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ON SOME NON-ARCHIMEDEAN NORMED L, INEAR SPACES

ABSTRACT

A class of complete non-Archimedean pseudo-
normed linear spaces for which the field of scalars
~ has a trivial valuation is introduced; we call these
- spaces '""V-spaces."

V~-spaces differ from the classical normed linear
spaces in that the homogeneity of the norm is replaced
by the requirement that f[*x l| = Ixl] for all x and
all scalars o # 0; the usual triangle inequality is
modified to

IIx + v $Max {“x” s ly ”} for-all x, y
=Max {(Ix|l, Iy} LY # (I3l

and it is assumed that the norm of an element is either
"zero or is equal to 50“ for a fixed realg) > 1 and
some integer n. :

The concept of a "distinguished basis' in a V-
space is defined. By use of a modified form of Riesz's
Lemma, it is.shown that every V-space admits a
distinguished basis. Each element of a V-space then
has a uniquely determined series expansion in terms- of
the elements of a given distinguished bases. -An
analogue of the Paley-Wiener Theorem is proved for
distinguished basés. Properties of distinguished bases
are exploited throughout this work.

Linear and non-linear operators on V-spaces are
also studied. In the usual way, a norm is defined
under which the set of bounded operators is a V~space
and the set of bounded linear operators is a 'V~
algebra." A characterization of bounded linear
operators is given as well as theorems on spectral
decompositions.

Under certain assumptions on the expansions of x,
v, A, the existence of solutions to equations of the
form xz = y in V~algebras, and of the form Ax = y in
-arbitrary V-spaces is proved. Approximations of the
solutions are obtained.



A representation theorem for continuous linear
functionals on a V=space is given. This representation
uses an analogue of the classical inner product.

Examples of V~-spaces and V-algebras discussed
include spaces of functions from a Hausdorff space to a
normed linear space, on which the pseudo-norm
characterizes the asymptotic behaviour of the functions.
Some results of the theory of pure asymptotics are
extended to arbitrary V-spaces.
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Abstract

A class of complete non-Archimedean pseudo-normed linear
spaces for which the field of scalars has a trivial valuation
is introduced; we call these spaces "™V-spaces."

V-spaces differ from the classical normed linear spaces in
that the homogeneity of the norm is replaced by the requirement
that fjax]] = [jx]] for all x and all scalars a@ # O; the usual

triangle inequality is modified to

Max {ﬂxﬂ, Hyﬂ} for all x, vy,

Max {[l=fl, vt if =l # iy,

= + vl

IN

It

and it is assumed that the norm of an element is either zero or
is equal to Pn for a fixed real p > 1 and some integer n.

The concept 6f a "distinguished basis™ in a V-space is
defined. By use of & modified form of Riesz's Lemma, it is
shown that every V-space admits a distinguished basis. Each
'‘element of a V-space then has a uniquely determined series
expansion in terms of the elements of a given distinguished
basis. An analogue of the Paley-Wiener Theorem is proved for
distinguished bases. Properties of distinguished bases are
exploited throughout this work.

Linear and non-linear operators on V-spaces are also
studied. In the usual way, & norm is defined under which the
set of bounded operétors is a V-space and the set of bounded
linear operators is a "V-algebra.™ A characteriéation of

bounded linear operators is given as well as theorems on
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spectral decompositions.

Under certain assumptions on the expansions of x, y, A,
the existence of sblutions to equations of the form xz =y in
V-algebras, and of the form Ax = y in arbitrary V-spaces is
proved. Approximations of the solutions are obt'ainedu

A representation theorem for continuous linear functionals
on a V-space is given. This representation uses an analogue of
the classical inner-product; |

Examples of V-spaces and V-algebras discussed include
spaces of functions from a Hausdorff sﬁace to a normed linear
space, on which the pseudo-norm characterizes the asymptotic

behaviour of the functions. OSome results of the theory of pure

asymptotics are extended to arbitrary V-spaces.
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INTRODUCTION

. The purpose of this work is to initiate the theory of a
non—standardvtype of pseudo-normed linear spaces, herein calléd
V-spaces.

V-spaces depart from the classical normed linear spaces

([7], [36]) in that the usual requirements on the norm function

(0.1) hax|| = la| =] for all x and all scalars a,

(0.2)  flx + v} < lixl + Iyl for ail x, v,
are replaced by

(0.3) lax]] = [x|| for all x and all scalars a # o,
(0.4) Iz + v] < Max {”x”,’"y”} for all x, vy,

= Max {[Ixll, Ivll} if ixl} # fivll .

and, also, by the additional condition that the norm of an
element is either O or is equal to P“ for a fixed real pe
1 <.P < w, and some integer n. A V-space is assumed to .be coﬁF
plete with respect to its norm and the field of scalars to have
characteristic O ([10]). Thus, in the usual terminoiogy, a V-
space 1is a complete stronglyjnon-Archimedean pseudo-normed linear
sgpace over a-freld“of'scalars with characteristic 0 and a
trivial valuation.

The author's attention was directed to this abstract
structure by the following example. A classical method to obtain

information about the asymptotic behaviour of a real valued



function is to compare it with the elements of an "asymptotic
sequence'™ of functions,(see'Erdelyi (9], van der Corput [38],
[39]). C. A. Swanson and M. Schulzer [32], [33], have extended
this method of comparison to functions defined on‘some neighbour-
hood of a,non-isolated‘point of a Hausdorff space and with ranges
in an arbitrary Banach space. It is shown, in Chapter 3, that
when applied to the elements of a linear space of functions, the
results of this method can be expressed by assigning to each
function a norm under which the space is a V-space.

Linear spaces satisfying the defining properties of a V-
space, except for the retention of (0.1) in place of (0.3), have
been systematically investigated by A. F. Monna [24], [25]. Most
of the results of Monna are valid under the additionalﬁconditions
that the space be separable or locally compact. Except in
trivial cases, V-spaces are neither locally compact nor separable.

- In Chapters 1 and 2 we investigate the basic topoloégical and
algebraic propertieszof V-spaces. A notion of utmost importance
in this work is that of "™distinguishability"™. ®"Distinguished
setsW™ and "distinguished bases™ are defined in Section 7, Chapter
17 The concépt of distinguishability has been introduced by
Monna (24, V], [25, I] under a different name and through another
formalidefinition (see Section 2-5). Monna has shown that in non-
Archimedean normed linear spaces o%er a field with a non-trivial
valuation, distinguished bases exist only under restrictive con-
ditions. However, by use of a modified form (Theorem 1-6.1) of

the classical Riesz's Lemma ([7], [36]), it is proved in Theorem



2-2.2 that a V-space admits a distinguished basis. It follows
(Theorem 1-7.6) that an element belongs to the space if and only
if it is a sum of a formal series in terms of the elements of a
distinguished basis. Thus, the role of a distinguished basis in
a V-space is similar to the rdle of a complete orthogonal basis
in a Hilbert spacé,

We also consider V-algebras and give theorems on the exis-
tence of invéfses and on the spectra of elements éf a V-algebra.
Most of these theorems are simple modifications of the classical
theorems of the theory of normed rings ([7]; [26]).

Exampies of V-spaces and V-algebras are displayed in Chapter
3. “Asymptotic spaces™ are constructed by widening the scope of
the method of C. A. Swanson and M. Schulzer [32], [33], referred
to above. We also define "moment spaces™ in which, for example,
one can interpret the methods of Lanczos [21] or Clenshaw [2] for
the approximation of the solutions of certain differential equa-
tions.

Chapter L is devoted to the study of linear and non-linear
operators on V-spaces. By setting a proper norm (Definition 1.1)
on these operators, the set of bounded operators forms a V-space
‘of which the set of bounded linear operators is a subspace -
(Theorems 2.1, 3.1).

Elementary theorems (e.g. Theorems 3.3, 3.4) of the theory
of bounded linear operators on Banach spaces still apply in
V-spaces. However, important differences are exemplified: a
continuous linear operator is not necessarily bounded (p. 86); :

the uniform boundedness theorem does not hold (p. 87)..



Theorem 4.l gives a simple characterization of bounded linear
operators. As applications of this important theorem we derive
a result of H. F, Davis [4] and indicate how asymptotic expansions
of thé Laplace transforms of certain functions of two variables
can be obtained (see V. A. Ditkin and A. P Prudnikov [6]).

Theorem’é.Szallows the comparison of the spectra of two
bounded linear operators when the norm of their difference is
less than 1. The result is obtained by showing that an inequal-
ity proved by C. A. Swanson [34], [35] for linear transforma-
tions with eigenvalues on a Hilbert space can be modified into
an equality in V-spaces.

The problem considered by C. A. Swanson and M. Schulzer in
[32] and [33] is that of the existence and approximation of
asymptotic solutions™ of certain equétions in Banach spaces.
In- Chapter 5, we extend the results of Swanson and Schulzer to
arbitrary V-spaces and V-algebras (Theorems 2.2, 3.2, Lo3). Our
methods of proof are different than those of [32] and [33]. Our
hypotheses are weaker and consequently our proofs are. more inf
volved. Possible simplifications of the hypotheses are mentioned.

In Chapter 6 we consider continuous linear functionals. It
is known that continuous linear functionals on a V-space are
bounded (Monna [24, III]) and that the Hahn-Banach Theorem is
valid (Monna [24, III], Cohen [3], Ingleton [17]; we give a new
proof of the latter using distinguished bases.

The main result of this chapter'is a representation theorem

(Theorem 3.5) for linear functionals on certain bounded V-spaces.



The representation theorem is a generalization of é theorem of
H. F. Davis [ 4] which asserts ;hat the space of continuous linear
fumctionalswon the space of asymptofi;élly convergent power
geries in a real variable is isomorphic to the space of poly-
nomials in that variable.

It is shown (Section 6-2) that a new norm, called "*ncrm®,
(Definition 2.2) can be defined on the set of finite linear
combinations of the elements of a distinguished basis of a V-
space £, and that, under this norm, this set is a V-space
isomerphic to a subspace of the dual of X. This isomorphism is
isometric and is obtained by use of a particular typglof inner
product (Definition 3.1).
| In Chapters 4, 5 and 6, apﬁlications of the theorems are
shown using some 0f the examples of asymptotic spaces des-

cribed in Chapter 3.



CHAPTER 1

“"VALUED SPACES

1-1 Definitions and notations

In this chapter X denotes a linear space over a field of
scalars F. F is a field with characteristic O, i.e. a field
which contains the set of the rational numbers as a subfield.
The additive identity (zero-element) of X will be denoted by

© and that of F by O.

Definition l.1. X will be called a pseudo-valued space if there

exists a non-negative real valued function defined on all of X,
whose value at x will be called the norm of x and denoted by

fx], and which satisfies:

(1.1) el = o,
(1.2) iaxﬁ = §x] for all x € X and all @ ¢ F, a # O,

(1.3) fx + vy} < Max {§x}, Iy} for all - x, v e X.

Definition 1.2. A pseudo-valued space X will be called a

strongly pseudo-valued space if for all x, v ¢ X, Ix}] # Iyl

implies
(l.4) Ix + v} = Max {{x]. Iv]}-

Definition 1.3. A (strongly) pseudo-valued space X will be

called a (strongly) valued space if

(1.5) lx] =0 implies x = 0.

Condition (1.3) is stronger than the usual triangle

inequality, since



Max {Ix], Iy} < @x] + by )-

A (pseudo-) valued space is a (pseudo-) normed linear space

~

if F is understood to have the trivial valuation
o] =0, Ja| = i for all a € F, a # O.
With this valuation on F, (1.2) can be written as
fax] = |a] Ix] for all x € X and all a € F.

On a (pseudo-) valued space X a (pseudo~) metric is defined

by
d(x, y) = Ix -y
This (pseudo-) metric is non-Archimedean, i.e.
(1.6) d(x, y) £ Max {d(x, z), d(z, y)}, x, y,z € X.

If X is strongly (pseudo~) valued, the (pseudo-) metric is

strongly non-Archimedean, i.e. for all x, y,z ¢ X,
(1.7) d(x, y) = Max {d(x, z), d(z, y)} when d(x, z) # d(z, v).

Every triangle in X is isosceles with the two longest sides
being of equal length. Indeed, if d(x, y) > d(y, z) > d(z, x),
it follows from (l1.6) that d(x, y) = d(y, z).

The function d is translation inﬁariant, i.e.

d(x + z, vy + 2z) = d(x, y).

Example. Let A ¢ [0, 1] and consider the set of real valued

functions

q’ = {?I‘ : 0 S r < ao}, ?I(h) = 7\.rn



Consider the linear space X conéisting of the zero function

and all formal series of the form

x = Q@ ¢ al?rl + az?rz *oeee, @, real, o £ 0,

where r._1 < r, for i = 1, 2, ===, and where the set
{rop Ty, ---} is either finite or is infinite and unbounded.

Let p be a fixed real number, 1 < P < o, and define on X the

function

jo) - o, =} - P-r° if x = a°?ro + oeee

One verifies easily that this function satisfies (1.1),
(1.2), e--, (i.5)° Thus, X is a strongly valued space.

The subset Y of X consisting of O and of all those points x
for which {ro, Ty, =-=} is a set of rational numbers is a linear
subspace of X.

Similarly the subset of X consisting of 0O and of all those
points x for which {ro, Ty, =~°} is a set of integers is a sub-

space of X.

Other examples are constructed in Chapter 3.

Remark on the terminology. The word "valued™ was introduced

to avoid the heavy locutions which would have resulted from the
use of the generally accepted terminology. A M"strongly pseudo-
valued™ space is a "™strongly non-Archimedean pseudo-normed linear
space over a field with a trivial valuation " (!). The word
®valued™ is meant to recall the particﬁlar valuation which is

imposed upon the field of scalaré as well as thé simjilarities of



the defining properties (1.1), (1.3) with those of a valuation

in general ([31], [40]).

1-2 Some topological properties

In this section we shall list some of the topological
properties of a (pseudo-) valued space X.

For the classical terminology we'refer to textbooks on
topology or analysis (e.g. [7]:; [18]; [19], Vol. I; [36]).

The topology considered'is the topology induced on X by the
(pseudo-) metric d of 1-1; we récall that this topology is the
smallest topology which contains all the balls S(x, r), x € X,
r> 0. The open ball S(x, r), the closed ball S'(x, r) and the

sphere B(x, r), with center x and radius r, are defined by

(1.8a) S(x, r) = {y e X : d(x, y) <71}, r>0,

(1.8b) s'(x, r) = {y e X : d(x, y) <rl, r20,

(1.8¢) B(x, r) = {y ¢ X : d(x, y) =}, r>0.

(i) Since the (pseudo-) metric d is translation invariant (1-1)
the neighbourhood system of a point x is the x-translate of the
neighbourhood system of ©, i.e. if V is a neighbourhood of x and
W is a neighbourhood of €, then V - x is a neighbourhood of © and
W + x is a neighbourhood of x.

(i1) For any x, vy € X and r,

S(x, r) = S(y, r) or 8(x, r) Ns(y, r) =0

St(x, r) =8'(y, r) or s'(x, r) ns*(y, r) = ¢
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where @ denotes the empty set.

To prove the first statement it is sufficient to see that if
z € 8S(x, r) n S(y, r) and u € S(x, r)
then u € S(y, r). Indeed,

d(y, u) < Max {d(y, 2), d(z, u)l}

< Max {d(y, z), d(z, x), d(x, u)} <. r.

The second statement is proved in a similar way.

(iii) If X is a strongly (pseudo-) valued space, then for any
x€ Xand r > 0, S(x, r), St(x, r), B(x, r) are all closed and
open. | |

The pfoofsfor S(x, r) and 8'(x, r) are similar. For B(x, r)

it follows from the equality
B(x, r) = 8'(x, r)\ S(x, r).

That S(x, r) is open is guaranteed by the definition of the
topology induced on X by d. To show that it is closed, let

y € X\\\S(x, r). For every z € s(v, %r),
d(z, y) < d(x, y),

and, by (1.7), d(z, x) > r. Thus XN\.S(x, r) contains a neighbour~

hood of each of its points; it is open, and S(x, r) is closed.

(iv) A component of a topological space is a maximal connected
subset of the space ([18], p. 54).
It is a consequence of (iii) that if X is strongly valued,

then each component of X consists of a single point; if X is
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strongly pseudo-valued each component is a translate of [0],

where
(6] = s*(e, 0) = {x ¢ X : Ix] = o}.

Spaces whose components consist of single points are called

totally disconnected ([28], p. 76).

(v) A space X is said to be O-dimensional if for any x € X every
neighbourhood of x contains a neighbourhood of x whose boundary
is empty ([16],‘pp. 10, 15).

It follows from (iii) that a sfrongly (pseudo-) valued space
is O-dimensional, since the balis S(x, r) have empty boundaries.
It has been proved by J. de Groot ([5], Th. II) that a

metrizable space admits a non-Archimedean metric if and only if
it is strongly O-dimensionals: In de Groot's terminology, a space
is strongly O-dimensional if and only if it is a Hausdorff space
and admits a g-locally finite‘bésis far its topology donsisting
of subsets which are both closed and open.*

In the case 6f a strongly vélued space X, the family
A = U{Qr : r >0, r ;atignal}
where _
Ar = {S(x, r) : x €X, r> 0}

forms a g-locally finite basis. Indeed B is a basis, it is.the

* The terminology is that of Kelley ([18], pp. 126, 127).

A family of sets is called o-locally finite if it is the union
of a countable number of locally finite subfamilies. A family of
sets is called locally finite if every point has a neighbourhood
which intersects at most a finite number of sets -of the family.

1
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countable union of the ers and, for a fixed r, the family 8r is
locally finite, by (ii) above. (For a given x € X, S(x, r) inter-
sects only one set in ar: itself.) |

Other equivalent definitions of O-dimensionality and its

consequences are studied in [16], Ch. II.

(vi) A field F forms a strongly valued space over itself if the

norm function is identical to the trivial valuation:
(1.9) 'OI = 0 and lal =1 for all a € F, a # O.

The topology induced on F by this norm is the discrete
topology on F ([18], p. 37).

In the sequel, whenever the field F is the field R of the
real numbers or the field C of the complex numbers, the symbols
(1.9) will be retained to denote the trivial value of the numbers.
The symbol |a| will denote the usual absolute value of a, i.e.
la| =vf§§ if . ¢ R and |a| = [@+ bi| =/ a° + b° if a € C. The
topologies induced on R and C by their usual valuations will be
called the usual topologies on R and C.

We conclude this section by the following

Theorem 2.1. If X is a strongly (pseudo-) valued space and r > O,

fhen

(i) 35(0, r) and S'(8, r) are subspaces of X;
(ii) The quotient topologies on the quotient spaces

%//é(g, r) and K//é'(G, r) are both discrete.
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Proof: (i) is easily verified.

(ii) For the terminology, we refer to [28], pp: 59, 60. The
natural mapping fromAa topological group to one of its quotient
groups is a continuous open mapping. The points in the quotient
‘groups %/75(9, r)'and %//%?(Q, r) are translates of the balls
S(0, r) and S'(®, r) respectively. The balls S(8, r) and S'(0, r)
were sﬁown to be both closed and open (see (iii) above); thus the
points in the gquotient groups are both closed and open ([28], p-

59) .

1-3 Some properties of the norm function

In this section, X is a strongly (pseudo-) valued space

over the field of scalars F.

Theorem 3.1. Let f be a continuous function from D to X, where
D is an arbitrary topological space. Let g be the function with

domain F x D defined by:
g(a, u) = 'af(u)', @ ¢ F, uebD.

If v € D is such that Jf(v)]} # O, then there exists a

neighbourhood W(v) of v such thaf for all u € W(v)
g(B, u) = g(1, v) =Qj£(v)}), B e F,

provided B # O.

Proof: If B = O then g(B, u) = 0 # lf(v)'.

If B # O, then by the continuity of f, there exists a

neighbourhood W(v) of v such that for all u € W(v)
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Jew) - s <[] # o.

By (1.4), this implies that J£(u)} = J£(v)] for all u € W(v).

