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APPROXIMATIONS TO THE FREE RESPONSE OF 

A DAMPED NON-LINEAR SYSTEM 

lo INTRODUCTION 

1.1 Mathematical Models 

In the study or analysis of physical systems, i t i s 

common practice to represent them by mathematical models. In 

order to make the mathematical models more tractable, certain 

simplifying assumptions are usually made„ For example, the 

d i f f e r e n t i a l equations evolved are usually l i n e a r i z e d , so that 

they may be solved by well established techniques used for 

linear d i f f e r e n t i a l equations 0 Most physical systems, however, 

behave i n a manner which i s far from l i n e a r , for example, a 

triode amplifier with large signal inputs or a mass, restrained 

by a non-linear spring, o s c i l l a t i n g with large amplitudes. 

Therefore, non-linear analysis i s required in order to y i e l d 

results closer to r e a l i t y <> 

1o2 A n a l y t i c a l Approximations 

Exact solutions to non-linear d i f f e r e n t i a l equations, 

are usually d i f f i c u l t y i f not impossible, to f i n d i n closed form 0 

Techniques for solving the equations vary according to the types 

of-equations involved, and are very l imitedo 

Y i t h the aid of d i g i t a l computers, numerical solutions, 

to almost any degree of a c c u r a c y t o any non-linear d i f f e r e n ­

t i a l equations are available» Using analogue computers, solu­

tions to ordinary d i f f e r e n t i a l equations can be obtained. The 



solutions obtained from these computers, however, do not furnish 

a l l the information concerning the physical system of interest, 

i . e . they usually reveal only the behaviour of the system under 

certain p a r t i c u l a r conditions. Exhaustive tests are needed i f 

some insight into the system i s required, and an engineer cannot 

necessarily predict from them how the system w i l l behave i f 

some parameters i n the system are changed. The problem of cost 

and a c c e s s i b i l i t y i s another disadvantage i n using computers as 

a means to solve a non—linear d i f f e r e n t i a l equation. For these 

reasons, an a l y t i c a l approximations to the solutions of ordinary 

non-linear d i f f e r e n t i a l equations are developed. These approxi­

mations are obtained i n algebraic or transcendental form without 

the necessity of introducing numerical values for parameters or 

i n i t i a l conditions during the process. Though some degree of 

accuracy i s s a c r i f i c e d , an over-all insight into the system i s 

often obtained at a low cost. For instance, the dependence of 

the solution on a certain parameter may be e x p l i c i t , thus 

y i e l d i n g useful information for system design. A few well 

established approximate ana l y t i c a l m e t h o d s a r e 

(a) Perturbation method, 

(b) Variation of parameters, 

(c) Averaging methods based on residuals, and 

(d) Principle of harmonic balance. 

Though these methods are developed to cover a very large class of 

non-linear d i f f e r e n t i a l equations, they have a common weakness 

in that they are incapable of dealing with equations exhibiting 

gross n o n - l i n e a r i t i e s . This l i m i t a t i o n i s due to the general 

approach to solving the equation, namely, making the grossly non­

linear equation only s l i g h t l y non-linear, or quasi-linear, i n an 



attempt to get more insight into the behaviour of the system, 

using linear theory. In order to break through this l i m i t a t i o n 

a bolder approach i s i n order, i . e . a direct attack on the non­

linear equation i n question. To this end, a study, for the 

purpose of obtaining approximate solutions to a certain type of 

grossly'non-linear equation which arises from many engineering 

systems, was undertaken* 

1»3 Derivation of the System Equation 

A large class of physical systems contain a non-linear 

element whose characteristic i s represented by an odd cubic 

polynomial with positive c o e f f i c i e n t s , for example, a hard 

spring characterized by 

F(x) = a^x + a^x 

where F(x) ̂  restoring force i n spring, 

x = displacement, 

and a^ and a-j are positive c o e f f i c i e n t s . This odd cubic 

polynomial i s often an approximation to a grosser non-linearity 

such as an odd polynomial of higher order, i 0e„, 

k = n 

F(x) = ^ a kx k, n > 3. 

k odd 

The general shapes of th i s odd polynomial and the "odd cubic" 

characteristic are shown i n F i g . 1.1. 

Now consider the following systems containing "odd cubic 

elements: 
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non-linear 
inductor 

F i g . 1.2 Non-linear RLC c i r c u i t 



(a) RLC c i r c u i t . 

The p a r a l l e l RLC c i r c u i t i n Pig. 1.2 consists of a 

line a r r e s i s t o r R, a lin e a r capacitor C, and an inductor which 

i s non-linear because of saturation. Neglecting hysteresis, 

the inductor current can be approximated by 
3 

= a-̂ A + a-̂ A 

where A = flux linkage, and a-̂  and a^ are positive c o e f f i c i e n t s . 

Applying Kirchhoff's current law, we obtain 

Cv + Jj + & X + a 3X 3 = 0 * 

where v i s the voltage across the p a r a l l e l elements. Since, by 

Faraday's law, v = X, this equation can be re-written as 

CA + | A + a ] A + a 3A 3 = 0 ( l . l ) 

which i s , then, the equation of the RLC c i r c u i t . 

(b) Hard spring with pure viscous damping. 

F i g . 1.3(a) shows a simple mechanical system involving 

a mass s l i d i n g on a surface with pure viscous f r i c t i o n and res­

trained by a hard spring whose characteristic i s given by 

F = b-ĵ x + b 3 x 3 

where F = restoring force i n spring, and b-̂  and b^ are positive 

c o e f f i c i e n t s . From the free-body diagram shown i n F i g . 1.3(b), 

• A dv 
V = dt 
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\ 
non-linear spring 

(a) 

Bx 

(a) 

Pig. 1.3 Restrained s l i d i n g mass 

D 

I 
non—linear 
torsion bar I c-

Pig. 1.4 Torsional pendulum 



7 
we obtain 

F + Bx = -Mx 

where M = mass. 

and B = c o e f f i c i e n t of viscous f r i c t i o n , and hence 

Mx + Bx + b ^ + b 3 x 3 = 0. (1.2) 

(c) Torsional pendulum with pure viscous damping, 

A simple torsional pendulum i s i l l u s t r a t e d i n F i g . 1.4. 

It consists of a disc with moment of i n e r t i a J, a support with 

viscous f r i c t i o n a l c o e f f i c i e n t D, and a non-linear torsion bar 

whose characteristic i s given by 

T = c 1Q + c 3 © 3 

where T = restoring torque i n the torsion bar, 

0 = angular deflection, 

and c^ and c 3 are positive c o e f f i c i e n t s . Consideration of 7 

torques gives 

T + DO = ^J0 

and the system equation becomes 

JO + DO + CjO + c 3 © 3 = 0. (1.3) 

The systems described above are, i n f a c t , analogous to 

each other, because th e i r equations a l l have the following form 

ay + Py + yy + S y 3 = o (1.4) 

where a corresponds to C, M, or J, 

P corresponds to jj^ , B, or D, 

"y corresponds to a-̂ , b^, or c-̂ , 



3 corresponds to , b-j, or c^, 

and y corresponds to 0, x, or Oo 

Thus, a s o l u t i o n to equation (1.4) w i l l provide a s o l u t i o n to 

a l l the above systems. I f both the terms Sy and § y ^ are r e l a ­

t i v e l y s m a l l , a c l a s s i c a l method based on v a r i a t i o n of para­

meters, such as the K r y l o f f - B o g o l i u b o f f method, gives s a t i s -
(2) (3) 

f a c t o r y a n a l y t i c a l approximate s o l u t i o n s . However, i f 

e i t h e r py or §y^ i s l a r g e , t h i s method f a i l s to y i e l d good 

r e s u l t s . A d e t a i l e d study of the equation where |3y and Sy"̂  

are not n e g l i g i b l e and a d i r e c t approach to f i n d i n g a n a l y t i c a l 

approximate s o l u t i o n s was t h e r e f o r e attempted. 



2. STUDY OF THE SYSTEM EQUATION 

9 

2.1 Normalization 

Equation (1.4) ostensibly contains four arbitrary 

c o e f f i c i e n t s , which make i t d i f f i c u l t to study. However, two 

of these c o e f f i c i e n t s can be made i m p l i c i t i f the following 

normalization i s performed. Dividing through by a, equation (1.4) 

can be rewritten as 

y + ay + by + cy 3 = 0 (2.1) 

where a = 6/oc, b = 'Y/a., and c = c5/cx.. Letting T = Jb t, 

obtain 

y _ dt 
_ dy_ dT 
~ dT ' dt 

= fb y' 

we 

where y' -
dT' 2 , d y and y = — i r 

dt* 

dT v d t ; 

= Vb ̂  ( VF y ) 

= b y " , ' 

d 2 

where y" = — ^ . Substituting y' and y" into equation (2.1), ar 2 

we have 

by" + a Vb y' + by + cy =0, 

or y " + ^ y ' + y + f y = o . a „, , , c „3 



10 
In order to f a c i l i t a t e subsequent work, this equation i s re­

written i n the form 

y » + 2ey» + y + ay 3 = 0 (2.2) 

where e = a _ , 
2 fb 

and u = ^ « 

Moreover, since a consistent framework i s desirable, t h i s 

equation i s assumed, to have the following i n i t i a l conditions g 

y(0) 1 P y'(0) = 0. 

To show that this assumption does not affect the generality of 

the approach, l e t the i n i t i a l conditions be 

y(0) = Q, y»(0) = 0, 

Replacing y by x = ^— y i e l d s 
*̂o 

x(0) := 1, x' (0) = 0, 

and equation (2«2) becomes 

Q Qx» + 2eQ0x» + Q Qx + U.Qq
3 x 3 = 0 

y' (0) i s assumed to be zero i n this work for physica.l reasons. 
For examplep i n the study of the s l i d i n g mass referred to i n 1.3, 
one usually displaces i t from i t s neutral position by the 
i n i t i a l amount of Q O ? then releases i t . Very seldom does one 
incorporate an i n i t i a l v e l o c i t y because i t i s d i f f i c u l t to obtain 
accurately. Moreover, i n the case where the system i s 
o s c i l l a t o r y , one can a r b i t r a r i l y f i x t ~ 0 at the peak of the 
o s c i l l a t i o n j , i . e . y f(0) — 0. 
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2 3 or x" + 2ex' + x + uQQ x = 0, 

x(0) = 1, x'(0) = 0 (2.3) 

A comparison between equations (2.2) and (2,3) reveals that 

the substitution of x = ¥j— leads to an equation with a d i f — 
*̂o 

ferent c o e f f i c i e n t i n the non-linear term i f Q ^ 1; but since 
o 

the method to be used for solving the equation i s not altered 

by the values of this c o e f f i c i e n t , no generality i s l o s t . 

2.2 Phase-plane Analysis 

Consider the equation 

3 
x + 2ck + x + ux =0, 

x(0) = 1, x(0) = 0. (2.4) 

If u = 0, i t degenerates to the linear equation 

x + 2ex + x = 0, 

x(0) = 1, x(0) = 0. (2.5) 

which w i l l be referred to as the complementary linear equation 

of (2.4), Exact solutions of this equatioti depend on the values 
* 

of e , namely, i f 

(a) e< 1 (underdamped) f then 

X = 1 e ~ e t cos ( Jl - e 2 t + 0 )F 

2 0 

Jl - e' 
(2.6) 

Because the system to be considered contains only passive 
elements, i . e . no energy sources, the value of ,e w i l l either be 
zero or p o s i t i v e . 



where 0 = tan -1 t 
e 

2 

(b) e = 1 ( c r i t i c a l l y damped), then 

x = (1 + t) e t , (2.7) 

(c) e >1 (over-damped), then 

1 (! + e ) e ( - E + Ve 2- l ) t x 
te" - 1 2 ' j ! * 

+ | (1 + ~ = ) e ^ 6 ^ " ^ ' * . (2.8) 

If [i ̂  0, solutions are also dependent on the damping factor e 

For example, i f 

(a)' e = 0 (conservative system), then equation (2.4) becomes 

x + x + ux = 0, x(0) = 1, x(0) = 0. 

The solution i s the Jacobian e l l i p t i c cosine 

x = Cn (k,<ot)(4) 

where k^ = ^ " • 
2(l+u) 

2 
and (0 = 1 + [j,« 

(b) e >0 (non-conservative system), then no exact solutions 

to equation (2.4) are available i n closed form. Though the 

solutions are similar to those of equation (2.5), they exhibit 

a greater number of o s c i l l a t i o n s i n the same length of time. 

In order to c l a r i f y the picture, a phase-plane analysis i s most 
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(5) h e l p f u l . Using the method of isocl i n e s , phase—plane diagrams of 

equations (2.4) and (2.5), as shown i n Pig. 2.1, are obtained. In 

F i g . 2.1(a) where e < l , the two tr a j e c t o r i e s suggest damped o s c i ­

l l a t i o n s . In the case where u>0, the period of o s c i l l a t i o n i s 

shorter because x decreases with a greater slope. In F i g . 2.1(b) 

where e=l, the trajectory for u=0 represents a solution without 

"overshoot", i . e . x never going negative, while tr a j e c t o r i e s for 

u>0 show one or more overshoots, the number of which increases as 

u increases. Similar results are observed i n F i g . 2.1(c) where 

e > l . If under—damping and over-damping are defined respectively 

by the presence and absence of overshoots, one sees, therefore, that 

consideration of e alone i s not s u f f i c i e n t to predict whether the 

system i s under-damped or over-damped, as i n the l i n e a r case, for 

the value of a i s also an important factor. An extensive i n v e s t i ­

gation of t h i s aspect was undertaken, using the d i g i t a l computer 

to provide numerical solutions. The re s u l t , as i l l u s t r a t e d i n F i g . 

