BIQUADRATIC EQUATIONS WITH PRESCRIBED GROUPS

by

Benjamin Nelson Moyls

A Thesis subritted in Partial Fulfilment of The Requirements for the Degree of

MASTER OF ARTS

in the Department
of
MATHEMATICS

The University of British Columbia
September, 1941.Page
Acknow ledgment 11
I. Introduotion I
II. The Groups. 4
III. Biquadratic Equations with the Quartic Group 5
IV. Biquadratice Equations with an Ootio Group. 9
V. Biquadratio Equations with the Aiternating Group 12
VI. Biquadratio Equations with a Cyolic Group 15
Bibliography 20

ACKNOTLEEDGMENT

The writer wishos to express his thanks to Dr. Ralph Hull of the Department of Mathematies at the University of British Columbia for his advioe and guidance. His numerous oritioisms and suggestions proved invaluable in the preo paration of this thesis.

Ben Hoyls
Sept. 1941.

3

BIQUADRATIC EQUATIONS WITH

PRESCRIBED GROUPS
I. INTRODUCTION.

One of the problems of the Galois theory of equations is that of determining values in a field F, of the coefficionts of an equation

$$
\begin{equation*}
x^{n}+a_{1} x^{n-1}+----+a_{n}=0, \tag{1}
\end{equation*}
$$

such that the equation will have a specified Galois group with respect to F. In some cases, at least, it is possible to find parametric representations of the equations having a specified Galois group. This means that the coefficients $a_{1},--, a_{n}$ oan be expressed in terms of parameters suoh that, when the parameters are assigned values in F, the resulting values of $a_{1},--, a_{n}$ are the coefficients of an equation which has the specified Galois group with respeot to F, and with the further property that all such equations can be so obtained. The values which may be assigned to the parameters are usually not completely arbitrary, but are subject to restrictions which ensure that the equation shall actually have the specified Galois group and not a subgroup of it. In other cases it is convenient to employ two or mere different sets of parameters, corresponding to different forms for the coefficients, which together give the totality of equations having the specified group.

Seidelmann () has found parametric representations for cubic equations with the oyolic group, and for biquadratio equations with various groups. He introduced appropriate parameters into the forms taken by the roots of the equations, acoording to the Galois group of the equation, and calculated the forms of the coefficients from these.

Another general method of attacking the problem, called the "rational" method in contrast with Seidelmanns "irrational" method, has be日n discussed by Frl. E. Noether 2). She showed that the existence of a parametric form for the equations with a specified Galois group depends upon the existence of a minimal basis for the rational functions of n variables which are unaltered by the speoified group of permutations of the variables. A minimal basis for such functions belonging to a group, or, brieily, a minimal basis for the group, is a set of rational functions of the variables which are:
(a) unaltered by the permutations of the group,
(b) algebraically independent,
(c) suich that every rational function of the variables which is unaltered by the permutations of the group is expressible as a rational function of the basis functions. For example, the elementary symetric functions of n variables form a minimal basis for the symmetric group of permutations of the variables. Seidelmann's results indirectiy

1) Seidelmann, $F ;$	"Die Kub, und Biquad, Gleichungen mit Affekt"
	Math. Annalen, 1918, pp. 230-233.
2) Noether, E:	"Gleichungen mit Vorgeschriebener Gruppen"
Math. Annalen, 1918, pp. 221-229.	

yield minimal bases for the groups he considers, and Breuer ${ }^{3}$) has determined minimal bases for certain metacyclic groups.

It is the purpose of this thesis to apply the rational methods suggested by Noether to the determination of the reduced biquadratio equations

$$
\begin{equation*}
x^{4}+a_{2} x^{2}+a_{3} x+a_{4}=0 \tag{2}
\end{equation*}
$$

having specified Galois groups with respect to the field R of rational numbers. The groups to be studied are described in the next section. For each group in turn, a minimal bssis is then exhibited, the coefficients of the equation are expressed in terms of the basis functions whioh serve as the required parameters, and then restrictions to be placed upon the values in R_{1} which may be assigned to the parameters, are studied. Since the existence of one minimal basis for a group implies the existence of infinitely meny, a variety of paramotric forms for the equations can be obtained. The general plan has been followed of using a minimal basis Fhich seems likely to yield ospeaially simple parametric forms for the coefficients of the equations. In some cases alternative minimal bases must be employed, In order to obtain those equations having the specifled groups which correspond to exceptional values for the parameters first employed. Certain of the minimal bases used were suggested by Noether, that for the cycilc group by Dr. Hull.

The results obtained are equivalent to those of Seidelmann, although in a different form which is simpler than his in some cases.
3) Breuer, S: "Matazyklisohe Minimalbasis und Komplexe Primzahlen" Journal ftr Mathematik, bd. 156, 1927, pp. 13-42.

Certain modifications of the forms would be required if a coefficient field other than R wore used.
II. The Groups.

The Galois group of an irreducible biquadratic oquation, With respect to the field R_{s} is a transitive group of permutations on four variables. We confine attention to the equations which are said to have an "affect", that is, have a Gale1s group other than the symmetric group itself. We denoto the variables, and the roots of a biquadratio equation by x_{0}, x_{1}, x_{2} and x_{3}, and a permutation such as $\left(x_{0} x_{1} x_{2}\right)$ by (012), as usual. The groupe to be considered are as follows:
(a) The Quertio Group (Die Vierergruppe):

```
Q:[I,(01)(23),(02)(23),(03)(12)]
```

(b) The Oat 80 Groups:

$$
\begin{aligned}
& 0:[Q, Q(13)] \\
& 0^{\prime}:[Q, Q(12)] \\
& 0^{\prime \prime}:[Q, Q(23)]
\end{aligned}
$$

(c) The Alternating Group:

$$
A:[Q, Q(123), Q(132)]
$$

(d) The Cyclio Groups:

$$
\begin{aligned}
& C:[I,(0123),(02)(13),(0321)] \\
& C^{\prime}:[I,(0231),(03)(12),(0132)] \\
& C^{\prime}:[I,(0312),(01)(23),(0213)]
\end{aligned}
$$

There is no loss of generality or completeness in dealing only with the groups Q, O, A and C, since the groups O^{\prime} and $O^{\prime \prime}$ are equivalent to 0 , and correspond merely to a re-numbering of the variables,
and, similarly for C, C^{\prime} and $C^{\prime \prime}$. It it to be noted that C is the cyolic subgroup of order 4 of 0 .
III. Biquadratio Equations with the Quartic Group.

