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ABSTRACT

This thesis is a collection of three case s‘tudies, investigating various sources of
indetefminism and undecidability as they’ bear upon in principle unpredictability of the
behaviour of mechanistic systems in both classical and quantum physics.

I begin by examining the sources of in:ieterminism and acausality in classical
physics. Here I discuss the physical signiﬁcance of an often overlooked -and yet
importént Lipschitz condition, the violation of which underlies the existence of
anomalous non—triviai solutions in the N.orton—type indeterministic systems. I argue that
the singularity arising from the violation of the Lipschitz con.dition in the systems
considered appeérs to be so fragile as to be easily destroyed by slightly relaxing certain
(infinite) idealizations required by these models. In particular, I show that .the
idealization of an absolutely nondeformable, or infinitely rigid,' dome appeafs to be an
essential assumption for anomalous motion to begin; any slightest elastic deformations
of the dome due to fmite rigidity of the dofne destroy the shape of the dome required for‘
indeterminism to obtai.n. I also consider several modifications. of the original Norton's
éxample and show that indeterminism in these cases, too, critically depends on the
nature of certain idealizations pertaining to elastic properties of the bodies in these
models. As a result, I argue that indeterminism of the Norton-type Lipschifz-
indeterministic systems should rather be viewed as an artefact of certain (infinite)
idealizations essential for the models, depriving the examples of much of their intended
metaphysical impoft, as, for example, in Norfton's antifundamentalist f)rogramme.

Second, I examine the predictivé computational limitations of a classical Laplace's

demon, I demonstrate that in situations of self-fulfilling prognoses the class of


http://to.be

undecidable propositions about certain future events, in genera}, vis not efnpty; any
Laplacé's demon having a// the information about the world now will be unable to
prédict all the future. In order to answer certain questions about the future it needs to
resort occasionally to, or to consult with, a demon of a higher order iﬁ the computational
hierarchy whose computational powers are beyond that of any Turing machine. In
computer science such power is attributed to a theoretical device called an Oracle — a
device capable of looking through an iﬁﬁnite domain in a finite time. I also discuss the
distinction between ontological and epistemological vieWs of determinism, and how
adopting Wheeler-Landauer view of physical laws can entangle these aspects on a more
fundamental level. |

Thirdly, I examine a recent proposal from the aréa of quantum computation
purporting to utilize peculiarities of quantum reality foA perform hypercomputation.
While the current view is that quantum algorithms (such as. Sh"or’.s) lead to re-déscription
of ’[1:16 complexity space for co‘mbutatio.nal‘problems,l recently it has been argued (by
Kieu) that certain novel quantum adiabatic algorithms may even require reconsideration
of the whole notion of corﬁputability, by being able to break the Turi.ng limit and
"compute the non-computable”. If implemented, such algorithms could serve as a
physical realization of an Oracle needed for a Laplacian demon to accomplish its job. ]
critically revieW' this latter proposal by exposing the 'weakﬁesse.s of Kieu's quantum
adiabatic demon, pointing out its failure to deliver the purported hypercpmpufation.
Regardless of whether the class of hype‘rcomputers is non-empty, Kieufs proposed '
algorithm is not a member of this distinguished club, and é quantum computer poweréd

Laplace's demon can do no more than its ordinary classical counterpart.
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It’s hard to predict, especially the future.

Attributed to Niels Bohr'
1. Introduction

People yearn to know what the future holds. The decisions people make are oﬁén based
on their present beliefs or expectations about the future, thus the importance of
prediction. However, the ability to predict the future is hampered by various obstacles,
both of pracfical and principle nature. Rather than having to deal with tﬁe contingencies
of human existence, it has been a long tradition in philosophy to introduce special mental
constructions called demons. Demgns as conceptual computatioﬁal devices often
appearing in thought experiments are endowed with specific computational powers that
are supposed to enable them to solve speciﬁc computational tasks. In this thesis I intend
to investigate in principle constraints on predictability for a particular version of
Laplacian deterfninism, as it appears, for example, in Stone (1989) and Svozil.(1993). It
is argued that, in the view of these constraints — both of ontolbgical (as in Part I) and
epistemological (as in Part II) nature — even if classical phyéics were true, the detailed
dete'rmination of the future would still be out of human reach.

Historically, the notions of determinism, causality and predictability have been
often seeﬁ as closely related, if not outright identical. Laplace's famous definition of
determinism involves all the three notions inseparably entangled — it starts with a causal

characterization and ends with identification of determinism with predictability:

' Some believe it to be an old Danish proverb popularized by Niels Bohr (e.g., Kac 1975).




We ought to regard the present state of the universe as the effect of its
antecedent §tate'and as the cause of the state that is to follow. An intelligence
knoWing all the forées acting in nature at a given instant, as well as the
momentary positions of all things in the universe, would be able to comprehend
in one single formula the motions of the largest bc;dies as well as the lightest
atoms in the world, provided that its intellect were sufficiently powerful to
subject all data to analysis; to it nothing would bg uncertain, the future as well

as the past would be present to its eyes.”

Nowadays, the philosophical literature discussing the interrelations between
determinism, causality and predictability is .enormous and extremely diverse (e.g.,
Popper 1950, Russell 1953, Feigl 1953, Bunge 1967, Boyd 1972, Earman 1986 and
2004, Hunt 1987, Stone 1989, Van Kampen 1991, Batterman 1993, Kellért. 1993, -
Bricmont 1995, Batterman and White 1996, Schurz 1996, Schmidt 1998,'Hoefer 2004,
Bishop 2002, 2003, 2004). Some have maintained that determinism implies
- predictability while others have maintained that prediétability implies. determinism.
Many have maintained that there are no implication relations between determinism and
predictability whatsoever. Some have assumed tilat in a world of deterministic laws,
causality must reign supreme, and some-have assumed that in any world where causality
is strong enough, determinism must hold. Others .have argued, instead, that these two
notions are incompatible, arild,vin any deterministic world comp’léx enough to resemble

ours, there is no room for genuine causality.

? Laplace (1820), Preface; translation from Nagel (1961), pp. 281-282.




A gre.at deal of the controversy persists due to lack of a unified consensus of what
is understood by the key ingredients that enter the notions of determinism and causality,
and there ‘has been a long-standing diéagreement of how these concepts should be
properly defined. Sobel (1998), to take an e.xample, identifies at least ninety (!) varieties
of what the term "determbinism-" could mean in different contexts. In this thesis .I will
focus on a particular version of Laplacian determinism, as it appears, for example, in
Stone (1989) and Svozil (1993).

| Determinism as a metaphysical doctrine about thé wérld should be separated from
.scientiﬁc determinism» — the determiniém studied. in physical theories (Bishop 2004). As
the study of what properties a scientific theory or >model must possess in order to be
deterministic/indeterministic, scientific determinism is usually much easier to approach
in case of concrete theories than investigating the features of scientific or metaphysical
determinism in general. Laplaciz;n original characterization as cited above is a paradigm
example of an attempt to define scientific determinism. Mark Stoﬁe gave a particularly
clear characterization of Laf)la.cian determinism specified in the form of jointly
necessary and sufficient conditions for determinism in classical particle mechanics, as
follows (Stone 1989, see also Bishop 2002, 2003, 2004).

We assume that the physical state of a system is characterized by the values of the
positions and momenta of all particles cdnstituting the system at some fixed time /.
Furthermore, vwe assume that a physical state of the system corresponds to a point in
state space in an appropriaté' model (invo}(ing certain idealizations orl model
assumptions) that allows the descfiption of the system through these values. We then can

develop deterministic mathematical models for the evolution of these points in state



space. The following three features have been proposed by Stone as expressing Laplace's

vision of determinism (Stone 1989, Kellert 1993, Bishop 2002, 2003, 2004):.

(DD) Differential Dynamics. there exists an algorithm relating a state of a system
at a given time to a state at any other time and the algorithm is not

probabilistic.?

(UE) Unique Evolution: A given state is always followed (preceded) by the same

history of state transitions.*

(VD) Value Determinateness: Any state of a system can be described with

arbitrary small (no-zero) error.”

Differential dynamics is motivated by actually existing physical theories that are
typi.cally expressed in terms of mathematical equations. Thése equations, as well as all
the initial aﬁd boundary conditions, afe required to confain no intrinsically probabilistic
(as present, for example, in some versions of quantum mechanics) elements in them.
Such equations describe the‘ individual trajectories of the points in state space
representing states of the system.

The unique evolution requirement is closely associated with DD and expresses the
Laplacian beliéf that systems in classical particle mgchanics will repeat their behaviour

exactly if the initial and boundary conditions are uniquely fixed and specified.

* Apart from differential equations, "differential dynamics" can be expressed in the form of difference,
integral and integro-differential equations among other possibilities arising in descriptions of physical
theories.

* As formulated, UE expresses the uniqueness of state transitions in both temporal directions. It can be
easily reformulated to allow for the uniqueness of unidirectional state transitions, resulting,
correspondingly, in futuristic determinism, and retrospective determinism (Earman 1986).

> These descriptions can reflect ontological as well as epistemological constraints of the theory.




- Value determihaten'ess‘ is motivated by the Laplacian belief thét there is nothing
that in principle prevents mathematical .descriptions of real physical systems with
arbitrary accuracy (at least in classical particle .mechanics). For’ example, the ordinary
models of classical particle ﬁqechanics presuppose pr'ecise, definite values for the
constants and variables that enter the equations of motions.® It is only with the advent of
quantum mechanics the applicability of definiteness to all of ph};sics was questioned.

An alternative characterization of Stone's conditions, due to Svozil (1993),
specifies the conditions for determinism in exact récursive-theoretic terms. It assumes
that a recursive evolution funéﬁon is "at the heart" of the classical noﬁon of
"determinism". Then " strong determinism or mechanistic determinism or simply
mechanism is taken. fé be a synonym for recursive-theoretic fotal computability, or
computability in all aspects. This should not be confused with the above requirement of
a recursive evolution function. It is a non-trivial substitution as it requires «// theoretical
entities of the theory to be effectively computable.

For gxample, since the evolution functions, as well as the initial values and the
- solutions, are usually defined on continua, such as R", and since "almbst all" (all except
the set of measure zero) elefnents of the continuum are uncomputable, the assumption of
an exact (i.e., effectively computable) description of the initial value(s) becomes
unrealistic. Here one may wish to resort to the notion of "arbitrarily but finite accuracy
parameter values," or "‘ﬁnitely computable parameter values." Since finite numbers are

recursively enumerable, this would restore effective computability.

¢ Clark Glymour takes the VD requirement as a necessary criterion for determinism and cites Peirce and
Reichenbach as examples of philosophers who have included this criterion in their analyses of
determinism (Glymour 1971, pp. 744-745).



Therefore, in what follows by the term a "deterministic system" we shall
understand one having an effectively computable evolution fuhétion, whereas a system
wﬁich is totally computable in all of its aspects shall be called "mechanistic". This would
constitute our working translation lof a talk of Laplace's demon into thé language of

recursion theory:

A deterministic theory has an evolution function which is effectively

computable / recursive.

A mechanistic (strongly detei’ministic) theory is effectively computable /
recursive in total, i.e., all theoretical entities of the system are effectively
computable / recursive. In particular, all initial values, laws and solutions of

* a mechanistic theory are recursively enumerable.’

The definitions given above dol not dire.ctly refer to predicates such as "well
-deﬁnéd" or "observable". Also, the question remains open as to whether it is possible to
obtain physically meaningful (i.e., compatible with presently existing physical theo‘ries)
non-recursive solutions of recursive initial values and recursive evolution functions. As
has been shown by Kreizel (1974) and Pour-El and Richards (1981), such solutions do
exist. In order to avoid them (if one wishes to dovso),v it is ’necess'ary té impose further
restrictions on physical solutions. Such restrictions, if imposed, should be ultimately
motivated by physical considerations, as I do in the Part I introducing the Lipschitz ,

condition to eliminate singularities and divergences in physically meaningful parameters.

7 The term "mechanistic" is due to Kreizel (1974).




Further remarks on the recursive-theoretic definition of (Laplacian) determinism

are in order:

(1) Physical determinism in thé above defined sense does not imply the initial and/or

the solution (i.e., the final state) can be represented by an effective computation.

(2) Computability of the equation of motion and the initial value(s) does not
'- guarantee compﬁtability of the solution, as happens when the solution. 1s non-
unique (Kreizel 1974), or obtained by.unbounded linear operators, or is'a weak
solution (Pour-El and Richards 1981). (For mechanistic theories uncomputable
solutions from computable initial values and computable equations of motions

are excluded by definition.)

(3) Since, from the point of view of coding and information theory, the distinction
between the "evolution" and the "initial value" (i.e., some algorithm and its
output) seems rather arbitrary, the above distinction betwéen "determinism" and
"mechanism" is rather arbitrary as well, and it would probably be more precise to
talk of the distinction bétween non-recursive and recursive (cofnputable and non-

computable) ("mechanistic") theories.

This particular version of Laplacian deterministic systems provides a unified
recursion theoretic framework in which the issues of determinism / indeterminism,
undecidability and computational limitations of predictiVe conceptual devices — demons
— can be studied. Cc;rresﬁondingly, this thesis can be seen as the collection of three
independent case studieé, investigating the sources of indeterminism in classical physics,
computational limitations of classical Laplacian demon as well computational powers of

a quantum-computer powered Laplacian demon.



I begin by examining the sourceé of indeterminism and acausality in classical
physics. Here I discuss the physical significance of an often overiooked and yet
important Lipschitz condition, the violation of which und\erlies the existence of
}anomalous non-trivial solutions in the Norton-type indeterministic systems. I argue that
the singularity arising from the violation of the Lipschitz condition in the systems
considered appears to be so fragile as to be easily destroyed by slightly relaxing certain :
(infinite) idealizations required by these models. In particular, I show that the
idealization of an absolutely nondeformable, or infinitely rigid, dome appears to be an
essential assumption for anomalou§ motion to begin; any slightest elastic deformations
of the dome due to finite rigidity of the dome destroy the shape of the dome required for
indeterminism to ébtain. I also consider several modifications of the original Norton's
example and show that indeterminism in these cases, too, critically depends on the
nature of certain idealizations pertaining to elastic properties of the bodies in these
models. As a . result, .I érgue that indeterminism of the Norton-type Lipschitz-
indeterministic systems should ratiler be viewed as an artefact of certain (infinite)
idealizations essential for the models, depriving the examples of much of their intended
metaphysical import, as, for exafnple, in Norton's antifundamentalist programme.‘

Secondly, [ examine the éredictiye computational -limitations of a >clgssical
Laplace's demon in situations where prognoses put forth about the future state of a
(mechanistic) system actively provoke the very events the prognoses are about. Of
special interest‘is a subclass of all such prognoses, so calléd self-fuZﬁlling prognoses,
where the very fact of formulating, or putting forth, a prognosis about the- state of the

system at a certain time in future initiates, or triggers, a series of changes within the




system, in such a way that at that future momént the system assumes exactly the state
described in the prognosis. I demonstrate that in situations of self-fulfilling prognoses :
the class of undecidable propositions abonut éertain future events is not empty; any
Laplace's demon having all the information about thé world now will be unable to
predict all the future. In order to answer certain questions about the future it needs to
resort occasionally to, or to consult With, a demon of a higher ‘ord,er in the combutatioﬁal
hierarchy whose computational powers are beyond that of any Turing machine. In
computer science such power is attributed.to a theoretical device c/alled an Oracle — a
device capable of looking through an infinite domain in a finite time.

Thirdly, 1 examine a recent proposal from the area of quantum computation
purporting to utilize peculiarities of quantum reality to perform supertasks.‘While th¢
current view is that quantum algorithms (such as Shor’s) leadl to re-description of the
complexity space for computational problgms, recently it has been argue.d (by Kieu) that
certain novel quantum adiabatic algorithms may even require reconsideration of the
whole notion of computability itself, by being able to "compute the non-computable". If
implemented, such algorithms could serve as a physical reé’lization of an Oracle needed
for a Laplacian demon to accomplish its job. I critically review this latter proposal by
exposing the weaknesses of Kieu's quantum adiabatic demon, pointing out its failure to
deliver the purported hypercomputation. Regardless of whether the class of
hypercomputers is non-empty, Kieu’s proposed algorithm is -not a member of ‘;his
dis.tinguished club, aﬁd, when. it comes to computing the non-computable, a quantum
computer powered Laplace's ciemon' can do no more than its ordinary classical

counterpart.



PART 1

Indeterminism, Asymptotic Reasoning, and Physically

Inadmissible Idealizations in Classical Physics

10




2.1 Introduction

Abstruse theories like quantum mechénics .and generalv relativity routinely violate
common intuitions aboﬁt oaﬁsality and determinism. In' contrast, classical physics is
often assumed to be a paradigm example of a fully 'deterfninistic physical theoryrthat
never violates these intuitions, or that violates them only in the most extreme
circumstances lwhich render such situations as plainly unphysical. A number of authors
have argﬁed,thét this is not so, and that classical phyéics is a poor choice of hunting
ground for such beliefs. A definitive guide to the disc'uss'ion is John Earman's 4 Primer }
on Determinism (1986) that collects and discusses i{arious situations that threaten
uniqueness of s\olutions for common differential equations governing dynamics of
ordinary .c'lassical systems. A more recent attempt by John Norton (2003) presents
-another simple Newtonian system that seems to exhibit anomalous acausal béhaviour in
_that it‘ allows vgeneration of spontaneous‘motion of a mass without any exfernal
intervention or any change in the physical environment. T-hve latter system is of particular
interest since, unlike most’ of Earman's examples, it does not seem to involve, ét least
directly, any singularities, wild divergences, or any other tinkering with inﬁrﬁties of
- physically meaningful parametersﬂin any way that often leave the true believer of
determinism unsatisfied. Norton uses this example to su.pportkhis vision of causality as a
notion belonging more in folk sciencé rather than being a fundamental .principle

underlying all natural .processes and unifying all the domains of science at some deeper

level.
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While by and large sympathetic with the general thrust of the | "anti-

- fundamentalist” programme of Norton, I intend to demonstrate that his mass én the
“dome example fails to provide support for such a view. | discuss the physical
significance of an often-overlooked and yet important Lipschitz condition, the violation

of which underlies the existence of anomalous non-trivial solutions in this and similar

cases. I argue that the singularity arising from the violation of the Lipschitz condition in |

the systems considered appears to be‘ SO fragile as to be easily destroyed by slightly

relaxing ce‘rtai.n (infinite) idealizatiéns required by these models. In éafticular, I show

that the idealization of an absolutely nondeformable, or infinitely rigid, dorﬁe appears to

be an essential .assumption for /anomaldus motion to begin; any slightest elastic

deformations of the dome due to finite rigidity of the dome destroy fhve shape of the

dome required for indeterminism to obtain. Furthermore, I demonstrate that this situation

cannot be remedied by making the dome a little "pointier” at the apex, in the hope that

the dome assumes just the right shape after it is "squished" down by the Weight of the

mass placed on top of the dome.

I also considér several further modifications of the original Norton's example — the
rope-on-the-edge example and the rope-on-the-spherical-dome example — and show that
indeterminism in these cases, too, critically depends on the nature of certain (infinite)
idealizations pertaining to elastic properties of the bodies in. these models. Most
‘speciﬁcally,_the ‘idealization of an infinitely flexible rope aﬁpears to be an essential
assumption for indeterminism to obtain; the rope of any finite degree of stiffness appears
to be unable to follow the specific time-revgrsiBle sha;pe of the underlying surface, thus

blocking the time reversibility argument.
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Admitting that the examples éQnsidered in this part in no way exhaust all possible
relevant situations of interest, I argue thaf indeterminism of the Norton-type Lipschitz-
indeterministic systems should peihaps be. viewed as an artefact of certain (infinite)
idealizations essential fqr the models, depriving the examples of much of their intended
metaphysical import, as, for example, in Norton's antifundamentalist programme.

The rest of the Part I is organized as follows. Section 2.2.1 introduces Norton's
original mass-on-the-dome example and the time reversal argument. In sections 2.2.2 —
2251 eXpose some of the loopholes of this example and introduce a c1¢aner version free
of these unnecessary complications{ Section 2.3 discusses the Lipschitz condition as it
appears in the theory of ordinary differential equations (ODEs) and as it enters the mass- ‘
on-the-dome exam_ple. Section 2.4 is concerned with elastic phenomena ihat take place
in the Norton—typ.e indeterministic systems and that appear critical in the discussion of
time-reversibility of their solutions. Here I also consider several further modifications of
Norton's originalJexample and éhow that' certain idealizations required by these examples
are so extreme as to be considered ~phys.ically inadmissible; Section 2.5 applies (inﬁnite)
asymptotic reasoning to further elucidate the role and the domain of applicability of
certain idealizations as they appear in philosophy of science. Finally, in Seciion 261
draw several results from classical hydrodynamics to flirther illustrate how certain
solutions associated with first-order differential equations with spatially non-Lipschitz
velocity fields may lead to lack of imporiant temporal properties of systems such as.

stability with respect to perturbations and Markovianity in time, and demonstrate how

the behaviour of such systems may depend on the nature of the idealizations made.




2.2 The Mass on the Dome

-

2.2.1 Setting the Stage: The Original Formulation

A unit point mass slides frictionléssly on the surface under the action of gravity. The

surface is shaped as a symmetric dome described by the equation:

2,3

2P, (1)

==

where r is the radial coordinate in the surface, i.e., the distance traveled by the mass from

the highest point of the dome along the surface, | y | specifies how far the dome surface

lies below the apex as a function of r, and g is the acceleration due to gravity (Fig. 1):

Fig. 1 Mass sliding on the dome.

At any point, the magnitude of the gravitational force tangential to the surface is

F - 4@

’ #2 and is directed outward. Newton's second law of motion, F =ma,
| r

applied to the mass on the surface gives
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‘2722” =2 (2)
If the mass is iﬁitially locafed at rest at the apex r= 0, then one obvious solution
to (2) for all times ¢ is a trivial one:
() =0. B
. The mass simply remains at rest for all times. However, there exists another large

class of unexpected solutions. For any radial direction,

r(t) =

-1, foralli =T
{I44 ) , (4)

0, forall/<T
where 7 >0 is an arbitrarily chosen constant. By direct computation one can readily
confirm that (4) satisfies Newton's second law (2).

Note that equation' (4) describes a point mass sitting at rest at the apex of the
dome, whereupon at an arbitrary time 7 >0 it spontaneously moves yoff in some
arbitrarily chosen radial direction. |

The solutions (4) appear to be fully in accord with Newton's second and first laws,

if one takes the first law in its instantaneous form as follows:
In the absence of a nel external force, a body is unaccelerated.

" Indeed, for all times l%T, there is no net force applied, since the body is at
position » =0, the force free apex; and the mass is unaccelerated.

For all times 7> 7, there is a non-zero net force applied, since the mass is at

positions #>0 not the apex, the only force free point on the dome; andAthe mass

accelerates in accord with F =ma.
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Finally, when ¢=7, the direct computation of the mass acceleration from the -

equation (4) gives us

. < )

' s Ty2 .
Ca(l) = m(=T)", forall i2T
0, forallt<T

so that at 1 =7, the mass is still at the force-free apex » =0 and the mass acceleration

a(0) is equal to zero. Again, no force, no acceleration, exactly as the first law requires.

AWhat about' the initiating cause that sets the mass in motion in the ﬁrst place?
Surely the instant ¢ =7 is not the first instant at which the mass moves; it is the lést
instant at which the mass does not move. 'In..féct, one can name no first instant at which
the mass moves. So, if there ié no ﬁrst instant of motion, then there is no first instant at
which to seek the initiating cause.

Yet another powerful argument can be given in support of acausality of the mass
motion. This argument involves the time reversal trick. Since the Newtonian dynamical
laws of gravitational systems are invariant under time reverse}l we can invert the sliding-
down-the-dome scenario to produce another legitimate solution which insults the
principle of caﬁsality. Instead of flaving the mass starting at the apex of the dome, we
will imagine it stérting at the rim and that we give it some initial velocity directed
exactly at the apex. If we give it too much initial velo.city., it will pass right over the apex
to the other side of the dome. If we givé it too small initial velocity, it will rise foward

the apex, but before it reaches the apex it halts and slides back to the rim. Now, if we ‘

give the mass just the right amount of initial velocity, it will rise up and momentarily

halt exactly at the apex.
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The proper mathematical analysis of the latter situation reveals that the time
requifed for the mass to reach the apex moving along the surface of this parti‘cular shape
is finite. That this t\ime is finite is essential for the time reversal frick to succeed. Infinite
time would mean that the mass never aCtua]ly arriyes at the apex, and tﬁe time reversal
scenario would di‘splayl a mass that has been in motion at all past timeé; without any
spontaneous-laqnches. It should be emphasized that by no means this feature is common
to all ‘domes. For hemisphériéal or parabolic _domés, for instancg, the time taken for the
mass to reach the apex to its momentary halt is unbounded. In the case of the dome of

Fig. 1 the time reversal trick does work.

2.2.2 The Mass on the Dome: Cartesian Perspective

Defining the surface by y(r)= —%ry 2

, in terms of the distance r traveled by the mass
\ .

along the surface, conceals important details about the actual geometry of the dome and
directionality of motion as viewed from the "external" Cartesian perspective. Special
care should be taken-not to overlook these details since they may prove crucial in the
general case. Indeed, as the present section shows, the original formulation‘ of the mass- -
on-the-dome example harbours several loopholes, some of which botentially fatal to the
_ project. Fortunately, most of these difficulties are reparable and can be ovéfcome by
slight‘ly modifying the original formulation 6f the problem. As the next sections show,
the modified version inherits all the strangeness of being a source of spohtaneoué motion
generation without ’oiur having to deal with the loopholes and unnecessary qualniﬁcations.

Consider an axially symmetric dome, .and x is a Cartesian radial variable. In what

follows, we consider only non-negative x's, and then extend the results to incorporate the
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negative values of the x-coordinate. For the curvilinear coordinate r measured along the

surface slice cut vertically through the apex at the origin we have
dr ;
— =T

so that

ay(r) __ 1 _dy dx  Y(x)

dr g Cdx dr /l+[y'(x)]2 V(@) <0.

Expressing the coordinate » we can write down

BER F4(€)) M
ST : ©

Putting v = ' and differentiating both sides of (6) gives us

dv 1 1+
dx. 2g* v

vdv 1
N IR x+ Const .
+v9) 2g

, so that
5
Integrating the left-hand side of the last expression we get:

N |
A+ (] " | N

for k = —3—-2— and some constant C.
2g :

The ﬁrét observation to make _is that the dome s.urface_appear‘s fo be deﬁvned hot
for all x's, but only for x's out of some (fmal)v interval [0, L). Indeed, the left-hand side of
(7) is always greater or equal to 1, s0 it must be the case that 0 < C —kx <1 for all x out
of some interval [0, L). That provides the constraint on the possible values the constants. -

C and L can take:

0<kL<C<1,where L<1/k.
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Finally, infegrating (7) and incorporating negative values of x, we can express y(x)

to
as a function of the Cartesian coordinate x:

yx)=—F01-(C-kxDPP? +C, ®
where 0 <kL <C <1, L<1/k,and the constant C, = —%(l —C2/3)3/2 .
The tangential gravitational force acting on the mass as a function of x is

Feg L | ©)

N

The normal force exerted upon the mass by the surface at the point x is

Neg 1 10)

NE

2.2.3 The Mass on the Dome vs. the Mass on the Pinnacle

Having expressed the shape of the dome in the linear Cartesian coordinates, it is easy to
see that not all the domes described by formula (8) would fit well for generating
spontaneous motion within Newtonian mechanics.

Indeed, having fixed some "rim", L<l/k, and depending on the value of the

constant. C, two distinct cases are possible.

Case 1: C # 1. Substituting x =0 into (7) we obtain (1+[y’(0)]2)3'/2 ¥—é¢> 1, s0
that the first derivative of the function tends to some non-zero constant, d, as x
approaches zero. Geometrically this, medn_s that the tangent line to the dome surface at
zero hits the y-axis at some non-zero angle — the mass arrives at the apex not exactly

horizontally but at some non-zero angle. As we pass through zero into negative x's, the

tangent line to the surface experiences a sudden step-like jump:
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lirgl y'(x)— lirgl y’(x) =2d for some d #0.

So »'(x) is simply not defined at x = 0. I shall refer to this case as the mass-on-

the-pinnacle scenario (Fig. 2):

Fig. 2 The mass on the pinnacle.

Since y'(x) enters the expressions (9) and (10) for the tangential gravitational and
normal forces acting on the mass, these forces appear not to be defined at zero either. As
Newton's second law of r_notion "F =ma" cannot bt;: written for the mass at zero, ;[he-
mass-on-the-pinnacle scenario simply does not belong in Newton's mechaﬁics
| jurisdiction, and should be excluded from the discussion by an appropriate stipulation.
Yet, I shrall return to this case agéin in s;ction 2.3, where .it appears in regard with the

Lipschitz condition.

Case 2: C =1. Since the constant C = —%(1_—C2/3)3/2, we have C, =0, and the

expression (8) for the shape of the dome takes a relatively simple form:
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Yy =—Li- - k1 )PP2, an
fo.r‘ éll x out of the interval (-L, L), L <1/k , for which the surface is defined.

‘Looking at (7), we see that the first cierivative, y'(x), turns to zero as x approaches
zero. Geometrically this means that the mass arrives at the apex exactly horizontally.
Even though the second and higher derivatives of y(x) do diverge at zero, this fact-by
- itself, at least directly, seems to generate no singularity or divergeﬁce in any physically

- meaningful parameter. I shall refer to this situation as the (proper) case of the mass on

the dome (Fig. 3). All discussion that follows below will have this situation in mind.

Fig. 3 The mass on the dome (proper).

At this point we also note that in the vicinity of the apex, i.e., at the limit |x |- 0, |

the graph behaves as a fractional power function:

y;(x‘)z——«/Sk/27 |x|3/2=—%|x|3/2, ' (12)

1

" which, of course, should have been expected, since, for small x's, the x-coordinate almost

coincides with the radial coordinate » measured along the practically horizontal surface. I
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shall return to this point later in the next section when trying to modify the original
formulation of the problem to avoid some of its loopholes.

On the other side of the interval, as x épproaches the "rim", |x |- L, the graph
descends steeper and steeper until it hits the vertical wall at | x| = L. (The graph of this

function appears in Fig.'fl )

. 2.2.4 The Mass on the Dome or the Mass in_the Air?

~

Further observations about the behaviour of the mass on the so defined dome are in
order. Consider again the three classes of trajectories produced if wle give the mass'at the
rim some initial velocity directed at the apex along the surface: those where the masé
halts before it .reaches the apex and falls Back to the rim; those where thé mass halts
exactly at the apex; and thosé where the mass passes the apex with some non-zero

velocity and rushes over to the other side of the dome.

There is an easy and instructive way to see how things may go astray by
considering the trajectories from the third class when the mass passes over the apex. As
the mass proceeds through the apex with a non-zero velocity into negative x's, it
continues its motion along an artillery shell like ballistic trajectory. However, in the
vicinity of the apex, the dome surfaée descends fastér than any such parabolic trajectiory
so that the mass. necessarily detaches itself from the surface once it enters the negative
x's, refusing to follow the prescribed frack ® (Tfle results of numerical simulation‘ for

different velocities appear below in Fig. 4.)

¥ The mass detachment for the third class of trajectories was also noticed by David Malament
(manuscript). -
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Fig. 4 Passing over the dome apex.

It is worth noting, however, that mass detachment for the third class of trajectories
in no way affects Norton's original argﬁment and is mentioned here for illustrative
purposes only. More important is similar detachment that occurs in the second class of

trajectories, for which the méss is aimed to halt exactly at the apex. To see this; recall
that at the "rirﬁ", x = L, the tangential to the surface plane is exactly vertical. It means .
that the mass, initially positioned at the rim and giv‘en any initial velocity directed at the
apex along the surface, will go up (and then fall back) precisely vertically, detaching
itself from the surface and thus, again, refusing to follow its curvature. A careful analysis
reveals that this is true not only for the rim x = L taken as an initiél position of the mass,
but also for some vicinity of the rim. Indeed, .for’ the so defined dom’es; there always '
e‘xists‘ a (finite) interval (Ly, L), 0 < L, < L, such that, fof all initial positions of the rﬁass
(the \"r’ims") taken within this interval, the ballistic trajectory of the mass descends

slower than the dome surface immediately under it, thus causing the mass to detach from
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the surface. (The results of numerical simulation for different initial positions are shown

below in Fig. 5.)

