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ABSTRACT
A technique was developed for sampling the mountain pine beetle,

Dendroctonus ponderosae Hopkins, several times during its life cycle

for the purposes of estimating within-generation mortality and popu-
lation trend. The sampling technique is based on a criticasl study

of the density gradients of brood in larval and pupal stages, both '
vertically and horizontally around the circumference of infested
trees. The shape, orientationvand size of the optimum sampling unit
were investigated by studies of the spatial arrangement of brood, the
relationship between edge effect bias and sampling unit shape and
size, and by a study of the relationship between totzal sampling time
and sampling unit size. The optimum unit is rectangular, has a width
to length ratio of approximately 1:2, and is orientated with long
sides perpendicular to the vertical axis of the infested tree. Op-
timum unit size was approximately eighteen square inches when samp-
ling was at two height levels on the infested stem. A two-stage samp-
ling technique was most apﬁrépriate for the sampling problem. The
infested surface area of individual trees constituted the primary
unit. Variability of brood density estimates between‘primary units
was most efficiently reduced by regression sampling on primary unit
size. The variance of brood counts within primary units, on the
other hand, was sufficiently reduced by the construction of five within-
primary unit strata. Stratum boundaries were determined on the basis

of the circular distribution of brood counts (around the stem circum-
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ference) and the relationship between brood density and bark thick-
ness. The sampling variances of both attacks and brood counts were
related to their respective means by the equation 52 = agb, where

32 = variance/secondary unit, X = mean brood or attack counts/second-
ary unit and 2 and b are constants. Therefore, the counts had to be
transformed in order to obtain an efficient estimate of the population
variance, Taylor's power transformation, sufficiently removed the
variance-mean relationship. Population totals (which have to be esti-
mated in order to estimate population trend) were obtained by develo-
ping a surface area function to predict infested surface area for in-~
dividual trees; This surface arez function made possible the esti-
mation of partial surface area to any specified height level. The
latter property of the function was utilized to estimate within-primary
unit stratum sizes.

An approximate method of popuiation trend prediction was deve-
loped for general insect surveys. This method is based on an estimate
of brood density from the d.b.h. reéioﬁ of infested trees and on an
estimate of the total infested bole area from a partial surface area
table. Population trend is estimated by forming the ratio of the pro-

duct of total infested surface arez and brood density frem the d.b.h.

level in two successive years.
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INTRODUCTION

The availability of suitable sampling techniqueé is.basic to po-
pulation studies. Intensive studies of insect populations involve the
development of life tables, the determination of the mode of action
and effectiveness of mortality factors and the prediction of popula-
tion trend. These studies must be based on measurements of absolute
populations; that is populations must be expressed in terms of a unit
that cannot change, such as a unit of forest land. Thus, the objec-
tive of developing a sampling techniquebfor intensive population stu-
dies should be to obtain, by a method economical of time and effort,
an estimate of the absolute population for 2 predetermined degree of
precision.

The mountain pine beetle (Dendroctonus ponderosae Hopk.) is an

important forest insect species in which population studies have been
hindered by lack of adequate sampling techniques. The major problem
is that né techniques are available for measuring absolute popula-
tions because there is lack of information on how to estimate the sur-
face area of infested bark. The presently available techniques fof

sampling bark beetlés in the genus Dendroctonus are based upon the

measurement of densities at fixed height levels within the infested
stem of randomly selected sample trees. These techniques give good
estimates of relative populations, but in general, lack the stébili-
ty required for intensive population work.

Bedard and Terrell (1938) developed a method of predicting moun-



tain pine beetle infestation trend in western white pine (Pinus monti-
cola Dougl.) stands. Prediction is based on a sampling system where-
by twenty-five infested trees are selected at random from a group in-
festation and sampling is confined to the bases of the sample trees.
Four 3 by 12 inch bark area units are sampled on each sample tree. The
sampling units are orientated with long sides parallel to the egg gal-‘
leries and located on the four major aspects of the sample trees.
Broods and attacks are tallied on the sampling units and the former
fariable is corrected for "basal examiﬁation", anticipated mortality
and sex ratio. The ratio of the "corrected" number of bfoods and at-
tacks per square foot multipl_ied by the bark area ratio of the aver-
age susceptible tree 2nd the average currently infested tree is used
as an index of infestation trend. The infestztion trend index of Be-
dard and Terrell is simple to use and will give reliable results for
survey purposes. However, the method is limited by "built-inf correc-
tions for mortality and include such unprediétable factors as average
attack and brood density and average infested bark area per tree which
is to occur the following éeason. Further, as sampling is confined to
the bases of the sample trees and as actual infested bark area is not
estimated, the sampling technique cannot be adopted for measuring ab-
solute populations.-

Knight (1959) sampled at the four to seven foot region of twenty-
five randomly selected infested trees to construct life tables and to-
measure trends of Black Hills beetle (D. ponderosae Hopk.) infestations
in pine stands. The selection of sémbling ﬁeight'ﬁas based on the ob-

servation that survival at the end of the beetle!'s developmental period



is lower above 5 feet than 2t the five foot level. When comparing
the efficiencies of three bark area units for a predetermined degree
of precision, Knight found that the 3 by 6-inch and 6 by‘6-inch units’
were more efficient than the 6 by 12-inch unit. Although the 3 by 6-
inch unit wss more efficient than the 6 by 6-inch unit, Knight used
the latter unit because of the large number of zero counts in the for-
mer unit. Two sampling units were taken from each infested tree, one
from the north and the other from the south side, to account for the
circumferential population gradient. EKnight's sampling technique fa-
cilitates 1life table construction znd population trend measurement on
the basis of an easily accessible sampling universe. However, when
using this sampling technique for life table studies one has to assume
that population changes in the infested bole above the point of samp-
ling are proportional to population changes at the four to seven foot
region. Furthermore, the sampling technique cannot be adopted for
measuring absolute populations because sampling is confined to a single
height level and because total infested bark area is not estimated.
Later Knight (19602, 1960b) used his sampling technique to measure
Engelmann spruce beetle (D. engelmanni Hopk.) infestation trend.

To facilitate population studies of the Douglas-fir beetle (D.

pseudotsugae Hopk.) in standing Douglas-fir (Pseudotsuga menziesii

(Mirb.) Franco) trees, Furniss (1962) defined the sampling universe

as the total bark area of the middle four-fifths of all infested

stems within an area of infestafioh. Furniss' definition of the samp-
ling universe was based on the observation thai Douglas-fir beetle
broods are the densest, most successful and least variable between

the fifteen and sixty-five foot levels of the infested stem. Fur-



niss compared two bark area units, a 6 by 12-inch unit orientated with
long sides parallel to the tree axis and a 0.1 square foot circular
‘unit, and found that the former unit gave a smalier estimate of the
number of galleries intércepted but the number of entrance holes and
length of galleries were comparable. On the basis of his observations
Furniss suggested that sampling be located within the fifteen to sixty-
five foot levels on the infested stems but did not elaborate on samp-
ling intensity or on the ménner of sample treé and sampling unit selec-
tion. This saﬁpling techﬁique can be used to estimate within and
between generation changes of Douglas-fir beetle populations but it

is not suitable for tﬁe evaluation of the importance and mode of action
of the various mortality factors.

Shepherd (1962) developed 2 multiple regression technique to pre-
dict within and betweén generation populatioﬁ trend of the mountain
pine beetle in lodgepole pine (P. contorta Dougi. var. latifolia Engelm.
stands. Prediction is based on a sampling technique which involves
grouping of the iﬁfested trees into two strata by dismeter four and half
feet from the ground (d.b.h.) and estimation of attack and emerging
brood totals for individual trees sepafately by multiple regression
equations. All infested trees are sampled in a group infestation and
trees less than or equal to ten inches and thoée greéter than ten in-
ches in d.b.h. c¢onstitute the first and second stratum, respedtively.
Both independent variates, emerging brood and attack totals, are esti-
mated by separate regression equations within the two strata. 1In
trees of the first stratum, sampling is confined to two height levels

whereas in trees of the second stratum it extends to three height



levels. The sampling unit is constituted by a one foot wide band of
bark strip circumscribing the tree at the point of sampling. The in-
dependent variables for estimating emerging brood and attack totals
are defined as emerging brood and attack counts, respectively, with-
in a.one foot wide band of bark area at a given sampling point, Ig
both strata the number of independent variablés in the predicting equa-
tions are equal to the number of fixed sampling points on an'indivi-
dual tree. Thus, the predicting equations for the firsf stratum have
two indepehdént variabies and those for the second stratum have three
independent variatés. Between-generation population trend is predic-
ted by forming the ratio of the estimated number of attacks for two
successive generations and within-generation population trénd by sum-
ming the estimated brood and attack totals over all trees, forming the
ratio of the two sums and multiplying this ratio by an estimate of the
proportion of the emerging femaié beetles in the population. Shephefd's
sampling technique is fast, easy to use and will probablj give suffi-
ciently accurate estimates of the total numbers of aﬁtacks and emer-
ging broed for population trend prediction. However, the stability of
the regression coefficients is considerably affected by the variabi-
lity of attack and brood density gradients in individuzl trees. As
there is considersble between-tree variation in these density gradients
(Shepherd, 1960), the multiple regression sampling technique is not
suitable for intensive population work.

Carlson (1963) and later Carlson and Cole (1965) defined the samp-
ling universe for studying the population dynamics of the mountain pine

beetle in lodgepole pine as a sub-population contained within a two-foot



wide zone at the d.b.h. level of infested trees. This zone is divi-
ded into four quadrants (north, west, south, east) to ensure random
allocation of the sampling units with respect to aspect within the zone.
One-tenth or 0.25 square foot units are used for‘sampling. If 2 0.1
square foot unit is used each of the four quédrants is divided inteo
six four-inch wide levels, producing twenty-four sampling loci. If
a 0.25 square foot unit is used, the guadrants are divided into four
six-inch wide levels, producing sixteen sampling loci. The sample
trees and sample loci are selected at random and the latter sampled
without replacement. The advantage of this sampling method is that
an estimate of the within-tree variance can be computed and within-
tree variancé can be treated as error attributable to replication.
However, a2s sampling is confined to a2 fixed height level, the samp-
ling method is not suitable for the measurement of absolute popula-~
tions. 'Further, for life table studies the sampling plan carries
the built-in assumption that the mode of action and effect of the va-
rious mortality factors are identical or proportionzl to those ob-
served at d.b.h, level.

The main object of this study was to develop a sampling tech-
nigue, based on an analysis of distributional patterns, to measure
absolute popﬁlations of the mountain pine beetle. Secondary o6bjects
were to develop an index of population trend and to attempt to deve-
lop a mathematical model to describe the vertical density gradients

of attacks over the host.



MATERTALS AND METHODS

1l. Description of the study areas.

The study involved both laboratory and field investigations on
three semi-permanent plots, located near Canal Flats and Invermere,
British Columbia, from 1964 to 1967 (Fig.l) .. The Horsethief Creek
experimental area was located 7 miles west of Invermere, in the Horse-
thief Creek valley, at an elevation of 3,500 feet. The forests in
the experimental area were a mixture of lodgepole pine and Douglas fir.
The lodgepole pine averaged 66 years of age, 66 feet in total height,
and 10.3 inches in d.b.h. The Coyote Creek plot was located in the
Lugsier River valley, at an elevation of 4,200 féet, 16 miles south-
east of Canal Flats. The stand was composed of approximately 85%
lodgepole pine, 10% Douglas fir and 5% western larch (Larix occiden-
talis Nutt.) by number of stems. The pine averaged 109 years of age,
78 feet in total height and 10.3 inches in d.b.h. The Elk Creek plot
was located 20 miles northeast of Canal Flats (at the foot of Mt.
Dorman) at an elevation of 3,800 feet. The stand composition was the
same as that for the Coyote Creek plot. Thé pine averaged 103 years
of age, 94 feet in total height and 13.5 inches in d.b.h.

Of the ninety-six sample trees used to develop surface area
equations and tables for lodgepole pine, thirty trees were located
on the experimental plots and the remaining sixty-six trees were taken

from various localities of the Invermere and Canal Flats Forest Ranger



Figure 1.

Map of the experimental area.
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Districts. Stem analysis data on these sixty-six sample trees were
provided by the British Columbia Forest Service, Victoria, B. C. The
sample trees ranged from 29 to 125 feet in total height, from 44 to
212 years of age and from 4.3 to 19.8 inches in d.b.h. and were taken
from the following forest types: Douglas fir - lodgepole pine (FPl),
lodgepole pine - spruce (P1S), and 1odgepole'pine - Douglas fir (P1F).

2. The experimental insect.

2.1. Taxonomic description. As a result of Wood's (1963) revision

of the bark beetle genus Dendroctonus Erichson, the mountain pine

beetle (Dendroctonus monticolze Hopk.) and the Jeffrey pine beetle

(D. jeffreyi Hopk.) have been synonymized with the Black Hills beetle
(D. ponderosae Hopk). ‘Wood's revision was based on analysis of ana-
tomical structures (seminal rod of male genital capsule, surface fea-
tures of the frons and elytral declivity) and biological characters
(character of egg gallery, arrangement of egg niches etc.). Prior to
this revision the three species were separated on the basis of size,
host preference and geographic location.

Recent work, however, showed that D. jeffrevi is a valid species
(Lanier and Wood 1967). In the region where the experimental plots
were located previous works referred to this insect as the.mountain

pine beetle, D. monticolae Hopk.

Dendroctonus ponderosae, monticolae and jeffrevi were described

~ by Hopkins in 1902, 1905 and 1909 respectively. The morphology of
the adult was described by Richmond in 1935 and later Reid (1958) and
Cerezke (1964) studied some aspects of its internal morphology. In-
formation on the life history and habits were contributed by Hopkins

(1909), Deleon et al. (1934), Struble (1934), Richmond (1936), Even-
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den et al. (1943), Struble et al. (1955), Reid (1958a, 1958b, 1961,

1963), and Shepherd (1960).

2,2, Attack pattern and gallery plan. Both the intenéity and spatial
pattern of attacks over the host are reiated to the roughness of.the
outer bark as the attacking female beetle needs a suitable bark scale
or niche to lean against in order to initiate the attack (Shepherd,
1960). In individual trees the density of suitable attack sites per
unit bark area is directly proportional to bark roughness and both

of these variables, invturn, are inversely related to height level.
Consequently, in mass attacked trees, attack density is usually high-
est close to the base and decreases from thereon with increasing height
level. In addition to the well defined vertical gfadients, attack den-
sity differences are often present circumferentially in the lower and
middle sections of infested trees. The circumferential attack density
gradients are the result of the attacking beetles!' reaction to heat

and light intensity. High heat and.light intensity stimulates the beet-
les to fly and, therefore, the cooler and shadier northern and porth-
eastern aspects of the clear bole will usually harbor higher attack
densities than the warmer and lighter southern and southwestern aspecfs
(Shepherd, 1960).

The female beetles construct J-shaped egg galleries which run paral-
lel to the longitudinal axes of the infested trees and average approxi-
mately one foot in length in lodgepole pine. The eggs are deposited in
niches on alternate sides during gallery construction. Upon hatching
the larvae mine feeding galleries at right angles to the axis of the

egg gallery. Larvae from adjacent galleries intermingle but seem to be
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éomewhat reluctant to cross each other's galleries. The result of this
"intermixing" is é characteristic "clumped" spatial arrangement. These
"clumps" are long and narrow and their longitudinal éxes are approxi-
mately parallel to those of the egg galleries. The size and shape of
the "clumps" are influenced by egg and egg gallery density, egg gallery
length, thevd9velopmental stage of the larvae and by the intensity of
action éf #arious mortality factors.

Both the density gradients and "clumped" spatial arréngement have
considerable effect on the variability of broodvdensity estimates and
hence on the sampling problem. |

3. The problem of sampling.

3.1. Characteristics of the sampling problem. The problem of estimat-
ing within and between-generation population levels of the mountain
pine beetle can be divided into two parts; the estimation of total in-
fested bafk surface area in the sample universe and the estimation of
mean brood and attack density per unii bark area. In individual trees,
infested bark area is a function of total and infested tree height and
d.b.h. Therefore, total infested bark area can be éstimated‘by regres—
sion techniques based on tree volume equations, taper curves, form fac-
tors or on form quotients. (Note: tree volume formulae, taper curves,
form factors and form quotients are exXpressions used in forest mensu- -
ration to estimate tree volume. The last three expressions are also
used to describe tree form). On the other hand, the problem of esti-
mating mean brood and a2ttack density is essentially that of sampling
for multiple items. Of the two variables, the coefficient of varia-
tion of attack counts is usually smaller than that of brood counts.

This is because the frequency distribution of the former variable ap-
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pears to bée random (Carlson and Cole, 1965) of regular (Shepherd, 1960)
and that of the latter variable corresponds to the negative bonomial
(Knight, 1959; Shepherd, 1962; Carlson, 1963 and Carlson and Cole,
1965).’ Therefore, when tallying both brood and attack count§ on the
sampling units and when the mean of the former variable is estimated
with a predetermined degree of precision, the precision of mean attack
density will automatically be at least as great as the predetermined
level for brood density. Consequently, it will be sufficient to de-
velop an efficient techniqﬁe to estimate brood dehsity alone.

The precision of mean brood density estimates could be‘consi-
derably increased by controlling the inter and intra-tree variability
of brood counts. The nature of this variability is such that inter-
tree variability of brood counts is greater than that within trees
(Shepherd, 1962; Carlson, 1963; and Carlson and Cole, 1965). The in-
ter-tree vafiability of brood counts is the result of between-tree
differences in the following variables: density of suitable attack
sites, infested bark area, bark thickness, tree resistance, nmutri-
tional quality oftinner bark, proximity to population source and the
surface area/volume (s/v) ratio of the tree stem. All these facfors
but infested bark area, bark thickness, proximity to population source
and s/v ratio have direct influence on brood counts by affecting sur-
vival. Bark thickness affects brood counts indirectly by acting'as
insulater and by influencing the effectiveness of woodpecker preda-
tion. The area of infested bark affects brood counts by limiting
the size of the beetle's sub-cortical habitat and the s/v ratio by

controlling the rate of drying of this habitat. Proximity to the po-
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pulation source may affect brood counts by influencing mean attack
density within individual host trees. The intré-tree differences in
brood counts (intra-tree brood density gradients) are the result of
the attack behaviour and egg gallery constructing hebit of the adult
female beetle, the feeding gallery extention habits of the larvae and
within-tree differences in the circumference/cross-section area (c/a)
ratios due to tree taper.

In individual trees infested bark zrea is a function of 211 those
other variables which were previously listed as affecting the inter-
tree variability of brood counts. Therefore, the infested bark arez
of individual trees is logically the best single varizble for strati-
fication or regression sampling of trees to reduce the inter-tree va-
riability of brood counts. On the other hand, the within-tree compo-
'nent of the variance of mean brood density estimates is expected to be
strongly correlated with bark roughness and aspect. Consequently,
this variance component can be effectively reduced by within-tree stra-
tification on bark thickness and aspect.

3.2. Description of the sample design. The definition (or selection)

of the various components of the sample design was based on the objec-
tive of reducing the variance (increasing the precision) of population
size estimates.

3.2.1. The sample universe. In forest insect sampling it is

helpful to think of the universe, the total of all individuals of the
same kind in a predefined area having a certain property, as an aggre-
gate of hzbitat units upon which the observations zre made. As all

thé mountain pine beetle stages occur under the bark of the main stem
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in lodgepole pine, each infested stem section logically constitutes
a unit of habitat. Thus, for the mountain pine beetle, when the ob-
Ject is to estimate within and between-generationglpopulation levels,
the universe can be defined as the total of all infested stem-sections
within a group infestation or other geographically or arbitrarily de-
fined area of forest land.

In this study the definition of the sampling unit and the selec-
tion of the sampling method were based on the above given definition

of the sample universe.

3.2.2, The sampling unit. The basic unit of sampling was de-
fined as that being constituted by the habitat unit, the individual
infested stem-section, for the following reasons: Firstly, infested
stem-sections are easy to define, list and identify in the field.
Secondly, it is convenient to describe the sample universe iﬁ terms of
these units. Thirdly, it has been shown (section 3.1) that the inter-
tree variability of brood density is'considerably greater than intra-
tree variability. The above given definition of the sampling unit
permits stratification of the sample trees on the basis of external
tree characteristics or regression sampling on infested bark area of
the units, to reduce the inter-tree variability of brood density.

Total enumeration of a sample of infested stem-sections is ex-
ceséively time consuming and a wasteful procedure because of the es-
sentially destructive nature of sampling and, therefore, sampling was
done in tﬁzhstages. Infested stem-sections and smaller bark area -
quadrats constituted the first and second-stage sampling units, res-

pectively. Sampling of the infested stem-sections (second-stage samp-
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ling) was carried out with 8 by-12 inch bark area units. These units
were orientated with long sides perpendicular to the long axes of egg
galleries. The selection of orientation, dimensions and size of the
second-stage unit was dictated by conv;nience in sampling unit deli-
neation and bark removal and by the expectation that certain syste-
matic distortion (bias) of brood counts will be inversely proportio-
nal to the circumference/area (c/a) ratio of the sampling unit. (Note:
Although the systematic determinaztion of "optimum" second-stage unit
size, shape and orientation was 2n objective of this study, the results

were not available until after the sampling has been completed.) v

3.2.3. The sampling method. Selection of the sample waé besed

on a modified two-stage sampling method.

The primary units, i.e. individual infested stem-sections, were
selected at random, with equal probability and without replacement.
This method of primary unit selection was considered more appropriate
than random sampling with replacement and probability proportional to
primary unit size (the alternative primery unit selection considered)
for the following reasons: Firstly, the selection of primary units
with probability proportional to unit size is considerably more dif-
ficult than equal probability selection. Secondly, when sampling is
done with replacement of the units, some units will likely be over-
sampled. Although over-sampling can be avoided by using the same sub-
sample wherever a particular primary unit appears in the sample, this
method gives a rather larger variance than the usual method of select-
ing a new sub-sample at each successive drawing of a primary unit-

(Samford, 1962).
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Sub-sampling of the primary units consisted of taking two sets of
systematic samples, one set from the due North and the other from the
due South aspect, with an 8 by 12 inch second-stage unit. The "aspect
stratification" of the second-stage units was designed to increase the
efficiency of the sample design by reducing that component of the intra-
primary unit variation which is caused by horizontal brood density gra-
dients (section 2.2.). The systematic second-stage sampling consisted
of tallying brood and attack counts on the secondary units at two foot
intervals, from the two foot height level to the uppermost point of
infestaﬁion, wifhih both "aspect strata" of the primary units. Sys-
tematic second-stagevsampling was considered more appropriate than
random selection of the sub-sample for the following\feasons: a) The
development of partial surface area equations for.the host, lodgepole
pine, was one of the objectives of this study and, therefore,rprimary
unit size could not be estimated at the commencement of sampling. The
knowledge of primary unit size is essential for the listing'of the se-
condary units if random selection of the latter units is desired. D)
Even if primary unit sizes are known, the identification and, thus,
random selection of the second-stage units is extremely difficult be-
cause of tree-taper. c¢) The within-primary unit component of the
sampling variance is usually considerably smaller than the between;
primary unit component. Consequently, a nearly unbissed estimate of
the sampling variance ¢an be calculated when second-stage sampling is
systematic (Samford, 1962)., As brood and attack density form definite

vertical gradients, the systematic sample will always be more represen-

tative of the distribution of these variables in the population than
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some random samples. Furthermore, density gradients tend to be more
accurately represented in a systematic sample than in a random sample.
Thus, the former can be expected to give more precise estimates of
within-primary unit mean brood and attack dénsity than a randomly sel-
ected secbnd-stage sample.  On the other hand, a systematic second-
stage sample tends to give an underestimate of the within-primary unit
component of sampling variance (Samford, 1962) and, theréfore, this
variance will be slightly ﬁnderestimated.

Following sampling, a regression technigque and stratification
were used and compared for efficiency in reducing the between-primary
unit component of the sampling variance. The regression technique was
(based on the linearity of the primary unit brood totals vs. primary
unit size relationship. On the other hand, stratification of the pri-
mary units was done on the basis of an "abundance index"; the product
of primary unit size and an estimate of brood density at the breast
height region of the sample trees. The breast height brood density
was used in the "abundance index" because this region supports the
heaviest'broods and is generally considered the most stable single
height level for sampling (Knight, 1959; Carlson, 1963; Carlson and
Cole, 1965). Three primary unit strata were formed by arbitrarily
dividing the "abundance index" range of the units into three parts.

Following sampling the two within-primary unit "aspect strata®
were further sub-divided transversely into three vertical strata each,
This was in an attempt to reduce the intra-primary unit component of
the sampling variance of mean brood density. The vertical stratum

boundaries were established by studies of the brood density vs. bark
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closely related to the mean cannot be analysed without the risk of er-
rors (Beall, 1942). Thérefore, the data have to be transformed: that
is the observations on the original scale are replaced by a function
whose distribution is such that it normalizes the data or stabilizes
the variance. Hayman and Lowe (1961) pointed out that "as non-normality
must be extreme to invalidate the analysis of variance it is better té
concentrate on stabilizing the variance of the samples.” .A correct
transformation for variance stabilization will also ensure the additi-
vity of the variance and, therefore, for practical purposes the dis-
tinction between transformation for normality and that for stabilizing
the variance need not be emphasized (Southwood, 1966).

