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" ABSTRACT

Angle section members, used in open engineering struc-
tures, have been known to experience large amplitude oscillations
when exposed to normal atmospheric windé, and in a few instances
failure has been reported. The bluff geometry together with low
natural frequency make these members susceptible to aeroelastic
vibrations of a vortex resonant or galloping nature.’ The thesis
aims at studying the nature of the aerodynamic forces and the
resulting instabilities for the safe design of the structures.

It presents information on the aerodynamics and dynamics of the
angle section during stationary, plunging, torsional and combined
plunging-torsional conditions.

From the measurements on stationary angle models, it is
possible to predict the critical vortex resonant wind speeds for
various angles of attack. The large variations of the unsteady
aerodynamic coefficients indicate the dependence of the resonant
instability on model orientation. Incorporating the stationary
aerodynamic loadings, the quasi-steady analysis is able to pre-
dict the galloping instability and resulting amplitude and build-
up time response. The absence of torsional galloping during the
experiment is substantiated by the theory which shows the in-
stability to occur only at high wind speeds or for systems with
very low damping.

The dynamical study demonstrates that structural angle
sections are susceptible, in general, to combined plunging and
torsional vibrations. The nature of the instability depends on

such system parameters as damping, natural frequency, angle of
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attack, section size, etc.  However, due to the ekistence of two
distinct families of virtual hinge points, it is possible to
represent the motion as predominantly plunging or torsion.
Furthermore, the frequency of the coupled motion as well as the
type and range of the instability are found to be similar to
those in the single degree of freedom. This makes it possible
to obtain pertinent information by studying, both experimentally
and theoretically, the plunging and torsional degrees of freedom,
separately.

During plunging resonance, the angle section experiences
a vortex capture phenomenon where the shedding frequency is con-
trolled by the cylinder motion over a finite wind speed range.
On the other hand, the torsional vibration shows a vortex con-
trol condition over a large velocity range where the vortex
shedding governs the frequency of oscillation and follows the
statibnary model Strouhal curve; Compared to the stationary and
torsional results, the fluctuating pressures on the angle surface:
during plunging resonance are substantially larger in magnitude
with less amplitude modulation and phase variation. Consequently,
the unsteady aerodynamic coefficients increase with this insta-
bility. During resonance in either degree of freedom, the vortex
velocity and longitudinal spacing remain essentially unaltéred,
however, the wake width experiences substantial increase with
plunging motion. It appears that the torsional resonance has

virtually no effect on the vortex shedding or wake characteristics.
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1 - INTRODUCTION

1.1 Preliﬁinary Remarks

The oscillations of aerodynamically bluff bodies, when
exposed tc a fluid stream, have been a subject of considerable
study. To engineers, the aeroelastic vibrations of smoke stacks,
transmission lines, suspension bridges, buildings, etc., are of
interest. In general, the nature of the wind loading, vortex
shedding frequency and wake geometry form three important para-
meters in an aeroelastic instability study. The determination of
the corresponding information assoéiated with a structural angle,
during static and dynamic conditions, forms the subject of this
thesis.

Structural angles are frequently used in the conétruction
of open civil engineering structures, such as‘high véltagé trans-
missioﬁ towers, antenna masts, and bridges. Incorporated as
secondary members, these structural sections may be long and flex-
ible. Furthermore, recent advances in the metallurgical science
through experimental research and in engineering design with the
aid of computers have encouraged the use of 1lighter and
relatively more flexible individual components. Bluff geometry
together with low natural frequency make these ‘members partic-
ularly susceptible to aerodynamically induced vibrations. Some
long slender angle members in transmission towers have been known
to experience large amplitude oscillations when exposed to normal
atmospheric winds, and in a few instances failure has been

reported. It is, therefore, desirable to understand the nature of
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the unsteady forces and the resulting instabilities for the safe
design of these structures.-

Depending on the nature of the aerodynamic eXcitation, a
flexible structural member may exhibit various forms of vibration,
e.g., vortex resonance, gepmetric—aerodYnamic instability called
galloping, classical or stall flutter, or random motion excited by
the turbulence. However, in general, the aerodynamically induced
oscillations of bluff cylinders are of the vortex fesonant or
galloping type with the viBrations occurring, predominately, in
one of two degrees of freedom; flexure transverse to the flow
direction, or torsion about the lqngitudinal elastic axis of the
beam. Furthermore, since the elastic and inertial axes of angle
members are not coincident, coupled torsional-flexural vibrations
may oécﬁr. Nevertheless, as determined by Koskol"and observed b&
Wardlaw,2 the coupled torsional-flexural oscillations can be
considered as rotational motion about virtual hinge points which
produces two distinctly different families of vibration. At the
lower modes, one family appears predominantly flexural and the
other torsional.

The natural turbulence of atmospheric winds to which the
structural members are exposed is not, in general, comparable to
that in the steady air stream of conventional wind tunnels. The
atmosphefic winds have fluctuating velocity components which may
be a large fraction of the mean wind speed. However, since the
peak of the power spectrum of the velocity fluctuations generally
occurs at a frequency, which is much lower than the natural fre-
quencies of typical angle section beams,3 the atmospheric tur-

bulence cannot be expected to cause serious resonant vibration
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~of individual structural members. On the other hand, buffetting-
by highly turbulent wakes from other_bluff structures is more
likely to cause excitation of members lyingvdownétream since the
turbulent energy spectrum can have péak(s) near the naturai fre-
quencies. Neveftheless, available literature réports that turbu-
lence reduces the spanwise correlation of the vortex shedding
phenomenon and thereby aids in suppreésing the.reéonant vibrations.
For the galloping instability, it should be mentionéd ﬁhat the
influence of turbulence is not yet fully understood and may be
significant under some circumstances.

The distinct character of vortex excited andvga110ping
oscillations should be emphasized. The former is essentially a
resonance phenomenon where the vortex formation ffequency, and
hence the frequency of the fo:ciné function, coincides with the
natural frequency of the system undervconsideratioh. This type of
oScillétion is referred to as a fdrced vibration since the sustéin—
ing alternating force exists .independent of the motion and per-
sists even when the motion is stopped. Although any bluff member
of arbitrary cross-section, when suitably mounted, would exhibit
vortex excited oscillation, the available literature is largely
confined to such studies on circular cylinders because of the
geometric simplicity as well as the practical importance of the
section.

The second form of instability, referred to-as galloping,
represents an important type of self-excited vibration. The
fluid forces which create a condition of instability are generated

by the fact that the cross-section of the body is aerodynamically
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\unstable to small disturbances. These forces result in oscilla-
tions which grow in amplitude until the energy extracted from
the fluid stream balances that dissipated through varioué forms
of damping. Galloping oscillations are referred to as "self-
excited" because the fluid forces that Sustéin the motion are
created and controlled by the motion itself, and if the motion
stops, the unsteady forces disappear. This is in contrast to
vortex resonance. The main features of galloping are that the
vibration can occur in a single degree of freedom and the steady-
state amplitude tends to iﬁcrease with increasing wind velocity.
Often, as is the case with a structural angle beam, the
instability at a given fluid stream velocity and angle of attack
may be the combined effect of both vortex resonance and galloping.
To permit the study of the individual forms of exc¢itation, the
judicious choice of either damping, angle section size or natural

frequency is required to separate the two phenomena.

1.2 Literature Survey

Strouhal4 was the first to correlate the periodicity of
the vortex shedding with the diameter of the circular cylinder
and velocity of the fluid stream. This was followed by numerous
experiments on wake geometry by Bénard,5 the classical study of
stability by Von Kérmén,6 and wake analysis by Heisenberg.7
Ever since, interest in the vortex shedding phenomenon has re-
sulted in many theoretical and experimental investigations by
Roshko, Kovasnay, Rosenhead, Eskinazi and others. Marris8 has

presented an excellent review of this literature.
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The mechanism of gal;oping excitation of bluff cylinders
was probably first descriﬁed by Den Hartog9 together with the
determination of his plunging stability criterion. Originally,
however, it was Lord Rayleigh10 who indicated the inadequacy of
linear theory and proposed a nonlinear equation to ekplain the
"sustained" oscillations. Van der Poi's development of his
classical nonlinear equation in 1920 led-to a flurfy df research
activity on this subject by Appleton, Greaves and others.
Excellent reviewsvof these developments are summarized by van der
Polll and Le Corbeiller,12 with many recent references found in
Minorsky.l3 Wardlaw2 extended Den Hartog's anaiysis by developing
a generalized stability criterion for coupled torsional-flexural

16-18 _. 19

“motion. Sisto,14 Scruton,15 Parkinson, et al, Ii,

Dicker,20 Novak,21 etc., applied the quasi-steady approach to
solve the nonlinear vibration probiems for bodies of various geo-
metric‘shapes‘with plunging and/or torsional degrees of freedom.
The galloping oscillations of existing structures, mainly of
transmission conductor lines, were observed and studied by Scruton,

Richardson, et al,23 Cheers,24 3

* Dryden and Hi112 and others.
Davenport26 suggested the possibility of galloping instability of
tall thin buildings which may be constructed in the near future.
A paper by Parkinson27 discusses the aeroelastic behaviour of
bluff cylinders and provides a good survey.of the literature.
Scruton, as well aé Davenport and associates have invesit-
gated in detail the wind loading and dynamics of certain complete
structures such as stacks, towers, masts and buildings. On the

28

other hand, Dale, et al, have concentrated their study to the

22
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dynamic behaviour of hydrophone cableé.- Intensive investigations
into the aerodynamic instability of suspension bridges with
special reference to the original Tacoma Narrows Bridge have
been conducted by Farquharson, et a1,29. Kelley,30 eﬁcf
In addition to this, the_unsteédy fbices and wake geo-

metry associated with two-dimensional bluff cylinders have been
intensively studied. McGregor31 andbGerra:d3?'havé conducted
experimental investigations of the fluctuatinglpressures on
stationary circular cylinders. More ;ecenti&)ﬁFerguson33 made
Qake sufvey as well as fluctuating surface pressure measurements
on the same section. The corresponding resulté for stationary
square, rectangular, and elliptical cylinders were presented by

Modi and Heine,34 and Wiland.35 36

37

Similarly, Grove, et al,

38 39

Bishop and Hassan, HumphreYs; and Fung measured the fluctu-

ating forces on stationary circular cylinders over different
ranges of Reynolds number. In addition, Wavrdlav;randDavenport,3
and Vickery40 conducted some fluctuéting force measurements on
different shapes in lgminarkas well as in turbulent flow.

On the other hand, investigation of wake and surface
conditions on oscillating bluff cylinders is 1eés compiete. The
study of fluctuating lift and drag forces by Bisho? and
Hassan41 showed that the vortex fregquency is controlled over
a range of circular cylinder frequencies; while AFergﬁson
and Parkinson42 measured fluctuatinj pressures .and wake geo-
metry related to a circular cylinder experiencing vortex in-
duced oscillations. Molyneux43 developed techniques for measur-
ing the aerodynamic forces on oscillating airfoils. The three-

dimensional structure of the wake and correlation along a circ-

ular cylinder during static or dynamic conditions have been investi-
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gated by Gerrard,44 Toebes, - 47

Prendergaét,46 Fené and others.
\Vickery40 measured the correiation-of lift albng tﬂe surface of
a stationafy square cylinder. |
Dynamic amplitude measurements of two;dimensiohal'biuff
cylinders of various cross sections héve been investigéted by

Brooks.48 Both Smith49 and Santosham50

‘concentfatea their studies
to aeroelastic galloping of rectangular cylinders ih a_plunging
degree of freedom; while Chuan51 and Otsuki52 present investi-
gations on torsional oscillations of airfoiis and prismatic bars}
respectively. On the other hand, Toebes and Eagleéon,53 and

Eagleson, et al,54

dealt with the_hydroeiaétically self—excited
Qibrations of flat plates as relaﬁed to the trailing edge geometry.

The influence of wake-body inte:actionzon aeroelastic
instability are reported'forAbOdiéé of.vériousf§fo$s-sectional
geometry. But it should be-emphasi?ed that_thevbulk of the
literafure is devoted to éhe circulaxzsectiéh. ”ThiSFié'indicated
by the fact that investigations into éérod§ﬁémicéil§uéiéi£ed
oscillations of structural angles Qere not ;ﬁitiated unﬁil 1962.
Thornton55 conducted experiments on the vibfatibnlof s§veral
single and double angle section membefS'infSteady_flbw énd was'
able to suppress the motion by the addition of flat pléte spoilers.
More recently, Wardlaw2 has reported thé oséiliatibﬁs of a
3x3x3/16 in., aluminum structural anéle beam ﬁogétﬁér with dis-
tributions of sectional lift, drag and pitching moment. From a
structural consideration, the coupled flexural-torsional vibrations
in still air of equal-legged and unsymmetrical angle section

beams were examined theoretically and experimentally by Kosko.l



1.3 Purpose and Scope of the Investigétion

| The problem of aeroeiastic-instability of two-dimensional
bluff cyliﬁders has been actively studied, both experimentally
and theoretically, in this department since 1958. A review of

56,57 These system—i

the progress is reported in two survey papers.
atic investigations have contributed pertinent data to the gen-
eral study of wind effects on buildings and structures. The
investigation described here forms a part of this continuing
programme. It presents information on the aerodynamics of the
angle section, the wind speed and angle of attack ranges of
instability, and the effects of the model dynamics on the impor-
tant aerodynamic parameters. This is intended to provide, even-
tually, a source of information for the safé design of open
structures composed of this simple section.

In particular, the investigations éxamined the aero-
dynamies and dynamics of equal-legged, angle section models in
a conventional low turbulence, return-type wind tunnel with a
test section of 36 in. x 27 in. x 8 2/3 ft. The experimental
models had 1xl1 in. and 3x3 in. cross-sectional dimensions with
uniform leg thicknesses of 1/6 in. and 1/2 in., respectively.
The exterior surfaces were smooth with sharp contour edges.
Being rigid in themselves, the models were mounted normal to the
flow on stationary or spring supporting systems with structural
and mean aerodynamic conditions being essentially two-dimensional.
A comparison of the geometric features of the 'idealized' angle

models and commercially available angle sections is presented in

Appendix I.
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The research programme was leldEd 1nto four stages inves-
tigating the angle section during statlonary, plunglng, torsion,
and combined plunging-torsion cond;tlons. For the statlonary
model tests, the thesis presentsferperiménthl?results_on:
(i) steady lift, drag and‘pitching moment'coeffieients;
(ii) variation of Strouhal number w1th Reynolds number,
(iii) mean and fluctuatlng statlc pressure dlStrlbutlons,
(iv) fluctuatlng lift, drag.and:pltchxnghmpmentucqeff1c1ents;
(v) wake geometry |
as functions of angle of attack. In most tests the Reynolds
number was confined to the range» 2x104 to lO5 For comparlson,
static force and vortex shedding frequency measurements were con-
ducted on commercially available sluminum and steel angle members.
The results of the remaining‘threetst5§es are combined
in one chapter of the thesis te correléte the importsnt‘features
of the model dynamics and ass001ated aerodynamlcs._'The existing
lateral supportlng equipment was sultable for the study in the
plunging degree of freedom, but a new,sprlng.mountlng_system and
auxiliary measuring instrumentation were designed fsr the torsional
investigations. Both the vortex induced_énd galioping'instabil—
ities were examined et various angles of attack'and-damping levels
for each of the three oscillatory modes of vibration{_ For the
angle section experiencing vortex excited reSOnence, the effects
of the model motion on such parameters as:
(1) vortex shedding frequency and phase;
(ii) fluctuating static pressure;

(iii) wake geometry
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were determined. Peak Vortex resonanﬁlaisgiééémén£ amplitudes
were predicted from resonant theory by‘in00£p¢§a£iﬁ§.the.fluctu_
ating force data. 1In addition, uéinéfghé éxbéf£m¢Apa1l§
obtained static aerodynamic_loadings)-thefﬁﬁaéi;ﬁﬁéédy:analysis
was applied to provide theoreticai pfédidtidhs Qf the galloping
model dynamics.‘ | : |

Since the influences of therwind‘tunnel.wélls on ﬁhe
measured data are not well established, the réSuitsupresentéd,
unless otherwise stated, are uncorrected for these effects. A
number of experiments were conducted to estéblish trends of the
wall interference, and this data togefﬁér with é sunmmary of
existing theories on wall confinement corrections are presented
in-Appendix II.

A comment concerning thef;pplicabiiity of this investiga-
tion'fo a practical situatioh.is{peftinent;ﬁeré, The fesults pre--
sented in this thesis relate to a ;igid,,two;dimensidnal element of
a long angle section beam,xwith the_étiffnéséﬁlumbed aé springs
and damping applied externally. _ﬁowevét,'fof an‘§c§pa1 beam, the
potential energy is due to the stfains:and damping_is_associated
with the internal friction of thé7material;yfﬁé€eftheless;

Novak21 has reported an investigation ShOQiﬁé compatability
between vibrations of rigid sections and cohtiﬁuqus:SyStems. A
procedure for model simulation of phfsical sﬁrﬁctures ﬁas been

presented by Whitbread.58

For sectional models, certain similarity
requirements have to be satisfied. When geometric gimilitude
exists, the static aerodynamic results are directly applicable,

even at other Reynolds numbers within a certain range, if flow



11
separation is fixed by edgeAcondition. aHowever,.for dynamical
studies, the requirements‘involve'cdrréspéﬁdencé of structural
parameters, such as stiffness, 1nert1a and damplng | They are
represented in nondimensional form ‘as U, n- and B, respectlvely.

