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ABSTRACT

A method for the solution of a class of optimal control

problems based ofiidémodified steepest’ descent méth6d is disdussed.
This method is suitable for the solution of problems in
variational églculus of the Mayer type, and can be used to realize
comparatively%simple on~line optimal controllers by means of
anaiogue compﬁter techniquegs ‘

The essence of the modified steepest descent method is
t0 search for the optimum value of a performance function by
}eplacing a search in function space by a search in parameter
space. In general, an iterative type of search for the optimum
value of the perforﬁance function is required. However, in
certain classes of problems the optimal control variable can be
expressed as a function of the system state variables and no
iteration is necessarye.

Several optimal control problems for the rocket flight
problem are studied and optimal control laws are derived as
functions of the system state variables, Experimental results
show that the method is very satisfactory. A PACE 231-R
analogue computer is used to solve the sounding rocket problems.
A more complex problemy the two-~dimensional zero-1lift rocket
flight problem, is solved using the modified method of steepest
descent and an electromechanical flight simulator., The experi-
mental results obtained with the flight simulator show that the
modified steepest descent method is practical and show promise

of being useful in the design of real-time optimal controllerss
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1. INTRODUCTION

1.1 Historical Note on the Theory of Optimal Processes

The classical theory of the calculus of variations was
developed by Euler and Lagrange at the end of the eighteenth
century. Euler obtained the necessary condition for a relative
wveak minimum in the form of an equation, now known as the
Euler equation. Lagrange introduced the Lagrange multiplier to
facilitate the formulation of minimum problems subject to con-
straints. The Lagrange equation in mechanics has the same form
as the Euler equation., The Euler equation is, therefore, also
referred to as the Euler-Lagrange equation. In this thesis
the name Euler-Lagrange equation instead of Euler equation is
used.

The method of dynamic programming was developed by Bell-
man in the last decade and is essentially a numerical technique
suited for digital computation.

Recently Pontryagin developed a mathematically rigorous
theory of optimal control which is called the maximum principle.

A further computational technique available to solve
minimum problems is the gradient method or the method of steepest
descent, The gradient method has been applied by Kelley for
solving optimal flight path problems(l). A similar scheme has
been developed by Bryson and his colleagues(Z). Bohn(3’4) has
presented a modified approach for solving optimal control
problems which appears suitable for computing the instantaneous
control policy in real time . This thesis is concerned with the
development of this method which, for reasons that will be given
later in the thesis, is called the modified steepest descent

method. Chapter 1 gives a brief review of the various techniques



mentioned above.

1.2 The Principle of Optimality

The principle of optimality\>)

states that "an optimal
policy has the property that whatever the initial state and
the initial decision are, the remaining decisions must con-

stitute an optimal policy with regard to the state resulting

from the first decision". This principle plays the fundamental

role in the theory of dynamic programminge.

(6)

1.3 The Method of Dynamic Programming

The theory of dynamic programming is based on the
principle of optimality. It gives a systematic approach for
determining a numerical solution to minimum problems. In
theory, dynamic programming is a very general approach, how-
every in practice, it has restricted applicability because of
the problem of dimensionality. |

In this section the basic technique of dynamic
programming is discussed.

Consider the problem of minimizing the functional J

T
J(x) iS F(t,x,;) dt (1.1)
o .

where the vector notation

ot dx
x=(xlgcccyxn),’ X=afb'

and
X(O) = ¢ = (clyooo,cn)

is useds The dynamic programming approach to minimizing J is to



consider the function

£(t,x) = Min F(T,x, %) aT (1.2)
{x} 7 |
It is evident that
f(T,x(T)) =0

and that ‘
. £(0,¢) = Min J(x)

The principle of optimality applied to (1.2) yields

t+At T
f(t,x) = Min [g F(T,x, % )thS F(T,x, ‘;—i‘r ) dT}
(V-7 +A1t
L X
(1.3)
‘Thus f(t,x) = Min [F(t,x,;{)At + f(tht,x-r;At) + o(m)j] (1.4)
o

11X
where 0(At) indicates terms of the order of (At)z. Expanding

(1.4) in a power series about (t,x) and letting At — 0, yields

0 = Min [F(t,x,;c) + g—f + > gi— ;j] (1.5)
B =

The solution of (1.5) must satisfy the following two ndnlinear

partial differential equations

F+%+Z%% ;J.=o (1.6)
j=1
and
s%"’g_f—:O, ,j =1,2,aoo,n. (1.7)
X X



Thus the original problem of minimizing the functional J of
(1.1) is transformed into the problem of solving the nonlinear
partial differential equations, (1.6) and (1,7) for f. 1In
general these nonlinear partigl differential equations can not

be solved directly.

le341 The Principle of Optimality as a Numerical Technigue

Most problems in optimal control are far too complex for
an-analytical solutions A numerical solution may be obtained by
the use of digital computerss In order to employ digital com-—
puters for the numerical solution of (1.6) and (1.7), it is
necessary to convert the nonlinear partial differential equations
into a finite-difference equation. A more convenient method of
solution is to solve for the functional f of (1.2) by minimizing

a discrete approximation of the form

N-1 . .
. (i+1) (i)
I, (x) = Z F(int,x(1), % =X ) at (1.8)
i= k
where
x(i) = x(iAt) and where the derivative x is approximated
by

.(i) — (X(i+1) - X(l))/At

Let u(i) = ;(i), and introduce the sequence of functions
£, (kbt, ) = Min J (%)
tu)
N-1
~ Min Z F(int,x(1), wli)yae (1.9)
{u} i=k

-



%or-—00<3:<b0, k = Oy41y40eyNsrl.Then

£x(Tre) =0 (1.10)
and . N-1
£, (kbtyc) = Min[F(kAt..,c,u YAt + Z F(iAt,x(l),u(l))At]
{u}‘ i=k+1

Min[F(kAt{,c,u Yot + £ ((k+1)At,c+uAt)]

K+l
{u} (1.11)

Bquation (1.11) is the basis of the dynamic programming
(5) -

method for the solution of minimum problems

l.3.2 The Problem of Dimensionality

The numerical solution of (1.11) requires the tabulation
and storage of sequences of functions of n variables. This
introduces some complications. To illustrate this, consider the

case of a two-dimensional problem where
c = (01’02)

Assume that cq and c, are both allowed to have one hundred valuesa
Since the number of different values for cq and 5 is 104, the
tabulation of the values of f(cl,cz,T) for a particular value of
T requires a memory capable of storing 104numbers. Moreover,
since the recurrence relation requires that f(c¢,T) is stored

while the values for T+At are calculated, and since the values

of uy and u, must also be stored, the memory must be capable of

storing at least 4 x 10% numbers.



Generally speaking, with current digital computers
having memories of 32,000 words, only two-dimensional minimum
problems can be handled unless some method for reducing
dimensionality is found. The problem becomes difficult to cope
with for higher dimensions. As pointed out by Bellman, a three-
dimensional trajectory problem involving threé position variables
and three velocity variables, treated by the dynamic programming
approach results in functions of six state variables. In this
case, even if each variable is allowed to take only 10
different values, this leads to lO9 values requiring an

extremely large computer memory.

1.3.3 The Euler-Lagrange Equations

All the necessary conditions in the classical theory of
calculus of variations can be derived from the principle of
optimality. Consider the variational problem discussed in
Section 1.3. The principle of optimality yields the nonlinear
partial differential equations (1.6) and (1.7). Differentiating

(1.7) with respect to t, gives

s
\ A 2 L4
d_ O°f _
T (F. ) + 5——57-  Sx5%; x; =0 (1.12)
*3 i=1

and partial differentiation of (1.6) with respect to X gives

o

n
Ox;4 Of Cﬁ FRCR: SN
Fx- Z F. C)x + CtOX Zf x Oxl ‘v Ox bxx‘ )_ 0

J i=1 1

Thus

EES;_ ZE::JOZ . -0 V (1.13)



Substituting (1.13) in (1.12) yields .
(CF ) OF

d
0 - =O’
Ox . Oxj
which are the Euler-Lagrange equations.

dt

j = l,2,.;-.,n. (1014)

J

It is also possible to derive (1.14) from the nonlinear
partial differential equations for f using the method of

characteristicse.

1.3.4 The

Legendre-Clebsch Condition

The

the second

necessary condition for a minimum of (1.5) is that

derivative of the square brackets with respect to

xi must be positive. This leads to the Legendre-Clebsch

condition
n n a?
i=1 j=1 4
or
O?F
—;—5 > 0,
1
O%F O%F
bxlbxl xle)x2
> O ) *e vy
O2p O%F
O% 0%,

LK I I 2

LA IR AN

s o e




-1.3.5 The Weierstrass Condition

The Legendre-Clebsch Condition does not rule out the pos-
sibility of a relative minimum. If F(t,x,x) is an absolute
minimum, it follows from (146) that the following inequality

must satisfy

=]

e B 3k S ren e B0 S 3,
j=1 - J =

or
n b ‘
L » () [} f
P(t,0,8) = Fltyx,x) + ) (X; - x;) 3= 2 0 (1.16)
j=1
for all functions i.

From (1.7),

and (1.16) yields the Weierstrass condition for an absolute

minimum,

P(t,%x,X) = F(t,x,%) — Z (x - xj) % 20 (1.17)
i=l J

l¢3.6 The Transversality Condition

So far the discussion of the minimization of a functional
is restricted to the case of fixed end points.

Suppose now that the end points are variable. The
necessary condition for a minimum of the functional is that
the differential of the function f(t,x) must vanish., Therefore

n
of Zéf
df:&dt"‘ &"dx']zo

j=1 Y



Thus
> )
£ _ P
5t 4t = - zz:(5;7 dxj (1,18)
j=1
Multiplying (1.6) by dt gives
d ol
£ £ _
Fdt +b—tdt+g S x5dt = 0
=1 .
Substituting (1.7) and (1418) in the above equation yields
n n
(F - E x.F, ) dt + E F, dx, =0
. J X. . X . J
J=1 J =1 7J
This holds at both end points. Thus
n n | T
»
E F, dx; + (F -E::xj F, )dt =0 (1.19)
i=1 % = N,

Equation (1.19) is called the transversality condition.

le3.7 The Weierstrass—Erdmann Corner Conditions

Many variational problems of engineering interest have
solutions which may have a finite number of corner points; where
. ,
one or more of the derivatives xj have a discontinuity. Suppose

®
that X is discontinuousy then, since 5%— is continuous, it

. k
follows from (1.,7) that bE. must be continuous at a corner.
X
k

Similarly, g%-is continuous and substituting (1.7) in (1.6)

yields ' n

j{: > Of
F - : ij;{‘_-&
J=1 J
which is also continuous at a corner. Thereforé

F, | =(F (1s20)



10
and .
n n

(F-> xF)_=(F -.:E:: xF. ), (1.21)

i=1 J j=1 J

where the negative and positive signs denote trajectory positions
immediately before and after a corner point, respectivelys
Equations (1.21) and (1.20) are called the Weierstrass-Erdmann

corner conditions.

le3.8 The Inequality Constraint

In many problems there may be inequality constraints on
the independent variable u of (1,11) (the so-called control

variable). If, for example,
|u| < U

where U is the upper bound for the magnitude of u, then the
choice of u, at each iteration stage in the dynamic programming
approach is restricted and the computational aspect of the

problem is thereby simplifieds

(6)

14349 The Lagrange Mutlipliers

The Lagrange multiplier method is the most suitable means
for handling a minimum problem subject to constraints. Two
different-kinds of Lagrange multipliers which depend on the
type of constraints are discussed in this section,

Consider the problem of minimizing the functional
T

J(x) =S H(t,x;;)dt, x(0) = ¢ (1.22)
0

subject to the constraint



11

T
g G(t,x,x)dt =y (1.23)
o ,
where y is a given values To solve the minimum problem the
- lower limit is considered variable so that the minimum f of
J(x) becomes a function of three variables, t,x, and y. In
other words, y is considered as an additional variable. The

‘solution of the minimum problem is given by

T
f(tyx;y) = Min S H(T,x, %§ )aT (1424)
‘_-\ t
{XJ

where y is determined by the equation of constraint

T
dx '
g G(Tyx, E;)dT'z y (1425)
t

Equation (1.24) can be treated in the same manner as was done

" previously for (1.2) yielding

f(ty,x,y) = Min [H(t,x,x)At + f(t+0t, x+;At, y—G(t,x,;)At)+ O(At{]
ro. o p
(x}
(1426)

Proceeding as before, the following functional equation for

f(t,x,y) is obtained

!

n
: sy L Of * Of *\ Of
0 = M:l.l\l{ﬂ(t,x-,x) + St + Z xj &J- - G(t,x,x) S
=1
L (1.27)
The solution of (1.27) must satisfy the equations
- Of Of
0 = H; *’ES;; - Gi' & - (1.28)
J : J
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O=H+6Tb-+. ;J&—— 5' (1.29)

Differentiation of (1428) with respect to t, and partial

differentiation of (1429) with respect to xj yields

Of

O (gt (B -5 6) = (1.30)

0 H—SG)—

3

Q_

919
&
CY

Partial differentiation of (1.29) with respect to y yields the

following results:

P z ‘ O%r %
0 = 5:6}’— + : xj m‘ - Gbyz (1"31)
J:
or :
d
0 =% (%) (1432)
Thus
g§ = constant (1.33)
It can be seen from (1.30) that if a new variable
A= - %’; (1.34)

is introduced, (1.30) results in the Euler-Lagrange equations

d .
-€ (F. ) - FX = O, d = 1, 2,.-., N, (1‘35)
xj h)
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where

F =H + AG (1.36)

This shows that "§%§ plays the role of.the Lagrange
multiplier. In the case of the constraint being an integral
form of (1.23), thé Lagrange multiplier is a constant.

