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ABSTRACT

The problem of classification in multivariate
analysis is considered. The distribution of the extreme |
Mahalanobis! distance from the sample mean has been derived
for a speciél case of the bivariate problem, and for this
special case the-cumulative distribution has beén partially
tabulated,

The characteristic function of the joint dis-
tribution of the Mahalanobis! diétances from the sample
mean has also been derived. o

A brief discussion of the one-dimensional problem

and its solution has been included.
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INTRODUCTION

In Anthropology, Biology and other sciences the
following problem often occurs: Given k groups of
objects Gy, Gy, ..;, Gk of which Samples of sizes
Ny, Ny ees, O, are taken, p normally distributed
characters being measured on these objects, determine on the
basis of this data

(1) whether the groups Gy, Gy, weey G all belong

to the same population

(2) if all the groups do not belong to the same

population, which groups belong together to
form clusters and which are from different
populations. |

The flrst part of thls problem is solved in the most
general case and several methods are available to answer
the second part of this problem in the special case p = l.
For p> 1, the second part of this problem has not been
solved satisfactorily and certainly not rigorously,
althqugh a subjective method of attack has been advocated
by K. D. Tocher and is presented in ref. 1 p. 363.

We -have éttempﬁed in this paper to give a more
rigorous approach to the second part of the problem and have

succeeded in solving a special case.



(1)

CHAPTER ONE
THE ONE-DIMENSIONAL CASE AND ITS SOLUTION

1.1 Notation _

Call Gy, G2, s« Gy the groups or treatments
about which we want to test some hypothesis; 1let n;, np,
.eo Dy be the sample sizes of the groups, let X3, X2,
ees Xk be the sample means of a normally distributed
character measured in the objects in the groups. Further,
let X be the grand mean of the measurements, s< be an

independent estimate of the variance of the measurements

~and s* = 5  the estimate of the variance of the
. = ?

mean X where n = 2;:”1
The problem consists of deciding on the basis
of the above information which groups or treatments are

significantly different.

Several tests are available to solve this problem.
They can be roughly classified as "Mhltiple Range Tests"
and "™ultiple F Tests™. A brief discussion of these teéts
for the purpose of illustrating their nature is given below.
A more detailed expose and illustrations of the various

tests can be found in ref. 2 pp. 18-45.

We have attempted in Chapter 2 and Chapter 3 to

generalize, to some extent.. one of the one-dimensional
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tests to the multi-dimensional problem. Tukey's multiple
F test appeared to be the one which would most easily carry

over to the general case, and it is with that test in mind

that we approached the problem.

1.2 Multiple Range Tests

In what follows we can assume without loss of
generality that the means Xx;, Xp, ees X} have been ranked,

X1 being the smallest mean and X, the largest mean.

A. Student-Newman-Keul test (ref. 3)

The Studentized range

q = Xmax - ¥min = range
- sy | standard deviation
is considered. The distribution of 9 (, ) ’

where o is the level of significance and n the number
of degrees of freedom associated with S, , has been*
tabulated by J. M. May for various values of « . The
tables éan-also be found in ref. 2 p.22-23. |

|
Y\ The test suggested by Newman is as follows:

Step 1l: Choose a level significance « , (usually .05

or: .l)o
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Step 2: Compute

w“ = i(ﬂ’,’h.) 5%
Wh-l = 7{0{,")—/) 5)7
W

2 = CZ(N,Z) SF

Step 3: Compare X, - X; with W,
If X, - X; is less than W, , the process terminates
and we assert that the groups belong to the same popula-

tion at a level of signifiéance X .

