surprising fact; if the direction 

field v is continuous but nondifferentiable (only Holder continuous), the solution with 

initial condition in the equilibrium position may fail to be unique. Indeed, for any 

v(x) = sgn(x) | x \ a , where 0 < a < 1, there always exists a family of branching solutions 

for (13) that satisfy the same initial condition (0,0): 

x(t) = ±[(\-a)(t-T)J/{l'a), (15) 

where / + = max(/,0), for an arbitrary T(Fig. 7): 
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Fig . 7 The direct ion field for a = 3/4 . 

Geometrically, the reason for non-uniqueness in these cases is that the velocity 

decreases too slowly when approaching the equilibrium position. As a result, the solution 

manages to reach the singular point in a finite time. It turns out that the smoothness of v 

guarantees the uniqueness in these cases. This observation needs more elaboration. 

Let us assume that x(t) is a solution of the equation — = v(x) with a smooth 
dt ) 

right-hand side v. We will suppose that. x(t0) = x 0 is an equilibrium position and 

x(/,) = x, is not (Fig. 8): 
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On the interval between t0 and , consider the instant t2 closest to tx such that 

v(x{t2)) = 0 . By Barrow's formula for any point ti between /, and /, we have 

If the function v is smooth, then the integral tends to infinity as x3 tends to x2. 

Indeed, the slope of the chord of the graph of a smooth function on an interval is 

bounded, so that | v(£) | < k \ % - x2 \, where the constant k is independent of the point £ 

of the interval [x,,x 2] (Fig. 9): 
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The latter integral is easily calculated; it tends to infinity as x 3 tends to x 2 . It is 

easy to verify this without even calculating the integral: it must be equal to the time of 

transit between the two points in the linear field (i.e., for parabolic trajectories), and this 

time (logarithmically) tends to infinity when one of the points tends to the equilibrium 

position. 

Thus the number 112 - tx | is larger than any pre-assigned number. So the solution 

with initial condition in an equilibrium position cannot assume values that are not 

equilibrium positions. Therefore if x(/ 0) is an equilibrium position, we have v(x(t)) = 0 
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for all /. Consequently 
dx{t) = 0, i.e., x(t) is a constant. The uniqueness is now 

dt 

proved. 10 

Note that the main point of the proof was the comparison of a motion in a smooth 

field with a more rapid motion in a suitable linear field (i.e., parabolic trajectories). For 

the latter motion the time to enter an equilibrium position is infinite, and consequently it 

is a fortiori infinite for the slower motion in the original field. Indeed, it can be shown 

that a sufficient condition for uniqueness of the solution with initial value x0 is that the 

The condition that | v(£) |< k | £ - x 2 |, where the constant k is independent of the 

point E, of the interval [x,,x,] (i.e., the condition that the slope of the chord of the graph 

be bounded), is called a Lipschitz condition and the constant k a Lipschitz constant.11 It 

can be shown that a sufficient condition for uniqueness is that the right-hand side 

function v satisfy a Lipschitz condition | v(x) - v(y) \ < k \ x - y | for all x and y. 

It is by no accident that we chose the function | v |=| x to exemplify the 

Lipschitz discontinuity. Writing down the energy conservation relation for a unit mass 

sliding on the surface of the axially symmetric dome defined by the equation 

y(x) = - | x p / 2 gives us 

1 0 The proof is due to Arnold-( l 992)., 

" More generally, i f | / ( £ ) - f(x) \< k \ £ - xf for given x and all | £ - x |< S , where k, ft are 

independent of £ , and / ? > ' 0 , a n d a is the upper bound of all the p such that a finite k exists, / ( £ ) is 

said to satisfy a Holder condition (or, in some textbooks, a Lipschitz condition of order a) at £ = x . If a 

Lipschitz condition of order a is satisfied a t * , it can be shown that f'(x) = 0 . If at every point of the 

interval it is satisfied for some a > 1, then f'{x) = 0 throughout the interval. Hence f{x) is constant; 

consequently only the case 0 < a < 1 is of primary interest. 

X 
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x2 

— = g\y(x)\, 

so that 

, dx 
A = ^ \ y ( x ) \ ] / 2 ^ \ X \ 3 / 4 

dt 

which, to the factor of ^J2g, coincides with our | v |. The right-hand side of the 

expression is non-Lipschitz: its derivative, ^ I x I > is unbounded in the 

neighbourhood of the origin. As a result, the uniqueness theorem does not apply. Gluing 

together in a smooth manner the corresponding halves of the two solutions, x, (/) = 0 and 

x2(0 = [0 -^)/4] , at some arbitrary (positive) time T reproduces Norton's anomalous 

solutions. That's the reason why the existence of anomalous non-trivial solutions in 

Norton's case can be wholly attributed to (spatial) Lipschitz-discontinuity of the system's 

velocity field (i.e., Lipschitz-discontinuity of the square root of the potential well 

wherein the mass moves). Let us call such solutions (spatial) Lipschitz indeterministic. 

A further observation clarifying the role of the Lipschitz condition is in place. A 

Lipschitz condition is weaker than that for the function v to be C 1 (continuously 

differentiable). Indeed, the uniqueness theorem holds in the case when the first 

derivative of v exists but is discontinuous. What that means with respect to our situation 

is that the mass-on-the-pinnacle case cannot be amended by defining the otherwise 

undefined values of the derivative y'(x). Try, for instance, to define it as the right-hand 

limit of the derivative'at zero (i.e., regard the mass at apex positioned as if it is still on 

the right-hand side of the surface only): 
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y'(0) := lim y'(x) < 0 . 
*->o+ 

Now that the derivative exists but is discontinuous, the uniqueness theorem comes 

into play, and only one solution survives. Which one and why? Substituting this value of 

y'(0) into (9) we see that, at the apex, there is always a non-zero tangential gravitational 

force FT pushing the mass downward. It is to say that, after having reached the apex and 

having momentarily halted, the mass will necessarily turn back and fall down to where it 

came from. The situation becomes no more paradoxical than throwing a stone vertically 

in the air, seeing it halt after some finite time, and then catching it back again. The trivial 

solution *,(/).= 0 is impossible on so defined pinnacle surface exactly for the same 

reasons that make it impossible to have the stone hang in the midair forever once it has 

reached its maximal altitude. (A similar argument applies if one tries to define y'(0) as 

the left-hand limit of the derivative at zero.) Causality reigns. 

2.4 Elastic Deformations and Physically Inadmissible Idealizations 

2.4.1 Models and Idealizations 

Scientific theories employing mathematical models "approximate" or "idealize" in one 

way or another. Whereas much attention in philosophy of science has been drawn to the 

role of idealizations in the development of scientific theories (e.g., McMullin 1985, 

Cushing 1990, Moulines 1996, see also Redhead 1980, Laymon 1985, 1995, and 

Hartmann 2005a, 2005b), it is admissibility of idealizations in theorizing that will be of 

main interest in this section. I will argue that certain idealizations required by Norton's 

dome example are so extreme as to be considered physically inadmissible. In particular, 
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the idealization of absolutely nondeformable, o'r infinitely rigid, dome appears to be an 

essential assumption for indeterminism to obtain; any slightest diversion from this 

idealization that allows any (however small!) elastic deformations of the dome-

completely destroys the shape of the surface at the apex needed for spontaneous motion 

generation to occur. In addition, there seems to be no way of remedying this situation by 

starting out with another elastic dome surface that is a little "pointier" at the apex, in the 

hope that the dome assumes just the right shape after it is "squished down" by the weight 
c 

of the mass placed on top of the dome. As a result, indeterminism of the dome example 

should rather be viewed as an artefact of certain (infinite) idealizations, depriving the 

example of much of its intended metaphysical import, as, for example, in Norton's 

antifundamentalist programme. 

2.4.2 Elastic Deformations and Idealization of a Concentrated Force 

In a real physical body that is not deformed, the arrangement of the molecules 

corresponds to a state of thermal equilibrium; all parts of the body are in mechanical 

equilibrium. This means that, if some portion of the body is considered, the resultant of 

the forces on that portion is zero. When a change in the relative positions of molecules -

a deformation - occurs, the body ceases to be in its original state of equilibrium. As a 

result, there arise forces which tend to return the body to equilibrium. These internal 

forces which occur when a body is deformed are called internal stresses. If no 

deformation occurs, there are no internal stresses. 

The internal stresses in a real physical body are due to molecular forces, i.e., the 

forces of (electro-magnetic) interaction between the molecules. The molecular forces 
i 

tend to have a very short range of action: their effect extends only to the neighbourhood 
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of the molecule exerting them, over a distance of the same order as that between the 

molecules. On the other hand, the standard classical theory of elasticity, as a 

macroscopic theory, considers only distances which are large compared to the distances 

between the molecules. This being so, in many problems the atomistic structure of the 

elastic medium can often be disregarded and the body replaced with by a continuous 

mathematical model whose geometrical points are identified with material points of the 

medium. 

The internal forces determine the elastic properties of bodies, which 

mathematically characterize certain functional relationships between forces and 

deformations of elastic medium. As a result, the response of elastic body to the action of 

forces (internal or external) is in no way arbitrary, but is subject to certain relationships 

and constraints that may prove critical in many problems. 

Consider the following problem from the classical theory of elasticity. Suppose we 

are given a vertically symmetric dome of the (already familiar) form: 

y(x) = -\x\-/2. 

The dome is made of infinitely divisible continuous elastic medium, and the, 

standard assumptions of the classical theory of elasticity are assumed to be in place. 

We want to determine the deformation of the dome under the action of a finite 

concentrated force, applied vertically to just one point of the surface - the apex of the 

dome; 

1 2 See, e.g., Sokoln ikof f (1956) and Thomas (1961). In particular, if a medium particle, init ially at the 

point Xj, is displaced to the position x'j at time I according to the relations x(- = <pj(x'j,t), these relations 

are assumed to have a unique inverse at any time /, 0- must be continuous and differentiable functions of 

the initial coordinates Xj and the time and the functional determinants || dXj 13x- || and || dx'j/dxj || are 

different from zero everywhere. 
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To solve this problem, we introduce polar coordinates, with an angle <p measured 

from the direction of the applied force (Fig. 10):, 

Fig. 10 Deformation of the dome under the action of a concentrated force. 

For any given radial distance from the apex r, the angle <p takes values from -<pm to 

cpm, where 

I tan ̂  | = \x/y\ = | x |~1/2 . 

The components of the stress tensor, crrr, cr , and crr(p, can be expressed (in polar 

coordinates r, <p) as derivatives of the stress function, x (Landau and Lifshitz 1986, p. 

21): 

1 dX 1 d2

 x 

<Jrr h — , cr 
r dr r dcp" dr1 dr 

Since at every point of the dome boundary except the apex where the force is 

applied we have 

cr =cr =0. 
(pep np 

37 



the stress function % should satisfy the following conditions: 

or r ocp 

for <p - -<pm,<p„,, and some functions fx and f2 not depending on r. 

Substituting %(r,<p) = rf\(p), the biharmonic equation of equilibrium for elastic 

solid bodies (Landau and Lifshitz 1986, pp. 18, 48) 

]_d_ 

r dr 
+ • 

dcp2 
J = 0 

gives solutions for f{cp) of the following forms: 

sin cp , cos cp, cp sin (p , and cp cos cp . 

The first two of these correspond to stresses equal to zero identically, and it is only 

the third one that gives the correct value for the force applied at the apex. Indeed, 

projecting the internal stresses on directions parallel and perpendicular to the force F, 

and integrating over the part of a small circle lying inside the dome and centered at the 

apex, in the limit of zero radius we obtain 

^crrrr cos cpdcp = -F, 

J C T . / sin (pdcp = 0, 

as required to balance the external force applied at the apex. From here we can get the 

following solution: 

crrXr>(P) = -(¥r-)C0S(P > 

cr =<J =0. 
<p<p rep 
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where F is the force per unit thickness of the dome. 

These formulas determine the required stress distribution in the dome. Note that 

the stress distribution is purely radial: only a radial compression force acts on any area 

perpendicular to the radius. The lines of equal stress are the circles r = dcos(p, which 

pass through the apex and whose centres lie on the line of the action of the force F. 

The components of the strain tensor are 

urr = crrr/E, uw = -crcrrr/E , and urip = 0, 

where cr is Poisson's ratio and E is Young's modulus characterizing the elastic medium 

of the dome. 

Now, expressing the components of the strain tensor in terms of the derivatives of 

the components of the displacement vector (in spherical polar coordinates): 

dr ""p r d(p r 9 dr r r dcp 

we can get the final expression for the displacement vector that solves our problem: 

IF. ( , . ( l - t r ) F . 
ur = --—log(r/a)cos(p — <psm<p , 

KE 71E 

2oF . 2F. . , '. (\-a)F . . , 
u = sin^» + log(r/a)sm(p + (smcp-<pcos<p) . 

7iE nE 7lE 

Here the constants of integration have been chosen so as to give zero displacement 

(translation and rotation) of the dome as a whole: an arbitrary point at a distance a from 

the apex on the line of action of the force is assumed to remain fixed (Fig. 11): 
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Fig. 11 Logarithmic infinite well at the apex. 

Looking at the formal solution just given we notice that it presents an infinitely 

deep logarithmic well going all the way down from the apex. Assuming that the mass 

always remains in contact with the surface on which it exerts the force (i.e., the mass 

travels down with the surface as the latter is "squished" down by the mass), it follows 

that there can be no trivial solution with the mass staying on (or sliding along) the 

surface - the only shape of the dome that counterbalances a concentrated finite force 

exerted by a point mass is the infinite logarithmic well. 

That we get an infinitely deep well (as opposed to some finite "pimple" on the 

surface) is not, perhaps, a totally surprising result: it is characteristic for this particular 

model that the force is applied to just one point - the area of measure zero, thus 

producing infinite pressure on the surface at the apex. Disallowing any fractures and 

punctures of the surface which is taken to remain continuous at all times (yet infinitely 

stretchable), the elastic surface will always give way under the infinitely sharp needle as 

the latter pushes its way down. That is all to say that the problem of a point mass staying 
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on top of an elastic surface is not a well-posed problem in the first place - if cannot even 

be set up properly within the classical theory of elasticity. 

2.4.3 Modification 1: The Dome with a Pinnacle on Top 

The infinite logarithmic well also helps explain why the original Norton's mass-on-the-

dome formulation cannot be remedied by making the elastic dome surface a little 

"pointier" at the apex, in the hope that the surface will assume just the right shape after 

the mass is placed on top of the dome and "squishes" it down by its weight. Indeed, 

consider, for example, the following modification of the dome with an arbitrarily high 

and sharp conical pinnacle on top (with the non-zero angle 2a as close to zero, and the 

height of the pinnacle, h, as high as desired) (Fig. 12): 

F 

x 

y 

Fig. 12 The dome with a pinnacle on top. 
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The stress distribution in such a pinnacle-shaped part of the dome due to a 

concentrated force applied vertically to its apex is, obviously, given by the same 

formulae as above with only difference being in their normalization constants. Namely, 

the stress tensor components in this case are (cf. Landau and Lifshitz 1986, pp; 48-49): 

r \ 

F 

a + — sin 2a 
l 2 ; 

1 n 
-COSCO, CT =CT = 0. 
r 

Such stress distribution, however, also gives rise to an infinitely deep logarithmic 

well going all the way down from the top of the dome. Since this is true for any 

arbitrarily high and sharp pinnacle, there is no way the new dome can assume the desired 

shape at the apex after we place a point mass on its top. 

2.4.4 Modification 2: The Rope-Sliding-the-Edge Example 

One may think that all the pathologies of the Norton's dome originate in the singularity 

of the dome surface at the apex. Indeed, in the original Norton's setting it is the singular 

non-smooth geometry of the surface in the' immediate vicinity of the apex that is 

essential for indeterminism to obtain; the rest of the surface plays no role in this 

phenomenon and can be safely replaced by some other surface, or even merely removed. 

Yet, as I will show in this and the following sections, the singularity of the surface at the 

apex is in no way essential for indeterminism to occur and one can get anomalous 

motion generation for everywhere smooth surfaces. 

Recall that the primary resource responsible for non-uniqueness in Norton's case is 

(spatial) Lipschitz-discontinuity of the direction field of the differential equation that 

governs the system's dynamics. For a simple Newtonian gravitational system such as 
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Norton's dome it is equivalent to Lipschitz-discontinuity of the square root of the 

potential wherein the mass moves. Correspondingly, we can expect similar 

indeterminism in systems whose dynamics is governed by the same differential equation, 

as long as the square root of their effective potential'is non-Lipschitz. 

Consider the following example.13 A flexible yet unstretchable rope of negligible 

thickness lies motionlessly on a frictionless flat horizontal surface with one of its ends 

touching the edge of the surface; beyond this point the surface descends abruptly with 

the shape given by the equation expressed in usual Cartesian coordinates (Fig. 13): 

y(x) = - | x l'/2 

r 

F x 

/7=-y 
1/2 

F - gKh 
y = - x 

Fig. 13 The rope sliding down the edge. 

When the rope slides down the edge by some distance x (in the x-direction), the 

force exerted on any given point of the.rope is 

F ~ gKh = gK | x ,3/2 

13 This example was suggested by Wi l l iam Unruh (personal communication). 
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where K is the rope mass per length unit, and h measures the distance from the x-axis to 

the sliding end of the rope. Equivalently, we may talk about the centre of mass of the 

rope moving in the potential 

U(x) = -gK | x | 3 / 2 . 

The rope moving in this effective potential, clearly, presents a similar dynamical 

situation as that of Norton's point mass on the dome, giving rise to similar 

indeterministic behaviour of the rope: for an arbitrarily long time the rope lies 

mo.tionlessly on the horizontal surface, when, suddenly, without any external 

intervention or change in the environment, it starts sliding down the edge. 

The fact that the rope-sliding-the-edge example has no point masses makes it of 

special interest. No point masses, no concentrated forces, no. infinite pressures on the 

surface, and no infinite wells that would prevent the problem from being well posed in 

the first place. 

Also note that it is the rope's centre of mass the behaviour of which is governed by 

the non-Lipschitz differential equation, and this centre of mass is now an abstract 

mathematical point, not necessarily corresponding to any material point of the rope. 

Indeed, once .the rope slides off its original position, its centre of mass detaches from the 

rope and moves to the depth of the medium that constitutes the slide. That the system's 

centre of mass no longer necessarily tracks the path of the system itself is an important 

feature that will allow us to further modify the example as to smoothen all singularities 

in the surface while maintaining indeterministic non-Lipschitz dynamics. 

Yet, before we do so, it is instructive to look more closely at the elastic 

phenomena taking place in the immediate vicinity of the edge where the rope is bent 
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before it goes down the wall. More specifically, I will argue that the idealization of an 

infinitely flexible rope in this situation is essential for indeterminism to occur; taking 

into account any slightest elasticity effects (however small!) destroys any non-trivial 

solution resulting in the rope's remaining motionless at all times with no spontaneous 

motion generation. 

2.4.5 Bending of Rods 

Consider an elastic rope (or a rod) of finite, yet negligible, thickness. Assuming finite 

stiffness of the rope, let us look carefully at its bending in the immediate vicinity of the 

edge (Fig. 14): ; 

t.y 

X. 

y = - x 
.1/2 

Fig. 14 The bending of the rope in the immediate vicinity of the edge. 

When a rope (or a rod) of non-zero thickness is bent, it is stretched at some points 

and compressed at others. Lines of the convex side of the bent rod are extended, and 

lines on the concave side are compressed. This being so, there is a neutral surface in the 
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rod that undergoes neither extension nor compression. This neutral surface separates the 

region of compression from the region of extension. 

Let us look at a bending deformation in a small portion of the length of the rod in 

the immediate vicinity of the edge where not only the strain tensor but also the 

magnitude of the displacements of points in the rod are assumed small. Taking a 

coordinate system with the origin on the neutral surface in the portion considered, and 

the x-axis parallel to the axis of the undeformed rod, we can suppose that the bending 

occurs in the xv-plane. Not giving a general solution for all possible configurations of the 

system, we give the expressions for the components of the displacement for a rod of 

rectangular cross-section as it appears, e.g., in Landau and Lifshitz (1986, pp. 65-66): 

ux — xy/R, uz = -ayz/R , and . 

uy=-~{x2+cr(y2-z2)}, 
ZK 

where R is the radius of curvature of the neutral surface at the edge. 

Using these expressions, it can further be shown that the sides z = ± y z 0 of the 

initially rectangular cross-section become z = ±jz0 + u: =±^z0(\-ay/R), i.e., no 

longer parallel but still straight. The sides y = ±^y0, however, are bent into the 

parabolic curves 

That the bottom edge of the rope of any finite degree of stiffness is bent into 

parabolic curves makes it impossible for the rope to follow the underlying surface; 
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rope's refusal to follow the prescribed track once again blocks the time reversibility 

argument - the rope stays on the horizontal surface forever. 

There is another way to see that a finitely flexible rod cannot be deformed as to 

make it stay in a close contact with the surface at every point when the surface 

experiences a sudden change in directionality such as in the above example: the 

displacements of the rod in the just given expressions diverge and cease to be well 

defined if the radius of curvature of the neutral surface R reaches zero. This also helps 

understand why an (initially straight and undeformed) rod with any finite degrees of 

stiffness, when placed on top of Norton's original dome, detaches from the dome in a 

manner closely resembling the detachment of the mass projectile when the latter passes 

over the top with a non-zero velocity (Fig. 15):14 

A y 

Fig. 15 The bending of the rope in the immediate vicinity of the apex. 

Indeed, the radius of curvature R of Norton's original dome surface (or, more 

precisely, that of any two-dimensional cross-section of the surface cut vertically through 

the apex) is given by the following familiar expression of differential geometry: 

1 4 Similar diff iculties, it may be argued, may be expected when trying to force the mass to track the surface 
by switching to a bead-on-the-wire example; deformations of the wire at the origin would, on a 
microscopic level, presumably, diverge the bead unto a parabolic, not time-reversible, trajectory. 
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R g+y 2) 3 / 2 

y" ' 

where the two-dimensional curve is given explicitly by the equation y = f(x) = -\x 

(Fig. 16): 

~>-

S S ' 

Fig. 16 The radius of the curvature of a plain curve. 

This radius R (which, in the limit of infinitely thin rope lying on the dome, 

coincides with the radius of curvature of the rope's neutral surface), clearly, tends to. zero 

when we approach the top of the dome.15 

Yet, the next section will show that the situation can be improved still further as to 

eliminate all singularities in the geometry of the surface while maintaining 

indeterminism. 

2.4.6 Modification 3: The Rope on the Spherical Top Dome 

Consider the following modification of the rope-sliding-the-edge example. A flexible (of 

some finite degree of stiffness) yet unstretchable rope of negligible thickness lies 

motionlessly on a frictionless symmetrical dome. In some vicinity of the top the dome is 

1 5 The observation that the Gaussian curvature o f Norton's dome at the apex is infinite first appears in 
David Malament (manuscript). He seems, however, to think that this is merely a geometrical fact about the 
surface which is no more physically troublesome that other idealizations employed in Newtonian theory. 
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spherical; beyond this spherical area the dome continues in a smooth manner as the 

familiar power function (Fig. 17): 

y(x) = -\x\-/2. 

X 

Fig. 17 The rope sliding down the spherical top dome. 

The rope initially lies motionlessly on the dome with the two halves of the rope 

hanging symmetrically from both sides of the dome. The total length of the rope exceeds 

that of the spherical arc of the dome so that the rope's ends protrude to the non-spherical 

parts of the dome. 

When the rope slides down the dome by some distance x (in the x-direction), the 

force exerted on any given point of the rope is 

F ~ 2gKh = 2gK | x f2 , 
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where K, again, is the rope mass per length unit, and h measures the distance from the x-

axis to the sliding end of the rope. Equivalently, we may talk about the centre of mass of 

the rope moving in the potential 

U(x) = -2gK | x |3/2 . 

The rope moving in this effective potential (which, up to the constant 2, coincides 

with that of the previous problem), also harbours spontaneous motion generation: for an 

arbitrarily long time the rope lies motionlessly on the dome, when, suddenly, without 

any external intervention or change in the environment, it starts sliding down the dome. 

Notice that the surface of the dome is now perfectly smooth on top - it is spherical 

- with no singularities in the geometry of its shape, and yet, the velocity field of the 

differential equation for rope's centre of mass (i.e., the square root of the effective 

potential in which the rope moves) is Lipschitz-discontinuous at x = 0 resulting in the 

system's evolving in a non-unique manner. 

Notice also that no difficulties with detachment arise when the (initially unbent) 

rope is bent into a spherical arc when it slides over the spherical part of the dome (any 

circular curve behaves locally as a parabola). In addition, once bent into a spherical arc, 

the rope can easily slide along the spherical top of the dome with no further bending 

thanks to rotational (in the vertical plane) symmetry of the sphere. This does not, 

however, apply to the non-spherical parts of the. dome where the surface is no longer 

rotationally symmetric, and where the rope, therefore, necessarily undergoes additional 

continuous bending as it moves forward. , 

Not providing a rigorous analysis for this problem for all possible configurations 

of the system, I will argue that, assuming finite stiffness of the rope, similar (as in the 
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previous example) detachment phenomena may well be expected: looked at the 

microscopic level, the bottom edge of the rope's free end, while locally bent into 

parabolic curves, detaches from the dome surface, unable to follow the underlying 

surface of the time-reversible shape. The condition of non-Lipschitz direction field 

essential for indeterminism to obtain appears to be so fragile as to be easily destroyed by 

taking into account any slightest elastic effects within the system. Indeterminism, once 

again, appears to be an artefact of infinite idealizations. 

Before concluding this section, however, I want to point out that, though this 

pattern seems to be true for all the examples considered above, by no means these cases 

exhaust all possible Lipschitz-indeterministic systems in which masses are not 

concentrated at a point and which, correspondingly, cannot be taken as settled. For 

instance, William Unruh 1 6 suggested another possible modification of the previous 

examples in which the rope of finite stiffness is replaced by a drop of water of negligible 

thickness; the drop is lying on a surface of one of the above described shapes waiting to 

slide down. This drop-of-water-on-the-dome example, though lacking the difficulties 

with staying in contact with the surface at all times, presumably, presents a much harder 

case to analyse. In particular, it seems to involve a number of additional hydrostatic and 

hydrodynamic phenomena (such as surface tension and fluid transport), about particular 

models (and the assumption thereof) of which one should be very careful. As a 

possibility, it may be argued that it is an essential feature of this model (and, perhaps, of 

many of spatially extended models) that all elastic deformations must propagate 

throughout the elastic medium with infinite speed so that every part of the drop instantly 

"feels the tug" of any other part of the drop when the latter suddenly comes to motion. If 

1 6 In personal communication. 

51 



so, the singular nature of certain assumptions essential for such models would, too, be 

revealed. Yet, for the time being, I leave this example unsettled and open for future 

research. 

2.5 Asymptotic Reasoning in Philosophy of Science 

2.5.1 Introduction 

In his recent book Robert Batterman (2002) discusses what he calls asymptotic reasoning 

in physics, i.e., the qualitative analysis of behaviour of physical theories in the 

neighbourhood of singular limits, and its relevance to philosophical issues of 

explanation, reduction and emergence. Batterman argues that many physically and 

philosophically important theories and models involve a new and powerful category of 

explanation based on asymptotic reasoning that has been totally overlooked by 

philosophers of science. 

