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ABSTRACT

Some of the most accurate and economlical of the known

numerical methods for solving the initlal-value problem

dx

3T = f(t,x) , x(to) = X

0

are of the predictor-corrector type.

For systems of equations; the predictor-corrector pro-
cedures are defined in the same manner as they are for single
equations,

For a given problem and domaih of t , a plot of the
maximum error in the numerical approximation to x(t)
obtained by a predictor-corrector procedure, versus the step-
size, can be divided into three general regibns - round-off,
truncation, and instabllity. The most practical procedures
are stable and have a small truncation error.

The stability of a method depéhds on the magnitudes
of the eigenvaldes of a certaiﬁ matrix that 1s associated

with the matrix

6 = (gyy) = (—o—)

When the functions £ are compiicated,-predictor—

i
corrector procedures involving two evaluations per step seem

to be the most efficient for general-purpose applications,
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INTRODUCTION

In this thesis, we shall consider the initial-value
problém’

x' = f£(t,x) , x(ty) = % (1)

where in general, x and Xo are N-dimensional vectors.
vIn‘fact, (1)-represents the system of first order ordinéfy

differentiai equatiohs

Xi‘ = fl(tsxlyx29°°°lxN)
X2' - fg(tgxlyx2pooong)
%' = £ (t,% %, X )

N |\ A M~ AR S

where the values of the Xy s i=1,2,...,N , are specified
for an initial time. to o -

For convenignce in expressing the followling results, we
shall adopt the standard notation of fu‘nctional,analysis°
Let- S Abe a complete normed linear spacei(a Banach space).
Let the elements of S Dbe ul,ﬁg,,,o . Thennorm-on._s is
’ abrealwvalued functioﬁ, whose value at 5u,'1s denoted by
flul , and which satisfies

(a) Muprupll < fugl + gl

(b) Jull >0 and  Jull = 0 1if and only if

u =0 , the zero element of S
(o) Jau] = e lu| for any complex number o« .

'S becomes a metric space 1f we define a‘distance function

between any two points wu, and u, of S5 as



d(ulyue) = "ul—ugu .

A sequence of functions UjsUgseee s satlisfles the Cauch

- Criterion if

||un- m” —> 0 as n,m -—-% 0. .

Since‘ S 1s complete;, each such Cauchy sequence possesses
a l;mit u , where u 1is an element of .8 . We say that the
séquehée, {ﬁi} converges to u .

We now let S Dbe the real Euclidean N-dimensional space
RN R
real components Xy s i=1,2,...,N . 'BN is complete.(see
e.g. [11], p. 96).

Later, we will let

 If x 1s an element of RN s X 18 the vector with

+ oo+ xgl

=l = %) +- X2

However, any valid norm may be used in the following discus-
sion.,

-We introduce the usual notation regarding the slgns <:,
<, >, = ., For example, x<y Aif <y, for each
1=1,2,...,N ,

Certain existence theorems for (1) exist. The‘dauchy—
Lipschitz‘Theorem states that if f(ﬁ;x). is continuous and

satisfies the Lipschitz-condition
Ie(t,x) = £(£,%)] < L [x-%|

 in a region containing (to,xo). for some positive real number .
I , then there exists a unique solution x(t) to problem (1)

over a suitable interval contalning to . .To prove this



-j-

‘theorem and other similar tnéorems;(see [9]), ohe first intro;
duces a_méthgd such as thefEﬁler §6iygona11method té_géneraté_
approximéte splqtiqns. Then ohe proves that these approxi_~
mate soiutiohs converge tb the solﬁtibn of (1). |

Although a given function f may satiéfy the conditions
of the above theorem, thus assuring.ﬁhé'eiisfénce and unique-
ness of a solution to (1), 1t may be difficult or even
impossible to represent this solution in closed form (as
finite combinations of elemehtary functions such as poly-
nomials, exponential functions and logarithms, and of indefie
nite integrals of such functions)° For example, 1t has been
proven that the equation

X' = t+to4x® x(0) = 0

cannot be solved in térms of elementary functions although
its solutién does exlist and can be tabulated.

However, the proof of the existence theorem provides us
with é method of constructing approximations to the solution
of (l).when it exists. .Infpractice, only some of these
methédsy p?rticularly the-Runge—Kutta and multi-step methods,
are useful in numerical calculations. Consequently, if we
wish to generate a numerical approximation to the solution
of (l), we must first have a criterion for_choosing the
numerical method.

In general;, the required accuracy 1s prescribed. There~
foresy Qe choose the nuﬁerical method that will give this
accuracy at a minimum cost.

It is the pufpose of this thesis to show in general,



that predictorjcorrector methods can be used td generate
numerical solutions to (1) of the required accuracy, and in
particular, that certain such methods will yield the pres-
cribed accuracy at a minimum cost. The special case N=1 ,
when_(l)»simplifies to a single equation, has been investl-
gated ﬁhoroughly in [8] .

In the next three sections are represented the theoreti-
cal results upon which our investigation 1s based. The
reasoning for the general case is quite similar to thét for
the case N=1 . However, as we shall see, certain generall-
zations are qulite Impractical because of thelr complicated
nature.

To specify a.predictor-corrector method, we must choose
a starting procedure, the predictor and corrector formulas,u
a rule for itérating with the corrector formula, and a step-
size, |

In section 5y' we present experimental results for a
number of probléms° We use a variety of different proceddres
for each'problemo Any restrictions on the chosen ranges of
parameters and on the considered formulas are based on the
results for the case N=1 .

_Throughout this thesis, we shall assume that the function
f(t,x) 1is reasonably complicéted° Thus, the‘cost of any |
procedure will be directly proportiohal to the number of

times this function is evaluated.



THEORY

In this section, we first define the predictor and
corrector formulas and the rules for iteration. Next, we
show that the numerical sequence determined by the iteration
procedufe converges to a limit. We then investigéte how
closely this limit approximates the actual solution of the
system of differential equations. Finally, we obtailn
specific conditions for the stability of the Adams method,

Thé‘predictor formula can be expressed as

S oAty +n S bl (2)
v, = a,y._, +h - by 2
n {3 in-1 = 1n-1 :
and the corrector formula as
> S oy, (3)
y,. = . a,¥y._. th b,y _ 3
n ¢4 1n-1 7 f "19n-1 _

where h 1s the step-size, t =ty tnh , y , = y(tn—ih)

and y._, = f(t -ih,y__,) .

as in [8] .) We emphasize that the y's and the y''s are

(The terminology is.the same

N-dimensional vectors. We have chosen the unknownsv‘a;',
b; s 8y and bi to beAéne=dimensional constants and have
thus restricted ourselves to uSing the same predilctor and
corrector formulas for each of the N components. Our Jjusti-
fication for doing this lies only in the relative simpli@ity
of the resulting analysis.

Agsuming that the values of V-1 and yé_i needed

in (2) are known, a predictor-corrector procedure at time

t, 1s defined by first using (2) to calculate an approxima-
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tion Y, tb S S "Then the Y, B8° détermined 1s substituted
into f(t,x) ‘to evaluate an approximation y; to xé . (3)
is then used to corfect, giving a new approximation to xn..
- We may then evaluate obtaining a new yg , and then correct

and so on. We shail denote‘thé résuléihgisequence of values
as yn,o’yn;1’°°°’yn,m where yn,O is the approximétion to
x, obtained from (2),

obtained from the Jth

n, is the approximation to X
application of the corrector, and m
is the number of iterations. We distinguish between two
cases, those thatxgnd on a correction and those that end on
‘an evaluation. We denote the former by .P(Ec)m and the
latter by PE(CE)™ . We understand that whiéﬁeVer case 1is
"uséd,'m 'wil1 be’cbnstant throughout the domain of t con-
sldered.