2.2, i s a curve i n the e-u plane showing regions where the system 

has overshoot and where i t has not. Contrary to li n e a r theory, over­

shoots may be observed for e > l , i f a is high enough. This result i s 

not surprising as equivalent l i n e a r i z a t i o n also predicts possible 

overshoots. 

2.3 Investigations i n the Time-domain 

The independent variable, time, i s i m p l i c i t i n phase-plane 

diagrams, and solutions to equation (2.4) are, therefore, not 

readily available as functions of time. Using the method of equi-
(6) 

valent l i n e a r i z a t i o n and numerical solutions obtained from the 
d i g i t a l computer, the effect of u on the solution i s as followss 
_ , . _ _ 

See Appendix A for computational d e t a i l s . 



(a) 0 < e < l (b) e = 1 (c) e > l 

u=--u3>u2 

Pig. 2.1 Phase-plane diagrams 
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F i g . 2.2 Dependence of overshoot on e and u 
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(a) 0 < e < 1 

Pig. 2.3 shows a t y p i c a l example i n this case. A 

numerical solution to the equation 

x + 0.4x + x + 2x 3 = 0, x(0) = 1, x(0) = 0 (2.9) 

i s displayed together with the solution to i t s complementary 

linear equation, i . e . 

x + 0.4x + x = 0, x(0) = 1, x(0) = 0 (2.10) 

Any difference between these two curves r e f l e c t s the effect of 

the non-linear term. The solution to equation (2.10) i s 

x =' — ± — e ~ ° * 2 t cos (7o796t - 0 ) 
yo~96 

where 0 = tan * • It represents a damped sinusoid having 
0 V0.96 

an envelope — g-0.2t a n < ^ a phase of JO .96 t - 0 . Although 

JO.96 0 

the solution to equation (2.9) resembles a damped sinusoid, i t s 

amplitude decays at a slower rate than — 1 e -^' 2^ and i t s 

70.96 
phase increases i n a non—linear manner, i . e . the phase i s 

retarded as time increases. 

Equivalent l i n e a r i z a t i o n of equation (2,4), based on 
(6) 

v a r i a t i o n of parameters , yields 
, .2 2 

x + 2ex + (1 + x = 0 (2.11) 
-A where A = — e 

= amplitude. 

Here, the value of A at t = 0 must not be taken as x(0), for i t 



Envelope for u,=2 
Envelope for \i=0 A 1 -0.2t 

A = — = e 

1 -0.2t cos(,/0.96t 

-0.2) 

F i g . 2,3 Solution curves to the equation 

x + 0.4x + x + [xx3 = 0, x(0) = 1, x(0) = 0 
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represents the envelope of the solution and i s always greater 
than x(0) , though i n most cases the difference i s small. Using 

linear theory, the effect of u, on the frequency i s evident. 

This equation represents an o s c i l l a t i o n with both amplitude and 

frequency varying with respect to time. The amplitude A decays 
—e t 

exponentially according to e , and the frequency s i m i l a r l y 

decreases as the amplitude decays with increasing time. As 

time progresses, A ultimately becomes small enough so that 

3uA 2 

— ^ — i s negligible compared to unity. Then, the frequency I 2 
becomes e f f e c t i v e l y Jl - e , which i s the frequency of o s c i l l ­

ation of the complementary linear equation of equation (2.4). 

Therefore, equation (2.4) degenerates to i t s complementary 

linear equation as time increases. 
(b) e > 1 

A t y p i c a l example i n this case is i l l u s t r a t e d i n F i g . 2.4 

by 

x + 2.4x + x + 7x 3 = 0, x(0) = 1, x(0) = 0. 

Although this equation has an over-damped complementary linear 

equation, an overshoot i s observed i n the solution. The 

presence of the non—linear term i s responsible for this over­

shoot as already shown i n the phase-plane analysis. Consistent 

results are also predicted from equivalent l i n e a r i z a t i o n . 

Consider now the equivalent linear equation (2.11) where 

e ^ 1 . If u, has a value such that 

1 + > e , 

o s c i l l a t o r y solutions may be obtained. It must be noted, however, 



F i g . 2.4 Solution curves to the equation 
x + 2.4x + x + u.x3 = 0, x(0) = 1, x(0) = 0 
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that this inequality only predicts q u a l i t a t i v e l y how overshoots 

may possibly occur, and i s not necessarily capable of y i e l d i n g 

accurate r e s u l t s , for small values of e and a have been assumed 

in the equivalent l i n e a r i z a t i o n . If accurate results are 

required, then the curve i n Pig. 2.2 may be used. 

2.4 Conclusions 

In conclusion, the general behaviour of the system has 

been studied, using the d i g i t a l computer and the method of 

phase plane analysis* Solutions to the non-linear equation are 

compared with solutions to i t s complementary linear equation. 

In damped o s c i l l a t o r y systems, the amplitude of the solution 

decreases more slowly i n the non-linear case, and i t s 

frequency, being i n i t i a l l y greater, approaches that of the 

complementary linear equation as time progresses. In the case 

where the complementary linear equation i s c r i t i c a l l y or over-

damped, the presence of the non-linear term may lead to over­

shoots . 

Because the system i s damped, x w i l l eventually disappear, 
3 

and the non-linear term ux w i l l become i n s i g n i f i c a n t compared 

to x, when x becomes small. Hence, an approach to finding the 

a n a l y t i c a l solution i s suggested by neglecting the non-linear 

term at a point where x has become s u f f i c i e n t l y small. 



3. APPROXIMATE SOLUTIONS TO THE SYSTEM EQUATION 
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3 .1 Motivation 

Consider equation (2.4) 

x + 2ex + x + ux 3 =0, x(0) = 1, x(0) = 0. 

As mentioned previously, the solution to this equation i s not 

available i n closed form. Therefore, attempts were made to 

approximate the solution. 

In the case where e < 1, the method of Kryloff and 
*(3) 

Bogoliuboff was used. From Appendix B, the solution i s given 

by 
x(t) = e " e t cos (1 + 2|)t, (3.1) 

where e, a ^ 1. 

By comparison with 

x(t) = , 1
 2 e " e t cos ( Jl - e 2 t + 0 ) (3.2) 

VI - e 0 

which i s the solution to the complementary linear equation (2.4), 

one observes that solution (3.1) cannot be extended to higher 

values of e and u t because 

(a) contrary to the resu l t i n the l a s t chapter, the frequency 

in (3.1) remains constant as time progresses, and 

(b) this frequency approaches unity i f a becomes zero, which 

does not agree with (3.2) i f e i s not ne g l i g i b l e . 

For large values of e and a, therefore, a new method must be 

_ 
This method w i l l hereafter be referred to as the K-B method. 

See Appendix B. 
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developed. 

In the case where e ^ 1 , the K-B method i s no longer 

applicable because the solution i s not o s c i l l a t o r y i n nature. 
(7) 

Here, the Ritz method , which i s an averaging method based 

on residuals i s used i n conjunction with i n i t i a l condition 

matching. Since the solution of interest i s either monotonically 

decreasing or exhibits one overshoot, the approximate solution i s 

assumed to be of the following form: 
A at , -n bt x(t) = A e + B e 

where A and B are constants and both a and b are dif f e r e n t 

negative numbers. Substituting this solution into the o r i g i n a l 

d i f f e r e n t i a l equation, we have the residual given by 

0~(t) = x -f 2ek + x + u,x3 

= (a 2+ 2ea+l)Ae a t + (b 2+ 2eb+l)Be b t+ u A 3 e 3 a t 

_L T J 3 3bt _ A 2 B (2a+b)t A T a2 (a+2b)t + \iB e + 3uA Be v ' + 3uAB e v ' . 

The Ritz c r i t e r i a are 
'CD 

C T ( t ) e a t dt = 0, 

and / ( X ( t ) e b t dt = 0. 

0 

Now, from the i n i t i a l conditions x(0) = 1, x(0) = 0, we also 

have 

A + B = 1 

a A + b B = 0 

Hence we obtain four equations in four unknowns. After integrating 



and eliminating A and B from these equations, we have 
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3 
1. i^(a 2+ 2ea+l) + -%r(h2+ 2eb+l) - — ^ 2 a v a T - a + b ^ T — / 2 

,4a(a-b) 

3 2 2 ixa + 3ub a 3aa b  
(3b+a)(a-b) 2 (3a+b)(a-b) 2 2(a+b)(a-b) 2 

3 
2o =|(b2+ 2eb+l) + - T u(a 2+ 2ea+l) - — ^ 

= 0 

2 b r a + b „ 4 b ( a - b ) 2 

3 2 2 ub + 3aa b _ 3aab  
(3a+b)(a-b) 2 (3b+a)(a-b) 2 2(a+b)(a-b) 2 

0 . 

Without the aid of a d i g i t a l computer, solving the above two 

equations simultaneously i s very laborious. Therefore, from 

an engineer's point of view, this method i s highly impractical. 

As a r e s u l t , two new approximating methods were developed, 

depending on whether e i s less than unity or greater than 

unity. The rest of this work w i l l be devoted to the development 

of these methods. 

3.2, Case I - c < 1 

3.2.1 Choice of Approximant 

In this case, where e < 1, both phase-plane analysis and 

computer solutions from Sections (2.2) and (2.3) have indicated 

o s c i l l a t o r y solutions resembling damped sinusoids. The phase 

has also been shown to increase non-linearly with time. The 

approximant, therefore, w i l l assume the form 

x(t) = A(t) cos H ( t ) , 



where A(t) = amplitude, 

and .Q(t) = phase. 

Consider equation (2*4) with e < 1. Because the system i s 

damped, x w i l l eventually vanish and the non-linear term 
3 

u,x w i l l become negligible compared to x, when x i s suf­

f i c i e n t l y small. Let this point of n e g l i g i b i l i t y occur at 

t = t m < Beyond this point, then, equation (2.4) es s e n t i a l l y 

degenerates to i t s complementary linear equation (2.5) and w i l l 

be treated as such. Therefore, the approximant w i l l have the 

following form: 
for 0 < t ^ t m x(t) = A(t) cos f l U ) (3.3) 

for O t x(t) = P e ~ e + cos ( V l - e 2 t + 0 ) ^ m v ' v o 
(3.4) 

where P and 0 are constants, o 
IJere, i t must be noted that P ^ . s=- and 0 ^ tan ^ e 

e 

as they are i n equation (2.6), because i n i t i a l conditions for 

(3.3) must be adjusted to match (3.2) at t m . And so, the 

problem i s now to f i n d the functions A(t) and .Q(t), and the 

constants P, 0 , and t . 
' o' m 

3.2.2 The Angle C r i t e r i o n and the Determination of t 
;_m 

In order to determine t , some information about the 
m' 

3 
point at which [xx may be neglected i s necessary. Consider, 

again, the phase-plane diagram. Usually the f i r s t step i n the 

construction of the phase-plane diagram i s the construction of 

i s o c l i n e s , i . e . curves of constant slope i n the x-x. plane. 

Therefore, i f two systems have almost i d e n t i c a l sets of 
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i s o c l i n e s , they must have almost the same phase-trajectories. 

Furthermore, i f two systems have almost i d e n t i c a l phase-

t r a j e c t o r i e s , i t i s reasonable to assume that their solutions 

as functions of time are almost i d e n t i c a l . Hence a measure of 

"closeness" between the i s o c l i n e s of two systems may be regarded 

as a measure of how close their solutions are to each other. 

Now, consider the two systems represented by the 

equations (2.4) and (2.5)« Typical i s o c l i n e s of the same slope 

m for these systems are shown in F i g . 3.1. In order to have a 

measure of "closeness" between these i s o c l i n e s , a c i r c l e of 

radius R i s constructed, intersecting the linear i s o c l i n e at 

point P. Through P, a v e r t i c a l straight line i s drawn, i n t e r ­

secting the non-linear i s o c l i n e at point Q. Then, the angle 

So between the lines OP and OQ can be regarded as a measure of 

"closeness" between the two i s o c l i n e s . If a slope d i f f e r e n t 

from m i s chosen, and the same construction performed, the 

resulting angle § 0 may be d i f f e r e n t . However, the maximum 

value ( So) of these angles, as m varies, i s a function of 
^ ITlcLX 

aR . In p a r t i c u l a r , ( So) decreases as uR decreases, but 
m ax 

since the amplitude A of the solution follows R quite closely, 

(So) decreases as uA decreases. Therefore, the value of 
2 

uA can also be regarded as a measure of "closeness" between the 

two i s o c l i n e s , or a measure of the effect of the non-linear term. 