By (1.2), since B # O,

g(B, u) = 'Bf(u)l = 'f(u)l = lf(v)l for all u € W(v).
If we let @ = 1 in the theorem, we obtain:

Corollary 3.2. Let f be a continuous function from D to X,

where D is an arbitrary topological space. If v € D is such that
b (v)]) # 0, then Je(u)] = J£(v)§ for all u in some neighbourhood

of v.

In Theorem 3.1, let D = X and f be the identity function.

We obtain:

Corollary 3.3. Let F = R or F = C. Let F x X have the cross-

product topology induced by the usual topology on F and the
topology on X ([18],;p. 90).

(i) If (a, x) ¢ F.x X, @ # 0 and lxl # 0, then there exists a
neighbourhood V of (a, x) in F x X, such that 'Byl = Ix' for all
(B, v) ¢ V.

(i1) The function g(a, x) = |Qx|,‘defined on F X X, is discontinu-
ous at (a, x) if @ = 0 and Jxf[ # O0; it is continuous at all other

points.

Remark: The conclusion of Corollary 3.3 remains true for
an arbitrary field F with characteristic O and with the topology

induced by some valuation ({40]. Ch. X; [31], Ch. 2), if the
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restriction of this valuation tq the subfield of the rational

numbers is identical to the usual valuation of the rationals.

This remark also applies to the statements (iii) and (iv) below.
The following properties of a strongly (pseudo-) valued

space X can be verified directly or by use of the last corollary.;

(i) If x ¢ X and §Jx] # 0, then the subspace generated by x,

with its relative topology, is a discrete topological space. The
distance between any pair of distinct points, ax and Px, is con-
stant and equal to Jx].

(ii) If F is given the discrete topology, then the function

f: f(a, x) = ax, defined on F x X, is continuous in @ for a fixed
x and is continuous in x for a fixed Q.

(iii) Let F = R or F = C and let F have its usual topology. The
function f: f(a, x) = ax, defined'on F ¥ X, is continuous in aQ,
for a fixed x, if and only if 'xl = 0; it is continuous in x for
a fixed Q.

(iv) Let F = R or F = C and let {a ] be a sequence of distinct
scalars convergent to @ in the usual topology of F. The sedquence
{anx} converges to QX in the topology of X, if and gnly if

lxl= 0.

(v) 1If {xn} is a sequence in X, convergent to a limit x such that
|x. # 0, then every x € S(x, 'x‘) is 'such that Ixn' = lxl. Fur-
ther, there are at most a finite number of indices n such that

x =ax a € F and a 1.
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1-4 Convergence of sequences and series

In this section two important theorems concerning the con-
vergence of sequences and series'in (pseudo-) valued spaces will
be stated.

For the classical terminology, we refer to [7], p.- 19;

[19], Vol. I, p. 36; or [36], p. 74.

Theorem L.l. If X is a (pseudo-) valued space:

(i) A sequence {xn} in X is a Cauchy seqQuence if and only if

lim d(xn, xn+l) = 1lim Ixn - xn+ll = 0.

‘N =oo } N =

(ii) A series z nX, in X is a Cauchy series if and only if

lim d(xn, 9) = lim lxnl =0,

N Nweo

The proof of this theorem is omitted. It is a mere modifica-
tion of the proof of a similaf‘theorem for fields with a non-
Archimedean valuation. éee [31], p. 28 or [40], p. 240.

The proof of the following theorem is also omitted (cf.
Lemma 7.5 below). Part (i) is quoted, without proof, in [29],
p. 139. Part (ii) follows from Theorem 1.5 (ii) and inequality
(1.3).

Theorem 4.2. If X is a (pseudo-) valued space:

(i) A convergent series is unconditionally convergent, i.e.

any reordering of its terms converges to the same sum(s).

(ii) If E:nxn is convergent and has sum x, then

Ix' < sip |xnl.
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1-5 Compactness

- In this section we give a characterization of the compact

subsets of a strongly (pseudo-) valued space X.

For definitions and properties related to compactness we
refer to textbooks (e.g. [7]:; [18]; [19], Vol. I; [36]).

If the topology of X is discrete, a subset of X is compact
if and only if-it is finite. Thus X itself is not compact. Since
‘each point forms a neighbourhood of itself, X is locally compact.

If the topology of X is not discrete, then X is neither com-
pact nor loéally‘compact. Indeed evéry neighbourhood V of © con-
tains a ball S(©, r) for some r. This ball contains a point x
such that x| # 0. Thus V contains the discrete subspace generated
by x ((i), page 15).

We shall use the following definition:

Definition 5.1." Let A « X. The set{A(A) defined by

fu(A) = {r : JxI = r for some x e_A}

will be called the norm range of A.

Theorem 5.2. Let X be a strongly (pseudo-) valued space, and A

be a subset of X.
(1) A is compact if and only if for each r > 0 it is a finite
union of disjoint compact subsets Kl, K2, ves, Kn(r)' such that

X € Ki and y ¢ Kj implies

(1.10)
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(ii) 1If A is compact and does not contain O, except possibly as

an isolated point, then its norm range $2(A) is finite.

Proof:¢ (i) A set is certainly compact if it is a finite union
of compact sets.
For the converse, let A be compact and r > 0 be arbitrary.

The family

.& = {s(x, r) : x ¢ A}

is an open cover of A. We can extract from 3 a finite subcover
{s(xl, r), S(x,, 1), **°, s(xn(r), r)} such that the s(xy, r)

are disjoint. (See (ii), page 9). Then (1.10) is satisfied with
K, replaced by S(xi, r). Take K, = AN S(xi, r). K, is compact

since it is the intersection of a compact set and a closed set

((11i), page 10). Then (1.10) holds.

(ii) Since © is at most an isolated point of A, there exists

r > 0 such that
Jxl > r for all x e A, x # O.

Consider, for this particular value of r, the sets Ki,

i =1, 2, «««, n(r) of (i). Then, 6 & Ki, x ¢ K, and y ¢ K,

Ix0> =, yl>2r andlx-y]<r.

Since X is strongly (pseudo-) valued, by (1.4), [x] = [y and

the conclusion follows.

Remarks: (i) The fact that the valuation on the field F
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is the‘trivial valuation is responsible for a high discretization
in a (pseudo-) valued space. As a result, we may say, loosely
speaking, that compactnesé is a very restrictive property and
that it is rather difficult for a subset of a (pseudo-) valued
space to be compact.,

No convex set is compact unless it is reduced to a single
point (or to a subset of S(O, 0)). No set with a non-empty
interior is compact unless the space is discrete and the set is
finite.

One can expect that compactness will not play an important

r6le in this theory.

(ii) The results of Theorem 5.2 may be compared with Property
L, in Theorem 2 of Monna, [24], Part I, page 1048.

Monna has shown that if a non-Archimedean normed linear
space over a field of scalars with the trivial valuation is
locally compact, then the field of scalars is finite. ([24],

Part II, p. 1061.)

l1-6 Modification of Reisz's Lemma

One can expect that many theorems in the classical theory
of normed linear spaces will have analogues in the theory of
valued spaces. The theorem of this section is given as an
example of a modified statement and its proof.

In the case of a normed linear space X over the real or

complex field with the usual valuations, Riesz's Lemma can be
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stated as follows ([36], p. 96; also [7], p. 578):

"Let Y be a closed, proper subspace of X. Then for each a
such that 0 < a < 1, there exists a point x, € X such that
fx Il = 1 and [y - x|l > a for ally € Y."

If X is a strongly (pseuao-) valued space, the above state-
ment must be modified. The reason for the alteration is the
impossibility of normalizing an element in X, i.e. the impossi-
bility of finding, for each x such that JxJ # 0, a scalar a such
‘that laxl = 1 (unless, of course, x| = 1 for all x ¢ X such that
[x] + 0). | |

Theorem 6.1. (Modified Riesz's Lemma)
Let Y be a closed, proper subspace of a strongly (pseudo-)
valued space X. For each @ such that 0 < @ < 1, there exists a

point X, € X suéh that

Iy - x| > alx ] for ally ¢ Y.

Proof: (i) If there exists z ¢ X, Jz] # 0, such that

ly - zl > lzl for all y ¢ Y,

t ake X, = 2 for all a, 0 < a< 1,

(11) If (1) fails, let x_ € X\Y and choose y_ ¢ Y such that
Iyo - x I <lx,] (so that v, 0 - 'xol).
Define
§(y) Iy - sl Y, Iyl+o
DT RT vet, [vl .

5 = infvé(Y)
veY
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Then, & < 6(yo) < 1. Moreover &(y) < 1 implies jy - xol <ivh

and hence |y = lxol; therefore, since Y is closed,

Iy - =}

5(y) = ——TEZT—— is bounded away from zero for v ¢ Y. Thus

0 <8< 1.
Let Q@ be given, 0 < a < 1, and let
5, 3(1+8)].

8§ < 81" < 1. There exists vy, € Y such that

IY‘ - X l
1 0
= : t
6(y1) ——T;fif—— < &t
ol
Let X, = xo - yl. Then

(1.11) Px, 0 < s'fx 0 - ')y, 1

Now let y ¢ Y. If |y - xa|‘2 lxal the proof is finished, so

we may assume
Iy - xal < |xa|.

Then Jy | = Jxo I < Iyl (by (1.11)) so that fy + y | = Jvy |-

Hence since y + v, € Y, we have by the definition of §&:
ly - xal = ly AR A T xol 2 6lY + yll = 5|Y1|,

and by (1.11)

- o
lY - xa. > a-g_t- lealz cx'lxal"

This completes the proof.

Example. Consider the strongly valued space X of the Example

of page 7 and its subspace Y (page 8).
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To verify that Y is closed, let x ¢ X\ Y; then

x = BocPs * B1q’s Tt Bo 0,
o] 1
where for some integer p, %}# 0, 55 is irrational and s, is
-s

rational for all i, 0 < i < p. Clearly fx} > p P,

If y ¢ Y, vy # 0, we have

y = ao?ro + al?rl *oeee, Q@ £ 0, r, rational for al; i.

-—

Therefore, lx - yl Z‘f P since

x—y: e e o0 +prs‘+ L

Thus, no sequence in Y can converge to a‘point of X\Y; Y is a
closed proper subspace of X.
Given a4, 0 < a < 1, let s be irrational and @ < s < 1. The

same argument as above shows that

Iy - ?sl > l?s' > a'?sl for all y ¢ Y.

1-7 Distinguished bases

In the previous sections we were concerned with properties
of valued'spaces which were mostly of topological nature. In
this section we introduce algebraic concepts which depend on
linearity.
| We récall a few classical definifions ([7], pp. 36, L6, 50;
[36], pp. 44, 45). Let A be a subset of a topological linear
space X, over a field F. The subspace (A) generated by A is the
set of all the finite linear combinations of elements of A. The

topological closure of (A) will be denoted by [A] and be called
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the closed subspace generatgd by A. The set A is said to be
linearly independent if for any finite subset {xl, x2, sk xn}

of A,

A, X, + A X, + wes + Q X =g,a€F'

171 272 n n i
implies ai = 0 for all i. A is called a Hamel basis of X if A is
a linearly independent set and (A) = X.

It is known ([7], [36]) that a linear space has a Hamel basis;
that a subset is a Hamel basis if and only if it is a maximal
linearly independent set; that all the Hamel bases of a space X
have the same cardinality.

We add the following definition:

Definition 7.1. Let A be a subset of a topological linear space

X.

(i) A is said to be a completely independent set if
x ¢ [A‘\{x}] for each x ¢ A.

(ii) A is called a complete basis if it is a completely indepen-

dent set and [A] = X.

Clearly a completely independent set is also linearly indepen-
dent. The converse is nét true as is shown by the following
example. Let C[0O, 1] be the space of all the real valued continu-
ous functions f on [0, 1], with the uniform norm:

ﬂf" = sup |[f(N)]; let X be the subspace of C[0O, 1] generated by
0<AZ1

@0 U Eo' where
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e .

Qo; ?n(k)

E, = {e_r: r > 0}' e-r(k) =
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o
o
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«Q

It is known (Weierstrass' Theorem, [36], [37]) that the set

Q@ 1is a completely independent set which is a complete basis but

not a Hamel basis of X. Thus @O‘JEQiS a linearly independent but

not completely independent set.

Theorem 7.2. A complete basis A 6f a topological linear space X

is also a Hamel basis of X if and only if (A) contains an open set.

Proof: If A is a Hamel basis (A) o X. Conversely, suppose that
(A) contains an open set. Then (A) contains an interior point and

(R) is a subgroup of X. It is known ([18], p. 106) that any sub-
group of a topological group which contains an interior point is

closed (and open). Thus, A is a linearly independent set and

(8) = [A] = X.

Returning to the theory of valued spaces, we introduce the

notion of distinguishability in the following way.

Definition 7.3. Let A be a non-empty subset of a (pseudo-)

valued space X.

(i) A is said to be a distinguished set if no element of A has

norm equal to O, and, if for any finite subset of distinct points

X1o Xp, "o, X of A,
lalxl * a2x2 * tee + a'nxnl = M?x lxi ll
a. € F, whenever a, #0 for i =1, 2, °*=, n.
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(ii) A is called a distinguished basis of X if A is a distin-

guished set and a complete basis of X.

In section 4 of Chapter 3, we show that there exists a nofm
on the space X of the‘example oflpaQe 23, under which X is a
strongly pseudp—valued space. The Hamel basis @o U Eo will be
shown to be neither a complete nor a distinguished basis.

The essential feature of a distinguished set A in a strongly
(pseudo~) valued space is the following: if x, y € A, x # v and
lxl = ly' = r, then fox + By' = r, eXxcept when a = 3 = 0,

The author has not been able to show the existence of dis-
tinguished bases in arbitrary (pseudo-) valued spaces. Never-
theless, under an important additional assumption on the norm
range of the spacé, we shall prove, in Chapter 2, that a strongly
(pseudo~) valued space has a distinguished basis. This assumption
will be satisfied in all the examples in Chapter 3 and applica-
tions in Chapters 4, 5 and 6.

In the case of an arbitrary (pseudo-) valued space, we have:

Theorem 7.4. A (pseudo-) valued space admits a Hamel basis which

is a distinguished set.

The proof is identical to the proof- of the existence of a
Hamel basis in a linear space ([36], pP. 45). A distinguished
Hamei basis is a maximal distinguished set.

In the remainder of tﬁis section we restrict our attention

to strongly (pseudo~) valued spaces. In strongly (pseudo-)
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- valued spaces, Definltlon 7 3(ii) is slightly redundant. Indeed,

" we shall prove in Theorem 7. 6(i) below that in those spaces a
dlstlnguished set is completely independentu Thus a dlstingulshed
basis A in a strongly (pseudo-) valued space X is a distinguished
subset such that [A] = X. To prove Theorem 7.6 we shall heed the

-following lemma, which is an improvement over Theorem Lo2(ii).

Lemma 7:5. Let A be a distinguished subset of a strongly (pseudo-)
valued space X. Let {xn} be an at most countable subset of A..

If a € F, a # O for each n, and x = 2;0 x_, then
n - n - nn
|x|==s§p 'xnl°

Proof: By Theorem 4.1(ii), given r < lxll, there exists N such

that for all n > N, Ixnl < r. By Theorem 4.2(ii)

N B

n>N+1

and, since A is distinguished,

' % anxnl = max ‘x l P |x1| > re.
" n=1 ‘ :

1<n<N
" Thus,

max lx '
n

1<n<N

—
b
L J
"
-—

Nl =
[}
=]

b
=
+
e
=]
»
=
—
!

s:p lxnle“

Note that this supremum is attained.

Theorem 7.6. -Let X be .a strongly (pseudo-) valued space.

(i) A distinguished subset A of X is completely independent.



(ii) If A is a distinguished basig of X, then every x € X can be
[ -]

represented unigquely (except for order) by a series z: a X ,
' n=1
with xn € A, an € F, n.= 1, 2, eoa , '

Proof: (i) Let X be arn arbitrary point of A. Suppose that

X, € [B], where B = A\\{xo}. Then there exists a seqQuence {yn}

in (B) which converges to x . It follows that there exists an

element y of (B)

;o= L.X, + Q. X, + ees + Q X a, ,
¥ 171 272 m - m’ i # Q’ Xx; € B,

such .that ly -~ xci < lxoi, iceo.

m

a, x. f <@x < Max f=x, a = -1,
ﬂiZ; i 1i ! oB - 0<i<m E 1I” o

This contradicts the distinguishability of A.

(ii) Since x € [A], there exists a sequence {yn tn o= 1,2,°°°}

in (A) which converges to x. Let zy =y, and z =y -y ;€ (A)

for n = 2, 3, ***. Then the series Z'm

Z converges to x.
n=1 “n g

Let

coo0 + (I

#0, x , ¢A

P o O6112}‘:n2 n,p(n)xn,p(n)’ anj nj

The set {x t:n =1, 2, e*s, j =1, 2, =++, p(n)} is a countable

n j
set. Let its elements be ordered into a sequence {xm ¢ m = 102,°=°}
such thatvixmﬂ > Exm+l] for all m.

For each integer’m»z 1, there exists an integer N(m) such

that

Eznﬂ < !xma for all n > N(m).
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Therefore, for each m, the number of integers n such that
Xp = X for some j, 1 < j < p(n), is finite. The series
E::zl z can thus be reordered by grouping the terms in x , for

each integer m.

The unigqueness (except for order) follows from Lemma 7.5,

Consequences of the above theorem are:
(i) If A is a distinguished subset of X, then

Q) =Quay)N\ ol =Q([a1)\{o}.

(ii) If A is a distinguished basis of X, then inf QQ(A) = 0
when X is not discrete, and in any case (J(A) =(}(X)\\{O}, i.e.
for every r € Qx), r + 0, there exists x € A such that
Bxf = r.

"If A is a distinguished basis of a strongly (pseudo-)

valued space X, the unique series

\

(1.12) Zax,xeA,aeF,a#O,

which converges to a given point x € X, will be called the
expansion of X in terms of A. According to Theorem 4.2(i), the
terms of such an expansion can be reordered to give a non-
increasing series, i1.e. a series such that lxnl > ﬂxn+1| for all

n 1,

v

Notation: If x ¢ X and y € A, we shall denote by (x, y)A the
coefficient of y in the expansion of x in terms of A. With this

notation (1.12) becomes
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(1.13) X = 2 (x, xn)A X

n=1l
Assuming that a strongly (pseudo-) valued space X admits a

distinguished basis, we can state

Theorem 7.7. All distinguished bases of X have the same cardi-
nality.

This theorem justifies:

Definition 7.8. 1If a strongly (pseudo-) valued space admits a
distinguished basis, the cardinality of this basis will be called

the (algebraic) dimension of the space.

The proof of Theorem 7.7 is omitted; it is similar to the
proof given by Dunford an% Schwartz ([7], p. 253) for thé invari-
ance of the gardinality of complete orthonormal_bases of a Hilbert
space.* |

Theorems 7.6 and 7.7 indicate.thét, to some extent, the
rales‘of distinguished sets and diétinguished bases in a strongly
(pseudo-) valued space a;e similar to the rdles of orthogonal

sets and orthonormal bases in a Hilbert space ([7], pp. 252-253).

* If A and B are two distinguished bases of X, the only modifica-
tion to [7], p. 253, is the replacement of the words ™...the inner
product of a and b is non-zero...", or of the symbol ",..

(a, b) # 0 .ao®™ by "...(a, b)B # 0 and (b, a)A FO ..." .

'
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CHAPTER 2

V-SPACES

2-1 Definitions

A systematic study of non-Archimedean normed linear spaces
has been made by A. F. Monna ([24], [25]). Other references are
(31, [12], [17].

Monna obtains interesting results when the norm range of the
non-Archimedean normed linear space is assumed to have at most one
naccumulation point: O. We shall retain this assumption. In most
of h;s work, Monna requires that the valuation of the field of
scalars be non~trivial; this, of course, is impossible in the

case ¢of a valued space.

Definition l.l. A V-space X is a strongly pseudo-valued or a
strongly valued space which is complete in its norm topology and
for which there exists a set of integers w(X) and a real number

P > 1, such that
(2.1)  Qx) = {o] v {p™ :n e w(X)].

