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i i 

A B S T R A C T 

A study is made of an Ising model on the hexagonal closed-packed lattice, with 

ferromagnetic interactions D between nearest-neighbor spins located in adjacent 

layers, and antiferromagnetic interactions J between nearest-neighbor spins located 

in the same layer. 

The ground states of the model are studied for different values of the pa

rameter *c = —3ID. For k < 1/2 the ground states are ferromagnetic and for 

k > 1/2 the ground state spin configurations consist of stacked identical layers, 

such that each layer is obtained by stacking rows of alternating spins. At the point 

(k — 1/2,t = 0), where t = T/D, there exists a multitude of degenerate ground 

state spin configurations which are not stable for k ^ 1/2. 

Mean-field theory and low temperature expansions are used to study the phase 

diagram at low temperatures. Mean-field theory predicts that (k = 1/2, t — 0) is a 

multiphase point where an infinite sequence of modulated phases coincide. In the 

vicinity of the multiphase point, the mean-field phase diagram is found to be similar 

to the mean-field phase diagram of the three-dimensional ANNNI model near its 

multiphase point. 

Low temperature expansions are performed to second order in x, where i = 

e - 2 / ' , around the phase boundary between the ferromagnetic and the modulated 

phases. In contrast to standard low temperature expansions, the complete contribu

tion, to order x2, is obtained by grouping the contributions from excitations which 

contribute to arbitrarily high orders in x. The phase boundary between the ferro

magnetic and the modulated phases is found to coincide, to order x2, with the line 

onto which Domany mapped a kinetic Ising model on the honeycomb lattice. This 

strongly suggests that the Domany line is a phase boundary in three-dimensions. 

Mean-field theory shows that this Ising model contains a continuous minimum-

energy surface. A renormalization group method which applies to models which 



contain continuous minimum-energy surfaces is used to analyze the phase tran

sition between the paramagnetic and the modulated phases. The calculation is 

performed using a Landau-Ginzburg-Wilson Hamiltonian whose minimum-energy 

surface consists of a hexagon and which contains fourth-order invariants due to the 

lattice. The calculation shows that the Hamiltonian does not contain a stable fixed 

point. This suggests that the paramagnetic-modulated phase transition of this Ising 

model is a fluctuation-induced first-order transition. 
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CHAPTER 1: INTRODUCTION 1 

C H A P T E R 1 

I N T R O D U C T I O N 

Obtaining exact solutions to three-dimensional models remains a challenging 

problem in statistical physics. In general, one-dimensional problems with short 

range interactions are soluble, some two-dimensional problems have been solved 

with great difficulty and three-dimensional problems have not been solved at all [l]. 

For example, calculating the thermodynamic properties of an Ising model with 

nearest-neighbor interactions is a trivial exercise in one dimension [2], a mathemat

ical tour de force in two dimensions [3,4], and a major unsolved problem in three 

dimensions. 

Some exact results about some three-dimensional models have been obtained 

by mapping soluble two-dimensional kinetic models onto surfaces in the phase di

agrams of static three-dimensional models [5-8]. One method which has been used 

to perform such mappings involves associating the spin configurations of a two-

dimensional Ising model with a discrete-time dynamics, with the spin configura

tions of layers in the lattice of a three-dimensional static model [6-8]. The mapping 

is such that spin configurations which correspond to successive time steps of the 

discrete-time dynamics are associated with neighboring layers in the lattice of the 

three-dimensional model. Having performed the mapping, exact information about 

the three-dimensional model is obtained using the exactly known properties of the 

two-dimensional model and from some partial knowledge of the properties of the 

three-dimensional model. 
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For most mappings the three-dimensional models contain many coupling con

stants and therefore are too complicated or not interesting enough to analyze. In 

contrast, recently, Domany obtained mappings of kinetic models on the honeycomb 

lattice onto the phase diagrams of static three-dimensional models on the hexag

onal closed-packed (hep) lattice [8]. The simplest example is the mapping of a 

two-dimensional kinetic Ising model, with nearest-neighbor interactions L, onto a 

line (referred to hereafter as the Domany line) in the phase diagram of a static 

model (referred to hereafter as the JD model) whose Hamiltonian is given by 

h = -jJ2 s . s , - D £ StSj (1.01) 
{ij} <ij> 

where Sj = ± 1 are spins defined on the sites of the hep lattice, shown in Fig. 1-1, 

< ij > labels nearest-neighbor bonds between sites on adjacent layers (shown as 

dashed lines in Fig. 1-1) and {ij} labels nearest-neighbor bonds between sites in 

the same layer (shown as solid lines in Fig. 1-1). The Domany line is given by the 

expressions 
. cosh D 

D = L and exp(4J) = — — (1.02) 
cosh ZD 

and therefore, for L > 0, which corresponds to ferromagnetic interactions, Eq. (1.02) 

implies that D > 0 and J < 0. Therefore, in this thesis, the JD model is only 

studied for the case of ferromagnetic interlayer interactions and antiferromagnetic 

intralayer interactions. 

The mapping of the two-dimensional dynamic model onto a line in the phase 

diagram of the three-dimensional static model implies that along the Domany 

line the correlations of the JD model are related to the correlations of the two-

dimensional Ising model on the honeycomb lattice [8]. On the Domany line the 

in-plane correlations of the static JD model are equal to the static correlations of 

the dynamic Ising model on the honeycomb lattice and the out-of-plane correlations 
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Figure 1-1 The hexagonal closed-packed lattice on which the JD model is defined. 
Spins located at sites which are connected by solid lines interact through antifer-
romagnetic interactions J , and spins connected by dashed lines interact through 
ferromagnetic interactios D. The two hexagonal sublattices which form the hep 
lattice are labelled by A and B. The four circled sites constitute an example of the 
four-spin clusters described in Chapter 3. 
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of the static model are equal to the dynamic correlations of the dynamic model. 

At the critical point Lc, of the two-dimensional Ising model on the honeycomb lat

tice, the static and dynamic correlations diverge with different critical exponents. 

Therefore the point (JC,DC), on the Domany line, onto which Lc maps, exhibits 

anisotropic scaling, i.e., correlations in different directions diverge with different 

critical exponents. 

A mean-field calculation reveals that, in addition to the paramagnetic and 

ferromagnetic phases, the JD model also exhibits a modulated phase and a Lif

shitz point where the paramagnetic, the ferromagnetic and the modulated phases 

coincide [8]. Lifshitz points exhibit anisotropic scaling and therefore Domany con

jectured that the point (JC,DC), which exhibits anisotropic scaling, is the exact 

location of a Lifshitz point in the phase diagram of the JD model [5,8]. 

A Monte Carlo simulation of the JD model, performed by Domany and Gu-

bernatis, revealed that the Domany line and the phase boundary of the ferromag

netic phase are very close in parameter space [9]. Therefore these authors suggested 

that both lines might coincide. If this were the case, the Domany line would con

stitute the first example of an exact solution of a three-dimensional model along a 

whole phase boundary. 

In recent years, models with competing interactions which also exhibit mod

ulated phases have been studied extensively [10]. The best studied model is the 

three-dimensional Axial Next-Nearest-Neighbor Ising (ANNNI) model [11,12]. High 

temperature expansions [13], low temperature expansions [14], various studies based 

on mean-field theory [15-20], and Monte Carlo simulations [21,22] have been used to 

obtain information about the phase diagram of this model. These studies revealed 

that the three-dimensional ANNNI model exhibits a very complex phase diagram 

which contains a paramagnetic phase, a ferromagnetic phase, commensurate mod

ulated phases, incommensurate modulated phases, a Lifshitz point, a multiphase 

point and other exotic features. 
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In this work methods which have been found useful in studying models with 

competing interactions are used to investigate the phase diagram of the JD model. 

A better understanding of the different features of this phase diagram is developed 

for the purpose of understanding the role played, in the phase diagram, by the 

Domany line and the special point [JC,DC)- In particular, the low temperature 

region of the phase diagram is studied using mean-field theory and low temperature 

expansions. An asymptotic low temperature expression for the phase boundary of 

the ferromagnetic phase is calculated. The conjecture that the Domany line coincide 

with the phase boundary of the ferromagnetic phase is tested by comparing the 

asymptotic low temperature expression for the Domany line with the asymptotic 

low temperature expression for the phase boundary of the ferromagnetic phase. 

In another part of this thesis, the phase transition between the paramagnetic 

phase and the modulated phase is studied. A linearized mean-field calculation pre

dicts that JD model exhibits a continuous transition from the paramagnetic phase 

into the modulated phase. Along the order-disorder line, the modulated phase is 

characterized by a wave-vector which can be chosen from one or more lines in recip

rocal space. Thus the model belongs to a class of models which contain an ordered 

phase characterized by a wave-vector which can be anywhere on a continuous surface 

in reciprocal space [23-28,29]. This surface is called the minimum-energy surface. 

The mean-field approximation predicts that models which contain continu

ous minimum-energy surfaces exhibit a continuous phase transition into the mod

ulated phase. In contrast, studies which are based on perturbation expansions and 

renormalization group calculations suggest that these models exhibit a first-order 

transition [23,27,28]. Therefore models which contain continuous minimum-energy 

surfaces constitute examples of models which exhibit a fluctuation-induced first-

order transition, i.e., a first-order transition which is predicted to be continuous by 

mean-field theory [30,31]. 
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The renormalization group calculations for models with continuous minimum-

energy surfaces have been performed for cases where the minimum-energy surfaces 

are two symmetric polygons [27] or one square [28]. From these results it seems plau

sible that all models which contain a minimum-energy surface exhibit a fluctuation-

induced first-order transition into the modulated phases [27]. However, due to the 

periodicity of the lattice, fourth-order invariants, which were not included in pre

vious calculations for models with continuous minimum-energy surfaces, should be 

included in a renormalization group analysis of a Landau-Ginzburg-Wilson Hamil

tonian which describes the paramagnetic-modulated phase transition of the JD 

model. For —JjD — 1 the minimum-energy surface of the JD model forms a 

hexagon. It follows that this phase transition can be studied using the method used 

by Mukamel and Hornreich to study the model where the minimum-energy surfaces 

consist of two polygons [27]. Therefore, in this thesis, the phase transition between 

the paramagnetic and the modulated phases of the JD model is studied by per

forming a renormalization group calculation for a model which contains a hexagonal 

minimum-energy surface and which includes fourth-order invariants which are due 

to periodicity of the lattice. 

1.1 Organization of the Thesis 

Chapter 2 of this thesis contains a theoretical review of topics which are 

relevant to this work. Basic aspects of the theory of phase transitions and critical 

phenomena are described. The concepts of Lifshitz points, tricritical points and 

Lifshitz tricritical points are introduced. Previous work on the JD model and 

related studies are reviewed. Finally, studies of the three-dimensional ANNNI model 

are also reviewed. 

The results of this thesis are presented in Chapters 3 to 6. In Chapter 3 

the ground states of the model are investigated. A multidegenerate point which 
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separates two types of ground states is found. A description is given of ground 

state spin configurations which are stable at the multidegenerate point. 

In Chapter 4 the mean-field approximation is introduced and is used to in

vestigate the order-disorder line. Expressions are obtained for the phase boundary 

between the paramagnetic and the ferromagnetic phases and for the phase boundary 

between the paramagnetic and the modulated phases. The low temperature region 

of the phase diagram is studied by solving the mean-field equations on a finite lat

tice. A sequence of stable phases, similar to the phases of the three-dimensional 

ANNNI model are found to be stable in the vicinity of the multidegenerate point. 

This implies that the multidegenerate point is a multiphase point. 

In Chapter 5 the phase diagram of the JD model near the multiphase point 

is studied using low temperature expansions. The asymptotic low temperature 

expressions for the phase boundary of the ferromagnetic phase is calculated and is 

compared to the low temperature expression for the Domany line. 

Chapter 6 describes the investigations of the phase transition from the para

magnetic into the modulated phases. Studies of models which exhibit continu

ous minimum-energy surfaces are reviewed. The JD model is shown to contain 

a minimum-energy surface. The Landau-Wilson-Ginzburg Hamiltonian which de

scribes the paramagnetic-modulated transition in the JD model is described and is 

analyzed using a renormalization group calculation. 

In Chapter 7 the results obtained in this thesis using different methods are 

reviewed and compared. Also these results are compared to results from other 

studies of the JD model. 
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C H A P T E R 2 

T H E O R E T I C A L R E V I E W 

In this Chapter basic concepts in the theory of phase transitions and critical 

phenomena are described and existing studies of the JD model and the three-

dimensional ANNNI model are reviewed. In Sec. 2.1 the concepts of order parame

ter, critical exponents, universality of phase transitions, scaling laws, mean-field the

ory, Landau theory, renormalization group theory, Landau-Ginzburg-Wilson Hamil

tonian s and multicritical points are explained. In Sec. 2.2 Lifshitz tricritical points, 

which are a special kind of multicritcal point which might exist in the phase diagram 

of the JD model, are introduced. Section 2.3 is devoted to a review of previous 

work on the JD model. In Sec. 2.4 studies of the three-dimensional ANNNI model 

are reviewed. 

2.1 Aspects of Cri t ica l Phenomena 

Most discussions of critical phenomena start with a review of some physical 

system which exhibits a critical point [32]. However this thesis is devoted to the 

study of a certain type of Ising model, and therefore I chose to introduce important 

concepts in critical phenomena through a discussion of Ising models. The variables 

Si in an Ising model are restricted to the values +1 or —1 and are defined on the 

sites R, of some lattice. The energy of a given spin configuration, {5,}, is given by 

(2.01) 
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where J,y represent the coupling between the spins located on the sites i and j, h 

represents an external (magnetic) field and N is the number of sites in the lattice. 

For appropriate values of J t J and the dimensionality of the lattice, Ising models 

exhibit phase transitions between different phases. In order to distinguish between 

the different phases, one has to define suitable order parameters which depend on the 

phases involved in the transition. In this thesis, models which exhibit paramagnetic, 

ferromagnetic and modulated phases are discussed. For such models suitable order 

parameters, roq, are given by 

^ = ( ^ E V q R j ) (202) 

where the ensemble average of any operator A is given by 

(A) = lim lim — Y] A e ~ ^ H N + h A A (2.03) 
hA —• 0 JV —• oo Zfj —' 

{Si} 

hj^ is a field which couples to A, ^{s,} is a sum over all possible spin configuration 

and the partition function Zjv is given by 

Zn = J2 e ~ P H N (2-04) 
{Si} 

Thus the order parameters m q are given by the Fourier components of the site 

magnetizations m,- =< S, >. The disordered phase, called the paramagnetic phase, 

is the phase where m q — 0 for all values of q. The ferromagnetic phase is the phase 

where mo ̂  0 while m q = 0 for all q ^ 0. The modulated phases correspond to 

the cases where m q ^ 0 for some values of q. 

Phase transitions are classified according to the manner in which the order 

parameter changes at the transition point. A first-order transition is one in which 

the order parameter changes discontinuously from its value in the disordered phase 
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to a different value in the ordered phase. In contrast, a continuous transition is one 

in which the order parameter starts changing continuously at the phase transition 

point. A point in the phase diagram at which a continuous transition occurs is 

called a critical point. 

At critical points thermodynamic quantities either vanish or diverge as power 

laws. For example, for a transition between the ferromagnetic and the paramagnetic 

phases the order parameter m vanishes as m ~ \t\p as t = {Tc - T)/Tc goes to 

zero. Also the divergences of the magnetic susceptibility and the specific heat, as 

the critical point is approached, are characterized by the critical exponents 7 and 

a respectively. Another pair of important exponents, rj and u, characterize the 

behaviour of the two point correlation function G(R) — {SqS-r). Close enough to a 

critical point G(R) is expected to have the asymptotic form 

G<*> " OM ~ S E t M l (2.05) 

where £{t) is the correlation length. Near the critical point the correlation length 

diverges as £ ~ t~v and thus at the critical point, t — 0, G(R) falls as a power law 

which depends on the dimensionality of the system d and the critical exponent 77. 

A surprising aspect of phase transitions is that the critical exponents are 

'universal', i.e., critical points in different physical systems and models exhibit the 

same critical exponents. For example, the critical exponents which characterize the 

critical point in a uniaxial magnetic system or in a binary mixture of fluids are equal 

to the critical exponents for the paramagnetic-ferromagnetic transition of an Ising 

model. Thus phase transitions can be classified into universality classes according 

to the values of critical exponents and other universal quantities. 

Experimental results for real systems and calculations for models have re

vealed that the critical exponents are not independent quantities but are related 

through scaling laws. Some of these scaling laws can be derived from the so called 
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scaling hypothesis which states that the singular part of the free energy, i.e., the 

part which gives rise to the dominant power law singularities is a homogeneous 

function of the so called scaling variables. For example, the singular part of the free 

energy, fs, for an Ising ferromagnet has the form 

-0fa{t,h) =t*-aY{h/tA) (2.06) 

where the scaling function Y (y) is a universal function of one variable and A , the 

gap exponent, is related to the exponents /? and 7 through the scaling law A = 0 + 

Using Eq. (2.06) to calculate the magnetization at h = 0, the scaling law 

a +2/3 + 7 = 2 (2.07) 

is obtained. The number of independent critical exponents needed to describe the 

rest of the exponents depends on the specific type of critical point. For example, 

for the paramagnetic-ferromagnetic critical point, the critical exponents a, ($,7, r},v 

can be calculated from the values of two of the exponents, the scaling law given by 

Eq. (2.07), and two additional scaling laws 

dv = 2 - a (2.08) 

7 = (2 - f/)f (2.09) 

The scaling law in Eq. (2.08) is obtained from the assumption that the singular part 

of the free energy arises from the divergence of the correlation length. The scaling 

law in Eq. (2.09) follows from Eq. (2.05). 

The simplest approximation which can be used to obtain qualitative infor

mation about the phase diagrams of Ising models is the mean-field approximation. 