A basis for the Quartio group cen be constructed as follows:
Let

$$
\begin{align*}
& 4 u_{0}=x_{0}+x_{1}+x_{2}+x_{3} \\
& 4 u_{1}=x_{0}+x_{2}-x_{2}-x_{3} \tag{3}\\
& 4 u_{2}=x_{0}-x_{1}+x_{2}-x_{3} \\
& 4 u_{3}=x_{0}-x_{1}-x_{2}+x_{3}
\end{align*}
$$

Then

$$
\begin{align*}
& x_{0}=u_{0}+u_{1}+u_{2}+u_{3} \\
& x_{1}=u_{0}+u_{1}-u_{2}-u_{3} \tag{4}\\
& x_{2}=u_{0}-u_{1}+u_{2}-u_{3} \\
& x_{3}=u_{0}-u_{1}-u_{2}+u_{3}
\end{align*}
$$

The permutations $(01)(23),(02)(13),(03)(12)$ of $x^{8} \mathrm{~s}$ in
the group Q, send $u_{0}, u_{1}, u_{2}, u_{3} \sin 0 u_{0}, u_{1},-u_{2},-u_{3} ; u_{0},-u_{1}, u_{2},-u_{3}$; and $u_{0},-u_{1},-u_{2}, u_{3}$, respectively. It follows that the basis functions

$$
\begin{array}{ll}
\alpha_{0}=u_{0}, & \alpha_{2}=\frac{u_{3} u_{1}}{u_{2}}, \tag{5}\\
\alpha_{1}=\frac{u_{2} u_{3},}{u_{1}} & \alpha_{3}=\frac{u_{1} u_{2}}{u_{3}}
\end{array}
$$

are unaltered by all the permutations of the $x^{\prime} s$ in Q. The α 's are easily seen to be algebraically independent since this is true of the x^{\prime} s and the u^{\prime} s. Finally, a rational funotion of the x^{\prime} s is a rational funotion of the $u^{\prime} s$, and is unaltered by all the permutations of Q if and only if the numerator and denominator consist of terms:

$$
t=c u_{0}^{Q_{0}} u_{1}^{Q_{1}} u_{2}^{R_{2}} u_{3}^{\varepsilon_{3}},
$$

which are themselves unaltered by Q.
Under the permutations of Q, t becomes, respectively:

$$
t,(-1)^{e_{2}+e_{3}} t,(-1)^{e_{1}+e_{3}} t \text {, and }(-1)^{e_{1}+e_{2}} t \text {. }
$$

Hence, if t is unaltered by Q, $\left(e_{2}+\theta_{3}\right),\left(e_{1}+e_{3}\right),\left(e_{1}+e_{2}\right)$ must all be even. Let $\theta_{0}=f_{0}, \quad e_{2}+\theta_{3}=2 f_{1}, \quad \theta_{1}+e_{3}=2 f_{2}, \theta_{1}+\theta_{2}=2 f_{3}$, where f_{0}, f_{1}, f_{2}, and f_{3} are integers. Then evidently

$$
t=0 \alpha_{0}^{f_{0}} \alpha_{1} f_{1} \alpha_{2}^{f_{2}} \alpha_{3}^{f_{3}}
$$

This completes the proof that $\alpha_{0}, \alpha_{1}, \alpha_{2}$, and α_{3} form a minimal basis for Q.

To express the elementary symmetric functions of the $x^{\prime} s$ in terms of the $\alpha^{\prime} s$, we first determine:

$$
\begin{align*}
& E_{1}=u_{0} \\
& E_{2}-6 u_{0}^{2}-2\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right) \\
& E_{3}=4 u_{0}^{3}-4 u_{0}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)+8 u_{1} u_{2} u_{3} \tag{6}\\
& E_{4}=\left(u_{1}^{4}+u_{2}^{4}+u_{3}^{4}\right)-2\left(u_{1}^{2} u_{2}^{2}+u_{1}^{2} u_{3}^{2}+u_{2}^{2} u_{3}^{2}\right) \\
& \quad \quad\left(\text { (functions of } u_{0}\right)
\end{align*}
$$

But from equations (5):

$$
\begin{array}{ll}
u_{1}^{2}=a_{2} \alpha_{3} \\
u_{2}^{2}=\alpha_{3} \alpha_{1} & u_{1} u_{2} u_{3}=\alpha_{1} \alpha_{2} \alpha_{3} \\
u_{3}^{2}=\alpha_{1} \alpha_{2} &
\end{array}
$$

Hence in terms of the $\alpha^{\prime} s$

$$
\begin{aligned}
\mathbf{E}_{2}= & 6 \alpha_{0}^{2}-2\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}\right) \\
\mathbf{E}_{3}= & 4 \alpha_{0}^{3}-4 \alpha_{0}\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}\right)+8 \alpha_{4} \alpha_{2} \alpha_{3} \\
\mathbf{E}_{4}= & \left(\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{1}^{2} \alpha_{3}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}\right)-2\left(\alpha_{1}^{2} \alpha_{2} \alpha_{3}+\alpha_{2}^{2} \alpha_{3} \alpha_{1}+\alpha_{3}^{2} \alpha_{1} \alpha_{2}\right) \\
& \left.\quad+\text { (powers of } \alpha_{0}\right)
\end{aligned}
$$