Fig. 5 Mass detachment in the vicinity of the rim, .

Clearly, such initial positions would be a poor choice for being the "rim" since, as
mentioned in sec.tion 2.2.1, letting the mass fly along its ballisfic parabolic path would .
irrepafably ruin the t%r_né reversal argument.

Any attempt to bypass this difficulty by pushing the mass back on the préscribed .
track (e.g., switching to a bead-on-the-wire example) would necessarily involvel
additional forces (fiz., the elasticity forces of the wire along which the bead would slide)
without which the mass will simply refuse to follow the track. Adding new forces
(external or internal), as we shall soon see, brings new ar;d uhdeéirable complications

into Norton's original problem,9

° This phenomenon of mass detachment is closely connected with a mechanical system's being ideal
holonomic since an ideal holonomic constraint can be taken as the limiting case of a system with a large
potential energy, or, equivalently, the limiting case of an infinite force field in a neighbourhood of the

24



These complications become especially important (and more $Subtle) when we
move away from the rim to the vicinity of the apex. Unlike the previous situation, for
any initial position of the rhass taken within the interval (0, L;), the ballistic trajectory of
the mass now descends faster than the dome surface, and no detachment of the mass

from the surface occurs. (The results of numerical simulation are shown in Fig. 6.)

Fig. 6 No mass detachment in the vicinity of the apex.

Though we need not resort to elastic wires going through the mass to keep it from
detaching itself from the surféce of the dome, this is the elastiéity of the dome that
acquires special importance here.

At this ‘point we can discern a general pattern that begins to emergé. We don't
want to let the mass move along its free-flight parabolic ’trajec'tory; parabolic trajectories
give infinite past times for the time reversal scenarios, thus stripping the whole argument

of its force. In the vicinity of the rim this can be done the invoking the elasticity forces.

curve, directed toward the curve to ensure the moving point remains exactly on the curve (see Arnold
1978). I intend to expand on this point elsewhere.
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of the wire through which the bead-mass now sljdes (or applying some othér exterﬁal
‘force). In the vicinity of the apex these are the elasticity forces. of the dome that §v0u1d
"straighten up" the mass path sufficiently to yield, the required curvature; were it not for
the elasticity forces of the dome, the mass would choose to follow its free-flight ballistic
path.'In any case, there is a (very strong) force field in the neighbourhood of, and
directed toward the surface, that»en'sures that the mass moves along the required path.
Yet, as the following sectipns show, no finite, however large, elasticity coefficient of the
dome can allow for the time reversibility of the mass motion; only absolutely rigid dome
can make the time reversal trick possiblc;‘ thus the singularity in a physically meanirrlgful

'
J

parameter of the situation.

2.2.5 The Mass on the Dome, Modified

Many of the difficulties mentioned above can be.overcome and will disappear if we
make the following minor change in the original formulation of the pro_blem. Namely,

3/2

instead of defining the surface by y(r)= —%r , in curvilinear terms of the distance

traveled by the mass along the surface, we define it, just as (12) suggests, in the usual

linear Cartesian coordinates by
Y == |5 2. | (13)

This way, first, the situation no longer harbours the mass-on-the-pinnacle case in
which the slope of the surface expefiences a sudden step-like jump at the apex. The mass
moving along the surface will now always arrive at.zero Aexactly horizontally and no

qualifications to the contrary are necessary.
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Second, the surface is now defined for all x's, not just for all x out of some interval
(=L, L), L <1/k;nomore "preferred" "rims" or vertical walls.

Third, with any arbitrary (x-positive) point on the dome talgen as the motion
starting point (the "rim"), no detachment of the mass from the surface when it starts at its
"rim" ever oceurs; no need to resort to elastic wires to keep the mass on the-pr‘escribed
track.

On the other hand, since at the inﬁnitesimél vicinity of the apex (the spontaneous
motion generation fegion) the curvilinear coordinates and linear coordinétes coincide,
the simplicity of the expressioﬁ (2) for the second law of Newton remains in place.

This does not, hoWever, prevent the mass from detaching from the surface fbr the
third class of trajectories once the mass passes the apex with non-zero velocity as in Fig.
4._F6rtunately, these trajectories play no role in Noﬁon's time reyersal argument, SO we -
will simpfy let the mass disaiapear from our attention once it vanishes behind the apex
into the other side.

As the following sections show, the so modified mass on the dome example
inherits all the strangeness of being a; source of spontaneous motion generation with no.

need to deal with the above discussed loopholes and unnecessary qualifications.

2.3 The Lipschitz Condition |

We recall that the function x(¢) satisfying the initial condition (7,,x,) is a solution of

the differential equation determined by a vector field v

dx : .
i v(x) (13)
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if the following identity holds for all 7 in the interval / on which x(¢) is defined:

9 _ y(x(1)), and x(1,) = x,.- | (14)
dt ‘

Every differential equation (13) defines a direc‘_[ion field of this equation in the
" plane: the line attached at the poinf (t,x) has slope v(x).If x, is a singular point of the
vector field, i..e., v(x,)=0, then x(f) = x, ivs a solution of the eqﬁation (13) satisfying the
initial condition x(f,)=x,. Such a solution is called an equilibrium position or
stationary solution.

%% For such a field, (13) has more than one solution, e.g., the

Let v(x)=sgn(x)|x|
solutions x,(/)=0 and x,(7) =|1/4 |4 satisfy the same initial condition (0,0). In fact,
(13) has a whole 1-parameter family of solutions obtained by gluing together the

corresponding. halves of the two solutions, x,(1)=0 and x,(1)= [(t—T)/4]4 , at some

arbitrary time 7" > 0. (This situation is typical in that if (13) has more than one solution,
then it has a "contihuum" (i.e., a closed connected set) of solutions.) In the general
theory of ordinary differential equations it is hardly a surprising fact; if the direction \
field v is continuous but nondifferentiable (only Holder continuous), the solution with
initial condition in the: equilibrium position may- fail to be unique. Indeed, for any
v(x) =sgn(x)|x|*, where 0 <a <1, there always exists a family of branching solutions

for (13) that satisfy the same initial condition (0,0):
x(r) = #[(1 - )t - 7)1/, (15)

where f, =max(f,0), for an arbitrary 7' (Fig. 7):
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Fig. 7 The direction field for « = 3/4.

Geometrically, the reason for non-uniqueness in these cases is that the velocity
decreases too slowly when approaching the equilibrium position. As a result, the solution
manages to reach the singular point in a finite time. It turns out that the smoothness of v

guarantees the uniqueness in these cases. This observation needs more elaboration.

. . , . d .
Let us assume that x(¢) is a solution of the equation ;x =v(x) with a smooth.
; ; )
/

right-hand side v. We will suppose that. x(f,) = x, is an equilibrium position and

x(1,) = x, is not (Fig. 8): /
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X =Xx(t)

Fig. 8

On the interval between ¢, and ¢, consider the instant 1, closest to ¢, such that

v(x(t,)) = 0. By Barrow's formula for any point ¢, between ¢, and #, we have

d
L~ = I—é, x, = x(4,).
°v(
Xy . .
If the function v is smooth, then the integral tends to infinity as x; tends to x,.
Indeed, the slope of the chord of the graph of a smooth function on an interval is

bounded, so that |v(&)| < k| € — x, |, where the constant & is independent of the point &

of the interval [x,,x,] (Fig. 9):
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Thus
=] 2 |lek(§_x2)|.

The latter integral is easily calculated; it tends to infinity as x, tends to x,. It is
easy to verify this without even calculating the integral: it must be equal to the time of

transit between the two points in the linear field (i.e., for parabolic trajectories), and this

time (logarithmically) tends to infinity when one of the points tends to the equilibrium

position.
Thus the number |z, —¢, ] is larger than any pre-assigned number. So the solution
with initial condition in an equilibrium position cannot assume values that are not

equilibrium positions. Therefore if x(#,) is an equilibrium position, we have v(x(#)) =0

\




for all 7. Consequentl

dx(t . . : .
~——£—)EO, i.e., x(¢) is a constant. The uniqueness 1s now
) v

proved.'?

Note that the main point of thevproof was the comparison of a motion in a smooth
field with a more rapid motion in a suitable linear field (i.e., parabolic trajectories). For
the latter motion the time to enter an equilibrium position is infinite, and consequently it
is a fortiori infinite for the slower motion in the original field. Indeed, it can be shown
that a sufficient condition for uniqueness of the solution with initial value x, is that the
integral ]'_a_fé_ diverge at x,.

SV

The condition that |v(&)|< k|& —x, |, where the constant k is independent of the
point & of thé interval [x,,x,] (i.e., the ‘cor‘l‘dition that the slope of the chord of the graph
be bounded), is called a Lipschitz condition and the constant k a Lipschitz constant.'' It
can be shown that a sufficient condition for uniqueness - is that the right-hand side
'function \J sati;fy a Lipschitz condition |v(x) - v(y) | <k|x-y] forall x and y.

34

It is by no accident that we chose the function |v|=x|"" to ekemplify the

Lipschitz discontinuity. Writing down the energyn conservation relation for a unit mass

sliding on the surface of the axially symmetric dome defined by the equation

y(x)=—|x |3/2 gives us

1% The proof is due to Arnold-(1992).

""More generally, if | f(&)— f(x) 1<k |E-x |ﬂ for givenx and all | £ — x |< &, where k, f are
independent of ¢, and £ >0, and « is the upper bound of all the £ such that a finite £ exists, f(£) is
said to satisfy a Holder condition (or, in some textbooks, a Lipschitz condition of order a)at & = x . Ifa

Lipschitz condition of order « is satisfied at x, it can be shown that f'(x) = 0. If at every point of the

interval it is satisfied for some a > 1, then f'(x) =0 throughout the interval. Hence f(x) is constant;
consequently only the case 0 < @ <1 is of primary interest.
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X
— = xX)|,
5 gl y(x)]

so that
dx 12 34
=2 1y = J2g [ x PP,
which, to the factor of /2g, coincides with our |{v|. The right-hand side of the

3J2¢g [V
4

expression is non-Lipschitz: its derivative, , is unbounded in the

neighbourhood of the origin. As a result, the uniqueness theorem does not apply. Gluing

together in a smooth manner the corresponding halves of the two.solutions, x,(#) =0 and A

< . .
x,(O)=[(-T)/ 4]4, at some arbitrary (positive) time 7" reproduces Norton's anomalous

solutions. That's the reason why the existence ‘of anomalous non-trivial solutions in
Norton's caée can be wholly attributed to (spatial) Lipschitz-disc'ontinuity of the system's
velocity field (i.e., Lipschitz-discontinuity of the square root of the potential well
wherein the mass moves). Let us call such solutions (s;?ati&l) Lipschitz indetefministic.
A" further observation clarifying the role of the Lipschitz condition is in placve. A
Lipschitz condition is weaker than fhat for the functioﬁ v to be C\1 (continuously
differentiable).‘lndeed, the uniqueness theorem holds in the case when the first
derivative of v exists but is discontinuous. What that means with respect t'o.our situation

is that the mass-on-the-pinnacle case cannot be amended by defining the otherwise

undefined values of the derivative y'(x). Try, for instance, to define it as the right-hand

limit of the derivative at zero (i.e., regard the mass at apex positioned as if it is still on

 the right-hand side of the surface only):
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Y'(0):= lir(r)l y'(x)<0.
Now that the derivative exists but is discontinuous, the uniqueﬁess theorem comes

into play, and ohly one solution survives. Which one and why? Substituting this value of
¥'(0) into (9) we see that, at the apex, there is always a non-zero tangential gravitatiqnal
force F. pushing the mass downward. It is to say that, after having reached the apex and
having momentarily halted, the mass will necessarily turn back and fall down to where it
came from. The situation becomeé no more paradoxical than throwing a stone vertically
in the air, seeing it halt after some finite time, and then catching it back'again. The trivial
solution x,(¢#).=0 is impossible on so defined pinnacle surface exactly for the same
reagons that make it impossible to have the stone hang in the midair forever once it has
réached its maximal altitude. (A similar argument applies if one tries té define y'(0) as

the left-hand limit of the derivative at zero.) Causality reigﬁs.

2.4 Elastic Deformations and Physically Inadmissible Idealizations

2.4.1 Models and Idealizations

Scientific theories embloying mathematical models "approXimate" or "idealize" in one
way or another. Whereas much attention in philosophy of science has been drawn to the
rolé of idealizations in the development of scientiﬁ(:‘theories (e.g., McMullin 1985,
Cushing 1990, Moulines 1996, i‘see also Redhead 1980, Laymon 1985, 1995, and
Hartmann 2005a, 2005b), it is admissibility of idealizations in theorizing that will be of
main interest in this section. I will argue that certain idealizafions required By Norton's

dome example are so extreme as to be considered physically inadmissible. In particular,
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the idealization of absolutely nondeformable, Q‘r infinitely rigid, dome appears to be an
essential assumption for indeterminism .to obtain; any slightest diversion from this
idealization that allows any (however smalll) elastic deformations of the dome
cémpletely destroys the shvape of the surface at the apex needed for spontaneous motion
generation to occur. In addition, there seems to be nb way of .remedying this situation by
starting out with another elastic dome surface that is a little "pointier" at the apex, in t_be
hope that the dome assumes just the right shape after it is "squished down" by the weight
(
of the mass placed on top of the dome. As a result, indeterminism of the dome example
should rather be viewed as an aﬁefact of certain (infinite) idealizations, depriving the

example of much of its intended metaphysical import, as, for example, in Norton's

antifundamentalist programme.

2.4.2 Elastic Deformations and Idealization of a Concentrated Force

In ma‘ real physical body that is not deformed, the afrangement of the molecules
corresponds to a state of thermal equilibrium; all parts df the body are in mechanical
equilibriurﬁ. This means that, if some .portion of thé body is considered; the resultant of
the forces on that portion is zero. When a change in the relative positions of molecules.—
a deformation — occurs, the body céases to be in its-‘original state of equili.brium. As a
result, there arise forces which tend to return the body to equilibrium. These iptemal
forces which occur when a body is deformed are called internal stresses. If no
deformation ogcurs,»there are no internal stresses.
;

The internal stresses in a real physi_clal body are due to molecular forces, i.e., the

forces of .(electro-mag'netic) interaction between the molecules. The molecular forces

tend to have a very short range of action: their effect extends only to the neighbourhood
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of the molecule exerting them, over a distance of the same order as that between'fhe
molecules. On the other hand,- the standard classical theory of elasticity, as a
mécroscopic theory, considers only'distances which are large conipared to the distances
between the molecules. This being so, in many prblems the atomistic structufe of the
elastic medium can often be disregarded and the body replaced with by a continuous
mathematical model whose geometrical points are identified with material points of the
medium. \ |

The internal forces determiné the elastic properties of bodies, which
mathematically éharacterize certéin functional relationships between forces' and
deformations of'elas.tic medium. As a result, the response of elastic body to the action of
forces (internal or external) is in no way arbitrary, bﬁt is subject to certain relationships

and constraints that may prove critical in many problems.

Consider the following problem from the classical theory of elasﬁcity. Suppose we

‘are given a vertically symmetric dome of the (already familiar) form:

y(x)y==|x 2.

The donﬁ is made of inﬁnitely divisible continuous elastic medium, and the.
standard ass'uinptions of the classical theory of elasticity are assumed to be in place.'?
We want to determine the deformation of the dome under the action .of a finite
concentrated force, applied vertically to just one poiht of the surface — the apéx of the

dome:

"2 See, e.g., Sokolnikoff (1956) and Thomas (1961). In particular, if a medium particle, initially at the
point x;, is displaced to the position x; at time 7 according to the relations x; = ¢l-(x;,t), these relations

are assumed to have a unique inverse at any time /, ¢, must be continuous and differentiable functions of

the initial coordinates x; and the time ¢, and the functional determinants | ox; /6xl'. | and || 8xl'-‘/8xi | are
different from zero everywhere. '
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To solve this problem, we introduce polar coordinates, with an angle ¢ measured

from the direction of the applied force (Fig. 10):.

Fig. 10 Deformation of the dome under the action of a cdncentrated force.
For any given radial distance from the apex r, the angle ¢ takes values from —¢,, to
®m, Where

ltang, | = |x/y| = |x["2.

c,,»and o, , can be expressed (in polar

The components of the stress tensor, ©,,, ©,,,

coordinates r, ¢) as derivatives of the stress fuhction, ¥ (Landau and Lifshitz 1986, p.

21):

Loy 1 %x %% 5(15_%)

J— , — 7Gr - ——
Toror ot o Y or\rop

Since at -every point of the dome boundary except the apex where the force is

applied we have
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the stress function 7 should satisfy the following conditions:

o _ 1oy _
615 - f|((0) > P a(p fz((p)a

for p=—¢_,e ,and some functions f, and f, not depending on r.

Substituting x(r,@) = rf(¢), the biharmonic equation of equilibrium for elastic

solid bodies (Landau and Lifshitz 1986, pp‘-,18, 48)

gives solutions for f(¢) of the following forms:
| sing, cos@, gsing , and @cose. -

The first two of these corréspond_ to stresses equal to zero identically, and it is only
the third one that gives the correct value for the forceﬁ applied at the apex. Indeed,
projecting the internal stresses on directions pérallel and perpendicular to the force F,
and integrating over the part of a small circle lying inside the dome and centered at the )

apex, in the limit of zero radius we obtain

' Ja,,,r cospdp =-F,

J.o;,r sinpdp =0,

as required to balance the external force applied at the apex. From here we can get the

following solution: _

2(r.0)==(£)rpsing,

o, (rp)= —(%],ij)cosqo',
Grpfp = Gr(ﬂ = 0’




where F is the force per unit thickness of the dome.
These formulas determine the required stress distribution in the dome. Note that
the stress distribution is purely radial: only a radial compression force acts on any area

perpendicular to the radius. The lines of equal stress are the circles r=dcosg, which

pass through the apex and whose centres lie on the line of the action of the force F.

The components of the strain tensor are
u,=0,/E,u, =-00,/E,and u,, =0,

where o is Poisson's ratio and E is Young's modulus characterizing the elastic medium

of the dome.
Now, expressing the components of the strain tensor in terms of the derivatives of

the components of the displacement vector (in spherical polar coordinates):

O MO u O M 10U,

u , U , ;
oo " rop r * or r rogp

we can get the final expression for the displacement vector that solves our problem:

(1-o)F
Tk

- 2F .
u =—-——1Iog(r/a)cose - —@sing,
=T g(r/a)cosg o esing

2oF . 2F. ...  (1-0)
= sing + —Ilog(r/a)sinp + ———
U= SOt g(r/a)sing +- —

F (sinp —@cos@).

Here the constants of integration have been chosen so as to give zero displacement
(translation and rotation) of the dome as a whole: an arbitrary point at a distance a from

the apex on the line of action of the force is assumed to remain fixed (Fig. 11):
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Fig. 11 Logarithmic infinite well at the apex.

Looking at the formal solution just given we noﬁce that it presents an infinitely
deep logarithmic well going all the way dO\;vn from the 'apex. Assuming'that' the mass
always remains in contact with the surfaée on which it exerts the force (i.e., the mass
travels down with the surféce as the latter is "squished" down by the mass), it follows
that there can be no triviall solution with the mass staying on (or sliding'along) the
surface — the ‘only shape of the dome that counterbalances a concentrated finite force
exerted by a point mass is the infinite logarithmic well.

That we get an infinitely deep well (as oppbsed to some finite "pimple" on the
surface) is not, perhaps, a totally sufprising result: it is characteristic for thi.s particular
model that the force is applied to just one point — the area of measure zero, thus
'producing ‘inﬁnil\e pressure on the surface at the apex. Disallowing ény fractures and
punctures of the surface which is taken to remain continuous at all times (.yet infinitely
stretchable), the eiastic surface will always give way under the infinitely sharp needle as

the latter pushes its way down. That is all to say that the problem of a point mass staying
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on top of an elastic surface is not a well-posed problem in the first place — it cannot even

be set up properly within the classical theory of elasticity.

2..4.‘3 Modification 1: The Dome with a Pinnacle on pr

‘The infinite logarithmic well also helps explain why the/\original Nort‘or‘l’s mass-on-the- -
dome formuleﬁion can‘no‘; be remedied by making’ the elastic dome_surface a little
"pointier" at the apex, in the hope that the surface will as\éﬁme just the right shape after
the mass is placed on top of the dome and "squishes" it dowﬁ by‘its weight. Indeed,
~ consider, for example, the following modification of the ;iome with an arbitrarily'high '
and sharp conical pinnacle on top (with the no;l-zero angle 2a as close to ZEero, and»the

height of the pinnacle, 4, as high as desired) (Fig. 12):

Fig. 12 The dome with a pinnacle on top.
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The stress distribution in such a pinnacle-shaped part of the dome due to a
concentrated force applied vertically to its apex is, obviously, given by the same
\ ’ .

formulae as above with only difference being in their normalization constants. Namely,

the stress tensor components in this case are (cf. Landau and Lifshitz 1986, pp: 48-49):

o, (rp)=- 7 lCOS(p, O, =0, =0.

r i
a+—sin2a

Such stress distribution, however, also gives rise to an infinitely deep logarithmic
well going all the way down from the top of the dome. Since this is true for any
arbitrarily high and sharp pinnacle, there is no way the new dome can assume the desired

’

shape at the apex after we place a point mass on its top.

2.4.4 Modification 2: The Rope-Sliding-the-Edge Example

One may think that all the pathologies of the Norton's dome (;riginate in the singularity
of the dome surface at the apex. Indeed, in the original Norton's setting it is the singular
non-smooth geometry of the surface in the' immediate vicinity -of the apex that is
essential for indeterminism to obtain; the rest of the surface plays no role in this
phenomenon and can be safely replaced by some other surface, or even merely removed.
Yet, as I will show in this and 'the following sections, the singularity of the surface at the
épex is in no way essential for indeterminism to ‘occur and one can get anomalous -
motion generation for everywhere smooth surfaces.

Recall that the primary resource résponsible for non-uniqueness in Nofton’s case is
(spatial) Lipschitz-discontinuity of the direction field of the differential equation that

governs the system's dynamics. For a simple Newtonian gravitational system such as
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Norton's dome it is equivalent to Lipschitz-discontinuity of the square root of the
potential wherein the mass moves. Correspondingly, we can expect similar
“indeterminism in systems whose dynamics is governed by the same differential equation, |
as long as tﬁe square root of their effective potential is non-Lipschitz. |

Consider the following example.'3 A flexible yet unstretchable rope of negligible
thickness lies motionlessly on a frictiorﬂess flat horizontal surface with one of its ends
touching the edge of the surface; beyond this point the surface descends abruptly with

the shape given by the equation expressed in usual Cartesian coordinates (Fig. 13):

v ==]x|".

Y
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Fig. 13 The rope sliding down the edge.

When the rope slides down the edge by some distance x (in the x-direction), the
. force exerted on any given point of the rope is

3/2

3

F~gkh=gK|x]|

" This example was suggested by William Unruh (personal communication).
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where « is the rope mass per length unit, and # measures the distance from the x-axis to
the sliding end of the rope. Equivalently, we may talk about the céntre of mass of the

rope moving in the potential -

U(x)=—g1c|x|3/2.

The rope moving in this effective potential, cleaﬂy, presents a; similar dynamical
situation as that of Norton's point mass on the dome, giving rise to similar
indeterrministi,c behaviour of the rope: for an arbitrarily long time the rope lies
motionlessly on the horizontal surface, when, suddenly, without an-y external -
intervention or change in the environment,v it starts sliding down thé-edge.

The fact that the rope-sliding-the-edge example has no point masses makes it of
special interest. No point masses, no conqentrated forces, no infinite pressures on the

- surface, and no infinite wells that would prevent the problem from being well posed in
the first place.

Also note that it is the rope's centre of mass the‘ behaviour of which is governed by
the non-Lipschitz differential equation, and this centre of mass is now an abstract
mathematical point, not necessarily corresponding to any material point of the rope.
Indeed, once the rope slides off its original position, its centre» of mass detaches from the
rope and moveé to the depth of the medium that constitutes the slide. That the system's
centre of mass no longer necessarily tracks the péth ovf the system itself is an important
feature that will allow us to further modify the example as to smoothen ‘all Singulafities
in the surface while maintaining indeterministic non;Lipschitz dynamics.

Yet, before we do so, it is instructive to look more closely at the elastic -

phenomena taking place in the immediate vicinity of the edge where the rope is bent
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before it goes down the wall. More specifically, I will argue that the idealization of an

infinitely flexible rope in this situation is essential for indeterminism to occur; taking

(

into account any slightest elasticity effects (however small!) destroys any non-trivial
solution resulting in the rope's remaining motionless at all times with no spontaneous

motion generation.

2.4.5 Bending of Rods

Consider an elastic rope (or a rod) of ﬁnite, yet negligible, thickness. Assuming finite
stiffness of the rope, let us look carefully at its bending in the immediate vicinity of the

edge (Fig. 14): ' /

Fig. 14 The bending of the rope in the immediate vicinity of the edge.

When a rope (or a rod) of non-zero thickness is bent, it is stretched at some points
and compressed at others. Lines of the convex side of the bent rod are extended, and

lines on the concave side are compressed. This being so, there is a neutral surface in the
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rod that undergoes neither extension nor compression. This neutral surface separates the
region of compression frbm the region of extension.

Let us look at a bending deformation in a small portion of the length of the rod in
tﬁe immediate vicinity of the edge where not only the strain tensor but also the
magnitude of the displacements of points in th'e rod are assumed small. Taking a
coordinate system with the origin on the neutral surface in the portion considered, and
the x-axis parallel to the axis of the undeformed rod, ‘we cali suppose that the bendihg
occurs in the xy-plane. Not giving a genefal solution for all pvossiblel configurations of fhe
systerh, we give the ‘e‘xpressions for the éomponents of the displacement for a rod of

rectangular cross-section as it appears, e.g., in Landau and Lifshitz (1986, pp. 65-66):
u =xy/R,u =-ocyz/R,and .
y

1 2 .2 2
u —__..._.x+o- —Z s

where R is the radius of curvature of the neutral surface at the edge.

Using these expressions, it can further be shown that the sides z = i—%—zo of the

initially rectangular cross-section' become z=i%zo+u5 i—’z-"zo(l~0'y/R), i.e., no
longer parallel but still straight. The sides y:i% ¥,» however, are bent into the

parabolic curves
-+ -+ 1 2 1.2 2
yEEgytu, =g n oy [xo +o (3, — 2]

- That the bottom édge of the rope of any finite degree of stiffness is bent into

parabolic curves makes it impossible for the rope to follow the underlying surface;
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ropeis refusal to follow the prescribed track once again blocks the time reversibility
argument — the rope stay\s on the horizontal surface forever.

There is another way to see that a finitely flexible rod cannot be deformed as to
make it stay in a close contact with the surface at every point when the surface
experier’ices a sudden change in directionality sucii as in the above example: the
displacements of the rod in the just given expressions divérge and cease t(i be well
defined if the radius of curvature of the neutral surface R 'r'eaches zero. This also helps
understand why an (initially straight and undeform.ed) rod with any finite degrees of
stiffness, when placed on top of Norton's original dome, detaches from the dome in a
manner cloéely resembling the detachment of the mass projectile when the latter passes

over the top with a non-zero velocity (Fig. 15): 14

T}/

Fig. 15 The bending of the rope in the immediate vicinity of the apex.

Indeed, the radius of curvature R of Norton's original dome surface (or, more
precisely, that of any two-dimensional cross-section of the surface cut vertically through

the apex) is given by the following familiar expression of differential geometry:

' Similar difficulties, it may be argued, may be expected when trying to force the mass to track the surface
by switching to a bead-on-the-wire example; deformations of the wire at the origin would, on a
microscopic level, presumably, diverge the bead unto a parabolic, not time-reversible, trajectory.
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where the two-dimensional curve is given explicitly by the equation y = f(x) =—|x |3/ 2

(Fig. 16):

Fig. 16 The radius of the curvature of a plain curve.
~ This radius R (which, in the limit of infinitely thin rope lying on the dome,
bcoincides with the radius of curvaturé of the rope's neutral surface), clearly, tends to zero
when we approach the top of the dome. 3
Yet, the next section will show that the situation can be improved still further as to
eliminate all singularities in the geometry of the surface while maintainihg

indeterminism.

2.4.6 Modification 3: The Rope on the Spherical Top Dome

Consider the following modification of the rope-sliding-the-edge example. A flexible (of
~some finite degree of stiffness) yet unstretchable rope of negligible thickness lies

motionlessly on a frictionless symmetrical dome. In some vicinity of the top the dome is

'S The observation that the Gaussian curvature of Norton's dome at the apei is infinite first appears in
David Malament (manuscript). He seems, however, to think that this is merely a geometrical fact about the
surface which is no more physically troublesome that other idealizations employed in Newtonian theory.
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spherical; beyond this spherical area the dome continues in a smooth manner as the
familiar power function (Fig. 17):

| =l

Y

Fig. 17 The rope sliding down the spherical top dome.

The rope initially lies motionlessly on the dome with the two halves of the ropé
hanging symmetrically from both sides of the dome. The total length of the rope exceeds
that éf the spherical arc of the dome so that the rope's ends protrude to the non-spherical
parts of the dome. |

When the rope slides down the dome by some distance x (in the x-direction), the |

force exerted on any given point of the rope is

F~2g/ch:2gi<|x|3/,2,
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where Kk, again, is the rope mass per length unit‘, and 4 measures the distance from the x-.
axis to the sliding end of the rope. Equivalently, we may taik about the centre of mass of
the rope moving in the potential

U(x)=-2gk | x V2.

The rope moving in this effective potential (which, up to the constant 2, coincides
with that of the previous problem), also harbours spontaneous motion generatio}n‘: for an
arbitrarily long time the rope lies motionlessly on the dome, when, suddenly, without
any external intervention or change in the environment, it starts sliding down the dome.

Notice that the surface of the dome is now perfectly smobth on t'op — it is spherical
— with no singularities in the g_'eometr; of its shape, and yet, the velocity field of the
differential equation for rope's centre of inass (i.e., the square root of the effective
potentiall in which the rope moves) is Lipschitz-discontinuous at x =0 resulting in the
system's evolving in a non-unique manner.

Notice also that no difficulties with detachment arise when the (initiallyi unbent)
rope is bent into a spherical arc when it slides over the spherical part of the dome (any
" circular curve behaves locally as a parabola). In addition, once bent into a spherical arc,
the rope can easily slide along the spherical top of the dome with no further bending
thanks to rotational (in the vertical plane) symmetry of the sphere. This doesi not,
| however, apply to the non—spﬁerical parts of the. dome where the surface is no longer
rotationally symmetric, arlld‘wher_e the rope, therefore, necessarily undergoes additional
continuous bending as it moves _forward.

Not providing a rigorous analysis for this problem for all possible configurations

of the system, I will argue that, assuming finite stiffness of the rope, similar (as in the
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previous example) detachmentﬁ phenomena may well b¢ expected: looked at the
'microscopi_c level, the bot;om edge of the rope's free e;ld, while locally bent into
parabolic curves, detache§ from the dome surface, unable to follow th§ underlying
surface of the time-reversible shape. The condition of non-Lipschitz‘ direcfion field
essential for indeterminism to obtain appears to be so fr'agile‘ as to be easily destroyed by‘
taking into account any slightést elastic effects within the system. Indeterrhinism,} once
again, appears to be an artefact of infinite idealizations.

Before concluding this section., however, I want 0 p(oint out that, though this
. pattern seems to be true for all the examples considered above, by no means these cases
exhaust all péssible Lipschitz-indeterministic systems in which fnassés are not
‘concentrated at a point and which, corréspondingly, cannot be taken as settl_ed. For
instance, William Unruh'® suggested another possible modification -of the previous
éxamples in which the rope of finite stiffness is replaced by a drop of water of negligib]e
thickness; the drop is lying on a surface of one of the above described shapes waiting to
slide down. This drop-of—water—on-the-dome example, though lacking the difficulties
‘with staying in contact with the surface at all times, presumably, presents a much harder
case to analyse. In particular, it seems to involve a number of additional ~hyarostatic and
hydrociynamic phendmena (such as surface tension and fluid transport), about particular
modeis (and the assumption thereof) of which one should be very careful. As a
possibility, it may be argued the}t it is an essential feature Qf this model (and, perhaps, of
many of spatially extended models) that all elastic deformations must propagate
throughout the elastic medium with infmite speed so that every part of the drop instantly

"feels the tug" of any other part of the drop when the latter suddenly comes to motion. If

** In personal communication.
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so, the singular nature of certain assumptions essential for such models would, too, be
revealed. Yet, for the time being, I leave this example unsettled and open for future

research.

