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BIQUADRATIC EQUATIONS WITH 

PRESCRIBED GROUPS 

I. INTRODUCTION. 

One of the problems of the Galois theory of equations is 

that of determining values in a f i e l d F, of the coefficients of an 

equation 

x-t-a.x +—-» +aK=o, (1) 

such that the equation w i l l have a specified Galois group with respect 

to F. In seme cases, at least, i t is possible to find parametric repre

sentations of the equations having a specified Galois group. This means 

that the ebeff icients a t , a ^ , oan Me expressed i n terms of para

meters such that, when the parameters are assigned values i n F, the 

resulting values of a,,---, a^. are the coefficients ©f an equation 

whioh has the speoified Galois group with respeot to F, and with the 

further property that a l l such equations can be so "obtained. The values 

whioh may be assigned to the parameters are usually not completely 

arbitrary, but are subjeot to restrictions which ensure that the 

equation shall actually have the specified Galois group and not a sub

group of i t . In other cases i t i s convenient to employ two or more 

different sets of parameters, corresponding to different forms for the 

coefficients, which together give the totality of equations having the 

speoified group. 



Seidelmaim ' has found paramefcrio representations for cubic 

equations with the oyolic group, and for biquadratic equations with 

various groups. He introduced appropriate parameters into the forms 

taken by the roots of the equations, according to the Galois group of 

the equation, and calculated the forms of the coefficients from these. 

Another general method of attacking the problem, called the 

"rational" method in contrast with Seidelmanns "irrational" method, has 

been discussed by F r l . E.Noether )̂ . She showed that the existence of 

a parametric form for the equations with a specified Galois group 

depends upon the existence of a minimal basis for the rational functions 

of n variables which are unaltered by the specified group of permutations 

of the variables. A minimal basis for suoh functions belonging to a 

group, or, briefly, a minimal basis for the group, is a set of rational 

functions of the variables which are: 

(a) unaltered by the permutations of the group, 

(b) algebraically independent, 

(c) such that every rational function of the variables which is 

unaltered by the permutations of the group is expressible as a rational 

function of the basis functions. For example, the elementary symmetric 

functions of n variables form a minimal basis for the symmetric group 

of permutations of the variables. Seidelmann's results indirectly 

1) Seidelmann, Fj "Die Kub. und Biquad. Gleiohungen mit Affekt" 
Math. Anna1en, 1918, pp. 230-233. 

2) Noether, E: "Gleichungen mit Vorgeschriebener Gruppen" 
Math. Annalen, 1918, pp. 221-229. 
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yield minimal bases for the groups he considers, and Breuer > has 

determined minimal bases for certain metacyclio groups. 

It is the purpose of this thesis to apply the rational 

methods suggested by Noether to the determination of the reduced 

biquadratic equations 

x^rf a^x i+ a 3 x-t-a.tf.-Q, (2) 

having speoified Galois groups with respect to the f i e l d E of rational 

numbers. The groups to be studied are described in the next section. 

For each group in turn, a minimal basis is then exhibited, the 

coefficients of the equation are expressed in terms of the basis 

functions whioh serve as the required parameters, and then restrictions 

to be placed upon the values in R, which may be assigned to the para

meters, are studied. Since the existence of one minimal basis for a 

group implies the existence of infinitely many, a variety of para

metric forms for the equations can be obtained. The general plan has 

been followed of using a minimal basis which seems likely to yield 

especially simple parametric forms for the coefficients of the 

equations. In some cases alternative minimal bases must be employed, 

in order to obtain those equations having the specified groups which 

correspond to exceptional values for the parameters" f i r s t employed. 

Certain of the minimal bases used were suggested by Noether, that for 

the cyclic group by Dr. Hull. 

The results obtained are equivalent to those of Seidelmann, 

although in a different form whioh is simpler than his in some oases. 

3) Breuer, S: "Matazyklisohe Minimalbasis und Komplexe Primzahlen" 
Journal fur Mathematik, bd. 156, 1927, pp. 13-42. 

http://x-t-a.tf.-Q


Certain modifications of the forms would be required i f a coefficient 

f i e l d other than R were used. 