Consider now a reduced biquadratio equation

$$
\begin{equation*}
x^{4}+a_{2} x^{2}+a_{3} x+a_{4}=0, \tag{2}
\end{equation*}
$$

having the Quartio group Q with respect to R_{0} and whose roots are x_{0}, x_{1}, x_{2}, and $_{3} x$. By the Galois theory, a funotion of the roote which is unaltered by, Q has a rational value. In partioular, the functions α_{0}, α_{1}, α_{2}, and α_{3} have rational values, provided no single u_{i} is zero, $i=1,2,3$. Hence with this restriotion on the u^{\prime} s equation (2) can be expressed in the form

$$
\begin{aligned}
& x^{4}+a_{2} x^{2}+a_{3} x+a_{4}=0 \\
& a_{2}=-2\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}\right) \\
& a_{3}=-8 \alpha_{1} \alpha_{2} \alpha_{3} \\
& a_{4}=\left(\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{1}^{2} \alpha_{3}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}\right)-2\left(\alpha_{1}^{2} \alpha_{2} \alpha_{3}+\alpha_{2}^{2} \alpha_{3} \alpha_{1}+\alpha_{3}^{2} \alpha_{1} \alpha_{2}\right)
\end{aligned}
$$

where the α° e have values in R.
Conversely, suppose rational values are assigned to the α^{9} s in (9). Then, since the α^{9} a are functions of the $x^{\prime} s$, form a basis for the group Q, and are rational, it follows that every function belonging to Q has a rational value. Hence, by the Galois theory, the group of the equation in (9) is either Q or a subgroup of Q. The restrictions on the $\alpha^{\prime} s$ which exolude the latter possibility are most easily found by considering the roots of (9). These are

$$
\begin{align*}
& x_{0}=\sqrt{\alpha_{2} \alpha_{3}}+\sqrt{\alpha_{1} \alpha_{3}}+\sqrt{\alpha_{1} \alpha_{2}} \\
& x_{1}=\sqrt{\alpha_{2} \alpha_{3}}-\sqrt{\alpha_{1} \alpha_{3}}-\sqrt{\alpha_{1} \alpha_{2}} \\
& x_{2}=-\sqrt{\alpha_{2} \alpha_{3}}+\sqrt{\alpha_{1} \alpha_{3}}-\sqrt{\alpha_{1} \alpha_{2}} \tag{10}\\
& x_{3}=-\sqrt{\alpha_{2} \alpha_{3}}-\sqrt{\alpha_{1} \alpha_{3}}+\sqrt{\alpha_{1} \alpha_{2}}
\end{align*}
$$

It is ovident that no proper subgroup of Q is transitive; henoe equation (9) is reducible in R if its group is e subgroup of Q. For example, if its group is $[I,(01)(23)]$, it is reducible into two quadratic factors such that $x_{0}+x_{1}, x_{0} x_{1}, x_{2}^{+} x_{3}, x_{2} x_{3}$ are all rational. This means that $\alpha_{2} \alpha_{3}$ must be the square of some number in R. Similarly,
if the group is $[I,(02)(13)], \alpha_{1} \alpha_{3}$ must be a square; if $[I,(03)(12)]$. $\alpha_{1} \alpha_{2}$ must be a square; and if (I), $\alpha_{2} \alpha_{3}, \alpha_{1} \alpha_{3}, \alpha_{1} \alpha_{2}$, must all be squares. In other words, if the equation in (9) is to have the group C and not one of its subgroups, the produot of any two of the α 's must not be the square of a number in R.

We have chosen a minimal basis which gives, if not the simpleat parametric representation of the coefficients of (2), at least a symmetric one. We have now to consider the possibility of the $u^{\prime} s\left\{u_{1}, \mu_{2}, \mu_{3}\right\}$ vanishing. First it is obvious that no two $u^{\prime} s$ can be zero simultaneousIy, for then (2) is reducible and cannot have the Quartic group. This is not the oase, however, when only one of the u^{\prime} s is zero. Suppose, for example, $u_{2}=0$, We then have a singular ${ }^{4}$ value for the parameter α_{2}. which corresponds to a parametric representation for the group Q whioh is not included in (9). To cover this oase we must consider on alternative basis:

$$
\begin{array}{ll}
\alpha_{0}^{\prime}=u_{0}, & \alpha_{1}^{\prime}=u_{1}^{2}, \\
\alpha_{2}^{\prime}=u_{1} u_{2} u_{3}=0, & \alpha_{3}^{\prime}=u_{3}^{2}, \tag{12}
\end{array}
$$

which leads to the parametric representation: ${ }^{5}$

$$
\begin{equation*}
x^{4}+2\left(\alpha_{1}^{\prime}+\alpha_{9}^{\prime}\right) x+\left(\alpha_{1}^{\prime}-\alpha_{3}^{\prime}\right)^{2}=0 \tag{13}
\end{equation*}
$$

where α_{\prime}^{\prime} and α^{\prime} range over all values in R for which $\alpha^{\prime} \alpha_{3}^{\prime}$ is not a square. It is clear that the cases where $u,=0$ or $u_{3}=0$ lead to the same form of equation (i3). Moreover, equation (13) is distinct from and supplementary to the equation in (9). We sum up the Quartic case then in
4) Cf. Noether: Op. Cit., p.229.
5) The procedure for deriving this formal representation and proving its validity is similar to that for (9).