It is worth noting that under the assumption that
f(t,x) 1s relatively complicated, the cost of a correction
will be negligible with respect to the cost of an evaluation.
Thus, the method ending on a correction 1s the most loglcal
to use,

To use any predictor-corrector method on an initial-
value problem, the starting values YysooosVy must be
secured by another method known as the starting procedure.
One-step methods such as the Runge-Kutta method ahd others
(see [i], p. 81) are frequently used..

We now ask the following question. Forlarbitrarily
chosen values Ynak?o°2Yn-1’ does the iInfinite sequence
converge to a unique yn' which satisfies (3) exactly?

In,J ,
The answer is given by the following theorem (ef. [6], p. 216)
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which is a special case of a classical tﬁeofem of funétional
equations (see e.g. [l] p. 38).

Before we state and prove the theorem, we note that in
(2),- N does not appear in the left hand 51de,‘.Thérefore,
(2).determines yn;o explicitly as a function of fhé ”
yn«l;°;°’yn~k=1 . Also, using (3), Yn,; can be expressed

in terms of Yn j-1 by
7

yn,,j = F(yn,Jnl). 5 | (4)
, Kk o ok \

Theorem 1: Let the function F be defined for all y 1in
RN and suppose F satisfies a Lipschitz-conditilon with
K <<1 . Then the iteration (4) defines a sequence
ynylpyn;2,ooo which converges to a unique solution yn

of (3). Also,

=

"yn’1=yn,0” ’

A

”ynmyn,m” < 3T

If L is the Lipschitz constant for f(t;x), then a Lipschitz

constant K for F is given by K=hb. L , and K<1 for

8)

all h<<h

o= 1/'.-_.boL . Now

“yn,,j"yn,j-lu = ||F(yn,,,j-l )“F(yn"j,_g)“
S;-K”yrl,,q;j-l“yn,,,j=-'2“'

| - o -1 |
_Therefore -“ynsj°yn,361“ < K ||Yn,1”yn,0” .

and since Hyngv fp‘yn,v“ < ”?n;V +P-yn9V +P*1“ +tooe

oot ”yn vV +1 yn V" ’
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V-1 '
then " yn,l)'*'})--yn,un k¥ +°°°fK). ”yn,,l-yn,O'“
Y
K
< 3% 19,100 -
Therefore ”yn,v fp;yn,ull p;+> 0O as V;'——é 00 .

Thus, the sequence y o,y BEEEE is a Cauchy sequence and
converges to a limit yn o
Now, since ﬁ satisfies a Lipschitz-condition, F is

continuous. Therefore,

lim | 1im
o=V @ () =V o Py, )

i

(Vo v, ) = Fly)

That is, y_ satisfies (3) exactly.
: n

Suppose the sequence converges to in as well. Then
y, = F(y,) and fﬁn = F(¥,) , and
[ 900 | < K| 9,77 :
But since K <1 , this is a contradiction unless ”yn-in”

which implies that yn~#‘§h . Therefore, y_  1s unique.

Finally, letting p—> o0 1n the linequallty for

“yn,xl+p~yn,V“ , we get
X
"ynayn,m" < IX “yn,layn,O” °

This completes the proof of the Theorem

The inequality in the statement of the theorem is signi-

ficant because 1t indicates the exlistence of an estimate for

(B A

=0,
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Now that the convergence of our iteration process is
established, it remains for us to investigate how closely

the vector Yn ‘approximates X, s the solution of (1) at
s .

m
t. .
n
To indicate the relation between Yn and X, s We
write
k k+1
* ¥* *
X = > a.x + h b,x! ,+T (5)
n {4 i*n-1i i 1"n-1i""n

where we deflne the vector T; to be the truncation error
of the predictor formula. Similarly, we let’

K K

- !
*n = 8%p.y t B gé% PyXn-1tTy (6)

[N
il
| —

define the truncation error of the corrector formula Tn o

The are the values we expect to obtaln when we

yn,m
perform the numerical calculations. However, the numerical
values we achieve are not exact, for they are truncated or
rounded to a finite number of significant figures. We let

the vectors

Zn j denote the rounded results. Using the
F
previous notation, Zn 0 is the rounded result obtained from
b4
the predictor formula at tn s, and Zn IR J=1,...,m 18 the
N 2

rounded result after the Jth

application of the corrector,
In the following, we shall consider the procedure P(EC)™ ,
which turns out to be the more complicated. The case
PE(CE)m can be treated similarly and the results will be
given later.

We define the vector r; s the round-off error at the

predictor by
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k : k+1-
- * * : ¥
Zn,0 = igl 81%h.1,m t B 1z=1 %5%net,m-1"n (T)
and the vector T I the round-off error at the Jth
et ME s ‘n,J 2 T TR ,
application of the corrector by
. .
- §
Zn,5 = 1>=:1 a1%n-1,m * MPo%L g1
k - .
+h géi bizn»i,mel-'“rn,;] . (8)

We define the propagated error to be the vector

e, = Xnnzn,m . We define the matrix G by the equation

f(tyu) = £(t,v) = G-(u-v). Applylng the Theorem of the Mean

of f , we see

(see:e.g. [}Q], p. 224) to each component £y

that _
Bfi(t,ui)

G = (gi"’,.J) = ( Sx..

where the U are certain vectors such that u-<:ﬁii<:v

i
We now subtract equation (7) from (5) and equations (8)

from (6) obtaining

k : k+1 T :
* * % *
n,O"'.%;aienai,m + hG z; bienai,m + (Tn+rn)

(]
|

k f .

ey 1 = %aiem_i’m + hboGe o + hG > bienc_‘i’m_li— (T,+r 1)
3 Lened

. = ?aien-i,m + thGen,m=l+ hG : bien-si,mol'+ (Tn+rn,m) .

(9)

This is a set of (m+l) difference equations in the (m+l)

unknowns en,j = Xnezn,J.’ J=0,1,...,m ., ‘Before solving
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*

: *
these equations,; we replace the Tn.’ T, s Tn s rmJ by

) W * C .
respective constant values T , r , T , r . We also assume

that G 1s the same constant matfix for each equation., It
i1s clear that the- e, j satisfying these new equatlons will
. s

approximate the actual e only if T;', r;ﬂ, T, ,

| n,Jj n,j ’
and G change very little over the intervals under consider-
ation (those intervals used when the Theorem of the Mean is
applied). For now, we assume that the intervélsAaré.small
enough so that this is true. It will turn out that the
resulting expressions are only slightly dependent on the
changes of these variables. .Thus, we wouldieipect our re-
sulting expressions to indicate reasbnabiy the way in which
the error propagation depends on the cholce of prbcedure°
Actually, a more rigorous analysls can be outlined as
follows., If we replace the ay and‘bi in equations (9)
by theilr corresponding absolute values, and assume that each
component of the T; s T rz , ¥, 1s bounded in absolute
value by the corresponding compoﬁent of' ™ , T, r* and r 5
respectively, we obtain 'dominating; differenée equations,
the last of which is

E o = 1% la,| Epeim * h‘bolGEn’m=1
+ hG f by By gy + T4E
i=1 : :
where G 1s defined in the Lipschitz’sense:by

|fi(t,xl,aoq,xj,oo°XN) - fi(t,xlyooogijjoooxN).l

< By xy7Ey |
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Upon solving the dominating difference equatiohs correspond-

ing to (9), we obtain an expression for the En m ° It is

)

easy to see that the E qn are bounds for the e

n,
However, these bounds turn out to be ultra-conservative in

n,m °

general (because the bi are not all positivé,'for example )

so we shall not consider them further°
Now, we are interested in the propagated error
e =2

. Thus, eliminating e from the last equa-

n ‘en,m n,m=1
tion of (9), and then en,m=2 and so on, glves
®h,m T (1-6")(1 0) [ T 3ih-i,m * BE 1 bien=i,m=l+§T+ri]
k kK+1 '
m +# : ¥* ¥* *
+ &[> afe s m +hG > ble o +(T +r ]

(10)
where e =,thG and I 1is the identity matrix. For this
expression to be correct, it is necessary and sufflcient
that all eigenvalues of © are less than one in absolute
value, ([3], p. 60). This condition is quite siﬁilar to
the sufficient conditlon for the coﬁvergence of our itera-
tions 1n Theorem 1. However, this condition on 6 1s not
sufficient to ensure that e, is bounded.

