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This theéis carries out some of classical integration
theory in the context of an operator algebra. The starting
point is measure on the projectiong of an abelian von
Neumann algebra. This yields an integral on the self-
adjoinﬁ operators wnose spectral projections lie in the
algebra. For this integral a Radon-Nikodym theorem, as well
as the usual convergence theoremsjﬁiS%proved.

The methods and results of this thesié generalize to

non-commutative von Neumann Algebras [2, 3, 5].
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INTRODUCTION

Let H be a complex Hilbert space. Let L(H) be the
set of bounded linear transformations on H. L(H) 'is_an algebra’
over the complex field. Itfhas an involution T — T*, where T¥

is the unique L(H)-member which satisfies

(Tx, y) = (x5 T*y)
. .--/ ‘
for all x, y in H. _
. In what follows L(H) will be topologized three ways..
(a) The weak topology on L(H): In this topology each
neighborhood of . A € L(H) must contain the intersection of a

-

Tinite family of -sets gf“fbrm.,
N(A;xgy,e) = {iﬁ: TeL(H), | (Ax,y)-(Tx,y)| < e} s

where x,y ¢-H and € > 0. |
(b) The strong topology on L(H) Each neighbérhood of
"ﬁffA g L(H) contains the intersection of a finite family of sets -

;o

of f9rm
N(A,x,€) = {T : TeL(H), |ITx-Axll < ef ,

where x € Hb and € > O.

" () The uniform topology on L(H): This is the metric o
' tqpolbgy induced.by fhe operator norm. |
These three topglogies are comparable:

Weak ¢ Strong ¢ Uniform,



go that if S c L(H) =
T (weak) 2 T (strong) ® T (uniform).

Under each of thesée topologies L(H) is a topologlcal
algebra, that is, the operations
(X,Y) —  (X4Y)
(a,X) — aX
X — AX

X — XA

are continuous for A, X, Y in L(H) and scalar a.

1. Definition. If R c L(H) then R', the commutant
of R, 1s the set of all operators T in L(H) such that

ST = TS S*T = TS*

for all S € R.
For any subset R < L(H), R' 1is always an algebra:

If A and B are in R', then for S € R

~ (A+B)S = AS + BS = SA + SB = S(A+B)
"~ (AB)S = A(SB) = S(AB).

similarly, (A+B) and AB commute with S*. Thus (A+B) and AB

are also in R'.
Note that R' always contains the identity operator,-
and.that T 1s in R' if and only if T* 4is in R'.

Furthermore, R' 1is closed in L(H) under any of the



above topologies. To prove this note that for S ¢ R, fS}’
is merely the set on which the continuous functions
£f(T) = ST - TS

g(T) = S*T - TS*

~are equal to zero, and hence that {S}' is the intersection of

two closed sets. Finally

R' = /(") (ser) f{sf' ,

so that R' 1is a closed set.

2. Definition.A A von Neumann algebra is a set

R < L(H) such that R = (R')' =R".

Such a set is, in view of previous remarks, a strongly
closed symmetric subalgebra of L(H) which contains the 1dentity‘
Operatofﬂ On the other hand, all such algebras are von Neumann
slgebras. This follows from the "von Neumann density theorem"

which says that
R" = R (weak) = R (strong)
for every symmetric subalgebra R with.identityl

‘3. Theoremn. If R 1is any von Neumann algebra and T
is any bounded self-adjoint operator with resolution

fE, : == < & < +of,

then T € R if and only if Ea‘e R for all a.



Proof. If T € R then
{Tf c R,
: {T}.' 2 R',
so that

{T}" = R" = R.

.2 1 “ ) Ve
. Slnce Ea € {T} R Ea € R for all a.

On the other hand,

]
T = f 8, dEa,

-co
where the right-hand side is a uniform limit of a generalized

sequence of linear combinations of E . Now.

R < R(uniform) - R(weak) = R" = R,

so that R 1is uniformly closed. Thus {E{ cR implies TeR.

This proves theorem 3.

4, Dpefinition. If R 1s any von Neumann algebra RU

is the set of unitary operators in R.

5. Theorem. If R 18 a von Neumann algebra, then the

bounded operator T belongs to R if and only if T commutes

with every unitary operator in R', in other words

R = ((R)Y)" (a)

Proof. Since (R')Y ¢ R!

ot



( (R)Y)r 2R - R | ()

On the other hand, every operator in the uniformly closed
‘symmetric algebra G may be written as a linear combination of
unitary operators in G.

To see this note first that if A € @, then

.H1'={1/2v(A+A*)»

H2 = 1/2.(A*-A)
are‘self-ad501nt operators in G and
A=H

+ 1iH

1 2

Next if H 1is self-adjoint in G and [H||<1, then
U =41-H2 + iH

is in G (since G is uniformly closed) and is unitary.
Thus if an operator T commutes with every unitary

operator in .G , it commutes with all other members of G, that is
(c”) ¢ a
and in particular
((r0)%r e ()T =R, . (e)

Combining (b) and (c) yields (a).



An example of a von Neumann algebra.

Let (X, u) Dbe a o-finite measure space. L_(X, u) is
'the-set of measurable‘functions which are bounded almost every-
where in X, LQ(X; M) 1is a Hilbert space.

Given t € Lw there is a corresponding 1ineér trans-

formation T on L,:

(Tg) (x) = t(x)g(x)
for g ¢ L2.
Let M Dbe the family of linear transformations so induced

by L .

o]

(1) M 1is a family of bounded linear transformations of

i onto itself.

2
To prove this, let g € L2.

Jf [Tg]2 A
X

A i it
EE C\\\3
8 1o .

o

\ ®
— V)

o
— o
n =

du

o )

i

(where [it] ; inf k :p x: |th)| >k
= 162 Nel® <
Thué Tg € L, and

el < llel Nl

'so that T € L(Lé).



" This last inequality implies

Izl < Nl
To show that equality obtains, let € > O be given, then
fx ¢ Je(x)] > lell - ¢}

has posgitive measure, and since 4 1is o-finite, this set has a
subset S of finite positive measure. Let g be the character-

istic function of the set S. Then g € L2, Moreover

Irgl® = / 1te] 2 4y
X

=f |tg|2du+f|tg|2.du

XS : S

1t(x) |2 au> (Il - €)? us
S v

(el - )2 liel®.

Thus for all € > O,
ol > fsll_ - e .

‘Hence [|T|| > llt|l_. Combining this with the previous inequality
yields

el = el -

This means that M and L -are iSomeﬁric éopies of one another.



"(ii) M is an abelian algebra.

To prove this let S and T De M-operators corresponding
respectively to 8 and t 1in Lm.

([84T]g) (x) = (Sg)(x) + (Te)(x)
s(x)g(x) + t(x)g(x)

(s(x) + £(x)) &(x)

Thus S+T corresponds to s+t in L_, so S+T € M.

'If ¢ 1is any complex number, then

(lesle)(x) = c(se)(x)

i

= c¢ 's(x) g(x),

‘whence. cS corresponds to c s(x) € L_, 80 ¢S5 e M.

Next,

(STg) (x) (slTel) (x)

s(x) [Tg] (x)

8(x) t(x) g(x).

Since st € L_, ST e M. From this it is obvious that
ST = TS.

Thus M is an abelian algebra: M < M' .



©({11) M is a symmetric algebra. | |
To calculate T* note first that it is by definition the
ﬁniqne_iL(Le)' operator such that

(1£58) = (£, T*)

for all f,g € L,, that is

f tfE dy = f £(T¥) d:

X X

or

f‘f['té - (™)) ap=0 | (a)

X
‘for all f,g e Ly. | This means 'ﬁhat
£(x) [8(x) BT - (TF8) ()] =0
.aimbét ever&where for.all f?ghe L,s hencévthaf'
t(x) EFT - cr*g) (x) =0 |

.

almost ‘everywhere for all g € L,. Thus :
(T%e) (x) = t(x) e(x) .
and

14" L,: Thus T* corresponds to T e L_.
This shows T* explicitly and proves that M .is a
. symmetric subalgebra of L(L,). |




'10:

(iv) M = M"
Since M 1is abelian, M c M!'. To get the reverse inclu-
sion let. A € M'. A commutes with all the projections in M.
These projections are induced by the characteristic functions of
measurable subsets of X. Thus |
AE = AE
for all projections E € M implies that

~ (AEf) (x) = (EAf) (x) = e(x)(Af) (x),.

‘wahere f e L2 and E,:COrresppnds to the characteristic functipn'-

e & L .
[+«

"If now both e and f are characteristic functions of

sets of finite measure then
e,f € L, nL,

“and .
(Aef) (x) = e(x) (Af)(x) = £(x)(Ae)(x)
‘Since (X,u) ig o-finite,’
X = (/) (tew) E
where the E; are disjoint and

g <=

Thus, for f .as above,

(A)(x) = T (1ew) ey(x) (a2)(x)
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A(whefe ei is the characteristic function of - Ei)

= ) (e t) (x)
Y £(x) (Aey) (x)
= £(x) ) (Rey) (x)

Let

2() = T (1c0) (hey) (3
~ Then
(a£) (x) = a(x) £(x), (*)

whenever f 1is the characteristic function of a set of finite
measure. |

This ‘a(x), being the_point;wiSe limit of a sequence of
measurable functions, is itself measurable

Indeed, the function a(x) 1s in L o(Xs u), for let

“S - {x : |a(x)| >'”A”}.

‘Then S has a subset S' of finite measure. If uS' is positive,

snd ¢ 18 the characteristic function of S!'. then o € L, and

|\Acp!12=f apl? @
, St

1002 [ el @ = AR el .
Sl

That is,

lagl > llall llell.
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'This is a contradiction, hence HS' =0 and pS = 0, Thus
a(x) ¢ I, and lal < lAll.
The linearity of the operator A immédiafely extends
(#) to the case where f 1is a summable simple function.
,Siﬁce (X,u) 1is o-finite, the set of summablehSimple
-.functioﬁs is dense in L, Heﬁ¢e given4‘f €L, and €> O,'

there exists a summable simple function 5(x) such that

- €
e = el < 2
~ Then
lat - af|
< Jlaf - as|| + llas - af]|
= llag - as|| + llas - afl|
(since (As)(x) = a(x)s(x))

< lall lie=sll + llall,, Ie-sl

< 2lall lle-sll .

Thus ||Af - afll < €. But e is arbitrary, hence (*) must hold
almost éVertheré for every f € Ly. ‘Since a € L;, this means
 that | ~

| A e M.

L Thus M= M, |
TR Now, because M = M', M is maximal abelian, i.e. M 1s

v':properly contained in no symmetric subalgebra which is abelian.



If

M CN,

where N 1is abelian, then

N e N

M' D N,
or_cémbining

M =M'>N'D N_g M,
8@ that

wen

More to‘thé point is the observation that

M' =M
implies%that

M" = M!
so that

M =M =M",

that is, M is a von Neumann algebra.