Theorem 1: The equations

$$
\begin{gather*}
x^{4}-2\left(\sum \alpha_{1} \alpha_{2}\right) x^{2}-8 \alpha_{1} \alpha_{2} \alpha_{3} x+\left(\sum \alpha_{1}^{2} \alpha_{2}^{2}-2 \sum \alpha_{1}^{2} \alpha_{2} \alpha_{3}\right)=0 \\
x^{4}+2\left(\alpha_{1}^{\prime}+\alpha_{3}^{\prime}\right) x^{2}+\left(\alpha_{1}^{\prime}-\alpha_{3}^{\prime}\right)^{2}=0 \tag{14}
\end{gather*}
$$

together include all biquadratic equatione with the Quartic group Q when $\alpha_{1}, \alpha_{2}, \alpha_{3} ; \alpha_{1}^{\prime}, \alpha_{3}^{\prime}$ range over all values of R for which the product of any tro $\alpha^{\prime} s^{\prime}$, and the product of $\alpha_{1}^{\prime}, \alpha_{3}^{\prime}$ are not the squares of numbers in R .

1V. Biquadratic Equations with an Octio Group.
A rational function of $x_{0}, x_{1}, x_{2}, x_{3}$, which is unaltered by the ootio group $0 \equiv[Q, Q(13)]$, is also unaltered by the Quartio group Q. But in addition it is unaltered by the permutation (13) on the x^{*} s. Now such a function, as shown in Seation III, is also a rational function of $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$. Moreover, since the permutation (13) on the $x^{\prime} s$ merely interchanges α_{1} and α_{3}, and does not alter α_{0} and α_{2}, a rational function of the $x^{8} s$ unaltered by 0 must be symmetric in $\alpha_{\text {, }}$ snd α_{3}, when expressed in terms of the α 's. In other words it is expressible as a rational funotion of the symmetric functions $\alpha_{1}+\alpha_{3}$ and $\alpha_{1} \alpha_{3}$ of α_{1} and α_{3}, With coefficients which are rational functions of α_{0} and α_{2}. Hence the functions

$$
\begin{align*}
& \beta_{0}^{\prime \prime}=\alpha_{0}, \quad \beta_{1}^{\prime \prime}=\alpha_{1}+\alpha_{3}, \\
& \beta_{2}^{\prime \prime}=\alpha_{2}, \quad \beta_{3}^{\prime \prime}=\frac{\alpha_{1} \alpha_{3}}{\alpha_{1}+\alpha_{3}}, \alpha_{1}+\alpha_{3} \neq 0 \tag{15}
\end{align*}
$$

form a minimal basis for 0 . This basis was chosen becaure it was homogenoous; thus we hoped that it would lead to a fairly symmetric parametric representation of the coefficients of the reduoed quartic equation (2). The results:

$$
\begin{align*}
& x^{4}+a_{2} x^{2}+a_{3} x+a_{4}=0 \\
& a_{2}=-\left(\beta_{1}^{\prime \prime} \beta_{2}^{\prime \prime}+\beta_{1}^{\prime \prime} \beta_{3}^{\prime \prime}\right) \\
& a_{3}=-8\left(\beta_{1}^{\prime \prime} \beta_{2}^{\prime \prime} \beta_{3}^{\prime \prime}\right) \tag{16}\\
& a_{4}=\left(\beta_{1}^{\prime \prime} \beta_{2}^{\prime \prime}-\beta_{1} \beta_{3}{ }^{\prime \prime}\right)^{2}-4 \beta_{1}^{\prime \prime} \beta_{2}^{\prime \prime} \beta_{3}^{\prime \prime},
\end{align*}
$$

whose derivation is similer to that of the case which follows, are, however, not general. For even when $\beta_{1}^{\prime \prime}, \beta_{2}^{\prime \prime} \beta_{3}^{\prime \prime}$ take on all rational values (with certain restriotions to bar out subgroups of 0), the totality of biquadratio equations with the group 0 is not represented by equation (16), since the exceptional oase, $d_{1}+\alpha_{3}=0$, is automatically exoluded when we employ the basis (15). Moreover (2) may heve the ootic group 0 when $\alpha_{1}+\alpha_{3}=0$.

Hence we use the functions:

$$
\begin{align*}
& \beta_{1}=\alpha_{0}, \quad \beta_{1}=\alpha_{1}+\alpha_{3}, \\
& \beta_{2}=\alpha_{2}, \quad \beta_{3}=\alpha_{1}, \tag{17}
\end{align*}
$$

Which by the same argument as that for (15), form a minimal basis for the group 0.

Now suppose that x_{0}, x_{1}, x_{2}, and x_{3} are the roots of a reduced biquadratic equation having the group 0 with respeot to R. The funotions β in (17) are unaltered by 0 , and hence have rational valves, provided, as in SectionII, no single u_{1} is zero. After constructing the elementary symetric functions in terms of the $\beta^{1} s$, we see that, when no u is zero by itself, the equation having the octic group with respect to R has the form:

$$
\begin{align*}
& x^{4}+a_{2} x^{2}+a_{3} x+a_{4}=0 \\
& a_{2}=-2\left(\beta_{1} \beta_{2}+\beta_{3}\right) \tag{18}\\
& a_{3}=-8 \beta_{1} \beta_{3} \\
& a_{4}=\beta_{3}^{2}+\beta_{2}^{2}\left(\beta_{1}^{2}-4 \beta_{3}\right)-2 \beta_{1} \beta_{2} \beta_{3}
\end{align*}
$$