If m-=> 00 , € and 6" — the zero

n-=1i,m=1 = en=i,m
matrix, so (10) becomes the difference equation of order k

for the vectors e _,...,¢€

n’ n-k ’

L& K
e, = (I-0) [% aje ; + hG% bye ; + (T+r)l. (11)

(11) represents a system of N ~difference equations for



each of the N . components of each of the vectors involved.
Because. G 1s a matrix, each of the N equations éontains,-
in geheral, all of these N(k+1) compohents,v The resulting
equations are quite complicated and difficult to solve in
this form. -Even the case N=1 , when (1) and thus (l1)
become single equations, 1s not easy. ' Wé shall now consider
this less general case 1n detail.

When N=1, (11) becomes

k .
e, =§%:(ai+hgbi)'en%i = (T+r) : (12)
of(t,X) ~
where g = —=—?;——— for some X . Thls difference equation
X

can be solved by a standard method ([6]9 p. 209). The solu-~

tion en can be written in the form

n n-. .
e, = Ay8] +eo.t As F e (13)

where the A are constants. The first k terms are solu-

i
tions of the homogeneous equation obtained from (12) by
putting the right hand sidezequal to: O, and e is the particular

solution of the non-homogeneous equatidn° e 1s formed by

assuming that € = €po1 T e = €y = e , a constant. Thus
(T+r) . .
e " ;

1 =%(ai+hgbi)_

n-1

Substituting e = As s 1=0,...,k 1into the homogeneous

n-i
equation obtained from (12), the results show that the sy

are roots of the polynomial

Vs
c(s) = ¥ a}_(ai+hgbi) g1 .
S 0 ‘ _
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We shall assume that the s are distinet. If they are not,

i
the resulting discussioen, and in particular, equation'(l3)

must be modified. .However, these modifications are‘not com- -
plicated and are described in [6]°

.We have written e =»xn=Zn . Thus, using the Theorem

,m
of the Mean,

1 _ - . -
e, = f(t ,x ) ~,f(tn?zn,m) - Be,

5 af(tn,i) _ .
where g = —————— . for socme. X , xn< x<Zn m °
' 0X _ s

On the basis of thls equation; we would expect the error to
be proportional to et8 , which is a solution of this equa-
tion for constant g =g . 1In fact, as we shall see later,

1
Spse00sS) are extraneous roots and have arisen because we

if T = 0{hP) , one root of C(s) 1s then s, = ehs%-o(hp).

have approximated a first order differential equation wilth
a difference equation of order k .

When m is finite, equation (10) must be modified.
,(lO) now contains tﬁe other unknowns €n,m=17°°**%nok,m-1
But (10) and the last equation of (9) can be considered as
two simultaneous difference equations in the variables

and e for all 1=0,...,k . To solve these

en—i,m n-i,m<1

equations, we put

n n
en,m = As s en,mnl = Bs

~and, as before, the solution e, will be a linear combina-
tion of the nth powers of the resulting roots s s plus a

'particular integral'; After canéellation, the equations
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become two homogeneous 1ineaf.equations in A- and B . In
order that solutions for A and B exlst, the determinant of
thesge eduations must be O . This condition ylelds the
required bolynomial in s . The s; are then the (2k+1)

| roqts of the polynomial |

B ‘ K+1 |
_j.sk+1c(s) + & l%:esk[:iz'(ai 1+9a ) sk+l°i}

& | Ko kil |
+ hg [sk',"l > bisk=1+(1=e)( > aisk“:L i b:{s}’wl'1
1 1 1

k+1

liu ghl- iZb ket |k Zlb * k- 1)]} (14)

As m —> o , (k+l) roots of this polynomial approach O .

The other k roots become the roots of C(s) |
Before writing down the complete expréssion for e, »

we shall discuss how the ay aI R b1 and.b; are chosen.

Closely related with this problem is the concept of stability°
Roughly speaking, a method 1is dpfined to be stable if |

the error e, 1s insensitive to small éhanges in the local

errors - the errors at each step of the calculatidn° Now,

one term in the expansion of e, is proporfional to the

nth power of the root 8 that approximates ehg and is

to be expected from the differential equation. We want the

contributions from the other s to be negligible with

i

regspect to the contribution from sl . If g 1is positive,
ehg.>>l . For the term of én contalining sl_ to be the
dominating term, the other 8y must be at least less than -

89 in absolute value. If : g 1s negative, we want the
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terms of e, to be bounded. Thus, we define a method to be

stable if |si|<f’sl for g >0 and if ERN
Stability is defined in this way so that the relative error
of a stable method is small in absolute value.

The degree of a predictor or corrector formula is de-
fined to be the largest integer p such that T = 0(hP)
Obviously, we would like to choose our constants so that the
method has as high a degree as possible,

We now return to equation (5), and using the Taylor

expansion
Kooy = *(to=ih) = x(t ) + (1h)x'(t )
2
FED R Y
21 no

and a similar one for x -y s We expand the right-hand side
in powers of h . By equating the coefficlents of the same
powers of h on each side of the resulting equation, we

obtain the relations

+ooat a* = l

a Kk

+ a

N %

*
+ 2a2

2_* 2. % * *
+ 2%, +o..+ KTay = 2(b1 + 2b, +f°°+‘(k+l)bk+1)

3*
teoot ka, = (bl + b2 +ooat bk+1)

By
ok ok ok

a

o ° ° ° ° ° o ° o ° ° ° ° °

* k+l * K+l *® *
al + 2“"a] & = (k+1)(b)+25b) +... +(k+l)kb

° ° ° o ° °

+o.o.+ K k+l

(15)
We first note that at least the first two of these equations

must be satisfied if the true-solution x(t) is to satisfy

the predictor equation except for terms of o(h) as h —>0 .

<1l for g<<O.
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. (These two equations are the necessary and sufficlient condi-
tions for the consistency of a method [9].)

Since we have\(?k#l) unknowns, it would seem reasonable
to solve the first (2k+l) equations of (15) for our unknowns
and thus obtain a method with a truncation error of degree
2k+1. However, Dahlquist [2] proved the rather remarkable
theorem that the.degree of a stable operator of order k
cannot exceed (k+2) (or k+3 in an exceptional case which we
will not consider). If we use the first (k+2) equations to

k+2
)

determine the constants, T. will be O(h . Now, the

determinant of the coefficients of the bI_ i1s a Vandermonde
determinant and therefore is not O . Thus, there is a large

number of stable methods with p = k+2 . In practice; the

a; are chosen first, and then the b; are determined in

this manner,
The corrector .constants are chosen in the same way as

the predictor constants. The resulting equations are similar

to (15) with b, appearing on the right hand side of the

0
second equation. Also, b, , does not exist.

k+2y  into c(s) and

By substituting s, = e"8 + O(h
using'the corrector equations corrésponding to equations (15),
we see that 84 is 1ndéed a root of C(s) and thus an
approximate root of (14),

We now return to writing down the complete expression
for e for stable operators. To determine the particular
solution of the non-homogeneous equation, we'put en»i,m‘z e

and =& , a constant, for all 1 and eliminate €

enwi,m-l
from equation (10) and the last equation of (9), finally
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obtalning an expression for e . Since we are assuming that
the operator 1s stable, we shall neglect the effects of the
roots other than 81 . Also, we neglect the effect of
starting errors by assuming that e, = 0 . The resulting
approximate expression for e, i

S
m-1 ' *
e (1-8)hg - bi
1

T+r
) —

hg‘§: by

1=0

n = [( o (l_gm)

-1
+§“;1;:§;(T%+r*-)] (s,"-1) . (16)

'(1f9m)

k+2)v, they are negiigible with

‘Since T° and T are 0o(h
respect to r and r* for small h . This region of h

is called the round-off region. We shall see later that

in this region, the error can be minimized by using proper
computational techniqﬁes° As h Dbecomes large, T™ and T
become the more important terms. This region of h for
stable operators 1s called the truncation regién.- For large
k+l)

m, e_ 1is approximately Ofh

n ~in the truncation region.

