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ABSTRACT

In the study of many engineering systemsinvolving non-
linear elements such as a saturating inductor in an electrical
circuit or a hard spring in a mech;nical system, we face the
problem of solving the equation

3

X + 2ex + x + ux” = 0

which does not have an exacﬂ analytical solution. Because a
consistent framework is desirable in the course of the stud&,
we can assume that the initial conditions are x(0) = 1 and
x(0) = O without loss of generality. This equation is studied
in detail by using numerical solutions obtained from a digital
computer.

When € and p are small, classical methods such as the
method of variation of parameters and averaging methods based on -
residuals prévide analytical approximations to the equation and
enable the engineer to gain useful insight into the system.
However, when € and p are not small, these classical methods fail
to yield acceptable results because they are all based on the-
assumption that the equation is quasi-linear. Therefore, £wo new
analytical methods, namely: +the parabolic phase approximation
and the correction term approximation, are developed according to
whetﬁer £<1ore 21, and are proven to be applicable for

values of € and p far beyond the 1limit of classical methods.
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APPROXIMATIONS TO THE FREE RESPONSE OF .
A DAMPED NON-LINEAR SYSTEM

1. INTRODUCTION

1.1 Mathematical Models

In the study or analysis of physical systems, it is
common practice to represent them by mathematical models. In
order to make the méthematical models more tractable, certain
simplifying assumptions are usually made. For example, the
differential equations evolved are usually linearized, so that
they may be solved by well established techniques used for
linear differential equations., Most physical systems, howevep,
Behave in a manner which is far from 1inear,-for.example9 a
triode aﬁplifier with large signal inputs or a mass, restrained
by a non-linear spring, oscillating with lafge amplitudes.
Therefore, non~linear analysis is required in order to yield

results closer to realityo'

1.2 Analytical Approximations

Exact solutions to non-linear differential equations.
are usually difficult, if not impossible, to find in closed form,
Techniéues for solving the equations vary according to the types
of ~equations involved, and are very limited.

With the aid of digital computers, numerical solutions,
to élmost any degree of accuracy,.to any non-linear diffepenm
tial equations are available. Using analogue computers, solu=

tions to ordinary differential equations can be obtained. The
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solutions obtained from these computers, however, do not furnish
all the information concerning the physical éystem of interest,
i.e, they usually reveal only the behaviour ofAthe system under
certain particulér conditions. Exhaustive tests are needed if
some insight into the system is required, and an engineer caﬁnot_
necessarily predict from them how the system will behave‘if
some parameters in the system are changed. The prqblem of cost
and accessibility is another disadvantage in using computers as
a means to solve a non-linear differential equation. For fhese
reasons, analytical approximations to the solutions Qf'ordinary
non-linear differential equations are developed. These approxi-
mations are obtained in algebraic or transcendental form without
the necessity of introducing numerical values for parameters or
initial conditions during the process. Though some degrée of
accuracy is sacrificed, an over-all insight into the system is
often obtained at a low cost. For instance, the dependence of
fhe solution on a certain parameter may be explicit, thus
yielding useful information for system design. A few.well
estdblished approximate analytical methods(l) are

(a) Perturbation method,

(b) Variation of parameters,

(c) Averaging methods based on residuals, and

(d) Principle of harmonic balance.
Though these methods are developed to cover a very large class of
non-linear differential equations, they have a common weakness
in that they are incapable of dealing with equations exhibiting
gross non-linearitiese This limitation is due to the general
. approach to solving the equation, namely, making the grossly non-

linear equation only slightly non-linear, or quasi-linear, in an



attempt to éet more insight into the behaviour of the‘systemy
using linear theorys In order to break through this limitation,
a bolder approach is in ordef, i.e. a direct attack on the non-
linear equation in question., To this end, a study, for tne
purpose of.obtaining approximate solutions to a centain tjpe of
grossly'non?linear equatiqn‘which arises from many engineering

systems, was undertaken.

1.3 Derivation of the System Eqguation

A large class of physical systems contain a non-linear
element whose characteristic is represented by an odd cubic
polynomial with positive coefficients, for example, a hard
spring characterized by

F(x) = a,x + a3x3

vhere F(x) 3 restoring force in spring,

X

il

displacement,

andial and a; are positive coefficients. This odd cubic
polynomial is often an approximation to a grosser non-linearity
such as an odd polynomial of‘higher ordér, ioeo,

k =n

F(x) = E akxk, n > 3,

k odd

The general shapes of this odd polynomial and the "odd cubic"
characteristic are shown in Fig. 1.1l.
Now consider the following systems containing "odd cubic"

elements:
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(a) RLC circuit.

The parallel RLC circuit in Fig. 1.2 consists of a
linear resistor R, a linear capacitor C, and an inductor which
is non-linear because of saturation. Neglecting hysteresis,
the inductor current can be approximated by
i, = a,A + a 13

L 1 3

vhere A = flux linkage, and a, and ay are positive coefficients.

1
Applying Kirchhoff's current law, we obtain

v 3 *
R + all + aBA =0

Cv +
where v is the voltage across the parallel elements. Since, by

. Faraday's law, v = i, this equation can be re-written as

LX) -]--l 3_
CA + 5A+ a A + ajh” = 0 (1.1)

which is, then, the equation of the RLC circuit.
(b) Hard spring with pure viscous damping.

Fig. 1.3(a) shows a simple mechanical system involving
a mass sliding on a surface with pure viscous friction and res-

trained by a hard spring whose characteristic is given by

3
F = blx + b3x

where F = restoring force in spring, and bl and b3 are positive

coefficients. From the free-body diagram shown in Fig. 1.3(b),

de

e
Q—'IQ-'
<
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we obtain

F + Bx = -MX

where M = mass,

and B = coefficient of viscous friction, and hence

Mi + Bk + by x + b3x3 - 0. (1.2)

(¢c) Torsional pendulum with pure viscous damping.

A simple torsional pendulum is illustrated in Fig. 1.4.
It consists of a disc with moment of inertia J, a support with
viscous frictional coefficient D, and a non-linear torsion bar

whose characteristic is given by

3

T:Clg'i-cg

3
where T = restoring torque in the torsion bar,

© = angular deflection,
and cq and c,y are positive coefficients. Considerationwof/
torques gives

T + DO = —JO

and the system equation becomes

36 + D& + ¢,0 + 0303 - 0. (1.3)

The systems described above are, in fact, analogous to

each other, because their equations all have the following form
a§+BSr+'>/y+8y3=0 | (1.4)

where o corresponds to C, M, or J,

B corresponds to % s, B, or D,

jV corresponds to aq, bl’ or ¢,



8 corresponds to aqy b3, or Cg,

and y corresponds to @, x, or 0.

Thus, a solution to equation (1.4) will pro-vide a solution to
all the above systems. If both the terms By and 8y3 are rela-—
tively small, a classical method based on variation of para-
meters, such as the Kryloff-Bogoliuboff method, gives satis-
(2),(3)

factory analytical approximate solutions. However, if
either By or 8y3 is large, this method fails to yield good
results. A detailed study of the equation where By and 8y3

are not negligible and a direct approach to finding analytical

approximate solutions was therefore attempted.



2, STUDY OF THE SYSTEM EQUATION

2.1 Normalization

Equation (1.4) ostensibly contains four arbitrary
coefficients, which make it difficult to study. However, two
of these coefficients can be made implicit if the following
normalization is performed. Dividing through by o, equation (1.4)

can be rewritten as

3

Yy +ay + by +cy’ =0 (2.1)

where a = B/, b =7/oc, and c =8/oc. Letting T = Jb t, we

obtain
. _ dy
Y = 3t
- dy 4T
T dar " dt
=.Jb y!

v - 4y

where y!' = aT’ "

and &':d—%
dt

— b y" ’
d2 ~
where y" = —~% « Substituting y' and y" into equation (2.1),
daT
we have
by" +a Jb y' + by + cy3 =0,

or | y" + 2 y' +y + % y~o = 0.
b



10
In order to facilitate subsequent work, this equation is re-

written in the form

y" + 2ey' +y + pyB =0 (2.2)

where € = 9

and 7

1l
c'lo

Moreover, since a consistent framework is desirable, this
equation is assumed to have the following initial conditionss
y'(O) o 19 yV(O) = 0,

To show that this assumption does not affect the generality of

the approach, let the initial conditions be
*
y(0) = Q5 y'(0) = 0.

Replacing y by x = 0 yields
)

X(O) e 19 XV(O) = 09
and equation (2.2) becomes

Qx" + 260 x' + Q x +uQ > x° =0

¥
y'(0) is assumed to be zero in this work for physical reasons.

For example, in the study of the sliding mass referred to in 1.3,
one usually displaces it from its neutral position by the

initial amount of Qng then releases it. Very seldom dces one
incorporate an initial velocity because it is difficult to obtain
accurately. Moreover, in the case where the system is

oscillatory, one can arbitrarily fix t = O at the peak of the
oscillbtion, i.e. y'(0) = 0.
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or x" + 2ex' + x + onz x> = o,

x(0) =1, x'(0) =0 (2.3)

A comparison between equations (2.2) and (2.3) reveals that

the substitution of x = %— leads to an equation with a dif-
0

ferent coefficient in the non-linear term if Q0 £ 1; but since
the method to be used for solving the equation is not altered

by the values of this coefficient, no generality is lost,

2.2 Phase-plane Analysis

Consider the equation

X + 2ex + X + pr = 0,

x(0) =1, x(0) = 0. (2.4)
If u = 0, it degenerates to the linear equation
X + 2ex +x =0,

x(0) =1, x(0) = 0. (2.5)

which will be referred to as the complementary linear equation
of (2.4). Exact solutions of this equatiofl depend on the values

*
of € , namely, if

(a) €< 1 (underdamped), then

X = —L e—et cos ( J1 - ezt + ¢o)'
1 - 52 '
(2.6)

* : '
Because the system to be considered contains only passive

elements, i.e. no energy sources, the value of g will either be
zero or positives
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(b) & =1 (critically damped), then

x = (1+3) et | (2.7)

(¢c) & >1 (over-damped), then

x - % (1 + € ) e(—s+-J52— 1)t
22 -1
/2
+% (1 + £ ) e(—e-e - 1)t . (2.8)
' €2+ 1

If p # 0, solutions are also dependent on the damping factor €.

For example, if

(a) e = O (conservative system), then equation (2.4) becomes

X 4+ x + pr =0, x(0) =1, x(0) = 0.

The solution is the Jacobian elliptic cosine

X = Cn (k,mt)(4)

2
where k = —£& 9
2(1+p)
and w2 =1 + pe

(b) €>0 (non-conservative system), then no exact solutions
to equation (2.4) are available in closed form. Though the
solutions are similar to those of equation (2.5), they exhibit
a greater number of oscillations in the same length of time.