In general, the Lagrange multiplier is not a constanta.

Consider the constraint to be of the form

. |
h(t,x,%x5u) = O (1.37)
or

x = g(tyxyu), x(0) = ¢ (1.38)

where the control variable u = u(QB..o,um) is to be chosen so
as to minimize the functional J(x). In this case, the Lagrdnge
multiplier is no longer a constant. For example, cons}der the
problem of minimizing the time required to transfer the system
described by (1.38) from the initial state (cl,...,cn) to the
final state (b1’°"’bn)‘ The functional T = T(u) to be mini-

mized is subject to the oonstraints

xj(T) =bsy J = 1,2,000,m. (1.39)

This is a minimum-time problems By introducing the function

f(t,x) = time required to transfer the system

described by (1.38) from.x to b
and applying the principle of optimality the equation

f(t,x) = Min I:At+f(t+At,x+gAt)+O(At):| (1.40)
(u)
is obtained. Expanding the second term in a power series and

letting the limit as At — O yields the relation
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0 = Min [1 + £+ Z £ ] | (1.41)

{u)

The solution of (1.41) must satisfy the equations

0 = 1+£ + E £ 3 ' (1.42)

and

n
Z OB
0 = fX- &?’.’ i= 1,29...,‘1’!1. (1.43)

=t J

Partial differentiation of (1.42) with respect to xj yields

%{;*kié'%_gk 2 gf—%gﬁ (1.44)
Since .
%? fo =% fxa + ) %;1; (ij) ;ﬁg
) 52.% ! 1; %‘—k (ay )8 e43)

it follows by substituting (1.44) into (1.45) that

a og . |
&t x; E 5—1‘ T = 07 3 = LiZseesine (1246)

k=1
Introducing the Lagrange multipliers

A. =1 (1.47)

into (1.46) yields
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. n

- dA, 8 . R
d_‘l' ™ + Exj }\k = O, J =. 19290.091’1. (1.48)
k=1

The solution of the 2n+m equations (1.38), (1.43) and
(1.48) gives the 2n+m unknown functions'which‘are Aj, xj and
u . The trajectory defined by these Variablés satisfies the

necessary conditions for a minimum-time trajectory.

1s3.10 The Dynamic Programming Approach to the Case of Two
Fixed End Points ' ‘ ‘ ,

The numerical technique discussed in Section 1l.2.1 allows
a problem with two fixed end poihts to be replaced by an
initial-value problems | '

Consider the problem of minimizing the functional

}
T

S JI(x) = g F(t,x,x)dt | - (1.49)
0

subject to the two end conditions

-

x(0) = a4 x(T) =1 (1.50)

o

Proceeding as in Section 1434l where u = x yields the relation
f(c+ uAt yt+At) = Min [F(c,u)At + f(c,t)] (1.51)
{u}
The condition that the final values of x(t) be the as=
signed values b must be satisfied. This means in effect that
at %he iast stage of the process, for any values of xj, the'

choice of the control variables u, must be such as to result

i .(T) =Db.
in xJ( ) T

Consequently, the terminal constraints fix the function
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f(c,T) given by the relation

f(c,(N-1)At) = F(c,u) (1.52)
where '
b=c . , o -
u = '—'A":E . . : (1:530
thus £(c,(N-1)88) = Flc, 252 | (1.54)

Here, b is taken to be fixed and ¢ is considered to be variable.

This is shpwn in Fige lale

x4
;;;;; b
! _
0 (N-1)At T = NAt ¢

Fige 1.1« The final stage and the terminal condition

In dynamic programming the terminal constraint simplifies
the computation. Since f(cgT) is determined by the terminal
conditions, the remaining functions of the sequence f(ctuldt, L4+0t)
are determined by means of (1.51) with no further refefence to

the terminal conditionse

14 The Gradient Method!?)

The gradient method or the method of steepest descent is
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an elementary concept suitable for the solution of minimum
problemss In recent years the computational convenience of the
gradient method has led to a variety of applications.

In order to present the basic idea of the gradient method,

consider the problem of minimizing a continuous function

f = f(xl,a..,xn)

If an arc length is defined by
n .
as? = Z ax (155)
j=1

the derivative of f along the arc is

- n
dx.
a N Of ] -
as = >x; * T (1.56)
j=1 7
Introducing the constraint
n 2
dx.
- —y =
1 E (1) =o0 (1.57)
5=1

by means of a Lagrange multiplier A yields

n n 2
dx d
f .
a-> L .gteaai-2 @D ]
j=1 J j=1
n n
- % yj +A [1 - yiiz:l (1.58)

j=1 j=1 :

dxi
where Yi = 3s

Partial differentiation of %§ with respect tO'yj yields
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b
For %% to be a maximum, the above equation‘must vanish:
of
&; - 27Ly'j =0 | (1.60)
Hence yj=-f%x . géf (1.61)
J

Substituting Y into (3.57) yields

n

< Of -'
2 , (ZA . E)_) =0
J=1
Hence 1
n 2
2
LIS & | (1.62)
A J ‘
j=1 ‘
Substituting A into (1.61) yields
'l
dx, Of Z o .2|°
Yj =3s = —'Cm: (ar—q » J = 132500eyn. (1.63)

i=1

and the maximum derivative of f with respect to s is
n 32
daf _ f .
s = % E &) (1.64)
| j=1 J

For the steepest descent direction, the negative sign is taken,
while the positive sign is taken for the steepest ascent

directions Now consider xJ as components of a vector x, the
dx.

directions Egl as components of the unit vector %%, and the
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partial derivatives 5£_ as components of a gradient vector,
J
then

f—— Sp—
Is = grad f . is (1.65)

where T is a parameter into (1.55) yields

dx.
V = (=1 (1.66)

Since

it follows from (1.63) and (1.66) that
' 1

dx. é n o, 217 2
N £ E Of
s ibxj . 1(0"1 A (1.67)
1=

l

If

=]
[\

V- k z@gf

i=1

wvhere k is a positive constant, it follows that

dx . Cm

For the steepest descent, the negative sign is taken. This
relation is the basic condition of the steepest descent dir-

ection for fe.
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1.4,1 Numerical Computation by the Steepest Descent Method

The numerical computation of the minimum of the function
f(xl""’xh) requires that the equation of steepest descent be
approximated as a finte-difference equation, that is, (1.68)

is written as

ij g'-kAT%:}ET Iy _] = li,2,..l;,n.
J

The proportionality constant k can be absorbed by the step

size AT, hence x:j may be written as

ij = ~h %’ ’ J = 1,2,506',110
J

{

or xj(i+1) ™~ x.(i) - h(l)(éf )(1) ,

i O J = 1y25e0ayn,
J

(1.69)

where h = kAT and h(l) = k(l)AT'. The process is repeated until

a minimum of f(xl,...,xn) is obtained at,Pm(x(m)). Equation
(L.69) is a general formula for iteration. The step size h may
be adjusted to reduce the number of steps required.

l.442 -The Steepest Descent Method for Finding the Minimum of a
Functional

Consider the problem of minimizing the functional
T

J(X) =‘g F(t,x,;)dt, X(O)“= c (1-70)
0

wvhere x belongs to a class of admissible functiens,

Let x(t) = y(t) + h u(t), u(0) = u(T) =0 (1.71)
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where h is a parameter, y(t) is a first approximation and where -
u is to be found so that J(x) < J(y).

Equation (1.70) can be written as

T
J(h) =g F(t,y+hu, y+hu)dt (1.72)
0

The derivative of J(h) with respect to h is

T n
aJg _ y
& = g 5 (Fx'uj+ F;( uj)dt (1.73)

Integrating the second term of (1.73) by parts yields

T n
4 =8 Z (F, - -g—t-(F;( )) ujdt (1.74)

0 j=1 J j

For the path of steepest descent (1.74) must be negative

which is the case if Ej is chosen so that

(F, ) - F_ (1.75)
Xj J

QJIQ-I
CF

uj(t)

At the minimum of J, uj(t) O.

1.5 The Calculus of Variations‘and the Theory of Optimal Control

The general problem of the calculus of variations can be
formulated as a problem of Bolza, Lagrange or Mayer. These three
formulations are theoretically equivalent and the problem of
Lagrange and Mayer can be considered as particular cases of the

o (8)

problem of Boiza
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The problem of Bolza can be formulated as follows:
Consider the set of functions

xJ(t), J =1,2,oo‘,n0<
satisfying the set of constraints

501(1‘;,)(,){) = O, i= 1,2,..., m<n (1.76)

which involves (n-m) degrees of freedom.
Assuming that the functions xj(t) and t are consistent

with the boundary conditions at t=0 and at t=T, that is,

L/JI,[O,X(O)} =0, r = 1,2,.;.,q. (1.77)

xpp[cn,x(cr)] 20, p = qHlyeeeys <2042 (1.78)

then the problem is to find the special set of functions xj(t)

which results in a minimum for the functional

T T . |
J = [F(t,x)i} +-g H(t,x,x)dt (1.79)
0 0

'If the function G of (1.79) is identically zero, that is
if, -
G(t,x) =0

then the functional of (1.79) reduces to

T
J = S H(t,x,x)dt (1.80)
0

This is the problem of Lagrange.
On the other hand, if the integrand of (1.79) is

identically zero, that is if,

H(t,x,x) = O
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then the functional of (lf79) becomes

T
J = [G(t,x)]
0

This is the problem of Mayer.

It is of primary interest to interpret the general
problem of Bolza from the point of view of optimal control. The
essential difference between the calculus of variations and the
theory of optimal control is that the derivatives in the
integrand of the functional J in the calculus of variations are
replaced by the control variables uk(t).

Thus, instead of considering the minimization of the

| : T T .
J = [%(t,x):] +\g H(t,x,x)dt
0 0 ‘

subject to the constraints

functional

%;(tyx,x) =0, 1 =1,2y00ey m< ne (1081)

the minimization of the Functional

T T
J = {G(t,x):| + H(t,x,u)dt
. 0 0

subject to the constraints of the form

.

Xj = fj“(t,x'u)’ j = 1,2,‘..,'11. (1.82)
is considered. Where u is the set (ul,...,um).
In general the optimal control problem can be stated as

follows: Given an initial state (0,x(0)), find the corresponding
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admissible control variables u,_ defined in the interval [O,T]

k
for which the functional J assumes its minimum,.

If the set of control variables u,  can be determined as
functions of the state variables xj so that the functional J
is minimum, then the set of control variables u, can be
obtained by feedback from the state variables at the output.

In this case the control variables are of the form

uk = Lk(X), k=1,2,¢o.,m. (1.83)

and the functions Lk(x) are referred to as the control laws.
The problem can therefore be stated as an optimal feedback
control problem: Find the control laws such that when (1.83)
is substituted in (1,82), the functional J assumes its minimum

with regard to the set of all admissible control laws.

1.6 The Adjoint System and the Euler-Lagrange Equation

The equations of constraints (1.82) arey in general,
first order nonlinear differential equationss If these non-
linear differential equations are linearized, one obtains a

system of linear differential equations of the form

n m
[ 2 fl -
Ox; = g ot Ox, + o du (1.84)
i OX . J 5uk k ¢
ji=1 k=1
where the partial derivatives are evaluated on the optimal
trajectorys

The adjoint system of (1.84) is defined by

. A Of.
Ay = _“. 1. Aj 5;%7 1 =142ye0eyns (1.85)
J:
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Consider now the problem of Mayer of Section 1.5, where the

Euler-Lagrange equations are given by

g—t (F, ) =F_ =0, j =1,2,0.s,n. (1.86)

and where

n
F = E Ai.[xi - fi(t,x,u)]
i=1

substituting this function F in the Euler-Lagrange equations

yields
° et bf 1
Ai - = E Aj 5;% y 1=1,248s0ssna v (1.87)
31

The equations of (1.87) are exactly the same as equations of
(1.85), thus the Euler-Lagrange equations in the calculus of
variations are the same as the adjoint system for the linearized
equations of constraints. It should also be noted that the
equations of (1.48) are the Euler-Lagrange equations, where the
Lagrange multipliers have the special meaning in dynamic

programming given by (1.47).