It is important to determine precisely the conditions
for a method to be stable, Dahlquist's theorem provides us
with a condition on the degree of a method if 1t 1s to be
stable. 1In general, we cannot increase h 1indefinitely and
s8tlll maintain stability.

For m = 00 , the stabllity requirement places a condi-
tion on thé root of C(s) of maximum absolute value, say
s* . For glven constants ai s bi and k , C(s) determines
|

ls as a function of hg . An example of a plot of ls*|
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versus hg 18 given in Appendix I . For hg >0 , é* =8y ,
the expected root, in.the region of smail hg . However, as
hg decreases in the negative directioﬁ, g becémes one of
the extraneous roots, Is*] becomes greatef than 1, and
instability occurs. We say that the hg-region of stabillity
is {d,0) .

A graph such as that in Appendix I is a practical aid
in determining stability. vDuring the course of solving a
differential equation, g 18 calculated - after each step
if necessary - and h 1s chosen so that the value hg lies
in the region (d,00) _A

For m % 00 , and the method‘ P(EC)m s the>determination
of the hg-reglion of stability is as above, except that the
polynomial (14) is used instead of C(s) . For the case
PE(CE)m and finite m , the polynomial is even simpler. It
résults from eguation (10) with €n-1,m-1 replaced by

n-i,m ° It turns out to be

sC(s) + " ji: (a -a +9a +hg(bi 1+9b ))sk+1°i\° (17)

The hg-regions of stability for values of k=1,...,8
and certain values of m for procedures based on the formulas
of Adams type are shown in Appendix II. The Adams formulas
are defined by taking aI = al,=_l , but otherwise a; =a;= 0,
The predictor then becomes.the Adamsg-Bashforth formula and
the corrector, the Adams-Moulton.

.-+ We note three characteristics of the table iIn Appendix II.

For given m , d 1increases as k goes from k=2 to k=8 .

4
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For given k and m , the hg-region for. PE(CE)™ contains the
hg-region for P(EC)m and P(EC)m+1. Thirdly, the hg-region
for m = oo 1s the largest for each given k ..
- To conclude this section, we shall investigate the

extent to which the preceding results for N=1 can be general-
ized.

It is shown 1n Appendix I1I, that e, can be represented
as the first N components of the vector Anyo where A
is an Nk by Nk matrix and Yo is the 'initial-condition!
vector, The growth of e 1s determined by the eigenvalues

n
of A . As shown in Appendix III, Py O(hk+2)

where A
is any eigenvalue of G , 1s an eigenvalue of A . These
are to be expected as before, Therefore, we define stability

in a manner analogous to the case N=l .

hA hG

Let ll = e be the elgenvalue of e of maximum

absolute value ( lhll is called the spectral radius of
ehG)o Let the other eigenvalues of A be denoted by Aj‘o
We say a method is stable if .‘hil %: 'hll for Ihll >1
and 1f  |A| <1 for |A;l<1.

The definition of stability 1s rather arbltrary. Sta-
bility should be defined to suit the requirements placed on
the numerical solution. Unless we note otherwise, we shall
ugse the above definltlon which is sultable for our purposes.
.if a method satisfles this definition of stabiiity, the
relative error of the solution vector of the system of equa-
tions, as measured by our norm for example, will remaln

small, Hewever, the above deflnition does not ensure the

smallness of the relative error of each component of the
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numerical solution. If we replace A in the above defini-

1

tion by the eigenvalue of ehG of minimum absolute value,
we obtaln a stronger stability condition. Thils new condition
1is sufficilent - but not necessary, as we shall see later - to
ensure the smallness of the relative error of each component
of the solution.

We define absolute stabllity by saying that a method
is absolutely stable if the extraneous eigenvalues li satis~-
fy Ihi' <1 ., .Another quite restrictive definltion of
stabllity requires that the ‘Ai satisfy IAj_l<: lhg |,
where Az 1s the elgenvalue of ehG of minimum:absolute
value, even 1if |7\2| <1 .

It turns out that for a stable method, an approximate
expression for e 1s

-1
e = (s7-1) [(I-em'l(x-e)(1=em)flhe_%i%b

v 4 ”kiEZbi

e %
(%]
PT“'B
+
s

4 @ L(1-0)(1-6") " (TR *) ] (18)

h

where .S; = ¢ G, O(hk+2)

Noting the similarity between equations (18) and (16),
we‘define the round46ff and truncatlion regions for the
general case in the same way as before., The right hand side
of (18) provides an estimate for “en“ .

For Adams method, the region of stabllity can be deter-
mined if the elgenvalues of A are determined in terms of
h . Methods for finding these eigenvalues are given in

Appendix III, 1In general, these eigenvalues are difficult
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to determine, particularly if the matrix G varies considerably
during the course of a calculation. It 1s quite impractical

to calculate the eigenvalues of .A with any regularity while
the method 1is used. However, a preliminary study of the

system might yield pertinent information on the Ai . For
instance, 1f G 1s a constant matrix over the domain of

t under consideration, the A can be predetermined for

i
a gilven k and h , giving the conditions on h necessary

for stability.
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ECONOMY CONSIDERATIONS

In deciding which numerical methods to use for solving
(1), the cost of such procedures should be taken into account.
We shall compare the accuracy of methods that cost the same.
Since we are assuming that f. is relatively complicated, the
cost of a procedure 1s proportional to the number of times
f 1is evaluated. Thus, m/h 1is a'reasonable.measure of
cost for the predictor=correctof procedures,

A typical plot of the relative error that results when
Adams method is used versus h 1s given in Appendix IV. 1In
the round-off region, the relative error is quite constant.
As h 1increases through the truncation region, the relative
error increases. Finally, instability occurs. Depending
on the accuracy required, we would like to choose h so
that the method 1s operating in the extreme left hand side
of the truncatlion region. The problém then becomes one of
determining the most practical m . Obviously, we would
like to keep m as small as possible.

We assume that T¥ and T are the dominant terms in
(18). It may happen that h 1is so small that the first
term of {18) dominates. 1In this case, increasing m ‘has
little effect in changing e, - Otherwise, the second term
dominates. 1In this case 1t 1is better to decrease h ;, thus
decreasing the magnitude of the terms of 9m°1 and of T ,
rather than increasing m . In any caée, it is clear that
we need consider only small values of m ,

Before making a specific choice of m , we should con-



~plia

sider the stability question. For the case N=1 and Adams
method, it is clear from the values in Appendii II that the
PEC method is rather unstable for general purposes. The
stabllity reglons for cases with more evaluations per step
than PECEC are not considerably magnified; Bearing in
mind that we wish to keep m small, we mﬁst therefore
choose between the methods PECE and PECEC,

| The procedure PECE has a larger reglon of stability
than PECEC for each>given k . However, 1t may be that
the extra accuracy obtained by the added correction - which
costs practicaliy nothing - warrants the use of PECEC
over PECE .,

The stability question for the general case 1s harder

to discuss since we do not have tables such as those in
Appendix II. However, we expect stabllity to behave the

same qualitatively as in the simple case.