RP is the set of prbjections in R.

‘If R is any von Neumann algebra, then a measure can be

defined on RE.

13

6. Definition. Let R be a von Neumann algebra. Then
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P

7. Definition. m is a measure on R if m is an

extended real function on RY such that
(i) mE> 0 for all E ¢ R’ . |
(11) If {E;{ is any family of mutually orthogonal
& -members,

T |
| m Z;‘Ei = mE; .

(Theorem 27 will show that
- . P
2‘1 Ei = sup {Ei§ € R ).

8. Definition. A measure m is finite if m I € =

and semi-finite if for every non-zero Ee RP

there is F € RP'

“such that

0O KF<KE and nmF £ .

9. Definition. If m and n are twd measires on R',

then n 1is absolutely continuous with respect to m ‘if nE =0

for all E e R® such that m E = 0.
In what follows a semi-finite measure m on o - R
N isiabeiian - 1is extended to an integral on the set of all

self-adjoint operators (not necessarily bounded)- whose spectral

resolutions lie in R'. This integration theory is developed

far enough to prove a Radon-Nikodym theorem for semi-finite measures.
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WEAK COMPACTNESS OF UNIFORMLY CLOSED BALL

10. Theorem. The uniformly closed ball -
= {A : AcL(H) and (Al < 1f

is compact in the weak topology of L(H).
Proof Dbegins with a lemmsa.
Lemma. In its weak topology L(H) 1is homeomorphic to

.a subset of the product space

]—T{C(x v) (x,y) € H x H}

where is a copy of the complex plane

¢
(,_x,y)
Proof. The homeomorphism is the evaluation map e

e : L(H) — J
P(x,y)' e.(A) = (Ax,y)’

where P(x is the projection of :ZD onto C

and
»Y) N

(%5¥)
‘A € L(H). |
Tnls map is one-to-one: If A and B in L(H) are such

that e(A) e(B), then

(AX’Y) =P

,e(A) = P(,,4)%(B) = (Bxy)

(x,y (%,¥)

for all x and y in H that is A = B.
. Both e and e”! are comtinuous: Let 3F be a finite
subset of H x H, let e > 0, let A ¢ L(H), let. S(c,¢) be the

sphere of radius € about the complex number c, and let
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'z = §T:TeL(E) amd | (Axy) - (Txy)| <E
. 22 =ﬂ((x,y)€3) P(x y) [S(P(x y)e(A): €)].

The sets of form Zl(A e) form a neighbourhood basis for A
in the weak topology of L(H). ‘The sets’ of the form

e [L(H)] n'zé(A,&sé)

form aneighbourhood basis for e(A) 1in the product topology of
'57) “reiativized.to -é[L(H)]-

 Now, since P e(A)}= (Ax,y),

(x55)
e[2)] = {e(T) : TeL(H) and '|P

e(A) - Pry ye(T)] < e

(x55) (x5¥)

for all (x,y) € 3} :

e[L(H)] N jw: we JP ana

|P(X,Y)¢(A)‘- Prx,y) (M1 < e

for all (x,y) € 5;

e[L(H)] n Zo
That is
-e[2y] = e[L(H)] n 2Z,,

S0 that e and el are continuous. :‘This proves the lemma.
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This lemma implies that 8 1s compact if and only if
e[g] is cOmpact.

For x and y in H 1let

€ (x,y) = .{z : z 1s a complex number

12| < lxl Hny .

6?(x,y) is a closed and bounded subset of the complex plane,
and is thus compact for every x and y. Hence by the Tihonov

theorem the product spacé

F =TT{ @ (xy) : (x¥) ¢ H x Kf

is also compact.

Now el[®] c_~‘___‘$, since for A e 8

|-P(X,y) e(a) | = [(ax,y)| < lax] liyll

In

lall Tl Wyl < U=l iyl

Thus the theorem will be proven if it is shown that e[g]
is a closed set in the compact space jE .
' .First let x, y, z be in H and let 'a,b be complex
numbers. Let | |

Xl(x’y':z)

= 1rme B Plaay,2) (0 = Pa,a) () * Py, (0f

4

Xo(%,¥,2)

= {W:WG(% s P(x,yz)(w) =‘P(x’»y) (w) + P(x,z)(W)‘} C



i8
XB(X,y,a,b)
= {w:we} , P(ax,bx)(w = ab P(x,y)(w)f

The projection P(u,v) of L onto & (x,y) 1is continuous. |
Hence Xl(xgy,z), being the set qn_which two continuous functions
agree, ig closed for all x, y, z. Similarly X, and X5 are
closed in Jx/ .

Note next that for any A in 8,

P(J'w,z)e(A) = (A(xtghz)

(Ax,z) + (Ay,Z)

= P(x,z)e(e) + P(y’z)e(A),

so that e(A) € X,(x,y,z) for all x,y,z. Similarly e(A) is.
in Xz(x,y,z)'.' . Also

e(A) (Aax,by)

P(aX3by)

ab (Ax,y)

ab P(x’y)e’(A),
'so that e(A) e X3 (x,y,a,b) for every x,y and a,b. Thus
els] c o

where

J= ﬂ{xl,: x,y,z} nﬂ{x2 : x,y,z} riﬂ-{:x3 : x,y,a,b}
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which is a”c;osed set .,

"Actually e[8] exhausts J , for if o € 2/, then

Prry,2) (9 = Pz (0) + Py 2 (0)

N -
G

P(x,y+2) (@) = P(x,yi(m) + Pry,z)(0)

P(ax’by)(w) = ab P(X,y)(m)s

that is, ¢ determines a bilinear functional
on H. Moreover
12301 = 1Py gy (@) < Il iyl

since P(x;y)(w) e € (x,y). Hence f is aAbOundeg bilinear

- functional on H and Hf”_ﬁ 1. J
This means that by the Riesz representation theorem for

‘bounded bilinear functionals there exists an operator F e L(H)

such that

£(x,y) = (Fx,y)
and

el = lell < 1.
But this implies that

Pla,y) (9) = 200) = (FGy) = Py e(F)



for all x,y, so that ¢ =e(F) and o € e[8]. Thus‘zf‘g elag]

and so
e8] = .

As stafed before, the compactness of ® now follows from
the fact that e[B8] is a closed subset of the compact space 55 .

This proves theorem 10.
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'BOUNDED SELF-ADJOINT OPERATORS
IN A VON NEUMANN ALGEBRA

11. Definition. If R 1s a von Neumann algebra, .

S

'R” 1is the set of self-adjoint operators in R.

With this definition theorem'3 rephrases as 7T e,Rs

and only if the spectral resolution of T 1is in R,

if

Any family of bounded self-adjoint operators is partially -

ordered by a relation ¢ defined as follows,

S KT if and only if
(sx,x) < (Tx,x) for
all x in H.

In most cases this < does not furnish a linear ordering; for

example, the operators E ‘and I-E, for a projection E, are not

comparable.

12. Definition. If 3F c L(H) is a family of self-adjoiﬁt

' operators, then whenever it exists ,

sup F

is the smallest self-adjoint operator which majorizes every

J-member. If R 1is a von Neumann algebra then
sup ¥ ,
R

whenever it existe,is the smallest RS-Operator majorizing every
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member of JF ¢ RS. The operators

inf ¥, inf &
are analogously defined.

S

If S and° T are in R then S-T is in R also.

If Fa' 1s the spectral resolution of S-T, then by theorem 3

.Fa € RP. If R is abelian, then 'S,T commute with ST, and,

consequently, F_. commutes with both S and T. This permits .-
the following definition

13%. Definition. If S,T € RS for abelian R, let Fa

be the resolution of S-T. Then

(SUT) =T Fy + S(I-Fy)

il

(s n T) = T(I-Fy) + SFq

Obviously (SUT) and (SNT) are in R. Furthermore

(S U T)* = F*T* + (I-FO)%S*

FoT + (I-Fy)S

TFq + S(I-FO)

(S UuT)

S

80 that (S UT) € R°. 1In the same way (S NT) ¢ RS

14, Theorem. Under the assumptions of definition 13,

(suT) = sup {s,:} .
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Proof. Since R 1s abelian,

{33} = R' 3 R.

The foilowing proof shows that (SUT) is the smallest operator in
. ,
{FO§~ which majorizes both S and T.

For any x € H,
(S UTx,x) - (T x,x)
; (TFox,x) + (S(I-Fy)x,x)
= (TFgx,x) = (T(I-Fy)x,x)
= ((8-T) (I-Fy)x,x) > O

by definition of F

o Thus
(SUT)>T.

Similarly
(suT)>s.

Now let A € {FO}' be an operator such that
A>S A>T.

Then

4 FA(I-Fo) + (I-Fo) A(I-F()

= F, AF, + (I-Fg) A(I-FQ)



ol

(since A € fFO§ '). Since

(8 uT)

i

FoTFo + (I-Fy) S(I-Fp),

for any x € H

(Ax,x) - (SUTx,x)

(FéAFox,x) + (I-FO)A(I-FO)x,x)
| - (FTFgX) I((I-F‘O)-S(I-‘Fo)x,x)

((A-T)F g%, F %) + ((A-S) (I-Fo)xl,' (I-F)x).

This last line is non-negative, since A majorizes S and T.
This proves theorem 1%4.

In the same way,

i

- 15. Corollary

(snT) = int {s,1}

16. Theorem. If R is any von Neumann algebra (not

S

necessarily abelian) and 3?5 R is directed upward and bounded

~above by the self-adjoint operator S then sup & exists and

belongs to RS.

o’

Proof. For all F € ¥ 1let W(F) be the weak closure of
the set

V(F) = {T:Teé and T > Ff
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Choose. F. ¢ ¥ and let

0

&

sz_(FO)-: {T:Te:’i} and TZ.Fo§

Observe that if {Fi s 1€ n} is any finite zofsubset,
then |

ARACARE! sn} £d .

To prove this note that since F 1is directed upward there exists

T, € & such that

1

For k < n, there exists Tk+1€ F suéh that

T T T

K+l = Fkal kil = Tk

Obviously Tn.Z Fi for all i € n, so
T, €() {V(Fi)_:ienjz
A fortiori
/) {i(F) :1en] £¢
for all finite families
{Fi s 1 6}1} < %
This means that

W(F) : F e 3,



has the finite intersection property in

8 =S5t e (), Izl < max flEy Uslff -

Since B8 1is weakly compact

() {u(F) tFedyf =9

If A is in this intersection, then since A 1is in the

weak closure of V(F) c & ¢ RS

(1) A is self-adjoint
(11) A > F for all F € 3, and hence A > F

for all F € 3o
(ii1) A e R

Actually A is the only operator in the intersection and is
moreover the éupremum of ¥%. Por if T 41is any self-adjoint

operator which majorizes every F-member, then in particular,

T>S8

for all S € W(F) for all F € ¥. Hence T > A,

This proves theorem 16.