II. The Groups. 

The Galois group of an irreducible biquadratic equation, 

with respect to the f i e l d R, is a transitive group of permutations on 

four variables. We confine attention to the equations whioh are said to 

have an "affect", that i s , have a Galois group other than the symmetric 

group i t s e l f . We denote the variables, and the roots of a biquadratic 

equation by x 0, x, , x t and x 3, and a permutation such as (x„x (x x) by 

(012), as usual. The groups to be oonsidered are as follows: 

(a) The Quartio Group (Die Vierergruppe): 

Q : [ i , (0l)(23), (02)(13), (03)(12)] 

(b) The OotiOiGrdups: 

0 : [Q, Q(13)] 

0': [Q, Q(12)} 

0": [Q, Q(23)] 

(c) The Alternating Group: 

A s [Q, Q(123), Q(132)] 

(d) The Cyclic Groups: 

0 : [ i , (0123), (02)(13), (0321)] 

C': [ i , (0231), (03)(12), (0132)] 

C*: [ i , (0312), (01)(23), (0213)] 

There is no loss of generality or completeness i n dealing 

only with the groups Q, 0, A and 0, since the groups o' and 0" are 

equivalent to 0, and correspond merely to a re-numbering of the variables, 



and, similarly for C , c' and c". It i t to be noted that C is the oyolio 

subgroup of order 4 of 0. 

III. Biquadratic Equations with the Quartic Group. 

A basis for the Quartio group can be constructed as follows 

Let 4u„ =s x0+ x,+ x^+ x 3 

4u, = x^x^-x^-x3 

4u z = x,~ x,f x^~ X3 

4u3 

(3) 

Then 

x 0 = u +u,+ u z-m 3 

(4) 
Xj. s= tt0 - U, + U a - Uj 

x 3 = u.- u,- tt^Lu, 

The permutations (01)(23), (02)(13), (03)(12) of x's in 

the group Q, send u 0, u, , u 2 p into u c, u,/-u i,-u 3j u 0, —u,, u^.-Ujj 

and u„, -u, , - u x , u 3, respectively. It follows that the basis functions 

(5) 

are unaltered by a l l the permutations of the x's in Q, Them's are 

easily seen to be algebraically independent since this is true of the 

x's and the u's. Finally, a rational function of the x's is a rational 

function of the u's, and is unaltered by a l l the permutations of Q i f 

and only i f the numerator and denominator consist of terms: 

t = c u„ u,' u z u 3 , 



whioh are themselves unaltered by Q. 

Under the permutations of Q,t beoomes, respectively: 

t, ( - 1 ) ^ ^ t, < - ! ) « ' a n d ( - l ) e ' ^ t . 

Henoe, i f t is unaltered by Qi (e^+ e 3),( < z-i +" -t-ej must a l l be even. 

Let e „ = ta> e, + e 3 = 2f, , e, •+ e 3 = 2^ , e, ê = 2f 3 , where f„ , f, , f,, 

and f 3 are integers. Then evidently 

This oompletes the proof that J,, , «*,, and o<3 form a minimal basis for 

Q. 

T© express the elementary symmetric functions of the x's 

in terms of them's, we f i r s t determine: 

E, = u« 

E x = eu.o1"— 2(u,V U j \ u^ ) 
(6) 

E 3 = 4u„ — 4u a (u, +-û  + u^- )-h8u, u^u^ 

B^«(u*t-u*+u*) ~2(u, 1- < + u, 1 ^ t u ^ U J ) 

+ (functions of u«) 

But from equations (5): 

u ^ o/ a« ( u . u ^ - o<3 (7) 

uj- = «(, <*x 

Hence in terms of them's 

E x = (V. + ^. ^ 3 "t- ̂  ^ J 

E 3 = 4-<*„ 3 - y ( X ^ +- ~ j +- ̂  + (S) 

-^(powers of V 0 ) 

Consider now a reduced biquadratic equation 

x w+ a t xx+ a 3 x + a 4 = 0, (2) 



having the Quartio group Q with respect to R, and whose roots are xoa x, e 

x^, axx&3x , By the Galois theory, a function of the roots which is 

unaltered by, Q has a rational value. In partioular, the functions < ôs 

°4 , «*\, and o»3 have rational values, provided no single u^ is zero, i,3. 

