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ABSTRACT 

The influence of i n e r t i a , e c c e n t r i c i t y and atmospheric 

forces on the attitude dynamics of gravity oriented, non-

spinning, axi-symmetric s a t e l l i t e s , executing general l i b r a -

t i o n a l motion i s investigated using a n a l y t i c a l , numerical 

and analog techniques. The problem i s studied i n the i n 

creasing order of complexity. 

For the case of a c i r c u l a r o r b i t , the autonomous, con

servative system represented by constant Hamiltonian yi e l d s 

zero-velocity curves and motion envelopes which i d e n t i f y 

regions of i n s t a b i l i t y from conditional and guaranteed stable 

motion. The non-linear, coupled equations of motion are 

solved using approximate a n a l y t i c a l techniques: Butenin 1s 

v a r i a t i o n of parameter method and invariant i n t e g r a l approach. 

A comparison with the numerical response, establishes th e i r 

s u i t a b i l i t y i n studies involving motion i n the small. The 

invariant i n t e g r a l method maintains reasonable accuracy even 

for larger, predominantly planar, disturbances. However, 

for a general motion i n the large, the a n a l y t i c a l solutions 

provide only q u a l i t a t i v e information and one i s forced to 

resort to numerical, analogic or hybrid procedures. 

The analysis suggests strong dependence of system 

response on the in-plane disturbances and s a t e l l i t e i n e r t i a . 

The l i b r a t i o n a l and o r b i t a l frequencies are of the same 



order of magnitude. It also shows that the stable solution, 

when represented i n a three dimensional phase space may 

lead to 'regular', 'ergodic' or 'island' type regions. The 

l i m i t i n g i n t e g r a l manifolds, given here for a few represen

tative values of Hamiltonian, provide a l l possible combin

ations of i n i t i a l conditions, which a s a t e l l i t e can withstand 

without tumbling. The r e s u l t s , for a range of s a t e l l i t e 

i n e r t i a , are condensed i n the form of design p l o t s , i n d i c a t i n g 

allowable disturbances for stable motion. In general, the 

slender s a t e l l i t e s exhibit better s t a b i l i t y c h a r a c t e r i s t i c s . 

The presence of aerodynamic torque destroys the symmetry 

properties of the i n t e g r a l manifolds. The s t a b i l i t y of the 

equilibrium configuration, which now deviates from the l o c a l 

v e r t i c a l , i s established through Routh's as well as Liapunov's 

c r i t e r i a . As the system i s s t i l l autonomous and conservative, 

the Hamiltonian remains constant leading to the bounds of 

l i b r a t i o n . Numerical analysis of the system response i n 

dicates increased s e n s i t i v i t y to planar disturbances. The 

d i s t o r t i o n and contraction of the regular, ergodic and 

island type s t a b i l i t y regions show the adverse e f f e c t s of 

aerodynamic torque. The design plots suggest that the shorter 

s a t e l l i t e s , normally not preferred from gravity-gradient 

considerations, could exhibit better s t a b i l i t y characteris

t i c s i n the presence of large aerodynamic torque. 

An alternate, economical approach to the dynamical 
analysis of the s a t e l l i t e s i s attempted using an analog 



computer. A comparison with the d i g i t a l data establishes 

the s u i t a b i l i t y of the method for design purposes and r e a l 

time simulation. 

As the regular surface represents the only usable 

s t a b i l i t y region from design considerations, a detailed 

study to e s t a b l i s h the bound between regular and ergodic type 

s t a b i l i t y was undertaken. The periodic solutions, obtained 

numerically using variable secant i t e r a t i o n show t h e i r 

spinal character with the body of s t a b i l i t y region b u i l t 

around them. Of p a r t i c u l a r significance i s the fundamental 

periodic solution ( t w o planar o s c i l l a t i o n s i n one out-of-

plane cycle) associated with the regular region, suitable for 

p r a c t i c a l operation of a s a t e l l i t e . The remaining periodic 

solutions represent degeneration of the i s l a n d - l i k e areas 

surrounding the mainland. The results lead to a set of 

fundamental periodic solutions over a wide range of system 

parameters. Floquet's v a r i a t i o n a l analysis i s used to estab

l i s h the c r i t i c a l disturbance (C„ - 0.8), beyond which no 
cr 

stable motion can be expected. The periodic solutions to

gether with the regular s t a b i l i t y region are presented here 

as functions of Hamiltonian, s a t e l l i t e i n e r t i a and 

aerodynamic torque. The case study of GEOS-A s a t e l l i t e 

i s also included. 

In e l l i p t i c o r b i t , the Butenin's analysis of coupled 

forced systems i s found to give an approximate solution of 

good accuracy. However for t h i s non-autonomous s i t u a t i o n , 
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where Hamiltonian i s no longer a constant of the motion, the 

concept of i n t e g r a l manifold breaks down. Fortunately, 

the design plots can s t i l l be generated by d i r e c t u t i l i z a t i o n 

of the response c h a r a c t e r i s t i c s . In general the s t a b i l i t y 

region diminishes with increasing e c c e n t r i c i t y and disappears 

completely for e > 0.35. 

The presence of atmosphere adds to the complex 

behaviour of t h i s non-autonomous system, where even the 

equilibrium configuration now becomes periodic i n character. 

The s t a b i l i t y regions are further reduced with i n s t a b i l i t i e s 

normally i n i t i a t i n g i n the planar degree of freedom. 

F i n a l l y , a p o s s i b i l i t y of using the atmospheric 

forces i n attitude control i s explored. The use of a set of 

horizontal flaps i n conjunction with a semi-passive, v e l o c i t y -

sensitive c o n t r o l l e r appears to be promising. With a suitable 

choice of system parameters even a large disturbance can be 

damped i n approximately two o r b i t s . 
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1 . INTRODUCTION 

1 . 1 Preliminary Remarks 

The advent of the space age has brought promise of a new 

world to mankind. Some of i t s innovations are already here, 

others are yet to come. Among the numerous facets of t h i s 

e xciting new era, communication, earth-resources, navigation 

and m i l i t a r y (implying public safety) are the aspects l i k e l y 

to involve and af f e c t major portion of humanity. In thi s 

respect the remarks of Arthur C. Clarke*, directed p a r t i c u l a r l y 

to the communication s a t e l l i t e , are pertinent: 

. . . . What we are building now i s the nervous 
system of mankind, which w i l l l i n k together the 
whole human race, for better or worse, i n a unity 
which no e a r l i e r age could have imagined . . . . 

Accompanying th i s new world i s a "restructuring of p o l i t i c a l , 

s c i e n t i f i c and business thinking""'" leading to an open global 

society. 

However, s c i e n t i f i c success demands s c i e n t i f i c pre

c i s i o n . A l l of the above mentioned missions normally require 

s a t e l l i t e s to maintain preferred orientations r e l a t i v e to 

the earth. Among the numerous methods proposed for station 

keeping, gravity-gradient s t a b i l i z a t i o n has gained much 

attention primarily due to the passive nature of the system. 

The earth's natural s a t e l l i t e , the moon, provides an excellent 



example of such attitude control. The lunar globe i s a 

t r i a x i a l e l l i p s o i d with i t s longer axis captured by the 

earth's g r a v i t a t i o n a l f i e l d . 

The key to thi s s t a b i l i z a t i o n p r i n c i p l e i s the fact 

that the gr a v i t a t i o n a l f i e l d varies over a s a t e l l i t e r e s u l t 

ing in a restoring moment tending to align i t s long axis 

(axis of minimum moment of in e r t i a ) with the l o c a l v e r t i c a l . 

Unfortunately, a gravity gradient s t a b i l i z e d s a t e l l i t e , even 

though positioned correctly i n the beginning, deviates with 

time from t h i s desired orientation due to perturbing environ

mental forces such as aerodynamic and radiation pressures, 

g r a v i t a t i o n a l and magnetic f i e l d interactions, micrometeorite 

impacts, etc. 

Design of a' s a t e l l i t e capable of proper functioning 

in such a "ho s t i l e " environment demands thorough understanding 

of i t s dynamical behaviour. Such a study, with a p a r t i c u l a r 

reference to an axi-symmetric s a t e l l i t e , forms the subject 

of t h i s thesis. 

1.2 Literature Review 

A survey of the pertinent l i t e r a t u r e reveals a vast 

body of information i n thi s area. The bulk of the i n v e s t i 

gation, however, i s devoted to the r e s t r i c t e d problem of 

l i b r a t i o n s i n the plane of the o r b i t . The dynamic analysis 

of a general motion has gained r e l a t i v e l y l i t t l e attention, 
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probably due to the non-linear, coupled character of govern

ing equations. 

The pioneering work on pure gravity oriented s a t e l l i t e s 
2 

was carried out by Klemperer (1960), who obtained the exact 
solution for planar l i b r a t i o n s of a dumbbell s a t e l l i t e i n a 

3 

c i r c u l a r o r b i t , and by Baker (1960) who found periodic solutions 

of the problem for small o r b i t e c c e n t r i c i t y . Beletskiy 5(1963) 

focused the attention on resonance effects for s a t e l l i t e s 
5 

i n e l l i p t i c .orbits while Schechter (1964) attempted, with 

limited success, to extend Klemperer's solution to non-circular 

o r b i t a l motion by perturbation methods. Zlatousov et a l . 

(1964) and more recently, Brereton and Modi (1967) success

f u l l y employed numerical methods, involving the use of the 

stroboscopic phase plane, to analyze the s t a b i l i t y of planar 

motion i n the large for orbits of arb i t r a r y e c c e n t r i c i t y . 
8 9 

They also investigated the corresponding periodic motion ' 

(19 69) and showed that at the c r i t i c a l e c c e n t r i c i t y for 

s t a b i l i t y , the only available solution i s a periodic one. 

Brereton"1"0 (1967) has presented an excellent review of the 

work on planar l i b r a t i o n s . 
Thomson'1"''" (19 62) analyzed, through l i n e a r i z a t i o n , the 

related problem of slowly spinning s a t e l l i t e s i n c i r c u l a r 
12 

o r b i t s . Kane and Barba (1966) attempted to study the motion 
in e l l i p t i c o r b i t s using Floquet theory while Wallace and 

13 

Meirovitch (1967) used, with questionable success, asymptotic 

analysis i n conjunction with Liapunov's d i r e c t method. Modi 



and Neilson investigated r o l l dynamics of a spinning s a t e l l i t e 
1 4 1 5 using the W.K.B.J. ( 1 9 6 8 ) and numerical ( 1 9 6 8 ) methods. 

The concept of i n t e g r a l manifolds was successfully extended 

to the study of three degrees of freedom motion i n c i r c u l a r 

o r b i t " ^ ( 1 9 6 9 ) . The periodic solutions were found and t h e i r 
17 

v a r i a t i o n a l s t a b i l i t y was established ( 1 9 7 0 ) . The l i t e r a t u r e 
on slowly spinning s a t e l l i t e s has been summarized, quite 

18 

e f f e c t i v e l y , by Neilson ( 1 9 6 8 ) . 

The presence of various perturbing forces and t h e i r 

influence on s a t e l l i t e dynamics has been discussed i n some ; 

19 20 d e t a i l by Roberson ( 1 9 5 8 ) , Wiggins ( 1 9 6 4 ) , Moyer and 
K a t u c k i 2 1 ( 1 9 6 6 ) , Anand et a l . 2 2 ( 1 9 6 9 ) and Flanagan and M o d i 2 3 

( 1 9 7 0 ) . At higher a l t i t u d e s , normally used for communication 

s a t e l l i t e s , the solar radiation pressure becomes quite 
2 4 

s i g n i f i c a n t . Sohn ( 1 9 5 9 ) indicated the use of solar radia^ 
tion to orient the s a t e l l i t e with respect to the sun while 

2 5 

Ule ( 1 9 6 3) . considered i t s application to spin an array of 

mirrors to achieve attitude s t a b i l i t y . A more complete 

analysis accounting for solar as well as the earth and earth 
2 6 

r e f l e c t e d radiations was attempted by Clancy and M i t c h e l l 

( 1 9 6 4 ) . In addition to the inherent l i m i t a t i o n s of the 

approach, the r e s u l t i n g force expression,given i n an i n t e g r a l 

form, required numerical evaluation. This rendered t h e i r 

application to any comprehensive study of s a t e l l i t e attitude 
27 2 8 29 

dynamics impractical. Modi and Flanagan ' ' evaluated 

these forces, quite accurately, using the concept of cutting-
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plane distance r a t i o s and used them to analyze the environ

mental e f f e c t on the s a t e l l i t e planar dynamics. A c r i t i c a l 

review of the developments i n t h i s f i e l d i s presented by , 

Flanagan 3 0(1969). 
31 

Schrello (1961) pointed out the predominance of 
aerodynamic torque for s a t e l l i t e s at a l t i t u d e below 350 

miles with variations i n equilibrium configurations d i s -
32 

cussed by Debra (1959). The e f f e c t of small aerodynamic 
33 

and g r a v i t a t i o n a l torques were treated by Beletskiy (1960) 
as independent perturbations to the motion of rapidly 

34 
spinning s a t e l l i t e s . Evans (1962) presented the aerodynamic 

and radiation disturbances i n the fundamental form of pres-
35 

sure and shear stress. Using i n f i n i t e s i m a l analysis, Garber 

(1963) treated the e f f e c t of constant disturbing torques on 

the l i b r a t i o n a l motion of a r i g i d , gravity oriented system 
3 6 

in a c i r c u l a r o r b i t . More d i r e c t l y , Meirovitch and Wallace 

(1966) established the regions of guaranteed s t a b i l i t y for 

a slowly spinning, axi-symmetric s a t e l l i t e i n a c i r c u l a r 

o r b i t with constant aerodynamic force. For two s a t e l l i t e 

configurations, equilibrium positions were tested for 

s t a b i l i t y i n the small through Liapunov's d i r e c t method. 

No attempt was made to obtain response of the system to 
an arbi t r a r y disturbance or the l i m i t i n g bounds for s t a b i l i t y . 

37 
Nurre (1968) considered a more complex model of an asymmetric 

s a t e l l i t e i n a c i r c u l a r o r b i t and investigated the s t a b i l i t y 
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of i t s equilibrium position using l i n e a r i z e d analysis. 

The results of the study were substantiated for an i n f i n i 

tesimal disturbance, by numerical solution of the exact 

equations of motion. 

Exploitation of g r a v i t a t i o n a l , magnetic and solar 

radiation forces for damping the l i b r a t i o n s and c o n t r o l l i n g 

the attitude has been suggested by many authors. The 

f e a s i b i l i t y of such a concept i n terms of solar s a i l i n g was 
3 8 

investigated by Garwin as early as 1958. Several configur

ations of mechanical dampers have been evolved and analyzed 
39 40 41 by Debra (1962) , Kamm (1962), Paul (1963), Modi and 

Brereton 4 2(1969), Tschann and Modi 4 3' 4 4(1970), etc. Paul 
45 

et a l . (1963) suggested the use of magnetic hysteresis 

damper, while Mallach 4 6(1966), Modi et a l 4 7 , 4 8 ' 4 9 ( 1 9 7 0 ) 

proposed c o n t r o l l e r s using solar radiation pressure. A 

s t a b i l i t y theorem, derived by P r i n g l e ^ (1963) for a damped 

autonomous system, involving the Hamiltonian as a Liapunov 

function, i s of considerable s i g n i f i c a n c e . A c r i t i c a l 

analysis of the literature on the subject, as presented by 

Tschann^ (1970) , forms a useful contribution to the f i e l d . 

1.3 Purpose and Scope of the Investigation 

From the foregoing, i t i s apparent that the general 

motion of a gravity gradient s t a b i l i z e d s a t e l l i t e and the 

effects of environmental forces on i t have received, r e l a t i v e l y , 

l i t t l e attention. The reason for t h i s limited e f f o r t could, 



7 
perhaps, be attributed to the complexity of the problem. 

The non-linear non-autonomous, coupled equations of motion 

involving large number of parameters are not amenable to 

any simple concise analysis. Such an investigation, how-
5 2 

ever, i s important because, as pointed out by Kane (1966) 

strong coupling exists between the planar and transverse 

motions. The main purpose of t h i s investigation, therefore, 

i s to gain a fundamental understanding of the dynamics of 

the general motion and to obtain the l i m i t i n g i n i t i a l 

conditions for stable motion, i n a r b i t r a r y o r b i t s , as a 

function of design parameters. The e f f e c t of aerodynamic forces, 

which become s i g n i f i c a n t for near-earth s a t e l l i t e s , on the 

l i b r a t i o n a l response and s t a b i l i t y i s also investigated. 

The p o s s i b i l i t y of aerodynamic damping and attitude control 

i s examined. From cost considerations, the a p p l i c a b i l i t y 

of analog simulation as well as a n a l y t i c a l methods i s explored. 

The problem i s analyzed i n f i v e stages, representing, 

i n general, an increasing order of complexity. In the 

beginning, coupled l i b r a t i o n a l motion of a pure gravity-

gradient, axi-symmetric s a t e l l i t e i s considered for the auton

omous case of a c i r c u l a r o r b i t . The work i s e s s e n t i a l l y an 
5 3 

extension of the study i n i t i a t e d by Modi and Brereton (1968). 

It helps establish methods of approach for subsequent 

research. 

The influence of constant aerodynamic torque on 

equilibrium configurations, l i b r a t i o n a l response, nature of 
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solutions and s t a b i l i t y bounds of near-earth s a t e l l i t e s i s 

investigated i n the t h i r d chapter. 

A determination of the periodic solutions, which form 

the spines of s t a b i l i t y bounds, i s the main objective in the 

next stage. The peculiar ergodic behaviour of the t r a j e c 

t o r i e s , not reported i n the case of planar l i b r a t i o n s , i s 

analyzed. The c r i t i c a l conditions and p r a c t i c a l l y usable 

bounds of s t a b i l i t y are also obtained. A case study of 
54 

Geodetic Earth Orbiting S a t e l l i t e (GEOS-A) emphasize the 

usefulness of the r e s u l t s . 

In Chapter 5, the analysis i s extended to the case of 

e l l i p t i c o r b i t s . The non-autonomous character of the system 

increases the complexity of the problem, e s p e c i a l l y i n 

presence of atmosphere. The parametric study of the response 

and s t a b i l i t y i n the large has p a r t i c u l a r relevance to the 

geophysical, earth resources, and m i l i t a r y s a t e l l i t e s . 

F i n a l l y , the f e a s i b i l i t y of using aerodynamic forces 

in the l i b r a t i o n a l damping through a semi-passive c o n t r o l l e r 

i s explored. . The response analysis over a large range of 

system parameters establishes i t s effectiveness. 

Figure 1-1 schematically i l l u s t r a t e s the various 

stages involved i n the proposed plan of study. It i s f e l t 

that the approach represents a coherent program to explore 

the subject. 
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Figure 1-1 Schematic diagram of the proposed plan of study 



2 . LIBRATIONAL RESPONSE AND STABILITY IN CIRCULAR ORBIT 

2 . 1 Preliminary Remarks 

Gravity-gradient s t a b i l i z a t i o n of axi-symmetric non-

spinning s a t e l l i t e s , moving i n c i r c u l a r orbits and free to 

l i b r a t e both i n and across the o r b i t a l plane i s analyzed 
53 

here. The study, i n i t i a t e d by Modi and Brereton , emphasizes 

the e f f e c t of s a t e l l i t e i n e r t i a on the bounds of possible 

motion, response and s t a b i l i t y c h a r a c t e r i s t i c s . The invariant 

Hamiltonian, representing the f i r s t i n t e g r a l , y i e l d s regions 
55 

of possible motion through zero v e l o c i t y curves and 

establishes conditions for s t a b i l i t y . 

