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ABSTRACT

An inﬁestigetion is made into the epproximate
synthesis of optiﬁal feedback controllers from the maximum
,principle necessary eondifions. The overall synthesis can
be separated infe two phasee: -the“computation of optimal
epen—loop controls (control pfegiams)_and trajectories from
' the’necessary conditions,_and-the processing of this data to
‘obtain.an epproximate representation of the optimal control
as a'state function.

| A perticuiar technique fof approximating the optimal
) feedbaek eontrol from.the optimal open-loop controls and
trajectories is proposed and examined in Part I of the
thesis. Parameters in e prechosen suboptimal controller
structure are computed such that a sum of integral séuare
:deviations between the subOptimai and optimal feedback con-
trols ‘is minimized. The deviations are computed and summed .
over a certain set of frajectories which "cover" the system
operating region. Experimentation with various centroller'
structures is Quite feasible since the controller parameters
are computed by sol?ing linear algebraic equations. Examples
are given to illustrate the application‘of the technique and
ways invwhich suitable contreller’structures may be found.

If general‘purpose functions are to be used_for.this purpose,
‘pilecewise polynomial functions are recommended and techniques
for their use'ere discussed. The eynthesie method advocated
is evaluated wifh respect.to control Sensitivity andh |
insfrumentation and compared to alternative procedures.

Part II is concerned with the computation of optimal

A
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control pfograme, the most time consuﬁing~ﬁumerical task

in the synthesis procedure. A new numerical optimization
‘technique is presented which extende the function‘spaee
Newton—Raphson method (quasilinearization) to a more general
>terminal condition. More signlficantly, a generalized
"Ricatti transfermation is'empleyed, and as a consequence,
the integration of the unetable\coupled'canonicai.system

is eliminated. .Examples ere giﬁen as evidence of the
improved numerical qualities of the new algorithm. This
method is one example of a class of algorithms, defined and
} developed in the thesis, ealied second variation methods.
Some methods in this claes have previously appeared in ﬁhe
literature but they are developed in the thesis from a uni-
fied point.of view. The reeognitioh of this class allows the
relationships between the various methods to be seen more
clearly as well as ailowing techniques developed for use

"in one algorithm to be used in others.
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NOTATION

Let S(x,y,...) be a scalar f@nction of the vectors
Xy¥y-.. Assume that x has n components and y has m com-

ponents. Then

A , E
—“"——-S Z(S ’S y ’S )
ox X Xl X2 Xn

ahd
_SX o -

191 X1m
a2S—S é . .
dxdy ~ Txy
. S
Xnyl Xnym

If f(x,y,...) is a vector function with k components,

B
lxl ) . lxn

010
g g
b
Hy
b
o>

f . . . £
| le an A

A superscript T denotes the transpose of a vector or matrix.
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1. INTRODUCTION

1-1 Vige Optimal Control Problem.

The optimal coﬁﬁrql of dynamical systems is bf.
interest to control system engineers for several reasons.
There may be direct economic returns from the use of optimal.
control such as increased production, more efficient use of
costly inputs, or tighter control of product quality. An
optimal control system may.be sought to cope with demanding and
conflicting operational speéifications. An example of this
type of,aesign problem is the reduiremeﬁt for an extfemely
rapid correction of system error while using a control element
whose output cannot exceed a given maximum value. Another
motiﬁation for studying the optimal’control problem is the
great potential value of the optimal criterion in design
methodology. Inherenf in the forﬁulation of the optimal feed-
back control probleﬁ is the éuestion of control system syn—
thesis. A complete solution of the optimal feedback control
problem would immediately yield the proper controller structure.

A mathematical statement of the optimal control
~ problem will now be given. ‘The statement is of sufficient
generalitj to cover all cases considered in.this‘thesis.\ It is
intended that the.following discussion serve tb make clear
'béth the nature of the problem and the meaning of the soiﬁtion.
Detailed and precise conditions.on the problem will not be

stated here (see [lJ, for.example).



2 .

The physical processes of interest are those which
can te suitably'modelled by a system of first-order ordinary

differ=ntial equations

% = £(x,u,t) | o (1.1)

where x = (Xl,...,xn)T is the stgtngector ([2],'Chpt. 1),

\

u ;_(ui,...,ur)T is the control vector, and x denotes dx/dt.
- No expiicit account will be taken of stochastic disturbances
of the process, that is, the model (1.1) is assumed to be
deterministic. Solutions of Eg. (1.1) are referred to as
trajéctdries.

The control signal u(t) is assumed to act during an
interval of interest called the control period defined as

tf— to where to is the initial time and t_. is the terminal

f
time. At the terminal time tf, it is required that the
state-time (x,t) belong to a certain set 9, célled the target

set or terminal manifold, defined by

Wxlty),t) = o (1.2)
Where w: (q)l’...’

dimension (n+l)-m in the state-time product space. For

(Pﬁ)T. The terminal manifold S is of

example, if P = X(tf), then S is the origin.of state space
which is of dimension one in the state-timé‘space. The
_adtual value of t, is speéified by Eq. (1.2) either expli-
citly (fixed—time problem) or implicitly (free-time

problem). In the free-time case, tf is determined as the

first instant at which the optimal trajectory intersects S.



'Iﬁ general, the control fﬁncfion values u(t) may
be.restricted to lie in a certain subset U of Er* called the
set éi permissable control values, and the trajectories x(t)
may be required to femain within a certain subset X of E".

For a partidular initial.stéte X, and initial fime

to,.a control u(t), to < 4 = tf,

has values belonging to U and if it transfers the system from

“is called allowable if it

“(Xo,to) to a point‘(x(tf);tf) in S in such a way that the
trajectory does not leave X. It should be noted thaf there
may be no allowable controls. In general, the existence of
such controls is extremely»diffiéult to establish a—ﬁriori.
In what follows, it will always be assumed that more than
one allowable control exists.

| The optimal control problem may now be stated as
follows: for the initial state-time pair (Xo,to), find the

allowable control u*'which minimizes the functional

by

3 = Blxlty),te) + J Flxu,tat (1.3)

t
0

where ¢Aénd F are scalar functions.

In order tb begin a mathematical attack on the
optimal cbntrol problem it is.necessary to impose restric-
tions on the generality of the problem such as requiring thne
continuity or differentiability of some of the funcfions

introduced above. Having done this, the optimal control

—
T o . . .
E® is r-dimensional Euclidean space.



probleml caﬁ be réduced to a probiem in the calculus of
VariationsV[l] or, from é slightly different point of View,
the maximum'prinéiple‘of‘Pontryagin [3]. Necessary coﬁ—
‘ditions and cértaiﬁ suffiéiéncy condifions for an optimal
control are given in the literature 11, 031, [4].
The nafure»and meaningvofgthe_solution of the

problem posed above needs. to be emphasized. nTo emphasize
-that the optimal control is a vector function of time based

on the partlcular 1n1t1al state- tlme pair (Xo,to), it should

be wrltten as

t ) _ | (1.4)

u (ﬁ XO, o

The corresponding optimal trajectory is denoted

X = x*(t;xo,to) ’ (1.5)

With respect tQ the targét set (1.2) and the performance
functional (i.3),_the control u* is optimal for all states
lying on the optimai trajectory, that is, for all pairs
(x(t),t) where x(t) = X*(t;xo,to), by <t < te ("principle
of optimality" [5]); A>control in this form is variously
called a control program or Opén—ioop control. There is»no

feedback to the controller of the actual system progress, the

control 1nput 31gnal to the process 1s programmed

1-2 Optimal Feedback Control. o | ,

In most control systems, satisfactory operation



- can only be obtained by determining the controlled inputs
to.the system on the basis of measured procéés variables,
that is,vby using feedback control. Open-loop control is»
feasible only if fhevdisturbances acting upon the prbcess
are very small. By disfurbancésvaye meant inputs to the
.sysfem which are either not deterministic or not feasible
to treat as deterministic.‘ Thus, in éertain cases, a
varying set-point may be coﬁsidered as a disturbance.
The most general form for the optimal feedback

control is

u o= u*(x,t) ‘ ' (1.6)
a function of the present state x(t) and possibly also of
time t. If the optimal feedback control law is employed,
then irregardless of the state of the system which results
from any disturbance, the control signal acting upon the

process will still be optimal. Of course, "optimal" here

means optimal fdr the system mathematical model where no

" account was taken of this particular disturbing signal.

In general, the optimal feedback controi law will.
depend upon all of the state'variables.‘.Thus, the realiz-
ability of the optimal control law is contingent upon the
"accessibility" df all the state variables. A state |
variable is said to be accessible if it is]possible to
determine its value at a given instant from measurements
 -of process variables at that instant. In general, 1itt1é.

can be said about the optimal control law when inaccessible



stéte vafiables exist. TFor one importanf.problem class;
howevér, it is known [6] Chpt. 6 that the optimal system
is achieved by substituting for the actual state in the
control law, the best estimate of the state (in the Kalman
sense[7]). Thus, the optimal control system consists of
two separafe functions; eStimationGﬁnd control. The design
problem is decoupled into two subproblems:ldetermining the
'Optimal coﬁfrol law u*(x,t) and determining the best state
estimator. ‘Although this procedure has been proven optimal
foria special pfoblem class only,'it is an intuiti&ely
reasonable one to adopt in any case. _Iﬁ this fhesis, the
estimation prdblem.is not conéidered further.

An alternative procedure is to synthesize a sgb—
‘optimal control law based on accessible state variables .

only. This alternative is discussed further in Section 4-2.

1-3 Scope of the Thesis.

In part I of the thesis, the problem of synthe-
sizing & nearly-optimal feedback controller is investigated.
Chapter 2 contains the development of a syntheéis technique
based on the solution of the optimal programming froblem.

This method processes the nuﬁerically computed trajectory

data in a simple and efficient ﬁanner to obtain.a suboptimal
control. Examples are given to illustrate the use of the
method'togéther with the difficulties involved in its emploj—
ment. Chapter 3 deals with controllers having a piecéWiSe

polynomial structure. Piecewise polynomial functions are


http://Ch.pt

introduced iﬁ order to overcome‘the difficulties inherent
in high-order polynomial approximation. In Chapfer 4,
the approach to suboptimal control law synthesis takeﬁ in
this thesis is evaluated and compéred_with alternativé pfo-
cedures. |

I3 applying the synthesid procedure. of Part I,
the two most difficult tasks facing the designér are the
specification of a suitable controller structure (discussed‘
in Chapter 3) and the computation of the optimal céntrol pro-
grams. Since,'in general, many opti@al progrémming problems
must be'solved to provide the dafa fequired in the synthesis,
it is essenfial that the numerical algorithms employed for
solving the open-loop problem be extrémely efficient with
respect to computer solﬁtion.time. The solution of optimal
programming problems is the subject of Part II of the thesis.
The division-df,the thesis into tﬁo parts was made because
the material in Parf.II; while intimately connected with
the procedure of Part I, also has applications in other
areas. |

In Chapter 5, a néw techniQue is presented whiéh |
is én extension ‘and modification of the function space
Newton—Raﬁhson method [8]; The new algorithm - has a
relatively large region of convergence, a rapid rate of con-
vergence in a neighborhobd of the desired_extfémal, and
numerical stability properties which are a considerable

improvement over those of the original method. An entire



class Qf algorithms, hereinléélled‘second variation

methods, is derived in Chapter 6. Included in this group
of-algorithms are some of the currently popular numerical
OptimiZation techniques. Certain of these had previously

been called "the second variation method" althoﬁgh the

precise meaning of this term was formerly unclear. The methcd
of Chapter 5 also belongs to this class of algorithms.

The recognition of a class of second variation methods unifiés
‘several seemingly diverse techniques fof solving the optimal
programming problem as well as providing the means for

developing new techniques.



2. CONTROL LAW APPROXIMATION

2-1 Control Synthesis Based on Optimal Trajectories.

Bellman's methodvof dynamic programming [5] is
the only general procedure for'compufing the optimal |
feedback control directly. The result of performing the
dynamic progfamming calcﬁlafion would be a multidimensionai
numerical map giving the required value of optimal control
at all pointslof a discrete grid in some relevant region of
state-time space. As é numerical technique, discrete
dynamic programming has some severe limitations when applied
to the optimal control of confinuous dynamic systems. Quite
apart frdm the errors introduced by truncation and quantiz-
ation, the main factor limiting its applicability is the size
of the computer memory required and the rate of increase of
the required storage with system dimension ([6],‘pp, 21-23%).

Considerably more success has been experienced
in solving the optimal programming problem. Froﬁ a com-—
putational point of view, a solution of the optimal pro- .-
gramming problem requires the solution of a two-point boun-
dary value problem, which is generally nonlinear. Many
techniques now exist for solving this difficult problem.and
the work in Qhapters 5 and 6 ofAthis-thesis constitutes a
- further contribution tpwards achieViﬁg a rapid and effiéient
means of solution. Although more development and improvément

of these numerical techniques remains to be done, it is felt
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that they are now sufficiently well developed as to make it
highly desirable that the coﬁtrol law synthesis procedure
be based‘én optimal open—loop controls and trajectories
rather than on dynamic programming calculationé.

| The optimal programming solution (Eqs. (1.4) and
(1.5))may be thought of ésAa par;ﬁéffic representation of
the optimal feedback control law (1.6). What is required,
then, is an algorithm to convert the parametric form to the
closed-loop or preseﬁt—staté form._lSuch a»proéedure must

necessarily be approximate in all but the simplest cases.

,2_2 Reformulation for Time-Invariant Feedbaclk.

Conceptual simplifications result if the explicit
time dependence of the feedback control law is removed. For
this purpose, the control problem dealt with in Part I'has

the following special form:

Special problem fofmulation

Dynamics Cx = f(x,un) x(t)) = x, (2.1)
Terminal conditions (P(x(tf)) =0 . (2.2)
| - [ ,
Performance functional J(u) = \f £ F(x,u)dt (2.3)
3 .
o

" The terminal time tf_is determined implicitly by (2.2) and the
bounds on u, if any, are considered to be independent of time.

It is assumed that the state is constrained only by (2.1)



11

and (2.2). For_thisvspecial problem, the initial time %
has no explicit influence on the optimal control which can.
thus only depend on.the curfent state, that is, it may be
written as u(x).

The more general fofmglation'in Section 1-1 can
be reduced to the stationary form above. Equation (l.B),is

equivalent to

%, |
£ | . | ‘

S I A I MC R E R R NEROILE
v | ' | - (2.4)

The time dependence may be formally replaced by introducing

the extra state varisble x where
. n+l‘
Xn+1 =1 n+1(t ) = (2.5)
n-x»l(t ) = (2.6)

Then X, (t) is substituted for t in (1.1) and (2.4) and

X (t ) for t; in (1.2) which results in equations of the

n+l
same form as (2.1), (2.2), and (2.3).