EXPERIMENTAL TECHNIQUES

Because the round-off error r appears where 1t does
in equation (16), it can be of considerable importance unless
its magnitude is kept small., The use of double-precision
arithmetic decreases the magnitudes of the individual
round-off errors. However, round-off effects are minimized
more simply and more economically by using 'partial double-
precision’ ([6], p. 94). The values of y, 1in (2) and (3)
are stored in doublé—precision and the additions of the
terms involving h are done in double-precision. But the
terms in (2) and (3) involving h are calculated in single-
preclsion. For instance, if Zn—i denotes the single~
precision rounded value of the number Ypei ° then partial

double=-precisicn for the Adams corrector 1is defined by
k 1
Ya T Yna +h ;Zg PyZn1 ’

where the second term is left unroundéd and is added 1n 1its
entirety to Yn-1

This procedure 1s successful because the method involves
the addition of small terms to relatively larger ones. 1In
fact; h can now be decreased to a considerably lower
value than in the single~precision case, without fear of
accumulation of round-off error.

A measure of the local ftruncation error - the trunca-
'tion error from a single step of a calculation - can be

found by experimental methods. First, we write
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T = ¢h®  ana T =c n¥*?

where Tp and Tc are the truncation errors due to the
particular applications of the predictor and corrector

respectively at the point tn , and

(k+2) _ R'x(k+2)
P (k1) | - ° - (k+1)! o)

Thérefore, neglecting round-off errors,

c : k+2 -
(y%-y%) = (c,=¢,) n
where yP 1is the yn calculated from (2) and y°© the

‘value of y_ = calculated from (3). Thus,

lc, |

— p
fe,c.|

yP-y©

°

i ~ R
Iz, P = ] . )

e

R and R* depend on the a, and b, , a; and bI . For Adams
method and k=6 , for example, R/(R*-R) = -1375/38174.

It is a simple matter to calculate this approximation
to '“Tc“ at any stage of the procedure. In practice, the
maximum local error to be allowed would be prescribed.
During a calculation, h would be chosen so tﬁat the mea-
sure of ‘the truncation error given by»(i9)vis.iéss than the
prescribed maximum, |

We shall compare the results obtained by the,applieaf

tion of various predictor-corrector methods to the popular

Runge-Kutta method defined by
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_ 1
Y41 = In t g (k +2k2+2k3+k4)
where
ky, = hf(t ,x )
ky, = hf(t +h/2, y +k,/2)
ky = hf(t +h/2, y +k,/2)
ky, = hf(t +h, yﬁ+k3)

The truncation error of this methed is O(h5)-° We note
that thils method involves four evaluations of f per step
and thus costs the same as the PECEC method with a step-
size of h/2 |

Before concluding thie sectlon, we note that in
Appendices V, VI, VII and VIII, the step-sizes for the
- Runge-Kutta procedﬁre are chosen so that the methods in the
same row of the tables cost the same. That is, for the
PEC> table, the Runge-Kutta step-size is equal to four times
fhe predictor=corrector‘stepesize, For the PECE and PECEC
tables, the Runge-Kutta step-size 13 twiceAtHe predictor—
corrector step-size., In these Appendices, h denotes the

predictor-corrector step- size
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. EXPERIMENTAL RESULTS

We tested the preceding theory on four separate problems.
We considered only systems of equationso :Thé'first two
| broblems are simple examples of circular moﬁion [7]°' Pro-
blem (A) is linear whereas,(B).is nonlinear, - Each has the
same trigonometric solution. For problem (C) we chose a
linear system of equations with an. exponentialas'blution°
The equations in problem (D) are the equations of motion of
a vehicle reentering the earth's atmosphere [8] A theoretia
cal solution of the last problem is not known - as 1s generally
the case in actual practice. Therefore, problem (D) was
solved under realistic conditions. - |

We restricted ourselves to procedures using formulas
of Adams type only. Much of our theory 1s based on these
formulas. Actually, procedures using Adams formulas ére as
reliable as most of the other procedures and are generally
considered to bé represgsentatlve 'general-purpose'’ procedures.

We conslidered procedures based on the itefation ﬁethod
P(EC)® for m=1,2,3 and on PE(CE)m for m=1,2 . In each
of these cases, we took k=4,5,6,7 . Problems (A)‘and (B)
were run over the domaln t=0 to t=10T , problems (C)
and (D) (after normalization) over t=0 to t=30 . For
each m and k we used ’h=2o,2=’1,,.,;,2°7 o‘

Some of the results for problem (A) are representative
of the results for-the other problems so‘he shéll discuss
(A) in detail. Then we will note where the results from the

other problems differ..
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Problem (A) is defined by

xi(t) = X, xl(O)' = 1
xé(t) = =X x2(Q) = 0
xé(t) = x, x4(0) = o©
x(t) = -xg x,(0) = 1 ., (8)

It 1s easy to see that the solution is given by

xl(t) = cos t
xz(t) = -sin t
x3(t) = sin t
xu(t) = cos t

The matrix G 1s a constant matrix and 1lts elgenvalues are

i and -1 , each fepeated,/ We note that all the eigenvalueé.
of ehG have absolute value equal to one. Thus, if another
elgenvalue of A has absolute value greater than one,

instability will occur.

We use the norm

o= el = eyl v lepl+ fesl + feyl

where ei is the error of the ith

component qf the
numerlical soclutlon, as a measure of the error.

The table of maximum errors corresponding to this pro-
blem is glven in Appendix V., A plot of maximum error versus

h is given 1in Appendix IV for the speciai case k=6 and
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the PECEC method. In each instance, the maximum error
occurred very near t=10T .

We first note that for each k and h , the error in
the round-off region 1s approximately constant. In the case
k=7 and the PECEC method, the round-off error varies only

10 4o n=27%, This is a

slightly over the domain h=2"
result of the partial double-precision technique.
-Instability occurs for each method and each value of
k . The transition between the truncation region and the
instability region is sharply defined 1n each case. However,
instability_arises at different values of h for different
methods. For a given k , instability appears at smaller
values of h for the PEC method than for other methods.
For the PEC method, the h at which instability occurs
decreasegs rather markedly as k 1increases; however, for
methods other than PEC , fthis phenoménon does not appear.

In fact, no indication as to which k 1is best exists for
methods other than PEC . |
For the meﬁhods PECE to’ P(EC)3 ,-thevround-off
regions and the errors in these regions are very nearly the
same., Also, the increase of the errors through the trunca-
tion regions in thase cases behaves approximately the same,
although the error rises slightly faster for k=4 than for

k=5,6,7 . However, instability appears for smaller h in
the cases PECE and PECEC than in the cases PE(CE)2 and
P(EC)3 (it oceurs for>slightly smaller h 1in ﬁhe case
PECEC than in PECE). But since we are Interested in using

values of h such that the method operates 1in the left hand
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side of the truncation region, the PECE and PECEC methods
are as sultable for this problem as any other method.

For methods other than PEC , and each value of k , the
error in the truncation region does not increase as quickly
as expected. Assuming that the terms involving © 1in
equation (18) can be neglected, we expect the error in this

region to be approximately O(hk+1)

. However, since m
is small, 1t might be that our assumptions about 8 are
not strictly true. For this problem and all methods, the
truncation region is not particularly wilde.

Comparing the predictor-corrector methods PECE and
PECEC to the Runge-Kutta method of the same cosf (ﬁhe
Runge-Kutta method with twice the step-size), we see first
that in both of thelr round-off regions, the error is approxi-
mately the same.- However, the truncatlon region for the
vRungeaKutta method starts at much smaller h than for the
other methodé, From the value of h at which the trunca-
tion region of the Runge-~Kutta method starts to the points
where instability of the predictor-corrector methods occurs,
‘the error of the Runge-Kutta method 1s considerably higher
than that of the predictor-corrector methods. And it is
precisely in this region that we wish to operate our predictor-
corrector method, thus obtaining the maximum accuracy for

the minimum cost.