17. Corollary. If R is any von Neumann algebra, and

[l
¥ c R” is directed downward and bounded below by the self-

adjoint operator S_, then (inf ¥) exists and belong to RS,

26



Proof. The set

-3 = {-F:Fe&}

is directed upward and bounded above by . -So

from 16.

. Hence 17 follows

o7

18. Définition. For se€quences of self-adjoint operators,

will mean that

and
SnT S (strong)

will mean that

w2
-

~and
S = lim (strong) S,.

The expressions

S, T S(weak) S, ' S(uniform)

are defined analogously.

19. Theorem. For monotone sequences, strong and weak

convergence are equivalent: if T is a monotone sequence
X n 3



then

if and only if

~ Proof.

topology

implies

For the

1im(weak) T,

= lim(strong) Th

Since the strong topology includes the weak

I

lim(strong) T,

1im(weak) T,

0

converse, suppose

T, T T (weak).

Since

To < Ty < T

|

where
K
Now for

NICERE N

n

Tl <X,

—max FlToh, ITIf

any x in H

(21, (2-)) |2

((T-T,)%x, (T-T,)x)((T-T,)x,%)

A
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(since T-T .> 0 )

= ((T-T,) ’x,x) ((T-T,_)x,x)

IA

I(z-1,) ’xll x|l ((T-T,)x,x)
< lm= 1P =l ((T-T,)%,%)

(ZK)3 ”X“2 ((T-T,)x,x%)

IA

(stnce  [lz-T [l < lITll + lT )l < 2X)

Since

T = lim (weak) T,

there exists N(e,x) such that n > N implies-

, 4
((T"Tn)x:x) < m s

and hence that
| (77 ) x| < €.
Thus
T, 1 T (strong)
and 19 is proven.
Remark. In view of 19
Sn‘I‘S TnJ,T

_ wili be written with the‘understanding that the convergence is



both weak and strong.

S

3

20. Theorem. If R 1s abelian with S , §, T in R
then if
S, M S,

then also \
(s, uT) * (5 uT)

(sn' AT) P (SNT)

Proof depends on two lemmas:

S

21. Lemma. In any R with S, S € R, if S T S then

S = sup {sn§ .

Proof . {Sn} is directed upward and bounded above.

Hence

¢ = sup fsn}

S

exists and belongs to R” by 16. Hence.

S>C.

If equality does not hold here then there must exist: x ¢ H.
such that

(sx,x) > (Cx,x),
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 ,and,‘since
s. T s,
there exists N sﬁch that n > N implies
(sx,x) > (Snx,x) > (Cx,x),
contradicting the fact that € > S for all n. Hence
é = C = sup an}
This proves 21.
22, Lemma. In any R, if §5 7§ ¢ R° 1is bounded above
and SnT , then (by'16)
S = sup {Sng
exists and belongs to RS, Moreo&er,

sn'rs

Proof. Observe that

fsfen= 7a:AcLm, lal <max 7lsyl, IsifSf.

Since 8 1is weakly compact, {Sng ‘has a subsequence {én(k)}
such that ' ‘

S (k) T ¢

- S s |
for some C e 8. Since {sn(k)i SR, CeR also.



Now for any x. € H,
(Sn(k)x,x) Pt (cx,x) .
Hence also
(Snx,x)-T (Cx,x)
Since all the operators involved are self-adjoint
s, T c.
By 21 this implies that

C = sup !{Sn} =S
~Thus . |

sn1\s

and 22 is proven.

Now to complete the proof of 20.

Since

(suT)>s> Sn
and

(SuT) >T,
obviously

(S uT)> (5, uT) (a)
Exnthermore,

(Sn+1 U T)-Z Sn+1~2_,sn
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and

(Sn+1 uT) 2 T,
so that

(Sn+1 U T) > (Sn iy T) .
That is’

(00 1
By (a) and (b) and 16, there exists
C = sup f(sn UT)}
Now"
(SuT) > (s, uT)
lmplies that |
(suT)>cC

By 21, the fact that
implies that

hence that

CeR

S

(v)

such that

(c)
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since

> (s, v T) > 8,
for all n. Moreover,

C>(s,uT) >T,
so that by 14, since C e R°,

C>(suT)

Combining (c) and (d) ylelds

C = (S uT),
that isJ

(SUT) = sup E(Sn U T)} .
Thus by 22
(s, uT) T (SuT)

To. prove the second assertion of 20 note that

(S, NT) <8, <8

in

n+l

- and

‘so that by 15, since (S, N T) € RS,

(sn"n T) < (Spy N T).

Thus
(s, nT) T .

(a)

3k



That this sequence tends weakly to (S N T) follows

i
i

from the formula

(S+1)

SFy + T(I-Fy) + TFy + S(I-Fj)

(50T + (SuT).

This proves 20.
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'SIMPLE FUNCTIONS IN R°.
23. Definition. R°F 1s the set of all bounded operators
of the form
P
-\
S = L aiEi s

i=1

where p 1is a positive integer, a; 1s real, and {Ei} is a

family of _RP-members such that
p
) By =1
i=1
(this implies that the E; are mutually orthogonal).

S

24, Theorem. If T € R thén there is a sequence

§r.7 = R°F such that

T, T T (uniform).

Proof. Choose 4 > 0 and let P be any finite point
set partitioning the interval

[-a-{ill, lizi].

P : -d-{T|| = 2, <ap < ... Cay g Cay = HT“

If E, 1s the spectral resolution of T, then E, e‘RP

for all real a, and

(B, - B, ) < T(E, -

) S o8, -E, )
1 %441 R TS )

1Y a8y 8y 9y



or, letting E, = E - F
1 ai ai_l
4.1 By ST By Loy By
80 that
p
L(P) = Z’ ay.1 By
i=1
P
i=1
p
< ) ay By =U(R),
i=1
that is,
L(P) < T L U(FP) .
Now

p
U(P) - L(F) = Z (ag-a;_1)E,

i=1
p
gmax fag-aygf ) B
i=1
= (max P) I,

so that
0 {T-L(P) < (max P) I
and hence,

IT - L(P)| < max P .
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Thus if a sequence {Pﬁg of partitions of [-a-||Tll, lIT]l]

is chosen so that

lim (max P)) = O,
then
lin |7 - L(2,)ll = 0.

Hence
T = 1im (uniform) L(P,).

Now zL(Pn)} c RSP, and its convergence to T may

be made moriotone by requiring that

Pn = Pn+15

for, let
P' = fa'f{ UP,
where a' € P, ay_1 < a' < a4, Say. Let
5 | |
L(P-3) =Y (141) a;_; Ey.
i=1 '

Then

L(P)

L(P-3) + ay.1 E



that is,

& L(P-J) + a' (E&J - E_ )

+ a (E,, - E
j-l a«' aj-l

]

L(P'),

L(P) < L(P') < T.

This proves 24,
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POSITIVE AND NEGATIVE PARTS

S ' OF "AN RS~OPERHTOR

Recall that if T 1s any bounded self-adjoint operator with

spectral resolution E,, then
T =T - T,
where

T = T(I-E)) T° = -TE,

are;positiVe,opErators which commute with T and with eachiothef;
‘and for which

The following theorem will be important td the extension

'ofia measure from RP to _RS:

'25. Theorem. If T 4is any self-adjoint Operatof.ahd
T = A-B,

where A and B are positive operators that commute with T,

then

where P 1is a positive operator.




Proof. Since |
o | A-B = TV - T
implies: |
A-T" = BT,

1t remains only to show that

P = A -7

is positive.

If E, 1is the resolution of ‘T, then for any x € H

(Px,x) = (A-TTx,x) = (A;T*x,de) + (A-T+X,I-on)

= ((A-T") Egx.Fox) + ((A-T7)(I-E,)x, (I-E,)x)

© (since E, commutes with A-T)

(AEx,Eyx) + ((A-TF)(I-E))x, (I-E)x)

(since T'E

T(I-E,)E, = 0)

= (AEjx,Epx) + ((A-T)(I-E))x, (I-E;)x)
'(éince_vT+ﬁ= T(I-EO))4

= (_AEo_x.,on) + ((A- EA"'BJ )(‘I"Eo)x9',(I"'Eo)vx)

(Since T = A—B)

= (AByX,EqX) + (B(I-E,)x, (If-vo)x) .

‘This last 1ine is non-negative since A and ﬁ are positive.
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Thus

If A,B are in R

P >0 and 25 is proven.

Important Remark. If T e¢ RS, then so also are

S

sy S0 is P.

T, 7.

ho
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SUPREMA AND INFIMA IN RY

Let 'R be any von Neumann algebra. If attention is restricted

to subsets of RP, then 16 can be improved: subsets of RP need

not be directed to have suprema and infima. Moreovér, the supre-
mum (or infimum) of definition 12 turns out to be the usual supre-

mum (infimum) of a collection of projections.

26. Theorem. If R is any von Neumann algebra and

Ecw
P = pr/f){%ng E: E ¢ éﬁﬁ
P

then P € R and

P = inf &

Proof. To shéw that

P =inf £,
suppose that S 1s a self-adjoint operator for which
S <E for all E /& .

Assume, moreover, that there exists x € H with |x|l =1 sucn

.that

(Sx,x) > (Px,x).



Now

~~
n
el

»
b

Nnas?
e
-

and

—~
g
bl

-
el

e’
i
-

or (Px,x) = 0.
Thus it must be that
1> (sx,x) > (Px,x) =0

But (Px,x) = O implies that

for some EO ecfp , and hence that

x,x) > (Sx,x) > 0.

This 1s a contradiction. Hence
(Sx,x) < (Px,x)

for all x € H, that is

S L P.
Since

P CE

for all E € é’ , this means that

P = :LnféD

To show that P ¢ R, let U be a unitary operator in R'.

i



Then
UE = EU U*EUJ = B UEU* = E ‘ (a)

for all E € RE.

If F is any projection such that F < E for all E ¢X4°,

then for all x € H,

(U*FUx,x) = (FUx,Ux)

A

(EUx,Ux)

(U*EUx, x)

)

(Ex,x) ,

by (a), so that
U*FU < E
for all E ¢ é? . Similarly,
UFU* < E

for all E € dg’ . Thus, in particular,

UPU* < E U*PU < E

UPU* < P | | (o)

U*PU < P | | (c)
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Now by (c)
(U*PUx,x) < (Px,Xx)
for all x € H, hence for x = U¥y, where y € H :
(U*PU(U*y), (U*y)) < (PU*y,U%y),
(UU*PUU*y,y) < (UPU¥y,y) ,
whence
(Py,y) < (UPU*y,y)
for al} y € H. Thus
P < UPU* | (a)
Combining (b) and (d) yields

P = UPU*
or

PU = UP.