Whereas much of Batterman's efforts have been directed on issues of inter-

. theoretical reduction and the development of the new type of explanation based on the 

idea of emergence, (infinite) asymptotic reasoning can prove helpful in elucidating the 

role and domain of applicability of various idealizations used the Norton-type Lipschitz-

indeterministic models considered above, and, therefore, better understanding the extent 

of metaphysical import that these models can offer for today's philosophical debates on 

the nature of scientific determinism. 

2.5.2 The Fallacy of Infinite Reasoning 

One of the key ideas involved in infinite asymptotic reasoning is a commonplace fact of 

mathematics that finite and infinite compositions may differ in their essential properties. 
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For example, a finite intersection of open sets is always an open set, but an infinite 

intersection of open sets can yield a closed set. If some property is preserved at any finite 

stage of a finite sequence of operations, there is no guarantee that this property will be 

preserved in the transition to the infinite stage. One may even argue that many paradoxes 

in philosophy can be traced down to the so called fallacy of infinite reasoning - the 

17 

fallacy of incorrectly projecting properties from finite to infinite compositions. 

Another example illustrating the fallacy of infinite reasoning is the following 

famous "proof that 2 = V2 (Fig.-18): 

Fig. 18 The "proof" that 2 = V2 . 

Here we have a rectangular triangle A B C with the unit-length sides and the 

hypotenuse equal to . Now, instead of moving from the point B to point A along the 

hypotenuse, we decide to move in a crooked rectangular manner: the hypotenuse 

surrounded'with a tube of some (small) width, d, we start moving straight to the left 

1 7 See, e.g., Earman and Norton (1996) for applying this reasoning to argue against known supertask 
paradoxes. 
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(parallel to the side A C ) until we hit the tube's border. Then we turn 90 degrees 

counterclockwise and continue moving straight down (parallel to the side B C ) until we 

hit the tube's border again. Then we turn 90 degrees clockwise and continue moving 

straight to the left until the next encounter with the tube's border. We then continue 

moving in this manner until we reach the point A (the width of the tube is assumed to be 

such that we can do it). It is easy to see that the total distance traveled along the crooked 

rectangular path is equal to 2, and yet, in the zero limit of the width of the tube, the 

crooked path diverges from the hypotenuse by no more than any arbitrarily small 

preassigned number. 

2 . 5 . 3 S t a b i l i t y a n d P a r a m e t e r S e n s i t i v i t y 

This phenomenon can be seen as a particular instance of a more general pattern 

encountered routinely in such mathematical disciplines as the system stability and 

control theory, the theory of parameter sensitivity in dynamical systems, catastrophe 

theory, and robotics. 

Unlike the more traditional approaches in which to determine the properties of a 

system has been to exhibit a complete set of exact solutions of the equations describing 

this system, and then to study the properties of these solutions, in catastrophe theory it is 

realized that in many instances it is only information of a qualitative nature, or only 

limited quantitative information, which is the ultimate goal of the study of some systems 

of equations. In such cases a full spectrum of solutions to an equation, obtained by much 

hard work ( if at all), may be a hindrance rather than a help in understanding the 

qualitative properties of the equation or system of equations (Gilmore 1981). 
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As a part of mathematics, catastrophe theory is a theory about singularities. Many 

interesting phenomena in nature (or, rather, their mathematical models) involve some 

discontinuities - breaking of a wave, the division of a cell or the collapse of a bridge. 

When applied to scientific theories, it deals with the properties of discontinuities 

directly, without reference to any specific underlying mechanism. This makes it 

especially appropriate for the study of systems whose inner workings are not known, or 

too complicated, and for situations in which the only reliable observations are of 

discontinuities. 

In robotics, to maintain system stability has been the prime concern when 

designing any practical machine. There always exists a certain discrepancy between an 

actual (real-operating) and the nominal (theoretical) trajectories of any system. This 

discrepancy is partly due to various inherently approximational schemes in system 

identification, and partly due to possible further parameter variations stimulated by 

environmental changes. Thus, special attention should be paid to the evaluation of 

possible system parameter variations, and their effects on system's functional 

performance or "output" (see, e.g. Eslami 1994). 

To illustrate the concepts of stability and parameter sensitivity let us consider a 

familiar classical system - a pendulum. A simple gravity pendulum - a Weight on the 

end of a rigid rod, which, when given an initial push, swings back and forth under the 

influence of gravity over its central (lowest) point. As is known, the oscillations (not 

necessarily small) of the "ideal" pendulum are described by the following system of 

differential equations: 
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where x, is the angle of deviation from the vertical, x2 is the angular velocity, / is the 

length of the pendulum, and g is the acceleration due to gravity. t 

The corresponding vector field in the phase plane with coordinates x,, x2 is just 

v, = x 2 , v2 = -co2 sin x,, 

with singular points x,. = mn , x2 = 0 (Fig. 19): 

Fig. 19 Phase-space of a simple gravity pendulum. 

If we restrict the motion of the pendulum to a relatively small amplitude, i.e., 

| x, | « 1, the solution is a well-known harmonic oscillatory function: 

*i(0 = xo cos(t/co), x2(t) = -(\/co)xQ s'm(t/co), 

where x0 is the largest angle attained by the pendulum. 

Period of the small oscillations is 

T0 = 2nf co . 

For amplitudes beyond the small angle approximation, the exact period cannot be 

evaluated in terms of elementary functions and can only be written in the form of the 

elliptic function of the first kind: 
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where E(y/,<p) is Legendre's elliptic function of the first kind: 

0 

The value of the elliptic function can also be computed numerically by using the 

A number of assumptions are built in this model: the bob of the pendulum is a 

point-mass; the rod on which the bob is swinging is massless and absolutely rigid; 

material of which the bob is made is irrelevant to the study of the question, acceleration 

due to gravity does not depend on the position of the bob; there is no gravitational 

influence of the nearby objects at the mass, etc. Taken seriously, many of these 

idealizations are plainly unphysical (or physically inadmissible) in that they can never be 

achieved in practice for principle reasons, but, of course, no one is tempted to think that 

this "unphysicality" is indispensable to the relevant theory or that the theory would be 

absolutely unworkable without them. 

A typical way how such conceptual "frauds" are dealt away in the teaching of 

science can be illustrated by the following excerpt: 

One of the fundamental concepts of mechanics is that of a [material point]. 

By this we mean a body whose dimensions may be neglected in describing its 

motion. The possibility of so doing depends, of course, on the conditions of 

following series: 

+... 

motion occurs in a vertical plane; there is no air resistance and friction at the nail, the 
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the problem concerned. For example, the planets may be regarded as [material 

points] in considering their motion about the Sun, but not in considering their 

motion about their axes. (Landau and Lifschitz 1976, p. 1) 

Implicit in such stipulations are our intuitions about the'stability (or robustness) of 

the behaviour of the system with respect to disturbances or changes made to various 

parameters of the system. That is this feature of a system to change its behaviour 

insignificantly when the various parameters of the system are changed insignificantly 

that legitimizes some physical features to be idealized, or "neglected", as in the example 

above. This point needs more elaboration. 

We recall that an equilibrium point x0 of a system of differential equations, 

y = v W / ) ) , (16) 
dt 

is locally Lyapunov stable at t = t0 if all solutions of this equation which start near x0 

(i.e., with their initial conditions in a neighbourhood of x0) remain near x0 for all time, 

i.e., if for any s > 0 there exists a 5(s,t0) > 0 such that 

if || x((Q) - xQ ||< 5 then || x(t) - x01|< s , for all t >t0, 

for some appropriate choice of the norm ||... ||. 

The equilibrium point xQ is said to be locally asymptotically stable if xQ is locally 

stable (in the sense of Lyapunov) and, furthermore, all solutions starting near x0 tend 

towards x0 as t —> oo. Thus, the pendulum has a locally stable equilibrium point (but not 

asymptotically stable) when the pendulum is hanging straight down and an unstable 
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equilibrium point when it is pointing straight up. (if the pendulum is damped, the stable 

equilibrium point is locally asymptotically stable.) 

Let us frame this situation differently in the following terms. Instead of disturbing 

the initial conditions of the system, we can talk of changing (smoothly) the total system 

energy taken as a parameter, and observe the qualitative changes in the behaviour of the 

system. As we start with small system energies (i.e., the initial conditions are around the 

point (0, 0) in the phase-space diagram), the trajectories of the pendulum bob are closed 

curves; the pendulum performs back-and-forth oscillations. Increasing, in a smooth 

manner, the total energy of the system, we will eventually reach a point when, suddenly, 

the pendulum bob ceases to track a closed curve in the phase-space; in fact, it ceases to 

move at all once it takes an (unstable) vertical position with the zero velocity, and 

remains in this unmovable state ever since. This position is unstable - any, however 

light, disturbance of the pendulum returns it to the back-and-forth oscillatory motion. 

If we increase the total energy even more, the pendulum starts a rotating motion, 

corresponding to non-closed curves in the phase-space diagram, resembling more and> 

more straight lines as we push the energy still up. Thus, depending on the (non-zero) 

value of the chosen parameter (system's total energy), there exist three distinct 

behaviours of the system - that of a back-and-forth oscillations (closed phase 

trajectories), that of a halted (though unstable) position (a phase trajectory is just a single 

point), and that of a rotational motion about the axe of the pendulum (non-closed phase 

trajectories). 

Depending on a particular problem in question, any other parameter of the system 

may be chosen to be disturbed or manipulated. An interesting (and important to us) case 
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is when we choose to manipulate the rod's elasticity coefficient k, and see whether the 

behaviour of the system will be, in some appropriate sense, robust under these 

perturbations. 

Suppose, for example, that we are given a system of differential equations 

describing the behaviour of a gravitational pendulum, in which the elasticity of the rod is 

not assumed infinite but appears explicitly. Suppose further that, in this system of 

equations, the elasticity coefficient k of the rod is replaced by a new coefficient 

k' = k + 8k, x(t) is a solution of the original equation, and x'(t) is a solution of the 

equation with the changed k'. For x(l) to be a robust solution, we could require that for 

any appropriate disturbances 8k there exists a S(£,t0)>0 such that 

||JC'(0-*(0II< 3, for all t>t0. 

This is the latter sense of robustness that is essential for the possibility of the 

"unphysical" models' being used in simulating the behaviour of physical systems. Thus, 

by a pendulum with infinitely rigid rod we could now understand a series of (physically 

legitimate) approximations to the original problem, with finite but arbitrarily large and 

ever increasing elasticity coefficients, k's, as long as 

" (i) the series converges (in some appropriate sense) to some limiting solution (e.g., 

if the modulus of any two consecutive solutions can be made arbitrarily small 

by further increasing the corresponding elasticity coefficients), and 

(ii) this limiting solution has the same essential properties that any finitely 

approximate solution has. 
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2.5.4 The Lipschitz-Indeterministic Systems and Physically Inadmissible 

Idealizations 

What does this have to do with the Norton-type Lipschitz-indeterministic examples 

considered above? Starting off with the original Norton's mass-on-the-dome example 

incorporating elastic phenomena, the behaviour of this system can be shown non-robust 

under ever increasing rigidity of the dome in the following sense: unless the stiffness of 

the dome is assumed infinite, the problem is not even a well-posed problem within the 

standard theory of elasticity; no domes of any finite (yet arbitrarily large!) stiffness can 

accommodate infinite pressures exerted by point masses placed on the surface. 

The further modifications of the original Norton's example considered above can 

also be shown non-robust under ever increasing flexibility of the rope in the following, 

and more interesting, sense. These cases are all the more interesting that they closely 

resemble the structure of the above mentioned "proof that 2 = -J2 , harbouring the 

fallacy of infinite reasoning. Let flexibility of the rope is characterized by some 

coefficient of flexibility k. Take any finite, yet arbitrarily large flexibility coefficient kt 

of the rope. Place the rope in its initial position (either on the horizontal surface at the 

edge or on the spherical top dome) and wait whether it ever starts sliding. If it does, as 

we saw earlier, its bottom edge can only be bent (locally) into parabolic, non-time-

reversible, curves. That is to say that, while macroscopically the rope appears to follow 

the shape of the dome, it actually (at a microscopic level) travels along a more complex 

path consisting of a number of shorter time-irreversible logs, thus blocking the time-

reversal argument. 
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One can try to double (triple, etc.) the flexibility coefficient to get a new, 

larger, k2. It is obvious; however, that qualitatively the new situation is no different from 

the previous one with a less flexible rope. In particular, the new system, too, has only 

trivial solution (the rope is at rest at all times) and no spontaneous motion generation. 

Now, proceeding in a similar manner by making the rope more and more flexible, one 

gets an (infinite) sequence of systems with ropes of ever increasing (yet finite) 

coefficients of flexibility. Yet, as long as rope's coefficient of flexibility stays finite (and 

no matter how large), there is no spontaneous motion generation when the rope lies on 

the top. 

The situation changes qualitatively if one takes an infinitely flexible rope; then 

(and only then) could the rope follow the particular shape of the dome as required by the 

condition of Lipschitz-discontinuity. Thus, the limiting behaviour of the family of 

approximational systems with finite rope's flexibility exhibits a certain property (of 

being non-unique), whereas any system in the approaching series (corresponding to a 

physically realistic, or admissible, situation) fails to exhibit this property. The only way 

to generate non-Lipschitz spontaneous motion of the rope is to allow the rope to be 

infinitely flexible; any diversion from actual infinity in the flexibility coefficient results 

in the rope staying on top forever. 

There is an important lesson to be learned from these cases. As the Norton-type 

indeterministic examples discussed above show, there may exist models the real 

metaphysical power of which critically depends on the nature of certain idealizations 

made in those models, and the techniques of asymptotic reasoning may prove crucial in 

elucidating these issues. 
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2.6 Lipschitz-Indeterministic Solutions and the-Markov Condition 

2.6.1 Generalized Flows in Hydrodynamics 

I this section I draw several results from classical hydrodynamics to further illustrate 

how certain solutions associated with first-order differential equations with spatially 

non-Lipschitz velocity fields may lead to lack of important temporal properties of 

systems such as stability with respect to perturbations and Markovianity in time, and 

show how the behaviour of such systems may depend on the nature of the idealizations 

made. 

Consider the following transport equation for the scalar field 6(x,t)\n 

(x , / )eR^x[0 ,oo) : 

, ^ + (v(x,0-V)t9 = 0, 8\I=O=0O. (17) 

In the classical theory of partial differential equations it is known that if the 

velocity field v e R r f is bounded and continuous in (x,() and Lipschitz continuous in x, 

then (17) can be solved uniquely by the method of characteristics. Denote by <psj(x) the 

solution of 

d(pSJ(x) 
= v((pSJ(x),t), : (18) 

dt 

starting at x at time s, i.e., with the initial condition x(s) = x . The solution of (17) is then 

given by the following expression: 

0(x,t) = 0 o ( P o J t o ) = # o v > , , o « ) • ( 1 9 ) 

The map tps t : Rd i-> Rd satisfying the following four properties: 

63 



(a) <ps s(x) = x for all s; 

(b) <ps t(x) is continuous in s, t, x; 

(c) <px t{(ps r(-*0) = (ps i(x) for all s, t, x and all x; 

(d) <psi(x): Rd i—> Rd is a homeomorphism for all s, t 

is called a //ow of homeomorphism or, in short, a flow.1* 

These classical results are inapplicable when v, though bounded and continuous in 

(x,t), fails to be Lipschitz continuous in x. In such cases no standard flow satisfying 

(a)-(d) can be associated with the ODE in (18) since the solution of this equation may 

fail to be unique. Since the solutions of (18) typically branch (i.e., (18) have more than 

one solution for the same initial condition), no forward-in-time map can be associated 

with such solutions. Similarly, no backward-in-time map can be associated with the 

solutions of (18) because they may coalesce on each other in finite time. This situation is 

unfortunate since transport in non-Lipschitz velocity fields may be physically motivated, 

e.g., for the problem of turbulence.19 

Formally, the standard way to deal with this situation in general case is to 

randomize the set of maps which can be associated with the solutions in (18) by 

selection at the branching points thus defining a random field. Then a generalized flow 

associated with (18) can be defined as a random field with parameter (s, I, x) constructed 

by assigning a probability measure on the set of all maps associated with the solutions of 

Exposit ion is due to Weinan E. and Vanden-Eijnden (2003). 
1 9 The classical theory of Kolmogorov (1941) predicts that the solution of the Navier-Stokes equation in 

three dimensions in only Holder with exponent l /3 in the limit of zero viscosity. 
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20 (18). The generalized flows obtained in this way are typically non-degenerate random 

fields, i.e., the measure is not concentrated on a single point, due to branching. 

As far as the modeling of the underlying physical processes is concerned, to pick 

the probability measure and single out physically relevant generalized flows the 

following regularization procedure is used. Instead of the original problems described 

by (17) and (18), the regularized problems with unique solutions are considered and the 

generalized flows are obtained as limits of the standard (stochastic) flows associated -

with these regularized problems. 

Consider first the regularization by smoothing of the velocity around the points of 

Lipschitz discontinuity (the e-limit process). Here the original equation (17) is 

understood as the limiting equation for the following motivating (and physically 

legitimate) problem: 

dt9 

— + (v£(x,t)-VW = kAd, #U=#o> (2°) 

where k is the molecular diffusivity and vE is a mollified version of v on the scales 

| x |« s (e.g., if v solves Navier-Stokes equation, e is the characteristic length scale 

associated with the kinematic viscosity). Unlike the original transport equation, (20) has 

a unique solution if either k or e are positive. The generalized flow is then taken as the 

limit as e -» 0 of the stochastic flow associated with (20), provided this limit can be 

defined in a suitable way. 

Secondly, some Brownian motion (the A-limit process) can added to the dynamics 

in (18) to obtain a unique (stochastic) flow associated with the solutions of 

2 0 For a more rigorous definition of generalized flows and their properties see Appendix A , Weinan E. and 
Vanden-Ei jnden (2003). 
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dx = v£(x,t)dt + 4lkdp{t), (21) 

where /?(•) is a ^-dimensional Wiener process (Stroock and Varadhan, 1969, 1979). The 

fact that the term yJ2kdp(t) regularizes (21) can be understood more intuitively as 

thermodynamical fluctuations (always present in any real physical system unless we 

freeze it to the absolute zero), with probability 1, kicking instantaneously out any path 
i 

that happens to go to the points x for which the solution of (18) is non-unique, thereby 

resolving the ambiguity associated with these positions. The generalized flow can now 

be defined; similarly, as the limit as k -> 0 of the stochastic flow associated with (20), 
21 

provided this limit is defined in a suitable way. 

Mixed limits where both smoothing of the velocity field and Brownian motion are 

used can be considered as well. 

The limiting generalized flows obtained in this manner, however, appear to 

depend sensitively on the regularization procedure, and they are non-Markov for generic 

regularizations. The latter fact raises an interesting issue regarding the connection of the 

Lipschitz indeterministic solutions with the Markov condition. 

2.6.2 Non-Lipschitz Velocity Fields, Regularizations, and the Markov Condition 

Consider first the following ODE we met in Section 4 (with a = 3/4 corresponding to 

Norton's original formulation): 

— = sgn(x) | x | a , x E R, a e (0,1). (22) 
dt 

As mentioned before, the set of solutions of this equation is given by 

2 1 Typical ly , the e-limit is a weaker limit than the A-limit in the sense that the regularization by smoothing 
is more subtle due to the lack of stability of solutions to perturbations and issues with the choice of 
appropriate convergence. See W. E and Vanden-Eijnden (2003) for more details. 
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x(t) = +[(\-a)(l-T)J/{ha\ (23) 

where / + = max(/,0), for an arbitrary T. 

By resolving the ambiguity of where to map the point x = 0, the following family 

of forward maps tps t : Rd Rd can be constructed: 

s g ^ x X I x l 1 - " +(\-a)(t-s))'(]~a\ i f x * 0 ' 

fM(T)((\-a)(t-r)+)W~a\ ifx = o' 

where r = inf(/ > s :fa{s) * 0). Each of the maps cpft is a weak form of a flow, a quasi-

flow, satisfying only the following three properties: 

(a') cpfs(x) = x for all $e [0 , r | ; 

(b') (pft(x) is continuous in s, I, x; 

(c') (p?t

 f(pf.T (x)) = cpft (x) for all x and for all s,x, le [0, T] with s < r < t; 

By superimposing these quasi-flows and assigning a suitable probability measure a 

generalized flow can be defined. 

In this particular case, the generalized flows, obtained as limits of the standard 

flows by regularization either via the Ar-limit process or via the £-limit process, can be 

shown to be Markov in time. However, as in the next example, Markovianity is not a 

generic property of generalized flows. 

Consider a further generalization of the previous example: 

- = sgn(x) | x \a g(t), x e R, a 6 (0,1), (25) 
dt 

where g is a bounded function. Some solutions of (25) branch at the origin x = 0 on the 

time intervals where g(t) > 0, and other collapse atx = 0 where g(t)<0 (see Fig. 20): 
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Fig. 20 The set of all solutions of (25) for a = 3/4 and g(t) = COS(7) . 

Quasi-flows and the corresponding generalized flow have been properly defined, it 

can be shown that the generalized flows associated with (25) are not necessary 

Markovian in time. Though the generalized flows obtained by regularization by the k-

limit process are Markov, the generalized flows obtained via the e-limit process are not, 

so that this feature appears to depend sensitively on the regularization procedure used. 

Finally, consider a further relaxation of the condition on the velocity field. In the 

following ODE the velocity field is continuous in (x, /) but non-Lipschitz at (x, /) = (0, 0) 

and not even Holder continuous (x, /) = (0, 0): 

dx 
— = v(x, t), (x, v) e R x R , 
dt 

(26) 

where v(x,/) is given by 

v(x,/) = 

2x 
t 

if I x |> t-
(27) 

2sgn(x) •/, if | x |< / . 

The set of solutions of (27) can be parameterized as 
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x(t) = sgn(a)/2 + a, x(t) = bt2 

with a > 0, b e [-1,1] (see Fig. 21): 
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Fig . 21 T h e set of all solutions of (26). 

In this case, the generalized flows associated with (26) can be shown to be non-

Markov in time for both the &-limit process flows and most of the £-limit process flows. 

The only regularization procedures that do produce a Markov generalized flows in the .e-

limit process are those for which, in the limit £ -> 0, all the paths that collapse on a 

single node (0,0) exit on a single trajectory. 

To summarize the main points of this section, the purpose of drawing these results 

from fluid dynamics is to illustrate how properties specific to generalized flows 

associated with first-order differential equations with spatially non-Lipschitz velocity 

fields may lead to interesting and non-trivial features in terms of transport by such fields. 

Namely, generalized flows, constructed as limits of regularized standard flows, typically 

appear to lack desirable properties such as stability with respect to perturbations or 
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Markovianity in time so that the failure of Lipschitz continuity should be unsurprisingly 

lead to physically impossible solutions that have no serious metaphysical import, as, for 

instance, in Norton's causal skeptical anti-fundamentalist programme. 

I argue that indeterminism of the Norton-type Lipschitz-indeterministic systems 

should perhaps be viewed as an artefact of certain (infinite) idealizations essential for the 

models, depriving the examples of much of their intended metaphysical import, as, for 

example, in Norton's antifundamentalist programme. 
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PART II 

Undecidability and Unpredictability 

in Mathematics and Physics 
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3.1 Introduction 

In Part II of the thesis, after reviewing the incompleteness and undecidability results in 

formal logic and mathematics and briefly introducing the necessary formal apparatus, I 

demonstrate the algorithmic undecidability of a certain class of propositions about future 

contingent events in situations where one takes into account the provocative nature of 

prognoses, and discuss its physical and philosophical significance as it bears upon 

principal unpredictability of the behaviour of mechanistic systems. 

Here I consider a model of a social (or, more generally, mechanical physical) 

system where prognoses are not merely passive forecasts of future happenings, but 

where they actively provoke the very events the prognoses are about; a case where the 

events would not happen at all, if we had not previously put forth this prognosis. Of 

special interest is a subclass of all such prognoses, so called self-fulfilling prognoses. In 

the case of self-fulfilling prognoses, the very fact of formulating, or putting forth, a 

prognosis about the state of the system at a certain time in future initiates, or triggers, a 

series of changes within the system, in such a way that at that future moment the system 

assumes exactly the state described in the prognosis. 

The (mechanical, physical) systems considered in this section are perceived as 

never-ending computational processes, characterized by recursive, or computable, 

dynamics: the responses of the system to a prognosis for these models are assumed to be 

fixed, known, and computable on a step-by-step basis. (More precisely, the response 

function of the system to a prognosis - the "law" governing the evolution of the system -

is characterized by a recursive function.) I argue that even for such systems, 
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notwithstanding their simple mechanical and totally computable appearance, the class of 

effectively undecidable propositions which express the (classical) truth-values of the 

(self-fulfilling) prognoses; in general, is not empty. 

In such situations, any Laplace's (or Popper's or Landauer's) demon having all the 

information about the world now will be unable to predict all the future; in order to 

answer certain questions about the future it needs to occasionally resort to, or to consult 

with, a demon of a higher order in the computational hierarchy whose computational 

powers are beyond that of any Turing machine - an Oracle. 

Unlike more typical settings in which self-referentiality is taken to obtain between 

a symbol (a word, a sentence, a statement, a language, etc.) and its own semantics, 

meaning, or interpretation, I set up self-referentiality to hold between the descriptions of 

the states of the same system, as contained in the prognosis and in the resulting state of 

affairs, across temporal slices. 

After introducing the result, I discuss its physical and philosophical significance 

as it bears upon in principle unpredictability of the behaviour of mechanistic systems. 

Here I discuss the various known attempts to translate algorithmic undecidability into 

physically meaningful language. These include the discussion of the recursive 

undecidability of the halting problem, the undecidability of the rule inference problem 

(expressed by the question, "given a specified class of laws, usually a class of 

recursive/computable functions, which one of these laws governs a particular system?"), 

both from extrinsic and intrinsic perspectives, as well as a cluster of complexity and 

randomicity related issued as they present themselves in the workings of (weakly) 

chaotic systems. 
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There is yet another important source of undecidability which seems to be more 

naturally related to the provocative prognoses framework. This undecidability is due to 

so called computational complementarity which usually appears in complementarity 

games in the theory of finite automata. It has been argued that typical physical 

measurement and perception processes may exhibit features which resemble 

computational complementarity and diagonalization: while trying to read off the "true" 

value of an observable of a system, a measurement interacts with the system and thus 

inevitably changes its state. It is true both for quantum and classical .systems with the 

major difference being that quantum theory postulates a lower bound on the transfer of 

action by Planck's constant h. I conclude Part II with the conjecture that the provocative 

prognoses framework can be extended to allow parallel analogues in the settings quite 

different from the context of (social, or simple mechanistic) systems. In particular, it 

may be helpful in both elucidating complementarity issues in quantum physics and in 

allowing parallel results from the quantum level to be brought to the "macroscopic" 

philosophical level. 

3.2 Undecidability in Formal Logic and Mathematics 

3.2.1 Incompleteness in Formal Logic 

Published in 1899, Hilbert's Foundations of Geometry is the first precise formulation of 

a formal axiomatic method as applied to Euclidean geometry. An axiomatic system of 

some discipline provides a systematization of the truths of this discipline, usually some 

branch of mathematics or science. Originally it was hoped that such systematizations 

would compress all truths about the 'subject matter into a finite (or recursively 
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enumerable) set of axioms. The axioms were thought to contain the totality of all 

substantive information about the subject matter. Once you reach such a systematization, 

the rest of your work will consist in "merely" teasing out the logical consequences of the 

axioms. Logic is an instrument for unfolding all the information buried in the premises 

(axioms) into their logical consequences (theorems). As the study of the relations of 

logical consequence, that is, of relations of implication or entailment, logic is given an 

authority to carry out logical inferences, or to draw deductive conclusions. This is what 

is called the deductive junction of logic (Hintikka 1996). 