As the second order, non-linear, coupled equations of 

motion do not possess any known closed form solution, an 

approximate analysis i s undertaken using an extension of 

the Krylov and Bogoliubov method^ (variation of parameter) 
57 . . . . as suggested by Butenin with certain modifications. A 

response study establishes the a c c e p t a b i l i t y of the solution 

for small amplitude l i b r a t i o n s . 

The Hamiltonian i s also used to reduce the order of 

the system and to obtain another approximate solution i n 

terms of Jacobian e l l i p t i c functions. 

For a motion i n the large, the equations are solved 
numerically using Adams Bashforth predictor corrector i n t e -

5 8 
gration with a Runge-Kutta s t a r t e r . The concept of i n t e g r a l 



manifolds ' ' ' ' i n a three dimensional phase-space 

i s adopted for concise presentation of the solution. Three 

classes of stable t r a j e c t o r i e s e x i s t : 'regular 1, 'ergodic' 

and 'island' type. The l i m i t i n g manifolds es t a b l i s h the s t a b i l 

i t y bounds. The e f f e c t of the i n e r t i a parameter, Hamiltonian 

and i n i t i a l conditions are studied by t h e i r systematic 

variations. The massive information generated i s condensed 

in the form of design p l o t s , which give allowable disturb

ances for non-tumbling motion. 

2.2 Formulation of the Problem 

Consider an a r b i t r a r i l y shaped, r i g i d s a t e l l i t e with 

mass center at S i n an o r b i t about center of force 0 (Figure 

2-1). Let S-xyz be the p r i n c i p a l body axes of the s a t e l l i t e 

with the t r i a d S-x^y^Zg so chosen as to d i r e c t Zg-axis outward 

along the l o c a l v e r t i c a l and the y^-axis p a r a l l e l to the 

o r b i t a l angular momentum vector. The orientation of the 

s a t e l l i t e may be s p e c i f i e d by a set of successive rotations: 

about y^-axis giving x^y^z^-axes; <j> about x^-axis r e s u l t i n g 

i n the yL^y^z^ t r i a d ; and X about Z2 -axis y i e l d i n g xyz. 

The expression for potential and k i n e t i c energies 
3 10 to 0 ( l / r ) can be written as: 

- 3/A [ sin * if/ { I z z - (Ixx - lyy ) CcosZ\ 

- emz A ) -f- A sin cos y sinA C05A sin<t>C Ix 





-1^) +- c o s * Y s m H U z z : - C r x 3 c - ^ ) ( 5 i n ^ 

-cos^ A ) ] + C05^ cos^cj) ( I ^ + I ^ - I 2 Z ) J / 4 r 3 

. . . . ( 2.la) 

4- 4> ( 9 4- y ) cos <t> sin A cos A ( I x x - 1^ ) + (6 

+ ip f cos* cb ( I x x sin* A + 1^ cos*A)/* 

+ [ x - (0 + q O sincj>J lzz . . . . ( 2 . i b ) 

As for an axi-symmetric s a t e l l i t e , I =1 =1, A does not 
1 xx yy 

appear e x p l i c i t l y i n the expression for Lagrangian thus 

rendering the conjugate momentum p^ a constant of the motion, 

i . e . , 

P X - dL/dX = I Z 2 L [ A - (0 + 40 Sin 4>J = constant 
. . . . ( 2 . 1 c ) 

For a non-spinning s a t e l l i t e the constant must be zero, 

therefore equations ( 2 . 1 a ) and ( 2 . 1 b ) assume the simpler 

forms: 

= -/JLm/r +/x( l - I Z 2 ) ( i -3C05^1|/Cos^) 
. . . . ( 2 . 2 a ) 

T = m ( r + r * 6 * ) A + l [ > * + (e + ^ C 0 5 H j / 2 
. . . . ( 2 . 2 b ) 

Using the Lagrangian formulation, the governing equations of 

motion i n r,0,^ and <p degrees of freedom can be written as: 



. . . . ( 2 . 3 a ) 

rH -f £r P 0 + i [(e 4- ij)) c o s H - 2Ce + ̂ )*3inctcos^J/m =0 
. . . . ( 2 . 3 b ) 

ip+9 -2,<i>(0 + i l O t Q i r < f > + 3MKj smiy cosq^/r^ = 0 

. . . . ( 2 . 3 c ) 

$ + [ (e + q^f + 3yuK] coszty/r5]m<\> cose}) =o 
. . . . ( 2 . 3 d ) 

Neglecting perturbations of the o r b i t a l motion due to l i b r a 

t i o n s , ^ ' ^ 3 e t a*" the equations ( 2 . 3 a ) and ( 2 . 3 b ) lead to 

the c l a s s i c a l Keplerian r e l a t i o n s : 

rZB = h Q . . . . ( 2 . 4 ) 
.j 

P " ^ 0 + G C O S 9 ) . . . . ( 2 . 5 ) 

For a c i r c u l a r o r b i t (e=0 ) , with 6 as an independent va r i a b l e , 
5 3 

the equations ( 2 . 3 c ) and ( 2 . 3 d ) transform to: 

ty" - fc^'C^+i) tanc|> 4- 3Kj sin l|/ cos - o ( 2 . 6 a ) 

<\>" + + 3Kj cos* iy} sin <f> coscj) =0 ( 2 . 6 b ) 

The governing equation i n the X degree of freedom i s repre

sented by ( 2 . l c ) . 

These second order, coupled, and highly non-linear 

equations do not appear to possess any known closed-form 

solution. However, before proceeding to seek an approximate 

solution i t would be worthwhile to gain some insight into 

the problem by examining the Hamiltonian of the system. 
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2.3 Bounds of L i b r a t i o n 

For c i r c u l a r o r b i t s , the Lagrangian function associated 

with the l i b r a t i o n a l motion does not involve time e x p l i c i t l y . 

Hence, the corresponding Hamiltonian of t h i s conservative 

system i s a constant of the motion: 

H = P q , V + P^4> + PA A 

= l [ c f ) ^ + ( ^ - 0 i ) c o 5 H J A - 3 A d - i Z z ) 

= constant 

i . e . 

= constant . . . . (2.7) 

Setting UJ=cf>== 0 results i n a set of zero-velocity 
55 

curves , symmetrical with respect to and <$> axes (Figure 

2-2), enclosing regions of possible motion. Consistent with 

the s t a b i l i t y c r i t e r i o n of nontumbling motion, the zero-

v e l o c i t y curves are presented only over the range if;, 

C J > = ± T T/2. It may be observed that f o r : 
C < -(1+3K.) , no motion i s possible; H— 1 
-(1+3K.)< C „ < -1 , the motion i s bounded; 

1 — rt — 
-1 < C „ < 0 / the motion i s bounded i n <f> only; 

ri — 
0 < C , unbounded motion i s possible i n 

both d i r e c t i o n s . 
. (2.8) 



Figure 2-2 E f f e c t of s a t e l l i t e i n e r t i a and Hamiltonian on zero-
v e l o c i t y curves 



Furthermore, with constant Hamiltonian any one of 

the four state parameters (\|> 1 , <j> ,<{>' ) can be eliminated 

thus permitting a three-dimensional state-space represen

tation of the motion. Within the bounds imposed by the 

zero-velocity curves, relations defining surfaces i n 

i|j,if'/<l> or <\>,$,,ty space can be obtained by equating the 

eliminated v e l o c i t y to zero. For example, i n 1 , cj> - space 

motion i s bounded by 

C o s H ( 4 ^ - i - 3 Kj c o s ^ ) - C H =0 . . . ( 2 . 9 ) 

Figure 2 - 3 i l l u s t r a t e s these surfaces. They represent envel

opes of possible motion i n the state space for a given value 

of Hamiltonian. Note that the zero-velocity curves are 

merely cross-sections of these surfaces at 4 > ' = 0 . A growth of 

the l i m i t i n g closed envelope (C = - 1 . 0 ) with increasing K. 
ri 1 

(Figure 2 - 3(a))suggests a more stable performance. The envel

opes are open i n ^ d i r e c t i o n for C „ > - 1 . 0 ( F i g u r e 2 - 3(b)) in d i c a t 

ing p o s s i b i l i t y of unbounded planar l i b r a t i o n s . 

The actual motion of the system, however, i s dependent 

upon the i n i t i a l conditions as well as the Hamiltonian. Hence 

to est a b l i s h the character of the motion, such as amplitude 

and frequency, i t i s es s e n t i a l to solve the governing equations 

In the absence of any known closed form solution, approximate 

a n a l y t i c a l methods and numerical techniques have to be 

resorted to. 



Figure 2-3 E f f e c t of s a t e l l i t e i n e r t i a and Hamiltonian 
motion-envelope (4>'=0): (a) l i m i t i n g region 
for guaranteed bounded l i b r a t i o n s (C =-1.0) 



Figure"2-3 E f f e c t of- s a t e l l i t e i n e r t i a 
(b) l i b r a t i o n s bounded i n <j> 

and Hamiltonian on motion envelope (<j>'=0): 
only (C =-0.5) 



2.4 Approximate Solutions and System Response 
57 2.4.1 Variations of Parameter Method (Butenin ) 

Representing the trigonometric functions by t h e i r 

series, neglecting f i f t h and higher degree terms i n ,<p and 

thei r derivatives, and c o l l e c t i n g the nonlinear terms on 

the r i g h t hand side the equations of motion take the form 

iy" + 3Kj = 2 4)' ly'd) +z$<b + W<P/z> +2K[ t | / 3 

+ a + 3K , ) ( j ) = -q/^d) - J i ^ c j ) + 3Kj 

- M ^ V A 4-X(if3Kj)cJ)y3 
. . . . (2.10) 

or 

Hi" + n [ ( V - ^ < q / ' -

cj)" + n£cf> = gCH/. iy '^ .d) ' ) 

For small amplitude motion each term i n f and g i s 

small as compared to the terms on the L.H.S. of the equation 

(2.10), hence t h e i r approximate solution can be found using 

the method of v a r i a t i o n of parameters. 

The complementary solution of t h i s system of equa

tions i s given by a set of harmonic functions 

l|J = a s i n ^ 0 4- £±) 
. . . . (2.12) 

4) = bsin(n^9 



I t i s i n t e n d e d h e r e t o o b t a i n t h e s o l u t i o n e s s e n t i a l l y i n 

t h e s a m e f o r m a s t h e c o m p l e m e n t a r y s o l u t i o n , b u t n o w p e r m i t 

t i n g t h e a m p l i t u d e s a n d p h a s e a n g l e s t o b e f u n c t i o n s o f 

G, i . e . , 

iy=a(0)sin [ n £ e + ^ ( 9 ) ] 
. . . . ( 2 . 1 3 ) 

4> = b(e) sin [n^B - f ^ ( e ) ] 

N o t e t h a t n ^ a n d r e p r e s e n t t h e p r i n c i p a l f r e q u e n c i e s g i v e n 

b y t h e s o l u t i o n o f t h e h o m o g e n e o u s e q u a t i o n s a n d a , b , 3 j , $ 2 

a r e u n k n o w n s t o b e d e t e r m i n e d . E a c h o f t h e f u n c t i o n s a ( 9 ) , 

b ( 8 ) , 3]_ ( 8 ) , 3 2 ( 9 ) m a y k e e x p r e s s e d a s a f u n c t i o n o f 8 p l u s 

a c o n s t a n t . T h u s t h e s o l u t i o n i n t h i s f o r m i n v o l v e s e i g h t 

u n k n o w n s a n d h e n c e i s o v e r s p e c i f i e d . I t w i l l b e , t h e r e f o r e , 

n e c e s s a r y t o o b t a i n f o u r m o r e r e l a t i o n s i n a d d i t i o n t o t h o s e 

g i v e n b y t h e i n i t i a l c o n d i t i o n s . T h i s i s a c h i e v e d b y 

i n t r o d u c i n g l o g i c a l c o n s t r a i n t s . 

E q u a t i n g t h e f i r s t d e r i v a t i v e o f e q u a t i o n ( 2 . 1 3 ) t o 

t h a t o f t h e h o m o g e n e o u s s o l u t i o n ( 2 . 1 2 ) g i v e s t h e t w o c o n 

s t r a i n t r e l a t i o n s : 

a'sin^S + a § i cos s =0 • • . ( 2 . 1 4 a ) 

b' sin r[ 4- b ^ c o s Y[ =0 . . . ( 2 . i 4 b ) 

M a t h e m a t i c a l l y t h i s i m p l i e s t h a t t h e n o n l i n e a r i t i e s a r e s m a l l . 

P h y s i c a l l y i t m e a n s t h a t t h e s a t e l l i t e i s e x e c u t i n g s m a l l 



amplitude motion. Normally t h i s condition i s s a t i s f i e d by 

most communication, weather, or earth-resources s a t e l l i t e s . 

The other two re l a t i o n s are obtained by d i f f e r e n 

t i a t i n g once again with respect to 0 and substituting i n 

the equations of motion giving 

Q' r\i cos^ - a n1 sin ^ = f* . . (2.i4c) 

b> cosr[ - b nz ^ sin = . . (2.i4d) 

where 

•f = I ( a sin *s .ariiCos-s , bsin rj_, bn^cosnj 
. . .(2.15) 

g* = g ( a sin ^ , a r\± cos ^ , b sin , b n̂  cos r[) 

Solving the four algebraic equations i n (2.14) for the un

knowns a ' , b ' , 8 ^ , 8 2 gives 

b* - i/r\K g* cos K[ 
. . . .(2.16) 

a §i = - i/nj_ f* sin 

- i / n ^ 3* sin ^ 
Here f* and g* are known nonlinear functions i n a , b , 8 ^ , 8 2 / 

and 6. For small amplitude motion (say 10°), f* and g* are 

quite small (5-10%) compared to the remaining terms in the 

equations of motion. Hence a , b , P i ; L are slowly varying 
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parameters. Using t h e i r average values over a period i n 

ijj and 4> degrees of freedom yie l d s 

'ZTT rlW 4. 

d a / d e = (i/Airzr\i) j f cos-c , 

d b / d G = (1/4 TT* n^) J J cos r|_ d^S drj_ 

&7T /£7T 

o 0 

. . . . (2.17) 

Evaluating the integrals and using the conditions of ortho
gonality gives 

a', b' = 0 

a^n, 

. . . . (2.18) 
,2 
b n„ 

i . e . , solution represented by equation (2.18) becomes 

+ t Q n - M ( 3 K i ^ q / 0 / y j : ] ] 
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<() = {4f + <KY(i + 3Ki>f* S l n [ { i - ( t f + 

<KVCi+3K|) )/4} (1 +3Kj)V*e i t o n 1 [(l+3Kj^/<}>']] 

. . . . (2.19) 
To e s t a b l i s h the v a l i d i t y of the a n a l y t i c a l solution 

the equations of motion (2.6) were rewritten as a set of 

four f i r s t order r e l a t i o n s : 

d<b'/d0 = - ( ( i f 4- 3K,- C05z Hi} sin <|> cos(() 
. . . . (2.20) 

and were integrated numerically using Adams-Bashforth pre-
5 8 

dictor-corrector procedure with a Runge-Kutta s t a r t e r . The 
step size of 3° gave results of s u f f i c i e n t accuracy without 

64 
involving excessive computation time . The use of symmetry 

properties, as exhibited by the invariant nature of the 

equations under transformation (Q ,\\> to (6 ,-<(>) , (-6 ,<$>) 

or (-9 , - I J J ,-4>) s u b s t a n t i a l l y reduced the e f f o r t . 

The l i b r a t i o n a l response of a wide range of s a t e l l i t e s 

to a broad spectrum of disturbances was obtained, over f i f t y 

o r b i t s , by systematically varying the i n e r t i a parameter 

and i n i t i a l conditions, and i s compared with that given by 

the approximate closed form solution i n Figure 2-4. For 

conciseness only i n i t i a l and terminal regions are shown. 



3 0 r 

numerical 

0 

analyt ical 

•30 
30 

K;=1.0 

4>° 
0 

•30 

30 

-30 
30 

4>r 0 

-30' 

K;=0.5 

3 47 48 49 50 

orbits 

Figure 2-4 Ef f e c t of s a t e l l i t e i n e r t i a on l i b r a t i o n a l response 
obtained using numerical and v a r i a t i o n of parameter 
methods: (a) impulsive disturbance 
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Figure 2-4(a) indicates that the a n a l y t i c a l method 

determines the amplitude and frequency of the motion with con

siderable accuracy. For a disturbance of appreciable 

magnitude (iĵ =cf>̂ =0.5) , the main discrepancy i s i n the phase 

which appears to be cumulative. From the p r a c t i c a l 

application point of view th i s may not be a serious l i m i t a t i o n 

as amplitude and frequency of motion provide s u f f i c i e n t i n 

formation needed i n preliminary s t r u c t u r a l design of a 

s a t e l l i t e . 

The agreement, i n general, i s better for slender 

s a t e l l i t e s (K^-1.0) which are normally preferred for gravity-

gradient s t a b i l i z a t i o n . The l i b r a t i o n a l frequency, which 

depends on the disturbances encountered as well as the i n e r t i a 

parameter, i s of the order of o r b i t a l frequency. For an 

i d e n t i c a l disturbance i n the two degrees of freedom, a larger 

amplitude and smaller frequency motion i s excited across the 

o r b i t a l plane (<j>). Both the a n a l y t i c a l and numerical solutions 

indicate decrease i n frequency and increase i n amplitude, 

p a r t i c u l a r l y for planar motion , with decreasing . 

The accuracy of the a n a l y t i c a l solutions improves 

when the disturbance i s r e s t r i c t e d to one degree of freedom 

only. As apparent from the equations (2.6), the planar 

disturbances (d> = <t>l=0) do not excite a transverse motion o o 
(Figure 2-4 (b)). However, l i b r a t i o n s i n 4> d i r e c t i o n lead to 

small ripples i n the degree of freedom, which increase 

with decreasing i n e r t i a (Figure 2-4 (c)). The a n a l y t i c a l 
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method f a i l s to predict t h i s behaviour as well as small 

amplitude modulations, perhaps due to the assumed 

form of the solution. 

The periodic nature of the independent variable 

provides yet another standard for comparison between the 

solutions. On the stroboscopic phase plane (Figure 2-5), 

the points shown represent the state of the system at 

8=2TTn (n=0 ,1 ...,50). A few of the points are l a b e l l e d . Here 

again the c o r r e l a t i o n between the two methods appears to be 

quite s a t i s f a c t o r y . Any error i n the phase results only i n 

circumferential rotation (as against the r a d i a l departure)of 

the point of i n t e r s e c t i o n of the trajectory with the plane. The 

agreement suggests a p o s s i b i l i t y of using the a n a l y t i c a l solu

tion for s t a b i l i t y analysis by the i n t e g r a l manifold technique. 

It may be pointed out that the two solutions are 

compared here under adverse si t u a t i o n s . In actual practice, 

the communication s a t e l l i t e s demand extreme pointing accuracy. 

So i n that case the predictions made by the approximate 

theory are l i k e l y to be more accurate. The simple analysis 

presented here provides considerable insight into the physical 

nature of the coupled motion and appears to be adequate for 

preliminary design purposes. 
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2.4.2 Invariant Integral Method 

The Hamiltonian, a constant of the motion, which 

gave the bounds of l i b r a t i o n , can be used to reduce the 

order of the system leading to yet another approximate 

a n a l y t i c a l solution. 