Since U 1is otherwise arbitrary, this means that P commutes

‘with every unitary operator in R'. By theorem 5, P € R.

This proves 26.

27. Theorem. If R -is.any von Neumann algebra and

& <R o
»Q = pr tLj qung E :‘E eéff ]
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(that 1is, @ 1s the projection onto the closed subspace generated

P

by this set union), then Q € R° and

Q@ = sup(é?

Proof. Q=T -pr(UfmegE: Eeff T
1 -pr() {(ng)—L: Eelf

I -pr/) e (1-8) : £ eSf
R 2

by 26. Since

1|

P =inf JI-E : Eef’f e RY,

P

Q@ € R also.

If now S > E for all Eeéb,then

I -S<KI-E

for all E GCEP’ hence by 26,

I -8(¢KP
and

S =1 - (I-S)‘Z'I-P = Q .

s0 that

Q@ = sup CfSP'

This proves 27.



on

R

Remark. Now that 27 i1s proven, definition 7 of a measure

P

is complete.
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BN _ OPERATORS

28, Definition. Let RV bve the set of all self-adjoint

operators (including unbounded ones) whose spectral resolution
lies in RP .

In light of theorem 3

®S = 1(m) n &Y.

Proof. of the following theorem may be found in Functional -

Analysis by Reisz and Sz.-Nagy (Ungar, New York, 1955), page 314,

Von Neumann's Theorem.

Given

(a) a sequence {Ei : iew} of projeétions-such that

Z{Ei : iew}": I

.and
(b) a sequence {Ai : iew} of bounded self-adjoint operators
sug:h tha_.t
AiEi = EiAiEi

for all i, then there exists a unique self-adjoint operator

A (which may not be bounded) such that

= E,AE

AEi JAE; = EiAiEi = AE

for all 4i. Moreover

D(A) = ix ¢ x € H, Z; “AiEitz < w}



and for x € D(A)

Z; A E b

29. Theorem. Let R be an abelian von Neumann algebra

If the hypotheses of von Neumann's theorem are strengthened:

{8,] c®, i cR°,

then A evRN.

Hence if A is any self-adjoint operator for which

S

E,A c AE; ¢ R

i
for all 1ie w,::where
.
{ef <&, Z;Ei=I,_
then A € R.

Proof. The proof 1s taken up mainly with deriving the -
spectral resolution of A from those of the Ai‘

Let Fa(i) be the spectral resolution of Ay for each i,

Since R is abelian,

AiEi = EiAi

for 2ll i, and
F,(1)E; = EF_(1)

for all a and 1i.



Let:
F, = sup {F (1)E : tewf,
which 1s a projection of R by 27. Since the Ei are mutually

orthogonal,

.Fa Z; F-a.(i) Ei

‘whence obviously F, <F, 1if a <D.

‘To show that Fa yvields a resolution of the identity,_it"

must be shown how the properties

(1) '11%1 (strong) F, =F,
. - a4t
(11) lim (strong) F, =T
s a = 4
(111) lim (strong) F, =0
) . a=- -

are inherited from the properties of the Fa(i).

To prove (i), let
X, = Z(_ien)if By x
for x € H. Then
lim X, = X
Let € > 6 be given. Then for a < b, |
"Faxn - Fb#nn2

= T (tew) I(F,(3) - Fy(1)) Byl



C =) (e (F,() - ) E, % ||

For each ien there is an a; > a such that if

ay > b > a
then

I(F (1) - F(1)) Egxpll < 5%
Hence if

a <b < min zai ; ien_F,
then

Y (1en) (7, (1) - Fy(1)) Byxyl1® < e®

that 1s,

B x, - Fpxpll < €.
Considér now the following:
| IEx - Foxll - 1P %, = Fxll |
< P (x-xy) = Fp(x-x,)l
S, —El el

Thus, since

this yields

| IFx - Bl - Fuxy = Foxall | < lx - xl
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Now for n > N,
Ix - x Il < e/,
so that .
0 < Tl < e/2 4 (R B %

.for n_z Ne‘

But there i1s also an a(n) such that
a < b < a(n)
implies that

1(Py-F)x,ll < /2.

Thus 1f

a <'d < a(n),
_ H(Fb—Fa)xH <e/2 +¢€/2=c¢,

Since € 1s arbltrary, this proves (1). Properties (ii) and (11i)
follow in the same manner.

Thus .

{Fa 1~ w<a <+ w}

is a resolution of the identity.
~ In order to show that F, 1is the spectral resolution of
the operator A it remains to’ show that
(iv) F, A c AF, for all a

(v) AFé $“a F, . and A(I-F,) > a(I-F,)
on D(A). ’



S

‘To prove (iv) note-that from the uniqueness guarantee in }

von Neumann's theorem, if - x € D(A), then
Ax = 2:(1em) AE,x

Hence -

= K
Fan = Fa Ai EiAiEix

- E; P_(1) E,AE,x

Z; EF, (1) AE;x

(since E;F (1) = F,(1) Ey)
= Z; E\AF, (1) Eyx |
(since A,F (i) = F_ (1) A))
= AFax.

This proves (iv).

' To prove the first part of (v), let x € D(A); Then

(AF,x,x) = 2; (8,F, (1) E,x, Eii)

In

E;.a(Fa(i)“Eix; E;x)

a (F x,x)

This proves the first assertion; proof of the second is analogous.

Now the self-adjoint operator A has a resolution Fa'.



In virtue of (iv)

-Fan' = R

b'Fa

for. . all real a and b. Hence
Fa(I-Fa') | Fa'(I-Fa)

are projections.

To show that these are zero, suppose that

x € D(A) N rng F, (I-F.').
Then since X € rng F,»
((A-aIl)x,x) < O

by (vi). That is
, o

\j/\ (b-a)d (F,'x,x) < O.

-0

This means that (Fb'x,x) is constant for b > a. Thus since

Fb' is right'COntinuous
(Fp'%x,%x) = (F_'x,x)

for b > a.

But x € rng (I'Fé') also, so that
(Fb’X,XA) =0

for b <a. Hence
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(Fy'x,x) =0
for all b. Thus x=0 and

F, (I-F,') = 0.

Similarly
F,' (I-F,) = 0.
, | '1 . _ A'
Hence Fa-ﬁ Fa' and ba'_ﬁ Fa’ s0 that Fa = Fa' for all a.
That is, F_ 1is the spectral resolution of A.

a
This proves that A € RN.

The second part of theorem 29 follows from the first:

Since

E.A c AE, ¢ R°

i = i v
the first part of 29 spys that there is an operator A'. e RN such
that

1 1 - ;
EiA < A Ei = AEi
"ﬁBy the uniqueness guarantee in von Neumann's theorem, A=A'. Hence

A ¢ RN.

This‘completes the proof of 29.

0. Theorem. If T 1is a linear transformation with:

domain and range in H such that

(TE,)* = TE,
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for all iew , where R is an abelian von Neumann algebra and

JE, : iew? S R, Z'Ei =T,

then there exists a unique ' T!' € R such that Tt DT,

Proof. By von Neumann's theorem there exists unique T

which 1s self-adjoint and satisfies

E;T' c T'E, = TE,

1=

for all 1. -
D(T') = g; P X € H,'Z; HTEiX”2 < ?}
and if x e D(T')

Trx = 2; TE, x

By 29, T' € RV.

To show that T' extends T, let x € D(T). Then

(Z;Ei) T#
; Z; EiTx

Z;.TEix o (a)

Tx

(since. E;T ¢ TE

Now since
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the terms of the sum (a) are mutually orthogonal. Thus from (a)

ex)1? = Z Iz, xI12,
that 1s, x e D(T').

Now (a) also implies that Tx = T'x. Therefore

T T

T' is the only RN - operator which extends T, for if

Tve RY and T ¢ T, then
‘TE, € T"E,
for all 1. Since TE, € R°, it is defined on all of H. Hence
actually, ' |
TE, = T'E,,
and moreover
| TE, = T'E; = T'E.

But this, together with the uniqueness guarantee in von Neumann's
theorém,'ihplies that
TH - T f

This proves theorem 30.

?31. Lemma. If

EEi : ig}{f 'EFJ : Jej?} _

are families of projections such that
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EiEi = z F, = I
9
and
EiFJ —— FjEi’
then also, ‘

Proof. Given xeH and €>0 there must exist a finlte

subset V{tc;_;‘/{ such that

ly-—xl < 6/2:

where‘ -
74
y = Z.(iea{) E, x.
/ F
There 18 also a finite subset (/35[? such that
ly - z--(:lex?l) Pyl < e/2

Thus

|x =) (1etl 3eB) ByF x|
= Ix - ¥ (3e8) 7yl

I

Axeyl + Iy - Y (368) Fyyl
<e/2 +e/2 =c¢

‘"Hence

Zj EFy = I

and the lemma is proven.
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32. Lemma. Let Ea’ F

in' RY, where R is abelian. If

be two resolutions of the identity

Ga = EaFa,

then G, 1s also a resolution of the identity in RE.

Proof. Since R 1is abelian, G, € RP.,'

If a <b,

GaGb = GbGa (= EbeEaFa.
= E EyF.Fy
= Ea Fa

. = Ga’
so that
G, < G-

Moreover, if again a < b,
e, x - GaxH

= “(Ebe = EaFa)Xn
S‘H(EaFa - Ean)x” + H(Ean~‘:Ebe)X”

S ”(Fa - Fb)XH + H(Ea - Eb)xu: 
for any x € H. Thus 'Ga inherits the right continuity of E
and- F_. |
T a
The properties

lim (strong)G, = O
8> =w :
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lim (strohg)Ga = I
8-> 4o

can be démonstrated in similar or simpler fashions.

This proves 32.:

3%, Theorem. If R 1is abelian and A,B € RV, then there

: N 1
are unique R -operators S, T, N such that

e}
U

DA+ B
A - B

3
lu

=
u

AB and . N o BA.

Proof. Let A and B have spectral resolutions Eav and

Fa respectively. Let

E(i) = E; - By 5 F(J). = ,Fj - Fj_l

where i1 and J are intégeré (negative too!).._By.lemmaIBI,.since
R 1is abelian, z; (1) F(j) = I.
1 |
Now for any 1 and
E(1) F(J) (A-B)
= B(1) F(3) A ‘- E(1) F(j) B
= F(J) E(1) A - E(1) F(3) B
(since R 1is abelian)-
< F(J) (AE(1)) - E(1) (BF(J))

(since E(i) and F(J) are spectral proJeétiOnS)
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= (AE(1)) F(J) - (BF(J)) E(1) (a)
(since AE(1) and BF(J) € RS, which is abelian)
AE(1) F(J) - BE(1) F(J)

li

(A - B) E(1) F(J).
Since line (a) is an Rs-operator,

E(1) F(J) (A-B) c (A-B) E(1) F(J) € R°.

