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Abstract 

Several parametric families of multivariate extreme value distributions (Hiisler and 

Reiss 1989, Tawn 1990, Joe 1990a, 1990b) have been proposed recently. Applications 

to multivariate extreme value data sets are needed to assess the adequacy of the known 

families in their fit to data. Different families are compared in their range of multivariate 

dependence and their ease of use for maximum likelihood estimation. Some useful 

conclusions have been made from experience with several environmental data sets. 
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Chapter 1 Introduction 

Extreme value theory has a great number of applications. We list two cases where 

the largest or the smallest "measurement" are of interest. 

1. Air Pollution. Air pollution concentration is expressed in terms of proportion of 

a specific pollutant in the air. Concentrations are recorded at equal time intervals, and 

it is required by law to keep the largest annual concentrations below given limits. 

2. Natural Disasters. Floods, heavy rains, extreme temperatures, extreme atmo­

spheric pressures, winds and other phenomena can cause extensive human and material 

loss. Communities can take preventive action to minimize their effects even if such dis­

asters cannot be completely avoided. In dams, dikes, canals, and other structures the 

choice of building materials and methods of architecture can take some of these poten­

tial disasters into account. Engineering decisions that confront such problems should 

be based on a very accurate theory, because inaccuracies can be very expensive. For 

example, a dam built at a huge expense may not last long before collapsing. 

In example 1, at each time point, there may be a vector X of measurements, con­

sisting of concentrations of a pollutant at several air quality monitoring stations in a 

network or consisting of concentrations of several pollutants at a given monitoring sta­

tions. In example 2, there may be a vector X of measurements at several positions in a 

spatial grid. 

In the examples, we have over time a number n of random measurements X i , ' . . . , X„ , 

and the behaviour of either Z n = m a x ( X i , . . . , X n ) or W n = m i n ( X i , . . . , X n ) can be of 

interest. Here max and min refer to componentwise maxima and minima; see Chapter 

2 for details. 

Statistical inferences of the upper or lower tail of the multivariate distribution of X 

can be made from using extreme value theory to model the multivariate distribution of 
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Z n or Wn. 
There has been much recent research in multivariate extreme value theory; see 

Galambos (1987, Chapter 5) and Resnick (1987, Chapter 5) for some general theory. 

The set of possible of multivariate extreme value distributions has been shown to be 

of infinite dimension. Smith, Tawn and Yuen (1990) study a density estimation based 

method for nonparametrically fitting a multivariate extreme value distribution. Except 

in the bivariate case, the method was not too promising. A n alternative is to find a 

finite-dimensional parametric subfamily of the set of multivariate extreme value distri­

butions. A good subfamily would be "dense" in the complete family. Parametric families 

have recently been proposed by Hiisler and Reiss (1989), Tawn (1990), Joe (1990a,b), 

Coles and Tawn (1991). Experience is now needed to assess the adequacy of fit of these 

families to multivariate extreme value data sets. Joe (1990b) did some work on this but 

did not include the Hiisler and Reiss family in his comparisons. 

One goal of this thesis is to do maximum likelihood estimation with the Hiisler and 

Reiss family. This turns out be very difficult and details are given in Chapter 3, where 

comparisons are also made with results in Joe (1990b). 

Another goal of the thesis is to deal with missing values in computing maxima. Joe 

(1990b) deleted cases where there were many missing values so that maxima could not 

be properly computed. These maxima were assumed to be missing at random. Here, in 

Chapter 4, we treat these cases as right-censored maxima, that is the actual maxima is 

known to be above the maxima of all non-missing observations. 

The thesis proceeds next (in Chapter 2) with definitions and properties of general 

multivariate distributions and of multivariate extreme value distribution. The last chap­

ter (Chapter 5) of this thesis makes some final conclusions and points out a direction 

for further research. 
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Chapter 2. Multivariate Extreme Value Distribution 

2.1 Introduction 

In this chapter we describe some general properties of multidimensional distributions 

and copulas. Then we introduce some univariate extreme value theory and the general­

ized extreme value distribution. Following this, we concentrate on multivariate extreme 

value distributions, the main topic of this chapter. 

2.2 Multidimensional Distributions 

Let us define the p-dimensional random variable X as the vector X = (Xi,... ,XP) 

The distribution function -F(x) = F(xi,..., xp) is defined as 

F(x) = P ( X < x) = P(XX <xu...,Xp< xp), 

where X < Y means Xi < Yi, for 1 < i < p. 

For future reference, we also define 

X.+ Y = (Xi + Y1,...,Xp + Yp), 

X Y = (X\Yi,..., XpYp), 

and 

X/Y = (X1/Y1,...,XP/YP). 

Random variables with the same distribution as X will be denoted by X i , . . . , X p , 

and the components of Xj by Xij, that is, Xij is the ith component of X j , or Xj = 

{Xij, • • • ,Xpj). 

The order statistics of the ith. component (Xn,... ,Xin) are 

x<£ <xW <...<xjn\ 

and we denote 

Wi — XJ;l\ Z{ = X$. 
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In extreme value theory, an objective is to investigate the existence of the asymptotic 

distribution of 

For this, we need some theory of multidimensional distribution functions. 

A multidimensional distribution function F ( x ) of a random vector X has the follow­

ing elementary properties: 

P I (Bounds): 0 < F ( x i , . . . , x p ) < 1 V x i , . . . , xp. 

P2 (Monotonicity): F is nondecreasing in each of its arguments x,-, 1 < i < p. 

P3 (Limits): l inx^-oo F ( x u ...,xp) = 0. 

P4 (Marginal distributions): If Xj —• +oo, then F ( x ) tends to an (p—l)-dimensional 

distribution, which is the distribution of the vector obtained by removing its jth compo­

nent. We can obtain the univariate marginal distribution FJ(XJ) by letting each x^, i ̂  j 

tend to +oo. 

P5 (Density): If F has derivatives of order p, then 

Wn = (Wl,...1Wp) Z n — (Zi, • • • > Zp). 

f = >0, dx\ • • • dx. v 

and / is the probability density function. 

P6 (Rectangles): 

p 
P ( a 1 < X l < b 1 , . . . , a p < X p < b p ) = F(b1,b2,...,bp)-J2Fi + 

i=l 
^ F i j + ... + (-lYF(a1,...,ap)>0, 

where for a subset I of { 1 , . . . F j is the value of F ( s i , . . . , Sk) with s; = a; if i 6 / , 

and Si = b{ if i £ I. 

P7 (the Frechet Bounds): 

p 
max(0, J2 Fi(xi) ~ P + !) < F(x^ • • • xp) < min(Fi(a; i ) , . . . , Fp(xp)). 



If Fi,...,Fp are all continuous, then the upper bound corresponds to distribution of 

(Xi, F 2 ~ 1 F i ( X i ) , . . . , F ^ F ^ X i ) ) . In general the lower bound is not a multivariate dis­

tribution function for p > 3. For example, suppose F is a three-dimensional distri­

bution function with marginal functions satisfying Fi(xi) = 1/2, ^ 2 ( ^ 2 ) = 1/2 and 

F3(x3) = 1/2. Then 

F(+oo, + 0 0 , + 0 0 ) - Fi(ari) - F2(x2) - F2(x3) 

+ max(0, F ^ ) + F2{x2) - 1) + max(0, F i (x i ) + F3{x3) - 1) + 

max(0, F2{x2) + F3(x3) - 1) - max(0, F f a ) + F2(x2) + F3(x3) - 2) 

= 1 - 3 / 2 = - 1 / 2 <0, 

which contradicts Property 6. 

P8 (Survival function): Let Bj be the event (Xj > Xj) and j(k) = (ji,... ,jk) be a 

subset of { 1 , . . . ,p}, then let 

G j ( k ) ( x h , . . . , X j k ) = P ( B h n • • • n Bjk), 5 0 (x) = 1, 

and 

Sk(x) = G h ( x h > • • • >
 x3k)> 1 < k < P -

i<ji<h-ik<p 
For p > 2, then 

p 
F(x1,...,xp) = J2(-l)ksk(xi,...,xp). 

k=0 

In addition, for any integer 0 < q < (p — l ) /2 , 

E ( - i ) f c ^ W < f(x) < E ( - i ) f c ^ ) . 
fc=0 k-0 

The proof of most of the above results is straightforward; for the proof of properties 

P7 and P8, readers are referred to Galambos (1987). 
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2.3 Copulas 

Assume that F(x) is a p-dimensional distribution function with univariate marginals 

Fi(x{), for 1 < i< p. Let C(y) be a p-dimensional function over the unit cube 0 < yi < 

1, 1 < ^ < P, and such that it increases in each of its variables and 

F(x1,...,xp) = C[F1(x1),...,Fp(xp)]. 

Then the function C(y) is called a copula of JP(X). If C is a copula, then 

G(Vu•••,yP) = C[G1(y1),...,Gp(yp)] 

is a multivariate distribution with univariate margins G,-, for i — 1, ...,p, where Gi is an 

arbitrary univariate distribution function. When needed, we write CF = CF^Y) = C(y) 

for ^(x). Note that some people call C(y) a dependence function. 

If F(x\,..., xp) is a continuous p-variate cumulative distribution function with uni­

variate margins Fj(xj),j = 1,... ,p, then the associated copula is 

C(UL,..., tip) = F(Fr1(u1),..., Fp-\up)), 0 < m < 1, i = 1,... ,p. 

This is a multivariate distribution with uniform (0,1) margins. 

Returning to extreme values, the ith. marginal of Fn(x) is F^Xi), and thus 

Fn(Xl,..., xp) = CFn[F?(Xl,..., F?(xp)]. 

On the other hand, we have 

Fn(x1,...,Xp) = CF[F(x1),...,F(xp)}. 

A comparison of these last two equations leads to 

CF4y) = c F [ y l / n , . . . , y l / n } . 
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2.4 Univariate Extremes and the Generalized Extreme Value Distribution 

Let Xi,...,Xn denote independent and identically distributed (iid) random vari­

ables, with cumulative distribution function F. Let 

Zn = m a x ( X i , . . . , X n ) , Wn = m i n ( X a , . . . , X n ) . 

By the iid assumption, we have 

Hn(x) = P(Zn < x ) = Fn{x) 

and 

Ln(x) = P ( W n < x) = 1 - (1 - F(x))n. 

We seek conditions on F(x) to guarantee the existence of sequences {a n }, {&„}, {c n }, 

{ d n } of constants such that, as n —> oo 

l im H J a n + bnx) = H(x) 
n—*oo 

and 

l im Ln(cn + dnx) = L(x) 

exist for all continuity points of H ( x ) and L(x) respectively, where H ( x ) and L(x) are 

nondegenerate distribution functions. Equivalently, {an}, {&„}, {cn} and { d n } are such 

that (Zn — an)/bn and (Wn — cn)/dn converge in distribution as n —> oo. 