When the variance changes with the mean, variance estimates based
on the originsl values of the observations will provide a consistent
but inefficient estimate of the pOpuiation variance (Finney, 1941;
Cochran, 1953). This inefficiency arises from the fact that the po-
pulation variance, V, will be inflated due to ﬁon-normality of the

parent distribution. The formula for V is as follows:

4

ve 20 Q + n -1 G,), (Cochran, 1953)
n -1 2n

Where, V = variance of the sampling variance; n = sample size; 0 =

= fourth moment and G, = Fisher's measure of kurtosis. The term in-
side the brackets is the factor by which V is inflated due to non-

normality. For a normal distribution the term (n - l)G2/2n is equal
to zero and may take positive or negative values in other distribu-
tions. The revelance of these observations to practical sampling is

that comparisons of the precision of various sampling methods and the

estimation of sample size for a specified degree of precision should
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involve the use of consistent and efficient estimates of the sampling
variance, When data are transformed to a new scale, which makes the
variance independent of the mean and "normalizes" the distribution of
the transformed observations, the dispersion of the transformed values
will be consistently and efficiently estimated by the sampling variance.
Therefore, in non-normal parent distributions the precision of the va-
rious methods of sampling and the estimatiom of samplé size should be
based on the variance of the transformed values.

In samples drawn from non-normal parent distributions, the arith-
metic mean will a2lso be an inefficient estimator of the pbﬁulation
meen (Finney, 1941). When appropriate transformation is applied to
the data, the central tendency will Be consistently and efficiently
estimated by the mean on the transformed scale. Although the trans;
formed mean will be sufficient for the purposes of most stafistibal
tests, Morris (1955) pointed out that the transformed mean would give
rise to complications in computations of population levels, as well
as in interpretation of the results. The "back transformed" means
(i.e., geometric mean for log. transformation) would be attended by
the same difficulties because they usually underestimate the arith-
metic mean. Therefore, for the purposes of estimating population
size, population and mortality trends, and for life table studies, it
is advisable to present the means in terms of the original variates
(i.e. numbers of insects).

The frequency distribution of brood and attack counts displayed
strong positive skewness and, therefore, studies of the efficiencies

of within-and between-primary unit stratifications and the calculation
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of sample size were based on varianqe estimates obtained from trans-
formed data., Estimates of the popﬁlation mean and total, however,
were given in terms of the original variates (i.e. numbers 6f insects).
When estimating the variance of the population total, the sampling vé~
riance of brood counts was "back transformed" to the original scale.

Two transformations were considered: the logarithmic and Taylor's
power law, and the more efficient of the two was accepted as the pro-
per form of transformation. Efficiency was judged by the success with
which the two transformations removed the variance vs. mean relation-
ship of brood and attack counts.

3.2.5. Pfecision and sample size. The sampling variance of mean

brood density per secondary unit was affected by systematic distortions
of brood counts due to faults in the following experimental procedures:
a) delineation of the second-stage units and b) tallying of broods.

Delineation of the sampling units was done manually with a tem-
plate, chisel and hammer. Consequently, it was difficult to attain
consistency and accuracy in sampling unit area delineation. On smooth
bark surface it was considerably easier to obtain an accurate delinea-
tion than on rough bark surface. Therefore, the "area delineation
bias" of the second-stage units was a function of bark roughness.i On
the other hand, tallying of the brood was carried out simuitaneously
with bark removal and, consequently, some insects were missed or muti-
lated beyond recognition during the debarking process.

In view of the above defined systematic distortions of brood counts
it would have been unjustified to strive for a very high degree of pre-

cision in the estimation of the sampling mean and, therefore, the size
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of the standard error was set at 10% of the mean. Consequently, this
 standard of precision was used for estimating sample size. In esti-
mating sample size, the second-stage sampling fraction was set at 2%
of the size of the primary units for the following reasons: Sampling
is a destructive process and, excessive disturbance of the bark sur-
face may induce artificial brood mortality close to the sampligg unit
boundaries by accelerating the natural drying process of the inner
bark and outer sapwood. In studies of within-generation population
and mortality trends it is desirable that four or five consecutive
samples be drawn from the original sample trees during the life cyclé
of the beetle. Five sets of samples would eliminate 10% of the total
infested bark area, if the sampling fraction was set at 2% for each
sample, Observations on woodpeckered infested trees indicate that a
sampling intensity much greater than about 10% of the infested bark
area would seriously affect brood survival.

The calculation of sample size and the comparisons of the pre-
éision of various modified two-stage sampling methods were carried
out on data collected from ten sample trees, on the Elk Creek plot,
in 1965. This sample was characterized by large within-and between
primary unit variation in brood counts and by large variation in pri-
mary unit size.

3.3. Determination of the orientation, shape and size of the "opti-

mum" secondary unit. As all stages of the mountain pine beetle form

clumped spatial patterns and density gradients (both, parsllel and
perpendicular to the main axis of the stem), these studies were based

on the following interrelations of precision, sampling unit shape,
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size, orientation and population pattern:

If the distribution of individuals in a population is completely
random, the size, shape and orientation of the sampling unit is imma-
terial except from the point of view of convenience and edge effect.
(Note: Edge effect is a systematic distortion of brood counts result-
ing from the consistent inclusion or exclusion of those individuals
which are located on the sampling unit boundaries.) However, when in-
dividuals form "clumped" spatial patterns or density gradients, the
size, shape and orientation of the long, narrow units with respect to
the density gradients, may profoundly affect the precision of the den-
sity estimate and the cost of the sample survey. The nature of this
relationship is such that the precision of the estimate is at minimph
when the size, shape and orientation of the sampling unit are appro#i-
mately equal to those of a "clump" of individuals.

Thus,.for the purposes of sampling the mountain pine beetle (or

2ll bark Beetles in the genus Dendroctonus, in general), the optimum

sampling unit can be defined on the basis of the above described in-
terrelations of precision, cost, sampling unit dimensions and orienta-
tion, and population pattern. The optimuﬁ unit is that which gives
the desired precision of the density estimates at the smallest cost,
or the greztest precision for fixed cost, subject to the restriction
that the circumference/area (c/2) ratio shall not exceed a certain
pre-established limit. The restriction was superimposed on this de-
finition of the optimum unit because the c/a ratio increases logarith-
mically with decreasing sampling unit size and the edge effect bias

of mean brood density is expected to‘be proportional to c/a. Edge

effect bias of mean brood density is one of the important problems of
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sampling sub-cortical insects because a common feaﬁure of all three
presently used sampling unit delineation techniQﬁes. namely; chisei

and hammer, "arch punch" circular "hole saw", is that they destroy or
mutilate 211 individuals located on the boundaries. Consequently, these
individuals may be missed entirely or, on the other hand, the separated
halves counted as two independent individuals. In mountain pine beetle
sampling, the edge effect problem is intensified by the current trend
toward reducing the size of the sampling unit. The primary reasons

for this trend are that: a) sampling is mainly in the lower bole of
infested trees where brood density, in all stages, is the highest and
the 'use of small units will not result in excessive numbers of 2zero
counts and b) there is a tendency to use hole saws and arch punches

for sampling unit delineation and the excessive curvature of small dia;
meter trees necessitates the employment of units of small radii. How-
ever, it was pointed out previously that "edge effect” bias of brood
density is expected to be directly proportional to the ratio ¢/a and,
therefore, minimum sampling unit size has to be established on the ba-
sis of a study of the nature of this relationship.

In this study, the determination of the orientation and shape of
the optimum unit was.attempted through analyses of the relations bet-
ween precision of mean brood density estimates, sampling unit dimen-
sions and spatial pattern. On the other ﬁand, optimum sampling unit
size determination was based on a time study of sampling units of op-
timum shape and on studies of the c¢/a ratio vs. edge effect bias re-
lationship. |

L, ZExperimental Procedure.
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4,1, Techniques of observation. Both field and laboratory studies

were based on quantitative observations taken on the density gradients
of brood and attack counts, the spatial pattern of larvae and on the
external characteristics of sample trees.

The accuracy and precision of various sampling unit shape and sizes
for measuring late stage brood density were studied by sampling forty-
five infested trees with a set of six units superimposed in 2 nested
fashion (Fig. 2). The nested arrangement was designed to reduce that
component of.the intra-sampling unit varizbility of brood counts which
results from differences in the sampling universe when the units are
selected in a ndn-overlaping fashion. The sample trees were selected
at randqm‘from within the Coyote Creek experimental plot. Sampling was
confined to the four-foot height level and to the northern and southern
aspects. The selection of the four-foot height level was based on con-
venience in sampling and on the fact that brood density is usually the
highest and most stable in the four to seven-foot region of the infes-
ted stem (Knight, 1959). The northern and southern aspects, at the four-
foot height level, were known to support different brood densities (Knight;
1959; Carlson, 1963; Carlson and Cole, 1965) and, therefore, sampling at
both of these aspects'permitted the testing of the performance of the
sampling units at two different density levels. The nested lay-out in-
cluded circular, square and rectangulaer sampling units. The longitu-
dinal axis of one of the two rectangular sampling units was orientated
parallel, and the other perpendicular, to the main axes of egg galleries.
In addition to the six sampling units, a seventh, half circumference by

14.4 inchs .unit has been taken from each sampling location. This unit



Figure 2.

Nested lay-out to study the effect of sampling units shape and size
on the precision and accuracy of mean brood density estimates.
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served as a "standard" for comparisons in subsequent analyses. The
sampling unit sizes included in the nested lay-out (6.25, 20.10, 36.00,
56.45, 72,00 and 86.40 square inches) have been selected on the basis
of convenience in sampling and record keeping.. Sample unit boundaries
were delineated by two flexible aluminium templstes, one for the circu-
lar units and the other for the square and rectangular units, (Fig. 3).
The cutting of the boundaries was done by chisel and hammér and 2 wide-
blade hunting knife was uséd to remove the bark from within the samp-
ling unit boundariéS. Owing to the nested arrangement of the sampling
units, bark removal and subsequent tallying were carried out according
to a predetermined plan (Fig. 4). The numbers of late stage mountain
pine beetle brood and attacks, insect predators and parasites, egg gal-
leries and total inches of egg galleries were recorded for each samp-
ling unit. Gallery length was measured to the nearest one-tenth inch
with a flexible steel ruler. A cheesecloth bib,vfaétened to the samp-
ler's waist at one end and to the tree, immediztely below the point
of sampling at the other, was used to prevent accidental loss of brood
during sampling. On June 14, 1964, when sampling began, mountain pine
beetle broods were in third and fourth larval stages. Brood develop-
ment progressed to the fourth instar-pupal stage at the time of the
completion of sampling on July 6, 1964, All data have been converted
to a square foot basis prior to analysis.

Six two-foot long, naturally infested logs were used to study the
magnitude of the edge effect bias of mean density estimates and the re-
- lationship between sampling unit size and sampling variznce. The logs

were cut from the three to five foot levels of six trees located within



Figure 3.

Templates to delineate sampling unit boundaries within the nested ar-
’ rangement.
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Figure 4.

The sequence of sampling unit enumeration within the nested arrangement.
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the Elk Creek experimental plot, on September 10, 1964, The bolts
were taken to the laboratory, there they were end sealed with paraf-
fin, and the brood was allowed to develop to the third and fourth lar-
val stages. When the majority of the larvae reached the desired de-
velopmental stages, the bark was carefully removed from each bolt and
the positions of the larvae marked with map tacks. The top and bot-
tom six-inch bolt sections were discarded at this stage because the
brood suffered excessive mortality in these regions due to edge dry-
ing of the bolts. Following the marking of the larval positions the
surfaée area of each bolt was divided into five, one fifth circumfe-
rence by twelVe‘inch, strips parsllel to the longitudinal axes of egg
galleries. Twelve of these strips‘were selected at random, two strips
per bolt, and the map tack positions traced, separately from within
each strip boundary, to transparent overlays. The overlays, in turn,
were assembled in random fashion, four strips per row and three strips
per column, The larval positions were then retraced from the assembly
of overlays to a siﬁgle, transparent master sheet. Pésitions of the
larvae {measuring 2.4 by 5.5 millimeters) were stamped on this master
sheet with a "larval stamp" made from an ink eraser. The orientations
of the "larvae" were randomized prior to "stamping". The completed
spatial map is shown on Figure 5.

One hundred fandomly selected sample centers were placed on this
spatial pzttern map, inside a three inch buffer zone around the edges.
A set of two, four, eight, twelve and sixteen square inch circular,

- square and rectangular sampling units was taken from each sample cenfv

ter. The sampling unit templates were made of transparent drafting



Figure 5.

Spatial pattern "map" to study the effect of sampling unit shape, and
size on the edge effect bias of brood counts.
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paper and sampling was done by placing the spatial pattern map over a
light table, transposing the templates, one at a time, over the sample
centers and recording thé number of 1arvae entirely within the sampling
unit boundaries and those falling on or touching the boundaries, sepa-
rately. The rectangular sampling units had a width/length (w/1) ratio
of one half and were orientated with longitudinal axes both parallel
and perpendicular to the main axes of egg galleries.

The effect of sampling unit shape and orientation on precision
was explored in more detail, on two additional population maps. These
maps were prepared from the butt section, between the two and five foot
levels, of two naturally infested trees. The "maps," when trimmed to
32 by 32 inch final dimensions, contained densities of 1.21 and 0.27
larvze per square inch. A total census was taken of the larval popu-
lation of each map with a series of rectangular and square units and
the variance of the larval couﬁts was used in subsequent tests of ef-
ficiency.

Nine, three-foot long bolts, three bolts per tree, were cut from
infested trees on the Horsethief Creek experimental plot for studiés
to determine the average size of larval clumps. Bolts were cut from
the one to four foot section of the bole, from half way between the
ground and the base of the crown, and from that pOSition of crown
which supported the longest live branches. The bolts were debarked
in the laboratory and the positions of the larvae and galleries mar-
ked with a red felt pen. When marking was completed, the resulting
pattern was traced to polyethylene sheets wrapped around each of the

nine bolts. The nine spatial pattern maps obtained thereby, were



33

trimmed to thirty-two inch square sizes (Fig. 6). These spatial pat-
tern maps had 2 mean brood density range of 0.043 - 1.217 larvae/square
inch. Complete census was taken of each spatial pattern map with a
series of 1, 4, 16, 64 and 256 square inch square units. Average lar-
val clump size was determined by analyses based on Morisitats (1959)
index of dispersion. This study was carried out within the period from
June 19, 1965 to May 28, 1966.

Spatial pattern maps prepared from the bottom logs of two infested
trees were used to study average clump dimensions. The maps were to-
tally sampled with a series of rectangular units, the long axes of which
were orientated parallel to the long axes of clumps (and egg galleries).
The sampling units were grouped in three series of the following dimen-
sions: series 1-- 1 x1,1x2,1x4,1x8,1x16 and 1 x 32 inches;
series 2-- 2 x 2, 2 x4, 2 x 8, 2x 16 and 2 x 32 inches; series 3-- 4 x
4, 4 x 8, 4 x 16 and 4 x 32 inches. Average clump dimensions were de-
termined by analyses based on Morisita's index of dispersion.

The anzlysis of distributional patterns of late stage brood was
based on the same data which were used for studying the accuracy and
precision of various sampling unit shapes and sizes in estimating mean
brood density.

In order to establish optimum sampling unit size, in terms of mi-
nimum sampling time needed to establish mean densities of late stage
mountain pine beetle broods with a predetermined degree of precision,

a time study was made of five rectangular sampling units. The units
had a w/l ratio of one half and were orientated perpendicular to the

main axes of egg galleries. The following sampling unit sizes were



Figure 6.

A spatial pattern "map" to study the effect of sampling unit shape
and size on the precision of mean brood counts and to study clump
dimensions in relation to brood density.
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studied: eight, eighteen, thirty-two, seventy-two and ninety-eight
square inches. Flexible aluminium templates were used to delineate,
and cﬁisel and hammer to cut, sa2mpling unit boundaries. A wide-blade
hunting knife was used for bark removal. The time study was carried
out at the five and fifteen foot levels and on the northern and south-
ern aspects of thiriy infested trees located on the Elk Creek experi-
mental plot., The times spent in sampling unit allocztion and deline-
ation, bark removal and brood counting, gallery length measurement,
attack counting and in data recording were measured by two stop watches.
One of the stop watches was started immediately prior to sampling unit
allocation and allowed to run continuously until sampling and data re-
cording were completed, while the second stop watch was started every
time a distinct sampling operation commenced, and was stopped on conp-
letion of that operation. This method of time keeping enabled the
sampler to keep a separate time record of each distinct sampling oper-
ation. Furthermore, this method made possible the calculation of the
total time spent on non-sampling operations such as; data recording,
tool handling (including handling and climbing an extension ladder
when sampling at tﬁe fifteen foot level), branch cutting and clearing
the bark surface of loose scales prior to sampling unit delineation.
Thisv"time waste" was calculated by subtracting from the total samp-
ling time, recorded by one stop watch, the total working time spent

in actual sampling, recorded by the second stop watch. In the mor-
ning, and after lunch brezk, on each sampling day, a ten to fifteen
minutes "dry run" sampling excercise was carried out to familiarize

the observer with the tools and the sequence of operations and to al-
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low him to settle down to a éteady speed in sampling. The sampliﬁg ﬁas
carried out by the author from July 2 to July 11, 1965. Data from the
northern and southern aspects were pooled for.subsequent analyses.

The distribution of late stage mountain pine beetle brood around
the circumference of the host was studied on three-foot long bolts, cut
from infested trees located on the Elk and Horsethief Creek experimen-
tal plots. The bolts were cut from the one to four-foot section of the
trunk, from half-way between ground level and the base of the crown
and from the lower crown, at a position where the longest live branch-
es have been located. Twenty-four bolts were obtained in this manner,
three bolts per tree and twelve bolts per plot. The bolts were taken
to the laboratory and their circumference divided into twenty degree
sections, on both ends, from a starting position of due South. The
bark was then carefully removed from each of the one eighteenth cir-
cumference by three foot strips and the numbers of mouﬁtain pine beetle
brood and attacks were recorded. The mountain pine beetle brood was
in the pupal and teneral adult stages ét the time of sampling thch
took place from July 14 to July 21, 1965.

Ninety-six trees, taken from various localities of the Invermere
and Canal Flats Forest Ranger Districts of British Columbia, were
used for developing surface area equations and tables for lodgepole
pine. Data on sixty-six trees were supplied by the British Columbia
Forest Service, Victoria, B. C. The data obtained from the Foreét
Service consisted of diameter measurements, to the nearest tenth inch,
taken at the one and four and half foot height levels and at ten more

equal intervals between the four and half foot level and the top of
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the tree. The author took diameter measurements, to the nearest tenth
inch, at the one, two, and four and-a-half foot levels and at every
two foot interval from thereon. The diameters were converted to cir-
cumference by the following formula: C =D x /7 , where D = diameter,
outside bark (d.o.b.) and # = 3.14,.. The surface area of each trunk
section was calculated as S = ((C1 + CZ)/Z)H, where S = surface area

(sq. ft.), and C. and 02 = the lower and upper circumference of the

1
section in feet, and H = the length of the section in feet. The cu-
mulative total of the surface areas of the sectioné to any one height
level provided the partial surface areas of the sections to any one
height level provided the partial surface area data, and the cumula-
tive total of the surface areas of all sections gave the total surface
area data for the sample trees. In addition to the sectional diameter
data, total height, age and d.b.h. were recorded for the sample trees
and served as independent variables in subsequent regression analyses
of surface area.

The vertical gradients of:attack and brood density over the host,
the relationship between bark thickness and attack density and the re-.
lationship of brood density at the d.b.h. level and overall brood den-
sity were studied on sixty-.five naturally infested trees during the
summers of 1965‘and 1966, These studies provided the basis for the
development of an index of population trend, for testing models to
estimate mean brood and attack densities within individual hosts and
for inter- (and intra-) tree stratification of brood densities when
comparing the precision of various sampling techniques. Forty-three

trees were felled and sampled on the Horsethief Creeck experimental
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area, twenty-eight in 1965 and fifteen in 1966. On the Elk Creek plot
a totzl of twenty-two trees were sampled, ten in 1965 and twelve in
1966. The twenty-eight trees sampled in 1965, on the Horsethief Creek
experimental plot, were felled on September 19, 1964 to prevent wood-
pecker predation of the mountain pine beetle brood. The rest of the
sample trees were felled immediately prior to sampling. Sampling com-
menced when brood development reached the fourth larval and pupal stages.

Sampling was done by removing an eight by twelve inch bark area,
at two foot intervals, from the northern and southern aspects of the
sample trees. The lowest sampling point was taken at the two foot le-
vel, and sampling continued up the stem to the uppermost point of in-
festation, This point was ascertained by removing the bark to a level
four feet higher than the level of the last recorded attack. The longi--
tudinal axes of the sampling units were orientated perpendicular to the
main axes of the egg galleries. The following data were recorded for
each sample tree; age, total height, infestation height, crown width,
crown length, the width of the last five and last ten growth rings at
one foot stump height and the sum of the distances to the three nearest
neighbours greater than four inches in d.b.h. The following data were
collected on the sampling units: combined thickness of the outer and
inner bark, number of attacks and brood, total gallery length and to-
tal inches of resin soaked galleries, and number of insect parasites
and predators. Some of the variables recorded were not used in the
present study but were retained for future investigation of the popula-
tion dynamics of the mountain pine beetle.

Bark thickness was measured to the nearest thirty-second inch,
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with a caliper, and the measurements were converted to millimeter scale
prior to analysis. Each time the bark was being removed from a samp-
ling unit; a section (about four square inches in area) was retained,
.from close to the center of symmetry, and measured at its thickest

part (perpendicular to the run of bark ridges where these were present).
Gallery length was measured, to the nearest quarter inch, with flexible
steel rulers. Tree height, infestation height, crown length and width,
and the distances to the three nearest neighbours were measured, to the
nearest half foot, with a hundred foot long steel chain. Tree age wés /
ascertained by counting the number of growth rings from the pith to the
periphery of one foot high stumps and by correcting these counts for
stump height using a correction of 3 years. Age correction was based

on B, C. Forest Service site curves and correction tables for boring
heizht (Forestry Handbook for British Columbia, 1959). The widths of
the last five and ten growth rings on the stump were measured to the
nearest thirty-second inch, in four places, at ninety degree intervals,
and the average of the four measurements was recorded on the data sheets.

4,2, Statistical techniques and handling of data. Detailed descriptions

of only special statistical concepts and techniques are given in this
section. Standard statistical tests are described without giving the as-
sumptions underlying their use.

4.2.1. Calculation of sample size for various samoling unit shapes

and sizes drawn at random from "population maps". As the means, obtained

by units of various shapes for a fixed size were slightly different be-
cause of random variation, direct comparison of the sampling variances

was not a reliable method for evaluating the efficiency of different
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sampling unit shapes. Therefore, sampling unit shapes were also com-
pared by calculating the number of sampling units (of a certain shape
and fixed size) needed to establish the mean with a predetermined dég-
ree of precision, Sampling was done by replacement and sample size,

n, was calculated, assuming simple random sampling method, as follows:

2 _2
n= (tp/k) x (s/%) (1)

When, n = sample size, t = Student's "i" parameter, p = probability
level, k = constant, s = standard deviation X = mean. Sample size
calculated for 2 half confidence belt of .1X and p = .Ol.

4,2.2. Calculation of relative efficiency. Efficiency (E) of a

sampling unit is defined as the reciprocal of the product of the cost
per unit (C) and the squared coefficient of variation (CV) (Freese,

1962). That is

E = 1/(c)(cV)” | (2)
The relative efficiency (REi) of the i-th unit (Ei) relative to
the "standard" unit (El) is defined as in the following eguation:
2 2

RE, = E_/E, = (C))(CV)) /(C,)(CV) (3)
As mean density and cost per unit were held constant (the latter only
approximately) byvholding sampling unit size constant in these ex-
ﬁeriments RE was simplified to the following expression:

RE, = 5./5. @)

2

Where, Sl = variance of the "standard" unit and S2 =

i= variance of the

i-th unit. This formula was used to compare the g£fficiencies of samp-
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ling units of various shapes and orientations.

4.2.3. The Id index of dispersion (Morisita, 1959). This index

is applicable for analyses of distributional paﬁterns. Id will take
a value of unity if the individuals are distributed at random over the
area. When the distribution of individuals is uniform, Id wili take
a value smaller than unity, and when the distribution of individuals
is contagious, the Id value will be greéter than unity. Id is defined

as follows:

2
1a = S0 = 1) qgpy (5)
(Sfn)?- Sfn

Where, n = frequency class midpoint (number of individuals), f =
frequency and S = sum over gll sampling units.

The significance of the departure from randomness of Id values
greater than‘unity may be tested by the following formula with Sf - 1

and «® degrees of freedom.

_ Id(sfn - 1) + Sf - Sfn (6)
sf -1

Where, © = infinity and F = Fisher's F statistic.

F

' Significance of Id values smaller than one was tested by the de-
parture of the variance/mean ratio from unity with the following for-

mula: )
52 = (2/(n - 1), ' )

Where, Si»= standard error of the mean and n = sample size.