Since the family of E(i)‘F(j) is countable, and R' is abelian,
théoremKBO applies, so that there exists a uniqﬁe. T e RY such
that |
T D A-B.
The assertion about (A+B) follows immediately.
The case of AB and BA is similar, but it requires

" some additional remarké:

E(i) F(J) AB
= F(3) E(1) 4B
< F(J) (AE(1)) B
(since‘ E, 1s the spectral resolution of A)
| = (AE(1)) F(3) B
(since AE(i) and F(J) are in R, which is abelian)
S (AE(1)) (BR(3)) (v
(since F{J) 4is a spectral projection of B)
| = A (8%(3)) B(1)
(since both BF(J) and E(i) are in R, which is abelian)
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= AB E(1) F(J).

Line (b) is a product of RS operators, hence

E(1) F(4) AB  (AE(1)) (BF(3)) = ABE(1) F(3) € RB°.

By symmetry
B(1) F(J) BA c (BF(J)) (AE(1)) = BAE(1) F(j) e R°

Thus by 30 there exists unique N,N' in RY such that

N 2 AB N' o BA.
However, since R 1is abelian
ABE(1) F(J) = (AE(1)) (BF(3))
= (BF(J)) (AE(1)) = BAE(1) F(J)
in R°. Hence N = N'.
This completes the pféof of 33.
Because the S, T, N of theorem 33 are unique, the

following definitions are possible.

34, Definition. In 33

S=A+B T=A-B N =A o B.
Note that 33 impliesLthat'for A,B ¢ RY,
AeB = Boa
and that
A$+B = BFA

and



Moreover, if C € R
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A2A=0.
N also, then

(A+B)C = AC + BC

AC + BC & (A<C) + (B:C)

< (aC) £ (B<C)

while on the other hand

(A+B)C c (A+ B)C c (A B)-C.

Since these extenslons are unique

Thus R‘

also.

N

(AfB)oC = (AoC) £ (Boc).u

o

is a commutative algebra under the operations + and eo..

35. Corollary. If A-B> O on D(A-B), then A<B > O

Proof. Carrying on with the notation of 33, by 30

D(A-B

and for

) = fx e ZJ l(a-B)E(2) F()x12 < = f

x € D(A-B)

(a18) x = ) (A-B) E(1) F(3) x,

" whence i

t's obvious that A-B > 0 implies A - B > O.

N S

36. Corollary. If A e R’ and B € R°, then.



and so

go that

whence

Proof.

Since

A °B = B oA =

BAc AB € R

Let N = AoB = B.A .

N o B.

B e R,

D(BA) = D(A)

Then

BA 1is densely defined and the operator

Hence-v

N = N* c (BA)* = A¥*B¥

N = AB

This proves 36.

AB c N

(BA)*

exists.
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POSITIVE AND NEGATIVE' PARTS:OF-AN"RY-OPERATOR

Let N Dbe an operator in RN with spectral resolution
G,. Then
N = N[(I-Gy) + G,)
2 N(I-G,) + NGy
2 (I-Gy)N + GoN
= [(1-Gy) + G N =W
Thus |
N = N(I-Gy) - (-NGp)
Let
N* = N(I-Gp) N™ = -NG,
Then both N, N~ are positive, and by 36, both are in RK. Hence
N =Nt 2N
as well as
N =Nt - N

N=A B,
where A,B are positive in RN, then there exists.a uniquelpOSitive
operator P 1in gN such.that‘
o .+ ‘ . [ -
A=P+N B=P+ N

Proof. If A,B haveithe‘respectiVevresolutions E_sF.,
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E(i) = E; - B , iew

and
| F(J) = FJ.‘ FJ_]_ | J € w,
then |

2; E(1) F(J) = I,
J .

since A .and B are positive.

Note first that

(A°B) E(1i) F(J) = (A-B) E(1) F(J)

= AE(1) F(J) - BE(1) F(J),

where the latter is in R° . Also

(A%B) E(1) F(3) = (N*-N") E(1) F(3)
= N*E(1) F(J) - NE(1) F(J).
Thus
- wYE(1) F(J) - NTE(1) F(J) € RS.

This means that the self-adjoint operators N'E(1) F(J), N'E(i) F(J)
are defined everywhere. Hence they are bounded and belong to 'RS.

Thus
CAE(1)F(J) - BE(1)F(3) = N'E(L)F(J) - NE(1)F(3),

where all terms are in ‘RS.

AE(1)F(J) - NTE(1)F(J) = BE(1)F(J) - NE(L)F(J)

(A-1*) B(1) F(3) = (B-N) B(1) F(3).
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Thus

fo

A

Now let

P

o
s1]
1
=

Then for any i,J,

PE(1) F(J) = (B-N") E(1) F(J)
= (B-(-NGy)) E(1) F(J)
(since G, 1is the spectral resolution of N, and N’=-NGO)
= [B+ @ame, | B0) F(o)
= [B(I-Gy) + AGy] E(1) F(3)

Thus if x € rng E(1) F(J) (then x € rng P, rng A, rng B),

(Px,x) = (B(I-Go)x,x) + (AGOx,x)

= ((I-G,) Bx,x) + (GoAx,x)

(by'36 GyA = AGy, ete.)

= ((I-GO)BX, (I-Go)x) + (GOAX,GOX)
= (B(I-Go)x, (I-Gy)x) + (AGyX, Gox).
This last is non-negative. Hence

P=A-°N+

il
o]
1
=
v
o

and

a8 required. This proves 37.
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~MEASURE THEOREMS

38, Theorem. [A covering theorem for semi-finite measures].

Let R Dbe any von Neumann algebra. Let m be a semi-finite

P

measure on R (definitions 7 and 8), and let E be a non-zero

-projection in RE. Then there exists a family fEif.S RE such

that
(1) the By are‘mutﬁally orthogonal
(11) mE; < = for all E,
(111) Z E, = E
Proof. Let ¥ be the set of all subsets 8 cR® such
that

(i) @8-members are mutually orthogonal

(i) if Fe B, then 0 < FKE and mwF < »

¥ is partially ordered by set inclusion, and every
linearly ordered X-subset has an upper bound in X (namely, its

union). Hence by Zorn's Lemma, ¥ has a maximal element 8.

P P

Since 8 ¢ RP., sup 8 € R and E - sup 8 € R, by 27.

Now .

"E ~"sup 8 = O, ‘

!

for otherwise, gsince m 1s semi-finite, there is F“evRP

such that
OKF<KE-sup 8

and mF ¢ ». That is, the X-member B8 U {E} properly contains 8.
But this contradicts the maximality of 8. Thus



sup 8 = E

and 8 furnishes a family of the required sort. QED.

39, Theorem. If R 1is any von Neuymann algebra and

E, Ee¢ R®, where
E, T E,
ﬁhen
mE T'mE.
_Proof. By lemma 21,
E = sup {En}.
- Now .

{En+'1 - En : n €_UJ}
is a family of mutually orthogonal RP-members; Hence .
E = sup {En§
= E, + sup {En+l -E :n e‘w}

EO + z; (En+1 - Ep)

so that

mE = mE, + me(En_‘_l - E)

= mE, + Z‘ C

o *+ 1lim (mE - mE,)

= 1lim mEn.



Finally, since m 1is monotoné,

mE_ * mE .

“40. Corollary. If

En v E

and mEO < », then,

'mEn J mE

Proof. If En‘* E, then

(Eo - En)T(EO - E)

so that

w(E, - E ) * m(Eo - E)

by 39.
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EXTENSION OF m TO ROF

. Definition. If S 1is a positive R° -operator,

p
S = Z? ay Ei
i=1
then define P
mS = Z’ ai mEi
i=1

(which is non-negative and finite or infinite according as

Z (ai;éO) mei

is finite or infinite).
S is summable if mS < .

If S is an arbitrary RSF

-operator, then
F - 51 wa BSP :
.where S',S are positive R™ -operators.

S is integrable if at least one of S¥,5” is summable.

If S 1is integrable, define

msS = mS+ -~ mS

(this is well defined since one of mS',mS” is finite).

S is summable if |mS| < =, that is, if both st,s”

are summable.

SS

Let R be the set of all summable RSP-operators.

T2

‘Remarks. An RSP-Operator is summable if and only if its .

support has finite measure:
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If 'S € R°C 1is_integrable,
p L
msS = E? &y mEi
1=1

~Henceforth R is assumed to be an abelian von Neumann

algebra.

SP, then its integrabilify}is

independent of its representation in RSP,

SP

42, Theorem. If S ¢ R

If S 1is integrable in R", then its integral is

‘independent of its representation in -RSP.

Proof. ‘It is enough to prove the second assertion for

positive RSP—operators.

Let S,T € R°C  such that
S = T >0,
where P q
& 2

Note first that since S = T,

) (a;#0) ?i = ) (%) F,

so that mS, mT are finite or infinite simultaneously. This proves
the assertion for the case that S ¢ RSSz

If mS, mT are finite

ms - @T = z; a, mE; - E; by mF,



T4

= z;j ay mEF, - Z;J b, mE, ¥,

{since E, = ZTF =I and R 1is abelian) .
i y J

= Z;j (ag - bj)'mEiFj'

Thus if

If mEiFJ > 0, then EiFj # 0, s0 that ai'- bj‘

mEiF’j # 0, s0 also

8y - by =0,
-and hence

“This proves U2,

SS

43, Theorem. If S,T € R°", then

S+T € RS as e RS

for all real La. Moreover
" m(S+T) = mS+mT  maS = amS.

The second assertion about (S+T) holds if S,T are positive

and one of mS,mT 1s infinite.

Prgof. The assertions about aS are obvious, the others

tedious.

If S and T are represented as in 42, then

E;J (ai+bj) E,F,,

‘?’2
]
1]



since

Z; B, = ) F, = I.
- J
Note that E,F, € R', since R is abelian.

1%
Now (ai+bj) A0 only if ai,# 0 or bJ A0, If

ay # O, then mE, < = and

mEi Fj—<— mEi < .

Similarly bj # 0 implies that mE, F, < o. Therefore

J
2?(a1+bjﬁo) mEiFJ < @
and S4T € RSS. |

By definition

m(S+T)

i

_Z;J (aifbj) mEiFj

Z; ay Z; mEiFJ + —j bJ Z; mEiFJ
= Z a; mE; (Zj Fy)
} Z; bJ ij (}; E;)

z; ai‘mEi + Z; bj mFJ

1

mS + mT

This proves 43.

SS S

44, Theorem. R is closed under the R° 1lattice

operations (R is abelian!).

75
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SS

Proof. For S,T in R"", recall that

(SuT) TF, + S(I-F,)

0
(SnT) = T(I-F,) + SF, ,

where Fa- is the spectral resolution of S-~T. Obviously all of

Ss

the terms on the right are in ..R°", hence by 43, (SUT) and (SNT)

SS
belong to R . QED.

