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ABSTRACT 

A method for the solution of a class of optimal control 

problems based on ̂ m o d i f i e d steepest descent method i s discussed. 

This method i s suitable f o r the solution of problems i n 

v a r i a t i o n a l calculus of the Mayer type, and can be used to r e a l i z e 

comparatively simple on-line optimal controllers by means of 

analogue computer techniques* 

The essence of the modified steepest descent method i s 

to search f o r the optimum value of a performance function by 

replacing a search i n function space by a search i n parameter 

space. In general, an i t e r a t i v e type of search for the optimum 

value of the performance function i s required* However, i n 

certain classes of problems the optimal control variable can be 

expressed as a function of the system state variables and no 

i t e r a t i o n i s necessary© 

Several optimal control problems for the rocket f l i g h t 

problem are studied and optimal control laws are derived as 

functions of the system state variables* Experimental results 

show that the method i s very s a t i s f a c t o r y . A FACE 231-R 

analogue computer i s used to solve the sounding rocket problem* 

A more complex problem^ the two—dimensional z e r o - l i f t rocket 

f l i g h t problem, i s solved using the modified method of steepest 

descent and an electromechanical f l i g h t simulator. The experi

mental results obtained with the f l i g h t simulator show that the 

modified steepest descent method i s p r a c t i c a l and show promise 

of being useful i n the design of real-time optimal controllers* 
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1. INTRODUCTION 

1.1 H i s t o r i c a l Note on the Theory of Optimal Processes 

The c l a s s i c a l theory of the calculus of variations was 

developed by Euler and Lagrange at the end of the eighteenth 

century. Euler obtained the necessary condition for a relat i v e 

weak minimum i n the form of an equation, now known as the 

Euler equation, Lagrange introduced the Lagrange mu l t i p l i e r to 

f a c i l i t a t e the formulation of minimum problems subject to con

s t r a i n t s . The Lagrange equation i n mechanics has the same form 

as the Euler equation. The Euler equation i s , therefore, also 

referred to as the Euler-Lagrange equation. In this thesis 

the name Euler-Lagrange equation instead of Euler equation i s 

used. 

The method of dynamic programming was developed by B e l l 

man i n the l a s t decade and i s e s s e n t i a l l y a numerical technique 

suited for d i g i t a l computation. 

Recently Pontryagin developed a mathematically rigorous 

theory of optimal control which i s called the maximum p r i n c i p l e . 

A further computational technique available to solve 

minimum problems i s the gradient method or the method of steepest 

descent. The gradient method has been applied by Kelley for 

solving optimal f l i g h t path problems A similar scheme has 

been developed by Bryson and his colleagues^^ • Bohn^*^ has 

presented a modified approach for solving optimal control 

problems which appears suitable for computing the instantaneous 

control policy i n real time . This thesis i s concerned with the 

development of thi s method which, for reasons that w i l l be given 

l a t e r i n the thesis, i s called the modified steepest descent 

method. Chapter 1 gives a br i e f review of the various techniques 
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mentioned above. 

1.2 The Prin c i p l e of Optimality 

(5) The p r i n c i p l e of optimality ' states that "an optimal 

p o l i c y has the property that whatever the i n i t i a l state and 

the i n i t i a l decision are, the remaining decisions must con

sti t u t e an optimal policy with regard to the state resulting 

from the f i r s t decision". This p r i n c i p l e plays the fundamental 

role i n the theory of dynamic programming. 

(6) 
1.3 The Method of Dynamic Programming . 

The theory of dynamic programming i s based on the 

pr i n c i p l e of optimality. It gives a systematic approach for 

determining a numerical solution to minimum problems. In 

theory, dynamic programming i s a very general approach, how

ever, i n practice, i t has r e s t r i c t e d a p p l i c a b i l i t y because of 

the problem of dimensionality. 

In this section the basic technique of dynamic 

programming i s discussed. 

Consider the problem of minimizing the functional J 

J(x) =\ F(t,x,x) dt (1.1) 

where the vector notation 

/ \ * _ dx x — v x^»»«»» x
ny» x — 

and 

x(0) = c = (c1t»..,cn) 

i s used. The dynamic programming approach to minimizing J i s to 



consider the function 

f (t,x) = Min \ F(r,x, *£) dT (1.2) 

I t i s evident that 

and that 

f(T,x(T)) = 0 

f(0,c) = Min J(x) 

The p r i n c i p l e of optimality applied to (1.2) y i e l d s 

f( t , x ) = Min 

l x J 

,-t+At 

t 
F<T,x, )dT +' 

-T 

>+At 
F( T,x, |^ ) dT 

F ( t , X j X ) A t + f(t+At,x+xAt) + O(At) 

(1.3) 

(1.4) Thus f ( t , x ) = Min 
f *\ 

where O(At) indicates terms of the order of (At) . Expanding 

(l.4) i n a power series about (t,x) and l e t t i n g At —»- 0, yi e l d s 

(1.5) F(t,x,x) + ^ + 2^ ^ X j 

.1=1 3 

0 = Min 
\ •J 

The solution of (1.5) must s a t i s f y the following two nonlinear 

p a r t i a l d i f f e r e n t i a l equations 

F + & + V Of_ ; = 0 

rYt £—> OX. 1 

n 
6 f 

6 t 
3=1 

6: 
(1.6) 

and 

6 F _ ^ 6 f 

6 x . 6 x . 
= 0, j = 1,2, .. * (1.7) 



4 
Thus the o r i g i n a l problem of minimizing the functional J of 

(1*1) i s transformed into the problem of solving the nonlinear 

p a r t i a l d i f f e r e n t i a l equations, (1.6) and (l*7) for f. In 

general these nonlinear p a r t i a l d i f f e r e n t i a l equations can not 

be solved d i r e c t l y . 

1•3•1 The P r i n c i p l e of Optimality as a Numerical Technique 

an a n a l y t i c a l solution. A numerical solution may be obtained by 

the use of d i g i t a l computers. In order to employ d i g i t a l com

puters for the numerical solution of (l.6) and (1.7), i t i s 

necessary to convert the nonlinear p a r t i a l d i f f e r e n t i a l equations 

into a f i n i t e - d i f f e r e n c e equation. A more convenient method of 

solution i s to solve for the functional f of (1.2) by minimizing 

a discrete approximation of the form 

Most problems i n optimal control are far too complex for 

N-1 
) At (1.8) 

i= k 

where 

x(iAt) and where the derivative x i s approximated 

by 

(i) _ ; ( i ) 
— X , 

( x ( i + l ) _ X ( i ) ) / A t 

Let u and introduce the sequence of functions 

(i) )At (1.9) 



'for - o o<c <oo , k = 0 , 1 , j N j y l .Then 

' N 

and 

f M ( T , c ) = 0 ( 1 . 1 0 ) 

• • N - l 

f k(kAt,c) = Min F(kAt,c,u )At + ̂  F ( i A t , x ^ j U ^ ^ A t 
[u) i=k+ l 

= Min F(kAt {,c,u )At + f k + 1 ( (k+l)At,c+uAt) 

W ( 1 . 1 1 ) 

Equation ( l . l l ) i s the basis of the dynamic programming 
(5) 

method for the solution of minimum problems . 

1 * 3 . 2 The Problem of Dimensionality 

The numerical solution of ( l . l l ) requires the tabulation 

and storage of sequences of functions of n variables. This 

introduces some complications. To i l l u s t r a t e t h i s , consider the 

case of a two-dimensional problem where 

c = ( c l * c 2 ^ 

u = (u 1,u 2) 

Assume that c^ and a r e both allowed to have one hundred values* 

Since the number of di f f e r e n t values for c^ and i s 1 0 ^ , the 

tabulation of the values of f(c^,C2»T) for a par t i c u l a r value of 
4 

T requires a memory capable of storing 1 0 numbers. Moreover, 

since the recurrence r e l a t i o n requires that f(c,T) i s stored 

while the values for T+At are calculated, and since the values 

of u^ and must also be stored, the memory must be capable of 
4 

storing at least 4 x 1 0 numbers. 



Generally speaking, with current d i g i t a l computers 

having memories of 32,000 words, only two-dimensional minimum 

problems can be handled unless some method for reducing 

dimensionality i s found. The problem becomes d i f f i c u l t to cope 

with for higher dimensions. As pointed out by Bellman, a three-

dimensional trajectory problem involving three position variables 

and three v e l o c i t y variables, treated by the dynamic programming 

approach results i n functions of six state variables. In this 

case, even i f each variable i s allowed to take only 10 
9 

d i f f e r e n t values, this leads to 10 values requiring an 

extremely large computer memory. 
1.3.3 The Euler-Lagrange Equations 

A l l the necessary conditions i n the c l a s s i c a l theory of 

calculus of variations can be derived from the p r i n c i p l e of 

optimality. Consider the v a r i a t i o n a l problem discussed i n 

Section 1.3. The p r i n c i p l e of optimality y i e l d s the nonlinear 

p a r t i a l d i f f e r e n t i a l equations (1.6) and (1.7). D i f f e r e n t i a t i n g 

(1.7) with respect to t , gives 
n 

f x ( F . ) + A ^ A T + / ^ l d \ i . = 0 (1.12) 

dt ± / Ox-Ot Z_j 6x,6x i i J J i=l 

and p a r t i a l d i f f e r e n t i a t i o n of (1.6) with respect to x . gives 

x . / , O x • O"tox. T / V O x . Ax. x v V 

Thus n 
6 2f ^ .ST'tft 



Substituting (1.13) i n (1.12) yiel d s 

j = 1,2,. d_ / 5P_ 6 F N 

5 x ~ = °> .. , n, (1.14) 

which are the Euler-Lagrange equations. 

It i s also possible to derive (1.14) from the nonlinear 

p a r t i a l d i f f e r e n t i a l equations for f using the method of 

c h a r a c t e r i s t i c s . 

1.3.4 The Legendre-Clebsch Condition 

The necessary condition for a minimum of (1.5) i s that 

the second derivative of the square brackets with respect to 

x^ must be p o s i t i v e . This leads to the Legendre-Clebsch 

condition 

or 

n n .2 
Ox.Ox. I j 

i=l 3=1 3 

6 2 F 
dx-j&x^ 

6 2 F 

6 2 F 
6 % 2 

> o, 

6 2 F 

6^6x2 

6 2 F 

> o, 

(1.15) 

6 2] 6 2 F 
d x 1 0 x 1 •••• d x 1 d x n 

6 2 F ^ F _ _ 



1»3.5 The Weierstrass Condition 

The Legendre-Clebsch Condition does not rule out the pos-

s i b i l i t y of a re l a t i v e minimum. If F(t,x,x) i s an absolute 

minimum, i t follows from (l»6) that the following inequality 

must s a t i s f y 

j=l J j=l ° 
or 

F(t,x,X) - F(t,x,x) + (Xj " xj) ^ 7 ~ 0 (1.16) 
3=1 j 

for a l l functions X. 

From (1.7), 

and (1.16) y i e l d s the Weierstrass condition for an absolute 

minimum. 
n ^ . X 

F(t,x,X) - F(t,x,x) - ^ " *j> of? ~ 0 ^ • 1 7 ^ 

1.3.6 The Transversality Condition 

So far the discussion of the minimization of a functional 

i s r e s t r i c t e d to the case of fixed end points. 

Suppose now that the end points are variable. The 

necessary condition for a minimum of the functional i s that 

the d i f f e r e n t i a l of the function f ( t , x ) must vanish. Therefore 



Thus 

oT •x-r dt = - / x dx 
L-J ox. i 

(1.18) 

Multiplying (1.6) by dt gives 
n 

Of 
Pdt + dt + 

Of * 
x.dt = 0 

j=l 3 

Substituting (1,7) and (l«18) i n the above equation y i e l d s 
n n 

F, dx. = 0 (F - x j F « ) d t + 

This holds at both end points* Thus 

n n -i T 

3=1 3 
4 dx. + (F - F. ) dt 

3=1 x. 3 
= 0 (1.19) 

Equation (1.19) i s c a l l e d the transversality condition. 

1«3.7 The Veierstrass—Erdmann Corner Conditions 

Many v a r i a t i o n a l problems of engineering interest have 

solutions which may have a f i n i t e number of corner points, where 

one or more of the derivatives x. have a discontinuity. Suppose 
• . 5f 

that x^ i s discontinuous» then^ since ^ x i s continuous, i t 
O F 

follows from (1.7) that — j — must be continuous at a corner. 
6 x k 

Of 
Si m i l a r l y , ^ i s continuous and substituting (1.7) i n (1.6) 
yields n 

Of 
6T 

P - E F • = -
3=1 J 

which i s also continuous at a corner. Therefore 

= F (1*20) 



1 0 

and 
n n 

(F - V " x F* )_ = (F - x F. ) (1.21) 
j=l j j=l j 

where the negative and positive signs denote trajectory positions 

immediately before and after a corner point, respectively. 

Equations ( l . 2 l ) and (l*20) are called the Weierstrass-Erdmann 

corner conditions. 

1•3•8 The Inequality Constraint 

In many problems there may be inequality constraints on 

the independent variable u of ( l . l l ) (the so-called control 

v a r i a b l e ) . I f , for example^ 

lul < U 

where U i s the upper bound for the magnitude of u, then the 

choice of u^ at each i t e r a t i o n stage i n the dynamic programming 

approach i s r e s t r i c t e d and the computational aspect of the 

problem i s thereby simplified* 

(6) 
1,3.9 The Lagrange M u t l i p l i e r s ' 

The Lagrange m u l t i p l i e r method i s the most suitable means 

for handling a minimum problem subject to constraints. Two 

dif f e r e n t kinds of Lagrange mu l t i p l i e r s which depend on the 

type of constraints are discussed i n this section. 

Consider the problem of minimizing the functional 

J(x) =\ H(t>x»x)dt, x(0) = c (1*22) 
Jo 

subject to the constraint 



G(t,x,x)dt = y 

11 

(1*23) 
'0 

where y i s a given value* To solve the minimum problem the 

lower l i m i t i s considered variable so that the minimum f of 

J(x) becomes a function of three variables, t,x, and y. In 

other words, y i s considered as an additional variable. The 

solution of the minimum problem i s given by 

H(T,x, f*: )dT f(t,x*y) = Min 

where y i s determined by the equation of constraint 

(1.24) 

G(T,x, f^)dT = y (1*25) 

Equation (l.24) can be treated i n the same manner as was done 

previously for (l.2) y i e l d i n g 

f(t,x,y) = Min H(t,x>x)At + f(t+At, x+xAt, y-G(t,x,x)At)+ 0(At) 

(1*26) 

Proceeding as before, the following functional equation for 

f(t,x,y) i s obtained t 

0 = Min Of n 

f * \ L 

6f dt H(t,x.x) + + ^ x j ^ - - G(t,x,x) ^ 

(1.27) 

The solution of (1.27) must s a t i s f y the equations 

n TJ . Of' P 6f 
U = h* + A ~ G v — 

Ox. • Oy 
x j 3 x j 

(1.28) 
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and 

j=i J 

D i f f e r e n t i a t i o n of (l«28) "with respect to t, and p a r t i a l 

d i f f e r e n t i a t i o n of (l»29) with respect to x. yiel d s 

P a r t i a l d i f f e r e n t i a t i o n of (l»29) with respect to y yiel d s the 

following r e s u l t s : 

6 2f , V " * 6 2 f „ 6 2 f 

or 

0 = It d.32) 

Thus 

= constant (l.33) 

I t can be seen from (l»30) that i f a new variable 

(1-34) 

i s introduced, (1.30) results i n the Euler-Lagrange equations 

- F x =0, j = 1, 2,..., n (1.35) 
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where 

P = H + KG (1.36) 

Of 

This shows that — ^ plays the role of the Lagrange 

m u l t i p l i e r . In the case of the constraint being an integral 

form of (l.23), the Lagrange m u l t i p l i e r i s a constant. 

