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ABSTRACT

For any cardinal number K > 2 and any non-empty
class of rings & we make the foilowing definitions. The
class R(K) 4is the class of all rings R such'that every
subring of R which is generated by a set of cardinality

strictly less than K is in R . The class Rg(K) is the

class of all rings R such that every non-zero homomorphic
image of R contains a non-zero subring in R which is

generated by a set of cardinality strictly less than K .
Several properties of the classes Rg(K) and R(K)

are determined. In particular, conditions are specified
which imply that R(K) is a radical class or a semi-simple
class. Necessary and sufficient conditions that the class
3 of all Rg(K) semi-simple rings be equal to 3(K) are

~glven.

The classes 8(XK) and Rg(K) when K = 2 or
K = §{O are considered in detail for &arious classes R
(including the cases when & is one of the well-known radi-
cal classes). In all cases when R is one of the well-known
radical classes it is shown that ®(2) and R(}{O) are radical
classes and whenever they contain all nilpotent rings they
are shown to be special radical classes. Those radical
classes R(2) which are contained in FC (R ¢ FC if and

only if for all x € R, x 1is torsion) are characterized.



iii

Let R be any radical class. The largest radical ~
class H(}%o) (if one existg) such that H(}{o)(R) n R(R) =
(0) for all rings R 1is defined to be the local complement
of ® and is demoted by ® . If & = R(}_) then the local
complément R exists and R = R(2) . The local complements

of all radicals discussed are determined.

We are able to apply some of these results in order
to classify those classes of rings which are both semi-simple

and radical classes.
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INTRODUCTION

Thé~purpose of this thesis is to investigate radi-
cal classes and semi-simple classes which are determined by
conditions on finitely generated subrings. A class of rings R
will be called a local class if a ring R ¢ f 1if and only .
if every finitely generated subring of R satisfies some
Special condition. Similarily, a class of rings R is an
elementary class if a ring R € R 1if and only if every sub-
rihg'of_ R generated by one element satisfies some special

condition.

Let us consider some examples. Clearly the class
of all commutative rings is a locallclass since a rihg R
isvcommutative if and only if every finitely generaﬁed.sub-
ring of R 1is commutative. This class of rings is not an

elementary class.

The class of all nil rings is an elehentary class
since a ring R 1is nil if and only if for all x e€ R the

subring generated by x is nil.

We:shali prove that the class.of all Jacobéon ra-
dical rings is not a local clasé; Notice thatAthe defini-
tion‘of-a Jacobson radical ring (for all x € R there is a
y € R such that x +y + xy = 0) involves the existential
quantification of a ring element; On the other hand the‘de-

finition of a nil ring involves only the universal quantifi-

cation of ring elements. This illustrates what we would



'naturally expect : that classes of rings which are defined
by conditions involving only universal quantification of

\ring elements would be local classes whereas classes of rings
which are défined by conditions involving existential quanti-
fication of ring elements would ﬂot bem}ocal classes: qu
example, we would expect that the class of all rings satis-

fying a given set of pdlynomial identities would be a local

class.

In Chapter.II we consider some general results
about local classes. In particular, we specify several con-
ditions under which local classes are radical classes or semi-

simple classes.

The remainder of the theslis is devoted to a consi-
deration of specific local radical classes and specific local

semi-simple classes.

Any class of rings R determines a local and an
elementary class (the class of all rings such that every
finitely generated subring (éubring generated by one element)
is in R). We consider the local and elementary classes de-
termined by the well-known radical'classes. All of these
classes aré radical classes and those which contain all nil-
potent rings are shown to be special radical classes. In
this and in other ways we arrive at several new radical
classes. All'those which are elementary classes and which
are contained in FC (FC is the class of all rings R such

that for all x ¢ R, x 1s torsion) can be characterized as



Tsums" of certain simple elementary radical classes. In some
- cases we are able to obtain structure theorems by assuming

certain chain conditions.

Any class of rings which is closed under homomor-
phic images (actually a slightly weaker condition is suffi-
cient here) determines an elementary and a local semi-simple

class. These classes are investigated in Chapter IV.

Following Andrunakievic [2] we define local com-
plementary radicals and determine the local complements of

the radicals which are discussed.

Finally we are able to apply some of our results
in order to classify all classes which are both semi—simple

and radical classes.



CHAPTER I

PRELIMINARIES

1.1 RADICAL THEORY:

In|this thesis we shall use the following notational
conveniences;
(1) Let R be.a ring:
| (1) If S c R, <S> = the subring of R generated by
the elements of S .

Xy ER , <x Xy2 =

1’ o0 0y N ‘1’loao,

<Ly, wens X}

(i1) If x N

(ii1) If S <R, (S)R = ideal of R generated by the
elements of S .

(iv) If x

1’ oo'o_' XNGR, (Xl’ oy XN)R=

([xl, ce, XN})R .-

Py

R

(2) We shall write I<Q R for "I is an ideal of R."
(3). Classes of rings will usually be denoted by script
| letters and all classes of rings are assumed to be
non-empty. |
(4) If R and ¥ are two classes of rings we shall

write ¥ < R for "W is contained in R".

(5) Two classes R and ¥ are unrelated if neither

R<H nor LR .

Let R be a class of rings. We 1list several
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éonditions which R may satisfy:
(4) If R e ® and R’ is a homomorphic image of R
then R’ ¢ R . .
(B) Fdr any ring R there exists R(R) @R such that
R&(R) ¢ 8 and if J<R and J e R then J < R(R) .
(D) 1If every non-zero homomorphic image of a ring R |
| contains a non-zero ideal in R , then R e R .
(E) Every non-zero ideal of a ring in & can be homomor-
| phically ‘mapped onto a nbn-zero ring in R .
(F) If every non-zero ideal of R can be homomorphically
mapped onto a non-zero ring in R® then R ¢ R .
And if & satisfies (B), it may also satisfy:

(c) PFor any ring R , R(R/R(R)) = (0) .

1.1.1 DEFINITION:

(1) If R is any class of rings, and I is an ideal of
| aring R such that I e 8 , then I is a R-ideal
of R .

(ii) A class of rings R is a radical class if and only
i1f R satisfies conditions (&), (B) and (C) .

(iii) If R is a radical class then R is R  semi-simple

(R s.s.) if and only if R(R) = (0) . A class of

rings G is a gemi-simple class if and only if G =

the class of all H s.s. rings for some radical class

# .

(iv) Ifr MM 1is a class of rings satisfying (E), IAWR = the



class of all rings R which cannot be homomorphically

mapped onto a non-zero ring ig_Jql'.

(v) A class of rings R is hereditary if whenever

ITA9Ref® ,IecR.

(vi) A class of rings )@Q is a gpecial class of ringé if
| and only if:
(a) If R e YNl then R is a prime ring.
(b) M is hereditary. |
(c) If R € }Q@ and R is an ideal of a ring K ,
" then K/(0:R) ¢ Y/l where (O:R) = {x € K : xR =
Rx = (0)} .

The above definitions and the following theorems

can be found in Rings and Radicals by N. J. Divinsky [7].

1.1.2 THEOREM:
A class of rings R 1s a radical class if and

only if R satisfies (A) and (D).

1.1.3 THEOREM:
Ir W is a class of rings which satisfies (E) then
‘Liyn is a radical class. When ‘Lﬁ)¢1is a radical class we

will refer to zﬁan as the upper radical class determined by

m .

1.1.4 THEOREM:

If ¥ 4is a radical class then the class of all
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¥ s.s. rings satisfies conditions (E) and (F). Conversely,
ii'772 is avclass of rings satisfyiﬁg conditions (E) and (F).;

then‘yyz = the class of all 167n’s;s. rings. Thus,A G is é S
semi-simple class if and only if G satisfies conditions '

(E) and (F).

'1.1.5 DEFINITION:

¥ 1is a special radical class if and only if ¥ =

1Lynfor some speclal class of rings ?@ﬂ .

1.1.6 THEOREM:

' If ¥ 1is a hereditary radical class and no nil-
potent rings are in ¥ than ¥ 1is a special radical class
if and only if H::bﬂvﬁwhere‘7wq = the class of prime

H s.s. rings.

1.1.7 THE LOWER RADICAL CONSTRUCTION.

If ¥ is any class of rings, we define:

ul = the class of all rings which are homomorphic images

of rings in H# .
And for any ordinal number B > 2 , if B 1is not a

limit ordinal:

H, = the dlass of all rings R such that every non-

B

zero  -homomorphic image of R contains a non-zero

ldeal which is in uﬁ-l .

If B is a’limit ordinal:



H, = H . < .

5 u{ y © Y : B} ;

et ¥ = U{)@l}3 : B is an ordinal number} . Then ¥ -
is a radical'class. We will refer to ¥ as the lower

radical class determined by the class ¥ .

‘1.1.8 DEFINITION:

(1) Let R be a ring, I a subring of R and N a

positive integer; I 1s an accessible subring of degree

N of R 1if and oniy if there exists Il””’ IN cR
such-that I = 11< I,Q...dI; AR .

(i1) A subring I of a ring R is an accessible subring of
R if and only if I 1is an accessible subring of degree

N of R for some positive integer N .

In order to establish the netation we list the
foliowing'radical classes all but the first of which are
discussed in Divinsky [7].

FF = the upper radical class determined by the class of all
finite fields. |
F = the upper radical class determined by the class of all
fields.
3 = the upper radical class determined by the class of full
matrix rings over division rings.
é%: the upper radical class determined by the class of all
simple rings with unity.
bi= the upper radical class determined by the class of all



simple nqn-trivial rings.
J ‘= the upper radical class determined by the class of all
primitive rings.
B = the upper radical class determined by the class of all
subdirectly irreducible rings with idempotent hearts.
?@g = the upper radical ciass defermined by the class of all
lrings without proper divisors of zero.
M = the class of all nil rings.
£ = the class of all locally nilpotent rings.
B = the lower radical class deterﬁined by the'class of all
nilpotent rings.
ﬁ):: the lower radical class determined by the class of all
nilpotent rings "N such that N ='Y2(R) for some ring
R with D.C.C. on left ideals. o
df: the lower radical class determined by the classlof all

zero simple rings.

T

—

1.2 RINGS WITHOUT NILPOTENT ELEMENTS.

Our purpoée in this éection is to establish:

1.2.1 THEOREM:
A ring R without nilpotent elements is isomorphic

to a subdirect sum of rings without proper divisors of zero.

. It will be convenient to first prove: '
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If R has no nilpotent elements and O # x ¢ R
then (i) x_ = {(y eR : xy = 0} &R and

X, = X, ={yeR :yx =0},

(11) =x ¢ x, , |
(i11) if r eR and rx e x, then r e x, ,
(iv) +the factor ring R/XL has no nilpotent elements.

Proof':

Let R be a ring with no nilpotent elements and
OfxeR. If acR and ax =0 then (xa)2 =0 so
xa = 0 . Similarily if xa = O then ax =°0 . this‘esta-

blishes (i). Since x° # 0 , (i1) is clear. If a,b ¢ R

and ab® = O then (bab)® = 0 .so bab = O , but then
(ab)2 =0 so ab= O . From this (iii) and (iv) follow
'immediately.

Q.E.D.

To prove the theorem it is sufficient to find, for
each non-zero x € R, an ideal I(x) of R for which
R/I(x) has no proper divisors of zero and  x ¢ I(x) . Let
Z(x) = (IQR : x. ¢ I , if rx eI then v e I , and R/I
has no nilpotent elements} . By 1l.2.2 X, € Z(x) so
Z(x) # g and it is clear that the union of an aécending
chain in 2Z(x) is also in 2Z(x) . Thus we may choose, by

Zorn's Lemma, I(x) maximal in Z(x) .

If aeR and a ¢ I(x) 1let
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J=(yeR:ay e I(x)}) 2I(x) . Then J/I(x) = (a + I(X))r ‘
in R/I(x) and by 1.2.2(i) (a + I(x))& = (a +I(x))r in
R/I(x) . Since a ¢ I(x) , ax ¢ I(x) so x & J . 1If

r% € J then arx € I(x) so ar ¢ I(x) , hence r e J .
Finally by 1.2.2(iv) R/J © R/I(x)/J/I(x) has no nilpotent
elements, so J € Z(x) . Hence J = I(x) so R/I(x) has

no proper divisors of zero.
Q.E.D.

This result has also been proven by Andrunakievic

and Rjabuhin [4] using an argument involving m-systems.

In terms of the radical class'7?g of Andrunakievic
[3] and Thierrin [14] we can restate 1.2.1 as follows: ' A
ring R is ‘ng semi-simple if and only if R has no nil-

potent elements.
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CHAPTER II1

K-CLASSES AND GENERALIZED K-CLASSES

2.1 K-CLASSES:

We begin with the following/gefinitions.'

e

2.1.1 DEFINITION:

A class of rings R 1is strongly hereditary.' if

and only if all subrings of rings in R are in R

2.1.2 DEFINITION:

(i)

(11)

(ii1)

For any cardinal number X ,

A subring S of a ring R 1is a K-subring of R 1if
and only if there is a set A E.S. such that <A> =S
and the cardinality of A 1is ¥K .

A ring( R is a K-ring if R 1is a K-subring of R

For any class of rings R , R®(K) is the class of all.
rings R such that every K-subring of R is in R .
A class of rings 3 is a K-class if and only if there

is a class of rings R such that T = R(K) .

Some immediate consequences of these definitions

are the following:

2.1.3 PROPOSITION:

Let ¥ and R Ye classes of rings and K and T

be cardinal numbers.



Proof:

(1)

(11)

(1i1)

(iv)

- 13 -

¥(K) is strongly hereditary and ¥(K) < ¥(K)(T) .

If H< R then ¥(K) < R(K)

Ir K < T then ¥(T) < ¥(K)

H(K)(T)

i

¥ is a K-class if and only if ¥ = ¥(K) .
If subdirect sums of rings ih 4 are in ¥ then
subdirect sums of rings in ¥H(K) are in ¥(K)

If Y satisfies condition (4), so does ¥(K)

If S 1is a subring of a ring R then subrings of S
are subrings of R . So if S is a subring of R
and Re MWK), Se ¥K); and in particular, all
T-subrings of R. are in E(K) so R e ¥HK)(T)
Assume that ¥ ¢ Rand Re ¥K) . If S 1is a K-
subfing of R them S e H{ R so S e f . Hence,
R ¢ R(K)
Assume that K< T . If Re ¥(T) and S is a K-
subring of R then S 1is also a T-subring of R
since K< T . Thus S ¢ ¥ so R e H#(K)

Let R e ¥K)(T) and S be a K-subring of

R . As above, S 'is a T-subring of R so S e #(X).

Then S € ¥ since S 1s a K-ring. Therefore,
¥(K)(T) < ¥(K) and hence by (i) ¥(X)(T) = H(K)
Assume that ¥ 1is a K-class. Then there is a class
of rings R such that ¥ = R(K) . Therefore,

¥(K) = R(K)(K) . However, by (iii) R(K)(K) = R(K) =

H

3
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so ¥ = ¥(K) .

(v) Suppose R 1s a ring with ideals I : @ € A such

that N{I  : a e A} = (0) and R/I_ e ¥(K) for all -

a € A .
ILet S be a K-subring of R . Then
3 S+Ia _
SnIa = Ia is a K-subring of R/Ia , hence
S ¢ ¥ . M ns NI : A} = (0) b
SﬂIa € . oreover, ot @€ = so by
our assumption on ¥ , S € ¥ . Therefore, R e H(K).

(vi) Assume that R e H¥(K) and the R’ is a homomorphic
image of R . Let 8’ bve a K-subring of ‘R'. Then
there is a K-subring S or R such that S’ is a
homomorphic image of S . (If S’ 4is generated by
the cosets {x&} determined by {Xa} let S be the
subring generated by {(x,} .) Since R e HK) ,
S € ¥ and since ¥ satisfies (A), S’ € ¥ . There-

fore, R’ e ¥(K)

QCEOD‘
In Proposition 2.1.3 (v) - (vi) we see that some
conditions on ¥ are inherited by ¥#(K) . Unfortunately,

it is not true that ¥(K) must be a radical class whenever
¥ is a radical class. The next theorem shows that this

situation can not occur when K > }{O .
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2.1.4 THEOREM:

If K -is a cardinal number % §fo

and ¥ is a
radical class then ¥#(K) is a radical class.

Proof:

Assume that K ; %{o and ¥ 1s a radical class.

First we show that the cardinality of K-subrings

is é K. If S is a K-subring of a ring R there is a

set A €S such that <A> =S

and the cardinality of
A=T¥Kx .

Thus the cardinality of S ¢ N+ T ¥ K .

Now suppose that A is a ring, B4Q A and that
_both A and A/B are in H(X) Let A’ Dbe a K-subring

The cardinality of A’ N B < the cardinality of

- A’ ; K ,-so A’ "B is a K-subring of B .
4 .

N B e ¥ ; and since é—~%¥§‘ is a K-subring of A/B e H(K),

Since B e H(K),

i
17%B A g B ¢ . Now A’ € ¥ because

14

¥ 1is a radical
class. So we conclude that if A and A/B are in ¥(K)

then Ave H(K) (*)

If I and J are H(K)-ideals of a ring R then
I +Jd~__1T

b T T € ¥(K) by 2.1.3 (vi); and so by (¥),
I +J e H(K)

It follows that finite sums of ¥(XK) - ideals
are H(K) - ideals. : | (%)

As we have already noticed, ¥(XK) satisfies con-
dition (A) by 1.1.3 (vi).
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Now we shall show that ¥(K) satisfies condition

(B). Let R be any ring and let I = the sum of all ¥(K)-

ideals of R . If S 1is a K-subring of I and X € S ‘then - -

X is in a finite sum of ¥(XK) - ideals bf R , but by (**%)
this sum of ideals is an H(Kj - idgﬁ}/gf R, so S = |
S(SNJ:J is an M(K) - ideal of R} . Now the cardinali-
ty of S N J < the cardinality of S YK so SN J 1is a K-
subring of J . Thus S N J e ¥, so, since H is a radical
'propefty and S 1s the sum of ¥ - ideals, S ¢ ¥ . There-

fore, I is H®(K) and (B) is established.

The class ¥(K) satisfies (C) because of (*) so
the proof is complete.

Q.E.D.

LOCAL CLASSES.

This section deals with general properties of %{O-
classes. Henceforth, }{o~c1asses will be referred to as
local classes and we shall write u*: for H(ﬁgj . A subring
S of a ring R is &5-generated if.and only if S is

finitely generafted as a ring.

2.2.1 PROPOSITION:

Let ¥ be a class of rings. ¥* is a radical
class if and only if ¥¥* satisfies condition (A) and for all

rings R ,.if I<9 R such that R/I ¢ ¥ and I e ¥* then

R e ¥¥
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Proof:
One way is obvious since the two conditions hold

for all radical classes.

Conversely, assume that the two conditions are
satisfied by ¥¥ . Let R Dbe a ring and let I Dbe the sum
of all ' ®¥-ideals of R . If S is a finitely generated
subring of I then S is a subring of a finite sum of M¥-
ideals. Just as in 2.1.4 our conditions on #* imply thét
finite sums of M¥-ideals are ¥¥-ideals. Hence S € ¥ , so
I ¢ ¥ . Therefore, ¥¥ satisfies condition (B). Again as
in 2.1.4, ¥¥ satisfies condition (C); so ¥*¥ is a radical
'class. |

Q.E.D.

The following theorem provides a sufficient condi-
tion for concluding that certain classes are radical classes.
. This condition and the one given in 2.2.7 will be useful

when we consider specific local classes in Chapter V.

2.2.2 THEOREM:
If ¥ 4is a class of rings satisfying:
(i) ¥ satisfies condition (4)
(11) If A .is a ring, B< A and both B and A/B are
in ¥ then A e ¥ .
(1i1) ¥ < ¥ .

Then H¥¥ is a radical class.
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Proof:
We shall show that the conditions of 2.2.1 are
| satisfied. '
Since ¥ satisfies (A), by 2.1.3 (vi), ¥ satis-
fies (A). | | “

Suppose that A is a ring and B<] A such that

A/B ¢ ¥ and B e ¥ . Let A’ be a finitely generated

subring of A NowliA, + B~ ,A’ € ¥ since A/B e ¥¥
ADTAng ' B - A-D B |

Since B c ¥ and ¥ 1is strongly hereditar&,~ A’ N B e ¥¥,
so by (iii) A’ N B e ¥ . Therefore by (ii) A’ ¢ ¥ so
A e ﬁ*‘. '

QR.E.D.

2.2.3 COROLLARY:
In the theorem, condition (iii) can be replaced by
the condition that the union of a countable increasing

sequence»of finitely generated_rings in ¥¥ dis . in H¥

Proof':

In the proof of 2.2.2 condition (iii) was needed
to insure that A’ N B e ¥ . Since A’ NBc A’ and A’ is
countable it is clear that A’ N B is the union of a count-
able increasing sequence of finitely generated subrings.
These subrings are H*¥ since ¥¥ 1is strongly hereditary.
Thus the proof of the‘corollary follows immediately.

| Q.E.D.
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2.2.4 COROLLARY:

If ¥ is a radical class then condition (iii) is
equivalent to the condition that for all rings A , if |
(0) # A ¢ ¥ then H(A) # (0)

Proof:
| ' Clearly condition (iii) implies that if A 1is a
ring and (0) #¥ A ¢ ¥* then H(A&) = A £ (0)

Conversely, assume that for all non-zero rings A,
i1f A e ¥* then MH(A) # (0) . Let A e ¥* . Then
A/¥(A) € ¥¥ since ¥* satisfies condition (A). Thus
A/¥(A) must be (0) or else it would have a non-zero ¥-
jdeal. Therefore A e ¥ .

QR.E.D.

If we assume conditions (i) and (ii) of 2.2.2 the

~ problem of shoﬁing that #*¥ 1is a radical class reduces to
showing that if A’ 1is a finitely generated ring and B’ <1 A’
such that A'/B’ ¢ ¥ and B’ ¢ ¥ then B’ ¢ ¥ . In

é.2.2 - 2.2.4 we have accomplished this by requiring that

W* < ¥ . Another possibility is to show that B’ must be
finitely generated as a ring (and hence in ¥#). We now turn

our attention in this direction.

2.2.5 DEFINITION:

F. 9. 1is the class of all rings R which contain
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a finite set of elements {xl, ceoy xN} such that for all
. ,

vyeR, y= Z agx; where the ai are integers depending
i=1

on Yy .

The proof of the following lemma is based on a

proof given by Jacobson (page 241)[11].

2.2.6 LEMMA:
If A is a finitel§ generated ring and B <« A
such that A/B € . . then B is a finitely generated sub-

ring of A

Proof:
.Choose Xys cees Xy in A such that for all
¥ ¢ A/B there are integers Gy, +-+, @ for which vy =

QyXy + e+ Oy and;such that {xl, cee, xN} contains a

set of generators of A . Select integersA Yin “and elements
N

bij € B such that XXy = Kfl Vi ¥kt bij . Let B be

the subring of B generated by the finite set Y =

{bi., XKbij’ b, .X XKbiJXL} where all the subscripts vary

J igLe

from 1l to N .