The approximation consists of assuming that each spin is subject to a self-consistent 
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field which is due to the values of the magnetizations of the sites with which it in

teracts. In this way mean-field theory ignores the fluctuations in the values of the 

local fields. Therefore near critical points, where fluctuations are severe, mean-field 

theory does not provides a good description of the critical properties. In particular 

the mean-field values of the critical exponents differ considerably from the correct 

values. A derivation of mean-field theory is postponed to Sec. 4.1 of this thesis. 

A closely related theory, which had an enormous impact on the development 

of the theory of critical phenomena, is the Landau theory. Landau assumed that 

the critical properties of a system can be derived from a function f(ty, a,) which is a 

polynomial in powers of the order parameter ty with coefficients a, which depend on 

the thermodynamic fields. The value of the order parameter at a given point in the 

phase diagram is given by the the value of ty which minimizes the function / , and the 

value of the free energy is given by the minimum value of / . The Landau expansion 

can be obtained, with the help of group theory, by examining the symmetry groups 

of the ordered and the disordered phases. Alternatively, the Landau expansion can 

be obtained from the mean-field approximation by expanding the mean-field trial 

free energy in powers of the order parameters. Therefore the values of the critical 

exponents predicted using the Landau theory are equal to the values obtained from 

mean-field theory. 

The universality of phase transitions and the scaling laws have been succes-

fully explained by the renormalization group approach to critical phenomena [33]. 

Powerful methods based on the renormalization group approach have been found 

and used to calculate accurate values for the critical exponents and the scaling func

tions. The renormalization group approach is based on the idea that the critical 

properties of a system depend only on the nature of the long wave-length fluctua

tions. Therefore one seeks to define a renormalized Hamiltonian by integrating out, 

from the original Hamiltonian, the degrees of freedom which correspond to the short 

wave-length fluctuations. Then the critical properties of the original Hamiltonian 
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are obtained by studying the sequence of coupling constants which are generated 

by iterating the renormalization group transformations. 

A renormalization group calculation begins with the definition of a transfor

mation Rf, which maps an initial Hamiltonian H into a renormalized Hamiltonian 

H'. The Hamiltonians are represented by points {t, h,{g,}} in a multidimensional 

parameter space which includes the temperature t, the magnetic field h and other 

possible thermodynamic fields . The transformation R\, must satisfy the fol

lowing requirements: (a) The number of degrees of freedom N is reduced to N' 

where N' — N/bd. (b) The initial distance between degrees of freedoms is restored 

by rescaling vectors x x' — x/b. (c) The values of the degrees of freedom are 

rescaled Sx (-»• S'x, — Sx/c where c is a function of b. (d) The transformation must 

preserve the value of the partition function. 

Having defined the renormalization group transformation, Rb, one looks for 

the fixed points H* which satisfy R^H* = H*. At these fixed points the correlation 

lengths £ and corresponding to H and H' respectively, must satisfy £ = How

ever, the rescaling of lengths in the renormalization group transformations implies 

that £' = £/b. It follows that at the fixed points the correlation length is either zero 

or infinite. For critical points the correlation length diverges, and therefore one is 

lead to study the fixed points where £ = oo. 

The critical surface of a fixed point is defined as the collection of points in 

parameter space which, under successive applications of the renormalization group 

transformations, flow to the fixed point. The basic assumption of the renormaliza

tion group theory is that the critical point of a system is represented by a Hamilto

nian which lies on the critical surface of some fixed point. Also, a system which is 

near a critical point is represented by a Hamiltonian which lies near a critical sur

face. For such a case iterating the renormalization group transformation generates 

a flow which initially approaches the fixed point and eventually diverges away. 



CHAPTER 2: THEORETICAL REVIEW 14 

Near a fixed point defined by H* = (t*,h*, {</*}) one can rewrite the Hamilto

nian H in terms of the scaling fields t, h and {(ji), which are the eigenvectors of the 

linearized renormalization group transformations. Then the renormalization group 

transformations can be written as 

t' = b X t i h' = bXh~h gi = bXigi (2.10) 

where bXt, bXh and bx' are the eigenvalues which correspond to the eigenvectors i, 

h and {</,} respectively. 

A scaling field associated with an eigenvalue which is greater than one diverges 

under repeated applications of the renormalization group transformations. Such 

scaling fields are called relevant scaling fields with respect to the fixed point. An 

irrelevant scaling field is a scaling field which is associated with an eigenvalue which 

is less than one. Such a field decreases to zero under succesive iterations of the 

renormalization group transformations. A scaling field associated with an eigenvalue 

which is equal to one is called a marginal scaling field. The critical surface of a fixed 

point is obtained by fixing the values of all the relevant scaling fields to zero. 

From the requirement that the partition function is preserved it follows that 

the free energy near a fixed point satisfies the scaling relation 

/ (i,~h,{g>}) = b~df (&H* A*M& A'-£}) (2-H) 

Near an ordinary critical point there exist only two relevant scaling fields t and h. 

Then setting the values of the rest of the scaling fields to zero one obtains the 

following asymptotic form for the free energy near a critical point 

f{t,h) = b~df (bXtt,bXh~h} (2.12) 
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Since the rescaling factor b is arbitrary one can choose b*li — 1 and therefore from 

Eq. (2.12) it follows that 

f{i,h) = i d f X t f { l , r X k / X t h ) (2.13) 

Comparing Eq. (2.13) to the scaling law given by Eq. (2.06), one identifies the 

scaling fields t and h with t and h respectively and obtains the following relations 

for the critical exponents 

dA" 1 = 2 - a and A = \ k / \ t (2.14) 

Similarly using the relation £' = it is easy to show that v — A^ 1 . From this 

expression and from Eq. (2.14) the scaling law dv — 2 — a is obtained. 

The universality of critical phenomena follows from the fact that different 

systems, which are described by Hamiltonians which differ only through the values 

of irrelevant scaling fields, lie on the same critical surface and therefore have critical 

behaviour which is controlled by the same fixed point. 

Extensive studies have revealed that the universality of phase transitions is 

manifested in the fact that the universal critical properties of different models de

pend only on some general features of the Hamiltonian. These studies showed that 

the universal quantities depend on the dimensionality of the model, d, the number 

of components in the order parameter, n, the range of the interactions and the 

symmetries of the Hamiltonian [34]. The classification of phase transitions into 

universality classes, according to the universal properties, implies that if one is in

terested in calculating the critical properties of a model which is difficult to solve, 

one can choose to investigate soluble models which belong to the same universality 

class. 

The Landau-Ginzburg-Wilson (LGW) Hamiltonians have been used exten

sively to calculate the critical properties of different universality classes [34,35]. For 
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each L G W Hamiltonian there exist a dimensionality du, called the upper critical 

dimensionality, such that for d > du the universal critical properties are equal to the 

mean-field properties. One of the methods to implement the renormalization group 

ideas is by solving L G W Hamiltonians near their upper critical dimensionality by 

performing an expansion, called the t expansion, in the small parameter e = du — d. 

The L G W Hamiltonians contain an n component order parameter field c/(R) 

which can have any real value and which is defined on the sites R of a d-dimensional 

lattice. The length scale for the variations in the order paramter o[R) is assumed 

to be large compared to the lattice spacing and therefore one can regard CT(R) as a 

field which is defined on every point of a ^-dimensional space. In reciprocal space 

the Fourier components, <rq, of the order parameter are defined for values of q which 

satisfy 0 < \q\ < A, where A is a cutoff of the order of the lattice constant. 

For the paramagnetic-ferromagnetic critical point the L G W Hamiltonian is 

given in real space by 

where r and u are parameters which play the roles of fields. In momentum space 

the same L G W Hamiltonian is given by 

(2.15) 

x
 1(q)^-q + «/ / / Ki^qJK,^ -qi-q»-

(2.16) 

where 

x - i ( q ) = r + g * 

and 
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The partition function Z is given as a functional integral over all possible 

values of the fields a 

Z = J d[o\t-pH^ (2.17) 

In real space the functional integral f d[a(R)] is defined as 

/

n r oo 

d[a(R)] = nn/ (2-18) 
R »=1 -°° 

and in momentum space the functional integral / d[oq] is defined as 

/ d[oq\ = n n /°° f ° ° d (r<) d ( i m ° « ) ^2-19) 

0<|q|<A.=l ~°°J-°° 
where from the fact that o(R) is a real field it follows that the product over wave-

vectors is performed over half the points in the hypersphere 0 < jqj < A, i.e., for 

any pair of wave-vectors q and - q only one wave-vector is included. 

Multicritical points occur when more than two scaling fields are relevant [36]. 

If, for example, there exist three relevant scaling fields t, h and $73, the fixed point is 

associated with a tricritical point. In order to obtain a point on the critical surface 

of a fixed point which describes a multicrital point, one has to choose special values 

for all the scaling fields which are relevant. 

2.2 Lifshitz Tricritical Points 

A Lifshitz tricritcal point (referred to hereafter as LTP) is a special kind of 

multicritical point, which might exist in the phase diagram of the JD model [9]. 

Therefore in this Section the concept of an L T P is introduced. In Sec. 2.2.1 aspects 

of the theory of tricritical points are discussed, in Sec. 2.2.2 Lifshitz points are 

reviewed, and in Sec. 2.2.3 the concept of an L T P is explained. The discussions of 
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tricritical points and Lifshitz points are mostly limited to details which are relevant 

to the JD model. 

2.2.1 Tricritical Points 

A tricritical point is defined as the end-point of a line of three-phase coexis

tence (a triple line) at which three coexisting phases become identical [37]. Such a 

point exists, for example, in the [T,H,HS) phase diagram, shown in Fig. 2-1 of an 

antiferromagnetic system, where T is the temperature, H is the magnetic field and 

Ha is a staggered magnetic field which couples to the sublattice magnetization. For 

Hs — 0 and small values of H, there exists a line, L\, of continuous phase transitions 

from the paramagnetic phase to the antiferromagnetic phase. For higher values of 

the magnetic field H, one encounters a line LT of first-order transitions into the an

tiferromagnetic phase. The point P, on the Hs = 0 plane where the first-order line, 

LT, and the line of critical points, L\, meet is the tricritical point. The line LT is a 

line where three phases: the paramagnetic and two antiferromagnetic phases with 

opposite sublattices magnetization coexist. Therefore the point P where the three 

phases become identical is a tricritical point. For small enough absolute values of H3 

there exist two surfaces, called tricritical wings, of first-order transitions from the 

paramagnetic phase to each of the two antiferromagnetic phases. As the absolute 

value of Hs is increased, the tricritical wings terminate at two lines, L+ and L _ , 

of critical points. Therefore the tricritical point P can also be regarded as a point 

where three lines [L\, L+ and LJ) of critical points meet. Similarly a bicritical 

(tetracritical point) is a multicritical point where two (four) lines of critical points 

meet. 

A Landau expansion which applies to a model exhibiting a tricritical point is 

given by 

f = -hi> + \a2i>2 + - o 4V 4 + (2.20) 2 4 b 
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T 

Figure 2-1 The schematic (T,H,HS) phase diagram of an antiferromagnetic sys

tem. The temperature, the magnetic field and the staggered magnetization are given 

by T, H, and Hs respectively. (This figure was taken from page 4 of Ref 37.) 

For h — 0 and 0 4 > 0 one encounters a line of continuous transitions which occur at 

o 2 = 0 from a phase where ^ J = 0 to a phase where ty2 ̂  0. However, for h = 0 and 

at < 0, the expansion can be regarded as a Landau expansion in ty2, which contains 

a cubic term and therefore describes a line of first-order order transitions. These 

two lines meet at the point a 2 = a 4 = 0 which is a tricritical point. The field h, 

which couples to the order parameter ty, breaks the symmetry between the positive 

and the negative roots of ty2. Therefore, on the first-order line the three coexisting 

phases, which become identical at the tricritical point, are the phase with ty = 0 

and two phases with ty = ±tyo ^ 0. 
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In order to describe the effect of spatial fluctuations on the critical properties 

of tricritical points one uses the following Landau-Ginzburg-Wilson Hamiltonian 

0H = J ddx {-h-o + ra2 + (Va) 2 + u{a2)2 + v{o2)*} (2.21) 

The upper critical dimensionality of this model is equal to 3 and therefore critical 

exponents for tricritical points are obtained by performing an € expansion around 

du == 3. The critical behaviour is controlled by a fixed point for which u < 0 and 

t; > 0. The values of three scaling fields have to be set to zero in order to flow to 

this fixed point. 

2.2.2 Lifshitz Points 

A Lifshitz point is a special kind of multicritical point in a phase diagram 

which contains a disordered phase and two ordered phases: one characterized by 

a fixed equilibrium wave-vector qo and the other characterized by a continuously 

varying wave-vector q [38,39]. The Lifshitz point is the point on the order-disorder 

line where the three phases coincide. A magnetic system, whose phase diagram is 

shown schematically in Fig. 2-2, serves as an example of a system which exhibits 

a Lifshitz point. In the vicinity of the Lifshitz point, the phase diagram contains 

a paramagnetic phase (P), a ferromagnetic phase (F) and a modulated phase (M). 

The magnetization of the modulated phase is spatially varying and is characterized 

by a wave-vector q which depends on the temperature T and the value of another 

thermodynamic field P. 

Lifshitz points can be classified by the values of three parameters m, n and d 

where m is the number of spatial dimensions in which the wave-vector q varies, n 

is the number of components of the order parameter and d is the dimensionality of 

the system. 
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P 
Figure 2-2 The schematic phase diagram of a magnetic system which exhibits a 
Lifshitz point. The Lifshitz point is the point where the paramagnetic phase, the 
ferromagnetic phase, and the modulated phase coincide. 

A simple Landau expansion which describes an n = 1, Lifshitz point is given 

by 

/(>, q) = X- [a2 + cig

2

a + q2 + (q2

a)2} ty2 + ^a4V>4 (2.22) 

where 
m d 

ff2 = £ t f . ^ d ?J= £ q2 (2.23) 
«=1 i=m+ l 

For ci > 0 the free energy is minimized by q2

a — q^ = 0 which corresponds to 

the standard continuous transition, at a 2 = 0, into the ferromagnetic phase. For 

ci < 0 the free energy is minimized by q\ = — cj/2 and q^ = 0 and thus the phase 
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transition occurs into a modulated phase. The point c — 0, a2 = 0 is the Lifshitz 

point. 

A Landau-Ginzburg-Wilson Hamiltonian which describes an ( r a ,n,d) Lifshitz 

point is given by 

0H = / X-1(qK<7-q + « / / / q̂î qĵ q.̂ -qi-qi-q. (224) 
•'q J n J m J q t 

where 

X

_1(q) = [°2 + c i 9 a + Qp + (il)2} (2-25) 

For an anisotropic Lifshitz point (m ^ d) the exponent v> which describes 

the divergence of the correlation length £, is replaced by two correlation length 

exponents V\i and and similarly the exponent n is replaced by r/i2 and 77 /4 . The 

exponents with the subscript lA and 12 describe correlations between spins which 

are connected by lattice vectors which lie entirely in the m and d — m subspaces 

respectively. The rest of the exponents, which describe other divergences near a 

Lifshitz point, are given by the following anisotropic scaling laws 

mi/(4 + {d - m)ul2 = 2 - a (2.26) 

7 - (4 - n u ) v u = (2 - r,l2)vl2 (2.27) 

a + 2/3 + 7 = 2 (2.28) 

Thus for an anisotropic Lifshitz point there are three independent exponents from 

which the rest of the exponents can be obtained through scaling laws. In particular 

the mean-field values of all the exponents can be derived from the following mean-

field values 

ul2 = \ (2.29) 
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112 = IM = 0 (2-30) 

Corrections to the mean-field values of the exponents are obtained by performing 

an € expansion from the upper critical dimensionality du = 4 + m/2. To the lowest 

order in e = du — d, the resulting values are 

_ n + 2 2 

" 2(n + 8)>€ 
(2.31) 

"14 = 
m z + 8 
6(m + 2) 1/2 (2.32) 

"14 = 2 
1 
4 

re + 2 
1 + —; re 

2(n + 8) 
(2.33) 

2.2.3 Lifshitz Tricritical Points 

A Lifshitz tricritical point can be defined as the multicritical point in an 

extended parameter space where a line of tricritical points and a line of Lifshitz 

points intersect. Assume the following Landau expansion for a single component 

order parameter tf 

/(tf, q) = J [o2 + ciq\ + q2 + (ql)2} tf 2 + ^a 4tf 4 + ^a 6tf 6 (2.34) 
I r 4 o 

where qa and qp are given by Eq. (2.23). Assume that a§ > 0 and examine the 

( 0 2 , 0 4 , 0 1 ) phase diagram. From the discussion in Sec. 2.2.1 it follows that the 

positive ci axis is a line of tricritical points and similarly from the discussion in 

Sec. 2.2.2 it follows that the positive a 4 axis is a line of Lifshitz points. Therefore 

the point (a 2 = 0, a 4 = 0, cj = 0) is a Lifshitz tricritical point. 
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Recently L G W Hamiltonians for an L T P have been analyzed by Aharony 

et al. [40] and by Dengler [41]. For the n — I case the LGW which describes an 

L T P is given by 

• aqs a-qi-q»-q8 0H = \ / X 1 ( q ) a q a _ q + j j j w(qi)a q i a q j < 

+ V aqi aq» aq8 aq4 aq6 a-qi-q»-q 8-q«-q 6 ( 2- 3 5) ^ql^q,^qB^q4^qB 

where X - 1 ( Q ) is given by Eq. (2.25) and u(qi) = U + V q i 2 . The upper critical 

dimensionality for a L T P is given by du — 3 + m/2. In general one needs to fix 

the values of three scaling fields (four if one includes the magnetic field) in order to 

obtain an LTP. 

2.3 Previous work on the JD model 

As mentioned in the introduction, Domany has shown that a two-dimensional 

kinetic Ising model on the honeycomb lattice, with nearest-neighbor interactions 

L , and with discrete-time Glauber dynamics [42] can be mapped onto a line (the 

Domany line) in the phase diagram of a static three-dimensional Ising model on the 

hexagonal closed-packed (hep) lattice. The Hamiltonian for the three-dimensional 

model (the JD model) is given by Eq. (1.01) and the Domany line is given by 

Eq. (1.02). One can rewritte these equations in terms of the parameter « = —J/D, 

which measures the degree of competition, and the reduced temperature t = T/D. 