Hence with this restriction on the u's equation (2) can be expressed in 

the form 

x*> a xx x4 a^x +- a,. = 0, 

a v = -2 C«f*. + "3) 
(9) 

a 5 = -8 ~\ ^3 

a ^ = ( - + ^ H " J ~ z (< ^ + ̂ "a", + % ^ < 0 

where them's have values in R, 

Conversely, suppose rational values are assigned to the 

o£ 1 s in (9). Then, since the =<_8s are functions of the x's, form a basis 

for the group Q, and are rational, i t follows that every function 

belonging to Q has a rational value. Hence, by the Galois theory, the 

group of the equation in (9) is either Q or a subgroup of Q. The 

restrictions on there's whioh exclude the latter possibility are most 

easily found by considering the roots of (9). These are 

x 0 « V^T^s V*, c 3 

x , = a T ^ V ~ 
(10) 

It is evident that no proper subgroup of Q is transitive; 

henoe equation (9) is reducible in R i f i t s group is a subgroup of Q. 

For example, i f i t s group is [ l , (0l)(23)J, i t is reducible into two 

quadratic factors such that x e -t- x,, xD x,, x^x,, xx x 3 are a l l rational. 

This means that 0 ( ^ 3 must be the square of some number in R. Similarly, 

— 

4-
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i f the group is [ l , (02)(13)j, V.^must be a square; i f [ i , (03)(12)] , 

^.^a. must be a square; and i f ( f ) , < % , °i, *3 s o/,^ , must a l l be squares. 

In other words, i f the equation in (9) is to have the group C and not 

one of its subgroups, the produot of any two of the of's must not be the 

square of a number in R. 

We have ohosen a minimal basis which gives, i f not the 

simplest parametric representation of the coefficients of (2), at least 

a symmetric one. We have now to consider the possibility of the u's ("ii^j'Cs) 

vanishing. First i t is obvious that no two u's can be zero simultaneous

ly, for then (2) is reducible and cannot have the Quartic group. This 

is not the case, however, when only one of the u*s is zero. Suppose, for 

example, u z= 0. We then have a singular^ value for the parameter , 

which corresponds to a parametric representation for the group Q whioh is 

not included in (9). To cover this oase we must consider an alternative 

basis: 

e4'= u„ , u* , 
•: * (12) 

= u, 1*^=0, < = U* , 
S) 

which leads to the parametric representation: ' 

/ f 2 k <*;>x +- (<' - «-3' f = 0 " (13) 

•where and range over a l l values in R for which oS, <*a is not a 

square. It i s dear that the cases where u, =• 0 or u s= 0 lead to the 

same form of equation (13). Moreover, equation (13) i s distinct from and 

supplementary to the equation in (9). We sum up the Quartic case then in 

4) Of. Noether: Op. Git., p.229. 

6) The procedure for deriving this formal representation and proving 

its validity i s similar to that for (9). 



Theorem 1; The equations 

x*- 2( s:^,^)x v- x-f ( 21o/,^_ g gL^-K-s)^ 0 
(14) 

together include a l l biquadratic equations with the Quartic group Q 

when^r( <^3 ,*3 range over a l l values of R for whioh the product 

of any twomf' s, and the product of are not the squares of numbers 

in R. 

IV. Biquadratic Equations with an Ootio Group. 

A rational function of x,, x,, xz, x3> whioh is unaltered 

by the Ootio group 0 Q(13)J , is also unaltered by the Quartio 

group Q. But in addition i t is unaltered by the permutation (13) on the 

x* 8. Now such a function, as shown in Section III, is also a rational 

function of <*, 8^z. , % . Moreover, since the permutation (13) on the 

x* s merely interchanges «»< and < 3̂, and does not alter °(. and «<, s a rational 

function of the x* s unaltered by 0 must be symmetrio in °<$ and^ 3 , when 

expressed in terms of them's. In other words i t is expressible as a 

rational funotion of the symmetric functions «t',̂ «3 and «'.«,
3 of < and<*j 

with coefficients whioh are rational functions of <=ia and^j. • Hence the 

funotions 

form a minimal basis for 0. This basis was chosen because i t was 

homogeneous; thus we hoped that i t would lead to a f a i r l y symmetric 

parametric representation of the coefficients of the reduced quart ic 

equation (2). The results: 
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x*> a^x'-f a3x-^- a^ — 0 

a ^ _ (a'aS -+ e,"*a») 
(16) 

a 3 = - * fa'a^") 

•whose derivation is similar to that of the case which follows, are, 

however, not general. For even when/?/', e/', /S^ take on a l l rational 

values (with certain restrictions to bar out subgroups ©f 0), the 

totality of biquadratic equations with the group 0 is not represented 

by equation (16), since the exceptional case, <=C,+«£=o, is automatically 

excluded when we employ the basis (15). Moreover (2) may have the Ootie 

group 0 when V, -*"̂  = 0. 