In order to clarify the picture, a phase-plane analysis is most
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s phase=plane diagrams of

helpful. Using the method of isoclines(s)

equations (2.4) and (2.5), as shown in Fig. 2.1, are obtained. 1In
Fig. 2.1(a) where € <1, the two trajectories suggest damped osci-
llations. In the case where p>0, the period of oscillation is
shorter because x decreases with a greater slope. In Fig. 2.1(b)
where e€=1, the trajectory for pu=0 represents a solution without
"overshoot", i.e. X never going negative, while trajectories for

u >0 show one or more overshoots, the number of which increases as

L increaseses Similar results are observed in Fig,. 241(c) where

€e>1l. If under—~damping and over-damping are defined respectively

by the presence and absence of overshoots, one sees, therefore, that
coﬁsideration of € alone is not sufficient to predict whether the
system is under—damped or over-damped, as in the linear case, for

the value of p is also an important factor. An extensive investi-
gation of this aspect was undertaken, using the digital computer

to provide numerical solutions.* The result, as illustrated in Fig.
2.2, is a curve in the e-p plane showing regions where the system

has overshoot and where it has nbto Contrary to linear theory, over-
shoots may be dbserved for e>1, if p is high enoughs This result is
not surprising as equivalent linearization also predicts possible
overshootse

2.3 Investigations in the Time—domain

The independent variable, time, is implicit in phase-plane
diagrams, and solutions to equation (2.4) are, therefore, not
readily available as functions of time. Using the method of equi-

(6)

valent linearization and numerical solutions obtained from the

digital computer, the effect of p on the solution is as follows:

* » -
See Appendix A for computational details.
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(a) 0<e <1

Fig. 2.3 shows a typical example in this case. A

numerical solution to the equation
% +0.4% +x +2x° =0, x(0) =1, x(0) =0 (2.9)

is displayed together with the solution to its complementary

linear equation, ise.

X +0.4%x +x = 0, x(0) =1, x(0) =0 (2410)

Any difference between these two curves reflects the effect of

the nonllinear terms The solution to equation (2.10) is

X = 1 __ e_O‘2t cos (JO.96t - ¢ )
0.96 : °

1 0.
0.96

an envelope S — e—O'Zt and a phése of JO.96 t - ¢o' Although
0.96

*

n

where ¢o = tan « It represents a damped sinusoid having

the solution to equation (2.9) resembles a damped sinusoid, its
1 e-o o‘2_t

~/0.96

phase increases in a non-linear manner, i.e. the phase is

amplitude decays at a slower rate than and its

retarded as time increases.

Equivalent linearization of equation (2.4), based on

variation of parameters(6), yields
.o L] 3 A2 2
X + 2ex + (1 + —Eg—) x =0 (2411)
where A = =A
€
= amplitude.

Here, the value of A at t = O must not be taken as x(0), for it
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represents the envelope of the solution and is always greater
than x(0), though in most cases the difference is small. Using
linear theory, the effect of p on the frequency is evident,
This equation represents an oscillation with both amplitude and
frequency varying with respect to time. The amplitude A decays
exponentially according to e—Et, and the frequency similarly
decreases as the amplitude decays with increasing time. As

time progresses, A ultimately becomes small enough so that

QE%E— 1s negligible compared to unity. Then,'the frequency
becomes effectively /1 - 52 s which is the frequency of oscill-
ation of the complementary linear equation of equation (2.4).
Therefore, equation (2.4) degenerates to its complementary

linear equation as time increases.
(b) e 21

A typical example in this case is illustrated in Fig., 2.4

% 4 2.4% +x + Tx> = 0, x(0) = 1, x(0) = 0.

Although this equation has an over-damped complementary linear
equation, an overshoot is observed in the solution. The
presence of the non-linear term is responsible for this over-
shoot as already shown in the phase-plane analysis. Consisten£
results are also predicted from equivalent linearization.

Consider now the equivalent linear equation (2.11) where
€ 21. If p has a value such that |

2
1 + 2%&_ > e,

oscillatory solutions may be obtained. It must be noted, however,
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that this inequality only predicts qualitatively how overshoots

may possibly occur, and is not necessarily capable of yielding
accurate results, for small values of € and p have been assumed
in the equivalent linearization. If accurate results are

required, then the curve in Fig. 2.2 may be used.

2.4 Conclusions

In conclusion, the general behaviour of thé system has
been studied, using the digital computer and the method of
phase plane analysise. Solutions to the non-linear equation are
compared with solutions to its complementary linear equation.
In damped oscillatory systems, the amplitude of the solution
decreases more slowly in the non-linear case, and its
frequency, being initially greater, approaches that of the
complementary linear equation as time progresses. In the case
where the complementary linear equation is critically or over-
damped, the presence of the non-linear term may lead to over-
shoots.

Because the system is damped, x will eventually disappear,
and the non-linear term pr will become insignificant compared
to x, when x bécomes small. Hence, an approach to finding the
analytical solution is suggested by neglecting the non-linear

term at a point where x has become sufficiently small.
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3. APPROXIMATE SOLUTIONS TO THE SYSTEM EQUATION

3.1 Motivation

Consider equation (2.4)
X + 2ex + X + px3 =0, x(0) =1, x(0) = O.

As mentioned previously, the solution to this equation is not
available in closed form. Thérefore, attempts were made to
approximate the solution.

In the case where € € 1, the method of Kryloff and

*
Bogoliuboff (3) was used. From Appendix B, the solution is given

by

() = e €% cos (1 + l!si)t, (3.1)

where g, p <K 1. .

By comparison with

x(t) e 7Y o (J1 - 52t + ¢o) (3.2)

l - ¢

which is the solution to the complementary linear equation (2.4),

one observes that solution (3.1) cannot be extended to higher

values of € and p, because

(a) contrary to the result in the last chapter, the frequency
in (3.1) remains constant as time progressés, and

(b) +this frequency approaches unity if p becomes zero, which

does not agree with (3.2) if € is not negligible.

For large values of £ and p, therefore, a new method must be

*
This method will hereafter be referred to as the K-B method.
See Appendix B.
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In the case where € > 1, the K-B method is no longer

applicable because the solution is not oscillatory in nature.

Here, the Ritz method(7), which is an averaging method based

on residuals is used in conjunction with initial condition

matching.

Since the solution of interest is either monotonically

decreasing or exhibits one overshoot, the approximate solution is

assumed to be of the following form:

where A and B are constants and both a and b are different

negative numbers.

Substituting this solution into the original

differential equation, we have the residual given by

O(t) =% + 2% + % +p>"c’3
= (a®+ 2ea+1)Ae® + (b2+ 2eb+1)BeP b4 pae2?t
+ lL]3393b1:+ 3ILA2Be(2a+b)t+ BpABze(a+2b)t

The Ritz criteria are

[0 ¢]
o(+)e?® at = o,
0

oo
and o (+)eP? at

fl
o

0

Now, from the initial conditions X(0) = 1, X(0) = 0, we also

have

A+B=1

a A+bB=20

Hence we obtain four equations in four unknowns.

After integrating
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and eliminating A and B from these equations, we have

1. Z2(a%+ 2ca+l) + —2-(b%+ 2eb+l) ——EEZ-—-
¢ 3a a + Z2ea+ -+ a+b € - )
4a(a=b)
+ ua3 .+ 3ub2a _ 3ua2b _0
(3b+a) (a=b)Z  (3a+4b)(a-b)?  2(a+b)(a=b)?

3
-8, 2 b 2 a
2, zggb + 2eb+l) + ;:B(a + 2ea+l) - Z;%;:;;g

+ ub3 + 3ua2b _ 3uab2
(3a+b) (a=b)%  (3b+a)(a=b)?  2(a+b)(a=b)?

=O.

Without the aid of a digital computer, solving the above two
equations simultaneously is very laborious. Therefore, from
an engineer's point of view, this method is highly impractical.

As a result, two new approximating methods were developed,
depending on whether € is less than unity or greater than
unity. The rest of this work will be devoted to the development

of these methods.

3.2. Case I - <1

3:.2,1 Choice of Approximant

In this case, where € < 1, both phase-plane analjsis and
computer solutions from Sections (2.2) and (2.3) have indicated
oscillatory solutions resembling damped.sinusoids. The phase
has also been showﬁ to increase non-linearly with time. The

approximant, therefore, will assume the form

x(t) = A(t) cos () (t),
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where A(%1) amplitude,

and ()(t) = phase.

Consider equation (2.4) with € < 1. Because the system is
damped, x will eventually vanish and the non-linear term

px3 will become negligible compared to x, when x is suf-
ficiently small. Let this point of negligibility occur at

t =t . Beyond this point, then, equation (2.4) essentially
degenerates to its complementary linear equation (2.5) and will

be treated as such. Therefore, the approximant will have the

following form:

for 0 <t Lt x(t) = A(t) cos QO)(t) (3.3)

P e_st cos ( J1 - ezt + ¢0)

(3.4)

for t?tm x(t)

where P and ¢0 are constants.

L and @ #£ tan~ 1 £
0
1 - ¢ 1 - ¢

Here, it must be noted that P £
as they are in equation (2.6), because initial conditions for
(3.3) must be adjusted to match (3.2) at t . And so, the
problem is now to find the functions A(t) and ()(t), and the

constants P, ¢o’ and t_.

3,2.2 The Angle Criterion and the Determination of tm

In order to determine tm, some information about the
point at which pr may be neglected is necessary. Consider,
again, the phase-plane diagram. Usually the first step in thé
construction of the phase-plane diagram is the construction of
isoclines, i.e. curves of constant slope in the x-X plane.

Therefore, if two systems have almost identical sets of
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isoclines, they must have almost the same phase-trajectories.

Furthermore, if two systems have almost identical phase-
trajectories, it is reasonable to assume that their soluﬁions
as functions of time are almost identical. Hence a measure of
"closeness" between the isoclines of two systems may be regarded
as a measure of how close their solutions are to each other,
Now, consider the two systems represented by the
equations (2.4) and (2.5). Typical isoclines of the same slope
m for these systems are shown in Fig. 3.1. In order to have a
measure of "closeness" between these isoclines, a circle of
radius R is constructed, intersecting the linear isocline at
point P. Through P, a vertical straight line is drawn, inter-
secting the non-linear isocline at point Q. Then, the angle
ESO between the lines OP and 0Q can be regarded as a measure of
"closeness" between the two isoclines. If a slope different
from m is chosen, and the same construction performed, the
resulting angle 89 may be different. However, the maximum

value (Sg)max of these angles, as m varies, is a function of

*

uRZ. In particular, (éSG)max decreases as pRz decreases, but

*
since the amplitude A of the solution follows R quite closely,
( 89)ma

pA2 can also be regarded as a measure of "closeness" between the

X decreases as qu decreases. Therefore, the value of
two isoclines, or a measure of the effect of the non-linear term.
For example, if p,Az = 0.2, (Sg)max is approximately 30, or
0.05 radian. Therefore, as the amplitude A decays from its

2

initial value and reaches a value such that pA“ = 0.2, the two

sets of isoclines may be considered coincident for all Practical

¥
See Appendix C.
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7[40
<

N
/;x Linear isocline of
slope m

P —-X
\\ y = m+2e

\~S for equation (2.4)

Non-linear isocline of slope m

I
y = :ﬁigf— s for equation (2.5)

Fige. 3.1 Difference between the linear and non-linear
isoclines of the same slope, m
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purposes. This point then determines a point at which the term

ux3 may be neglected. Hence tm may be chosen such that
2
plas)] = 0.2,

It must be remembered that this relation is an arbitrary
criterion based on the consideration of the angle (SG)m&x, aﬁd
it serves only the purpose of obtaining a point where the non-
linear equation can be replaced by the linear ome. In choosing
such a point of transistion, how the value of pAz varies with

time must also be considered.