In general, the Lagrange m u l t i p l i e r i s not a constant. 

Consider the constraint to be of the form 

h(t,x,x*u) = 0 (1.37) 

or 

x = g(t,x,u), x(0) = c (1.38) 

where the control variable u = u(^,,,,u m) i s to be chosen so 

as to minimize the functional J(x)„ In this case, the Lagrange 

m u l t i p l i e r i s no longer a constant. For example, consider the 

problem of minimizing the time required to transfer the system 

described by (l.38) from the i n i t i a l state (c^,...,c n) to the 

f i n a l state (b^ , • • • ,bn).* The functional T = T(u) to be mini

mized i s subject to the constraints 

x,(T) =b., j = 1,2,...,n. (1.39) 
•J J 

This i s a minimum-time problem. By introducing the function 

f ( t , x ) = time required to transfer the system 

described by (1.38 ) from x to b 

and applying the p r i n c i p l e of optimality the equation 

f( t , x ) = Min At+f(t+At,x+gAt)+0(At) (1.40) 

i s obtained. Expanding the second term i n a power series and 

l e t t i n g the l i m i t as At 0 yie l d s the r e l a t i o n 



0 = Min 
n 

1 + f t + 
3=1 3 

The solution of (l.41) must s a t i s f y the equations 
n 

0 = i + f t + 

3=1 

14 

(1*41) 

(1.42) 

and 
n 

0 = fx. 5 u t ' 1 = 1.2,...*m. 
3=1 2 1 

(1.43) 

P a r t i a l d i f f e r e n t i a t i o n of (1.42) with respect to x. yie l d s 
3 

o 2f 6 2f V 1- 6f ^>gk n 5t5x7 + Z_ Sx^oir g k + 2_, 5x7 oTT = 0 

k=l k=l 
vk ^ j 

(1.44) 

Since 

<L_ f dt x. 3 
6 
5T x. 

J 

n E 
k=l 

4_ <f ) 6x, v x.; dt ^ k o 

= 6 T^t + 2 s x 7 ( fx, ) gk 
k=l k A j 

(1.45) 

i t follows by substituting (l»44) into (1.45) that 
n ^ ^ 

f t fx. +E5T fx k
 = 0^' = 1'2 n' 

k=l 
(1.46) 

Introducing the Lagrange mult i p l i e r s 

*3 = fx. (1.47) 

into (1.46) y i e l d s 



k=l J 

The solution of the 2n+m equations (1.38), (1.43) and 

(l.48) gives the 2n+ra unknown functions which are A., x. and 

u^. The trajectory defined by these variables s a t i s f i e s the 

necessary conditions for a minimum-time trajectory. 

1.3.10 The Dynamic Programming Approach to the Case of Two 
Fixed End Points 

The numerical technique discussed i n Section 1.2.1 allows 

a problem with two fixed end points to be replaced by an 

i n i t i a l - v a l u e problem* 

Consider the problem of minimizing the functional 

J(x) = \ F(t,x,x)dt (1.49) 
^0 

subject to the two end conditions 

x(0) = a, x(T) = b (1.50) 

Proceeding as i n Section 1*3*1 where u = x y i e l d s the r e l a t i o n 

F(c,u)At + f ( c , t ) (1.51) f(c+ uAt yt+At) = Min 
M 

The condition that the f i n a l values of x(t) be the as

signed values b must be s a t i s f i e d . This means i n effect that 

at the l a s t stage of the process, for any values of x., the 

choice of the control variables u. must be such as to resu l t 

i n x.(T) = b j * 
Consequently, the terminal constraints f i x the function 



f(c,T) given by the r e l a t i o n 

where 

thus 

f (c, (N-1) Ait) '= F(c,u) 

b-c u = At 

f(c,(N-l)Ajfc) = * ( c , ̂ r r ) At' 

(1.52) 

(1.530 

(1.5 4) 

Here, b i s taken to be f i x e d and c i s considered to be variable, 

This i s shpwn i n Pig. 1*1« 

0 (N-1)At T = NAt t 

F i g . 1.1. The f i n a l stage and the terminal condition 

In dynamic programming the terminal constraint s i m p l i f i e s 

the computation. Since f(c»T) i s determined by the terminal 

conditions, the remaining functions of the sequence f(c+uAt, t+At) 

are determined by means of ( l . 5 l ) with no further reference to 

the terminal conditions. 

1.4 The Gradient Method (7) 

The gradient method or the method of steepest descent i s 



an elementary concept suitable for the solution of minimum 

problems* In recent years the computational convenience of the 

gradient method has l e d to a variety of applications. 

In order to present the basic idea of the gradient method* 

consider the problem of minimizing a continuous function 

f = f ( x ^ * . . ,x n) 

If an arc length i s defined by 
n 

ds' - £ 
3=1 

dx. 3 (1.55) 

the derivative of f along the arc i s 

n dx, df = V " Of 
ds / , Ox. * ds 

3=1 3 

(1.56) 

Introducing the constraint 

dx. E LLS. . 

3=1 
- 0 (1.57) 

by means of a Lagrange m u l t i p l i e r X y i e l d s 

n n 6f d x i + x df 
GTS Z. i O x • as 

3=1 J 

-i dx. 
1 - > , <a^> 

3=1 

where 

n 

3=1 
dx. _ l 

y i ~ ds 

n 
" Of A 1 r 
, 5x- ̂  + * L 1 - 2_, 

3=1 
(1.58) 

df P a r t i a l d i f f e r e n t i a t i o n of with respect to y. yields 
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6 /dfx 6f 0 1 oy" fe) = 53ET " 2 X yj (1.59) 

df 
For -jj-^- to be a maximum, the above equation must vanish: 

£ * - - 2 X y . =0 

Hence y-;= 6f 
j 2X * 5x~ 

(1.60) 

(1.61) 

Substituting y. into (1.57) yie l d s 3 
n 

Hence 

* = ± 2 

n 

3=1 

X-p 2 

J 

I 
2 

Substituting X into ( l . 6 l ) y i e l d s 

dx. 6f 
y j ~ ds 1 ~  ± 5x. 

n 

i=l 

•1 
2 

(1.62) 

, j = l*2,...,n. (1.63) 

and the maximum derivative of f with respect to s i s 
1 

ds — Z _ (oT7> 
3=1 J 

(1.64) 

For the steepest descent d i r e c t i o n , the negative sign i s taken, 

while the positive sign i s taken for the steepest ascent 

d i r e c t i o n . Now consider x. as components of a vector x, the 
d x i J dx directions as components of the unit vector and the 
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Of p a r t i a l derivatives pr— as components of a gradient vector, 
Ox. 

then 

f f = ^ r a d f • i f d- 65) 

Introducing the function 

ds 
v = dT 

where T i s a parameter into (l.55) yi e l d s 
1 

V = 
n dx. 2 

(dT 1) (1.66) 

Since 

dx. dx 
1 ds dT ~ ds * dT 

i t follows from (l.63) and (1.66) that 

dx, 
dT ~ i Ox. n 

i=l 
(1.67) 

If 

V = k 
i=l 

where k i s a positive constant, i t follows that 

dx. 
d T = ± k 5 

Of (1.68) 

For the steepest descent, the negative sign i s taken. This 

r e l a t i o n i s the basic condition of the steepest descent d i r 

ection for f . 
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1.4*1 Numerical Computation by the Steepest Descent Method 

The numerical computation of the minimum of the function 

f ( x ^ , » • • y X n ) requires that the equation of steepest descent be 

approximated as a finte-difference equation, that i s , (1*68) 

i s written as 

6f 
Ax.. * - k A T j g - , j = l,2,*.*,n. 

The proportionality constant k can be absorbed by the step 

size AT, hence x. may be written as 
3 

6f_ 

x,< 1 + 1> S x ^ - hU><gL)<i> , j = 1 , 2 , . . . , n . 

(1.69) 

where h = kAT and h ^ ^ = k^^AT . The process i s repeated u n t i l 
(m) 

a minimum of f(x^,...,x n) i s obtained at. ̂ ( x ). Equation 

(1.69) i s a general formula for i t e r a t i o n * The step size h may 

be adjusted to reduce the number of steps required. 
1.4*2 The Steepest Descent Method for Finding the Minimum of a 

Functional 

Consider the problem of minimizing the functional 

f T 

J(x) = I F(t,x,x)dt, x(0)-= c (1.70) 

J o 

where x belongs to a class of admissible functions. 

Let x(t) = y(t) + h u ( t ) , u(0) = u(T) = 0 ( l . 7 l ) 



21 

where h i s a parameter, y(t) i s a f i r s t approximation and where ;, 

u i s to be found so that J(x) <C J ( y ) . 

Equation (1.7.0) can be written as 

J(h) = \ F(t,y+hu, y+hu)dt (1.72) 
JO 

The derivative of J(h) with respect to h i s 

5E = f E (V 3 + Fx^ ) d t (1'73) 

J 0 j=l J X j 

Integrating the second term of (1.73) by parts yi e l d s 

I = i Z < v » v* (i-74) 

JO i = l 3 x i 

For the path of steepest descent (1.74) must be negative 

which i s the case i f u. i s chosen so that 
• 0 

u (t) - V (1.75) 

x. j 

At the minimum of J , u.(t) = 0. 

1.5 The Calculus of Variations and the Theory of Optimal Control 

The general problem of the calculus of variations can be 

formulated as a problem of Bolza, Lagrange or Mayer. These three 

formulations are t h e o r e t i c a l l y equivalent and the problem of 

Lagrange and Mayer can be considered as particular cases of the 
(8) 

problem of Bolza . 
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The problem of Bolza can be formulated as follows: 

Consider the set of functions 

X j ( t ) , j =1,2,...,n. 

s a t i s f y i n g the set of constraints 

^ ( t j X j x ) = 0, i = 1,2,..., m < n 

which involves (n-m) degrees of freedom. 

(1.76) 

Assuming that the functions x.(t) and t are consistent 

with the boundary conditions at t=0 and at t=T, that i s , 

0,x(0) 

T,x(T) 

=0, r = l,2,...,q. 

=0, p = q+1, . . . ,s ̂ 2n+2 

(1.77) 

(1.78) 

then the problem i s to f i n d the special set of functions x.(t) 

which results i n a minimum for the functional 
T 

J = G(t,x) +\ H(t,x,x)dt 
- 0 JO 

(1.79) 

If the function G of (l.79) i s i d e n t i c a l l y zero, that i s 

i f , 
G(t,x) = 0 

then the functional of (1.79) reduces to 

-T 
H(t,x,x)dt (1.80) 

This i s the problem of Lagrange. 

On the other hand, i f the integrand of (1.79) i s 

i d e n t i c a l l y zero, that i s i f , 

H(t,x,x) = 0 
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then the functional of (1.79) becomes 

- i T 
J = G(t,x) 

->0 

This i s the problem of Mayer. 

It i s of primary interest, to interpret the general 

problem of Bolza from the point of view of optimal control. The 

essential difference between the calculus of variations and the 

theory of optimal control i s that the derivatives i n the 

integrand of the functional J i n the calculus of variations are 

replaced by the control variables u, ( t ) . 

Thus, instead of considering the minimization of the 

functional 

subject to the constraints 

(1.81) 

the minimization of the Functional 

0 0 

subject to the constraints of the form 

x. - f.(t,x,u), j = l , 2 , . . . j n . (1.82) 

i s considered. Where u i s the set ( u, . , .,,u ) « 
1 m 

In general the optimal control problem can be stated as 

follows? Given an i n i t i a l state (0,x(0)), f i n d the corresponding 



admissible control variables u^ defined :j.n the interval [|O,TJ 

for which the functional J assumes i t s minimum. 

If the set of control variables u^ can be determined as 

functions of the state variables x. so that the functional J 
3 

is minimum, then the set of control variables u^ can be 

obtained by feedback from the state variables at the output. 

In this case the control variables are of the form 

u k = L k ( x ) , k=l,2,...,m. (1.83) 

and the functions L^(x) are referred to as the control laws. 

The problem can therefore be stated as an optimal feedback 

control problem; Find the control laws such that when (l.83) 

i s substituted i n (1.82), the functional J assumes i t s minimum 

with regard to the set of a l l admissible control laws. 

1.6 The Ad.joint System and the Euler-Lagrange Equation 

The equations of constraints (1.82) are, i n general, 

f i r s t order nonlinear d i f f e r e n t i a l equations. If these non

li n e a r d i f f e r e n t i a l equations are l i n e a r i z e d , one obtains a 

system of li n e a r d i f f e r e n t i a l equations of the form 

Sx. = y ^ s r ^ Sx. + y ^ - i - Su. (1.84) 
j=l J k=l K 

where the p a r t i a l derivatives are evaluated on the^ optimal 

trajectory. 

The adjoint system of (1.84) i s defined by 
n ^ 6f 

* i = " E *j 5^S 1 = 1.2 n. (1.85) 
3=1 1 



Consider now the problem of Mayer of Section 1.5, where the 

Euler-Lagrange equations are given by 

| T (F. ) - F x = 0, j = 1,2,...,n. (1.86) 
x. i 

and where n 
F = XX [Xi - f 

i=l 

substituting this function F i n the Euler-Lagrange equations 

yiel d s 

X ± = - E \j 5 ^ f i=l,2,..*,n. (1.87) 
j=l 1 

The equations of (1.87) are exactly the same as equations of 

(1.85), thus the Euler-Lagrange equations i n the calculus of 

variations are the same as the adjoint system for the li n e a r i z e d 

equations of constraints. It should also be noted that the 

equations of (1.48) are the Euler-Lagrange equations, where the 

Lagrange mult i p l i e r s have the special meaning i n dynamic 

programming given by (1.47). 

(9) 
1.7 The Maximum Principle 

Pontryagin and his co-authors have stated i n the book 

"The Mathematical Theory of Optimal Processes" that the method 

of dynamic programming lacks a rigorous l o g i c a l basis i n those 

cases where i t i s successfully made use of as a heuristic t o o l . 