By 1930 research on Hilbert's programme of capturing all mathematics in a logical 

web was in its heyday: In 1929 Presburger had shown that arithmetic without 

multiplication is decidable (Presburger 1930), and in 1931 Skolem did the same for 

arithmetic without addition and successor operation. Finitary consistency proofs had 

been given for some restricted but interesting fragments of arithmetic, for example, by 

Herbrand in 1931. There seemed good reason to think that a finitary consistency proof 

would be given for formalized arithmetic soon (Epstein and Carnielli 2000). 

Yet, in 1931 Hilbert and his formalist programme received a dramatic and 

devastating blow. Kurt Godel, a then unknown young mathematician from 1 the 

University of Vienna, produced a completely unexpected result showing that Hilbert's 

formalist goal was unattainable (Godel 1931). No formal axiomatic theory rich enough 

to include arithmetic (alternatively, no mathematical theory as weak as arithmetic) can 

ever be proved consistent. The best a logician can achieve is the knowledge that a system 

is inconsistent. Furthermore, no consistent axiomatic system rich enough to include 

arithmetic can be complete: there must exist mathematical statements expressed in the 
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symbols of the system that can neither be proved true nor false using the rules of the 

system.22 

Having fixed a particular formal system, and a formula <p defined in terms of the 

symbols in the system, one of four possibilities can be true of <p: 

(1) (p can be proved true in the system. 

(2) <p can be proved false in the system. 

(3) (p can be proved both true and false in the system. 

(4) <p can neither be proved true nor false in the system. 

Apart from the obvious options (1) and (2), the possibilities (3) and (4) complicate 

matters. The result (3) would show that the system is inconsistent: if (3) holds, then the 

system is meaningless because it can be used to show that any statement made in the 

language of the system is true.23 The possibility (4), if true, would show that the system 

is incomplete. Furthermore, adding new axioms to an incomplete system never cures the 

problem: while this may allow previously undecidable statements to be decided (just add 

them as new axioms, for example), it always generates some new undecidable 

propositions (Barrow 1990). 

2 2 In 1936 Gerhard Gentzen showed that the consistency of first-order arithmetic is provable over the 
weaker base theory of primitive recursive arithmetic with the additional principle of quantifier free 
transfinite induction up to the ordinal EQ . His proof highlights one commonly missed aspect of Godel's 

second incompleteness theorem which often is taken to say that the consistency of a theory can only be 
proved in.a stronger theory. The theory obtained by adding quantifier free transfinite induction to primitive 
recursive arithmetic proves the consistency of first-order arithmetic but is not stronger than first-order 
arithmetic. In particular; it does not prove ordinary mathematical induction for all formulae, while first-
order arithmetic does. The resulting theory is not weaker than first-order arithmetic either, since it can 
prove a number theoretical fact - the consistency of first-order arithmetic - that first-order arithmetic 
cannot. The two theories are simply incomparable. 
2 3 When asked by McTaggart to show that 'If twice 2 is 5, how can you show that I am the Pope?', 
Bertrand Russell replied at once: 'If twice 2 is 5, then 4 is 5, subtract 3; then 1 = 2. But McTaggart and the 
Pope are 2; therefore McTaggart and the Pope are one!' (cited from Barrow 1990, p. 256) 
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It is worth noting that option (3) is quite distinct from option (4). As a matter of 

fact, incompleteness of a system protects the system from inconsistency, for if we can 

find just one statement in the language of our system that cannot be proven, then this 

guarantees that it cannot contain inconsistencies like (3) whose presence would render 
i I 

all statements true. Incompleteness of a system should be seen as a demonstration of the 

fact that the system's scope and content cannot be captured simply by axioms and rules 

of logic which define it. 

By replacing "false" by "unprovable" in the classical liar paradox in the form "this 

statement is false"24, Godel famously obtained a tricky but mathematically meaningful 

sentence that expresses its own unprovability (as viewed from outside the system). 

Godel himself was well aware of this analogy. In his 1931 paper (Godel 1986, p. 149) he 

said (translation of Svozil 1993), 

"The analogy of this argument with the Richard antinomy leaps to the eye. It is 

closely related to the "Liar" too; [footnote 14: Any epistemological antinomy 

could be used for a similar proof of the existence of undecidable 

propositions]..." 

The consequence of a claim like "this statement is unprovable" can be summarized 

by the following alternative: (i) if, on the one.hand, this statement were provable in a 

given formalism, then this fact would contradict the message of the statement (i.e., its 

unprovability), which, in turn, would render the whole formalism unsound; (ii) if, on the 

other hand, this statement would be unprovable in a given formalism, this would confirm 

i 

2 4 A passage in St. Paul's epistle to Titus (1:12-13) refers to Epimenides, a Crete o f Cnossus: "One of 
themselves, a prophet of their own, said, 'Cretans are always liars, evil beasts, lazy gluttons.'" (See also 
Anderson 1970). 
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the message of the statement. As a result, the formalism would be incomplete in the 

sense that there exist true statements which cannot be proven. There is no other 

consistent choice other then rejecting (i) and accepting incompleteness (ii). 

Similarly, other metamathematical and logic paradoxes (Kleene 1952) have been 

used, systematically to derive undecidability or incompleteness results. The general 

pattern is proof by reductio ad absurdum: first, a statement is assumed to be true; this 

statement yields absurd (inconsistent) consequences; the only consistent choice being its 

unprovability or nonexistence. Mostly, absurd consequences are constructed by 

techniques similar to Cantor's diagonalization method (Svozil 1993). 

How can Godel's incompleteness result be possible, and what are the "resources" 

that are responsible for it? There exist at least two features which are noteworthy: self-

reference and universality - the possibility to express (but not necessarily to prove) 

certain facts about a formal theory within the theory itself and the use of the "absolute" 

notion of truth. The first two phenomena occur only in theories which are "rich enough" 

to allow coding of metastatements within the theories themselves. Theories which are 

"too weak", i.e., theories in which metastatements cannot be coded within the theories 

themselves, do not feature incompleteness of this kind, although they are incomplete in a 

more basic sense. The next two sections will concentrate on these issues. 

3.2.2 Undefinability of Truth 

It is Tarski's famous impossibility result (1932) that classical truth cannot be defined in 

any formal theory rich enough to include arithmetic. It is closely related to Godel's 

incompleteness result. Indeed, Godel first arrived at his incompleteness result by 
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discovering the undefinability of arithmetical truth in a first-order language. Although 

not expressed in the original paper, Godel himself considered the use of an "absolute" 

notion of truth to be the main feature of his incompleteness theorems. In his reply to a 

letter .by A. W. Burks he writes (von Neumann 1966, p. 55, Feferman 1984, p. 554): 

"I think' the theorem of mine which von Neumann refers to is not that on the 

existence of undecidable propositions or that on the lengths of proofs but 

rather the fact that a complete epistemological description of a language A 

cannot be given in the same language A, because the concept of truth of 

sentences of A cannot be defined in A. It is this theorem which is the true 

reason for the existence of undecidable propositions in the formal systems 

containing arithmetic. I did not, however, formulate it explicitly in my paper 

of 1931 but only in my Princeton lectures of 1934. The same theorem was 

proved by Tarski in his paper on the concept of truth." 

Absolute (logical) truth is a transfinite concept; it cannot be defined by any finite 

description. Suppose, for instance, that a finite description of a "universal truth machine" 

(UTM) exists. For any given arbitrary statement as input, the universal truth machine is 

supposed to produce outputs TRUE or FALSE, depending on whether the statement is 

correct or incorrect, respectively. Consider a liar-type input statement, "the universal 

truth machine (UTM) with a finite description will not output that this statement is true". 

Not unexpectedly, the machine cannot produce TRUE or F A L S E without running into a 

contradiction. Therefore, the machine cannot decide all questions, contradicting the 

assumption that the universal truth machine decides all questions. Yet, somebody from 

the outside (i.e., someone who is not part of this truth machine) sees that the above 
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statement is correct, or TRUE], but this results in an extrinsic notion of truth which is 

stronger than the "portion of truth" available to the truth machine. By simply adding this 

statement to the description of the U T M one could produce a new machine, call it 

U T M i . However, by the same argument, the new machine would not be able to decide 

the input statement, "the machine U T M i with a finite description will not output that this 

statement is true". Yet, this latter statement can be seen to be TRUE2, etc., forcing a 

hierarchy of notions of truth ad infinitum. 

By allowing restricted "degrees" or "strengths" of truth, one could resolve the 

paradox of the liar or similar paradoxes by basically blocking these paradoxes from 

being formulated in the first place. In this sense, Godel's incompleteness results amount 

to a formal demonstration that the notion of truth is too comprehensive to be grasped by 

any finite mathematical model (Svozil 1993). 

3.2.3 Universality and Self-Reference 

Another essential and recurrent feature of all logical paradoxes yielding Godel's 

incompleteness result is universality - an ability to express certain facts about a formal 

theory within the theory itself using the idea of programs as data. Each of such theories 

should be powerful enough to allow programs to be written which "understand" and 

manipulate other programs which are encoded as data in some reasonable, way. For 

instance, in the /l-calculus, A-terms act as both programs and data; in combinatory logic, 

combinatory symbols manipulate other combinatory symbols; each /^-recursive function 

having a number in a Godel numbering can be used as input to other /^-recursive 

functions; and Turing machines can interpret their input strings as description of other 

Turing machines. This notion is close to the idea of universal simulation (thus the term 
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universality), in which a universal program or machine U takes an encoded description 

of another program or machine M and a string x as input and performs a step-by-step 

simulation of M on input x (Kozen 1997). 

Universality of a formal theory allows for the possibility of self-reference. 

Consider, for instance, a statement similar to the classical liar paradox: "this statement is 

true". Unlike the liar's case, however, no contradiction arises if one assumes that this 

statement is true or this statement is false. Yet, its meaning remains unclear, because it 

does not make any difference whether one chooses one of the two cases. This can be 

seen as an example of a more general situation when a symbol (e.g., a word, a sentence, 

a statement, a language, etc.) refers to its own semantics, meaning or interpretation; 

more precisely, if a symbol refers to the relation between itself and the object it stands 

for. The existence of logical pathologies like the liar paradox can be seen as an example 

of the fact that there exist objects which cannot be named by any (formally defined) 

finite language. (The concept of "truth" discussed in the previous section is another 

example.) 

Despite appearances, there seems to be nothing wrong with self-reference per se. 

It has been argued that self-reference, if applied properly, yields well-defined and 

meaningful statements of mathematical and physical significance (e.g., Martin 1970, 

Smullyan 1994). The known troubles in the form of inconsistencies typically occur by 

attempting some sort of complete self-interpretation, via some kind of diagonalization 

technique. Indeed, these inconsistencies, properly interpreted and coupled with self-

reference and various diagonalization techniques, provide one of the most general and 

powerful tools for investigating undecidability (Svozil 1993). 
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3.2.4 Diagonalization and Reduction 

There are two major techniques for showing that problems are undecidable: 

diagonalization and reduction. The diagonalization technique was first introduced by 

George Cantor at the end of the 19 th century to show that there are fewer real algebraic 

numbers than real numbers (Cantor 1874). Since then diagonalization, in one form or 

another, has become the all-purpose and most powerful way of investigating 

undecidability. 

To illustrate the diagonalization technique in action, I will briefly construct an 

algorithmically definable function which is not primitive recursive. 

Assuming we can effectively enumerate all possible primitive recursive functions, 

there exists an effectively computable one-to-one function associating the natural 

numbers and the class of all primitive recursive functions. Let gx be the xth function in 

this list. Now we define a diagonalization function h by the following expression: 

h(x) = gx(x) + \. 

Since the addition of one is an effectively computable operation and since g v(x) 

is itself an effectively computable function, h must be effectively computable as well. 

Assume further that h is primitive recursive. Then it should appear in the list of all 

primitive recursive functions somewhere, say, atyth place: 

h = gy • 

Now we combine the two expressions and look at h aty: 

gv{y) = Ky) = gy(y) + \- ' 
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The above contradiction shows that the class of all primitive recursive functions 

does not include all algorithmically definable functions. 

(One possible way to avoid this contradiction while maintaining the functional 

enumeration is to take the functions gt to be partial functions. This way, in the last 

expression, since gy(y) need not be defined for all y's, the contradiction 

gy(y) = gy(y) +1 need not arise. This justifies enumerating all partial recursive 

functions later in the section on undecidability of provocative prognoses.) 

If, using a diagonalization of some sort, we have established that a problem A, 

such as, say, the Halting problem, is undecidable, we may show that another problem, B, 

is undecidable by reducing A to B. Intuitively, reduction means transformation of 

instances of one problem to instances of the other problem in such a way that these two 

problems appear equivalent with respect to decidability/undecidability. Although 

reduction does not provide us with an effective procedure of establishing 

decidability/undecidability, it can be used (if coupled with more direct methods like 

diagonalization applied to the first problem) to tell us that if there existed a decision 

procedure for B, then this procedure could be applied to the transformed instances of A 

to decide it as well. If, on. the other hand, no such procedure for A existed, reduction 

would conclusively prove that no decision procedure for B exists either. 

3.3 C l a s s i c a l C o m p u t a t i o n 

In this section I briefly address the abstract notion of (classical) computability, Turing 

machines, and computational complexity, of which we only need a few basic properties. 
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The exposition for the most part is informal and covers only the case of functions and 

predicates in one variable. The omitted details and the extension of the definitions and 

results to functions and predicates in several variables can be found in any standard 

textbook in the theory o f computation, as, for example, in Garey and Jonhson (1979), 

Boolos and Jeffrey (1989), and Kozen (1997). 

3.3.1 T u r i n g M a c h i n e s 

Informally, an algorithm is a set of instructions to follow; in using it, "we only need to 

carry out what is prescribed as i f we were robots; neither understanding, nor cleverness, 

nor imagination, is required of us" (Kleene 1967). A n algorithm transforms its input 

(initial data) into some output (result). (If computation never terminates for some inputs, 

we get no result.) 

Inputs and outputs for many theoretical models of computational devices, such as 

Turing machines, are typically strings. A string is a finite sequence of symbols 

(characters, letters) taken from some finite alphabet. If A is a set of the symbols of some 

such alphabet, by A we wi l l designate the set of all strings over the set A. 

Following Kitaev el al. (2002) (see also Turing 1936, Adler 1974), by a Turing 

Machine (TM) we wi l l understand a conceptual device consisting of the following 

components: 

• a finite non-empty set of symbols S called the alphabet; 

• an element # eS called blank symbol; 

• a subset A c S called the external alphabet; we assume that the blank 

symbol does not belong to A; 
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• a finite set Q whose elements are called (internal) states of the Turing 

machine; 

• an initial state q0 eQ; 

• a transition function defined as a partial function 

5:'QxS->QxSx{-\,0,l}. 

(The term "partialfunction" means that the domain of 8 is a subset of QxS . A 

function that is defined everywhere is called total.) 

Any Turing machine represents an algorithm, and there are infinitely many Turing 

machines that represent a particular algorithm. The above described components can be 

taken to represent a computer program, rather then its "hardware". We now briefly 

describe the "hardware" such programs run on. 

The Turing machine has three parts: a tape divided into the squares, or cells, a 

scanner with a read-write head, and a control device which is a finite-state automaton. 

Each cell can carry one (and only one) symbol from the machine alphabet S. The tape is 

assumed to be infinite to the right, and, at the beginning of the computation, all filled in 

by the blank symbols. As computation proceeds, the symbol in a cell may be erased and 

replaced by another symbol from the alphabet S. Therefore, the content of the tape is an 

infinite sequence cr = s0,s},..., where each si eS. 

The scanner with a read-write head moves along the tape one cell at a time, scans 

the content of one cell currently under the scanner's head, and, possibly, replaces the 

scanned symbol by writing another symbol from the alphabet in its place. 
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The control device that determines the behaviour of a Turing machine works as 

follows. This device is capable of being in any one of the internal states from the set Q 

of all possible internal states. At each step of the computation, device's being in some 

particular state q with the symbol s being under the head determine the action 

performed by the control device as the next step: the value of the transition function, 

S(q,Sp)-= (q',s',Ap) , specifies the new state q', the new symbol s', and the shift Ap in 

the position of the head that it has to undergo on the next step (with Ap = -l, for 

example, interpreted as the head moving one position to the left). 

More formally, by the configuration of a Turing machine we will understand a 

triple <cr;p;q>, where cr is an infinite sequence s0,...,sn,... of elements of S, p is a 

non-negative integer (position of the cell/head counted from the left to the right with the 

first celf on the left being assigned "0"), and q e Q. At each step of the computation the 

Turing machine changes its configuration <<r;p;q> as follows: 

(a) it reads the symbol s; 

(b) it computes the value of the transition function: 8(q,sp) = (q',s',Ap), and, i f 

undefined, the T M halts. 

(c) it writes the symbol s in the cell in the position p of the tape, moves the head 

by Ap cells, and changes its current state sp to state s'. Thus, the new 

configuration of the T M is the triple <s0,...,sp_],s',sp+],...;p + Ap;q' >, and, if 

p + Ap < 0, the T M halts. 
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Inputs and outputs of the T M are strings of symbols over A. An input string a is 

written on the tape (which is, as we have said, initially all filled with blank symbols), 

starting from the left end of the tape to the right. At the beginning of the computation the 

head is positioned at the left end of the tape too, with the initial state of the control 

device being q0. In other words, the initial configuration of the T M is < a ###... ;0;<70 > . 

Finally, as the computation proceeds, the configuration of the T M is transformed step by 

step according to the rules stated above, and we get the sequence of configurations of the 

T M : 

<«###. ..;0;q0 >,<cr];pl;q] >,< a2\p2\q2 >,.... 

As we have said, this process terminates in two cases: if 8 is undefined, or if the 

head bumps into the (left) boundary of the tape p + Ap<0. After that, starting from the 

left end, we read the tape to the right until we reach some symbol that does not belong to 

A (e.g.., the blank symbol "#"). The string before that symbol will be considered the 

output of the Turing machine. 

If a Turing machine never terminates on a given input string x, it is said to loop on 

input x. A Turing machine that halts on all input strings is called total (Kozen 1997), or a 

decider (Sipser 2006). 

3.3.2 Computability, Recursiveness, Decidability, and Semidecidability 

Given the set A* of all strings over A, a Turing machine is said to compute a partial 

function <prM : A* —» A*, if for input string a , the machine eventually terminates with 

output string <pm(a); the value (pm(a) is undefined if the computation never 

terminates. . 

87 



Now, a partial function / : A* -» A' is said to be computable, or (partially) 

recursive, if there exists a Turing machine TM such that <pm = f. If this obtains, the 

function/is said to be computed by TM.25 

A set of strings is- said to be (partially) recursive if its characteristic function is 

(partially) recursive. A set of strings is called recursively enumerable, or r.e., if there is a 

partial recursive function whose domain (co-range) is exactly this set, meaning that the 

function is defined at x if and only if x is a member of this set.26 

A (one-place) predicate (a property of strings) is said to be decidable i f the set of 

all strings having property P is a recursive set. A property of strings is said to be 

semidecidable if the set of all strings having property P is an r.e. set. 

Finally, a Turing machine is said to work in time T(n) if it performs at most T(n) 

steps for any input of size n. Similarly, a Turing machine works in space s(n) if it visits 

at most T(n) cells for any computation on inputs of size n. 

3.3.3 The Church-Turing Thesis and Universal Turing Machines 

Any Turing machine can be identified with an algorithm in the informal sense. The not 

so obvious converse statement is called the Turing thesis: 

"Any algorithm can be realized by a Turing machine. " 

2 5 There are several terms of referring to the property of recursiveness of a partial function which are used 
more or less interchangeably: "effective", "computable", "effectively computable", "recursively 
computable", "mechanically computable", or "algorithmically computable". This presupposes the truth of 
the Church-Tur ing thesis (see the next section) and all of them mean just partial recursive functions. 
(Some refer to recursiveness as "general recursiveness"; others reserve the phrase "general recursiveness" 
for total functions only and refer to the recursiveness of partial functions as "partial recursiveness". We 
wi l l not adopt this practice.) 
2 6 St i l l another, equivalent, characterization of r.e. sets is due to Matiyasevich's theorem which states that 
every r.e. set is Diophantine (and vice versa) - see section 3.4.5. 
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It is closely connected with the Church thesis (Church 1936) that gives an 

alternative and equivalent characterization of computable functions in terms of (partial) 

recursive functions 

"Any algorithm corresponds to a partial recursive function". 

Since there is a provable equivalence between the classes of (partial) recursive 

functions and functions computable by a Turing machine, these two theses are often 

united in one single Church-Turing thesis. The term "Church-Turing thesis" itself seems 

27 

to have been first introduced by Kleene (1967, p. 232): 
> 

So Turing's and Church's theses are equivalent. We shall usually refer to them 

both as Church's thesis, or in connection with that one of its ... versions which 

deals with "Turing machines" as the Church-Turing thesis. 

Since the early stages of formal computational theory in 1930's, a number of 

various characterizations of computable functions have been proposed and investigated: 

Turing machines (Turing 1936), Post systems (Post 1936, 1943), Church's lambda-

calculus (Church 1933, Kleene 1935), combinatory logic (Schonfinkel 1924, Curry 

1929), Godel's theory of recursive functions, cellular automata (von Neumann 1966), 

Register machines (Jones and Matijasevic 1984, Chaitin 1987), Diophantine machines 

(Matiyasevich 1993), etc. A l l of these systems purport to embody the idea of effective 

computation in one form or another. Though representing very different models of 

computation working on different types of data, they all turned out to be equivalent to 

each other (see, e.g., Rogers 1967, Kleene 1952, 1967, Maltsev 1970, Shoenfield 1967, 

2 7 For various formulations of the thesis, its history and common misunderstandings, see, e.g., Jack 
Copeland's article "The Church-Turing Thesis" in the Stanford Encyclopedia of Philosophy, 
http://plato.stanford.edu/entries/church-turing/. 
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1972, Chaitin 1987, Matiyasevich 1993). The Turing machine formalism, as the one 

most closely resembling a modern (classical) computer, shall be taken as basic in this 

and following sections. Besides the version of a Turing machine introduced above many 

other custom variations are known: multitape, multidimensional tape, two-way infinite 

tapes, non-deterministic, probabilistic, etc. They all too turn out to be computationally 

equivalent in the sense that they can all simulate each other. 

(In probabilistic Turing machines there is a caveat concerning the possibility of a 

non-computable intrinsic parameter s built in the probability distribution that leads to 

rather strange computational outputs. We will return to this point in Part III when 

discussing the resources which are believed by some to enable quantum adiabatic 

computers with powers to break the Turing limit.) 

Any Turing machine as a finite object can itself be encoded by a string over a 

fixed alphabet. If we fix a finite alphabet A, we can consider a Universal Turing 

Machine UTM defined as follows. Its input is a pair ( T M 1 , x), where T M 1 is the 

encoding of a machine T M with external alphabet A, and x is a string over A (xe A*).. 

The output of the machine TM is <prM (x). So, UTM computes the function u defined as 

follows: 

u(rTMi,x) = .(pm(x). 

This function is universal for the class of computable functions of type A* —> A' 

to the effect that for any computable function / :A* -» A' there exists some Turing 

machine TM such that u{ T M 1 , x) = fix) for all x e A*. (The equality here should be 
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understood as meaning that either both w( rTM], x) and fx) are undefined, or they are 

defined and equal.) 

The existence of a Universal Turing Machine UTM is a consequence of the 

Church-Turing thesis since the description of Turing machines was algorithmic. 

However, unlike the thesis itself, this is also a mathematical theorem: such a machine 

UTM can be constructed explicitly and proved to compute the function u. (More 

precisely, the existence of a Universal Turing machine for the class of Turing-

computable functions is a mathematical theorem; the existence of a Universal Turing 

machine for the class of computable functions is a consequence of this theorem together 

with the Church-Turing thesis.) 

More generally, a notion of a Universal Computer, or a Universal Computing 

Agent can be introduced as the class of computational conceptual devices or automata on 

which it is possible to implement all effectively computable functions. 

3.3.4 Classical Complexity Class P 

The computability of a function does not guarantee that one can compute this function in 

practice: to compute it, an algorithm may take too much space or time, thus the 

importance of the notion of effective algorithms. 

The notion of an effective algorithm can be formalized in different ways, leading 

to different complexity classes. One of the most important is the class P of polynomial 

algorithms. The following is only a brief exposition of computational complexity 

classification, more details can be found, e.g., in Harel (1987), Garey and Johnson 

(1979), van Leeuwen (1990), and Papadimitriou (1994). 
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We say that a function F, defined on the set of binary strings over the set 

<B = {0,1}, is computable in polynomial time if there exists a Turing machine that 

computes it in time T(n) = poly(n), where the notation /(n) = polyin) means that 

/(ri) < Cnd for some constants C, d and for all sufficiently large n. If F is a predicate, 

we say that it is decidable in polynomial time. 

The class of all functions computable in polynomial time, or all predicates 

decidable in polynomial time, is denoted by P. (There may be complexity classes 

defined only for predicates.) 

3.3.5 Nondeterministic Turing Machines, Class NP, and NP-completeness 

While several different definitions of another important class NP of problems can be 

given, we will use' Nondeterministic Turing machines for this .purpose. A 

Nondeterministic Turing Machine (NTM), resembles an ordinary deterministic machine, 

but can nondeterministically choose one of several actions possible in a given 

configuration. More formally, a transition function of an N T M is multivalued: for each 

pair (state, symbol) there is a set of possible actions. Each action has a form (new state, 

new symbol, shift). If the set of possible actions has cardinality at most 1 for each state-

symbol combination, we get an ordinary Turing machine (Kitaev et al. 2002). 

A computational path of an N T M is determined by a choice of one of the possible 

transitions at each step; different paths are possible for the same input. 

Having this definition of a Nondeterministic Turing machine, we can define the 

class NP as follows. A predicate L belongs to the class NP if there exists an N T M M and 
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a polynomial p{n) with integer coefficients such that the following two conditions are 

satisfied: 

(1) If Z(x.) = 1, then there exists a computational path that gives the answer 

"yes'V'accept" in time not exceeding p(\n\), where |x| stands for the length of 

the string x; 

(2) If L(x) = 0, then there is no path with the above property. 

The class NP of nondeterministic polynomial time problems can be shown to 

contain problems which can be solved by a nondeterministic oracle and verified in 

polynomial time. The function of an oracle - a magic conceptual computational device, 

or a "black box", which, upon being consulted, immediately supplies the correct answer 

to the given problem, and the workings of which remain hidden for us throughout 

computation - is basically to produce right guesses. 

Now, the useful notion of reducibility allows us to verify that a given predicate is 

at least as difficult as some other predicate. 

A predicate Z, is reducible to a predicate L2 (we write Z, <x Z,) if there exists a 

function / e P such that Z,(x) = L2(f (x)) for any input string x. 

Finally, a predicate Z e NP is NY-complete if any predicate in NP is reducible to 

it. 

If some NP-complete predicate can be computed in time T(n), then any NP-

predicate can be computed in time poly(«) + Z(poly(«)). So, if some NP-complete 

predicate belongs to P̂  then P - NP. In other words, if P ^ NP (which is probably true), 

then no NP-complete predicate belongs to P. 
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If we measure running time "up to a polynomial", then we say that NP-complete 

predicates are the "most difficult" ones in NP. 