45, Theorem. If S and T are integrable in RSP,
then S < T 1implies

mS < mT

Proof. If 015'3 5 T, then (using the representations
in 42) '

), (a370) By <) (byf0) Fy.

Thus mS = » implies that mT = o.

If mS <= then as before mi - mS = E;j(bj'ai)mEiFj'
Now if mEiFj # 0, it must be that EiFJ # 0, and

since S ( T. Thus uT - mS > 0. and so -

mS < mT.

If S and T are arbitrary RSP

-operators which are
integrable,

'S>_<_T'



implies that

whence from above

‘mst < mrt mT~ < mS”,
. 8o that
m$ = mS* - ms” ¢ mT* - mT” = m.
| This proves 45,
|
46. Theorem. If {Tng_g RS and
T,V O | |
then
an\l' 0
Remark. This theorem is not true in RSP. For let
T, =3I n=1, 2, ... .

Then T,y 0 (uniform), hence also T,V 0. But ml =« for all

n if mlI = .

Proof. Let

Mﬁ?) ‘
Ty = bin Fin -

i=1

For any real number c, let

E(n,c)': z:(bin'> c) Fin -

T



E(h,c) “is thus the projection onto the subspace where

Note that

E(n,c) > E(n,c+e)
for € > 0. Consequently

E(n,0) > E(n,c)
and

mE(n,c) < = .
Moreover, since Tni s
E(n,c) > E(n+l,c).

Let

C(n) = max {bin : fixed n} .

Then C(n) | 'since T | .

78

The piéce de rééistance of this proof is the fact that for

lim, m E(n,c) = O.

To prove this, suppose contrarily that

lim m E(n,c) >-0.

Since mE(n,c) < » and E(n,c)V , 40 applies and

lim mE(n,c) = m(lim[strong] E(n,c))

. Let

E = inf ijE(n,c) : fixed cf .

Then E e R.. by 26, and by 22

E = lim (strong) E(n,c).



Therefore

mE

m lim (strong) E(n,c)

lim m E(n,c) > 0,

gso that E #£ 0. Thus there is non-zero x in rng E. Now
x € rng E(n,c)

. for all n € w. Thus

2

(T, x,%) > ellxllc > o

for all n, contradicting the~fact that T, v 0. Hence
lim m E(n,c) =0

for ¢ > 0.

‘To complete the proof, for all non-negative integers
'E(0,0) > E(n,c)

for ¢ > 0.

3
]

E(n,c) T, + (E(0,0) - E(n,c)) T,
< C(n) E(n,c) + c(E(0,0) JVE(n,p))

¢(0) E(n,c) + cE(0,0) . [*]

Ia

Now, given € > 0, choose ¢ 8o that

€

0<c ¢ ——r
2nE (0,0)

then choose N 8o that n > N implies



mE(n,c) < €/2C(0).
Then from [*], n > N implies
an <€e/2+¢€/2=

that is,
“1im an'= 0.

By 45, this convergence is monotone. QED.

i
)

In the next section m m11 be extended to RS. The

i l l N (

following theorem hlnts how this will be done.

SR I B R ORI O ) & N S

47. Theorem. If R 1is abeliah, S e-RSP, {éh}‘g RSP
5. >0 and '
| s T8,
then

mS A mS.

Proof: Since

0 < Sn.ﬁ S
for all n,

0 S‘mSn £ mSn+1;5 mS

by 45, and

1im mSn‘S mS
Thus if 1lim mSn = o, MS = o ,

For the converse of this, let E(n,c) .and E(c) be the

respective projections on which Sﬁ and S are greater than



¢ > 0. Note that

E(n,c) < E(n+l,c) < E(c) (a)

If ¢ < max S, the largest of the non-zero coefficiénts

of S (assume SZ0!) -and

x € rng E(c) x|l =1,

then
- (Sx,x) > ¢
and since
Sn.T,S,-

there exists an integer Q(c,x) such that n > @ implies,

(8x,x) > (8,%,x) > ¢
so that »
: x € rng E(n,c)
for n > Q, that is, using (a)
E(n,c) T E(c).

By lemms }9 ‘
mE(n,c) T mE(e) - (b)

where ¢ < max S.

Now if ¢ > O
Sn_Z_E(n,C)'Sn‘Z ¢ E(n,c).

Thus

mS, > ¢ mE(n,c) ' ()

for all ¢ > 0.
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If
0 <c <min 8 (d)
then

E(c) = E(0)
and so, if mS = ;. and
mE(c) = o,
subject to (d), tﬁen by (b)
lim mE(n,c) = =,

and by (c)

limm S_'= =,
n

Thus mS = « if and only if lim mSn = o, and‘the
theorem is proven in this case.

The above also shows that

mS < e lim m Sn { =
are simultaneously true. 1In this case all the operators involved
are in RSS.
Since
Sn T+ S,

also

S - Sn¢'0
and by lemma 46

m(s-S,) ¢ 0.
But

m(S-8,) =mS - mS,
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by 43. Hence
rﬁnTm&

SP

- 48, Lemma. If S 18 a positive R~ -operator for

which mS = +=, then there exists {sn} < B°® such that

Sn_<.S, Sn'r, mSn7\co

Proof. Let

n
S = Z ay Ei .
1o .

Then mS = « 1if and only if mE; = o for some 1 such that
ai‘# 0.
By 38
E; =) (Je3) Fy s
where the Fj are mutually orthogonal and are of finite measure.
Choose a nest of finite J-subsets F(n):
F(n) c F(n+l) c J

for n € w , such that

Y (JeF(n)) m F >;§L’- . t

Then the sequence {Snf s
S, = a4 }:(jeF(n)) Fy s
has the required propertiés.

This proves 48,



49, Independence Theorem. If zénf ‘and {Tn} are

gsequences in RbP such that

Sn * s '1‘n T,
then T £ S implies

1im an;S 1im mSn .

Proof. By 20

(t, ns,) T (z,ns),

and since
| S>T>T, ,
then
Tm NS = Tm
S0 that |
(Tmnsn)f T,
and by 47

m(T, nS,) T, wTy - |
Thus for arbitrary me w and J7< me, there exlsts
N{(m, J7 ) 'such that if n > N |
J7 < M(T,, 0 s))
But
(T, N 8,) <8,
80

d7< m(T, N S,) < mS,



for n > W. Thus
a7 < vim ms,
for all 7« me, hence
me.S 1im mSn .
" Since m is arbitrary
lim me‘S lim mSn.

This proveé 49,

Remark. 1If, as above,
N\
Sn ™ s 'I'n ™ s
then

1lim mSn'= 1im an.



EXTENDING m TO R°

50. Definition. Let T be a positive R°-operator.

SP

By 24 there is a sequence Tan} < R such that

T, TT
Define

mT = 1im mfn.

(Tneorem 49 shows that mT does not depend on the choice of
sequence -{Tn} . Theorem 47 shows that this is a consistent
‘extension of definitions already made.)

T {s summable if mT < o .

51. Lemma. If S is a positive RS-Operator for which

! a .
mS = 4o, then there exists {Sn}_glR”S, such that
Sn-s S, ‘ SnT R mSn7‘ ©
Proof. By 24 there exists a sequence {TnE E‘RSP such
that
Tn » S,
end by definition .

anTmS*-:w.

58

Either {TnEqE R””, and the theorem is proven, or there exists

T, # B°°. Then T, ¢ BE°° for all n > N. By 48 there exists a

sequence f3n§.§ R%%  guch that

Sy £ Ty <S8, s,T mS, T =

This proves 51,
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there exists fT 3 c R

then

87"

52. Corollary. If T is a positive RS operator, then
such that

0T (T T

n-— n

1lim an = mT,

53.  Theorem. If S and T are Rs'operators for which

Hence if S 1is summable, SO'is T.

then

- Proof. By 24 there exist {Sn} and {Tn§ , sequences

such that

g Mg T

n n T T

Theorem 53 thus follows immediately from 49.

54, Theorem. If T is aprSitive'RS-Operator and
G= {H:HeR,0<HLT]
B= {H:HeRT, 0<HT]
¥ = fE:Her® ocHgr
mT = sup {mH : He G}
= sup EmH : He B}
= sup EmH s H e»xf,
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‘Proof. By 52, ¥ #@. Obviously
Thus by 53
‘mT > sup me : He G,f

> sup ZAmH-: HeBf

Iv

sup'gﬂmH : H e y}

v

1im mT; = mT,

where. {Tn§ < RSS

by 52.

-1s .the sequence whose existence is gﬁaranteed

This proves 54.

The extension of m to’RS-bpératQ;s of arbitrary sign
'is formally the same as the analOgous‘exteﬁsidn in definition
41, hWithdut further.ado‘the terms "integrable" and "summable"
willibé applied to_RS-operatdrs.

‘The folléwing is a lemma toward a proof that m 1is linear

on the summable Rs;operators.

55. Lemma. Let A and B be positive Rs-operators,

(a) m(A+B) = mA + mB

() If one of A,B 'is_sﬁmmable,then (A-B) 1is
integrable and m(A-B) = mA - mB.

Hence if A and B are summable, so are (A+B) and

(A-B).
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Proof. Since  A,B are positive, there existisequences . -
- e 8P | -
. {An§, {Bn} in R®" such that
A TA ' Bn‘l‘ B
and

mA = lim mAn mB = 1lim mBn.

Now
and since m(A+B) is independent of the sequence (An+Bh)5 the
-assertion (a) now follows easily:

m(A+B) = lim m(A_ + B_)

. lim (mA, + mB) |
(by 43)

= lim mA  + lim mB_

= mA 4+ mB,

so that (a) is proven.
To prove (b), note that_by_éB
A= (A-B)* + P ‘B =,(A+B.)"+ p
for P > O, whénce
| A> (a-B)* >0 B > (A-B)” > 0
A>P>0 B>P >0,
'so that by 53, since one of -A,B 4is summable, SO.iS” P and so

is one of (A-B)", (A-B)~. Thus (A-B) 1is integrable.



Now

‘90.

miA - mB‘

= m[(A-B)¥+P] - m[(A-B) +P]

= m(A-B)"4mP - m(A%B)'-mP
(by part (2))

= m(A-B)*Y _ m(a-B)”

m(A-B).

This proves 55.

56. Theorem. If S and T are summable operators, then

(S+T) is summable and

m(S+T) = mS + mT

~Proof. If S and T are summable, then so are

st, s, 1, T

Since these are postive

gt 4 ot ST + T"

are summable by 55 (a). Thus (S+T) can be expressed as the

difference of two positive summable operators:

“S4T =

U

m(S+T)

(st - s7) + (77 - 1)
(st + 1% - (57 + 7).

is thus also summable and

= m(s*+ TY) - m(s” + T7)



=mst 4+ uTt - (mS” + mT7)
(by 5% (a))

(mst - mS7) + (mTt - mT7)

= mS + mT.