For example, i f uA = 0.2, ( So) i s approximately 3 , or 

0.05 radian. Therefore, as the amplitude A decays from i t s 
2 

i n i t i a l value and reaches a value such that uA =0.2, the two 

sets of is o c l i n e s may be considered coincident for a l l p r a c t i c a l 
See Appendix C. 
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x=y 

F i g . 3.1 Difference between the l i n e a r and non-linear 
is o c l i n e s of the same slope, m 
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purposes . T h i s p o i n t then determines a p o i n t at which the term 
3 

|xx may be n e g l e c t e d . Hence t may be chosen such tha t 

I t must be remembered t h a t t h i s r e l a t i o n i s an a r b i t r a r y 

c r i t e r i o n based on the c o n s i d e r a t i o n of the angle ( § © ) , and 
° max 

i t serves on l y the purpose of o b t a i n i n g a p o i n t where the non­

l i n e a r equa t i on can be r e p l a c e d by the l i n e a r one. In choos ing 
2 

such a p o i n t of t r a n s i s t i o n , how the va lue of uA v a r i e s w i t h 

time must, a l s o be c o n s i d e r e d . 

Maximum 

- t i m e , t 

P i g . 3.2 E f f e c t of the N o n - l i n e a r Term 

F i g . 3.2 shows the genera l shape of the va lue of uA 

as t ime v a r i e s . S ince the ampl i tude A decays almost e x p o n e n t i a l l y , 

2 

as mentioned b e f o r e , uA drops v e r y q u i c k l y a t the beg inn ing 

and approaches zero a s y m p t o t i c a l l y as t ime i n c r e a s e s . T h i s 
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curve also represents the effect of the non^linear term. In 
2 

order to show that consideration of the value of u,A alone 

may not necessarily lead to a wise choice of the point of 

t r a n s i t i o n from the non-linear equation to a l i n e a r one, the 

following two choices of such a point are comparedo F i r s t , 
2 . 

l e t the t r a n s i t i o n occur at t = t , , The value of ixA i s 
m ml r 

small as shown in F i g . 3*2, indicating that the equation i s 
e s s e n t i a l l y linear for t = t = t and therefore the " l i n e a r " 

m ml 
part of the approximant, i . e . equation (3.4): 

for t ^ t m x(t) = P e ~ e t cos ( J l ~ e 2 t + 0Q) 9 

i s very close to the exact solution. As a second choice l e t 

b = t 0, m m2 the t r a n s i t i o n occur much e a r l i e r , at t_ = t _ o 0 The value of 
2 

uA i s now larger, and the " l i n e a r " part of the approximant 

i s therefore not as good as the f i r s t choice„ This does not 

necessarily mean, however, that the second choice i s poorer, 

for i t may y i e l d a better "non-linear" part of the approximant, 

i.e , equation (3.3): 
for 0 < t ^ t m x(t) = A(t) Cos O ( t ) . 

In f a c t , a better "non-linear" part i s usually expected 

because i t s range of approximation i s now greatly reduced. As 

a r e s u l t , one must consider a compromise i n choosing the point 

t , so that both the " l i n e a r " and "non-linear" parts of the 

approximant are reasonably accurate. To this end, one must 

* i 

2 
choose t as small as possible and at the same time, avoid an m 
unduly large value of ufA(t )1 . Using Galerkin's method, which 

(8) 
i s an averaging method based on residuals ', i t seems that the 
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value of t may be optimized i n the sense that the integral 

<T 2(t) dt 

i s a minimum, where C7"(t) = x + 2ex + x + ax. However, 

this i s impractical because (a) the functions A(t) and .Q(t) 

are not known, and (b) even i f they are known, solving the 

set of equations 
r 

o-2(t) dt = o 

cr 2(t) dt = o 

CO 

c r 2(t) dt = o 

w i l l be a formidable task due to the presence of the non-linear 

term. Therefore, experimental results are used to obtain an 

empirical c r i t e r i o n for choosing an acceptable t . For 

example, numerical solutions of the equation 

x + 0.4k + x + ux 3 = 0, x(0) = 1, x(0) = 0 

with various values of a have indicated that the phase-retard-
2 

ation becomes negligible when uA = 0.2. This means that the 
2 

equation behaves p r a c t i c a l l y l i k e a linear one when aA = 0.2, 
and therefore t can be chosen such that m 

u[A(t )] = 0.2. (3.5) 



From this empirical c r i t e r i o n , as u becomes larger, A ( t m ) 

becomes smaller, y i e l d i n g a greater t m« This i s reasonable 
3 

because with a larger a, the non-linear term ux must take 

a longer time to become negligible compared to x. It must also 

be noted here that the r e l a t i o n (3.5) i s obtained empirically 

with e = 0.2. If equations with a larger e are considered, 

however, a di f f e r e n t empirical c r i t e r i o n may be obtained. In 

fac t , study of the numerical solution of the equation 

x + 0.8 k + x + ax 3 = 0, x(0) = 1, x(0) = 0 

has revealed that the phase-retardation becomes negligible at 

tm S^en by 

From F i g . 3.2, this indicates that the effect of the non-linear 

term i s greater at t m , but i t should be noted that a larger e 

results i n a faster decay of the amplitude A. Because the 
2 

ef f e c t of the non—linear term varies as A , this means that 
3 

ux becomes negligible compared to x i n a much shorter time 

i n t e r v a l . Therefore i t i s conceivable to relax the c r i t e r i o n . 

Many examples with various values of e have been solved 

numerically and the result has suggested that this c r i t e r i o n 

can be assumed to depend on e i n the following l i n e a r manner. 
a [ A ( t m ) ] 2 = | . (3.6) 

Note that this r e l a t i o n i s only an empirical c r i t e r i o n to be 

used as a "rule of thumb" for choosing t wisely, and i s not 

necessarily the best c r i t e r i o n , i f one exists at a l l . Now, the 

next step i s to evaluate t , using this c r i t e r i o n . 
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Although this c r i t e r i o n gives a value of A ( t m ) when e 

and u are specified, i t does not provide the value of t 

d i r e c t l y . It i s necessary to f i n d a relationship between 

A(t ) and t • Again, consider equation (2.4) 

x + 2ex + x + ax 3 = 0, x(0) = 1» x(0) = 0. 

It has been shown e a r l i e r i n section 2.3(a) that the envelope 

A(t) of the solution decreases at a slower rate with a ^ 0 

than with u = 0, as i l l u s t r a t e d i n F i g . 3.3 by curves I and 

I I . A horizontal l i n e i s drawn through A(t) = A ( t m ) , i n t e r ­

secting curves I and II at F and G respectively. Therefore, 

the abscissa for G i s t , and i f the abscissa for F i s denoted 

by t , we have J mo' 
, -e t . / , \ 1 mo 

which gives 

Letting t be the i n t e r v a l between F and G, then 

t = t + t m mo o 

"7" log [/l - e 2 A(t m)] + t o . (3.7) 

Hence the problem becomes finding t i n terms of A ( t m ) , u and e, 

which are a l l the known quantities. Here, i t may seem that 

the introduction of t does not help i n solving the problem 

at a l l , because the o r i g i n a l problem was to find t also i n 

terms of these three known quantities. But this i s not the 

case, because by finding t , one i s looking only for that part 



m 

I. uĵ O 

I I . u=0 

mo 

Pig. 3.3 Envelope of the solution to equation (2.4) i 
x + 2ex + x + fxx3 = 0 

Fig« 3.4 Dependence of t on A ( t m ) 



of t due to the non-linear term, i . e . only the effect of the 
m 

non-linear term on the envelope. ' 

The approach i n finding t i s to investigate how t 

depends on the three quantities A ( t m ) , u, and e respectively. 

Here, experimental results are again used. F i r s t , the 

dependence of t on A ( t m ) i s i l l u s t r a t e d by F i g . 3.4, i n which 

the numerical solutions to the equations 

x + 0.4 x + x = 0, x(0) = 1, x(0) = 0 

and x + 0*4 x + x + 3x 3 = 0, x(0) = 1, x(0) = 0 

are used. As A(t ) decreases from i t s i n i t i a l value, t 
m 7 o 

increases f a i r l y l i n e a r l y and reaches a maximum at A ( t m ) = 0. Hence we have 

t QcX 1 - A ( t m ) (3.8) 

Secondly, i n order to reveal the dependence of t on u,, the 

numerical solutions to the equation 

x + 0.4 x + x + u.x3 = 0, x(0) = 1, x(0) = 0 

are shown i n F i g * 3.5(a) as u. varies from 0 to 3 i n increments 

of 1.0. A fixed value of A(t ) i s chosen, and values of t , 
m 

corresponding to particular values of u, are found. If t 

i s now plotted against u,, a straight l i n e i s obtained, as i n 

F i g . 3.5(b)* Thus, t varies approximately l i n e a r l y as u,, or 
o 

t 0CC [x (3.9) 

The i n i t i a l values of the envelopes are assumed to be unity 
here for the purpose of finding an approximation. Their true 
values, however, are greater than unity. 
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A(t) 

(b) 

F i g . 3.5 Dependence of t on |x 
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Now, the dependence of t on e can be seen from the 

numerical solutions to the equation 

x + 2ex + x + 3x 3 = 0, x(0) = 1, x(0) = 0 

as e varies frpm 0 to 0.9. Corresponding values of t Q , as 

e increases, are obtained with A ( t m ) fixed, for example, at 

0,4, Then t i s plotted against e as i n F i g . 3*6. The curve 

obtained resembles a hyperbola, suggesting that t varies 

inversely as e , or 

t cc -
o e 

(3.10) 

Therefore, from equations (3.8), (3.9) and (3.10), we have 

a[ l - A(t m)] 
t = k o 

where k = constant,. From numerous examples with various values 

o 

2.5 

2.0--

1.5-

1.0--

.5-

0 

a=3.0 
A(t m)=0.4 

.1 .2 .3 .4 .5 .6 .7 .8 

Fig* 3*6 Dependence of t on E 
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of e, a and A ( t m ) , k i s empirically found to be about l / l O . 

Ve then arrive at 

a [ l - A(t )1 
t = LL -J2-=L , ( 3 . 1 1 ) 0 10 e 

which enables us to calculate ± n when E , a, and A ( t m ) are known. 

Hence, from equation (3.7), we have 

* m - - ̂ o 8 e [ y T T ^ A ( t + ( , . i a ) 

Note that t i s always positive because both e and A(t ) are 

less than unity« 

In short, t can be calculated from equations (3«6) and 

(3.1l) when e and a are specified. Equation (3.6) i s an 

arbitrary c r i t e r i o n based on the consideration of the angle 

(So) between the linear and non-linear is o c l i n e s i n the max 
phase-plane, and equation (3.1l) i s obtained empirically using 

numerical solutions obtained on the d i g i t a l computer* It must 

also be remembered that the t thus calculated i s not necessarily 
m 

an optimal choice of the point of t r a n s i t i o n from the non­

linear equation to the linear one, but rather, i s a judicious 

choice of such a point for the purpose of approximating the 

exact solution. 
3.2.3 Determination of A(t) and Q(t) 

In the determination of the amplitude function A ( t ) , 

consider f i r s t the amplitude of the solution to the comple­

mentary linear equation, i . e . 

x + 2 E X + x = 0, x(0) = 1, x(0) = 0, 



which i s the case for u, 

solution i s given by 

= 0, The amplitude A(t) of the 
37 

A(t) = , 1 e ~ e t 

/ l - e 

In the case where u, ̂  0, graphs such as F i g , 3.5(a) have 

shown that the amplitude A(t) also resembles an exponential 
(13) 

but decreases at a slower rate. As suggested by Tuttle, ' 

A(t) can assume the following form: 

A(t) = A Q e " ^ , 

where A and p are constants, o 
Since A(0) i s assumed to be unity as mentioned previously, 

A =1, and therefore o 

A(t) = e ~ p t . (3.13) 

But at the point where the non-linear term becomes negl i g i b l e , 

-pt 
t = t . Hence m 

A(t ) = e m 
m 

'or p - - ( l / t m ) l o g e A ( t m ) (3.14) 

Note that p i s always positive for A ( t m ) less than 1* "..Having 

calculated t f f l and A ( t m ) from equations (3 .6) and (3.12), p i s 

now easily obtained, and equation (3.13) becomes 

A(t) = exp 
log A(t ) 

&e m t m 
(3.15) 
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The next step i s to determine the phase function Q ( t ) . 

Previous study of the equation with u. ̂  0 has revealed that 

the phase increases i n a non-linear manner,, or the frequency 

of o s c i l l a t i o n Varies with time. As a f i r s t approximation, 

we consider that the frequency varies l i n e a r l y with time and 

therefore 

| r [ n ( t ) ] = 2<o2t + 0 ) 1 (3.16) 

where to^ a n < i are constant. 
Integrating once j we have 

O(t) = <o 2t 2 + a>1t + « o (3.17) 

where to = constant, o 
To f i n d « q . »^, and to^i consider equation (3.3) which now 

become s 

x(t) = e ~ p t cos (« o + w-ĵ t + " 2 t 2 ) 

Since x = 1 at t = 0, we have 

1 = cos to 
o 

Therefore to = 0. (3.18) 
o 

(9) 

In. order to f i n d <ô  and to^, the method used by Soudackv ' i s 

* 
In the linear case, the frequency of o s c i l l a t i o n i s constant, 

and equals the f i r s t derivative of the phase w.r.t. time. 
Therefore, as a generalization to the non-linear case, the 
f i r s t time derivative of the phase i s referred to as the 
frequency of o s c i l l a t i o n . 
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adopted. They are obtained by considering that both the 

phase and the frequency i n the approximants (3.3) and (3.4) 

should be matched at the point of t r a n s i t i o n . This means 

that at t = t , m* 

H ( t ) = Jl - e 2 t + 0 , m * m o 

and 0 ( t ) = Jl - e 2 . 