The key result in computational complexity theory says that NP-complete 

predicates do exist. One of such predicates, called SATISFIABILITY, or SAT(x), 

expresses the property of a propositional formula containing Boolean variables and 

logical connectives ~, &, and V, of being satisfiable, i.e., true for some values of the 

variables. By a theorem proved by Cook and Levin: 

(1) SAT e NP ; . 

(2) SAT is NP-complete. 

As a corollary, if SAT e P , then P = NP. Or, in other words, if P f NP (which, 

again, is probably true), then SAT cannot be solved polynomially in time. We will return 

to the satisfiability problem in Part III, when we will talk about certain quantum 

algorithm which are claimed to be able to solve it (or, more specifically, a 3-SAT 

problem) in polynomial time. 

3.3.6 Probabilistic Turing Machines and Class BPP 

A Probabilistic Turing Machine (PTM) is similar to a Nondeterministic one; the 

difference is that choice among activities is produced by coin tossing, not by guessing. 

More formally, some (state, symbol) pairs have two associated actions, and the choice 

between them is made probabilistically, according to some probability distribution on the 

set of all strings. Each instance of this choice is controlled by a random bit. Usually it is 

assumed that each random bit is 0 or 1 with probability Vi and that different bits are 

independent. 
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Given an input string, a P T M generates a probability distribution on the set of all 

strings such that different values of the random bits lead to different computational 

outputs, and each possible output has a certain probability. 

With a constant 0 < s <Vi ("the admissible error possibility"), a predicate L is 

said to belong to the class BPP (Bounded-error, Probabilistic, Polynomial time) if there 

exist a P T M Mand a polynomial p(ri) such that the machine M running on input string x 

always terminates after at most p(\n\) steps, and the following two conditionals are met: 

(1) If L{x) = 1, then M gives the answer "yes'V'accept" with probability > 1 - e ; 

(2) If L(x) = 0, then M gives the answer "no"/"don't accept" with probability < e. 

It can be shown that the class BPP remains invariant with respect to variations of 

the admissible error possibility, s, as long as it i s ' in the interval (0, Vi) and is 

computable. 

Probabilistic Turing machines (unlike Nondeterministic ones, which depend on 

imaginary oracles for guessing the computational path) can be considered as real 

computing devices. Physical processes like the Johnson-Nyquist noise generated by the 

thermal agitation of the charge carriers inside an electrical conductor in equilibrium or 

radioactive decay, the randomicity of which is guaranteed by the very nature of quantum 

mechanics, are believed to provide real physical sources of random bits. A quantum 

computer (see Part III) is another model of computation that is inherently probabilistic. 

One of the central questions of complexity theory is whether randomness 

increases computational power, i.e., the question of whether there is a problem which 

can be solved in polynomial time by a Probabilistic Turing machine but not a 
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deterministic Turing machine, or whether deterministic Turing machines can efficiently 

simulate all Probabilistic Turing machines with at most a polynomial slowdown. With 

respect to the latter question, the current belief is that it is indeed the case, implying that 

P = BPP. However, it should be noted that, in fact, while the class BPP associated with 

problems solvable by Probabilistic Turing machines remains the same if the admissible 

error possibility, £ , is replaced by, say, 1/3, things will change essentially i f this 

parameter is replaced by some noncomputable real p. It turns out that having a. 

noncomputable intrinsic parameter s built in the probability distribution leads to rather 

strange computational outputs, which are typically avoided in the standard textbook 

expositions (Kitaev et al. 2002). However, this is exactly the resource which is believed 

by some to enable quantum adiabatic evolution computers to break the Church-Turing 

thesis. We will return to this latter point in Part III. 

3.3.7 Many-Faced Undecidability of the Halting Problem • 

28 

One of the first problems proved undecidable was the so called Halting problem 

(Turing's proof went to press in May 1936, whereas Church's proof of the undecidability 

of a problem in the ^.-calculus had already been published in April 1936). The halting 

problem is closely related to the question of how a mechanistic system will evolve or 

what an algorithm or an automaton will output or what theorems are derivable for a 

mechanistic system. Informally, the halting problem is a decision problem associated 

with the question whether or not, given a description of a program or an algorithm A, and 

a finite input x, (Church's version) A(x) will produce a specific output in finite time, or 
2 8 In none of his work did Turing use the word "halting" or "termination". Turing's biographer Andrew 
Hodges (1992) does not have the word "halting" or phrase "halting problem" in his index. The earliest 
known use o f the phrase "halting problem" is in a proof by Davis (1958, pp. 70-71). See also Copeland 
(2004, p. 40). . 
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(Turing's version) whether A will terminate or halt on x. (Church's version reduces to 

Turing's if the termination or halting condition is identified with the production of output 

.)••) 

The result known as the recursive undecidability of the halting problem (Turing 

1936) states that there exists no Turing-computable function (partial recursive function) 

which decides the halting problem. Given a description of a program and a finite input, it 

is in general impossible to decide whether the program finishes running or will run 

forever, given that input. (Recalling the definition of semidecidabilify, the halting 

function can be shown to be semidecidable by Turing machines).' 

One consequence of the halting problem's undecidability is that there cannot be a 

general algorithm which decides whether any given statement about natural numbers is 

true or not. The reason for this is that the proposition which states that a certain 

algorithm will halt given a certain input can be converted into an equivalent statement 

about natural numbers. If we had an algorithm that could solve every statement about 

natural numbers, it could certainly solve this one; but that would determine whether the 

original program halts, which is impossible, since the halting problem is undecidable. 

Another important consequence of the undecidability of the halting problem is 

Rice's theorem which states that the truth of any non-trivial statement about the function 

that is defined by an algorithm is undecidable. It is a very powerful theorem substantially 

generalizing Turing's results and subsuming many other undecidability results proven as 

special cases, and showing that undecidability is the rule, rather than the exception (Rice 

1953, 1956). 

Rice's Theorem: Every nontrivial property of the r.e. sets is undecidable. 
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Note that for Rice's theorem (also known as The Rice-Myhill-Shapiro theorem) to 

apply, the property must be, first, a property of sets, not of Turing machines (i.e., it must 

be true or false independent of the particular Turing machine chosen to represent the 

set), and, second, the property must be nontrivial ^ it should be neither universally true 

nor universally false, i.e., there must be at least one r.e. set which satisfies the property 

and at least one which does not. There are only two trivial properties, and they are both 

trivially decidable. 

As an example, consider the following version of the halting problem - the 1-

halting problem: Take the (nontrivial) property of a partial function / i f / i s defined for 

argument 1. It is obviously nontrivial, since there are partial functions which are defined 

for 1 and partial functions which are undefined at 1. The 1-halting problem is the 

problem of deciding whether there exists an algorithm which defines a function with this 

property, i.e., whether the algorithm halts on input 1. By Rice's theorem, such algorithm 

does not exist. (It is important to keep in mind that the theorem holds for the function 

defined by the algorithm and not the algorithm itself. It is, for example, quite possible to 

decide if an algorithm will halt within 100 steps, but this is not a statement about the 

function that is defined by the algorithm.) 

Yet another important consequence of the general undecidability of the halting 

problem is the so called Maximal Halting Time, or Busy Beaver, problem, relating 

predictability of the behaviour of a mechanical system to the limits on the amounts of 

resources that a halting machine of a particular size can consume, in terms of either time 

or space. In his 1962 paper On Non-Computable Functions, Tibor Rado, a professor at 

Ohio State University, thought of a simple non-computable function besides the standard 
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halting problem for Turing machines. Given a fixed finite number of symbols and k 

states, select those Turing machines with k states which eventually halt when run with a 

blank tape. Among these programs find the maximum number of non-blank symbols left 

on the tape when they halt. (Alternatively, find the maximum number of time steps 

before halting.) This function of k - the Busy Beaver function - is well-defined but 

uncomputable. 

The recursive undecidability of the* halting problem and the undecidability of the 

Busy Beaver Problem are closely linked with an important class of the complexity-based 

constraints on predictability of the behaviour of computable systems for finite-time 

predications, and, connected with it, the idea of randomicity. The former constraints 

become especially important in cases of prediction by simulation for (weakly) chaotic 

systems in which a "speed-up" of the real-time computation processes is generally 

impossible. As for the link to randomicity, sometimes this position is formulated as a 

very radical metaphysical programme, stating that all instances of "genuine randomness" 

in physics may eventually turn out to be undecidable features of mechanistic systems 

(Svozil 1993). We will return to these points in the sections 3.6.3 and 3.6.4. 

Finally, one more powerful unsolvability result is worth mentioning here - the so 

called recursive unsolvability of the rule inference problem, closely related to the 

classical problem of induction (Gold 1967, L i and Vitanyi 1992, Angluin and Smith 

1983, Adleman and Blum 1991, Svozil 1993). Assume we have two universal 

computers, UTMi and UTM2. Assume further that the second computer UTM2 has been 

programmed with some algorithm or program p, and the knowledge of this algorithm is 

not given to the first computer UTM/. The task of UTMi, called the rule inference 
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problem, is to come up with the "law" or algorithm p by analysing output behaviour of 

UTM2. The following theorem (originally due to Gold 1967, pp. 470-473) states that this 

task cannot be performed by any effective computation: 

Recursive Unsolvability of the Rule Inference Problem: There exist total 

recursive functions which cannot be "guessed", or inferred, by any particular 

universal Turing machine. 

This result, important in the context of language learning, or in the context of 

inferring the laws governing evolution of the system, is just another "face" of the same 

halting problem and can be interpreted in terms of the recursive unsolvability of the 

halting problem: there is no recursive bound on the time the guesser UTM/ has to wait in 

order to ensure that its guess is correct. 

In the sections that follow I will describe another famous undecidable problem (or, 

more precisely, a family of problems) - Hilbert's Tenth Problem. Recently the physicist 

Tien Kieu suggested a quantum computing procedure that, presumably, could solve 
1 

Hilbert's Tenth. If true, existence of such an algorithm compatible with modern physical 

theories would threaten the classical concept of computability and the Church-Turing 

thesis, and would require us to reconsider the limits of predictability and mathematical 

knowledge. (In Part III of the thesis I will critically address this proposal in detail, 

showing its failure to perform purported hypercomputation.) 
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3.4 Diophantine Equations and Hilbert's Tenth Problem 

3.4.1 Introduction 1 

In 1900 at the Second International Congress of Mathematicians, held that year in Paris, ( 

i 

the German mathematician David Hilbert delivered his famous lecture entitled 

"Mathematische Probleme". In this paper he put forth a list of 23 unsolved problems, or, 

more precisely, 23 groups of related unsolved problems, thafhe saw as'the greatest 

challenges for twentieth-century mathematics (Hilbert 1900). The problem number ten in 

this list, now referred to as Hilbert's tenth problem, was to find a "process" (what we 

now call a method or an algorithm) for deciding whether an arbitrary Diophantine 

equation has an integral solution: 

10. DETERMINATION OF T H E SOLVABILITY OF A DIOPHANTINE 

EQUATION 

Given a Diophantine equation with any number of unknown quantities and with 

rational integral numerical coefficients: To devise a process according to which it 

can be determined by a finite number of operations whether the equation is 

29 
solvable in rational integers. 

A Diophantine equation is an equation of the form 

D(Xi,...,xn) = 0, 

where D is a polynomial with integer coefficients. 

2 9 Translation from German was taken from Matiyasevich (1993).which relies on the Engl ish translation of 
Hilbert (1900). 
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These equations were named after a Greek mathematician Diophantus of 

Alexandria who was the first to investigate such equations and ask questions about their 

3 0 

solvability in rational numbers. 

Diophantine equations typically have several unknowns, so it is customary to 

distinguish the degree of the equation with respect to a given unknown xi and the (total) 

degree of the equation, i.e., the maximum, over all the monomials constituting the 

polynomial D, of the sum of the degrees of the individual variables in such a monomial. 

Below are typical examples of Diophantine equations, with x, y and z the (integer) 

unknowns, the other (integer) variables given: 

• ax + by = d. Bezout's identity; an example of a linear Diophantine equation. It 

states that if a and b are integers with greatest common divisor d, then there exist 

(not necessarily unique) integers x and y (called Bezout numbers or Bezout 

coefficients) satisfying the above equation. 

• x" + y" = z". For n = 2 there are infinitely many solutions (x,y,z), the 

Pythagorean triples. For example, the triple (3,4,5) satisfies this equation as 

3 0 A lmost everything known about Diophantus' life comes from a single 5 l h century Greek anthology, 
collecting a number of games and strategic puzzles, in the form of an epitaph that itself encodes a 
mathematical problem to be solved in integers: "This tomb holds Diophantus. A h , what a marvel! And the 
tomb tells scientif ically the measure of his life. God vouchsafed that he should be a boy for the sixth part 
o f his life; when a twelfth was added, his cheeks acquired a beard; He kindled for him the light of marriage 
after a seventh, and in the fifth year after his marriage He granted him a son. A las ! Late-begotten and 
miserable chi ld, when he had reached the measure of half his father's life, the chi l l grave took him. After 
consoling his grief by this science o f numbers for four years, he reached the end of his life." The solution 
gives 84 years as the age at which Diophantus died. Different authors diverge as to when exactly it 
happened - we only know that he lived between 150 B C and 350 A D . There has even been divergence 
between writers as to the last syllable of his name. A consensus nowadays seems to hold that the name was 
Diophantos, not Diophantes. See (Heath 1964). 
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3 2 +4 2 = 5 2 . For larger values of n, n>2, Fermat's last theorem states that no 

positive integer solutions x, y, z satisfying the above equation exist. 

• x2-ny2=\, where n is a nonsquare integer (Pell's equation). Studied by 

Brahmagupta in the 6th century A D and later by Fermat, it has infinitely many 

solutions that yield good rational approximations to the square root of the natural 

number n. 

4 1 1 1 
• — = — I h —, or, in polynomial form, 4xyz - n{xy + xz + yz). The Erdds-

n x y z 

Straus conjecture states that, for every positive integer n > 1, the rational number 

4/n can be expressed as the sum of three unit fractions (an Egyptian fraction 

representation), with x, y, and z all positive integers. 

In specifying a Diophantine equation it is essential to indicate the range of the 

unknowns. Hilbert, in his Tenth Problem, spoke of solutions in rational integers. 

Though much work in the theory of Diophantine equations has been done in the case of 

algebraic integers, this latter case w i l l b e completely ignored in the present exposition, 

and we shall use the term "integers" to refer to rational integers. Following the 

tradition in mathematical logic, we wi l l also speak of the non-negative integers as the 

natural numbers; in particular, we shall consider 0 to be a natural number. 

3 1 A n algebraic integer is a number which is the root of an integer polynomial (i.e., an algebraic number) 
which, in turn, can be expressed with integer coefficients and leading coefficient 1 (a monic polynomial). 
This generalizes the distinction between an integer n (the root of x - n = 0 ) and a fraction a I b (the root 
o f bx - a = 0 ) . In more abstract terms, the ring o f algebraic integers is the integral closure o f the ring o f 
integers in the field of algebraic numbers. A number* is an algebraic integer i f f Z [ x ] is finitely generated 
as an abelian group (i.e., Z -module). Examples of algebraic integers include the Gaussian integers and 
Eisenstein integers. See, e.g., Kleiner (1998), Conway and Guy (1996). 
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3.4.2 Hilbert's Tenth as a Decision Problem 

By the time of Hilbert's address to the Congress, solutions for a large number of 

Diophantine equations had been found and many others had been proven to be 

unsolvable. Yet, for different classes of equations, or even for different individual 

equations, number-theorists had to invent different specific methods. What Hilbert asked 

in his problem "to devise" was a universal method for deciding solvability or 

unsolvability of an arbitrary Diophantine equation.32 

Hilbert's Tenth Problem is an example (and, out of all 23 of Hilbert's problems, the 

only example) of a decision problem, i.e., a problem consisting of (countably) infinitely 

many individual subproblems each of which requires an answer "Yes" or "No". In this 

case, each individual subproblem is specified by a particular Diophantine equation, and 

the expected answer of the method or algorithm would read either "Yes, the equation has 

a solution" or "No, the equation has no solution". The heart of the decision problem is 

the requirement to find a single universal method which could be applied to each of the 

individual subproblems that make up the bigger problem. 

A solvability proof fox a decision problem can be done either directly or indirectly. 

In the first case, one provides a procedure for finding the answer to any individual 

subproblem, while in the-second case, one reduces the given decision problem to 

another, the solvability of which has already been proven. 

3 2 O f course, in 1900 the development o f the theory of recursive functions and algorithms was still about 
thirty years away and the concept of undecidability and unsolvabil ity were not yet formalized. For the 
discussion whether this implies that the 10* problem was not a well-defined mathematical problem at the 
moment when it was stated see, for example, (Denef et al. 2000, pp. 2-3). 
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An unsolvability proof for a decision problem can also be either direct or indirect. 

In the latter case, one also reduces the original decision problem to another, but what is 

required here is a reduction in the reverse direction. Namely, to establish the 

unsolvability of a decision problem, one has to reduce to it another problem the 

unsolvability of which has already been proven. It is exactly by providing a chain of 

reductions of more and more complicated problems to Hilbert's Tenth Problem, Yuri 

Matiyasevich, a then unknown graduate student, in 1970 presented an elegant 

unsolvability proof for this problem and showed that two fundamental concepts arising 

in different areas of mathematics - the notion of recursively enumerable or 

semidecidable set of natural numbers from computability theory and the purely number-

theoretic notion of Diophantine set - turn out to be equivalent (Matiyasevich 1970, 

1993, see also Denef et al. 2000). 

3.4.3 Systems of Diophantine Equations 

Although Hilbert formulated his Tenth Problem in terms of finding a procedure for 

deciding whether any single arbitrary given Diophantine equation does or does not have 

a solution, Diophantus himself had considered systems of equations. Correspondingly, 

some textbooks give definitions of Diophantine equations as a system of polynomial 

equations with integer coefficients where the number of the variables in all equations 

exceeds the number of the equations in the system. 

However, it is not hard to see that a positive solution of Hilbert's Tenth Problem 

would also provide a method for deciding solvability of a system of Diophantine 

equations. Indeed, consider the following system of k equations: 
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Dl(x],...,xn) = 0 

A ( x „ . . . , x „ ) = 0 . 

If (and only if) this system has a solution in integers (x,,. . . ,x n), this is a solution 

for the following single Diophantine equation 

D*(x],...,xn) + --- + Dl(xl,...,xn) = 0 

has One. Moreover, the set of solutions of (2) coincides with the setoff solutions of (3). 

Thus, for systems of Diophantine equations the number of equations is not such an 

essential characteristic as it is in the cases of linear algebraic or differential equations. 

3.4.4 S o l u t i o n s i n I n t e g e r s , N a t u r a l N u m b e r s , a n d R a t i o n a l N u m b e r s 

Consider the following Diophantine equation: 

(X + 1 ) 3 +(V + 1) 3 +(Z + 1)3 =0. 

If asked to find solutions in integers (as Hilbert did in his Tenth Problem), this 

equation, obviously, has infinitely many solutions - any triple of the form x = -z - 2, 

y = -1 would do. If a solution, on the other hand, is sought in non-negative x, y, and z, 

then the fact that the above equation has no solutions is not trivial at all. So, for a 

particular Diophantine equation, the problem of deciding whether it has an integer 

solution and the problem of deciding whether it has a non-negative solution are, in 

general, two separate problems. However, the decision problem of determining the 

existence or non-existence of non-negative solutions can be reduced to the decision 
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problem of determining the existence or non-existence of integer solutions, for example, 

in the following manner. 

Consider an arbitrary Diophantine equation 

£>(x p . . . ,x n) = 0, 

and suppose we are looking for its' non-negative solutions. Now consider the following 

system: 

! D 1(x,,...,x„) = 0 

* i = y l + y t i + y l i + ylA 

x„ = yl,i + ylz + y2

n,3 + yl4-

It is easy to see that any solution of this system in arbitrary integers includes a 

solution of £>(x,,...,xn) = 0 in non-negative integers. Using the fact that every non-

negative, integer can be represented as the sum of the squares of four integers , the 

converse can be shown to be true as well: for any solution of Z)(x,,...,xw) = 0 in non-

negative integers x,,'...,x n, there are integer values of y, v...,yn4 that yield a solution of 

this equation. Now, as was shown in section 3, the above system can be squeezed into a 

single equation -

D(x I , . . . ,x„ ,y 1 1 , . . . ,^ n 4 ) = 0, 

3 3 The Four Squares Theorem o f Lagrange (1772) states that the Diophantine equation 

x] + x\ + x] + x\ - a is solvable in x , , x2, x , , x 4 for any non-negative a . See (Matiyasevich 1993, 

Appendix) . 
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solvable in integers if and only if the original equation D(xv...,xn) = 0 is solvable in 

non-negative integers. 

While Hilbert in his Tenth Problem asked for solutions in integers, Diophantus 

himself sought solutions in rational numbers. Consider the following Diophantine 

equation: 

D(xi,....,xn) = 0 

whose variables xl,...,xn range over rational numbers. Let us introduce another 

Diophantine equation 

D(r]t...,rn>q) = 0 

with its variables ranging over integers, and defined by 

b{rv...,rn,q) = qkD 
\q q J 

where k is the degree of the polynomial D. The polynomial D is homogeneous of degree 

k, and so equation D(rr...,rn,q) = 0 certainly has the trivial solution rx = ...rn =q = 0. 

For this reason, the question whether a given homogeneous. Diophantine equation is 

solvable or unsolvable is equivalent to the question of the existence or non-existence of 

its non-trivial solution. It turns out that the following two decisions can be shown 

equivalent: (1) the problem of determining the existence of a rational solution for 

arbitrary Diophantine equations and (2) the problem of determining the existence of a 

non-trivial integer solution for homogeneous Diophantine equations. Thus, a positive 

solution of the restriction of Hilbert's Tenth Problem to the case of homogeneous 
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equations would supply one with a method for determining the existence of rational 

solutions for arbitrary Diophantine equations that Diophantus was after. 

3.4.5 Families of Diophantine Equations and Diophantine Sets 

Apart from single Diophantine equations and systems of Diophantine equations, number 

theory also studies families of Diophantine equations. By a family of Diophantine 

equations, we understand- a relation of the form 

D(a l,...,a,„x,,...,x„,) = 0,-

where D is a polynomial with integer coefficients with respect to all the variables 

a],...,an,x],...,xm , separated into parameters at,...,an and unknowns x],...,xm . Fixing the 

values of the parameters results in the particular Diophantine equations that constitute 

the family. It should be noted that a family of Diophantine equations is not an infinite 

system of equations because the unknowns need not satisfy all the equations 

simultaneously, as would be the case for a system. Families of Diophantine equations are 

also known as parametric equations. 

For different values of the parameters, one can obtain equations that do have-

solutions as well as equations that do not have solutions. Correspondingly, given a 

parametric Diophantine equation of the form D(al,...,an,xi,...,xm) = 0, we can define a 

set 94. consisting of the ^-tuples of values of the parameters a],...,an for which there are 

values of unknowns x,,.:.,x;„ satisfying this equation, i.e. 

<o,,...,a„ >e94 <=> 3x 1 , . . . ,xm[D(a l , . . . ,o n ,x 1 , . . . ,x„,) = 0]. 
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The number n is called the dimension of the set 9d, and the above equivalence is 

called a Diophantine representation of 9A.. Sets that have Diophantine representations 

are called Diophantine sets. Clearly, every Diophantine set has infinitely many 

Diophantine representations. 

One may extend these concepts to functions, properties and relations. For 

example, a function is Diophantine i f its graph is a Diophantine set. A property of 

natural numbers is called Diophantine if the set of all natural numbers having this 

property is Diophantine. Finally, a relation among n natural numbers is called 

Diophantine if the set of all ^7-tuples being in this relationship is Diophantine. 

Corresponding equivalences are called Diophantine representations of, respectively, the 

function, property or relation. 

Below are some easy examples of Diophantine representations: 

• the property of being an odd number can be represented by the following 

equation: 

<7 - 2x -1.= 0, 

i.e., a is an odd number if and only if 3x[a - 2x -1 = 0], with x ranging over the 

natural numbers; 

• the relations of f, < and < can be represented by the following equivalences: 

a^b <=> 3x[(a -b)2 = x +1], 

a < b <=> 3x[a + x = b], 

a < b <=> 3x[a + x + 1 = b]; 
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• the relation of being relatively prime is represented by equation 

ox, - bx2 -1 = 0; 

• the property of being composite ( non-prime) is represented by equation 

- (x, + 2)(x2 + 2) = 0 ; 

• the set of all positive integers which are not powers of 2 is represented by 

equation 

a - (2x, + 3)x2 = 0 . 

3.4.6 Undecidability of Hilbert 's Tenth Problem 

A condition, necessary for a set to be Diophantine, arises if we look at Diophantine sets 

from a recursion theory point of view. Given a family of Diophantine equations (a 

parametric Diophantine equation) 

D O , , ...,an, x , , x „ , ) = 0, 

it is possible to effectively enumerate, or list, all ^-tuples from the Diophantine set M 

represented by this equation. Namely, having fixed some order over (n + m)-tuples of 

possible values of all variables av...,an, x, , . . . ,x m , we only need to check for each 

i successive (n + m)-tuple whether the equality holds or not. If it does, we put the w-tuple 

<al,...,an > on the list of elements of M . In this way every «-tuple from M will 

sooner or later appear on the list, possibly with repetitions. 

We recall that a recursively enumerable subset of Zk is, by definition, one that 

can be listed by an algorithm, possibly with repetitions, and a recursive subset of Zk is a 

subset for which there exists an algorithm which can test membership of an arbitrary k-
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tuple in it. Thus, for a set M to be Diophantine it is necessary that M be effectively 

enumerable. Martin Davis (1953) conjectured that this condition is also sufficient. 

M A R T I N D A V I S ' H Y P O T H E S I S 

The notions of Diophantine set and effectively enumerable set coincide, i.e., a set is 

Diophantine if and only if it is effectively enumerable. 

This conjecture, if right, would immediately mean the Hilbert's Tenth Problem is 

undecidable because examples of sets that are effectively enumerable but not decidable 

were well known already in the 1930's. However, it was a rather bold conjecture at the 

time since there hadn't been any strong informal evidence in its favour, whereas there 

existed much informal evidence against it. As an example, Davis' hypothesis implied the 

existence of a particular polynomial P such that the equation 

P(a,xl,...,xm) = Q 

was solvable if and only if a were a prime number. Hilary Putnam (1960) noted that such 

an equation could be rewritten as follows: 

a = (x0 + \)(\-P2(x0,xl,...,xm))-\, 

so that every solution of the former equation could be extended to a solution of the latter 

by putting 

x 0 = a . 

On the other hand, since a is non-negative, for any solution of the latter equation it 

follows that the product of the right-hand side should be positive, which is possible only 

if 
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.P(x0,xp...,xm) = 0. 

Thus Davis' hypothesis implies the existence of a particular polynomial such that 

the set of all its non-negative values is exactly the set of all prime numbers. This 

corollary was considered by many as an informal argument against Davis' hypothesis. 

Yet, in 1970, building on work on exponential Diophantine sets by Martin Davis, 

Hilary Putnam and Julia Robinson, Yuri Matiyasevich, a then graduate student at the 

Leningrad Division of the Steklov Institute of Mathematics, presented a negative 

solution to Hilbert's Tenth Problem. In his doctoral thesis he proved (Matiyasevich 1970, 

Davis 1973, Denef et al. 2000) what is now called 

D M P R - T H E O R E M ( C H A R A C T E R I Z A T I O N OF D I O P H A N T I N E SETS) 

A subset ofZ is Diophantine if and only if it is recursively enumerable. 