Id is affected by sampling unit size when the distribution of L
individuals is uniform Id increases from zero to unity with increasing
sampling unit size. When, however, the distribution of individuals

is contagious Id will either stay constant or increase to a sampling
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unit siie not much smaller than the "clump" sizes, and beyond this point
the index value will approach unity. When the intra-clump distribution
of individuals is at random, Id will stay approximately constant, with
increasing sampling unit size, up to 2 point where the unit and the
clump will be equal in area. Id will increase to the same point, with
increasing sampling unit size, when the intra-clump distribution is uni-
form. Morisita showed that Id can also be used to find the approximate
size of the clumps by plotting Id(a)/Id(ma) (where Id(a) is the Id va-
lue of sampling unit size a2 and Id(ma) is the Id value of sampling unit
size ma.) for each sampling unit size taken as ma. The peaks in the

Id(a)/Id(ma) curves will correspond, approximately, with mean clump

size.

4.2.4, Determination of optimum sampling unit size: Optimum sam-

pling unit size was established by plotting the total sampling time (T)
over sampling unit size. Optimum sampling unit size corresponded with
minimum total sampling time on the T vs. sampling unit size free-hand .
graphs., T was calculated as follows:

T(hours) = (sample size) X (sampling time (hours)/unit) (8)
Sample size, g,vwas calculated, for a probability level of p = 0.99,
for each unit at two height levels assuming simple random sampling.
Sample size, n, was calculated as in equation (1), In this method of
optimum sampling unit determination, it was assumed that sampling is
multivariate and that number of attacks and gallery length, besides
number of brood, will be tallied on the sampling units. Sample size,
however, was calculated only for brood data because, of the three va-

riables, brood counts have the greatest variability.
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4.2,5, Analysis of circular distributions: The density gradients

of attacks and late stage larvae around the stem circumference was stu-
died by the concept of circular distribution.

Circular distributions are a special kind of two dimensional dis-
tributions, where the total probability is spread out on the circumfe-
rence of a circle (Batscelet, 1965). Asvordinaryvdistributions on a-
straight line are usually described by their moments, the circular dis-
tributions are described by trigonometric moments. The first trigo-
nometric moment, the mean, is a vector quantity. The length of the
mean vector can take up positive values between zero and one and has
a mean angle. The mean vector length (rl) and its angle (/&l) are de-
fined as follows:

n 2 1l n
r =\/(—l- S, sina,) + (= S cosc)t.)2 (9)
1 n i i n ji=1 i

= i=

1 n '
cosA. == S sina /:c‘1 (10)
i n i=1 - i -

Where, o, is the izth class interval.
The measure of dispersion, called mean angular deviation (s), of the

circular distribution is defined as follows:

s =\/ 2(1 - o) (in rodians) (11)

If the value of g is not greater than 50°, approximately 67% of the
observations will fall within the limits "mean + s". If, however, s
is greater than 500, the percentage valﬁes contéined in that inter-
val decreases gradually from 67% to 45%. The measure of skewness (g)

is defined as in the following equation:

g=r, sin(zj\l - AZ) (12)
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Where, r, and 4&2 are defined as T, and A‘l by substituting 2« . for
i

in the appropriate equations.

=i
The significance of the concentration of the observations toward
the mezn direction can be tested by the following statistic:
2 = nr’ (13)
Critical values of z are tabulated for the 1% and 5% levels of signi-
ficance (Batscelet, 1955). This test is valid only for unimodal dis-
tributions. The h2lf confidence interval (_f_) for the mean angle, for

1% significance level and n greater than 15, can be calculated as fol-

lows:

22

cos€¢ =N\/nr - X %/nr (1)

Where, zf denotes the upper critical value of 53 with one degree of
freedom and significance level p.

4,2,6, Taylor's power law. Taylor's power law (Taylor, 1961,

1965) expresses the relationship between variance (sz) and mean (¥)
and holds for distributions from regular through random to highly
aggregated. The law is expressed by the relationship:

=y | (15)
Where, a and b are constants (a is a sampling factor and b appears to
be a true index of aggrégation characteristic of the species), gi and
y are defined earlier.
The parameters of equation (15) can be found by transforming the (sz,§)

pairs of observations to logarithmic scale and by fitting the following

least squares equation to the transformed data:

1oglo(s2> = log (a) + b log, |3 (16)
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4,2.7. Tayvlor's "Z" transformation. The "Z" transformation is

based on the assumption that the relationship between variance and mean
follows Taylor's powér law, If this assumption holds, the appropriate
variance stabilizing function, f(y), is of the form:

557012 4

f(y) =Q a7

Therefore, the transformed observations will take the following form:

Where, Z = transformed value of an observation; y = observation on
original scale; b = Taylor's power constant; Q = integral constant;
-;= integral sign.

L,2.8, Estimation of the gain in precision of the inter-primary

unit component of the population total due to stratification and reg-

ression sampling and that of the intra-primary unit variance component

due to stratification. Since the primary units were selected without

replacement and with equal probability, the following variance of po-

pulation total estimator was used for calculating precision (Samford,

1962):
2.2 2 2 2

Py =N¥ sy - £) + N M550 - 1) (19)
n n n

J
Where, sz(Y) = variance estimate of the populétion total; N = number
of first-stage units in the population; ﬁ = population mean of the
number of secondary units per first-stage unit; n = sample size of
first-stage units; fl = first-stage sampling fraction; f2 = second-~
stage sampling fraction; M = number of second-stage units in the j-th
primary unit; s§ = within-primary unit variance for the j-th primary

unit; mj = gecond-stage sample size in the j-th primary unit; Sn = sum
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2

over '"n" primary units and sb = between-primary units variance and is

defined as: 2 >

1
s? = s — (20)
b n-1 D M
§ . = mean of the "m" secondary-units in the j-th primary and y = over-

mJj
21l sample mean per second-stage unit. The second term on the right

hand of.equation (19), following the equation sign (sis), was modified
to allow second-stage stratification of the units. The modified form

is as follows:

2 2 2
= - 2
s st sn(Sk Mij Sij (1 fZij)/mij) (21)

Where, Mij = number of second-stage units in the i-th stratum of the

J=th primary unit, mij = sample size of the secondary-units in the i-th

stratum of the j-th primary unit, s?,
i

J
variance and sampling fraction in the i-th stratum of the j-th primary

and f_. ., respectively, = the
213

unit, Sk = gum over "k" number of strata and si N = within-tree samp-
S

ling variance for stratified samples.

The efficiency of the within-primary unit stratification was cal-

as a 4 of s> . That is:
WS

. 2
culated by expressing Sust

2
wst

B() = 100 (s2 /sZ,,) (22
In calculating the within-tree variance component of the population
total, the factor (1 - f2ij) was ignored. Further, it was assumed
that a total census was taken of the primary units and, therefore, the
factor N/n was equated to unity.

The expression for calculating the inter-primary unit component

of the sampling variance from a simple random sample of the primeries
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(sgr) was rewritten to permit the estimation of this variance component
from a stratified random and a regression sample of the primary units.
For the stratified random sample, the inter-primary unit component of

2
the sampling variance (sbst) was calculated from the following expres-

sion:
2 1 s (L-¢£) (23)
2 o= i Spy - .
sbst =M Sk L 11
2 i
Where, Spi between-tree variance in the i-th stratum, n, = sample
i

size in the i-th stratum, Ni = total number of primary units in the
i-th stratum and the other notations are as defined previously.
For regression sémpling of the primary units on primary unit size;

the between-primary unit variance component of the population total

2
(Sbre)’ was calculated as:
-2
2 NZM SZ‘ 1
s = X,y (1 +2)(1 - £) (24)
bre n n 1
2

Where, s = variance of the estimste and the other notations are as

oy

defined previously.

4,2,9, Estimation of sample size from the sample design. The

appropriate variance of mean formula, when the primary units are un-

equal in size, is

2 2
'sf = Eg - EE (samford, 1962) (25)
Jv n N .
Where, 5 2(1 o)
‘ _ Ms S. - .
s?=s%+ (1/NM2) s _J°73 23 (26)
c b n m
‘ 3

- and the other symbols are the same as defined previously.

From formula (24) sample size may be calculated if the first stage



sampling fraction is known in advance or if all TJ are equal.

2
For the purpose of estimating sample size, the individual Ei

‘ 2
values were replaced by the pooled variance, Sp, in equation (25).

Thus, the second half of this formula, after the equation sigh, changes

to
2
S ( ’jt? - % ) (27)
P M M
2
S, (m,, -1) s
= k .
Sp = Sp —— 43, (28)

Sk(mij‘l)
Where, the symbols are the same as before.
The sampling variance was estimated from data transformed by Taylor's
Z transformation and, therefore, the following condition was specified
in mathematical terms: The standard error on transformed scale must

correspond to 10% of the méan on the original scale. That is:

o = (G - (@ - 0%+ (A +0.1F° - G)®)

y : 2 # (29)
Where, s§ = required standard error on transformed écale, X = popula-
tion mean estimate on original scale, ¢ = (1 - b/2) = Taylor's Z trans-
formation constant and p= (1002%/? = "back transformed" mean (iﬁ) as
a % of X.

4,2,10. Calculation of the standard error of mean brood density

per secondary unit on original scale. The standard error of the '"back

transformed" mean (the equivalent of the geometric mean for log. trans-

formation) was calculated by the following formula.

o = NG, * 59 - \[Fp + (N7, - \fF, - =)
: 2

(30)
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Where, s = standard error of "back transformed" mean, ¢ = (1 - b/2),

b = Taylor's power constant, §w = mean on transformed scale.

Formulae (30) is the mathematical equivalent, for Taylor'é Z transfor-

mation, of the method described by Morris (1955) for calculating the

standard error of a geometric mean. Further, this formula defines

the inverse of the operations defined by equation (29). The standard

error of the mean on the original scale (si) was calculated from Sz

by multiplying the latter by the ratio ‘;EW/E. That is o
53 = (iﬁ/i)siw (31)

Where, EW[E = the ratio of the "back transformed" mean apd the mean

on the original scale and the other symbols are as defined previously.

In formula {(30), s§ was estimated by the equation:

2
5 1 f. 2 2
= = X = - S M .s,.{1 -~
g = 21+ A - ) + __2’Mjé (S 553 5¢ fZij)/
n
mij) (32)
Where, si = varience of estimate and the other symbols are the same

as before.

This formula is a modification of Samford's (1962) equation (8.22) for
regression and stratified sampling of the pfimary and secondary units,
respectively. The estimate of.fiﬁgiven by formula (32)is slightly
biased because the variables Mij and M are treated as constants. (Note:

Mij and E‘were estimated by regression techniques.)

4,2;11, Estimation of population total and population mean per

second-stage unit. The population mean per second-stage unit was esti-

mated by the following formula:

% =5, (5, 57, /8,824 ) (33)
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Where, ?ij = the mean of the i-th stratum within the j-th primary unit
and the 6ther symbols are the same as defined earlier.

The population totzsl was estimated by multiplying g with the pro-
duct of the number of primary units in the population (N) and average
primery size (M). That is

Y= ()X K | (34)
Where, ¥ = estimate of the population totzl.

4.,2,12., Estimation of the variance of the population total. Esti-

mation involved finding the variance of the product in equation (34),
where ﬁ and z are variables and N is a2 constant. The variance of NE

was calculated as:
2, 22
ST(NK) = N's2 (35
2, — . -
Where, S (Nx) = variance of the product Nx.
ﬁ was calculated as the product of the "mean" proportion of infested
surface area/tree (p) and average surface area/tree (3). Therefore,
” .
S (M) is estimated as in equation (36).
2,— 2,6 2 2 )
= —/ -2 + s_./.__ 6
sT(M) =M (sp/pz s5/<2) (36)

2 2
Where, 55 and s_ are the variance estimates of P and &, respectively.
a

The variance of p was estimated as:

2= R (l"‘+%;)(x§(l—x—)

<= g P ), (Appendix B)  (37)
py.x x,1 - %)
Where, SE = variance of D, s2 = variance abogt the regression of p
p ]
on fp’ X = infested height/total height, n = sample size for regres-

sion equation, n1 = number of primary units in the sample, x§ = Sﬁwixbi/

/s W., W = (Ht. x d.b.h.) and X = 0.5.
1 i B o)
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The variance of sé was estimated by the following equation:

2 2 . 2 v
S_ = s (-l- +1 —%_) ., (Steel and Torrie, 1960) (38)
a yox 0y no g XZ _
N , .
2
Where, sy x = variance about the regression of total surface are on
(D.b.h. x Ht.), n = sample size for regression, n. = size of the sample,

1
2
X = squared difference between the regression mean and the sample mean
2 . .
and SNx = sum squares of the (D.b.h. x Ht.) values for the regression
equation, -

The variance of Y (equation (32)) was estimated by applying the variance

of the product formula to the independent components S2(N%) and S%(H).

4,3, Model building concepts and technigues.

4.3,1. Bxperimental determination of the edge effect bias of mean

brood density (I #). In order to experimentally determine L %, one
C c

hundred sets of circular, rectangular and square sampling units were
drawn, at random, from a "spatial pattern map" (Fig.5). The number of
larvae f£31ling entirely within the unit (I) and those falling on the
circumference (C) were recorded, separately, for each sampling unit
shape-size combination considered.

The best estimate of the larval counts on the k-th trial of a sampling

unit (k = 1, 2....100) was obtained by the following exXpression:

Q

- Tk o+ v
o Ik (39

Thus, in terms of the above defined expression the "true" mean density

estimate (x) can be defined as in equation (40).

100 100
sc S I

z =kl® + k=1 K
200 100 (40)

Where, S = sum.
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Then, the biased density estimate resulting from the inclusion
of all individuals from the sampling unit boundaries (X ) will be as

"in equation (41), 2nd the biased density estimate resulting from the

"
exclusion of all individuals from the circumference (X ) will be as

in equation (42),

100
S(Ck + Ik)

= _ k1
= 5]
* 100 ()

100
SI
k
_n .
x =xL | (42)
100

Further, the over and under estimation of mean density resulting

from edge effect will be given by equations (43) and (44), respectively.

w1
]
+
i
ar’

—
X -

200 (43)

- - k ’

X -%=.k1 (44)
200 _

Therefore, L (in %) relative to x, the "true" mean density esti-
c

o

mate, is given by equation (45).

100
sC
=1 k 100
S Ck
L =100| 200 |=[icl (45)
X \ 2x

Where,l |designates absolute value.
An Lc% was calculated for each plammed sampling unit size-shape

combination as in equation (45). The calculated Lc% values then, were

plotted over sampling unit size (A ), separately for each selected samp-
5
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ling unit shape. In order to calculate the equation of Lc% on A ,
< S

both of these variables were transformed to common logarithms and a

least squares linear regression line was fitted to the transformed

values.

4.3.2. Assumptions for the mathematical model expressing the re- -

lationship between 1%, sampling unit shape and size, and the size of

an_average larva. This model was based on the following simplifying
assumptions: a) The sampling unit circumference bisecté the vertical
projection of a larva at random, relative to the insect's orientation.
b) The proportion of sampling unit circumference occupied by insects
is approximately equal to that occupied by insects of the sampling
unit area. c¢) The edge effect bias of mean brood density is directly
proportional to the c¢/a ratio of the sampling unit.

4.3.3. Mathematical model to express attack intensity as a func-

tion of bark thickness. The development of the mathematical medel was

based on the following assumptions:
a, At any given level of the attacking population mean attack
density, at any height level, will be directly proportional
to the meén number of suitable attack sites per unit bark area.
b, The number of suitable attack sites per unit bark area is
indirectly related to bark thickness through bark roughness.
¢, . The density of suitable attack sites will asymptotically
approach an upper limit with‘increasing bark thickness.
As no reliable methods are availsble to identify suitable attack
sites on the bark surface, the combined thickness of the inner and outer

bark was used as the most important independent variable in the mathe-



5k

matical model. Further, it was postulated that the mode of influence
of bark thickness on attack density was subject to modification by tree
fesistance and height above ground level, Accordingly, in mathematical
terms, we could write

Y=7¢ (Xl'xz’XB) (L6)
Where, Y = attack dgnsity, X1 = bark thickness, X2 = proportion of un-
successful egg galleries (an expression of localized tree resistance)
and X3 = height above ground (ft.). Further, in accordance with the
predgfined assumptions the rate of change of Y with respect to Xl

will be as in equation (47);

¥ - p(vnax - 1) | (47)

*

Where, dY/Xm = first derivative of Y with respect to Xl, b = constant,

Ymax = the maximum value of Y and Xl are defined as in equation (46).

Equation (47) integrates to equation (48).
Y = Ymax(1 - ¢~P%1) (48)

This basic equation may be conveniently written as in equation (49),

Y = Ymax(l - 107° x1) | (49)

by replacing the natural logarithms with logarithms to base 10. Equa-
tion (49), can be transformed into linear form as in equation (50).
LOGlO(Ymax/(Ymax -1)) = b'X (50)

1
Thus, if equation (48) describes the relationship between Y and Xl

adequately, then the plot of LOGlO(Ymax/(Ymax -Y)) on X, yeilds a

—

straight line with slope = b and zero intercept.

The appropriateness of equation (49) to describe the attack density
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vs. bark thickness relationship was tested by experimental data. The
experimental data consisted of gradient samples of both attack density
and bark thickness. These variables were recorded at two foot inter-
vals, on the northern and southern aspects of infested trees. Sampling
commenced at the two foot level and continued to the upper most point
of infestation. Sampling was done by a 96 sq. in. rectangular sampling
unit which was orientated with long sides perpendicular to the egg gal-
leries. Forty-three trees have been sampled in this manner on the
Horsethief Creek plot, twenty-eight trees in 1965 and fifteen trees in
1966. On the Elk Creek plot similar data have been collected from ten
trees in 1965.

Attack density was summarized by 1/32 inch (0.79 mm.) bark thick-
ness classes, and a mean attack density was calculated for each class.
There was an unequal number of observations in the various bark thick-
ness classes because the logarithm of bark thickness, rather than the
arithmetic values, was inversely proportional to height above ground
level. Consequently, in the higher bark thickness élasses there were
fewer samples than in the smaller bark thickness classes. Whenever
a particular bark thickness class contained less than three observa-
tions, this class has been combined with the immediately greater class
for subsequent analysis.

Ymax in equation (50) was solved by an iter;;ive technique. The
Ymax value that maximized the correlation coefficient was considered
to be the correct value. Then, weighted linear regression lines were
fitted to the transformed values of the experimental data. The mean

attack density values were weighted by the number of observations in
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the various bark thickness classes.

| To test the modifying influence of tree resistance (Xz) and height
above ground level (X3) on equation (50), it was expressed in the fol-
lowing form:

L0Gy ~{¥max/(Ymax - Y)) + a
b = 20

X (51)

Where, a = intercept, b = slope and Y, Ymax, and Xl are the same as for

equation (50). For testing, the data was resorted on X2 and, then, on

X, and b was plotted against these independent wariables.

3

4.3,4, Surface area equations for lodgepole pine. Stem surface

area of individual trees is a function of stem volume and, therefore,
the former variable may zlso be estimated by methods similar to those
used for estimating stem volume. Total stem volume of individual trees
is well described by mathematical expressions of the stem volume-
diameter-height relationship. This relationship is expressed in - various
forms, on both arithmetic and logarithmic scale. Arithmetic solutions
tend to be more precise (Spurr, 1952) and less biased than logarith-
mic methods (Cunia, 1964) and, therefore, the former methods are pre-
ferred. The most commonly used arithmetic volume functions express

the stem volume-diameter-height relationship in terms of the stem pro-
file (or taper curves); a reference cylinder volume or in terms of
field measures of d.b.h. and total height. The quantification of ta-
per curves requires the use of polynomials or ratios of polynomials
(Grosenbough, 1966) and, therefore, this method will likely lead to
complicated volume (and surface area) integrals. The reference cy-
linder volume method involves the calculation of a form factor and

will, in general, afford accurate estimates of total tree volume.
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Heger (1965) and later Stanek (1966) achieved excellent results in
estimating the form and volume of lodgepole pine trees with Hohenadl's
method of stem form and stem volume estimation. Unfortunately, the

’

calculation of form factors require a diameter measurement on the upper
stem, in addition to thﬁ measurement of d.b.h. The measurement of up-
per stem diameters is time consuming and troublesome, therefore, the
advantages offered by the '"reference cylinder" volume estimation methods
tend to be eclipsed by the additional effort required for sampling, re-
lative to the sampling effort needed to establish volume functions based
on field measures of only d.b.h. and total height.

In this study, total surface arez of individual trees was estimated
by regression techniques based on total cubic foot volume functions.
Two general stem.volume equations were used as models for the develop-
ment of surface areaz functions.

The stem volume equations were as follows:

v
t

a + b(p4I) (52)

and

vt DZ/(a + b/H) (53)
Where, Vt = total stem volume/tree, D = d.b.h., H = total height and

a and b are constants.

The former equation is the widely used "combined variable" total cubic
foot function and the latter equation is the new "transformed varigble"
function proposed by Honer (1965). Spurr (1952) achieved excellent re-
sults in fitting the combined variable fqrmula.and concluded that the

function (V = a + D2H) "cannot be significantly improved by the addition

of other variables." These conclusions were verified by Smith et al
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(1961), Golding and Ha2ll (1961) and Kirby (1968). Smith and Breadon
(1964) and Kirby (1968), showed that the combined variasble equations can
be converted to volume/basal area ratios for point sampling. The combin-
ed varizble formula tends to over estimate tree volumes in the small
d.b.h. classes (Spurr, 1952; Golding 2nd Hall, 1961) but gives excellent
volume estimates for the medium to large d.b.h. range. For lodgepole
pine in Alberta the critical d.b.h. class is approximately 3 inches
(Kirby, 1968). Honer (1965) demonstrated that the "transformed vari-
able" function (equation (52)) gives good estimates of stem volume for
all d.b.h. classes and, at the same time, stabilizes the variance about
the regression line,
The general surface area equations were derived from formula (52)

and (53) by substituting D for D>. Thus

s, =a' + b (DH) (54)
and ,

s, = D/(a"' + b' /H) (55)
Where, St = surface area, a' and b' are constants and D and H are as
before.

The bole area function suggested recently by Whittaker and Woodwell
(1967) has the same general form as equation (54) but these workers
used the basal half circumference of the bole (instead of d.b.h.) as
a second variable to total height, in their "conic surface" equation.
Prior to analysis, equation (55) was re-arranged as in equation
(56) to permit linear least squares regression fit.
D/s, =a' + b (1/H) (56)
The estimation of partial surface areaz was based on Honer's (1964)
method of merchantable cubic volume determination. Honer and later

Smith and Munro (1965) demonstrated that the section volume (Vs)/total

»
o
b
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volume (Vt) ratio can be estimated with a high degree of accuracy by

regression equations which express Vs/Vt as a function of the section

height (AH)/total height (H) ratio.
The partial surface area (Sp) of individual trees was estimated ‘as in

equation (57).
S =5 f(AH/H) (57)
P t

Where, f = functional notation and Sp,St,ZSH and H are as defined
previously. The (llst/St) ratio was estimated from the following mul-
timple curvilinear regression:
Ast/st = 2 + b(AH/H) + c(aA H/H)z + cl(AH/H)3 ,(58)

Where, a, b, ¢, and d are constants,ASt = section surface area and the
other symbols are the same as before.

Equation (58) was fitted to section surface area data by elect-
ronic computer and the best two independent variables were formed by

the "all variable combinations" method. After eliminating the least

significant independent variable from equation (58),-Ast/st was sub-

stituted for f(AH/H) in equation (57) and a "partial surface area table"
was calculated for lodgepole pine in the fashion of "merchantable" cu-

bic volume tables.
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EXPERTMENTAL RESULTS

1. Studies of the relationship between the shape, size and orienta-

tion of the sampling unit, the spatial pattern of late stage larvae

and the accuracy and precision of mean brood density estimates.

1.1. The relationship between the size and shape of the sampling

unit and its circumference. The relationship is shown on Figure 7.

It is presented in such a manner as to show the change in the circum-
ference/area (c/a) ratio with changing sampling unit shape. The rec-
tangular units shown, had a ﬁ[l ratio of one quarter. The equations
for the curves are based on the circumference formulae of square,
circular and rectangular plane geometriczl forms and were derived as
follows:

If a represents sampling unit area in square inches, ¢ circum-
~ ference in inches and 7= 3.14..., then the circumference, in terms
of sampling unit area, is gicen by equations I, II, and III for square,

circular, and rectangular units (w/l = 0.25), respectively.

c = bVa ' (1)
c=2\/77—é (IT)
c = 5\/a (I11)

Dividing both sides of these equations by a, the following relation-

ships are obtained.
av)

Bl|=

(V)

)

ﬁnm
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c/a =

£

) ‘ A (v1)
Theée last three equations were then solved for various values of gz
and expressed in graphical form (Fig. 7).

It is apparent from Figure 7 that both sampling unit size and
shape considerably affect the g[g ratio, Of 3l1l1 shapes, circular units
have the sm2llest and rectangular units the greatest c/a ratio for any
fixed size. The ¢/a ratio of thé rectangular units increases with de-
creasing w/l ratio. Further, the c/a ratio drops sharply with increas-
ing sampling unit size, from zero to 2bout twelve square inches, for
all sampling unit shapes. For sampling units greater than about twelve
square inches, the rate ofvchange in the g[g ratio with respect to samp-
ling unit size becomes more gradual. Equations (IV) to (VI) indicate
that the nature of the ¢/z ratio vs. 2 relationship is such that, on
logarithmic scale, the rate of change of the former variable with res-
pect to unit size is constant for all Sémpling unit shapes (on log-log
scale equations (IV) to (VI) have identical slopes).