From equations (3.16), and (3.17), we have 

<o + <ont + <0 ot 2'= Jl - e 2 t + 0 , (3.17a) 
o 1 m 2 m ^ m 'o 7 \ > / 

and tt + 2»2 tm = «/l - e 2 . (3.16a) 

From the l a s t equation, we then obtain 

Jl - e - » 1 

w0 = A — . (3.19) 
2 * 

m 
Since ttg i s now expressed e x p l i c i t l y i n terms of tt^, a l l that 

remains to do i s to determine tt^ independently. But before 

we do so, l e t us see whether the parameters p and (6^ determined 

are consistent with the case where e —»-0. The l i m i t i n g 

values for both p and (a^ a r e expected to be zero, because i f 

e = 0, we have (a) A(t) = 1 and (b) frequency = constant, 

i . e . no phase retardation. Let us f i r s t consider equations 

(3.6) and (3.12) as e —»-0. We have 

lim A(t ) = lim /rr- = 0, m' V 2u s 

c—0 e —0 

and 
lim t = lim ' 

0 E-*-0 

1-, f f. 2 xi . - A ( tm }] 
- l o g |V 1 - e A ( t ) J + — 

lOe 



40 
= CO 

These results could also be derived from the following argument: 

As e becomes smaller, the envelope w i l l decrease at a slower 

rate and i t w i l l take longer time to reach the point of 

t r a n s i t i o n to the li n e a r equation, i . e . t w i l l become larger. 

Eventually, as z gets very close to zero, t w i l l approach 

i n f i n i t y and A ( t m ) w i l l approach zero, for the envelope i s 

a lways decreasing so long as E / 0, Now, from equation (3.14) 

lim p = lim [- i - l o g e A ( t )] 
e —»- 0 e — 0 m 

lim l o g e A ( t ) 
_ e —- 0  

lim t 
e —— 0 

- lim log A(t ) lim e 
= e — 0 e m e — 0 

e —»- u 

= lim e 
e^-0 

= 0 . 

F i n a l l y , from equation (3.19) 

V 1 - e -co, 
lim = l i m ~2~t— 

e—*-0 e-*-0, t --co m 
' m 

= 0 , 

provided ^ CO , However, we are guaranteed that ^ oo , 

for i f i t i s , we have an i n f i n i t e frequency, which i s not 

l i k e l y to occur i n the physical systems with which we are 

dealing. Thus, the l i m i t i n g values for both to^ and p are 

consistent• 
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Soudack then proposed a method of finding by con-
(9) 

sidering these l i m i t s as e—*-0, - As e—*-0, the d i f f e r e n t i a l s 

equa t i on becomes 

x + x + j ix 3 = 0f x ( 0 ) = 1 , x ( 0 ) = 0 * ( 3 . 2 0 ) 

Now, s i n ce t m ~* - a? f P - * * 0 , and °* "the approximant ( 3 . 3 ) 

degenerates to the form 

x ( t ) = COS fiO^t 

and the f requency of o s c i l l a t i o n i s <o^. The exact s o l u t i o n to 

( 3 * 2 0 ) i s , however, g i ven by the J a c o b i a n e l l i p t i c cos ine 

x ( t ) = Cn (k, ttt) ^ 

where k 2 « • • > ̂ 1 11

 t 

2(1 + jO 

and 

Prom books o f t a b l e s , f o r example, Jahnke and Emde ,^^^ the 

qua r te r p e r i o d K(k) of the o s c i l l a t i o n can be f ound . Now 

can be chosen such tha t the degenerate s i n u s o i d a l case has 

t h i s same q u a r t e r p e r i o d » S ince 

K(k) = « £ =yrrj z 

and w l 4 = 2 

f o r the co s ine t o be zero at ^ , we r e q u i r e 

*1 = 2 K & ) ^ " + 7 < (3-21) 
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To complete the proof of consistency of the solution i n 

the degenerate cases, we need to consider the l i m i t i n g cases 

of the functions A(t) and O(t) as \i ——Oo In order to do 

t h i s , the angle c r i t e r i o n must be re-examined* Prom equation 

(3.6), 

A(t ) = / - £ - , 
m' J 2|x 

which i s not v a l i d for very small u,, because then the value 

of A(t f f l) i s very much higher than 1. However, since A ( t m ) 

i s the amplitude at the point of t r a n s i t i o n to a linear 

solution, and this point occurs at t = 0 i f u,—*-0, we have 

lim A(t ) = A(0) = 1. 
— 0 m 

Now, from equation (3.1l), since 

ii [i - A(t )] 
lim t = lim m 

| i — 0 0 u. — 0 , A ^ m ) ^ 1 1 0 e 

= 0, 

the amplitude curve coincides with that of the linear solu­

t i o n As a re s u l t * the amplitude function A(t) of the non­

linear solution degenerates properly to the amplitude of the 

linear solution as u,—*-0. Considering the phase, since 

t f f l = 0 as [i 0, 0("t) =J1 - E 2 t + 0 q for a l l time. There­

fore 

<o.t2 + tt.t + « =Jl - e 2 t + 0 (3.22) 2 1 o * o 

for a l l time. Since t°, t"'", and t 2 are l i n e a r l y independent, 

the only consistent solution of equation (3.22) for a l l time i s 
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• 2 = 0 

2 e 

to = 0 = 0 o o 

Hence as a ——0 the parameters cô  and ft)^ degenerate properly 

to the linear solutions However, the proper value of 0 Q i s 

—1 E 

-tan , 2 i a n& n o " t 0° This discrepency arises from the 
J1 - e 

assumption that the i n i t i a l value of the amplitude i s unity, 

which leads to <0 q = 0. Since the solution i s only approxi­

mate and the c r i t i c a l parameters are and (Og, this 

discrepency w i l l be toleratedo The error thus introduced 

w i l l be small because for a> as high as 0„2 radians, costt 
o 5 1 o 

= 0»98o This completes the proof of the consistency of 

the non-linear solution with the known solutions i n the 

degenerate cases where E —»- 0, or u—» - 0 . 

In conclusion* the functions A(t) and O(t) are obtained 

i n the forms 
A(t) = e - p t, 

and A ( t ) = <o + «Lt + < 0 o t 2 . 
o 1 2 

The parameters p» ( 0 q > <O^, and can eas i l y be calculated from 

equations (3*14)$ ( 3 » 1 8 ) , (3ol9) and (3 D 2l) for specified 

values of E and u* The value of p i s obtained by making the 

amplitude equal to A ( t m ) at t = t m , and the value of <0 q i s 

obtained from the i n i t i a l condition x(0) = 1» Values of cô  

See section 3 . 2 „ 6 for i n i t i a l value correction of the ampli-, 
tude*. 
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and U)^ a r e found by l e t t i n g e— » - 0 , and by matching the phase 

to the f i r s t derivative, which can be regarded as the 

frequency* Consistency with the known solutions of the 

degenerate cases where e — 0 or jj, —»-0 has been shown from the 

li m i t s of A(t) andO(t), except for a small error i n <Dq, which 

arises from the assumption that the i n i t i a l value of the ampli­

tude A(t) i s unity. 

3.2,4 Determination of P and 0 q 

After A(t) and O(t) are determined, i t i s a r e l a t i v e l y 

simple matter to f i n d P and 0 . In fac t , 0 can be calculated c o o 
di r e c t l y from equation (3.17a), i . e . 

0 o = Vm + V i / " V l ~ e 2 K + " o 

= (^ ~Jl - e 2 ) t + <*0t 2 + (a 
m 2 m o 

But from equation (3«16a) , 

e - 2 <0 ot . 
2. m 

Therefore 0 = (/1 - e 2 - 2<o_t ~J\ - e 2 ) t + » 0t 2+ •„ 
o 2 m ^ m 2 m u 

= - < 02 tm 2 + t to ( 3 ' 2 3 ) 

P i s found by matching the amplitude of (3.3) and (3.4) at 

t = t . Thus, 
-et 

A ( t m ) = P: e m . 

et 
Hence P = A(t ) e m . (3.24) 

m 
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This completes the determination of the parameters of the 
approximant to the solution of the non-linear equation (2.4) 

where e <C 1• An example using this approximating scheme i s 

worked out i n the next section. 

3.2.5 Example 

In order to i l l u s t r a t e the approximating scheme just 

developed and to see how good i t i s . an example i s worked 

out. Because t h i s approximating scheme has a t o t a l phase which 

i s a quadratic i n t* i t w i l l hereafter be referred to as the 
parabolic phase approximation, a notation f i r s t used by 

( l l ) 
Soudack, ' Consider,then, the equation 

x + 0.8 x + x + 3x 3 = 0, x(0) = 1, x(0) = 0 

which has e = 0.4 and a = 3.0. Both the magnitudes of e and 

u are inadmissible i n the K-B method as we s h a l l see when we 

compare the solution with the true numerical solution. 

Using the parabolic phase approximation, however, a much 

better solution i s obtained. These three solutions, i . e . , 

the true numerical solution, the K-B approximation, and the 

solution obtained from the parabolic phase approximation, 

are shown i n Figo 3.7* 

F i r s t , from Appendix B, the K-B method yiel d s the following 

approximation: 

x(t) = e ~ e t cos (1 + 2|)t (B.7) 

or x(t) = e ~ ^ 0 ^ cos (2.125 t) . 

Using the parabolic phase approximation, on the other 



F i g . 3.7 Comparison between approximating methods 
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hand, we have 

f o r 0 < t < t m x ( t ) = e ~ p t cos (» 1t + ̂ 2 ^ 2 ) 

f o r t > t m x ( t ) = p cos ( Jl - e 2 t + 0 q) 

The unknown parameters are then obtained from the equations 

developed i n the l a s t four s e c t i o n s as f o l l o w s : 

(3.6) 

0.4 
2T3T 

= 0.258 

m e l o g e Jl - e 2 A ( t m ) 
all - A ( t m ) ] 

lOe 
(3.12) 

= - ^ l o g e [ y o - 8 4 - (0.258)] + 310^7421 

= 4,17 

P = " T~ l0Sa A ( t m ) 
m 

(3.14) 

= - 47YT l o g e ( 0 t 2 5 8 ) 

= 0.325 

(o = 0 o (3.18) 

-n; 
<°i = 2 K T k T y i + * 

(3.22) 

0 3 (lO) 
where k = 2 ( i + n ) = 2(1+3) = C ^ 3 7 5 ' a n d f r o m J a h n k e a n d E m d e > 
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K(k) = 1.761* Therefore 

ten 

<6. 

3,142 
2(1.761) V 4 = 1-783 

2 t. 
m 

./0.84 - 1,783 
2(4.17) 

.0,104 

P - A(t ) m 
m 

= 0.258 e
0 ° 4 < 4 * 1 7 > 

(3.19) 

(3.24.) 

= 1 = 37 

0. = =W-t + 0) 

2 m o 

= 0,104(4.17) ' 

= 1 a 81 a 

(3,23) 

F i n a l l y , the complete approx imat ion becomes 

f o r 0 < t < 4 . 1 7 x ( t ) = e " 0 e 3 2 3 t c o s ( l . 7 8 3 t - 0 „ 1 0 4 t 2 ) 

f o r t > 4 » 1 7 x ( t ) = 1.37 e " 0 , 4 t cos (0 .916t + 1.81) 

Nov, a comparison between the two app rox ima t i on s v as shown 

i n F i g « 3.7? i n d i c a t e s tha t the K=B method i s exceed ing l y s imple 

to c a r r y out* but the r e s u l t i s poo r . The f requency of 

o s c i l l a t i o n i s too l a r g e , and there i s no phase r e t a r d a t i o n . 

A l s o , the ampl i tude of o s c i l l a t i o n decays too r a p i d l y . On the 

o ther hand, the p a r a b o l i c phase approx imat ion r e q u i r e s a few 

more s imple computat iona l steps but the e x t r a e f f o r t i s w e l l 

rewarded* The f requency of o s c i l l a t i o n i s now sma l le r than 
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that obtained by the K-B method and there i s phase 

retardation i n the f i r s t part of the solution, where the 

effect of the non-linear term cannot be neglected. Also, i n 

t h i s f i r s t partj the amplitude decays more slowly than 

e as already predicted from previous studies of the 

equation. Moreover, examples with s t i l l higher e and/or u 

w i l l show that the parabolic phase approximation i s far 

superior to the K—B-method in dealing with these types of 

non-linear equations. 

3.2.6 Refinements i n the Approximation 

Although examples such as the one considered i n the 

l a s t section have indicated that the parabolic phase approxi­

mation yields far better results than the K-B method, close 

examination of these examples suggests that some refinements 

i n the method would make the results even better. The f i r s t 

refinement involves no extra labour and i s essentially a 

modification based on the consideration of the phase term. 

The second one i s a correction of the i n i t i a l value of the 

amplitude. 