If %X, -X1 > W, ; we state that X, is
different from X; or that the corresponding groups G,
and Gy are significantly different. We then proceed to
compare X, _; - X; and X, - X with Wp-q+ If both

Eh-l - X); and Xp - Xp are less than W, the process

-1
terminates.,

If, say ¥, . ®2 ) W,_; , we state that Xp
is different from x2 (or G, different from G, ) and
proceed to compare Xp - X3 and X - X2 With Wp o.
This process continues until the actual ranges of subsets

of 1 means do not exceed Wi'

Note that it is not necessary to compare a subset
of means which is contained in a larger subset, the range

of which is less than the calculated W ., We could have
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therefore dispensed with the comparison of Xj.; -~ X2
and Wy_p since the subset (®,.7, En-p;e..;X2 ) is con-
tained in (Eh_l, Xn-2seee X2, X1 ), the rangé of which

was found to be less than Wnay -

This is one of the easiest tests to perform.

B. Other multiple range tests

Duncan (ref. 5) suggested table values somewhat

different from 9 ety . The use of Duncan's pro-

cedure tends to decrease the number of type II errors.

Other variations of this test were proposed by
Tukey (ref. 6), the use of which would decrease.the number

of typé I errors.

1.3 Multiple F tests
Multiple F tests combine the use of ranges with

variance-ratios.,

A, Duncan's mltiple F test (cf. ref. 5 and
The fifst stagé of Duncan's ﬁrocedure is to
perform a multiple range test'as waé done above using
instead of q(%P; tabular values somewhat different;
Ri (ref. 7 or 2). Once the multiple range test has
been performed calculate S5y = & R;z ‘P=2y,3 ceen

which gives the sum of squares significant at level « ,
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obtained from the least significant range. Suppose

_1 1 1 :
(X3 %3 ¢0e X ) is a group of ranked means for which
the multiple range test has failed to show any hetrogenity.

The second stage of the test consists of applying the
following rule: x}. - X3 is significant if Xp - X] > Rp

and if the sum of squares of all. combinations of means

=1 =1

1 |
out of X] X3 e b including X7 X, exceed S8, P

being the number of means in the combination.

1 1
The sum of square among -the r means ii X2 eee Xp
is Sz . _ ;7&';’(; ’?':)
’ - r
D howed that ¥ - %o 1 her with
uncan showed that X, - X3 > Ry together wit ssx,r
> S8 implies that the sum of squares among m means

or less out of the r means exceeds the corresponding ssp ,
so that in most cases it is not necessary to calculate

the sum of square for all possible combinationms.

B, Scheffe's test (ref. 8)
In addition to beiﬁg'applicable in testing the
difference between two means, Scheffé's test may be ﬁsed to
jM@ancmmﬁmmofmeRmala+%2?+”.+%in

where the a's are constants with the condition 2; a;=0

The standard error of the comparison is s.= s,/ ar+aZ+..+9n

Define S =V[0L|)F;(n_“_p) where N is the number of means

f is the number of

degrees of freedom

of the error variance.
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Scheffe proves that the value of the comparison is signi-
cant at the X level if a) X3 + a2 X3 + eee +apn ¥, > Ss..

This test has a larger type II error than Duncan's test,

but it has smaller type 1 error.

C. Tukey's Gap Straggler and variance test (ref. 9)

Rather than considering the range of a group 6f,

say, k means and comparing it to the tabulated values of

the Studentized range, Tukey considers the extreme deviate
-5

say X from the grand mean m of the group of k means,

He shows empirically that

Ix'-ml _ & ]ogwk _
55 5 ,_
(L) - , , ' n = d.f. associated
o3l g)
with s_
(for k>3 )
and -
A% iml _ 2
S, z
(2? 3(4 + %) | (for k = 3 )

are distributed approximately as normal deviates. The exact
distribution of an extreme deviate from the sample mean has

been given by K. R. Nair | (ref. 10).

Tukey's test as given in ref. 9.

Step 1 Choose a level of significance «.

Step 2: Calculate the difference which would have been
significant if there were only two means, i.e. Va2 Sg t(h',‘)

where .t is the Student!s t with n d. f.
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Step 3: Arrange the means in order of magnitude and consider

any gap wider than V2 S, hng) as a group boundary.

'If no group contains more than two means the process

terminates.

Step 4: In each group of three or more find the grand mean
the most straggling mean X' and compute the value (1) or
(2) as the case may be. Separate any straggling méan for
which this is significant at the two sided significance
level « for the normal distribution.