First we shall show that if b € B then X,b € B

M
for M=1, ..., N . Clearly it suffices to consider the
cases in which b 1is a generator of B . If b = biJXL or
‘b = b, . the result-is obvious. Suppose b = x.b.. . Then

iJ L71i]
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Xy = (xMxL?bij = {KleM’LJK Xy + bML?bij € 3 . And if
. : : N
b = XLbinH. then xyb = (xMxL?(biij) = (KzlYM’L’K Xy + bML?

(b, X,;) € B . Similarily, if b ¢ B then bxy € B for

Next we shall show that if a ¢ A there exist

_ N -
integers ng such that a = ¥ ngx, + b where b € B .
i=1 T
- Since (xl, cee, XN} contains a set of generators of A it
is sufficient to consider the case when a = Ky eee Xy
' 1 K

By our definition of B it is clear that this is true when
K<2 . Let M> 2 and suppose that the result holds for

all K < M ‘e NOW, j.f a = X, cee X, = (X. e X, )Xi =

( ©Tn.x. +b)x, - where b eB , them a = T n.x,x, -+

N N
i z T n,
M j=1 K=1 Y

o'
e
]

inMK Xk *

the required form since bx., € B .

N
Now consider C = { T ng Xy which are in B : ng

i=1
are integers} . C is a subgroup of the finitely generated
additive group A+ . Since C 1is a subgroup of a finitely
generated abelian group, C 1s finitely generated as an
additive group. Let [cl, coey cM} be a set of generators

for C

We now show that X = Y Y (cl, ceey cM} generates
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B as a sﬁbring of A . Since X c B, KX> S B . Suppose

, N
ze€B. Then z € A so z = E'nix. + b where b e B <€ <X>
i=1 .

and the ni are integers; hence z - b e€ C . That is,

N —

z nyx; € Cc<X> and b e B S KX> . Therefore, B € <X>
i=1 .
so B = <>

Q.E.D.

2.2.7 THEOREM:
If ¥ 1is a class of rings such that:
(i) ¥ satisfies condition (A4).
(ii) For all rings A , if B<d A such that both A/B and
B are in # then A ¢ H .
(ii1i) If A 4is a finitely generated ring and A e ¥ then

A e F.D.,

Then ®¥ 1is a radical class.

Proof: A
We shall show that the conditions of 2.2.1 are

satisfied.
By 2.1.3 (vi), ¥* satisfies condition (A).

Suppose that B<A and both A/B and B are in

¥ . Let A’ be a finitely generated subring of A .  Then

4 4 4
A 2B 2y and by (i11) iy e 5.8. Lemma

2.2.6 implies that A’ N B is finitely generated as a subring
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of B, sosince B e ¥ , A’ NB e # . Nowby (ii) A’ ¢ ¥
so A dis ¥¥ . This completes the proof.

Q.E.D.

2.2.8 COROLLARY:
If ¥ is a radical class and ¥*¥ < F. B.  then

¥ is a radical class.

The next theorem provides sufficient conditions for

CM»Q* to be a radical class.

2.2.9 THEQOREM:

If "™ is a class of rings satisfying condition (E)
and ¥/ also satisfies the condition that if R is a finitely
generated ring in W then every non-zero homomorphic image of
R can be homomorphically mapped onto a non-zero ring in m ,

then (btym)* is a radical class.

Proof:

Clearly (U4)* satisfies condition (A).

Suppose that B is an ideal of a ring A and that
both A and A/B are in (WU )* . Let A’ be a finitely
generated subring of A . Ifr A’ ¢ 1Lht Then there is an
ideal I of A’ such that A’/I # (0) and A'/TI ¢ Y. Ve
shall consider two possible cases and show that They both

lead to a contradiction.
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Case 1: A'"NB+1I=

_ | -
In this case A'/I:A = ‘ AAﬂB

T . Since (Upg) *

D

w

N .

]
uZ

B
n

is strongly hereditary and A e (bLm)* s A’ NB e (U * -

Then since (W,)* satisfies (A), the factor ring

7
A'Angﬁx € (Wp)* - Thus A'/I e Yy since A'/I is

finitely generated. This is a contradiction.

Case 2: A" NB +1I#A4A'
. A" +B A’
In this case B = 41w/ p can be homomorphically mapped
A’ . A’ .
onto the non-zero ring I AB T T - Since i B T I is

élso a homomorphic image of A'/I eM ; by assumption,

/
7 OAB T T can be homomorphically mapped onto a non-zero

ring in 7 . But this is a contradiction since E"_TTT§ L&

Since both cases lead to a contradiction we conclude
that- A'»»eu.m. Therefore, A ¢ (M,M)* and so (um)*
“radical class by 2.2.1.
| Q.E.D.

2.2.10 COROLLARY:
Ir YW satisfies condition (E) and (A) then (WU,)*
_is a radical class. In particular, if WM is a class of

simple rings then (W,)* is a radical class.
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2.2.11 COROLLARY:

phic image of an ¥ s.s. ring is in ¥ then ¥* = (u& c.s ¥

is a radical class.

If ¥ is a radical class and no non-zero homomor-

The next lemma will be useful in showing.that

2.1.4 is not true when K = }{O . Recall that B , the Baer

lower*radical class, is the lower radical class determined

by the class of all nilpotent rings.

- 2.2.12 LEMMA:

"(1)

(1)

Proof:

(1)

For-any ring R , if B(R) = (0) then, |
if (0) # I is an accessible subring of R then there
is an ideal J of R such that (0) # J<I and

IN € J for some positive integer N .

if (0) # I is an accessible subring of R which is
finitely generated as a subring of R then there
exists a non-zero ideal 3 "of R which is finitely

generated as a subring of R and such that J < I

We will prove this result by induction on N = the
degree of I . If N=1, 1 itself is an ideal of
R . Suppose that the result holds for all éubriﬁgs of
degree _less. than N . Let I = Il< 12 < I3 <t ...q

Iy<dR . Now ((I)I )3 < I . by Andrunakievic's Lemma
3- C '
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(page 109, [7]). Moréover, since B(R) = (O). and

: ((I)I ) “is an accessible subring of R it follows from
. 3 e

Lemma 33 in Divinsky [7] that ((I); )> # (0) . Thus,
3

by our induction hypothesis, there exists (0) ¥ J<R,
N
J < ((I)I )3 and <((I)I )3> c J for some integer
3 3

N . Then Jc<1I and 13N < J so0 we are done.

(i1)" Assume that (0) # I is an accessible subring of R
and ‘that I 1s finitely generated as a subring of
R . Then by (i) there exists (0) ¥ JQ R such that
JcI and IN < J for some integer N . Let
{zl, ...,-zK} be a set of generators of I . Then

D={(z, vee.2., : L < N-1} is a finite set such that
iy i, = _

if W e I/J then there are ihtegers a, such thaf
W = Z[aia : d e D} . Therefore I/J ¢ 3.8. so by
2.2.6 J 1is a finitely generated subring of R .
This completes the proof.

Q.E.D.

We now present an example of a radical class ¥

such that H#* is not a radical class.

2.2.13 EXAMPLE:
"Let K be the free ring generated by two non-
commuting indeterminants x and y .

Define: M = (2y)K
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A = K/M
B = (2x),

M= (I : I is an accessible subring of A}.

LEMMA A:
If I e , then I is commutative if and

only if I € B .

Proof:
First we show that B. is commutative. Since

2yx ¢ M and 2xy e M, y2x = 2yx = 0 in A and
‘a, X

2x.y =0 in A . Hence, if be B, b = L2

(| =

i
where the a; are even integers depending on b (notice
that such a representation of b is unique). Clearly

then, B 1s commutative.

To show the converse we begin with the follow-~
ing calculations, the purpose of which is to show that

if W ¢ B then Xxu # ux or yus# uy . Suppose

0 # u e A and u¢B . Then u=oym + ... + Oy + b

where b e B, the a, are odd integers and the my

are distinct monomials (by a monomial we mean a product

of x and y with coefficient 1). Moreover, we may

assume that all the a; =1 . Since Xb - bx = 0 and
.yb = O = by we have that xu - ux = »
ﬂﬂ+qﬁﬂa-@+”.ﬁw§wdﬁ-ﬁ=

§(Ei + oo Fme) = (g + oo W)y o I U= X or
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Y or X +y then since Xxy # yx we are finished.

.Otherwise we may assume (by rearranging the ms if

necessary) that m € Kx or m, ¢ Ky . Suppose

1

' my e Ky . Now if Xxu - ux = O we have

= ' *
XMy + ee. + XM = MX + ... + MX + 4 where A e M. (%)

Since A e M = (2y)K , Wwe can write A = Ib;n, where

the n

5 are distinct monomials in K and the b, are

1

even integers. Now, xmy + xmj £ 0 for if so,

m, + mj = 0 which is not permitted. If xmy = mjx

1
then my € Kx which contradicts our assumption since

K is free. But again, since K 1s free, xm must

be equal to one of the monomials on the right hand side
of (*). Thus xm, = n'j for some j . However, since
an even number of the monomials n.j appear on the right

1

must have that nj = xm, for i #1 or nj = m;X some

i~. ‘Both of these situations lead us to one of the

hand side of (*), and since ny £ n, for i #j we

cases already considered, both of which lead to a con-

tradiction. Therefore, xu = ux # 0 . If we assume

m, ¢ Kx , we similarily show that yu - uy # O . Thus

1
in any case either xu - ux #0 or yu -uy # O .

————

Now' suppose I 1is an accessible subring of A
and that I is commutative. If I ¢ B then by the

above calculations there exists a ue I , u ¢ B, such

that X0 - ux £ 0 or yu - uy #0 . Now yu] e I for
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some positive integer N so §EN-E - u-yu =

(yu - E?)EN =0 . Thus (yu - uy)uN € 2K . Since

ué¢ B, udé¢ 2K ; therefore, oy ¢ 2K so yu - uy € 2K.
Since yu - uy is also in (y)K it follows that

yu - uy € (2y)p = M . Since yu - uy = 0 we must have
Xu - ux # 0 . As above it follows that xu - ux € 2K .
However?.since x commutes with any monomial in
involves only X , Xu = Ux € (y)K.. We conclude that

XU - ux = 0 . This is a contradiction so I € B .

Q.E.D.

LEMMA B:
No non-zero accessible subring of A which is
contained in B is finitely generated as a subring of

A

Proof :
By Lemma 2.2.12(11)_1t is sufficient to con-

sider the case when I<Q A and I B . Suppose

I<A,IcB and I=<by, ..., b Z (0) . We have

seen that the bi must be polynomials in X with even

coefficients. Let L = max{degree bi.: i=1,...,k}

and suppose the degree of bH = L . Now, bH =

aiX + ... + aLiL where the a are even integers.

Let w = max{n : 2% divides a, all i =1, ..., L}.

WL

Define b = x b,y € I . The smallest power of X

H
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which appears with a non-zero coefficient in b is

wL + 1 . Since b e <b eeey, bp> , b must be a sum

1’ K

of products of the bi's . Because the degree of

bi <L for all 1 , each product which contributes to
a non-~zero coefficient of b must contain at least

wHl must divide all the co-

w+ 1 tCerms and hence 2
efficients of D ; This is a contradiction because the
coefficients of b are exactly the coefficieﬁts of
bH L

Hence I cannot be finitely generated.

. QOE.D.

LEMMA C:
No accessible non=-zero subring of A contained
in the ideal (§)A is finitely generated as a subring

of A .

Proof:
We can apply Lemma 2.2.12(ii) again so we

need only consider ideals of A

Suppose that I<J A , (0) #1I g}(?)A and
I= K2y, «ee,y 2y where each zZs # 0 and zg =

- +o¢-+;{ fOl" - i « w @ -
11 iK. non=-zero monomials mlJ Con

=

sider all the mij and let d be the largest integer

h such that some ‘my, e x’K . It follows that if
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W € <zl; cees Zg> then‘ max{h : w e x'K) < d . But if
el and WAO then W eI and X 4T .
~ This is a contradiction so I cannot be finitely

- generated as a subring of A ;

Q.E.D.

We are now ready to prove:

THEOREM:
1L“mis a radical class but (@@m)* is not a

radical class.

Proof:
The class Wl satisfies property (E) so li,n
is a radical class and R ¢ W, if and only if R can

not be homomorphically mapped onto a non-zero ring in

.

In order to show that (MWQ* is not a radi-
cal class we will show that A/B e (LLM)* , B e (u'm)*
but A ¢ (1&M)* . '

Since A 1is finitely generated and A e Wl
it is clear that A & (U, )% .

~ To see that A/B e (Un)* , suppose that R’
is a finitely generated subring of A/B . If R’ ¢2Lh\
then R’ can be homomorphically mapped onto

R'/LEI e and I # (0) . Since A/B is a ring of
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characteristic 2, I must be of characteristic 2.
Clearly (y), contains all accessible subrings of A
which are of characteristic 2 so I E-(y)A . Since I
is a homomorphic image of R’ , L must be finifely
.generated as a ring. This contradicts Lemma C. There-

fore, R’ ¢ ’VLW so A/B e,(u»}*-

To see that B ¢ (EQWQ* , suppose R’ is a
. finitely generated subring of B . Then R’ is commu-
tative so if R’ ¢ ]va, it can be homomorphieally map -
ped onto a non-zero I ¢ W and I must be commutative
and finitely generated as a ring. - By Lemmé A, ICB
and by Lemma B this implies that I is not finitely
generated as a ring. This is a éontradiction, SO

R’ € le\. Hence B e (lL,)*

This completes the proof.
Q.E ID'

Notice that since A is generated by only
two elements, A ¢]AW£K) for any cardinal K such that
> ¥ K < g% . Thus, although l&m&is a radical class,

lih$K) is not a radical class for any cardinal X such

that 2 ¥ K < 4 -

2.3 ELEMENTARY CLASSES.
| The problems involved in dealing with classes ¥(K)

where 2 < K < }{  are similar to those involved in dealing
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- with local classes. For this reason we will not deal speci-
‘ficallybwith such K-classes but will pass on to the proper-
ties of 2-classes. We shall write ¥’ . for ¥#(2) and refer

to 2-classes as elementary classes.

A subring is a 2-subring if and only if it is
generated, as a ring, by one element.. Such rings are all
homomorphic images of the ring @[X] of all polynomials
over the integers in one variable X and with zero constant
coefficient. Hence all rings generated by one element are
of the form (X]/I where I = (£(X), ..., £(X)) for
some finite set of elements [fl(X), cee, fK(X)} c (X}

The proofs of the following three results are

similar to the proofss of 2.2.1, 2.2.2 and 2.2.9 respectively.

2.3.1 PROPOSITION:

Tet ¥ be a class of rings. ¥ is a radical
class if and only if ¥’ satisfies condition (A) and for all
rings R , if I< R such that R/I ¢ ¥ and I € ¥’ then
R ¢ ¥ A

2.3.2 THEOREM:
If ¥ is a class of rings satisfying:
(1) ¥ satisfies condition (A).
(i) 'If A is a ring, B« A and both B and A/B are
in ¥ then A € ¥ .
(iii) ¥ W
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Then ¥’ 4is a radical class.

2.3.3 THEOREM:

Let YL be a class of rings satisfying condition
(E). 1If all non-zero homomorphic/;mages of rings in N
which are generated by one eiemeht can be homomorphically
mapped onto non-zero rings in M , then (lLM)' is a radical

class.

In [13] Rjabuhin discusses elementary radical
classes. If A is a ring, I<A and a € A define
(Ixa) = {(£(X) e GX] : £(a) € I} . Let R be any set of
ideals of @[X] satisfying:
(1) if A>DBeR and AQGIX] then A c R .
(ii) if B € R and | £(X) e (PIX] then (Bxf) ¢ & .
(111) if A DB , A c R and for all £(X) ¢ A , (B*f) ¢ R ,

then B € R .

Rjabuhin calls such a set of ideals an r-set; and defines
for any r-set R , the class of rings H(R) to be all rings
R such that (((0O)*a) : a € R} € R . He proves that if R
is an r-set then #(R) is an elementary radical class (Rja-
buhin calls such classgs semi-strictly hereditary radicals)
and that if ¥ is any elementary radicél class then there
is an r-set R such that ¥ = H(R) . We shall give an out-

line of the proof.

Suppose that R is an r-set, then (1) implies
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that #(R) has property (A). Suppose B <A and both A/B
and B are in ®¥(R) . Let a € A., then ((0)xa) < (Bxa) =
((O)*a) € R where Z=a+B in A/B . Now (iii) implies
that ((0)xa) e & for if f£(X) e ((0)¥&) , then
(((O)*a)*f> = ((0)xf(a)) ¢ 8 since f(a) e B . Thus
A e ¥(R) . By the very definition of ¥(R) , ¥(R) is an
’eleméntary class so by our Proposition 2.3.1, ¥(R) is a
radical class. ©Notice thét (ii) implies that if I ¢ R then
Fix1/1 e u(R)

| Conversely, if ¥’ is a radical class let of =
(I<(IX] : PIX]/I ¢ ¥') . Since ¥ satisfies (&) , o
satisfies (i)} and since ¥’ is strongly hereditary, QJ sa-
~tisfies (ii1). ‘Suppose A 2B and A e o ana for all
Cf(X) e A, (Bxf) € R . This implies that _Qg_x_l e ¥ and
A/B e ¥ so since #' is a radical property, GWXJ/B e ¥,
Hence B e'qf so of satisfies (iii). Therefore Q! is an

r-set and clearly ¥’ = ¥(J ) .

2.3.4 THEOREM:

Let ¥ Ybe an elementary class which is a radical
class and which contains the Baer lower radical S . . A ring
R is ¥’ s.s. if and only if R is isomorphic to a sub-
direct sum of prime ¥’ s.s. rings. Hence ¥ is a special

radical class.
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Subdirect sums of semi-simple rings are always
semi-simple so we need oniy show'that if R is ¥ s.s.
then R is isomorphic to a subdirect sum of prime ¥'s.s.
rings. So it is sufficient to find, for each non-zero element
x of an ¥’ s.s. ring R, an ideal I of R such that

x ¢I and R/I is a prime ¥’'s.s. ring.

Let R be H's.s. and O #x € R . Then there is

a v e (x)R such that <y> ¢ ¥ and hence <y> ¢ ¥’ . Let
Z={IQR: Si%il ¢ B'} . Then Z # ¢ since (0) e Z

Suppose Na : 2@ e A 1is an ascending chain of ideals in 2
Then Na N<Ky> : a € A 1is an ascending ‘chain of ideals in
<y> . Since <y> has A.C.C. there is a v € A such that

N, N<y> ¢ NQ N<y> for all a e A .~ Let N = U[Na : a e A},
' Ly>+N o _<y> y> o~

N T Ky>NN T <y>ﬂNY

Then N N <y> = NY N <y> so

<y>+N _ '
__ﬁ__l ¢ ¥ . Therefore N € Z . Thus we may choose, by
v .

Zorn's Lemma, I maximal in 2 .

Since y ¢ I and ye (x), x ¢1

To. see that R/I is #’s.s., suppose that J< R
and JZI . Then <V>+J v SY2 A e Sy2Nd ooyl

J - <y>na € <y>NI
o _Ly> y <y y <y>NI+I o~ <y>NJ y
then ST € o, Bu@ <y>ﬂI-¢ ¥ so T = OSAT & WO

Thus J/I ¢ ¥’ since ¥’ 1is strongly hereditary and

< >9J+I c % . Therefore R/I is ¥’'s.s.
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Next we shall show that R/I is a prime ring. If

J1 and J2 are ideals of R which properly contain I
then J, NJ, ZI . For if J; N Jy =TI then St 45 8
<y>+J1 <y>+J2
subdirect sum of Ry = —— and R, = —=——  both of
1 J1 2 J2 ,

which are in ¥’ ; hence, the (external) direct sum of R1
and R, is in ¥’ and since ¥’ is strongly hereditary

and the subdirect sum is a subring of the direct sum,
$X%il e ¥ . Now if Jq

J1 n J2

I

nJ)%cI. But

“J,5 E,I' then (J1

then € B £ ¥’ which contradicts our previous con-

clusion that R/I is #’'s.s. Therefore, Jl-Jé €I so

R/I is a prime ring.

This completes the proof.

In Theorem 2.1.4 we proved that if ¥ is a radical
class and K is a cardinal number such that K Z ?{o then
#(K) is a radical class. In 2.2.13 we presented an example
of a radical class ¥ such that ¥(K) was not a radical

class for all cardinals K such that 2 ¥ K ¢ §_ -

The analogous question concerning elementary
classes is unsolved. That is, we do not know whether or not
¥ = H(2) must be a radical class whenever ¥ is a radical

class.



2.4 GENERALIZED K-CLASSES:

“In the past three sections we have been concerned
with the question, "When are K-classes radical classes?"
The purpose of this section is to conéider the question,
"When are K-classes semi-simple classes?" We begin by des-
cribing a class of radicals which contains all radicals ziu

where ¥ is a semi-simple K-class.

2.4.1 DEFINITION:

Let ¥ be a class of rings and K a cardinal

number which is > 2 :

(1) ﬁg(K) is the class of all rings R such that
every non-zero homomorphic image of R contailns
a non-zero K-subring in ¥ . |

(1i) T is a generalized K-class if and only if J =

Hg(K), for some class of rings ¥ .

If ¥ is a semi-simple class then there is some
radical class Qg such that ¥H d1is the class of all Zg semi-
simple rings. The radical class qg‘ is exactly the upper
radical class.determined by ¥ ; that is, ¢f = 2LH ; In
2.3.4 we shall prove that if ¥ 1is also a K-class then 'LLﬂ

is a generalized K-class.

For any class of rings R and any cardinal number

K > 2 we may form the classes R(K) and Rg(K) . The class

R(K) 1is always a K-class but need not be a radical class
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{even when R is itself a radical class). The preceding
three sections of this chapter have been largely concerned
with conditions on ® which imply that R(K) 1is a radical

class.

As we shall prove below, @g(K) is always a radical
class. However the class of Rg(K) semi-simple rings need
not be a K-class. Much of this section will be concerned with
.conditions on R which guarantee that the class of ﬂg(K)

semi-simple rings is a K-class.

In the following proposition we list some basic
properties of generalized K-classes and point out some rela-
tionships between K-classes and generalized K-classes. In
2.4.2(ix) we prove that if ¥® 1is a generalized K-class then

¥(K') 1s a radical class for any cardinal K’ > 2

2.4.2 PROPOSITION:

Let ¥ and R Dbe classes of rings and K and T
be cardinal number which are > 2
(1) ug(K) ;s a radical class.

(11) If ¥ < ® then ) <R

ug(K g(K)
(i11) If K < T then ¥a(x) £ Y (m)

(v) - () g(r) £ ¥g(x) |
(v) If H <R K ng(K) phen Re(K) = ug<K)

vi ¥ = H if and only if ¥
(vi) ¢ Tg(x) T ARG R (

g(x) g (k) g(K) ~ Tg(K)

for some class of rings T which satisfies (A4).
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(vii) (n(r))g(K) = (u(r))g(2> < Hopy and if ML W),

(D g(x) = ¥g(2)

(viii) (ug(K))(T)

I~

(ug(K))g(E) < Be(x)
(ix) (ﬁg(K))(T) = ((ﬁg(K))g(e))(r) is a radical class.