Prom various examples, the amplitude function A(t) 

obtained i s i n f a i r l y good agreement with the numerical 

solution. It i s the phase function Q(t) that contributes 

mainly to the discrepency in the solution. Examination of 

many examples reveals that the phase O(t) always leads that 

of the true solution, indicating that either i s too large 

or the phase retardation too small. Before we attempt to 

improve the phase function, l e t us review how i t i s obtained 

and compare i t to i t s true value. F i r s t , the angle c r i t e r i o n 



i s used to determine A ( t m ) and consequently t m , at 'which 

the phase retardation i s considered n e g l i g i b l e . Theny the 

f i r s t time derivative of the phase, i . e . the frequency, i s 

assumed to decrease l i n e a r l y as time increases for t <Ct 
m 

For t = t m , the frequency i s assumed to be Jl — e" which i s 

the frequency of o s c i l l a t i o n of the solution to the complementary 

lin e a r equation* Thus, as shown in F i g . 3.8(a), the graph 

representing the frequency begins at the point M(0, <6^), 

drops l i n e a r l y to the point N ( t m j J1 - e 2 ) and becomes level 

thereafter. The area under this graph then represents the 

approximate t o t a l phase, as shown i n F i g , 3.8(b)* But since 

the approximate phase i s always leading the true phase as 

already pointed out* the true phase may be represented by the 

dotted curve i n Fig* 3.8(b). It i s always below the approxi­

mate phase and approaches an asymptote with a slope of 

Jl - e 2 . The true frequency may, therefore, be represented 

by the dotted curve i n F i g . 3.8(a). It becomes clear now how 

the discrepency arises. Apparently, the straight lines MN and 

NH do not approximate the true frequency too well for t < t , 

and consequently do not give a p a r t i c u l a r l y good approxi­

mation to the tota.l phase. In an attempt to improve the 

approximation, l e t us consider the point L(t /29 Jl -* e 2 ) 

as shown in F i g . 3*8(a). The lines ML and LH would give a 

better approximation to the true t o t a l phase because the area 

KLN under the dotted curve would compensate for the area JMK 
¥ : = ~ 

A small error i s present here, because the i n i t i a l value of 
the phase i s s l i g h t l y different from zero. However, for the 
purpose of finding an approximation, we have assumed, that 
A(0) = 1, which leads to to = 0, or 0(0) = 0. 

2 
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(a) Frequency 

(b) Phase 

F i g , 3.8 Comparison of the true frequency and phase  
with their approximations 
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over i t . The point L i s so chosen partly because the approxi­

mating scheme already developed can be adopted with p r a c t i c a l l y 

no change. We need only match the li n e a r and the non-linear 

parts of the approximant at t /2 instead of at t • Following 

the above' argument* i t might be noted that this new matching 

point could have been di f f e r e n t from t /2, such as ir t , r m 3 m' 
3 2 7 t , or 7 t » etc. and that matching at t 12 does not 4 n r 5 m7 ' 5 nr 

necessarily give the best r e s u l t . However, we must not forget 

that the objective of this section i s to modify the parabolic 

phase method i n order to give improved results i n general, 

and not optimum results i n particular cases. Since various 

numerical examples have shown better results by matching at 

t m / 2 , we now replace t i n the equations previously developed 

by t /2 and obtain the following equations: 

Jl - e 2 - «, 
From equation (3*19), « 2

 = 1 * (3.19a) 
m 

From equation (3.23). 0Q = f t + «>o . (3.23a) 

t | t 
From equation (3.24), P = A (-f) e* m 

2 m 
= e 

Therefore, the complete approximation becomes 

for 0 < t < t /2 x(t) = e ~ p t cos(w + «. t + < 0 o t 2 ) . 
^ nr ' o 1 2 

for ±^tm/2 x(t) = P e ~ e t cos (Jl - e 2 t + 0 ) . 

(3.24a) 
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The other refinement i s to improve the amplitude function 

A ( t ) . So f a r , the i n i t i a l value of the amplitude has been 

assumed to be unity, which i s not quite correct. Prom various 

examples, i t has been observed that the true i n i t i a l amplitude 

i s greater than unity and the difference between the true 

i n i t i a l amplitude and unity decreases as u, increases. For 

most cases where e i s not too large or [x i s greater than 3, 

this difference i s n e g l i g i b l e . However, i f e becomes close 

to unity or \i becomes smaller than 3, this difference w i l l be 

appreciable and a correction added onto the assumed i n i t i a l 

amplitude of the approximant w i l l d e f i n i t e l y improve the 

r e s u l t . Since t h i s difference i s greatest for \i = 0, and 

becomes negligible for [x = 3, we may assume as a f i r s t 

approximation* that i t drops l i n e a r l y as [x increases from 0 

to 3. Knowing that the true i n i t i a l amplitude i s —====. i f 

/ l - c 
u, = 0, we therefore obtain the following relations 

1 I n i t i a l Amplitude Correction = — ^ 
e 

- l 

Thus, for ,u,^3, 

A(0) = 1 + - l (3.25) 

Denoting this value of the i n i t i a l amplitude by A Q, we have 

A(t) = A Q e " p t , 

which from equation (3.14) leads to 

1 A ( tm } 

P = - — l o g e -j . (3.14a) 
m o 



Prom the i n i t i a l condition that x(0) = 1, ¥e also have 
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1 = A cos a> , o o 
# 

or w = c o s ~ 1 ( l / A ), » <0 (3.18a) 
o ' o o ^ 

F i n a l l y the non-linear part of the approximant becomes 

for 0 < t < t /2 x(t) = A e cos(w + «, t + at,) 
m o o JL w 

As a wholej these refinements i n the approximation w i l l 

y i e l d better results and can be made with almost no extra 

e f f o r t , for the general development of the procedure i s not 

changed. Two examples w i l l be worked out i n the next, section 

to i l l u s t r a t e t h i s refined parabolic phase approximation. 

3.2.7 Summary and Examples of the Refined Parabolic Phase  
Approximation 

In order to f a c i l i t a t e the application of the refined 

parabolic phase approximations, a summary of the computational 

procedure i s given as follows: 

(1) Normalize the equation into the form 
. 3 

x + 2ex + x + ux = 0. 

(2) Compute A ( t m ) from the angle c r i t e r i o n , i . e . equation 

( 3 . 6 ) 

2u 

(3) Compute t m from equation (3.12) 

Jl - e 2 A(t ) t = - — log .„ _ m e toeL m'j 
- A(t m)] 
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ft 
Positive values of w are not used, as w i l l be explained i n 

section 3.2.8* 



(4) If a <31 compute A from equation (3.25) 
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A = 1 + 2=lt o 3 

and assume A Q =1 i f a ^ 3 . 

(5) Compute p from equation (3.14a) 

p = log 
m e A. 

(6) Compute » q from equation (3<>18a) 

-1 ,1 s 
(0 = cos {-.— J o VA o 

w <0. 
0 ^ 

(7) Compute k from k 2 = 2(i+a) 9 a n d "k n e n obtain the quarter 

period K(k) from tables of e l l i p t i c functions. 

(8) Compute cô  from equation (3.22) 

<°1 = 2KTkT" J 1 + * • 

(9) Compute from equation (3.19a) 

J l - e 2 -
<°2 " m 

(10) Compute P from equation (3.24a) 

t | t 
i , , / m\ Z m P = A(—2) e 

( l l ) Compute 0 q from equation (3.23a) 

0 = 7 t 2 + <o 
'o 4 m o 

The complete approximation f i n a l l y becomes 



for 0 < t ^ t /2 x(t) = A e ~ p t 

o 

x(t) = P e •et for 

Since one can quickly arrive at answers within slid e - r u l e 

accuracy, the method seems to be very suitable f o r p r e l i m i ­

nary engineering analyses, and as an added benefit i t w i l l 

give the engineer some useful insight into the behaviour of 

the system. 

The same equation considered i n section 3.2.5 i s again 

used so that the advantage of the refined method can be 

i l l u s t r a t e d * The equation 

has e = 0.4 and \i = 3. Following the steps just outlined, we 

obtain 

Example 

x + 0.8 x + x + 3x 3 = 0, x(0) = 1, x(0) = 0, 

t m - fa l o g e [J0^4 (0.258)] + ZlS^ml = 4.17 

A 1 
o 

P 

o 

l o g e ( 0 „ 2 5 8 ) = Oo325 

K(k) = 1.761 

3*142 
Jl + 3 = lo783 1 ~ 2(1.761) 



^ =/b-84- i1.783 = _ 0 o 2 0 8 

P = e ^ 0 e 4 ~ °-325)(2.085) = x 1 ? 

0 = 0±|08 ( 4 e l 7 ) 2 = O o 9 0 5 

Hence the complete approximation i s as follows! 

for 0<t<2.09 x(t) = e-0.325t c o s ( l o 7 8 3 t _ o.208t 2) 

for t>2«09 x(t) = 1.17 e ~ 0 o 4 t cos(0.9l6t + 0.905) 

This approximate solution i s plotted i n Pig. 3.9 together 

with the numerical solution, the K-B approximation, and 

the unrefined parabolic phase approximation, which are ob­

tained i n section 3.2.5. It i s observed that the refined 

parabolic phase approximation i s the closest to the numerical 

solution. 

Example 

As another example of the refined parabolic phase 

approximation, consider the equation 

x + k + 5x + 10 x 3 = 0, x(0) = 1, x(0) = 0. 

Since normalization i s required i n this example, l e t 

7" = ,/~5t , to obtain 

k = 2.236 x» 

x = 5 x 1' 

cLx cL̂ x where x' = -r— and x " = — ~ . dT d T 2 

Substituting x' and x°' into the o r i g i n a l equation and 



x + 0.8x + x + 3x 3 = 0, x(0) = 1, x l(0) = 0 

KB approximation 

Parabolic phase approximation 
(unrefined) 

True numerical solution 

Parabolic phase approximation (refined) 

F i g . 9 Approximation by the refined parabolic phase approximation for the  
equation 

x + 0.8x + x + 3x 3 ='0, x(0) = 1, x(0) =0 
00 
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d i v i d i n g through by 5, we have 

x 1' + 0.4472 x 1 + x + 2x 3 = 0, 

•which has e = 0.2236 and u = 2. Carrying out the computational 
steps, we obtain 

*m - " 0^6 l o g j y i - 0.05 (0.236)] + 

= 7.26 

A = 1 + ~"\-±— - l l = 1.008 
0 3 lj^95 J 

* = - 7 T 2 6 l 0 g e [ M l ] - 0 - 2 0 0 

tt
0
 = c o s~ 1 i r f e s = - °-13 

K(k) = 1.734 
3.142 " i = 2(1.734) V T T T = . U 5 6 8 

. B ybT9T-21.568 a _ 0 > Q 8 1 7 

p = e(0.2236 - 0.2)(3.63) = l e Q 9 

0 = 0.0817 ( 7 ( 2 6 ) 2 - 0.13 = 0.945 
0 4 

Hence the complete approximation i s 



for 0 < t ^ 3 o 6 3 x ( T ) = 1.008 e 0 o 2 T c o s ( l . 5 6 8 T - 0.0817T 2 

- 0 . 1 3 ) 

for t > 3 . 6 3 x(r) = 1.09 e " o 2 2 3 6 T c o s (0.975T + 0.945) 

But since 7~ = 2.236t, the f i n a l approximation becomes 

for 0 < t ^ l . 6 2 x(t) = 1.008 e " 0 , 4 4 7 t c o s (3. 508t - 0.409t 2 

- 0 . 1 3 ) 

for O l , 6 2 x(t) = 1.09 e~°" 5 t c o s (2..l8t + 0.945) 

Now, l e t us compare this so lut ion with the K-B 

approximation. Prom Appendix B, the K-B approximation i s 

given by 

or x 

(t) = e" e t cos (1 + 2%) t 

( t ) = e " 0 o 5 t cos ( 3 . 9 1 3 t ) . 

(B.7) 

These two solutions are displayed i n F i g . 3.10 together 

with the numerical so lut ion . Results are, again, i n favour 

of the ref ined parabolic phase approximation. 

3.2.8 Errors and Limitat ions 

An important uncertainty inherent i n a n a l y t i c a l 
(12) 

approximating methods i s the error i n the so lut ion obtained. 

Because of the presence of the non-l inear term, i t i s usual ly 

not a simple matter to make an error ana lys i s . After the 

approximate so lut ion x i s obtained by using the parabol ic 
(8) 

phase approximation, a common c r i t e r i o n for the system 

error i s given by the in tegra l 



F i g . 3.10 

h - 1 
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•t. co 
m 

J = o - 2 ( t ) d t + CT 2(t)dt 

0 m 

where cf(t; = x + 2ex + x + ux . 

As already discussed i n section 3.2.2, the evaluation of thi s 

integral i s a formidable job, and leads to no immediate insight 

into the accuracy of the solution. It must be noted that t h i s 

type of error analysis does not require the knowledge of the 

true solution. I f , on the other hand, we knew the true solution,, 

i t would be very simple to measure the error. The absolute 

deviation, which i s defined as the magnitude of the difference 
| 

between the approximate and true solutions, could be computed 

and plotted against the independent variable. Ve could then 

have at our disposal a number of quantities as measures of error, 

for examples (l) the maximum deviation or (2) the area under 

the deviation curve* In this work, the numerical solution 
obtained from the d i g i t a l computer i s considered to be the 

* 
true solution and i s compared with the refined parabolic 

phase approximation* The maximum deviation i s chosen as the 

measure of error and i s evaluated for a large number of examples 

with a wide range of s and u. If the maximum deviation i s 

found to be s u f f i c i e n t l y small, we can conclude, because of 

continuity, that the approximating method i s satisfactory for every 

£ and u within the range. The following table shows a few 

numerical results as compared to those obtained from the K—B 

method. 
The machine solution i s accurate to three decimal places. 