)V///’*Maximum

: /’//,euoderate pAz

small pAz

Effect of non-linear term, pAz

o 4

.~0 tmz ————epe im0, b ' ﬁli”

Fig. 3.2 Effect of the Non-linear Term

Fig. 3.2 shows the general shape of the value of pAz

as time varies. Since the amplitude A decays almost exponentially,

as mentioned before, qu drops very quickly at the beginning

and approaches zero asymptotically as time increases. This<
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- curve also represents the effect of the non-linear term. In
order to show that consideration of the value of pAz alone

may not necessarily lead to a wise choice of the point of
transition from the non-linear equation to a linear one,; the
following two choices of such a point are compared. First,

let the transition occur at t =t ;. The value of pAz is

ml
small as shown in Fig. 3.2, indicating that the equation is
essentially linear for t = tm = tmlg and therefore the "linear"

part of the approximant, i.e. equation (3.4):

for >t %(4) =P e % cos (/1 - e%t +6,),

is very close to the exact solution. As a second choice lef

the transition occur much earlier, at tm =1t The value of

m2°
pAZ is now larger, and the "linear" part of the approximant
is therefore not as good as the first choice. This does not
necessarily mean, however, that the second choice is poorer,

for it may yield a better "non-linear" part of the approximant,

i.e. equation (3.3):
for 0<t Lt %(t) = A(t) Cos Q)(t).

In fact, a better "non-linear" part is usually expected

because its range of approximation is now greatl& reduced. As

a result;, one must consider a compromise in choosing the point
tm’ so that both the "linear" and "non-linear" parts of the
;pproximant are reasonably accurate. To this end, one must
choose tm as small as possible and at the same time, avoid an
unduly large value of pEA(tm)ng Using Galerkin's method, which

is an averaging method based on residuals(8)9 it seems that the
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value of tm may be optimized in the sense that the integral
@
2
0

is a minimum, where O (t) = % + 2eX + X + p%? However,
this is impractical because (a) the functions A(t) and ()t)
are not known, and (b) even if they are known, solving the

set of equations

oD
2 2 _
=D O"(t) dt =0
0
@
2
5%— o2 (1) at = O
[0}
0
Q0

I
@)

2
Et— o (t) 4t
m
0
will be a formidable task due to the presence of the non-linear
term. Therefore, experimental results are used to obtain an

empirical criterion for choosing an acceptable tm. For

example, numerical solutions of the equation

er

% + 0.4% +x + px° =0, x(0) =1, x(0) =0

with various values of p have indicated that the phase-retard-
ation becomes negligible when'uA2 = 0.2, This means that the
equation behaves practically like -a linear one when pAz:: 0.2,

and therefore tm can be chosen such that

- 2 |
nja(t )] =o.2. (3.5)
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From this empirical criterion, as p becomes larger, A(tm)

becomes smaller, yielding a greater tm. This is reasonable
because with a larger p, the non-linear term pXB must take

a longer time to become negligible compared to x. It must also
be noted here that the relation (3.5) is obtained empirically
with € = 0;2. If equations with a larger € are considered,
however, a different empirical criterion may be obtained. In
fact, study of the numerical solution of the equation

X + 0.8 x +x + px3 =0, x(0) =1, x(0) =0

has revealed that the phase-retardation becomes negligible at
tm given by

Q[A(tm)]2 = 0.4.

From Fig. 3.2, this indicates that the effect of the non-linear
term is greater at tm’ but it should be noted that a larger €
results in a faster decay of the amplitude A. Because the
effect of the non-linear term varies as A2, this means that

pr becomes negligible compared to x in a much shorter time
interval. Therefore it is conceivable to relax the criterion.
Many examples with various values of € have been solved
numericaily and the result has suggested that this criterion

can be assumed to depend on € in the following linear manner:
2 e '
place )] =5 . (3.6)

Note that this relation is only an empirical criterion to be
used as a "rule of thumb" for choosing tm wisely, and 1is not
necessarily the best criterion, if one exists at all. Now, the

next step is to evaluate tm, using this criterion.
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Although this criterion gives a value of A(tm) when €
and p are specified, it does not provide the value of tm
directly. It is necessary to find a relationship between

A(tm) and t . Again, consider equation (2.4)

X + 2eX 4+ x + pr =0, x(0) =1, x(0) =o0.

It has been shown earlier in syction 2.3(a) that the envelope
A(t) of the solution decreases at a slower rate with 7! £ 0
than with p = 0O, as illustrated in Fig. 3.3 by curves I and
II. A horizontal line is drawn through A(t) = A(tm), inter-
secting curves I and II at F and G respectively. Therefore,
the abscissa for G is tm’ and if the abscissa for F is denoted

by t_ , we have

mo

M) = =L o

1 - ¢

which gives : :
b, = :% log, [Jl - g2 A(tm)] .

Letting to be the interval between F and G, then

t =+t + 1t

m mo (¢}
= _—i-' 10geldl - €2 A(tm)] + too (3-7)

Hence the problem becomes finding to in terms of A(tm), p and €,
which are all the known quantities., Here, it may seem that
the introduction of to does not help in solving the problem
at all, because the original problem was to find tm also in
terms of these three known quantities. But this is not the

case, because by finding to’ one is looking only for that part
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A(t)
[1
I. u#0
N G II. p=0
A(ty) F
tm
0 t
= = —
t t
mo [0}

Fig. 3.3 Envelope of the solution to equation (2.4) ia.ee,

X + 2ex + x + px3 =0

R | e=0.2 | o

p=3

1 L 3 O’
«8

o6

o4

1
v } }

.8 .6 .4 .2 0

—— A(tm)

Figs 3.4 Dependence of to on A(tm)
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of tm due to the non-linear term, i.e. only the effect of the
non—-linear term on the envelope. !

The approach in finding to is to investigate how to
depends on the three quantities A(tm), p and € respectively.
Here, experimental results are again used. PFirst, the

dependence of to on A(tm) is illustrated by Fig. 3.4, in which

- the numerical solutions to the equations
3€+Oo4}'{+X=O, X(O):l, }.((O)=O

and X + 04 X + X + 3x3

=0, x(0) =1, x(0) =0

Il

‘ *
are used. As A(tm) decreases from its initial value, to

increases fairly linearly and reaches a maximum at A(tm) = 0,

Hence we have

t e 1 - A(tm) (3.8)

Secondly, in order to reveal the dependence of to on p, the

numerical solutions to the equation
X + 0.4 % +x +px° =0, x(0) =1, x(0) =0

are shown in Fig. 3,5(a) as p varies from O to 3 in increments
of 1;0: A fixed vaiue of A(tm) is chosen, and values of to’
corresponding to particular values of p are found. If to

is now plotted against p, a straight line is obtained, as in

Fig. 3.5(bH). Thus, to varies approximately linearly as u, or

tox 28 (309)

The initial values of the envelopes are assumed to be unity
here for the purpose of finding an approximation. Their true
values, however, are greater than unity.



A(t)

1.07
. A(t) = 1 e"02% for pu=0
] 0.96 .
1 u=1.0
! p=2.0
=3.0
0.5%
A(t )
m
R
0 2 4 | 6 8 10 12
tmO Vto‘-
-tp-—
(a)
t
o
T+
i €==0.2.

Fig. 3.5 Dependence of t, on p
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Now, the dependence of to on £ can be seen from the

numerical solutions to the equation
% + 2k +x +3x°0 =0, x(0) =1, %x(0) =0

as € varies f?om 0O to 0.9. Corresponding values of to’ as

€ increasesy are obtained with A(tm) fixed, for example, at
0.4, Then to ié plotted against € as in Fig. 3.6. The curve
obtained resembles a hyperbola, suggesting that to varies

inversely as €y or

% oc% . - (3.10)

Therefore, from equations (3.8), (3.9) and (3.10), we have

—k Hl:l B A(tm)]

0 €

t

where k = constant. From numerous examples with various values

1.5¢

Fige 346 Dependence of to on €
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of ¢, p and A(tm), k is empirically found to be about 1/10.

We then arrive at

t = “[1 _ A(tm)] , (3.11)
0 10 ¢ '

which enables us to calculate t_  when e, p, and A(tm) are known.,

Hence, from equation (3.7), we have

- A(t
t == % 1o_ge[/1 _ g2 A(tm)] + u[l - m)] (3.12)

10 ¢

Note that t, is alvays positive because both e and A(tm) are
less than unitya.

In short, tm can be calculated from equations (3.6) and
(3.11) when £ and p are specified. Equation (3.6) is an
arBitrary criterion based on the consideration of the angle
(Sg)max between the linear and non—linear iéoclines in the
phase-planey and equation (3.11) is obtained empirically using
numerical solutions obtained on the digital computer. It must
also be remembered that the tm thus calculated is not necessarily
an optimal choice of the point of transition from the non-
linear equation to the linear one, but rather, is a judicious
choice of such a point for the purpose of approximating the

exact solution.

3,203 Determination of A(t) and QNt)

In the determination of the amplitude function A(t),
consider first the amplitude of the solution to the comple-

mentary linear equation, i.e.

X +2x +x =0, x(0) =1, x(0) =0,
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~which is the case for p = O, The amplitude A(t) of the

solution is given by
A(t) = === ¢ o

In the case where p £ 0, graphs such as Fig. 3.5(a) have
shown that the amplitude A(t) also resembles an exponential
but decreases at a slower rate. As suggested by Tuttle,(13)

A(t) can assume the following form:

where Ao and p are constants.
Since A(O) is assumed to be unity as mentioned previously,

Ao = 1, and therefore

A(t) = ¢ PY | ‘ (3.13)

But at the point where the non-linear term becomes negligible,

t =1t . Hence
, m

A(t ) =e m

‘or P = —(1/tm)loge A(tm) (3.14)

Note that p is always positive fof A(tm) less than 1, "~ Having =
‘calculated tm and A(tm) from equations (3.6) and (3.12), p is
now easily obtained, and equation (3.13) becomes

: 1ogeA(tm)
A(t) = exp |- T v

m
S e B . e (3015)
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The next step is to determine the phase function ()(t)t
Previous study of the equation with p % O has revealed fhat
the phase increases in a non-linear manner, or the frequency
of oscillation varies with timee* As a first approximation,
we consider that the frequency varies linearly with time and

therefore

L[1)] = 20,t +w | (3.16)

where m2 and wl are constant,

Integrating oncey we have
) .
Q) = 0,6 + 0t + e (3.17)

where wo = constant.
To find @_, ®,, and @,, consider equation (3.3) which now
becomes

~ _ —P't 2
X(t) = e cos (wo + 0t + 0, ) .