Proof: .
(i)' From the definition it is clear that ﬁg(K) satisfies
condition (A). We will show that Hg(K) also satis-

fies condition (D). Suppose that every non-zero

homomorphic image of a ring R conftains a non-zero
Hg(K)—idealg Let R’ ve a non-zéro homomorphic image.
of R . Then the ﬂg(K)-ideal of R’ contains a non-
zero K-subring which is in ¥ . Of course, this sub-
ring is also a K-subring of R’ . Therefore R ¢ ug(KS'

Now, by 1.1.2, Hg(K) is a radical class.

(11) Suppose that ¥ < R and R e % Let R’ be a

K)
non-zero homomorphic image of R . Then R’ contains

a non-zero K-subring which is in ¥ and hence in R

Therefore R )
ere € g(K)

(1ii) Suppose that K < T and R e ﬂg(K)

non-zero homomorphic image of R . Then R’ contains

Let R’ bve a

a non-zero K-subring which is in ¥ . Since K K T ,

this subring is a T-subring so R ¢ ug(r)

iv) Suppose R e (¥ and let R’ Dbe a non-zero
(1v)  Supp (g (%) g (1) PO
homomorphic image of R . Then there is a non-zero

T-subring S < R’ such that S ¢ Hg(K) . Since S
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(vi)

(vii)
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‘ isAa non-zero homomorphic image of itself S con-

tains a non-zero K-subring which is in ¥ . Hence

R € Hg(K)

<R CH . By (ii M < R <
Suppose M < R L Woqgy By (1), Hp(x) < By <

Fe(k) < Pa(i) < Pg(x) AN %0 By = T

Assgme that (Hg(K))g(K) ='ﬂg(K) . Then since Hg(K)

satisfies condition (A) we are finished. Conversely,

assume ?hat ug(K) = gg(K) where 3 satisfies condi-

tion (A). Suppose R ¢ Hg(K) and let R’ Dbe a non-
zero homomorphic image of R . Then there is a non-

zero K-subring S of R’ such that S € ¥ . Since

J satisfies condition (A) and S is a K-subring,

S ¢ Jg(K) = Hg(K) . Therefore R ¢ (ug(K))g(K) .

Therefore Hg(K) S-(ﬁg(K))g(K) so by (iv),

Pe(x) = (Hg(K))g(K)

Since K > 2 , by (iii) we have that (H(T))g(K) >

(H(T))g(g) . Suppose that R ¢ (ﬁ(r))é(K) and let

’

R’ be a non-zero homomorphic image of R . Then R’
contains a non-zero K-subring S such that S e ¥(T).
Hence every 2-subring of R’ which is contained in S

is-in ¥(T) N ¥ so certainly R € (H(T))g(g) n Hg(g).

1 owg H(T) . then by (i1) ¥ py (D)), (p)

e

o
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H(T = H

so (WTM))g(xy = ¥Fg(2) |

" (viii) Suppose that R e (ug(K))(r) and let R’ be a non-
| zero homomorphic image of R . Let S’ ve any 2-sub-
ring of R’ . Then S’ 4is a homomorphic image of 2-
subring S of R . Since R ¢ (Hg(K))(T) ,

' -,
S € Eg(K) so S’ ¢ ug(K) . Therefore R ¢ (ug(K))g(Q)’

- By V), Oy lg(e) < Fg(x)
(ix) By (viii) (ug(K))(r) < (Hg(K))g(E) so by 2.1.3 (iii)
Cana (11), (b)) (D) = (4 ) (D)D) € (%)) g2 (D)
By (iv), (ng(K))g(g) < ug(K) so using 2.1.3(ii) again
we conclude that (¥ x))(T) = ((¥ 5y) () )(T)
Since ¥ (yy 1is a radical class, if

T X }{5 , then (¥,))(T) is a radical class by

2.1.4.
By (viii) we know that (ﬁg(K))(T) < “g(K)

so when T < }{O arguments exactly paralleling 2.2.1
and 2.2.2 can be used to show that (ué(K))(r) is a

radical class.

Q.E.D.

In Proposition 2.4.3 below we shall prove that if
"G 1is a semi-simple K-claés then 1}6 "1s a generalized K-
class. Unfortunately the converse is false since there are

generalized K-classes ug(K) for which the class of Hg(K)
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semi-simple rings is not a K-class. For example, let K = 2
~and H® Dbe the class of all rings R such that the additive
group RT is torsion free (that is, R ¢ ¥ if and only if
for all x e R if hx = O for some positive integer h
then x = 0). Let Q = the ring of rational numbers. If
X € Q then every non-zero ideal I of <x> can bé homomor-
phically mapped to a non-zero ring of finite characteristic
(that is, a ring R such that nR = (0) for some non-zero

integer n). Therefore, for all x € Q , <x> is ﬁg<2)

semi-simple. On the other hand Q ¢ Hg(g)" So the class of

ﬁg(z) semi-simple rings is not a 2-class.

2.4.3 PROPOSITION:

Let K > 2 Dbe a cardinal number. If G is a semi-

simple class and G = G(K) then lAG = Rg(K) = Hg(K) where

R = the class of all rings which are not in G . ¥ = the

class of all rings R such that Rg(KS(R) # (0) . Moreover,

. the class ¥ satisfies the following condition: "If

(0) #¥T e ¥ and T ‘is a K-ring then Hé(K)(T) £ (0)."

Proof:

We shall begin by showing that Y, = R (%)

Suppose that R-.e UY; - Let R’ be a non-zero
homomorphic image of R . Then R’ ¢ G = G(K) so there is a

K-subring T # (0) of R’ such that T ¢ G . Therefore
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R e R
€ ®y(k)

Suppose R € R,(yy - Let ‘R’- be a non-zero homo-

morphic image of R . Then there is a K-subring T of

R’ such that T e R . Then T ¢ G =G(K) so R’ ¢éaG .
Therefore, no non-zero homomorphic image of R is in G , so
Re U - Then Y, = Re (K)

Now we shall prove that Rg(K) = ug(K)

Suppose R € &g(K) . Let R’ Dbe a non-zero homo-

morphic image of R . Then there is a K-subring T of R’

which is in ® , that is, T is not QLGS.S. Since
lﬁa = Rg(K) , T is not Rg(K)S'S' So T € # . Therefore,

Since R,y = DQG_, R ?hus by 1.4.2(11),

H <R . Therefore U = R
g(K) = "g(K) g(K) T “g(x)

To see that the class ¥ satisfies the desired
condition, suppose that (0) # T € ¥ and that T is a K-

ring. Since T ¢ ¥ , Rg(K)(T) # (0) . So, because

RE(K) - ug(K) s Hg(K)(T) £ (0) . This completes the proof.

Q.E.D.

The condition of the proceeding proposition will
be useful in some of the following results. In order to make
it easy to refer to this condition (and to another condition

closely associated with it) we make the following definition.



2.4.4 DEFINITION:

For each cardinal number K > 2 {.? class of rings
¥ may satisfy either of the following:
Condition r(K) : If (0) # T e ¥ and T is a K-ring
| then ¥y (T) # (0)
Condition s(K) : If T is a K-ring and all non-zero
| ideals of T can be homomorphically

mapped onto non-zero rings in ¥ ,

then T ¢ H .

In order to prove a converse of Proposition 2.4.3,
it is nécessary to know sbmething about the status of ideals
which are generated by K-subrings in ag(K) (and by ideals of

such subrings). So we make the following defintion.

2.4.5 DEFINITION:

A cardinal number K is absorbent if and only if
whenever T 1is a non-zero K-subring of R and (0) #I< T

such that I G‘Hg(K) 'thenA (I)R € ﬁg(K) , for all ?ings R

and all classes of rings ¥ .
We are mainly interested in the situation when
K =2 and when K= ¥_ . In Chapter IV we shall prove that

all cardinals which are < §{b are absorbent. An interest-

—

ing question is whether or not all cardinal numbers are absor-

bent.
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2.4.6 PROPOSITION:

If X is an absorbent cardinal > 2 and z( is
any class of rings then G < G(K) where G = the class of

-semi-simple rings.
“gg(K) P &

Proof:
Assume R e G . Let T be a K-subring of R .
If T ¢ G then (0) # “yg(K)(T) =1 . Since K 1is absor-

bent (I)R € “ig(K) so R ié not Q{g(K)S'S' This is a

contradiction, so T € G . Hence R e G(K)

Q.E.D.

2.4.7 THEOREM:
Let K Dbe an absorbent cardinal number > 2 . If

G 1is a semi-simple class, then:

G = the class of ¥ '
R -{¢:9
semli-simple rings for some
G is a K-class if and only if , :
' class of rings ¥ satisfying

Condition r(K) .
Proof:
Let K Dbe an absorbent cardinal number > 2 and

let G be a semi-simple class.

Assume that G is a K-class. Then by 2.4.3 G =

the class of Hg(K)s.s. rings where H satisfies Condition r(X).
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Conversely, assume G = the class of ug(K)S'S'

rings where # satisfies Condtion r(K) . Then by 2.4.6
G < G(K) . We need only show that G(K) < G . ILet R e G(K)

and let (0) #IQAR . Ifr I ¢ ug(K) then there is a K-

subring T of I such that T € # . Since ¥ satisfies

Condition r(K) , ug(K)(T) # (0) so T ¢ G . This is a

contradiction since we assumed that R e G(K) . Therefore

I¢ ﬂg(K). so Red.
Q.E.D.

2.4.8 COROLLARY:
Let X Dbe an absorbent cardinal. -If qf is a class of
rings satisfying condition (A) then the class of zgg(ms.s.

rings is a K-class.

EFroof: '
The cléss gg satisfies Condition r(K) . In fact,

since ,_3 satisfies (A)‘ , if T e Qg and T is a K-ring

then T ¢ QK |

g(K)
Q.E.D.

For absorbent cardinal numbers X , Theorem 2.4.7
answers the question, "When is a semi-simple class a K-class?"
The next theorem answers the question, "When is a K-class a

semi-simple class?"
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2.4.9 THEOREM:
Let X be an absorbent cardinal > 2 . If H 1is

a K-class then:

H is a semi-simple class if and only if H satisfies

Condition s(X)

Proof :

Let K be an absorbent cardinal » 2 and ¥ a

~ K-class.

Assume ¥H ‘is a semi-simple class. Then ¥ satis-

fies condition (F) so certainly ¥ satisfies Condition s(X).

Conversely, assume that ¥ satisfies Condition
"s(K) . Since H = H(K) , ¥ is strongly hereditary so cer-
tainly ¥ satisfies condition (E). To show that ¥ satis-
fies condition (F), suppose R is a ring and every non-zero
ideal of R can be homomorphically mapped onto a noh-zero
ring in ¥ . If R ¢ ¥ = H(K) then there is a K-subring T
of R such that T ¢ ¥ .l Since ¥ satisfies Condition s(K),
there is a non-zero ideal I of T such that no non-zero
homomorphic image of I is in ¥® . Because ¥ = ¥(K) this
implies that every non-zero homomorphic image of I contains

a K-subring which is not in ¥ . Thus I is Ry (k) Where

R = the class of all rings which are not in ¥ . Now, since

K is absorbent, (I)R € Rg(K) . But this contradicts our

assumption that every non-zero ideal of R can be homomorphi-

e

Nl



~

I

- 49 - -

cally mapped onto a non-zero ring in H(K) = ¥ - Therefore

R e ¥ . Thus,

¥ satisfies both condition (E) and (F), so

¥ is a semi-simple class.

Q.E.D.

Usually, when we are considering a generalized K-

class ug(K) , the class ¥ satisfies condition (A) and

hence ug(K) = (ng(K))g(K) . In 2.4.8vwe saw that this im-

§1ies that the class of ug(K)S'S' rings is a K-class (pfo—

vided that K is an absorbent cardinal). The following

definitions will be useful in investigating generalized K-

classes M, py for which (ﬁg(K))g(K) = Fa(x)

2.4.10 DEFINITION:

For each cardinal number K , a class of rings may

satisfy either of the following:

Condition _r(X)
Condition s (X)
Conditions

If (0) #T e ¥ and T is a K-ring
then there is a non-zero K-subring

L of T such that L € Hg(K)

If T 1is a K-ring and all non-zero
K—subrings of T can be homomorphi-
cally mapped onto non-zero rings in

H , then T ¢ H .

r(K) and s(X) seem to be slightly

r
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stronger than Conditions 7r(K) and s(K) respectively. In

fact, if K is an absorbent cardinal then Condition r(X)

implies Condition r(K) . To see this one need only notice
that in this case if L 1is a K-subring of a ring R and

L e ¥ ) then the ideal v(L>R € Hg(K)

g(X »
The relationship between Condition s(X) and s(X)

is not so clear. However, in 2.4.12 we are able to prove

that if K is an absorbent cardinal and ¥ < ¥(K) then ¥

satisfies Condition s(K) if ¥ satisfies Condition s(K)
Corresponding to 2.4.7 we prove:

2.4%.11 THEOREM:
Let K Dbe an absorbent cardinal number > 2 . If

G is a semi-simple class, then:

0 = the class of

H s.s8. rings for some
g(K) &
G is a K-class and

(’Mﬁ)g(K) = .MG, .

if 'and only if class of rings H
satisfying Condition

r(K)

Proof:

Let K be an absorbent cardinal > 2 and let G
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be a sémi;simple class.
Assume G is a K-class and (lﬁa)g(x) = L&G .
Then by 2.4.3, 14@ = Rg(K) where £ = the class of all
rings which are not in G . Now, (Rg(K)>g(K) = Rg(K) so
by 2.4.2 (Vi}f Rg(K) = gg(K) for some class of rings 9
' satisfying condition (4). Therefore, %&a = Sg(K) and, since

.'3 satisfies condition (A), 3 certainly satisfiés_Condition
- r(K) . |

Conversely, assume that G = the class of ¥ (K
rings and that ¥ satisfies Condition F(K) . First we shall

show that G 1is a K-class. By Proposition 2.4.6 G < G(K)

Suppose that R ¢ G . Then Hg(K)(R) # (0) so there is a
non-zero K-subring T of ﬁg(K)<R) such that T ¢ ¥ . Since

¥ satisfies Condition r(K) there is a K-subring L of T

(and hence of R) such that L ¢ Mg(K>

R ¢ G(K) . So we conclude that G(K) < G . Thus G = G(K)

Thus, L ¢ G so

Next we must show that (1£G)g(K) =\AG . Now
m&a = Hg(K) , 80 by 2.4.2 (iv) it is sufficient to show that

H < . S R ¢ ¥ !
2(K) —-@g(K))g(K) uppose e ¥(x) and let R’ be a

non-zero homomorphic image of R . Then there is a non=-zero
K-subring T’ of R’ such that T’ ¢ ¥ . Since ¥ satis-
fies Condition r(K) , T’ contains a non-zero K-subring L’

such that L’ ¢ ﬂg(K) . Therefore R e (ﬂ This

.

g(K) g(K)
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completes the proof.

Q.E.D.

Before proving a theorem which corresponds fto
Theorem 2.4.9, we notice the following relationship between

Conditions s(K) and s(XK) .

2.4.12 PROPOSITION:
Let K be an absorbent cardinal > 2 , and let ¥
be a class of rings such that ¥ < H(K) . If ¥ satisfies

Condition s(K) then ¥ satisfies Condition s(X) .

Proof':
Let K be an absorbent cardinal > 2 and let ¥

be a class of rings such that ¥ < ¥(K)

Assume that ¥ satisfies Condition s (K) . Let
R = the class of all rings which are not in ¥ . If T is
a K-ring and T ¢ ¥ , then by Condition s(K) , there is a
non-zero K-subring L of T such thaf‘ L cannot be homomor-

phically mapped onto a ring in ¥ . Thus L e R Now,

g(K) -~

since K is absorbent, (L)T € Rg(K) . »Thus (L)T cannot

be homomorphically mapped onto a non-zero ¥(X) ring. Since
¥ < ¥(K) , this establishes the result-that ¥ must satisfy
Condition s(XK)

1

Q.E.D.
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Notice that, by 2.4.6, this implies that if the
class of ggg(K)s.s. rings satisfies Condition E(K) then this
class satisfies Condition s(K) . (Provided, of course, that

K is absorbent).
Now, corresponding to 2.4.9 we prove:

2.4.13 THEOREM:
Let K Dbe an absorbent cardinal > 2 . If (G 'is

a K-class then:

G is a semi-simple classl G satisfies

and uGgK —’M'G

if and only if{ _
_ Condition s(K)

Proof':
Let K Dbe an absorbent cardinal > 2 and let G

be a K-class.

Assume that G 1s a semi-simple class and that
(1A g(K = @ﬂa .- By 2.4.11, G = the class of ﬁg(K)s S
rings for some class ¥ which satisfies Condition ?(K)

Suppose that T is a K-ring and T ¢ G . Then ﬁg(K)(T) # (0);

so, since ¥ satisfies Condition ;(K) , there is a non-zero

K-subring L of ug(K)(T) such that L e M,y . Thus not

all non-zero K-subrings of T can be homomorphically mapped
to non-zero rings in G(K) = G . Therefore, G satisfies

Condition s(K)
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Conversely, assume that G satisfies Condition s(K).

Then, by 2.4.12, G satisfies Condition s(K) , so by 2.4.9,

G is a semi-simple class. Now, by 2.4.7, G = the class of
Hg(K)s.s.'rings for some class ¥ which satisfies r(X)

= H . d by 2.4.2(1 H < H . T

Now, Ug = ¥y(x) 2nd by 1), Oy )g(x) € Fg(x) ©

complete the proof we need only show that Hg(K) < (”g(K))g(K)’

Suppose R € ﬁg(K) and R’ is a non-zero homomorphic image
of R . Now, R’ ¢ G = G(K)  so there is a K-subring T of
R’ such that T ¢é G . Since G satisfies Condition s(X),
thére is a K-subring L of T such that no non-zero homomor-
‘phic image of L is in G . Thus L e % .(x) - Therefore,

"R e (¥

g(K))g(K)
Q.E.D.

2.4.14 COROLLARY:

Let K be an absorbent cardinal > 2 , and let ¥
be any class of rings. There 1s a class of rings -R which
satisfies condition (A) and such that ¥ = the class of

Ry (x)S+S+ rings if and only if ¥ satisfies Condition s(K)

and H¥(K) = ¥ .

Proof:
Since any class of rings which satisfies condition
(A) also satisfies Condition r(K) , the corollary follows
immediately from 2.4.11 and 2.4;13. |
Q.E.D.
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We conclude this chapter with a result concerning
those generalized K-classes Hg(K) for which ¥ is a radi-

cal class.

2.4.15 THEOREM:
Let K ©be an absorbent cardinal > 2 . If * is

a radical class and either:
(1) ¥ < ¥X) or

(i1) if R e¢ ¥ then ug(K)(R) £ (0)
‘then a ring .R is ﬁg(K)S’S’ if and only if R e QX(K)

where Qf = the class of ¥ s.s. rings.

Proof:

Let K be an absorbent cardinal > 2 and let ¥
be a radical class. Let Qg = the class of ¥ s.s. rings.

(a) Suppose that ¥ < ¥(K)

Assume that R is a Hg(K)s.sr ring. If
R ¢ qg(K) then there is a non-zero K-subring T of
R such that I = ¥(T) # (O)V. Since ¥H < ¥(K) ,
I ¢ ¥K) . So I (and hence, T) contains a non-zero

K-subring L € ¥ . Since ¥ satisfies condition (A4),

L e ug(K) and since K is absorbent, (L)g « ﬁg(K)

This contradicts our assumption, so we must have that

R e ug(K)

Conversely, assume that R ¢ gg(K) . Then
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no K-subring of R is in ¥ .so clearly Hg(K)(R) = (0).
Suppose that whenever R e ¥ , Hg(K)(R) £ (0) .
Assume that R is ~ug(K)s.s. If R & @f(K)

then there is a K-subring T of R such that

BT) =1 # (0) . Then by (ii), Hg<K)(I) £ (0) . So.

there is a K-subring L of I such that L ¢ ¥,

Just as in (a), this contradicts our assumption.

Therefore, R € Qg(K)

Conversely, assume that R ¢ qg(K) . Then

no K-subring of R is in ¥ so clearly Hg(K)(R) = (0).

QOE.D.
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CHAPTER ITI

ELEMENTARY RADICAL CLASSES

3.1 THE ELEMENTARY RADICAL CLASSES & .xﬁzg AND FC.

We shall begin our study of elementary radical

classes with a discussion of & and i}R

3.1.1 DEFINTITION:

(1) ir is the class of all rings R such that for each
X € R, aNxN + ...+ ayX = O for some -integers N ,

a a (not all the a;'s are 0) which depend on x.

N, oo 0y 1

(11) & 1is the class of all rings R such that for each
K K-1 A *
X € R‘, X7+ ap X + ....+4§1z = 0" for some

integers aK—l’ e a1 which depend on x

If Red and R’ is a homomorphic image of R
then clearly R’ e& . Suppose that A 1is a ring and
B« A such that Bebk and A/B cfs . Let x € A . Then

X =b € B

aN\XN + o o e + al

for.some integers ays ccvcs @ (not all of which are zZero) .
Since B € ﬁ- , there are integers Cks ***s ci s not all

zero, such that,



‘ K N - N K+N q
thus ¢ cj( E oay-x )4 = = I cqa;x =0 . This
S 3=1 i=1 | H=1 j+i=H Y
implies that A ¢ & . By the definition it is clear that -

ﬁ- is an elementary class so by 2.3.1 L5 is a radical class.
A similar argument shows that Lﬁi is also a radical class.
Both % and ﬁTZ are cléarly eiementary classes which con-
tain the class of all nilpotent rings (in fact, one easily
sees that B <M < j;R <t ). Combining the above remarks

with 2.3.4 we have:

3.1.2 PROPOSITION:

i} and £3{ are speclal elementary radical classes.

3.1.3 LEMMA:
If I <9 P(X] and I # (0) then @IX1/I ¢ & .

Proof: _
“Let (0) # I @[X]- and- £(X) ¢ @[X) . Choose

g(X) #0, g(X) eI . Let Qy, «+», Op be the roots of

g(X) . Since the a, are all algebraic numbers, so are

V., = f(ai) . Thus there are non-zero polynomials hi(X) ¢ Bx]

i
K
such that hi(yi) =0 . Let n(x) = TT hi(X) , then there
. i=1 ] .

: R M
arg integers a,, ..., &y such that h(X) = a, X + .. +a X,

i

2(X) ¢ (IX) . Now t(a;) =0 for all

Consider h(f(X))'

roots «

1s ees Qg Of g(X) , so there is a polynomial d(X)
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with rational coefficlents such that 4(X) = a(X)-g(X)
Since the coefficients of d(X) are rational there is an

integer n such that n-d(X) has integer coefficients.

Now n-h(f(X)) = na,f(X) + - naM(f(X))M

1 = nd(X).g(X) € I.

Thus , naleXi + ... + naM(fZXS)M =0 in @[X]/I . There-
fore, G)[X]/i & | |

m

Q.E.D.