2-3 Development of the Approximation Scheme-[9].

The optimal control law u(x) is to be approxim-

e
ated over a specified region B of state space by a function

_ v(x;c), where c is an N-vector of adjustable parameters. To
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évoid unnecéssary complications in notation, the control
vector u will be considered as é scalar. 'The'form of the
‘suboptimal confrol v(x;c)‘must be preépecified. The para-
meters = are to be determiﬁed so that, in some senSe,v is
the best control law amongst allethér controllers haviﬁg
the‘same-structure. Contfollers Which are "thimal" subject
to a prespecified input-output relation have been célled |
"specific optimal controllers" [lO].

A gréat deal of latitude exists in the choice of
criteria for determining thé aajustable parameters of the
“suboptimal controller. For example, the parameters could be
chosen to minimize the performanée value J(v;xo,c) obtaiﬂed
for some nominal initial condition, or to minimize some
functional of the deviation between thé optimal trajectory and
the qﬁasi—optimal one. Altefnatively, a functional of'the
deviation between the optimal opén—loop.control and the

control signal

vc(t) = v(x, (t;x ) ;c) (2.7)

could be minimized.

The criterion advocated is closelyvrelated to this
last suggestion. To begin with, the quasi-optimal confrbller
is restricted to have the form

N |
v(xsc) = Z ¢ 424(x) (2.8)
j=1 o :

where the functions Zj(x) are termed basis functions} Let



u(t;xok) and X(t;xok), 0 < t.f'tfk, be respéctively the

optimal control and bptimal trajectory from the initial point

x The subscript k distinguishes different initial

ok*
states; t; 1is the terminal time determined by (2.2). The

parameter vector ¢ is chosen to minimize

M 'tfk | 4
E(c) =::E:;-J~ (u(t;xok) - V(X(t;Xok);C))zdt
k=1 O

(2.9)

Note that in (2.9), the suboptimal control v(x;c) is
evaluated not along the trajectory which results from using
control v as in (2.7) but along the optimal trajectory
(produced by using u).

The M optimal trajectories {X(f;xok)} are
- referred to as dévelopment trajectories. More will be said
in Section

ok
2-%.2 but, in some sense, the development trajectories

.about the location of the initial stateé X

"cover" the region of operation B. Thus, the minimization
of E(c) in (2.9) results in an approximation v(x;c) to u(x)
which gives a least sum of mean-square deviations over
several system trajectories. -

If (2.8) is substituted into (2.9), the resulting

intégral can be written as

E(e) = cTAc — 2ch +r | - (2.10)
_ ot . A
where : Z%i » i%- - :
| Aij = - )~[ Zi(x(t;xok))Zj(x(t;xok))dt
. =1 3 )

©(2.11)
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Nf 7. (x(t ))u(t x,, )t | O (2.12)
0

gf 2(t ;% )dt o | (2.13)

(i,j =1,...,N)
If A is positive definite, a unique minimizing c

exists and is given by the solution of

Ac = b - (2.14)
The minimum value of E is

oT-1 '
B ip =T - Db A"D - (2.15)

Conditions on the basis functions which ensure thét A
is positive definite are given in Section 2-3.1.

A Very'important feature of the proposed method
is thé ease of computatioh. In general, the other
possible criterisa previously referred to lead to non-
linear minimizafion problems. Subsequent discussion wil
indicate fhe practical necessity of having to experi-
ment with different choices of basis functions. The
attendant compiexity_and.tedium of nonlinear minimiz—'
ation methods would thﬁs greatly inhibit the overall

synthesis procedure.

2-%3.1 Conditions for a Positive Definite A.

. Consider the integral
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M

f | | |

. £ _

ST 2 Nar

I(e) = -~ J\ v (X(t;xok),c)at >0 S (2.16)
5 ,

If (2.8) is substituted invo (2.16), it is easily

shown that

.

(o) = cTae © o (2am)

Thus, from (2.16) and (2.17), A is positivé definite
‘provided the basis functions Zj are linearly in-
dependenf along at 1eaétlone'of the development traject-
oriés. It is most unlikeiy that this condition would not

be met in practice.

2-3.2 The Choice of Developmént Trajectories.

Little can be said about the "best" choice of
development trajectbries. In essence, a function
defined over a multidimensional region B is being
approximated by another function whieh is to be "close"
along specific curves in B. This‘approach is analogous
fo a common technique used in appfoximating functions
of a single variable over an interval of the real line
where the approximation is carried out for a finite point
subset of this interval. Even in this much simpler
problem, the-determinatién of an optimum number and
épacing of points.represents an exceedingly difficult
Computational task. In both cases, howevér, the hope is
that in-approximating on a subset of the desired region,

the resulting approximation is édeqmate over the entire
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region orvintefval.

| In many probiems, there exist preferred regions
for disfurbed states,,that is,lregions of probable system
initial conditions. Sample or typical initiai conditions
withiﬁ these preferred regions are a natural choice for de-
velopment trajectory initial cogdgéions. Otherwise, in the
absence of eny a-priori information,Athe most obvious choice
is a geometrically uniform_distribu&ion of initial con-

ditions around the boundary of the approximation region.

~2-3.% Computational Considerations.

; Numerical_computation_of the best ¢ is simple
and convenient. 'As each new development trajectory'is com-
puted or is retrieved from storage, the basis functions are
evaluated, multiplied and integrated according to Egs. (2.11)
to (2.13). The reeﬁlts are then added on to the previously
accumulated coefficient_ﬁatrix and the next development
trajectory is generated. When all M development trajeet—
ories have been processed in this manner,.the linear set‘of
equations (2.14) is solved. The ratio Emin/r serves as a
figure of merit in comparing the suitability of one sef-of
basis functions with another. |

It is remapked that the choiee of integrating
the squared difference.in (2.9) rather than summing has the
effecf of making.efficient use of trajectory data. The
optimal trajectery is the solution of a differential equa-

tion and hence, is available in a numerical form which is
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completely compatible with the quadrature operations in

S (2.11) - (2.13).

2-4 Exémple_;.

| To illustraté the appiicétion of the syntheéis
techhiquesfan example éontrol problem for a honlinear system
with two state variables is pfesented. This example will
also demonstrate how.suitéble basis functions may be chosen
’énd how the nﬁmber and'diétribution'bf development traject-
ories inflﬁences thé resﬁlting approkimation.

It'is desired to find a suboptimal feedback

control which suitably apbroximates the optimal control fbr

the problem of minimizing

tf A .
J(u) = ¥ Jﬂ '(xi + Xg + u2)dt (2.18)
0
where'
Xl=X2
% = (l—x2)x - X, + u '. (2119)
2 = 1'% — % | - leed

~and where tf is determined as the first instant at which

Oux(tg)) = +(x5(t,) + x5ty = (0.97) (2.20)

is zero. The expected region of operation B in state space
was taken to be the square xle(—2,2),xze(—2,2).
. Applying the minimum principle [4], the optimal

programmed control from an initial state x, is determined by
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.
s

Sg=%tPy=0 o (2.21)
172 2 2 2
where H = 3(Xl + X5 +ut) + pyX, + p2((l—xl)x2—xl+u) (2.22)

and pp = - H = -x + (l+2XlX2)p2 (2.23)

by =~ H, = -x, <5

The terminal condition on the adjoint vector p is given by

- T ‘ . ) .
p(ty) = pQd . = px(ty) (2.24)
where p is an undetermined scalar parameter. A further
necessary condition for this free terminal-time problem is
given by ] |
along an optimal trajectory. From Egs. (2.22), (2.24),
(2.25), it can be deduced that p is the positive root of

the following quadratic equation:

1 2 2 2 2 2)

-7 x5 p° o+ x2(l - xi)u +:%(Xl +x5) =0 (2.26)

where (Xl,Xz) is any optimal trajectory terminal point.

 Optimal trajectories may be generated by choosing
a point x(tf) on (), = 0, determining u from (2.26), p(tf)
from (2.24) and integfating the canonical system (state and
adjoint equations) (2.19) and (2.23) in reverse time until

the trajectory leaves B. Although one has no idea in
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selecting a terminal.poinf whére the trajectory will end
- ﬁp, it was possible in this-problem.to generate a sulficient
number of trajectoriés in this manner so that all parts of
the operating region are covered. From the many tféjeci-
ories generated,‘ten wefe selected as candidate develop-
ment trajectories (numbered 1-10.in Fig. 2-1) and seven
tréjectdries were chosen as test trajectories (lettered
'A-G in Fig. 2-1). These test trajectories, whose perform-

ance values are listed in Table 2.1 ,

Table 2.1 Optimal Performance Values for Test Trajectories.

Test Trajectory. (see Fig. 2-1)

A B. C D E F G

Optimal Perf J(u)|7.885|7.161]10.171{8.601|9.224[9.761|9.113

will be used to compare the performance of the optimal and
subbptimal systems. Note that from the symmetry of Egs.
(2.18)-(2.20), u(-x) = -u(x) so that only half of the
approximating région B need be considered.

| From the many trajectories that were generated
together with'crude intefpolations, the general form of the
optimal feedback surface u(X)>was plotted (Fig. 2-2). While‘
it may be possible tovébtain é satisfactory approximation
to u(x) by a curve-fitting procedure using Fig. 2-2 ([1ir,
pp. 94-117), the knowledge of u(x) provided by Fig. 2-2 is
here‘used only to suggest a sﬁitable form for the suboptimél

- control. If a coordinate system (z,y) is introduced by a



Fig. 2-1 Optimal-Development (solid) and Test (broken) Trajectories.



rotation of the (u,x
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l) system through an angle 0, a

reasohable apprbximation of the curves in Fig. 2-2 is given

by'

Z

e _
= -ax,y - - bX2 . o (2.27)

-1-5

-1-0

Fig.

where

Substituting (2.

-0°5 0 2 ;d\\‘\\\lis 1

X3==-0-25
X:O
~1-0 2
2-2 Optimal Feedback Surface.

1

u cos © + x-sin © o (2.28)
X cos 0 -u sin o - .

into (2.27), solving for u, and then
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expanding in a Taylor seri=s neglecting terms of order five

or more, the following controller structure is obtained:

L4

+ c x°x - c x. x2 %0 (2.29)

vix;e) = ¢ 5 3%¥1%2 4¥1%5 + CeX)

+ C,X

11 T %
The ci,i =1,...,5 are functio§é §f the parameters a,b,©
which will remain unspecified. ) ‘1

| v Employiﬁg one developmentltrajectory oﬁly, the
five controller parameters in (2.29) weré evaluated according
to Egs. (2.11)-(2.14) with M = 1. Having obtained a set of
parameter values, the suboptimal control (2.29) was evaluated
by intégratihé the system (2.19) under suboptimal confrol
from each of the seven test initial conditions. This pro-

cedure was repeafed for four different development traject-

ories and the results are summarized in Table 2.2. The worst

-

Table 2.2 Controller Parameters and Worst Case Performance,
Single Development Trajectory.

, ' Performance
Controller Parameters Deterioration
Development ¢y Cxg Cg Worst Case
Trial | Trajectory . , i
(Fig. 2-1 € 4 _ Test ‘1% Increase
. ' _Trag.
1 3 -0.4914 |-0.8879 | -3.3008| ¢ 329
’ -2.4047 | -4.2055 : -
2 5 ~0.4124 | 0.6698 | 0.1641| & 5.3
~ -2.6728 0.1054 :
3 8  |-0.4137"| 0.8749 | 0.1204] ¢ | 45
: 72.6171 0.5096
4 .10 -0.4121 | 1.2872 | 0.2151| C,D 00
' , o -2.7212 0.8470
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case pefformance increase Iisted in this table is obtained
by'evaluatihg
v) = J
J, (v) (w)

mix -
. J, (u)

A where Jk(v) is the suboptimal chfdrmancé ﬁalue for the
kth test trajectory and Jk(u) is the optimal performance
value ((see Taﬁle 2;1)). The optimal and suboptimal. traject-
ories for the seven test pbints are shown in Figs. 2-3 and
2-4 for trialé 1 and 2. 1In trial 4 (de?elopment traject-
ory 10), the suboptimal system did not reach the terminai
manifold from two test stafes. That the best results were
obtained using the "middle trajectory" (#5)»is not al-
together unreasonable from an intuitive point of V}ew.

- The results where several development tfajectories
wére empioyed are displayed in Tabie 2.3. In these eight
trials, the»suboptimal control was a general polynomial
of the fourth-order but with the condition u(-x) = -u(x)
enforcéd: |
v(x;c) = CyXy + CyX, + 03X§ + C4X§X2 + CSXlXS +'c6xg
(2.30)
Note that (2.30) has one more term.than (2.29). The
optimal and suboptimal test trajectoriesAfor trials 1 and
8 are displayed in Figs. 2-5 and 2-6.

Severzl important observations canrbé made from

the data in Table 2.3. First, it is noticed that the



Flg 2-3 Optimal (broken) and Suboptlmal (uolld) Test TraJectorles
4 for Tr:al 1, Single Development TraJectory



Fig. 2-4 Optimal (broken) and Suboptimal (solid) Test
Trajectories for Trial 2, Single Developnent Trajectory.



Fig. 2-5 Optimal (broken) and Suboptimal (so1id) Test Traject-
: -ories for Trial 1, Multiple Development Trajectories.



Flg 2- 6 Optlmal (broken) and. Suboptlmal (solld) Test Traject-
: orles for Trial 8 Multiple Development Trajectorles
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Table 2.3 Controller Parameters and Worst Case Perform-
ance, Multiple Development Trajectories.

_Contrqlleerar@meters

Performance
Deterioration
Worst Cage

Deﬁelopment ¢y ' ch 05 -
Trajectory . Test |% Increase
Triall (Fig. 2-1) 2 C4 °6 Traj.
11,7 0.4560| 0.0101 | 0.4%49 c 21
~2.6418{ 0.7931 | 0.1601
2 5,10 -0.5214 | 0.0233 | 0.2440 D 3.0
-2.67571 0.6951 | 0.0382
3 18,10 -0.4%94 | 0.0267 | 0.5896 c 355
-2.6906 | 1.0084 | 0.1439
4 {1,5,9 -0.4181 {-0.0090 | 0.2148 D 2.5
-2.6105! 0.6809 | 0.0359
5 13,7,10 -0.5232{ 0.0344 | 0.5135 C 39
-2.6828| 0.8600 | 0.1318
6 11,%,5,7,9 |-0.31181-0.0644 |0.2872 C 1.5
—2.49261 0.6287 | 0.0834 |
7 12,4,6,8,10 |-0.4121]-0.0133 | 0.3200 c 3.3
-2.5705] 0.7005 | 0.0779
8 1,2,3’4}5) —0-3577 —000437 003021 C 2
6,7,8,9,10 | -2.5294 0.6578 | 0.0805

‘parameter c3 is comparatively sm&ll in all trials which

- confirms the suitability of the form (2.29) previously

used. It further appeafs, from this data, that one can

feel more confident of obtaining a "globally" wvalid

approximation when more development trajectories are

employed and that géometrically uniform distributions of

trajectories produce better results than nonuniform distri-

butions (cdmpafe trials 2 and 3). Comparihg the controller

parameters between trials, the ranges of values taken by the
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parameters in the more successful trials (trials 2,4,6,7,8)
indicateé a relatively»low»sensitivity of performance to the
subOptimai controller's parameters. Note that on the less
successful trials (trials'l,ﬁ,S); the values for‘parametérs
' C4’05’C6 are definitely outsidevfﬁé range of values taken

by these parameters on the successful trials.