The maximum princip l e gives a rigorous mathematical theory for 

optimal processes. Therefore, i t i s of theoretical interest 

to discuss b r i e f l y the minimum problem as i t i s formulated by 

the maximum p r i n c i p l e . 
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Consider the functional 

J = \ F(t,x,x)dt (1.88) 
J o 

where x = (x^,...,x n) 

and the problem i s to f i n d the minimum of J for a l l the 

admissible control variables u^ which transfer the point from 

x (0) to x (T). 
J J 

Let x 0 = P(t,x fu) (1.89) 

x- = u., j = l,2,...,n. (1.90) 

and form the H-function 

n 
H(p,x,u) = p QF + P ju.. (1.91) 

j=l 

where the variables p are defined by the r e l a t i o n s s 

d P i 6 r 

dt ~ 5" x. , i = 0,1,...,n, (1.92) 
x 

Hence dp. x p 

^ = - P Q, i = 0,1,...,n, (1.93) 

then the r e l a t i o n of (1.93) gives 

dp 
dt £ = 0 (1.94) 

d p i OF 
dt = ~ p0 5x~" ' J' = 1»2,..•»!!. (1.95) 

The maximum p r i n c i p l e states that i n order for u and x to 
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define an optimal trajectory i t i s necessary that there exists 

a continuous vector function p = (pQ,...,pn) corresponding 

to u and x, such that 

1. for every t, 0 < t < T , the function H attains i t s 

maximum at the point u, 

M(p,x) = Sup H(p,x,u) (1.96) 

M 
2. at the terminal time T, the relations 

p Q(T)<:0, M [p(T), x(T) = 0 (1.97) 

are s a t i s f i e d . 

The equation of (1.96) implies that 

5H 
5u- = 0, j = 1,2,...,n. (1.98) 

P a r t i a l d i f f e r e n t i a t i o n of (1.96) with respect to u. yie l d s 

OTT = p0 + p j ' 3' = l t 2 , . . . , n . (1.99) 

By the equation of (1.98), the above equation becomes 

P 0 5 u ~ + P j = ° ' J = 1f2,.••,n. (1.100) 
J 

It follows from (1.100) that PQ ^ 0, otherwise a l l the p^ = 0, 

i = O j l ^ . B ^ . n . It i s seen from (1.94) and (l.97) that PQ i s a 

negative constant. It i s convenient to choose 

p Q = -1 

so that (1.100) becomes 

OF 
Pj ^ Q ^ - » 3 = 1,2,...,n. (1,101) 

J 
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On the other hand, i f PQ = -1 i s substituted i n (1.95) 

and then integrated, i t gives 

P ; j = Pj(O) .+\ g£- ds, j = l,2,... rn. (1.102) 
J o 3 

« 

replacing u, by x. i n (1*101) and substituting into (1.102), 

yi e l d s 

g- = ̂ (0)+f i : d s (1-l03) 

D i f f e r e n t i a t i n g this equation with respect to t yie l d s the 

Euler-Lagrange equations 
f r (P. ) - P x = 0, j = l>2,...,n. (1.104) 

X j j 

1.8 The F i r s t Integral 

The solution of the Euler-Lagrange equations s a t i s f i e s 

the r e l a t i o n , 

n " - E ; i f i . ) - ^ (1-105) 

0=1 a 
If F does not depend on the independent variable t e x p l i c i t l y , 

OF 
5 t 

= 0 

and the following f i r s t integral i s obtained. 

n 
x. F. = C (1.106) 

. , 3 x. 0=1 J 

where C i s the constant of integration. This r e l a t i o n i s calle d 
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the f i r s t integral of the Euler-Lagrange equations. 

1.9 The Modified Steepest Descent Method 

The essence of the modified steepest descent method for 

solving minimum problems i s to consider a general process which 

i s described by a system of ordinary d i f f e r e n t i a l equations of 

the form 

x = f(x,u), x i(0) = c±f i = 1,2,...,n. (1.107) 

where x = (x^,«»*,x n) 

u = (u 1,...,u m) 

and f = (f^,.».,f n) 

The system under consideration i s assumed to move from a 

point x(0) to another terminal point x(T). Some of the terminal 

conditions of x(T) may be unspecified. The problem i s to mini

mize the performance function P(T,x(T)) by choosing a special 

set of control variables u^» This i s a problem of Mayer. The 

basic idea of the modified steepest descent method i s to con

sider the function P as a function of a set of unknown para

meters which are functions ofthe unknown i n i t i a l conditions of 

the state variables and the Lagrange m u l t i p l i e r s . Thus 

P = P(a) (1.108) 

where a = (a l t...,a n) 

= X 1(0),...,X r(0) > x r + 1 ( 0 ) , . . . , x n ( 0 ) ] 

and where X^(0) are the unknown i n i t i a l conditions for the 



Lagrange m u l t i p l i e r s . 

The problem under consideration can be formulated as 

follows: The function 

n 
E = Z ^ d ( X J - f a ) ( i a 0 9 ) 

i s formed where X. are the Lagrange m u l t i p l i e r s . 

At a minimum, the Euler-Lagrange equations 

f t ' ( F . ) = F , j = l , . . . , n . (1.110) 

and 

0 = F , k = 1,...,m. (l .111) V 
must be s a t i s f i e d . 

Substituting (1.109) into (1,110) and ( l . l l l ) , y i elds 

the following equations 

ax, ^ Of. 
d t 1 = " Z^h 5^ ' d = 1 n' ( i a i 2 ) 

i=l J 

n O f 0 = E ^ i 0 l T » k = l,...,m. (1.113) 
i=l k 

By solving the system of (2n+m) d i f f e r e n t i a l equations 

of (1.107), (1.112) and (1.113), the (2n+m) unknown variables 

X j , X j , and u^ can be determined. The general scheme for the 

solution i s represented i n F i g . 1.2. The i n i t i a l values are 

sampled and introduced into a high speed repetitive trajectory 

computer. The performance function P i s determined and the 
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unknown i n i t i a l values are adjusted by an i t e r a t i v e procedure 

to minimize P. The sampled value of u i s introduced into the 

process. If there are no disturbances the state x(t) of the 

process w i l l correspond i n real time to the computed trajectory. 

In the above system the i n i t i a l values for the trajectory are 

the real-time values of the process variables. 

In most problems not a l l the i n i t i a l conditions are given 

and therefore a search procedure for the minimum of the function 

P must be employed. The important idea of the modified steep

est descent method i s to solve the preceeding (2n+m) equations 

subject to the condition that the derivatives of the perfor

mance function P with respect to the parameters a^ are always 

negative, that i s , 

6P 
5T: < 0, j = l f t . . , n , (1.114) 

The values of a. are unknown and can be determined by 

i t e r a t i o n . For each i t e r a t i o n the condition of (1.114) must 

be s a t i s f i e d . The modified steepest descent method does not 

rule out the p o s s i b i l i t y of a l o c a l minimum unless the entire 

range of parameter values are used which may not be p r a c t i c a l 

(see F i g . 1.3 where a^ results i n a true minimum and a^ results 

i n a l o c a l minimum). 

As for the numerical computation, i t i s assumed that 

the computation starts from a point AQ = ( & J Q) which may be 

arbitrary. The parameter a-^Q i s adjusted so that P decreases 

to a minimum. The remaining parameters can then be adjusted 

i n sequence i n the same manner. Proceeding i n this way, a new 
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F i g . 1.3 True minimum and lo c a l minimum 

point A^ = ( a j i ) i - s obtained. The general step may be 

summarized i n the following way* From a point A = (a. ) 

to the next point A r + 1 = ( a - j ( r + i ) ) i s found by a step-by-

step procedure. 

1. Adjust a- r̂ by a small amount to have, a smaller P 

u n t i l P starts to increase. 

2. Repeat 1 for a 2 r » • • • » a
n r » e a c h time- adjusting 

one parameter only. 

3. Now a new point Ar+-^ = ( a-j( r+i)) I s obtained and 

the steps 1 and 2 are repeated u n t i l a minimum 

of P i s obtained. 

It i s important to note that for the adjustment of each 

Lj(r) 
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P ( a l ( r + 1 ) , a 2 r,...,a n r)<P(a l r,...,a n r) 

P ( a l ( r + l ) ' a2(r+l)» a 3 r * * " a n r ) < P ( a l ( r + l ) ' a 2 r ' * * - a n r ) 

• • o • • • o o o o » 0 o • • » • • • • ft » # • • » o o • * A o « P e • e « e • • s « o • • • • 

P ( a l ( r + l ) , , , , , a n ( r + l ) ) < P ^ a l ( r + l ) , 0 , a ' a ( n - l ) ( r + l ) ' a n f ) 

apply. 

1.10 Remarks 

It i s of interest to compare the modified steepest descent 

method studied i n this thesis with other computational techniques. 

The standard v a r i a t i o n a l technique of the calculus of variations 

transforms the o r i g i n a l v a r i a t i o n a l problem into a problem i n 

the solution of ordinary d i f f e r e n t i a l equations involving two-

point boundary conditions. To solve a two-point boundary value 

problem i s usually d i f f i c u l t from the computational pdiftt of view* 

Dynamic programming, i n theory, eliminates the two-point 

boundary value problem* However, i t introduces a new d i f f i c u l t y , 

the problem of dimensionality, which means that an extremely 

large d i g i t a l computer memory i s required. 

The gradient method or the steepest descent method was 

developed by Cauchy and has been independently applied to 

va r i a t i o n a l problems dealing with f l i g h t paths by Kelley and 

Bryson. This technique has been very successful. However, i t 

requires extensive d i g i t a l computing f a c i l i t i e s and does not 

appear suitable for developing comparatively simple real-time 
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optimal c o n t r o l l e r s . 

The modified steepest descent method i s p a r t i c u l a r l y 

suitable for the solution of certain classes of minimum problems 

by means of d i g i t a l or analogue computers. The analogue com

puter i s very convenient for solving trajectory problems. 

Another advantage of employing the analogue computer i s that i t 

i s then possible to construct comparatively simple real-time 

optimal c o n t r o l l e r s . Since the analogue computer solves problems 

i n a continuous manner, i t i s suitable for high-speed com

putation and feedback methods can be used for obtaining i t e r a t i v e 

solutions• 
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2. OPTIMAL CONTROL PROCESSES FOR ROCKET FLIGHT PROBLEMS 

2.1 Introduction 

Ana l y t i c a l studies may f a c i l i t a t e the computation of the 

solution for optimal control problems. The i t e r a t i v e approach 

used i n the modified steepest descent method may also be greatly 

sim p l i f i e d i f an an a l y t i c a l expression for the optimal control 

law i n terms of state variables can be found. 

The calculus of variations i s the only suitable method for 

obtaining analytic information about the properties of the optimal 

control law and the optimal trajectory and i s therefore, of 

fundamental importance. This chapter i s devoted to the application 

of the calculus of variations to the problem of rocket f l i g h t and 

to a n a l y t i c a l studies for deriving optimal control laws. 

It i s also of theoretical interest to have a complete ana

l y t i c a l solution of a problem. This allows a study of the 

properties of the Lagrange multipliers which play an important 

role i n the determination of optimal control laws. On the other 

hand, the an a l y t i c a l solution can serve as a means for checking 

the accuracy of the analogue computations used i n the modified 

steepest descent method discussed i n Chapter 3. 

2.2 Formulation of Rocket F l i g h t Problems by Means of the Cal 
culus of Variations 

The determination of optimal t r a j e c t o r i e s for missiles, 

a i r c r a f t s and s a t e l l i t e s i s an important application of optimi

zation theory. Goddard recognized the calculus of variations as 

an important tool i n the analysis of rocket performance i n 1919. 

A general theory of rocket f l i g h t problems was recently developed 
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by Breakwell, F r i e d , Lawden, M i e l e , Leitman and o t h e r s . A b r i e f 

review of the rocket f l i g h t problem w i l l now be g i v e n . 

2.2.1 Basi c Assumptions and Equations of Motion 

For the general f o r m u l a t i o n of the rocket f l i g h t problem, 

the f o l l o w i n g assumptions are made (see F i g . 2 . l ) : 

(1) The roc k e t i s considered as a p a r t i c l e or a p o i n t 

mass . 

(2) The power p l a n t of the rocket engine i s considered as 

an i d e a l engine, so that the e q u i v a l e n t e x i t v e l o c i t y 

V f o r the f u e l i s a constant. The t h r u s t i s taken e 
as where P i s a c o n t r o l parameter. 

(3) The E a r t h i s assumed to be f l a t , and the a c c e l e r a t i o n 

due to g r a v i t y i s taken to be constant. 

(4) The roc k e t moves i n a v e r t i c a l two—dimensional plane. 

0 

F i g . 2.1 The f o r c e s a c t i n g on a rocket 
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By these hypotheses the equations of motion for a rocket 

can be w r i t t e n ^ ^ as 

x - V cos 0 = 0 (2.1) 

h - V sin 0 = 0 (2.2) 
. D-V 0 cos ft) 
V + g sin 0 + = 0 (2.3) 

L + V P sin ft) 
6 + f cos Q - ^ = 0 (2.4) 

m + 0 = 0 (2.5) 

where x i s the range, h i s the al t i t u d e , V i s the v e l o c i t y , g i s 

the acceleration due to gravity, L i s the l i f t , D i s the drag, 

m i s the mass, 0 i s the path i n c l i n a t i o n , and (o i s the angle 

between the thrust and the v e l o c i t y . The drag i s assumed to have 

the general form 

D = D(h,V,L) (2,6) 

and the engine char a c t e r i s t i c s of the rocket are represented as a 

function of a parameter a, that i s , the control parameter i s 

0 = 0 ( a ) (2.7) 

2.2.2 Formulation of the Rocket F l i g h t Problem 

The set of f i v e equations of motion, (2.1) to (2,5), 

involves one independent variable, the time t, and eight dependent 

variables, they are: x, h, V, 0, m, <o, L and 0 . Thus, the problem 

under consideration has three degrees of freedom, and three 

conditions for optimal performance can be imposed. In this con

nection, the optimal control problem of Mayer type, can be stated 

as follows: 

Among a l l sets of functionsx(t), h ( t ) , V ( t ) , 0 ( t ) , m(t), 
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co(t),L("t) and p ( t ) , s a t i s f y i n g the equations of motion, ( 2 . 1 ) 

to ( 2 . 5 ) , and certain prescribed end conditions, to determine the 
r i*f special set which minimizes the performance function 

where 

P = P(x,h,V,©,m,t) 

The end conditions are constraints imposed on the i n i t i a l and 

the f i n a l values of x, h, V, 0, m and t. In general, not a l l the 

end conditions are known. 

In the case that two additional constraining equations of 

the form 

^f 6 = §>(x,h,V,0,m,L,p\a,t)= 0 ( 2 . 8 ) 

ip 7 = Y(x,h,V,0,mfL,P,a>,t) = 0 ( 2 . 9 ) 

are present, the problem has only one remaining degree of freedom, 

and one condition for optimal performance can be imposed. 

By introducing a set of Lagrange multipliers X ^ ( t ) , 

i = 1 , 2 , . . . , 7 , the so-called augmented function can be formed 

7 

P = ^ X. ( 2 . 1 0 ) 

i=l 

and the Euler-Lagrange equations are 

where x^= x, x 3 = ^ ' x 4 ~ ® ' x 5 = m ' x 6 = ̂ » x 7 = a ' a n d x 8 = to' 

As discussed i n the l a s t chapter, i f the augmented 

function F of ( 2 . 1 0 ) does not depend on the time t e x p l i c i t l y , 

the f i r s t i ntegral 
7 

k " O F 
0 

1 d x . 
= C ( 2 , 1 2 ) 

i=l i 
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exists. 