Problem (B) is

xl'(t) = %, x(0) = 1
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x3(t) = x x3(0) = 0
xi(t) = =x3r-3 xu(O) = 1 (B)
where r = x? + xg o The solution is the same as in

(a) .

Even though (A) and (B) are similar problems and have
identical solutions, we cannot expect the experimental
results to be the same for both problems, for the terms
involving r in (B) affect the eigenvalues of G . The
characteristic equation for G 1is not difficult to con-
struct. However, it depends on Xq and x3 and is quite
. complicated. The results for (B) are tabulated in Appen-
dix VI,

The instabllity regions for methods other than PEC
are not well-defined for problem (B). In fact, i1t appears
as 1f instabllity does not occur for these methodso‘

The errors in all the round-off regions are approxi-
mately the same. The truncation region for the PEC method
starts at lower values of h than for other methods, as 1is
the case with (A). Also, for all given methods other than
PEC , the truncation region for k=4 starts at smaller h
than for k=5,6,7 . For the latter methods, the truncation
regions for (B) start at approximately the same h as
these for (A). Again, the truncation error does not rise
ag fast as expected.

The predictor-corrector methods used on (B) compare

with the Runge-Kutta method in essentially the same way as
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before,

For problem (C), we chose

x(t) = x x,(0) = 1
xé(t) = x x,(0) = ©
xé(t) = x, | x3(0) = 0
x&(t) =l x5 x,(0) = 1 . (c)

The solution 1s

31(t) = %(et+e°t) xy ()

xp(t) = B(ef-e™) = xy(e) .

The elgenvalues of G are .1 and -1 , each repeated.

We use the same norm as before and we let E/?(et) be
a measure of the relative error. The table of maximum
relative efrors is given in Appendix VII. For each method,

the maximum relative error occured at t=30 .

hG h

The eigenvalues 6fﬁ e for this problem are e and

eahfob Since eh >1, we éipect at least one component of
the errdr to behéve liké a positive exponential. - Also, it
1s reasonable to expeqt_ éh> to be the eigenyalue of the
matrix _A' of maximum éb;olute‘vaiue for mséﬁwmééﬁodso Thus,
these methods would be Séable; v -

Thé'Qable implies that instability does'nbﬁ occur for
méthb&é”dfﬁer thén PEC ,“IAnd'since each;éémﬁoﬁéqﬁ of the

't

solution_is proportional to"e , each comppnentuﬁés a small

relafive error. We ndte,however,that a simple transformation
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changes equations (C) into a system in which one of the com-

-t By its very nature,

ponents has a solution equal to e
this component would not have a small relative error.

The truncation region for methods with k=4 other than
PEC start at smaller h than for methods with k=5,6,7 .
The truncation errors for k=5,6,7 are similar. The
methods PECE and PECEC are considerably better than the
corresponding Runge-Kutta method°

Finally, problem (D) is defined by

C.S
1 o D - N -
X (S) = —a-/ox1 2(grsinx3 gxcosx:scosx2 %Pcosx3sinx2)

- 2@»2x6cosx4)(sinx3cosx4+cosx3sinxucosx2)

! (8) = CiS 1 N cosx3sinxgsigx4
2 sm /° cosx3 XCO8X)
1
- —=—— (gysinx,-g cosx,)
X, CO8X3 A ) %p *2
2
+cu x6cosxusi?xgsinx2 . veu) (sinx3zzzzecosx . sinxu)
%) CosXg 'N/;I ' 3
C, S g
' IR ) - (2 + 2Ty
x3(s) = - 5= cos¢70 (X6 + Xl) cosxy
- L (gssinx,cosx,+g sinx.sinx,) - 29 osx,sinx
X i\ 3 2" 3~ 2 — 4 2
1

w2X6COSX4 .
) - —m—zz————_(cosx3sinx4—sinx3sinxucosx2)
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COSX.,COSX
! 3 2.
X (s) = =
u\ Xg
x'(s) _ COSX3SinX2
5 XpCOSX),
xé(s) = - sinx3' . (D)

where /0 = /OO e‘p'y

S 2 R

y =. x6-RO§l-fsin2x4*— %r'(?? - %0 sineexu)

. 3¢~ R :
g, = = GM 5 (1 - =20 ng)z (3sin2x4=l))

(X6 ) 2 X6
R
g = “QQM§ Cso (f-»-g)2 sinx)cosx,
(X6) X6
= 0 .

%

A bhysical interpretation of the problem and its para-
“meters 1s gilven in Appendix IX. The important variables are
Xy 5 %3 and Xg o - We normalized‘the problem by putting
t =38 x 1072 . The domain of t allowed the vehicle to
make more than one comple@e 'skip' through the earth's outer
atmosphere.

. Each componeht of the solution to (D) behaved as expected.
For all methods, a region-of h existed‘in which each com-

ponent was constant; these respective constants were the
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same for all methods. These regions were the round-off
regions.. Similarly, truncation regions existed,
As a méasure of the error in each -Xi , we used the

L

deviation lxiéiil where X%, “was the solution in the round-
off region. The greatest rélative deviations were observed
for X3 o The results for the other Xy were very similar,
The maximum deviations for x3 are given in Appendix VIII.
We observe that the PEC method gives results that are
similar to those of the previous problems. Instability
occurs only for the PEC method with k=6,7 . ¢The PECE and
PECEC methods yleld deviations that are as small as the
corresponding deviations for the other prédictor=correétor

methods and considerably smaller than the corresponding

deviations for the Runge-Kutta method.
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CONCLUSIONS

In general, we have shown that predictor-corrector
methods can be ﬁsed effectively to generate accurate numeri-
cal solutions to systems.bf ordinary differential equations.

We have described the theory and usage of predictor-
corrector procedures in detail, We'considered methods of
the form P(EC)™ and PE(CE)™ for diffefent values of k .
We have discussed'the concept of stability for single equa-
tions and have generallzed this concept for systems of
equations. We have obtained an approximate expression for
the error vector for stable methods and we have discussed
the behaviour of the error for varylng step-sizes.

In partiéular, we have ihveétigated theoretically the
behaviour of the error for Adams method applied to the case
N=1 . For a given method, the error in the trunqation
region 1s lowered as Kk 1increases. However, the table in
Appendix IT indicates that if g <0 , instability will
occur at sﬁaller h as k becomes larger. On the other.
hand, for either P(EC)™ or PE(CE)™ and a given k ,
similar reasoning indicates that instability will occur at
larger h as m increases. The @xperimentalbresults in
[é]exhibit this behaviour. Finally, for a given m and k ,
the method PE(CE)“m is stable over a wider range of h

m-+1 On the basis of these

than either P(EC)™ or P(EC)
facts and the adﬁitional requirement that m be kept small,
we decided ﬁhat the methods PECE and PECEC . with the inter-

mediate values of k=5,6 are the most efficient for N=1 .
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For the general case, the stabllity conditions are not
easy to. analyse. HoWever, from the results for our four
different and'representative problems, we are able to draw
certaln conclﬁsions°

The PEC method ylelded the poorést aecuracy and was
quite unstable, espeéially fdr large values of k . The

2 and P(-EC)3 methods were not significantly better

PE(CE)
than the methods PECE and PECEC for any of the problems,
The results from the‘ PECE and PECEC methods were quite
similar, However, for k=4 , the truncation region started
at lower values of h than for k=5,6,7 .

or the"methods'considered, the PECE and PECEC _methods
with k=5,6,7 are the best for general purposéso For the
problems we investigated, these methods gave considérably
better results than.the Runge-Kutta method of the same
cost° |

It is possible that significanﬁ rgsults may be obtained
by investigating methods using larger Valueé of k . The
possibility of determining the elgenvalues of the matrix :A

and controlling stability during thé course of a calculation

should be investigated.
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APPENDIX I