Then the Hamiltonian is given by 

-PH = j Y i s i s i + j T , s i s i <2-36) 
{ij} <ij> 

and the special line is given by 

(2.37) 
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For a ferromagnetic kinetic Ising model L > 0, and therefore Eq. (2.37) implies that 

D > 0 and J < 0. Thus one is interested in studying the JD model for the case 

where the interlayer interactions are ferromagnetic while the intralayer interactions 

are antiferromagnetic. 

As a consequence of the competition between the interactions, the JD model 

also exhibits modulated phases. A linearized mean-field calculation showed that 

for k < 1/3 the model exhibits a phase transition from the paramagnetic phase 

into the ferromagnetic phase [8]. However, for k > 1/3 the transition occurs into 

a modulated phase characterized by wave-vectors which lie entirely in the the xy 

plane. Therefore for k, — 1/3, the model exhibits an m — 2 Lifshitz point. 

The JD model is an example of a [d + l)-dimensional static model which 

contains a subspace in parameter space onto which a d-dimensional kinetic model 

is mapped exactly. In such cases, Domany and others have suggested that one can 

obtain exact results for the (d-fl)-dimensional static model from known exact results 

for the d-dimensional kinetic model [5-8]. For the ferromagnetic Ising model on the 

honeycomb lattice, the location, Lc, of the critical point and its critical properties 

are known exactly [43]. Therefore Domany investigated the point (Kc,tc), in the 

phase diagram of the JD model, onto which Lc maps. 

Domany argued that the special point {Kc,tc) exhibits anisotropic scaling. 

His argument is based on the fact that for this point correlations in the xy layers 

must correspond to the static correlations of the two-dimensinal Ising model on the 

honeycomb lattice, while correlations in the direction perpendicular to the layers 

correspond to dynamic correlations of the same model. At the critical point of the 

kinetic model the correlations diverge with different critical exponents and therefore 

it follows that (Kc,tc) is a critical point which exhibits anisotropic scaling. Domany 

predicted that the exponents V\\ and v±, which characterize the divergences of the 

correlation length parallel and perpendicular to the layer respectively, are given by 
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= v and Vx_ — zv where v and z are the correlation length exponent and the 

dynamical exponent for the two-dimensional Ising model. 

In a subsequent paper Domany and Gubernatis examined the possibility that 

one could generalize the previous conjectures and argue that the critical properties 

of a (d + l)-dimensional, m — d Lifshitz point are related to the dynamical and 

static critical properties of a standard critical point in d-dimensions [9]. One would 

then expect that f j 4 and V\i for a (d + l)-dimensional Lifshitz point are equal to v 

and vz of the dynamical (/-dimensional kinetic critical point respectively. 

However in trying to advance this generalized conjucture the following diffi

culties were encountered: 

(a) The conjecture implies that for a Lifshitz point the mean-field values for the 

correlation length exponents are V\± — 1/2 and — 1, instead of the actual 

known values vu = 1/4 and v\i — 1/2. 

(b) The upper critical dimensionality du for a (d-f l)-dimensional, m — d Lifshitz 

point is given by the solution of the equation d u + 1 = 4 + d u/2 giving du = 6, 

instead of the expected d u — 4 for the upper critical dimensionality of a 

d-dimensional kinetic model. 

(c) Domany found that, along the Domany line in the phase diagram of the JD 

model the free energy is an analytic function, implying that, at the Lifshitz 

point, the free energy is also an analytic function. This result requires an 

explanation because for most critical points the free energy is not an analytic 

function. 

Domany and Gubernatis resolved these problems by mapping a d-dimensional 

time-dependent Landau-Ginzburg-Wilson Hamiltonian into the phase diagram of a 

(d + l)-dimensional static Landau-Ginzburg-Wilson model. This mapping showed 

that the critical point of the d-dimensional kinetic model maps not into a Lif

shitz point but into a Lifshitz tricritical point in the phase diagram of the (d + l)-

dimensional static model. The upper critical dimensionality for a d-dimensional Lif-
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shitz tricritical point is given by du — 3 + ra/2. Therefore for a [d+ l)-dimensional, 

m — d, Lifshitz tricritical point the solution to the equation du + 1 = 3 + du/2 

gives the expected du — 4 for the upper critical dimensionality of the ^-dimensional 

kinetic model. The factor of two discrepency in the mean-field values of the correla

tion length exponents is explained by the fact, that for the Gaussian version of the 

mapping, points with 'temperature' r in the phase diagram of the dynamical model 

map into points with 'temperature' R in the phase diagram of the static model, 

such that R — r2. This implies that in order to obtain the mean-field values for 

an LTP, one has to divide the mean-field exponents obtained from the dynamical 

model by a factor of two. 

The problem of the analyticity of the free energy can be understood by ex

amining more subtle details of the mapping. The time-dependent (^-dimensional 

model contains the usual order parameter field a(r,t) and a random gaussian noise 

field c(r,t). As part of the mapping, by formally replacing c(r,t) by a fermionic 

variable ip[r,t), one obtains an effective free energy density Hcff(o,ip) which is su-

persymmetric. Then the fermionic variables can be integrated out and one obtains 

a d-dimensional Landau-Ginburg-Wilson static model in which the supersymmetry 

is hidden. The analyticity of the free energy follows from the fact that the lowest 

eigenvalue of a supersymmetric Hamiltonian is zero [9]. 

These arguments suggest that, for the case of the JD model, the point (Kc,tc) 

is an m — 2 Lifshitz tricritical point in three-dimensions. The fact that a model 

which contains only two parameters, J and D, exhibits a Lifshitz tricritical point, 

which in general is obtained by fixing the values of three parameters, can only result 

from a symmetry which is not immediately apparent. Domany and Gubernatis 

suggested that this symmetry might be related to the hidden supersymmetry of the 

Landau-Ginzburg-Wilson static model. 

A Monte Carlo simulation of the JD model [9] showed that the point (nc,tc) 

separates the paramagnetic-ferromagnetic phase boundary into two regions. For 
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k < kc the transition is continuous while for k > kc the transition is first-order, 

confirming that (K,c,tc) is a tricritical point. The calculation also showed that the 

structure factor < s(k)s(-k) >, where s(k) is the Fourier transform of the order 

parameter, attains its maximum on a line in reciprocal space, which shrinks to zero 

as the Lifshitz point is approached. This is the expected behaviour for the structure 

factor near a Lifshitz point. Therefore the Monte Carlo simulations support the 

claim that (izc,tc) is an m = 2 Lifshitz tricritical point in three-dimensions. 

Another result which emerged from the Monte Carlo simulation is that the 

first-order part of the phase boundary of the ferromagnetic phase and the Domany 

line almost coincide. This suggests the possibility that, for k > kc, the Domany 

line serves as the phase boundary for the ferromagnetic phase and thus that it 

constitutes an exact solution for a whole phase boundary in the phase diagram of 

a three-dimensional model. 

2.4 The three-dimensional ANNNI model 

In this section studies of the phase diagram of the three-dimensonal Axial 

Next-Nearest-Neighbor Ising model (ANNNI model), which are related to this thesis 

are reviewed. The ANNNI model, introduced by Elliott [11] for the purpose of 

describing the modulated phases of Erbium, is one of the simplest and best studied 

models exhibiting modulated phases. In spite of its simplicity the model exhibits an 

astonishingly complex phase diagram, shown in Fig. 2-3, which is not yet completely 

understood. In studying other models with competing interactions or models which 

exhibit modulated phases, one might want to use methods which were found useful 

in studying the ANNNI model. Also, one might want to look, in the phase diagrams 

of such models, for features analogous to those found in the phase diagram of the 

ANNNI model. 
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Figure 2-3 The phase diagram of the three-dimensional ANNNI model. (The figure 

was taken from Ref. 22) 

In three dimensions the ANNNI model consists of Ising variables defined on 

the sites of a simple cubic lattice. Within the xy layers the spins are coupled only 

through nearest-neighbor ferromagnetic interactions Jq > 0. However along the z-

axis, the spins interact through nearest-neighbor ferromagnetic interactions J\ > 0 

and next-nearest-neighbor antiferromagnetic interactions J2 < 0. The degree of 

competition between the ferromagnetic and the antiferromagnetic interactions is 

measured by the parameter *c = —J2/Ji- The competing interactions stabilize 

modulated phases characterized by a wave-vector q which is parallel to the z axis 

axis and which depends on the temperature and on the value of k. 

At zero temperature the model is exactly soluble. For k < 1/2 all the spins in 

the lattice have the same value, i.e., the ground state is ferromagnetic. For k > 1/2 

the ground state consists of bands, having two layers per band, such that in each 
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band all the spins have the same value and adjacent bands have spins with opposite 

values. These spin configurations correspond to the ground state of the < 2 > 

phase. For k, — 1/2 the ground state is infinitely degenerate and therefore the point 

(k — 1/2, t — 0) is a multidegenerate point. At this point the ground states spin 

configurations consist of randomly stacked bands of alternating spins, such that 

each band contains at least two layers ordered ferromagnetically. 

A low temperature expansion shows that a countably infinite sequence of 

commensurate modulated phases springs from the multiphase point and separates 

the ferromagnetic phase from the < 2 > phase [14]. These phases, denoted by 

< 2,~13 > for j > 1, consist of a repeated sequence of bands such that each 

sequence consists of j — 1 bands having two layers per band followed by a single band 

having three layers. Each layer is ordered ferromagnetically and spins on adjacent 

bands have opposite values. Each of these phases is characterized by a wave-vector 

parallel to the 2-axis whose magnitude is given by q — nj/[2j + 1). These values 

of q interpolate between the values q — 0 and q — n/2 which characterize the 

ferromagnetic and the < 2 > phases respectively. These results have been obtained 

by extending the low temperature expansion inductively to all orders in powers of 

exp(-2/?Jo) a n d are therefore exact results. 

A variety of methods, based on mean field-theory, have been used to investi

gate the model [15-18]. In all these studies it was assumed that the order parameter 

varies only along the 2-axis, and therefore one can define m, to be the value of the 

order parameter for the layer labeled by ». Then the trial mean-field free energy is 

given by 

F — - - X] [4jro"*2 + Jimi{mi+i + m,-_i) + 72w,(ml+2 + 
(2.38) 
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and the mean-field equations are given by 

Ttanh 1 m, = 4 JoTOi + J i ( m l + 1 + m,_i) + J 2 ( m«+2 + m i - 2 ) (2.39) 

The order-disorder line has been obtained by solving the linearized version of 

the mean-field equations. The solution reveals that for k < 1/4 the model exhibits a 

transition from the paramagnetic phase into the ferromagnetic phase. For « > 1/4 

the transition occurs from the paramagnetic phase into a modulated phase and for 

k — 1/4 the mean-field solution exhibits an m = 1 Lifshitz point. 

Along the paramagnetic-modulated phase boundary the wave-vector which 

characterizes the modulated phase has a magnitude which is given by 

q = cos _ 1(l/4/c) (2.40) 

thus allowing for modulated phases which are incommensurate with the lattice. Bak 

and Bohm have shown that the total width of the commensurate phases vanishes 

as (tc — <)0'5, and therefore, just below the order-disorder line, the phase diagram 

must contain incommensurate phases [15]. On the other hand, the low tempera

ture expansions showed that at low enough temperatures the phase diagram con

tains only commensurate phases. Therefore the three-dimensional ANNNI model 

should exhibit a commensurate-incommensurate phase transition at some interme

diate temperature. 

The intermediate range of temperatures was studied by Selke and Duxbury [18] 

using a method which was first applied to the ANNNI model by Bak and Bohm [15]. 

The method consists of solving Eq. (2.39) numerically on a finite one-dimensional 

lattice with periodic boundary conditions. Their main result is that complex com

mensurate phases are generated out of simpler phases by structure combination 

processes which occur at special points called branching points. For example, for 
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t < 0.66 there exists a direct transition between the < 23 > and the < 223 > phases 

while for t > 0.66 one finds a new phase, the < (23)(223) > phase, intervening 

between the < 23 > and the < 223 > phases. The triple point, where the < 23 >, 

the < 223 > and the < (23)(223) > phases coexist, is a branching point. At higher 

temperatures the phase < (23)(223) > participates in further structure combination 

processes thus creating even more complex commensurate phases. In general one 

then expects that phases of the type < (2'3)m(2'+ 13)" > are generated by branching 

combination processes. 

By solving the mean-field equations on a finite lattice, only solutions which 

correspond to commensurate phases can be studied. Bak and Jensen obtained so

lutions which correspond to incomensurate phases by representing the mean-field 

equations as a discrete non-linear mapping [17]. The mapping is performed by using 

Eq. (2.39) to calculate the four-dimensional vector V,- + 1 from the vector V±, where 

Vi — (m,_2) m i - i i m i i m « + i ) - By iterating the mapping, different types of trajecto

ries corresponding to the different types of phases are obtained. The paramagnetic 

phase is described by the fixed point (0,0,0,0), the ferromagnetic phase, with the 

value m for the magnetization, is described by the fixed points ±(m,m,m,m), limit 

cycles correspond to commensurate phases and incommensurate phases are related 

to one-dimensional trajectories in the four-dimensional parameter phase. These cal

culations demonstrated the existence of a temperature, which depends on the value 

of k, below which incommensurate phases disappear. 

An important feature in the phase diagram of the three-dimensional ANNNI 

model is the uniaxial (m = 1) Lifshitz point located on the order-disorder line 

where the paramagnetic, the ferromagnetic and the modulated phases coincide. 

A high temperature series expansion showed that the Lifshitz point is located at 

k — 0.27 [13], and therefore it is only slightly shifted from its mean-field value 

k — 0.25 . The knowledge of the location of the Lifshitz point facilitates Monte Carlo 

calculation of critical exponents for a d — 3, m = 1 Lifshitz point. These exponents 
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were recently calculated using the course graining of distribution function method 

to analyze Monte Carlo results and the values 7j = 1.40 ± 0.06, fl — 0.19 ± 0.02 

and vu — 0.33 ± 0.03 were obtained [22]. These values are consistent with the 

anisotropic scaling laws, given by Eq. (2.26)-(2.28). Also, the value of the exponent 

fl agrees with the experimental value fl — 0 . 1 8 ± 0 . 0 2 , measured for RbCaFs [44,45]. 

Recently, in an effort to go beyond mean-field theory, the three-dimensional 

ANNNI model has has been studied using the Kikuchi's cluster variation method [19] 

and the Kirkwood approximation [20]. The phase diagrams which have been ob

tained are in qualitative agreement with the mean-field phase diagram and are 

expected to be much more accurate. As expected, the phase transitions from the 

paramagnetic phase into the ferromagnetic and into the modulated phases occur at 

temperatures which are lower than the transition temperatures obtained using the 

mean-field approximation. Also the fraction of the ordered region which is occupied 

by the highly modulated phases is smaller than in mean-field theory. This suggests 

that the highly modulated phases are more likely to be washed out by fluctuations. 

The phase transitions from the paramagnetic phase into the ferromagnetic or the 

modulated phases are continuous while transitions between modulated phases are 

first-order. 
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C H A P T E R 3 

T H E G R O U N D S T A T E S O F T H E J D M O D E L 

Any atempt to investigate the low temperature phases of a model must begin 

with a study of its ground states. The spin configurations for the different possible 

ground states are those which minimize the energy, given by Eq. (1.01). 

The calculation of the energy of a given spin configuration is simplified by 

the observation that all the bonds connecting the sites of the hexagonal closed-

packed lattice can be divided into clusters such that each bond belongs to a single 

cluster. This follows from the fact that the bonds in each triangular layer of the 

hep lattice can be divided into triangles and each lattice site of the hep lattice is 

centered above one of these triangles. Therefore the bonds of the hep lattice can be 

divided into clusters such that each cluster contains three bonds connecting three 

sites which form a triangle in a layer and three additional bonds which connect 

each of these sites to the site located above the center of the triangle. Each of these 

four-spin-clusters forms a tetrahedron which points in the direction perpendicular 

to the layers and whose base is parallel to the layers. The triangles, i.e, the bases of 

the tetrahedrons, which belong to the A sublattice and the triangles which belong 

to the B sublattice point in opposite directions. In Fig. 1-1, the four circles show 

the four lattice sites of one of the four-spin clusters. 

The energy of a given spin configuration can be calculated by summing the 

contributions to the energy from each of the four-spin clusters. The minimum 

possible energy is obtained when the contribution from each of the four-spin clusters 
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is minimized. In the following, the ground state energies and the ground state spin 

configurations will be obtained. First, a condition which depends on the value of k 

will be imposed on the allowed spin configurations in each of the four-spin clusters. 

This condition follows from the requirement that the energy of each four-spin cluster 

be minimized. Next, the spin configurations of the hep lattice which are consistent 

with this condition will be described. 

The contribution Ec to the energy from a given four-spin cluster is given by 

where <7j, o2
 a ° d ̂ 3 are the spin variables which form the triangle and S\ is the 

spin variable located above the center of the triangle. In order to minimize Ec, the 

value of Si must be given by 

i.e., the value of the spin above the center of the triangle is equal to the value of 

the majority of the spins in the triangle. There exist two basic types of four-spin 

clusters which satisfy this 'majority rule': 

(a) Type I: All the spins in the triangle have the same sign. The contribution to 

the total energy from such a cluster is given by — (3J + ZD). 

(b) Type II: There are two spins in the triangle having a given sign while the third 

spin has the opposite sign. The contribution to the total energy from such a 

cluster is — (—J + D). 