This proves 56.

- 5T. 7Theorem. If S 1s an integrable Rs-operatdr

and a 1

8 any real number, then aS is also integrable and

m(aS) = a mS

‘58. Théorem. If S and T are summable, and S > T,

then

mS > mT

Proof. The standard argument. Since S-T > O,

m(S;T) 2

such that

then

0 ) hence . : I

mS = m(S-T) + mT > uT.

59. Lebesgue's Monotone Convergence Theoreém.

If {Tng is a sequénce‘of‘positive'summable Rs-opérators

Tn’f‘ T,

nT = 1im an.



Proof. For each n there exists lfsnéf .~ RS

such that
m
Sn Tm Tn
‘and
..limm mSn = an { =,
Let

Um = Sup {Sqm : q'._g_'m}",

where the sup 1s taken in the sense of 13, Then Un € R-SS_ by;

44, - Moreover

Un T,
for |
Um_'_1 = sup {Sqm"'l : q< m+1}
> sup {Sqm : g <melf
. m+1 m . m+1 - m -
(since S1 _Z_Sl s eees Sm+1 > Sm+1)
> 'sup{sqm : q~_<_mj'.
= U .
m
Now
m ., .
Sq _<.:,Um £ Tm (*)

for q < m. Hence (strong limits)
m._m o, .o o
1im Sn‘ =T, {1lim U, <1im T =T
8o that
T, <lmU <T

for all n, or
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T=1lim T, (Um U < T

so that
T = 1im U
and henCe--Um‘r T. Since Uﬁ ¢ RSS
mT ‘= 1im mU (**)
Now by (*)
m .
m S, < mUy < mT

for q { m. Hence

m

q £ 1lim mUﬁ.s lim an

1immvS L= m?

q

and

mTqJS 1im mUn‘5 lim‘an

whence

mT = 1im mUn'= 1im an
by (**). Thus
mT 5 1lim ng.
This proves 59.

The following theorem is an analog of the definition
R

/Of(x') dx = l]i:-[)z:{f(x) dx

for the Riemann integral.

60.  Theorem. If T 1is any integrable RS;operatOr and .

G, 1is any resolution of the indemtity in RY, then



nT = 1im (a— =) mT G,

Proof. First observe that if T > O, then the limit must

exist and

mT > lim (a — ) mT G,

P 1im.mT‘Gh
. o SP
If TJZ 0 there ex1sts_.€Tn§ﬁ5 R such that
0<T (T T. T T

- n n
'an T mj.\

SP for all n. Moreover

Now TnGn € R
Tn.Gn’TV.
Now for any x e H

I(Tpe, - T)xl

< (e, - 16 )=l + li(T6, - T)x|l

In

Iz, - =l + Il Gz - oyl
whence

TnGn'T'T,
'since

Tn ~T *Gh 0N If
Since T is ihdepéndent of the -sequence

mT G, T mT.

le Il (T, - =l + Izl Bz - 6=l



Now the fact that
mT, G, < mT G,
and (*) prove: the theorem for T _>_ 0.
- For arbitrary integrable T in RS',

mT ‘= mTt - a7

= lim (a-=) mT‘_"Ga'J - lim(a—>o) mT™G

]

o)
e
=1

(a~=) (uT7G, - mT7G,)
= lim (a>) (m(T" - T7) G,)
= lim (a>e) mT G, -

This proves 60.

a .
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MEASURE AND POSITIVE RV-OPERATORS

If N 1is a positive RN;operator'with resolution iEn,

S

then NEa € R for all a., Moreover

for a < b, so that mNE_ is an increasing function of a. This
Justifies the following.

61. Definition. If N is positive in R,

mN = lim (av-s» ®) mN'E‘a

N 4is summable if mN < .

62. Theorem. If N 1is a positive RN-opefator and G,

is any resolution of the identity in RY, then

mN = 1lim (a—>») mN G, -
Proof. By 36, NG, e RY for all a. The proof must
show that
- lim(a— ) mNGa‘

exists and equals mN.
Let Ea be the resolution of N and 1lét

{Hc(a) : =0 < C <.m}

be the resolution of the R -operator NG,.

Then

- S
NG, H, (a) € R
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for all a and c, and for fixed a, uNG, H (a) is an
increasing function of ¢, |

mNG, = lim(c-> =) mNG, H_(a)
so that

mNG, > m NG, H,(a) (a)
for all c.

Furthermore, for all b: and c,

NG, H,(a) E, € R°

and

NGa Hc(a)‘z NGa Hc(a) Eb’
so that

mNG, H,(a) > mNG, H,(a) E,.
Combining this with (a)
mNG, > mNG, H (a) E/ (b)

for all b» and c.

Now
NG, H,(a) E, = NE, G, H (a),
NE, G, € ﬁs, and by 60
mNEb G, = lim (c> =) mNE, G, Hc(a)
Hence by (b)
mNG, > mNE, G, | ()
for all b.

To obtain a further inequality on mNG_, note that



98

NG, H (a) By < NE

S S

in R® for all b and c¢. Again by 60, since NG, H. (a) ¢ R”.

for all c,

miG, H.(a) = lim(b—=) mNG, H (a) E,

I

lim(b—> =) mNE, = mN

for all c¢. Thus
miG, = lim(c->e) mNG, H (a) < uN (d)

for all a.

It remains to apply 60 once more:
mN = lim(b>=) mNE, = lim(b-«) lim(a->=) mNE_ G, .
This means that given J7 < mN, there exist a',b' such that

mN > mNE_, G,, > 7 (e)
For =& > a'

mNE,, G, > mNE,, G

D! a1 3
and by (c)

uNG, > mNE,, G_ .
Thus for a > a', (e) becomes
mN > mNG_ > mNE,; G, > mNE_, G, > /.

Since J/7 is arbitrary, this implies that
lim (a~> =) mNG,_

exists, and

ol = lin (a—>e) mNG_ .

This:pTOVes 62.
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63. Theorem. If A and B are positive RN-operapors

m(A £ B) = mA + mB"

Proof. Let Ea’ Fa be the respective spectral resolutions

of A and B. Then

Ga = EaFa

is a resolution of the identity in R° (by 32).
Now
AfBoA+B
so that
- - R
(A B) G, > (A+B) G, = AG, + BG_.

Since the right-hand side is in RS, it is defined everywhere

:

in  H for all a, hence

(a % B) 6, = AG, + BG,
in- R, and
m(A + B) G, = mAG, + mBG,.
Letting a tend to « and applying 62 yields
m(A §B) =mA + mB .

This proves 63.
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MEASJRE AND RN-OPERATORS OF ARBITRARY SIGN

64, Definition. If N € R' and one of N, N~ is

summsble, them N 4s integrable and

nl = mNT - my”

N is summable if |mN| ¢ o

N

65. Theorem. If A and B are positive R -operators,

one of which is summable, then (A = B) 1is integrable and

m{(A < B) =mA - mB

Proof. Let N'=A > B, then by 37 there is a positive

N ,
RN-operator‘ P such that

A=N" 4P B=N +P. :
By 63, ' \

mA = mNt + mP

mB = mN¥ 4+ mP.
fAnd since  N+, N, P are positive
mA > mP > 0 mB > mP > O

mA > m¥* > 0 mB >N~ > 0,

80 that, since one of  A,B 1s summable, P and one of N+,N"
is summable.

Thus N 1s integrable and

N = mN' - mN”



= nN" 4+ mP - mN~ - mP

(since mP 1is finite)

i

(vy 63)
mA ~ mB .

s

‘This proves 65.

m(8* £ P) - m(N" § P)

101
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.ABSOLUTE CONTINUITY

Let now R Dbe an abelian von Neumann algebra.

Let m and n be semi-finite measures (definitions 7
and 8) such that n is absolutely continuous with respect to mr
(definition 9). The remainder of this opus will be taken up with
proving a Radon-Nikodym theorem for this situation. Approximately:

there exists an operator N 1in 'RN such that

nT =m(N OT)

for all T in RV,

66. Definition. For any real number

G(a) = {E H EeRP, a mE > nE}

67. Definition. Let E € G(a). E 1is a-good if

F e G(a) whenever O <FXE and F e R..

68. Lemma. If E 1s a non-zero G(a)-member, then there

exists F € RP such that

0 K F<LCE

and F 1s a-good.

Proof. Let X be the set of all families 8 ¢ R®  such
that

(1) 8-members are mutually orthogonal
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(ii) if K ¢ 8, then
0-<K ¢ E
and

a mK < nk,

X 1s partially ordered by set inclusion. Obvidusly
every nest in X has an u'pper bound in X. Thus ¥ contains
a maximal element 8 c RE.

‘Now |

a msup 8= am Z'(Keoa) K

(since B-members are mutually orthogonal and sup g\eRP by 27)

Z (Keg) a mK

< ) (Kes) nK
= n Z‘ (Kéﬁ) K
= nsuwp 8
that is,
amsup 8 < nsup 8
Now

sup 8 < E,
since E '€ G(a),: therefore,
supB8 < E.
The non-zero Rpsmember

F=E-sup 8
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P

has the desired properties. For if KeR and
0 <K CF a mK < nk,
then
BUTK} ex
and |

Egeu TES,
contradicting the maximality of g.'
This proves 68. |
Tﬁe set G(a) is non-empty for all real . a (it contaiﬁé
at least the Zero proJection). Thus the following defintion is |
Justified,

69. Definition. & c R® 1is a maximal family of mutually
orthogonal a-good projections . ‘

By 27, sup C§De rY
70. Lemma. sup éae_(}'(a;)

Proof. am 'su;pé73 =am Z(Ee )E

(Since(fa— members are mutually ortogonal)

= Ej(Eeé?) amE
_>_'Z’ (Ee£) nE
=n supcéjl.

71. Lemma. supc§D is a-good.
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Proof. vLet F Dbe én RP—member such that

0 <F (K sup<§°.
To show F e G(a),
amF = am (F supX”)
am (F ) (Ee@)E)
= am) (E¢f) FE
(where FE 1is a projection,since R 1is ébelian)
= Zj(Eeé?) am FE
> ) (Ee®) n FE
(since FE CE and E 1is a-good)
n ) (Ee®) FE
n (F supf’) = nF

.

it

Thus sup éD is a-good.

T2, Defiqition; E, = squP .

Since G(a) 1s never empty, E,
By 27, 70 and T1, E, e RE, E, € G(a), and E_ . 1s a-good.

exists for all real a.

: P
73. Lemma. If F € R and
0 <FI-E

then F £ G(a), that is, amF < nF,
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Proof. Suppose on the contrary that F e G(a). By 68,

P

there 18 F!' ¢ R such that PF'!' is a-good and

0 <F' < F.