(9)

1.7 The Maximum Principle

Pontryagin and his co-authors have stated in the book
"The Mathematical Theory of Optimal Processes" that the method
of dynamic programming lacks a rigorous logical basis in those
cases where it is successfully made use of as a heuristic tool.
The maximum principle gives a rigorous mathematical theory for
optimal processes. Therefore, it is of theoretical interest
to discuss briefly the minimum problem as it is formulated by

the maximum principle,
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Consider the functional

T
0
where X = (leoonyxn)

and the problem is to find the minimum of J for all the
admissible control variables u which transfer the point from

xj(O) to xj(T).,

Let Xg = F(t,x,u) (1.89)
X. = Q. :] =1,2,ooo,no (1090)
J J ’
and form the H-function
n
H(p,x,u) = poF + .51 Py (1.91)
j= ‘

where the variables p are defined by the relations®

dp, OH
dtl = = 5;: Py 1 = 0,1,..a,n. (1.92)
Hence | dp. >
. F )
et Ox; Por t = Osloecesme (1.93)

then the relation of (1.93) gives

dp

0 .

T =0 (1.94)
dp OF

aftj.:; — Pogj ’ j = 1,2’000,11. (1095)

The maximum principle states that in order for u and x to
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define an optimal trajectory it is necessary that there exists

a continuous vector function P = (po,...,pn) corresponding
to u and x, such that
l. for every t, 0Kt T, the function H attains its
maximum at the point u,
M(p,x) = Sup H(p,x,u) (1.96)
{u}

2, at the terminal time T, the relations

po(D <0, M [p(1), x(D) | =0 (1.97)

are satisfied.

The equation of (1.96) implies that

O .
%Z-O, J =1,2,ooo,n. (1098)

J
Partial differentiation of (1.96) with respect to Uy yields

OH OF

$=PO 5{1—+p3, J = 1325000e9ne (1099)
J J

By the equation of (1.98), the above equation becomes

PO&:+PJ =O, J =1,2,.".,n. (10100)

It follows from (1.100) that Pg # 0, otherwise all the p; =0,
i = Oylyaceyns It is seen from (1.94) and (1.97) that Py is a

negative constant. It is convenient to choose
P0="1

so that (1.100) becomes

OF .
P =51§ sy 3 =1,250e0yn0 (1.101)
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On the other hand, if py = -1 is substituted in (1.95)

and then integrated, it gives
t,
p. = p:(0) + OF dsy, j = 192yaseyne (1.102)"
i~ Ox ynes
o J
replacing u‘_j by xj in (1.101) and substituting into (1.102),

yields

- IR
OF COF_ ..
5;; = Pj(Q) +-S. S Qs_ (1.103)

Differentiating this equation with respect to t yields the

Euler-Lagrange equations.: = ...

1.8 The First Integral

The solution of the Euler-Lagrange equations satisfies

the relation,
n

g—t (F -Z ;ch;(‘) _'=§% | | (1.105)

i= J

If F does not depend on the independent variable t explicitly,
St =°

and the following'first integral is obtained,

n

F - x, F, =C (1.106)
- J X
J=1 J

where C is the constant of integfation. This relation is called
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the first integral of the Euler-Lagrange equations.

1.9 The Modified Steepest Descent Method

The essence of the modified steepest descent method for
solving minimum problems is to consider a general process which

is described by a system of ordinary differential equations of

the form

X = f(x,u), Xi(O) = Ci, i - 1,29...,11. (1.107)
where X = (xl,..p,xn)

u = (ulytocyum)
and f = (flycb,oy‘fn)

The system under consideration is assumed to move from a
point x(0) to another terminal point x(T). Some of the terminal
conditions of x(T) may be unspecified. The problem is to mini-
mize the performance function P(T,x(T)) by choosing a special
set of control variables u, . This is a problem of Mayer. Ihe
basic idea of the modified steepest descent method is to con-
sider the function P as a function of a set of unknown para=

meters which are functions. ofthe unknown initial conditions of

the state variables and the Lagrange multipliers. Thus

P = P(a) (1.108)

where a = (al,..-,an)

(210000002 (0), (0] eueyx, (0) ]

and where Ai(O) are the unknown initial conditions for the
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Lagrange multipliers.
The problem under consideration can be formulated as

follows: The function

F = ij (;j - fj) (1.109)

is formed where Aj are the Lagrange multipliers.

At a minimum, the Euler-Lagrange equations

d - .
H (F. ) - F ] J = 1,...,no (1.110)
X
and

O= ) F [ k:lgooa,mo (lolll)

must be satisfied.
Substituting (1.109) into (1.110) and (1.111), yields

the following equations

dx Zn Of
d_t;L= ;\'15)(_.’ j =l,ou.,no (1.112)
i=1 J
n
O = E }h 5—' 9 k=l,.¢o,mo (1.113)
i=

By solving the system of (2n+m) differential equations
of (1.107), (1.112) and (1.113), the (2n+m) unknown variables
xj, Aj, and w, can be determined. The general scheme for the
solution is represented in Fig. 1,2, The initial values are

~ sampled and introduced into a high speed repetitive trajectory

computer. The performance function P is determined and the
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Fig. 1;2 A general optimal process
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unknown initial values are adjusted by an iterative procedure

to minimize P. The sampled value of u is introduced into the
process. If there are no disturbances the state x(t) of the
process will correspond in real time to the computed trajectory.
in the above system the initial values for the trajectory are
the real-time values of the process variables.

In most problems not all the initial conditions are given~
§nd therefore a search procedure for the minimum of the function
? must be employed. The important idea of the modified steep-
est descent method is to solve the preceeding (2n+m) equations
subject to the condition that the derivatives of the perfor-
mance function P with respect to the parameters aj are always

negative, that is,

g—g—.<o,

J

,j zlpcooyno (10114)

The values of aj are unknown and can be determined by
iteration. For each iteration the condition of (1.114) must
be satisfied. The modified steepest descent method does not
rule out the possibility of a local minimum unleSs the entire
range of parameter values are used which may not be practical
(see Fig. 1.3 where a, results in a true minimum and aﬁ results
in a local minimum).

As for the numerical computation, it is assumed that -
the computation starts from a point AO = (ajO) which may be
érbitrary. The parameter 210 is adjusted so that P decreases
to a minimum. The remaining parameters can then be adjusted

in sequence in the same manner. Proceeding in this way, a new
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0 a

|
|
|
|
|
k %k a

Fig. 1.3 True minimum and local minimum

point A, = (ajl) is obtained. The general step may be

)

to the Pext point Ar+1 = (aj(r+l)) is found by a step-by-

summarized in the following way. From a point Ar = (a,jr
step procedure.

1, Adjust a by a small amount to have. a smaller P

1r
until P starts to increase.

2. Repeat 1 for Bopreserd .y each time adjusting
one parameter only.

3. Now a new point Ar+1 = (aj(r+l)) is obtained and
the steps 1 and 2 are repeated until a minimum
of P is obtained.

It is important to note that for the adjustment of each

a. - the conditions
i(r)
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P(al(r+].)’ aZr’oooyanr)< P(alr""' ,anr)

Ploy (za1) 22(ri1) a’3r""’a‘nr)<P(al(rﬂ)’ a‘2r""a'_,nr)

® 8088 000002000 BBOSOOAOSDOLOOSSDO0O00O0OEO0COCO0CSBSISBEOIOIOSENESEH

Play (pp1) 7o o2 (ea1)) <Py (py) oo erB(non) (pa1) 20

apply.
1,10 Remarks

It is of interest to compare the modified éteepest descent
method studied in this thesis with other computational techniques.
The standard variational technique of the calculus of variations
transforms the original variational problem into a problem in
the solution of ordinary differential equations involving two-
point boundary conditionss To solve a two-point boundary value
problem is usually difficult from the computational pdint of view,

Dynamic programming, in theory, eliminates the two-point
Boundary value problems However, it introduces a new difficulty,
the problem of dimensionality, which means that an extremely
large digital computer memory is required.

The gradient method or the steepest descent method was
developed by Cauchy and has been independently applied to
variational problems dealing wifh flight paths by Kelley and
Bryson. This technique has been very successful. However, it
requires extensive digital computing facilities and does not

appear suitable for developing comparatively simple real-time
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optimal controllers.

The modified steepest descent method is particularly
suitable for the solution of certain classes of minimum problems.
by means of digital or analbgue computers. The analogﬁe com—
puter is very convenient for solving trajectory problems,

Another advantage of employing the anaiogue computer is that it
is then possible to construct comparatively simple real-time
optimal controllers., Since the analogué computer solves problems .
in a continuous manner,; it is suitable for high-speed com-
putation and feedback methods can be used for obtaining iterative

- solutions,
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2. OPTIMAL CONTROL PROCESSES FOR ROCKET FLIGHT PROBLEMS

2.1 Introduction

Analytical studies may facilitate the computation of the
solution for optimal control problems. The iterative approach
used in the modified steepest descent method may also be greatly
sipplified if an analytical expression for the optimal control
law in terms of state variables can be found.

The calculus of variations is the only suitable method for
obtaining analytic information about the properties of the optimal
control law and the optimal trajectory and is therefore, of
fundamentgl importance. This chapter is devoted to the application
of the calculus of variations to the problem of rocket flight and
to aﬁalytical studies for deriving optimal control laws.

It is élso of theoretical interest to have a complete ana-
lytical solution of a problem. This allows a study of the
properties of the Lagrange multipliers which play an important
role in the determination of optimal control laws. On the other
hand, the analytical solution can serve as a means for checking
the accuraéy of the analogue computations used in the modified

steepest descent method discussed in Chapter 3.

2.2 Formulation of Rocket Flight Problems by Means of the Cal-
culus of Variations

The determination of optimal trajectories for missiles,"
aircrafts and satellites is an important application of optimi-
zation theory. Goddard recognized the calculus of variations as
an important tool in the analysis of rocket performance in 1919,

A general theory of rocket flight problems was recently developed
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by Breakwell, Fried, Lawden, Miele, Leitman and others. A brief

review of the rocket flight problem will now be given,

2.2.1 Basic Assumptions and Equations of Motion

For the general formulation of the rocket flight problem,

the following assumptions are made (see Fig. 2.1):

(1)

(2)

(3)

(4)

The rocket is considered as a particle or a point
masse.

The power plant of the rocket engine is considered as
an ideal engine, so that the equivalent exit velocity
Ve for the fuel is a constant. The thrust is taken

as VeB, where B is a control parameter.

The Earth is assumed to be flat, and the acceleration
due to gravity is taken to be constant.

The rocket moves in a vertical two-dimensional plane.

Fig. 2.1 The forces acting on_a rocket
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By these hypotheses the equations of motion for a rocket

can be written(lo) as

L J
?l =x -V cos 8§ =0 (2.1)
%2 =h -V sin @ = 0 (2.2)
. D-—VeB cCos @
KPB =V + g sin 0 + - =0 (2.3)
. L + VeB sin @
L?4=O+%cos9- 7 =0 (2.4)
kPSZI;'I""BZO (205)

where x is the range, h is the altitude, V is the velocity, g is
the acceleration due to gravity, L is the 1lift, D is the drag,

m is the mass, © is the path inclination, and w is the angle
between the thrust and the velocity. The drag is assumed to have
the general form

D = D(h’V,L) (2'6)

and the engine characteristics of the rocket are represented as a

function of a parameter o, that is, the control parameter is

B = B(a) ' (2.7)

2.2.2 Formulation of the Rocket Flight Problem

The set of five equations of motion, (2.1) to (2.5),
involves one independent variable, the time t, and eight dependent
variables, they are: x, h, V, 6, m, &, L and B. Thus, the problem
undef consideration has three degrees of freedom, and three
conditions for optimal performance can be imposed. In this con-
nection, the optimal control problem of Mayer type, can be stated
as follows:

Among all sets of functionsx(t), h(t), V(t), 6(t), m(t),
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w(t),L(t) and B(t), satisfying the equations of motion, (2.1)

to (2.5), and certain prescribed end conditions, to determine the
' t
f

’
tO

special set which minimizes the performance function [P]
where

P = P(x,h,V,0,m,t)

The end conditions are constraints imposed on the initial and
the final values of x, h, V, 6, m and t. In general, noi all the
end éonditidns are known.

In the case that two additional constraining.équations of

the -form

P (x,h,V,0,m,L,B,0,t)= 0 (2.8)

6
7

\If(x,h,V,O,m,L,B,co,t) =0 (269)

are present, the problem has only one remaining degree of freedom,
and one condition for optimal performance can be imposed.

By introducing a set of Lagrange multipliers Ai(t),

i =1,2,44:,7, the so-called augmented function can be formed
7 .
Fo > A Y (2.10)
i=1

and the Euler-Lagrange equations are
d_ (OF y _OF
dt : T Oox, !

