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Abstract 

We give a brief review of anomalies i n quantum field theory - where they arise, what 

they imply, and how they have been dealt with i n the past. We suggest that theories 

with a gauge anomaly can be consistently quantized by applying the analogue of Dirac's 

formalism for classical constrained hamiltonian systems to the quantum theorj'. This 

suggestion is implemented for the archetypical chiral Schwinger model. B y diagonalizing 

the hamiltonian, we show that the model is consistent, unitary, and Lorentz invariant. 

Its vector gauge boson aquires a gauge anomaly generated mass, and the fermionic sector 

bosonizes. 

We review the proposals for describing free chiral bosons and show that there are two 

which are not the same. The bosonization of a Dirac fermion in background gauge and 

gravitational fields is used to obtain the coupling of these two theories to backgrounds 

such that they are both the bosonization of a Weyl fermion in the same backgrounds. 

Nonabelian bosonization of gauged Dirac fermions in curved space has been used to 

obtain a chiral nonabelian Bose theory which corresponds to gauged Weyl fermions in 

curved space. This theory is the Siegel W Z N W model coupled appropriately to back

ground fields. 

We perform a canonical quantization of the Siegel W Z N W theory using the B R S T 

formalism. We find that by introducing an anomaly cancelling conformal field, it can be 

quantized for a large class of symmetry groups. For a certain subset of these groups the 

conformal field vanishes. 

n 
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Chapter 1 

Introduction 

The need to reconcile general relativity with quantum mechanics is fueled by the belief 

that any complete physical theory is a quantum theory. Classical theory only predicts 

the average evolution of macroscopic phenomena where the quantum discontinuities can 

be treated as infinitely small. However, the only way of defining a quantum theory is to 

start with a classical theory and then quantize it. Basically there are two approaches — 

canonical quantization and path integral quantization — and at first sight both of these 

appear to carry the classical symmetry properties and conservation laws over intact to 

the quantum theory. In the development of ordinary point particle quantum mechanics 

(ze not the quantum mechanics of fields) this preservation of symmetry was generally 

found to be true [1]. Hence, the discovery by field theorists of the violation of classical 

conservation laws and symmetries by the quantization procedure was surprising, and was 

called the anomaly phenomenon. Perhaps a better name, suggested by Roman Jackiw, 

would be quantum mechanical symmetry breaking. 

This most, interesting phenomenon has become central in almost any discussion of a 

quantum field theory which violates parity invariance. Except for the as of yet to be 

discovered Higgs particle, all matter in accepted elementary particle theory consists of 

spinor fields which interact via vector boson and gravity fields. The spinor representing a 

Dirac fermion has four components, corresponding to the fact that it describes a particle 

or an antiparticle, either of which can have left- or right-handed spin. It can be written 

1 



Chapter 1. Introduction 2 

(see appendix A) as a sum of two spinors, called its chiral components, which are inde

pendent for the case of massless particles. A given component is called a W e y l spinor, 

and describes a particle or an antiparticle, where the particle has only one handedness 

of spin, and the antiparticle has only the opposite handedness of spin. The two chiral 

components are interchanged under the operation of parity; hence theories with only one 

chiral component violate parity invariance. 

Pr ior to 1956, when it was discovered that the weak interactions violate parity, it was 

thought that all of nature's spinor fields were the chirally symmetric Dirac fields. To 

date only neutrinos of one chirality have been observed, and the parity violating theories 

of Weyl fermions have become commonplace in the life of a quantum field theorist. 

It has become important to study chiral matter, but why on a line? Wel l , there are 

three reasons for studying quantum field theory in only two spacetime dimensions. 

The first is that the two dimensional theory can be used as a pedagogical toy model 

for studying the four dimensional theory. 1 Although some aspects of field theory are 

dimension independent, and some are not, all can have light shed upon them by a study 

of the theory in a lower spacetime dimension. For example, deep inelastic scattering 

experiments indicate that hadrons are bound states of point-like quarks which are essen

tially free at small enough distance scales. Yet free quarks are not seen iri isolation •— 

the final scattering states are jets of hadrons. The field theoretic mechanism by which 

this occurs has only been demonstrated in exactly solvable two dimensional models [2]. 

In a similar spirit, we wil l find that the vector boson of chiral electrodynamics has an 

anomaly generated mass. This hints of a possible alternative to the standard picture of 

spontaneous symmetry breaking with Higgs mechanism for vector boson mass generation 

in the standard model. 

* B y n d imensional theory, we mean an infinite dimensional field theory i n 1 t ime and n — 1 space 

dimensions. 
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The second reason is that two dimensional fields are not only pedagogically, but also 

physically relevant in many circumstances. There are physical systems whose motion is 

dynamically constrained to lie in a subspace of the full spacetime, and a lower dimensional 

model adequately describes the reduced dynamics. For example, linear polymers such 

as polyacetylene have been described by the use of an anomalous two dimensional field 

theory [3]. Also there are many important applications that arise due to the fact that 

two dimensional conformally invariant quantum field theories describe the long range 

behaviour of correlations in planar statistical systems which are undergoing second order 

phase transitions [4]. 

The third reason is associated with the idea called string theory. Although string the

ory has yet to predict something, it may be "the theory of everything". Instead of basing 

elementary particle physics on point particles, it takes the fundamental constituents of 

matter (and indeed of spacetime) to be string-like, that is have one spatial dimension 

[5]. Other than this, the theory does not relinquish any of the traditional structure of 

relativistic quantum mechanics, and can therefore be regarded as an extension of the 

logical framework of elementary particle physics. One of the main reasons for believing 

it to be relevant, is that it appears to contain quantum gravity in a way which is, for the 

first time, consistent and finite. It also naturally contains quantum gauge theories of the 

type that are needed to describe physics at energies well below the Planck mass. 

A single classical string propagates through spacetime in a manner which minimizes 

the area of its world-sheet [6]. The world sheet is a map, with coordinates X^(a), from 

a two dimensional parameter space, with coordinates <xQ, into physical spacetime. By 

introducing a metric hap(a) on the parameter space, the action for the propagation of a 
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bosonic string through spacetime with metric can be wr i t t en 2 

S = J d2<rVhha0(o-)gflv(X)daX^Xu. (1.1) 

For a d-dimensional Minkowski spacetime metric g^v = t]^, this is precisely the action 

for d massless scalars i n a 2-dimensional curved spacetime, where one of the scalar fields 

has a "negative kinetic energy". This action describes a single free string, hence its 

quantization gives the so called first quantized bosonic string theory. 

String interactions are described perturbatively by a series expansion which is a sum 

of terms analogous to the Feynman diagrams of point particle field theory. Just as 

the propagators of a Feynman diagram are free field propagators, each string of a string 

diagram is free. A nonperturbative description of interacting strings involves formulating 

a string field theory, which upon quantization is said to be second quantized. 

The bosonic string is not realistic, and to make it so requires the introduction of 

internal degrees of freedom propagating along the string. This can be done by introducing 

world-sheet supersymmetry, which adds fermionic coordinates; and introducing gauge 

symmetry, which gives the fermions internal quantum numbers. This gives a large class 

of candidate string theories, but string theorists, have found that the need for anomaly 

cancellation singles out just a few. 

A very important property of chirally symmetric two dimensional field theories is that 

every fermionic theory is equivalent at the quantum level to a bosonic theory. Exhibit ing 

this equivalence, known as bosonization (or fermionization), has proven to be essential 

in solving a variety of two dimensional problems. It was first used by Tomonaga [7] to 

solve the one dimensional Coulomb gas problem, and later by Mattis and Lieb [8] to solve 

a large class of Coulomb-like problems. The nontrivial and nonlinear Schwinger model 

2 Indices are raised and lowered w i t h the appropriate metric and obey the summation convention eg 
X,L — g'tuXv. B o t h http and g,lv have M i n k o w s k i signature, thus for the flat case of M i n k o w s k i spacetime 

gliv = TJIW = diag(—1, ! , . . . , ! ) . h is the absolute value of the determinant of hc,p. 
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[9] upon bosonization becomes a free massive scalar field theory. Similarily the Thirring 

model (Dirac field with current-current interactions) [10] reduces to a tr ivially solvable 

model, with a quadratic action, in its bosonic representation. Ian Affleck has determined 

exact critical exponents for quantum spin chains by bosonizing the fermionic hamiltonian 

obtained from the spin chain hamiltonian by a Jordan-Wigner transformation [11]. 

Bosonization has also been useful in understanding four dimensional phenomena 

that may be described by an effective two dimensional theory. A n example is the 

Callan-Rubakov effect (anomalous fermion-number breaking i n the presence of a mag

netic monopole) which is neither perturbative nor quasiclassical and requires an exact 

solution of the spontaneously broken four dimensional field theory. This is not at present 

possible, however a natural approximation can be obtained by considering only the dy

namics of spherically symmetric fermions. Then the problem becomes effectively two 

dimensional and can be exactly solved using bosonization [12, 13]. 

In two spacetime dimensions chiral particles move only in one direction (see appendix 

A). String theory has motivated people to extend bosonization to chiral field theories 

because the phenomenologically promising heterotic string has a sector of 32 left-moving 

fermionic coordinates, a sector of 10 left-moving bosonic coordinates, and a sector of 10 

supersymmetric right-moving coordinates. 

Let us close this introduction with an overview of this thesis. 

In order to put our work into perspective, we give, in chapter two, a general intro

duction to the well known aspects of anomalies in field theory. Such things as why global 

anomalies are often welcome, while local anomalies are often not welcome, are explained. 

We review how the failure of Noether's theorem for a symmetry current is equivalent 

to the variance of the quantum mechanical effective action under the corresponding 

symmetry transformation, and how this leads to the nonperturbative phase holonomy 
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description of the anomaly. We explain which theories may have gauge or gravitational 

anomalies and why grand unified theories and string theories are formulated in a manner 

which avoids these anomalies. 

In spite of the conventional wisdom that anomalous chiral gauge theories constitute 

nonsense, we w i l l consider their quantization. To prepare for this work, and later work 

on chiral bosons, i n chapter three we review Pirac's formalism for classical constrained 

hamiltonian systems. In this chapter we go on to review the hamiltonian formalism for 

chiral gauge theories, where the anomaly wi l l be seen to manifest itself as an inconsistent 

constraint algebra. We suggest that this could be dealt with by the analogue of Dirac's 

procedure applied directly to the quantum theory. In chapter five we wil l implement this 

suggestion for the chiral Schwinger model, and show by explicit solution that the model is 

consistent, unitary, and Lorentz invariant. 3 However, there is a loss of gauge invariance, 

resulting in a quantum theory with one more physical degree of freedom than the classical 

theory, where the corresponding degree of freedom is gauged away. The gauge boson and 

the Weyl fermion decouple and give rise to a massive scalar and a massless chiral scalar, 

respectively. 

The fact that the spectrum contains a chiral scalar is no accident, for as we shall see, 

the equivalence between a Weyl fermion and a chiral boson holds for fairly general theories 

in two dimensions. To establish this we wi l l , in chapter four, review the bosonization of a 

free Dirac fermion and see how it is a consequence of the anomalous current commutators, 

and the Sommerfeld-Sugawara construction of the fermionic energy-momentum tensor. 

The Sommerfeld-Sugawara formula says that the hamiltonian of a Weyl fermion is 

the hamiltonian of a chiral boson. As we wil l discuss in chapter six, there have been 

several bosonic non-local lagrangians proposed which yield this hamiltonian. Here we 

will show that these are obtained by applying the Dirac procedure to a lagrangian which 

3 T h i s is original work, and has also been published by the author in [14]. 
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is the sum of the usual non-chiral lagrangian for a scalar plus a Lagrange multiplier term 

which enforces the linear constraint d+(f> = 0. The fact that this constraint does not 

commute with itself introduces the nonlocality. A lagrangian which uses the quadratic 

chiral constraint (d+d>)2 = 0 sucessfully avoids this nonlocality; however, the symmetry 

generated by this constraint is anomalous, and ai a result the quantum theory obtains 

another chiral degree of freedom. 

In chapter seven we will show that both these theories, when appropriately coupled 

to background gauge and gravitational fields, have the effective action of a Weyl fermion 

in the same backgrounds. 4 To do so we need the fact that a scalar and a Dirac fermion 

in the same backgrounds have the same effective action (a construction which we will 

review in the first three sections of this chapter). 

Theories with several fermion species are often symmetric under nonabelian rotations 

of the species into one another. We review the bosonization procedure, introduced by 

Witten, which preserves these symmetries in the first section of chapter eight. The 

anomalous current commutators here are the famous Kac-Moody algebras, and they, 

along with the Sommerfeld-Sugawara construction for the nonabelian theory, allow a 

bosonization to be established which is a generalization of the one established for the 

single species chirally symmetric theory. The resulting theories are the Wess-Zumino-

Novikov-Witten (WZNW) models. In the next section of this chapter we will review how 

this bosonization is extended to the theory in background' gauge and gravitational fields, 

and in the final section of this chapter we will show how it is used to define a chiral 

version of the WZNW model which is the bosonization of nonabelian Weyl fermions. 

This model is known to have an anomaly in the symmetry which generates the chiral 

constraint for all but a few of the nonabelian symmetry groups. By introducing one more 

chiral degree of freedom into the the model we will succeed in quantizing it for a much 

4 T h e original work here is i n section 7.4. T h i s work has also been published by the author in [15]. 
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larger class of nonabelian symmetry groups. This piece of original work is presented 

chapter nine and has also been published in [16]. 



Chapter 2 

A n Introduction to Anomalies 

When the action of a lagrangian field theory is invariant under a continuous group of 

symmetries, the classical Noether theorem gives a corresponding set of locally conserved 

currents j". 

<9„J" = 0 (2.2) 

Integrating the time component, j°, over all space, then gives a time independent charge, 

it a conservation law. The continuous symmetries are usually spacetime transforma

tions or internal symmetry transformations, and any type may either be global (constant 

parameters) or local (spacetime dependent parameters). The dynamical symmetry is 

anomalous if the currents of the quantum theory are no longer conserved. This is to be 

distinguished from spontaneous symmetry breaking, where the current is conserved, but 

the ground state is not annihilated by the charge [17]. 

When a global symmetry is anomalous, it simply means that the quantum theory 

has less symmetry than the classical theor}'. In fact, many of these symmetries must 

be broken for phenomenological reasons. For example, the scale invariance of quantum 

chromodynamics (QCD) with massless quarks is broken; thus allowing the emergence 

of hadrons as bound states with nonzero masses. The Noether current for the scale 

transformation, 

s" -> tx", (2.3) 

is 

f = *"T?, (2.4) 

9 
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where T£ is the energy-momentum tensor. The conservation of the current implies that 

T£ is traceless: 

<V = 2? = 0. (2.5) 

Howver, i n the quantized theory Tf} ^ 0 ; hence scale invariance is said to be broken by 

an anomaly in the trace of the energy-momentum tensor. 

Another example of a welcome breaking of a global symmetry is also provided by 

Q C D with n massless quarks. Classically there is a global UL(TI) X UR(TI) symmetry 

corresponding to independent rotations of the left-handed and right-handed (ie positive 

and negative chirality) components of the quarks. This is broken to 5 t / L ( n ) X SUu(n) 

by the U(l) axial anomaly. It is the nonconservation of the current, 

j* = Wlsl', (2-6) 

obtained from Noether's theorem for the classical chiral symmetry transformation 

rj> -> e ^ V , (2.7) 

with 6 a constant parameter. One obtains the anomalous quantum statement replacing 

the classical statement 2.2: 

d.Jt = ~ T r e ^ F a f i F ^ (2.8) 

where F^„ = d^A^ — d^A^ + lA^, Au] is the field strength tensor, and eM 1 / Q / 3 is the completely 

antisymmetric Levi-Cevita tensor. 

This anomaly was first discovered perturbatively by the violation of the Ward-

Takahashi identity (which follows from current conservation) for the fermion triangle 

diagram of figure (2.1). It has three external photons, with one axial current and two 

vector current couplings [18]. By the momentum space Feynman rules, this represents an 



Figure 2.1: fermion triangle diagram with one axial and two vector currents 

amplitude T^, by which the Ward-Takahashi expression of vector current conservation 

is 

P ^ = P ^ = 0 , (2.9) 

and axial vector current conservation is 

(Pl +p2)xTXll„ = 0. (2.10) 

It is impossible to regulate (ie redefine so as to eliminate infinite results) so as to 

have both the vector and axial vector currents conserved. Regulating so as to leave the 

vector currents conserved, one has a breakdown of chiral s3'mmetry in the presence of 

gauge fields. This has been shown to lead to an understanding of the TT° decay and the 

mass of the v particle [19]. 

The analogous diagram with the vector currents replaced by energy momentum ten

sors (ie two symmetrically coupled external gravitons and one chirally coupled gauge 

boson) implies the breakdown of chirality conservation in a gravitational field [20]. By 

an explicit perturbative analysis one obtains the nonconservation of the axial vector 
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Figure 2.2: fermion triangle diagram with V - A currents 

current for massless fermions 

V ^ = ^ r 2 ^ R ^ r R J T , (2.11) 

where R^V<TT is the usual Riemann curvature tensor, and is the coordinate covariant 

derivative. 

In the standard SU(2) X U(l) model of weak interactions, gauge fields are coupled, 

not to vector currents, but to linear combinations of vector and axial vector currents. 

The conservation of these currents is now expected from Noether's theorem applied to a 

symmetry which has been made local ie gauged. However, the fermion triangle diagram 

of figure (2.2) with three external vector gauge bosons coupled to chiral fermions violates 

the Ward-Takahashi identity, unless the anomaly cancels when summing over the fermion 

species running around the loop [21]. Requiring this cancellation has led to the, so far, 

successful prediction that the number of leptons should equal the number of quarks. 

This prediction is however not yet fully born out as the top quark has yet to be observed. 

Similarily, the gauged current of electroweak theory on a curved spacetime is anomalous 
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(provided one regulates so as to preserve coordinate invariance) unless the sum of the 

hypercharges of the left-handed fermions vanishes. This is in fact true for each generation 

of known leptons and quarks (assuming existence of the top quark), and is taken as 

evidence for grander unification. 