Where the β^{\prime} s are rational.
Conversely, an equation (15) with the β 's rational, has a Galois group with respect to R which is either 0 or a subgroup of 0 . Now the proper subgroups of 0 which we need to consider are the Quartic, the cyclic, and the group $K=[I,(02),(13),(02) \times(13)]$; and subgroups of these. If the Galois group of (15) is the Quartic group Q or one of its subgroups, the functions $x_{0} x_{1}+x_{2} x_{3}, x_{0} x_{2}+x_{1} x_{3}$ and $x_{0} x_{3}+x_{1} x_{2}$, which are incidentally the roots of the resclvent cubic of (15), must all be rational. In terms of the $B^{8} s$, this means that $\beta_{1}^{2}-4 \beta_{3}$ must be the square of a number in R. If the group of (15) is the Cyolic group C_{g} or a subgroup of it, the function $x_{1}^{2} x_{1}+x_{1}^{2} x_{2}+x_{2}^{2} x_{3}$ $+x_{3}^{2} x_{0}$ must be rational; and if the group $K_{1} x_{0}+x_{2}-x_{1}-x_{3}$ must be rational.

The conditions of the B^{\prime} s may be summed up by saying that, if equation (18) is to have the octic group 0 and not one of its proper subgroups, then $\beta_{1}^{2}-4 \beta_{3}, \frac{\beta_{1}^{2}}{\beta_{3}}-4, \beta_{3}$ must not be the squares of numbers in R.

We must now consider the singular values of the parameters β which arise when any u venishes. There is obviously no diffioulty When $u_{1}=0$, or $u_{3}=0$, or any two of the $u^{\prime} s$ equal zoro simultaneously, for then the group of (18) is a subgroup of the ootic. Let us suppose then that u_{2} alone vanishes. Employing the $\alpha^{\prime \prime} s$ defined in (12) we construct the basis functions:

$$
\begin{align*}
& \beta_{0}^{\prime}=\alpha_{0}^{\prime}, \quad \beta_{1}^{\prime}=\alpha_{1}^{\prime}+\alpha_{3}^{\prime} \\
& \beta_{2}^{\prime}=\alpha_{2}^{\prime}, \quad \beta_{3}^{\prime}=\alpha_{1}^{\prime} \alpha_{3}^{\prime} \tag{19}
\end{align*}
$$

It is easily verified that the $\beta^{\prime \prime}$ s form a rational minimal basis for 0 whioh gives the parametric representation:

$$
\begin{equation*}
x^{4}+2 B_{1}^{\prime} x^{2}+\left(\beta_{1}^{\prime 2}-4 \beta_{3}^{\prime}\right)=0 \tag{20}
\end{equation*}
$$

Where β_{1}^{\prime} and β_{3}^{\prime} have rational values. To ensure that (20) has not a proper subgroup of 0 for its Galois group, $\beta_{1}^{\prime 2}-4 \beta_{3}^{\prime}$ and β_{3}^{\prime} must not be squares. To complete the octio oase then, we oombine (18) and (20) in

Theorem 2: The equations

$$
\begin{gather*}
x^{4}-2\left(\beta_{1} \beta_{2}+\beta_{3}\right) x^{2}-8 \beta_{2} \beta_{3} x+\left[\beta_{3}^{2}+\beta_{2}^{2}\left(\beta_{1}^{4}-4 \beta_{3}\right)-2 \beta_{1} \beta \beta_{3}\right]=0 \\
x^{4}+2 \beta_{1}^{\prime} x^{2}+\left(\beta_{1}^{\prime 2}-4 \beta_{3}^{\prime}\right)=0 \tag{21}
\end{gather*}
$$

together include all biquadratic equations with the octic group 0 , when β_{1}, β_{2} and $\beta_{3} ; \beta_{1}^{\prime} \beta_{3}^{\prime}$ range over all values of R for which $\beta_{1}^{2}-4 \beta_{3}, \beta_{3}$, $\frac{\beta_{1}{ }^{2}}{\beta_{3}}-4$ and $\beta_{1}^{\prime 2} 4 \beta_{3}^{\prime}, \beta_{3}^{\prime}$ are not the squares of numbers in R. NOTE: It will be observed thet the pure equation

$$
\begin{equation*}
x^{4}+a_{4}=0 \tag{22}
\end{equation*}
$$

has the Octic group when a_{4} is not a square ${ }^{6}$; and the Quartic group when a_{4} is a square.
V. Biquadratic Equations with the Alternating Group.

As in the case of the ootic group, a rational function of the independent varisbles $x_{0}, x_{1}, x_{2}, x_{3}$ which is unaltered by the Alternating group, is also unaltered by the Quartic group. In addition, however, it is unaltered by the permutations (123), (132) on the x's. Morecver, this rational function of the $x^{\prime} s$ is also a rational function of the $\alpha^{\prime} s$; and since the oyclic permutations (123), (132) on the $x^{\prime} s$ effect the same permatations on the α 's, it follows that any rational function of the x^{\prime} s which is unaltered by the Alternating group may be
6) Of. Seidelmann, F.; Op. Cit., p. 232.
expressed as a rational cyclic function of α_{1}, α_{2} and α_{3} with coefficients which are rational functions of α_{0}. We find it convenient to introduce the irrationality ω, where ω is a primitive oube roct of unity. Let

$$
\begin{align*}
& y_{0}=\alpha_{0} \\
& 3 y_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3} \tag{22}\\
& 3 y_{2}=\alpha_{1}+\omega \alpha_{2}+\omega^{2} \alpha_{3} \\
& 3 y_{3}=\alpha_{1}+\omega^{2} \alpha_{2}+\omega \alpha_{3}
\end{align*}
$$

Solving for the α 's:

$$
\begin{align*}
& \alpha_{1}=y_{1}+y_{2}+y_{3} \\
& \alpha_{2}=y_{1}+\omega^{2} y_{2}+\omega y_{3} \tag{23}\\
& \alpha_{3}=y_{1}+\omega y_{2}+\omega^{2} y_{3} .
\end{align*}
$$