Definition 1,2,_ A discrete V-space is a V-space such that the

set @(X) of Definition 1.1 satisfies

(2.2) sup w(X) = M for some M < & .

The topology of a discrete V-space is discrete. A V-space

sach that

(2.3) sup w(X) = e
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has a proper sequence convergent to © and hence its topology is
not discrete.

Examples. In the space X defined on pages 7, 8, the set of formal
series for which the set {ro, Ty ---} is a set of integers is a

V-space satisfying (2.3).

Many other examples are constructed in Chapter 3.

Conventions. (i) In all of this work, the symbol “P" will re-

tain the meaning attached to it in Definition 1.1.

(ii) In the sequel, whenever two or more V-spaces will be con-
.sidered simultaneously, it will be assumed that the value of p

is the same for all of these spaces.

Remark: A normed linear space cannot be complete if its field of
scalars is not complete with respect to its valuation. For thié-
reaéon there is no complete normed linear space over the field

Ro of the rational numbers with the usual valuation on Ro’ In
the case of a V-space, any field F (of characteristic O -- in
particular Ro itself) is acceptable since the valuation of F is
trivial. Under the trivial valuatioen, -any field is complete.

The definitions, theorems and remarks of the following sec-
tions of this chapter, except Th. 2.4(ii), do not depend on the
completeness of the V~-space. They remain valid for any space
which satisfies Definition l.1 except for the completeness

requirement. Part (ii) of Theorem 2.4 requires completeness.
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2-2 Existence of distinguished bases

In this section we prove that a V-space admits a distinguished
basis (Theorem 2.2).

The proof of this statement is analogous, in part, to ﬁhe
proof of the existence of an orthonormal basis in a Hilbert space
([7], p. 252; see also [36], p- 117). It is made possible by the

following improvement over Riesz's Lemma (Theorem 1 - 6.1).

Lemma 2.1, Let Y be a proper, closed subspace of a V-space X.
There exists z ¢ X such that

Ay - zl{Z.izl, for all y € Y.

Proof: Let @ satisfy P-l < a < 1l. Then

ixﬂ > afz] impiies iz} > Hzl
for any pair x, z ¢ X.

By Theorem 1-6.1, there exists z ¢ X\Y, such that
By - z§ > ofz], for all y € Y.

Thus Jy - z§ > fz| for all y ¢ Y.

Theorem 2.2. A V-space admits a distinguished basis.

Proof: Let D be the family of all distinguished subsets‘of a
V-space X.‘ D is not empty since a single point with non-zero
norm forms a distinguished subset of X. Let D be ordered by
set inclusion. It is easy to see that a linearly ordered sub-
family of D satisfies the conditions of Zorn's Lemma ([36],

cp. 39-40; [18], p. 33). Therefore D contains at least one
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maximal element H.

We shall show thaf [H] = X (see pp. 23, 25 ). Suppose
the contrary. Then by Lemma 2.1 there exists z ¢ X\ [(H] such
that ’

By - z§ > lzi for all y e [H].

a) If for each y € (H), [yl # Iz}, then

By + =0

b) If a) fails, then for each y ¢ (H) such that lyl = lzl, we

Max {§yl, Bz} for all y ¢ (H).

. have

-§v e[H] foralla, BeF, a#0,B+o0,

and by the above inequality:

5 . Q. :
foy + Bz =0 - gv - 20 =120 = uax {ly L Q2.

FromAa) and b) it folloWs that H Y {Z} is a distinguished
subset of X, contradicting the maximality of H. Hence [H] = X

and H is & distinguished basis of X,

The same argument applies as usual to yield the following:

Corollary 2.3. A V-space admits a distinguished basis which

contains any given distinguished set.

In a Banach space B a complete basis is a sequence {bn}
such that for every b € B there éxists a unigue sequence of
scalars {un} such that b = Z:nanbn, The classical Paley-Wiener
theorem ([1], [27], [30]) asserts that every sequence in B, which

is Wsufficiently close™ to a complete basis, is itself a basis.
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Arsove [1] has extended the Paley-Wiener theorem to arbitrary
complete metric linear spaces over the real or complex field with
the usual valuation. Theorem 2.4(ii) is the V-space analogue of

Arsove's Theorem 1 ([1], p. 366). We do not require that H be

countable.

Theorem 2.4. Let H be a distinguished subset of a V-space X and

f be a mapping of H intoc X such that, for each h ¢ H,
(2.4) ih - o s(m)§<ini

for some scalar @, # 0. Then

h
(i) f(H) is a distinguished set of X;
(i1i) £(H) is a distinguished basis if H is a distinguished basis.

Proof: (i) Jf(h)f = fhf for all h ¢ H. Let {h, : i = 1,2,°-+,n}

i
r for i =1, 2, °°°, n and

be a subset of H such that J£(h )}
some r > 0, Let {Bi : 1 =1, 2, °°°, n} be any set of non-zero

scalars. Then, from (2.4), fh, = lt(h;)} = r and

B B - B
1 __2_ . .__I_\. - » o0 )
i( . Pt byt g hn) (Byehy)+ +an(hn))l
1 2 n
n B .
- i Y -
- z 7 by —arm )<,
L 1
i=1
n (
Since H is distinguished, f 2: = h B =r. It follows that

n i=l
i Z_Bif(hi)ﬁ = r.
=1

This proves that‘f(H) is a distinguished set (see p. 25).
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(ii) The proof is a rewording of Arsove [1], page_367, in which
"y," and "A"™ must be replaced by "a, f(hn)" and “P—l" respec-
n : '

tively. Note that the proof requires the completeness of the

space (see page 31).

For examples and applications, see Section 4 of Chapter 3

and Theorem 4L-6.5.

2-3 Distinguished families of subsets

The notion of distinguishability was introduced fo; subsets
of a (pseudo-) valued space. It will now be extended to families
of subsets.

In all of this section X is a V-space.

A set will be called trivial if it is a subset of [0], i.e.

if all its elements have norms equal to zero.

Definition 3.1. A family {Aa} of subsets of X is a distinguished

family of subsets of X if

(i) Aal n Aa2 is trivial for a; # a,,

(ii) every non-empty subset B of U“Aa such that
d

a) Qxf # O for each x ¢ B,
b) no two elements of B belong to the same Ay,

iz a distinguished subset of X.

Clearly, a trivial set and any other subset of X form a

distinguished family. Also, if {Aa} is a distinguished family,
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{Ba} is a distinguished family of subsets if B, € A, for all a.

The following theorem gives a characterization of distin-

guished families of non-trivial subspaces of X.

Theorem 3.2, A family {Xa} of non-trivial (closed or open)

subspaces of X is a distinguished family of subsets of X if and

only if:

(1) X“l r'g..x%2 is trivial for a, # s

- (41) any union of distinguished subsets of some or all of the

Xa’s is a distinguished subset of X.

Proof: The sufficiency is obvious. To prove the necessity, let

B = U Ba‘ where B is not empty and Ba is either empty or a dis-
G

tinguished subset of X,

Consider a finite linear combination of elements of B:

n pi

x = Z Z “ij"i.‘j'
i=1 j=1

where no aij is egqual to O and where for each i g {1, 2, c°e°-°, n},

X,, € Ba, for j =1, 2, °°+*, P.o«

1] i i
. pi I
1T = Qa o \ o
Define X, .2:j=1 i3%i5e Then x; € By
Since the Ba 's are distinguished sets and
i
{xl, Xy "0t xn} is by (ii) of Definition 3.1 a distinguished
set:

n
lx! = l Z xil'= Max Ixii = Max { Max Ixijl} ..
¢oi=l

1<i<n 1<i<n L1<i<p,

This shows that B is a distinguished set.
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If the family of subspaces considered in Theorem 3.2 is a
finite family of closed subspaces, the necessary and sufficient

condition of this theorem can be considerably weakened.

Theorem 3.3. A finite family & = {xl, Xop o0, xn} of non-

trivial, closed subspaces of a V-space X forms a distinguished
family of subspaces of X if and only if there exists a family

B={H Hy, *o1, Hn} such that:

ll
(i) H, is a distinguished basis of X,; i =1, 2, =+, n;
(ii) Hy N Hj is empty for i # j;
n
(iii) H_ = _Ul H, is a distinguished basis for the closed sub-
1=

‘space XO = [Xl u X2 U =2 U Xn].

Proof: Necessity. PFor each i, Xi is a V-space and admits a
distinguished basis, H . By (i) of Definition 2.5, the assump-
tion that'ﬁ}is a distinguished family implies that Xi n Xj is
tri&ial for i # j. Since distinguished bases do not contain any
trivial element, (ii) is satisfied. By (ii) of Theorem 3.2, H_

is a distinguished set. Clearly [Ho] = X o
Sufficiency. It is easy to see that Xi N Xj is trivial for
i # j» We must show that (ii) of Definition 3.1 ig satisfied.

Let {xl, Xop *°, X }, m < n, be such that lxil # 0 and

m
assume that the Xi“s are reindexed in such a way that x, € Xi,
for i =1, 2, ee¢0o, m,.

For each fixed i, 1 < i < m, there exists a non-increasing

expansion of X, in terms of Hi:
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Xi = z Q.ijyij,' aij # 0.
321 :

According to Lemma 1-7.5

I= 1= sup ly N P

Suppose that

by, 0~ s?p'lyijl for k S p,,

lyik' < sl;p lyij! for k > P
P, is necessarily finite.
Consider now any set of scalars {Bl, BZ’ sa, Bm}' We can

assume without loss of generality that Bi # O for each i < m.

n
Let x = E . _, B.x,. If we can show that
i=1 "ivi

(2.5) le“—- Max Ixil,

1<i<m
we will have proved that A is a distinguished family of subsets

of X.

Since Ho is a distinguished set by assumption, we have:

n ® .
(2.6) !xl=lz z Biayyyyy v ) ) Bay vl

1 1 j=1 i=1 j=p;+1
n ’ 1
(2.7) i 2 !Z B.a,.y,},zMax y. . =Maxlx i
.i=1 L, i7i§7 43! 1<i<n l 13! 1<i<n
’ 135,

n ™

(2.8) z Z B.a, < Max yv..Rk = Max fx,
I‘i=’l iSp, +1 1 lJ ' 1<ikn I lJI l<1<n[ I
. i l<J<p

The equality (2.7) is guaranteed by the fact that no cancella—

Py /
tion of terms can arise in the finite sum Zi 1 )3=1 31nce; the
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Hi's are assumed to be disjoint.

From (2.6), (2.7) and (2.8), it follows that (2.5) is true,
and the proof of sufficiency is completed.

If a finite family {xl, Xy, =oe, Xn} of non-trivial, closed

subspaces of a V-space is a distinguished family, the closed sub-

sbace [Xl u, ueecu Xn] will be called the direct sum of

Xl’ X2, o8, Xn' This direct sum will be denoted by

Xl ®X2 @ o0 @ Xn' Conversely, whenever in the sequel the
symbol @ will be used, it will be understood that the subspaces
invoived form a distinguished family of closed subspaces. (Com-
pare with [7], pp. 37, 256).

The following corollary to Theorem 3.3 is easily proved:

Corollary 3.4. The decomposition of any point of

Xl @ X2 @ e @ Xn as a sum of elements of the Xi's is unique,

except for order and addition of trivial elements.

3

In this section we have exhibited some analogy between
Hilbert spaces and V-spaces. The analogy is a consequence of the
similarity of the roles played by the concepts of orthogonality
and distinguishability in the two types of spaces. The defini-
tions and theorems of this section should be compared with the
definitions and theorems oﬁ complete ofthonormal bases, ortho-
gonal complements, etc., in the theory of Hilbert spaces; [7],
(14], [19], [36]. In the next section an important difference

between the two structures will become apparent.
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2-) Distinguished complements

In a Hilbert space, the orthogonal complement of a set A is
defined to be the set of all the elements of the space which are
orthogonal to all the elements of A. In a V-space, we introduce
a correspoﬁding notion: The distinguished adjunct Ad of a sub-
set A of a V-space X is defined by

ad - {x € X : {x}] and A form a distinguished pair of

subsets of X}.
in Theorem L.l, simple properties of distinguished adjﬁncts are
stated. (ii) éxpresses the fact that the distinguished adjunct
of a set A is the largest set which forms with A a distinguished
pair of subsets of X. Parts (i), (iii), (iv) and (v) should be
compared with Theorems 1, 2, 3, h.of EIL], p. 24. The proofs of
the statements follow directly from ouf.definitions and a;e

omitted.

Theorem 4.l. If R and B are subsets of a V-space, then each of

the following statements i; valid:
(1) & A% is trivial.

(1i) If (A, B) is a distinguished family of subsets of X,

then A < BY and B « a9,

(iii) A < A99,

d d

(iv) If A < B, then B < &%,

(v) Ad - Addd,
In a Hilbert space the orthogonal complement of any set is

a closed subspace ([14], p. 24, Th. 2.6). However, the same is
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not true of the distinguished adjunct of a set in a V-space.
The following example illustrates this fact. Let A = S(©, r)
and lzl > r; then z ¢ Ad and for all y € A, vy + z € Ad; clearly
y = (y + z) - 2z does not belong to a9, Thus,vAd is not, in
genefal, a subspace of'the V-space, even when A itself is a
subspace. ,

Two consequences of thé discrepancy just mentioned are,
first, that the notion of distinguished adjunct will not be
useful in the sequel; and, secondly, that the non-uniqueness of

the distinguished complement of a closed subspace (as described

in the following definition) will have a role in the theory.

Definition 4L.2. Two closed subspaces Y, Z, of a V-space X are

said to be distinguished complements of one another if

(i) Y and Z form a distinguished pair of subsets of X,

(ii) Y®z = X.

It is clear that the only distinguished complement of [©]
is X, and conversely. If Y is a non-trivial, closed, proper sub-
space of X, Y admits a distinguished complement, but, in general,
it is not unigque. This is expressed in Theorem 4./, in which we

use the following terminology.

Definition 4.3. Let Y and Z be closed subspaces of a V-space,

with distinguished bases H(Y) and H(Z) respectively. H(Z) is

called an extensiocn of H(Y) to Z if H(Y) c H(Z). (This implies

Y<2).
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Theorem g.g.l Let Y be a non-trivial, closed, proper subspace of
a V-space X. Let H(Y) be any distinguished basis of Y and H be
‘any extension of H(Y) to X. The subspéce [HNH(Y)] is a non-
trivial, closed, proper subspace of X which is a distinguished

complement of Y.

The theorem is easily proved, using Corollary 2.3 and Theo-
rem 3.3, It does not state that two different pairs (Hl(Y), Hl)
and,(Hz(Y), H2) necessarily will generate distinct distinguished
complements of Y.

As a simple example, let X have é distinguished basis formed
by three elements.xl, x2, x3 With.lxll = Ix2| = Ix3|. Let ~

Y = [xl] and H(Y) = {x Three possible extensions of H(Y) to X

l}'
are:

Hl = {xl, X5, x3}, H2 = {xl, Xy + X5 xB}, 'H3 = {xl, x2 + x3, x3}°
The distinguished complements of Y generated by the pairs

(H(Y), H{) and (H(Y), HB) are both equal to (x5, x3] but that

generated by (H(Y), H2) differs from [xz, xB].

2-5 Notes
(i) The concept of distinguishability has been introduced by
Monna under a different name and through another formal defini-
tion.

In his early papers, [éh], Monna uses the term "pseudo-
orthégonal“; in his later work [25], he uses the word ™orthogo-

nal™, In & strongly non-Archimedean normed linear space, a
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point x is said to be orthogonal to a point y if the distance
from x to the linear subspace (y) is equal to the norm of x.
([24], V, p. 197; [25], I, p. 480). Tt is easily verified that
y is then orthogonal to x.

The equivalence of this definition of orthogonality and of
our definition of distinguishability is indicated in the follow-

ing theorem.(cf. Monna, [24]):

Theorem 5.1. Let A be a subset of a V-space X. For x € A, let
A, denote the linear subspace (AN{x}). Then, A is a dis-"-

tinguished subset of X if and only if, for all x ¢ A:

x ¢ [0] and distance (x, Ax) = [x}.

The proof is omitted;

From the notion of orthogonality, Monna constructs a theory
of orthogonal sets and orthogonal complements quife'andlogous to
our theory of distinguished sets and complements.

In [25], it is assumed that the valuétion of the field of
scalars is not trivial. Use is not made very extensively of
Wcomplete orthogonal®™ (distinguished) bases, which exist only
under sﬁecial assumptions, such as local compactness and separa-
bility.

An important tool used by Monna is the concept of a‘“projec—
tion"™. We have postponed the introduction of projections in our

theory until linear operators are studied.

(ii) Ingleton ([17], p. L42; see also [25], I, p. L475) defines a
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spherically'complete totally non-Archimedean metric space
(field) as a tbtaily non-Archimedean metric space (field) in
which every family of closed balls linearly ordered by inclu-
'si;n has non-void intersection. Spherical completeness
implies completeness ([25], I, p. 476). In'general, com-
pleteness does not.imply spherical completeness, but, if the
norm (valuation) satisfies (2.1) and (2.3)'of Definition 1.1,
then complefeness ;hplies sphérical completeness ([25], II, p.
4L86). Therefore,'g V—sp%ce is spherically complete.

Monna ([25],fIII, p. 466) has shown that the éxistence of a
complete orthogonal (distinguished) basis in a non-Archimedean
normed linear space’is related to the compléteness of the space
and the spherical cémpleteness of the field of scalars, when
the valuation of the field is non-trivial.

It is possible that a reformulation of the arguments of
Monna to the case of a field of scalars provided with a trivial
valuation could lead to a proof of existence of a distinguished’
basis for a V-space. Our proof (Theorem 2ﬂ2) is more direct and

shows that completeness conditions are unnecessary (see page 31).

2-6 V-Algebras

In this section we shall consider V-spaces X on which a

multiplication is defined, i.e. such that to each pair

(x, vy) € X x X there corresponds a unique "product" xy g X.

Remark: In this Section we shall define some elements of a
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V-space by use of seqQuences and series. Since a V-space can be
a pseudo-normed space, the limit of a sequence or the sum of a
series are not necessarily unique. For this reason we make the

following notational convention:

Convention. In the sequel, the relation "x = y™ means that

Ix - yl = 0; strict identity between x and y is indicated by

the symbol "x s yW.

The definitions and theorems of this Section are simple
modifications of the definitions and theorems of the classical

theory of normed rings ([22], [26]).

Definition 6.1. A V-space X with a multiplication is called a

V-algebra if for‘all X, v € X and all scalars a:

(2.9) al(xy) = (ax)y = x(ay),
(2.10) x(yz) = (xy)z,
(2.11) x(y + z) =2 xy + xz, (y + 2)x = yx + zX,

(2.12) lxyl < IzI'lvl-

We also assume the existence of an identity, i.e. of an

element e such that
(2.13) Xxe = ex = x for all x ¢ X,

(2.14) B = 1.
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X is said to be a commutative V-algebra if
(2.15) xy = yx for all x, y ¢ X.

Condition (2.12) implies the continuity of.the multiplica-
tion, in both variables. Thus, if X, = X and A
n =1, 2, *+*+, then XY, - XY.

If a V—épace X has all the properties of a V-algebra except
for the existence of an identity, the identity e can be formally
adjoined. The classical process of adjunction of an identity to
an algebra is described in [22], p. 59 and in [26], p. 157. Con-
dition (2.14) is not essential but is made to simplify the proofs
of certain statements. From (2.12), lel > 1 in all cases. There-
fore, dividing ail norms by Ie' will not change the topology énd
will give to the identity a new norm satisfying (2.14).

As usual, we denote by x" the product xxs--Xx of n elements

o

equal to x. x =.e for all x ¢ X.

rd

Definition 6.2. »An element e} will be called a pseudo-identity

if e!' = e.

Definition 6.3. Let x be an element of a V-algebra X.

(i) x is said to be pseudo~regular if there exists an-

element x‘l‘such th at

-1 -1
XX = X X = @

X is called a pseudo-inverse of X.

(ii) x is said to be regular if there exists an element x 1

such that



-1 -1
Xx = X Xz e.

x‘l is called‘the inverse of x. (It can be proved that such an
element is unique).
(iii1) If x is not (pseudo-) regular it is said to be

singular.