The loss of the gauged symmetry was originally understood as unacceptable because 

the Ward-Takahashi identities, following from gauge invariance, are used to prove renor-

malizability and unitarity of the four dimensional models. Furthermore, it was argued 

that gauge theories with an anomaly in the gauge symmetry ("anomalous gauge theo

ries") are inconsistent-because the field equation 

D»F^ = J„, (2.12) 

where = <9M -f [A^, ] is the gauge co variant derivative, implies 

DVJV = 0. (2.13) 

However, because of the anomaly one obtains in fact 

(DvJv)a = fa(A). (2.14) 

For the case of coupling to a multiplet of Weyl fermions in four dimensions with definite 

chirality 

r { A ) = - ^ - 2 T r T a ^ d ^ d ^ + \A«Ae^l (2.15) 

where the trace is over the representation matrices, Ta, of the fermions, and the sign 

depends on the chirality. The above mentioned anomaly cancellation for figure (2.2) 

corresponds to adjusting the fermion content so that the trace in equation 2.15 vanishes. 

To see how gauge anomalies are calculated nonperturbatively [22], consider a theory 

of Weyl fermions in 2n dimensions interacting with an external, nondynamical gauge 

field. There is no longer an inconsistency with equation 2.12: but more importantly, it 
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is known that chiral anomalies are independent of the gauge field dynamics. First one 

demonstrates that the failure of current conservation is equivalent to the loss of the gauge 

invariance of the quantum mechanical effective action. The lagrangian is 1 

L = J d ^ i i ^ d ^ - ^AlTa)P+iP, (2.16) 

where P± = 1 ( 1 ± 7 5 ) are the positive and negative chirality projection operators (see 

appendix A). The variation of A^ = AaJTa under an infinitesimal gauge transformation 

is given by the gauge covariant derivative, = + A^, 

K -» A„ - T V , (2.17) 

and consequently any functional T[.4M] changes under an infinitesimal gauge transforma

tion as 

r[A„] - T[A„-D„e) 

= t ^ - j ^ T r D ^ ) ^ (2.18) 

8T 
= T[AJ + J d2nTre(x)D, 

Thus the generator of gauge transformations is D^S/SA^. Now let T[.4^] be the one-loop 

fermion effective action: 

exp ( - r [ ^ ] ) = J D^Dijj exp (- J d2nxjni'lDtlP+ip) . (2.19) 

The fermion current induced by an applied gauge field is 

Ja = (h,JaP+Tp), (2.20) 

1 F o r an m-dimensional representation of the gauge group, the Ta matrices arc m by m and act upon 

the m-tuple ip of D i r a c spinors by m a t r i x mul t ip l icat ion ignoring the spinor indices. T h e Dirac matrices 

are 2n by 2 n and m u l t i p l y each 2 n component Dirac spinor of the m-tuple. 
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where the expectation value is to be taken in the background field A^. So from equa

tion 2.19 it is clear that 

Ju = " F T - , (2-21) " SAl y ' 
and the gauge covariant divergence of the current is 

D.J; = (2.22) 

Thus the failure of current conservation is equivalent to the loss of gauge invariance. 

Although is naively gauge invariant, the statement of the gauge anomaly is that 

the variation of V under a gauge transformation is 

D^=fa[A,l (2.23) 
n 

where in four dimensions / a [ J 4 M ] is given by equation 2.15. This formula is not gauge 

covariant, which is sensible, since it arises in a theory where gauge invariance is lost. 

Notice that we have no such loss of covariance in equation 2.8 where the non-gauged 

symmetry has been lost. 

Theories with gravity are theories which have local coordinate invariance, called gen

eral covariance. Just as in gauge theories, where the gauge field couples to matter via 

A^ J M coupling, in gravitational theories the metric couples to matter via a Tlxl/gl*lJ term in 

the lagrangian [23]. Let r [^ M 1 / ] be the effective action for matter fields propagating in an 

external gravitational field prescribed by metric g^v. Under the infinitesimal coordinate 

transformation 

xix _> xn + e/x( (2.24) 

the variation in the metric tensor is given by the Lie derivative. 

= - V ^ - V ^ . (2.25) 
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By which Tjg^] varies as 

8T[g^] = - I d ^ x ^ ^ - C V ^ + V„e„). (2.26) 
8g^ 

But 

|H<?V>. (2.27) 

where the expectation value of the energy-momentum tensor is taken in the background 

g^. Integrating equation 2.26 by parts, and using the symmetry of T^v yields the fol

lowing variation of T: 

5T = J d7nzy/gelxVv{T'»'). (2.28) 

Thus conservation of the energy-momentum tensor is equivalent to general covariance of 

the effective theory. An anomaly in this symmetry is called a gravitational anomaly. 

The integrand of the functional integral 2.19 is just the exponential of the lagrangian, 

and is therefore invariant under the infinitesimal gauge transformation 2.17 plus 

ip -* V + ^P+^ (2-29) 

However, Fujikawa [24] showed that the regulated infinite dimensional fermion measure 

is not. In this formulation, the anomaly arises from the jacobian factor contributed by 

the change in the fermion measure under the above change of variables. This factor arises 

because it is not possible to regulate the measure gauge invariantly. 

To obtain the phase holonomy description of the gauge anomaly, one writes the ef

fective action 2.19 as the logarithm of the determinant of the operator V [25] 

V[A}=r(d„ + A.P+) (2.30) 

exp(T[A}) = detiV[A}. (2.31) 
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The eigenvalues of T>[A] are complex and gauge variant; however, one can regulate their 

infinite product such that the modulus of the determinant is gauge invariant. Let g(8, x) 

be a one-parameter family of gauge transformations, g(0,x) = g(2ir,x) = 1; and take 

spacetime to be S2n, so that x € 5 2 n . Now consider how the determinant varies over the 

one-parameter closed loop of gauge transformed connections 

K=9-\0)(A~*+dM6). (2.32) 

Since the modulus of the determinant is gauge invariant, only its phase may change as 

one moves around the loop g(6): 

detiV[Ae

ll] = detiV[All]eiuilA'e\ (2.33) 

The integrated anomaly for this loop of gauge transformations is equal to 

L d 6 T e = 2 " m ' <2-34> 

where m is the winding number of the phase of the determinant around the loop. A 

nonzero winding number means the determinant can not be defined gauge invariantly. It 

was found by Atiyah and Singer [26], using arguments from algebraic topology, that m 

is equal to the index (ie the number of positive minus the number of negative chirality 

zero modes) of a Dirac operator on S2n X S2 with gauge potential (tAe, 0, 0), where the 

upper hemisphere of the S2 is the (t,8) disc with 0 < t < 1. By the Atiyah-Singer index 

theorem, the index of a Dirac operator is equal to the integral of a unique polynomial 

in the gauge field curvature. This analysis shows that the anomaly can not be removed 

by any sort of renormalization scheme. Gravitational anomalies are subject to a similar 

analysis with similar conclusions. 

Anomalies (where from now on, anomaly means gauge or gravitational anomaly) arise 

in parity-violating theories because, in the case of parity-violating gauge or gravitational 
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interactions, a l l regularizations spoil gauge invariance or general covariance; and the vio

lation of these symmetries does not necessarily disappear when the regulator is removed. 

The parity-violating chiral gauge theories are gauge theories i n which the left- handed 

fermions transform differently under the gauge group from the way the right-handed 

fermions transform. These can only occur in even spacetime dimensions, for only here do 

we have Weyl spinors. If R and L are the representations of the gauge group furnished 

by the right and left-handed fermions, respectively; then i n a chiral theory R is not equal 

to L . C P T symmetry i n Ak dimensions requires R to be the complex conjugate represen

tation of L , so chiral theories can occur only in theories in which R is complex [27, 28). 

In Ak + 2 dimensions, the antiparticle of a left-handed particle is again left-handed, and 

it is therefore possible to construct theories with fermions of only one chirality. R and 

L are always real, but need, not be equal. The chiral Schwinger model, with = 0, falls 

into this later category. 

The gravitational couplings can violate parity in Ak:{-2 dimensions only; and Alvarez-

Gaume and W i t t e n [23] have shown that theories of Weyl fermions of spin 1/2 or 3/2, or 

self-dual antisymmetric tensor fields, coupled to gravity in these dimensions are anoma

lous. We wi l l be examining the k — 0 case, in which a self-dual antisymmetric tensor 

field is the field strength for a chiral boson. 

The anomalies occuring in higher dimensional theories show up perturbatively in 

diagrams analogous to the Adler-Bell-Jackiw triangle diagram of figure (2.2). In 2n 

dimensions the lowest order anomalous diagrams are chiral fermion loop diagrams with 

n + 1 external gluons or gravitons. A pure gauge anomaly involves only gluons, a pure 

gravitational anomaly involves only gravitons, and a so called mixed anomaly involves 

both. In ten dimensions, which is the dimension that superstrings live i n , it is the 

hexagon diagram of figure (2.3) which is essential. If one arranges the fermion content 

so the anomalies of these one loop diagrams cancel, all other higher order diagrams wil l 
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Figure 2.3: hexagon diagram in ten dimensions 

be anomaly free. 

In string perturbation theory one has Feynman diagrams which are two dimensional 

surfaces, yet analogous to the Feynman diagrams of ordinary point particle field theory. 

Here again it is the hexagon diagram which essentially contains the anomaly. By obtain

ing anomaly cancellation in this diagram, Green, Schwarz and Witten [27] have found 

the type I superstring theory to be anomaly free if and only if the gauge group is 50(32), 

the type II superstring theory to be anomaly free, and the heterotic string to be anomaly 

free if and only if the gauge group is E8 x Es, 50(32), or 50(16) x 50(16). Also N = 1 

supergravity with E& x Eg, 50(32), or 50(16) X 50(16); and N = 2 chiral supergravity, 

all in ten dimensions, (these are the low energy limits of the above superstring theories) 

are anomaly free. Furthermore, these four are the only field theories, in ten dimensions, 

in which the anomalies cancel between fields of different spin. 

So far only anomalies for gauge and coordinate transformations which can be continu

ously obtained from the identity have been discussed. It is also possible to have gauge or 
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coordinate variance under what are called large transformations. It only makes sense to 

discuss such anomalies if there are no perturbative anomalies, because a large coordinate 

or gauge transformation, defined by its topological class, is well defined modulo a local 

transformation. We will not be dealing with these anomalies, so for an exposition refer 

to [29, 1]. In [29], Witten shows that the above mentioned superstring and supergravity 

theories have no variance under large coordinate or gauge transformations. 

In light of all that has just been said, it appears that an anomalous theory should 

either be rejected, or altered so as to remove the anomaly. This reasoning has almost 

uniquely determined the gauge group for the promising superstring theories, and has thus 

helped convince people that superstring theory is the correct theory of the elementary 

matter fields and their interactions. Therefore it is worthwhile to look at-this closely. In 

fact, Faddeev [30] suggested in 1985 that perhaps an anomalous theory can be consistently 

quantized. As we shall later discuss, authors, including ourselves, have investigated this 

possibility for some two dimensional models. We will give up gauge invariance in the 

chiral Schwinger model, and allow a gauge degree of freedom to become a physical degree 

of freedom. The inconsistency argument encapsulated by equations 2.13 and 2.14 will 

fail because the analog of fa{A) will be zero by the Heisenberg equation of motion for 

the new physical degree of freedom. Furthermore, the model will be found to be unitary, 

in spite of the usual assertion that unitarity requires gauge invariance. However, because 

two dimensional field theories are super-renormalizable we will have little to say about 

renormalizability. 



Chapter 3 

Constrained Hamiltonians and the Gauge Anomaly 

The discussion of anomalies in the previous chapter has been from a lagrangian path inte

gral point of view. We will now present, in detail, the well known equivalent hamiltonian 

point of view, because it is in this context that we will be addressing the quantization 

of an anomalous theory. This approach can be regarded as more fundamental, because 

the path integral is correctly obtained only by first passing through the hamiltonian 

formalism [31]. 

3.1 Dirac's Formalism for Constrained Hamiltonian Systems 

Many systems, chiral bosons for example, are describable by a lagrangian formalism where 

constraints are explicitly introduced as equations of motion in a phase space enlarged 

by the inclusion of Lagrange multipliers. In this larger phase space, a submanifold in 

which the system lies is specified by a somewhat arbitrary fixed choice of specific values 

for the multiplier degrees of freedom. In the case of a gauge theory, the given lagrangian 

is a function on a phase space which is already too large, and a physical submanifold is 

specified by what is called a gauge choice. These two situations are really the same: A 

constrained system may be rewritten as a gauge theory by imbedding it in an enlarged-

phase space; and a gauge theory becomes a constrained theory upon a choice of gauge. A 

hamiltonian formalism for these theories, with a so called singular lagrangian, has been 

developed by Dirac [32], and reviewed in [33]. Here is a brief version of the review. 

Suppose we have a mechanical system with N degrees of freedom, described by a 

21 
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lagrangian C(q, q). To go to a hamiltonian formalism, we define the canonical momenta 

8C 
Pi = ^ 1 = !,...,#. (3.35) 

If the pi are not N independent functions of the velocities q\, the lagrangian is said to be 

singular, and by eliminating the velocities from the dependent equations 3:35 we obtain 

what are called primary constraints: 

tfn(p,g) = 0. (3.36) 

This does not prevent the definition of a velocitjr independent preliminary hamiltonian 

H0(p,q) = Piqi-jr(q,q). (3.37) 

We are free to add the primary constraints to H0 and do so: 

H = H0 + vn(j}n(p,q), (3.38) 

where the vn are arbitrary functions of p and q. 

We say an equality holds weakly and write % if it holds after the constraints have 

been imposed. The time evolution of any function on phase space is given by the Poisson 

bracket: 

g(p,q)-{g(p,q),H}. (3.39) 

(Note that this weak equation does not specify g. We will impose the strong equation 

after having identified the physical submanifold and an appropriate hamiltonian.) Thus 

the primary constraints must satisfy the consistency condition 

{</>„,#} (3.40) 

since they are to be zero at all times. To satisfy this equation we solve for as many 

of the vn of 3.38 as we can; and we may also have to impose additional constraints, 



Chapter 3. Constrained Hamiltonians and the Gauge Anomaly 23 

called secondary constraints. We repeat the procedure of adding the constraints to the 

hamiltonian and checking for consistency until no more constraints arise, and collectively 

denote all the constraints, primary and secondary, by {x*}. T will denote the submanifold 

which they define. 

r = {(p,9)|Xi(p,9) = 0 Vi} (3.41) 

The constraints are required to be irreducible, which means that any function of (q, p) that 

vanishes on T is a linear combination of the constraints. In particular, the hamiltonian 

is written as 

H(p,q) = H\r(p,q)-rUm{p,q)xm{p,q). (3.42) 

Next we divide the constraints into two classes; those that commute weakly with all 

the constraints, called first class and here denoted as <f>i\ and those that do not, called 

second class and here denoted ipa. It is easy to show that the matrix 

(J* = {j>a,1>b} (3.43) 

of second constraints is invertible (then Qab has a non-zero determinant and the second 

class constraints are said to be complete), which in turn implies that the u m corresponding 

to the second class constraints are determined. However, the um corresponding to the 

first class constraints are completely arbitrary. This arbitrariness is known as gauge 

freedom, and the gauge transformations are generated by the first class constraints - as 

can be seen from the following. 

Consider the time evolution of a function g(p, q) for a certain initial (pQ, qa) at ta. Then 

by doing a Taylor expansion about ta to order t — ta, and using 3.39, with hamiltonian 

3.42, for the time derivative: 

g(q(t):p(t))^g(q0,Po) + (t-t0)({g,H\r}+um{g,Xrn}). (3.44) 
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Now if we time evolve from g{q0,Po) with a different extension of the hamiltonian, say 

with um instead of um, to obtain g (q(t),p(t)), the difference between these expressions 

is the gauge transformation: 

o~g=9-g~ea{g,<i>a}, (3.45) 

with infinitesimal parameters ea = {t — t0)(ua — ua) and generators <f>a. A physical 

observable is a gauge invariant function, and therefore one which commutes weakly with 

all the first class constraints. 

To eliminate the arbitrariness due to the first class constraints, we fix the gauge 

by introducing gauge fixing constraints, -fi(p,q) = 0, equal in number to the first class 

constraints, so as to make them second class. An important observation to make here is 

that a first class constraint eliminates two phase space degrees of freedom, while a second 

class constraint eliminates only one. 

To quantize the theory, we might replace the Poisson brackets by commutators and 

have the variables become operators on states. The constraints are imposed by requiring 

physical states to obey 

Xilphys) = 0. (3.46) 

Then for consistency we must have 

\Xi,Xj]\phys)=0; (3.47) 

but the second class constraints can not obey this. To remove this inconsistency, Dirac 

proposed that instead of replacing the Poisson bracket by commutator, we replace the 

Dirac bracket by commutator. The definition of the Dirac bracket: 

{A,B}D = {A,B}-{AMQ;b
l{^b,B} (3.48) 

ensures that the Dirac bracket of any function with a second class constraint is zero. 

This allows the second class constraints to be set strongly, ie as operator equations in 
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the quantum theory, to zero. The infinite dimensional field theoretic generalization of 

this formalism is straightforward. The momentum conjugate to a field qi(x) is given by 

a functional derivative of the lagrangian: 

and the Poisson bracket is defined as 

The constraints become spacetime dependent, so the same goes for the matrix Qab whose 

inverse is then defined by 

JdzQab(x,z)Q;c
1(z,y) = 8ac8{x - y). (3.51) 

Summations will usually include integrations; for example, the Dirac bracket 3.48 be

comes 

{A,B} = {A, B} - J dxdy{A,4a(x)}Q£(x,y){My),B}. (3.52) 

3.2 The Constrained Hamiltonian Formalism for Chiral Gauge Theories 

In this section we will apply the Hamiltonian formalism just described to the infinite 

dimensional case of a chiral gauge field theory. We remain fairly general, and consider 

the theory of a multiplet of Weyl fermions, in 2n spacetime dimensions, which forms a 

representation of some nonabelian, compact gauge group with generators Ta obeying the 

Lie algebra 

[Ta,Ta] = FbcTc. (3.53) 

The lagrangian is given by 2.16 plus the usual Yang-Mills action for the gauge field: 

L = J dx {j+(ird, - 7M^Ta)V>+ + ^TrF^F^ , (3.54) 
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where the field strength = F^JTa is as in 2.8 and has components 

Ku = 9„Aa

u - dvAl + f^A^Al. (3.55) 

This lagrangian is invariant under the gauge transformation 

V>+(x) g(x)yj+(x) 

4>+{x) j+Wg-^x) (3.56) 

-• g{x)(Afl(x) + id^g~\x), 

which is the finite version of the infinitesimal transformation 2.17 and 2.29. g(x) repre

sents an element of the gauge group, and, in the case that it is continuously connected 

to the identity, can be parametrized by functions £a(x). 

g{x) = e<^T\ (3.57) 

To proceed to a hamiltonian formalism we obtain the canonical momenta 

< = 7I^ = 0 < = Ei=% = F£ (3.58) 

and recognize three primary constraints. 