Multiplying equations of motion (2.6a) and (2.6b) by 
2 

2^' cos <j> and 2<j>', respectively, adding and integrating once 

y i e l d the normalized Hamiltonian (equation 2.7), which can 

be rearranged as, 
iy / J l

 - [ ( C H - C ^ / C O S ^ + i + 3Kj ] - 3 K ( s i n * l J / 
. . . . (2.21a) 

4 ^ = [ c H + i + 3 K , c o s ^ - l | T * J - Q l + 3K ( cos^ij/ 

- I i i ' * ] S i n ^ (j) . . . . (2.21b) 

As i s well-known, the solution of an equation of the 
form, 

where a^ and a^ are constants, i s a Jacobian e l l i p t i c a l 

function: 

p = s i n 1 [ ( Q i / a J * Sn ( ( q ^ ( e - 6 ' ) , a ^ j ] 

• • • • (2*22) 
where 3=0 at 6=9*. 
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Thus equation (2.21) can be solved approximately i n 

the form (2.22) provided, 

d/d9 {(C H - < p ' * ) / c o s H } * 0 

d/de { 3Kj coŝ -qj - v'1} - 0 
Note that these conditions are equivalent and corres

pond to (from equation 2.6a): 

4 (j) I]/ (ili'+i) t a n 4> - 0 . . . . ( 2 . 2 3 ) 

thus implying that the coupling terms may be ignored. Hence 

for systems s a t i s f y i n g t h i s condition, the solution can 

be approximated by: 

f = s i n 1 O i S n { ( 5K0A ( 0 - 9 * ) , k f J ] 

<t> = s i n 1 [ S n { ( i + 3 K, C O S * ( j / 0 - ) , k * j 

where, . . . . (2.24) 

k£ = 1 + [ i + (cH -^Vcos^j/SK, 
= i + C H / ( i + 3K,oos*i|i -l|//*) 

if(et): - 4>(eJ) =o 
The solution becomes exact i n the absence of disturbances 

across the o r b i t a l plane (Figure 2-6(a)i), however, the 

planar motion excited by a transverse disturbance i s not 

exhibited by the a n a l y t i c a l solution (Figure 2 - 6 ( a ) i i ) . 
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Figure 2-6 Accuracy of approximate solution: (b) response to 
predominantly planar disturbance 



The method, i n general, represents a better approximation 

compared to Butenin 1s approach, p a r t i c u l a r l y when the d i s 

turbances across the o r b i t are r e l a t i v e l y small (Figure 

2 - 6 (b)). The c o r r e l a t i o n improves with increasing i n e r t i a , 

e s p e c i a l l y i n the i|) d i r e c t i o n . 

Thus, while the widely used l i n e a r i z a t i o n techniques 

may be acceptable for small disturbances ( 5 - 6 deg. amplitude 

of l i b r a t i o n ) , the v a r i a t i o n of parameter approach gives a 

good approximation for r e l a t i v e l y large disturbances ( 2 0 - 2 5 

deg.). The invariant i n t e g r a l method appears to extend t h i s 

range considerably ( 3 0 - 4 0 deg.), p a r t i c u l a r l y i f cross-motion 

i s small. However; for very large disturbances, when the 

amplitude modulations due to coupling become substantial, a 

numerical integration i s unavoidable for response and 

s t a b i l i t y analysis. Figure 2 - 7 shows over six o r b i t s , the 

e f f e c t of s a t e l l i t e i n e r t i a on the exact response to a large 

a r b i t r a r y disturbance. Decrease i n tends to make a sat

e l l i t e more sensitive to a given disturbance with a marked 

reduction i n the l i b r a t i o n a l frequency. The e f f e c t appears 

to be greater i n the d i r e c t i o n compared to that i n the. <j> 

d i r e c t i o n . The modulation of the amplitude due to a coupling 

between the two degrees of freedom, more pronounced i n the 

(j) degree of freedom /increases with decreasing . The i n f l u 

ence of harmonics may be expected to increase with disturb

ances . 



Figure 2-7 Numerically generated response to a large arb i t r a r y 
disturbance showing ef f e c t s of s a t e l l i t e i n e r t i a 



2.5 Nature of the Stable Solutions: 

The application of the concept of i n t e g r a l manifolds 

or invariant surfaces i n a three-dimensional phase-space 

for studying l i b r a t i o n a l s t a b i l i t y of a gravity-oriented 

system has been discussed i n some d e t a i l by Brereton and 
7 10 53 

Modi ' ' . The method provides a c l e a r picture as to the 

entire spectrum of disturbances to which a s a t e l l i t e can be 

subjected at any point i n i t s o r b i t without causing i t to 

be unstable. Although the system under consideration i n 

volves four state elements (i> ,i>1 , 4>,<f>1 ) , the method i s s t i l l 

applicable due to a constant value of the Hamiltonian.However, 

elimination of an element using equation (2.7) leads to an 

ambiguity concerning i t s sign, as pointed out by Henon and 

H e i l e s ^ 0 . It i s , therefore, necessary to delineate between 

the two p o s s i b i l i t i e s to u t i l i z e the invariant surface concept 

Hence, two spaces must be used to describe the state of the 

system, one for pos i t i v e values of the eliminated state , 

element and the other for i t s negative values. Here the two 

spaces used for presenting the solution are ip,^',<}> with $' ̂  0 

To obtain cross-sections of the invariant surface 

in (J)1 space i t was necessary to develop an interpolation 

scheme so that the state of the system could be ascertained 

for any given value of the stretching coordinate. This was 

achieved by Adams-Bashforth predictor-corrector method 

in conjunction with a polynomial f i t to the past history of 

the state coordinates and t h e i r derivatives. Having f i t t e d 



the polynomials i n 9 to the numerical solution the state of 

the system i s r e a d i l y determined using Newton-Raphson 
.. 16 i t e r a t i o n 

Figures 2-8 and 2-9 show the cross-sections of the 

invariant surfaces, at <j)=0, obtained using t h i s procedure. 

The cross-sections of motion envelopes,represented by 

(j)'=0 , are also included to f a s c i l i t a t e comparison with the 

region of possible motion. Due to the coupling e f f e c t s 

and r e l a t i v e frequency of motion i n the two degrees of free

dom the system exhibits three d i s t i n c t types of stable 

solutions. For a given Hamiltonian a systematic v a r i a t i o n 

i n the i n i t i a l conditions leads to 'regular', 'ergodic' 

and 'island' (Figure 2-8) type t r a j e c t o r i e s . 

For c e r t a i n i n i t i a l condition, integration of the 

equations of motion over a large number of o r b i t s leads to 

the phase space trajectory i n t e r s e c t i n g <J>=0 plane at a series 

of points defining a smooth curve (0) as shown in Figure 2-8. 

The selection of any i n i t i a l condition within the enclosed 

region leads to a nested surface and hence, a cross-section 

l y i n g completely within the former. In the l i m i t , t h e 

i n t e g r a l manifold degenerates to a l i n e , i . e . , cross-section 

in the ii-ty' plane reduces to a point, thus representing a 

periodic solution. 

On the other hand, i t may be emphasized that although 

the s t a b i l i t y of the motion i s assured for C„<-1.0, the 



Figure 2-8 The c r o s s - s e c t i o n <f> = 0 i n phase space i n d i c a t i n g types of s t a b l e s o l u t i o n 
generated by d i f f e r e n t i n i t i a l c o n d i t i o n s f o r a given Hamiltonian: 
(a) r e g u l a r and ergodic; (b) i s l a n d s and t h e i r breakdown i n t o ergodic 
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Figure 2-9 E f f e c t of s a t e l l i t e i n e r t i a on nature of stable 
solution; cf>=0 , C =-1.0 
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existance of a well defined i n t e g r a l manifold i s not guaran

teed as indicated by the figure. It i s possible that an 

ergodic trajectory may exhibit p e r i o d i c i t y over a large 

number of or b i t s and hence can be thought of as generating 

small tubular s t a b i l i t y surfaces. However, any e f f o r t at 

determining these surfaces would involve an enormous amount 

of numerical computation, which can hardly be j u s t i f i e d due 

to the academic nature of t h e i r usefulness. 

Further change i n the i n i t i a l condition leads to a 

regrouping of the erogodic intersections i n a well defined 

chain of islands (Figure 2-8 (b)) , which, i n t h i s case, rep

resent two cycles of the planar l i b r a t i o n for every three 

o s c i l l a t i o n s across the o r b i t a l plane. Although the s t a b i l i t y 

i s assured here, proximity of the islands to the s t a b i l i t y 

bound makes operation of a s a t e l l i t e i n t h i s region undesir

able. Thus, for a l l p r a c t i c a l purposes, the regular 'main

land' represents the only stable region for safe operation 

of a s a t e l l i t e . 

Subjecting the system to any further v a r i a t i o n i n 

the external disturbances results i n the breakdown of the 

islands into the ergodic behaviour. The process of regener

ation of islands and t h e i r degeneration into ergodic 

behaviour appears to progress i n d e f i n i t e l y approaching the 

boundary of possible motion, where the margin of s t a b i l i t y 

vanishes. 
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A comment concerning the e f f e c t of the i n e r t i a parameter 

on the character of the solution would be appropriate here. 

For a given Hamiltonian, the systematic reduction of K^, 

from 1.0 (Figures 2-8) to 0.5 and 0.25 diminishes the p o s s i b i l 

i t y of ergodicity (Figure 2-9). Thus, decreasing the slender-

ness of a s a t e l l i t e appears to confine the region of ergodic

i t y closer to the bound of possible motion. 

For a given C H several i n t e g r a l manifolds, represent

ing the region of stable motion, are possible depending on 

the i n i t i a l conditions. The largest of these may be called, 

the l i m i t i n g i n t e g r a l manifold. Figures 2-10(a) and 2-10(b) 

indicate the l i m i t i n g regular manifold and that corresponding 

to the islan d type solution, respectively. In general, the 

l a t t e r winds around the regular manifold and i s associated 

with a d i f f e r e n t periodic solution. The increase i n Hamilton

ian causes a marked reduction i n the s t a b i l i t y region 

(Figure 2-10c) suggesting the p o s s i b i l i t y of a c r i t i c a l value, 

C„ , beyond which the manifolds cease to e x i s t . Thus, for 
cr 

a value of the Hamiltonian greater than the c r i t i c a l (a0.8), 

gravity-gradient s t a b i l i z a t i o n of a s a t e l l i t e i s not 

possible. 

It should be noted that during the integration of 

the equations no attempt i s made to reduce the order of the 

system using the Hamiltonian. Rather, the Hamiltonian, a 

constant of the motion, i s computed along with the cross-

section data and i s used as a check on the o v e r a l l accuracy 

of the method. 
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Figure 2-10 E f f e c t of i n i t i a l conditions and Hamitonian on the 
l i m i t i n g i n t e g r a l manifolds (Ki=0.5): (a) regular, 
C =-1.0 / (b) islan d type, C = -1.0 





2.6 S t a b i l i t y Plots 

The r e s u l t s displayed i n Figure 2-10 may be presented 

in a more informative manner, p a r t i c u l a r l y , for design pur

poses. If ip and cf> are held fix e d , a constant value of G„ 
H 

describes, i n ijj'-tj)1 plane, an e l l i p s e , which degenerates into 

a c i r c l e for 0=0. For CH<_-1, i . e . , when the s t a b i l i t y i s 

guaranteed, the solution i s stable over the entire e l l i p s e . 

However, beyond t h i s , a bounded motion i s possible only over 

varying arcs of constant e l l i p s e s , corresponding to the 

l i m i t i n g invariant surfaces. Figures 2-11 and 2-12 show the 

allowable impulsive disturbances for non-tumbling motion for 

several values of i n e r t i a parameters and angular disturbances. 

The computational e f f o r t involved i n obtaining these plots 

i s enormous. Fortunately the symmetry properties discussed, 

e a r l i e r , which also make the plots of the system with 

0 Q X 4>o=0 symmetrical about 4>'=0 axis, keep the analysis 

manageable. 

The figures, which also include for comparison the 
53 

results for dumbbell s a t e l l i t e s obtained by Brereton , show 

better s t a b i l i t y c h a r a c t e r i s t i c s for slender s a t e l l i t e s . I t 

i s observed that most s a t e l l i t e s can stand larger disturbance 

across the o r b i t a l plane compared to that i n the plane of 

the o r b i t . Furthermore, the a b i l i t y of a s a t e l l i t e to with

stand larger negative ' disturbance for given ty0A0t$Q i s 

of i n t e r e s t . In general, the s t a b i l i t y bound diminishes 

with increasing angular disturbances. The peculiar shape 



Figure 2-11 Design plots showing allowable impulsive disturbance for stable motion: 
(a) 0=0 





Figure 2-12 E f f e c t of s a t e l l i t e i n e r t i a on allowable impulsive 
disturbance for stable motion 



of these curves may be attributed to the coupled non-linear 

nature of governing equations which also give r i s e to a few 

exceptions to the findings mentioned above. 

2.7 Concluding Remarks 

The s i g n i f i c a n t aspects of the analysis may be summar

ized as follows: 

(i) I n e r t i a parameter plays an important role i n the 

response and s t a b i l i t y c h a r a c t e r i s t i c s of a s a t e l 

l i t e . Slender s a t e l l i t e s (large K^) are l i k e l y 

to exhibit better s t a b i l i t y , 

( i i ) Zero-velocity curves and motion envelopes can be 

u t i l i z e d p r o f i t a b l y to i d e n t i f y regions of possible 

motion. They also provide information concerning 

conditional and guaranteed s t a b i l i t y . For i n i t i a l 

conditions leading to the Hamiltonian s a t i s f y i n g 

the inequality -(l+3Ki)<_ C R <_ -1 ; the s t a b i l i t y 

of r e s u l t i n g l i b r a t i o n a l motion i s assured, 

( i i i ) The analysis suggests conditional s t a b i l i t y for 

-1< C < C„ =0.8. The system i s l i k e l y to show 
cr 

better performance i n <J> degree of freedom. The 

actual character of the motion i s governed by 

the i n i t i a l conditions, 

(iv) The approximate closed form solution through the 

Butenin's approach can determine the l i b r a t i o n a l 
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frequency and amplitude quite accurately, e s p e c i a l l y 

for slender s a t e l l i t e s , even with disturbances of 

appreciable magnitude. A small phase discrepancy, 

cumulative i n time, causes only a circumferential 

s h i f t i n the stroboscopic phase-plane. The method 

can provide considerable insight into the system 

behaviour and gives results suitable for preliminary 

design purposes, 

(v) The constant Hamiltonian can be used to reduce 

the order of the system and leads to yet another 

a n a l y t i c a l solution, which, i n general, gives better 

approximation, p a r t i c u l a r l y when the motion across 

the o r b i t i s small, 

(vi) Both the solutions f a i l to predict the coupling 

e f f e c t s , which increase with increasing disturbances 

and decreasing 

(v i i ) The l i b r a t i o n a l and o r b i t a l frequencies are of the 

same order of magnitude. An i d e n t i c a l disturbance 

in and <j> excites higher frequency, smaller ampli

tude motion i n the o r b i t a l plane than that across 

f t . 

( v i i i ) The system exhibits three d i s t i n c t l y d i f f e r e n t 

solutions: regular, island type and ergodic. 

However, from p r a c t i c a l considerations only the 

regular solution provides usable bounds for stable 

motion. The concept of in t e g r a l manifold used 
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here for s t a b i l i t y study gives, for given i n e r t i a 

parameter and Hamiltonian, a l l possible combin

ations of external disturbances, to which a 

s a t e l l i t e can be subjected, without causing i t to 

tumble, 

(ix) For a given Hamiltonian the s t a b i l i t y bound i s 

represented by the l i m i t i n g i n t e g r a l manifold. On 

the other hand, degeneration of the invariant sur

face to a l i n e corresponds to a periodic solution 

of the problem. Thus periodic solutions may be 

thought of as spines around which i n t e g r a l 

manifolds are b u i l t , 

(x) The plots of allowable impulsive disturbances 

should prove useful during s a t e l l i t e design. 

The symmetry properties considerably extend t h e i r 

range of application. 



3. EFFECT OF AERODYNAMIC TORQUE ON SYSTEM 
RESPONSE AND STABILITY 

3.1 Preliminary Remarks 

Presence of various perturbing forces necessarily 

complicates the problem under study. More s i g n i f i c a n t of 
20 

these, for close-earth s a t e l l i t e s , are the aerodynamic forces , 

which may be e f f e c t i v e even at four to f i v e hundred miles 

a l t i t u d e . 

This chapter investigates the e f f e c t of aerodynamic 

moment on the coupled l i b r a t i o n a l motion of the c y l i n d r i c a l 

s a t e l l i t e negotiating a c i r c u l a r t r a j e c t o r y . In the beginning 

the stable equilibrium configurations are established through 

Routh's c r i t e r i a as well as Liapunov's d i r e c t method. The 

regions of guaranteed and conditionally stable motion are 

given as functions of i n e r t i a parameter, Hamiltonian and 

aerodynamic torque. The numerically determined response to 

a, variety of disturbances helps i n establishing the influence of 

system parameters. The concept of i n t e g r a l manifolds again 

proves useful i n analyzing the character of stable t r a j e c 

t o r i e s and to obtain the s t a b i l i t y bounds. The design p l o t s , 

in d i c a t i n g allowable impulsive disturbances for s t a b i l i t y , 

reveal the adverse e f f e c t of atmosphere. 

In view of the computational cost involved, an 

alternate economical approach using analog simulation, 
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normally used i n real-time studies, i s attempted. A compar

ison of the response and s t a b i l i t y data with the numerical 

results establishes the s u i t a b i l i t y of the method. 

3.2 Formulation of the Problem 

3.2.1 Aerodynamic Torque 

Consider a r i g i d , axi-symmetric s a t e l l i t e , with mass-

centre at S, executing coupled l i b r a t i o n a l motion while 

moving i n a c i r c u l a r o r b i t about the centre of a t t r a c t i o n 0 

(Figure 3-1). As before, x, y, z are p r i n c i p a l body axes of 

the s a t e l l i t e , whose orientation i s s p e c i f i e d by modified 

Eulerian rotations: i n the o r b i t a l plane; (j) across the 

o r b i t a l plane; and X about the axis of symmetry. The s a t e l 

l i t e i s subjected to g r a v i t a t i o n a l and aerodynamic torques, 

which are evaluated using the following simplifying but 

r e a l i s t i c assumptions: 

(i) g r a v i t a t i o n a l potential can very c l o s e l y be 

approximated by a truncated se r i e s ; 

( i i ) a i r density p and gravity f i e l d are functions of 

height only. Variations of p over s a t e l l i t e 

dimensions are ignored; 

( i i i ) r e l a t i v e v e l o c i t y of the s a t e l l i t e with respect 

to the surrounding atmosphere i s taken to be the 

same as s a t e l l i t e ' s o r b i t a l v e l o c i t y , i . e . , i t s 

v a r i a t i o n due to the s a t e l l i t e ' s l i b r a t i o n a l motion 

and atmospheric rotation are neglected; 





(iv) ambient condition i s represented by free molecular 

flow; 

(v) C"D, based on projected area and usually a very 

complex function, i s taken to be a constant; 

(vi) centre of pressure i s assumed to be coincident 

with the geometrical centre of the s a t e l l i t e and 

small changes i n i t s position due to l i b r a t i o n a l 

motion are ignored. 