's*l vs. hg
(Adams PECEC, k=3)

=2.,0 -1,0, 0.0 1.0 2,0

<= Region of Stability —
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APPENDIX IT

The hg-Regions of Stability

Method ~ é. > 3 -
\;jx\\\ PEC  PECE  P(EC)® PE(CE)® P(EC)> P(EC)

1 -1.00 =-1.37 +0.60  +0.38  +0.50 -0

2 -0.30 -1.70 =1.13  =1.25  -1.00 (- o)
3  -0.15 -1.25 -0.87  -1.10 -0.87 (-oo)
4 -0, : -1.00 =062 ~ -0.87  -0.70  -1.80
5 -0, -0.70  -0.50 -0.70  -0.55  -1.13
6 -0,  -0.50 = -0.38 -0.50  -=0.45- .:-0.75
7  -0. -0.38 -0.25  -0.38  -0.35  -0.50
8  -o. -0.30  -0,20 -0.25  -0.25  =0.35

The values of d , where “(d,oc0 ) 1is the region-of stability,

are plotted. The equatiohs'gsed are

kK K+l
p(EC)™: s¥Mc(s )+em'l {Gsk['z..aisk"_l-i«.(l-_e) > a;s'kﬂ-i:l
T . " T

K ko, kL
+hg[§kﬁlz:bisk_i+(l-9)(E:aiskai° Z:bzsk+l—i
1 ' I 1
K+l kK . K |
* k+l-1 k-1 _k * K+l-1
- ais ozz:bis‘ -5 bisu ii} | = 0
I 1 : 1 -
J m “ m il ; #* 3 * * k=i+l
PE(CE) : sC(s)+e (ai—ai+eai+hg(bi—bi+9bi))s = 0
' 1
Kk & Kei
m=o0: C(s) = (1fe)s -2;(a1+hgbi)s = 0 ,

where for Adams method, a, =‘af = 1 and otherwise a; = 0.

e = hbog .



APPENDIX III

The Generalized Error Equation

For the general case (N#l) , the error equation is
(11) for m=c0 and a more complicated equation determined
by (10) and the last equation of (9) for finite m . We

rewrite the homogeneous équation'in the form

A

1

+ A e +ooot A

1%n+k T BoCnik-1 = 0 (20)

k+len

where, for m=o00 ,

Al = I = thG»
A2 = -I-hblG
Al = -hbi“lG 5 1=3 y’ oo o yk+l

The A, are polynomials in G for m#o .

i

The transformation

Yn1 = ©n : ynl €0
Y2 = Cn4l In = In2 Yo T €1
Yk T Cntk-1 Ynk ®k-1

results in the equation Y, = Anyo , where

g 1 g B .... B
g £ I B cie. P
A= . . ce
g g g g ... I
‘AilAk+1 R .'AIlAz
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(assuming that A, 1s nonsingular) and I and @ - are the
N by N 1ldentity and zero matrices respectively.

.The growth of e, - which 1s represented as the first

N components of Yo - is determined by the eigenvalues of

A .., For example, 1f all of the eigenvalues of A are less

than one in absolute value, An_—9 the zero matrix as

n —» 0 . The eigenvalues A of A satisfy the character-

istic equation

. K k-1 :
det(al)\ + Ay A tooot Ak+1)‘ = 0 . (21)

Returning to equation (20) with the A, for m=o00 ,

i
we replace e ., Wwith the (n+i)th power of the matrix .

s, = &0, 0(h

k+2
1 )

Using the corrector equations corresponding to (15) and the
relation-

e = I +

Cuse
ie
2,

we see that S1 satisfiles

n+l n+i-1. ' _
Alsl + Agsl +o'o o+ Ak+l - O
Therefore, S1 satisfies the scalar equation _g(Sl) = 0
where
k
g(A) = det(A; A" +.oot A1)

(see [5], p. 228). Now, if T 1s a matrix such that
TElslT is the.Jordah cononical form of S1 s the equation

T7lg(5,)T = O implies that each eigenvalue of S,
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satisfies g(h ) = 0 . That is, each eigenvalue-ofv’sl is

an eilgenvalue of A . However, the eigenvalues of S1 are

hAL . . k+2).

of the form e + O(h where A, 1is an eigenvalue

of G .

, - = o
Therefore, S? E where E 1s a constant vector,

satisfies (20). The complete solution of (20) can be written

as S? E plus other terms that depend on A and whose

behavioﬁr depends on the eigenvalues of A . TFor stable

meéhods, the solﬁtion of (20) is approximately 'S? E .
Under special circumstances, the above analysis can be

simplified. We assume that there exists a matrix T such

1

that T GT = D, a diagonal matrix With the N eilgenvalues

of G (possibly repeated) as the diagonal elements. We let

e = Tv 1=0,...,k and substitute these expressions

1

n+i n+i ’

into equations (20). Premultiplying (20) by T ~ and noting -

the special form of the Ai » we obtain a system of N
uncoupled difference equations, each of the components of

v appearing 1n only one of the'equ_ations° Each of these

n+i
equations méy be solved by the usual method. However,

Py = ehD + O(hk+2) is a solution of the resulting system
of .equations and thus hAL +.O(hk+2)

root of the ith difference equation. (A sufficient condi-

is a characteristic

tion for the smallness of.the relativelerrOr of each com-

ponent of v, can be found by applying the stability

condition for N=1 to each difference equation.) For stable
systems, Vo is approximatély P? F for some vector F
and thus e  1is approximately TP? F = S? E as before.

To write down the complete expression for e, s We pro-



.

ceed as in the case N=1 ., We first find the particular

integral of the nonhomogeneous equation. We put eneim = E
’ b4

and e = E , both constant vectors, for all 1 and

n-1i,m-1
~eliminate E from (10) and the last equation of (9) . We

obtain the expression

E = (-I+6"" H1-0)(1- gm)cth %f%b ) & ~

| 11§Z:b

em°1(1-e)(leeW)=l(T*+r*)

We then assume that .en‘ can-be written appfoximately as
? E + E , and, neglecting starting errors by putting
e, = 0, we find that E = -E . The final expression for.
e, 1s given by (18).

To determine the elgenvalues of A , we use equation
(21) or other methods that take advantage of the special
form of the A; .
We note that the above analysis speciallzes to the

analysls for single equations when N=1 .



APPENDIX IV

‘1oglO(Error) Vs, logg(h)

(PECEC, k=6, Problem (A))

INSTABILITY REGION ——>

TRUNCATION REGION

ROUND-OFF REGION

y

-8.0 -6,0 -4, 0 -2.0
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APPENDIX V

Maximum Errors - Problem (A)

The units of E are 1070,

N " 6

h 5 7 Runge-Kutta
27/ 1.669 2.101 2.488 2.131 1.952
272 1.654 2.116 2.503 - 12.636
277 1.669 2.146 - ~ 177.920
27 1.71F 8259.982 - - 2978.951
273 3441.267 - —~ - 47223382
279 - —~ — —~ 610237.544
2 — . — — —_
20 ~ - - - -
271 1.654 2.086 2. U7k 2.161" 1.326
27 1.654 2.086 2.474 2.146 1.952
277 1.684 2.101 2.488 2.161 12.636
273 2.086 2.235  2.593 2.310  177.920
273 56.505  10.30kL 7.302 7.197 2978.951
27 2502.719 582.278 266.694  174.493 47223.382
20" 137785.740 55772.796 - - 610237 . kL4
2 — — _ — —
271 1.669 2.101 2,474 2.176 1.326
272 1.65h 2.116 2.488 2.176 1.952
277 1.699 2.116 2.459 2.176 12.636
275 2. 431 2.265 2.563 2.339  177.920
272 52.944  10.595 6.92k 7.123  2978.951
279 2204.105 553.556 198.h69 223241.962 47223.382
20 111165.665  — —~ — 7 610237.h44
2 — — — — —
2-1 1.654 2.101 2,474 2.176
272 1.654 2.116 2. U7h 2,161
277 1.699 2.086 2.503 2.190
273 2. 4Lk 2.280 2.593 2.310
273 49.874  10.312 6.810 7.078
27 1830.876 462.681 177.965  161.231
207 73939.659 31200.409 14849.722  5329.117
277 1.654 2,101 247 2.176

T 1.654 2.116 2.488 2.146
277 1.699 2.086 2.503 2.205
2”3 2,421 2.220 2.563 2.310
273 48.175  10.103 6.869 7.093
2.3 1634.471 424,854  168.204 161.350
2, 58997 .743 26176.870 11493,.862  4910.804
2 - - = -

A dash denotes an error greater than 1.
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APPENDIX VI

Maximum Errors - Problem (B)

The units of E are 107°.