No element of [0] is (pseudo-) regular for otherwise

1= g s IxlxTM) = o,

Theorem 6.4. Let x—l be a pseudo-inverse of an element x of a

V-algebra X. Then y is a pseudo~inverse of x if and only if

y = x-l. Consequently, any two pseudo-inverses of X have equal

NOrms.

Proof: The sufficiency is obvious. The necessity follows from

(2.10) - (2.12) and the fact that for some 6!, OO e.[9]=
(X-l - y)x = 0°;
I(x-l - y)xx°l| = lG'x_l' = 0;

l(x—1 - y)xx"1] = l(x—l —y)(e +om) ] = xt - v]-

Lemma 6.5. Let X be a V-algebra, x ¢ X and [x] < 1. Then

. , n \
(i) the sums of the series X are pseudo-inverses of

MPV18 ]
o

(e - x); n
(ii) for every pseudo-inverse x' of (e - x):
x + (e -~ x') = x(e ~ x7),
x + (e - x') =

(e - x')x.
ji.

The proof is obtained by direct verification. (See [22],

pp. 64-66).
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Theorem 6.6. Let Y denote the set of pseudo-regular points

X. If y e Y, x ¢ X and lx - yl < Iy_ll_l, then

(1) x ¢ Y;
CEORN Pl I Pl
CEEORN Faulaly B Paly KT PSR R Pl
(iv) Y is an open subset of X and the mapping y - y 1,

defined on Y, is continuous,.

. -1
Proof: (i) x g (x -y) +y =vy[ly (x -y) + e]
Since Iy—}(x - yl‘ < 1, it follows from Lemma 6.5 that
2=y x-y) +e=y1x

, -1 )
has a pseudo-inverse z . Thus, x has a pseudo-inverse

-1 -1 -1
X =z "y .

(ii) From Lemma 6.5,
x1o= ( z ey - y)}n) y b=yt
n=0

Since
B G- P <y x- 91" n=0, 1, 2, ---

-1 -1
1= =1

(iii) The conclusion follows from the equality

"oyt (i -y (x - y)}n) y
n=1 '

-1 -1
-y T(x - y)y T4 e

b
|
<
|

(iv) is a consequence of (iii).

of
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Definition 6.7. The spectrum g(x) of an element x of a V-algebra

X is the set of scalars A for which (x - Ae) is singular.

Theorem 6.8. Let x € X, 0< le < 1l. If for some scalar p,

lx - uel < l; then

(i) g(x) is empty or g(x) = {u};
(ii) for A # i, the pseudo-inverses of (x - Ne) are the sums of

the series

o]

. : n
(2.16) - 15_:_H§l: ;
- ZO (- @)

and satisfy
(2.17) f(x - ke)‘;l =Jx - e = 1.

Proof: We note first that this theorem is an extension of

Lemma 6.5. Indeed, if lxl <1, we take p = 0.

(i) is a consequence of (ii).

(1i) Since J(x - ue)nl <lx - ueln, the series (2.16) converges.
Uéing the continuity of the multiplication, we verify directly

that if y is a sum of (2.16),

i
®
-

y(x -pe) = (M- wly = y(x - Ne)

it
]
]

(x - pel)y - (M- )y = (x = Ne)y
(2.17) follows from (2.16) and the fact that a V:algebra is a

strongly valued space.

A direct proof of the following theorem is similar to that

of Theorem 6.8.
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Theorem 6.9. Let x ¢ X, x> 1. If for some scalar ,
(x - Qe) is pseudo-regular and.l(x - ue)—ll <'1l, then
(1) o(x) is empty;
(i1) for A # pu, the pseudo-inverses of (x - Ae) are the

sums of the series

Y - W - pe)TH)
n=0 |

n+l

and satisfy’

B(x - )™ ] = D(x - pe) ™ )

Remarks. (i) As in the classical theory of normed rings, the
singularity or regularity of an element of a V-algebra depends on
its belonging to some maximal ideal of the algebra. (For the
terminology, seeH[26], p. 159 or [7], p. 38.)

One can prove that a) ény ideal of a V-algebra is contained
in a maximal ideal ([22],.p. 58; [26], p. 159); b) a maximal
ideal is closed ([22, p. 68]; <c) an element of a V-algebra is
pseudo~regular if and only if it does not belong to any maximal
ideal of the algebra ([22, p. 64; [26], p. 159).

It is also easy to prove that ifJY.is an idealnthen

le - vyl > 1 for all y ¢ Y. (Compare with [22], Th. 22D, p. 68).

(ii) The theory of Banach algebras ([22], [26]) is partially
based on the fact that any Banach field is cémpletely isomorphic
to the field of the complex numbers (with its usual topology).
.From this result one attempts to charactérize the maximal ideals

of the algebra.
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The;e does notﬁseem to be any interesting analogue of this

theory in the case of V-algebras.
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CHAPTER 3
EXAMPLES OF V-SPACES

ASYMPTOTIC AND MOMENT SPACES

3~1 Introduction

Certain spaces of functions, mapping a Hausdorff space into
a normed linear space, can be normed in such a way that they be-
come V-spaces. In this chapter we shall describe two methods to
genefate such V-spaces.

In the fi:éf type of V-spaces, the norm considered will
characterize the asymptotic behaviour of the functions; the
resulting spaces wili be called "asymptotic spaces'". In the
second type, we shall associate with each function a segquence
of scalars, called "moments"™, and the norm of a function will
‘"depend on the first non-zero moment; the resulting spaces will

be called "moment spaces™.

3-2 The O and o relations

é) Let A be a Hausdorff space and let P and S be arbitrary
sets. ;We consider functionsof the three variables A ¢ A, |
p € P and s ¢ S. The variable A will be called the asymptotic
variable; p and s will be called the primary and secondary para-
meters respectively.

b) Let ko be a fixed non-isolated point of A.

The abbreviation "¢cd-nbhd of ho“ will stand for Y“closed

neighbourhood of ho in A, deleted of the point ho itself™. A
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cd-nbhd of ko has non-void interior. A finite intersection of

cd-nbhds of ko is a cd-nbhd of ko.

c) If £ and g are two functions defined on V x P x S,
where V is some cd-nbhd of ko, and with range in a (pseudo-)
normed space (which may be different for the two functions),

then the relation

£ =O(g)l ?\“"7\‘0'

will mean that there exist, for each s ¢ S, a positive constant

a(s) and a cd-nbhd V(s) of ko such that

£(n, o, s)] < a(s)lla(n, p, s)]

(3.1) -
for all A ¢ V(s) and all p ¢ P.

In this inequality the norms are those of the appropriate range
spacese.

Similarly, the relation

f = O(g), 7\,-0 7\‘01

will mean that fqr any € > 0, there exists, for each s ¢ S, a

cd-nbhd V(s, €) of ho such that

Nen, o, s)| < ellan, p, s)|

for all A ¢ V(s, €) and all p ¢ P.

In using the 0 and o symbols, the specification A - ko will
usually be omitted.

These O and o relations have the following properties:
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(3.3) o(o(f)) = o(f),
(3.4) 0(o(£)) = o(0(£)) = o(o(£)) = o(f),
(3.5) - 0(f) +0(f) = 0(f) + o(f) = 0(£),
(3.6) o(f) + o(f) = o(f),

(3.7) 0(£)-0(g) = 0(fg),
(3.8) 0(f)-0(g) = o(f):0(g) = o(fg).

Properties (3.7) and (3.8) apply when the range spaces are
(pseudo-) normed rings. The proofs are immediate and the formulae
can be extended to combinations of any fiﬁite number of order

symbols. For those and other relations, see [9], Chapter 1.

d) Definition 2.l1l. A seQuence {fn} of functions is called an

asymptotic sequence (as A = ko) if

(1) fn is defined on Vn x P k S, where Vn is some
cd-nbhd of ko;
(ii) all f have the same range space; and

(iii) £ _,, = o(f ) for each n.

3-3 Asymptotic spaces: Definition
a) Let A, P, S be as in Section 2 and A' = A\ixé}.

Let B and B_ be two (pseudo-) normed linear spaces. The
(pseudo-) normédn both spaces will be denoted by "nﬂ.

Let N be a set of integers such that sup N = &. The
ordering-on N is the natural ordering ofbthe integers. For

‘ 1
n € N, co(n) =n, g-(n) = o(n) denotes the successor of n in N
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and @J(n), j = 2, 3, *++ denotes the jth successor of n in N;

the element m ¢ N such that dj(m) = n is denoted by afj(n).

b) Definition 3.1. A family of functions § = {p : n € N]J

is called an asymptotic scale (as A o ko) if for each n ¢ N:

(i) Pn is defined on A" x P x S and have range in Bo; and

(ii) the seqQuence { : j =0, 1, 2, ==} is an asymptotic

¥ )

seguence.

In analogy with the terminology of J. G. van der Corput

[38], [39] we use the following

Definition 3.2. A function f defined on V x P x S, where V is

some cd-nbhd of ko' and with range in a (pseudo-) normed space is

said to be asymptotically finite with fespect to én asymptotic

scale § = {?n: n € N] if there exists n ¢ N such that f = 0(¢n).

¢) Let X be the linear space of all functions defined on
A" x P x S, with range in B, which are asymptotically finite with

respect to a given asymptotic scale Q.

For each x € X, define
(3.9) w(x) = supié €N : x=0(p)},
and, for some fixed Feal pr 1< p < @,
(3.10) Ixp - o0

The function defined on X by (3.9) and (3.10) will be called

the Q—asymptotic norm on X.
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Since the asymptotic behaviour of a function, as A ko'
is entirely determined by its values on any set of the form
Vx P xS, where V is a cd-nbhd of ko' the Q-asymptotic norm
of the difference of two functions in X which are -identical on
Vx P x S is equal to zero. Conversely, if a function is de-
fined on V x P x S.and‘is asymptotically finite with respect to
@, then it can be arbitrarily extended to all of A" x P x S and
the Q—asymptotic norm of the difference of ;ny two of its exten-

sions is equal to zero.

d) Theorem 3.3. The space X, under the Q—asymptotic norm, is

a V-space.

Proof: Using (3.3) - (3.9) one easiiy verifies that, under the
norm (3.10), X has the properties of a strongly pseudo-valued
space (Definitions 1-1.1 and 1-1.2). The (-asymptotic norm
satisfies (2.1) of Definition 2-1.1 and also (2.3).

To prove the completeness of X, consider an arbitrary

Cauchy sequence {si : 1 =0, 1, 2, s««}. Let

From Theorems 1l-4.]1 and 1-4.2, it is sufficient to prove

the convergence of a particular rearrangement of the series
. o .
(3.11) DRAE
i=0

Without loss of generality, we can assume that none of the

yi's has zero-norm. Let
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M

ft
I

{n €N ly [ = P—n for some i},

il

q inf M.

Since {si} is a Cauchy sequence, it follows that g > -». Also,

for each n ¢ M, the number of yi's with norms egqual to P—n is
finite. Let X be their sum. It follows that
-n
(3.12) Iz 1< p for all n € N
and that the series
[..]
(3.13) ) % .
n=q
neM
can be considered as a rearrangement of (3.11).
We now fix an arbitrary value s ¢ S for the secondary

parameter.,

It follows from (3.12) that for each n ¢ M,

constant a[n, s] > 0 and a cd-nbhd V[n, s] of A

o}

"xb(n)(h' p, s)|| £ alg(n), S]”?g(n)(k'

there exist a

such that

p, s)

< zaln, slllg, (v b o)l

for all A ¢ V[g(n), s] and for all p ¢ P.
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We can assume without loss of generality that these
V(n, s]'s are nested and are selected in such a way that their

intersection is void.*

‘Then, for all j > O,

(n p, o) s 270aln, sl O, b, s)

Il =
o (n)
for all A ¢ V[go(n), s] and for all p ¢ P.
We shall now define an element x of X by specifying its
valueson.AJ Xx P x {s}a
For N € A'N\V[qg, s] we define
x(N, p, s) = 0 for all p ¢ P.

For N ¢ V[a, s], there exists an integer N(\, s):

N(A, s) = Max {n e N s A € V[n, s]}

If N e V[n, s] then N(\, s) > n.

For N ¢ V[g, s] we define

x(N, p, s) = ' xn(k, p, s) for all p ¢ P.

q<n<N(A\,s)
neM

*In addition to these requirements, the choice of the cd-nbhds .
Vin, s] is guided by the condition that for

Ne Vigi(a), 81, 5 =1, 2, - '
I (o o) < & Sl (a).s]y Gorpr o]
Pol (@) T2 algd(@),s] e Ha) Cfor all P e P;
which implies

alg, s]

"?q(h' p, s)

lg . Oup,e) <278 —=
?UJ(q) a[@J(Q),S] for all p ¢ P,
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We shall now show that x is a limit of the sequence (3.13)
and thus of (3.11).
Let € > 0 be given; there existsJ such that for all j > 7J,

P-J < €. We assert that, for all j > J, j ¢ M,

|x— Z xn'_<_?-j<€,

q<n<j
‘ngM

or, equivalently, that

(x - 2 Xn) = O(?j)'
<n<j
neM

Indeed, for each s ¢ S, for A e V[ij, s], (j € M),
Ne Vig(i), sl Ne VIgP(3), 8], +++, N g VIN(A, &), =] and
fx oo ) = ) % (n b, s)]

g<n<3
‘neM

I (5) O poos) + x¢2(j)(K; B, 8) + xSl

IA

2a[ 3, s]"Qj(i, p, s)]|, for all p ¢ P.

This completes the proof.
| The above proof is modelled after the second part of the
proof of [33], Theorem 1 (also [32], Th. 4.2). In [33], the
. range space B is a Bénach space; we have shown that the complete-
ness of X does not require the completeness of B.
If B is a (pseudo-) normed ring, the product xy of two

functions x, v ¢ X is defined by

xy(N,p,s) = x(\,p,s)*y(N,p,s) for all A, p, s.



60

If Bo is a (pseudo)-normed ring, a similaf definition of the

product of two elements of Q can be given.

Theorem 3.4. Let B and B be (pseudo~) normed rings. If for

allm, n e N, PP = o(?m+n)’ then X satisfies the properties

(2.9), (2.10) and (2.11) of a V-algebra.

Proof: If/x; vy ¢ X and [z} = P—m' ivl - P““, then by (3.7)
and (3.3):

xy = 0(p ) 0(p,) = 0gug.) = 0(0(p,,.)) = Olpy.,)
Hence, Jav] < P’(m*“) = Ix)-]v | and (2.1i) is satisfied.

One verifies easily that (2.9) and (2.10) hold.

e) Let x € X have, in the Q—asymptotic norm on X, the

following expansion:

(3.15) X = a X +ajx +tayk,+-c-, x ¢X a ¢fF.

The expansion (3.15) is said to be “an expansion of the

“Poincaré type®™ ([11], pp. 218-219) if the sequence

{xn :n =0, 1, 2, ---},is an asymptotic sequencé‘(see Defini-
tion 2.1).

When the range spaces B and,BB are identical, @ < X. A

convergent expansion in terms of the elements of § is said to

be an expansion "essentially of the Poincaré type".

In [10] and [11] the desirability, in a theory of
asymptotics, of accepting expansions which are not of the

Poincaré type is highly stressed. In an asymptotic space,
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expansions which are not of the Poincaré type can occur if there
exist countable distinguished sets with elements having arbi-
trarily small norms and which cannot be ordered into an asymptotic

seuence. OSpecific examples will be given in the next sections.

3= Asymptotic spaces:  Example I

a) Our first examples of asymptotic spaces are simple and do
not involve any primary or seCOndary’parameters: P=S =20,
The Hausdorff space A is the real interval [0, A],

0 <A< o, and N, = 0. A cd-nbhd of O is an interval of the
form (0, A'], 0 < A' < N T£e range spaces B and B_ are both
the space of the real numbers. N is the set of all integers

and the asymptotic scale to be used is Q = {? n € N}, where

n
gy (M) = A

Let X = @ be the space of all real vélued functions x on
A' which are asymptotically finite with respect to @ and with
norm defined by (3.9) and (3.10).

Clearly: § < X; g (M) =1 and Jo I = 1; PuPn = O(Pgen)
for all m, n ¢ N. From this and Theorems 3.3 and 3.4, it fol-
lows that X.is a V-algebra. Direct proofs of this result were

given by A. Erdélyi [9], J. Popken [29], J. G. van der Corput

[38], [39].

b) To illustrate the results of Chapters 1 and 2, we consider

the following subsets of Q:
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¥ - { Po | —= < @< o], oo (M) = A
B, = lgy +n €l 02kl

(3.16) E = {ea ! -0 < A < o}, e (N) = exp an;
1= {1 =0, 1, 2, **-} where

J AN - jn(k) is the Bessel function of the first kind
of order n;

¢ =1{z_ :n = O; 1, 2, ---}, where
(3.17) 2 () ={ A" sin (n + 1){ if n is even,
AN cos (n + l)% if n is odd.

It is easy to verify that 6, Q and@k are distinguished
subsets of Q.

For n =0, 1, 2, «+-, ([8], Vol. II)

(3.18) Lo, - 2"nt3 1 = fp .0 < 1g, |-

Thus, by the Paley-Wiener Theorem (Theorem 2-2.4) J is also a
distinguished subset of g.
The set 6 is also a distinguished subset of f since its
... -n . .
elements have distinct norms: Iz I = . Since z_ = o(z_) is
) n p n m

not true for any n, m > 0, the sequence {zn} is not an asympto-

tic sequence. An expansion in terms of the elements of G:

(3.19) ao sin% + alk cosg% + azkz sini% + a0, an real,

always converges to some element of . Yet, it is not an
expansion of the Poincaré type (see Section 3, e)e Expansions

such as (3.19) are mentioned in [11].
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For all B # O,

Pa + ﬁzn = O(?m) if and only if m > min{a, ni.

Thus (@, G) is a distinguished pair of subsets of R. A con-
sequence is that there exists a distinguished basis of g which
coﬁtains 0O and G. Another consequence is that a function
which is the sum of a series (3.19) cannot admit an expansion
in terms of elements of @, i,e. in terms qf powers of A.

The set E is contained in the closed subspace generated

by @0. Indeed, it is well known that for any real number aQ,
n

Q
the series z:§=0 71 9o converges asymptotically, as A - 0, to

the function éa.

E is not a distinguished subset of R, since for a # B:

Iea' =1, leBl =1, Iea - eBI = P—l < 1.
c) Let ¢ denote the closed subspace generated.by G, i.e. the
set of functions which admit expansions of the form (3.19).
(See Theorem 1-7.6)
Let (P denote the closed subspace generated by Q, i.e. the

set of functions which admit expansions of the form
(3.20) @, * @ 1Pney t Tt e M E N, a real.

Pis é subalgebra of g. A nén—trivial element of @ is pseudo-
regular. From the above discussion, 4 n ¢ is trivial.

Let G& be the closed subspace generated by @k' i.e. the
set of sums of expansions (3.20) with n > k.

E is contained in (P, for all x < 0.

k
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(g

distinguished basis of 6;.

o is a V-algebra. From (3.18) and Theorem 2-2.4, J is a

E and Qo do not form a distinguished pair of subsets of (Po
but their union is a linearly independent set. Therefore, there
exists a Hamel basis of GL which contains E @;. In [4], con-
tinuous linear functionals on the subspace (E y Qo) are studied;

see Chapter 6.

d) To construct the space R, we selected ko = 0. Clearly, we
would have obtained a similar space by choosing any other finite
value for ko and the asymptotic scale Q =.{¢n :n ¢ N} where
?n(k) = (N - ko)n.