X,
j J

j=1,e..,8. (2.11)

where X1= Xy X,= h, Xq= v, X,= o, Xg= M, x6; L, Xo= 0y and Xg= @e
As discussed in the last chapter, if the augmented
function F of (2.,10) does not depend on the time t explicitly,

the first integral

7
F - E 2 OF . (2.12)
. 1 Ox.
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exists.

The Euler-Lagrange equations and the first integral for
the rocket flight problem are given in the Appendix,

Several possibilities exist for modifying the trajectory
of a rocket. The elevator position, the thrust magnitude, and
the thrust direction can be controlled. Thus, for a‘given set of
end éonditions, an infinite number of trajectories exist which
are ?athematically and physically possible, Among all the
possible trajectories it is of interest to find those trajectories
which meet a requirement for optimalbperformance.

Particular forms of the performance function P are:

t
f
(1) P = [— ] s problems of minimizing the fuel con-
t
sumption,
t

f
(2) P = [t] y problems of minimizing the flight time.
12
tp
(3) P = [— J , problems of maximizing the range,
t

2.3 Analytical Study of Optimal Control for the Sounding Rocket
Problem(ll’lz)

The equations of mofion for the rocket flight, (2.1) to
(2.5?, are nonlinear differential equations, and the associated
Eule?-Lagrange equations, (A.l1) to (A.8), are linear differential
equations whose coefficients are functions of the state variables.
If the equations of motion can be solved so that the state
variables are functions of time, the Euler-Lagrange equations may

be considered as linear differential equations with time varying
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coefficients.

Since there is no systematic analytical method for solving
nonlinear differential equations, the determination of an
analytical solution for the rocket flight problem is extremely
difficult and, in general, is not possible. However, analytical
solutions may be obtained in special simple cases.

A problem of interest is the case of rocket flight in a
?es%sting mediﬁma This problem can be solved analytically in the
case of vertical flight with a drag function of the form

2

D = kV° exp (-ah) (2.13)

where k and a are constants.

The sounding rocket problem has been studied by many
scientists, such as, Hamel (1927), Oberth (1929), Malina and
Smith (1938), Tsien and Evans (1951), and Leitmann (1957), etc.
‘Much work, both numerical and analytical, has been done on this
prob}emo However, with the exception of trivial cases; no
complete analytical solution has yet been obtained. The parti%l
analytical results published in the literature will therefore be
extended as far as possible in an attempt to obtain a complete
ahalytical sdlution.

It is assumed that the following end conditions are

specified:
| h(to) =h =0 , h(tf) = hy = final altitude (given)
v(t,)) =V =0 , V(tp) =V, =0
m(to) =m = unknown, m(tf) =m, = payload (given)

wvhere m is the initial mass which includes the mass of the fuel.

The problem is to minimize the fuel consumption required to
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reach a specified altitude by controlling the thrust. The per-

formance function P is (mo- mf). Since m, is fixed, the problem
is equivalent to minimizing the initial mass m e
The Buler-Lagrange equation (A.17) shows that two different

classes of subarcsexist for the optimal trajectory:

(1) %g = 0, subarcswith constant thrust.
v

(2) A= A —% = 0, subarcswith variable thrust.

5 3

For the sounding rocket problem it can be shéwn that im-
puiéive boosting is always required. In this case the equation
of;motioh (A.12) may be approximated for the boosting period by

the equation

VB
=
m

v - ¥ 0, t <tgt

o (2.14)

1.

where t ~is the initial time and t; is the end of the boosting in-

1

terval.

Solving (2.14) together with (A.13) yields

(2.15)

v
m¥m_ exp (- V—)’ to<_t\<t1.

° e
where m is the initial mass and my is the mass at the end of the
boosting interval.

The boosting interval is often very short and the impulsive
thrust is extemely large. The total time for the boosting period
may then be taken as tl- to = At, and the velocity V is suddenly
incrgased from zero to Vl while the mass decreases from m to m; e
The entire optimal trajectory has only three subarcs: The boosting

subarc, the variable thrust subarc, and the coasting subarc (zero

thrust).

4. t.+A
h‘l__—_S v at :3 ° v a4t
- Jy %
© (o}

Integrating (A.ll) from t, to t% yields



43
since At is very small and V is finite, the above integral is
negligible and
h, = Ah 20 (2416)

Let the mass flow of the impulsive boosting be Bm. In-

tegration of (A.13) gives

b

m, —m_= Bmdt

= B, 0% (2.17)

Since Bm is extremely large, the product BmAt is a finite
quantity.

Solving the Euler-Lagrange equations (A.14) to (A.16)

yields
2 N
30D _ ~
Aoy =Ry * o T 4 F Ay (2.18) -
t
(¢}
Aoy = Kant Fl —A .+ }:’lon]dt ¥ (2¢19)
31 T 307, 27 "m OV =~ 30 °
(o]
¥ \ |
3
and A5y = Mg +S 5 (vesm- D)dt
t m
o
m : t ,
1 A 1 3D
= Asg + ——— (-dm) - |  —5 dt
m ™ t "
.0 (o]
~ 1 _ 1
- l50 + ABO ve (ml md) (2.20)

where the second subscript denotes the value of Ai at the time

t = t,, that is, Ai(tk) = A;,+ The above approximations are
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obtained by neglecting all integrals with respect to t since the

time interval tl - to is negligible. The drag function and
its derivatives, COT\]; and % are finite during this interval.
This. can be seen from the drag function (2.13).

Information about the end conditions of the Lagrange
multipliers may be obtained from the transversality condition
and the first integral.

The transversality condition is

iz
[%m + A dh + ABdV + Agdm + C d%} =0 (2+21)

where C is the first integral.
Since m to, and tf are free, the transversality con-
dition yields
Asg = -1 (2.22)

and

C =0 (2.23)

The transversality condition does not give any information
about the final values of the Lagrange multipliers for this

problem. However, the first integral (A.18) gives
Agp = O (2.24)

For the variable thrust subarc, %g £ 0, and it follows
from (A.17) that the condition

v
Ao =A== =0, bbb, (2.25)

must be satisfied, where t2 is the time at which the thrust is

cut off.
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The first integral (A.18) now reduces to

D
AV = Ag (g+a)=0,t

5 Lty . (2.26)

1 2

It is obvious that (2426) also holds for the coasting subarc
where B = Q.

Differentiating (2.25) with respect to t yields
m )‘5 + }‘Sm - },,3 Ve = 0 (2.27)
Substituting (2.5), (A.15) and (A.16) into (2.27) gives

A

83 (D, 9Dy _
A, - o (Ve +5w7) =0, t;)<t<t, . (2.28)
Substituting (2.13) into (2.28) yields
Ar» D2 1
g == (V "'Tr_)’ <<, . (2.29)
e

Eliminating A, and A, between (2.26) and (2.29) gives

mg - D(1 +7-)=0, t <t<t, . © (2.30)
e
Equation (2.30) shows that the velocity V can not be zero during
the variable thrust period. Therefore impulsive boosting is
required. Moreover, equation (2.30) can be used\to determine
the switching time tl for the actual flight, and‘it will be used
as a control law in the next chapter for the analogue computatioh
of the sounding rocket problem. |

Differentiating (2.30) with respect to t yields

° D 26 3V V '
m==|=~ 42— g V(1 + .
g [V Ve a V( e)] (2.31)
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Substituting (2.30) and (2.31) into (A.12) gives

) _
YL (- —E) Y 2
. 27V 2
v v Ve aVe e aVe
v =v &V, 5 ‘ (2.32)
v v :
5 + 45 + 2
L. V e -
e
Let v = %— and b = ——EE , then (2.32) can be written as
' e aV
e
* gv_ v2 + (1-b)v=2b |
v =& * (2.33)
e ve o+ 4v + 2
or

bV 2
at = —& XA+ 2 g (2.34)

g v[&2+ (1—b)v-2§]

Integrating this equation from tl to t gives

v v 2 A
t =1t +-2|1n 1, (lgb) 1g Yo+ (15b)v—2b
' g M vy +(1—b)v1—2b

(2v + (1-b) + K ov+(1-b) K
+5 ln'sz F (1-b) + K 2§l+ (1-D) —K}

(2.35)
where K = J (l-b)2 + 8b
Since .
h =V = vV
e
it follows that dh = Vevdt

Substituting (2.34) into this equation yields

dv

2
dh = i "V 4v 4+ 2

vZ + (1-b)v-2b



Integrating this equation from h

h = h +
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1 to h gives

v2+(1-b)v-2b

2
1t (1—b)vl—2b

3+b
2

V-V, + 1n

1
a 1

1 v

(2v1+(1—b)+K

2va(1-b) -~ K_|
2 I o) -

2v,+(1-b) - K |

}

(2.36)

The mass m can be determined as a function of v and t by

rewriting (A.12) in the form

m
m

and then substituting

Thus

S8 e

or dm
m

Now substituting (2.34)

which can be integrat

Inm

or

1 ; D
= —'VZ (V+g+ a)

(2.30) for % into the last equation.

-V

- Tty

g
V'
e e

—-(dv +

g ; dt
%) - Iy

A
e

for dt in the above equation gives

2
b v+ 4v + 2
= —(dv + & at) - dv

Ve v(1+v) v2+(1—b)v-2b

ed to the form
t v
=—(V+’g—t) + 1In v+ v
v 2
e & v+ (1-b)v-2b
1 V1
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2
v2 4y V1Tt (1-b)v.-2b

]- i :
exp| -(v=v )—-g—(t-t-)] (2.37)
1 v12 + vy v2+(1—b)v—2b [ 17 vy 1

m=m

To sblve the Euler-Lagrange equation (A.16), the following

equations
VeB—D .
- =V+g
M2
m ~V
e

which are obtained from (A.12) and (2.25) are required. Sub-

stituting these two equations into (A.16) gives

. °
- X £
Ag = As(v +5 )
e
where v = V/Ve' Integrating this equation from t) to t yields
— £ :
As = A5y ©XP (v + v t) (2.38)
Substituting this into (2.25) gives
m7\51 rs
A3 = A exp (v + v t) . (2.39)

The Lagrange multiplier Az can be determined by the first
integral (2.26):

mA
D .
A, = —5L§ (g + E) exp (v +-§7—- t) (2.40)
v Ve e

For the coasting subarc, the thrust is cut off, so that

B =0, Thus m = O and the mass m is constant. Let m = m, at
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t=t2’

Lagrange equations become

then m, = Mo, and the equations of motion and the Euler-

s 3
1
<
i

0 (2.41)
V+g+ %— =0 (2.42)
f .
and
. A
_*3 %D
Ay = ) on (2.44)
. A
_ *3 Op
7\3 = —7»2 + mf NV (2.45)
Ny D
Ay = =hy = (2.46)
f
2
where D =k V° exp(-ah)
. » 4V _ 4V dh
Since vV = it = b at
v v _ 2 dv
=Vam = Ve @
substituting this equation into (2.42) gives
2
dv k
v in +-§—2- + %f exp(—a,h) =0
e
or (v?) + Ifl—lf‘ v2 exp(-ah)+2 ab = 0 (2.47)
where b = —g—z
aVe

Equation (2.47) is a linear differential equation with respect

2 2k -ah
e )y

to v, It has an integrating factor of the form exp(- —

and can be written as
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k -ah 2k -
%ﬂ [%zexp(—%; e 2 )] = 2ab exp (- E; e ah)

(2.48)

In order to integrate the right hand side of this equafion, let

y = e—ah, dy = —aydh
and Sexp (- 25 e™Man - - Jexp (- v

The integration can be performed by expanding the exponential

function in a Taylor series. Thus

exp (¢ y) L = 1n (c y) + N (e y)?
) : S

n=1
and integrating (2.48) yields (- ok )n —anh
v2 = 2 b exp (g%— e—ah)[}ah + E + C?]
aflp n.n}l
n=1
A .
= f(h) (2+449)

vhere Cl is the constant of integration and is given by
2k _\n _-—anhe
(- =) e

oo
f
C, = ah, =
1 ;4 E : n n !

n=1

vThus C1 is a known constant since hf is given. From (2.41)

dh dh
- -8y
and (2.49) gives v =V f(h)
- 1 dh
thus dt = 5
Ve V£(h)

h
b =4 +l—g dh - (2450)
2V h, V£(y)

Substituting the first integral (2.26) into (2.45) for A, yields
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. A
_ 3 D_
A3 -V (-g + mf)
. dA dAa dA
: _3__3 d _ 3
Since AB =33 = a5 ° a =V i
- dA A
kV —-ah
thus \' Eﬂg = 72 (-g + n, e
or dAS _k -ah g dh
A, om, © Ty 2 .2
3 f v v
e
But (2.49) gives v = f£(n)
thus
dA a
3 _k _-ah g _dh
Ay, —mp ¢ T TT W)

Integrating this equation yields

_ _ .k _-ah _ _g_ d ]
A3 = exp amg e 72 §7§7 + 02

e

F(h) (2.51)

where 02 is the constant of integration and is given by
‘ h

f
-ah
B k alle g dv
C2 = ~ eXPp |:- -—amf e - - ZS f_(-}-’T (2.52)
h

€ 2

The Lagrange multiplier Az can be obtained from the first integral

2
. kv2V

_ F(h) e -ah
Ay = vV, (g + ’“E;“ e ) (2.53)

Substituting (2.51) into (2.46) gives
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2
N k —ah
}ss = = F(h) —51;,2- e
. da dA dA
; -2 _ 2 4dh o 3
Since As =35 =T " dt -V an
and - V=Vyv-= Ve\/ f(h)
thus dA -kV _
2 = —& Jf£(n) F(n) e
ah T n,2
Integrating this equation gives
S Sy (R u
Ao = — g\ F(y) V £(y e”® dy + C (2.54)
5 mf2 h2 3

where 03 is the constant of integration. For the further dis-
cussion it will be convenient to give a summary for the solution
of the sounding rocket problem.