In these experiments, the sprlng stlffnesses have been
chosen to provide a frequency ratAO'"Qe/my'é 3 whlct is typical
‘of angle section beams. ’? The inertié féhafé¢teiisticé of the
1 in. and 3 in. angle models (Appendixll) ﬁake the former suit-
able for plunging studies, while the 1atter for torsional inves-
tigations. For the 3 in. models in-the plghgithcase; the_ny
values are approximately 3 times higher than thbée of the
prototype. This was selected for conveniéhce; but does not
limit the applicability of the resﬁltstobtained; vSéveral inveé-

tigatorssg'so' et ?1

have shown that the internal friction of
solids can be approximated by viscous fesiétaﬁce or other energy
dissibative models so that the decay-of the vibration is logar-
ithmic.  However, other investigationssl’Gz indicate that the
logarithmic decrement is dependent on amplitude as weli, with
damping increasing with displacement. In any case, it is well
known that the internal friction is a function of'the material
and its particular chemical and physicai prqéerties;f Typical
vélues for aluminum would be of the order of 0.001 < 8 < 0.01,
while for steel 0.0008 < 8 < O, 006 With ‘this uncertainty in
the value of internal damping, it was thought advisable to con-

duct the tests with damping levels in and below the range likely

to occur in the full-scale structure.



2 AERODYNAMICS OF A STATIONARY ANGLE SECTION

2,1 Preliminary Remarks

In an aeroelastic instability study, stationary model
investigations provide vital information from which critical
oscillatory conditions such as wind speed and model orientation
can be predicted. A set of angle section models were subjected
to extensive wind tunnel testing to obtain information concern-
ing mean wind loading, Strouhal number, fluctuating static
pressure and wake geometry.

This chapter describes model construction, necessary
apparatus, instrumentation, andAexperimental procedures which
also form the basis for the dynamical study in the following
chapter. The test results are discussed and conclusions pre-
sented. A list of the electronic instruments used in the experi-

mental programme is given in Appendix IITI.

2.2 Models, Apparatus, Instrumentation and Calibration
2.2.1 'Angle Models
Depending on the type of experimental test proposed, the
angle section models are categorized as follows:
(i) pressure tap model;

(ii) dynamic model;

(iii) balance model.
The designed angle models had sharp contour edges and relatively
smooth faces to facilitate construction and provide uniformity
of surface conditions. However, commercially available angles

usually have rounded edges and rough surfaces. To determine the
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influence of the disparities between the models and prototypes
on certain aerodynamic charécteristics, three balance models
were madebfrom steel and aluminum structural angle members.

To examine the mean and fluctuating static pressures on
the surface of an angle section during static and dynamic con-
ditions the pressure tap ﬁodel was designed. The 3x3x1/2 in.
hollow angle model, 26 3/4 in, long, was constructed from 0.020
in. aluminum sheet bonded to acrylic bulkheads and 1/4 in. thick
end fastening tab plates (Figure 2-1). A 39 hole pressure ring
of 0.025 in. diameter taps, loca£ed at the midspan of the model,
proVided a means of examining the pressure distributions afound
the contour of the angle. Two taps were provided in the span-
wise direcﬁion, at distances of 4 1/2 in. and 9 in. from the mid-
section, at the same contour position as tap number 5; The
surface pressure signals were transmitted from the pressure taps
to exfernally located transducers through 5 ft. long, 0.066 in.
diameter "Intramedic" polyethylene tubing. The 1 in. and 3 in.
dynamic models, which did not have pressure taps, were of identical
geometry.

Six different angle section models (Appendix I) were
designed and built for mounting on the Aerolab six component,
strain-~gauge balance. Models A, B and C had the same nominal
leg width and thickness, while model D and E had half the leg
thickness. Models A and B differed only by the 1/4 in. thick
end plates mounted on the latter model. This was intended to
determine the effects of the same end platés mounted on the

pressure tap and dynamic angle models. Models C and D were

steel structural angles with rounded corners and rough sur-
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faces. A typical commerciél aluminum angle section with rela-
tively smooth surface and small cbrner radius was represented
by model E. 'Model F was geometrically similar to model B with
cross-sectional dimensions of 2x2x1/3 in. For all balance
models, the effective length which was exposed to the wind

stream was nominally 27 in.

2.2.2 Fluctuating Pressure Transducer and Calibration
Datametrics Inc. of Waltham, Massachusetts, has developed
a ﬁew pressure transducer called Barocel‘Modular Pressure Trans-
ducing System consisting of a pressure sensor, signal conditioner
and power supply. The Barocel is a high precision, sensitive
instrument which proved to be suitable for the intended fluctuat-
ing pressure measurements. The pressure sensor consists basic-
ally of a capacitive voltage divider with.a stainless steel
diaph?agm separating the two pressure chambers. The signal con-
ditioner provides 8 sensitivity ranges from 0-10 mm. of mercury
on the least éensitive to 0-0.001 mm. of mercury on the most
sensitive scale when coupled to a pressure sensor head. The
output voltage is 0-5 volts d.c. full scale on any of the 8
sensitivity ranges with a linearity of +0.1% and stability of
+0.1% for +15°F ambient temperature changes:. The prestressed
diaphragm has a natural frequency of 2500 cps and the transient
response of the pressure sensor head is less than 2 ms to a
step pressure input. From experiment the Helmholtz resonator
frequency of the cavity and connection on one side of the

diaphragm was found to be approximately 210 cps.
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The Barocel is accurately calibrated for steady pressures.
However, for fluctuating pfessures transmitted through relatively
long, small diameter tubes considerable attenuation occurred.
Therefore, the output electrical signal requires calibration
against known input fluctuating pressure at the model surface.

This was achieved using the calibration system developed by

Wiland.35
The effect of amplitude and frequency of the source pres-
sure on the output signal is shown in Figure 2-2(a). These

curves indicate the linearity of the system. For convenience the
calibration curves in Figure 2-2(a) were replotted in Figure 2-2(b)
as a ratio of output to input. This eliminates frequency

interpolation.

2.2,3 Wake Probe and Traversing Gear

The wake geometry survey was performed using a‘disc prbbe
constructed by Ferguson33 and described in detail by Bryer et al.63
It was mounted on a 1 in. hypodermic needle which in turn was
connected to a 14 in. long, 1/4 in. diameter sting. Static
pressure calibration data were obtained for this particular probe
from wind tunnel tests (Figure 2-3). The measurements indicate
the probe to be relatively insensitive to a pitch of #5° and yaw
of #20°. To enable the wake probe to be positioned in the test
section of the tunnel with control of movement in a lateral and
longitudinal direction, the wake traversing gear designed by

Ferguson33 was used. The accuracy in positioning the probe was

approximately 0.02 in.
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2.3 Test Procedures
2.3.1 Balance Measurements

After setting the angle of attack and increasing the
wind speed to a preselected value, the lift, drag and pitching
moment on a balance model were recorded. The wind speed was
then increased to two further settings and corresponding data
obtained. This procedure was repeated for‘the five balancé

models (A to E) over the entire range of angle of attack.

2.3.2 Vortex Shedding Frequency

Measurement of the Strouhai frequency was accomplished
using the instrumentation layout shown in Figure 2-4. The wake
probe was located at an appropriate position in the mid-plane
where the fluctuating pressure signal was relatively clear.
However, to improve the quality of thé signal, a band pass
filtér was incorporated. Illustrated in Figure 2-5(a), are
typical unfiltered and filtered fluctuating pressure signals
from the probe. Using this system, the 1 in. and 3 in. angle
models and the balance models (B,C{D,E, ahd F) were tested for
vortex shedding frequency variation with'angle of attack and

Reynolds number.

2.3.3 Mean Static Pressure on Model Surface

The mean pressure distribution wds obtained using a
Lambrecht manometer with ethyl alcohol. The oscillation of the
alcohol column caused by the fluctuating component of the static
pressure was reduced using a restriction in the pressure line.

To facilitate reduction of the data, the pressure on the model
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was measured relativg to tﬁe.total head in the settling section
of the wind tunnel. This'eliminaﬁed the effect of atmospheric
.pressure changes during the tests and produced a pressure

differential which was always positive. The results were obtain-

ed for a range of wind speed and angle of aﬁtack.

2.3.4 Fluctuating Static Pressure on Model Surface
Investigation of the fluctuating pressure on the surface
of the angle model was separated into amplitude and phase
meésurements. For studying the amplitude of the pressure fluctu-
ations, the instrumentation shown in Figure 2-4 was used e#cept
that the signél was taken from the model taps and recorded on a

Visicorder. As discovered by other investigators,33’35

the
fluctuating pressure signals on the model surface were at the
frequency of the vortex shedding, and had:seemingly random ampli-
tude ﬁodulation. Figure 2-5(b) illustrates typical unfiltered,
filtered and random amplitude modulated pressure signals from
the model sprface. For presentation of the fluctuating pressure
amplitude, the average peak value over approximately i50 to 250
cycles was determined from the chart records. 1In addition, to
evaluate the signal modulation, the ratio of maximum amplitude
to average peak was obtained.

The phase difference between the fluctuating pressure
signals from different model taps was obtained by incorporating
a second Barocel transducer system and comparing the signals on

Visicorder charts. To eliminate the effect of phase shift intro-

duced by the instrumentation, the fluctuating pressure from one
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model tap was arbitrarily selected as a reference. The relative
phase angle was averaged over 10 to 20 cycles. The amplitude
and phase measurements for the 41 pressure taps on the model were
performed at three wind speeds and various angles of attack.

The band pass filter antenuation was determined for each
wind speed and filter cut-off freguency settings'by using a
sinusoidal signal from a low frequency function generator. The ’
Visicorder calibration and impedance atteﬁuatipn were,defermined

using the same procedure.

2.3.5 Wake Survey

Wake survey measurements were accomplished by examining
the fluctuating pressure field associated with. the vortices shed
from the model using ﬁhe instrumentationasetup shown in
Figure 2-6. Since the wake results were;fdund tb be substantially
independent of Reynolds number, the meASufemEnts were confined
to only one wind speed for various-éngieé of attack.

Traversing the disc probe laterally_at various x-stations
and recording the avefage peaks of thé fluctuating pressure |
signals provided a set of curves éach”having'two maxima near the
vortex centrelines. .The y—distance:betweeﬁ ﬁhese maxima at each
X-station was taken to be a measuré'of the 1a£e£al spacing
between the two rows of vortices shed'frdﬁ the model. It was
convenient to plot the results of the lateral traverse as a ratio
of probe to model tap average fluctuating pressures. The model
tap selected for the probe ratio was somewhat arbitrary, but
represented a position on the model contour'haﬁing a near maximum

fluctuating pressure value. A true rms voltmeter was used for
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averaging of the fluctuating pressure signalé. The variation
of the peak values with x coordinate gave an ihdication of the
decay of the vortices in the downstream direction.

Longitudinal spacing, a, between consecutive vortices in
one row of the vortex street was obtained indirectly from longi-
tudinal phase measurements. The spacing distance corresponds
to a 360° phase difference between the fluctuating pressuré
signals associated with consecutive vortices in the same row.
Traversing the wake probe along the centreline of a vortex row,
the fluctuating pressures from the probe and a reference deel
tap were recorded simultaneously on a VisicOrdef.. The phase angle;
data, averaged over 10 to 20 cycles, was plotted as a function
of the downstream coordinate from which the §ortex spacing, a,
was interpreted. 1In addition, the'voftgx streamwise velocity

was determined from the lohgitudinal spacing using the relation

<<

= Sh(%) o (2.1)

2.4 Experimental Results and Discussion
2.4.1 Steady Lift, Drag and Pitching Mbmeﬁﬁ Distributions

The static lift, drag and pitching moﬁent experienéed
by various angle sections over the Reynolds number range of
4x104 to llxlO4 are presented in the following illustrations.
The pitching moment has been measured relative to an axis

coinciding with the centroid of an angle section. It was observed

that over the wind speed range investigated, the force and moment



‘ 26
coefficients were independent of the Réynoids number.
Figure 2-7, presents the variation of the aerodynamic
coefficients with angle of attack, a , for the balance model
B which is geometrically similar to the pressure tap and dynamic
angle models. It is apparent that the angle section experiences
the maximum negative lift and moment at approximately a = 10°
and corresponding maximum positive values near a = 40°. On the
other hand, the drag force is maximum at the symmetric angle
a = —-45° wherg the model angle section is open upstream. The
variation of the drag coefficient with angle of attack can be
reduced by basing the coefficient on the projected frontal area.
However, the drag coefficient does not become completely indepen-
dant of model orientation. A compaiison of this data with the
test results of model A indicated no significant influence of
the _1/4 in. thick end plates on the ovefall aerodynamic
charaéteristics.
| The abrupt changes in the 1lift, drag and moment distri-
butions at certain orientation such as a = 10°, 40° and 104°
are attributed to major changes in the flow field over the angle
contour. This was substantiated by a qualitative study using a
smoke tunnel. With the inérease of angle of attack in the
ranges 5° to 25° and 97° to 125°, the separatéd flow reattached
on one side forming a separation bubble/which decreased in length
and finally disappeared producing attached flow over the entire
side. 1In the vicinity of a = 40°, the forward stagnation point

shifted from the junction of sides 3 and 4 to approximately tap
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numbei 21 causing a‘change in the posifion oﬁ the separated
shear layers downstream. |

Figure 2-8 illustrates some of the éffects of edge
radius and surface roughness'associatéd withICOﬁmeréiélly avail-
able angle members. The results show that angle model B and
structural angle members C, D and E have'reaSOnablé aerodynamic
similarity even though there are minor differeﬂces in geometric
features. 1In Figure 2-8(c) slight deviations.in the pitching
moment distributions are apparent overjthe rangé of —4$° to 15°
due to differences in leg thickness aqd corner conditions. A
comparison of the results suggesté thét'a,rEQuction in leg
thickness or corner radius decreases the magnituae of the pitch-
ing moment. This variation is apparent from the mean static
pressure distributions given later in~Figuréx2€1é.

The preseht lift and drag dist#ibdfidns compare well with
Wardléw's measurements? and the few drag’fésﬁltg fbf'§tructural
angles quoted by Hoerner.64 For the angle:modéis;at a = -45°,
the corrected drag coefficient Qalue of approximately 2.0 is
similar to that of a normal flat plafe or 90? wedge model.64
Using the measured base pressure value for-theﬁpréssure tap angle

section at a = 135°, Roshko's65

notched hodographisolution for
a 90° wedge, predicts a value of CD = 1.8 wﬁibﬁ qOmpares well
with the experimental drag coefficient of 1.7Afor balance model
B. |
2.4.2 Vortex Shedding Frequency and Strouhal Number

The dependence of the vortex shedding frequency on wind

speed is shown in Figure 2-9 for various angles of attack of

the pressure tap angle model. The linearity of the plots in-
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dicates that the Strouhal number is independent‘of the Reynolds

number over the range of .].04

A;o-152l64 ”investigated.

Using this and similar aata, the ngeehal number varia-
tion with angle of attack for'theepfesedre fe?amodel'wes obtained
(Figure 2-10). Basing the dimehSieniess f:é&uehcy pérameterv on
the projected model width e,:rathe#'thap theﬁeenstant“dimension
h, reduces the §ariation of:sffeuﬁal.number‘bui does not make
it completely independent of Qrienfation: }Thefsudden increase
in the Strouhal number near a é'lS°  ana 105° is aétributed to
the reattachment of the fldw-as'éx§ieihed'iﬁ‘the,discussion of
the balance measurements. This redﬁées thé Wéke‘width which,
in general, is accompanied by a simultaneousiincfease'in the
Strouhal frequency. Therefore, if»the.wake width is used as the
characteristic length, the Strouhal number'may ha&e less
dependency on model orientation. Roshkd'e66 concept of a
Universal Strouhal Number, S*,'based'on wake width as well as
shear layer separation Velocity, has censiderable merit. Examin-
ation of the mean base pressure, wake geometry'and shedding
frequency data indicated that the angie eection will have values
of S, for various angles of‘attack approximately eqﬁal to the
accepted result of 0.164. |

A comparison of the Strouhal nuﬁber distributions for
the 1, 2 and 3 in. angle models tested in thefsame wind tunnel
(Figure 2-11l(a)) indicates the preeence of tennel wall inter-
ference effects. The trend is for Strouhal number to increase

with blockage. For comparison, the estimated curve for free

stream condition is also included (Appendix II).
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The corresponding Strouhal»numbe; datafféf'the balance
models (B,C,D, and E) are showhwin Figure.2-11(5)}”}Aerodynamic
similarity betweén the sharp—edgedgmodél'B ané the éommercial
angle sections is apparent. Sinéeugll £he'an§le members are of
the same nominal size, '3x3Ain;; thé;wa}lﬁcoﬁfigémént effects
would be similar. For anéle'Sectiqﬁs.oﬁ tﬁiéfﬁiaﬁhj a correction
curve is presented in Appendix Ii, Figurellf;;;

Comparison of the present'Strduhal_humbéf Aata with the
few results published by Wérdlaw2 shows godd agreement. Furthef—
more, the angle section results follow thé trehdAestablished by
cylinders of different geometric form. The Stréuhal numbefs for

several representative sections are listed below:

Se

—x

(i) angle section at a = -45° | o . .0.135
(ii) flat plate normal to flow S 0,145
(iii) 90° wedge and angle section at a = 135° 0.18
(iv) circular cylinder ' : S : - 0.20
(v) flat plate at o = 40° _ . ’ o 0.23

The results suggest a tendency for themstro§hai_humber to increase
in magnitude with a decrease in bluffness. Further éomparison
with other published data64 provided confirmation -as to the re-
liability of the measuréments.