A sufficient condition (see Galambos, 1987) is given next. 

Assume that there are sequences an, cn, b n > 0, and dn > 0, of real numbers such 

that, for all x and y, 

lim n[l — F(an + bnx)] = u(x), 
n—>-+oo 

l im nF(cn + dny) = w(y) 
n—*-+oo 

exist. Then 

lim P ( Z n < a n + bnx) = exp[—u(x)] 



and 

J i m P ( W n < cn + dny) - 1 - exp[-w(y)]. 

Example 1. ( The Exponential Distribution). Let Xi,... ,Xn be iid random variables 

with common distribution function 

F(x) = 1 - e~x, x > 0. 

Then 

1 - F{an + bnx) = e - a n e - h n X . 

In order to satisfy 

lim n[l — F(an + bnx)\ — u(x), 
n—•+oo 

we can choose an = logn. and bn = 1. Hence, u(z) = e~z, and thus, 

l im P ( Z n < log re + z) = exp(—e~z). 

On the other hand, we can choose cn = 0 and dn = 1/re, such that 

lim nF(cn -f- c?ny) = lim nFiyln) = l im n ( l — e~y^n) = y. 
n—>+oo n—t-+oo n—t-+oo 

Hence, 

lim P ( W n < c n + d n y) = lim P { W n < y/n) = 1 - e~y. 
n-+oo . n—*+oo -

Example 2. Let X i , . . . , X n be iid random variables with common distribution function 

F(x) = \ - x ~ 1 , x > l . 

To determine the limiting distribution of Zn, we note that with an = 0 and bn = re, we 

obtain 

lim nil - F(an + bny)\ = l im re — = -, y > 0. 



and thus 

lim P ( Z n < ny) = e x p ( - - ) . 
n-++oo y 

For maxima, it is well-known that there are only three types of nondegenerate distri­

butions H(x) that can be univariate limiting extreme value distributions. These results 

are contained in books devoted to extreme value theory, such as Galambos (1987). The 

three types are: 

exp(—x~) x > 0 , 7 > 0 , 

0 otherwise, 
Hlf1(x) = < 

H2n(x) = < 
exp(—(—x) i ) x < 0 , 7 < 0, 

1 x > 0 , 

H3,o(x) - exp(—e x) — oo < x < + 0 0 , 7 = 0. 

After adding location and scale parameters the above three types of distributions 

can be summarized together as the generalized extreme value distribution (GEV): 

, H(x) = exp{-[max(l + 7 ^ ~ ^ , 0 ) ] ^ } - 00 < 7 < + 0 0 . ( 2 - 4 - 1 ) 

The parameter 7 can be interpreted as a tail index parameter of F. It measures the 

thickness of the tail of F; 7 is larger if F has a thicker tail, and vice versa. The tail 

thickness is related to the rate of convergence of 1 — F to 0 as x —> 00. 

For example, let 

1 - F(x) =. [max(l + 7 s , 0 ) ] _ 1 / 7 . 

For 72 < 71 < 0 then — 1/71 > — 1 / 7 2 > 0 and 

[ m a x ( l + 7 1 x , 0 ) ] - 1 ^ lim ———;— = OO. 
i/T4 [max(l + 72X, O)]- 1 ^ 2 

For 72 < 0 , 71 = 0 , then 

l i m 7 T, „x, ,,— = 00. 
^ - 1 / 7 2 [max(l + 7 2 x , 0 ) ] - 1 / i ' 2 
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For 72 = 0, 71 > 0, then 

r [max( l - f 7 l : r ,0 ) ]~ 1 / 7 1

 r ex ex 

l im - hm . > l im r—,— = oo. 
x^oo e-x x^oo [max(l + 7ix ,0)] 1 / ' 7 1 (x7i) 1 /' y i 

For 71 > 72 > 0, then 0 > -I/71 > - I / 7 2 , I/72 — I/71 > 0 and 

,. [max(l + 7 i ^ , 0 ) ] " 1 / 7 1

 r (1 + 7 i * ) ~ 1 / 7 1 

h m 7 T\ ,,— = lim — —-;— 
[max(l + 72Z, O)]- 1 /^ (1 + 72z)-1/'y2 

> l im i1 + l x X ) X ' T = l im (1 + 7 l ; r ) 1 / 7 2 ~ 1 / 7 1 = 00. 
a;-+oo M +7lX) l^1

 X—KX>K ' 

So, the tail is heavier as 7 increases. 

For 7 > 0, from Theorem 2.1.1 of Galambos (1987), we find an = 0 and bn = 

7 - 1 [ ( l / r a ) " 7 - 1] so that 

F(bnx) = 1 - F(bnx) = [1 + (n 7 - l)x}-ih ~ n - x x - l h . 

and 

F n { b n x ) = (1 - F(bnx))n = (1 - n " ^ - 1 ^ ) " ™ exp(-a ; - 1 / 7 ) . 

For 7 < 0, from Theorem 2.1.2 of Galambos (1987), we find an = — 1 / 7 , bn = 

— 7 _ 1 n 7 so that 

F(x) = (1 + 7 * ) " 1 / 7 , + M = ( - n ^ x ) - 1 ^ = n^i-x)-1^ 

and 

F n ( a n + 6nx) = [1 - n - ^ - x ) - 1 ^ - expi-i-x)-1^), x < 0. 

For 7 = 0, from Theorem 2.1.3 of Galambos (1987), we find an — logn, bn = 1 

so that 

F(x) = e~x F(an + bnx) = n ^ e - * 

and 

F n ( a n + bnx) = [1 - n - V * ) " = exp(-e- x ) . 
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The G E V distribution is useful for statistical inference when the distribution is un­

known, and the tail index must be estimated. 

Since 

m i n ( X i , . . . , X n ) - - m a x ( - A V , . . . , - X n ) , 

then, similarly for minima there are also three types of nondegenerate distributions as 

the univariate limiting extreme value distribution which can be summarized together 

and can be expressed in terms of (2-4-1) 

L(x) = l - H ( - x ) 

= 1 - exp{-[max(l + ~ ^ , 0 ) ] - 1 / 7 }. 
<j 

2.5 Multivariate Extreme Value Distributions 

We call a p-dimensional distribution function -P(x) nondegenerate if all of its uni­

variate marginals are nondegenerate. 

One object of the multivariate extreme theory is to seek conditions on F(x), under 

which there are sequences {an} and {bn} of vectors such that each component of {b„} 

is positive and 

P(Z„ < a n + b n z n ) = H n ( a n + b„z n ) -»• H(z) ( 2 - 5 - 1 ) 

for a nondegenerate p-dimensional function H(z). 

Suppose X i , . . . , X n are independent random vectors, with common distribution 

function F, then 

Hn{z) = P ( Z n l < z u . . . , Z n p < zp) = Fn{z), 

L n ( w ) = P ( W n l >Wl,...,Wnp>wp) = Gn(w), 

where 

G(w) = P(Xi > wu ..., Xp > wp). 
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Any problem on W is equivalent to one on Z by changing the basic vector X to 

(—X), therefore we concentrate on the vector Z of maxima. 

Next we list and discuss various properties which F(x.) or H(x.) may possess. 

P r o p e r t y 1. If F n ( x ) is a sequence of p-dimensional distributions, let the «th uni­

variate marginal of F„(x) be Fjf>(xi). If Fn(x) converges to a nondegenerate continuous 

distribution function -F(x), then for each i with 1 < i < p, F ^ ( X J ) converges to the ith 

marginal F^(xi) of F(x). 

Later we shall see that all limiting distribution functions of multivariate extremes 

are continuous. Hence, Property 1 tells us that we can appeal to univariate case for 

determining the components of a n and b n whenever (2-5-1) holds. 

The following several properties are important in multivariate extreme value theory. 

P r o p e r t y 2. Let X i , . . . , X n be iid p-dimensional vectors with common distribution 

function F(x.). Then there are vectors a n and b n > 0 such that ( Z n — a n ) / b n converges 

to nondegenerate distribution function H(x.), if and only if, each marginal belongs to 

the G E V family, and if 

Cn

F[y\'\...,ylJn] -> CW(vi,• • • \yP), n^oo. 

Property 2 tells us that given a p-variate distribution function .F n (x) , we can check 

if its marginals belong to the G E V family, if so, then we use the methods of the uni­

variate case to determine the components of the vectors a n and b n ; furthermore we can 

determine CV(y) by its definition and check if C ^ y 1 / " ) converges. 

Example 3. Let (X, Y ) have a bivariate exponential distribution 

F ( x , y ) = l-e-x-e-y + G(x,y), ( 2 - 5 - 2 ) 

where 

G(x,y) = P ( X > x , Y > y ) . 

12 



If ( Z n - a n ) / b n converges to a distribution H(zi,z2), then we can choose a n 

(logn,logn), and b n = (1,1), and obtain 

e~Zl + e~Z2 

F( logn + 2i, logn + z 2 ) = 1 h G(logn + zi,lo'gn + z2). 
n 

For the Marshall-Olkin distribution 

G(x,y) = exp[-rc — y — Xmax(x,y)], A > 0. 

The last term of (2-5-2) is 

exp{ — (2 + A)logn — zx — z2 — A max(zi, 22)} = 2 + A ex'p{—z\ — z2 — \ ma,x(z1,z2 

1 
ri1 

= 0(n-"-A), 

and 

/ e -2 i _(. e-^2 \ 71 

l im F n ( l o g n + zi,logn + 22) = l im 1 
n—>oo n—>oo V TI I 

= exp(—e-*1 — e - 2 2 ) . \ 

For another example, let 

G{x,y) = (e6x + e6y - l ) _ 1 / e , 6> > 0. 

Then 

G(log n + log n + z2) = ( n V 2 1 + n V 2 2 - l)~1/e 

„ I( e^i )"!/«, 
n 

and 

lim F n ( l o g n + 2 l , l o g n + * 2) = l i m ( l - ^ — ^ K- ^—L )» 

= {exp[-(e 2 1 + e 2 2)]}{exp[( e^ + e*22)"1/*]}. 
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In the second example, there is dependence in the limiting extremes. 

Property 3. A p-variate continuous distribution function H ( x ) is a limit distribu­

tion in (2-5-1) if, and only if, its univariate marginals belong to the G E V family and if 

its copula CH satisfies 

Ck
H{y\'\ ..., yllk) = CH(yi, • • •, yP), k = 1,2, • • •. ( 2 - 5 - 3 ) 

Property 3 tells us that if the limit H ( x ) exists, then we check condition (2-5-3). If 

it holds and if C'H is a copula, then we have got the actual limit distribution. 

Example 4. Let H\(x),..., H p ( x ) belong to the G E V family, then 

H(x) = Hx{x)..-Hp{x) 

is a possible limit of (2-5-1). This limit consists of independent univariate marginals. 