The elementary results about algebraic numbers
used in 3.1.3 can be found in Chapter 9 of Niven and Zuckerman
[12]. Lemma 3.1.3 implies that & is the largest elementary
radical class (except for the class of all rings). In the
following proposition we collect some;information about the
relationship between & , j&R and the well-known radical

classes listed in Chapter I.

3.1.4 PROPOSITION:

(1) If .¥ is an elementary radical class and ¥’ is not

the class of all rings then ¥’ ¢ & .

1) & 2 & 27

is related to Y. or J .

(iii) Neither & nor & .

R

" Proof:

(1) Assume that ¥’ 1is an elementary class and ¥  is
not the class of all rings. Then Plx] ¢ ®' ; for

" if  @®[X] € ¥’ then every ring generated by one
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element (being a homomorphic image of (P[X]) is in
¥, so ~H' is the class of all rings. Let R e ¥’.
If x e R then <x> % @[X]/I ¢ ¥ . Since

PIX] ¢ ¥ , I # (0) so by 3.1.3 <x> ¢ & . There-
fore R ef , so W < & |

n(x) =0 for

(ii) If R is a nil ring and x € R then x
some non-zero integer n(x) . Certainly then,

n < j,R < & . However, all finite fields are in

&

71; fl’. The ring @[X]1/(2X) ¢& Lrp but is in‘ & so
5S &

(111) Clearly & ¢ N - Br & N, Fdd ana ot 7.

R and ir but not in W . Hence N ,9. ‘%R and

For example, consider any finite field F . F e,l;

and F e &y but F ¢ n, and Fé&JT.

To see that J ¢ 4 consider the ring R of all
formal power series in one indeterminate x over the rational
field Q . Let R’ ©be the ideal of R consisﬁing of all .-

-]

z _aixl € R such that a_ =0 . It is well-known (and easy
i=0

to prove) that R’ ¢ J . However, if ag, -++, ayp are inte-

XA ..+ aKxK # O unless a

gers, 2y

=a7=0

l=-a¢ 1{

Thus, R’ ¢ £ . This example shows that J ¢ £’R ‘and

J¢ & .

Let Q(x) be the field of all rational functions

in an indeterminate x over the rational field & . Then



R = (Q(x))2 , the ring of 2x2 matrices over (x) , is in

N, - However, R ¢ j;.R and R ¢ & , because if

al, <ee, 8y are integers such that
_(x © x ONK (0 O
a1(0 0) F e ¥ aK(O o> = <o 0

then a.x + +a,x8 =0 in Q(x) so a, = =a, =0
1 » o 0 K = l_ e 0o ’K

We now turn to a brief consideration of the

radical class FC

3.1.5 DEFINITION: .

(i) Let p Dbe a prime number. FCp is the class
of all rings R such that for each x € R there is a posi-

a(x)

tive integer a(x) such that p X =0

(ii) FC is the class of all rings R such that
for each x € R there is a non-zero integer n(x) such that

n(x).x =0

Let p Dbe a prime. Clearly FCp satisfies con-
dition (A). Suppose that B A and both B and A/B
are in FCp . Iet x e A , then pax € B for some integer
, pﬁ(ﬁax) = 0 for some integer

p
x =0 so A€ FCp . Now, it is clear

a . But since pax € B € FC

B+a

B . Therefore p
from the definition that FCp is an. elementary class so by

2.3.1, FCp is an elementary radical class. A similar
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argument shows that FC 1is an elementary radical class.

"3.1.6 PROPOSITION:

(i) FC is an elementary radical class.
(ii) For each prime p , FCp is an elementary radical
class.

(iii) For all rings R , FC(R) ==C){FCp(R) : p is a prime}.

Proof:
We have already seen that the classes mentioned in

(1) and (ii) are elementary radical classes.

To see that (iii) is true, notice that R ¢ FC if
and only if the additive group RT is torsion, and R e FC,
if and only if RT is a p-group. Part (iii) of the propo-
sition now follows from a well-known result about fTorsion

groups .

Q.E.D.

THE ELEMENTARY RADICAL CLASSES ' AND &' .

Recall that ® is the lower radical class deter-

mined by all nilpotent rings N such that N =YI(R) for

 some ring R with D.C.C. on left ideals. This class con-

tains J which.is the lower radical class determined by the

class of all zero simple rings.

In this section we shall consider the classes ;f'

"and 8 ' . We begin with the following result about the
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class cf

3.2.1 PROPOSITION:
J =B nFC

Proof :
Let R = the class of zero simple rings. If S e R
then the additive group st is a simple abellian group; so,
st is the cyclic group of p elements for some prime p
Therefore, R < FC and so J < FC because J is the lower

radical class determined by R . Since J < B, J < B N FC.

Suppose that B N FC ¢ f . Then there is a ring
R which is in B N FC but is J’ semi-simple. Since R € B
there is a non-zero ideal I of R such that I° = (0)
Suppose I’ is a non-zero homomorphic image of I . Since

ReFC, I’ e FC . Thus, there is a prime p and an element

)2 = (0):

<x'>2 I' , ana <x’> 1is isomorphic to the zero ring on the

/

x’ € I’ such that x’ ¥ 0 but px’ =0 . Since (I’

cyclic group of p-elements. But then. x> e R so Ie R2
(see 1.1.7) and hence I ¢ J . This is a contradiction.

Therefore B NFC < f , so J =B nFC

3.2.2 THEOREM:
' =3’ =nnrFc.
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Proof': |

First we shall show that J ' = YIN FC . Notice
that B’ < ' =7  since B <M ; and that M’ < B’ ,
for if <x> ¢ M then <x> is-nilpotent so <x> € B . Thus
' =M’

Since, § = B N FC (by 3.2.1), F < B and J< FC
Therefore, ¢f" €8" =M and ¥’ i'FC' - FC so .
J’ < mn Fc | |

Suppose R e MNFC , and let x ¢ R'. Then <x>
is finite since there are positive integers K and N such
that XK = 0 and Nx =0 . Thus <x> has D.C.C. and so,
since <x> e M, <x> ¢ J (see LemmaA28 in Divinsky [7]).

Therefore, WNTFC < P so f = NNFC

Since J< B , g <9 . Suppose <x>e B’
‘but <x> & F’ . The ring <x> must be nil since

H <MW =M , s0o <x>¢FC . Let <x> =<x>/FCx> . PFirst

‘we shall prove that the ring <§5/<§§2 ¢ FC . Suppose

nx e.<§52 . Then there are integers 85, «ee, By such that
M .
nx = ai X By successive substifutions for nx we see
i=2
that ntx ¢ <O ror all positive integers K . Since
K—

<x> is nilpotent, n 'x = O for some integer K , and since
<x> is a ring of characteristic .0 this implies that X = O.
This is a contradiction on since <x> ¢ FC . Therefore |
XS /K5 ¢ FC so <x> can be homomorphically mapped to a

zero ring of characteristic zero. Since <x> 1is generated
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‘by one element this ring must be isomorphic to ¢® = the

zZero rihg on the infinite cyclic group. Since <x> € éa s
c” e © . But Cd ¢ D (see Theorem 14, Divinsky [7]) so
this is a contradiction. Hence £’ < ¥ so ' = ¥’
and the proof is complete. 4

Q.E.D.

CLASSES ¥ FOR WHICH H =N

In [9] Goldman defines a Hilbert ring to be a

commutative ring R with identity such that J(R’) =WN(R')
for all homomorphic images R’ Qf R . He proves that if

R is a Hilbert ring then so is the polynomial ring R[X]

Since the ring of integers is clearly a Hilbert
ring the following proposition is a special case of Goldman's

theorem.

3.3.1 PROPOSITION:

If R  1is a ring generated by one element then

J(R) = N(R) .

3.3.2 THEOREM:

If B < B FF then ¥ =N

Proof:
Suppose that ¥® 1is a class of rings such that
B < ¥ L FF
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Since B < ¥, N=pg" W

Assume that FF' ¢ M . Then there is a ring
<x> ¢ FF' such that W(<x>) = (0) . By 3.3.1 J(<x>) = (0)
- and so, since <x> 1is commutative, by Lemma 87 in Divinsky
[7] P(<x>) = (0) . It follows that <x> 1is a subdirect sum
of fields each of which 1s generated by one element. To reach
a contradiction it is sufficient to show that any field which

is generated as a ring by one element must be finite.

Let <Ky> be a field and suppose <y> is of
characteristic zero. Then <y> contains a copy of the ra-
tionals. Choose f(y) = aly'+ ceo + akyk of minimal degrée
so that N = f(y) is a non-zero integer in <y> . Let p
be a prime which does not divide any of a1, cre, By and

n

let 1/p = C1¥y + «oe +C Y By continued substitutions for

akyk+1 = Ny - a1y2 - tee = ak_lyk we see that for some posi-

tive integer L , vai/p = by + ...+ bkyk . But then

L L L L+l ' k
w - Nag = (alak - prl)y + ... f (ak - prk)y .

O = Na
Since p does not divide any of the as not all of the
coefficients in this expression are O . Since <y> has no
proper'divisors of zero it follows that there are integers

2

a a with d1 # 0 such that dly + ... + d%y =0

1’ Q'O’ &
and 4 < k . But then dy = -4,y - ... - d,y - which

contradicts the minimality of k

Thus <Ky> 1s of finite characteristic and since
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<y> must be algebraic it follows that <Ky> is finite.

This is a contradiction and so FF' < )/

Q.E.D.

This theorem may be paraphrased in the following
way, "A ring R is nil if and only if no subring of R
which is generated by one element can be homomorphically

mapped onto a finite field".

3.4 ELEMENTARY RADICAL CLASSES WHICH ARE £ FC .
We will begin this section with a discussion of the
elementary radical class ¢’ . This radical class is unrela-
l.ted to all of the well-known radical classes listed in Chapter
1. - In fact, a1l e’ rings are W semi-simple. This radical
plays a central role in our discussions concerning radical

classes which contain only M semi-simple rings.-

3.4.1 DEFINITION:

€ is the class of all idempotent rings (that is,

all rings R such that R = Re)

Let " R be a ring and x € R . Clearly <«Kx> = <x>2 if

and only if x € <x>2 and hence if and only if there are integers
K . '
such that x = I a.x> . Using this characteri-

a cee, @ i
i=2

e’ k

zation it is clear that homomorphic images of 8'-rings are in

¢’ and that if A is a ring with an ideal B such”that both
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i

A/B and B are in &’ then A ¢ & Therefore, by 2.3.1,

&’ is an elementary radical class.

3.4.2 PROPOSITION:

A non-zero 6'-ring without proper divisors of zero

is an algebraic field of prime characteristic.

Proof:
Let R be a non-zero &’-ring without proper divi-

sors of zero. If O # x € R then there are integers
K . K

such that x = ¥ a,x , hence e, = T a;x
i=2 i=2

i-1
8y, ees Ay

is an identity for <x> . Let w e R . Then

x(exw - W) = (weX -x)w=0,s0 ew=w. Similarily,

we, =w so e, 1is an identity for R . If O # v ¢ R then
e, € V> = <V>2 80 e, € KV>-v € Rv . Therefore R = Rv

for all non-zero Vv € R ; so, since R # (0) ; R is a divi-
sion ring.

Let e be the identity of R . Then <e> ¥ the
ring of integers since <2e> = <2e>2 = <4e> . Therefore the
characteristic of R 1is a prime. Since e = e, € <w> for.
all non-zero w € R , R 1is algebraic. Therefore, by

Theorem 2 on page 183 of Jacobson [11], R is a field.
QOEQDI
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- 3.4.3 COROLLARY:
Ifr (0) #R e &’ then R is isomorphic to a sub-
direct sum of algebraic fields of prime characteristic. So,

in particular, R 1is commutative.

Proof:
| Let (0) #R e €&’ and x eR . If xN 2 0 then
x> = <x3% = ... o= <ol o (0) so x =0 . Hence &’ rings
have'ﬁo non-zero nilpotent elements so the corollary follows

from 1.2.1 and 3.4.2.
Q.E'D.

From 2.1.3(iii) we know that &* ¢ &’ = (&')*
The folléwing theorem provides a characterization of &’

which makes it clear that in fact &% = &’

3.4.4 THEOREM:
‘A ring R € &' if and only if every non-zero
finitely generated subring of R is isomorphic to a finite

direct sum of finite fields.

Proof':

Assume that R ¢ &’ and let R’ be a non-zero
finitely generated subring of R . Then R’ evﬂf SO0 by
3.4.3 R’ is commutative. Since R’ 1is finitely generated

and commutative we may conclude, from the Hilbert Basis
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Theofem, that R’ satisfies A.C.C. If P’ 1is a prime ideal
of R’ and P’ ¥R’ then P’ is a maximal ideal because by
3.4.2 R’/P’ 4is a field. Since R’ is finitely generated,
commutative,'and <g> has an identity for each gengrator g
of R’ 3 R’ hnas an identity (if, for i = 1, 2, e; 1is an
identity for <gi> then e, t ey ~ e85 is an identity for
<g1,g2>). Now., by Théorem 2, page 203 of Zariski and Samuel
[15], R’ satisfies D.C.C. Then R’ is a commutative
Wedderburn ring so ‘R’ is ilsomorphic to a finité direct sum
of fields. These fields must be finite,'since they are fini-
tely generated and by 3.4.2 they are'éigebraic of prime

characteristic.

The converse is obvious; in fact, if x € R’ and
R’ is isomorphic to a finite direct sum of finite fields then

n(x)

there is an integer n(x) > 2 such that x = X

Q.E.D.

3.4.5 COROLLARY:
A ring R e &’ if and only if for each x ¢ R

n(x)

there is an integer n(x) > 2 such that x = X

3.4.6 COROLLARY:

A ring R e &’ if and only if for all O 4+ x ¢ R,

<x> 1s isomorphic to a finite direct sum of finite fields.

If (0) #Re & and R has D.C.C. then R 1is a
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commutative Wedderburn ring so R 1is isomorphic to a finite
direct sum of fields in &’ . In the next theorem we see
that a condition which is apparently weaker than D.C.C. is

sufficient to obtain this result.

3.4.7 THEQOREM:

If (0) # R e &’ and R satisfies A.C.C. on
annihilators theﬁ R 1is isomorphic to a finite direct sum
of fields in 8) (that is, algebraic fields of prime

characteristic).

Proof:

Let R Dbe a non-zero ¢&’-ring which satisfies
A.C.C. on annihﬁlators. By 3.4.3 R is commutative. Since
"A.C.C. on left annihilators is equivalent to D.C.C. on right

annihilators, R satisfies D.C.C. on annihilators.

Assume R = Al ... @AK ) BK+1 wher.e the Ai
are fields in &' . If By, has no proper divisors of zero
then, by 3.4.2, By , 1is a field in e’ . If there are non-

zero elements 'bl,be € BK+1 such that bl'bg = 0 then BK+1

contains the annihilator

x>

Kl = (0 : Al@... @AK@ blR)

the annihilator of A, ®...0 ag @ byR # (0)



- 72 -

——

and Ay . S Bg,q - Choose Ap . = (O : CK+1> to be a

41 Now, .if

‘minimal non-zero annihilator contained in By
there are non-zero elements X,y € AK+l such that xy =0

then D = (0 : C + yR) 1is a non-zero annihilator (x e D)

K+1
such that D Z A, (y é D) . This contradicts the minimali-

Therefore A has no proper divisors of

ty of A K41

K+1

) . . . ¢ .
zZero So AK+1, is a field in & by 3.4.2. Since AK+1 has

an identity, AK+1 is a direct summand of BK+1 . That~is,
there is an ideal By , of By, such that By ; = Ag.q (&)

BK+2 Therefore BK+2 g R and R = Al D ... @AK+1 ®BK+2
Notice that this proof is valid when K = 0 , and since

(0) # R we can begin the above process.

Since R satisfies A.C.C. on annihilators, the
process above must stop. That is, for some n , Bn has no
proper divisors of zero and hence is a field in &’ . This
completes the proof.

Q.E.D.

This completes our investigation of the elementary

radical class &’

We now present a classification of all elementary

radicals which are < FC

3.4.8 DEFINITION:

Define up to be ¥H N FCp where H is any class
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of rings and p 1s a prime number.

3.4.9 PROPOSITION:

If ¥’ is an elementary radical class and R is

a ring then (¥’ N FC)(R) =® {%é(R) : p is a prime}

Proof:
Let ¥’ ©be an elementary radical class and let R
" be a ring. Since intersections of radical classes are radical

classes, Hé(R) and (¥ N FC)(R) are defined.

From 3.1.6(iii) we know that for any ring A ,

FC(A) ==@9[FCP(A) : p is a prime} . So

(H) NFC)(R) =O tFCp((H' N FC)(R)) : p is a prime} . Now,
FCp((H' N FC)(R)) e ¥ since ¥’ is hereditary; therefore, -
RO (¥ n FC)(R)) < #.(R) . Since H/(R) = (¥ nFC)(R) and

'né(g) e FC_ , Hé(R) g_Fcp((n' N FC)(R)) . Thus,

p
MQ(R) ='FCp((ﬁ' N FC)(R)) . This completes the proof.

Q.E.D.

3.4.10 DEFINITION:

A set of positive integers is a C.U.D. set of
integers if and only if whenever n € S and k is a positive

integer which divides n , k ¢ S

Suppose that S is a C.U.D. (closed under divisors)

set of integers and p is any prime number. Then for each
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n e S we consider the finife field F = the field of p"
p .
elements. Since S 1is a C.U.D. set, if m e S and k

divides n then k ¢ S ; hence, the set [F'n: n € S} of

' p
2ll such fields is strongly hereditary because a non-zero

subring of the field F n is the field F Kk for some k which

b b
divides n

Let R Dbe the set of all possible finite direct

sums of the fields F'n: neS . It is, in fact, the class

R’ which we are defining in the first part of the following

definition. Notice that the set of fields (F nesS}cR

n:
P
so as the C.U.D. set S changes so does R’ . The dependence

of R' on the prime p is obvious.

3.4.11 DEFINITION:

(1) Jp(S) is the class of all rings R with the property
that for all non-zero x € R , <x> 1s isomorphic to a

finite direct sum of fields taken from (F n e S}

1’1:
P
where p 1s a prime number and S is a C.U.D. set of

integers.

(i) Jp}ﬂ(s) is the class of all rings R with the pro-
perty that R e FC, and for all x € R the factor

ring <x>/W{<x>) is in Kp(s)

It is clear from the above definition that

Zp(S) < ZPWQ(S) . In the following proposition we prove that

these classes are radical classes.
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3.4.12 PROPOSITION:

If S 1is a C.U.D. set of positive integers and p
is a prime number then Sp(S) and SP§Q(S) are elementary

radical classes.

Proof:
et S be a C.U.D. set of positive integers and

let p be a prime number.

From the definition it is clear that 3p(S) is an
elementary class. It is also clear that SP(S) satisfies
condition (A). Suppose that B is'an ideal of a ring A
and both B and A/B are in Up(S) . By 3.4.6, both B
and A/B are in & so Aeé . Let O£x e A . Then
by 3.4.6 again, <x> is isomorphic to a finite direct sum of
fields. Therefore <x> N B 1s a direct summand of <x> so
<x> T (kx>/<x> N B) @ (kx> N B) . Now because A/B- and B
are in va(S) , the fields in question must be of the form

F , where o ¢ S . Therefore, A e UP(S) ; so, by 2.3.1,

P
Sp(S) is a radical class.

| Suppose R ¢ 3p7Q(S) and that R’ is a homomorphic
~image of R . Let x’' € R’ . Then there is an x € R such

‘that <x’> 1is a homomorphic image of <x> . So <x’'>/M(<x’>)
. is a homomorphic image of <x>/WU<x>) , hence

x'>/MN(<x’>) e sp(S) . Since R e FC_, R’ ¢ FC, - There -

fore R’ ¢ Sp)Q(S) SO SPW@(S) satisfies condition (A)
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Suppose that B 1is an ideal of a ring A and that
both A/B and B are in SP}Q(S)’. Both A/B and B are

in FC | so A e FC
P o

Let x € A and let <X> = <x>/<x> N B . Then
x>/Y(<x>) € 3p(s) so <x>/M(<x>) is finite. Thus, by
2.2.6, WQ(<§5) is finitely generated as a ring and so; since
M(<x>) 4is also nilpotent and in FCp , YU(<x>) 1is finite.
Therefore <X> must be finite. Now, by 2.2.6 again, <x> N
is finitely generated as a ring. Since <x> N B/ (<x> N B)
has no non-zero nilpotent elements, it must be ih Sp(S)

Thus by 3.4.6 <x> N B/Y(<x> N B) ¢ &’ so by 3.4.4
<x> N B/N(<x> N B) is finite. Now, just as above, <x> N B

.is finite. Therefore, <x> 1is finite.

Let N = YU(<x>) . Since <x> 1is finite and

commutative, <x>/N is a finite direct sum of fields. Thus

<X>’n ﬁ + N is a direct summand of <x>/N . Let

L2 Lo N8+ N ginee NN (<x> N B) = N(<x> 0B,
<X2 ﬂNB + N o }Q?§;>QOBB5 Thus, .$§Zi%ﬁi;ﬁ € Sp(S)'.
Now, %;<§>/<x.> NB + N o <x> Thus LN is a

N T x> NB + N
homomorphic image of <x> which has no non-zero nilpotent

elements. Hence L/N is a homomorphic image of

x>/ M<x>) e Sp(S) . Thus L/N € 3p(S) .  Therefore

<x>/N € Sp(S) .so0 A é JP}Q(S)'.
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From the definition it is clear that Up)Q(S) is an
elementary class so by 2.3.1 JPWQ(S) is a radical class.
QR.E.D.

The radical classes Sp(S) {/gpiﬁ(s) and VFCp
will be our basic building blocks’for describing all ele-
mentary radicals which are < FC . We begin with the follow-

ing result.

3.4.13 PROPOSITION:

If ¥’ is an elementary radical class and p 1is

a prime then l&I; NWM = {((0)} or MNFC_ < ug’)

D
Proof:
Let ¥’ ©be an elementary radical class. If

ﬁé NM # ((0)} then there is a non-zero ring R e Hé nN"Mm.

Since R ¢ FCp and R e Y1 there isan x e R, x # 0

the zero

i

such that x° = 0 and px =.0 .. Thus <x> c

ring on the cyclic group of p elements, so Cp e ¥’
Let A e M N FC, . Suppose A ¢ Hé . Then

A = A/ﬁé(A) # (0) . Since A ¢ ﬁé there is an x ¢ A such

that <x> ¢ ﬁé . Let (0) # <x>

Il

<x>/ﬂé(<x>) . Now,

x> e MnN FCp so there is a v e <x> such that py = O

and y2

O but y #0 . Let Y= (y),z - Then Y = (0)

and pY

Il

O. So if weVY ,<ww<g Y and <w> ¥ c.p € ug
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" Therefore Y € Hﬁ . This is a contradiction. Hence A ¢ ﬁé

nrEc < ¥
so N p =~ p

Suppose that ﬁa : @ € A is a collection of radical
classes such that HB(R) n = ﬁa(R) = (0) for all B e A
aeA _
B
.and all rings R .  Then for any ring R we can form the
direct sum C){Hd(R) : @ € A} . In such a situation we shall

denote by @ (¥, : @ € A} the class of all rings R for

which R ==C)[H&(R) : a e A}

In terms of this notation Proposition 3.4.9 tells
us that #¥' N FC::C)(Hé : p is a prime) whenever ¥ 1is an

elementary radical class (recall that Hé = FC, N 1)

It follows that if ¥’ < FC then ¥’ =@{% :p
is a prime} . In the following theorem we shall prove that

each Hé must equal either FCp or UPjQ(S) or Ep(S) for

some C.U.D. set of integers S . And conversely, any "direct
sum” of such elementary radical classes is again an elementary

radical class.