The energy per spin of a spin configuration which contains a fraction / of 

type I clusters and a fraction 1 — / of type II clusters is given by 

Ec — - J {oi02 + ozoz + a 3 ai) - D (ax + a2 + 0 3 ) S\ (3.01) 

Si = sgn (CTI + CT2 + ^ 3 ) (3.02) 

£ ( / ) = -2/(2.7 + D) - D + J (3.03) 
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For 2J + D > 0, i.e., for k, < 1/2 the energy E{1) is minimized by I — 1 implying 

that all the four-spin clusters are of type I. Similarly, for k > 1/2 the energy per 

spin E(l) is minimized by / = 0 and all the four-spin clusters are of type II. 

For k = 1/2 the two types of clusters contribute equally to the energy and 

therefore one can obtain an infinite number of degenerate spin configurations con

sisting of combinations of clusters of type I and clusters of type II. Therefore the 

point k — 1/2, t = 0 is a highly degenerate point. If some of these degenerate spin 

configurations serve as ground states of different phases this multidegenerate point 

will be a multiphase point. 

In order to obtain the ground state configurations for k > 1/2 [k < 1/2) one 

has to find the spin configurations which are consistent with the requirement that 

all the four-spin clusters are of type I ( type II). For k < 1/2 there exist only two 

possible spin configurations which are consistent with the requirement that all the 

four-spin clusters are of type I. One configuration consists of all the spins having 

the value +1 and the second configuration consists of all the spins having the value 

— 1. These spin configurations are the ground states of the ferromagnetic phase 

( referred hereafter as the < F > phase). The ground state energy per spin of the 

< F > phase is given by —3J - ZD. 

For k > 1/2 there exist many possible spin configurations which are consistent 

with the requirement that all the four-spin clusters are of type II. From the fact 

that each triangle in the bases of the four-spin clusters contains two spins having 

a given sign and a third spin having the opposite sign, it follows that each layer 

of the hep lattice is a ground state of the antiferromagnetic Ising model on the 

triangular lattice [46]. From the condition that all the spins in the lattice satisfy the 

majority rule it follows that, for »c < 1/2, only ground states of the antiferromagnetic 

Ising model on the triangular lattice which upon using the 'majority rule' generate 

another ground state, can be stacked to obtain the ground states of the JD model. 

Most of the ground states of the antiferromagnetic Ising model do not satisfy this 
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requirement. A careful examination shows that, for k > 1/2 only ground states 

which contain parallel rows of alternating spins can be used to obtain the desired 

ground states of the JD model. 

The ground states of the J D model which are generated in these way have 

the property that all the layers of the hep lattice are identical. This implies that 

each of the two hexagonal sublattices of the hep lattice is ordered ferromagnetically 

in the direction perpendicular to the layers and that both sublattices are identical. 

The requirement that only ground states of the two-dimensional Ising antifer-

romagnet which contain parallel rows of alternating spins can be stacked to obtain 

the ground states of the JD model still allows for a multitude of degenerate ground 

states. This degeneracy is due to the fact that the parallel rows which form the 

layers can be stacked randomly. The number of possible ground states of this type 

is exp where a = In 2 and therefore for k > 1/2 the entropy per spin of the 

grounds states of the JD model is zero. This raises the likelihood that these spin 

configurations constitute the ground states of a phase which possesses long range 

order. Assuming that this is the case, a phase whose ground state spin configura

tions have the property that all the four-spin clusters are of type II will be referred 

hereafter as the < AF > phase. 

At *c = 1/2 spin configurations which contain mixtures of type I and type II 

clusters are degenerate with the spin configurations which correspond to the < F > 

and < AF > phases. For »c > 1/2 (k < 1/2) these spin configurations have higher 

energies than the energies of the spin configurations which correspond to the ground 

states of the < F > (< AF >) phase. Therefore ground state spin configurations 

which contain mixtures of type I and type II clusters are only stable at the point 

k = 1/2. 

There exist many possible spin configurations which are degenerate at the 

multidegenerate point and which contain mixtures of type I and type II clusters. 
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The simplest type consist of spin configurations which are uniaxial, i.e., these con

figurations contain a direction in the layer where all the spins have the same sign. 

It follows that the spin configuration of a single layer can be described by specifying 

the spin configuration of a single row which is not the row where all the spins have 

the same value. Then from the condition that all the four-spin clusters must satisfy 

the majority rule, it follows that all the layers of the hep lattice must have iden

tical spin configurations. As an example, Fig. 3-1 shows the spin configuration of 

parts of two layers which are stacked to form the ground state of a phase called the 

< 3 > phase. This notation follows from the fact that the row which characterizes 

the phase, shown in Fig. 3-2a, contains a periodic sequence of spins such that each 

three spins have a given value and are followed by three other spins which have the 

opposite value. 

In this way, the uniaxial spin configurations which are degenerate at the mul-

tidegenerate point can be described by the spin configuration of a single row. The 

notation < n i , r e 2 , • • • , re^ > will be used to describe the periodic spin configuration 

of a row which contains spin variables, t = 1, • • •, k having a given value, followed 

by variables, having the opposite value. For the purpose of obtaining a spin 

configuration which is repeated periodically, periodic boundary conditions are im

posed, i.e., the last variables are followed by n\ variables having the opposite val

ues. For the cases where n, = rej+i =•••• = nr the notation < » i , • • •, re^, • • •, re* > 

is used. For example < 231 > stands for < 2221 >. 

Next , spin configurations which play an important role in the following sec

tions are described: 

(I) The < n > phases for re > 3. In each layer of an < n > phase one finds rows 

of spins which contain n spins having a given value followed by re spins having 

the opposite value. The < 3 > phase is an example of one of these phases. 

The < F > phase can be identified with the re = oo phase. 
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Figure 3-1 The spin configuration of parts of two layers in the ground state of the 

< 3 > phase. The spin configuration of all the hep lattice is obtained by stacking 

the layers labelled by A and B to give the spin configuration of the hexagonal 

sublattices A and B respectively. 
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a) <3> + + + - - - + + + 

+ + b) <2I> 
+ + + + 

+ + 
c) <2r> 

+ + 

+ + 
d) <22l> 

+ + + 

e) <23> 
+ + + + 

Figure 3-2 The spin configurations of parts of rows in the ground states of various 
phases. The layers in the spin configuration of these phases are obtained by stacking 
these rows uniformly. 
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(II) The < 211 > phases for j — 0,1 • • •. In each layer of a < 21J > phase one 

finds rows which contain j alternating spins between pairs of spins having the 

same value. Figures 3-3b and 3-3c show parts of the rows which are used to 

construct the layers of the < 21 > and < 212 > phases respectively. The 

< 21 0 0 > phase is one of the possible ground states of the < AF > phase. 

Each of the spin configurations described above might correspond to the 

ground state of some commensurate modulated phase. Therefore one would like 

to associate wave-vectors with each of these phases. A possible choice of wavevec-

tors is obtained by calculating the Fourier components of the modulation along the 

rows. In this way one associates a set of amplitudes and wavevectors with each 

spin configuration. If one wishes, for the sake of simplicity and at the risk of losing 

information, one can associate only one wave-vector with a spin configuration. A 

natural choice is the wavevector which maximizes c 2 + 62, where aq and bq are the 

amplitudes for the cos and sin Fourier components respectively. In this way the 

spin configurations < n >, are associated with the wave-vector q — 2n/2n and the 

spin configurations < 2V > are associated with q — 2n(j + l)/2(j + 2). 

In addition to the uniaxial phases, it is also possible to find other spin config

urations which are degenerate at the multidegenerate point. These configurations 

are described by wave-vectors which are not parallel to an in-plane row of spins, i.e., 

these configurations are not uniaxial. In the following chapters of this thesis, the low 

temperature phase diagram of the JD model is studied for the purpose of determin

ing which of the spin configurations which are degenerate at the multiphase point 

are stabilized at non-zero temperature. These studies strongly suggest that only 

the uniaxial spin configurations are stabilized in the vicinity of the multidegenerate 

point. This suggestion follows from the fact that all the spin configurations which 

are not uniaxial and which were tested were found not to be stable in the vicinity 

of the multiphase point. Therefore this Chapter does not contain descriptions of 
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spin configurations which are not uniaxial and which are degenerate only at the 

multiphase point. 
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C H A P T E R 4 

M E A N - F I E L D T H E O R Y F O R T H E JD M O D E L 

Mean-field theory is considered to be the simplest approximation which can 

be used to obtain qualitative information about the phase diagram of a many body 

system. The mean-field approximation is expected to yield a correct description 

of the phase diagram for cases in which spatial fluctuations are small. In three 

dimensions fluctuations are less severe than in one or two dimensions, and therefore 

the mean-field approximation is expected to be a reliable tool for investigating the 

general features of the phase diagrams of three-dimensional models. Near critical 

points, where fluctuations diverge, mean-field theory does not describe the critical 

properties properly. 

In Sec. 4.1 the mean-field approximation for a general Ising model is derived. 

In Sec. 4.2 mean-field theory is applied to the JD model. In Sec. 4.3 the linearized 

version of the theory is used to obtain information about the order-disorder line. 

Some of the results described in this Section were already published by Domany 

and are repeated here for the sake of completness [8]. In Sec. 4.4 the phase diagram 

near the possible multiphase point is studied by solving the mean-field equations 

on a finite lattice numerically. 
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4.1 Mean-field theory for an Ising model 

The mean-field approximation can be derived using several different methods. 

In this work the derivation given by Schick in Ref. 47 is used. Let the Gibbs free 

energy G(T,h) be denned by 

e-fiG[T,k) = £ t - W ( 4 0 1 ) 

{Si} 

where the Hamiltonian for the model, H, is given by Eq. (2.01) and let tu be a 

function of the variables {5,}, defined as 

w = ePGt-f,H ( 4 0 2 ) 

By taking the ln of both sides of Eq. (4.02), multiplying by tu , and taking the sum 

over all posible spin configurations {Si}, one obtains the following exact expression 

G = ^2 (wH + Twlnw) (4.03) 
{Si} 

for the Gibbs free energy G in terms of w. 

Let G[w) be the functional 

G{w) = (™H + Tw\nw) (4.04) 
{Si} 

where w is any function of the variables {Si}. The exact Gibbs free energy is 

given by G — G(w). Schultz has shown that for any function w, the functional 

G[w) satisfies G(w) > G(w) where equality is obtained for iD equal to the exact 

function w [48]. Therefore one can derive approximations for G variationally by 
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choosing functions w which depend on some parameters and then minimizing the 

functional G{w) with respect to these parameters. 

The mean-field approximation, like the Hartree approximation in quantum 

mechanics, is obtained by choosing w to be a product of functions which depend on 

the value of one spin 

* ' n «»5> 
and choosing the variational parameters { m j to be given by 

ra, — J J — tanh 0h{. (4.06) 

(Si) 

Then using Eq. (4.05) and Eq. (4.06) one obtains 

G(T,h; {m,}) = - J J J.-yro.-m,-+ T J J / t anh - 1 x dx - h J J m, (4.07) 
Jo 

for the trial Gibbs free energy. The mean-field approximation to the Gibbs free en

ergy is obtained by minimizing Eq. (4.07) with respect to the variational parameters 

{mi}. The values of {m }̂ are obtained by solving the mean-field equations 

mi = tanh fi | J J J ^ m , + j (4.08) 

which are derived by extremizing Eq. (4.07) with respect to {m,-}. 

4.2 Mean-field theory for the JD model 

For the purpose of applying mean-field theory to the JD model it is useful to 

regard the hep lattice as a hexagonal lattice with two sites per unit cell. Let (x,y,z) 
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be a coordinate system in which the z axis is perpendicular to the triangular layers 

of the hep lattice. Let 

ax = (1,0,0) a 2 = f - 1 , ^ , 0 1 a 3 = (0,0,1) 

be the primitive lattice vectors spanning the hexagonal lattice and let (0,0,0) and 

(1/2,^3/2,1/2) be the positi ons of the two sites in the unit cell. Then the Hamil

tonian for the JD model can be rewritten as follows 

H = ~ \ E 5 R 5 R + a . - \ E 5R' 5R' + Q i - D E 5R5R+/>< ( 4- 0 9) 
R,i R',i R,i 

where 5^ and S R, are the site variables at the positions R and R' of sublattices a 

and 6 respectively. The vectors ô , for t = 1, • • • ,6, are the lattice vectors connecting 

a spin to its six in-plane nearest-neighbors and for ii = l , - - - , 6 , are the lattice 

vectors connecting a spin to its six out-of-plane nearest-neighbors. The vectors ô  

are given by 

a 2 = (1,0,0) a 5 = - a 2 

and the vectors flj are given by 

P s = {~\\^l) 'fi' = {-\\' 271' -\) 

* = ( 0 * - ^ ) * = ( o ' - ^ - 0 ( 4 l l ) 
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Using the mean-field approximation, described in the previous section, the 

following expression for the trial Helmholtz free energy is obtained 

F = ~ \ U m R m R + a , - \ Y ^ mR' mR ' + a , " D U m R mR + / ? i 
R,i R',i R,i 

^ rmfi ^ / " m R ' \ 

J J J t a n h - 1 xdx + J J J t a n h _ 1 x d x j (4.12) 

where and m^, are the mean-field values for the ensemble average of and 

S^, respectively. The values of and m^, are obtained by solving the following 

mean-field equations 

= tanh 0J J J rofc+ + (3D J J mb 

R+P-, 

= tanh ^ J J J + 0D J J ma

R+Pi j (4.13) 

which are derived by extremizing Eq. (4.12) with respect to and m^,. For finite 

lattices, Eq. (4.13) are a set of 27V coupled equations with 2N unknowns which, in 

general, admits more than one solution. The mean-field free energy and the mean-

field approximation to the Helmholtz free energy is given by the minimum value of 

the trial free energy. 

4.3 The order-disorder line 

In the vicinity of the phase transition line from the disordered phase (the 

paramagnetic phase) to the ordered phases (the ferromagnetic and the modulated 

phases) the values of and m^ r are expected to be small and therefore one can 

solve the mean-field theory by expanding the expression for the trial free energy in 
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powers of m R and tijj,. Thus from Eq. (4.12) one obtains the following Landau 

expansion 
oo 

/ = fo + h + E /*» 
n=2 

wnere 

f=2^NF2N ( R ' < R O R > ' < M B ' } ) 

is the trial free energy per spin and 

fo = -T\n2 

R R' 
J a. a J \ ^ b b r» a b 

~ 7 2^ mR mR+ a, - ̂  2^ mR'mR'+ai - P mR mR+ / ? i 

/2n — 2n(2n - 1) E (-R) 2" + E {<>) 
2n 

L R 
(4.14) 

For high enough temperatures the entropy terms in fi (the terms multiply

ing T) are greater than the interaction terms (the terms multiplying J and D) and 

therefore f2 is positive. Then the trial free energy is minimized by the paramag

netic solution mjj = 0 and — 0 for all values of R and R'. For small enough 

values of T, f% is negative and the trial free energy is minimized by solutions which 

describe ordered phases. In order to find the order-disorder line, which occurs when 

fi vanishes, it is useful to write fi in terms of the order parameters m q and raq 

which are given by the Fourier components of the magnetization 

m q = }j 2_, m R e 

R 
(4.15) 
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and 

m \ = J f E m R ' J * R ' (416) 
R' 

Then one obtains 

q H 

where 

J(q) = - J E ^ a n d D(n) = - D ^ e ^ . (4.18) 

The expression for ji is diagonalized by defining new order parameters ty* and ty~ 

which are given by 

= 2 [ 1 

Then in terms of the new order parameters ji is given by 

q 

where 

A± = T + 2J (q) ± v/P (q)P(-q) (4.20) 

The phase transition temperature T"c and the wave vectors q, which characterize the 

ordered phases on the order- disorder line are given by the values of T and q for which 

A+ (q) or .<4_ (q) vanish at the highest possible T. In this case A+ (q) > A _ (q) and 

therefore the transition occurs when A- (q) = 0. Using Eq. (4.09) and Eq. (4.10) 

one obtains 

Tc = max{2 J A - 2D cos — v/3 + 2A} (4.21) 

^ S r 1 1 1 : ? ) «-»> 
v/l>(q)D(-
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where 

A = ^2 cos y c o s + c o s ?x j (4.22) 

For all values of K, the right hand side of Eq. (4.21) is maximized by qz — 0 

which implies uniform order in the direction parallel to the layers. Therefore from 

mean-field theory, it follows that the ordered phases of the JD model can be de

scribed by first describing the spin configuration of a given layer. Then, the spin 

configuration of the hexagonal sublattices is obtained by stacking the triangular 

layers uniformly. 

For 0 < K < 1/3, the right-hand side of Eq. (4.21) is maximized by qx — qy — 0 

implying a transition from the paramagnetic phase into the ferromagnetic phase and 

the transition temperature is given by tc — 6 — 6<c. 

For 1/3 < K < oo the transition occurs into a modulated phase which is 

characterized by a continuously varying wave-vector given by {qx,qy,qz — 0) where 

qx and qy are given by the solutions of the equation K ~ 2 — A and the transition 

temperature is given by tc — ZK + K ~ 1 . 

These results can also be deduced by expanding A _ (q) in powers q. Thus 

one obtains, for small values of q 

T - 6J - 6D + - (37 + D)q2 
ZD , 

(4.23) 

where q2 — ql + q\- For 0 < K < 1/3 the coefficient multiplying q2 is positive and 

therefore / 2 is minimized by the ferromagnetic solution qx — qy — 0 and qz — 0. 

For 0 < K < 1/3, 3J + D is negative and therefore / 2 is minimized by 

ql = 24 
ZK 

9K 
anc qz - 0 (4.24) 
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and thus the JD model exhibits a transition into a modulated phase. The point 

[K — 1/3, t = 4), on the order-disorder line, where the coefficient multiplying q2 

vanishes, is an m = 2 Lifshitz point in three dimensions. 

The limit K, = oo, in which the JD model reduces to the antiferromagnetic 

Ising model on a set of decoupled triangular lattices, can be obtained by fixing the 

value of J to a constant and allowing the interlayer coupling D to tend to zero. 

Then mean-field theory and similar approximations [49] predict a transition into an 

ordered phase characterized by the wave-vec tors ( ± ^ , 0 , 0 ) at Tc = -37. H owever, 

the exact solution to the antiferromagnetic Ising model on the triangular lattice 

shows that for t ^ 0 the model is disordered [46]. 