By assumption, the condition of Property 2 on the marginals is satisfied. Furthermore, 

by definition, 

CW(y) = y\ • • • yP 

for which the condition of (2-5-3) is evident. A n appeal to Property 3 yields the claim. 

Example 5. The distribution function 

H(x!, ...,xp) = exp{exp[- m i n ( x i , . . . , xp)}} 

is a limit in (2-5-1). 

The marginal distributions are Hi(x{) = exp(—e~Xi) = ^ ^ ( x , ) . Therefore it remains 

to check the validity of the condition (2-5-3): 

exp{— exp[— m i n ( x i , . . . , xp)]} = min{exp[— exp(—x,-)] 1 < i < p}, 

and 

CH(yu • • •, yP) = min( j / i , . . . , yp). 
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Hence for k > 1, 

Ck
H(yl,k, yllk) = [mm(yl/k, vl/k)]k = m i n ( y i , . . . , yp). 

Example 6. The distribution 

H ( x u x 2 ) = #3,o(si)#3,o(>2)[l + ^(1 - #3,of>i))(l - #3,o(z2))] 

does not occur as a limit in (2-5-1). (See Galambos(1987).) Even though the marginals 

H\(xi) = H 3 f i ( x 1 ) and i/2^2) = -#3,0(22) the copula 

CH{yi, 2/2) = ym[l + ^ ( l - y i ) ( l - 2/2)] 

fails to satisfy (2-5-3). 

Let X = (Xi,... i X p ) be a vector with distribution function F (x ) . Let j(k) = 

(ji, • • • ,jk), 1 < k < p be a vector with components 1 < j i < J2 • • • < i t < P- The 

distribution function Fj(k)(xh, • • • ^ j*) is a A;-dimensional marginal distribution, which 

is obtained from F(x) by letting X{ —> +oo for all % £ {ji, • • • ,jk}-

Let 

Gj{k){XJIT • • i x j k ) = F ( - ^ j i > x j n • • • •>Xjk > Xjk). 

Assume that F ( x ) is such that each of its univariate marginals belongs to the G E V 

family. Then, there are a, n and 6,n > 0 such that 

lim F t

n (a ,„ + binx) = Hi(x), 1 < i < p, ( 2 - 5 - 4 ) 

where Hi(x) belongs to the G E V family. We assume that a, n and 6 t n > 0 have been 

determined and put a n = ( a i „ , . . ., apn) and b n = (bln,.. ., bpn). 

P r o p e r t y 4. ( Z n — a n ) / b n converges to a nondegenerate distribution i / (x) if 

and only if for each fixed vector j(k) and x for which Hi(xi), 1 < i < p, of (2-5-4) are 

positive, the limit 

nHS> nGj(k){ajin ~i~ bjinXjin, . . . , Ojfcn "H bjkn.Xjkn) — hjk(Xj1 , . . . , £j t) (2 5 5) 
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are finite, and the function 

H(x) = e x p { £ ( - l ) f c £ hih(xh,...lXjk)} ( 2 - 5 - 6 ) 
fc=l 1<J1<J2— <3k<P 

is a nondegenerate distribution function. If the actual limit distribution of (Z n — a n ) /b n 

is the one given in (2-5-6), then the following inequalities hold. Let s > 0 be an integer, 

then 

#(x;2s + l) < H ( x ) < H(x;2s), ( 2 - 5 - 7 ) 

where i7(x, 0) = 1 and 

#(x,r) = e x p { £ ( - l ) f c £ hjk(xh,... ,xJk)}. ( 2 - 5-8) 

When s = 0 in (2-5-7), the inequality H ( x , 1) < #(x) < 1 obtains. This means that 

iJ(x) is never exceeded by the product of its univariate marginals, and H ( x ) never 

exceeds 1. 

Example 7. . Let F(x, y) = 1 — e~x — e~y + G(x, y) where 

G{x,y) = (e6x + e e y -I)-1'0. 

From the univariate case we know that 

lim i*7(logra + x) = exv(-e~x), x > 0, 

lim F2"(log n + t/) = exp(—e_2/), y > 0. 

Since G\(x) = e - x and G 2 ( y ) = e _ y 

War) = lim nG(logra + x) = lim n e ~ ^ n + x ) = e~x. 
n—»oo n—*oo 

Similarly, h 2 ( y ) = e _ J /, and 

h12(x,y) = Jim nG(logn + x,logn + y) 
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= lim n(nee6x + n e e 9 y — l ) ~ 1 / , f l 

n—*oo 

n—+00 JI<> 

= (ee* + e0y)-1'e. 

Therefore, the limiting extreme value distribution is 

H(x,y) = exp{-h1(x)-h2(y) + h12(x,y)} 

= e x p { - e - x - e~y + (e8x + eBy)~1/e}. 

The following definition is needed for the next property. 

Definition: The p-dimensional unit simplex S is the set of vectors q with nonnegative 

components qi such that YA=I Qi = 1-

Property 5 (The Pickands Representation for a min-stable exponential distribu­

tion). G(xi,..., xp), with univariate exponential margins, is a survival function satisfy­

ing 

— \ogG(txi,... ,txp) = —t\ogG(x1,... ,xp) 

for all t > 0 if and only if G has the representation 

-logG?(a;i,...,a;p) = / [max. (qixi)]dU(q1,... ,qp), x, > 0,i = 1,... ,p, ( 2 - 5 - 9 ) 
Jsp 1<»<P 

where Sp — {(qi,---,qP) ' qi > 0, i = 1,... ,p, Yli qi — 1} is the p-dimensional unit 

simplex and U is a finite measure on Sp. 

Property 5 is a result of Pickands and an alternative statement of Theorem 5.4.5 of 

Galambos (1987). It is not an easy task to give the representation (2-5-9) for a given 

H(x), but one usually does not aim at giving another form of H(x) when it is already 

known. The value of (2-5-9) lies in its possibility of generating functions which are limits 

in (2-5-1). For applications of Property 5, see Joe (1990a). A n example from there is: 

exp{-A(Zl, . . . , z p ; \ B , B c ( l , . . . , p ) , 6 ) } = exp{ - £ A s ( £ x6
t)l's},6 > 1. 

( 2 - 5 - 1 0 ) 
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For each integer m > 2, it can be directly shown that 

x m )=exp{-(^ + --- + ^)1/5} ( 2 - 5 - 1 1 ) 

is a survival function over Xj > 0,j = 1,... ,m,for 1 < 8 < co. (2-5-11) satisfies the 

homogeneity of degree one condition of Property 5. Hence by Property 5 , if m < p, 

there is a measure Vm on Sm and a measure Um on Sp such that 

where Um is a representation of Vm in p dimensions which puts all mass on qi,... ,q, 

Therefore, 

where dU has the form J2B \BdUs- By Property 5, (2-5-10) is a distribution. 

2.6 Some relation between extreme value theory and Central Limit theory -

Since Central Limit theory is more familiar to statisticians, in this section we show 

some similarities and differences between Central Limit theory and Extreme Value the­

ory. 

Consider the univariate case first. Suppose that X\,... ,Xn are iid with distribution 

£ M £ ^ ) 1 / f i 

B ^ 0 ieB 

has the representation 

F. Let 

Zn = max{Xi,. . . ,X n}, Wn = mm{Xi,.. .,Xn}. 

18 
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We would like to know whether there are any sequences { a n } and {bn} such that 

Sn — a n Zn- a n Wn — a n 

— A ' A ' . ° r 1 

converge in distribution. 

From Central Limit theory, if F has a finite second moment, then there exist { a n } 

and {bn} such that the limiting distribution (Sn — an)/bn has a normal distribution. 

Definition. Let H ( x ) be a nondegenerate distribution function, then F(x) is in the 

domain of attraction of H ( x ) if there are sequences { a n } and {bn} > 0 such that 

l im F n ( a n + bnx) = H(x). 

From extreme value theory, we know that the limiting distribution H ( x ) of ( Z n — 

o-n)/bn belongs to the G E V family if the distribution function F(x) is in the domain of 

attraction of H(x). 

For the multivariate case, assume that X i , . . . , X n are iid with distribution F. Let 

X; = (Xn,..., Xip), S n = X i + • • • + X n , 

Z n = (max(Xn , . . .,Xnl),... ,max(A"i p , . . .,Xnp)). 

Are there any {an} and {bn} > 0 such that 

converge in distribution? If the limit of (S n — a n ) /b n and the second order moments of 

F exist, then from Central Limit theory the limit of (S n — a n ) /b n has a multinormal 

distribution. 
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If the limit of (Z n — a n ) /b n exists, from extreme value theory, each univariate margin 

must be in the G E V family. An analogy between multinormal and multivariate extreme 

value distribution is: 

(1) Suppose (Z i , . . . , Zp) has a multinormal distribution, then linear combinations 

of univariate normal, i.e. a\Z\ + • • • + apZp has a univariate normal distribution. 

(2) Suppose Xj ~ H(-,~fj, fj,j,o-j). After transformation to an exponential survival 

function 

Zj = - ^og{H(Xf^hnhaj)) 

have an exponential distribution. If (Z\,..., Zp) has a min-stable multivariate exponen­

tial distribution, then from Property 5, 

G(zi,...,zp) = exp{-A(z1,...,zp)} ( 2 - 6 - 1 ) 

and V =. m i n ( ^ - , . . . , ̂ f-) has an exponential distribution e-vA(wi>->wp) ̂  where Wj > 0. 

That is, weighted minima are univariate exponential. 

Note also the main difference: The multinormal distributions form a finite-dimensional 

parametric family, the multivariate extreme value distributions form an infinite-dimensional 

family (as given by Pickand's representation). 

Since parametric inference is easier than nonparametric inference, a "goal" is to find 

good parametric (finite dimensional) subfamilies of the infinite-dimensional family (see 

the next section). 

2.7 Parametric families of multivariate extreme value distributions. 

A multivariate extreme value distribution with margins transformed to a survival 

function with exponential survival functions as univariate margin is a min-stable expo­

nential distribution. Let G be a p-dimensional min-stable exponential distribution, from 

extreme value theory A = — log(G) satisfies 

A(tzi,...,tzp) = tA(zi,...,zp), Vt > 0. 
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Let GS be the marginal survival function of G, then G s ( z a ) = e x p { — A s(z s)} where A S 

is obtained from A by setting Zj — 0 for j $ s and s is a subset of {1,... ,p}. 

Here we will list some parametric families of multivariate min-stable exponential 

distributions in terms of A . These families can be found in Joe (1990a,b), Tawn (1989), 

Coles and Tawn (1991), Husler and Reiss (1989). The interpretations of the parameters 

are given after all the families are listed. 

The families are given here for p = 2,3,4, from which the general multidimensional 

form can be seen. 