The Euler-Lagrange equations and the f i r s t integral for 

the rocket f l i g h t problem are given i n the Appendix, 

Several p o s s i b i l i t i e s exist for modifying the trajectory 

of a rocket. The elevator position, the thrust magnitude, and 

the thrust d i r e c t i o n can be controlled. Thus, for a given set of 

end conditions, an i n f i n i t e number of tr a j e c t o r i e s exist which 

are mathematically and physically possible. Among a l l the 

possible t r a j e c t o r i e s i t i s of interest to fi n d those tr a j e c t o r i e s 

which meet a requirement for optimal performance. 

Partic u l a r forms of the performance function P are: 

(1) P = —m , problems of minimizing the fuel con-
t 
o 

sumption, 

(2) P = 

(3) P = 

, problems of minimizing the f l i g h t time 
t 
o 
t, 

- X 

L J t o 

f 
, problems of maximizing the range. 

2.3 Anal y t i c a l Study of Optimal Control for the Sounding Rocket  
P r o b l e m ( 1 1 ' 1 2 ) 

The equations of motion for the rocket f l i g h t , (2,l) to 

(2.5)f are nonlinear d i f f e r e n t i a l equations, and the associated 

Euler-Lagrange equations, (A.l) to (A.8), are linear d i f f e r e n t i a l 

equations whose c o e f f i c i e n t s are functions of the state variables. 

If the equations of motion can be solved so that the state 

variables are functions of time, the Euler-Lagrange equations may 

be considered as l i n e a r d i f f e r e n t i a l equations with time varying 
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c o e f f i c i e n t s • 

Since there i s no systematic a n a l y t i c a l method for solving 

nonlinear d i f f e r e n t i a l equations, the determination of an 

ana l y t i c a l solution for the rocket f l i g h t problem i s extremely 

d i f f i c u l t and, i n general, i s not possible. However, anal y t i c a l 

solutions may be obtained i n special simple cases. 

A problem of interest i s the case of rocket f l i g h t i n a 

r e s i s t i n g medium* This problem can be solved a n a l y t i c a l l y i n the 

case of v e r t i c a l f l i g h t with a drag function of the form 

D = kV 2 exp (-ah) (2.13) 

where k and a are constants. 

The sounding rocket problem has been studied by many 

s c i e n t i s t s , such as, Hamel (1927), Oberth (1929), Malina and 

Smith (1938), Tsien and Evans (1951), and Leitmann (1957), etc. 

Much work, both numerical and a n a l y t i c a l , has been done on this 

problem. However, with the exception of t r i v i a l casesj no 

complete ana l y t i c a l solution has yet been obtained. The p a r t i a l 

a n a l y t i c a l results published i n the l i t e r a t u r e w i l l therefore be 

extended as f a r as possible i n an attempt to obtain a complete 

anal y t i c a l solution. 

It i s assumed that the following end conditions are 

specified: 

h ( t Q ) = h Q = 0 , h(t^) = hp = f i n a l altitude (given) 

V ( t o } = V o = 0 ' V ( t f ) = V f = 0 

m(t Q) = mQ = unknown, m(t^) = m̂  = payload (given) 

where m i s the i n i t i a l mass which includes the mass of the f u e l , 
' o 

The problem i s to minimize the fuel consumption required to 
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reach a specified altitude by cont r o l l i n g the thrust. The per

formance function P i s (m - m^). Since m̂  i s fixed, the problem 

i s equivalent to minimizing the i n i t i a l mass mQ. 

The Euler-Lagrange equation (A.17) shows that two diff e r e n t 

classes of subarcsexist for the optimal trajectory: 

(1) ^ = 0, subarcswith constant thrust. 
V 

(2) X c- X 0 — = 0, subarcswith variable thrust* 
5 J m 

For the sounding rocket problem i t can be shown that im

pulsive boosting i s always required. In this case the equation 

of motion (A.12) may be approximated for the boosting period by 

the equation 

where t i s the i n i t i a l time and t, i s the end of the boosting i n -o 1 b 

t e r v a l . 

Solving (2.14) together with (A.13) yiel d s 

m * mQ exp (- |-) , t < t < t 1 . (2.15) 
e 

where m i s the i n i t i a l mass and m, i s the mass at the end of the o 1 

boosting i n t e r v a l . 

The boosting i n t e r v a l i s often very short and the impulsive 

thrust i s extemely large. The to t a l time for the boosting period 

may then be taken as t-^- t = At, and the v e l o c i t y V i s suddenly 
increased from zero to V. while the mass decreases from m to m,» 

1 o 1 
The entire optimal trajectory has only three subarcs: The boosting 

subarc, the variable thrust subarc, and the coasting subarc (zero 

thrust). 

Integrating ( A . l l ) from t to t, yi e l d s 
f t r t 

h l = 1 V dt = 0 V dt 
^© *o 
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since At i s very small and V i s f i n i t e , the above integral i s 

negligible and 

= Ah =• 0 ( 2 . 1 6 ) 

Let the mass flow of the impulsive boosting be p ^ . In

tegration of ( A . 1 3 ) gives 

m, — m = 
1 o p dt rm 

•m ( 2 . 1 7 ) 

Since Pm i s extremely large, the product P mAt i s a f i n i t e 

quantity. 

Solving the Euler-Lagrange equations ( A . 1 4 ) to ( A . 1 6 ) 

y i e l d s 

and 

X 3 6 D 
21 ~~ 2 0 \ m Oh A - „ , = X ™ + 2 0 •', ( 2 . 1 8 ) 

X 3 1 - * 3 0 + 

" ^ X 3 6 D " 
" A 2 + ~m" ST . dt = X 3 0 

o 
-t, 

X 5 1 = X 5 0 +\ ~2 <VnT D > d t 

m 

(2.19) 

. I D , 

x 5 0 + ̂ 
'm 

- V <-DM> -
m 

X 3 D 
dt 

m 

= X_n + X . , N V (^- - — ) 5 0 3 0 e m, m 1 o 
( 2 . 2 0 ) 

where the second subscript denotes the value of X ^ at the time 

t = t ^ , that i s , ̂ ("k^) = ^ i k * •'•be above approximations are 
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obtained by neglecting a l l integrals with respect to t since the 

time interval t^ — t Q i s n e g l i g i b l e . The drag function and 

i t s derivatives, and are f i n i t e during this i n t e r v a l . 

This can be seen from the drag function (2.13). 

Information about the end conditions of the Lagrange 

multi p l i e r s may be obtained from the transversality condition 

and the f i r s t i n t e g r a l . 

The transversality condition i s 

dm + X 0dh + X^dV + Xcdm + C dt 
2 3 5 

t f 

= 0 (2.21) 
t 

where C i s the f i r s t i n t e g r a l . 

Since m , t , and t„ are free, the transversality con-o o f J 

d i t i o n y i e l d s 

X 5 0 = -1 (2.22) 

and 

C = 0 (2.23) 

The transversality condition does not give any information 

about the f i n a l values of the Lagrange multipliers for this 

problem. However, the f i r s t integral (A.18) gives 

X 3 f = 0 (2.24) 

For the variable thrust subarc, ^ ^ 0, and i t follows 

from (A.17) that the condition 

V 
X5 " A 3lT = °' ti< t < t 2 ' ( 2 ' 2 5 ) 

must be s a t i s f i e d , where t ^ i s the time at which the thrust i s 

cut o f f . 
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The f i r s t integral (A.18) now reduces to 

X2Y - \3 (g + |) = 0, t 1 < t < t 2 . (2.26) 

It i s obvious that (2.26) also holds for the coasting subarc 

where 0 = 0 . 

D i f f e r e n t i a t i n g (2.25) with respect to t yie l d s 

m \5 + X5m - X 3 V e = 0 (2.27) 

Substituting (2.5), (A.15) and (A.16) into (2.27) gives 

X2 " m 1 ( f ~ + ^ = °' t i < t < t
2 • < 2* 2 8) e 

Substituting (2.13) into (2.28) yie l d s 

\r = m (l + rH' t x < : t < t 2 . (2.29) 
3 e 

Eliminating ^ a n d ^ 3 between (2.26) and (2.29) gives 

mg - D(l 0, t 1 < t < t 2 . (2.30) 
e 

Equation (2.30) shows that the v e l o c i t y V can not be zero during 

the variable thrust period. Therefore impulsive boosting i s 

required. Moreover, equation (2.30) can be used to determine 
j 

the switching time t^ for the actual f l i g h t , and i t w i l l be used 

as a control law i n the next chapter for the analogue computation 

of the sounding rocket problem. 

Di f f e r e n t i a t i n g (2.30) with respect to t yie l d s 
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x 
V a V V a e e 

+ t l -
aY 

£_) JL 
2} V 2K. 

e aV 

2 + 4 T ~ 
V ^ e 

+ 2 
(2.32) 

Let v = rp— and b = —^> , then (2.32) can be written as 
e aV ^ 

• _ j * v _ v^ + (l-b)v-2b 
bV 2 
D V

e v + 4v + 2 
(2.33) 

or 
b V e v 2 + 4v + 2 , dt = 5 dv 

g v[v + (l-b)v-2b[ 
(2.34) 

Integrating this equation from t-̂  to t gives 

where 

Since 

t = t n + — 1 g 

K 

l n ! i + li±bi l n v 2
+ (l-b)v^2b 

v 1^+(l-b)v 1-2b 

+ In r2v1+ (i-b) + K 2 V + ( 1 _ B ) -K 
2 I 2v + (1-b) + K 2v 1+ (1-b) -K 

(2.35) 

K = J (1-b) 2 + 8b 

i t follows that 

h = V = vV 

dh = V vdt e 

Substituting (2.34) into t h i s equation yi e l d s 

d h = 1 ? v + 4v + 2 d y  

a v + (l-b)v-2b 
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Integrating t h i s equation from h, to h gives 

+ 31b l n v 2+(l-b)v-2b 
1 v^ + (l-b)v 1-2b 

K . (•2v1 + (l-b)4K 2 v + ( l_ b) K 1 
+ 2 l n^2v + (l-b)+K 2v 1 + (l-b) - K J 

(2.36) 

The mass m can be determined as a function of v and t by-

rewriting (A .12) i n the form 

a = _ i (v + G + D } m V e nr e 

and then substituting (2.30) for ̂  into the l a s t equation. 

Thus 

m ~ ~ V V~ V U+v) 
e e 

or da = . ( d T + f _ d t ) 

Now substituting (2»34) for dt i n the above equation gives 

dm /, g -, . \ b v + 4v + 2 
in V 7 v (1 +v) 2,/ n,\ 

e v ' v +(l-b)v-2b 

which can be integrated to the form 

l n m 
m 

m. 
(v + f- t) 

e 
+ In 

2^ v + v 
v z+ (l-b)v-2b 

or 
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m=ra 
.2 + y v 1

2 + (l-b)v 1-2b 
1 v ^ + v1 v 2+(l-b)v-2b 

exp (2.37) 

To sblve the Euler-Lagrange equation (A.16), the following 

equations 

T p - D . 

m = V + 

x 3 x 5 

m 

which are obtained from (A.12) and (2c25) are required. Sub

s t i t u t i n g these two equations into (A.16) gives 

X 5 = X 5(v +^-) 

e 

where v = V/V"e« Integrating this equation from t^ to t yie l d s 

X 5 = X exp (v t) (2.38) 
e 

Substituting this into (2.25) gives 

mX 
x 3 = — 

51 exp (v t) (2.39) 

The Lagrange m u l t i p l i e r X 2 can be determined by the f i r s t 

i ntegral (2.26): 

mX c -i -n 
«2 - — ^ (g + exp (v + ^ t) (2.40) 

v V e 
X„ = 

For the coasting subarc, the thrust i s cut o f f , so that 

(3=0. Thus m = 0 and the mass m i s constant. Let m = at 



t = i<2> then = m̂ , and the equations of motion and the Euler-

Lagrange equations become 

h - V = 0 (2.41) 

Y + g + ~— = 0 (2.42) mf 

m 
and 

where 

(2.43) 

*2 " =J 5E < 2 - ^ ) 

^ = - X 2 + m 7 0 T <2'45> 

*5 = " X3 ~^2 ( 2 e 4 6 ) 

m̂  

2 
where D = k V exp(-ah) 

Since v _ dV _ dV dh 
5 i n c e V - dt ~ dh dt 

V = w 2 *Z dh e dh 

substituting this equation into (2.42) gives 

T 3 E + f 2 + ^ « P ( - ^ ) = ° 

e 

° r ^ ( v 2 ) + ^ v 2 exp(-ah)+2 ab = 0 (2.47) 

Equation (2.47) i s a li n e a r d i f f e r e n t i a l equation with respect 
2 / 2k — ah\ to v . It has an integrating factor of the form exp(- — e ), 

and can be written as 
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d_ 
dh 

2 / 2k -ahx _vexp(- — e ) 2ab exp (- — e a^) 

(2.48) 

In order to integrate the right hand side of this equation, l e t 

y = e ~ a h , dy = -aydh 

and / 2k -ah\, u \ / 2k % dy exp (- — e )dh = - exp (- — y) -± J " ' ay 

The integration can be performed by expanding the exponential 

function i n a Taylor series. Thus 

r 0 0 n 
exp (c y ) ^ = l n (c y) + V 

J  y £-i n.n 1 
n=l 

and integrating (2.48) yie l d s 

2 / - . I . _ /2k —ah\ v = 2 b exp ( e ) r am ̂  -ah + 

/_ 2k \ n
 g-anh 

«*» am^' 

n . n ; 
+ C 

n=l 

- f ( h ) (2.49) 
where i s the constant of integration and i s given by 

( 2k ^n g-anhf 
= ahj — am. 

n=l n . n ! 

Thus i s a known constant since h^ i s given. From (2.41) 
dh dh dt = V v e 

and (2.49) gives 

thus 

v =Vf (h) 

dt = ±- dh 
V e V H h j 

Integrating t h i s equation gives 

t = t 2 + ±- dh 
e J h . V f (y) 

(2.50) 

Substituting the f i r s t integral (2.26) into (2.45) for \ 0 y i e l d s 
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Since 
« dX~ dX 0 j , dX 0 , _ 3 _ 3 dh _ v 3 
A3 ~ dt - dh ° dt _ v dh 

thus 
ax. 
dh _ V 

X3 / „ . kV 2 -ahs 

or ax. L_ e " a h
 d h _ s _ ah 

mf V 2 v 2 

e 

But (2.49) gives 

thus 

vZ = f(h) 

ax. k_ e~ah d h _ _g_ dh 
m̂  e d h ~ 2 fThT 

Integrating this equation yi e l d s 

X.j = exp r-^ 
L_ am. 

-ah _g_ 
V 2 

e 
] + c. 

= F(h) (2.51) 

where C 9 i s the constant of integration and i s given by 
h 

e h 2 

(2.52) 

The Lagrange mu l t i p l i e r X 2 can be obtained from the f i r s t integral 

k v ^ 2 , 
*o = 1 # L (g e" a h) (2.53) 

Substituting (2.5l) into (2.46) gives 
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X 5 = . P ( h ) S ! e-ah 

• d A _ d X , d X c 

5 d t d h d t d h 

and V = V v = V \J f(h) 

thus dX c -kV , , 
^ 1 = — f v / i l M P ( h ) e " a h 

dh m f 2 

Integrating t h i s equation gives 
_ k V r h  

X 5 = ^ p \ h 2 P(y) V f ( y ) e" ay dy + C 3 (2.54) 

where i s the constant of integration. For the further d i s 

cussion i t w i l l be convenient to give a summary for the solution 

of the sounding rocket problem. 