Since X = 1 at t = 0, we have

1l = cos @

Therefore ® = 0. (3.18)

In. order to find ., and ©

1 59 the method used by Soudack(g) is

In the linear case, the frequency of oscillation is constant,
and equals the first derivative of the phase wer.t. time.
Therefore, as a generalization to the non-linear casey, the
first time derivative of the phase is referred to as the
frequency of oscillation,
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qdoptedo They are obtained by considering that both the

phase and the frequency in the approximants (3.3) and (3.4)
should be matched at the point of transition. This means

that at t = tm’

Q) = J/1-¢® ¢ +8 ,

and ; fi(tm) 2

It
—

1
m
o

From equations (3.16), and (3.17), we have

| 2 p

@ ot +e,t S =1 -t 4 ¢o R (3.17a)

and ®., + 20 4 = /1 - g2 (3.16a)
1 2'm ° °
From the last equation, we then obtain
1 - 82 - ml
0, = — (3.19)
2 2 4
m

Since w0, is now expressed explicitly in terms of @y 9 all that
remains to do is to determine @y independently. But before

we do so, let us see whether the parameters p and @, determined

2
are consistent with the case where € —»= 0, The limiting
vaiues for both p and ©, are expected to be zero, beéause if
€ = 0, we have (a) A(t) =1 and (b) frequency = constant,
i.e. no phase retardation. ‘Let us first consider equations
(3:6) and (3.12) as € —=0. We have

; m /£ _
lim A(tm) = lim 5 = 0,

e—=0 e—=0

and

10e

lim ¢, = 1lim {«_ % loge[“/l - g2 A(tm)] + H[l - A(tm)J

=0 g—=0
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= @0 o

These results could also be derived from the following arguments
As € becomes smaller, the envelope will decrease at a slower
rate and it will take longer time to reach the point of
transition to the linear equation, i.e. tm will become larger.
Eventually, as € gets very close to zero, tm will approach
infinity and A(tm) will approach zero, for the envelope is

always decreasing so long as € £ 0. Now, from equation (3.14),

S . 1
lim p = 1im [— e loge A(tm)]
g€ —» 0 e—=0 " m
81_'1—1110 log, A(t )
lim tm
e—0

- lim loge A(tm) lim ¢
g =0 e >0

bs.l;i.ino[l°geA(tm) - 1o

= 1lim ¢

g—0

= 0 o

Finally, from equation (3.19)

1 - 82 - ®

. . 1
lim ©, = 1im
€—0 2 e+=0y t =0 2tm
m .
=0,

provided w0y # c0 . However, we are guaranteed that @y £ oo,
for if it isy we have an infinite frequency, which is not
likely to occur in the physical systems with which we are
dealing. Thus, the limiting values for both o &nd’p are

consistent,
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Soudack then proposed a method of finding @y by con-

sidering these limits as a-«-Oa(g)- As €—=0, the differential °

equation becomes

R+x+px’ =0, x(0) =1, x(0) =0, (3.20)

Nov, since t -@, P — 0, and &, —= 0, the approximant (3.3)

degenerates to the form

x(t) = cos 0t

and the frequency of oscillation is ©;. The exact solution to

(3.20) is, however, given by the Jacobian elliptic cosine
x(t) = Cn (k, ot) (4)

where k° = —t
' : 2(1 + p)

and ©o=al+p o

From books of tables, for example, Jahnke and Emde,(lo) the
quarter period K(k) of the oscillation can be found. Now 01
can be chosen such that the degeneraté sinusoidal case has

this same quarter period. Since
K(k)=0%=¢1+p ;
] '-T )
and | 0.7 = %

for the cosine to be zero at %., we require

@, = Kk 1 +u . (3021)
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To complete the proof of consistency of the solution in
the degenerate cases, we need to consider the limiting cases
of the functions A(t) and ()(t) as p —— 0., In order to do

~this, the angle criterion must be re-examined:. From equation

(3.6),
A(tm) = /—;—P’ 9

which is not valid for very small p, because then the value
of A(tm) is very much higher than 1. However, since A(tm)
is the amplitude at the point of transition to a linear

solution, and this point occurs at t = 0 if p?—a—O, we have
lim  A(t_) = A(0) = 1,
m
p——20
Now, from equation (3.11), since

1= acs)]

lim to = lim
p——0 p—0, A(t )—1 10e
= 0,

the amplitude curve coincides with that of the linear solu-
tion., As a result; the amplitude function A(t) of the non-
linear solution degenerates properly to the amplituae of the
linear solution as p-—+»0, Considering the phase, since

t, =0 as p— 0, N(t) =/1 - ezt + ¢o for all timee There-
fore : .

(021;2 + co1£ + 0 =/1-c?t+g (3.22)

for all times Since tO, t19 and tzfare linearly independent,

the only consistent solution of equation (3.22) for all time is



43

02 =0

2
wl = l - ¢
wo = ¢o =0

Hence as p—=0 the parameters w0y and w0, degenerate properly

to the linear solution. However, the proper value of ¢0 is
1 E
1 ~-¢

~tan” 4 and not O, This discrepency arises from the

assumption that the initial value of the amplitude is unity,
* ’

which leads to ®, = O, Since the solution is only approxi-

mate and the critical parameters are @, and @,

discrepency will be tolerated. The error thus introduced

9 this

will be small because for @ as high as 0.2 radians, cos®
= 0,98, This completes the proof of the cdnsistency of
the non-linear solution with the known solutions in the
degenerate cases where ¢ — O, or p—=0.
In conclusion, the functions A(t) and ()t) are obtained

in the forms

-pt
A(t)=eps

i

2
and O(+) O, +@t + 0,17 .

The parameters py 0oy @, and ©, can easily be calculated frém
equations (3¢14); (3.18), (3.19) and (3.21) for specified
values of € and pe The value of p is obtained by making the
amplitude equal to A(t ) at t = t_, and the value of w is

obtained from the initial condition x(0) = 1, Values of ©,

See section 3.2.,6 for initial value correction of the ampli-
tudes



44
and ©, are found by letting €e—0;, and by matqhing the Phase
to the first derivative, which can be regarded as the
frequency., Consistency with the known solutions of the
degenerate cases where € =0 or p—O0 has been shown from the
limits of A(t) and ()(t), except for a small error in © s which

arises from the assumption that the initial value of the ampli-

~ tude A(t) is unity.

3,2.,4 Determination of P and ¢°

After A(t) and QOXt) arevdetermined, it is a relatively
simple matter to find P and ¢ « In fact, @ can be calculated
, o} 0

directly from equation (3.17a), i.e.
_ 2/ 3
¢0 =t + (oztm‘ -/l %t te
2 : 2
(‘°1 -J1 - €“) t, et S e

I

But from equation (3.l6a),

' 2
@l = l -€e” -2 thm o
Therefore ¢0 = (J1 - e - w5t ~J/1 - ez)tm +'m2tm2+ ©
- .t %+ (3.23)
2'm ) ®

P is found by matching the amplitude of (3.3) and (3.4) at

t = tm' Thus,

I
g
®

A(tm)

Il
ot
—
s
~
(o]
[

Hence P (3.24)
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This completes the determination of the pafameters of the

approximant to the solution of the non-linear equation (2.4)
where ¢ < 1, An example using this approximating scheme is

worked out in the next section.

3.,2.5 Example

In order to illustrate the approximating scheme just.‘
developed and to see how good it is, an example is worked
out, Because this approximating scheme has a total phase which
is a quadratic in t; it will hereafter be referred to as the
parabolic phase approximation; a notation firsf used by
Soudack.(ll) Consider, then, the equation

% + 0.8 % +x +3x° =0, x(0) =1, x(0) =0

which has € = 0.4 and p = 3.0, Both the magnitudes of & and
p are inadmissible in the K-B method as we shall see when we
compare the solution with the true numerical solutione

Using the parabolic phase approximation, however, a much
better solutioﬁ is obtaineds These three solutionsy ises,
the true numerical solution, the K-B approximation, and the
solution obtained from'the parabolic phase approximation,
are shown in Fige 3.7.

Firsty; from Appendix B, the K-B method yields the following

approximations
x(t) = engt cos (1 + 2%)t (B.7)
or x(t) = e—o°4t cos (2,125 t) .

Using the parabolic phase approximation, on the other



3

X +0.8%x + x +3x> =0, x(0) =1, x°(0) =0

™~ Numerical

Parabolic-phase approximation

KB approximation

Fig. 3.7 Comparison between approximating methods

ov
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hand, we have

for O<t<tm x(t) = e PV cos (o)lt + wztz)
for 2t X(t) = p cos (J1 - e2t + ¢O) o

The unknown parameters are then obtained from the equations

developed in the last four sections as follows:

- _£
Alty) = /50 (3.6)
_ /0.4
=J 2(3)
= 0,258
b= -1 1°ge[ /o2 A(tm)]' Loull -~ aten)
€ 10e
(3.12)
- - 2 10g [/O.BF (0.258)] + 2{0:T42)
0.4 e 4
= 4017
1 =
p = - o log, A (tm) (3.14)
1
= - 7,17 loge (0.258)
= 0,325
(00 = O (3018)
g1
Ca)l = m.,/l + U (3022)
2 0
where k= = 2(T+p) = 2(113) = 0,375, and from Jahnke and Emde9(1 )
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K(k) = 1.761. Therefore

3.142 /
‘é = 2 1;761 4 = 1«783 »

~ 1 mszmml

(7] = (3019)
2 tm

=
|

J/0.84 - 1.783
2(4.17)

= = ;Oa104‘
et

P=A(t ) e m (3.24)

= 0.258 ¢0:4(4:17)

= 1937

¢0 = =w2tm2 + o : (3,23)

= 0.104(4.17)2
= 1381 a

Finally, the complete approximation becomes

e—00325t

for 0< <4417 X(t) = c0s(1.783t ~ 0.104t%)

-0.4t

1.37 e c0s(0,916% + 1.81)

for t 24,17 x(t)

Now, a comparison between the two approximations, as shown
- in Figs 3.7, indicates that the K-B method is exceedingly simple
to carry out, but the result is poor. The frequency of
oscillation is too large, and there is no phase retardation.
Also, the amplitude of oscillation decays too rapidly. On the
other hand, the parabolic phase approximation requires:a few
more simple éomputational steps but the extra effort is well

rewgrdeda The frequency of oscillation is now smaller than
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that obtained by the K-B method and there is phase

retardation in the first part of the solution, where the
effect of the non-linear term cannot be neglected. Also, in
this first part; the amplitude decays more slowly than
e_o°4t9 as already prédicted from previous studies of the
equation., Moreover, examples with still higher e and/or B
will show that the parabolic phase approximation is far

superior to the K-B method in dealing with these types of

non-linear equations,

3.2.6 Refinements in the Approximation

Although examples such as the one considered in the
last section have indicated that the parabolic phase approxi-
mation yields far better results than the K-B method; close
examination of these examples‘suggests that some refinements
in the method would make the results even better. The first
refinement involves no extra labour and is essentially a
modification based on the consideration of the phase term.
The second one is a correction of the initial value of the
amplitude. |

From various examples, the amplitude function A(t)
obtained is in fairly good agreement with the numerical
solution. It is the phase function ()(t) that contributes
mainly to the discrepency in the solution. Examination of
many examples reveals that the phase (}(t) always leads that

of the true solution, indicating that either w, is too large

1
or the phase retardation too small. Before we attempt to
improve the phase function, let us review how it is obtained

and compare it to its true value. First, the angle criterion
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is used to determine A(tm) and consequently tm9 at which

the phase retardation is considered negligible. Then,;the
first time derivative of the phase, i.e. the frequency, is
assumed to decrease linearly as time increases for t‘<tm.
For.t = tm, the frequency is assumed to beJ1 - 52 which is
the frequency of oscillation of the solution to the complementary
linear equation. Thus, as shown in Fig. 3.8(a), the graph
representing the frequency begins at the point M(O, wl),
drops linearly to the point N(tm,~/l - 82) and becomes level
thereafter. The area under this graph then represents the
approximate total phaseg* as shown in Fig. 3.8(b)s But since
the approximate phase is always leading the true'phase as
already pointed outy, the true phase may be represented by the
dotted curve in Fig. 3.8(b). It is'alwayé below the approxi-
mate phase and approaches an asymptote with a slope of