Hence we use the functions; 

<3o = *° y /3, <= <*, •+ ~>3 f 

(17) 

whioh by the same argument as that for (15), form a minimal basis for 

the group 0. 

How suppose that x„, x,, x 2, and x, are the roots of a 

reduoed biquadratic equation having the group 0 with respeot to R. The 

functions B in (17) are unaltered by 0, and henoe have rational values, 

provided, as in Sectioning no single u,- is zero. After constructing the 

elementary symmetric functions in terms of the & ' s, we see that, when 

no u is zero by i t s e l f , the equation having the Octic group with respeot 

to R has the form: 

x.*-4 \ x2+ a3x-*- a* = 0 

a z = - z(/3, /3,_-t/33) 
(18) 

a 3 s - g /33 
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where the ( s are rational. 

Conversely, an equation (15) with the & * s rational, has 

a Galois group with respect to E which is either 0 or a subgroup of 0. 

Wow the proper subgroups of 0 whioh we need to consider are 

the Quartio, the Cyclic, and the group K2 [ l , (02), (13), (02)/ (13)1 ; 

and subgroups of these. If the Galois group of (15) is the Quartic 

group Q or one of i t s subgroups, the functions x„x, + x Ax 3 , x / x 3 

and x8 x •+ x x i , whioh are incidentally the roots of the resolvent cubio 

of (15), must a l l be rational. In terms of the a 1s, this means that 

4S3 must be the square of a number in E. If the group of (15) 

is the Cyolic group C. or a subgroup of i t , the function x^x,+ xfx^-y-x**, 

+ x^xo must be rational; and i f the group K, xa-t-xz— x,- x 3 must be 

rational. 

The conditions oft the 6 *s may be summed up by saying 

that, i f equation (18) is to have the Octio group 0 and not one of its prep*** 

subgroups, then /S, - V<?3 , &3 must not be the squares of numbers 

in E. 

We must now consider the singular values of the parameters 

which arise when any u vanishes. There is obviously no diff i c u l t y 

when u,= 0, or u } = 0, or any two of the u's equal zero simultaneously, 

for then the group of (18) is a subgroup of the Ootic. Let us suppose 

then that u x alone vanishes. Employing the s defined in (12) we 

construct the basis functions: 

It i s easily verified that the a''s form a rational minimal basis for 

0 whioh gives the parametric representation: 



- 12 -

x^-2^'x%( a,f - ^ 4 ' ) = 0 (20) 

where ./st ' and/&J have rational values. To ensure that (20) has not a f»-°p<t>~ 

subgroup of 0 for its Galois group, /s/'—^/s^' and/?3' must not be squares. 

To complete the Ootio case then, we oombine (18) and (20) in 

Theorem 2; The equations 

* H~+-± V f*;*- «&3>) = (2I) 

together include a l l biquadratic equations with the Ootio group 0, when 

at /5i BHA/33 ; <3,\A3' range over a l l values of R for whioh ¥/3a / <&3 ̂  

, 4 and s'*_iia' gj are not the squares of numbers in R. 

NOTE; It w i l l be observed that the pure equation 

x*y- a^ = 0 (22) 

has the Ootio group when a v is not a square , and the Quartic group when 

a ¥ is a square,, 

V» Biquadratic Equations with the Alternating Group. 

As in the case of the Ootic group, a rational function of 

the independent variables xa>xtyxl} x3 which is unaltered by the 

Alternating group, i s also unaltered by the Quartic group. In addition, 

however, i t is unaltered by the permutations (123), (132) on the x's. 

Moreover, this rational function of the x's is also a rational function 

of the o(. } s ; and since the cyclic permutations (123), (132) on the x's 

effect the same permutations on the << 's, i t follows that any rational 

function of the x's which is unaltered by the Alternating group may be 

6) Of. Seidelmann, F.; Op. Git., p. 232. 
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expressed as a rational oyolic function of andc^ with coefficients 

which are rational functions of U0 . We find i t convenient to introduce 

the irrationality ̂> , where ̂  is a primitive cube root of unity. 

Let y„ = °sa 

3y, = <*\ -f ^ 

(22^ 

3y r = *s, -t uj c 3 ie/'-cĴ  

3y 3 = ^ ui " j 
Solving for the ^ ' s -. 