A consequence of Matiyasevich's result is that there is Diophantine set which is 

not recursive; that is, there is a Diophantine equation P.(x],...,xti,y],...,ym) = 0 such that 

no algorithm whatsoever can detect the set of ^tuples <x],...,xn> for which 

P(xl,...,xn,y],...,ylll) = 0 has a solution in terms of/s , 

An immediate corollary of the DMPR-theorem gives . 

C O R O L L A R Y (THE N E G A T I V E A N S W E R T O H I L B E R T ' S T E N T H 

P R O B L E M ) 

There is no algorithm which, given an arbitrary Diophantine equation, can test it for 

possessing integer solutions. 
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I 

Though this negative solution of Hilbert's Tenth Problem does constitute the 

formal solution of the problem with which Hilbert himself would probably be satisfied, 

there is another, related, question, the answer to which would most likely be "No": 

Would Hilbert be satisfied with the statement of the problem itself if he knew it would be 

"solved" in this way? 

As Matiyasevich explains this point, Hilbert's lecture took two and a half hours but 

still this was not enough to present all the 23 problems, so that some of them, including 

the 10 th, were not presented orally at all, but just appeared in the printed version of the 

lecture. In addition, the Tenth Problem occupies less space than any other problem in the 

lecture. In particular, there is no motivation for the 10 th problem, and one can only guess 

why Hilbert asked about solutions in "rational integers" only (Denef et al. 2000, p. 18-

A plausible answer can be that Hilbert was an optimist who believed in the 

positive solution of the problem in integers. If there existed an algorithm for solving 

Diophantine equations in integers, such an algorithm would allow one to solve equations 

in rational numbers as well. Namely, consider the following equation: 

Solving this equation in rational numbers % v •••,%„ is equivalent to solving 

equation 

19). 

D(%],...,Xm) = 0. 

( 
D 

V z + 1 
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in non-negative integers x„,, y,,..., y m , z. The last equation, in turn, is equivalent to 

the following homogeneous Diophantine equation: 

(z + i y ' D 
xi~y^ x „ , - ym = o 
z + l z+1 

where d is the degree of D. 

Though reduction in the converse direction of solving Diophantine equations in 

rational numbers to solving homogeneous Diophantine equations in integers is less 

evident, it can proceed in the following manner. 

One first transforms the original equation into 

D ^
 X\ Xn ^ 

V 2 z ; 
= 0, 

and then into 

z'D 
f X X ^ ZL '» 

,..., 
" J 

= 0. 

At this stage, however, an additional trick is needed to ensure that z ^ 0 (see, e.g., 

Matiyasevich 1993, and Smoryhski 1991). 

So, asking explicitly about solving Diophantine equations in integers, Hilbert 

asked implicitly about solving Diophantine equations in rational numbers. A positive 

solution of the Tenth Problem, as it stands in the lecture, would immediately give a 

positive solution to the corresponding problem about solving Diophantine equations in 

rational numbers. 
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However, a negative solution of the original formulation of the problem does not 

imply a negative solution for the problem of solving Diophantine equations in rational 

numbers. In fact, homogeneous Diophantine equations constitute a very special subclass 

of all Diophantine equations and it is quite possible that for this narrower class a 

corresponding algorithm exists. 

So, Hilbert's Tenth Problem can be understood in two senses: 

• narrower sense, i.e., literally as the problem was stated by Hilbert in his lecture; 

• broader sense, which includes other problems the solution of which would easily 

follow from a positive solution of the 10th problem as it was stated in the lecture. 

In the narrow sense the Tenth Problem is considered to have been solved but 

solving Diophantine equations in rational numbers still remains today an open problem, 

and the progress in this direction has been rather meagre (Denef et al. 2000, p. 19). 

3.4.7 Diophantine Machines 

One of the implications of the DMPR-theorem is that Diophantine equations can be 

treated as computing devices. Adleman and Manders (1976, 1978) introduced the notion 

of Non-Deterministic Diophantine Machine (NDDM), specified as follows (Denef et al. 

2000). 

Given a parametric Diophantine equation 

D(ai,...,an,x],...,xm) = 0, 
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the corresponding N D D M works in the following manner: on input av...,an it guesses 

the numbers x,,...,xm and checks whether or not they satisfy the equation; if the equality 

holds, the w-tuple < a],...,an > is accepted. 

N D D M 

g u e s s 

< : — 

X j , . . . , X m 

a c c e p t r e j e c t 

<av...,an> 

Fig . 22 Nondeterministic Diophantine Machine . 

Notice that in the so introduced new computational device there is full separation 

of guessing and deterministic computation, with the computational part being very 

simple - the only calculation required is that of the value of a polynomial. 

The DMPR-theorem implies that NDDMs are as powerful as any standard Turing 

Machines: every set recognizable by a Turing Machine is recognized by some NDDM, 

and, of course, vice versa. Adleman and Manders further supposed that, in addition, 

NDDMs are as efficient as Turing Machines. 

Typically, one has to distinguish two different natural measures of computational 

complexity: TIME and SPACE. For NDDMs there is only one natural complexity 

measure which plays the role of both TIME and SPACE. This measure is SIZE, which is 
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understood as the size (in bits) of the smallest solution of the equation, defined either as 

the smallest possible value of max{x,,...,xm}, or as the smallest possible value of the 

sum x, +... + xm . 

(Adleman and Mandres 1976, 1978) contain first results comparing the efficiency 

of NDDMs and conventional Turing Machines by estimating the SIZE of an N D D M 

simulating a Turing Machine with TIME in special ranges. 

In particular, Adleman and Manders introduced the special class D of all sets M 

having Diophantine representations of the form 

<a]t...,an>s!M o 3x],...,xm{D(a],...,all,xl,...,xJ = 0 & x, +... + xm < 2la,+-+aJ}, 

where | a | denotes the (binary) length of a. 

It can be easily shown that D e NP since the class D is known to contain NP-

complete problems. Adleman and Manders asked whether in fact the equivalence 

between the classes holds: D = NP . 

3.5 Self-Fulfilling Prognoses and Laplacian Demon 

3.5.1 Self-Reference and Self-Fulfilling Prognoses 

Technically, the goal of this section is to demonstrate the algorithmic undecidability of a 

certain class of propositions about future contingent truths in situations where one takes 

into account the provocative nature of prognoses (Korolev 1998). Here I consider a 

model of a social (or, more generally, mechanical physical) system where prognoses are 

not merely passive forecasts of future happenings, but where they actively provoke the 
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very events the prognoses are about; a case where the events would not happen at all, if 

we had not previously put forth this prognosis. Of special interest is a subclass of all 

such prognoses, so called self-fulfilling prognoses. In the case of self-fulfilling 

prognoses, the very fact of formulating, or putting forth, a prognosis about the state of 

the system at a certain time in future initiates, or triggers, a series of changes within the 

system, in such a way that at that future moment the system assumes exactly the state 

described in the prognosis. 

As a paradigm example of a self-fulfilling prognosis we can take a case of 

Girolamo Cardano. As the legend goes, he cast his own horoscope, and, having predicted 

that he would live only to the age of seventy-five, committed suicide on September 21, 

1576, in order not to falsify his horoscope.34 

Within the social system context, this situation is possible due to the fact that 

prognoses may refer to the reality which itself is subject to human activity; in the 

meantime a choice of a particular activity is often determined by the pictures drawn by 

our expectations based upon the prognoses. 

The systems I consider are assumed to be complex enough to allow self-fulfilling 

prognoses to occur. In addition, a mechanical physical system is perceived as a never-

ending computational process, characterized by computable, or recursive, dynamics: the 

responses of the system to a prognosis for these models are assumed to be fixed, known, 

and computable on a step-by-step basis. (More precisely, the response function of the 

system to a prognosis - the "law" governing the evolution of the system - is 

\_ 
3 4 For a more recent similar example see "Astrologer Misses Date With Death", Reuters, October 20, 2005, 
http://www. smh.com. au/news/unusual-tale's/astrologer-m isses-date-with-
death/2005/10/22/1129776001455.html. • ' 
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characterized by a recursive function.) I argue that even for such systems, 

notwithstanding their simple mechanical and totally computable appearance, the class of 

effectively undecidable propositions which express the (classical) truth-values of the 

(self-fulfilling) prognoses, in general, is not empty. 

It turns out that the self-fulfilling prognoses are the bearers of principle 

algorithmic undecidability in the system. In general, having all the information about the 

world now, no Universal Turing machine predicting the future will halt before the 

moment when the event actually happens, and none of Laplace's (or Popper's or 

Landauer's) demons will be of any help here..Put differently, even if Laplace's demon 

knows all the initial conditions about the system with infinite accuracy, it requires, in 

addition, computational powers beyond that of any Turing machine, to be able to answer 

certain questions about the system's future. In computer science such power is attributed 

to a theoretical device called an Oracle.'3 So, Laplace's demon, to be able to do its 

intended job - predict the future - occasionally needs to resort to, or to consult with, a 

demon of a higher level in the computational hierarchy to be able to make such 

predictions. Behind any successful Laplace's demon necessarily there is another demon 

of a higher order, without which the subordinate demon would not be able to perform its 

function. If one accepts an outcome of a thought experiment that uses Laplace's demon, 

one is inadvertently accepting another demon lurking behind the first one; to bring the 

hiding demon to light would be to clearly see the computational powers required for the 

thought experiment to succeed. 

3 5 See Pitowsky (1996) for a similar result obtained via the detour through the generalized Bernoull i shift 
and Moore's (1990, 1991) realization of the Bernoull i shift. 

120 



(In Part III I will critically address a recent proposal, by Tien Kieu, to utilize a 

certain quantum adiabatic algorithm to serve as a physical realization of an Oracle, 

which, allegedly, is able to look through an infinite domain within a finite time. If 

actually implemented and coupled with a Laplacian demon (a Universal Turing 

machine), such a tandem would present a serious threat to traditional epistemological 

and ontological theories, thus requiring us to reconsider the age-old philosophical 

debates about the limits of predictability and mathematical knowledge.) 

Historically, there have been several attempts to cash out the self-referential 

character of self-fulfilling prognoses in philosophically significant contexts. Thus, 

MacKey (1960) and ensuring discussion argued for the logical indeterminacy of a free 

choice, and Popper famously gave his arguments for the impossibility of historical 

prediction (and impossibility of an exact historical science, or historicism, with it) based 

on what he calls the "Oedipus effect" - the "influence of the prediction upon the 

predicted event, whether this influence tends to bring about the predicted event, or 

whether it tends to prevent it" (Popper 1961, 1950). Here I present a pure logical result 

in a very general context of forecasting the behaviour of mechanistic, totally computable 

systems, complex enough to allow self-fulfilling prognoses to take place. 

3.5.2 Undecidability of Self-Fulfilling Prognoses 

A system's "forecast" or "prediction" will be decomposed into two distinct stages or 

phases: the algorithmic representation or description of a system, and the actual 

computation of a prediction or actual realization of a prognosis, based on that 

representation. It will be assumed that the system under consideration is complex enough 
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to support universal computation (possibly up to limited computational resources).36 

Moreover, a social or mechanical physical system here shall be perceived as a never-

ending computational process, characterized by computable, or recursive, dynamics. One 

appropriate representation or description of a computable system is an algorithm or 

program code, which, if implemented extrinsically on different computers, or 

intrinsically within the same system, yields a replica of that system. A mechanistic 

system can also be considered as a formal system, with the index or Godel number of the 

axioms serving as description. In this sense the terms "(algorithmic) description", 

"program code", "index", or "Godel numbers" are synonyms. Following a tradition in the 

theory of finite automata, we will interpret such descriptions as "natural" or "dynamical 

laws" governing the system (Svozil 1993). 

Let p be some sentence (or a text) in an appropriate language L. The language L 

can be some formal language or a suitable chunk of some natural language such as 

English. The sentence p (or a text) is a description of some event e from the class E of all 

those events we are going to put forth prognoses about. We will assume that the 

language L and the sentence p are defined in such a way that having any such sentence 

we can always effectively determine whether or not it is a description of some event 

belonging to the class E. In other words, we assume the class DS of all sentences of the 

kind be an effectively decidable set. 

3 6 It is still an open problem to specify whether, for a given Newtonian dynamical system, there is a . 
constructive embedding o f a Universal Tur ing machine into its possible states o f motion. For example, it is 
often conjectured that a system as simple as the three-body classical Newtonian system with point particles 
and gravity as the only force is already complex enough to be capable of universal computation (Pitowsky 
1996). 
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> This being so, there exists an effective one-to-one coding v of this set by the 

natural numbers: v. N -» DS , where TV is the set of the natural numbers. From now on 

we will identify any sentence p of DS with the code of this sentence at the coding v. 

That is, instead of the sentence p we will talk of a natural number n such that n = v~\p) 

or vice versa. 

Accordingly, let us now, at to, put forth a prognosis about an event taking place in 

the future, at some fixed time / > to, with a natural number x as a code of a sentence 

which is a description of the event. 

Within this framework, any conceivable prognosis may be associated with some 

effective mapping h : N -> {0,1} interpreted as follows: 

f 1 <-> v(x) is true at t (as seen at L) 
h(x) = \ 0 

[0 <->'v(x) is false at / (as seen at / 0). 

Two things should be noted about prognoses as defined above. First, the 

qualification "as seen at to" in the above definition is intended to emphasize the fact that, 

at the stage of pronouncing a prognosis now, at to, we are assumed to be at freedom as to 

the prognosis' content, i.e., we are free to assign truth values to the future prognosed 

events as we wish. Whether or not some particular event actually eventuates (will, in 

fact, be true or false at /) does not and should not influence my choice of a particular 

prognosis at the stage of pronouncing, or putting forth, the prognosis. (It will be the 

system itself with its particular dynamics of responses to an external influence that will 

determine whether or not my prognosis can possibly come out true, i.e., be in agreement 

with what the prognosis states.) 
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Second, even though the mapping h is defined for all x's to cover all possible, or 

conceivable, prognoses that can be formulated within the model, it is important to keep 

in mind that we are going to make a prognosis about only one event (at a time). The 

rationale behind this assumption is that the very fact of putting forth a prognosis about a 

particular event e\ (say, about Baden-Wiirtenbergische Bank going bankrupt in three 

months) (or, to be more precise, people's believing in, or taking seriously, the prognosis) 

may initiate, or trigger, some changes, or processes, within the system (say, people's 

( rushing to the bank to withdraw all their savings in the view of impending bankruptcy of 

the bank). Suppose these processes triggered by people's believing in the prognosis about 

e\'s taking place at / eventuate in the system's assuming the state s\ at /. Now, if, instead 

of the first prognosis, we were to put forth another prognosis, ei, this would initiate, or 

trigger, possibly different changes within the system, getting the system to evolve in a 

different way. Suppose the processes triggered by people's believing in prognosis about 

eis taking place at / eventuate in the system's assuming the state 52 at /. It is easy to 

imagine, however, that, if we were to put forth the two prognoses simultaneously, the 

processes triggered by people's believing in these two prognoses (i.e., about the 

compound event e\ & ej taking place at /) could bring the system to a totally different 

outcome (different from s\ & si), due to the possible interference, or mutual influence, of 

the processes on each other. 

If seen on the level of events (those present both in a formulation of a prognosis 

and in the resulting state of the system), the latter possibility may presumably give rise to 

non-Boolean structures of events in the system whose dynamics is characterized by 

totally computable laws. Though this framework may be highly relevant when studying 
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complementarity in non-classical structures, we will not pursue this line of thought here 

(I will return to this topic again in section 3.5.6 on modeling classical and quantum 

measurements). 

So, from now on we will identify the prognoses with the functions of the above 

sort. 

Let us designate a class of all effective mappings from N to {0,1} as H. We recall 

that a representation of a function, i.e., a syntactic expression for which there exist 

interpretations of these expressions as functions, if effective, must allow determination 

of an algorithm (a program, or a description) computing this function. We also note that, 

a prognosis has been put forth, the choice of a particular activity depends on the 

prognosis' content not directly, but via its descriptions (programs) that correspond to the 

(various) ways of actually realizing, or computing, this function. The same effectively 

computable function from H has a denumerable number of programs (descriptions) 

realizing this function. 

Now we are ready for the formal definition of a formidation of a prognosis. Some 

Godel numbering of all partial recursive functions (of one variable) has been fixed, we 

designate as <pn a function that has its index n in this numbering. Then, by a formulation 

of a prognosis h we will understand any natural number n such that for all x the 

following identity holds: 

(pn(x) = h(x). 

It should be noted that by no means any given natural number m is a formulation 

of some prognosis. In fact, the class M o f all possible formulations of prognoses 
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M = {n e N : <pn = h, h e H} 

constitutes an ineffective subset of N. 

An important qualification about the formulations of a prognosis is in order. 

Recall that any social or mechanical physical system within our model is perceived as a 

never-ending computational process, characterized by computable, or recursive, 

dynamics. We also assume that every step, or operation, in this computational process 

takes a fixed, arbitrarily small but non-zero amount of time. That is to say that any 

program tpn, n e M for, or a possible way of computationally realizing of, our prognosis 

h necessarily takes some finite time before it halts (if it halts at all). If so, there may exist 

some programs for our prognosis made at t0 about an event taking place at t that take 

time exceeding T = (t - to). Even though such computational paths are perfectly 

admissible on logical grounds, we are going to exclude them from the admissible 

programs which allow computation of our prognosis within the time interval T = (t - to) 

on physical grounds. (I will discuss the so called complexity-based physical constraints 

on predictability by simulation in more detail in section 3.6.3.) 

Within the social system context, in addition to the complexity-based 

considerations, it will also be assumed that we will not take into account those prognoses 

which are written in a language that is not understood by a society - those knowingly 

will not affect upon the activity choice and are not essential for our discussion. 

So, we will assume that the set of S of all physically possible formulations of a 

prognosis that we are going to take into account is an effectively decidable subset of the 

class M: S c M . 
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Let u(x) be a function defined for all natural numbers such that if x coincides with 

a physically possible formulation of some prognosis (i.e., x e S), then the function value 

is some certain activity a from the class A of all possible (at to) activities which we 

eventually choose if we believe in the prognosis with the formulation x . 3 7 That is, we 

assume that u:N -> B, where B is some class embracing the class A: Acz B. 

Further, let r(x) be a function from B to N such that if r(B) = n and B e A , then n 

is the formulation of a prognosis which is in agreement with those events that will 

happen if we carry out the activity B. 

Now let us introduce a function / : N —> N taking it to be a composition of the 

two above functions: f(x) = r° u(x). It is obvious that if x is a formulation from the set 

S, then the value of the function/ will be a prognosis such that it will be in agreement 

with the outcomes of the activity which will be motivated by our believing in the 

prognosis with formulation x. We will work within a model where response of the 

society (a mechanistic system) to prognoses is characterized by a (general) recursive 

function f of the above sort. 

Excluding the possibility of the prognoses which are knowingly not in agreement 

with what they state, we now go on to introduce a concept of a permissible in f 

formulation of a prognosis. By that we will understand such and only such a natural 

number n that 

<P„ = <?/(„> • 

3 7 Though quite an innocent assumption for mechanistic systems (our primary focus in this section), this 
would involve a serious simplification for social systems, possibly corresponding to the idea that the best 
(or most perfect) action (or the strategy) always exists and is unique. 
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The left-hand side of the equality • can be seen as corresponding to the 

computational path realizing the prognosis in the case where no provocative character of 

the prognosis is involved, i.e., the case in which the response function of the system is 

taken to be just an identity function, f{x) = x . The right-hand side corresponds to the 

resulting computational path actually taken by the system after all the side-processes 

have been initiated, thus comprising all the provocative effects of the prognostication. 

It is obvious that any natural number n satisfying the above identity is a 

formulation of a prognosis which, in the given society (system) with the given response 

function/, is knowingly in agreement with what it states (i.e., a self-fulfilling prognosis). 

And, vice versa, any natural number n which is not a permissible in / formulation of a 

prognosis, is either not a formulation of a prognosis at all, or is a formulation of such a 

prognosis that, at a given response function/, is knowingly in disagreement with what it 

states. 

It is natural to associate the first case with the prognosis being true, and the latter 

case with the prognosis being false (one may call it the Naive Theory of Future 

Contingent Truth): 

According to the Kleene theorem of recursion (Rogers 1967, p. 180), given any 

(general) recursive function / there exists an effective procedure that allows to find a 

natural number n (called a. fixed-point value for the mapping/) such that 

(P., = <Pf(n) • 
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After a fixed-point n of the mapping has been found, the question whether the 

found n is a physically possible formulation of the prognosis depends only on the set S 

and can be solved algorithmically (S is an effectively decidable set). 

However, the problem of whether any arbitrary natural number m is a permissible' 

formulation, generally speaking, is an algorithmically undecidable problem. The reason 

is that the set of all fixed points of a given recursive function need not itself be recursive. 

Indeed, there exist such recursive functions whose sets of fixed points are not even 

recursively enumerable, for instance, /(x) = c, where c is a fixed natural number. 

A question arises: what is a class G of all recursive functions whose sets of "fixed 

points" are recursive sets? Not giving an answer to the question (we just note that it is 

not empty - it contains, for instance, the function f(x) = x) we emphasize its 

importance. If the society response function belongs to the class G, then among all 

permissible in / ' formulations of prognoses we can find formulations of any given 

prognosis h from H, i.e., the admissibility requirement of formulations of prognoses does 

not place any constraints on possible content of possible prognoses. And, vice versa, i f / 

does not belong to the class G, then, in general, there is no effective way to determine 

whether a given formulation is permissible i n /o r not, even if some of them are, in fact, 

permissible. 

Let us put this in a different way. In this situation it will be in general impossible 

to determine in an effective way whether the corresponding prognosis is true or false 

(with "true" and "false" understood as defined above). Even if we restrict ourselves to 

consider fixed, known, and computable responses of a society to an outer influence, the 

corresponding sentences expressing the truth-values of the prognoses, in general, are 
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effectively undecidable sentences. Not even Laplace's demon, having all the information 

about the world now, will be of any help here; and no Universal Turing machine 

predicting the future will halt before the moment when the event actually happens. 

3.6 Undecidability in Physics 

3.6.1 Introduction 

Despite wide-spread recognition of the incompleteness results in formal logic, discovery 

of some other mathematical assertions - the continuum hypothesis and the axiom of 

choice - which are independent of the most common form of axiomatic set theory -

Zermelo-Fraenkel set theory, and later proofs that "almost all" true theorems are 

undecidable (Calude et al. 1994b, see also Rice's theorem above), many mathematicians 

and physicists still long persisted in the view that all "real" mathematical and physical 

problems are solvable. Fair enough, after seeing the way in which Godel's theorems 

were originally established it is rather hard not to become sceptical about their relevance 

to more practical matters. Emanating from the formulation of a rather innocent artificial 

linguistic paradox, Godelian sentences appear to look like mere artefacts of a specific 

theory explicitly constructed for a specific • metamathematical purpose, and, as such, 

seem to be only of pure theoretical interest. Far more impressive would be the-

demonstration that some great unsolved problems which have long tortured 

mathematicians and physicists are actually undecidable. 
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Godel himself did not believe that the incompleteness results had any practical or 

physical significance, in particular for quantum mechanics.38 However, with the rise of 

the theory of computation, recursion theory and the theory of finite automata, where 

undecidability refers not to statements being neither provable nor refutable in a formal 

system, but applies to decision problems taken as (countably) infinite sets of yes/no 

questions, new and more readily interpretable sources of algorithmic undecidability 

came into play, and many other sides of undecidability showed their faces. 

The impact of the undecidability results in formal logic and mathematics on 

physical sciences has not yet been fully understood.: Even though several attempts have 

been made to translate mathematical undecidability into a physically meaningful context 

(Kanter 1990, Komar 1964, Peres and Zurek 1982, Moore 1990, Da Costa and Doria 

1991a, 1991b), a good many issues, both technical and philosophical, remain unsettled 

today (Kreisel 1974, Pour-El and Richards 1981, Calude et al. 1994a, Svozil 1993, 

1995). In this section I will sketch the.various possible ways of translating algorithmic 

undecidability into physical language. The following physical applications and their 

philosophical significance will be discussed below. 

(1) The general problem of forecasting the behaviour of a mechanistic, i.e., totally 

computable, system, and inferring the recursive laws governing a mechanical 

system, both in extrinsic and intrinsic contexts. The absolute knowledge of the 

dynamical laws governing the evolution of the system will be assumed to be 

given here by some external "oracle". The general problem of forecast is linked 

3 8 A rather anecdotal attempt to discuss a connection between Godel's incompleteness theorem and the 
Heisenberg uncertainty principle that took piace at the Institute for Advanced Study in Princeton in 1979 
between Kurt Godel and John Archibald Wheeler is recorded in Svozi l (1993, p. 112) and Bernstein (1991, 
pp. 140-141). 
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to the recursive unsolvability of the halting problem. The impossibility of 

inferring the recursive laws governing the system (a mechanistic analogue of 

the problem of induction) is linked to the more general problem of identifying 

and learning a language and is constrained by the recursive undecidability of the 

rule inference problem, also reducible to the halting problem. 

(2) The problem of predicting the behaviour of weakly chaotic systems. Such 

systems are of special interest to physicists and philosophers of physics since, 

with respect to computational resources, they appear to be the fastest/optimal 

simulations of themselves, in that it is impossible to simulate a chaotic system 

with fewer than its own resources.' This feature gives rise to a complex of in 

principle complexity-based constraints on the workings of such systems. The 

kind of undecidability at play here can be shown to the equivalent to the 

recursive undecidability of the halting problem, e.g., through Moore's proposal 

of physical implementation of the Bernoulli shift - the simplest example of a 

(weakly) chaotic system. 

(3) The problem of the connection of instances of randomicity in physics with the 

undecidable features of mechanistic systems. As a radical metaphysical thesis it 

states that "there is no randomness in physics but a constant confusion in 

terminology between randomness and undecidability. God does not play dice" 

(Svozil 1993). 

(4) The problem of modeling classical (and quantum) measurements. The kind of 

undecidability which is in play here is due to so called computational 

complementarity which usually appears in complementarity games in the theory 
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of finite automata. A typical physical measurement and perception processes 

may exhibit features which resemble computational complementarity and 

diagonalization: while trying to read off the "true" value of an observable of a 

system, a measurement interacts with the system and thus inevitably changes its 

state. It is true both for quantum and classical systems with the major difference 

being that quantum theory postulates a lower bound on the transfer of action by 

Planck's constant h. One may even speculate that quantum theory is the only 

theory so far that implicitly employs this kind of complementarity (Svozil 

1993). 

3.6.2 The. Problem of Forecast of a Mechanistic System 

In trying to predict the future, it has been a long tradition to imagine a being, or 

conceptual computational device - a demon - that would be able to do so given the 

knowledge of the dynamical laws governing the system and the system's present 

conditions. A Laplacian demon, within this framework, would be a very powerful 

computational device (a Universal Turing machine) with potentially unlimited 

computational resources (time and space) capable of measuring the initial conditions of 

the given system (or even the whole world) with arbitrary accuracy (Pitowsky 1996). 

Yet, apart from many difficulties which are mainly practical in character (e.g., the 

ability to measure the initial conditions with arbitrary, or "potentially infinite", accuracy) 

(Earman 1986, Feinberg et al. 1992),'the ability to predict the future is hampered by 

various in principle computational constraints, many of which can be traced to the 

general recursive undecidability of the halting problem, and are, in fact, equivalent to the 
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halting problem in the sense that if (and only if) one could solve the problem in question, 

one could solve the halting problem. 