The pair TT^ — iip^ = 0 and 7r̂ t = 0 are second class; and furthermore, will not 

generate any secondary constraints. Also, when it becomes time to compute a Dirac 

bracket the}' will not have any effect - so we set these two constraints strongly to zero 

right now. 

A preliminary hamiltonian is then 

H = J dx (E«A1 + iipi-ijj) - L (3.60) 
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which upon the definition of the color magnetic field B° = ^CijkFjk) and an integration 

by parts, becomes 

H = H0 + J xA°Ga (3.61) 

where 

and 

H0 = j dx +̂{7 • + ^Ea-Ea + ^Ba-BaS) (3.62) 

Ga = d-Ea + fabcAb-Ec-iPlTaib+. (3.63) 

Demanding the primary constraint 7r£ = 0 be preserved in time yields the secondary 

constraint Ga = 0, known as Gauss's law. When the gauge group is (7(1), it takes the 

familiar form d • E — for electrodynamics. The Weyl gauge, A^ = 0, eliminates 

AQ and 7TQ from the theory, leaving us with the canonically conjugate variables A°,E? 

and ip+,ip+; the hamiltonian H0, and the constraints Ga = 0. The constraints Ga are (at 

the classical level) first class, as their Poisson brackets are 

{Ga(x),Gb(y)} = fabcGc(x)8(x-- y). (3.64) 

Fixing A0 = 0 still leaves us free to perform time independent gauge transformations, as 

can be seen from 3.56, and it is in fact preciseby these which are generated, by Ga. 

In the quantum theor}', the field variables become operators, and the statement of 

gauge invariance is 

Ga\phys) = 0. (3.65) 

The finite, time independent transformation 3.57 is implemented by the fixed-time oper

ator 

U(g) = eiSd£cWLW. (3 66) 

Thus 3.65 ensures that physical states are invariant under finite gauge transformations 

and all would be consistent if the Poisson bracket 3.64 simply went over to a commutator. 
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However, it is known that for a chiral gauge theory, the anomalous divergence of the 

current in a lagrangian description manifests itself in anomalous commutators of current 

components in a Hamiltonian description, so that 3.64 aquires what is called an extension: 

[G°(x),Gb(y)} = -if*°G°{x)6{3 - y) + S^fry). (3.67) 

Sab{x,y) is called the Goto-Imamura-Schwinger term [34] and depends on A{. In gen

eral, Sab does not annihilate states, making 3.65 inconsistent and thus spoiling gauge 

invariance. 

In terms of the finite operators 3.66 wThich represent the gauge group, the commutator 

3.67 is the result of the following composition law 

U{gi)U(g2) = e**»lX*>*>)U(gi o g2), (3.68) 

where the infinitesimal portion of u>2 is £„(,. In order that the operators U(g) associate, 

u>2 must be what is called a two-cocycle (see appendix B). This in turn ensures that the 

commutator 3.67 obeys the Jacobi identity - and it turns out that Sab does indeed satisfy 

this. Such a representation of the gauge group is called projective. 

In four spacetime dimensions Sab has been found to be [35] 

Sab = ±^Tr[Ta,Tb]+diAidk6(x-y). (3.69) 

The calculation was done by considering the quantized fermions in an external back

ground A. The fermion bilinear term in Gauss's law was regulated by splitting points 

spatially and subtracting the A dependent vacuum expectation value. The sign of 3.69 

depends on the chirality; thus for a chirally symmetric theory, Sab for the positive chiral-

ity fermions cancels against Sab for the negative chirality fermions. In two dimensions, 

we will calculate Sab and find it to be A independent. 

What we have seen here is that the gauge anomaly in a hamiltonian formalism man

ifests itself as an extension in the algebra of the gauge generators, causing them to 
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become second class. A possible way of dealing with this is to apply the analogue of 

Dirac's method for classical systems directly to the quantum theory. This would involve 

a redefinition of the operators, so as to obtain commutation relations which would allow 

the second class constraints to be consistently set strongly to zero. This procedure can 

be very complicated, and we do not know whether it can be accomplished in general. 

However, as will be seen in chapter 5, we have suceeded in executing it for the U(l) chiral 

gauge theory in two dimensions. 



Chapter 4 

Bosonization of a Dirac Fermion 

To facilitate the development of chiral theories, we here demonstrate the quantum equiv

alence of the simplest nonchiral theories. The Sommerfeld-Sugawara formula obtained 

here wi l l be used i n the solution of the chiral Schwinger model. The approach we wil l take 

to explain the well known results of this chapter is due primarily to Manton [37]. The 

method used here to bosonize a free Dirac fermion was developed by h im to give another 

proof of the equivalence of the Schwinger model to to a free massive scalar theory. Our 

analysis wi l l allow both ease of explanation, and a comparison of free field bosonization 

with gauge field dependent bosonization. In later chapters, various generalizations wil l 

be reviewed and used to motivate some chiral Bose theories. 

The existence of a nonlocal transformation from local Fermi fields to local Bose fields 

has been known for some time [36]. It establishes an equivalence between the theory of 

a free, massless Dirac fermion in two spacetime dimensions, with lagrangian 

CD = ̂ 7McW>, (4-70) 

and the theory of a free massless scalar in two spacetime dimensions, with lagrangian, 

Cs = \d^d"<f>. (4.71) 

There are several ways to demonstrate this equivalence, and we w i l l expose the most 

concrete of these, denning the Bose field in terms of the Fermi field. The Sommerfeld-

Sugawara formula wil l arise when we rewrite the hamiltonian for the fermion in terms 

of the boson. To regulate the theory we will take space to be a circle, Fourier transform 

30 



Chapter 4. Bosonization of a Dirac Fermion 31 

the theory, and work with the discrete momentum modes. The infinities of the theory 

will be removed by an exponential damping of the high momentum Fourier modes called 

heat kernel regularization. 

Before obtaining the hamiltonian, let us mention that the conserved Noether current 

for global phase transformations of the fermions is the vector current 

j " = " (4.72) 

and that for global chiral rotations 2.11 is the axial current 

3$ = ^ W * , (4-73) 

which in the Weyl representation A.332 for the gamma matrices, and the notation 

* = ( * - ) ( 4 7 4 ) 

for the spinors, have components 

3°=Jl = ^ + + ^ T > - (4.75) 

With the same gamma matrices, the lagrangian 4.70 yields the hamiltonian 

H = J ^o-3dxtpdx, (4.76) 

which upon the Fourier plane wave expansion for the chiral components (We take the 

radius of the circle representing space to be one.) oitp 

^ = - ^ E ^ e i f c E > (4-77) 
V27T fc 

where a = -for—, becomes 

= E * ( « f c V • (4-78) 
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We quantize by taking the Poisson brackets over to the following anticommutators: 

=Mmn- (4-79) 

Thus is the creation operator for a positive chirality particle of energy k (a left-

mover), and * is the creation operator for a negative chirality particle of energy — k 

(a right-mover). We could now redefine these operators to obtain the usual particle-hole 

description, in which case the minus sign in H would disappear, as H would then be the 

sum of the energies of the particles and the antiparticles. This redefinition is however 

not necessary if we just remember that an antiparticle is an empty negative energy state. 

We use the a operators to define the Fock space in the usual manner. The vacuum is 

denned by 

o+|0) = 0 for n > 0 

a+f|0) = 0 for n < 0 (4.80) 

o~'|0) = 0 for n < 0 

a~f|0) = 0 for n > 0. 

Then applying these operators appropriately to the vacuum, gives a basis of states in 

which the energy level of a state is specified as either empty or filled, and in which all but 

a finite number of negative energy levels are fdled, and only a finite number of positive 

energy levels are filled. Acting on such states, the chiral charge density operators 

pa(n) = r^ae™dx = J2<J< (4-81) 
k 

have the commutation relations 

[p+(g)>/>+(p)] = -9^- 9 j> 
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\P-{Q)>P-{p)) = q6-,* (4-82) 

\p+{p),p-(q)] = 0. 

These anomalous (the corresponding Poisson brackets are zero) commutators he at the 

heart of almost any theory in two dimensions. They are responsible for the previ

ously, mentioned Goto-Imamura-Schwinger term in the gauged theory, and are the key 

to bosonizing this theory. To prove these relations it is crucial to notice that for 

n ^ 0 at+nat annihilates a basis state when the absolute value of k is large enough -

in other words the high momenta do not contribute. This observation also shows that 

the p±(n) for n ^ 0 are finite. However, the zero momentum operators are infinite and 

regulated as follows: 

/ +(0) = E < f < e A p (4-83) 
p 

/-(o) = £ s V ~ A p -
p 

The exponential weights (A is positive) suppress the contribution of particles with large 

negative energy, and when A = 0 we just have the original formal expressions. 

Associated to any basis state, \F), is an unexcited basis state with the same numbers 

of left and right-movers (see figure 4.4). The right-movers fill the energy levels < M and 

the left-movers fill the energy levels > . The chiral charges of this associated unexcited 

basis state are: 

PX
+(0) = E eXm (4.84) 

p-(o) = E e~A n-

Evaluating the sums yields 

f>+(0)={ + (M + \) + l(M + ~r-±+O(\>) (4.85) 

/ - ( 0 ) 4 - O + 5 O J - | + 0(A') 
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Figure 4.4: an excited basis state (a) and its corresponding unexcited state (b) (only 
energy levels of left-movers are shown) 

The absolute regularized charge is denned by subtracting the divergent constant 1/A, 

and taking the hmit A —» 0: 

P7W = M + \ (4.86) 

In this A = 0 hmit, exciting a particle does not change its charge, hence these are the 

chiral charges of | F). The factor of 1 /2 may appear arbitrary, but is justified on symmetry 

grounds. One consequence is that an unexcited state with zero electric charge has zero 

momentum, because the momenta of the left- and right-movers take all integer values 

precisely once. 

Regularizing the hamiltonian 4.78 in the same manner; we have 

Hx = YI m e m A - E n e ~ n X (4-87) 
m<M n>N 

for the energy of the unexcited basis state: This is easily evaluated by differentiating 

equations 4.85 by A; and we obtain, after subtracting the divergent constant and taking 
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A to zero: 

H"b=\(P7(0))2 + \(P-9(0))2. ( 4 . 8 8 ) 

To get the energy of \F) we must add the excitation energy. This has been shown by 

Manton [37], by using the anticommutators 4.79, and doing a counting argument, to be 

lll(p+lp)p+{-p)+P-{-P)P-to))- (4 -89) 
Z P J « O • 

Thus we obtain the Sommerfeld-Sugawara formula, with the regularization implied 

H = W(P+(P)P+(-P) + P-(-P)P-(P))- (4-90) 
• P 

We define the bosonic operators 

P<HP) = ^ (P+(P)+ P-(P)) (4-91) 

* ( P ) = ^ ( P + ( P ) ~ P - ( P ) ) , 

whose commutators and hermiticity properties are that of a scalar field in Fourier space 

[̂ U(?)] = WP),T(9)]=0 

[ ^ ( P ) , <£(<?)] (4-92) 

7rf(p) = 7r(-p) <£f(p) = <£(-p). 

Notice that for consistency of 4 .91 we need /?+(0) + P-(0) — 0, which is the statement 

that the total charge is zero. This is a physically sensible condition to impose, because 

sources and sinks of flux must balance on the circle. 

Rewriting the hamiltonian 4 .90 in terms of the new operators gives it the form 

H = lE {*\PMP) + P 2 ^ ( P ) ^ ( P ) ) , (4-93) 
P 

which is precisely the hamiltonian for a free massless scalar in momentum space. From 

the definition of the scalar field, we see the bosons to be fermion anti-fermion pairs. 
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The bosonization of the Schwinger model is very similar. A gauge field dependent, 

gauge invariant, heat kernel regularization leads to similar derivation of the Sommerfeld-

Sugawara formula for the fermion kinetic term. The scalar field is again defined by 4.91 

and results in the fermion kinetic term being given by 4.93. However this term now also 

includes part of the gauge field kinetic energy because the gauge field is fixed down to 

one global degree of freedom which is included in the definition of the scalar zero modes. 

The Coulomb interaction energy becomes a mass term, and the bosonized hamiltonian 

is 

H = lE^(P>(p)+[p2 + ^)<l>\p)<f>(p)- (4-94) 

Thus massless electrodynamics with lagrangian 

£ = fa^dr + ieAJI, - -J^F^ (4.95) 

is equivalent to the massive scalar theor)' 

£ = ̂ ^-jmV, (4.96) 

with m = e / v ^ T T -

Notice that in order for this gauge field dependent bosonization to reduce to the free 

field bosonization, we must not only set e = 0, but set — 0 as well. This later 

condition is required to make the regularization of the gauged theory reduce to that of 

the free theory. 

Interacting theories can also be analyzed with free field bosonization by translating 

a perturbation of the free Dirac lagrangian to a perturbation of the free massless scalar 

lagrangian. To do this, we note that 4.91 transformed back into position space, along 

with the fact that TT(X) = 4>(x), gives the identification 

dx(j>(x) = ~ { v b \ v b + - t ^ _ ) (4.97) 
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which in a general representation of the Dirac matrices is 

(4 .98) 

The momentum space chiral charge density commutators transformed back into po

sition space yield the current algebra 

Current algebras similar to these, for realistic four dimensional theories, form the basis for 

much of our understanding of elementary particle physics. Although the four dimensional 

theories do have Sugawara type formulas, these do not allow the theory to be bosonized 

as in two dimensions. In the fermionic language, the commutators 4.99 arise only upon 

quantization; whereas in the bosonic language they are simply due to the classical Poisson 

bracket 

Thus the bosonized theory has quantum effects already contained in its classical la

grangian. 

For illustrative purposes, we close this chapter with the free field bosonization of the 

Schwinger model. This allows for an easy derivation of the axial anomaly discussed in 

the third paragraph of the introduction to anomalies chapter. 

Using correspondence 4.98, the lagrangian 4.95 becomes 

b'o(s),jo(y)] = o 
b'o(a:)jJi(y)] = S'(x-y) 

b"i(*),ji(y)]-= o. 

(4.99) 

{<f)(x),ir(y)} = 8(x - y). (4.100) 

I V7T 
(4.101) 
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The Euler-Lagrange equations derived from C are 

d^d, + ~ ^ d v A ^ = 0 (4.102) 

d^F"" - —e^d^ = 0 (4.103) 
V 7 1 " 

Equation 4.103 by use of 4.98 is just 

fyF"" = ej" (4.104) 

and imphes the conservation of the vector current. Upon using j£ = e"vjv equation 4.102 

becomes the famous axial anomaly equation: 

d ^ t ^ ^ F ^ . (4.105) 

The question which arises here is: to what extent does this depend on the regulariza

tion which was used to bosonize the theory? After all, the lagrangian 4.96 obtained with 

a gauge field dependent regularization looks quite different from the lagrangian 4.101 

obtained with a gauge field independent regularization. The same question arises in the 

quantum treatment of the fermionic formulation; and the answer is that all regularization 

procedures must preserve some maximal set of symmetries. In this case the symmetry is 

gauge invariance, and both regularizations give a lagrangian invariant under the gauge 

transformations 

1> '-* e'V (4.106) 

A„ -* A^ + cV, 
which in the bosonic language are 

d> -» 4> (4.107) 

A„ -* A^ + dnO. 
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Fortunately the two bosonic lagrangians here in question describe (at least classically) 

the same physics. In the chiral version of this theory, gauge invariance will be lost, and 

the resulting ambiguity in how to regularize the theory will introduce another parameter. 



Chapter 5 

Lorentz Invariant Exact Solution of The Chiral Schwinger M o d e l 

5.1 Introduction 

The chiral Schwinger model was first introduced by Hagen [38] i n 1973 as a new example 

of an exactly solvable field theory in two spacetime dimensions. The model he proposed 

is that of a Dirac fermion with only one Weyl component coupled to a gauge field with 

bare mass fi0. 

£ = - 0 i 7
M ( ^ + ieA^P+ty - -F^F^ - ^ - A ^ (5.108) 

Besides the mass term, which causes the classical theory to be gauge variant, this differs 

from the lagrangian 3.54 in that it includes the extra free Weyl component. 

By considering the vacuum to vacuum transition amplitude in the presence of external 

sources (called the generating functional), he was able to obtain all the Green's functions 

exactly. This allowed h im to conclude that the model is relativistic, and also that it has 

the unusual property that the vector boson mass renormalized to 

/* 2 = —^V- (5109) 

Over a decade later, sudden interest in anomalous field theories prompted Jackiw and 

Rajaraman [39] to examine the gauge anomalous theory without the bare mass term. 

B y studying the field equations and propagator obtained from the effective gauge field 

action (the action obtained by path integrating out the fermions), they concluded that 

the theory is not gauge invariant, but is unitary and amenable to particle interpretation. 

The}7 also found that the vector gauge boson necessarily acquires a mass when consistency 

40 
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and unitarity are demanded. It has been further argued that the gauge variance of the 

fermionic part of the path integral measure, upon using the Fadeev-Popov procedure to 

take into account the integration over gauge orbits, yields a Wess-Zumino term i n the 

effective gauge field action [40]. 

However, use of the naive path integral representation requires canonical justification. 

A t the hamiltonian level, the theory involves second class gauge constraints which lead to 

a nontrivial modification of the equations of motion. Several authors [41, 42] have solved 

the theory (obtained the spectrum exactly) in the canonical hamiltonian formalism using 

bosonizaton. The lagrangian 5.108, without the bare mass term bosonizes, using the 

correspondence 4.98, to 

£ = ^ c V ^ + v ^ e ^ - e ^ ) ^ ^ (5.110) 

where the mass term is now to be considered as a counterterm reflecting the ambiguity 

in the regularization procedure used to bosonize the theory. In the vector Schwinger 

model, demanding the regularization be gauge invariant fixes a = 0. Here no choice of 

a can make the theory gauge invariant, so it is left as a free parameter. The advantage 

of starting with 5.110 is that the consequences of the anomaly can be dealt with at the 

classical level by Dirac's formalism for systems with second class constraints. Doing this, 

the afore mentioned authors found a unitary theory with a relativistic spectrum for a > 1. 

However, bosonization is valid only in the charge zero sector of the theory and it 

requires the extra 1/2 degree of freedom of the decoupled Weyl component. It is not 

obvious whether the latter modification is responsible for the apparent consistency of 

the model. There have been several recent solutions which avoid bosonization and fail 

to obtain Lorentz invariance [43, 44]. It is not clear to us that these could not be made 

Lorentz invariant by adding further Lorentz variant counterterms. 