A(zuz2;S) = (zs
1 + z6

2)1's,- 8>1, ( 2 - 7 - 1 ) 

A(ZL, z2; r) = zx + z2 - (z7r + z 2
r ) ~ x l \ r > 0, ( 2 - 7 - 2 ) 

A ( z u z2, z3; 8, 83) = ((z* + zs
2)s*'s + zi*)lls\ 6 > 8 3 > 1 , ( 2 - 7 - 3 ) 

A(ZI,Z2,Z3;T,T3) 

= z1 + z2 + z 3 - (z~T + z 2
T ) - 1 / T - (z7T3 + z ^ ) - 1 ^ - (z2^ + z ^ ) ' 1 ^ + 

( ( ^ T + ^ T ) T 3 / T + ^ 3 T 3 ) " 1 / T 3 , r > r 3 > 0 , ( 2 - 7 - 4 ) 

A ( z u z2, z3, z4; 8,83,84) = ([(z5 + z6
2)s*l6 + zi*}s*'s> + zi*)1'8*, l < 8 4 < 8 3 < 8 , 

( 2 - 7 - 5 ) 

A ( z x , z 2 , z 3 , z 4 ; 8 , 8 2 , 8 4 ) = {{z[ + zs
2)Si'& + (zs

3> + z ^ 6 * ) 1 ' 6 * , 1 < 62,84 < 8, 

( 2 - 7 - 6 ) 

A(zi,z2,z3, z4; T , r 3 , T 4 ) 
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= z1 + z2 + z3 + z4- (z7r + z 2
T ) ~ 1 / T - (z~T3 + z ^ T 3 ) - 1 / T 3 - ( z 2

T 3 + z 7 T 3 ) ~ 1 / T 3 -

(z7Ti + z 7 T i ) - 1 / T i - {z2
T* + 2 4 " T 4 ) " 1 / T 4 ~ + ^ " T 4 ) _ 1 / T 4 + 

(c*rT + ̂ T 3 / T+^- T 3)" 1 / T 3 + (c*r+*-2Tr' r+*r 4)~ 1 / T 4 + 

{{Zr3+*3 T 3r / T 3+*r 4)~ 1 / T 4 + ((*r 3+zrr i / T 3+*r 4)~ 1 / T 4 -

( ( ( * r + ̂ T ) T 3 / T + z3"T 3)T 4 / T 3 + ̂ " T 4 )" 1 / T 4 , r > r 2 > r 4 > 0. ( 2 - 7 - 7 ) 

A(ZI,Z2,Z3,Z4;T,T2,T4) 

= z1 + z2 + z3 + z4- (z7T + 2 2 -T 1 / T - (sp + z 3 - T T 1 / T 4 - ( ^ + ^ T 4 ) - 1 / T 4 

(zp + z r 4 ) _ 1 / T 4 - (^2"T4+*rT1 /T4 - + * r r 1 / r i + 

( c * r + * n T 4 / T + * 3 - T 4 ) " 1 / T 4 + ( ( * r + * 2 - T ) T 4 / T + * r 4 ) ~ 1 / T 4 + 

(*r4 + (*3

-T2 + ̂ r2)T4/T2)"1/T4 + (*r4 + (*3

_T2 + *r2)T4/T2)~1/T4 -

O r + * 2 " T 4 / T + (*3"T2 + 2 4 - T 2 ) T 4 / T 2 ) _ 1 / T 4 , 1 < r 2 , r 4 < r. ( 2 - 7 - 8 ) 

Finally, the Hiisler and Reiss(1989) model with p = 2 is 

A(zx, A) = *(A + l 0 g Z l - l 0 g Z 2 ) , 2 + *(A + 1 ° g Z 2 - l 0 g ^ ) , 1 , A > 0. (2 - 7 -2A 2A 

For p > 2, let 

Xij € (0,oo) VI < i , j < p with i ^ 

Put 

Moreover , for 2 < k < p and m = ( m 1 ? . . . , m^) with 1 < mi < m 2 < . . . < < 

define 

rfc,m — ^ ( A 2 ^ . ^ + x2
m.mk — \2

m.^m.) i,j<k-\ 
( 2 - 7 - H 
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Furthermore , let S ' ( - | r ) denote the survivor function of a normal random vector with 

mean vector 0 and covariance matrix T. The extension of (2-7-4) is 

p k 
A(z1,...,zp;\ij, \ < i < j < p ) = J2(~1)k'52hk,m(-1ogzmi,...,-\ogzmk) 

k=\ 
( 2 - 7 - 1 1 ) 

with 
/•oo , -, 

^m(y) = / S (yf- - Z + 2 A 2
n > ) m j f - 1 | r f c , m 6~^> 

JVk 

for 2 < k < p, where J2k nieans summation over all p-vectors m = ( m i , . . . , m^) with 

1 < mi < m 2 < . . . < mk < p, and /i i , m (y) = e~y for m = 1,... ,p. The cases p = 3,4 

are given explicitly in Chapter 3. 

For comparison, note that the bivariate models (2-7-1), (2-7-2) and (2-7-9) each 

have a single dependence parameter. For (2-7-1) and (2-7-2) dependence increases as 

the parameter increases; for (2-7-9) dependence decreases as the parameter increases. 

The trivariate models (2-7-3) and (2-7-4) have respectively models (2-7-1) and (2-7-2) 

for each of the three bivariate margins. For the trivariate model (2-7-3) (respectively 

(2-7-4)), 8 (respectively T ) is the dependence parameter for the (1,2) bivariate margin; 

£3 (respectively, T3) is the dependence parameter for both the (1,3) and (2,3) bivariate 

margins. We have something similar for the 4-variate models (2-7-5) to (2-7-8). The 

4-variate models (2-7-5) to (2-7-8) also have respectively models (2-7-1) and (2-7-2) for 

each of the six bivariate margins. For (2-7-5), 8 is the dependence parameters for the 

(1,2) bivariate margin; <$3 is the dependence parameter for the (1,3) and (2,3) bivariate 

margins; 84 is the dependence parameter for the (1,4), (2,4) and (3,4) margins. For (2-

7-6), 8 is the dependence parameter for the (1,2) bivariate margin; 82 is the dependence 

parameter for the (3,4) bivariate margin; 84 is the dependence parameter for the (1,3), 

(1,4), (2,3) and (2,4) margins. The model (2-7-11) has a dependence parameter for each 

of the p(p— l ) /2 bivariate margins. For (2-7-11), the dependence parameter of the 
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bivariate margin, with i < j, is A,j, and the margin has form (2-7-9). 

Models (2-7-3) to (2-7-8) and their extensions have p — 1 parameters in total; as 

above, some of the bivariate margins have the same dependence parameter. Hence 

these models do not have as much flexibilty in the dependence pattern but they have a 

simpler form than (2-7-11). 

2.8 Estimation for a parametric family of multivariate extreme value distri­

bution. 

Joe (1990b) suggests the following procedures for fitting of a parametric multivariate 

distribution to iid X i , . . . , X n . 

(1) Fit the p univariate margins separately by maximum likelihood using the G E V 

family. 

(2) Transform each margin so that each transformed variable has exponential survival 

function Gi(zi) = e~Zi. 

(3) Suppose that the transformed data are iid p-vectors, then compare fit of differ­

ent families of min-stable multivariate exponential distributions. Check for parameter 

estimation consistency with bivariate and higher order margins. 

(4) Go back to the original data and estimate both multivariate parameters and 

parameters of the univariate margins simultaneously, using maximum likelihood if a 

copula has been decided on as being acceptable. 

In (3), to check the fit of a model, we compare parametric estimates of A with 

a nonparametric estimate of A. Besides the consistency checking from we know that 

if (Zi,..., Z p ) is a random vector with the min-stable exponential survival function 

G — e~A, then 

E(wm[^,...,^]) = [A{w1,;..,wp)]-1 

Wi wp 

for u>j > 0, j = 1,... , p. So if Y i , . . . , Y p are a transformed random sample, expo-
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nential probability plots of Vi = minjYij/wj can be used to check the assumption of 

min-stability for multivariate exponential distribution. If the plots are adequate, a non-

parametric estimate of A(wi,..., wp) is given by n/ J27=i ^ which can be compared with 

parametric estimates of A from different models. 
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Chapter 3 Maximum Likelihood Estimation With The Husler-Reiss Model 

Hiisler and Reiss (1989) obtained a new class of multivariate extreme value distri­

butions by taking a non-standard extreme-value limit. 

Let X and M n be as defined in Chapter 2. For a mutivariate normal random vec­

tor, having all correlation coefficients smaller than one, Sibuya (1960) proved that the 

marginal maxima M n > i , . . . , M„ i P are asymptotically independent. The rate of con­

vergence to asymptotic independence is slower as the correlation coefficients increase. 

Since in practice the sample size n never goes to infinity but is a fixed positve integer, is 

there another asymptotic formulation which may provide a better approximation? This 

motivated the work by Hiisler and Reiss. 

For the bivariate case, Hiisler and Reiss let the correlation coefficient p — p n increase 

towards 1 as the sample size increases. It is shown that the marginal maxima are neither 

asymptotically independent nor completely dependent if (1 — pn)\ogn converges to a 

positive constant as n —> oo. This was extended to dimensions p > 2. 

Hiisler and Reiss define their limiting distribution by the c.d.f. or survival function. 

To get a maximum likelihood estimation, the density is needed. To obtain the den­

sity, the following result for the conditional distribution of a multidimensional normal 

distribution is needed. 

Result 1: 

Let U = (Ui,..., Ua) and V = (Vi, . . . , H ) be random vectors such that 

MVN 0, 

V 

12 

^ £21 ^22 J 

\ 

I 
where E n , £12, £21, £22 are a x a, a x b,b x a,b x b matrices respectively, and suppose 

£11 and £22 are nonsingular. Then 

U | V = v ~ MVN ( EjaE-iy; E n - E i a E ^ i ) • 
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Let F x and F x denote the distribution function and survival function for a random 

vector X , and let fx and /x|Y denote the density function of X and the conditional 

density function of X when Y is fixed. Then the joint distribution of X and Y is 

/x,y(x»y) = /x|Y(x|y)/v(y)-

Let <^(x;E), $(x; E ) denote the multivariate normal density and survival function 

with zero mean vector and covariance matrix E . Then 

/u,v(u,v) = ^(u - S H S ^ V J S H - S 1 2 E - 1 E 2 1 ) ^ ( v ; S 2 2 ) 

and 

F u , v ( u , v ) = $( (u ,v) ;E) 

Jroo /-co roo too 

f • • • / / • • • / 0 ( s - E i 2 S 2 - 2

1 t ; E i i - S 1 2 S j 2

1 E 2 1 ) ^ ( t ; E 2 2 ) d s d t "1 Jvi, Jui Jua 

' • • • / ^ ( u - E i a E ^ t j E u - E w E ^ E a O ^ E M j d t . 