Step 5: If step L4 changes any group, repeat the process
until no further means are separated. The means separated
off from one side of a group form a new group. If any of
the new groups so formed contains three or more means apply
step 4 and 5 to this new group. |

Step 6: Calculate the sum of squares of deviations from
the group mean and the corresponding mean square for each
group of three or more means resulting from step 5. Using

sE as denominator calculate the variance ratio and apply

X
the F test, If the ratio is found significant we assert
that there is an overall differenée'among the means of that

group.

m,
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CHAPTER TWO
THE MULTI-DIMENSIONAL CASE

2,1 Definitions and fundamental assumptions
' Suppose we have k groups (of objects) G,
Gy, eee Gy, of which samples of size mnj, ny, cee nk
are taken; p normally distributed characters. are measured
on these objeets. We denote the sample means of:the

characters by

Throughout this paper we will assume that the covariance
matrix ( %; ) of these measurements is known or estimated
for a large number of degrees of freedom. We denote the
inverse of this matrix by ( «9 ),

We will make exténsive use of the following

statistic

b k
V- i o« ) (R = RI(Rip - %))

=1 r=1 ‘r ¢ Jr J

[y

=
!
>

2; k
— r Yi r
where X - &= and n =

L

=S

s

]
s

If we let k = 2 , we get, after some manipulation
, b

Vo= e Z Z o« (;TL,—YLL)[%.—""J'J_)

) h,+mn, =0 j=t

or .

V: hon, D

N+ n,
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2 .
D is known as the Mahalanobis distance, D2 is, to.

some extent, a measure of the distance between two groups.
v is a generalization of Mahalanobis D2 . D2 was
N .
shown to be distributed as )L with p degrees of freedom,

2 .
and V as X with p (k-1) degrees of freedom.

-

2.2 A possible approach to the mnltidimensional problem

A, Generalization of Tukey's method

The statistic V can be used.to test the null
hypothesis that the groups belong to the same multinormal
population as follows:

If the observed value of V is larger than the
tabulated X with p (k-1) d.f. at the  Level of
significance, we reject the null hypothesis and assert
that the groups do not all belong to the same population.

We are then left with the problem of classifying
the groups into clusters of groups belonging to thg same
population,

'As stated in Chapter 1, we will try to generalize
Tukey's method and more particularily step 4 of his procedure.
Tukey‘uses in his test the extreme deviate from the grand
mean, the exact distribution of which is given by K. R.
Nair. We will use the extreme generalized distance from
the centroid of all the groups, and our problem will be

then to find the distribution of such a distance.
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B. Generalization of Nair's approach to the

distribution of the extreme deviate from the sample mean

I Nair's distribution
| We will give here only a short account of Nair's
work (ref. 10). |
_In_brder to find the distribution of the extreme
deviate among the ordered normal N (0,1) variates
X] eee Xp from their mean X , Nair writes down the

joint distribution of the x's
] . "P\x‘ ﬂ
@ ot e

By a suitable orthogonal transformation this reduces to

— N ___  ex _.& - J. h dx d
()" F( * 4 mm) ﬂ =
and integrating out X he gets
-1
\/—';“_' P (—-‘2— 5—‘?_ ) ﬂ dz;
(\/;__Tr R DT =
where it may be shown that 2, = n(x,-%) -
A4 being the extreme deviate from the mean X , and
0 £ 2 € - $ 2y, € %E,, = nd

The distribution of ‘u may then be obtained by integrating
out z,,... Z.., Finally the distribution of u can

?

be written

{(u\ (F)"' =*p [;(:ul)J G, (nu)
6. (=1 G.() = (exf,[ b )]Gm(h)-at

where

ar(r+
[o]
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II Generalization. of Nair's approach
Under the null hypothesis that all the groups

belong to the same population, all measurements have the

same multinormal distribution. The means

Xy > Xz > vt Klk
T(:,_.
-)-('P‘ “ .. ka

from different groups are independent, but in general the
observations from different characters are correlated.