One may also consider A = [N, o], 0 < N < o, A, = = and the

asymptotic scale § = {¢n :n € NI, where ?n(k) = AN,

e) Spaces such as R can be constructed in which A is some sub-
set of the complex plane and for more sophisticated asymptotic

scales. Examples are given in [11], with asymptotic scales such

as
W=y, :n=0, 1,2 -],
oMoz, r,8) = rwz + %) ATETRS,
AN is the complex asymptotic variable, A o ko = »; 2 is a complex

number considered as a primary parameter, i.e. order relations
must hold uniformly in z; the positive real numbers r and s are
secondary parameters. Proper conditions must be placed on the

domains of A and z. (See [11]; also [9], [10].)
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3~5 Asymptotic spaces: Example II

In this section we give two examples involving formal power
series in two real or complex variables. The spaces to be con-
structed will Se used in Chapter 4 to obtain asymptotic expan-
sions of some functions defined as two—dimensiongl Laplace

transforms [6].

b) In this example the Hausdorff space A is the set of
points A = (u, v) of R2 for whiech 0 < u, v £ o; ko = (O,'O).
The range spaces B and Bo are the spaces of complex numbers and

of real numbers respectively. N is the set of all non-negative

integers and the asymptotic scale to be used is
@ = lpy s n eVl g lu, v) = (w W)t

Let X = Q be the space of all complex valued functions on
A' which are asymptotically finite with respect to Q.

As for the space g of Section 4, one verifies that Q is
a V-algebra, under the Q-asymptotic norm defined by (3.9) and
(3.10).

Let x{. ¢ X be the function defined by

J )

X{j(u, v) = u{vj, L, j € N.
For all non-zero complex numbers @, B, and all integers

4, j such that 0 £ ¢ £n, 2 < j < n:

X E . 3 3
(3.21) N O(¢m) if and only if m < n,
. (A x = : :
(3.22) axﬂ’(:& + n-1, i O(?m) if and only ;f m< n.
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Indeed, to verify,(3.22),'subpose firstly that m < n. Then:

]aun-{v{ + Bun_jvj|'5 Max{|&|,l8|}v(un—{v{ + un_jvj)
< Max{|a|,|B]}(u + v)".
Thus:
Mg T Bx 5,5 = Olpy) = Olgy)

and (3.22) is satisfied if m < n. Conversely, suppose that the
relation isbtrue for some m = n + k, k> 0. Since every cd-nbhd
of (0, 0) must contain points (u, v) for which v = u, there
exists a constant A > O such that for all u small enough

]a + Blun < A.2m+kun+k

This is impossible. This completes the verification of (3.22).

Consider the set

H = {x L+ 32kl kenN.

k L]
It follows from (3.21) and (3.22) that H_ is a distinguished
subset of Q . Let,)(k denote the closed subspace of Q generated

by Hk' i.e. the set of all functions which admit expansions of

the form

o '2: z: a, . x ., T+ 3>k, Q. | lex.
(3.23) e L i g2 i > 13 complex

Unlike the space (., of Example I (Section L.c), the

k

elements of a distinguished basis of )(k do not have distinct

norms: from (3.21)

 ENI p " for 0 < j < n.
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A particular subspace of ‘Xk is the subspace of functions

which admit expansions (3.23) such that for some sequence {an}

of complex numbers (12 = -1):
a ., .= (Mila for 0< § < n and all n.
n-=3j,J J n - -
Setting z = u + iv, the expansions of such functions are of the
form z Qa zn.
' n
n>k

c) We now let the Hausdorff space A be a set of points

N = (2, w) where z and w each belong to a subset of the complex
Riemann sphere which contains the point at infinity. Let

Ko = (e, o)« !N is the set of all non-negative integers and we
denote by qJ the asymptotic scale

n
lp={'¥n :n e N}, ?n(z, w):(T%T +I_‘:*L’T) .
Thus, B is the space of the real numbers.
,Let B be the space of the complex numbers and consider the
"space Q! of complex valued functions on A' which are asymptoti-
cally finite with respect tqu .

It can be shown (as in b)) that the set

HY = | t+ izl keN, v, (a,w) = 2 43,

Y3
is a distinguished subset of Q'. )(ﬁ will denote the closed

subspace generated by Hé.

3-6 Asymptotic spaces: Example III

a) (3(D) will denote the set of all bounded transformations
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from a closed subset D gfia Banach space S into S itgelf; i.eo.

i

the set of transformations from D to S for which nA"D < o, where

(3.24) " . l|as -As, [l
. = sup __——_—_H— .
D SISZED ”51‘52
,sl:ts2

The function (3.24) is a pseudo-norm on MB(D). If
f[A - Bl = 0, then As = Bs + s, for all s ¢ D and some fixed
s, € S.

Under the assumption that D is a linear subspace of S,

J (D) will denote the set of all bounded linear transformations

from D to S. On J (D), (3.24) is equivalent to

IAl, = sup H-HS
: S
seD

s$0
and is a norm under which J (D) is a Banach space ([7], p. 61;
(26], p. 75).
The convergence induced by (3.24) on @(D) and J (D) will be
called the uniform convergence on D ([7], p. 475; [26], p. L4L4L).
Thus, a seqguence {An} in ®(D) converges uniformly to A on D if

and only if A ¢ B(D) and lim [[A-A |5 = 0, i.e.:

Nes oo

fi (A=A )s - (B-A_)s,|

lim E | =0 for all s1r5, € D, s, f 5,e
Neseo . l 2
b) We now construct an asymptotic space of functions with range

in (D), i.e. B = (B(D)._
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The Hausdorff space A is the real interval [O, 1] and
*ko = 0. The space B0 is the space of the real numbers. N is

the set of all non-negative integers and we use the asymptotic

scale
n
@ = {¢n :n ¢ N}, ?n(K) = N .
Let X be the space of all mappings x defined on A' = (0, 1],

with range in (B(D) and which are asymptotically finite with res-

pect to @, i.e. such that for some n ¢ N,

(3.25) fixlly = 0(p,)-

Suppose that vy € X, vy is independent of A and “yHD $# 0.
Then, one verifies easily that Iyl = 1. Furthermore, if x ¢ X
satisfies fy - x] < 1, then, as a function of A, x converges
uniformly to y on D, as N -~ O, since for A small ‘enough and some
constant a > O

ly - x”D < ah.

If x ¢ X has a Q—asymptotic norm strictly.less than 1 and
for A in some cd-nbhd of O, x maps D into itself, then x(A) is a
contraction mapping on D for all A in some cd-nbhd of 0, i.e. for
some AN', O < A' < 1, x(N) maps D into itself and "x(h)ﬂD < 1 when
A< A ([19], Vol. I, p. 43).

Spaces of this type have been considered by C. A. Swanson:
and M. Schulzer [32], [33]. In these references, transformations
satisfying (3.25) are said to be "™of Class Lip (?n)'“ Specific

examples are given in [32], pp. 28-38.
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(
c) The space X of b) consists of mappings from (0, 1] to the
set B (D) of bounded transformations from D to S. In the space
X' to be constructed now, unbounded transformations will also be
considered. The range space,B.is the Banach space S.

Let A, A,r N and d be asAin b). Let X' be the space of all
mappings from (0, 1] x D to S which are asymptotically finite with
respect to Q when s € D is considered as a secondary parameter.

The Q-asymptotic norm of x € X' is less than or equal to
F-n if for each fixed s € D, there exist a constant a[s] > O
and a cd-nbhd V[s] of O such that

fx(N, s) S‘a[s]kn for all N e V(s];

-n

equivalently, fx} < if for all s ¢ D,

IN "o

lx(n, s)|| < BLs]*A"||s||, for all A ¢ V[s],

where B[s] = a[s]-“s”_l if s # 0.
Suppose that y € X', y is independent of A and ”y”D # 0.

Then for each s € D, [[y (N, s)f

ly (s)]] for all N € A' and, hence,
iv] = 1. Furthermore, if x € X' satisfies Jx - y} <v1, then, as
a function of A, x converges strongly ([7], p- 475) to 'y on D,
when N o4 0; indeed, for each s ¢ D, there exists a[s] > O such

that for all A small enough

[x(h, s) = y(h, s)f} < als]-A.

3-7 Moment spaces

a) For simplicity we restrict our definition of moment spaces

to spaces of real valued functions defined on a finite interval
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[a, b], -« < a < b < ». All integrals considered are Riemann-
Stieltjes integrals ([41], p. 1).

Let @ be a real valued function of bounded variation on
[a, b] ([41], p. 6). ‘Let Q = {?n(t): n =0, 1, 2, =+«} be a
sequence of non-zero, real functions on [a, b] such that all

integrals

B
(3.26) (1) = [ g (t)da(t), n
: a

]
o
-
[
-
N
-
2
o
L)
-

exist and are finite.

Let X' be the linear space of all real functions x, defined

-

on [a, b] and such that all integrals
b ,
un () = [ x(t)g (t)aale), n =0, 1, 2, -,

exist and are finite. p_(x) is called the n-th moment of x
n

relative to Q.

For x ¢ X', define
w(x) = inf{n : po(x) £ 0}

and, for some fizxed pr 1< P < &,

(3.27) ' MNE P'm(x)

It is immediate that X', with the norm (3.27) is a V-space,
except possibly for completéness.” In X' the distance of two
functions X, y is less than or equal to P—n if and only if
ui(x) = ui(y) for i =0, 1, 2, ===, n-l;

X' admits a distinguished basis (Theorem 2-2.2). Two
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elements of a distinguished basis of X' cannot have the same

norm. Indeed, if lxl = lyl = P—n for some n, then

b (x) =p,(y) =0 for i <n; p (x) #0;u (v) #0;

therefore

pi(pn(y)x - pn(x)y) =0 for i < n.

This implies that lpn(y)x - un(x)yl < P—n. Thus x and y are not

distinguished.

Let N be the set of integers defined by

= . ? = :
N {n : for some x € X', pi(xn) 5, for i < n}.

in
For each n ¢ N, let x be a function such that w,(x ) =86, for
. n ‘ it Tn in
i < n. The set H = {xn HES (O N} forms a distinguished basis of
X1,
The completion X of X', i.e. the set of formal expansibns
in terms of H, is a V-space (Theorem 1-7.6).

V-spaces constructed in the manner described above will be

called ™moment spaces'.

b) For the remainder of the Section we suppose that the func-
tion @ is strictly increasing on [a, b] and that @ is a linearly
independent set of continuous functions contained in X.

These assumptions imply that all the integrals (3.26) and

the integrals

]
o
-
[
-
N
-
.
L
.
-

b
[ gu(t)eg(£)2aa(t), m, n

exist and are finite ({41], p. 7).
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A sequence {fn} of functions defined on [a, b] is said to

be orthonormal with respect to Q if

£, £ > =8, m, n =0, 1, 2, ===,
where
b
<¢, o> = [ £(t)eg(t)aa(t).
_ Y a ,
Lemma 7 1. If £ is a non-negative continuous function on [a, b]
and J £(t)da(t) = 0, then f£(t)

The proof is identical to that of Proposition (5 2) in [37]

p. 41,

Theorem 7.2. There exists &a uniqgue sequence of functions {pn}

of the form

pn(t) B ann Wn(t)'+ an,n-l?n—l(t) o no?o(t) %hn > 0,

"which is orthonq;mal with respect to Q.
The proof is an easy modification of [37], pp. 41-42.

Theorem.7.3. (i) Ipnl = P-n , n=0,1, 2, «-=

(ii) {pn} is a distinguished basis of X.

(iii1) If f € X, then, in the norm of X,
(3.28) £(t) = E: <t, p_ > p_(t).

Proof: (i) For all m, there exist coefficients bmi' such that

mm a

B (t) = Z' b ., (t), b = L s o,
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Thus, lph' = P—n follows from

b 0 if m < n,
(3.29) [ p (t)g,(x)da(t) = .
: - . S .

a .
mm

if m = n.

(ii) follows from (i) and a previous remark, page 72. .

(iii) For m < n,

n-1

<f, pi>Pi) -
i=0

bt
n=-1

b . b
. f(t)g (t)aa(t) - <f,p.,> [ p,(t)y (t)da(t)
J Pm q izg Pi =Ja Pittigp't ? .

[+]]

m

b, <f,p> - z <f,p;>b,; = O.

i=0 - _ i=0

"
HINA B

n-1 -n '
ihus 'f -'E:i=0 <f,pi>pi'.$ F which proves the convergence.

The series (3.28) is usually called the Fourier séfies of
f with respect to {pn} ([37], pe 45). In the moment Sbace}X,:.
the distance of two functions f and g is less than or equal to
P—n if and only if the first n Fourier coefficientsof f:
<f,pi>,i =0, 1, 2, ==+, n-1, are equal to the corresponding

Fourier coefficients <g, pi> of g.

c) Whenever @ is strictly increasing on [a;ﬁbj and for all n,
?n(t) = [¢(t)]n, where P is a non-constant continuous function
on [a, b], the results of b) are valid. Furthermore, we have the

following Theorems 7.4 and 7.5.
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rence formula of the form

n+l(t) = [cn?1(t) + dn]pn(t) + enpn_l(t), n>1,

where C s dn’ e are real constants. (Set p_l(t) = 0).

The proof is a modification of the proof of Propesition

(5.4), [37], »p-

_Im_nl . , ‘ o
Theorem 7.55 ﬂpm pnlis F and for_some coefficients cmniii
m+n
p(t)ep (t) = 2 c Py (t)
i=|m=-n|

Proof: Suppose m > n. Then

b
by (opopy) = [ o (£)p (£)g, (t)dalt)
- Z O 1ot f p, (t)g" (t)da(t).

From (3.29), ui(pmapn) =0 forn + i < m, The~conclu§ion”folloﬁé’

from this and the fact that PP is a polynomial in ?‘of degree

m + N, »
For additional properties of the orthonormal segquence,

Fourier series and coefficients, see [37], Chapter 5.

d) _Examples. Let g (t) = t" and [a, b] = [-1, 1]. The follow-
ing ‘are three examples of moment spaces (See [37], p. 50. Also

(8], [21].)
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da(t) pn(t) 1 Reference
_a :
(l—tz) 24t g (t) T (t): Chebyshev polynomials
ﬁ n n
s ,
(l+t2)2dt JETU'(t) U (t): Chebyshev polynomials of
T “n n .
. the second kind
1
dt (n+ %)2Pn(t) Pn(t): Legendre polynomials

To illustrate how a problem can be interpreted within the

scope of a moment space, we consider the differential equation
(2.30) Lx = 2(t + 3) %% +x =0, =x(-1) = 1.

Two methods have been proposed for the approximation of the
solutien of a differential equation which take advantage of the
special properties (given in b) and c) above) of the Chebyshev
polyﬁomials, One is due to Lanczos [20], [21], the other to
Clenshaw [2]. See L. Fox [13]. In both methods, the equation

(3.30) is replaced by the eguation
(3.31) My (t) = Ly(t) - =T (t) =0, y(-1) = 1.

It can be shown that for a certain value To of the para-

meter 7, (3.31) has a solution of the form

y(t) =" z: 3,7, (), with 7 = ( E:(-l)isi) -1,
i =0 i=0

l:

By Theorem 7.5, if z ¢ X, then Lz and Mz belong to X and

-n

le - Mzﬂ_s p -

\
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Aﬁstqu pf this method of substitution of a perturbed
equation for the_original one, if conducted within the frame of
the theory‘of moment spaces, may lead to interesting results and

interpretations.



CHAPTER 4

BOUNDED OPERATORS ON V-SPACES

L-1 Definitions and notations

In this Chapter, unless otherwise specified, X and Y will
denote two V-spaces over the same field of sbalars F: 2 will
denote a closed subset of X. An operator from Z to Y is a
single valued mapping defined on all of Z with range in Y.

The conventions of pages 31 and 45 apply in this Chapter.

Definition l.l. An operator A from Z to Y is said to be linear

on Z if

A(au + Bv) = aAu + PAv

for all a, B ¢ F and all u, v ¢ Z such that au + 3v ¢ Z.

Definition 1.2. Let A be an operator from Z to Y.

(1) The norm'of A on Z, denoted by [al;, is defined by

(4.1) lAlZ = inf{M >0 : IAu—Av' < Mlu—v' for all u,v ¢ Z}

(ii) 1If 2Z

lA"X \= IAI

(iii) A is said to be bounded on 2 if JA}; < =.

X, the norm of A on X is denoted by |A], i.e.

It follows that fA], = O if and only if for some fixed
y € Y and all u ¢ Z, IAu - yl = 0.
If Z is a linear subspace of X and A is linear on Z,

(Lo1) is equivalent to
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(4.2) faly = inf{M >0 : Qau] < Mfu] for all uw ¢ z}.

In X, the balls S(8, r), S'(8, r) are closed subspaces of
X and the quotient spaces X/S(®, r), X/S'(®, r) are discrete
VjspaEes (See Theorem 1-2.1). Conéequently, the norm on X of an
operator, even a linear operator, cannot be detéfmined by con-
sideration of its values on these balls only (Jnless, of course,
X =5(0, r) or X = 8'(0, r)). This is in striking contrast to

the case of a linear operator on a Banach space ([7], [36])

where
“A” = inf{M > 0 : [Ax]] < M]|x|[for all x ¢ ST'(8, r)}

In a V-space, if 2 > 2', then Ja}, > |2al,,.

O (z, Y) will denote the set of all bounded operators from
Z to Y. J (2, Y) will denote the set of all bounded linear opera-
tors from Z to Y.

If Z = X = Y, we shall use the notations & (X) and J(X) in
place of & (X, X) and (X, X).

The product AB of two elements A, B of ©(X) is defined by

(ABB)x = A(Bx) for all x ¢ X. It is simple to verify that
(4.3) fasf < 1al-Is) -

In general, the product of non-linear operators does not
satisfy conditions (2 9) and (2.10) of Definition 2-6.1, and
hence & (X) is not an algebra. These conditions are satisfied
for linear operators and hence J (X) is a non-commutative sub-

algebra of the space & (X). (See [7], [36].)
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O will denote the zero-operator in & (Z, Y): Ou =0 ¢ Y for
all u ¢ Z. I will denote the identity operator in & (X),

i.e. Ix = x for all x e X.

L-2 The spaces OF(Z, Y) and & (X) of bounded operators

The spaces & (2, Y) and & (X) are linear spaces over the
field of scalars F. Clearly the elements of & (Z, Y) or of
& (X) ‘are continuous mappings on their domains of definition,

Z or X. |

The norm on Z, defined by (4.1) has the following proper-
ties:

(i) In accordance with cbnvenfion'(ii), page 31, both the
norms on X and on Y are expressed in terms of the same real num-
ber P (Definition 2-1.1). It follows that the norm of an
operator in €Y(Z, Y) has a norm equal to zero or'to'l)—n for some

integer n.
(11) fJoaf, = Jal, for all A ¢ &(Z, Y) and all @ ¢ F, a # 0.
(1i1) Ja + B, < Max{la],, IBl,} for a11 &, B ¢ &(z, Y).

Indeed, for all u, v ¢ Z:

fAu + Bu - Av - Bv] < Max{JAu - Av], 1Bu - Bv]!

< (Max{lAlz, IBIZ})Iu,— vi.

(iv) [a + Bf, = Max{laf,, 8l;} whenever Jal, # |B};.

To prove this, suppose without loss of generality that

IAIZ > lBlZu Then, for every € > 0 such that
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0<e< (Jad, - lB'Z),‘

it

u(e) and v = v(e), in Z, such that

Avf> (IA'Z -e)f - v > IBIZ°Iu - v}

> |Bu - Bv}].

there exist u

IAu

~Thus,

fAu + Bu - Av - Bv] = JAu - Av].
It follows that for every € > O,
IA + B'Z > IAIZ ~ £,

fa + 8, = 1al, = max{jal,, I8L,}.

These results lead to the following theorem on the struc-

ture of CT(Z,'Y), (and of ET(X) when 2 = X = Y).

- Theorem 2.1. The space CT(Z, Y), under the norm on Z defined

by (4.1), is a V-space.

Proof: It follows from (i) - (iv) above that CT(Z, Y) satis—
fies all the definiﬁg properties of V-spaces, except possibly
completeness.

To préve the completeness of & (2, Y), consider a Cauchy

seguence {An} in ET(Z, Y). Since (Th. 1-4.1)

lim IAn - A

+1 n'Z =0,

N
for any € > O, there exists an integer N(E) such that for all

u, v ¢ 2 and all n > N(e),

l(An+lu = A V) - (Au - Anv)l < efu - v

for
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Let us select an arbitrary point xo;of Z. For each x ¢ Z,
the sequence {Anx - Anxo} is a Cauchy segquence in Y; since Y 'is
complete, this sequence has a limit. Let A be an operator from

Z to Y defined by

Ax = lim (Anx - Anxo), X ¢ Z.