4.4 The phase diagram near the multiphase point 

The mean-field phase diagram of the JD model near the multidegenerate 

point is obtained by solving the mean-field equations using a numerical iterative pro

cedure similar to the one used by Bak and Bohm to investigate the three-dimensional 

ANNNI model [15]. 

For any given point (K,t) in the phase diagram, one seeks to find solutions 

to the mean-field equations, which correspond to different phases characterized by 

different wave-vectors q. One assigns initial values {m*} and {ro*} to the sites of 

a 2xNxN hep lattice, with periodic boundary conditions, where 2 is the number 

of layers and N is either equal or is a multiple of the periodicity of the required 

phase. From the initial spin configuration a subsequent configuration is obtained 

by substituting the values of {mj} and {ro,-} in the left-hand-side of the mean-

field equations. This new spin configuration is then used to generate a subsequent 

spin configuration and the procedure is repeated until a self-consistent solution is 

found. As the initial values for the spin configuration one uses either a sinusoidal 

configuration with the required periodicity or another solution which corresponds 

to the same phase and which has been previously obtained for a nearby point in the 
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phase diagram. For each solution to the mean-field equations the trial free energy 

is calculated using Eq. 4.13 and the stable phase is obtained by finding the solution 

which minimizes the trial free energy. 

The resulting phase diagram near the multidegenerate point is shown in Fig. 

4-1. For a given value of t and for increasing values of K, one first encounters the 

< F > phase followed by the < 2V > phases, such that phases with higher values 

of j appear for larger values of K, and then the < AF > become stable. The width 

of the < 2V > phases becomes exceedingly small as j is increased and therefore the 

number of < 2V > phases which are observed is limited by the numerical precision 

used in solving the mean-field equations. It follows that the multidegenerate point 

is a multiphase point. An example of the results for the phase boundaries is shown 

in Table 4-1. 

Table 4-1 

The mean-field phase boundaries for t=0.5 and t=0.8 

Boundary t = 0.5 t = 0.8 

< F > - < 2 > 
< 2 > - < 21 > 

< 21 > - < 212 > 
< 212 > - < 213 > 
< 213 > - < 214 > 

-0.498 
-0.5015 
-0.50215861 
-0.502158709726 
-0.502158709777 

-0.489 
-0.506 
-0.514109 
-0.514179115 
-0.514179526 

From the numerical results the following asymptotic expressions for the phase 

boundaries between the < F >,< 2 >,< 21 >,< 212 > and < 213 > phases were 

obtained 

K{F,2) = ^ - l-x + Ax2 + 0{x3) 

/c(2,2l) = ^ + l-x + Bx2 + 0(x3) 

AC(21, 212) =-+-x + Ox2 + 0{x3) 
2 4 
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Figure 4-1 The mean-field phase diagram near the multiphase point. The < 21 ; > 
phases, for j > 2, which are stable between the < 21 > and the < AF > phases, 

are not shown because their region of stability is not noticeable on the scale of the 

figure. The dots on the phase boundaries are the branching points where the phases 

< 2 2 1 > and < 2 3 1 > become stable. These phases are too narrow to be noticeable 

on the scale of the figure. 
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K(21 2,21 3) = /c(21,212) + 0(x 3 ) (4.25) 

where x — exp(-2/f) and A, B, and C are constants. From these expressions it 

follows that the widths of the < 2 > and < 21 > phases decreases with temperature 

as exp(-2/<) and exp( — 4/t) respectively. The width of the < 21 > phase decreases 

as x 3 and therefore to order x 2 the phase boundary between the < 21 > and the 

< 212 > is given by the same expression as the phase boundary between the < 212 > 

and the < 213 >. These results suggest that in mean-field theory the width of the 

< 21J > phases decrease as x } + 1 as the temperature goes to zero. 

These results, for the low temperature phases of the JD model are similar to 

the results obtained for the three-dimensional ANNNI model near its multiphase 

point [14,15]. This similarity suggests the need to investigate whether other features 

of the three-dimensional ANNNI model exist in the mean-field phase diagram of 

the JD model. In particular the mean-field phase diagram of the three-dimensional 

ANNNI model contains phases which are not stable near the multiphase point but 

which become stable as the temperature is increased [18]. Therefore the phase 

diagram of the JD model has been searched for phases which are stabilized at 

finite temperatures. 

As in the case of the ANNNI model for K > 1/2 one finds branching points, 

(«;&,£&), where new phases, which are not stable for t < tf,, become stable, for 

t > th, through a structure combination branching process. For example, the 

point (0.50219(1),0.5228(1)) is a branching point for the phase < 221 > . Sim

ilarly one finds that the phase < (21)(212) > emerges from a branching point at 

(0.50091(1), 0.704(1)). These two branching points are shown as dots in Fig. 4-1 

but the phases < 212 > and < (21)(212) > are too narrow to be noticeable on the 

scale of the figure. 
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Structure combination branching processes can also occour through phases 

which have already been created through the same mechanism at a lower temper

ature. For example, the phase < 231 > which evolves from the phases < 2 > and 

< 221 > is stable at t — 1.0 and therefore has emerged from some branching point 

at a lower temperarure. In this way more and more commensurate phases are gener

ated as the temperature is increased. In general one can, therefore, expect that the 

mean-field phase diagram of the JD model contains branching points where phases 

of the type < (21 J)m(21 , + 1)' > appear as a consequence of structure combination 

branching processes. 

For K < 1/2 and low enough temperatures mean-field theory predicts a direct 

transition from the < F > phase to the < 2 > phase and therefore the rest of the 

< n > phases are not stable. However as the temperature is increased one finds 

transitions from the < F > phase into other phases. Fig. 4-2 shows part of the 

phase boundary between the < F > phase and the modulated phases. For values 

of t such that t < 2.9779(1) one finds direct transitions into the < 2 > phase while 

for t > 3.0304 (but close enough to 3.0304) one encounters a transition into the 

< 3 > phase. For 2.9779(1) < t < 3.0304(1) the transition occur into one of the 

< 2J3 > for j = 1,2, - • • where phases with larger values of j appear successively as 

t is decreased. 

These results indicate that at low enough temperature there exists a one to 

one correspondence between the phases of the three-dimensinal ANNNI model and 

the phases of the JD model, a phase < n\,n2, •••,ny > in the phase diagram of 

the JD model corresponds to the phase < n\ + 1, n2 + 1, • • •, n}; + 1 > in the phase 

diagram of the ANNNI model. 
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Figure 4-2 The region of the ferromagnetic-modulated phase boundary where the 

< 3 > phase becomes stable. The phases < 2J3 >, for j > 1, are stable between 

the < 2 > and the < 3 > phases. For j > 3, these phases appear in a narrow range 

between the < 2 > and the < 223 > phases. 
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C H A P T E R 5 

L O W T E M P E R A T U R E E X P A N S I O N S F O R T H E JD M O D E L 

Low temperature expansions have been proven to be useful for calculating the 

properties of models which exhibit a multiphase point at zero temperature [14]. In 

this Chapter low order low temperature expansions are used to investigate the JD 

model near its multiphase point. In this thesis a low temperature expansion for the 

free energy —/?/(s) of each possible ground state s has not been performed. Instead, 

the low temperature expansions are calculated for the ground states of phases which 

are found to be stable, at low temperatures, by the mean-field approximation. These 

phases are likely to be the stable phases in the vicinity of the multiphase point. This 

choice is also motivated by the fact that in other models analogous uniaxial ground 

states are found to be the stable phases near multiphase points [10,14]. 

In Sec. 5.1 the method used to generate the low temperature expansions is 

introduced. Section 5.2 describes the calculation of the low temperature expansions 

to order x for the < F >, the < n >, the < 2 > and the < 21J > phases. In Sec. 5.3 

the excitations which contribute to order x 2 to the free energy of the < 2 > and 

the < n > phases are described and their contribution to the free energy of the 

< n > phases is calculated. In Sec. 5.4 the phase boundary between the < F > 

phase and the modulated phases is calculated and is compared to the asymptotic 

low temperature expression for the Domany line. In Sec. 5.5 the stability of the 

< 2V > phases, for j > 1, is investigated by calculating, to order x 2, the low 
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temperature expansion for the free energy of these phases. Section 5.6 concludes 

the Chapter. 

5.1 Low temperature expansions 

In this work the low temperature expansion for the free energy of a given phase 

is obtained by calculating the contributions to the partition function from the low 

energy excitations of the model above the ground state of the given phase [50]. 

Let NEh(s) be the ground state energy of a configuration of spins containing 

TV spins where h is the magnetic field and s denotes one of the ground states of 

the model. Let F,(iV) be a polynomial in N which gives the contributions to the 

partition function Zpj(s) from low energy excitations obtained from the ground 

state by overturning i spins. Then Zj^{s) is given by 

(5.01) 

where // — e p h . Let the free energy of the phase be given by 

(5.02) 

From Eqs. (5.01) and (5.02) it follows that in the thermodynamic limit 

(5.03) 
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By formally expanding the left hand side of Eq. (5.03) in powers of N and by 

equating terms having equal powers of \i one obtains that is given by 

dFi{N) 
9i = dN 

(5.04) 
JV=0 

i.e., g, is equal to the coefficient multiplying the linear term in Fi(N). 

Therefore in order to obtain a low temperature expansion in terms of some 

small expansion parameter x, one has to identify the excitations which contribute 

to the partition function to a given order in x. For each of these excitations, one 

obtains the contribution to by calculating the contribution to Fi(N) and then 

extracting the coefficient multiplying the term linear in N. 

In this way one calculates a free energy f(s) for each possible ground state s. 

The free energy / , at a given point in the phase diagram, is given by the mini

mum value of f{s) and the stable phase is the phase whose ground states yield the 

minimum of f{s) [51]. 

5.2 Expansions for the JD model to order x 

In this Section low temperature expansions are used to examine the stability 

of the < IV >, for j > 0, and the < n > phases. The low temperature expansions 

are generated, as described in Sec. 5.1, by calculating the contributions to the free 

energy of each possible phase from the ground state and from excitations above the 

ground state. The free energy of a given phase is given by 

(5.05) 
N=0 

where EQ[S) is the ground state energy of the phase, x = exp(-2/t), y — exp(-46/t), 

6 = 1/2- K, and Fi(N, x, y) is the contribution to the partition function, for a lattice 
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containing TV spins, from excitations above the ground state which are obtained by 

overturning t spins. 

For the purpose of identifying the clusters of spins which have to be overturned 

in order to contribute to the expansion to a given order in the expansion parameter 

i , it is useful to characterize different spins in the spin configuration of the ground 

states according to the number of in-plane and out-of-plane nearest-neighbors which 

have the same value as the spin. Table 5-1 shows four different types of spins. For 

each type of spin, the number of out-of-plane and in-plane nearest neighbors which 

have the same value as the value of the spin is given by L0 and L , respectively. The 

energy above the ground state for a spin configuration obtained from the ground 

state by overturning the spin is given by AE. 

Table 5-1 
The four types of spins in the spin configurations of the ground states. The 

number of out-of-plane and in-plane nearest-neighbors with signs equal to the sign 

of the spin are given by Lo and Lj respectively. The energy of the excitation 

obtained by overturning the spin is given by AE. 

Type Lo Li AE 

F 6 6 12J + 12D xV 
A 6 4 AJ + \2D x*y 

B 4 4 AJ + AD xy 

AF 4 2 -AJ + AD 

The spin configurations of the ground states of the < F > phase contain only 

spins of type F while the ground states of the < AF > phase contain only spins of 

type A F . The < n > phases contain spins of type A, B, and F, while the < 21J > 

phases contain spins of type A, B, and A F . The fraction of spins of type A , B, and 

F in the spin configuration of a ground state of one of the < n > phases is given by 

1/n, 1/n, and 1 - 2/n respectively, while the fraction of spins of type A , B, and A F 
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for the < 2l3 > phases is + 2), + 2), and + 2) respectively. Figure 

5-1 shows the types of spins in the ground state of the < 3 > phase. 

The ground state energies of the < F >, < n >, < 2V > and the < AF > 

phases are given by 

-0Eo{<F>)=^+j (5.06) 

- W«„»_I +M_« (5.07) 

-'*(<»'>)-S+7-tfTi>7 (508» 
-0EO(< AF>)= ~ j (5.09) 

To the lowest order in i , the only contribution to the free energy comes from 

overturning a single type B spin. The < F > and the < AF > phases do not 

contain type B spins and therefore this type of excitation only contributes to the 

free energy of the < 213 > and < n > phases. To the lowest order in x, the free 

energies of different phases are given by 

-fif{<F>) = ̂ +^- (5.10) 

3 36 46 xy . 

-««-»- S
+T-S + f ( 5 1 , ) 

-W(<2i<>)_I +£--«L- + 7JL (5.12) 
v / 21 ( {} + 2)1 (j + 2) 

Equating the free energies of the < F > and the < n > phases one obtains the 

equation 

i e x p( zr £) = T (5-H) 
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Figure 5-1 The different types of spins in the ground state spin configuration of 

the < 3 > phase. The spin configuration contains rows of spins of type A , followed 

by rows of spins of type B and F. 
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or equivalently y — e~ x y « 1 — z, for the possible phase boundary between the 

< F > and the < n > phases. Then, using Eq. (5 .14 ) one can rewrite Eqs. (5 .10) 

to (5 .13 ) in the following form: 

M (<n>) = 0f {<F>) + -16 - 6C) (5 .15 ) 
nt 

M ( < 21 ' ' > ) = / ? / ( < 2 > ) + j j ^ { 6 + *e) (5 .16 ) 

M (< A F > ) = fif (< 21 ' ' > ) 4- -7J^y(* + *e) (5-.17) 

These equations imply that for 6 < 6C the < F > phase is the most stable phase, 

for — 6C < 6 < 6C the < 2 > phase is the stable phase, and for 6 < — 6C the stable 

phase is the < A F > phase. 

Therefore, to the lowest order in x, one finds that the stable phases are the 

< F >, the < 2 >, and the < A F > phases. The phase boundary K{F, 2 ) between 

the < 2 > phase and the < F > phase, and the phase boundary K[2,AF), between 

the < 2 > phase and the < A F > phase are obtained by solving Eq. ( 5 . 1 4 ) . To the 

lowest order in z one obtains 

« ( F , 2 ) = i - j (5 .18 ) 

« ( 2 , A f ) = | + ^ (5 .19 ) 

Along the line described by Eq ( 5 . 1 8 ) , the < n > phases have the same free energy 

as the < F > and the < 2 > phases. Therefore, to first-order in z, one cannot 

establish the stability of the < n > phases as intermediate phases between the 

< F > and the < 2 > phases. Similarly, one also deduces that along the line 

described by Eq. ( 5 . 1 9 ) , the < 2 V > phases, for j > 1, have the same free energy 
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as the < 2 > and the < AF > phases and therefore the stability of these phases 

cannot be determined. 

In order to decide whether the < n > phases and the < 2V > phases, for 

j > 1, have regions of stability near the multiphase point one has to extend the 

previous calculations beyond the lowest order in x. Therefore, in the following, the 

low temperature expansion is extended to include all terms which contribute to the 

free energy to order x 2. 

5.3 Expansion to order x 2 for the < n > phases 

The low temperature expansion, performed to order x, showed that along 

the phase boundary between the < F > and the < 2 > phases, the < n > phases 

have the same free energy as the < F > and the < 2 > phases. Therefore if 

one wishes to calculate the phase boundary between the < F > phase and the 

modulated phases one has to calculate the free energy of the < F >, the < 2 > and 

the < n > phases to order x 2. For most models such a calculation only requires 

finding the excitations which directly contribute to order x 2. In contrast, for the JD 

model, the calculation to order x 2 is significantly more complex, due to the fact that 

certain type of excitations, which contribute to the free energy terms proportional 

to arbitrary powers of x, can be grouped together to give a total contribution which 

is of order x 2 along the phase boundary between the < F > and the < 2 > phase. In 

the following, the excitations and groups of excitations which contribute to the free 

energy to order x 2 are described and their contribution is calculated. In Sec. 5.3.1 

the different types of excitations which contribute to order x 2 are described and 

classified. In Sec. 5.3.2 the contribution from one class of excitations is described 

in detail for the purpose of elucidating the method which is used in Sec. 5.3.3 to 

calculate the contribution from all the excitations which contribute to order x 2. 
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5.3.1 Groups of excitations which contribute to order x 2 

The simplest excitation which contributes to the low temperature expansion 

of the free energy to order x 2 is obtained by overturning two spins of type B which 

are not nearest-neighbors. For the < n > phases, there are N{N — 5)/2n possible 

ways to choose two spins of type B out of the spin configurations of the ground 

states of the < n > phases. Each spin of type B contributes a factor xy to the free 

energy (see Table 1) and therefore the contribution from this excitation to the free 

energy of the < n > phases is given by 

A more complicated excitation is obtained by overturning the clusters of spins 

shown in Fig 5-2. Each of these clusters contains t spins of type A which belong to 

one of the two hexagonal sublattices and spins of type B which belong to the other 

sublattice. The solid lines in Fig. 5-2 represent out-of-planes bonds connecting type 

A spins to type B spins. The dashed lines represent in-plane bonds connecting type 

B spins. A cluster of this type which contains t spins of type A will be referred as 

a chain of length i. 

The contribution to the free energy from a chain of length t is proportional to 

x 3 y 3 y 2 , _ 1 and therefore is manifestly of higher order than x 2. However, the total 

contribution obtained by summing over all the possible values oft is given by 

(5.20) 

i=i 
(5.21) 

and therefore along the phase boundary of the < F > phase, given by y = 1 - x, 

the contribution to the free energy from these excitations is of order x 2. Thus in 
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Figure 5-2 A chain of spins. All type A spins lie on a row parallel to the z axis in 
one of the sublattices, and are connected to type B spins in the other sublattice. 
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spite of the fact that each chain contributes to the free energy to order x3, the total 

contribution from all the chains is proportional to x2. 