At altitudes of about 100 miles and over, the mean 

free path of molecular motion i s large i n r e l a t i o n to t y p i c a l 

s a t e l l i t e dimensions, and the flow regime i s c l a s s i f i e d as 

free molecular flow. Surface forces i n t h i s regime are due 

to molecular impingement on i t s surface and th e i r subsequent 

re-emission. For convex bodies, the aerodynamic force at 

a point on the surface of a s a t e l l i t e at s p e c i f i e d conditions 

i s a function only of the angle between the impinging stream 

of molecules and the surface. Consequently, i t i s possible 

to integrate the surface force over the fr o n t a l area of the 

s a t e l l i t e , y i e l d i n g the net l i f t , drag and moment on the ; 

s a t e l l i t e i n terms of attitude angles I|J,4>,A. For l i b r a t i o n a l 

motion only the aerodynamic moment i s of i n t e r e s t , slow 

decay of the o r b i t because of drag being neglected. 
• 6 6 

Using the methods of Schaaf and Chambre the normal 

pressure and shear stress on a s a t e l l i t e surface exposed to, 

free molecular flow can be expressed as 



P = Cs v ^ i s f ) L"{$-«-') St/ft 4- r ' ( T w / T Q J V 4 e 

O ( Vx. + * ) + r ' s ; ( J T T W / T 0) V V ^ 5 ( i 4- erf (s; ) j | 

. . . . (3.1) 

T - - ( S v ^ c r c o s ^ S 0 ^ ) [ e ^ V # S 0

/ ( l - r e r f ( 5 0
/ ) ) ] 

• • • • (3*2} 

The moment on the body i s given by 

V\Q• - ( I X ( P + f ) d A . . . . (3.3a) 
A 

which, using symmetry properties of the s a t e l l i t e and i n t e r 

mediate body coordinates x 2 y 2 z 2 , can be written as 

Ho = U * J . L\ {\ + \ ) - ^ ( \ ) J d A (3.3b) 

Here u represents a unit vector along x„ axis. The evalu-

ation of the i n t e g r a l , which, i n general, can be achieved 

only numerically, involves substantial computational e f f o r t s . 

However, for c y l i n d r i c a l s a t e l l i t e s , i t can be approximated, 
36 6 7 

quite accurately, i n a closed form by the expression ' 

M q = - 0 - 5 ? v * c D € cosl|/[D eL 0|cosi|i| - f T r ^ s i n l | / / 4 j 
. . . .(3.3c) 

The absolute sign ensures a p p l i c a b i l i t y 'of the expression for 

a l l values of ^. 
32,34,67,68,et a l 
a l l values of ^. Variations i n p,v,CD,e being usually small, 

they are assumed to remain constant for 

a given s a t e l l i t e i n a c i r c u l a r o r b i t . The analysis, however, 
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can be extended to accommodate t h e i r variations without too 

much d i f f i c u l t y . 

Thus aerodynamic moment i s a function of l i b r a t i o n a l 

angle ip and not of angular v e l o c i t i e s . Consequently, a 

potential function can be derived that i s equal to the negative 

of the work required to move the s a t e l l i t e from a reference 

orientation (0,0,0) to the orientation given by For a 

symmetric s a t e l l i t e i t i s 

= ? Cj> 6 AL 0 D|/ + Sin HI (cos IJi +(jrDa/4Lo)S\"V}] 

= (IQZ^/Z)i^ + sin q i ( c o s q J - f C i S i n i U ) ] ( f o r mm) 

. . . . (3.4) 

where the dimensionless aerodynamic c o e f f i c i e n t , B^, i s repre

sented by 

B F = c D ^ DO L 0 z/zie* • • • • <3-5) 

and 

q - . W D . / 4 L , = 7r{(i-K ()/3(l+K0} i /7^ • • ( 3 . 6 ) 

3.2.2 Lagrangian and Equations of Motion 

As the expressions of k i n e t i c and poten t i a l energies 

due to gravity-gradient (equations 2.2) remain unchanged, 

the Lagrangian becomes 



L - T - ( Ug + U Q ) 

= m(r*+r*e*)A + I 0 * 4 - (O+fyf cos* <t)]/Z 

- M ( i - I « ) ( i - 3cos8-Oi c o s H ) A r 3 

+ f nQ d<|/ • • • • »-7> 
0 

As before, ignoring the o r b i t a l perturbations due to 

l i b r a t i o n a l motion and using 6 as the independent va r i a b l e , 

the equations of motion become: 

iy• - Z <t>' (q/' + i) tan (f> -4-3K] sin cosi^ 

• + B f (I cos l|i | + Ci sm lp) cos-ip/cos* cb - 0 

4>"+- '{(lU'+if 4- 3Kj cos* cp | sin (f) cos4> =0 
• • • . (3*8) 

i t should be noted that the equations governing the <j) as well 

as X (relation 2.1c) degrees of freedom are unaffected by 

the presence of aerodynamic moment. 

Even for t h i s s i m p l i f i e d s i t u a t i o n the second order, 

non-linear, coupled equations of motion have no known closed 

form solution. A numerical technique under t h i s condition 

can again be used to advantage. However, considerable use

f u l information concerning equilibrium positions, regions 

of possible motion, zones of conditional and guaranteed 
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s t a b i l i t y , e t c . , c a n b e o b t a i n e d w i t h o u t e v e n s o l v i n g t h e 

e q u a t i o n s . T h i s p r o v i d e s s o m e i n s i g h t i n t o t h e b e h a v i o u r 

o f t h e s y s t e m w i t h o u t i n v o l v i n g a p p r e c i a b l e c o m p u t a t i o n a l 

t i m e a n d e f f o r t . 

3 . 2 . 3 H a m i l t o n i a n 

S i n c e t h e l i b r a t i o n a l m o t i o n i s s t i l l c o n s e r v a t i v e a n d 

a s t h e L a g r a n g i a n o f t h e s y s t e m d o e s n o t i n v o l v e t i m e e x p l i c i t l y 

t h e H a m i l t o n i a n r e p r e s e n t s a c o n s t a n t o f t h e s y s t e m , i . e . , 

- c o n s t a n t 

( 3 . 9 ) 

o r , i n a n o n - d i m e n s i o n a l f o r m : 

C H = 2 , H / i e * 

c o n s t a n t (-for | l | i |<JTA) 

( 3 . 1 0 ) 



3.3 Dynamic E q u i l i b r i a and S t a b i l i t y i n the Small 

3.3.1 Equilibrium Positions 

At equilibrium p o s i t i o n , the potential i s an extremum, 

hence 

= 0 
e 

eu/dcL. 
COS l)J[3 Kj cos* £ s\r\\\) +-ty\costy\ f %Cj.Sinl|iJ = 0 

• S i n Z<\> [ i 4- 3K( Cos* l | /J = 0 . . . . (3.11) 

In i n f i n i t e number of solutions are possible. However, 

i f the s t a b i l i t y of l i b r a t i o n a l motion i s defined such that 

the l i b r a t i o n a l angles remain within ±TT/2 from the l o c a l 

v e r t i c a l (non-tumbling motion), only the following nine 

equilibrium positions are of i n t e r e s t : 

= ± TT/Z , o ; 

= ±ir/z 

= t a n ^ - i / C i ) , 4 = 
= t a n i ( - B f / ( 3 K l + B f 

(3.12) 

S t a b i l i t y of these equilibrium positions can be 

tested by i n f i n i t e s i m a l technique or Liapunov's d i r e c t 

method without having to solve for the perturbed motion 

about an equilibrium p o s i t i o n . 
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3.3.2 In f i n i t e s i m a l Technique (Routh) 

Linearized perturbation equations for motion about 

an equilibrium configuration can be written as 

o~ljj" - d V (2<Ktan(t>J + 5l|J [3K,cosm-{an2| 

•C. cos bf/cos^e]-8^{ltm^H)yS^4),o 
(3.13a) 

+ Scf) [ COS %,§>e (C + 4- 3K| C03 l̂jje)} 4- [sin 

4-1) 4- 3 s«n^l|4 s in ^ ( t u f t U 0 

(3.13b) 

For the solution of the form 

8 = § % e A l t 

the equations give 

- 3 K | sin 2, iye sin 

= 6 > Q e X | t 

[-^>>i((|4+i)tQn(j)e 

K + cos2,<t)e{(itJe

/+ 
L*4>. 

0 

0 
(3.14) 
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leading to the c h a r a c t e r i s t i c equation 

A A* 4-B A3i + CX\ + DXi +-E =0 • • • • (3-is) 

where 

A =1 

E> = - 2 tan (j)e 

C = 3 Kj cos 2 iye - B f [sin 2iJJe - qcos 2(|4}/cos^ e 

+ CO5 Z<(>e[C+ i f 4-3K ( CO5*H)e) 4-4(lU^+ifsin^ 

D = - ^ t Q n ( ( ) e cos^ 4 ) e { ( ^ 4 - l f 4- 3K,- cos*(|4] 

- 3 K , sin Ztye Sin£(f)etan ( ^ ( l ^ + i ) 

E = C O S £<t> e[(li> e' f i f + 3 K ' l COS^i ) 4]{3K f C O S ^ l p e 

- B f (Sin 2lp e - C d cos ^^ e)/co5*c() ej 

€ * e s , n ^ e S ' , n 

The application of the s t a b i l i t y conditions 

A , E> , C, B , E > 0 

(BC - AD) D - B5 1 E > 0 
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showed a l l the equilibrium positions to be unstable except 

the last.one, i . e . , 

ljJ£ .= tan 1 [- B f/(3Kj Cj.)j , (j>e = 0 (3.16) 

3.3.3 Liapunov's Direct Method 

A simpler and more useful approach to the s t a b i l i t y 

study of an equilibrium position i s by Liapunov's second or 

di r e c t method. 

Using Hamiltonian as a Liapunov's function 

\ - C H - C 

: $ + cos*4) ((P'*" - 1 - 3K( cos*-tJJ) 

-H3 f(iy + sin iKcos ip+qs\n i W - f C o s ^ f i 

+3K-, e o s ^ e ) ] - B f [iye+sin ipe(cos^L4- q s w (jpj 
. . . . (3.17) 

Therefore, from equation (3.8) 

. . . (3.18) 
Thus the system i s p l a i n stable i f V T > 0. It can 

be shown that for V L >̂  0, 

> 0 
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i.e 

d \ / c > q j d ( f ) " 

^ 0 . . . (3.19) 

This implies a minimum value for pote n t i a l energy at 

the equilibrium position. For the matrix to,be p o s i t i v e 

d e f i n i t e 

2 c o s I 1)4 ( 3K- , C o s * (|>e + B f q ) - Z B^ s\n 2,l|Je £ 0 

2 C o s £c|)e ( 1 + 3 K - , c o s ^ 4 J e ) ^ 0 

- 3K-, Sin 2,cj) Sin t VP >0 (3.20) 

Testing the equilibrium positions l i s t e d e a r l i e r 

(equation 3.12), confirms the conclusions of\the i n f i n i t e s 

imal analysis. 

The 'plain s t a b l e 1 equilibrium position i s a function 

of i n e r t i a parameter as well as aerodynamic c o e f f i c i e n t . 

Figure 3-2 shows the stable equilibrium configuration as a 

function of aerodynamic c o e f f i c i e n t for four^representative 

s a t e l l i t e s . It i s apparent that the equilibrium position 

rapidly changes with aerodynamic coefficient,;, p a r t i c u l a r l y 

i n the range of small B f and K^. However, beyond Bf= 4.75 

the trend reverses and most s a t e l l i t e s tend to a t t a i n a 

uniform attitude around 50 - 60 deg. \ 



gure 3-2 Variation of stable equilibrium position due to 
aerodynamic torque and s a t e l l i t e i n e r t i a 
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3 .4 Bounds of Librations 

Hamiltonian, being a constant of the motion, can be 

used quite e f f e c t i v e l y to study the general behaviour of the 

system through zero v e l o c i t y curves defined by 

CH =-cos*4)(i+3K]COS*(JJ)+ B f ( v + s i n t p C c o s l / y f C i S i n 
. . . . (3.21) 

Figure 3-3 presents these plots for various values of 

Hamiltonian, i n e r t i a parameter and aerodynamic c o e f f i c i e n t s . 

The curves, enclosing the regions of r e a l v e l o c i t i e s , repre

sent the bounds ...of l i b r a t i o n a l motion. It may be observed 

that f o r : 

W C H e = - i - 3 K j H - ^ t a n 1 t - B f / ( 3 K i + - B f C 1 ^ C H 

t 

no motion i s possible; I. 

C H E < C H 4 - i - B f (rr/z - CO , 

the motion i s bounded; 

( i i i ) - i - B f (TT/Z - q ) < c H < -^(n/z - c i ) > 

the motion i s bounded i n 0 only; 

unbounded motion i s possible i n both d i r e c t i o n s . 
. . . . (3.22) 



-90 0 90-90 0 90 

Figure 3-3 E f f e c t of s a t e l l i t e i n e r t i a , Hamiltonian and aero
dynamic torque on zero-velocity curves 



The presence of aerodynamic moment destroys the 

symmetry of the curves about cj) axis by s h i f t i n g them towards 

-ijj d i r e c t i o n . A study of the largest region enclosed by 

the bounded curves suggests that although the slender 

s a t e l l i t e s , i n general, exhibit better s t a b i l i t y character

i s t i c s , t h e i r performance degenerates sub s t a n t i a l l y when 

subjected to appreciable aerodynamic torque. The plots 
o 

also indicate the s a t e l l i t e ' s increased s u s c e p t i b i l i t y to 

planar disturbances. An increase i n aerodynamic c o e f f i c i e n t 

reduces the value of the l i m i t i n g Hamiltonian for guaranteed 

s t a b i l i t y . 

Figure 3 - 4 shows these regions as functions of 

Hamiltonian and aerodynamic c o e f f i c i e n t s for several values 

of i n e r t i a parameter. It i s apparent that slender s a t e l l i t e s 

are l i k e l y to exhibit better s t a b i l i t y c h a r a c t e r i s t i c s for 

small aerodynamic moment, however, larger i s expected to 

reverse t h i s trend. 

The motion envelope i n ty,ty,<j> -space i s defined by 

CH -cosz<i>(i\)'Z- i - 3 K , cos* IP) + Sin(jy(cos^ 

-T-Cj_sin \\) )] =0 . . . . ( 3 . 2 3 ) 

In Figure 3 - 5 a t y p i c a l motion envelope shows that the aero

dynamic torque causes a breakdown of the symmetry about 

ijj=0 plane and increases the p o s s i b i l i t y of i n s t a b i l i t y . 
Having established the equilibrium positions, t h e i r 

s t a b i l i t y , and the bounds of l i b r a t i o n s , the next l o g i c a l 



Figure 3-4 Regions of bounded motion 



Figure 3-5 Influence of aerodynamic torque on motion envelope 



step would be to investigate the system response and 

s t a b i l i t y . 

3.5 Numerical Solution 

The equations of motion (equation 3.8) can be written 

as a set of four f i r s t order r e l a t i o n s : 

dv/de = V ' ; dd)/de = & 

dV'/dQ = Z<bXy'+i)tQr\$ - 3K-, Sini|Jcosl|J 

- B f (cos V + q sin qJ) c o s i j j / c o s ^ 

d(f)Vd0 = - {((jZ-fl)*- + 3K,- cos^q;} cos<|>sin<f) 

. . . .(3.24) 

Adams-Bashforth predictor-corrector integration pro

cedure was used for numerical solution of these equations. 

Note that the system exhibits an invariant character only 

under the transformation (Q ,ip to (B ,ip , - $ ) . Figures 3-6 

and 3-7 show the response charts thus obtained for a set of 

s a t e l l i t e s subjected to systematically varying aerodynamic 

c o e f f i c i e n t and i n i t i a l disturbances. A step size of 3° was 

chosen for integration. 

The solution involving four dependent variables 
i>,i>1, 0 and cj)1 defines a trajectory i n a four-dimensional 



Figure 3 - 6 Effects of aerodynamic torque and i n e r t i a parameter on the response of 
s a t e l l i t e to an impulsive disturbance 
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phase-space. The invariant Hamiltonian (equation 3-10) 

permits determination of any one of the variables i n terms 

of the other three. Hence i t i s possible to present the 

solution as a trajectory traced by the representative point 

in a three dimensional phase space. For example the solution 

i s completely defined i n i(>,ijj',(j> - space for cf>'̂  0. The 

procedure for generating an i n t e g r a l manifold was discussed 

in Chapter 2. Figure 3-8 shows the cross-section of such a 

l i m i t i n g surface as affected by the aerodynamic c o e f f i c i e n t . 

The sections of motion envelopes are also included for 

comparison. 

A comment concerning the influence of i n i t i a l con

diti o n s on the nature of the solution and hence on the 

associated invariant surface would be appropriate here. As 

before, for C^ = -1.5, Figure 3-8 shows regular invariant 

surface cross-section. However, for the same value of C„ 
n 

but d i f f e r e n t i n i t i a l conditions, Figure 3-9 shows formation 

of six islands surrounding the main regular region. Further 

variations i n the i n i t i a l conditions r e s u l t i n complete 

breakdown of the invariant surface, as shown by ergodic 

solution, followed by reformation of the second set of 

islands. Note that,throughout,the l i b r a t i o n a l response of 
the s a t e l l i t e i s bounded and hence stable i n accordance 

with the stated c r i t e r i o n . 

Figure 3-10 shows representative sections of l i m i t 
ing invariant surfaces and motion envelopes for a wide 



Figure 3-8 Representative cross-sections of motion envelopes 
and l i m i t i n g i n t e g r a l manifolds i n d i c a t i n g i n f l u 
ence of aerodynamic torque 



Figure 3-9 The cross-section 0=0 i n phase space i n d i c a t i n g types 
of stable solution generated by d i f f e r e n t i n i t i a l 
conditions for given Hamiltonian 



Figure 3-10 E f f e c t of i n e r t i a parameter on motion envelope 
and l i m i t i n g i n t e g r a l manifolds for given aero
dynamic moment and Hamiltonian 
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range of s a t e l l i t e i n e r t i a parameter. The eff e c t s of aero

dynamic moment and Hamiltonian on l i m i t i n g i n t e g r a l manifolds 

themselves are shown i n Figures 3 - 1 1 and 3 - 1 2 , respectively. 

It i s apparent that increase i n and C H a f f e c t the region 

of s t a b i l i t y adversely. 

As explained i n Section 2 . 6 , for a given Hamiltonian, 

the plot of vs. i))1 i s an e l l i p s e reducing to a c i r c l e for 

4 > E = 0 . In the region where the s t a b i l i t y i s assured the 

solution i s bounded over the entire e l l i p s e . However, for 

C R > - 1 — B ^ (TT/2-C^) stable motion occurs only over a portion 

of the constant C „ e l l i p s e s . Figure 3 - 1 3 shows the influence 
n 

of i n e r t i a parameter and aerodynamic c o e f f i c i e n t on the 

allowable impulse for s t a b i l i t y . The symmetry of the plots 

about cj>'=0 axis i s retained which helps i n reducing rather 

extensive computations. 