1 = 52, The true frequency may, therefore; be represented
by the dotted curve in Fig. 3.8(a). It becomes clear now how
the discrepency arises. Apparently, the straight lines MN and
NH do not appreximate the true frequency too well for t <:tm,
and consequently do not give a particularly good approxi-
mation to the total phase. In an attempt to improve the
approximationy let us consider the point L(tm/2,,/1 s 82)

as shown in Fig. 3.8(a). The lines ML ahd.LH would give a
better approximation to the true total phase because the area

KLN under the dotted curve would compensate for the area JMK

A small error is present here, because the initial value of
the phase 1s slightly different from zero. However, for the
purpose of finding an approximation, we have assumed that
A(0) = 1, which leads to @ =0, or O(o) = o.
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over it. The point L is so chosen partly because the.approxiu
mating scheme already developed can be adopted with practically
no change. We need only match the linear and the non-linear
parts of the approximant at tm/2 instead of at tm. Following
the above argumenty; it might be noted that this new matching
point could have been different from tm/2, such as % tm’

24, or % t_y etc, and that matching at t_/2 does not

necessarily give the best result. However, we must not forget
that the objective of this section is to modify the parabolic
phase method in order to give improved results in general,

and not optimum results in particular cases. Since various
numerical examples have shown better results by matching at
tm/2, we now replace tm in the equations previously developed

by tm/2 and obtain the following equations:

/; - 52 - ml

From equation (3.19), W, = S . (3.19a)
m
0, ,
From equation (3.23), ¢o =-—=2t“+0 . (3°23a)
' ' tm % tm
From equation (3.24), P = A (—2-) e
€=-p
2: tm

= e ' R (3.24a)

Therefore, the complete approximation becomes

for 0<t <t /2 X(t) = e P coslo_ + @t +w,t7) .

p o€t cos (/1 - €2 b + ¢O) R

for  t>t_ /2 X(t)
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The other refinement is to improve the amplitude function

A(t). So fary, the initial value of the amplitude has been
assumed to be unity, which is not quite correct. From various
_examples, it has been observed that the true initial amplitude
is greater than unity and the difference between the true
initial amplitude and unity decreases as p inéreases. For
most cases where £ is not too large or p is greater than 3,
this difference is negligible. However, if € becomes close
to unity or p becomes smaller than 3, this difference will be
appreciable and a correction added onto the assumed initial
amplitude of the approximant will definitely improve the.
result. Since this difference is greatest for p = Oy and
becomes negligible for p = 3, we may assume as a first

approximationy that it drops linearly as u increases from O

to 3. Knowing that the true initial amplitude is L if
1l - ¢
p = 0, we therefore obtain the following relations
. . - , 3ou[ 1
Initial Amplitude Correction = e 1|
. 3 L/l - e: }
Thus, for p<3y
A0) =1 + 3 L 1] . (3.25)
J1 - e;

Denoting this value of the initial amplitude by Ao’ we have

-pt
A(t):AOeP 9

which from equation (3.14) leads to

A(t )
1 m
p = - tm ]_oge AO o (3014&)
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From the initial condition that x(0) = 1, we also have

1l = A cos &
o o

or @ = cosml(l/Ao), wOS;O (3.18a)

Finally the non-linear part of the approximant becomes

~ _ —Pt 2
for 0<tgt /2 x(t) = Ae ’cos(w0+ 0t +w,t%).

As a wholey'these refinements in the approximation will
yield better results and can be made ﬁith almost no extra
effort, for the general development of the procedure is not
changed. Two examples will be worked out in the next section
to illustrate this refined parabolic phase approximation.

3:.2.,7 Summary and Examples of the Refined Parabollc Phase
Approximation . '

In order to facilitate the application of the refined
parabolic phase approximation, a summary of the computational

procedure is given as follows:
(1) Normalize the equation into the form

3

X + 2eX + x + ux” = 0.

(2) Compute A(tm) from the angle criterion, i.e. equation

(3.6)
, >
A(tm) = /_ZH .

(3) Compute t, from equation (3.12)

t = - %’1oge[yl - g2 A(tmi] + H[l _ A(tmi] .

m 10e

Positive values of @ are not ﬁsed9 as will be explained in
section 3.2.8.



(4)

(5)

(6)

(7)

(9)

(10)

(11)

If u<3y compute A, from equation (3.25)

3—u 1
A =1+ "1 9
) 3 [ 4[ _ e2 }
and assume A =1 if p 2 3.
Compute p from equation (3.14a)

At )

P == 1oge Y °
m 0

Compute @ from equation (3.18a)
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Compute k from k2 = ET%:ET ; and then obtain the quarter

period K(k) from tables of elliptic functions.

Compute @, from equation (3.22)

T /

Compute from equation (3.19a)

J1 - €2 - 0

(] =

2 t
Compute P from equation (3.24a)
tm % tm
P = A(—E) e °
Compute ¢o from equation (3.23a)
@
~ - 24 2
¢o = 7 tm to .

The complete approximation finally becomes
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for 0<t<t /2 X(t) = A e7PY coslo + @t + w,t%)

| ~ —et 2 |
for t>tm/2 X(t) =P e %" cos(/1 - €e“ t + ¢0)-. o
Since one can quickly arrive at answers within slide-rule
accuracy, the method seems to be very suitable for prelimi-
nary engineering analyses, and as an added benefit it will
give the engineer some useful insight into the behaviour of

the systems

Example

The same equation considered in section 3.2.5 is again
used so that the advantage of the refined method can be
illustrated. The equation

3

X + 0.8 x +x+3x° =0, x(0) =1, x(0) =0,

has € = 0.4 and p = 3. Following the steps just outlined, we

obtain .
’ 064
A(tm) =/303)" = 0.258
1 /0 R4 3(0.742) :
t, =~ 0.3 loge [ 0.84 (00258)] + 7 = 4,17
A0 =1

1
P = e m,_?' 10ge (00258) = 00325

© = cosﬂl(l) =0

_ /3 _
k = m_0°612

‘K(k) = 1,761
3142

ml = ETT:7€T7*/1 + 3 = 1.783
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v 0,84 - 1.783
‘02 = 4017 = “09208

o p - o(0e4 - 0.325)(2,085) _ , .-

g = 2298 (4.17)2 = 0.905

Hence the complete approximatidn is as follows:

cos(1.783% - 0.20842)

for 0<t<2.09 JAc’(t) _ e~00325t

0.4t
e

for 22,09  %(t) = 1.17

il

cos(0.916t + 0.905)

This approximate solution-is plotted in Fig. 3.9 together
with the numerical solution, the K-B approximation, and

the unrefined parabolic phase appr@ximatioﬁ, which are ob-
tained in section 3.2.5. It is obsérved that the refined
"parabolic phase appfoximation ié the closest to the numerical

solution.

Example

As another example of the refined parabolic phase
approximation, consider the equation

Y4+ x +5x +10 x> =0, x(0) =1, x(0)=0.
Since normalization is required in this example, let

7 =J/5t , to obtain

- dx
1 - === | -
where x' = ar and x = 5 o

Substituting x' and x'’' into the original equation and
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X +0.8x +x +3x” =0, x(0) =1, x(0) =0

KB approximation

Parabolic phase approximation
: (unrefined)

Fig. 9 Approximation by the refined parabolic phase approximation for the
equation

3

86
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dividing through by 5, we have

X'+ 0.4472 x' + x + 2%° = 0,

which has € = 0.2236 and p = 2., Carrying out the computational

steps, we obtain

/0.2236
A(‘tm) =/"3(3) = 0.236

1 ’ : 2(0.774)
t = - 5= log [/ - 0.05 (0.236)] + £25T1

m
= 7.26
3-2 1
A =1+ ___[ - 1] = 1,008
o 3 0.95
1 0.236
P = - 75 lo e[:r.oos] = 0,200
@ = cos! = - 0.13
o - 1.008 - o
k 2 0
= m = 0577
K(k) = 1.734
o 3 142 /T 2 =
“1 = Z(1.734 1568
0095 - 11:568
0, = Vl o = - 0,0817
p . o(0.2236 - 0.2)(3.63) _, o9
¢ - 9&%§ll (7.26)2 = 0,13 = 0,945

Hence the complete approximation is
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for 0<t<3.63 %(T) = 1.008 ¢ %°27c05(1.568T ~ 0.0817T2
- 0.13)
for £323.63  X(7) = 1.09 722367, 5(0.975T + 0.945)

But since 7T= 2.236t, the final approximation becomes

for 0<t<1.62 %(4) = 1.008 o044t 05(3,508t - 0.409¢2
' - 0.,13)
for £21.62  X(t) = 0.5t

1.09 e~ cos(2.18t + 0.945)

Now; let us compare this solution with the K-B

approximation. From Appendix B, the K-B approximation is

given by
X(t) = et cos (1 + 2%) t
(B.7)
or ' ;(t) = o700t s (3.913t).

These two solutions are displayed in Fig. 3.10 together
with the numerical solution. Results are, again, in favour

of the refined parabolic phase approximation,

3628 Errors and Limitations

An important uncertainty inherent in analytical
approximating methods is the error in the solution obtained.(12)
Because of the presence of the non-linear term, it is usually
not a simple matter to make an error analysis. After the
approximate solution X is obtained by using the parabolic

(8)

phase approximation, a common criterion for the system

error 1is given‘by the integral
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Fig. 3.10 Approximation by the refined parabolic approximation for

equation
¥ 4+ % 4 5% +10x> = 0, x(0) =1, X(0) =0
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t @

J = o 2(1)dt + c2(1)dt

0 t

vhere o(t) = X + 2% + X + p§3.

As -already discussed in section 3.2.2, the evaluation of this
integral is a formidable job, and leads fo no immediate insight
into‘the accuracy of the solution. It must be noted that this
type of error analysis does not require the knoﬁledge of the

true solution. Ify on the other hand, we knew the true solution,
it would be very simple to measure the error. The absolute
deviation, which is defined as the magnitude éf the difference
between the approximate and true solutions, céuld be computed
and plotted against the independent variable.' We could then
h@ve at our disposal a number of quantities as measures of error,
for example% (1) +the maximum deviation or (2) the area under
the deviation curve. In this work, the numeriéal solution
obtained from the digital computer is considered to be the

true solution* and is compared with the refined parabolic

phase approximatione The maximum deviation is chosen as the
measure of error and is evaluated for a large number of examples
with a wide range of # and p. If the maximum deviation is

foﬁnd to be sufficiently small, we can conclude, because of
continuity, that the approximating method is satisfactory for every
¢ and p within the range. The following table shows a few
numerical results as compared to those obtained from the K-~B

method.