1.2, Theoretical and experimental determination of the relation-

ship between sampling unit shape and size and the edge effect bias of

mean brood density. _The mathematical formulze, to describe the edge
effeét bias vs. sampling unit size relationships for varioué sampling
unit shapes, were derived on the basis of a set of simplifying assump-
tions (section 4.3.2,,Materials and Methods) in the following manner:
Let D = "true" population density per unit area, a = average width
and b = average length of an insect, Ai = (2)(b) (cross-sectional area
or vertical projection of an average individual) and As = sampling unit

size (in the same unit of measure as Ai)‘ Then the proportion of a unit



Figure 7.

Theoretical relationship between the size and shape of the sampling
unit and its circumference.

Figure 8.

Relationship between the precentage edge effect bias of brood density
and sampling unit size for various sampling unit shapes.
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circumference occupied by insects can be expressed as DAi, and the num-
ber of insects bisected by a unit circumference will b;_gaual to DAi/
VI; =D Vﬁ;, where\JK; is the gveragé "diameter" projected by an in-
sect on the circumfer;;ce. Further, as circumference, in terms of
sampling unit area, is expressed by equations I to III, the average
number of insects (C) bisected by the sampling unit éircumference will

be given by equations VII, VIII and IX for square circulsr and rectsn-

gular units, respectively.

C = u4p /A, (VII)
C = 2D\TAE_ (VIII)
¢ = sDVEE, - @

When taking a tally of the number of insects on a sampling unit
C/2 of the individﬁals from the boundaries should be included. There-
fore, edge effedt bias of the density estimate (LC%) resulting from the
inclusion or exclusion of all individuals located on the unit bounda-
ries will be given by equations X,XI and XII for square, circular and

rectangular units, in that order.

100(4D \/AiAS) /213;\s = 200 \/Ai7As (X)
% — —
Lc, 100( 2D\ ///A.lAS)/ZDAS 100\/7A;JA_ (X1)

Lc% 100(5D \/AiAS)/ZDAs 250\/Ai7AS (X11)

Where, DAs is an expression of the "true" average number of in-

L%
c

I
1]

i
1

sects per sampling unit. It is apparent from equations VII to IX
that, C, the average number of insects bisecting the circumference of
the sampling unit is directly proportional to density, the square root
of the cross-seéﬁional area of individuals and to the square root of

sampling unit size. On the other hand, equations X to XII show that
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Lc’ the % edge effect bias of the density estimate, is independent of

density and is directly proportional to the square root of the crosé—

sectional area of individuals and inversely proportional to the square
root of sampling unit size.

The sample survey data for the experimental determination of the

L vs. sampling unit size and shape relationship (which was obtained
c

by sampling the "population map" on Figure 5, at one hundred randomly
selected sampling points, with a set of sampling units superimposed
in a nested fashion) is summarized in Table I. Reference to Table I
indicaﬁes that the mean number of larvae bisected by the sampling unit
circumference (5) increased logarithmicly/with increasing sampling
unit size, for 2ll sampling unit shapes considered (rows 2, 8, 14 and
20 in Table I). On the other hand, Lc, the % edge effect bias of mean
bréod density, decreased logarithmicI;?on sampling unit size for all 4
unit shapes (rows 5, 11, 17 and 23 in Table I). The graphical form

of the LcAvs. sampling unit shape and size relationship is shown on
Figure g—and the regression equations, on arithmetic scale (the equa-
tions were fitted by the method of least squafes after logarithmic
transformatioﬁ of both axes), correlation coefficients and standard
error of estimates are shown in columns 3, &4 and 5 of Table II, res-
pectively. The least squares equations have high correlation coef-
ficients and their parameters are in good agreement with those of the
corresponding theoretical equations which appéar in column 2 of Table
IT. (Note: The theoretical equations were derived from formulae X to

YITI by substituting 2.4 x 5.5 square millimeters for Ai(the actual width-

length dimensions of the "stamped" larvae of Figure 5.)). The "t"-test
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TABLE I. STATISTICS FOR THE EXPERIMENTAL DETERMINATION OF THE Lc(%) VS. SAMP-
LING UNIT SHAPE AND SIZE RELATTIONSHIP.
Circular units Row
Sampling unit size (sq. in.) no.
n 2 4 8 12 16
Mean no. of larvae inside s. ,
unit boundaries (I) 100 1.510 3.100 6,220 9,080 12.890 1
Mean no. of larvae on s.
unit_circumference (C) 100 0.650 0.990 1.100 1.470 1.550 2
IT+C/2=7% 100 1.835 3.605 6.765 9.825 13.665 3
% 100 0.110 0,134 0.220 0.244 0.295 L
L. (%) 100 17.934 14.008 7.988 7.583 5.671 5
s 100 3.830 3.480 2.710 2.640 2.310 6
Lo (%)
Square units
Mean no. of larvgg inside s.
unit boundaries (I) 100 1.430 3.030 5.980 9.080 12.150 7
Mean no., of larvae on s. - )
unit circumference (C) 100 0,710 1.000 1.290 1.480 1.780 8
I+C/l2=% 100 1.785 3.530 6.625 9.820 13.665 9
Sz 100 0.110 0.125 0.228 0.238 0.310 10
Lo (%) 100 20.112 14,164 9.736 7.488 6.825 11
ch(%) 100 4,000 3.480 3,100 2.630 2,520 12

Rectangular units (w/l = 0.25, long sides perpendicular to egg galleries)

Mean no. of larvae inside s.

unit boundaries (T) 100 1.200 2,710 5.740 8.950 12,100 13
Mean no, of larvae on s.
unit c1rcumference (C) 100 0.810 1.100 1.530 -1.820 2,210 14
I +C/2 = 100 1.650 3.260 6.505 9.860 13.205 15
100 0.083 0.147 0.184% 0.193 0.236 16
Lc(%) 100 24,848 16.870 11.680 9.220 8.360 17
s , 100 4.310 3.750 3.170 2.880 2.760 18
Lo(®) . :
Rectangular units (w/l1 = 0.25, long sides parallel to ege galleries)
Mean no, of larvae inside s.
unit boundaries (I) 100 1.260 2,720 5.400 8.940 12.050 19
Mean no, of larvae on s.
unit clrcumference © 100 0.830 1.070 1.580 2.120 2.420 20
T+C/2= 100 1.675 3.250 6.190 10.000 13.260 21
5% 100 0.146 0.211 0.259 0.294 0.338 22
Lo (%) : 100 25.000 16.436 12.762 10.600 9.125 23
s 100 4.320 3.700 3.340 3.070 2.880 24
L, (%)
and

n = sample size, s= = standard error of X, s; = standard error of Lc(%)
c

Lc% was calculated as in equation (45), Materials and Methods section.
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comparison of the slopes (on log - log scale but powers on arithmetic
scale) of the least squares equations and ﬁheir corresponding theo-
retical models indicated that thefe were no significant differences
(column 6, Table IT). Also, there is excellent correspondence bet-
ween the constants (intercepts on log - log scale) of the least squar-
es equations and those of the corresponding theoretical models. Fig-
ure 8 shows that, for all sampling unit sizes, rectangular units with
long sides orientated parallel to the egg galleries (V) have the great-
est edge effect bias and circular units the smallest. Square and rec-
tangular units orientated with long sides perpendicular to egg gal-
leries (H) have edge effect biases intermediate between those given by
circular units and rectangular units of (V) orientation. The edge effect
bias of mean brood density decreases rapidly with increasing sampling
unit size from zero to about twelve square inches, for all sampling
unit shapes. For sampling units greater than gbout twelve square in-
ches, the change in Lc(%) with respect to sampling unit size becomes

more gradual. Lc(%) and c¢/a (equations IV to VI) are both proportional

to the reciprocal of the square root of sampling unit size and, there-
fore, the former variable is a linear function of the latter variable
with zero intefcept. Thus, edge effect bias is directly proportional
to fhe circumference/area ratio of the sampling units.

1.3. Studies of the effect of sampling unit size and shape on the

accuracy of mean brood density estimates. The effect of sampling unit

shape and size on the accuracy of mean brood density estimates was stu-
died by znalysis of variance of the brood counts at two density levels,
i.e. on the northern and southern aspects of the sample trees (for samp-

le design see section 4.1, and Fig. 2., Materials and Methods) and the

results are given in Tables III and IV,



TABLE II. THEORETICAL

AND EXPERTIMENTAL RELATIONS BETWEEN L %, THE EDGE EFFECT BIAS OF MEAN
DENSITY AND SAMPLING UNIT SIZE.

Sampling unit

Least squares model
Theoretical model

Equation r S t.05
Xy

(1) (2) (3 (#) (5) (6)
- - ’ n
Circle L& = 25.70 A7" L% = 27.00 A 252 5.987 0.0393 0.977

s :

o _ —.5 _ . - 534 ns

Square L % = 28.60 Ag Lc% = 29.30 A_: 0.998 0.0240 1.110
Rectangle, long side - 168 ns

parallel to egg gallery (V) L% = 33.80 As' 0.996 0.0334 1.170

c
B} -5
Rectangle, long side Lc% = 35.75 As ns
perpendicular to egg gallery (H) Lc% = 35,60 A;'532 0.998 0.0199 0.712.
ns = not significant, r = simple correlation coefficient, S v standard error of estimate, t = Student's

parameter,

49
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In the 2nalysis of variance table the sampling units are desig-
nated by the following symbols: 6.25 sq. in. square unit = 21, 36,00
sq. in. square unit = 52; 20.10 sg. in. circular unit = ¢l, 56.&5 sq.
-iﬁ. circular unit = ¢2, 72.00 sq. in. rectangular unit, long side per-
pendicular to egg galleries = T 86.40 sq. in. rectangular unit, long
sides parallel to egg galleries = rv and half circumference by 14.4
inch "control” unit = cyl.

The analysis of variance shows that there were highly significant
tree-to-tree (replication) and aspect differences in brood counts. Of
the pre-planned single degree of freedom comparisons of the sampling
units, howeve}, only those two comparisons were significant which in-
volved the sampling unit sl. These comparisons were signifiéant at
the 5% probability 1evel._—A1though, the "control" (cyl) vs. rest com-
parison of the sampling units was not significant it had-; high "F"-
value (F = 3,77 as compared to FO.OE = 3,84). Reference to Table IV
shows that the significance of the two comparisons involving gl and ;
the high "F".value of the cyl vs. rest comparison resulted from the
high mean brood density estimate given by smallest unit (sl), rela-
tive to that of the other units. The aspect-sampling unit size in-
teraction was not significant indicating that the change in brood counts
with respect to the two density levels (aspects) was approximately the
same for all sampling unit shape-size combinations considered in the
sample survey.

1.4, Studies of the effect of sampling unit shape, size and orien-

tation on the percision of mean brood density estimates. The relation-

ship between sampling variance and sampling unit size, for various
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TABLE TTI. ANALYSIS OF VARIANCE OF THE EFFECT OF VARTOUS SAMPLING UNIT
SHAPE-SIZE COMBINATIONS ON BROOD COUNTS PER SQUARE FOOT (LOG. (x + 1) TRANS-
FORMATION) . 10

Source of variation bf Net sum Mean F F Remark
squares squares 05 .01
1 Trees (Blocks) Ly 68.9340 1.5667 14,01 1.38 1.46 *%
2 Treatments (13) (10.7636)
Aspects (a) 1 73426 7.3426 65.68 3.84 6,63 #%
Sampling units (u) (6) (2.3174)
cyl vs. §est 1 4320 4320 3.77 " " ns
sl vs. s 1 .6848 .6848 5.16 n " ¥
cl vs. ¢ 1 4010 4010 3.58 u " ns
Ty Vs. ro 1 .0382 .0382 0.35 " " ns
clc2 vs. r, v 1 L2573 .2573 2.30 " " ns
sls2 VS-(C&C% + rhrv) 1 .5110 .5110 L.57 n " *
(2) (w) 6 1.0172 1695 1.52 " " ns
3 Error 572 63.9491 .1118
Total 629 143 .6467

** = gignificant at the p = 0.01 probability level, * = significant at
p = 0.05 probability level, ns = not significant.

TABLE IV. AVERAGE BROOD DENSITY PER SQUARE FOOT.

Sampling unit size - Sampling unit shape n Average brood den-

(sq. in.) ’ sity per sq. ft.
6.25 square (sl) 90 112.05
20.10 circular (cl) 90 101.52
36.00 square (s2) 90 105.00
56.45 circular (c2) 90 104,50
72.00 rectangular grh) ' 90 103.71
86.40 rectangular (cyl) 90 99 .94
14.4 x half circumference rectangular (rv) 90 103.00

n = sample size.
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sampling unit‘shapes and two orientations, is shown on Figure 9. (Note:
The sampling variance vs. sampling unit size relationship was studied
on the same set of sampling units and samples which were used for the
experimental dgtermination of Lc in section 1,2, of the Experimental
Results.) B

For sampling units smaller than gbout 6 square inches, there were
no differences between the variances of the density estimates given
by the square, and circular units and those rectangular units which
were oriented with long axes perpendicular to the egg galleries (marked
with H on Figure 9). For units larger than 6 square inches, however,
rectangular units of H orientation gave consistently smaller variances
for the denSit& estimates than either the circular or square units.
The rectangular units, which were oriented with long axes parallel
to the egg gallefies (marked with V on Figure 9), gave consistently
higher variances for the density estimates, for the entire size-range
investigated.

The sampling variance vs. sampling unit size relationships on
Figure 9 were well described by the following linear regre;sion equa-~
tions: |

log sz/sq.ft. = 4.4104 - 1.1700 logqnX, % = 0.99,

10 10

5= = 0.0208 (rectangular units, V orientation)
1oglos2/sq.ft. = 4.0010 - 1.0967 log, ,x, r? = 0.97,
s = 0.2680 (rectangular units, H orientation)
loglosz/sq.ft. = L.0324 - 0.9725 log, %, = 0.98,
s§‘= 0.1650 (square units)

loglosz/sq.ft. = 4.,0779 - 1,0409 loglox, r2 = 0.98,

s = 0.2222 (circular units)



Where, 52 =

variance, X = sampling unit size in sq. in. units, r =
simple correlation coefficient and S? = gtandard error of estimate
on loga;ithmic,scale.

These sam?lihg varizance formulze were used, in conjuction with
the population mean of the spétial pattern map (118.77 larvae/sq. ft.),
for caleculating sample size needed to estzblish the pOpuiation mean
with a half confidence belt equal to 0.1X and 2 probability level,

p = 0.99 (section 4.2.1., Materials and Methods). The graphical form
of the sample size vs. sampling unit size relationship is shown on
Figure 10,

The samplé size-sampling unit size graphs show that, for any
fixed unit size, rectangular units of H orientation were superior
to square and circular units and to rectangular units of ¥V orienta-
tion, for the entire sampling unit size-range investigated.

Comparison to the relative efficiencies (section 4.2.2,, Materials
and Methods) of various sampling unit shapes and orientations on two
population maps confirmed these findings (Teble V).

The relztive efficiency of the 1 x 32, 1 x 16, and 1 x 8 inch
units, when oriented with long sides perpendiculzr to the egg gal-
leries, were consistently higher than that of any other unit, in
their respective groups. The lowést relative efficiencies were given
by the 2 x 16, 2 x 8, 2 x 4 and 4 x 8 inch units (long sides oriented
parallel to egg galleries) posibly because clﬁmping was present in the
population on several scales. Moreover, at the higher brood den;ity
level (Map No. 1) there was considerably less difference between the
relative efficiencies of the different sampling unit shapes and orien-

tations than at low density level (columns 4 and 6, Table V).



Figure 9.

Relationship between precision of mean brood density estimates and
sampling unit size for various sampling unit shapes.

Figures 10,

Relationship between sample size needed to establish the mean with
a half confidence belt of 0.1X and a2 probability level, p = 0.01,
and sampling unit size for various sampling unit sheapes.
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TABLE V. EFFECT OF SAMPLING UNIT SHAPE AND ORTENTATION ON RELATTVE
EFFICIENCY

32 square inch sampling units

Sampling unit Orientation’ Map No.l* " Map No.2*
dimensions (in.) > '
s° RE(H)** 5% RE(R)**
(1) (2) G W (5 (6
1x 32 Long sides parallel  180.96 100 44,06 100
2 x 16 to egg galleries 264,36 72 56,73 78
bhxg 275.23 69 h47.81  ob
V32 x\32 248.89 76 34.33 128
L x 8 Long sides perpen- 2b2.60 78 31.75 139
2 x 16 dicular to egg 191.98 99 16.30 271
1x32 galleries . 129,16 147 13.18 338
16 square inch sampling units \
1 x 16 Long sides parallel 70,10 100 24.67 100
2x8 to egg galleries 105.96 75 24.69 100
b x b ‘ 89.42 89 21,27 114
2x8 - Long sides perpendi- 77.70 102 14.88 166
1 x16 cular to egg galleries 63.30 125 6.60 374
v 8 square inch sampling units
1x8 Long sides parallel 38.72 100" 11.31 100
2 x4 to egg galleries Ls,56 84+ 9,68 117
\8 x\& ‘34,86 111 8.48 134
2 x4 Long sides perpendi- 31.83 121 6.64 173
1x8 cular to egg galleries 25.64 150 3.99 284

* Maps No.s 1 and 2 had 1.21 and 0.27 larvae per square inch, res-
pectively. ** The relative efficiencies (RE) of the 32, 16 and 8
square inch units were calculatéd relative to the 1 x 32, 1 x 16
and 1 x 8 inch units (long sides parallel to egg galleriesj, res-

2
‘pectively. S = variance.
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These results, in general, are in agreement with those of the
previous study, namely, that long, narrow rectangular units, when
oriented with long sides perpendicular to the eggz galleries, are
superior to square and circular units and to rectangular units ori-
ented with long sides parallel to egg galleries and the efficiency
of the former units increases with decreasing w/l ratio.

The conclusions reached in this section regarding the importance
of orientation, when sampling with rectangular units, were also sup-
ported by field data. The coefficient of variation (CV), on square
foot basis, of the sampling units which were used for studies of ac-
curacy in section 1.3., are given in Table VI,

TABLE VI. EFFECT OF SAMPLING UNIT SIZE AND ORIENTATION ON COEFFI-
CIENT OF VARTIATTON (FIELD SAMPLE. ELK CREEK, 1964).

Sampling unit Sampling unit Number of CV%(north CV%(south
size (sq.in.) shape units side) side)
(1) (2) ) (&) (5)
6.25 square (S1) Ls 61.56 92,10
20.10 circular (C1) Ls 59.44 76.62
36.00 square (S2) Ls 51.17 71.41
56.45 circular (C2) 45 51.32 64.29
72.00 rectangular (H) 45 50 .04 59.30
86.40 rectangular (V) Ls 52.46 68.23
14.4 inches x half
circumference rectangular(cyl) L5 50,61 54,34

CV decreased on both the north and the south sides, with in-
creasing sampling unit size for all unit shapes up to 86.4 square
inches. The coefficient of variation of the 86.4 square inch rec-
tangular unit (w/1 = 0.5), with long sides oriented parallel to the

egg galleries, was considerably higher than that of the 72.0 square
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inch unit (w/1 = 0.5) with long sides oriented perpendicular to the
egg galleries, in spite of the grezster size of the former unit (52.46
vs. 50.04 in column 4 and 68.23 vs. 59.30 in column 5, Table VI).
(Note: As the effects of shape and size were confounded in this study,
the CV figures in Table VI contain 2 "shepe" component which cannot

be separated from the "size" component).

1.5. Analysis of the distributional pattern of attacks and late

larval stages of the mountain pine beetle with Morrisita's Id index

of dispersion. (Note: The spatial pattern of attacks and broods

were analysed on the same sampling units (and on the same field samp-
les) which were used for studying sampling accuracy in section 1.3,
of the Experimental Results.)

The Id vs. sampling unit graphs for attacks and brood are shown
on Figures 11 and 12, respectively. The significance of the depar-
ture from randomness of the Id values (which were tested as in equa-
tions 6 and 7, of the Materials and Methods) are given in Table VII.

TABLE VII. TESTS OF RANDOMNESS OF ATTACKS AND BROOD BY MORISITA'S Id
INDEX OF DISPERSION,

Sampling unit size Sampling unit Attacks Brood
(sq. in.) shape

Id Remark Id Remark
(1) (2) (3) (&) (5) (6)
6.25 square (S1) T .3845 * 1.2600 xx
20,10 circular (C1) L8348 *% 1.3480 *%
36.00 square (S2) .9982 ns 1.3457 s
56.45 circular (C2) 1.0364  ns 1.3079 ok
72.00 rectangular (rh) 1.0278 ns 1.2724 R
86.40 rectangular (r_) 1.0944 *% 1.3367 *k

(14.L inch x half (rectangular (c¥y1)) (1.0693) (**) (1.2579) (**)
circumference)

*% = gignificant at p = 0.01 probability level, ns = not significant



Figures 11.

Relationship between Morisita's index of dispersion and sampling
unit shape 2nd size for attacks of the mountain pine beetle.

Figure 12.

Relationship between Morisita's index of dispersion and sampling unit
shape and size for mountain pine beetle brood in late larval stages of
development.
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For attacks, the Id vs. sampling unit size graphs increased to
unity with increasing sampling unit size (Fig. 11). The dispersion
indices of the two smallest.units were significantly smaller, while
those of the two biggest units were significantly greater than unity
(columns 3 and 4, Table VII). These findings indicate that attacks
tend to form regular spatial arrangements on the bark surface of
infested trees at fixed height levels. On the other hand, the dist-
ribution of larvée appeared contagious and these spatial pattern clump-
ed, for all sampling unit shape-size combinatiéns invéstigated (column
5 and 6, Table VII). The Id vs. sampling unit size curve for brood
had a peak between 20.1 and 36.0 square inches suggesting that the
average size of the clumps was within this range (Fig. 12).

1.6. Determination of mean larval clumps size and clump dimen-

sions with Morisita's Idi/Idi+1 method (section 4.2.3., Materials and
Methods) . The Idi/Idi+1 vs. sampling unit size graphs; for the nine
population maps used in the study (section 4.1., Materials and Methods),
are shown on Figure 13. These graphs indicate that clump size varied
from 4 to 64 square inches within a2 single trée (Fig. 13B) and that the
tree to tree clump size variation was also of the same magnitude. The
most frequently indicated clump sizes were 16 and 64 square inches.
The prominence of peaks on each of the three sets of graphs (A, B and
C, Fig. 13) wer; inversely proportional to mean density suggesting that
the spatial pattern of larvae became more regular with increasing mean
larval density.

Studies of clump dimensions, using Morisita's Idi/Idi+1 method

on two population maps (which were totally sampled with a series of



Figure 13,

Determination of mean larval clump size. (Graphs A, B, and C repre-
sent mean larval clump size determinations from three different trees).
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rectangular units with long sides oriented parallel to egg galleries.
Section 4.1., Materials and Methods), showed that the most prominent
peaks on the Idi/Idi+1 vs; unit size graphs were obtained with samp-
ling units having 1 or 2 inch short sides (Fig. 14). This suggests-
that the average length of the short axis of larval clumps was between
1 and 2 inches. As the peaks were located at the 8 and 16 square inch
points for units with 1 inch short sides, and.at the 16 and 32 square
inch points for units with 2 inch short sides, the average long axis
of the larval clumps was between 8 and 16 inches. Several clump

sizes (peaks) were indicated on the Id.l/Idin_l

- sampling unit size graphs
because clumping occured on several scales. For example, on Map No.l,
in addition to the basie clump size (1 by 8 inches), larger clumps with
the following dimensions were also present: 1 x 16, 2 x 8, 2 x 16 and

L by 16 inches.

1.7. Studies of the relationship between sampling time and sampling

unit size and determination of optimum sampling unit size for rectangu-

lar units (w/1 = 0.5 and long sidee oriented perpendicular to egg gal-

leries). The relationship between the various components of total samp-
ling fime (section 4.1., Materials and Methods) and sampling unit size

are shown on Figure 15. The graphs show total sampling time broken

down into components dictated by the sampling operation. At both height
levels the most time consuming operations were de-barking and brood count-
ing, and sampling unit delineating and cutting. Up to about 26 square
inches, sampling unit delineation and cutting required more time than
de-barking and subsequent counting of mountain pine beetle brood. The

"relationship between sempling time and sampling unit size was curvi-

’



Figure 14,

Determination of the average width and length of larval clumps. (Top
and bottom graphs represent larval densities of 1.21 and 0.27 per sq.
in., respectively.)



80

.40+
Legend

- o Sampling unit width = I in.

I.C)O‘ x —_— — = 2/'/7.
A —_— —— = 4 n
1.204
.10 4 / )\
/ \O/Q\A
1.00 A
X

T T T T T T T T B
0 l 2 4 8 16 32 64 128
Sampling unit size (sq.in.)
1.50+
1.40 - /’\
_ / — X
.30 /)/S
x
1.20- /
. X \A
\A
1.10 -
.00
T T T T T T T T 1
0 [ 2 4 8 16 32 64 128

Sampling unit size (sq.in.)



Figure 15.

Time needed to carry out various components of the sampling operation
versus sampling unit size relationship.