One of the important computational limitations constraining our ability to predict 

the future deals with the general undecidability of the problem of inferring the recursive 

dynamical "laws" governing the system, or, more precisely, their algorithmic 

descriptions. Mechanistic systems here are treated as "black boxes" on which 

experiments are allowed only via some kind of input/output terminal. (By definition, for 

systems which are not mechanistic, no reasonable concept of a "recursive law" can be 

given, though probabilistic laws may still apply.) 

First, we can consider a computational model of the system from an extrinsic 

perspective, with an algorithm representing a computable system implemented 

extrinsically on different computers. An idealized external experimenter (a demon) 

examines arbitrarily many copies of the system and, based on these observations, 

attempts to construct an algorithmic description of the system. As a result of the 

algorithmic undecidability of the rule inference problem this is in general impossible. 

There exists no systematic, i.e., effectively computable, way of deriving an algorithmic 

description of the system's laws from the input/output analysis of an arbitrary 
i 

mechanistic system (Svozil 1993). 

As no effective procedure is in general available for identifying the recursive laws 

of a mechanistic system, these laws can be thought of as given by some (extrinsic to the 

system) oracle. Such an oracle will be assumed to provide an algorithm which computes 

in an effective way enumeration of the system's evolution. Still, in the latter situation, 
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some (physically meaningful) propositions about the future of a totally computable 

system will be undecidable. 

The simplest class of such propositions involves questions pertaining to all the 

future (as opposed to questions about the state of the system at any specific time). 

Examples of such questions are: "Is the solar system stablel", "Is the motion of a given 

system, in a known initial state, periodic!", "Is this particle ever going to reach this 

region of space?" These are typical and meaningful questions asked by physicists. What 

makes them insolvable is that all such questions involve quantification over an infinite 

domain of time instants. Thus, the question on stability of a mechanical system can be 

paraphrased as follows: "Does there exist some distance D such that for all times t the 

maximal distance between the particles constituting the system does not exceed £>?" The 

question on periodicity of a system of n mechanical particles is: "Does there exist some 

time T such that for all times t, the functions describing the coordinates of the particles 

of the system satisfy the following equality: 

x,(; + r) = x,(0, forall / = 1,2,...,>?? 

Indeed, according to Rice's theorem - a generalization of the Turing 

undecidability result - almost all (i.e., all except for the set of measure zero) conceivable 

questions about the unbounded future referring to the state of a particle at some 

unspecified time turn out to be computationally insolvable - no Universal Turing 

machine can decide them in any finite time. Therefore, to answer these questions, a 

Laplacian Demon needs powers that exceed those of any conceivable (classical) 

algorithm. In other words, it needs to consult an oracle - a conceptual computational 

device capable of looking through an infinite domain within finite time (Pitowsky 1996). 
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Whereas the previous examples involved reference to the state of the system at 

some unspecified time, the undecidability of the halting problem, as viewed from 

extrinsic perspective, has implications for finite-time predictions as well. As an example, 

consider predicting weather on a certain day in future on the basis of present conditions. 

There exist computer programs that can quite reliably calculate the weather on the day 

after tomorrow. However, they occasionally take more than 48 hours to run, 'in which 

case we would be hard pressed to call such a computation a prediction (Pitowsky 1996). 

This is the class of so called complexity constraints on finite-time predictions by 

simulation, which arise naturally in investigating weakly chaotic systems. We will return 

to this issue again in the next section. 

While in the extrinsic setup the experimenter (a demon) is allowed to carry out a 

complete simulation of the observed system without altering the original system, this is 

not necessarily so in the case of the intrinsic setup. There, any model simulation of the 

system is necessarily part of that system. As it can be expected, in such a setup the 

matters with predictability can only worsen. 

Following Svozil (1993), the question of a description within the same system or 

process can be related to the question of whether an experimenter can possess an 

intrinsic "description" or "blueprint" of itself, thus linking the issue to the possibility of 

self-reproduction. Here, as shown by von Neumann (1966), (at least) two senses of the 

question should be distinguished, depending on the way in which self-reproduction is 

actually realized. 

In the so called passive mode of self-reproduction, the self-reproducing system 

contains within itself a passive description of itself and reads this description in such a 
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way that the description cannot interfere with the system's operations (von Neumann 

1966, pp. 125-126). It appears that it is possible to write a program which includes its 

own description and, through this description, is able to reproduce itself. (The Kleene 

fixed point theorem can be interpreted as a proof of the principle existence of such 

"viruses".) John Von Neumann, a Hungarian-born American mathematician and 

physicists, in his Theory of Self-Reproducing Automata was one of the first to propose a 

formal cellular automaton model of a universal self-reproducing automaton. Since then 

the concept of self-replicating machines, or von Neumann machines39, has been 

rigorously studied in various contexts, one of the most intriguing of them being space 

exploration. The idea was to send a self-replicating spacecraft (a von Neumann probe) to 

a neighbouring star-system, where it would seek out raw materials extracted from 

asteroids, moons, gas giants, etc., to create- exact replicas of itself. These replicas would 

then be sent out to other star systems, repeating the process in an exponentially 

increasing pattern.40 

While, in the passive mode, the "blueprint program" (interpretable as the 

"algorithmic description" of the system in terms of "laws" and "system parameters") was 

assumed to be given by some sort of an oracle, and so defined passively, i.e., without 

self-examination, in the active mode, the self-reproducing system examines itself and 

thereby constructs a description of itself (von Neumann 1966, p. 126). 

3 9 V o n Neumann himself called them "Universal Assemblers". 
4 0 A number of interesting arguments against the existence of extraterrestrial intelligence have been 
produced that would account for the Fermi paradox - the question of why, given the moderate rate of 
replication of von Neumann machines and the history of the Universe, we haven't already encountered 
extraterrestrial intelligence i f it is common throughout the universe. See, for example, Tipler (1981), and 
Sagan and Newman's (1985) response to him. 
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It can be shown that if a self-reproducing machine is specified as a device 

consisting of elements which can be analysed, identified, and, after the analysis, restored 

to their previous state, then self-reproduction by self-inspection can indeed be made. The 

machine, for instance, can be divided into two distinct parts with each part containing, in 

one form or another, an analysing and a constructing element. Initially, the first part 

analyses the second, which is taken to be passive, and constructs a copy of it. Then the 

first part activates the active mode of the second part, and becomes passive. Finally, the 

second part analyses the first part and constructs a copy of it. In this way, the machine 

examines itself and obtains a complete description of its own original constituent 

structure (Laing 1977). 

However, for a more general class of automata, such strategies of self-

reproduction by self-inspection are not available. One of the situations where Laing's 

strategy fails is when some parts of the automaton feature so called computational 

complementarity - the feature that prevents a "diagnostic" act of measuring some 

parameters of (part of) the machine from being "non-destructive" - any attempt to probe 

the system necessarily initiates some changes within the system, irreparably destroying 

the original copy. Though this feature appears naturally in the context of the quantum 

theory, some classical automata can also exhibit this feature.41 I will say more about this 

in the section 3.6.5'. 

3.6.3 Weakly Chaotic Systems and Prediction by Simulation 

Given the recursive "laws" governing a mechanistic system's evolution, a universal 

Turing machine can simulate the system by encoding the system as a program and 

4 1 See, e.g., Moore's "Gedanken-Experiments on Sequential Machines", in Shannon and McCarthy (1956). 

138 



performing the computation of the system's evolution on-a step-by-step basis. If the 

dynamical laws are computable, it is always possible to simulate a mechanistic physical 

system completely and in finite time in the sense that any entity of the system can be 

brought into one-to-one correspondence with its computational simulation. However, 

due to the recursive undecidability of the halting problem and undecidability of the 

maximum halting time problem, there exist systems for which no effective computation 

can predict its behaviour in any reasonable time. For such systems there are no 

"computational shortcuts", and no optimization or "speed-up" with respect to time which 

would allow one to talk about prediction is possible. This is the effect of so called 

"deterministic chaos" or "chaos theory" which recently drew a lot of attention from a 

wide range of disciplines. 

The first-ever rigorous examination of deterministic chaotic effects is (arguably) 

attributed to Jacques Hadamard who, in 1898, did the first study of the behaviour of a 

type of dynamical billiards ("Hadamard's billiards"). This system considers a free 

particle gliding along a frictionless surface with constant negative curvature - the 

simplest compact Riemann surface resembling that of a donut with two holes. Hadamard 

was able to vshow that all trajectories of this system diverge exponentially from one 

another as one tries to calculate the system's future state (Hadamard 1898, see also 

Steiner 1994). 

At around the same time, Henri Poincare (1899), while studying the three-body 

problem, found that there exist certain bounded non-periodic orbits which never 

approach a fixed point. Though the first version of Poincare's results contained a serious 

error (Diacu and Holmes 1996), the final published version contained many important 
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ideas which consequently led to the development of the theory of chaos. Later, this and 

similar phenomena drew special attention of mathematicians and physicists under the 

name of ergodic theory (see, e.g., Arnold and Avez 1968, Mackey 1974, Mane 1987). 

Another example of such deterministic chaotic system that we discussed earlier is 

forecasting the weather. Edward Lorenz, an American mathematician and meteorologist, 

who studied weather forecasting and developed weather simulation programs, was the 

first to recognize the chaotic nature of the phenomenon. As the story goes, in 1961, he 

ran his weather simulation program using a Royal McBee LGP-30 computer. Trying to 

see a sequence of data again and to save time, he started the simulation in the middle of 

its course. To do so, he wanted to enter a printout of the data which corresponded to the 

conditions in the middle of his simulation which he had obtained last time. To his 

surprise, the weather that the machine began to predict was totally different from the 

weather calculated before. Lorenz tracked this down to the computer printout. The 

printout rounded variables off to a 3-digit number, but the computer worked with 6-digit 

numbers. This difference was tiny and the consensus at the time would have been that it 

should have had practically no effect. However, Lorenz had found that small changes in 

initial conditions produced large changes in the long-term outcome thus making a long-

term accurate prediction of weather practically impossible. 

These phenomena can be seen as particular examples of a more general class of 

systems, usually characterized by non-linear dynamics and extreme sensitivity of a 

system's evolution to tiny disturbances to the initial conditions.42 Such systems may 

exhibit a special form of physical behaviour that renders prediction difficult or 

4 2 It was Lorenz who coined the terms "butterfly effect" and "attractor". 
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practically impossible. For such systems, the required degree of accuracy with which one 

has to specify, or measure, the initial conditions and velocities becomes very large (more 

precisely, the rate of divergence of system trajectories in phase space, typically stated in 

terms of Kolmogorov entropy or Lyapunov exponents, grows exponentially). It has even 

been argued that a proper definition of the chaotic systems must be put in terms of their 

inherent unpredictability and uncomputability (Stone 1989, Ford 1981, 1983, 1988, 

1989, see also Batterman 1993, Batterman and White 1996). 

The non-linear dynamics of physical systems in its extreme form of deterministic 

chaos theory has given a further kick to physical "irrationality". The success of chaos 

theory has led to questioning the "runaway" reductionism and predictability that have 

characterized science ever since the time of Newton, and on which the quintessential 

linear quantum mechanics is most firmly based. The fact that strongly nonlinear systems 

can behave fundamentally differently from systems in which nonlinearities are 

introduced as perturbations makes such systems appear every bit as counterintuitive and 

perplexing as can quantum mechanics. It appears that physical chaotic systems - even 

those with totally computable descriptions (i.e., systems whose evolution and essential 

parameters are computable on a step-by-step basis) - feature a form of complexity-based 

undecidability that constrains our ability to predict their behaviour by running any 

simulation, ln the scientific literature this form of undecidability in physics is.often 

referred to as "weak physical chaos" to distinguish it from stronger forms of chaos which 

exhibit truly random behaviour (e.g., due to quantum fluctuations in the initial 

conditions). 
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In a series of papers, Christopher Moore (1990, 1991) proposed a model of a fully 

fledged universal Turing machine (with an infinite tape) realized as a simple finite 

physical system. Unlike other proposals where the computer size changes the metric 

using arbitrary close spatial points in computation, adds no special difficulty apart from 

the one which already exists - the transmission of arbitrary large number of bits in a 

small time interval (the "blue shift") (Pitowsky 1996). Moore's construction is a physical 

. implementation of the simplest weakly chaotic system, named the Bernoulli shift, and it 

provides an important link between the general undecidability results for Turing 

machines and the workings of (weakly) chaotic systems. This construction, although 

assuming the validity of Newtonian mechanics, is also consistent with the special and 

general theories of relativity. 

The Bernoulli shift map is a numeric transformation D : [0,1] —> [0,1] defined by 

the following equation: 

properties of space-time (Pitowsky 1990, Earman and Norton 1993), this model, though 

or, equivalently, 

D(x) = 2xmodl . 

The graphical representation of the map looks like: 
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Fig. 23 The Bernoulli Shift Map. 

The Bernoulli shift can be seen as an iterative system which starts with an initial 

parameter (the "seed" number), transforms this parameter, and then uses this transformed 

parameter for the input of the next iteration according to the formula: 

It can be shown that this system exhibits extreme sensitivity to initial conditions: if 

we initially start with two seed numbers separated by a tiny difference, the iterative 

application of the transformation makes the numbers diverge by about 0.5 (i.e., to fall on 

opposite sides of x = 0.5) very quickly, with the ratio of the final number difference to 

initial number difference growing exponentially with the number of iterations. 

If the numbers appearing in the transformation are taken in their binary form, a 

seed number can be represented as follows: 

0. aQ ax a2 ai aA as..., 

where the value of the an -<x <i <<x>, is either zero or one. 
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Multiplication by 2 in binary simply shifts all the numbers in the sequence to the 

left such that we get 

a0. ai a2 a 3 o 4 a5.... 

Taking the modulus drops the integer part, so we get 

0 . a, a2 a 3 a4 a5 — 

More generally, the Bernoulli shift map can be defined as a transformation on an 

abstract sequence space of all doubly infinite sequences of zeros and ones: 

...a_5 a_4 a_3 a_2 a_, . a0a^ a 2 a3 a4 a5.... 

The symbolic dynamics defined on this set of symbols runs on discrete time units 

(integers). After each time unit the system undergoes a shift to the left. If a, is the 

number in the ith position at time /, then, at time /+1, the number in that position is 

cr(a), = aM . The map cr is called the Bernoulli shift. The sequence before and after its 

shift thus looks like: 

• ••#_5 tf_4 tf_3 tf_2

 a-\ . a0a] a2 a4 a5..., 

•••tf_4 #_3 <3_2 a - \ °0 • Q \ Q2 °3 °4 °5 a6 

The Bernoulli shift is a particularly simple example of a paradigmatic chaotic 

system that can be easily generalized to include more complex cases: If we use binary 

representation, it can be shown that, for sufficiently large k's, the outcomes of the kth and 

the consecutive iterations from any given (irrational) seed number happen to be greater 

or less than 72 as randomly as a sequence of heads and tails in a fair coin toss (e.g., no 

o 
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matter how long a sequence of zeros and ones you measure, you cannot predict whether 

the next answer will be zero or one). Though the process is completely deterministic, the 

output of consecutive applications of the Bernoulli shift very quickly becomes 

indistinguishable from mere noise.43 

Moore (1990, 1991) showed how this model (in its more general form) can be 

physically (ideally) realized using a series of (ideal) parabolic and linear mirrors, and a 

beam of light moving between the mirrors. Just like its mathematical counterpart, the 

physical system realizing the Bernoulli shift is extremely sensitive to initial conditions -

the initial positioning of a light particle before it starts bouncing back and forth between 

the mirrors: in order to predict the light particle position with accuracy of V2 units, the 

experimenter (the demon) must measure the initial conditions with accuracy of 2^k+l\ 

where k+1 is the number of rounds the light particle undergoes. The ratio of the final 

error to initial error is 2~k, thus making it grow exponentially with time as measured by 

the number of rounds k. 

Moore then demonstrated how any generalized Bernoulli shift can be put into one-

to-one correspondence with some Turing machine (with a doubly infinite tape) which 

represents this shift, thus allowing transferral of the undecidability results from the usual 

theory of computation into the language of this system.44 

Thus, the undecidability of the halting problem, translated into the physical 

language of Moore's construction, says that there exists no algorithm which would 

predict whether the light particle ever enters the specific region in space which 

4 3 For more details, see, e.g., Schuster (1984). 
4 4 For more details refer to Moore (1990, 1991) and Pitowsky (1996). 
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corresponds to the halting state. This claim is valid even if we know the exact initial 

conditions with unbounded or infinite accuracy. Therefore, to answer the question: "Is 

the light particle ever going to reach this region of space?", Laplace's demon needs 

computational powers that exceed those of any possible (classical) algorithm. In other 

words, it needs to consult an oracle. 

Finally, suppose that every step in this Universal Turing machine operation takes a 

fixed, arbitrarily small but non-zero amount of time. Suppose further that some demon 

tries to predict the state of Moore's system at time / = 48 hours. If Moore's construction 

simulates a very complex Turing machine there is no guarantee that the demon will 

accomplish the task on time - any demon's machine may be slower that the system itself. 

Indeed, a number of mathematical results, known as "speed-up" theorems (e.g., Enderton 

1977, Pitowsky 2002) guarantee that the demon will fail occasionally in some such 

finite-time predictions. ^ 

This feature of weakly chaotic systems to be the fastest/optimal simulations of 

themselves to the effect that no computational "speed-up" is in general possible, can be 

illustrated with the following excerpt from Lewis Carroll's Sylvie and Bruno Concluded,. 

(Chapter XI): 

"We actually made a map of the country, on the scale of a mile to the mile!" 

"Have you used it much?" I enquired. 

"It has never been spread out, yet," said Mein Herr: "the farmers objected: 

they said it would cover the whole country, and shut out the sunlight! So we 
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now use the country itself, as its own map, and I assure you it does nearly as 

well." 4 5 

The fact that in general it is impossible to simulate a chaotic system with fewer 

than its own resources raises an interesting question whether chaos in physics 

corresponds to the idea of randomness in mathematics, and, if so, whether randomness in 

physics (primarily in the quantum theory) merely reflects some undecidable features of 

mechanistic systems which are presently are not fully understood. We will return to this 

issue in the following sections. 

3.6.4 Undecidability and Randomness 

Another aspect of undecidability is its connection with the idea of randomicity. This is 

another topic that has recently produced a lot of ado among mathematicians, physicists 

and philosophers of science, of which only a brief discussion is possible here. 

Earman (1986, pp. 137-138) distinguishes two basic types of randomness which 

he calls, correspondingly, process and product randomness. Processes involving genuine 

chancy events as, for example, in the quantum theory, belong to the first category (also 

called genesis randomness). Processes involving outputs which lack any discernable 

pattern or which are 'out of shape' in one sense or another, exhibit product randomness 

(also called performance randomness). Surely, these two notions of randomness do not, 

in general, coincide. On the one hand, a sequence that is random in the product sense 

4 5 The ironic implication, of course, is that in truth it does almost as badly. A useful representation must be 
manageable, and this requires that it be incomplete and inaccurate. This situation is closely linked with the 
question o f how the contents of a map - a good map, a simplified representation - are related to the real 
world. This problem (the validation problem) arises for models as well as for simulations, defined by 
Hartmann (2005b) as processes in which a model imitates the time evolution of a real system (Parker 
2006). 
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need not necessarily be the output of a genuinely random process - any "random number 

generators" in (non-stochastic) computers or calculators producing "randomly looking" 

sequences of numbers are immediate,examples that come to mind. On the other hand, 

genuinely stochastic processes may occasionally produce highly ordered sequences. It is 

possible (though very improbable), for example, that if we flip a (fair) coin 1,000 times, 

the coin turns heads all 1,000 times (Frigg 2005). 

As it is the case with simplicity, it may nevertheless be very difficult to cash out 

our intuitions of what exactly the "lack of discernable pattern or rule" amounts to. Below 

is a very common way to define it rigorously. 

Consider the following two sequences of numbers: 

1) {7, 12, 5, 35, 22, 27, 3, ...} and 

2) {1,2, 4, 8,16,32,64,...}, 

or their binary representations (to be read by computers): 

3) {111, 1100, 101, 100011, 10100, 11011, 11, ...} and 

4) {1, 10, 100, 1000, 10000, 100000, ...}. 

To which extent and on which grounds can we say that the second sequence 

contains an easily discernable pattern while the first one lacks it (is random)! 

To answer this question, we may consider the length of the shortest computer 

program that can generate each sequence. This length, in bits, can be taken to 

characterize the complexity of the sequence. If a sequence lacks any discernable pattern 

and contains no special rule for generating one entry from another, the shortest program 

can be nothing less than the sequence itself. If, on the other hand, the sequence exhibits 
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some pattern or order, then the program generating this sequence can be much shorter 

than the original sequence. In case of the second sequence the program will just list the 

powers of 2 (in decimal representation), or consecutively add one more "zero" to one 

"one" on the very left (in binary representation). 

Correspondingly, we can define a sequence to be random if its complexity is equal 

to the length of the sequence itself. More formally, given a universal Turing machine, 

the algorithmic complexity of a sequence of symbols a\ai an is the length of the 

shortest program we have to provide in order to get this machine to reproduce (compute) 

this sequence. A sequence is then defined as random if the shortest program of this sort 

has the length of the sequence itself (i.e., the program basically says 'print a.\a.2... an'). In 

this case it requires the maximum of information to specify the sequence (Chaitin 1987). 

Using this notion of algorithmic complexity of a sequence of numbers, we can 

demonstrate how randomness as defined above is connected with Godel's theorems. 

Consider a computer capable of working with the.arithmetical symbols and operations. 

Suppose we give it the following instruction: "Print out a sequence whose complexity 

can be proved to exceed that of this program." Clearly, the computer cannot respond. 

Any sequence it generates must, by definition, have a complexity less than that of itself. 

A computer can only produce a numerical sequence that is less complex than its own 

program. It shows that there must exist undecidable statements. Having picked a 

particular sequence - call it R - whose complexity exceeds that of the computer system, 

the question "Is R a random sequence?" turns out to be undecidable for this computer 

system. The complexities of the statements "R is random" and "R is not random" are 
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both too great for them to be translated by the computer system. Neither can be proven 

nor disproved." 

Among other things, this result places restrictions on the scope of any approach to 

the laws of nature on the basis of simplicity alone. The scientific analogue of the 

formalist programme. in mathematics is the idea that, given any sequence of 

observations, we try to describe them by some mathematical law. Surely, there may be 

all sorts of possible laws capable of generating this particular data sequence - some 

simple, some very complicated and "unnatural". Scientists typically prefer to have the 

laws with the lowest complexity in the above defined sense that would most succinctly 

encode the information into a simple algorithm (Occam's razor). Yet, this approach will 

never allow us to prove that a particular law we have formulated is a complete 

description of nature - there will always exist undecidable statements framed in this 

language that can never be proven to be the most economical coding of the facts (Barrow 

1990). 

Another analogy that can be brought to the surface by these considerations is that 

between the intuitionist philosophy of mathematics and certain epistemic notions of 

determinism, as well as the connection of the latter with certain ontological views of 

determinism. 

Intuitionists believe that the Platonic vision of the truth or .falsity of 

(mathematical) statements as being independent of. our knowledge of a procedure or 

algorithm which would decide the matter is indefensible. The only coherent concept of 

truth in mathematics, they argue, is ultimately epistemic, identifying truth with 

provability. While intuitionists typically do not require an actual human execution of a 
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complete proof (as long as there is an algorithm (a demon) which can, in principle, do 

it), a more extreme position,/m/tom, disagrees even about this contention. 

When it comes to determinism, it has been a long tradition to draw the analogous 

line between the ontological and epistemological notions of determinism. 

The ontological view of determinism takes the truth values of the statements about 

the future states of a physical system to be definite and (uniquely) determined by the 

state of the system now. These truth values reflect the feature of the universe to develop 

in a unique manner that is independent of our knowledge of it. The similarity of the 

ontological view of determinism with mathematical Platonism is clear: the Platonist 

takes the set of all natural numbers as an object with definite properties while the 

ontological view of determinism takes the set of all future states of the universe to be an 

object with definite properties (Pitowsky 1996). 

Epistemic versions of determinism, on the other hand, tend to conflate 

determinism with predictability in principle - a physical system is deterministic just in 

case someone (preferably a demon with a'reasonable extension of human capabilities) 

can predict the future state of the system from its present state.46 The only thing left to be 

specified is what exactly constitutes this "reasonable extension of human capabilities". 

Although the notions of proof and construction are usually left by intuitionists to be 

infinitely extendable, in practice they identify constructive procedures with algorithmic 

procedures (compatible with intuitionistic inference rules). In words of Pitowsky (1996), 

the intuitionistic super-mathematician is an owner of a universal Turing machine. 

See, e.g., Earman (1986) attributing this view to Laplace. 
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Earman (1986) believes that any attempt to predicate determinism on 

predictability is a "confused and confusing brew" and recommends "that the notion of 

prediction with all its epistemological connotations be dropped altogether" from the 

definition of determinism, thus isolating the ontological issue regardless of whether or 

not any human agent or demon can know it. 

However, if an epistemic view of determinism is the physical counterpart to 

intuitionism, then, from an intuitionistic (or a Laplacian) point of view, Earman's 

proposition contains circularity: the intuitionist challenges the idea of "independent 

existence" in mathematics exactly on the grounds that unless an existence claim is 

attached to a definite procedure to verify it, it is not clear what its reference is. Earman 

challenges the intuitionists with hopelessly confusing ontology and epistemology, thus 

assuming, without much of an argument, that one can make sense of the former 

independently of the latter. Yet, this is precisely what the intuitionist denies. In addition, 

since the physically significant mathematical structures employed in physics can be 

shown to be rich enough to allow a translation of many "negative" (in the sense of 

undecidability) results of the number theory into meaningful physical propositions, such 

a physical proposition can be taken as carrying a definite truth value just in case its 

mathematical counterpart does (Pitowsky 1996). 

Returning to the idea of randomicity as linked to a computing system's exhausting 

the available computational resources, there are additional considerations in support of 

Pitowsky's position. As modern science takes it, the fundamental physical laws are 

mathematical in nature. Any description, or prediction, of the behaviour of a physical 

system is carried out by application of mathematical operations or transformations. 
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Many physicists tacitly believe that these mathematical operations or transformations are 

implemented in some abstract mathematical spaces "inhabiting" the perfect immaterial 

Platonic realm. An alternative approach, represented most notably by John Archibald 

Wheeler (e.g., 1983, 1986) and Ralf Landauer (1967,-1986) stresses that real calculations 

involve real physical objects, such as computers, which are themselves are subject to 

physical limitations, and take place within the real physical universe with its specific 

available resources. Just as any computer can be perceived as a physical system, any 

physical system may be perceived as a computational process. From this perspective, it 

is reasonable to investigate physical systems with concepts and methods developed by 

the computer science. This, in turn, opens the possibility of investigating various in 

principle computational constraints on the operations of physical laws. Landauer argues 

that these constraints are not merely a practical inconvenience, but constitute the very 

nature of physical law (Landauer 1967). 