Since we know the covariance matrix (;dq) We can replace
the observations (Xivy oo ;Fn) by linear combinations
(?ﬁ) . A’gF") which are uncorrelated. The covariance
matrix of the j's is a diagonal matrix denoted by ()q)
Mofeéver weuéan assume without loss of generalit& that the
" true centroid of the distribution is k-0, Pazes o fp=v
‘The joint distribution of the f7'§ .is then

{(\—{,,)...,7'6,5... 391k7"')9};k)ﬂﬂ._°|\—7-irr‘ =

where b
N IRNE>
Now, ) CP ﬂn MkA‘ p
| 2 2 4 SRR DA
P
Note that F',—r \/r _ ; ”A_L (%—i)L _

is the Mahalanobis distance between the ' group and
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the observed centroid of all the groups. The largest of
- these Vr 's is thus the extreme distance the distribution
of . which we want to find.

We can write.

P

E | k p Kk
[ G ) e Con( 2 v 5 ) 15,

i L2141 Pzt

Consider now the following orthogonal transformation
k

ML:LZ:IH =\/—k—9—"

vk J _ (=1 o P
vy = (J7n+"sz=. ‘]'t‘s) J= fo k-
J(J+l
The inverse transformation is
k-t
7” = d_u, 4+ £ Vi, - £ _ ‘U“_-J‘
\/T<T Je-1)r J= \U(j“)
and we note that kot N
- r-| 1ft _ - l ..]
Ve = 1 ; s e = GG
is independent of the wu's ,
The distribution of the u's and vVv's is then
. " Ce b
g(u‘) p) n7"')vp,kq)[['c'u;]]'@‘o‘uij =
k b p b k-
2 .
(Vi ) e
- Cop (42 V3245 ) 1w [} [
= ¢ L= <=1 J=!
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- k
where Cesd) l] .
: "E - ]| n,

o= () G I

The problem is now to find the joint distribution of the Vr'S-

2.3 Two methods for obtaining the joint distribution of

the generalized distances of the groups from their observed

centroid

A. Introduction of additional variables.

Considering the distribution obtained in 2.2
"

L k.t .
"1(1)',,7..., 'U—p,k-') = G exp (":‘::; \/r)ﬂﬂ

=1
1 d vy

{1 J:.l

where the V;'s ‘are functions of the v's , it will be
noticed that Ge have p (k-l)v's but oniy k Vris R A
change of variables from'the‘v;s to the V.'s as they
stand is therefore not possiblé. ”

f ‘A device sometimes used under such circumstances
would be to introduce additional Vr's which are functions
of the v's and integrate them out iater on. We would
then be left with the desired joint distribution of the
Vpls . This method proves successful in the special case
P ; 2, k=3 which is considered in Chapter 3. In
qther cases the integrations of the additional variables

bould nét be performed. Numerical integration is obviously

not applicable here.
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B. The Gharacteristic function of the distribution

The joint characteristic function of the functions

V,.____l eee V. ; of the variables vy «.. Vo(k-1) is defined

<‘:k ‘
to be the expected value of exp (i,r“ t,VL) that is
o° L P ke
- fertct e T

where C; and h (vy3, «.. , Vp(k-1) ) are given in the
preceding section,

If this Characteristic function turns out to be
a known Fourier transform, the joint diétribution of the
Vi «es Vi will be the inverse of this transform.