The machine solution is accurate to three décimal places,
See Appendix A.
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Maximum Deviation

Refined Parabolic

£ e K-B method Phase Approximation
0.,2236 2 0.64 0.13
0.3 9 1.04 0.23
0.4 3 0.66 0,10
0.6 3 0.44 0.07
0.6 9 0.80 0.16
0.8 3 0,48 0.03
0.9 3 0,50 0.10

As suggested from the above table, the limits of e
and p are hot very definite, becéuse they depend on each
other as well as on the specified accuracy. For example,
higher values of p may be accepted if the value of e is
higher, while smaller values of & make £he allowable value
of u lower. This is reasonable because as the damping
becomes lighter, the non-linear effect takes a longer time
to become negligible, and the parabolic phase is not suf-
ficient to ensure a good phase fit. For a maximum devi-
ation of about 0.1, various experimental results have shown
that p may be as high as 5 if € < 0.5 and as high as 10 if
€ > 0.5, In most cases, better accuracy can be expected
if p is not so large. Thus, the above error consideration
gives us an idea of the ﬁpper limit of p. The lower limit
of p, however, is determined by one of the approximating
steps. Early in the approximating procedure, the amplitude
at'the point of transition from the non-linear to the linear

solution is determined by equation (3.6), i.e.

At = /5 .
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Since the amplitude cannot be greater than 1, the relative

value of € and p should be such that

or 'H;%.o

Therefore, in the case where p <:%~, the parabolic phase
approximatién becomes inapplicable and we can consider that
the equation is essentially linear because the angle criterion
has indicated that the non-linear effect is negligible from
the very start. Thus, we conclude that an acceptable lower
limit of u is 5 ,

"Another error that is also inherent in the refined
parabolic phase approximation is that the initial condi-

tion x(0) = O is usually not met. If X is differentiated

we have
i(t) = =pA emptcos(w + @, b tz) - (0, + 20 t)A e'ptsin(w
= =Pa, o 17 17 A4, 0

+ 0, t + 0.t

2
1 2 )

Therefore, x(0) = ~pA_cos © = @A sin @

-p - mlA031n W

Assuming p 2> mlesin © |, e know that the maximum error in
the initial slope will never exceed ~p if we do not allow
positive values of ® from equatien (3.18a). This is the
reason why © is either negative or zero. Thus, we see that
an error in the initial slope is inherent in the methed; but

this error can be ignored because we are primarily interested
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in the solution of x(t) for a wide time range. This
completes the development of the approximation for the

case where € < 1.

3¢3 Case II - ¢ ;31

3:3.1 Choice of Approximant

In this case, where €21, the solution may or may
not have overshoots depending on the relative values of
e and p, as already discussed in section 2.3. Since
numerical solutions obtained from the digital computer for
€ = 1.1 have shown that p has to be higher than 25 be-
fore a second overshoot appears, and a still higher p will
be required for a second overshoot if £ is larger than
1.1, we need only consider the case with at most one over-
shoot if we limit our interest to p < 10. Because the
solution is not oscillatory in general, we can no longer

assume an approximant of the form

X(t) = A(t) cos QO(t),

and consequently, both the parabolic phase approximation
and the classical K-B method are not applicable. There-
fore, a new method of approximating the solution must be
developed.

To this end, consider the "complemenfary" linear

eguation

x +2x +x =0, x(0) =1, x(0) = 0

where € ;310 As indicated in chapter 2, if € = 1, the

solution of this equation is given by



66

x(4) = (1 + et (2.7)

and if € >1, the solution becomes

)e(me +/e%= 1)4 + %‘1
yol-e=i/e%= 1)t

1 €
x(t) =3 (1 + —==——
2 Jez -1
£
Ve~ ~ 1
(2.8)
Let us denote;, hereafter, the solution to the complementary
linear equation by xc(t), which is given by equations (2.7)
and (2.8), and examine the effect of introducing a non-

linear term px3 to the equation. Consider then the equation

X + 2% + x + px3 =0, x(0) =1, i(O) =0
whose solution is

x(t) = x_(t) = 2(%), | (3.26)

where z(t) is a correction term to account for the effect
of the non-linearity. Thus, the problem now is to approxi-
mate z(t).

In order to determine the form of z(t) for the
approximation, solutions x(t) to various examples have been
obtained numerically from the digital computer and z(t) is

then calculated from equation (3.26), i.e.

z(t) = xc(t) - x(t).

Fig., 3.11 shows a typical example of z(t). Close exami-
nation. of the general shape of z(t) has revealed its
characteristics from which possible approximants are sug-

gested as followss
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(1) Before z(t) reaches its maximum, i.e. for t <:tp,

it may be approximated by the function tn, where

n >1,

(2) For t >>tp, since z(t) decreases as t increases,
the possible approximants are " or emt, where
m< O,

(3) z(t) is always positive and vanishes at t = O and

t =00 o
z(t)
004__
003"'
002 B
Om]."'—
0 t t t } b
0 1.0 ¢ 2.0 3.0 4,0 5.0

Fig. 3.11 Correction term z(t) for ¢ = 1.2 and p = 2

Let us therefore examine the function

F(t) = t° e“t, n >1,
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to see if it has all the above features:

(1) F(t) has only one maximum, i.e. at t = -n. For
small t, F(t) 22 t".

(2) Por large t, e Y is the dominating factor.

(3) F(t) is always positive and vanishes at t = O and

t =mo

Since this function has all the features z(t). hasy we will assume
that z(t) takes the form

z(t) = g t" e~ v

where g is a constant.

Our problem now is to determine .the constant parameters g
and n in terms of € and p. Discrepencies may arise from
the assumption that m = -1, but from the accuracy of the
results which will be developed later, they may be either
too small to be of significance or else may have been
taken up by the other factor t%. As a result, the form of
the approximant of z(t) becomes

Y(t) = g t* 7" (3.27)
and the rest of this work will be devoted to the determina-

tion of g and n as functions of & and p.

3¢3.2. Determination of n

Empirical results are used to determine both the
parameters n and g. In order to determine n, consider the

equation (3.27). The maximum value of Z(t) is given by

az(t) _

dt ’
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-1 - -t
or gn 2L o L. g‘tn e = 0,

Since g, t, and e_t are not zero for finite t, we obtain
t = n, (3028)

i.6s, n is numerically equal to the time at which z (%)
is a maximum. Therefore, if we insist that z(%) has a
maximum at the same time as z(t),; we can find n from
experimental results by simply noting the time at which
the maximum of z(t) occurs, as shown in Fig. 3.11. From
examples with various values of &€ and p, the following

table 1s obtained:

Numerical Values of n

é\y 0.5 1.0 1.5 2.0 2.5 3.0
1.0 1.62 1.55 1.49 1.44 1.40 1.37
1.2 1,71 1.58 1.50 1.47 1.40 1.38
1.4 1.72 l.62 1.55 1.49 1.42 1.40
1.6 1.87 1.73 1.60 1l.54 1.43 1.40
1.8 2,02 1.78 1.68 1.59 1.53 1.42
2.0 2.13 1.90 1.76 1.69 1.60 1.49
242 2.39 2.10 1.87 1.74 1.66 1.55
2.4 2.50 2.24 1.97 1.87 1.81 1.71

An error of the order of 0.05 may be expectedvin some .of
these figures because some curves of z(t) have a rather
flat peak and it is difficult to locate the maximum accu-
rately. At any rate, these figures give a good picture of
how n varies with both € and p. If the contours of con~
stant n are plotted in the e-p plane, Fig. 3.12 is
ob'tained° Taking the possible error of n into considera-
tion, we may now approximate these contours by a set of
parallel straight lines as shown in Fig. 3.13. The slope

of these straight lines is found to be 0.472. Therefore;

o
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Fige 3.12 Contours of constant n from experimental results




Fig. 3.13 Approximation to the contours of constant n
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they can be represented analytically by the simple relation

e = 0.4724 + ¢ (3.29a)

where ¢ is the intercept and depends on n. Now, the inter-

cept ¢ is plotted against the corresponding n as shown

in Fig. 3.14.

c
2.3
2.0 T
]
°
1.5 ¢
o Experimental Intercepts

100 -+

ous | ¢ = 2.3(1 - e-2.0(n-—1°4))

0 — ! +— } — f————n

104’ ]_‘6 108 200 202 2‘4

Fig. 3.14 Determination of ¢ as function of n

From this diagram, we ohserve that the curve exhibits sat-
uration at about ¢ = 2.3 and intercepts the abscissa at
n = 1.4, Considering also the shape of the curve, we are

led to believe that c¢c can be expressed in terms of n as
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follows:

¢ = 2.3 (1 - ed(n - l‘40))

where q is a constant. By trial and error, a q of -2.0 has
been found to give good results as illustrated in Fig. 3.14

where the function

c = 2.3 (1 - e—2.0(n - 1,40))

is also plotted. Now substituting ¢ into equation (3.29a),

we have

& = d°47ZH + 2.3 (1 = e“Z‘O(nq1.4))'

which yields

2.3 |
2.3 + 00472[.1,—8

n=1.4 + (035) loge (3529)

Hence n can be computed when € and p are specified.

303‘3 Determination of g

After n has been obtained, g can be determined by
making Z(t) equal z(t) at the maximum, i.e. at t = n, from
equation (3.27). The maximum is chosen as the matching point
because we have determined the parameter n, such that the peak
of the approximant Z(t) occurs at the same time as that of
z(t)e Since the maximum occurs at t = n, we have

g = z(n) n~% " (3430)

Using the same example as in Fig. 3.11, where € = 1.2 and
po= 2, we have

2.3

n:la4 +005 lOg ’
2.3 + 0,944 - 1.2

e
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= 1046

and g = 0.325 (1.4671e40)1.46
= 09805 [-3

Hence z(t) = 0.805 t1°46 e_t .

This approximation is now shown in Fig. 3.15 together with

the true z(t) obtained numerically. The result is encouraging

0.4 z(t), Z(t)
043+
. o .
o z(t), approximate
z(t), true
0.2“ '
o
0.1+ °
°
0 t t } } —t t
0 1.0 2.0 3.0 4,0 5.0

Fig. 3.15 Comparison between z(t) and 2(t) for e = 1.2,
L= 2

because very good agreement between z(t) and zZ(t) is observed,

indicating that the form assumed for ;(t) is a good one.
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Examples with various values of € and p are then investigated
in a similar manner, and the corresponding values of g are

shown in the following table:

Numerical Values of g

2% .
£ 0.5. 1.0 1.5 2.0 245 3.0
1.0 275 .500 . 680 840 1,000 1,14
1.2 « 260 0455 . 651 .805 2946 1.07
1.4 238 5 .420 . 584 s 731 .862 0'978
1 06 0209 i 0385 ° 541 0681 0802 0912
1.8 184 + 351 .493 . 629 o742 .848
2.0 «159 .314 -454 «578 691 e 793
242 »131 «274 .408 0533 . 640 « 743

P

Our next task is to deter@ine;é as a function of €
and p from this table. The first?at£empt was to use the
contours of constant g in the e-p plane as we did before in
the deterﬁination of n. The contours of constant g were
then plottea as shown in Fig. 3.16. From this diaéram, we
observed that the contours could not be represented by a set
of simple functions such as parallel straight lines because
there is a definite trend showiﬂgfthat the slope of each
line is different from the rest.