See Appendix A. 
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Maximum Deviation 

e K-B method 
Refined Parabolic 

Phase Approximation 

0.2236 2 
9 
3 
3 
9 
3 
3 

0.64 
1.04 
0,66 
0.44 
0.80 
0.48 
0.50 

0.13 
0.23 
0.10 
0.07 
0.16 
0.03 
0.10 

0.3 
0.4 
0.6 
0.6 
0.8 
0.9 

As suggested from the above table, the l i m i t s of e 

and \i are not very d e f i n i t e , because they depend on each 

other as well as on the specified accuracy. For example, 

higher values of u. may be accepted i f the value of e i s 

higher, while smaller values of e make the allowable value 

of u. lower. This i s reasonable because as the damping 

becomes l i g h t e r , the non-linear effect takes a longer time 

to become ne g l i g i b l e , and the parabolic phase i s not suf­

f i c i e n t to ensure.a good phase f i t . For a maximum devi­

ation of about 0.1, various experimental results have shown 

that \i may be as high as 5 i f e < 0.5 and as high as 10 i f 

e >0.5. In most cases, better accuracy can be expected 

i f u- i s not so large. Thus, the above error consideration 

gives us an idea of the upper l i m i t of [x. The lower l i m i t 

of J A , however, i s determined by one of the approximating 

steps. Early i n the approximating procedure, the amplitude 

at the point of t r a n s i t i o n from the non-linear to the linear 

solution i s determined by equation (3.6), i . e . 
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Since the amplitude cannot be gr e a t e r than 1, the r e l a t i v e 

value of e and a should be such that 

or 'a ̂  2 . 

Therefore, i n the case where a < ^ , the p a r a b o l i c phase 

approximation becomes i n a p p l i c a b l e and we can conside r that 

the equation i s e s s e n t i a l l y l i n e a r because the angle c r i t e r i o n 

has i n d i c a t e d that the n o n - l i n e a r e f f e c t i s n e g l i g i b l e from 

the very s t a r t . Thus, we conclude that an acceptable lower 
£ 

l i m i t of u i s 2 = 

Another e r r o r that i s also i n h e r e n t i n the r e f i n e d 

p a r a b o l i c phase approximation i s that the i n i t i a l c o n d i -
» , \ **** 

t i o n x(0) = 0 i s u s u a l l y not met. I f x i s d i f f e r e n t i a t e d 

we have 
x ( t ) = ~pA e- p tcos(<o + » 1 t + » 0 t 2 ) - 2tt 0t)A e" p tsin(«> 0 0 1 2 1 2 o 0 

2. 
+ <o1t + <o 2

t ) 

Therefore, x(0) = -pA cos w - <o,A sin w ' r o o 1 0 o 

- _p _ to, A s i n 0) . 1 o o 

Assuming p^?jto^A osin <OQ we know t h a t the maximum e r r o r i n 

the i n i t i a l slope w i l l never exceed —p i f we do not allow 

p o s i t i v e values of a>o from equation (3.18a). This i s the 

reason why i O Q i s e i t h e r negative or zero. Thus, we. see that 

an e r r o r i n the i n i t i a l slope i s inherent i n the method, but 

t h i s e r r o r can be ignored because we are p r i m a r i l y i n t e r e s t e d 



i n the solution of x(t) for a wide time range. This 

completes the development of the approximation for the 

case where e < 1. 

3.3 Case II - e >1 

3.3.1 Choice of Approximant 

In this case, where e ^ l , the solution may or may 

not have overshoots depending on the r e l a t i v e values of 

e and u., as already discussed i n section 2.3. Since 

numerical solutions obtained from the d i g i t a l computer for 

s = 1.1 have shown that \x has to be higher than 25 be­

fore a second overshoot appears, and a s t i l l higher (j, w i l l 

be required for a second overshoot i f e i s larger than 

l o l , we need only consider the case with at most one over­

shoot i f we l i m i t our interest to p, ̂ 1 0 . Because the 

solution i s not o s c i l l a t o r y i n general, we can no longer 

assume an approximant of the form 

x(t) = A(t) cos O ( t ) , 

and consequently, both the parabolic phase approximation 

and the c l a s s i c a l K-B method are not applicable. There­

fore, a new method of approximating the solution must be 

developed. 

To this end, consider the "complementary" li n e a r 

equation 

x + 2ex + x = 0, x(0) = l j x(0) = 0 

where e ^ 1 . As indicated i n chapter 2, i f e =1, the 

solution of this equation i s given by 
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x(t) = (1 + t)e'" t , (2.7) 

and i f e > l , the solution becomes 

x(t) = \ (1 + e ) e ( ~ E + V / ^ r i ) t + 1 ( 1 

( _ e _ y e
2 _ i ) t 

E ~ 1 
(2.8) 

Let us denote, hereafter, the solution to the complementary 

linear equation by x ( t ) , which i s given by equations (2.7) 
c 

and (2.8), and examine the effect of introducing a non-
3 

lin e a r term [i.x; to the equation. Consider then the equation 

x + 2ek + x + px 3 = 0, x(0) = 1, x(0) = 0 

whose solution i s 

x(t) = x (t) - z ( t ) , (3.26) 

where z(t) i s a correction term to account for the effect 

of the non-linearity. Thus, the problem now i s to approxi= 

mate z ( t ) . 

In order to determine the form of z(t) for the 

approximation, solutions x(t) to various examples have been 

obtained numerically from the d i g i t a l computer and z(t) i s 

then calculated from equation (3.26)* i . e . 

z(t) = x (t) - x ( t ) . 

F i g . 3.11 shows a t y p i c a l example of z ( t ) . Close exami­

nation, of the general shape of z(t) has revealed i t s 

characteristics from which possible approximants are sug­

gested as follows: 



(1) Before z(t) reaches i t s maximum* i . e . for t < t , 

i t may be approximated by the function t n
f where 

n >1. 

(2) For t > t p 9 since z(t) decreases as t increases, 

the possible approximants are t m or e , where 

m < 0. 

(3) z(t) i s always positive and vanishes at t = 0 and 

t = 00 . 

Z(t) 
0.4 — 

0 1.0 t 2.0 3.0 4.0 5.0 

F i g . 3.11 Correction term z(t) for e = 1.2 and a = 2 

Let us therefore examine the function 

F(t) = t n e _ t , n >1, 
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to see i f i t has a l l the above features; 

(1) F(t) has only one maximum, i . e . at t = -n. For 

small t, F ( t ) ^ t n . 

(2) For large t, e ̂  i s the dominating factor. 

(3) F(t) i s always positive and vanishes at t = 0 and 

t =00. 

Since this function has a l l the features z.(t),hasj we w i l l assume 

that z(t) takes the form 

z(t) = g t n e~* 

where g i s a constant. 

Our problem now i s to determine the constant parameters g 

and n i n terms of e and p. Discrepencies may arise from 

the assumption that m = -1, but from the accuracy of the 

results which w i l l be developed l a t e r , they may be either 

too small to be of significance or else may have been 

taken up by the other factor t n . As a result, the form of 

the approximant of z(t) becomes 

z(t) = g t n e""5 (3.27) 

and the rest of this work w i l l be devoted to the determina-^ 

t i o n of g and n as functions of e and J A . 

3.3.2. Determination of n 

Empirical results are used to determine both the 

parameters n and g. In order t o determine n, consider the 

equation (3.27). The maximum value of z ( t ) i s given by 

dt - u ? 



, n - 1 - t , n - t „ 
o r g n t e - g ' t e = 0 . 

S i n c e g , t , a n d e ^ a r e n o t z e r o f o r f i n i t e t , we o b t a i n 

t = n , ( 3 . 

i . e . , n i s n u m e r i c a l l y e q u a l t o t h e t i m e a t w h i c h z ( t ) 

i s a m a x i m u m . T h e r e f o r e , i f we i n s i s t t h a t z ( t ) h a s a 

maximum a t t h e same t i m e as z ( t ) . we c a n f i n d n f r o m 

e x p e r i m e n t a l r e s u l t s b y s i m p l y n o t i n g t h e t i m e a t w h i c h 

t h e maximum o f z ( t ) o c c u r s , as s h o w n i n F i g . 3 . 1 1 . F r o m 

e x a m p l e s w i t h v a r i o u s v a l u e s o f e a n d a , t h e f o l l o w i n g 

t a b l e i s o b t a i n e d ; 

N u m e r i c a l V a l u e s o f n 

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 

1 . 0 1 . 6 2 1 . 5 5 1 . 4 9 1 . 4 4 1 . 4 0 1 . 3 7 
1 . 2 1 . 7 1 1 . 5 8 1 . 5 0 1 . 4 7 1 . 4 0 1 . 3 8 
1 . 4 1 . 7 2 1 . 6 2 1 . 5 5 1 . 4 9 1 . 4 2 1 . 4 0 
1 . 6 1 . 8 7 1 . 7 3 1 . 6 0 1 . 5 4 1 . 4 3 1 . 4 0 
1 . 8 2 . 0 2 1 . 7 8 1 . 6 8 1 . 5 9 1 . 5 3 1 . 4 2 
2 . 0 2 . 1 3 1 . 9 0 1 . 7 6 1 . 6 9 1 . 6 0 1 . 4 9 
2 . 2 2 . 3 9 2 . 1 0 1 . 8 7 1 . 7 4 1 . 6 6 1 . 5 5 
2 . 4 2 . 5 0 2 . 2 4 1 . 9 7 1 . 8 7 1 . 8 1 1 . 7 1 

A n e r r o r o f t h e o r d e r o f 0 . 0 5 may be e x p e c t e d i n some o f 

t h e s e f i g u r e s b e c a u s e some c u r v e s o f z ( t ) h a v e a r a t h e r 

f l a t p e a k a n d i t i s d i f f i c u l t t o l o c a t e t h e maximum a c c u ­

r a t e l y . A t a n y r a t e , t h e s e f i g u r e s g i v e a g o o d p i c t u r e o f 

how n v a r i e s w i t h b o t h e a n d a . I f t h e c o n t o u r s o f c o n ­

s t a n t n a r e p l o t t e d i n t h e e - u p l a n e , F i g . 3 . 1 2 i s 

o b t a i n e d . T a k i n g t h e p o s s i b l e e r r o r o f n i n t o c o n s i d e r a ­

t i o n , we may now a p p r o x i m a t e t h e s e c o n t o u r s b y a s e t o f 

p a r a l l e l s t r a i g h t l i n e s a s s h o w n i n F i g . 3 . 1 3 . The s l o p e 

o f t h e s e s t r a i g h t l i n e s i s f o u n d t o be 0 . 4 7 2 . T h e r e f o r e , 



F i g . 3„12 Contours of constant n from experimental results 



F i g . 3,13 Approximation to the contours of constant n 



they can be represented a n a l y t i c a l l y by the simple r e l a t i o n 

e = 0.472u + c (3.29,a) 

where c i s the intercept and depends on n, Now, the i n t e r ­

cept c i s plotted against the corresponding n as shown 

in Pig. 3.14. 

2.3 

2.0 --

1.5 -

1.0 --

0.5 --

0 

o Experimental Intercepts 

c = 2.3(1 - e - 2 - 0 ( n - U 4 ) ) 

n 1.4 1.6 1.8 2.0 2.2 2.4 

F i g . 3.14 Determination of c as function of n 

From this diagram, we observe that the curve exhibits sat­

uration at about c = 2.3 and intercepts the abscissa at 

n = 1.4. Considering also the shape of the curve, we are 

led to believe that c can be expressed i n terms of n as 
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follows: 

c = 2.3 (1 - e ^ ( n ~ U 4 0 ) ) 

where q i s a constant. By t r i a l and error, a q of -2.0 has 

been found to give good results as i l l u s t r a t e d i n Pig. 3.14 

where the function 

c = 2.3 (1 - e- 2'°( n " i ' 4 0 * ) 

i s also plotted. Now substituting c into equation (3.29a), 

we have 

e = 0.472a + 2.3 ( l - e " 2 - ° ( n - U 4 ) ) 

which yie l d s 

n = 1.4 + (0.5) log — 2-2^ (3.29) 

e 2.3 + 0.472u-e 

Hence n can be computed when e and a are spec i f i e d . 

3o3.3 Determination of g 

After n has been obtained, g can be determined by 

making zf(t) equal z(t) at the maximum, i . e . at t = n, from 

equation (3.27). The maximum i s chosen as the matching point 

because we have determined the parameter n, such that the peak 

of the approximant z(t) occurs at the same time as that of 

z(t)« Since the maximum occurs at t = n, we have 
g = z(n) n- n e 1 1 (3,30) 

Using the same example as i n F i g . 3.11, where e = 1.2 and 

a = 2, we have 

n = 1.4 + 0.5 log — — — 
6 2.3 + 0.944 - 1.2 
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= 1.46 

and g = 0.325 ( l . 4 6 " l o 4 6 ) e 1 * 4 6 

= 0.805 • 

Hence z(t) = 0.805 t 1 " 4 6 e~ + . 

This approximation i s now shown i n Pig. 3.15 together with 

the true z(t) obtained numerically. The result i s encouraging 

because very good agreement between z(t) and z(t) i s observed, 

indicating that the form assumed for z(t) i s a good one. 