2-5 Example 2.

The second éxample belongs to the fdllowing pro-

blem class:

x = Fx + Gu + f(x) + g(X)u , | (2.31)
t+tf

J(u) = & (xTQx + uTRu)d+ (2.%2)

Ouxltt) = 26Tk - &)] o0 (2.33)

bl

t+t

In the dynamical equations (2;31), F is a constant nxn
matrix, G is a constant nxl matrix (assuming r = 1), f(x)

and g(x) are continuous n-vector functions of state
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satisfying
£(0) = g(0) =0 " (2.34)

The mafriX.Q in thé performance functional (2.32) is ﬁosi—
tive semidefinite and since it is assumed that dim(u) = i,

R may be taken as unity without?igés of generality.

Equation (2.33) defines.the terminal time (stopping function)
and K is the poéitive definite solution of fhe,steady—stafe

matrix Ricatti equation:

1,T T

KGR™1GTK - KF - 'K - Q = 0 C(2.35)

Since K is positive definite, the stapping function (2.33)
represents a hyperellispsoid about the origin.

The qualitative purpose of the control sysﬁem is
to return the system to the origin (or the neighborhood
inside the ellipsoid) following a disturbance in such 2 way
that those state variable weighted in the performance in-
tegrand do not makerlarge excursions and with limited use
of control energy. The nonlinear functions f and g in the

dynami@s could represent higher-order terms of significance
in the expanéion of the original system eqguations. If‘f
and g were both identically zero, the optimal feedback con-

trol would be given by
_ T : :
uR(x) = -G "Kx ) | (2.36)

that is, é linear combination of the state variables [3{].
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Tha control uR(X) will be referred to as the Ricatti
bontrol. Thus, at least in a neighborhood éf the origin
where f and,g ére small, the structure of u is known.
It should be noted that thé linear structure (2.36) appliés
only if X satisfies (2.35). If f and g'are smooth funcfions
of .x, it i3 reasonable to expect that the linear function
(2.36) will change in a smooth manﬁer as x gets further
from the origin. Hence, a polynomial structure for v(x;e)
is likely to be a good appfoximation.

vThe speéific exémple treated in this section is

defined by Bgs. (2.31) - (2.33) and

01 0 0 0

F = 0O 0 1|, G =10/, f(x) = |O , glx) = 0,
-1 -1l 1] ~x?
5 00 R =1
Q=10 5 0], . (2.37)
0 0 > £ = 0.3 .

From Eq. (2.35), the steady-state Ricatti matrix is

|7 5 1
K ={5 10 3 - (2.38)
1 3 2

and the Ricatti control is

up(x) = (-1,-3,-2)x = (2.39)

An approximation region was chosen arbitrarily as the region

B interior to the planes
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I+
N

| Xy = | -
B: Interior of |x; + X, = & 2 ' - (2.40)
_Xl - X2 = + 2

Based on the reasonihg in the preceding paragraph,
a fourth-order polynomial was chosén for v(x;c). Since the.
symmetry condition u(-x) = -u(x), applicable in the previoﬁs
example, applies here as well, the suboptimal control

- may be written

% e B
vix;e) = Xi(ci+-x. 03i+jxj) + CpzXq XXz

i=1 * ti=1
| | (2.41)
" which is of the form (2.8) where
F—vaA’ m:l,2,3
7 (x) = | x°x mZ 35 4k, Gk =1,2,3
m —-. v Jk’ = ’ 1 X = 1<y
:xlx2x3, m= 13
[
(2.42)

Initially, 7 development trajectory initial con-

ditions (Group 1 in Table 2.4) were selected around the

Table 2.4 Development Trajectories Initial Conditions.

‘Group 1 (7 Trajectories))l Group 2 (13 Trajectories)
A1l of Group 1 plus:

x, | 2710]-2lo0f2]0]o0 11 {221l
X5 ofla] ol-2{ol2]o 11| 12 fr]2
Xy 2i2| 2] 2]ofo]> ol 2] 2] 2]0ofo




bbundary'of B. The controller_parameters computed by
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the procedure of this chapter are listed as Parameter Set 1

in Table 2.5.

'Table 2.5 Controller Paraneters,

Then another Srial was made.with 1% develop-~-

A1l Third-Order Terms.

C

c

1 °4 7 10 13
o g Cg €11
03 C6 09 012
Parameter -0.9427 | 0.1562 | -0.7328 | -0.0384 | -0.3208
Set 1 ~2.9854 | —0.60%2 | -0.2583 | -0.0476
i/T = 3.9 16°2|-2.0039 | -0.1392 | -0.1876 | -0.0101
Parameter ~0.92%6 | 0.1498 | -0.7560 | -0.0%20 | ~0.36%7
Set 2 —2.9645 | —0.6412 | -0.2615 | -0.0556
/T = 1.3 107°|-2.0013 | -0.1454 | -0.1956 | -0.0047

ment trajectories (Group 2 in Table

esponding controller parameters are

2 in Table 2.5.

2.4) and the corr-

givén as Parameter Set

The development trajectories and all other

optimal trajectories used in this example were computed by

employing the extended Newton-Raphson method of Chapter 5.

From the data in Table 2.5,

it can be seen that the

controller parameters did not change significantly between

the two trials.

to the Group 1 trajectories has produced a hypersurface

In effect, this means that approximating

which is not significantly altered by asking it to be "close"

to other trajectories in the range covered by the firSf
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group. ,Although the»ratid Emin/rlis listed for each trial
in Table 2.5, it is not Significant iﬁ comparing the two cases
since different development trajectories have been used. It is
interesting to observe thé cloveness of the data (01,02,03)'to
the coefficients in the Ricatti ~ontrol, Eq. (2.39).

If it is desired to reduce the number of basis functions
but still retain the polynomial‘éf}ECture of Eq. (2.41), a
‘ simple prdcedure exists for trying subsets of the original set
of basis functions. Eliminatihg a particular basis function
Zm from the suboptimal contrbl merély involves deleting the
mth row and mth column from the gugmented matrix [A:ﬁ] of
Egs. (2;11) - (2.12). Thus, any number of basis functions can
" be eliminéﬁed in this way and the resulting reduced system of
linear equations is then solved for the reduced parameter set;

A comparison can be made between various subsets on the basis
. of the ratio Emin/r'

For example, suppose it is desired to have only 5
third-order terms in Eq.‘(2.4l)’instead of the,full.lO. There
are 252 possible 5-element subsets of {Zi,i = 4;...,13}. For
each subset; the corresponding 8 x 8 linear subsystem of the
augmented matrix for the Groﬁp 2 trajectories was solved and
Emin/r evaluated. The smallest figure of merit resulted when
basis functions 6,9,10,11, and 12 were omitted. The controller

parameters and E /r are given in Table 2.6. This procedure

min _
was repeated for 7 third-order terms (120 possible'subsets)
and the parameter values for the best subset are also

listed in Table 2.6. It is interesting to observe from
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Tanle 2.6 COﬂtroller Parameters, Constraint on Number of
Third-Order Terms.

° Sy C7 0| ©3
o g s €11
C3 C6 09 012
Best with 5 -1.%3142 0.279% |-0.5800 | 0 |-0.2895
3rd-order terms -3.3035 | -0.543%0 |-0.1460 | © |
_3 .
E . /T = 1.96x10 —2.3249 0 0 0
|Best with 7 ~0.9576 | .0.1526 | -0.7530 | 0 |-0.2735
3rd-order terms ~%.0143 | -0.6144 | -0.2602 0 '
| -4
B . /T = 2.90x107%| -2.0047 | -0.1201 | -0.1688 | O

Table 2.5 and Table 2.6 that with the single exception of g
in the first case, the'parameters omitted were the smallest.
Although a great npmber>of possible subsets have to be
tried, the procedure is not time consuming. The computer
(IBM 7044) time required for the 5-element subsets was 38.5
seconds and for the 7-element subsets, 24.5 seéonds.
The’subbptimallcontrol with the controller para-
mefers in Table 2.5 was tested over a range of initial con-
ditions within the approkimation region; These initial
conditions were chosen as worst case tests in that they

-were maximalily distant from development trajectory initial

conditions. The increase in performance values over optimal
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was negligible in every'case. In.order to observé 
_déviétibns from éptimal performance, it was necessary to
use tesf initial conditions outside B. The_valués of
terminal time and performancé for some cases of interest
are iisted in Tablé 2.7, .Terminal times for the suboptimal
trajectories listed in Table 2:§‘gfe accurate to withinv.
+ 6.025 (thé integration sfep size). In addition to the
‘suboptimal feedback controls specified by Eq. (2.41) and
the parameter sets in Table 2.5, the resulfs of using
optimal control, the linear Ricatti control and a control
based on an expansion of the Hamilton-Jacobi equation are
shown in the Table. This latter control is of exactly the
same form as (2.40) but with different parameter values
(seé Appendix A). The response Xl(t) to the optimal con-
trol, nonlinear suboptimal controls and the‘Ricatti linear
control are shown in Fig. 2-7 ‘for the initial condition

- (2,2,2).



Table 2.7 BEvaluation of Various Suboptimal Feedback
Controls.

Performance J
Int. Condition Terminal time tr
Opfimal Parameter Parametér Merriam's Linear
Xy Xy Xg ' Set 1 Set 2 Method (AppA)| Ricatti
2 -2 2 13.1 13.1 1%.1 13.1 13.7
2.8% 2.95 2.80 2.79 3,50
2 1.5 1.5 144 .4 144.9 144.9 158.1 160.4 ~
5.12 5.10 5.10 5.31 . 6.50
2 2 .0. | 175.9 176.9 176.8 191.7 © 1 199.5
2 2 1 196.7 197.9 197.8 216.1 2%0.1
, 5.20 5.20 5.20 5.40 6.85
12 2 2 221.6 22%.0 222.9 244.6 269.2
: 5.25 5.25 5.25 5.46 7.00
2 2 3 250.6 252.4 252.% 277.% 318.6
5.31 5.30 5.30 5.55 7.15
3 3 3 | 1003.2 10%6.6 1027.3 1146.0 .
6.31 6.15 6.10 » 6.33 (Unstable)

Lg



Fig., 2-7

\ OPTIMAL 7
/’R/CATT/

xq (%) for the Optimal, Nonllnear Suboptimal (Eq..

Ricatti Controls.

(2.40)) and Linear

8¢ T
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3. PIECEWISE POLYNOMIAL APPROXIMATION

- 3-1 Polynomial Basis Functions.

Suécessful application of the synthesis technique
given in Chapter 2 depends ﬁpon the designer's ability to
specify a suitable controlier_s%?&éture (suitable basis
functions if v(x;c) is to be linear in c¢). There are two
basic approaches to this question. The first involves
making a detailed study of a particular problem of problem
class in an attempt‘to obtain clues about the structure of
“u(x). While this study could Be compietely-empirical, it
should capitalize on any existing theoretical knowledge of
the solution and be aided by whatever analysis is feasible._
Examples of this approach ére contained in Sections'244 and
" 2-5. In the second approach, the basis functions employed
are of general utility, that is, théy are ones that will
adequatelyAserve for a large class of problems. The moét
common .example of éuch a general utility set of basis
functions.is the polynomials.

If high—ofder polynomials are required to obtain an
adequate’approximation; several difficulties will be en-
-countered. In computing ¢ from Eq. (2.14), there is reason
to believe that the matrix A will become ill-conditioned
as the order of the polynomial increases. The existence
of this phenomenon is supported by the author's computatidnal

experience and is well-known in single-variable least-squares
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approximation theory ([;é], Secfion 17.5). High—ofder
pélynomial approximations also exhibit numériéal instability
(Elj], p. 296). This properﬁy is closely associated wivh |
an even more serious condition which may arise, namely un -
wanted fluctuations of v(x;c) in regions between‘develop—

ment trajectories.

3-2 Piecewise Polyvnomial Functions.

The abové objections tb high¥order polynomial
approximation may be largely overcome through the use of
another class of general utility basis functions, the piece-
wise polynomial functions. A function v of this class is
a pélynomial on éach of several disjoint regions Bm’ that

. . ' . r
is, 1f“there are Nr such reg;ons and L_J Bm = B, then

vi(x;e)

N |
S B (x5 MK (x) (3.1)
m=1

" on B, where Pm(x;ém) is a polynomial in x,

ol
c=1. (3.2)
N
| o 7] |
. 1, xe€B :
and K, (x) = n = (3.3)
o O, otherwise .

The vector ¢ has Nm components where



o - : o A L
: Nr v
>N, =n | (3.4)
m=1 ' ‘
It should be observed that if the'regions Bm are pre-
specifizd, (3.1) is a linear approximating function of the
form (2.8). The optimal choice_qﬁ.subregions will not be .
coﬁsidered in fhis thesis. \
| One of the most powerful argﬁments in favor of
polynomial approximation is-provided by the Weierstrass
Approximation Theorem ([l{], Sect. 6.6) which states that
any real continuous function can be approximated arbitrarily
closely on any closed and bounded set by polynomials of
'suffiéiently high degree. For a given-approximation accuracy,
it is evident that a polynomial of lower degree will suffice
if the approximation region is reduced in size. Thus; by '
using'low—ofder polynomials in each of several subregions;
the accuracy of high-order polynomial approximatign is
maintained while the undesirable properties attributable to
high order are eliminated.

Interpolaﬁidn and approximation by spline functions
of a single variable has receivea considerable attention
([iﬁ], for example). Spliné functions are a subclass of
piecewise polynomial'functions. Fof scalar x, v(x;c) in
Eq. (3.1) is a spline.fuhction of degree k if it is equal
to a polynomial of kth degree on each subinterval Bi of the
interval B and the parameters ¢ are such that on B, v is

continuous and has continuous derivatives up to order k-1.
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Further discussions on the zdvantages of spline'approx—

imation may be found in [i@] n. 17, and [ii].