(1) For the boosting subarc (OSth1ﬁ), where t = O.

h1 =0 (2.16)

V suddenly increases from zero to

vl
m =m exp(- Y—) wvhere m_ is
o Ve ’ o
unknown, (2.15)
tl ZAt¥0
A, & Ao | (2.18)
Ay 2 Agq (2.19)
o~ 1 _ 1
AS % Asg t+ Agg v, (m - mo) (2.20)
where Asg = fl (2.22)

The first integral is

D

v
e
AV —a{g+ ) - (g =25 22) =0

2
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(2) For the variable thrust subarc, (tlg tétz),

h==|v =-v, + 1n >

1 [ 3 4+4b. v+ (1 -b)v =2 b
a 1 2 v,© o+ (1 - b)vl— 2b

k. (2 + (L -bB) +K 0 (1 _p)ak
*'ElnL2v+ (I -b) +K '23 + (1 -b) =K

1
2 (2.36)
- R viS# (1 -b)v, - 2b
m=me —5 - =5 : exp l:—(v - vl)
vio otV v+ (1 - b)v - 2b
-t ] (2.37)
e .
t=v_e 1nv_l+L1 +b) lnv2+ (1 - b)v - 2b
& M 2 v12 + (1 - b)v,~ 2b

f2vy+ (1 -b) + K 5o (L-b):-fK}]

) 1nsz + (1 - b) + K v+ (1-b) = K
(2435)
£ _ 2 v
where b = 5 v K _W/Q1 - b)° +8b and v =5
aVv e
e
Ve
Ag = Ay 7= =0 : (2.25)
mASl D y-a
)\2 = :—V—i (g + H) exp (v + v t) (2.40)
e
m ASl
}‘3 = exp (v +-§—- t) (2.39)
e e
_ £ |
A = Agy exp (v + v t) (2.38)
. . . D
The first integral is AZV - A3(g + a) =0 (2426)
)
mg = D(1 + ) =0 (2.30)

e

(3) Por the coasting subarc, (t2\<tgtf),



oo am,
v% = 2b exp (2 e-ah) [}ah +
am
f ] n«n
A f(h) ) (2+49)
2k \" —anh
oo (- amf) e f
where C1 = ahf - E n .
n=1 [ ] e
h
1 dh
P —dh (2.50)
A
2 Ve Shz v £(y)
m=m, = constant
A = F(h) ( kV2 Ve2 e_ah) (2.53)
25V vV, 8T TR °
e
h
- - k_-ah _ _g_ d
}‘B‘exP[amfe Vz& ﬂ‘;é)']"'cz
e h2
A
= F(h) (2451)
) _
-kV .
Ag = _ZE F(y)\/ £(y) ™ ay + ¢,  (2.54)
m
f h2
where _ hf
- = _ -k -ahp g _(xyd
02_ exp[amfe V'2 fY:l
e h
2
(2.52)
The first integral is
AV - a (g+2) =0  (2.26)
2 3 mg, *

f

It is evident that the form of the analytical solution is
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very complicated. On the coasting subarc, the analytical

solution cannot be expressed in a closed form. However, by the
use of digital computers an accurate numerical solution may be

(12)

obtained. For example, Leitmann has obtained the optimal
thrust program as a function of time, using a digital computer
and the analytical results to obtain the optimal trajectorye.-
In Leitmann's method the trajectory was solved in reverse time,
starting at the final point.

Although the analytical solution has a complicated form
it still yields interesting information about the optimal

trajectory of the sounding rocket problem. This will be dis~

cussed in the following section.

(1) The Optimal Controller

The entire optimal trajectory has three subarcs (the
impulsive boosting subarc, the variable thrust subarc and the
coasting subarc) and associated with these subarcs are three
different types of thrust programs. These are impulsive thrust,
variable thrust and zero thrust. This means that the optimal
controller has three modes of operation. The first and the last
modes are ones of maximum and zero thrust respectively. The
variable thrust mode is controlled by the optimal controller
which must also determine the instants at which modes are
switched. A possible optimal controller can be obtained by means
of (2.30). The method whereby (2.30) is used to obtain the

optimal control law is to consider (2.30)

e 2 mg - D(1 + XT-) , (2.55)
e
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as an error signal. The signal € is fed into a high gain ampli-
fier and the amplifier output is used to control the fuel flow.
A detailed discussion and some other possible optimal control

laws will be studied in the next chapter.

(2) The Initial Values of the Lagrange Multipliers

The Lagraﬁge multipliers play an important role in the
present study of optimal controllers. In the general case; the
control law depends on the Lagrange multipliers. Usually the
initial conditions of Lagrange multipliers are not all known
and the controller must then compute the unknown initial
conditions.,

The sounding rocket problem has two unknown initial

and A

Lagrange multipliers,h20 30

It follows from the analytical study that both A and

20

ABO are negative. This statement can be proved by the following
argument:
At the end of boosting, that is at the time tl, the

analytical solution gives

A

51 ¥ Ay (2.18)
Ayl ¥ Ay (2.19)
~ 1__ 1
ASI ¥ 1 + A0 Ve(ml - mo) (2.20)
Ve
and ASI - A3l 5; =0 (2425)

The last equation can be approximated:

v

e
51 = *30 m,

R

A
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Substituting the above equation into (2.20) and solving for

A3O yields

I

A

mo
30 2 -7 (2.56)
e

Equation (2.56) shows that ABO must be negative,; since m and

’Ve are positive quantitiés. It follows from (2.19) that A

31
must be negative, Furthermore, the first integral (2.26) shows
that

_ D1

where Vl, g, D1 and m, are positive,; and A3l is negative. Thus
AZl«must be negative and from (2.18) A2O must be negativé, ;In
conclusion, all the Lagrange multipliers in the sounding rocket
problem must have negativé initial values.

(3) A Qualitative Study of the Motion of the Sounding Rocket
Problem

A qualitative study often gives a better understanding of
a problem., The general behaviour of the state variables and the
Lagrange multipliers may be obtained from the analytical
solution. The altitude h is always increasing aiong the entire
trajectory.

For the boosting subarc, the analytical solution shows
that V is increasing and that both m and AS are decreasing, but
A, and A; are almost constant.

For the variable thrust subarc, the optimum thrust gives
an optimum velocity. Equation (2.36) shows that V must increase
since h is increasing all the time. The mass m is determined

by the equation (see (2430)).
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D v
== {1l + 7
=20 P
V(1 + )
X ______ e

€ exp(ah)

Since m is decreasing, it follows from the above equation that

the denominator, geah, increases faster than the numerator kV2(1
\i
v
e

+ The Lagrange multipliers A, and A, increase because they

2 3

have positive time derivatives and ks décreases because it has
a negative derivative with respect to t (see (A.14), (A.15)
and (A.16)).

For the coasting subarc, the drag is small at high
altitude, and the thrust is zero, thus the velocity is approxi-
mately equal to V, - g(t—tz) (see (A.12)). The altitude h
increases until V becomes zero. The Lagrange multipliers Az
and AS remain almost constant for the coasting subarc, since
their time derivatives are negligible (see (A.14) and (A.16))
and AB increases to its final value ABf with a slope approxi-
mately equal to —Az (see(A.15). The analytical solution for the
coasting subarc contains an iﬁtegrala The integrand is 1/f(h)

2

and is infinite at h = h, since f(hf) = vy~ = 0. The integrals

hf hf

4Y __ and f%%T are, however, finite. The singular

VEly)
h, y h,

nature of the integrand makes a direct digital computation using
the analytical results difficult. If the approximation
VEV,- g(t - t ) for the coastlng subarc is made, the function

£(h) = v2

iR

V;Z[:z g(t - t i] can be used to compute the

above two integrals.

A
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The following curves in Fig., 2.2 and Fig.'2.3 illustrate

the general behavipur of the state variables and Lagrange

multipliers.
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Fige 2.3 The Lagrange multipliers
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3. OPTIMAL FEEDBACK CONTROL SYSTEMS |

3.1 Introduction

The general problem in optimal control is the
determination of the inputs to a system subject to certain con-
straints so that the stéte of the system follows a trajectory
resulting in the optimiéation'of a given performance criterion.
In other words, the problem is to determine the control
variable as a function of time so that the system satisfies
the specified criterion. This is essentially an open loop
control system and, from the control engineering point of view,
may not be satisfactory. The control variable resulting in optimum
performance can be determined ‘analytically only for very simple
systems, for example, the constant coefficient linear system.
Furthermore, the open loop control has the disadvantage that
disturbances existing in a physical system results in non-
optimum performance. Therefore, a closed loop feedback control
system is desirable. _

This chaptér is devoted to the study of feedback optimal
control systemss Specific problems are studied and the optimal
control for each case is derived as a function of the system
state variables.

3.2 The Concept of Optimal Feedback Control and the Synthesis
of Optimal Controllers ‘

Optimal controllers synthesized by use of the calculus of
variations result in a multivariable type of control systems.

In general, a multivariable optimal control system consists of
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two subsystems. These are the plant and the so-called adjoint

system. The plant is usually described by a set of differential

equations and the adjoint system corresponds to the Euler-

Lagrange equations. The interrelationship between these two

subsystems is shown in Fig. 3.1,

The system illustrated in Fig. 3.1 may be considered as

an n by m optimal feedback control system, where n refers to the

number of the state variables x(t),
of the control variables u(t). The

are used in Figs. 3.1.

x, (4)
.
x(t) = 1| , n X 1 matrix
EXC)
A ()
A(t) =1 » , n X 1 matrix
L}n(tl
ap (4)
u(t) = . , m x 1 matrix
[ ]
Lum(t)_

P(al,...,an) =

H

e o » W

and m refers to the number

following matrix notations

of state variables.

of the Lagrange multipliers,

of control variables,

m X 1 matrix of the terminal values
of x(t) and t.

The performance function P is to be optimized. The

number of elements of the u(t) matrix is always the same as that



— Plant

Adjoint
At )

System

< (1) Performance P
Criterion
y \
A (1) Optimal u(t)
Controller

Fig. 3.1 A general multivariable optimal feedback

control system

€9
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of the P matrix.

3.2.1 A Multivariable Optimal Feedback Control System

P

In some cases the optimal control law may not contain
the Lagrange multiplier A(t) explicitly. The control variable
u(t) may then be determined as a function of the state variable
x(t). 1In this case the general multivariable feedback control
system described in Fig.IB.l reduces to the form shown in Fig,
3.2, The following sections discuss optimal controllers of this

type for a variety of flight conditions.

3,2.2 Synthesis.of Optimal Control Laws for Rocket Flight

In the study of optimal control sSystems the synthesis of
the optimal controller is a major problem. In the case 6f i
optimal feedback control systems the determination of the
optimal control law is of primary importance.

The simplified problems of rocket flight have been
formulated in the Appendix, and they will be studied in this
section. These simplified prdblems have one degree of freedom.
Thus there exists only one optimal control variable in these
problemse

(1) The Vertical Flight (Sounding Rocket) Problem.

It follows from Chapter 2 that optimal condition for the

variable thrust subarc is

Ve
£ _ 0 (2.25)

Actually, this condition holds true for all the four problems
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discussed in this chapter. Differentiating (2.25) with respect

to t. yields

mA: +mAz =V A, =0 (3.1)

It follows from: Chapter 2, Section 2.3 that (3,1) leads to
equation (2.30); that is
A
fs = mg - D(1 +-¥;) =0 (3.2)
where fs is called the switching function. The boosting
stage terminates when fs goes through zero. Differentiating

(3.2) with respect to t gives

*

mg - Da— - (1 +3—) (2 V - adh) = 0 (3.3)
e e R

The equations of motion, (A.11), (A.12) and (A.13) can be used

to eliminate my V and h in the above equation resulting in

u=p

v
D [(g +Dy 2+ +av? (2 fﬁﬁgi]
[

| D
gV += (2Ve + 3V)

(3.4)
which gives the optimal control variable as a function of the
state variables for the variable thrust subarc.

(2) The Horizontal Flight Problem.

The equations for optimal horizontal flight are derived

in a manner similar to the problem of vertical flight. After
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substituting (A.23), (A.25) and (A.26) into (3.1) the following

equation results

L @ 4 OD
m

— 5 (3.5)

The first integral for the variable thrust subarc is

i
o

AV = A (A.29)

BI|O

Solving this equation for Al, and (A.27) for A4 and then sub-

stituting into (3.5), yields the condition

ne>

V(D + 7V, g—g - mg %) -VD=0 (3.6)

which must be satisfied by the optimal variable thrust subarc.