Time (minutes)

Time (minutes)

5 FT HEIGHT LEVEL
Legend

81

——--— Debarking ond counting brood
Delineating ond cutting
6.0 — -—— Counting attacks .
— — — Measuring galleries

5.0

4.0

3.0

2.0

Sampling unit size(sq.in.)

5 FT. HEIGHT LEVEL

6.0
5.0
40+
3.0

2.0

Sampling unit size (sq.in.)



82

linear for all four components of the total sampling operation. Surp-
risiﬁgly, it took less time to sazmple a2 unit area of larger units than
that of smaller units. Time "wasted" on tool handling and data record-
ing is not shown on Figure 15. Averages of 2.700 and_4.157 minutes
were spent on these "non-sampling" operations at the 5, 15 foot levels,
respectively.

The regressions of total sampling time (including "time wasted")
on sampling unit size was linear at both height levels (Fig. 16). Samp-
le size, mean sampling time and its standard error for the sampling
units are summarized in Table VITI.

TABLE VIII. STATISTICS FOR THE SAMPLING TIME VS. SAMPLING UNIT SIZE
RELATTONSHIP :

5 foot height level

Sampling unit Numbers of ob- Mean sampling time Si(min.)

size (sq. in.) servations (n) (X) in minutes :
(1) (2) (3) (&)
8 , 20 _ 4,247 0.057
18 20 5.579 0.077
32 20 6.894 0.125
72 20 10.066 0.276
98 12 | 12.256 0.723

15 foot height level

8 1z 6.677 = 0.113
18 12 7.128 0.178
32 12 9.398 0.280
72 12 . 12.050 0.401
98 12 14,599 0.402

The least squares regression equations of total sémpling time/unit
on sampling unit size had the following form:

T = 4,032 + O.OSMAS, r=.93, n= 92, S = 1.095

for the 5 foot level and



Figure 16.

Relationship between sampling time and sampling unit size at two
height levels on the infested stem. (The vertical lines represent
the size of the following expression: X + 19;)
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T = 5.794 + O.OBHAS, r =.9&, n = 60, S; = 1.020
for theA15 foot level, where, T = total sampling time/unit.in minutes,
As = gsampling unit size in square inches and r = simple correlation
coefficient (on Figure 16, only the me2n total times were plotted over
sampling unit size (column 3, Table VIII) but the equations were fitted
to the individual observations). The equations had identical slopes
but different intercepts because at the 15 foot,leﬁel more time was
needed for non-sampling operations than at the 5 foot level.

The mean and variance estimates and sample sizes, to establish
the population mean of brood counts with a half confidence belt equal
to 0.1X and a probability level of 0.99, are given in Table IX for each
sampling unit 2t both height levels. Reference to Table iX indicates
that the variability of brood counts was greater at the 5 foot level
than at the 15 foot level and consequently a larger sample size was
needed a2t the former height level, for all considered sampling unit
sizes, than at the 15 foot height level (columns 4 and 7, Table IX).

TABLE IX. MEAN AND VARTANCE ESTIMATES AND SAMPLE SIZE FOR LATE LARVAL
STAGE BROOD AT TWO HEIGHT LEVELS BY FIVE SAMPLING UNITS.

5 foot level 15 foot level

Sampling unit - 2 , = 2

size (sq. in.)__ % s E n x* s n
(1) (2) (3) " (5) (6) (D
8 3.700 12.326 360 1.583 4,265 676
18 7.050 29.629 239  4.166 8.697 200
32 16.200 158.589 242 5,583 15.356 196
72 28.400 421 .300 210 18.833 157.605 176
o8 34,916 - 663.174 215 26.083 258.811 153

- 2 . . .
X = mean, s = variance, n = sample slze

* Mean density per square foot was 56.80 at the five foot level and 37.66
at the 15 foot level.
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The relationship between the product T x n (T = average sampling
time/unit (column 3, Table VIII) and n = sample size {column &4 and.7,
Table'IX)) and sampling unit size is shown on Figure 17. The T x n
vs. sampling unit size free-hand curves indicate that at both height
levels, optimum sampling unit size was approximately 18 square inches
(that is the T X n vs. unit size curves had minima corresponding to
18 square inches on the x-axis of Figure 17).

2., Studies of the distribution of attacks and late stage larvae over

the host tree.

2.1. The distribution of attacks and late stage larvae around

the stem circumference. The circular distributions of attacks and

late stage larvae around the stem circumference at three height le-
vels (section 4.1., Materials and Methods), by 20° class intervals
taking the due S direction as zero point, are shown on Figures 18
and 19, respectively. The corresponding statistiecs are given in
Table X.

The circular distribution of attacks, for logs cut from the lower
and middle sections of the clear stem, were significantly different
from the uniform distribution but the attacks were uniformly distri-
buted around the circumference of logs cut from the stem in the mid
crown région (column 3, Table X). The mean angles,)\l when correc-
ted for declination, were N 23.2°E and N 17.3°E forfgziacks on the bot-
tom and middle logs, respectively. These mean angle values are in
excellent agreement with the direction of the shady side of the stem
at the time of peak flight activity of the emerging beetles. Reid

(1960) reported that the peak of flight activity occurs at close to



Figure 17.

Total sampling time (to establish mean brood counts with a half con-
fidence belt = 0.1x) versus sampling unit size relationship at two
height levels.
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Figure 18.

Circular distribution of mountain-pine beetle attacks at three height
levels.
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Figure 19.

Circular distribution of late stage mountain pine beetle larvae at
three height levels. (On the top graph the curved line represents
the theoretical frequency curve for the circular normal distribution).
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TABLE X. STATISTICS FOR THE CIRCULAR DISTRIBUTION OF ATTACKS AND LATE STAGE LARVAE

Attacks’
Position T z z z )\‘ s g n
1 .05 .01 1 €0.01
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Bottom logs .0628 2,995% 2.995 4,605 N45,0°E 79.0° 54,0° .0408 765
Middle logs by 9. 729%x L " N39.1°E 75.1° 34,9° L0499 466
Top logs .0843 1.308ns n " e — —— e 184
Larvae
Bottom logs .0889 27 7L0%* " n N20.2°E  79.8° 20,3° .0222 3544
Middle logs .2337 L3, 670%* " " N24,0°E 71.5° 15,40 .0277 808
Top logs (.0903) (L4,807%%) " n (N19.3°E) (77.5°)  (56.1°) (.0251) 594

]

r1 = mean vector length, z = test statistics for r ,,{ mean angle, s = mean angular deviation,

1

——

g = skewness,<f= half confidence belt for mean angle, n = number of observations, ns = not signi-
ficant, * = significant at the 5% probability level and ** = significant at the 1% probability le-
vel. (Note:,ﬁl has been measured without correction for magnetic declination and, therefore, 21.8o

should be subtracted from the recorded values to obtain the corrected mean angles.)

68
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1:00 PM (MST). In 1965, when the survey was carried out, flight took
place within the period from July 20 to August 10. During this period,
at 1:00 PM, (MST) the shadow was centered on the N 18.75°E aspect of
the stem in the study area.

The circular distribution of late-stage larvae for the bottom and
middle logs were significantly different from the uniform circular
distribution (the distribution of the larvae for the top logs was also
significantly different from the uniform distribution, but the signi-
ficance of r2 was, most likely, due to the fact thaf this distribution
was conside;;bly bi-modal and the z-statistic is valid to test only
uni-modal circular-normal distributions - column 3, Table X). The
corrected mean angles, N 1.6% and N 2.2°E, respectively, for the bot-
tom and middle logs, were approximately 20° closer to the due N direc-
tion than those of the attacks (column 6, Table X). This finding, in
addition to experimental error, is probably due to the fact that at
the point of highest attack intensity, the larvae are apt to suffer
higher mortality from competition than at less crowded locations. Also,
as the larvae mine perpendicularly to the egg galleries, this circum-
ferential "advance" of the larvae could in time cause a shift in the
concentration of larvae relative to that of the attacks. This last
supposition seems to be supported by the finding that the circular
distribution of the larvae were considerably more symmetric than that
of the attacks (column 9, Table X).

2.2. The vertical density gradients of attacks and brood over

the infested stem. The vertical density gradients of attacks and late

stage brood, on two plots and a2t two aspects on the sample trees (sec-

tion 4.1.; Materials and Methods), are shown on Figures 20 and 21, res-



Figure 20,

Vertical gradients of attack density on two experimental plots in
two successive years. (The vertical attack density gradient graph
for the Elk Creek plot trees, in 1966, is shown on the following

page.)



sampling unit

per 96 sq. in.

Average number of attacks

"HORSETHIEF CREEK PLOT

1965
8 4 Legend
o North side
] o South side
4'_
T T -
0 10 20 3IO 4|O
_ HORSETHIEF CREEK PLOT
|966
8 =
4 -
T T T i
0 10 20 30 40
| ELK CREEK PLOT
8 —
1965
4 —_
O |




Average number of attacks

per 96sq. in sampling unit

ELK CREEK PLOT

1966

Legend

6 —
North side
South side
4 -
2 -
T T T —
0 15 20

5 i0
' Height(ft.)

92



Figure 21.

Vertical gradients of brood density on two experimental plots.
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pectively. " (Note: For Figures 20 and 21 mean attack and brood den-
sity were calculated by dividing the total number of observations with
the total number of sample trees, not the total number of sampling
units, at each height level.)

The gradient of attack density for the Horsethief Creek sémple
'tpees was steeper in 1965 than in 1966. Also, in both yéars the in-
tensity of attacks was consistently higher on the northern than on
the southern aspect, at all height levels,.with the exception of the
upper twenty percent of the infested stem. On the other hand, the
gradient of attack .density on height was only gradual for the Elk
Creek sample trees in 1965 bﬁt in 1966 (déta are available only from
the lower eighteen foot of tﬁe_infested stems) the slope of the gra-
dient was similar to that of the 1966 Horsethief Creek data. The
attack density»gradient for the Elk Creek sampie trees had its high-
est point at the four foot height level, in both years. Further, it
is apparent that in 1965 there was no difference between the attack
density gradient of the northern and southern aspects of the Elk Creek
sample trees but in 1966 attack density was considerably highér on
the northern aspect, at all height levels investigated.

The analysis of eighty-two infested trees indicated that maxi-
mum attack height (Y) was linearly related to total tree height (H)
and logarithmicly related to d.b.h. (D). The regression equations
had the following form: |

Y = 41,511 + 1.024, r=0.943, n =82

and
1ogloY = .0.212 + 1.632(log10D), r=0.783, n=82
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The logarithmic ¥ vs. H and the arithmetic ¥ vs. D relationships had
smaller correlation coefficients than those of the above given equa-
tions (r = 0.779 for the former and r = 0.748 for the latter relation-
ship) .

The gradients of late stage brood (fourth instar larvae, pupae
and adults) density generally followed those of the corresponding at-
tack densities (Fig. 21). However, the highest mean brood density
corresponded to the four foot region of the Horsethief Creek trees,
in botﬁ years, and that of the Elk Creek trees was located between
the four and six foot levels in 1965. (Similar data were not avail-
able ffom 1966 on latter plot). The rate of change of brood density
with height was somewhat greater than that of attack density. The
rate of change of the brood/attack ratio on height, however, was con-
siderably less than that of attack or brood density (Fig. 22).

The brood density vs. height level relationship, when expressed
in terms of cumulative number of broods and cumulative infested height
(Fig. 23), indicate that only about 2% or less of the brood is found
above the 0.80 (80%) point of the infested height. No insects were
found above the 0.85 and 0.90 points of infested height on the
Horsethief and Elk Creek plots, respectively. The cumulative numbers
of brood vs. cumulative height relationships were decidedly éigmoid
on both plots, and in both years, on the Horsethief Creek plot. The
inflection point corresponded to/approximately the 0.10 point of the
"x"_.axig, for all three curves. (Note: On Figure 23 the cumulative
brood counts vs. cumulative infested heiéht relationships were “shooth-

ed" over by free-hand curves.)



Figure 22.

Relationship between brood/attack ratio and height above ground level.
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Figure 23.

Cumulative total late stage mountain pine beetle brood versus cumula-
tive total height relationship.

The vertical lines represent y + 1 s—
(The cumulative no. of late stage mountain pine beetle brood versus

y
cumulative infested height relationship for the Elk Creek sample trees,
in 1965, is shown on the following page.)
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2.3. The relationship between attack intensity and bark thick-

ness. (The development of a mathematical model.) The least squares

equations for the mathematical model Y = Ymax (1 - 10°b'X1) of the
attack intensity vs. bark thickness relationship (equations 49 and 50
in sectioﬁ 4.3.3., Materials and Methods), on transformed and arith-
metic scale, and their correlation coefficients are given in Table XI.
The graphical férm of these equations, on an arithmetic scale, is
shown on Figure 24.

The attack density vs. bark thickness relationships were satis-
féctorily linear on transformed scale (i.e. the last squares trans-
formed regression equations had high linear correlation coefficients
- columns 3 and 5 in Table XI) and had negative Y intercepts. The

average Xl intercept on the two sample plots was 1.57 millimeters in-

dicating that, on the average, no attack were initiated on bark sur- ¢

faces less than this "threshold" bark thickness. The covariance
analysis of the slopes and intercepts of the transformed equationé
for the southern and northern aspects (columns 6 and 7 in Table XI)
showed that none of the slopes was significantly different but the
intercepts of the equations for the Horsethief Creek plot, in both
years, were different at the 1% probability level.

When the data were re-sorted on the proportion of unsuccessful
egg galleries (Xz) and height level (X3) and the "b" values (calcu-
lated as in equation (51), Materials and Methods) were plotted against
these independent variates, a straight line was obtained, in both
cases, which ran parallel to the X-axis. Thus, equation (49) (Mate-

rials and Methods) alone is adequate to describe the effect of bark



Figure 24.

Relationship between attack density and the combined thickness of
outer and inner bark. The vertical lines represent y + 1ls—. (The
attack density versus bark thickness relationship for the ¥ Elk Creek
trees, in 1966, is shown on the following page.)
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b X
TABLE XI. THE MATHEMATICAL FORM AND DEGREE OF FIT OF THE THEORETICAL MODEL Y = Ymax(l - 10~ l) TO
EXPERIMENTAL DATA,

Horsethief Creek, 1965 (28 trees)

North side South side Comparison
Scale Eq%ation r Equation r b a
(1) (2) ' (3) (&) (5) (6) (M)
Transformed  LO0Gy4(7.25/(7.25-Y)) = 10G_ (8.50/(8:50-Y)) =
= .1053%; - .1726 948 = 586y - 1580 969  ns  **
-.1053X_+.1726 L0664%_+,1580

Arithmetic Y = 7.25(1-10 1 ) - Y =8.,50(1-10" 1 )

Horsethief Creek, 1966 (15 trees)

Transformed LOGlO(lo.OO/(lo.OO-Y)) = - LOGlO(lo.OO/(lO 00-Y)) =

= ,0703%X, - .0618 .983 = .0609%, - 094k 989 n *k
o . ! -.0703X,+.0618 g 1 2 .0609X7+.0944 799 °
Arithmetic Y = 10.00(1-10.00 1 ) = 10.00(1-10 ) meee e e

Elk Creek, 1965 (10 trees)

Transformed 10Gy4(10.00/(10.00-Y)) = L0Gy4(10.30/(10.30-Y)) =

= ,0973%; - 1550 .760 = .0883%y - 1117 954 ns ns
Arithmetic = 10.00(1-10 --0973% *. 1550) -——- Y =10.30(1- 10“‘0883Xl+ 1117) ——— e e

r = simple correlation coefficient, b = slope, 2 = intercept, ns = not significant, ** = significant at
the 1% probability level, Y = mean attack density per 96 sq. in. bark area, X; = combined thickness of

the inner and outer bark (m.m.)

20T
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thickness on attack density.

In a separate study (Appendix F) it was found that bark thickness,
from the base of the trees to the uppermost point of infestation, was
well fitted by equations having the following form:

xl = A/HC/D
Where, X1 = bark thickness, H = height above ground level, D = diameter
at breast height, A and C are constants.
Further, the average bark thickness over all trees, at any héight le-
vel up to the highest point of infestation, was also well fitted by
an equation of the same form. Consequently, the density gradient of
attacks on height for a group of infested trees can be described by

the following generzl equation:

¢ .C/D+ 2
-A /H
Y = ¥max(1 -~ 10 A / )
]
Where, A = constant and Y, Ymax, H, C and g are as before.

2.4, The felationship between brood densitv and bark thickness.

The graphic plots of brood density on bark thickness are shown on Fi-
gﬁ}e 25. The brood density vs. bark thickness relationship was de-
cidedly sigmoid on both sample plots and in both years on the Horse-
thief Creek plot. It was noticeable, especially on the Elk Creek plot,
that brood density increased to a maximum and then declined with in-
creasing bark thickness. The greatest rate of change in brood density
with respect to bark thickness occurred approximately at the x = 7/32
in. (5.5 m.m.) point on both plots and in both years on the Horsethief

Creek plot.

3. Analysis of some factors influencing the total number of attacks




Figure 25.

Relationship between brood density per 96 sq. in, unit and the combin-

ed thickness of inner and outer bark. (The brood density versus bark

thickness relationship for the Elk Creek trees, in 1966, is shown on
the following page.)
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and broods in individuél trees. The statistics of the variables used

in this analysis are summarized in Table XII. In this table the vari-
ables are designated by the following symbols:

Yl = total numbers of attacks/tree, Y2 = total numbers of broods/
tree, Xl = (growth increment at the 1 foot height level for the last

10 years) 32 in., X_ = total tree age (yrs.), X = sum of the distances

2

from the three nearest neighbours over 4 inches in d.b.h. (ft.), X4 =

(combined thicknesses of the inner and outer bark a2t the d.b.h. level)

x 32 (in.), X_=DH (D = d.b.h. (ft.) and H = total tree height (ft.)),

2
X6 = 1/D, X7 = (crown width) (crown height) CWZCH(cu. ft.), X8 =

2
CWZCH/D H.
The number of attacks/tree (Y ) was found to be highly signifi-
1 ,

cantly correlated with_DHl, 1/D ( a simplified expression of the DZH/

' . 2
DE ratio) and CW CH. The simple correlation coefficients of the Yl

1

vs. Xu (bark thickness at d.b.h. level) and ¥ vs. El (sum of the
distances from the three nearest neighbours) relationships were sig-
nificantly different from zero at the 5% probability level and those'

of the Y, vs. X1 (growth increment for the last 10 years) and Yl vS.

2 2
X8 (CWCH/D H) relationships were not significantly different from

zero., The number of broods/tree (YZ) was correlated with Y , XZ, X
1 =

and X7 at the 99% probability level, and with X3 and X4 at the 95%

probability level. The correlation coefficients between YZ’ Xl and

X8 were not significantly different from zero.

3.,1. Multiple regression analysis of the relationship between

total number of attacks/tree and some host tree characteristics (com-

bined Horsethief and Elk Creek data, 1965). The regression coeffici-




TABLE XII.

STATISTICS FOR THE VARTABLES USED IN THE MULTIPLE REGRESSION EQUATIONS Y, AND Y, VS. X

(COMBINED HORSETHIEF CREEK AND ELK CREEK DATA, 1965) 1 2 (1 -8)
Variables
Statistics
Yy Y, _‘xl X, x3 X, X < X ¢ x7 x8

(1) (2) (3) ») (5) (6) (7) (8) (9) (10) (11)
Mean 559.18 2,701.50 13.66 72.94 37,18 10.45 69.97 1.19 19,665.70 233.26
Standard : '
Deviation 573.48 2,796.83 5,84 22,56 14,26 3.39 3k.6L 0.42  24,694.10 138.18
Minimum 35,00 60.00 5,00 40,00 14,00 6.00 24.00 0.62 750,00 28.00
Maximuam 1,912.00  12,000.00  30.00 115.00 65.00 19.00 162,00 2.40 130,207.00 640.00
Coefficient of
Variation (%) 102,56 103.53 42,77  30.93 38.35 32.43 H9.48 35.60 125.57  59.24
Numbers of Ob-
servations 38 38 38 38 38 38 38 38 38 38
r(YZ on X, ) 0.65%x ————- O.Bons 0.48%% (0.32% 0.35% 0.66%*% _Q,56%* 0 .67%* 0'2128
r(Y; on Xy mmme———- 0.65%%  0.167°  0.82%x 0.39% 0.33% 0.87%% _o 6gw* 0.65%* 0.20°°

1

r = simple correlation coefficient, * =

probability level, ns =

not significant.

significant at the 5% probability level,

X =

significant at the 1%

40T
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ents for the multiple regression equation of Yl

ficance of the contribution of each of the independent variates to the

on X1 to-fﬁ, the signi-

regression sum squares and the order of elimination of the varisbles

are given in Table XIIT.

TABLE XITI. REGRESSION COEFFICIENTS, TESTS OF SIGNIFICANCE AND ORDER
OF ELIMINATION OF THE INDEPENDENT VARIATES (COMBINED ELK AND HORSETHIEF
CREEK DATA, 1965)

Independent Regression Coef- Variance Order of Elimi-

Varizble (Xi) ficient Ratio nation of Xj
(1) (2) ‘ (3) (W)
X1 ~14,499 2.,436% 6
X5 - 1.777 0.09378 2
X3 0.627 0.019"S 1
X5, 32.487 Ly, 723%% 7
X, 22,686 10.915%* 8
Xz 329,871 2.168"° 3
X -77.038 2.2170ns 5
X§ 0.606 1.14478 n

ns = not significant, * = significant (the probability of a greater F-
ratio = 0.05), ** = highly significant (the probability of a greater
F-ratio = 0.01).

Constznt term = -1,447.250, standard error of estimate = 266.682,
R = 0.910%*, sample size = 38, variance ratio for regression line =
17.763%*% with 8 and 29 degrees of freedom.

The multiple regression equation of Yl on Xl to X8 accounted for

1

variates used contributed significantly to the regression sum squares.

83% of the variability in Y,. Oply three of the eight independent

These variates were Xl (width of the last ten year rings at the 1 foot

height level), X, (bark thickness at d.b.h. level and X5(DH)). The
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multiple regression equation of Yl on Xl’ X4 and X_ had the following

5

form:

T, = - 554,247 - 14.771X; + 27.135%,, + 14,743X

Standard error of estimate = 262,619 and R = .899%%*,

5

This multiple regression equation accounted for 80.9% of the

variability in Yl. The best independent variable was X5(DH), an in-

dex of the total surface area for individual trees, Y} decreased with
increasing radial tree growth (Xl) and increased with increasing bark
thickness (XU) and QE(XQ).

3.2. Multiple regression analysis of the relationship between
total number of broods/tree (Yz), total number of attacks/tree (Yll

and some host tree characteristics on the Horsethief and Elk Creek

sample plots in 1965. The regression coefficients for the multiple

regression equation of Y, on Yi, Xl’ XZ' X5, X6’ X7

and X8, the sig-
nificance of the contribution of the independent variaté;—to the reg-
ression sum squares and the order of elimination of independent va-
riables are given in Table XIV for the Elk Creek sample trees.

TABLE XIV. REGRESSION COEFFICIENTS, TESTS OF SIGNIFICANCE AND ORDER
OF ELIMINATION OF THE INDEPENDENT VARTATES (ELK CREEK DATA, 1965)

Independent Regression Coef- Variance Order of Elimi-
Variable (Xi) ficient Ratio nation of X;

(1) (2) (3) (&)

Y, 6.615 0.816ns 6

Xy 92.088 0.1260s N

X5 90.729 0.014Rs 3

X5 25.031 0.005"8 2

Xg 23,150.300 0.23778 5

X, 9.092 0.15108 7

Xg 0.186 0.000™8 1

ns = not significant.
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Constant term = -40,885.700, ?2 = 4,847,100, standard error of
estimate = 3,669.550, R = 0.893"S, variance ratio = 1.131"° with 7
and 2 degrees of freedom and sample size = 10.

The multiple regression equation accounted for 79.8% of the va-
risgbility in Y, but the regression line was not significant, possibly
because data was available only from ten sample trees. The three best
variables were X7(CWZCH), El (total number of attacks/tree) and §é(1/D);

in that order. The regression equation of Y2 on Yl’ X6 and X7 had the

following form:

Y, = -1,823.670 + 5.271Y1 + 1,437.95OX6 + O.O982X7

Standard error of estimate = 2,294,100 and R = 0,874*,
This multiple regression equation had a significant correlation

coefficient and accounted for 76.3% of the variation in Y2. Of the

three independent variates, X7 and Yl contributed significantly to the

regression sum squares. The contribution of X6 to the regression sum

—l

squares was not significant.
The regression coefficients for the multiple regression equation

Xl, XZ, _)Eé_’ Ev X7 and 8,

of Y2 onY the significance of the contri-

1’
bution offghe independent variates to the regression sum squeres and
the order of eliminaticn of the variables for the Horsethief Creek data
are given in Table XV.

The multiple regression equation had a highly significant corre-
lation coefficient but only two of the seven independent variables
used (Y1 and X7) contributed significantly to the regressions sum

squares. The best three independent variables were Yl(total number of

2
attacks/tree), X, (tree age) and fz(CW’CH), in that order. The multiple
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regression equation of Y, on Yl

T, = -3,193.860 + 9.313Y; + €1.594X, ~ 0.102X

Standard error of estimate = 1,249,470 and R = 0,793%%,

, X2 and X7 had the following form:

7

Thus, on the Horsethief Creek sample plot in 1965, total number
of broods/tree in late stzges of development increased with both, in-
creasing tree age and total number of attacks/tree and decreased with

2

increasing crown volume (CW CH).