From what has beon said above, it is olear that

$$
\begin{array}{ll}
\gamma_{0}=\bar{y}_{0} & \gamma_{2}=\mathbf{y}_{2} \mathbf{y}_{3} \\
\gamma_{1}=\mathrm{y}_{1} & \gamma_{3}=\mathbf{y}_{2}^{3}+\mathrm{y}_{3}^{3}
\end{array}
$$

forms a rational minimal basis for the group A.
In terms of the γ° 's, the elementary symetric functions of the x^{i} s turn out to be

$$
\begin{align*}
& E_{2}=-6\left(\gamma_{1}^{2}-\gamma_{2}\right) \\
& E_{3}=8\left(\gamma_{1}^{3}+\gamma_{3}-3 \gamma_{1} \gamma_{2}\right) \tag{25}\\
& E_{4}=-3\left[\gamma_{1}^{4}-4 \gamma_{1} \gamma_{3}+3 \gamma_{2}^{2}-3 \gamma_{1}^{2} \gamma_{2}\right)
\end{align*}
$$

Now consider x_{0}, x_{1}, x_{2}, and x_{3} as the roots of a reduced biquadratic equation having the group A with respect to R. The functions γ in (24) are unaltered by A, and hence have rational values. We need make no provision here for any of the $u^{\prime} s$ venishing, for, if one of them vanishes it can be shown that equation (2) reduced to the form

$$
x^{4}+a_{2} x^{2}+a_{4}=0
$$

which has either the Quartic or 0otic group; and if two or more of
$u_{1,} u_{2}$ or u_{3} vanieh there is a still further reduction of the group. Hence on equation with the Alternating group A with respect to R has the form

$$
\begin{align*}
& x^{4}+a_{2} x^{2}+a_{3} x+a_{4}=0 \\
& a_{2}=-6\left(\gamma_{1}^{2}-\gamma_{2}\right) \\
& a_{3}=-8\left(\gamma_{1}^{3}+\gamma_{3}-3 \gamma_{1} \gamma_{2}\right) \tag{26}\\
& a_{4}=-3\left(\gamma_{1}^{4}-4 \gamma_{1} \gamma_{3}+3 \gamma_{2}^{2}-3 \gamma_{1}^{2} \gamma_{2}\right)
\end{align*}
$$

and conversely, an equation(26) with rational y^{\prime} 's has either the group A or a subgroup of A.

The possible subgroups of A which (26) may have are the Quartic group, and those four groups which are cyclic on three of the roots of (26).

If the group is the Quartic, the roots of the resolvent cubie of (26) must all be rational; if the group is one of the four groups which are cyelic on three of the roots, the other root must be rational and equation (26) reducible. We are now ready to state

Theorem 3: The equation

$$
\begin{equation*}
x^{4}-6\left(\gamma_{1}^{2}-\gamma_{2}\right) x^{2}-8\left(\gamma_{1}^{3}+\gamma_{3}-3 \gamma_{1} \gamma_{2}\right) x-3\left(\gamma_{1} 44 \gamma_{1} \gamma_{3}+3 \gamma_{2}^{2}-3 \gamma_{1}^{2} \gamma_{2}\right)=0 \tag{27}
\end{equation*}
$$

includes all biquadratic equations which have the alternating group A; $\gamma_{1}, \gamma_{2}, \gamma_{3}$ may take on all values in R for which (27) is irreduoible, and for which the rosolvent oubic equation of (27):

$$
\begin{equation*}
y^{3}-a_{2} y^{2}-4 a_{4} y+\left(4 a_{2} a_{4}-a_{3}^{2}\right)=0 \tag{28}
\end{equation*}
$$

With a_{2}, a_{3}, a_{4} defined as in (26), has not all three roots rational. As a point of interest we mention a perhape more practical oriterion for fourth degree equations with the alternating group. If the Galois group of equation (2) is the alternating group A for the field R, then the square root of the discriminant of (2), namely,

$$
P=\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-\frac{x_{j}}{3}\right)\left(x_{1}-\frac{x_{2}}{}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)
$$

must have a rational value; and conversely, if P has a rational value, it is unchanged by the Galois group of (2), Which must thus be the Alternating group A or one of its subgroups. Hence

Theorem 4: The equation

$$
\begin{equation*}
x^{4}+a_{2} x^{2}+a_{3} x+a_{4}=0 \tag{2}
\end{equation*}
$$

embracessall biquadratic equations with the Alternating group when the a^{\prime} s take on all values in R for which:
(a) the discriminent $\Delta=4\left(4 a_{4}-\frac{1}{3} a_{2}^{2}\right)^{3}-27\left(\frac{8}{3} a_{1} a_{4}-a_{3}^{2}-2 / 27 a_{2}^{3}\right)^{2}$ is equal to the square of a number in R.
(b) equation (2) has no rational root, and
(c) the resolvent oubio has not all its roots rational.
VI. Biquadratic Equations with a Cyclic Group.

In order to construct a minimal basis for the oyclic
group $C \equiv[I,(0123),(02)(13),(0321)]$. it is convenient to introduce, temporarily, the irrationality, i, where $i=\sqrt{-1}$.