Therefore, 

3 b <&((u,v);£) _ ( _ 1 ) 6 $ ( u _ S i 2 S - i v ; E i i _ E i 2 E - i S 2 i ) ^ ( v ; ^ 
dv\ • • • dvb 

Now we are ready to derive the density for the Hiisler and Reiss survival function 

when the univariate margins exponential have been transformed to distributions with 

mean 1. 

We provide details for dimensions p = 2,3,4 from which the general case will be 

apparent. The notation gets increasingly difficult as p increases. 

3.1 Bivar ia te Case 

Frome Section 2.7, 

G(wi,w2,X) = exp{-A 2 ( i0 i ,u ; 2 , A)}, 
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where 

A2(w1,w2, A) = $(A + ^ \og(wi/w2))w2 + $(A + ^ log(w 2/u;i))u)i, A > 0. 

Since J^- = — f^-G and J^- = — we obtained the density function of t7(u>i, w2, 

d2G = _ d _ = a d A 2 = &42 g A 2 c _ d 2 A 2 

dw\dw2 dwi dw2 dw1 dw2 dw\ dw2 dwxdw2 

From 4>(x) = (2Tr)~1^2e~x2^2 we have ^'(x) = a;^(x). Also 

-\og[cf)(\+ ^\og(w2/w1))/w1] 

= A 2 / 2 + (logto2 - logwi)/2 + ^ - ( ( l o g w 2 - l o g ^ i ) 2 -t-logiu! + log V^TT 

= A 2 / 2 + (log wx - log w2)/2 + g^-((log tux - log w2)2 + log w2 + log V2TT 

= - logty(A + ^-log(tOi/u; 2))/u; 2]. 

Hence 

<KA + ^ log(u;2/u)i))/u;i = <̂ (A + ^ l o g ^ / u ^ ) ) / ^ . 

Therefore 

dA2 

d 1 1 

($(A + — l o g ^ / u ^ ) ) ^ + $(A + — l o g ^ / w ^ w - ^ ) d w ^ v 2A toV ' " v 2A 

= ~ ^ ( A + 2 X l o g ( w 2 M ) ) ( u > 2 M ) + ^ ^ ( A + ^ - l o g ( ^ i M ) ) ( ^ i / ^ 2 ) 

+$(A + ^\og(Wl/w2)) 

= ^(X + ^-\og(Wl/w2)). 2A 

Similarly, 
3\A. 1 

Finally, 
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d 1 
o ^ 2

m X + 2 X l o g { w i / w 2 ) ) 

^ ( A + ^ l o g K M ) ) . 

From Ait2, A2,i and A\2 we can get the density function g(w1,w2, A). 

3.2 Tr ivar ia te Case 

Let 
f 9\2 \2 _i_ \2 

13 1̂3 ' ^23 "12 E = 2 
2 \ 

\2 I \2 \2 y A13 "t" ^23 — A12 2A^3 / 
be the matrix in (2-7-10) and let 

P12 = P21 -

P13 = psi = 

P23 = P32 = 

i.e., 

Pij = 

_ 1̂3 + 2̂3 ~~ \2 A\2 
2A13A23 1 

\2 , \2 A12 + A23 A23 
2Aj2A23 1 

\2 . \2 A12 + A13 — A23 
2A12A13 

2A,/;Ajfc 

for i,j, k distinct. 

Then h 3 < 1 2 3 in (2-7-11) can be written as 

C(wi,w2,w3, A12, A 1 3 , A 2 3 ) = / $(A 1 3 +—— ( logg- logtui ) , A 
JO ^A13 

where with some abuse of notation 

$ ( • ; / > ) = ¥ ( • ; 

From Section 2.7, we have 

23+777—(log g-log w2); p12)dq 
LA23 

1 1 \ 1 P 

P 1 

G(w1,w2,w3) - exp{-A3(w1,w2,w3, X12, X13, A 2 3 )} 
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where with simplification of (2-7-11), 

A3(w1,w2,w3,Xi2,Xi3,\23) ~w\ - w2 - w3 + A2(wx,w2, Ai 2 ) + 

A2(w1,w3, A13) + A2(w2,w3, X23) + C(wi,w2,w3). 

Constraints are 0 < A t J < 00 and 0 < pij < 1. 

By symmetry, equivalent forms for C can be obtained by permutations of subscript 

indices: 

C(iui , w2, w3, A 1 2 , A i 3 , A 2 3 ) 
rw\ 1 1 

= / ^(Ais + 77T-(log q - log w3), A 1 2 + -r— (log q - log w2); p23)dq 

Jru>2 1 1 

' $(^12 + 7TT - ( l o S9 - logioi), A 2 3 + — — (log 9 - log w3);p13)dq. 
0 6Ai2 4A23 

The density function for G(wi,w2,w3) is: 

d3 

g(w1,w2,w3) = ( - l ) 3 ^—7;—«—exp{-A 3 (w 1 ,w 2 ,w 3 , A i 2 , A i 3 , A 2 3 )} 
OWiOW2OW3 

_ SMdMdM _ dA3 d2A3 _ 8A3 d2A3 _ dA3 d2A3 + d3A3 

dwidw2dw2 dw\dw2dw3 dw2dw\dw3 dw3dw\dw2 dw1dw2dw3 From 

<j>(xi,x2; p) = (f>(Xl)(f)(^=^) 

00 f°° ±tzi ~ PZ~L 1 

and 

Let 

^ 1 , x 2 ; p ) = $ ( 7 f = ) ^ i ) . 

Cl,23 := = $(Ai3 + \og(Wi/w3), A12 + J-J—log(lWi/u72);P23)-
atvi zAi3 z A 1 2 
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dC By symmetry, we have C2,i3 •-

d2C 

and C3,i2 := Similarly, 

12,3 dw\dw<i 

$[(( Ai3 + 2^1og(u7i/u;3)) - ^ 2 3 ( A i 2 + ^ M t o i / w j ) ) ) / ^ - P23} x 

<K Ai2 + ^—log(u;i/u;2)); 
12 

2 A i 2 i o 2 

By symmetry, we also have C 1 3 i 2 := g^f^ and C 2 3 , i := afffe"- Finally, 

d3C 
dw3 

1 

C i o 3 :— 
dwidw2dw3 

<KA13 + ̂ T— log(w 3M),A 23 + ^T—^Og(w3/w2);pl2)jT-^ 
£A\3 6A23 i±A\3A23W\ 

<K Ai3 + r r log(^3/wi))<^[((^23 + 7 7 — l o g ( w 2 / w 3 ) ) -

^̂ 13 ^̂ 23 
P i 2 ( A i 3 + ^77 log(wi/w3)))/y/l - p\2] X 1 

t«2 

13 4 A 1 3 A 2 3 ^2 \ / l ~ ^ - P i 2 

Combining Cli23, C2,i3, C73,i2, Ci 2, 3, Ci 3, 2, C 2 3,i, Ci23,and f^2-, f ^ f ^ ^ g ^ , a£rfc 

9~~9̂ 7> and QJ^Q^£QW

 w e have an expression for the density function <7(it>i, iw2> u>3). 

3.3 Four-Dimensional Case 

Let 

E = 2 

2A?4 

\2 1 \2 _ \2 \2 1 \2 _ \ A14 + A24 A12 A14 + A34 A 2 
13 

A 2

4 +A 2 _ \2 24 A12 2A 2 4 
\2 1 \2 _ \2 A24 + A34 A23 

\2 1 \2 \2 \2 1 \2 \2 y A14 -r A34 — A13 A24 A 3 4 — A 2 3 2A| 4 

be the matrix in (2-7-10) and let 

Pijk 
\2 1 \2 _ \2 

A t j + A i f c Ajk 
ZAijAik 

where A,j = AJt- and, «, j , A; are distinct and between 1 and 4. Then / i 4 ) i 2 3 4 in (2-7-11) 

can be written as: 

31 



D(w1,W2,W3,W4) = 
rm l l 

/ $(A14 + 7T\ ^g(q/w4), A 2 4 + p-r— log(q/w4), 
JO &A\4 ^^24 
A 3 4 + 7 7 7 — \og(qjw4), R(p4i2, 0413, P423))dq, 

ZA34 

where 

R(a, b, c) — 

By symmetry, equivalent forms for D are 

f 1 A X 1 a 0 

a l e 

6 c 1 

D(lWl,l02,f>3,tU4) 
y ^ i 1 1 

= / $(Ai2 + 7 7 7 — log(?/w 2), A a 3 + 7 7 7 — log(o/w 3), 
JO A^Vl ZA13 

A 1 4 + 2A 14 
log(a/to4), R(p123, 0124, P\3A))dq 

rw2 1 1 
/ *(Ai2 + 7 7 7 — log(o/wi) ,A 2 3 + 777— l o g ( ? / w 3 ) , 
Jo £>A\2 ^A23 

A24 + •^—\og(q/w4),R(p2i3,p2i4,p234))dq 
ZA24 

ru>3 \ \ • 
/ $(Ai3 + 7 7 7 — log(g/wi), A 2 3 + ^ 7 — log(?/u;2), 

Jo AA\3 ZA23 
A 3 4 + 77T— I°g(?/W4), #(0312, 0314, P324))dq. 

ZA34 

Constraints are: 

0 < Xij < 00, i ̂  j, 0 < /o.-jjk < 1, 

i , j , are distinct and 

R(P412, 0413, 0423), R(P\23i 0124, 0134), #(0213, 0214, 0234), #(0312, 0314, 0324) 

are positive definite. 
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Taking derivatives, we have 

-Dl,234 
dD —.. 1 , , . . 
o ^ r * { X i 2 + 2 ^ l o g ( W i / W 2 ) ' 

i i 
A13 + TT—log(«;i/u;3),Ai4 + 7 7 7 — ^g(w1/w4), R(p123, 0124,0134)) 

ZA13 
By interchange of 1 and 2, 1 and 3, 1 and 4 in 1)1,234 we can obtain 1)2,134 := g ~ 5 

As,i24 : = | £ , -04,123 := f j - By making use of Result 1 with E n 3u>3 : 

/ \ 
0123 

1 0134 

^ 0134 1 j 

J12 , E22 = 1 we have 

D 12,34 • — 

\ 0124 j 

d 2 D = dDlt234 
dwidw2 dw2 

— 1 1 1 
$(A13 + 7 7 T — log(wi/w3) ~ 0123(Al2 + 7 - — \ 0 g ( w 1 / w 2 ) ) , \ l 4 + 777—log(tt>l/w4) -

ZA13 ^ A i 2 ^ A i 4 

1 1 1 
012 4 (Al2 + 7 7 7 — log(wi/w2)),#34,12)<KAl2 + 77\ ^°&(Wl / Wl)) 7y[ . 