In another attempt, g is now plotted against p for
constant values of €, as in Fige. 3.17. From the shape of

the curves obtained, g is seen to have the form
g =au
for constant £, where a and b are constants. Therefore, for

constant €, the plot of 1og10 g against 1og10p is a set of

straight lines as shown in Fig. 3.18. Hence we can write

loglog =b loglop + 1oglog (3.31)
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Fig. 3.16 Contours for constant g
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Fig. 3.17 g as a function of y for constant e

Since these straight lines are almost parallel and equally
spaced, we may approximate this set of lines by Fig. 3.19

in which the straight lines are parallel and equaily spaced.
Therefore, the constant b is the common slope of all these
straight lines and is found to be 0.794, Since the vertical

distance between the straight lines for

€ = 1,0 and € = 2.0 is 0.15, and the intercept for

€ = 1,0 is -0.325, equation (3.31) becomes

log g8 = 0.794 log ou = [0.325 + 0.15(e-1)].
(3.32)
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log,, 9

N

Fig. 3,18 loglog vs log,qu for constant €
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N

Fige 3,19 Approximation to Fig. 3,18




80
Thusy g can be computed when € and p are given.

Let us now show that the result is .consistent in
the limiting case where p —0. As p—0, the non-linear
equation approaches its complementary linear equation whose

solution isvxc(t). From equation (3.32), we have

lim (loglog) = -
p—0
. or lim g = 0 &

H———-O

Therefore lim z(t) = O,
p—0

which yields
lim %(t) = x _(t) .
p—=0 ¢

Hence, our approximate solution degenerates to the correct
" solution for the complementary equations. An example will

be worked out in the next section to illustrate method.,

3¢3.4 Summary and Example of the Correction Term Approximation

This approximating method, then, is essentially the
determination of the solution xc(t) to the complementary linear
equation and the approximation of the correction term z(t)
dué to the presence of the non-linear term px3. The‘pro~

cedure is summarized as follows:

(1) Determine the solution to the complementary linear

equation by equations (2.7) and (2:8), i.e,

ife =1, x () =(1+b)eT,
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and if ¢ > 1,

x (t) = L(1 + ey (-etfe- 1)t o
e -1

_ _e€ )e(~51/52— 1)t
/52— 1

[\S]

(2) Approximate z(t) by

z(t) = gt et »

where
2.3

®© 2.3 +0.472p - €

n=1.40 + 0.5 log

log gg = 0.794 log)on ~[0.325 + 0.15(c - 1)]

The complete approximate solution is then given by

R(6) = x (4) - g t* e .

An example is now worked out to illustrate the method.

Example

Consider the equation

X +2.8%x +x+3x> =0, x(0) =1, x(0)=o0,

in which € = 1.4 and p = 8. Following the steps just

outlined, we obtained

x_ () = %(1 + _l;i_)e(—1,4+/0.96)t+ %(1~ _;Lg_)e(=1°4-/o.96)t
¥/0.96 /0.96
= 1,21 e 042t _ g, 01,72+38%



82
2.3

€ 2.3+0.472(3)= 1.4

n =1.40 + 0.5 log

= 104
log;y8 = 0.794 log 3 - [0.325 + 0.15(1.4 - 1)]
g = 00987 .

Finally, the complete approximation is

-0.421% -2,38% 1.4 -t

%(t) = 1.21 e 0.21 ~ 0,987 t

This approximate solution is compared with the numerical
solution in Fig. 3.20 and is seen to be quite satisfactory,
the maximum deviation being 0.04., In the same Figure, the
approximation by using the Ritz and initial condition
matching method is also shown., Referring to Section 3.1,

this solution is obtained by solving numerically the equations

3
- D24 2eat1) + E%F(b2+ 2eb+1) - —KB 5 + na S
2 4a(a~b) (3b+a) (a~b)

+ 3pb2a - 3uab2 -0
(3a+4b) (a<b)2  2(a+b)(a=b)?
ar, 2 b 2 na ub3
- g(b + 2eb+l) + E?F(a + 2ea+l) - oy b)2 + Y b)2
a— a+ a—
2. 2
+ 3ua"b . _ 3uba -0

(3b+a) (a<b)?  2(a+b) (a=b)?

where € = 1.4 and p = 3.0,
By extensive trials, a digital computer produced the following

roots:
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a = _1..].1
b = -4,44
Hence the solution is
g(t) = A e—l.llt_ + B 6_4.44t .

Applying initial conditions of x(0) = 1, and X(0) = O,

we have
_ _=b _
A = ah = 1,333
~a_  _ _
B = b = -0.333

'Therefore, the Ritz method and the initial condition matching
gives

-1,11¢

X(t) = 1.333 e

- 0.333 e~4-44%

As illustrated in Fig. 3.20, this solution has a maximum
deviagtion from the numerical solution of 0,05, which is not
as good as that obtained by the correction term:method just
developed. If we consider the practicability and the effort
required in applying the Ritz and initial condition matching
method, it is evident fhat the correction term method is

much more tractable.

3sa3e5 Errors and Limitations

Following the same reasons as in the case where
€ < 1, we again use the deviation between the true and
the approximate solutions as a measure of accuracy to justify

the validity of the correction term method. The following



Y4 2.8% + x + 3x° =0, x(0) =1, x(0) =0

Solution from the Ritz and initial condition
matching method

Correction term approximate solution

Numerical solution

—
— — —
— ——
— —

|
|

V8



table is the result obtained from a large number of

examples:

Maximum Deviation

o
i

0,02
0,07
0.24
0.02
0.04
0.21
0.04
0.06
0,08
0,05
0.09
0,11

© 6 © » » &6 & © © © ©° o
DNV OOO
WNHHFWNDHOOOWHF-JWH
6 & © © © » & o & © © ©
eloloNoNoNoNolololoNo N,

O DD e e e e

From this table, we see that the maximum deviation is
rather high for p = 8. But it must not be forgotten

that the deviation is generally much smaller than its maxi-
mum, An example will help clarify this point. The magni-
tude of the deviation bet@eeﬁ the approximate and true
"solutions of the equation

X+28x+x+8x> =0, x(0) =1, x(0) =0

is shown in Fig. 3.21. Thus, we see that the deviafion is
fairly large for small t, then drops off quicklx and remains
well under 0.08. As a result, we may allow u to be as high
as 8 for € = 1.4. It is also suggested from the above table
that the allowable p is lowered if & becomes larger. Thié is
reasonable because as € increases, one of the e*ponents v
involved in xc(t), i.e. e(—e TWE T 1)t,vbecomes negligible
compared to the other and the choice of e—t in the correction
term will not be a very good one. At any rate, for e as high
as 2.2y a p of S‘may still be allowed. Thus, we obtain an

idea .as to the upper limit of p from the above error con-

85
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0.3+ Deviation
o.2;:
0.1+
0 o , , A . t
0 1.0 2.0 3.0 4.0 5.0 ‘

Fig. 3.21 Magnitude of the Deviation for € = 1.4,
b= 8 '

sideration.. The lower limit of p is zero of course, because.
we have shown in Section 3.3.4 (page 80) that the gpproxi-
mation X(t) degenerates to the solution xc(t) of the
complementary equation.

Regarding the value of g, how?ver, there is an

inherent limit in the method. Consider equation (3.29):

2.3 |
2.3+0.472p—¢

n =1.40 + 0.5 loge

First, n must not be infinite. Therefore, we have the restriction

that
2.3 + 0.472p — e £0 .

Secondly, since the logarithm of a negative number is not

allowable, the restriction then becomes

2.3 + 0.4724 - € >0 .
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Knowing that the lowest value of y is zero, we see that for
p = 0, the upper limit of £ is 2.3. However, since we are
dealing with non-linear equations, p is always greater than
zero and the upper limit of & is, therefore, usually higher
than 2.3,

Finailyy it may be werth mentioning that in this
approeximation, the initial conditions x(0) =1 and .
x(0) = 0 are met because %(b) = %(O) = 0 which lead to

~J

x(0) = Xc(o)

i

and %(0)

it

%c(o) =0

This concludes the correction term appr@ximating method which

has been developed for 5'2;10
. 304 Summary
In this chapter, two methods have been developed to.
approximate directly the solution to the equation
X + 2% +x +px° =0, x(0) =1, x(0) =0

wvhere both € and p are not small numbers,
First, in the case where &€ < 1, the parabolic phase
appraximation was developed and refined. A heuristic argu-

ment was given for the use of the form

A(t) cos Q%)

for O<t€tm x{(t)

for t?tm ’;(t) =P

as the approximant, The value of tm where the non-linear
effect becomes negligible was determined after A(tm) had been

obtained using an arbitrary criterion based on the consider-
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ation of the angle between phase plane isoclines for the
linear and non-linear equations. The amplitude A(t) was

assumed to have the form

; -t
A(t);AOeP 9

and a parabolic phase of the form

oy _ 2
Q) = O, + 0t 7 .

The value of ©  was determined from the initial con-

dition x(0) = 1, then ©, and ©,

g —=—0 and by matching the phase to the first derivative.

were found by letting

The value of Ao wvas first assumed to be unity and p was

obtained by making the amplitude equal to A(tm) at t = t_.
The method of obtaining these parameters was later

refined by using t = tm/Z as the point of transition ins-

tead of t = tm” and by correcting the initial amplitude.

The approximation then became

+2)

. A ~ ~-pt
for 0<tt /2 X(t) = A e p cos(o, + @t + 6

p o€t cos(J1 = £l t+@o) .

Heﬁée, the parameters P and ¢0 wvere determined by matching

2

for t2t /2 CX(t)

the two parts of the approximate solution at t = tm/2. Con-
sistency with the known solutions of the degenerate case's
where ¢ —=— O and p —— O was also shown from the limit of t
and the limits-of all the parameters in the approximant.
.Examples using this refined method of parabolic phase
approximation were worked out, and compared with the true

numerical solution obtained from the digital computer, as
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shown in Fig. 3.9 and Fig. 3.10. The approximations were

very close to the true solutions but could be improved by
further reducing the value of @, . This suggests a project

for future research, since this work has illustrated the
validity of the approach. Finhally, the K-B approximations were
also plotted in Fig. 3.9 and Fig. 3.10 for comparison. It

is obvious by inspection that the K-B approximations were

not as good as the parabolic phase approximations for this

type of equation because the phase retardation appeared in

the parabolic phase approximations and did not in the K-B
approximations.

In the case where ¢ 21, both the parabolic phase
approximation and the K-B approximation fa%} to yield ac—~
ceptable results because the solution is no longer oscil-
latory. Therefore, an entirely different method was deve-
loped. The solution xc(t) to the complementary linear
equation was first computed, and a correction term z(t) was

then defined by

z(t) = x (t) - x(t)

where x(t) was the solution to the non-linear equation. Thus,
the problem of approximating x(t) was reduced to approximating
z(t)e From various numerical examples, it was suggested

that z(t) could be approximated by |

%J('b) = g tn emt

where g and n are constants depending on & and p. Using
Fige 3.12 and Fig. 3.13, which were contour diagrams of n in

the g~pu plane, n was empirically determined to be given by
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n = 1.40 + 0.5 log 2¢3 .