Recall Laplace's characterization of his calculating demon as an intellect "vast 

enough to submit the data to analysis". A demon living in an idealized Platonic world 

could indeed afford itself to be "vast enough". If, however, we adopt the Landauer-

Wheeler view on the nature of physical law, any such demon would have to manage to 

do with the computational resources available in the real universe. Something that could 

not be calculated, even in principle, within the real universe cannot be regarded as a 

legitimate application of physical law. A Landauer's demon associated with recent 

cosmological models which place fundamental upper bounds on the informational 

content and information processing rate would necessarily inherit these limitations, and 
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thus will feature fundamental unpredictability of complex physical systems (Davies 

1994).47 

Landauer's demon should be distinguished from Popper's demon. Although Popper 

(1982) requires that Laplace's demon should itself be part of the physical universe and 

bound by the laws of nature, he seems to see his demon as playing the role of a human 

super-mathematician or super-scientist, not specifying the roles and place of the physical 

laws within this universe. In particular, Popper's demon "must not be assumed to 

ascertain initial conditions with absolute mathematical precision" thus depriving it of 

his demonic nature, and leaving it only with the title (Pitowsky 1996). In this respect, 
j 

Popper's view of (epistemic) determinism would rather be analogous to mathematical 

finitism, while Landauer's view would entangle the epistemic and ontological aspects of 

determinism on a more fundamental level. With the recent outrageous claims of Tien 

Kieu (the focus of Part III) that a concept of an oracle (a conceptual device capable of 

looking through an infinite domain within a finite time) can be actually physically 

implemented by using the resources of the quantum theory, the whole issue promises to 

be given a further non-trivial kick. Yet, as I argue in Part III, Kieu's claims are 

unfounded, and the quantum adiabatic hypercomputer fails to perform 

hypercomputation. 

4 7 Paul C. W . Davies (1994) gives a numerical value of the upper bound on predictability: the total number 
of bits available for computation within the known universe is of order 10 A 120; the estimated threshold 
complexity of a physical system which would exhaust this computational resource is easily broken by any 
biological structure - a chain of about 60-90 aminoacids of 20 varieties (a peptide) allows for more three-
dimensional conformations leading to different molecular structures then 10 A 120. Davies uses this result to 
argue that even simple biological systems do break this computational resource available to all laws of 
nature to work with ("causal openness of a system exceeding a certain threshold of complexity"), thus 
leaving a room for some emergent properties and laws at a higher level. 
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3.6.5 Modeling Classical and Quantum Measurements 

In modeling classical or quantum measurements, the feature of so called 

complementarity may enter the scene and should be taken into account. While trying to 

read off the "true" value of an observable of a system, a measurement necessarily 

interacts with the system and thus inevitably changes its state. As an example, we may 

imagine a dark room with a ping-pong ball moving in it. Assume now that an 

experimenter, who is not allowed to "turn on the light", wants to find (measure) its 

position and velocity. Not being able to see, the experimenter, in order to do so, may try 

touching the ball. However, as the experimenter touches the ball, it changes its original 

position and velocity. This situation is typical both for quantum and classical systems 

with the major difference being that quantum theory postulates a lower bound on the 

transfer of action by Planck's constant h (Svozil 1993). 
i 

If successive measurements of some features of a (mechanistic) system "disturb" 

each other through some kind of "interaction" of the system with the measuring device, 

i.e., the measurement of one observable makes it impossible to carry out the successive 

measurement of another observable, then we will say that this system exhibits 

complementarity. If a system features complementarity, the corresponding calculus of 

the propositions reflecting the experimental results will not in general be distributive and 

Boolean. The reason why classical physics does not involve any non-classical 

propositional calculus is that the "disturbances" induced by the measurement process can 

be made arbitrarily small, compensated, and thus eliminated from the overall account 

(Svozil 1986). 
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Returning to the self-fulfilling prognosis undecidability result, a similar logical 

provocative prognosis framework can be attempted to be applied to the setting of 

quantum measurements. In this regard I see a novel two-state-vector formalism of 

quantum mechanics, which has been particularly helpful for the analysis of experiments 

on pre- and post-selected ensembles (Aharonov and Vaidman 2001, Aharonov and 

Rohrlich 2005) as being a suitable setting for such an attempt. In this formalism, an 

experimental measurement can be thought of playing the role of a prognosis which 

initiates the changes within the system eventually guiding the observer to the predicted 

or expected outcome. I believe the self-fulfilling prognosis logical framework can be 

extended to help us understand better the nature of complementarity and elucidate the 

ways in which certain information about such systems^gets lost, given the non-Boolean 

algebraic structures of these models (e.g., Pitowsky 1982, 1989, Demopoulos 2003). 
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PART III 

Quantum Hypercomputation and Oracle Machines 
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4.1 Introduction 

In Part III of the thesis I critically address a recent proposal, by the theoretical physicist 

Tien Kieu, to utilize a novel quantum adiabatic evolution algorithm to break through the 

Turing limit and perform hypercomputation. If true, such device could serve as a 

physical realization of an Oracle - a computational device capable of looking through 

an infinite domain within a finite time. If actually implemented and coupled with a 

Universal Turing machine, such a tandem would present a serious threat to traditional 

epistemological and ontological theories, requiring us to reconsider the age-old 

philosophical debates about the limits of predictability and mathematical knowledge. 1 

argue that Kieu's claims are unfounded, and the quantum adiabatic "hypercomputer" fails 

to perform hypercomputation. Though quantum computers may indeed require 

^description of the traditional problem complexity space, so far they- retain the classical 

(recursion-theoretic) notion of computability. The delineation between complexity and 

computability may also be instructive in light of many recent remarks in the academic as 

well as in the popular literature in which quantum computers are depicted as all-

powerful machines (Llyod 1995, Preskill 1998).48 

In section 4.2 I present a quantum algorithm that works on the principle of 

quantum adiabatic evolution. Originally, this algorithm was introduced by a group of 

physicists from the MIT to solve satisfiability problem in polynomial time. I also survey 

the currently known results regarding the quantum complexity classes and briefly 

4 8 The arguments in this part are the result of the collaborative work with Ami t Hagar (Hagar and Koro lev 
2006, 2007a and 2007b). 
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discuss the possible resources responsible for the superiority of quantum computers over 

their classical counterparts. 

In section 4.3, after reviewing the relevant theory of oracles, oracle machines, 

relative recursiveness and a hierarchy of degrees of unsolvability, I present the quantum 

adiabatic evolution "hypercomputer" designed to solve a paradigmatically unsolvable 

problem - Hilbert's Tenth problem. I then discuss the weaknesses of the proposal, 

pointing to its failure to perform the purported hypercomputation. Irrespectively of 

whether or not the class of physically realizable hypercomputers is non-empty, Kieu's 

quantum adiabatic algorithm is not the member of this distinguished club. 

4.2 Quantum Adiabatic Computation 

4.2.1 Introduction 

Quantum computing brings together ideas from classical information theory, computer 

science, and quantum physics. In the past two decades it has evolved from a visionary 

idea (Feynman 1982) into one of the most lively and fashionable research areas (Nielsen 

and Chuang 2000). An explosion of interest in quantum computing was triggered by 

Peter Shor who, in 1994, presented the first quantum algorithm for fast factorization of 

large integers (Shor 1994). Shor's demonstration of how his algorithm could 

exponentially "speed-up" classical computation posed a serious threat to modern 

cryptography (and, with it, to home banking and any other information transfer via 

internet) which assumes that fast factorization algorithms do not exist. Since then 

tremendous progress in the field has been marked by the discovery of other fast 

algorithms (most notably Grover's algorithm for quantum database search (Grover 
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1996)), the invention of quantum key distribution, and most recently, popular press 

accounts of experimental successes in quantum teleportation, and the demonstration of 

actual three-, five-, and even seven-qubit quantum computers. According to one 

authority in the field (Aharonov 1998), 

we now have strong theoretical evidence that quantum computers, if built, 

might be used as powerful computational tool, capable of performing tasks 

which seem intractable for classical computers. 

Notwithstanding this excitement, and apart from the almost insurmountable 

problem of practically realizing and implementing a large scale quantum computer 

(Unruh 1995, Haroche and Raimond 1996), a crucial theoretical question remains open, 

namely - what physical resources are responsible for the putative power of quantum 

computing. Put another way, what are the essential features of quantum mechanics that 

allow one to solve problems or simulate certain systems far more efficiently than on a 

classical computer? Remarkable is also the fact that the relevance of features commonly 

thought of as essential to the superiority of quantum computers, e.g., entanglement and 

interference (Josza 1997), is recently being questioned (Linden and Popescu 1999, 

Biham 2004). Moreover, even if these features do play an essential role in the putative 

quantum "speed-up", it is far from clear how they do so (Fortnow 2003). 

In this section, after reviewing the relevant known results in quantum complexity 

classes and briefly discussing the possible resources responsible for the superiority of 

quantum computers over their classical counterparts, I introduce the quantum adiabatic 

evolution algorithm of Farhi et al. Though this algorithm was originally designed for 
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speeding-up solving problems like satisfiability, Tien Kieu claimed that a similar scheme 

can be used to perform hypercomputation by being able to solve a problem equivalent to 

a paradigmatically unsolvable problem - the halting problem - in a finite time and using 

only finite resources. 

4.2.2 The Class BQP and the Powers of Quantum Computers 

This section surveys the currently known results regarding the quantum complexity 

classes and discusses the possible resources responsible for the superiority of quantum 

computers over their classical counterparts. 

The class of decision problems that can be efficiently solved by quantum 
v. 

computers is called B Q P ("Bounded error, Quantum, Polynomial time"). Since quantum 

computers run only randomized algorithms, the class BQP for quantum computers is the 

counterpart of BPP for classical computers. More formally, it can be defined as the class 

of decision problems solvable with a polynomial-time algorithm, whose probability of 

error is bounded away from 1/3 (Nielsen & Chuang 2000). A quantum computer is said 

to "solve" a problem if, for every instance, its answer will be correct with high 

probability. If that solution runs in polynomial time, then that problem is in BQP. 

(Again, as it is the case with the class B P P , the choice of 1/3 other "bounded error" 

probabilistic classes the choice of 1/3 is not essential - changing this constant to any real 

(computable) number p e (0, Vi) does not change the class BQP.) 

BQP is suspected to be disjoint from NP-complete and a strict superset of P, but 

that is not known. Both integer factorization and discrete log are in BQP. Both of these 

problems are NP problems and both are suspected to be outside BPP, and hence outside 
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P. Both are suspected to not be NP-complete. There is a common misconception that 

quantum computers can solve NP-complete problems in polynomial time. Recall, 

however, that the classical complexity of integer factorization problem is not known, and 

it will not be totally surprising if a classical polynomial time algorithm for this task is 

found (this is an easier problem than the NP-complete problems). So, that quantum 

computers can solve NP-complete problems in polynomial time is still an open question, 

and, in fact, it is generally suspected to be false. In this respect Groyer's search 

algorithm (Grover 1996) is better; though the speed-up is smaller (only quadratic), it is 

provable. Classical search does require (worst case) linear time in the size of the data. 

Operators that appear in quantum computing devices are linear operators. Daniel 

Abrams and Seth Lloyd (1998) have shown that if a quantum computer could be 

designed with nonlinear operators, then it could solve NP-complete problems in 

polynomial time. However, as of today, there is no experimental evidence that such non-

linearities are present in nature. 

Fig. 24 The suspected relationship of BQP to other problem classes. 
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One of the embarrassments of quantum computing is the fact that, so far, 

essentially only one algorithm has been discovered, namely Shor's quantum Fourier 

transform, for which a quantum computer is significantly (exponentially?) faster than 

any known classical one. It is almost certain that one of the reasons for this scarcity of 

quantum algorithms is related to the lack of our understanding of what makes a quantum 

computer superior to classical computers. Quantum computer skeptics (Levin 2003) 

happily capitalize on this puzzle: i f no one knows why quantum computers are superior 

to classical ones, how can one be sure that they are, indeed, superior? 

When it comes to the possibility of quantum hypercomputation, several possible 

resources that might increase the powers of quantum computers over that of the Turing 

machine have been cited. For instance, accelerated Turing machines and infinite time 

Turing machines require that an infinite amount of memory be available for 

manipulations. Actual infinite memory required by these machines is to be contrasted 

with potential infinite memory (i.e, a finite, yet unbounded amount of memory) 

generally needed for a standard Universal Turing machine to function. Infinite storage 

capacities obviously present a serious physical obstacle for these proposals. Any attempt 

to store an infinite string of numbers while not occupying an infinite volume of space 

and not consuming an infinite amount of matter would have the disadvantage of infinite 

precision required to store and retrieve the appropriate bits (Hodges 2005). The infinite 

precision, however, is also problematic on the physical grounds: according to quantum 

mechanics, all physical quantities the continuous values of which one could attempt to 

use to represent an infinite string, seem to have principle limitations on how accurately 

they can be measured. For instance, we cannot measure distances more accurately than 
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the Plank length (10"35metres). While some other, more exotic, means of implementing 

infinite memory storage have been proposed (such as infinite-dimensional Hilbert spaces 

with infinite quantum superpositions to allow parallel computations (Calude.and Pavlov 

2002)), it is still not at all clear that infinite memory is a physical possibility (Ord 2002). 

Important in the Kieu's theoretical background is the role of genuine quantum 

randomness and, more specifically, that of non-recursive information sources. Recall 

that, one of the interesting questions of computation theory is whether randomness 

increases computational power, specifically, with respect to computability. Recall also 

that, while the class BPP associated with problems solvable by Probabilistic Turing 

machines can be shown to remain the same if the admissible error possibility, s, that 

enters into the definition of a Probabilistic Turing machine, is replaced by, say, 1/3, 

things change essentially if this parameter is replaced by some non-computable real p. 

Some proponents of the project of hypercomputation take this to be the key fact that 

leads to their goal. Yet, the question of whether by including some non-computable into 

a computational process can be harnessed in any way was already addressed by Shannon 

et al. (Shannon and McCarthy 1956). Their conclusion can be summarized thus: 

introducing a random element producing equiprobable outputs of 0 and 1> will, indeed, 

do no better than a deterministic Turing machine. If the probability (the admissible error 

possibility s) is not Vz but some other computable parameter, the situation is the same. 

If, however, the parameter s is some non-computable real number, then the number s 

can be computed. That is to say that indeed, computation is, formally speaking, extended 

to become computation relative to s . However, contrary to the suggestions of Kieu who 

takes that to be the fundamental resource responsible for an enormous speed-up in his 
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scheme, it must be noted that the randomness in the output can do no better than merely 

copying the non-computable number that has already been put into the random element. 

In other words, it does not create anything non-computable and, therefore, seems highly 

implausible to be expected to infinitely speed-up classical computation (Hodges 2005). 

4.2.3 Quantum Adiabatic Evolution Computer 

4.2.3.1 Introduction 

A well-known theorem of quantum mechanics - the quantum adiabatic theorem - was 
t 

recently harnessed by a group of physicists from the MIT (Farhi et al. 2000a, 2000b) to 

develop a novel quantum algorithm. Their aim was to solve in polynomial time certain 

randomly generated hard instances of an NP-complete problem, and, in so doing, to 

provide another evidence that quantum computers (if large ones can be built) may 

outperform their classical counterparts.49 

The main idea behind the quantum adiabatic algorithm lies in the possibility of 

encoding a specific instance of a given decision problem in a certain Hamiltonian. One 

then starts the system in a certain (quantum) state corresponding to the lowest possible 

energy state of the system - the ground state - of another Hamiltonian which can be 

easily constructed (the initial Hamiltonian), and slowly evolves the system in time 

towards the interpolated and desired Hamiltonian (the final, or problem, Hamiltonian) 

which encodes the solution to the desired decision problem. Provided that certain 

conditions are met throughout the whole process of evolution, it can be guaranteed that 

the outcome of such a physical process will be the system in the ground state of the final 

4 9 It should be noted that it is still an open question whether the proposed quantum adiabatic algorithm 
does indeed yield an exponential speed-up. See, e.g., Reichardt (2004). 
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Hamiltonian, which, in turn, encodes the solution to the original decision problem. By 

physically measuring the ground state energy of the system at the end of computation, 

one can get the solution to the original problem. 

In the sections that follow, 1 present the quantum adiabatic algorithm of Farhi et 

al. which, presumably, can be used for solving a typical NP-complete problem - the 

satisfiability problem - and other combinatorial NP-complete problems in detail. 

4.2.3.2 The Satisfiability Problem 

Satisfiability is the problem of determining whether the variables of a given Boolean 

formula can be assigned classical truth-values in such a way as to make the whole 

formula true. Alternatively, it is the problem of determining that no such assignments 

exist, implying that the function expressed by the formula comes out false for all 

possible variable truth-value assignments. In the latter case, we say that the function (or 

corresponding Boolean formula of proposltional calculus) is unsatisfiable; otherwise it is 

satisfiable. 

The formal definition of the satisfiability problem (SAT) requires the function to 

be expressed in the so-called conjunctive normal form (CNF), i.e., as a conjunction of 

clauses where each clause in a disjunction of literals. For example, an n-bil instance of 3-

SAT is a formula 

C , A C , A - - - A C M , 

where each clause CA involves (at most) three of the n bits: 
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Each clause Ca is true or false depending on the truth values of some subset of the 

bits, and acts as a constraint on the possible truth values of its variables. For example, 

the clause 

C = ' ( z , v ~ z 2 v z 3 ) 

is satisfied by all truth-value assignments to z\, zj, and Z3 except when z\ and Z3 are false 

and z 2 is true. 

An important result from complexity theory states that the class of satisfiable 

Boolean propositional formulas is NP-complete. In fact, 3 - S A T was the first known NP-

complete problem, as Stephen Cook demonstrated in ( 1 9 7 1 ) . Until that time, the concept 

of an NP-complete problem did not even exist. Since H - S A T (the general case) can be 

reduced to 3 - S A T , and 3 - S A T can be proven to be NP-complete, it can be used to prove 

that other problems are also NP-complete. This is usually done by'showing how a 

solution to another problem could be used to solve 3 - S A T . In practice it is typically 

easier to use reductions from 3 - S A T than S A T to problems which one is attempting 

prove NP-complete. 

In the context of quantum computation, many computationally interesting 

problems can be reformulated into an equivalent problem of finding a variable 

assignment that minimizes a so called energy function. In the case of 3 - S A T problem, for 

instance, if each bit z,- ( 0 < / < ri) takes the numeric value 0 or 1 (corresponding to the 

truth-values of true and false), and each clause C is associated with the 3 bits labelled ic, 

jc, and kc, we can define an energy function for the clause C as follows: 
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fO, if (z. ,z, ,zb ) satisfies clause C, 
E.{zi , z . ,z t) = c ' c ' / c ' k c | l , if ( z / 5 z f c , z A ) violates clause C. 

Then we can define the total energy function E as the sum of the individual energy 

functions: 

ETOTAL ~ 2 J ^C (Zic ' 2ic ' Z * c ^ ' 
C 

Obviously, £ T O 7 > I / >0, and £. / O T > 1 / (z, ,z, , . . . ,z„) = 0 if and only if (z , , z 2 , . . . , z j 

satisfies all of the clauses. Thus, finding the minimum energy configuration tells us if the 

formula has a satisfying assignment. 

4 . 2 . 3 . 3 T h e Q u a n t u m A d i a b a t i c T h e o r e m 

The possibility to encode a specific instance of a given decision problem in a certain 

Hamiltonian allows one to interpret the energy function of the problem as the actual 

energy of the physical system encoding this problem (hence the name of the function). 

At the end of computation, by physically measuring the ground energy level of the final 

Hamiltonian and checking it against the zero energy level one can determine whether the 

corresponding formula has a satisfying assignment. 

More formally, suppose we can encode the solution to a given decision problem in 

the ground state of a Hamiltonian Hp acting in an rc-qubit Hilbert space. This 

Hamiltonian (Problem Hamiltonian) is diagonal in the computational basis and is a 

member of a one-parameter family of Hamiltonians H(s) varying smoothly for the 

parameter 0 < s < 1. We then set a time-dependent Hamiltonian H(t) as follows: 

H(t) = H't/T), 
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where 0<t<T, and T is the run-time of the algorithm. The Hamiltonian H(t) governs 

the system state's evolution according to the Schrodinger equation: 

Ay/(/)> = H(t)\y/(t)>, 
dt 

whereas the run-time Tdetermines how slowly //varies. 

The Hamiltonian H(t) has the following form: 

where each Hc (t) depends only on clause Ca and acts only on the bit in Ca . The initial 

state of the system, which is always the same and easy to construct, is the ground state of 

some fixed initial Hamiltonian H(0). For each a, the ground state of Hc (T) encodes 

the satisfying assignments of clause Ca. The ground state of H{T) encodes the 

satisfying assignment of the intersection of all the clauses. If the evolution time T of the 

computation is big enough, it can be guaranteed that the state of the system at time T (at 

the end of computation) will be very close to the ground state of H(T), thus producing 

the desired solution. 

The fact that a quantum system stays near its instantaneous ground state if the 

Hamiltonian that governs its evolution varies slowly enough is the content of the so 

called quantum adiabatic theorem. The rigorous exposition of the theorem (as, e.g., in 

Messiah 1961, pp. 739-746) considers a quantum system described in a Hilbert space H 

by a smoothly time-dependent Hamiltonian, / / = / /( /) , for / ranging over [?0,^,]. Let 
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U(t) be the time-evolution operator from time / 0 to t e !/„,/ ,] . We denote T = t}-t0. If 

the following conditions are satisfied: 

1. For any / £[ /„ , / , ] , H(t) has a purely discrete spectrum with eigenvalues denoted 

' E\t),E\t),...,E'(t\.... 

We denote P\t),P2{t),...,P'(l),..., respectively, the projection operators on the 

eigenspaces. 

2. The eigenvalues and the projectors are assumed to be continuous functions of t 

and there is no level crossing throughout the transition, i.e., the instantaneous 

eigenvalues remain distinct: 

We[V,], E'<t)*EJ(t)ifi*j. 

d d2 

3. — P ' , — - P ' exist and are bounded and piecewise continuous in the whole 
dt dt 

interval [/0,^]. 

Then, if the system is initially in the energy state 

|o;,> E P*MK 

that is, 

then 

l im U(t) | 0 > = P\t) l i m U(t) \0'0>. 
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That is, for T -> oo , if the system starts at l0 in an eigenstate corresponding to the 

energy E1 (t0) it will evolve (up to a phase) to an eigenstate corresponding to E'(t) at t. 

In the special case where E'(t0) is the ground state, the adiabatic theorem 

guarantees that in the limit T -> oo the system will remain in the ground state throughout 

its time-evolution. 

Although in practice T is always finite, the more it satisfies a minimum "energy 

gap" condition, the less the system will deviate from the ground state. The energy gap 

condition states that there must exist a non-zero energy gap, g, between the ground state 

and the first excited state at any given time, and that T » l/g 2 . What governs the 

efficiency of the quantum adiabatic algorithm is thus the rate in which the energy gap 

between the ground state and the next excited state decreases with the increasing 

dimension of the Hamiltonian, i.e., with the size of the input. 

4.2.3.4 The Problem Hamiltonian H¥ 

The transition from classical to quantum computation is typically done by replacing the 

classical bit z, by a spin-72 qubit | z, >, where z, = 0,1. The states | z, > are eigenstates 

of the /-th component of spin: 

0> = , ll> = 

and 

f\ 0^ 
4/(1 - a! 0) I z, > = z, \z,>, where o f > = 

v 0 - l y 
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The Hilbert space is spanned by the N = 2" basis vectors | z, >| z2 > • • • | zn >. 

Clause C is now associated with the operator HPC: 

Hpc(\Z]>\z2>---\zn>) = hc(z.:,zJc,zkc)\Z]>\z2>--\zn>. 

Finally, the Hamiltonian Hp associated with all the clauses is just the sum of 

Hamiltonians each acting on a fixed number of bits: 

HP=^HPC. 
c 

For so constructed Hamiltonian it can be shown that 

(1) <y/\Hv\y/ > > 0 for all | y/ > (the Hamiltonian is nonnegative), and 

(2) Hp | y/ > = 0 if and only i f | y/ > is a superposition of states of the form 

| z, >| z2 > • • • | zn >, where z , ,z 2 , . . . ,z n .satisfy all the clauses. 

Thus, the ground state of the so constructed Hamiltonian encodes the solution to 

the original 3-SAT problem. 

4.2.3.5 The Initial Hamiltonian Hi 

Though the problem Hamiltonian Hp encoding the solution to a given 3-SAT problem is 

easy to construct, finding its ground state energy may not be an easy task. The idea 

behind the quantum adiabatic algorithm is to start the system with an easily constructed 

ft-bit initial Hamiltonian, /-/,, whose ground state is simple to find and construct. 

Consider first the following 1-bit Hamiltonian H\l] acting on the /-th bit: 
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< = ! ( 1 - C T - ) , cri r<'> -
ro n 

so that 

H\') | x, = x > .X j — X ^ j 

where 

x, = 0 > 
V2 

and | x ,= l> = ^ 
(1 ^ 

Now, for the clause C associated with the bits icjc, and kc we construct 

Hyc = H\l-) + H\Jc) + H\k-). 

Finally, we define the initial Hamiltonian as follows: 

The ground state of Hi, | x, = 0 >| x2 = 0 > • • • | x„ = 0 >, written in the z basis, is 

just a superposition of all basis vectors: 

|x, =0>|x 2 =0>--- |x„ =0> = > | Z 2 > - " | z " > 5 

which makes it easy to construct. 

4.2.3.6 Adiabatic Evolution 

We can then define the instantaneous eigenstates and eigenvalues of H(t) by 

H(t)\j;t> = EXt)\j;t>, 

with the energy eigenvalues ordered as shown: 

.173 



E0(t)<E](t)<---<EN_](t), 

where N is the dimension of the Hilbert space. Suppose | y/(0) > is the ground state of 

//(0).i.e. -

|^(0)> = | / = 0; r = 0 >. 

According to the adiabatic theorem,' if the gap gmm between the two lowest levels, 

Ex(t) - E0(t), is strictly greater than zero for all 0 < / < T , then 

lim |< j = 0;t = T\y/(T)>\ = 1. 

' / ' - > « 

Having chosen and constructed the initial and the final Hamiltonians, we can 

define the interpolating Hamiltonian as follows: 
H(s) = (1 - s)Ht + sHp, 

where s = — , so that 
T -

H(t) = 
V Tj 

Under these conditions, and in the adiabatic limit, i.e., for T long enough, the 

evolution from t = 0 to / = T (starting in the ground state of H,) will lead to the ground 

state of Hp, that is, to the solution of the original computational problem. 
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4.3 Quantum Adiabatic Evolution Hypercomputation 

4.3.1 Beyond Undecidability: Oracle Machines' 

We know that almost all interesting questions about workings of Turing machines -

whether a given Turing machine halts on an empty tape, whether a given Turing halts on 

every input string, or whether two given Turing machines always produce the same 

output, etc. - are undecidable. But are all these questions equally hard? Suppose that we 

were given the power to decide the halting problem, by some magic. Could we somehow 

utilize this power to decide all undecidable problems? It certainly seems not 

unreasonable to ask whether a certain problem is decidable relative to the halting 

problem. 

Questions about relative computability are typically formalized and studied using 

Oracle Turing machines - conceptual devices having special powers enabling them to 

perform certain computational tasks, which typically (but not necessarily) cannot be 

decided by usual Turing machines. Oracle machines were first defined by Turing in his 

Ph.D. thesis (supervised by Church). He described them as "new kind of machine" and 

called them "O-machines" (Turing 1939). Informally, an Oracle Turing machine is a 

usual Turing machine equipped with a black box - an Oracle - which is able to decide 

certain decision problems in a single step. The latter decision problems can belong to 

any complexity class, including known undecidable problems like the halting problem. 