ZA12 ^ A i 2 ZA12W2 

where 

R. 34,12 

1 0134 

^ 0134 1 j 

( 

\ I \ 0123 

^ 0134 — 01230124 

By permutation of indices we can easily get 

1 — 0123 0134 — 01230124 

2 

0123 0124 

\ 

1 - 0124 ) 

D 13,24 •— QW g. 23 9wi dun '-̂ 23,14 
92D r) d2D 

d w 2 d w 3 i
 iy24,13 •— 9 ^ 9 ^ 5 -̂ 34,12 

92D 
dw^dvn ' 

Again using Result 1 with E n — 1, 

S12 — 

/ / 
1 

\ 
0123 

, E22 — 
1 0134 0123 

, E22 — 

\ 0124 ) I 0134 1 / 
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then 

y-i -^22 — 
1 

1 - Pl34 

1 -/>134 

^ —Pl34 1 j 

-#123,4 = 1 — E i 2 S 2 2 E 2 i = 1 — (p 1 2 3 + p 1 2 4 — 2/)i23/)i24/)134)/(l — p 1 3 4 ) 

and 

D 
d 3 D 

123,4 dw\dw2dw3 

${(Al4 + -^—logiwxIWi) - [(/9123 - />124Pl34)(Al2 + T"J— l o g ^ i / ^ ) ) + 
Z/\i4 ^̂ 12 

f>124 - /9l23/»134)(Al3 + ̂ 7 log(li>i/u>3))]/(l ~ p\34))I\JR™A) 

1 
</>(Ai2 + -J—log(t«i/ti;2),Ai3 + r-J— l o g ^ / ^ a ) ; ^123)7. . 

ZA12 ZA13 4Ai2Ai3U;2^3 

By symmetry and permution of indices we can easily get 

£*i24,3 D dwidufySwi ' 134,2 • dw^dw^dun 1 -̂ 234,1 Finally, 

D d A D 
1234 dwidw2dwzdw4 

<̂ (Ai4 + •^—log(w1/w4),X24 + -^—\og(w2/w4),X34 + -^—\og(w3/w4),) 

ZA\4 ZA24 ^A34 

R{,P412, / > 4 1 3 , / > 4 2 3 ) ) g ^ ^ ^ ^ ^ ^ 
From Sections 2.7 we have 

G(w!,w2,w3, w4) = exp[—A4(iwi, w2, w3, w4, X12, X13, A i 4 , A 2 3 , A 2 3 , A 2 4 , A 3 4)], 

where 

A4(w1,w2,w3, w4, A 1 2 , A 1 3 , A 1 4 , A23, A23, A 2 4 , A 3 4 ) = 

î(iwi) + h1(w2) + hi(w3) + fei(iw4) - h2{w1,w2) - h^W!, w3) - h2(wx,w4) -

h2(w2,w3) - h2(w2,w4) - h2(w3,w4) + h3(u)!,w2,w3) + h3(w!,w2,w4) + 

h3(u)!,w3,w4) + h3(w2,w3,w4) + h4(w!,w2,w3,w4) 
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= IWi + w2 + w3 + w4 - [wi +w2- A2(w1,w2, A12)] -

[W!,W3 - A 2(lUi, to3, Ai3)] - [wi + w4 - A2(wi, W4, A14)] -

[w2 + w3- A2(w2, w3, A23)] - [w2 + w4 - A2(w2, w4, A24)] -

[w3 + w4 - A2(w3,w4, A34)] + C(ioi,tw2,iW3, Ai 2 , A 1 3 ,A 2 3 ) + C(wi,w2,w4, X12, A 1 4 , A 2 4 

C(wi,ti> 3,t«4,A i 3,A14, A 3 4) + C(w2,w3,w4, A 2 3 , A 2 4 ,A 3 4 ) - D(u>i, 1 ^ 2 , ^ 3 , ^ 4 ) 

= -2(wi + u>2 + w3 + w4) + A2(w1,w2,\12)] + A2(wi,w3,\13)] + 

A2(w!,w4, Ai4)] + A2(w2, iw3, A23)] + A2(u>2, u>4, A24)] + 

A2(u;3,u;4, A34)] + C(w1, w2, w3, A 1 2 , A13, A 2 3) + C(u>i, w2, w4, Ai 2 , A i 4 , A2 4) + 

C(iwi,io3,u;4, A13, Ai4 , A 3 4 ) + C(w2,w3,w4, A 2 3 , A 2 4, A 3 4) - D(u>i, w2, w3, w4) 

and 

g(wuW2,W3,w4) = ( - l ) 4
F A i 8 ^ > 4 ^ ^ ^ 3 , ^ ) 

aA4 aA4 <9A4 d A 4 a 2 A 4 a A 4 a ^ 4 

dw2 dw3 dw4 dwidw2 dw3 dw4 

d2A4 dA4dA4 d2A4 8A4dA4 d2A4 8A4dA4 

dw\dw3 dw2 dw4 dw\dw4 dw2 dw3 dw2dw3 dw-^ dw4 

d2A4 8A4dA4 d2A4 8A4dA4 | d2A4 d2A4 | 

dw2dw4 dw\ dw3 dw3dw4 dw\ dw2 dw\dw2 dw3dw4 

d2A4 d2A4 d2A4 d2A4 d3A4 dA4 

dw\dw3 dw2dw4 dw\dw4 dw2dw3 dw\dw2dw3 dw4 

d3A4 dA4 d3A4 dA4 d3A4 dA4 

dwidw2dw4 dw3 dw1dw3dw4 dw2 dw2dw3dw4 dwx 

dAA4 

dw\dw2dw3dw4 

Upon differentiation, 

dA4 

-2 + A1>2 + A1<3 + A1A + Ci,23 + Ci,24 + Ci,34 - D i , 234-

By symmetry,!^1,1^-, f^ 1 are like f^- with indices 1 and 2, 1 and 3, 1 and 4 inter-

changed. Also, 
Pi1 A. 

A\2 + Cl2,3 + Cl2,4 — ^12,34 dw1dw2 
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and 

o Z 5 — W23 ~ -L/123,4 
OW1OW2OW3 

By the same reason as the above we can easily get 

d2A4 d2A4 d2A4 d2A4 d2A4 

.Finally, 

dw\dw3 dwxdw4 dw2dw3 dw2dw4 dw3dw4 

d3A4 d3A4 dzA4 

dwidw2dw4' dwidw3dw4' dw2dw3dw4 

d4A4 , 
Q Q Q Q — ~~ ̂ 1234-
C'Zi;iC'l«2C'W;3C'̂ '4 

3.4 Computer implementation of the Hiisler-Reiss model 

The parameter A,j's are estimated with a quasi-Newton routine. The multivari­

ate normal survival function is computed with the routine of Schervish (1984). Other 

routines that are needed are a numerical integration routines and routines for the func­

tions: C i i 23 , C i 2 , 3 , Ci23,-Di,234, ̂ 12,34,-Di23,4,-Di234- Then C 1 < 2 4 , C 1 3 i 4 etc., can be com­

puted from these routines by changing the parameters of the routines. 

3.5 Data Analysis 

Joe (1990b) constructed some multivariate extreme value environmental data sets 

from Bay Area and from the Great Vancouver Regional District. 

The first data set consists of weekly maxima of ozone concentrations ( in parts per 

hundred million) for several monitoring stations in the Bay Area; the weeks were for the 

months of April to October in 1983-1987. For comparison with Joe (1990b), the same 

subset of 5 stations are used. 

The second data set consists of weekly maxima of SO2, NO2 and ozone concen­

trations (in parts per hundred milion ) for several monitoring stations in the Greater 

Vancouver Regional District: the weeks were for the months of April to September to 

October for July 1984 to October 1987. Joe (1990b) eliminated all weeks with too many 
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missing values, and for comparison the same reduced data are used. In Chapter 4, weeks 

with missing values are used as censored data. 

Details of exploratory data analysis of both data sets are given in Joe (1990b). 

Joe (1990b) compares the fit of the models (2-7-1) to (2-7-8) and their multivariate 

extensions, as well as other models in Joe (1990a). The models in Joe (1990a) which have 

some appealing theoretical properties were found to fit worse even though the models 

had more parameters. A partial explanation is that the parameters in these models are 

not easily interpretable as in (2-7-1) to (2-7-11). For comparison with a baseline, the 

likelihood of the multivariate normal copula with exponential margins was computed. 

The comparison of the Husler-Reiss model with the best fitting of (2-7-1) to (2-7-8) 

and with the multivariate normal copula is given in Tables 1 to 7. Only the parameter 

estimates for the Hiisler-Reiss model are given. Note that the likelihoods given are 

for the dependence parameters, after the univariate margins have been transformed to 

exponential survival functions (see Section 2.8). Also all likelihoods based on margins ( 

or subsets of data from subsets of stations) are given. This is to check on consistency of 

the parameter estimates for multivariate margins of different orders. This check provides 

an indication of the goodness of fit of the multivariate models. A final note for the tables 

is that for 3 or more stations, labelled as l , . . . , p , the parameter estimates are given 

in lexicographical order, that is, A12, A13, . . . , A i p , A23, . . . , A 2 p , . . . , A p _ i i P . For example, 

consider the pairs of stations P T , SJ in Table 1, where the other stations are abbreviated 

C C , V A , S T . In the trivariate subset, (CC, PT , SJ), the A parameter for (PT,SJ) is the 

third value (0.588); in the trivariate subset, (PT, SJ, V A ) , it is the first value (0.595). 

in the 4-variate subset, (CC,PT, SJ, V A ) , it is the fourth value (0.567), etc. Recall from 

Chapter 2, that a smaller value of A means more dependence. 

Some overall conclusions from the tables are: 
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(1) The parameter estimates for a particular A are similar over different likelihoods. 

(2) Of the 37 bivariate likelihoods, the likelihood of the Hiisler-Reiss model is higher 

than those of both models (2-7-1) and (2-7-2) in 13 cases, and it is higher than that of 

the multivariate copula in 18 cases. 

(3) Of the 25 trivariate likelihoods, the likelihood of the Hiisler-Reiss model is higher 

than those of both models (2-7-3) and (2-7-4) in 11 cases. With the adjustment for the 

number of parameters ((2-7-3) and (2-7-4) have 2 parameters, the Hiisler-Reiss trivariate 

model has 3 parameters), through a penalty of half the number of parameters for the 

log likelihood( the Akaike information criterion), the Hiisler-Reiss model is only better 

for the first data set in Table 1. 

(4) Of the 9 four-variable likelihoods, the likelihood of the Hiisler-Reiss model is 

higher than those of the models (2-7-5) to (2-7-8) in 6 cases. This is true even with 

adjustment for the number of parameters ( 6 for the Hiisler-Reiss model and 3 for models 

(2-7-5) to (2-7-8) ). 

Overall, it appears that the Hiisler-Reiss model provides a better fit for Tables 1 and 

3, and maybe Table 5. Therefore it is a useful model in addition to those in Joe (1990b). 