75 
Examples with various values of e and (j, are then invest igated 

i n a s imi lar manner, and the corresponding values of g are 

shown i n the fol lowing table: 

Numerical Values of g 

0.5. 1.0 1.5 2.0 2.5 3.0 

1.0 .275 .500 .680 .840 1.000 1.14 
1.2 .260 .455 .651 .805 .946 1.07 
1.4 .238 . .420 .584 .731 .862 .978 
1.6 .209 .385 .541 .681 .802 .912 
1.8 .184 .351 .493 .629 .742 .848 
2.0 .159 .314 .454 .578 .691 .793 
2.2 .131 .274 .408 .533 .640 .743 

Our next task is to determine ,'g as a function of E 

and n from this tab le . The f i r s t attempt was to use the 

contours of constant g i n the e-p, plane as we d id before i n 

the determination of n . The contours of constant g were 

then plot ted as shown i n F i g . 3.16. From this diagram, we 

observed that the contours could not be represented by a set 

of simple functions such as p a r a l l e l s tra ight l ines because 

there i s a def in i te trend showing that the slope of each 

l i n e i s d i f ferent from the r e s t . 

In another attempt, g i s now plot ted against u for 

constant values of e, as i n F i g . 3.17. From the shape of 

the curves obtained, g i s seen to have the form 

b 
g = a u. 

for constant E , where a and b are constants. Therefore, for 

constant E , the p lot of log^Q g against log^Q^ i s a set of 

s tra ight l ines as shown i n F i g . 3.18. Hence we can write 

l o g 1 0 g = b l o g l O [ A + l o g l O a (3.31) 
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e 

, s t»o 1-̂  2-0 2>5 3 0 u 

Pig. 3.16 Contours for constant g 



g(e,u) 77 

1.2 

1.0 --

0.8 

0.6 

0.4 

0.2 --

0 0.5 1.0 1.5 2.0 2.5 3.0 

F i g . 3.17 g as a function of u for constant e 

Since these straight lines are almost p a r a l l e l and equally 

spaced, we may approximate this set of lines by F i g . 3.19 

in which the straight lines are p a r a l l e l and equally spaced. 

Therefore, the constant b i s the common slope of a l l these 

straight l i n e s and i s found to be 0.794. Since the v e r t i c a l 

distance between the. straight lines for 

e 

e 

1.0 and e = 2.0 i s 0.15, and the intercept for 

1.0 i s -0.325, equation (3.3l) becomes 

l o g 1 0 g = 0.794 l o g 1 0 a - [o.325 + 0.15(e-l)] . 

(3.32) 



Pig. 3 . 1 8 log, ng vs log, 0u. for constant e 



F i g . 3.19 Approximation to F i g . 3.18 
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Thus, g can be computed when e and a are given. 

Let us now show that the result i s consistent i n 

the l i m i t i n g case where a —»-0. As a—*-0, the non-linear 

equation approaches i t s complementary lin e a r equation whose 

solution i s x ( t ) . Prom equation (3.32), we have c 

lim ( l o g 1 0 g ) = -CO 
u — 0 

. or lim g = 0 . 
a—-0 

Therefore lim z(t) = 0, 
a — 0 

which yie l d s 

lim x(t) = x (t) * 
a-^0 c 

Hence, our approximate solution degenerates to the correct 

solution for the complementary equation* An example w i l l 

be worked out i n the next section to i l l u s t r a t e method* 

3*3.4 Summary and Example of the Correction Term Approximation 

This approximating method, then, i s es s e n t i a l l y the 

determination of the solution x f i(t) to the complementary linear 

equation and the approximation of the correction term z(t) 
3 

due to the presence of the non-linear term ax . The pro­

cedure i s summarized as follows; 

(l ) Determine the solution to the complementary lin e a r 

equation by equations (2.7) and (2.8), i . e . 
i f e = .1, x (t) = (1 +' \)<T% , 
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and i f e >1, 

x c ( t ) =|d + ^ r T ) e ( - ^ i ^ r T ) * + |(1 

e 

(2) Approximate z(t) by 

( _ e _ y e
2 _ i ) t 

z(t) = g t n e * , 

where 
2.3 n = 1.40 + 0.5 l o g e 

2.3 + 0.472a - e 

l o g 1 Q g = 0 . 7 9 4 l o g 1 0 u - [ o . 3 2 5 + 0 . 1 5 ( e - l)] 

The complete approximate solution i s then given by 

x(t) = x c ( t ) - g t n e~\ . 

An example i s now worked out to i l l u s t r a t e the method. 

Example 

Consider the equation 

+ 2.8 x + x + 3x 3 = 0, x(0) = 1, x(0) = 0, x 

i n which e = 1.4 and a = 8. Following the steps just 

outlined, we obtained 

x (t) = I(! + 1*4 ^(-1.4+yo.96)t+ 1 ( 1_ 1.4 ) e(-1.4-yo.96)t 
c 2 70.96 2 ybT96 

= 1.21 e " ° - 4 2 t - 0.21e- 2* 3 8 t 
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n = 1.40 + 0.5 log — 

6 2.3+0,472(3)- 1.4 

= 1.4 

l o g 1 0 g = 0.794 l o g 1 0 3 - [0.325 + 0.15(1*4 - l ) ] 

= -0.006 

g = 0.987 . 

F i n a l l y , the complete approximation i s 

x(t) = 1.21 e - ° * 4 2 + - 0.21 e - 2 - 3 8 t - 0.987 t ^ V * . 

This approximate solution i s compared -with the numerical 

solution i n F i g . 3.20 and i s seen to be quite satisfactory, 

the maximum deviation being 0.04. In the same Figure, the 

approximation by using the Ritz and i n i t i a l condition 

matching method i s also shown. Referring to Section 3.1, 

thi s solution i s obtained by solving numerically the equations 
3 3 

- M*2+ 2ea+l) + ~(b2+ 2eb+l) ^ ~ + ^ 5 
a a + b 4a(a-b) 2 (3b+a)(a-b) 2 

2 2 3 u-b a _ 3nab _ Q 
(3a+b)(a-b) 2 2(a+b)(a-b) 2 

3 3 
£(b^+ 2eb+l) + -rr(a + 2ea+l) - 0 -r 0 
b a + b 4b(a-b) 2 (3a+b)(a-b) 2 

2 2 
+ 3|xa b _ 3u-ba _ Q 

(3b+a)(a-b) 2 2(a+b)(a-b) 2 

where e =1.4 and \i = 3.0. 

By extensive t r i a l s , a d i g i t a l computer produced the following 

roots: 
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a - -1.11 

b = -4.44 

Hence the solution i s 

~ m . - l . l l t . , n -4.44t x^tj = A e + B e . 

Applying i n i t i a l conditions of x(0) =1, and x(0) - 0, 

we have 

A = -=£ = 1.333 a-b 

B = -—- = -0.333 a-b 

Therefore, the Ritz method and the i n i t i a l condition matching 

gives 

~tj.\ -i o i l - l . l l t p. 0 0-, -4.44t x(t) = 1.333 e - 0.333 e 

As i l l u s t r a t e d i n Pig. 3.20, this solution has a maximum 

deviation from the numerical solution of 0.05, which i s not 

as good as that obtained by the correction term, method just 

developed. If we consider the p r a c t i c a b i l i t y and the e f f o r t 

required i n applying the Ritz and i n i t i a l condition matching 

method, i t i s evident that the correction term method i s 

much more tractable. 

3.3.5 Errors and Limitations 

Following the same reasons as i n the case where 

e < 1, we again use the deviation between the true and 

the approximate solutions as a measure of accuracy to j u s t i f y 

the v a l i d i t y of the correction term method. The following 



F i g . 3 .20 Approximation by the Correction Term Method for e = 1.4. u = co 



table i s the result obtained from a large number of 

examples: 

e Maximum Deviation 

1.0 1.0 0.02 
1.0 3.0 0,07 
1.0 7.0 0.24 
1.4 1.0 0.02 
1.4 3.0 0.04 
1.4 8*0 0.21 
1.8 1.0 0.04 
1.8 2.0 0.06 
1.8 3.0 0.08 
2.2 1.0 0.05 
2.2 2.0 0.09 
2.2 3.0 0.11 

Prom this table, ve see that the maximum deviation i s 

rather high for a. = 8. But i t must not be forgotten 

that the deviation i s generally much smaller than i t s maxi­

mum. An example w i l l help c l a r i f y this point. The magni­

tude of the deviation between the approximate and true 

solutions of the equation 

x + 2.8 x + x + 8 x 3 =.0, x(0) = 1, x(0) = 0 

i s shown i n F i g . 3.21. Thus, we see that the deviation i s 

f a i r l y large for small t, then drops off quickly and remains 

well under 0.08. As a r e s u l t , we may allow a to be as high 

as 8 for e = 1.4. It is also suggested from the above table 

that the allowable a i s lowered i f e becomes larger. This i s 

reasonable because as e increases, one of the exponents 
(— — /z2— l~)t 

involved i n x c ( t ) , i . e . e « , becomes negligible 

compared to the other and the choice of e~^ i n the correction 

term w i l l not be a very good one. At any rate, for e as high 

EL S 2 • 2 j £L a of 5 may s t i l l be allowed. Thus, we obtain an 

idea as to the upper l i m i t of a from the above error con-
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Deviation 

sideration. The lover l i m i t of |x i s zero of course, because.-" 

we have shown i n Section 3.3.4 (page 80) that the approxi­

mation x(t) degenerates to the solution x c ( t ) of the 

complementary equation. 

Regarding the value of e, however, there i s an 

inherent l i m i t i n the method. Consider equation (3.29): 

n = 1.40 + 0.5 log — , 
6 2.3+0.472u-e 

F i r s t , n must not be i n f i n i t e . Therefore, we have the r e s t r i c t i o n 

that 

2.3 + 0.472̂ 1 - e / 0 . 

Secondly, since the logarithm of a negative number i s not 

allowable, the r e s t r i c t i o n then becomes 

2.3 + 0.472u. - e > 0 . 



Knowing that the lowest value of jx i s zero, we see that for 

\i — 0, the upper l i m i t of e i s 2.3. However, since we are 

dealing with non-l inear equations, |x i s always greater than 

zero and the upper l i m i t of e i s , therefore, usually higher 

than 2.3 o 

F i n a l l y , i t may be worth mentioning that i n th i s 

approximation, the i n i t i a l conditions x(0) = 1 and 
a 

x(0) = 0 are met because z(0) = z(0) = 0 which lead to 

x(0) = x (0) = 1 c ' 

and x(0) = x (0) = 0 . 

This concludes the correct ion term approximating method which 

has been developed for e ^ 1 . 

3 04 Summary 

In th i s chapter, two methods have been developed to. 

approximate d i r e c t l y the so lut ion to the equation 

x + 2ex + x + u-x3 = 0, x(0) ~ 1, x(0) = 0 

where both e and jx are not small numbers. 

F i r s t , i n the case where e < 1, the parabolic phase 

approximation was developed and re f ined . A heur i s t i c argu­

ment was given for the use of the form 

for 0 < t ^ t x(t) A(t) eos Q( t ) 

for t ^ t x(t) = P e~'e t eo s ( / l - A + 0 ) ' m w o 

as the approximant. The value of t where the non-l inear 

effect- becomes neg l ig ib le was determined after A(t ) had been 

obtained using an a r b i t r a r y c r i t e r i o n based on the consider-



at ion of the angle between phase plane i soc l ines for the 

l i n e a r and non-l inear equations. The amplitude A(t) was 

assumed to have the form 

A(t) ~ A Q e-P* , 

and a parabol ic phase of the form 

o 

f l ( t ) = toQ + w^t + tt>2t . 

The value of co was determined from the i n i t i a l con-o 
d i t i o n x(0) = 1, then and were found by l e t t i n g 

r.—*- 0 and by matching the phase to the f i r s t d e r i v a t i v e . 

The value of A was f i r s t assumed toi be unity and p was o 

obtained by making the amplitude equal to A ( t m ) at t = t^. 

The method of obtaining these parameters was l a t e r 

ref ined by using t = "^ m / 2 a s ^ n e point of t r a n s i t i o n i n s ­

tead of t = t . and by correct ing the i n i t i a l amplitude. 

The approximation then became 

for 0 < t ^ t /2 x(t) = A Q e~ p t c o s ( « + » x t + » 2 t 2 ) 

for t ^ t /2 x(t ) = P e" e t cos{Jl - s 2 t+0 ) . ^ m * o 

Hence, the parameters P and 0 Q were determined by matching 

the two parts of the approximate so lut ion at t = t m/2. Con­

sistency with the known solutions of the degenerate cases 

where e — » - 0 and a — 0 was also shown from the l i m i t of t 
r m 

and the l i m i t s of a l l the parameters i n the approximant. 

Examples using th is ref ined method of parabol ic phase 

approximation were worked out, and compared with the true 

numerical so lut ion obtained from the d i g i t a l computer, as 
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shown i n F i g . 3 . 9 and F i g . 3 .10. The approximations were 

very close to the true solutions but could be improved by 

further reducing the value of This suggests a project 

for future research, since this work has i l l u s t r a t e d the 

v a l i d i t y of the approach. F i n a l l y , the K-B approximations were 

also plotted i n F i g . 3 . 9 and F i g . 3 . 1 0 for comparison. It 

is obvious by inspection that the K-B approximations were 

not as good as the parabolic phase approximations for this 

type of equation because the phase retardation appeared i n 

the parabolic phase approximations and did not i n the K-B 

approximations. 