Here L = mg and D = D(V,L)
Expressing (3.6) in the form

D(V-V,) +VV g%“- mgV %”’-’:“?o

and then differentiating with respect to t yields

s?n+(v_ve)(%3\"r+%i)+x}veg%

2 o 2 L . .
(O V+bwL)—mng%—mgV?r]L)-
2 . 25 o
- mgV (%L_O—V-i-b—I-JP-L

+ V Ve

=0

A

Substituting L = mg into the above equation gives

2 2 .
: ,
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- A oD oD %D oD

Let A(m,V,L)=D+V5-ﬁ—mg6-ﬁ+vvee?—mgvowv
B(m,V,L) & v & VVQZ.2 v
TR = e SL T T Te OWOL T M T 2

and substituting (A.22) and (A.23) into the previous equation’

yields the optimal control variable

AD
- AVe - mgB (3.7)

(3) The Arbitrary Inclined Rectilinear Flight Problem.

This is a more general case and inbludes the vertical and
horizontal flight problems. The derivation of the optimal control
variable is the same. Substituting (A.34), (A.37) and (A.38)
into (3.1) and using the optimal condition (2.25) for the

variable thrust subarc, the following equation is obtained.

v

L - D, 'eODy _
h4 v T Alve.cos 0 + A2V651n e - AB (m +-ml 57) =0

(3.8)
The first integral for this problem along the variable thrust
subarc is given by (A.41)

cos @ + A, sin 6 - (% + g sin 8) =0

1

The Buler-Lagrange equation (A.39) gives

o))
7s4 =}"3V51-4-
It follows from the above two equations and (3.8) that the optimal

variable thrust subarc must satisfy the condition
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A oD . , oDy _
fszp(v—ve)+vve57—mg (Ve San+VCOSQ&)_O

(3.9)
where L = mg cos 8, D = D(h,V,L) and © is a constant. It can be
seen that (3.2) and (3.6) are special cases of (3.9).

Differentiating (3.9) with respect to t yields

DV 4 (V- V) (%Qv 5£+%L)+vv%’}

e 2 2 2 . .
+VV (ov v+%6—h+%5-L) —I‘ng.(Ve sin ©

+V cos Qé%%)

. OD 02 02 . OZD .
_ngcosO&-mchos? V+m—h+©2L)=O

By meaés of (A.32), (A.33), (A.34) and the equation

°
L=mg cos 0

The previous expression can be solved for B yielding the -

optimal control variable

u =24
_ mC —mg(TgVSii'g + D) (3.10)
a2 2
A 0D OD 0°D
where A=D + eov«—mgcosgé——mchosOg@—
2 | 2
A @) o)) O“D
B =g cos © [(V -V, ) + VV - mg cos @ —%
ot * Ve Zor - "8 05 © 13
QD

-V tanO—Vé—
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CL VoV sin 02 + Vv sin o O’ _ V2 sin © cos © O%p
= ~ Ve Oh e OVOh g OLOh
(4) The Zero-lift Flight Problem.

Substituting (A.48) and (A.53) into (3.1) yields the

equation

(3.11)

The optimal condition for the variable thrust subarc is

given by.(Aa54)

<

e—
5 AB m 0

Substituting this into (A.53) gives

A

o * 5
Ag = EV; (vep - D) (3.12)

It follows from (A.51) that

. . 2D
A3 = —Al cos 6 - A2 sin 6 +

T A4 V2 cos ©

5I>‘
(W)

Substituting (3,11) into the above equation yields

v

DV_ - 2., g
- 13 mve + Al V cos 8 + A, V sin © = A + A y cos a]

2 3 m 4
=0 (3.13)

The first integral for the variable thrust subarc is

‘Al V cos © + A, V sin 0 - A3(% + g sin 0) - Ay % cos © =0
(3.14)

The Euler-Lagrange equation (A.50),
A, =-a, 22 | (3.15)

2 3 m
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with the aid of (3.l1), can be written as

Ay =a V Ay (3.16)
Integrating (3.16) gives

Ay =aV_ Ay +C, (3.17)
where 02 is the initial condition of AZO_ a Ve ABO'
Subtracting (3.13) from (3.14) and solving for A4 yields

A, V
_ 73 DV D _ )
Ay =3 Z cos O (mve + > - g sin 0) (3.18)

Substituting (3.17) and (3.18) into (3.13) and solving for Mg

results in

2V(C1 cos 8 + C, sin Q)

3 7DV 3D : :
mve + 2= + g sin 6 - 2aVVe sin O

A

(3.19)

where Al = Cl is a constant, a result which follows from the
Euler-Lagrange equation (A.49).

Now lettihg

_ _A(e,V
Ay = BV, h.m,0 (3.20)
where A(e,V) & 2 V(C, cos 6 + C, sin 0) (3.21)
A DV D : .
B(V,h,m,0) = EV; + %— + g sin O - 2aVVe sin O
(3.22)
and differentiating (3.20) gives
* _ BA-AB
, A3 = ——55— (3.23)
It follows from (3.11) and (3.20) that
. D
o T - oy
e.
_ AD
= - =B (3.24)

. e
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Eliminating A3 by the aid of (3.23) gives

-ABD _p,_aB (3.25)
e
where ‘1:%%{’*'%%&
VB
=% (-g sinG—I%) +%‘%—%—-—©‘g%cos0
@ OB . OB: OB*  OB:
B:ﬁ.—v+5ﬂh+&m+é—gg
V B
=8~—‘]/3. (-g sing—%) +_©B_e_ OB

-g—%ﬁ—%%cosg

Substituting A and B into (3.25) and solving for B results in the

optimal control variable for the variable thrust subarc

u=B
1[{ABD : OB , AD : OB
:F[mVe+AgSIng&+m +AV51n955
_ A g cos 0 O_B_
\ 06
OA BDOA Bg OA
—Bg31n0'o—v—~m—dw-—v COSQ-O—g
(3.26)
where
pLAVeOB , OB _BVeOA
T om v Om m OV

and

2 C, cos 8 + 2 C, sin ©

I

1 2
=~201Vsin0+202VposO
3D 6D .
== +I-n—V—2a.Ve51nO

e

aD v
:-m—(3+v)

e

ol B8 S e YR

=gcos9—2aVVecosO
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%ﬁ-='—22-(3+¥—)

By the aid of equations (3.17), (3.18), (3.20) and (3.14), the

switching function fs can be obtained

A . . A A .
fS = C1 V cos 6 + 02 V sin 6 + a Ve V sin 0O B~ 3g & sin o
ADV 3AD
~ 2mBV, ~ 2mB = © (3.27)

The optimal control law for the four different problems
of rocket flight has been derived. For this class of optimal
control problems the fuel consumption has been minimizeds How-
ever, the technique can also be applied to problems of maximum
range and minimum flight time, etc. The following block diégram
represents the control scheme for.all four problems. There are
in each problem three modes of control corresponding to the
boosting subarcy the variable thrust subarc and the coasting
subarcg(see Fig. 3.3).

The switching time tl is determined when the switching
function fs goes through zero (see (3.2), (3.6), (3.9) and (3.27)).
The controller then operates to keep fs = O until the cut-off
time is reacheds In the problem of zero-lift flight, the
initial values of the Lagrange multipliers Al, A2 and XB enter
into the optimal control law. The method for evéluating the

initial values is discussed in Chapter 4.

3.3 Analogue Computer Technique for the Synthesis of Optimal
Qontrqllers

The conditions for optimal control derived in the last
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section can be used to synthesize optimal controllers. Digital
computers are suitable for numerical computation. However,
analogue computers appear better suited for the synthesis of
comparatively simple real-time controllers. The lengthy
iterative computations of the digital computer are replaced by
relatively high—speed feedback loops where an error signal is
applied to a high-gain amplifier and the amplifier output can
be used as the optimal control variable, The block diagram of

Fige 3.4 shows this technique.

3.4 Analogue Computer Study of the Sounding Rocket Problem

The analogue computer technique discussed in Section 3.3
will now be applied‘to the sounding rocket problems A PACE
231-R analogue computer was used and a schematic diagram of the
computer program is illustrated in Fig. 3.5. The problem is
computed backward in time.

In Fige 345 the error signal is given by the switching

function
£ & e(t) 2 mg - D(1 + %— ) (3.28)
e
and the control variable by
u(t) = -K e(t) | (3.29)

The reason for computing the prablem backward in time
is that the final velocity, altitude, and mass are known, Thus
for backward time computation no iteration is required for
determining the optimal trajectory.

The numerical values chpsen are the following:
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h, = 4,889,500 ft.

£
m, = 10 slug
V, =0 ft/sec
D = k Ve b
vV, = 5500 ft/sec
k = 10_4 slug - ft.

a = 1/22000 £t~1
K = 100

The resulting state variables are shown in Fig. 3,6 where
T = tf - t is the backward time variable.
The function £(7) is used to determine the instant Tos

when 5(75) =0, At T = Té the following values are obtained:

h, = 62,600 ft.
v

2
2 5,313 ft/sec
m, = 10 slug

u 0.72 slug/sec.

2:

and the feedback computation of thrust based on e€(7T) = 0 is

introduced by means of a relay. At T = T

1° the following values

are obtained:

h1 =0
V1 = 2275 ft/sec
my = 20.85 slug

7i = 179.5 sec.

= 0.5 slug/sec

—
!

At T= To? the initial mass including fuel is
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Fig., 3.6 Experimental results for the sounding rocket
problem ‘
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vl
m; exp (V;)

o

= 31.5 slug

At the instant T= Ty 8 relay switches the control
variable u into the input of the mass integrator. For the
coasting subarc the input to the mass integrator is zero and the
maés is constants. At the final altitude h, the velocity is zero
and the error signal e(T) is mege Since both D and V inecrease
with T it can be seen from (3.28) that the error signal decreases
to zero. At T= T, the relay operates and the rocket enters the
variable thrust subarcs When h = 0, a second relay is used
to clamp all integrator inputs at zero, freezing the operation.

(12) has used the analytical results (see

Leitmann
Section 2.3) and an IBM 701 digital computer for the solution
of the sounding rocket problem with the same given data as was

used in this section. His results are

h, = 62,576 ft.
Vv, = 5,308 ft/sec

2
m, = 10 slug
u, = 0.74 slug/sec
Tl— T2 = 18.7 SeC.
m = 21 slug

m = 31.4 slug

Y1

= 0.51 slug/sec.
In general this approach of using the analytical result to
compute the solution is not possible, since the analytical

result is not obtainable. However, the approach of Fige 3+4 has

general applicability. Comparison of the results shows that the
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experimental results for the sounding rocket problem are very

satisfactory.

3.5 Some Other Possible Optimal Controllers

In the preceding section the switching function given by
(3+28) has been used for the synthesis of the optimal control
variable u by an analogue computer. The switching instant Té
separating the coasting subarc from the variable thrust subarc
is determined by fs(7é) = 0. On the variable thrust subarc a
feedback loop around a high-gain amplifier is used to satisfy
the condition for optimal control which requires that £(7) = O.
It should be noted that the switching function fs(T) is a
function of state variables. In the general case of Fig. 3.l
such a switching function may not be obtainable. In this case
some other means must be used in order to determine the control

variable u for the optimal trajectory. These can be obtained

from the switching funection

B Al - VA (3.30)

o) 5 3

and the first integral (provided it exists, see(A4.18).

>
<

D e
€3 =C =2, V - A3(g + m) - B(As— Ay 7 ) (3.31)
Therefore there are three possible functions which can be used for
the synthesis of control variable u for the optimal trajectory by

means of a high-gain amplifier. These are

v
g, = mg - D(1 + V;) (3.32)
€y =mAs =V, Ay (3.33)
€. =C AV - A (g +2) - B(Ae= A Xg)
3= 2 3\& T o 57 A3 @

(3.34)
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A switching function of the type given by (3.32) is preferable

since it results in an extremely simple controller. Otherwise
the Lagrange multipliers must be computed. In such a case ¢

2

and 53 can be used in the same manner as £, was used., It should

1
be noted, however; that €3 = O for the complete trajectory and
is not, therefore; a switching function even though it can be
used to synthesize the control variable u.