From the Strouhal number results, importaht information
regarding the resonant wind speed (Vres)’ at which‘ﬁortex induced
aeroelastic instability may occur, can be obtained. V

res
represents the critical wind speed at which the vortex shedding
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frequency coincides with the natural frequency of the system.
Expressed in nondimensional form, the resonant wind speed can be

obtained from the Strouhal number using the expression

res 1S (2.2)

Shown in Figure 2-10 is the variation of Ures with a for the
3 in. angle section. It is apparent that an angle member is
susceptible to vortex resonance at the lowest velocity near

a = 30°.

2.4.3 Mean Static Pressure Distributions

The mean static pressure on the surface of the angle
model was found to be independent of the Reynolds number over
the range 104 to 12x104. The pressure distribution around
the model midspan seétion is shown in Figure 2-12, for various
angles of attack. The results indicate the location of the
stagnation and separation points. In addition, the curves provide
data on the base pressure coefficient which is useful in the
evaluation of the separated shear layer velocity and wind tunnel
wall correction. For the same orientations, investigation of the
spanwise C_ distribution showed it to be relatively constant, thus
substartiating two~dimensionality of the flow.

A comparison of the pressure integrated and balance
measured aercodynamic coefficients (Figure 2-13) confirms the above
shservation. As shown, both lift and drag coefficients are in

good agreement over the entire range of angle of attack. The

pitching moment measurements show similar trend except for the



Model contour sides

Figure 2-12-i Midspan distributions of mean static pres-
sure coefficient (-45°< a < 35°)



Model contour sides

Figure 2-12-ii Midspan distributions of mean static pres-
sure coefficient (40° < a < 135°)
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discrepancy in magnitude over the range a = ¢ 250,,

2.4.4 Fluctuating Static Pressure.Distributiensl
Oscilloscope traces of typical;fluctuating pressure
signals from various model taps are“illuStrated*in”Figure 2-14.
The photographs in (a) show the amplltude modulatlon of pressures
from two midspan and two spanw1se tapss The typlcal phase signals
shown in (b) were obtained frem varrousppressureftaps as follows:
(1) neighhouring midspan taps from the»saﬁe side‘ef
the model; | | o
(ii) midspan taps from 6lppos‘it-ev sides’of the ‘ﬁe,del?-'-.r»
(iii) spanwise taps from the same side'of:thei@odel;
Over the range of 26x103 .to 63x103,.it Wasnehserved that the
Reynolds. number dld not have any 51gn1f1cant effect on the average
fluctuatlng pressure coeff1c1ent or phase angle. |
For various angles of attack,. the mldspan distribﬁtions
of the average fluctuating pressure coeffieientqahd modulation
ratio are illustrated in Figure 2-15. It is apparent that the
amplitude of the fluctuating pressure can reach a magnltude |
comparable to the mean static pressure level.’ ¢he maximum CE'
values are of the order of 0.8 in the'Vicinity ef a = -45°
and 75° with corresponding modulation‘ratios between 1.5 and 2.5.
At angles of attack of 45° and 135°, the averaée'coefficient
diminishes to a level below 0.2 but the modulation ratio remains
at approximately 2.0. ' This variation of fluetuating pressure
with model orientation was observed qualitatively as well during
the flow visualization experiment by noting the ehange in the

strength of the vortex wake system.



Figure 2-14

Typical fluctuating pressure signals from various model taps indica-
ting (a) random amplitude modulation (b) phase variation
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Model contour sides

Figure 2-15-i Midspan distributions of fluctuating static
pressure coefficient and amplitude modu-
lation ratio (-45° < a < 0°)



Model contour sides

Figure 2-15-ii Midspan distributions of fluctuating static
pressure coefficient and amplitude modula-

tion ratio (15° < a < 75°)
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Model contour sides

Figure 2-15-iii Midspan distributions of fluctuating static
pressure coefficient and amplitude modula-
tion ratio (90° < a < 135°)
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For the portion of the body in the wake, the magnitude
of the fluctuating pressure is comparatively larger than that

near the forward stagnation point, S A similar reduction in

L°
CE. occurs in the vicinity of the rear "stagnation" region marked
ST‘ It seems reasonable that this tendency of vanishing Cﬁ' near
the two stagnation areas is due to the cancellation of the pressure
fluctuations, from the two sides of the wake system, which are
180° out of phase. However, this effect is less complete at the
rear of the body because of irrégularities in the wake. Quan-
titative observations indicated the second harmonic component of
the pressure fluctuations to be less than 20% of the fundamental
frequency value.

The seemingly random amplitude modulation of the pressure
fluctuations is attributed to the general instability of the
separated shear layers and associated‘vortices. Much of the |,
vorticity generated at the body is dissipated'immediately behind
the cylinder through turbulence. Even the vortices, forming the
Karman vortex street, are of different.strengths and tend to lose
their individuality as.the distance behind ‘the body increases.

From the sample phase data in Figure 2-14, it is observed
that the pressure fluctuations on opposite sides of the model
contour exhibit the familiar 180° phase difference. On the other
hand, pressure signals from neighbouring taps on the same side
are not necessarily in phase as frequently reported in literature,
but may have phase differences as large as 50° to 100° (Figure
2-16). These phase variations are attributed to the adjustment
of the flow field around the model due to the shedding of a vortex

downstream and formation of the next vortex core. Recent measure-
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ments by Wiland35 on elliptic cylindefs indicated a similar
phase phenomenon.

The spanwiée variations of the fluctuating pressure,
shown in Figure 2-17, suggest reasonably uniform pressure co-
efficient along the model length. However, the scatter and
inconsistency in phase déta, particularly at some angles of
attack, are too large to establish any definite trend. It seems
reasonable to assume on the basis of the work reported by
Vickery,40 Prendergast46'and Feng47 that spanwise correlation of
the flow exists over only a finite length of the model. For
stationary circular cylinders the correlation length is typically
of the order of two to three cylinder diameters with increased
two-dimensionality during cylinder motion. As reported by Vickery,
the correlation length improves for sharp-edged bodies and is of
fhe order of five to six diameters for a stationary square member .
in aismooth stream. However, under turbulent flow conditions, |
the spanwise correlation suffers substantial reduqtion. As illus~-
trated in Figure 2—14(a), the amplitude modulations of the pres-
sure fluctuations on the stationary angle model are in phase
around ﬁhe contour and along the length of the model. Similar

observations have been reported by other investigators.3l’33’35

2.4.5 Fluctuating Lift, Drag and Moment Coefficients

The midspan fluctuating pressure distribution was inte-
grated numerically to obtain the fluctuating lift, drag and pitch-
ing moment experienced by £he stationary angle section (Figure
2-18). The pitching moment is about the c.g. axis. Two data
points are plotted for each coefficient to indicate the effect 6f
the measured phase difference at the midspan taps. Both calcu-

lations, however, take into account the 180° phase between the
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fluctuating pressures from the two sideé of the model. Since the
‘research programme was not aimed at studying the spanwise vari-
ations, this effect is not included ih.the above results. For
comparison, the distributions of thelstatic sectional coefficients
from Figure 2-13 are included.

Examination of the fluctuating forces and moment coeffic-

ients indicates that:

(1) Ci' is of the same order as Cl;
S

(ii) C3z,+ 1is approximately 1/10 of C

d;
S

(iii) C=, is about 1/2 of C_.
m m

The fluctuating aerodynamic coefficients show large variation
with model orientation reaching minimum values near a = 45° and
135°. This trend was also suggested by the fluctuating pressure
distributions. In general, the effect of the phase is to change
the above coefficients by less than *10%. Thus, accurate
determination of the phase angle along the sides of the model
contour is less significant in the final evaluation of the
coefficients. Study of the fluctuating pressure amplitude and
phase distributions at each angle of attack reveals that the
large phase differences occur over.;egions with near minimum CE.

values, thus contributing little to the final summation.

2.4.6 Wake Geometry
Using the techniques described in section 2.3.5, wake
geometry data was obtained for the 1 in. dynamic and 3 in.

pressure tap models. All tests were performed at N_ = 59,500

R
except for one additional examination of the lateral vortex
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‘spacing for the pressure tap'angle model at NR =.26,800 with
o = 135°. Within the range of Reynolds numbér investigated, no
significant change in wake geometry was observed.

Figure 2-19 shows the lateral variations of the fluctu-
ating pressure amplitude at‘various x~-stations for two typical
angles of attack. As expected, the fluctuating pressure distri-
butions are similar on both sides of the wake for symmetrically
oriented models. The waké centreline is then coincident with the
x-axis. However, for thevmodels at other angles of attack the
wake is unsymmetrical with the peaks of the pressure curves higher
on the side for which the point of separation is most rearward.
The experimental results by Fage and‘Johansen67 showed that
vorticity is shed from the upper and lower surfaces of an
asymmetric model at thevsame rate. Therefore, the presence of
the higher pressure peaks on one side of the wake may be explained
by the fact that the corresponding vortex travels relativély
shorter distance and hence suffers less dissipation and dispersion,

From lateral pressure distribution results, similar to
those in Figure 2-19, the decay of the peak pressure amplitude
in the downstream direction was obtained as shown in Figure 2-20.
The curves indicate an approximate inverse proporﬁionality
between pressure and downstream distance which agrees with the
analytical prediction given by Schaefer énd Eskinazi's68 vortex
street model. Experimental measurements with circular and elliptic
cylinders by Ferguson33 and Wiland,35 respectively, indicate
similar pressure decay curves.

Taking the peaks of the lateral pressure distributions as

the positions of the two vortex rows, Figure 2-21 shows the stream-
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Lateral variation of fluctuating pressure ampli-
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wise variation cf the wake data for both the 1 in. and 3 in.

angle models at various angles of attack. However, as pointed

out by Hooker69 the maximum velocity fluctuations and, therefore,
pressure fluctuations, do not occur along the path of the vortex
centres as some experimenters have asserted but rather develop in
the neighbourhood of the edge of the core farthest from the street
centreline. Hence, the actual éositions of the vortex centres

lie inward of the pressure boundaries by an amount eqgual to the
radius of the vortex cores. Using the mathematical model of an
isolated viscous vortex, Schaefer and Eskinazi were able to_arrive
at an expression for correcting the experimentel measurements.

For the angle models, this gives a correction which increases

with x from virtually zero at the model to less than 4% at a
distance of x/h = 10. It is apparent, however, that at large

x/h this correction is not adequate as it does not account for
turbulence or wake instability which may influence the expansion
of the vortex cores or the position of their centres. This
observation is in agreement with the experimental measurements70’7l
which show that the vortices do not flow downstream indefinitely
"in parallel rows but always move away from the centreline with
increasing x even when an intermediate sequence of vortices
have some uniformity of configuration.

From Figure 2-21, the distribution of the transverse
separation of the vortex rows is plotted in Figure 2-22 for the
1 in. and 3 in. models. The increase of the lateral spacing in
the downstream direction, tending to some uniform value, is in-

dicated. It is shown that the parameter b/h is also dependent

on model orientation.
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From the results, it is apparent that wind tunnel inter-
ference effects do exist, as indicated by the relative confine-
ment of the wake for the larger model. A discussion of wall
influence on wake geometry is presented in Appendix II.

Results on phase angle distribution in the wake for the
pressure tap model are presented in Figufe 2-23. The longitudinal
phase variation appears to become linear far downstream indicating
that the vortices have reached a unifofm streaming velocity and,
thereby, constant longitudinal spacing. The limited length of
the tunnel test section and clarity.of the fluéﬁuafing pressure
signals restricted the longitudinal measurements to x/h = 13.
Using the‘fact that a phase difference of 360° exists between the
vfluctuating pressure signals associated with consecutive vortices
in one row, the cdrresponding longitudinél spaéing WAS obtained
as shoyn in Pigure 2-24(a). The curves indicéte that the spacing
of the'vortices increases rapidly behind the body‘ahd approaches
a constant value at la;ge x/h. It is apparent that the parameter
a/h 1is also a function of angle of attack. The dimensionless
vortex velociﬁy curves shown in Figure 2-24(b) exhibit a similar
trend as the longitudinal spacing sihce the two variables are
directly related by the Strouhal number [equation(2.1)].

Combining Figures 2-22 and 2-24(a), distribution of the
classical wake geometry parameter, b/a, for both models at
various angles of attack, is summarized in Figure 2-25. With
increasing x, the general trend is for b/a to reach a,maximum
in the vicinity of x/h = 2.5 and then decrease quite rapidly

to attain some limiting value. According to Kérmén,6 b/a should
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Figure 2-23 Longitudinal variation of phase angle in wake of stationary
3 in. angle model
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be approximately equal to 0.36 behind the obstacle and then dimin-

ish with downstream distance to the classical.value of 0.281.
However, for some orientations of the angle model an increase in.
b/a with x was observed. Bénard5 as well has presented data
indicating a similar reversal of the trend.

The constant values of the wake geometry variables at large
distances downstream of the model, referred to as "near infinity,"
are plotted in Figure 2-26. The graphs clear}y.indicate the de-
pendenée of wake geometry on modél orientation. Two curves for
each of the lateral and longitudinal spacings are shown with either
the maximum or projected height of the model-aé the non—diﬁensional—
izing length. Note that the use of e does not significantly
reduce the variation of the wake parameter with angle of attack.

It is of interest to observe that the distribution of (b/a) _ is
in the vicinity of Karman's stability'Qalue of 0.281.

. Wake geometry data for an angle section have not been
reported in literature. However, numerous publications on wake
characteristics behind obstacles of simpler shape are available
and have been listed in Table 2-1. The results for the angle model
at o = -45° have reasonable similarity with the flat plate
characteristics, and the data at o = 135° compares with that
for a circular cylinder. Howevef, such similarity between the
bodies cannot be generalized due tovthe complex geometry of the
angle section. .

As a final summary of the experimental results for the
stationary angle section, a comparison of the Strouhal number,
wake geometry and drag coefficient variations with model orien-

tation are presented in Figure 2-27. It is interesting to note
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TABLE 2-1

Wake Geometry Parameters for Various Bodies

body investigator (a/e) (b/e) (b/a) _ (u/v) (Vv/V)m
circular Benard (E) 4.68-6.43 0.15-0.49
cylinder L average=0,32
Karman (E) 4.3 1.2 0.28 0.14
Fage and Johansen (E) 4.27 0.23 0.80
Rosenhead and Schwabe (E) *4.8 =1.6 =0,32" 0.225
Schaefer and Eskinazi (E) 1.3-1.8 0.24-0.28
Ferguson (E) 0.32 0.82
normal Karman (E) 5.50 1.7 0.31 0.20
- flat : )
plate Heisenberg (T) 5.45 1.54 0.283 0.229
Fage and Johansen (E) 5.25 0.77
angle present data (E) a = -459 5.58 1.77 0.32 0.77
section a = 1357 4.64 1.36 0.29 0.79
(E) experiment (T) theory

vo
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Figure 2-27 Comparison of Strouhal number, wake geometry and
drag coefficient for angle section
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the similarity of the distﬁibutions. All curves tend to peak
near o =.25°, diminish to almost constant levels between
a = 60° and 90°, and increase rapidly at o = 100° to attain
near uniform values over the remaining range. This suggests
significant relationship between the wake geometry and body
aerodynamic characterics. Introduction of the Universal Strouhal
Number, and representation of Strouhal number as a function of
drag coefficient by several investigators may be attributed to

similar observations of the wake-body interaction.

2.5 Concluding Remarks
Based on the experimental results the following general
remarks can be made concerning the aerodynamics of stationary

angle sections:

(i) The distributions of the steady lift, drag and pitching
| moment coefficients obtained from balance measurements
for the sharp-edged angle models and the commercial

- structural angles are in good agreement. Significant.
variations in the aerodynamic forces and moment with
model orientation suggest ﬁhe possibility of galloping
aeroelastic instability. The pressure ihtegrated, steady
aerodynamic coefficients compare well with the balance
results, thus indicating essentially two-dimensional
condition of the model and mean flow.

(ii) The sharp-edged and structural angle models exhibit

comparable Strouhal number distributions. The Strouhal



(iii)

(iv)
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number varies significantly with model orientation but
is essentially independent of Reynolds number over the
fange .104 to 15x104. Basing the Strouhal number on
projected model width reduces its dependency on angle
of attack only slightly. The nondimensional resonant
wind speed, beiﬁg inversely related to the Strouhal
number, is a function of‘model attitude having a minimum
near o = 30°,

The pressure fluctuations on the surface of the model
change with angle of attack but are independent of
Reynolds number over the range 26x103 to 63x103. in-
vestigated. The variatien of the pressure coefficient
around the contour of the section is significant with a
minimum value near the forward stagnation point and peak
level close to the points of seperation. The random
modulation of the fluctuating pressure signal can be as
large as 2.5 indicating substantial peak pressures.