In this chapter we solve the chiral Schwinger model with the minimal degrees of 
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freedom. A t the classical level the lagrangian contains a vector gauge field and a chiral 

fermion, representing 2\ configuration space degrees of freedom. There are two first class 

constraints, each of which remove one degree of freedom resulting i n a physical \ degree 

of freedom - a charged Weyl fermion with a relativistic Coulomb self-interaction. The 

classical theory can be formulated as a consistent, causal, Lorentz covariant ini t ia l value 

problem. 

Upon quantization, the Goto-Schwinger-Imamura term in the gauge constraint alge

bra changes the two first class constraints into two second class constraints which together 

remove 1 degree of freedom. Therefore the quantum theory has l | physical degrees of 

freedom. Lorentz invariance is not manifest in this reduction and it is not obvious that 

it is maintained by the quantization. Furthermore, the presence of the extra physical 

degrees of freedom would seem to indicate that the quantized theory loses the geomet

rical interpretation of a gauge theory. It is tempting to conjecture that the quantum 

theory retains a geometrical interpretation in terms of projective representations of the 

original gauge symmetry. Although this conjecture is supported by recent investigations 

using path integrals which suggest that the extra degrees of freedom appear as projective 

phases in the integration measure [40], there is no formalism where this is manifest at 

the level of hamiltonian d3 rnamics. 

Since it is only at the quantum level that the second class constraints appear, the 

usual procedure of identifying classical Dirac brackets with commutation relations must 

here be modified so as to apply directly to the quantum theory. Going back to section 

3.1, we see that the Dirac bracket of A with B is really the Poisson bracket of A' wi th 

B', where 

A'= A - { A M Q ; ^ . (5.111) 

Thus the analogous way to proceed here would be to make a transformation on the 
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quantum operators such that they commute with the second class constraints. 

We regulate the theory, as in the previous chapter, by taking space to be a circle 

and damping the high momentum Fourier modes. This will allow us to directly apply 

the chiral version of the Sommerfeld-Sugawara formula derived there (which incidently, 

makes no assumption about the total charge). It does however, have a particular implicit 

regularization, which does not necessarily respect symmetries that the quantum theory 

might have. To remedy this we add counterterms to the bare lagrangian. We solve the 

model with the counterterms and find that the hamiltonian is hermitian and positive with 

a Lorentz invariant spectrum only for a certain range of the parameters. The spectrum 

contains a single massless chiral scalar and a single massive boson. These resemble the 

particle content discovered in reference [41] with the exception of the absence of one of 

the chiral Bose degrees of freedom. 

There have been several other attempts to quantize the chiral Schwinger model which 

have failed to obtain a Lorentz invariant solution [45, 43, 44]. Some of these can be 

regarded as special cases of the model which we consider here with particular values of 

the counterterms [45, 44]. Our present work shows how to restore Lorentz invariance in 

these models by adding counterterms to the action. 

A further gauge invariant solution which recognized the origin of the anomaly as 

an induced quantum curvature and added Lorentz noninvariant nonlocal counterterms 

obtained a noncovariant spectrum with a hermitian hamiltonian [43]. The solution has a 1 

degree of freedom which, with the mass generation inherent in the model, is incompatible 

with Lorentz invariance. (A chiral particle has a Lorentz invariant spectrum only when 

it is massless.) It is apparent that the quantum curvature cannot be cancelled by adding 

local counterterms to the gauge theory action. We conclude that quantization of an 

anomalous gauge theory necessarily breaks gauge invariance. 
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5.2 Solution of the Chiral Schwinger M o d e l 

The lagrangian 3.54, with gauge group U(l), written in terms of the single component 

Weyl fermion is 

L0 = Jdx J V W 1 ^ + iV^eA^ip - - J ^ F ^ , (5.112) 

where F^ = — d^A^ ,o-° = l , c r 1 = e = ± l with the + (-) sign corresponding to 

a coupling to right- (left-) handed fermions. The fermion bilinear operators which occur 

in the lagrangian and later in the hamiltonian must be defined with some regularization. 

We shall choose a particular regularization and parameterize the difference between the 

one we choose and others by adding local counterterms to the lagrangian 

Lct = j dx i ^ A . A " + ^{Acy} (5.113) 

where A E = AQ + EA\. We note that the first term is Lorentz invariant but has the 

conventionally undesirable feature of breaking gauge invariance. Here, we expect that 

the quantization of the theory breaks gauge invariance so we cannot exclude dynamical 

generation of such a term. We shall show that the model is consistent for a large range 

of this parameter. This counterterm was also needed in the treatment of the bosonized 

theory, but there the additional Lorentz variant counterterm was not required. The 

model will be found to have a Lorentz invariant spectrum only for a particular nonzero 

value of b. 

The full lagrangian is: 

L = Jdx j^(»0e - yfteAM + \ { 8 0 A 1 - <Mo) 2 + \ { A 2

0 - A \ ) + ^{Acf j (5.114) 

The canonical momenta are: 
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7Tl(s) = 
6L 

= d0A1(x) - b\A0(x) 

ii])^(x) 
6(d0iP(x)) 

We have one primary constraint, 7r 0 = 0. The hamiltonian is 

(5.116) 

(5.117) 

H0 = ' J dx {TrrdoA,, + i^doif} ~ L (5.118) 

= J dx | ^ + T&AO - etV^V + vWV^L + \{A\- A2
0) - ^ A e

2 J 
We work on the compact one dimensional space S 1 with length 2irl and do a plane wave 

expansion of our variables. 

tj}(x) 

A3(x) 

= 7 ^ 1 ^ = - ™ G F C E X P ( - T - ) 

= 7 b S r = - T O ^ ) e x p ( ^ ) 

= ^ E r = - T O ^ ) e x p ( ^ ) 

(5.119) 

(5.120) 

(5.121) 

where £f = ± 1 (the reason for keeping this sign arbitrary will become clear at the end). 

We also define the momentum space chiral charge density as before 

p T ( n ) = / V V e x p ( - ^ - ) ^ = £ al+nak. (5.122) 
J 0 I i 

fc= —oo 
This allows us to write 

Ho =En{l7rl(n)7r1(n) + ^ 7 r ] ( n ) A o ( n ) 4 - ^ 4 a n - | A t ( n ) j 4 £ ( n ^ 

+ ^ ( n ) A e ( n ) + f (Aj(n)A a(n) - A*(n)A0(n))} (5.123) 

The field variables are quantum operators obeying the canonical commutations relations: 

[Aj(x),irk(y)] = SjkS(x - y) 

^(aO.^d/)] = i S i x - y) 

AJ(n),4(m) 

= 5, 

jk " n m 

» l a n i a m | + - " n m 

(5.124) 

(5.125) 
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Denning the Fock vacuum as the state annihilated by 

a-eon I 0) = 0 n > 0 (5.126) 

a\on | 0) = 0 n < 0 (5.127) 

"with e0 = ± 1 , we use the anomalous commutator for the charge density 4.71 

[p(p),Pi(q)}=e0p8p„, (5.128) 

and the chiral version of the Sommerfeld-Sugawara formula 

YJnalan = \e0Y,p!i{ri)p{n). (5.129) 

These lead to the bosonization of the Weyl fermion upon the the definition: 

*(n) = E^L (5 130) 

n 
which is analogous to the definition of the Bose field in the chirally symmetric theory. 

The bosonic commutator is 

\<r(p),<rHqj\=e06M (5.131) 

Then combining the momentum slices — n and n results in the hamiltonian 

H0 = ho(0) + Y, Mn) (5-132) 
n > 0 

where 

*o(0) = \*i{0)2 + p(0)2 + -^P(0)M0) + \ {MO? - Ao(0f) - | A « ( 0 ) a (5.133) 

and 

h0(n) = 7rJ(n)7ra(n) + ^SpV(n)<r(n) + ̂  (a'(n)Ac(n) + Al(n)a(n)) 

+ ^l(n)A0(n) - Al(n)^(n)) - bA\(n)Ac{n) 

-fa (A\{n)Ax[n) - A}0(n)A0(n)) (5.134) 
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We do not worry at this point about the possible appearance of constant terms arising 

from commuting operators; this is taken care of by field independent normal ordering. 

We now proceed to implement Dirac's procedure directly at the quantum level. We 

first look at ho(n) for n ^ 0 and set I = 1. Consistency of our constraint 7To = 0 under 

time evolution requires [7r 0 , Ho) — 0. We thus define (dropping the irrelevant n label) 

G = —i[h0,TC0] = —itjU-Kx + ^~<r — aA0 — bAc = 0 (5.135) 

so that 

[G>J] = a + & (5.136) 

and 

= ^e0e2n + 2nbeef. (5.137) 

G = 0 is Gauss's law for this system, and the non-vanishing commutator with itself is 

the Goto-Schwinger-Imamura term plus a term due to the Lorentz variant counterterm. 

When a + b ^ 0, 7r 0 = 0 and G = 0 form a complete set of second class constraints. 

The a + b — 0 case will be dealt with later. 

We can find a canonical transformation that leaves 7r 0 unchanged, while the trans

formed A0 is a linear combination of the two constraints [46]. We easily show that the 

hamiltonian can then be written as 

physical 

(7T!, Aua) + h 
constraints 5 

(5.138) 

where h c o n e t r a i n U contains only terms proportional to the untransformed constraints. Fur

thermore, the transformed operators 7n,j4i,cr all commute with both of the second class 

constraints. Since the constraints have decoupled, we may consistently set them to 

zero without modifying the commutators (the analogue in Dirac's procedure would be 

that the Poisson brackets and the Dirac brackets are identical). This justifies the alge

braically simpler procedure of obtaining the same physical hamiltonian -up to a canonical 
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transformation- by simply using the constraint G = 0 to eliminate A0 directly 

A0 = (a + by-t-iefnir-L + ̂ y^cr - beAJ 
v2 

(5.139) 

so that we have 

h = W*i (l + A) + («oe/ + ̂ ) n + i (A\^b - ^A,) ^ 

+A\A1& + (crU, + A{<r) ^ g j + i - ^ « £ g . (5.140) 

Performing the following canonical transformation to diagonalize the hamiltonian: 

A^A-fST.-^-K 

o~ — S + iso^T 

TTi = 7T 

(5.141) 

with 

we find after some tedious algebra 

e-y/rte 

\f2~a 
(5.142) 

fc = W f 1 - f T . £ £ 0 £ / e 2 ) 2 > i - f - ^ A ) e o n { j + A b £
L ^ (5.143) 

16a2(o + 6) 4(o + b) 

+ E+Sn-eoe/ + A1 A, 
a + b 

(5.144) 

Defining the creation operators 

-yA iir 
Ji,2 = ± — w h e r e 7 

V2 7\/2 \ 
16a4(a + b) 

16a2(a + b) + (4a - e e 0 £ / e 2 ) 2 

such that 

/ l , / l f ] = - ' [ / 2 , / 2
t ] =1 [fljl] =0 

(5.145) 

(5.146) 

we get 

fc - Elftfl + E2flf2 + n e e o e / E ^ (5.147) 

file:///f2~a
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where 
e0n(e2 + 4ee0efb) 

^ = ± i j > + 6) + \ (4a - eeo£/e»)»n» + a* ( g ^ 
16(a + 6)2 (a+ 6)' 

/ i i /2> a n d a r e * n e creation operators for elementary excitations of momentum n, —n, 

and eQn respectively. 

So we see that in general, the spectrum is not Lorentz invariant, for it does not have 

a relativistic dispersion relation. This lack of Lorentz invariance is deeply connected 

with the fact that this theory has an anomaly which is manifest in the non-vanishing 

commutator G, . It is intriguing that with the choice of b such that 46 4- ee 0-/e 2 = 0 
the gauge generators commute, JG, G*J = 0, and we recover a Lorentz invariant spectrum 

h = Ef\h + Eflf2 + n S f S , (5.149) 

with 
/ T I 2 , , a 2 

E = )J—+m2 where m 2 = ^ . (5.150) 

Note that we had to choose ££rj£7 = +1 in order to obtain a positive definite hamiltonian 

(which is necessary for a unitary theory). We also see that a is restricted to values greater 

than for a positive mass squared), which corresponds to the restriction a > 1 for the 

5.110 theory. 

The analysis of the n = 0 sector is trivial. Preceding as above, one easily obtains 

MO) = m (/'(0)/(0) + \)+ ^p(O) 2 (5.151) 

which is consistent with the n ^ 0 sector. The extension of our result from S 1 to the real 

line is quite trivial as we simply replace j by p the momentum. 

The above analysis is singular for the particular combination of counterterms where 

a+b = 0,.which we must analyze separately. This critical value corresponds to the critical 

value a = 1 of references [39, 42] where the mass diverges. We consider only the critical 
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value 46 = — e 2 as, once again, only for this value do we get a relativistic hamiltonian. 

Now 

[TTQ, <7f] = [G, <3f] = 0. (5.152) 

However a third constraint arises from commutating Gauss's law with the hamiltonian. 

The third constraint turns out to be 7Tx = 0, which along with G = 0 forms a complete 

set of second class constraints. T h e other constraint, 7r 0 = 0, is a first class constraint 

which is associated to a gauge freedom for our system. We can fix the corresponding 

gauge by setting AQ — 0, and use the other two constraints to eliminate both A\ and TT1 

from the system, so that we get quite simply 

Looking back at the case a -f b ^ 0 and taking the hmit as a goes to —fc, we see that 

the mass goes to infinity and that the corresponding boson effectively decouples. This is 

5.3 D i s c u s s i o n 

In summary we have obtained a Lorentz invariant unitary solution of the chiral Schwinger 

model with minimal degrees of freedom by adding gauge and Lorentz variant countert

erms to the bare lagrangian. This can be interpreted as a particular choice of regular

ization which is implemented at the hamiltonian level and is implicit in the gauge field 

independent Sommerfeld-Sugawara formula 5.129. It requires that the renormalization 

of the fermionic charge and the fermionic hamiltonian operators are independent of the 

gauge fields. The difference between this and other regularizations is then parameterized 

by the local counterterms. 

The spectrum we obtain agrees with that found previously by Jackiw and Rajaraman, 

and Girotti et al. [39, 42] except we find a, massless chiral scalar instead of a massless 

(5.153) 

consistent with the result obtained above if we had put a + b = 0 at the outset. 
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scalar. The extra 1/2 degree of freedom found previously is due to the bosonization of 

the decoupled Weyl fermion. Incidentally this results in a different constraint structure 

as we have 2 second class or 2 second class plus 1 first class where Girotti et al. find 2 

second class or 4 second class constraints. However as a first class constraint eliminates 

as many degrees of freedom as two second class constraints it is not surprising that 

the resulting theories show equivalence. A point that is not clear to us though is the 

connection between the extra 1/2 degree of freedom and the absence of a Lorentz variant 

counterterm. 

Our methods can be regarded as providing a canonical justification for the previous 

results found using path integral methods. It is not surprising that the naive path integral 

representation can be applied since the theorem of Fradkin and Vilkoviski [47] indicates 

that for a system with . second class constraints the naive path integral still correctly 

describes the dynamics. However, that theorem holds for constrained systems where the 

character of the constraints appears at the classical level and is not modified by quantum 

effects. Here, as in the case of all gauge theories with perturbative anomalies, the algebra 

of the gauge constraints is modified at the quantum level, their second class nature is not 

exhibited at the classical level. We conjecture that the path integral is still valid in this 

case and that the quantum effects are exhibited by the failure of the fermion measure to 

be gauge invariant [24]. This means that we can parameterize the different acceptable 

regularizations of the measure by using counterterms with arbitrary parameters. We 

have found that only certain regularizations are allowed by the physical requirements of 

unitarity and Lorentz invariance. 

The bosonized lagrangian 5.110 can also be obtained by localizing the gauge field 

effective action [39]. As mentioned in the introduction, authors [40] have found that 

Fadeev-Popov procedure results in a Wess-Zumino term in the effective action as well. 
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Upon localization this yields an action 

£=£0-rCwz, (5.154) 

where L0 is given by 5.110, and 

Cwz = \{a.- 1)8^6 - e6 ((a - lfaA" + f d ^ ) . (5.155) 

6 is the Wess-Zumino field [48]. This term restores the gauge invariance of the theory, as 

C is now explicitly invariant under the transformation 

> Aft 4" d^E 

6-^6-ee (5.156) 

4> — * cj) — ee 

However, now that the theory is gauge invariant, we can go to the gauge 0 = 0 and 

recover the previous theory. In [48] it is shown that with a gauge covariant quantization 

(instead of fixing the gauge, constraints are imposed on the Hilbert space), the physical 

gauge invariant correlation functions in the theory with the Wess-Zumino term are the 

same as the physical correlation functions of the theory without the Wess-Zumino terms. 

Finally let us point out that the physics here is a faint image of the standard model. 

We have a massive vector gauge boson and chiral fermion anti-fermion pairs. How

ever, here the gauge boson acquires a mass through anomaly generated symmetry break

ing, whereas the standard model uses the Higgs mechanism with spontaneous symmetry 

breaking. This latter method is somewhat ad hoc and introduces a large number of pa

rameters into the model. If the top quark did not exist (it has not yet been found up to 

70 GeV) the standard model would be anomalous, and perhaps the W and Z particles 

would acquire their mass via anomaly generated gauge symmetry breaking. 
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Chiral Bosons 

Chiral bosons (the same thing as self-dual scalars in two dimensions) are very important 

objects in string theory. Probably their most useful property is that they represent chiral 

Fermi theories. Here we will review some of the proposals for describing a single boson 

in Minkowski space, and end with a discussion of the curved space generalization. 

6.1 Chiral Bosons as Charge Density Solitons 

In the previous chapter we had found that the hamiltonian for a Weyl fermion coupled 

to a vector gauge field could be transformed to the hamiltonian for a massive boson (the 

gauge field) plus a massless chiral boson (fermion anti-fermion pairs). Stepping slightly 

backwards, we have found that a free right-moving Weyl fermion with lagrangian density 

L = IV2^8+TP = irl>\dt + 8x)TP, (6.157) 

3rields, via the Sommerfeld-Sugawara formula, a hamiltonian describing a right-moving 

scalar 

H = Wpi(n)p(n), (6.158) 
Z n 

with commutator 

[p(n),pi(m)] = nSnita. (6.159) 

Transforming back to position space, we have a boson field p which has the equal time 

commutator 

\p(x),p{y)]=i8'(x-y),. (6.160) 

53 
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and dynamics governed by the local hamiltonian 

H = ^Jdxp2(x). (6.161) 

We ask what bosonic lagrangian could give this theory, and are answered by Floreanini 

and Jackiw [49] who say that it is the following nonlocal one: 

L = =^J dxdyp(x)e(x - y)p(y) -±J dxp2(x), (6.162) 

where e(x) is the heavyside function 

f 0 for x < 0 
e(z) = I . (6.163) 

| l for i > 0 

This lagrangian does describe a self-dual scalar, for the Euler-Lagrange equations are 

p(x) + ^jdye(x-y)p(y) = 0, (6.164) 

which imply d+p = 0. In addition, we have the soliton type boundary conditon p(+oo) = 

-p( -oo) . 