We consider first the special case k a 3, p -.2
and W] = Ny = 03 =0y . The Characteristic.function is

then

where C = (__L.);L ny
an) 3 h

Expressing the V's in terms of the v's , ¥L(5Utz,fa)becomes

Se"r’ ”'n*v. u.)(‘-("l (;/'Lv“"‘)' (J:J. —)+ %W:(”h'%)]}“lvjl dv;z

&

[ | o) (-2) (- o (o) o 2953531} g b,

_—-\8

These two double integrations are quite similar except for

minor changes in the constants.
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Omitting all factors not involving Vi1 o the integration

with respect to vy reduces to

- -]

which after some manipulations yields

I - Kl exlp[—_h"_ (.‘i}'l"".’k’k)zv—l;]
DY Wk, + ky —1)

where Ko J:;&.
, =
Vi, (i, +ik,—1)
" Integrating with respect to Vip We get

o0

I,vz S exls&"" 1)',,_[4},+J:2+4Lt5 -3 ———((:ﬁ';:"fi)':]} OIV,,_

-~ <O

Thié in turn yields

I = K = : — “67\-)
2 A
[ ik vk, vniky -3 - Gz i) ]
(0‘14“'{-2.—')
The first double integration gives us
K, K,_: \/T;' 71)1
h, ,(,l:l &, 4& ..3-.(& 4/‘f:r.) (4,[7 o,
\/[ ' ¢ ('Vt"?'bt;_“) ] ¥ I)

The second double integration is performed similarly.
and given an analogous expression with ), replaced by X,

Finally the characteristic function is found to be

LP (t|> 2 ) 3
” ) 3) (&|+Ax2~“‘)["’él+&z+4¢5 3 - (4’&!‘4/"2) J
(.d: +ut,,—o)

This expression could be simplified, but for the purpose

of generalization it is convenient to leave it in this form.

This function generalizes readily to 3 groups of p

characters giving %;(e,) t,, b ) - {:*L(k"tzakai]z
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In a similar fashion the special cases k = 4
and k = 5 were worked out and a pattern was observed

which enabled us to write the characteristic function

P, ( t,t, ...t )  as follows

R | ] L %
i N .
P, (kb st) = b m@ a:~(w+)>

where r

a, = Z "}S + V‘z'("khl ~ b :“) - Z c'ln

San

=t

hoy-
DI

Tt
b,- 0 d,-0

This Characteristic function applies generally

except for the restriction n) =z ny = «ee N = ng o« -For

k>3 ¥.(k,t,, .. ,t, ) becomes very complicated and quite
hard to handle. But even for the simplest case k = 3
we were unable to recognize ‘PP(E,,Ez,kg) as a familiar

Fourier transform,

In Chapter 3, the joint distribution in the

special case k = 3, p= 2 is shown to be

{(VI)VA)VS) Dl\/ldvidvj_: i exP[—i(V”’v’._fvs)l JVIOIVZJVB
t'.-" \/;LV'V;L +2,VJ_\/5+2V3\/' —V,Z—\/;~V;'
Formally, this is the inverse transform of (.t ¢t;).
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CHAPTER THREE
A SPECIAL CASE AND ITS SOLUTION

3.1 The joint distribution of the generalized distances
of the groups from their observed ceht'roid

Specializing the results of . 2.2 B II to the -

special case p=a 2 k= 3, the joint distribution of

(qw%»q'w 9’""‘7"‘"\713) , fsa

Coop (45 Ve-tn 2 55) TN aq.,

=t r=t
where ' 2

\/r: hr.‘Z_. -"X;((illr‘_qi)"
and N nonang
) (ﬁ) ()R
Consider the orthogonal transformation
A= é'(q”+7,1+\7.3) | M, = \[L_(‘jz.‘*“izz‘*‘jaa)
Uy = \'[LI(_;):;+ \7!:-) U V'.: ( 72;'* Lja.z.)
U= L (‘qll’q'1+lqls) ' vz:‘l‘\(—.( \111 Lf;z'““jzéi)

Ve

of which the inverse transformation is

g — vl ! | -
R P N A VN g = o= M- L Uy, Lo,
V3 Va Ve V3 V2 A
g ] P
= u 4 Lv,-L v, X +.1 v, - L
\111 V3 '+V5 i Ve 12 77.1 :. i bY Ve 2
Yiz = Lo +2 4 “—j = L + 2 v
TR BT Fat gt

The distribution of the u's and the vfs is

Cexp(-—'-agvr-% )ﬂﬂdmno{u

VRO et
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where the V's are functions of the v's only.