For values of y > 1, i.e., for K > 1/2, the sum over t is divergent. In the 

following, it is shown that by grouping this divergent contribution with contributions 

from other types of excitations, which are described below, finite expressions for the 

free energy of the different phases are obtained. 

The excitations which cancel the divergence consist of the chains described 

above and k additional isolated spins of type B, i.e., spins of type B which are not 

nearest-neighbors one to the other and which are not nearest-neighbors to any of 

the spins in the chain. The excitations which contain only a single chain correspond 

to the k — 0 case. Each of these excitations contribute terms to the free energies of 

the different phases which are proportional to x3t/3 (xy) k y 2*" 1. However, as in the 

previous case, the total contribution obtained by summing over all possible values 

of t is of order x2. 

This result can be demonstrated by examining the case of k — 1. For this 

case, there are ^N(N — 8 - 6t) ways to choose a chain and a single B spin from the 

spins in the ground states of the < n > phases. Therefore the total contribution 

from these excitations to the free energy of the < n > phase is proportional to 

oo oo 

- e x y ^ . y ' - ^ x y ^ T j , 2 ' - 1 (5.22) 
«=1 » = 1 

For the first term, the sum over i gives (1 — y 2)~ 2 and therefore along the phase 

boundary of the < F > phase, where y — 1 - x, this sum is proportional to x-2. In 

this way, the first term in Eq. (5.22) is of order x2. The second term is of order x3 

and therefore will be ignored. 
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For the case of excitations which include k spins of type B, the number of 

ways to choose a chain of length t and k isolated spins of type B is given by 

* i=i 

where cy are constants and for the case of the < n > and the < 2 > phases a = 6 

and a — 8 respectively. The constants cy multiply terms in the free energy which 

are of order higher than i 2 and therefore do not have to be computed. For example, 

as already mentioned, c\ — 8 multiplies the second term in Eq. (5.22) which is of 

order x 3. The contribution to the free energy of the < n > phase, obtained by 

extracting the coefficient multiplying N in Eq. (5.23), is given by 

-L (-«)* ( z » ) f c + 8 y M - 8

 ( 5 . 2 4 ) 

nfc! 

The total contribution from all possible excitations of this type is given by 

^ 3 3 * / \k 2«-2 " 3 3 -axyi 2t-2 
~ x y 2^2^^\- a xy i) y = ~ x v • v 

= - x 3 y 3 (5.25) 

The factor of 9 in this equation is due to the fact that for each chain there 

exist eight additional chains which contribute to the free energy to the same order 

in x and y. Four of these chains are obtained from the original chain by omitting 

one of the spins of type B from one of the edges of the chain. The other four chains 

are obtained from the original chain by omitting two spins of type B, one from each 

edge. 

A comparison between the sum over t in Eq. (5.25) and the sum in Eq. (5.21), 

shows that including the contributions from excitations which consist of a chain and 

isolated spins of type B results in y 2 being replaced by y 2e~ a z y. From the values of 
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a for the different phases and from the expressions for the phase boundaries given 

by Eq. (5.18) and Eq. (5.19), it follows that for the domain where the modulated 

phases are stable the quantity y 2e~ a x y is less than one and therefore the geometric 

series in Eq. (5.25) converges. Thus grouping the contributions from the excitations 

which contain a chain with excitations which also include isolated B spins cures the 

divergence found for y > 1 in Eq. (5.21). 

An inspection of Eq. (5.22) and Eq. (5.25) shows that contributions to the 

free energy which are of order x 3 + f c can be summed to give a total contribution to 

the free energy which is of the order of x 2 if the sum also includes k powers of t. 

In the following, more complex excitations which also contribute to order x 2 are 

described. These additional excitations are obtained by modifying the excitations 

discussed above so that the sums include additional powers of xi. 

One type of such an excitation is obtained by adding to the excitations already 

discussed a single spin of type F which is an out-of-plane nearest-neighbor to one of 

the A spins in the chain. Such an inclusion multiplies the contribution to the free 

energy by a factor of xy. This can be understood from the fact that once the chain 

is overturned, the F spins which are attached to the A spins become B spins. Then 

if overturned these spins contribute to the free energy as if they were originally 

spins of type B, i.e., they contribute one power of xy. The extra power of t, needed 

to compensate for the extra power of x, follows from the fact that the F spin can 

be located at t positions along the chain. 

In the same spirit, adding / spins of type F multiplies the contribution to 

the free energy from the chain by x l. These J powers of x are compensated by 

I powers of t which originate from the fact that there are i l/l\ + 0(i l~ l) ways to 

choose the / spins of type F. The total contribution, to order x 2, to the free energy 

from excitations which are obtained by overturning clusters which contain a chain 
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of length t, k isolated spins of type B, and / spins of type F is given by 

oo oo oo 

£ £ E <-«»••>' (*»)' » * " = ^ 3 ^ 7 7 <»•»> 
» = 1 fc=0 J=0 y 

From Eq. (5.25) and Eq. (5.26) it follows that taking into account excitations which 

are obtained by overturning clusters which include spins of type F amounts to 

changing a to a — 1. This result can be understood from the fact that once the 

main cluster is overturned, the F spins become B spins and therefore each of the 

spins of type A , in the chain, excludes one less spin of type B. 

Another contribution to order x2 is obtained by grouping excitations which 

contain more than one chain such that in each chain there exist spins of type A 

which are nearest-neighbors to some of the spins of type A in the neighboring chain. 

The inclusion of each additional chain multiplies the contribution to the free energy 

from the cluster by a factor of x2. These extra powers of x are compensated by 

summing over the variables which describe the length of the additional chain. 

As an example consider the case shown in Fig. 5-3 of a cluster which consists 

of a short chain of length j and a long chain of length i. The contribution to the 

free energy from such a cluster is proportional to x 5 y 2 , + 1 . This contribution contain 

two more factors of x than the contribution from one chain of length ». For a given 

value of t, the total contribution to the free energy from all possible values of j is 

proportional to 

£ (» - j - l ) x V + 1 = V x V + 1 + 0 ( .>V»" + 1 (5.27) 

3 = 1 

Thus the two powers of »', in the first term in the right-hand side, compensate 

the two additional powers of x and the contribution to the free energy from these 

excitations is also of order x2. 
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Figure 5-3 An example of an excitation which consist of two chains. 
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As for the case of excitations which contain one chain, additional excitations 

which when grouped together also contribute to the free energy to order z 2 , can 

be obtained by adding to excitations which contain an arbitrary number of chains, 

isolated spins of type B and adding spins of type F which are attached to the chains. 

A detailed description of the calculation of the contribution to the free energy from 

excitations which include more than one chain, is postponed to later in this section. 

The last type of excitation which also contributes to order z 2 can be obtained 

by modifying excitations which contain more than two chains. For these cases, once 

the chains are overturned, the spins of type A which contain two in-plane nearest-

neighbors in two neighboring chains turn into spins of type B. Thus, as in the case 

of the excitations which are obtained by overturning F spins, additional excitations 

which also contribute to order z 2 can be obtained by not overturning an arbitrary 

number of spins of type A , provided that these spins contain two in-plane nearest-

neighbors which are part of the cluster. Also, as for the case of excitations which 

include F spins, the contribution from excitations which include A spins which are 

not overturned is taken into account by subtracting 1 from the number of spins of 

type B which are excluded by the spin of type A which is not overturned. 

From all the previous considerations it follows that a complete calculation , to 

order z 2 , of the free energy of the different phases must include contributions from 

a variety of different types of excitations. In order to keep track of the different 

contributions, the excitations will be grouped into classes such that each class con

tains all the excitations which include the same number of chains. The excitations 

in a given class differ from one another according to the lengths of the chains, the 

distribution of isolated B spins, the number of the F spins which are attached to 

the A spins, and the number of A spins which are not overturned. 

5.3.2 The contribution from the class of three chains 

In this subsection, the calculation of the contribution of order x 2 to the free 



CHAPTER 5: LOW TEMPERATURE EXPANSIONS FOR THE JD MODEL 73 

energy of the < n > phases, from all the excitations which belong to the class of 

three chains, will be explained in detail. This calculation is the simplest example 

which includes all the features which have to be considered in a calculation of the 

contribution from an arbitrary class. 

The calculation of the contribution to the free energy from a given class is 

facilitated by classifying the excitations which belong to the class into subclasses. 

Each subclass contains all the excitations whose clusters have the same distributions 

of widths, where the width of a cluster, at a given position, is equal to the number 

of spins of type A which are encountered as the cluster is scanned in a direction 

parallel to the layers, i.e., along a row of spins of type A. A section of width 1^ and 

length t£ is a part of a cluster in which there exist consecutive positions where 

the width of the cluster is l^. 

The class of three chains contains two subclasses. The first subclass contains 

all the excitations containing clusters which have two sections of width 1, two sec

tions of width 2, and a single section of width 3. Figure 5-4 shows an example of 

a cluster of chains which belongs to excitations which correspond to this subclass. 

The second subclass contains all the excitations whose chains contain three sections 

of width 1 and two sections of width 2. Figure 5-5 shows an example of a cluster of 

chains which corresponds to excitations which belong to this subclass. In general, 

the notation l' 12' 2 ...k i k will be used to describe a subclass of excitations whose 

clusters include / ; sections of width j, where j — l,---k. Using this notation, the 

subclasses of the class which contain three chains are denoted by 1 2 2 2 3 1 and 1 3 2 2 . 

The total contribution, to order x 2, to the free energy of the < n > phases 

from the excitations which belong to the subclass 1 2 2 2 3 1 is given by 

OO CO CO CO CO 

-3 2 2 4 C(3;2 ,2 , l )z 7 y E E E E E ^ ( M + ^ + U - M ^ X ^ B Z , , ( 5 2 G ) 

l,=l i 2 = l 13=1 t 4 = l «5 = 1 
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Figure 5-4 An example of a excitation which includes three chains and which 

belongs to the subclass 12223. The dots represent some of the A spins in the 

cluster. The variables i ' i , - - - , * 5 are the lengths of the sections. The contributions 

from the different segments to the exponentials are shown in each segment. 
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Figure 5-5 An example of an excitation in the subclass 1322 of the class of three 
chains. 
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where tj, • • • ,15 are the lengths of the sections of the clusters and 

A = -{a- 1)(», + t 2 + t 3 + «4 + t5) - {fl - 1)(»2 + « 3 + i 4) - {fl - 1)»3 (5.29) 

B = -{fl-2)i3 (5.30) 

and for the < n > phases a = 6 and fl = 2. 

In the following, the different considerations which led to these expressions 

are explained. The powers of x and y follow from a calculation of the energy of an 

excitation which only includes a cluster of chains with lengths which are described 

by the variables 11, • - - , t'5. For each cluster, the exponentials result from the sums 

over all the other possible excitations which include the cluster. The exponentials 

which contain a and fl result from the sums over all the different isolated spins 

of type B. The value of a is the number of spins of type B which are excluded, 

i.e., which cannot be one of the isolated B spins, per each spin of type A which 

is located in a segment of a chain which forms one border of a section. The value 

of fl is the additional number of excluded spins of type B, per spin of type A, in 

each additional segment of the section. The number one which is subtracted from 

each a and fl results from the sums over all excitations which include F spins. The 

additional one, which is subtracted from each fl which correspond to segments of 

chains which do not form any of the two borders of the section, results from the 

excitations which are obtained by not overturning spins of type A. 

In this way, each segment of a chain in each section of the cluster, is associated 

with an exponential whose argument is the length of the section multiplied by a 

number which depends on the location of the segment of the chain in the section. 

In Fig. 5-4 and Fig. 5-5 these numbers are shown for the different segments of the 

chains in the different sections. For each section, one segment of a chain which is 

on the border of the section is assigned the number a - l . The segment of a chain 
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on the second border of the section is assigned the number /? — 1. All the segments 

of chains in the interior of the sections are assigned the values /? — 2. 

The coefficient 3 22 4 results from the different possible ways of terminating 

the chains. Each of the two exterior ends of the chains can be terminated in three 

possible ways. One way consists of including both spins of type B which are attached 

to the last A spin in the chain. The other two ways correspond to the cases where 

one of the B spins is omitted. Each of the four interior ends of the chains can be 

terminated in two ways. A single B spin which is attached to the end of the chain 

can be included or omitted. 

The coefficient C(3;2,2,1) is equal to the number of different possible clus

ters which belong to the subclass 1 22 23 1 in the class of three chains. In general, 

C(m; h, - • • ,lk) l s equal to the number of clusters in the subclass l'»2' 2 • • • k l k of the 

class of excitations which contain m chains. 

Evaluating the sum in Eq. (5.28) one obtains 

[B(a - l)] 2 [B{a + 0 - 2)]2 B{a + 2/? - 4) (5.31) 
n 

where 

The contribution to the free energy, to order i 2 , is obtained by substituting y — l-x 

in Eq. (5.31) and is given by 

^ 1 — i 1 * 2 = i - i - * 2 (5.33) 
n (2 + a - l ) 2 (2 + a + / 3 - 2 ) 2 (2 + a + 2/?-4) n 2 • 7 2 

where the number 2 in each denominator follows from the expansion of y 2 and the 

rest of the terms in the denominators follow from the expansions of the exponentials. 
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Similarly the contribution to the free energy, to order z 2 , from the subclass 

1 32 2 is given by 

9-2 8 1 1 2 9 22 , . 

n (2 + a - l ) 3 (2 + a + / ? - 2 ) 2 n 7 3 

Therefore the total contribution from the class of three chains is given by 

5.3.3 The contribution to order x 2 for the < n > phases 

In this subsection, the total contribution to the free energy of the < n > 

phases, which is of order i 2 , is calculated. This contribution includes the contri

bution from overturning two isolated spins of type B and the contribution from 

excitations which contain chains. The calculation for these excitations is performed 

by calculating the contribution from a given subclass and then summing over all 

possible subclasses and all possible classes. 

Let l f l 2' 2 • • • k l k be a subclass in the class of m chains. The contribution, to 

order i 2 , from the excitations in this subclass is given by 

«=3 

where B(u) is defined in Eq. (5.32) and 

u\ — a — 1 

u 2 = a + R - 2 

Ui = a + P - 2 + (t - 2){P - 2) (5.36) 
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These expressions are derived using the same considerations which were used in the 

previous subsection to calculate the contribution from the subclasses of the class of 

three chains. The argument u\ in B(u\) originates from the single segment of chain 

in the l\ sections which have width 1. The argument u2 in B(u2) is the sum of 

a — 1 and 0—1 which are the contributions from the first and the second segments 

of the I2 sections whose width is 2. The arguments in the rest of the B functions 

are obtained by summing the contributions, a — 1 and 0—1, which originate from 

the exterior segments and the contribution 0 — 2 which originates from the » — 2 

interior segments of a section whose width is l . The factors 3 22 2( m _ 1) correspond 

to the three possible ways to terminate each of the two exterior ends of chains and 

the two possible ways to terminate each of the interior ends. 

Substituting y — 1 - x in Eq. (5.36), one obtains that the contribution, to 

order i 2 , from this subclass is given by 

-4^-^C(m; tk)—*— TT 1 - x 2 (5.37) 

fc'(l + a)'i f-}2[a + 0+(i-2)(0-2)} 1' 

For the case of the < n > phases a = 6 and 0 = 2 and therefore Eq. (5.37) gives 

V ' ^ k l i , - , ! ^ , * ^, = - — (-) ' C(m;/I,---,/*) (5.38) 

where the last equality follows from the relation 

k 
J J = 2m - 1 (5.39) 
t=i 

The total contribution from all the subclasses which contain / i sections of width 1 

is given by 

l-^{d''D {m J' ) x2  ( 5"0 )  
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where 

£ > ( m ; / ! ) = £ 0(m;/ , , / 2 , - . . , / f c ) (5.41) 

is equal to the number of clusters in the class of m chains such that the cluster 

contains li sections of width 1 and is given by 

O K I , ) - 4 - ' ' 2 m , " ' ' " ' j ' , , ( ' . - ! ) (5-42) 

The total contribution from all subclasses and all classes is given by Nnx2/n 

where 

9 9 ^ ™ i / 8 \ ' i ( 2 m - / i - 2 ) ! „ , , 

m—1 I] =2 

where the first term is the contribution from the class of one chain, the first sum 

in the second term is a sum over all the rest of the classes and the second sum is a 

sum over all possible values of l\ in a given class. The second term in Eq. (5.43) is 

equal to 12/7 (see Appendix A) and therefore Nn — 3. 

The total contribution to the free energy of the < n > phases is given by 

- — x 2 + - z 2 = — i 2 (5.44) 
In n 2n 

where the first term is the contribution from overturning two spins of type B and 

the second term is the contribution from all the other excitations. The free energy 

of the < n > phase, along the line y — 1 - x, is given by adding the contribution 

which is to order x 2 to the expression in Eq. (5.11). Thus the free energies of the 

< n > phases are given by 

3 36 46 xy x „ / *\ t w •Pf (<n>) = - + - - - + - + — + O x 3 (5.45) 
2t t nt n 2n 
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5.4 The phase boundary for the < F > phase 

From the calculations in the previous section it follows that in the vicinity of 

the phase boundary of the ferromagnetic phase, the free energy of the < F > phase 

and the free energy of the < n > phases are given by Eq. (5.10) and Eq. (5.45). 

The contribution to order x 2 to the free energy of the < 2 > phase is obtained 

by performing a calculation similar to that described in Sec. 5.3. The contribution 

from each subclass is given by Eq. (5.37) where a = 9 and /3 — 4. Let the total 

contribution from all the subclasses be given by N2x 2/2. From the fact that the 

values of a and /? for the < N > phases [a — 6,0 — 2) are smaller than the 

corresponding values for the < 2 > phase (a = 9,/3 = 4), it follows that N2 < 

Nn — 3. This implies that the < n > phases are stable in a region of the phase 

diagram between the < F > and the < 2 > phases. Therefore, in order to obtain an 

expression, to order i 2 , for the paramagnetic-modulated phase boundary one has 

to calculate the phase boundary between the < F > and the < n > phases. 