To check that the lagrangian does give the desired hamiltonian formalism, we go 

through the Dirac procedure [50]. The momentum canonically conjugate to p(x) is 

= J dy p(y)e(y - x), (6.165) 

which implies that the system posses the infinite continuous set of primary constraints 

X(x) = 7t(x) + ^ J dy p(y)e(y - x) ~ 0. (6.166) 

The canonical hamiltonian then derived from lagrangian 6.162 is indeed 6.161. The Dirac 

algorithm does not yield secondary constraints, and since 

Q{*,y) = bc{x),x(y)] = \^{x ~ y),' (6.167) 
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we conclude that all the constraints are second class. Furthermore, since Q~x(x,y) = 

8'{x — y), the Dirac bracket 3.52 yields the equal time commutator 6.160 for p. 

A local action is obtained by a redefinition of the dynamical variable [49] 

<j>{x) = ^Jdye(x- y)p(y); (6.168) 

because substitution of this variable into lagrangian 6.162 gives a local lagrangian with 

density 

C = -\dM-\{d^?- (6-169) 

The nonlocality hidden in 6.168 reappears in the equal-time commutator. In fact, use of 

6.160 or canonical quantization of 6.169 yields 

[#*0, <£(</)] = Y < * - y ) - ( 6 - 1 7 ° ) 

While the hamiltonian formulation of this theory is, by virtue of the fixed time definition 

6.168, the same as the previous, and leads to the self-dual equation for <f>, the Euler-

Lagrange equations that follow from C are dxd+<f> = 0, which have solution d+<j> — f(t). 

Thus to obtain the self-dual equation we must impose the boundary condition fit) — 0. 

To summarise thus far, the local, manifestly Poincare-invariant theory of a single Weyl 

fermion can be represented by two nonlocal versions of the theory of a chiral boson, both 

with the same hamiltonian formalism. This theory is Poincare invariant [49], however 

not manifestly so. It is therefore difficult to couple to background gravity or to guarantee 

Lorentz invariance when coupling to external gauge fields. The latter would be necessary 

to examine gravitational and gauge anomalies of the chiral fields or to construct covariant 

chiral string theories. The version 6.162 is a nonlocal lagrangian in terms of a local field, 

while the version 6.169 is a local lagrangian in terms of a nonlocal field. 
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6.2 The Siegel Action 

We would like a completely local lagrangian field theory of chiral bosons. This cannot 

be done with the minimal left-moving or right-moving degrees of freedom. In general 

both must be included in the action and the unwanted modes are eliminated by a chiral 

constraint. The following lagrangian appears to work: 

£ = d+<f>d-<l) + \d+4>. (6.171) 

The first term is just the usual lagrangian for a free massless scalar, while the second 

term has a Lagrange multiplier enforcing the the linear constraint d+<f> = 0 as the field 

equation derived from a stationary variation with respect to A. For this to be a theory 

of a single chiral scalar, A must simply be a gauge degree of freedom. However, because 

the linear chiral constraint is second class it is not a gauge generator, and therefore A 

cannot be gauged away from the equations of motion. 

This can be partially cured by adding the counterterm A 2 /4 to the lagrangian 6.171. 

We then obtain the hamiltonian for a scalar 

w = i*j + ^,2> (6-172) 

along with the chiral constraint , 

X(x) = w^x)-r4>'{,x) = 0, (6.173) 

whose Poisson bracket algebra, 

{x{x),x(y)} = -2o~\x-y), (6.174) 

permits the computation of the equal time commutator via the Dirac bracket 

[<Kx),<l>{y)} = ^e(x-y). (6.175) 
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Then setting the second class constraint strongly to zero results in the hamiltonian being 

again given by 6.161, and we just have the theory of the previous section. It appears that 

this is known in the literature; however nowhere is it explicitly stated. The advantage 

of lagrangian 6.171 over those of the previous section is that it is more susceptable to a 

curved space generalization. 

It was first pointed out by Siegel [51] that if we square the second class chiral constraint 

d+<f> — 0, we obtain the first class constraint (d+(j>)2 — 0. The lagrangian he proposed for 

describing chiral bosons is 

C. = d+(j>d^4> - \++{d+<j>)2. (6.176) 

It is invariant under the gauge transformations 

8<j>(x) = e+(x)d+(j>(x) (6.177) 

8X++ = e+(x)d+X++(x) - d+e+(x)\++(x) + d_e +(z), 

which allow A + + to be gauged to zero. 

In the corresponding hamiltonian formalism the constraint TT\ = 0 is first class, al

lowing the gauge A + + = 0 to be imposed. The secondary constraint 

T(x) = ^ + (b')2 = Q (6.178) 

is first class at the classical level since its Poisson brackets generate the one-dimensional 

diffeomorphism algebra 

{T(x\T(y)} = (T(x) + T(y)) 8\x - y). (6.179) 

Thus at the classical level the chiral constraint can be consistently imposed without 

altering the canonical brackets, and we have the desired local theory of a self-dual scalar. 
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However, at the quantum level this algebra contains an anomaly, and is essentially 

the Virasoro algebra because T(x) is the positive light-cone component of the energy 

momentum tensor for a scalar. 

[T(x), T(y)} = i (T(x) + T(y)) S'(x - y) + ~ ( d x + d*)8(* - v)- (6-180) 

There are several ways in which we could deal with this anomaly. One way would be, 

as we did with the chiral Schwinger model, is apply the analogue of Dirac's procedure 

directly to the quantum theory. However, this would be fairly complicated and also 

reintroduce the same type of nonlocality that we wished to avoid in the first place. The 

other way would be, as has also been done with the chiral Schwinger model, is to add 

a Wess-Zumino term to the Siegel lagrangian which cancels the anomaly. Imbimbo and 

Schwimmer [52] have observed that a scalar field can serve as its own Wess-Zumino term 

and have found that the term 

Cano = J—\++dl4> (6.181) 
I D I 

explicitly breaks the classical Siegel invariance, but restores the invariance at the quantum 

level. However, as we will later discuss, this does not generalize to the nonabelian theory. 

The term which Labastida and Pernici [53] added is 

£ct = d+Pd_p - X + + d + P d + P + 2d+X++d+P, (6.182) 

where the Wess-Zumino field p is now called the conformal field, and transforms as 

6p='e+d+p + d+e+. . (6.183) 

The conformal field breaks the invariance classically, however the authors [53] showed 

that the quantum theory described by Ce - f Cct is anomaly-free. Furthermore, by a 

BRST analysis they found that it describes two right-moving scalars. This result will be 
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reestablished here in a later chapter when we generalize their analysis to the nonabehan 

theory of chiral scalars. 

It is natural to inquire about the relationship between this theory, and the quantum 

theory of Floreanini and Jackiw's model which describes a single right-moving chiral 

scalar and is the bosonized version of a Weyl fermion. We will address this issue in 

chapter 8 and find that both theories appropriately coupled to background gauge and 

gravitational fields are the bosonization of a Weyl fermion in the same backgrounds. The 

conformal field can be viewed as a decoupled auxiliary field. 

Another way to cancel the the anomaly of the Siegel symmetry 6.177 has been dis

covered by H u l l [54]. It consists of adding fermionic "no-mover" fields described by 

lagrangian 

CNM = Y ^ - V " + A + +V>d +V0. (6.184) 

It is invariant under the "Siegel transformation". Its equations of motion for the Weyl-

Majorana spinor field, ip, imply that it it is a constant (which we take to be zero). 

However, at the quantum level this field becomes nontrivial, and in fact fifty of these 

spinorial no-mover fields wil l cancel the anomaly due to one chiral boson described by 

the Siegel action. 

6.3 Coupling Chiral Bosons to Background Gravity 

In a curved space, chirabt}' can only be defined locally with respect to the orthonormal 

frames originally introduced by Cartan. Suppose our manifold has a metric g^vix), in 

terms of which the distance ds between two infinitesimally nearby points and x^ + dx11 

is given by 

ds2 = g^dx^dx". (6.185) 
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The metric may always be decomposed into vielbeins eaJ(x) (zweibeins in two dimensions) 

satisfying 

•9w = Vobfol, (6.186) 

so that 

ds2 = 7]abeaeb, (6.187) 

where ea — e^dx*1. nab is the flat metric which we take to have signature (4 - 1 , - 1 ) . Latin 

indices refer to the orthonormal tangent frame, while greek indices refer to the coordinate 

frame. The vielbein e°, and its inverse E£, defined by 

EZ{x) = V a b ! r £ (6.188) 

and satisfying 

E^J^Sl E»el = 8^ (6.189) 

are used to change tensor quantities referred to coordinate frames to tangent frames, and 

vice versa. 

A geometrical interpretation can be given to Siegel's action as follows: Begin with 

the action for bosons coupled to external gravity 

S = J d^x.y/g^(x)d^(x)dl/cb(x)> (6.190) 

where g is the absolute value of the determinant oig^. Then decompose the metric into 

zweibeins as in 6.186, set one of the light-cone components flat and orthonormal, 

and treat the other components e+ as dynamical degrees of freedom. Then with the 

definition 

• ( < u 9 2 ) 
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the action 6.190 becomes Siegel's action 6.176. 

The gauge transformations 6.177 are then seen as coordinate transformations which 

preserve condition 6.191. Indeed, under the coordinate transformation 

Sx" = e"(x) (6.193) 

the zweibein transforms like a vector field, 

Sel(x) = ev(x)d„e°(x) + d^v(x)ea
v(x), (6.194) 

and the scalar like 

6<j>(x) = ev{x)dv<l>{x). (6.195) 

Condition 6.191 is preserved when e~(x) = 0, in which case transformations 6.194 and 

6.195 reduce to transformations 6.177. Thus Siegel's gauge symmetry is seen as freedom 

to make coordinate transformations on the part of the light cone in which the field is 

constrained to zero. 

If ea forms an orthonormal frame basis, then so does Lb(x)eb, where L£ is a Lorentz 

matrix: 

VcdKLt = Vab- (6.196) 

Thus local Lorentz transformations are defined to be the above orthonormal tangent 

frame rotations, which in light cone coordinates are 

e+(x) - A(x)e+(z) (6.197) 

e » ( x ) ~* A_1(aj)e;(a:) } 

where A = Li — (Lz)"1- Siegel's action is trivially invariant under Lorentz transforma

tions since it depends only on the manifestly invariant ratio A + + . However to cancel the 

anomaly in Siegel's symmetry, the authors of [55] found it nessary to add the Lorentz 
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variant counterterm 6.182 where 

p(x) = me+(x). (6.198) 

As observed by the authors of [55], this geometrical picture of the chiral constraint 

indicates a natural way to couple chiral bosons to a background two-metric. Just use the 

action 6.190, rewritten in terms of the zweibein, with e~ (x) left as an external classical 

field. (j>(x) and e+(x) are the dynamical fields, with e+(x) no longer thought of as gravity, 

but rather as a Lagrange multipier which enforces the tangent space chiral constraint 

E^E^d^d^ = 0. (6.199) 

Another motivation for authors [55] to propose such a model is the fact (as we will see 

in the next chapter) that right-handed fermions in background gravity also only couple 

to e"(x). 



Chapter 7 

Bosonization in Background Gauge and Gravitational Fields 

Here we will demonstrate, via path integral techniques, that the correspondence between 

a Weyl fermion and a chiral boson holds in suitably coupled arbitrary background gauge 

and gravitational fields. To do so, we must first review the correspondence between a 

Dirac fermion and a nonchiral boson. We do so in the first two sections following reference 

[55]. The next section reviews original work done by Sanielevici, Semenoff, and Wu in 

reference [55], and the final section presents original work by the present author. 

7.1 The Effective Action for a Scalar in Background Fields 

The action of a scalar field coupled to a background metric gfXU(x) and vector and axial 

vector gauge fields V^x) and A^x) respectively, is 

S B = j d2x Jg- j ^ d ^ c W + — g ^ A ^ + - ^ e ^ V ^ j , (7.200) 

where g is the absolute value of the determinant of g^v and 

ir = ±-<T , e^ = v / ^ , (7.201) 
\/g 

is the Levi-Civita tensor, and e01 = —e10 = —e01 = e10 = 1 with all other components 

zero. The axial and vector currents are given by 

ft 

1 6SB 

1 ssB 

l 

I 

7T 

(7.202) 

63 
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and the energy momentum currents are 

In the quantum theory, we are interested in the effective action obtained by path 

integrating the scalar, 

SeJf [g,A,V] = T i n / d 4 ( x ) exp{iSB [^g,A,V}} ; (7.204) 

because it allows us to compute current correlation functions. For example, the vacuum 

expectation of the energy momentum tensor is: 

By completing the square in the quadratic form 7.200 (a simple procedure documented 

in many texts on field theor}') we obtain 

SeJf = z] J d 2 x ^ g ( V ^ - ^ V M ~ ( V a A a - ^ V a V p ) 

+ -An j dcj)(x) expiSB [<f>,g, 0,0] , (7.206) 

where the coordinate covariant derivative on vectors is 

V M F « = - L a ^ ^ V " ) . (7.207) 

It was observed by Polyakov [56] that the result of the final integral is determined by the 

trace anomaly [57] 

g^(Tn[g,A = V = 0} = ^ R , (7.208) 
1Z7T 

where R is the scalar curvature. This enabled him to obtain the exact effective action 

= 9^Id2xV~gR^R (7-209) 

+ \jd2x yfi ( V ^ " - e ^ V ^ K ) ~ (VaAa - ia0VaVp) . 
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In the next section it is shown that this is also the effective action for a Dirac fermion 

in the same background fields, regulated so as to be coordinate covariant and vector 

the same axial anomaly as fermions regulated in the vector conserving scheme. 

7.2 The Effective Action for a Dirac Fermion in Background Fields 

The action for a Dirac fermion coupled to background gravitational and vector and axial 

vector gauge fields is constructed so as to be invariant under general coordinate, local 

Lorentz, gauge, and chiral gauge transformations. It is 

gauge invariant. In fact, the coupling to gauge fields has here been chosen so as to obtain 

(7.210) 

where |e| = det e° = ^J~g is the usual factor introduced to make the measure coordinate 

invariant. The spin connection can be written in two dimensions, as — u^eab 

with 

(7.211) 

in terms of which the scalar curvature is 

R = 2e^d M uv (7.212) 

The spin matrix is 
1 

(7.213) 

where -y" are the flat space gamma matrices 

(7.214) 

and 75 = Z7°7 1 is the chirality matrix. 
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The axial vector and vector currents are given by 

& = ' T1TT = tr"** (7-215) |e| SA^ 

\e\ 6% 

and the energy-momentum currents are 

= — — ^ = — £ — £ (7.216) 

where 7^ = e°^a are the curved space gamma matrices, and = + A M 7s + is the 

gauge covariant derivative. 

To find the effective action we first use the identity 

7 a ^ ^ 7 s = -fE^A", (7.217) 

so that the action can be rewritten as 

SD = J d2x \e\^7
aE^{id^ + u^baah + V„ - i^A")^, (7.218) 

and the fact that a two-dimensional vector field can be written as the sum of the gradient 

of a scalar and the dual gradient of another scalar, 

V» - i^A" = 8^ + e^dr-x, (7.219) 

where 

i .= —^(V, - i^A") (7.220) 

and 
1 

X = 7 ^ e ^ V M ( l / - evXAx). (7.221) 
V 
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Then performing the change of variables 

i> -> e i ( f 4 ™ V (7-222) 

removes the gauge fields from Srj, but reintroduces them in the path integral measure: 

dtP{x)dtP(x) - * di}){x)d.TJ>{x)e2iTri*x, (7.223) 

where the trace in the exponent is over the function space on which tp and rjj are defined. 

Using a vector gauge invariant heat-kernel regularization, Fujikawa [24] obtained 

SeJJ = -7 In / dilj{x)d^(x)exp iSD [e°, A, v] 

= \jd2x^ (V^" - <rv»vv) ± (VaA° - Ia0VQV0) 

-f- \ l n j dxjj(x)di>(x)expiSD [ib,g, A = V = 0]. (7.224) 

As in the case of bosons, the result of the final integration can be deduced from the trace 

anomaly of the energy momentum tensor; and the resulting effective action is identical 

to 7.209 for the scalar field. This implies that the correlation functions of the vector and 

axial vector currents 7.202 and 7.215 are identical, thus generalizing the identification 

4.98 to curved space. The correspondence between the bosonic and fermionic energy-

momentum tensors 7.203 and 7.216 generalizes the Sommerfeld-Sugawara formula 4.90 

for free fields to those in background gauge and gravitational fields. In the next section 

we will use the expression 7.209 for the effective action to obtain the effective action for 

chiral fermions. This will also turn out to be the effective action for chiral bosons. 

7.3 The Chiral Effective Action 

As we have alluded to in the previous chapter, the action for a Dirac fermion splits into 

a sum of left- and right-handed actions. In fact, using the definitions 

AR^=VI1 + A. , Al = V^-All (7.225) 
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i>L = \{l+ils)i> , *R = \(l-iirs)1>, (7-226) 

along with the identity 

\e\E^-e^eabel (7.227) 

and the fact that the Minkowski metric in light-cone coordinates is 

the action 7.210 becomes 

SD = SL + SR (7.229) 

= yfij d2x [e;e^R(id„ + A R ) ^ R - e^^L{idu + A^L] , 

where d — ~(d — d) and acts only on the spinors (in the above expression). 