Integrating out the u's we get

Coexp (-1 f_v) ﬁﬂ dvy S; exr[-z_(_'u,n Lu;)]cl;. du, =

A] )}_ -

where C, = (_l.)l 3 nn, N,
am nA,
Call M1 D2 I3 N and consider the transformation
~
) L L s
Vo= mm - [>.(ﬁ”"*r (r V]

<
f
3
&
<
I
Z Z
\_.

=
i
1

where Vh is a new var;i.able introduced in order to perform
the change of variables from the v's to the V's ,

Vt satisfies the inequality o0« V 'V. + 'V' \/3I After
lengthy algebraic manipulations the inverse transformation

is found to be

i 2 I
% 3" N"f” = Vq
|
é_— -%— N 1’3.21- :';:‘_vl'+ %Vl’ -_L%_V; - V4
by
(1) ’z LN v, =¢[(v.'-VL)J7.: N V)(2 v+ 2y + 2 V-V ) ]
I Y |

vl"" V;."—V3

@) } N v, -+[(V RN A% 5% Ve £ JVi W2 v ")}

V4V, - A
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To eliminate extraneous solutions the following restrictions
on the signs in (1) and (2) must be introduced: the signs
in front of thg exbressions (1) and (2) are the signs of Vi1
and Vaq respectively; the signs in front of the root sign
in the expressions (1) and (2) must be opposite.

The Jacobian of thié transformation is
T - 5\13— >\.z>\?_

4
sN (’V.h.”:zlzlf” - V" U3, U'u)

or in terms of the V's
J- - | 3 )I)\Z_
N2/ (6N 3N - V-V 2V 2 V- -

. e ttas 1 1 .1 1 )
The joint distribution of ( v,V V3 Vh ) is then

found to be
C, exp [ -3 (¥i+Va+ V)] AV V! V) AV
2 g - '
SRV A 2V VY SYe VNV - V)
where '
C, - 9
4n*N

1 1 _1
To find the joint distribution of ( ViV Vg ) we

integrate out ViL.. over its range which is o ' to %V,'+§Vi—£-}V;
VWA
C, _ep [0 +% V)] dy! dV dv g v
S i ) G RN

[ -]

This integration is easily performed and gives
ARSI AVA |
{
S dv] .
VL I
\/Vu'(;",vl"’ivi”iva'vw)

[«}
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The joint distribution of ( Vi V3 V3 )  is then found

to be
q Cexp L-1 (Ve Vo e V3] Ay, dy, 4V,
4Th 2 \ 2 z | ERVE
ER R A P I A AR

3.2 The distribution oglthe extreme deviaﬁe from the centroid
Let us restrict the problem further by assuming |
the number of observationé'to be the same for all groups,
i.es Ny =Ny = «se @N), Call n, this common value.
 The joint distribution of Vy, Vy, V, in this

case specializes to

§<\/l7\/27V5) = 3 exp {--—:lz(vl'*vz__*\/s)l .
4N \/2\/'\/1 + IV’_VS +2V5V, _ v'Z_v;._V;-

The variates V., V2, V3 are always positive and it is

easy to check that Vy, V,, V5 do not assume values out-
side the cone defined by
(% AV, +2V,V, +2 VY, - VE-VU -V Y o

The distribution £ ( Vy, V,, V3 ) is therefore always

real and positive.
We can assume without loss of generality that
the variates have been ordered say 0<Vy < V25V3$t .

The density of these ordered variates is 3!f (Vl, Vz, V3 )e
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We are interested in the distribution of the
extreme de%iate from the centroid, V3 ; in other words
we want to find the probability G (t) that V3 <t .