The fluctuating pressure data confirms the familiar
180° phase difference between the two apparent sides
of the model contour. In addition, however, phase
differences as large as 50° to 100° may exist between
neighbouring taps on each side of the angle section.
Fortunately, the effect of these large phase angles on
the integrated unsteady force and moment coefficients is
less than 10%.
The spanwise distribution of the fluctuating pressure

coefficient is reasonably uniform over the length of



(v)

(vi)
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the model examined. However, variation in phase is
present which would affect the correlation of the
fluctuating forces along the model. This lack of two-
dimensionality will aid in reducing péssible vortex
induced vibrations. |
The lateral and longitudinal spacings, together with
the vortex velocity increase rapidly behind the body
and gradually attain constant values a£ é large distance
downstream (x/h>6). As expected, each parameter is a
function of the attitude of the angle section. quever,
it is independent of Reynolds number in the range
26x103 to 60x103 investigated.

The dependence of the 'near infinity' values of
the wake geometry parameters on the orientation of the
angle section is similar to that of the Strouhal number
and drag coefficient. Tﬁis variational similarity
substantiates the existence of a relationship between
the wake geometry and aerodynamic characteristics. The
wake survey results for the angle section mounted at
a = -45° and 135° are comparable to those for a normal
flat plate and a circular cylindef, respectively. The
distribution of the vortex spacing ratio around Karman's
stability value of 0.281 is of interest.
Any design criterion to minimize vortex induced vibra-
tions of angle section beams should consider the nature
of the forcing function, natural freguency and inherent
structural damping. From the stationary angle model

investigation of the Strouhal number and aerodynamic
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characteristiés, it is possible to éuggeét guide lines
for the first two considerations. Any orientations in
the ranges =-45° < a < 10° and 50° < o < 100° should
be avoided since the magnitude of the unsteady forces
(c

C are near maximum. On the other hand,

10 C3:r SR
s S s
the resonant wind speed curve indicates that angles of
attack near 30° should not be used in order to avoid the
onset of vortex vibrations. Hence, the use of angle beams
in open engineering structures should involve sufficien£
damping or high natural frequency to prevent possible
structural failure due fo vortex resonance.

Moreover, the'angle section as a bluff cylinder may
experience oscillations of a galloping nature. This is
indicated by the distributions of the steady lift, drag
and pitching moment which exhibit large variations over
the complete range of model orientation. 1In the follow-
ing chapter the quasi-steady theory incorporating the

steady aerodynamic data is employed to predict the occur-

rence of the galloping instability.



3. DYNAMICS OF AN ANGLE SECTION

3.1 Preliminary Remarks

As indicated in the introduction, bluff cylinders are
susceptible to two distinct forms of'instébility, vortex
resonance and galloping, with the vibratian‘occurring, pre-
dominately, in one degree of freedom. The é*tent of the coupling
depends on the relative position of elaétic and inertial axes.
Therefore, to study the dynamics and associated aerodynamics of
an angle section, the wind tunnel models were mounted on a support
system providing plunging and/or»tbrsional dégree(s\ of freedom.
Of particular interest were the wind speed and angle of attack
ranges conducive to model vibration, and the effect of the res-
onant motion on the important aerodynamic:and wake parameters.
In addition, it was desirable to introduce certain appropriate
analyfical models to predict the dynamics of the system.

Experimentally, the frequency of the;coupled motion,
and the types and ranges of instabilities were found to be
similar to those in the single degree of freedom. Furthermore,
the phase phenomenon between the plunging ahd torsional modes
confirmed the concept of two distinct families of coupled
vibrations, one predominantly plunging and the pther torsion,
as reported by‘Koskol and Wardlaw.2 Therefore, it was possible
to obtain pertinent information about critical orientations,
wind speeds and the characteristic features of the instabilities
by studying, both experimentally and theoretically, the plung-

ing and torsional degrees of freedom, separatély.
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In general, the instability may be a combined effect of
both vortex resonance and Qalloping excitation. This situation
was observed for the plunging degree of freedom at several
orientations and damping levels. A judicious choice of damping
or model size was required in such instances to isolate the two
phenomena, thus permitting separate-study of each form of
instability. Based on this consideration, the experimental inves-
tigation was divided into two portions; vortex resonance, and
galloping oscillations. Howevef, for the forsional degree of
freedom, no galloping was observed over the wide ranges of wind
speed and model orientation investigated; thus suggesting that
a structural angle section is not likely to éxhibit this form
of instability in torsion unless very low damping or relatively
high wind speed is encountered. This observation is substan-
tiated by a theoretical analysis based:on the nonlinear, quasi-
steady approach. Of greater importance is the violent, vortex
resonant type of instability which was observéd'and'investigated
with the angle models at various damping levels and model
orientations.

Since quasi-steady galloping theory for the plunging
-case17 is well established, more attention is directed towérds
the development of an analogous theory for the torsional mode.
The problem is somewhat complicated due to the fact that the non-
linear forcing function (moment) depends on the instantaneous

14 and Ii,19

angular position as well as the velocity. Sisto
analyzing the problem of stall-flutter, eliminated this compli-

cation by assuming a mean moment distribution as a function of
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the instantaneous angle of attack « thchhin-turn was chosen
to satisfy the downwash at the;three—quarter:chord point. This
empirical approach parallels the classical flutte:'theory. How-
ever, since the flow fields during‘stall and élassical flutter
are quite different, there is some“doﬁbt as po.the significance
of the three-quarter chord poiht'inistall flutter analysis. A
modified theory for the galloping instability of bluff cylinders
is presented. | | :

This chapter outlines the important aspects of the vortex
resonant and quasi-steady galloping theorigs‘with application to
the specific configuration under»investigatioh. vA description
of the additional instrumentation and éxpeéimentai pfocedure
is presented, followed by a comparison andgdiSCussion of the
analytical and experimental resulﬁs,- A cénéluding section
summarizes the useful information conééinihg'éhgiéf séctions

under dynamical condition.

3.2 Experimental Arrangement
3.2.1 Model Mounting System

The investigations into the dynamic instability of an
angle section were conducted by mounting the angle models, pre-
viously described, on a suitably designed support system shown
schematically in Figure 3-1l. The mounting arrangement providing
plunging.and torsional degrees of freedom was essentially
composed of a lateral air bearing system49 and cross—spring
pivots. The system of journal air-bearings located on a frame

encircling the tunnel test section gave the model a plunging

degree of freedom normal to the wind direction. The crossed
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beam pivot units, providing rotational stiffness for the tor-
sionallmodegﬁwere fixed toAthe laterallalr hearing shafts by
sultable brackets and held transversely by the lateral coil
sprlngs to make the two vibrational systems 1ndependent The

model was fas‘”:

ed to the free ends of the ‘pivot units by two
L~ shaped flnkﬁrs, Lateral and angular dlsplacements of the
model were”detected by alr core transformer and strain-gauge
brldge'transducers, respectlvely. Varlable damplng was intro-
duced 1ndependently into each degree of freedom system through
»electromagnetlc eddy current dampers.x To permit 1nvest1gatlon
of the: model dynamlcs in the 1nd1v1dual degrees of freedom,
clamps were prov1ded to ellmlnate the unwanted mode. Details of
the lateral air bearing system and auxiliary instrumentation
des1gned by>Sm1th have been reported 1n the literature. 49,50
:However,.51nce the cross- sprlng prOt unlts were designed
particularly for the present research programme a brief summary
of'the pertinent constructional details is provided.

Ba51cally, the pivots consist of two pairs of uniform,
crossed thln-metal strlps rlgldly flxed at their ends to the two
.parts between whlch relatlve angular movement is required. It
is 51gn1f1cant that this device 1ntroduces ‘a minimum of inherent
damplng,'and for small movement (<15°), the axis of rotation
remains.essentially stationary at the intersection of the unde-
flected crossed strips.72 Theoretical investigations in the

design of cross—spring pivots have been presented by Eastman,73

. . .7 ‘ 77
Haringx,?4 Wittrick >:76 and others. Young conducted an

experimental investigation and arrived at several empirical
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relationships for the design characteristics. Based on the

theoretical development by Wittrick76

and the experimental
information given by Young, a workable assembly was arrived at
for supporting the angle models with a torsional degree of free-
dom. The two beams, connected to suitable end brackéts, crossed
orthogonally at 87.3% (i;e., 1/2(1+/5/3)) of the distance from
the moving end. This cross over position.was selected because
6f its superior performance characteristics as pointed out by
Wittrick. The thin metal beams, made from blﬁe tempered spring
steel, have a free working length of 2.80 in. The particular
cross-sectional dimensions, 0.030x0.500 in., were selected.from
consideration of rigidity‘and stiffness. A counter weight
(Figure 3-1(b)) was added to produce a pivot assembly for which

the overall centre of gravity of the oscillating components of

the pivot coincided with the inertial axis of the model.

3.2.2 Instrumentation and Test Procedures

The lateral and angular displacements of the angle models
were recorded using the instrumentation layout shown in
Figure 3-2. The top air bearing shaft was of sufficient length

49 With a

to project into the lateral displécement transducer.
10 kc sinusoidal signal, the interference of the aluminum shaft
with the magnetic coupling between the co—axiél cylindrical
coils.gave rise to an amplitude modulated output proportional
to the model displacement. A full wave rectifier and RC filter
circuit was used for demodulating the high-frequency carrier.

The torsional displacement of the oscillating model was measured

using a strain-gauge type of transducer incorporated in the



Moving

end

Lateral

displacement

transducer —

Crossed spring beams -

Strain

gauges

Shaft

Function

generator

—

Rectifier

Filter

Oscilloscope

Bridge |
Amp|ifier hagl
Meter
R-C RMS o=
VIVM e dom_;:ing ] voltmeter
uni

Visicorder

C—

Figure 3-2

Instrumentation layout for plunging and torsional

displacement measurements

76



77
lower cross-spring pivot unit. Metallic foil strain gauges,
bonded to the beams and connected to form a 4-arm Wheatstone
bridge circuit in conjunction with an Ellis Bridge-Amplifier-
Meter, produced an electrical signal corresponding to the
angular displacement. The model displacement signals were
recorded either on a storage oscilloscope or Visicorder. When
amplitude modulation of the response signals occurred, maximum
and minimum as well as mean (using the rms voltmeter circuit)
displacements were recorded.

Controlled damping, in addition to that inherent with
the individual oscillating support systems, was introduced by
means of electromagnetic dampers, which dissipated energy
through eddy currents. The amount of magnetic damping was pro-
portional to the input d.c. current. For the lateral sYstem,
the dampers designed by Smith49 were employed witﬁ the aluminum
mounting shafts being used as the dissipative medium. Analogous,
horseshoe shaped dampers with thin copper strips intersecting
the magnetic field in the gaps were constructed for the torsional
assembly. A variable a.c. current source was incorporated in
each damper arrangement to erase the undesirable residual magnet-
ism induced in the iron cores of the electromagnets. Using the
standard technique of logarithmic decrement, the electromagnetic
dampers were calibrated over a range of d.c. current using suit-
able streamlined modelsSO in place of the angle section. The
viscous nature of the magnetic damping was indicated by the
linearity of the logarithmic decrement curves from which the

values of the damping coefficients were determined. To introduce
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further damping during the to;sion experiments, the horseshoe
electromagnets were replaced by permanent magnets (Cinaudagraéh
Corp., TYpe 6.30540) with approximate field strength of 5225
~Gauss each. The magnitude of the damping was varied by placing
aluminum strips of various ﬁhicknesses into the gap between the
poles.

From the Strouhal number data given in Figure 2-11 and
using equation (2.1), the approximate wind speeds for vortex
resonance of the 1 in. and 3 in. angle models were calculated.
The model orientatioh, system natural frequency‘and model size
were the parameters affecting the resonant velécities. Exten-
sive plunging and torsional amplitude measurements weré conducted
around the fundamental resonant conditions with increasing and
decreasing wind speeds for various model attitudes ahd damping
levels. No detectable sub- or higher- harmonic resonance was
obserﬁed during any of the amplitude tests.

The wake and aerodynamic characteristics associated with
an angle section experiencing vortex excited motion were obtained
using the procedure described in Chapter é (section 2.3). A
combinétion of the instrument layouts shown in Figures 2-4 and
3-2 was used for measuring the frequencies of vortex shédding and
éylindéf oscillation. Corresponding phase data between the
pressure and displacement signals was obtained over the wind
speed ranges for which the cylinder and vortex shedding frequencies
coincided. The signals were averaged on Visicorder charts. Inves-
tigations of the wake géometry, as well as the amplitude and
phase of the fluctuating surface pressures for the oscillating

model were conducted at wind speeds corresponding to peak reson-
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ance. Due to the dynamical condition of the angle section, the

vortex velocity was calculated using the modified formula

\c {v//gn 3.1
vzl S o

The final results were compared with the corresponding values
for the stationary model.

For the galloping instability, investigation of the model
dynamics at various angles of attack and damping levels was con-
ducted over the wind speed range 0f70 ft/sec. if oscillations
occurred( further intensive study was conducted for increasihg
and decreasing wind speeds with the model starting from rest or
from the existing displacement. Depending oh the oscillator
characteristics at some orientations, the model required an
initial displacement to start oscillating after which it would
attain a largei, stable amplitude. The time teken for galloping
oscillations to build-up from a predetermined initial displacement
to 95% of the final stable amplitude was obtained by displaying
the signal on a storage oscilloscope. This gave an indication
of the severity of the instability.

3.3 Response of an Angle Section with Comblned Plunging
and Torsional Degrees of Freedom

The model amplitude data (Figure 3-3) was obtained for
the 3 in. dynamic angle model mounted at o, = -45° and with
the axis of rotation of the torsional system coinciding with
shear centre of the angle section. The plunging and torsional

spring stiffnesses were selected to provide a frequency ratio
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representative of typical structural angle beams, (mne/mny = 2,92),
Two damping levels for the plunging system were considered so
as to initiate lateral galloping oscillations ét wind speeds
below and above the torsional resonant condition. This permitted
a study of the galloping motion effécts on the torsional reson-
ance. The maximum damping obtainab;e with the torsional elec-
tromagnetic dampers was not sufficient to restrict the violenf,
torsional vortex resonance to the limit of the supporting system
(dotted lineat € = 0.14 in Figure 3-3-ii). Both the induced
and natural frequency displacement components fbr the plunging
and torsional oscillations are plotted. The presence of ampli-
tude modulation, exhibited at particular wind speeds, is indicated
by the maximum, mean and minimum displacement values.

It is of interest to note that thé response of the angle
sect;on‘over discrete wind speed ranges can be.Categorized by the
type of instability and predominant degree of”fréedom as follows:

(i) vortex excited plunging;

(ii) galloping induced plunging;:

(iii) vortex excited torsion.

No occurrence of natural galloping insﬁability in the torsional
mode of vibration was observed over the_wind speed range investi-
gated. The separation of the pluhging and torsional resonant
conditions,a result of the difference in the natural frequency
values, is similar to the vibrational characteristics of contin-
uous angle beams2 except in that case many discrete ranges of
wind speed may be obtained because of the infinite number of

principal frequencies. To better understand the nature of the
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instability of the rigid angle section, the amplitudes in the
individual modes of vibration were measured. The tests were per-
formed by clamping the torsional and lateral systems consecutive-
ly, thus obtaining plunging and torsional amélitude data as shown
in Figures 3-4 and 3-5. The lateral and torsional damping levels
were identical to the values used for the two degree of freedom
investigation. |

The results indicate that, although the elastic and
inertial axes for the section do not coincide, the coupled motion
is at the natural frequencies fny and fne of'thé single degrees
of freedom. This is due to the fact that the ratio mcz/fo is
comparatively small for an angle section, thus reducing the coup--
ling effect.

Comparison of the response data réveals that the coupled
system exhibits plunging motion which is almost identical to
that for the single degree of freedom. On the other hand, the
torsional amplitude depends on the relative position of the
plunging galloping instability. For the higher damping level
(Figure 3-3-ii), the torsional resonant displacements are similar
to those in Figure 3-5, characterized by a sharp peak and signif-
icant amplitude modulation. However, at the lower damping
(Figure 3-3-i), the torsional results do not fesemble the normal
resonant curve due to the presence of the plunging, galloping
motion. The resonant peak is substantially reduced in magnitude
and the modulation characteristic is virtually non-existent.

The induced ® curves near Uy = 1 are a result of the lateral

resonant condition. For higher wind speeds, the lateral gallop-
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ing instability produces a torsional motion of frequency fny
which increases in magnitude proportional to the plunging
displacement. However, for the lower damping case, the induced
amplitude is controlled by the natural torsional frequency until-
the range of vortex resonance is exceeded. Unfortunately, the
plunging oscillation rose to the maximum allowable displacement
- of the air-bearing support system during the range of torsional
resonance. Therefore, the torsional curves for Uy > 2.5 repre-
sent ‘only the anticipated values for unrestricted galloping mode.
Similar induced plunging motion of frequency fne is observed at
the higher damping level during the tofsional resonance.