%-3 Discontinuous Suboptimal Control Law.

The polynomials Pm(x;cm).in Eq. (3.1) have the

form

N

: m

(v m m

-Pm(x,c ) = E : cL. Yr(X) (3.5)
=1

where Y?(X) is a product of powers of the state variables.

From Egs. (2.8), (3.1), and (3.5), the basis functions

Zi(X)'are given by

zi(x)lz LK (%) | (3.6)

+ N, + e + N, o+ (3.7) -

where i = i(r,m) = Ny 5

With no restrictions on the parameters c, the
optimal ¢ can be obtained directly from BEq. (2.14). If
i= i(l,ml) and j :‘j(r,m2), then from Egs. (2.11) and
(3.6), | |

Mo tey my m2'
A, . = (Y Y K K )dt (3.8)
ij 1 T m, ",
k=1
0

where the argument of each factor in the integrand is x(tjxok).
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But along any trajectory,

K (£)K (%) =4 ° | (3.9)
.0‘, m, A m,, '

Hence, Aij = 0 if the indices i'ahd'j correspond to diff-
erent subregions of B, thus permitting the following de-

composition of the linear system (2.14):

B | 7] T B T
sf1olo cleid |l
0| A2 ;_o oG8 b2
0O 1 0l :
o I . . :
. =1 . (%.10)
‘ | NI‘ ‘ NI‘ N
- O -+ A i Le _ __.b I‘_

The vector of parameters ™ corresponding to subregion Bm

is the solution of
(3.11)

It is_probable that discontinuous‘piecewise poly-
nomial basis functions might only be used in an initial
investigation into the nature of u(x) and that a more
efficient controller structure would be chosen on the basis

of this investigation.

%34 Grid-Dependent Parameters. [ié] _

If B is partitioned into a rectangular grid, basis
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functions may be formed from piecewise polynomial functions
of a single variablé with parameters dependent-upon tne grid
coordinates. To illustrate; the case of two state vafiables,
denoted x and y, isfdisCuSSea;

‘.The reétaﬂgular grid is shown in Fig. 3-1. Along each

grid segment parallel to one of the axes, say the X'axis,
thé suboptimal control is taken to be a low-order polynomial

in x (for concreteness, assume second order).

AY

g

Yq__7
' = X
X, . X2.- . . . . Xm Xm+7

7

Y

»Fig; 3-1 Approximation Grid
Thus along thegrid line y =y, v(x,y;c) is given by

. m
ge(xsc) = > | (o % + Bux + K (1) (3.12)

o i,x. = x = x.
where K, (x) = e
A : 0, otherwise

and ¢ is the vector of parameters ;e Bik’ 'rik,izl,...,m,
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k =1,...,4. The suboptimal control v between constant -y
‘grid lines is obtained by a iinear interpolétion rrocess
in the y-direction. TFor ekample, if Lagrangian inter-

polation over the full range of y is employed, then
qQ R
v(x,y5¢) = > L (y)g,(x;c) . (3.13)
k=1 ' ’

where
p(y)

(y_yk)p'(yk)

q |
T Gvp
izl

he]
—

<
It

dp
dy

p'(y)

Conditions of continuity and/or smocthness can be
imposéd on (3.13),vthus reducing the number of free para-
meters but without affecting the linearity of v with
respect‘to these parameters. To demonstrate, if we require
the functions gk(x;c) to be spline functions of degree 2

(see Section 3-2), then for each k(k =1,...,q),

2 2
Oi¥s F Pi®s T T = %1% F B, i0% Tk,ia

(3.14)

2a, . X

ki¥i tBri T2 % g9%5 f By i

for i = 2,...,m. The minimum of the quadratic function E(c)



given by Eé. (2.10) subjectito the linear.constraints
.(3;14)Acan be computed directly by introducing Lagrangs
multipliérs. However, because of the Simple recursive natﬁréof
Egs. (3.14), 2q(m—l).parametefs“may be éxplicitlyielimihaﬁed
from (3.13). " If the parameters By, ink,i=2,.;.,m,k=l,...,q

are eliminated, Eq. (3.12) becomes
| 2 2
g (x5c) = Fpq + BgX + o 4 (%= (x -x,) U2(x))

m .
2 o (G = xR0 () = Gy )Ty (0)

i i+l
1:2 '
(3.15)
1, x > x;
) i
where Ui(x) =

0, x = X.
i

and c denotes the reduced parameter vector. If Eq. (3.15)
is substituted into (3.13), the resulting control law is
. linear in the components of c. The technique of the pre-

vious chapter can thus be applied'to the determination of c.

3-5 Example.

The technique of the previous section is here
applied to the contrbl aproblem of Section 2-4. For pur-
poses of this example, the two state variables x; and X,
are renamed x and y respectively.

The rectangular grid chosen for the approximation'
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procedure is shown in Fig. 3-2. Along each of theé six
grid segments paréllel to the x axis, v(x,y;c) was taken

to be a polynomial in x of order 3:

2
g (x;5¢). = Z (Wkix3 + “k’ixz + By X + K (x)
— o -
(3.16)
k =1,2,3
éy
2 9
9
-2 0 2 2 .
X
gl
-2

Fig. 3-2 Approximation Grid for Example Problem.

: 1, -2 £x %0 ) 1, O<x
| where Kl(x) = o, a0 | KZ(X) = o, )

1A

-2

IA

0
At each of the joints (0,2), (0,0), and (0,-2), continuity

{

of the functions gk(x;c) and their first derivatives is ¢

imposed. The symmetry .condition
v(-x,-yje) = -v(x,y;ec) - (3.17)

is also enforced. In terms of the reduced parameter vector,

Egs. (3.16) are then given by
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B gs(x;c) = (1731X3+ a31x2)Ki+ Ble +5751+(W32X3+ QBZX?)KZ
(3.18)
gz(x;c) = "Qzlx3 + a21x2 sgn(x) + B,y X , (3.19)

and gl(x;c) follows from (3.18) and the symmetry condition
(3.17). Using Lagrangian interpolation, the suboptimal
.control.approximating form is given'by

b}

v(x,y5¢) = % L (y) g (x;¢) ‘ (3.20)

where Iy = y(y-2)/8 | L, = (4-y2)/4 L3 = y(y+2)/8

The nine free parameters in (3.20) were evaluated
(see Table 3.1) by the procedure of Chapter 2 using the ten

~development trajectories numbered 1-10 in Fig. 2-1.

Table 3.1 Controller Parameters.

B,y  -0.1872 Yy o -4.9151 gy — 0.6531
a5y -0.4272 631 2.3054 | -a32 - 1.2016

Testing the resultinglcontrol law for the seven test

trajectories (A-G) displayed in Fig. 2-1 revealed that the
worst case performance’ increase was only +% (attained for
test trajectory E). In Fig..353, the quasi—optimai feed-
back control v is plotted. This figure'should‘be compared

with the optimal surface in Fig. 2-2.
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Fig. 3-3 Quasi—Optimél Feedback Surface.

" 3-6 Kolmogorov's Representation Theoremn.

A theorem receﬁtly developed by Kolmogorov and
others ([19], Chpt. 11) is of considerable potential im-
portance, not only for the determination of suitable sub;
optimal'feedback control laws_but also fpr the approximation
of general multivariable functions. This theorem, which states
in essence, that multi§ariable functions can be represented
by functions of a single variable, is presented in this
section.as a stimulus to further research into control law
represenfations.

The following statement of Kblmogofov's theorem is

taken from [;Q] with slight modifications in symbolism. There
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exist n constants 0 < Xi.s 1, i:l,;;.;n and 2n+l functions
¢q(x),q:0,l,...,én defined on‘[O,i] and with values in {O;i},
ﬁhich have the following properties: the ¢q are strictly
increasing and belong to a class Lip « . For each con-
tinuous function f defined on the unit cube in En,ﬂone can

find a continuous function g(u),’o S u < n such that
2n
£(x),ee s, :_;)g_(xlgzsq(xl) e e B () (3.21)

The representation of multivariable functions given
by Eq. (3.21) has several appealing features. First, a |
.definite form with some structural information is provided
as a starting point for apprbximation. Secondly, if analog
instrumentation of the suboptimal feedback control is con-
'.templated, the advantages of the representation (3.21) should
be evident. ZEach of the single variable functions ¢q can |
be easily formed with a function generator as can the
single-variable function g(ﬁ). :The remaining linear
algebraic operationé are also conveniehtly performed with
"analog equipment. It is remarkéd that the class Lip « |

dincludes the class of continuous piecewise polynomial

Functions f in this class satisfy a Lipshitz condition
of order «, that is, if f(x) is defined on an interval I,
there exist two positive constants M and a such that

-
If(xl? - f(x2)l— M le - X, ‘for all Xl’XZEI
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functions? of which fhe continuous piécewisé 1;near
functions appear particularly attractive for_use with
function generators. Perhaps the most important benefit
which might accrue from exploiting Kolmogofov's
representation is the conceptual insight poséible with
single variable functions. |

These advantages will not.be easily gained, how-
“ever. Simultaneous approximétion of the functions ¢q and
the function g in the form (3.21) will reguire that a non-
linear approximation problem be solved. Whether the ¢q
can be approximated separately from g is a topic for future

research.
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4., EVALUATION AND CCNCLﬁSIONS: PART I

4-1 Control Sensitivity.

Successful application cf the nroposed synthesis
technique will depend to a large ertent on the sensitivity
of end constraints and performance functional to control
" perturbations. The greater the insensitivity to control
errors that exists in a problem, the greater will be the
tolerable approximation error andihence, a greatef like-
lihood of obtaining an acceptable suboptimal control.

Bélanger [2@] has employed a first-order analysis
to determine the effect of control errors on terminal accuracy.
He has shown that only in the case where the dimension of
" the terminal manifold is one.less than the dimension of the
state-time product space (that is,_m.:'l in Eq. (1.2)) is
it possible to specify a tolerance on the optimal control
such that all contnols within this tolerance will transfer
the system to the target set. Moreover, to first order,
such controls cause no deviation from optimal performance
since each perturbed trajectory reaches ﬁhe target set and
the variation of J is zero, to first-order, for an optimal
trajectofy. For example, if the terminal manifold is geo-
metrically equivalent fo a closed hypersurface surrounding
the origin (m = 1 case), any control law will be allowable in

the sense. of meeting end conditions if the closed-1loop
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system is asymptotically stable.

: it is often feasible to convert the end condition
requirements for a problem to a single equation. For | |
example, if the original targét set is a point, this can he
approximated by a suitably small sphere or ellipsoid about
this point, as in the examples'deChapter 2. Physical
considerations of acéuracy and engineering considerations
of economy usually dictate that mathematically "tight"
terminal specifications be relaxed somewhat for the control

system design.

4.2 Instrumentation: Incomplete State Feedback.

Optimal control laws may require unjustifiably
sophisticated instrumentation to implement. One of the
desirable features of specific optimal controllers (see
Section 2-3) is that instrumentation constraints can be in-
¢orporated into the suboptimal control law Eq. (2.8). An
important example of such a constraint is the inaccess-
ibility of certain state variables (discussed briefly in
Section 1-2). A direct, thbugh not necessarily satisfadfory
means of déaling with this problem is simply to omit the
inaccessible state variables from the suboptimal feedback
law. This approach is discussed in [1@] and [22] for é
linear system and a quadratic performance functional.

In certain cases, simply ignoring inaccessible
étate variables may yield a satisfactory suboptimal control

system .and, in these cases, the synthesis procedure of this
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thesis may be used to determine it. However, considerable
improvement at little extra cost may result from simple
estimation schemes. This ié illustréted by the improved .
system behaviour which often'results from the use of com-

pensating networks in classical linear control systems.

4-3 Switching (Bang-Bang) Control Systems.

Certain optimal control systéms require that the
control signal switch from oﬁe value to another dis- |
continuously. The optimal feedback control is then
determined by the algebraic sign‘of‘switching functions.

In such cases, it is obviously more convenient to approximate
the switching surfaces directly rather than attempting an
approximation in the form of Eq. (2.8) for the control
function. An approach based on a meanésquare fit to points
on the switching surface has been taken by Smith [2%]. A
learning-algorithm approach was taken by Mendel and

Zapalac [25] who describe their synthesis technique as off-
line training of a realizable controller. It is interest-
ing that the method proposed in this thesis may also be
looked upon as one of off—liﬁe training in which the develop-
ment trajectories are regarded as constituting the

"training set", the prespécified controller function (Eq.
(2.8)) as the "trainable controller" and the computational
procedure described in Section 2-3.3 és the "training

algorithm".
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4-4 Comparison With Alternative Procedures.

There are essentially three different quantities
which might be approximated'ih attempting to synthesize é
nearly optimal feedback control. In this thesis, a direct
approximation of the optimal feedback control u(x) is
attémpted. Another possibility is p(x), the optimal ad-
joint variabl; as a funcfion of stéte. Finally, an approx-
imation of the minimum value V(x) of the performance index
as a function of state may be attempted. If either p(x)
or V(x) is approximated, the suboptimal control is obtained
through the necessary conditions for an optimum. For the

control problem of Section 2-2, the Hamiltonian is

H(x,p,u) = F(x,u) + pf(x,u) (4,1)

If p(x) is approximated by p{x;c), the suboptimal control
v(x;c) isobtained by minimizing (4.1) with p = p{x;c). It

can be shown(see for example [24] , pp. 14-17) that
p(x) = V_(x) . (4.2)

Thus, if V(x) is approximated by V(x;c), the suboptimal con-
trol is obtained by minimizing (4.1) with the gradient of
V(x;e) substituted for. p.

Assume that
u = g(x,p) ' | (4.3)

‘minimizes (4.1). Only those components of p which appear
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- explioitly in the relation (4,3) need be aﬁprokimaied. Even
so; se&erél components of.p may have tQ be approximated in
order to obtain the suboptimal controi. This extra work could
only be justified in the caée where a switching control ig
expected since p will be confinuous and, presumably, easier
to.approximate than w. Kipiniak ({11], pp. 94-117) presents
a scheme for approximating p(x) which involves elaborate
plotting and»crbsé plotting and eventual curve fitting of the
graphical data. o

If either p(x) or V(x) is approximated, the designer<
cannot exercise direét control on the instrumentation
required to implement the control since further operationé
must be performed on the approximation to obtain the sub-
optimal control.