A n indication of whether the Hiisler-Reiss model is better can be seen from the 

estimates for the bivariate likelihoods. If the pattern of the A's does not fit the bivariate 

patterns that are possible with models (2-7-3) to (2-7-8), then the Hiisler-Reiss model 

should be better. ( The restrictions of the bivariate patterns for models (2-7-3) to (2-7-8) 

can be seen from taking the bivariate margins in these models.) 
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Table 1. Bay Area - Ozone(n=120) pay A 
Notation: Concord(CC),Pittsburg(PT),Vallejo(VA), 

San Jose(SJ) Santa RosT).  
Tikelihood for dependence parameters 

subset 
CC, PT 
cd, SJ 
CC, VA 
CC, ST 
PT, SJ 
PT, VA 
PT, ST 
SJ, VA 
SJ, ST 
VA. ST 

C C J ^ S J 
CC,PT,VA 

CC,PT,ST 

CC,SJ,VA 

CC,SJ,ST 

CC,VA,ST 

PT,SJ,VA 

PT,SJ,ST 

PT,VA,ST 

SJ,VA,ST 

CC,PT,SJ 
VA 

CC,PT,SJ 
ST 

CC,PT,VA 
ST 

CC,SJ,VA 
ST 

PT,SJ,VA 
ST 

estimate 
T F T T 

negative log likeli. 
normal r̂ s 

hood 
H-R model 

— O S 3 — 
0.451 
0.532 
0.708 
0.595 
0.581 
0.749 
0.579 
0.740 
0.599 

0.354,0.453 
0.5̂ 88 

0.353,0.532 
0.&0 

0.352,0.704 
0.750 

0.451,0.536 
0.576 

0.450,0.716 
0.741 

0.533.0.708 
0.606 

0.595,0.583 
0.579 

0.594,0.755 
0.?38 

0.582.0.752 
0.d06 

0.580.0.747 
0.607 

0.357,0.441 
0.539,0.567 
0.581,0.574 
0.355,0.441 
0.70. 0.567 
0.738,0.741 
0.353,0.534 
0.706,0.581 
0.754,0.607 
0.450,0.538 
0.714,0.577 
0.750,0.609 
0.594,0.585 
0.755,0.581 
0.746,0.610 

154.28 
176.17 
190.70 
211.60 
199.85 
196.07 
214.80 
197.68 
214.56 
199.86 
221.32 

154.08 
175.96 
190.38 
211.03 
199.34 
196.05 
214.37 
197.40 
213.96 
199.62 
216.41 

153.50 
179.40 
192.41 
214.24 
200.48 
198.52 
214.54 
202.49 
218.74 
203.12 
212.94 

225.26 221.36 223.87 

244.94 245.20 245.70 

245.38 

268.11 

271.62 

267.09 

290.80 

279.04 

282.20 

288.42 

243.37 

265.32 

271.40 

265.27 

288.08 

277.97 

278.01 

280.47 

248.67 

272.20 

273.54 

269.90 

291.56 

278.94 

284.13 

280.01 

311.54 305.04 303.61 

154.75 
176.91 
190.30 
210.47 
199.06 
197.15 
213.92 
197.15 
213.52 
199.54 
212.23 

222.92 

243.86 

242.80 

265.69 

268.28 

264.27 

287.04 

275.45 

275.85 

275.72 

299.69 

307.17 303.67 304.20 300.66 

329.94 324.70 329.57 321.01 

352.88 347.34 349.94 342.36 
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Table 2. GVRD-Sulphur Dioxide(n=70) 

Notation: Confederation Park(CP), Second Narrows(SN), 

Anmore(AN),Rocky Point Park(RP). 

Likelihood for dependence parameters. 

estimate negative log likelihood 

subset H-R 6's T ' S normal H-R model 

CP, SN 0.845 129.55 129.54 129.37 129.58 

CP, A N 1.086 136.11 135.96 134.82 135.94 

CP, R P 0.905 131.45 131.67 129.61 132.00 

SN, A N 1.068 135.36 135.54 133.97 135.62 

SN, R P 1.229 137.04 137.40 136.48 137.70 

A N , R P 0.756 123.39 124.54 123.63 126.08 

C P , S N , A N 0.840,1.068 193.83 193.82 192.16 193.44 

1.062 

CP,SN,RP 0.846,0.891 190.28 192.97 189.26 190.89 

1.157 

C P , A N , R P 1.045,0.909 183.89 188.01 182.94 187.05 

0.750 

S N , A N , R P 1.064,1.172 187.61 190.59 187.30 190.93 

0.750 

C P , S N , A N 0.840,1.060 241.86 247.15 240.07 244.05 

R P 0.900,1.032 

1.155,0.748 
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Table 3. GVRD-Nitrogen Dioxide(n=84) 

Notation: Kensington Park(KP), Confederation Park(CP), 

Anmore(AN), Rocky Point Park(RP). 

Likelihood for dependence parameters. 

estimate negative log likelihood 

subset H-R 6's r's normal H-R model 

K P , C P 0.378 112.97 113.10 120.15 114.06 

K P , A N 0.415 119.26 119.31 124.01 119.59 

K P , R P 0.362 110.64 .110.64 119.83 111.53 

CP, A N 0.466 127.84 127.30 128.81 126.55 

CP, R P 0.346 108.53 108.27 107.87 107.71 

A N , R P 0.356 110.48 110.22 112.64 109.91 

K P , C P , A N 0.379,0.417 147.96 146.20 154.95 146.27 

0.463 

K P , C P , R P 0.382,0.363 133.11 126.51 137.25 128.55 

0.343 

K P , A N , R P 0.416,0.363 136.99 .131.88 143.35 132.88 

0.353 

C P , A N , R P 0.463,0.345 139.29 137.49 135.81 132.40 

0.356 

K P , C P , A N 0.382,0.418 161.42 151.95 160.77 149.77 

R P 0.363,0.457 

0.342,0.352 
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Table 4. GVRD-Ozone(n=84) 

Notation: Marpole(MA), Confederation Park(CP), Anmore(AN), Rocky Point Park(RP). 

Likelihood for dependence parameters. 

estimate negative log likelihood 

subset H-R 8's r's normal H-R model 

M A , C P 0.521 89.17 89.23 88.00 89.69 

M A , A N 0.829 101.63 102.47 101.80 104.54 

M A , R P 0.763 99.94 100.50 100.88 102.21 

CP, A N . 0.747 98.78 99.60 95.96 101.93 

CP, R P 0.680 97.23 97.72 93.19 98.95 

A N , R P 0.284 61.55 61.73 72.02 64.66 

M A , C P , A N 0.526,0.803 129.02 131.08 126.47 133.31 

0.741 

M A , C P , R P 0.526,0.738 125.73 129.42 123.81 130.07 

0.676 

M A , A N , R P 0.816,0.747 103.97 105.08 115.26 108.96 

0.284 

C P , A N , R P 0.734,0.670 101.13 101.70 107.48 105.76 

0.285 

M A , C P , A N 0.505,0.763 130.01 133.28 137.97 136.71 

R P 0.705,0.700 

0.642,0.291 
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Table 5. GVRD-Station 5 (Confederation Park). (n=64) 

Likelihood for dependence parameters. 

estimate negative log likelihood 

subset H-R <5's r's normal H-R model 

S02,N02 1.359 127.33 126.92 125.49 126.77 

so2,o3 1.033 122.83 122.88 122.10 123.01 

N02,03 0.932 120.31 120.56 118.39 120.76 

S02,N02,03 1.312,1.023 181.73 180.37 176.24 179.48 

0.930 

Table 6. GVRD-Station 7 (Anmore). (n=76) 

Likelihood for dependence parameters. 

estimate negative log likelihood 

subset H-R <5's T 'S normal H-R model 

S02,N02 1.167 148.68 148.81 146.10 148.84 

so2,o3 1.134 148.21 148.22 145.17 148.25 

N02,03 0.526 118.65 119.11 124.25 120.64 

S02,N02,03 1.132,1.112 189.37 190.11 192.69 191.96 

0.526 
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Table 7. GVRD-Station 9 (Rocky Point Park). (n=63) 

Likelihood for dependence parameters. 

estimate negative log likelihood 

subset H-R tf's r's normal H-R model 

S02,N02 1.065 120.87 121.48 118.51 121.99 

so2,o3 1.063 120.38 121.10 118.57 122.28 

N02,03 0.622 107.55 106.99 106.00 106.30 

S02,N02,03 1.019,1.050 162.60 163.61 159.92 164.04 

0.625 
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Chapter 4. Analysis With Missing Data 

In statistical analysis, it may happen by accident or some other reason that some 

of the observations are missing, cannot be collected, or in some other way are not 

obtainable. In such a situation it is obvious that the routine method is not appropriate. 

Now we would like to reanalyze the data from Greater Vancouver Regional Dis­

trict with missing values among the hourly measurements. If there are missing hourly 

measurements, we treat the daily or weekly maxima as right-censored. 

For right censored data, let xt- be either the observed value or the right censored 

value, and let 

Si 
1 if Xi is right-censored 

0 if Xi is not right-censored 

If f(t; 0) is a parametric family of models for the iid data and if S(t; 9) is the survival 

function, then the likelihood function with right-censored data is 

L = n ^ J ( x i , 0 ) 1 - S i S ( t i , 9 ) 6 i , 

see, for example, L'awless(1980) for details. 

We will use the procedure in Section 2 proposed by Joe (1990b) for fitting of a para­

metric multivariate distribution to independent and identically distributed p-vectors 

X i , . . . , X n . The first step is to fit generalized extreme value distribution to the uni­

variate margin separatly by maximum likelihood. That is, the j t h univariate margin 

is: 

Fj{x^hHj,(Tj) = e x p { - ( l + 7 i[(x - fij)/<Tj])+lhi}, 

where (z)+ = max(z,0). Assuming that the measurements are iid, the likelihood is 
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where ~F(x; 7, [i, a) = 1 - F ( x ; 7, (i, a) and f(x; 7, fi, a) = — , and subscript j has 

been added for the jth component. 

After fitting the univariate margins, make the transformation 

•̂ = (i+7i[(^-^)/^]r1/7> 

so that original random variables become exponential random variables. The y ^ s are not 

treated as left censored data. Now for multivariate parameters, we take the univariate 

margins to be exponential. 

For bivariate data, suppose we have iid random pairs {Y\\, Yi2),. • • i(Yni, ^12),and 

observe (Yu, Y12, Sn, 612),... ,{YnX, Yn2, Snl, Sn2),where 

1 if Yij is left censored, 
Sij = { 

0 if Y{j is not censored, 

i = 1 , . . . ,n and j = 1,2. The bivariate cdf is F ( y x , y2,6) = F = 1 - Fx - F2 + F, where 

F is the survival function and F\ and F2 are univariate margins of F. 