A comment concernihg the phase of the coupled motion is
appropriate here. It was observed that the lateral and torsional
displacements of thé same frequency were in phase for the plung-
ing resonant and galloping oscillations, while at torsional res-
onancé the modes were 180° out of phase. This suggests the presence
of virtual centres of rotation, denoted as hinge points. For the
former case, the results in Figure 3-3-i indicate that the virtual
centre of rotation is located far downstream at approximately
x/h = 30. On the other hand, the latter case (Figure 3-3-ii)
corresponds to a hinge point located just forward of the inertial
axis. Thereby, depending on the predominant mode, the coupled
oscillations can be considered as rotational motion about two
different centres. The first corresponds to essentially plung-
ing motion, while the other represents torsion. Thus, the present
measurements confirm the existence‘of the two families of virtual

hinge points predicted by Koskol and observed by Wardlaw2 for an
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angle section beam. Garland78

has presented similar theoretical
and experimental results for a cantiiever, extended-channel
beam.

It is of interest to note, that the experimental results
reported by Wardlaw on the dynamics of an angle beam are com-
patible, in general, with the trends obtained from the present
investigations. The resonant vibrations can be predicted from
the Strouhal data, with only a few exceptions. In addition,
Wardlaw's measurements reveal that the oscillations at many
angles of attack are predominantly resonant in ﬁature rather than
galloping. Nevertheless, at certain orientations, the oscilla-
tions over discrete wind velocity ranges appeared to exhibit
galloping characteristics.

In summary, the response of an angle section with combined
plunging and torsion indicates that the oscillations occur essen-
tially in one of the two degrees of freedom. 'The measurements
of frequency and phase further substaﬁtiate this observation.
Thereby, the type of instability, relative amplitude and the
corresponding critical wind speed can be determined by studying
the system dynamics in the individual degrees of freedom. 1In
what follows, this approach is adopted to understand the nature

of the vortex resonant and galloping instabilities.

3.4 Theoretical Development

Derivation of the governing plunging and torsional
equations of motion and their solutions are given in Appendix IV
with- a summary of the basic relations provided here. Assuming

linear spring and viscous damping and expressing the applied
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aerodynamic -force Fy or moment Me in coefficient form, the

equations of motion can be written as.

2 | o
LeV thFy(y,q_,t) - 3.2)

my +r‘§: +kyg=_

16 +ré + kO = %ev’h‘lcme(e,é,-t) (3.3)

Evaluation of these equations during particular types of aero-

dynamic excitations forms the subject of this analysis.

3.4.1 Vortex Resonance

Since the plunging and torsional equations are similar
in form, only the plunging analysis is preéented. Assuming a
sinusoidal forcing function, equation (3.2), in nondimensional

form, becomes

2\, ’ v ER LT .
..Q.VY + 2ﬂyﬂvY + Y = nyU T SinT, (3.4)
giving the steady-state solution as
2
n, G U (3.5)
Ji-02)+ (28,02 ) '

Evaluation of (3.5) gives the familiar resonance curves with

Y =

damping coefficient as the distribution paraméter. For the peak

amplitude (QV = 1.0), equation (3.5) reduces to

7 n 2 :
-— '
Yooy = 3 pr C’Q. Ures (3.6)
79

Parkinson et al considered a sllghtly different approach

to obtain a solution of the form
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Y., = —9 == (Cssin (3.7)
o = ) 3, T e

which incorporates the experimentally observed vortex shedding

phenomenon through the variables.$, ‘and w_ /u,
: Y

3.4.2 Galloping'Instabilityi

Uéing the quasi-steady approach,l7'which assumes no aero-
dynamic hysteresis effects in the force and momént characteris-
tics and the Vor£ex Sheddiné‘freqUéncy to:Be far removed from
the cylinder values, the governing differéntial eqﬁations of

motion (3.2) and (3.3) can be put.in the nondimensional form

Y + Y
@*@

a0 e

Féfe(@,@_) (3.9)

where the variables and Mg are modified mass and moment of

by
inertia parameters, respectively. The function fy(i), incorpor—
ating the aerodynamic and viscous fo:ces} is represehted as a
polynomial in § using the steady lift and arag réSults. Simi-
larly, fe (e, é) is a polynomial related to ?he'steady pitching
moment with an assumption that the contourlines of CM6 (e, é)
are linear and parallel. For a.system in ai;, both My and Ko

<< 1 making equations (3.8) and (3.9) amenable to quasi-linear

solution techniques.
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3.4.2.1 Singularities and’Stability in the Small
Analytically, the condition of stability of the motion in
‘the smallvcan be determined80 Ly invéstigating the singuiaritieSv
in the phase plane. For the plunging system, equation (3.8) can

be reduced to

Y =Z
2 = =Y+ puf(Z)

(3.10)

y4
giving

dz _ -Y + myh(2)

dY z

It is apparent that the only singularity for the system is located

(3.11)

at the origin of the phase plane. Similarly, the torsional

equation (3.9) becomes

® = ¥

X=-0 + pmif(0,x)

(3.12)

giving

dX _ -0 + Me%(®,X)
4@ X

(3.13)

The singularities of (3.13) are located on the © axis at the

points given by the roots of the polynomial eguation

> | 2 3 -
On,U [.(a‘c+r-‘;o,) +0C*0-a,C8%. ... 0'a @ '}=0 (3.14)

Again the origin represents one of the singularities. The remain-
ing roots of the equation, being relatively large, do not affect
the condition of stability unless the torsional disturbances

are severe.



91
The nature of the singular points and the phase trajec-
tories in their vicinity can be studied through a linear analysis

of the system using the characteristic roots

(?\,),,z = tzfv(U-U,) t/[/;s(u-u,)]’ - 1 (3.15)

for the plunging system (3.9), and

(A), , = ;»(Us-u,u/[;e(u.e.-u,)]’ -(1epU%)  (3.16)

for the torsional relation (3.11).

Since “y and Mg << 1, the roots are complex conjugates indicating
the singularity at the origin to be either a centre or a focus
depending on the magnitude of the real part. For the particular
case when U = U, or U,/s, the singular point is a centre. These
critical values represent the initial wind velocities for the
.onset of the instability. All other values of U give rise to

a focus, whose stability, based on the sign of the real part, is

determined by the criterion

U< Uo stable
plunging: (3.17)
U»> Uo unstable
U« Uo/S stable :
torsion: ’ (3.18)
Uu>» LL/S unstable

These conditions are based on the assumption that U, and
U,/s are positive. However, it is possible for them to be
negative as governed by the sign of the coefficient aj » which.
designates the slope of the aerodynamic force or moment curve at

the origin, and on the sign of the torsional parameter s. The
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system is called a "soft" oscillator if a; or a;-s is positive
because for sufficiently large value of U’(gfeater than the
critical velocity), the model will oscillate from rest in pre-
sence of an arbitrarily small disturbance. On the other hand,
when it is negative, the system is denoted as a "hard" oscillator
since no vibration will commence from rest. However, sustained
oscillation may occur {f an initial disturbance exceeding some
required minimum value is provided. This criterion is analogous
to the concept of negative and positive aerodynamic damping used
by many investigators. |

Thus, from the stability analysis in the small, pertinent
information about the critical angles of attack and wind speeds
can be obtained by examining the statiohary aerodynamic force and
moment distributions given in Chapter 2, Figure 2-8. For the
angle section in plunging, stability can be studied using Den
Hartoé's9 criterion

>0 stable

d_C_:L + C (3.19)

D
d O unstable

which incorporates the steady lift and drag coefficients. It is
apparent that, if the lift curve has sufficiently large negative
slope, the angle section may be self-excited.  For the torsional
motion, such a simple relation is not available, hence direct
study of the system parametersJis required. In the range

-45° < 0o< 45°, s is positive but becomes negative for «a, > 45°.

Therefore, the sign of a;-s depends on ay. As CM is proportional

6

to -C the system will behave as a soft oscillator in the range

MI

-45° < aoi'45° if the slope of C, plot is negative. Likewise, for
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a,> 45°, an angle section is a soft oscillator if the slope of
the moment curve is positive. Thus, as illustrated in Figure
2-8(c), a structural angle member may oscillate from rest in a

torsional mode for -45° < a, < 10° and 40° < a, < 60°.

3.4.2.2 Limit Cycles and Build-up Time
The galloping motion and its stability in the large can
be studied using the method of Variation of Parameters. For the
plunging system, the solution can be written as
Y = -Y4,Y)
=0

where 6y(Y) is a polynomial related to fy(Y). For the torsional

mode, however, g does not reduce to zero as in the plunging

(3.20)

case but becomes a function of ® and U giving the solution as

® = -64(8)
1+ @=1-K

(3.21)
e

where 66(5) and K, are polynomials related to fe(®,®). The term
(l—Ke) represents a reduced frequency parameter.

The amplitude of the sustained motion is evaluated by

setting ¥ = & = 0, and obtaining the real positive roots, Yj or

5j , of the algebfaic equations
Jy(?) =0 (3.22)

The nature of the response is determined by Lyapunov's Stability

criterion
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. 3? <0 stable
plunging: 36 - (3.24)
Y = YJ > 0 unstable
Y] { <o stable
torsion: 51: _ (3.25)
© ®=@J >0 unstable
or, in the light of (3.20) and (3.21)
_ Y > 0 stable
plunging: S:? - ‘ (3.26)
YIV= Yj <0 unstable
Y > O stable
torsion: —:P (3.27)
.19 @=@j <0 unstable '

The time of amplitude build-up is readily obtained from (3.20)

and (3.21) by evaluating the integrals

A
Y; Y '
J dw' (3.28)

plunging: T = =
-, oY)

torsion: T

O; 5 ‘
f ;__d9 (3.29)
5 64(8) -

where Y., 6, represent small initial displacements and Qj’ 0,
are some prescribed fractions (say 95%) of the ?j' 6j values,

respectively.

3.5 Results and Discussion
3.5.1 Vortex Resonance
3.5.1.1 Model Amplitude - Velocity Measurements
Shown in Figure 3-6 are typical lateral and torsional
displacement signals obtained for wind speeds corresponding to

peak vortex resonance. The signals indicate the sinusoidal wave-



Figure 3-6

Typical displacement signals for angle model experiencing vortex
excited plunging or torsional motion

S6
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form and constant frequency of the displacements. The plunging
steady-state amplitude is uniform at peak resonance with some
slight variations occurring only at wind speeds above and below
resonance. On the other hand, the torsional motion exhibits
substantial random, amplitude modulation (Figure 3-6(f)), which
may attain a definite frequency at other wind speeds as illus-
trated in Figure 3-7(a) and (b). When further above the reso-
nant wind velocity (Figure 3-7(c)), the torsional displacement
again shows considerable random modulation. Thus, in presenting
results for the torsional mode, it is important to record the
maximum as well as the mean amplitudes of oscillation, sinée the
peak displacement may be many times the average level.

Vortex resonance amplitude results for the 1 in. and 3
in. angle models at various orientations, damping levels and
suppqrt conditions are summarized in Figures 3-8 through 3-11. -
The hbrizontal dotted lines at ¥ = 0.70 and & = 0.14 indicate
the limits of the mounting systems. Figure 3-8 illustrates the
plunging amplitude-velocity results at the symmetrical angle of
attack of -45°, The plots indicate the presence of combined
vortex resonance and galloping excitation, and the effect of
damping on the two tYpes of instability. An increase in damp-
ing or decrease in model size (i.e., mass parameter) effect-
ively shifts the entire galloping curve to the right on
the velocity axis together with a reduction in vortex resohant
amplitude. For the lower damping levels, the amplitude became
very large exceeding the limiting displacement attainable with

the lateral system. Of course, the angle section exhibits
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Figure 3-7 Typical torsional displacement signals for

angle

model experiencing vortex excited motion at

various wind speeds near resonance
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Figure 3-9
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vortex resonance at other Qrientations as well (Figure 3-9)
5ut the results show the peak displacements in these cases may
be small even at low damping. Being directly related to the
forcing function, the peak amplitudes vary with attitude in a
manner similar to the unsteady aerodynamic characteristics for
the stationary model (Figure 2-18(a)).

Besides the modulation characteristic, the torsional
amplitude-velocity results in Figures 3-10 and 3-11 indicate the
severity of the resonant condition at a, = ;45° with the pres-
ence of a significantly sharp peak even at moderate damping levels.
Furthermore, the displacement curves may be spread over a rela-
tively large velocity range as compared to the plunging case,
suggesting a possibility for the torsional resonance to be
critical. . From the data given in Figure 3-10, it is apparent
that the tofsional displacement decreases with increaéed damping,
which’is typical of a resonant condition. Transfer of the axis
of rotation from the shear center (Figure 3-10) to the centre of
gravity (Figure 3-11(a)) has considerable influence on the dynam-
ics of the system. The substantial decrease in amplitude is a
direct consequence of a reduction in the fluctuating moment
coefficient accompanying such a transfer. The occurrence of the
small amplitude oscillations at a, = 135° (Figure 3-11(b)) is
associated with a similar variation of the unsteady forcing
function with angle of attack as observed during the stationary
model measurements (Figure 2-18(c)).

The influence of the mass and damping parameters on the
vortex resonance can be summarized in the form of a stability

diagram.22 Pigures 3-12 and 3-13 illustrate such plots for the
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3 in.angle seétion at a, = -45° for the plunging and torsional
degrees of freedom, respectively. The graphs show the variation
of the peék amplitudé and corresponding windbspeed, as well as
the upper and lower velocity bounds for some limiting, permis-
sible displacement. Reduction of the instability domain with
increasing damping or decreasing mass parameter is apparent. As
the mass parameter is directly proportioﬁal to the model size,

a smaller angle section will effectively reduce the resonant
vibrations. The dotted portions of the curves in Figure 3-13

2

extended to ZBe/neUres = 20 were obtained by projecting the mean

peak displacement to © 0.0045 representing the value for which
the velocity bounds were determined. Fﬁrthermore, the upper and

lower limits should meet at the resonant peak velocity. Hence,

2

res 20, torsional resonance will be

for values of ZBB/nGU
virtqally non-existent. It should be noted, however, that a sub-
stantial amount of dampiﬂg is required to reach this condition.
For the given‘set of data, a Bevalue greater than 8% of the
critical damping was necessary with an inertia parameter of 0.01
which is representative of 3 in. stfuctural aluminum angles. Thus,
the investigation éuggests that the torsional mode is likely to
be critical and may lead to failure of the structure.
3.5.1.2 Surfaee Pressure and Wake Characteristics

Associated with Oscillating Angle Model

To understand.the influence of the resonant motion on
the fundamental parameters, such as the shedding properties of

the vortices, resulting unsteady surface pressures and wake

geometry, measurements were conducted with the pressure tap
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angle model%at a, = —45° oVer the wind speed range conducive to
this form o% instability.

Figures 3-14 and 3-15 present these results for the
plunging and torsional degrees of freedom, respectively. For the
plunging case, the graph illustrates the phenomenon of vortex
capture where the frequency of the shedding vortices is controlled
by the cylinder oscillations over a finite range of wind velocity
around the resonant value. Above and below this capture region
the vortex frequency tends to follow the Strouhal value obtained
from stationary model tests. The cylinder freqﬁency generally
remains close to the natural frequency of the undamped system.
For the torsional mode, however, the vortex formation dominates
the cylinder frequency over a large velocity range with the
frequencies closely fellowing the Strouhal curve. This tor-
sionql phenomenon, in contrast to vortex capture, is denoted as
vortek control. However, for U/Ures > 1.2, there‘develops a
division of the cylinder frequency into two branches each having
distinctly different periods of oscillation. Branch 1, following
the vortex shedding frequency, corresponds to small amplitude
displacements occurring during motion build-up or decay. For
the large amplitudes, the frequency of.os¢illations approaches
the torsional natural frequency, fne, thﬁs momentarily destroy-
ing the phenomenon of vortex control. It appears that vortex
shedding initiates the torsional vibrations which build up with
the input of energy, but larger amplitudes cause loss of vortex
control leading finally to the diminishing of the oscillations.

This explains the highly modulated displacement signals obtained
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for wind speeds well above'_Ures as shown by the sample trace in
Figure 3-7(c). The distribution of the phase lag between the
motion and the forcing function varying from nearly in-phase
at the beginning of resonance and approaching 180° when above
Ures’ is typical of a linear, damped, oscillator experiencing
forced harmonic vibration. The control of the torsional cylinder
frequency by the vortex excitation is consistent with the math-
ematical model, but the theory fails to predict the plunging
vortex capture phenomenon.

The effect of model dynamics on the fluétuating surface
pressures was studied at the wind velocity corresponding to
peak amplitude for the angle section at a, = -45°. Figure 3-16
summarizes the midspan and spanwise distributions of the mean
fluctuating pressure amplitude, modulation ratio and phase
varia;ions: and include, for comparison, the stationary model
resulfs. In both, the plunging and torsional degrees of freedom,
the pressure coefficient is comparatively larger over the entire
surface of the model. For the plunging case, the modulation
ratio and phase variation are considerably less; while for the
torsional mode, the results show only slight reduction. The span-
wise variations of phase and amplitude are still present and have
treads similar to the stationary model curves.