2.5 Asymptotic Reasoning in Philosophy of Science
2.5.1 Introduction

In his recent book Robert Batterman (2002) discusses what he calls asymptotic reasoning
in physics, i.e., the qualitative analysis of behaviour of physical theories in the
"neighbourhood of sin'gular‘ limits, and its relevance to philosophical issues of
explanation, reduction and emergence. Batterman argués that many physically and -
philo\sophically important theories and models involve a new and powerful categofy of
explanation based on asymptotic reasoniﬁg that has been totally overlooked by
philosophers of science.
Whereas much of Batterman's efforts have been directed on issues of inter-
_theoretical reduction and the development of the new type of explanation based on the
idea of emergence, (infinite) asymptotic reasoniﬁg can proVe helpful in elucidating the
role and domain of applicability of various idealizations used the Norton-type Lipgchitz-
indeterministic models considered above, and, therefore, better understanding the exteﬁt
of metaphysical import that these models can offer for today's philosophical debates on

- the nature of scientific determinism.
2.5.2 The Fallacy of Infinite Reasoning

One of the key ideas involved in infinite asymptotic reasoning is a commonplace fact of

mathematics that finite and infinite compositions may differ in their essential properties.
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For example, a finite intersection of open sets is always an diaen set, but an infinite
intersection of oben sets can yield a closed set. If sorﬁe property is preserved at any finite
stage of a finite sequence of operations, there is no guarantee that this property will be
preserved in the transiition to the infinite stage. One may even argue that many paradoxes
in philosophy can be traced down to the so called fallacy of infinite reasoning — the
fallacy of incorrectly projecting properties from finite to infinite compositions.”_ ‘

‘ Another‘ example illustrating the fallacy of infinite reasoning is the following

P _

famous "proof™ that 2 = \/5 (Fig.-18):
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Fig. 18 The "proof" that 2 = \/5 .
Here we have a rectangular triangle ABC with the ‘unit-length sides and the

hypotenuse equal to V2. Now, instead of moving from the point B to point A along the
hypotenuse, we decide to move in a crooked rectangular manner: the hypotenuse

surrounded ‘with a tube of some (small) width, d, we start moving straight to the left

'" See, e.g., Earman and Norton (1996) for applying this reasoning to argue against known supertask
paradoxes.
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(parallel to the side AC) until we hit the tube's border. Then we turn 90 degrees
counterclockwise and chtinue moving straight dov‘vn (parallel to the s.idel BC) until we
hit the tube's border again. Then we turn 90 degrees clockwise and continue rﬁdving
straight to the left until the next eﬁcounter with the tube's border. We then continue
moving in this manner until we reach the point A (the width of the tube is assumed to be
such that we can do it). It.is easy to see that the total distance traveled along the crooked
' rectangular path is equal ‘to 2, and yet, ih the zero limit of the width of the tube, the
crooked path. diverges from the hypotenqse by' no more than any arbitrarily small

preassigned number.

2.5.3 Stability and Parameter Sensitivity

This phenomenon can be seen as a particular instance of a more general pattern
encountered routihely in such mathematical disciplines as the system stability and
control theory, the theory of parameter sensitivity in dynamical systems, catastrdphe
theory, and rdbotics.

\ Unlike the more traditional approaches in Whiéh to determine the propérties of a
system has been to exhibit.a complete set of exact SOlthiOHS of the equations describing
this system, and then to study the properties of these solutions, in catastrophe theory it is
realized tﬁat in many instances it is only information of a qualitative nature, 6r only
limited quantitative inforfnation, which is the ultimate goal of the. study of some syétems

of equations. In such cases a full spectrum of solutions to an equation, obtained by much

hard work (if at all), may be a hindrance rather-than a help in understanding the

qualitative properties of the equation or system of equations (Gilmore 1981).




As a part of mathematics, catastrophe theory is a theory about singularities. Many
interesting phenomena in nature (or, rather, their mathematical models) invoiVe some
discontinuities — breaking of a ane, the division of a cell or the collapse of a bridge.
When applied to " scientific theories, it deals with the properties of discontinuities
directly, without reference to any specific underlying mechanism. This makes it
especially appropriate for the study of vsystems whose inner workings are not known, or
too complicated, and for situations in which the only reliable observations are of
discontinuities.

In robotics, to maintain system stability has been the prime concern when
designing any practical machine. There always exists a certain discrepancy between an
actual (real-operating) and the nominal (theoretical) trajectories of any system. This
discrepancy is partly due to various inherently approximational schemes in system
identification, and partly due to possible further parameter variations stimulated by
environmental changes. Thus, special attention should be paid to the evaluation of
possible system parameter variations, and their effects on system’s functional
performance or "odtput" (see, e.g. Eslami 1994). |

To illustrate the concepts of sftab_ility and parameter sensitivity let us consider a
familiar classical system — a pendulurﬁ. A simple gravity pendulum — a weight on the
end of a rigid rod, which, when given an initial push, swings back and forth under the
inﬂuencé of gravity over its central (lowest) point. As is known, the oscillations (not
necessarily small) of the "ideal" pendulum are described by the following system of

differential equations:

N R _ l
X, =x,, X, =-w'sinx, o=.l/g,
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where x, is the angle of deviation from the vertical, x, is the angular velocity, / is the

length of the pendulum, and g is the acceleration due to gravity. .

The éorresponding vector field in the phase plane with coordinates x,, x, is just

2.3
v, =X,, v, =~ sinx,,

with singular points x,=mm, x, =0 (Fig. 19):

Fig. 19 Phase-space of a simple gravity pendulum.

If we restrict the motion of the péndulum to a relatively small amplitude, i.e.,

| x,| <<1, the solution is a well-known harmonic oscillatory function:
x () =xycos(t/w), x,(1)=—(/w)x,sin(t/ @),
where x, is the largest angle attained by the pendulum.

Period of the small oscillations is
T,=2nlw.
For amplitudes beyond the small angle approximation, the exact period cannot be

evaluated in terms of elementary functions and can only be written in the form of the .

elliptic function of the first kind:
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T=if smxo,zz ’
w 2 2

where E(w,@) is Legendre's elliptic ﬂmction of the first kind:

@
EW,@) = [————m—d.

o1 —t,//2 sin’ &

The value of the elliptic function can also be computed numerically by using the

3
following series:

=, [ e () (43 s (B B2 (). ]

A number of assumptions are built in this model: the bob of the pendulum is a

1|~

point-mass; the rod on which the bob is swinging is massless and absolutely rigid;
motion occurs in a vertical plane; there is no air resistance and friction at the nail, the
material of which the bob is made is irrelevant to the stﬁdy of the question, accel_eration
due to gravity does n(;t depend on the position of t’he bob; there is no gravitational
influence of the nearby objects at the mass, etc. Taken seriously, many of the_se
idealizations ére p]ainly unph}./s_ical (or physically inadmissible) in that they can never be
achieved in practice for principle‘ reasons, but, of course, no one is -tempﬁed to think that
this "unphysicality" is indispensable to the relevant theory or that the theory would be
absolutely unworkable without them.

' A tyﬁical way how such conceptual "frauds" are dealt away in the teaching of -

science can be illustrated by the following excerpt:

One of the fundamental concepts of mechanics is that of a [material point].
By this we mean a body whose dimensions may be neglected in describing its

motion. The possibility of so doing depends, of course, on the conditions of




- the problem concerned. For example, the planets may be regarded as [material
points] in considering their motion about the Sun, but not in considering their

motion about their axes. (Lélndau and Lifschitz 1976, p. 1)

Implicit in such stipulations are our intuitions about the stability (or robustnéss) of
the behaviour of the system with respect to disturbances or changes made to various
parameters of the system. That is this feature of a system to change its behaviour
insignificantly when the various parameters of the system are chaﬁged insignificantly
that legitimizes some physical features to be idealized, or-"negleéted", as in the example

above. This point needs more elaboration.

We recall that an equilibrium point x,; of a system of differential equations,

% = v(x(1), (16)

is locally Lyap.unov stable at t =t if all solutions of this equation which start near x,
(i.e., with their initial conditioﬁs in a neighbourhood of X, ) remain near x, for all time,
i.e., if for any £ > 0 there exists a 5(5,10) >0 such that
it || x (7)) - x, H< o then || x(¢)—x,|< &, forall 12 tAO‘,

for some appropriate choice of the norm ||...||.

The equilibrium.p_oint‘ X, 1s séid to be locally asymptotically stable if x, is locally
stable (in the sense of Lyapﬁnov) and, furthermore, all solutions starting near x, tend
towards x, as { — . Thus, the pendulum has a locally stable equilibrium pointn(but not

asymptotically stable) when the pendulum is hanging straight down and an unstable
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equilibrium point when it is pointing straight up. (If the pendulum is damped, the stablg
equilibrium point is locally asymptotically stable.) .

Let us frame this situation differently in the following terms. Instead of disturbing
the initial conditions of the system, we can talk of changing (smoothly) the total system
energy taken as a parameter, and observe the gualitative changes in the behaviour of the
system. As we start with small system energies (i.e., the initial conditions are around the
point (0, 0) in the phase-space diagram), the trajectories of the pendulum bob are closed
curves; t}}e pendulum performs\ back-and-forth oscillations. Increasing, in a smooth
manner, the total energy of the system, we will eventually reach a point when, suddenly,
the pendulum bob ceases to track a closed curve in the phase-space; in fact, it ceases to
move at all once it takes an (unstable) vertical pbsiﬁon- with the zero velocity, apd
remains in this unmovable state ever since. This position is unstable — any, however
light, disfurbance of the pendulum réturns it to the back-and-forth oscillatory motion.

If we increase the total energy even more, the pendulum starts a rotating motion,
corrésponding to non-closed curves in the phase-space diagfam, resembling more and- |
more st‘raight lines as we push the energy still up. Thus, depending on the (non-zero)
value of the chosen parameter (system's total energy), there »exist three distinct
behaviours of the system — that of a back-and-forth osciliations (closed phase
trajectories), that of a halted (though unstable) position (a phase trajectory is just a single
point), and that of a rotational motion about the axe of the pendulum (non-closed phasé
trajectories). |

Depending on a particular problem in question, any other parameter .of the system

may be chosen to be disturbed or manipulated. An interesting (and important to us) case
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is when we choose to manipulate the rod's elasticity coefficient &, and see whether the

behaviour of the system will be, in some appropriate sense, robust under these

perturbations.

Suppose, for example, that we are given a system of differential equations'
describing the behaviour of a gravitational pendulum, in which the elasticity of the rod is
not assumed infinite but appeafs explicitly. Suppose further that, in this sysfem' of
equations, the elasticity coefficient k of the rod is feplaced by é new coefficient
k'=k+&k; x(¢) is a solution of the originél equation, and x'(¢) is a solution of the
equation with the changed &'. For x(¢) to be a robust solution, we could réqﬁire that for
any appropriate disturbances 5k there -exis.ts a d(e,1,)>0 such that

1 x'(1)=x(0) | &, forall 1=1,.

This is the latter sense of robustness that is essential for the pdssibility of the
"unphyéical" models' being used in simulating the behaviour of physical systems. Thus,
by a pendulum with infinitely rigid rod we could now undqrsfand a series of (physically
legitimate) approximations to the original problefn, with ﬁ.nite but arbitrarily large and

ever increasing elasticity coefficients, k's, as long as

~ (i) the series converges (in some éppropriate sense) to some limiting solution (e.g.,
if the modulus of any two consecutive solutions can be made arbitrarily small

by further increasing the corresponding elasticity coefficients), and

(ii) this limiting solution has the same essential properties that any finitely

approximate solution has.
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2.5.4 The Lipschitz-Indeterministic Systems and Physicélly» Inadmissible

Idealizations

What does this have to do with the Norton-type Lipschitz-indeterministic examples
considered above? Starting off with the original Norton's mass-on-the-dome examp'le
incorporating eiastic phenomena, the Behaviour of this system can be shown non-robust
under ever increasing rigidity of the dome in the following éense: unless the stiffness of
the dome is assumed infinite, the problem is not even a well-posed problem izvithin the
standard theory of eleisticity; no domes.of any finite (yet arbitrarily large!) stiffness can
accommodate infinite pressures exerted by point masses placed on the surface.

The further modifications of the original Norton's example considered above can
also be shown rion-robust under ever increasing ﬂexibility of the rope in the foilowing,

and more interesting, sense. These cases are all the more interesting that they closely

resemble the structure of the above mentioned "proof" that 2=4/2, harbouring the
" fallacy of infinite reasoning. Let flexibility of the rope is characterized by some

coefficient of flexibility k. Take any finite, yet arbitrarily large \ﬂexibility coefﬁcient k,

of the rope. Place the rope in its initial position (either on the 'horizental surface at the
edge or on the spherical toia dome) and wait whether it ever starts sliding. If it does, as
we saw earlier,. its bottom edge can only be bent (locally) into parabolic, non-time-
reversible, curves. That is to say that, while macioscopically the rope appears to follow
the shape of the dome, it actually (at a microscopic level) travels along a more complex -
path consisting of a number of shorter time-irreversible logs, thus blocking the time-

reversal argument.
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One can try to double (triple, etc.) the flexibility coefficient &, to get a new,
larger, k, . It is obvious; however, that gualitatively the new situation is no different from

the Aprevious one with a less flexible rope. In particular, the new system, too, has only
trivial solution (the rope is at rest at all times) anci no spontaneous motion generation.
Now, proceeding in a similar manner by makiné the rope more and_ more flexible, one
gets an (infinite) sequence of systems with ropes of ever increasing (yet finite)
coefficients of flexibility. Yet, as long as rope's coefficient of flexibility stays finite (and
no matter how large), there is no spontane_ous.motion generation when the rdpe lies on
the top.

The situation changes gualitatively if one takes an infinitely flexible rope; then
(and only then) could the rope follow the particular shape of the dome as requi.red by the
condition of Lipschitz-discontinuity. Thus, the /imiting behaviour of the family of
apbroximational systems with finite rope's flexibility exhibits a certain propeﬁy (of
being non-uﬁique), whereas any system in the approaching series (corresponding to a
physically realistic, or admissible, situation) fails to exhibit this pro.perty. The only way
to | generate non-Lipschitz spontaneous motion of the fope is to allow the rope to be
infinitely flexible; any diversion from actual inﬁnify in the flexibility coefficient results
in the rope staying on top forever. |

There is an important lesson to be learned from these cases. As the Norton-type
indeterministic ekamples discussed above show, there..may exist models the teal
metaphysical power of which critically depends on the nature of certain idealizations
»made. in those models, and the techniques of asymptotic reésoning may prove crucial in

elucidating these issues.
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2.6 Lipschitz-Indete'rn'linistic Solutions and the-Markov Condition

2.6.1 Generalized Flows in Hydrodynamics

I this section 1 draw‘s_everal results from classical hydrodynamics to further illustrate
how f:ertain solutions associated with first-order differential cquations with spatially
non—Lipschi‘tz velocity fields may legd to lack of importantl temporal .propefties of
systems such as stability with respect to perturbations and Markoviahity in time, and
show how the behaviour of such systems may depend on the nature of the idealizations

made.

~ Consider the following transport equation for thevscalar field O(x,t)in

(x,1) € RY x[0,0):
,-%?+ (v(x,1)- V)8 =0, O]_,=8,. (17

" In the classical theory of partial differential equations it is known that if the
velocity field ve R? is bounded and continuous in (x,¢) and Lipschitz continuous in x,
then (17) can be solved uniquely by the method of characteristics. Denote by @;,(x) the

solution of

.d(/)s,t(x)

V@ ()0, - - (18)

starting at x at time s, i.e., with the initial condition x(s) = x . The solution of (17) is then

given by the following expression:
O(x,1) = Gy (051 () = Oy (@, o (x)). (19)

The map ¢, : R? - R? satistying the following four properties:
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(@) @;s(x)=x foralls;
(b) @;,(x) is continuous in s, , x;
(c) (or,,(gos,r(x)) =@, ,(x) foralls, 1, Tand all x;

(d @, (%): RY - R? isa homeomorphism for all s, ¢

is called a flow o_f'hdmeomorphism or, in short, a flow."®

These classical results are inapplicable when v, though bounded and continuous in
(x,t), fails to be Li‘pschitz continuous in x. In such cases no standard flow satisfying
(a)—(d) can.be associated with the\ ODE in (18) since the solution of this equation may
fail to be unique. Since the solutions of (18) typically branch (i.e., (18) have more than
one éolution for thé same initial conditibn), no forward-in-time map can be associated
. With such solutions. Similarly, no backward-in-time map can be associated with the
solutions of (18) because they may coalesce on each other in finite time. This situation is
unfortunate sincé transport in non-Lipschitz velocity fields may be physically motivated,
e.g., for the problem of turbulencé. 19

Formaily, the standard way to deal with this situation ih general case 1s to
randomize the set of maps which can be assocl:iated with the solutions in (18) by
selection at the branching points thus defining a random field. Then a generalized flow

associated with (18) can be defined as a rahdom field with parameter (s, £, x) constructed

by assigning a probability measure on the set of all maps associated with the solutions of

'® Exposition is due to Weinan E. and Vanden-Eijnden (2003).
' The classical theory of Kolmogorov (1941) predicts that the solution of the Navier-Stokes equation in

three dimensions in only Holder with exponent 1/3 in the limit of zero viscosity.
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(1,8).20 Thé generalized flows obtained in this way are typically non-degenerate random
ﬁelcis, i.e., the measure is not concentrated on a single point, due to branching. |

As far as the modeling of the underlying bhysical processes is concerned, to pick
the probability‘ measure and single out physiAcallyi felevant generalized flows the
following regularization procedure is used. Instead of the original problems‘deécribed
by (17) and (18), the ;;egularized problems with unique solutions are considered and the
gene;alized flows are obtained as liﬁlité of the standard (stochastic) flows associated
with these regularized prob’lems.. |

Consider first the regularization by smoothing of the velocity around the points of
Lipschitz discontinuity (the e-limit process). Here the originali équation (17) is
uniierstood as the limiting equation for the following motivating (and physically

legitimate) problem:

%fﬂvg(x,z)-vw =kAG, 0]_o="0p, | 0

where £ is the molecular diffusivity and v® is a mollified version of v on the scales
|5c]|<<5 (e.é., if v solves Navier-Stokes equation, ¢ is the characteristic lerigth scale
'associated with the kinematic viscosity). Unlike theériginal transport equation, (20) has
a ﬁnique solution if either k or ¢ are positive. The generalized flow is then taken as the
limit as & — 0 of the stochastic flow associated with (20), provided this'limit can be
defined in a suitable way.

Secondly, some Brownian motion (the k-limit process) can added to the dynamics

in (18) to obtain a unique (stochastfc) flow associated with the solutions of

2% For a more rigorous definition of generalized flows and their properties see Appendix A Weinan E. and
Vanden-Eijnden (2003).
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dx = v® (x,0)d1 +~2kd B(1), - | (21)'

where f(-) is a d-dimensional Wiener process (Stroock and Véradhan, 1969, 1979). The

. fact that the term \[2_kd [(t) regularizes (21) can be undérstood more intuitively as

thermodynamical - fluctuations (always present -in any real physical system unless we
freeze it to the absolute zero), with probability 1, kicking instantaneously out any path
: : ;

that happens to go to the points x for which the solution of (18) is non-unique, thereby -
resolving the ambiguity associated with these positions. The generalized ﬂow can now
be defined, similarly, as the limit as £ — 0 of the stochastic flow associated with (20),
provided t.hisA limit is defined in a suitable way. *' |

Mixed limits where both smoothing of the velocity field énd Brownian motion are
used can be considered as well.

The limiting generalized flows obtained in this manner, however, appear to
depend sensitively on bthe regularization procedure, and they are non-Markdv for generic

regularizations. The latter fact raises an interesting issue regarding the connection of the

Lipschitz indeterministic solutions with the Markov condition.

2.6.2 Non-Lipschitz Velocity Fields, Regularizations, and the Markov Condition

Consider first the following ODE we met in Section 4 (with « =3/4 corresponding to

Norton's original formulation):
dx ' o .
7:sgn(x)|x| , xeR, ae(0,1). (22)
. I

As mentioned before, the set of solutions of this equation is given by

2 Typicaily, the e-limit is a weaker limit than the 4-limit in the sense that the regularization by smoothing
is more subtle due to the Jack of stability of solutions to perturbations and issues with the choice of
appropriate convergence. See W. E and Vanden-Eijnden (2003) for more details.
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x(t) = £[(1-a)(t 7)1, (23)
where f, = max(f,0), for an arbitrary 7.
By resolving the ambiguity of whére to map the point x = 0, the following family

of forward maps ¢, : R? i R? can be constructed:

sen(x)(|x "% +(1—a)(t—s) ), ifx#0
‘ Y(1-a)

, (24)
O -a)r-1),) ifx =0

Cfot(x) =

where 7 = inf(s > 5:/“(s) # 0) . Each of the maps ¢, is a weak form of a flow, a quasi-

flow, satisfying only the following three properties:
(@) @gs(x)=x forall s€[0,T];
(d) @ (x) is continuous in s, £, x;

) o7 (@S (x) =@ (x) forall x and for all s, 7, 1 €[0,7] with s <7 <7

By superimposing these quasi-flows and assigning a suitable probability measure a
. generalized flow can be defined.

In fhis particular case, the generaliied flows, obtained as i_imits of the standard’
flows by regularization either via the k-limit process or via the e-limit process, can be
showﬁ to be Markov in time.\However, as in the next ekample, Markovianity is not a

generic property of generalized flows.

Consider a further generalization of the previous example:
dx .
;=SgH(X)IXI g(), xeR, ae(0,1), (25) .
1

where g is a bounded function. Some solutions of (25) branch at the origin x = 0 on the

time intervals where g(¢) > 0, and other collapse at x = 0 where g(¢) <0 (see Fig. 20):
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Fig. 20 The set of all solutions of (25) for & = 3/4 and g(t) =cos(?). -

Quasi-flows and the corresponding generalized flow have been properly defined, it
can be shown that the generalized flows associated with (25) are not necessary
Markovian iﬁ time. Though the generalized flows obtained by regularization by the k—
limit process are Markov, the generalized flows obtained vid the e-limit process are not,
so that this feature apeears to depend sensitively on the regularization procedure used..

Finally, consider a further relaxation of the condition on the velocity field. In the
following ODE the velocity field i‘s continuous in (x, /) but non-Lipschitz et (x, 1) =(0,-0)
and not even Holder continuous (x, 1) = (0, 0):

E (w0, () e RxR, | 26)

where v(x,?) is given by

2x |
= if x> 1, -

v(x,0)=1 1 Q7)
2sgn(x)-1, if |x|< 2.

The set of solutions of (27) can be parameterized as
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x(0) = sgn(a)® +a, x(1) = br? _ (28)

witha >0, b e[-1,1] (see Fig. 21):
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Fig. 21 The set of all solutions of (26).

‘In this case, ‘the generalized flows associated with (26) can be shown to be hon—
Markov in time for both the k-limit process flows and most of the e-limit process flows.
The only regularizaﬁon procedures that dg) produce a Markov generalized flows in the &-
limit process are those for which, in the limit & - 0, all the paths that pollapée on a
single node (0,0) exit on a single trajectory.

To summarize the main points of this section, the purpose of cirawing these results
from fluid dynamics is to illustrate how properties specific to generalized ﬂowsk
associated with first-order differential equations with spat’ially.non-Lipschitz'velocity
fields Ihay lead to interésting and non—trivjal features in terms of transport by such fields.
Namely, generalized flows, constructed as limits of regularized standard flows, typically

appear to lack desirable properties such as stability with respect to perturbations or
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Markovianity in time so that the failure of Lipschitz éontinuity should be unsurprisingly
lead to physically imposs.ible solutions that have no serious metaphysical import, as, for
instance, in Norton's causal skeptical anti-fundamentalist programme.

I argue that indeterminism of the Norton-type Lipschitz-indeterministic sys{ems
should perhaps be viewed as an artefact of certain (infinite) idealizations e;ssential for the
models, depriVing the examples of much of their intended metaphysical import, as, for

example, in Norton's antifundamentalist programme.
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- PART II
Undecidability and Unpredictability

in Mathematics and Physics
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3.1 Introduction

In Part ‘II of the thesis, after revieWing the incompleteness and undecvi'dability results in
formal logic and mathematics and briefly introduéing the necessary. formal apparatus, [
demonstrate the algorithmic undecidability of a certain class of propositions about future
contingent events in situations where one takes into account thg provocative natu?e of
prognoses, anci discuss its physical and philosophical significance as it bears upon

principal unpredictability of the behaviour of mechanistic systems.

Here 1 consider a model of a social (or, more generally, mechanical physical)
systém where. prognoses are not merely passive forecasts of future. habpenings, but
where they actively pr0\;0ke the very eveﬁts the prognoses are about; a case where the
events bwould not happen at all, if we had not previously put forth this prognosis. Of
special interest is a subclass of all such prognoses, so called self-fulfilling prognoses. In
the case of self-fulfilling prognoses, the very factv of formulating, or putting forth, a
prognosis about the state of the system at a certain time in future initiates, or triggers, a -
series of changes within the system, i.n such a way that at that future moment the systém

assumes exactly the state described in the prognosis.

The (mechanical physical) systems considered in this section are perceived as
never-ending computational processes, characterized by recursive, or computable,
dynamics: the responses of the system to a prognosis for these models are assumed to be
fixed, known, and computable on a step-by-step basis. (More precisely, the response
function of the system to a prognosivs — the "law" governing the evolution of the system —

is characterized by a recursive funcﬁon.) I argue that even for such systems,
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notwithstanding their simple mechanical and totally computable appearance, the class of
effectively undecidable propositions which express the (classical) truth-values of the

(sélf—fulﬁlling) prognoses; in general, is not empty.

In such situations, any Laplace's (or Popper's or Landauer's) demon having all the
information about the world now will be unable to predict all the future; in order to
answer certain questions about the future it needs to occasionally resort to, or to consult

with, a demon of a higher order in the computational hierarchy whose computational

powers are beyond that of any Turiﬁg machine — an Oracle.

Unlike more typical settings in which self-referentiality is taken to obtain between
‘él symbol (a word, a sentence, a statement, a language, etc.) and its own semantics,
meaning, or interpretation, | set up self-referentiality to hold between the descriptions of
the states of the same system, as contained in the prognosis and in the resulting state of

affairs, across temporal slices.

After introducing the result, I discuss its physical aﬁd philosbphical significance
a\s it bears upon in principle unprediclabi?ily of the behaviour of mechanistic \system.s.'
Here I discuss the various known'attempts to translate algorithmic undecidability into
physically meaningful language. These include the discussion of the recursive
undecidability of the halting problem, the undecidability of the rule inference problem
(expressed by the question, "given a specified class of laws, usually a class of
recursive/computable functions, which one of these laws governs a particular system?"),
both from extrinsic and intrinsic perspectives, as well aé a cluster of complexity and
randomicfty related issued as they present themselves in the workings of (weakly)

chaotic systems.
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There is yet 'émother important source of undecidability which seems to be more
naturally releted to the provocative prognoses framework. This undecidability is due to
so called computational complementarity which usually appears in complementarity
games in the theory of finite automata. It has been argued that typical physical
measurement and perception processes may exhibit features which resemble
computational complementarity and diagonalization: while trying to read off the "true"

value of an observable of a system, a measurement interacts with the system and thus

- inevitably changes its state. It is true both for quantum and classical systems with the

major difference being that quantum theory postulates a lower bound on the transfer of
action by Planck's constant 4. I conclude Part II with the conjecture that the provocative
prognoses framework can be extended to allow parallel analogues in the settings quite
different from the context of (soeial,- or simple mechanistic) systems. In particular, it
may be helpful in both elucidating comp]ementarit‘y issues in quantum physics and in
allowing parallel results from the quantum level to be brought to the "macfoscopic"

philosophical level.

3;2 Undecidability in Formal Logic and Mathematics

3.2.1 Incompleteness in Formal Logic

Published in 1899, Hilbert's Foundations of Geometry is the first precise formulation of
a formal axiomatic method as applied to Euclidean geometry. An axiomatic system of
some discipline provides a systematization of the truths of this discipline, usually some

branch of mathematics or science. Originally it was hoped that such systematizations

would compress all truths about the “subject matter into a finite (or recursively



enumerable) set of axioms. The axioms were thought to contain the totality of all
substantive information’about the 'subject ma;tter. Ohce you reach such a systematizationy, )
the rest of your work will consist in "mefely" teasirig out the logical consequences of the
axioms. Logic is an instrument for unfolding all the information buried in the premises
(axioms) into their logical consequences (theorems). As the study of the relations of
logical coﬁsequence, that is, of relations of implication or entailﬁlent, logic is given an
authority to cafry out logical inferences, or to draw deductive conclusions. This is What

is called the deductive function of logic (Hintikka 1996).

By 1930 research on Hilbert's programme of capturing all mathematics in a logical
web was in its heyday: Ih‘ 1929 Presburger had shown that arithmetic without
multiplication is decidable (Presburger 1930), and in 1931 Skolem did the same for
arithmetic without addition and successor operation. Finitary'c'onsiste'ncy proofs had
been given for some restricted but interésting fragments of arithmetic, for ekample, by
Herbrénd in 1931. There seemed good reason to think that a finitary consistency proof

would be given for formalized arithmetic soon (Epstein and Carnielli 2000).

Yet, in 1931 Hilbert and his formalist programme réceived a dramatic and
devastating blow. Kurt Godel, a then unknown 'young mathematician from 'the
University of Vienna, produced a completely unexpected result showing that Hilbert's
formalist gc;al was unattainable (Godel 1931). No formal axibmatic theory rich enough
to include arithmetic (alternatively, no mathematical théory as weak as .arithmetic) can
ever be proved consistent. The bg:st a logician can achieve is the knowledge that ‘a system
is inconsistent. Furthermore, no consistent axiomatic éystem rich enough to include

arithmetic can be complete: there must exist mathematical statements expressed in the

75




symbols of the system that can neither be proved true nor false using the rules of the

system.?

Having fixed a particular formal system, and a formula ¢ defined in terms of the

symbols in the system, one of four possibilities can be true of ¢:

(1) ¢ can be proved true in the system.
(2) ¢ can be proved false in the system.
(3) ¢ can be proved both true and false in the system.

(4) ¢ can neither be proved true nor false in the system.

Apart from the obvious options (1) and (2), the poésibilities (3) and (4) complicate
matters. The result.(3) would show that the system is inconsistent: if (3) holds, then the
systerﬂ is mean‘ingless because it can be used to show that any statement méde in the
language of the system is true.”® The possibility. (4), if true, WOuld‘ show that the system
‘is iﬁcomplete. Furthermore, adding new axioms to a;l incomplete system never cﬁres the
problem: while this may allow previously undecidable statements to be decided (just add
them as new axioms, for example), it always generates some new undegidable

propositions (Barrow 1990).

2 In 1936 Gerhard Gentzen showed that the consistency of first-order arithmetic is provable over the
weaker base theory of primitive recursive arithmetic with the additional principle of quantifier free

transfinite induction up to the ordinal & . His proof highlights one commonly missed aspect of Godel's

second incompleteness theorem which often is taken to say that the consistency of a theory can only be
proved in.a stronger theory. The theory obtained by adding quantifier free transfinite induction to primitive
recursive arithmetic proves the consistency of first-order arithmetic but is not stronger than first-order
arithmetic. In particular; it does not prove ordinary mathematical induction for all formulae, while first-
order arithmetic does. The resulting theory is not weaker than first-order arithmetic either, since it can
prove a number theoretical fact — the consistency of first-order arithmetic — that first-order arithmetic
cannot. The two theories are simply incomparable.