In other words, every elementary radical class which is
contained in FC is a "direct sum" of these simple radical

classes (FCp s SPWQ(S) s UP(S)) and all "direct sums" of such

' classes are elementary radical classes.
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3.4.14 THEOREM:

For each prime ©p , ué = FCp or 3p]ﬂ(8p) or

Sp(Sp) for some C.U.D. set of integers Sp if ¥ is an

elementary radical class. Also ¥ N FC :()(}% : p is a prime}.

Conversely, o u =5G)(&%p] : p is a prime} is
an elementary radical class if for each prime D, H[p] = FCp

or sp}@(sp) ‘or Sp(Sp) for some C.U.D. set of integers

S_ . Moreover ¥ = H for all primes
p © > %p T Mpl P P
Proof:
Let ¥ be an elementary radical class.
Define S = {(n : Fne ¥} . Then 8 is a C.U.D.
P P p
set of positive integers since ¥ is strongly hereditary.

W t hat ¥ = FC_ N # is FC 3 (s
e must show tha o . is o ©OF p( p) or

5,N(s,)

If ¥ = FC_ we are done so suppose ¥ # FC
P~ D ' o7

We will consider the two cases of 3.4f13.

Ir Eé NN = ((0)} we will show that ué =3 (8.).
Suppose that R e ¥/ = FC_ N ¥’ and that x is a

non-zero element of R . Then Y}(<x>) = (0) since

1$ NY =((0)} . Let P be a prime ideal of <x> . Then

<x>/P must have characteristic p 8o either <x>/P is

finite or <x>/P = F [X] where X is an indeterminate. If

Kx>/P = F [X] then every ring of characteristic p is in

(blnce they are all homomorphic images of Fp[X])
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But then FCp < ¥ 9because if A is a ring and B< A such
that A/B e¢ ¥ and B e ¥ +then A ¢ ¥ . Hence ué = FCp.
This is contrary to our supposition that Hé A FCp . Hence

¢x>/P is finite. Then <x>/P is a Wedderburn ring without
zero divisors so if P # <Kx> then <x>/P is a field and

hence P 1is a maximal ideal of . <x> . Since <x> satisfies
A.C.C. and all prime ideals are maximal, <x> satisfies D.C.C.
(Theorem 2, page 203 of Zariski and Samuel [15]). Therefore

<x> d1s a commutative Wedderburn ring so

~ 4
x> = Fpal'@)... @§FpaK . Then Fpai e ¥ so the a; € Sp

Therefore R ¢ Ep(sp)

Conversely, if R ¢ SD(Sp) .then for all x € R ,

<x> is a finite direct sum of fields in ﬁé so <xX> € Hé

Therefore R e ¥ , so ¥ =35 _(S.)
P PP

p
Ir M} N FCp < ué we will show that ué = spr(sp).

Suppose R ¢ Hé = FCp N# and x € R . Then as

above <x>/WM(<x>) € Sp(Sp) . Since R ¢ né , R e FCp SO -

R e d S
pn( p)
Conversely, if R e 3 W(S ) then for all x € R 5

<x>/M(<x>) is a finite direct sum of rings in ﬁg so

C<O/NM(x>) e up . Since R ¢ 3p1@(sp) » R e FC, so

14

<X> FC_ NP < ¥ . T H!
MQ( x>) € . M < 5 herefore <x> e ¥ so 3 € Hp

H ¥ =3 _N(S
ence M p)ﬁ( p)
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From 3.4.9 we know that
¥ N FC =@{'HI') : p is a prime)

. We shall now prove the converse. Assume that

¥ C)[ﬁ[p] p is a prime} where p] = F or p]Q( p)

p

or Jp(sp) for some C.U.D. set of integers Sp for each

prime p . Since H[p] _<__FCp < FC for all primes p ,

# < FC

First we shall prove that ¥ = ¥’ . Suppose R ¢ ¥
and let x ¢ R . Since Re ¥ ,R =0 {H[p](R) : p is a

prime} . Therefore x = x; + ... + X where X, € u[p.](R)
a, ‘ +
1 . oL
' and pi Xy= O for some integers N

s T P # pj . Thus, for each i , there is an integer

> 1. Moreover, if

- d; such that d;x =x, . Since <Xi><x> e’FCpi 5

n = (x.)

(xi)<x> JA4 Y x> = (0) . Therefore,

0 ] is strongly

<X> = (X1}<x> + ...+ (x )<x> . 'Since ﬁ[pi
c ¥ . Therefore, <x> ¢ ¥ ; sb

hereditary, (Xi)<x>

R e ¥’

Suppose R e ¥ . Then R ¢ FC so
R =0 {FCp(R) : p is a prime} . We shall show that

FC (R) = ¥ Ry . C Hr 2 (R) < FC (R) .
p(R) = Hpy(R) - Clearly My y(R) g FC (R) . Let
X € FCp(R) . Since R e ¥ , <x> ¢ ¥ . Therefore,

<x>:=GB{3%p](<x>) : p is a prime} . But <x> ¢ FC_ so
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= (o v . Thus = ¥ ¢
M[q](<x>) (0) for all g #p hus, <x>. [p](<7>) SO
<X> € H[p] . Since ﬁ[p] = ﬁfp] s FCp(R) € H[p] . Therefore,
FCp(R) = H[p](R) so R e ¥ . Hence ¥ = ¥ is an ele-

mentary class. Notice that we have shown that
¥ =FC_NHc¥ so clearly -¥_ = ¥
p p = "lp] T T Tp]
Suppose R ¢ ¥ and let R’ = R/I Dbe a homomorphic
image of R . Then H[p](R') g.ﬁ[p](R) + I/1 so clearly
R =@ {H[p}(R') : p is a prime} . Therefore R’ € ¥ so

H satisfies condition (A4).

Suppose A ‘is a ring and B<d A such that A/B
and B e ¥ . Since both A/B and B are in FC , A ¢ FC

Therefore, by 3.1.6(iii)
A= {FCp(A) : p is a prime} . (*)
Since B e ¥, FC (B) = ﬁ[ﬁ](B) and since both FC, and

H[p] are -hereditary (see Theorem 48 in Divinsky [7]),

u[p](A)'n B.= u[p](B) = FCp(B) = FCp(A) NB . (%%

. Now

n

(FCp(A)/FCp(A) n B) (FCp(A) + B/B) g,Fcp(A/B) € w[p] since

A e ¥ . B **%), FC_(A) N B H i H
/B y (%) p( ) € ¥, » SO since (o] is a

- radical class, FCp(A) € u[p] . Clea?ly n[p](A) g_Fcp(A)
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SO ﬁ[ (8) = FCp(A) . Now (*) implies that Ae ¥ .

p]

- Therefore, by 2.3.1, ¥# 1is an elementary radical

class.

Q.E.D.

The following list provides a representation of
each of the elementary radical classes ¥ < FC which we
have already discussed. Let Al be the set of all positive

integers.

e’ =@ (5.(2%) : p is a prime)

S = ® = NNFC-@,N(P : p is a prime)
ﬁ'R N FC = sp'n(z““)

NnFe, = 3 N(Q)

b nrec-@ (5,70(2%) = p 1s a prime]

The relationships between the elementary radical
classes which we have discussed can be illustrated by the

following diagrams.
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CHAPTER IV

| GENERALIZED ELEMENTARY AND LOCAI, RADICAL CLASSES

4.1 ABSORBENT CARDINAL NUMBERS.

| In this first section of Chapter IV we shall prove
that 2 and 3§ are absorbent cardinals. In fact, we shall
‘show that any cardinal K such that 2 < K < §, 1is

"absorbent. We begin with the following two lemmas.

%.1.1 LEMMA:

If R # (0) and R 1is a zero ring (R2 = (0)) of
characteristic D fof some prime p then R can be homo-
morphically mapped onto Cp = the zero ring on the cYclic

group of p elements.

Proof :
Let R be a ring such that R # (0) , R° = (0) and

pR = (0) . Choose x €R, x#0 . By Zorn's Lemma choose

K maximal in 2 = (I€Q R : x é I} . Suppose O f'w € R and

w é K . Then, x ¢ (w)R + K so there is a non-zero integer

n such that x =nw +y when y e K . Since pR = (0) €K

and x ¢ K , p does not divide n . Therefore, there are

integers r and s such that rp + sn =1 ; so, ﬂ

w = (rp + sn)w = Snw = SX - Sy . >fhus, W e <x> € R/K so

R/K = <x> ¥ Cp

Q.E.D.
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Let p Dbe a prime number. The ring poo is dis~-

cussed in Rings and Radicals, Divinsky [7]. We may think of

this ring as the set of all fational numbers of the form

j%? where p does not divide a . The addition is modulo 1
P .
and the multiplication is trivial. All ideals of p° are

isomorphic to Cpn = the zero ring on the cyclic group of pn
elements for some n , and all non-zero homomorphic images of

=] o0
p are isomorphic to p

4,1.2 LEMMA:
If R is a zero ring and there is an X € R such
that x #0 but px =0 for some prime p then R can be

homomorphically mapped onto Cp or onto pm

Proof:
2

Let R be a ring such that R” = (0) and let
x € R such that x ¥ O but px = O .- By Zorn's Lemma choose

I maximal in Z = (I QR : x ¢ I}

If p(R/I) ¥ R/T then R/I can be homomorphically
mapped onto a zero ring of characteristic p so by Lemma

4.,1.1 R can be homomorphically‘mapped onto Cp

Suppose p(R/I) =R/T . Let we R and w ¢ I
Then X ¢ (W)R + I so there is a non-zero integer n such
that x - nw € I . Therefore pnw € I .so R/I ¢ FC . Now

FCp(R/I) is '‘a direct summand of R/I and hence a homomorphic
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i

image of R/I . Therefore, FCp(R/I) R/K for some ideal

K of R and since X ¢ FCp(R/I) , x ¢ K . By the maximali-

ty of I, FCp(R/I) = R/I

Let we R/I and n be a positive integer. Write
n = p%*n’ where p does not divide n’ . Since

p(R/I) = R/I , p(R/I) = R/I so there is an element Vv ¢ R/I

such that p°v = w . Now, R/I e FCp so there is an integer
k such that Apkﬁ =0 . Since p does not divide n’ there
are integers r and s such that rpk +sn’ =1 . Then

W= (rpf + sn’)w = sn'Ww = sn'p™V = n;pa(sV)v= n(sv) . There-

fore, the additive group R/I+ is divisible. Since
(R/’I)2 = {(0) the ideals of R/I are just the subgroups of
the abelian group R/I+ . Therefore, by the theorem for
divisible'torsion groups (see for instance, Fuchs [8]), R/I
is isomorphic to a direct sum of copies of pm .  Therefore
R/I can be'homomorphically mapped ontc the ring p°° .

| Q.E.D.

We are now ready to prove the theorem.

4.1.3 THEQOREM:
If K 1is a cardinal number and 2 < K £ §£O then

K is absorbent.

Proof:

Let K Dbe a cardinal, 2 < K (K . Suppose that
N T 1) p
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ﬁ is a class of rings and I ¢ ggg(m where I<& R’ and
R’ is a K-subring of the ring R . Let M = (I)R =
I + IR + RI + RIR

Suppose that M ¢ Qfg(K) . Then there is a non-zero
homomorphic image M’ ¥ M/K’ of M such that no K-subring of
M’ is in o . Since I e Qgg(K) , I <K' . Therefore, by

Andrunakievic's Lemma (Lemma 61 in Divinsky [7])

3 < (I)y < K’ . We shall consider two cases.
Case 1: There is a z € M such that C° ¥ <z> < M/K'.
First we shall prove that I/I° ¢ FC . Suppose I/I° ¢ FC
N e
et x €I , then mx = ¥ u.,v, where u. , v. € I and m
sop 1d i i

is a non-zero integer. Now, there 1s a non-zero integer k
“such that ku'i € 12 for 1 =1, ..., n . Therefore

(km)x ¢ 13 , SO I/I3 € FC . But then if w e M = (I)R R

nw ¢ M3 E‘K' for some integer n # 0 . This is impossible
because z € M/K' and <z> ¢ FC . Therefore 'I/Ig ¢ FC  so
I/i2 can be homomorphically mapped onto a non-zero ring L
such that L° = (0) and I has characteristic O (factor

out FC(I/I?)).

Choose x € L , x # 0 and by Zorn's Lemma choose
H maximal in the class Z = {J<Q L : if n 1is a non-zero
integer then nx ¢ J} . Then FC(L/H) = (0) , for if y e L,
y ¢ H but ny e H for some non-zero integer n then by the
maximality of H , kx € (y)L + H for some non-zero integer

k so (nk)x € H which contradicts the way in which H was



chosen.

Let S be a K-subring of L/H . Since K ¢ }{O s
S 1s finitely generated. Because L/H is a zero ring the
ideals of S are Jjust the subgroups of the additive group s*.
Since S 1is finitely generated we may apply.the fundamental

theorem for finitely generated abelian groups to see that S

. s . s s P . o
is isomorphic to a finite direct sum of copies of C .

If u and v are two non-zero elements of L/H

' there are non-zero integers k and n such that

kKx € (u)L + H and nx e (v)i + H . Hence there are non-zero
integers r and s such that kx - ru e H and nx - sv e H.
This insures thét the direct sum in the preceding paragraph

-]

is of length 1 ; that is, S ¥ C
Now, since I e Sgg(K) , some K-subring of L/H

(which is a homomorphic image of I) is in (ﬁ . Since all
K-subrings of L/H are isomorphic to C° s c® ¢ qg . This
is a contradiction since we assumed that M/K’ did not

contain a K-subring.

Case 2: There is a z € M such that Cp % <z> < M/’

for some prime p

Ir p(I/IQ) # I/1° then I/12 can be homomorphi -

cally mapped onto a zero ring L # (0) of characteristic p.

2

. By Lemma 4.1.1, I/I can be homomorphically mapped onto

Cp . So, since I € gfg% S Cp € Qg . This is a contradiction
. _ K
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because we have assumed that M/K’ has no K-subrings in af .

We must conclude then, that p(I/IQ) = I/I2
Since z € M = (I)R thére are integers my and elements

Xi el and r,, s r., S. € R such that
r XS, + r.X, + X,8, + mX., . (*)

Now, p(I/I?) = I/I? , so pI + I =1I . Hence

I° = I(pI + Ig) = pI2 +13 s0 I = pl + T° - PT + p12 + 10 =

pI + 13 . Thus pn(I/I3) = I/I3 for all positive integers

n . For each n > 1 choose Xy € I such that
N o --
n B
X, = D X, € 13
i i
‘ n
L — —
et z_ = ¥ r.X, S, +r.X, + X, s, + nmn.X
ii
n 5.1 i i i1y 1,1 =

Then 2z - pnzn e M3 cX' so zZ=p'z #0 in M/’

Moreover, since pz = 0 , pn+1E =0 so <z.> % Cp in
M/K’

Now, suppose that for all x e I , x ¢ (px)I + T2,

Then if =x € I , there is an infteger n such that

X - pnx e 1° o (1 - pn)x ¢ I° . Therefore I/I2 e FC

Suppose FCp(I/Ig) = (0) . Let x eI . Then

there is a non-zero integer r such that p does not divide
H

r and rx = L u v, € 12 . Now there is a non-zero integer
i=1 v

s which is not divisible by p such that su; € I2 for

i =1, ..., H. Thus, srx ¢ I° and p does not divide
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sr . Therefore, we may choose a non-zero integer k which
is not divisible by p and such that kx, ¢ I° for
i-1, ..., L. Nowfrom (¥), kz e (I°)y S M cK' . This

contradicts our assumption that <z> ¥ Cp

Therefore FCp(I/Ig) # (0) so by Lemma %4.1.2

I/I2 can be homomorphically mapped onto Cp or onto p°°

On the ofher hand, if there is an x € I such
‘that x ¢ (px)I + I° then I/I2 can be homomorphically
mapped onto I/((px)I + 12) which by Lemma %4.1.2 can be

homomorphically mapped onto Cp or onto pm

Thus our assumption in Case 2 leads fo the conclu-
sion that I can be homomorphically mapped to Cp or to
pc° . We have seen that the conclusion that I can be homo-

morphically mapped to Cp 1leads to a-contraduction.

Now, if I can be homomorphically mapped onto pw,

pco € qfég(K). Since all K-subrings are finitely generated,

Cpn egf for some positive integer n . But tThen

<zn—1> €

case this contradicts our assumption that M/K’ contains no

of if n>2 and <z>ed if n=1 . In any

K-subring in QX .

Either Case 1 or Case 2 must occur since
(M/K')3 = (0) . Both cases lead to a contradiction so we
conclude that M ¢ Qfg(K) . Therefore K is an absorbent

cardinal.
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4.2 GENERALIZED RADICAL CLASSES WHICH ARE & 70g

We shall refer toc generalized 2-~classes as generali-
zed elementary classes. Generalized %ﬁo—classes will be re-
ferred to as generalized local classes. We shall write H

g

for ¥ and H for H . The followin roposi-
g( §,) g(2) & prop

&1
tion shows that this will not conflict with our notation for

the generalized nil radical class of Andrunakievic and

Thierrin.

4.2.1 PROPOSITION:

Mg = Mg(2) = Nyg( %)

Proof:
Assume that R € ]ﬂg . Let R’ be a non-zero
homomorphic image of R . Then R’ ¢ Tﬂg so by 1.2.1 there

is a non-zero nilpotent element in R’ . Therefore R e)Qé(2>.

If R € Wﬂg(e) then every non-zero homomorphic
image of R contains a nil subring so clearly rio nOn-zerQ

homomorphic image of R is Wﬂgs.s. Therefore, R e¢ YN

.
By 2.4.2(vii), ‘Vlg(g) = ’vzg(.g ) SO
(e}
Ng = 7%(2) = V() -

4.2.2 THEOREM:

If ¥ 1is any class of rings such that g < ¥ < FF
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then ¥ = M _ .

Proof:
Assume that ¥ 1is a class of rings and B £ ¥  FF.

Since )Qg = }Qg , by 2.4.2(ii) we need only show that
' 1
> and FF <
Bg - }Q%. g, — 74%
1 1 A
Since a ring generated by one element is in B if

and only if it is in M it is clear that B = M. = N
’ g4 g, ‘s

Let R be a ring such that R ¢ )ﬁg .  Then there
is a non-zero homomorphic image R’ of R such thaf R’
has no non-zero nilpotent elements. Thus, for all
0#£xeR', <x> is WM semi-simple. In Theorem 3.3.2 Qe
proved that such a ring <x> could be homomorphically mapped
onto a finite field. Hence, no non-zero subring <x> of R’

is in FF , so R ¢ FF . Therefore, FF_ < V. .
gl . gl - g

Q.E.D.

If R ¢ }Qg then every non-zero homomorphic image
of R contains a subring <x> such that <x> 1is nilpotent.

Thus, R ¢ Bg’ < Bg (by 2.4.2(1i1)). Now, by 2.4.2(ii) we
1
t h = £ = .
must have mqg e Bg

Using 2.4.2(ii) again we see that

NI, < B

L3 <F <K<FF_. Almost all gquestions con-
g g g g

cerning these radical classes are open. We do not even know

which of the above inclusions are strict. Notice however,
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that FFg < FF since subrings of finite fields are finite

fields.

" The next proposition is concerned with the generali-

zed classes associated with i‘ and £Ti' Notice that by

2.4.2(vi1) %= % and’ (ﬁ-R)g = (%‘R)gl

g &

k.2.3 PROPOSITION:

(1) R ¢ ;frg if and only if R/(i-R)g(R) ¢ FC

(11) %, Z (Fp), 7 W

g

(1i1) R 1is ﬁ,g semi-simple if and only if for all x e R,

<x> = G%X]

Proof:

(1) Aésume that R ¢ gf,g . If ‘R/( :éR)g(R) ¢ FC let
I<9R such that I 2 (irR)g(R) and I/( i—R)g(R) =

FC(R/( %R)g(R)) . Since R/I e zg theré is an

n

x € R such that x ¢ I and ax + ... +a;xel
for some integers 81, ecey @ - Then there is a non-
zero integer m such that A
n n-i-1

ma X" + ... + ma;x € (Z}R)g(R?" Let b, = mai(man)
and let y = ma X . Then

n n-1 »
Yoo+ q¥ T+ e+ D3y e ( %R)g(R) . | (+)

Since x ¢ I , y ¢ I so certainly vy ¢ (iﬁgng) . We
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<y> ko) (R
will prove that <y> = J(gRg (gig( ) is in (I;—R)g.
g i

By (fﬁ, the additive group <y>  is finitely
generated.so if woe <y> s <w>t  is also a finitely
generated abelian group. Thus there are polynomials

fl(w), cee, fK(w) which generated <w>T . Choose an

integer h which is larger than the degree of each

L
£f. . Then w' = % b.f.{(w) for some integers
i . iti
i=1
by, -++, b, . Therefore, y> € Z;R .
Since i;R satisfies condition (&),
<y> € (i’R)g . Now since é{o' is absorbent (see

4.1.3) the non-zero ideal of R/KgﬁR)g(R) which is
generated by <y> is in (;ﬁR)g . This is a -

contradiction. Hence R/(E;R);(R) e FC

ji' so the

Both FC and ar
(hg), are < &y

g

I

converse is obvious.

(ii) Clearly irg > (ﬁ-R)g > }/lg . The ring Fp[X] € i’g

but is not in (;&R,)g so Z}.g # (£'R>g' No finite

field is in ng but they are all in (i'R)g so
(iii) This follows immediately from 2.4.15 and 3.1.3.
Q.E.D.

We shall now consider the classes (( Lﬁ)g), and
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( %éﬁ' . By 2.4.2(ix) both classes are radical classes and

clearly ((&p) )" = ((Fg))* ana (L)' = (£)*
Since & and j%R are elementary radical classes,
(&) 2 & and ((£R)) " 2 £y

If R ¢ (0&g)' and x € R then <x>e¢ JS_ so

x> % @P[X] , thus <x> e & so R e & . Therefore,
(2 - & .
Now £’R < (ﬁR)g < frg S0 fyR < ((ﬁ’R)g)l < ﬁ’

4,2.4 PROPOSITION:
(1) Fen ((&g))" < By

(2) R ¢ ((XeR)g)’ if and only if for all x € R ,

<x>/i&R(<x>) has characteristic O and is in % .

Proof: \
(1) Suppose R e FC N ((%g),)' . Then R =®[FCp(R)I: b

is a prime} so since irR is a radical class it is

[

sufficient to show that ‘FCp N ((ﬁ-R)g) < ﬁ'R for each

prime p . Let A ¢ FCp n ((i}R)g)' and let x be a
non-zero element of A . Then there are integers

2
ay, «+-; @, and a ¥ = a;X + ... + 8,X ¢ p<x> such
e ~ K K—l .