A

G(O = (_3) 3! g K [ : exp [_i(V,+V,_+V5)] cl\l, AVIAV_:;
411 l 2 2 2
4

The lower limits for V; and Vp are obtained from the
restriction (®) on the variates and the inequalities
0KV S Vg V3¢t G (¢)  is
well defined by the above expression but the integration
is hard to perform and not suitable for numerical in-
tegration. In order to remedy this state of affairs

consider the orthogonal transformation

w = \/_.;= (V'+V1+V5)

M = \7_'—5 (—Vl +V;L)

v o= \T'f (—V,-V;_+J~V5>

the inverse of which is
Vi= gw-4u - e
V, = %w-r\l_’_;u—_\f_'_gu
Vs = V—lazw +\‘l-.t'u—

Under this transformation the distribution

3/ ‘y(V,S V., \/3) dv, dv, dV, : becomes

{I(U, v, w) dv du dw = 4 exp (_ \[é w) du dv dwr

am \/’LU')'—- Tur-2ut
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Follow this by the transformation

w2
¢
J.L'( = \/’?3; C E sin y
| U o= \/g C E Cos n |
The Jacobian of this transformation is |7 4 e
| NG
and we find the distribution of ¢ ,%, 7 to be

3 5 g ep(-3)dsdgdy
m

c (z.8,9) dgdedy =
: I-g*
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This change of variable is, roughly speaking, a change

to cylindrical coordinates as shown in (fig. 1) where

’ -1
we have set $=T-y , 6=tan\/_'§; ,w=\715—€

The transformation is defined and single valued if

C+o and gL~ (6 + 1.:1) . It can be easily verified

that the angle at the vertex of the cone is T so that

o é% and 3 is therefore always finite. The ranges of
c, =, n taken independently are 0 5L , o0<E<|
o< n <an However if we let V3<t, the limits on 3, % and

h are no longer independent, for

= . 3 o= 2 ¢k
v, = ﬁw+\/;'u 32;(!+§c,os9)
and therefore z < 3t _
| S 2(1+ 5cesn)
The inequality V4 <€ V, < V3 give limits for n o Vi<V,

implies W > o or o Vo < V3 implies

b

< 17 £
~gu+fZuyo or tanns 3 and the limits on
2
are thus o ¢n £ ‘:g
The probability G (t) of getting o< V,<V, ¢V, ¢t

becomes finally

n 3t
. ! 3 2(|+gw7) .
_ 3 5 '
Gy - 2 = 5 exp(-g) dsdyds
§=0 N=° .o
The region of integration for the unordered V's is

shown in (fig. 2)
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(fig-2)

(El E)

>V,
v|
The integration with respect to <  gives
st
Sl(ugusg)

l ' -3t at ‘

C ex (-;ol; = | — ex 3 _ o
F ) F[:L(I-i-gus?)l 2(|+§m7) :)

'5:0

The other integrations have to be evaluated numerically.
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three decimal places.

The double numerical integration:

| .
: r l at. . ,J exp [ -3t } oh)olg
A \/"'gz A 2(1+ gc,osV)) - ZI+§C°$’P)) |
was performed using seven equally spaced values of Y

N = AT izo0 to 6 and eleven equally spaced values

13
of z : g ;_La y 1m0 to .10. The function
_ at ) | —st l
*('715) [__1(|+gc=»s»)) +IJ_ exF'l——__;z(ugcosr))_

was first evaluated for all seventy seven pairs of values
(’7¢,§j> using the "Tables of the Exponential Function

ex " prepared by the National Bureau of Standards.ﬂ The

inﬁegration with respect to n keeping £ fixed, Eﬁ{(v,gjh47

was performed using Cotes' numbers, thus fitting a polynomial

equation of degree six to.the seven points [O;,}(ﬁ;,gﬂ]

i =0 to 6. This was done for the eleven values of 5

The first integration thus yields eleven values of a function
A(%) Using the method of least squares and a set of

orthogonal pquﬁomialé, we constructed a polyhomial_ P(g)

fitting the eleven points A(5:) ; i=o to 10, thus

approximately Alg).