TABLE XV. REGRESSION COEFFICIENTS, TESTS OF SIGNIFICANCE AND ORDER
OF ELIMINATION OF THE INDEPENDENT VARIATES (HORSETHIEF CREEK DATA, 1965)

Independent Regression Coef- Variance Order of Elimi-
Variable (X;) ficient Ratio nation of Xi

(1) (2) (3) (&)

Yl 7.918 11.330%* 7

X] -18.760 0.084Ns 1

X5 48.010 1.33408 6

X Ll 748 0.830"8 N

Xz -1,033.160 0.44308 2

X -0.208 6,298% 5

%z 5.773 1.92478 3

*%* = highly significant (the probability of a greater F-ratio = 0.01),
* = significant (the probability of a greater F-ratio = 0.05).

Constant term = -2,857.570, fz = 1,935.250, standard error of es-
timate = 1,241.130, R = 0.818%*, variance ratio = 5.806*%* with 7 and
20 degrees of freedom, and sample size = 28.

L, Development of total and partial surface area equstions for lodge-

pole pine.

4,1, Total surface area equations. The pertinent statistics for

the sample survey data, which was used for developing total bark areaz

equations are summarized in Table XVI,
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The least squares fit of the general combined variable surface
area function (equation 54, Materials and‘Methods) to the sample sur-
vey data hed the following form:

Sy = 1.9708DH + 3.7196, (trees without fork)

r = 0,9883, s = 6.5809 (s = standard error of
y‘x y.x

estimate)

St = 2,3086DH + 2.6761, (forked trees)

r = 0.9900, s = 10,1447
YeX

The least squares fit of the "transformed variable" surface area
function (equation 56, Materials and Methods) to the sample survey
data yielded the following equations:

D/st = 5,4187(1/H) + 0.000516, (trees without fork)
r = 0.9658, sy %= 0.00440

and D/st = L4, 5424(1/H) + 0.000623, (forked trees)

r = 0.9511, Sy.xlz 0.00623
The graphiczl form of these surface area equations are shown on Figu-
res 26 and 27.

The sample survey data were well fitted by both functions, but
the least squares equations of the general "combined variable" function
had higher correlation coefficients than those of the "transformed va-
riable" function. Further, the scatter about the regression line of
the former function was considersbly more uniform than that of the
latter function, for both forked and forkless trees. The scatter
about the regression lines for the "transformed variable" function

increased with increasing values of the independent variable (1/H).

The regression equations of the two surface area functions had com-



Figure 26.

Graphical form of the total surface area versus (d.b.h.)(total height)
relationship for lodgepole pine.
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Figure 27.

Graphical form of the (d.b.h.)/total surface area versus (1/total
height) relationship for lodgepole pine.
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parable precision. For forkless trees, the standard error of estimate
was 4.7% and 5.0% for the "combined variasble" and "transformed variable"
regression equation, respectively. For forked trees, these figures
were 8;5% and ?.9% for the former and latter regression equation, in
that ordér. The slopes and intercepts of tﬂe regression equations
fitted to sample survey data on forkless trees differed considerably
from those fitted to data on forked trees. Further, the relative
standard error of estimates (i.e. IOOsy'X/i) were almost twice as high
for the latter group‘of trees than those for treés without forks.
Therefore, the precision of surface area estimztion was considerably
increased by developing separate predicting equations for thése two
groups of trees.

TABLE XVI. STATISTICS FOR DATA USED IN DEVELOPING TOTAL SURFACE AREA
EQUATIONS FOR LODGEPOLE PINE

, Trees without fork
Variable Max. Min. Mean . SD CV n

H (ft.) 124.0 34,0 69.50 - 23.09 33.23 73
D (in.) 19.0 4.3 9.77 3.07 31.40 "
DH (sq. ft. ) 167 .4 12.2 64 .51 42,71 69.19
(sq. ft.) 318.5 26.4 130.86 78.59 62.94 "
D?S (1/£t.) 0.9664 0.,0237 0.0885 0.1290 117.27
4[H (1/f£t.) 0.0294 0.0080 0.0155 0.0588 37.93

v Forked trees

H (ft.) . 106.0 45,0 66.34 13.98 21.07 231
D (in.) 17.0 5.1 8.37 2.92 34,86
DH (sq. in.) 145,.7 13.1 51.14 35.98 70.35 n
(sq. ft.) 367.6 48.3 119.53 45,15 37.77 n
?s (1/f£t.) 0.1242 0.0449 0.0799 . 0.0930 111.29
,l/H (1/ft. ) 0.0222 0.0094 0.0159 0.0036 22.43 »
Fork height (ft.) 71.7 19.2 35,82 11.21 31,29 "

= Standard deviation, CV = coefficient of variation, n = number of

1 Of the thirty trees sampled by the author only three trees had forks.
Data on the rest of the twenty forked trees were obtained from the B.C,
Forest Service, Victoria, British Columbia.
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observations, H = total tree height, D = d.b.h. and St = total bark

area.

4.2, Studies of the relationship between cumilative surface area

and cumulative height and the estimation of partial surface area. The

statistics for the data used in these studies are summarized in Table
XVII. In Table XVII, the variables are designated by the following
symbols:

AH = bole section height, H = total tree height,

Asst = bole section surface area and St = total surface area.

TABLE XVII. STATISTICS FOR DATA USED IN STUDIES OF THE RELATTONSHIP
BETWEEN CUMULATIVE BOLE AREA AND CUMULATIVE HEIGHT

Forked trees

Variable

Statistic AH/H (AH/H) 2 (AH/H) AS t/s .
Mean 0.4581 0.3162 - 0.2472 0.5289
Standard deviation 0.3269 0.3268 L 0.3151 6 0.3455
Minimum 0.0094 0.889x1.0° 0.838x107 0.0138
Maximum 1.0000 1.0000 1.0000 1.0000
Coefficient of vari-
ation (%) 71.37 103.35 127.43 64.95
Number of observations 195 195 195 195
r(As,/s, vs. (AH/H): 0.9912  0.9263 0.8526  —meeeeee

Trees without forks

Mean 0.4914 0.3405 0.2657 0.6029
Standard deviation 0.3150 0.3242 n 0,3148 6 0.3271
Minimum 0.0095 O.906x10— 0.863x10- 0.0192
Maxdi mum 1.0000 1.0000 1.0000 1.0000
Coefficient of vari- _
ation (%) 64.10 95,20 118.45 54.26
Number of observations 565 565 565 565
r(ASt/St vs. (AH/H)Y  0.9771 0.8982 0.8202  ccmmmmme

r = simple correlation coefficient
The Ast/st vs. AH/H relationship was well described by third
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degree multiple curvilinear regression equations (section 4.3.4.,

Materials and Methods) for both forked and forkless trees. These

regression equations had the following form:

Ast/st = 0.0179 + 0.0150AH/H - O.2108(AH/H)2 - 0.3027(AH/H)3,

(forkless trees) R =0.9921, sy X =0.04045,

and Ast/st = 0.0150 + 0.0118 AH/H - O.2819(AH/H)2 - 0.4692(AH/H)3,
(forked trees) R =0.9974, s . =0.02474,

Where, R = multiple correlation coefficient, and the other notations

are as defined previously.

When multiple regression equations of zﬁst/st on all three combi-

nations of two independent variables were calculated, the regressions

on the AH/H, (AH/H)2 and (AH/H), (AH/H)3 combinations of the inde-

pendent variables had close to equal R-values. The R-value of the re-

. 2
gression on the third combination of the independent variables: (ZXH{H)
and (ZXHZH)B, was significantly smaller than that of the former two re-
gression equations. The best two of the multiple curvilinear equations
had the following form:

' 2
Ast/sJC = 0.0059 + 1.6761AH/H - 0.6657 (AH/H)

Forkless trees: R = 0.9921, sY %= 0.04097

Ast/st = 0.0242 + 1.4150AH/HE - 0.4391(AH/H)3

and R = 0.9923, s = 0,04052

‘ 2
Ast/s = 0,00062 + 1.4452AH/H - 0.4191(A\H/H)
t

R = 0.9970, s x = 0.02675
Forked trees: e

Ast/st = 0.0079 + 1.2914AH/H - 0.2857 (AH/H)3
R = 0.9974, s = 0,02499
VX

The third degree multiple curvilinear regression equations had
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greater R-values and smaller s -values, for both forked and forkless
trees, than those of the corre%ponding second degree multiple curvi-
linear equations. Therefore, the former equations were retained for
the development of a partizl surface area table for lodgepole pine.
The graphical form of the third degree multiple curvilinear equations
is shown on Figure 28. |

The least squares multiple curvilinear regression equations had
an intercept and did not pass through the coordinate point (x,y) =
(1,1) as required when AH = ¥ amd Ay = §t' This discrepancy was ' cor-
rected" by imposing the following res£ric$ions upon the least squares
solutions of the normal equations: The régression line must pass
through the coordinate points (x,y) = (0,0) and (x,y) = (1,1). When
these restrictions were applied t§ the least équares solutions of the
third degree multiple curvilinear equations, the partial regression
coefficients were found to be nearly of the same magnitude as those
of the unrestricted least squares equations (Appendix A). Further,
the scatter about the above defined multiple curvilinear egquation of

ASt/St on AH/H was found to be the greatest at the coordinate point

(X,y) = (0.5, £(x)) and it decreased from this point with both in-
creasihg and decreasing values of the independent variable. (Appendix
G). The standard deviation of the y-observations was found to be ap-
proximately proportional to x(1 - x)(Appendix H). Therefore, new
variance formulas were proposed to estimate the variability about the
regression line and that of an individual observation (Appendix B).
The partial surface area table for forkless trees was developed

by substituting the appropriate expressions for St and £(AH/H) into



Figure 28.

Graphical form of the infested surface arez/total surface area versus
height/total height relationship for lodgepole pine.
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equation 57 of the Materiasls and Methods section. That is:
S = (1.9708DH + 3,7196)(0.0242 + 1,4150( AH/H) - 0.4391(1&H/H)3)

P
Where, S = partial surface area in sqg. ft. units and the other symbols

are as dzfined earlier,

This equation was progrzmmed on an electronic computer to produce
a partial surface area table covering the 6.0 - 15.8 inch d.b.h. range
at 0.2 inch intervals and the 32 - 124 foot total height and 4 - 84
foot infested height ranges at 4 foot intervals. A sample of the par-

tial surface aresz table is given in Appendix C.

5. Studies of the freguency distribution of attacks and late stage

progeny of the mountain pine beetle and studies of transformations.

5.1. The frequency distribution of attacks and late stage pro-

geny of the mountain pine beetle. The means, variances, k-values

(the index of dispersion of the negative binomial distribution) and
numbers of observations for late stage progeny and attacks on the
Horsethief and-Elk Creek plots in 1965 are given in Table XVIII. The
freguency histograms are shown on Figures 29 and 30, res?ectively, for
the former and latter variéble.

TABLE XVITI, MEANS, VARIANCES AND DISPERSION INDICES OF BROOD AND AT-

TACK COUNTS OF THE MOUNTAIN PINE BEETLE (COMBINED DATA FROM THE NORTH-
ERN AND SOUTHERN ASPECTS OF INFESTED TREES) ,

Horsethief Creek plot - 1965 Elk Creek plot - 1965
Mountain pine beetle brood in fourth larval, pupal and teneral adult
stages. ‘
'n Mean(Y) Variance(sz) k n Mean(Y) Variance(sz) k
(1) (2) (3) () (5 (6) V2] (8)
sh2 22,839 889.500 0.602 604 16.331  628.600 0.436
Attacks ‘

50z 3.310 8.1 2.280 60k L.542 8.500 5.355




Figure 29.

The frequency distribution of late stage mountain pine beetle larvae
and pupae per 96 sq. in. sampling unit.

Figure 30,

Frequency distribution of the number of attacks per 96 sq. in. samp-
: ling unit.
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n = nmumber of observations, k = dispersion index of the negative bi-
nomial distribution.

The distribution of attacks on both the Horsethief and Elk Creek
plots were decidedly skewed. Although sampling continued only to the
upper most point of attack, approximately one fourth of the sampling
units produced zero counts. On the Horsethief Creek plot, at the time
of sampling when the broods were mainly in the fourth larval stage,
they suffered.close to 100% mortality in the upper 15% of the infested
stems while on the Elk Creek plot only a few live beetles were found
"in the upper 7% of the infested stems. Therefore, since the infested
stems were systematically sampled, at two foot intervals on the due
N and due S aspects, approximately 15% and 7%, respectively, of the
sampling units on the Horsethief and Elk Creek plots produced zero
counts. The zero counts, in excess of the above cited percentages
were caused by tree résistance and wood pecker predation on the Elk
Creek plot and by tree fesistance on the Horsethief Creek plot.

The frequency distributions of attacks were less skewed than
those of the brood counts. The distribution of attacks on the Elk
Creek pldt was more symmetric than that on the Horsethief Creek plot.
The skewness of both of these distributions would have been some-
what reduced if the sampling units were drawn with equal probability.
However, Shepherd (1960) found that, when taking a 100% tally of 60
infested trees, the distribution of attacks was definitely more skew-
ed than that of the present studies. His results point to the fact
that the frequency distribution is a function of both the size of the

attacking population and tree characteristics such as bark roughness,



123

branchiness or resin-producing ability.

5.2. [The relationship between variance and mean. The relation-
ship between sampling variance (within-tree variance) and mean was well
fitted by Taylor's power law (equation 15, section 4.2.6., Materials
and Methods) for both late stage mountain pine beetle broods and at-

-tacks. The equations on transformed scale and their graphical forms
and correlation coefficients are shown on Figures 31 and 32. The
slopes of the §E vs. ¥ relationships were considerably higher for the
brood data than those for attack density data indicating that the for-
mer variable was more aggregated than attack counts per sampling unit.
There was an excellent correspondance between the slopes of §E Vs. ¥
relationships for brood and attack counts on the Horsethief and Elk
Creek plots in spite of the differences betwéen the average diameter
and average height of the sample trees and the density gradients of
mean attack and brood density. Therefore, it appears that the coef-
ficient of aggregation (the power of Taylor's equation) for attacks
and for brood in a certain developmental stage, will stay fairly cons-
tant with varying host conditions and characteristics and with chang-
ing méan densities of the two variables.

5.3. Transformation. The variance vs. mean relationships of

brood counts, after Taylor's Z (section 4.2.7., Materials' and. Methods)
and loglo( v + k) transformations, are shown on Figures 33 and 34,
respectively. (Note: These Figures are the transformed equivalents
of Figure 31.)

Both transfeormations sufficiently stabilized the variance, al-

though, for the loglo(y + k) transformation of the Horsethief Creek



Figure 31,

Relationship between within-tree variance and mean brood density per
96 sq. in. sampling unit. (Combined data from the N and S aspects.)

Equations:
= 0,901 (Elk Creek, 1965)

log1082 = 0.6637 + 1.5789 logloir'. r =

loglOS2 = 0.6892 + 1;5693 logl 5, r = 0.947 (Horsethief Creek,
g 0

1965)
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Figure 32;

Relationship between within-tree variance and mean attack density
per 96 sq. in., sampling unit. (Combined data from the N and S 2s-

pects)
Equations: 2 : -

log S = - 0.0465+ 1.3007 log y, r = 0.768 (Elk Creek,
10 10

1965)

- _

log S = 0.1992 + 1,2998 log1 v, r = 0.849 (Horsethief

10 0

Creek, 1965)
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data the variance noticezbly increased with increasing mean. In ad-
dition to its excellent performance in stzgbilizing the variance, a
further advantage of the Z over the logarithmic transformation is that
the former eliminates the necessity of finding, by trial and error,

an "appropriate" constant to be added to the individual observations
in order to stabilize the variance as it is often done with the square
root and logarithmic transformations. On the other hand, the logarith-
mic transformation is -easier to carry out when there is no access to
computer facilities.

The relationship between the mean and variance of attack counts
after Taylor's Z transformation is shown on Figure 35. (Note: This
Figure is the transformed equivalent of Figure 32.) It is evident
that the variance was not related to the meazn on the transformed scale.

6. The sampling design.

6.1. Estimation of the gain in precision due to intra-primary

unit stratification of brood counts/secondary unit (Elk Creek plot

data, 1965). The statistics and varizbles needed for estimating the
intra-primary unit component of the sampling variance of brood po-
pulation totzl from five secondary unit stratz, and that from un-
stratified systematic sampling of the primary units, are given in
Table XIX. (Note: The five within-primary unit strata were estab-
lished by forming "horizontzl" stratum boundaries at height levels
coinciding with the position of 5.5 m.m. thick bark on the stem
(Fig. 25) and with the 80% of infested height (Fig. 23) and by divi-
ding the lowest two "horizontal" strata into due N and S aspects.)

In Table XIX the statistics and variables are represented by the



Figure 33.

Relationship between within-tree variance and mean brood density per
96 sq. in. unit after Taylor's Z- transformation.

Figure 34,

Relationship between within-tree variance and mean brood density
after log (y + k) transformation.
10
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Figure 35.

Relationship between within-tree wvariance and mean attack counts per
96 sq. in. unit after Taylor'S Z-transformation.
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following symbols: Mj = size of the j-th primary unit in 0.66 sq. ft.
units, m = second-stage unit sample size in primary unit j, iﬁj =

J
sample mean in the j-th primary units based on m numbers of observa-

> :
tions, sj = within-primary unit sampling variance in the Jj-th primary

unit, m__ = number of secondary units drawn from the i-th stratum of
1]

2
the j-th primary unit, s, . = sampling variance in the i-th stratum
A ij
of the j-th primary unit.

TABLE XIX. SUMMARY OF STATISTICS NEEDED FOR ESTIMATING THE INTRA-

PRIMARY UNIT COMPONENT OF THE POPULATION TOTAL OF MOUNTAIN PINE BEETLE

BROODS ON THE ELK CREEK PLOT IN 1965 (THE DATA WAS TRANSFORMED BY TAY-
- LOR'S "Z" TRANSFORMATION)

Tree num- 2 22 2 2 4 *
ber Mj ymj mi sj/mj Mjsi/mj Mijf;j/mij

(1) (2) (3) (k) (5) (6) (7

74 222.59 1.4699 68 0.003583 177.524 77.9369
740 219.58 1.2521 40 0.004022 193.870 101.1004
743 278.09 1.5478 61 0.002484 192.320 114,1590
747 216.29 1.1399 31 0.004175 195.310 180.9737
747 284,41 1.6124 52 0.004984 403,150 142.9989
745 292,77 1.7674 58 0.00746L €39.514 250.1817
742 299.10 1.3902 69 0.003143 281 .264 141.8186
746 317.69 1.6344 6L 0.00174) 175.713 220.,1540
806 351.45 1.1913 74 0.005220 644.759 l9@.1629
802 382.24 1.7162 77 0.003907 571,140 567.7067
Total 604 3,474,564 1,988.1920

* = column (6) is 2 summary of the last column of Appendix D.

The within-tree variance component of the population total, on
the basis of systematic sampling withiﬁ primary units, sis (second
term on the right hand side of formula (19), Materials ;;g Methods,
but finite population correction ignored), appears in Teble XIX as
the sum of column (6). The within-tree variance component for stra-

2
tified sampling of the secondary units, s . (formula (21), Materials
: ws
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and Methods, but finite population correction ignored), is given as
the sum of column (7) in Table XIX. Thus
2 .
Shs = 3,474,564

and >
s " = 1,988.192

ws
The stratified systematic sampling of the second stage units had

the following efficiency over systematic sampling without stratifica-
tion (formula 22, Materials and Methods):

: 2,2 ’

E=(s" /s~ )100 = 174.8% (on transformed scale)

WS’ wst

Thus the size of the intra-primary unit variance component of the po-
pulation total was substantially reduced by constructing five second-

ary unit strataz.

6.2, Estimation of the gain in precision of the inter-primary

units variance_estimate of brood population total due to stratifica-

tion and regression sampling (Elk Creek plot data, 1965). The sum-

marized data for estimating the intra-primary unit component of brood
population total with and without stratification, and with regfession
sampling of the primary units, is given in Table XX. The relative
index of abundapce for individual trees (Ij) and the population total
estimates/primary unit from 2n unstratified systematic second-stage
sample (Yj) and from a stratified systematic second-stage sample (ij)
are given in columns (4), (7) and (8) of Table XX, respectively. The
primary units strata were formed by arbitrarily grouping primary units
which had Ij index values greater than 20,000, between 20,000 and 2,000
and less than 2,000 (column 5, Teble XX).

The possibility of regression sampling of the primary units on
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their infested surface areas was suggested by the tendency of the to-
t2l number of insects/tree, Y, to increase with increasing infested
surface area, M. When ¥ was plotted over M for the Elk Creek and'.
Horsethief Creek plot samples from 1965 and linear regression lines
were fitted to the (M,Y) pairs of observations, the equations had the

following form:

1

"

Y
e

- 847.87 + 52.96Mh. r = 0,79%*, S, x = 145.79, n = 28

- 8,100,08 + 45.20Me, r = 0,66%, sy.x = 2,688.30, n =10
Where the subscripts h and e designate the Horsethief and Elk Creek
" plots, respectively, sy.x = standard error of estimate, n = sample
size, r = simple correlation coefficient, ** and * respectively =
significant at the 1% and 5% probability level, M = number of 0.66
sq. ft. units/primary unit and ¥ = estimated total number of late
stage larvae/primary unit.

After the individual counts on the secondary units were trans-
formed by Taylor's Z transformation the least squares equations had
the following form:

Y
h

Y
e

[}

- 11.3728 + 1.866Mh, r = 0,96%%, g = 158.58, n = 28
TeX

- 117.334 + 1,934l , r = 0.88%%, s = 208.80, n = 10
e

.

The notation is the same as above. For the Elk Creek equation, on
the transformed scale, the M and Y values are recorded in columns

(2) and (8) of Table XX, respectively.

A

The between-tree variance estimates of the brood population to-

tal on transformed scale for random (si ), stratified random (s§st)
r

and regression sampling (si ) of the primary units were calculated
re

as in equation 20, 23 and 24, respectively, and the numerical values
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are as follows:

2
sbr = 43,792.864 (columns 2 and 7, Table XX)
Sist = 29,510.050 (columns 2 and 8, Table XX)
sg = 13,548.417 (columns 2 and 8, Table XX)
re

Hence, the efficiency of regression and stratified sampling over simple

random sampling of the primary units (El and EZ) was calculated as fol-

lows:
n (.2 7.2
E = = .
1 (sbr/sbst)loo 148.5%
and
_ (.22 _
E, = (sbr/sbst)loo = 323.0%

Thus, of the three sampling methods comparéd, regression sampling of
_ primary unit totals on primary unit size provided the smallest between-
primary unit variance estimate of the population total. The between-
primary unit component of the sampling variance was more than six

times as large as the within-primary unit variance component (sére
13,548.417 vs. sést = 1,988.192), Consequently, the bias of sampling
variance estimates from systematic second-stage samples (but random
first stage samples) will be small and the precision of population

total estimates can be greatly increased by regression and stratified

sampling of the primary and secondary units, respectively.

TABLE XX. SUMMARIZED DATA FOR INTER-PRIMARY UNIT STATIFICATION AND REG-
RESSION SAMPLING OF LATE STAGE MOUNTAIN PINE BEETLE BROOD (ELK CREEK

PLOT, 1965)

%ﬁgger Mj Dj Ij—Dijj Strata Y3 Yj—ijmi Ymﬁ_ijwm'
&D) (2) 3) &) (=) (6) (7 (3
745 292.77 105.5 30,887.2 I 1.7674 517.4358 545.6376
802 382.34 85,0 32,498.9 T 1.7162 656.1680 657.9382
809 351.45 39.0 13,706.5 IT 1.1913 418.6894 435.4165
746 317.69 25,0 7,942.2 II 1.6344 519.2335 525.5671
742 299,10 48,5 14 506.6 II 1.3902 415,8237 u25, 5424

Table XX continued



133

TABLE XX. SUMMARIZED DATA FOR INTER-PRIMARY UNIT STRATIFICATION AND REG-
" RESSION SAMPLING OF LATE STAGE MOUNTAIN PINE BEETLE BROOD (ELK CREEK

PLOT, 1965)
Tree . D T .=D.xM. A =M.y . =MLy
Torber MJ 3 3 DJXMJ Strata Y3 YJ MJme YmJ MJywmj
Q) (2) 3) G (5 (6) (- (8)

74 284,41  26.5 7,536,9 II 1.6124 458.,5997 Loy . 43887
743 278.09 12.5 3,476.1 II 1.5478 L430.,4277 Lul 6110

740 219.58 25.0 5,489.5 II 1.2521 274 .9492 281.4684

4L 222,59 2.5 556.5 TIT 1.4699  327.2006  334.7584

747 216.29 6.5 1,405.9 IIT 1.1399 246.5597 247 .7057
2,864.31 L4,265.0868 4,366.2291

= _ 4,265.087 _ = _ 5,366.2291 _ = _ 2,804.31 _

Y= Pedy g T 14890k, = BA2RE = 1 s, W = S = 286000

N = 10, Mj = number of 0.66 sq. ft. secondary units in the j-th primary

unit, Dj = density/0.66 sq. ft. secondary unit at the 6 foot level of
the j-th primary unit (arithmetic scale), Ij = index value of the j=th
primary unit for stratification, §mj = mean fo? a secondary sample
size "m" in the j-th primary unit based on systematic samples and Tay-
lor's Z transformation, Yj = total bfood for the j-th primery unit
based on systématic second stage sampling, ij = total brood for the
J-th primary unit based on stratification of the second stage units
into five strata, § = overall secondary-unit mean based on systematic
second stage sampling and Taylor's Z transformation, §w = weighted
secondary unit mean based on the grouping of second-stage units into
five strata and on Taylor's Z transformation and M = average number

of secondary units/primary unit for the population (assuming that po-
pulation size, N, was equal to ten).