The chief advantage in approximating V(i) is that
V is always‘a continuous, non-negative scalar functibn,v
independent of the dimension of u. This advantage is more
'than‘offset, however, by'thé fact that partial derivatives
of V must be faken to obtain a suboptimal_cqntrol. A close
approximation of V does not necessarily imply a close
approximation of ité'derivatiﬁes. vDurbeqk [25] proposed a
method where V is approximated for an infinite interval
(tf‘:u:) process. .The parameters in the>appro§imation must
be determined by a cumﬁeréome descent minimization of a non-
linear function. This technique is limited to a relatively
few number of parameters because of the required use of non-

linear programming methods. Gfagg_[?é] approximates V by a
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'least~squares procedure. The chwef dlsadvantage of Gragg's
procedure is the prev1ously mentloned one of having to

take partial derivatives of the approx1matlon.

4-5 Summary and Conclusions.

A technique for synthesizing nearly-optimal .
feedback control functions has been presented. To begin
the synthesis procedure, a centroller input-output relation
dependent upon a set of adjustable parametels must be pre-
scribed. The ”dlstance" between the suboptimal controller and
the Optlmal feedback controller is measured by a sum of in-
tegral square deviations between the optimal conirol and
L the suboptimal control along several system trajectories.
Choosing the controller parameters to minimize this distance
results in an overall computarional algorithm which is
simple enough to make experimentation with different con-
troller structures completely feasible.

If little is known about the algebraic form of the
optimal feedback control function, piecewise polynomial basis
funcﬁions are advocated. Low—order piecewise polynomial
basis functions will provide én accurate approximation of
the optimal feedback surface But without having the undesir-
anie'numerical properties of high—order polynomial basis
functions. In addition, piecewise poiynomial functions
possess a flexibility which could never be equalled by
analytic functions (polynomials, for example). Even if it

were numerically possible to cempute a high-order polynomial
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approximation, fhe flexibility of piecewise pofynomial
functions will allow more complicated optimal feedback
functioasvtcfgéapproximated with a fewer number of parametefs.

It was shown in Section (4.1) how thé allowable
approximation efror is related to the terminal specific-
ations. Full advantage mﬁst be takén of terminal constraint
tolerances to reduce the.sensitivity to control errors.

In :principle, the synthesis technique explored in
this fheSis is very general. In applying it to préctical
problems, twovmajor hurdles must be overcome. First, a
suitable controller structure mﬁst be found. This is the
major topic of Part I. Sebondly, many optimal trajectories
must be computed. This job is, by far, the most (compu%er)
time consuming numerical task faced by the user of this
technique and constitutes the-subject éf thé»next two

chapters.



4 . - 59
5. THE EXTENDED NEWTON-RAPHSON METHOD WITH THE
| GENERALIZED RICATTI TRANSFORMATION '

5-1 Applications of Optimal Cpntrol Programs.

Applications of optimal control programs can be
grouped into those requiring on-line solution of the
optimization problem and those requiring off-line com-
putation only. On-line computation would be called for in
a closed-loop application using optimal open-loop control
with periodic updating based on the latest sampled state.

To the author's knowledge, this is a speculated application
only and has never been actuallyvimplemented. Off-line
solutions of the optimizatién problem may be utilized

in thevdésign stage. Many optimél trajectories are required
for the synthesis procedure advocated in this thesis. More-
over, any preliminary study of an opfimél or suboptimal con-
trol system design will require the computation of a few
optimal trajectories. In guidance applications, an optimal
trajectory is offen ﬁsed as a reference trajectory for the
guidance. law (ﬁopen—loop steering") and feeaback control: is>
based on deviations from this reference trajectory [25}.

Many approaches tqlnumerically'solving the optimal
control problem have been taken, all of which lead to
iterative procedures. " The properties of an iterative
élgorithm coﬁsidered most desirable in applications are,
first of all, a wide region of cbnvergencevand Second, a
 fast épeed of convergence. It is difficult to éompare
regions of convergence between various %echﬁiques because

4.
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often the regions belong to différent spaces.
Qualitétively, however, a comparison can be baséd on *“he
ease with which starting elémeﬁts can be specified so that
the itérations will converge from these elements without
intervention. The désirability of having a wide region
fof fast convergence is not largely influenced by whether
the computétion is to be performed on-line or off-line.
For on-line applications, it is probably desirable‘that
the algorithm have a rather small memory requirement. On
the other hand, in off-line applications where a block of
fast mémory is allotted and costs do not depend on what.
fraction of that bldck is actually used, the}memory de-
manded by the algorithm is of nb conéequence, provided, of

course, the demand does not exceed the memory allottment.

5-2 The Newton-Raphson Method.

The method to be presenfed in this chapter is an
extension and modification of the function space Newton-
‘Raphson method [8] (also cailed :qﬁasilinéarization [27]).
Experience gained in several numerical studies ([?8], for
example) has shown that for the Newton—Rapthn method, it is
normally rather easy to choose starting elements from which
the process will converge. Moreover, the rate of gonvergenée'A“

is quadratic in the vicinity of the iteration fixed.poiﬁf;
In [8] and subsequent pépers of these authors [29]; o

only the "point-type" terminal condition is tfeated, that is,
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a particular state variable has either a specified terminal
value or is free. By relabelling the state variables if
necessary, it may be assumed that the first m are specified.

Thus for this case, ¥ in Eq. (:.2) has the special form

Plxlty),by) = Tox(t,) - &g (5.1)
whére §f is an m-vector of constants, Inm is a nxm matrix
defined by

I .= [%} (5.2)
Im is the mxm unit matrix and O in (5.2) is the {(n-m)xm zero
matrix. In addition, thevoriginal NewtonfRaphson method
assumes that t. in (5.1) is fixed. Free terminél time
problems are handled by solving a sequence of fixed time
problems, a device which will be explained in more detail
in Section 5-5.

The primary difficﬁlty encountered in employing-
the Newton-Raphson method lies in the instability of>the
differential equafions which must be integratea at each
iteration. In Section 5-4, a transformation is introduced

which largely overcomes this difficulty.

| 5;3: The Extended Newton-Raphson Method.

For the free terminal time control problem

described by Egs. (1.1), (1.2) and (1.3), the conditions .
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which must be satisfied by the extremal are [26]:

Fetwt) o x(s) =x, (5.3)

D = - Hx(x,p,u,f) V - (5.4)

0 = Hg(x,p,u,t).' o | (5.5)

p(ty) = Bo(x(t,),w,t.) | (5.6)
Wix(ty),t,) =0 : (5.7)

L), p(t,) ,ult,) W,tp) =8, (x(t,) 9, 5)
| | (5.8)
+ Hx(t,), pltg),ulty),6,) = 0

where Blxp,t) = B(x,t) + voWlx,t)

H(x,p,u,t) = F(x,u,t) + pr(X,u,t)

p is an n-vector of time-varying multipliers

V is an m-vector of constant multipliers

It is assumed that any state‘br éontrol inéquality con-.
straints have been approximéted by including penalty terms
in the performance functional. Equations (5.3) - (5.8)
repfesent 2 nonlinear two-poin% bﬁundary—value problem (TPBVP).
| The NewtonLRaphson method for solving optimization
problems is.a finction space generalization of the familiar
Zero—finding technique of.the»séme name. Suppose it is

)

desired to find a real numbef'x such that the scalar fuhction
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f.vanishes at x. If an éstimate Xl_l is available, the -
next estimate x is obtained by assuming f(xl) = 0 and then .

expanding about Xl_l up-to'linéar terms only; that_is
o=f(xh + it - (5.9)

Thﬁs, the sqlution of the nonlinear equation is replaced by
the solution of a sequeﬁcerof linear equations.

Proceeding analogously, suppose that estimates
%,.5, a,(},‘%f of the solution of Egs. (5.3) - (5.8) are
available. The overbar is used instead of a superscript i-1
fornotational convenience. In éddition, arguments 6f functions
are nqt written explicitly where no confusion should
arise. Thus for example, X stands for a vector time-function
defined on [to;tf]' It is assumed thaf Eq. (5.5) is satis-
fied by X, p, U, that is, u is eliminated implicitly or
explicitly by (5.5). _Othefwise, the (i-1)S? iterate need
not satisfy any of the other necessary conditions. If the
next iterate safisfied Egs. (5.3) -~ (5.8), then Xi,_;or
example, wbuld be the solution of |

o B

Eoas f(xi)ui,t) (SQlO)-.

The Newton-Raphson linearization of (5.10) is

oozt + E G R + T 8 (511)

Dropping the superséript i {for ease of notation) and.théf"
" overbar frdm partial derivatives where it is to be under—.}'

stood that all partial derivatives are evaluated for
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previous iterate quantities, the desired linearized state

equation is

x = T x + fuu.T‘(f - f.X - £.10) .(5.%2)

Equation (5.4) is treated in exactly the same manner. The

control can be eliminated sincé‘for each iterate,
T, i i i
Hu(x ,p ,u,t) =0 (5.13)

The first-order difference u - u is

- -1 / = - oT - =
u -1 = _Huu(Hux\X - ) + fu(p 7))

(5.14)
where it is assumed that Huu is nonsingular. The Newton-
Raphson linearization of Egqs. (5.6) - (5.8) is carried out
iﬁ Appendix B.

Using (5.14) to eliminate (u - @), the complete
set of linear equations analogous to Eq. (5.9) is.giﬁen below

and the symbol definitions are in Table 5.1.

X = AX + Bp + a : (5.15)

b =Cx - ATp + b - (5.16)

p(ty) = &, x(T,) + m)T(v + ooty + A | (5.17)
W=0 = wxx(j?f) + Bt + 8 | - (5.18)
@f},: 0 = C—ITX<Ef) + ET\? +F e + W | (5.19)

Equations (5.15) - (5.19) represent a linear



Table 5.1 Symbol Definitions

for Egs.
o

(5.15)-(5.19) .

Symbol Use reference Definition

* > - ~ O T
A . 5.15 x Tuuulox
B * 5.15 £ Hlgl

*% . » T ad _l?'r
¢ 5.16 “Hext BuFuutlux
a * 5.15 F - AX - BP
o ¥ 5.16 H. - CE + A'D
8 5.18 B - (W X):

. - f
X * B F-x
5 | 5.19 (D ‘;:$ f-?H%é
St xt 7 Exx X't

« | 5.17. g- (%, X+ Py

1 o -
P * @ HX + D :
¥ | 5.9 (B, +a - x5 ) (_f—X)+Qt]Ef
g L ' T o L -
X4 R S 157171 Gﬁx - é&xx . QQV)tf oty
o | 5.8 (<P 0 X)E - B, -
o o1 59 (B 5TF - 519 - 17

* Functions'of time
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TPBVP, the solution of which is thé nexs (ith) iterate.
‘Thus, the original nonlinear TPBVP has been replaced by
a séquence of linear TPBVP‘S. Useful conditions for the'
convergence of this iterative process have not yet been
established. Some con&ergence theorems are given in [2@]
for the related Newton-Raphson method [8] but these suffici-
ent conditioné for convergence are generélly very difficult
or impossible to check and are extremely restrictive in
the sense that they will not be Satisfied for most pro-
blems of interest. In practice, it is found that con-
vergence 1is géherally obtained if the starting functions are
"close" enough to the converged solution. |

The Newton-Raphson method of [8] was also extended
to cover the general terminal condition (Eg. (5.7)) by
Lewallen [3@]. Before diséussing the soiution of the
linear TPBVP (5.15) - (5.19), it will be made clear how the
present method differs from that in [3@}., Lewallen's pro-
cedure requires that the terminal conditions (5.6) - (5.8)

be expressed in the form

h(x(t,),p(tp),t,) = 0 ~ (5.20)

where h is an (n+l)-vector fﬁnction. In essence, thié
requires that v be explicitly eliminated by solving m of the .
n équations (5.6) for \>vand substituting in the femaiﬁing
(n-m) equations of (5.6) and in (5,8)._ Epart from the
‘algebraic complexity which can arise, the resulfing linear-

'ized’boundary conditions (linearization of (5.20)) are such
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that; ih general, avRicatti transférmationscannof be
utilized in solving the.TPBVP. Thus, the present treat~»
ment differs_firét, in the form in which the boundary con-
ditions aré_handled and second, in the mefhod of solving the

linear TPBVP. : -

5-4 Generalized Ricatti Transformation.

The standard method of solving the linear TPBVP
associated with.the Newton—Raphsqn method requires several
integratiohs of the linearized canonical sysfem,.Eqs. (5.15)
and (5.16). This gives rise to fundamental problems of
numerical stability [3£] since as a coupled system, the
canonical differential equations have solutions cbntaining‘
both fast—growing (unbdunded) and fast-decaying components,

An approach utilizing the Ricatti transformation
in connection with the Newton-Raphson method has been taken
[3@] for the special problem where the terminal time is
specified and the terminal states are free. 1In [35]; the
generalized Ricatti transformation was uséd«in connection
with a different computational technique. It is here
appliéd to the extended Newton—Réphson technique'of Section
(5.3).

Consider the tranSformation

p0)  [rv) ) 1)) (=] o)
(C3 I A C B TCO N 1€5) N VY I A€
Q] [P 5w a5 | |s()

(5.21)
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This transformation must be comoatible with the linearized

equations (5.15)- 5.19).>.>i¢*erent1au*ng Egs. (5.21) yields
Fé - | R i 1 b I = L “7 % g
X *m - - m s
of =1L Q m v [+ [ L7 Q m Ol +|r
' o 2p e, Sl am o . .
0 17w n ol | % a” oon 0 8
R | e _bijl L ol B E R I L
| | o (5.22)
where X = (A + BR)x + B(Lv + ltf'+'q) +a - (5.23)
and p=(C - aATR)x-aT IV 1, 4 ) + b (5.24)

(5.22) is to be an identity in x,?,‘and te, and the
Ricatti transformation (5.21) is to'bechmpatibie with the
linearized boundary conditions (5.17) —‘(5;19)! the Ricatii. -
coefficients must satisfy the di fe ial ecuations and |
uerw*nal cona;tcons liﬁtedA‘j Tc'le 5.2. |

Note that the dlfferentlal equatloas satlsfled
by 1 and 1. and by m and m are, 1n each case, of exactly uhe
same form; only the termlnal_condltlons are different. How-la
ever, examlnlng Table 5.1, if can be seen that if the pre—'
vious 1terate were in fact the extremal then X P'E Oi
and hence, a = a, é = B. Thus, 1n the llmlt as the itere
ation converges, l—% l m->m.ana hence the tran8¢ormatlon

matrix in (5. 21) becomes symmetrlc since R and Q are sym—

metric.
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Differential Equations and Terminal Conditions

for the Ricatti Coefficients.

Coefficient

Differential Equation

Terminal Condition

R

Il

R =RA + AR + RBR - C
. 7
L - (o 4+ RB)L

T.

Q = L BL

. T

3= (A" +RB)q + Ra - b
r = LT(a + Bg)

. . T

1= (AT 4 rB)L

I - (At 4 mB)I

5 - 181

3 = LYpI

- itm

We

Il

—
o
N .
i3

Byx
Py

0

R
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5-4.1 Computational Procedure.