The phase boundary between the < F > phase and the < n > phases is 

obtained by equating the free energy of the < F > and the free energies of the 

< n > phases. From Eq. (5.10) and Eq. (5.45) it follows that this phase boundary 

is independent of n and is given by 

(5.46) 

where 

(5.47) 

Subtituting Eq. (5.47) and Eq. (5.10) into Eq. (5.45) it follows that 

Bf{<n>) = -f3f(<F>) + -A6c-S) (5.48) 
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This equation implies that for 6 > 6C, the < F > phase is the stable phase and 

for 6 < Bc the < 3 > phase is the stable phase. The phase boundary between the 

< F > phase and the < 3 > phase is given by 

K (F , 3 ) = - - -tx+ -tx 2 + 0(x 3) (5.49) 
2 4 8 

Along this phase boundary, the < n > phases, for n > 4, have the same free energy 

as the < F > and the < 3 > phases. Therefore in order to further resolve these 

phases, one has to calculate expressions for the free energies and for the phase 

boundaries to higher order in x. The phase boundary between the < F > phase 

and the rest of the < n > phases is expected to differ from the phase boundary 

between the < F > phase and the < 3 > phase only in order x 3. 

Having calculated the phase boundary between the ferromagnetic and the 

modulated phases, one can compare the expressions for the phase boundary and 

the Domany line. For small values of t, an expansion of Eq.(2.37) shows that the 

Domany line terminates at the multiphase point and that in its vicinity it is given 

by 

K D = - - - t x + -tx 2 + O (x3) (5.50) 
2 4 8 

From Eq (5.49) and Eq (5.50) it follows that the asymptotic low temperature ex

pansion for the Domany line and the phase boundary for the ferromagnetic phase 

agree in the first three leading terms. 

The phase boundary between the < 3 > phase and the < 2 > phase is 

obtained by equating the free energy of the < 3 > phase, given by substituting 

n = 3 in Eq. (5.45), and the free energy of the < 2 > phase given by 

3 6 xy 5 , No •> , ,v 
-Pf (< 2 >) = - + - + ^ - -x 2 + - ^ x 2 + O (x3) (5.51) 

It t n 4 I 
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This phase boundary is given by 

(5.52) 

An exact evaluation of / V 2 has not been performed in this thesis. However summing 

the contribution to N2 from the six first classes reveals that the sum is rapidly 

convergent and that N2 is given by N2 — 1.040. 

5.5 Expansion to order x 2 for the < 2V > phases 

The calculations in Sec. 5.2 show that, to order x, the JD model exhibits a 

transition from the < 2 > phase into the < AF > phase, and that the < 2V > 

phases, for j > 1, are found to coexist with the < 2 > and the < AF > phase 

along their phase boundary which is given by y — 1 + x. Therefore, as for the case 

of the < n > phases, the stability of the < 2V > phases has to be determined by 

calculating to higher order in x the free energies of the < 2 >, the < 2V > and the 

< AF > phases. 

A calculation to order x 2 of the free energies of the < 2V > phases is per

formed using the method described in Sec. 5.3. The excitations which contribute 

to order x 2, along the line y = 1 + x, are similar to the excitations described for 

the < n > phases in Sec. 5.3.1. The only difference results from the fact that the 

< 21} > phases do not contain spins of type F and the < n > phases do not contain 

spins of type < AF >. Therefore, for the < 2V > phases, the excitations which 

are analogous to the excitations of the < n > phases which contain spins of type F, 

contain spins of type A F . However the calculation to order x 2 of free energy of the 

< 2V > phases is identical to the same calculation for the < n >phases. The only 

difference in the final expressions for the contribution to the free energy to order x 2 

results from the fact that for the < n > phases these contributions were evaluated 
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along the line y — 1 — x whereas for the < 21' > phases the evaluation is along the 

line y = 1 + x. 

In Appendix A it is shown that the double sum which gives the contribution 

to order x 2 to the free energy of the < 21' > phases is divergent. This divergence 

suggests that the < 21' > phases are not stable phases. 

5.6 Conclusions 

In this Chapter the stability of the < n > and the < 21' > phases was 

investigated by performing a low temperature expansion about these ground states. 

To order x, the < 2 > phase was found to be stable in a region of the phase diagram 

whose width is of order x. The < n > phases were found to be stable only on the 

< F >-< 2 > phase boundary and similarly the < 21' > phases, for j > 1, were 

found to be stable only on the < 2 >-< AF > phase boundary. To order x 2, 

the calculation showed that the < 3 > phase has a region of stability of width x 2 

between the < F > and the < 2 > phase while the < n > phases, for n > 4, are 

stable only on the < F >-< 3 > phase boundary. To order x 2 the contribution to 

the free energy of the < 21' > phases was found to be divergent. This suggests that 

the < 21' > phases are not stable phases. 

The phase boundary between the ferromagnetic and the modulated phases 

was calculated to order x 2 and was found to coincide with the low temperature 

asymptotic expansion of the Domany line. This result strongly suggests that the 

Domany line is the phase boundary of the ferromagnetic phase. 
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C H A P T E R 6 

T H E P A R A M A G N E T I C - M O D U L A T E D T R A N S I T I O N 

In this Chapter the possibility that the JD model exhibits a fluctuation-

induced first-order transition between the paramagnetic and the modulated phases 

is examined. In Sec. 6.1 studies which suggest that models with continuous 

minimum-energy surfaces exhibit a fluctuation-induced first-order transition are 

reviewed. In Sec. 6.2 it is shown that the JD model contains minimum-energy 

surfaces. In Sec. 6.3 the Landau-Ginzburg-Wilson (LGW) Hamiltonian which is 

used to describe the paramagnetic-modulated phase transition of the JD model is 

described and in Sec. 6.4 this L G W Hamiltonian is analyzed using an e expansion. 

Section 6.5 concludes the Chapter. 

6.1 Models with continuous minimum-energy surfaces 

For most models the quadratic term in the L G W Hamiltonian attains its min

imum on a point or on a set of discrete points in reciprocal space. For example, 

the LGW Hamiltonian which describes the paramagnetic-ferromagnetic phase tran

sition, Eq. (2.16), attains a minimum at the point q — 0. In contrast, models with 

continuous minimum-energy surfaces are models in which the quadratic term in 

the LGW Hamiltonian attains its minimum on one or more continuous surfaces in 

reciprocal space. Such models have been introduced to describe phase transitions 
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from a disordered phase into an ordered modulated phase characterized by a wave-

vector q which can be any wave-vector chosen from the continuous minimum-energy 

surfaces [23]. 

The nematic to smectic-C transition in liquid crystals is an example of a 

phase transition which is described by an L G W Hamiltonian whose minimum-energy 

surface consists of two continuous surfaces in reciprocal space [52]. The nematic 

phase is a phase where anisotropic molecules are, on average, aligned with their 

long axes parallel to a given direction denoted by a unit vector h [53]. The smectic-

C phase is a phase which contains nematic order, also characterized by a unit 

vector n, and a one-dimensional density wave characterized by a wave-vector q 0 = 

(±gor>qo±) where qoz is the component of qo in the direction of n, and qoj. is 

the component of qo in the direction perpendicular to h [53]. Therefore the wave-

vector qo can be any of the wave-vectors lying on two rings in reciprocal space and 

the L G W Hamiltonian which describes the nematic to smectic-C phase transition 

contains minimum-energy surfaces consisting of these two rings. 

For the cases where the L G W Hamiltonian does not contain cubic terms, 

mean-field theory predicts that the models exhibit continuous phase transitions into 

the modulated phase. However, Brazovskii, using perturbation theory, argued that, 

due to the existence of the minimum-energy surface the phase transition is first-

order [23]. Thus these are examples of models which exhibit a fluctuation-induced 

first-order phase transition, i.e., a first-order phase transition for which mean-field 

theory predicts a continuous transition. The nematic to smectic-C transition has 

been analyzed, using the arguments of Brazovskii, by Swift and Leitner [24,26] who 

predicted a first-order phase transition, in agreement with experiments [54]. 

Brazovskii's arguments are based on perturbation theory and therefore can

not be regarded as rigorous near the phase transition point. Therefore Mukamel 

and Hornreich performed a renormalization group calculation for a model in which 

the minimum-energy surfaces consist of two squares, instead of the two rings which 
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occur for the nematic to smectic-C phase transition [27]. They obtained recursion 

relations for the renormalization group transformations which do not contain a sta

ble fixed point. This suggests that, for dimensionalities which are lower than the 

upper critical dimensionality du = 5, the two square model exhibits a fluctuation -

induced first-order phase transition [30]. Mukamel and Hornreich also extended 

their calculations to models where the continuous minimum-energy surfaces consist 

of two symmetric polygons with an arbitrary number of edges. For these models the 

recursion relations also do not contain a stable fixed point. Ling et al. performed a 

similar calculation for an n-component model in which the minimun-energy surface 

is a square [28]. They also found that for finite n and d < 5 the model does not 

contain a stable fixed point. These results for different models with a continuous 

minimum energy surface, the perturbative arguments of Brazovskii and the exper

imental results for the nematic to smectic-C transiton suggest that models which 

contain continuous minimum-energy surfaces exhibits a first-order transition for di

mensionalities below the upper critical dimensionality. The precise shape of the 

constant-energy surface does not appear to play a role in determining the order of 

the phase transition [27]. 

6.2 The minimum energy surface for the JD model 

In Chap. 4 it was shown that for values of K > 1/3 mean-field theory predicts 

that the JD model should exhibits a continuous transition from the paramagnetic 

phase into a modulated phase characterized by a wave vector q = (9n9y?0) where 

qx and qy satisfy the equation 

-2 0 Q* V^9y , , „ n i x 

K =2 cos—cos h cos qx (6.01) 
2 2 

For a given value of 1/3 < K < oo the solutions to Eq. (6.01) consist of one or 

two lines in reciprocal space. These lines constitute the minimum-energy surfaces 
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of the JD model. Therefore the transition between the paramagnetic phase and 

the modulated phase might be a first-order transition of the type described in the 

previous section. 

For a general value of K the lines of constant energy do not form a simple 

polygon. However, for the value K — 1, the solutions to Eq. (6.01) form a hexagon 

in reciprocal space. The hexagon, shown in Fig. 6-1 is given by the lines 

qx = ±w 

qx + V3qy = ±2TT 

9I - y/3qy — ±27r 

For this case one can use the method of Mukamel and Hornreich and perform a 

renormalization group calculation for a model whose minimum-energy surface is a 

hexagon. Such calculation differs from the calculation of Mukamel and Hornreich in 

two ways. First, Mukamel and Hornreich used two symmetric polygons to approx

imate the two rings which constitute the minimum-energy surfaces for the nematic 

to smectic-C phase transition, while for the JD model one needs only one hexagon. 

Also, and more significantly, in the case of the JD model, as a consequence of the 

periodicity of the lattice, wave-vectors are defined modulo reciprocal lattice vectors, 

and therefore one has to include additional fourth-order invariants in the Hamil

tonian. Such terms were not included by Mukamel and Hornreich because they 

sought to describe a transition between two liquid phases. 

Therefore, in the following, an L G W Hamiltonian which contains a hexagonal 

minimum-energy surface and fourth-order invariants due to the lattice is analyzed. 

This L G W Hamiltonian is assumed to describe the phase transition betwen the 

paramagnetic and the modulated phase of the JD model. 
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Figure 6-1 The minimum energy surface for K = 1. The solid line is the boundary 
of the first BZ of a triangular lattice. The dashed line is the minimum energy 
surface for K — 1. 
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6.3 The LGW Hamiltonian 

In this Section the LGW Hamiltonian is described. The L G W Hamiltonian 

is constructed, in the usual way, in terms of the Fourier components of the order 

parameter which lie near the critical modes. Let Qi,Q.2 and Q 3 be the vectors, 

shown in Fig. 6-1, connecting the origin of reciprocal space and the centers of three 

of the edges of the hexagon, and let a 1 ; a 2 and a$ be unit vectors parallel to the 

three edges. Let </>±/(q), for / — 1,2,3 be six real scalar fields defined for values of 

q which are measured from ±Q; and which satisfy 0 < |q| < A. 

The Hamiltonian for the model is given by 

PH = 0HO + PHj (6.02) 

where ($HQ is quadratic in the order parameter, and the interaction term 0Hj is 

a sum of all the fourth-order invariants which can be formed by multiplying four 

fields. 

The quadratic part of the L G W Hamiltonian is given by 

f 3 

0HO= / £ X7l(l)M<l)<t>-l(<l) (6-03) 

where the integral is performed over the wave-vectors in the hypersphere 0 < |q| < A 

and for / = 1,2,3 the inverse bare susceptibility, xf1(<l)j is given by 

x r 1 (q) = r +12 - ( i • a<)2 + a(q• a<) 2 m ( 6 0 4) 

For a = 0 the minimum of x^ l l ) , s obtained along the sides of the edges of the 

hexagon, and thus the hexagon constitutes the desired minimum-energy surface. 

The term o(q-aj) 2 m which breaks the degeneracy along the sides of the hexagon 

is added, following Mukamel and Hornreich, for computational reasons which will 
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be discussed later. The calculation is performed assuming that 11 / 0 and the 

degeneracy of the hexagon is restored at the end of the calculation by taking the 

limit of m —> oo. 

The interaction term, @Hj, of the Hamiltonian is given by 

t5H!= j j I [ 0(Hl + H2 + H3) 6 ( q i + q 2 + q 5 + q 4) (6.05) 

where 0H\, 0H2, 0H3 are the fourth-order invariants. These invariants are found 

by requiring that the sum of the four wave-vectors associated with the four fields is 

equal to zero or to a reciprocal lattice vector. For example, the term 

Mqi)<£-i(q2)<Mq3)<£-i(q4) ( 6 0 6 ) 

is associated with the wave-vector 

(Ql + qi) + (-Qi + q2) + (Qi + q 8) + (-Qi + q 4) 

which is equal to zero due to the ^-function in Eq.(6.05). One also demands that 

each of the fourth-order terms should be invariant under G$ rotations around the 

z axis and therefore the fourth-order invariant which includes the term given in 

Eq. (6.06) must also include two more similar terms in which the index / = 1 is 

replaced by / = 2 and / = 3. Thus the fourth-order invariants are given by 

3 

fiH2 — U2 (4>i<p-\<j>2(f>-2 + <f>2<f>-2 <f>34>-3 + 4>3<f>-3<f>l<f>-l) 

3 
0H3 = u 3 £ {MiMi + <t>-i<t>-i<t>-i<t>-i) (6.07) 

i=i 
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where the wave-vectors arguments have been suppressed, i.e., for example, 

<f>i<t>-i<i>z<f>-2 = <Ai(qi)^-i(q2)<Mq3)<£-2(q4) 

For t$H\ and flH-i the sum of the four wave-vectors associated with the four fields 

in each of the terms is equal to zero. For 0Hz the sum of the four wave-vectors 

associated with the four fields is given by the vectors 4Qj, for I — 1,2,3 . These 

wave-vectors are equal to reciprocal lattice vectors and therefore (3H$ is the term 

which is included in the calculation due to the periodicity of the hep lattice. 

6.4 Renormalization group calculation 

The renormalization group calculations are performed using Wilson's momen

tum shell method [35]. The calculation consists of generating recursion relations by 

integrating over the field variables <t>±i{q) for wave-vectors q lying in the momentum 

shells A/6 < \q\ < A, rescaling the fields </>±((q) = $<f>'±l(q) where c 2 = b2+d~n and 

rescaling the wave-vectors q' — bq. 

The first step in the calculation involves separating /3Ho into a part flHrf, 

which includes the low frequency modes, and a part @HQ , which includes the high 

frequency modes. Thus 

0HO = 0H< + f3H> (6.08) 

where (3Hrf and 0HQ are given by 

< 3 
(6.09) 

> 3 
(6.10) 
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and and are defined by 

^0<|q|<t W ^ -/q 4<|q|<A (2»r) 

Next one defines an effective Hamiltonian f$H'{<}>), which depends only on the 

low frequency modes, by integrating over the fields which correspond to the high 

energy modes. Thus the partition function 

3 
Z = 

1=1 
J [ / rf[*,]e-'*°-'ir' (6.11) 

can be written as 

Z = ][ T d^e-W'W (6.12) 
<=i 

where the functional integration / < d\<f>r) is performed only over the fields (f>i{q) for 

which q satisfies 0 < \q\ < A/6, and 

= e " ^ J J ^ d ^ l e - ^ o - W (6.13) 

where in this case the functional integration f> d\<f>i] is performed over the fields 

<f>±i associated with wave-vectors in the shell A/6 < \q\ < A. 

Defining 

3 f> 
Zl = H dWe-W* (6.14) 

and defining the average of an operator O with respect to the 'partition function' 

Zj by 

3 t> 

(0>/ = V l I / d^Oe-^o (6.15) 
i=i  J  
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the expression for the effective Hamiltonian Eq (6.13) can be written as 

' = ZI(e-»H>)ie->»iZ (6.16) 

The average (e piil)j can be calculated to second order in (—PHj) by using the 

cumulant expansion which is given by 

( e ^ ) = exP(f;̂ -c„ 

where 

Cl =< V > and c 2 = - [< V2 > - < V >2] (6.17) 

In performing a cumulant expansion in powers of PHj one is assuming that the 

fixed points u[, u'2, and U 3 are at least of the order of the small expansion parameter 

i — du - d. In this way one obtains an effective Hamiltonian given by 

-0H' = \nZj- 0H< + <(-/?#/)} + l- [((-PHj)2) - ((-PH,))2] (6.18) 

So far the effective Hamiltonian PH\ is a function of the fields cf>±i(q) for wave-

vectors which satisfy 0 < |g| < A. The renormalized Hamiltonian P H'(4>\(q[)) is 

obtained from the effective Hamiltonian PH (<j>i(q)), by substituting q' = 6q and 

<A±*(q) = ?^y(q)-
Using the standard diagrammatic methods to calculate < (-0H) >/ and 

< ( — PH)2 >/, and then using standard approximations, one can rewrite the renor

malized Hamiltonian in a form which is identical to the form of the original Hamil

tonian PH, but with renormalized coupling constants r', u\, u'2, u'3, a' and with 

the coefficient <;2b~2~d multiplying q'2 in x ' * - 1° order to restore the value of this 

coefficient to unity one choses c. to be given by g2 = b 2 + d . However, from Eq. (2.05), 
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it follows that, f2 is also related to the critical exponent n through f2 = b 2 + d~ n and 

therefore one obtains T} = 0 to order e. 