6.3, Estimation of sample size needed to establish the popula-

tion mean of brood counts/secondary unit with a standard error = 0.1

of the sample mean (Elk Creek plot sample, 1965). As the sampling

variance was estimated from transformed data and the sampling mean from
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the original observations (section 3.2.4., Materials and Methods), the
transformation of the required standard error to transformed scale

involved the computation of the following statistics:

§w = population mean on transformed scale = 1.5243 (Table XX)
Xﬁ = "back transformed" population mean (antilog (log. 1.5243/0.211)=
7.273

X = population mean on original scale = 16.922 (Table XXI)

S.. = required standard error on original scale = 10% of X = 1.692
x

s; = required standard error on transformed scale
X+ sy= 17.614
X - s-)E = 15.230

b= (SEW/SE) = 0,4298

(1 - v/2) = 0.211 (Taylor's Z transformation constant)

c =
52 = pooled within-primary unit variance component (equation (28),
Materials and Methods) = §Q§%%§& = 0.1449 (Appendix D)

f_ = second-stage sampling fraction = 2% (section 3.2.5., Materials

2
and Methods)

M = mean infested surface area in 0.66 sq. ft. units = 286.431

(Table XX)

2

s (}——_}1?— - }%ﬁ) = 0.02478 (formula 28, Materials and Methods)

e 2 1

2 _ 2 R :

5, = sgre/an- s_/nS 23 _ 13,548.1470 o~ 22 5.0791 = 0.01536
p ms (10) (286.431) 10

2. was calculated in section

In the equation gbove the value of s
6.2., n and ¥ in Table XX and S (1 - fzj)/mj in Appendix D.
Then, by substituting the appropriate values into equation (29), Mate-

rials and Methods, the following value is obtained for s—:

.
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0.211
__ ((16.922)0.5298) % % (1 _ 0.1)(16.922)0.4208) 0 2T

2

S

<

(1 +0.1)(16.922)0.4298)%#1_ ((16 92210 4208)° 2L . o 0322
” _

Thus, the standard error on transformed scale, s§, is equal to 0.0322
when the required standard error on original scale is 0.1x (1.6922).
The estimate of the standard error for the Elk Creek sample on

transformed scale, Sﬁw’ is calculated from equation (25), Materials

and Methods, as follows:

s 0.01536 + 0,02478 0.01536
v - N

By ignoring the negative term (finite population correction) in this

equation and substituting s- for S_ , the equation can be solved for
¥y

n = primary unit size. That is

0;0322 = VKO.01536 + 0.02478)/n, and n = 39.
Therefore, it may be concluded that for a desired precision of sy =
10% X on the original scale and for a second-stage sampling fraction
of fZj = 2%, 39 primary units should be sampled on the Elk Creek
experimental area when the mean per secondary unit is close to 17
insects (provided that first-stage sampling is with regression on

primary unit size and second-stage sampling is stratified systema-

tic as defined in section 6.1., of the Experimental Results).
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TABIE XXI. SUMMARIZED DATA FOR CALCULATING THE MEAN NUMBER OF BROOD
PER SECONDARY UNIT FOR THE ELK CREEK, 1965, SAMPLE (UNTRANSFORMED DATA)

Tree Brood
Number —
M. - Mean (x.) x M
3 J Jj
(1) (2) (3) - (W)
o8 222.59 11.8477 2,637.2007
740 219.58 6.6306 1,455,9662
743 278.09 12.7149 3,355.6334
il 216.29 4.3378 938.2225
7] 284 .41 18.5254 5,268.8193
745 292.77 39.2010 11,476.9406
742 299.10 9.9717 2,982.5365
746 317.69 13.9138 - 4,4L20.284]
809 351.45 10.6830 3,754.5743
802 382.34 31.3860 12,000.3906
2,864.31 L8 470.5582
_ 48,470.5582

X = 7> 86n.3100 = 16.922

§j= mean mumber of brood per secondary unit for the j-th primary unit
(tree), EﬁMj = total number of brood for the j-th primary unit, X =
brood sample mean of the secondary units.

6.4, Estimation of brood population total and its variance (Elk

Creek sample, 1965). The brood population total (Y) is estimated from

equation 34, Materials and Methods, as the product of the total number
of primary units in the population (N), the average primary unit size
(M) and the average number of broods/secondarj unit (X). By substi-
tuting the appropriate numerical values for X, ﬁ and N, into equation
34, the following estimate of Y was obtained:

Y = N(M)X = 10(2,864.31)16.922 = 48,471
Thus, on the Elk Creek plot in 1965, the estimate of brood population
total was 48,471 beetles in late larval, pupzl and teneral adult stages

of development.
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The estimation of the variance of E(sé) in equation 34 involves
the conversion of the variance on transformed scale (sz) to arithme-~
tic scale and requires the computation of the follcwinz statistics:

sg = variance of X on transformed scale (equation 32, Materials
and Methods) = 1,569.0811/102(286.M31)2 = 0.0001912 (columns

6 and 10, Appendix D).
(Note: As all primary units were sampled in the population fl =1,
and the first term on the right hand side, after the equal sign, of

equation 32, Materials and Methods, becomes zero).
55 = 0.01383

§w = 1.52431 (Table XX)

¥ + s_ = 1.53813

w y
= 1,51047
X = 7.273 (section 6.3., Experimental Results)
w

X = 16.922 (Table XXI)

p = (X/% ) = 2.3267

s.. = standard error of x , the "back transformed" mean =
xXw w -
0.3155 (from formula, 30, Materials and Methods)

s = 0.3155% = 0.0995L
xXw

From sE , sg is calculzated as SE =p X sE = 2.32672(0.09954) = 0.53886.
Xw X X X%

Thus, the mean number of beetles/0.66 sq. ft. unit (secondary unit)

and its variance were 16.922 and 0.53886 on the Elk Creek plot in 1965.
On square foot basis these values become x = 1.5 (16.922) = 25.383

and s§ = 1.5%(0.53886) = 1.212L3, respectively.

ﬁ, the mean primary unit surface area is estimated as a product
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of E = mean surface area of infested trees and E = the mean propor-
tion of the total surface area/tree occupied by insects. Consequently,
the variance of N, s%, is estimated from the variance of p, si, and
the variance of a, ;g by the variance of product formula (fo;;ﬁla 36,
Materials and Methoag).
The statistics required for the estimation of sg(formula 38,

Materials and Methods) are as follows: o

n = 73 (sample size for the surface areaz vs. (D.b.h.)

(Ht.) regression equation,

s2 = 43.3035, n, = 10 (sample size for the Elk Creek

oX
piot in 1965), x2 = (64,510 - 119.055)2 = the square of
the difference between the regression mean of (D.b.h.)
(Ht.) and that of the Elk Creek sample mean (D.b.h.)
(Ht.) (Table XXII), and Snx2 = 40,113.6734 = sum squares
of the (D.b.h.)(Ht.) values for the regression equation.

By substituting the appropriate values into formulas 38 (Materials and

2 .
Methods), s_ is calculated as:

ls

2
2 = “3‘3035(i% s L4 (119.055 - €k.510) y - g 136

< 73 40,113.6730
TABLE XXIT. STATISTICS FOR THE CALCULATION OF THE AVERAGE INFESTED
BARK SURFACE AREA PER TREE (SQ. FT.) AND ITS VARIANCE

Tree D.b.h. Bt. Hte (Ht.)(D.b.h.)
Number (ft.) (ft.) o, (sq.ft.)
) (2) (3) (&) )]
746 1.333 93.0 .688 123.97
742 1.208 91.0 .729 109.93
743 1.225 85.0 L 104,12
Th4 0.900 88.0 .705 79.20
740 1.266 94.0 425 119.04
741 1.483 94.0 .553 139.40
745 1.291 86.5 769 111.67
747 1.316 86.0 795 123.17
809 1.316 97.0 748 127.65
802 1.600 101.5 773 162.40

1,190.55
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(D.b.h.) (Ht.) = 1,190.55/10 = 119.055 sq. ft.
Htf = infested height and Ht. total height.
The numerical value of 2 is obtained by substituting (D.b.h.)(Ht.) =

119.055 sq. ft. in the following equation:

a = 1,9078(D.b.h.)(Ht.) + 3.7196
Where, a = surface area per tree in sq. ft. and (D.b.h.)(Ht.) = product
of total height (ft.) and diameter 2t breast height (ft.). Thus, the
solution for 2a:

a = 1.9708(119.055) + 3.7196 = 238.3531 sq. ft.
Thus, the ten sample trees on the Elk Creek plot in 1965 had a mean
totals surféce area of 238.3531 sq. ft. and this estimate had a vari-

ance, sE = 8.13465 ft.u.

a
The statistics required for the estimation of the variance of E,

the average infested proportion of the total surface area/tree (formulz

37, Materials and Methods) are as follows:

2
s = the variance about the regression of p on x =
y.X 1Y
0.001642

n = 565 (number of observations for the regression equa-

tion of p on x )
p

nl = 10 (number of observations on the Elk Creek plot in
1965) |
x = Htf/Ht (column 4, Table XXII)
P .
p = 0.0242 + 1.4150 %0 (Fig. 28) .
P
X = 0.500
P
X- = 0.660 (calculated from column 4, Table XXIT as in sec-
p

tion 4,2,12., Materials and Methods)
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Thus, the solution for sE:

sg = 0.001642(1% + 525)(0'66°of225340) = 0.0001589
The numerical value of p is obtained by substituting x_ for x in the
equation = =

p = 0.0242 + l.NlSOxp - 0.4191xg
Thus,

p = 0.0242 + 1,4150(0.660) - 0.4191(0.660)° = 0.80114

On the Elk Creek plot in 1965, on the average, 80.1% of the to-
tal surface area of the ten sample trees was infested and this esti-
mate had a variance, s; = 0.0001589. (Note: The technique for the
calculation of the total infested surface area involves the formation
of separate "pa" products for individual infested trees and the sum-
ming of these products over all infested trees (and not the formation

~ of a single mean "pa" product involving all infested trees.) It is

for this reason that the weighted mean of the x values, X_, rather
p b

than their arithmetic mean had to be substituted in the previous
equation to estimate the appropriate E value.)

The variance of (p x 3), sﬁ is calculated by the variance of
product formula (equation 36, ﬁ;terials and Methods in the following

manner:

0.0001589 8.13456
0.80114% 238.3531

s§ = (0.8011%4 x 238.3531)2( 5) = 14.14782

=l

Thus, the average infested surface area of the ten sample trees was

. F

2
190.9542 sq. ft. and it had a variance estimate of sﬁ = 14,14782 ft.
The variance of the product X x M is calculated in the same man-

ner as the variance of ﬁ. That is:
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2 2, 14,14782  1.21440
= 18,470.5582°( +
53N 190.9540° = 25.3830°

Finally, the variance of ¥ = N(M)x (the population total) is calculated

) = 53,343.9954

as follows:

s2 _ =82 = 5,334,399
N(M)X Mx
and, therefore:

SN(ﬁ)i = 2,309 insects.
Thus, on the Elk Creek experimental plot, in 1965, the estimate of
the population total of late stage mountain pine beetle brood, ¥, was

48 471 and had a standard deviation of 2,309 insects.

7. Estimation of population trend for insect surveys.

7.1; Studies of ihe relationship bétween aVerage and maximum brood

density in individual trees. The relationship between average and max-

imum brood density (i.e. brood density at the four and six foot height
levels for the Horsethief and Elk Creek sample trees, respectively) is
shown in Figure 36. All three regression equations had significant
correlation between the dependent and independent variables.

The slopes and intercepts of the three regression equations on
Figure 36 were cdmpared by covariance analyéis and the results are given
in Table XXIII.

No significant differences were found between the slopes of the
three regression equations. The intercepts, however, were different
at the 1% probability level. The significance of the difference bet-
ween intercepts was caused by the higher intercept (a = 5.590) of
the regression equation for the Horsethief Creek sample in 1965 than
tha£ of either the Horsethief Creek sample in 1966 (a = 2;050) or

the Elk Creek sample in 1965 (a = 3.767). The Horsethief Creek sample



Figure 36

Relationship between within-tree average and "maximum" brood density.
(The within-tree average vs. maximum brood density relationship for

the Elk Creek trees in 1965 is shown on the following page).
Equations:

y = 5,590 + 0,385 x, r = 0.776, s = 7,980 (Horsethief
Creek, 1965) FeoX
y = 2.050 + 0,340 x, r = 0.980, s = 1.495 (Horsethief
Creek, 1966) ¥eX
y = 3.767 + 0.278 x, r = 0.896, s = 4,830 (Elk Creek,

1965) yox
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in 1965 contained several trees which had high brood density at the
four foot level but low average density becauée of tree resistance
(résinosis) in the higher portions of the stem. These trees were
probably responsible for the high intercept of the average Vs. maxi-
mum brood density relationship of the Hérsethief Creek sample in 1965.
It should be noted that when brood density at the point of maxi-
mum is 2zero, average brood density should also be zero. Thus, the
regression equations on Figure 36 could have been conditioned to pass

through the origin.

7.2, Developmént'ofvfhé pbbulatioh trend index.. In the.preceding
secﬁion it was found that average brood density within individual trees
(y) is related to brood density at a predetermined ﬁeight level by the
equation: y = bx + a.  The linear regression equations of y on x, on
two different plots and in two different years on one of these plots,
had identical slopes and small but significantly different intercepts.
Therefére, in an outbreak area, average bfood density for a sample of
infested trees (y) will be related to average brood density at a pre-

 determined height level (X) as: y = bx + a. Further, as the regres-
sion lines on Figure 36 could have been forced through the origin
(because~they had small intercepts), the relationship between ¥ and
X can be rewritten as: y = b'X. Therefore, if we let:
ay = estimate of the surface area of the i-th tree,
SNai = estimate of the total éurface area of ali infested
trees in any one year,
(SNai)§ = estimate of brood population total in any one

year,
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(SNa.)i = index of brood population total in any one year,
i
than the (sNa,l)§ vs. (sNai)E relationship within a given infested area
is described by the following equation:
_ t -
(5y2.)y = b (5.2 )x (XI11)
N7 N i
Therefore, population trend may be expressed as the ratio of the esti-

mates of total population in years N and N + 1. That is:

I - ((SNa.l)SI')N
((SNa.lﬁ)

N+1

Where, I = index of population trend. (Note: A more meaningful ex-
pression of population trend is the ratio of the population of re-
producing individuals in successive years. I in equation (XIV), will
estimate this ratio only if we assume a stable generafion to genera-
tion sex ratio). In accordance with equation (XIII) an estimate of

I can be calculated as follows:

L R (CEREN o)

(5D, (5B

If equation (XIIT) has an intercept other than zero, ll will be a
biased estimator of the true population ratio. Therefore, the use of
1

bbl_ is recommended only for general insect survey work, at least until

more is known concerning the relationship between (SNa,)§ and (SNa.)f.
i i



TABLE XXTIT. ANALYSIS OF COVARIANCE TO COMPARE THE SLOPES AND INTERCEPTS OF THE THREE LINEAR REGRESSION
EQUATIONS OF AVERAGE BROOD DENSITY ON MAXTMUM BROOD DENSITY PER TREE, FOR THE ELK AND HORSETHIEF CREEK

SAMPLES .
Residuals
Line Group Df Snygw N H'Sny? R §nx2..,;Df .Sum squares Mean square F F.05 F;Ol Remark

1 A 9 989.675 2,854,900 10,247.900 8 194.3459

2 B 27 4,150.000 6,497.300 16,872.900 26 1,648.0650

3 C 14 975.260° 2,751,120 8,074.870 13 37.9500

L Total L7 1,880.3609 40.0076

5 Difference for testing slopes 2 72,4140 36.2070 0.905 3.20 5.10 ns
6 50  6,114.935 12,103.320 35,195.670 49  1,952.7750 39.8525

7 Difference for testing levels 2 420,2900 210.1500  5.273 3.19 5.08  **
8 52 6,974.690 12,936,400 36,367.690 51 2,373.0700

A = Elk Creek, 1965, sample, B = Horsethief Creek, 1965, sample, C = Horsethief Creek, 1966, sample,

ns = not significant, ** = significant at the 1% probability level.

oMt
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DISCUSSION

The variance and edge effect bias of sample estimates of mean
brood density in late larval stages of development were related to
the shapé,vsize and orientationvof the sampling uhit. Edge effect
bias, a result of the inclusion or exclusion of most individuals
from sampling unit boundaries, was directly broportional to the
circumference area ratio of the units. Consequently, for any fixed
’sampling unit size, edge effect Eias decreased from rectangular.
through square to circular units. The edge effect of lpng, narrow
rectangular units increased wiﬁh decreasing width per length ratio
(w/l)'becaﬁse the circumference per area ratio is inversely related
fo H[l; Rectanguiar sampling units, when orien£ated with long éides
parallel to the egg galleries, had greater edge effect biés than
rectangular units of the same w/l ratio but rotated by 90°., This
differenée can be explained on the basis of the spatial arrangement
ofvmountain pine beetle larvae. When the long sides of the units
are parallel to the egg galleries they will also lie approximately
parsllel to the long axes of larval clumps. Thus, the long sides
of these units will, on the average, bisect more larvae than the
long sides of the same units but rotated by 90°. This explanation
implies that edge effect bias, in addition to the w/l ratio of the
unit, is a function of the spatial arrangement of the organisms.

However, it has been shown that this bias was independent of mean density.
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For any given sampling unit shape, edge effect bias was inver-
sely proportional to the square root of sampling unit size and directly
proportional to the square root of the cross-—sectional area of an "aver-
age" larva. The rate of change of the edge effect bias (Lc%) decreas-
ed rapidly with increasing sampling unit size up to about 12 square
inches for all sampling unit shapes. For sampling units greater than
12 square inches the change in LC% with respect to unit size became
mere gradual. These findings indicate that mean brood density, when
estimated from sampling units smaller than about 12 square inches,
will have considerable systematic bias resulting from edge effect
(greater than 7%). Therefore, these units should not be considered
for intensive population work, especially if edge effect cannot be
controlled., For a fixed sampling unit size, circular units will give
smaller Lc% values than square or rectangular units. As edge effect
bias increases with decreasing w/l ratio, when a rectangular unit is
used for sampling its w/l ratio should, if possible, be at least 3
especially for small sampling units (i.e. close to 12 square inches).
(Note: The edge effect bias of mean brood density can be minimized
by X-raying infested slabs of wood and sampling the radiographs with
a transparent overlay "sampling unit" over the light table., With
this sampling technique it is possible to identify those insects which
fall on the sampling unit boundaries.)

The sampling variance of mean brood counts per sampling unit was
related to the size and shape of the sampling unit and to the orien-
tation of long, narrow units. When the shape and size of the unit

were approximately equal to the mean size of larval clumps, the va-
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riance of the estimate of mean brood counts/unit was maximal. This
result is supported by experimental evidence from vegetation studies.
Greig-Smith (1957) and later Kershaw (1964) indicated thét the same
relationéhip holds for gquadrat samples of many plant species which
exhibit "patchy" spatial arrangement.

When sampling is done with rectangular units, the orientation of
which are parallel to the egg galleries, these units will bisect few-
er egg galleries (Appendix I) and include more "extreme" counts than
units of any other shzpe and orientation, This is because.the for-
mer units will approximate the shapes, sizes and orientations of lar-
val clumps. Consequently, as a result of the comparatively high fre-
quency of extreme brood counts, the estimated variance of the former
units will be higher than that of any other unit, for azny fixed samp-
ling unit size., The éffect'of sampling unit orientation on sampling
variance decreased with increasing brood density, possibly because
at high densities the spatial arrangement of the larvae were more
regular then at low densities. Of the three sampling unit shapes
(circular, rectangular and square) and two orientations (long sides
parallel and perpendicular to the egg galleries) considered, rectan-
gular units oriented perpendicular to the egg galleries gave the
smallest variance estimates (greatest precision) for all sampling
unit sizes investigated. For these units the estimate of the sampling
variance decreased with decreasing w/l ratio. Therefore, when there
is access to radiographic facilities (so that edge effect can be con-
trolled) the efficiency of the sampling design can considerably be
increased by using long, narrow units the long sides of which are

orientated perpendicular to the egg galleries.
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Optimum sampiing unit size, in terms of the least total time
needed to establish mean brood density for a predetermined degree
of precision, was determined separately at twp height levels by as-
suming simple random sampling for multiple items (brood and attack
density). At both height levels optimum unit size was found to be
approximately eighteen square inches (w/1 ratio = 4, long sides
perpendicular to egg galleries). However, this result has limited
generality as it is applicable only to simple random sampling at
fixed height levels. In eddition to the technique of sampling,
optimum unit size will be affected by the method of sampling unit
delineation and enumeration, the work-speed of the sampler and by
changes in brood density. For the two-stage sampling ﬁechnique,
which was developed for the mountain pine beetle, the definition
of the optimum unit differs from the above given definition. As
the second-stage sampling fraction was set at 2%, the optimum unit
is that which gives the most efficient estimate of the within-primary
unit component of the population total for a fixed second-stage samp-
ling fraction, when the units are selected by within-primary unit
stratification. The nature of the within-tree variance vg. mean re-
lationship is such that the smallegt units will give lower estimates
of the within-tree variance component of the population total, of
all units of optimum shape and orientation which do not have serious
edge effect bias. This conclusion is valid only when variance is
estimated from untransformed data.

Studies indicated that in the branch-free portions of infested

stems the concentration of both attacks and brood were highest on
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the north-eastern aspect and lowest on the south-western exposure.
However, in the mid-crown region the circular distribution of both
of these variables appeared uniform. These findings confirm those
of Shepherd (1960) who reported highest attack densities from the
northern aspects of infested lodgepole pine trees. Shepherd stated
that aspect differences in attack density were due to the attacking
female beetle's behaviour. The attacking beetles are stimulated to
fly by high heat and light intensities and, therefore, the southern
and western aspect of the clear bole will harbour lighter attacks
than the more shaded northern and eastern asﬁects. This hypothesis
was also supported by the finding that at 1:00 P.M. MS%, when peak
flight usually occurs within a day (Reid 1960), at the time of emer-
gence the shadow was centered on those positions of the infested
clear boles where the highest attack concentration was recorded.
Brood density is related to attack density and, therefore, it was
natural to expect the circular distribution of the former to be
similar to that of attack density. However, this correlation is
disturbed by competition, woodpecker predation, insect predation and
/ﬁarasitisim, resinosis and the differential rates of drying of the
inner bark and outer sapwood on the vérious aspects of the stemn.
Therefore, the difference in the location of the highest incidence
of attacks and brood counts in the lower and middle regions of the
stems, was probably caused by the action of these mortality factors
on brood density.
The difference, which was found between the vertical attack

density gradients on the due N and S aspect of infested trees is the
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result of the attacking female beetle's reaction to high heat and light
intensity anéiit has been explained earlier. This.hypothesis appears
to be contradicted by the fact that, in 1965, the attack density‘gra-“
dients of the northern and southern aspects of the Elk Creek sample
trees were identical. This apparent contradiction is due fo the. fact
that, in 1965, on the Elk Creek experimental plot an early flight
took place and the lightly infested southern aspects of most sample
trees[ﬁgggxgeég]reattacked. Mthough this flight was not actually
observed, indirect evidence supports this hypothesis. At the time

of sampling, during the first half of July, on the southern aspects

a considerable portion of the insects was in the egg, first and second
larval stages, while the majority of the insects on the.northern as-
pect was in late larval, pupal and teneral adult stages. The between-
plot and between-years within plot differences in the rate of change
of attack density with height is probably the result not only of tree
| resistance and size of the attacking population, but also of bark
roughness. As bark roughness is a function of age and diameter (in
addition to site, climatic and genetic factors) the older and big--
ger diameter trees of the Elk Creek plot had rougher bark and, con-
sequently a greater number of suitable attack sites higher up the |
stem than the younger and smaller diameter trees of the Horsethief
Creek plot. On the Elk Creek plot, in 1966, attack density decreased
with height at a greater rate than the attack density in 1965. As

the sample trees were of the same age and size in both years, this
finding is probably the result of the lighter intensity of attacks

at all levels on the sample trees in 1966 than that &f the sample —
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trees in 1965. A strong contrast appears in the fact that in the Elk
Creek samples the two foot level supported lower attack densities
than those of the four foot region (in spite of the greater bark
roughness at the former level), while on the Horsethief Creek plot,
the highest mean attack density occurred at the two feot level. The
reason probably lies in the fact that the high ground vegetation on
the former plot{prevented éttack initiation close to the base of the
infested trees. i

. These results generally are in good agreement with those of
Shepherd (1960, 1965) who found differences in attack intensity Bet-
ween levels and aspects within trees, between areas, between diameter
classes withip areas and between trees within diameter classes. Also,
the interaction of height with trees, diameters and areas proved to
be significant. On any given location, the differences between height
levels, diameter classes and trees and the significance of the inter-
action of these varisbles with height level can be explained on the
basis of the relationship between bark roughness and number of suiﬁ-
éble attack sites and res;stance. The aspect difference is due to
the female beetle's,feaction to high light intensity and heat and
the area difference is the result of the combined effects of bark
roughness, resistance and the size of the attacking population.