R,L,l,i and q are integrafed in reverse time
from the terminal conditions specified in Table 5.2>t6 the
initial time. The remaining ccefficients are required only

at t = to and can be obtained by quadrature. The new

values of Vv and ty are found by solving

att) mls )| v | [®- s )%, - rlt)

= - (5.25)
ﬁT(to) (s )| | Q-*iT(tO)xo - s(t

which are the last two equation sets from (5,21) évalua£ed
at t = to. According to the actual Newton—Raphson linear-
ization of the necessary conditions, <P and Q) in (5.25)
should be zero. Step;size control_may be exercised, how-
ever), by requiring that only a fraction of the remaining'
necessary condition errors be corrected at any bne step.

Thus, at the‘ith iteration take

P NED . ’
= ¢t f? 0% et<l (5.26)
@} O

The other necessary condition errors, namely X, P and

(ng - P)g , may be limited in a similar way.
. S ' ‘

—

Having obtained the new estimates of vV and tf,
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the new state trajectory‘eétimaté is obtained by in-
tegrating (5.23) forward from to to tf. The new adjoint
Véctor estimate is computéd'from the first equation set in
(5.21). -

| Convergence islchecked_by evaluating_séme
distance function of the présent and previousbiterates.

For ekample, let

Tp = min(t, t%fl) (5.27)
énd let :
) Z = 1 . ’ i (5-28)
.| | |

Then, the distance between the 2n-vector functions of time

z (%) and z?éRt)defined on the intervals [to,t%}and

[}o't%—%] respectively is'given'by

”zi - zi_l“ = %max. (max'zi(tj - zi_l(t)‘)'+ wlt% - t%—w
te[to,%f] k ,
- . (5.29)

where w is a positive constant weighting the terminal time
“difference. The iterations are stopped when “zl - zl_l“ is

less than some convergence factor.

5-4.2 Stabilitv of the Differential Equations.

From Eq. (5.23) and Table 5.2, it can be seen that
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-there arevessentially only.tho fypeé'of différential equations
that.need be solved in this iterative-scheme.- The first is
the equation for R (fhe matrix Ricatti differential equation)
which must be solved in reverse t:me and the other is the
" linear system typified by the homogeneous part of Eq. (5.23).
The equations for L,1 and 1 are adjgint to this system as is
the equation for g but with a driving function. All the
others can be solved by qﬁadrature5

| Sufficient coﬁditions for the asymptotic stability of
the Ricatti equation in reverse time have been given by
Kalman [34] and computational experience 1s reported by
Merriam [35] . From the work in this latter reference and the
experience of others including the author's, it may be said that,
-in practice, for problems having a nonsingular Huu (aé assumed
heré), the matrix Ricatti'equation has a bounded solution in
reverse time provided the Ricatti matrix has a positive sémi—

definite value at_% This statement applies in a neighborhood

£
of the sought fbr extremal. Thus, although adjustments may
have to be made to the startingAtrajectofies and initial valﬁe
of ¥ such that the above.cohditions apply, this had not yet
beenAnecessary in any computational work attempted. |

| Thesbehaviour of Eq. (5.23) can best be judged by
recognizing the homogeneous part as having fhe properties of'.
the élosed—loop linearized system for the,ﬁroblem with no
terminalvconditioﬁs (see Section 5—5.1).' Again possibly juét

~in a neighborhood'of the extremal,'it is safe to assume that
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~ the solution is decaying. The éQuations for IL,q,1 and 1
have gualitatively similar pronerties in reverse time
since they are adjoint to (5.23,.

In>summary,then, the differential equations which
" must be solved at each iteration have stability properties
which are much more desirablé fof ﬁﬁmerical computation than

those possessed by the coupled linearized canonical system.

5-5 Algorithm for Fixed Terminal Time Problens.

The linearization of the necessary conditions is
considerably less complex when tf is given explicitly since
variations in tf need not be considered and Eq. (5.8) is no
longer necessary. “ |

For this case, the appropriate Ricatti transform—
ation is | | '

o R L|[x a
= + - (5.30)

where R,1,Q,q and r are defined by the first five entries in
Table 5.2. If « and B are taken to be zero, the definitions
of A andﬁ@ given iﬁ Table 5.1 are correct for fhe fixed time
case as well. The decoupled state differential equation is

givén by | :

z = (A + BR)x + BLY + Bg + a (5.31)

In solving the free terminal time problem, it may be
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-desirablevto solve a,séquénce of fixeaétime broblemé-rathér

than to employ the algorithm ia Section 5-4. Referring to

Eq. (5.23), it can be seen that if the newly determined te

is larger than the old value, ext.~apolation bf fhe time-
_dependent coefficients in (5.23) will be réquired. Although in-
convenient, this difficulty is commou. to all optimization
‘techniques which determine a new estimate of the terminal time
at each iterétion. The fixed-time approach consists in guessing
a value for tf, solving the fixed—time problem and then re-
peating this for another.vélue of tf. From then on, the

sequence of terminal times {tg} is determined by

kil Lk t? - t?_l K
g5t g% L (——E ) (-5 : (5.32)

where (D, is defined by Eq. (5.8) and Qlk :,fL(t?). Equation
(5.32) is a discrete approximation of the ordinary Newton method

for finding the zero ofS](tf).

5-5.1 Free Terminal State. (m = O)

Since m=0, L,Q and r vanish and (5.30) simplifies

further to , ‘
¢ p=Rx+gq C (5.33)

The differential equatiéns for R and q are unchanged but the

terminal conditions become

R(ty) = @ (5.34)

“alty) ¢§ g = o (5.35)
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and the state equation is (5.31) with L = 0. For this special

case, the algorithm coincides with that in [32]‘

5-6 Numerical Integration-Méthod.

The choice of numerical integration procedure for

the extended FewtOn-Raphsoﬁ method‘(ENRM) requires some
consideration. At each iteration, there are two periods of_b
integration requiréd. The first isAthe reverse-time integr-
~ation of the Ricatti coefficients R,L and qrwhose equations
involve the stored time functions X,p. After obtaining the
other coefficients by quadratureiand solving for.v, the de-
coupled state system (5.31) which contains the stored time
functions just generated as well as X aﬁd p is integratea for-
ward. If it is desired that elaborate interpolation of »
stored data not be required, two conclusions should be evident:
throughout any integration the same step size should be used
and the same step size should be used in integrating the |
Ricatti system as in integrating the state equations. Thus,
numerical integration methods which'attempt to "optimize"

the step size at each step or which exercise error control by
interval halving during anbintegration are not desirable.for
the purposes of this algorithm. Furthermore, the popular
single-step methods such as ?he Runge—Kutta method are not a
vgood choice because they requife évaluation of the derivativé
functiohs at fractions of intérvals‘which agéin would requife

“interpolation of time functions.



76

These considefations dictatokthat.a'multisteb pfe—
dictor-corrector integration formulé be uséd. Although sbme—
what more difficult to use than Runge;Kutta méthods, predictor-
corrector integration is aﬁoﬁt twice as fast for a given
_accuracy (truncation error) and a fixed étep size. . A technique
found ﬁost_satisfactory for the ENRM is a fifth-order method
due té Hamming [36] in which the corrector is not iterated
and only two evaluationé of the derivative functions are

required at each step (see Appéndix c).

5-7 Neighborhood Optimal Controller.

The iterative scheme which yields the optimal tra-
jectory alsoc determines the time-varying gains for optimal
linear feedback control about the optimal tréjectory. Con-
sider the fixed terminél time problem and the algorithm of
Section 5-5. (The following discussion applies.with only
slight médifications to the free time case as well). If the
previous iterate was, in fact, the optimal trajéctory, the
lineari;ed cohtrol correction required for deviations

from optimal is given by BEq. (5.14):

Su= —H;i(HuX Sx + fg $p) ‘ | (5.36)

From the first set of Egs. (5.30), the perturbation &p is
‘given by .M.H,Ei}1-'~ | »

Sp =R &x + L& »l ' _:  (5.37)
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and. the second set specifies &w:
CBv= - ot bk ' '5.38)

Substituting (5.37) and (5.%8) into (5.36) yields the optimal

- linear neighborhood control law:

-K(t) &x |  (5.39)

Su =
where  K(t) = HL(H_ + £ (R - 1Q7LD))  (5.40)

The neighborhood controller (5.39) has been derived several
times before from differént approaches (see [26].and [3?], for
- .example) . Becaﬁse of the terminal condition on Q, the gain
matrix K is infinite at- the terminal time unless the terminal

states are free (m=0).

5-8 "Point-Type" Terminal Condition.

In this section, the fixed terminal time algorithm of
Séction 5-5 is specialized to the "point-type" terminal condition
"Bq. (5.1), in order to compare the present method with that
advocated in [8]. It is furthér assumed that ¢$=0 although
this is not restrictive because é may be included in tﬁe per-

formance integral. The terminal condition on p thus becomes,

from Egs. (5.1) and (5.6),

-

p(ty) = I__v o  (5.42)

The Newton-Raphson method (NRM) of [8] solves the

linear TPBVP specified by Egs. (5.15), (5.16), (5.1) and (5.41)
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by writing the solution to the linearized canonical éystem as

'éﬁm) A - _ |

= Y(t)e + y(t) (5.42)
p .

Lp(t) -

. where Y(t) is a 2nxn matrix of solutions to the homogenéous part

of Egs. (5.15) - (5.16) with initial conditions specified by
Y(M:[TQJ o (5.43)

In-in Eq. (5.43%) is the nxn unit matrix, O is the nxn zero
matrix, c, in (5.42) is. an n-vector of undetermined parameters,
and y(t) is a 2n-vector particular solution of (5.15)-(5.16)

with initial conditions

y(0) = _(g) | (5.44)
p : o

where p(0) is the latest estimate of the adjoint initial con-
dition. ZEquation (5.1) épecifies thé first m values of x(t,)
and Eq. (5.41) specifies the last (n-m) values of p(tf) t§

be zero. Thus, n components of the combined'(x,p) Qector have
known terminal values. From Hg. (5.42) at t=t,, the corr-

' esponding n équations are extracted and solved for cp. The new

estimate of p(0) is obtained from (5.42) at t=0, that is

p(0) = c, +5(0) (5.9
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" and the new trajectory is générated'by integrating (5.15)-(5.16)
‘with the new initial condition or can be computed directly
from(5.42> if the solutions Y(t) and y(t) are stored. Tt
can be seen that the constant Lagrange multiplier WV is un;
necessary and that the specified ﬁerminal values are met by
every iterate. o

For the extended Newton—Raphéon with Ricatti trans-
formation aﬁproach (ENRM), the terﬁinal conditions of the

Ricatti coefficients are, in this special case,

Q(tf) = 09 Q(tf) = 01

R(t‘f) =0, ‘_L(tf) =1

I'('tf) = —Xf (5-46)

p(te) = L(to)v (5.47)
W =0= ‘LT(tf)x(tf) + r(t,)
which are identical with the requifed conditioné (5.1) and
(5.41). Hence, the terminal conditions are satisfied by
every iterate in-the ENRM as well.
To illustrate the application of fhe two methods and
to compare their suitability for numerical cdmputétion, a.

simple closed-form example is presented in the next section.

5-9 ‘Simple Example.

The dynanics are first order

X =u S x(0) =x, | _.(5.4'8)
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the final value of x is specified
\ A '

'andrthe performance functional is quadratic
e

I ! Lr (% + u)dt  (5.50)
O . | - -

The canonical system and terminal conditions are

%= -p o o (5us)
P=-x  (5.52)
x(ty) = %, ~ (5.53)
p(ts) =V (5.54)

Standard approach (NRM) .

Following the procedure described in Section 5-7,
the solution is written as Eq. (5.42) where
. o . -1 | 0 _
Y = Y - ¥(0) = _ (5.55)
-1 0 : 1]
Solving (5.55) yields
-sinh(t) . ’ :
CY(t) = o (5.56)
cosh(t)
The particular solution of Egs. (5.51) andl(5.52)bwith initial

condition (5.44) is
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cosh(t)xO - sinh(t)ﬁo . _
y(t) = o | | (5.57)
—sinh(t)xo + cosh(t)ﬁo _

Equaticn (5.42) becomes, fdr this example,

x(t) _sinh(t) _ rcosh(t)xoé sinh(t)P_
p(t cosh(t) -mnh(t)xo+ cosh(t)p
| S L | L : Q]
- (5.58)

Solving the first of Egs. (5.58) at t = t, for c, and with

Eq. (5.53) satisfied yields

o = B, + coth(t,)x, - csch(tf)QE (5.59)»

"and the new estimate for p, is, from (5.45),
A - N A x
P, = cgth(tf)xo - csch(tf)xf = p, (5.60)

* . .
The value Py given by (5.60) is the optimal initial condition
for p, that is, the method has converged in one iteration
since the original TPBVP was linear.
Now suppose that on the previous iterate, the estimate
of b, was

P, = Py + e | (5.61)

Then, as is easily demonstrated, the tefminal values for the

particular solution (5.57) would be
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x(tf) Xf_~ | 4sinh(t£yr |
= + | - | € - (5.62)
' *
p(tf) Pe cosh(tf)

. * .
- where Ps is the optimal terminal value for p. For example,
. A * oo A ' .
if tf = 10 and_xf = 0, then Pe = 0 and

x(tf) -11,000
- € (5.6%)

p(tf) 11,000

New Approach (ENRM).

From Table (5.2) and Eq. (5.46), the Ricatti coeff-
icients satisfy the following equations and terminal con-
ditions

5 2

-R = R° +1 R(tf) =0
L - R(t)L L(ty) = 1
-q = -R(t)q Calty) =0 (5.64)
-r = LBq _ r(ty) = ~Xp
[ 2 .
-Q = -L Q(tf) = O;
whose solutions are given by
R(t) = ténh(tf—t)
L(t) = sech(tf—t) 
-alt) =0 L (5.65)
Q) = ~tanh(t,-t)
I‘(t) = —,};f
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No%e that all solutions (5,65) are bounded as-(tf—t%—b-oo.

The new value of \ is given by

.‘V = —Q_l(O)(L<O)XO‘+ r(O)):

v(5.66)-

A4
sech(tf)xo— Xp =V

» tanh(tf)

which is also optimal because of the previously mentioned

linearity. The decoupled state system satisfies

x = -R(t)x - L)V (5.67)
and at t = tf,.

x(t.) = sech(tf)xo - tanh(tf)\) (5.68)

)

Again, suppose that the previous estimate of y was

vV = v o+e | | (5.69)
Then, from (5.68),
Jx(tg) - Rp| 5 e . '(5."79)
and from (5.30) with tf.ﬁ‘lO as before,
p(te)  x(t,) | | (5.72)

vThus, the sensitivity of the end values to changes in
the boundary value parameter is reduced several orders of

magnitude by utilizing the approach of this chapter.