Therefore we can get the following contribution to the likelihood of the bivariate 

parameter 6: 

P ( Y 1 = y 1 , Y 2 = y2) 

P ( Y 1 < y 1 , Y 2 = y2) 

P ( Y 1 = y 1 , Y 2 < y 2 ) 

_ P ( Y 1 < y 1 . Y 2 < y 2 ) 

In the trivariate case, the generalization is straightforward and some details are 

given below. Suppose we have iid random variables (Y\\,Yi2,Y\3), ... ,(Yni, Yn2, Yn3), 

and observe ( Y n , Y 1 2 , Y 1 3 , 8 n , S 1 2 , S 1 3 ) , ( Y n l , Y n 2 , Y n 3 , 8 n l , 8 n 2 , 8 n 3 ) , where 

1 if Yij is left censored, 
8^ = < 

0 if Yij is uncensored, 
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_ d2F 
dy1dy2 

_ dF_ _ df_ _ d~F7 

dy2 dy2 dy2 

_ 8F_ _ 9 F _ dF, 
dyi dyi dyi 

= F ( y i , y 2 , 0 ) 

if ( £ i , M = (0,0) 

if (Siu6i2) = (1,0) 

if (^1,^2) = (0,1) 

if (6iuSi2) = (l,l) 



i — 1,. . . , n and j = 1,2,3. The trivariate cdf is 

F(yi, y 2 ,y 2 ,5 ) = 1 - F i (y i ) - F 2 ( y i ) - F 3 ( y i ) + F12(yi, y 2 ,5) 

+ ^ i 3 ( y i , y 3 , 0) + ̂ 23(2/2,2/3,0) - F(yi, y 2 , y2,9) 

where JF1 is survival function and F\, F2, F3, Fi2, F13, and F 2 3 are the univariate and 

bivariate margins of F. 

Let C i 2 3 = (Sn,Si2,Si3), then we have 

P(Y1=y1,Y2 = y2,Y3 = y3)=: d3F if C i 2 3 = (0,0,0) P(Y1=y1,Y2 = y2,Y3 = y3)=: dyidy2dy2 

if C i 2 3 = (0,0,0) 

P(Y1<yuY2 = y2,Y3 = y3) = d2F 
dy2dy3 

d2F,3 

dyidyz 
d2F 

dy2dy3 
if C*i 2 3 = (1,0,0) 

P(Y1 = Vl,Y2 < y2,Y3 = y3) = d2F 
dyidy3 

d 2 F u 

dyidy3 

d2F 
dyi dy3 

if C\23 
= (0,1,0) 

P(Y1 = y1,Y2 = y2,Y3<y3) = d2F 
dyidy2 

d 2 F n 

dy2dy3 

d2F 
dy\dy2 

if C i 2 3 
= (0,0,1) 

P(Y1<y1,Y2<y2,Y3 = y3) = dF _ dF* , 
dys "+" 

dF-\3 1 dF?3 

dy3 dy3 

_ dF_ 
dy3 

if C*i 2 3 = (1,1,0) 

P(Yr < yuY2 = y2,Y3 < y 3) = dF _ dF2 , 
dy2 

dFi ? 1 dF23 

dy2 dy2 

_ a£ 
dy2 

if C\23 = (1,0,1) 

P(Y1=yuY2<y2,Y3<y3) = dF _ 
dyi 

dF, , 
dyi "t" 

dF-\ 9 1 dF-] 3 

dyi dyi 
_ 9 F 

dyi if C ' i 2 3 = (0,1,1) 

P{Y1 < Vl,Y2 < y2,Y3 < y 3) = F(yi, 2/2,y2,0) if C*i 2 3 = ( 1 , 1 , 1 ) 

Clearly, this can be generalized to higher dimensions. 

Computer implementation of likelihood 

For models (2-7-1) to (2-7-8), the different contributions to the likelihood can easily 

be obtained using a symbolic manipulation software, such as Maple (Char et al., 1988, 

5th edition), where derivatives can be output in Fortran format. 

Data analysis 

Here we reanalysize the Data Set 2 of Chapter 3 with the missing hourly values and 

censored weekly maxima. 

The results of the multivariate extreme value analysis are summarized in Table 8 — 10. 

The values of the maximum likelihood estimates are given in the left hand side of each 

table, and the negative log likelihoods are in the right side of each table. 
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A larger value of n means that the maxima for the station tend to be larger, a 

larger value of a means more spread and a larger value of 7 means that the hourly 

concentration has a heavier tail. Compared to the results of previous analysis, where 

weeks with many missing hourly measurements were treated as missing at random, we 

see that all parameter estimates of fi,cr and 7 in three tables are mostly slightly larger 

(compare Tables 3 to 5 of Joe 1990b). This is not a surprising result. 

After fitting the univariate margins, we obtain the transformed data which is left 

censored. The next step is to analyze the transformed data. The models for the mul­

tivariate exponential distribution were described before. The parameter estimates for 

the censored data are quite close to the estimates in Table 3 to 5 of Joe (1990b), but 

the relative values of the estimates are different in some cases. For trivariate case, the 

likelihoods for the 6's models and the r's models diverge whereas they are close in the 

bivariate case. A n explanation of the multivariate parts of Tables 8 to 10 is explained 

next for one case. For example, for (CP, SN, AN) in Table 8, the estimates of the param­

eters in model (2-7-3) are (1.567, 1.249), and the estimates of the parameters in (2-7-4) 

are (0.851, 0.507). For model (2-7-3) (respectively (2-7-4)), 1.567 (0.851) measures the 

dependence of the pair of stations (CP, SN), and 1.249 (0.507) measures the dependence 

of the pairs of (CP, AN) and (SN, AN) . The model (2-7-3) is better in Table 10, and 

the model (2-7-4) is better in Table 8 and 9. 

Conclusions are the same as in Joe (1990b) which means that there is no substantial 

difference with the missing values deleted. 
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Table 8. GVRD-Sulphur Dioxide(n=104) 

Notation: Confederation Park(CP), Second Narrows(SN), 

Anmore(AN),Rocky Point Park(RP). 

Likelihood for dependence parameters. 

subset estimate estimate negative log likelihood 

S's T'S <5's r's 

CP, SN 1.560 0.843 185.581 185.664 

CP, A N 1.220 0.468 205.635 205.345 

CP, R P 1.462 0.729 200.587 200.556 

SN, A N 1.292 0.535 191.869 192.223 

SN, R P 1.447 0.720 190.815 190.669 

A N , R P 1.647 0.905 195.814 197.452 

Multivariate 

C P , S N , A N 1.567,1.249 0.851, 0.507 284.370 283.937 

CP,SN,RP 1.550,1.456 0.823, 0.674 277.888 279.263 

A N , R P , C P 1.650,1.348 0.875, 0.562 291.025 293.808 

A N , R P , S N 1.675,1.395 0.868, 0.596 278.128 282.235 

Estimate for univariate margin parameter 

C P 0.313 1.857 0.834 

SN 0.181 2.083 0.885 

A N 0.261 3.215 2.024 

R P 0.080 2.058 1.094 

49 



Table 9. GVRD-Nitrogen Dioxide(n=84) 

Notation: Kensington Park(KP), Confederation Park(CP), 

Anmore(AN),Rocky Point Park(RP). 

Likelihood for dependence parameters. 

subset estimate estimate negative log likelihood 

<5's T ' S 8's r's 

K P , CP 2.816 2.118 161.095 161.041 

K P , A N 2.673 1.965 161.941 161.944 

K P , R P 2.947 2.246 154.375 154.356 

CP, A N 2.168 1.482 176.638 176.104 

CP, R P 3.256 2.557 144.079 143.930 

A N , R P 2.968 2.272 152.358 152.171 

Multivariate 

K P , C P , A N 2.741, 2.259 2.061, 1.715 219.517 215.709 

R P , K P , C P 2.945, 2.718 2.364, 2.069 194.823 189.065 

R P , K P , A N 2.974, 2.597 2.226, 2.150 198.191 192.105 

R P , C P , A N 2.961, 2.419 2.2.9, 1.934 204.392 199.517 

Estimate for univariate margin parameter 

K P 0.082 5.701 2.186 

C P 0.179 6.093 2.442 

A N 0.086 3.750 1.760 

R P 0.078 5.228 1.658 
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Table 10. GVRD-Ozone(n=84) 

Notation: Marpole(MA), Confederation Park(CP), 

Anmore(AN),Rocky Point Park(RP). 

Likelihood for dependence parameters. 

subset estimate estimate negative log likelihood 

6's r's 6'a r's 

M A , C P 2.077 1.360 143.604 143.340 

M A , A N 1.726 1.012 159.720 160.279 

M A , R P 1.691 0.967 159.913 160.312 

CP, A N 2.174 1.467 147.824 147.753 

CP, R P 2.162 1.444 144.703 144.804 

A N , R P 3.616 2.917 122.432 122.622 

Multivariate 

M A , C P , A N 2.061, 1.835 1.322, 1.140 211.020 210.141 

M A , C P , R P 1.948, 1.948 1.328, 1.073 207.476 210.365 

A N , R P , M A 3.606, 1.759 2.868, 0.963 189.255 191.630 

A N , R P , C P 3.586, 2.131 2.852, 1.439 176.798 177.085 

Estimate for univariate margin parameter 

M A -0.049 4.182 0.816 

C P -0.019 5.054 1.384 

A N 0.047 5.250 1.595 

R P 0.091 5.054 1.761 
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Chapter 5. Conclusion and Further Research 

This thesis has applied maximum likelihood estimation of several parametric families 

of multivariate extreme value distribution, including the case where some maxima are 

right censored. 

The Husler-Reiss family has more flexibility, with one parameter for each bivariate 

margin, than the parametric families used in Joe (1990b). However, its form is much 

more complicated and for diminsion p > 3, time-consuming integrations and computa­

tions of the multivariate normal cdf are needed. Also, unlike the other families, symbolic 

manipulation software cannot be used to obtain the density function from the survival 

function. The maximum likelihood estimation takes 10-20 hours on a Sun SPARCsta-

tion 330 for p =4, and is expected to take weeks for p =5 ( the programming for this 

case has not been completed). If both the multivariate dependence parameters and the 

univariate marginal parameters are simultaneously estimated, the C P U time is much 

more than the preceding (this also has not been done). Fortunately, it seems possible 

from the maximum likelihood estimates of the bivariate likelihoods to check whether 

the simpler models in Joe (1990b) fit the data adequately, if so, the bivariate parameter 

estimates must follow certain patterns. If the simpler models appear not to be adequate, 

then the best model, among known ones, would likely be the Hiisler-Reiss model. 

Further research is needed to derive families of multivariate extreme value distri­

butions that have a dependence parameter for each bivariate margin and that have a 

simpler form than the Husler-Reiss model (simpler in the sense that maximum likeli­

hood estimation becomes possible for p > 5). Some positive work in this direction has 

been initiated. 
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