This implies that the Dirac fermion determinant must factorize into Weyl determi

nants which depend only on the background fields which couple to each of the Weyl 

operators: 

expiSeJf [e°, AM] = J dj>R(x)di>R(x) exp iSR X J dipL(x)tbl(x)expiSL 

= det (V2i(iVi + A+L)j x det ^ / 2 i ( i V 7 + A~R)^j x expiS C T , (7.230) 

where A ± L < R = ±e^A^R , V f = ±(e±?»dv-\^(d„et)% and SCT are some countert-
2 

erms depending on the backgrounds. This factorization implies that the effective action 

can be written as a sum of two nonlocal terms which are functionals exclusively of those 

background fields which couple to each Weyl field, and the local counterterms: 

S*"[el,V„Aj= r + [ e + , A + i ] + T - [ e ; , A - R ] - SCT, (7.231) 

where T+ and T~ are the effective actions for left- and right-handed Weyl fermions 

respectively: 

T + [ e ^ A + L ] | In d e t j v 7 ^ (iVt + A+L^j j (7.232) 
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r-[e;, A~R] = ^ In det | V 2 i ( t V l 4- A"*) } . (7.233) 

And sure enough, the authors of [55] have found that use of the variables 

e, „ e + 

A + + = - ± , A _ _ = ^ (7.234) 
e 

p = In , <J = In e_ 

in the effective action 7.209 confirms this and yields the chiral effective actions 

+ (4r) (7'235) 

+ S / ^ (£) 5-0,a-U+a-*- (4r)' (7'236) 

and the local counterterms 

+ 1 - s\ / \ + + 

+ M - 1 _ ^ + +
A + + g + A - + ^(P + «r)|elVa(p + a) (7.237) 

2 ((c\A__)(<9+ - A + + 5 _ ) + (<9_A++)(<L - \-d+))(p + a) 
1 - A + + A _ 

2 

Local counterterms in an effective action may be thought of as parametrizing the 

choice of regularization of the measure in the path integral. Once the essential nonlocal 

part of the effective action containing the propagators is determined, any local polynomial 

in the external fields and their derivatives may be added. Usually one adds the minimum 

number of terms required to preserve a maximal subset of the classical symmetries. The 
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counterterms SCT above are those which we must add to r + [e^, J 4 + L ] -f T~[e~,A~R] to 

obtain the effective action 7.209 for a Dirac fermion which is coordinate, local Lorentz, 

and vector gauge invariant. It is not possible to add further counterterms which make 

this effective action invariant under chiral gauge transformations, unless we sacrifice 

vector gauge invariance. Similarily, we cannot add counterterms which restore the Weyl 

invariance (ie remove the trace anomaly) unless we give up general coordinate invariance. 

The chiral effective actions 7.235, 7.236 are trivially invariant under the local Lorentz 

transformations 6.195, and also under the Weyl transformations 

el(x) - K(x)el(x). (7.238) 

However, they are not invariant under general coordinate transformations Sx" = e"(x), 

whereby coordinate indices transform according to the Lie derivative. The general co

ordinate invariance of r~[e~,j4~R] can be restored by adding local counterterms which 

break the Lorentz and Weyl invariance. In fact the chiral effective action computed by 

Leutwyler [58] 

4- 1 y d2x\e\V^ + e ^ A ^ V ^ + <?*)AR (7.239) 

differs from T~ [e~, A~R] by local counterterms [55]. This effective action is invariant 

under general coordinate transformations, and has the covariant Lorentz anomaly 

f - [A<, A - J e ; , AA+^A -M-* ] = f - [e+,e;,A+L,A-R] - ~ J d2x\e\R(x)ln A(x). 

(7.240) 

This is an example in two dimensions of the general method in 2n dimensions of obtaining 

the Lorentz anomaly from the Einstein (general coordinate) anomaly which has been 

given by Bardeen and Zumino [59]. 
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Although there is no obvious local and Lorentz invariant decomposition of the classical 

bosonic action 7.200 into left-moving and right-moving parts, since 7.231 is also the 

effective action for bosons, the boson partition function also factorizes. We will use this 

fact in the next section to define chiral Bose theories with the chiral effective action 

r-[e;,A-*]. 

7.4 Two Methods of Chiral Bosonization 

In the last chapter we saw that there are two ways of obtaining a theory of chiral bosons, 

in two spacetime dimensions, from the non-chiral theory defined by Lagrange density 

d+<j)d~<j). One way is to set one light-cone component of the gauge current to zero, that is 

impose the linear chiral constraint J + = d+<j> = 0. The other way is to set one light-cone 

component of the energy-momentum tensor current to zero, that is impose the quadratic 

chiral constraint T + + = (d+<b)2 = 0. Although the linear constraint is second class, 

the quantum theory obtained does indeed describe a single right-mover. The quadratic 

constraint although first class classically, is second class at the quantum level. To cancel 

this anomaly we must give the quantum theory another 1/2 degree of freedom, hence 

it describes two right-movers. Even though these two theories have different spectra, 

we will prove that suitably regularized they have equal correlation functions of J_ and 

T Furthermore this holds in both external gauge and external gravitational fields 

for suitably defined modifications of the gauge and energy momentum currents. These 

correlation functions are those of the gauge and energy momentum currents of Weyl 

fermions in the same backgrounds. 

Consider the theory defined by SB, given by lagrangian 7.200 plus SCT, given by 

equation 7.237, with (j) and e£ considered to be dynamical and A M , V^e^I left as external. 

That the action be stationary with respect to variations of gives the constraint T + + = 0 
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ie 

EtEUd^d^ + 4=4A<£ + Tor*,) = 0 (7.241) 

where TCT is the part of the energy-momentum tensor due to SCT a n d is of order h. 

With the external fields set zero SCT — 0, = (d+<b)2, and the theory is just the one 

considered in section 6.2 : 

SB = J (<9+<£d_<£ + \—(d+<f>)2 + £*) d2x. (7.242) 

Where Cct is given by 6.182 and depends only on e+, which will here be integrated out 

shortly. Recall Cct is precisely the counterterm we need to cancel the anomaly in the 

Siegel symmetry. 

Consider again the theory defined by SB of lagrangian 7.200 plus SCT , except this 

time take (f> and A+L to be dynamical and leave e£ and A~R external. That the action 

be stationary with respect to variations of A+L gives the constraint J+ = 0 ie 

E ^ d ^ + JcT^^O, (7.243) 

where JQT is the part of the gauge current due to SCT and is of order K. With the 

external fields set zero SCT — 0, J+ = <9+</> and the theory is just the one considered in 

section 6.1 

SB = I d+<f>d^<f> + -A+Ld+<f>. (7.244) 
J 7T 

This is missing the (A+L)2/An2 counterterm which we could now add, but will be inte

grated out shortly. 

We will now obtain the generating functional Wi[e~, A~R] for the latter of these two 

theories by path integrating 5 B + SCT over <f> and A+L. First note that from equation 

7.231 that 

J d4(x)exp{iSB[el,A„V„]-riScTK,A„Vj} 

= e x p { z T +[ E+,A + L] + i r - [ E ; , A - I I ] } . (7.245) 
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Therefore integrating this over A+L yields (up to an overall constant and a change of 

measure induced local counterterm due to rescaling A+L by e+) 

W1[e;,A-R] = exp {iT-[e;,A-R}} exp { » T + [ e J , A+L = 0]} de t5 ( d + d _ - d+X^d+). 

(7.246) 

However 

exp {;r+[e+, A+L = 0]} = J^(x)exp {iSB[e^e; = A„ = VM = 0]} 

= J d<f>(x)exp | - t / d2x<b(d+d- - d+A__d+)4>j 

= d e t ~ 1 / 2 ( d + d _ - d + A _ _ d + ) . (7.247) 

So that 

Wi[ e;,A- f l] = e x p { ; r - [ e ; , A - H ] } , (7.248) 

which is the generating functional for Weyl fermions. Correlation functions for the chiral 

gauge and energy-momentum currents are given by 

< J_ [xx),.. J_ (xm )T? (y 1 ) . . . (yn) > = 

f 8 8 8 8 

\ SA-^x,) • • • A " « ( x m ) Se-M • • • 8e~i(yn) j ^ A~ 1 ( ? 2 4 9 ) 

The chiral Bose theory with constraint equation 7.241 is obtained by path integrating 

SB + SCT o v e r <f> ar>d e+. Integrating equation 7.245 over e+ yields (up to an overall 

constant and a local counterterm due to rescaling e+ by A+L) once again the generating 

functional ^ [ e " , A _ i i ] given by equation 7.248. Again correlation functions are given 

by equation 7.249. 

In conclusion we have two ways of defining chiral bosons which have identical cor

relation functions (namely those of Weyl fermions) for the chiral gauge and energy-

momentum currents. These two theories of chiral bosons have been gauged and made 

coordinate covariant in such a manner as to obtain the same gauge and gravitational 
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anomalies as Weyl fermions regulated in the decoupled left-right scheme. In zero back

grounds this amounts to using d+d> = 0 or [d+<j>)2 = 0 as a constraint on the left-right 

symmetric scalar theory. 



Chapter 8 

Nonabelian Bosonization 

Both theories of elementary particles and theories of condensed matter often have sev

eral species of fermions. These theories usually are invariant under "rotations" of the 

fermion species into one another, hence any bosonization procedure should perserve this 

symmetry. Nonabelian bosonization of fermion theories leads to various Bose theories, 

depending on which symmetries are to be perserved. We will begin by describing the 

procedure for free fermions, due to Witten, and progress to theories in background fields 

(this generalization is due to a number of authors). As in the previous chapter, the 

chirally symmetric theories in backgrounds lead naturally to two chirally asymmetric 

bosonic theories in the same backgrounds. One of these theories was proposed in [55], 

the other proposal is is due to the present author and is unpublished. 

8.1 Bosonization of Free Fermions 

The lagrangian for a single free massless Dirac fermion split into its Weyl components is 

This form makes obvious the statements of vector and axial vector current conservation, 

which in Hght cone coordinates are 

(8.250) 

0 = d_J+ (8.251) 

where 

(8.252) 

75 
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are the light cone components of the vector current J" = ̂ "ip. 

The bosonization of this theory amounted to the identifications 

J- = -^=d-d> J+ = ~d+4, (8.253) 
V7T V7T 

where <j> is a scalar field with dynamics determined by the lagrangian 

£ = i c V ^ , (8.254) 

which has the correct equations of motion for the currents, namely d+d_<f> = 0. 

What made these identifications possible were the anomalous Fermi current commu

tators 

[J±(x),J±(y)) = ^ S ' ( x - y l (8.255) 

and the Sommerfeld-Sugawara formula for the Fermi energy momentum tensor, which in 

light cone coordinates is 

T++ = TTJ+J+ 

T__=TTJ_J_. (8.256) 

Both the commutators and the expressions for the energy-momentum follow canonically 

from the free massless scalar theory. 

Consider generalizing this to a free massless fermion theory with TV species of fermions. 

C = iV2x/;kJd+ipk_ - z'v/2>+td-V't (8.257) 

We could just introduce a separate boson, <f)k, for each fermion. However, only the 

diagonal fermion bilinears such as ipk_}tbk_ would have a simple bosonized form. The 

off-diagonal fermion bilinears would be complicated and non-local, making it difficult to 

extend the bosonization to interacting theories. Furthermore, this theory would not have 

the chiral U(N) x U(N) symmetry of the lagrangian 8.257 

V>* -> Ukjtpj_ , ^ -> VhjiPJ

+, (8.258) 
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with U, V € U(N). 

A n alternate bosonization procedure which keeps manifest the full chiral U(N)xU(N) 

symmetry has been introduced by Wit ten [60] i n 1984. Since then his method has 

been generalized to theories of free massless Fermi fields which form a representation 

of any nonabelian group Q which satisfies the criterion of Goddard, N a h m , and Olive 

[61]. For example, i f the W e y l fermions had a Majorana condition imposed on them 

(ie V>± = V'i), the symmetry would be SO(N) x SO(N), and Q would be SO(N). For 

another example, suppose the Weyl fermions had two indices, say flavour SU(N) and 

color SU{M). Then to preserve the full chiral {SU(N) <g> SU(M)) x (SU(N) <g> SU{M)) 

symmetry we would take Q = SU(N) (g> SU(M); however, if we wished (as is often the 

case in applications) we could preserve only a subgroup of this symmetry by taking, for 

example, Q"= SU(N) © SU(M). Let us first take Q to be either U(l) or simple, and 

later explain what to do with semisimple groups, and groups with U(l) factors. As in 

the single species U(l) theory, the rules are derived by focussing on the currents. 

The chiral Q+ and chiral Q_ transformations (ie the transformations for the positive 

and negative chirality fermions) are generated by the Q algebra valued currents 

J- = i>{- {Ta)ijtp-, (8.259) 

where the matrices Ta are a basis of generators of G, normalized such that 

T i T a T b = 1^6 (8.260) 

For the case G = U{1), Ta — the theory is just the previous single fermion theory. 

Given lagrangian 8.257 it is clear that the field equations for the currents are 

d_Ja. = 0 = d+Ja_. (8.261) 
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The nonabelian generalization of the anomalous current commutators have been ob

tained in various places [62, 63] and are 

[J±(*)>J±(V)] = ifabcJc

±(x)S(x-y)±^SabS'(x-y), 

J*(x),Jb_(y)} = 0, (8.262) 

where fabc are the structure constants for the algebra. 

[Ta,Tb] = i f a b c T c (8.263) 

This current algebra is two commuting copies of the level k Kac-Moody algebra associated 

to G [64]. With the choice of normalization 8.260, k is equal to one. 

The nonabelian generalization of the Sommerfeld-Sugawara formula is also available 

[65], It is 

T++ = j ^ - J a

+ J l , (8.264) 
1 + q 

with a similar expression for T q is the quadratic Casimir constant for the adjoint 

representation of Q: 

qSab = jacdjbcd (8.265) 

The multiplicative factor (1 + q)"1 was missed in the original work of Sugawara, but had 

later been seen to arise upon careful consideration of normal ordering in the regularized 

expression for the energy-momentum tensor [66]. 

To represent the Q algebra valued currents 8.259 by a bosonic field, Witten proposed 

that we write 

J + = -^G~1d+G = JVTa 

4TT 

J_ = ^-(d-G)G-1 = JlTa, (8.266) 
4 7 T 

where the field G takes values in the group Q. Then the chiral Q X Q transformations 

will act on G by matrix multiplication 

• G —y UGV~\ (8.267) 



Chapter 8. Nonabelian Bosonization 79 

Figure 8.5: A mapping from S2 into the group manifold Q. 

with U, V G Q• The factor ordering in 8.266 is important, for it insures the compatibility 

of the equations 3_ J + = 0 = 8+ J_. 

We might be tempted to choose the principal <r-model associated with Q to be the 

action governing G: 

L ° = / d 2 x T * d » G ~ l d > 1 G - ( 8 - 2 6 8 ) 

However, to obtain the desired field equations and commutators for the currents, we must 

add the Wess-Zumino functional W. 

The definition of W is topological. By choosing the appropriate boundary conditions 

we may think of G as a mapping from a large two-sphere, S2, into the manifold Q. This 

S2 can be considered to be the boundary of a ball in R3, and provided that IL2{G) = 0, 

the mapping G can be extended to a mapping of B into Q. If T / X , 1/2,2/3 are coordinates 

for B, the Wess-Zumino functional is 

W = ~ J d^ye^T^G-'dAGG-'dsGG-'dcG) . (8.269) 

Locally the integrand can be written as a total divergence, so by use of Stoke's theorem 
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we can write W as an integral over ordinary spacetime. The resulting integrand is local, 

but complicated and nonpolynomial. 

W is only well defined modulo W —> W -f- 2ir because of the existence of topologically 

inequivalent ways to extend G into a mapping on B. However, the lagrangian 

L = L0 + nW (8.270) 

gives a well defined path integral for n an integer. 

This lagrangian does give the desired field equations 8.261 when A 2 = 27r/rc. Fur

thermore, for this value of A 2 , the canonical commutators for the currents are the level 

n Kac-Moody algebra 8.262. Thus we should take n = 1 to reproduce the algebra of the 

free fermions. Finally, the energy-momentum tensor canonically derived from L, after a 

multiplicative ^normalization by (1 + q)"1, is given by 8.264. 

Since the free fermion theory and the Wess-Zumino-Novikov-Witten (WZNW) theory 

have the same currents, obeying the same algebra, and have the same energy-momentum 

tensor quadratic in the currents, they are equivalent. The equivalence goes beyond the 

currents, because in both theories there are no operators which commute with all the 

currents [67, 68]. Hence the Hilbert space of the theory, in both cases, can be built as 

an irreducible representation of the current algebra. Furthermore, for k = ± 1 and a 

particular finite choice for the total energy-momentum of the vacuum (so as to obtain a 

highest weight representation) the Kac-Moody representation is essentially unique. 

In the case that Q is the direct sum of simple groups satisfying the criterion of God-

dard, Nahm, and Olive, we just introduce a separate WZNW field for each group in the 

sum. Currents from the different factors commute, and the energy-momentum tensor is 

just a sum of terms like 8.264. In the case that the otherwise simple group has a U{1) 

factor, everthing goes as in the case of a simple group, except that the energy-momentum 

tensor, which turns out to be a sum of abelian and nonabelian parts, requires the (l-\-q)~1 
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multiplicative renormalization only in its nonabelian part. This will become clear in the 

next chapter. 

8.2 Nonabelian Bosonization in Background Gauge Fields 

Nonabelian bosonization can be extended to theories in background gauge and gravita

tional fields by a generalization of the procedure for a single Dirac fermion. Consider 

first the theory of N Dirac fermions, in Minkowski space, coupled to background U(N) 

axial vector and vector gauge fields: 

SD = Jd2x + A R ) j > R - ^L[id_ + A^)if>L, } , (8.271) 
where V ' R . L now denote TV-tuples of Weyl fermions. The notation is the same as in 

previous chapters - for example AR = (AR)aTa = + A^. 