» When asked by McTaggart to show that 'If twice 2 is 5, how can you show that I am the Pope?",
Bertrand Russell replied at once: 'If twice 2 is 5, then 4 is 5, subtract 3; then 1 = 2. But McTaggart and the
Pope are 2; therefore McTaggart and the Pope are one!' (cited from Barrow 1990, p. 256)
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It is worth noting that option (3) is quite diétin_ct from option (4). As a matter of
fact, incompleteness of a system pfotects the system from inconsistency, for if we'can
find just one statement in the language of our system thaf cannot be proven, then this
guarantees that it cannot contain inc?nsistencies like (3) whose presence would render-
all statements true. Incompleteness.o% a system should be seen as a demonstration of the

fact that the system's scope and content cannot be captured simply by axioms and rules

of logic which define it.

By replaciﬁg "false" by "unprovable" in the classical liar paradox in the form "this
statement is false"*, Godel famously obtained a tricky but mathematically meaningful
sentence that expresses its own unprovability (as viewed from outside the system).
Godel himself was well aware of this analogy. In his 1931 paper (Godel 1986, p. 149) he

said (translation of Svozil 1993),

"The analogy of this argument with the Richard antinomy leaps to the eye. It is
closely related to the "Liar" too; [footnote 14: Any epistemological antinomy
could be used for a similar proof of the existence of undecidable

propositions]..."

The consequencé of a claim like‘ "this statement is unprovable" can be summarized
by the following alternative: (i) if, on the one hand, this statement were provable in a '
giveri formalism, then this fact would contradict the message of the statement (i.e., 1its
unprovability), which, in turn, would reﬁder the whole formalism unsound, (ii) if, on the

.

other hand, this statement would be unprovable in a given formalism, this would confirm

{

" A passage in St. Paul's epistle to Titus (1:12-13) refers to Epimenides, a Crete of Cnossus: "One of
themselves, a prophet of their own, said, 'Cretans are always liars, evil beasts, lazy gluttons.” (See also
Anderson 1970). ' )
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. the message of the statement. As a result, the formalism would be incomplete in the

sense that there exist true statements which cannot be proven. There is no other

consistent choice other then rejecting (i) and accepting incompleteness (ii).

Similarly, other metamathematical and logic paradoxés (Kleene 1952) have been
used  systematically to derive undecidability or incompleteness results. The general
patterh is proof by reduciio ad absurdum: first, a statement is assumed to be true; this
statement yields absurd (inconsistent) consequences; the only consistent choice being its
unprovability or nonexistence. Mostly, absurd consequences are constructed by

techniques similar to Cantor's diagonalization method (Svozil 1993). -~

How can Godel's incompleteness result be possible, and what are the "resources"

that are responsible for it? There exist at least two features which are noteworthy: self-

~reference and universélity — the possibility to express (but not necessarily to prove)

certain facts about a formal theory within the theory itself and the use of the "absolute"

notion of truth. The first two phenomena occur only in theories which are "rich enough"

“to allow coding of metastatements within the theories themselves. Theories which are.

"too weak", i.e., theories in which metastatements cannot be coded within the theories
themselves, do not feature incompleteness of this kind, although they are incomplete ina

more basic sense. The next two sections will concentrate on these issues.

3.2.2 Undefinability of Truth

It is Tarski's famous impossibility result (1932) that classical truth cannot be defined in
ahy formal theory rich enough to include arithmetic. It is closely related to Godel's

incompleteness result. Indeed, Godel first arrived at his incompleteness result by
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discovering the undefinability of arithmetical truth in a first-order language. Although
not expressed in the original paper, Godel himself considered the use of an "absolute”
notio_n of truth to be the main feature of his incompleteness theorems. In his reply to a

letter by A. W. Burks he writes (von Neumann 1966, p. 55, Feferman 1984, p. 554):

"I think/ the theorem of mine which von Neumann refers to is ﬁot that on the
existence of undecidable propositions or that on the lengths of ‘proofs but
rather the fact that ‘a complete epistemological deScfiption of a language A4
cannot be given in the same language A, because the concept of truth of
sentences df A cannot be defined in 4. It is thils theorem which is the true
vreason for the egistence of undecidable propositions in the formal systems
containing arithmetic. I didb not, however, formulate it expli‘c_itly in my paper
of 1931 but only in ‘my Princefon lectures of 1934. The same theorem. was

proved by Tarski in his paper on the concept of truth.”

Absoiute (logical) truth is a transfinite concept; it cannot be defined by any finite
description. Suppose, for instance, that a finite description of a ;'universal truth machine"
(UTM) exists. For any given arbitrary statement as input, the universal truth machine is |
supposed to produce outputs TRUE or FALSE, depending on whether the statement is
correct or incorrect, respectively. Consider a liar-type input statement, "the universal
truth machin‘e (UTM) with a finite description will not output that this statement is trué".

~ Not unexpectedly, the machine cannot produce TRUE or FALSE without rﬁnning into a
contradiction. Therefore, the machine cannot decide all questions, contradicting the
assﬁmption that the universal truth machine decides all questions. Yet, somebody from

s

the outside (i.e., someone who is not part of this truth machine) sees that the above
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statement is correct, or TRUE, but this r;sults in an extrinsic notion of truth which is
stronger than the "portion of trgth" available to the truth machine. By simply adding this
statement to the description of the UTM one could produce a new machine, call it
UTM,. However, by the same argument, the new machine would not bé able to decide
the input statement, "the machine UTM; wifh a finite descriptién will not output that this
* statement is true". Yet, this latter statement can be seen to be TRUE,, etc., forcing a

hierarchy of notions of truth ad infinitum.

By allowing restricted "degrees" or "strengths" of truth, one could resolve the
paréde of the liar or similar“paradoxes by basically blocking these paradoxes from
being formulatéd in the first place.' In this sense, Godel's .incompleteness results amount
to a formal demonstration that the notion of truth is tdo comprehensive to be grasped by

any finite mathematical model (Svozil 1993).

| 3.2.3>Uni‘versality and Self-Reference

Another essentia_l' and recurrent feature of all logical paradoxés yielding Godel's
incompleteness result is universality — an abiiity to express certain faéts about a formal
theory within the theory itself using the idea of programs as data. Each of such theories
should be powerful enough to allow programs fo bé written whic.h "understand" and
manipulate other programs which are encoded as data in some reasonab.le, way. For
instance, in the A-calculus, A-terms act as both programs and data; in combinatory logic,
~ combinatory symbols manipulate other combinatory symbols; each u-recursive function
having a number in a Godel numberiﬁg can be used as input to other u-recursive
functions; and Turing machines can interpret their input strings as description of | other

Turing machines. This notion is close to the idea of universal simulation (thus the term

[
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universality), in which a universal program or machine U takes an encoded description
of another program or machine M and a string x as input and performs a step-by-step

simulation of M on input x (Kozen 1997).

Univgrsality "of a formal theory allows for the possibility of self-reference.
Consider, for instance, a statement similar td the classical liar paradox: "this statement is
truc?". Unlike the liar's case, however, no contradiction arises if one assumes that this
statement is true or this statemenf is false. Yet, its meaning remains L_mclear, Because it
does not make any aifference whether one chooses one of the two cases. This can be
seen as aﬁ exémple of a more general situation when a symbol (e.g., a word, a sentence,
a statement, a language, etc.) refers to its own semantics, meaning or interpretation,
- more precisely, if a symbol refers to the relation between itself and the object it stands
for. The existence of logical pathologies like the liar paradox can be seen as an example
of the fact that there exist objects which cannot be named by any (formally defined)
finite language. (The cox;cept of "truth" discussed m the previous section is another

example.)

Despite appearances, there seerﬁs to be nothing Wrong with self-reference per se.
It has been argued that self-reference, if ~applied properly, yi‘eld's well-defined and
meanirigful statements of mathematical and physical significance (e.g., Martin 1970,
.' Smullyan 1994). The known troubles iﬁ the form of inconsistencies typically occur by
attempting some sort of complete self-interpretation, via some kind of diagonalization
technique. Indeed, these inconsistencies, properly interpreted and coupled with self-

reference and various diagonalization techniques, provide one of the most general and

powerful tools for investigating undecidability (Svozil 1993).




3.2.4 Diagonalization and Reduction

There are fwo major techniques for showing that problems are undecidable:
diagonalization and reduction. The diagonalization technique was first introduced by
George Cantor at the end of the 19" century to show that there are fewer real algebraic
numbers than real numbers (Cantor 1874). Since then diagonalization, in one form or
" another, has become the all-purpose and most powerful way of investigating

undecidability.

To -illustrate the diagonalization technique in action, I will briefly construct an

algorithmically definable function which is not primitive recursive.

Assuming we can effectively enumerate all possible primitive recursive functions,
" there exists an effectively computable one-to-one function associating the natural
numbers and the class of all primitive recursive functions. Let g be the xth function in

this list. Now we define a diagonalization function 4 by the following expression:
h(x)=g (x)+1.

Since the addition of one is an effectively computable operation and since g, (x)

is itself an effectively computable function, # must be effectively computable as well.

Assume further that 4 is primitive recursive. Then it should appear in the list of all

primitive recursive functions somewhere, say, at yth place:
h=g,.
Now we combine the two expressions and look at 7 at y:

g, =h(y)=g,(+1.
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The above contradiction shows that the class of all prirhitive recursive functions

does not include all algorithmically definable functions.

(One possible way to avoid this contradiction while maintaining the functional

enumeration is to take the functions g, to be partial functions. ‘This way, in the last
expression, since g,(y) need not be defined for all )'s, the contradiction
g,(»)=g,(»)+1 need not arise. This justifies enumerating all partial recursive

functions later in the section on undecidability of provocative prognoses.)

If, using a diagonalization of some sort, we have established that a problem A4,
* such as, say, the Ha.lting problem, is undecidable, we may show that another problem, B,
is undecidabie by reducing A to. B. _Intuitively, reduction means 'transformatior\l of |
instances of one problem to instances of the other problem in such a way that these two
problems appear equivalent with respect to decidability/undecidability. Although
reduction does not ’provide us with an effective procedure of establishing
decidability/undecidability, it can be used (if coupled with more direct methods like
diagonalization applied to the first problem) to tell us that ‘if there existed a decision
procedure for B, then this procedure could be appliéd to the tranéformed instances of 4

to decide it as well. If, on.the other hand, no such procedure for A4 existed, reduction

would conclusively prove that no decision procedure for B exists either.

- 3.3 Classical Computation

In this section I briefly address the abstract notion of (classical) computability, Turing

machines, and computational complexity, of which we only need a few basic properties.
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The exposition for the most part is inforrﬁal aﬁd covers only the case of functions and
predicates in one variable. The omitted details and fhe extension of the definitions and
results to functions aﬁd predicates in several variables can be found in any standard
textbook in the theory of computation; as, for example, in Garey and Jonhson (1979),

Boolos and Jeffrey (1989), and Kozen (1997).

3.3.1 Turing Machines

Informally, an algorithm is a set of instructions to follow; in using it, "we only need to -
carry out what is prescribed as if we weré'robots; neither understaﬁding, nor cleverness,
nor imagination, is required of us" (Kleéne 1967). An‘algorithm transforms its inpul
(iﬁitial data) into some output (result). (If computation never terminates for some inputs,

we get no result.)

Inputs and outputs for many theoretical models of computational devices, such as
Turing machines, are typically strings. A string is a finite sequence of symbols
(characters, letters) taken from some finite alphabet. If A is a set of the symbols of some

such alphabet, by A" we will designate the set of all strings over the set 4.

Following Kitaev et al. (2002) (see also Turing 1936, Adler 1974), by a Turing
Machine (TM) we will understand a conceptual device consisting of the following

components:
¢ a finite non-empty set of symbols S called the alphabet;
e anelement #e S called blank symbol,

e a subset Ac S called the external alphabet; we assume that the blank

symbol does not belong to 4;
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e a finite set Q whose elements are called (internal) states of the Turing

machine;
e an initial state q,€Q;

~® atransition function defined as a partial function
§:0xS—>0x8x{-1,0,1}.
(The term "partial function” means that the domain of ¢ is a subset of OxS. A

function that is defined everywhere is called rotal.)

Any Turing machine represents an algorithm, and there are infinitely many Turing
machines that represent a particular algorithm. The above described components can be
taken to represent a computer program, rather then its "hardware”. We now briefly

describe the "hardware" such programs run on.

The Turing machine has three parts: a tape divided into the squares, or cells, a
scanner with a read-write head, énd a cbntrol device which is a finite-state automaton.
Each cell can carry one (and only one) symbol from the machine alphabet S. The tape is
assumed to be infinite to the right, and, at the beginning éf the computation,. all filled in
by the blank symbols. As computation proceeds, the symbol in a cell may be erésed and
replaced by another symbol from the alphabet S. Therefore, the content of the tape is an

infinite sequence o = s, s,,..., where each s, € S.

The scanner with a read-write head moves along the tape one cell at a time, scans
the content of one cell currently under the scanner's head, and, possibly, replaces the

scanned symbol by writing énother symbol from the alphabet in its place.
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The control device that determine‘s the behaviour of a Turing machine works as
follows. This device is capable of being in any one of the internal states from the set O
of all possible i.nternal states. At eachv step of the computation, device's being in some
particulér state ¢ with the symbol s, béi'ngl under the head determine the action
performed by thevcontrol device as the neﬁt step: the value of the transition function,
5(q,s,-,)': (q',s', Aﬁ) , specifies the new state ¢', the new symbol s’, and the shift Ap in
the position of the head that it has to undergo on the. next ste.p (Withv Ap =-1, for

example, interpreted as the head moving one position to the left).

More forma}ly, by the conﬁgura_tion of a Turing mz;lchine we will uﬁderstahd a
triple < o3P >, where o is an inﬁnit.e séquence SgseesS,,... Of elements of S, p is-a
non-negative integer (position of the cell/head counted from the left to the right with the
first cell 'on the left being assigned "0"), and g € Q. At each step of the computatioﬁ the

Turing machine changes its configuration < o; p;g > as follows:

(a) it reads the symbol s,;
(b)-it computes the value of the transition function: &(g,s,)=(q,s",Ap), and, if
undefined, the T™M halts.

(c) it writes the symbol s in the cell inthe position p of the tape, moves the head

by Apcells, and changes its current state s, to state s'. Thus, the new

configuration of the TM is the triple <s,,...,s

p=125 2  pyl o

s',s s p+Ap;q' >, and, if

p+Ap <0, the TM halts.
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Inputs and outputs of the TM are étrings of symbols over A. An input string «a is
written on the tape (which is, as we have said, initially alll filled with blank symbofs),
starting from the left end of the tape to the right. At the beginning of the computation the
head is positioﬁed a;[ the left énd of the tape too, with the initial state of the control

\

device being ¢, . In other words, the initial configuration of the TM is < a###...;O;qo >,

Finally, as the computation proceeds, the configuration of the TM is transformed step by
step according to the rules stated above, and we get the sequence of configurations of the

T™:
<att.;0,q9,>,<0); PG > <055 P23q, s
As we have said, this process terminates in two cases: if § is undefined, or if the

head Bumps into the (left) boundary of the tape p+ Ap <0. After that, starting from the

left end, we read the tape to the right until we reach some symbol that does not belong to
A (e.g.., the blank symbol "#"). The string before that symbol will be considered the

output of the Turihg machine.

If a Turing machine never terminates on a given input string x, it is said to loop on
input x. A Turing machine that halts on all input strings is called fotal (Kozen 1997), or a

decider (Sipser 2006).

3.3.2 Combutability, Recursiveness, Decidability,‘ and Semidecidability

Given the set A" of all strings over 4, a Turing machine is said to compute a partial

function ¢,,, :. A" — A4, if for input string «, the machine eventually terminates with

output string ¢, (); the value ¢, () is undefined if the computation never

terminates. .




Now, a partial function f: 4" — A" is said to be computable, or (partially)
recursive, if there exists a Turing machine 7M such that ¢, = /. If this obtains, the

function f'is said to be computed bj/ T™MF

A set of strings is. said to be (partially) recursive if its characteristic function is
(partially) recursive. A set of strings is called recursively enumerable, or r.e., if there is a
partial recursive function whose domain (co-range) is exactly this set, meaning that the -

function is defined at x if and only if x is a member of this set.”

A (one-place) predicate (a property of strings) is said to be decidable if the set of
all strings having property P is a recursive set. A property of strings is said to be

A
semidecidable if the set of all strings having property P is an r.e. set.

Finally, a Turing machine is said to work in time T(n) if it performs at most 7(n)
5
‘steps for any input of size ». Similarly, a Turing machine works in space s(n) if it visits

at most T (n) cells for any computation on inputs of size #.

3.3.3 The Church-Turing Thesis and Universal Turing Machines

‘Any Turing machine can be identified with an algorithm.ih the informal sense. The not

so obvious converse statement is called the Turing thesis:

"Any algorithm can be realized by a Turing machine.”

 There are several terms of referring to the property of recursiveness of a partial function which are used
more or less interchangeably: "effective", "computable”, "effectively computable”, "recursively
computable”, "mechanically computable”, or "algorithmically computable". This presupposes the truth of
the Church-Turing thesis (see the next section) and all of them mean just partial recursive functions. .
(Some refer to recursiveness as "general recursiveness”; others reserve the phrase "general recursiveness”
for total functions only and refer to the recursiveness of partial functions as "partial recursweness" We
will not adopt this practice.)

%6 Still another, equivalent, characterization of r.e. sets is due to Matlyasewch s theorem which states that
every r.e. set is Diophantine (and vice versa) — see section 3.4.5.
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It is closely c‘onnected’w'ith the Church thesis (Church 1936) that gives an
alternative and equivalent characterization of cbmputable functions in terms of (partial)

recursive functions”
"Any algorithm corresponds to a partial recursive function.

Since there is a provable equivalence between the classes of (partial) recursive
functions and functions computable by a Turing machine, these two theses are often
united in one single Church-Turing thesis. The term "Church-Turing thesis" itself seems

to have been first introduced by Kleene (1967, p. 232):47
)

So Turing's and Church's theses are equivalent. We shall usually refer to them
both as Church's thesis, or in connection with that one of its ... versions which

deals with "Turing machines" as the Church-Turing thesis.

Since the early stages of formal computational theory in 1930's, a number of
various characterizations of computable functions have been pro‘posed and investigated:
Turing machines (Turing 1936), Post systems (Post 1936, 1943), Church's lambda-
calculus (Church 1933, Kléenc 1935), Cbmbinatory logic (Schonfinkel 1924, Curry
1929), G(')'dlevl’s theory of recursive functions, cellular automata (von Neumann 1966),
Regfster machines (Jones and Matijasevic .1984., Chaitin 1987), Diophantine machines
(Matiyasevich 1993), etc. All of these systems purport to embody the idea of effective
computation in one form or another. Though representing very different models ;)f

computation working on different types of data, they all turned out to be equivalent to

each other (see, e.g., Rogers 1967, Kleene ’1952, 1967, Maltsev 1970, Shoenfield 1'967,

7 For various formulations of the thesis, its history and common misunderstandings, see, e.g., Jack
" Copeland's article "The Church-Turing Thesis"-in the Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/church-turing/.
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1972, Chaitin 1987, Métiyasevich 1993). The Turing m'achine formalism, as the one
most closely resembling a modern (classical) computer, shall be taken as basic in this
~and following sections. Besides the Version. of a Turing machine introduced above many
other custom variatidhs are knoWn: multitape, multidimensional tape, two-way inﬁnife
tapes, n§n~deterministic, probabilistic, etc. They all too tﬁrn out to. be computationally

equivalent in the sense that they can all simulate each other.

(In probabilistic Turing machines there is a caveat concerning the possibility Qf a
non-computabl_e intrinsic parameter & built in the probability distribution that leads to
rather strange computational o'utputs. We will return to thi.s point in Part 1II when
discussing the resources which are believed by some to enable quantum adiabatic

computers with powers to break the Turing limit.)

Any Turing machine as a finite object can itself be encoded by a string over a
fixed alphabet. If we fix a finite alphabet 4, we can consider a Universal Turing

Machine UTM defined as follows. Its input is a pair ("TM?, x), where "TM" is the
encoding of a machine 7M with external alphabet 4, and x is a string over 4 (xe 4')..
The outpuf of the machine TM is @,,,(x). So, UTM computes the function u defined as
foilows: | |
u("TM', x) = @, (x).
This function is universal for the class of computable functions of type A’ —> A
to the effect that for any computable function f:4" — 4" there e(xistsl some Turing

machine 7M such that u( FTM, X) = f(x) for all xe A" . (The equality here should be
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understood as meaning that either both u("TM", x) and f(x) are undefined, or they are

defined and equal.)

The existence of a Universal Turing Machine UTM is a consequence of the
Church-Turing thesis since the description of Turing machines was algorithmic.
However, unlike the thesis itself, this is also a mathematical theorem: such a machine
UTM can be constructed explicitfy and proved to computé the fﬁnction u. (More
precisely, the existence of a Universal Turing machine for the class of Turing-
computable functions is a mathematical theorem; the existence of a Universal Turing
machine for the class of computable functions is a consequence of this theorem together

with the Church-Turing thesis.)

More generally, a notion of a Universal Computer, or a Universal Computing
Agent can be introduced as the class of computational conceptual devices or automata on

which it is possible to implement all effectively computable functions.

- 3.3.4 Classical Complexity Class P

The cdmputability of a function does not guarantee that one can compute this function in
practice: to compute it, an algorithm may take too much space or time, thus the

importance of the notion of effective algorithms.

The notion of an effective algorithm can be fo.rmalized in different ways, leading
to different complexity classes. One of the most important is\ the class P of polynomial
algorithms. The following is only a brief exposition of computational complexity
classification, more details caﬁ be found, e.g.; in Harel (1987}, Garey and Johnson

(1979), van Leeuwen (1990), and Papadimitriou (1994).
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We say that a function F, defined on the set @B of binary strings over the set
B = {0,1}, is computable in polynomial time if there exists a Turing machine that
computes it in time 7'(n) = poly(n), where the notation f (n) = poly(n) means that

f(n)<Cn” for some constants C, d and for all sufficiently large n. If F is a predicate,

we say that it is decidable in polynomial time..

The class of all functions computable in polynomial time, or all predicates
decidable in polynomial time, is denoted by P. (There may be complexity classes

defined only for predicates.)

3.3.5 Nondeterministic Turing Machines, Class NP, and NP-completeness

While several different definitions of another important class NP of problems can be’
given, we will use'. Nondeterministic Turing machines for this purpose. A
Nondetérministic Turing Machine (NTM), res.embles an ordinary deterministic machine,
but can nondeterministically. choose one of several actions possible in a given
configuration. More formally, a _transitioﬁ function of an NTM is multivalued: for each
pair (state, symbol) there is a set of possible actions. Each action has.a form (new state,
new symbol, shift). If the set of possible actions has cardinality at most 1 for each state-

symbol combination, we get an ordinary Turing machine (Kitaev er al. 2002).

A computational path of an NTM is determined by a choice of one of the possible

transitions at each step; different paths are possible for the same input.

Having this definition of a Nondeterministic Turing machine, we can define the

class NP as follows. A predicate L belongs to the class NP if there exists an NTM M and
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a polynomial p(n) with integer coefficients such that the following two conditions are

satisfied:

(1) If L(x) = 1, then there exists a computational. path that gives the answer
"yes"/"accept” in time not exceeding p(|n|), where |x| stands for the length of
- the string x;

(2) If L(x) = 0, then there is no path with the above property.

The class NP of noﬁdeterministic polynomial time problems can be shown to
contain problems which c“an Be solved by a nondeterministic oracle and vertfied in
polynomial time. The function Qf an oracle — a magic conceptual computational device,
or é "black box", which, upon being consultea, immediately supplies th¢ correct answer
to the given problem, and the workings of which re;nain hidden for us throughout |,

computation — is basically to produce right guesses.

Now, the useful notion of reducibility allows us to verify that a given predicate is

at least as difficult as some other predicate.

A predicate L, is reducible to a predicate L, (we write L, o< L,) if there exists a

function f eP ‘such that L,(x) = L,(f(x)) for any input string x.

Finally, a predicate L e NP is NP-complete if any predicate in NP is reducible to
it.

If some NP-complete predicate can be computed in time 7(n), then any NP-
predicate can be computed in time poly(n)+ T (poly(n)). So, if some NP-complete

predicate belongs to P\, then P = NP. In other words, if P # NP (which is probably true),

then no NP-complete predicate belongs to P.
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If we measure running time "up to a polynomial", then we say that NP-complete

predicates are the "most difficult" ones in NP,

The key result in computational complexity theory says that NP-complete
predicates 'do exist. One of such predicates, called SATISFIABILITY, or SAT(x),
expresses the property of a propositional formula containing Boolean variables and
logical connectives ~, &, and V, of being satisfiable, i.e._, true for some values of the

variables. By a theorem proved by Cook and Levin:

(1) SATeNP;

(2) SAT is NP-complete.

As a corollary, if SAT € P, then P = NP. Or, 'in other words, if P # NP (which,
again, is brobably true), thel.l‘SAT‘ cannot.be solved polynomially'in time. We will return
to the satisfiability problem in Part III, when we will talk about certain quantum
algorithm which are claimed to be able to solve it tor, more specifically, a 3-SAT

problem) in polynomial time.

3.3.6 Probabilistic Turing Machines and Class BPP

A Probabilistic Turing Machine (PTM) is similar té a Nondeterministic one; the .
difference is that choice among activities is produced by coin tossing, not by guessing.
More formally, some (state, symbol) pairs have two associated actions, and the choice
between them is made probabilistically, according to some probability distribution on the
set of all strings. Each instance of this choice is controlled by a random bit. Usually it is

assumed that each random bit is 0 or 1 with probability Y4 and that different bits are

independent.
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Given an input string, a PTM generates a probability distribution on the set of all
strings such that different values of the random bits lead to different computational

outputs, and each possible output has a certain prdbability.

With a constant 0 < ¢ < Y2 ("the admissible error possibility"), a predicate L is
said to belong to the class BPP (Bounded-error, Probabilistic, Polynomial time) if there
exista PTM M and a polyn‘omial p(n) such that the machine M rﬁnning on ‘input string x

always terminates after at most p(|n|) steps, and the following two conditionals are met:

(1) If L(x) = 1, then M gives the answer "yes"/"accept” with probability >1-¢";

) If L‘(x) =0, then M gives the answer "no"/"don't accept" with probability < e. |

It can be shown that the class BPP remains invariant with respect to variations of
the admissible error possibility, &, as long as ‘it is in the interval (0, Y2) and is

computablé. '

Probabilistic Turing machines (unlike Nondeterministic ones, which depend on
imaginary oracles for\‘ guessing thé computational path) can be considered as real
computihg devices. Physical processes like the Johnson-Nyquisf n;)ise ‘generated‘ by the
thermal agitation of the charge carriers insi_de an electrical conductor in equilibrium or-
“radioactive decay, the randomicity of which is guaranteed .by the very nature of quantum
mechanics, are believed to provide real physical sources of random bits. A quantum

computer (see Part I1I) is another model of computation that is inherently probabilistic.

. One ‘of the central questions of complexity theory is whether randomness
increases computational power, i.e., the question of whether there is a problem which

can be solved in polynomial time by a Probabilistic Turing machine. but not a
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deterministic Turing machine, or whether deterministic Turing machin¢s can efficiently
simulate all Probabilistic Turing machines with at mbst a‘ polynomial slowdown. With
respect to the latter question, the current belief is that it is indeed the case, impiying that
P = BPP. However, it should be noted that, in fact, while the class BPP associated with
problems solvable by Probabilistic Turing machines remains the same if the admissible
error possibility, &, is replaced by, say, 1/3, thir;gs will change essentially if this
parameter is replaced by some noncomputéble real p. It turns out that having a
noncomputable intrinsic parameter £ built in the probability distribution leads to rather
strange computational outputs, which are typically avoided in the standard textbook
expositions (Kitaev et al. 2002). However, this is exactly the resource which is' believed
by some to enable quantum adiabatic evolution computers to break the Church-Turing

thesis. We will return to this latter point in Part I11.

3.3.7 Many-Faced Undecidability of the Halting Problem

One of the ﬁr.st problems proved undecidable was the so called Haltihg problem®®
(Turing's proof went to press in May 1936, whereas Churéh's proof of the un\decidability
of a problem in the A-calculus had already been published in April .1936).' The halfting
problem is closely related to the questidn of how a mechanistic system will evolve or
| what an algorithm or an automaton will output or what theorems are derivable for a
- mechanistic system. Informally, the halting problem is a decision problem aésociated
with the quesfion whether or not, given a description of a program or an a‘lgorithm A, and

a finite input x, (Church's version) A(x) will produce a specific output in finite time, or

%% In none of his work did Turing use the word "halting" or "termination". Turing's biographer Andrew
Hodges (1992) does not have the word "halting” or phrase "halting problem" in his index. The earliest
known use of the phrase "halting problem" is in a proof by Davis (1958, pp. 70-71). See also Copeland
(2004, p. 40). . :
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(Turing's version) whether 4 will terminate or halt on x. (Church's version reduces to

Turing's if the termination or halting condition is identified with the prodhction of output
)

The result kntown.as the recursive undecidability of the halting problem (Turing
1936) states that there exists no Turing-computable function (partial recursive function)
which decides the halting problem. Given a description of a program and a finite input, it
is in general impossible to decide whether the brogram finishes running or will run
forever, given that input. (Recalliﬁg the definition of semidecidability, the halting

function can be shown to be semidecidable by Turing machines). /

One consequence of the halting problem's undecidability is that there cannot be a

general algorithm which decides whether any given statement about natural numbers is

true or not. The reason for this is that the proposition which states that a certain

algorithm will halt given a certain input can be converted into an equivalent statement
about natural numbers. If we had an algorithm that could solve every statement about
natural numbers, it could certainly solve this one; but that would determine whether the

original program halts, which is impossible, since the halting problem is undecidable.

Another important consequence of the undecidability of the halt'ing problem is
Rice's theorem which states that the truth of any non-trivial statement about the function
that is defined by an algor.ithm is undvecidable.llt is a very powerful theorem substantially
generalizing Turing's results and subsuming many other undecidability results proven as
special cases, and showing that undecidability is the rule, rather than the exception (Rice

1953, 1956).

Rice's Theorem: Every nontrivial property of the r.e. sels is undecidable.
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Note that for Rice's theorem (also known as The Rice-Myhill-Shapiro theorem) to
apply, the property must be, first, a property of sets, not of Turing machines (i.e., it must
be true or false independent of the particular Turing machine chosen to represent the
set), and, second, the property muét be nontrivial - it should be neither universally trﬁe
nor universally false, i.e., there must be at least one r.e. set which satisfies the property
and at least oﬁe which does not. There are only two trivial properties, and fthey are both

trivially decidable.

As an example, consider the following versioﬁ of the halting problem — the /-
halting problem: Take the (nontrivial) property of a partial function f'if f'is defined for
argument 1. It is obviously noﬁtrivial, since there are partial functions which are defined
for 1 alnd. partial fun>ctions which are undefined at 1. The I -halting préblem'is the
proBlem of deciding whether there exists an algorithm which defines a function with this
property, i.e., whether the algorithm halts on inpﬁt 1. By Rice's the;“)rem, _such algorithm
does not exist. (It is important to keep in mind that the theorem holds for the function
defined by the algorith;av and not the algorithm itself. It is, for example, quite possible to
decide 'if an algorithm will halt within 100 steps‘, but this is not a statement about the

. function that is defined by the algorithm.)

Yet another important consequence of the general undecidability of the halting
problem is the so called Maximal Halting Time, or Busy Beaver, problem, relating
predictability of the behaviour of a mechanical system to the limits on the amounts of
- resources that a halting machine of a particular size can consume, in terms of either time

3

or space. In his 1962 paper On Non-Computable Functions, Tibor Rad6, a professor at

Ohio State University, thought of a simple non-computable function besides the standard




halting’ p‘roblem for Turing machines. Gi\'/en a fixed finite number of symbols and &
states, select those Turing machines with & states which eventually halt when run with a
blank tape. Among these programs find the maximum number of non-blank symbols left
on the tape when they halt. (Alternatively, find the maximum number of time steps
before ha.lting.) This function of k& — the Busy Beaver function — is we_ll-deﬁned but

uncomputable. -

The recursive undecidability of the. halting problem and the undecidability of the
Busy Beaver Problem are closely linked with an important class of the complexity-based
constraintsnon ’predictability of the behaviour of computable systems for finite-time
predications, and, connected with it, the idea of randomicity. The former constraints
become especially importaﬁto in cases of prediction by simulation for (weakly) chaotic
systems in which a "speed-up" of the real-time computation processes is generally
imposs'ible. As for the link to randomicity, sometimes this position is'formulatedl as a
very radical metaphysical programme, stating that all instances of "genuiné randomness"
inv physics may eventually turn out to be undecidable features of mechanistic systems

(Svozil 1993). We will return to these points in the sections 3.6.3 and 3.6.4.