In order to use (3.33), the Lagrange multipliers Ay and
15 must be solved simultaneously with the equations of motion.
It is of interest to note that A3 and A5 can be obtained by

solving the two differential equations (see (3.11) and (3.12))

. A
3D
Ay = - = § (3.35)
e
. As
As == v (ves - D) (3.36)

If the first integral is to be used for synthesizing the control
variable u for the optimal trajectory, the complete set of Euler-—
Lagrange equations must be solved. This is much more complicated

than the case of solving equations (3.35) and (3.36).
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4, THE MODIFIED STEEPEST DESCENT METHOD

4,1 Introduction

Computational methods for the solution of optimization
problems have had two primary directions in the past: The
direct approach and the indirect approach. In the direct
approach, equations of motion are solved by selecting an
‘initial control variable and then performing an iteration on
the control variable so that each new iteration improves the
performance function to be optimized. The indirect approach
involves the development of an iterative technique for solving
the equations of motion and the Euler—Légrange equations.,

The direct approach is usually associated with the gradient
method or the method of steepest descent.,

In this chapter a modified steepest descent method is
described for the solution of optimization problems which can be

programmed on analogue computers,

4,2 . Basic Concept of the Modified Steepest Descent Method

The Mayer formulation of variational problems has been.
discussed in Chapter 2+ In the case of the four rocket flight
problems studied in Chapter 3, the optimal control variable can
be determined as a function of state variables and feedback
control methods can be employed. In general, the control variable
u for the optimal trajectory may involve Lagrange multipliers:
and the computation of u becomes much more complicated.

The basis of the modified steepest descent is to search

for the optimum value of the performance function by replacing a
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search in function space by a search in parameter space., This
greatly reduces the dimensionality of the problem. The per-
formance function is considered as a function of unknown
terminal conditions. The final state of the system is determined
by the solution of the equations of motion and the initial
values of the state variabless The control variable for the
optimal trajectory is determined by the state variables and
Lagrange multipliers. The performance function may, therefore,
be considered as a function of the unknown terminal conditions
for the state variables and Lagrange multiplieérs. In theory, if
the terminal conditions for the state variables and Lagrange
multipliers are all known, the optimization problem can be
solved by the method discussed in Section 3.2,

In many practical problems the terminal éonditions are
usually not all knowns This complicates the synthesis of the
control variable u for the optimal trajectory. In such cases
some of the terminal conditions may be approximately determined
by some means, and then the performance function ié optimized
with respect to the remaining terminal conditions, using the
gradient method. This is the essential feature of the modified
method of steepest descent.

Consider the problem of minimizing the performance
function

P = P(a.,l,...,a,n)

by (441)
= [%(t,x)]
t

0

subject to the equations of motion
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Xj = fj(t’xsu); J =1lysaeyn. (402)

where x = (xl,...,xn), u = (ul,.oagum), and the functions P .
and fj are given functions of their arguments,
Following the theory of calculus of variations, the

augmented function

F = 21: ;\j(;j - fj) (4a3)
J:

is formed which satisfies the Euler-Lagrange equations

%{(g:—)séL:O;j:}_““;na \
%E—':Og 1’1 st luneul;n}u
- ;
k
and the transversality condition
L
f
n n
»
dP + (F - QF— x.) dt + b}f dx . =0 (405)
—Ox., Y ——Ox, Y
=1 J J=1 J 4
0

Substituting the function F into equations (4.4) and (4.5)

gives n
a of; '
Ay == E Mo (4.6)
i=1 J
and
n n tf
P - A, £, dt + A, dx. - 0 .
Zl_,;l i Z = *] (4.7)
o

If the function F does not depend on t explicitly, the first

integral exists:
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n
F - Qlf— x; = C (4.8)
ook,
J= J
that is n
£, =C 4
AL, (4.9)
i=1

It follows from the transversality condition that if either tf
or to is free the first integral is equal to zero.

The computational technique for the solution of the
optimization problem is to solve equations (4.2) and (4.6)
subject to the conditions (4.7) and (4.9) so that the perfor=
mance function P is a minimums Note that the transversality
condition yields information about the terminal values of the
As If the first integral is known, it may give some information
about the terminal values of x and A. However, usually not all
terminal values of x are given and not all terminal values of
A can be determined by the transversality condition and the
first integral.

For a minimum problem having n state variables xj the
performance function P will, in general, have n unknown parameters
aj. If the first integral is known (provided it exists), only
(n~1) unknown parameters are independent. In order to reduce
the dimensionality a first approximation of these (n-1) unknown
parameters may be obtained by computing a subclass of admissible
trajectories which satisfy the equations of motion and the
known terminal conditions of the state variables. The subclass
of admissible trajectories is taken to satisfy some, but not
necessarily all, the terminal conditions for A. The initial

values of x and A for the optimal trajectory can now be determined
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'by the method of steepest descent.

In general, a computer program using the modified

steepest descent method could proceed as follows. In order to

simplify the discussion it is assumed that more initial values

of the state variables than final values .are known.

(1)

(2)

(3)

A suitable control u, is selected as a first
approximation and the equations of motion are

solved forward in time. If xk(tf) is known and
xk(ti) 1s unknowny an approximation to xk(ti)

can be obtained by adjusting xk(ti) until the final
value of x, ‘takes on the prescribed value xk(tf)o

If both terminal values xk(ti) and xk(tf) of a

state variable xk(t) are unknown, a first approxi-
mation to xk(ti) can be determined by minimizing

the performance function P by the steepest descent
method. The trajectories determined in this manner
form a subclass of admissible trajectories.

With the previously determined admissible trajectory
the equations of motion and Euler-Lagrange equations
are simultaneously solved backward in time., The
unknown terminal values Aj(tf) are adjusted at

t = tf by iteration until the prescribed initial
values of the corresponding Aj are obtained. A
first approximation of initial values for x and A
has now been determined.

The equations of motion and Euler-Lagrange equations
are simultaneously solved by the feedback control

method (see Fige 1.2) forward in time. The con-

troller is introduced by the feedback control
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technique and the value of the performance function
is noted. This subclass of trajectories have a
variable thrust subarc and the thrust for this
subarc is determined by the 6ptimal control law,

(4) The unknown initial values of x and A are adjusted
according to the modified method of steepest descent

until the performance function is minimized.,

443 Possibility of Practical Applications

In practice, there is often a need for a low cost and
comparatively simple on~line method@ for the solution of optimal
control problems. At the present time many of the computational
techniques existing in various industries often require the use
of a large capacity general purpose digital computer. Forv
economical reasons, this may not be acceptable in many possible
applications. However, the modified steepest descent method can
be used to realize comparatively simple on-line controllers.(4)
The instantaneous control policy in real time may be obtained
from an analogue computer which operates on a fast time scale.
The trajectory in state space is solved by an analogue computer
and a digital computer stores the data for the steepest descent
adjustment of the unknown parameters. This modified steepest
descent method takes account of random disturbances since a new

control policy is computed for each trajectory. (see Fig. 4.1).

444 PFurther Investigations

The general idea of the modified steepest descent method

based on the indirect approach of the calculus of variations
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seems a very effective computational method. The high speed
analogue computer is particularly suitable for the determination
of trajectories and feedback methods can be used to synthesize
the control variable. While computational experience with this
method is limited at the present time, its potential as a
computational scheme for practical applications deserves further
studies, |

It is suggested that further investigations in this method

should be pursued to facilitate practical applications to the
following problems:

1l The application of digital hill-climbing or gradient
methods for automatically optimizing the performance
function.

2. Hybrid computational methods for automatically adjusting
the unknown parameters.

3. The extension of the method to problems of many
degrees of freedom,

All these problems must be left open for future investigationss
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5. FLIGHT SIMULATOR AND ANALOGUE SIMULATION

5.1 Introduction

Analogue computers may be divided broadly into direct
analogues and indirect, or functional, analogues. The principle
of operation of the direct analogue computer is based on a one-
to—-one correspondence between the behaviour of the analogue
system and that of the physical system under study. In the
indirect or functional analogue computer, the equations which
describe a physical system are formulated by components, such
as summers, integrators, multipliers, etc.

The flight simulator is a functional analogue computer
of the electromechanical type and is ideally suited for the
solution of trajectory problems. In order to study the rocket
flight problem, a CF-100 flight simulator has been suitably

modifiede.

52 Basic Components of the Flight Simulator

There are five basic components of the flight simulator.s
These are the summer , servo—amplifier, resolver, phase sensiti&e
detector and relay. By means of these components mathematical
operations can be performeds The summing amplifier, or the
summer, carries out the arithmetic operations of sign inversion,
multiplication by a constant and summation. The integration is
carried out by an electromechanical integrator. This integrator
consists of a servo-amplifier, a servo-motor and a tachometer,

A gear box is used to couple the servo-motor to a linear
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potentiometer which converts the shaft angle into a voltage.

Furthermore, the integrator is also used to generate functions
and to carry out multiplication and division, The resolver
performs trigonometric operatioﬁs involving the transformation
of coordinates. The phase sensitive detector is a device used
to detect the phase change of an input signal with respect to

a reference signal. A relay is energized when the input signal

changes its phase.

5.3 Simulation of the Optimal Control Law

This section is devoted to the simulation of the optimal
control law for the zero-1ift rocket flight problem discussed
in Chapter 3. For the programming of this problem a large
numbgr of multipliers and function generators are required.
This cannot be handled by most ordinary analogue computers since
only a small number of multipliers and function generators
are normally availablees The electromechancial computing units
of a flight simulator are ideally suited for this type of
problem. In the study of the theory of optimal rocket flight,
it has been shown that the optimal trajectory consists of
three subarcs. Associated with each subarc is a mode of con-
trol for the control parameter B. If impulsive boosting is
assumed, one of the subarcs may be computed analytically. If
the thrust program consists of maximum thrust, variable thrust
and zero thrust, the maximum thrust mode must be ihcluded in
the simulator. In general there are, therefcre, three modes of
thrust control.

It can be seen from the Appendix that the control parameter
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B, appears in both equations (A.46) and (A.48). The three modes

of thrust control must, therefore, be applied to these two
equations,
The sequence of the modes is important. It follows from
the theory of rocket flight that the sequence of these modes are:
Mode 13 B = Bmax’ constant thrusts
Fuel consumption is at a constant
rate and the mass is a linear function

of time., m = mo - Bmaxt-

<

Mode 23 As— Ag m—e- = 0, variable thrust.

The mass is constrained. to satisfy the
variable thrust condition for optimal
flight.

Mode 3: B = 0, zero thrust.
The mass is constant.,

The zeros of the function

£(m,a) & A (5.1)

5

can be used to define the three subarcs (see Fig. 5.1).

The switching from Mode 1 to Mode 2 is performed in the
simulator by a phase sensitive detector and a relay. In Mode 1,
the relay is in the position for maximum thruét. When f(m,A)
becomes zero, the relay switches to Mode Z. During Mode 2 the
control parameter B is implicitly constrained so that f(m,A) = O.
For Mode 3, the signal representing the control parameter B is
shorted to ground.

5.4 Analysis of a Test Problem

In order for the simulator to perform satisfactorily,
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f(m,A)
Mode 1 -~
Ve
/
A
/
/
Mode 2 /
0 T % i » 1
/M b2
/
Mode 3
/
/
“
Fig. 51 Three modes of thrust control

various units must be calibrated.

best performed by solving a simple problem of free

The calibration can be

described by the following differential equations:

e ID'e K e

O

The initial conditions

x(0)
h(0)
V(o)

6(0)

motion

V cos O
V sin O (5.2)
-g sin ©
- % cos O
at t = 0 are
=0
=0
=V

o
= 0
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I
wherg 0<o <35
The solution of this set of differential equations is

x =V cos O t
0 o

h =V, sin0t-=gt°
2 2 2,2 :
Ve =V +g7t% -2 gV sin 0 t (5.3)
tan (£ + L) = tan ((32 + L) v/ig- 2 Yﬂ sin 6 t + Xﬂi
B2 Ty =R AT Ty g 0 o2

Eliminating the sin © from the second and the third equations
of (5.2) gives
h = -V V/g

Integrating the above equation yields

2 _v 2

o - 2 g h (5.4)

Since V cannot be zero, it follows from the second equation of
(5.2) that sin © must be zero at hmax° Furthermore, because of
(5¢4), V is a minimum when h is a maximum.

From the solution for the velocity of (5.3), it is seen
that

Vmin = VO cos Go (5.5)

which is extremely useful for calibration purposes.

Another important fact is that the velocity in the x-
direction, that is; ; is always constant. This gives a good
check for the operation of the simulator.,

Differentiating the solution for the velocity and equating

it to be zero gives
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<

t = "g"'g sin O (506)

and at this instant the velocity reaches its minimum,
The above equations were used to scale the voltages on
the simulator so that for the mass used the trajectory covered

a convenient range of an xy-recorder.

55 Experimental Test of the Modified Steepest Descent Method

The basic idea for the method of modified steepest
descent has been discussed in Chapter 4. It would evidently
be profitable to study a particular problem which can lead to
better understanding of the nature of the method.