N
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5-10 Nvumerical Example.

The many optimal trajectories and control programs
required for the_feedback control éynthesis in Example 2,
Section 2-5, were computed by ths method of this chapter;

In particular, the method outlinéd in Section 5-5 for solving
free terminal time problems és é ééquence of fixed time pro-
~blems was employed. Typically, six ﬁo eight.shifts of the
terminal time according to Eq. (5,32) were required to reduce
O, to zero. In this section, the numerical solution of a
problem very similar to fhe one in Section 2-5 is discussed
In order to compare the ENRM and the NRM, the terminal con-

ditions are of the point type, namely,

(5.72)

and the terminal time is considered fixed at tf = 57 Other-
wise, the dynamics, Eqs. (2.31) and (2.37) and the performance
functional, Egs. (2.32) and (2f37) are the same as in.S¢ction
2-5. The initial condition is taken tovbe X? = (2,0,3).
Linearization of the canonical system Egs. (5.3) -

(5.5) and eliminating control results in
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o o o

0 1 0 | 0
|.
X 0 O 1 1 © 0 0 x 0
el <4 y -
—(l+3xl) -1 -1 : 0 0 -1 gxl_
e e e - — — — _ - S N
- , =2 —2-
—3+6le3 O O : 0 0 (l+3xl) —6le3
P 0 5 0,1 o 1 p 0
L _ L 0 0 -2 | 0 -1 1 - L J - 0 .
(5.73)

which corresponds to Egs. (5.15) and (5.16). From Eq. (5.41),

the terminal adjoint condition is

‘The appropriate Ricatti transformation is given by Eq.

(5.30) where the differential equations for the Ricatti coeff-
icients are listed in Table 5.2 with terminal conditions
(5.46) (£, = 0).

To initiate the ENRM, "starting elements" must be
supplied: initial state and adjoinf tféjeétorieéﬁi;ﬁ.and an
initial V. Quite arbitrarily, islvand UE were each taken

to be unity. Initial trajectories were generated by choosing
a reasonéble feedback control (programied control Would do
equally as well) and integrating the State'equations (5.3)

forward, determining the terminal condition on p(tf) from

Eq. (5.6) using_i(tf)'and VvV, and integrating the adjoint
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system (5.4) in reverse tim2 back to the initial time with
x = x(t). Two initial contrcls were utilized: the linear

Ricatti control

Up = -X;-3%,-2x (5.75)

1 3
and a control which was deliberétély chosen to be poor,

38 o (5.76)

Uy =X 27

A1l numerical integration in these trials employed
the procedure described in Appendix C and quadrature was by
Simpson's Rule. The integration step size is determined by
the requiremen% for an acceptably small error in the solufion,
error arising mainly from the per step truncation error of the
integration formula. For both the ENRM and the NRM; a con—
venient measure Qf integration accuracy exists, namely, thé
precision with which the linearized terminal conditions are
met at each iteration. The linéarized terminal conditions
would only be satisfied exactly if the numerical integration
and intermediate data processing could be performed without.
error. Thus, the extent to which the linearized terminal
conditions are not met is a convenient indication of the trunc-
ation error accumulated and probagated each iteration.

" Both the ENRM and the NRM with 50 step integration
converged tgvthe extremal when the Ricatti control (5.75)
was used to start the ﬁrocess# For the particular initial
state (2,0,3), the Ricatti control proauces a trajectéry

_ not too unlike the extremél. In Table 5.3 is listed data
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' Table 5.3 Progress of the Iterates: Eq. (5.75) as
Initial_Condition' :

Extended Newton-Raphson - Newton-Raphson

{Iter.| Trajectory Xi(5) X2(5) Traject- Xl(5> -xé(S)

No. Norm : ory Norm

1 {4.3 20t | 1.1 1074 0.5 1074 3.8 101 |2500 1074 3500 1074

2 8.3 107t |-.9 1.0 || 2.610° | ;15 -18

3 (1.1 1072 |-1.0 1.2 | 1.1 107t 2.0 2.4

4 |4.0 1077 |10 1.2 2.2 1070 -L3 1.6

5 |7.6 107 |a.0 1.2 2.0 1074|-1.5 ~1.8

6 |9.5 107° |-10 1.2 1.6 1072 o.8 0.9

which describes the progress of the iterations for both
methods. The trajectory norm is given by BEg. (5.29) with
w=0. Note that although the staté terminal condiﬁions are
wltimately met with about equal precision by either methed,
a comparison of the precision away from the extremal
.(initially) indicates that the accumulated error due to
numerical integration is considerably less in fhe ENRM than
in the NRM.

The computer (IBM 7044) time per iteration is slightly
1ess for the ENRM than for the NRM: 1.4 seconds as
opposed to 1.7 éeconds. This shorter interval is a result of
the fewer number of differential equations to be integrated
at each iteration (18 ihtegrations plué 5 qﬁadratures com-
pared to BQ integrations for the NRM). 1In fact,.if a single
quadrature is counted as being equivalent tQ half an integr—
ation, the number of integrations per iteration ié always less

for the ENRM and the difference groWs more significant as the
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number of terminal conditioné (m).decreases.

When control (5.76) wés used to obtéin a starting
trajectory, the ENRM converged agéin using 50 step in-
tegration but the NRM diverged. Because the same TPBVP'

" . is being solved at each iteration‘in.both methods, divergenée
of the NRM could‘only be caused By'éxoessive integrétion
error. Successive doubling éf the number of steps finally
resﬁltéd in convefgence with 400 step intégration. The
initial and final iterates are displayed in Figs. 5-1 and

5-2 and the progress of the—iterations is‘shown in Table

5.4. Again it can be seen that even with the much smaller
step size, the ihtegration error is much iarger in the

NRM as indicated by the terminal values of the early

" iterates. The computer time per iterate was 13.2 secﬁnds for
the NRM and 1.4 seconds for the ENRM.

This example gives further substantiation of the
claim that the differential equations pertinent to the ENRM
can be numerically intégrated with significantly less accumul-
ation of error than can thé lihearized canonical system,hfor |

the same integration step size.
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Table 5.4 Progress of the Iterates: Eq. (5.76) as Initial Control

Extended. Newton-Raphson

Newton-Raphson |

vlﬁg?. Traggggory Xl(S) _x2(5) Tragiggory ' Xl(S) x2(5)'

1 |32 102 | 1.5 104 3.5 1074 1.8 10° | -53,000 1074| -240,000 1074
2 6.4 10 |-0.9 ~  |-1.9 7.6 10° | 1000 " 4300

5 | 5.5 100 |27 =33 5.5 107 | -1600 7800

4 | 2.5 10t |-0.5 -0.3 8.9 10T | -400 1 1700

5 | 1.4 108 |-1.1 0.3 1.1 10° | 30 150

6 5.6 100 | -0.9 0.8 4.6 108 | -3.9 1-13

7 2.3 107|410 1.2 1.0 100 | 19 48

8 |24 107|-1.0 1.2 1.1 100 | 6.5 9.5

9 9.5 107°|-1.0 1.2 1.6 10° | -6.5" 7.7

10 | 5.7 107°|-1.0 1.2 7.8 1072 | 6.3 7.6

11 | 9.2 1070 | -7.3 8.8

12 7.8 1070 | 4.4 5.3 g

16



- 6. GENERAL THEORY OF SECOND VARIATION METHODS

. 6-1 Introduction.

The extended Newton—Réphson method presented in ~
Chaptér 5 has local convergence properties characteristic
‘of a group of optlmlzatlon technlques, namely, rapid
("quadratic") convergence in a certain neighborhood of the
extremal. InAuhls chapter,‘an entlre class of rapid-con-
vergence numerical optlmlzatlon algorlthms 1s derlved
Algorlthms belonglng to this class are herein given the name
second variation methods.

Many, but not all of the second variation method
have already appéared in the literature. The approach taken
in this chapter develops_these existing techniques from a
single, unified point of view allowing the relationships
‘between them to be seen clearly. It is interesting that
certain of the established methods have been called "the
second variation method", most commonly [Bj], [38].and
occas1onally [?Q] The term "secoﬂd Variatioﬁ method" is
made pre01se in thls chapter and in so doing, other 1mport-
ant methods in addltlon to ﬁhe three just cited are shown to
belong to the same class of algorithms.. These include the
"succeséive sweep method" [ﬁi}, the function-space Newton-
| Raphso? meth@d [8], and the extended Newton-Raphson method
of Chapter 5. ‘ |

The recognition of a class of second.variation methods
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is valuable for other reasons as well. ‘A baéisi is pro-
- vided for developing newvand useful optimiéation techniques
froi this class. In addition, computational devices
utilived in one of these ﬁethodé can eaéily be eXﬁlOite@
'in the others when fheir'underlyingbsimilarities are
exposed. For example, thé use of. the generalized Riéatti'
transformation in the pfevious chapter was suggested by
an élmost identical transformation in MéReynolds and
Bryson [?j] who propose the successive sweep method.
Although the advantages'havé not yet been inveétigated,
thé Ricatti transformation can be applied in Conjuﬁction-

with any second variation method.

6-2 PFirst and Second Variations.

The control problem dealt with is again that
sPecified by Egs. (1.1), (1.2) and (1.3). In order to
simplify fhe ensuing derivations, the terminal functions
@ and <L>fhﬁs depend only onlthe terminal value.Of the
state. Again the assumption is madeuthat any inequality
constraints on the éontrol or state variables are
accounted for by including them as penalty function terms
in the performance functional integrand.

Following the,variational.calculus method of
Lagrange mUltipliéfsz a time-varying n-vector p and a con-
staﬁt m—véctof v afe introduced to forﬁ the augmented.

functional Ja:
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| , . _”.; tf _ . T .
Ja(u’X,P’V,X<tf)) = é(X(tf),\)) + f (H(Xypfu’t)"p X)dt

- ° | (6.1)

wnere Blx(t),v) = Px(t)) + V' Wx(t,)  (€.2)
H(x,p,u,8) = P(x,u,t) + p £(x,u,t) (6.3)

"The arguments of Ja are now ccnside?ed to be'independent and
subject to no constraints. Ja has a étationary point with
respect to its arguments at the same function u for which
'J(u) is a miﬁimum subject to the dynamical constraints and the
terminal constraints. |

Let ﬁ;i,p,s,i(tf) be nominal values of the arguments

<l

of J_ and. &u=u-1, 8 = x - %, etc. be perturbations from
these arguments. Assuming that Jé is twice differentiable [?é]
"and that 5X(to) = 0, the change in-Ja to second‘order, derived

'in Appendix D, is given by

'AZJ;(‘ Sul, SX,A Sp,Bv, §X(tf)) = CSJ% + (SZJa (6.4)
where » : tf - : .
cSJa: f (UT Su +PT5X + XT 5p)dt_+ gTév + nT&c(tf)
(6.5)

is the first variation and

cSZJa = %Sx(tf)réxx§x(tf) + SvTﬂ)Xéx(tf)

% | : |
f.
: T Ce T
+\f (5p(fX6X-+fu5u-OX)+~%5xI&X5x
‘t ’ . .
o

| + 6uTHﬁxr5x + 1?C(SuTHuuéu)dt ‘ (6.6)
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is the second variation. The coefficients appearing in the

first variation are defined as follows:

U HL(%,5,8,8) - R
P - HL(Z,5,0,t) + b (6.8)
X = £(%,8,t) - % (6.9)
§ = Wx(ty) - (6.10)
m= PL(R(5,),9) - 5lt;) (6.11)

where the vector functions u,p and X are defined on [%6,t£]

and § and w are constant vectors.

6-3 Second Variation Methods.[40]

It is convenient for the subsequent discussion to

define the set

N A= {U’P,X’E ’“} ) ' (6-12)

The'five vectors which compose the set /A will be feferrred to
as the elemenfs’oflj\.. A necésééry°conditigh that a nominal
path be optimal is that <5Jé = O which requires thét the -~
elements of A\ be zero over their domain of definition. The
resuiting equations are the standard necessary conditions for
an optimum. It is_desiréd to construct an iterative prqcess'
such that the "fixed'pbint" of this pfocess is the set of
- arguments of Ja ﬁhich safisfy these necessary conditions.

" Regarding the nominal values as values obtained on the
)3t

(-1 iteration, the iterative procedure is established by
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‘adherihg to the foliowing,steps:
A, Yome elements of the éet.[\.are constrained tb be zero
‘dver'tneir domain of definition, that is, certain of the
necessary conditions are safisfied at each iteratioﬁ. ‘Lét
6JR denote the remainder of the first Variétion after imposing
the'selecteﬁ constraints.

B. Determine the increments bu, &x, &p, v, Gx(tf) so

that 8,0, = &J +&°7, is stationary.

C.. To satisfy the necessarchonditibns selected in step A4,
certain missing parameters and/of.funétions must be furnished.
The new (i#h) iterate is obtained by satisfying the constraints
impoéed in step 4, using thevincrements computedbin step. B to
forﬁ the new estiméte of any missing parameters of functions.

| To clarify step C, consider the case where the imposéd
constraints are X = 0, P = 0, nm = O, that is,.each iterate
must éatisfy - o

%= £(x,u,t) (6.13)

I.) = —H;I;(Xyp,u;t)v (6.14)
p(ty) = B3(x(ty),v) | (6.15)

Step C wouid then involve integrating (6.13) forward with
, ui - utl oy Su and (6.14) backward with ferminal condition
(6.15) where \)i = \)ifl' + 8. The increments Su and Ow
are determined in step B.
As another example, assume that the constraints U = 0,

P=04and X =0 are imposed, that ié, each iterate must



97

- satisfy Egs. (6.13), (6.14) and’

,Hg(x,p,u,t)‘: 0 : (6.16)

If (6.16) is uéed to determine u'. then all that is required
for the integratibn of (6.13) andu(6.l4) is a new estimate
“of the missing initial condition ?ikto). This is found in
step B by evaluating 6p(to). | |

Iterative computational algorithms which can be derived
by following steps.A—C abovefwill be defined as second

variation methods.

6-3.1 The Auxiliary Minimizatidn Problemn.

Step B of the iterative procedﬁre will now be performed
for the general case where all the eleﬁents of the sef.ﬁxare
unconstrained.‘ Stated in other terms, all of the standard |
- necessary conditions for a minimum are relaxed. ‘This analysis
therefore includes all possible selections of felaxed
necessary.cdnditions asAspecial‘caSes. Of course, this most
general case 1is itself a second variation mefhod.