Finally, one more powerful unsolvability result is worth mentioning here — the so
called recursive unsolvability of the rule inference pro}blvem; closely related to the
classical problem of induction (Gold 1967, Li and Vitanyi 1992, Angluiﬁ and Smith
1983, Adleman and Blum 1991, Svozil 1993). Assume we havé two universal
computers, UTM/ and UTM,. Assume further that the second computer UT'M, hés been
programméd with some algorithm o‘r program p, and the knowledge of this algorithm is

not given to the first computer UTM,. The task of UTM,, called the rule inference
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problem, is to come up with the "law" or algorithm p by analysing output behaviour of
UTM,. The following theorem (originally due to Gold 1967, pp. 470-473) states that this

task cannot be performed by any effective computation:

Recursive Unsolvability of the Rule Inference Problem: There exist total
recursive functions which cannot be "guessed", or inferred, by any particular

universal Turing machine.

This result, important in the context of language learning, or in the context of
inferring the laws governing evolution of the system, is just another "face" of the same
halting problem and can be interpreted in terms of the recursive unsolvability of the

halting problém: there is no recursive boun_d on the time the guesser UTM, has to wait in

order to ensure that its guess is correct.

In thé sections that follow I will describe another famous undécidable problem (or,
more precisely, a family of problems) — Hilbert's ”l‘enth Problem. Recently the physicist
Tien Kieu suggested a quantum computing procedure that, presumably, could solve

A
Hilbert's Tenth. If true, existence of such an algorithm compatible wifh modern physical
theories would threaten the classical concépt of corﬂputability and the Church-Turing

thesis, and would require us to reconsider the limits of predictability and mathematical

knowledge. (In Part III of the thesis I will éritically address this proposal in detail,

showing its failure to perform purported hypercomputation.)




34 Diophéntine Equations and Hilbert's Tenth Problem

"3.4.1 Introduction

In 1900 at the Sgcond International Congress of Mathematicians, held that year-in Paris, \)
the German mathematician David Hilbert delivered his famous lecture entitled
"Mathematische Pfoblerne". In this paper he put forth a list of 23 unsolved problems, or,
more precisely, 23 groups/ of related unsolved problems, that he s?aw as the greatest
challenges for twentieth-century mathematics (Hilbert 1900). The problem number ten in
this list, now referred to as Hilbert's tentﬁ problem, was to ﬁnd a "process" (what we
now call a method or an algorithrhj for deciding whether an arbitrary Diophantine

equation has an integral solution:

10. DETERMINATION OF THE SOLVABILITY OF A DIQPHANTINE ‘
'EQUATION | |
Given a Diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: To devise a process according to which it
can be determined by a finite number of operations whether the equation i;

solvable in rational integers.”

A Diophantine equation is an equation of the form

D(x,...,x,)=0,

where D is a ﬁolynomial with integer coefficients.

“

 Translation from German was taken from Matiyasevich (1993) which relies on the English translation of
Hilbert (1900). ’ '
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These equations were named after a Greek mathematician Diophantus of
Alexandria who was the first to investigate such equations and ask questions about their

solvability in rational numbers.*

Diophantine equations typically have several unknowns, so it is customary to
distinguish the degree of the equation with respect to a given unknown x, and the (total)

degree of the equation, i.e., the maximum, over all the monomials constituting the

polynomial D, of the sum of the degrees of the individual variables in such a monomial.

‘Below are typical examples of Diophantine equations, with x, y and z the (integer)

unknowns, the other (integer) variables given:

e ax+by=d. Bézout's identity; an example of a linear Diophantine equation. It

states that if ¢ and b are integers with greatest common divisor d, then there exist
(not necessarily unique) integers x and y (called Bézout numbers or Bézout

~ coefficients) satisfying the above equation.

n n

e x"+y"=z". For n=2 there are infinitely many solutions (x,y,z), the

Pythagorean triples. For example, the triple (3,4,5) satisfies this equation as

*® Almost everything known about Diophantus' life comes from a single 5™ century Greek anthology,
collecting a number of games and strategic puzzles, in the form of an epitaph that itself encodes a
mathematical problem to be solved in integers: "This tomb holds Diophantus. Ah, what a marvel! And the
tomb tells scientifically the measure of his life: God vouchsafed that he should be a boy for the sixth part
of his life; when a twelfth was added, his cheeks acquired a beard; He kindled for him the light of marriage
after a seventh, and in the fifth year after his marriage He granted him a son. Alas! Late-begotten and
miserable child, when he had reached the measure of half his father's life, the chill grave took him. After
consoling his grief by this science of numbers for four years, he reached the end of his life." The solution
gives 84 years as the age at which Diophantus died. Different authors diverge as to when exactly it
happened — we only know that he lived between 150 BC and 350 AD. There has even been divergence
between writers as to the last syllable of his name. A consensus nowadays seems to hold that the name was
Diophantes, not Diophantes. See (Heath 1964). ‘ '
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<

3> +4% = 5%. For larger values of n, n>2, Fermat's last theorem states that no

positive integer solutions x, y, z satisfying the above equation exist.

e x’-m?=1, where n is a nonsquare integer (Pell's equation). Studied by

" Brahmagupta in the 6th éentury AD and later by Fermat, it has infinitely many

t

solutions that yield good rational approximations to the square root of the natural

number #.
4 1 1 . . - .
¢ —=—4—+—, or, in polynomial form, 4xyz=n(xy+xz+ yz). The Erdds—
. , ,

X y z

Straus conjecture states that, for every positive integer » > 1, the rational number
. \

4/n can be expressed as the sum of three unit fractions (an Egyptian fraction

representation), with x, y, and z all positive integers.

In specifying a Diophantine equation it is essential to indicate the range of the
unknowns. Hilbert, in his Tenth Problem, spoke of solutions in rational integers.
Though much v;/ork in the theory of Diophantine equations has been done in the case of
algebraic integers, this latter case will be completeiy ignored in the present evxposition,
and we shall use the term ”integérs” to-fefer to rational integers.’’ Foilowing the
tradition in mathematical logic, we will also speak of the non—negétive integers as the

natural numbers; in particular, we shall consider 0 to be a natural number.

*' An algebraic integer is a number which is the root of an integer polynomial (i.e., an algebraic number)
which, in turn, can be expressed with integer coefficients and leading coefficient 1 (a monic polynomial).
This generalizes the distinction between an integer n (the root of x ~#» =0 ) and a fraction a/#b (the root
of bx —a = 0). In more abstract terms, the ring of algebraic integers is the integral closure of the ring of
integers in the field of algebraic numbers. A number x is an algebraic integer iff Z[x] is finitely generated
as an abelian group (i.e., Z -module). Examples of algebraic integers include the Gaussian integers and
Eisenstein integers. See, e.g., Kleiner (1998), Conway and Guy (1996).
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3.4.2 Hilbert's Tenth as a Decision Problem

By the time of Hilbert's address to the Congress, solutions for a large number of

Diophantine equations had been found and many others had been proven to be

unsolvable. Yet, for different classes of equations, or even for different individual
equations, number-theorists had to invent different specific methods. What Hilbert asked
in his problem "to devise" was a universal method for deciding solvability or

unsolvability of an arbitrary Diophantine equation.3 2

Hilbert's Tenth Problerﬁ is an example (and, out of all 23 of Hilbert's problems, the
‘only example) of a decision problem, i.e., a problem coﬁsisting of (countably) infinitely
maﬁy individual subproblems each of which requires an answer "Yes" or "N-o"A. In this
case, each individual subproblem is spebiﬁed by a particulér Diophantine equation, and
the expected answer of the method or algorifhm would read either "Yés, the equation has

a solution" or "No, the equation has no solution". The heart of the decision problem is

the reciuirement to find a single univérsal method which could be applied to each of the -

5,

1§

_ individual subproblems that make up the bigger problem.

A solvability proof for a decision problem can be done either directly or indirectly.
In the first case, one provides a procedure for finding the answer to any individual
‘subproblem, while in the.second case, one reduces the given decision problem to

another, the solvability of which has already been proven.

32 0f course, in 1900 the development of the theory of recursive functions and algorithms was still about
thirty years away and the concept of undecidability and unsolvability were not yet formalized. For the
discussion whether this implies that the 10™ problem was not a well-defined mathematical problem at the
moment when it was stated see, for example, (Denef er al. 2000, pp. 2-3).
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An unsolvability proof for a decision problem can.also be either direct or indirect.
In the latter case, one also reduces the Voriginal decision problem to another, but what is
required here is a reduction in the 7everse direction. Namely, to establish the
unsolvability of a decision prvoblem, one has to reduce /o it another problem the
unsolvability of which has already_ been proven. It is exactly by providing a chain of
reductions of more and more complicated problems to Hilbert's Tenth Problem; Yuri
Matiyasevich, a then unknown graduate student, in 1970 presented an élegant
unsolvability proof for this prqblem and showed that two fundamental concepts arising
in different arcas of mathematics — the notion of recursively enume?able or
semidecidabfe set of natural numbers from compt}tability theory and thé purely number- |
theoretic notion of Diophantine set — turmn out to be eq_uivélent (Matiyasevich 1970,

1993, see also Denef et al. 2000).

3.4.3 Systems of Diophantine Equations

Although Hilbert formulated his Tenth Problem in terms of finding a procedure fo;
deciding whether any single arbitrary given Diophantine equation do__es or does not have
a solution, Diophantus himself had consid¢red systems of equations. Clorrespondingly,
some textbooks give definitions of Diophantine equations as a system of polynomial
equations with integer coefficients where the number of the variables in all equations

“exceeds the number of the equations in the system.

However, it is not hard to see that a positive solution of Hilbert's Tenth Problem
would also provide a method for deciding solvability of a system of Diophantine

equations. Indeed, consider the following system of k equations:
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If (and only if) this system has a solution in integers (x,,...,X, ), this is a solution

for the following single Diophantine equation
Dl (xpesx,)+ -+ D} (%,,...,%,) =0

has one. Moreover, the set of solutions of (2) coincides with the setoff solutions of (3).
Thus, for systems of Diophantine equations the number of equations is not such an

essential characteristic as it is in the cases of linear algebraic or differential equations.

3.4.4 Solutions in Integers, Natural Numbers, and Rational Numbers '

Consider the following Diophantine equation:
(x+1’+(y+1)’+(z+1)’ =0.

If asked to find solutions in integers (as Hilbert did in his Tenth Problem), this
equation, obviously, has infinitely many solutions — any triple of the form x = -z-2,
y=-1 would cio. If a solution, on the other hand, is sought in non-negative x, y, and z,
then the fact that the above equation has no solutions is not trivial at all. So, for a
péu'tic’:ular Diophantine equation, the problem of deciding whether it has an integer
solution and the problem of. deqiding whefher it has a non-negative solution are, in
general, two separate problems. However, the decision problem of determining the

existence or non-existence of non-negative solutions can be reduced to the decision

106




problem of determining the existence or non-existence of intege‘r solutions, for example,

in the following manner.

Consider an arbitrary Diophantine equation

14
D(x,,...,x,)=0,
and suppose we are looking for its'non-negative solutions. Now consider the following

system:

~

D,(x,....,x,)=0

2 2 2 2
Xy =YtV t VstV

.2 2 2 2
xn_yn,]+yn,2+yn,3+yn,4'

- It is easy to see that any solution of this system in arbitrary integers includes a.

solution of D(x,,...,x,)=0 in non-negative integers. Using the fact that every non-

negative integer can be represented as the sum of the squares ‘of four integers33, the

converse can be shown to be true as well: for any solution of D(x,,...,x,) =0 in non-
negative integers x,,...,x, , there are integer values of y,,,...,,, that yield a solution of
this equatioq. Now, as was shown in section 3, the above system can be squeezed into a

single equatioh

D(xl,...,xn,yl‘,,...,y”’4) =0,

** The Four Squares Theorem of Lagrange (1772) states that the Diophantine equation

x’+xl+x. +x =a issolvablein x,, x,, x,, x, for any non-negative a . See (Matiyasevich 1993,

270 3

Appendix).

)
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~ solvable in integers if and only if the original equation D(x,,...,x,) =0 is solvable in
non-negative integers.
~ While Hilbert in his Tenth Problem asked for solutions in integers, Diophantus

himself sought solutions in rational numbers. Consider the following Diophantine

equation:

D(x,,..x,) =0

2n

whose variables x,,..,x, range over rational numbers. Let us introduce another

' Diophantine equation
D(r],.,.,r"',q) =0 _

with its variables ranging over integers, and defined by

D(rlr"’rn’q) = qu(ﬁ:>-r—n“j ]
| 9 q

where £ is the degree of the polynomial D. The polynomial D is homogeneous of degree
k, and so equation D(r,...,v,,q) =0 certainly has the trivial solution r,=..r,=q=0."

For this reason, the question whether a given homogeneous. Diophantine equation is
solvable or unsolvable is equiv.alent to the question of the exis’tence or nOn—existence.of
its non-trivial solution. It turns out that the following two decisions can be shown
equivalent: (1) the problem of determining the existence of a rational solution for
afbitrary’ Diophantine equations gmd (2) the problefn of determining the existence of a

non-trivial integer solution for homogeneous Diophantine equations. Thus, a positive

solution of the restriction of Hilbert's Tenth Problem to the case of homogeneous




equations would supply one with a method for determining the existence of rational

solutions for arbitrary Diophantine equations that Diophantus was after.

3.4.5 Families of Diophantine Equations and Diophantine Sets

Apart from single Diophantine equations and systems of Diophantine equations, number
theory also studies families of Diophantine equations. By a family of Diophantine

equations, we understand: a relation of the form

where D is a polynomial with integer coefficients with respect to all the variables

a,,....q,,X,,....x, , separated into parameters a,,...,a, and unknowns x,,...,x,, . Fixing the

values of the parameters results in the particular Diophantine equations that constitute

the family. It should be noted that a family of Diophantine equations is nof an infinite

" system of equations because the unknowns need not satisfy all the equations

- simultaneously, as would be the case for a system. Families of Diophantine equations are

also known as parameiric equations.

For different values of the parameters, one can obtain equations that do have:

solutions as well as equations that do not have solutions. Correspondingly,'given a

parametric Diophantine equation of the form D(a,,...,a,,X,,....x, ) =0, we can define a

set M consisting of the n-tuples of values of the parameters a,,...,a, for which there are

> m

values of unknowns x,,...,x, satisfying this equation, 1.e.

<d,,...a,>€M < 3Ix,..,x,[D(a,;...a,,x,..,x,)=0].
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The number # is called the dimension of the set M, and the above equiValence is
called a Diophantine representation of M. Sets that have Diophantine representations

are called Diophantine sets. Clearly, every Diophantine set has infinitely many

Diophantine representations.

One may extend these concepts to functions, properties and relations. For
example, a function is Diophantine if its graph is a Diophantine set. A property of
naturalinumbers is called Diophantine if the set of all natural numbers having this
pr§p¢rty is Di.ophantine._Finally, a relation among n natural numbers is 'called
Diophantine if the set of all m-tuples being in this relationship is Diophantine.
Corresponding equivalences are called Diophantine ;epresentations of, respectively, the

function, property or relation.
Below are some easy/ examples of Diophantine representations:

o the property of being an odd number can be represented by the following

e

equation:

a-2x-1=0,

1.e., a is an odd number if and only if 3x[a —2% —1=0], with x ranging over the.

natural numbers;
e the relations of #, < and < can be represented by the following equivalences:
a+bo3Ix[(a-b)Y =x+1],

aSb<:>3x[a+x=b],

a<bo Ix[a+x+1=5],




o the relation of being relatively pri;ﬁe is represented by equation

ax, ~bx,-1=0;

e the property of being composite ( non-prime) is represented by equation

a—(x, +2)(x,+2)=0;

o the set of all positive integers which are not powers of 2 is represented by.
‘equatio’n

a-(2x+3)x,=0.

3.4.6 Undecidability of Hilbert's Tenth Problem

A condition, necessary for a set to be Diophantine, arises if we look at Diophantine sets
from a recursion theory point of view. Given a family of Diophantine equations (a

parametric Diophantine equation)

D(a,,...,a,,x.,....x )=O;

>7m

it is possible to effectively enumerate, or list, all n-tuples from the Diophantine set M
represented by this equation. Namely, having fixed some order over (n + m)-tuples of

possible values of all variables a,,...,a,, x,,..,x,, we only need to check for each

n?

. successive (1 + m)-tuple whether the equality holds or not. If it does, we put the n-tuple

<a,,...,a,> on the list of elements of M . In this way every n-tuple from M will

sooner or later appear on the list, possibly with repetitions.

We recall that a recursively enumerable subset of Z* is, by definition, one that

~ can be listed by an algorithm, possibly with repetitions, and a recursive subset of Z “isa

|
‘ .
subset for which there exists an algorithm which can test membership of an arbitrary -



tuple in it. Thus, for a set M to be Diophantine it is necessary that M be effectively

enumerable. Martin Davis (1953) conjectured that this condition is also sufficient.

MARTIN DAVIS' HYPOTHESIS
The notions of Diophantine set and effectively enumerable set coincide, i.e., a set is

Diophantine if and only if it'is effectively enumerable.

This conjecture, if right, would immediately mean the Hilbert's Tenvth Problem is
undecidable because examples of sets that are effectively enumerable but nét decidable
were well known already in the 1930's. However, it was a rather bold conjecture at the
time since there hadn't been any strong informal evidence in its favour, whereas there
existed much informal evidence agains! it. As an example, Davis‘ hypotheéis implied the

existence of a particular polynomial P such that the equation
"~ P(a,x,,...x,)=0

was solvable if and only if g were a prime number. Hilary Putnam (1960) noted that such

an equation could be rewritten as follows:
a=(x,+ 1)1 = P*(xgx50x, N =1,

so that every solution of the former equation could be extended to a solution of the latter

by putting
X,=a.

On the other hand, since a is non-negative, for any solution of the latter equation it

follows that the product of the right-hénd'side should be positive, which is possible only

if




P(xy,%,,..,%,)=0.

Thus Davis' hypothesis implies the existence of a particular polynomial such that
- the set of all its non-negative values is exactly the set of all prime numbers. This

corollary was considered by many as an informal argurhentagainst Davis' hypothesis.

Yet, in 1970, building on work on exponential Diophantine sets by Martin Davis,
Hilary Putnam and Julia Robinson, Yuri Mati};asevich, a then graduate student at the
Leningrad Division of the VSteklov tnstitute of Mathematics, presented a negative

X solﬁtion to Hilbert's Tenth Problem. In hi;s doctoral thesis he proved (Matiyasevich 1970, -

Davis 1973, Denef et al. 2000) what is now called

DMPR-THEOREM (CHARACTERIZATION OF DIOPHANTINE SETS)

A subset of Z is Diophantine if and only if it is recursively enumerable.
A consequence of Matiyasevich's result is that there is Diophantine set Which is
not recursive; that is, thére is a Diophantine equation 'P(x],...,xn_, Visies V) = 0 such that
no algorithm whatsoéver can detect the set of n-tuples < X,,....%, > for which

P(x,,....,X,, ¥s...,¥,,) = 0 has a solution in terms of y's.

An immediate corollary of the DMPR-theorem gives .

COROLLARY (THE NEGATIVE ANSWER TO HILBERT'S TENTH

PROBLEM)

There is no algorithm which, given an arbitrary Diophantine equation, can test it for

possessing integer solutions.




Thougﬁ this negative solution of Hilbert's Tenth Problem does constitute the
formal solution of the problem with which Hilbert himself would probably be satisfied,
there is another, related, question, the answer fo which would most.‘ likely be "No":
Would Hilbert be sal‘isﬁed with the statement ofthe problem itself.ifhe knew it would be

"solved" in this way?

| As Matiyasevich explains this point, Hilbert's lecture took two and a half hours but
still this was not énough to present all the 23 problems, so that some o0f them, including
the 10", were not presented orally at all, but just appeared in the prir;ted version of the
lecture-. In addition, the Tenth Problem occupies less space than any other problem in the
]egture. In particular, there is no motivation for the 10" problem, and one can only guess
why Hilber't asked about solutions in "rational integers" oﬁly (Denef et al. 2000, p~. 18-

19).

A plausible answer can be that Hilbert was an optimist who believed in the
po&ilive solution of the problem in integers. If there existed an algorithm for solving
Diophantine equations in integers, such an algorithm would allow one to solve equations

in rational numbers as well. Namely, consider the following equétion:
Dy 2,,)=0.

Solving this equation in rational numbers y,,...,7, is equivalent to solving

m

equation

D(xl —yl ,”"'xm_ymj:o
z+1 z+1
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in non-negative integers x,,...,X, , ¥,.... ¥, » Z. The last equation, in turn, is equivalent to

the following homogeneous Diophantine equation:

z+1 z+1

where d is the degree of D.

Though reduction in the converse direction of solving Diophantine equations.in
rational numbers to solving homogeneous Diophantine equations in integers is less

evident, it can proceed in the following manner.

One first transforms the original equation into

D(ﬁ fﬂ) =0
A Z b .’ Z >

and then into

* At this stage, however, an additional trick is needed to ensure that z # 0 (see, €.g.,

Matiyasevich 1993, and Smoryr’lski 1991).

Sb, asking explicjtly about solving Diophantine equations in integers, Hilbert
asked implicitly about solving Diophantine'equations in rational numbers. A positive
solution of the Tenth Problem, as it stands in 'the lecture, would immediately give a
positive solution to the corresponding probllem about solving Diophaﬁtine equations in

/. '
rational numbers..
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However, a negative solution of the original formulation of the problem does rot
imply a negative solution for the problem of solving Diophantine equations in rational
numbers. In fact,'homogen‘eous Diqphantine equations constitute a very special subclass
of all Diophantine equations and it is‘quite possible that for this narrower class a

corresponding algorithm exists.
So, Hilbert's Tenth Problem can be understood i_n two senses:

o narrower sense, i.c., literally as the problem was stated by Hilbert in his lecture;
e broader sense, which includes other problems the solution of which would easily

follow from a positive solution of the 10™ problem as it was stated in the lecture.

In the narrow sense the Tenth Problem is considered to have been solved but
solving Diophantine equations in rational numbers still remains today an open problem,

and the progress in this direction has been rather meagre (Denef et al. 2000, p. 19).

-

3.4.7 Diophantine Machines

One of the implications of the DMPR-theorem 1s thaf Diophantine equations can be
treated as computing devices. Adleman and Manders (1976, 1978) introduced the notion
of Non-Deterministic Diophantine Machine (NDDM), specified as follows (Denef et al.
2000). |

Given a parametric Diophantine equation

n? >m

D(a,,...,a,,x,,..,x )=.0,

116




n

the corresponding NDDM works in the following manner: on input a,,...,a, it guesses
the numbers x,,...,x,, and checks whether or not they satisfy the equation; if the equality

holds, the n-tuple <a,,...,a, > is accepted.

NDDM
inpl-lt 9 guess
q Ciperes Xm) =
al) .,an ] D((ll, ﬁatv)'p ;'x’m)v 0 < xv."’xm
YES NO
accept reject

<yyeeny >

Fig. 22 Nondeterministic Diophantine Machine.

Notice that in the so introduced new computational device there is full separation
of guessing and deterministic computation, with the computational part being very

simple — the only calculation required is that of the value of a polynomial.

The DMPR-theorem implies that NDDMs are as powerful as any standard Turing
Machines: every set recognizable by a Turing Machine is recognized by some NDDM,
and, of course, vice versa. Adleman and Manders further supposed that, in addition, '

NDDMs are as efficient as Turing Machines.

Typically, one has to distinguish two different natural measures of computational
complexity: TIME and SPACE. For NDDMs there is only one natural complexity

measure which plays the role of both TIME and SPACE. This measure is SIZE, which is
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understood as the size (in bits) of the smallest solution of the equation, defined either as

the smallest possible value of max{x,,...,x,}, or as the smallest possible value of the

sum x, +...+ X, .

(Adleman and Mandres 1976, 1978) contain first results comparing the efficiency
( ‘
of NDDMs and conventional Turing Machines by estimating the SIZE of an NDDM

simulating a Turing Machine with TIME in special ranges.

In particular, Adleman and Manders introduced the special class D of all sets M

having Diophantine representations of the form

_ la +...+¢.1,,|"
XpponX,)=0 & x, +..+x, <2° }s

n?

<a,...a,>M < 3x,,.,x,{D(a,,...a
where |'a | denotes the (binary) length of a.

It can be easily shown that D < NP since the class D is known to contain NP-
complete' problems. Adleman’ and Manders asked whether in fact the equivalence

between the classes holds: D =NP.

3.5 Self-Fulfilling Prognoses and Laplacian Demon

3.5.1 Self-Reference and Self-Fulfilling Prognoses

Technically, the goal of this section is to demonstrate the algorithﬁic undecidability of a
certain class of propositions about future contingent truths in situations where one takes
into account the provocative nature of prognoses (Kofolev 1998). Here I consider a
model of a social .(or,'more generally, mechanical physical) system where prognoses are

not merely passive forecasts of future happenings, but where they actively provoke the
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very events the prognoses are about; a case wheré,the events would not happen at all, if
we had not prev1ously put forth this prognosis. Of special interest is a subclass of all
such prognoses, so called self-fulfilling prognoses. In the case of self- fulﬁllmg‘
prognoses, the very fact of formulating, or putting forth, a progn‘osw about the state of
the system at a certain time in future initiates, or (riggers, a series of changes within the
‘system, in such a way that at that future moment the system assumes exactly the state

described in the prognosis.

As a paradigm example of a self-fulfilling prognosis we can take a case of
Girolamo Cardano. As the legend goes, he cast his own ho;oscbpe, and, having predicted
that he would live only to the é'gevof seventy-five, committed suicide on September 21,

1576, in order not to falsify his horoscope.**

Within the social system context, this situation is possible due to the fact that
prognbses may refer to the reality which itself is subject to human activity; in the
. meantime a choice of a particular activity is often determined by the pictures drawn by

our expectations based upon the prognoses.

The syst_ems‘I consider are assumed to be compléx enough to allow sélf—fulﬁlling
prognoses to occur. In addition, a mechanical physical system‘is perceived as a never- -
ending compufational process, chargcterized by computable, or recursive, dynamics: the
responses of the system to a prognosis for these models are assumed to be fixed, known;'
and computable on a step-by-step basis. (More precisely, the response function of the

system to a prognosis — the "law" governing the evolution of the system — is

i

3 For a more recent similar example see "Astrologer Misses Date With Death”, Reuters, October 20, 2005,
http://www.smh.com.au/news/unusual-tales/astrologer-misses-date-with-
death/2005/10/22/1129776001455 html. - o 7
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characterized by a recursive function.) 1 argue that even for such systems,
notwithstanding their simple mechanical and totally computable appearance, the class of
effectively -undecidable propositions which express the (classical) truth-values of the

(self-fulfilling) prognoses, in general, is not empty.

It turns out that the self-fulfilling prognoses are the bearers of principle
algorithmic undecidability in the systebm. In.general, having all the informaﬁon about the
world now, no Universal Turing machine predicting the future will halt before the
moment when the eve'ntv aétUally happens, and none of Laplace’s (or Popper's or
Landauer's) demons will be of any help here. Put differently, even if Laplace's derﬁon '
kr;ows all the initial conditions about the system with inﬁnite accuracy, it requires, in
additiO.n, computational powérs beyond that of any Turing machine, to be able to answer
certain questions about the system's future. In computer science such power is attributed
to a thédretical device called an Oraclié.35 So, Laplacé’s demon, to be able to do its
intended job — prediét the future — occasionally needs to resort to, or to .consult with, ra
demon of a higher level in the computational hierarchy to be able to make such
predictions. Behind any éuccessful Laplace's demon necessarily there is another demon
of a higher order, without which the subordinafe demon would not be able to perform its
function. If one accepts an outcome of a thought experiment that uses Laplace’é demon,
one is inadvertently aécepting another demon lurking behind the first one; to bring the
hidiﬁg demon to light would be to cilearly see the computationall powers requiréd for the

thought experiment to succeed.

%% See Pitowsky (1996) for a similar result obtained via the detour through the generalized Bernoulli shift
and Moore's (1990, 1991) realization of the Bernoulli shift.
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(In Part HI I will critically address a recent proposal, by Tien Kieu, to utilize ;1
certain quantum adiabatic algorithm to serve as a physical realization of an Oracle,
which, allegedly, is able to look through aﬁ infinite domain Within '2.1 finite time. If
actually implernented and c‘oupled with a Laplacian demon (a Universal Turing,
machine), such a tandem would present a serious threat to traditional epistemol.ogical
and ontologiéal‘theories, thus requiring us to reconsider the age-old philosophical

debates about the limits of predictability and mathematical knowledge.)

Historic‘ally, there have been several attempts to cash out the self-referential
character of self—fulﬁlling prognoses in p_hilosophicélly significant contexts. Thus,
MacKey (1960) and ensuring discussion argued for the logical indeterminacy of a free
choice, and Popper faméusly géve his argumenté for the impossibility of historical
prediction (and ifnpossibility of an exact historical science, or historicism, with it) based
on what he calls the "Oedipus effect” — the "influence of the prediction upon the
predicted event, whethér this influence tends té bring abouf the prédicted event, or
whether it tends to prevent it" (Popper 1961, 1950). Here I present a pure logicallresult
i’n a very general context of forecasting the behaviour of mechanistic, totally computable

systems, complex enough tb allow self-fulfilling prognoses to take place.

3.5.2 Undecidability of Self-Fulfilling Prognoses

A system's "forecast" or "prediction” will be decomposed into two distinct stages or
phases: the algorithmic representation or description of a system, and the actual
computation of a prediction or actual realization of a prognosis, based on that

representation. It will bé assimed that the system under consideration is complex enough
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to support universal computation (possibly up to limited computational resources).*®
Moreover, a social or mechanical physical system here shall be perceived as a never-
ending computational process, _characterized by computable, or recursive, dynamics. One
appropriate representation or descriptio;q of a computable system is an algorithm or
program code, which, if implemented extrinsically on different computers, or
intrinsically within the same system, yields a replicé of that system. A mechénistic
system can also be considéred as a. formal system, with the index or Godel number of the
axioms serving as description“. In this sense the terms "(algorithmic) description"?
"program code", "index", or "Gédel numbers" are synonyms. Following a tradition in the
theory of finite automata, we will vinterpret such descriptions as "naturaﬂ" or "dynamical

laws" governing the system (Svozil 1993).

Let p be some sentence (or a text) in an appropriate language L. The language L
can be some formal language or a suitable chunk of some natural language such as
English. The sentence p (or a text) is a description of some event e from the class £ of all
those events we are going to put forth prognoses about. We will assume that the
language L and the sentence p are defined in such a way that having any such sgntence
we can always effectively determine whether or not it is a deséription of some event
belonging to the_ class E. In other words, we assume the class DS of all sentences of the

kind be an effectively decidable set.

3 It is still an open problem to specify whether, for a given Newtonian dynamical system, there is a
constructive embedding of a Universal Turing machine into its possible states of motion. For example, it is
often conjectured that a system as simple as the three-body classical Newtonian system with point particles
and gravity as the only force is already complex enough to be capable of universal computation (Pitowsky
1996). v : '
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» This béing so, there exists an effective one-to-one co»ding v of this set by the
natural numbers: v : N — DS, where N is the set of the natural numbers. From now on
we will identify any sentence p of DS with the code of this sentence at the coding v .
That is, ins"tead of the sentence p we will talk of a natural n.umber n such that .n =v'(p)
or vice versa.

Accordingly, let us now, at 1y, put forth a prognosis about an event taking place in

the future, at some fixed time ¢ > {5, with a natural number x as a code of a sentence

which is a description of the event.

Within this framework, any conceivable prognosis may be associated with some

~ effective mapping 4 : N — {0,1} interpreted as follows:

hx) 1 < v(x) istrue at ¢ (as seen at /)
X)=
0 «<>'v(x) is false at ¢ (as seen at ¢,).