Chat v+ bK—ly + ... + bly € p<x> for some integers

b .y b, . We may assume that p does not divide

K-1~ 1
_ _ K2 Ke-1
Thus x, =x 7 + Crg-1%

a8, - %4 + ... + clx € p<Lx>
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for some integers Cqs vy Cpp_q - By repeating the
abvove argument we see that for each integer n > 1
there is a monic polynomial in X which is ' in pn<x>

Since pax = 0 for some integer a , we conclude that
A e j;R

Assume that R ¢ ((i}R)Q)' and let x € R . Then since
<x>/1§R(<x>) is ﬁyR semi-simple, by part (1)
<X}/£TJ<X>) must be of characteristic O . Since

((i’R)g)'l <l o, e b

Conversely, assume that for all x e R ,

<x>/£’R(<x>) ¢ &r and has characteristic O . Let
X ¢ R such that <x> = <x>/£R(<x>) # (0) . Then

x> e b oso aKEK + ... +a,x =0 for integers

1
8y, --+, @ - Since x> hasAcharaéteristic 0 we may
assume that K > 2 and that the greatest common divisor
of the a; is 1 . Now if y = aK§ ,
yK + aK_lyK-l + (aKaK_g)yK—g + .o+ (ap Tag)y =0

This guarantees that <y>.e (i?R)g . Therefore, since
%ﬁ) is absorbent, (y)<§§ € (Z}R)g . Now, since

aK§'= vV € (y)<§> and the greatest common divisor of the
a; is 1, the ring <§§/(y>

(%), -
so R e ((ﬁ'R)g)l .

<3S ;s finite and hence in

Thus <X> € (j;R)g . Therefore, <x> € (i}R)g

Q.E.D.
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R # (0) then since R ¢ (FCp)
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It follows immediately that Jﬁ]R ¥ ((ZQR)g)' g L.

g
By 2.k.2(vi1)  (((Jg),) ")y = (&g)y

GENERALIZED RADICAL CLASSES WHICH ARE L FC .

4,3.1 LEMMA:

ILet p be a prime. Then (Fcp)g(K) = FCp for all

cardinal numbers X > 2

Proof:
Let p be a prime and K be a cardinal > 2
Since FCp satisfies condition (A) and FCp is
strongly hereditar FC_ < (FC
gly here v, FC, < (FC), (k)

Suppose R ¢ (FCp)g(K) . Let R = R/FCp(R) . If

there is a non-zero K-
g(K) ©

R

subring S of R such that S e FCp . But then (S)z ¢ FCp

which is a contradiction since R is FCp semi-simple.

Hence R = (0) so R ¢ FCp

4.3.2 PROPOSITION:

Let ¥ Dbe an elementary radical class < FC and

let ¥ = C){Hp : p € S} be the representation of ¥ given

in Theorem 3.4.14%. Then for any cardinal K > 2 , R ¢ EQ(K>
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if and only if R _.C)[ (K )(R) : p e S} . Thus we may

p z
denote Ng(K) by' C)[( g(K) : p e 8}

Pfoof: '
Let S Dbe a set of primes, ¥ =@ {Ep : pe S},

and let K be a cardinal > 2 . Since Hp = H#N FCp < FCp s

(%))

o g(K) (FCp o(XK) = FCp . Thus, for any ring R , the sum

of ideals (¥_)

o K)(R) is direct.

g(
Suppose R ¢ ﬁg(K) . Then R ¢ FCg(K) gnd Just as

‘in the proof of 4.3.1, R ¢ FC . Hence by 3.1.6

R = C)[FCP(R) : p is a prime} . ©Now, for any prime p ,

FCp(R) is a homomorphic image of R .so since R ¢ ﬁg(K) s

FCp(R) = (0) if p ¢ S . Thus, R =®v[FCp(R) : p e S}
ILet p € S and let R Dbe a non-zero homomorphic

image of FCp(R) . Then R 1is a homomorphic image of

R € ﬁg(K) so there is a non-zero K-subring H'glﬁl such that

He . Now He ¥nN FCp = ﬁp so FCp(R) € (H ) By

g(K)

4.3.1 (Mp & (K) < FCp SO 'FCp(R) = (ﬁp)g(K)(R) . Therefore,
R =@f(3i g(K)(R) : p e S}

Conversely, suppose that R =@® ((¥ g(K)(R) : p e S}.
Since ﬁp‘g_ﬁ for all p e S it i§ clear that R € Mg(K)

This completes the proof.
Q.E.Dl
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Combining 4.3.1 and 4.3.2 we see that if .S is any
set of primes then M::C){Fcp : p €S} is a generalized

K-class for all cardinals X > 2 . In fact, ﬁg(K) = H# .

Now ¥ 1is also a K-class. In the next theorem we shall show
that these are the only classes which are both K-classes and
generalized K-classes .(except; of course, for the class of

all rings).

4,3.3 THEOREM:

Let X Dbe a cardinal number > 2 and let R be a
class of rings which does not contain all rings. Then vR isg
a strongly hereditary generalized K-class if and onliy if

R = C){FCp : p e S} for some set of prime numbers S

Proof :

Assume that S is a set of prime numbers and
R::GQ{FCP :p e S} . By 3.4.14 & is an elementary radical
¢1ass so certainly R® is strongly hereditary. From 4.3.1

and 4.3.2 R 1is a generalized K-class.

Conversely, assume that Rf is a strongly hereditary
géneralized K-class. Then there is a class of rings 3 such

that R = Sg(K) . Since R 1is strongly hereditary 8 < R(2)
and by 2.4.2(viii g 2) < {3 < d . . Th
v (vi11), (F())(2) € (Fyii))g(a) < g(x) e

R < R(2) = (Sg(K))(Q) < (gg(K))g(E) < Jg(K) = R . Hence

D
il
29

~
n
il

(gg(K))g(z) = R, (py - Now we shall prove that if



- 101 -

R ¢ FC then R is the class of all rings. Suppose R { FC,
then there is a ring R € R such that FC(R) = (0) . PFirst

we shall prove that c® e R

Iet O #x e R . Then <x> ¢ f so <x>/<x>2 € R .

2 s .
for some integer n

If <x>/<x>° % C° then nx e <x>
- Thus, there are integers 85, «e-, A such that

‘ LK . _ K-1
nx = X"+ eee +ApX . Let y = aoX + ... F apX

Then nx = yx so <y> ¥ n-Z = the ideal of the integers
generated by n . Since R = R(2) , <y> € & . Now consider

Y = (Ky>), = the ring of 2x2 matrices with entries from

2
<y> . Then every non-zero homomorphic image of Y contains
a subring generated by one element which is isomorphic to a

homomorphic image of <y> . Therefore Y ¢ Rg(Q) =R .

Hence, C° O mdy ¢ R(2) = R . So in any case C” ¢ R
0 O

Since €~ € R and B = the lower radical class
determined by (€%} , B < R . Thus M= p(2) < ®(2) =R .
Let Q(X) be the field of rational functions in an indeter-
minate X over Q = the field of rational numbers. Then
(Q(X))2 is a simple ring with non-zero nilpotént elements.

Thus (Q(X))2 € &g(2) = R . But then, sipce R = R(2) ,

n

lx]

element are in R since R satisfie§ condition (A). There-

<<§ 8>> € R . Then all rings generated by one

fore R = Rg(Q) = the class of all rings.

Since R is not the class of all rings, & < FC
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Let S = {p : Rp # {(0)}} . Then, by Theorem 3.4.1%4,

R =@ [Rp :p e S} . We will show that Fp[X] = the ring of
polynomials in an indeterminate X over Fp 1s in Rp and

hence ®_ = FC_ for all b € S
e e \,p D P

Let (0) # <x> € Rp . Then if <X>/<x>2 has a
non-zero nilpotent element, Cp = the zero ring on the group
. of p-elements is in Rp . If <x>/<x>2 has no non-zero

nilpotent elements then <x> has an identity so 2Zp € Rp

In this case (Zp)2 e'Rp < ® so since R(2) =R , Cp ¢ sep

So in any case Cp € & Now (Fp[X])2 € Rg(K) = R SO

Y
Fp[X] € ®(2) = 8 . Therefore every ring of characteristic

p is in Rp . Now if B 1is an ideal of a ring A and both
A/B and B are in R then A € R .. Hence FC_ < R
. Y .- b~ P P

Therefore, R

D = FCp for all primes p € S . This

completes the proof.

QoE'Do

We now turn to a consideration of some classes of

rings ¥ such that ﬂg = }Qg N FC

4.3.4 PROPOSITION:

If Re  and R is finitely generated then

R e o
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Proof:
Let R be a finitely generated ring in & . If

ReFC then Re BNFC so Re J by 3.2.1.

Suppose that R ¢ FC . Let R = R/FC(R) . Since
R e < £ , there is a positive integer n such that
RY # (0) but gL (0) . 'Since R e § , there is a ring
A with D.C.C. on left ideals such that R = YU(A&) . Now

=N

R is finitely generated as a subring of R by 2.2.6.

Moreover, R" has characteristic O so from the Fundamental
Theorem for finitely generated abelian groups R is isomor-
phic to a finite direct sum of copies of ¢® . But then

2R" 2 2°R" 2 .. 22"R" 2 ... and since 2"R%g A for all

positive integers k this contradicts the D.C.C. condition

for A
Thus we must have R ¢ FC. so R e J
Q.E.D.
Since J < @ it follows immediately from 4.3.4
that = and = |
v ‘Bgl ng R

Let R be a finitely generated ring in & and let
x e R. Now, Re J =B NFC so R is nilpotent and in FC.
Therefore <Kx> € B N FC = J S0 <x>‘e &) . It follows that
Ny =‘®g1

Notice that Proposition 4.3.4 also implies that

! /

H* = f* and £ = S
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Y.3.5 THEOREM:

I =3 =WMN_NFC if I 1is equal to any of the
g &1 g

classes D, J, B* , 3%, @I or ¥’

Proof:

We have already noticed that %g = j’g = "Sgl = fg .

Since J< FC, J, < FC and since J< B , Fe By = Ny -

g
us Jp < Wy |

Iet R ¢ Wg N FC and suppose that R is a non-

zero homomorphic image of R . Then there is an 0 # x ¢ R

such that <x> € FC and x 1s nilpotent. Thus <x> € f
*), T n FC = N FC.
(and <x> e P ¥) hus 'yzg gfg Yo fg_ 'ﬂg
By 2.1.3(iii1) SF* < ¥’ . Then by 2.4.2(i1),
4 4 a .
(j*)gl < (g )gl and (j*)g < (J )g and by 2.4.2(iii),
(f*)gl < (%), and (y’)g‘1 < (j")g . Notice that in
the above paragraph we actually proved that ng N FC < (j’*)g .
: 1
Now combining these inclusions we have
n FC * < *) < ! and
Ng NFC < (1, < (), < (F), am
* ’ ’ s % = *
N, nrcc(y )glg(j )815‘(.f>%' Since B * = f
and B’ = J’ we need only show that (f')g < ’)Qg N FC
to complete the proof.

Since J< FC , (j’)g < (FC')g = FC and since

jtin , J e so (f’)g;mg . Therefore
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(), < M, NFC
Q.E.D.

In view of 3.4.14 and 4.3.2 to determine Hg for
any elementary radical H which is < FC it is sufficient
to consider I where J 1is one of the basic building

o]

blocks of 3.4.1L4.

4.3.6 PROPOSTITION:

(1) (lfp(_S))g = ({Fp})g if S#¢.
(2) ('Jp')fL(S))g = FC, N 'ﬂg if S=¢ .

(3) (3,NU8)), =Fc n (&g), if SAF .

Proof: : L

Notice that since Sp(S) and SP]Q(S) are ele-
mentary classes (3p(S))g1 = (Sp(S))g and

(3,M8)), = (3,78)),, -

(1) Suppose that S is a non-zero C.U.D. set of positive
integers. Since every non-zero finitely generated ring
in Sp(S) ‘contains a finite field of characteristic p
it is clear that every non-zero homomorphic image of a
ring which is 'in ('Jp(S))g contains a non-zero idem-
potent e such.that pe = O . Thus

(5,(8)), < ({F 1), -
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Conversely, suppose that every non-zero
homomorphic image of R contains an idempotent e # O
such that pe =0 . Since S #¢ and S is a C.U.D.

set, 1 e S . Hence <e> T Fp ¢ 'Jp(s) so R ¢ (Up(S))G.

This completes the proof.

(2) Since zrp(g) = ((0)} , Jpw(m = FC, NN and clearly
FC_ N° = FC_ N .
( p n )% D }Qg

(3) Suppose that S is a non-zero C.U.D. set of positive
integers. Now 8p71(8) < SP}Q(Z+) = FCp N ﬁrR S0

clearly (3py1(s))g < FC N (x-R)g .

If R € FCp n (Z}R)g then every non—iero homomor -

phic image contains a non-zero element x such that pax =0
‘ N-1 .
for some integer o > 1 and xN = Z aixl for some integers
i=1 '
8y, +++; 8y - If x 1is not nil then x>/ N({kx>) is a

commutative Wedderburn ring. Let y ¢ <x> such that
Y o=y + (<x>) is the identity of <x>/NM(<x>) . Then
<y>/MN<y>) T Fp € Zp(S) , thus <y> e 3p71(8) . So in any
R 3 .
case, R e ( p'}/l(s))g
Th £ J S =PFC_ N .
erefore, (I VUS)), = FC N (Jp),

Q.E.D.
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4.4 THE GENERALIZED RADICAL CLASS €

g1

A ring R e €& if and only if R® = R . Hence

R e € if and only if for each X € R there are elements
' N

u, , Vv, € R such that X = T uv., . Using this characteri-
i i jo1 11

zation of € -one easily sees that € 1s a radical class.

ILet R ¢ 8g . Since R/R2 cannot contain a non-

_zero idempotent subring, R/R2 = (0) . Thus R € & . By

2.4.2(i11), €& < & so &_ ¢
(111) g, = g g, =gt

Let R Dbe the subring of the ring of real numbers

generated by the set of positive .real numbers
1/2n+1]2

n
{+(2)1/2 :n > 1} . Clearly R® = R since [(2)

2127 | gowever, if R’ is a finitely generated subring of
R then R’ # (R')2 . This follows from a lemma on page 215
of Zariski and Samuel [15] which implies that if (0) £ I = I°
énd I 1is finitely generated as an ideal of a commutative

ring then I has an identity.

Thus 8g ; € . The result ffom Zariski and Samuel

implies that 6g = 6g for commutative rings but we do not
1

know if & _ (R) = & (R) for all rings R .

&1 g y

Notice that R ¢ 8g if and only if every non-zero

1

homomorphic image of R contains an Edémpotent e # 0 , and

that R is Eg seml-simple if and only if R has no idem-
1 .

4- e

potent e # O
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Clea e’ ¢ ¢ so (& VY = (e )Y =¢&" . or
early < g ( g1> ( g)

course, (8',)g = (8')g < FC N 8g . Since the ring of
1 1

integers moduls 4 is not in (&), (8')g SFcne

g g4
If R is a commutative ring and (0) ¥ I is a

finitely generated ideal of R which is in Sg < & then
' 1

12 =1 so I has an identity. Thus I 1is a direct summand
of R . Therefore, for a commutative ring R with A.C.C.

8g (R) has an identity and is a direct summand of R . If
1

we do not insist that R be commutative we obtain the

folf%wing weaker result.

4.4.1 THEOREM:

Ir (0) #R ¢ 8g and R has A.C.C. on one-sided
1
ideals then there is an e € R such that e° = e #Z0 ,

R = ReR and e is an identity for R/ YR) # (O)

Proof:

Let (0) £#R ¢ Sg and suppose that R has A.C.C.
1

on left ideals. Then (0) # R = R/ N(R) is semi-prime and
so by Goldie's Theorem (Theorem 29 in Divinsky [7]) R has
a left quotient ring Q which is a finite direct sum of

matrix rings over division rings. Clearly all idempotents
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of Q are in the centre of Q =so all idempotents of R

are in the centre of R

Since R € 8g there is a non-zero idempotent in
1

R .. Choosé Rf maximal in the set {(Re : e is an idempo-
tent of R} .. Since f ¢ centre of R , REQR . If Rf #R
then there is an element w € R such that w is a non-zero
idempotent in R/Rf . One easily checks that £’ _ £ 4w - fw
is an idempotent and since ff’ =f , Rf € Rf’ . By the
maximality of Rf , Rf = Rf’ . This implies that w e Rf
which is a contradiction. Therefore, Rf =R so f is an

identity for R . Then by Lemma 1.12 in Herstein [10] there

is an idempotent e € R such that e + M(R) = ¢

Since Rf =R, ReR + N = R . Therefore R/ReR
is nil and hence does not contain a non-zero idempotent. Thus

R = ReR because R ¢ €
23

The proof goes through in exactly the same way if
we assume that R has A.C.C. on right ideals.

Q.E.D.

The following proposition'(together with Theorem
2.4.13) implies that if ¥ is an elementary semi-simple class

and ¥ contains all 8g semi¥simp1e rings then ¥ = the
1

class of Ug semi-simple rings for some class 3 which
1

satisfies condition (A).
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4.4.2 PROPOSITION:

If # is an elementary class of rings which con-

tains all 8g semi-simple rings then ¥# satisfies condi-
1

tion s(2) if and only if ¥ satisfies condition s(2).

Proof:
Let- 3 Dbe an elementary class of rings which con-

tains all & _ s.s. rings.
&1

If ¥ satisfies condition s(2) then by 2.4.12 ¥

satisfies condition s(2).

Suppose ¥ satisfies condition s(2). By Theorem
2.4.9 # is a semi-simple class. If <x> ¢ ¥ then

Qiﬁ(<x>) = I # (0) . Since ¥ contains all 8gv s.s. rings,
: 1

Ziﬁlg egl.. ‘Therefore Ie 851 so by virtue of the remarks
at the beginning of this section I has an identity and so
there is an ideal J of <x> such that I @& J = <x>
Therefore I 1is generated by one element as a Subfing of

- <x> and I cannot be homomorphically mapped onto a non-zero

ring in ¥ .

We have proven the contrapositive of condition 5(2).
This completes the proof.
QoEoDo

In the following proposition we show that if ¥ is
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an elementary semi-simple class which is not of the type
with which 4.4.2 is concerned then ¥ must be contained in

the class of ?Qg n FCp semi-simple rings for some prime p.

4.4 ,3 PROPOSITION:

If 3 Dbe a class of rings which satisfiles condi-

ti 2) th 3 > n FC for some prime or
ion r(2) then g __yzgl o P p or

Let I3 be a class of rings which satisfies condi-
tion r(2).

Suppose that for all primes p , Jg i_yzg N FCp.
' 1

Thén for each prime p there is a ring Rp ¢ VQg N FCp

—

which is I s.s.. Since 3§ satisfies condition r(2), by
‘ 1

Theorem 2.4.7, the class of Ug s.s. rings is an elementary
1 :
class. Therefore, for each prime p there is a ring
<x_.> € Rp such that <x_> dis J_s.s. and <x_> = Cp
p - p g1 Y
Since subdirect sums of semi-simple rings are semi-simple,

C is Sg s.s. Now every zero ring on a cyclic group is
1 .

Sg s.8. so since the class of Sg s.8. rings 1s elementary
1 1

and satisfies condition (F) all nil rings are Sg s.s.
1

If R ¢ ag then there is a non-zero homomorphic
1 :
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image R of R such that there are no non-zero idempotents
in R . Let O0#x e R and (0) # I < <x> . Since there
" are no non-zero idempotents in <x> , I # 12 . Thus I can

be homomorphically mapped onto the non-zero Ug s.s. ring
1

Therefore <x> is Ug s.s. Since the class of
: 1

I/1°

s.s. rings is elementary, R is s.s. so R¢ 3T
&1 &1 &1

o~

c1

Therefore d < & . This completes the proof.
&1 7 &
Q.E.D.
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The relationships between the generalized radical

classes which we have discussed can.be illustrated in the
following diagrams.

FF
N
;7% ////// \\S\\ .
AR G / :
P \ RN 5
/? I SN "
/35 8] o
75 fsfépc

The following diagram remains valid when FC

is everywhere replaced by FC

ILLUSTRATION 2
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CHAPTER V

LOCAL RADICAL CLASSES

5.1 THE RADICAL CLASSES %.8 .* AND &£

The class %.B .*¥ is a local radical class by

Theorem 2.2.7.

If Ref then R e .8 . for if

R' = <xy, --., x> and R'C = (0) then
R’ = (Sa;d d; € D and the o, are integers} where
i
" D={x, ...x%x, :L<K-=-1} . However, finite fields are
11 1,

in ¥.®.% but not in £ . Therefore, ¥.8 .% Z s

Since &£ ¥ M the following proposition implies
that F.8.% 3} N . Hence J.%9.* is unrelated to N

5.1.1 PROPOSITION:
£ =3.0.xnN

.Proof:

Since £ < 3.8 .¥ and £ < N it is clear that
L LEDFNN

Assume R e F.®.* NN . ILet R’ be a finitely
generated subring of R . Then since R’ ¢ .8 .¥ , R’

satisfies A.C.C. on one~sided ideals (in fact, the additive °

g'foup R‘?T has A.C.C. on subgroups). Now R’ € Y} and
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M = B for rings which satisfy A.C.C. (Theorem 16 in Divin-

7

sky [7]) so R’ e B < & . Thus R’ is nilpotent so R e £.

Q.E.D.

Since B L &£, B*¥ £ &% = & and since all nilpotent

rings are in B , £ < B¥ . Therefore, £ = &% = B¥

5.1.2 THEOREM:
If ®* is a local radical class and B < ¥* ¢ F.D.*

then a ring R is ¥*¥ semi-simple if and only if R is

isomorphic to a subdirect sum of prime ¥H¥ semi-simple rings.

Proof:
Let #*¥ be a local radical class such that

B W F.D ¥

Since subdirect sums of semi-simple rings are semi-

simple one direction is clear.

Conversely, suppose that R is H¥ semi~simp1e.
It is sufficient to find, for each non-zero x ¢ R an ideal
"I(x) such that x & I(x) and R/I(x) is a prime ¥* semi-
simple ring.

Let O # x ¢ R . Since (x)g ¢ ¥*  there is a

finitely generated subring R’ c (x)g such that R’ ¢ ¥

Let Z(x) = (IR : R'/R" NI ¢ M) . Let Jy, T @€ A Dbe

an ascending chain in Z(x) and let J = U{Ja : a2 e A} . I
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J & Z(x) then R'/R'NJT e F.H.* so
R'R’ 0N J ¢ &.D. Nowby 2.2.6- R’ N J 1is finitely
generated as a ring so R’ N JS R’ N J,  for some o ¢ A
Thus R’ N J = R’ N J, which is a contradiction since
Ja € Z(x) . Therefore J e Z(x) so by Zorn's Lemma we may
choose I(x) maximal in Z(x)

First we shall prove that R/I(x) is ¥* semi-
simple. Let K< R such that K Z I(x) . Then

R/R’ N K ¢ ¥*

R’ . _R'/(R" 0 I(x)) .
NOW, RI A K = (Rl N K)/(R/ N I(X)) . Thus if

/

R % '
RTRT ) c H¥ then m € pi . Therefore

R'" NK R NEK+I(x)
I(x)

¢ ¥¥ and since H¥ is strongly
hereditary, K/I(x) ¢ ¥* . Hence R/I(x) is ¥* semi-simple.