. Now

0 < F' <I-E_

.80 that F' i1s orthogonal to every E ané*B . Thlis means that

& uiry

is a famlly of mutually orthogonal a-good elements which properly
contains the maximal famiLnyP , a contradiction. Thus F' ¢ G(a)
and 73 is proven. e

74. Summary of the properties of the projection Ea'

For every real number -a there exists a projection Ea
such that
(1) E_ e R

P

(11) If FeR and 0K FKE

a’
amF > nF

(111) If Fe R and O < F < I-E,

amF < nF

(iv) E, 1s the unidue such RP-proJection.

P

Proof .of (iv): Let EeR satisfy (i1) and (1i1).

Since R 1s abelian,

P = E(I-E,) Q = E,(I-E)
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are projections in R . If E #E_, at least one of P,Q 1is

" non=zero.

If P £ 0, then since P < E, v(i\i') implies that
amP > nP.
. But sin’ce' P < I-Ea, (1i1) implies that
amP <.nP.
‘ A similar contradiction arises if Q # 0. This proves.
(iv). | |
The next few lemmas will show that

{Ea:-m<a<wj
P

is almdést a resolution of the identity in R°.

75. Lemnms. Ea isfa'monotonerincreasingwﬂunétioniof a:s

if & < b, then E, < E_,

Proof. Since R is abelian
EaEbv=‘EbEa’
S0 itﬁremains to show :
EaEb = Ea'
Now
P = Ea - Ea,Eb = Ea(I\-Eb‘) >0.
. If P> 0, then

0 <PLE,

O < P < I-Eb’.
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so that by (11) and (1i1) of T%

amP > nP bmP < nP

or
bmP < nP £ amP,

which is a éontradiction-sihce:a;i b. Thus P =0 and 75 is prdven.

76. Lemma.

"lim (strong) (a-+=) E, =1

Proof. Let
E = sup (E, : a real}
then also by 75, _
E = sup {Ep : pew}
Again by ‘75,

Ep‘r’

so that by 22,
E

lim (strong) Ej -

and similarly
B

lim (strong) Ea(p)
where {a(pl} is any real sequence such that a(p)‘r@. Thus
E = lim (strong) (a-s=) E_

The second part of the proof 1is to show that E =1I.

If I-E £0, then, since n .1s a semi-finlte meéasure,

{
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P

there exists P € R° such that

0 <P ¢I-E nP < =,

Now

0 <P <I-E<I-E,
for all real a. Thus by (111) of T4
a mP < nP
for all real a. Thus
mP =0 nP > 0.

But n 1s absolutely continuous with respect to m, so that

mP = 0 implies nP = 0. This means that
nP =0 nP > O,

~ Thus the assumption I-E # 0 has lead to a contradiction. This

proves T6.

77. Lemma. E, 1s strongly right continuous:

lim (strong) (b->a+) E, = E

Proof. This proof 1s exactly like that of 76.
- Let
E = inf {Eb,: b > a} € RP.‘
 Then, since E, 1s a monotone function of b,
E = inf {E&(p) ‘:‘ » pGW}

where {a(plf is any real sequence ‘such that a(p)Va. By 22
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Ba(p) ¥ B
for all such sequences, hence
E = lim (strong) (b-a+) Ej
Obviously E > Ea'
If
P = E-Ea';é 0,
then

0 <P <I-E,

0 <P LE

for b > a. Hence by T4

amP <‘nP.
and
bmP > nP
for b > a, so that
A amP‘Z nP

also. This is a contradiction.

‘Hence ' P = E-E_ = 0 and 77 is proven.

If {ﬁa : - o < a < f} is a résolution of the identity
then

lim (strong) (a» -=) E, = 0.

As things now stand, thls 1s not true: 1let E € G(a) for a < O.
Then

amE > nE
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or
O.Z amE‘z_nERZ 0
whence

a.HIE =,nE = O,

or, since a < 0,

mE = nE = 0.

“Thus by 77

lim (strong) (a- -=) E,=F

where F 1is a projection of m-measure zero.

The troublesome possibility,that FA can be eliminated
by;defining lEa*= 0 for aJ<NO, This preserveé the right cont-
inuity and monotonicity of Eé. 'So now E, is a resolution of

the identity.

78. Definition. N 1is the unique positive RV-operator

which has E,_ ‘as a spectral resolution.

79. Theorém. If E € RY

and mE < o, then
+ o

nk =/ a d(mE E_)
o v

“Proof. Since mEE, is a finite monotone function of

)
8(Q) -.-./ a d(mEE,)
| 0

exists and is finite for all integers Q > O. Moreover, since
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5(Q) 7,

/ ’=/‘a, d(mEEa) )
0

0

exists, and, given $2¢7such that

o<97/<'];

0
there exists a Q such that

@™

s < )

0
Partition the interval [0,Q]

0 = ao.< al < .. <'ap = Q.

Let

B(1) =B, - B,
i~

‘and form the corresponding upper and lower sums:
b

U=) a mEE(1)
i=1
P
L =) a_; mEE(1)
1=1
Since

8(Q) = sup {L}' = inf {U} O

the partition can be made so that

L

H7<L<8(Q) LUK /

0
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Now
ay_q wEE(1) < nEE(1) < ay mEE(1)
Thus
J/<L = Z a,_, MEE(1)
< Z nEE (1)
= nEEQ
(since nEy = 0)
< Z a, MEE(1)

®
0

[-=]

That is, given <Q%7<\6/a there exists Q such that

(-~}

JJ7 < nEEg < f
0
“Since
_EEQTE,
by 39
| nEEQT‘ nEk,
so that

[+]

nE:Z }ad(nEEa‘)v

This proves 79.
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To get on with the true business, recall that N is the

positive RN-Operatcr with spectral resolution Ea (defintion 78).

Let
E(a,b) = E,-E, for a <b.
Then
N(a,b) = NE(a,b) € R°
: ¢ N
and for any T € R
T(a,b) = T « E(a,b) = TE(a,b) € RN
by 36.
80. Lemma. If T 1is a positive RN-operatOr, then for

amT(a,b). < mT o N(a,b) < bmT(a,b).

Proof. Let T have the resolution F, in RP, then

T‘C = TFC

' is a positive Rsébperatcr for all c. Hence
S

T, ° N(a,b) = T N(a,b) = N(a,b)Tc e R”.

If now x € H and c¢ 1is fixed
(T, ° N(a,b) x,x)

= (7.} 12 N(a,b) x, %)

s .
(Tcl/2 exists in R, since T, 1is postive in RS)

1/2

= (N(a,b) Tcl/gx, Tcl/gx)-

= (2 w(aw) x, 7Y%
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Now
a(E(a,b) Tcl/zx, Tcl/QX)
< (N(a,b) Tcl/zx', Tcl/zx)
1/2 1/2
< b(E(a,b) T, / x, T, / x)
- Thus
aTc(a,b)'S;Tc b_N(a,b) < b'Tc(a,b)
in RS.

If a <Db £ 0, then all the above terms are zero.

If a <0 <Db, then
0 < T,  N(a,b) < b T(a,b)
in R°. Hence by 53

mT, N(a,b) S'mch(a,b) = meC(a,b)

IfO<a<h
0 <aT,(ab) < T, o N(a,b) <1 T_(a,b)
in R” and again by 53,

maTc(a,b) L mT, o N(a,b) jymch(a,b)

Hence . - ..° . .« o R R A TR

5. R R L T N R T

amT (a,b) < mT, - N(a, b) < baT (a b). .

holds for all uc and a < b In particular this 1nequality
holds in the 1imit as' c-»+w Thus by 62 since T, = TFc’
' aMT’(a;b) < mT . N(a,b) < bmT(a,b).

This proves 80.
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N

81. Lemma. If T 4is a positive R -operator, then for

a<b

~amT(a,b) < nT(a,b) < bmT(a,b)

‘Proof. Let T, be as in the preceeding lemma. Fix

the number c.

P

No_w' there exists a sequence {ép§ < RS_ - such that

| vsp.z 0 sp T'Tc(a{b)
‘and by definition

mspfﬂ mT (a,b) nsp‘T nT,(a,b)

" Let

be an arbitrary member of this sequence. Then

Sp = Sp E(a,b)

and
tmS, = b m E(a,b) E; ay Gy
= bm E; a; Gy E(a,b)
= b z; a, m@, E(a,b)
> Z;- ~a; nG; E(a,b) = nSp
> a Z\i a, mGy E(a,b)

= S
am D
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go that

camS, < nS, < bmS, .

P P

Passing to the limit in 'p,
amT,(a,b) <n Tc(a,b);s b mTc(a,b)_ _

for all c¢ and a < b. Employing 62 again and letting c-+e
am T(a,b) < n T(a,b) < bm T(a,b)

This proves 81.

'82. Lemma. If T 15 a positive R" operator, then
mT o N(a,b) = nT(a,b)

for a <b.

Proof. Let P denote a partition of the interval [a,b]
For iep 1let

From 80 and 81.

mT o N

fmTEiis : _ £ ai+1"mTE
" nTE '

ay i

for all iep.



118

Examining upper and lower sums,

.L(P)-:'zgep ay mIE

) Z; mTeN = mT e N(a,b)

2; n TE, = n T(a,b)

£ Z 2441 M TEi = U(P).

Now if m T(a,b) < «, then
U(P) - L(P) =‘Z (84, - 8y) m TE,

ﬁﬁ (max P) 2; m TE,

(where max P = max {ai+1_ -8y iep} )

= (max P) m T(a,b)
Thus
(max P) mT(a,b)'
> U(P) ~ L(P)
> |mT  N(a,b) - nT(a,b)]
If mT(a,b) = O, the lemma is proven. If mT(a,b) > O, then,

given € > 0, there exists a partition P such that
max P < ¢/mT(a,b)
'S0 that
|mT ¢ N(a,b) - nT(a,b)| < ¢



119

for arbitrary € > 0. Hence
mT o N(a,b) = nT(a,b)
In the case that mT(a;b) = +», the assertion is obvious

from 80 and 81.

This proves 82.

83. Theorem. If T 18 a positive RmaoperatOr

mT ¢ N = nT

Proof. From 82,

mT ¢ N(0,a) = nT(0,a)
or

m(T - N)E, = nT * E,

By 62, letting a-+ «, 83 is proven.

84, . Theorem. If T € N 18 n-integrable, then T ¢ N
is m- integrable and
mnT °N = nT

2:922. If T 1is n;intégrable5 then
nT = nT* - nT~
where at 1east‘pne §f
nT" = ot e ¥ nT” =wT” o N

(by 83) is finite. ;
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Now
(T e W) = (T 207) oW

= (T e M) (17 0 W)

where one of (T' o' N), (T” « N) is m-sumnable. Therefore, by 65,

T o N is m-integrable and:

m(T ¢ N) = m(T" * N) - m(T" * N)
‘= nTt - nT”™ = nT
This proves 84.

Theorem 84 is the promised Radon-Nikodym theorem.