(l) For the boosting subarc ( 0 - ^ t < t ^ ) , where t Q = 0* 

h 1 = 0 (2.16) 

V suddenly increases from zero to 

V l 

m = m exp(- % — ) , where m i s o * V ' o e 
unknown. (2.15) 

t x = A t = 0 
X 2 = X 2 Q (2.18) 

^ 3 = A 3 Q (2.19) 

X5 S X50 + X30 V e £ ' m"> ( 2' 2 0> 
o 

where X 5 Q = -1 (2.22) 

The f i r s t integral i s 
A 2 V - x 3 ( g + 2) - U - * It) = o 
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(2) For the variable thrust subarc, ( t ^ ^ t - ^ t 2 ) , 

y - v + L±± l n v '+ (1 - b)v -2 b 
v 2

 1
 v 2 '̂  + (1 - b ) v x- 2b 

, K . f 2 v i + - b ) + K 2v + ( l - b) - K 11 
+ 2 l n l 2 v + (1 - b) + K * 2v x + (1 - D) - K J J 

m = m v 2 + v V ; L
2 .+ (1 - b)v1 2b 

1 V l 2 + v l v 2 + ( l - b)v - 2b 

e 

exp 

(2.36) 

(2.37) 

t = !e [ l n I i + I l ^ _ b i l n v 2
 + (1 - b)v - 2b 

g L v 2 v , 2 + (1 - b ) v x - 2b 

K f 2 v 1 + (1 - b) +K 2 v +, ( l _ b ? _ 
+ 2 i n [ 2 v + (1 - b) + K y 1 + (l-b) - K 

(2.35) 

where b = — ^ t K =./(l - b ) 2 + 8b and 
aV. 

'3 m 
m X51 
v V ; 

(g + £) exp (v + t) 

m X 51 
3 - y 

m 

exp (v t) 

A 5 = A 5 1 exp (v + ̂ |- t) 
e 

The f i r s t integral i s X 0V - X~(g + -) = 0 m 

mg - D(l + f-) = 0 
e 

(2.25) 

(2.40) 

(2.39) 

(2.38) 

(2.26) 

(2.30) 

(3) For the coasting subarc, ( t 0 ^ t ^ t „ ) , 
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2 - /2k - a h x v = 2b exp ( e ) 

/_ 2k \ n —anh 
oo am „ 

-ah + + C\ 
n=l n . n J 

where 

= f(h) 

= ah^ 

n / 2k \ -anh„ 
~ ( - i s r : ) e f 

n=l 

h 

n , n 

dh 

(2.49) 

(2.50) 

m = m̂  = constant 

x _ lihl (s + k v 2 V e
2
 e-ah }  A2 - v V V g + ~ i i n e I 

e i 

X- = exp r- — 
L am„ 

-ah __g_ 

e Jh, 

dy 
fTTT. 

(2.53) 

+ C, 

A F(h) (2.51) 

-kV. 
k5 = _ 2 

-kV \ i 

— I F(y) V f(y) e ~ a y dy + C- (2.54) 

where 

C 2 = - exp 

The f i r s t i n t e gral i s 

_ JL_ p - a h f _ _£ 
am. 

dy 1 

e J h 2 

(2.52) 

X 2 V - *3 <« + m~) = 0 (2,26) 

It i s evident that the form of the analytical solution i s 
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very complicated. On the coasting subarc, the anal y t i c a l 

solution cannot be expressed i n a closed form. However, by the 

use of d i g i t a l computers an accurate numerical solution may be 
(12) 

obtained. For example, Leitmann has obtained the optimal 

thrust program as a function of time, using a d i g i t a l computer 

and the an a l y t i c a l results to obtain the optimal trajectory. 

In Leitmann's method the trajectory was solved i n reverse time, 

starting at the f i n a l point. 

Although the an a l y t i c a l solution has a complicated form 

i t s t i l l y i e l d s interesting information about the optimal 

trajectory of the sounding rocket problem. This w i l l be d i s 

cussed i n the following section, 

(l) The Optimal Controller 

The entire optimal trajectory has three subarcs (the 

impulsive boosting subarc, the variable thrust subarc and the 

coasting subarc) and associated with these subarcs are three 

di f f e r e n t types of thrust programs. These are impulsive thrust, 

variable thrust and zero thrust. This means that the optimal 

controller has three modes of operation. The f i r s t and the l a s t 

modes are ones of maximum and zero thrust respectively. The 

variable thrust mode i s controlled by the optimal controller 

which must also determine the instants at which modes are 

switched. A possible optimal controller can be obtained by means 

of (2.30). The method whereby (2.30) i s used to obtain the 

optimal control law i s to consider (2.30) 

e • = mg - D(l + ̂ -) (2.55) 
e 
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as an error signal. The signal e i s fed into a high gain ampli

f i e r and the amplifier output is used to control the fuel flow, 

A detailed discussion and some other possible optimal control 

laws w i l l be studied i n the next chapter, 

(2) The I n i t i a l Values of the Lagrange M u l t i p l i e r s 

The Lagrange mult i p l i e r s play an important role i n the 

present study of optimal c o n t r o l l e r s . In the general case^ the 

control law depends on the Lagrange m u l t i p l i e r s . Usually the 

i n i t i a l conditions of Lagrange mult i p l i e r s are not a l l known 

and the controller must then compute the unknown i n i t i a l 

conditions. 

The sounding rocket problem has two unknown i n i t i a l 

Lagrange multipliers, X O A and X 
zv 30* 

It follows from the an a l y t i c a l study that both X^Q a n < i 

X-JQ are negative. This statement can be proved by the following 

argument: 

At the end of boosting, that i s at the time t-^, the 

ana l y t i c a l solution gives 

X 2 1 = X 2 Q (2.18) 

X 3 1 = X 3 Q (2.19) 

X 5 1 - - l + X 3 0 V e ( i - - ^ ) (2.20) 
1 o 

and X 5 1 - X 3 ; ^ = 0 (2.25) 

The l a s t equation can be approximated: 
V 

A51 = X30 m^ 
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Substituting the above equation into ( 2 . 2 0 ) and solving for 

A o y i e l d s 
m 

S O--V 2 , ( 2 - 5 6 ) 

e 

Equation ( 2 . 5 6 ) shows that X-JQ must be negative, since mQ and 

V G are positive quantities. It follows from ( 2 . 1 9 ) that X^ 

must be negative. Furthermore, the f i r s t integral ( 2 . 2 6 ) shows 

that 

* 2 1 T l - * 3 1 < « + « f > - ° 

where , g, and m̂  are positive, and X ^ i s negative. Thus 

X^-must be negative and from ( 2 . 1 8 ) X^q must be negative. In 

conclusion, a l l the Lagrange multipliers i n the sounding rocket 

problem must have negative i n i t i a l values. 

( 3 ) A Qualitative Study of the Motion of the Sounding Rocket  
Problem 

A qualitative study often gives a better understanding of 

a problem. The general behaviour of the state variables and the 

Lagrange mu l t i p l i e r s may be obtained from the an a l y t i c a l 

solution. The altitude h i s always increasing along the entire 

tr a j ectory. 

For the boosting subarc, the an a l y t i c a l solution shows 

that V i s increasing and that both m and X^ are decreasing, but 

X 2 and X^ are almost constant. 

For the variable thrust subarc, the optimum thrust gives 

an optimum v e l o c i t y . Equation ( 2 . 3 6 ) shows that V must increase 

since h i s increasing a l l the time. The mass m i s determined 

by the equation (see ( 2 . 3 0 ) ) . 
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- = | d + fo 
s e 

= k e 
ff exp(ah) 

Since m i s decreasing, i t follows from the above equation that 

the denominator, ge a*\ increases faster than the numerator k V 2 ( l 

+ The Lagrange mult i p l i e r s X„ and X,, increase because they 
e 

have positive time derivatives and X,. decreases because i t has 

a negative derivative with respect to t (see (A.14), (A»15) 

and (A.16)). 

For the coasting subarc, the drag i s small at high 

a l t i t u d e , and the thrust i s zero, thus the v e l o c i t y i s approxi

mately equal to V 2 ~ g("t-t 2) (see (A.12)). The altitude h 

increases u n t i l V becomes zero. The Lagrange multipliers X 2 

and X^ remain almost constant for the coasting subarc, since 

their time derivatives are negligible (see (A.14) and (A.16)) 

and X-j increases to i t s f i n a l value X^^ with a slope approxi

mately equal to -X 2 (see (A« 15))« The a n a l y t i c a l solution for the 

coasting subarc contains an integral* The integrand i s l / f ( h ) 

and i s i n f i n i t e at h = h^ since f(h^) = v f = 0 . The integrals 
h f . h f 

/ty and \ W'̂ N are, however, f i n i t e . The singular 

2 - 2 

nature of the integrand makes a dir e c t d i g i t a l computation using 

the a n a l y t i c a l results d i f f i c u l t . If the approximation 

V = V_- g(t - O for the coasting subarc i s made, the function 
• .—12 

can be used to compute the f (h) = v = V 
e 

2 - -~ 2 r v g(t - t 2 r 2 

above two integrals, 



i 59 
The following curves i n F i g . 2.2 and F i g . 2.3 i l l u s t r a t e 

the general behavipur of the state variables and Lagrange 

m u l t i p l i e r s . 



F i g . 2.3 The Lagrange multipliers 
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61 

3.1 Introduction 

The general problem i n optimal control i s the 

determination of the inputs to a system subject to certain con

straints so that the state of the system follows a trajectory 

r e s u l t i n g i n the optimization of a given performance c r i t e r i o n . 

In other words, the problem i s to determine the control 

variable as a function of time so that the system s a t i s f i e s 

the specified c r i t e r i o n . This i s ess e n t i a l l y an open loop 

control system and, from the control engineering point of view, 

may not be sati s f a c t o r y . The control variable resulting i n optimum 

performance can be determined a n a l y t i c a l l y only for very simple 
systems, for example, the constant c o e f f i c i e n t l i n e a r system. 

Furthermore, the open loop control has the disadvantage that 

disturbances existing i n a physical system results i n non-

optimum performance. Therefore, a closed loop feedback control 

system i s desirable. 

This chapter i s devoted to the study of feedback optimal 

control systems. Specific problems are studied and the optimal 

control for each case i s derived as a function of the system 

state v a r i a b l e s . 

3.2 The Concept of Optimal Feedback Control and the Synthesis  
of Optimal Controllers : 

Optimal controllers synthesized by use of the calculus of 

variations r e s u l t i n a multivariable type of control systems. 

In general, a multivariable optimal control system consists of 
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two subsystems. These are the plant and the so-called adjoint 

system. The plant i s usually described by a set of d i f f e r e n t i a l 

equations and the adjoint system corresponds to the Euler-

Lagrange equations. The interre l a t i o n s h i p between these two 

subsystems i s shown i n F i g . 3.1. 

an n by m optimal feedback control system, where n refers to the 

number of the state variables x ( t ) , and m refers to the number 

of the control variables u ( t ) . The following matrix notations 

are used i n F i g . 3.1. 

The system i l l u s t r a t e d i n F i g . 3.1 may be considered as 

x 2 ( t ) 
* 

x(t) n x 1 matrix of state variables. 

x (t) 
n _ 

x x ( t ) 

X(t) n x 1 matrix of the Lagrange m u l t i p l i e r s . 

u x ( t ) 

u(t) m x 1 matrix of control variables. 

P(a m x 1 matrix of the terminal values 
of x(t) and t . P m 

The performance function P i s to be optimized. The 
number of elements of the u(t) matrix i s always the same as that 



x ( t „ ) 
Plant j d t l 

Performance 

Cr i t e r i o n 

) , Adjoint Optimal u(t) 
System Controller 

F i g . 3.1 A general multivariable optimal feedback control system 
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of the P matrix. 

3.2.1 A Multivariable Optimal Feedback Control System 

In some cases the optimal control law may not contain 

the Lagrange m u l t i p l i e r X(t) e x p l i c i t l y . The control variable 

u(t) may then be determined as a function of the state variable 

x ( t ) . In th i s case the general multivariable feedback control 

system described i n F i g . 3.1 reduces to the form shown i n F i g . 

3.2. The following sections discuss optimal controllers of this 

type for a variety of f l i g h t conditions. 

3.2.2 Synthesis,of Optimal Control Laws for Rocket F l i g h t 

In the study of optimal control systems the synthesis of 

the optimal controller i s a major problem. In the case of 

optimal feedback control systems the determination of the 

optimal control law i s of primary importance. 

The simplified problems of rocket f l i g h t have been 

formulated i n the Appendix, and they w i l l be studied i n this 

section. These simplified prdblems have one degree of freedom. 

Thus there exists only one optimal control variable i n these 

problems• 

(l) The V e r t i c a l F l i g h t (Sounding Rocket) Problem -

It follows from Chapter 2 that optimal condition for the 

variable thrust subarc i s 

X5 " X3 S2- = 0 (2-25> 

Actually, this condition holds true for a l l the four problems 



Optimal 

Controller 

u(t) 

(t) Performance 
C r i t e r i o n 

3.2 A multivariable optimal feedback control system 



discussed i n this chapter. D i f f e r e n t i a t i n g (2.25) with respect 

to ti yi e l d s 

m X 5 + m A - V e X 3 = 0 (3.1) 

It follows from Chapter 2, Section 2.3 that (3.1) leads to 

equation (2.30)j that i s 

A V f = mg - D(l = 0 (3.2) 
e 

where f i s calle d the switching function. The boosting 
s 

stage terminates when f goes through zero. D i f f e r e n t i a t i n g 
s 

(3.2) with respect to t gives 

mg - D-|- - (1 (|2 Y - aDh) = 0 (3.3) 
e e 

The equations of motion, ( A . l l ) , (A.12) and (A.13) can be used 

to eliminate m, V and h i n the above equation resulting i n 

u = (3 

D (g + |) (2 + 21) + a V
2 (1 +T-;) 

_ e 

g V + | (2V e + 3V) 

(3.4) 

which gives the optimal control variable as a function of the 

state variables for the variable thrust subarc. 