Let

$$
\begin{align*}
& 4 z_{0}=x_{0}+x_{1}+x_{2}+x_{3} \\
& 4 z_{1}=x_{0}+1 x_{1}-x_{2}-i x_{3} \tag{29}\\
& 4 z_{2}=x_{0}-x_{1}+x_{2}-x_{3} \\
& 4 z_{3}=x_{0}-1 x_{1}-x_{2}+i x_{3}
\end{align*}
$$

Then

$$
\begin{align*}
& x_{0}=z_{0}+z_{1}+z_{2}+z_{3} \\
& x_{1}=z_{0}-i z_{1}-z_{2}+i z_{3} \\
& x_{2}=z_{1}-z_{1}+z_{2}-z_{3} \tag{30}\\
& x_{3}=z_{0}+i z_{1}-z_{2}-i z_{3}
\end{align*}
$$

The permutation $S=(0123)$, which generates C, oarries $z_{0,} z_{1}, z_{z}$, and z_{3}
into $z_{0},-1 z_{1},-z_{2}$, and $i z_{3}$, respectively. By means of the $z^{\prime} s$, it is easy to construct functions of the x 's whioh are unaltered by S, and hence by 0 ; for example, the functions;

$$
z_{2}^{2}, z_{1}^{4}, z_{3}^{4}, z_{1}^{2} / z_{2}, z_{3 / z_{2}}^{2}, z_{1}^{2} z_{2}, z_{3}^{2} z_{2}, z, z_{3}
$$

Al1 of these functions of the $x^{\prime} e$ have coeffioients in $R(i)$, but not all ooeffioients are in R. We first find a minimal basis for the rational functions $\Phi(x)$ of the $x^{9} s$, unaltered by c, with coofficients in $R(i)$; and subsequently, find a minimal basis consisting of functions with coofficients in R.

It is elear, by (2), that a function $\Phi(x)$ is expressible
as a rational funotion of the $z^{\prime} s$ with numerator and denominator consisting of terms of the form

$$
t=c z_{0}^{e_{0}} \quad z_{1}^{e_{1}} z_{2}^{e_{2}} z_{3}^{e_{3}}
$$

Which are unaltered by C. The permutations $S-(0123), S^{2}, S^{3}$ send t into $(-1)^{e_{2}}(i)^{e_{1}+a_{3}} \quad t,(-1)^{a_{1}+e_{3}} t_{\text {, and }}(-1)^{e_{2}}(i)^{a_{1}-e_{3}}$ t; respectively. Since t is unaltered by C_{3} we must have $\left(e_{1}+\theta_{3}\right)$ and thus $\left(0,-\theta_{3}\right)$, and $\left(\theta_{2} \pm \theta_{1}-\theta_{3}\right)$ oven. Let $\theta_{1}+\theta_{3}=2 f_{2}, \theta_{2}+\frac{\theta_{1}-\theta_{3}}{2}=2 f_{1}, \theta_{2}-\frac{\theta_{1}-\theta_{3}}{2}=2 f_{3}$, Then

$$
t=0 z_{0}^{e_{0}}\left(z_{1} z_{3}\right)^{0^{2} f_{1}}\left(z_{1}^{2} z_{2}\right)^{f_{1}}\left(z_{3}^{2} z_{2}\right)^{f_{3}}
$$

It follows that the functions

$$
\begin{equation*}
\varphi_{0}=z_{0}, \varphi_{2}=2_{1} z_{3}, \quad \varphi_{1}=z_{1}^{2} z_{2}, \varphi_{3}=z_{3}^{2} z_{2} \tag{31}
\end{equation*}
$$

which are themselves unaltered by C, and are readily seen to be algebraioally independent since the z^{\prime} s are, form a minimal basis for the functions $\Phi(x)$.

It is now not difficult to construct, by means of the $\varphi^{\prime} \mathrm{s}$, the required minimal basis, with rational coefficients, for the group C. First, it is olear that the functions:

$$
\begin{array}{ll}
\delta_{1}=\varphi_{0}, & \sigma_{1}=\frac{1}{2}\left[(1+i) \varphi_{1}+(1-i) \varphi_{3}\right] \tag{32}\\
\delta_{2}=\varphi_{2}, & \sigma_{3}=\frac{1}{2}\left[(1-i) \varphi_{1}+(1+i) \varphi_{3}\right]
\end{array}
$$

also form a minimel basis for the functions $\Phi(x)$. Moreover, the $d^{\prime \prime}$ s as funotions of the $x^{\prime} s$, have ooeffloients in R. This is easily verified for $\delta_{0}=\varphi_{0}$ and $\alpha_{2}=\phi_{2}$, and is true for σ_{1} and δ_{3} since the replacement of i by $-i$ in the coefficients of the $x^{\prime} s$ interohanges z_{1} and z_{3}. leaves z_{2} unaltered, and hence interohanges ϕ_{1} and Q_{3}.

Let $f(x)$ be a rational function of the x 's with rational coeffioients. Then $f(x)$ is also a $\Phi(x)$, and hence is a rational function of the φ^{\prime} s with coefficients in $R(i)$. Such a function of the $\varphi^{\prime} s$ evidently has rational coofficients, as a function of the x ' s, if and only if it is unaltered by the replacement of i by -1 . Let $t=\mathrm{d} \varphi_{0}^{g_{0}} \varphi_{1}^{9^{\prime}} \varphi_{2}^{g_{2}} \varphi_{3}^{9_{3}}$ be a term of the numerator or denominator of $f(x)$, and let \vec{t} be the expression obtained from t by the roplecement of i by $-i_{0}$. Then $\bar{t}=\bar{a} \varphi_{0}^{g_{0}} \varphi_{1}^{9_{3}} \varphi_{1}^{9_{2}} \varphi_{3}^{9}$, where \bar{a} is the conjugate of a in $R(i)$. If t has rational coefficients, as a function of the $x^{\prime} s, t=\bar{t}$, whence $d=\bar{d}$, $g_{1}=g_{3}$. Thus $t=d \varphi_{0}^{g_{0}} \varphi_{2}^{g_{2}}\left(\varphi_{1} \varphi_{3}\right)^{g_{1}}=d \sigma_{0}^{g_{0} \sigma_{2}^{g}}\left(\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{4}\right)^{g}$,
which is a rational function of the f^{\prime} s with rational cosficients. If $t \neq F$, then the numerator, or denominator, of $f(x)$ must contain t When it oontains t; that is, it oontains

$$
t+\bar{t}=\varphi_{0}^{g_{0}} \varphi_{2}^{g_{2}}\left(d \varphi_{1}^{g_{1}} \varphi_{3}^{g_{3}}+\bar{d} \varphi_{1}^{g_{3}} \varphi_{3}^{g_{1}}\right)
$$