A final summary showing the influence of vortex resonance
on the magnitude of the unsteady aerodynamic coefficients is
given in Figure 3-17. For the torsional case, the unsteady 1lift
and moment at the centre of gravity decrease from the large
plunging values to almost the stationary model results. On the

other hand, the fluctuating moment about the shear centre shows
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a substantial increase. This variation of pitching moment with
axis position substantiates the observed difference in the peak
amplitudes reported in Figures 3-10(a) and 3-11(a). At a, = -45°, the
fundamental component of the fluctuating drag coefficient is zero
for all cases. The effect of the midspan pressure phase on the
aerodynamic coefficients compares with the 10% difference obtained
for the stationary model (Figure 2-18). ‘

Investigation of thé wake geometry during peak plunging
and torsional resonant conditions was performed using the pres-
sure tap model oriented at a, = -45°. The fluctuating pressure
distributions in the lateral and longitudinal directions (Figure
3-18) are similar in form to the stationary model measurements
presented in Chapter 2. As a result, the plots of vortex veloc-
ity, and wake geometry with downstream coordinate (Figure 3-19)
also show comparable trends although the limiting values may be
different in magnitude. A summary of the 'near infinity' values
for the angle section during static and dynamic conditions is
shown in Figure 3-20. For the oscillating model, the longitud—
inal spacing and vortex velocity remain essentially unchanged.
On the other hand, it is apparent that the lateral spacing. of
the vortex rows experiences substantial increase during plunging
resonance. There is a simultaneous increase in the spacing
ratio as well. Nevertheless, an interesting feature becomes
apparent if the plunging displacement is used in conjunction
with the model frontal width when nondimensionalizing the row
spacing. By taking the effective blockage to equal (2y + h),
the lateral spacing paremeter reduces to almost thelssme value

as the stationary or torsional model result, thus suggesting
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that the increase in wake width is effectively caused by the
amplitude of the plunging éscillations.

Iﬁ summary, the wake survey and'vértex shedding frequency
investigations indicate that the torsional motion of the angle
sectiqn has virtually no effect on the vortex shedding frequency
and wake characteristics. This is in contrast to the pronounced
enlargement of the wake width and vortex capture phenomenon
which occurs with the plunging resonant motion. It shoﬁld be
noted that these limited results fof the fluctuating pressure
and wake geometry may not be entirély representétive of what may

occur at other wind speeds and damping conditions. Ferguson,33

Feng47 and Parkinson, et al,74 dqring tests on circular and D-
section cylinders, observed decrease of the pressure and wake
parameters near the resonant péak. The paraheters also depended
on the magnitude of the oscillation$ contro11ed by the damping
1evei. Similar behaviour is anticipated for the angle section

where, like the D-section, separation is controlled by the edge

geometry.

3.5.1.3 Resonant Theory Predictions

The applicability of the analytical models can be tésted
by comparing the theoretically predicted and experimentally
measured values. However, it may be pointed éut that since
experimental data is incorporated in the theoretical calculations,
the final validity of the analytical solutions rests partially
on the accuracy of the experimental results. For example,
consider the plunging motion of the angle section mounted at

6, = —45° (Figures 3-14 and 3-17). Here By = ($.00414. ny = 0,00505,
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fo /fny = 1.00, Uy/U, ur

Cy+ = 1.057. Therefore, from equations (3.6) and (3.7), Y___

= 0.983, U = 0.986, = 67°, and
Yres

es
= 0.63 and 0.55, respectively. Comparison with the experimental 
value of §ﬁax = 0.39 indicates a closer agreement with the
analytical solution developed by Parkinson, et al, since the vor-
tex capture effects are incorporated. Note, however, the theor-
etical predictions are larger than the observed amplitude suggest-
ing the influence of additional factors not included in the
analytical considerations. It is anticipated that wind tunnel
wall interference is one source of discrepancy, since the dis-
cussion in Appendix II indicates an increase in the uﬁsteady force
‘'with flow confinement. Lack of spanwise correlation of the un-
steady aerodynamics will also contribute to reduction in the ex-
perimental amplitude.

For ﬁhe torsional mode, consider the data given in

Figures 3-15-ii and 3-17. Here B8, = 0.0235, n_ = 0.01013,

8

fce/fne = 1.01, Ue/Ures = 0.980, Ures = 0.986, éAF

Cor = 0.213. Therefore, from equations analogous to (3.6) and

8
= 66° and

(3.7), the peak displacements are & = 0.045 and 0.039, respec-
tively. Good agreement with the experimental value of 0.041

substantiates the analyses.

3.5.2 Galloping Motion

3.5.2.1 Theoretical Predictions for Plunging Degree of
Freedom

The application of the theoretical analysis to a physical
system such as an angle section, for prediction of the galloping

!
oscillations, requires aerodynamic force distributions at various
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orientations as the ihput data. Knowlédge of the model ampli-
tude-velocity curves can be obtained from the calculation of the
starting ﬁelocity U, and the appropriate foots of the Gy(Y)
polynomial. Determination of the model build-up time versus
velocity proVides useful information‘concerning tﬁe severity of
the galloping oscillatioﬁs.

Using the accurately measured steady lift and drag dis-
tributions (Figure 2-7),the force curves at various a, (Figure
3-21) were expressed as polyncmials from which the amplitude-
velocity curves were obtained. The analytical.data is summa-
rized in Figure 3-22 in the form of a three-dimensional gréph of
plunging amplitude Y as a function_of U and o, for a set of typical
mass and damping parameters. The quasi-steady analysis predicts
two large regiéns of instability with two smaller areas in be-
tween. For comparison, the vortex resonant velocity curve from
Figuré 2-10 is also included. It is apparent that there are
regions in which the angle secticn is susceptible to pure vertex
resonance together with areas of combined vortex and galloping
oscillations. This phenomenon of combined excitations was con-
firmed by the experimental results given in Figure 3-8.

17,50 the governing

As shown by previous investigators,
equation of motion can be transformed‘by introducing stretched
or reduced variables Y*, U*, 1* to provide a universal solution
where the results are independent of the system parameters ny
and B, - The reduced amplitude-velocity curve initiates from the
abscissa at U* equal to unity. In addition, variation of the

build-up time with velocity is only a function of the initial

displacement Y,* when Yj* is taken to be 95% or some other con-
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stant value of Yj*. Comparison of the theoretical amplitude-
velocity and build-up time curves with the experimentally ob-

tained results is presented in the following section.

3.5.2.2 Plunging Amplitude and Build-up Time Measurements
Figures 3-23 and 3-24 summarize the:amplitude—velocity
data for the 1 in. angle model oriented at a, = -45° and 90°
with various damping levels. For comparison, the initial gallop-
ing results obtained with the 3 in. model at a, ; -45° (Figure
3-8) are included. Note that a smaller model extends the dimen-
sionless velocity and amplitude ranges, besides separating the
vortex and galloping instabilities. The éxperimental'results
at both orientations indicate the angle section to be a soft
oscillator undergoing a discontinuous jump phenomenon. In addi-
tion, an increase in By or a reduction of ny delays the initi-
ation. of galloping ahd has a tendency to shift the curves toward
larger velocity and displacement values; Using the appropriate
starting wind velocities, the results are also plotted in the
form of reduced parameters. Collapsing of the experimental data
to approiimately the same distribution confirms the quasi-steady
theory. A slight inconsistency at low ¥* is due to the diffi-
culty in determining the exact starting Velocity, and the presence
of extraneous influences such as tunnel vibration, vortex shed-
ding, and uncertainty of damping at small diSplacement and its
minor fluctuations. The difference between the positions of the
knee of the theoretical and measured curves may be attributed to
slight inaccuracies in the steady force distribution near the
origin and the corresponding polynomial representation used in

the analysis.
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Further measurements were conducted at other angles‘of
attack which generally confirmed the presence or absence of the
galloping instability as predicted by the theory (Figure 3-22).
One region of particular interest is the range —15° < o < 15°
where the theory predicts two small zones of instability. The
experiment substantiated the existence of the galloping motion
over approximately the same range of angle of attack except that
the amplitudes were slightly larger in magnitude and the two zones
were connected together to form one continuous region,

The build-up time results for the 1 in. angle model at
o, = 90° are presented in Figure 3-25. The measurements wsre
conducted at the damping levels used in the model amplitude
investigations, and the initial displacements, YO, were selected
to give approximately the same value of the reduced variable Y2 .
Figure 3-25(a) shows an upward shift of the time-velocity curve
with increasing By similar to that observed for the model
amplitude characteristics. In the reduced time-velocity plot
(Figure 3-25(b)), the data for the different damping levels
collapse very nearly to one curve and compare well with the theor-
etical prediction. The lower value of the experimental results
at small U* is due to the difference in position of the theor-
etical and experimenﬁal discontinuous jumps (Figure 3-24(b)).
The scatter of build-up time data may be attributed to the slight
differences in the corresponding amplitude results and the fact
that the Y: values are not identical for all By levels. The
results, in general, indicate a monotonically decreasing build-up
time with increasing velocity. Therefore, galloping oscillations

are more severe at higher wind speeds since the time for build-



126

60. ' T T Il] T i '
H (a)
|
_ | o« = 90°
i 0.01757 ' | p
T ! n = 0000733
] ‘ y
vo = 0.0"07( \
40} \ —
(]
]
g - -
x
>
o
20 —
o 1 l 1 l [ l [
0 2 4 6 8
U
y
. 60—~—7 Y T T T T T Y T T
B u ™ (b)
Py oy o
o  0.000844 220  0.00503 ]
v
Th*eory s 0.001313 3,52 0.00500
0 7 _
Y, = 000500 v 0.001452 360  0.00459
[o]
A
* e«  0.00177 4.94 0.00536
< | i
20} -
[e] a a
0 ) { 1 i 1 1 1 | 1
.0 - 1.4 1.8 2.2 2.6 30
¥
U

Figure 3-25 Comparison of experimental and theoretical
amplitude build-up time for angle model at
a, = 90°



127
up is shorter and the resUlting displacement amplitude is larger.
3.5.2.3 Theoretical Predictions for Torsional Degree of

Freedom ‘

As discussed before in section 3.4.2.1, the stability
énalysis of the singularity predicts self-excited oscillations in
the ranges -45° < a, < 10° and 40° < “o‘i 60°. However, for various
orientations of the 1 in. and 3 in. angle models with a variety
of damping and mounting configurations, no galloping instability
in the torsional degree of freedom could be induced either from
rest or with large initial amplitude. Extraneous vibration of
the wind tunnel and model support system at high wind speeds
limited the tests to a range below approximately 50 ft/sec.

The absence of the galloping oscillations can be explained
using the quaéi-steady theory. For example, the relevant portion
of the steady aerodynamic moment distribution from the stationary
modelvinvestigation (Figure 2-7) is replotted in Figure 3-26 for
a, = =45°, Evaluation of the moment coefficient using equations
given in Appendix IV gives a graph of CMe (e, é) as shown in
Figure 3-27. The representative curves are lines of constant CMe
which appear nearly linear and parallel, thus substantiating the
simplification introduced by taking CMe as a function of ¢. The
resulting distribution of CMe () is plotted in Figure 3-28 and
approximated by a 17th degree polynomial. Only the pbsitive values
of ¢ a?e shown since the moment is symmetric about the origin for
a, = —45°,

Using the coefficients of the Cy (¢) expression in the

8

polynomials for 66 and Ke, the displacement and reduced frequency

curves can be determined. Figure 3-29 summarizes the results
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Figure 3-26
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for the 3 in. angle model at a, = -45° with typical values of
the system parameters. The plots indicate that the angle section
at this orientation is a soft oscillator with a frequency of
oscillation slightly higher than the natural frequency. For
case 1, the galloping theory predicts a starting velocity U, /s =
7.76 with an amplitude-velocity cuéve as shown. Similar calcu-
lation for the 1 in. angle model at a, = -45° gives an initial
velocity U,/s = 590. vThe results indicate that galloping will
occur only at very high wind speeds or for systems of very low
damping, which are outside the range of practical interestf

From Figure 3-29, further information concerning the
nature of the galloping instability in torsion can be obtained.
The galloping motion shifts to higher velocities with increased
damping or reduced inertia parameter. Likewise, the reduced
frequgncy parameter (l-Ke) increases with wind velocity and is
direcfly proportional to the inertia parameter n_, as indicated by

5]

the expression for K However, as suggested by the curves or

6°

by direct examination of the equation for § the torsional

6"
galloping system does‘not collapse to a reduced or universal form

as in the plunging case.

3.6 Concluding Remarks
Based on the experimental and theoretical results the
following general remarks can be made concerning the nature cof
the aeroelastic instability of angle sections with plunging
and/or torsional degree(s) of freedom:
(1) Angle sections are susceptible to vortex induced and:
galloping types of aerocelastic instabilities. The

combined plunging and torsional motion indicates the
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existence of two distinct centres oﬁ rotation, thus
substantiating the virtual hinge concépt. During
iateral resonance and galloping, fhe'coupled motion
is predominantly plunginé. On the other hand, when
distinct torsional resonanceroccurs; the vibration is
principally about a hinge point near the elastic axis.
Therefore, the oscillatiohs ﬁay be cétegorized by the
type of instability and predominant mode df vibration.
Furthermore; the frequency of the coupled motion is
essentially the ﬁatural frequenciesvof‘the individual
modes.‘

In general, the plunging-torsional amplitude re-
sults are comparable with‘thg sinéie degree of freedom
measurements. Thereforé, with consideration of the
virtual hinge conéept, the investigation of the aero-
elastic vibration of angle members can be approximated
by studying the individual degrees of freedom. This
provides important information about the dynamics and
aerodynamics of the structural section. Neverfhéless,
when plunging,galloping.precedes the range of torsional
resonance, the resulting angular displacement and
associated modulation will be substahtially reduced.

In plunging degree of freedom, angle sections are sus-
ceptible to both vortex resonance and galloping. There
exist ranges of angle of attack of pure vortex reso-
nance or combined vortex and galloping excitations.

Experimental measurements at various orientations

confirmed the presence of the galloping instability
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as predicted by the quasi-steady theory, thus substan-
tiating the applicability of the analysis. The theory
indicates two large regions of'galloping»instability
with two smaller areas in between. Exhibiting either
a soft or hard Qscillator characteristic, the angle
section experiences an incfease in galléping amplitude
with wind velocity, and undergoes a discontinuous jump
at several orientations. The time for amplitude build
up reduées with increased wind speed, thus increasing
the severity of the galloping instability. Nevertheless,
a higher damping or reduced mass parameter shifts the
amplitude and build-up time curves toward higher wind
velocity, thus delaying the onsef of galloping. Collaps-
ing of the experimental results to a single cufve in
the reduced variable plane confirms the concept of a
universal plot as predicted by the quési—steady theory.

Angle sections experience vortex excitation at all
orientations but the severity of the resonance depends
on the damping level, mass parameter and unsteady lift
coefficient. The stability diagram shows reduction in
resonant velocity range and peak displacement with
increased damping or decreased mass parameter.

In torsional degree of freedom, the vortex induced reso-
nance may be severe even at moderate damping levels.
However, the section appears to be free from galloping
type of aeroelastic instability. This is substantiated
by the quasi-steady analysis which predicts that gallop-

ing will occur only at relatively high wind velocities
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or for sysﬁems with very low dampiﬁg. Furthermore, the
galloping theory suggests a variation in the frequency
of the torsional oscillation which is in contrast to
the plunging éase. Although, it is not possible to
verify the applicability of the torsional theory, since
no galloping was observed experimentally, the quasi-
steady approach appears promising based on its success
with the plunging analysis.

The vortex excited oscillations, in general, ex-
hibit large random amplitude modulation over the com-
plete range of wind velocity conducive to resonant
vibration. Only at certain wind speeds above ahd below.
Ures does the modulation attain definite frequencies.
The maximuh as well as the mean amplitudes should be
recorded since the peak values, which may be many times
greater than the average, may ultimately cause the
failure of the structural members. Therefore, the vio-
lent, vortex resonance type of instability is, relative-
ly, of mofe importance than galloping.

(iv) The plunging resonance exhibits the familiar vortex
capture phenomenon where the shedding frequency is con-
trolled by the cylinder motion over a finite wind speed
range. On the other hand, the torsional vibration shows
‘a vortex control phenomenon where the vortex shedding
governs the frequency of oscillation. This extends over
a large velocity range following the Strouhal distribu—v
tion obtained from the stationary model tests. However,

i

at wind speeds far above the resonant value, the cylin-
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der frequency is a function of model amplitude. It
appears that the voftex shedding initiates the oscilla-
fioné,but loses conﬁrol as the model amplitude builds
up with a resulting drop in d;cillation frequency to
the natural torsional value. ﬁevertheless, the displace-
ment eventually dihinishes and the cylinder frequency
returns to the Strouhal value.

}During plunging or torsional motion, the distri-

bution of the phase lag between the displacement and

forcing function varies, approximafely, from 0°-180°

‘over the region of vortex resonance.

Compared‘to the stationary énd torsional results, the
fluctuating pressures on the plunging model are substan-
tially larger in magnitude with less amplitude modula-
tion, and reduced phase variation between neighbouring
midspan taps. Consequently the unsteady lift, drag and
pitching coefficient increase during plunging resonance.
Larger pitching moment about the elastic axis explains
the greater torsional resonance observed with the trans-
fer of axis from the centre of gravity to the shear
centef. Similar to the statioﬁafy model results, the
local phase differenCe around the model contour during
the dynamic conditions has cqmparatively little effect
(< 10%) on the sectional, unsteady aerodynamic
coefficient.

The wake survey results show similar trend with down-

stream coordinate for both the stationary and vortex

excited models. During resonance in either degree of
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freedom, the vortex velocity and longitudinal gpacing
remain essentially unaltered, however, the wake width
éxperiences substantial increase with plunging motion.
Nevertheless, if the lateral spacing is based on the
effective blockage (2y + h), the resulting nondimen-
sionalized parameter is almost identical to the station-
ary or torsional model value. It appears that the tor-
sional resonant motion has virtually no effect on the
vortex shedding or wake characteristics.