Two things should be noted about prognoses as defined above. First, the

qualification "as seen at #" in the above definition is intended to emphasize the fact that,

at the stage of pronouncing a prognosis now, at /y, we are assumed to be at freedom as to

" the prognosis' content, i.e., we are free to assign truth values to the future prognosed

events as we wish. Whether or not some pérticu]ar event actually eventuates (will, in
fact,‘b.e true or false at /) do.es not and should not influence my choice of a particular
pfognosis at the stage of pronouncing, or putting forth; the prognosis. (It will be the
system itself with its particular_ dynamics of responses to an external influence that will
determine whether or not my prognosis can possibly come out true, i.e., be in agreement

with what the prognosis states.)
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Second, even though the lmapping h is defined for all x's to cover all possible, or
conceivable, prvogn_o‘ses that can be formulated within the model, it is important to keep
in mind that we are going to make a prognosis about .only one event (at a time). The
rationale behind this assuinption is that the very fact of putting forth a prognosis about a
particular event e; (say, about Baden-Wiirtenbergische Bank going bankrupt in three
months) (or, to be more precise, beople's believing in, or taking seriously, the prognosis)
may initiate, or lrigger, sovme changes, or processes, within the systém (say, people's
rushing to the bank'to withdraw all their savings in the view of impending bankruptcy of
the bank). Suppose these processes triggered by people's believing in the prognosis about
e)'s taking place at ¢ eventuate in the system's assuming the state s, at /. Now, if, instead
of the first prognosis, we were to put forth another prognosis, e, this would initiate, or
trigger, possibly different changes within the system, getting the system to evolve in a
different way. Suppose the processes triggered by people's believing in prognosis about
ez’$ taking place at ¢ eventuate in the system's assuming .the state: s at ¢. It is easy to
imagine, however, that, if we were to put forth the two prognoses sirﬁultaneously, the
processes triggered by people's believing in these two prognoses (i.e., abbut the
compound event ¢; & e téking place at /) could bring the system to a totally different

outcome (different from s; & s,), due to the possible interference, or mutual influence, of

~ the processes on each other.

If seen on the level of events (those present both in a formulation of a prognosis
and in the resulting state of the system), the latter possibility may presumably give rise to
non-Boolean structures of events in the system whose dynamics is characterized by

totally computable laws. Though this framework may be highly relevant when studying
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complementarity in non-classical structures, we will not pursue this line of thought here
(I will return to" this topic again in section 3.5.6 on modeling classical and quantum

measurements).

_ So, from now on we will identify the prognoses with the functions of the above

sort.

Let us designate a class of all effective mappiﬁgs from N to {0,1} as H. We recall
that a representation of a furiction, le., a syntac(t'ic expression for which there exist
interpretations of these. expressions as functions, if effective, must allow determination-
- of an algorithm (a program, or a description) computing this function. We also note that,
a‘ prognosis has been put forth, the choice of a paniculaf activity depends on the
prognosis' content.not direci‘ly, but via its descriptions (programs) that corréspond to the
'(various) ways of actually realizing, or computing, this function. The same ‘effectively
computable fﬁnction from H has a denumerable number of programs (descriptions)

realizing this function. -

Now we are ready for the formal definition of a formulation of a prognosis. Some
G6del numbering of all partial recursive functions (of one variable) has been fixed, we
- designate as ¢, a function that has its index n in this numbering. Then, by a formulation

of a prognosis h we will understand any natural number » such that for all x the

following ideﬁtity holds:
@, (x)=h(x).

It should be noted that by no means any given natural number m is a formulation

of some prognosis. In fact, the class M of all possible formulations of prognoses
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M ={neN:p,=h, h e H}

- constitutes an ineffective subset of V.

An important qualification about the formulations of a prognosis is in order.
Recall that any social or mechanical physical system within our model is perceived as a

never-ending computational process, characterized by computable, or recursive,

dynamics. We also assume that every step, or operation, in this computational process

takes a fixed, arbitrarily small but non-zero amount of time. That is to say that any

program ¢, , n€ M for, or a possible way of cdmputationally reaiizing of, our proghosis _

h necessérily takes some finite time before it halts (if it halts at all). If s0, there may exist

some programs for our prognosis made at 1y about an event taking place at ¢ that take
tiﬁe exceeeiing T = (t — to). Even though such computational pathé are perfectly
admissible on logical grounds, we are going to excludé them. from the admissible
programs which allow computatioﬁ of our prognosis within the time intervel T=(-1t)
on physical grounds. (I will discuss the so called complexity-based physical constraints

on predictability by simulation in more detail in section 3.6.3.)

Within the social system context, in addition to the complexity-based
considerations, it will also be assumed that we will not take into account those prognoses
which are written in a language that is not understood by a society — those knowingly

will not affect upon the activity choice and are not essential for our discussion.

So, we will assume that the set of S of all physically possible formulations of a.
prognosis that we are going to take into account is an effectively decidable subset of the

class M: Sc M.
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Let u(x) be a function defined for all natural numbers such that if x coincides wifh
a physically possible formulation of some prognosis (i.e., x € S), then the function value
is some certain activity a from the class 4 of all possible (at ) activities which we
eventually choose if we believe in the prognosis with the formulation X7 That. is, we

assume that u : N = B, where B is some class embracing the class 4: 4 < B.

Further, let r(x) be a function from B to N such that if #(f)=n and /3 € A,thenn
is the formulation of a prognosis which is in agreement with those events that will

happen if we carry out the activity £.

Now let us introduce a function f:N — N taking it to be a composition of the
“two above functions: f(x)=rou(x). It is obvious thatif x is a formulation from the set
S, then the value of the function f will Be a prognosis such that it will be in agreement
with the outcomes of the activity which will Ee motivated byrour believing in the
prognosis ‘with formulation x. We will work within a model where response of the
society (a mechanistic system) to prognoses is characterized by a (general) recursive

function f of the above sort.

Excluding the possibility of the prognoses which are khowingly not in agreement
with what they state, we now go on to introduce a co'ncept of a permissible in f
formulation of a prognosis. By that we will understand such and only such a natural

number # that

Po=Prom -

*” Though quite an innocent assumption for mechanistic systems (our primary focus in this section), this
would involve a serious simplification for social systems, possibly corresponding to the idea that the best
(or most perfect) action (or the strategy) always exists and is unique.
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The left-hand side of the equality *can be seen as corresp\onding to the
computational path realizing the prognosis in the case where no provocative character of
the prognosis is involved, i.e., the case in which the response function of the system is.
taken to be just-an identity function, f(x)=x. The right-hand side corresponds to the

resulting computational path actually taken by the system after all the side-processes

have been initiated, thus comprising all the provocative effects of the prognostication.

It is obvious that any natural number » satisfying the above identity is a
formulation of a prognosis which, in the given society (system) with the given response
function f; is khowingly in agreemeﬁt with what it states (i.e., a self-fulfilling prognﬁsis).
And, vice versa, any natural number » which is not a permissible in f formulation of a
prognosis, is either not a formulation of a prognosis at all, or is a formulation of such a
prognosis that, at a given response function £, is knowingly in disagreement with what if

states.

It is natural to associate the first case with the prognosis being true, and the latter
case with the prognosis being false (one may call it the Naive Theory of Future

Contingent Truth).

!

According to the Kleene theorem of recursion (Rogers 1967, p. 180), given any
(general) recursive function f there exists an effective procedure that allows to find a

natural number # (called a fixed-point value for the mapping f) such that

Pr =Py
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After a fixed-point » of the mapping has been found, the question whether the
found n is a physically possible formulation of the prognosis depends only on the set S

~ and can be solved algorithmically (S is an effectively decidable set).

However, the problem of whether ariy arbitrary natural number m is a permissible;
formulation, generally speaking, is an algorithmically undecidable problem. The reason
is that the set of all fixed points of a given recursive 'function need not itself be recursive.
Indeed, there exist such recursive functions‘ whose sets of fixed points are not even

recursively enumerable, for instance, f(x)=c, where c is a fixed natural number.

A question arises: what is a class G of all recursive functions whose sets of "ﬁ)ged
points" are recursive sets? Not giving an answer to the question (we just note that it is
not empty — it contains, for instance, the function f(x)=x) we emphasize its
importance. If the society response function belongs to the class G, then among all
permissible in f formulations of prbgnoses we can find formulations of any given
prognosis .h froﬁq H, i.e., the admissibility requirement of formulations of prognoses does
. not place any constraints dn possible content of pqssible progﬁoses. And, vice versa, if [
does not belong bto the class G, then,-in general, there is no effective way to determine |
whether a given formuiation is permissible in for not, even if some of thefn are, in 'féct, ,

permissible.

Let us put thié in a different way. In this situation it will be in general impossible
to determine in an effective way whethér the corresponding prognosis is true or false
(with "true" and "false" understood aé deﬂned‘above). Even if we restrict ourselves to
.consider fixed, known, and computable responses of a sociefy to an outer.inﬂuence, thé

corresponding sentences expressing the truth-values of the prognoses, in general, are
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effectively undecidable sentences. Not even Laplace's demon, having a?l the information
about the world now, will be of any help here; and no Universal Turing machine

predicting the future will halt before the moment when the event actually happens.

3.6 Undecidability in Physics
3.6.1 Introduction

Despite wide-spread recognition of the incompleteness results in formal logic, discovery
of some other mathematical assertions — the continuum hypothesis and the axiom of
choice — which are independént of the most common form of axiomatic set theory —
Zermelo-Fraenkel set theory, and later proofs that "almost all” trué theorems are
undecidable (Calude et al. 1994b, see also Rice’sfheorem ‘above), many mathematiciéﬁs
and physicists stillA long persisted in the view that all "real" mathematical and physical
problems are solvable. Fair enough, after seeing the way in which Godel's theofems
were originally established it is rather hard not to become sceptical about.thc‘:ir relevance
to more practicél rhatters. Emanating from the formulation of a rather innocent artificial
linguistic paradox, Gédelian sentences appear to look like mere arféfacts of a specific
theory explicitly constructed for a specific. metamathematical purpose, and, as such,
seem ‘to be only of pure theoretical interest. Far more irhpressive would be the-
demon_sfration thét some great unsolved problems which have long tortured

mathematicians and physicists' are actually undecidable.
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Godel himself did not believe that the incompleteness results had any practical or

physical significance, in particular for quantum ‘mechanics.”® However, with the rise of

. the theory of computation, recursion theory and the theory of finite automata, where

E

undecidability refers not to statements being neither provable nor refutable in a formal
system, but applies to decision problems taken as (countably) infinite sets of yes/no
questions, new and more readily interpretable sources of algorithmic undecidability

came into play, and many other sides of undecidability showed their faces.

The impact of the undecidébility résults in formal logic and mathematics on
physical sciences has not yet been fully understood.- Even though several attempts have
been made to traﬁslate mathematicdl undecidability into a physically meaningful context
(Kanter 1990, Komar 1964,.Peres and Zurek ‘1982, Moore 1990, Da Costa and Doria
1991a, 1991b), a good many issues, both technical and philosophical, remain unsettled
today (Kreisel 1974, Pour-El and Richards 1981, Calude er al. 1994a, Svozil 1993,
1995). I'n this section I will sketch the_vafidus possible ways of translating algorithfnic
undecidébility into physical language. Thé following physical applications and their

philosophical significance will be discussed below.

(1) The general problem of forecasting the behaviour of a mechanistic, i.e., t6tally
computable, system, and inferring the reéursive‘ laws governing a mechanical
system, both in extrinsic and intrinsic.contexts. The absolute knowledge of the

“dynamical laws governing the evolution of the system will be assumed to be

given here by' some external "oracle". The general problem of forecast is linked

3% A rather anecdotal attempt to discuss a connection between Gddel's incompleteness theorem and the
Heisenberg uncertainty principle that took place at the Institute for Advanced Study in Princeton in 1979
between Kurt Godel and John Archibald Wheeler is recorded in Svozil (1993, p. 112) and Bernstein (1991,
pp. 140-141). ' ‘
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(2)

3)

4

to the recursive unsolvability of the- halting 'problém. The impossibility of
inferring the recursive laws governing the system (a mechanistic anaiogue of
the problem of induction) is linked to the more general problem of identifying
and learning a language and is constrained by the recursive undecidability of the

rule inference problem, also reducible to the halting problem.

The problem of predicting the behaviour of weakly chaotic systems. Such

“systems are of special interest to physicists and philosophers of physics since,

with respect to computafional resources, they appear to be the fdstest/thimal
simulations of themselves, in that it is impossible to simulate a chaotic systerr;
with fewer than its own resources.’ This feature gives rise to a complex of in
principle complexity-based constraints on the workings of such systems. The
kind of undecidability at play here can be shown to the equivalent to the
recursive undecidability of the halting problem, e.g., through Moore's proposal
of phy;ical imblemenlétion of the Bernoulli sh_ift — the simplest example of a

(weakly) chaotic system. -

The problem of the connection of instances of randomicity in physics with the
undecidable features of mechanistic systems. As a radical 'metaphysical thesis it
states that "there is no randomness in physfcs but a constant >confusi0n in
terminology between randomness and undecidability. God does not play dice"

(Svozil 1993).

L

The problem of modeling classical (and quantum) measurements. The kind of

'undeci_dability which ‘is in play here is due to so called computational

complementarity which usually appears in complementarity games in the theory
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of finite automata. A typical physical measurement and perception processes
may exhib‘it features which résemble computational complementarity and
diagonalization: while trying to read off the "true" value of an observable of a
system, a measurement interacts with the system and thus inevitably changes its
state. It is true both for quantum and classicél systems with the major difference
being that quantum theory postulates a lower bound on the vtransfer of actionﬁ by
Planck's constant 4. Oné may even speculate that quantum theory is the only
theory so far that implicitly émploys this kind of complementarity (Svozil

1993).

3.6.2 The Problem of Forecast of a Mechanistic System

In trying to predict the future, it‘ has been a long tradition to imagine a being, or
conceptual computational device — a demon — that would be able to do so given the
knowledge of the dynamical laws governing‘ the system and the system's present
qonditions. A Laplacian demon, within this framework, would be a very powerful

computational device (a Universal Turing machine) with potentially unlimited

‘ computational resources (time and space) capéble of measuring the initial conditions of

the given system (or even the .whole world) with arbitrary accuracy (Pitowsky 1996).
Yet, apart from many difficulties which are mainly practical in-character (e.g., the

ability to measure the initial conditions with arbitrary, or "potentially infinite", accuracy)

(Earman 1986, Feinberg er al. 1992), the ability to predict the future is hampered by

various in principle computational constraints, many of which can be traced to the

general recursive undecidability of the halting problem, and are, in fact, equivalent to the
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halting problem in the sense that if (and only if) one could solve-the problem in question,

one could solve the halting problem.

One of the importgnt computational limitations constraining our ability to predict
th-e future deals with the general undecidability of the problem of inferring the recursive
dynamical "laws"' governing the system, or, more precisely, their algorithmic
descriptions. Mechanistic systemé here are treated as "black boxes" on which
experiments are allowed only via some kind of input/output terminal. (BS/ deﬁnition; for
systems which are not meéhanistic, no reasonable concept of a "recur_sive law” can be

given, though probabilistic laws may still apply.)

First, we can consider a computational model of the system from an extrinsic
perspective, with an algorithm representing a computabie system implemented
extrinsically on different computers. An idealized external iexperirnenter (a demon)
examines arbitrarily many copies of the system and, based on these observations,
attempts .to construct an algorithmic description of the system. As a result of the
algorithmic undecidability of the rule inference problem this is in general impossible.
There exists no systematic, i.e., effectively computable, way of deriving an algorithmic
description of the system's laws from the input/output analysis of an arbitrary

mechanistic system (Svozil 1993).

As no effective procedure is in general available for identifying the recursive laws
of a mechanistic system, these laws can be thought of as given by some (extrinsic to the
system) oracle. Such an oracle will be assumed to provide an algorithm which computes

in an effective way enumeration of the system's evolution. Still, in the latter situation,

134



‘some (physically meaningful) propositions about the future of a totally computable

system will be undecidable.

The simplest class of such propositions involves questions pertaining to all the
future‘(as opposed to questions about the state of the system at any specific time).
Examples of such quéstions are: "Is the solar system stdble‘?", "Is the motion of a given
system, in a known_. initial state, periodic?", "Is this particle ever going to reach this
region of space?" These are typical and meaningful questions asked by physicists. What
makes them insolvable is that all such questions involve quantification over an infinite
domain of time instants. Thus, the question on stability of a mechanical system. can be
paraphrased as follows: "Does there exist some distance D such that for all times t the
maximal distance between the particles co,nstituting the system does not exceed D?" The
‘qﬁestion on periodicity of a system of n mechanical particles is: "Does there exist some

time T such that for all times t; the functions describing the coordinates of the particles

of the system satisfy the following equality:
x(+T)y=x,(t),forall i=1,2,..,n?

Indeed, according to Rice's theorem — a generalization of the Turing
undecidability result — almost all (ie., .all except for the set of medsure zero) conceivable
questiéns about the unbounded future referring to the state of a particle at some
unspecified time turn out to be computationally insolvable — no Universal Turing -
machine can decide them i‘n any finite time. Therefore, to answer these questions, a
Laplacian Demon needs powers that exceed those éf any conceivable (classical)
algorithm. In other words, it needs to consult an oracle — a conceptual computational

device capable of lookihg through an infinite domain within finite time (Pitowsky 1996).
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Whereas the previoﬁs examples involved reference to the state of the systém at
some imspeciﬁed time, the undecidability of the halting problem, as viewed from
extrinsic perspective, has implications for ﬁnite—t;’me predictions as well. As an examp}e,
consider predicting weather on a certain day in future on the basis of present conditions.‘
There exist computer programs that can quite reliably calculate the weather on the day
after tomorrow. However, they occasionally take more than 48 hours to run, in which
case we would be hard pressed to call such a computation a prediction (Pitowsky 1996).
This is the class of so called com’plexity- constraints on finite-time piedictions by
simulation, which arise naturally in investigating weakly chaotic systems. We will return

to this issue again in the next section.

While in the extrinsic setup the experimenter (a demon) is allowed to carry out a
complete simulation of the observed system without alteriﬁg the original systqm, this is
not necessarily so in the ;:ase of the intrinsic setup. There, any model simulation of the
system is necessarily part of that system. As it can be expected, in such a setup the

matters with predictability can only worsen.

Following Svozil (1993), the question of a description within the same system or

process can be related to the question of whether an experimenter can possess an

intrinsic "description” or "blueprint" of itself, thusllinking the issue to the possibility of
self-reproduction. Here, as shown by von Neumann (1966), (at least) two senses of the
question should be distinguished, depending on the way in which self-reproduction is

actually realized.

In the so called passive mode of self-reproduction, the self-reproducing system

contains within itself a passive description of itself and reads this description in such a
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way that the description cannot interfere with the system's operations (von Neumann
1966, pp. 125-126). It appears that it is possible to write a’program which includes its
own description and, through this description, is able to reproduce itself. (The Kleene
fixed point theorem can be interpreted as a proof of thé principle existence of such
"viruses".) John Von Neumann, a Hungarian-bom American mathematician and
physicisté, in his Theory of Self-Reproducing Automata was oﬁe ‘of the first to propose a
formal cellular automaton model of a universal self-reproducing automaton. Since then
the concept of self-replicating méchihes, or von Neumann machines®, has been
rigorously studied in various contexts, one of the rhoét intriguing of them being space
exploration.. Thé idea was to send a self-replicating spacecraft (a von Neumann probe) to -
a neighbouring star-system, where it would seek out raw materials .extract‘ed from
astezoids, moons, gas giants, etc., to create- exact réplicas of itself. These replicas would
then be sent out to other star systems, repeating the process in an exponentially

. . 4
. Increasing pattern. 0

While, 1n {_he passive mode, the "blueprint program" (interpretable as the
"algorithmic description” of the system in terms of "laws" and "system paraineters") was .
assumed to be given by some sort of an oracle, and so defined passi.vely, i.e., without
self—examination, in the active mode, the self—repr.oducving system examines itself and

thereby constructs a déscription of itself (von Neumann 1966, p. 126).

% Von Neumann himself called them "Universal Assemblers".

0 A number of interesting arguments against the existence of extraterrestrial intelligence have been
- produced that would account for the Fermi paradox — the question of why, given the moderate rate of
replication of von Neumann machines and the history of the Universe, we haven't already encountered
extraterrestrial intelligence if it is common throughout the universe. See, for example, Tipler (1981), and
Sagan and Newman's (1985) response to him.
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It cén be shown that if a self-reproducing machine is specified as a deyice
conéisting of elements which can be analysed, identified, and, after the analysis, resiored
to their previous state, then Sel]’—repréduclion by self-inspection can indeed be made. The
machine, for instance, can be divided into two distinct parts with each part containing, in
one form or anothéf, an analysing and a constructing element. Initially, the first part
analyses the secoﬁd, which is taken to be passiye, and constructs a copy of it. Then the
first part activates thev active mode of the second part, and becomes passive. Finally, the
second part analyses the first pért and constructs a copy of it. In this way, the machine
examines itself énd obtains a complete 'descr_iption of its own original constituent

structure (Laing 1977).

However, for a more general class of automata, such strategies of selff
reproduction by self-inspection are notvavailable. One of the situations where Laing's
strategy fails is when some parts of the automaton feature so called computational
complementarity — the‘ feature that bprevents a "diagnostic" act of measuring some
parameters of (part of) the machine from being "non-destructive" — any atfempt to prdbe
the sys‘t.em necessarily initiates some changes within the system, irreparably destroying
the original cdpy. Though this feafure appearsvnaturally in the context of the qﬁantum
theory, some classical automata can also exhibit this feature.*' I will say more about this

in the section 3.6.5.

- 3.6.3 Weakly Chaotic Systems and Prediction by Simulation

Given the recursive "laws" governing a mechanistic system's evolution, a' universal

Turing machine can simulate the system by encoding the system as a program and

4 See, e.g., Moore's "Gedanken-Experiments on Sequential Machines"”, in Shannon and McCarthy (1956).
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performing the computation of the system's evolution on-a step-by-step bésis. If the
dynamical laws are computable, it is always possible to simulate a mechanistic physical
system completely and in finite time in the sense that any entity of the systerﬁ can b‘e‘
brought into one-to-one correspondence with its”computational simulation. However,
due to the recﬁrsive undecidability of the halting problem and undecidability of the
maximum halting time problem, there exist systems for which no effective computation
can predict its behaviour in 'any.reasonable time. For such systems there are no
"computational shortcuts", and no optimizatioﬁ or "speed-up" with respect to time which
would allow one to talk about prediction is possible. This is the effect of so called
"deterministic chaos" or "chaos theory" which reéently'drew a lot of attention from a

wide range of disciplines.

The first-ever rigorous examination of deterministic chaotic effects is (arguably)
attributed to Jaéques Hadamard who, in 1898, did the first study of the behaviour of a
type of dynamical billiards ("Hadamard's billiards"). This system considers a free
particle gliding alo'ng.a frictionless surface with coﬁstant negative curvature — the
- simplest compact Riemann surface resembling that of a donut with two holes. Hadamard
was able to show that all trajectories of ‘this system diverge exponentially from one
another as one tries to calculate the system's future state (Hadamard 1898, see also

Steiner 1994).

At around the same time, Henri Poincaré (1899), while studying the three-body
problem, found that there exist certain bounded non-periodic orbits which never
approach a fixed point. Though the first version of Poincaré's results contained a serious

error (Diacu and Holmes 1996), the final published version contained many importaht
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ideas which consequently led to the development of the theory of chaos. Later, this and
similar phenomena drew special attention of mathematicians and physicists under the

name of ergodic theory (see, e.g., Arnold and Avez 1968, Mackey 1974, Mafié 1987).

Another example of such deterministic chaotic system that we discussed earlier is

" forecasting the weather. Edward Lorenz, an American mathematician and meteorologist,

who studied weather foreéasting and developed weather simulation prograrhs, was the
first to recognize the chaotic nature of the phenomenon. As the story goes, in 1961, he
ran his weather simulation program using a Royal McBee LGP-30 computer. Trying to
see a sequence of data again and to save time, he started the simulation in the middle of-
its course. To do so, he wanted to enter a printout of the data which corresponded to the
conditions in the middle of his simulation which he haci obtained last time. To his
surprise, the weather that the machine began to predict was totally different froﬁ the
weather calculated before. ‘Lorenz tracked this down to the computer printout. The
printout rounded variables off to a 3-digit number, but the computer worked with 6-digit
numbers. This difference was t’iny and th¢ consensus at the time would have been that it
should have had practically no effect. However, Lorenz had found that smail change.s in

initial conditions produced large changes in the long-term outcome thus making a long-

term accurate prediction of weather practically impossible.

These phenomena can be seen as particular examples of a more general class of
systems, usually characterized by non-linear dynamics and extreme sensitivity of a
system's evolution to tiny disturbances to the initial conditions.* Such systems may

exhibit a special form of physical behaviour that renders prediction difficult or

% 1t was Lorenz who coined the terms "butterfly effect” and "attractor”..
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practically impossible. For ;uch systems, the required degree of accuracy with which one
has to specify, or measure, the initial conditions and velocities becomes very large (rflore
precisely, the rate of divérgence of system trajectories in phase space, typically stated in
terms of Kolmogorov entropy or Lyapunov exponents, grows exponentially). It has even
been argued that a proper definition of the chaotic systems must be put in terms of their
inherent unpredictability and unc;)mputability (Stone 1989, Ford 1981, 1983, 1988,

1989, see also Batterman 1993, Batterman and White 1996).

The non-linear dynamics of physical systems in its extreme form of deterministic
chaos theory has given a further kick to physical "irrationality”". The success of chaos
: theory has led to questioning the "runaway" reductionism and predictability that have
chér-acterized science ever since the time of Newton, gnd on which the qhintessential
linear quantum mechanics is most firmly based. The fact that strongly nonlihear systems
can Behave fundamentally differently from systems in which nonlinearities are
introauced as perturbations makes such systems appear every bit as counterintuitivq and
perplexing as can quantum mechanics. It appears that physi_cé] chaotic systems — even
those with totally computable descriptions (i.e., systems whose evolution and essential
parameters are computable on a step-by-step basis) — feature a form of cofnplexity-based
undecidabilit}'/ that constrains our ability to predict their behaviour by running .any
simulation. In the\scientiﬁc ‘literature this form of undecidability in physics is .often
referred to as "weak physical chaos" to distinguish it from stronger fofms of éhaos which
exhibit truly random behaviour (e.g., due to quantum fluctuations in the initial

conditions).
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In a series of papers, Christopher Moore (1990, 1991) proposed a model of a fully

. fledged universal Turing machine (with an infinite tapé) realized as a simple finite

physical system. Urilike' other proposals where the computer size changes the metric
properties of space-time (Pitowsky 1990, Earman and Norton 1993), this model, théugh
using arbitrary close spatial points in computation, édds no special difficulty apart from
the one which already exists — the transmission of arbitrary large number of bits in a

small time interval (the "blue shift") (Pitowsky 1996). Moore's construction is a physical

_implementation of the simplest weakly chaotic system, named the Bernoulli shift, and it

~ provides an important link between the general undecidability results for Tufing

machines and the workings of (weakly) chaotic syStemS. This construction, although
assuming the validity of Newtonian mechanics, is also consistent with the special and

general theories of relativity.

The Bernoulli shift map is a numeric transformation D :[0,1] — [0, 1.] defined by

the following equation:

2%, if 0<x<1/2

D(x)= .
2x -1, 1f 1/2<x <1

or, equivalently,
D(x)=2xmodl.

The graphical representatidn of kthe map looks like:
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Fig. 23 The Bernoulli Shift Map.

The Bernoulli shift can be seen as an iterative system which starts with an initial
parameter (the "seed" number), transforms this parafneter, and then uses this transformed

parameter for the input of the next iteration according to the formula:

x,,, =2x, modl.

~

[t can be shown that fhis system exhibits extreme senéitivity to initial conditions: if
we initially start with two seed nurﬁbers separated by a tiny différence,)the iterative
application of the transformation makes the numbers diverge by ébout 0.5 (i.e., tQ fall .on
opposite sides of x = 0.5) very qﬁickly, with the ra}tio of the final number difference to

initial number difference growing exponentially with the number of iterations.

If the numbers appearing in the transformation are taken in their binary form, a

seed number can be represented as follows:
0.a,a,a,a;a,q...,

where the value of the a,, — 0 < < 0, is either zero or one.
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Multiplication by 2 in binary simply shifts all the numbers in the sequence to the

left such that we get
a,.a, a, a, a, ds....

Taking the modulus drops the integer part, so we get

More generally, the Bernoulli shift map can be defined as a transformation on an

abstract sequence space of all doubly infinite sequences of zeros and ones:
. A50,04,0,0_.0,0, 0,04, ds....

The symbolic dynamics defined on this set of symbols runs on discrete time units
(integers). After each time unit the system undergoes a shift to the left. If a, is the
number in the ith. position at time ¢, then, at time 7+1, the number in that position is
o(a), =a,, .. The map o is called the Bernoulli shift. The sequence before and after its

shift thus looks like:
5 ALy 03 0, Ay . g0y Oy @y Ay s
@, Q50,0 0,.0,0,0,0, dg dg....

The Bernoulli shift is a particularly simple example of a paradigmatic chaotic
system that can be easily generalized to include more complex cases: If we use binary
representation, it can be shown that, for suf‘ﬁciently large k's, the outcomes of the Ath and

the consecutive iterations from any given (irrational) seed number happen to be greater

or less than ¥4 as randomly as a sequence of heads and tails in a fair coin toss (e.g., no
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matter iow long a sequence of zer_os'and ones you measure, you cannot predict whether
the next answer will be zero or one). Though the process is completely deterministic, the
output of consecutive applications of the Bernoulli shift very quickly becomes

indistinguishable from mere noise.*?

Moore (1990, 1991) showgd how this model (in its more general form) éan be
physically (ideally) realized using a series of (ideal) parabolic and linear mirrors, and a
beam of light moving between the mirrors. Just like its mathematical counterpart, the
physical system ré:alizing the Bernoulli shift is extremely sensitive to initial conditions -
the initial positioning of a light particle before it starts bouncing back and forth between
the mirrors: in order to predict the light particle position with accuracy of 2 units, the
experimenter (the demon) must fneésure the initial conditions with accuracy of PR ),_
where k+1 is the number of rounds the light particl¢ undergoes. The ratio of the final

error to initial error is 27, thus making it grow exponentially with time as measured by

the number of rounds k.

Moore then demonstrated how any generalized Bernoulli shift can be put into one-
to-one correspondence with some Turing machine (with a doubly infinite tape) which
represents this shift, thus allowing transferral of the undecidability results from the usual

theory of computation into the language of this system.44

Thus, the undecidability of the halting problem, translated into the physical
language of Moore's construction, says that there exists no algorithm which would

predict whether the light particle ever ‘enters the specific region in space which

* For more details, see, e.g., Schuster (1984).
“ For more details refer to Moore (1990, 1991) and Pitowsky (1996).
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corresponds to the haiting state. This claim is valid'even if we know the exact initial
conditions with unbounded or infinite accuracy.. Therefore, to answer the question: "Is
the light particle ever going to reach this région of space?", Laplace's demon needs
computational powérs tﬁat exceed those of any possible (classical) algorithm. In other

words, it needs to consult an oracle.

Finally, suppose that every step in this Universal Turing machine operation takes a
fixed, arbitrarily small but non-zero amount of time. Suppose further that some demon
tries to predict the state of Moore's system at time ¢ = 48 hours. If Moore's cdnstruction
simulates a very complex T/uring machine there is no guarantée that the demon will
accomplish the task on time — any demon's machine may be slower that the system itself.
Indeed, a number of mathematical results, known as "speed-up" theorems (e.g., Enderton
1977, Pitowsky 2002) guarantee that the demon will fail occasionélly in some such

finite-time predictions. ' .

This feature of weakly chaotic systems to be the fastest/optimal simulations of

themselves to the effect that no computational "speed-up" is in general possible, can be

-

< .

illustrated with the following excerpt from Lewis Carroll's Sylvie and Bruno Concluded,
(Chapter X1): _

"We actually made a map of the country, on the scale of a mile to the mile!"

"Have you used it much?" [ enquired.