3 . 6 Discussion of Results 

In general, response of a s a t e l l i t e depends on i t s 

physical properties, aerodynamic moment and disturbances 

encountered. For the given i n e r t i a parameter and disturbance, 

the amplitude of motion i n the o r b i t a l plane and sharpness 

of the peaks i n the di r e c t i o n increases with increasing 

B ^ , however, motion across the o r b i t a l plane i s r e l a t i v e l y 

unaffected. So far as the e f f e c t of i n e r t i a i s concerned, 
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decrease i n tends to make a s a t e l l i t e more sensitive to a 

given disturbance and the frequency of response shows marked 

reduction (Figure 3 - 6 ) . Figure 3 - 7(a) shows motion across 

the o r b i t a l plane to be r e l a t i v e l y less affected by a 

transverse disturbance even i n presence of an aerodynamic 

moment. However, a disturbance across the o r b i t a l plane 

excites appreciable in-plane motion, which grows with 

increasing B f (Figure 3 - 7 (b)). A larger amplitude, smaller 

frequency motion i s observed i n the o r b i t a l plane than that 

across i t for an i d e n t i c a l disturbance i n the two degrees 

of freedom. The frequencies are of the order of o r b i t a l 

frequency. 

As before, the stable solutions of the system may 

lead to three d i s t i n c t classes of t r a j e c t o r i e s i n the phase 

space (Figures 3 - 8 , 3 - 9 ) referred to as 'regular 1, 'island 

type', or 'ergodic'. However, the aerodynamic moment destroys 

the symmetry of manifold cross-sections. Although tthe solution 

in each case represents stable motion, island and ergodic 

type of behaviour, being of l i t t l e use from p r a c t i c a l design 

considerations, lead to substantial reduction i n s t a b i l i t y . 

It i s in t e r e s t i n g to note that the p o s s i b i l i t y of 

ergodicity diminishes with decreasing , as region between 

in t e g r a l manifold and motion envelope i s reduced (Figure 3 - 1 0 ) . 

The i n t e g r a l manifolds as well as motion envelopes 

shrink i n size with increasing aerodynamic moment and Hamil

tonian. Thus there i s a l i m i t i n g value of C , dependent upon 
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B^, beyond which stable motion i s not possible. 

A convenient condensation of the r e s u l t s for design 

purposes (Figure 3-13) shows bounds of impulsive disturbances 

at equilibrium position for several d i f f e r e n t s a t e l l i t e s 

under a set of aerodynamic moments. I t i s apparent that the 

presence of B^, i n general, decreases the bound for stable 

motion, reduction being more pronounced for slender s a t e l l i t e s . 

The s a t e l l i t e s with large show better s t a b i l i t y character

i s t i c s when no or small aerodynamic moment i s present. How

ever, for large B^, shorter s a t e l l i t e s (small K^) are l i k e l y 

to have better performance. 

The results presented here are confined only to a 

few s i t u a t i o n s . The numerical approach, though informative, 

tends to be quite expensive. Hence the p o s s i b i l i t y of using the 

analog technique, normally preferred for economic,real-time 

simulation, i s explored. 

3.7 Analog Simulation , 

Using trignometric i d e n t i t i e s the equations of motion 

(for |^|_<Tr/2) can be rewritten as: 

l)j" = [ztf (V'±L)s\nZ$) - B f (1+ cos Z V 4- q sinW}/(i 

4- COS 2<$) ) - 3K| sin 

$ = -{(ip'+if 4 - 3 K j ( l - r - c o s £ W / 2 } s i n 

. . . . (3.25) 
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With 8, as the independent variable of the analog 
69 computer the equations were programmed by the general method . 

The trignometric functions of dependent variables were 

generated e x p l i c i t l y using generalized integration technique, 

i . e . , 

. . . . (3.26) 

Figure 3-14 shows a schematic of the simulation c i r c u i t 

used i n conjunction with the analog computer PACE 231-R5. 

The computer has a reference voltage of ±100 V. Characteris

t i c s of the m u l t i p l i e r s and the divider suggested the need 

for suitable amplitude sc a l i n g . The r e l a t i v e l y large values 

of cj> often made the output of the divider grow rapidl y . 

However, i t can be shown that, i n general, for | <f> | > 75° the 

s a t e l l i t e s become unstable i n i\>. Using known maximum values 

of the variables, the scaling factors K, and a were 

adjusted (e.g., K = = 25, a = 0.25) to arrive at a balanced, 

well-scaled c i r c u i t . 

The simulation was about 1000 times faster than the 

actual system (1 second =. 1 radian) . Further improvement 

i n the speed can be accomplished by suitably adjusting the . 

integrators' gains. However, any attempt at speeding-up 

the process beyond a factor of 5,000 showed res u l t s to be 

unstable through accumulated error. 
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Figure 3-14 Analog simulation c i r c u i t using 6 as the independent 
variable 
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Any combination of disturbances can be provided by 

setting the i n i t i a l conditions of the integrators, as i n 

dicated. The i n e r t i a parameter and aerodynamic c o e f f i c 

ient can be varied by changing the corresponding 

potentiometer s e t t i n g . In absence of an atmosphere the same 

c i r c u i t may be used by disconnecting the dotted block i n 

Figure 3-14. ; 

3.7.1 Accuracy of Simulation 

The l i b r a t i o n a l response of a wide range of s a t e l l i t e s 

under a variety of atmospheric conditions and disturbances 

was examined by systematically varying the i n e r t i a parameter, 

aerodynamic c o e f f i c i e n t and i n i t i a l conditions. The planar 

as well as the out of plane l i b r a t i o n s were recorded as a 

function of the s a t e l l i t e ' s o r b i t a l p o sition on a x-t p l o t t e r . 

In a l l cases studied, the r e s u l t s agreed well with 

numerical solution. Figure 3-15 shows a t y p i c a l plot of 

s a t e l l i t e ' s response to impulsive disturbance as a function 

of i n e r t i a parameter and aerodynamic c o e f f i c i e n t . 

The analysis confirms the e a r l i e r findings and 

suggests the s u i t a b i l i t y of the simulation for quantitative 

investigation. 

To es t a b l i s h the accuracy of the method for s t a b i l i t y 

studies the analog solutions were compared with the d i g i t a l 

r e s u l t s . Plots of allowable impulsive disturbances, at 

equilibrium p o s i t i o n , for non-tumbling motion were found 
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for several combinations of and . Due to absence of 

any inherent l o g i c and memory i n the analog computer, 

point by point checking was necessary for generating these 

plots. Their symmetry about axis, however, helped i n 

reducing the e f f o r t considerably. The impulsive disturbance 

at equilibrium position was varied systematically and the 

s a t e l l i t e response was observed over 50 o r b i t s . The computer 

has a safety c h a r a c t e r i s t i c of going into hold mode i n case 

of overload. This feature may be u t i l i z e d to serve as a 

log i c unit. The outputs \p and <p were scaled i n such a manner 

as to overload the computer as soon as tumbling occurred. 

The feature also proved useful i n l i m i t i n g the integration 

to 50 o r b i t s . 

Figure 3-16 compares, for several representative 

situations, the d i g i t a l and analog simulation r e s u l t s . In 

general, the agreement appears to be acceptable except for 

minor discrepancies i n the v i c i n i t y of "spikes" and "islands." 

Fortunately, t h i s does not appear to be c r i t i c a l as t h e i r 

proximity to the s t a b i l i t y bound would, i n any case, be con

sidered unsuitable for s a t e l l i t e operation. 

In spite of the inherent l i m i t a t i o n s of an analog computer, 

the simulation presented here i s economical and s u f f i c i e n t l y 

accurate for quantitative analysis. Its usefulness i n , 

s a t e l l i t e design and r e a l time studies could be enhanced 

considerably through hybridization with the d i g i t a l computer 

to take advantage of l a t t e r ' s memory and l o g i c . 



Figure 3-16 Allowable impulsive disturbances at equilibrium positions for stable motion 
- a comparison between numerical and analog results 



93 

3.8 Concluding Remarks 

The important aspects of the investigation and relevant 

conclusions may be summarized as follows: 

(i) The analysis presented here, involving several 

simplifying but r e a l i s t i c assumptions, can be 

applied readily to actual systems with s u f f i c i e n t 

accuracy. It gives a complete picture concerning 

response and s t a b i l i t y of s a t e l l i t e s under the 

influence of aerodynamic moment, which cannot be 

ignored for near earth operation, 

( i i ) The l o c a l v e r t i c a l i s no longer the equilibrium 

p o s i t i o n i n the presence of an aerodynamic moment. The 

stable equilibrium orientations, found using 

i n f i n i t e s i m a l technique as well as Liapunov's 

d i r e c t method, and bounds of l i b r a t i o n s obtained 

through the Hamiltonian of the system, are strongly 

affected by i n e r t i a c h a r a c t e r i s t i c s and aerodynamic 

moments. 

( i i i ) The amplitude of motion, esp e c i a l l y i n the o r b i t a l 

plane, increases considerably with increasing B^. 

The e f f e c t of disturbance to transverse motion i s 

more pronounced for the generalized co-ordinate i n 

the plane of the o r b i t , 

(iv) The system exhibits three, d i s t i n c t l y d i f f e r e n t , 

stable t r a j e c t o r i e s : regular, islands, and 

ergodic. However, from p r a c t i c a l considerations, 
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only the regular solution provides bounds for 

stable motion, 

(v) The reduction i n size of i n t e g r a l manifolds with 

increasing and C H suggests a c r i t i c a l value of 

Hamiltonian for stable motion, 

(vi) Plots of allowable impulsive disturbances, which 

a s a t e l l i t e at equilibrium can sustain without 

tumbling, show s a t e l l i t e s with large i n e r t i a to 

be r e l a t i v e l y more stable at higher a l t i t u d e s 

(small B^). However, shorter s a t e l l i t e s exhibit 

better s t a b i l i t y c h a r a c t e r i s t i c s i n the presence of a 

large aerodynamic moment, 

(vii ) The analog real-time simulation of the problem gives 

res u l t s of s u f f i c i e n t accuracy. The discrepancies 

with d i g i t a l results are confined to the regions 

which are of l i t t l e importance from design con

siderations. 

The analysis and results presented here should prove 

useful i n s t a b i l i t y and design considerations of near-earth 

s a t e l l i t e s . 



4. REGULAR STABILITY AND PERIODIC SOLUTIONS 

4.1 Preliminary Remarks 

For the axi-symmetric s a t e l l i t e s executing coupled 

l i b r a t i o n s i n c i r c u l a r o r b i t , i t was found that the stable 

conditions may not, i n a l l cases, lead to a well defined 

'regular' surface i n phase space. In the region of guaranteed 

s t a b i l i t y , as indicated by closed zero-velocity curves, i t 

was also possible to obtain, a chain of 'islands' or 'ergodic' 

solutions i n the t r a n s i t i o n region. The same behaviour per

s i s t e d i n the presence of aerodynamic torque. The study of the 

l i b r a t i o n a l motion, governed by the nonlinear, coupled, 

autonomous equation (3.8) suggested that the largest regular 

surface represents the only usable stable region from design 

considerations. 
8 9 

Modi and Brereton ' studied periodic solutions 

associated with the planar gravity oriented systems. They • 

emphasized the importance of the solutions by pointing out 

the fact that, at the largest e c c e n t r i c i t y for s t a b i l i t y , 

the only possible motion i s a periodic one. A s i g n i f i c a n t 

r e l a t i o n s h i p between i n t e g r a l manifold and periodic solution 

becomes apparent. A succession of i n i t i a l conditions may 

be chosen to determine progressively smaller manifolds, which 

degenerate, i n the l i m i t , to a l i n e . Because of the periodic 

nature of the invariant surface, t h i s l i n e must, then, rep-
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resent a periodic solution. Hence the periodic t r a j e c t o r i e s 

must act as spines around which the manifolds are b u i l t . 
17 

Modi and Neilson extended the concept to an a x i -

symmetric spinning s a t e l l i t e l i b r a t i n g i n presence of gravity 

gradient torques. I n i t i a l conditions for periodic solutions 

were presented over a range of system parameters for motion 

in c i r c u l a r and e l l i p t i c o r b i t s . V a r i a t i o n a l s t a b i l i t y of 
periodic solution was examined using extension of Floquet's 

70 
c r i t e r i o n to the fourth order system. 

The coupled l i b r a t i o n a l motion of an axi-symmetric s a t e l 

l i t e i n the presence of aerodynamic torque i s investigated 

here with p a r t i c u l a r emphasis on the bound between regular 

and ergodic type of s t a b i l i t y . Transition of the periodic 

solution ?21' a s s ° c i a t e d with the regular s t a b i l i t y region, 

to P̂ |- and P23' c o r r e s P o n d i n g to the chains of islands, i s 

studied through cross sections of the i n t e g r a l manifolds 

with a systematic v a r i a t i o n of disturbances. I n i t i a l con

dit i o n s for regular, stable, periodic motion are obtained 

over a range of i n e r t i a and aerodynamic parameters and the 

l i m i t i n g s t a b i l i t y conditions are established, p r e c i s e l y , 

using the Floquet analysis. Representative response data 

are also included to show the v a r i a t i o n of the associated 

period. F i n a l l y , a set of design p l o t s , i n d i c a t i n g region 

of regular s t a b i l i t y as a function of system parameters, are 

presented. 
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4.2 Analysis 

As pointed out before (Sections 2.5 and 3.5), the con

stant Hamiltonian (equations 2.7 and 3.10) makes i t possible 

to represent the stable motion concisely by an i n t e g r a l 

manifold i n ^ , ^ ' , 4 ) - space. Consider, for example, i t s cross-

section at <j>=0 revealing three d i s t i n c t classes of stable 

solutions (Figure 4-1). It i s apparent that the most pre

dominant of these i s the well defined, nested, regular solution. 

Its degeneration to a point, achieved through appropriate 

choice of i n i t i a l conditions, would represent a periodic 

solution ^21' w n i c n acts as a spine of the manifold. 

On the other hand, an alternate set of disturbance, 

though l y i n g within the region of guaranteed s t a b i l i t y as 

suggested by the closed motion envelopes, may give r i s e to 

a chain of f i v e 'islands' surrounding the l i m i t i n g regular 

region. In the three dimensional phase-space they would 

appear as a h e l i c a l tubular surface around the largest regular 

manifold. Its degeneration to a h e l i x obviously represents 

another periodic solution 

The t h i r d type of stable solution, represented by 

apparently 'ergodic' character of the trajectory f i l l i n g the; 

t r a n s i t i o n zone between the regular s t a b i l i t y region and 

islands, may also involve p e r i o d i c i t y over a large number of 

o r b i t s . 

Subjecting the system to further v a r i a t i o n i n the 

external disturbances may r e s u l t i n the formation of new 

islands, corresponding to a d i f f e r e n t periodic solution 



98 

+ 
Figure 4-1 Stroboscopic phase plane at $=Q i n d i c a t i n g types 

of stable solutions generated by various i n i t i a l 
conditions at given Hamiltonian: (a) i n absence 
of aerodynamic torque 
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(e.g., P23^* This process of formation of islands and 

t h e i r degeneration i s limited only by the approach of the 

motion envelope. 

Although stable, proximity of islands to the motion 

envelope and the i r r e g u l a r nature of the ergodic solutions 

render them of questionable value. Thus, the l i m i t i n g 

regular region remains the only p r a c t i c a l l y usable s t a b i l i t y 

bound. Rest of the discussion i s , therefore, confined to 

th i s region. 

4.2.1 Limiting S t a b i l i t y and Periodic Solutions 

The determination of regular i n t e g r a l manifold was 

accomplished numerically. In general, the equation (3.8) 

was integrated over 40-50 orb i t s for a few representative 

disturbances within the motion envelope. For the case of 

regular s t a b i l i t y t h i s leads to a well defined cross-section 

i n the stroboscopic phase plane at 4>=0. The l i m i t i n g region 

of s t a b i l i t y was established by choosing a condition corres

ponding to the mid-point of the smallest intercept on ^=^e 

between the regular and other t r a j e c t o r i e s . The process 

was repeated, u n t i l the intercept approached zero. Usually 

4-5 i t e r a t i o n s were found to be s u f f i c i e n t . 

So far as the periodic solution associated with the 

regular region i s concerned, i t was necessary to e s t a b l i s h 

i t s degeneration to a point. This was accomplished by 

s e l e c t i n g , successively, i n i t i a l conditions corresponding to 
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the mid-point of the intercept by the regular region on 

ty=tyQ. This variable secant i t e r a t i o n process converged quite 

r a p i d l y , leading to the desired periodic solution i n 2-3 

cycles. 

The same technique can be applied to determine the 

l i m i t i n g s t a b i l i t y for island type t r a j e c t o r i e s and associated 

periodic solution. The period of the solutions was established 

through response analysis (Figure 4-2). 

4.2.2 V a r i a t i o n a l S t a b i l i t y of Periodic Solutions 

As periodic solutions play an important role i n the. 

l i b r a t i o n a l dynamics of a s a t e l l i t e , i t was thought approp

r i a t e to explore the conditions for t h e i r s t a b i l i t y . However, 

i t should be emphasized that, although the cross-sectioning, 

concept i s r e l a t i v e l y simple and y i e l d s considerable insight 

into the nature of the motion i n the large, the numerical 

character of th i s approach involves a substantial amount of 

computer time. This i s p a r t i c u l a r l y true for a precise 

determination of the c r i t i c a l disturbance beyond which even 

the periodic - solutions show i n s t a b i l i t y ( i . e . , the i n t e g r a l 

manifolds cease to e x i s t ) . A need for v a r i a t i o n a l s t a b i l i t y 

analysis of periodic solutions i s , therefore, quite apparent. 

Substituting ijj=ij)p+^v, 4>=<|>p+<j>v i n equation (3.8) and 

l i n e a r i z i n g with respect to I|J and <$>̂  y i e l d s : 

= + %ty f B 3 ^ 4 - B 4 ^ . . . .-<4.i) 



Figure 4-2 Periodic response: (a) i n absence of aerodynamic 
torque 



Figure 4-2 Periodic response: (b) i n presence of aerodynamic 
torque 
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where 

A i = Z<$L tan (J) 

= fc(lp;+i)tan<t>p 

A 4 = [ ^ ( H i p + 1 ) ~ B f tan (|)p(i4- Cos2(|jp 4- q s i n i ^ ] / o ) ^ p 

B i = - ( q j ; + O s i n S l ( | ) p 

0 

B3= 3K| £({J p^in &(|)p/£ 

B4= "EC + i f + 3 Ki Cos* q; pJ c o s 

This fourth order l i n e a r system has p e r i o d i c a l l y 

varying c o e f f i c i e n t s of a common period, say T p . Thus, 

Floquet theory i s applicable. The s t a b i l i t y c r i t e r i o n can 

be expressed as: 

^ ]_ i = 1,2,3,4; stable 
' . . .(4.2) 

y i = 1,2,3,4; unstable 

The system being autonomous, one of the c h a r a c t e r i s t i c multi

p l i e r s i s unity as the derivative of the periodic solution 

s a t i s f i e s the v a r i a t i o n a l equation. Existence of constant 

Hamiltonian, a f i r s t i n t e g r a l of motion, makes another multi

p l i e r unity. For the system having these properties along : 

with the invariant nature of phase space representation, i t 

can be shown that TTX^ = 1. If X^ = = 1, then A^A^ = 1. 