The effective action for this lagrangian can be determined exactly [69, 70], and in 

terms of the Wess-Zumino-Novikov-Witten action 

S[G] = ̂- / d2x Trd^G^d^G + - i - 7 dzx eABC 1i(G'dAGG^ dBGG'dcG) (8.272) 
is 

Sefl[AR>L] = -S\BAi] + J d2x ( a T r A j A ^ + BTiA^TtA1:) , (8.273) 
where the U(N) matrices A and B are solutions to 

iAL_ = A^d_A 

iAR = B'd+B. (8.274) 
The parameters a, 3 depend on the regularization used in performing the functional 

integral. Under the vector gauge transformations 

A ' ! - . , g-\AL_+d-)g 

AR - g-\AR + d+)g, (8.275) 
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the matrices A, B transform as 

A-> Ag , B^Bg, , (8.276) 

so that with the choice a = /3 = 0 the effective action is vector gauge invariant. However, 

then it is not invariant under the chiral gauge transformations 

AL_ - g{AL_+dJ)g-1 

AR -» g-\AR+d+)g (8.277) 

under which the matrices A, B transform as 

A -» Ag-1 , B -» Bg. (8.278) 

By use of the identity 

S[BA*] = S[B] + SIA-1} - — / d2x TTARAL_, (8.279) 
Air J 

and the choice a = 1/47T , j3 = 0 we obtain 

which corresponds to a regularization which decouples the right and left sectors. A 

bosonic theory which has the same effective action is [71] 

SB = S[G] + ^ T r Jd2x (G^d+GAi - Gd-G'AR). (8.281) 

By taking functional derivatives.of the effective action with respect to (A^,)a and (AR)a 

we obtain correlation functions for either the currents 8.259 of the fermionic theory, or 

the currents 8.266 of the bosonic theory which are identical. For example 
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where 

eiS<» [A^] = J d l j j R d x j j L e i S D =jdG £iSB ( g 2 g 3 ) 

This generalizes Witten's identifications for the currents in the free theory, to the 

theory coupled to background gauge fields. It also suggests that to obtain a chiral theory 

of nonabelian bosons, say right-movers, we should elevate the status of A^_ to a dynamical 

field, and leave AR external. However, as in the previous chapter, we have not dealt with 

the gauge fixing of this theory, and as we know from a canonical analysis of the abelian 

theory, this can present problems. Thus the purpose of the next generalization, namely 

including gravity, is two-fold. It will extend nonabelian bosonization to theories which 

are gauged and coordinate invariant, and will allow us to define nonabelian chiral theories 

in these backgrounds that use the quadratic chiral constraint. 

8.3 Chiral Nonabelian Bosonization in Background Fields 

As in the abelian theory, the various actions in curved space are obtained by covariantizing 

the flat space expressions [72]. The nonabelian coordinate covariant Dirac action is 

SD=V2J d2x [e~e^^R{idu + {ARfTa)^R - e+^L(idv + {AL
ufTa)^ , (8.284) 

and the WZNW action 8.281 coupled to background gravity is 

SB = i~ / d 2 * v / ^ T r ^ G ^ G + / d?xeABCTTG^dAGCSdBGG*dcG 
87T J 1/7T J 

•+ ^ J d 2 x ^ { ( g ^ + i n ^ d ^ G A ^ - ( g ^ - e ^ G d ^ A R } , (8.285) 

where both AR,L and G take values in the fundamental representation of U(N). 

In [55] it was shown that the gauge fields AR,L can be represented by U(N) matrices 

A, B simikmly as in 8.274 

(g^ + ^)At(x) = GT + ~enA\x)d„A{x) (8.286) 

(<r - e"")A?(s) = ^ - O B ' W W 
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where A(x) depends only on A+L/e^ and A , and B(x) depends only on A~R/eZ and 

A + + . These authors also showed that the quantum field theories governed by 8.284 and 

8.285 can be regulated so that they have the same effective action 

Se"{g,AL'R] = ̂ -J d>zJgR±R - S[B] - S[A*), (8.287) 

where S[G] is given by 8.285 with the gauge fields set to zero. This implies that all corre

lation functions of the gauge and energy momentum currents are equal, thus generalizing 

Witten's nonabelian bosonization to gauged fields in curved spacetime. 

It turns that the nonlocal part of depends only on A+L/e+ and A _ _ , and the 

nonlocal part of S[B] depends only on A~R/eZ and A + + . This allows the definition of a 

chiral nonabelian Bose theory with a quadratic constraint, similarily as in the previous 

chapter. 

Consider the theory defined by the bosonic action 8.285 with G and e+ considered 

to be dynamical, and A^,R and e~ left as external. Demanding that the action be 

stationary with respect to variations of e+ constrains the positive light cone component 

of the energy-momentum to zero: 

E^E^Tx (d„G%G + 2G^diiGAL
v - 2Gd^AR + TCT^) = 0, (8.288) 

where TcTfw is due to the local counterterms, SCT, that must be added to 8.285 so that 

it yields the effective action 

Se,f[g,AL'R] = NT+[e^,0}-rNr-[e-,0]-S[A^-S[B], (8.289) 

and S[A] is the nonlocal part of S[A]. Then path integrating over G and e+ 

J d G ( a ; ) ^ + ( x ) e
{ 5 ^ G ^ ^ I ' i ? ] + 5 - [ < ^ 1 " ^ (8.290) 

yields (up to an overall constant and a local counterterm due to rescaling by A+L) 

the effective action for nonabelian right-handed Weyl fermions: 

iVr - [e ; ,0 ] -5 [B] . (8.291) 
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Again this implies that the correlation functions of the gauge currents, J " , and energy-

momentum currents, T " , for the fermionic and bosonic theories are equal, since they 

are obtained by functional differentiation of the effective action by [A~R)a and e~ re

spectively. Thus SB + ScTi with e£ n o w used as a lagrange multiplier, is a Bose theory 

which is quantum mechanically equivalent to the U ( N ) gauge theory of Weyl fermions. 

Although we have only discussed U ( N ) , the authors of [72] have shown that the chirally 

symmetric version of this theory in curved space bosonizes similarily for any gauge theory 

whose symmetry group is one obeying the criterion of Goddard, Nahm, and Olive. The 

chiral bosonization described here works for those theories as well in an almost identical 

manner. For a simple group N in 8.287 just gets replaced by C ( N ) = dN/(l -+- CN), where 

dflf is the dimension of the adjoint representation, and C/v is the dual Coxeter number 

(we will define C ( N ) better in the next chapter). 

In the U(l) theory we had two methods of bosonization in background gauge and 

gravitational fields. This suggests that by treating A + L as dynamical and leaving the 

remaining backgrounds external, we should again obtain the chiral effective action 8.291. 

In order to obtain this, path integration of 5 [.A*] over A + L must yield a nonlocal part 

which cancels against T+[e+,0]. We have not been able to show this. One way out of 

this would be to truncate the background gravitational field by setting e+ = 0; in which 

case we would obtain the effective action 8.291 trivially. The chiral Bose theory SB 

would then be only coupled to e~ and therefore not be manifestly coordinate covariant. 

The corresponding Weyl theory is coupled to only e~ as well, however in a manifestly 

coordinate covariant manner. 

Again, we have not dealt with the gauge fixing of the Siegel symmetry. To address 

this issue and put this work on a more solid foundation, we will in the next chapter 

perform a canonical analysis of the zero background chiral Bose theory proposed here. 

This theory is the nonabelian version of the Siegel action 6.176. We will find that for 
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N < 24 the counterterm 6.182 will remove the anomaly in the Siegel symmetry. Since 

this counterterm depends only on e+ (recall 6.198), which is path integrated out anyways, 

the only modification to the arguement here would be another term in TQT-



Chapter 9 
BRST Quantization of Nonabelian Chiral Bosons 

9.1 Introduction 
We have seen that the Wess-Zumino-Novikov-Witten models arise upon nonabelian bosoniza

tion of fermion fields which form a representation of some nonabelian group satisfying 

the criterion of Goddard, Nahm, and Olive. This has proved useful in analyzing systems 

such as quantum spin chains and the quantum Hall effect. In addition to the fact that 

these theories represent fermion theories, they are important field theories in their own 

right. They describe two-dimensional Goldstone bosons which have many of the essen

tial properties of the Goldstone bosons in four-dimensional spontaneously broken particle 

physics theories [73]. Also they are theories of string moving in the space E& X Q, where 

Ed is a d-dimensional euclidean space. 

The phenomenologically interesting heterotic superstring with its built-in left-right 

asymmetry has made the chiral version of the WZNW theories important. The U(l) x 

. . . x U(l) (10 times) ®Es x E$ describes the left sector of the heterotic string [74]. 

In the previous chapter we had found that the Siegel form of the WZNW action has an 

effective action corresponding to a chiral quantum theory. To cancel the anomaly in the 

Siegel symmetry we will add a conformal field to the theory similarily as in the Polyakov 

string theory [75]. There the Liouville field was added to the bosonic string action to 

obtain a quantization away from critical dimension 26. Here a canonical analysis will 

confirm that the Siegel WZNW action does indeed describe a theory of right-moving 
87 
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bosons, but only for certain symmetry groups. Also, the boson describing the conformal 

field disappears from the theory only for a subset of these groups. 

Our analysis wi l l consist of a generalization of the B R S T analysis that Labastida and 

Pernici [53] have performed on the U(l) Siegel action. There has been an objection to 

this [76] because the first class chiral constraint (d+d>(x))2 = 0 is not irreducible, and 

thus its square root should be taken so as to make it so. However, this constraint should 

be considered a quantum mechanical one, and hence apriori only a nilpotency statement 

can be made about the operator d+(j>(x). 

As we have mentioned in chapter 6, instead of introducing the conformal field, we 

could cancel the anomaly in Siegel's symmetry by the addition of a A d+fi counterterm. 

In the nonabelian theory, Imbimbo and Schwimmer have added 

X—Tcd+iG^d+G) or A ^ T r C T ^ G (9.292) 

to cancel the anomaly. However, unless Q has a [/(l) factor, the first term is identically 

zero, and the second term integrates by parts to a term which can be absorbed into the 

original lagrangian, plus a term which is zero. For the U(N) theory these authors have 

found results which are similar to ours [52]. 

Another possibility is to add the H u l l lagrangian 6.184. We wil l comment on this 

later in the chapter. 

As discussed in chapter 6, we do have a lagrangian formulation of a single chiral boson 

that uses the linear constraint d+(j) — 0- W u and M c C l a i n have given a B R S T formulation, 

of this theory that deals quite nicely with the fact that the constraint is second class [77]. 

Their trick was to split the original set of constraints into a set of commuting first class 

constraints, and a set of gauge fixing conditions. The nonlocality encountered in other 

methods here only appears as the fact that it is the Fourier components of the constraints 

that are split, into two groups. 
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AbdaHa and Abdalla [78] have given a constrained hamiltonian fonnahsm for the 

nonabehan chiral theory that uses the current J + = G^d+G as the constraint. However, 

they obtain canonical momenta from the unconstrained lagrangian, and then declare J+ — 

0 as the constraint. How to obtain their hamiltonian formalism from a lagrangian which 

already contains the the constraint remains unknown. Nevertheless, their formulation 

can easily be cast into the BRST language by the method given by Wu and McClain. As 

expected, since both theories correspond to the same fermionic theory (for the appropriate 

symmetry groups), the spectrum agrees with that obtained here, except they do not 

require the conformal field, and do not have critical dimensions. 

The BRST formalism for quantizing gauge theories is very convenient because the 

effects of choosing a gauge are obtained without sacrificing any of the advantages of 

having an exact symmetry. We lose the gauge symmetry upon a choice of gauge; but 

in the BRST method the symmetry is regained in a larger phase space that includes 

ghost degrees of freedom. The BRST formulation of the bosonic string has proved itself 

indispensible for formulating a covariant bosonic string field theory. It is quite likely 

that the BRST formulation of the chiral WZNW theories will be useful in formulating a 

covariant string field theory for the heterotic string as well. 

9.2 Analysis of the Siegel Action 

The Siegel form of the WZNW action in Minkowski space is 

IQ = ^Jd2x (Trd+G^d-G- A _ _ T r 5 + G - 1 5 + G ) 

+ - i - / d3x€ABCTr (G-1dAGG-1dBGG-1dcG) , (9.293) 
127T JB V ' 

where G(x) is an N x N matrix in the fundamental representation of the group Q. In the 

abelian U(l) X ... x U(l) (N times) case we take G = e1*, where <f> = d i a g ^ j ^ • • • <J>N)-
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Then the last term disappears and this reduces to the usual Siegel action for N bosons. 

Since Trd+G~ld+G is a positive definite form, A is a lagrange multiplier forcing G to 

be a function of x~ only. 

The action 9.293 is invariant under the gauge transformations 

8G = e+d+G (9.294) 

o"A__ = <9_e+ + e + d + A _ _ - A__«9+e +. 

Recall from chapter 6 that these may be viewed as coordinate transformations on the 

positive light cone ie 8x+ = e + , 8x~ — 0. This gauge symmetry is the symmetry that 

we will elevate to BRST symmetry. 

In the U(l) case the effective action obtained by path integrating out <b is T + [A ] 

(see equations 7.249), which is gauge variant under the transformation 9.294. To obtain 

a gauge invariant quantum theory the authors of [53] added the counterterm 6.182 which 

breaks the classical invariance. We add the same counterterm with an overall numerical 

factor a to be determined 

Jd=otj d2x {d+pd^p - \—d+Pd+P + 2d+X..d+P), (9.295) 

where the conformal field p transforms under the gauge transformations 9.294 as 

8p = e+d+P + <9+e+ (9.296) 

This transformation is obtained by recalling that p — In . 

The BRST transformation is obtained [79] by replacing e + in transformations 9.294 

and 9.296 by a Grassmanian ghost field c + . A Grassmanian antighost field b++ and 

an auxilhary field B++ are also introduced, with the transformation of these new fields 

determined by demanding the BRST transformation be nilpotent. 

8G = c+d+G 
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Bp = c+d+p -f d+c+ 

a__ = a_c+ + c + c \A__ - A__5 + c + 

8b++ 

8B++ 

(9.297) 

A = 0 is an appropriate gauge choice, and to implement it in a covariant manner at 

the canonical level we add the ghost plus gauge-fixing BRST term as in [53] 

Ig = -i6(b++X__). (9.298) 

This formalism is due to Kugo and Ojima [80] and was used in [81] to quantize the 

bosonic string. Our theory defining action is the sum of 9.293,9.295,9.296 

I = I0 + Ict + Jg. (9.299) 

To eliminate A__ from the theory we shift the auxilliary field B++ 

B + + = B++' + ^Tr(d+G-1d+G) + iad+Pd+p + 2iad2

+p-2b++d+c+ +c+d+b++ (9.300) 
47T 

and obtain 

/ = J (Px^Trd+G^d-G +ad+pd_p+ib++d_c+^ 

+ ~ f d3xeABCTrG~ldAGG~l8BGG~1 dcG. (9.301) 
12TT J 

Where the term fi++'A__ has been omitted since B++' and A may now be consistently 

set (strongly in the quantum theory) to zero. This shifts away the classical gauge variance 

of 9.299 (ie 9.301 is invariant under 9.297) and the BRST transformation is now (as we 

will see) nilpotent only in the quantum theory. The Euler-Lagrange equations derived 

from 9.301 are 

d+d_P = <9_c+ = d_6 + + = 0 
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d+ J_ = 8.J+ = 0, (9.302) 

where the algebra valued currents J± are defined as before 

i 
47T 
-i 

J+ = —G-1d+G = JlTa 

J_ = —d-GG'1 = Ja_Ta. (9.303) 

Again the matrices Ta a = 0,1,2,... , iV 2 — 1 are the generators of Q normalized such 

that rTx{TaTb) = \Sah. Since J ± obey appropriate field equations we will rewrite the 

theory in terms of these currents. The BRST transformation 9.297 becomes 

sr = 0 

SJl = c+d+Jl+d+c+Ja

+ 

lp = c + d + P + d+c+ (9.304) 

Sc+ = c+d+c+ 

8b++ = - 2 T T ZJ ° j £ + iad+pd+p + 2iad\p 

- 2b++d+c+ + c + d + b + + . 

Since the BRST symmetry is now exact, we can obtain the BRST charge Q as the 

integrated zero component of the Noether current for the BRST transformation. The 

Poisson brackets obtained from 9.301 are 

{c+(o-),b++(a')}+ = -iy/26(*-a') (9.305) 

{jl(<r),Jl(a'j} = J^Jl(a)S(a~a')±~8'(a-cr'). 

By demanding that Q generate the BRST transformation, we obtain 

Q = J c+ (2irJlJl 4- i d + c + b + + + ad+pd+p + 2ad2

+P) da. (9.306) 
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The structure here is generic to the BRST formalism. In general, the BRST charge is the 

sum of the ghosts times the symmetry generators, and here the symmetry generator is the 

positive light-cone component of the energy momentum tensor. It generates coordinate 

transformations, in the enlarged phase space, on the positive light-cone. 

To proceed to the quantum theory we replace the Poisson brackets by commutators. 

The operator version of Q has singularities which must be dealt with carefully; in par

ticular the nonabehan part requires a multiplicative renormalization [82] in order that Q 

generate the operator transformation 9.304. For the purpose of regularization we take 

space to be a circle of length 2TT and Fourier expand in terms of oscillators for the right-

and left-movers: 

c+{r,a 

Ja

+(r,a 

Ja-(r,a 

a\p(r,a 

1 

2TT 

1 

E -tn(cr+T) 

2X/2TTV N 

^ jaein{<r-r) 

(9.307) 

with commutators 

[po, oc0] = [p0, a0 

zsgn(a) 

Ja Jb 

2 v ^ 

[an, dm] = n5(n + m)sgn(a) 

iV2fabcJc

m+ri + nSabS{n + m) 

iV2fabcJc

m+n + n8ab8(n + m) 

6(n-\-m). 

(9.308) 
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For definiteness, take Q to beU(N) and choose the generators such that T° is propor

tional to the identity and T a a = 1,2,... ,N2 - 1 generate SU(N). Accordingly / " ^ = 0 

if any of abc are zero and the remaining structure constants are those of SU (N). With 

our normalization conventions f^foM — JVc""* and 

Q = £ : c-n + + ^ + \/NZ« - : (9-309) 

where /3 is a constant taking into account normal ordering ambiguities. The Virasoro 

operators are the Fourier components of T + + : 

T a sgn(a) ^ _ , _ 1 _ 0 

Z m Z m 

, i V 2 - l 

L « = o f v . n £ ^ J - J — L - = ~ m ) 6 -+- c - ( 9 3 1 ° ) 
z^v -h i j m a = 1 m 

ln = —spn(a)t\/2nan. 

Notice the l/(JV-f 1) renormahzation factor in L^, it is required for [L^, J^] = —m-Jn+m a — 

1. Normal ordering is required only for n — 0 and gives the definitions 

L% = sgn(et) ^ a 2 , + ^-m^m^ 

Ll = £ ro(c-m6m +6_mcm) (9.311) 
m>l 

1 1 N 2 - 1 

2(7V + 1 ) J ° 2 + N + l ^ S J - ^ ' 

where JQ is the Casimir operator for the fundamental representation of SU(N). The 

commutators of the Virasoro operators are known [61] for a large class of groups and in 

our case 

= in - m)La

n+m + ^ ( n 3 - n)8(n + m) 



Chapter 9. BRST Quantization of JVonabelian Chiral Bosons 95 

[LB
n,LgJ = (n-m)Ls

n+m + ^(n-13n3)S(n-rm) (9.312) 

[ln,lm] = 2sgn(a)n38(n + m) [ln, I ° ] = -i sgn{a)\/5n2OLn+m 

LlLJ
m] = ( n - m ) ^ + T O + ^ ^ ( n 3 - n ) % + m). 