| . .
'The integration ,f 5 P(g) ds =
-] V|_€z
| .
o |—§1

can be split into six integrations each of which can be

performed by using tables of the Beta-function (e.g.: "Tables

- of the Incomplete Beta-Function" edited by Karl Pearson).
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At least six decimal places were carried
throughout the computation but the accurécy is reduced
by approximating A(g) by P(g) . Bounds on G (%)

can be given as follows
{
min [A(’s—:)]g £ Pl)dr <
' ¢ ’P(§¢) S |_§1 '
- < j_‘S‘_ A(g) dg «
oVi-g* ! -
p max[A(*s'-)H S Ppls)ds
¢ P(5.) AV

The results of this computation are summarized in the

following table. - °
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Table of the probability G{(t) of getting a value for the

extreme deviate at least as large as ¢

t G(t)
(1) 2.667 .686
: 3.000 o7l+3 *
3.333 791 i
30667 0832 ¥*
(2) l,,000 .866
xx Loly2ly .900
L .667 \ 916 =
) 5.000 .93
(3) 54333 9L
. *x% 5,304 «950
50667 0959 * |-
60000 0967 *
6.333 974
(4) 6.667 .980

x These probabilities weré obtained by parabolic

interpolation through the points (1) (2) (3) (4) .

xx The values of t yielding a probability of .90

and .95 were obtained by linear interpolation.
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Conclusion

The results obtained in this paper enable us
to construct a solution to the following problem:

Samples of equal size n, are taken from three
groups. Two normally distributed characters are measured
on these objects, Xy1s eee 223 denoting the mean values
of these measurements. The covariance matrik of these
measurements Azz(d@)is known, or estimated on a large
number of degrees of freedom. On tﬁe basis of these
measurements decide whether the groups belong to the same
population and if they do not, which are different from
the others.

_ The solution we propose is as follows:
Step 1: Choose a level of significance «.
Step 2: Uncorrelate the measurements. To tﬁis end find the
orthogonal matrix B = (bij) such that BAB'= A where
A =(X) is a diagonal matrix. Then perform a transformation
from the Xﬁ’s to a new set of variates Y. . Compute

Yu».-. ,f.; the means of the new uncorrelated variates.

Step 3: Compute

AR
where 3 _
T = 2= 1w
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Rank phe V's say Vi < V; £ V%
Step L: Compare V to X. with 4 d.f. If V < )6:4
the groups are asserted to belong to the same population,
and the process terminates.

If Vv > QQ; proceed to compare V; with L
(tabular value given in Chapter 3). If V; < t , ho
group is separated from the clustér althbugh there is an
overall differenée among the groups, and the process
terminates.

If V; > t, we assert that at a lezel of
significance « the group corresponding to V3 does not
belong to the same population as the other two groups.

2

Th dt t ' n, (5T )"
en proceed to compute V' = n. Z; 5}(7“_JL£)
. | 5
and compare Y with X, with 2 d.f,.
| 2
1f V < X,, we assert that the groups
1 . :
corresponding to Vl and V% belong to the same population.
2
r V! > /)(,,(',_ we assert that each of the

groups belongs to a differentpopulation.

Although a solution is given only for the special
case -3 groups - 2 characters, it covers a somewhat wider
range of problems. In many instances_the configuration of
thé mean values with respect to p characters can be pre-
served by représenting the groups with respect to two suit-
ably chosen functions of the p characters. Methods have

been devised for constructing such functions and for testing
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the adequacy of the representation, (see for example ref. 1

pP. 365). The main restriction to the solution.given is

thus in the number of groups.

As stated previously in the paper, the joint dis-
tribution of the deviates from the centroid in the general
case is not readily available by the method used in the
special case. We do suspect the form of the general dis-
tribution to be quite similar to that of the special case,
but we have been unable to justify this guess so far.

We suggest thét some more research could be carried
in the following directions
(l)‘ Try to increase the number of groups
(2) Try to increase the number of characters
(3) Try to invert the characteristic function of the joint

distribution '

(4) Guessing the joint distribution try to show that its
characteristic function coincides with that given in
Chapter 2

(5) Extend these results to the case where the covariance
matrix (dq) is not, known, that is, find the Studentized
form of the distribution of the extreme deviate from

the centroid of the groﬁps.
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