1 0 5 

Hence the two free exponents X^ and X^, which determine the 

s t a b i l i t y of the solution, must l i e on the unit c i r c l e or 

the r e a l axis i n the complex plane. Thus the s t a b i l i t y 

c r i t e r i o n becomes 

4 

i=i 

unstable 

<4 or >0 ; stable 
. • . . ( 4 . 3 ) 

A f i n a l condition matrix 0(T p) i s computed from 0(0) equal 
4 

to i d e n t i t y matrix. As T r [ 0 ( T p ) ] = E X . , the s t a b i l i t y of 
i = l 1 

the periodic solution i s determined by 

T r [ 6 ( T p ) ] - 2 
> 2, ] unstable 

< z 
] stable 

. . . . ( 4 . 4 ) 

4 . 3 Discussion of Results 

The closed motion envelope i n Figure 4 - 1(a) guarantees 

a non-tumbling motion leading to three d i s t i n c t l y d i f f e r e n t 

characters of phase-space representations regular, ergodic 

and i s l a n d type each associated with a periodic solution. The 

presence of aerodynamic moment destroys the symmetry of the motion 

envelope as well as the i n t e g r a l manifold cross-section at 

<£ = 0 (Figure 4 - 1 (b) ) . Both the regular and is l a n d type 

s t a b i l i t y regions are distorted even for small B^. This makes 

the determination of s t a b i l i t y bound as well as the periodic 

solutions somewhat d i f f i c u l t . 

Figure 4 - 2 shows the periodic response plotted over 

six o r b i t s during which at least two cycles are completed. 
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In absence of aerodynamic torque the fundamental periodic 

solution associated with the regular region executes two 

planar o s c i l l a t i o n s for one transverse cycle. On the other 

hand, island s t a b i l i t y regions are associated with the 

periodic solutions P^^ and P 2 3 (Figure 4-2 (a)). Although 

the presence of atmosphere s h i f t s the response towards the -IJJ 

d i r e c t i o n the basic c h a r a c t e r i s t i c s , indicated above, remain 

e s s e n t i a l l y unaffected (Figure 4-2 (b)). In a l l the cases 

investigated, the smaller frequency response was associated 

with larger amplitudes. 

The determination of a complete set of periodic , 

solutions would involve a c a r e f u l scanning of the region of 

possible motion. However, the invariant nature of the i n t e g r a l 

manifold and predominance of the fundamental periodic solution 

render i t s u f f i c i e n t , from the point of view of usefulness, 

to give only a set of i n i t i a l conditions generating E ^ i * 

Figure 4-3 shows the effects of s a t e l l i t e i n e r t i a and 

aerodynamic torque on the impulsive disturbances to excite 

a stable, fundamental periodic motion. The l i m i t s of t h e i r 

s t a b i l i t y , as obtained from the Floquet theory, are also 

indicated. Besides being symmetrical about <f>'=0, the plots 

suggest r e l a t i v e l y larger demand on transverse disturbance. 

In a l l cases P 2 1 requires a negative planar impulse - T J J ^ , the 

magnitude of which reduces, i n general, with increasing B^ 

and K.. For comparison, generating conditions corresponding 
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Figure 4-3 E f f e c t of i n e r t i a and atmosphere on the impulsive 

disturbances for stable periodic motion; =ip , 
4> =0 ° E 
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to some of the other periodic solutions are also included 

for the p a r t i c u l a r case of a dumbbell s a t e l l i t e operating 

i n absence of atmosphere. Relatively (compared to that for 

P2^) large p o s i t i v e planar impulses excite P 2 3 while the 

large negative ones lead to £ 4 5 * 

The system, being dependent upon a number of variables, 

would involve an enormous amount of computation for any compre

hensive analysis. Furthermore, massive information so generated 

has to be presented i n a concise form for ease of application. 

One way would be to represent an i n t e g r a l manifold by i t s 

intercept, with a convenient axis, as a measure of s t a b i l i t y . 

The v a r i a t i o n of ip' intercept with the l i m i t i n g regular, 

manifold as a function of Hamiltonian i s shown i n Figure 4 - 4 . 

The fundamental periodic solutions and the c r i t i c a l conditions 

for t h e i r s t a b i l i t y are also indicated. The plots c l e a r l y 

emphasize the influence of s a t e l l i t e i n e r t i a and aerodynamic 

moment. It may be observed that appreciable reduction i n 

s t a b i l i t y would r e s u l t for s a t e l l i t e s with smaller , p a r t i c u 

l a r l y i n the presence of an atmosphere. The spinal character 

of the periodic solutions i s quite apparent. The plot 

indicates that, at c r i t i c a l Hamiltonian ( C „ ) for stable 
"cr 

motion, the only available solution i s a periodic one. 

In conjunction with the e a r l i e r r esults concerning the 

l i m i t i n g motion envelope, equation (3.22), the plots provide 

better insight into the nature of the solutions as affected 

by the Hamiltonian. 
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Figure 4-4 E f f e c t of system parameters on the region of 
regular s t a b i l i t y and fundamental periodic 
solution P~, 



For small values of C R the system behaviour i s regular. This 

continues u n t i l C , representing the bound beyond which the 
R 

island type and ergodic solutions also appear, i s attained. 

As the condition for guaranteed bounded motion ( 3 . 2 2 ) i s 

approached, the t r a j e c t o r i e s show increasing tendency towards 

non-regular behaviour, p a r t i c u l a r l y for p o s i t i v e planar 

impulses. For larger values of Hamiltonian, however, the 

stable solutions appear, only as regular t r a j e c t o r i e s . At 

C„ the manifolds cease to e x i s t , leaving the fundamental 
cr 

periodic solution to be the only stable condition. The 

following table shows the impulsive disturbances at e q u i l i b 

rium configuration required to excite at C„ , determined 
2 1 H c r 

using Floquet's v a r i a t i o n a l analysis. The corresponding 
l i b r a t i o n a l period T p i s shown as a f r a c t i o n of o r b i t a l 

cr 
period. From the consideration of p r a c t i c a l application, 

the values C„ are also included, which emphasize the reduced 
R 

s t a b i l i t y condition. 

Table 4 - 1 C r i t i c a l conditions as affected by s a t e l l i t e 
i n e r t i a and aerodynamic torque 

K i B f C H p
 CH ^O T P 
R cr cr cr 

1 . 0 0 . 0 - 2 . 5 6 0 . 8 2 7 - 1 . 3 3 7 0 . 7 1 5 7 

1 . 0 0 . 2 - 2 . 8 0 0 . 7 6 6 - 1 . 1 5 5 0 . 7 3 6 5 
1 . 0 1 . 0 - 3 . 3 2 - 1 . 0 5 5 - 0 . 2 5 2 0 . 6 3 6 2 
0 . 7 5 0 . 0 . - 2 . 0 4 0 . 8 1 2 - 1 . 2 3 5 0 . 7 6 1 1 

0 . 5 0 . 0 - 1 . 9 2 0 . 7 9 6 - 1 . 1 2 6 0 . 8 1 6 1 

0 . 5 0 . 2 - 2 . 0 5 0 . 8 0 2 - 0 . 9 5 7 0 . 8 1 3 3 
0 . 5 1 . 0 - 2 . 3 6 - 1 . 2 8 8 - 0 . 1 8 1 0 . 7 5 6 0 

0 . 2 5 0 . 0 - 1 . 7 1 0 . 7 8 7 - 0 . 9 9 5 0 . 8 8 2 3 



For stable, fundamental, periodic motion T p increases with 

C„ and B... Increase i n K. , however, causes i t s reduction n r 1 

(Figure 4 - 5 ) . The trace of the f i n a l condition matrix 

0(Tp), appearing as Floquet's s t a b i l i t y c r i t e r i o n , also 

varies s u b s t a n t i a l l y with the system parameters. 

For preliminary design of a s a t e l l i t e , i t would be 

more pertinent to have, from s t a b i l i t y considerations, i n f o r 

mation about the s a t e l l i t e ' s a b i l i t y to withstand impulsive 

disturbances for regular behaviour. This could be accomplished 

quite r e a d i l y recognizing the fact that, at equilibrium 

p o s i t i o n , the p l o t 1 vs. <j)1 , for a given Hamiltonian, i s a 

c i r c l e . When C„ i s small a l l conditions on t h i s c i r c l e lead 
n. 

to regular t r a j e c t o r i e s . However, for C„ < C„< C„ , i . e . , . l i _ H ri R cr 
when i s l a n d , ergodic type or unstable solutions are possible, 

regular behaviour can occur only over the arc corresponding 

to a l i m i t i n g intercept (Figures 4 - 1 , 4-4). 

Figure 4 - 6 compares, for a dumbbell s a t e l l i t e , the 

allowable impulsive disturbance for regular behaviour with , 

c r i t i c a l conditions for s t a b i l i t y as obtained by B r e r e t o n . ^ 

The plots are symmetrical about I J J ^ -axis. The reduction 

{ - 2 7 . 5 % i n area) i n the bound due to the ergodic and i s l a n d 

type behaviour i s p a r t i c u l a r l y s i g n i f i c a n t i n \p degree of 

freedom. The presence of atmosphere further deteriorates 

the s i t u a t i o n . The physical parameters indicated i n the 

diagram approximately correspond to the gravity-gradient 

s t a b i l i z e d s a t e l l i t e GEOS-A, launched on November 6 , 1 9 6 5 



Figure 4-5 Variation of the period and the trace of f i n a l condition matrix with 
Hamiltonian for the stable periodic solution P„, 
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Figure 4-6 Reduction of the allowable impulsive disturbance 
for stable motion due to non-regular solution 
and atmosphere 
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(data: semi-major axis - 5 , 0 0 0 miles; e = 0 . 0 7 ; I = 6 1 5 . 3 

slug, f t 2 ; I = 7 1 6 . 0 slug, f t 2 ; I = 2 0 . 8 slug, f t 2 ; D L = yy z z o o 
2 5 4 

1 3 . 1 f t ; e= 5 . 7 5 ft) . It i s apparent that the s a t e l l i t e 

would have i t s regular s t a b i l i t y reduced by = 4 5 % at 2 5 0 

miles a l t i t u d e , where = 1 . 

The e f f e c t of i n e r t i a and atmosphere on the regular 

s t a b i l i t y region i s shown i n Figure 4 - 7 . Although the re

duction i n available s t a b i l i t y bound due to ergodic and 

islan d type solutions i s s i g n i f i c a n t for s a t e l l i t e s with 

larger , they s t i l l show better s t a b i l i t y c h a r a c t e r i s t i c s 

p a r t i c u l a r l y when B^ i s small. 

4 . 4 Concluding Remarks 

The important conclusions based on the analysis may 

be summarized as follows: 

(i) The; investigation emphasizes the usefulness of the 

concept of i n t e g r a l manifolds by pointing out the 

fact that, beside providing the bound of s t a b i l i t y , 

t h e i r degeneration leads to periodic solutions. 

Thus the periodic solutions act as spines around 

which the s t a b i l i t y regions are b u i l t , 

( i i ) The system exhibits three d i s t i n c t l y d i f f e r e n t 

solutions even when the bounded motion i s guaran

teed. The regular behaviour corresponds to the 

periodic solution P 2 1 ' w n i l e the i s l a n d type rep

resentation i n the phase plane i s associated with 



Figure 4-7 Allowable impulsive disturbance at equilibrium position for regular motion 
and corresponding periodic solutions: (a) e f f e c t of i n e r t i a ; (b) e f f e c t M 
of atmosphere m 

v. 
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other periodic solutions, e.g., ^ 2 3 ' P 4 5 ' e t c • 

The ergodic behaviour i n the t r a n s i t i o n region 

i s probably i n d i c a t i v e of long period l i b r a t i o n s . 

( i i i ) Proximity of the islands to the motion envelope 

and the unpredictable nature of the ergodic solutions 

render the l i m i t i n g regular region to be the only 

useful s t a b i l i t y bound for s a t e l l i t e design. 

(iv) The fundamental period corresponding to the solution 

P^^ i s close to the o r b i t a l rate. It increases 

with decreasing K. and increasing C„ or B_. 
1 n r 

(v) In general, the c r i t i c a l Hamiltonian for stable 

motion decreases with decreasing . The reduction 

i s enhanced during the presence of aerodynamic 

torque. As the only available solution i s a 

periodic one for C„ , i t can be determined quite 
cr 

readily and accurately using extension of Floquet's 

s t a b i l i t y c r i t e r i o n to the fourth order system. 



5. LIBRATIONAL RESPONSE AND STABILITY IN ELLIPTIC ORBITS 

5.1 Preliminary Remarks 

The l i b r a t i o n a l analysis, so f a r , was r e s t r i c t e d to 

the s a t e l l i t e s negotiating c i r c u l a r t r a j e c t o r i e s . The 

s i m p l i f i c a t i o n was necessary because of the complex character 

of the governing equations which then became autonomous. The 

next l o g i c a l step would be the consideration of a more 

general s i t u a t i o n involving motion i n an e l l i p t i c t r ajectory. 

It may be pointed out that the analysis of the r e s u l t i n g non-

autonomous, gravity oriented system, even i n absence of 

environmental forces,remains unexplored. On the other hand, 

the importance of such a study becomes apparent when one 

recognizes the fact that meteorological, earth resources, 

m i l i t a r y reconnaissance, etc., s a t e l l i t e s using close earth 

or b i t s for better resolutions, can have t h e i r l i f e span 

increased through use of e l l i p t i c t r a j e c t o r i e s . 

This chapter investigates coupled l i b r a t i o n a l dynamics 

of such non-autonomous systems. In the beginning an approx

imate closed form a n a l y t i c a l solution i s obtained for the 

system i n absence of aerodynamic moment using modification of 
57 

Butenin 1s approach. This i s followed by numerical response 

and s t a b i l i t y analysis i n the large over a wide range of 

i n e r t i a parameter. Next, the e f f e c t of aerodynamic moment on 

the equilibrium configuration, system response, and s t a b i l i t y 

o 
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are s t u d i e d i n d e t a i l . As the concept of i n t e g r a l m a n i f o l d 

breaks down due to the non-autonomous c h a r a c t e r of the system, 

the amount of computational e f f o r t i n v o l v e d i s enormous. A 

convenient condensation of the response d a t a , e f f e c t e d through 

p l o t s showing a l l o w a b l e i m p u l s i v e d i s t u r b a n c e s over a s e t 

of e c c e n t r i c i t i e s , r e p r e s e n t s an attempt at p r o v i d i n g i n f o r 

mation of p a r t i c u l a r use d u r i n g p r e l i m i n a r y design of a 

s a t e l l i t e . 

5.2 Formulation of the Problem 

In absence of atmosphere (Figure 2-1) , equations 

(2.1c) and (2.3) represented the g e n e r a l motion of the system. 

Using the K e p l e r i a n r e l a t i o n s and n o t i n g t h a t 

d/dfc = 0 d / d e = ( h e / r * ) d / d e 

d y d - ezayde" + 8 d / d e 
= ( h e Y r 4 ) d V d e * - 2(^e/r

5)(dr/de)4/de 
. . . . (5.1) 

the equations i n the l i b r a t i o n a l degrees of freedom t r a n s 

form t o : 

l |T ( i 4- e c o s G ) - 2esin0(l|/'+i) - *4>'(l|/flXl-f 

e c o s O ) t a n c f > 4- 3Kj sin l\) cos lp -0 . 
. . . . (5.2a) 

0>"(1 4-e cos 9) -^e^s in 6 # + [ ( 1 +• V'f ( 1 + 

e c o s 0 ) 4- 3 Kj cos* (JJ J -sin cf) cos $ - 0 
. . . . (5.2b) 



These second order, coupled, non-linear, non-autonomous 

equations of motion remain invariant under the transformation 

( 6 , i p , 4 > ) to (9 , i { i , -< |>) , ( - 6 , - ^ , 0 ) or ( - 6 , - ^ , - 0 ) . 

5.3 Approximate Solution and System Response 

5.3.1 Variation of Parameter Method (Butenin) 

In absence of known, exact, closed form solution, 

i t was decided to analyze the problem approximately using 

modification of Butenin's v a r i a t i o n of parameter technique. 

The method was described e a r l i e r i n Section 2.4.1. 

Replacing the trignometric functions of the depen

dent variables by t h e i r s e r i e s , ignoring f i f t h and higher 

degree terms i n \p, <f>, and t h e i r derivatives, and c o l l e c t i n g 

non-linear terms and forcing function on the r i g h t side, 

equation (5.2) takes the form: 

+ 3 K i 1(1 ^ Xes in 6 -+ Z [esin 9 y'/(L+ecos6) 

+ &fy(W±t) +ZV f/3 4- 3Kj (|V 3 j . . (5.3a) 

<t>" +(i4-3K'0<t) ^ O e s i n 8 (J>'/(i+ecosf l ) ± 

+ 3Kj/( i4 - ecos 6 ) 3 / 3 - Z V ' ( p - f % 

-4ip'cf)3/3 + 3 K j i p 1 ( { ) / ( l +ecose)J 

or 

ty" + (|J - zes\n 6 + j) ' , 9) 
<t)"4- n ^ = ^ Y ^ . f ,9) 

(5.3b) 

(5.4) 
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The solution of the corresponding l i n e a r system ( i . e . , 

f^=g^=0) i s given as: 

l|j = as in (n i 9+^ i ) -f-2esine/(n^ - i ) • • • • (5.5a) 

(j) = bsin (n^g + . . . . ( 5 . 5 b ) 

where a,b,$^ and ^ are constants which can be determined 

from i n i t i a l conditions. A solution of the sim i l a r form i s 

sought for the case under consideration, allowing, however, 

the amplitude and phase angles to be functions of 6, i . e . , 

I)) = a(S) sin (n i 9 + ^(6)) + 2es in e/(nf- i) ( 5.6a) 

<l>= b(9)s\n(n̂ e+§̂ (0)) .... (5.6b) 

a,b,B^ and c a n ^ e expressed as functions of 0 plus a 

constant. Thus the solution i n the present form involves 

eight unknowns, four of which can be determined by the 

i n i t i a l conditions while the remaining have to be found 

through the imposition of constraints. 

Keeping the f i r s t derivative of equations ( 5 . 6 a ) 

and ( 5 . 6 b ) to be similar to the homogeneous solution gives 

two of the constraint r e l a t i o n s : 

a'sin'S + Q ^ - c o s = ° . . . . ( 5 . 7 a ) 

b' sin rj_ 4- b ^ c o s = o . . . . ( 5 . 7 b ) 

Other two relations are obtained by substituting ( 5 . 6 ) i n 

equations of motion ( 5 . 4 ) giving 
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a'^cos^ - Q ^ i ^ i s i n ^ = h - - •• • (5-7c) 

bn^cosi^ - bn z^ Sin = cj* . . . . ( 5.7d) 

where 

il = fi[QS\W^ + ZesinO/(n£-1) , an icos "S + 

2 e cos 0 / ( ^ - 1 ) , bsin ^ , bn^cos r[ , 9 j 
g* =g^[QSin^ + ̂ es'm6/<fn£-l), a q c o s ^ - f -

2 e c o s e / ( n f - l \ b sin r̂ , b n ^ c o s ^ , 0J 

. . . . ( 5 . 8 ) 

solving the equations ( 5 . 7 ) y i e l d s 

Q' = f \ cos - ^ / n i 

b' = g* cos n^/n^ 
Qi = - ̂  sin ^ / a n A 

^ = - 9 * s i r i . . . . ( 5 . 9 ) 

* * 

f l ' g l keing small for small disturbances, a,b,8 1 and B 2 

are slowly varying parameters. Using t h e i r average values 

over a period gives 
i / i / r^ n ( % i r * 

da/de = (l/air 3 n i ) [ [ { f / c o s ^ d - ^ dn_de 
d b/d 9 = c i/8 ff3

 ) f' i f * f' j J cos n_ d ̂  d T. d e 

d̂ /de=-( 1/8TT 3n La)l l ' J 1 ' s , n ^ d^ d a de 
d^/de=-(i/8/r3n;ib)j[MjM fV^n ^ d-> d^ de (5.10) 
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= a sin [tsKO^ & 4- @A] 6 / ( 3 K , -1) ( s . i i a ) 

cf) =. bsin [ ( 3 K j + i ) 0+£>*] . . . . (s.iib) 
where 

a = [Hi* + [<lT - 2 e / ( 3 K ( - D f / s K i f * 

^ - - [ b* { i W K i / C l - e ^ J - 3 a * K f ( i - 1/(1-

. + A eV(3K| -l)j0/(4 ( 1 + 3K| fx] + tan1 [(H-3K0V*<fe/£I 
. . . . (5.12) 

5.3.2 Accuracy of the Solution 

To es t a b l i s h the accuracy of t h i s a n a l y t i c a l technique 

the equations of motion (5.2) were integrated numerically. 