(2) The Horizontal F l i g h t Problem, 

The equations for optimal horizontal f l i g h t are derived 

i n a manner similar to the problem of v e r t i c a l f l i g h t . After 
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substituting (Ao23), (A.25) and (A.26) into (3.1) the following 

equation results 

X„ =W + X, V 4 mV 1 e 3 m m o» (3.5) 

The f i r s t i ntegral for the variable thrust subarc i s 

X,V - X, - = 0 
1 3 m 

(A.29) 

Solving this equation for X^, and (A.27) for X^ and then sub

s t i t u t i n g into (3.5), yields the condition 

6: 

which must be s a t i s f i e d by the optimal variable thrust subarc 

Here L = mg and D = D ( V , L ) 

Expressing (3.6) i n the form 

6D 6B 
D ( V - V e) +V V e - m g V § £ = 0 

and then d i f f e r e n t i a t i n g with respect to t yiel d s 

V D + (V - V e ) ( ^ V + ^ L ) + V V 6D 6v 

- mgV (5LOV V + ~ L 

Substituting L = mg into the above equation gives 

n ^ ,r 6D 6D „ v d 2 D ,r d 2p " 
L 5L " M G 5L + V V e ^ 2 " m g v 5L5V_ - mg e 6L 

+ V V e 5VOL " m g V ^2_j = 0 
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Let A(m,V,L) = D + V ̂  - .g ̂  + V Vfi ^ - ,g T ^ 

n( v A -ir 0D , „. ,, 6 2D , R Q2D B(m,V,L) = -Ve ^ + V V e ^ - mg V — 

and substituting (A.22) and (A.23) into the previous equation 

yiel d s the optimal control variable 

u = 0 

A D (3.7) AV"e - mgB 

(3) The Arbitrary Inclined Rectilinear F l i g h t Problem, 

This i s a more general case and includes th€ v e r t i c a l and 

horizontal f l i g h t problems. The derivation of the optimal control 

variable i s the same. Substituting (A.34), (A.37) and (A.38) 

into (3.1) and using the optimal condition (2.25) for the 

variable thrust subarc, the following equation %s obtained. 

*4-mT + h Y e C 0 S ° + X 2 V e s i n Q " X3 (m" + lr 5T> = 0 

(3.8) 

The f i r s t integral for this problem along the variable thrust 

subarc i s given by (A.4l) 
A-, JJ 

X± cos 0 + X2 sin © - ̂  (̂  + g sin Q) = 0 

The Euler-Lagrange equation (A.39) gives 

X4 = X3 V 5 T 

It follows from the above two equations and (3.8) that the optimal 

variable thrust subarc must s a t i s f y the condition 
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f g = D(V - V e) + Y V e | - m g (V e sin 0 + V cos 0 ^ ) = 0 

(3.9) 

where L = mg cos 0, D = D(h,V,L) and 0 i s a constant. It can be 

seen that (3.2) and (3.6) are special cases of (3.9). 

D i f f e r e n t i a t i n g (3.9) with respect to t yields 

+ V cos 0 £°j) 

mg V cos 0 ̂  - mg V cos 0 ( g ^ V + h + g | £) = 0 

By means of (A.32), (A.33), (A.34) and the equation 

L = m g cos 0 

The previous expression can be solved for 0 yi e l d i n g the 

optimal control variable 

u = P 

_ mC - A(mg sin 0 + D ) / _ N \ 
mB - V A U.iO; 

e 
, » -A « _,_ w 6 2 D n dn w „ u 2 p 

where A = D + V V E — - mg cos 0 - mg V cos 0 Q ^ J J 

B = g cos 0 
. ( Y " V 6T + W e 5VOL " m g C 0 S ° ^ 2 

- V e t a n 9 " V 6T 
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2 2 

C = ( T - V e)V sin © + sin 0 ^ - mg V 2 sin © cos © 

(4) The Z e r o - l i f t F l i g h t Problem. 

Substituting (A.48) and (A.53) into (3.1) yie l d s the 

equation 

*3 = " X3 m V ( 3 a i ) 

e 

The optimal condition for the variable thrust subarc i s 

given by.(A.54) 
V 

Ac - X- ~ = 0 
5 3 m 

Substituting this into (A.53) gives 

h = ̂  ( V " D> (3'12> 
e 

It follows from (A.5l) that 

A^ = -Aj C O S © - A 2 sin 6 + ~ y7" ~ ^4 2 C 0 S 0 

Substituting (3,11) into the above equation yields 

- A = S - + A, V cos © + A 0 V sin © - A;, — + A. # cos © 3 mv 1 2 3 m 4 V e 

= 0 (3.13) 

The f i r s t integral for the variable thrust subarc i s 

Aj V cos © + A 2 V sin © - A 3 ( ^ + g sin ©) - A 4 ^ cos © = 0 

(3.14) 

The Euler-Lagrange equation (A.50), 



71 
with the aid of (3.1l), c a n D e written as 

\ 2 = a V g X 3 (3.16) 

Integrating (3.16) gives 

X 2 = a V e X 3 + C 2 (3.17) 

where C~ i s the i n i t i a l condition of X«~- a V X--.. 
d. <ZV e _}U 

Subtracting (3.13) from (3.14) and solving for X^ yields 

X V 
X„ = -x—2 TT (~- + - - g sin ©) (3.18) 4 2 g cos 0 mV m s y v ' B e 

Substituting (3.17) and (3.18) into (3.13) and solving for X 3 

results i n 

2V(C 1 cos 0 + C 2 sin ©) 
DV 3D 
~ - + — + g sin © - 2aW sin 0 
mv m 5 e 

X3 ~ DV 3D (3.19) 

e 
where X^ = i s a constant, a result which follows from the 

Euler-Lagrange equation (A.49). 

Now l e t t i n g s = B(v!g ; m !o) ( 3 - 2 ° ) 

where A(©,V) = 2 V(C;L cos © + C 2 sin ©) (3.2l) 

B(V,h,m,©) = + ^ + g sin S - 2aW sin © 
e e 

(3.22) 
and d i f f e r e n t i a t i n g (3.20) gives 

X . ^ 5 ^ (3.23) 
J B^ 

It follows from (3.1l) and (3.20) that 
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Eliminating by the aid of (3.23) gives 

A B D 

where 

mV = B A - A B (3.25) 

« 

A 

B 

O A v . O A 

6A 

mQ 

OA / • Q Dx 6A V e P 6A 

6B 

6v 

cos O 

v ^ O B ' 6B ' ^ 6B * 
v + 6 h h + 6m" m + 6© 9 

OB / • n 

= s i n 6 

_6B £ 
6m K 

D^ ^ 6B V e P
 A 6B v . Q - —J + vr? + s-j- V sin 0 

nr 0^ m O n 

UB g A 5© f cos © 

Substituting A and B into (3.25) and solving for (3 results i n the 

optimal control variable for the variable thrust subarc 

where 

and 

u = (3 
1 

~ F m V 
e 

g sin © 6B . 

6v + 

A E c o s 0 6B 
V O© 

- B g Sill © jyf B D 6A 
m OY 

_ i£ 
V 

A D 6B 

A 6A 
cos © ^ 

(3.26) 

T? A A Ve 6B . 6B B Ve O A 

* - - 5v A m 6m m 6v 

6A 
6V 

6A 
5© 
6B 6v 
6B 
5h 
6B 
6© 

2 Cj cos © + 2 C 2 sin © 

r-2 Cj V sin © + 2 C 2 V cos © 

+ ^ - 2a V sin © mVe mV e 

e 
g cos © - 2 a V V g cos © 
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dm" = - —
 ( 3 + V"' 

w m e 

By the aid of equations (3.17), (3.18), (3.20) and (3.14), the 

switching function f can be obtained 

f = C, V cos © + 0 o V sin 0 + a V V sin © | - ̂  g sin © s i £ e D dx> 

_ ADV _ 3AD _ ( x 
2mBY 2mB - U \i^U e 

The optimal control law for the four di f f e r e n t problems 

of rocket f l i g h t has been derived. For this class of optimal 

control problems the fuel consumption has been minimized. How

ever, the technique can also be applied to problems of maximum 

range and minimum f l i g h t time, etc. The following block diagram 

represents the control scheme f o r . a l l four problems. There are 

i n each problem three modes of control corresponding to the 

boosting subarc, the variable thrust subarc and the coasting 

subarcs (see Fig* 3.3), 

The switching time t^ i s determined when the switching 

function f goes through zero (see (3.2), (3.6), (3.9) and (3.27)) 
s 

The controller then operates to keep f = 0 u n t i l the cut-off 

time i s reached. In the problem of z e r o - l i f t f l i g h t * the 

i n i t i a l values of the Lagrange multipliers , ̂  a n < ! enter 

into the optimal control law. The method for evaluating the 

i n i t i a l values i s discussed i n Chapter 4. 

3.3 Analogue Computer Technique for the Synthesis of Optimal 
Controllers 

The conditions for optimal control derived i n the l a s t 



Impulsive Boosting 
or Maximum Thrust 

u(t) 

x(t ) o 

• — 

1 
Optimal 
Control 
Law 

M t o ) 

x(t) Performance 
Cri t e r i o n 

F i g . 3.3 The modes of control for optimum rocket f l i g h t 

4^ 



section can be used to synthesize optimal co n t r o l l e r s . D i g i t a l 

computers are suitable for numerical computation. However, 

analogue computers appear better suited for the synthesis of 

comparatively simple real-time c o n t r o l l e r s . The lengthy 

i t e r a t i v e computations of the d i g i t a l computer are replaced by 

r e l a t i v e l y high—speed feedback loops where an error signal i s 

applied to a high—gain amplifier and the amplifier output can 

be used as the optimal control variable. The block diagram of 

F i g . 3.4 shows thi s technique. 

3.4 Analogue Computer Study of the Sounding Rocket Problem 

The analogue computer technique discussed i n Section 3.3 

w i l l now be applied to the sounding rocket problem, A PACE 

231-R analogue computer was used and a schematic diagram of the 

computer program i s i l l u s t r a t e d i n F i g , 3.5. The problem i s 

computed backward i n time. 

In F i g . 3.5 the error signal i s given by the switching 

function 

f = e(t) k mg - D(l + ) (3.28) 
e 

and the control variable by 

u(t) = -K e(t) (3.29) 

The reason for computing the problem backward i n time 

i s that the f i n a l v e l o c i t y , a l t i t u d e , and mass are known. Thus 

for backward time computation no i t e r a t i o n i s required for 

determining the optimal trajectory. 

The numerical values chpsen are the following: 
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Pig. 3.4 Synthesis of optimal controllers by means of analogue computers 
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Pig. 3.5 Analogue computer program for the sounding rocket problem 



7 8 

h f = 4 , 8 8 9 , 5 0 0 f t . 

= 1 0 slug 

V f = 0 ft/sec 

D = k V 2 e " a h 

V e = 5 5 0 0 ft/sec 

k = 1 0 ~ 4 slug - f t , 

a = 1 / 2 2 0 0 0 f t " 1 

K = 1 0 0 

The res u l t i n g state variables are shown i n F i g . 3 . 6 where 

T = - t is the backward time variable. 

The function E ( T ) i s used to determine the instant T 2 > 

when E ( 7 " 2 ) = ®* At T = 7" 2 the following values are obtained: 

h 2 = 6 2 , 6 0 0 f t . 

V 2 = 5 , 3 1 3 ft/sec 

= 1 0 slug 

X , = 1 6 1 . 3 sec. 

u 2 = 0 . 7 2 sl^g/sec. 

and the feedback computation of thrust based on E ( T ) = 0 i s 

introduced by means of a relay. At T = , the following values 

are obtained: 

= 0 

V 1 = 2 2 7 5 ft/sec 

m. ± = 2 0 . 8 5 slug 

1^ = 1 7 9 . 5 sec. 

u^ = 0 . 5 slug/sec 

At T= TQt the i n i t i a l mass including fuel i s 



4,889,500 

4,000,000 

2,000,000 " 
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161.3 

lOOe 

32,200 
20,000--
10,000--

0 
T 

sec 

F i g . 3.6 Experimental results for the sounding rocket  
problem 
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Vj 
mo ~ m l e x p V̂"̂  e 

- 31.5 slug 

At the instant T= 7"2, a relay switches the control 

variable u into the input of the mass integrator* For the 

coasting subarc the input to the mass integrator i s zero and the 

mass i s constant* At the f i n a l altitude the v e l o c i t y i s zero 

and the error signal e(T) i s m^g. Since both D and V increase 

with T i t can be seen from (3.28) that the error signal decreases 

to zero. At T = T 2 ^he relay operates and the rocket enters the 

variable thrust subarc. When h = 0, a second relay i s used 

to clamp a l l integrator inputs at zero, freezing the operation, 
(12) 

Leitmann v ' has used the a n a l y t i c a l results (see 

Section 2.3) and an IBM 701 d i g i t a l computer for the solution 

of the sounding rocket problem with the same given data as was 

used i n this section. His results are 

h 2 = 62,576 f t . 

V 2 = 5,308 ft/sec 

m2 = 10 slug 

u 2 = 0.74 slug/sec 

T - 7"2 = 18.7 sec. 

nij = 21 slug 
m =31.4 slug 

0 6 

Uj = 0.51 slug/sec, 

i n general this approach of using the a n a l y t i c a l result to 

compute the solution i s not possible, since the a n a l y t i c a l 

re s u l t i s not obtainable. However, the approach of F i g . 3.4 has 

general a p p l i c a b i l i t y . Comparison of the results shows that the 
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experimental results for the sounding rocket problem are very 

satisfactory. 

3.5 Some Other Possible Optimal Controllers 

In the preceding section the switching function given by 

(3.28) has been used for the synthesis of the optimal control 

variable u by an analogue computer. The switching instant 7"2 

separating the coasting subarc from the variable thrust subarc 

i s determined by f ( T 0 ) = 0. On the variable thrust subarc a 

feedback loop around a high-gain amplifier i s used to s a t i s f y 

the condition for optimal control which requires that e(T) = 0. 

It should be noted that the switching function f (T) i s a 
S 

function of state variables. In the general case of Fig* 3.1 

such a switching function may not be obtainable. In thi s case 

some other means must be used i n order to determine the control 

variable u for the optimal trajectory. These can be obtained 

from the switching function 
e 2 k m K5 - V e X 3 (3.30) 

and the f i r s t integral (provided i t exists, see (A.18)). 
y 

e 3 k C - X 2 V - X 3(g + |) - 0(X 5- X 3 ^ ) (3.31) 

Therefore there are three possible functions which can be used for 

the synthesis of control variable u for the optimal trajectory by 

means of a high—gain amplifier. These are 

e1 = mg - D(l + (r-) (3.32) 
e 

e 2 = m X 5 - V e X 3 (3.33) 

£ 3 = C - X 2 V - X 3 ( g + £ ) -f3(X 5- X 3 ^ ) 

(3,3.4) 
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A switching function of the type given by (3.32) i s preferable 

since i t results i n an extremely simple con t r o l l e r . Otherwise 

the Lagrange mult i p l i e r s must be computed. In such a case 

and can be used i n the same manner as was used. It should 

be noted, howevery that e-j = 0 for the complete trajectory and 

i s not, therefore> a switching function even though i t can be 

used to synthesize the control variable u. 

In order to use (3.33), the Lagrange multipliers X^ and 

must be solved simultaneously with the equations of motion. 

It i s of interest to note that X^ and X^ can be obtained by 

solving the two d i f f e r e n t i a l equations (see (3.1l) and (3.12)) 

X 3 = - ^ f (3.35) 
e 

e 

If the f i r s t integral i s to be used for synthesizing the control 

variable u for the optimal trajectory, the complete set of Euler-

Lagrange equations must be solved. This i s much more complicated 

than the case of solving equations (3.35) and (3.36). 
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4.1 Introduction 

Computational methods for the solution of optimization 

problems have had two primary directions i n the past: The 

direct approach and the i n d i r e c t approach. In the d i r e c t 

approach, equations of motion are solved by selecting an 

i n i t i a l control variable and then performing an i t e r a t i o n on 

the control variable so that each new i t e r a t i o n improves the 

performance function to be optimized. The i n d i r e c t approach 

involves the development of an i t e r a t i v e technique for solving 

the equations of motion and the Euler-Lagrange equations. 