In this way the values of the renormalized coupling constants are given in 

terms of the bare coupling constants by the following renormalization group trans

formations 

r'=6 2 [r + (4ui + 2u 2)/ 0(r)l 

« i =b i~ d [ui - (lOuf - u\ - 72tt|)/1(r)] 

u\ =b 4' d [u2 - (8uiu 2 - u\)Ii{r) - 2u 2/ 2(r)] 

u'3 ~b 4~ d [u3 - 12uiu3/i(r)] 

ffl'=6-2(m-i)0 ^ 6 1 9 j 

w here 

'o(r) = P Xiii) 
Jq 

/ i ( r ) = T x f W 
Jq 

h{r)= I* Xl(q)Xl>{q) 1*1' (6.20) 
Jq 

From the recursion relation for a it follows that the variable a is an irrelevant 

variable and therefore one might be tempted to substitute o = 0 in the L G W 

Hamiltonian. However the integral II{T) for r = 0 diverges as a ^ - 5 ^ 2 as o -» 0 and 

therefore the term multiplying a must be included in the L G W Hamiltonian. Such 

an irrelevant variable is called a 'dangerous irrelevant variable'. Following Aharony 

and Bruce [45], one deals with dangerous irrelevant variables by defining rescaled 

coupling constants given by 

ii; = a ( d - 5 » / 2 u , (6.16) 
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for t = 1,2,3. In terms of the rescaled coupling constants the recursion relations, 

Eq. (6.19) are given by 

-1 
ul 

=64 -d Ul 

~t l4 -d 
u2 ~b u2 

-1 u* -d 
u 3 =o "3 (6.22) 

where t = 5 - m - 1 — d and for t = 1,2 /,(r) = o _ ^ _ 5 ^ 2 / i ( r ) . The recursion relation 

for r' has been omitted, because to order e it plays no role in determining the values 

of the fixed points, u[, u 2 , u*3, and their stability. 

Having written the recursion relations in terms of the rescaled coupling con

stants, one can deal with the dangerous irrelevant variable o, in the usual way, by 

evaluating the integrals I\{r = 0) and I2(r = 0) for a — 0 and for t — 0. One then 

obtains 

^(o = 0,r = 0) = A" In 6 

I2(a = 0,r = 0) = 0 (6.23) 

Assuming that the fixed points are given for values of u, which are of order t and 

using the definitions 
K 

(6.24) Xi -

meui 

for t = 1,2,3, the following recursion relations are obtained in terms of the z, 

x\ =x\ + {x\ — 10z2 — x\ - 72z|) tm In b 

x2 =x2 + (z 2 - 8ziz 2 — z 2) em In b 

x'3 —xz + ( x 3 — 1 2 x 1 X 3 ) em In 6 (6.25) 
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The fixed points for the recursion relations are given by the solutions to the following 

equations 

xi = 10xJ + x\ + 12x\ 

X2 —SX\X + x 2 

x 3 =12xix3 (6.26) 

These equations have eight solutions, of which four are real and are given by 

a) x\ — 0, x 2 = 0, x*z — 0 

b) x[ = 1/10, x 2 = 0, x̂  = 0 

c) x[ = 1/12, x; = 0, x 3 = 1/72 

d) i j = 1/12, x 2 = 0, x, = - l / 7 2 

The stability of these fixed points is determined by calculating for each fixed point, 

the eigenvalues of the linearized renormalization group transformations. In our case 

these eigenvalues are determined from the matrix 

d x , / l + E ( l - 2 0 x i ) - 2 E x 2 -144Ex 3 

— - = - 8 £ ; x 2 1 + E[l - 8xi - 2x2) 0 | (6.27) 
d x i \ -\2Exz 0 l + E ( l - 1 2 x i ) 

where E — em ln b . Evaluating the eigenvalues of the matrix given by Eq. (6.27) one 

finds that for each fixed point there exists at least one eigenvalue which is positive. 

Therefore the L G W Hamiltonian, analyzed in this section, does not contain a stable 

fixed point. 
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6.5 Conclusions and discussion. 

In this Chapter an LGW Hamiltonian, which is assumed to describe the phase 

transition between the paramagnetic and the modulated phases of the JD model, 

was analyzed using a renormalization group calculation. In this Section the choice 

of the L G W Hamiltonian and the result of the calculation are discussed. 

The L G W Hamiltonian was chosen such that its quadratic term contains, 

in the limit of m —• oo, a minimum-energy surface which consists of a hexagon. 

This choice is motivated by the fact that for a specific value of K , i.e., K = 1, the 

JD model contains a minimum-energy surface which also consists of a hexagon. 

The choice is also motivated by the fact that for models which contain minimum-

energy surfaces on polygons one can use the method of Mukamel and Hornreich to 

perform a renormalization group analysis. The fourth-order invariants of the L G W 

Hamiltonian include terms which were not included in previous analysis of L G W 

Hamiltonians which contain minimum-energy surfaces. These terms are included 

here because the JD model is defined on a lattice. 

These considerations motivate the assumption that the phase transition for 

this L G W Hamiltonian, and the paramagnetic-modulated phase transition of the 

JD model, belong to the same universality class. The calculation revealed that the 

L G W Hamiltonian does not contain a stable fixed point and therefore one concludes 

that both the LGW Hamiltonian and the JD model exhibit a fluctuation-induced 

first-order transition. 

The result of the calculation shows that this LGW Hamiltonian exhibits the 

same type of behaviour as the other LGW Hamiltonians which were previously 

analyzed for other models containing minimum-energy surfaces. This adds weight 

to the assumption that for these models the first-order nature of the transition 

is due to the existence of the minimum-energy surface. The shape of the surface 

or the type of the fourth-order invariants does not play a role in determinig the 

order of the transition. In particular one can apply this assumed universality to 
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the JD model, for the cases where K / 1. For these cases the minimum-energy 

surface is not a hexagon and therefore the calculation in this Chapter does not 

strictly apply. However these results strongly suggest that for all values of K the 

paramagnetic-modulated transition is first-order. 

The results of this Chapter were obtained using an e expansion from the 

upper critical dimensionality du — 5. Therefore one should be skeptical about their 

validity at d = 3, where the small expansion parameter e is equal to two. However, 

these results gain some credibility from the fact that, at d = 3, the nematic to 

smectic-C phase transition is observed to be a first-order transition, and the L G W 

Hamiltonian which is assumed to describe the nematic to smectic-C transition also 

exhibits a first-order transition near the upper critical dimensionality du = 5. 
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C H A P T E R 7 

Conclus ions 

In this thesis both the high temperature (the order-disorder line) and the 

low temperature regions of the («,£) phase diagram of the JD model were inves

tigated. The study was performed using different methods from which, in some 

cases, contradictory conclusions emerged. Therefore, in this Chapter, the results of 

the different studies are reviewed and compared. These results are also compared 

to results from previous studies of the JD model [8,9]. 

As in other models with competing interactions, the ground states of the JD 

model are found to include states which correspond to a phase without domain walls 

(the < F > phase), states which correspond to a phase containing the maximum 

possible amount of domain walls (the < AF > phase), and a highly degenerate point 

separating the < F > states from the < AF > states. At the degenerate point, an 

infinite number of spin configurations are degenerate with the ground states of the 

< F > and the < AF > phases. These include ordered configurations which can 

serve as ground states for phases with long range order. Such phases are expected 

to be located in a region of the phase diagram between the < F > and the < AF > 

phases. 

Mean-field theory and low temperature expansions were used to determine 

which of the states which are degenerate at K = 1/2 are stabilized at non-zero 

temperatures. From both methods it follows that the < 2 > phase is stable in 

a region between the < F > and the < AF > phases. Furthermore, to order x, 
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where x = e _ 2 / f , both methods yield the same expressions, given by Eq. (5.18) and 

Eq. (5.19), for the phase boundaries of the < 2 > phase. It follows that the width 

of the < 2 > phase, along the K direction, is of order x. 

The predictions from mean-field theory and from the low temperature ex

pansions concerning the stability of the < 3 > phase are in contradiction. Both 

methods predict that the phase diagram contains a region where the < 3 > phase 

is stable. However, mean-field theory predicts that the < 3 > phase is not stable 

at an arbitrary low temperature but becomes stable at a branching point, which 

occurs at a finite temperature, while the low temperature expansions predict that 

the < 3 > phase is stable for arbitrarily small values of t. The low temperature 

expansion also predicts that the width of the < 3 > phase is of order x 2. 

Mean-field theory is an approximate theory whereas the low-temperature ex

pansions are expected to become exact in the low temperature limit. Therefore it 

follows that the prediction from the low temperature expansions that the < 3 > 

phase is stable in the vicinity of the multiphase point is correct and, correspond

ingly, that mean-field theory gives a qualitatively incorrect picture of the phase 

diagram near the multiphase point. 

An interesting unsolved question, raised by the stability of the < 3 > phase, 

is whether the rest of the < n > phases are stable at an arbitrary low temperature. 

From the low temperature expansions, it follows that to order x 2 these phases coexist 

with the < F > and the < 3 > phases along the possible phase boundary, given 

by Eq. (5.49), between the < F > and the < 3 > phases. From the fact that the 

widths of the < 2 > and the < 3 > phases are of the order of x and x2 respectively, 

one might guess that the widths of the < n > phases are of order x" _ 1 . Therefore, 

in order to decide whether the rest of the < n > phases are stable for arbitrarily 

low temperature, one would have to extend the low temperature expansions to 

arbitrary order in x. This would require performing an inductive calculation of the 

type used by Selke and Fisher [14] for the three-dimensional ANNNI model. Such 
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a calculation might be difficult to perform because of the necessity of summing an 

infinite numbers of clusters, for each order in the expansion of the free energy in 

powers of i . Since mean-field theory fails to predict the region of stability of the 

< 3 > phases correctly, it is impossible to use mean-field theory for the purpose of 

deciding if the < n > phases, for n > 4, are stable in the vicinity of the multiphase 

point. 

In spite of the fact that the question concerning the stability of the < n > 

phases has been left unanswered, the expression which was obtained for the phase 

boundary between the < F > and the < 3 > phases is expected to be the correct 

expression, to order x 2, for the phase boundary between the ferromagnetic and the 

modulated phases. This follows from the fact that the low temperature expansion 

included all terms which contribute to the free energy to order x 2. Therefore even 

if the rest of the < n > phases occupy a region of the phase diagram between the 

< F > and the < 3 > phase, their combined width is expected to be at most of 

order x 3. Thus the expression to order x 2 for the ferromagnetic-modulated phase 

boundary will remain unchanged. 

A Monte Carlo simulation of the JD model showed that the Domany line and 

the phase boundary of the ferromagnetic phase are very close one to the other. 

Therefore Domany and Gubernatis suggested that both lines might coincide. A 

comparison between the asymptotic expression for the Domany line near the multi

phase point and the the expression for the ferromagnetic-modulated phase boundary 

which was obtained using the low temperature expansions, showed that to order x 2 

both expressions are identical. Domany postulated that the critical point of the 

two-dimensional kinetic Ising model on the honeycomb lattice maps onto a point on 

the Domany line which is a Lifshitz point. It follows that the Domany line and the 

phase boundary for the ferromagnetic phase meet at the Lifshiz point and approach 

each other asymptotically near the multiphase point. These facts strongly support 

the conjecture that both lines coincide. 
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It should be noted that in the Monte Carlo simulation the modulated phase, 

which is expected to coincide with the paramagnetic and the ferromagnetic phases 

at the Lifshitz point, is not observed. Instead the paramagnetic phase seemed to 

extend to temperatures which are lower than the temperature where the Lifshitz 

point is located. Therefore the line which Domany and Gubernatis found to be 

close to the Domany line is not the phase boundary between the ferromagnetic and 

the modulated phase, but the phase boundary between the paramagnetic phase and 

the ferromagnetic phase. The Monte Carlo simulation was performed in the vicinity 

of the Lifshitz point and was not extended to lower temperatures. Therefore it is 

possible that the modulated phases, described in this thesis, will be found at lower 

temperatures. 

For K > 1/2 both mean-field theory and the low temperature expansions pre

dict the existence of the < AF > phase. A phase transition from the paramagnetic 

phase into this phase has been observed in the Monte Carlo simulation. Mean-field 

theory also predicts that the < 2V > phases, for j > 1, are stable at arbitrarily low 

temperatures. To order x, in the low temperature expansion, these phases are found 

to coexist with the < 2 > and with the < AF > phases along their phase boundary. 

However, to order z 2 , the expression for the free energy of the < 2V > phases was 

found to be divergent. These results, for the < 21' > phases of the JD model, 

resemble the results which are obtained for the Ising model on the triangular lattice 

with antiferromagnetic interactions. For both models possible phases which were 

found stable using mean-field theory are found to posses divergent low temperature 

expansions. The fact that the antiferromagnetic Ising model is disordered suggests 

that the < 21' > phases of the JD model are not stable. 

In this thesis the phase transition between the paramagnetic and the mod

ulated phases has also been studied. From minimizing the Hamiltonian it follows 

that the critical modes of the JD model, for K > 1/3, lie on continuous lines in 
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reciprocal space. This raises the possibility that, as in other models which con

tain minimum-energy surfaces, the JD model also exhibits a fluctuation-induced 

first-order transition. An L G W Hamiltonian which describes the transition and 

which includes fourth-order invariants which are due to the lattice, was analyzed 

and found not to possess a stable fixed point. This result strongly suggests that the 

JD model exhibits a fluctuation-induced first-order transition into the modulated 

phase. The Monte Carlo simulation did not show a paramagnetic-modulated phase 

transition, and therefore the prediction that this transition is first-order was not 

tested. However, the simulation showed that the structure factor, calculated for few 

points in the paramagnetic phase, attains its maximum on a continuous surface in 

reciprocal space. This is in agreement with the fact that the JD model contains 

continuous minimum-energy surfaces. 

The Monte Carlo simulation also showed that, for temperatures which are 

lower than the temperature at which the Lifshitz point is located, instead of ob

serving a first-order transition between the paramagnetic and the modulated phases 

followed by a transition from the modulated phase to the ferromagnetic phase, a 

direct first-order transition between the paramagnetic and the ferromagnetic phases 

occurs. This result could be explained if one assumes that the K dependent transi

tion temperature for the transition between the paramagnetic and the modulated 

phases is very close to the transition temperature for the transition between the 

modulated phase and the ferromagnetic phase, or in other words the modulated 

phase is only stable for a very narrow range of temperature. Then it is possible 

that in the Monte Carlo simulation the narrow modulated phase is not observed. 

Also one would expect that near the Lifshitz point the modulated phases are of very 

long-wave lengths. Therefore it might be the case that the lattices used in the Monte 

Carlo simulation were not big enough to observe the modulated phases. If indeed 

the Monte Carlo simulation missed the modulated phases, it is also possible that 

the paramagnetic to ferromagnetic transition was observed to be first-order due to 
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the fact that, as predicted in this thesis, the transition between the paramagnetic 

and the modulated phases is first-order. 
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A P P E N D I X 1 

C A L C U L A T I O N O F T H E D O U B L E S U M 

In this Appendix the double sum 

E JI Am ( 7 ) m=2 I, =2 

(2m - h - 2)! 
(m - l)!(m - Ci -1) ( A . l ) 

is calculated. This expression follows from Eq. (5.36)-Eq. (5.42) using y = 1 — x. 

For the < 2V > phases a similar double sum is obtained by using y — 1 + x. This 

suggests the need to study the more general expression 

S{A) = 9 2A + 6 
16 

V V (  4 Vm/2^ + 6V' (2m - f x-2)! 
^ - ^ 1 2 ^ + 6 / V2A + 5 / ( m - l ) ! ( m - / , ) ! U 1) 

(A.2) 

corresponding to y — 1 — Ax. Changing the limits and the order of the sums one 

obtains 

S(A) = - ^ — T 
16 

2A + 5 ^ L(2A + 5)(2J4 + 6). 
nR{n,z) (A3) 

where 

m=0 

2 m 1 (2m + n - 1)! 
(m + n)!m! 

(A.4) 

and 

z — 
8 

2A + 6 
(A5) 
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Using the identity 

(2m + n - 1)! = f°° e" t t 2 m + ' 1 - 1 

Jo 
dt (A6) 

changing the order of the sum and the integral and using the representation of the 

modified Bessel function In{(*) 

7»H = E r o I ( r o + n ) l(|)" m 171 = 0 

(A7) 

one obtains 

->-(!)7." e~ tr 1 / „ ( t z ) d < (A8) 

Using the recursion relation 

In[y) / » - i ( y ) - / » + i ( y ) 
2n 

(A9) 

and changing variables one obtains 

* < „ . , , _ ( ? ) * /-.-./.'-.<»>-'••+.<»)«, ( A 1 0 ) 

\z/ Jo 2 n 

Using 

•/o \ / a 2 - 1 (a + v/a 2 - l j 
( A l l ) 

it follows that 

R[n,z) 
2 n  

n 
(A12) 

The expression in Eq. (A.12) is only valid for z < 1. This result follows from the 

fact that for z > 1 the sum in Eq. (A.4) is divergent. For the < 21J > phases 
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A = — 1 and therefore z = 2. It follows that for the < 21 J > phases the double sum 

in Eq. (A.2) is divergent. 

For A = 1 one obtains R(n, 1) = 2 n/n and therefore the sum in Eq. (A.l) is 

given by 