Newo

We shall show that A is a limit of {a_l. Forw, v ez,

define -

Vo, pler V) = [(A L0 = B p%,) - (Au - A x )]

- [(An+pv - An+pxo) - (Anv—Anxo)].
For any € > 0O, there exists N(e) such that for all u, v € 2,

all n > N(¢) and all p > O,

Iyn,p(u, v) | I(An+p it " A v)|

< lAn+p - Anlz-lu - v|‘< Elu - vl.

u - Anu) - (A

With n fixed, we have, for all u, v ¢ 2:

lim Yo p(u, v) = (Au - Anu) - (Av - Anv)

Patco
Since lim Qy (u, v)} = Ilim y. (u, v)J, we-have for
Pa n.P P= oo n. P

n > N(e) and all u, v ¢ Z:

l(Au - Anuj - (Av Anv)l < E'u - vl.

Hence

|
o

lim lA

Naseo
This shows that A is a limit of the sequence {An}, As a

limit of a.Cauchy sequenbe A is bounded on Z and
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1A, - 2 Ba

N

We note that the operator A defined above depends on the
selected point Xxg. Clearly two different selections of X will
in general generate two distinct limits for the segquence {An};
the norm of the difference between two such limits is obviously

2eI0a.

Remark. From (i), (iii), (iv), pp. 80, 81,  and the fact that
the proof of the completeness of fT(Z, Y) requires the complete-
ness of Y only, we can deduce that:
(i) If X and Y are (pseudo-) valued spacés,.tﬁen Sz, 1)

is a pseudo-valued space;

(ii) If X is a (pseudo-) valued space and Y is a strongly
(pseudo-) valued space, then & (2, Y) is é strongly pseudo-valued
space.

(iii) If Y is complete, then & (Z, Y) is complete.

L-3 The spaces J (2, Y) and J (X) of bounded linear operators

jf(Z, Y) is the set of bounded'linear operators from Z to
Y. To avoid meaningless or trivial statements we §hall assume
that Z properly lends itself to linearity arguments. This is

achieved by requiring that Z be linearly non-trivial, defined

as follows: A subset Z of a linear space is‘said to be linearly
non-trivial if and only if there exist u, v ¢ Z and @, B € F such

that

z =au + Bve2, =z +u, z+ v and fz] # 0.
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Obviously, any non-trivial subspace of a V-space is linearly

non-trivial.

Theorem 3.1. The space J (2, Y) is a V-space. The space J (X)

is a\V—algebra.

Proof: Using continuity of the operators involved, it is easy
to verify that J (2, Y) is @ closed linear subspace of & (Z, Y).
In :T(X), the product of two linear operators is a linear opera-

tor. Then, the theorem is a corollary of Theorem 2.1.

The following theorems are analogous to theorems valid in
topological normed linear spaces over the real or complex fields
with their usual valuations. The proofs are similar to those of
the corresponding theorems in [36], pp. 18, 85-86, and are

omitted. We shall use the following definition:

Definition 3.2. Let A ¢ ©(Z, Y). An operator A Y from A(Z) to

Z is called a pseudo-inverse of A on A(Z) if A_l(Az),= z for all

Z € e

Theorem 3.3. If Z is a subspace of X, then A c J(z, Y) is con-

tinuous either at every point of Z or at no point of Z.

Theorem 3.4. Let Z be a subspace of X and A ¢ J (2, Y).

(i) A pseudo-inverse of A on A(Z), when it exists, is
linear on A(Z).
(ii) A admits & bounded pseudo-inverse on A(Z) if and only

if there exists a ¢onstant m > O such that mfz} < JAz] for all
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z2 € 2.

A linear operator from a Banach space to another is bounded
if and only if it is continuous ([36], p. 85). In V-spaces
boundedness implies continuity but the converse is not true.

(See Example 1, p. 86). A. F. Monna ([24],Part III, p.

1136) has proved that linear operators from a V-space to its

field of scalars F, considered as a V-space over itself, are
continuous if and only if they are bounded. The following theorem
generalizes this result; the proof is modelled after that of

Monna.

Theorem 3.5. Let A ¢ "J(Z, Y) and suppose that A(Z) is a dis-
crete and bounded subspace of Y. Then, A is bounded if and only

if it is continuous.

Proof: Boundedness implies continuity.
To prove the converse, suppose that A is continuous. Since

A(Z) is a discrete subspace, there exists € > 0 such that

(Loo) vy € A(Z) and fy] < € imply Jy| = 0.

Since A is continuous, there exists 8(€) such that
z € Z and lz' < 6(g) imply lAzl < g,
and therefore, by (4.4)
z € Z and lzl < &(e) imply |Azl = 0,

Since A(Z) is bounded, there exists M > O such that

Iv) < M for all y ¢ A(Z).
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For all z ¢ 2 such that [z} > 6(€), we have

IN

6%8) Izl

and A is .bounded.

1Azl < M = 575y - 8(€)

M
6(e)

Hence, IAIZ <

We conclude this section'with'two examples. The first is an
example of a continuous unbounded linear operator from a V-space
to itself; the second shows that the Uniform Boundedness Principle
([36], p. 204; [7], p. 66) does not hold in V-spaces, i.e. a
family of bounded linear‘operators on a V-space which is point-

wise bounded is not necessarily uniformly bounded.

Example 1. Let X be a V~space over the real numbers, with a

countable distinguished basis H = {ho, hys hy, »»+] such that,

for some integer k,
-k-n
L p , n=0,1, 2, sc-,

(The space CPk of 3-4 is such a space.)
Every non-trivial element of X has an ekpansion in terms
of H:
o
(4.5) x = ) (e, Bihy ). o, BLe R
. n=N
where N > O and ]aNl + ]BN[ # 0.

Let A be an operator from X to itself defined by
0 it [xf =0,
Ax = ®

_z: (an + Bn)hn if x.is,given by (Le5)e

n=N
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Clearly A is linear. A is unbounded since
n
lAh2n| = b |h2n| for alln =0, 1, 2, === .
Yet, given any integer n 2> 0,
a(s(e, ,757*M)) e s(e, KM,
P P
This shows that A is continuous at © and, from

Theorem 3.3, that A is continuous on all of X.

Example 2. Let X be as in Example l. Every non-trivial element

x of X has an expansion in terms of H:
-]

(b.6)  x= 3 ah, o #£0, N20,
n=N

For each non-negative integer p, let Ap be an operator from

X to itself defined by

(© if fx} = o,
. -]
o= < 1 3 1
Apx “2: anhn—p if x is given by (4.6), N > p,
L n'=N
p-1 o
z anho + z anhn—p if x is given by (4.6), N < p;
" n=N n=p

i.ee: the image of hn is ho if n £ p and is hn-p if n > p.

The linearity of Ap is easily verified. We have
A x
s =)

[a x| P_k < pPhx] 1 N < p in (.6).

i}

p NP = GPlxl if W2 opoin (4.6),

Hence: lApl = Fp , p =20, 1, 2, see



88

This shows that the family of linear operators (A} is a
family of bounded linear operators which is not uniformly bounded

since lim Pp = oo

P=e

Yet, the family {Ap} is point-wise bounded since
lApxl < F—k for all x ¢ X. We have shown that the Uniform
Boundedness Principle does not hold in V-spaces. ([36], p-

204.)

L-4 Characterization of bounded linear operatPrs

In this section X and Y are V-spaces, 2 is a linear sub-
space of X which is not necessarily closed, H is & distinguished
basis of Z.

With each element h ¢ H, let there be associated an element

Ah ¢ Y such that for some M > O,

IAn] < Mjh}] for all h ¢ H,
(4.7) -
: {ah ] = Mlh | for some h_ € H.

.Each 2z ¢ Z is a sum of an expansion in terms of H:

“

(4.8) z = ah; +ah, + .00, a ¢F,a #0, Jn l>)n |

7

-

If {hl, h,, svs} is infinite, then lim lhnl -0 and, by

Neen

(4.7), lim fan | = 0.

N

We extend the definition of A to all of Z2, by setting

(L.9) Az = a Ah, + a2Ah2 + eeoe , z given by (4.8).
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Since Y is complete, this series converges and Az is defined, up
to addition of trivial elements.
Clearly, A is a linear operator from Z to Y. It is also

bounded since, by Lemma 1-7.5,
Jaz] < sgp{IAhnI} < M°s2p{!hnl}'= Mlhll = M}z].

In view of (4.7), |AIZ = M,

We have constructed an element of J (2, Y). It is impor-
tant to note that the values of A on H were completely arbitrary,
except for conditions (4.7).

Now, suppose that B is a continueous linear operator and that

Bh - Ah ¢ [@] for all h € H.
Then

Bx - Ax ¢ [0] for all x ¢ (H);

(recall that (H) is the set of all finite linear combinations of
elements of H).

Since (H) is dense in Z and B - A is continuous, we must
have ‘

Bz - Az € [@] for all z ¢ Z.

This result can be stated as follows:

Theorem L.l. Let X and Y be a V-space and let Z be a linear sub-

space- (not necessarily closed) of X.
(i) An element A of J (Z, Y) is determined, up to addition
of trivial elements, by its values on a distinguished basis H of

Z, and
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[a), = ine{M >0 : |an] < MIn| for a1l h ¢ H}.

(ii) If a single valued mapping A is .arbitrarily defined on

H except for the requirement that

(4.10) sup %%%J
, heH

be finite, then A can be extended by linearity to all of Z and
IAIZ is equal to (4.10). Furthermore, if B is a continuous
linear operator from % to Y and |Bh - Ahf = 0 for all h ¢ H,

then B ¢ J(Z, Y) and [B - Alz = 0,

Application 1. The important feature of the assertion of part

(i1i) of the above theorem is that, provided (4.10) is finite, the
values of A on the elements of H are arbitrary.

The same 1s not true in an infinite dimensioqal Hilbert
space X in which H = {hl, h2, h3, ...} would represent a countable
complete orthonormal basis. As two examples, consider A and B

defined on H by

(4.11) Ah = h, for all m,
(4.12) Bh - = h | for 2171 <n < ot g,
n 1
, 27 -1
Then

|Ah]] _ Bhij|
sup Ty = sup lh = 1 < oo
heH heH

However, neither A nor B can be extended by linearity to all of

X: they are not defined at the point S = §:” iy o
n=l n "n
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If we suppose now that X is a V-space with distinguished’

basis H = {h h ---} and lim lhnl = 0, then the mapping A of

ll 2'

Nesen

(4L.11) is not acceptable under Theorem 4.l since sup l%%{ = @;
heH

the mapping B can be extended into an element of tT(X) since
sup 1?%{ = 1,
hed ¥

Application 2. Theorem 4.l finds an application in a paper of

H. F. Davis [4]. We present the problem of [4] in our own
terminology. The notation is that of Section A,‘Chapter 3

Let X = Y = g« Let Z be the open subspace of R for which
the set qo U E (see (3.16)) is a Hamél basis.

Let A’ be a single valued mapping defined on @0 U E by

A'?n B(n)?nl n

i
o
-
- s
-
N
-
a
3
-

,A'eagfd, —m<a<ml O.#Q,

where B(n) is a scalar and f  is an element of g.

Since e%ery element of Z is a unique finite linear combina-
tion of the elements of Qo v E, A’ can be uniquely extended by
linearity to all of Z. Let B denote this extension.

The main theorem of Davis [4] asserts that a necessary and
sufficient condition for B to be continuous on Z is that, in the

Q-asymptotic norm on R:

[+ -]
n
(4.13) £, = Z -OL—E;(M ¢,r for all a # 0.
n=0

The result is obtained from Theorem 4.l through the



92

following argument:
@o is a distinguished basis of Z c(?o (see SectionIB--l,;).,I
At
The mapping A’ is defined on Qo in such a way that sup Pn =],
n>0 ¥%n

Thus, by Theorem 4.1(ii), there exists a "™unique"™ linear operator

A from Z to g which agrees with A" on @0; this extension A is

i

such that lAl 1 and since

o
a 2: nt Pn’
n=0
we must have

® n ® n _
heg = ) i Mgt ) &Bin) Pr®
n=0 n=0

Hence, the above linear operator B is continuous on Z if
ana only if [Bz - Azl = 0 for all z ¢ Z; i.e. B is continuous
if and only if £, = Be, = Ae,, so that (4.13) is satisfied.

The reader will notice that the definition of continuity
which we use and the definition of “asymptotic continuity"
given by Davis([h], p. 91) are different. Keeping to our own
términology, Davis calls an operator A "asymptotically continu-

M This.is equivalent‘tq

ous™ if fxf < Pn implies'lel < P
saying that A is continuous if and only if lAIZ < 1. However,
in the examplé above lAIZ = 1 and the two definitions of con-
tinuity lead to identical results.

This dgfinition of Masymptotic continuity"™ is too restric-

tive. An operator which is asymptotically continuous is also

continuous in the topological sense but the converse is not true.
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The desirability of removing such restrictions is comparable to
the desirability of accepting asymptotic expansions which are not -

of the Poincaré type (see Section 3-3,e).

Application 3. Define the linear operator L from the space 3(0

to the space'3<é of Section 3-5 by:
® p® —zu-wv |
(Lx) (2, w) = I I e x(u, v)du dve
o Yo ' '

Since

and
= p Ix |, for allm, n > O,

2

L can be extended (by Theorem 4.1) to all of 3(0 and JLf = P— .
If, in the asymptotic norm on j(o, the function x admits
the expansion
) n
X = a X, .
Z }: n,J n=3j,J !
n=0 j=0
then, in the asymptotic norm on 3(;),
© . N
= ) ) G, (ML g
n=0 j=0 .
This result provides means to obtdin asymptotic expansions of
Laplace transforms in two variables. See [6]. For example,

since JOQ/uv) has the asymptotic expansion:.

J ( U.V) - —__I&-L
(o] f— Z 22n(n1)2

n=0
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1 ’ 1 e
LI (fEv) = == z e Tl

n=0

(Compare with [6]; pe  100,)

L-5 Inverses and spectra in :T(X)

The V-space J (X) is a V-algebra.

In accordance with Definition 2-6.2, a pseudo-identity in
J(X) is a linear operator I' such that JI' - If = O.

The definition of a pseudo-inverse A"t of A on its range
A(X) has been given (Definition 3.2). The operator a1 belongs
to :T(X) if and only if it is bounded and defined on all of X.
Therefore, A is (pseudo-) regular in the sense of Definition
2-6.3 if and only if it admits a bounded (pseudo-) inverse and
A(X) = X. 1In such a case, we shall say that A admits a (pseudo-)
inverse A—l, without any mention of the range of A.

Let A, = A - ANI. By Definition 2-6.7, A belongs to the

N
spectrum g(A) of A if and only if AK is singular.

| Theorems 6.6, 6.8 and 6.9 of Chapter 2 apply to the V-
algebra J (X), (with x ¢ X replaced by A ¢ J (X) and e replaced
by I). The formulation of these three theorems for bounded
linear operators on a V-space should be compared with sim@lar
theorems for bounded linear operators on Banach spaces: See

[(36], Theorems 4.1-C and 4.l1-D, page 164, and Theorem 5.1-A,

page 256.
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Note: As in Theorem 5.1-A of [36], we can add to the
statement of Theorem 2-6.9 the following precision: Let
AeJ (Xx), 1Al > 1; if for some scalar p ¢ F, AH has a pseudo-
inverse A;l on its range AM(X) and IA;II < 1, then, for all
N ¢ F, Ak has a pseudo-inverse on its range AK(X) and the topo-
logical closure of the range of Ak is not a proper‘subset of
the topological closure of the range of Ap'

The proof is identical to that given in [36], p. 256.

Our modification of Riesz's Lemma (Theorem 1-6.1) must be used.

L-6 Complete spectral decompositions

The scalar N is called an eigenvalue of A ¢ J (X) if for
some X, € X, kal +# 0, Axk = kxk. The point X\ is called an

eigenelement associated with A. The set
X, = {x ¢ X : Ax = Ax]

is a closed subspace of X and is .called the eigenspace associated

with A.

Definition 6.1. An operator A ¢ J (X) is said to have the

complete spectral decomposition {(ki, hi) : 1 ¢ J} if for each i

in the index set 7J, Ahi = kihi, not all ki are equal to 0 and the
set of eigenelements H = {hi : 1€ J} is a distinguished basis of

X,

Theorem 6.2. If A has a complete spectral decomposition

{(\,, hy) : 1 ¢ J}, then:
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(i) 4] = 1;

(ii) For all A\ ¢ {ki
-1

[, 0=15"1=1.

(1ii) If A, # O for each i ¢ J, then A is an isometry on X,

ie J}, Ak is pseudo~regular and

i.e. JAx} = Jx] for all x ¢ X.

Proof: (i) The operator A satisfies (4.7) with M = 1. Thus,
by Theorem 4.1, JA] = 1.
(ii) Let x be an arbitrary point in X. It admits a non-

increasing expansion in terms of H:
w .

(4.14) x = 2: ah, a ¢F, o #0, h_ ¢H
n=0

By Lemma 1-7.5, lxl = Ihol.

Then,
(L.15) Ay x = 2: a (A - A)h_.
n=0

If A é {ki : 1 ¢ J}, lAkxl = lh0| = le. It follows from

Theorem 4.1, that the operator A'l, defined on H by

is a pseudo-inverse of A . If x is given by (hallk),

o
-1 1
Ak X = z an,h ey hn'
n=0 n

Thus, lAilxI ol L I £ P

(iii) follows from (4e14) and (4.15) with A = O, A # O for each

n € Je.
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Corollary 6.3. If A ¢ 'J(X) admits a complete spectral

decomposition, then the cardinality of the set of its eigen-

values cannot exceed the dimension of the space.

Proof: Let {(hi, hi) : i € J] be a complete spectral
decomposition of A. If the cardinality of the set of eigen-
values eXxceeds the dimension of the space, i.e. the
cardinality of the distinguished basis {hi : 1 € J}, there
eXxists an eigenvalue A which does not belong to {ki: i e J}.
Since N is an eigenvalue, A, is siﬁgular. This contradicts (ii)
of Theorem 6.2.

In the following lLemma 6.4 and Theorem 6.5, the assump-
tions and notations are as follows:

A e J(X) admits a complete spectral decomposition

[(r, h) 2 i€ J}. H = {hi :i¢ Tl
For an arbitrary scalar A,
I, =i er :n =Ab, H =1{nh e H A =2l

Xk denotes the closed subspace generated by Hh’ Clearly, if
N is not an eigeralue, by Theorem 6.2(ii), N # Ki for eéch
i € J and, therefore, Jk' Hk and Xk are empty. If A is an
eigenvalue, then A = Ki for some i ecJ and Xk is the non-empty
eigenspace associated with A.

Let Pk denote a linear operator from X'to X, defined
on H by

P.h = h if h ¢ Hk’

e if h ¢ H\\Hk'
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By Theorem 4.1, 'Pkl = 1 if XK is not empty and lPkl =0 if
XK is empty.

Lemma 6.4. For all x ¢ X and all scalars A:

Ix-— kal = IAx - kxlo
Proof: Given x € X, x admits an expansion of the form

t ,Z' (o hydy Ry 'Z (x, hydy by
h€H h | €HNH,

(For notation, see p. 28). Thus,

Ix - kal = l z' (x, hi)H EJ»
’ hiEH\Hk
fax - ax] = | Z' (N, = M) (x, b))y b1
h €H NH,
By Lemma 1-7.5,
l= - Pox} = [ax - Ax} =1 0 if (x, h)y = O_fgr all
. € H\H,,
i A
sup 'hi' otherwise
hieH\Hk
(X,hi)#o

Lemma 6.4 is the equivalent, in V-spaces, of a theorem of
C. A. Swanson, valid for Hilbert spaces: Theorem 1 of [34],
Theorem 2 of [35]. This lemma is used to prove the following

comparison theorem:

Theorem 6.5. Let B ¢ 'J(X) and suppose that A is an eigenvalue

of B, with the associated eigenspace Y7\.° If IB - Al < 1, then:
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(i) AN is alse an eigenvalue'of A,
(i1) the dimension of Yk is less than or equal to the

dimension of Xko

Proof: Let Hi be a distinguished basis for Ykn By Lemma 6.4,
we have for each L' g H{:

fry - Pontf = fAn® -~ Ant] = fan® - Bntf < fnv{.