The l i b r a t i o n a l response as affected by s a t e l l i t e i n e r t i a , 

o r b i t a l e c c e n t r i c i t y and external disturbance was obtained 

over f i f t y o rbits using a step-size of 3°. However, for con

ciseness, the comparison between the two methods i s limited 

to i n i t i a l and terminal regions i n Figure 5-1. 

As i n the case of a c i r c u l a r o r b i t , the solution 

appears to agree well with the numerical r e s u l t s , p a r t i c u l a r l y 

for the motion across the o r b i t a l plane, even for a disturbance 

of appreciable magnitude (^=0^=0.5). The e f f e c t of eccen

t r i c i t y i s r e f l e c t e d through motion modulations. Both methods 

show that a larger amplitude, smaller frequency motion, with 
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Figure 5-1 Representative comparison of the responses generated 
using Butenin 1s approach and numerical method, 
showing e f f e c t s of: (a) s a t e l l i t e i n e r t i a 
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Figure 5-1 Representative comparison of the responses, gener
ated using Butenin's approach and numerical method, 
showing ef f e c t s of: (b) o r b i t e c c e n t r i c i t y 
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using Butenin's approach and numerical method, 
showing ef f e c t s of: (c) i n i t i a l conditions 
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a period of the order same as that of the o r b i t , i s excited i n 

the o r b i t a l plane when the s a t e l l i t e i s subjected to i d e n t i c a l 

disturbances i n the two degrees of freedom. The phase d i s 

crepancy between the solutions appears to grow with time. 

The l i b r a t i o n a l amplitude predicted by the approach i s , i n 

general, smaller than the actual. Thus the r e s u l t i n g ana

l y t i c a l s t a b i l i t y bound'is l i k e l y to be larger. 

Although, the agreement deteriorates with decreasing 

slenderness of the s a t e l l i t e (Figure 5 - 1(a)) and increasing 

e c c e n t r i c i t y (Figure 5 - 1 (b)), the analysis continues to 

predict the general behaviour, at least q u a l i t a t i v e l y . 

Reduction of or increase i n e -enhances the amplitude 

modulation, e s p e c i a l l y for planar degree of freedom. Both 

the solutions indicate that i n absence of any i n i t i a l d i s 

turbance, appreciable o s c i l l a t i o n s i n the o r b i t a l plane are 

excited due to e c c e n t r i c i t y of the o r b i t (Figure 5 - 1 (c)) . 

A presence of any cross motion appears to induce small 

perturbations i n the planar l i b r a t i o n s , however, the a n a l y t i c a l 

approach f a i l s to predict t h i s phenomenon. 

As i n actual practice, the gravity gradient 

s a t e l l i t e s possess large , normally move in c i r c u l a r or 

almost c i r c u l a r o r b i t s , and exhibit moderate pointing accuracy, 

the a n a l y t i c a l solution can be applied with confidence, at 

least for preliminary design purposes. 

The e f f e c t of e c c e n t r i c i t y i s indicated i n Figure 5 - 2 , 

which compares the numerically generated response of a 



Figure 5-2 Numerical results indicating the e f f e c t of o r b i t e c c e n t r i c i t y on the 
s a t e l l i t e response: (a) no disturbance; (b) large disturbance 
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dumbbell s a t e l l i t e . Although, i n a c i r c u l a r o r b i t no motion 

i s excited i n absence of disturbances, appreciable planar 

motion, which grows with e c c e n t r i c i t y , i s noticed i n e l l i p t i c 

t r a j e c t o r i e s . Considerable amplitude modulations at higher 

e c c e n t r i c i t i e s , p a r t i c u l a r l y of the motion i n the o r b i t a l 

plane, suggest an increased tendency towards i n s t a b i l i t y for the 

s a t e l l i t e subjected to an ar b i t r a r y disturbance. 

5.4 S t a b i l i t y Bound 

5.4.1 A n a l y t i c a l Approach 

With obvious li m i t a t i o n s of the Butenin method one can 

hardly expect i t to be suitable for any s t a b i l i t y study i n 

the large. However, i t was g r a t i f y i n g to observe that, i n 

spite of rather d r a s t i c s i m p l i f i c a t i o n s , the method success

f u l l y establishes trend for the influence of system 

parameters. 

The form of the solution as given by the v a r i a t i o n 

of parameter method (equation 5.11) suggests that the s t a b i l i t y 

of the system i s governed by the amplitude of the harmonic 

terms. The s t a b i l i t y c r i t e r i a , therefore, become 

|Q| 4- 2 e / ( 3 K , - 1} 4 TT/Z 

|b| ^ TT/Z . . . . (5.13) 

or, i n terms of impulsive disturbance at equilibrium con

fi g u r a t i o n , 



129 
| i | / o ' - 2 e / ( 3 K j 4 ( 3 K j ) V * [TT/Z - ze/(5Kri)} 

| <}/ | f 7T ( i - r - 3 K i ) V V ^
 ( 5* 1 4 ) 

In the ^ Q plane, these correspond to rectangular 

regions, symmetrical about if^-axis. It i s apparent that a 

decrease i n slenderness of the s a t e l l i t e or an increase i n 

o r b i t e c c e n t r i c i t y would, i n general, a f f e c t the s t a b i l i t y 

adversely, p a r t i c u l a r l y i n the i|> degree of freedom. It i s 

inter e s t i n g to observe that most s a t e l l i t e s should be able 

to withstand r e l a t i v e l y larger +ve planar impulses. At 

K^=l/3, the s t a b i l i t y bound i s not defined and below th i s 

c r i t i c a l value, most of the trends mentioned above are 

reversed. 

The Butenin's approach thus y i e l d s some q u a l i t a t i v e 

insight into the system s t a b i l i t y i n the large. However, 

for quantitative results one has to adopt numerical methods. 

5.4.2 Numerical Approach 

For autonomous systems, use of the concept of the i n t e g r a l 

manifold i n conjunction with the constant Hamiltonian f a s c i l -

i t a t e d the s t a b i l i t y analysis appreciably. Unfortunately, i n 

presence of e c c e n t r i c i t y , the concept loses i t s importance 

due to the obvious d i f f i c u l t y i n representing and in t e r p r e t 

ing the hyper-surfaces i n phase space. Intersection by a 

phase plane (say, — ' ) no longer represents a cross-section 

of the hyper-invariant-manifold, and only leads to the scattered 
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encounter with the t r a j e c t o r i e s (Figure 5 - 3 ) . Hence an 

alternate approach i s necessary to get meaningful information 

about the system s t a b i l i t y . 

Here the s t a b i l i t y bounds are established by analyz

ing the l i b r a t i o n a l response, over 1 5 - 2 0 o r b i t s , to systemat

i c a l l y varied i n i t i a l conditions, s a t e l l i t e i n e r t i a , and o r b i t 

e c c e n t r i c i t y . The vast amount of information, thus gathered, 

i s condensed i n the form of design plots (Figure 5 - 4 ) , which 

indicate allowable impulsive disturbances ( ^ 0
= < J > 0

= 0 ) at perigee 

for non-tumbling motion, over a range of and e. For 

comparison, e a r l i e r results with c i r c u l a r orbits are also 

included. 

The e f f e c t of even s l i g h t increase i n e c c e n t r i c i t y i s 

to rapidly reduce the s t a b i l i t y region, p a r t i c u l a r l y for 

s a t e l l i t e s with smaller . The reduction, i n general, i s 

more severe i n the plane of the o r b i t , where the s a t e l l i t e 

i s able to withstand, r e l a t i v e l y , large pos i t i v e disturbance. 

The plots remain symmetrical about cf>' =0 as i n the case of 

autonomous system. The peculiar shape of a s t a b i l i t y region 

with numerous spikes may be attributed to the predominance 

of various periodic solutions. Of course, at the highest 

e c c e n t r i c i t y for stable motion, the only available solution 
9 

i s a periodic one as indicated by dots i n Figure 5 - 4 . The 

crossing of s t a b i l i t y bounds suggest that i n some si t u a t i o n s , 

increase i n e c c e n t r i c i t y may be favourable, l o c a l l y , i n 

system s t a b i l i z a t i o n . 
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Figure 5-3 Stroboscopic phase plane at 0=0 showing breakdown 
of the i n t e g r a l manifold concept for non-autonomous 
system 



Figure 5-4 E f f e c t of s a t e l l i t e i n e r t i a and o r b i t e c c e n t r i c i t y on the allowable 
impulsive disturbances for stable motion; 0 =Ui =d> =0 : (a) K. =1. 0 , 0 . 5 M 

O O O 1 w 
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Reduction of to 0.25, i . e . , a value less than the 

c r i t i c a l 1/3, reverses some of the trends established above. 

This i s apparent from i t s better s t a b i l i t y c h a r a c t e r i s t i c s 

compared to K^=0.5 i n eccentric o r b i t s . A 'shorter' s a t e l l i t e 

also exhibits an a b i l i t y to withstand larger negative impulse, 

Although the plots presented here are for disturbances 

received at perigee, averaging over a large number of or b i t s 

suggests th e i r a p p l i c a b i l i t y , at least approximately, to any 

6 i n small e c c e n t r i c i t y o r b i t s . In p r i n c i p l e the system 
7 

behaviour i s si m i l a r to planar l i b r a t i o n s i n e l l i p t i c o r b i t 

and coupled l i b r a t i o n s i n c i r c u l a r o r b i t . It i s important 

to recognize that presence of cross-plane motion improves the 

s a t e l l i t e ' s a b i l i t y to withstand impulsive disturbances. 

5.5 E f f e c t of Aerodynamic Torque on System Response and 
S t a b i l i t y 

5.5.1 Equations of Motion 
/ 66 

Using Schaaf and Chambre''s approach for a s a t e l l i t e 

surface i n free molecular flow the modified pot e n t i a l function 

for a c y l i n d r i c a l s a t e l l i t e i n a c i r c u l a r o r b i t was given by 

equation (3.4 ). In an e l l i p t i c o r b i t , the change i n density 

and o r b i t a l v e l o c i t y from point to point can be expressed as: 

^ = { ( r - R e ) / ( r p - R e ) f ' . . . . < 5 . i 5 a ) 

v* = >* (v/vp)* - v* { ( 2 rp - p + r e;/(r + r e)} 
. . . . (5.15b) 
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The value of exponent n varies between - 5 to - 7 i n the a l t i t u d e 

range of 1 0 0 - 5 0 0 miles. The aerodynamic p o t e n t i a l , thus 

becomes: 

U Q = %l{(r/rp-^/rp)/(L~Re/r^f(zrp/r 

- i + e ) / ( i - f e ) J { ( j J -f s i n ( p ( c o s i p f q s i n 

(for [(JJ| < TT/Z) • • • • (5-16> 

where 

B ^ = S C D ^ B o L °
 V p / H e J . . . . ( 5 . 1 7 a ) 

q = TTD0/4L0 = 7T [ a - K ] ) / n a + K \ ) } i / l ( 5 - 1 7 b ) 

It i s apparent that, consistent with the assumptions 

(Section 3.2.1), the governing equation of motion i n the 

<J) degree of freedom (5.2b) remains unchanged and that i n the 

degree modifies to: 

ip"(i-4-e cosG) - £ e s i n e ( t y'4 - 1 ) - £ < ^ V l ) (4> 

ecos0)tan(b 4-3K\sin (p cos\\) -f Bf (1+ e cose)(|cos 

• i - q s i n l p ) c o s ^ / c o s ^ =0 . . . . ( 5 . 1 8 ) 

where 

\ = \ [ { ^ f e ) / ( ^ e c o ^ ) - ^ A P | / a -

- R e / r p ) ] n ( l 4 - ^ e c o s 6 4-e^)Ci4-e)V(l+eco5ef 
. . . . (5.19) 

Note that the system retains invariant character only under 
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the transformation (0,i|;,<J>) to (6/i|> ,-<j>) . 

Increased complexity renders the a n a l y t i c a l techniques 

of questionable value, p a r t i c u l a r l y for motion i n the large. 

Numerical methods, therefore, have to be resorted to. 

5.5.2 Equilibrium Configuration 

The stable equilibrium position i s given as: 

l(J = t a n 4 { - B f /(3K- ,+B f c p j cb = 0 • • • <5-20> e £ E J j c 

As B ' varies with 6 ,ip changes continuously (Figure 
E e 

5-5). The symmetry of the plots about 0=0 i s of i n t e r e s t . 

The presence of e c c e n t r i c i t y tends to confine the effects of 

aerodynamic perturbations to the region near perigee. Even 

for small e c c e n t r i c i t y of orbits (e < 0.1), the aerodynamic 

torque becomes n e g l i g i b l e for |0| > 60°. The rate of 

reduction becomes steeper with increasing e and B^ , and 
P 

decreasing . 

5.5.3 System Response 

A few representative response p l o t s , obtained numer

i c a l l y , for systematically varied i n e r t i a , o r b i t e c c e n t r i c i t y , 

aerodynamic c o e f f i c i e n t , and i n i t i a l conditions are shown i n 

Figure 5-6. As against the l i b r a t i o n a l motion about a con

stant equilibrium position i n c i r c u l a r o r b i t , presence of 

a forcing function along with the periodic v a r i a t i o n of 
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140 160 

6 

Figure 5-5 Variation of aerodynamic c o e f f i c i e n t and stable 
equilibrium configuration with 6 and e 
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Typical system responses showing the e f f e c t of o r b i t e c c e n t r i c i t y and 
(b) s a t e l l i t e i n e r t i a 



orbits 
Figure 5-6 Typical system responses showing the e f f e c t of o r b i t e c c e n t r i c i t y and 

(c) i n i t i a l conditions 
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aerodynamic torque and equilibrium configuration makes the 

r e s u l t i n g response quite complex. The modulations, which are 

more predominant i n the planar degree of freedom,grow rapidly 

with B f (Figure 5-6(a)). Even for an i d e n t i c a l disturbance 
P 

in the two degrees of freedom, the planar component appears 

to be more susceptible to i n s t a b i l i t y . This, i n a sense, j u s t i 

f i e s the e a r l i e r s i m p l i f i e d model of planar l i b r a t i o n s used 
, i 2-9 et a l . by several authors. 

As can be expected, the forcing function a r i s i n g 

from o r b i t e c c e n t r i c i t y induces planar l i b r a t i o n a l motion. 

Due to aerodynamic influence, planar o s c i l l a t i o n s were noticed 

i n absence of any external disturbance, even i n c i r c u l a r o r b i t . 

The combined e f f e c t of e and B f results i n a considerably 
E 

larger planar motion (Figure 5-6(b)), p a r t i c u l a r l y for short 

s a t e l l i t e s . Irrespective of K., e or B, a s a t e l l i t e 

i n i t i a l l y positioned c o r r e c t l y along the l o c a l v e r t i c a l executes 

appreciable l i b r a t i o n s i n the o r b i t a l plane. The presence 

of a cross motion does not af f e c t i t noticeably (Figure 5-6(c) ). 

The character of the response suggests possible reduction i n 

the s t a b i l i t y region due to aerodynamic torque. 

A l l the response data presented so f a r , correspond 

to stable operation of the s a t e l l i t e . Its c r i t i c a l dependence 

on s a t e l l i t e i n e r t i a and o r b i t e c c e n t r i c i t y was shown through 

s t a b i l i t y p l o t s . In Figure 5-7 are shown several examples 

of i n s t a b i l i t y as functions of K^,B^ and e. Note that a 

slender s a t e l l i t e (K.=1.0), moving i n a c i r c u l a r o r b i t through 



Figure 5-7 I n s t a b i l i t y excited by change of system parameter 
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a pure gravity gradient f i e l d executes large amplitude stable 

l i b r a t i o n s when subjected to a unit impulse ($^=$^=1.0 ,1)1^ ^ = 0 ) . 

However, changes i n system parameters beyond the c r i t i c a l values 

lead to tumbling motion. For instance, reduction of to 

0.5 or increase of e c c e n t r i c i t y to 0.15 lead to i n s t a b i l i t y 

within a short time. Increase i n B f to a unit value i n i t i a t e s 

'clockwise' tumbling i n c i r c u l a r o r b i t i t s e l f . I t may be 

pointed out that i n a l l these cases, the motion across the 

or b i t remains bounded. Importance of parametric study of the 

system, from design considerations, i s thus apparent. 

5.5.4 S t a b i l i t y Plots 

As no known closed form solution i s available and the 

int e g r a l manifold technique does not appear to be applicable, 

the s t a b i l i t y of the system i s established, as before, through 

numerically generated response. Design plots again prove 

useful i n condensing an enormous amount of information. The 

plots (Figure 5-8), symmetrical about <j>̂ =0, show a l l possible 

combinations of allowable impulsive disturbances for s t a b i l i t y . . 

The corresponding r e s u l t s for a c i r c u l a r o r b i t are also included 

for comparison. It i s apparent that even a small e c c e n t r i c i t y 

of the o r b i t makes the s t a b i l i t y region shrink s u b s t a n t i a l l y . 

The presence of aerodynamic torque further enhances th i s trend. 

As i n the case of e c c e n t r i c i t y , the reduction i n the s t a b i l i t y 

margin i s predominantly i n the degree of freedom. The 

system shows, i n general, better a b i l i t y to withstand posi t i v e 
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planar impulses. The peculiar shapes of the boundary with 

spikes may be attributed, as before, to coupling e f f e c t s and 

the existence of a variety of periodic solutions. 

The aerodynamic torque represents a periodic disturb

ance. Although active only over a r e l a t i v e l y small portion 

of the s a t e l l i t e ' s eccentric o r b i t , i t has considerable 

adverse influence on the s t a b i l i t y . 

The extensive amount of computation involved limited 

the investigation to only a few representative s i t u a t i o n s . 

5.6 Concluding Remarks 

The important aspects of the analysis and more s i g n i f 

icant conclusions may be summarized as follows: 

(i) A simple closed form solution as given by Butenin's 

v a r i a t i o n of parameter method can be used e f f e c 

t i v e l y during preliminary design of a s a t e l l i t e , 

( i i ) In the absence of any disturbance, e c c e n t r i c i t y excites 

a pure planar motion having a period of the same 

order as the o r b i t a l rate. Coupling effects i n this 

case are r e l a t i v e l y less s i g n i f i c a n t . 

( i i i ) In the case of the non-autonomous system, the concept 

of i n t e g r a l manifold i n the phase space loses i t s 

importance due to obvious l i m i t a t i o n of v i s u a l i z 

ation and interpretation of hyper-surfaces. 