Consider the zero-lift rocket flight problems. The per-
formance function to be minimized is the fuel consumption. If
the initial mass m, i1s assumed to be given, the problem is
equivalent to maximizing the final mass Moo The initial and

final conditions are

x(to) = 0, x(tf) = Xp

h(to) = 0, h(tf) = hg (5.7)
V(to) = 0,

m(t,) =m_,

where m s Xp and hf are given values. The following values of
the state variables are unknown at the terminal pointé: OO, e
Vf, Mo Here m, is to be max1m1zedf

The transversality condition for this problem is

a

f’
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Il

o - f
[} Cc at + A dx + A2 dh + A3 av + Ay ae + (As-l)dg—J 0
t

0

(5.8)
The quantities to’ tf, Yf’ 90, Of, m, are free,so that C = 0O,
hgo = 0s A3p =0y Ayp =0 and Agp =1, and A4, Ay5s Aggy Agps

A and A2f are unknowne

1f
The first integral (see(A.55)) is

. D . ‘
Alv cos © + A,V ?ln Q0 ~ 13(5 + g sin 0) - A4.§ cos 6 ~ B(A5

2

Ve
- Ay nT') =0

and for t = t,, B =0, Ay = Oland Ayp = 0. Hence

tan Of = = — (5.10)

Equation (5.10) gives a relation between Qf; Alf and A2f- From

the Euler-Lagrange equation (A.49) it is seen that A, is a con-

1
stant for the entire optimal trajectory.

For this particular problem Oo can not be 900, as can be
seen from the equation of motion (A.47) for 6. If 6 = 90°,
and the 1ift is zero, ~é is zero if Vo és not zero, thus the
final point (xf,hf) cannot be reached. If OO<< 900, then Vo
cannot be zero,.otherwise é will be infinite at the initial
point, Thus an initial velocity is essential which can be
obtained by impulsive boosting. In this case, the computation

starts with the variable thrust subarc, since the boosting subarc

is very short and may be neglected.
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Consider now the case of impulsive boosting where there
is no constraint on the magnitude of the thrust. Let tl be the

time at‘the end of boosting, then

b -t =0t =0

xq = X, = 0

hy £ h =0

& £0 v

m, ¥ m_ exp (~ vi) (5.11)
A1 % Ao

Ax1 ® A0

A31 = Ay

Ay By =0

Mgy % Asp +hgg Vo (o - o)

At t = tl, the variable thrust subarc starts, and
v ,

Agp = Ay 5? (5.12)

If the computation starts at t = tl’ the initial values for the

state variables: Vl, m, and ©, are unknown. However, V. and m

1 1 1 1
are related by the relation
V1
m) = m_ exp (- V—) » (5413)

€

If the magnitude of the thrust is constrained by the
condition

(5.14)

0 <V B<VB

e’ max

where Bmax is the maximum control parameter, the approximation of
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(5.11) still ‘can be applied, but the optimal trajectory will start
with maximum thrust subarc. Since the initial velocity V0 is zero,
some auxiliary device is required to avoid that é be infinite at
the start. This can be done by holding the rocket on a launcher
with maximum thrust for a negligibly short time, and the rocket
then starts with a maximum thrust subarc with an initial angle

OO less than 90°. This is equivalent to the problem of starting

with an initial velocity Vi # 0 and an initial mass given by

~ iy,
m, €m_ exp (- V;) (5615)

Thus the optimal trajectory starts with the following initial

conditions:

14
=
i

o

Rt~
o

(5416)

> >
IR IR
>

Pt

iR

>I
N
o

1 1
t*he Ve Gm - o)
i 0
In this case the switching function may not reach zero at t = ti.
The optimal trajectory must then start with a maximum thrust
subarcs When the switching function (5.1) is zero, the trajectory

enters the variable thrust subarc. The computation starts at
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t = ti with the initial values of the state variables Vi, me

and Oi unknown, However, Vi and m. are related by the equation
o

i
my m_ exp (- vz) (5417)

For simplicity, the drag function D used in the
simulation is assumed to have the form

D = D(V,h)

2 =—-ah

=kV (5.18)

14
b

To determine a first approximation for the initial values
of Vi, m. and Oi, the trajectory is considered to consist of a
suitable constant thrust subarc or a maximum thrust subarc and
a zero thrust subarc. A value Vi is selected and m; computed by
(5.17). A suitable initial value Oi is chosen and the 1ength‘
of the constant thrust subarc varied so that the final point
(xf,hf) is reacheds Figs 5.2 illustrates the results obtained
fo; various Oi. The value of me for each of these trajectories
is noted and the results are plotted as shown in Fig. 5.3,

In this manner Oi, Vi and m. are approximately determined.
A particular set of data is shown in Fig. 5.4. All quantities
on the simulator are in terms of degrees of shaft rotations

Since Of is now known at the final point, it follows

that Alf and Azf are related by

Ayp = = cot O, Ay (5419)

Note that at the final peint, Alf and A2f are the only unknowns.
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hi o,
RN
s % ~\\
?/ (xp,hy)
/
)
o » X

Fig. 5.2 A subclasslof admigsible trajectories

m

Fig. 5.3 Determination of approximate initial
values for the state variables
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AV o %o !o =o 3 0 : o =:Gi
0] 707 717 727 73 74~ 75

Fig. 5.4 A _particular set of approximate initial values of the
state variables

If Alf is knowny A can be computed by (5.19). Therefore, by

2f
selecting a Alf’ the equations of motion and the 3u1er~Lagrange
equations can be solved backwards in time, The L;grange multi-
plier Alf is varied until the conditioq A4i = 0 is satisfied.

All initial values are now specified and it is then possible to
compute improved trajectories by introducing the optimal control
for the ttrajectory and solving it forward in times The final mass
mf is now considered as a function of the pérameters: Gi, Ali’

As:y Aq.s and optimum values of these parameters can be

2i 3i
determined by the modified steepest descent methods The adjdstqent'
of the parameter values terminates when m, reaches a maximum.

This approach proved fairiy successful on the flight simulator.

The numerical result is in terms of degrees of shaft rotation.

Since the flight simulator does not have a high accuracy, no
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precise numerical results have been obtained. Howevery a set

of trajectories similar to Fig. 5.2 consisting of a maximum
thrust subércy a variable thrust subarc and a zero thrust subarc
can be obtaineds Fig. 5.5 illustrates the performance function

m, considered as a function of the parameter a

f k*®

mp

202° 1

} » 8,
3% opt.

Fige 5.5 Optimum performance function

At the point By = 8y opte? the initial values of the parameters

are

8, = Oi = 73°

a, =V, = 50°

ay =my = 330°

a, = Ay; = 168°

a5 = Ay = 219°

ag = hy; = 253°

8y = Mgy = 0° (This is known)

For this problem the Lagrange multiplier As is obtained from the

first integral. Therefore, ASi_is fixed by the first integral.
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6. CONCLUSION

General optimal control problems formulated by the method
of the calculus of variations with particular emphasis on the
problem of MayerAhave been studied. Special cases of optimal
control can be‘realizgd by means of feedback control. The
Lagrange multipliers can be eliminated and the control variable
for the optimal trajectory is then a function of the state
variables onlys. In this case the optimal control system can be
treated as an optimal feedback control sysfem. Analogue computer
methods are convenient for the solution of such problems.

The modified steepest descent method is suitable for the
solution of certain classes of optimal control problems,

(1) Por very complex problems the dimensionality of the problem
can be reduced by using conventional iterative and gradient
methods to determine subclasses of admissible trajectories
satisfying somej but not necessarily all, of the terminal
conditionse Thei modified steepeét descent method can then
be used to optim?ze the performance function which is con-
sidered to be a %unction of the remaining terminal con-
ditions,

(2) Simulator and analogue computer results show that the
method is practi@al and can be used to synthesize real-
time optimal controllers.

(3) For complex problems hybrid-computers are esseptial and
are of considerable future interest. This thesis has
dealt mainly with the analogue portion of the optimal con-

trollers The optimization of the performance function has
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been performed by a manual search. In an actual system

the optimization would be performed by a digital computer
(see Fige 4.1). The analogue computer is suitable for

high speed trajectory computations while the digital computer
is suitable for the logical operations involved in the
optimization of the performance functione. The results of
the research undertaken show tHat analogue computers can

be used to sjnthesize the control variable for optimal con-
trol once the correct initial values are known, It is

well known that digital computers can readily optimize a
performance function P of several variables by some type

of gradient method. The optimization of P is used to
determine the correct initial values.s It can therefore be
concluded that it is possible to synthesize optimal con-
trollers for a variety of systems by hybrid computational

meanss
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APPENDIX

1. The Euler-Lagrange Equations for Rocket Eliéht Problems

Substituting the augmented function F of (2.10) into

(2.11) yields the set of Euler-Lagrange equations

Y od, . ¥

A= e St A7 Ox (4.1)
. A
_ %30 o o}4
A, = m&)‘ﬁ”"e&?*’w@h (A.2)
. A
_A3 =-—JL1 cos()—}\2 sinO+—;%?
(L +VeB sin @ g )
+ A - cos O
4 mV2 V2
P 4 '
+ A &% t A &7 (A.3)
A4 = 7\1V sin 6 - A2V cos O + A3g cos ©
_ 2 B 4 od 0%
A4V51n0+}\656+k759' (A.4)
- )"3 A4
A5 == (VeB cos @ — D)+ —(L + VB sin )
m m*
0P 09
+2&m t M oo (A.5)
o—b-bn-)li+'x g@+x 04 (4.6)
= Tm L T mv T %6 OL 7 OL .
A\ v
B, _e & . 0d
0 = doc(—)‘3 o COS w - }\4 o7 Sin o +).5+ A65§
¥ |
| ’”‘70{3) (A7)
VP VP >b . o
e . e
O=A3TSIH@—‘7~4—chosw+7~65‘;+}\76-(-;

(A.8)
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2. The Vertical Flight (The Sounding Rocket) Problem

Assume that the thrust direction is vertical and that

the two additional constraints are

b=0-%-0 (4.9)
W: o =0 (A.].O)
The equations of motion become
LP2 =h -V =0 (Atll)
. - D - VeB
Yy =V + g+ — =0 (As12)
Y5 =m +B =0 (A.13)
The Euler-Lagrange equations are
- A
_ 230D
A = on (4.14)
Re = oA, + 230D (4.15)
37 72 m OV *
» A3
AS = ;5 (VeB - D) (A.16)
0= (i -, 8 (Ae17)
T da ™5 T %3 m .
The first integral is
AT = anlz + D) - 8Os - A, 2) = c (A.18)
oV = Mleg + ) = Blag - Ay =) = (A48

3. The Horizontal Flight Problem

If the flight path is assumed to be horizontal and if the

thrust direction is parallel to V, the additional constraints are

D=0

'\If: w =0 (AoZO)

0 | (A.19)



The equations of motion are
&P1=X—V=0
D - VeB
Y3 =¥+ ——
\.{)5=m+ﬂ=0

The Euler-Lagrange equations are

e
It

1 =0 .
“ A3 0D
Ay == + o7
S
Ag = - (VB - D)+, 5
oD M4
O=23L -7
v
_d8 - _e
0 =3x (A5 - 23 4
The first integral is
D
AV = Ay 2

4. The Arbitrarily Inclined Rectilinear Flight Problem

L

mV

)

\')

- B - a3 ) = C
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(As21)

(A.22)

(A.23)

(Ae24)
(A.25)

(A+26)

(A.27)

(A.28)

(A429)

If the flight path is rectilinear at an arbitrary angle

© with respect to a horizontal plane and if the thrust direction

i$ parallel to the flight path, the additional constraints are

The equations of motion

LP1=

Yo =
Py =

@ = 0 - constant = O

W:w:O

are

X -V cos O
*»
h -~V sin ©
»

V + g sin 0

Il

+

0
D -V}

P

(4.30)

(As31)
(Ae32)
(As33)
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$Ys=m+B=0 (A.34)

The Euler-Lagrange equations are

.
A .

Y 3 OD

}‘2 = —mﬁ A (A‘36)

»
AB = —Al cos O - 12 sin ©

+ A—g g% (A.37)

}:5 = m—g (V.8 - D) + ;‘5— % (A.38)
0 = A, %13 - A—{‘, (4439)
o=% (-1, V—r‘;) (A.40)

The first integral is

AV cos 8 + A, V osin 6 - A5(g sin 6 +2) - p(ag
v, -
- .

5. The Zero-lift Flight Problem

If the thrust direction is tangent to the flight path and if

the 1lift is assumed to be zero, the additional constraints are

d=L=0 (A-.';42)
V=0=0 (As43)

The equations of motion are

\fl = ; —Vecos©®@=0 (#.44)

Y, =h -V sin6 =0 (A.45)
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. . D - VeB
\P3 =V +gsin @ + ——— =0 (A.46)
P, =6 +.% cos 6 =0 (A.47)
Ws=m+8 =0 (A.48)
The Euler-Lagrange equations are
Al =0 ' (A.49)
. A
Ay = —;g}% (A.50)
. A
A3 = —Al cos O - A2 sin 0 + —%<?3
- Ay 55 cos © (Ae51)
A4 = AIV sin © ~ AZV cos O + A3g cos O
- A, & sin o (A.52)
4V .
. A3
As = =5 (Veﬁ - D) 7 (Aa_53)
m :
v
- 48 - -
0 =3 (Ag = 25 =) (A.54)

The first integral is
A.V cos 8 + AV sin 6 - A,(g sin © + 2) - A, Ecos o
1 2 3\8 m 4V °08 °®

v
- BAg- Ay ) = ¢ (Ae55)