® 2.340.472up - €

Plots of log10 g against 10810H for constant values of € were

used, and g was'then found to be given by the empirical formula

logy o€ = 0794 logy ok - [0,325+o.15(e~1ﬂ

Hence we were able to compute Z(t) when £ and L were speci-
fied, and the approximation to the solution x(t) was

X(4) = x (4) - g t* &P,

Consistency of this approximant with the known solution of
the degenerate case where p—=—0 was also shown.

An example was worked out to illustrate this cor-
rection term method, and the result was compared with the
numerical solution in Fig. 3.20. With the aid of a digital
computer, the Ritz method in conjuanction with initial con-
dition matching was used to obtain another approximate
solution which was also shown in Fige 3,20. When accuracy,
effort, and practicability were considered, the correction
term method was much preferred. |

Finally, we see that by using these two approximating
methods, values of pu up to 10 and € and high as 2 may be
accepted. Therefore, unlike all the classical methods,; they
are good for fairly gross non-linearities. The essential
différence between these methods and classical methods is
their direct approach in attacking systems which are not
quasi-linear. In conclusion, both the parabolic phase approxi-

mation and the correction term approximation have strong
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potential in afproximating the solutions to non-linear
equations with f#irly large non-linearities whose
characteristics can be represented by odd cubics such as
the flux-current relation of a saturating indicator, or the

force~displacement relation of a hard spring.
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4. CONCLUSION

~ As stated in the Introduction, the purpose of this work
has been to find a direcf method of approximating the solution

of the non-linear differential equations of the type
X + 2ex + F(x) =0

where F(x) is, or may be approximated By, an odd éubic with
positive coefficients. Without loss of generality, we have

studied in detail the equation
X + 2% +x +px° = 0, x(0) =1, X(0) =0,

and then two methods have been developed to approximate the
solution, according to whether ¢ < 1, or € 21,

In the calse where € < 1, the.parabolic phase approxi-
mation was developeds The approximant was first derived to be

of the following form

for 0 <t <t X(t) = e™P% cos (0t + 0,t)
for bt 2t X(t) =Pe®% cos (f1 - &%t + ¢0) 

where all the parameters were determined in terms of e and We

Then, a refinement of the method changed the approximant to

for 0 <t <t /2 2(6) =&, e P¥ cos (0, + @t + 6,0°)
for t >tm/2 X(t) = Pe_et cos (/1 - 5:2 t + ¢o)’

which yielded better results.
In the case where e 2 1, the solution was approximated
by subtracting a correction term Z(t) from the solution xc(t)

-of the complementary linear equation. The correction term z(t)



was of the form

where g and n were computed from formulae involving & and p
only. Therefore,

x(t) = xc(t) - g t" e~V ,

Since the values of € and p are not limited to small
values, we have found a direct method of approximating the
solution without resorting to quasi-linearization of the
eqﬁation. The limit of € is slightly above 2 and the limit of
p is close to 10s These values are far too large to be handled
by any classical method. Although this method cannot handle €
and p beyond their limits, it has illustrated the validity of |
the approach, and further research along this line is
encouraging° For example, similar methods may be developed for
more general types of grossly non-linear equations,

Finally, the goal of finding directly an approximate
solution to the type of grossly non-linear equation has been
achieved, and valuable insight into the free response of many
engineering systems with odd cubic non-linear characteristics,
such as the hard spring and the saturating inductor, can readily

be obtained.



94
APPENDIX A ON COMPUTATION

The 4-th order Runge-Kutta method was used to ob-

tain the numerical solutions used throughout this work. In our

case, the formulae for the computation of x and X are as follows:(l4)
v .2
X 4 = X, +hx + 1/6 h (klf k,+ k3)
X . = X, + 1/6 h(k, + 2k,+ 2ky+ k4)
where k, = —(2€i + X+ ux 3)
1~ n n BXn
. . 143
k, = —[Ze(xn+ 1/2 h kl) + (xn+ 5 h xn) + p(xn
1, 3
+ 5 hxn) ]
. Y 4 L Ly 1.2
ky = -[Ze(xn+ 5 hk,) + (x + 5 bx + 7 h“ k)
1 . 1.2 3
+ p(x + 5 hx + 7 b)) ]
k =-[25(:°c+hk)+ (x_+ hx_+ & h%x.)
4 n 3 n n 2 2
. 1 .2 3
+ 1 (xn+ hx + 5 h k2) ]
and ‘ h =1 - t .

The University of British Columbia's IBM 1620 computer was used
to carry out the computations to eight significant figures,
The program was written in Fortran II.

Since the error of this method is of the order of

h°

s and h = 0.2 was used, the error expected was of the order
of (002)5, or 0,0003, which is negligible for all practical

purposess.
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APPENDIX B THE KRYLOFF AND BOGOLIUBOFF APPROXIMATION

The Kryloff-Bogoliuboff, or K-B method is con~

cerned with the transient solution of equations of the type

% o+ e%x +k g(x,%x) =0

wvhere g(x,x) is arbitrary and K is small, An approximate

(3)

solution is developed by Kryloff and Bogoliuboff and is
essentially a variation of parameters techniques

The solution is assumed to have the form

%(+) = A(t) cos e(t) (Bo1)

where ©(t) = ot + @(t).

Differentiating once, we have
X(t) = A(t) cos0(t) - A(t)[w+d(t) ]| sine(t).

Since we have introduced one more variable, we can impose a

constraint such as
K(t) cosB(t) - A(t) é(t) sin@(t) = O (B.2)

so that %(4) = ~A(%) @ sino(t), (B.3)

and therefore §(t) = -A(t) @ sin6(t) - wA(t) ©(t) cose(t).

Substituting X(t), X(t) and X(t) into the original equation, we

obtain
_A(t) © sino(4) - wA(t) B(+) coso(t) + K g(%,%) = 0

(B.4)

Solving equations (B»2) and (B.4) simultaneously, we have

At) = 5—%§5¥§l sin0(t) (B.5)
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and At) d(+) = Iﬁ—géi& cos0(t) . " (B.6)

The approximation is made by averaging (B.5) and (B.6) over
one period of oscillation, assuming that A(t) is constant over
this period and can be taken out from under the integral sign.
This means that if A(t) is slowly varying, the approximation is
a good one.
In our case,
g(gpi) = 2¢% + p§3

-2eA(t)osine(t) + pA3 cosBQ(t),

I

€
il

K = lo

Substituting in (B.6), and averaging over a period of 2g; we

obtain
A(t) = -eA(t),
2
: 3uA~(t)
and d(+) = _ug_Ll )
But A(0) = 1, from our framework of initial conditions; and

since A(t) is assumed to be constant over the périod of
oscillation,
A(t) 2 A(0) = 1.

Therefore, we have

A(t) = e7FF,
and g(t) = 1%3 e
Finally, (B.l) becomes
x(t) = eV cos (1 + 1Li) t, . (Bo7)



97

which is the approximant used in this work as a comparison to
the methods developed in Chapter 3.

Note that the K-B method fails to yield acceptable
results in the case where € and p are not small, because in
such cases, A(t) does vary considerably over one period of
oscillation and the assumption required in the averaging pro-
cedure is not a reasonable one. However, if we do not make this
assumption removing A(t) from under the iﬁtegral signs, the
integrations become very difficult, if not impossible, to handle.
Thus, we may not expect good results from equation (B.7) when
€ and p are relatively large, as already illustrated by various

exampleso.
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APPENDIX C A MEASURE OF CLOSENESS BETWEEN LINEAR AND NON-
LINEAR ISOCLINES

The method of isoclines is often used to construct
phase—-plane diagrams of 2-nd order differential equationse. Con-

sider the equation

3.0 (Cel)

; + 2ex + x + px
and its complementary linear equation

X +2x +x =0, (Cs2)

The isoclines for (Cel) and (C.2) are respectively given by

' 3 3
Y ="m ¥ 28 = a (Ce3)
. =X =X
and Y " 5+ 3~ a . (C.4)

where y = X
dx .
m = 3> = Slope of trajectory,

and a =m + 2c.

If these two sets of isoclines are close to each other in the
phase-plane, then.equation (C.2) is a good approximation to
eqﬁation (Col). This means that the non-linear effect in
equation (C.,1) may be neglected. In order to obtain a measure
of closeness between the two sSets of isoclines, Fig. 3.1 has
been cbnstructed, pért of which is reproduced in Fig. C.l for
convenient reference. In Fig. C.l, the circular arc of radius
R intersects the linear and non-linear isoclinés, for the same

slope m, at points P and S respectively, The angle subtended by
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y=X
0 | .
e
&6
R
y = :ﬁ, linear
P isocline

Fig. C.1 A Measure of Closeness between Linear and

Non-linear Isoclines of the Same Slope m

the arc PS is therefore a measure of the closeness between the

isoclines.

difficult

a vertical line from P to meet the non-linear isocline.

the angle

between the isoclines.

ordinates

and those

However, because the co-ordinates of the point S are
to obtain, the point Q is chosen instead, by dropping
Then,
89 can be regarded as a measure of the closeness
From equations (C.3) and (C.4), the co-

of the point P are

X =R e
D cos
. _ =R _cos6
yP - a

of the point Q are

X =R cosO

3 .
Q y = SXZUX non-linear
a ¥ isocline
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yg = -=Ra__ﬁ_§_9 (1 + pRz cos29)°

Therefore, we have

_'p _ -1
ta,n().-x

P
Yo o1 p2 2
and tan(@ +89)=522= 1 llla?: cos“@o
Q
2 2
:ml(l-‘-u)‘
a 1 2
+ a

Hence 89 is given by

tan 89 = tan [(9 +89) - 80]

2.3 : g
. —uR a . (Co5)
(l+a,2)2 + y,RZa2

This shows that the angle 89 is a function of R and a . As a
varies, the angle 8@ varies, and its maximum value, for a con-

stant R, is given by

(\ a
afg [tan 80] =0

which can be reduced to

a4 - (p,R2 +,K2)a,,2 - 3 = 0.

Therefore, we have

a’ = %(2 + HRZ) +~/%(2+9R2)2 +3 . (Ca6)

This is, then, the value of a,2 that will give the maximum 89
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for a given R. From equations (C.5) and (C.6), therefore, the
maximum value of 80, i.e. (gg)max’ is dependent on pRZ only,

and pRz becomes a measure of the closeness between the linear
2

and non-linear isoclines. For exémple, if pR™ = 0.2, dsg)max
is approximately 30, or 0.05 radian. Thus, for pRz = 0.2, the
two isoclines are almost coincident, suggesting that the effect
of the non-linear term may be neglected at this point.

Finally, since for equation (C.2),

x(t) = —t— ™8 cos(J/1 -e® - ¢ )

1 - 82
wvhere ¢o = tan'l £ , We have
1 - 82
A('t) — 1 e—et
1 - 82

-t
and R=/x%+%%_¢8 [l + ¢ sin (2 1-e%t

1 - ¢

[\ [

- 6% .

Thus, R oscillates about A(t) with a smaller and smaller ampli-
tude as t increasess In other words, A(t) is a very good
approximation to R, and therefore, pAz(t) ig also a'measure of
the closeness between the two sets of isoclines. This has
‘enabled us to establish the angle criterion in the develop-

ment of the parabolic phase approximation.
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