It is a simple matter to show that the expression in parenthesis is a polym nomial in δ_{1} and δ_{3} with rational cooflioients. This oompletes the proof that the $\delta^{\prime \prime}$ s form a rational minimel basis for $C, s i n c e f(x)$ is thus expressible as a rational function of the $\delta^{\prime} s$.

$$
\text { In terms of the } z^{\prime} s \text {, the elementary symetric functions of }
$$ the $x^{\prime \prime}$ s are:

$$
\begin{align*}
E_{2}= & 6 z_{0}^{2}-2 z_{2}^{2}-4 z_{1} z_{3} \\
E_{3}= & 4 z_{0}^{3}-4 z_{0}\left(z_{2}^{2}+2 z_{1} z_{3}\right)+4 z_{2}\left(z_{1}^{2}+z_{3}^{2}\right) \tag{33}\\
E_{4}= & z_{0}^{4}-2 z_{0}^{2}\left(z_{2}^{2}+2 z_{,} z_{3}\right)+4 z_{0} z_{2}\left(z_{1}^{2}+z_{3}^{2}\right) \\
& +\left(z_{2}^{2}-2 z_{1} z_{3}\right)^{2}-\left(z_{1}^{2}+z_{3}^{2}\right)^{2}
\end{align*}
$$

Thus

$$
\begin{align*}
& \mathbf{E}_{2}=-\left[\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{2 \sigma_{2}^{2}}+4 \sigma_{2}\right] \\
& \mathbf{E}_{3}=4\left(\sigma_{1}+\sigma_{3}\right) \tag{34}\\
& \mathbf{E}_{4}=\left[\left(\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{4 \sigma_{2}^{2}}+2 \sigma_{2}\right)^{2}-\frac{4 \sigma_{2}^{2}\left(\sigma_{1}+\sigma_{3}\right)^{2}}{\left(\sigma_{1}^{2}+\sigma_{3}^{2}\right)}\right]
\end{align*}
$$

Now let x_{0}, x, x_{2}, x_{3} be the roots of the reduced biquadratic equation

$$
\begin{equation*}
x^{4}+a_{2} x^{2}+a_{3} x+a_{4}=0 \tag{2}
\end{equation*}
$$

whose group with respeot to R is G. It is olear that the f 's are functions of the roots, which are unchanged by the permutations of C and therefore have rational values. Hence the coeffiaients of (2) can be expressed in the form

$$
\begin{align*}
& a_{2}=-\left[\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{2 \sigma_{2}^{2}}+4 \sigma_{2}\right] \\
& a_{3}=-4\left(\sigma_{1}+\sigma_{3}\right) \tag{35}\\
& a_{4}=\left[\left(\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{4 \sigma_{2}^{2}}-2 \sigma_{2}\right)^{2}-\frac{4 \sigma_{2}^{2}\left(\sigma_{1}+\sigma_{3}\right)^{2}}{\left(\sigma_{1}^{2}+\sigma_{3}^{2}\right)}\right]
\end{align*}
$$

Where the σ^{\prime} s have values in R.
As in the case of the Quartic group, it is readily shown that, conversely, if rational values are assigned to the ρ 's in (75), the group of equation (2) is either 0 or one of its subgroups.

The only proper subgroup of C which we need to consider is the intransitive group $[I,(02)(13)]$. If (2) is to have this group, then it must be reducible into two quadratic factors such that $x_{0}+x_{2}, x_{0} x_{2}, x_{1}+x_{3}, x_{1} x_{3}$ are all rational. This leads to a
restriction on the $\delta^{\prime \prime} \mathrm{s}$ which is included in
Theorem 4: The equation
$x^{4}-\left[\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{2 \sigma_{3}^{2}}+4 \sigma_{2}\right] x^{2}-4\left(\sigma_{1}+\sigma_{3}\right) x+\left[\left(\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{4 \alpha_{2}^{2}}-2 \sigma_{2}\right)^{2}-\frac{4 \sigma_{2}^{2}\left(\sigma_{1}+\sigma_{3}\right)^{2}}{\left(\sigma_{1}^{2}+\sigma_{3}^{2}\right)}\right]=0(36)$
ranges over all fourth degree equations with the cyclic group C when $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are assigned all values in R such that $\left[\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{4 \sigma_{2}^{2}}\right]$ is not the square of a number in R.

BIBLIOGRAPHY

1. Seidelmanr, F:	"Die Gesamtheit der kubischen und biquadratischen Gleichungen mit Affekt bei beliebigen Rationalitttsbereich."
	Mathematische malen, 1918, pp. 230-233.
2. Noether, E:	"Gleichungen mit Vorgesohriebener Gruppen"
	Nathematische mnalen, 1918, pp. 221-229.
3. Brever, S:	"Metazyklische Minimalbasis und complexe Primzahlen"
	Journal Pltr Mathematik, bd. 156, 1927, pp. 13-42.
4. Dickson, L.E:	"Modern Algebraio Theories."
	Benj. Sanborne \& Co., New York, 1930.
5. Carmichael, R.D:	"Introduction to Theory of Groups of Finite order.
	Ginn and Co., Ners York, 1937.