In the case where e ^ .1, both the parabolic phase 

approximation and the K-B approximation f a i l to y i e l d ac­

ceptable results because the solution i s no longer o s c i l ­

l a t o r y . Therefore, an e n t i r e l y d i f f e r e n t method was deve­

loped. The solution x (t) to the complementary l i n e a r 

equation was f i r s t computed, and a correction term z(t) was 

then defined by 

z(t) = x c ( t ) - x(t) 

where x(t) was the solution to the non-linear equation. Thus, 

the problem of approximating x(t) was reduced to approximating 

z ( t ) . From various numerical examples, i t was suggested 

that z(t) could be approximated by 

,n - t z(t) = g t e 

where g and n are constants depending on e and \i0 Using 

F i g . 3 . 1 2 and F i g . 3 . 1 3 , which were contour diagrams of n i n 

the £ p - ( i plane, n was empirically determined to be given by 
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n = 1.40 + 0.5 log 2 - ^ 2 — . 
6 2.3+0.472uu - E 

Plots of log-^Q g against l o g ^ u for constant values of E were 

used, and g was then found to be given by the empirical formula 

l o g l 0 g = 0,794 l o g 1 0 a - [o.325+0.15(e~l)] 

Hence we were able to compute z'(t) when e and a were speci­

f i e d , and the approximation to the solution x(t) was 

x(t) = x
c("k) - 8 e~*^ • 

Consistency of this approximant with the known solution of 

the degenerate case where a »—0 was also shown. 

An example was worked out to i l l u s t r a t e this cor­

rection term method, and the result was compared with the 

numerical solution i n F i g . 3.20. V i t h the aid of a d i g i t a l 

computer, the Ritz method i n conjunction with i n i t i a l con­

d i t i o n matching was used to obtain another approximate 

solution which was also shown i n F i g . 3.20. When accuracy, 

e f f o r t , and p r a c t i c a b i l i t y were considered, the correction 

term method was much preferred. 

F i n a l l y , we see that by using these two approximating 

methods, values of a up to 10 and s and high as 2 may be 

accepted. Therefore, unlike a l l the c l a s s i c a l methods, they 

are good for f a i r l y gross n o n - l i n e a r i t i e s . The essential 

difference between these methods and c l a s s i c a l methods i s 

t h e i r d i r e c t approach i n attacking systems which are not 

qua.si—linear. In ̂ conclusion, both the parabolic phase approxi­

mation and the correction term approximation have strong 
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potential i n approximating the solutions to non-linear 

equations with f a i r l y large non-linearities whose 

characteristics can be represented by a d d cubics such as 

the flux-current r e l a t i o n of a saturating indicator, or the 

force—displacement r e l a t i o n of a hard spring. 

\ 
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As stated i n the Introduction, the purpose of this work 

has been to f i n d a dir e c t method of approximating the solution 

of the non-linear d i f f e r e n t i a l equations of the type 

x + 2ex + F(x) =0 

where F(x) i s , or may be approximated by, an odd cubic with 

positive c o e f f i c i e n t s * Without loss of generality, we have 

studied i n d e t a i l the equation 

x + 2ex + x + fxx3 = 0, x(0) = 1, x(0) = 0, 

and then two methods have been developed to approximate the 

solution, according to whether e < 1, or e ^ 1. 

In the cake where e < 1, the parabolic phase approxi­

mation was developed* The approximant was f i r s t derived to be 

of the following form 

for 0 < t ^ t x(t) = e ~ p t cos (o^t + « 2 t 2 ) 

for t > t x(t) = P e " e t cos (Vl - e 2 t + 0 q) 

where a l l the parameters were determined i n terms of e and u« 

Then, a refinement of the method changed the approximant to 

for 0 < t ^ t /2 x(t) = A e ~ p t cos (tt) + t + tt$9t2) 
in o o _L 

for t > t /2 x(t) = Pe" e t cos (Jl - e 2 t + 0 q ) , 

which yielded better r e s u l t s . 

In the case where e ^ 1, the solution was approximated 

by subtracting a correction term z(t) from the solution x c ( t ) 

of the complementary linear equation. The correction term z(t) 
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was of the form 

z(t) = g t n e _ t , 

where g and n were computed from formulae involving e and a 

only. Therefore, 

x(t) = x (t) - g t n e~* . c 

Since the values of e and a are not limited to small 

values, we have found a dir e c t method of approximating the 

solution without resorting to quasi-linearization of the 

equation. The l i m i t of e i s s l i g h t l y above 2 and the l i m i t of 

a i s close to 10* These values are far too large to be handled 

by any c l a s s i c a l method* Although this method cannot handle e 

and a beyond their l i m i t s , i t has i l l u s t r a t e d the v a l i d i t y of 

the approach, and. further research along this l i n e i s 

encouraging. For example, similar methods may be developed for 

more general types of grossly non-linear equations. 

F i n a l l y , the goal of finding d i r e c t l y an approximate 

solution to the type of grossly non-linear equation has been 

achieved, and valuable insight into the free response of many 

engineering systems with odd cubic non-linear c h a r a c t e r i s t i c s , 

such as the hard spring and the saturating inductor, can readily 

be obtained. 
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The 4-th order Runge-Kutta method was used to ob­

tai n the numerical solutions used throughout this work. In our 

case, the formulae for the computation of x and x are as follows: 
9 2 

x ,, = x + hx + l/6.' h (k, + k«+ k.,) n-f-1 n n 1 2 3 

* n + l = *n + 1 / 6 h < k l + 2 k 2 + 2 k 3 + k4> 

* 3 
where k^ = -(2ex n + x n + ax n ) 

k 2 = ^-[2e(xn+ 1/2 h kj_) + (x n+ | h + a(x n 

+ \ 
k 3 = - [ 2 e ( x n + | hk 2) + ( x n + | hx n + I h 2 k x) 

+ a ( x n + \ h x n + I h 2
k l ) 3 ] 

k 4 = - [ 2 e ( x n + hk 3) + ( x n + h x n + \ h 2k 2) 

+ ^ ( x n + h * n + 2 h 2 k 2 ) 3 ] 

and h — t , ~, — t « 
n+1 n 

The University of B r i t i s h Columbia's IBM 1620 computer was used 

to carry out the computations to eight s i g n i f i c a n t figures* 

The program was written i n Fortran I I . 

Since the error of this method i s of the order of 
5 

h j, and h = 0.2 was used, the error expected was of the order 

of (0.2) , or 0.0003, which i s negligible for a l l p r a c t i c a l 

purposes« 



APPENDIX B THE KRILOFF AND BOGOLIUBOFF APPROXIMATION 
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The Kryloff-Bogoliuboff, or K-B method i s con­

cerned with the transient solution of equations of the type 

x + co2x + k g(x,x) = 0 

where g(x,x) i s arbitrary and K i s smallo An approximate 
(3) 

solution i s developed by Kryloff and Bogoliuboff and is 

e s s e n t i a l l y a va r i a t i o n of parameters technique• 

The solution i s assumed to have the form 
x(t) = A(t) cos 0(t) (B.l) 

where 0(t) = cot + 0(t) . 

Di f f e r e n t i a t i n g once, we have 

x(t) = A(t) cosQ(t) - A(t)[co+0(t) ] sin©(t). 

Since we have introduced one more variable, we can impose a 

constraint such as 

A(t) cosO(t) - A(t) 0(t) sinO(t) = 0 (B.2) 

so that x(t) = -A(t) co sinO(t), (B*3) 

and therefore x(t) = -A(t) co sinO(t) - coA(t) O(t) cos©(t). 

Substituting x ( t ) , x(t) and x(t) into the o r i g i n a l equation, we 
obtain 

-A(t) co sin©(t) - coA(t) 0(t) cosO(t) + K g(x,x) = 0 

(B.4) 

Solving equations (B.2) and (B„4) simultaneously, we have 

A(t) = K sinO(t) (B.5) 
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and A(t) 0(t) = K cosO(t) . (B.6) 

The approximation i s made by averaging (B„5) and (B.6) over 

one period of o s c i l l a t i o n , assuming that A(t) i s constant over 

this period and can be taken out from under the integral sign. 

This means that i f A(t) i s slowly varying, the approximation i s 

a good one. 

In our case, 

g(x,x) = 2ex + (xx3 

3 3 
= -2eA(t)<osinO(t) + uA cos O(t), 

tt = I , 

K = 1. 

Substituting i n (B»6), and averaging over a period of 2TZ, we 

obtain 

A(t) = -cA(t), 

and 0(t) = ^ f 2 - ^ - . 

But A(0) = 1, from our framework of i n i t i a l conditions, and 

since A(t) i s assumed to be constant over the period of 

o s c i l l a t i o n , 

A(t) =* A(0) = 1. 

Therefore, we have 

A(t) = e ~ e \ 

and 0(t) = ^ . 

F i n a l l y , (B.l) becomes 

x(t) = e ~ e t cos (1 + 2g.) t, (B.7) 
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which i s the approximant used i n this work as a comparison to 

the methods developed i n Chapter 3. 

Note that the K-B method f a i l s to y i e l d acceptable 

results i n the case where e and a are not small, because i n 

such cases, A(t) does vary considerably over one period of 

o s c i l l a t i o n and the assumption required i n the averaging pro­

cedure i s not a reasonable one, However, i f we do not make this 

assumption removing A(t) from under the integral signs, the 

integrations become very d i f f i c u l t , i f not impossible, to handle. 

Thus, we may not expect good results from equation (B.7) when 

e and a are r e l a t i v e l y large, as already i l l u s t r a t e d by various 

examples. 

i 
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APPENDIX C A MEASURE OF CLOSENESS BETWEEN LINEAR AND NON­
LINEAR ISOCLINES 

The method of isocli n e s i s often used to construct 

phase-plane diagrams of 2-nd order d i f f e r e n t i a l equations. Con­

sider the equation 

x + 2ex + x + ax = 0 ( C l ) 

and i t s complementary linear equation 

x + 2ex + x = 0 . (C.2) 

The i s o c l i n e s for (C«l) and (C.2) are respectively given by 

a n d ' y = = - f • ( 0 - 4 ) 

where y = x 

dx 

m = TJ^- = Slope of trajectory, 

and a = m + 2e. 

If these two sets of iso c l i n e s are close to each other i n the 

phase-plane, then equation (C.2) i s a good approximation to 

equation ( C . l ) . This means that the non-linear effect i n 

equation (Col) may be neglectedo In order to obtain a measure 

of closeness between the two sets of i s o c l i n e s , F i g . 3ol has 

been constructed, part of which i s reproduced i n F i g . C.I for 

convenient reference. In F i g . C . l , the c i r c u l a r arc of radius 

R intersects the lin e a r and non-linear i s o c l i n e s , for the same 

slope m, at points P and S respectively. The angle subtended by 
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y=x 

F i g . C.l A Measure of Closeness between Linear and  
Non—linear Isoclines of the Same Slope m 

the arc PS i s therefore a measure of the closeness between the 

i s o c l i n e s . However, because the co-ordinates of the point S are 

d i f f i c u l t to obtain, the point Q i s chosen instead, by dropping 

a v e r t i c a l l i n e from P to meet the non-linear i s o c l i n e . Then, 

the angle S© can be regarded as a measure of the closeness 

between the i s o c l i n e s . From equations (C.3) and (C.4), the co­

ordinates of the point P are 

x = R cos 0 P 

v _ -R cosQ  
_ a 

and those of the point Q are 

x = R cos© 
Q 
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--R cos© /, , D2 2 A \ 

yg = — ( l + [XR COS ©) 

Therefore, we have 

tan© = — = — , x a P 

2 2 

and tan(© + So) = i f l = ̂  " ^ R c o s Q 

i D2 2 
i ( i + — a - ) . 

1 + a 

Hence O© i s given by 

tan 8 © = tan [(© + 8 © ) - 8©] 

= . (c.5) 
(1+a 2) 2 + uR 2a 2 

This shows that the angle 8© i s a function of R and a . As a 

varies, the angle 8© varies, and i t s maximum value, for a con­

stant R, i s given by 

X ~ PfcanS©! = 0 
3 a J 

which can be reduced to 

a 4 - (uU 2 + , 2)a 2 - 3 = 0, 

Therefore, we have 

2 
a = ~(2 + uR 2) + y | (2+uR 2) 2 + 3 . (Co6) 

This i s , then, the value of a 2 that w i l l give the maximum S© 



for a given R. From equations (C.5) and (C.6), therefore, the 

maximum value of §Q, i . e . (§©) m a x» i s dependent on uR2 only, 
o 

and uR becomes a measure of the closeness between the linear 

and non-linear i s o c l i n e s . For example, i f uR =0.2, (OO) 
Illct.A-

i s approximately 3 , or 0.05 radian. Thus, for uR = 0.2, the 

two is o c l i n e s are almost coincident, suggesting that the effect 

of the non-linear term may be neglected at this point. 

F i n a l l y , since for equation (C.2), 
x(t) = 1 e " e t cos(Jl - e2 t - 0 ) 

JTT72 

where 0 = tan" 1 g , we have 

A(t) = 1 e " e t 

x + x = . 11 + e sin (2 v l - e t 
Jl - eZ 

Thus, R o s c i l l a t e s about A(t) with a smaller and smaller ampli­

tude as t increases. In other words, A(t) i s a very good 
2 

approximation to R, and therefore, uA (t) i s also a measure of 

the closeness between the two sets of i s o c l i n e s . This has 

enabled us to establish the angle c r i t e r i o n i n the develop­

ment of the parabolic phase approximation. 
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