The d i r e c t approach i s usually associated with the gradient 

method or the method of steepest descent. 

In this chapter a modified steepest descent method i s 

described for the solution of optimization problems which can be 

programmed on analogue computers. 

4.2 Basic Concept of the Modified Steepest Descent Method 

The Mayer formulation of v a r i a t i o n a l problems has been 

discussed i n Chapter 2. In the case of the four rocket f l i g h t 

problems studied i n Chapter 3, the optimal control variable can 

be determined as a function of state variables and feedback 

control methods can be employed. In general, the control variable 

u for the optimal trajectory may involve Lagrange multipliers 

and the computation of u becomes much more complicated. 

The basis of the modified steepest descent i s to search 

for the optimum value of the performance function by replacing a 
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search i n function space by a search i n parameter space. This 

greatly reduces the dimensionality of the problem. The per

formance function i s considered as a function of unknown 

terminal conditions. The f i n a l state of the system i s determined 

by the solution of the equations of motion and the i n i t i a l 

values of the state variables. The control variable for the 

optimal trajectory i s determined by the state variables and 

Lagrange m u l t i p l i e r s . The performance function may, therefore, 

be considered as a function of the unknown terminal conditions 

for the state variables and Lagrange m u l t i p l i e r s . In theory, i f 

the terminal conditions for the state variables and Lagrange 

multi p l i e r s are a l l known, the optimization problem can be 

solved by the method discussed i n Section 3.2. 

usually not a l l known. This complicates the synthesis of the 

control variable u for the optimal trajectory. In such cases 

some of the terminal conditions may be approximately determined 

by some means, and then the performance function i s optimized 

with respect to the remaining terminal conditions, using the 

gradient method. This i s the essential feature of the modified 

method of steepest descent. 

Consider the problem of minimizing the performance 

function 

In many p r a c t i c a l problems the terminal conditions are 

P = P ( a i , . • . t 

(4.1) 
= P(t,x) 

J t 0 

subject to the equations of motion 
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(4.2) 

where x = (x, ,...,x )• u = (u,»... 9u ), and the functions P 1 n 7 1 m 
and f. are given functions of their arguments., 3 

Following the theory of calculus of variations, the 

augmented function 

n 

3=1 

i s formed which s a t i s f i e s the Euler-Lagrange equations 

( s ) ~" "—"—- = 0 s j = J. P » o o ) n » dt 

6 F 

6 u , 
6x..< ...6x. 

j a, 

= o, Ii. '— I ;i o e » ^ H i i 

and the transversality condition 

dP + (F -
n x N V 

— — x.; dt + > — 7 — dx. 
. /Ox. J 4-v6x. J 

3=1 3 3=1 3 
= 0 

— t 0 

(4.3) 

(4.4) 

(4.5) 

Substituting the function F into equations (4.4) and (4.5) 

gives n of, 
X. 

and 

n 

X3 = "* Z A i 6 T 
i=l 

n 

(4.6) 

dP -
3=1 

X . f . dt + > X - dx 
^ 3 3 ^_—/ 3 3 

3=1 ->t 

J f 

0 (4.7) 

0 

If the function F does not depend on t e x p l i c i t l y , the f i r s t 

integral e x i s t s ! 



86 

= C (4.8) 

that i s n 
"S~^ X.f . 
/ i 3 3 = C (4.9) 
3=1 

It follows from the transversality condition that i f either t 

or t n i s free the f i r s t integral i s equal to zero. 

subject to the conditions (4.7) and (4.9) so that the perform 

mance function P i s a minimum. Note that the transversality 

condition y i e l d s information about the terminal values of the 

A. If the f i r s t integral i s known, i t may give some information 

about the terminal values of x and A. However, usually not a l l 

terminal values of x are given and not a l l terminal values of 

X can be determined by the transversality condition and the 

f i r s t i n t e g r a l . 

For a minimum problem having n state variables x. the 

performance function P w i l l , i n general, have n unknown parameters 

a.. If the f i r s t integral i s known (provided i t e x i s t s ) , only 3 
(n-1) unknown parameters are independent. In order to reduce 

the dimensionality a f i r s t approximation of these (n-l) unknown 

parameters may be obtained by computing a subclass of admissible 

t r a j e c t o r i e s which s a t i s f y the equations of motion and the 

known terminal conditions of the state variables. The subclass 

of admissible t r a j e c t o r i e s i s taken to s a t i s f y some, but not 

necessarily a l l , the terminal conditions for X, The i n i t i a l 

values of x and X for the optimal trajectory can now be determined 

The computational technique for the solution of the 

optimization problem i s to solve equations (4.2) and (4.6) 
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by the method of steepest descent. 

In general, a computer program using the modified 

steepest descent method could proceed as follows. In order to 

simplify the discussion i t i s assumed that more i n i t i a l values 

of the state variables than f i n a l values are known. 

(1) A suitable control u n i s selected as a f i r s t 

approximation and the equations of motion are 

solved forward i n time. If ^ ( t ^ ) i s known and 

x^(t^) i s unknown, an approximation to ^ ( t ^ ) 

can be obtained by adjusting x, (t.) u n t i l the f i n a l 

value of Xj^ takes on the prescribed value X j ^ t ^ K 

If both terminal values x. (t.) and x. (t„) of a 
k 1 k f 

state variable x^(t) are unknown, a f i r s t approxi

mation to ^ ( t ^ ) can be determined by minimizing 

the performance function P by the steepest descent 

method. The t r a j e c t o r i e s determined i n t h i s manner 

form a subclass of admissible t r a j e c t o r i e s . 

(2) Y i t h the previously determined admissible trajectory 

the equations of motion and Euler-Lagrange equations 

are simultaneously solved backward i n time. The 

unknown terminal values Xj(t^) are adjusted at 

t = t^ by i t e r a t i o n u n t i l the prescribed i n i t i a l 

values of the corresponding X• are obtained. A 

f i r s t approximation of i n i t i a l values for x and X 

has now been determined. 

(3) The equations of motion and Euler-Lagrange equations 

are simultaneously solved by the feedback control 

method (see F i g . 1.2) forward i n time. The con

t r o l l e r i s introduced by the feedback control 
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technique and the value of the performance function 

i s noted. This subclass of trajectories have a 

variable thrust subarc and the thrust for this 

subarc i s determined by the optimal control law. 

(4) The unknown i n i t i a l values of x and A are adjusted 

according to the modified method of steepest descent 

u n t i l the performance function i s minimized. 

4.3 P o s s i b i l i t y of P r a c t i c a l Applications 

In practice, there i s often a need for a low cost and 

comparatively simple on-line method for the solution of optimal 

control problems. At the present time many of the computational 

techniques existing i n various industries often require the use 

of a large capacity general purpose d i g i t a l computer. For 

economical reasons, this may not be acceptable i n many possible 

applications. However, the modified steepest descent method can 
(4) 

be used to rea l i z e comparatively simple on-line c o n t r o l l e r s . 

The instantaneous control policy i n real time may be obtained 

from an analogue computer which operates on a fast time scale. 

The trajectory i n state space i s solved by an analogue computer 

and a d i g i t a l computer stores the data for the steepest descent 

adjustment of the unknown parameters. This modified steepest 

descent method takes account of random disturbances since a new 

control policy i s computed for each trajectory* (see F i g . 4.1). 
4*4 Further Investigations 

The general idea of the modified steepest descent method 

based on the ind i r e c t approach of the calculus of variations 
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seems a very effective computational method. The high speed 

analogue computer i s p a r t i c u l a r l y suitable for the determination 

of t r a j e c t o r i e s and feedback methods can be used to synthesize 

the control v a r i a b l e . While computational experience with t h i s 

method i s l i m i t e d at the present time, i t s potential as a 

computational scheme for p r a c t i c a l applications deserves further 

studie s. 

It i s suggested that further investigations i n this method 

should be pursued to f a c i l i t a t e p r a c t i c a l applications to the 

following problems: 

1. The application of d i g i t a l h i l l - c l i m b i n g or gradient 

methods for automatically optimizing the performance 

function. 

2. Hybrid computational methods for automatically adjusting 

the unknown parameters. 

3. The extension of the method to problems of many 

degrees of freedom. 

A l l these problems must be l e f t open for future investigations* 
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5. FLIGHT SIMULATOR AND ANALOGUE SIMULATION 

5.1 Introduction 

Analogue computers may be divided broadly into d i r e c t 

analogues and i n d i r e c t , or functional, analogues. The p r i n c i p l e 

of operation of the dir e c t analogue computer i s based on a one-

to-one correspondence between the behaviour of the analogue 

system and that of the physical system under study. In the 

in d i r e c t or functional analogue computer, the equations which 

describe a physical system are formulated by components, such 

as summers, integrators, m u l t i p l i e r s , etc. 

The f l i g h t simulator i s a functional analogue computer 

of the electromechanical type and i s i d e a l l y suited for the 

solution of trajectory problems. In order to study the rocket 

f l i g h t problem, a CF-100 f l i g h t simulator has been suitably 

modified. 

5.2 Basic Components of the F l i g h t Simulator 

There are five basic components of the f l i g h t simulator. 

These are the summer, servo-amplifier, resolver, phase sensitive 

detector and relay. By means of these components mathematical 

operations can be performed. The summing amplifier, or the 

summer, carries out the arithmetic operations of sign inversion, 

m u l t i p l i c a t i o n by a constant and summation. The integration i s 

carried out by an electromechanical integrator. This integrator 

consists of a servo-amplifier, a servo-motor and a tachometer. 

A gear box i s used to couple the servo-motor to a linear 
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potentiometer which converts the shaft angle into a voltage. 

Furthermore, the integrator i s also used to generate functions 

and to carry out m u l t i p l i c a t i o n and d i v i s i o n . The resolver 

performs trigonometric operations involving the transformation 

of coordinates. The phase sensitive detector i s a device used 

to detect the phase change of an input signal with respect to 

a reference si g n a l . A relay i s energized when the input signal 

changes i t s phase. 

5.3 Simulation of the Optimal Control Law 

This section i s devoted to the simulation of the optimal 

control law for the z e r o - l i f t rocket f l i g h t problem discussed 

i n Chapter 3. For the programming of this problem a large 

number of m u l t i p l i e r s and function generators are required. 

This cannot be handled by most ordinary analogue computers since 

only a small number of multipliers and function generators 

are normally available* The electromechancial computing units 

of a f l i g h t simulator are i d e a l l y suited for this type of 

problem. In the study of the theory of optimal rocket f l i g h t , 

i t has been shown that the optimal trajectory consists of 

three subarcs. Associated with each subarc i s a mode of con

t r o l for the control parameter 0. If impulsive boosting i s 

assumed, one of the subarcs may be computed a n a l y t i c a l l y . If 

the thrust program consists of maximum thrust, variable thrust 

and zero thrust, the maximum thrust mode must be included i n 

the simulator. In general there are, therefore, three modes of 

thrust control. 

It can be seen from the Appendix that the control parameter 
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(3 f appears i n both equations (A.46) and (A.48). The three modes 

of thrust control must, therefore, be applied to these two 

equations. 

The sequence of the modes i s important. It follows from 

the theory of rocket f l i g h t that the sequence of these modes ares 

Mode Is (3 = B , constant thrust, 
"max 

Fuel consumption i s at a constant 

rate and the mass i s a li n e a r function 

of time, m = m„ - (3 t . 
0 rmax 

V Mode 2l = 0, variable thrust. 

The mass i s constrained.to s a t i s f y the 

variable thrust condition for optimal 

f l i g h t . 

Mode 3: P = 0, zero thrust. 

The mass i s constant. 

The zeros of the function 

A V 

f (m,/0 £ X 5 - X 3 ^ (5.1) 

can be used to define the three subarcs (see F i g . 5.1). 

The switching from Mode 1 to Mode 2 i s performed i n the 

simulator by a phase sensitive detector and a relay. In Mode 1, 

the relay i s i n the position for maximum thrust. When f (m.,\) 

becomes zero, the relay switches to Mode 2. During Mode 2 the 

control parameter 0 i s i m p l i c i t l y constrained so that f(m,A) = 0. 

For Mode 3, the signal representing the control parameter 0 i s 

shorted to ground. 

5.4 Analysis of a Test Problem 

In order for the simulator to perform s a t i s f a c t o r i l y , 



f(m,X) 

Pig. 5.1 Three modes of thrust control 

various units must be calibrated. The ca l i b r a t i o n can be 

best performed by solving a simple problem of free motion 

described by the following d i f f e r e n t i a l equations: 

x = V cos 0 

h = V sin 0 ( 5 

V = -g sin 0 

O = - ^ cos 0 

The i n i t i a l conditions at t = 0 are 

x(0) = 0 
h(0) = 0 
V(0) = V ' o 
0(0) = 0 
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where 0 < 0 q< J . 

The solution of this set of d i f f e r e n t i a l equations i s 

x = V cos 0 t o o 

h = V sin G t 4 g t 2 

o o 2 ° 

V 2 = V q
2 + g 2 t 2 - 2 g V O sin 0 o t (5.3) 

tan (| + J) = tan (^ + /Jt2 - 2 ̂  sin 0 Q t + ^ _ 

Eliminating the sin 0 from the second and the t h i r d equations 

of (5.2) gives 

h = -Y V/g 

Integrating the above equation yields 

V 2 = Y2 - 2 g h (5.4) 

Since V cannot be zero, i t follows from the second equation of 

(5.2) that sin 0 must be zero at h . Furthermore, because of 
max 7 

(5.4), V i s a minimum when h i s a maximum. 

From the solution for the v e l o c i t y of (5.3), i t i s seen 

that 
V . = V cos 0 (5.5) min o o s ' 

which i s extremely useful for c a l i b r a t i o n purposes. 

Another important fact i s that the v e l o c i t y i n the x-

dir e c t i o n , that i s , x i s always constant. This gives a good 

check for the operation of the simulator. 

D i f f e r e n t i a t i n g the solution for the v e l o c i t y and equating 

i t to be zero gives 
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V 
t = — sin 0 (5.6) g 

and at this instant the v e l o c i t y reaches i t s minimum. 

The above equations were used to scale the voltages on 

the simulator so that for the mass used the trajectory covered 

a convenient range of an xy-recorder. 

5.5 Experimental Test of the Modified Steepest Descent Method 

descent has been discussed i n Chapter 4. It would evidently 

be profitable to study a particular problem which can lead to a 

better understanding of the nature of the method. 

formance function to be minimized i s the fuel consumption. If 

the i n i t i a l mass mQ i s assumed to be given, the problem i s 

equivalent to maximizing the f i n a l mass m̂ . The i n i t i a l and 

f i n a l conditions are 

where mQ, x^ and h^ are given values. The following values of 

the state variables are unknown at the terminal points: © q , 0 

V„, m„. Here m„ i s to be maximized. 