"It has never been spread out, yet," said Mein Herr: "the farmers objected:

they said it would cover the whole country, and shut out the sunlight! So we
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now use the country itself, as its own map, and I assure you it does nearly as

well "%

The fact that iﬁ general it is inipossible to simulate a chaotic system with fewer
than ‘its own  resources raises an interesting question whether chaos in physics
corresponds tb the idea of randomness in mathematics, and, if so, whether randomness in
physics (primarily in the quantum theory) merely reflects some undecidable features -of
mechanistic systems which are presently are not fully understood. We will return to this

issue in the following sections.

3.6.4 Undecidability and Randomness

Another aspect of undecidability is its connection with the idea of randomicity. This is

)

another topic that has recently produced a lot of ado among mathematicians, physicists

and philosophers of science, of which only a brief discussion is possible here.

Earman (1986, pp. 137-138) distinguishes two basic types of randomness which

he calls, correspondingly, process and product randomness. Processes involving genuine’

chancy events as, for example, in the quantum theory, belong to the first category (also

called genesis randomness). Processes involving outputs which lack any discernable
pattern or which are 'out of shape' in one sense or another, exhibit product randomness
(also called performance randomness). Surely, these two notions-of randomness do not,

in general, coincide. On the one hand, a sequence that is random in the product sense

> The ironic implication, of course, is that in truth it does almost as badly. A useful representation must be
manageable, and this requires that it be incomplete and inaccurate. This situation is closely linked with the
question of how the contents of a map — a good map, a simplified representation — are related to the real
world. This problem (the validation problem) arises for models as well as for simulations, defined by

"Hartmann (2005b) as processes in which a model imitates the time evolution of a real system (Parker

2006).

147




ﬁeed not necessarily be the output of a genuinely random process — any "random number
generafors" in (non-stochastic) compufers or calculators producing "randomly looking"
sequences of numbers are immediate examples that come to mind. On the other hand, ‘
~ genuinely stochastic pro‘cesses may occasionally produce highly ordered sequences. It is
- possible (though very improbable), for example, that if we flip a (fair) coin 1,000 times,

the coin turns heads all 1,000 times (Frigg 2005).

As it is the case with simplicity, it may nevertheless be very difficult to cash out

~ our intuitions of what exactly the "lack of discernable pattern or rule" amounts to. Below

is a very common way to define it rigorously.
Consider the following two sequences of numbers:
1) {7,12,5,35,22,27,3, ...} and
2){1,2,4,8,16,32,64, ...},

or their binary reéresentations (to be read by computers):
3) {111, 1100', 101, 106_0{11., 10100, 11011, 11, ...} and
4) {1, 10, 100, 1000, 10000, 100000, ...}.

To which extent and on which grounds can we say that the second sequence

contains an easily discernable pattern while the first one lacks it (is random)?

-

“To answer this question, we may consider the length of the shortest computer
program that can generate' each sequence. This length, in bits, éan ‘be takén to
characterize the complexity of the sequence. If a sequence lacks any discernable pattern
and contains pd special rule for generating one entry from another, the shortest program

can be nothing less than the sequence itself. If, on the other hand, the sequence exhibits
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~some pattern or order, then the program generating this sequence can be much shorter
than the original sequence. In case of the second sequence the program will just list the
powers of 2 (in decimal representation), or consecutively add one more "zero" to one

"one" on the very left (in binary representation).

?

Correspondingly, we can define a sequence to be random if its complexity is equal
to the length of the sequence itself. Mofe formally, given a universal Turing machine,
the algorithmic complexity of a sequence Okf symbols ajay. @, is the length of the
shortest program we have to provide in order to get this machine to reprodgce (compute)
this sequence. A sequence is theﬁ deﬁnec_l as random if the shortest program of this sort
has the length of the sequence itself (i.e., the program basically says. 'print a10z... an'). In

this case it requires the maximum of information to specify the sequence (Chaitin 1987).

Uéing this notion of algorithmic complexity of a sequence of numbers, we can
.demonstrate how randomness as defined above is connected with Godel's theorems.
Consider a computer capable of working with the. arithmetical symbols and Opérétions; »
Suppose we give it the following instruction: "Print out a sequence whose complexity
can be proved to exceed that of this program." Clearly, the com;)uter cannot respond.
Any sequence it generates must, by definition, have a complexity less than that of itself.
A computer can only produce a numerical sequence that is less complex than its own
program. It shows that there must exist undecidable statements. Having picked a
particular sequence — call it R — whose complexity exceeds that of the computer system,

the question "Is R a random sequence?" turns out to be undecidable for this computer

system. The complexities of the statements "R is random" and "R is not random" are
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both too great for them to be translated by the computer system. Neither can be proven |

nor disproved.’

Among other things, this fesult places restrictions on the scop-e of any approach to
the laws of nature on the basis of simplicity alone. The scientific analogue df the
formalist prbgram;ne_ in mathematics is the idea that, giveril any sequence of
observations, we try to.describe them by some mathématical law. Surely, there may be
all sorts of possible laws capable of generating this particular data sequence — some
simple, some very complicated and ”unﬁatural”. Scientists typically prefer to have the
laws with t};e lowest complexity in the above defined sense that wéuld most succinctly -
encode the informétion into a simple algorithm (Occam's razor). Yet, this approach will
never allow us to prove that' a particular law we have formulated is a complete
description of nature — there will always exist undecidable statements framed in this

language that can never be proven to be the most economical coding of the facts (Barrow

1990).

-

’

Another analogy that can be brought to the surface by these considerations is that
between the intuitionist philosophy of mathematics and certain epistemic notions of
determinism, as well as the connection of the latter with certain ontological views of

determinism.

Intuitionists believe that the Platonic vision of the truth or-.falsity of
‘(mathematical) statements as being independent of our knowledge of a procedure or
algorithm which would decide the matter is indefensible. The only coherent concept of
truth in mathematics, they argue; is ultimately epistemic, identifying truth with

- provability. While intuitionists typically do not require an actual human execution of a
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cdmplete proof (as long as there is an algorithm (a demon) which can, in principle, do

it), a more extreme position, finitism, disagrees even about this contention.

When it comes to determinism, it has been a long tradition to draw the analogous

line between the ontological and epistemological notions of determinism.

The ontological view of determinism takes the trﬁth values of the statements about
the future states of a physical system to be definite and (uniquely) determined by the
state of the system now. These truth values reflect the feature of the universe to develop
in a unique manner that is independent of our knowledge of it. The similarity. of the
onfological view of determinism with mafhemaﬁcal Platénism is clear: the Platonist
takes the set of all natural nﬁmbers as an object ‘with. definite properties while the
ontological view of determinism takes the set of all future states of the universe to be an

object with definite properties (Pitowsky 1996).

Epistemic versions of determinism, on the other hand, tend t>0 conflate
determinism with predictability in principle — a physical system is deterministic just in
case sbmeone (prefefably a demon with a/reasonable,extension of human.capabilities)
can predict the future state of the system from its present state.*® The only thing left to be
specified is what exactly constitutes this "reasonable extension of human capabili‘;iés".
Although the notions of proof and construction are usually left by intuitionists to be
infinitely extendable, in practice they identify constructive procedures with algorithmibc
procedures tcompatible with intuitionistic iﬁference rules). In words of Pitowsky (1996),

the intuitionistic super-mathematician is an owner of a universal Turing machine.

 See, e.g., Earman (1986) attributing this view to Laplace.
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Earman (1986) believes that any attempt to predicate determinism on
predictability is a "confused and confusing brew" and recommends "that the notion of
prediction with all its epistemological connotations be dropped. altogether" from.t_he
definition of determinism, thus isolating the Or;tological issue regardless of whether or

not any human agent or demon can know it.

However, if an epistemic view of determinism is the physical ;ounterpart to
intuitionism, then, from an intuitionistic (or a Laplacian) point of view, Earman's
proposition contains circularity: the intuitionist chélleng_es the idea of "independent
existence" in mathematics 'exact.ly on the grounds that unless an existence claim s
attached to a definite procedure té verify it, it is not clear what its reference is. Earman
challenges the intuitionists with hopelessly confusing ontology and epistemology, thus
assuming, without ‘much of an argument, that one can make sense of the former
independently of the latter. Yet, this is precisely what the intuitionist denies. In addition,
since the physically significant mathematical structures employed in physics can be
shown to be rich enough to allow a translation of many "negative" (in the sense of
undecidability) results of the number theory into meaningful physical propositions, such
a physical proposition can be taken as carrying a definite truth value just in case its

mathematical counterpart does (Pitowsky 1996).

Retufning to the idea of randomicity aé_ linked to a computing system's exhausting
the available computational resources, there are additional .considerations in support of
Pitowsky's position. As modern science takes it, the fundamental physical laws are
| mathematical in nature. Any description, or prediction, of the behaviour of a physical

system is carried out by application of mathematical operations or transfoermations.
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Many physicists tacitly believe that these mathematical operations or transformations are
implemented in some abstract mathematical spaces '.'inhabiti'ng" the perfect immaterial
Platonic realm. An alternative approach, represented most notably by John Archibald
Wheeler (e.g., 1983, 1986) and Ralf Landauer (1967,~19S6) stresses that reel calculations
involve real physical‘ objects, such as computers, which are themselves are subject to
physical limitations, and take place within the real physical universe wifh its specific
available resources. Just as any computer can be pereeived as a physical system, any
physical system may be perceived ae a Computétional process. From this per_spective, it
is reasonable to investigate physical systems with concepts and methods developed by
the computer science. This, in turn, opens the possibility of investigating various in
principle computational constraints on the operations of physical laws. Landauer argues
that these constraints are not merely a practical inconvenience, but constitute the very

nature of physical law (Landauer 1967).

Recall Laplace's eharacterization of his calculating demon'as an intellect "vést
enough to submit the data to analysis". A demon living in an idealized Platonic world
could indeed afford itself to be "vast enough". If, ho;wever, we adopt.the Landauer-
Wheeler view on the nature of physical law, any such demon would have to manage to
do with the computational resources available in the real universe. Something that coulei

not be calculated, even in principle, .within the real universe cannot be regarded as a

legitimate application of physical law. A Landauer's demon associated with recent

cosmological models which place fundamental upp’er bounds on the informational

content and information processing rate would necessarily inherit these limitations, and




thus will feature fundamental unpredictability of complex physical systems (Davies

1994).47

Landauer's demon should be distinguished from Popper's demon. Although Popper
(1982) requires that Laplace's demon should itself be part of the physical universe and
bouﬁd by the laws of nature, he seems to see his demon as playing the role of a human
, super—mathematician or super-scientist, not specifying the roles and place of the physical
laws within this universe. In particular, Popper's demon "must not be assumed to
ascerlain initial conditions with absolute mathematical precision" thus depriving. it of
his demonic nature, and leaving it only with the title (Pitowsky 1996). In this respect,
Popper's view of (epistemic) de%erminism would rather be analogous to mathematical
finitism, while Landauer's view would entangle the episvt‘emic and ontological aspects of
determinism on a more fundamental level. With the recent outrageous claims of Tien
Kieu (the focus of Part III) that a concept of an oracle (a conceptual device capable of
looking through an infinite domain within a finite time) can be actually physwally
implemented by using the resources of the quantum theory, the whole issue promises to
be given a further non-frivial kick. Yet, as 1 argue in Part III, Kieu's claims are
unfounded, and the quantum ad'iabatic hypercorﬁputer fails  to perform

hypercdmputation.

T paul C. W. Davies (1994) gives a numerical value of the upper bound on predictability: the total number
of bits available for computation within the known universe is of order 107120; the estimated threshold
complexity of a physical system which would exhaust this computational resource is easily broken by any
biological structure — a chain of about 60-90 aminoacids of 20 varieties (a peptide) allows for.more three-
dimensional conformations leading to different molecular structures then 10°120. Davies uses this result to
argue that even simple biological systems do break this computational resource available to all laws of
nature to work with ("causal openness of a system exceeding a certain threshold of complexity"), thus
leaving a room for some emergent properties and laws at a higher level. '
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3.6.5 Modieling Classical and Quantum Measurements

In rﬁodeling classical or quantum measurements, the feature of so called
complementarity may enter the scene and should be taken into account. While trying to
read off the "true" value of an observable of a system, a measurement necessarily
interacts with the system and thus inevitably changes its state. As an example, we may
imagine a dérk room with a ping-pong fball moving in it. Assume now that an )
experimenter, who is not e;llowed to "tﬁrn on the_ligﬁt"; wants to find (measure) its
position énd velocity. Not being able to see, the experimenter, in order to dQ s0, may try
touching the ball. However, as the experimenter touches the ball, it changes its original
position and velocity. This situatioﬁ is typical both for quantum and classicai systems
with the major difference being that quantum theory postulates a lower bound on the

transfer of action by Planck's constant h (Svozil 1993).

\
If successive measurements of some features of a (mechanistic) system "disturb"

each other through some kind of "interaction" of the system with the measurin.g device,
i.e., the measufemgant of one obsery\able makes it impossible to carry out the successive
measuremeﬁt of another observable, then we will say that this system exhibits
complementarity. If a system features complementarity, the corresponding calculué' of
the propositions reflecting the experimental results will not in general be distributive and
Boolean. The reason why classical physics does ﬁot involve any non-classical
propositioﬁal calculus is that the "disturbancés" indubed by the measurement process can

be made arbitrarily small, compensated, and thus eliminated from the overall account-

v

(Svozil 1986). -
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Returning to the self-fulfilling prognosis undecidability result, a similar logical
proyocéti\}e prognosis framework can be attempted to. be applied to the setting of
quaﬁtum measurements. In this regard I see a novel two-state-vector formalism of
quantum mechanics, which h_as’been particularly helpfﬁl for the analysis of experiments
on pre- and post-selected ensembles (Aharonov: and'Vaidmgn 2001, Aharonov and
Rohirlich 2005) as being a suitable setting for such an attempt. In this‘formalism, an
experimeﬁtal measurement can be thought of playing the rdle of a> prognosis which |
initiates the changes within the system eventually guiding the observer to the predicted
or expected outcome. I believe the self-fulfilling prognosis logical framework can be
extended to help us understand b'ettér the nature of complementarity and elucidate the
ways in which certain iﬁformation about such systems (gets lost, given the non-Boolean

algebraic structures of these models (e.g., Pitowsky 1982, 1989, Demopoulos 2003).
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PART IlI

Quantum Hypercomputation and Oracle Machines
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.4.1 Introduction

In Part III of the thesis I critically address a recent p?oposal, by the theoretipal physici.st.
Tien Kieu, to utilize a novel qQuantum adiabatic evolution algorithm to break through the
Turing limit and perform hypercomputation. If true, such device could serve as a
physical ‘realization of an Qracle — a computational device capable of looking through
an infinite domgin within a finite time. AIf actually implemented and coupled with a
Universal Turing machine, such a tandem would present a serious threat to traditional
' epistemological e\md ontological vtheories, requiring ﬁs to reconsi\der the age-old
philosophiéal debates about_the limits of predictability and mathematical knowledge. 1
arglie that Kieu's claims are unfounded, and the quantum adiabatic "hypercémputer" fails
to perform Hypercomp_utation. Though quantum computers may indeed require
rédescription of the iraditional problem coMplexity space, so far they retain the classical
(recursion-theoretic) notion of computability. The delineation between complexity ar;d
computability may also be instructive in light of many recent remarks in the academic as
well as in the popule{r literature in which quantufn computers are depicted as all-

powerful machines (Llyod 1995, Preskill 1998).%

In section 4.2 1 présent a quantum algorithm that works on the principle of
quantum adiabatic evolution. Originally, this algorithm was introduced by a group of
physicists from the MIT to solve satisfiability problem in polynomial time. I also survey

the currently known results regarding the quantum complexity classes and briefly

*® The arguments in this part are the result of the collaborative work with Amit Hagar (Hagar and Korolev
2006, 2007a and 2007b).. ' ‘

158




discuss the possible resources responsible for the superiority of quantum computers over

their classical counterparts.

In section 4;3, after reviewing the relevant theory of oracles, oracle machines;
relative recursiveness and a hierarchy of degrees of unsolvability, [ present the quantum
adiabatic evolution "hypercorr‘lpu.ter"‘ designed to solvAe a paradigmatically unsolvable
problem — Hilbert's Tenth problem. I then discﬁss the weaknesses of the proposal,
pointing to its failure to perform the purported hypercomputation. Irrespectively of
whether or not the class of physically realizable hypercomputers is non-empty, Kieu's

quantum adiabatic algorithm is not the member of this distinguished club.

4.2 Quantum Adiabatic Computation

- 4.2.1 Introduction

Quantum computing brings together ideas from classical information theory, computer
science, and quantum physics. In the past two decades it has evolved from a visionary
idea (Feynman 1982) into one of the most lively and fashiona\ble research areas (Nielsen
and Chuang 2000).. An explosion of interest in quantum computing was triggered_ by
Peter Shor who, in 1994, presented the first quantum algorithm for fast factorization of
Jlarge integers (Shor 1994). Shor’s demonstration of how his algbrithm could
exponéntially "speed-up" classical computation posed a serious threat to modern
cryptography (and, with it, to hofne banking and any other information transfer via
internet) which assumes that fast factorization algorithms do not exist. Since then
trem¢ndous progress in the field has been marked by the discovery of other fast

algorithms (most notably Grover’s algorithm for quantum database search (Grover
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'1996)), the invention of cjuantum key distribution, and most recently, popular press

accounts of experimental successes in quantum teleportation, and the demonstration of

actual three-, five-, and even seven-qubit quantum computers. According to one

Eauthority'in the field (Aharonov 1998),

we now have strong theoretical evidence that quantum computers, if built,
might be used as powerful computational tool, capable of performing tasks '

which seem intractable for classical computers.

Notwithstanding this excitement, and "apart from the ‘almost insurmountable
problem of practically realizing and implementing a large scale quanturr; computer
(Unruh 1995, Haroche and Raimond 1996), a crucial theoretical question remains open,
namely — what physiéal resourcés are responsible for the putative power of quantum
computing. Put another wasl, what are f[hé essential features of quantum mechanics that
allow one to solve problems or simulate cértain systems far more efficiently than on a
classical computer? Remarkable is also the fact that the relevance of features commonly
thought of as essential to the superiority of quantum computers, e.g., entanglement and
interference (Josza 1997), is recently being questioned (Linden.and Popescu 1999,
Biham 2004). Moreover, even if these features do play an esser.ltial role in the.putativé

quantum "speed-up", it is far from clear how they do so (Fortnow 2003).

In this section, after reviewing the relevant known results in quantum complexity
classes and briefly discussing the possible resources responsible for the superiority of
quantum computers over their classical counterparts, I introduce the quantum adiabatic

evolution algorithm of Farhi e al. Though this algorithm was originally designed for
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speeding-up solving problems like satisfiability, Tien Kieu cilaimed that a similar scheme
can be used to perform hypercomputation by being able to solve a problem equivalent to
a paradigmatically unsolvable problem — the halting problem — in a finite time and using

only finite resources.
4.2.2 The Class BQP and the Powers of Quantum Cpmputers

This section surveys the currently known results regarding the quantum complexity
classes and discusses the possible resources responsible for the superiority of quantum

computers over their classical counterparts.

The class of decision problems that caﬁ be -efficiently solved by quantum
computers is called BQP (”Bkounded error, Quantum', Polynomial time"). Since quantum
computers ruﬁ only randomized algorithms, the class BQP for quéntum computers is the
countefpart of BPP for classical computers. More formally, it can be defined as the class
~of decision problems solvable with a polynomial-time algorithm, whose"probability of
error is bounded away-from 1/3 (Nielsen & Chuang 2000). A quantum computer is said

to "solve" a problem if, for every instance, its answer will be correct with high

probabiiity. If that solution runs in polynomial time, then that problem is in BQP.
(Again, as it is the case with the class BPP, the choice of 1/3 other "bounded error"
probabilistic classes'the choice of 1/3 is not essential — changing this constant to any real

(computable) number p e (0, ¥2) does not change the class BQP.)

BQP is suspected to be disjoint from NP-complete and a strict superset of P, but
that is not known. Both integer factorization and discrete log are in BQP. Both of these

problems are NP problems and both are suspected to be outside BPP, and hence outside
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P. Both are suspected to not be NP-complete. There is a common misconcepfion that
quantum computers can solve NP-clorriplete problems in polynomial time. Récall, A
however, that the ciassical complexity of integer factorization problem ié not known, and
it will not Bé totally surprising if a classical polynomial time algorithm for this task is
found (this is an easier problem than the NP;pomplete problems). So, that quantum

computers can solve NP-complete problems in polynomial time is still an open question,

and, in fact, it is generally suspected to be false. In this respect Grover’s search

.algorithm (Grover 1996) is better; though the speed-up is smaller (only quadratic), if is

provable. Classical search does require (worst case) linear time in the size of the data. -

Operators that appear in quantum computing devices‘are linear operators. Daniel
Abrams and Seth Llo‘yd (1998) have shown .that if a quantum corriputer could be
desigﬁed with nonlinear operators, then it coﬁld solve NP-complete problems in
polynomial time. However, as of today, there is no experimental evidence that such non--

linearities are present in nature.

PSPACE

Fig. 24 The suspected relationship of BQP to other problem classes.
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One of the embarrassments of quantum computing is the -fact that, so far,
essentially only one algorithm has been discolvered, namely Shor’s quantum Fourier
transform, for which a quantum computer is s?gniﬁcanl’ly (.expone‘ntially?) faster than
any known classical one. It is almost certain that one of the reasons for this scarcity of
quantum algorithms is related to the lack of our understanding of what makes a quantum
computer éuperior to classical combuters. Quantum computer skeptics (Levin 2003)
happily capitalize on this puzzle: if no one knows why quantum computers are superior

to classical ones, how can one be sure that they are, indeed, superior?

When it comes to the possibility of quantum hypercomputation, several possible
resources that might increase the poWeré of quantum computers over that of the Turing
machine ‘have been cited. F or instance,' accelerated Turing rﬁachines and infinite time
Turing ‘machines require that an inﬁnitel amount of memory be available for
manipulations. Actual infinite memory required by these machines is to be contrasted
with potential infinite memory (i.e, a finite, yet unbounded amount of memory)
generally neéded for a standard Universal Turing machine to function. Infinite storage
capaéities obviously present a sefibus physical obstacle for these proposals. Aﬁy attempt
to_stdre an infinite string of numbérs while not occupying an infinite volume of space
and not consumihg an infinite amount of matter would have the disadvantage of infinite
~ precision required to store and retrieve the appropriate bits (Hodges 2005). The infinite
precision, however, is also problematic on the physical grounds: according to quanfum
mechanics, all physical quantities the continuous values of which one could attempt to
use to represent an infinite string, seem to have principle limitations on how accurately

they can be measured. For instance, we cannot measure distances more accurately than
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the Plank length (10*°metres). While some other, more exotic, means of implementing
infinite memory storage have been proposed (such as infinite-dimensional Hilbert spaces
with infinite quantum superpositions to allow parallel computations (Calude .and Pavlov’

2002)), it is still not at all clear that infinite memory is a physical possibility (Ord 2002).

Important in the Kieu's theoretical backgréund is the role of genuin_e. quantum
randomness and, more specifically, that of non-recursive information sources. Recall
fhat, one of the iﬁteresting questions.of computation theory is whether randomness
increases computational power, specifically, with réspecl‘ to computability. Recall also
that, while the class BPP associated with problems solvable by Probabilistic Turing_
machi_nes cén be shown to remain the same if the admissible error possibility, €, that
enters into the definition of.a Probabilistic Turing méchine,‘ is relplaced by, say, 1/3,
things change essentialfy if this parameter is replaced by some‘rjon-computable real p.
Sofne.-proponents of the project of hypercomputation take this to be the key fact that
lea.ds to their goal. Yet, the question of whether by including some non-computable into
a computational process can be harnessed in any way was already addressed by Shannon
et al. (Shannon and McCarthy 1‘956). Their conclusion can be surﬁmarizéd thus:

introducing a randdm elemént producing equiprobable outp‘uts of 0 and 1 will, indeed,
do no better than a deterministic Turing machine. If the probability (the admissible error
possibility &) is not ¥2 but some other cofnphtable parameter, the situation is the same.
If, however, the parameter ¢ is some non-computable real number, then the number &
can be computed. That is to say that indeed‘, computation is, formally speaking, extended
to become cofnputation relative to ¢ . However, contrary to the suggestions of Kieu who

takes that to be the fundamental resource responsible for an enormous speed-up in his




scheme, it must be noted that the randomness in the output can do no better than merely
copying the non-computable number that has already been put into the random element.
In other words, it does not create anything non-computable and, therefore, seems highly

implausible to be expected to infinitely speed-up classical computation (Hodges 2005).
4.2.3 Quantum Adiabatic Evolution Computer

4.2.3.1 Introduction

A well-known theorem of quantum mechanics — the quantum adiabétic theorem — was
recently harnessed by a group of physicists from the MIT (Farhi ef al. 2000a, 2060b) to
develop a novel quantum algorithm. Their ‘aim was to solve in polynomial time certain
randomly generated hard instances of an VNP-complete pfoblem, and, in so doing, to
provide another evidence that quantum computers (if large ones can be built) may

outperform their classical counterparts.*’

The main idea behind the quantum adiabatic algorithm lies in the possibility of
encoding a specific instance of a given decision problem in a certain Hamiltonian. One
then starts the system in a certain (quantum) state corresponding to the lowest possible
energy state of the system — ths ground state — of anothér Hamiltonian which can be
easily qonstructed (the initial Hamiltonian), and slowly evolves the system in time
towards the interpolated and desired Hamiltonian (the final, or problem, Hamiltonian)
which encodes the solution to the desired .decision problem. Provided that certain
conditions are met throughout the whole process of evolution, it san be guaranteed that

the outcome of such a physical process will be the system in the ground state of the final

* 1t should be noted that it is still an open question whether the proposed quantum adiabatic algorithm
does indeed yield an exponential speed-up. See, €.g., Reichardt (2004).
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H\amiltonian,- which, in turn, encodes the solution to the original decision prdblem. By
physically measuring the ground state energy of the system at the end of computation

one can get the solution to the original problem.

In the sections that follow, 1 present the quantum adiabatic algorithm of Farhi et
al. which, presumably, can be used for solving a typical NP-complete problem — the v

satisfiability problem — and other combinatorial NP-complete problems in detail.

4.2.3.2 The Satisfiability. Problem

Satisfiability is the problém_of determining whether the variables of a given Boolean
formula can be assigned_classical truth-values in such a way as to make the whole
formula true. Alternatively, it is the problem of determining that no such assignments
exist, implying that the function expressed by the formula comes out false for all
possible variabl§ truth-value assignments. In the latter case, we say that the function (or
corresponding Boolean formﬁla of propositional calculus) is unsatisfiable; otherwise it is

satisfiable.

The formal definition of the satisfiability problém (SAT) requires the function to
be expressed in the so-called conjunctive normal form (CNF), i.e., as a conjunction of
clauses where each clause in a disjunction of literals. For example, an #-bit instance of 3-

SAT is a formula
C,AnCon--nC,,,
where each clause C, involves (at most) three of the # bits:

Ca = (Zla VZZa v 23(1) .
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Each clause C, is true or false depending on the truth values of some subset of the

bits, and acts as a constraint on the possible truth values of its variables. For example,

[y

the clause
C=1(zv~z,Vvz,)

is satisfied by all truth-value assignments to zj, z3, and z3 excepf when z; and z; are false

and z; is true.

“An important result from complexity theory states that the class of satisfiable =
quleaﬁ propositional formulas is NP-complete. In fact, 3-SAT was the first known NP-
complete problem, as Stephen Cook demonstrated in (1971). Until that time, the concept
of an NP-complete problem did not even exist. Since n-SAT (the general case) can be
reduced to 3>-SA.T, and 3-SAT can be,pro\ven to be NP-complete', it can be used to brove
~ that other proi)lems are also NP-complete. This is usually done by showing how a
solution to another probleni could be used to solve 3-SAT. In practice it is typically

casier to use reductions from 3-SAT than SAT to problems' which one is attemptingv

prove NP-complete.

In the context of quantum computation, many computationally interesting
problems cén be reformulated into an equivalent problem of ﬁnding a variable
assignment that minimizes a so called energyﬁmctior(. In the case of 3-SAT broblem, fo,r
instance, if each bit z; (0 <i < n) take; the numeric value O or .1 (corresponding to the .

truth-values of true and false), and each clause C is as5ociatéd with the 3 bits labelled ic,

Jje, and ke, we can define an energy function for the clause C as follows:

'
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0,if (z,,z, .2, ) satisfies clause C,

1, if (2,2, .z, ) violates clause C.

EC (Zic ? Z.f(: ? ZkC ) B {

Then we can define the total energy function E as the sum of the individual energy

functions:
Erora, = Z Ec(z.,2,..2,.)
C

Obviously, E,y,, 20, and E,y,., (2,,25...,2,) =0 if and only if (z,,z,,...,2,)

satisfies all of the clauses. Thus, ﬁnding the minimum energy configuration tells us if the

formula has a satisfying assignment.

4.2.3.3 The Quantum Adiabatic Theorem

The possibility to encode a specific instance of a given decision problem in a certain
-Hamiltonian allows one to .interpret the energy function of the problem as the actual
energy of the physical system encoding this problem (hence the name of the‘function).
‘At the end of c’ompﬁtation,l by‘phy‘sically measuring the ground energy level of the final
Hamiltonian and Checkiﬁg it against the zero energy level one can determine whether the

corresponding formula has a satisfying assignment.

More formally, suppose we can encode the solution to a given decision problem in
the ground state of a Hamiltonian Hp acting in an n-qubit Hilbert space. This

“Hamiltonian (Problem Hamiltonian) is diagonal in the. computational basis and is a
member of a ‘one-parameter family of Hamiltonians H(s) varying smoothly for the

parameter 0 <s<1. We then set a time-dependent Hamiltonian H(f) as follows:

H)=H/T),
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where 0<7<T, and T is the run-time of the algorithm. The Hamiltonian F(r) governs

the system state's evolution according to the Schrédinger equation:

ig—lw(tb = HOy () >,
t .

whereas the run-time 7 determines how slowly H varies.

The Hamiltonian H(¢) has the following form:

H()=He (D + He (D +-+ He (1),

where each H. (1) depends only on clause C, and acts only on the bit in C, . The initial

state of the system, which is always the same and easy to construct, is the ground state of

some fixed initial Hamiltonian H(0). For each a, the ground state of H. (I') encodes

/

the satisfying assignments of clause C, .‘ The ground -state of H(T) encodes the
satisfying assignment of the intersection of all the clauses. If the evolution ti‘me, T of the
computétion is big enough, it can be guarant.eed that thé state of the system at time 7 (at
the end of computation) will be very close to the ground state of H (T ), thus producing

the desired solution.

The fact that a quantum system stays near its instantaneous ground state if the
Hamiltonian that governs its evolution varies slowly enough is the content of the so
called quantum adiabatic theorem. The rigorous exposition of the theorem (as, e.g., in

Messiah 1961, pp. 739-746) considers a quantum system described in a Hilbert space H

by a smoothly time-dependent Hamiltonian, = H(t), for { ranging over [fy,1]. Let

l
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U(t) be the time-evolution operator from time £, to r€[t,,t,]. We denote T =1, —¢,. If

the following conditions are satisfied:

1. Forany telty,t], H (f) has a purely discrete spectrum with eigenvalues denoted

N

ENO,E*(t),...,E'(1),....
We denote P'(1), P*(1),...,P'(1),..., respectively, the projection operators on the
eigenspaces.

2. The eigenvalues and the projectors are assumed to be continuous functions of ¢
and there is no level crossing throughout the transition, i.e., the instantaneous

eigenvalues remain distinct:
Vielt,t,], E@=E@)if i=].

d a ., . . . . .
3. —d—Pl’FP, exist and are bounded and piecewise continuous in the whole
t

interval [7,,1,]. .
’Then, if the system is initially in the energy state '
©,> < P,
that is,
H(t,)| @, > = E'(t)| @, >,
then |

limU()| @, > = PO limU@)| ¥, >.
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That is, for 7' — o, if the system starts at /£, in an eigenstate corresponding to the

“energy E'(1,) it will evolve (up to a phase) to an eigenstate corresponding to E' () at 1,

In the special case where E'(f,) is the ground state, the adiabatic theorem
guarantees that in the limit 7 — oo the system will remain in the ground state throughout

its time-evolution.