(iv) The s t a b i l i t y region diminishes rapidly with increase 

i n e c c e n t r i c i t y . The shrinkage i s more s i g n i f i c a n t 
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i n the planar degree of freedom and for shorter 

s a t e l l i t e s (smaller K.). 
1 

(v) The c r i t i c a l e c c e n t r i c i t y for stable motion decreases 

subst a n t i a l l y with reduction i n . Even i n absence 

of aerodynamic moment, the gravity gradient f a i l s 

to s t a b i l i z e the most stable configuration of a 

dumbbell s a t e l l i t e beyond e c r=0.35. The presence 

of atmosphere affects the s i t u a t i o n adversely. The 

q u a l i t a t i v e analysis suggests that at K^=l/3 no 

s t a b i l i t y can be expected. Any reduction of i n e r t i a 

parameter below t h i s c r i t i c a l value reverses the 

normal trends. 

(vi) The presence of aerodynamic torque affects the stable 

equilibrium configuration which changes p e r i o d i c a l l y 

with the position of the s a t e l l i t e i n eccentric 

o r b i t . The torque leads to rapid degeneration of 

s t a b i l i t y region. 
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6. AERODYNAMIC DAMPING 

6.1 Preliminary Remarks 

Having gained some understanding of the behaviour of 

gravity-oriented systems, the next l o g i c a l step would be to 

explore the p o s s i b i l i t y of c o n t r o l l i n g the undesirable 

l i b r a t i o n s to achieve high pointing accuracy. To t h i s end 

several damping mechanisms have been evolved and analyzed. 
39 

Debra considered use of a sphere moving i n a 
40 

viscous media to damp the general l i b r a t i o n s . Kamm suggested 

the V e r t i s t a t : a set of two f l e x i b l e booms put ho r i z o n t a l l y 

at r i g h t angle to each other to control the motion both i n 
and across the o r b i t a l plane. For planar l i b r a t i o n a l control 

41 
Paul proposed the use of a 'lossy' spring supporting a 

42 
small mass. Modi and Brereton improved t h i s model through 

43 44 
a parametric study. Tschann and Modi ' undertook an 

optimization of the same model using a n a l y t i c a l methods and 

presented a rigorous performance comparison with the conven

t i o n a l boom dampers. 

Use of environmental forces i n l i b r a t i o n a l damping 
45 

and attitude control i s not new. Paul et a l . showed the 

f e a s i b i l i t y of magnetic f i e l d . The application of solar 

radiation pressure for a space vehicle propulsion during 

inter-planetary f l i g h t s has been proposed by several authors 
3 8 

including Garwin, who described i t as "solar s a i l i n g . " 



Sohn et a l . investigated s p e c i f i c configurations for s a t e l 
l i t e s t a b i l i z a t i o n with respect to the sun. More d i r e c t l y , 

46 
Mallach suggested the use of solar ra d i a t i o n as a damping 
force for gravity oriented s a t e l l i t e s . Recently, Modi et a l . 
47-49 

established the f e a s i b i l i t y of using solar radiation 

pressure for an e f f i c i e n t planar damping and attitude control 

by adjusting the exposed areas of solar pads as a function 

of l i b r a t i o n a l v e l o c i t y and angle. 

This chapter explores the p o s s i b i l i t y of u t i l i z i n g 

the normally d e s t a b i l i z i n g aerodynamic moment to advantage. 

A semi-passive, v e l o c i t y - s e n s i t i v e c o n t r o l l e r provides 

restoring moment of appropriate magnitude and sense through 

judicious adjustment of flaps exposed to the free molecular 

flow. This concept of l i b r a t i o n a l damping through d i f f e r e n t i a l 

l i f t i s e s s e n t i a l l y an extension of the a i r c r a f t s t a b i l i z 

ation techniques. 

6.2 F e a s i b i l i t y of the Concept 

Introduction of the aerodynamic force to a g r a v i t y -

gradient system presents a p o s s i b i l i t y of center of pressure 

not coinciding with the center of mass. This leads to the 

aerodynamic torque which, i f controlled e f f i c i e n t l y , can 

provide not only the l i b r a t i o n a l damping but also the attitude 

control of the s a t e l l i t e . Extending the concept of a i r c r a f t 

attitude control to spacecraft moving i n the r a r e f i e d atoms-

phere, consider a s a t e l l i t e , with two i d e n t i c a l s t a b i l i z i n g 

"flaps', as shown i n Figure 6-1 (a). The f l a p s , located i n 





gure 6-1 Aerodynamic damping and s t a b i l i z a t i o n : (b) possible 
arrangements of s t a b i l i z e r s 



the l o c a l horizontal plane passing through the center of 

mass of the s a t e l l i t e and controlled independently, are 

free to rotate about the axes perpendicular to the l i n e of 

symmetry of the s a t e l l i t e . An equal and opposite rotation 

of the f l a p s , leads to moment about the center of mass 

which has s t a b i l i z i n g components i n both and $ degrees of 

freedom. Thus with l i b r a t i n g s a t e l l i t e s , f l a p orientation 

can be adjusted continuously to provide suitable correcting 

torque. The moment due to the forces being balanced, no 

rotation about the z axis (yaw) i s induced. As the s a t e l l i t e , 

under the action of various disturbances, s t a r t s to l i b r a t e , 

the flaps are i n c l i n e d appropriately with respect to the 

impinging stream to provide a s t a b i l i z i n g torque. The torque, 

i f controlled as a function of s a t e l l i t e ' s l i b r a t i o n a l 

v e l o c i t y , should be able to damp the motion. 

Figure 6-1(b) shows some of the alternate schemes 

for f l a p arrangement. While the scheme discussed above i s 

l i k e l y to be the simplest to construct i t has obvious 

l i m i t a t i o n s , e.g., lack of control i n an i n d i v i d u a l degree of-

freedom. The triangular setting (Figure 6-1(b)i), i n which 

the front f l a p damps the planar motion while the rear two by 

th e i r opposite movement control the cross-plane l i b r a t i o n s , 

provides a way of governing the i n d i v i d u a l degree of freedom. 

For maintaining the axi-symmetric character, the rear flaps 

are appropriately o f f - s e t from the center l i n e of the 

s a t e l l i t e . A further improvement, i n terms of symmetry :and 
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magnitude of the restoring moment, i s represented by the con

fi g u r a t i o n shown i n Figure 6 - l ( b ) i i . Here the o f f - s e t i s 

eliminated without a f f e c t i n g independent control of the 

ind i v i d u a l degree. Introduction of a set of s p l i t - f l a p s 

(Figure 6-1 ( b ) i i i ) represents another p o s s i b i l i t y . Here the 

center sections of each assembly are actuated i n d i v i d u a l l y 

to provide torque for planar control, while the other ones 

damp the motion i n <J) degree of freedom. Numerous other 

variations can be thought of by combining these basic 

arrangements. 

The concept during actual design may be faced with 

several optimization problems: 

(i) The atmospheric density as well as the l i f t co

e f f i c i e n t reduce rapidly with increase i n a l t i t u d e . 

On the other hand, the l i f e time of the s a t e l l i t e s 

diminishes with t h e i r closeness to the earth. Thus 

a compromise i s indicated, 

( i i ) The flaps should be l i g h t yet s u f f i c i e n t l y r i g i d 

and large to generate enough l i f t . Furthermore, 

the drag should be small to minimize o r b i t a l 

perturbations. 

( i i i ) The flaps should be so located as to avoid i n t e r 

ference with the operation of antennae, cameras 

and solar c e l l s , 

(iv) The arms supporting the flaps should be long enough 

for adequate moment without s a c r i f i c i n g lightness 
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and r i g i d i t y . Obviously extensive ground tests 

would be required. 

Angular movement of the well arranged flaps i s l i k e l y 

to have l i t t l e e f f e c t on t o t a l i n e r t i a , axi-symmetric character 

of the system or the position of the center of mass. 0f ; 

course, sensing the disturbance and operation of the flaps may 

involve time delay. This, however, would be of l i t t l e 

s i g n i f i c a n c e due to long period (order of o r b i t a l period) of 

the l i b r a t i o n s . 

6.3 Response Analysis 

With l i n e a r l y proportional, v e l o c i t y - s e n s i t i v e c o n t r o l , 

the governing equations of motion i n a c i r c u l a r o r b i t modify 

to: 

iy" - 2<t> ( q / + i ) t a n <[) 4- 3Kj sin I jJcos^ + B f (lcost[/| 

4-CjS'W l)J) C O S ^ / C O S ^ c j ) 4- yU| l ) / = 0 . . . . (6.1a) 

$ + [C^J'f if 4- 3.K-, cos*- qj] sinct> cosc^ 4- jd^ = 0 

. . . . (6.1b) 

where and are positive proportionality constants and 

i s the constant aerodynamic c o e f f i c i e n t for the s a t e l l i t e 

without flaps. Due to axi-symmetric arrangement, the s t a b i l 

i z e rs do not induce rotations about the z axis. The fore

going ignores any variations i n damping torque due to small 

X o s c i l l a t i o n s caused by coupling e f f e c t s (equation (2.1c)). 
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The physical size and location of the flaps would 

also impose a l i m i t on the s t a b i l i z i n g torque, i . e . , ! 

M i iJJ'l ^ T t max 

AH 4> I ^ % . . . . (6.2) 
where, 

(6.3) 

2 
For example, a s a t e l l i t e , with 1=600 slug, f t , i n a c i r c u l a r 
o r b i t at 200 miles a l t i t u d e (p = 3.0 x 10~ 1 3 s l u g / f t 3 - ARDC 

6 8 
1959) and provided with two 3' x 3' flaps with moment arm 
of 5" each, has the maximum c o e f f i c i e n t of l i f t equal to 

6 6 
about 0.2 and the associated x. becomes 2.0. The con-

max 
d i t i o n (6.2) implies that the flaps would maintain t h e i r 

orientation for torque requirement beyond T. 
max 

Figure 6-2 shows, over 3 o r b i t s , the e f f e c t of con

t r o l l e r proportionality constants ( y ^ , u 2 ) and system parameters 

on l i b r a t i o n a l response. A slender s a t e l l i t e with a small 

aerodynamic c o e f f i c i e n t B^, undergoes subs t a n t i a l l y large 

motion i n absence of damping. However, a small s t a b i l i z i n g 

torque i n either or cf> d i r e c t i o n causes a quick reduction 

in amplitude (Figure 6-2 (a) ) . Increase i n \x^, considerably 

improves the damping e f f i c i e n c y . The time index may be as 

small as the o r b i t a l period. 
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3 0 r 

Figure 6-2 Aerodynamically damped response (i-; =2.0) showing 
the effects of: m a x 

(a) proportionality constants 
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Figure 6 - 2 Aerodynamically damped response ( x { = 2 . 0 ) showina 
the e f f e c t s of: max ^ 
(c) i n i t i a l conditions 
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The effectiveness of t h i s aerodynamic damping concept 

with reference to s a t e l l i t e s of d i f f e r e n t and B f i s 

suggested by Figure 6-2(b). It appears that i r r e s p e c t i v e 

of the transient response, which strongly depends on the 

system parameters, the time to damp remains r e l a t i v e l y un

affected. F i n a l configuration attained i n each case i s the 

stable equilibrium p o s i t i o n , which depends on and B f only. 

As shown i n Figure 6-2(c) the aerodynamic c o n t r o l l e r i s able 

to damp large disturbances without changing the proportionality 

constants. Of course the time index, i . e . , time to damp to 

the prescribed f r a c t i o n of the i n i t i a l amplitude, increases 

with the magnitude of a disturbance, yet even i n the worse 

si t u a t i o n considered i t i s limited to three o r b i t s . Bounded 

response to the normally d e s t a b i l i z i n g disturbance of 

^o =^o = 2'^ ( F : " - 9 u r e 6 _2 (c) ) suggests improved s t a b i l i t y . 

The mechanism appears to be quite e f f e c t i v e i n l i b r a 

t i o n a l damping of near-earth s a t e l l i t e s . Its e f f i c i e n c y i n 

co n t r o l l i n g general motion appears to be, at l e a s t , equal to 
44 

that of conventional viscous dampers and solar pressure 
47-49 

s t a b i l i z a t i o n i n planar motion. 

It i s int e r e s t i n g to note that i f B f, which involves 

several variable parameters, were adjusted appropriately or 

the s t a b i l i z i n g torque were controlled not only as a function 

of l i b r a t i o n a l v e l o c i t y but also of i t s angular displacement, 

the mechanism could s t a b i l i z e the s a t e l l i t e at any desired 

orientation. This would represent a simple yet powerful method 
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of attitude control. 

For eccentric o r b i t s , steady state performance, i . e . , 

time to damp as well as the l i m i t cycle amplitudes would be 

of i n t e r e s t . Here also the general effectiveness of the 

con t r o l l e r appears to be promising. 

6.4 Concluding Remarks 

Aerodynamic damping of l i b r a t i o n a l motion appears to be 

quite promising. A v e l o c i t y - s e n s i t i v e , semi-passive c o n t r o l l e r 

can damp even large amplitude motion, both i n and across the 

o r b i t a l plane, i n less than two o r b i t s . The f i n a l configur

ation attained i s the stable equilibrium one. The time index 

depends mainly on the proportionality constants and disturb

ances encountered. The s t a b i l i t y bound i s l i k e l y to be 

enlarged sub s t a n t i a l l y . 

Several optimization problems a r i s i n g from mechanics, 

aerodynamics, control, and structual strength considerations 

do e x i s t , however, they appear to be within the reach of the 

present l e v e l of technology. 



7. CLOSING COMMENTS 

7.1 Summary 

As .indicated at the outset, the main objective of t h i s 

study has been to gain some insight into the l i b r a t i o n a l 

response and s t a b i l i t y of the gravity oriented s a t e l l i t e s 

as affected by system parameters and aerodynamic forces. 

Emphasis, throughout, has been on generating information 

suitable for design purposes. 

The thesis establishes several useful approaches to 

investigate the problems of autonomous and non-autonomous 

character with p a r t i c u l a r reference to the l i b r a t i o n a l 

dynamics. Among the few a n a l y t i c a l techniques available for 

the study of non-linear coupled problems, Butenin's v a r i a t i o n 

of parameter method appears to fare well, at least for motion 

in the small. The success of the method i n predicting 

amplitude and frequency with acceptable accuracy for both 

autonomous and non-autonomous systems makes i t i d e a l l y 

suited to the planning of the s a t e l l i t e control system. 

A precise,real time simulation using an analog computer 

i s of considerable importance where cost i s the over-riding 

consideration. It may prove to be of p a r t i c u l a r significance 

to the countries l i k e B r a z i l and India which are involved 

i n the design of communication s a t e l l i t e s to be used for 

s o c i a l reforms. 
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The study emphasizes the usefulness of zero v e l o c i t y 

curves a r i s i n g from constant Hamiltonian associated with the 

autonomous system. It provides bounds of l i b r a t i o n s , leads 

to approximate closed form solution for system response and 

constraints for guaranteed and conditional s t a b i l i t y . 

The concept of i n t e g r a l manifold used so successfully 
7 — 9 2 7-29 

by Modi et a l . ' i n the s t a b i l i t y study of the planar 

system can also be u t i l i z e d i n analyzing an autonomous, coupled 

system. It provides a l l possible combinations of external 

disturbances to which a s a t e l l i t e can be subjected, at any 

point i n i t s o r b i t , without causing i t to tumble. The fact 

that the degeneration of the invariant surface leads to a 

periodic solution further enhances the importance of the 

method. Application of the Floquet theory to the fourth 

order system helps to establish s t a b i l i t y of the periodic motion 

as well as the c r i t i c a l disturbance leading to a tumbling 

motion. 

Of considerable interest are the three d i s t i n c t l y 

d i f f e r e n t solutions - regular, islan d type, and ergodic - i n the 

guaranteed s t a b i l i t y domain. The regular s t a b i l i t y region 

being the only one usable from p r a c t i c a l considerations, i t s 

detailed study and the re s u l t i n g design charts represent 

innovations of far reaching implication. 

With the study of the non-autonomous case of e l l i p t i c 

orbits we take a modest step forward i n a f i e l d that has 

remained, so fa r , unexplored. The addition of atmospheric 
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effects c l e a r l y emphasize the penalty, i n terms of reduced 

s t a b i l i t y , one must pay to achieve longer l i f e . 

F i n a l l y the u t i l i z a t i o n of aerodynamic forces to advan

tage through a semi-passive controller represents the f i r s t 

recorded attempt. The concept presents exciting p o s s i b i l i t i e s 

of e f f i c i e n t l i b r a t i o n a l damping and attitude control. 

It i s believed that the information presented here 

adds to our understanding of s a t e l l i t e attitude dynamics and 

should prove useful during spacecrafts' design. 

7.2 Recommendations for Future Work 

The investigation reported here brings to l i g h t numer

ous p o s s i b i l i t i e s for extension and innovations. Some of the 

more important problems are l i s t e d below: 

(i) The dynamical study of an a r b i t r a r i l y shaped, non-

r i g i d s a t e l l i t e would make the analysis more r e a l i s t i c 

and complete. The magnitude of the d i f f i c u l t i e s , 

however, increases substantially as the i n e r t i a 

parameter becomes a time dependent function and X, 

the rotation about the long axis, no longer remains 

a c y c l i c coordinate, 

( i i ) Slow o r b i t a l decay and l o c a l variations i n atmospheric 

conditions make the aerodynamic c o e f f i c i e n t a func

tion of time, even i n near-circular o r b i t s . This 

together with the influence of other environmental 

disturbances, such as solar and earth radiations, 
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on the general motion of s a t e l l i t e s merit 

investigation. 

( i i i ) In spite of the complex character of the problem, 

the approximate closed form solutions, i n general, 

have proved to be of considerable p r a c t i c a l use. 

Hence a l l e f f o r t s should be made to improve t h e i r 

accuracy. The use of modified generating functions, 

better representation of coupling e f f e c t s , series 

solution, extension of W.K.B.J. Method to fourth 

order systems, etc., a l l appear promising, 

(iv) As periodic solutions represent degeneration of 

int e g r a l manifolds, the p o s s i b i l i t y of reconstruc

ting them from known periodic solutions should be 

explored. The s t a b i l i t y analysis of periodic 
8 9 

solution as given Modi and Brereton ' may form a 

start i n g point for any such attempt. 

Recognizing the important role played by periodic 

solutions i n s t a b i l i t y study, t h e i r determination 

for the non-autonomous case represents l o g i c a l , 

extension to the study i n Chapter 4. The corres

ponding solution for motion i n a c i r c u l a r o r b i t 

being known, perturbation analysis may prove 

e f f e c t i v e , at least for small e c c e n t r i c i t y o r b i t s , 

(v) For non-autonomous, coupled, conservative system, the 

concept of the i n t e g r a l manifold f a i l e d to provide 

useful information, primarily because of the d i f f i -
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culty i n v i s u a l i z i n g a surface i n more than a 

three dimensional domain. This, indeed, presents 

a challenging problem. Probably, the method of 

adiabatic invariants using slowly varying Hamil

tonian may prove to be of some use. 

(vi) The concept of l i b r a t i o n a l damping using aero

dynamic forces should be extended: 

(a) to cover non-autonomous s i t u a t i o n 

(b) to explore i t s effectiveness i n attitude con

t r o l by adding displacement sensitive terms. 

This presents an inte r e s t i n g p o s s i b i l i t y of chang

ing s a t e l l i t e orientation i n the o r b i t . 
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