The functionzl relationship between bark roughness and the num-
ber of available attack sites was shown indirectly by assuming that
the number of suitable attack sites is an asymptotic function of the
combined thicknesses of the inner and outer bark and that the inten-
sity of attacks on the bark surface of a "nop-resistant" tree will

be approximately proportional to the number of suitable attack sites.
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The mathematical model gave an excellent fit to the brood density
vs. bark thickness relationship. The formulae had positive "x"-
intercepts indicating that, at any level of the attacking population,
the height level of attacks on a2 "non-resistant" host tree will
coincide, on the average, with the location of a2 certain minimum
bark thickngss on the stem. The average value of this thréshold
bark thickness was found to be about 1.5 ETK. on the Horsethief
and Elk Creek‘eXperimental plots. This result seems to suggest that
bark surfééééAthinner than the threshold thickness eithef did not
support suitable atﬁack siteé or they proved to be too thin for egg
gallery construction. The parameters of the brood density vs. bark
thickness relationships were ﬁot influenced by either height level
or resinosis within the limitations of the sample data. When tested
at fixed héight level over a large group of sample trees, the spa-
tial pattern of attacks was regular. Shepherd (1965) arrived at
the same conclusion on the basis of plotless sampling on a limited
bark area and argued that the regularity of attack pattern was
probably due to the regularity of suitable attack sites. Thus, when
all of the findings are taken into consideration, it is suggested
that at any fixed level of the attacking population, the intensity
of attacké on "non-resistant" trees will be determined by the num-
ber of suitable attack sites per unit bark area of the host, lodge-
pole pine. |

Although, the brood density vs. bark thickness graphs had a
general resemblance to those of attack density, the relationship

between brood density and bark thickness was decidedly sigmoid on
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both experimental plots and in both years on the Horsethief Creek
plot. The sigmoid brood density vs. bark thickness curves resul-
ted from the inverse relationship between the brood/attack ratio
and height (Fig. 22). It was noticeable, especially on the Elk
Creek plot that brood density increased to 2 maximum and then dg-
clined with increasing bark thickness. This result is clearly not
due to the action of bark thickness because in 1965, for the 15
m.m. bark thickness class, maximum and minimum brood densities were
recorded on the Horsethief and Elk Creek plots, respectively. The
most likely explanation, therefore, seems to be that at the bases
of infested trees brood suffer excessive mortality from resinosis
(Reid 1960).

Correlation analysis of 38 infested trees taken from two samp-
ling localities indicated that total numbers of attacks/tree (Yi)
was significantly correlated with the following variables: d.b.h, X
total tree height, 1/d.b.h., crown width2 X crown length, tree age,
sum of the distances from the three nearest trees larger than 4
inches in d.b.h. and bark thickness at d.b.h. level. The combined
variable, d.b.h. x total height, had the highest correlation coef-

ficient with Y, followed by tree age, 1/d.b.h., (crown width)2 X

——

crown length, in that order (r = 0.87, 0.82, - 0.69 and 0.65).

These results suggest that the attack harbouring potential of lodge-
pole pine trees is related to external tree characteristics and
stand density. The combined variazable d.b.h. X total tree height

and 1/d.b.h. (d.b.h. x total tree height/d.b.h.2 X total tree height)

are both expressions of the total bole area, therefore, Y; is rela-
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ted to the total surface area available for attack in individual
trees. Both tree age and (crown width)2 X crown length are Strongiy
correlated with d.b.ﬁ. X total tree height (r= 0.88 and 0.79 res-
pectively) and, therefore, the high correlation of the former‘tﬁo

variables with Yl is probably due to their interrelationship with

the latter varisble. The combined variable {crown width)2 X crown
length, is an expression of crown volume and thus, to a degree,
stand density or crowding. An other measure of crowding is the sum
of the distances tb the sample tree to its three nearest neighbours
more than 4 inches in d;b.h. Both expressions of crowding were sig-
nificantly correlated with Yl indicating that relatively open-grown
trees tend to harbour more ;;tacks than trees which are crowded by
tﬁeir neighbours. Bark thickness is an index of bark roughness
"and, thus, the number of suitable attack sites/unit area of bafk
and, in addition to d.b.h. x total height, it is an important tree
characteristic influencing the attack harbouring potential of in-
dividual trees.

In individual trees, the total number of attacks'(Yl) was pre-
dicted by 2 multiple regression equation of Yl on bark thickness
at d.b.h. level, d.b.h. x total tree height and radial stump height
growth for the last ten years with high degree of accuracy_(R2 =
0.809). However, this result have limited generality because -total
number of attacks in individual trees depend, in addition to physi-
cal tree characteristics, on factors such as the size of the attacking

beetle population, the number of susceptible host trees, climatic

conditions at the time of beetle dispersion and localized resistance.
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For the combined Elk and Horsethief samples in 1965, the brood
total estimate/tree (YZ) was significantly correlated with Yl, the
attack total estimate/tree, and with those tree characteriszzé va-
riables whiq? were also significantly correlated with Yl. Thé four
variables which had the higﬁest correlation with Y2 were (crown
width)2 X crown height, d.b.h. x total tree height, Yi and 1/d.b.h.,
in that order, (r = 0.67, 0.66, 0.65 and - 0.56, res;;;tively). These
results indicate that the total number of broods surviving to late
larval and pupal stages of deveiOpment is related to indices of tree
size such as d.b.h. x total tree height, 1/d.b.h, and an expression
of total crown volume, in addition to the total number of attacks,
in individual trees. The expression of crown volume, (crown width)2 X
crown length, may affect survival by coﬁtrolling_the rate of drying
of the insects sub-corticél habitat and by affecting the nutritional
quality of the inner bark. The varisble 1/d.b.h., in addition teo
being an exXpression of tree size, is an iﬁdex of the bole area/bole
volume ratio and, therefore, this variable may also affect brood sur-
vival by controlling the moisture loss from the bole through the bark
after the death of the infested treé‘

For the Elk Creek sample trees, the total number of attacks/tree
was estimated by a multiple regression equation of Y2 on the total
number of broods/tree,.l/d.b.h. and d.b.h, x total ;;ee height (R2 =
0.763). Similarly, for the Horsethief Creek sample, the multiple re-
gression equation of YZ on the total numbers of brood/tree, tree

age and on the combined variable d;b.h. X toﬁal tree height gave a

moderately good fit to the sample data (R2 = 0,599). The Elk Creek
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plot sample trees were much older than the Horsefhief Creek plot
trees (107.6 vs. 60.6 years) and had a smaller age spread (12 vs.
L0 years) and this may be the reason for age not being an impbr-
tant independent variable for the Eik Creek predictive equation.
'Although, these prédictive equations have limited generality and
are not suitable for sampling purposes because the estimation of
attack totals in individual trees is a time consuming procedure,
they are useful for indicating what combination of external tree
characﬁeriétics have the greatest effect on brood survival. Thesé
external tree characteristics can be used for constructing strata
to réduce the between-tree (primary unit) éomponent of brood va-
riance estimates.

The brood density vs. bark thickness relationship proved to
be well adaptable to the construction of within-primary unit stra-
ta. The nature of this relationship is such that within-primary
units varisbility can be substantially reduced by dividing the pri-
mary units into three or more strata; horizontally, at height le-
vels corresponding to certain bark thickness values. However, the
formation of much more than about three horizontal strata is not
advisable for the following reasons: Firstly, the observations
need té be transformed before anzlyses and within-primary unit
variability of brood counts} on a2 transformed scale, will be sub-
staﬁtially reduced. Secondly, for brood counts, first-stage va-
riability is known to be considerably greater than second-stage
variability, therefore, it will be more rewarding to concentrate
efforts on reducing the former source of variation.

Experiments indicated that stratification by aspect will not

158
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be as efficient as that by level, especially if the data is trans-
formed prior to analysis. At height levels greater than about the
80% point of infested height, there is little or no difference bet-
ween brood densities on the northern and southern aspects. There-
fore, aspect stratification is needed only for the lower four-fifths
of the infested stem. The aspect-stratum boundaries should coincide
with the N 45% and i\T L5°R compéss directions. On the other hand,
it was suggested by the brood density vs. bark thickness relation-
ship that efficient horizontal stratification will be obtained by
forming stratum boundaries at the height levels coihciding with the
location of 5.5 m.m. thick bark (Appendix J) and with the 80% point
of the infested stem (Fig. 24).

The cumulative brood total vs. cumulative infested height re-
lationship on Figure 24 has g@ﬁgsﬂpractical use beside stratifica-
tion. Cahill (1960) reported that during chemical control of the
mountain pine beetle a decision must be made on how much of the
infested tree should be sprayed to effect satisfactory kill. He
based this decision on the entire infested bole and stated that
trees which are infested to greater heights than the effective
Spary height (27.5 ft.) should be felled to complete the treatment.
Figure 24 indicates that, even if the total infested height was 55
feet (double of the effective spray height), approximately 85% of
the brood would be killed without having to fall the infested tree.
The percentage kill, in all probability, would be much higher than
cited 85% because the cumulative brood curves were constrﬁcted on

the basis of brood samples taken mainly in late larval and pupal



160

stages. There is strong evidence to indicate that'betWeen these sta-
ges and emergence the brood will suffer heavy mortality in the upper
stem from excéssive rates of drying of the inner bark and outer sap-
wood .

The density gradients of brood counts and attacks had the same
general form, therefore, the within-tree stratification developed
for the former variasble will be reasonably efficient for attacks
also.

The frequency distribution of attacks and brood of the mountain
pine beetle had strong positive skewness and the variances were shown
to be related to.their respective means. The skewness of the frequency
distributions of these variables is the result of within-tree density
gradients and between-tree variability, due to tree resistance and
differences in the density of suitable attack sites. In addition,
between and within-tree differences in woodpecker predation; winter
mortality and in mortality caused by drying of the inner bark, con-
tribute significantly to the frequency of 2ero and low brood counts,

Although, no adequate transformation was found to normalize the
frequency distribution of the data, both the log(x + k) transforma-
tion (k = index of dispersion for the negative binomial distribution),
and Taylor;s power transformation sufficiently stabglized the vari- v P
ance. However, as non-normality must be extreme to invalidate para—
metric tests (Hayman and Lowe, 1961), both transformations can be
considered adequate for the purpose of sampling. Of the two trans-
formations, the logarithmic is easier to calculate but, for inten-

sive population work, Taylor's power transformation would be more
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appropriate. This is because, when»the observations are transfor-
med in accordance with Taylor's power law, the number of insects
per primary units will be highly correlated with primary unit size.
This correlation can be utilized to reduce the variability of pri-
mary unit means by regression sampling on primary unit size.

The transformation of brood and attack counts raises the ques-
tion of how should means and variances be expressed in the final
presentztion of the results? Morris (1955) pointed out that once
the data have been transformed, and found appropriate, they can be
best summarized as to central tendency and variance by giving the
mean and variance of the transformed values. This will provide
consistent and efficient estimates of the paraméters (Finney, 1941)
and will be satisfactory for most purposes; However, for the pur-
poses of exXpressing rate of mortality and population total (or.bop- e
pulation per acre) the transformed mean would pose considerable dif-
ficulties. For these reasons the original mean per secondary unit,
as détermined from the original observations should be used to es-
timate within generation mortality or population trend. On the
other hand, estimates of the sampling variance should be calcula-
ted from transformed dats for the following reasons: Firstly,
Finney (1941) demonstrated that for highly skewed distributions,
when the distribution of the logarithmic values is normal, the va-
riance of the original observations will be an unbiased but inef-
ficient estimate of the population variance. Secondly, sample ;ize,
for a specified degree of precision of the standard error on the

original scale, may be estimated even though the variance has been
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calculated from transformed datea.

As both, regression sampling of the primary units héa the cal- ”“ﬁz
V culation of population totals require the knowledge or an estimate
of primary unit size, a surface area equation was developed to pre-
dict total surface area of individuzl trees in terms of the combi-
ned variables; d.b.h. and total height. Separate equations were
calculated for forked and forkless trees because it was noticed that,
on the combined (x,y) plots of these two tree types, the greatest
source of variability was caused by the forked trees. The "combined
variable" linear surface area equations gave better fit to experi-
mental data than surface area equations developed from Honer's
(1965) "transformed variable" cubic volume function. Moreover, the
variability.of the dependent variable gbout the combined variable'
regression lines was remarkably uniform for all values of the inde-
pendent #ariable, while the scatter about £he regression line for
‘the transformed variable function was noticably increasing with de-
creasing values of "x". Although, it is claimed (Golding and Hall,
1961; Honer, 1965) that the combined variasble volume function gives
poor estimates in the smaller Qfﬁ classes while the medium to large
classes are estimated with a high degree of accuracy, this short-
coming of the volume function does not apply to the surface area
'~ equation because trees smaller than about 4 inches‘in diameter are
rarely infested by the mountain pine beetle. Therefore, on the
basis of its simplicity, higher correlation coefficient and greater
accuracy in the medium to high DH classes, the combined variable

surface area function was used for developing partial surface area
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equations and tables for lodgepole pine.

The surface area of trees is an important variable and has im-
plications for respiration rate, energy exchange and water and mine-
ral budget. Consequently, the surface area equations developed in
this thesis may be used for ecological studies of the energetics
of lodgepole pine stands.

In order tg estimate primary unit size (the infested surface
erea of "individual t?ees) an equation was developed to estimate
" the proportion of total surface area infested in terms of the in-
fested height/total height ratio. It was found that the ratio in-
fested surface area/totz2l surface area cén be predicted with high
degree of accuracy by a multiple curvilinear equation involving the
ratio; infested height/total height as independent variable. There-
fore, a good estimate of primary unit size can be obtained by form-
ing the product (total surface area of the i-th tree) x (infested
surface area/total surface area ratio of the i~th tree). The within-
primary unit stratum sizes can be calculated in similar manner.
Since it would be difficult to calculate primary unit and within-
primary unit stratum sizes by forming the zbove specified product,

a "partial surface area table" was developed to simplify the esti-
mation procedure.-

Although, an excellent estimate of population total will be
obtained by forming the product (estimate of total infested surface
area in the population) x (estimate of mean number of brood (or at-
tacks) per unit area), the estimation of the variance of the popu-

lation total will pose some difficulties. The main source of this
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difficulty is that no unbiased estimate of the variance of individual
observations can be calculated for the regression of the ratio iﬁ-
fested surface area/total surface area on the ratio: infested height/
total height, without complicated weighting procedure. As the vari-
ance about this regression is approximately proportional to the pro-
duct (1 ~ x)x, (Appendix H), where x = value of the independent véri—
able, this difficulty could be over come by weighting the observations
by 1/((1 - x)(x))z. However, the weighted regression would give poor
estimateé in the middle ranges of the independent variable (x varies
from 0 to 1), Therefore; the best solution to this problem seems

to be to redefine the primary unit. The primary unit may be rede-
fined as the total surface area of infested trees. Then, on the ba-
sis of this definition, the pOpulatioh total can be calculated by
forming the product: (estimate of total surface area of all infes-
ted trees in the population) X (estimate of brood (or attack) counts
per unit area). As this estimaﬁe of population_total does not re-
quire the knowledge of the proportion of infested surface arez, a
nearly unbiased estimate of its variance can be calculated.

As the'éize of the primary unit is expected to vary consider-
ably, even if the redefined units are used (i.e. the total stem sur-
face area of individuzl trees), the choice of the technique to esti-
mate the sampling mean and variance has to be carefully considered.
The choice of the appropriate formulae to estimate means and varian-
ces for the two-stage sampling design will depend on the manner in
which the primary units are selected and on the relationship between

primary unit size and the number of brood (or attack) counts on thzat
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unit. The primary units may be selected at random, with equal pro-
bability and without replacement ér at random, with probability of
selection proportionzl to primary unit size and with replacement.
When the primary units are selected in accordance with the former
case, the available &nbiased formula to estimate the sampling vari-
ance is of poor efficiency (Cochran, 1953; Samford, 1962) and, there-
fore, its use is not advisable. Moreover, the avazilable biased fbr-
mulas assume that the variable toAggtimated is independent of the
size of the primary unit. Obviously, this assumption is incorrect
for mountain pine beetle broods and attacks, therefore, the primary
units should be selected at‘random with replacement and with proba-
bility of selection proportional to primary unit size. The formu-
lae available to estimate sample means and variances, when the se-
lection of the primary units is proportional to unit size, are un-
biased,‘easy to calculate and the variance formula will give an
efficient estimate of the sampling variance.

The secondary units should bé selected without replacement from
gll secondary units coﬁtained in stratum i of the j-th pfimary unit,
each time this unit appears in the sample. The number of secondary
units should not exceed about 2% of the total number of samples con-
tained in the primary units, especially if the same primary units
are used to estimate within-generation mortality by sampling se-
veral times during the life cycle of the insect._ Excessive debart”
king of the sample trees can cause additional mortality by accele-
rating the drying rate of the inner-bark and outer-sapwood. Sys-
tematic selection of the secondary units is preferable to random

allocation because the former is easjer and its use leads to ac-
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curate estimates of the population mean. However, systematic second-
stage sampling will lead to an underestimate of the population vari-
ance. The underestimation of the population variance will likely

be small because the within-primary unit component of the population
total was less than 14% of the total variance for the Elk Creek samp-
le in 1965. Random selection of the secondary units will pose some
technical problems but within-primary unit stratification will con-
siderably simplify the identification of these units in the field.
However, completely random selection of the secondary units can never
be achieved if fixed-sized units are used, because tree taper comp-'
licates the sub-division of primary units into secondary units. This
problem will be more serious when sampling is done by circular second-
stage units. The secondary units should be allocated in proportion
to the size of within-primary unit strata. The efficiency of pro-
portional allocation will probably be comparable to that of the op-
timal allocation because stratum to stratum variability of brood (or
attacks) within-primary units is expected to be considerably reduced
by transformation.

The sampling design, when modified as discussed in the preced-
ing paragraphs, is adaptable to suit the purposes of intensive po-
pulation work on the mountain pine beetle in lodgepole pine. It can
be used for estimating population totals in a group infestation
several times during the beetle's life-cycle. The differences bet-
ween the population totals estimated from successive sample surveys
will provide mortality estimates for the various stages of the beet-

le's development. Moreover, estimates of population totals at the
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end of the life-cycle in two successive generations can be used for
estimating population trend. Although, this sampling design was de-
veloped by studying mountain pine beetle broods in advanced stages
of development, it will probably prove efficient in estimating mean
brood densities in all developmental stages; It is becaguse the ba-
sic within-tree population gradients prevail through the insects
entire subcortical life. However, the efficiency of the design could
probably be increased for sampling egg and first to second larval
stages of the beetle, by substituting ratio sampling on egg gallery
length for within-primary unit stratification.

Although this sampling technique was developed for sampling the
mountain pine béetle in lodgepole pine, the principles underlying

its development have wider generality. The same principles could

7
be applied to the development of sampling techniques for all bark uﬂ“”(‘ 1
, 224 U’
n . 1
beetle species in the genus Dendroctonus. Iﬁjﬁgwmhx
. . an

When an approximate ihdex of population trend is required, it
can be obtainéd by sampling at a fixed height level. This method
is based on the assumption that, at a fixed height level, brood
density in advanced developmental stages is approximately propor-
tional to average brood density. The average vs. "maximum® brood
density relationships appeared to be linear and had zero intercepts.
Thus, these two variables can be considered directly prbportional.
This last property of the average vs. maximum brood density relation-
ship made possible the substitution of the former for the latter va-
riable for expressing population trend. Population trend was defin-
ed as the ratio of the population totals of late stage (possibly

adult) mountain prine beetle brood in successive years.
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To obtain estimates of the quantity (SNai)E.in equation (XV),
the surveyor should obtain an estimate of the mean of the product
of d.b.h. and total height from a random sample of infested trees.
The size of the sample should possibly be 20 or more trees and both
d.b.,h. and height should be measured on the same sample trees. The

mean of the products, (d.b.h.)(ht.), is determined as:

(d.b.h.)(ht.) = 5 ((d.b.h.)(nt.).)/n
n 1

Where, i denotes the i-th sample tree and the other notations are the

same as before. The mean, (d.b.h.)(ht.) is then converted to sq. ft.

units and substituted into the equation a = 1.9708(d.b.h.)(ht.) +
3.7196 for the value of (d.b.h.)(ht.) to obtain 3, the estimate of
the population mean of the surface area per tree in sq. ft. units.

Then, the product Ma will be an estimate of SNa. in equation (XV),
.. i

(M = total number of infested trees in the population). To secure
an'estimatg of z in equation (XV) an independent sample of at least
20 trees should be selected at random and 2 sample of the brood taken
from both the northern and southern aspects of the sample trees.
Than, 2 can be calculated as the mean of the combined observations
from the northern and southern aspects. For the purposes of the
survey fhe shape of the sampling unit is not very important, but
sampling unit size should possibly be greater than 36 sq. inches.
The height level of sampling should be close to four feet above
ground level for infested stands which measure less than about ten
inches in mean d;b.h. and close to five feet above ground level for

stands with average d.b.h. greater than ten inches. The position of
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sampling units, on the northern and southern aspects of the bole,
will probably not influence the results greatly, but the sampler
should be consistent in allocating the sampling units to approxi-
mately the same compass directions for all trees within a single
year and every year within 2 given infested area. The timing of
sampling should be such that the mountain pine beetle brood is
sampled in the fourth larval and.pupal or more advanced develop-
mental stages. As even tener2l adults are known to suffer heavy
mortalities up io the time of emergence (Reid, 1960) the most re-
liable results will be obtained by sampling the emerging population,
at the specified level by "emergence traps". This approximate method
of population trend prediction is considerably more complicated and
difficult to use in the field than that developed by Knight (1959)
for the Black Hills beetle. Knight predicted population trend by
the ratio of the number of newly infested trees to the number of
trees infested the previous year. However, the mountain pine beetle
tends to kill the biggest diameter trees first in lodgepole pine
stands (Hopping and Beall, 1948, Shepherd, 1960) and, thus, reduces
the infested surface area of the average attacked tree each year
compared with that of the previous year. This fact, coupled with
the substantial year-to-year fluctuation of the attack/emergence
ratio, tends to make Knight's population trend estimating technique
less reliable than that proposed in this thesés. Although several
authors demonstrated that the population in the lower bole of the
stem is comparable to that in the upper bole (Beal, 1939, Black-

man, 1931, Hopkins, 1905, Deleon, 1939, Knight, 1959), to this



170

author's knowledge, the actual relationship bétween maximum and over-
all mean brood density has not been demonstrated prior to the present
study.

As the sample data for studying the maximum vs. overall mean
brood density relationship was collected from only two localities
in south-eastern British Columbia, the approximate method of popu-
lation trend measurement should be used only for the mountain pine
beetle and only in lodgepole pine stands similar to the ones studi-

ed for this thesis.
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CONCLUSIONS

Edge effect bias is independent of mean brood density and is
inversely proportional to the square root of sampling unit size and
directly proportional to the circumference/area ratio of the unit
and to the square root of the cross-sectional area of the "average
insect". For any one fixed sampling unit size, circular unitsvwill
have the smallest and rectangular units the greatest edge effect
bias. Edge effect bias of the latter units increases with deérea-
sing width/length ratio.

For mountain pine beetle broods in late larval stages of deve-
lopment, edge effect bias will be greater than about 7% of the mean
when circular sampling unifs smaller than 12 square inches, are used
in the sample survey. For a 12 square inch rectangular unit, this
figure will be approximately 10%, when the width/length ratio is 4.
Consequently, if edge effect biaS'éannot be controlled, sampling '
units smaller than sbout 12 square inches should not be used for
intensive population work on the mountain pine beetle.

For a fixed sampling unit size, rectangu}ar units oriented»
perpendicular to the egg galleries will give the smallest, and the
same units rotated by 90o the greatest variance estimate of the samp-
ling mean. Circular and square units will give variance estimates
intermediate between these two extremes. Thus, the shape of the "op-
timum" unit is rectangular and its orientation is with long sides

perpendicular to the egg galleries. If edge effect cannot be cont-
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rolled, the w/l ratio of the optimum unit should possibly be 1 or

more.

For simple random sampling of the brood at a fixed height le-
vél, "optimum" unit size will be approximately 18 square inches
when sampling unit boundary delineation is done with a template and
chisel and hammer and debarking with a wide blade hunting knife.

The circular distribution of attacks on the stem circumference
is related to the attacking female beetles reaction to high heat
and light intensity. These beetles are stimulated to fly by high
temperatures and light intensity and, consequently, the highest
and lowest conceﬁtration of éttacké will occur on the north to-
north-eastern and south to south-western aspects on the branch-free
portion of the infested stem, respectively. In the crown region
of the infested stems, branch-shading tends to reduce temperature
and light intensity differences between northern a