From the dynamic investigations, it is‘shown that angle
section beams in open engineering structures may exhibit
oscillations of a vortex resonance or galloping nature.
Therefore, to prevent vibration and possible occurrence
of structural failure of the individual members, the
design should involve sufficient damping or high natural
frequency. This is in agreement with the prediction

from the stationary model study.



4. RECOMMENDATIONS FOR FUTURE WORK

Pbssible theoretical and experimental extensions to the
present work may be summarized as follows:

(i) Analysis of the coupled system durihg galloping using,
probably, the method Qf Variation of Parameters is
certainly désirable.» The expressions for the aerodynamic
force and moment required in the analysis will be, in
general, quite complex even with the quasi-steady
‘approaéh._ |

- (ii) Experimental measurements of torsional galloping to con-
firm the applicability of the quasi-steady analysis
would be a valuable study. This may be carried out
using én angle section or some simpler model such as a
rectangular cylinder. For such a study accurate pitch-

ing moment data is required.

(iii) Determination of spanwise variations of the steady and
unsteady aerodynamics along normal and yawed angle
sections would be useful. This is important in evalu-
ating the overall three-dimensional nature of the

excitation.
(iv) A flow visualization study should prove useful in under-
standing the character of the flow, such as separation,

reattachment, wake geometry, etc.

(v) In general, information concerning wind tunnel wall
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interference effeCts on the steady and unsteady aero-
dynamic characteristics and wake geometry for bluff
bodies is lacking; Therefore, a systematic study during
static and dynamic conditions of the model would be of
value.

Since angle sections, when used in open engineering
structures, are exposed to atmosphefic turbulence, it

is of paramount importance to determine its effect on
the aeroelastic vibrations. The investigation may be
conducted in the wind tunnel under conﬁrolled turbulence
to obtain an understanding of the phenomenon, but should
be supplemented with field tests over terrain exposed

to typical turbulent winds.

Experimental measurements of the steady and unéteady
aerodynamic characteristics on angle sections of un-
equal legs or other structural members under static
conditions would be a natural extension of this work.
Theoretical predictions of the section dynamics could

be ratified by aeroelastic tests.
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APPENDIX I

Geometrical Properties of Angle Section Members

The cross-sectional features of the desiéned models were
somewhat 'idealized' since their edges were sharp and the surfaces
émooth. This was necessary to facilitate the construction of
the"thin—walled, hollow models. Nevertheless, commercially
available aluminum angle sections have simila: geoﬁetry and,
therefore, are well approximated by the sharp-edged models. On
the other hand, structural steel angles do have rounded edges as
well as rough surfaces (Figure Ifl). Table I-1 compares fhe
geometric features of the various wind tunnel models including
the commercially available structural angles tested during the
experiment. All models were similar in length extending across
the effective height of the wind tunnel. .The four angle sections
listed at the bottom of the table were not tested experimentally
but are included for further comparison of the geometric features
of commercially available structural anglés and the wind
tunnel models.

Survey of the tabulated data indicates that the pressure
tap, as well as 1 in. and 3 in. dynémic models compare favourably
with the strﬁctural aluminum anglés of similar size except
for the filleted inner corner on the commercial members. How-
ever, this differenqe in inner radius will be of minor aerodynamic
importance since the fluid near this area on the section is
almost stagnant. Flow visualization using a smoke tunnel

substantiated this observation.
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Figure I-1 Cross-sections of angle member (a) 'idealized'
angle section (b) typical structural angle



TABLE I-1
Geometric Features of Angle Sections

Model

Nominal dimensions

c.g. | shear Ix system ] system I
d t length| R, Ry a centre 4 m' 2 Material
in.}in. in. [in. in, in. ¢ - in.| in. lbm/ft | lbm-in%/ft
pressure aluminum,acrylic
tap 311/2 26 3/41 0 0 0.93] 0.96 2.3 0.91 8.2 hollow section
large acrylic hollow
dynamic 3]11/2 26 3/74| 0 0 0.921] 0.96 2.1 0.71 7.9 section
small " aluminum solid
dynamic 111/6 26 3/4) 0 0 0.31] 0.32 0.027 0.70 7.0 section
balance | - : aluminum solid
A 31L/2 27 0 0 0.90] 0.93 1.95 2.92 7.2 section
balance
B Identical to model A except for 1/4 in. thick end plates
balance structural steel
C 311/2 27 1/8 5/16 | 0.93] 0.98 2.2 9.4 24.0 angle
balance structural steel
D 311/4 27 1/16} 5/16 0.84] 1.03 1.2 4.9 13.4 angle
balance ' structural alum-
E 311/4 27 1/64} 7/32 0.84] 1.01 1.2 1.71 4.5 inum angle
balance g - aluminum solid
F 2 11/3 27 0 0 0.62] 0.64 0.44 1.42 1.6 section
‘ ' structural alum-
- 311/2 - 1/64§ 1/4 0.93] 0.96 2.2 3.30 8.3 inum '
structural steel
- 1|3/16 - 1/16 | 3/16 0.31)] 0.32 0.030 1.16 0.32 angle
. structural steel
- 1{1/8 - 1/16 | 3/16 0.30( 0.33 0.022 0.80 0.24 angle
structural alum-
- 11{3/16 - 1/64 | 5/32 0.310.32 0.030 0.41 0.11 inum angle

ZsT




APPENDIX II

Wind Tunnel Wall Corrections

There is a considerable body of information8l—87 et al on

wind tunnel interference for stationary streamlined models in
steady flow. 1In general, the theoretical and semi-empirical
investigations express the wall effects as a series in ascending
powers ef the model to tunnel characteristic dimension ratio
with the analysis confined to the first or second order terms.
These corrections have been found satisfactory in most situations
and can be applied with some measure of confidence.

For statienary bluff cylinders, there is some experimental
information on wall confinement but the theoretical analysis is
relatively less complete. Pankhurst and HOlder,s; and Durand84
provi@e techniques for extrapolating streamline body analysis to
bluff circular cylinders but their applicability is rether limited.
More appropriate, under this condition of completely separated
flow, is the simplified expression guoted by Whitbread58 which is
a particular case of a general analysis by Maskell.88 Using
Maskell's mathematical model, Vickery40 obtained blockage correc-
tions to Strouhal number and fluctuating lift force and applied
it to the flow around a square cylinder. For a circular cylinder
near the critical Reynolds ﬁumber, where the drag coefficient
drops to approximately 0.2 thus making the solid blockage as
important as wake blockage, Bearman89 has suggested the application
of the method of Allen and Vincenti85 developed for low drag,
streamlined airfoils, Glauert87 and Fage83 have considered,

theoretically, the two-dimensional flow around cylinders in
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channels of finite breadth. The experimental measurements by
Rosenhead and Schwébe,71 aﬂd Fage and Johansen70 provide useful
information concerning the influence of wall confinement on flow
characteristics. Test results on stationary angle modéls taken
during the course of this research programme, gave some infor-
mation on wall interference with regards to the departmental wind
tunnel system.

The analysis of wall interférence on oscillating models
is considerably more complex, and to date, effective methods for
predicting the corrections have not been completely evolved.
Nevertheless, for oscillating ai:foils in wind tunnels, there

are various theoretical and experimental approaches reporte:l%_g3

et al. Molyneux94 has presented a good review of this literature.
On the other hand, for osc¢illating bluff bodies, informaticn on
wall confinement is almost completely lacking.

81 the interference

As indicated by Pankhurst and Holder,
from wind tunnel walls during steady flow condition may be
divided into:

(i) solid blockage;

(i1) wake blockage;

(iii) 1lift or circulation effect;

(iv) boundary layer interference; and -

(v) streamwise static pressure gradient influence.
For an object symmetrically placed in the flow field, (iii) does
not exist. For thé wind tunnel at the Uhiversity of British
Columbia, the wall boundary layer thickness in the test section

is relatively small partly due to the filleted corners which

compensate for boundary layer growth. Furthermore, the pressure
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integrated and balance measured aerodynamic coefficients (Figure
2-13) showed good correlation. Therefore, (iv) appears to be
negligible. Similarly, for the tunnel (v) was found to be of
minor significance (less than 1%). Therefore, solid and wake
blockages represent the major interferences on model aerodynamic
characteristics. Available corrections appropriate for the
stationary angle section measurements are summarized in the
following pages.

(1) Mean Free Stream Velocity

According to Pankhurst and Holder,8l the wind speed

correction is a sum of the solid and wake blockages given by
Ve
Vv

where V. = free stream or corrected velocity;

= {1 +0) (1)

\'%

measured approaching velocity value;
Lo = o, t o, correction factor depending on model and

tunnel geometry.

Another estimate of the velocity correction can be ob-
tained from Maskell's simplified relation (equation (2)).
Illustrated in Figure II-1, is a comparison between the percen-
tage velocity corrections given by the above two methods when
applied to the 3x3 in. angle models. The discrepancy between

the two corrections can be explained by the fact that the former

is more applicable to streamlined bodies while the latter is
for separated flow condition. The velocity correction of Allen
and Vincenti as stated by Bearman is identical to that of
Pankhurst and Holder.

(2) Fluctuating Free Stream Conditions

Roberts95 investigated the flow conditions ahead of an
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oscillating model by using the unsteady form of the Bernoulli's
eqﬁation.» Two-dimensional circular cylinders oscillating
harmonically in the streamwise direction showed the upstream
_fiow variables to be functions of the frequency and amplitude
of the motion. For amplitudes of one diameter, the velocity {
and static pressure variations were as large as 20 and 40 percent,
respectively. Thus, one would expect the time-dependent phenom:_
enon to be significant where large amplitude,,low frequency,
model oscillations exist.

(3) Effective Angle of Attack

For thin airfoil sections, both Durand, as well as Allen
-and Vincenti pro&ide expressions for wall interference corrections
to thé angle of attack by considering an equivalent induced
velocity field of a system of images on the base profile. How-
ever, for a bluff section no appropriate analysis is apparently
availéble.

(4) Mean Static Pressure and Resultant Steady Forces

Using the free streamline model, Maskell88 has shown that

the steady static pressure and drag on bluff structures can be

corrected as follows:

- C
._.__' CPF = _Or = ! (2)
Cp C
bF
where Cp ’ CD = free stream or corrected static pressure and
F F
drag coefficients, respectively;

c ., C = measured static pressure and drag coefficients;
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Cp = free stream base pressure coefficient, —(kz—l);
- . 8 = model area on which Cph is baséd;
C = tunnel test section area.

- This is identical to the blockage corrections given by Vickery.40

The éxpression’is alép applicable to the correction of other
force and momenf coefficients.

Glauért87'derived,ah expression for the drag coefficient
for a body forming AVWake of alternate vortices in a channel of
finite width. The analysis, based bn Lock's image method and
Karman's vortex street theory, was developéd for a plate normal
to the flow but,las stated by Durand, is applicable for other
bodiés'df abrnpt'or sharp-edged form. The theoretical expression
for the drag coefficient'in confined flow is given by the

equation

o
o

- <t — o
C, = (5656 z_.z4v)g_

o ve * z4(u

2
e
= (3)
) H .

W = surrounding fluid velocity on which the vortex system

ol

where u = W - Vv

is superimposed (equation (15));
Vv = vortex streamwise velocity;
b = measured lateral vortex row spacing.

This expression is similar to that given by Karman for the case

of a plane unlimited flow,

CD = (5.656 - 2.24 P_F) uFbF. (4)
F VF. v;e ’
where : o ’
u =

£ - EPZI tanh TLt?FV

r Gr
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and ap = lOngitudinal spacing between consecutive vortices
of strength T .

However, to use the expression for CD it is necessary to know;
a priori, the values of u/V and b/e for the body in a constrained
flow, Glauert gave an approximate theoretical solution to this
problem by considering the rate of vorticity generated by the
body and the amount of vorticity passing downstream in the form

of discrete vortices. This study provided an expression for the

drag coefficient in constrained flow as

2
c. = C,_ +1] 32 _3.06%1-4U/V; uebyte (5)
o P { . VFI—ZUF/VF} VFG) H

where uF/VF and bF/e correspond to the unlimited flow. 1In practice,
the second term in the parenthesis is generally negligible and,

therefore, the drag expressioh reduces to

= + 32 g_P 2.5 (6)
Co= G + 3 (V:er) S

However, the theory is still incomplete, since it does
not predict uF/VF and bF/e. 2An analysis by Heisenberg,7 to

complete the theory for a flat plate, gave the values

Ye _ 0.2295 and uebe _ 0.3535 (7)
Ve V.e

If Heisenberg's results are adopted, drag correction for a flat

plate normal to the flow becomes
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| CDF -

c -2 )

(o) - D
which can be referred to as Glauert-Heisenberg's formula. Its
predictions are in agreement with experimental results given by
Fage and Johansen.?0 It should be noted that this expression is

of the same form as Maskell's simplified equation (2) except that

_cD/Cpr is replaced.by 4/CD.
Applicability of Glauert's simplified equation (6) for
CD to the measurements on the angle section can be shown by the

fbllowing example. For the 1 in. angle model mounted at o = -45°,

and considering the approximate experimental values of (u/v}

]

= 0.201 and (b/e); 1.77, the drag expression becomes

E_°F = | - 4.05 ¢ (9)
C, . H

which compares ‘well with equation (8) for the flat plate.
Bearman, as well as Pankhurst and Holder suggested that
their velocity corrections can also be applied to static pressures

and forces by

_C..dr' = -E‘r Eml:' —————2 =
¢, ¢ C. (1+0c)

(5) Fluctuating Forces Caused by Vortex Shedding

Vickery40 has presented a blockage correction for the

fluctuating lift based on the analysis by Ross,96 which predicts
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that the ratio Ci’/CD is a;most independent of the wall confine-
ment. Therefore, to the first approximatién, the fluctuating
forces can be corrected using the steady force expressions.

(6) Strouhal Number and Vortex Velocity

Using the same model as employed by Maskell and introduc-

66

ing Roshko's Universal Strouhal Number (S,), Vickery developed

an expression for the correction of the Strouhal number,

‘SF g éﬂ kw

ht - (11)
S T »
dw ‘
where I is the effect of wall constraint on the wake width:
Wg '
— (1- 1/2
and k = (1 Cpb) .

.On the other hand, the Strouhal numbér, whiéh is a functiocon of
the fluid velocity and vortex shedding frequency, may be affected
by their variations. Bearman assumed that the'cofrection for

the Strouhal number was a function of the velocity correction
only, and neglected any effect of wall interference on the shed-
ding frequency.

| To introduce the correction for the vortex shedding
frequency, it is appropriate to consider the expression

§ =V /a (12)

v

and, thereby, investigate the variations of the vortex velocity
and longitudinal spacing with wall interference effects. The
vortex velocity is”a function of the absolute velocity of the
suﬁ;ounding fluid and the relative velocity of the vortices in 

the wake, and is given by v, = W-u. Theoretically, for an
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unconfined flow, W would equal Vpr and u would be given by

Karman's vortex velocity relation. For the flow in a channel,

87

Glauert~' has derived using the image method an expression for

the reduction of the vortex velocity by the presence of the

walls,
u -
o o= - 8 e cosh®mb (13)
F a
where A = 21r.t‘.
a

However, since e_xis generally very small, the influence of the
walls appears to be negligible. The frequency correction can

then be expressed in the form

_‘l’r‘ = \../‘.'r a . ,\_/F_LEF(.Q_) (14)
Fv Vv a. W - Ug GF ‘

Using flow continuity as suggested by Glauert, the
velocity W on which the vortex system is superimposed is greater
than the approeching stream velocity'by the amount equal to the
backward flow induced by the vortex street and image system.

Hence, velocity W is determined by the equation

My 4
W=V+a-5 : (15)

Using Karmdn's stability results,

W:V + 2ﬁu;r£‘ ‘ | (16)‘

which can be substituted into the frequency correction egquation.

The final expression for the free stream Strouhal number is of

the form '
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Se . ke Vv (17)
S T iV,

Although the Stro;hal number forms one of the important
parameters in aeroelastic instability studies, the available
literature for its correction do not correlate well. Therefore,
a series of experimental measurements were conducted with 1, 2,
and 3 in. angle sections. The results, plotted in Figure II-2,
show the variation of the Strouhal number with blcckage for
various angles of attack. The extrapolation of these results
gives an estimatevof the equivalent Strouhal number in an un-
limited flow. The percentage correction for the 3 in. model as
plotted in Figuré II-1, though similar in form to the velocity
curves, is generally larger over most of the angle of attack
range.