AN l 5 6 7  Runge-Kutta
27/ 909 5.670 2,787 4,195  10.371
27 g2 10.148 4,880 - 97.185
277 2,913  15.266 - - 2193, k21
275 112.526 z ~ - 68238.030

-] - = - - -
5 - - - - -
20 - —~ —~ —~ -
27/ 1,058 1,438 1.334 .529 5.618
2_ g .633 3.859 2.198 1.281 10.371
277 3,070 . B.285 2.503 1.095  97.185
273 138.827 3.919 9.872 3.047 2193.421
2_3 3093.675 501,588 98,258 115.767 68238.030
277 6787.375 51689.016 10482.252  4979.767 -
) - ~ - - _—
2° - - - - -
277 671 .656 1.207 2.138 5.618
22 1.192 477 .596 4,716  10.371
277 5.242 2.876 671 5.908  97.185
273 153,504 1.535 2.131 8.099 2193.u21
273 4193.246 148,892 69.492  103.00L 68238.030
277 122627.400 11467.785 2791.904 z -
2 — — — — —_—
20 - - - - —
22f 671 656 1.229 2.213
272 1.036 .559 .507 4.992 -
2% 4,150 2.496 1.192 5.610
277 155.605  2.578 1.818 3.507
2_5 4334,085 158,772 66 . 489 99.644
277 139126.979 14779.426 2462.968  6070.942
go - - 137551.375 503854.632
2-[ 671 .656 1.214 1.825
27, 1.013 .827 .507 4,575
277 5.640  1.974 1.110 4.120
273 156.805 1.810 4,299 8.129
273 403,017  159.815 67.525 97.781
279 1u7e31l62h 1643L4.923  2359.815  5988.881
29 - - 191579.305 -

A dash denotes an error greater than 1,
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APPENDIX VII

Maximum Errors - Problem (C)

The units of E/E(et) are 1070,
h 5 6 7 Runge-Kutta
27] 675 846 1932 .785 736
222 675 .871 .932 — 4.108
277 1662 908 - - 55.463
273 .724 497905.390  — ~ 793.547
273 38.703 = = ~ 10275, Ohlt
277 - - - — 104165.800
24 - - — - 555766.100
2 —_ -— — -— —
271 675 .816 LOhY 797 .515
22, 675 .846 932 797 .736
277 .650 .859 932 797 4.108"
223 .392 .895 .981 .858 55 .46
2_5 2.661 1.840 2.257 2.441 793.547
277 120.224 63.718  48.374  49.098 10275.044
27 8950.645  4198.86L4 2344.865 1716.027 104165.800
2"  203513.730 137079.090 94853.131 69640.762 555766.100
27l 675 .834 .9hl 797 .515
277 675 .8L6 RN 197 .736
277 .650 .834 .932 .822 4.108
22, .209 -.8l6 .981 .895 55,463
273 11,701 .83 2.195 .250  793.547
277 257.925  10.904  33.386 46,092 10275.04L
23 1581.858 518,892 1034.155 1243.215 104165.800
2 86833.257 68949.960 55101.161 46501.988 555766.100
27/ 675 .834 .9l 797
277 675 .846 .OLk 197
27y .650 .834 .932 .821
225 .209 .8L6 .981 .895
273 12.425 711 2.183 2,502
27 322,808 24,101 30.663 45.578
23 5ho4,528 268,096 527.02hF 1056.293
2 21536.469 6708.022 18865.521 25314.158
27] .675 .834 .9kl 797
272 675 .816 .ol 797
277 .650 .834 .932 .822
22, .209° 846 .981 .895
273 12.830 699 2.183 .250
2_31 355.569 30,246 29.473 45,344 -
2 7237.439  1464,038 324,158  985.768
2 982 6117.562 18375.696

0 | 69416.628  17377.

A dash denotes a relative error greater than 1.
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APPENDIX VIII

Maximum Deviations in x3

Problem (D)

The units. are 10'8 radians.

Runge-
Kutta
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A dash denotes an overflow on the I.B.M. 7090,
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APPENDIX IX

The Atmospheric Reentry Problem

The important variables of problem (D) are defined by

Xy = the.square of the velocity of the vehicle,-
relative to the earth;

X, = the azimuthal angle (measured from the north);

X3 = the flight path angle (the angle of depression
of the velocity vector from the "horizontal
through the vehicle;

'xq = the latitude of the vehicle (positive north);

Xg = the longitude (measured from Greenwlch);

Xg = ‘the distance of the vehicle from the center
of the earth;

s = 3t x 10° = the length of the flight path .

In addition,

the dlstance of the vehilicle from the earth's

y =
surface;:

/P = the density of'the atmosphere;

g > gp s 8n are the components of the earth's

gravitational force in the coordinate system

determined by Xy s x5 and Xg respectively.

These variables are expressed in terms of the following

parameters:
m = the mass of the vehicle;
w = the angular velocity of the earth relative

to.inertial space;
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Cp = CD(a) , the drag coefficient;
CL = Cp(@) , the 1ift coefficient;
a@ = the angle of attack of the vehicle above the

zero 1lift line;
S = the reference area of the vehicle;

¢ = the angle of bank of the vehicle ,

The constants are defined by

Bt = 23,500 rt.;
Po = 0.0027 slugs/ft.> ;
Ry = the equatorial radius of the earth = 20925840 ft.;
£ = the earth flattening factor = 1/298,.28;
GM = the gravitationai constant
= 1.4076536 x 10°° rt.3/sec.? ;
Chyg = -.00108248 .
We used.the realistic values ch/m = 977 , CLS/ém = 489

and ¢ = 77/3 radians.

As initial conditiohs, we used

x,(0) = (25960 ft./sec. )

xe(O) = ﬁ?ﬂ radians |

x3(0)‘ = 0,06 radians

xu(o) = 7I/6 radians

x5(0) = O radians (arbitrary)

x6(O) = (RO+350,ooo)'ft. ‘= 21275840 ft.

Using the above definitions and initial conditions, the
flight of a vehicle entering the earth's atmosphere at

350,000 ft. above the surface of the earth can be fully des-
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cribed. For the particular valueé we used, the vehicle
descends to approximately 200,QOO ft. (at which point *x3
becomes negative), returns to 265,000 ft., and then turns

toward the earth again, thus completing one 'skip' (The ‘
above equations(D) must be modified if the vehicle aescendsb

below y = 100,000 ft.)

At the end of our interval, s =9 x 106 ft.,

x, = (20812.365 ft./sec.)?
Xy = 1.2943885 radians

X3 = .028790246 ‘radians

X, = .73785486 radians

Xg = 45546708 radians

Xg = (RO+238795,24) ft

Since X3 >0 , the vehicle's height y 1s decreasing.:

These exact values for X; were the solutions in the round-
off regions of all the predictor-corrector methods and of
the Runge-Kutta method. This fact indicates that these Xy
are good approximations to the solution of (D).
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