The basic idea for the method of modified steepest 

Consider the z e r o - l i f t rocket f l i g h t problem. The per-

x ( t f ) = x f 

h ( t f ) = h f 

(5.7) 

The transversality condition for this problem i s 
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= 0 
t 

- C dt + Xj dx + X 2 dh + X 3 dV + X 4 d© + (\ g-l)dm 

o 

(5.8) 

The quantities t Q , t ^ , Vft © 0» > m £ are free,so that C = 0, 

^40 = °' ^3f = °» *4f = 0 a n d ^5f = l f a n d ^10' ^20' ^30' ^50* 
X J J and X ^ are unknown. 

The f i r s t integral (see(A.55)) i s 

XjV cos 0 + X 2V sin 0 - X 3 ( - + g sin 0) - X 4 f cos © - 8(X 5 

V 
3 m 

and for t = t ^ , B = 0, X 3^ = 0 and X ^ = 0. Hence 

tan ©„ = - ^ (5.10) r x 2 f 

Equation (5.10) gives a r e l a t i o n between ©^, X-^ and X^. From 

the Euler-Lagrange equation (A.49) i t i s seen that X^ i s a con

stant for the entire optimal trajectory. 

For this p a r t i c u l a r problem © q can not be 90°, as can be 

seen from the equation of motion (A.47) for 9. If 0 = 90°, 

and the l i f t i s zero, © i s zero i f V i s not zero, thus the 
' o ' 

f i n a l point (x^,h^) cannot be reached. If 0 q < 90°, then V 

cannot be zero, otherwise © w i l l be i n f i n i t e at the i n i t i a l 

point. Thus an i n i t i a l v e l o c i t y i s essential which can be 

obtained by impulsive boosting. In this case, the computation 

starts with the variable thrust subarc, since the boosting subarc 

i s very short and may be neglected. 
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Consider now the case of impulsive boosting where there 

i s no constraint on the magnitude of the thrust. Let t^ be the 

time at the end of boosting, then 

t, - t = A t =" 0 1 o 
x, = x =0 
1 0 

h n = h =0 1 o 
V, £ 0 

V 
m l ~ mo e x p (~ (5.11) 

e 
hi - x i o 

A21 ~ 20 
A31 ~ 30 
A 4 1 = A 4 Q = 0 

X51 S X 5 0 + X 3 0 Ve^m7-m-) 
1 o 

At t = t^, the variable thrust subarc starts, and 
V 

X 5 1 = X 3 1 m f <5-12> 

If the computation starts at t = t^, the i n i t i a l values for the 

state variables: , m̂  and 0^ are unknown. However, and m̂  

are related by the r e l a t i o n 

V. 
m i = mQ exp (- =i) (5.13) 

e 

If the magnitude of the thrust i s constrained by the 

condition 

where |3 i s the maximum control parameter, the approximation of 
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(5.11) s t i l l can be applied, but the optimal trajectory w i l l start 

with maximum thrust subarc. Since the i n i t i a l v e l o c i t y V q i s zero, 

some a u x i l i a r y device i s required to avoid that 0 be i n f i n i t e at 

the s t a r t . This can be done by holding the rocket on a launcher 

with maximum thrust for a negl i g i b l y short time, and the rocket 

then starts with a maximum thrust subarc with an i n i t i a l angle 

O q less than 90°. This i s equivalent to the problem of starting 

with an i n i t i a l v e l o c i t y ^ 0 and an i n i t i a l mass given by 

V. 
m. £ mQ exp (- ̂ ) (5.15) 

Thus the optimal trajectory starts with the following i n i t i a l 

conditions: 

t. - t = At a* o 

i o 
x. ^ x = 0 

1 o 
h. * h =0 

1 o 
V. £ 0 

V. 
m i = m

0
 e x p (~ 

* l i A10 

X 2 i 
04. 

X20 

* 3 i 
Q± 

X30 

* 4 i 
so 

X40 

k5i X50 

(5.16) 

In this case the switching function may not reach zero at t = t ^ . 

The optimal trajectory must then start with a maximum thrust 

subarc. When the switching function (5.1) i s zero, the trajectory 

enters the variable thrust subarc. The computation starts at 
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t = t. with the i n i t i a l values of the state variables V., m. i 1 ' l 
and ©^ unknown. However, "V\ and are related by the equation 

^ = mQ exp (- ^ ) (5*17) 

For s i m p l i c i t y , the drag function D used i n the 

simulation i s assumed to have the form 

D = D(V,h) 

e 
r2 

= k V 2 e " a h (5.18) 

* k 1 + ah 

To determine a f i r s t approximation for the i n i t i a l values 

of "V\ , HK and ©^, the trajectory i s considered to consist of a 

suitable constant thrust subarc or a maximum thrust subarc and 

a zero thrust subarc* A value i s selected and computed by 

(5,17). A suitable i n i t i a l value ©^ i s chosen and the length 

of the constant thrust subarc varied so that the f i n a l point 

(x^jhp) i s reached. F i g . 5.2 i l l u s t r a t e s the results obtained 

for various ©^, The value of m̂  for each of these t r a j e c t o r i e s 

i s noted and the results are plotted as shown i n F i g . 5*3o 

In t h i s manner 0^, V\ and are approximately determined. 

A pa r t i c u l a r set of data i s shown i n F i g . 5,4. A l l quantities 

on the simulator are i n terms of degrees of shaft rotation. 

Since ©^ i s now known at the f i n a l point, i t follows 

that A - j ^ and X^f a r e related by 

A 2 f = " c o t G f X l f (5*19) 

Note that at the f i n a l point, A-^ and X^f a r e the only unknowns. 



1 0 1 

F i g . 5.3 Determination of approximate i n i t i a l  
values for the state variables 
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F i g . 5.4 A pa r t i c u l a r set of approximate i n i t i a l values of the 
state variables 

If is.known, can be computed by (5.19), Therefore, by 

selecting a X-^^t the equations of motion and the Euler-Lagrange 

equations can be solved backwards i n time. The Lagrange multi

p l i e r X-^f i s varied u n t i l the condition X^^ = 0 i s s a t i s f i e d . 

A l l i n i t i a l values are now specified and i t i s then possible to 

compute improved t r a j e c t o r i e s by introducing the optimal control 

for the trajectory and solving i t forward i n time. The f i n a l mass 

m̂  i s now considered as a function of the parameters: 9^, A ^ , 
A 2 i 7 A 3 i T a n d 0 P " k i m u m values of these parameters can be 

determined by the modified steepest descent method. The adjustment 

of the parameter values terminates when m̂  reaches a maximum* 

This approach proved f a i r l y successful on the f l i g h t simulator. 

The numerical res u l t i s i i i terms of degrees of ghaft rotation. 

Since the f l i g h t simulator does not have a high accuracy, no 
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precise numerical results have been obtained. However, a set 

of t r a j e c t o r i e s similar to F i g . 5.2 consisting of a maximum 

thrust subarc* a variable thrust subarc and a zero thrust subarc 

can be obtained* F i g . 5.5 i l l u s t r a t e s the performance function 

m_ considered as a function of the parameter a, . 

m̂  " 

202° + 

0 -*- a 
a, k 
k opt. 

F i g . 5.5 Optimum performance function 

At the point a^ 

are 
= a. opt. , the i n i t i a l values of the 

a l = Q± = 73° 

a 2 = V± = 50° 

a 3 = m± = 330° 

a 4 = X1± = 168° 

a5 = X 2 i = 219° 

a 6 = X 3 i = 253° 

a ? = X 4 i = 0° (This i s known) 

For t h i s problem the Lagrange m u l t i p l i e r X^ i s obtained from the 

f i r s t i n t e g r a l . Therefore, X^^ i s fixed by the f i r s t i n t e g r a l . 
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General optimal control problems formulated by the method 

of the calculus of variations with pa r t i c u l a r emphasis on the 

problem of Mayer have been studied. Special cases of optimal 

control can be realized by means of feedback control. The 

Lagrange mult i p l i e r s can be eliminated and the control variable 

for the optimal trajectory i s then a function of the state 

variables only. In this case the optimal control system can be 

treated as an optimal feedback control system. Analogue computer 

methods are convenient for the solution of such problems. 

The modified steepest descent method i s suitable for the 

solution of certain classes of optimal control problems. 

(1) For very complex problems the dimensionality of the problem 

can be reduced by using conventional i t e r a t i v e and gradient 

methods to determine subclasses of admissible tr a j e c t o r i e s 
i 

s a t i s f y i n g some, but not necessarily a l l , of the terminal 

conditions. Thei modified steepest descent method can then 

be used to optimize the performance function which i s con-
! 
V 

sidered to be a function of the remaining terminal con

d i t i o n s . 

(2) Simulator and analogue computer results show that the 

method i s p r a c t i c a l and can be used to synthesize r e a l 

time optimal c o n t r o l l e r s . 

(3) For complex problems hybrid-computers are essential and 

are of considerable future i n t e r e s t . This thesis has 

dealt mainly with the analogue portion of the optimal con

t r o l l e r . The optimization of the performance function has 
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been performed by a manual search. In an actual system 

the optimization would be performed by a d i g i t a l computer 

(see F i g . 4.1). The analogue computer i s suitable for 

high speed trajectory computations while the d i g i t a l computer 

i s suitable for the l o g i c a l operations involved i n the 

optimization of the performance function. The results of 

the research undertaken show tl\at analogue computers can 

be used to synthesize the control variable for optimal con

t r o l once the correct i n i t i a l values are known. It i s 

well known that d i g i t a l computers can readily optimize a 

performance function P of several variables by some type 

of gradient method. The optimization of P i s used to 

determine the correct i n i t i a l values. It can therefore be 

concluded that i t i s possible to synthesize optimal con

t r o l l e r s for a variety of systems by hybrid computational 

means. 
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1. The Euler-Lagrange Equations for Rocket Plight Problems 

Substituting the augmented function F of (2.10) into 

(2.11) y i e l d s the set of Euler-Lagrange equations 

X l = X 6 + X7 U , l ) 

: x 3 6D . . 64> . d¥ u 0s 
X2 = "^6h + X 6 6h + X7 5h ( A * 2 ) 

* X3 6D 
X3 = ~ X1 c o s ® ~ X2 s i n ^ + ~~in Q V 

L + V B sin <o 

+ KA ( — 5 - ^ cos 0) 

+ X 6 OV + X7 6V ( A* 3 ) 

X4 = X l ^ s^"n ® ~ X 2 ^ C 0 S 9 + X 3 g c o s 9 

- X 4 f sin 0 + X 6 g f + X 7 (A.4) 

X 5 = ~2 ( V P c o s w - D ) + ~ 1 ~ ( L + V 0 sin to) m e m*T e 

+ x 6 < > + x 7 ( > ( A ' 5 )  

n
 x 3 6D x4 ^ . M> x 6Y 
0 = ^ 6 x " m V + X 6 0 L + X 7 O L ( A * 6 ) 

0 = to-<-X3 h c o s - " X4 h S I N W + V X 6 0 T 

+ X y (A.7) 

V V 6* 6Y 
0 = X 3 -t s i l> * ~ X4 "mY c o s « + X 6 § ^ + X 7 3 ^ 

(A.8) 
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2. The V e r t i c a l Plight (The Sounding Rocket) Problem 

Assume that the thrust d i r e c t i o n i s v e r t i c a l and that 

the two additional constraints are 

$ = 0 - 1 = 0 (A*9) 

Y= " • = 0 (A,10) 

The equations of motion become 

<f2 = h - V = 0 (AU1) 
B - V p 

^ 3 = V + g + = 0 (A.12) 

vj>5 = m + 0 = 0 (A.13) 

The Euler-Lagrange equations are 

* 2 = mSh ( A * 1 4 ) 

h = ~ X2 + ~ l o f (A.15) 

A 5 = ̂ | (V e0 - D) (A.16) 
m 

The f i r s t i ntegral i s 
n V 

X 2V - X 3 ( g + - 0(X 5 - A 3 = C (A.18) 

3. The Horizontal F l i g h t Problem 

If the f l i g h t path i s assumed to be horizontal and i f the 

thrust d i r e c t i o n i s p a r a l l e l to V, the additional constraints are 

<£= © = 0 (A.19) 

Y = » = 0. (A. 20) 
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The equations of motion are 

^ = x - V = 0 (A*21) 
D - V B 

^ 3 = V + m
 e = 0 (A.22) 

vf 5 = m + p = 0 (A.23) 

The Euler-Lagrange equations are 

Aj = 0 (A*24) 

X 3 =~h + ^ O T (^?5) 

L = ~ f <V " D ) + X4 \ ( A * 2 6 ) 

m m v 

0 - H - ^ (A-27> 

0 = i f <*5 - S ^ <A-2«> 
The f i r s t integral i s 

V - * 3 i - K l j - » 3 ^ - ° ( A - 2 9 ) 

4. The A r b i t r a r i l y Inclined Rectilinear Plight Problem 

If the f l i g h t path i s r e c t i l i n e a r at an arbitrary angle 

0 with respect to a horizontal plane and i f the thrust d i r e c t i o n 

i s p a r a l l e l to the f l i g h t path, the additional constraints are 

<§> = 0 - constant =0 „ 

Y = «> = 0 (A*30) 

The equations of motion are 

ip 1 = x - V cos 0 = 0 (A.31) 

KO0 = h - V sin 0 = 0 (A.32) 
T Z . D - V p 

= V + g sin 0 + -^-2- = 0 (A.33) 
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^ 5 = m + 0 = O (A.34) 
The Euler-Lagrange equations are 

x\ = 0 (A.35) 
A 2 = ^ O T ( A * 3 6 ) 

* X-j = -X-̂  cos © - X 2 sin 0 

X 
+ (A.37) 3 6D 

m 

A 5 = ~ l ( V " D ) + " I 7 ( A * 3 8 ) 

m m 

The f i r s t i n t e g r a l i s 

X-jV cos © + X 2 V sin © - X 3(g sin © + ^) - 8(X 5 

V 
~ A, — ) = C (A*41) 

-> m 
5. The Z e r o - l i f t F l i g h t Problem 

If the thrust d i r e c t i o n i s tangent to the f l i g h t : path and i f 

the l i f t i s assumed to be zero, the additional constraints are 

<£> = L = 0 (A*42) 

^ = <o = 0 (A*43) 

The equations of motion are 

f 1 = x - V cos © = 0 (A.44) 
l f 2 = h - V sin Q = 0 (A.45) 



D - V 8 
V f 3 = V + g sin © + jjp^- = 0 (A.46) 

4̂ 4 = 0 + f c o s Q = 0 (A.47) 

vf 5 = ra + 6 = 0 (A.48) 

The Euler-Lagrange equations are 

X x = 0 (A.49) 

* X 3 on 

A2=-5h (A.50) 
* X ^ On A- = -X, cos © - X„ sin © + m 6 T 

" X4 ^2 c o s 0 (A*51) 

XjV sin © - X2"V cos © + X-jg cos © 

- X 4 f sin © (A.52) 

X 5 = ~ i ( V e P " D ) ( A* 5 3> 
* X^ 

The f i r s t integral i s 

X,V cos © + X 0V sin © - X,(g sin © + -) - X, # cos © 
•L £ J m 4 V 

V 
- P(X 5- X -&) = C (A.55) 