More formally, consider a procedure implemented on an ordinary Turing machine 

with a given finite set of instructions and input. Given some set A'and an input, the entire 

computation proceeds algorithmically except that 
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(a) from time to time, the computing agent may be required to answer a 

membership question of the form "is n in X7", for a certain given set X (in 

general this question itself, i.e., the value of n, is the result of preceding 

calculation); 

(b) no means of answering such questions about X are given by the instructions of 

the Turing machine; 

(c) obtaining an answer to such a question counts as a single step in the overall 

procedure; and 

(d) subsequent steps in the procedure depend, in general, upon that answer. 

If such answers are correctly and automatically supplied by some external agency, 

the computation is well-defined and effective. (If the set X itself is recursive, the entire 

procedure can be made recursive by adding instructions for computing the characteristic 

function of X.) Such a procedure is called an algorithm relative to X. 

An external agency which supplies correct answers to questions about X in a finite 

time is called an Oracle. Sometimes it is pictured as an otherwise unspecified "black 

box" associated with the computing agent (Rogers 1967). 

An alternative characterization of an Oracle Turing machine takes it to be a usual 

Turing machine which, in addition to its ordinary read/write tape, is equipped with a 

special one-way-infinite read-only input tape on which some infinite string is written. 

The extra tape is called the auxiliary tape, or the Oracle tape, and the string itself is 

called the Oracle. The machine can move its oracle tape head one cell in either direction 

in each step of computation and make decisions based on the symbols written on the 

oracle tape. Other than that, it behaves exactly like an ordinary Turing machine. If the 
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oracle is an infinite string over {0,1}, this string can be seen as the characteristic 

function of a set X e N , where the nih bit of the oracle string is 1 iff n cz X . (Ordinary 

Turing machines are equivalent to oracle Turing machines with the null oracle - an 

oracle which is written as "00000..."; for such machines, the oracle gives no extra 

information that the Turing machine does not already have.) (Kozen 1997) 

Since an oracle can answer questions about membership in a specific set of the 

natural numbers, an Oracle Turing machine could compute an infinite number of non-

recursive functions. It can (trivially) compute the characteristic function of the oracle set, 

but it could also incorporate its requests to the oracle into more complex algorithms, 

allowing computation of non-trivial functions. For example, if the oracle set was the 

halting set (the set containing n iff the nxh Turing machine halts at some specific input), 

then the oracle machine would be able to compute many other functions of interest. In 

fact, it would compute all recursively enumerable functions. A non-recursive oracle is 

thus a sufficiently powerful resource extending the powers of the ordinary Turing 

machines. 

A procedure using an oracle (possibly, the null oracle) is called algorithmic 

relative to X if it could, at any point of computation, ask and get the correct answers in a 

finite time to questions of the form "is n in XI" We say that a set A is recursive in X, or 

that A is Turing reducible to X (A <TX), iff there exists an algorithmic relative to X 

procedure that can compute the characteristic function of the set A. 

If a fixed set X is chosen, all (partial) recursive functions of the usual (without 

(non-null) oracles) recursive function theory can be replaced by corresponding X-

recursive (partial) functions in all definitions and theorems. In this way we obtain a 
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(fully) relativized theory. (Various theories which are only partially relativized also can 

be defined and studied.) In the relativized theory of recursive functions it can be shown 

that the relation < T is reflexive and transitive. If, for a given set A, we require, in 

addition, that A <Ty\fand X <7A, then we say that A =rX, and the equivalence classes of 

=T are called Turing degrees (or levels) of unsolvability or T-degrees. Turing 

reducibility is commonly taken to be the most fundamental reducibility, though other 

forms of reducibility are also available (Rogers 1967). 

Once we have the notions of relative computability, relative recursiveness, and 

degrees of unsolvability in arithmetic, the following hierarchy of classes of sets of 

numbers appears, ordered according to their relative degrees of unsolvability: 

S° = {r.e. sets}, 

A° = {recursive sets}, 

E° + 1 = {sets r.e. in some B e 1 ° } , 

A°n+] = {sets recursive in some B e E°} , 

n ° = {complements of sets in 1 °} . 

The classes £ ° , Yl°H, and A°n constitute what is known as the arithmetic hierarchy 

(or Kleene hierarchy). The important feature of the arithmetic hierarchy is that it allows 

characterization in terms of first-order quantification over natural numbers or strings. If 

we consider second-order quantification - quantification over functions and relations -

we get the so called analytic hierarchy consisting of classes T)n, U.]

n, and A),. The entire 
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arithmetic hierarchy is strictly contained in , the lowest class in the analytic hierarchy. 

Elements of A] are called hyperarithmetic sets (Kozen 1997, Kleene 1943, 1952, Rogers 

1967, Shoenfield 1972, Soare 1987). 

Modern-day complexity theory has its roots in the theory of recursive functions 

and effective computability where the Turing-reducibility, completeness and hardness, 

and the arithmetical hierarchy all have their counterparts (Karp 1972, Cook 1971, and 

Stockmeyer 1976). Thus, the complexity class of decision problems solvable by an 

algorithm in class A with an oracle for a problem in class B is written A B . For example, 

the class of problems solvable in polynomial time by a deterministic Turing machine 

with an oracle for a problem in NP is P N P . (This is also the class of problems reducible 

by polynomial-time Turing reduction to a problem in NP.) Although it is easy to show 

that NP cz P N P , the question of whether NP N I > , P N P , NP, and P are equal remains open. 

The notation A B can also mean the class of problems solvable by an algorithm in 

class A with an oracle for the language B . For example, P S A I is the class of problems 

solvable in polynomial time by a deterministic Turing machine with an oracle for the 

satisfiability problem. 
—/ 

Oracle machines can also be used for investigating the relationship between 

complexity classes P and NP, by considering the relationship between P A and N P A for 

an oracle A . In particular, it has been shown that there exist sparse languages (i.e., set o f 

strings such that the number of string with length n in the language is bounded by a 

polynomial function of ri) A and B such that P A = N P A and P B ± NP B (Baker et al. 

1975). The fact that the P = NP question relativizes both ways is taken as evidence that 
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answering this question will be difficult because any proof technique that relativizes 

(i.e., is unaffected by the addition of an oracle) will not answer the P = NP question. 

4 . 3 . 2 O r a c l e s a n d H y p e r c o m p u t a t i o n 

Turing, who first introduced the oracles to the recursion theory, left no indication of how 

and whether these oracles might actually be implemented. The only specification he left 

was that an oracle works by "unspecified means" and "we shall not go any further into 

the nature of [an] oracle". 

The possibility of performing an infinitely many actions, steps, or operations in a 

finite time has long been a problem of great interest (and confusion) for philosophers 

since the time of Zeno of Elea. it was James F. Thomson'(1954) who coined the term 

"supertasks" to designate such tasks, and Peter Clarke and Stephen Read (1984) 

introduced the term "hypertasks" (as well as "super-dupertasks") to designate supertasks 

with uncountably many steps. Though Thomson himself emphatically denied the mere 

logical possibility of supertasks (as later did Clarke and Read, only with respect to 

hypertasks), Paul Benacerraf (1962) demonstrated that no cogent argument on purely 

logical grounds had yet shown that a supertask could not be performed. Though most of 

the discussions in philosophy on supertasks nowadays come from descendants of 

Benacerraf who accept the logical consistency of the very notion of a supertask, 

philosophers who reject this possibility tend not to do it on grounds such as Thomson's. 

Rather, they may appeal to the problems with the notion of infinity itself, or the 

problems of a particular formal theory within which the corresponding models are 

formulated. For example, William McLaughlin (1998) claimed that Thompson's 
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arguments fail to demonstrate the logical possibility of supertasks if analyzed with 

internal set theory, a variant of real analysis. 

Yet, the prevailing view nowadays takes it that, in words of Earman and Norton 

(1996), our notions of infinity and continuity are now so well developed that supertask 

have lost their power to force us to refine these notions; any difficulties or contradictions 

that supertasks may deliver no longer reveal deficiencies in our concepts and they can be 

removed without requiring us to assume some conceptual incoherence in the very notion 

of supertask. 

As a result, a number of various proposals of conceptual machines capable of 

performing supertasks have been proposed: accelerating infinite machines such as Zeus 

machines, Weyl machines, 7t-machines, Davies' building infinity machines, (see, e.g., 

Weyl 1927, Earman and Norton 1993, Davies 2001), machines operating in special 

relativistic spacetimes (the Pitowsky-Malament-Hogarth spacetimes) harnessing time 

dilation effects (Pitowsky 1990, Earman and Norton 1993, Hogarth 1992, 1994, Earman 

1995), asynchronous neural networks (Copeland and Sylvan 1999, Siegelmann 1998), 

etc. However, the possibility of physical implementation of these machines remains the 

Achilles' heal of these proposals due to clearly unphysical nature of many essential 

assumptions used in those models. 

Within the theory of computation, a similar discussion resolves around the notion 

of hypercomputation. This term, coined by Jack Copeland (as is, e.g., in 1998, see also 

Copeland and Proudfoot 1999, Copeland and Sylvan 1999, Ord 2002, 2006), refers to 

various proposed methods of computing non-Turing computable functions, typically 

emphasizing the physical possibility of implementing such devices. 
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Recently, Tien D. Kieu, in a number of papers (2002, 2003, 2004, 2005) claimed 

to have a scheme, according to which, in principle, a real physical quantum system could 

be used to compute prototypical non-Turing computable function in a finite time. To our 

knowledge, this has been the first rigorous attempt to utilize the peculiarities of the 

quantum world for the project of hypercomputation. In the sections that follow, after 

exposing the proposed algorithm, I will critically address the proposal showing its 

failure to perform the purported hypercomputation. Whether or not the class of 

physically realizable hypercomputers is non-empty, Kieu's quantum adiabatic algorithm 

is not the member of this distinguished club. 5 0 

4.3.3 The Quantum Adiabatic "Hypercomputer" 

4.3.3.1 Introduction 

Kieu's insight was to harness the quantum adiabatic algorithm of Farhi et al. to solve 

another decision problem, namely, Hilbert's Tenth. His idea was that one can capitalize 

on the infinite dimensionality of the Hilbert space that "accompanies" every quantum 

system in order to perform in parallel infinite computational steps in a finite time - a 

task that a hypercomputer, whether classical or quantum, is supposed to be capable of 

performing. 

Kieu designed the target (interpolated) Hamiltonian as to mimic the form of the 

left-hand-side squared of the original Diophantine equation. This, in turn, guaranteed the 

existence of a global minimum: The Diophantine equation has at least one integer 

solution if the final ground state of the target Hamiltonian is zero, and has no integer 

5 0 This arguments contained in this part of the thesis were the results of the joint work that we did in 
collaboration with Ami t Hagar (Hagar and Korolev 2006, 2007a, 2007b). 
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solutions otherwise. Next, Kieu claimed to have proven an ingenious probabilistic 

criterion'that allows one, by measuring Hp, to identify whether the quantum system has 

indeed reached its ground state, no matter what T is. 5 1. If not, according to Kieu, one 

needs only to enlarge the evolution time Zand iterate the algorithm many times, until the 

ground state (which is ensured to exist through the boundedness of Hp) is achieved. 

Let us consider a particular example, say, the following Diophantine equation: 

D(x,y,z) = (x + \f + (y + l ) 3 - ( z + 1)3 +cxyz = 0, ceZ, 

with unknowns x, y, and z. To find out whether this equation has any non-negative 

integer solution by a quantum algorithm, it requires the realization of a Fock space. 

Upon this Hilbert space, we construct the Hamiltonian corresponding to the last 

expression: 

HP = ((a>, + l ) 3 + (a\ay + I)3 - (a\oz + l ) 3 + c(a\ax)(alay)(ala:)f, 

which has a spectrum bounded from below - semidefinite, in fact.52 

Note that the operators Nj = a^iaj have only non-negative integer eigenvalues nj, 

and that [N.,HP] = 0 = [N^N] so these observables are simultaneously measurable. 

For some triple (nx,ny,nz) the ground state | g > of the Hamiltonian so constructed has 

the properties 

5 1 According to Kieu (e.g., in his 2005, 178), this criterion amounts to excluding any state other than the 

ground state from occupying the energy spectrum of Hp with probability > l/2 for any T > 0 . It is 

noteworthy that in all of his papers Kieu offered no analytic proof for this criterion, only a simple example 

in which such criterion is indeed satisfied. 
52 t 

The creation operators a \ are similar to those of the 3-D simple harmonic oscillator. 

[aJta]] = \ forj = x,y,z, 

[ak,a]] = [ak,a]] = 0 forj * k . 
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Nj I g > = n J g >, 

Hv\g> = ( K + ! ) 3 + + O3 - («. +1)3 + cnxnyn2f \g> = Eg\g>. 

Thus, after enough iterations, a projective measurement of the energy E of the 

ground state • | g > will yield the answer for the decision problem: the Diophantine 

equation has at least one integer solution i f E = 0, and has no solutions otherwise. (If 

c = 0 in our example, we know that E > 0 from Fermat's last theorem.) 

If there is one unique solution, then the projective measurements of the 

observables corresponding to the operators TV. will, reveal the values of various 

unknowns. If there are many solutions, finitely or infinitely as in the case of the 

Pythagoras theorem, x2+y2-z2=0, the ground state \g> will be a linear 

superposition of states of the form | nx >| nv >\nT >, where (nx,nv,nz) are the solutions. 

In such a situation, the measurement may not yield all the solutions. However, finding 

all the solutions is not the aim of a decision procedure for this kind of problem. 

Notwithstanding this, measurements of /V. of the ground state would always yield 

some values (nx,n ,n,), and a straightforward substitution would confirm whether the 

equation has a solution or not. Thus the measurement on the ground state either of the 

energy or of the number operators will be sufficient to give the result for the decision 

problem. 

Since the final Hamiltonian (designed as to mimic the left-hand-side squared of 

the original Diophantine equation) has an integer spectrum and is bounded from below 
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(i.e., there exists, by construction, a global minimum for Hp), the evolution time of 

Kieu's algorithm is finite. Thus, it appears that, at least in theory, Kieu's hypercomputer 

does indeed work: Given that the algorithm purports to find a global energy minimum, 

all one needs to do in order to compute the (recursive-theoretic) non-computable is to let 

the system evolve slowly.enough, measure its energy, and iterate this procedure until a 

ground state is achieved with probability > V% and an answer to the decision problem is 

found. 

A major breakthrough in computer science? A vindication of the superiority of 

quantum computers over their classical counterparts? Unfortunately, neither is true. The 

next section explains why. 

4.3.3.2 How Slowly is Slowly Enough? 

I now proceed to show that the proposed quantum adiabatic algorithm cannot solve a 

recursive-theoretic non-computable problem. 

A crucial ingredient in the adiabatic algorithm is the energy gap between the 

ground state E0 and the next excited state £, : 

gm i„=niin(£ 1(0-£o(0).. 

This gap controls the evolution time of the algorithm, in the exact following way: 

T » <E/g2. , 
o m m ' 

where 

•E = max |< / = 0; s \ | / = 0; s >\. 
os.v<i dx 
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By making 

|</ = 0;$ = 1|^(T)>|-

arbitrary close to 1, we obtain that the size of T is governed by the following condition: 

T » lie2. . 

The problem is that in the absence of a detailed spectral analysis, in general 

nobody knows what g is, how it behaves, or how to compute it! 

Now some of the fanfare in Kieu's papers is built around the idea that there always 

exists such a gap and that the computation halts in any case (since the final Hamiltonian 

Hp, by construction, has an integer spectrum and is bounded from below). We set aside 

the issue of the feasibility of the manufacturing of such a Hamiltonian, which appears to 

require infinite precision (Hodges 2005), but even if we grant such (possibly 

unrealizable) manufacturing capacities, their merit is still questionable: Classically too 

there may always exist a halting time, only that it is not computable. This is easiest to 

appreciate in the case of classical Turing's halting problem: Consider all Turing 

machines with k states; throw away all those that fail to stop on the input 1; among the 

others take the one that runs longest; call the number of steps of that machine T(k). 

Now we "know" that in order to decide whether a machine with k states stops on the 

input 1, we have to wait T(k) steps. But of course we don't really know, because T(k) 

is not computable, growing faster than any recursive function. 

What Kieu is doing is defining an adiabatic process whose time is of that order 

(and whose gap g is therefore uncomputably small). The fact that there is some T which 

will do the job is not a big deal (nor is, therefore, the fact that we can use finite but 
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unbounded dimensional Hilbert spaces for each instance). Indeed, if someone told us 

what T(k) is, we would not have needed infinitely many steps to complete the job. 

With this gap in mind, we can now think of the following problem: For each given 

running-time of the algorithm J1 we have to come up with a process whose rate of change 

is . Question: How do we know that we are implementing the correct rate of change 

while H(t) is evolving? Apparently, by being able to measure differences of order T~l, 

that is, having a sensitive "speedometer". When the going gets rough we approach very 

slow speeds of the order of T~] (k), which begs the question, since we can then compute 

T(k) using our "speedometer"; no fancy quantum computer is needed. If we don't have 

a "speedometer", then even if we decided to increase the running-time from T to, say, 

T+ 7, we will have no clue that the machine is indeed doing (T + 7)~l km/h and not T~] 

km/h. In this case, clearly, Kieu's algorithm cannot be implemented since we will never 

know how slowly we should evolve the physical system. But then we will also fail to 

fulfill the adiabatic condition which ensures that once we have reached the desired final 

Hamiltonian its ground state encodes the solution. 

Kieu may argue in response that his (allegedly proven) ingenious probabilistic 

criterion (along with the iteration of the algorithm) allows him to detect whether the 

ground state was achieved, that is, whether the algorithm has indeed evolved 

adiabatically so to ensure a meaningful result when reading off the energy eigenstate of 

Hp. His idea seems to be the following: In general, when one performs such an 

adiabatic cooling, one doesn't meet this probabilistic criterion (that ensures that it is only 

the ground state which will appear with probability > Vi upon measuring H?) for any 
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state - applying the number operator gives many different answers when one repeats the 

experiment, and none of them comes up more than half of the time. In this case one 

simply doubles the running time and tries again, and so on. Since Kieu claimed, call it 

the H A L F C L A I M , that no matter what the value of T > 0, no non-ground "decoy" state 

could ever achieve an occupation probability greater than' V2, the algorithm is bound to 

succeed eventually. 

Now if the H A L F C L A I M were true, it would have been a remarkable 

achievement. To see this, recall that the adiabatic theorem provides only a sufficient 

condition for tracking the ground state. In other words, it only guarantees that the 

system's evolution will track the ground state when certain conditions are met (and only 

in the adiabatic limit, i.e., when T —> 00). By claiming that, no matter what T is, no state 

other than the ground state will occupy the energy spectrum with probability > V2, Kieu 

is in fact claiming to have proven a theorem which is much stronger than the adiabatic 
r 

theorem, which all by itself says nothing about non-adiabatic evolutions. 

Intuitively, then, it would not be at all surprising i f the H A L F C L A I M turned out 

to be false. And unfortunately, as it turns out, the H A L F C L A I M is false. Although it is 

true in the adiabatic limit (when T —> co) and for a finite T in very special (and very 

simple) cases of two- and three-dimensional Hamiltonians (which happen to be those 

picked by Kieu in his numerical simulations that accompanied the H A L F CLAIM), it 

turns out that, for a finite T, some "decoy" excited states may occupy the energy 

spectrum with much higher probability than the desired ground state of Hp in 

dimensions higher than three. Indeed, Smith in (2005) constructed several 

counterexamples to the H A L F C L A I M , thus proving its falsity. Interestingly, Smith 
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claims that one of his counterexamples considers a 5-state system Hl and Hp which 

exactly (up to a truncation of all matrices down to 5 dimensions) agree with those arising 

from Kieu's construction (for a certain 1-variable Diophantine problem) and exactly in 

his "\n) basis" as follows. Consider the following // , and Hp in a 5-state basis 

{|0),|1),|2),|3),|4)}: - . 

1 -1 0 0 0^ (2 0 0 0 0 
-1 2 -V2 0 0 0 4 0 0 0 

0 -V2 3 -V3 0 0 0~ 5 0 0 

0 0 ->/3 4 -V4 0 0 0 3 0 

0 0 0 -V4 5 j v0 0 0 0 1 

The eigenvectors of Hl are the columns of 

-0.6198 -0.6541 -0.4122 0.1336 0.0162 

-0.6127 0.08554 0.6350 -0.4527 -0.0959 

-0.4232 0.5151 0.0487 0.6701 0.3226 

-0.2300 0.4861 -0.5055 -0.1675 -0.6536 

-0.0922 0.2513 -0.4111 -0.5478 0.6777 

with corresponding eigenvalues (energy values): 

0.0114, 1.1307, 2.5406, 4.3884, 6.9288. 

After time evolution, starting from the ground state of H{ at t = 0, to 

t = T = 13.3444 we get the following final state (p (absolute values of the ip entries are 

shown, ordered in the same order as the energies 1, 2, 3, 4, 5 of the Hp eigenststes): 

(0.0139,09997,0.0062,0.0210,0.0015). 
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Note that this final state has probability > 99.9% of being measured as the first 

excited state of / / , , with energy 2, instead of the ground state with energy 1. The 

expected final energy is 2.007.53 

Now, if the HALF CLAIM is false, then the dream of the quantum adiabatic 

hypercomputer evaporates. 

4.3.3.3 The Same Old Story (Told Quantum Mechanically) 

In order to see what is left of the quantum adiabatic hypercomputer, stripped as it is from 

the H A L F CLAIM, let us first remind ourselves what undecidability means in the 

ordinary classical regime. 

Suppose we have a black box implementing some function (unknown to us); it 

takes natural numbers as input and produces natural numbers as output according to 

some rule hidden inside the box. The designers of the box have assured us that the 

function is bounded from below, namely, it has a global minimum. Assuming that all we 

can do is to call this function (use the black box) as many times as we wish (plus some 

thinking), is it possible to find the function's global minimum? The answer is clearly no, 

but it is instructive to see exactly why. 

In trying to locate a global minimum we can proceed either systematically, by 

going over each consecutive natural number starting from 0, feeding it into the box and 

recording the corresponding output, or in some more complicated deterministic or 

probabilistic manner. At each step, out of all arguments we have checked so far we keep 

those that minimize the function and discard the others; the former are the global 

5 3 For more details and other counterexamples refer to Smith (2005). 
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minimum candidates. Note that, if we proceed systematically, sooner or later, after a 

finite number of steps (number of function's callings), we will always reach a function's 

global minimum (as we know a global minimum exists). This knowledge (of the fact that 

we will eventually stumble upon a global minimum), however, adds next to nothing to 

solving our task. The problem, obviously, is that, even if we have just reached an actual 

(non-zero) global minimum, there is no way for us to identify it as such. Given the 

resources we have, we can never be sure whether the function does not take a yet smaller 

value on the next step. 

Thus the fact that we will always reach a global minimum in a finite number of 

steps is of no help to us. The problem is undecidable only due to our principal inability 

to identify a global minimum as such. Logically, the reason for this undecidability is that 

defining the property of being a global minimum involves quantification over an infinite 

domain: we say that the function/reaches its global minimum at a point n0 e N iff 

VneN:f(n0)<f(n). 

Trying to identify a global minimum as such by brute-force search would require 

checking the inequality infinitely many times, hence undecidability. 

Coming back to Kieu's proposal, while guaranteeing that the brute-force search 

will eventually halt, Kieu fails to supply a criterion that would allow one to identify 

whether or not the algorithm has halted on the global minimum. Consequently, the 

whole construction, despite the aspirations, lacks the ability to identify a global minimum 

as global minimum. The problem is thus no different from the typical classical case of 

undecidability considered above, and quantum mechanics adds nothing to its solution. 
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Put another way, the gist behind the adiabatic algorithm is that, after a sufficiently 

long evolution time, one can be certain to have retrieved the correct result of the decision 

problem just by performing a measurement on the ground state. However, when the 

evolution time is unknown, a non-zero energy reading upon a measurement of a final 

state can be interpreted in two very different ways. On one hand, it may be said to be an 

eigenvalue of an excited state. In such case, clearly, the evolution was non-adiabatic, 

hence one must iterate the algorithm with another, longer, evolution time. On the other 

hand, it may be said to be an eigenvalue of the ground state. In such case, clearly, the 

algorithm has performed correctly, and one has a (negative) answer to the decision 

problem. But since one cannot check a negative answer to a classically undecidable 

problem, how can one tell, without knowing T in advance, that this negative "answer" is 

indeed correct - that is, that no iterations are needed anymore? Without a criterion for 

distinguishing a ground state from all other excited states which is independent of the 

knowledge of the adiabatic evolution time T, one simply cannot. 

So, Kieu's quantum adiabatic "hypercomputer" fails for a simple reason: As one 

should intuitively expect from an algorithm that relies on the adiabatic theorem alone, 

even if the adiabatic conditions are satisfied, then for a finite running time t <T , there is 

in general no guarantee that the final energy state will be the ground state. Consequently, 

there is no way to distinguish a "decoy" excited state from a non-zero ground state, i.e., 

there is no way to identify a global minimum as such. Repairing this failure requires 

knowing in advance the exact adiabatic running time T (or, equivalently, the precise 

behaviour of the energy gap through out the time-evolution of the algorithm), which is 

just another undecidable problem. 
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5. Conclusion 

In this thesis I presented three case studies investigating in principle constraints on 

predictability of the behaviour of physical mechanistic systems in classical and quantum 

settings. I started with examining the sources of indeterminism and acausality in 

classical physics that underlie ontological constraints on predictability (Part I). Here I 

discussed the role and physical significance of a Lipschitz condition - a condition 

violation of which leads to generation of stochastic anomalous motion in the Norton-type 

indeterministic systems. I argued that the singularity arising from the violation of the 

Lipschitz condition in the systems considered appears to be so fragile as to be easily 

destroyed by slightly relaxing certain (infinite) idealizations pertaining to elastic 

properties of bodies that are required by these models. As a result, 1 argued that 

indeterminism of the Norton-type Lipschitz-indeterministic systems should rather be 

viewed as an artefact of certain (infinite) idealizations essential for the models, depriving 

the examples of much of their intended metaphysical import, as, for example, in Norton's 

antifundamentalist programme. 

In Part II of the thesis I examined the predictive computational limitations of a 

classical Laplace's demon. I demonstrated that, in situations that allow self-fulfilling 

prognoses to take place, the class of undecidable propositions about certain future 

events, in general, is not empty; any Laplace's demon having all the information about 

the world now will be, in general, unable to predict all the future: In order to answer 

certain questions about the future it needs to resort occasionally to, or to consult with, a 

demon of a higher order in the computational hierarchy whose computational powers are 

beyond that of any Turing machine - an Oracle. I also discussed the distinction between 
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ontological and epistemological views of determinism, and how adopting Wheeler-

Landauer view of physical laws can entangle these aspects on a more fundamental level. 

Finally, in Part III, I examined a recent proposal to certain quantum adiabatic 

algorithm to perform hypercomputation. If implemented, a device realizing such an 

algorithm could serve as a physical realization of an Oracle needed for a Laplacian 

demon to accomplish its job, and, presumably, seriously damage our traditional views on 

the limits of predictability and the limits of mathematical (or, more generally, rational 

knowledge). I critically reviewed this proposal pointing out its failure to deliver the 

purported hypercomputation. Regardless of whether the class of physically possible 

hypercomputers is non-empty, Kieu's proposed algorithm is not a member of this 

distinguished club, and a quantum computer powered Laplace's demon can do no more 

than its ordinary classical counterpart, retaining the traditional limits of predictability. 
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