(7) Wake Geometry

The meaéurements by Rosenhead and Schwabe7l indicate that

both the longitudinal and lateral vortex spacings decrease with
increésing blockage at such a rate as to maintain the wake geom-
etry ratio b/a essentially constant. Thié was determined for

model to tunnel width ratios of up to 1/3 and, therefore, is also
likely to be representative of the angle model wakes. Glauert,87

on the other hand, has developed an expression for determining

the characteristics of the vortex street in a channel,

a e | +

/Z (“FbF) e (18)
v.e

b
o H



0.32 . T — led

0.28

0.24

0.12 i | 1

Figure II-2 Variation of Strouhal number with'blockage for
various orientations of the angle models
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which suggests that the dimensions of the wake in a constrained
flow are greater than those in an unlimited flow. This is an
opposite trend to the experimental measurements by Rosenhead and

Schwabe, and contradicts general physical intuition.
88

Maskell has derived the relationship,
dep - |+ Co=Co s (19)
d, (k*-1Xki-1 C

indicating the influence of wall constrainﬁ on the wake width.
However, based on the experimental data for the 3 in. angle model,
the second term in the above equation is of the order 0,02 and,
therefore, Maskell's analysis suggests that the wake width is
approximately independent of the wall cbnstraints.

To establish the correct trend for wall interference on
wake geometry, a series of wake measurements were conducted with
the 1 in. and 3 in. angle sections.. This‘sef ofldata, indicates
that the lateral vortex spacing is confined by the presence of
the walls and, thereby, agrees with the trend of the experimental
results of Rosenhead and Schwabe. An approximate estimate of
the percentage correction for the lateral spacing in the wake of

the 3 in. model is plotted in Figure II-1 for comparison.



APPENDIX III

Electronic Instruments

Following is a list of the recording and auxiliary

electronic instruments used in the calibration and experimental

tests:

Pressure Transducer:
"Filter:
Oscilloscope: .

Chart Recorder:
Voltmeters:
. Function Generators:

Vibration Generator:
Amplifier and Power
Supplies:

R-C damping circuit:

Balance:

Time—Mark Generator:

Datametric, Barocel Pressure Sensor, Type
511-10; Signal Conditioner, Type 1015;
Power Supply, Type 700.

Krohn-Hite, band pass variable filter 0.02
cps-2Kc, model 330B.

Tektronix, Type 564, dual beam storage
oscilloscope.

Honeywell, 906C Visicorder; Sub-miniature
Galvanometers, Type M100-120 and M200-
120; Standard, spec. 2, Visicorder Record-
ing Paper. :

Hewlett Packard, HP-3400A true rms volt-
meter; and HP-412 vacuum tube voltmeter.

Hewlett Packard, low frequency function
generator, model 202A; Heathkit, audio
frequency generator, model 1G-72.

Goodmans, Type V47.

Low frequency, transistorized power ampli-
fier with two 12 volt d.c. power supplies,
built in the department. [97]

Resistor-capacitor system, variable time
constant G to 60 seconds, built in the
department. [35]

'Aerolab, 6 component, pyramidal strain

gauge balance; two corresponding 3 channel
readout electronic cabinets with built-in
d.c. voltmeters. -

Tektronix, Type 184, 2 nanoseconds to 5
seconds crystal oscillator.



Lateral Displacement
Transducer:

Lateral Transducer
Demodulator:

Dampers and Power
Supplies:

Power Supply:

Variac:

Strobotachometer:

Angular Displacement
Transducer:

Angular Transducer
Power Supply and
Output System:
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Air-core transformer, built in the de-
partment. [49]

Full wave rectifier and RC filter, built.
in the department. [49]

Electromagnetic dampers; variable d.c.
and a.c. power supplies, built in the
department. [49]

Electro, variable, filtered, d.c. power
supply, Model D-612T.

General Radio Company, Type W5M, adjust-
able autotransformer.

General Radio Company, Strobotac, Type
1531.

4-arm strain-gauge bridge, built in the
department.

Ellis, Bridge-Amplifier-Meter, Model BAM-1.



APPENDIX IV

Theory for Plunging or Torsional Degree of Freedom

1 General Equations of Motion

Figure IV-1 Figure IV-2

The system of mass m (Figure IV-1), restrained to a plung-
ing degree of freedom perpendicular to the flow direction, is
subjected to linear»spring and viscous damping forces and aero-
dynamic loading Fy' A corresponding system with a torsional
degree of freedom is shown in Figure IV-2. It is convenient to
express the aerodynamic terms in coefficient form which, in
general, may be a function of model displacement and velocity,
and time t. Usingvthe Lagrangian formulation, the equation of

motion for the plunging and torsional degrees of freedom become

o

oG e3¢y - 4eVhIG 590

(-3

.°°

16 + reé + kB = %ev’h’ﬁ CMe(G,é;’c) (2)
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These equations are analyzed with vortex resonant or galloping
excitations to determine the aeroelastic instability of angle

sections.

2 Vortex Resonance

The analysis considers plunginé degree of freedom only
'since the torsional solution is similar. For transverse excit-
ation due to vortex shedding, the force coefficient is apprdx—’
imated by a sinusoidal function of amplitude C=, and frequency

Wy, Equation (1) then becomes

mg + r’t; + k,y = %QVIHQCF sinw t (3)

which can be written in the nondimensional form

RV v 2 .
.Q,VY + Zgy.ﬂ.vY + Y = nyU C!; sin T, (4)
giving the steady-state amplitude as

— Uz _
Y = Cs =
ny YO-0227+(28,0,) (5)

Therefore, the resonant amplitude becomes

n 2
Y, = %E:CP Ures : (6)

max

For a physical system consisting of an elastically mounted
cylinder in an air flow, it has been observed that the oscillations
near the resonance peak do not comply with the prediction of the
simple mathematical model, but rather exhibit a phenomenon called
' vortex capture. Parkinson,et al79 solved equation (1), approx-

imately, under the conditions of vortex capture by assuming
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=y Sin W, t
and J

(7)

Y
CFy = CI' Sirl(wcy{ + éAF)

The final expression for the resonant displacement now becomes

Y

max

£

2
h, NyU

g
s 2By

£

Cg sin $ar | (8)

3 Galloping of Aerodynamically Unstable Section
3.1 Preliminary Remarks

Geometrically bluff sections may exhibit a galloping
type of oscillation because of the nature of the aerodynamic
forces or moment. If, from the mean angle of attack o,, the
aerodynamic loading shows an increase with model attitude and the
amount of resulting energy input by the fluid force exceeds that
dissipated by the viscous damping, then oscillations will con-
tinue to grow until a net energy balance is established. The
quasi-steady approach is adopted so that the instantaneous forc-
ing function acting on the oscillating model can be replaced by
its steady value acting on the stationary model oriented at the
same apparent angle of attack. This assumption implies that no
aerodynamic hysteresis effects exist in the force or moment
characteristics and the vortex shedding frequency is far removed
from the cylinder frequency.

From the nature of the problem, the lateral force or
twisting moment turn out to be highly nonlinear functions. How-
ever, certain simplifications are possible in the aeroelastic

problem since:
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(i) the ratio of air density to model density is small and

consequently, the aerodynamic force is small compared
with the elastic and inertial forces of the system;

(ii) the frequency of oscillation is close to the natural
frequency; |

(iii) the equilibrium motion is nearly sinusoidal.

- Under these assumptions the problem becomes quasi-linear which

can be solved by various analytical techniques.' |

For the plunging degree of freedom, the guasi-steady theory
16-18

has been established by Scruton15 and Parkinson, et al.
Sistol4.and Ii,19 considering the problem of stall-flutter, in-
corporated the downwash condition at the three-quarter poinf to
simplify the analysis. Fof the tbrsional'galloping of bluff
cylinders a modified theory following the plunging quasi-steady
approach is presented. However, the torsional analysis is slight-
ly mofe complicated since the nonlineér aerodynamic moment is a
'function of the instantaneous angular'position as well as the
velocity. A derivation of the basic expreséions for the plung—
ing and.torsional degrees of freedom is given‘in the following

sections.

3.2 Plunging Degree of Freedom

Figure IV-3
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Following the analysis established by Parkinson and

associates, the instantaneous aerodynamic force (Figure IV-3)

is related to the steady 1lift and drag by

~(LcosY + DsinY) (9)

n

F
y
where

D = %e\{:lhlco (10)

and the instantaneous angle of attack o = a, + y. Noting that

vV = VrelcosY’ the final expression for the force coefficiernt

becomes

¢ = -(c + CD’(anY) sec ¥ (11)
y

The change in model attitude is related to the transverse-velocity'

compbhent by

-y
T = tan 7 (12)

Therefore, the governing equation (1) becomes

my o+ r,9 + kyy = %QVZHIC%(Q) (13)
v in
and

It has been customary to obtain an expression for Cp

the form of a polynomial using CL and CD experimental data,

analyze the particular case where the model is mounted at a

symmetrical angle of attack. 1In this case, CF is an odd func-
Yy

tion. Santosham50 considered the problem of aeroelastic insta-
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bility of rectangular sections and used odd functioned Chebyshev
polynomials of 11lth degree for obtaining the solutions. However,
for analyzing the galloping oscillations of an angle section,

the théory has been generalized to consider the model oriented
at unsymmetrical angles of attack and the degree of the polyno-
mial containing all terms has been extended to 25. However, the
actual degree of the polynomial used is 25 or less based on a
least square error criterion. Thereby, the expression for Cp

y
can be written in the polynomial form

C = Cl‘t

)+ a3 ¢ el - ) +a<)”

where N <& 25,

< heo

Note that a, = 0 because y represents the displacement from the

apparent zero position governed by the steady 1lift force. Cp is

. . Y
generally plotted as a function of tan y, since (y/V) and tan y

are directly related by (12).

'Equation (13) can be nondimensionalized to
. . _ 2 .
Y + Y = —2@Y + nUC (Y) (15)
y b) %y

or combining the two terms on the right hand side to give

\( + \( = /uy'F(\Y)

Y ' (16)
where /M’ = n\,0|

. ’ 2 3 /N
and ‘: (Y) = {(U'UO)Y + -a-’Y y B3 Y . a:_zY } (17)
b a, aq,U a,U
Based on the aforementioned assumption, ny < < 1l; therefore,

(l6) is a quasi-linear differential equation of the autonomous
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type. Actually, the quasi4;inear form requires the complete
right hand side of equation (16) to remain small, thus specify-
ing, implicity, an upper limit to the velocity U.

Using the Variation of Parameter method, the first order

approximate solution of equation (16), when “y = 0, is of the

form

Y

Y sin(T +9) | » (18)

therefore

Y - Y cos (T +¢)
For uy < < 1, the first order solution is determined by reduc-

ing (16) to a system of first order differential equations

Y = Z :

Z = =Y + ,u),fy(z) o (19)
considering

Y = Y sin (T +9)

Z = Y cos(T+®) (20)

Y=1t+¢

and assuming Y and g to be functions of time 1, equation (19)

reduces to

gz /uy'f‘y[?coskl’] cos Y
‘ (21)
19 - _“é? f[‘{cos¢4 siny
dt Y ’
Since '%? and '%% are proportional to uy , Y and g

will be slowly varying functions of time. Hence, Y and & can

be considered, approximately, constant during one cycle. Equa-
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tion (21) can then be replaced by their average values

4 g

Y - By f [Veos¢] cosy df

dT am ) Y

(22)
at

d M 5 ,

a¢ =221 f[Ycos¥] sinydy

dt Y 4o Y

By examining g and recalling the polynomial form of the
function fy(Y), the integrand can be replaced by a Fourier
sine series. Upon integration each term in this series vanishes

and, therefore, (22) can be written as

dy _ -V 4(V)

dé - 0
where dt
- /.( F31Y - .
Y = ____, Y & ’
§(V) = L2 {1 cosv] cosy dy (2)
()
On substituting (17) into (24), §_becomes
) o /uy 03—2 05-4 ak Sk
§(9)=-2(u-U,) + bﬂa,‘uY L AR S e
h
where k _ N for N Odd
 |N-1 for N even
and '

o
1"
o

i= 3,5,7,---,k

2

,

~

+
-
N
-

The displacement amplitudes of the limit cycles are

obtained by determining the real positive roots Yj of the 6V(Y)



176

polynomial, from which the stability of the sustained motions

can be analyzed.

3.3 Torsional Degree of Freedom

Figure IV-4

For the analysis of the torsional degree of freedom, the
excitation is the instantaneous moment Me, which using the quasi-

steady approach can be related to the experimental value, M, by

Vel
C"‘e = ——\-/5; C, (%) | (26)
where 2
C, = M/(LeVgh*t)
(27)
X = O(o - 9 + '):_

It is apparent that Vrel is different from V in both magnitude
and direction because of the angular velocity 8. Furthermore,
each surface element on the contour experiences a different
relative velocity governed by its position with respect to the

centre of rotation. It is assumed that an effective relative
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velocity can be written as
[ -4 ""n ’
V., = e Ir
A 61‘r (28)
where rr’is the effective radius of rotation and N, is the direc-
- tion of Ve For the angle model suspended about the centre of

gravity at a, = 0°, the representative parameter values suitablyv

nondimensionalized are

Rr = 0.30Is

Yl = 51
e 4 .
-For different angles of attack, the representative direction

(29)

angle n,. can be obtained using the relation

n, =M, - (%-9) (30)

Q

The approach when applied té a flat plate airfoil gives
an effective downwash velocity at the three-quarter chord point.
This agrees with the value adopted in the stall flutter analysis
by Sisto14 and Ii.19
For the oscillating cylinder, the overall velocity vector

diagram is as shown in Figure IV-4. Hence, the relative veloc-

ity can be written as

(_\./".'d)z = | - 2_35 cos T]r ‘+ (_é_rr)z

V Y (31)
and the representative angle Y becomes
° .
T = tan-'{ -OL sin My } (32)
[]
r V - 8r.cosn,
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In nondimensional form, the governing differential equation of

motion (2) becomes

. . 2 .
= - ®
® + 0 28©® + nU C“e(@’ ) (33)
with auxiliary expressions transformed to

Me
x = X, -0 + %
U . . 2
rel) - - 20R OR
(U) I - UrCOSﬂr + (Ur) (34)

-8R, .
S e

lf%Qrcosn,
Tlr-'- VI,. “(o‘o"@)

o

Y
n

Upon evaluation of Cy as a function of ® and é from
equations (34), it was observgd that lines.of constant CMe were
almost linear and parallel at an angle X to the é axis. BAs a
result, a new cartesian coordinate system, ¢ and ¢ , was estéb—
lished with ¢ axis alQng the contourline CMe = 0. Therefore,

to a first approximation, CMe can be expressed as a function of

£ which is related to ® and © by the coordinate transform-

ation

£ = [ DS —@C]‘ (35)
where S = sin A
and C = CO0S A

Similar to the plunging case, the aerodynamic moment coefficient

is expressed as a polynomial in ¢
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' 3
CM = a|§ + azgz + d3§ tooet Qy §~ (36)
o _

25,

IN

where N
Substituting (35) and (36) into (33) and combining the two terms

on the right hand side, the nondimensional equation of motion

reduces to the form

& +0 = M1 (0,0) | (371
where Mo ~ neal
an 3) = 2 US“L% ) - 2 @ - 2
a f (9,6 = U {(——U—{-)@ cCO + _:_‘(Us @c)

(38)

Qa é) - 3 vt S !@ - N}
+a.'3(0.s Oc)+ +a'(us @c)

For a system in air, Mg << 1.

Using the method of Variation of Parameters as in the

plunging analysis, the solution of (37) can be written as

4@ _ _ 54 (5)

dt 6
(39)

d¢ . _k (@)

dt e

where
59(@)= —-ET?_J f9[®sin¢,@cos‘/’]cos¢d¢
T T

(40)

-hid :
Ke(é)= m—%l £ [8sny, 8 cosy]siny dy
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_Note, the variation of phase with time which was not present in
the plunging case. Substituting (38) into (40) and carrying out

the integration, 8 and Kg become

9 (41)
s “‘b g Bt | ]
(3 I -4 c . s + . e
+ (U) ‘),_}@
KB - Lo c v of(sfet,, + 18
e r 2 3,4
O| U 3 ]
it -3 i-j
RPN < §) o +(S) 3t ...+ (3 it .
R +a.'{(u et +(3) St e (B) T, )
= L=
+.-.+ ¢t . } * ]
LyL+t
where L= 3,5,7, N ; j"" ,3,5, L
The coefficients bi,j and ti,j+l are given by
b.: = ¢ . d. .
L’.} LJ ."J
(43)
ti,jﬂ = e si,ju
Here the c¢. . are the binomial coefficients of the terms in
4
equation (38), and di,j+l and Si,j+l are constants obtained from
the integration of equation (40). These coefficients can be

‘determined from the following expressions:
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Cit = Coin =4, =9, = Sii =
_ i=(k=1) ~
{ ket k C"k
A R
9i,jez = (Ten--n Juj
- J+2 o
Lisin T TrE Shiej (44)
di,j+z = 9i,j+2 ei,j
Sijer = di,i-ju
where L=l,3,5,"‘,N 3 j=,13)5’ .-,L ; k:l,2,3) -,L—l

The amplitudes of the limit cycles can be obtained from
(39) using the condition, d@/dt = 0. The stability of the sus-
tained motions can be analyzed by examining the sign of
366/35 evaluated at these limit cycles.

On determining the limit cycle amplitude, # can be eval-

uated using equation (42) as
¢ = -K,T + 4 (45)

where @, is the constant of integration. Thus, the steady-state
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~amplitude of oscillation is given by
®@ = ® sin{ (46)
where "P =T+¢@ = '(l—KQ)-c + % (47)

From (47) it appears that the frequency of oscillation is reduced
from the natural frequency by the amount Ke. Therefore, the
second equation of (39) in terms of the reduced frequency para-

meter becomes

1+ @ = 1-K (48)