- y. * ys.v-y3 

y ^ ' y ^ y , (23) 

From what has been said above, i t is dear that 

f » - Jo* y x = yz y 3 

i, y,» y 3 =- yt+y/ 
(24) 

forms a rational minimal basis for the group A. 

In terms of the Y ' s, the elementary symmetric functions 

of the x's turn out to be 

! i = - ^ (.*,*- M 
E 3 = *(*,*-*-*3 - 3*< V*) (26) 

Now consider x ^ x ^ x^ and x 3 as the roots of a reduced 

biquadratic equation having the group A with respect to B. The functions 

y in (24) are unaltered by A, and hence have rational values. We 

need make no provision here for any of the u's vanishing, for, i f one 

of them vanishes i t can be shown that equation (2) reduced to the form 

x + a z x -f- â .= 0 

whioh has either the QuartiG or Ootio group; and i f two or more of 



(26) 

u/* uz o r u
3 vanish there is a s t i l l further reduction of the group. Hence 

an equation with the Alternating group A with respeot to R has the form 

x^V \ x1+ â  x +• a ¥ = 0 

* ^ = - &(r,2-

a 3 = -r(Tr,3-+ys-3Y,^) 

=• -s fa ¥- * x, y 3 + 3 ̂ 3 y, a * i ) 

and conversely, an equation(26) with r a t i o n a l y 1 s has either the group 

A or a subgroup of A. 

The possible subgroups of A which (26) may have are the 

Quartic group, and those four groups which are oyclic on three of the 

roots of (26). 

If the group is the Quartie, the roots of the resolvent 

oubio of (26) must a l l be rational; i f the group is one of the four 

groups whioh are oyclio on three of the roots, the other root must be 

rational and equation (26) reducible. We are now ready to state 

Theorem 3: The equation 

C(Y,z-K)-X*-- *(r, fjn-sfc ti/*,r3 3 Y, ° (27) 

includes a l l biquadratic equations whioh have the alternating group A; 

Xl} Y, , Yz may take on a l l values in R for whioh (27) is irreduoible, and 

for which the resolvent oubio equation of (27): 

y 3 — a^y 1— 4a ¥ y + ( i a j i * - a 3
z ) = 0 (28) 

with a J } a 3 a ^ defined as in (26), has not a l l three roots rational. 

As a point of interest we mention a perhaps more practical 

criterion for fourth degree equations with the alternating group. If 

the Galois group of equation (2) is the alternating group A for the f i e l d 

R, then the square root of the discriminant of (2), namely, 

P = (x,,- x, ) ( x a - x ^ X x . - x ) ( x r - x ) ( x , - x*)(x^ x 3) 
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must have a rational value; and conversely, i f P has a rational value, 

i t is unchanged by the Galois group of (2), whioh must thus be the 

Alternating group A or one of i t s subgroups. Hence 

Theorem 4: The equation 

x*+ â  x* + a,x + â . = 0 (2) 

embraceseall biquadratic equations with the Alternating group when the 

a'8 take on a l l values in R for whioh: 

(a) the discriminant A = 4 (4a a J- )3-z7 (%\ a ^ — af )*" 

is equal to the square of a number in R, 

(b) equation (2) has no rational root, and 

(o) the resolvent cubio has not a l l its roots rational. 

VI. Biquadratic Equations with a Cyclic Group. 

In order to oonstruct a minimal basis for the cyclic 

group C = [ I, (0123), (02)(13), (0321)J , i t is convenient to introduce, 

temporarily, the irrationality,!, where i = ^-l. 

Let 4z„ = x e x, f x t -f- x 3 

4z, = x„ -f- ix, - x x — i x 3 

4z z = x 0 — s, + I,. - x 3 

4z = x„ - ix, — x^-f- i x 3 

Then 

x,, = z D •+ g, +- z z z 3 

x / ; — z e — iz, - z ̂  + i z 3 

X t = Z. - Z, E a - Z 3 

x 3 =. z 0 •+• i z , - z ^ - i z a 

(29) 

(30) 

The permutation S= (0123), which generates C ? oarries z e, z, , z^, and 
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into z a , - iz, , - z l , and i z 3 , respectively. By means of the z's, i t is 

easy to construct funotions of the x's whioh are unaltered by S, and 

hence by C; for example, the funotions; 

A l l of these functions of the x'8 have coefficients in R ( i ) , but not 

a l l .ooeffioients are in R. We f i r s t find a minimal basis for the 

rational functions $ (x) of the x's, unaltered by C, with coefficients in 

R ( i ) ; and subsequently, find a minimal basis consisting of functions 

with ooeffioients i n R. 