It is remarkable that the N2 — 1 SU(N) currents contribute to the anomaly the same 

as N — 1 abelian currents. Defining 

Ln = L- + LA + LJ

n + Ls

n + y/\a\ln - B8(n) (9.313) 

we find that 

Q2 = I E c - n c - m i m ] - ( « - m ) L m + n ) (9.314) 
^ m,n 

and from 9.312 we have 

[Ln, Lm) = (n - m ) L n + m + ^2/3n 4- ^ ~ 2 5 n 3 + + 2an 3) 5(n 4- m). (9.315) 

We demand the central term in the Virasoro algebra vanish so as to obtain a nilpotent 

Q. This is another generic feature of BRST: a nilpotent BRST operator is equivalent to an 

anomaly free constraint algebra. The anomaly is the same in the abelian t / ( l )x . . .x ( / ( l ) 

and nonabehan U(N) theories, so we may consider N to be the number of bosons or we 

can consider N to be the number of fermions (which the U(N) theory corresponds to). For 

N = 26 and 3 = 1 the theory is anomaly free already and we do not add the conformal 

field, while for TV = 25 we add another ordinary boson (or fermion) and for Ar < 24 we 

choose 
25 - N N-1 

a = 3 = . (9.316 
24 H 24 K 1 

Note that in the U{1) case we have a = 1 3 = 0 which is in agreement with [53]. In 

Hwang's [83] quantization of the bosonic string with a Liouville term (Polyakov's string 

theory) Q2 = 0 is obtained for a coefficient 26 — N and intercept N — 2. This is because he 
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assumes the Liouville field contributes to the anomaly only with the cm 3 term, whereas 

we have the (n 3 — n)/12 contribution as well from the original ad+pd-p term. 

For a general compact Lie group, G, the analysis involving the Virasoro algebra is 

very similar. If Q is semi-simple, ie Q = Q1 © G2 © • - - where Qx is simple, then each factor 

in the sum contributes an L3

n term to Ln. HQ is not semisimple and there are terms in 

the direct sum like U(l) or U(l) x Ql, then each U(l) factor contributes an term to 

Ln. The contribution to the central term in the Virasoro algebra from all the L^s and 

L*s is C(N)/12, where 

<W = £ - % - + (9-317) 

d is the total number of U(l) factors, dl

N is the dimension of the adjoint representation 

of Qx, qlp is the quadratic Casimir for the adjoint representation of Q\ tpf is the length 

squared of the longest root of the fundamental representation of Ql (we have taken this 

to be one), and ki is the level of the Kac-Moody algebra associated to Ql. For Q = U(l) 

C(N) = 1 , for Q = SU(N) C{N) = N - 1 , for Q = SO{N) C(N) = N/2, etc. [61]. 

iV in equations 9.316 just gets replaced by C(N). So in general for C(N) = 25 

there is no conformal field yet the anomaly is not canceled, and quantization fails. For 

C(N) = 26 the Seigel symmetry is anomaly-free in agreement with reference [84] where 

a quantization was carried out with no conformal field. The symmetry groups that we 

are limited to in this case correspond to the critical dimensions of superstring theory. 

Having found the conditions for a consistent constraint algebra, it remains to check 

that physical states, ie those that are annihilated by the constraints, are indeed right-

moving excitations only. The physical state condition in the BRST formalism can be 

written very economically, it is 

<?|$>= 0, (9.318) 
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and we will see shortly that the states obeying this can be written as 

|*->= |* > p h y , +Q\J >, (9.319) 

where |$ >p/iy, contains only right moving modes. A state written in the form Q\J) is 

pure gauge in the BRST formalism, because the states of the original theory (without 

the ghosts) are identified with BRST cohomology classes of a particular ghost number. 

We demand the vacuum obey 9.318, hence any state built exclusively from right-

movers will also, since Q is built with left oscillators only. Furthermore, any such right 

sector state can not possibly be written as Q\J >, and is therefore physical. Since 

the left and right sectors commute, to show 9.319 we need only show the left sector is 

cohomologically trivial. The vacuum is defined in the usual manner: an|0 >= J£|0 > = 

CnlO >= 6n|0 >= 0 for n > 1, it must form a representation of [J£,Jo) •= ifahcJZ, we 

choose it to be annihilated by ba, and we choose its aG eigenvalue such that Lo\0 >— 0. 

This last choice is necessary to obtain Q\0 >= 0. A basis for the left sector is then 

obtained by applying a„, J^,Cn,bn for n < — I. 

Following Labastida and Pernici we expand Q in the zero modes of the ghosts 

Q = c0H + QB + KM, (9.320) 

and we can verify that 

[Q,H] = [QB,H) = [QB,M] = [H,M} = 0. (9.321) 

Now H — L0 and is positive definite on the left sector provided a > 0. So if |$ > is a 

state in this sector obeying the physical state condition then 

| $ > = £ | J > where |J >= b0H~*\$ > . (9.322) 

In other words the left sector is pure gauge for C(N) < 24 or for C(N) = 26. 
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For C(N) > 26 H is no longer positive definite and one must consider states which are 

annihilated by H. However, in this case ct^ creates states of negative norm so the right 

sector certainly has ghosts. Furthermore, as pointed out in [53], the abelian theory with 

one negative metric field and with N > 1 has a cohomologically nontrivial left sector. 

As the abelian theory is simply a nonabehan theory with all the structure constants 

set zero, it is impossible that the nonabehan theory with the negative metric conformal 

field has a cohomologically trivial left sector, and is therefore non-chiral. We conclude 

that canceling the anomaly by adding a conformal field provides a satisfactory method 

for quantization of the Siegel W Z N W model only for C(N) < 2 4 . For C(N) = 26 the 

quantization can be carried out without the conformal field. 

Groups obeying the criterion of Goddard, Nahm. and Olive have integer or half-integer 

C(N) and hence Siegel WZNW lagrangians based on these groups, with C(N) < 2 6 , are 

also anomaly free upon the addition of 2 (26 — C(N)) fermionic no-movers described by 

lagrangian 6 . 1 8 4 . The interpretation of the new quantum degrees of freedom has yet to 

be made. 



Chapter 10 

Closing Discussion 

The bosonization of fermion theories coupled to background gauge and gravitational 

fields is elevated to the fully interacting theory by adding the gauge and gravitational 

actions to both the fermionic and the bosonic actions, and declaring all variables to be 

dynamical. The gauge field action is just the usual Yang-Mills action; while the usual 

Einstein-Hilbert action for gravity is just a number (the Euler characteristic), because 

y/gR is a total divergence in two dimensions. 

Jackiw [85] has suggested that the appropriate lagrangian for two dimensional gravity 

is N(R — A), where is a lagrange multiplier field enforcing the constant curvature field 

equation R — A, where A is a constant. This model coupled to chiral fermions is the 

gravitational analogue of the chiral Schwinger model. Despite the fact that it has a 

gravitational anomaly, as in the chiral Schwinger model, a consistent quantization can 

be obtained by allowing some of the gauge degrees of freedom to become physical at the 

quantum level. However, unlike the chiral Schwinger model, here the unitarity is lost 

[86]. 

The main purpose of studying these anomalous theories was to question whether a 

fundamental theory must be gauge anomaly free. Although the successful quantization 

of the chiral Schwinger model indicates not, Ball [87] has argued that this anomalous 

model is just the low-energy effective theory derived from a more fundamental anomahy-

free theory. However, this theory can also be viewed as a regularization of the chiral 

Schwinger model that restores gauge invariance by adding degrees of freedom. His theory 
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has additional chiral fermions which cancel the anomaly, and when their mass is taken 

to infinity they do not decouple completely, but leave behind a degree of freedom. In the 

bosonized picture, this degree of freedom is the anomaly canceling Wess-Zumino field. 

The bosonized chiral Schwinger model is then seen as the gauge-fixed version of the gauge 

invariant theory that includes a Wess-Zumino term. 

Any method of quantization of an anomalous gauge theory yields a theory with more 

degrees of freedom than the classical theory that it was derived from. In recognition of 

this fact, we have chosen to quantize Siegel chiral scalars (those that use the constraint 

T++ = 0) by adding a Wfess-Zumino field to the theory to cancel the anomaly. Because 

of its geometrical interpretation, it is called a conformal field. 

We have found that for chiral scalars with nonabelian symmetry groups, adding the 

conformal field cancels the Siegel anomaly, and results in a chiral theory, only for sym

metry groups that have C(N) < 24. In the case that C(N) = 25, we can achieve the 

anomaly-free case C(N) = 26 by adding one more U{1) field. Thinking of this field as the 

special conformal field that we need when C(N) = 25, we can say that our quantization 

of nonabelian chiral bosons is successful for groups with C(N) < 26. A similar thing 

happens in the quantization of the bosonic string away from critical dimensions, where 

a Liouville field is added to the theory. This similarity is due to the fact that the U(N) 

Siegel lagrangian is the lagrangian for a euclidean space bosonic string theory with a 

truncated world sheet metric. 

The BRST quantization we have performed on the Siegel WZNW theory in zero 

backgrounds can be extended to a quantization of the theory coupled to dynamical gauge 

and gravitational fields. We elevate the gauge or diffeomorphism symmetry to BRST 

symmetry by introducing another set of ghosts for each symmetry. The resulting gauge-

fixed lagrangian will be the sum of our lagrangian, plus additional ghost terms. The 

ghosts introduced to gauge the zweibein flat will give a contribution to the central term 
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i n the Virasoro algebra which increases the critical dimension. 

The path integral analysis we d id to establish the equivalence between chiral bosons 

and Weyl fermions did not deal wi th the gauge-fixing of the symmetry generated by 

the chiral constraint. Our B R S T analysis fills this gap because the canonical B R S T 

lagrangian is the lagrangian that we would obtain by a Fadeev-Popov procedure to fix 

the gauge i n the path integral. The path integral measure and lagrangian now include 

the ghosts, but since they are decoupled, the arguments of the path integral analysis 

remain essentially unchanged. However, when the B R S T quantization fails to give a 

chiral theory, the Fadeev-Popov procedure fails as well, because the integration over the 

Lagrange multiplier degrees of freedom fails to decouple. (Establishing this assertion 

requires an explicit regularization of the path integral measure.) Thus we conclude that 

the Seigel form of the W Z N W action represents nonabehan Weyl fermions when and only 

when the nonabehan symmetry group obeys the criterion of Goddard, N a h m , and Olive, 

and obeys C(N) < 26. 

To complete the bosonization program for Weyl fermions, and obtain bosonized ac

tions for all symmetry groups which obey the criterion of Goddard, N a h m , and Olive, i t 

appears that we should use the W Z N W theory with the constraint J+ = 0, because this 

leads to a theory without critical dimensions. This has been solved in the abelian case; 

however, there are still several open problems to be dealt with in the nonabehan theory. 



Appendix A 

Chirality of Matter Fields 

Recall that the spinor representations of the Lorentz group, (|,0) and (0, |), are realized 

by two component complex spinors, tft+(x) and tp-(x) respectively, called Weyl spinors 

[31]. To build a four-component Dirac spinor, we may simply take a direct sum 

and call ^ + and ^ _ the chiral components. To define chiral four-component spinors 

define the chiral operator 

which has eigenvalues ± 1 ; and define a positive chirality spinor to be an eigenvector of 

7 5 with eigenvalue +1, and a negative chirality spinor to be an eigenvector of 75 with 

eigenvalue — 1. . 

The two spinor representations are interchanged by the operation of parity, so the 

parity operator is 

(A.324) 

(A.325) 

If we define 

(A.326) 

where ax are the Pauli matrices, then we have the anticommutator 

(A.327) 
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and the relation 

75 = ITVT V - (A.328) 

What we have here is the Weyl representation of the Dirac matrices. For an arbi

trary matrix representation in four spacetime dimensions we let 7 ^ be any four by four, 

hermitian matrices satisfying A.327. The chirality of a four-component spinor is again 

defined with respect to 7 5 , where 75 is now defined by A.328. The postive and negative 

chiral components of tp are obtained by the projection operators P ± : 

V>± = P±ip = ^ ( l ± t 7 s t y - (A.329) 

In the case of massless fermions, the Dirac equation is equivalent to a decoupled pair 

of two-component Weyl equations. Furthermore, the positive energy solutions have the 

property that the chirality equals the helicity; while the negative energy solutions have 

the propertj' that the chirality is the negative of the helicity. 

This notion of chirality generalizes to any even, say 2n, spacetime dimension. The 

Dirac matrices are 2n by 2n, and 75 is defined as 

7 5 = z7V---7 2 , l "\ (A.330) 

and satisfies 7 ! = 1 and {75,7^} = 0. 

The massless free Dirac equation in two dimensions 

7 " d M V = 0, (A.331) 

in the Weyl representation 

7° = o-\ 7 1 = ia2, 7s = i 7 ° 7
1 = -ia2 (A.332) 

has solution 

V>=- , (A.333) 
U - ( x - ) ) 
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where a;± = -7̂ (2° ± x1)- Thus the Weyl spinors, if)+ and if)-, represent left- and right-

movers respectively. 

Free massless scalars obey the Klein-Gordon equation 

dftd^ = 0 (A.334) 

which in two spacetime dimensions has the solution 

<f> = 4>+{x+) + <f>-(x~). (A.335) 

So analogously to the fermionic case, we call q>+ and <̂>_ the positive and negative chirality 

components of <f>. 

In Minkowski spacetimes of dimension An -+- 2, an antisymmetric tensor gauge field of 

rank 2n can have a self-duality condition imposed on its rank 2n + 1 field strength . In 

two dimensions {n = 0) the "antisymmetric tensor" is just a scalar <f>, with field strength, 

•Fp = dp<f), invariant under the gauge transformation 8(f) = constant. The self-duality 

condition on the field strength 

F„ = e^Fu (A.336) 

means d> has positive chirahty: d> = d>{x + ); Thus the quantization of a chiral boson is 

the n = 0 case of the controversial quantization of a self-dual antisymmetric tensor field. 



Appendix B 

Projective Representations in Quantum Mechanics 

A projective representation is a generalization of a group representation. Here the idea 

will be introduced along with some simple examples from quantum mechanics. This 

discussion is taken from lecture III of Anomalies and Topology by R. Jackiw [1].. 

Consider a group with elements g that act upon some variable q according to q —> q9. 

Then functions of this variable, F(q), and operators on these functions, U(g), give a 

representation of the group if the operators act on the functions as 

U(g)F(q) = F{q°), (B.337) 

and compose as 

U(gi)U{g2) = U{g12), (B.338) 

where gu = gig2 is the composition of gi and g2. 

Ordinary quantum mechanics, in the position space representation, provides a repre-

sention of the abelian, translation group which acts on the coordinates as 

f-*f+a. (B.339) 

The operators that effect translations, namely 

U(a) = e i S f , (B.340) 

where the momentum operator is p3 — —idjdr3, act on the wavefunctions, ip(r), according 

to B.337 

U(a)rl>(r) = ip(f + a). (B.341) 
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Also, the operators compose according to B.338 

U(a)U{b) = U(a + b). (B.342) 

However, this simplest situation can be complicated by the introduction of phases, 

and these phases are called cocycles. The first generalization is to allow a phase in B.337 

U{g)F(q) = e-2™^F{cf) (B.343) 

However, consistency with B.338 imposes a constraint on u>i : 

U(gi)U(g2)F(q).= U(9l) ( e - * ^ ( « " » > F ( a « ) ) (B.344) 

_ e-2*ivi(q\9l)e-2-Kiu,(q9i-g2)p^gi2^ (B 345) 

U(gu)F(q) = e - 2 ™ i f o » « ) F ( g 9 » ) . (B.346) 

The right-hand sides will be equal, provided the phase is what is called a 1-cocycle. 

^1(9^1) -^1(9:512) +v1(q9l;g2) = 0 mod integer. (B.347) 

1-cocycles appear in ordinarjr quantum mechanics. For example, a Galileo transfor

mation, 

r -*r + vt (B.348) 

p -^p + mv, (B.349) 

is implemented by the unitary operator 

U(v) = e ' « ( p ' — - ) ; (B.350) 

which has an action on wavefunctions which introduces a phase obeying the 1-cocycle 

condition. 

U{v)rp{f) = e - ^ W ^ r + vt). (B.351) 
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In the next generalization, a phase is introduced into the composition law. 

U(gi)U(g2) = e-2™*l™^U(g12). (B.352) 

A consistency condition on the phase follows from the assumed associativity of the com

position law. If 

{U{gi)U{g2)) U(gs) = U(gi)(U(g2)U(g3)), (B.353) 

then one easily shows that w2 satisfies 

u2(q91;g2,g3) ~ U2(q\gi2,gz) + ^ 2 ( 9 ; 5 1 , 5 2 3 ) - ^ 2 ( 9 ; 5 1 , 0 2 ) = 0 mod integer. (B.354) 

Such an object is caUed a 2-cocycle; and representations which obey B.352 are called 

projective. 

Again, ordinary quantum mechanics uses 2-cocycles. For example, translations on 

phase space, 

r -*r + a (B.355) 

p -+p + b, (B.356) 

are effected by the operator 

U(S,b) = e ( 5 P - b > ) ; (B.357) 

which composes according to B.352 with a 2-cocycle 

2-KU)2 = ^(El-b2-S2-bl). (B.358) 

Higher cocycles can be defined, by abandoning associativity, but are not allowed in 

the present Hilbert space formulation of quantum mechanics. A trivial cocycle is one 

which can be removed by a unitary transformation on the states and operators. 

In the gauge theory defined by lagrangian 2.16, the analogous variables to q of B.337, 

are the gauge potentials which are acted upon by the gauge group according to 
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2.32. By performing a second gauge transformation, and using their composition law, 

one can easily show that u>x(A, 6) of equation 2.25 is a one cocycle. Furthermore, if it 

has a nonzero winding number it is nontrivial. Thus the gauge anomly for Weyl fermions 

may be viewed as the apearance of a 1-cocycle in the effective action. The condition 

that it is in fact a 1-cocycle, taken in its infinitesimal form, is called the Wess- Zumino 

consistency condition for the anomaly [88]. In the hamiltonian formulation of field theory, 

the anomaly manifests itself as a 2-cocycle in the algebra of the gauge generators. 
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