The second—ordér functional A Ja_is rewritten here in

2
a slightly different form:

8,0 = wT 8x(t,) + +6x () B, Sx(ty) + & (R+w 8x(t,))
% - - .
£ -

,+f' ( SPT(X'-E fX5X+fu5u—6i) +pT6X+UTCSu

t
0

+ ¥ éxTHxxsx + SuTHuXéx + %6uTHuu Slu)dt
| | (6.17)



98

To determine &u, 8x, 8p, &V, -63:(.tf) such that A2Ja.is
stafionary, the first variation of A2Ja may be taken and

- set to zero. While this is stfaightforward, the labor ir-.
‘volved may be circumvented by recognizing AzJa as thé aug-.

" mented functional for an auxiliary minimization problem.

This axuxiliary problem has a linear differential constraint
8z = £ 8x + £ Su + X (6.18)
i X. u - » ‘

and &p is the Lagrange multiplier associated with this con-

~straint. The functional to be minimized is

o - L&D .
AZJ = CSX(tf) + +6x (tf) @xx éx(tf)
be -‘ |
ﬂf @T5g+ﬂﬁgu+%6gﬁméx+éﬂﬁméx
to o 1 T 5
+ +8u H ,Owdt
(6.19)
and the linear terminal constraint is
P bxltp) + § =0 | (6.20)

where &V is thé Lagrange multiplier assobiatéd.with this
constfaint. | | |

The necessary conditions for a solution to the
" auxiliary minimization problem are obtained from Egs. (6.7) -
(6.11) by setting the elemeﬁts of I\ to zero and accounting
for‘the_éhange in symboiism. This'yields Eqs.-(6.18),‘(6;2Q),
and | j

< 6;.) = Hxxéx + f}T{CSp + quCSu + P | (6..21)
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V . T - - v ) ) '. . » . \

0=H_ &x +‘fu_(Sp + Huuéu + U _' - (6.22)

Crltp) = B, Sx(ty) + W Ev+n o (6.23)
Equations (6.18), (6.20) - (6.23) represent a linear two=
point boundary-value problem (TPBVP). The equations assoc-

iated with any other second variation method can be obtained

difectly from Egs. (6.18),.(6.20) ~ (6.23) bylequating the

appropriate elements of the set /\ to zero.

4 6-%.2 Step Size Control.

From the equations for fhe linear TPBVP, it can be
seen that the "size" (in terms of appropriate norms) of the
elements Qf.[L defermine how large the perturbations of the
nominal values will be (ste? size). Since these relaied
conditions may be regarded as necessary condition errors,
sfep—size controi may be exercised by attempting to correct
for only a fraction of the total error in any one step. This
device was ﬁtilized in the techhique of Chapter 5, as well as

by others.

6-3.3 Solution of the Auxiliary Problem.

If Eq. (6.72.2) is solved for &Su (aésu.ming Huu‘to be
‘nonsingular) and substituted into Egs. (6.18) and (6.21),
the following linearizéd canonical system results:

éx ‘ A B Sx a

1
+

(6.24)
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where A.: fX - quuu ux. (6.25)
B = -f H 1fT - (6.26)
wuuu A _ . _
C - -H +H HT (6.27)
T XX ) XU uu ux
a = X - uly | o - (6.28)
u uu . : '
b--P +H H lU o | (6.29)
XU uu '

Two. basic approacheé to the solution of the linear
TPBVP (6.20), (6.23), (6.24) can be distinguished. In the
first approach, the linearized canonical system or its
corresponding adjoint is integrafed as a single set of
coupled dlfferentlal equatlons This~approach was outlined in
Section 5 8 in connection with the Newton-Raphson method The
‘'other technique utilizes the generalized Ricatti transform—
ation, as in the“extended.Newton—Réphson method of Chaptef 5.
The details of applying these two approaéhes are slightly

different fbr each second variation method.

‘6—4‘.Particular Methods.

The'purpose‘of this section is to relate the definition
of second variation methods given in Section 6-3 to some well-
known optimization methods. _it is claimed that these tech-
niques are second variétion.methods accprding to this def-
inition. Because each technique was briginally developed
separately and from different points of view, a brief indic-

ation will now be given of how the three steps in the
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definition apply in each case.

6-4.1 Successive Sweep Method. [33]

The necessary conditions satisfied at each iterata are

X=0,P =0and = =0. This corréSponds to the first
example illustratihg step C in Section 6-3 and the comments
there explain how the results of stép B are utilized in
Satisfying the selected constraints. As has already been
stated, a generalized Ricatti transformation was used in
solving the auxiliary minimizationvprqblem.

 The successive sweep method generalizes Merriam's pro-
cedure [3?] which treated the fixed termiﬁal time, free
terminal state problem. Thus, only the condition U = 0 is

not satisfied in Merriam's method.

6-4.2 Method of Breakwell, Spever and Bryson. [?é]

For this technique, the constraints imposed are X = O,
P =-0and U = O which cbincides‘with the second.example in
Section 6-3%. VIn essence, all the function constraints are
satisfied at each iterate and the adjoint initial conditioﬁ
is iteratiVeiy adjusted until the terminal conditions are met.
The linearized canonical system is treated in its uncoupled
form in solving thelinear TPBVinhichldetermines the in-
crement 'Gpo. For details of this phase, the.original
reference should be consulted. -

Another technique [Bé], though advocating an approach

based on removing the terminal conditions by penalty functions



102

in the initial phase of the computation, is idéntical to [2él

in the rapidly convérgent terminal phase.

6-4.3 Newton-Ravhson Methods.

In the Kenneth and McGill algorithm [8], the
necessary conditions satisfied at each iterate are glven by
U=0, §=0and & =0 whereas in the extended Newton—Raphson'
‘method of Chapter 5 and also in Lewallen [30] , only the
condition U‘: 0 is enforéed when the more general ferminal
condition is allowed. No: furthér discussion of these

methods is given here as they are discﬁssed fully in Chapter 5.
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7. CONCLUSIONS AND EXTENSIONS: PART IT

T.1 Conclusions.

A techniQue for solving the nonlinear two-point
bOundafy—value problem arising iﬁ_dyﬁamic optimization pro-
blems was presented in Chapter 5. Basically a function space
Newton-Raphson scheme, fhe method is applied to an optimiz4.
ation probleé with more general terminal conditions than the
original method [8];'.The method of handling terminal con-
‘ditions is different from either [8] or another work [30]
which also treats the general eﬁd conditions. A generalized
" Ricatti transformation is applied to decouple the linearized
canonical system, a procedure which considerably enhances the
numeriéal properties of the overall algorithm. This eﬁhancef
' mént takes the form of é greatly reduced sensitivity to bound-
ary value parametefs and differential equations which éan'be
' integrated numerically with less error for a given step size.
The new élgorithm requires considerably more fast memory since
the Ricatti coefficients must be stored. For on-line com-
putation, this is unquestiénably a disadvantage but for off-
,.line applications, as in the synthesis techniqﬁe of Part I for
éXample,_it should be unimportaht unless the problem isbvery
}big or the'available memory unusually small}

In Chapter 6, the extended Newton-Raphson method was
shown to belong to a c¢lass ofvalgqrithms called second vari-
,ation'méthods. The definition and development of this family
of élgorithms serves to,uhify several seemingly diverse optimiz-

ation techniques and provides a firm basis for further in-
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v Veétigation of computational methods bélonging to this

class.

7.2 Bxtensions.

It was aésumed in developing the extended Newton--
.Raphson method that étate and control inequality constraints,
’if any existed, were approximated by suitable penalty terms
in thé performénce functional. The penalty function approach
is often a convenient theoretical device but is not without
its disadvantages when actual numerical results are desired.
A_moré direct method of handling these constraints is desire-
_able. Thé case where magnitude limits are imposed on control
Variébles should be investigated first since it is the most
common type of inequality constraint and probably the easiest
to handle. An approach taken by Kenneth and McGill [éé]
tfeats the control bounds as additional algebraic constraints
to be satisfied along trajectorieé and then applies the
Newton-Raphson method to the nonlinear pfoblem having algebraic
as well as differential constraints. Future work should
examine the possibilify of applying this technique while con-
~tinuing to utilize the generaiized Ricatti transformation.

An investigation into the advantages and disadvantages
of using the generalized Ricatti transformation in con-
junction with second variation methods where it has nof yet
" been appliédﬂﬁightyield improved algofithms; In particular,
the method of‘Breakwell, Speyer and Bryson outlined in Section

6-4.2 should be examined in this connection. _The suitability
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- of unexploited second variation methods for numerical

computation is also a subject for a future research.
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APPENDIX A

Approximate Solution of the Hamilton-Jacobi Eouation, Example 2.

Let V(X) denote the minimum value of the functionalv
(2.%2) starting from the initial state x. A necessary con-
dition for optimality is given by the Hamilton-Jacobi

equation (v~=1lid for the problem class in Example 2):

H(x,V_,u (x,V)) = mth(X,VX,u) =0 (A1)
7 T K ‘ |
where H(X,Vx,u) = 5(x Qx + W Ru) + fo(x,u,t) (A,2)

Hence, for the problem in Section 2-5, the Hamilton-Jacobi

equation is:

T T.T ~T.T
xQx + VX(FX + £(x)) + (Fx + f<x)) Ve - VGV =0
(4:3)
and the optimal feedback control is given by
% :
w (x,Vo(x)) = -GV (x) (4.4)

~An approximate solution'of (A.3) can be obtained by
aésuming a powér series for V(x) and then equating coefficients
of like terms to zero. Details may be found in Merriam [35].
Since, for this pfoblem, V must be an even function of x,

a power series up to fourth-power terms may be written
V(x) ®3xRx o+ T(x) o (as)

where e is an nxn symmefric matrix and
| 4 i C e iy
o 4-i_ (i-3)
Vi) = 25 20 8% x, J x%
: i=0 J:O

R
I

N TR T (a.6)
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After computing the pértial derivatives, (A.S)-is‘substituted
into (A.3) and coefficients of like terms are collected and

set to zero. This results in
R -x | - | (£.7)
where K is defined in»Eq. (2.38), and fifteen linear algebraic

equations for the coefficients ak,k =1,...,15. The solution

of these equations is listed in Table A.1.~

Table A.1
al 8.4 8.7 alo 313
82 85 ag 811 414
a3 86 29 812 815
0.3228 1.2772 0.9088 0.0132 | 0.0960
0.5441 0.1456 |. 0.5250 0.2311 | 0.0199
~0.5000 0.0110 0.1324 | 0.2272 | 0.0017

From Eqs. (A.4), (4.5), (4.7) and (2.%6), the sub-

optimal control is given by . ~

<>

[«
X

|

u, (1) = ug(x) - (a.8)

Q
A\
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APPENDIX B . T

NeWtOn—Raphson Linearization of Equations (5.6) - (5.8),

Tfeating Eq. (5.6) first, the first-order expans:on

is

T -
Ape =§X - f)(tf) + ixxAvafq)ia\)*_ §Xt6tf (B.1)

" Wwhere, to first-order, | .
bp, = Sp(tf). + p(tf) étf (B.2)

b, - 'csxg‘t'f) + %5(T) St

(B.3)
Substituting (B.2) and (B.3) into (B.l) and solving for p(Ef)
results in Bq. (5.17). |

Similarly for Eq. (5.7),

Plxlty),ty) =0 = Brgp by + 88,  (B.4)

which is the same as.(5.18) when (B.?) is substituted.
The Newton-Raphson linearization of (5.8) is given

by
_ ’; o . ,
=0 =Q+QXAXi + HpApf+ H Au+ @ &v +.th5tf_ ,
' (B.5)

Theterm in Auf drops out since Hu — 0 at each iteration. Sub-

‘stituting (B.1l) into (B.5) yields

Q=0 =0+ B (87 - 5(T)) + (Q + H B, )ox,

+ (<P$ + Hpﬁ)g YOV + Qg + Hp@xt)éff (B.6)
.

If (B.3) is substituted into (B.6) and noting that H = F
Bq. (5.19) is obtained.
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Hamming r36] Numerical Integration Formula.

The differential equation to be integrated is

assumed to be of the form

% = f(th)

Le# tn = tO +.nh, Xn = X(tn)’

h is the step size and let fn_
Predict: Ppyl = ¥po3 *

”h‘MOdify: mo.1 =Py

Correct: e . =% (9%
n+l — 8 n

Modify: X1 =% +

Note that oniy two evaluations

each stage.

The truncation error term

(0.1)'

where n is the stage index and

:_f(Xn,tn);M'Then the formula is:
(21, —-fn_l +2f, ) (c.2)
5= (o, - ¢ (c.5)
T Xp2 7 3h(f(mn+l’tn+l)_+

| 2f, = T 1)) (0.4),
I%i(pn+l - Cn+l) (¢.5)

of f are required at

is proportional to n,

To-étart the integration (first three steps), a fourth-order

Runge-Kutta (Gill modified) routine was used.

At the fourth

stage, which is the first stage after the Runge-Kutta integr-

ation, values are not available for P, and ch

and hénce the’

predicted value cannot ‘be modified.
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Seconi-Order Expansion of the Ausmented Functional.
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The change in J,, Eq. (6.1), is expanded as follows:

AT, =B 8x(t,) + B v+ +0x(t,) B Sxlty)

+.6‘3T§ Sx(tf) + ¥ SVT@\N Swv

vX
te

t
e

T . D 7
f %CSP pr6P + 8p HpuCSu 4+ Su HuX(SX

+ %SuTHuuSu - (Sijlc - ﬁTCS}.c - CSpTSJ'C)dt

+ Terms of order 3 or more

’ T el T T |
+ f (HXch + HPCSX + Hu&l + 16x Hxxéx +(Sp HpX(SX

(D.1)

Simplifications can be made if the following relationships

are recognized:

§W= 0, pr = 0, Hp = f, Hpu
: ~T
pX =T iv:(p ’ va

Also, an integration by parts is performed:

b e

Assuming 6x(to) = 0, Eq. (D.i) becomes

0]

t

.
_f 5T 8xdt = -p- 8x | J_rf‘f)T(Sth
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b3, = (B, - 8o Exlty) + &P

X

1 6x() T By Sxlty) 4 &V P, Bxly)

tf & :T 8: 5 T‘- PN
+-S~ (Hu u.+ (Hx + p;) X f p (f - X))dt

0

ty | |
+j ( 6pT(fX5X + fuéu -8%) + %6XTHX-X6X
o A

+ 6uTHuX(SX + + éuTHuué w)dt + 3rd order terms
(D.2)

By definition [3@], if Ja is twice differentiable, the first
variation can be identified_as the linear functional part
of AJ, (Eq. (6.5)) and the second variation as the quadratic

functional part (Eq. (6.6)).
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