Therefore,

OO

i~

Epkhvﬂ = fht

Hence, Xk is non-trivial and (i) is proved.

By Theorem 2-2.) (Paley-Wiener Theorem), the set PKHV is a

distinguished subset of Xk and, by Corollary 2-2.3, the cardi-
nality of a distinguished basis of Xk is greater than or equal
AT (ii) follows.

The following corolleries are immediatec:

to the cardinality of P

Corollary 6060. If both A and B admit complete spectral decomposi-
tions and HB - AE < 1, then | |

(i) A and B have the same eigenvalues,

(ii) for each eigenvalue A, the associated eigenspaces for

A and for B have the same dimensions.

Cgrollary 6.7. Suppose that A admits a complete spectral

decomposition and QB - AE < 1. If A is an eigenvalue of A but
is not an eigenvalue of B, then B does not admit a complete

spectral decomposition.
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Example 1. This example shows that the converse of Theorem

6.5(i) is not true, i.e. if A has a complete spectral decomposi-
tion and B -~ A]J < 1, an eigenvalue of A is not necessarily an
eigenvalue of B.

Let H = [n, : i =0, 1, 2, »os} be a distinguished basis
of a V-space X, with fh, § > Qh, ,[ for all i > 0. Define A and

B by their values on H (Theorem 4.l1l):

Ah

{ =h, if i is even, Ah,

g = hy if 1 ds even, Bhy = hyn yp 4 45 odd.

€@ if i is odd,

Bh

A admits a comblete spectral decomposition and, by Theorem
6.2, its only eigenvalues are O and 1.

Let x € X Then for some N = N(x):

X = Z (aihzi + BihZi‘*l)” aiGFa Biepv IaNI+IBN| # 00
i>N
iz} > 'hzn+2'v

Ax=aNh + E aih

2N 21°
i2N+1
Bx = ayhoy * Z LTI Zﬁihzuy
15N +1 SN

fax - Bxf = | Z Bih21+3'-s lh2N+2'=

Thus, A - B} < 1.
In accordance with Theorem 6.5(i), the eigenvalue 1 of B
is also an eigenvalue of A. It is easily verified that the eigen-

value O of A is not an eigenvalue of B. It follows from
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Corollary 6.7 that B does not have a complete spectral decomposi-

tion.

Example 2. The following are linear operators on the space 01(

of 3-4, for k > 0,
. i
-] = -
(1) (£ =5 [ e Mx(t)at.
: o)
£ admits the complete spectral decomposition
{(n?, q,n); n =k, k+1, k+2, ""‘} since ian = nE?n.
(i has arbitrarily large eigenvalues and was studied by
T. E. Hull [15].
Compare & with the Laplace Transform ([8], Vol. I):
o .
x(\) « [ e ENy (A dhe
o]

(ii) For p >0,

N
M0 = [ o - t)p“l-’-%&lfdt.

o}

7np,admits the complete spectral déQOmﬁosition

{ ( T(u)T(n+1) )
Tlw+n+l) ° Pn/ °

Compare Wlp with the Riemann-Liouville fractional integral

({81, Vol. II):

) - [T 15 - e

(o}
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(iii) For x> 1,

(8x)(W) = | Y- o B g,
o
€ admits the complete spectral decomposition
{Q%, Jn) s n = K, K+1, K+2, cosl, Concerning thishconvolution
product, see, for example, Mikusiunski [23], pp. 174-178 and p.
L56.
Since none of the above opera‘tors L, mp,’ € has eigen-

value 0O, they are isometries:

BLxf = Em, = = 1 8x) = Ix) for all x ¢ @, .
From Theorem 6.2, they have no other eigenvalues than those

given in their respective spectral decompositions above.

L-7 Note on projections
A. F. Monna [24], [25] has introduced a notion of projec-
tion in non-Archimedean normed linear spaces-. In the special

case of V-spaces we have the following:

Definition'7.l. Let Y be a closed subspace of a V-space X.

An operator P ¢ "J(X) is called a projection on Y if for all

x ¢ X, Px ¢ ¥ and
(L.,16) Bx - Pxf < ix - yI for all y ¢ Y.

Theorems on projections and comparisons with projections

in Hilbert space theory [7], [36] will be found in Monna [24],
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Part IV and [25], Part I.

The existence'and non-uniqQueness of projections on a giyen
subspace Y of X were proved by Monna. The proofs of Monna do
not involve explicitly the use of distinguished bases. We give
here an alternate and simple proof.

Let H(Y) be a distinguished basis of Y and H be an arbi-
trary extension of H(Y) to all of X. Denote by Z the closed
subspace generated by H\N H(Y). .

Define the linear operator P on X by its values on H

(Theorem 4.1):
Ph =z h if h ¢ H(Y), Ph = © if h € HNH(Y).

By Theorem 2-4.4 and Corollary 2-3.4, the spaces Y and Z
are distinguished complements of one another. Therefore for each
x € X, there exist v, € Y and z, € Z such that x = Yy t Zyo Sinc?
the restriction of P to Y is the identity mapping and its restric-

tion to Z is the O-operator:

Px = Pyx + sz =y, € Y,

and v
fx - Px} =[x - yxﬂ = lzx!,
For an arbitrary vy ¢ Y, ¥y - Yy € Y and, since Y and Z are

distiﬁguished subsets of X:
Bx - vl =00, - v) w2 = Maxlly - v, 1 Bz, 0}

Hence (4.16) is satisfied. This proves that P is a projection

on Y.



104
The non-unigueness of the projections on Y is a con-
sequence of the non-uniqueness of the extensions H of H(Y).

Remark: The operator Ph'of Lemma 6.4 is a projection on Xk

(see page 98).
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CHAPTER 5

Solution of Equations

5-1 Introduction

"The problem studied by C. A. Swanson and M. Schulzer in
[32] and [33] is that of the existence and the approximation
of a class of eguations in Banach spaces.

In this Chapter we generalize Theorems 4 and 5 of [33]
to arbitrary V-algebras and V-spaces. The hypotheses of [33]

are slightly weakened.

5-2 Equations in V-algebras

In this Section, X is a V-algebra.
We consider two points, %, v ¢ X which have the following

finite or infinite expansions:

X = X_+ X, + X, + coc,
y =y

and we assume that X, admits a pseudo-inverse x;1 such that
: ~1lpg-1
(5.1) lx - xol < lxo ﬂ .
It follows from Theorem 2-6.6 that:

Theorem 2.1. The element x admits a pseudo-inverse x_l and the

equation xw = y admits a pseudo-solution z = x—ly (i.e. x2 = y).

The problem is to make use of the known expansions of x and

v to obtain approximationz to z and x—l, as defined in the above
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theorem. The sequences {zn} and {un} defined by
n " .n .
-1 -1 - _ )
(5.2) Z0-Xo Yo, Zn~X0(ZYi zxizn_i 4
' 1i=0 i=1 :
n
' 5 (e T n)
(5.3) ugo= X oo X e E: Xou .
i=1

will be shown to approximate z and x_l, respectively, provided
the rates of convergence of the series z:xn and E:yn satisfy
certain conditions.

More precisely, we shall consider two sets of assumptions
on the rates of convergence eof the series X:xn and'z:yn and,
under these assumptions we shall obtain upﬁe: boundé‘for the
‘values of az - Zna and ﬂxﬂl - unﬁ,

In the first case we assume that

s (¢}

(5.4a) B= < P““lx'lﬂ'l for n > 1,

IN

(5.4b) lynl P-nlyoi for n > 1.

In the second case, our assumptions are that
(505‘3) ﬂXOEZ Exllz ‘Elez Tee

(5.5b) B 0= 0 < lxm+naeﬂx;l!“1 for all n, m > 1 such that
. . . . . . . Ixm+11l #- O,

(5.5¢) {v B2 0y | for alln > 1, .

(5.5d) ﬂynﬂ < ﬁxn_lﬁlxgli-Méx{Ixoﬂ, nyoﬂ} for all n > 1.
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The interest of the second case lies in its applicability
in V-algebras which adhit distinguished bases with many elements
having the same norm (e.g. the V-algebra 3(0 of 3-5). In such
cases, the norms o% the termslin the expansions of x or y will
not necessarily decrease as rapidly as required by (5.4), and

to sum up the terms having the same norms may be inconvenient

or difficult.

Theorem 2.2. (i) If (5.4a) and (5.4b) hold, then the sequence

{zn} defined by (5.2) converges to =z and

)

(5.6) az - an'S F—nlx;lﬂﬁyol for all n =0, 1, 2, °°= .
(ii) 1f (5.5a), (5.5b), (5.5¢) and (5.5d) hold, then

(5.7) iz - znl < lxnﬂﬂx;lﬂz Max{lxol, Iyol} for all n such
‘ that lxnl # O;

if for all integers n, 'xnﬂ # 0, then {zn} converges to z.

Before proving the theorem, we note that if Yy, = e and

y. =0 for all n > 1, then (5.4b), (5.5¢) and (5.5d) .are satis-

fied and, hence, the following corollary is deduced from

Theorem 2.2:

Corollary 2.3. (i) 1If (5.4a) holds, then the sequence {un}

defined by (5,3) converges to xml and

H.X-'l - uni S F'—nﬁx;lu for all n = Ov l, 2”1" soa
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(ii) If (5.5a) and (5.5b) hold, then

Ix—l - unl < ixnllx;lmz Max{lxol, 1}
for all n such that lxnl # 0:;

if for all integers n, Ixnl # 0, then {un} converges to X

Proof of Theorem 2.2. One verifies directly that

. = x;ll:y (x-x)z] = [ Zy - in) Z]

i>0 i>1
Thus,
-1 -1
P b - 152 ( T vs) -t (T w)e -
i>n+l i>n+l
n
- x'l( Z x;'L(Z"Zn—j_)) 1.
0
i=1
and
(5.8) Iz - znl\s Max{an, Bnp Yn}” where
-1
@, = Ixo !"H z yilv
i>n'+1
-1
NI
i>n+l

=<
It

-1 A
n Exc> li Z xi(z - Zn—i)ﬂ"
i=1

Both (5.4b) and (5.5c) imply ﬂya < lyoﬂz hence, from

Theorem 2-6.6(ii) and the relation 1 < on”x;li E

(5.9) Bzd < §x "Myl < <"y L
-1 -1 ~-1p2
SN I EEFae N B Exed B P08 I B | Foty [ 2931 E3S AN PO 1B
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This shows that both (5.6) and (5.7) are satisfied for n = O.
We complete the prodf by inductionv and for each set of assump-
tions separately.
(i) In the first case, suppose that (5.6) is satisfied for
n =0, 1, 2, ==>, m-1.
From (5.4b) and Theorem 1-~4.2(ii):
-1 -m-1lg -1

R 5 | FAURY Pt B I PR T
from (5.4a), Theorem 1-4.2(ii) and (5.9):

, ' -1 -m-1ly -1

SRES Eot | BN TEY I Bt [ PN

from (5.2a) and the induction hypothesis:

-1 -mpy -1 .
Ym S lxo llgia;milxillz‘zm_il} -<— F 'xo Ilyol"

It follows from (5.8) and these three inequalities that
(5.6) holds for n = m and hence for all n.

" to 0 implies that limfz-z_J = 0

The convergence of P
N

and, consedquently, {zn} converges to z.

(ii) In the second case, we note that (5.5a) implies that when
Ixm‘ # 0, then lxn| #0 for‘n =0, 1, ==¢, m-1. Suppqse that
(5u7) holds forln - 0, 1, =°°, m-1l. Then an argument similar to
that conducted in the first case shows that (5.7) holds also for
n = m.

If for each integer n, ﬂxnl # 0, the convergence of the
geries E:xn implies, as in the first case, the convergence of

{zn}'to‘z.



110

Application. Let Z be an arbitrary V-space. Let

{An :n =0, 1, 2, ==} be a sequence of linear operators in the
V-algebra 7 (z).

Assume that, in the norm of J(2Z),

A = Ao + Al + A2 * eee

Assume also that AO is pseudo-regular, with pseudo-inverse

Agl, and that

(5.10) fa-a_ < IA;ll_l )

(5.11) 2§ < f"QIA;ll;l :
Under these assumptions the eguation

(5.12) Az = w, z, w € Z

has a solution z for each w € Z.
| Indeed, from Corollary 2.3, A has a pseudo-inverse A—l,
so that z = A"lw is a solution of (5.12).
Furthermore, it follows from (5.3) that A"l is a limit of
the séQuence {Bn}: | |

n

B =471, B =a’t{(r- BB )
o o) n o i"n-1
i=1
and, by the linearity of the operators A;l, z is a limit of the

sequence izn}:
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(Compare this result with the results of Section 4 below.)

]

y

5-3 The egquation Ax

In this section,X and Y are V-spaces, A € & (2, Y).

Definition 3.1. Let y ¢ Y and D € X.

(i) The eguation -Ax = y is said to have the ESeudo—
solution z in D if z ¢ D and Az = y.

(i1) The equation AXx = y is said to have a unigque pseudo-

solution in D if it has at least one pseudo-solution z in D and

if 2V = z for all pseudo-solutions in D.

We consider the linear operator Ao € J (X, Y) and assume
that A_ has a bounded pseudo-inverse A;l on its range Q;X), The

operator A;l is linear. (See Theorem 4~3.4).

Theorem 3.2, Let Yo &€ AO(X) and u = A;lyon If there exists a

, -1
= V =
ball D S*(u, r), r > 0, such that K IAO IAO(D) and such

that the following conditions (5.13) and (5.14) are satisfied:

N -1
(5.13) | Ia - AOID < K 7

(5.14) (& - Ao)x ¢ S (0, rkh) c:AO(X) for all x € D;
then, for all y g AO(D) the equation Ax = y has a unique pseudo-

solution z in D. Furthermore, the sequence {zn} defined by

. -1 S R, |
(5.15) z =A "y, z_=A "y Ao (& - Ao)zn

o o n o} -1’

converges to z.
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1

Proof: Let y' =y -y . Sincey € AO(D), A; y € D and
y -1 40 - pa-l
(5.16) IAO v = IAO y - u} < r.

Since, from (5.14), (A - Ao)x € AO(X) for all x € D, the

equation
(5.17) Ax =y =y _ +y?
is equivalent, for x € D, to the egquation

(5.18) Lx = x, where

1

- -1
= | - -
Lx u o+ ATy A (A Ao)x, x € D,

From (5.14)

lAgl(A - AO)XI < KerK™! = r for all x € D.

From this inequality and (5.16), it follows that
Bix - o) =Jalyr - a7t (A - A )xf<r for all x € D.
(o} (o] (o] -

Thus, L maps D into itself.

From (5.13), we have, for all Xy, %, € D:

-1 -1
Bix, - szl = Ba (A - A )x; - A (A - A )xp)

A

K-fa - A J 0%, - %0 < Lfl’f x|
Since 0 is the only accumulation point of the norm range of a

V-space, 1t follows that

lLaD < P-l < 1,

The contraction mapping principle ([19], Vol. I, p. 43) can

\
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be appiied to L on the closed sphere D, to donclﬁde thét the
equation (5.17) and, hence, the equation (5.18) have a unique
pseudo-solution z in D.

| fhe contraction mapping principle also asserts that the
sedquence {zn} defined by

. oa—d oo
z0 AO v, zn_— LG—l

converges to the pseudo-solution z.
) -1 -1
Since K = JA_ HAO<D) a1, () and |a-A f, <-[8-2 ],
we see that the theorem holds if, in (5.13), JA - A ﬂD is re-
placed by JA - A HX and/or if, in one or both of (5. 13) and
(5.14), K is replaced by fA_ ﬂA (x)
This theorem extends Theorem 4 of [33] (Th 7.1 of [32])

arbitrary V-spaces.

Application, For some integer k'> 1, let X = Y = 61, where

P, is defined in Section 3-4.

-We consider an operator F g ET(CPk) such that
(5nl9) O<II_FI< ln

(Examples of such operators are F = Fwhere F x = x + x,
n =2, 3, *°°, or F x = x(1 + ?n), no=1, 2, we° )
Let & be the operator defined in Section 4-6, page 101;

ramely :

>l

x(t)dt.

(Lx)(n) = J"f

-0

¥

>l
o

to
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Consider the equation

(5.20) y + LFx = ax,
© _t
e ?\'F(x(t)) dt

]

ax(N)), where v € Opk and a

>l

(1eee: y(N) + |

0

is a real nunmber.
We shall apply Theorem 3.2 to prove that (5.20) has a

unigque pseudo-solution in CPk when
(5.21) a ¢# n! for each integer n > k.

Define, for z ¢ 01(:

Ax = ax - ¥Fx = (aI - L F)x

(al - I‘)x

on=ax—-£x

The egquation (5.20) is equivalent to the eguation
(5.22) Ax = y

It follows from the results of page 101, 4-6, that if
a # n! for each integer n > k, AO = al - f is pseudo-regular

and that its pseudo~inverse A;l is defined on all of O’k, with

-1 _ _
;0= Ta ) = 1.

To apply Theorem 3.2, select Vo =0 = O and r = P

Then, D = @k

Since A - A = L (I - F) and L} = 1, we have from (5.19)

_ ga-lg-1
LSRN Y I TR R D

and hence, (5.13) is satisfied.
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Clearly (5.14) is also satisfied since (A - Ao) maps 0’k
. . . ~1,
into itself and since !Ao ' = 1.

The conclusion is that (5.22) and (5.20) have a unique
pseudo-solution z in 6>k when (5.21) holds. Furthermore, z is a

limit of the seQuénce {zn} defined. by

_ a1 . TS S | -
zg = Ao y, z Ao y Ao L(1 F)zn_l.

Othe;,examples of applications of Theorem 3.2 will be found

in [32].

5-4 The equatiqn Ax = y involving expansions of A and y.
As in the previous Section, X and Y are V-spaces,
A € CTKX, Y) and we consider the equation Ax = y. However, we
now suppose that A and y are known from their finite or infinite
expansions
A=A + A + A_+ *r-

y=y0+yl+y2+.ag

We assume that A ¢ @(X, Y) for n =1, 2, =-*; that
A, e J (X, Y) and that y ¢ A_(X). We also assume that A_ has

a pseudo-inverse A7l on its range A (X). Let u = A "y _. -
o o o ’o -

Suppose that there exists a ball D =8°(u, r), r > 0,\
such that K = !A;lﬂD and such that the following conditions

(5.23) - (5.26) are satisfied:

-1
(5.23) fa - a0, <x™7:

(5.24) Ba xf < k! minil, ﬁAnﬁD} for all n > 1 and all x € D;
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(5.25) !Ynl < IK-l for all n > 1;
(5.26) In Y, the ball S'(0, rK ') is contained in A_(X).

Theorem 4L.l. Under the conditions above, the equation Ax =y

has & unigue pseudo-~solution z in D.

Proof: The convergence on D of the series 2:n>0 An implies

that 112 fa B, = 0. Therefore, from (5.24), lim §A_x| = 0 for

N Nwoo
all x € D and, hence, the series z:n>l Anx is convergent on D.

Then, it follows, also from (5.24) that
(5.27) f(a - Ao)xl =1 E: Anxl < k™! for all x € D.
_ ‘n>1 -
A consequence of (5.25) and (5.26) is that y ¢ A_(X) for

all n > 1 and that

fasly B < xerx™t = r,

From the linearity ofAAo we conclude that y € AO(X) and the
last inequality gives
7, -1 _ga-1 _ -1 g
EAO y - u' = le (y - yo)ﬂ = ' Z: Ao yn! < r.
n>1

Hence:
(5.28) y € &_(D).