In order to prove that R/I(x) is prime we begin
by showing that if X and H are ideals of R such that
K2 I(x) and H Z I(x) then KN HZI(x) . Suppose this
is not true; that is, suppose K N H = I(x) . Then the ring

/

N
N H

.Rl

N R
R M I( a

is a subring of

K —

x) R
R’ ' R’ N

B N A ¢ H*¥  so ﬁ*‘"ﬁf{‘T € ¥*¥ ., Now

R'/(R' n I(x)) ~ _R’ , R’ _
R A/ (R NI R nk¢® 80 gaTmy e -

This is a contradiction. Therefore K N I ? I(x)
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Now we can prove that R/I(x) is a prime ring.
. Suppose that K and H are as above and that KH < I(x)
Then K N H Z I(x) and (K N H)® < I(x) . Then

B(R/I(x)) # (0) . This is a contradiction since R/I(x) is

¥* semi-simple and B < ¥*¥ . Therefore R/I(x) is prime.

Since R'/R’ N I(x) ¢ ¥ , R’ & I(x) so x & I(x).
This completes the proof.
Q.E.D.

In view of 1.1.6 this theorem implies that all
1o¢al radical classes ¥*¥ which are between B and &.R .¥
are special radical classes. In particular, . .¥ is a
special radical class; Theorem 5.1.2 provides an alternate
proof for Theorem 52 (£ is a special radical élass) in

Divinsky [7].

We conclude this section by considering the

generalized and elementary classes related to & and ¥.9.*.

By 2.4.2(vii £ =5 and (3.9 .x = (3.8 .% .
v (vii) e g nd )g ( )gl,

il

Vi and £ =N

We have already seen that Sg &

(Theorems 4.2.2 and 3.3.4 respectively).

Since a ring <x> € ¥.8. if and only if there

are integers Ay, ey @9 such that

n n-1 -0

X + ee. alx it 1s clear that


http://e3.fi

(3.@.*)8 = (ﬁ-R) and (3.9 .*), = x'R = 3{..8.'

5.2 THE LOCAL RADICAL CLASSES X *, £* AND FI¥*

Let FI be the class of all finite rings. We
shall begin this section with a discussion of those rings R
such that every finitely generated subring of R 1s finite.
In the foilowing proposition we collect several elementary

‘properties of this class of rings.

5.2.1 PROPOSITION:

) FI¥ 1is a radical class.
)y J ¥ FIx ¥ 3.0 .x
(3) e’ ¥ FI* ¥ FC .
) FI* = 3.8.%¥ N FC
) £ and FI* are unrelated.

(6) FF and FI*¥ are unrelated.

Proof:
(1) Clearly the conditions of Theorem 2.2.7 are satisfied

so FI¥ dis a local radical class.

(2) Since f = B N FC any finitely generated o ring must
be finite and of course any finite ring is in J.9 .
Therefore, J S_IFI < F.8.%¥ . Since the ring of in-
tegers is in 3.®.% , FI* ¥ 5.8 .% . The ring F, e FI¥
but FpéJ so & ¥rI |
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(3) By 3.4.4 &’ < FI and since any finite nilpotent ring

is in FI* , &' ¥ FI . Clearly FI* ¥ FC

(4) This is clear since a ring in &.® . N FC must be
finite.

(5) Since Fp e FI* , FI* { § . Example 6 in Rings and
Radicals Divinsky [7] shows that the zero ring on the
additive group of rational numbers is in O so

8 ¢ FI*

(6) Since finite fields are in FI*, FI* { FF . Clearly
FF ¢ FI* since £ < FF and § ¢ FI*
Q.EDD.

The following theorem provides an interesting

characterization of FPFI*

5.2.2 THEOREM:
R ¢ FI* if and only if every finitely generated

subring of R satisfies D.C.C. on left ideals.

Proof:

Since all finite rings satisfy D.C.C. one direction
is clear.

Conversely, assume that every finitely generated

" subring of the ring R satisfies D.C.C. on left ideals.

Let R’ be a finitely generated subring of R and
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let N’ = M(R') . The ring R’/N’ is isomorphic to a
finite direct sum of matrix rings over division rings. Let

R /N’ =~ (Dl)nl.() .0 CDk)n# - Then each D, is finitely

generated as a ring and if Ai is a finitely generated sub-

ring of Di then Ai satisfies D.C.C. Let Xy € Di .

Then <xi>n = <xi->n+l for some integer n > 1 so

n n+1 L .

. = . o o 0 . . T a ¢ o a .
Xy a, 1%y + + ay Xy for some integers el ? > g,

Since Di .has no proper divisors of zero

e ... +_aLx;-n+1 . Therefore D, e e’ so by

X, = &a
1

1 T %n41%1
| 3.4.4, _D:.L is a finite field. Thus R’‘/N’ is finite and so
by 2.2.6 N’ is finitely generatedvas a ring. Since N’
satisfies D.C.C..on left ideals N’ ¢ J Dby Lemma 28 in

1

Divinsky [7]. By 3.2.1 =B NFC so N’ is finitely

generated, nilpotent and of finite characteristic. Thus, N’

is finite so R’ must be finite.

Therefore R ¢ FI¥

Q.E.D.

We now turn to a consideration of the local classes

J* and g* . By 4.3.4 g% = eF

5.2.3 PROPOSITION:

J*¥ = £ NFC =g nFI¥ = Y N FI¥
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Proof: |
Since J < FC and J <&, F* <& NFC . If

R e £ NPFPC then every finitely generated subring of R is

nilpotent and of finite characteristic and hence is in

BNFC=J ; thus Re J * . Therefore, 4% =& NFC

Since FI¥ ¢ FC , £ N FI* < £ NFC = f* . Now a
finitely generated nilpotent ring of finite characteristic
is finite so J ¥ < FI¥ . Thus (Jf* = £ N FI¥

As above  f* < WN FI*¥ . Since a finite nil

ring is nilpotent and in FC , W N FI* < J* .

This completes the proof.

The following is a slight mddification of an
example given by Baer [6]. We present this example %o show

that &£ N FC ¢ p and hence that J* ¢ B

5.2.4% EXAMPIE:

he

ct

For each integer k let G = (0,a(k)} =

additive group of 2 elements.

[
For each integer i > 1 1let T, € Hom (% G, TG

-0 -0

such that

0 if k =0 mod 27

]

T. (a(k)) = , _
1(al) { a(k-1) if k £ 0 mod 2T
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@0 [
Let R be the subring of Hom( = G, T Gk) which
- —-c0

is generatéd by the set [Ti : 1> 1)

(1) First we shall prove that B(R) = (0)

"Let (0) #I QR and let 0 #X e I . Let h
h

be any integer > 1 . We shall prove that 72 # (0)

Now X 1is a sum of monomials in the Ti's SO we
may write X = V& + .. + Vk where £ < k , V£ # 0 ,
Vk # 0 and Vi is a sum of monomials of length i+l

Let V =Tm .oooT +-00+T -o-T

k 1,0 my g M0 m

n,k
Since Vk # O fthere is an integer t such that
Vk(a(t)) £0 . (We may choose t > O since £ = 0

mod 2T if and only if -t = 0 mod 2i).

Choose integers r and s such that k+1 < 2

and m, .<r for all i and J 'such that 1 < i <n

L,d
r+l ,h

and 0< j <k, and 2 +t < 28

r h
We wish to show that (T° ~"1.x)% (a(t + 2".2")) # o.

gr‘kfl v, ) (a(t + 2P.2%))

To begin we consider (T ”

Consider Vk(a(t + m-Er)) where ¢ is an integer

- such that 1 £ v < 2h Suppose t + ¢2r -Jj=0
mod Qmi’k_j for some i and j such that 1< i < n
and g < J<£k . Since r Z-mi,k—g 4 ¢2r é 0
mod 2 T2¥7J | Thus t - 5 = 0 mod 2 XTI | Tnis
implies that T_ ... T maps a(t + ©.27) onto

. m.
i,0 i,k
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O if and only if it maps a(t) ontoc O . Since

Vk(a(t)) # 0 an odd number of the monomials must map

a(t) onto a(t-k-1) so V. (a(t + 0-27)) =

a(t + 92" -k - 1)

r
Let us now consider To —k—l(a(t r -2t -k - 1)).

S
Suppose 4 1is an integer such that

Now t + -2 < 2% so0 t + 02" -k

2 ¢ 2F

-k -1, k+1+2<¢2" so

t + 020 =k -1-2>1t+g.2" =27

Therefore, O < t + @-2r -k -1 -1
r

Tg -k—l(a(t + 92" k- 1)) £0 so
r

T K la(t + 92" -k - 1))

aft + (op - l)Er)

It follows that
h

S

Now if 4 = k then X =V SO

1 .

a(t + 02" =k -1 - (27 -k - 1))

(Tgr'k’l.vk)2 (a(t + 2".27)) =‘é(t) £ 0

k
r h h
2 -k~1 2 2
0 # (TS Vk) e I
r h r h
122 <k, (12 FhE Lz (28 KoLy B

where Z(a(t + 27.27)) is either O

or a sum of

a(yi)'s where each y; > t . (Since the length of a

monomial appearing'in Z is strictly less than
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((k + 1) +2° -k - 1)2h = 2%l they cannot "move"

a(t + Eh-Er) as "far down" as a(t)).
r o, h ~h
Therefore O # (Tg < 1-X),2 c I° . So in any
oh .
case I # (0) . Therefore no non-zero ideal of R

is nilpotent so B(R) = (0)

(2) We shall now prove that R e & . Let R’ = Kyyeea,X >
be a finitely generated subring of R . Let
m = max{s : T, occurs in some Xi} . Choose h > 2"

Now if Z € (R')h then each monomial in Z is of

m .
must divide

length at least h . Since h > 2™, 2
one of k , k-1, ..., k=h for all integers k . There-
fore 2Z(a(k)) = 0 for all integers k so Z = O

Thus (R*)® = (0)

(3) Therefore R ¢ £ N FC (since 2R = (0)) so R is B
semi-simple and in £ N FC . Since £ N FC = J’* )

Re J* . Therefore Y*¥ ¢ B .

From Proposition 5.2.1 (4) we know that £ ¢ FI¥*
so since J* <L FI* , 9 4 f* . Combining this with
5.2.4 we see that R and J ¥ are unrelated. The classes
‘f* and B are also unrelated since it is clear that
BL g™

The relations between these radicals classes can

be illustrated by the following diagram.
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ILLUSTRATION 3

ﬁ'
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Let R be a non-zero ;f*z semi-simple ring with
D.C.C. on left ideals. Then R/ Y(R) is a finite direct
sum of matrix rings over division rings. Since R satisfies
D.C.C. on left ideals £(R) = YHR) . Thus
N(R) N FC(R) = £(R) N FC(R) = F*¥(R) = (0) so FC(R) 1is
isomorphic to an ideal of R/MN(R) and hence is a finite
direct sum of matrix rings over diviéion rings of finite
characteristic. OSuppose that x ¢ R such that
0 # x ¢ FC(R/M(R)) , then the ideal generated by x contains

an identity e and e ¢ FC(R/Y(R)) . Therefore ne = 0 for
. some integer n £0 so (ne)k = 0 for some positive integer
k , this implies that e e FC(R) so
T =¥ e (FC(R) + ‘VI(AR))/W(R) . Therefore,
FC(R/M(R)) = (FC(R) + M(R))/7UR)

Now 'j < j’* so by Lemma 28 in Divinsky [7] if
Re)] then Re J*¥ . Since Ré& f*, VHR) #R . This

completes the proof of the following theorem.

5.2.5 THEOREM:

If (0) #R -is a J* semi-simple ring with
D.C.C. on left ideals then R ¢ Y , FC(R) is a finite
direct sum of matrix rings over division rings of finite
characteristic and R/(FC(R) + YHR)) is a finite direct sum

of matrix rings over division rings of characteristic O

Notice that if R is not only Qf* semi-simple
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but also FI¥ sémi—simple then all the division rings are
“infinite. If (R/M(R)) € FC then PHR) 1is a direct
summand of R ; in fact, R = Y (R) @ FC(R)

From Theorem 13 in Divinsky [7] we conclude that
éj*(R) may not be equal to W(R) since O F* .
However, if R ¢ FC then J*(®R) = VUR) since
‘f*(R) = £(R) N FC(R) = £(R) = N(R) . Of course, és we

noticed above; R ¢ J* if and only if R e¢ N

"Suppose now that R 1s a non-zero ring with A.C.C.
on left ideals. Then B(R) = £(R) = 7(R) so
S®r) = F*®) = F'(R) since J=pnrFc, I* =25 nFC
and §’ = MnFC. |

Unfortunately we cannot use Goldie's Theorem to
obtain a result similar to 5.2.5. First of all, if R is
J % semi-simple, R may be in B (for example, ¢” € B but
€% is J * semi-simple). Even if R ¢ B , FC(R/B(R)) may
not be the same as (FC(R) + B(R))/B(R) . To see this

- consider the ring R = GPLX]/(QXE)Q?th . Then FC(R) = (XQ)R

‘and M(R) = B(R) = (2X)g . Clearly FC(R) N M(R) = (0) and

R satisfies A.C.C. but R/Y](R) ¢ FC

However, if R ¢ FC then clearly B(R) = Ef*(R)

A ring <x> 1is finite if and only if
x> € j&R N FC so it follows that (FI*)’ = j}R N FC and
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(FI*)g = (FI*) = (& NFC . Since J* =& NFC it is

)
g4 R'g

clear the (J*)' = NN FC and (J*)_ = )Qg nrc

From 2.1.3 (1ii), J* < J’ and clearly
’ . ¥ = ‘
5’ < jgg_Fc so of course J* =& n J £n jg

The relationships between these radical classes

can be illustrated by the following diagram.

\ ava
N
DY
N

Recall that pB* = ¢ - and = ]
that B ,Bwnﬁg Wg
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5.3 LOCAL RADICAL CLASSES ¥ FOR WHICH £ &£ ¥ LT .

"We have already seen that B¥ = £*¥ = £ . For any
class ¥, ¥* < ¥ so from Theorem 3.3.2 we may conclude
that ¥¥ = Y1 for all classes of rings ¥ such that

I < ¥ FF . Since WM £ Wg and FFg < FF it follows

that (¥ )% = (¥ _)* = (¥ )" = (4 )Y =N for all classes
g g1’ g

of rings ¥ such that Y] < ¥ ( FF

Recall that U is the upper radical class deter-
mined by the class of all simple idempotent rings. Clearly
BL<ULF so U =M. Therefore U <WUW =M . To
prove that YU*¥ =M it is sufficient to show that a finite-
1ly generated nil ring cannot be homomorphically mapped onto

a simple idempotent ring. In fact we can prove the following.

5.3.1 PROPOSTTION:

A non-zero finitely generated nil ring is not

idempotent.

Proof': _

Let (0) #R = <Xy, -5 x> Dbe a finitely
generated nil ring.

Suppose that R = R2 = Rxl + ... + RX . Choose

a minimal subset {xii, cen, xik} of [xl, cer, xn] such

that R = RX. + o o0 “H" RX.
4 i
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Since X, € R there are elements r;,...,r, < R

such that

X, = TX. + ...+ 17X, (*)

Since R is nil rlm-x. = 0-x, =0 eRx; + ...+ Rx,

1 2 "k
for some integer m > 1 . Let 4 be the smallest integer
> 1 such that x o e in2 4 ve. + ink . Then from (*),
-1

X, = r&x. + r& Xy + eoee + T r. Xx. € Rx., + ...+ Rx. .
1 11 1 1, 1 k 1 12 1k

il
ot

Since 4 1is minimal, < SO X. € in + ... + in

11 2 k
This contradicts the minimality of k .
Since we have reached a contradiction we may
conclude that R # R2 .
QR.E.D.

If for all finitely generated subrings R’ of R,
R’ cannot be homomorphically mapped onto a non-zero idem-
potent ring then certainly R ¢ FF' = W . It follows then
that R ¢ M1 if and only if no finitely generated subring of
R can be homomorphically mapped onto a non-zero idempotent

ring.

Recall that» B@ is the upper radical class deter-
mined by the class of all subdirectly irreducible rings with

idempotent hearts. The following lemma will enable us to
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prove that Bw* is a radical class.

'5.3.2 LEMMA:

If S is a non-zero simplé idempotent ring then
there is a finitely generated subring S’ of S which can
be homomorphically mapped onto a non-zero subdirectly irredu-

cible ring with an idempotent heart.

Proof:

Let (0) # S = s° pe a simple ring. By Theorem
55 in Divinsky [7] S ¢ £ and so by Theorem 53 in Divinsky
[7] there is a - x € S such that x4 £ 0 . Then

(0) # Sx28<a S so S = Sx°S . Thus there are elements

ry, -y Ty and S5 ...,.sk in S such that
k
X = I rixgsi . (%)
i=1
Let S8’ ©De the subring of S which is generated
by the set [x,rl, ooy Tp,Sq, ...,sk} . Choose I maximal

in Z={(J<q8’ : x ¢ J} . Then S’/I is subdirectly irre-

ducible with heart H = ((x) + I)/I . If x° € I then by

(*) x €I so 'x2 ¢ I . Therefore H2 # (0) so H2 = H .

Q.E.D.

An interesting conclusion that follows from this
- lemma is that if there is a simple idempotent nil ring then

there is a simple idémpotent nil ring which is the heart of
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a finitely generated nil ring.

5.3.3 PROPOSITION:

* < and so * is é radical class.
(1) B,* < B, By

(2) £ LB *< M-
(3) ﬁ@* £ Y if and only if there is a non-zero simple

© . idempotent nil ring.

Proof :

(1) Let R € B®* . If R ¢ B@ then R can be homomor-
phically mapped onto a subdirectly irreducible ring wiﬁh
a simple idempotent heart S . But then by 5.3.2 some
finitely generated subring 5f R is not in B@ . This
is a contradiction so R ¢ ﬁ@ . By Theorem 2.2.2 Bw*

is a local radical class.

(2) By Theorem 55 in Divinsky [7] no simple idempotent ring
vis in &£ . Therefore & < Bw* . Clearly ﬁw < F so
B, L F¥ =
(3) 1Ir Bw* ¥ Y then there is a nil ring which can be
| homomorphically mapped onto a subdirectly irreducible
ring with an idempoteﬁt hear H # (0) . <Clearly H is
a éimple idempotenﬁ nil ring. Conversely, any simple

idempotent nil ring S ¥ (0) is B _ semi-simple (and

©
hence ﬁw* semi-simple since ﬁw* S-Bw) pbut is in M .

Q.E.D.
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In view of 1.1.6 the following theorem implies

that B@* is a special radical class.

5.3.4 THEQOREM:
A ring R is B@*, semi-simple if and only if R
is isomorphic to a subdirect sum of prime -Bm* semi-simple

rings.

Proof:
Since subdirect sums of semi-simple rings are semi-

simple one direction is clear.

Conversely, let R be a B@* semi-simple ring. It
is sufficlent to prove that for all non-zero x € R there is
an ideal I(x) such that x ¢ I(x) and R/I(x) is a prime

B@* semi-simple ring.

Let O # x ¢ R . Since (x)g ¢ B,* there is a
finitely geherated subring R’ of :(X)R and an ideal I’
of ‘R' such that R’/I’ contains a non-zero simple idempo-
tent hearﬁ S’/I’ . Notice that since S'/I’ is simple if

JLQR and I'+ (R"NJ)3>S" then R NJcI' . (%)

Let Z=(JQR :I" + (R" nJ)ds’'} . Let
Ja : @ € A be an ascending chain of ideals in Z and let

J=U{J, :aeAr} . By {(¥) ,R'NJ I’ forall aeA
Then R’ NJ<cI' hence I' +R ' NJI=1I"38" so Jez

‘Therefore by Zorn's Lemma we may choose I(x) maximal in Z.
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_ First we shall prove that R/I(x) is Bw* semi -
simple. Let L/I(x) be a non-zero ideal of R/I(x)

Since LZI(x), I’ +R'NL2S" . Now
2 —

R’ NL + I(x) ; R’ N L R’ N L _
(%) = RN I(x) and ﬁT_ﬁ_TTET can be homomor
phically mapped onto R OI; = since by (*)
4 4 ) 7 /
R’ N I(x) I’ . Now %7'5 R nly + 4 and so & nIT L + I

is subdirectly irreducible with idempotent heart S'/I’

Then (R’ N L +I')/I’ is not in B$ so since B * < B@ ,

R’ N L + I(x)
I(x)

(R NL+1I°)/1" ¢ B@* . Thus and hence
L/I(x) 1is not in B,* . Therefore R/I(x) is Bw* semi-~

simple.

Now we shall prove that R/I(x) is a prime ring.
Suppose that L/I(x) and H/I(x) are non-zero ideals of
R/I(x) and LH < I(x) . By the maximality of I(x) ,

I’ + (R NnL)y2s’ and I’ + (R NH) > . Therefore

' 12 4 z ’
S’ /s’Ne 8’ 4+ 1 (R’ NL + T (R NH+ 1) - I(x)NR
I " <TT> = T = ‘ ’ = I~

This implies that S’ < I’ + (I(x) n R') which is a contra-
diction since I(x) € Z
Therefore R/I(x) is a prime B@* semi-simple

ring and since R’ ¢ I(x) , x ¢ I(x)

This completes the proof.

Q.E.D.
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5.4 LOCAL COMPLEMENTARY RADICAL CLASSES.

Let 15 be a radical class. If there 1s a radical
class ¥ such thaﬁ:
(1) #a) nd (&) = (0) for all rings A
(2) Ir I is a radical class such that

3(A) n J(A) = (0) for all rings A then T < ¥ .

“then Andrunakievic [2] defines ¥ to be the complement of

o . We shall denote ¥ by CRH(S ) . Notice that for

some radical classes o , CRH(& ) may not exist.

In [2] Andrunakievic proves the following theorem.

5.4.1 THEOREM:
 If ¥ is a hereditary radical class then CRH(¥)

exists and

(1) CRH(¥) = the upper radical class determined by the
class of all subdirectly irreducible rings with hearts
in ¥ .

(ii) R € CRH(¥) if and only.if every homomorphic image of
R is ¥ semi-simple (such rings are called strongly

¥ semi-simple).

5.4.2 DEFINITION:

Let of be a radical class. If there is a local
radical class ¥ such that:

(1) #(a) nJ (A) = (0) for all rings A
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(i1) If 3 is a local radical class and J(4) ﬂ-gf(A) = (0)

for all rings A then I ¥ .

then ¥ 1is the local complement of Q{

We will denote tThe local complement of gf by éf .

5..4.3 THEOREM:
If M* is a local radical class then H* exists

and % = CRH(¥*)* .

Proof:
Notice that ¥®¥ is hereditary so CRH(¥*) exists.
We shall prove that CRH(®¥¥)* is a radical class which

satisfies conditions (i) and (ii) of 5.%4.2.