It is clear, by (2), that a function <]) (x) is expressible 

as a rational function of the z's with numerator and denominator 

consisting of terms of the form 

t = cz 0 z,' z 3 

which are unaltered by C. The permutations S —(0123), S 2, S 3 send t 

into (-1) ̂ ( i ) * ' ^ t, (- i ) * ' + ^ t , and ( - l f ^ i ) * ' " " * 5 t; respectively. 

Since t is unaltered by C, we must have(e,+ es) and thus {&,— ©j),and 

(e j.£ e,~ 03 ) even» Let ©, •+- e 3 — 2f £ , © z + e,- e, -= 2f , e i- e,- e> _ 2f^ , 

Then t = o •/* (z z3 > (z* z^) f' (g* z j f * 

It follows that the functions 

& = «„»• = *, *3, ft - P^z^z^ (31) 

which are themselves unaltered by C, and are readily seen to be 

algebraioally independent since the z's are, form a minimal basis for the 

funotions (j) (x). 

It is now not diffioult to construct, by means of the 

(p 's, the required minimal basis, with rational coefficients, for the 

group C« F i r s t , i t is clear that the functions : 
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(32) 

also form a minimal basis for the functions (^(x). Moreover, the o"s 

as funotions of the x's, have ooeffioients in R, This is easily verified 

for cG^ty* and o£ -<£| , and is true for cf, and <^ since the replacement 

of i by - i in the ooeffioients of the x's interchanges z, and z ? , 

leaves unaltered, and hence interchanges ^ and , 

Let f(x) be a rational function of the x 1s with rational 

ooeffioients. Then f(x) is also a $ (x), and henoe is a rational 

function of the <p *s with coefficients in R(i). Such a function of the 

(p ' s evidently has rational ooeffioients, as a function of the x* s, i f 

and only i f i t is unaltered by the replacement of i by - i . Let 

t = d t« <?, ' ^ j T j 3 be a term of the numerator or denominator of f(x), 

and let t be the expression obtained from t by the replacement of i by - i . 

Then ¥ ss. d* Q>*°(p,3t'<?,9*@f', where 1 is the ooajugate of d in R(i). If 

t has rational coefficients, as a function of the x5 s, t=T; whence d="d, 

g r g,* Thus t = dfa,<?s)K j[<S?*<£9*(<r?*+4?J3. 

which is a rational function of the QP*a with rational coefficients* 

If t 4= T, then the numerator, or denominator, of f(x) must contain t 

when i t contains t; that i s , i t contains 

t + T = fi*%*+Z%*?s9') 

It is a simple matter to show that the expression in parenthesis is a poly

nomial in and with rational coefficients. This completes the proof 

that the <P%s form a rational minimal basis for C, sinoe f(x) is thus 

expressible as a rational function of the </**s. 

In terms of the z's, the elementary symmetric funotions of 

the x* s are: . •. 
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E^= 6z0* — Zz£ — 4z, z3 

E 3 = tzj - 4 z 0 ( z z V 2 z , z3) + 4z^(z,Vz/) (33) 

E* = zt ~ 2 z / ( z ^ 2 z / z ^ ) ^ 4 z 0 s j z / + s 3") 

Thus 

E 2 

E 
f + (34) 

Now let x , x , x , x be the roots of the reduoed 

biquadratic equation 

x V a , x V a , x + a ^ = 0, (2) 

whose group with respeot to R is C. It is clear that the c/"' s are 

functions of the roots, whioh are unchanged by the permutations of C 

and therefore have rational values. Hence the coefficients of (2) can 

be expressed in the form 

*3 = ~ f ( (35) 

where the cT% 3 have values in R. 

As in the case of the Quartio group, it is readily shown 

that, conversely, i f rational values are assigned to them's in (3$), 

the group of equation (2) is either 0 or one of its subgroups. 

The only proper subgroup of C whioh we need to consider 

is the intransitive group £ I, (02)(13)J . If (2) is to have this 

group, then i t must be reducible into two quadratic factors such that 

x -r x , x x . x +• x , x x are a l l rational. This leads to a 



restriction on the <f*B whioh is included in 

Theorem 4: The equation 

ranges over a l l fourth degree equations with the cyclic group C when 

'» •» °3 a r e assigned a l l values in R such that / tf2+ 

not the square of a number in R. 
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