The relations (5.23), (5.24), (5.27) and (5.28) establish
the applicability of Theorem 3.2, Thus, BAx = y has a unigue

pseudo-solution 2z in D.
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As in Theorem 2.2, we now seek an approximation to the

pseudo-solution z. We consider the segquence {zn} defined by

n n
-1 _ -1 -
(5.29) 2o =AY 2, = A (z Yy Z Aizn-i) )
i=0 i=1

The existence of this sequence is guaranteed by the following

lemma.
! n n
Lemma L.2. Let u_ = z: y, - E: Az ., n=1, 2, ===,
n 1 : 1 n-1
i=0 121 :
The domain of A;1 contains allu_, n =1, 2, " and z € D

for all n = 0, 1, 2, °°° .,

Proof: Clearly N € D. Suppose that z, € D for
i =0, 1, 2, °*°, n-1. Then from (5.24)

1,2 ;< =X for i =1, 2, **+, n,

and (5.26) implies that Aizn-i [ AO(X) for i =1, 2, °°=°, n.
It was just shown that y, ¢ AO(X) for all i > 0. Hence,

u, € A (X) for i = n.v This induction shows that u, € A_(X)

for all i > 1, provided z;, € D for all i > O.

By induction, z, € D for all i > 0, since by (5.25) and the

above inequality:

n

-1 -1
SN B89 DINCAER NI ER S S

-1
lAO v 1 1
i=1

n
In Theorem 4.3 we show that Z is an approximation to z and

we give an upper bound for lz - znﬂn As in Theorem 2.2, the

degree of this approximation depends on the rates of convergence
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of the seriesz

a>0 An and z:nzo yn, In that respect, -we make

two distinct sets of additional assumptions on An and Yo° First:

(5.30a) fa l, < P’“K‘l for n > 1,

rP—n+lK-l for n > 1;

A

(5.300) fy_|

secondly:

(5.313) , IAO‘D

v

lAllD 2 IA2ID ="

-1

(5.310)  Qa Q88 By < x QA _, Q) for allm > 1 and n 21
: | such that lAm#n' 0,

(5.31c) !yol > Iynl for all n > 1,

(5.31d) Iynl;S‘rKﬂl m%n{}, Ba__,0p} for a1 n > 1,

Assumptions (5.30b) and (5.31d) imply (5.25).

Theorem 4.3. (i) If (5.30a) and (5.30b) hold, then the

sequence {zn} defined by (5.29) converges to z and

(5-32) IZ - an s I'P-n MaX{l, Kﬁl} for n = O, l,"2” a6 o °'
(i1) If (5.31a), (5.31b), (5.31c) and (5.31d) hold, then
—l} for all n such that

IAnHD # 0;

(5.33) §z - z 8= QA ) Max{1, ¥

if for each integer n > O, IAnlD # 0, then the sequence {zn}

converges to z.
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- Proof: From (5.27), it follows that (A -~ A )z ¢ A _(X). Hence
ly - (A ~ Ao)z] belongs to the domain of A;l, It may be verified

directly that

(5.34) z = A;l[y - (A - A )z2] = A;l( Zyn - z Anz).
R n>0 >

n>1

From the definition of {zn} and the linearity of A;l, we

have, for n = 1, 2, 3, ===
-1 i -1
IZ'Znﬂ=le (Z yi) - A, (z Aiz)
i>n+1 i>n+l
n
-1
- &7 (z (A2 - Az ) N
i=1 ‘ _
Hence,

vY} for n =1, 2, ~°°*,

fz - zn] < Max{an, Bn n

where

-1
an = le 'D" Z yil”

i>n+1
. B —l ’
Bn = IAO lD‘I Z AiZI,
: i>n+l

and, since z € D and z, € D for all i > O (Lemma 4.2),

L]

| ‘-l lﬂ o
Yn le i lgf;n{“iln iz - Zn—il}"

. -1
Since 1 < [A_Rp-0a_ "1,

z -z < r<r Max{l, X
o

-1
1z - zol <r«< rﬂAo HD Max{1l, K “}.
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So, (5.32) and (5.33) are both satisfied for n = O.
The rest of the proof is conducted, for each set of assump-
tions (5.30) and (5.31), by induction, and exacfly as in Theorem

2.2. We omit this later part of the proof.

It is easily verified that Theorems 4.1, 4.3 and Lemma _
4.2 hold if in the hypotheses (5.23), (5.24), (5.30a), (5.31a),
(5.31b), (5.31d) and the estimate (5.33), we change all norms
on D (J]a §;) to norms on X (JA ).

If we assume that X = Y.and that all operators An are
linear, and that the above chanye to norms on X is made, the
results of Theorem L.l and L.3 are refinements of those of the
Application of Theorem. 2.2, page 110.

Applications can be found in [32].
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CHAPTER 6

CONTINUOUS LINEAR FUNCTIONALS

6-1 Dual space

In this Chapter, X is a V-space over the field of scalars F.
F is a V-space ovef itself and is given the discrete topology
induced by its trivial valuation.*

The term "functional on X" will be used to denote an

operator from X te F.

Definition 1.1. The space X* = J(X, F) of bounded linear

functionals on X is c¢called the dual space of X.

Theorem 1.2, (i) X* is & V-space.

(ii) Every continuous linear functional on X is bounded
and belongs to X*,
(iii) For each x ¢ X and f ¢ X* there exists r > 0 such

that £(s(x, r)) = £(x).

Proof: (i) and (ii) are special cases of Theorem 4-3.1 and
Theorem 4L-3.5, respectively. (iii) follows from the continuity

of f and the discreteness of F.

A direct proof of the validity of the Hahn-Banach Theorem
(The 1.3(i) below; [36], p. 186) in V-spaces has been given by

A. F. Monna ([24], Part III, pp. 1137-1138). A. W. Ingleton

*
Since [0] = {0},;¢he sympols %“s'" and ®=" have the same meaning
in the V-space F. (See pége 4L5.)
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[17] constructed a proof based on the notion of spherical com-
pleteness (see 2-5, (ii))? Another proof is due to I. S. Cohen
[13], p. 696. Monna has also provea (same reference) the exis-
tence of the linear functionals referred to in (ii) of the

following theorem.

Theorem 1.3. (i) Let 2 be a subspace of X. To each linear

functional fl € 4% there corresponds at least one linear func-

tional £, € X* such that

2

(6.1) Re 0y = He,0, and £,(x) = £,{x) for all x € 2.

(ii) For x € H, Ixol # 0 and every scalar @ ¢ F, a # O,

there exists f ¢ X* such that

: -1
f(x;) = a and i) - (RS

Proof: See the references quoted above.
‘We give a new proof of (i), using Theorem 4-4.1l. Let H?
be a - distinguished basis of Z énd H be an arbitrary extension of
H? to all of X (see Definition 2-4.3). On H, define
| £,(h) for h € H

“fz(h) = , .
: 0 for h ¢ H\H?

It follows from Theorem 4-4.1 that f2 is determihed on X by its
values on H and that (6.1) is satisfied. ‘

To prove (ii), define fl(xo) = @ and extend f, by linearity

-1
to the subspace [xo]n Then Iflu[xol = Ixoﬂ . The conclusion

follows from (i).
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Theorem l.4. .One of X and X* is a bounded space if and only 1if

the other one is a discrete space.

Proof: It follows from Theorem'l.B(ii) that 1f X is not dis-
crete, i.e. if there are points in X with arbitrarily small
nonfzéfo norms, then X* is unbounded. The same theorem im-
glies that if X is unbounded there exist linear functionals of
arbitrarily small non-zero norms.

Suppose that X* is unbounded. Then, for any integer K > O
there exists f ¢ X* with Jf > K. Since there must .be a point

x € X for which

fcGf =1 =000+
there must be non-trivial points of X with norms less than K-l.
Hence, X is not discrete. |
Finélly, suppose that X is bounded, i.e. for some M > O,

=] < M <. o for all x ¢ X. For all f ¢ X*, J£] # 0, we have
l£(x)§ = 1 < J£)-fx} for all x such that £(x) # O.

Thus, J£] > & and X* is discrete.

6-2 The * norm on (H)

Let H = {h, = i ¢ 7}, where J is some index set, be a
distinguished‘basis of X. (H) denotes the set of all finite
linear combinations of elements of H.

In this section we shall define a new norm on the elements
of (H). In the next section we shall use this new norm to

establish the relationship between X* and (H).
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The symbol "(x, h)H“ was introduced on page 28.

Definition 2.1. For x € X, ' '
(1) J(x) = {1 €T : (x, )y ¥ 0};
(ii) @(x) is defined by the relation: [x] = P‘m(X);

(1i1) 4(x) = sup {w(h )}, 1(0) = (-=).
ieJix) '
For x ¢ X, J(x) is countable and x = -z:ﬁ (x, hi)Hhi°
ieJ(x)
For y € (H), J(y) is finite. It is easily verified that

for ally, z € (H):

(1) g(ay) = g(y) for all a ¢ F, a # O;
(6.2)

(ii) 2(x + z) [S Max {£(y), t(z)]}

Max {2(y), 2(z)} whenever 2(y) # 1(z).

The two sets of integers {m(hi) : h, € H} and

{{(hi) : h, € H} are identical since for each h, € H,

w(h,) = t(h;). The set {m(hi) : h, € H} is bounded above if
and only if X is a discrete space; it is bounded below if and

only if X is bounded in its norm.

Definition 2.2. The function which assigns to each point y of

(H) the non-negative real number
(6.3) Iy - pt )

will be called the * norm on (H).

Theorem 2.3. (i) Under the *norm (H) has all the defining

]
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propertiesuof a V-space, eXcept possibly when X is unbounded,
in which case (H) may not be complete.

(i1) One of the spaces X and (H), under the *norm, is
bounded if and only if the other is discrete.

(i11) . The set H is a distinguished Hamel basis of (H) under

the *norm.

Proof: Except for the completeness requirement, (i) is easily
proved from (6.2) and (6,3)n; 

(ii) follows from the remark preceding Definition 2.2, and
the fact that the set {{(hi) : b o€ H} is bounded above if and
only if (H) is bounded under the *norm; - is bounded below if
and only if (H) is a discrete space ﬁnder the *norm.

If X is bounded, the completeness of (H) follows from its
discreteness. |

(iii) follows from the fact that for all y € (H) such that
lyl* # 0:
’ Max iw(hi)}

. (h,)
x - 2y) _ ieJ(y) _ Wiy
Iv1 P P ig?)(cy){P
var (0] - Max (gn.q0]
= Max = Max A *)e
igJ(y) P ieJ(y)

6-3 H-inner product and representation theorems

To the notations, definitionsvand hypotheses of the
previous section, we add the assumption that the field of
scalars, F, 1s the field of the real or complex numbers.

E denotes the complex conjugate of a ¢ F.
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Definition 3.1. (i) J(x, v) = J(x) n J(y).
(ii) The scalar valued function, deéfined on X x (H) by
0 if J(x, y) =0 ,

<x, y>, = g (%8 )= (v, h )y 1F J(x, y) #+ 0,
ieJ(x,y)

x ¢ X, vy € (H), will be called the H-inner product on X.

The following properties of the H-inner product are easily
verified: For all u, v ¢ X, ally, z ¢ (H) and all a, B ¢ F:

H

<au, By>H = af<u, y>H;

.<y, z>., = <z, y>H;

<u+v, y+z> ., =<ua, y>, + <v, y>, + <u, 2>, + <y, z>_.

H H H

The analogy with the usual inner product is evident ([7],

H H

p. 242; [19], Part II, p. 80; [36], p. 106). An important dif~
ference is,that the H~inner product depends on H. Indeed, given

two distinct distinguished bases H, and H, of X, if y ¢ (H;) and

1 2

vy ¢ (Hz), then, for all x ¢ X, <x, y> is defined but <x, y>,
1 2

is not; if y ¢ (Hy) n (Hz), then there may exist x ¢ X such

H

that <x, y}H + <x, y>H . To pursue the analogy, we shall

1 2
establish a relationship between the H-inner product and the

bounded linear functionals on X.

An isomorphism between two V—spaces X and Y is a one-to-

one continuous linear operator from all of X to all of Y. An

isometric isomorphism P is an isomorphism such that

l?(x)l = §x}] for all x ¢ X ([7], p. 65).
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Theorem 3.2. There exists an isometric isomorphism Pu between
(H) with its *norm and a subspace of X*; for ally ¢ (H),

?H(Y) = fy is such that

(6.4) fy(x) = <x, y>; for all x ¢ X.

Furthermore, the set ?H(H) is a distinguished Hamel basis for

the subspace 9H((H)) of X*; for £, € ?H((H)),

(6.5) £

1]

(v, hi)Hfhi
ieJ(y)

in the norm of X¥,

Proof: For each fixed y ¢ (H) it is easy to verify that the
mapping defined by (6.4,) is a linear functionral on X. Let PH
be the operator on (H) defined by ?H(Y) = fy. PH is linear

since the H-inner product is linear in y.

]

0.

]

a) If J(x, y) ®, then Ify(x)l

b) If J(x, y) # 9, then
w(x) < w(h;) for all i ¢ J(x),
b

w(h;) < 2(y) for all i ¢ J(y).

Therefore, gp(x) < £(y) and
Be, (0f = 15 40700 L gy e,

¢) Since L(y) is finite, there exists i g J such that

1{y) = L(hi) = m(hi), and

Ie, (b )0 =1 - PL(Y)P—w(hi) = By 140, 0.
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d) If y, z ¢ (H) and y # 2z, there exists j € J such that

(y, hj)H t (z, hj)H and, hence <h Y>H #‘<hj, z>,

j'
Thus,.yH(Y) # ?H(Z)'

a), b), c¢) show that Px is an isometric, and therefore con-
tinuous, operator from (H) with its *norm to X*. d) shows that
?H is one-to-one. |

The latter part of the theorem follows from the linearity

of gy and Theorem 2.3(ii1).

Definition 3.3. A subset A of a V-space is called locally

finite if for every infeger n, there is at most a finite number

of elements of A with norms egqual to Pn.

Lemma 3.4. Let f € X*. If the subset HY of H on which f is
non-zero is bounded and locally finite, then
(1) H' is a finite set;

(ii) there exists Ve € (H) such that ?H(yf) = f.

Proof: (i) Since f is a continuous linear mapping into the
discrete space F, there exists an integer m such that f(x) # O
implies |x} > Pm' Thus, H' is bounded below, bounded above and
locally finite; ﬂence it ' is finite.

(i1) Let

(6.6) Ve = Y £(h?)hv,
' hteH?

For all h ¢ H,
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f(h) = <hl yf>H = ?H(yf)(h)ﬂ

From Theorem 4-4.l, it follows that ?H(yf) s f. .

Theorem 3.5. The operator Py is an isometric isomorphiém be-

tween (H) with its *norm and X* if and only if X is bounded and

H is locally finite.

Proof: If X is bounded and H is locally finite, e;ery subset
HY of H satisfies the hypotheses of Lemma 3.4. Therefore,
py maps (H) onto X=*,

For the converse, suppose that X is unbounded or that H
is not locally finite. Then, for some integer n there exists

an infinite subset H' of H such that for all h' ¢ H':

'hVI Z'an when X is unbounded,
or |jnt]

From Theorem L4L-4.1, there exists f € X* such-that

Pn” when H is not locally finite.

f(h?) = 1 for all h? ¢ H*, £f(h) = O for all h € H\NH',
Should there exist y. € (H) such that c’,H(yf) = £, y; would have

to have the infinite expansion (6.6). This is impossible.

Corollary 3.6. If X is unbounded and H is locally finite, then

P is an isometric isomorphism between (H) with its *norm and
the subspace of X* formed by the continuous linear functionals

which vanish outside of a bounded subset of X.

Corollary 3.7. If X is bounded and admits a locally finite

distinguished basis, then X and X* have the same dimension-.
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The proof follows from Theorems 3.2 and 3.5.

Examples: The spaces (Pk of 3-4 and Q_ of 3-5 are bounded and
admit locally finite distinguished bases. Thus, the spaces
(PE and Q} are equivalent to the spaces of polynomials (6.7)

and (6.8) respectively:

g(h) =0 ’ lgl* = 0,
(6.7) n

g(N) = Eaalkl, lgl* = Pn' @ #0, k< p<n.

. i=p

[ g(u, v) =0 lg l* = 0,
» n i
(6.8) 4 g(u,v) = Z ZOL ,
i=p j=0

In
e}
In
:

L | 1 l§ Z IanJ 0, k

According to (6,5), a continuous linear functional on CPk

is a finifte linear combination of the functionals f
Pn

f (x) = coefficient of A" in the expansion of x(\)

n
in powers of A.

This result was proved directly by H. F. Davis [4], p. 91, for

the space @o"

¢

It was shown in 3-4 that 030 admits as distinguished bases

the sets §_ and J of (3.16), Ch. 3. Consider the continuous

linear functional f defined on §_ by
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f(%) =ian #0 for 0<n <N,

0] for n > N,

The isometric isomorphism §g between (Qo) and CP;_is such that
. 1
N

f@i(f) = z( dn?“'

n=0

The isometric isomorphism ?ﬁ between (J) and (P; is such that
N v
-1
’&'J‘ (f) - z annl
n=0

- where the coefficients Bn' determined from the power series

expansions of the Jn's ([8]), are the solutions of the system:

P B
z ("l)p-i 2p 24 = a2p' P = Ol 11 °eC, [%]I
ico 2% (p-i)t(p+i)t
P B
=1 21+1 .
Z (-l)p . = 0. '
i=0 22P " (p_1) 1 (peiv1)t 2p+l

p =0, 1, """,['I‘I'g—l .

Clearly, in CPO, @@l(f) # }l(f). This inequality reflects the
' o)

dependence of the H-inner product on the distinguished basis H.
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Dual space X¥*, 121 _
"“boundedness and discreteness of, 123
‘isometric isomorphism of - with (H), 127, 129

Equations: see "Solutions of -™
Expansion in terms of, 28
Expansion o6f the Poincaré type, 60
Extension of a basis, 41

Fourier coefficients, series, T4
Functional, 121~
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Hahn-Banach theorem; 121, 122
H-inner product, 126-

(H)
*norm on, 123 _
isometric isomorphism of ~ with X*, 127, 129
Identity

in a V-algebra, 45 '
pseudo-., - in a V-algebra, 46
operator, 80
pseudo-, -in J (X), 94
Inner product: see "H-inner product®
Inverse
in a V-algebra, 47
pseudo-, ~in a V-algebra, L6
(pseudo-) - of an operator on its range, 84
(pseudo-) - of an operator in J (X), 94
see "Solutions of equations™
Isometric isomorphism
definition, 126
between (H) and X*, 127, 129

Linear functionals, 121

representation of continuous, 127, 129
Linearly non~trivial set, 83
Locally finite set, 128

Moment
of a function, 71
space, 72
examples of - spaces, 75.

Non-Archimedean
metric, 7
strongly - metric, 7
Norm '
of an operator, 78
properties of, 1-
range, 17 ‘
*norm, 123
Notational conventions
on P, 31
on = and =, L5

0 relations, 52

o relations, 52

Operators
bounded, 78
boundedness and continuity of, 85, 86
characterization of linear, 88
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definition of linear, 78

inverses: see "Inverse"

spectrum of - in J (X), 94

see "Complete spectral decomposition"

Paley-Wiener theorem, 34,

Parameters, primary and secondary, 52, 53
Poincaré: see "Expansion"

Projections, 102-

Regular element of a V-algebra, 46
pseudo-, 46
Riesz's Lemma, 20

Singular element of a V-algebra, A7
Solutions of equations, 105~

Xz'= y in V-algebras, 105-
Xz = e in V-algebras, 105-
Ax =y in V-spaces, 111-, 115-

definition of pseudo--, 111
Spectrum, 49
Spherical completeness, 4/
Subspace -

generated by A, (A), 22

closed - generated by A, [A], 22
*norm, 123-

Trivial set, 35
Trivial valuation, 7 |

Uniform Boundedness Principle, 86, 87
Usual topology on R and C, 12
Usual valuation on R and C, 12

V-algebra, definition of, 45
V-space
definition, 30
discrete, 30
of bounded operators, &(z, Y), &(X), 80- _
of bounded linear operators, J(z, Y), J(X), 83-
Valued space :
definition of, 6
pseudo- -, 6
strongly (pseudo-)-, 6

Zero-dimensional space, 11