(1) Since CRH(¥*) satisfies condition (A) so does CRH(¥*)*,
Suppose that B is an ideal of a ring A and
that both A/B and B are in CRH(¥*)* . Let A’ be
a finitely generated subring of A . If A’ is not
strongly ¥*¥ semi-simple then Iy can be homomorphically
mapped onto a non-zero ring which is not #¥¥* semi-simple.
. Thus there is a finitely generated subring L’ of A’

Such that L’ can be homomorphically mapped onto |
(0) # (L'/K’) e ¥*¥ . Since A/B e CRH(H¥¥)* |

/ 2 4
L _+B CRH(¥*) . ‘Thus L 5 B L'Lﬂ 5 1s strongly

B

¥* semi-simple. It follows that (L' N B) +X' =1L’

(since L'/L’ N B can be homomorphically mapped onto
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L’/(L" "B +K )) . Therefore L’ N B can be homomor

. / 7
phically mapped onto L HKB + K L' /K’ ¢ #* . This

is a contradiction since L’ N B < B and hence is in
CRH(¥*)* (so no finitely generated subring of L' N B
can be ‘homomorphically mapped onto a non-zero ring in

o) .

Therefore every finitely generated subring of
A is strongly ¥* semi-simple so by 5.4.1 (ii)
A e CRH(¥*)* . Then by Proposifion 2.2.1 CRH(¥*)* is

a local radical class.

(2) Let A be a ring and let I = ¥¥(A) N CRH(¥*)*(A)

Let R’ Dbe a finitely generated subring of I . Then

/

R’ ¢ ¥ and R

’

e CRH(¥*) so R’ = ®#*(R') n CRH(¥*)(R').

Therefore R’ (0) since CRH(®*) is the compliment

il

of ¥* . Hence I = (0) so condition (i) of 5.4.2 is:

satisfied.

(3) Suppose that J is a local radical class and
J(A) n ¥*(A) = (0) for all rings A . Then 3 < CRH(¥*)
since CRH(¥*) is the compliment of ¥¥ . But then |
J = 3% ¢ CRH(¥*¥)* so condition (ii) of 5.4.2 is satisfied.
| Therefore ¥* = CRH(M¥*)*

Q.E.D.

If follows that if ¥* is a local radical class

then R e ¥* if and only if every finitely generated subring
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of R is strongly #* semi-simple.

The following theorem shows that there is no need

to define elementary complements of local radical classes.

5.4.4 THEOREM:
If ¥* is a local radical class then ()’ = ¥,

Proof:

Let ¥*¥ be a local radical class.
Since ¥®* is a local class, (¥*) < (¥%)’

Let R e (¥¥)’ and let R’ be a finitely genera-
ted subring of R . Let R’/I’ be a homomorphic image of
R’ and let J'/I' = #*(R'/I') . If x e J'/I' then
<x> € ¥* and since R ¢ (¥*)’  <x> e ¥ . Thus <x> = (0)
so J'/I' = (0) . Therefore, R’ is strongly ¥ semi-simple

so R ¢ H¥*

Hence, ¥* = (W*)’ is an elementary class.

Q.E.D.

Notice that if ¥ > R then CRH(¥) < CRH(R) if

they both exist and ¥ < R if both of these classes exist.

Let ¥* be a local radical class and let R be a
ring which is not in ¥* . Then some finiftely generated sub-
ring R’ of R 1is not strongly Wx semi-simple. Thus R’

can be homombrphically mapped onto a ring R” such that
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¥ (R") # (0) . Clearly then ¥¥(R") # R" since
¥R ) n ¥¢(R ) = (0), . Therefore, R ¢ ¥* . It follows

that M* ¢ ¥*

Suppose that R® < 3 < 3§ and all three classes are
radical classes. Also assume that T and ® exist and
that 38 = R . Then 3S(R) N ¥R) < 3(R) N J(R) = (0) for all
rings R . If gg is a local radical class and
4 (R) n ¥(R) = (0) for all rings R then
J(R) N R(R) c J(R) N #(R) = (0) for all rings R s0

J<®

Therefore ¥ exists and ¥ =3 = R .

Il
]|

We shall now investigate the local complements of

the radical classes we have been discussing.

5.4.5 PROPOSITION:

FI* = {(0)}

Proof':
We need only show that if ¥¥*¥ is a local radical
class and ¥* # {(0)} then FI*(A) n ¥*(A) # (0) for some

ring A

Suppose that O # R ¢ ¥*¥ and that ¥* is a local

- radical class. Let O #x e R . Then <x> ¢ ¥* and so is

<x>/<x>2 L IP x> # <x>2 then <x>/<x>2 can be homomor-
phically mapped onto a finite ring. If <x> = <x>2 for all

non-zero X € R , then R ¢ &’ so0 every finitely generated
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"subring is finite. In either case we see that there is a

finite ring in ¥*

This completes the proof.

Of course the class. {(0)} 1is the local comple-
ment of the class of all rings. It then follows from 5.4.5
that if ¥ is a radical class and ¥ > FI¥ then H exists

and ¥ = {(0)} . 1In particular then,

FI* = FC = 5.8 .% = & = = IEER)g - & g = ((0)]

5.4.6 PROPOSITION:

3, F and ‘F‘F‘g exist and J =F =FF_ = &’

Proof:
Let R be a ring and let I = &'(R) n FFg(R)

If I # (0) then since I ¢ &€’ by 3.4.3 I can be homomor-

phically mapped onto an algebraic field X of prime

characteristic. Since I < FFg(R) , FFg(R) can be homomor-

phically mapped onto K (see Theorem 46 in Divinsky [71).

Since all finitely generated.subrings of X are finite fields

this is a contradiction. Therefore I = (0) so

e’ N FFg = {(0)} . Similarily one shows that &’ N F = ((0))}

Since J g_FFg , ef ﬂ.f {(0)}

Suppose that ¥ 1is a local radical class and
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¥ ¢ e’ . Then there is a ring <x> e ¥ such that <x> # <x>°.
Thus <x> can be homomorphically mapped onto the trivial ring
<x>/<x>2 and so <x> caﬁ be hoﬁomorphically mapped onto a
simpie zero ring. Thus ¥ ﬂ‘f # {(0)} . It follows that
¥ N FFg # ((0)} and ¥ NF £ {(0))} |

Therefore, & = J =F =F .
Q.E.D.

Now if sf is any radical class such that j g_g?

7

and § <F or. 4 < FF, then of = & This includes all
of the radical classes listed in Chapter I excépt FF (for
example : J = M = &'). It also includes the generalized
local and elementary classes determined 5y these radical

classes (for example : Jg = 3é = &') and the local and
L L=

elementary classes determined by these radical classes (for

example : J* = J' =1¢8’).

Since any ring R can be embedded (as an ideal) in

a ring R, with identity it is clear that Eé = ((0)} . So
1

of course, if ei is 'any radical class and QJ Z_&g then
- Pl
g = (o)

The radical class FF does not have a local com-
plement; that is, FF does not exist. To see this consider

the radical classes

3, ==C)[dp(8n> : p is a prime}
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where Sn is the set of all positive integers < n

Let R be a ring and let I = I _(R) N FF(R)
Since I e'gn <e ,if I #£(0), I can be.homomorphically
mapped onto a field XK in &’ (see 3.4.3). However, since
Ied, ,Ked ,so K isa finite field. But then (as in
Theorem 46 in Divinsky [7]) FF(R) ‘can be homomorphically
mapped onto K .. This is a contradiction because K 1is

finite. Therefore I = (0) so 3 N FF = {(0)}

It follows that if FF exists then 3 < FF for

n w—
all positive integers n . But then U 3 < FF so
) v n .
e’ = (u Sn)' c (FF)' = FF . This is impossible since

n

e’ N FF contains all infinite algebraic fields of finite

characteristic.

Therefore, FF does not exist.

We shall now consider the local complements of

elementary radicals which are < FC

5.4.7 PROPOSITION:

(1) R e FC, if and only if for all x e¢ R,

ax + aex2 + ... F akxk = O for some integers a

100 eay
such that p  divides all ai for 1 > 1 but p does
not divide ai

(2) Ir S #£¢ then prz(s) =F o
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R ¢ 3pyzi¢5 if and only if for all x € R ,

k .
X + +.. + 8 X =0 for some integers 895 e ak

a1 Kk

such that p does not divide a,

If S #£ ¢ then R ¢ EPiSS if and only if for all

X € R, a X + ...+ akxk = 0 for some integers

10 cees @y such that p does not divide aj - for some

j but p divides all ay for which i # j

]
3
=2

]

R
sp(sj = 3p(z+) if SAZ .

Proof:

(1)

Suppose' R. is a ring such that for all x € R ,

a.x + a xk =0 for s int a a
1 + ... K = o} ome integers 10t By

such that p does not divide a; but p divides a,
for all i > 1

Ir FCp(R) # (0) then there is a x ¢ FCp(R)
such that x # O but px = 0 . But there are integers

a a5 such that p divides ay for 1 > 1 but

1: cT ey

p does not divide aq and a;x + ... + a, X" = 0

Then a.x = O and since p does not divide a; , x = 0.

This is a contradiction so FCp(R) = (0) . It follows

that every finitely generated subring of R is strongly
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FC_ semi-simple so R e FC
Y P

Let R ¢ §E§ and let x ¢ R . Then <x> is
strongly FCp semi-simple so <x> = <px> . Thus there

are integers Ay, cees By such that p divides

k .
ak and X = alx Foee. A akx . Therefore

(a1 - 1)x +a2x2 + .. + akxk = 0 and clearly p does

al, GO‘,

not divide a1 -1 B

—

This completes the proof of (1).

(2), (3), (%) The proofs for (2), (3), (4) are

in all respects similar to the proof of (1).

ll

T

C

We have already seen that FCp < o

Suppose R ¢ FCp . Let R’ = R/FCp(R) . Let

0 # x e'R' . If FC(<x>) # (0) then there is a vy e <x>
such that gy = O for some prime q #p . If

FC(<x>) = (0) consiser NN (<x>) . Ifr Nx>) # (0)
there is a y e <x> such that <y> = c® so <y> can
be homomorphically mapped onto Cé f'or some prime
a#£p - I Y (<x>) = O then as in the proof of 3.3.2
<x> can be homomorphically mapped onto a finite field

of characteristic q # p . Thus in any case there is a

subring of R which is generated by one element and

"which can be homomorphically mapped onto a ring of prime

characteristic q # p

If q is a prime and q # p then a ring of
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characteristic ¢ is in §6§ (take a; =q,a; =0
for 41 > 1). Therefore, if R ¢ FCp there is an
element x ¢ R such that <x> is not strongly F@ﬁ

semi-simple. Thus R ¢ fﬁ;
It follows that Fﬁ; = FC

(6),(7) The proofs for (6) and (7) are similar to the proof

of (5).
Q.E.D.

In view of the following theorem Proposition 5.4.7
completely determines the local complements of elementary

radical classes which are < FC

5.4.8 THEOREM:
If ¥ < FC, ¥ is an elementary radical class and
¥ =0 (#p : p e S} 1is the representation of ¥ given in

3.4.14 then ¥ = ﬂ{ﬂb : p e S}

Proof:
Let ¥ =69{k5 : p € S} be-an elementary radical.
Since H > Hp for all peS , ¥ < iﬁ for all
p € S . Therefore ¥ < N{H¥ : p e S) |

Suppose R € ﬂ{ﬁb :peS} and x € R . Then <x>
is strongly 'Hp semi-simple for all p € S so clearly <x>

is strongly ¥ semi-simple. Thus R e¢ ¥ .
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Nl s S
{ o 1P € )

Q.E.D.

By virtue of 5.4.7 and 5.4.8 we can conclude:

Since &’ ==C){3b(z+) : p is a prime}

——

e’ = ﬂ{Sp(ZT)
Since J’ = + (3p7Q(¢)
7 -

P

is a prime} = W .

: p is a prime}

ﬂ{SquZﬁi : p is a prime} = &’
Since &g n FC =:gg{3b1Q(z+)

: p 1is a prime]

Frp N FC = n[sp;@(z*) : p is a prime)

We have seen that €&’

this implies that:

5.4.9 PROPOSITION:

=M and N

For any local radical class ¥

(1) ¥» n N

(2) ¥ ne’

. Proof:

I

((0)}

{(0)}

if and only if

if and only if

i
—
—~

O
-
A

. ’
x < €

N

Let H¥*¥ Dbe a local radical class. Since ¥* , M

~and &’ are hereditary it follows that if ¥* N M = ((0))

then #* <y =8¢’ and if ®¢* n &’ = ((0)} ¢

e = N

hen
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Clearly if ¥* N # ((0)} then ¥*¥ ¢ €' and if
#* n e’ # ((0)} then H¥ i -

5.5 A REPRESENTATION OF &’ AS THE INTERSECTION OF RADICAL CLASSES.

Many of the radical classes which we have discussed
can be represented as the intersection of two other radical

classes. The following diagram illustrates the situation.

J* £

ILLUSTRATION 5

Recall that £ = MN 3.8 .% | FI* = 3.0 .¥* N FC and
J* = £ N FI* '

| It seems natural to ask if there is a radical class
¥ %_6' such that FI* N ¥ = &' . We shall see that no such

class exists if we demand that it be a local class. However,
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’

we shall prove that CRH('Wg) N FI¥ = &

We shall begin with the following easy lemmas.

5.5.1 LEMMA:
If R e FI¥* and R is )?g semi-simple then

R et

Proof':

Let R be a )ﬁg semi-simple ring which is in FI*.
Let x € R . Then <x> is finite and WYU(<x>) = (0) so
<x> is a commutative Wedderburn ring.

Thus <x> 1is a finite direct sum of fields so

7

{X> = <x>2 . Therefore R ¢ &

5.5.2 LEMMA:
(CRH(M,))* = &' = (CRH(WM,))" -

Proof: _

If R e &’ then every subring of R is strongly
'M% semi-simple. Therefore &' ¢ (CRH(y?g))* .

Suppose R € (CRH('ﬂg))' . Let O #£xeR. ‘Then
<x>/<x>2 is .Wg semi-simple so <X> = <x>2 .  Therefore
Recetl |

Therefore &’ < (CRH(vqg)}* < (CRH('M%))' ce .

QoE oDo
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Notice that in the proof of 5.5.2 we actually show

that if <x> ¢ CRH()Qg) then <x> € & . Thus
CRH < e
( (]ﬂg))gl < g
5.5.3 THEOREM:
CRH(}@g) N FI* =&’ and if ¥ is a local radical
class such that ¥ N FI* = &’ then ¥ < CRH(W,) so

3:"—‘8,

Proof:
As we saw in 5.5.2, &’ < CRH(;@g) .  Thus
e’ g,CRH(}@g) N FIx

If R ¢ CRH('mg) N FI* then R is y@g semi-simple

so by Lemma 5.5.1, R e &
Therefore CRH(z@g) N Fi*x = ¢’

Suppose that H 1is a local radical class such that
#NPFI*¥ =&’ . If H i.CRH(}ﬂg) then there is a ring R e ¥

such that R is not strongly }ﬂg semi-simple. Since ¥ is
a_local class there is a ring <x> € ¥ such that <x> is
nilpotent. Then <x> can be homomorphically mapped onto a

1

finite nil ring <x'> . The ring <x'> ¢ FI* N ¥ = &
This is a contradiction so ¥ < CRH(VEg)

Now = ¥ = ¥ g_(CRH(VRg))* = &' Dby Lemma 5.5.2.
‘Therefore ¥ = &’
QoEoDl
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Of course CRH()ﬂg) # ¢’ since the ring of rational
numbers Q € CRH(‘ﬂg) . This example also show that
cRH(V,) £ FC . On the other hand, W, 0 FC # ((0)} so
FC ¢ CRH(‘ﬂg) |

Notice that CRH('Wg) N FC # &’ . For an example
consider any field of finite characteristic which is not

algebraic.
We may sum up the relationships between these

radical classes in the following diagram.

T  Fc- cRH (M)

AN

/ \ FCnC@H(A)'
\ v/ \ ya
NS

{to)}

ILLUSTRATION 6
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5.6 SEMI-SIMPLE RADICAL CLASSES.
| In this section we shall characterize those local
classes H¥ which are both radical classes and semi-simple
“classes. We shall see that all radical classes which are
. also semi-simple classes are in fact locél radical classes
(indeed, elementary classes) so we shall begin with the more

general problem.

5.6.1 LEMMA:.
If R is a class of rings such that subdirect sums
of rings in &R are in R and such that R satisfies condi-~

tion (A) then R is strongly hereditary.

Proof:
Let R ©be a class of rings such that subdirect
sums of rings in R are in & and such that R satisfies

condition (A).
Let R e R and S be a subring of R .

Set Ri = R for all i.e 27 = the set of positive
integers. Now the (discrete) direct ..sum Z{Ri :ie 2%} is
an ideal of the direct product (complete direct sum)

ﬂkRi :1e2Z) . If s eS 1let Q(i) =8 forall ie Z7 .

Then S = A(S) (8 : 5 ¢ S} is an embedding of S into

TﬁRi :iezty . AS) + Z[Ri :1ie27} is a subdirect sum

of copies of R and hence is in R , so



Q.E.D.

Using a theorem of Amitsur [1] which states that
every ring is a homomorphic image of a subdirect sum of total
matrix rings of finite order over the ring of all integers,
Armendariz in [5] proves that if a hypernilpotent radical
class R 1is a semi—simple class, then & contains all
rings. Recall that a hypernilpotent radical class is a

hereditary radical class which contains all nilpotent ringsf

5.6.2 THEOREM:
If R is a semi-simple radical class and R ¢ &’

then R 1is the class of all rings.

Proof:
Let R Dbe a semi-simple radical class. If R § &’

then there is an R e ® and an x € R such that <x> # x>

Since R 1is a semi-simple class subdirect sums of rings in
8 are in R so by 5.6.1 <x> € R . Now <x>/<x>2 is a
zero ring on a cyclic group and <X>/<x>2 € R . Sincei R
satisfies (F), C% ¢ R . Therefore B < & since B = the
lower radical class determined by {(C”} . Therefore & is
a hypernilpotent radical class so by the preceding remarks

R is the class of all rings.
Q.E.D.



_153_

We can now prove that all semi-simple radical

classes must be elementary classes.

5.6.3 LEMMA:

If R 1is a semi-simple radical class then R = R

- Proof:
Let R be a semi-simple radical class. Then by

5.6.1, ® < R’

If ® 1is the class of all rings then clearly

If R is not the class of all rings then by 5.6.2,

/

e’ so R’ <&’ . Suppose (0) £R € 8’ . Then by

2
IN

3.4.3 R 1is .isomorphic to a subdirect sum of fields

Fa : & € AN where each Fa is an algebraic field of prime
characteristic. Let B € A . Then for all X € FB , <X e‘R
since R € R’ . Therefore the direct product (complete
direct sum) A =.ﬂ1<x> T X € FB} e R <& . Let y e A such

that y(x) = x for all X ¢ F By 3.4.6 <y> is finite.

B
Therefore Fﬁ must be finite. Since finite fields are
generated by one element each Fa is in R and since sub-
direct sums of rings in R are in R , R € R . Hence
R <R

| I'4

Therefore R = R so R 1is an elementary class.

Q.E.D.
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5.6.4 LEMMA:

Tf % is a strongly hereditary finite set of finite
fields then a rihg R dis isomorphic to a subdirect sum of
fields in & if and only.if every finitely generated subring

of R is isomorphic to a finite direct sum of fields in &

Proof:
Let & Dbe a strongly hereditary finite set of

finite fields. Then if F ¢ & there is an integer n(F)

n(F)

such that x =1 for all x € F . Let

[
N=Tfn(F) : PeB) +1. Thenif xeFed, x =x
Assume that R has ideals Ia : @ € A such that

o~ q { . — 4
R/Ia = F, e F and N{I, : ace A} = (0) . Let R’ nDpe a

finitely generated subring of R . By 3.4.5 R’ ¢ &’ . Then

ne

by 3.4.4 R’ A, ® ... ©®A where the A, are finite fields.

Choose a. € R_ such that <a.,> T A, . Then a. # 0 so
S} i i i

a, ¢ IB for some Bi € A . Now <ai> N Iﬁ_<j <ai> SO

<ay> n IB- = (0) . Therefore Ai = <ay> = (<ai> + IB—)/IB-
i i i
is isomorphic to a subring of FB . Sinece & is strongly

1
hereditary R’ is isomorphic to a finite direct sum of fields

in &

Conversely, assume that every finitely generated
subring of R 1is isomorphic to a finite direct sum of fields

in % . Then x' =x forall x eR so Re & . Thus, by
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3.4.3 there are ideals Ia :ae€ A of R such
N

{Ia :a € A} = (0) and R/I, is a field of finite

characteristic for all a € A . But then R/Ia must be a
finite field since XN -x =0 ¢ Ia for all x € R . There-
fore, for each @ € A , there is an Xy € R such that

(<xa> +-Ia)/Ia = R/I, - But then R/Ia is a homomorphic

image of <x,> so R/Ia is isomorphic to a field in & .

Q.E.D.

5.6.5 THEOREM:
If R is a class of rings which is not the class
of all rings then the following are equivalent:

(1) R is a semi-simple radical class.

(2) There is a finite set of primes T and for each p ¢ T
a finite C.U.D. set of positive integers Sp such that
R e R if and»only'if R 4is isomorphic to a subdirect

sum of fields in (F :peT and a € Sp}

a
P
(3) There is a finite set of primes T and for each p e T

a finite C.U.D. set of positive integers Sp such that

R = C){Eb(ép) : p e T}

Proof:
Let R Dbe a class of rings which is not the class

of all rings.

 Lemma 5.6.4 implies that (2) and (3) are equivalent.
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.Assume that R 1s a semi-simple radical class.
Then by 5.6.2 and 5.6.3 R is an elementary radical class
and R < &’ . Therefore, by Theorém 3.4.14,
=:C)[Kp(sp) : p e T) \for some set of primes T and C.U.D.
sets of positive integers Sp for each p e T . For each |

peT,leS, . Let R~ TTIFp :peT) . Since R is a

semi-simple class R e R ¢ &’ . Because R ¢ &' , R e FC
so certainly T must be finite. Just as in 5.6.3 we see

that each Sp‘ must be finite by considering T[(F , : a e Sp}.
' : p

Conversely, assume that R =[Jp(Sp) :p e T}
"where T is finite and for each peT, Sp is a finite

C.U.D. set of positive integers. Then R i1s a radical class.

Since R 1is an elementary class f satisfies

condition (E).

Suppose that every non-zero ideal of a ring R can
be homomorphically mapped onto a non-zero ring in & . Then
by 5.6.4 every ideal of R can be mapped onto a field in

(F,:pelT,ac Sp} . From the proof of Theorem 46 in
o .

Divinsky [7] we see that this implies that R 1is isomorphic

Q

to a subdirect sum of fields in {(F _ : p e T , a e S}

Then, by 5.6.4 again, R € % = ® . Thus R satisfies condi-

tion (F).

Therefore R 1is a semi-simple radical class.

Q.E.D.
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The relationships between the local radical classes
which we have digcussed can be 1llustrated in the following
diagram. j?

/ N\ L
VAVAVA
AVAN

Q

e

-

ILLUSTRATION 7
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