Although in practice T is always finite, the more it satisfies a minimum "energy
gap" condition, the less the system will deviate from the ground state. The energy gap

condition states that there must exist a non-zero energy gap, g, between the groimd state
and the first excited state at any given time, and that 7 >> 1/g?. What governs the

efficiency of the quantum adiabatic algorithm is thus the rate in which the energy gap
between the ground state and the next excited state decreases with the increasing

~ dimension of the Hamiltonian, i.e., with the size of the input.
4.2.3.4 The Problem Hamiltonian Hyp

The transition from classical to quantum computation is typically done by replacing the
classical bit z, by a spin-"2 qubit |z, >, where z, =0,1. The states |z, > are eigenstates

~ of the i-th component of spin:

and

‘ ‘(") (i) 1 0
3(1-0.")z,> = z,|z,>, where " = o 1)
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The Hilbert space is spanned by the N =2" basis vectors lz, >z, >z, >.

Clause C is now associated with the operator H,.:

Hy(lz, >z, > |z,>) = /f/c(z,.(;,z_/.(l,zkc)|zI >z, >z, >.

Finally, the Hamiltonian H, associated with all the clauses is just the sum of

Hamiltonians each acting on a fixed number of bits:
Hy=Y H,..
C

" For so constructed Hamiltonian it can be shown that

(1) <w|H,

w > >0 forall |y > (the Hamiltonian is nonnegative), and

(2) Hy,|w > = 0 if and only if |y > is a superposition of states of the form
|z, >|z, >+ |z, >, where z,,z,,...,z, satisfy all the clauses.

Thus, the ground state of the so constructed Hamiltonian encodes the solution to

the original 3-SAT problem.

4.2.3.5 The Initial Hamiltonian H,

Though the problem Hamiltonian A, encoding the solution to a given 3-SAT problem is

easy to construct, finding its ground state energy may not be an easy task. The idea
behind the quantum adiabatic algorithm is to start the system with an easily constructed

n-bit initial Hamiltonian, H,, whose ground state is simple to find and construct.

Consider first the following 1-bit Hamiltonian H{" acting on the i-th bit:
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- O
H"=3(1-0"), o' = &’0}

A

so that

H”|x,;=x> =x|x,=x>,

where

1 | 1
_ = L - - L
|x, =0> = ‘5[1] and |x, =1> = ‘E(—l)

Now, for the clause C associated with the bits ic, Jje, and k¢ we construct
Ho=H" +H" + H'
Finally, we define the initial Hamiltonian as follows:

H=YH¢. .
C

The ground state of H;, |x,=0>|x,=0> .-|x, =0>, written in the z basis, is

justa suberposition of all basis vectors:
1% =0>x,=0>|x,=0> = —A:ZZZM >|22'>m z, >,
whicﬁ makes it easy to construct.
4.2.3.6 Adizibatic Evolution
We can then define the instantaneous eigenstates and eigenvalugs of H(¢) by

HO)\jst> = EO|Jt>,

with the energy eigenvalues ordered as shown:
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E,(t)< E,(t) <2 E, (D),
where N is the dimension of the Hilbert space. Suppoée | (0)> is the ground state of

H(0),1ie. | Lo _ I
lw(0)> = [j=0r=0>..
According to the adiabatic theorem, if the gap g,,, between the two lowest levels,
E () - E (1), is strictly greater than zero for all 0</ <7, then
'}Vi_r>r°1°|<j:0;t:T|(//(T)>| = 1.

Having chosen and constructed the initial and the final Hamiltonians, we can

define the interpolating Hamiltonian as follows:
H(s)y=(1-9)H,+sH,,

!
where s = T so that

Ny !
H(z)=(1-¢[—jﬁ,+?HP.

Under these conditions, and in the adiabatic limit, i.e., for T long enough, the

evolution from t = 0 to t =T (starting in the ground state of H,) will lead to the ground

state of H,, that is, to the solution of the original computational problem.
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4.3 Quantilm Adiabatic Evolution Hyperconiputation

4.3.1 Beyond Undecidability: Oracle Machines.

We know that almost all intereéting questions about workings of Turing machines —
whether a given Tufing machine halts 01;] an empty tape, whether a given Turing halts on
every input string, or whether two given Turing machines always produce the same
output, etc. — are undecidable. But are all these questions equally hard? Suppose that we
were given the power to decide the halting problem, by some magic. Could we somehow
utilize this power to decide all undecidable problems? It certain]y seems not
unreasonable td ask whether a certain problem is dec'idvable relative to the halting

problem.

Questions about relative computability are typically formalized and studied using
Ora_cle Turing maéhines — conceptual d¢vices flaving special powers enabling them to
perform certain computational tasks, which typically (but not nécessarily) cannot be
decided by usual Turing machines. Oracle machines were first defined by Turing in his
Ph.D. thesis (supervised by Church). He described them as "new kmd of machine" and
called them "O-machines" (Turing 1939). Informally, an Oracle Turing machine is a
usual Turing machine equipped with a black box — an Oracle — which is able to decide
certain decision problems in a single step. The latter décisibn problems can bélong to

any complexity class, including known undecidable problems like the halting problem.

More formally, consider a procedure implemented on an ordinary Turing machine
with a given finite set of instructions and input. Given some set X and an input, the entire

computation proceeds algorithmically except that

175



(é) from time to time, the computing agent may be required to answer a
membership question of the form "is n in X?", for a certain given set X (in
general this question itself, i.e., the value of ﬁ, is the result of precéding
calculation);

(b) no means of answering such questions about X are given by the instructions of
the Turing machine;

(c) obtaining an answer to such a question counts as a single step in the overall
procedure; and

(d) subsequent steps in the procedure depend, in general, upon that answer.

If such answers are correctly and automatically supplied by some external agency,
the computation is well-defined and effective. (If the set X itself is recursive, the entire
procedure can be made recursive by adding instructions for computing the characteristic

function of X.) Such a procedure is called an algorithm relative to X

An external agency which supplies correct answers to questions about X in a finite
time is called an Oracle. Sometimes it is pictured as an otherwise unspecified "black

box" associated with the computing agent (Rogers 1967).

An alternative characte_rization of an Oracle Turing machine takes it to be a usual‘
Turing mgchine which, in addition to its ordin.ary‘read/write tape, is equipped with a
special one-way-infinite read-only input tape oh which some infinite string is written.
The extra tape is called thé auxiliary lape; or the Oracle tape, and the string itself is
called the Oracle. The machine can move its oracle tape head one cell in either direction
in each step of computation and make decisions based on the symbols written on the

oracle tape. Other than that, it behaves exactly like an ordinary Turing machine. If the
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oracle is an infinite string over {0,1}, this string can be seen as the characteristic.
function of a set X € N, where the nth bit of the oracle string is 1 iff » ¢ X . (Ordinary
Turing machines are equivalent to oracle Turing machines with the null oracle — an
oracle which is written as "00000..."; for §uch machings, the oracle gives no extra

information that the Turing machine does not already have.) (Kozen 1997) -

~

Since an. oracle can answer questions about membership in a specific set of the
natural numbers, an Oracle Turing machine could compufe an infinite number of non-
recursive functions. It can (trivially) compute the characteristic function of the oracle set,
but it could also incorporate its requests to the oracle into more complex algorithms,
allowing computation. of non-trivial functions. For example, if the oracle set was the
halting set (the set containing # iff the nth Turing machine halts at some specific input),
then the oracle machine would be able to compute many other functions of intetést. In
fact, it would compute all recursively enumerable functions. A non-recursive oracle is
thus a sufficiently powerful resource extending the powers of the ordinary Turing

machines.

A procedure using an oracle (possibly, the null oracle) is called algorithmic
relative to X if it could, at any point of computation, ask and get the correct answers in a
finite time to questions of the form "is » in X?" We say that a set A is recursive in X, or

that 4 is Turing reducible to X (A <.X), iff there exists an algorithmic relative to X

procedure that can compute the characteristic function of the set 4.

If a fixed set X is chosen, all (partial) recursive functions of the usual (without
(non-null) oracles) recursive function theory can be replaced by corresponding X-

recursive (partial) functions in all definitions and theorems. In this way we obtain a
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(fully) relativized theory. (Various theoric;s which are only partially relativized also can
be defined and studied.) In the relativized theory of recursive functions it can be shown
that the relation <, is reﬂexive and transitive. If, vfor a given set A, we require, in
| addition, that 4 <; X and X <, 4, then we say that 4 %,.X, and the equivalencé classes of
=, are called Turing degrees (or levels) Q/' unsolvability‘ or T-degrees. Turing
reducibility is commonly taken to be the most furidamental reducibility, though cher

forms of reducibility are also available (Rogers 1967).

Once we have the notions of relative computability, rslative recursiveness, and
degrees of unsolvability in arithmetic, the following hierarchy of classes of sets of

numbers appears, ordered according to their relative degrees of unsolvability:

30 = {r.e. sets},
A? = {recursive sets},
n+l

$° = {setsr.c.insome Be X},

AO

n+l

{sets recursive in some BeZ!},
0 _ . 0
I1) = {complements of sets in X }.

The classes =°, T1°, and A? constitute what is known as the arithmetic hierarchy

(or Kleene hierarchy). The important feature of the arithmetic hierarchy is that it allows
characterization in terms of first-order quantification over natural numbers or strings. If

we consider second-order quantification — quantification over functions and relations —

we get the so called analytic hierarchy consisting of classes £, I1!, and A! . The entire
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arithmetic hierarchy is strictly contained in , the lowest class in the analytic hierarchy.
Elements of A, are called hyperarithmetic sets (Kozen 1997, K_léene 1943, 1952, Rogers

1967, Shoenfield 1972, Soare 1987).

Modern-day complexity theory .h?lS its roots in the theory .of recursive functions
and effective computabi.lity where thé Turing-reducibility, completeness and hardness,
“and the arithmetical hierarchy all have their counterpéfts (Karp 1972, Coék 1971, and
Stoékmeyer 1976). Thus, the complexity class of decision prbblems solvable by an
algorithm in class,A with an oracle for a problem in class B is written A®. For example,
the class of problems solvable in polynomial time by a deterministic Turing machine
with an oracle for a ﬁroblem in NP is P, (This is also the class of problems reducible
- by polynomial-time Turing reduction to a problem in NP.) Although it is easy to show

that NP < P the queétion of whether NP, PNP, NP, and P are equal remains open.

The notation A® can also mean the class of problems solvable by an algorithm in
class A with an oracle for the language B. For example, P5MT is the class of problems
solvable in polynomial time by a deterministic Turing machine with an oracle for the

satisfiability problem.

s

Oracle machines can also be used for investigating the relationship between
complexity classes P and NP, by considering the relationship between P* and NP* for
an oracle A. In particular, it has been shown that there exist sparse languages (i.e., set of
strings such that the number of string with length » in the language is bounded by a -
polynomial function of ») A and B such that P* = NP* and P® # NP® (Baker et al

1975). The fact that the P = NP question relativizes both ways is taken as evidence that
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answering this question will be difficult because any proof technique that relativizes

(i.e., is unaffected by the addition of an oracle) will not answer the P = NP question.
4.3.2 Oracles and Hypercomputation

Turing, who first introduced the oracles to the recursion theory, left no indication of how
and whether. these oracles might actually be implemented. The only specification he left
was that an oracle works by "unspecified means"” and "we shall not go any further into

the nature of [an] oracle”.

The possibility of performing an infinitely many actipns, steps, or operations in a
finite time has long been a probleﬁ of great interest (and confusion) for philosophers
since the time of Zeno of Elea. It was James F. Thomson (1954) who coined the term
"supertasks" to designate such tasks, and Peter Clarke and Stephen Read (1984)
introduced the term "hypertasks” (as well as "super-dupertasks”) to designate supertaské
~with uncountably many steps. Thoﬁgh Thomspn himself emphatically denied the mer‘e
logical possibility of supertasks (as later did Clarke and Read, only with respect to
hypertasks), Paul Benacerraf (1962) dem'ons_trated that no cogent argument on purely
logical grounds had yet shown that a supertask could not be performed. Though most of
the 4discussi0ns in philosophy‘on supertasks nowadayvs come from descevndants of
Benacer;af who accept the logical consistency of the very notion of a supertask,
philosophers who reject this possibility ter‘ld not to do it on grounds such as Thomson's.
Rather, they may appeal to the problems with the notion of infinity itself, or the -
problems of a particular formal theory within which the corresponding models are

formulated. For example, William McLaughlin (1998) claimed that Thompson's
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arguments fail to demonstrate the logical possibility of supertasks if analyzed with

internal set theory, a variant of real analysis.

Yet, the prevéiling view nowadays takes it that, in words of Earman and Norton
(1996), our notions of infinity and continuity are now so well developed that supertask
have lost their power to forcevus to refine these notions; any difficulties or contradictions
that supertasks may deliver no longer reveal de’ﬁciencies in our concepts and they can be
removed without requiring us to assume some conceptual incoherence in the very notion

of supertask.

As a result, a number of various proposals of conceptual machines capable of
performing supertasks have been proposed: accelerating infinite machines such as Zeus
machinés, Weyl machines, n-machines, Davies' building infinity machines, (see, €.g.,
Weyl 1927, Earman and Norton 1993, Davies 2001), machines operatiﬁg iI} special
relativistic spacetimes (the Pitowsky-Malament-Hogarth spacetimes) hari;essing time
dilation effects (Pitowsky 1990, Earman and Norton 1993, Hogarth 1992, 1994, Earman
1995), asynchronous neural networks (Copeland and Sylvan 1999, Siegelmann 1998),
etc. However, the possibility of physical implementation of these machines remains the
Achilles' heal of these proposals due to clearly unphysi;:al nature of many essential

assumptions used in those models.

Within the theory of computation, a similar discussion resolves around the notion
of hypercomputation. This term, coined by Jack Copeland (as is, e.g., in 1998, see also
Copeland and Proudfoot 1999, Copeland and Sylvan 1999, Ord‘ 2002, 2006), refers to
various proposed methods of com;;uting non-Turing computable functions, typically

emphasizing the physical possibility of implementing such devices.
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Recently, Tien D. Kieu, in a numbér of papers (2002, 2003, 2004, 2005) claimed
to have a scheme, according to which, in principle, a real physical qﬁanium system could
be used to compute prototypical non-Turing computable function in a finite time. To our
knowledge, this has been the first rigorous attempt to utilize the pe;culiarit,ies of the
quaﬁtum world for the project of hypercomputation. In the sections that follow, after
exposing the proposéd algorithm, 1 will critically.addréss the proposal sho§ving its
failure to perform the purported hypercomputation. Whether or not the class of
physically realizable hypercomputers is non-empty, Kieu's quantum adiabatic algorithm

is not the member of this distinguished club.*

4.3.3 The Quantum Adiabatic "Hypercomputer"
4.3.3.1 Introduction

"Kieu's insight was to harness the quantum adiaBatic algorithm of Farhi et al. to solve
another decision problem, namely, Hilbert's Tenth. His idea was that one can capitalize
on the infinite dimensionality of the Hilbert space that "acéompanies" every quantum
system in‘order to perform in parallel infinite computational steps in a ﬁnite time — a
task that a .hypercomputer, whether classical or quantum, is supposed to"be capable of

performing.

-Kieu designed the target (interpolated) Hamiltonian as to mimic the form of the
left-hand-side squared of the original Diophantine equation. This, in turn, guaranteed the

existence of a global minimum: The Diophantine equation has at least one integer

solution if the final ground state of the target Hamiltonian is zero, and has no integer

%% This arguments contained in this part of the thesis were the results of the joint work that we did in
collaboration with Amit Hagar (Hagar and Korolev 2006, 2007a, 2007b). .
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solutions otherwise. Next, Kieu claimed to have proven an ingenious probabilistic

criterion that allows one, by measuring H,, to identify whether the quantum system has

indeed reached its ground state, no matter what T is.”! If not, according to Kieu, one
needs only to enlarge the evolution time 7 and iterate the algorithm many times, until the

ground state (which is ensured to exist through the boundedness of H,) is achieved.
Let us consider a particular example, say, the following Diophantine equation:
D(x,y,2) = (x+1) +(y+ 1) = (z+1)’ +expz=0, c€ Z,

with unknowns x, ¥, and z. To find out whether this equation has any non-negative
integer solution by a quantum algorithm, it requires’ the realization of a Fock space.
Upon this Hilbert space, we construct the Hamiltonian corresponding to the last
expression: |

H,= ((ala,+1) +(a)a, +1)’ - (ala, + 1)’ +c(ala,)(ala,)ala,)),

which has a spectrum bounded from below — semidefinite, in fact.*?

G o ,
Note that the operators N, =aja, have only non-negative integer eigenvalues »,,
and that [N ,H,]= O=[N,,Nv,'] so these observables are simultaneously measurable.

For some triple (n,,n,,n,) the ground state | g > of the Hamiltonian so constructed has

the prdperties .

5T According to Kieu (e.g., in his 2005, 178), this criterion amounts to excluding any state other than the -
ground state from occupying the energy spectrum of H, with probability > 1/2 forany 7> 0. 1tis

noteworthy that in all of his papers Kieu offered no analytic proof for this criterion, only a simple example
in which such criterion is indeed satisfied. ) '

-

32 The creation operators aj. are similar to those of the 3-D simple harmonic oscillator.
= o '
la,,a;]1=1 forj=x,y,z,
- T _ T _ .
[a,,a}]1=la,,a;]=0 forj=k.

J
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N/‘g> :njlg>s
Hylg> = ((n,+17 +(n,+ 1)’ =(n,+1Y +cnnn)|g> = E, |g>.

Thus, after enough iterations, a projective measurement of the energy £, of the
ground state: | g > will yield the answer for the decision problem: the Diophantine
equation has at least one integer solution if E, =0, and has no solutions otherwise. {dIf

¢ =0 in our example, we know that £, >0 from Fermat's last theorem.)

If there is one unique solution, then the projective measurements of the
Obsérvables corresponding to the opératbrs N, Will.' reveal the valﬁgs of various
unkﬁowns. If there are many solutions, finitely or infinitely as in the case of the
Pythagoras theorem, x*+)’—z'=0, the ground state |g> will be a livnear
superposition of states of the form |n, >{n, ;| n, >, where (n,,n,,n,) are the solutions.
In such a situation, the measurement may not yield all the solutions. However, finding

all the solutions is not the aim of a decision procedure for this kind of problem.

Notwithstanding this, measurements of N, of the ground state would always yield

some values (n,,n,,n,), and a straightforward substitution would confirm whether the

equation has a solution or not. Thus the measurement on the ground state either of the
energy or of the number operators will be sufficient to give the result for the decision

problem.

*Since the final Hamiltonian (designed as to mimic the left-hand-side squared of

* the original Diophantine equation) has an integer spectrum and is-bounded from below
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(i.e., there exists, by construction, a global minimum for H,), the evolution time of

Kieu's algorithm is finite. Thus, it appears that, at least in theory, Kieu's hypercomputer
does indeed work: Given that the algorithm purports to find a global energy minimum,
all one needs to do in order to compute the (recursive-theoretic) non-computable is to let

the system evolve slowly.enough, measure its energy, and iterate this procedure until a
gfound state is achieved with probability > 2 and an answer to the decision problem is

found.

A major breakthrough in computer science? A vindication of the superiority of
quantum computers over their classical counterparts? Unfortunately, neither is true. The
next section explains why.

4.3.3.2 How Slowly is Slowly Enough?

I now proceed to show that the proposed quantum adiabatic algorithm cannot solve a

recursive-theoretic non-computable problem.

A crucial ingredient in the adiabatic algorithm is the energy gap between the

ground state £, and the next excited state £ :
Emin = (l;lgllsrll(El ([) - EO (l)) N

This gap controls the evolution time of the algorithm, in the exact following way:

T >> E./gliin b
where
E= rnax|<l=0;s|d—H[l=O;s>|.
0<s<l dx
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By making

[<1=0;5=1{p(T)>|

~ arbitrary close to 1, we obtain thét the size of T is governed by the following condi_tion:
I >>v 1/ gliin .

The problem is that in the absence of a de‘;ailed spectrél analysis, in general

nobody knows what g is, how it behaves, or how to compute it!

Now some of the fanfare in Kieu's papers is built around the idea that there always
exists such a gap and that the computation #alts in any case (since the final Hamiltonian

H,, by construction, has an integer spectrum and is bounded from below). We set aside

the issue of the feasibility of the manufacturing of such a Hamiltonian, which appears to
require infinite .prec’ision (Hodges 2005), but even if we grant such (pqssibly
unrealizable) manufacturing capacities, their merit is still questionable: Classically too
there may always exist a halting time, énly that it is not computable. This .is easiest to
appreciate in the c\ase of classical Turing's halting problem: Consider all }Turing
machines with & states; throw away all ‘those that fail to stop on the input 1; among the -
others take the one that runs long.ést; call the number of steps of that machine 7'(k).
Now we “know” that in order to decide whether a machine with & states stops on the
input 1, we have to wait 7(k) steps. But of course we don't really know, because T(k)
1s not cofnputable, growing faster than any recursive function.

What Kieu is doing is defining an adiabatic proéess whose time is of that order

(and whose gap g is therefore uncomputably small). The fact that there is some 7" which

will do the job is not a big deal (nor is, therefore, the fact that we can use finite but
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unbounded dimensional Hilbert spaces for each instance). Indeed, if someone told us

what T'(k) is, we would not have needed infinitely many steps to.complete the job.

With this gap in mind, we can now think of the following problem: For each given

running-time of the algorithm 7" we have to come up with a process whose rate of chénge
is ~T~'. Question: Hovy do we know that we aré impleménting the correct ;ate of change
while H(t)b is evolving?' Apparently, by being able to measure differences of order 7',
that is, having a sensitive “speedometer”. When the going gets rough we appréach very
slow speeds of the order of 77'(k), which begs the question, since we ca;m then compute
T(k) using our “speedometer”; no fancy quantum computer is needed. If we don't have
a “speedometer”, then even if we decided to increase the running-time from 7 to, say,
T+7, we will have no clue that the machine is indeed doing (f+7)"' km/h and not 7'

km/h. In this case, clearly, Kieu's algorithm cannot be implemented since we will never
know how slowly we should evolve the physical system. But then we will also fail to
fulfill the adiabatic condition which ensures that once we have reached the desired final

Hamiltonian its ground state encodes the solution.

Kieu may argue in response that his (allegedly proven) ingenious probabilistic
criterion (along with the iteration of the algorithm) allows him to detect whether the
ground - state was achieved, that is, whether the algorithm has indeed evolved

adiabatically so to ensure a meaningful result when reading off the energy eigenstate of

'H,. His idea seems to be the following: In general, when one performs such an

adiabatic cooling, one doesn't meet this probabilistic criterion (that ensures that it is only

the ground state which will ‘appear with probability > Y2 upon measuring H,) for any
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state — applying the number operator gives many different answers when one repeats the
experiment, and none of them comes up more than half of the time. In this case one
~ simply doubles the running time and tries again, and so on. Since Kieu claimed, call it

the HALF CLAIM, that no matter what the. value of 7" >0, no non-ground "decoy" state

could ever achieve an occupation probability greater than’ l/:z, the algorithm is bound to

N

succeed eventually.

Now if the HALF CLAIM were tru§; it would have beén a remarkable
achievement. To sce this, recall that the adiabatic theorem provides only a sufficient
condition for tracking the ground state. In other words, it only guarantees that the
system's evolution will track the ground state when certain conditions are met (and onl‘y

in the adiabatic limit, i.e., when 7 — o0). By claiming that, no matter what T is, no state

other than the ground state will oécupy the energy spectrum with probability > %2, Kieu

o~

is in fact claiming to have proven a theorem which is much stronger than the adiabatic

‘theorem, which all by itself says nothing about non-adiabatic evolutions.

Intuitively,bthen, it would not be at all surprising if the HALF CLAIM turned out
to be false. And 'unfortﬁnately, as it turns éut, the HALF CLAIM is false. Althoﬁgh it is
true in the adiabatic‘ limit (when 7 — o) and for a finite 7 in very special (and very
simple) cases of two- and three-dimenéional Hamiltonians ’(which happen to be those
picked by Kieu in his numerical simulations that accompanied the HALF CLAIM), it.
turns out that, for a finite 7, some "decoy" excited states may occupy the energy

spectrum with much higher probability than the desired ground state of H, in

dimensions higher than three. Indeed, Smith in (2005) constructed several

Counterexarnples to the HALF CLAIM, thus proving its falsity. Interestingly, Smith
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claims that one- of his counterexamples considers a S-state system H, and H, which

exactly (up to a truncation of all matrices down to 5 dimensions) agree with those arising

from Kieu's construction (for a certain 1-variable Diophantine problem) and exactly in

his "\n} basis" as follows. Consider the following H, and H, in a 5-state basis

10).1).[2).13).|4)}
r-1020°0 200 0 0
1220 0 04000
H={0~23-30|,H=00 500
0 0-/34-4 00030
0 0 0-V45 0 0 0.01

The eigenvectors of H, are the columns of

-0.6198 -0.6541 -0.4122 0.1336 0.0162
-0.6127 0.08554 0.6350 -0.4527 -0.0959
-0, ={-0.4232 0.5151 0.0487 0.6701 0.3226
-0.2300 0.4861 -0.5055 -0.1675 -0.6536
-0.0922  0.2513  -0.4111 -0.5478  0.6777

with corresponding eigenvalues (energy values):
0.0114, 1.1307, 2.5406, 4.3884, 6.9288.

After time evolution, starting from the ground state of H, att =0, to
t = T'=13.3444 we get the following final state l(absolute values of the  entries are

shown, ordered in the same order as the energies 1, 2, 3, 4, 5 of the H, eigenststes):

(0.0139, 09997, 0.0062, 0.0210, 0.0015).




Note that this final state has probability > 99.9% of being measured as the first

excited state of H,, with energy 2, instead of the ground state with energy 1. The

expected final energy is 2.007.5

Now, if the HALF CLAIM is false, then the dream of the quantum adiabatic
hypercomputer evaporates.
4.3.3.3 The Same Old Story (Told Quantum Mechanically)

In order to see what is left of the quantum adiabatic hypercomputer, stripped as it is from

the HALF CLAIM, let us first remind ourselves what undecidability means in the

ordinary classical regime.

Suppose we have a black box implementing some function (unknown to us); it
takes natural numbers as input and produces natural numbers as output according to
some rule hidden inside the box. The designers of the box have assured us that the

function is bounded from below, namely, it has a global minimum.'Assuming that all we

‘can do is to call this function (use the black box) as many times as we wish (plus some

thinking), is it possible to find the function's global minimum? The answer is clearly no,

but it is instructive to see exactly why.

In trying to locate a global minimum we can proceed either systematically, by
going over each consecutive natural number starting ffom 0, feeding it into the box and
recording the corresponding output, or in some more . complicated deterministic -or
probabilistic manner. At each stép, out of all arguments we have checked so far we keep

those that minimize the function and. discard the others; the former are the global

3 For more details and other counterexamples refer to Smith (2005).
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minimum candidatés. Note that, if we proceed systematically, sooner or later, after a
finite number of steps (ngmber of function's callings), we will always reach a function's
global minimum (as we know a global minimum exists). This knoWledge (of the fact that
we will eventually stumblé upon a global minimum), however, adds next to nothin‘g to
solving ourtaski The problem, obviously, is that, even if we have just reached an actual
(non-zero) giobal minimum, there is no way for us to identify it as such. Given the
resources we have, we can never be sure whether the fu.nctilon does not take a yet smallér

value on the next step.

Thus the fact f[hat we will always reach a global minimurﬁ in a finite number of
steps is of no help to ﬁs. The problem is undecidable only due to our prihcipal inability
to iden;tify a global minimum as such. Logically, the reason for this undecidability is that
defining the property of being a global minimum involves quantiﬁqation over an infinite

domain: we say that the function freaches its global minimum at a point n, € N iff

Vr‘z.e-N L f(n) < f(n).

Trying to identify a global minimum as such by brute-force search would require

checking the inequality infinitely many times, hence undecidability.

Coming back to Kie_u’s proposal, while guaranteeing that the brute-force searcH
will eventually halt, Kieu fails to supply a criterion that would allow one to identify
whether or not the algoritiirn has halted on the .global minimum. Consequently, the
whole construction, despite the aspirations, lacks the ability to identify a global minimum
as global minimum. The problém is thus no different from the typical classical case of

undecidability considered above, and quantum mechanics adds nothing to its solution.
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Put another way, the gist behind the adiabatic algorithm is that, after a sufficiently

long evolution time, one can be certain to have retrieved the correct result of the decision
‘problem just by performing a measurement on tﬁe ground state. However, when the
evolution time is unknown, a non-zero energy reading upon a measurement of.a final
state can be interpreted in two very different Ways. On one hand, it may be said to be an
eigenvalue.of an excited state. In such case, clear’ly; the evolution was nbn—adiabatic,
hence one must iterate the algorithm with andther, longer, evolution time. On 'tHe othér
hapd, it »r‘nay be said to be an eigenvalue of the ground state. In such case, clearly, the
algorithm has performed correctly, and one has a (negative) answer to the decision
problem. But since one cannot check a negative answer to a classically undecidable-
problem, how can one tell, without knowing T i_n advance, that this negativé "answer" is
indeed correct — that is, that no iterations are needed anymore? Without é criterion for
distinguishing a ground state from all other excited states which is independent of the -

knowledge of the adiabatic evolution time T, one simply cannot.

So, Kieu's quantum adiabatic "hypercomputer” fails for a simple reason: As one
should intuitively expect from an algorithm that relies on the adiabatic theorem alone,
even if the adiabatic cqnditions are satisfied, then for a finite running time f < f, thefe is
in general no guarantee that the final energy state will be the ground state. Consequently,
there is no way to distingui‘sh a "decoy" excited state from a non-zefo ground. state, i.e.,
there is no way to identify a global minimum as such. Répairing this failure requires
knowing in advance the exact adiabatic ruhning time T (or, equivalently, the precise
behaviour of the energy gap' througﬁ out the time-evolution of the algori‘ghm), which is

just another undecidable problem.
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5. Conclusion

~In this thesis [ presented three case studies investigating in principle constraints on
predictability of the behaviour of physical mechanistic systems in classical and quantum
settings. | started with examining, the sources of indeterminism and acausality in
classical .physics that upderlie ontolégical constraints on predictability (Part I). Here I
discussed the_' role and physical siéniﬁcance of a Lipschitz condition — a condition
Violatioﬁof v?ihich leads to generétion of stochastic anomalous motion in the Norton-type
indeterministic systems. I argued that the singularity arising from the violation of thé
Lipschitz condition in the systemsl considered appears to be so fragile as to be easily
destroyed by slightly relaxing certain (infinite) idealizations pertaining to elastic
properties of bodies that are required by these models. As a result, I argued that
- indeterminism of the No’ﬁon—type Lipschitz-indeterministic systems should rather be
viewed as an artefact of certain (infinite) idealizations essential for the models, depriving
the examples of much of their intended metaphysical import, as, for example, in Norton's:
antifundamentalist programme.

1In Part II of the thesis I examined the predictive computational limitations of a
classical Laplace's dembn. I demonstrated that, in situations that allow self-fulfilling
prognoses to take place, the class of uridecidable propositiopé about certain future
events., in general, is not empty; any Laplace's demon having a/l the information about
the world now will be, in genéral, unable to predict all the future: In order to answer
certain questions about the future it needs to resort océasionélly to, or to consult with, a
demon of a'higher order in the computational hierarcﬁy whose computational powers are

beyond that of any Turing machine — an Oracle. I also discussed the distinction between
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ontological and epistemological views of determinism, and how adbpting Wheeler-
Landauer view of physical laws can entangle thése aspects on a more fundamental level.

Finally, in Part III, | examinéd a recent proposal to certain quantum adiabatic
algorithm to perform hypercomputation. If implemerﬁ‘ed, a device .realizing such an
algorithm could serve as a physical rea.lization of an Oracle needed for a Laplacian
demon to accomplish its job, and, presumably, seriously damage our trad‘itironal views on
the limits of predictability and the limits of mathematical (or, more generally, rational
knowledge). I critically reviewed this'propésal pointing out its failure to deliver the
purported hypercomputation. Regardless of whether the class of .‘physically possible
hybercomputers is ﬁon-empty, Kieu’s proposed algorithm is not a member of this
distinguished -club, and a quantum éomputer powered Laplace's demon can do no more

than its ordinary classical counterpart, retaining the traditional limits of predictability.
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